

Table of contents
Preface 4

Prerequisites . 4
Conventions . 4
Acknowledgements . 4
Feedback and Errata . 5
Author info . 5
License . 5
Book version . 5

One-liner introduction 6
Why use Perl for one-liners? . 6
Installation and Documentation . 7
Command line options . 7
Executing Perl code . 8
Filtering . 8
Substitution . 9
Special variables . 10
Field processing . 10
BEGIN and END . 11
ENV hash . 11
Executing external commands . 12
Summary . 13
Exercises . 13

Line processing 16
Regexp based filtering . 16
Extracting matched portions . 17
Transliteration . 18
Conditional substitution . 18
Multiple conditions . 19
next . 19
exit . 20
Line number based processing . 20
Range operator . 22
Working with fixed strings . 23
Summary . 25
Exercises . 25

In-place file editing 30
With backup . 30
Without backup . 30
Multiple files . 31
Prefix backup name . 31
Place backups in a different directory . 32
Gory details of in-place editing . 32
Summary . 32
Exercises . 32

Field separators 35

2

Default field separation . 35
Input field separator . 35
Character-wise separation . 36
Newline character in the last field . 36
Using the -l option for field splitting . 37
Whitespace and NUL characters in field separation 38
Output field separator . 38
Manipulating $#F . 39
Defining field contents instead of splitting . 40
Fixed width processing . 42
Assorted field processing functions . 43
Summary . 46
Exercises . 46

3

Preface
This book features plenty of Perl one-liners for solving text processing tasks from the command
line. You can use Perl as a single alternate to tools like grep , sed and awk . Syntax and
features of these tools (along with languages like C and bash) were inspirations for Perl,
so prior experience with them would make it easier to get comfortable with Perl one-liners.

You’ll learn about various command line options and Perl features that make it possible to
write compact CLI scripts. Learning to use Perl from the command line will also allow you to
construct solutions where Perl is just another tool in the shell ecosystem.

Prerequisites
You should be comfortable with programming basics and have prior experience working with
Perl. You should know concepts like scalar, array, hash, special variables and be familiar with
control structures, regular expressions, etc. To get started with Perl and regular expressions,
check out the following resources:

• perldoc: perlintro
• learnxinyminutes: perl
• perldoc: perlretut

You should also be familiar with command line usage in a Unix-like environment. You should
also be comfortable with concepts like file redirection and command pipelines. Knowing the
basics of the grep , sed and awk commands will come in handy as well.

Conventions
• The examples presented here have been tested with Perl version 5.38.0 and includes
features not available in earlier versions.

• Code snippets are copy pasted from the GNU bash shell and modified for presentation
purposes. Some commands are preceded by comments to provide context and explana-
tions. Blank lines to improve readability, only real time shown for speed comparisons,
output skipped/modified for certain commands and so on.

• Unless otherwise noted, all examples and explanations are meant for ASCII input.
∘ See also stackoverflow: why does modern Perl avoid utf-8 by default.

• External links are provided throughout the book for you to explore certain topics in more
depth.

• The learn_perl_oneliners repo has all the code snippets and files used in examples, ex-
ercises and other details related to the book. If you are not familiar with the git
command, click the Code button on the webpage to get the files.

Acknowledgements
• Perl documentation — manuals, tutorials and examples
• stackoverflow and unix.stackexchange — for getting answers to pertinent questions on
Perl and related commands

• tex.stackexchange — for help on pandoc and tex related questions
• /r/perl/ — helpful forum
• canva — cover image
• oxipng, pngquant and svgcleaner — optimizing images

4

https://perldoc.perl.org/perlintro
https://learnxinyminutes.com/docs/perl/
https://perldoc.perl.org/perlretut
https://stackoverflow.com/q/6162484/4082052
https://github.com/learnbyexample/learn_perl_oneliners
https://perldoc.perl.org/
https://stackoverflow.com/
https://unix.stackexchange.com/
https://tex.stackexchange.com/
https://github.com/jgm/pandoc/
https://old.reddit.com/r/perl/
https://www.canva.com/
https://github.com/shssoichiro/oxipng
https://pngquant.org/
https://github.com/RazrFalcon/svgcleaner

• Warning and Info icons by Amada44 under public domain

A heartfelt thanks to all my readers. Your valuable support has significantly eased my financial
concerns and allows me to continue working on programming ebooks.

Feedback and Errata
I would highly appreciate it if you’d let me know how you felt about this book. It could be
anything from a simple thank you, pointing out a typo, mistakes in code snippets, which aspects
of the book worked for you (or didn’t!) and so on. Reader feedback is essential and especially
so for self-published authors.

You can reach me via:

• Issue Manager: https://github.com/learnbyexample/learn_perl_oneliners/issues
• E-mail: learnbyexample.net@gmail.com
• Twitter: https://twitter.com/learn_byexample

Author info
Sundeep Agarwal is a lazy being who prefers to work just enough to support his modest
lifestyle. He accumulated vast wealth working as a Design Engineer at Analog Devices and re-
tired from the corporate world at the ripe age of twenty-eight. Unfortunately, he squandered
his savings within a few years and had to scramble trying to earn a living. Against all odds,
selling programming ebooks saved his lazy self from having to look for a job again. He can now
afford all the fantasy ebooks he wants to read and spends unhealthy amount of time browsing
the internet.

When the creative muse strikes, he can be found working on yet another programming ebook
(which invariably ends up having at least one example with regular expressions). Research-
ing materials for his ebooks and everyday social media usage drowned his bookmarks, so he
maintains curated resource lists for sanity sake. He is thankful for free learning resources and
open source tools. His own contributions can be found at https://github.com/learnbyexample.

List of books: https://learnbyexample.github.io/books/

License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

Code snippets are available under MIT License.

Resources mentioned in Acknowledgements section are available under original licenses.

Book version
2.0

See Version_changes.md to track changes across book versions.

5

https://commons.wikimedia.org/wiki/File:Warning_icon.svg
https://commons.wikimedia.org/wiki/File:Info_icon_002.svg
https://commons.wikimedia.org/wiki/User:Amada44
https://github.com/learnbyexample/learn_perl_oneliners/issues
mailto:learnbyexample.net@gmail.com
https://twitter.com/learn_byexample
https://github.com/learnbyexample
https://learnbyexample.github.io/books/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/learnbyexample/learn_perl_oneliners/blob/main/LICENSE
https://github.com/learnbyexample/learn_perl_oneliners/blob/main/Version_changes.md

One-liner introduction
This chapter will give an overview of Perl syntax for command line usage. You’ll see examples
to understand what kind of problems are typically suited for one-liners.

Why use Perl for one-liners?
I assume that you are already familiar with use cases where the command line is more produc-
tive compared to GUI. See also this series of articles titled Unix as IDE.

A shell utility like Bash provides built-in commands and scripting features to easily solve and
automate various tasks. External commands like grep , sed , awk , sort , find ,
parallel , etc help to solve a wide variety of text processing tasks. These tools are often
combined to work together along with shell features like pipelines, wildcards and loops. You
can use Perl as an alternative to such external tools and also complement them for some use
cases.

Here are some sample text processing tasks that you can solve using Perl one-liners. Options
and related details will be explained later.

change ; to
but don't change ; within single or double quotes
perl -pe 's/(?:\x27;\x27|";")(*SKIP)(*F)|;/#/g'

retain only the first copy of duplicated lines
uses the built-in module List::Util
perl -MList::Util=uniq -e 'print uniq <>'

extract only IPv4 addresses
uses a third-party module Regexp::Common
perl -MRegexp::Common=net -nE 'say $& while /$RE{net}{IPv4}/g'

Here are some stackoverflow questions that I’ve answered with simpler Perl solution compared
to other CLI tools:

• replace string with incrementing value
• sort rows in csv file without header & first column
• reverse matched pattern
• append zeros to list
• arithmetic replacement in a text file
• reverse complement DNA sequence for a specific field

The selling point of Perl over tools like grep , sed and awk includes feature rich regular
expression engine and standard/third-party modules. Another advantage is that Perl is more
portable, given the many differences between GNU, BSD and other such implementations. The
main disadvantage is that Perl is likely to be verbose and slower for features that are supported
out of the box by those tools.

See also unix.stackexchange: when to use grep, sed, awk, perl, etc.

6

https://blog.sanctum.geek.nz/series/unix-as-ide/
https://stackoverflow.com/q/42554684/4082052
https://stackoverflow.com/q/48920626/4082052
https://stackoverflow.com/q/63681983/4082052
https://stackoverflow.com/q/49765879/4082052
https://stackoverflow.com/q/62241101/4082052
https://stackoverflow.com/q/45571828/4082052
https://unix.stackexchange.com/q/303044/109046

Installation and Documentation
If you are on a Unix-like system, you are most likely to already have some version of Perl
installed. See cpan: Perl Source for instructions to install the latest Perl version from source.
perl v5.38.0 is used for all the examples shown in this book.

You can use the perldoc command to access documentation from the command line. You
can visit https://perldoc.perl.org/ if you wish to read it online, which also has a handy search
feature. Here are some useful links to get started:

• perldoc: overview
• perldoc: perlintro
• perldoc: faqs

Command line options
perl -h gives the list of all command line options, along with a brief description. See perldoc:
perlrun for documentation on these command switches.

Option Description

-0[octal] specify record separator (\0 , if no argument)
-a autosplit mode with -n or -p (splits $_ into @F)
-C[number/list] enables the listed Unicode features
-c check syntax only (runs BEGIN and CHECK blocks)
-d[t][:MOD] run program under debugger or module Devel::MOD
-D[number/letters] set debugging flags (argument is a bit mask or alphabets)
-e commandline one line of program (several -e ’s allowed, omit programfile)
-E commandline like -e , but enables all optional features
-f don’t do $sitelib/sitecustomize.pl at startup
-F/pattern/ split() pattern for -a switch (// ’s are optional)
-g read all input in one go (slurp), rather than line-by-line

(alias for -0777)
-i[extension] edit <> files in place (makes backup if extension supplied)
-Idirectory specify @INC/#include directory (several -I ’s allowed)
-l[octnum] enable line ending processing, specifies line terminator
-[mM][-]module execute use/no module... before executing program
-n assume while (<>) { ... } loop around program
-p assume loop like -n but print line also, like sed
-s enable rudimentary parsing for switches after programfile
-S look for programfile using PATH environment variable
-t enable tainting warnings
-T enable tainting checks
-u dump core after parsing program
-U allow unsafe operations
-v print version, patchlevel and license
-V[:variable] print configuration summary (or a single Config.pm variable)
-w enable many useful warnings
-W enable all warnings
-x[directory] ignore text before #!perl line (optionally cd to directory)
-X disable all warnings

7

https://www.cpan.org/src/README.html
https://perldoc.perl.org/
https://perldoc.perl.org/perl#Overview
https://perldoc.perl.org/perlintro
https://perldoc.perl.org/perlfaq
https://perldoc.perl.org/perlrun
https://perldoc.perl.org/perlrun

This chapter will show examples with the -e , -E , -l , -n , -p and -a options. Some
more options will be covered in later chapters, but not all of them are discussed in this book.

Executing Perl code
If you want to execute a Perl program file, one way is to pass the filename as an argument to
the perl command.

$ echo 'print "Hello Perl\n"' > hello.pl
$ perl hello.pl
Hello Perl

For short programs, you can also directly pass the code as an argument to the -e and -E
options. See perldoc: feature for details about the features enabled by the -E option.

$ perl -e 'print "Hello Perl\n"'
Hello Perl

multiple statements can be issued separated by ;
-l option will be covered in detail later, appends \n to 'print' here
$ perl -le '$x=25; $y=12; print $x**$y'
59604644775390625
or, use -E and 'say' instead of -l and 'print'
$ perl -E '$x=25; $y=12; say $x**$y'
59604644775390625

Filtering
Perl one-liners can be used for filtering lines matched by a regular expression (regexp), similar
to the grep , sed and awk commands. And similar to many command line utilities, Perl
can accept input from both stdin and file arguments.

sample stdin data
$ printf 'gate\napple\nwhat\nkite\n'
gate
apple
what
kite

print lines containing 'at'
same as: grep 'at' and sed -n '/at/p' and awk '/at/'
$ printf 'gate\napple\nwhat\nkite\n' | perl -ne 'print if /at/'
gate
what

print lines NOT containing 'e'
same as: grep -v 'e' and sed -n '/e/!p' and awk '!/e/'
$ printf 'gate\napple\nwhat\nkite\n' | perl -ne 'print if !/e/'
what

By default, grep , sed and awk automatically loop over the input content line by line (with
newline character as the default line separator). To do so with Perl, you can use the -n and

8

https://perldoc.perl.org/feature

-p options. The O module section shows the code Perl runs with these options.

As seen before, the -e option accepts code as a command line argument. Many shortcuts are
available to reduce the amount of typing needed. In the above examples, a regular expression
(defined by the pattern between a pair of forward slashes) has been used to filter the input.
When the input string isn’t specified, the test is performed against the special variable $_
which has the contents of the current input line (the correct term would be input record, as
discussed in the Record separators chapter). $_ is also the default argument for many
functions like print and say . To summarize:

• /REGEXP/FLAGS is a shortcut for $_ =~ m/REGEXP/FLAGS
• !/REGEXP/FLAGS is a shortcut for $_ !~ m/REGEXP/FLAGS

See perldoc: match for help on the m operator.

Here’s an example with file input instead of stdin.

$ cat table.txt
brown bread mat hair 42
blue cake mug shirt -7
yellow banana window shoes 3.14

digits at the end of lines that are not preceded by -
$ perl -nE 'say $& if /(?<!-)\d+$/' table.txt
42
14
if the condition isn't required, capture groups can be used
$ perl -nE 'say /(\d+)$/' table.txt
42
7
14

The example_files directory has all the files used in the examples (like table.txt
in the above illustration).

Substitution
Use the s operator for search and replace requirements. By default, this operates on $_
when the input string isn’t provided. For these examples, the -p option is used instead of
-n , so that the value of $_ is automatically printed after processing each input line. See
perldoc: search and replace for documentation and examples.

for each input line, change only the first ':' to '-'
same as: sed 's/:/-/' and awk '{sub(/:/, "-")} 1'
$ printf '1:2:3:4\na:b:c:d\n' | perl -pe 's/:/-/'
1-2:3:4
a-b:c:d

9

https://perldoc.perl.org/perlop#m/PATTERN/msixpodualngc
https://github.com/learnbyexample/learn_perl_oneliners/tree/main/example_files
https://perldoc.perl.org/perlop#s/PATTERN/REPLACEMENT/msixpodualngcer

for each input line, change all ':' to '-'
same as: sed 's/:/-/g' and awk '{gsub(/:/, "-")} 1'
$ printf '1:2:3:4\na:b:c:d\n' | perl -pe 's/:/-/g'
1-2-3-4
a-b-c-d

The s operator modifies the input string it is acting upon if the pattern matches. In
addition, it will return the number of substitutions made if successful, otherwise returns
a falsy value (empty string or 0). You can use the r flag to return the string after
substitution instead of in-place modification. As mentioned before, this book assumes
you are already familiar with Perl regular expressions. If not, see perldoc: perlretut to
get started.

Special variables
Brief descriptions for some of the special variables are given below:

• $_ contains the input record content
• @F array containing fields (with the -a and -F options)

∘ $F[0] first field
∘ $F[1] second field and so on
∘ $F[-1] last field
∘ $F[-2] second last field and so on
∘ $#F index of the last field

• $. number of records (i.e. line number)
• $1 backreference to the first capture group
• $2 backreference to the second capture group and so on
• $& backreference to the entire matched portion
• %ENV hash containing environment variables

See perldoc: special variables for documentation.

Field processing
Consider the sample input file shown below with fields separated by a single space character.

$ cat table.txt
brown bread mat hair 42
blue cake mug shirt -7
yellow banana window shoes 3.14

Here are some examples that are based on specific fields rather than the entire line. The -a
option will cause the input line to be split based on whitespaces and the field contents can
be accessed using the @F special array variable. Leading and trailing whitespaces will be
suppressed, so there’s no possibility of empty fields. More details are discussed in the Default
field separation section.

print the second field of each input line
same as: awk '{print $2}' table.txt

10

https://perldoc.perl.org/perlretut
https://perldoc.perl.org/perlvar#SPECIAL-VARIABLES

$ perl -lane 'print $F[1]' table.txt
bread
cake
banana

print lines only if the last field is a negative number
same as: awk '$NF<0' table.txt
$ perl -lane 'print if $F[-1] < 0' table.txt
blue cake mug shirt -7

change 'b' to 'B' only for the first field
same as: awk '{gsub(/b/, "B", $1)} 1' table.txt
$ perl -lane '$F[0] =~ s/b/B/g; print "@F"' table.txt
Brown bread mat hair 42
Blue cake mug shirt -7
yellow banana window shoes 3.14

See the Output field separator section for details on using array variables inside double quotes.

BEGIN and END
You can use a BEGIN{} block when you need to execute something before the input is read
and an END{} block to execute something after all of the input has been processed.

same as: awk 'BEGIN{print "---"} 1; END{print "%%%"}'
$ seq 4 | perl -pE 'BEGIN{say "---"} END{say "%%%"}'

1
2
3
4
%%%

ENV hash
When it comes to automation and scripting, you’d often need to construct commands that can
accept input from users, use data from files and the output of a shell command and so on. As
mentioned before, this book assumes bash as the shell being used. To access environment
variables of the shell, you can use the special hash variable %ENV with the name of the
environment variable as a string key.

Quotes won’t be used around hash keys in this book. See stackoverflow: are
quotes around hash keys a good practice in Perl? on possible issues if you don’t quote
the hash keys.

existing environment variables
output shown here is for my machine, would differ for you
$ perl -E 'say $ENV{HOME}'
/home/learnbyexample

11

https://stackoverflow.com/q/401556/4082052
https://stackoverflow.com/q/401556/4082052

$ perl -E 'say $ENV{SHELL}'
/bin/bash

defined along with the command
note that the variable definition is placed before the command
$ word='hello' perl -E 'say $ENV{word}'
hello
the characters are preserved as is
$ ip='hi\nbye' perl -E 'say $ENV{ip}'
hi\nbye

Here’s another example when a regexp is passed as an environment variable content.

$ cat anchors.txt
sub par
spar
apparent effort
two spare computers
cart part tart mart

assume 'r' is a shell variable containing user provided regexp
$ r='\Bpar\B'
$ rgx="$r" perl -ne 'print if /$ENV{rgx}/' anchors.txt
apparent effort
two spare computers

You can also make use of the -s option to assign a Perl variable.

$ r='\Bpar\B'
$ perl -sne 'print if /$rgx/' -- -rgx="$r" anchors.txt
apparent effort
two spare computers

As an example, see my repo ch: command help for a practical shell script, where
commands are constructed dynamically.

Executing external commands
You can execute external commands using the system function. See perldoc: system for
documentation and details like how string/list arguments are processed before execution.

$ perl -e 'system("echo Hello World")'
Hello World

$ perl -e 'system("wc -w <anchors.txt")'
12

$ perl -e 'system("seq -s, 10 > out.txt")'
$ cat out.txt
1,2,3,4,5,6,7,8,9,10

12

https://github.com/learnbyexample/command_help/blob/master/ch
https://perldoc.perl.org/functions/system

The return value of system or the special variable $? can be used to act upon the exit
status of the command being executed. As per documentation:

The return value is the exit status of the program as returned by the wait call. To
get the actual exit value, shift right by eight

$ perl -E '$es=system("ls anchors.txt"); say $es'
anchors.txt
0
$ perl -E 'system("ls anchors.txt"); say $?'
anchors.txt
0

$ perl -E 'system("ls xyz.txt"); say $?'
ls: cannot access 'xyz.txt': No such file or directory
512

To save the result of an external command, use backticks or the qx operator. See perldoc:
qx for documentation and details like separating out STDOUT and STDERR .

$ perl -e '$words = `wc -w <anchors.txt`; print $words'
12

$ perl -e '$nums = qx/seq 3/; print $nums'
1
2
3

See also stackoverflow: difference between backticks, system, and exec.

Summary
This chapter introduced some of the common options for Perl CLI usage, along with some of
the typical text processing examples. While specific purpose CLI tools like grep , sed and
awk are usually faster, Perl has a much more extensive standard library and ecosystem. And
you do not have to learn a lot if you are already comfortable with Perl but not familiar with
those CLI tools. The next section has a few exercises for you to practice the CLI options and
text processing use cases.

Exercises

All the exercises are also collated together in one place at Exercises.md. For solu-
tions, see Exercise_solutions.md.

The exercises directory has all the files used in this section.

13

https://perldoc.perl.org/perlop#qx/STRING/
https://perldoc.perl.org/perlop#qx/STRING/
https://stackoverflow.com/q/799968/4082052
https://github.com/learnbyexample/learn_perl_oneliners/blob/main/exercises/Exercises.md
https://github.com/learnbyexample/learn_perl_oneliners/blob/main/exercises/Exercise_solutions.md
https://github.com/learnbyexample/learn_perl_oneliners/tree/main/exercises

1) For the input file ip.txt , display all lines containing is .

$ cat ip.txt
Hello World
How are you
This game is good
Today is sunny
12345
You are funny

add your solution here
This game is good
Today is sunny

2) For the input file ip.txt , display the first field of lines not containing y . Consider space
as the field separator for this file.

add your solution here
Hello
This
12345

3) For the input file ip.txt , display all lines containing no more than 2 fields.

add your solution here
Hello World
12345

4) For the input file ip.txt , display all lines containing is in the second field.

add your solution here
Today is sunny

5) For each line of the input file ip.txt , replace the first occurrence of o with 0 .

add your solution here
Hell0 World
H0w are you
This game is g0od
T0day is sunny
12345
Y0u are funny

6) For the input file table.txt , calculate and display the product of numbers in the last field
of each line. Consider space as the field separator for this file.

$ cat table.txt
brown bread mat hair 42
blue cake mug shirt -7
yellow banana window shoes 3.14

add your solution here
-923.16

7) Append . to all the input lines for the given stdin data.

14

$ printf 'last\nappend\nstop\ntail\n' | ##### add your solution here
last.
append.
stop.
tail.

8) Use the contents of the s variable to display all matching lines from the input file ip.txt
. Assume that s doesn’t have any regexp metacharacters. Construct the solution such that
there’s at least one word character immediately preceding the contents of the s variable.

$ s='is'

add your solution here
This game is good

9) Use system to display the contents of the filename present in the second field of the given
input line. Consider space as the field separator.

$ s='report.log ip.txt sorted.txt'
$ echo "$s" | ##### add your solution here
Hello World
How are you
This game is good
Today is sunny
12345
You are funny

$ s='power.txt table.txt'
$ echo "$s" | ##### add your solution here
brown bread mat hair 42
blue cake mug shirt -7
yellow banana window shoes 3.14

15

Line processing
Now that you are familiar with basic Perl CLI usage, this chapter will dive deeper into line pro-
cessing examples. You’ll learn various ways for matching lines based on regular expressions,
fixed string matching, line numbers, etc. You’ll also see how to group multiple statements and
learn about the control flow keywords next and exit .

The example_files directory has all the files used in the examples.

Regexp based filtering
As mentioned before:

• /REGEXP/FLAGS is a shortcut for $_ =~ m/REGEXP/FLAGS
• !/REGEXP/FLAGS is a shortcut for $_ !~ m/REGEXP/FLAGS

Here are some examples:

$ cat table.txt
brown bread mat hair 42
blue cake mug shirt -7
yellow banana window shoes 3.14

$ perl -ne 'print if /ow\b/' table.txt
yellow banana window shoes 3.14

$ perl -ne 'print if !/[ksy]/' table.txt
brown bread mat hair 42

If required, you can also use different delimiters. Quoting from perldoc: match:

If / is the delimiter then the initial m is optional. With the m you can use any pair of
non-whitespace (ASCII) characters as delimiters. This is particularly useful for matching
path names that contain / , to avoid LTS (leaning toothpick syndrome). If ? is the
delimiter, then a match-only-once rule applies, described in m?PATTERN? below. If '
(single quote) is the delimiter, no variable interpolation is performed on the PATTERN.
When using a delimiter character valid in an identifier, whitespace is required after the
m . PATTERN may contain variables, which will be interpolated every time the pattern
search is evaluated, except for when the delimiter is a single quote.

$ cat paths.txt
/home/joe/report.log
/home/ram/power.log
/home/rambo/errors.log

leaning toothpick syndrome
$ perl -ne 'print if /\/home\/ram\//' paths.txt
/home/ram/power.log

16

https://github.com/learnbyexample/learn_perl_oneliners/tree/main/example_files
https://perldoc.perl.org/perlop#m/PATTERN/msixpodualngc

using a different delimiter makes it more readable here
$ perl -ne 'print if m{/home/ram/}' paths.txt
/home/ram/power.log

$ perl -ne 'print if !m#/home/ram/#' paths.txt
/home/joe/report.log
/home/rambo/errors.log

Extracting matched portions
You can use regexp related special variables to extract only the matching portions. Consider
this input file:

$ cat ip.txt
it is a warm and cozy day
listen to what I say
go play in the park
come back before the sky turns dark

There are so many delights to cherish
Apple, Banana and Cherry
Bread, Butter and Jelly
Try them all before you perish

Here are some examples of extracting only the matched portions.

note that this will print only the first match for each input line
$ perl -nE 'say $& if /\b[a-z]\w*[ty]\b/' ip.txt
it
what
play
sky
many

$ perl -nE 'say join "::", @{^CAPTURE} if /(\b[bdp]\w+).*((?1))/i' ip.txt
play::park
back::dark
Bread::Butter
before::perish

Special variables to work with capture groups aren’t always needed. For example, when every
line has a match.

$ perl -nE 'say /^(\w+).*?(\d+)$/' table.txt
brown 42
blue 7
yellow 14

with a custom separator
$ perl -nE 'say join ":", /^(\w+).*?(\d+)$/' table.txt
brown:42

17

blue:7
yellow:14

Transliteration
The transliteration operator tr (or y) helps you perform transformations character-wise.
See perldoc: tr for documentation.

rot13
$ echo 'Uryyb Jbeyq' | perl -pe 'tr/a-zA-Z/n-za-mN-ZA-M/'
Hello World

'c' option complements the specified characters
$ echo 'apple:123:banana' | perl -pe 'tr/0-9\n/-/c'
------123-------

'd' option deletes the characters
$ echo 'apple:123:banana' | perl -pe 'tr/0-9\n//cd'
123

's' option squeezes repeated characters
$ echo 'APPLE gobbledygook' | perl -pe 'tr|A-Za-z||s'
APLE gobledygok
transliteration as well as squeeze
$ echo 'APPLE gobbledygook' | perl -pe 'tr|A-Z|a-z|s'
aple gobbledygook

Similar to the s operator, tr returns the number of changes made. Use the r option to
prevent in-place modification and return the transliterated string instead.

match lines containing 'b' 2 times
$ perl -ne 'print if tr/b// == 2' table.txt
brown bread mat hair 42

$ s='orange apple appleseed'
$ echo "$s" | perl -pe 's#\bapple\b(*SKIP)(*F)|\w+#$&=~tr/a-z/A-Z/r#ge'
ORANGE apple APPLESEED

See also:

• stackoverflow: reverse complement DNA sequence for a specific field
• unix.stackexchange: count the number of characters except specific characters
• unix.stackexchange: scoring DNA data

Conditional substitution
These examples combine line filtering and substitution in different ways. As noted before, the
s operator modifies the input string and the return value can be used to know how many
substitutions were made. Use the r flag to prevent in-place modification and get the string
output after substitution.

18

https://perldoc.perl.org/perlop#tr/SEARCHLIST/REPLACEMENTLIST/cdsr
https://stackoverflow.com/q/45571828/4082052
https://unix.stackexchange.com/q/396584/109046
https://unix.stackexchange.com/q/428085/109046

change commas to hyphens if the input line does NOT contain '2'
prints all input lines even if the substitution fails
$ printf '1,2,3,4\na,b,c,d\n' | perl -pe 's/,/-/g if !/2/'
1,2,3,4
a-b-c-d

perform substitution only for the filtered lines
prints filtered input lines, even if the substitution fails
$ perl -ne 'print s/ark/[$&]/rg if /the/' ip.txt
go play in the p[ark]
come back before the sky turns d[ark]
Try them all before you perish

print only if the substitution succeeds
$ perl -ne 'print if s/\bw\w*t\b/{$&}/g' ip.txt
listen to {what} I say

Multiple conditions
It is good to remember that Perl is a programming language. You can make use of control
structures and combine multiple conditions using logical operators. You don’t have to create
a single complex regexp.

$ perl -ne 'print if /ark/ && !/sky/' ip.txt
go play in the park

$ perl -ane 'print if /\bthe\b/ || $#F == 5' ip.txt
go play in the park
come back before the sky turns dark
Try them all before you perish

$ perl -ne 'print if /s/ xor /m/' table.txt
brown bread mat hair 42
yellow banana window shoes 3.14

next
When the next statement is executed, rest of the code will be skipped and the next input
line will be fetched for processing. It doesn’t affect the BEGIN and END blocks as they are
outside the file content loop.

$ perl -nE 'if(/\bpar/){print "%% $_"; next} say /s/ ? "X" : "Y"' anchors.txt
%% sub par
X
Y
X
%% cart part tart mart

Note that {} is used in the above example to group multiple statements to be executed for
a single if condition. You’ll see many more examples with next in the coming chapters.

19

exit
The exit function is useful to avoid processing unnecessary input content when a termination
condition is reached. See perldoc: exit for documentation.

quits after an input line containing 'say' is found
$ perl -ne 'print; exit if /say/' ip.txt
it is a warm and cozy day
listen to what I say

the matching line won't be printed in this case
$ perl -pe 'exit if /say/' ip.txt
it is a warm and cozy day

Use tac to get all lines starting from the last occurrence of the search string in the entire
file.

$ tac ip.txt | perl -ne 'print; exit if /an/' | tac
Bread, Butter and Jelly
Try them all before you perish

You can optionally provide a status code as an argument to the exit function.

$ printf 'sea\neat\ndrop\n' | perl -ne 'print; exit(2) if /at/'
sea
eat
$ echo $?
2

Any code in the END block will still be executed before exiting. This doesn’t apply if exit
was called from the BEGIN block.

$ perl -pE 'exit if /cake/' table.txt
brown bread mat hair 42

$ perl -pE 'exit if /cake/; END{say "bye"}' table.txt
brown bread mat hair 42
bye

$ perl -pE 'BEGIN{say "hi"; exit; say "hello"} END{say "bye"}' table.txt
hi

Be careful if you want to use exit with multiple input files, as Perl will stop even
if there are other files remaining to be processed.

Line number based processing
Line numbers can also be specified as a matching criteria by using the $. special variable.

print only the third line
$ perl -ne 'print if $. == 3' ip.txt
go play in the park

20

https://perldoc.perl.org/functions/exit

print the second and sixth lines
$ perl -ne 'print if $. == 2 || $. == 6' ip.txt
listen to what I say
There are so many delights to cherish

transliterate only the second line
$ printf 'gates\nnot\nused\n' | perl -pe 'tr/a-z/*/ if $. == 2'
gates

used

print from a particular line number to the end of the input
$ seq 14 25 | perl -ne 'print if $. >= 10'
23
24
25

Use the eof function to check for the end of the file condition. See perldoc: eof for docu-
mentation.

same as: tail -n1 ip.txt
$ perl -ne 'print if eof' ip.txt
Try them all before you perish

$ perl -ne 'print "$.:$_" if eof' ip.txt
9:Try them all before you perish

multiple file example
same as: tail -q -n1 ip.txt table.txt
$ perl -ne 'print if eof' ip.txt table.txt
Try them all before you perish
yellow banana window shoes 3.14

For large input files, you can use exit to avoid processing unnecessary input lines.

$ seq 3542 4623452 | perl -ne 'if($. == 2452){print; exit}'
5993
$ seq 3542 4623452 | perl -ne 'print if $. == 250; if($. == 2452){print; exit}'
3791
5993

here is a sample time comparison
$ time seq 3542 4623452 | perl -ne 'if($. == 2452){print; exit}' > f1
real 0m0.005s
$ time seq 3542 4623452 | perl -ne 'print if $. == 2452' > f2
real 0m0.496s
$ rm f1 f2

21

https://perldoc.perl.org/perlfunc#eof

Range operator
You can use the range operator to select between a pair of matching conditions like line num-
bers and regexp. See perldoc: range for documentation.

the range is automatically compared against $. in this context
same as: perl -ne 'print if 3 <= $. <= 5'
$ seq 14 25 | perl -ne 'print if 3..5'
16
17
18

the range is automatically compared against $_ in this context
note that all the matching ranges are printed
$ perl -ne 'print if /to/ .. /pl/' ip.txt
listen to what I say
go play in the park
There are so many delights to cherish
Apple, Banana and Cherry

See the Records bounded by distinct markers section for an alternate solution.

Line numbers and regexp filtering can be mixed.

$ perl -ne 'print if 6 .. /utter/' ip.txt
There are so many delights to cherish
Apple, Banana and Cherry
Bread, Butter and Jelly

same logic as: perl -pe 'exit if /\bba/'
inefficient, but this will work for multiple file inputs
$ perl -ne 'print if !(/\bba/ .. eof)' ip.txt table.txt
it is a warm and cozy day
listen to what I say
go play in the park
brown bread mat hair 42
blue cake mug shirt -7

Both conditions can match the same line too! Use ... if you don’t want the second condition
to be matched against the starting line. Also, if the second condition doesn’t match, lines
starting from the first condition to the last line of the input will be matched.

'and' matches the 7th line
$ perl -ne 'print if 7 .. /and/' ip.txt
Apple, Banana and Cherry

'and' will be tested against 8th line onwards
$ perl -ne 'print if 7 ... /and/' ip.txt
Apple, Banana and Cherry
Bread, Butter and Jelly

22

https://perldoc.perl.org/perlop#Range-Operators

there's a line containing 'Banana' but the matching pair isn't found
so, all lines till the end of the input is printed
$ perl -ne 'print if /Banana/ .. /XYZ/' ip.txt
Apple, Banana and Cherry
Bread, Butter and Jelly
Try them all before you perish

Working with fixed strings
You can surround a regexp pattern with \Q and \E to match it as a fixed string, similar
to the grep -F option. \E can be left out if there’s no further pattern to be specified.
Variables are still interpolated, so if your fixed string contains $ or @ forming possible
variables, you’ll run into issues. For such cases, one workaround is to pass the search string
as an environment value and then apply \Q to that variable. See perldoc: quotemeta for
documentation.

no match, since [] are character class metacharacters
$ printf 'int a[5]\nfig\n1+4=5\n' | perl -ne 'print if /a[5]/'

$ perl -E 'say "\Qa[5]"'
a\[5\]
$ printf 'int a[5]\nfig\n1+4=5\n' | perl -ne 'print if /\Qa[5]/'
int a[5]
$ printf 'int a[5]\nfig\n1+4=5\n' | perl -pe 's/\Qa[5]/b[12]/'
int b[12]
fig
1+4=5

$y and $z will be treated as uninitialized variables here
$ echo '$x = $y + $z' | perl -pe 's/\Q$y + $z/100/'
$x = $y100$z
$ echo '$x = $y + $z' | fs='$y + $z' perl -pe 's/\Q$ENV{fs}/100/'
$x = 100
ENV is preferred since \\ is special in single quoted strings
$ perl -E '$x = q(x\y\\0z); say $x'
x\y\0z
$ x='x\y\\0z' perl -E 'say $ENV{x}'
x\y\\0z

If you just want to filter a line based on fixed strings, you can also use the index function.
This returns the matching position (which starts with 0) and -1 if the given string wasn’t
found. See perldoc: index for documentation.

$ printf 'int a[5]\nfig\n1+4=5\n' | perl -ne 'print if index($_, "a[5]") != -1'
int a[5]

The above index example uses double quotes for the string argument, which allows escape
sequences like \t , \n , etc and interpolation. This isn’t the case with single quoted string
values. Using single quotes within the script from command line requires messing with shell
metacharacters. So, use the q operator instead or pass the fixed string to be matched as an

23

https://perldoc.perl.org/functions/quotemeta
https://perldoc.perl.org/functions/index

environment variable.

double quotes allow escape sequences and interpolation
$ perl -E '$x=5; say "value of x:\t$x"'
value of x: 5

use the 'q' operator as an alternate for single quoted strings
$ s='$a = 2 * ($b + $c)'
$ echo "$s" | perl -ne 'print if index($_, q/($b + $c)/) != -1'
$a = 2 * ($b + $c)

or pass the string as an environment variable
$ echo "$s" | fs='($b + $c)' perl -ne 'print if index($_, $ENV{fs}) != -1'
$a = 2 * ($b + $c)

You can use the return value of the index function to restrict the matching to the start or end
of the input line. The line content in the $_ variable contains the \n line ending character
as well. You can remove the line separator using the chomp function or the -l command
line option (which will be discussed in detail in the Record separators chapter). For now, it
is enough to know that -l will remove the line separator and add it back when print is
used.

$ cat eqns.txt
a=b,a-b=c,c*d
a+b,pi=3.14,5e12
i*(t+9-g)/8,4-a+b

start of the line
$ s='a+b' perl -ne 'print if index($_, $ENV{s})==0' eqns.txt
a+b,pi=3.14,5e12

end of the line
same as: s='a+b' perl -ne 'print if /\Q$ENV{s}\E$/' eqns.txt
length function returns the number of characters, by default acts on $_
-l option is needed here to remove \n from $_
$ s='a+b' perl -lne '$pos = length() - length($ENV{s});

print if index($_, $ENV{s}) == $pos' eqns.txt
i*(t+9-g)/8,4-a+b

Here are some more examples using the return value of the index function.

since 'index' returns '-1' if there's no match,
you need to add >=0 check as well for < or <= comparison
$ perl -ne '$i = index($_, "="); print if 0 <= $i <= 5' eqns.txt
a=b,a-b=c,c*d

> or >= comparison is easy to specify
if you pass the third argument to 'index', you'll still have to check != -1
$ s='a+b' perl -ne 'print if index($_, $ENV{s})>=1' eqns.txt
i*(t+9-g)/8,4-a+b

If you need tomatch the entire input line or a particular field, you can use the string comparison

24

operators.

$ printf 'a.b\na+b\n' | perl -lne 'print if /^a.b$/'
a.b
a+b
$ printf 'a.b\na+b\n' | perl -lne 'print if $_ eq q/a.b/'
a.b
$ printf '1 a.b\n2 a+b\n' | perl -lane 'print if $F[1] ne q/a.b/'
2 a+b

To provide a fixed string in the replacement section, environment variables come in handy
again. Or, use the q operator for directly providing the value, but you may have to
workaround the delimiters being used and the presence of \\ characters.

characters like $ and @ are special in the replacement section
$ echo 'x+y' | perl -pe 's/\Qx+y/$x+@y/'
+

provide replacement string as an environment variable
$ echo 'x+y' | r='$x+@y' perl -pe 's/\Qx+y/$ENV{r}/'
$x+@y

or, use the 'e' flag to provide a single quoted value as Perl code
$ echo 'x+y' | perl -pe 's/\Qx+y/q($x+@y)/e'
$x+@y

need to workaround delimiters and \\ for the 'q' operator based solution
$ echo 'x+y' | perl -pe 's/\Qx+y/q($x\/@y)/e'
$x/@y
$ echo 'x+y' | perl -pe 's|\Qx+y|q($x/@y)|e'
$x/@y
$ echo 'x+y' | perl -pe 's|\Qx+y|q($x/@y\\\z)|e'
$x/@y\\z

Summary
This chapter showed various examples of processing only the lines of interest instead of the
entire input file. Filtering can be specified using a regexp, fixed string, line number or a
combination of them. The next and exit statements are useful to change the flow of code.

Exercises

The exercises directory has all the files used in this section.

1) For the given input, display except the third line.

$ seq 34 37 | ##### add your solution here
34
35
37

25

https://github.com/learnbyexample/learn_perl_oneliners/tree/main/exercises

2) Display only the fourth, fifth, sixth and seventh lines for the given input.

$ seq 65 78 | ##### add your solution here
68
69
70
71

3) For the input file ip.txt , replace all occurrences of are with are not and is with
is not only from line number 4 till the end of file. Also, only the lines that were changed
should be displayed in the output.

$ cat ip.txt
Hello World
How are you
This game is good
Today is sunny
12345
You are funny

add your solution here
Today is not sunny
You are not funny

4) For the given stdin, display only the first three lines. Avoid processing lines that are not
relevant.

$ seq 14 25 | ##### add your solution here
14
15
16

5) For the input file ip.txt , display all lines from the start of the file till the first occurrence
of game .

add your solution here
Hello World
How are you
This game is good

6) For the input file ip.txt , display all lines that contain is but not good .

add your solution here
Today is sunny

7) For the input file ip.txt , extract the word before the whole word is as well as the word
after it. If such a match is found, display the two words around is in reversed order. For
example, hi;1 is--234 bye should be converted to 234:1 . Assume that the whole word
is will not be present more than once in a single line.

add your solution here
good:game
sunny:Today

26

8) For the input file hex.txt , replace all occurrences of 0xA0 with 0x50 and 0xFF with
0x7F .

$ cat hex.txt
start: 0xA0, func1: 0xA0
end: 0xFF, func2: 0xB0
restart: 0xA010, func3: 0x7F

add your solution here
start: 0x50, func1: 0x50
end: 0x7F, func2: 0xB0
restart: 0x5010, func3: 0x7F

9) Find the starting index of the first occurrence of is or the or was or to for each
input line of the file idx.txt . Assume that every input line will match at least one of these
terms.

$ cat idx.txt
match after the last newline character
and then you want to test
this is good bye then
you were there to see?

add your solution here
12
4
2
9

10) Display all lines containing [4]* for the given stdin data.

$ printf '2.3/[4]*6\n2[4]5\n5.3-[4]*9\n' | ##### add your solution here
2.3/[4]*6
5.3-[4]*9

11) For the given input string, replace all lowercase alphabets to x only for words starting
with m .

$ s='ma2T3a a2p kite e2e3m meet'
$ echo "$s" | ##### add your solution here
xx2T3x a2p kite e2e3m xxxx

12) For the input file ip.txt , delete all characters other than lowercase vowels and the
newline character. Perform this transformation only between a line containing you up to
line number 4 (inclusive).

add your solution here
Hello World
oaeou
iaeioo
oaiu
12345
You are funny

27

13) For the input file sample.txt , display from the start of the file till the first occurrence
of are , excluding the matching line.

$ cat sample.txt
Hello World

Good day
How are you

Just do-it
Believe it

Today is sunny
Not a bit funny
No doubt you like it too

Much ado about nothing
He he he

add your solution here
Hello World

Good day

14) For the input file sample.txt , display from the last occurrence of do till the end of the
file.

add your solution here
Much ado about nothing
He he he

15) For the input file sample.txt , display from the 9th line till a line containing you .

add your solution here
Today is sunny
Not a bit funny
No doubt you like it too

16) Display only the odd numbered lines from ip.txt .

add your solution here
Hello World
This game is good
12345

17) For the table.txt file, print only the line number for lines containing air or win .

$ cat table.txt
brown bread mat hair 42
blue cake mug shirt -7
yellow banana window shoes 3.14

add your solution here
1

28

3

18) For the input file table.txt , calculate the sum of numbers in the last column, excluding
the second line.

add your solution here
45.14

19) Print the second and fourth line for every block of five lines.

$ seq 15 | ##### add your solution here
2
4
7
9
12
14

20) For the input file ip.txt , display all lines containing e or u but not both.

add your solution here
Hello World
This game is good
Today is sunny

29

In-place file editing
In the examples presented so far, the output from Perl was displayed on the terminal or redi-
rected to another file. This chapter will discuss how to write back the changes to the input files
using the -i command line option. This option can be configured to make changes to the
input files with or without creating a backup of original contents. When backups are needed,
the original filename can get a prefix or a suffix or both. And the backups can be placed in the
same directory or some other directory as needed.

The example_files directory has all the files used in the examples.

With backup
You can use the -i option to write back the changes to the input file instead of displaying
the output on terminal. When an extension is provided as an argument to -i , the original
contents of the input file gets preserved as per the extension given. For example, if the input
file is ip.txt and -i.orig is used, the backup file will be named as ip.txt.orig .

$ cat colors.txt
deep blue
light orange
blue delight

no output on the terminal as -i option is used
space is NOT allowed between -i and the extension
$ perl -i.bkp -pe 's/blue/-green-/' colors.txt
changes are written back to 'colors.txt'
$ cat colors.txt
deep -green-
light orange
-green- delight

original file is preserved in 'colors.txt.bkp'
$ cat colors.txt.bkp
deep blue
light orange
blue delight

Without backup
Sometimes backups are not desirable. In such cases, you can use the -i option without an
argument. Be careful though, as changes made cannot be undone. It is recommended to test
the command with sample inputs before applying the -i option on the actual file. You could
also use the option with backup, compare the differences with a diff program and then
delete the backup.

$ cat fruits.txt
banana
papaya

30

https://github.com/learnbyexample/learn_perl_oneliners/tree/main/example_files

mango

$ perl -i -pe 's/(..)\1/\U$&/g' fruits.txt
$ cat fruits.txt
bANANa
PAPAya
mango

Multiple files
Multiple input files are treated individually and the changes are written back to respective
files.

$ cat t1.txt
have a nice day
bad morning
what a pleasant evening
$ cat t2.txt
worse than ever
too bad

$ perl -i.bkp -pe 's/bad/good/' t1.txt t2.txt
$ ls t?.*
t1.txt t1.txt.bkp t2.txt t2.txt.bkp

$ cat t1.txt
have a nice day
good morning
what a pleasant evening
$ cat t2.txt
worse than ever
too good

Prefix backup name
A * character in the argument to the -i option is special. It will get replaced with the
input filename. This is helpful if you need to use a prefix instead of a suffix for the backup
filename. Or any other combination that may be needed.

$ ls *colors.txt*
colors.txt colors.txt.bkp

single quotes is used here as * is a special shell character
$ perl -i'bkp.*' -pe 's/-green-/yellow/' colors.txt

$ ls *colors.txt*
bkp.colors.txt colors.txt colors.txt.bkp

31

Place backups in a different directory
The * trick can also be used to place the backups in another directory instead of the parent
directory of input files. The backup directory should already exist for this to work.

$ mkdir backups
$ perl -i'backups/*' -pe 's/good/nice/' t1.txt t2.txt
$ ls backups/
t1.txt t2.txt

Gory details of in-place editing
For more details about the -i option, see:

• Effective Perl Programming: In-place editing gets safer in v5.28
• perldoc: -i option — documentation and underlying code
• perldoc faq: Why does Perl let me delete read-only files? Why does -i clobber protected
files? Isn’t this a bug in Perl?

Summary
This chapter discussed about the -i option which is useful when you need to edit a file
in-place. This is particularly useful in automation scripts. But, do ensure that you have tested
the Perl command before applying to actual files if you need to use this option without creating
backups.

Exercises

The exercises directory has all the files used in this section.

1) For the input file text.txt , replace all occurrences of in with an and write back the
changes to text.txt itself. The original contents should get saved to text.txt.orig

$ cat text.txt
can ran want plant
tin fin fit mine line

add your solution here

$ cat text.txt
can ran want plant
tan fan fit mane lane
$ cat text.txt.orig
can ran want plant
tin fin fit mine line

2) For the input file text.txt , replace all occurrences of an with in and write back the
changes to text.txt itself. Do not create backups for this exercise. Note that you should
have solved the previous exercise before starting this one.

32

https://www.effectiveperlprogramming.com/2017/12/in-place-editing-gets-safer-in-v5-28/
https://perldoc.perl.org/perlrun#-i%5Bextension%5D
https://perldoc.perl.org/perlfaq5#Why-does-Perl-let-me-delete-read-only-files%3F-Why-does-i-clobber-protected-files%3F-Isn%27t-this-a-bug-in-Perl%3F
https://perldoc.perl.org/perlfaq5#Why-does-Perl-let-me-delete-read-only-files%3F-Why-does-i-clobber-protected-files%3F-Isn%27t-this-a-bug-in-Perl%3F
https://github.com/learnbyexample/learn_perl_oneliners/tree/main/exercises

$ cat text.txt
can ran want plant
tan fan fit mane lane

add your solution here

$ cat text.txt
cin rin wint plint
tin fin fit mine line
$ diff text.txt text.txt.orig
1c1
< cin rin wint plint

> can ran want plant

3) For the input file copyright.txt , replace copyright: 2018 with copyright: 2020 and
write back the changes to copyright.txt itself. The original contents should get saved to
2018_copyright.txt.bkp

$ cat copyright.txt
bla bla 2015 bla
blah 2018 blah
bla bla bla
copyright: 2018

add your solution here

$ cat copyright.txt
bla bla 2015 bla
blah 2018 blah
bla bla bla
copyright: 2020
$ cat 2018_copyright.txt.bkp
bla bla 2015 bla
blah 2018 blah
bla bla bla
copyright: 2018

4) In the code sample shown below, two files are created by redirecting the output of the echo
command. Then a Perl command is used to edit b1.txt in-place as well as create a backup
named bkp.b1.txt . Will the Perl command work as expected? If not, why?

$ echo '2 apples' > b1.txt
$ echo '5 bananas' > -ibkp.txt
$ perl -ibkp.* -pe 's/2/two/' b1.txt

5) For the input file pets.txt , remove the first occurrence of I like from each line and
write back the changes to pets.txt itself. The original contents should get saved with the
same filename inside the bkp directory. Assume that you do not know whether bkp exists
or not in the current working directory.

33

$ cat pets.txt
I like cats
I like parrots
I like dogs

add your solution here

$ cat pets.txt
cats
parrots
dogs
$ cat bkp/pets.txt
I like cats
I like parrots
I like dogs

34

Field separators
This chapter will dive deep into field processing. You’ll learn how to set input and output field
separators, how to use regexps for defining fields and how to work with fixed length fields.

The example_files directory has all the files used in the examples.

Default field separation
Using the -a option is equivalent to @F = split . So, the input will be split based on one
or more sequence of whitespace characters. Also, leading and trailing whitespaces will be
removed (you can use the LIMIT argument to preserve trailing empty fields). From perldoc:
split:

split emulates the default behavior of the command line tool awk when the PATTERN
is either omitted or a string composed of a single space character (such as ' ' or
"\x20" , but not e.g. / /). In this case, any leading whitespace in EXPR is removed
before splitting occurs, and the PATTERN is instead treated as if it were /\s+/ ; in
particular, this means that any contiguous whitespace (not just a single space character)
is used as a separator. However, this special treatment can be avoided by specifying the
pattern / / instead of the string " " , thereby allowing only a single space character
to be a separator.

$#F gives the index of the last element, i.e. size of array - 1
$ echo ' a b c ' | perl -anE 'say $#F'
2

note that the leading whitespaces aren't part of the field content
$ echo ' a b c ' | perl -anE 'say "($F[0])"'
(a)
trailing whitespaces are removed as well
$ echo ' a b c ' | perl -anE 'say "($F[-1])"'
(c)

here's another example with more whitespace characters thrown in
in scalar context, @F will return the size of the array
$ printf ' one \t\f\v two\t\r\tthree \t\r ' | perl -anE 'say scalar @F'
3
$ printf ' one \t\f\v two\t\r\tthree \t\r ' | perl -anE 'say "$F[1]."'
two.

Input field separator
You can use the -F command line option to specify a custom regexp field separator. Note
that the -a option implicitly sets -n and the -F option implicitly sets -n and -a on
newer versions of Perl. However, this book will always explicitly use these options.

35

https://github.com/learnbyexample/learn_perl_oneliners/tree/main/example_files
https://perldoc.perl.org/functions/split
https://perldoc.perl.org/functions/split

use ':' as the input field separator
$ echo 'goal:amazing:whistle:kwality' | perl -F: -anE 'say "$F[0]\n$F[2]"'
goal
whistle

use quotes to avoid clashes with shell special characters
$ echo 'one;two;three;four' | perl -F';' -anE 'say $F[2]'
three

$ echo 'load;err_msg--\ant,r2..not' | perl -F'\W+' -anE 'say $F[2]'
ant

$ echo 'hi.bye.hello' | perl -F'\.' -anE 'say $F[1]'
bye

You can also specify the regexp to the -F option within // delimiters as well. This is useful
to add flags and the LIMIT argument if needed.

count the number of vowels for each input line
can also use: -F'(?i)[aeiou]'
$ printf 'COOL\nnice car\n' | perl -F'/[aeiou]/i' -anE 'say $#F'
2
3

LIMIT=2
note that the newline character is present as part of the last field content
$ echo 'goal:amazing:whistle:kwality' | perl -F'/:/,$_,2' -ane 'print $F[1]'
amazing:whistle:kwality

Character-wise separation
To get individual characters, you can provide an empty argument to the -F option.

$ echo 'apple' | perl -F -anE 'say $F[0]'
a

-CS turns on UTF-8 for stdin/stdout/stderr streams
$ echo 'fox:αλεπού' | perl -CS -F -anE 'say @F[4..6]'
αλε

For more information about using Perl with different encodings, see:

• perldoc: -C option
• unix.stackexchange: tr with unicode characters
• stackoverflow: Why does modern Perl avoid UTF-8 by default?

Newline character in the last field
If the custom field separator doesn’t affect the newline character, then the last element can
contain the newline character.

36

https://perldoc.perl.org/perlrun#-C-%5Bnumber/list%5D
https://unix.stackexchange.com/q/389615/109046
https://stackoverflow.com/q/6162484/4082052

last element will not have the newline character with the -a option
as leading/trailing whitespaces are trimmed with default split
$ echo 'cat dog' | perl -anE 'say "[$F[-1]]"'
[dog]

last element will have the newline character since field separator is ':'
$ echo 'cat:dog' | perl -F: -anE 'say "[$F[-1]]"'
[dog
]
unless the input itself doesn't have the newline character
$ printf 'cat:dog' | perl -F: -anE 'say "[$F[-1]]"'
[dog]

The newline character can also show up as the entire content of the last field.

both leading and trailing whitespaces are trimmed
$ echo ' a b c ' | perl -anE 'say $#F'
2

leading empty element won't be removed here
and the last element will have only the newline character as the value
$ echo ':a:b:c:' | perl -F: -anE 'say $#F; say "[$F[-1]]"'
4
[
]

Using the -l option for field splitting
As mentioned before, the -l option is helpful if you wish to remove the newline character
(more details will be discussed in the Record separators chapter). A side effect of removing
the newline character before applying split is that the trailing empty fields will also get
removed (you can set LIMIT as -1 to prevent this).

-l will remove the newline character
-l will also cause 'print' to append the newline character
$ echo 'cat:dog' | perl -F: -lane 'print "[$F[-1]]"'
[dog]

since the newline character is chomped, the last element is empty
which is then removed due to the default 'split' behavior
$ echo ':a:b:c:' | perl -F: -lane 'print scalar @F'
4

set LIMIT as -1 to preserve trailing empty fields
can also use: perl -F'/:/,$_,-1' -lane 'print scalar @F'
$ echo ':a:b:c:' | perl -lne 'print scalar split/:/,$_,-1'
5

37

Whitespace and NUL characters in field separation
As per perldoc: -F option, ”You can’t use literal whitespace or NUL characters in the pattern.”
Here are some examples with whitespaces being used as part of the field separator.

$ s='pick eat rest laugh'

only one element, field separator didn't match at all!!
$ echo "$s" | perl -F'/t /' -lane 'print $F[0]'
pick eat rest laugh
number of splits is correct
but the space character shouldn't be part of field here
$ echo "$s" | perl -F't ' -lane 'print $F[1]'
res

this gives the expected behavior
$ echo "$s" | perl -F't\x20' -lane 'print $F[1]'
res

Error!!
$ echo "$s" | perl -F't[]' -lane 'print $F[1]'
Unmatched [in regex; marked by <-- HERE in m/t[<-- HERE /.
no issues if the split function is used explicitly
$ echo "$s" | perl -lne 'print((split /t[]/)[1])'
res

And here’s an example with the ASCII NUL character being used as the field separator:

doesn't work as expected when NUL is passed as a literal character
$ printf 'aa\0b\0c' | perl -F$'\0' -anE 'say join ",", @F' | cat -v
a,a,^@,b,^@,c

no issues when passed as an escape sequence
$ printf 'aa\0b\0c' | perl -F'\0' -anE 'say join ",", @F' | cat -v
aa,b,c

Output field separator
There are a few ways to affect the separator to be used while displaying multiple values.

Method 1: The value of the $, special variable is used as the separator when multiple
arguments (or list/array) are passed to the print and say functions. $, could be
remembered easily by noting that , is used to separate multiple arguments. Note that the
-l option is used in the examples below as a good practice even when not needed.

$ perl -lane 'BEGIN{$,=" "} print $F[0], $F[2]' table.txt
brown mat
blue mug
yellow window

$ s='Sample123string42with777numbers'
$ echo "$s" | perl -F'\d+' -lane 'BEGIN{$,=","} print @F'
Sample,string,with,numbers

38

https://perldoc.perl.org/perlrun#-Fpattern

default value of $, is undef
$ echo 'table' | perl -F -lane 'print @F[0..2]'
tab

See perldoc: perlvar for alternate names of special variables if you use themetacpan:
English module. For example, $OFS or $OUTPUT_FIELD_SEPARATOR instead of $,

Method 2: By using the join function.

$ s='Sample123string42with777numbers'
$ echo "$s" | perl -F'\d+' -lane 'print join ",", @F'
Sample,string,with,numbers

$ s='goal:amazing:whistle:kwality'
$ echo "$s" | perl -F: -lane 'print join "-", @F[-1, 1, 0]'
kwality-amazing-goal
$ echo "$s" | perl -F: -lane 'print join "::", @F, 42'
goal::amazing::whistle::kwality::42

Method 3: You can also manually build the output string within double quotes. Or use $" to
specify the field separator for an array value within double quotes. $" could be remembered
easily by noting that interpolation happens within double quotes.

$ s='goal:amazing:whistle:kwality'

$ echo "$s" | perl -F: -lane 'print "$F[0] $F[2]"'
goal whistle

default value of $" is a space character
$ echo "$s" | perl -F: -lane 'print "@F[0, 2]"'
goal whistle

$ echo "$s" | perl -F: -lane 'BEGIN{$"="-"} print "msg: @F[-1, 1, 0]"'
msg: kwality-amazing-goal

Manipulating $#F
Changing the value of $#F will affect the @F array. Here are some examples:

$ s='goal:amazing:whistle:kwality'

reducing fields
$ echo "$s" | perl -F: -lane '$#F=1; print join ",", @F'
goal,amazing

increasing fields
$ echo "$s" | perl -F: -lane '$F[$#F+1]="sea"; print join ":", @F'
goal:amazing:whistle:kwality:sea

39

https://perldoc.perl.org/perlvar
https://metacpan.org/pod/English
https://metacpan.org/pod/English

empty fields will be created as needed
$ echo "$s" | perl -F: -lane '$F[7]="go"; print join ":", @F'
goal:amazing:whistle:kwality::::go

Assigning $#F to -1 or lower will delete all the fields.

$ echo "1:2:3" | perl -F: -lane '$#F=-1; print "[@F]"'
[]

Manipulating $#F isn’t always needed. Here’s an example of simply printing the additional
field instead of modifying the array.

$ cat marks.txt
Dept Name Marks
ECE Raj 53
ECE Joel 72
EEE Moi 68
CSE Surya 81
EEE Tia 59
ECE Om 92
CSE Amy 67

adds a new grade column based on marks in the third column
$ perl -anE 'BEGIN{$,="\t"; @g = qw(D C B A S)}

say @F, $.==1 ? "Grade" : $g[$F[-1]/10 - 5]' marks.txt
Dept Name Marks Grade
ECE Raj 53 D
ECE Joel 72 B
EEE Moi 68 C
CSE Surya 81 A
EEE Tia 59 D
ECE Om 92 S
CSE Amy 67 C

Defining field contents instead of splitting
The -F option uses the split function to generate the fields. In contrast, you can use
/regexp/g to define what should the fields be made up of. Quoting from perldoc: Global
matching:

In list context, /g returns a list of matched groupings, or if there are no groupings, a
list of matches to the whole regexp.

Here are some examples:

$ s='Sample123string42with777numbers'
define fields to be one or more consecutive digits
can also use: perl -nE 'say((/\d+/g)[1])'
$ echo "$s" | perl -nE '@f=/\d+/g; say $f[1]'
42

40

https://perldoc.perl.org/perlretut#Global-matching
https://perldoc.perl.org/perlretut#Global-matching

$ s='coat Bin food tar12 best Apple fig_42'
whole words made up of lowercase alphabets and digits only
$ echo "$s" | perl -nE 'say join ",", /\b[a-z0-9]+\b/g'
coat,food,tar12,best

$ s='items: "apple" and "mango"'
get the first double quoted item
$ echo "$s" | perl -nE '@f=/"[^"]+"/g; say $f[0]'
"apple"

Here are some examples for displaying results only if there’s a match. Without the if condi-
tions, you’ll get empty lines for non-matching lines. Quoting from perldoc: The empty pattern

If the PATTERN evaluates to the empty string, the last successfully matched regular ex-
pression is used instead. In this case, only the g and c flags on the empty pattern are
honored; the other flags are taken from the original pattern. If no match has previously
succeeded, this will (silently) act instead as a genuine empty pattern (which will always
match).

$ perl -nE 'say join "\n", //g if /\bm\w*\b/' table.txt
mat
mug

/\bb\w*\b/ will come into play only if a word starting with 'h' isn't found
so, first line matches 'hair' but not 'brown' or 'bread'
other lines don't have words starting with 'h'
$ perl -nE 'say join "\n", //g if /\bh\w*\b/ || /\bb\w*\b/' table.txt
hair
blue
banana

As an alternate, you can use a while loop with the g flag. Quoting from perldoc: Global
matching:

In scalar context, successive invocations against a string will have /g jump frommatch
to match, keeping track of position in the string as it goes along.

$ perl -nE 'say $& while /\bm\w*\b/g' table.txt
mat
mug

note that this form isn't suited for priority-based extraction
$ perl -nE 'say $& while /\b[bh]\w*\b/g' table.txt
brown
bread
hair
blue
banana

A simple split fails for CSV input where fields can contain embedded delimiter characters.

41

https://perldoc.perl.org/perlop#The-empty-pattern-//
https://perldoc.perl.org/perlretut#Global-matching
https://perldoc.perl.org/perlretut#Global-matching

For example, a field content "fox,42" when , is the delimiter.

$ s='eagle,"fox,42",bee,frog'
simply using , as separator isn't sufficient
$ echo "$s" | perl -F, -lane 'print $F[1]'
"fox

While metacpan: Text::CSV module should be preferred for robust CSV parsing, regexp is
enough for simple formats.

$ echo "$s" | perl -lne 'print((/"[^"]+"|[^,]+/g)[1])'
"fox,42"

Fixed width processing
The unpack function is more than just a different way of string slicing. It supports various
formats and pre-processing, see perldoc: unpack, perldoc: pack and perldoc: perlpacktut for
details.

In the example below, a indicates arbitrary binary string. The optional number that follows
indicates length of the field.

$ cat items.txt
apple fig banana
50 10 200

here field widths have been assigned such that
extra spaces are placed at the end of each field
$_ is the default input string for the 'unpack' function
$ perl -lne 'print join ",", unpack "a8a4a6"' items.txt
apple ,fig ,banana
50 ,10 ,200

$ perl -lne 'print((unpack "a8a4a6")[1])' items.txt
fig
10

You can specify characters to be ignored with x followed by an optional length.

first field is 5 characters
then 3 characters are ignored and 3 characters for the second field
then 1 character is ignored and 6 characters for the third field
$ perl -lne 'print join ",", unpack "a5x3a3xa6"' items.txt
apple,fig,banana
50 ,10 ,200

Using * will cause remaining characters of that particular format to be consumed. Here Z
is used to process strings that are separated by the ASCII NUL character.

$ printf 'banana\x0050\x00' | perl -nE 'say join ":", unpack "Z*Z*"'
banana:50

first field is 5 characters, then 3 characters are ignored
all the remaining characters are assigned to the second field

42

https://metacpan.org/pod/Text::CSV
https://perldoc.perl.org/functions/unpack
https://perldoc.perl.org/functions/pack
https://perldoc.perl.org/perlpacktut

$ perl -lne 'print join ",", unpack "a5x3a*"' items.txt
apple,fig banana
50 ,10 200

Unpacking isn’t always needed, string slicing using substr may suffice. See perldoc: substr
for documentation.

same as: perl -F -anE 'say @F[2..4]'
$ echo 'b 123 good' | perl -nE 'say substr $_,2,3'
123
$ echo 'b 123 good' | perl -ne 'print substr $_,6'
good

replace arbitrary slice
$ echo 'b 123 good' | perl -pe 'substr $_,2,3,"gleam"'
b gleam good

See also perldoc: Functions for fixed-length data or records.

Assorted field processing functions
Having seen command line options and features commonly used for field processing, this sec-
tion will highlight some of the built-in functions. There are just too many to meaningfully cover
them in all in detail, so consider this to be just a brief overview of features. See also perldoc:
Perl Functions by Category.

First up, the grep function that allows you to select fields based on a condition. In scalar
context, it returns the number of fields that matched the given condition. See perldoc: grep
for documentation. See also unix.stackexchange: create lists of words according to binary
numbers.

$ s='goal:amazing:42:whistle:kwality:3.14'

fields containing 'in' or 'it' or 'is'
$ echo "$s" | perl -F: -lane 'print join ":", grep {/i[nts]/} @F'
amazing:whistle:kwality

number of fields NOT containing a digit character
$ echo "$s" | perl -F: -lane 'print scalar grep {!/\d/} @F'
4

$ s='hour hand band mat heated apple hit'
$ echo "$s" | perl -lane 'print join "\n", grep {!/^h/ && length()<4} @F'
mat

$ echo '20 711 -983 5 21' | perl -lane 'print join ":", grep {$_ > 20} @F'
711:21

no more than one field can contain 'r'
$ perl -lane 'print if 1 >= grep {/r/} @F' table.txt
blue cake mug shirt -7

43

https://perldoc.perl.org/functions/substr
https://perldoc.perl.org/functions#Functions-for-fixed-length-data-or-records
https://perldoc.perl.org/functions#Perl-Functions-by-Category
https://perldoc.perl.org/functions#Perl-Functions-by-Category
https://perldoc.perl.org/functions/grep
https://unix.stackexchange.com/q/397498/109046
https://unix.stackexchange.com/q/397498/109046

yellow banana window shoes 3.14

The map function transforms each element according to the logic passed to it. See perldoc:
map for documentation.

$ s='goal:amazing:42:whistle:kwality:3.14'
$ echo "$s" | perl -F: -lane 'print join ":", map {uc} @F'
GOAL:AMAZING:42:WHISTLE:KWALITY:3.14
$ echo "$s" | perl -F: -lane 'print join ":", map {/^[gw]/ ? uc : $_} @F'
GOAL:amazing:42:WHISTLE:kwality:3.14

$ echo '23 756 -983 5' | perl -lane 'print join ":", map {$_ ** 2} @F'
529:571536:966289:25

$ echo 'AaBbCc' | perl -F -lane 'print join " ", map {ord} @F'
65 97 66 98 67 99
for in-place modification of the input array
$ echo 'AaBbCc' | perl -F -lane 'map {$_ = ord} @F; print "@F"'
65 97 66 98 67 99

$ echo 'a b c' | perl -lane 'print join ",", map {qq/"$_"/} @F'
"a","b","c"

Here’s an example with grep and map combined.

$ s='hour hand band mat heated pineapple'
$ echo "$s" | perl -lane 'print join "\n", map {y/ae/X/r} grep {/^h/} @F'
hour
hXnd
hXXtXd
with 'grep' alone, provided the transformation doesn't affect the condition
also, @F will be changed here, above map+grep code will not affect @F
$ echo "$s" | perl -lane 'print join "\n", grep {y/ae/X/; /^h/} @F'
hour
hXnd
hXXtXd

Here are some examples with sort and reverse functions for arrays and strings. See
perldoc: sort and perldoc: reverse for documentation.

sorting numbers
$ echo '23 756 -983 5' | perl -lane 'print join " ", sort {$a <=> $b} @F'
-983 5 23 756

$ s='floor bat to dubious four'
default alphabetic sorting in ascending order
$ echo "$s" | perl -lane 'print join ":", sort @F'
bat:dubious:floor:four:to

sort by length of the fields in ascending order
$ echo "$s" | perl -lane 'print join ":", sort {length($a) <=> length($b)} @F'
to:bat:four:floor:dubious

44

https://perldoc.perl.org/functions/map
https://perldoc.perl.org/functions/map
https://perldoc.perl.org/functions/sort
https://perldoc.perl.org/functions/reverse

descending order
$ echo "$s" | perl -lane 'print join ":", sort {length($b) <=> length($a)} @F'
dubious:floor:four:bat:to

same as: perl -F -lane 'print sort {$b cmp $a} @F'
$ echo 'dragon' | perl -F -lane 'print reverse sort @F'
rongda

Here’s an example with multiple sorting conditions. If the transformation applied for each field
is expensive, using Schwartzian transform can provide a faster result. See also stackoverflow:
multiple sorting conditions.

$ s='try a bad to good i teal by nice how'

longer words first, ascending alphabetic order as tie-breaker
$ echo "$s" | perl -anE 'say join ":",

sort {length($b) <=> length($a) or $a cmp $b} @F'
good:nice:teal:bad:how:try:by:to:a:i

using Schwartzian transform
$ echo "$s" | perl -anE 'say join ":", map {$_->[0]}

sort {$b->[1] <=> $a->[1] or $a->[0] cmp $b->[0]}
map {[$_, length($_)]} @F'

good:nice:teal:bad:how:try:by:to:a:i

Here’s an example for sorting in descending order based on header column names.

$ cat marks.txt
Dept Name Marks
ECE Raj 53
ECE Joel 72
EEE Moi 68
CSE Surya 81
EEE Tia 59
ECE Om 92
CSE Amy 67

$ perl -lane '@i = sort {$F[$b] cmp $F[$a]} 0..$#F if $.==1;
print join "\t", @F[@i]' marks.txt

Name Marks Dept
Raj 53 ECE
Joel 72 ECE
Moi 68 EEE
Surya 81 CSE
Tia 59 EEE
Om 92 ECE
Amy 67 CSE

See the Using modules chapter for more field processing functions.

45

https://en.wikipedia.org/wiki/Schwartzian_transform
https://stackoverflow.com/q/45951050/4082052
https://stackoverflow.com/q/45951050/4082052

Summary
This chapter discussed various ways in which you can split (or define) the input into fields and
manipulate them. Many more examples will be discussed in later chapters.

Exercises

The exercises directory has all the files used in this section.

1) For the input file brackets.txt , extract only the contents between () or)(from
each input line. Assume that () characters will be present only once every line.

$ cat brackets.txt
foo blah blah(ice) 123 xyz$
(almond-pista) choco
yo)yoyo(yo

add your solution here
ice
almond-pista
yoyo

2) For the input file scores.csv , extract Name and Physics fields in the format shown
below.

$ cat scores.csv
Name,Maths,Physics,Chemistry
Blue,67,46,99
Lin,78,83,80
Er,56,79,92
Cy,97,98,95
Ort,68,72,66
Ith,100,100,100

add your solution here
Name:Physics
Blue:46
Lin:83
Er:79
Cy:98
Ort:72
Ith:100

3) For the input file scores.csv , display names of those who’ve scored above 80 in Maths.

add your solution here
Cy
Ith

4) Display the number of word characters for the given inputs. Word definition here is same
as used in regular expressions. Can you construct two different solutions as indicated below?

46

https://github.com/learnbyexample/learn_perl_oneliners/tree/main/exercises

solve using the 's' operator
$ echo 'hi there' | ##### add your solution here
7

solve without using the substitution or transliteration operators
$ echo 'u-no;co%."(do_12:as' | ##### add your solution here
12

5) For the input file quoted.txt , extract the sequence of characters surrounded by double
quotes and display them in the format shown below.

$ cat quoted.txt
1 "grape" and "mango" and "guava"
("c 1""d""a-2""b")

add your solution here
"grape","guava","mango"
"a-2","b","c 1","d"

6) Display only the third and fifth characters from each input line as shown below.

$ printf 'restore\ncat one\ncricket' | ##### add your solution here
so
to
ik

7) Transform the given input file fw.txt to get the output as shown below. If a field is empty
(i.e. contains only space characters), replace it with NA .

$ cat fw.txt
1.3 rs 90 0.134563
3.8 6
5.2 ye 8.2387
4.2 kt 32 45.1

add your solution here
1.3,rs,0.134563
3.8,NA,6
5.2,ye,8.2387
4.2,kt,45.1

8) For the input file scores.csv , display the header as well as any row which contains b
or t (irrespective of case) in the first field.

add your solution here
Name,Maths,Physics,Chemistry
Blue,67,46,99
Ort,68,72,66
Ith,100,100,100

9) Extract all whole words containing 42 but not at the edge of a word. Assume a word
cannot contain 42 more than once.

47

$ s='hi42bye nice1423 bad42 cool_42a 42fake'
$ echo "$s" | ##### add your solution here
hi42bye
nice1423
cool_42a

10) For the input file scores.csv , add another column named GP which is calculated out of
100 by giving 50% weightage to Maths and 25% each for Physics and Chemistry.

add your solution here
Name,Maths,Physics,Chemistry,GP
Blue,67,46,99,69.75
Lin,78,83,80,79.75
Er,56,79,92,70.75
Cy,97,98,95,96.75
Ort,68,72,66,68.5
Ith,100,100,100,100

11) For the input file mixed_fs.txt , retain only the first two fields from each input line. The
input and output field separators should be space for first two lines and , for the rest of the
lines.

$ cat mixed_fs.txt
rose lily jasmine tulip
pink blue white yellow
car,mat,ball,basket
light green,brown,black,purple
apple,banana,cherry

add your solution here
rose lily
pink blue
car,mat
light green,brown
apple,banana

12) For the given space separated numbers, filter only numbers in the range 20 to 1000
(inclusive).

$ s='20 -983 5 756 634223 1000'

$ echo "$s" | ##### add your solution here
20 756 1000

13) For the given input file words.txt , filter all lines containing characters in ascending and
descending order.

$ cat words.txt
bot
art
are
boat

48

toe
flee
reed

ascending order
add your solution here
bot
art

descending order
add your solution here
toe
reed

14) For the given space separated words, extract the three longest words.

$ s='I bought two bananas and three mangoes'

$ echo "$s" | ##### add your solution here
bananas
mangoes
bought

15) Convert the contents of split.txt as shown below.

$ cat split.txt
apple,1:2:5,mango
wry,4,look
pencil,3:8,paper

add your solution here
apple,1,mango
apple,2,mango
apple,5,mango
wry,4,look
pencil,3,paper
pencil,8,paper

16) Generate string combinations as shown below for the given input string passed as an
environment variable.

$ s='{x,y,z}{1,2,3}' ##### add your solution here
x1 x2 x3 y1 y2 y3 z1 z2 z3

17) For the input file varying_fields.txt , construct a solution to get the output shown
below.

$ cat varying_fields.txt
hi,bye,there,was,here,to
1,2,3,4,5

add your solution here

49

hi:bye:to
1:2:5

18) The fields.txt file has fields separated by the : character. Delete : and the last
field if there is a digit character anywhere before the last field. Solution shouldn’t use the s
operator.

$ cat fields.txt
42:cat
twelve:a2b
we:be:he:0:a:b:bother
apple:banana-42:cherry:
dragon:unicorn:centaur

add your solution here
42
twelve:a2b
we:be:he:0:a:b
apple:banana-42:cherry
dragon:unicorn:centaur

19) The sample string shown below uses cat as the field separator (irrespective of case).
Use space as the output field separator and add 42 as the last field.

$ s='applecatfigCaT12345cAtbanana'
$ echo "$s" | ##### add your solution here
apple fig 12345 banana 42

20) For the input file sample.txt , filter lines containing 5 or more lowercase vowels.

add your solution here
How are you
Believe it
No doubt you like it too
Much ado about nothing

50

	Preface
	Prerequisites
	Conventions
	Acknowledgements
	Feedback and Errata
	Author info
	License
	Book version

	One-liner introduction
	Why use Perl for one-liners?
	Installation and Documentation
	Command line options
	Executing Perl code
	Filtering
	Substitution
	Special variables
	Field processing
	BEGIN and END
	ENV hash
	Executing external commands
	Summary
	Exercises

	Line processing
	Regexp based filtering
	Extracting matched portions
	Transliteration
	Conditional substitution
	Multiple conditions
	next
	exit
	Line number based processing
	Range operator
	Working with fixed strings
	Summary
	Exercises

	In-place file editing
	With backup
	Without backup
	Multiple files
	Prefix backup name
	Place backups in a different directory
	Gory details of in-place editing
	Summary
	Exercises

	Field separators
	Default field separation
	Input field separator
	Character-wise separation
	Newline character in the last field
	Using the -l option for field splitting
	Whitespace and NUL characters in field separation
	Output field separator
	Manipulating $#F
	Defining field contents instead of splitting
	Fixed width processing
	Assorted field processing functions
	Summary
	Exercises

