

Tom Graves

Elements of Pendulum Dowsing

Tom Graves

This book is for sale at http://leanpub.com/pendulumdowsing

This version was published on 2014-04-04

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

©1989, 2008, 2014 Tom Graves

Also By Tom Graves

Needles of Stone

Inventing Reality

Disciplines of Dowsing

Contents

Sampler edition of 'Elements of Pendulum Dowsing'	1
by Tom Graves	1
1 Introduction	5
Where do we start?	5
What is a pendulum?	6
What's it used for?	8
How does it work?	9
2 Getting started	10
Choosing a pendulum	10
Holding a pendulum	12
Using a pendulum: the basics	13
4 Thinking about thinking	21
The importance of not thinking	21
Coincidence and imaginary	28
What's the use?	40

Sampler edition of 'Elements of Pendulum Dowsing'

by Tom Graves

This sampler-edition ebook of *Elements of Pendulum Dowsing* is based on the second edition of the book, as published by Tetradian Books in 2008. Chapters highlighted in **bold** are included in this sampler-edition.

- 1 Introduction
- · 2 Getting started
- 3 Parlour games
- 4 Thinking about thinking
- 5 Building the toolkit
- 6 Putting it into practice
- 7 Where do we go from here?
- · Appendix: Contacts

Elements of Pendulum Dowsing

by Tom Graves

This edition published in paperback May 2008 and ebook (EPUB, MOBI, PDF) April 2014

by

Tetradian Books Unit 215, Communications House 9 St Johns Street, Colchester, Essex CO2 7NN England

http://www.tetradianbooks.com

Originally published in 1989 by Element Books, Shaftesbury, England

ISBN 978-1-906681-04-3 (paperback) ISBN 978-1-906681-05-0 (e-book)

_ _

© Tom Graves 1989, 2008, 2014

The right of Tom Graves to be identified as author of this work has been asserted in accordance with the Copyright Designs and Patents Act 1988.

Text illustrations by Maja Evans

Cover illustration derived from a wood-engraving in the Dover collection.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher and the authors. This book is sold subject to the condition that it shall not by way of trade be otherwise lent, re-sold, hired out or otherwise circulated without the publisher's prior consent in any form of binding or cover other than that in which it is published.

Contents

1 Introduction

- Where do we start?
- What is a pendulum?
- What's it used for?
- How does it work?

- · Choosing a pendulum
- · Holding a pendulum
- Using a pendulum: the basics

3 Parlour games

- · Teaching an old dog new tricks
- Positive and negative
- Hunt the thimble

4 Thinking about thinking

- The importance of not thinking
- Coincidence and imaginary
- What's the use?

5 Building the toolkit

- The dowser's toolkit
- Tools for 'what am I looking for?'
- Tools for 'where am I?'
- Tools for 'which have I found?'
- Questioning the answers
- The ultimate toolkit

6 Putting it into practice

- What's the use?
- · Back to the parlour

- Water, water everywhere
- · Playing with food
- Physician, heal thyself
- Question time
- Out of time, out of mind?
- Two's company

7 Where do we go from here?

- Refining the toolkit
- Inventing reality
- The imaginary pendulum
- A dowser's tale

Appendix: Contacts

Where do we start?

A pendulum is a finding tool, a divining tool you hold in your hand. A ring on a string, swinging backwards and forwards like the pendulum on an old-fashioned clock. A fascinating tool. A *useful* tool.

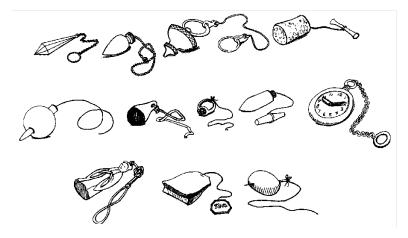
At this point, right at the start of the book, probably your most predominant question is something like "Why bother?". And the short answer, for here at least, is that it's such an interesting tool for so many different applications in so many different areas; a general-purpose finding tool. And it's all done with a piece of string, a weight of some kind, and a little thought (or, perhaps more accurately, a little sense). Nothing to it, really.

It's such a general-purpose tool, in fact, that many books on the subject seem to propose it as some kind of universal 'answer' to everything. It's the great secret of the ancients, perhaps; or the science of the future. Use a pendulum and you will receive enlightenment...

Oh well. If you must, go ahead; but you won't find much of that here. What you will find here is a discussion of toolkits, of markers and pointers, of positive and negative, of coincidence and imaginary worlds, of inventing realities, of parlour games and hunting drainpipes, all of which brings us back to toolkits, which is where we started. Because the whole point of dowsing (of which the use of the pendulum is a part) is that it is something to put to use: after all, things aren't exactly useful unless you can put them to use.

Putting it to use. That sounds like doing things: like technology,

almost. Which is exactly what it is: a technology with a little magic. And in some ways a technology *of* magic, in every sense – a magical technology. The magic and the technology meet in you; through you; are you.


So in a way it isn't quite so crazy to say "Use a pendulum and you shall receive enlightenment". Though perhaps that's too grand an expectation: a few light bulbs going 'click' in your mind might be more realistic. In learning the skills involved, and working your way through some of the mental acrobatics and other confusions that you'll find on your way, you'll also learn a few things about yourself. And that's probably as good a reason as any for learning to play with a pendulum: it has few equals as a mirror of yourself and your view of the world.

But none of this will make any sense unless we put it to *use*: until we move these discussions away from abstract theory and on to practical uses and applications.

That practice is what this book is all about. If that's what interests you, read on!

What is a pendulum?

You can use almost anything as a pendulum. All you need is a weight on a short length of string. Or perhaps on a spring. And that's all.

Assorted pendulums

There are plenty of variations on the theme. Traditional dowsers might use a ring on a thread. Students at some dowsing classes I ran used anything from a plastic white elephant to a four-pound pottery gnome on a large piece of rope (which met up with a wall and became a four-ounce handle, but that's another story...). It's more common, though, to use a small balanced weight like a builder's plumb-bob.

It's a form of dowsing that you can easily learn on your own at home. And it's nothing like as difficult (or, for that matter, em-barrassing) as learning how to search for water with a forked stick in the way that traditional dowsers do.

To use the pendulum, you swing that weight backwards and for-wards; and, by interpreting its movements, decipher the answers to any kind of questions you care to put to it.

All of which sounds ridiculous: the movements of a plumb-bob answering questions? He'll be asking us to tell fortunes from tealeaves next! Science of the future, indeed... unscientific rubbish!

True. But then I did describe the use of a pendulum as a tech-nology, not a science: and as far as I'm concerned, there's a great deal of

difference. We don't actually need to know how the pen-dulum works: like any technology, we only need to know how it can be worked — which is not the same thing at all as 'how does it work'. Indeed, as we'll see later, one of the shortest yet most accurate descriptions of dowsing is to say that it's entirely coincide-ence and mostly imaginary: which would hardly inspire confidence if you look at it only as a science, but should make perfect practical sense when we get there.

The key to it all is the word 'interpret'. Or understand; decipher; divine: all much the same thing, if you think about it. The pen-dulum's movements don't mean anything on their own, they have to be interpreted according to the context. Using a pendulum is all about making sense of a vast morass of information; collecting sense out of an often chaotic muddle of options and possibilities. In reality the pendulum doesn't do anything on its own: *you* do. It simply reflects your choices in a way that you can see and feel and sense. And through that, in practice, you learn judgement, discrimination, taste; more important, you know what your intuit-ive decisions have been. Using a pendulum, if you like, is a way of putting the technology back into that magic: of learning to know when you *know*.

What's it used for?

A pendulum is used for answering questions: and, for that matter, questioning answers. So it can be used for anything in which you need some help with questions and answers. Anything: from finding keys to finding errors in computer programs, from drains to diagnosis, for cooking and catching. Anything. Well, almost anything... it's up to you.

The pendulum's answers tend to be limited to 'Yes' or 'No' or (with a little encouragement) perhaps a number or a direction: but then that's all that computers can do, and we can teach them to do quite

a lot within those restrictions. The trick is in presenting the question in such a way that 'Yes' or 'No' makes practical sense. As we'll see, getting an answer is the easy part: it's framing usable questions that's hard...

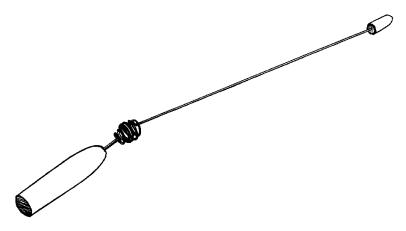
Another way of looking at it is to say that it's all inspired guess-work: the pendulum is a way of improving the inspiration! Any-where where you rely on intuitive judgement, using a pen-dulum can help, because it makes the process more formalised, more reliable, more known. With practice, at least. Which is, after all, the whole point of this book.

How does it work?

Everyone asks how it works. The short answer is 'yes'. It does. Some-times. Better, with practice. Next question...

I'm well aware that I'm cheating here. But in fact people have been hunting for a very long time, in many serious scientific studies, for a sensible answer as to how dowsing works: and have been led round and round in some very interesting but definitely circular paths. We simply don't know: and all the indications are that we never will.

More important, we don't actually *need* to know how it 'really' works, because what we *do* have is a good understanding of how it can be used, how it can be worked: again, technology rather than science. During the course of this book we will of course look at theory from time to time: but only with the intention of using it to point out other ways of looking at practical work. In practice, that's all that matters.


If you really do want to know how it works, stop talking about it and just *do* it: then you'll know. Perhaps. But do it anyway; because if you don't, no amount of theorising will make it make sense. Practice may not always make perfect, but at least it makes more sense than theory!

Choosing a pendulum

Before you can use a pendulum, you first need to have one to hand. Obviously.

In mechanical terms, the ideal pendulum should be a small sym-metrical weight, preferably almost spherical but with a point at the base, and with a thread mounted through the centre of its top. It should balance well at the end of its thread; it should not wander around when you swing it back and forth.

Many 'alternative' or 'New Age' shops can sell you ready-made pendulums that match this ideal: beautiful crystals, finely engineered bronze or silver bobs, or purpose-built map-dowsing pendulums on a length of chain. And in addition to simple bobs there are oddities like the 'Pasquini Amplifying Pendulum' with its hollow handle and tiny weight on the end of a spring, looking like a miniature version of a fencer's foil; or the Cameron Aura-meter, which is spring-loaded to swing from side to side rather than up and down; and many others, of course. And all of these come with price tags to match.

The Pasquini Pendulum

But you can just as easily make it yourself. It doesn't have to be ideal, and it doesn't need to be anything special: the one I used for my first experiments, as a teenager, was a wooden soldier from the toy-box with a match rammed into the top to hold a length of thread in place. Its balance was awful, but it worked well enough. You can use almost anything you can swing from your hand: I've even used a bunch of keys, or a bathplug on a chain. All it has to do is swing freely and easily from your hand. As long as it doesn't get tangled up with itself or blown about in the wind, it'll prob-ably do.

In a way, though, perhaps it does need to be something special: special as far as you're concerned. As with any craftsman's toolkit, a pendulum can become something more than a mere tool: some-thing highly personal, rather, that seems to take on its own char-acter. Part of the magic, perhaps. A trinket, like the plastic white elephant I mentioned earlier; a pendant; a crucifix or an ankh; it may be nothing like the 'ideal pendulum' but it's something more than just a 'thing' to you, more almost a part of you. A minor overdose of magic might not be too bad an idea here: if something feels right to play with as a pendulum, it probably is.

Holding a pendulum

Once you have in hand your ring-on-a-string or its equivalent, you have to hold it in such as way that it can swing freely back and forth. Otherwise it won't, or rather can't, do anything.

Hold the thread between forefinger and thumb (either hand will do). Don't drape the thread over your finger: hold it with your hand pointing down, and the thread hanging straight down, rather as you would hold a somewhat distasteful worm. The thread should typically be about four to six inches from your fingertips to the top of the bob ('lose' the rest of the thread by wrapping it round your other fingers – don't let it dangle down to get tangled up with the pendulum). Again, this isn't a hard and fast rule – there aren't any hard and fast rules – but simply a way that works well for most people. Do it any other way and the pendulum will probably wander about as you use it, simply for mechanical reasons: but if you don't feel comfortable with the way I've suggested, that's fine too. In any case, you should certainly experiment with different ways of holding the thing as you play with it, to see what works best for you: it's your pendulum, not mine, after all.

Before we move on, there's a small side-issue we could look at: the question of length. In some books on dowsing, such as Tom Lethbridge's delightful series, the length of the thread is meant to be used to select what you're looking for: the so-called 'long pendulum' system. If you've read about that, fine, but skip it for now, and we'll come back to it later. Right now it's simpler to stick to the 'short pendulum' approach. Where the length *does* matter to us here is in the balance of the pendulum – a heavier bob usually needs a longer thread of six inches or so, especially if it's used outdoors, whereas a lightweight one may need little more than an inch or two. It should feel comfortable and balanced as it swings in your hand; it should feel as if it's moving of its own accord without any help from you. But that's something you'll find out from experiment, from practice, from experience. Theory is there if

you need it, but it takes a back seat to whatever feels right for you at the time.

Using a pendulum: the basics

After all that, we now at last we come to using the thing. Well, almost. There's one last point that we have to get clear. And that is that *the pendulum does exactly what you tell it to*. It moves because your hand moves. Your hand moves as a reflex response to something. It moves because you tell it to, consciously, unconsciously or otherwise. It does not do anything on its own: it's not apart from you, it's a part of you.

Like a computer program, it does exactly what you tell it to, and nothing else. In effect, you program its responses. You program your hand to set up those responses. Like the computer program, what those responses mean depends on the program, depends on the context of the program. It can't actually go wrong, for the simple reason that there's nothing to it that can go wrong. What *can* go wrong is what you told it to do.

In theory at least, the computer programs I write can never go wrong, can never themselves make a mistake, because the machine can *only* do what I tell it to do. But I can very easily make mistakes in writing that program, so that I get responses that make no sense at all. "This program's done exactly what I told it to do: so what on earth did I tell it to do?" The same is true of using a pendulum: "This pendulum's given me exactly the response I asked for: so what on earth did I ask it?" As I said earlier, getting an answer is easy: it's framing questions that's hard...

What we're doing with a pendulum is using it to give a frame-work for reflex responses to questions, in much the same way as you train your feet to respond to danger in a car. Hitting the brake is – or should be – an entirely reflex response; but it's a *learned*

reflex response. And one that works best when it finally becomes unconscious, automatic, rather than something we have to think about each time we drive a car. So the same is true of a pendulum: it's a learned reflex response, and one that works best when we forget that it's there. In other words, it's a skill, a skill we learn through practice, not through theory. Which brings us back to practice again.

Keep talking

Despite my insistence that the pendulum does exactly what you tell it to, I'm now going to insist that it doesn't. In other words we tell ourselves that it works of its own accord, without our conscious involvement at all. That way we can use it to personify our un_conscious responses to questions: the problem with uncon-scious responses is that they _are unconscious, so we need some way of bringing them out into the open, so to speak, to make them visible so that we can see what they are. And that's what we can use the pendulum for: to make the unconscious visible, or rather as a crutch to learn how to recognise the unconscious for what it is.

So a simple trick is to talk to the pendulum, as if it had a mind of its own, as if it were separate from us. Which it does and is. And which it doesn't and isn't. At the same time. (I did warn you about some mental acrobatics! But don't worry, it doesn't have to make sense yet...).

Talk to your pendulum. Treat it as a household pet. It may have the personality of a slightly cantankerous child; you may need to cajole it, entreat it at times to give you the results you need. It may need a certain amount of house-training, to learn the rules of the house: that Yes means Yes, and No means No. And both of you will need to learn mutual respect. You can't force it to give you the results you want, but it will always give you the results you need: just remember that sometimes what you might really need is an embarrassing blunder or two... So just keep talking.

Talking to your pendulum is also talking to yourself. Yes, it's slightly crazy; but so what? I work in a computer environment where half the time people are cursing at their programs trying to cajole them into working the way they want them to, muttering away to themselves and their screens: and that's just as usual and certainly no more crazy than talking to a pendulum. Much the same thing, actually. It's crazy, and perhaps a little inelegant, but it works; and that's really what matters.

Keep it moving

It's difficult to move if you can only stand still. In the same way, it's easier to watch the movements of a pendulum if it's already moving. So, again, if you've read books on dowsing that say you should hold your pendulum still and wait for a response, fine; but note that for simple mechanical reasons (called inertia) you may wait so long that the response has given up and gone home by the time the pendulum actually gets a chance to move.

So swing the pendulum gently backwards and forwards. Like a clock pendulum, ticking away the time. And perhaps watch it as you might watch a clock that's an hour or two away from lunch: out of the corner of your eye, with a little hopefulness, rather than full-blooded clock-watching.

Think of that gentle to-and-fro swing as a 'neutral' position. Nothing much happening. Nothing to report. Watch it like the hypnotist's watch – to and fro, to and fro. A neutral state.

From that state it can move to other states. The swing can move like a compass arm, pointing out a direction. And back again. Or it can change from a simple swing to a gyration, round and round; one way; back to neutral; the other way; back to neutral again.

Try it. Or rather watch it: don't try. Just do it. Let the pendulum move by itself, reflecting what you're thinking about. The pen-dulum, after all, does exactly what you tell it to do, since, as

an extension of your arm, it's an extension of you: so swing it back and forth, and then let it go through those changes of movement, as if by itself. Knowing that it's part of you, that it's you doing it; and that it feels like it's moving of its own accord. That's when this little ring-on-a-string starts to become a pendulum, something you can use to look at yourself and elsewhere.

Yes and no

The next stage is to set up a meaning for responses: at the moment, these wanderings of a pendulum are completely mean-ing-less. All we have at the moment are something we call 'neutral' and various other movements: so we need to set up some rules to say what they mean.

Note that *you* set up the rules. There are no other rules. Except that that also includes the rules which you set up but don't know about. Like telling yourself it can't mean anything anyway. And all the other hidden rules that you might use to convince yourself that you can't do anything new, or different, or unscientific, or in any way out of the ordinary. Actually, you can. Just add the hidden rules that tell you you can do it, rather than those rules that tell you you can't.

Be positive (and negative, for that matter). State what meaning those movements are going to have. Tell your pendulum (in other words yourself) what the rules should be.

Program the pendulum, just like programming a computer: give it a set of rules to follow.

Try the nice-guy method first. Hold the pendulum in whichever hand feels the most comfortable with it. Swing your pendulum gently to and fro. And ask it for a movement which means Yes. Politely.

Then ask it to go back to neutral.

Now ask for a No. Any movement that will regularly mean No.

And ask it to go back to neutral again.

(If you aren't doing this, you should be: otherwise none of this will ever make sense).

Right. Try it again. Go through the whole cycle once more. Yes; neutral; No; neutral.

That's it. That's just about all there is to operating a pendulum.

Not exactly complicated, really.

All right, so it didn't make sense, it wasn't consistent. What did you expect: miracles? But if it really feels like the pendulum isn't going to play, make some rules: don't just ask it, tell it. For example, here's one instant set of rules: With the pendulum in your right hand, a change from a neutral to-and-fro to a clockwise gyration is Yes. A change from neutral to a counter-clockwise move-ment is No. That's the rules. (Or, if you prefer, any other rules you feel happier with: it's *your* choice, remember).

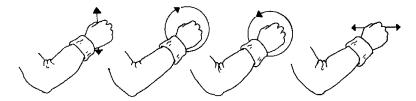
If it insists on doing something else regularly, that's also the rules. In fact a better set of rules. Come to an agreement between you and the pendulum as to what the rules are. And make sure that both of you stick to them. You've got to live with each other, work with each other: find a way to make it easy for both of you, without you giving up and going away in disgust.

Yes, I know that this personifying of a lump of metal is crazy. I know that it's you on both sides of this discussion. It's just that this is an easy way of you tricking you into co- operating with you in ways that perhaps you haven't done before, to get at information that you almost certainly haven't been able to get at before, simply because you couldn't see it before. By playing this rather childish game, you can; later you can learn to do it without this charade and simply *know*. But that takes practice: something you haven't had yet. Just go along with this for a while. Play. Have fun. (End of pep-talk that was probably quite unnecessary because everything's working just fine for you anyway).

With clear and recognisable responses for neutral, Yes and No, you can ask the pendulum questions. (More accurately, ask yourself questions, but we've been through that a few times already). And then get responses that you can actually interpret as meaning something. The catch is: what questions?

Questions, questions

This type of dowsing is entirely about questions and answers: any questions. *Any* questions, as long as they can meaningfully be answered by Yes or No. Questions about anything. Which is why some writers on dowsing have presented it as some kind of universal panacea: "the pendulum answers every question!" Well, yes: except that a lot of the questions you could ask, like "should I wake up this morning", do seem a trifle dumb and stupid; and other questions aren't all that suitable in a system which can only answer Yes or No.


It's the same as people expecting a computer somehow to arrive miraculously with an answer to every question – even if it isn't designed for the purpose, or programmed that way. The acronym 'GIGO', or "garbage in, garbage out", is engraved very early on in every programmer's mind. A computer simply does what it is told, with the information it has available, and answers in the only ways it has available to it; and that's all. The same is true of using a pendulum: it's not exactly helpful if, in response to the question "What do I do now", the pendulum can only answer Yes. Or No.

So the trick is not so much the answers – they're easy, as we've seen – as in asking questions. The *right* questions. Except, by some Kafka-esque logic, you won't necessarily know what questions you've asked; and you won't know what the right question is until you've already found it. Fishing for facts. Hunting, pur-suing, stalking a question. Letting each question and its answer lead on to the next question and its answer.

Almost all teaching in schools and colleges is still based on the idea of "Here's a question – What's the answer?"; and usually with the implicit aside of "We already know *the* answer, and that's the one you're supposed to guess to get good grades". But what we've got here, as is true of every real skill, is something more like "Here's this answer – so what on earth was the question?" Tricky, that. We'll keep on coming back to that as we go along.

The importance of the idiot

The big problem with a system that can only answer Yes or No is that it can't tell you when the question can't be answered by Yes or No. It can only answer Yes. Or No. Or perhaps say nothing at all, which is equally unhelpful. And leaves you feeling pretty fool-ish, and probably annoyed, too.

The pendulum can only answer Yes or No - or Idiot

All of which leaves you in the position where you can't see what's wrong. Like the infuriated schoolteacher after yet another inter-ruption, you're saying "Every time I open my mouth some fool speaks!" You can't see what's wrong, because there's no way in the system to see what's wrong. It wasn't built in.

This is where I have been known to get irritated at some other writers on dowsing, who present a rigid system which has only Yes, No and Neutral, with no space for anything else. And with no space, no alternative, no way to recognise that you've presented some dumb question, you'll be left stuck. Very stuck.

This 'space', which I call the 'Idiot' response because it occurs when I've been an idiot, is essential to any working system. The equivalent in computer programming is the routines and subprograms that look out for errors while a program is running: perhaps the most difficult part to write of any program, because you've got to think of every possible error that might occur. And even then there's always something that slips through: there's a popular adage among programmers that says "As soon as you think you've made your program idiot-proof, along comes a better idiot".

Idiot. Un-ask the question, is what it means. This question can't be answered meaningfully by Yes or No: un-ask the question.

The way I use a pendulum, the movement that means 'Idiot' is a side-to-side swing, in other words at right-angles to Neutral. Check for yourself what that would be: try some stupid question like "What do I do now?" and see what response you would get. If you don't get a regular response, try the side-to-side one; change it later if it doesn't feel right. It's up to you, remember.

Neutral; Yes; No; Idiot. It wouldn't be complete, wouldn't be usable, without the idiot, the 'wise fool'. Which is you. And me. Of course.

4 Thinking about thinking

The importance of not thinking

Now that you have some practice behind you, a little theorising would probably not be amiss here, and might even make some degree of sense.

So it worked.

Not spectacularly; but you did get some credible results.

You've proved that, to yourself, in practice.

But what worked?

Exactly. Whatever it was that worked, it worked best when you couldn't see how it was going to work. It worked best when you let it. And if you tried to force it to work, it didn't. The harder you look at it, the less there is to look at: it simply disappears into nothing. Yet if you pretend to turn away, and forget that it's there, so to speak, it comes out quite happily on its own and does what is asked of it. Shy little beast, the pendulum.

It's like looking at a dim star on a clear night. You can see it quite easily out of the corner of your eye: but look straight at it, and it vanishes. The centre of the eye's field of vision can see colour, which the outer field can't, but it isn't so sensitive to dim light. And the harder you look, the less you can see. Since our central vision is so acute, logically it *must*, it seems, be better for looking at anything: but it doesn't work that way. Instead, we have to flounder around at night trying to look at something by not looking at it, in order to get a better view of it. Strange.

The same's true of working with a pendulum: we can get it to work best by *not* looking at how it works. We can think most clearly about

it by looking at how not to think about it. A maze of paradoxes: thinking by not thinking. Contortions of the mind – no wonder dowsing seems insane at times!

A chaos of causes

The worst mistake is trying to find out how the pendulum *really* works, where the answers *really* come from, what *really* makes the pendulum move. That'll drive you crazy. Don't bother, just get on with it.

All right: so you insist. You want an answer: none of my usual evasions. There must be a single cause, a simple causal explan-ation, surely? After all, everything else does, doesn't it? Well, doesn't it? Well, not exactly.

To be honest: no. It doesn't.

In fact *that*'s the problem, that's the mistake I keep going on about.

We're taught in school that everything has a simple explanation, that everything can be shown to be caused by something else in a known way: and as long as you do leave it at school-level platitudes which explain everything so neatly, you can indeed ignore it at that. Everything fits, everything is certain, everything works within the 'laws of nature'. As long as you don't look too closely, that is: because it turns out that there are always exceptions to every rule. And those exceptions, we're told, make up a further set of rules, the ones we're taught as 'fact' at college rather than school. Except that there are exceptions to *those* rules; and so on and so on, *ad infinitum*. Those so-certain absolute rules turn out to be vague explanations that describe how things seem to work most of the time, probably, perhaps, as long as you don't mind a few inconsistencies here and there, you can just ignore those. They don't matter. Honest.

And that's what we're told is 'scientific truth' (even if it doesn't bear much resemblance to real science as practised). Just sweep the inconsistencies under the carpet and they'll disappear. Honestly. A pity about all those lumps in the carpet, though...

You still want to try to understand it all scientifically? Because it *has* to make sense that way, otherwise it can't possibly work? All right, so let's try to be scientific, to break it down into a simple chain of events caused by other events, other causes.

First, we know that the pendulum moves because your hand moves. All perfectly normal, strictly according to the laws of physics: nothing paranormal about that.

Your hand moves because a reflex muscular response is triggered. All perfectly normal, according to the laws of physiology – or rather, as far as we understand what we sometimes hope are laws of physiology.

And the reflex response is triggered by... um... er... well, let's just forget that, shall we?

No?

Well, you did ask for it:

It's caused by heat. Atmospheric changes. Ultrasonic scanning. Minute variations in magnetic fields. Radio waves. Geological and cosmic radiation. Interpretation of small clues in the landscape. An ultra-sensitive sense of smell. Special radiations that obviously must be physical even though no-one's managed to isolate them yet. Resonance between the length of the pendulum thread and the natural vibrations of the object you're looking for. Telepathy from the cat, which somehow knew anyway. Accessing the Akashic record. Astral projection. A message from your deceased greatgrandmother. A small demon reaching out and moving your hand. It seemed like a good idea to move my hand then, honest. And – the all-time favourite – 'it's only coincidence'.

A chaos of causes – or non-causes. Pick your own: there's plenty more in the bunch.

Explanations: they're all explanations. Any one of them would do: in my time I've seen 'proofs' that demonstrate that *all* of them are true, in their own terms at least. Any explanation you care to cook up. But in a sense *none* of them are true, since most of them are mutually exclusive and very few of them make practical sense.

And you thought there would be just one, nice, neat, simple explanation?

On their own, none of these explanations are much use, either. Each explains just one thing, and then limits the possibilities to look further: to stop you getting it done another way. The most common of these explanations, of course, is that anyway it can't work because it isn't scientific, it doesn't fit with the laws of chance, the laws of nature. Round the same loop we go... again and again. The only way out of the loop is to see that the explanation doesn't matter: the *use* of the explanation does.

Take an explanation which says that getting the pendulum to work is well-nigh impossible, and suddenly it's well-nigh im-possible to get the pendulum to work. Invent an explanation that makes it easy, and suddenly it's easy (or easier, at any rate). Why make things difficult? Don't try to make it make sense in theory: it won't. Get it to make sense in practice: that's what matters. And you can use whatever explanation you like – however banal, how-ever crazy – to make it work in practice: what matters is whether the explanation makes things easier, whether it makes sense in *use*.

That's why I keep going on about the pendulum being part of a technology, 'a practical art', rather than a science. Technology is *not* 'applied science': it may use some scientific ideas from time to time, but it doesn't have to be stuck with the rigid limitations of science at all.

In science, we have to pretend we know everything, understand

everything; and everything has to fit within one interrelated structure of causes and effects, a closed net of logic with no loose ends. If something doesn't fit, we're in real trouble. That's why so many scientists get so upset about intimations of the paranormal: if something can't be forced to fit within the structure, it could actually destroy the whole beautiful edifice that's been built up over so many centuries. So the solution that many scientists go for when faced with oddities like dowsing is to say that because it doesn't fit, it can't exist. In reality, that's not science at all: that's a parody of science, even if it is a very common one...

But in technology, we don't have that problem: we don't have to make things fit. They only have to work – whether they fit someone's supposed rules or not. We quite happily admit the absence of omniscience, admit we don't actually know how things work, and just get on with it instead. We don't have a clue how even a simple thing like a light-bulb works in the way it does: if you take the explanations all the way down, you'll find that every one of them is based on unknowns – for example, we don't have a clue what magnetism or electricity *really* are at all. But we can use them. And we do use them. Using explanations that make it easier to use them, rather than ones that make it harder.

So let's do the same with the pendulum. We know the basics of how to make it easier: holding the pendulum so that it can move freely, or so that it doesn't argue with the wind. And we also know that thinking about causes, or trying to control the pendulum's movements rather than letting it work 'by itself', don't actually help either: we don't know *why* it doesn't help, but we do know that it doesn't help, and that's enough for now. Get on and use it. Don't worry about it. It's quite happy to work if you let it, as you'll find out in time and in practice.

Getting through the maze

Learning any new skill is a confusing maze. At first it works wonderfully: then it doesn't. At all. Beginner's luck lapses into neophyte's gloom, as you try harder and harder to get back at the ease with which you started as a beginner. Trying harder can be very trying: the bitter joke of "Try hard to relax".

I find it useful to play with that analogy of the learning process as a maze – or rather a labyrinth, the old single-path maze design that occurs in so many cultures. Single-path because you know you'll get there in the end if you don't give up!

As you enter the labyrinth you move almost immediately to be very near the centre: beginner's luck, we call it. You know what the target is, but you don't know any 'right' way of doing it: and since you want to get there, you get there your own way, the way that suits you best.

Well, nearly there, at any rate. Not quite all the way there. Right, you say, how can I improve on this: and thinking hard, and asking around of various authorities who happen to be passing by (the opposite way, as you'll notice later), you try harder. Missing the centre. Skirting round it, in fact.

Eventually you come round to another corner. This isn't working well, you're getting no closer to the centre, in fact you're further away than you were at the best part of beginner's luck. Try another way.

And back round the circle: further out than before. Eventually you notice: that way wasn't right either, better try the way I started with. So back round the circle you go — further out than ever.

When you come back close to where you started again, realisation hits: you're further out than when you started! I'm useless! I'll never learn how to do it! I may as well give up now... It's what I call 'the dark night of the soul'.

But if you can make it round that curve, instead of jumping out of the maze in despair, almost immediately you're close to the centre again: a boost to your morale. Second wind, we call it.

But again things get worse. After skirting the centre again (from the opposite direction to your original path as a beginner), you find yourself working outward. The path twists and turns, until you probably feel you're going round the bend.

And then, without warning, you're there. At the centre, the place you've been trying to reach for so long. Mastery of the skill. You *know*: you have the knowledge of how to use it, of how to use you with it, through it. It's been a longer journey than it looked at first, perhaps. The only catch is: you now have to re-tread your steps to explain to others how you got there; and confuse them in the process, since you're always looking outward from knowledge while they're looking inward without it. Confusing; frustrating at times.

The Labyrinth

Every skill is like that. With most skills it's not so obvious – there's so much mechanical detail to learn for each, so many differing physical manipulations to master, that the sameness gets concealed. But learning to use a pendulum is exactly the same in that respect as learning cookery or carpentry: it's just that there's so little to it that you can hardly see the learned nature of it all at times. But you can learn it; have already learned a lot of it, although you may not realise it as yet.

Coincidence and imaginary

One ever-popular explanation used by people watching a pendulum going through its motions is "It's all coincidence". A generalised

catch-all statement, that: anything you don't under-stand, anything which doesn't fit 'the rules', you can dismiss as 'a mere coincidence'. If you can't show the one true cause, in the best school-scientific manner – which, as we've seen, we can't – then it can't possibly be anything other than coincidence.

The problem is: that's exactly what it is. The pendulum's res-pon-ses are just that: coincidence. Worse, they're coincidences relating to things that are mostly imaginary. As I said before, one of the shortest and most accurate descriptions of dowsing is to say that it's entirely coincidence and mostly imaginary.

Which puts an end to everything we've done so far. If it's only coincidence, it must be meaningless.

That's it: it's only coincidence.

Except: we were actually getting some useful results back there. Your results may not have been brilliant, but you were able to sort those cards fairly well (at least, if you didn't try too hard); you were able to use the pendulum to find the right cup of tea; you could tell which way up a battery was.

To call something 'a mere coincidence' isn't actually an explan-ation at all: it's a dismissal, a non-explanation that's running away from explaining something because it knows perfectly well that it doesn't have an explanation. And explanations, as we've seen, are only useful if they can show us a better way to *use* the pendulum: if not, they're useless. Worse than useless, in fact, because they're a hindrance that can stop us from being able to do anything at all.

The pendulum works; or rather you work and it tells you that you're working by apparently working by itself. All coincidence, really. The pendulum's fine, and so is your use of it: it's the common understanding about what coincidence is – and isn't – that's wrong. And things imaginary, for that matter.

So we need a better look at this thing that's 'entirely coincidence and mostly imaginary'.

"It's all coincidence"

I have known people get rather upset at my description of the responses of the pendulum as 'only coincidence'. It sounds too dis-missive: but, as you'll have realised by now, that isn't what I mean at all. Equally I don't like assigning too much meaning to coincidences: I've seen far too often the results of people taking every trivial event as immediate proof of the paranormal or else having some huge global significance. We can do without that problem here, thank you!

My difficulty here is that I don't like inventing new words for the sake of it, and I can't find a better word than 'coincidence'. Sure, I could use Jung's term 'synchronicity': but I'd only be mangling that one too. Although a lot of people do use it in a sense of 'it wasn't coincidence, it was a synchronicity', in other words some kind of meaningful coincidence, Jung did originally design the word to have a specific meaning in relation to time: taken back to its component root-words, it literally means 'the same time'. But the problem is that when we start to use a pendulum to invest-igate events within time – finding where something has been, or what the water-flow in a stream was like last year – the one thing we *haven't* got is 'the same time'. In fact what we have there is a coincidence of two times – the present and the past – in one place! So it's much easier to stick with the word 'coincidence', and use it in its literal sense of 'co-incidence' (with the hyphen em-phasised) rather than the mangled meaningless sense that most people seem to use so carelessly.

So let's get one thing clear. To try to dismiss something by saying that it's 'only a coincidence' doesn't explain anything: in fact it's an evasion, a non-explanation that doesn't tell us anything at all. A 'co-incidence' is when two things happen to co-incide, happen to meet in some sense: what we would call an 'event', in conventional scientific terms. And that's all it is: an event in which two things happen to co-incide, in space, in time or whatever. It doesn't

mean anything by itself; but it doesn't mean nothing, either. A coincidence doesn't have a meaning: coincidence and meaning are entirely separate.

The coincidence, or event, has no meaning - it's just an event. What it means depends not on the event, but on the *context* of that event, what else is happening at the same place, the same time or what-ever. In other words we assign meaning to coincidences accord-ing to what we see as significant, according to what we see as patterns of events. We see what we think is a regular pattern to a set of coincidences, and from that say that the later part of the pattern, the later set of events, is caused by the earlier stages of the pattern. That's an explanation: it fits the facts. But those facts are themselves all coincidences, events. And it's a moot point as to whether the pattern of events is really there, or whether we imagined the pattern to be there because it fits the explanation, and then say that the explanation fits the pattern because it fits the explanation because it fits the pattern... We determine what is 'real' and what is 'mere coincidence'; we choose what to consider as 'signal' events and what to ignore as unimportant 'noise'.

We'd go insane if we didn't separate them, if we didn't filter out the signal from the background noise. We call it discrimination, judgement, but perhaps a better word might be 'sanity'. But it's our choice as to which is which. Our choice as to what is sane and normal, and what is not. In other words, we have another paradox, first described by Stan Gooch: "Things have not only to be seen to be believed, but also have to be believed to be seen".

This goes a great deal beyond playing games with a pendulum, so perhaps I'd better come back to the point: which is, how does this affect our use of the pendulum?

The answer is: a lot. Totally, in fact.

Because the pendulum's responses are entirely coincidental.

What meaning we can glean from those responses comes from what

we see as happening at that same time, at that same place.

But we choose to see what we expect to see, and have real difficulty in seeing what we don't expect to see.

We ask a question: and expect an answer. The pendulum's response *coincides* with the question: Yes or No. We hope.

It gains its meaning from the coincidence of the question with the response.

The catch is: the *total* question. The *total* context in which the response occurred: not just the question you hope you had framed so clearly in your mind. Absolutely everything. And I mean *every-thing*: in principle, the fact that you had marmalade for breakfast last Tuesday and that it's raining in Guatemala at the moment could have a bearing on the pendulum's response.

In most technology we cheat, and say that only information within a certain set of limits will matter. We call those limitations 'the laws of nature'. And television pundits and others whose sanity and whose pay-cheques depend on you believing what they believe would certainly tell you that these laws of nature define the entirety of the universe. Which proves, they'll insist, that anything that doesn't fit these laws is 'supernatural' and therefore (by a rather neat piece of circular reasoning) doesn't exist.

In fact these 'laws' are nothing of the kind. The reality is that we don't know everything; indeed it's quite easy to prove that we never will know everything (other than in a fleeting, intuitive sense, perhaps). And if we don't know everything, we don't actually know anything absolutely. In practical experience and in the real world of trying to get things to work the way we want them to, the result is, as any engineer will tell you, that there's just one absolute law of the universe. It's usually called 'Murphy's Law'. And it's very simple: "if something can go wrong, it prob-ably will – and usually in the worst possible way".

The trouble is: there's always something that can go wrong. Because

there's *always* something we hadn't allowed for; there's always something we didn't know.

All the 'laws of nature' that we're taught at school and college and beyond are, in practice, only guidelines, a kind of default that we've found nature tends to follow when it's feeling co-operative. Murphy's Law, however, really is a law. An absolute, unbreakable rule. And that's final.

But Murphy's Law is only one side, the pessimistic side, of something that is more wide-ranging. Engineers are paid to be cautious, after all. So Murphy's Law has an opposite, a more optimistic side, one that is better known in the magical tradition and elsewhere: we could call it Nasruddin's Law, perhaps, after the eccentric hero of Idries Shah's well-known Sufi tales. And it's equally simple: "if something can go right, it probably will – if you let it – and usually in the most unexpected way".

The trouble with Nasruddin's Law is that it is completely anarchic and completely eclectic. Anything goes, anything and nothing is true, there is no definable cause or effect, just a sense that 'things happen because they happen to happen'. To get it to work for you, you have to allow absolutely everything in. Fishing for facts, if you like, or the ones you want will swim away downstream and hide. *Somewhere* in an endless mass of information, all of it happening now and somewhen, somewhere: all of it coincidences, events. A meaningless morass – except that somehow you want to extract meaning from it, extract the facts you need to find.

In effect what we're saying in using a pendulum is that we don't care how the information arrives – from what source, physical or otherwise, or via what channel or mechanism, physical or otherwise. All we care about is that the *right* piece of information should arrive. And that it should show itself by provoking a specific reflex twitch in the arm that's holding the pendulum, so that it shows up as a pendulum response that we've previously defined as Yes or No or some other recognisable interpretation.

We don't care at all what the mechanism shall be: we invoke Nasruddin's Law, without trying, and see what we get. We get what we get – all coincidence, of course. But what it *means* depends on the context: it depends on us. The rules that define mean-ing are not defined in someone else's 'laws of nature', but are up to us.

Which can be disturbing, even frightening at times: to get the pendulum to work well, you're scratching at the surface of a suddenly uncertain world, a world in which everything and nothing is true at the same time, a world in which things can be both real and imaginary at the same time.

So the world's uncertain: so what's new? The only thing that is certain is uncertainty; the only constant is change itself, and even that isn't constant. We use explanations to try to pin things down to a certainty, only to have them get up and play peek-a-boo with us just for the fun of it. The real and the imaginary become blurred, confused; yet it's *there*, where everything is coincidence and mostly imaginary, that we can do the most.

Imaging - "imaginary worlds"

A classic mistake, encouraged by school-level ideas about reality, is to take the physical world that we can touch and smell and see to be the only way in which things can be real. It's such a per-vasive part of our training in our culture's assumptions that it's not easy to see that it *is* only an assumption, rather than some-thing which is absolute, fixed, real. For example, it's often a mistake to ask about something "Is it real or imaginary?" Because, once again, the answer's usually "Yes". Both. At the same time: not real *or* imaginary, but real *and* imaginary. Real – but in an imaginary sense.

Watch a dog or a cat sleeping. Suddenly, still fast asleep, its paws twitch, its claws come out, it makes little running movements. It's hunting, it's seen prey – in its dreams. Entirely imaginary – yet

real at the same time, otherwise you wouldn't see the effects. It's not your dream, after all. But if the cat's sleeping in your lap, its claws will be all too real as they sink themselves into your leg!

Let's take another example. Imagine an orange. It's floating just above these pages. (All right, so oranges don't usually float in midair, but this one can: it's imaginary, it doesn't have to obey the law of gravity). Look at it. Look at its colour, its texture. Look at the label they put on it in the imaginary shop you imagined you bought it from. Reach out and touch it; feel its texture, its weight, its scent. Give it a squeeze: feel it yield slightly. Now dig your finger-nails in: mind that the juice doesn't hit you in the eye! And now you can smell it, too. Strip the peel away. And break off a segment. Put the segment in your mouth: rest it on the tip of your tongue, like a small neatly-wrapped parcel, tasting of nothing much. Now bite on it... and as the juice bursts into your mouth, now you taste it!

Except it's entirely imaginary.

Yet you felt it, smelt it, tasted it.

Sensed it in a way that we could record and measure physically.

So it's real.

Real and imaginary.

At the same time.

Fine. So things can be real and imaginary. Very interesting. So what's the use, you ask.

The answer is that that's how we can set up the context so that the pendulum's responses can be meaningful. We build a complete image of what we're looking for; then, coincidentally, we find it. Entirely coincidence; mostly imaginary. That's how I described dowsing earlier: now it should be starting to make sense, even if it didn't before.

In a sense, we're playing with sympathetic magic again. We say the pendulum responds in 'sympathy' to the coincidence between what

we're looking for and where we are. Without needing to worry about a connection or a cause. And both of those – what we're looking for and where we are – are defined, in part at least, in an imaginary way.

Normally we say we 'are' where we're standing, where we're sitting: in other words we define our position physically. But if someone interrupts me when I'm thinking, I might well say "Sorry, I was miles away" – and in an imaginary sense that's entirely true. I may have been here physically, but my thoughts were miles away, I was imagining a place miles away.

Take a practical example. I'll assume that you're sitting down at the moment. Now, without getting up from your chair, imagine that you're walking out through the door. (It sometimes helps to close your eyes to do this, but then you couldn't be reading this at the same time... perhaps). Look around you as you do so: what can you see? Looking through your mind's eye.

In imagination, walk on out into the street. Build an image of that street. Recall the image of it as you last saw it; then feel what it's like *now* rather than then. Watch the traffic go by. Hear the traffic go by, the chatter of people and birds, the world outside in the street; sense it, smell it, feel it. Go to the shop where you imagined you bought that imaginary orange; look around in there, sense around in there. You can, with practice, move about freely in this imaginary world, collecting information just as you would if you were physically there.

Which you're not.

It's all in your mind's eye.

All imaginary.

And real.

At the same time.

Imagination. Image-ination. Building images.

An imaginary world that's real enough to collect information from. Information that could be of use.

Does anything stand out at the moment? Is there anything that's different, odd; something trying to say Hello?

Fishing for facts.

Watching, sensing; letting the world talk to us instead of us talking at the world.

It's that sensing that we're using in working with a pendulum. Building an imaginary world, letting the answers arise and show themselves, through the movements of the pendulum. In a sense what we're doing is using something close to a ritual to switch into a state in which we're looking in an imaginary world, fishing for facts, for information that could be of use. Using the pendulum to say 'look at this piece of information' — not so much an extrasensory tool as an extra sensing tool that combines and links the senses together. Imaginary senses as well as 'real', physical ones.

The trick is to link the imaginary worlds to the physical one: literally real-ising the imaginary world, making it real. Without that coincidence of worlds, the coincidence of the pendulum's reaction is meaningless – 'a mere coincidence' – because there's nothing you can hang meaning on. The pendulum's response will be exactly correct, perhaps, but only in an imaginary world and not in this physical one in which everyone else exists as well. Merging imaginary worlds: another nice piece of mental acro-batics!

The other side of this is to prime yourself to recognise a specific coincidence – to tune yourself like a radio, so to speak. An every-day example might be when you buy a new car: you hadn't seen this model before, but now that you've bought it, suddenly they're everywhere. In fact they probably were there before, but you weren't primed to see them: so you didn't see them, or rather didn't perceive them. But now the coincidence has some meaning – "it's the same car as mine!" – so it stands out as 'signal' from the rest

of the background noise of information. The result is that you can see it – although it looks like it's something new that's happening.

To illustrate this and to put the two sides together, let's play with a classic piece of modern practical magic: finding a free parking space on the street in the city. Sure: finding a needle in a haystack might be easier. The game depends entirely on how you approach it, and is a little like the old joke: "You can have three wishes – anything you want – but if you should ever even *think* of the word 'hippopotamus' everything you gain from them will disappear". Now: you *mustn't* think 'hippopotamus'. What do you mean, you couldn't *not* think of it?

What we're trying to do here is imagine that someone will drive away from a parking meter just as we arrive. If you don't imagine it, it won't happen (or it may, but you probably won't see it, be-cause you're not primed to expect to see it). If you try to imagine it, trying harder and harder, it will happen in an imaginary world, perhaps, but not in this world your car is in: knowing Murphy's Law, what you'll probably get instead of a parking space is a not-so-imaginary parking ticket. What you need to do is just imagine it; build an image of it happening; let it happen. And notice that it's happened – look, that man there's pulling out *now*. But perhaps it won't work if you think of the word 'hippopotamus'...

If you don't imagine it, nothing happens; if you try too hard, nothing happens. Just somewhere in between is a tiny place in which Murphy's Law gives way to Nasruddin's Law; in which things happen, crazily, miraculously, irregularly, irreverently. Coincidences. They happen all the time. The trick is to notice them, to allow ourselves to see them as they happen. And to do that is like looking at that dim star at night: to see *the* parking space, *the* coincidence we're looking for, we have to flounder around trying to look for it by not looking at it, in order to get a better view of it. Strange.

It's not just strange: it's crazy, insane.

It just happens to be the way the world works.

So what kind of a joke is that?

Meet the Joker

School-science has its law of gravity. Everything is grave, everything is serious; everything is known (by the schoolteachers and television pundits at least), everything is predictable, everything fits the rules. And you'd better fit the rules, too. If that's your view of the world, meet the Joker. He's in charge of the law of levity: nothing is serious, perhaps, although everything is serious too, at the same time. And *his* rules say that nothing is absolutely known, nothing is absolutely predictable, and there are no absolute rules for things to fit.

Except for one absolute rule: which we see on one side as Murphy's Law, on another as Nasruddin's Law.

He has a very strange sense of humour: but then you'll have seen that if you've watched Murphy's Law in action. Quirky; anarchic; the whole point is that it *is* unpredictable.

In a way, though, it's all too easy to predict when the un-predict-able will occur. It occurs almost without fail when you take things too seriously; when you're too certain that you're right. Especially if you're working outside of the so-safe confines of school-level reality.

That school-level reality defines little more than a cardboard world, a fake unreality which excludes vast areas of our experience, in the real world we *know*. But that greater reality is a crazy world, in which the key character plays practical jokes at whim. Not exactly helpful, but that's the way the world is. Especially if you're learning to use the pendulum to look at that world, to learn about that world. Because as soon as you think you're certain about anything, certain about how something *really* works, up comes the Joker: and

suddenly, and often embarrass-ingly, things aren't so certain any more.

(I call it the Joker because that's what it feels like: perhaps it's more accurate, though, to say that it's us making fools of ourselves in trying to lay limitations on something that isn't anything like as limited as we are!)

The magical tradition is more used to such things than most. There's the Fool of the Tarot; the character 'Youthful Folly' of the I Ching; Jung's 'Trickster' archetype; to say nothing of the menagerie of 'non-human mischievous sprites', to quote a recent Church formal report on exorcism. "The Devil, that prowde spirit, cannot bear to be mocked", said Thomas More. In this sense the Devil is not the Church's fanciful guy with horns, but an aspect of us: our own pride, our own certainty. If you haven't much of a sense of humour, cultivate one. Now. Urgently. You'll need it!

But you don't need to think too much about all this. In fact, in another of these bizarre jokes, it's best not to think about it at all. Just pretend that that school-level reality is all there is. Forget the rest. Know it's there, but forget it; let it brew away on its own. Thinking about it will drive you crazy: but then you must be crazy already to be using a pendulum at all, surely?

What's the use?

That's enough wandering in the background realms for a while. End of play-time, time to put it to use.

Except that it's never the end of play-time: unless you don't mind being the butt-end of one of the Joker's unfunny practical jokes.

Serious play, then.

Because the pendulum's only useful if you can put it to use.

So let's move on to find some practical uses for the thing; move on to look at how to use it in practice.

Before we look at techniques and the like, we need to look a little more at what we mean by 'use'. Working with a pendulum, we are, if you like, working in a magical world, one in which matters of respect and balance are perhaps more immediately important than they are in the more conventional realms of greed and push-and-shove. Because there is this little problem which most people seem to prefer to shove to one side and forget: and that's a question of ethics.

Don't panic: I'm not going to wander off into some long moralistic tirade. It's more like the practical experience of an engineer. There are certain things you don't do if you want your railway bridge to stay up: you don't use low-grade materials, you don't allow shoddy workmanship, you don't skimp on safety checks and quality control. Reality doesn't allow you to cheat. Otherwise, all too soon, you've an expensive wreck on your hands, and some difficult explanations to invent.

The same is true of the pendulum: you've got to get it right, but to get it right you have to be able to sneak into that gap between nothing and Murphy's Law. It's a delicate balance. One you won't be able to maintain, for example, if you're thinking about tomorrow night's party or what you're going to spend the profit on, rather than keeping your mind on the job. You have to beware – literally, 'be aware' – of what you're doing *now*, of the context of the questions you're asking and answering, all of the time that you're working. And, in principle, all the time you're not working, too.

There's another aspect to balance. Everything you do and everyone else does has its effects: whether you had marmalade for breakfast on Tuesday, and whether it's raining now in Guatemala, all have their impact in this crazy world in which everything is somehow interlinked without being linked at all. That means that you have to be cautious about what you do: you can't just barge in and grab.

And that's practical experience, not spurious moral-ising. Look at some magicians of fiction: the sorcerer's apprentice in *Fantasia*, or Ursula le Guin's character Sparrowhawk in her *Earth-sea Trilogy*. Then realise that they're not so fictional...

The Joker will be quite happy to oblige in assisting you in folly... with the joke on you.

A little humility is a useful asset in using a pendulum.

So is a little awareness of when you're about to put your foot in something that you'd rather you didn't!

So: how do you learn to be aware that you're not aware? More mental acrobatics?

There are ways – an infinite number. The right one for you is the one that works for you: only you will know which one it is. But one standard approach is to make things into a ritual, a fixed sequence – and then watch for 'holes' in the sequence. That's why so much pendulum work looks like inane ritual: because that's precisely what it is. Childish ritual; a game. A game with a purpose: putting a game to use.

The point about ritual is not so much in the content of the ritual as in its use as a tool to point out what's missing. There's nothing odd about this: rituals are used in every technology, although few people seem keen to admit that that's what they are. For example, it's forty years since I flew light aircraft in the school cadets, but I still remember the standard formal phrases that we had to recite out loud as safety checks: "throttle closed, switches off" before priming the engine, "all clear above and behind" before a glider launch, "you have control" before handing over in a dual-control rig. Or keywords like 'hasel': meaningless in itself, but it's an acro-nym of a check-list — 'height, airspeed, straps, engine, lookout' — used as a safety mnemonic before starting an aerobatic sequence. Incantations in some high-tech mystical rite, with auto-matic, barely-conscious responses. But we noticed straight away if any-thing

was missing: that's what they were for. Built up from practical experience to emphasise practical experience, to prevent stupid – and dangerous – mistakes.

In the same vein it's useful to build a standard ritual to use with your pendulum to check that you're not about to make some stupid mistake. One of the most common is American dowser Sig Lonegren's check-list: "This is what I want to dowse. Can I? May I? Am I ready?" The dowser's equivalent of the pilot's pre-take- off check.

You could use it like a programmer's flow-chart:

Step one:

Decide what you want to look for, and state to the pendulum, "This is what I want to dowse".

Step two:

Holding the pendulum, ask "Can I use the pendulum now?" (Context: do I have the skill to do this particular dowsing oper-ation; am I in a fit condition *now*; am I capable *now*?)

If no (or indecisive), stop; otherwise proceed to step three.

Step three:

Holding the pendulum, ask "May I use the pendulum now?" (Context: are the conditions – unspecified – suitable to proceed; is it safe to proceed?)

If yes, proceed to step four; otherwise stop.

Step four:

Holding the pendulum, ask "Am I ready?" (Context: am I ready to proceed *now*?)

If no, stop; otherwise proceed to use the pendulum for whatever you want to go on to do.

End of sequence.

A checklist; a pre-take-off check.

Since we're about to move on to look at techniques, try it now: Can I? May I? Am I ready?

If any of the answers are No, it doesn't mean that you can't do it at all; it just means that you shouldn't do it now. If that's so, now's the time to take a break.

But you'll probably need that now in any case; and when you've rested, I'll see you in the next chapter!