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Quand les gens disent :
« Mais la plupart des bugs

de logique métier
ne sont pas des erreurs de type »,

je veux simplement leur montrer
comment faire de leurs bugs
des erreurs de type.

MATT PARSONS
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Introduction

La programmation au niveau Type n’est pas
conventionnelle. Alors que la plupart des programmeurs
s’efforcent de produire plus de code qui compile, nous
autres, programmeurs au niveau Type, faisons de notre
mieux pour empêcher le code de compiler.

A proprement parler, le rôle des Types est double —
ils empêchent la compilation de choses (erronées) et, ce
faisant, nous guident vers des solutions plus élégantes. A
titre d’exemple, si neuf des dix solutions d’un problème
sont mal typées alors, trouver la bonne réponse ne
réclame pas trop d’efforts.

Mais ne vous y trompez pas — le but principal de ce
livre est de réduire les chances qu’un programme
compile. Si vous commencez à programmer en Haskell et
avez le sentiment que GHC vous pose trop souvent des
problèmes, que les erreurs de typages sont trop souvent
incompréhensibles, alors ce livre n’est probablement pas
fait pour vous, pas encore en tout cas.

Alors à qui s’adresse ce livre? Je me suis efforcé
d’écrire à ceux qui ont une maîtrise du langage
intermédiaire ou avancée. Ils sont capables de résoudre
de vrais problèmes en Haskell, cela sans trop batailler. Ils
n’ont pas besoin d’avoir une opinion bien arrêtée sur
ExceptT ou la levée d’exceptions dans IO, pas plus qu’ils
ont besoin de savoir comment examiner le code Core
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généré pour trouver les structures dégradant la
performance.

Il est par contre attendu du lecteur visé qu’il ressente
un embarras justifié au sujet des programmes qu’il écrit.
Il devrait se demander, en relisant son commentaire
« n’appelez pas cette fonction avec n = 5, ça la fait
planter » s’il n’est pas possible de le faire comprendre au
compilateur. De plus, même s’il est convaincu qu’ils ne
seront jamais déclenchés, le lecteur devrait considérer
avec angoisse les appels à error qu’il a dû écrire pour
satisfaire le vérificateur de types.

En bref, le lecteur devrait chercher des occasions de
rendre moins de code compilable. Ceci n’est pas motivé
par des tendances masochistes, anarchistes ou du même
genre. Ce désir est plutôt le fruit d’une certaine
bienveillance— un peu de frustration avec le vérificateur
de types maintenant est préférable à un bug difficile à
trouver qui se frayera un chemin jusqu’en production.

La programmation au niveau Type, comme le reste,
s’apprécie avec modération. Elle s’accompagne d’une
certaine complexité et doit donc être maniée avec
précaution. Alors qu’il est indispensable que votre
application financière qui brasse des milliards par jour
tourne sans accroc, c’est un peu moins grave si votre jeu
vidéo écrit pendant vos temps libres rafraîchit mal
un seul écran de jeu. Dans le premier cas, ça vaut
probablement le coût de tout mettre en œuvre pour
éviter que les choses tournent mal; dans le second, cette
façon de faire sera sans doute disproportionnée.

Le style est une chose réputée difficile à enseigner —
de façon très concrète, le style semble être ce qui reste
lorsqu’on a retiré d’une matière tout ce que nous savons
expliquer. Malheureusement, savoir quand programmer
au niveau Type est avant tout une question de style. Il est
facile de se lâcher avec mais la retenue est céleste.
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En cas de doute, prenez le parti de ne pas utiliser le ni-
veau Type. Gardez ces techniques pour les cas où il se-
rait catastrophique que ça tourne mal, lorsqu’un peu de
programmation au niveau Type vous fait prendre un sé-
rieux raccourci et lorsque cela améliore considérablement
l’API. S’il n’est pas évident que vous vous retrouviez dans
un de ces cas, il y a fort à parier que cela peut être fait de
façon plus propre et facile au niveau Valeurs.

Mais parlons plus en détail des types en eux-mêmes.

En tant que groupe, je pense qu’on peut reconnaître
que les développeurs Haskell ont l’esprit de
contradiction. Je soupçonne que la majorité d’entre nous
ont déjà passé une soirée à vanter les mérites d’un
système fortement typé à un collègue utilisant un
langage dynamique. Ils avancent des arguments du
genre « j’aime Ruby parce que les types ne semettent pas
en travers de mon chemin ». Bien que, en tant que
partisans de systèmes fortement typés, notre premier
réflexe sera d’être consterné, je pense que c’est une
critique qu’il est bon de garder à l’esprit.

En tant que développeurs Haskell, il est certain que
nous avons des opinions très arrêtées sur la valeur des
types. Ils sont utiles, ils valent leur pesant d’or quand
nous codons, débuggons et remanions notre code. Bien
sûr, nous pouvons éluder les récriminations de nos
collègues d’un geste de la main et se justifier en disant
qu’ils n’ont encore jamais vu un « vrai » système de
types mais ce serait ne rendre un service à personne. Une
réponse expéditive de ce genre passerait à côté de la
raison de leur contrariété — les types se mettent souvent
en travers de notre chemin. Nous avons juste appris à ne
plus remarquer ces inconvénients plutôt que d’affronter
la réalité et d’envisager l’éventualité que les types ne
sont pas l’unique solution à chaque problème.
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Simon Peyton Jones, l’un des auteurs principaux
d’Haskell, reconnaît volontiers qu’il y a plein de
programmes sans erreurs rejetés par les systèmes de
types. Par exemple, examinez le programme suivant qui
contient une erreur de type mais qui ne l’évalue jamais :

fst ("no problems", True <> 17)

Puisque l’erreur de type est ignorée de façon
paresseuse par fst, l’évaluation d’une telle expression
produira sans sourciller « no problems » à l’exécution.
Bien que nous la jugions mal typée, cette expression n’en
reste pas moins convenable. L’utilité d’un tel exemple
est bien sûr limitée mais la démonstration est faite; les
types se mettent souvent en travers du chemin de
programmes parfaitement valides.

Il arrive que cette obstruction prenne la forme de « le
type que devrait avoir cette chose n’est pas clair ». On en
trouve un exemple frappant dans la fonction C printf :

int printf (const char *format, ...)

Si vous n’avez jamais eu le plaisir d’utiliser printf au-
paravant, voilà comment ça marche : elle analyse le pa-
ramètre format et utilise sa structure pour dépiler les ar-
guments supplémentaires de la pile d’appel. Comme vous
le voyez, c’est la forme de format qui décide quels para-
mètres devraient figurer dans les ... ci-dessus.

Par exemple, la chaîne de formatage "hello %s" prend
une chaîne additionnelle et l’insère à la place de %s. De la
même façon, le spécificateur %ddécrit l’insertiond’un en-
tier décimal signé.

Les appels à printf suivants sont tous valides :

— printf("hello %s", "world"), produit « hello
world »,
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— printf("%d + %d = %s", 1, 2, "three"), produit « 1
+ 2 = three »,

— printf("no specifiers"), produit « no specifiers ».

Remarquez qu’en l’état, il semble impossible
d’attribuer une signature de type haskellienne à printf.
Les paramètres supplémentaires indiqués par son ellipse
reçoivent leur type par la valeur de son premier
paramètre— une chaîne. Ce genre de modèle est courant
dans les langages typés dynamiquement, et dans le cas
de printf, c’est indéniablement utile.

La documentation sur printf est prompte à indiquer
que la chaîne de formatage ne doit pas être fournie par
l’utilisateur — le faire revient à ouvrir des vulnérabilités
par lesquelles un attaquant peut corrompre lamémoire et
accéder au système. En fait, c’est un problème très cou-
rant—et préparer une telle chaîne est souvent le premier
devoir de tout cours universitaire sur la sécurité logicielle.

Pour être clair, printf devient vulnérable lorsque les
spécificateursdes chaînesde formatagene correspondent
pas aux arguments supplémentaires donnés. Les appels
suivants à printf, inoffensifs en apparence, sont tous les
deuxmalveillants.

— printf("%d"), corrompra probablement la pile,
— printf("%s", 1), lira une quantité arbitraire demé-

moire.

Le système de types du langage C n’est pas assez
expressif pour décrire printf. Mais comme la fonction
printf est très utile, ce n’est pas une raison
suffisamment convaincante pour l’exclure du langage.
Ainsi, la vérification de type est désactivée pour les
appels à printf afin de gagner sur tous les plans.
Toutefois, cela ouvre une faille par laquelle des erreurs
de type peuvent s’infiltrer jusqu’à l’exécution — sous la
forme de comportements imprévisibles et de problèmes
de sécurité.
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Selon moi, empêcher des failles de sécurité est un as-
pect bien plus important des types que « null est l’erreur
à unmilliard de dollar» ou tout autre argument à lamode
aujourd’hui. Nous reviendrons sur le problème posé par
printf au chapitre 9.

A de très rares exceptions, l’attitude dominante des
développeurs Haskell a été d’expédier l’utilité des
programmes mal typés. Comme alternative, on a une
vérité inconfortable : le fait que notre langage favori
n’arrive pas à faire quelque chose d’utile cependant
possible avec d’autres langages.

Mais tout n’est pas perdu. En fait, Haskell est capable
de représenter des choses aussi bizarrement typées que
printf, pour ceux d’entre nous qui sont prêts à faire l’ef-
fort d’apprendre comment. Ce livre a pour objectif d’être
lemanuel complet pour vous conduire d’ici à là-bas, d’un
programmeur Haskell compétent à celui qui persuade le
compilateur de faire le travail à sa place.



Première partie

Notions de base
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Chapitre 1

L’algèbre implicite des
types

1.1 Isomorphismes et cardinalités

Une des fonctionnalités phares de la programmation
fonctionnelle est le filtrage par motif, rendu possible par
les types de données algébriques. Mais ce nom n’est pas
juste un titre accrocheur pour des choses que l’on peut
filtrer par motif. Comme leur nom le suggère, il y a une
algèbre qui se cache derrière les types de données
algébriques.

Comprendre et manipuler cette algèbre avec aisance
est un superpouvoir formidable— il nous permet d’ana-
lyser les types, de leur trouver des formes plus adaptées
et détermine quelles opérations (par ex. classes de types)
peuvent être implémentées.

Pour commencer, nous pouvons associer à chaque
type fini sa cardinalité — son nombre d’habitants, en
ignorant les fonds. Considérez les définitions de types
simples suivantes :
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data Void

data () = ()

data Bool = False | True

Void a zéro habitant, donc on lui assigne la cardinalité
0. Le type unité () a un habitant— donc sa cardinalité est
1. Sans vouloir insister, Bool a une cardinalité de 2, corres-
pondant à ses constructeurs True et False.

Nous pouvons formuler ces déclarations sur la cardi-
nalité ainsi :

|Void| = 0

|()| = 1

|Bool| = 2

Pris deux par deux, tous types finis ayant la même
cardinalité seront toujours isomorphes entre eux. Un
isomorphisme entre les types s et t est défini comme une
paire de fonctions to et from :

to :: s -> t
from :: t -> s

de telle sorte que la composition quelconque de l’une
après l’autre nous ramène là où nous avons commencé.
En d’autres termes, de telle sorte que :
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to . from = id
from . to = id

L’isomorphisme entre les types s et t est quelques fois
écrit s ∼= t.

Si deux types ont la même cardinalité, toute associa-
tion individuelle entre leurs éléments correspond exac-
tement à ces fonctions to et from. Mais d’où vient une telle
association? D’où on veut — cela n’a pas d’importance!
Choisissez au hasard une classification pour chaque type
— elle n’a pas besoin d’être une instance de Ord — puis
associez le premier élément selon cette classification au
premier élément selon l’autre. Réitérez à volonté.

Pour illustrer cela, nous pouvons définir un nouveau
type ayant aussi une cardinalité de 2.

data Spin = Up | Down

Selon le raisonnement précédent, nous pouvons nous
attendre à ce que Spin et Bool soient isomorphes. C’est le
cas :

boolToSpin1 :: Bool -> Spin
boolToSpin1 False = Up
boolToSpin1 True = Down

spinToBool1 :: Spin -> Bool
spinToBool1 Up = False
spinToBool1 Down = True
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Notons cependant qu’il y a un autre isomorphisme
entre Spin et Bool :

boolToSpin2 :: Bool -> Spin
boolToSpin2 False = Down
boolToSpin2 True = Up

spinToBool2 :: Spin -> Bool
spinToBool2 Up = True
spinToBool2 Down = False

Devrions-nous préférer l’un de ces isomorphismes?
Cela a-t-il de l’importance?

En général, pour toute paire de types de cardinalité n,
il y a n! isomorphismes uniques entre eux. D’un point de
vue mathématique, ils se valent tous — dans la plupart
des cas, il suffit de savoir qu’un isomorphisme existe.

Un isomorphisme entre les types s et t est une preuve,
à toutes fins utiles, que s et t sont lamême chose. Ils peuvent
exposer des instancesdifférentes,mais cela relèveplusdu
fonctionnement des classes de types haskelliennes que de
l’équivalence entre s et t.

Les isomorphismes sont un concept particulièrement
puissant de l’algèbre de types. Nous raisonnerons en
termes d’isomorphisme tout au long de ce livre, aussi
est-il préférable de s’y accoutumer tout de suite.

1.2 Types Somme, Produit et Exponentiel

Dans le jargon des cardinalités, les types somme
correspondent à l’addition. Leur exemple canonique est
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Either a b, qui est soit un a ou un b. Il en résulte que la
cardinalité (rappelez-vous, le nombre d’habitants) de
Either a b est la cardinalité de a plus la cardinalité de b.

|Either a b| = |a|+ |b|

Vous l’aurez deviné, c’est la raison pour laquelle ils
s’appellent types somme. L’intuition derrière l’idée
d’additionner s’étend à tous les types de données à
constructeurs multiples — la cardinalité d’un type est
toujours la somme des cardinalités de ses constructeurs.

data Deal a b
= This a
| That b
| TheOther Bool

Nous pouvons analyser la cardinalité de Deal :

|Deal a b| = |a|+ |b|+ |Bool|
= |a|+ |b|+ 2

Nous pouvons aussi voir la cardinalité de Maybe a.
Puisque les constructeurs de valeurs nullaires sont
ennuyeux à construire — il n’y a qu’un Nothing — la
cardinalité de Maybe a peut être exprimée ainsi :

|Maybe a| = 1 + |a|

Le dual des types somme est ce qu’on appelle les types
produit. Voyons tout d’abord aussi leur exemple
canonique — le type paire (a, b). De façon similaire,
la cardinalité d’un type produit est le produit des
cardinalités de ses types.
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|(a, b)| = |a| × |b|

Pour illustrer, examinons les fractions mixtes de la
forme 51

2 . Nous pouvons les représenter en Haskell avec
un type produit :

data MixedFraction a = Fraction
{ mixedBit :: Word8
, numerator :: a
, denominator :: a
}

Et réaliser l’analyse de sa cardinalité ainsi :

|MixedFraction a| = |Word8| × |a| × |a| = 256× |a| × |a|

Une implication intéressante des cardinalités est la
possibilité d’exprimer des vérités mathématiques à l’aide
de types. Nous pouvons prouver par exemple que a× 1 = a
en révélant un isomorphisme entre (a, ()) et a.

prodUnitTo :: a -> (a, ())
prodUnitTo a = (a, ())

prodUnitFrom :: (a, ()) -> a
prodUnitFrom (a, ()) = a

Dans ce cas, nous pouvons assimiler le type unité à une
identité monoïdale pour les types produit — en ce sens
que « l’ajouter ne change rien ». Puisque a × 1 = a, nous
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pouvons l’appairer avec autant de types unité que nous le
désirons.

De la même façon, Void agit comme une unité monoï-
dale pour les types somme. Pour nous en convaincre, l’af-
firmation évidente a+ 0 = a peut être vue comme un iso-
morphisme entre Either a Void et a.

sumUnitTo :: Either a Void -> a
sumUnitTo (Left a) = a
sumUnitTo (Right v) = absurd v · · · · · · · · · 1

sumUnitFrom :: a -> Either a Void
sumUnitFrom = Left

En 1 , la fonction absurd a pour type Void -> a. C’est
une façondebluffer endisant«si vousmedonnezun Void,
je peux vous donnez tout ce que vous voulez ». Cette pro-
messe ne peut jamais être tenue, mais puisque nous ne
pouvons jamais obtenir un Void en premier lieu, nous ne
pouvons pas la démentir.

Les types fonctionpeuvent aussi être décrits en termes
de cardinalité — ils correspondent à l’exponentiation. À
titre d’exemple, il y a exactement quatre (22) habitants du
type Bool -> Bool. Il s’agit des fonctions id, not, const True
et const False. Vouspouvezvousacharner autantquevous
le voulez, vous ne trouverez pas d’autres fonctions pures
entre Bools!

Plus généralement, le type a -> b a pour cardinalité
|b||a|. Bien que cela puisse surprendre à première vue
— ça me semble toujours être le contraire — le
raisonnement est simple. Pour toute valeur a du
domaine, nous voulons renvoyer un b. Mais nous
pouvons choisir toute valeur de b pour chaque valeur de a
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— ce qui nous amène à cette égalité.

|a -> b| = |b| × |b| × · · · × |b|︸ ︷︷ ︸
|a|times

= |b||a|

Déterminez la cardinalité de
Either Bool (Bool, Maybe Bool) -> Bool.

Exercice 1.2-i

Le lecteur attentif pourrait se demander si la
soustraction, la division ou toute autre opération
mathématique ont un sens quand on les applique aux
types. En fait, elles en ont un, mais c’est difficile, sinon
impossible, à exprimer en Haskell. La soustraction
correspond à des types auxquels on retire certaines
valeurs particulières, alors que la division d’un type rend
certaines de ses valeurs égales (en ce sens qu’elles sont
définies de la même façon— au lieu d’avoir une instance
de Eq qui les égaliseraient).

En fait, même la notion de calcul différentiel a un sens
dans le domaine des types. Bien que nous ne développions
pas davantage ce sujet, le lecteur intéressé est invité à se
référer à l’article de Conor McBride « The Derivative of a
Regular Type is its Type of One-Hole Contexts » [?].

1.3 Exemple : jeu demorpion

J’ai dit plus tôt qu’être capable de manier l’algèbre
implicite des types est un superpouvoir formidable.
Prouvons-le.
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Imaginonsquenousvoulions écrire un jeudemorpion.
La grille standardd’un jeudemorpionpossède9 cases qui
peuvent être implémentées naïvement comme ceci :

data TicTacToe a = TicTacToe
{ topLeft :: a
, topCenter :: a
, topRight :: a
, midLeft :: a
, midCenter :: a
, midRight :: a
, botLeft :: a
, botCenter :: a
, botRight :: a
}

Bien que ça marche, ce n’est pas pratique à utiliser
dans un programme. Si nous voulons construire une
grille vide par exemple, il y aura beaucoup de choses à
remplir.

emptyBoard :: TicTacToe (Maybe Bool)
emptyBoard =
TicTacToe

Nothing Nothing Nothing
Nothing Nothing Nothing
Nothing Nothing Nothing

Ecrire des fonctions comme checkWinner se révèle en-
core plus complexe.

Plutôt que de se donner tout cemal nous devrions uti-
liser notre connaissance de l’algèbre des types pour nous
aider. La première étape consiste à analyser la cardinalité
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de TicTacToe ;

|TicTacToe a| = |a| × |a| × · · · × |a|︸ ︷︷ ︸
9 times

= |a|9

= |a|3×3

Écrites de cette façon, nous voyons que TicTacToe et la
fonction (Three, Three) -> a sont isomorphes, ou dans sa
forme curryfiée : Three -> Three -> a. Three est, bien sûr,
n’importe quel type possédant trois habitants; elle res-
semble peut-être à ça :

data Three = One | Two | Three
deriving (Eq, Ord, Enum, Bounded)

En raison de cet isomorphisme, nous pouvons changer
la représentation de TicTacToe de cette manière :

data TicTacToe2 a = TicTacToe2
{ board :: Three -> Three -> a
}

Et donc simplifier notre implémentation d’emptyBoard :

emptyBoard2 :: TicTacToe2 (Maybe Bool)
emptyBoard2 =

TicTacToe2 $ const $ const Nothing



1.4. L’isomorphisme de Curry-Howard 19

Une telle transformation ne nous permet pas de faire
plus que la version précédente, mais elle améliore
considérablement l’ergonomie du programme. En
faisant ce changement, nous recevons en échange un jeu
complet de combinateurs pour travailler avec les
fonctions; nous gagnons en compositionnalité et
allégeons notre charge cognitive.

N’oublions pas que programmer est avant tout un
effort humain, l’ergonomie est une quête qui en vaut la
peine. Vos collègues et collaborateurs vous remercieront
un jour!

1.4 L’isomorphisme de Curry-Howard

Notre discussion précédente sur les relations
algébriques entre les types et leur cardinalités peut être
résumé dans la table suivante.

Algèbre Logique Types
a+ b a ∨ b Either a b
a× b a ∧ b (a, b)
ba a =⇒ b a -> b

a = b a ⇐⇒ b isomorphisme
0 ⊥ Void
1 ⊤ ()

En elle-même, cette table constitue un isomorphisme
plus général entre les mathématiques et les types. Il est
connu sous le nomd’isomorphisme de Curry-Howard—en
gros, il déclare que toute expression en logique est équi-
valente à un programme informatique, et vice versa.
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L’isomorphisme de Curry-Howard est une intuition
profonde au sujet de notre univers. Il nous permet
d’analyser des théorèmes mathématiques à travers le
prisme de la programmation fonctionnelle. Encore
mieux, il arrive souvent que des théorèmes
mathématiques, même « ennuyeux », deviennent
intéressants une fois exprimés sous forme de types.

Pour illustrer, considérons le théorème a1 = a. Quand
nous le voyons au travers de Curry-Howard, il décrit un
isomorphisme entre () -> a et a. En d’autres termes, ce
théorèmemontre qu’il n’y a pas de distinction essentielle
entre avoir une valeur et avoir un programme (pur) qui
calcule cette valeur. Cette perspicacité est le principe fon-
damental qui explique pourquoi écrire en Haskell est un
tel plaisir comparé aux autres langages de programma-
tion.

Utilisez Curry-Howard pour prouver que (ab)c = ab×c.
C’est-à-dire, donnez une fonction de type (b
-> c -> a) -> (b, c) -> a et une de type
((b, c) -> a) -> b -> c -> a. Assurez-vous
qu’elles satisfassent les égalités to . from = id et
from . to = id. Est-ce que ces fonctions vous
rappellent quelque chose dans Prelude?

Exercice 1.4-i

Donnez une preuve de la loi des exposants selon la-
quelle ab × ac = ab+c.

Exercice 1.4-ii
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Prouvez que (a× b)c = ac × bc.
Exercice 1.4-iii

1.5 Représentations canoniques

Le fait que deux types quelconques ayant lamême car-
dinalité sont isomorphes a pour conséquence directe la
possibilité de représenter tout type de plusieurs façons.
Bien que cela ne changera pas nécessairement votre fa-
çon demodeler les types, il est bon de garder à l’esprit que
vous avez le choix.

Du fait de l’isomorphisme, parmi toutes les représen-
tations d’un type, chacune est « tout aussi valable » que
toutes les autres. Cependant, comme nous le verrons à la
page ??, il est souvent utile d’avoir une forme conven-
tionnelle lorsqu’on travaille de façon générique avec les
types. Cette représentation canonique est connue comme
une somme de produits et se rapporte à tout type t de la
forme,

t =
∑
m

∏
n

tm,n

Le gros Σ veut dire addition, et Π veut dire multipli-
cation — nous pouvons donc lire ceci comme « addition
à l’extérieur et multiplication à l’intérieur ». Nous stipu-
lons également que toutes les additions doivent être re-
présentées par le biais de Either et les multiplications par
(,). Ne vous inquiétez pas, écrire les règles de cette façon
les rend bien plus compliquées qu’elles ne le sont en réa-
lité.
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Tout cela pour dire que chacun des types suivants est
dans sa représentation canonique :

— ()
— Either a b
— Either (a, b) (c, d)
— Either a (Either b (c, d))
— a -> b
— (a, b)
— (a, Int) — nous faisons une exception à la règle

pour les types numériques, cela serait trop de tra-
vail de les représenter sous forme de sommes.

Mais aucun des types suivants n’est dans sa représen-
tation canonique;

— (a, Bool)
— (a, Either b c)

À titre d’exemple, la représentation canonique de
Maybe a est Either a (). Je me répète, cela ne veut pas dire
que vous devriez préférer utiliser Either a () plutôt que
Maybe a. Pour le moment, il suffit de savoir que les deux
types sont équivalents. Nous reviendrons sur les formes
canoniques au chapitre 13.



Chapitre 3

Variance

Considérez les déclarations de type suivantes.
Lesquelles d’entre elles ont des instances de Functor
viables?

newtype T1 a = T1 (Int -> a)

newtype T2 a = T2 (a -> Int)

newtype T3 a = T3 (a -> a)

newtype T4 a = T4 ((Int -> a) -> Int)

newtype T5 a = T5 ((a -> Int) -> Int)

23
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Lesquels de ces types sont des Functors? Donnez des
instances pour ceux qui le sont.

Exercice 3-i

Malgré toutes leurs similitudes, seuls T1 et T5 sont des
Functors. Cela est dû à la variance : si nous pouvons trans-
former un a en un b, cela signifie-t-il que nous pouvons
nécessairement transformer un T a en un T b?

En l’occurrence, nous pouvons parfois le faire, mais
cela a beaucoup à voir avec l’aspect de T. Selon la forme de
T (de genre TYPE→ TYPE), il existe trois choix de variance : ¹

1. Covariant : Toute fonction a -> b peut être élevée
dans une fonction T a -> T b.

2. Contravariant : Toute fonction a -> b peut être éle-
vée dans une fonction T b -> T a.

3. Invariant : En général, les fonctions a -> b ne
peuvent pas être élevées dans une fonction sur T a.

La covariance est celle que nous connaissons le mieux
— elle correspond directement aux Functors. Et en fait, le
type de fmap représente exactement ce mouvement d’
« élévation » (a -> b) -> T a -> T b. Un type T est un
Functor si et seulement s’il est covariant.

Avant d’expliquer quand un type est covariant, regar-
dons d’abord la contravariance et l’invariance.

1. Pour être précis, la variance est une propriété d’un type par rap-
port à l’un de ses constructeurs de type. Puisqu’il est entendu que les
fonctions de type map transforment le dernier paramètre de type, nous
pouvons dire sans ambiguïté que « T est contravariant »; c’est un rac-
courci pour « T a est contravariant par rapport à a».
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Les packages contravariant[?] et invariant[?], tous
deux par Ed Kmett, nous donnent accès aux classes
Contravariant et Invariant. Ces classes sont à leurs sortes
de variance ce que Functor est à covariance.

Un type contravariant vous permet de mapper une
fonction en sens inverse à travers son constructeur de
type.

class Contravariant f where
contramap :: (a -> b) -> f b -> f a

En revanche, un type invariant T vous permet demap-
per de a vers b si et seulement si a et b sont isomorphes.
Franchement, ce n’est pas une propriété intéressante —
un isomorphisme entre a et b signifie qu’ils sont déjà iden-
tiques au départ.

class Invariant f where
invmap :: (a -> b) -> (b -> a) -> f a -> f b

La variance d’un type T a par rapport à sa variable de
type a est entièrement spécifiée selon que a apparaît uni-
quement en position positive, uniquement en position né-
gative ou dans unmélange des deux.

Les variables de type qui apparaissent exclusivement
en position positive sont covariantes. Celles qui sont ex-
clusivement en position négative sont contravariantes. Et
les variables de type qui se retrouvent dans les deux de-
viennent invariantes.

Mais qu’ est-ce qu’une position positive ou négative?
Rappelons que tous les types ont une représentation
canonique exprimée sous forme de combinaison de (,),
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Either et (->). Nous pouvons donc définir des positions
positives et négatives en fonction de ces éléments
fondamentaux et développer notre intuition par la suite.

Type Position de
a b

Either a b + +

(a, b) + +

a -> b − +

La conclusion est claire : le seulmoyenànotre disposi-
tion pour introduire des variables de type en position né-
gative est de les placer du côté gauche d’une flèche. Cela
devrait correspondre à votre intuition, à savoir que le type
d’une fonctionva«à reculons» lorsqu’il est pré-composé
avec une autre fonction.

Dans l’exemple suivant, la pré-composition avec show
:: Bool -> String transforme un type String -> [String]
en Bool -> [String].

> :t words
words :: String -> [String]

> :t show :: Bool -> String
show :: Bool -> String :: Bool -> String

> :t words . (show :: Bool -> String)
words . (show :: Bool -> String) :: Bool

↪→ -> [String]

GHCi
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Mathématiquement, les choses sont souvent appelées
« positives » et « négatives » si leurs signes suivent les
lois habituelles de la multiplication. C’est-à-dire qu’un
positif multiplié par un positif reste positif, un négatif
multiplié par un positif est un négatif, etc.

Les variances ne sont pas différentes. Pour illustrer,
considérons le type (a, Bool) -> Int. Le a dans le
sous-type (a, Bool) est en position positive, mais (a,
Bool) est en position négative par rapport à (a, Bool) ->
Int. En nous souvenant de nos cours d’arithmétique
élémentaire à l’école, un positif fois un négatif est
négatif, et donc (a, Bool) -> Int est contravariant par
rapport à a.

Cette relation peut être exprimée avec une table ba-
sique, mais encore une fois, remarquez que le nom des
positionspositives et négatives suggèreunemnémotech-
nique suffisante pour garder cette table enmémoire.

a b a ◦ b
+ + +

+ − −
− + −
− − +

Nous pouvons utiliser ces connaissances pour nous
convaincre que les instances de Functor existent
uniquement pour les types T1 et T5mentionnés plus haut.
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T1 ∼= Int ->
+︷︸︸︷
a + = +

T2 ∼=
−︷︸︸︷
a -> Int − = −

T3 ∼=
−︷︸︸︷
a ->

+︷︸︸︷
a ± = ±

T4 ∼=

−︷ ︸︸ ︷
(Int ->

+︷︸︸︷
a ) -> Int − ◦ + = −

T5 ∼=

−︷ ︸︸ ︷
(

−︷︸︸︷
a -> Int) -> Int − ◦ − = +

Cette analyse nous montre également que T2 et T4 ont
des instances de Contravariant, et T3 a une instance
d’Invariant.

La variance d’un type a également une interprétation
plus concrète : les variables en position positive sont
produites ou possédées, tandis que celles en position
négative sont consommées. Les produits, les sommes et le
côté droit d’une flèche sont tous des éléments de
données qui existent déjà ou sont produits, mais le type
sur le côté gauche d’une flèche est, de fait, consommé.

Il existe des noms spéciaux pour les types avec plu-
sieurs variables de type. Un type qui est covariant dans
deux arguments (comme Either et (,)) est appelé un bi-
foncteur. Un type qui est contravariant dans son premier
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argument, mais covariant dans son second (comme (->))
est connu sous le nomde profoncteur. Commevouspouvez
vous en douter, Ed Kmett a des packages qui fournissent
cesdeux typesde classes-bienque Bifunctor existemain-
tenant dans base.

L’analyse de position que nous venons de voir est un
outil puissant—c’est rapide, vous voyez enun coupd’œil
quelles instances de classe vous devez fournir. Mieux en-
core, c’est terriblement impressionnant pour tous ceux
qui ne connaissent pas l’astuce.
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Deuxième partie

Levée des restrictions
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Chapitre 4

Utilisation des types

4.1 Portée du type

Haskell utilise le système de types Hindley–Milner
(une généralisation). L’une des plus grandes
contributions de Hindley–Milner est sa capacité à
déduire les types de programmes sans avoir besoin
d’annotations explicites. Le résultat est que les
programmeurs Haskell au niveau du terme ont rarement
besoin de prêter beaucoup d’attention aux types.
Souvent, il suffit juste d’ajouter une annotation en
premier. Même dans ce cas, on le fait plus pour nous que
pour le compilateur.

Cet état de fait est omniprésent et le message qu’il
envoie est fort et clair : « les types ne doivent pas nous
ralentir dans notre réflexion ». Malheureusement,
une telle attitude de la part du langage n’est pas
particulièrement utile pour la programmation au niveau
type. Cela se passe souvent mal — considérez la fonction
suivante, qui ne compile pas en raison de son annotation
de type :

33
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broken :: (a -> b) -> a -> b
broken f a = apply

where
apply :: b
apply = f a

Le problème avec broken est que, malgré les
apparences, le type b dans apply n’est pas le même b dans
broken. Haskell pense qu’il sait mieux que nous ici, et
introduit une nouvelle variable de type pour apply. C’est
comme si nous avions écrit à la place ce qui suit :

broken :: (a -> b) -> a -> b
broken f a = apply

where
apply :: c
apply = f a

Hindley–Milner semble considérer que les types ne
devraient être « ni vus ni entendus », une conséquence
flagrante de ceci est que les variables de type n’ont
aucune notion de portée. C’est pourquoi, l’exemple ne
parvient pas à être compilé — en substance, nous avons
essayé de référencer une variable non définie, et Haskell
a « généreusement » pris sur lui d’en créer une nouvelle
pour nous. Le Rapport Haskell ne nous fournit aucun
moyen de référencer les variables de type en dehors des
contextes dans lesquels elles sont déclarées.

Il existe plusieurs extensions de langage qui peuvent
atténuer cette difficulté, la plus importante étant
-XScopedTypeVariables. Lorsqu’elle est activée, elle nous
permet d’assigner des variables de type et d’y faire
référence plus tard. Toutefois, ce comportement est
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uniquement activé pour les types qui commencent par
un quantificateur explicite forall. Par exemple, avec
-XScopedTypeVariables, broken est toujours cassé, mais ce
qui suit fonctionne :

working :: forall a b. (a -> b) -> a -> b
working f a = apply
where

apply :: b
apply = f a

Le quantificateur forall a b. introduit une portée de
type et rend accessible les variables de type a et b dans le
reste de la définition de la fonction. Cela nous permet de
réutiliser b lors de l’ajout de la signature de type à apply,
plutôt que d’introduire une nouvelle variable de type
comme auparavant.

-XScopedTypeVariables nous permet de parler de types,
mais nous nous retrouvons toujours sans un bon moyen
d’instancier les types. Si nous voulions spécialiser fmap
pour Maybe, par exemple, la seule solution acceptée par le
Rapport Haskell est d’ajouter une signature de type
intégrée.

Si nous voulions implémenter une fonction qui four-
nit une String correspondant au nom d’un type, il est dif-
ficile de savoir comment nous pourrions faire une telle
chose. Par défaut, nous n’avons aucun moyen de trans-
mettre explicitement les informations au sujet du type, et
donc même appeler une telle fonction serait difficile.

Certaines bibliothèques plus anciennes utilisent
souvent un paramètre Proxy pour résoudre ces
problèmes. Voici sa définition :
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data Proxy a = Proxy

En termes de contenu d’informations au niveau
valeur, Proxy est exactement équivalent au type unité ().
Mais il a également un paramètre de type fantôme a, dont
le seul but est de permettre aux utilisateurs de garder une
trace d’un type et de le transmettre comme une valeur.

Par exemple, le module Data.Typeable fournit un
mécanisme pour obtenir des informations sur les types
lors de l’exécution. Il s’agit de la fonction typeRep, dont le
type est Typeable a => Proxy a -> TypeRep. Encore une
fois, le seul objectif de Proxy est de laisser typeRep savoir
quelle représentation de type nous recherchons. De ce
fait, typeRep doit être appelé comme ceci : typeRep (Proxy
:: Proxy Bool).

4.2 Applications de type

De toute évidence, le fait qu’on ne puisse pas spécifier
directement les types en Haskell a de désagréables
ramifications pour l’utilisateur. L’extension
-XTypeApplications comble cette omission flagrante du
langage.

Comme son nom l’indique, -XTypeApplications
nous permet d’appliquer directement des types aux
expressions. Nous pouvons remplir explicitement des
variables de type en préfixant un type avec @. Cela peut
être démontré dans GHCi :
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> :set -XTypeApplications

> :t fmap
fmap :: Functor f => (a -> b) -> f a -> f

↪→ b

> :t fmap @Maybe
fmap @Maybe :: (a -> b) -> Maybe a ->

↪→ Maybe b

GHCi

Alors que fmap élève une fonction dans n’importe
quel foncteur f, fmap @Maybe élève une fonction dans
Maybe. Nous avons appliqué le type Maybe à la fonction
polymorphe fmap de la même manière que nous pouvons
appliquer des valeurs aux arguments des fonctions.

Il y a deux règles à garder à l’esprit lorsque vous
pensez aux applications de type. La première est que
les types sont appliqués dans le même ordre qu’ils
apparaissent dans une signature de type, y compris son
contexte et ses quantificateurs forall. Cela signifie que
l’application d’un type Int à a -> b -> a entraîne Int -> b
-> Int. Mais appliquer ce type à forall b a. a -> b -> a
conduit à a -> Int -> a.

Rappelons que les méthodes des classes de types ont
leur contexte au début de leur signature de type. fmap, par
exemple, a pour type Functor f => (a -> b) -> fa -> f b.
C’est pourquoi nous avons pu remplir le paramètre fonc-
teur de fmap—car il vient en premier!

La deuxième règle des applications de type est que
vous pouvez éviter d’appliquer un type avec un tiret bas :
@_. Cela signifie que nous pouvons également spécialiser
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des variables de type qui ne sont pas les premières. En
consultant à nouveau GHCi, nous pouvons appliquer un
type aux paramètres a et b de fmap tout en laissant f
polymorphe :

> :t fmap
fmap :: Functor f => (a -> b) -> f a -> f

↪→ b

> :t fmap @_ @Int @Bool
fmap @_ @Int @Bool :: Functor w => (Int

↪→ -> Bool) -> w Int -> w Bool

GHCi

Étant donné que les types sont appliqués dans l’ordre
dans lequel ils sont définis, les types deviennent
une partie de la signature publique en présence de
-XTypeApplications. Changer l’ordre des variables de type
peut casser le code en aval, soyez donc prudent lorsque
vous effectuez des remaniements de cette nature.

Faites attention à l’ordre des types chaque fois que
vous écrivez une fonction à laquelle des types pourraient
être appliqués. Comme principe directeur, les types les
plus difficiles à déduire doivent venir en premier. Cela
nécessitera souvent l’utilisation de -XScopedTypeVariables
et d’un contexte explicite pour forall.

-XTypeApplications et -XScopedTypeVariables sont les
deux extensions les plus fondamentales de la boîte à
outils d’un programmeur au niveau type. Elles vont de
pair.
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4.3 Types ambigus

Pour revenir à l’exemple de la fonction typeRep de
Data.Typeable, nous pouvons l’utiliser pour implémenter
une fonction qui nous donnera le nom d’un type. Et nous
pouvons le faire sans avoir besoin du paramètre Proxy.

typeName :: forall a. Typeable a => String · · · 1
typeName = show . typeRep $ Proxy @a · · · · · · 2

Il y a deux choses intéressantes à noter dans typeName.
En 2 , Proxy @a est un raccourci pour Proxy :: Proxy a—
c’estparceque le constructeurdedonnée Proxyapour type
Proxy t. La variable de type t ici est la première de sa si-
gnature de type, nous sommes donc capables de lui ap-
pliquer un type. Les applications de type ne sont pas ré-
servées aux fonctions, elles peuvent être utilisées partout
où des types sont présents.

En 1 , nous voyons que le type a n’apparaît pas
réellement à droite de la grosse flèche de contexte (=>).
Étant donné que l’inférence de type de Hindley–Milner
ne fonctionne qu’à droite de la flèche de contexte, cela
signifie que le paramètre de type a dans typeName ne peut
jamais être correctement déduit. Haskell se réfère à un
tel type comme étant ambigu.

Par défaut, Haskell refusera de compiler tout
programme contenant des types ambigus. Nous pouvons
contourner ce comportement en activant l’extension
bien nommée -XAllowAmbiguousTypes partout où nous
aimerions en définir un. En fait, utiliser du code dont les
types sont ambigus nécessitera -XTypeApplications.
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Les deux extensions sont donc les deux faces d’une
même pièce. -XAllowAmbiguousTypes nous permet de
définir des fonctions typées de façon ambiguë, et
-XTypeApplications nous permet de les appeler.

Nous pouvons le vérifier. En activant
-XAllowAmbiguousTypes, nous pouvons compiler typeName et
jouer avec.

> :set -XTypeApplications

> typeName @Bool
"Bool"

> typeName @String
"[Char]"

> typeName @(Maybe [Int])
"Maybe [Int]"

GHCi

Bien que cet exemple soit stupide, les types ambigus
sont très utiles lors de la programmation au niveau type.
Nous voudrons souventmettre lamain sur une représen-
tation des types au niveau du terme — imaginez dessi-
ner un croquis d’un type ou un programme qui exporte le
schéma d’un type. Une telle fonction va presque toujours
être typée de manière ambiguë, comme nous le verrons
bientôt.

Cependant, les types ambigus ne sont pas toujours
aussi évidents à repérer. Pour comparer, regardons un
exemple surprenant. Considérez la famille de types
suivante :
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type family AlwaysUnit a where
AlwaysUnit a = ()

Compte tenu de cette définition, les signatures de
type suivantes sont-elles toutes non ambiguës? Prenez
un instant pour réfléchir à chaque exemple.

1. AlwaysUnit a -> a

2. b -> AlwaysUnit a -> b

3. Show a => AlwaysUnit a -> String

Le troisième exemple ici est, en fait, ambigu. Mais
pourquoi ? Le problème est qu’il n’est pas évident de
savoir quelle instance de Show a nous demandons! Même
s’il y a un a dans Show a => AlwaysUnit a -> String, nous
ne pouvons pas y accéder — AlwaysUnit a est égal à ()
pour tout a !

Plus précisément, le problème est que AlwaysUnit
n’a pas d’inverse; il n’y a pas de famille de types
Inverse telle que Inverse (AlwaysUnit a) est égal à a. En
mathématiques, ce manque d’inverse est appelé
non-injectivité.

Parce que AlwaysUnit est non injectif, nous ne pouvons
pas apprendre ce qu’est a, lorsqu’on a AlwaysUnit a.

Prenons un exemple analogue de la cryptographie;
simplement parce que vous savez que le hachage du mot
de passe de quelqu’un est 1234567890abcdef ne signifie pas
que vous savez quel est le mot de passe; toute bonne
fonction de hachage, comme AlwaysUnit, est à sens
unique. Ce n’est pas parce que nous pouvons avancer que
nous pouvons également revenir.

La solution à la non-injectivité consiste à donner à
GHC un autre moyen de déterminer le type par ailleurs
ambigu. Comme dans nos exemples, cela peut être fait en
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ajoutant un paramètre Proxy a dont le seul objectif est de
guider l’inférence, ou cela peut être accompli en activant
-XAllowAmbiguousTypes sur le site de définition, et en
utilisant -XTypeApplications sur le site d’appel pour
remplir manuellement le paramètre ambigu.



Chapitre 5

Contraintes et TDAGs

5.1 Introduction

Les CONSTRAINTes sont étranges. Elles ne se comportent
ni comme des TYPEs, ni comme les genres de donnée pro-
mue. Elles sont complètement différentes et valent donc
la peine d’être étudiées.

Le genre CONSTRAINTe est réservé aux choses qui
peuvent apparaître sur le côté gauche de la grosse flèche
de contexte (=>). Cela comprend des classes de type
entièrement saturées (comme Show a), des tuples
d’autres CONSTRAINTes, et des équivalences de type (Int
∼ a). Nous discuterons de l’équivalence de type dans un
instant.

Les contraintes de classe de types sont certainement
les plus familières. Nous les utilisons tout le temps,
même lorsque nous n’écrivons pas au niveau type en
Haskell. Considérez la fonction d’égalité (==) :: Eq a =>
a -> a -> Bool. Les tuples de CONSTRAINTes sont également
bien connus : sequenceA :: (Applicative f, Traversable
t) => t (f a) -> f (t a)

43
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Les équivalences de type sont plus intéressantes, elles
sont activées via -XGADTs. Comparez les deux programmes
suivants :

five :: Int
five = 5

five_ :: (a ∼ Int) => a
five_ = 5

five et five_ sont identiques en ce qui concerne Has-
kell. Alors que five a pour type Int, five_ a pour type a,
avec une contrainte disant que a égal Int. Bien sûr, per-
sonnen’écrirait réellement five_,mais c’est quandmême
une caractéristique pratique du système de types.

Les équivalences de type forment une relation
d’équivalence, ce qui signifie qu’elles ont les propriétés
suivantes :

— réflexivité—un type est toujours égal à lui-même :
a ∼ a

— symétrie— a ∼ b est valable si et seulement si b ∼ a
— transitivité—si nous savons que a ∼ b et que b ∼ c,

alors nous (ainsi que GHC) pouvons en déduire que
a ∼ c.

5.2 TDAGs

Les types de donnée algébriques généralisés (TDAGs)
sont une extension du système de types Haskell qui
permet d’écrire des signatures de type explicites pour les
constructeurs de donnée. Comme les contraintes
d’équivalence de type, ils sont également activés via
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-XGADTs.

L’exemple de référence d’un TDAG est un arbre
syntaxique sécurisé par les types. Par exemple, nous
pouvons définir un petit langage avec des entiers, des
booleans, l’addition, une négation logique et des
déclarations de contrôle.

data Expr a where · · · · · · · · · · · · · · · · · 1
LitInt :: Int -> Expr Int · · · · · · · · · · 2
LitBool :: Bool -> Expr Bool
Add :: Expr Int -> Expr Int -> Expr Int
Not :: Expr Bool -> Expr Bool
If :: Expr Bool -> Expr a -> Expr a -> Expr a ·

3↪→

Le where en 1 est ce qui active la syntaxe TDAG pour
le reste de la déclaration. Chacun des LitInt, LitBool, Add,
etc. correspond à un constructeur de donnée du type Expr.
Ces constructeurs prennent tous un certain nombre d’ar-
guments avant d’aboutir à un Expr.

Par exemple, LitInt en 2 prend un Int avant de ren-
voyer un Expr Int. D’autre part, le constructeur de donnée
If en 3 prend trois arguments (un Expr Bool et deux Expr
as) et renvoie un Expr a.

C’est cette capacité de spécifier le type renvoyé qui est
d’un intérêt particulier.

Vous pourriez être heureux de savoir que Expr est exact
par construction. Nous sommes incapables de construire
un Expr mal typé. Bien que cela puisse ne pas sembler
remarquable au premier coup d’œil, ça l’est — nous
avons représenté les règles de type d’Expr dans le système
de types Haskell. Par exemple, nous ne sommes pas en
mesure de construire un AST qui tente d’ajouter un Expr
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Int à un Expr Bool.

Pournous convaincreque les signaturesde typeécrites
en syntaxe TDAG sont en effet respectées par le compila-
teur, nous pouvons le vérifier dans GHCi :

> :t LitInt
LitInt :: Int -> Expr Int

> :t If
If :: Expr Bool -> Expr a -> Expr a ->

↪→ Expr a

GHCi

Étant donné que les TDAGs nous permettent de
spécifier le type d’un constructeur de donnée, nous
pouvons les utiliser pour contraindre une variable de type
dans certaines circonstances. Une telle chose n’est pas
possible autrement. ¹

La valeur desTDAGsest queHaskell peut utiliser ce sa-
voir sur ces types contraints. En fait, nous pouvons l’uti-
liser pour écrire un évaluateur sécurisé par les types sur
Expr :

evalExpr :: Expr a -> a
evalExpr (LitInt i) = i · · · · · · · · · · · · · 1
evalExpr (LitBool b) = b · · · · · · · · · · · · · 2
evalExpr (Add x y) = evalExpr x + evalExpr y
evalExpr (Not x) = not $ evalExpr x

1. Ou de façon similaire, comme nous le verrons, sans équivalence
de type.
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evalExpr (If b x y) =
if evalExpr b

then evalExpr x
else evalExpr y

En juste quelques lignesde code, nous avonsobtenuun
petit langage et un interprèteur pleinement fonctionnels.
Voyez  :

> evalExpr . If (LitBool False) (LitInt
↪→ 1) . Add (LitInt 5) $ LitInt 13

18

> evalExpr . Not $ LitBool True
False

GHCi

Faites bien attention ici ! En 1 , evalExpr renvoie un
Int, mais en 2 il renvoie un Bool ! C’est possible parce
que Haskell peut raisonner sur les TDAGs. Dans le cas de
LitInt, la seule possibilité pour qu’un tel motif soit sélec-
tionné est si a ∼ Int, auquel cas on peut sans problème
renvoyer un Int. Le raisonnement pour les autres motifs
est similaire; Haskell peut utiliser des informations de-
puis unmotif filtré pour conduire l’inférence de type.

La syntaxe TDAG est en effet fournie par -XGADTs, mais
ce n’est pas la syntaxe qui nous intéresse fondamentale-
ment. L’extension est mal nommée, un nom plus appro-
prié pourrait être « -XTypeEqualities». En fait, les TDAGs
ne sont que du sucre syntaxique pour les équivalences de
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type. Nous pouvons également déclarer Expr comme un
type de donnée Haskell traditionnel ainsi :

data Expr_ a
= (a ∼ Int) => LitInt_ Int
| (a ∼ Bool) => LitBool_ Bool
| (a ∼ Int) => Add_ (Expr_ Int) (Expr_ Int)
| (a ∼ Bool) => Not_ (Expr_ Bool)
| If_ (Expr_ Bool) (Expr_ a) (Expr_ a)

Vu comme ça, il est un peu plus facile de comprendre
ce qui se passe en coulisses. Chaque constructeur de don-
née de Expr_ porte avec lui une contrainte d’équivalence
de type. Comme pour toute contrainte à l’intérieur d’un
constructeur de donnée, Haskell exigera que la contrainte
soit satisfaite lorsque le constructeur de donnée est ap-
pelé.

Ainsi, lorsque nous filtrons sur le motif d’un
constructeur de donnée qui contient une contrainte,
cette contrainte satisfaite est propagée dans la portée.
Cela veut dire qu’une fonction de type Expr a -> a
peut renvoyer un Int lorsqu’on filtre sur le motif
correspondant LitInt, mais renvoyer un Bool lors d’un
filtre sur LitBool. La contrainte d’équivalence de type a
n’est propagée dans la portée qu’après le filtrage sur le
motif du constructeur de donnée qui le contient.

Nous explorerons la technique d’encapsulation des
contraintes dans les constructeurs de donnée de façon
plus générale par la suite.

Bien que la syntaxe TDAG n’offre rien de nouveau,
nous l’utiliserons souvent pour définir des types
compliqués. C’est simplement une question de style plus
lisible selonmoi.
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5.3 Listes hétérogènes

{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

Extensions nécessaires

import Data.Kind (Constraint, Type)
Insertions nécessaires

L’une des principales motivations des TDAGs est la
construction de structures inductives de niveau type à
partir de données de niveau terme. Comme exemple de
travail pour cette section, nous pouvons utiliser des
TDAGs pour définir une liste hétérogène — une liste qui
peut contenir des valeurs de différents types.

Pour avoir une idée de ce que nous allons construire :

> :t HNil
HNil :: HList '[]

> :t True :# HNil
True :# HNil :: HList '[Bool]

GHCi
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> let hlist = Just "hello" :# True :# HNil

> :t hlist
hlist :: HList '[Maybe [Char], Bool]

> hLength hlist
2

Le constructeur HNil ici est analogue au constructeur
de liste régulière []. De même, (:#) correspond à (:). Ils
sont définis comme un TDAG :

data HList (ts :: [Type]) where · · · · · · · · · 1
HNil :: HList '[] · · · · · · · · · · · · · · · · 2
(:#) :: t -> HList ts -> HList (t ': ts) · · 3

infixr 5 :#

En 1 , vous remarquerez que nous avons donné au ts
de HList une signature de genre explicite. Le paramètre de
type ts est défini comme ayant un genre [TYPE], parce que
les types contenus y seront stockés. Bien que cette signa-
ture de genre ne soit pas strictement nécessaire — GHC
saura correctement l’inférer pour nous—votre futurmoi
appréciera que vous l’ayez écrit. Une bonne règle de base
est d’annoter tous les genres si l’un d’eux n’est pas TYPE.

HList est analogue au type familier [], il doit donc dé-
finir une liste vide en 2 appelé HNil, et un opérateur cons
en 3 appelé (:#). ² Ces constructeurs ont des types soi-
gneusement choisis.

2. Les constructeurs de donnée symboliquement nommés en Has-
kell doivent commencer par deux points. Tout le reste est considéré
comme une erreur de syntaxe par l’analyseur syntaxique.
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HNil représente une HList vide. Nous pouvons le voir
par le fait qu’il ne prend rien et renvoie ts ∼ '[] — une
liste vide de type.

L’autre constructeur de donnée, (:#), prend deux pa-
ramètres. Son premier est de type t, et le second est un
HList ts. En réponse, il renvoie un HList (t ': ts) — le
résultat est que ce nouveau type devient le premier élé-
ment de l’autre HList.

Cette HList peut être filtrée sur sonmotif, tout comme
nous le ferions avec des listes régulières. Par exemple,
nous pouvons implémenter une fonction length :

hLength :: HList ts -> Int
hLength HNil = 0
hLength (_ :# ts) = 1 + hLength ts

Mais avoir cette liste explicite de types à disposition
nous permet de mettre en œuvre des choses beaucoup
plus intéressantes. Pour l’illustrer, nous pouvons écrire
une fonction head totale, quelque chose d’impossible à
faire avec les listes traditionnelles.

hHead :: HList (t ': ts) -> t
hHead (t :# _) = t

Les bizarreries ne s’arrêtent pas là. Nous pouvons dé-
construire n’importe quelle HList de longueur 3 dont le
deuxième élément est un Bool, le montrer, et obtenir la
garantie du compilateur que nous faisons une chose ac-
ceptable, bien qu’étrange.

showBool :: HList '[_1, Bool, _2] -> String
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showBool (_ :# b :# _ :# HNil) = show b

Malheureusement, les mécanismes de dérivation
fournis par GHC s’accomodent mal des TDAGs, ils
refuseront d’écrire Eq, Show ou tout autre instance. Mais
nous pouvons écrire les nôtres en fournissant un cas de
base (pour HNil), et un cas inductif.

Le cas de base est que deux HLists vides sont toujours
égales.

instance Eq (HList '[]) where
HNil == HNil = True

Et inductivement, deux HLists consées ne sont égales
que si leurs têtes et leurs queues sont égales.

instance (Eq t, Eq (HList ts)) => Eq (HList (t ': ts))
where↪→

(a :# as) == (b :# bs) = a == b && as == bs

Implémenter Ord pour HList.
Exercice 5.3-i

Implémenter Show pour HList.
Exercice 5.3-ii
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Nous avons dû écrire deux instances pour Eq afin de
pouvoir affirmer que chaque élément de la liste avait
également une instance Eq. Bien que cela fonctionne,
c’est plutôt insatisfaisant. Alternativement, nous
pouvons écrire une famille fermée de type qui enrobera
ts dans une grande CONSTRAINTe précisant que chaque
élément a un Eq.

type family AllEq (ts :: [Type]) :: Constraint where
AllEq '[] = () · · · · · · · · · · · · · · 1
AllEq (t ': ts) = (Eq t, AllEq ts) · · · · · · 2

Comme AllEq est notre premier exemple d’une famille
fermée de type inhabituelle, nous devrions passer un peu
de temps à l’analyser. AllEq effectue un filtrage de motif
au niveau type sur une liste de types, déterminant si oui
ou non elle est vide.

Si elle est vide — ligne 1 — nous renvoyons sim-
plement la CONSTRAINTe unité. Notez qu’en raison de la si-
gnature de genre sur AllEq, Haskell interprète cela comme
CONSTRAINTe plutôt que le TYPE unité.

Cependant, si ts est le cons de liste promu, nous
construisons plutôt un tuple CONSTRAINTe en 2 . Vous
remarquerez qu’AllEq est défini inductivement, de sorte
qu’il finira par trouver une liste vide et terminera. En
utilisant la commande :kind! dans GHCi, nous pouvons
voir jusqu’où cette famille de type se développe.
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> :kind! AllEq '[Int , Bool]
AllEq '[Int , Bool] :: Constraint
= (Eq Int , (Eq Bool , () :: Constraint))

GHCi

AllEq enrobe avec succès les [TYPE]s dans une
CONSTRAINTe. Mais il n’y a rien de spécifique à Eq dans
AllEq ! À la place, cela peut être généralisé en un enrobage
dans n’importe quelle CONSTRAINTe c. Nous aurons
besoin de -XConstraintKinds pour parler de contraintes
polymorphes.

type family All (c :: Type -> Constraint)
(ts :: [Type]) :: Constraint where

All c '[] = () · · · · · · · · · · · · · · 1
All c (t ': ts) = (c t, All c ts) · · · · · · 2

Avec All, nous pouvons maintenant écrire notre ins-
tance Eq plus directement.

instance All Eq ts => Eq (HList ts) where
HNil == HNil = True
(a :# as) == (b :# bs) = a == b && as == bs

Réécrire les instances Ord and Show en termes de All.
Exercice 5.3-iii
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