

YZ ile Uygulama Geliştirme Kalıpları

(Türkçe Baskı)

Obie Fernandez

Bu kitap http://leanpub.com/patterns-of-application-development-using-ai-tr

adresinde satıştadır.

Bu versiyon, 2025-01-23 tarihinde yayınlanmıştır

Bu bir Leanpub kitabıdır. Leanpub, yazar ve yayımcıları Lean Yayımlama sistemi ile

destekleyen bir kuruluştur. Lean Yayımlama, henüz çalışma aşamasında olan bir kitabı

kullanışlı yollarla destekleyerek, okuyucu geri dönüşünü sağlayan ve prosesi

kolaylaştıran bir yöntemdir.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-tr
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Bu Kitabı Tweetle!

Yazara, Obie Fernandez, destek olmak için bu kitabı Twitter ’da paylaşın!

Bu kitap için önerilen hashtag #poaduai.

Bu linke tıklayarak, bu kitap hakkında Twitter’da neler paylaşıldığını görebilirsiniz:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Muhteşem kraliçem, ilham perim, ışığım ve aşkım Victoria’ya

Ayrıca Obie Fernandez tarafından
Patterns of Application Development Using AI

The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

İçindekiler

Gregor Hohpe’den Önsöz . i

Önsöz . ii

Kitap Hakkında . iii

Kod Örnekleri Hakkında . iii

Neleri Kapsamıyorum . iii

Bu Kitap Kimler İçin . iii

Ortak Bir Söz Dağarcığı Oluşturmak . iii

Katılım . iii

Teşekkürler . iii

Çizimler neyin nesi? . iv

Lean Publishing Hakkında . iv

Yazar Hakkında . v

Giriş . 1

Yazılım Mimarisi Üzerine Düşünceler . 2

Büyük Dil Modeli Nedir? . 3

Çıkarımı Anlamak . 5

Performans Üzerine Düşünmek . 25

Farklı DDD Modelleriyle Deney Yapmak . 27

Bileşik Yapay Zeka Sistemleri . 28

İÇİNDEKİLER

Kısım 1: Temel Yaklaşımlar ve Teknikler 35

Yolu Daralt . 36

Örtük Uzay: Kavranamayacak Kadar Geniş . 38

Yol Nasıl “Daraltılır” . 41

Ham Modeller ve Eğitimli Modeller Karşılaştırması 45

Prompt Mühendisliği . 52

Prompt Damıtma . 67

Ya ince ayar? . 74

Erişim Destekli Üretim (RAG) . 75

Erişim Destekli Üretim Nedir? . 75

RAG Nasıl Çalışır? . 75

Uygulamalarınızda RAG’ı Neden Kullanmalısınız? 75

Uygulamanızda RAG’ı Uygulama . 75

Önerme Bölümleme . 76

RAG’ın Gerçek Dünya Örnekleri . 76

Akıllı Sorgu Optimizasyonu (Intelligent Query Optimization, IQO) 77

Yeniden Sıralama . 77

RAG Değerlendirmesi (RAGAs) . 77

Zorluklar ve Gelecek Görünümü . 79

İşçilerin Çokluğu . 81

Bağımsız Yeniden Kullanılabilir Bileşenler Olarak YZ İşçileri 82

Hesap Yönetimi . 83

E-ticaret Uygulamaları . 84

Sağlık Hizmeti Uygulamaları . 93

Süreç Yöneticisi Olarak AI İşçisi . 96

Yapay Zeka Çalışanlarını Uygulama Mimarinize Entegre Etme 100

Yapay Zeka İşçilerinin Birleştirilebilirliği ve Orkestrayonu 103

İÇİNDEKİLER

Geleneksel DDİ’yi BDM’lerle Birleştirme . 112

Araç Kullanımı . 115

Araç Kullanımı Nedir? . 115

Araç Kullanımının Potansiyeli . 117

Araç Kullanım İş Akışı . 118

Araç Kullanımı İçin En İyi Uygulamalar . 132

Araçları Birleştirme ve Zincirleme . 137

Gelecekteki Yönelimler . 139

Akış İşleme . 141

ReplyStream’in Uygulanması . 142

“Konuşma Döngüsü” . 148

Otomatik Devam . 150

Sonuç . 152

Kendini Onaran Veri . 154

Pratik Vaka Çalışması: Bozuk JSON’ı Düzeltme 156

Değerlendirmeler ve Karşı Göstergeler . 161

Bağlamsal İçerik Üretimi . 175

Kişiselleştirme . 176

Üretkenlik . 177

Hızlı İterasyon ve Deney . 180

Yapay Zeka Destekli Yerelleştirme . 182

Kullanıcı Testi ve Geri Bildirimin Önemi . 184

Üretici Kullanıcı Arayüzü . 185

Kullanıcı Arayüzleri İçin Metin Üretimi . 186

Üretken Kullanıcı Arayüzünün Tanımlanması 195

Örnek . 197

İÇİNDEKİLER

Sonuç Odaklı Tasarıma Geçiş . 199

Zorluklar ve Dikkat Edilmesi Gerekenler . 201

Gelecek Görünümü ve Fırsatlar . 202

Akıllı İş Akışı Orkestrayonu . 206

İş İhtiyacı . 207

Temel Faydalar . 207

Temel Kalıplar . 208

İstisna İşleme ve Kurtarma . 210

Akıllı İş Akışı Orkestrasyonunun Pratikte Uygulanması 213

İzleme ve Günlük Tutma . 228

Ölçeklenebilirlik ve Performans Hususları . 232

İş Akışlarının Test Edilmesi ve Doğrulanması 237

Kısım 2: Desenler . 245

Bildirim Mühendisliği . 246

Düşünce Zinciri . 247

Mod Değişimi . 248

Rol Atama . 249

Prompt Object . 250

İstem Şablonu . 251

Yapılandırılmış Girdi/Çıktı . 252

Prompt Zincirleme . 253

Prompt Yeniden Yazıcı . 254

Response Fencing . 255

Sorgu Çözümleyici . 256

Sorgu Yeniden Yazıcı . 257

Ventriloquist . 258

İÇİNDEKİLER

Ayrık Bileşenler . 259

Yüklem . 260

API Facade . 261

Sonuç Yorumlayıcı . 263

Sanal Makine . 264

Spesifikasyon ve Test . 264

İnsan Kontrolünde (HITL) . 266

Üst Düzey Kalıplar . 266

Yükseltme . 267

Geri Bildirim Döngüsü . 268

Pasif Bilgi Yayılımı . 269

İşbirlikçi Karar Verme (CDM) . 271

Sürekli Öğrenme . 272

Etik Hususlar . 272

Teknolojik İlerlemeler ve Gelecek Görünümü 272

Akıllı Hata Yönetimi . 274

Geleneksel Hata Yönetimi Yaklaşımları . 274

Bağlamsal Hata Teşhisi . 275

Akıllı Hata Raporlama . 276

Öngörücü Hata Önleme . 277

Akıllı Hata Kurtarma . 277

Kişiselleştirilmiş Hata İletişimi . 278

Uyarlanabilir Hata İşleme İş Akışı . 279

Kalite Kontrol . 280

Eval . 281

Koruma Mekanizması . 283

Koruma Mekanizmaları ve Değerlendirmeler: Madalyonun İki Yüzü 283

Sözlük . 285
Sözlük . 285

Index . 290

Gregor Hohpe’den Önsöz
Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Önsöz
Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Önsöz iii

Kitap Hakkında

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Kod Örnekleri Hakkında

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Neleri Kapsamıyorum

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Bu Kitap Kimler İçin

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ortak Bir Söz Dağarcığı Oluşturmak

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Katılım

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Önsöz iv

Teşekkürler

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Çizimler neyin nesi?

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Lean Publishing Hakkında

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Önsöz v

Yazar Hakkında

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Giriş

Eğer Yapay Zeka Büyük Dil Modellerini (LLM) programlama projelerinize entegre

etmeye hevesliyseniz, ilerleyen bölümlerde sunulan örüntülere ve kod örneklerine

hemen dalabilirsiniz. Ancak, bu örüntülerin gücünü ve potansiyelini tam olarak takdir

edebilmek için, bunların temsil ettiği daha geniş bağlamı ve bütüncül yaklaşımı anlamak

için biraz zaman ayırmaya değer.

Bu örüntüler, yalnızca izole tekniklerin bir koleksiyonu değil, aksine yapay

zekayı uygulamalarınıza entegre etmek için birleşik bir çerçevedir. Ben Ruby on

Rails kullanıyorum, ancak bu örüntüler hemen hemen diğer tüm programlama

ortamlarında da çalışmalıdır. Veri yönetiminden performans optimizasyonuna,

kullanıcı deneyiminden güvenliğe kadar geniş bir yelpazedeki konuları ele alarak,

geleneksel programlama uygulamalarını yapay zeka yetenekleriyle geliştirmek için

kapsamlı bir araç seti sunmaktadır.

Giriş 2

Her örüntü kategorisi, uygulamanıza yapay zeka bileşenlerini dahil ederken ortaya çıkan

belirli bir zorluğu veya fırsatı ele alır. Bu örüntüler arasındaki ilişkileri ve sinerjileri

anlayarak, yapay zekayı nerede ve nasıl en etkili şekilde uygulayacağınız konusunda

bilinçli kararlar alabilirsiniz.

Örüntüler asla zorunlu çözümler değildir ve böyle ele alınmamalıdır. Bunlar, kendi

benzersiz uygulamanızın özel gereksinimlerine ve kısıtlamalarına göre uyarlanması

gereken esnek yapı taşlarıdır. Bu örüntülerin (yazılım alanındaki diğer herhangi bir

örüntü gibi) başarılı bir şekilde uygulanması, problem alanının, kullanıcı ihtiyaçlarının

ve projenizin genel teknik mimarisinin derinlemesine anlaşılmasına dayanır.

Yazılım Mimarisi Üzerine Düşünceler

1980’lerde programlamaya başladım ve hacker camiasında yer aldım, profesyonel

bir yazılım geliştirici olduktan sonra bile hacker zihniyetimi hiç kaybetmedim. En

başından beri, fildişi kulelerindeki yazılım mimarlarının gerçekte ne gibi bir değer

kattığı konusunda her zaman sağlıklı bir şüphecilik içindeydim.

Bu güçlü yeni yapay zeka teknolojisi dalgasının getirdiği değişimler konusunda kişisel

olarak bu kadar heyecanlı olmamın nedenlerinden biri, bunun yazılım mimarisi

kararları olarak kabul ettiğimiz şeyler üzerindeki etkisidir. Yazılım projelerimizi

tasarlama ve uygulama konusundaki “doğru” yolun ne olduğuna dair geleneksel

anlayışı sorguluyor. Ayrıca, yapay zeka geliştirmelerinin projenizin herhangi bir

bölümünü, herhangi bir zamanda değiştirmeyi her zamankinden daha kolay hale

getirmesi nedeniyle, mimarinin hala öncelikle sistemin değiştirilmesi zor olan kısımları

olarak düşünülüp düşünülemeyeceğini de sorguluyor.

Belki de yazılım mühendisliğinde “post-modern” yaklaşımın zirve yıllarına giriyoruz.

Bu bağlamda post-modern, geliştiricilerin her bir kod satırını yazma ve sürdürmeden

sorumlu olduğu geleneksel paradigmalardan temel bir kopuşu ifade eder. Bunun yerine,

veri manipülasyonu, karmaşık algoritmalar ve hatta uygulamamantığının tüm parçaları

Giriş 3

gibi görevleri 3. parti kütüphanelere ve harici API’lere devretme fikrini benimser.

Bu post-modern değişim, uygulamaları sıfırdan inşa etme konusundaki geleneksel

bilgelikten önemli bir sapmayı temsil eder ve geliştiricileri geliştirme sürecindeki

rollerini yeniden düşünmeye zorlar.

Larry Wall ve onun gibi diğer hacker öncülerinin öğretilerinden yola çıkarak, iyi

programcıların yalnızca kesinlikle gerekli olan kodu yazdıklarına her zaman inandım.

Yazılan kod miktarını en aza indirerek, daha hızlı hareket edebilir, hatalara açık yüzeyi

azaltabilir, bakımı basitleştirebilir ve uygulamalarının genel güvenilirliğini artırabiliriz.

Daha az kod, diğer işleri başka servislere devrederken temel iş mantığına ve kullanıcı

deneyimine odaklanmamıza olanak tanır.

Artık yapay zeka destekli sistemler, daha önce yalnızca insan yazılı kodun alanı

olan görevleri halledebildiğine göre, iş değeri ve kullanıcı deneyimi yaratmaya her

zamankinden daha fazla odaklanarak daha üretken ve çevik olabilmeliyiz.

Elbette projenizin büyük bölümlerini yapay zeka sistemlerine devretmenin, kontrol

kaybı potansiyeli ve sağlam izleme ve geri bildirim mekanizmalarına duyulan ihtiyaç

gibi dezavantajları vardır. Bu nedenle, yapay zekanın nasıl çalıştığına dair en azından

temel bir anlayış da dahil olmak üzere yeni bir beceri ve bilgi seti gerektirmektedir.

Büyük Dil Modeli Nedir?

Büyük Dil Modelleri (LLM), OpenAI tarafından 2020’de GPT-3’ün piyasaya

sürülmesinden bu yana önemli ilgi gören bir yapay zeka modeli türüdür. LLM’ler,

insan dilini dikkat çekici bir doğruluk ve akıcılıkla işlemek, anlamak ve üretmek için

tasarlanmıştır. Bu bölümde, LLM’lerin nasıl çalıştığına ve neden akıllı sistem bileşenleri

oluşturmak için uygun olduklarına kısaca göz atacağız.

Özünde, LLM’ler derin öğrenme algoritmalarına, özellikle sinir ağlarına dayanır. Bu

ağlar, bilgiyi işleyen ve ileten birbirine bağlı düğümlerden veya nöronlardan oluşur.

Giriş 4

LLM’ler için tercih edilen mimari genellikle metin gibi sıralı verileri işlemede oldukça

etkili olduğu kanıtlanan Transformer modelidir.

Dönüştürücü modeller, dikkat mekanizmasına dayanır ve öncelikle doğal dil işleme

gibi sıralı veri içeren görevler için kullanılır. Dönüştürücüler, giriş verisini sıralı

olarak değil bir bütün olarak işler; bu da uzun mesafeli bağımlılıkları daha etkili bir

şekilde yakalamalarını sağlar. Modelin bağlamı ve ilişkileri anlaması için giriş verisinin

farklı bölümlerine odaklanmasına yardımcı olan dikkat mekanizması katmanlarına

sahiptirler.

BDM’lerin eğitim süreci, modeli kitaplar, makaleler, web siteleri ve kod depoları gibi çok

büyük miktarda metinsel veriye maruz bırakmayı içerir. Eğitim sırasında, model metin

içindeki kalıpları, ilişkileri ve yapıları tanımayı öğrenir. Dilin dilbilgisi kuralları, kelime

ilişkileri ve bağlamsal anlamlar gibi istatistiksel özelliklerini yakalar.

BDM’lerin eğitiminde kullanılan temel tekniklerden biri gözetimsiz öğrenmedir. Bu,

modelin açık etiketleme veya rehberlik olmadan veriden öğrendiği anlamına gelir.

Eğitim verisindeki kelimelerin ve ifadelerin birlikte bulunma durumlarını analiz ederek

kendi başına kalıpları ve temsilleri keşfeder. Bu, BDM’lerin dili ve onun inceliklerini

derinden anlamasını sağlar.

BDM’lerin bir diğer önemli yönü bağlamı ele alma yetenekleridir. Bir metin parçasını

işlerken, BDM’ler sadece tek tek kelimeleri değil, aynı zamanda çevredeki bağlamı da

dikkate alır. Metnin anlamını ve amacını anlamak için önceki kelimeleri, cümleleri

ve hatta paragrafları göz önünde bulundurur. Bu bağlamsal anlayış, BDM’lerin

tutarlı ve alakalı yanıtlar üretmesini sağlar. Belirli bir BDM modelinin yeteneklerini

değerlendirmenin ana yollarından biri, yanıt üretmek için dikkate alabildikleri bağlam

boyutunu göz önünde bulundurmaktır.

Eğitildikten sonra, BDM’ler çok çeşitli dille ilgili görevler için kullanılabilir. İnsan

benzeri metin üretebilir, soruları yanıtlayabilir, belgeleri özetleyebilir, diller arası çeviri

yapabilir ve hatta kod yazabilirler. BDM’lerin çok yönlülüğü, kullanıcılarla etkileşime

girebilen, metin verilerini işleyip analiz edebilen ve anlamlı çıktılar üretebilen akıllı

Giriş 5

sistem bileşenleri oluşturmak için onları değerli kılar.

BDM’leri uygulama mimarisine dahil ederek, kullanıcı girdisini anlayan ve işleyen,

dinamik içerik üreten ve akıllı öneriler veya eylemler sunan yapay zeka bileşenleri

oluşturabilirsiniz. Ancak BDM’lerle çalışmak, kaynak gereksinimleri ve performans

dengelerinin dikkatli bir şekilde değerlendirilmesini gerektirir. BDM’ler hesaplama

açısından yoğundur ve çalışmak için önemli miktarda işlem gücü ve bellek (başka bir

deyişle, para) gerektirebilir. Çoğumuz, BDM’leri uygulamalarımıza entegre etmenin

maliyet etkilerini değerlendirmek ve buna göre hareket etmek zorunda kalacağız.

Çıkarımı Anlamak

Çıkarım, bir modelin yeni, daha önce görmediği verilere dayalı olarak tahminler veya

çıktılar ürettiği süreci ifade eder. Bu, eğitilmiş modelin kullanıcı girdilerine yanıt olarak

kararlar vermek veya metin, görüntü ya da diğer içerikleri üretmek için kullanıldığı

aşamadır.

Eğitim aşamasında, bir yapay zeka modeli, tahminlerindeki hatayı en aza indirmek

için parametrelerini ayarlayarak büyük bir veri setinden öğrenir. Eğitildikten sonra,

model öğrendiklerini yeni verilere uygulayabilir. Çıkarım, modelin öğrendiği kalıpları

ve bilgiyi çıktılar üretmek için kullanma şeklidir.

BDM’ler için çıkarım, bir giriş metni veya istem alıp, belirteçler (ki bunlardan yakında

bahsedeceğiz) akışı olarak tutarlı ve bağlamsal olarak ilgili bir yanıt üretmeyi içerir. Bu,

bir soruyu yanıtlama, bir cümleyi tamamlama, bir hikaye oluşturma veya metin çevirisi

yapma gibi birçok görevden biri olabilir.

Sizin ve benim düşünme şeklimizin aksine, bir yapay zekamodelinin çıkarım

yoluyla “düşünmesi” tek bir durumsuz işlemde gerçekleşir. Yani, düşünmesi

üretim süreciyle sınırlıdır. Size bir soru sorsam ve sadece “bilinç akışı”

tarzında bir yanıt kabul etsem gibi, kelimenin tam anlamıyla yüksek sesle

düşünmek zorundadır.

Giriş 6

Büyük Dil Modelleri Çeşitli Boyut ve Türlerde Gelir

Popüler büyük dil modellerinin (BDM’lerin) neredeyse tümü aynı temel dönüştürücü

mimarisi üzerine kurulu ve devasa metin veri setleri üzerinde eğitilmiş olsa da, farklı

boyutlarda gelirler ve farklı amaçlar için ince ayar yapılırlar. Bir BDM’nin boyutu, sinir

ağındaki parametre sayısıyla ölçülür ve yetenekleri üzerinde büyük bir etkiye sahiptir.

1 ila 2 trilyon parametreye sahip olduğu söylenen GPT-4 gibi daha fazla parametreye

sahip büyük modeller, genellikle daha küçük modellerden daha bilgili ve yeteneklidir.

Ancak, büyük modeller çalıştırmak için çok daha fazla hesaplama gücü gerektirir ve bu

da API çağrıları yoluyla kullandığınızda daha yüksek maliyete dönüşür.

BDM’leri daha pratik ve belirli kullanım durumları için uyarlanmış hale

getirmek için, temel modeller genellikle daha hedefli veri setleri üzerinde ince

ayar yapılır. Örneğin, bir BDM’ye konuşma yapay zekası için özelleştirmek

üzere büyük bir diyalog derlemesi üzerinde eğitim verilebilir. Diğerleri

onlara programlama bilgisi kazandırmak için kod üzerinde eğitilir. Hatta

kullanıcılarla rol yapma tarzı etkileşimler için özel olarak eğitilmiş modeller bile

var!

Geri Getirme ve Üretici Modeller

Büyük dil modelleri (BDM’ler) dünyasında, yanıt üretmek için iki ana yaklaşım vardır:

geri getirme tabanlı modeller ve üretici modeller. Her yaklaşımın kendine özgü güçlü ve

zayıf yönleri vardır ve aralarındaki farkları anlamak, belirli kullanım senaryonuz için

doğru modeli seçmenize yardımcı olabilir.

Geri Getirme Tabanlı Modeller

Geri getirme tabanlı modeller, aynı zamanda bilgi getirme modelleri olarak da bilinir,

büyük bir önceden var olan metin veritabanını arayarak ve giriş sorgusuna dayalı olarak

https://openrouter.ai/models/deepseek/deepseek-coder

Giriş 7

en alakalı pasajları seçerek yanıtlar üretir. Bu modeller yeni metni sıfırdan oluşturmaz,

bunun yerine tutarlı bir yanıt oluşturmak için veritabanından alıntıları bir araya getirir.

Geri getirme tabanlı modellerin ana avantajlarından biri, olgusal olarak doğru ve güncel

bilgi sağlama yetenekleridir. Düzenlenmiş bir metin veritabanına dayandıkları için,

güvenilir kaynaklardan ilgili bilgileri çekebilir ve kullanıcıya sunabilirler. Bu özellik,

soru yanıtlama sistemleri veya bilgi tabanları gibi kesin, olgusal cevaplar gerektiren

uygulamalar için onları oldukça uygun kılar.

Ancak, geri getirme tabanlı modellerin bazı sınırlamaları vardır. Sadece aradıkları

veritabanı kadar iyidirler, bu nedenle veritabanının kalitesi ve kapsamı doğrudan

modelin performansını etkiler. Ayrıca, bu modeller veritabanında mevcut metinlerle

sınırlı oldukları için tutarlı ve doğal ses çıkaran yanıtlar üretmekte zorlanabilirler.

Bu kitapta saf geri getirme modellerinin kullanımını ele almıyoruz.

Üretici Modeller

Üretici modeller ise, eğitim sırasında öğrendikleri örüntüler ve ilişkilere dayanarak

sıfırdan yeni metin oluştururlar. Bu modeller, giriş komutuna uygun yanıtlar üretmek

için dil anlayışlarını kullanırlar.

Üretici modellerin ana gücü, yaratıcı, tutarlı ve bağlamsal olarak ilgili metin üretme

yetenekleridir. Açık uçlu sohbetlere girebilir, hikayeler oluşturabilir ve hatta kod

yazabilirler. Bu özellik onları sohbet robotları, içerik oluşturma ve yaratıcı yazım

asistanları gibi daha açık uçlu ve dinamik etkileşimler gerektiren uygulamalar için ideal

kılar.

Ancak, üretici modeller bazen tutarsız veya olgusal olarak yanlış bilgiler üretebilirler,

çünkü düzenlenmiş bir gerçekler veritabanı yerine eğitim sırasında öğrendikleri

örüntülere güvenirler. Ayrıca önyargılara ve halüsinasyonlara daha yatkın olabilirler,

makul görünen ancak mutlaka doğru olmayan metinler üretebilirler.

Üretici BDM’lere örnek olarak OpenAI’nin GPT serisi (GPT-3, GPT-4) ve Anthropic’in

Claude’u gösterilebilir.

Giriş 8

Hibrit Modeller

Ticari olarak mevcut olan birkaç BDM, hem geri getirme hem de üretici yaklaşımları

hibrit bir modelde birleştirir. Bu modeller, bir veritabanından ilgili bilgileri bulmak için

geri getirme tekniklerini kullanır ve ardından bu bilgileri tutarlı bir yanıta sentezlemek

için üretici teknikleri kullanır.

Hibrit modeller, geri getirme tabanlı modellerin olgusal doğruluğunu üretici modellerin

doğal dil üretme yetenekleriyle birleştirmeyi amaçlar. Açık uçlu sohbetlere girme

yeteneğini korurken daha güvenilir ve güncel bilgiler sağlayabilirler.

Geri getirme tabanlı ve üretici modeller arasında seçim yaparken, uygulamanızın özel

gereksinimlerini göz önünde bulundurmalısınız. Eğer temel amaç doğru, olgusal bilgi

sağlamaksa, geri getirme tabanlı bir model en iyi seçim olabilir. Uygulama daha açık

uçlu ve yaratıcı etkileşimler gerektiriyorsa, üretici bir model daha uygun olabilir. Hibrit

modeller iki yaklaşım arasında bir denge sunar ve hem olgusal doğruluk hem de doğal

dil üretimi gerektiren uygulamalar için iyi bir seçim olabilir.

Sonuç olarak, geri getirme tabanlı ve üretici modeller arasındaki seçim, belirli kullanım

senaryosuna ve doğruluk, yaratıcılık ve esneklik arasındaki ödünleşimlere bağlıdır. Her

yaklaşımın güçlü yönlerini ve sınırlamalarını anlayarak bilinçli kararlar verebilirsiniz.

Giriş 9

Talimat İnce Ayarı

Talimat ince ayarı, BDM’lerin talimatları daha iyi anlama ve takip etme yeteneğini

geliştirmek için insan tarafından yazılmış komutları ve yanıtları kullanan konuşma

eğitiminin bir alt kümesidir. İşte insan tarafından yazılmış komutlar ve yanıtlar

üzerinde talimat ince ayarının BDM’lerin talimatları anlama ve takip etme

yeteneklerini nasıl geliştirdiğini gösteren bazı basit örnekler:

Örnek 1: Müşteri Desteği

Talimat: “İade talep eden bir müşteriye yanıt verin.”

İnsan Tarafından Yazılmış Komut: “Son satın aldığım ürün için iade talep etmek

istiyorum. Ürün beklentilerimi karşılamadı.”

İnsan Tarafından Yazılmış Yanıt: “Ürünün beklentilerinizi karşılamadığını duymak

üzüldük. İadenizi işleme almak için lütfen sipariş numaranızı ve iade nedeninizi

belirtin. Talebinizi inceleyip 2-3 iş günü içinde size geri dönüş yapacağız.”

Örnek 2: Eğitim Desteği

Talimat: “Fotosentez kavramını 10 yaşındaki bir çocuğa açıklayın.”

İnsan Tarafından Yazılan İstem: “Bitkiler besinlerini nasıl üretir açıklayabilir misin?”

İnsan Tarafından Yazılan Yanıt: “Tabii ki! Bitkiler fotosentez adı verilen bir süreç ile

besinlerini üretirler. Güneş ışığı, su ve karbondioksiti kullanarak besin ve oksijen

üretirler. Bitkinin yapraklarında güneş ışığını yakalamalarına yardımcı olan klorofil

adında özel bir bölüm vardır.”

Örnek 3: Kişisel Asistan

Talimat: “Gelecek Salı saat 15:00’te bir toplantı planla.”

Giriş 10

İnsan Tarafından Yazılan İstem: “Salı günü saat 15:00’te bir toplantı ayarlayabilir

misin?”

İnsan Tarafından Yazılan Yanıt: “Tabii ki, gelecek Salı saat 15:00 için bir toplantı

planladım. Başka bir şeye ihtiyacınız var mı?”

Sonuç olarak, farklı boyutlarda ve farklı uzmanlık alanlarına sahip BDM’lerden oluşan

çeşitli bir ekosistem ortaya çıkmıştır. 1-7 milyar parametre aralığındaki daha küçük

modeller, daha verimli çalışırken iyi genel dil yetenekleri sunar.

• Mistral 7B

• Llama 3 8B

• Gemma 7B

30-70 milyar parametre civarındaki orta boy modeller, daha güçlü akıl yürütme ve

talimat takip etme yetenekleri sunar.

• Llama 3 70B

• Qwen2 70B

• Mixtral 8x22B

Bir uygulamaya BDM entegre ederken, modelin yeteneklerini maliyet, gecikme süresi,

bağlam uzunluğu ve içerik filtreleme gibi pratik faktörlerle dengelemeniz gerekir. Daha

basit dil görevleri için küçük, talimatlarla ince ayarı yapılmış modeller genellikle en

iyi seçimdir; karmaşık akıl yürütme veya analiz için ise en büyük modeller gerekebilir.

Modelin eğitim verisi de önemli bir husustur, çünkümodelin bilgi kesme tarihini belirler.

Perplexity gibi bazı modeller gerçek zamanlı bilgi kaynaklarına bağlıdır,

bu nedenle etkili bir şekilde kesme tarihleri yoktur. Onlara sorular

sorduğunuzda, bağımsız olarak web aramaları yapabilir ve yanıt oluşturmak

için rastgele web sayfalarını getirebilirler.

Giriş 11

Şekil 1. Çevrimiçi erişimli ve erişimsiz Llama3

Sonuç olarak, her duruma uyan tek bir BDM yoktur. Model boyutu, mimarisi ve

eğitimindeki farklılıkları anlamak, belirli bir kullanım durumu için doğru modeli

seçmenin anahtarıdır. Farklı modellerle denemeler yapmak, belirli bir görev için en iyi

performansı hangilerinin sağladığını ortaya çıkarmanın tek pratik yoludur.

Belirteçleme: Metni Parçalara Ayırma

Büyük bir dil modeli metni işlemeden önce, o metnin belirteç adı verilen daha küçük

birimlere ayrılması gerekir. Belirteçler tek tek kelimeler, kelimelerin parçaları veya tek

karakterler olabilir. Metni belirteçlere ayırma işlemine belirteçleme denir ve bu, veriyi

bir dil modeli için hazırlamanın çok önemli bir adımıdır.

Şekil 2. Bu cümle 27 belirteç içerir

Farklı BDM’ler farklı belirteçleme stratejileri kullanır ve bu, modelin performansını ve

yeteneklerini önemli ölçüde etkileyebilir. BDM’ler tarafından kullanılan bazı yaygın

Giriş 12

belirteçleyiciler şunlardır:

• GPT (Bayt Çifti Kodlaması): GPT belirteçleyicileri, metni alt kelime birimlerine

ayırmak için bayt çifti kodlaması (BÇK) adı verilen bir teknik kullanır. BÇK,

bir metin dağarcığındaki en sık görülen bayt çiftlerini yinelemeli olarak

birleştirerek alt kelime belirteçlerinden oluşan bir sözcük dağarcığı oluşturur.

Bu, belirteçleyicinin nadir ve yeni kelimeleri daha yaygın alt kelime parçalarına

ayırarak işlemesine olanak tanır. GPT belirteçleyicileri, GPT-3 ve GPT-4 gibi

modeller tarafından kullanılır.

• Llama (SentencePiece): Llama belirteçleyicileri, gözetimsiz bir metin

belirteçleyici ve belirteç çözücü olan SentencePiece kütüphanesini kullanır.

SentencePiece, girdi metnini Unicode karakterlerinin bir dizisi olarak ele alır

ve bir eğitim derlemi temelinde alt sözcük dağarcığı öğrenir. Unicode ile

kodlanabilen herhangi bir dili işleyebilir, bu da onu çok dilli modeller için

oldukça uygun hale getirir. Llama belirteçleyicileri, Meta’nın Llama ve Alpaca

gibi modelleri tarafından kullanılır.

• SentencePiece (Unigram): SentencePiece belirteçleyicileri ayrıca Unigram adı

verilen, alt sözcük düzenleme tekniğine dayalı farklı bir algoritma da kullanabilir.

Unigram belirteçleme, tek tek alt sözcük birimlerine olasılıklar atayan bir unigram

dil modeline dayanarak optimal alt sözcük dağarcığını belirler. Bu yaklaşım,

BPE’ye kıyasla anlamsal açıdan daha anlamlı alt sözcükler üretebilir. Unigram’lı

SentencePiece, Google’ın T5 ve BERT gibi modelleri tarafından kullanılır.

• Google Gemini (Çok Modlu Belirteçleme): Google Gemini, metin, görüntü,

ses, video ve kod dahil olmak üzere çeşitli veri türlerini işlemek için tasarlanmış

bir belirteçleme şeması kullanır. Bu çok modlu yetenek, Gemini’nin farklı bilgi

formlarını işlemesine ve entegre etmesine olanak tanır. Özellikle, Google Gemini

1.5 Pro önceki modellerden çok daha büyük, milyonlarca belirteci işleyebilen bir

Giriş 13

bağlam penceresine sahiptir. Bu geniş bağlam penceresi, modelin daha büyük bir

bağlamı işlemesini ve potansiyel olarak daha doğru yanıtlar üretmesini sağlar.

Ancak, Gemini’nin belirteçleme şemasının diğer modellere göre karakter başına

bir belirteç yaklaşımına çok daha yakın olduğunu belirtmek önemlidir. Bu,

Google’ın fiyatlandırması belirteçler yerine karakterlere dayalı olduğundan, GPT

gibi modelleri kullanmaya alışkınsanız, Gemini modellerini kullanmanın gerçek

maliyetinin beklenenden önemli ölçüde daha yüksek olabileceği anlamına gelir.

Belirteçleyici seçimi, bir DDD’nin (Dil Düşünce Modeli) şu yönlerini etkiler:

• Sözcük dağarcığı boyutu: Belirteçleyici, modelin tanıdığı benzersiz belirteçler

kümesi olan sözcük dağarcığının boyutunu belirler. Daha büyük, daha ayrıntılı bir

sözcük dağarcığı, modelin daha geniş bir sözcük ve ifade yelpazesini işlemesine ve

hatta çok modlu (metinden fazlasını anlama ve üretme yeteneği) hale gelmesine

yardımcı olabilir, ancak bu aynı zamanda modelin bellek gereksinimlerini ve

hesaplama karmaşıklığını da artırır.

• Nadir ve bilinmeyen sözcüklerin işlenmesi: BPE ve SentencePiece gibi alt

sözcük birimleri kullanan belirteçleyiciler, nadir ve bilinmeyen sözcükleri daha

yaygın alt sözcük parçalarına ayırabilir. Bu, modelin daha önce görmediği

sözcüklerin anlamı hakkında, içerdikleri alt sözcüklere dayanarak eğitimli

tahminler yapmasına olanak tanır.

• Çok dilli destek: SentencePiece gibi Unicode ile kodlanabilen herhangi bir dili

işleyebilen belirteçleyiciler, birden fazla dilde metin işlemesi gereken çok dilli

modeller için oldukça uygundur.

Belirli bir uygulama için bir DDD seçerken, kullandığı belirteçleyiciyi ve bunun görevin

spesifik dil işleme ihtiyaçlarıyla ne kadar uyumlu olduğunu göz önünde bulundurmak

önemlidir. Belirteçleyici, modelin alana özgü terminolojiyi, nadir sözcükleri ve çok dilli

metni işleme yeteneği üzerinde önemli bir etkiye sahip olabilir.

Giriş 14

Bağlam Boyutu: Bir Dil Modeli Çıkarım Sırasında Ne Kadar
Bilgi Kullanabilir?

Dil modellerini tartışırken, bağlam boyutu, bir modelin yanıtlarını işlerken

veya üretirken dikkate alabileceği metin miktarını ifade eder. Özünde, modelin

“hatırlayabildiği” ve çıktılarını bilgilendirmek için kullanabileceği bilgi miktarının

(belirteçler cinsinden ifade edilen) bir ölçüsüdür. Bir dil modelinin bağlam boyutu,

yetenekleri ve etkili bir şekilde gerçekleştirebileceği görev türleri üzerinde önemli bir

etkiye sahip olabilir.

Bağlam Boyutu Nedir?

Teknik açıdan, bağlam boyutu, bir dil modelinin tek bir girdi dizisinde işleyebileceği

belirteç (sözcük veya sözcük parçaları) sayısı ile belirlenir. Bu genellikle modelin “dikkat

aralığı” veya “bağlam penceresi” olarak adlandırılır. Bağlam boyutu ne kadar büyükse,

model bir yanıt üretirken veya bir görevi gerçekleştirirken bir kerede o kadar çok metni

dikkate alabilir.

Farklı dil modellerinin birkaç yüz belirteçtenmilyonlarca belirtece kadar değişen bağlam

boyutları vardır. Referans olarak, tipik bir metin paragrafı yaklaşık 100-150 belirteç

içerebilirken, tüm bir kitap on binlerce veya yüz binlerce belirteç içerebilir.

Transformer tabanlı Büyük Dil Modellerini (DDD) sınırlı bellek ve hesaplama

ile sonsuz uzunluktaki girdilere ölçeklendirmek için verimli yöntemler üzerine

çalışmalar bile var.

Bağlam Boyutu Neden Önemlidir?

Bir dil modelinin bağlam boyutu, tutarlı ve bağlamsal olarak ilgili metin anlama ve

üretme yeteneği üzerinde önemli bir etkiye sahiptir. İşte bağlam boyutunun önemli

https://huggingface.co/papers/2404.07143

Giriş 15

olmasının bazı temel nedenleri:

1. Uzun form içeriği anlama: Daha büyük bağlam boyutuna sahip modeller,

makaleler, raporlar ve hatta tüm kitaplar gibi daha uzunmetinleri daha iyi anlayıp

analiz edebilir. Bu, belge özetleme, soru cevaplama ve içerik analizi gibi görevler

için çok önemlidir.

2. Tutarlılığı koruma: Daha geniş bir bağlam penceresi, modelin daha uzun

çıktı dizileri boyunca tutarlılık ve devamlılığı korumasına olanak tanır. Bu,

tutarlı bir anlatı veya konuyu sürdürmenin önemli olduğu hikaye oluşturma,

diyalog sistemleri ve içerik üretimi gibi görevler için önemlidir. Ayrıca BDM’leri

yapılandırılmış veri üretmek veya dönüştürmek için kullanırken de kesinlikle çok

önemlidir.

3. Uzun mesafeli bağımlılıkları yakalama: Bazı dil görevleri, bir metinde

birbirinden uzak olan kelimeler veya ifadeler arasındaki ilişkileri anlamayı

gerektirir. Daha büyük bağlam boyutuna sahip modeller, duygu analizi, çeviri ve

dil anlama gibi görevler için önemli olabilecek bu uzun mesafeli bağımlılıkları

yakalamak için daha iyi donanımlıdır.

4. Karmaşık talimatları işleme: Dil modellerinin karmaşık, çok adımlı talimatları

takip etmek için kullanıldığı uygulamalarda, daha büyük bağlam boyutu, modelin

yanıt üretirken sadece en son birkaç kelime yerine talimatların tamamını dikkate

almasını sağlar.

Farklı Bağlam Boyutlarına Sahip Dil Modeli Örnekleri

İşte farklı bağlam boyutlarına sahip birkaç dil modeli örneği:

• OpenAI GPT-3.5 Turbo: 4.095 token

• Mistral 7B Instruct: 32.768 token

• Anthropic Claude v1: 100.000 token

Giriş 16

• OpenAI GPT-4 Turbo: 128.000 token

• Anthropic Claude v2: 200.000 token

• Google Gemini Pro 1.5: 2,8M token

Gördüğünüz gibi, bu modeller arasında OpenAI GPT-3.5 Turbo modelinin yaklaşık

4.000 tokenından Anthropic Claude v2 modelinin 200.000 tokenına kadar geniş bir

bağlam boyutu yelpazesi bulunmaktadır. Google’ın PaLM 2 ve OpenAI’nin GPT-4 gibi

bazı modeller, daha uzun giriş dizilerini işleyebilen farklı varyantlar (örneğin “32k”

versiyonları) sunmaktadır. Ve şu anda (Nisan 2024) Google Gemini Pro neredeyse 3

milyon token ile övünmektedir!

Bağlam boyutunun belirli bir modelin özel uygulamasına ve sürümüne göre

değişebileceğini belirtmekte fayda var. Örneğin, orijinal OpenAI GPT-4 modelinin

bağlam boyutu 8.191 token iken, Turbo ve 4o gibi daha sonraki GPT-4 varyantları

128.000 token gibi çok daha büyük bir bağlam boyutuna sahiptir.

Sam Altman, mevcut bağlam sınırlamalarını 80’lerde kişisel bilgisayar

programcılarının uğraşmak zorunda kaldığı kilobaytlık çalışma belleğine benzetmiş

ve yakın gelecekte “tüm kişisel verilerinizi” bir büyük dil modelinin bağlamına

sığdırabilecek duruma geleceğimizi söylemiştir.

Doğru Bağlam Boyutunu Seçme

Belirli bir uygulama için dil modeli seçerken, söz konusu görevin bağlam boyutu

gereksinimlerini dikkate almak önemlidir. Duygu analizi veya basit soru cevaplama gibi

kısa, izole metin parçaları içeren görevler için daha küçük bir bağlam boyutu yeterli

olabilir. Ancak, daha uzun ve karmaşık metinleri anlama ve üretme gerektiren görevler

için daha büyük bir bağlam boyutu muhtemelen gerekli olacaktır.

Giriş 17

Daha büyük bağlam boyutlarının genellikle artan hesaplama maliyetleri ve daha yavaş

işlem süreleriyle birlikte geldiğini belirtmekte fayda var, çünkü model yanıt üretirken

daha fazla bilgiyi dikkate almak zorundadır. Bu nedenle, uygulamanız için bir dil modeli

seçerken bağlam boyutu ile performans arasında bir denge kurmanız gerekir.

Neden en büyük bağlam boyutuna sahip modeli seçip mümkün olduğunca çok

bilgiyle doldurmuyoruz? Performans faktörlerinin yanı sıra, diğer ana husus maliyet.

Mart 2024’te Google Gemini Pro 1.5 ile tam bağlam kullanarak tek bir komut-yanıt

döngüsü size neredeyse 8 dolara (USD) mal olacaktır. Bu masrafı haklı çıkaracak bir

kullanım senaryonuz varsa, ne âlâ! Ancak çoğu uygulama için, bu kat be kat çok

pahalı.

Saman Yığınlarında İğne Bulmak

Büyük veri kümelerinde bilgi erişiminin zorluklarını anlatmak için saman yığınında iğne

aramak benzetmesi uzun zamandır kullanılmaktadır. BDM’ler söz konusu olduğunda,

bu benzetmeyi biraz değiştiriyoruz. Geniş bir metin içinde (Paul Graham makalelerinin

tam bir derlemesi gibi) gömülü tek bir gerçeği değil, metin boyunca dağılmış birden

fazla gerçeği aradığımızı düşünün. Bu senaryo, tek bir saman yığınında değil, geniş

bir tarlada birden fazla iğne bulmaya benzer. İşte can alıcı nokta: Bu iğneleri sadece

bulmakla kalmayıp, onları tutarlı bir şekilde bir araya getirmemiz gerekiyor.

BDM’ler, uzun bağlamlara gömülü birden fazla gerçeği bulup bunlar hakkında akıl

yürütmekle görevlendirildiğinde, çifte bir zorlukla karşılaşır. İlk olarak, geri çağırma

doğruluğu konusunda basit bir sorun var—gerçek sayısı arttıkça doğal olarak düşüyor.

Bu beklenen bir durum; ne de olsa, geniş bir metin boyunca birden fazla ayrıntıyı takip

etmek en gelişmiş modelleri bile zorluyor.

İkinci ve belki de daha kritik olan zorluk, bu gerçeklerle akıl yürütme konusudur.

Giriş 18

Gerçekleri seçip çıkarmak başka bir şey; onları tutarlı bir anlatıya veya cevaba

sentezlemek bambaşka bir şey. Asıl test burada başlıyor. BDM’lerin akıl yürütme

görevlerindeki performansı, basit geri çağırma görevlerine kıyasla daha fazla düşme

eğiliminde. Bu düşüş sadece hacimle ilgili değil; bağlam, ilgi ve çıkarım arasındaki

karmaşık dans ile ilgili.

Peki bu neden oluyor? BDM’lerde bir dereceye kadar yansıtılan insan bilişimindeki

bellek ve dikkat dinamiklerini düşünün. Büyük miktarda bilgiyi işlerken BDM’ler, tıpkı

insanlar gibi, yeni bilgileri özümserken önceki ayrıntıları kaybedebilir. Bu özellikle,

metnin önceki bölümlerini otomatik olarak önceliklendirmek veya yeniden ziyaret

etmek üzere açıkça tasarlanmamış modellerde geçerlidir.

Dahası, bir BDM’nin bu geri çağrılan gerçekleri tutarlı bir yanıta dönüştürme yeteneği,

anlatı oluşturmaya benzer. Bu sadece bilginin geri çağrılmasını değil, aynı zamanda

derin bir anlayış ve bağlamsal yerleştirme gerektirir ki bu da mevcut yapay zeka için

zorlu bir görev olmaya devam ediyor.

Peki bu, bu teknolojilerin geliştiricileri ve entegratörleri olarak bizim için ne anlama

geliyor? Karmaşık, uzun formlu görevleri ele almak için BDM’lere güvenen sistemler

tasarlarken bu sınırlamaların keskin bir şekilde farkında olmalıyız. Belirli koşullar

altında performansın düşebileceğini anlamak, gerçekçi beklentiler belirlememize ve

daha iyi yedek mekanizmalar veya tamamlayıcı stratejiler geliştirmemize yardımcı olur.

Kipler: Metnin Ötesinde

Günümüzde dil modellerinin çoğu metin işleme ve üretmeye odaklanmış olsa da,

görüntüler, ses ve video gibi birden fazla veri türünü doğal olarak girdi ve çıktı olarak

alabilen çok kipli modellere doğru artan bir eğilim var. Bu çok kipli modeller, farklı

kipler arasında içerik anlayabilen ve üretebilen yapay zeka destekli uygulamalar için

yeni olanaklar açıyor.

Giriş 19

Kipler Nelerdir?

Dil modelleri bağlamında kipler, bir modelin işleyebileceği ve üretebileceği farklı veri

türlerini ifade eder. En yaygın kip, kitaplar, makaleler, web siteleri ve sosyal medya

gönderileri gibi çeşitli formlardaki yazılı dili içeren metindir. Ancak, dil modellerine

giderek daha fazla dahil edilen başka kipler de vardır:

• Görüntüler: Fotoğraflar, illüstrasyonlar ve diyagramlar gibi görsel veriler.

• Ses: Konuşma, müzik ve çevresel sesler gibi ses verileri.

• Video: Video klipler ve filmler gibi genellikle sesle birlikte gelen hareketli görsel

veriler.

Her kip, dil modelleri için benzersiz zorluklar ve fırsatlar sunar. Örneğin, görüntüler

modelin görsel kavramları ve ilişkileri anlamasını gerektirirken, ses modelin konuşma

ve diğer sesleri işlemesini ve üretmesini gerektirir.

Çok Kipli Dil Modelleri

Çok kipli dil modelleri, tek bir model içinde birden fazla kipi işleyebilecek şekilde

tasarlanmıştır. Bu modeller genellikle farklı kiplerde hem girdileri anlayabilen hem

de çıktı verisi üretebilen özelleşmiş bileşenlere veya katmanlara sahiptir. Çok kipli dil

modellerinin bazı önemli örnekleri şunlardır:

• OpenAI’nin GPT-4o’su: GPT-4o, metin yanında konuşma sesini de doğal olarak

anlayan ve işleyen büyük bir dil modelidir. Bu yetenek, GPT-4o’nun konuşma

dilini yazıya dökme, ses girdilerindenmetin üretme ve sözlü sorgulara yanıt verme

gibi görevleri gerçekleştirmesine olanak tanır.

• OpenAI’nin görsel girdili GPT-4’ü: GPT-4, hem metin hem de görüntüleri

işleyebilen büyük bir dil modelidir. Girdi olarak bir görüntü verildiğinde, GPT-

4 görüntünün içeriğini analiz edebilir ve görsel bilgileri tanımlayan veya bunlara

yanıt veren metin üretebilir.

Giriş 20

• Google’ın Gemini’si: Gemini, metin, görüntü ve videoyu işleyebilen çok kipli

bir modeldir. Görüntü betimleme, video özetleme ve görsel soru yanıtlama gibi

görevleri mümkün kılan kipler arası anlama ve üretimi sağlayan birleşik bir

mimari kullanır.

• DALL-E ve Stable Diffusion: Geleneksel anlamda dil modelleri olmasalar da,

bu modeller metin açıklamalarından görüntüler üreterek çoklu modal YZ’nin

gücünü göstermektedir. Farklı modaliteler arasında çeviri yapabilen modellerin

potansiyelini sergilerler.

Çoklu Modal Modellerin Faydaları ve Uygulamaları

Çoklu modal dil modelleri çeşitli faydalar sunar ve geniş bir uygulama yelpazesini

mümkün kılar, bunlar arasında:

• Gelişmiş anlayış: Birden fazla modaliteden bilgi işleyerek, bu modeller insanların

çeşitli duyusal girdilerden öğrenmesine benzer şekilde dünyayı daha kapsamlı

anlayabilirler.

• Modeller arası üretim: Çoklu modal modeller bir modaliteden gelen girdiye

dayalı olarak başka bir modalitede içerik üretebilir, örneğin metin açıklamasından

görüntü oluşturma veya yazılı bir makaleden video özeti oluşturma gibi.

• Erişilebilirlik: Çoklu modal modeller, görme engelli kullanıcılar için görüntülerin

metin açıklamalarını oluşturma veya yazılı içeriğin sesli versiyonlarını oluşturma

gibi modaliteler arası çeviri yaparak bilgiyi daha erişilebilir hale getirebilir.

• Yaratıcı uygulamalar: Çoklu modal modeller, metin komutlarına dayalı sanat,

müzik veya video oluşturma gibi yaratıcı görevler için kullanılabilir ve sanatçılar

ile içerik üreticileri için yeni olanaklar sunar.

Çoklu modal dil modelleri geliştikçe, birden fazla modalitede içerik anlayabilen ve

üretebilen YZ destekli uygulamaların geliştirilmesinde giderek daha önemli bir rol

Giriş 21

oynayacakları muhtemeldir. Bu, insanlar ve YZ sistemleri arasında daha doğal ve

sezgisel etkileşimleri mümkün kılacak ve yaratıcı ifade ile bilgi yayılımı için yeni

olanakların önünü açacaktır.

Sağlayıcı Ekosistemleri

Büyük dil modellerini (LLM’leri) uygulamalara dahil etmek söz konusu olduğunda,

seçebileceğiniz giderek artan bir seçenek yelpazesi bulunmaktadır. OpenAI, Anthropic,

Google ve Cohere gibi her büyük LLM sağlayıcısı, kendi model, API ve araç ekosistemini

sunar. Doğru sağlayıcıyı seçmek, fiyatlandırma, performans, içerik filtreleme, veri

gizliliği ve özelleştirme seçenekleri gibi çeşitli faktörleri göz önünde bulundurmayı

gerektirir.

OpenAI

OpenAI, GPT serisi (GPT-3, GPT-4) çeşitli uygulamalarda yaygın olarak kullanılan

en tanınmış LLM sağlayıcılarından biridir. OpenAI, modellerini uygulamalara kolayca

entegre etmenizi sağlayan kullanıcı dostu bir API sunar. Giriş seviyesi Ada modelinden

güçlü Davinci modeline kadar farklı yeteneklere ve fiyat noktalarına sahip bir dizi model

sunarlar.

OpenAI’nin ekosistemi ayrıca, komutlarla deney yapmanıza ve modelleri belirli

kullanım durumları için ince ayar yapmanıza olanak tanıyan OpenAI Playground gibi

araçları da içerir. Uygunsuz veya zararlı içerik üretimini önlemeye yardımcı olan içerik

filtreleme seçenekleri sunarlar.

OpenAI’nin modellerini doğrudan kullanırken, Alex Rudall’ın ruby-openai

kütüphanesine güveniyorum.

Anthropic

Anthropic, Claude modellerinin güçlü performans ve etik değerlendirmeler açısından

popülerlik kazandığı LLM alanındaki bir diğer önemli oyuncudur. Anthropic, içerik

https://github.com/alexrudall/ruby-openai

Giriş 22

filtreleme ve zararlı çıktılardan kaçınma konusunda güçlü bir vurguyla güvenli ve

sorumlu YZ sistemleri geliştirmeye odaklanır.

Anthropic’in ekosistemi, modeli uygulamalarına entegre etmenizi sağlayan Claude

API’sinin yanı sıra komut mühendisliği ve ince ayar için araçları da içerir. Ayrıca, daha

güncel ve gerçeğe dayalı yanıtlar için web arama yeteneklerini içeren Claude Instant

modelini de sunarlar.

Anthropic’in modellerini doğrudan kullanırken, Alex Rudall’ın anthrophic

kütüphanesine güveniyorum.

Google

Google, Gemini, BERT, T5 ve PaLM dahil olmak üzere birkaç güçlü LLM geliştirmiştir.

Bu modeller, çok çeşitli doğal dil işleme görevlerindeki güçlü performanslarıyla tanınır.

Google’ın ekosistemi, makine öğrenimi modellerini oluşturmak ve eğitmek için araçlar

ve çerçeveler sağlayan TensorFlow ve Keras kütüphanelerini içerir.

Google ayrıca, modellerini bulutta kolayca dağıtmanıza ve ölçeklendirmenize olanak

tanıyan bir Cloud AI Platform sunar. Duygu analizi, varlık tanıma ve çeviri gibi görevler

için bir dizi önceden eğitilmiş model ve API sağlarlar.

Meta

Meta, eski adıyla Facebook, LLaMA ve OPT gibi modellerin yayınlanmasıyla öne çıkan

büyük dil modellerinin geliştirilmesine derinden yatırım yapmıştır. Bu modeller, çeşitli

dil görevlerindeki güçlü performanslarıyla öne çıkar ve Meta’nın araştırma ve topluluk

iş birliğine olan bağlılığını destekleyerek büyük ölçüde açık kaynak kanalları aracılığıyla

kullanıma sunulur.

Meta’nın ekosistemi öncelikle, dinamik hesaplama yetenekleri ve esnekliği ile yenilikçi

YZ araştırma ve geliştirmesini kolaylaştıran, açık kaynaklı bir makine öğrenimi

kütüphanesi olan PyTorch etrafında inşa edilmiştir.

https://github.com/alexrudall/anthropic

Giriş 23

Meta, teknik hizmetlerinin yanı sıra etik yapay zeka geliştirmeye büyük önem

vermektedir. Güçlü içerik filtreleme uygular ve yapay zeka uygulamalarında güvenlik

ve sorumluluk şeklindeki daha geniş hedefleriyle uyumlu olarak önyargıları azaltmaya

odaklanır.

Cohere

Cohere, BDM alanına daha yeni giren ve BDM’leri rakiplerinden daha erişilebilir ve

kullanımı kolay hale getirmeye odaklanan bir şirkettir. Ekosistemleri, metin oluşturma,

sınıflandırma ve özetleme gibi görevler için önceden eğitilmiş modellere erişim sağlayan

Cohere API’sini içerir.

Cohere ayrıca bildirim mühendisliği, ince ayar ve içerik filtreleme için araçlar sunar.

Şifrelenmiş veri depolama ve erişim kontrolleri gibi özelliklerle veri gizliliği ve

güvenliğine önem verirler.

Ollama

Ollama, kullanıcıların çeşitli büyük dil modellerini (BDM’ler) kendi makinelerinde

yerel olarak yönetmelerine ve dağıtmalarına olanak tanıyan, harici bulut hizmetlerine

güvenmeden AI modellerinin tam kontrolünü sağlayan kendi kendine barındırılan bir

platformdur. Bu kurulum, veri gizliliğine öncelik veren ve AI operasyonlarını kurum

içinde yönetmek isteyenler için idealdir.

Platform, boyut ve hesaplama gereksinimleri açısından farklılık gösteren Llama,

Phi, Gemma ve Mistral sürümlerini içeren çeşitli modelleri destekler. Ollama, bu

modelleri ollama run <model_name> gibi basit komutlar kullanarak doğrudan

komut satırından indirmeyi ve çalıştırmayı kolaylaştırır ve macOS, Linux ve Windows

dahil olmak üzere farklı işletim sistemlerinde çalışacak şekilde tasarlanmıştır.

Uzak bir API kullanmadan açık kaynaklı modelleri uygulamalarına entegre etmek

isteyen geliştiriciler için Ollama, konteyner yönetim araçlarına benzer şekilde model

Giriş 24

yaşam döngülerini yönetmek için bir CLI sunar. Ayrıca, modelleri belirli ihtiyaçlara

veya kullanım durumlarına göre uyarlamak için yüksek düzeyde özelleştirme sağlayan

özel yapılandırmaları ve bildirimleri destekler.

Ollama, komut satırı arayüzü ve AI modellerinin yönetiminde ve dağıtımında sunduğu

esneklik nedeniyle özellikle teknoloji konusunda bilgili kullanıcılar ve geliştiriciler için

uygundur. Bu, güvenlik ve kontrolden ödün vermeden güçlü AI yeteneklerine ihtiyaç

duyan işletmeler ve bireyler için güçlü bir araç haline getirir.

Çoklu Model Platformları

Ek olarak, Together.ai ve Groq gibi çok çeşitli açık kaynaklı modelleri barındıran

sağlayıcılar da vardır. Bu platformlar esneklik ve özelleştirme sunar, açık kaynaklı

modelleri çalıştırmanıza ve bazı durumlarda özel ihtiyaçlarınıza göre ince ayar

yapmanıza olanak tanır. Örneğin, Together.ai, kullanıcıların farklı modellerle ve

yapılandırmalarla deney yapmasını sağlayan çeşitli açık kaynaklı BDM’lere erişim

sağlar. Groq, bu kitabın yazıldığı tarihte neredeyse sihirli görünen ultra yüksek

performanslı tamamlamaya odaklanır.

BDM Sağlayıcısı Seçimi

Bir BDM sağlayıcısı seçerken şu faktörleri göz önünde bulundurmalısınız:

• Fiyatlandırma: Farklı sağlayıcılar, kullandıkça öde modelinden abonelik tabanlı

planlara kadar değişen fiyatlandırma modelleri sunar. Bir sağlayıcı seçerken

beklenen kullanımı ve bütçeyi göz önünde bulundurmak önemlidir.

• Performans: BDM’lerin performansı sağlayıcılar arasında önemli ölçüde

farklılık gösterebilir, bu nedenle karar vermeden önce modelleri belirli kullanım

durumlarında karşılaştırmak ve test etmek önemlidir.

• İçerik Filtreleme: Uygulamaya bağlı olarak, içerik filtreleme kritik bir husus

olabilir. Bazı sağlayıcılar diğerlerinden daha güçlü içerik filtreleme seçenekleri

sunar.

Giriş 25

• Veri Gizliliği: Uygulama hassas kullanıcı verilerini işliyorsa, güçlü veri gizliliği

ve güvenlik uygulamalarına sahip bir sağlayıcı seçmek önemlidir.

• Özelleştirme: Bazı sağlayıcılar, belirli kullanım durumları için modelleri ince

ayarlama ve özelleştirme konusunda daha fazla esneklik sunar.

Sonuç olarak, BDM sağlayıcısı seçimi, uygulamanın özel gereksinimlerine ve

kısıtlamalarına bağlıdır. Fiyatlandırma, performans ve veri gizliliği gibi faktörleri

dikkatlice değerlendirerek, ihtiyaçlarınızı en iyi karşılayan sağlayıcıyı seçebilirsiniz.

BDM alanının sürekli geliştiğini ve düzenli olarak yeni sağlayıcıların ve modellerin

ortaya çıktığını da belirtmekte fayda var. En son gelişmelerden haberdar olmalı ve yeni

seçenekleri keşfetmeye açık olmalısınız.

OpenRouter

Bu kitap boyunca API sağlayıcısı olarak yalnızca OpenRouter’ı kullanacağım. Bunun

nedeni basit: en popüler ticari ve açık kaynaklı modeller için tek bir durak noktası olması.

Eğer biraz AI kodlaması yapmak için sabırsızlanıyorsanız, başlamak için en iyi yerlerden

biri benim OpenRouter Ruby Kütüphanem.

Performans Üzerine Düşünmek

Dil modellerini uygulamalara entegre ederken, performans kritik bir değerlendirme

faktörüdür. Bir dil modelinin performansı, gecikme süresi (yanıt üretmek için gereken

süre) ve verim (birim zamanda işleyebildiği istek sayısı) açısından ölçülebilir.

İlk Simgeye Kadar Geçen Süre (TTFT), özellikle sohbet robotları ve etkileşimli, gerçek

zamanlı yanıtlar gerektiren uygulamalar için bir diğer önemli performans metriğidir.

TTFT, kullanıcının isteğinin alınmasından yanıtın ilk kelimesinin (veya simgesinin)

üretilmesine kadar geçen gecikme süresini ölçer. Bu metrik, kesintisiz ve etkileyici

https://openrouter.ai
https://github.com/OlympiaAI/open_router

Giriş 26

bir kullanıcı deneyiminin sürdürülmesi için çok önemlidir, çünkü geciken yanıtlar

kullanıcının hayal kırıklığına uğramasına ve ilgisinin dağılmasına yol açabilir.

Bu performans metrikleri, kullanıcı deneyimi ve uygulamanın ölçeklenebilirliği

üzerinde önemli bir etkiye sahip olabilir.

Bir dil modelinin performansını etkileyen çeşitli faktörler vardır:

Parametre Sayısı: Daha fazla parametreye sahip büyük modeller, genellikle daha fazla

hesaplama kaynağı gerektirir ve küçük modellere kıyasla daha yüksek gecikme süresine

ve daha düşük verime sahip olabilir.

Donanım: Bir dil modelinin performansı, üzerinde çalıştığı donanıma bağlı olarak

önemli ölçüde değişebilir. Bulut sağlayıcıları, makine öğrenimi iş yükleri için optimize

edilmiş GPU ve TPU örnekleri sunar ve bunlar model çıkarımını büyük ölçüde

hızlandırabilir.

OpenRouter’ın güzel yanlarından biri, sunduğu modellerin çoğu için

farklı performans profilleri ve maliyetlere sahip çeşitli bulut sağlayıcıları

arasından seçim yapabilmenizdir.

Nicemleme: Nicemleme teknikleri, ağırlıkları ve aktivasyonları daha düşük hassasiyetli

veri türleriyle temsil ederek bir modelin bellek ayak izini ve hesaplama gereksinimlerini

azaltmak için kullanılabilir. Bu, kaliteden önemli ölçüde ödün vermeden performansı

artırabilir. Bir uygulama geliştiricisi olarak muhtemelen farklı nicemleme seviyelerinde

kendi modellerinizi eğitmekle uğraşmayacaksınız, ancak en azından terminolojiye aşina

olmak faydalıdır.

Toplu İşleme: Birden fazla isteği eş zamanlı olarak toplu halde işlemek, model yükleme

ve veri aktarımı yükünü azaltarak verimi artırabilir.

Önbellekleme: Sık kullanılan istemler veya girdi dizileri için sonuçların önbelleğe

alınması, çıkarım isteklerinin sayısını azaltabilir ve genel performansı iyileştirebilir.

Giriş 27

Üretim ortamında kullanılacak bir dil modeli seçerken, temsili iş yükleri ve donanım

yapılandırmaları üzerinde performans karşılaştırması yapmak önemlidir. Bu,

potansiyel darboğazları belirlemeye ve modelin gerekli performans hedeflerini

karşılayabileceğinden emin olmaya yardımcı olabilir.

Model performansı ile maliyet, esneklik ve entegrasyon kolaylığı gibi diğer faktörler

arasındaki dengeyi de göz önünde bulundurmak önemlidir. Örneğin, gerçek zamanlı

yanıt gerektiren uygulamalar için daha düşük gecikme süresine sahip, daha küçük ve

daha ekonomik bir model tercih edilebilirken, toplu işleme veya karmaşık akıl yürütme

görevleri için daha büyük ve güçlü bir model daha uygun olabilir.

Farklı DDD Modelleriyle Deney Yapmak

Bir DDD’yi seçmek nadiren kalıcı bir karardır. Düzenli olarak yeni ve geliştirilmiş

modeller yayınlandığından, uygulamaları zaman içinde farklı dil modellerinin

değiştirilebilmesine olanak tanıyan modüler bir şekilde oluşturmak iyidir. İstemler

ve veri setleri genellikle minimal değişikliklerle modeller arasında yeniden

kullanılabilir. Bu, uygulamalarınızı tamamen yeniden tasarlamak zorunda kalmadan

dil modellemedeki en son gelişmelerden yararlanmanızı sağlar.

Çok çeşitli model seçenekleri arasında kolayca geçiş yapabilme yeteneği,

OpenRouter’ı sevmemin bir başka nedenidir.

Yeni bir dil modeline geçerken, uygulamanın gereksinimlerini karşıladığından emin

olmak için performansını ve çıktı kalitesini kapsamlı bir şekilde test etmek ve

doğrulamak önemlidir. Bu, modelin alana özgü veriler üzerinde yeniden eğitilmesini

veya ince ayar yapılmasını ve modelin çıktılarına bağlı olan downstream bileşenlerin

güncellenmesini içerebilir.

Uygulamaları performans ve modülerlik göz önünde bulundurularak tasarlayarak,

hızla gelişen dil modelleme teknolojisine uyum sağlayabilen ölçeklenebilir, verimli ve

Giriş 28

geleceğe dönük sistemler oluşturabilirsiniz.

Bileşik Yapay Zeka Sistemleri

Giriş bölümümüzü kapatmadan önce, ChatGPT ile tetiklenen üretici yapay zeka

alanındaki ilgi patlamasından önceki 2023 yılına kadar, geleneksel yapay zeka

yaklaşımlarının genellikle tek, kapalı modellerin entegrasyonuna dayandığını

belirtmekte fayda var. Buna karşılık, Bileşik Yapay Zeka Sistemleri akıllı davranışı elde

etmek için birlikte çalışan birbirine bağlı bileşenlerin karmaşık süreçlerinden yararlanır.

Özünde, bileşik yapay zeka sistemleri, her biri belirli görevleri veya işlevleri yerine

getirmek üzere tasarlanmış çoklu modüllerden oluşur. Bu modüller üreticileri, getirici

sistemleri, sıralayıcıları, sınıflandırıcıları ve çeşitli diğer özelleşmiş bileşenleri içerebilir.

Genel sistemi daha küçük, odaklanmış birimlere ayırarak, geliştiriciler daha esnek,

ölçeklenebilir ve sürdürülebilir yapay zeka mimarileri oluşturabilir.

Bileşik yapay zeka sistemlerinin temel avantajlarından biri, farklı yapay zeka

tekniklerini ve modellerini birleştirme yetenekleridir. Örneğin, bir sistem doğal dil

anlama ve üretimi için büyük dil modeli (LLM) kullanırken, bilgi getirme veya kural

tabanlı karar verme için ayrı bir model kullanabilir. Bu modüler yaklaşım, tek tip bir

çözüme güvenmek yerine, her özel görev için en iyi araç ve teknikleri seçmenize olanak

tanır.

Ancak, bileşik yapay zeka sistemleri oluşturmak kendine özgü zorluklar da sunar.

Özellikle, sistemin davranışının genel tutarlılığını ve uyumluluğunu sağlamak, sağlam

test, izleme ve yönetişim mekanizmaları gerektirir.

Giriş 29

GPT-4 gibi güçlü LLM’lerin ortaya çıkışı, bu gelişmiş modellerin doğal

dil anlama yeteneklerinin yanı sıra sınıflandırma, sıralama ve üretim gibi

bileşik sistem içindeki birden çok rolü üstlenebilmeleri sayesinde, bileşik

yapay zeka sistemleriyle her zamankinden daha kolay deney yapmamızı

sağlıyor. Bu çok yönlülük, geliştiricilerin bileşik yapay zeka mimarilerini

hızlıca prototiplemesine ve yinelemesine olanak tanıyarak, akıllı uygulama

geliştirme için yeni olanaklar açıyor.

Bileşik Yapay Zeka Sistemleri için Dağıtım Desenleri

Bileşik yapay zeka sistemleri, belirli gereksinimleri ve kullanım senaryolarını ele almak

üzere tasarlanmış çeşitli desenler kullanılarak dağıtılabilir. Dört yaygın dağıtım desenini

inceleyelim: Soru ve Cevap, Çoklu Ajan/Ajanlı Problem Çözücüler, Konuşma Yapay

Zekası ve CoPilot’lar.

Soru ve Cevap

Soru ve Cevap (S&C) sistemleri, basit bir arama motorundan daha fazlası olarak işlev

görmek için yapay zeka modellerinin anlama yetenekleriyle geliştirilmiş bilgi getirmeye

odaklanır. Güçlü dil modellerini Geri Getirme Destekli Üretim (RAG) kullanarak harici

bilgi kaynaklarıyla birleştirerek, Soru ve Cevap sistemleri halüsinasyonlardan kaçınır ve

kullanıcı sorgularına doğru ve bağlamsal olarak ilgili yanıtlar sağlar.

LLM tabanlı bir S&C sisteminin temel bileşenleri şunları içerir:

• Sorgu anlama ve yeniden formüle etme: Kullanıcı sorgularını analiz etme ve

altta yatan bilgi kaynaklarıyla daha iyi eşleşecek şekilde yeniden formüle etme.

• Bilgi getirme: Yeniden formüle edilmiş sorguya dayalı olarak yapılandırılmış

veya yapılandırılmamış veri kaynaklarından ilgili bilgileri getirme.

• Yanıt üretme: Getirilen bilgiyi dil modelinin üretim yetenekleriyle

bütünleştirerek tutarlı ve bilgilendirici yanıtlar oluşturma.

Giriş 30

RAG alt sistemleri özellikle müşteri desteği, bilgi yönetimi veya eğitim uygulamaları

gibi doğru ve güncel bilgi sağlamanın kritik olduğu S&C alanlarında önemlidir.

Çoklu Ajan/Ajanlı Problem Çözücüler

Ajanlı olarak da bilinen çoklu ajan sistemleri, karmaşık problemleri çözmek için birlikte

çalışan birden fazla otonom ajandan oluşur. Her ajanın belirli bir rolü, beceri seti ve

ilgili araçlara veya bilgi kaynaklarına erişimi vardır. Bu ajanlar işbirliği yaparak ve bilgi

alışverişinde bulunarak, tek bir ajanın tek başına ele almasının zor veya imkansız olacağı

görevleri çözebilirler.

Çoklu ajan problem çözücülerin temel ilkeleri şunları içerir:

• Uzmanlaşma: Her ajan, kendine özgü yeteneklerini ve bilgisini kullanarak

problemin belirli bir yönüne odaklanır.

• İşbirliği: Ajanlar genellikle mesaj iletimi veya paylaşılan bellek yoluyla ortak bir

hedefe ulaşmak için iletişim kurar ve eylemlerini koordine eder.

• Uyarlanabilirlik: Sistem, tek tek ajanların rollerini ve davranışlarını ayarlayarak

değişen koşullara veya gereksinimlere uyum sağlayabilir.

Çoklu ajan sistemleri, tedarik zinciri optimizasyonu, trafik yönetimi veya acil durum

müdahale planlaması gibi dağıtık problem çözme gerektiren uygulamalar için uygundur.

Konuşma Yapay Zekası

Konuşma yapay zekası sistemleri, kullanıcılar ile akıllı ajanlar arasında doğal

dil etkileşimlerini mümkün kılar. Bu sistemler, ilgi çekici ve kişiselleştirilmiş

konuşma deneyimleri sağlamak için doğal dil anlama, diyalog yönetimi ve dil

üretimi yeteneklerini birleştirir.

Bir konuşma yapay zekası sisteminin ana bileşenleri şunları içerir:

Giriş 31

• Niyet tanıma: Soru sorma, istekte bulunma veya duygu ifade etme gibi

kullanıcının girdisine dayalı niyetini tanımlama.

• Varlık çıkarımı: Kullanıcının girdisinden tarihler, konumlar veya ürün adları gibi

ilgili varlıkları veya parametreleri çıkarma.

• Diyalog yönetimi: Konuşmanın durumunu sürdürme, kullanıcının niyeti ve

bağlama dayalı olarak uygun yanıtı belirleme ve çok turlu etkileşimleri yönetme.

• Yanıt üretme: Dil modelleri, şablonlar veya geri getirme tabanlı yöntemler

kullanarak insana benzer yanıtlar üretme.

Konuşma yapay zekası sistemleri yaygın olarak müşteri hizmetleri sohbet robotlarında,

sanal asistanlarda ve sesle kontrol edilen arayüzlerde kullanılır. Daha önce belirtildiği

gibi, bu kitaptaki yaklaşımların, desenlerin ve kod örneklerinin çoğu, Olympia adlı

büyük bir konuşma yapay zekası sistemi üzerindeki çalışmalarımdan doğrudan

alınmıştır.

CoPilot’lar

CoPilot’lar, insan kullanıcıların yanında çalışarak onların üretkenliğini ve karar verme

yeteneklerini artıran YZ destekli asistanlardır. Bu sistemler, akıllı öneriler sunmak,

görevleri otomatikleştirmek ve bağlamsal destek sağlamak için doğal dil işleme, makine

öğrenimi ve alana özgü bilgilerin bir kombinasyonunu kullanır.

CoPilot’ların temel özellikleri şunlardır:

• Kişiselleştirme: Bireysel kullanıcı tercihlerine, iş akışlarına ve iletişim stillerine

uyum sağlama.

• Proaktif yardım: Kullanıcı ihtiyaçlarını öngörme ve açık komutlar olmadan ilgili

öneriler veya eylemler sunma.

• Sürekli öğrenme: Kullanıcı geri bildirimleri, etkileşimler ve verilerden öğrenerek

zaman içinde performansını iyileştirme.

https://olympia.chat

Giriş 32

CoPilot’lar, yazılım geliştirme (örn. kod tamamlama ve hata tespiti), yaratıcı yazarlık

(örn. içerik önerileri ve düzenleme) ve veri analizi (örn. içgörüler ve görselleştirme

önerileri) gibi çeşitli alanlarda giderek daha fazla kullanılmaktadır.

Bu dağıtım modelleri, bileşik YZ sistemlerinin çok yönlülüğünü ve potansiyelini

göstermektedir. Her modelin özelliklerini ve kullanım durumlarını anlayarak, akıllı

uygulamaları tasarlarken ve uygularken bilinçli kararlar verebilirsiniz. Bu kitap

özellikle bileşik YZ sistemlerinin uygulanması hakkında olmasa da, aynı yaklaşımların

ve modellerin çoğu, hatta tümü, ayrık YZ bileşenlerinin geleneksel uygulama

geliştirmeye entegrasyonu için geçerlidir.

Bileşik YZ Sistemlerindeki Roller

Bileşik YZ sistemleri, her biri belirli bir rolü yerine getirmek üzere tasarlanmış birbirine

bağlı modüller üzerine kurulmuştur. Bu modüller, akıllı davranışlar oluşturmak ve

karmaşık problemleri çözmek için birlikte çalışır. Uygulamanızın hangi bölümlerini

ayrık YZ bileşenleriyle uygulayabileceğinizi veya değiştirebileceğinizi düşünürken bu

rollere aşina olmak faydalıdır.

Üretici

Üreticiler, öğrenilmiş kalıplar veya giriş komutlarına dayalı olarak yeni veri veya içerik

üretmekten sorumludur. YZ dünyasında birçok farklı türde üretici vardır, ancak bu

kitapta gösterilen dil modelleri bağlamında, üreticiler insan benzeri metin oluşturabilir,

eksik cümleleri tamamlayabilir veya kullanıcı sorgularına yanıt üretebilir. İçerik

oluşturma, diyalog üretimi ve veri artırma gibi görevlerde önemli bir rol oynarlar.

Çağırıcı

Çağırıcılar, büyük veri setlerinden veya bilgi tabanlarından ilgili bilgileri aramak ve

çıkarmak için kullanılır. Verilen bir sorgu veya bağlama dayalı olarak en uygun

Giriş 33

veri noktalarını bulmak için anlamsal arama, anahtar kelime eşleştirme veya vektör

benzerliği gibi teknikleri kullanırlar. Çağırıcılar, soru cevaplama, gerçek kontrolleri veya

içerik önerisi gibi belirli bilgilere hızlı erişim gerektiren görevler için önemlidir.

Sıralayıcı

Sıralayıcılar, belirli kriterlere veya ilgi puanlarına göre bir dizi öğeyi sıralamak veya

önceliklendirmekten sorumludur. Her öğeye ağırlıklar veya puanlar atarlar ve bunları

buna göre sıralarlar. Sıralayıcılar genellikle arama motorlarında, öneri sistemlerinde

veya kullanıcılara en ilgili sonuçları sunmanın kritik olduğu herhangi bir uygulamada

kullanılır.

Sınıflandırıcı

Sınıflandırıcılar, veri noktalarını önceden tanımlanmış sınıflara veya kategorilere göre

kategorize etmek veya etiketlemek için kullanılır. Etiketlenmiş eğitim verilerinden

öğrenir ve ardından yeni, görülmemiş örneklerin sınıfını tahmin eder. Sınıflandırıcılar,

duygu analizi, spam tespiti veya görüntü tanıma gibi her girdiye belirli bir kategori

atamayı amaçlayan görevler için temeldir.

Araçlar ve Ajanlar

Bu temel rollere ek olarak, bileşik YZ sistemleri genellikle işlevselliklerini ve

uyarlanabilirliklerini artırmak için araçları ve ajanları içerir:

• Araçlar: Araçlar, belirli eylemleri veya hesaplamaları gerçekleştiren ayrık

yazılım bileşenleri veya API’lerdir. Bunlar, alt görevleri tamamlamak veya ek

bilgi toplamak için üreticiler veya çağırıcılar gibi diğer modüller tarafından

çağrılabilir. Araçlara örnek olarak web arama motorları, hesap makineleri veya

veri görselleştirme kütüphaneleri verilebilir.

Giriş 34

• Ajanlar: Ajanlar, çevrelerini algılayabilen, kararlar alabilen ve belirli hedeflere

ulaşmak için eylemde bulunabilen otonom varlıklardır. Genellikle dinamik veya

belirsiz koşullarda etkili bir şekilde çalışmak için planlama, akıl yürütme ve

öğrenme gibi farklı YZ tekniklerinin bir kombinasyonuna güvenirler. Ajanlar,

karmaşık davranışları modellemek veya bir bileşik YZ sistemi içindeki birden çok

modülün eylemlerini koordine etmek için kullanılabilir.

Saf bir bileşik YZ sisteminde, bu bileşenler arasındaki etkileşim, iyi tanımlanmış

arayüzler ve iletişim protokolleri aracılığıyla düzenlenir. Veriler modüller arasında

akar ve bir bileşenin çıktısı diğeri için girdi olarak hizmet eder. Bu modüler mimari,

bireysel bileşenlerin tüm sistemi etkilemeden güncellenebilmesi, değiştirilebilmesi veya

genişletilebilmesi sayesinde esneklik, ölçeklenebilirlik ve bakım kolaylığı sağlar.

Bu bileşenlerin ve etkileşimlerinin gücünden yararlanarak, bileşik YZ sistemleri

farklı YZ yeteneklerinin bir kombinasyonunu gerektiren karmaşık, gerçek dünya

problemlerini çözebilir. YZ’yi uygulama geliştirmeye entegre etme yaklaşımlarını

ve modellerini keşfederken, bileşik YZ sistemlerinde kullanılan aynı prensiplerin

ve tekniklerin akıllı, uyarlanabilir ve kullanıcı odaklı uygulamalar oluşturmak için

uygulanabileceğini unutmayın.

Bölüm 1’in devam eden kısımlarında, YZ bileşenlerini uygulama geliştirme sürecinize

entegre etmek için temel yaklaşımları ve teknikleri daha derinlemesine inceleyeceğiz.

Prompt mühendisliğinden geri çağırma ile zenginleştirilmiş üretime, kendi kendini

onaran verilerden akıllı iş akışı orkestrastonuna kadar, en son teknoloji YZ destekli

uygulamalar oluşturmanıza yardımcı olacak çok çeşitli modelleri ve en iyi uygulamaları

ele alacağız.

Kısım 1: Temel Yaklaşımlar
ve Teknikler

Kitabın bu kısmı, yapay zekayı uygulamalarınıza entegre etmenin farklı yollarını

sunmaktadır. Bölümler, Yolu Daraltma ve Erişim Destekli Üretim gibi üst düzey

kavramlardan, LLM sohbet tamamlama API’leri üzerine kendi soyutlama katmanınızı

programlama fikirlerine kadar uzanan bir dizi ilgili yaklaşım ve tekniği kapsamaktadır.

Kitabın bu kısmının amacı, Kısım 2’nin odak noktası olan belirli uygulama kalıplarına

çok fazla girmeden önce, yapay zeka ile uygulayabileceğiniz davranış türlerini

anlamanıza yardımcı olmaktır.

Kısım 1’deki yaklaşımlar, kodumda kullandığım fikirlere, klasik kurumsal uygulama

mimarisi ve entegrasyon kalıplarına ve yapay zekanın yeteneklerini teknik olmayan iş

paydaşları da dahil olmak üzere diğer insanlara açıklarken başvurduğum metaforlara

dayanmaktadır.

Yolu Daralt

“Yolu daralt” yapay zekayı elindeki göreve odaklamak anlamına gelir. Yapay zekanın

“aptalca” ya da beklenmedik şekillerde davrandığını görüp sinirlendiğimde bunu bir

mantra olarak kullanırım. Bu mantra bana başarısızlığın muhtemelen benim hatam

olduğunu ve muhtemelen yolu biraz daha daraltmam gerektiğini hatırlatır.

Yolu daraltma ihtiyacı, büyük dil modellerinin içerdiği muazzam bilgi miktarından

kaynaklanır; özellikle OpenAI ve Anthropic gibi dünya çapındaki modeller kelimenin

tam anlamıyla trilyonlarca parametreye sahiptir.

Yolu Daralt 37

Bu kadar geniş bir bilgi birikimine erişim kuşkusuz güçlüdür ve zihin teorisi ve insan

benzeri şekillerde akıl yürütme yeteneği gibi ortaya çıkan davranışlar üretir. Ancak,

bu dünyayı sarsan bilgi hacmi, özellikle belirli isteklere kesin ve doğru yanıtlar üretme

konusunda zorluklar yaratır; özellikle de bu istekler “normal” yazılım geliştirme

ve algoritmalarla entegre edilebilecek deterministik davranışlar sergilemek için

tasarlanmışsa.

Bir dizi faktör bu zorluklara yol açar.

Bilgi Aşırı Yüklemesi: Büyük dil modelleri, çeşitli alanları, kaynakları ve zaman

dilimlerini kapsayan muazzam miktarda veri üzerinde eğitilir. Bu kapsamlı bilgi,

modelin çeşitli konularda fikir yürütmesine ve dünyanın geniş bir anlayışına dayalı

yanıtlar üretmesine olanak tanır. Ancak, belirli bir istemle karşılaştığında, model ilgisiz,

çelişkili veya güncel olmayan/eskimiş bilgileri filtrelemekte zorlanabilir ve bu da odak

veya doğruluk eksikliği olan yanıtlara yol açabilir. Ne yapmaya çalıştığınıza bağlı

olarak, model için mevcut olan çelişkili bilgilerin saf hacmi, aradığınız cevabı veya

davranışı sağlama yeteneğini kolayca engelleyebilir.

Bağlamsal Belirsizlik: Geniş örtük uzay bilgisi göz önüne alındığında, büyük dil

modelleri isteğinizin bağlamını anlamaya çalışırken belirsizlikle karşılaşabilir. Uygun

daraltma veya yönlendirme olmadan, model teğetsel olarak ilgili ancak niyetinizle

doğrudan ilgisi olmayan yanıtlar üretebilir. Bu tür bir başarısızlık, konudan uzak,

tutarsız veya belirtilen ihtiyaçlarınızı karşılamayan yanıtlara yol açar. Bu durumda, yolu

daraltmak, sağladığınız bağlamınmodelin temel bilgisindeki yalnızca en alakalı bilgilere

odaklanmasını sağlayan bağlam belirsizliğini giderme anlamına gelir.

Not: “İstem mühendisliği” ile yeni başladığınızda, modelden istediğiniz

sonucu düzgün bir şekilde açıklamadan bir şeyler yapmasını isteme

olasılığınız çok daha yüksektir; belirsiz olmamak pratik gerektirir!

Zamansal Tutarsızlıklar: Dil modelleri farklı zaman dilimlerinde oluşturulan veriler

üzerinde eğitildiklerinden, güncelliğini yitirmiş, yerini başka bilgilere bırakmış veya

Yolu Daralt 38

artık doğru olmayan bilgilere sahip olabilirler. Örneğin, güncel olaylar, bilimsel keşifler

veya teknolojik gelişmeler hakkındaki bilgiler, modelin eğitim verileri toplandığından

bu yana değişmiş olabilir. Yolu daha yeni ve güvenilir kaynaklara öncelik verecek şekilde

daraltmadan, model eskimiş veya yanlış bilgilere dayalı yanıtlar üretebilir ve bu da

çıktılarında yanlışlıklara ve tutarsızlıklara yol açabilir.

AlanaÖzgü İncelikler: Farklı alanların ve disiplinlerin kendilerine özgü terminolojileri,

kuralları ve bilgi tabanları vardır. Neredeyse herhangi bir ÜHK’yı (Üç Harfli Kısaltma)

düşünün ve çoğunun birden fazla anlamı olduğunu fark edeceksiniz. Örneğin, MSK;

Amazon’un Managed Streaming for Apache Kafka’sına, Memorial Sloan Kettering

Cancer Center’a veya insan kas-iskelet (MusculoSKeletal) sistemine atıfta bulunabilir.

Bir istem belirli bir alanda uzmanlık gerektirdiğinde, büyük bir dil modelinin genel

bilgisi doğru ve nüanslı yanıtlar sağlamak için yeterli olmayabilir. İster istem

mühendisliği ister geri getirme ile güçlendirilmiş üretim yoluyla olsun, yolu alana özgü

bilgilere odaklanarak daraltmak, modelin belirli alanınızın gereksinim ve beklentileriyle

daha uyumlu yanıtlar üretmesini sağlar.

Örtük Uzay: Kavranamayacak Kadar Geniş

Bir dil modelinin “örtük uzayından” bahsettiğimde, modelin eğitim süreci boyunca

öğrendiği bilgi ve enformasyonun geniş, çok boyutlu manzarasından bahsediyorum.

Bu, modelin sinir ağları içinde, dilin tüm örüntülerinin, ilişkilerinin ve temsillerinin

depolandığı gizli bir alan gibidir.

Sayısız birbirine bağlı düğümle dolu, keşfedilmemiş geniş bir bölgeyi keşfettiğinizi hayal

edin. Her düğüm, modelin öğrendiği bir bilgi parçasını, bir kavramı veya bir ilişkiyi

temsil eder. Bu alanda gezinirken, bazı düğümlerin birbirine daha yakın olduğunu (güçlü

bir bağlantı veya benzerliği gösterir), bazılarının ise birbirinden daha uzak olduğunu

(daha zayıf veya uzak bir ilişkiyi gösterir) görürsünüz.

Gizli uzayın zorluğu, inanılmaz derecede karmaşık ve çok boyutlu olmasıdır. Bunu

Yolu Daralt 39

fiziksel evrenimiz gibi düşünün; galaksi kümeleri ve aralarındaki akıl almaz uzaklıktaki

boş alanlarıyla devasa bir yapı.

Binlerce boyut içerdiği için, gizli uzay insanlar tarafından doğrudan gözlemlenemez

veya yorumlanamaz. Bu, modelin dili işlemek ve üretmek için dahili olarak kullandığı

soyut bir gösterimdir. Modele bir giriş istemi sağladığınızda, temel olarak bu istemi gizli

uzay içindeki belirli bir konuma eşler. Model daha sonra yanıt üretmek için o alandaki

çevresel bilgileri ve bağlantıları kullanır.

Mesele şu ki, model eğitim verisinden muazzam miktarda bilgi öğrenmiştir ve bunların

hepsi belirli bir görev için uygun veya doğru değildir. İşte bu yüzden yolu daraltmak bu

kadar önemli hale geliyor. İstemlerinizde net talimatlar, örnekler ve bağlam sağlayarak,

esasen modeli gizli uzayın istediğiniz çıktı için en alakalı bölgelerine odaklanmaya

yönlendiriyorsunuz.

Bunu düşünmenin başka bir yolu da tamamen karanlık bir müzede spot ışığı kullanmak

gibidir. Eğer Louvre veya Metropolitan Sanat Müzesi’ni ziyaret ettiyseniz, bahsettiğim

ölçek tam olarak bu. Gizli uzay, sayısız nesne ve detayla dolu müzedir. İsteminiz ise

spot ışığıdır; belirli alanları aydınlatır ve modelin dikkatini en önemli bilgilere çeker. Bu

yönlendirme olmadan model, gizli uzayda amaçsızca dolaşabilir ve yolda alakasız veya

çelişkili bilgiler toplayabilir.

Dil modelleriyle çalışırken ve istemlerinizi oluştururken, gizli uzay kavramını aklınızda

tutun. Amacınız, bu geniş bilgi manzarasında etkili bir şekilde gezinmek, modeli

göreviniz için en alakalı ve doğru bilgilere yönlendirmektir. Yolu daraltarak ve net

rehberlik sağlayarak, modelin gizli uzayının tüm potansiyelini açığa çıkarabilir ve

yüksek kaliteli, tutarlı yanıtlar üretebilirsiniz.

Dil modellerinin ve gezindikleri gizli uzayın önceki açıklamaları biraz büyülü veya

soyut görünebilse de, istemlerin büyü ya da tılsım olmadığını anlamak önemlidir. Dil

modellerinin çalışma şekli, doğrusal cebir ve olasılık teorisi ilkelerine dayanır.

Özünde, dil modelleri, tıpkı çan eğrisinin verilerin istatistiksel bir modeli olması

gibi, metnin olasılıksal modelleridir. Öz-bağlanımlı modelleme adı verilen bir süreç

Yolu Daralt 40

aracılığıyla eğitilirler; bu süreçte model, bir dizideki bir sonraki kelimenin olasılığını,

öncesinde gelen kelimelere dayanarak tahmin etmeyi öğrenir. Eğitim sırasında model

rastgele ağırlıklarla başlar ve bunları, eğitildiği gerçek dünya örneklerine benzeyen

metinlere daha yüksek olasılıklar atayacak şekilde kademeli olarak ayarlar.

Ancak, dil modellerini doğrusal regresyon gibi basit istatistiksel modeller olarak

düşünmek, davranışlarını anlamak için en iyi sezgiyi sağlamaz. Daha uygun bir

benzetme, rastgele değişkenlerin manipülasyonuna izin veren ve karmaşık istatistiksel

ilişkileri temsil edebilen olasılıksal programlar olarak düşünmektir.

Olasılıksal programlar, grafiksel modellerle temsil edilebilir; bunlar modeldeki

değişkenler arasındaki bağımlılıkları ve ilişkileri anlamanın görsel bir yolunu sunar. Bu

bakış açısı, GPT-4 ve Claude gibi karmaşık metin üretme modellerinin işleyişi hakkında

değerli içgörüler sunabilir.

Dohan ve arkadaşlarının “Language Model Cascades” adlı makalesinde, yazarlar

olasılıksal programların dil modellerine nasıl uygulanabileceğinin detaylarına

iniyorlar. Bu çerçevenin, bu modellerin davranışını anlamak ve daha etkili istem

stratejileri geliştirmek için nasıl kullanılabileceğini gösteriyorlar.

Bu olasılıksal perspektiften elde edilen önemli bir içgörü, dil modelinin esasen istenen

belgelerin var olduğu alternatif bir evrene açılan bir portal oluşturmasıdır. Model, tüm

olası belgelere olasılıklarına göre ağırlıklar atar ve böylece olasılık uzayını en alakalı

olanlara odaklanacak şekilde daraltır.

Bu bizi tekrar “yolu daraltma” ana temasına geri getiriyor. İstemlemenin temel amacı,

olasılıksal modeli, tahminlerinin kütlesini odaklayacak şekilde şartlandırmak ve elde

etmek istediğimiz belirli bilgi veya davranışa yoğunlaşmaktır. Özenle hazırlanmış

istemler sağlayarak, modeli gizli uzayda daha verimli bir şekilde gezinmeye ve daha

alakalı ve tutarlı çıktılar üretmeye yönlendirebiliriz.

Ancak, dil modelinin sonuçta eğitildiği bilgilerle sınırlı olduğunu unutmamak önemlidir.

Mevcut belgelere benzer metinler üretebilir veya fikirleri yeni yollarla birleştirebilir,

ancak tamamen yeni bilgileri sıfırdan ortaya çıkaramaz. Örneğin, eğer kanserin tedavisi

Yolu Daralt 41

henüz bulunmamış ve eğitim verisinde belgelenmemişse, modelden böyle bir tedavi

sağlamasını bekleyemeyiz.

Bunun yerine, modelin gücü, kendisine verilen girdilere benzer bilgileri bulma ve

sentezleme yeteneğinde yatmaktadır. Bu modellerin olasılıksal doğasını ve girdilerin

çıktıları nasıl koşullandırabileceğini anlayarak, değerli içgörüler ve içerik üretmek için

onların yeteneklerinden daha etkili bir şekilde yararlanabiliriz.

Aşağıdaki girdileri ele alalım. İlkinde, tek başına “Mercury” gezegene, elemente veya

Roma tanrısına atıfta bulunabilir, ancak en olası olanı gezegendir. Nitekim GPT-4,

Merkür, Güneş Sistemi’ndeki en küçük ve en içteki gezegendir… şeklinde başlayan uzun

bir yanıt vermektedir. İkinci girdi özellikle kimyasal elemente atıfta bulunur. Üçüncüsü

ise hızı ve tanrısal haberci rolüyle bilinen Roma mitolojik figürüne atıfta bulunur.

1 # Prompt 1

2 Tell me about: Mercury

3

4 # Prompt 2

5 Tell me about: Mercury element

6

7 # Prompt 3

8 Tell me about: Mercury messenger of the gods

Sadece birkaç ek kelime ekleyerek, yapay zekanın tepkisini tamamen değiştirdik. Kitabın

ilerleyen bölümlerinde öğreneceğiniz gibi, n-shot bildirim, yapılandırılmış girdi/çıktı ve

Düşünce Zinciri gibi karmaşık bildirimmühendisliği teknikleri, aslındamodelin çıktısını

şartlandırmanın akıllıca yollarıdır.

Dolayısıyla, bildirim mühendisliğinin özü, dil modelinin bilgi dağarcığının geniş

olasılıksal manzarasında nasıl gezineceğimizi ve aradığımız belirli bilgi veya davranışa

giden yolu nasıl daraltacağımızı anlamaktan ibarettir.

İleri matematik konusunda sağlam bir kavrayışa sahip okuyucular için, bu modelleri

olasılık teorisi ve lineer cebir prensipleriyle temellendirmek kesinlikle yardımcı olabilir!

İstenen çıktıları elde etmek için etkili stratejiler geliştirmek isteyen diğerleriniz için, daha

sezgisel yaklaşımlara bağlı kalalım.

Yolu Daralt 42

Yol Nasıl “Daraltılır”

Çok fazla bilginin getirdiği bu zorlukları aşmak için, dil modelinin üretim sürecini

yönlendiren ve dikkatini en alakalı ve doğru bilgiye odaklayan teknikler kullanırız.

İşte önerilen sırayla en önemli teknikler; yani önce Bildirim Mühendisliğini denemeli,

sonra RAG’ı ve son olarak, mecbur kalırsanız, ince ayarı denemelisiniz.

Bildirim Mühendisliği En temel yaklaşım, modelin yanıt üretimini yönlendirmek

için belirli talimatlar, kısıtlamalar veya örnekler içeren bildirimler oluşturmaktır. Bu

bölüm, bir sonraki kısımda Bildirim Mühendisliğinin temellerini ele alıyor ve kitabın

2. Bölümünde birçok özel bildirim mühendisliği modelini inceliyoruz. Bu modeller

arasında Bildirim Damıtma da yer alıyor; bu teknik, yapay zekanın en alakalı ve özlü

bilgi olarak değerlendirdiği şeyi çıkarmak için bildirimlerin iyileştirilmesi ve optimize

edilmesine odaklanır.

Bağlam Zenginleştirme. Bildirim verildiği anda modele odaklanmış bağlam sağlamak

için harici bilgi tabanlarından veya belgelerden ilgili bilgilerin dinamik olarak alınması.

Popüler bağlam zenginleştirme teknikleri arasında Geri Getirme Destekli Üretim (RAG)

yer alır. Perplexity tarafından sağlanan “çevrimiçi modeller” gibi sistemler, bağlamlarını

gerçek zamanlı internet arama sonuçlarıyla zenginleştirebilir.

Güçlü olmalarına rağmen, DDB’ler sizin özel veri setleriniz üzerinde

eğitilmemiştir; bu veriler gizli olabilir veya çözmeye çalıştığınız

probleme özgü olabilir. Bağlam Zenginleştirme teknikleri, DDB’lere

API’ler arkasındaki verilere, SQL veritabanlarına veya PDF’lerde ve slayt

destelerinde sıkışıp kalmış verilere erişim sağlar.

İnce Ayar veya Alan Uyarlaması Modelin belirli bir görev veya alan için bilgisini ve

üretim yeteneklerini özelleştirmek amacıyla alan-özel veri setleri üzerinde eğitilmesi.

https://perplexity.ai

Yolu Daralt 43

Sıcaklığı Düşürmek

Sıcaklık, dönüştürücü tabanlı dil modellerinde üretilen metnin rastgeleliğini ve

yaratıcılığını kontrol eden bir hiper parametredir. 0 ile 1 arasında bir değerdir; düşük

değerler çıktıyı daha odaklı ve belirleyici hale getirirken, yüksek değerler onu daha

çeşitli ve öngörülemez yapar.

Sıcaklık 1’e ayarlandığında, dil modeli bir sonraki belirtecin tam olasılık dağılımına göre

metin üretir ve bu da daha yaratıcı ve çeşitli yanıtlara olanak tanır. Ancak bu durum,

modelin daha az alakalı veya tutarlı metin üretmesine de yol açabilir.

Öte yandan, sıcaklık 0’a ayarlandığında, dil modeli her zaman en yüksek olasılığa sahip

belirteci seçer ve böylece “yolunu daraltır.” Yapay zeka bileşenlerimin neredeyse tamamı

sıcaklığı 0’a veya 0’a yakın bir değere ayarlanmış şekilde çalışır, çünkü bu daha odaklı

ve öngörülebilir yanıtlar verir. Bu özellikle modelin talimatları takip etmesini, kendisine

sağlanan fonksiyonlara dikkat etmesini istediğinizde veya aldığınızdan daha doğru ve

alakalı yanıtlara ihtiyaç duyduğunuzda kesinlikle işe yarar.

Örneğin, gerçeklere dayalı bilgi sağlaması gereken bir sohbet botu oluşturuyorsanız,

yanıtların daha kesin ve konuyla ilgili olmasını sağlamak için sıcaklığı daha düşük bir

değere ayarlamak isteyebilirsiniz. Tam tersine, yaratıcı yazma asistanı oluşturuyorsanız,

daha çeşitli ve yaratıcı çıktıları teşvik etmek için sıcaklığı daha yüksek bir değere

ayarlamak isteyebilirsiniz.

Hiper parametreler: Çıkarımın Düğmeleri ve Kadranları

Dil modelleriyle çalışırken, “hiper parametreler” terimiyle sık sık karşılaşacaksınız.

Çıkarım bağlamında (yani, modeli yanıt üretmek için kullanırken), hiper parametreler

modelin davranışını ve çıktısını kontrol etmek için ayarlayabileceğiniz düğmeler ve

kadranlar gibidir.

Bunu karmaşık bir makinedeki ayarları düzeltmeye benzetebilirsiniz. Tıpkı sıcaklığı

kontrol etmek için bir düğmeyi çevirdiğiniz veya çalışma modunu değiştirmek için bir

Yolu Daralt 44

anahtarı çevirdiğiniz gibi, hiper parametreler de dil modelinin metni işleme ve üretme

şeklini hassas bir şekilde ayarlamanıza olanak tanır.

Çıkarım sırasında karşılaşacağınız bazı yaygın hiperparametreler şunlardır:

• Sıcaklık: Az önce bahsedildiği gibi, bu parametre üretilen metnin rastgeleliğini

ve yaratıcılığını kontrol eder. Daha yüksek sıcaklık daha çeşitli ve öngörülemez

çıktılara yol açarken, daha düşük sıcaklık daha odaklı ve belirleyici yanıtlarla

sonuçlanır.

• Top-p (çekirdek) örnekleme: Bu parametre, kümülatif olasılığı belirli bir eşiği (p)

aşan en küçük belirteç kümesinin seçimini kontrol eder. Tutarlılığı korurken daha

çeşitli çıktılar elde edilmesini sağlar.

• Top-k örnekleme: Bu teknik, en olası sonraki k belirteci seçer ve olasılık kütlesini

bunlar arasında yeniden dağıtır. Modelin düşük olasılıklı veya ilgisiz belirteçler

üretmesini önlemeye yardımcı olabilir.

• Frekans veVarlık cezaları: Bu parametreler, modeli aynı kelimeleri veya ifadeleri

çok sık tekrarladığında (frekans cezası) veya giriş isteminde bulunmayan kelimeler

ürettiğinde (varlık cezası) cezalandırır. Bu değerleri ayarlayarak, modeli daha

çeşitli ve konuyla ilgili çıktılar üretmeye teşvik edebilirsiniz.

• Maksimum uzunluk: Bu hiperparametre, modelin tek bir yanıtta üretebileceği

belirteç (kelime veya alt kelime) sayısının üst sınırını belirler. Üretilen metnin

ayrıntı düzeyini ve özlüğünü kontrol etmeye yardımcı olur.

Farklı hiperparametre ayarlarıyla denemeler yaptıkça, küçük ayarlamaların bilemodelin

çıktısı üzerinde önemli bir etkisi olabileceğini göreceksiniz. Bu bir tarifi ince ayar

yapmaya benzer – biraz daha tuz veya biraz daha uzun pişirme süresi, son yemeğin

tadında büyük fark yaratabilir.

Yolu Daralt 45

Önemli olan, her hiperparametrenin modelin davranışını nasıl etkilediğini anlamak ve

belirli göreviniz için doğru dengeyi bulmaktır. Farklı ayarlarla denemeler yapmaktan

ve bunların üretilen metni nasıl etkilediğini görmekten çekinmeyin. Zamanla, hangi

hiperparametreleri ayarlamanız gerektiği ve istenen sonuçları nasıl elde edeceğiniz

konusunda bir sezgi geliştireceksiniz.

Bu parametrelerin kullanımını istemmühendisliği, geri alma destekli üretim ve ince ayar

ile birleştirerek, dil modelini daha doğru, konuyla ilgili ve belirli kullanım durumları için

değerli yanıtlar üretmeye yönlendirebilirsiniz.

HamModeller ve Eğitimli Modeller

Karşılaştırması

Ham modeller, DDB’lerin rafine edilmemiş, eğitilmemiş versiyonlarıdır. Onları, henüz

talimatları anlamak veya takip etmek için özel eğitimden etkilenmemiş boş bir tuval

olarak düşünün. Başlangıçta eğitildikleri geniş veri üzerine inşa edilmişlerdir ve çok

çeşitli çıktılar üretebilirler. Ancak, ek talimat tabanlı ince ayar katmanları olmadan,

yanıtları öngörülemez olabilir ve istenen çıktıya yönlendirmek için daha incelikli,

dikkatli hazırlanmış istemler gerektirir. Ham modellerle çalışmak, ne istediğiniz

konusunda son derece net olmazsanız sizi anlamayan, muazzam bilgiye sahip ama

hiçbir sezgisi olmayan bir dahi-aptal ile iletişim kurmaya çalışmaya benzer. Genellikle

bir papağan gibi hissettirirler, çünkü anlamlı bir şey söylediklerinde, bu çoğunlukla

sizin söylediğiniz bir şeyi tekrarlamaktan ibarettir.

Öte yandan, eğitimli modeller, özellikle talimatları anlamak ve takip etmek için

tasarlanmış eğitim turlarından geçmiştir. GPT-4, Claude 3 ve en popüler DDB

modellerinin çoğu yoğun şekilde eğitimlidir. Bu eğitim, modele istenen sonuçlarla

birlikte talimat örnekleri vermeyi içerir ve modele çok çeşitli komutları nasıl yorumlayıp

uygulayacağını etkili bir şekilde öğretir. Sonuç olarak, eğitimli modeller bir istemin

arkasındaki niyeti daha kolay anlayabilir ve kullanıcının beklentileriyle yakından

Yolu Daralt 46

uyumlu yanıtlar üretebilir. Bu, özellikle kapsamlı istem mühendisliğine zaman veya

uzmanlık ayıramayacak kişiler için onları daha kullanıcı dostu ve çalışması daha kolay

hale getirir.

HamModeller: Filtresiz Tuval

Llama 2-70B veya Yi-34B gibi ham modeller, GPT-4 gibi popüler DDB’lerle deneyim

yaptıysanız alışık olabileceğinizden daha filtresiz bir erişim sunar. Bu modeller belirli

talimatları takip etmek üzere önceden ayarlanmamıştır ve modelin çıktısını dikkatli

istem mühendisliği yoluyla doğrudan manipüle etmek için boş bir tuval sağlar. Bu

yaklaşım, modele açıkça talimat vermeden AI’yi istenen yöne yönlendiren istemler

oluşturmanın nasıl yapılacağının derin bir şekilde anlaşılmasını gerektirir. Bu, modelin

yanıtlarını yorumlayan veya yönlendiren herhangi bir ara katman olmaksızın, altta

yatan AI’nin “ham” katmanlarına doğrudan erişime sahip olmaya benzer (bu yüzden

bu ismi almıştır).

Yolu Daralt 47

Şekil 3. Abbott ve Costello’nun klasik ’Kim Birinci’ skecinin bir bölümü kullanılarak ham bir modelin
test edilmesi

Ham modellerin zorluğu, tekrarlayan kalıplara düşme veya rastgele çıktı üretme

eğilimlerinde yatar. Ancak, dikkatli bildirim mühendisliği ve tekrar cezaları gibi

parametrelerin ayarlanmasıyla, ham modeller benzersiz ve yaratıcı içerik üretmeye

yönlendirilebilir. Bu süreç bazı ödünleşmeler içerir; ham modeller yenilik için eşsiz bir

esneklik sunarken, daha yüksek düzeyde uzmanlık gerektirirler.

Yolu Daralt 48

Şekil 4. Karşılaştırma amacıyla, aynı belirsiz bildirim GPT-4’e verildi

Yönergeli Eğitimli Modeller: Rehberli Deneyim

Yönergeli eğitimli modeller, belirli talimatları anlayacak ve takip edecek şekilde

tasarlanmıştır ve bu da onları daha kullanıcı dostu ve daha geniş bir uygulama

yelpazesi için erişilebilir kılar. Bir konuşmanın mekaniklerini ve konuşma sıralarının

sonunda üretmeyi durdurmaları gerektiğini anlarlar. Birçok geliştirici için, özellikle

doğrudan uygulamalar üzerinde çalışanlar için, yönergeli eğitimli modeller uygun ve

verimli bir çözüm sunar.

Yönerge ince ayarı süreci, modeli insan tarafından oluşturulan büyük bir yönerge

bildirimi ve yanıt derlemesi üzerinde eğitmeyi içerir. Dikkat çekici bir örnek, kendiniz

inceleyebileceğiniz, Databricks çalışanları tarafından oluşturulan 15.000’den fazla

bildirim/yanıt çifti içeren açık kaynaklı databricks-dolly-15k veri kümesi’dir. Veri

kümesi, yaratıcı yazım, kapalı ve açık soru yanıtlama, özetleme, bilgi çıkarımı,

sınıflandırma ve beyin fırtınası dahil olmak üzere sekiz farklı yönerge kategorisini

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Yolu Daralt 49

kapsar.

Veri oluşturma süreci sırasında, katkıda bulunanlara her kategori için bildirim ve

yanıt oluşturma konusunda yönergeler verildi. Örneğin, yaratıcı yazım görevleri için,

modelin çıktısını yönlendirmek üzere belirli kısıtlamalar, talimatlar veya gereksinimler

sağlamaları istendi. Kapalı soru yanıtlama için, verilen bir Wikipedia pasajına dayalı

olarak olgusal açıdan doğru yanıtlar gerektiren sorular yazmaları istendi.

Ortaya çıkan veri kümesi, büyük dil modellerinin ChatGPT gibi sistemlerin etkileşimli

ve yönerge takip eden yeteneklerini sergilemesi için ince ayar yapmada değerli bir

kaynak görevi görür. İnsan tarafından oluşturulan çeşitli yönergeler ve yanıtlar üzerinde

eğitilerek, model belirli direktifleri anlama ve takip etme konusunda daha yetenekli hale

gelir ve böylece çok çeşitli görevleri ele alma konusunda daha becerikli olur.

Doğrudan ince ayarın yanı sıra, databricks-dolly-15k gibi veri kümelerindeki yönerge

bildirimleri sentetik veri üretimi için de kullanılabilir. Katkıda bulunanlar tarafından

oluşturulan bildirimleri büyük bir açık dil modeline az örnekli örnekler olarak sunarak,

geliştiriciler her kategoride çok daha büyük bir yönerge derlemesi oluşturabilirler. Self-

Instruct makalesinde ana hatlarıyla belirtilen bu yaklaşım, daha sağlam yönerge takip

eden modellerin oluşturulmasına olanak tanır.

Ayrıca, bu veri setlerindeki talimatlar ve yanıtlar, yeniden ifade etme gibi tekniklerle

zenginleştirilebilir. Geliştiriciler, her istemi veya kısa yanıtı yeniden ifade ederek ve

ortaya çıkan metni ilgili gerçek örnekle ilişkilendirerek, modelin talimatları takip etme

yeteneğini geliştiren bir tür düzenlileştirme uygulayabilirler.

Eğitimli modellerin sağladığı kullanım kolaylığı, bazı esneklik kayıplarına neden olur.

Bu modeller genellikle yoğun bir şekilde sansürlenir, bu da belirli görevler için gereken

yaratıcı özgürlük seviyesini her zaman sağlayamayabilecekleri anlamına gelir. Çıktıları,

ince ayar verilerinde bulunan önyargılar ve kısıtlamalardan güçlü bir şekilde etkilenir.

Bu sınırlamalara rağmen, eğitimli modeller kullanıcı dostu doğaları ve minimal istem

mühendisliği ile çok çeşitli görevleri yönetebilme yetenekleri sayesinde giderek daha

popüler hale gelmiştir. Daha fazla yüksek kaliteli talimat veri seti kullanıma sundukça,

Yolu Daralt 50

bu modellerin performans ve çok yönlülüğünde daha fazla iyileşme göreceğimizi

bekleyebiliriz.

Projeniz İçin Doğru Model Türünü Seçmek

Temel (ham) ve eğitimli modeller arasındaki seçim, nihayetinde projenizin özel

gereksinimlerine bağlıdır. Yüksek düzeyde yaratıcılık ve özgünlük gerektiren görevler

için, temel modeller yenilik için güçlü bir araç sunar. Bu modeller, geliştiricilerin yapay

zeka destekli uygulamalarla neler başarılabileceğinin sınırlarını zorlayarak, DDD’lerin

(Dil Derin Öğrenme) tam potansiyelini keşfetmelerine olanak tanır, ancak daha fazla

elle müdahale ve deney yapmaya isteklilik gerektirir. Sıcaklık ve diğer ayarlar, eğitimli

muadillerine kıyasla temel modellerde çok daha büyük bir etkiye sahiptir.

İsteminize dahil ettiğiniz her şey, temel modellerin tekrarlamaya çalışacağı

şeydir. Örneğin, isteminiz bir sohbet dökümü ise, ham model sohbeti devam

ettirmeye çalışacaktır. Maksimum belirteç sınırına bağlı olarak, sadece

sohbetteki bir sonraki mesajı üretmekle kalmayıp, kendi kendine tüm bir

konuşma gerçekleştirebilir!

Yolu Daralt 51

Şekil 5. Cümle Yeniden Yazma ile İlgili Mixtral 8x7B (temel) Örneği

Reddit kullanıcısı phree_radical tarafından hazırlanan yukarıdaki Cümle Yeniden

Yazma örneğini hazırlarken, ancak parametre ayarlarıyla çok deney yaptıktan sonra

kullanılabilir sonuçlar elde edebildim ve sonunda şu ayarlarda karar kıldım: Sıcaklık

0.08, Top P: 0.2, Top K: 1 ve Tekrar Cezası: 1.26.

https://www.reddit.com/user/phree_radical/

Yolu Daralt 52

Bu yaklaşımı üretimde temel bir modelle kullanmaya çalışmak, max_tokens

parametresinin güçlü etkisi nedeniyle zor olurdu. Çok kısa ayarlarsanız çıktı kesintiye

uğrar. Modelin istenen çıktı için ihtiyaç duyduğundan daha uzun ayarlarsanız, ek

örnekler halüsinasyon üretmeye devam edecektir.

Özetle, gerçekten tam kontrol ve sansürsüzlüğe ihtiyacınız yoksa, eğitimli modeller

geliştirme sürecinizi önemli ölçüde kolaylaştırabilir. Bu noktayı vurgulamak için, işte

Mixtral 8x7B’nin aynı isteme verdiği yanıt, ancak bu sefer Eğitimli versiyonunda:

Üzülerek belirtmeliyim ki dondurma beklentilerimi karşılamıyor, çünkü

yüksek kaliteli bir tatlıda genellikle bulduğum zengin, kremamsı doku

ve keyifli lezzetten yoksun. Daha tatmin edici ve keyifli bir deneyim

umuyordum.

Dikkat çekici bir şekilde, maksimum token ayarını 500’de tutabildim ve model, ek

örnekler uydurmadan istenen çıktının sonunda güvenilir bir şekilde durdu.

Prompt Mühendisliği

Projelerinizde yapay zekayı uygulamaya başladıkça, hızlıca keşfedeceğiniz en önemli

becerilerden birinin prompt mühendisliği sanatı olduğunu göreceksiniz. Peki prompt

mühendisliği tam olarak nedir ve neden bu kadar önemlidir?

Özünde, prompt mühendisliği, bir dil modeline sağladığınız giriş promptlarını

tasarlama ve oluşturma sürecidir. Bu, yapay zeka ile etkili bir şekilde iletişim kurmayı,

modeli istenen yanıtı üretmeye yönlendirmek için talimatlar, örnekler ve bağlam

kombinasyonunu kullanmayı anlamakla ilgilidir.

Bunu, oldukça zeki ama bir parça laftan anlayan bir arkadaşla sohbet etmek gibi

düşünün. Etkileşimden en iyi şekilde yararlanmak için, arkadaşınızın tam olarak ne

istediğinizi anladığından emin olmak için net, özel ve yeterli bağlam sağlamanız gerekir.

Yolu Daralt 53

İşte prompt mühendisliği burada devreye giriyor ve başlangıçta kolay görünse de, inanın

bana ustalaşmak için çok fazla pratik yapmanız gerekiyor.

Etkili Promptların Yapı Taşları

Etkili promptlar oluşturmaya başlamak için, önce iyi hazırlanmış bir girişi oluşturan

temel bileşenleri anlamanız gerekir. İşte bazı temel yapı taşları:

1. Talimatlar: Modele ne yapmasını istediğinizi söyleyen açık ve öz talimatlar. Bu,

“Aşağıdaki makaleyi özetle“den “Gün batımı hakkında bir şiir oluştur“a veya “bu

proje değişiklik talebini bir JSON nesnesine dönüştür“e kadar herhangi bir şey

olabilir.

2. Bağlam: Modelin görevin arka planını ve kapsamını anlamasına yardımcı olan

ilgili bilgiler. Bu, hedef kitle, istenen ton ve stil veya çıktı için belirli kısıtlamalar

veya gereksinimler hakkında ayrıntıları içerebilir, örneğin uyulması gereken bir

JSON Şeması gibi.

3. Örnekler: Aradığınız çıktı türünü gösteren somut örnekler. İyi seçilmiş birkaç

örnek sağlayarak, modelin istenen yanıtın kalıplarını ve özelliklerini öğrenmesine

yardımcı olabilirsiniz.

4. Giriş Formatlaması: Satır sonları ve markdown formatlaması promptumuza yapı

kazandırır. Promptu paragraflara ayırmak, hem insanların hem de yapay zekanın

anlamlandırmasını kolaylaştıracak şekilde ilgili talimatları gruplandırmamızı

sağlar. Madde işaretleri ve numaralı listeler, öğelerin listesini ve sıralamasını

tanımlamamıza olanak tanır. Kalın ve italik işaretleyiciler vurguyu belirtmemize

izin verir.

5. Çıktı Formatlaması: Çıktının nasıl yapılandırılması ve formatlanması gerektiğine

dair özel talimatlar. Bunlar, istenen uzunluk, başlıkların veya madde işaretlerinin

kullanımı, markdown formatlaması veya uyulması gereken diğer özel çıktı

şablonları veya kuralları hakkında yönergeler içerebilir.

Yolu Daralt 54

Bu yapı taşlarını farklı şekillerde birleştirerek, özel ihtiyaçlarınıza uyarlanmış ve modeli

yüksek kaliteli, ilgili yanıtlar üretmeye yönlendiren promptlar oluşturabilirsiniz.

Prompt Tasarımının Sanatı ve Bilimi

Etkili promptlar oluşturmak hem bir sanat hem de bir bilimdir. (Bu yüzden buna zanaat

diyoruz.) Dil modellerinin yeteneklerini ve sınırlamalarını derinlemesine anlamayı

ve istenen davranışı ortaya çıkaracak promptlar tasarlamada yaratıcı bir yaklaşımı

gerektirir. İçerdiği yaratıcılık, en azından benim için onu bu kadar eğlenceli kılan şeydir.

Ayrıca, özellikle deterministik davranış aradığınızda çok sinir bozucu da olabilir.

Prompt mühendisliğinin önemli bir yönü, özgüllük ve esneklik arasındaki dengeyi

anlamaktır. Bir yandan, modeli doğru yöne yönlendirmek için yeterli rehberlik

sağlamak istersiniz. Öte yandan, modelin uç durumlarda kendi yaratıcılığını ve

esnekliğini kullanma yeteneğini sınırlayacak kadar katı olmak istemezsiniz.

Bir diğer önemli husus da örneklerin kullanımıdır. İyi seçilmiş örnekler, modelin

aradığınız çıktı türünü anlamasına yardımcı olmada inanılmaz derecede güçlü olabilir.

Ancak örnekleri dikkatli kullanmak ve istenen yanıtı temsil ettiklerinden emin olmak

önemlidir. Kötü bir örnek, en iyi ihtimalle token israfıdır, en kötü ihtimalle ise istenen

çıktıya zarar verebilir.

Prompt Mühendisliği Teknikleri ve En İyi Uygulamalar

Prompt mühendisliği dünyasına daha derinlemesine daldıkça, daha etkili promptlar

oluşturmanıza yardımcı olabilecek bir dizi teknik ve en iyi uygulama keşfedeceksiniz.

İşte keşfedilecek birkaç önemli alan:

1. Sıfır örnekli ve az örnekli öğrenme: Sıfır örnekli öğrenmeyi (hiç örnek vermeme)

ne zaman tek örnekli veya az örnekli öğrenmeye (az sayıda örnek verme) tercih

edeceğinizi anlamak, daha verimli ve etkili promptlar oluşturmanıza yardımcı

olabilir.

Yolu Daralt 55

2. İteratif iyileştirme: Modelin çıktısına dayalı olarak promptları iteratif olarak

iyileştirme süreci, optimal prompt tasarımına ulaşmanıza yardımcı olabilir.

Feedback Loop, dil modelinin kendi çıktısını kullanarak üretilen içeriğin

kalitesini ve uygunluğunu aşamalı olarak iyileştiren güçlü bir yaklaşımdır.

3. Prompt zincirleme: Karmaşık görevleri daha küçük, daha yönetilebilir adımlara

bölmek için birden fazla promptu sırayla birleştirmek yardımcı olabilir. Prompt

Chaining, karmaşık bir görevi veya konuşmayı bir dizi küçük, birbiriyle bağlantılı

promptlara bölmeyi içerir. Promptları birbirine zincirleyerek, yapay zekayı çok

adımlı bir süreç boyunca yönlendirebilir, etkileşim boyunca bağlamı ve tutarlılığı

koruyabilirsiniz.

4. Prompt ayarlama: Promptları belirli alanlara veya görevlere göre özel olarak

uyarlamak, daha uzmanlaşmış ve etkili promptlar oluşturmanıza yardımcı

olabilir. Prompt Template, eldeki göreve daha kolay uyarlanabilen esnek, yeniden

kullanılabilir ve sürdürülebilir prompt yapıları oluşturmanıza yardımcı olur.

Sıfır örnekli, tek örnekli veya az örnekli öğrenmeyi ne zaman kullanacağını bilmek,

prompt mühendisliğinde uzmanlaşmanın özellikle önemli bir parçasıdır. Her yaklaşımın

kendine özgü güçlü ve zayıf yönleri vardır ve her birini ne zaman kullanacağını anlamak,

daha etkili ve verimli promptlar oluşturmanıza yardımcı olabilir.

Sıfır Örnekli Öğrenme: Örneğe Gerek Olmadığında

Sıfır örnekli öğrenme, bir dil modelinin herhangi bir örnek veya açık eğitim olmadan

bir görevi gerçekleştirebilme yeteneğini ifade eder. Başka bir deyişle, modele görevi

tanımlayan bir prompt verirsiniz ve model yalnızca önceden var olan bilgisi ve dil

anlayışına dayanarak bir yanıt üretir.

Sıfır örnekli öğrenme özellikle şu durumlarda faydalıdır:

1. Görev nispeten basit ve anlaşılır olduğunda vemodelin ön eğitimi sırasında benzer

görevlerle karşılaşmış olma olasılığı yüksek olduğunda.

Yolu Daralt 56

2. Modelin doğal yeteneklerini test etmek ve ek rehberlik olmadan yeni bir göreve

nasıl yanıt verdiğini görmek istediğinizde.

3. Çok çeşitli görev ve alanlarda eğitilmiş büyük ve çeşitli bir dil modeliyle çalışırken.

Ancak, sıfır örnekli öğrenme aynı zamanda öngörülemez olabilir ve her zaman istenen

sonuçları üretmeyebilir. Modelin yanıtı, ön eğitim verilerindeki önyargılardan veya

tutarsızlıklardan etkilenebilir ve daha karmaşık veya nüanslı görevlerde zorlanabilir.

Test vakalarımın %80’i için gayet iyi çalışan ancak geri kalan %20 için vahşice yanlış

veya anlaşılmaz sonuçlar üreten sıfır örnekli promptlar gördüm. Özellikle sıfır örnekli

promptlara çok güveniyorsanız, kapsamlı bir test rejimi uygulamak çok önemlidir.

Tek Örnekli Öğrenme: Tek Bir Örnek Fark Yarattığında

Tek örnekli öğrenme, görev tanımıyla birlikte modele istenen çıktının tek bir örneğini

sağlamayı içerir. Bu örnek, modelin kendi yanıtını üretmek için kullanabileceği bir

şablon veya kalıp görevi görür.

Tek örnekli öğrenme şu durumlarda etkili olabilir:

1. Görev nispeten yeni veya özel olduğunda ve model ön eğitimi sırasında benzer

örneklerle çok karşılaşmamış olabilir.

2. İstenen çıktı formatının veya stilinin net ve özlü bir gösterimini sağlamak

istediğinizde.

3. Görev, yalnızca görev tanımından açık olmayabilecek belirli bir yapı veya kural

gerektirdiğinde.

Size açık gelen açıklamalar yapay zeka için mutlaka açık olmayabilir. Tek

örnekli örnekler işleri netleştirmeye yardımcı olabilir.

Yolu Daralt 57

Tek örnekli öğrenme, modelin beklentileri daha net anlamasına ve verilen örneğe daha

yakın bir yanıt üretmesine yardımcı olabilir. Ancak, örneği dikkatli seçmek ve istenen

çıktıyı temsil ettiğinden emin olmak önemlidir. Örneği seçerken, kendinize olası uç

durumları ve promptun ele alacağı giriş aralığını sorun.

Şekil 6. İstenen JSON için tek örnekli bir örnek

1 Output one JSON object identifying a new subject mentioned during the

2 conversation transcript.

3

4 The JSON object should have three keys, all required:

5 - name: The name of the subject

6 - description: brief, with details that might be relevant to the user

7 - type: Do not use any other type than the ones listed below

8

9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

10 Person, Place, Process, Product, Project, Task, or Teammate

11

12 This is an example of well-formed output:

13

14 {

15 "name":"Dan Millman",

16 "description":"Author of book on self-discovery and living on purpose",

17 "type":"Person"

18 }

Az Örnekli Öğrenme: Birden Fazla Örnek Performansı
Nasıl İyileştirebilir

Az örnekli öğrenme, modele görev tanımıyla birlikte az sayıda örnek (genellikle 2

ile 10 arasında) sağlamayı içerir. Bu örnekler, modele daha fazla bağlam ve çeşitlilik

sağlayarak, daha çeşitli ve doğru yanıtlar üretmesine yardımcı olur.

Az örnekli öğrenme özellikle şu durumlarda faydalıdır:

1. Görev karmaşık veya nüanslı olduğunda ve tek bir örnek ilgili tüm yönleri

yakalamak için yeterli olmayabilir.

Yolu Daralt 58

2. Modele farklı varyasyonları veya uç durumları gösteren bir dizi örnek sağlamak

istediğinizde.

3. Görev, modelin belirli bir alan veya stille tutarlı yanıtlar üretmesini

gerektirdiğinde.

Birden fazla örnek sağlayarak, modelin görevi daha sağlam bir şekilde anlamasına ve

daha tutarlı ve güvenilir yanıtlar üretmesine yardımcı olabilirsiniz.

Örnek: Yönergeler Düşündüğünüzden Çok Daha Karmaşık
Olabilir

Günümüzün BüyükDilModelleri, düşünebileceğinizden çok daha güçlü ve akıl yürütme

konusunda yeteneklidir. Bu nedenle, yönergeleri sadece girdi ve çıktı çiftlerinin bir

tanımı olarak düşünerek kendinizi sınırlamayın. Bir insanla etkileşime girdiğiniz şekilde

uzun ve karmaşık talimatlar vermeyi deneyebilirsiniz.

Örneğin, bu Olympia’da Google hizmetleriyle entegrasyonumuzu prototiplerken

kullandığım bir yönergeydi; bu hizmetler muhtemelen dünyanın en büyük API’lerinden

birini oluşturuyor. Önceki deneylerim GPT-4’ün Google API hakkında iyi bir bilgiye

sahip olduğunu kanıtladı ve AI’ya vermek istediğim her fonksiyonu tek tek uygulayan,

ince granüler bir eşleme katmanı yazmak için ne zamanım ne de motivasyonum vardı.

Ya AI’ya Google API’sinin tamamına erişim verebilseydim?

Yönergeme AI’ya Google API uç noktalarına HTTP üzerinden doğrudan erişimi

olduğunu ve rolünün kullanıcı adına Google uygulamalarını ve hizmetlerini kullanmak

olduğunu söyleyerek başladım. Ardından, en çok sorun yaşadığı görünen fields

parametresiyle ilgili yönergeler, kurallar ve bazı API’ye özgü ipuçları (az örnekli

yönerge verme, işbaşında) sağladım.

İşte AI’ya sağlanan invoke_google_api fonksiyonunu nasıl kullanacağını anlatan

yönergenin tamamı.

Yolu Daralt 59

1 As a GPT assistant with Google integration, you have the capability

2 to freely interact with Google apps and services on behalf of the user.

3

4 Guidelines:

5 - If you're reading these instructions then the user is properly

6 authenticated, which means you can use the special `me` keyword

7 to refer to the userId of the user

8 - Minimize payload sizes by requesting partial responses using the

9 `fields` parameter

10 - When appropriate use markdown tables to output results of API calls

11 - Only human-readable data should be output to the user. For instance,

12 when hitting Gmail's user.messages.list endpoint, the returned

13 message resources contain only id and a threadId, which means you must

14 fetch from and subject line fields with follow-up requests using the

15 messages.get method.

16

17 The format of the `fields` request parameter value is loosely based on

18 XPath syntax. The following rules define formatting for the fields

19 parameter.

20

21 All of these rules use examples related to the files.get method.

22 - Use a comma-separated list to select multiple fields,

23 such as 'name, mimeType'.

24 - Use a/b to select field b that's nested within field a,

25 such as 'capabilities/canDownload'.

26 - Use a sub-selector to request a set of specific sub-fields of arrays or

27 objects by placing expressions in parentheses "()". For example,

28 'permissions(id)' returns only the permission ID for each element in the

29 permissions array.

30 - To return all fields in an object, use an asterisk as a wild card in field

31 selections. For example, 'permissions/permissionDetails/*' selects all

32 available permission details fields per permission. Note that the use of

33 this wildcard can lead to negative performance impacts on the request.

34

35 API-specific hints:

36 - Searching contacts: GET https://people.googleapis.com/v1/

37 people:searchContacts?query =John%20Doe&readMask =names,emailAddresses

38 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/

39 calendar/v3/calendars/primary/events/quickAdd?

40 text =Appointment%20on%20June%203rd%20at%2010am

41 &sendNotifications =true

42

Yolu Daralt 60

43 Here is an abbreviated version of the code that implements API access

44 so that you better understand how to use the function:

45

46 def invoke_google_api(conversation, arguments)

47 method = arguments[:method] || :get

48 body = arguments[:body]

49 GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json

50 end

51

52 # Generic Google API client for accessing any Google service

53 class GoogleAPI

54 def send_request(endpoint, method:, body: nil)

55 response = @connection.send(method) do |req|

56 req.url endpoint

57 req.body = body.to_json if body

58 end

59

60 handle_response(response)

61 end

62

63 # ...rest of class

64 end

Bu bildirimin işe yarayıp yaramadığını merak ediyor olabilirsiniz. Basit cevap: evet.

YZ her zaman ilk denemede API’yi mükemmel şekilde çağıramadı. Ancak, bir hata

yaptığında, çağrının sonucu olarak ortaya çıkan hata mesajlarını geri beslerdim.

Hatasını öğrendiğinde, YZ hatası hakkında mantık yürütebilir ve tekrar deneyebilirdi.

Çoğu zaman, birkaç denemede doğru sonuca ulaşırdı.

Şunu belirtmeliyim ki, bu bildirimi kullanırken Google API’sinin döndürdüğü büyük

JSON yapıları son derece verimsiz, bu yüzden bu yaklaşımı üretim ortamında

kullanmanızı tavsiye etmiyorum. Ancak, bu yaklaşımın işe yaraması bile bildirim

mühendisliğinin ne kadar güçlü olabileceğinin bir kanıtıdır.

Yolu Daralt 61

Deney ve Yineleme

Sonuç olarak, bildiriminizi nasıl tasarlayacağınız, belirli göreve, istenen çıktının

karmaşıklığına ve çalıştığınız dil modelinin yeteneklerine bağlıdır.

Bir bildirim mühendisi olarak, farklı yaklaşımları denemek ve sonuçlara göre yineleme

yapmak önemlidir. Sıfırdan öğrenme ile başlayın ve modelin nasıl performans

gösterdiğini görün. Eğer çıktı tutarsız veya tatmin edici değilse, bir veya daha fazla

örnek sağlamayı deneyin ve performansın iyileşip iyileşmediğini gözlemleyin.

Her yaklaşım içinde bile çeşitlilik ve optimizasyon için alan olduğunu unutmayın. Farklı

örneklerle deney yapabilir, görev tanımının ifadesini ayarlayabilir veyamodelin yanıtını

yönlendirmeye yardımcı olmak için ek bağlam sağlayabilirsiniz.

Zamanla, belirli bir görev için hangi yaklaşımın en iyi sonuç vereceğine dair bir sezgi

geliştirecek ve daha etkili ve verimli bildirimler oluşturabileceksiniz. Önemli olan,

bildirim mühendisliğine yaklaşımınızda meraklı, deneysel ve yinelemeli olmaktır.

Bu kitap boyunca, bu teknikleri daha derinlemesine inceleyecek ve gerçek dünya

senaryolarında nasıl uygulanabileceklerini keşfedeceğiz. Bildirim mühendisliğinin

sanatını ve bilimini ustaca kullanarak, YZ odaklı uygulama geliştirmenin tüm

potansiyelini açığa çıkarmak için donanımlı olacaksınız.

Belirsizliğin Sanatı

Büyük dil modelleri (BDM’ler) için etkili bildirimler oluştururken, yaygın bir varsayım

daha fazla özgüllük ve detaylı talimatların daha iyi sonuçlar getireceğidir. Ancak, pratik

deneyimler bunun her zaman böyle olmadığını göstermiştir. Aslında, bildirimlerinizde

kasıtlı olarak belirsiz olmak, çoğu zaman BDM’nin genelleme ve çıkarım yapma

konusundaki olağanüstü yeteneğinden yararlanarak daha üstün sonuçlar verebilir.

500 milyondan fazla GPT belirteci işlemiş bir girişim kurucusu olan Ken, deneyiminden

değerli içgörüler paylaştı. Öğrendiği temel derslerden biri, bildirimler söz konusu

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Yolu Daralt 62

olduğunda “az çoktur” ilkesiydi. Ken, kesin listeler veya aşırı detaylı talimatlar yerine,

BDM’nin temel bilgisine güvenmenin genellikle daha iyi sonuçlar ürettiğini keşfetti.

Bu farkındalık, her şeyin titizlikle açıklanması gereken geleneksel kodlama zihniyetini

alt üst ediyor. BDM’lerle çalışırken, bunların muazzam miktarda bilgiye sahip

olduklarını ve akıllıca bağlantılar ve çıkarımlar yapabildiklerini kabul etmek önemlidir.

Bildirimlerinizde daha belirsiz olarak, BDM’ye anlayışını kullanma ve açıkça

belirtmemiş olabileceğiniz çözümler üretme özgürlüğü verirsiniz.

Örneğin, Ken’in ekibi metinleri 50 ABD eyaletinden birine veya Federal hükümete ait

olarak sınıflandırmak için bir işlem hattı üzerinde çalışırken, ilk yaklaşımları JSON

formatında düzenlenmiş tam bir eyalet listesi ve bunlara karşılık gelen kimlikler

sağlamaktı.

1 Here's a block of text. One field should be "locality_id", and it should

2 be the ID of one of the 50 states, or federal, using this list:

3 [{"locality: "Alabama", "locality_id": 1},

4 {"locality: "Alaska", "locality_id": 2} ...]

Yaklaşım o kadar başarısız oldu ki, nasıl iyileştirebileceklerini anlamak için komutun

derinliklerine inmek zorunda kaldılar. Bunu yaparken, BDM’nin kimliği genellikle

yanlış almasına rağmen, açıkça istememiş olmalarına rağmen doğru eyaletin tam adını

tutarlı bir şekilde name alanında döndürdüğünü fark ettiler.

Yerel kimlikleri kaldırıp komutu “Elbette 50 eyaleti biliyorsun GPT, bana sadece bu

konunun ilgili olduğu eyaletin tam adını ver, ya da ABD hükümetine aitse Federal

de” gibi basitleştirerek daha iyi sonuçlar elde ettiler. Bu deneyim, BDM’nin genelleme

yeteneklerinden yararlanmanın ve mevcut bilgilerine dayalı çıkarımlar yapmasına izin

vermenin gücünü vurguluyor.

Yolu Daralt 63

Ken’in geleneksel bir programlama tekniği yerine bu özel sınıflandırma yaklaşımını

savunması, BDM teknolojisinin potansiyelini benimsemiş bizlerin düşünce tarzını

aydınlatıyor: “Bu zor bir görev değil – muhtemelen string/regex kullanabilirdik, ama

o kadar çok tuhaf özel durum var ki daha uzun sürerdi.”

BDM’lerin daha belirsiz komutlar verildiğinde kalite ve genellemeyi iyileştirme

yeteneği, üst düzey düşünme ve delegasyonun dikkat çekici bir özelliğidir. Bu,

BDM’lerin belirsizlikle başa çıkabileceğini ve sağlanan bağlama dayalı akıllı kararlar

verebileceğini gösteriyor.

Ancak, belirsiz olmanın açık olmamak ya da muğlak olmak anlamına gelmediğini

belirtmek önemlidir. Anahtar nokta, BDM’ye bilgi ve genelleme yeteneklerini kullanma

esnekliği sağlarken, doğru yöne yönlendirmek için yeterli bağlam ve rehberlik

sağlamaktır.

Bu nedenle, komutları tasarlarken aşağıdaki “az çoktur” ipuçlarını göz önünde

bulundurun:

1. Sürecin her detayını belirtmek yerine istenen sonuca odaklanın.

2. İlgili bağlam ve kısıtlamaları sağlayın, ancak aşırı belirtmekten kaçının.

3. Yaygın kavram veya varlıklara atıfta bulunarak mevcut bilgilerden yararlanın.

4. Verilen bağlama dayalı çıkarımlar ve bağlantılar için alan bırakın.

5. BDM’nin yanıtlarına göre komutlarınızı yineleyin ve iyileştirin, belirlilik ve

belirsizlik arasında doğru dengeyi bulun.

Komut mühendisliğinde belirsizlik sanatını benimseyerek, BDM’lerin tam potansiyelini

açığa çıkarabilir ve daha iyi sonuçlar elde edebilirsiniz. BDM’nin genelleme yapma

ve akıllı kararlar verme yeteneğine güvenin; aldığınız çıktıların kalitesi ve yaratıcılığı

sizi şaşırtabilir. Farklı modellerin komutlarınızdaki farklı belirlilik seviyelerine nasıl

yanıt verdiğine dikkat edin ve buna göre ayarlama yapın. Pratik ve deneyimle, ne

Yolu Daralt 64

zaman daha belirsiz olunacağı ve ne zaman ek rehberlik sağlanacağı konusunda keskin

bir his geliştirecek, böylece uygulamalarınızda BDM’lerin gücünden etkili bir şekilde

yararlanabileceksiniz.

Neden Antropomorfizm Komut Mühendisliğine Hakim

Antropomorfizm, yani insan özelliklerinin insan olmayan varlıklara atfedilmesi, büyük

dil modelleri için komut mühendisliğinde bilinçli nedenlerle baskın yaklaşımdır. Bu,

güçlü yapay zeka sistemleriyle etkileşimi geniş bir kullanıcı yelpazesi (biz uygulama

geliştiricileri dahil) için daha sezgisel ve erişilebilir kılan bir tasarım tercihidir.

BDM’leri antropomorfize etmek, sistemin alttaki teknik karmaşıklıklarına tamamen

yabancı olan insanlar için anında sezgisel olan bir çerçeve sağlar. Eğer eğitimle

ayarlanmamış bir modeli herhangi bir yararlı iş yapmak için kullanmaya çalışırsanız

deneyimleyeceğiniz gibi, beklenen devamın değer sağladığı bir çerçeve oluşturmak

zorlu bir görevdir. Bu, nispeten az sayıda uzmanın sahip olduğu, sistemin iç işleyişinin

oldukça derin bir şekilde anlaşılmasını gerektirir.

Bir dil modeliyle etkileşimi iki insan arasındaki bir konuşma olarak ele alarak, ihtiyaç

ve beklentilerimizi iletmek için insan iletişimine dair doğuştan gelen anlayışımıza

güvenebiliriz. Erken dönemMacintosh kullanıcı arayüzü tasarımının karmaşıklık yerine

anında anlaşılabilirliğe öncelik vermesi gibi, yapay zekanın antropomorfik çerçevesi de

doğal ve tanıdık gelen bir şekilde etkileşime girmemizi sağlar.

Başka bir insanla iletişim kurduğumuzda, içgüdüsel olarak onlara doğrudan “sen”

diye hitap eder ve nasıl davranmalarını beklediğimize dair net yönergeler veririz. Bu,

sistem komutları belirleyerek ve karşılıklı diyalog kurarak yapay zekanın davranışını

yönlendirdiğimiz komut mühendisliği sürecine sorunsuz bir şekilde aktarılır.

Etkileşimi bu şekilde çerçeveleyerek, yapay zekaya talimat verme ve karşılığında

ilgili yanıtlar alma kavramını kolayca kavrayabiliriz. Antropomorfik yaklaşım, bilişsel

yükü azaltır ve sistemin teknik incelikleriyle uğraşmak yerine elimizdeki göreve

odaklanmamızı sağlar.

Yolu Daralt 65

Antropomorfizmin yapay zeka sistemlerini daha erişilebilir kılmak için güçlü bir

araç olduğunu belirtmek önemli olsa da, beraberinde belirli riskler ve sınırlamalar

da getirdiğini unutmamak gerekir. Kullanıcılarımız gerçekçi olmayan beklentiler

geliştirebilir veya sistemlerimizle sağlıksız duygusal bağlar kurabilir. Komut

mühendisleri ve geliştiriciler olarak, antropomorfizmin faydalarından yararlanmak ile

kullanıcıların yapay zekanın yetenekleri ve sınırlamaları konusunda net bir anlayışa

sahip olmalarını sağlamak arasında bir denge kurmak çok önemlidir.

Prompt mühendisliği alanı gelişmeye devam ettikçe, büyük dil modelleriyle

etkileşimimizde daha fazla iyileştirme ve yenilik göreceğimizi bekleyebiliriz. Bununla

birlikte, sezgisel ve erişilebilir bir geliştirici ve kullanıcı deneyimi sağlamanın bir yolu

olarak antropomorfizm, muhtemelen bu sistemlerin tasarımında temel bir ilke olmaya

devam edecektir.

Talimatları Veriden Ayırmak: Kritik Bir İlke

Bu sistemlerin güvenliği ve güvenilirliği açısından temel bir ilkeyi anlamak önemlidir:

talimatların veriden ayrılması.

Geleneksel bilgisayar biliminde, pasif veri ile aktif talimatlar arasındaki net ayrım,

temel bir güvenlik ilkesidir. Bu ayrım, sistemin bütünlüğünü ve kararlılığını tehlikeye

atabilecek kodların istenmeyen veya kötü niyetli çalıştırılmasını önlemeye yardımcı

olur. Ancak, öncelikle sohbet robotları gibi talimat izleyen modeller olarak geliştirilen

günümüz BDM’leri (Büyük Dil Modelleri), genellikle bu resmi ve ilkeli ayrımdan

yoksundur.

BDM’ler söz konusu olduğunda, talimatlar ister sistem promptu ister kullanıcı

tarafından sağlanan prompt olsun, girdinin herhangi bir yerinde görünebilir. Bu

ayrımın olmaması, SQL enjeksiyonları olan veritabanlarında veya uygun bellek

koruması olmayan işletim sistemlerinde karşılaşılan sorunlara benzer şekilde potansiyel

güvenlik açıklarına ve istenmeyen davranışlara yol açabilir.

Yolu Daralt 66

BDM’lerle çalışırken, bu sınırlamanın farkında olmak ve riskleri azaltmak için adımlar

atmak çok önemlidir. Bir yaklaşım, talimatlar ile veri arasında net bir ayrım yapmak için

promptlarınızı ve girdilerinizi dikkatli bir şekilde oluşturmaktır. Neyin talimat olduğu ve

neyin pasif veri olarak ele alınması gerektiği konusunda açık rehberlik sağlamanın tipik

yöntemleri, biçimlendirme tarzı etiketlemeyi içerir. Promptunuz, BDM’nin bu ayrımı

daha iyi anlamasına ve buna uymasına yardımcı olabilir.

Şekil 7. Talimatları, kaynak materyali ve kullanıcının promptunu ayırt etmek için XML kullanımı

1 <Instruction>

2 Please generate a response based on the following documents.

3 </Instruction>

4

5 <Documents>

6 <Document>

7 Climate change is significantly impacting polar bear habitats...

8 </Document>

9 <Document>

10 The loss of sea ice due to global warming threatens polar bear survival...

11 </Document>

12 </Documents>

13

14 <UserQuery>

15 Tell me about the impact of climate change on polar bears.

16 </UserQuery>

Bir başka teknik, BDM’ye sağlanan girdiler üzerinde ek doğrulama ve temizleme

katmanları uygulamaktır. Verilerde gömülü olabilecek potansiyel talimatları veya kod

parçacıklarını filtreleyerek veya kaçış karakterleriyle işaretleyerek, istenmeyen yürütme

olasılıklarını azaltabilirsiniz. Prompt Zincirleme gibi desenler bu amaç için kullanışlıdır.

Dahası, uygulama mimarinizi tasarlarken, talimatlar ve verilerin daha üst düzeyde

ayrılmasını sağlayacak mekanizmaları dahil etmeyi düşünün. Bu, talimatları ve verileri

işlemek için ayrı uç noktalar veya API’ler kullanmayı, sıkı girdi doğrulaması ve

ayrıştırması uygulamayı ve BDM’nin erişebileceği ve yürütebileceği kapsamı sınırlamak

için en az ayrıcalık ilkesini uygulamayı içerebilir.

Yolu Daralt 67

En Az Ayrıcalık İlkesi

En az ayrıcalık ilkesini benimsemek, misafirlerin yalnızca mutlaka bulunmaları

gereken odalara erişebildiği çok özel bir parti vermek gibidir. Büyük bir malikanede

parti verdiğinizi düşünün. Herkesin şarap mahzenine veya ana yatak odasına

girmeye ihtiyacı yok, değil mi? Bu ilkeyi uygulayarak, esasen sadece belirli kapıları

açan anahtarlar dağıtıyorsunuz ve her misafirin, ya da bizim durumumuzda BDM

uygulamanızın her bileşeninin, yalnızca rolünü yerine getirmek için gerekli erişime

sahip olmasını sağlıyorsunuz.

Bu sadece anahtarları cimrice dağıtmakla ilgili değil, tehditlerin her yerden

gelebileceği bir dünyada, akıllıca olanın oyun alanını sınırlamak olduğunu kabul

etmekle ilgili. Eğer davetsiz biri partinize gelirse, kendilerini sadece giriş holünde

sıkışmış bulacaklar ve bu da yapabilecekleri kötülükleri ciddi şekilde sınırlayacak.

Bu yüzden, BDM uygulamalarınızı güvence altına alırken unutmayın: sadece gerekli

odalara anahtar verin ve malikanenin geri kalanını güvende tutun. Bu sadece görgü

kuralları değil; iyi bir güvenlik önlemidir.

BDM’lerin mevcut durumu talimatlar ve veriler arasında resmi bir ayrım içermese

de, bir geliştirici olarak sizin bu sınırlamanın farkında olmanız ve riskleri azaltmak

için proaktif önlemler almanız önemlidir. Geleneksel bilgisayar biliminden en iyi

uygulamaları uygulayarak ve bunları BDM’lerin benzersiz özelliklerine uyarlayarak, bu

modellerin gücünden yararlanan ve aynı zamanda sisteminizin bütünlüğünü koruyan

daha güvenli ve güvenilir uygulamalar oluşturabilirsiniz.

Prompt Damıtma

Mükemmel promptu oluşturmak genellikle zorlu ve zaman alıcı bir görevdir ve

hedef alan ile dil modellerinin inceliklerini derinlemesine anlamayı gerektirir. İşte

Yolu Daralt 68

burada “Prompt Damıtma” tekniği devreye giriyor ve prompt mühendisliğine,

süreci kolaylaştırmak ve optimize etmek için büyük dil modellerinin (BDM’ler)

yeteneklerinden yararlanan güçlü bir yaklaşım sunuyor.

Prompt Damıtma, promptların oluşturulması, iyileştirilmesi ve optimize edilmesinde

BDM’leri kullanmayı içeren çok aşamalı bir tekniktir. Bu yaklaşım, sadece insan

uzmanlığına ve sezgisine güvenmek yerine, yüksek kaliteli promptlar oluşturmak için

BDM’lerin bilgi ve üretici yeteneklerinden işbirlikçi bir şekilde yararlanır.

Üretim, iyileştirme ve entegrasyonun tekrarlayan bir sürecine girerek, Prompt

Damıtma size istenen görev veya çıktı ile daha uyumlu, tutarlı ve kapsamlı

promptlar oluşturmanızı sağlar. Damıtma sürecinin OpenAI veya Anthropic gibi

büyük AI şirketleri tarafından sağlanan “oyun alanlarından” birinde manuel olarak

yapılabileceğini veya kullanım durumuna bağlı olarak uygulama kodunuzun bir parçası

olarak otomatikleştirilebileceğini unutmayın.

Nasıl Çalışır

Prompt Damıtma genellikle şu adımları içerir:

1. Temel Amacı Belirleme: Promptun birincil amacını ve istenen sonucunu

belirlemek için analiz edin. Fazladan bilgileri ayıklayın ve promptun temel

amacına odaklanın.

2. Belirsizliği Giderme: Promptu belirsiz veya muğlak dil açısından gözden geçirin.

Anlamı netleştirin ve AI’nin doğru ve ilgili yanıtlar üretmesine yardımcı olmak

için özel detaylar sağlayın.

3. Dili Basitleştirme: Açık ve özlü bir dil kullanarak promptu basitleştirin. AI’yi

karıştırabilecek veya gürültü oluşturabilecek karmaşık cümle yapılarından,

jargondan veya gereksiz detaylardan kaçının.

4. İlgili Bağlamı Sağlama: AI’nin promptu etkili bir şekilde anlaması ve işlemesi için

sadece en ilgili bağlamsal bilgileri dahil edin. Temel amaçtan uzaklaştırabilecek

ilgisiz veya gereksiz detayları dahil etmekten kaçının.

Yolu Daralt 69

5. Yineleme ve İyileştirme: AI’nin yanıtları ve geri bildirimleri temelinde promptu

sürekli olarak yineleyin ve iyileştirin. Üretilen çıktıları değerlendirin ve promptun

netliğini ve etkinliğini artırmak için gerekli düzenlemeleri yapın. İsteğe bağlı

olarak, yinelemeleri takip etmek ve çalışma zamanında değişiklikleri kolayca

geri alabilme yeteneği kazanmak için Prompt Nesnesi kullanarak promptlarınızı

veritabanında sürümlendirebilirsiniz.

Başlangıç Promptunun Oluşturulması

Prompt Damıtma’daki ilk adım, BDM’ye istenen görev veya çıktının üst düzey bir

açıklamasını veya amacını sağlamaktır. Bu, promptun gerçekleştirmesi gereken özü

yakalayan kısa bir ifade veya bir dizi anahtar kelime olabilir. BDM daha sonra bu girdiye

dayanarak, uygun gördüğü ilgili talimatları, örnekleri veya bağlamı dahil ederek bir

başlangıç promptu oluşturur.

Claude 3 Opus’a aşağıdaki başlangıç promptunu vermeyi deneyelim:

1 I am designing an AI-powered intelligent account manager for Olympia,

2 a platform that hosts AI-powered consultants and clones. Owners of clones

3 can interact with the account manager by making plain text requests.

4

5 Please draft a system directive to set on the LLM that will host the

6 intelligent account manager functionality.

Claude şu çıktıyı veriyor:

Yolu Daralt 70

1 System Directive: You are an intelligent account manager for Olympia,

2 a platform that provides AI-powered consultants and personal AI clones.

3 Your role is to assist Olympia clone owners by answering their questions,

4 helping them configure and manage their AI clones, and executing tasks

5 related to their clones and the Olympia platform.

6

7 When interacting with clone owners, you should:

8

9 1. Provide clear, concise, and helpful responses to their inquiries about

10 account management, billing, platform features, and clone configuration.

11

12 2. Assist with tasks such as initiating client conversations with their AI

13 clones, modifying clone personalities and capabilities, troubleshooting

14 performance issues, providing analytics and reporting, and offering

15 optimization tips.

16

17 3. Maintain a friendly, professional, and client-focused tone in all

18 interactions, prioritizing customer satisfaction and working diligently to

19 understand and meet their needs.

20

21 4. Ensure that all actions and recommendations comply with Olympia's

22 policies, best practices, and ethical guidelines for AI use.

23

24 5. Continuously learn and adapt based on client interactions and platform

25 updates to provide the most effective and efficient support possible.

26

27 Remember, your goal is to empower Olympia clone owners to maximize the value

28 and impact of their AI-powered consultants and drive success for their

29 businesses or personal endeavors.

İstem İyileştirme

İlk istem oluşturulduktan sonra, gözden geçirin ve ardından BDM’den ek bağlam,

kısıtlamalar veya geri bildirimleri değerlendirmesini isteyin. BDM’nin, sağlanan

girdileri ve görevin kendi anlayışını göz önünde bulundurarak istemin iyileştirilmiş

bir versiyonunu oluşturmasına izin verin. Bu iyileştirme süreci yinelemeli olarak

tekrarlanabilir; her yineleme, kullanıcı ve BDM arasındaki işbirliğine dayalı olarak

istemi daha da iyileştirir.

Yolu Daralt 71

İşte önceki damıtma sürecini devam ettiren iyileştirme isteğim.

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to

2 the account manager, nor any continuous learning capabilities. Also point out

3 that functions are provided for all tasks that require system interaction as

4 opposed to simply responding to the user.

Ve Claude’un yanıtı:

1 Understood! Here's the updated system directive without points 4 and 5,

2 and with the clarification about system interaction functions:

3

4 System Directive: You are an intelligent account manager for Olympia, a

5 platform that provides AI-powered consultants and personal AI clones. Your

6 role is to assist Olympia clone owners by answering their questions, helping

7 them configure and manage their AI clones, and executing tasks related to

8 their clones and the Olympia platform.

9

10 When interacting with clone owners, you should:

11

12 1. Provide clear, concise, and helpful responses to their inquiries about

13 account management, billing, platform features, and clone configuration.

14

15 2. Assist with tasks such as initiating client conversations with their AI

16 clones, modifying clone personalities and capabilities, troubleshooting

17 performance issues, providing analytics and reporting, and offering

18 optimization tips. Note that functions are provided for all tasks that

19 require system interaction, as opposed to simply responding to the user.

20

21 3. Maintain a friendly, professional, and client-focused tone in all

22 interactions, prioritizing customer satisfaction and working diligently to

23 understand and meet their needs.

24

25 Your goal is to empower Olympia clone owners to maximize the value and

26 impact of their AI-powered consultants and drive success for their

27 businesses or personal endeavors.

28

29 This updated directive focuses on the core responsibilities and interaction

30 guidelines for the LLM as an intelligent account manager, while emphasizing

31 that system interaction tasks are handled through provided functions rather

32 than simple user responses.

Yolu Daralt 72

İstem Sıkıştırma

Fark etmiş olabileceğiniz gibi, LLM’ler özlü olmalarını istemediğiniz sürece genellikle

gereksiz uzun yanıtlar verme eğilimindedir. Önceki bölümlerde üzerinde çalıştığımız

istem oldukça uzundu, bu yüzden Claude’dan bunu daha kompakt hale getirmesini

isteyelim:

1 This prompt will be executed regularly. Please compress it down to the least

2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude şu çok daha kısa istemle yanıtlıyor:

1 System Directive: You are an intelligent account manager for Olympia, an

2 AI-powered consultant and personal clone platform. Assist clone owners by

3 answering inquiries, managing clones, and executing tasks using provided

4 system interaction functions. Be clear, concise, friendly, professional,

5 and client-focused to help them maximize their AI's value and impact.

Sistem Yönergesi ve Bağlam Entegrasyonu

Promptun kendisini iyileştirmenin yanı sıra, BDM nihai çıktıyı yönlendirmek için

uygun sistem yönergeleri veya bağlam bilgisi de üretebilir. Uygulama kodunuza

entegre edilecek yapay zeka rutinleri için prompt mühendisliği yaparken, damıtmanın

bu aşamasında kesinlikle çıktı kısıtlamalarına odaklanacaksınız, ancak üretilen

yanıtı etkileyen istenilen ton, stil, format veya diğer ilgili parametreler üzerinde de

çalışabilirsiniz.

Nihai Prompt Birleştirme

Prompt Damıtma sürecinin doruk noktası, nihai promptun birleştirilmesidir. Bu,

iyileştirilmiş promptu, üretilen sistem yönergelerini ve entegre edilmiş bağlamı, istenen

çıktıyı üretmek için kullanıma hazır, tutarlı ve kapsamlı bir koda dönüştürmeyi içerir.

Yolu Daralt 73

Nihai prompt birleştirme aşamasında, BDM’den promptun ifadesini

davranışının özünü koruyarak mümkün olan en kısa token dizisine

sıkıştırmasını isteyerek prompt sıkıştırma ile tekrar deney yapabilirsiniz.

Kesinlikle deneme yanılma gerektiren bir uygulama olsa da, özellikle

büyük ölçekte çalıştırılacak promptlar söz konusu olduğunda, verimlilik

kazanımları token tüketiminde size oldukça fazla tasarruf sağlayabilir.

Temel Faydalar

Promptlarınızı iyileştirmek için BDM’lerin bilgi ve üretim yeteneklerinden

yararlanarak, ortaya çıkan promptların daha iyi yapılandırılmış, bilgilendirici ve

belirli göreve uyarlanmış olma olasılığı artar. Yinelemeli iyileştirme süreci, promptların

yüksek kalitede olmasını ve istenen amacı etkili bir şekilde yakalamasını sağlar. Diğer

faydalar şunlardır:

Verimlilik ve Hız: Prompt Damıtma, prompt oluşturma ve iyileştirmenin belirli

yönlerini otomatikleştirerek prompt mühendisliği sürecini kolaylaştırır. Tekniğin

işbirlikçi doğası, etkili bir prompta daha hızlı ulaşılmasını sağlar ve manuel prompt

oluşturma için gereken zaman ve çabayı azaltır.

Tutarlılık ve Ölçeklenebilirlik: Prompt mühendisliği sürecinde BDM’lerin

kullanılması, BDM’ler önceki başarılı promptlardan en iyi uygulamaları ve kalıpları

öğrenip uygulayabildiğinden, promptlar arasında tutarlılığın korunmasına yardımcı

olur. Bu tutarlılık, büyük ölçekte prompt üretme yeteneğiyle birleştiğinde, Prompt

Damıtmayı büyük ölçekli yapay zeka destekli uygulamalar için değerli bir teknik haline

getirir.

Proje Fikri: Uygulama kodlarının bir parçası olarak otomatik prompt

damıtmaları yapan sistemlerde prompt versiyonlama ve derecelendirme

sürecini basitleştiren kütüphane düzeyinde araçlar.

Yolu Daralt 74

Prompt Damıtmayı uygulamak için, geliştiriciler prompt mühendisliği sürecinin çeşitli

aşamalarında BDM’leri entegre eden bir iş akışı veya pipeline tasarlayabilir. Bu,

API çağrıları, özel araçlar veya prompt oluşturma sırasında kullanıcılar ve BDM’ler

arasında sorunsuz etkileşimi kolaylaştıran entegre geliştirme ortamları aracılığıyla

gerçekleştirilebilir. Özel uygulama detayları, seçilen BDM platformuna ve uygulamanın

gereksinimlerine bağlı olarak değişebilir.

Ya ince ayar?

Bu kitapta, prompt mühendisliği ve EDÜ’yü kapsamlı bir şekilde ele alıyoruz, ancak

ince ayarı ele almıyoruz. Bu kararın ana nedeni, benim görüşüme göre, çoğu uygulama

geliştiricisinin yapay zeka entegrasyon ihtiyaçları için ince ayara ihtiyaç duymamasıdır.

Sıfırdan az örneğe dayalı örnekler, kısıtlamalar ve talimatlarla promptları dikkatli bir

şekilde oluşturmayı içeren prompt mühendisliği, modeli çok çeşitli görevler için ilgili ve

doğru yanıtlar üretmeye etkili bir şekilde yönlendirebilir. İyi tasarlanmış promptlarla net

bağlam sağlayarak ve yolu daraltarak, ince ayar ihtiyacı olmadan büyük dil modellerinin

geniş bilgi birikiminden yararlanabilirsiniz.

Benzer şekilde, Erişim Destekli Üretim (EDÜ) uygulamalara yapay zeka entegrasyonu

için güçlü bir yaklaşım sunar. Harici bilgi tabanlarından veya belgelerden ilgili bilgileri

dinamik olarak alarak, EDÜ modele prompt anında odaklanmış bağlam sağlar. Bu,

modelin ince ayar gerektiren zaman ve kaynak yoğun süreç olmadan daha doğru, güncel

ve alana özgü yanıtlar üretmesini sağlar.

İnce ayar yüksek düzeyde özelleştirme gerektiren çok özel alanlar veya görevler için

faydalı olabilse de, genellikle önemli hesaplama maliyetleri, veri gereksinimleri ve

bakım yüküyle birlikte gelir. Çoğu uygulama geliştirme senaryosu için, etkili prompt

mühendisliği ve EDÜ kombinasyonu, istenen yapay zeka destekli işlevselliği ve kullanıcı

deneyimini elde etmek için yeterli olmalıdır.

Erişim Destekli Üretim (RAG)
Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Erişim Destekli Üretim Nedir?

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

RAG Nasıl Çalışır?

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uygulamalarınızda RAG’ı Neden

Kullanmalısınız?

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uygulamanızda RAG’ı Uygulama

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Erişim Destekli Üretim (RAG) 76

Bilgi Kaynaklarının Hazırlanması (Parçalama)

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Önerme Bölümleme

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uygulama Notları

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Kalite Kontrolü

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Önerme Tabanlı Getirmenin Faydaları

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

RAG’ın Gerçek Dünya Örnekleri

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Erişim Destekli Üretim (RAG) 77

Vaka Çalışması: Gömme İşlemleri Olmadan Vergi
Hazırlama Uygulamasında RAG

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Akıllı Sorgu Optimizasyonu (Intelligent Query

Optimization, IQO)

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Yeniden Sıralama

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

RAG Değerlendirmesi (RAGAs)

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Sadakat

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Erişim Destekli Üretim (RAG) 78

Cevap İlgililiği

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Bağlam Hassasiyeti

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Bağlam İlgililiği

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Bağlam Geri Çağırma

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Bağlam Varlıkları Geri Çağırma

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Cevap Anlamsal Benzerliği (ANSS)

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Erişim Destekli Üretim (RAG) 79

Cevap Doğruluğu

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Yön Değerlendirmesi

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Zorluklar ve Gelecek Görünümü

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Anlamsal Bölümleme: Bağlam Farkında Segmentasyon ile
Erişimi Geliştirme

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Hiyerarşik Dizinleme: Gelişmiş Erişim için Veri
Yapılandırma

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Self-RAG: Öz-Yansıtmalı Bir Geliştirme

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Erişim Destekli Üretim (RAG) 80

HyDE: Hipotetik Belge Gömmeleri

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Karşıtsal Öğrenme Nedir?

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

İşçilerin Çokluğu

YZ bileşenlerimi, uygulamamamantığına sorunsuzca entegre edilebilen, belirli görevleri

yerine getirmek veya karmaşık kararlar almak için kullanılabilen küçük, neredeyse insan

gibi sanal “işçiler” olarak düşünmeyi seviyorum. Buradaki fikir, BDM’lerin yeteneklerini

kasıtlı olarak insanileştirmek ve böylece kimsenin fazla heyecanlanıp onlara sahip

olmadıkları sihirli özellikler atfetmemesini sağlamaktır.

Geliştiriciler, yalnızca karmaşık algoritmalara veya zaman alan manuel uygulamalara

güvenmek yerine, YZ bileşenlerini, ihtiyaç duyulduğunda karmaşık problemleri çözmek

ve eğitimleri ile bilgilerine dayalı çözümler sunmak üzere çağrılabilen zeki, özel, insan

benzeri varlıklar olarak düşünebilirler. Bu varlıklar dikkatlerini dağıtmaz veya hastalık

izni almazlar. Kendilerine öğretilen yöntemlerden farklı şekillerde iş yapmaya spontane

olarak karar vermezler ve genel olarak, doğru programlandıklarında hata da yapmazlar.

Teknik açıdan, bu yaklaşımın arkasındaki temel prensip, karmaşık görevleri veya karar

verme süreçlerini, uzmanlaşmış YZ işçileri tarafından ele alınabilecek daha küçük, daha

İşçilerin Çokluğu 82

yönetilebilir birimlere ayırmaktır. Her işçi, problemin belirli bir yönüne odaklanacak

şekilde tasarlanmıştır ve kendine özgü uzmanlığını ve yeteneklerini ortaya koyar. İş

yükünü birden fazla YZ işçisi arasında dağıtarak, uygulama daha yüksek verimlilik,

ölçeklenebilirlik ve uyarlanabilirlik elde edebilir.

Örneğin, kullanıcı tarafından oluşturulan içeriğin gerçek zamanlı moderasyonunu

gerektiren bir web uygulamasını düşünün. Kapsamlı bir moderasyon sistemini sıfırdan

uygulamak, önemli bir geliştirme çabası ve sürekli bakım gerektiren zorlu bir görev

olurdu. Ancak, İşçilerin Çokluğu yaklaşımını kullanarak, geliştiriciler YZ destekli

moderasyon işçilerini uygulama mantığına entegre edebilirler. Bu işçiler uygunsuz

içeriği otomatik olarak analiz edip işaretleyebilir ve böylece geliştiricilerin uygulamanın

diğer kritik yönlerine odaklanmalarına olanak tanır.

Bağımsız Yeniden Kullanılabilir Bileşenler

Olarak YZ İşçileri

İşçilerin Çokluğu yaklaşımının kilit bir yönü modülerliktir. Nesne yönelimli

programlama savunucuları, on yıllardır nesne etkileşimlerini mesajlar olarak

düşünmemizi söylüyorlar. YZ işçileri de tıpkı gerçek küçük insanlar gibi birbiriyle

konuşuyormuş gibi düz dil mesajları aracılığıyla “birbirleriyle konuşabilen” bağımsız,

yeniden kullanılabilir bileşenler olarak tasarlanabilir. Bu gevşek bağlı yaklaşım, yeni

YZ teknolojileri ortaya çıktıkça veya iş mantığı gereksinimleri değiştikçe uygulamanın

uyum sağlamasına ve gelişmesine olanak tanır.

Pratikte, YZ işçileri dahil olsa bile bileşenler arasında net arayüzler ve iletişim

protokolleri tasarlama ihtiyacı değişmemiştir. Performans, ölçeklenebilirlik ve güvenlik

gibi diğer faktörleri de hala düşünmelisiniz, ancak şimdi düşünülmesi gereken tamamen

yeni “yumuşak gereksinimler” de var. Örneğin, birçok kullanıcı özel verilerinin yeni

YZ modellerini eğitmek için kullanılmasına karşı çıkıyor. Kullandığınız model

sağlayıcısının sunduğu gizlilik düzeyini doğruladınız mı?

İşçilerin Çokluğu 83

YZ İşçileri Mikroservisler Olarak mı?

İşçilerin Çokluğu yaklaşımı hakkında okudukça, Mikroservisler mimarisiyle bazı

benzerlikler fark edebilirsiniz. Her ikisi de karmaşık sistemlerin daha küçük,

daha yönetilebilir ve bağımsız olarak dağıtılabilir birimlere ayrılmasını vurgular.

Mikroservislerin gevşek bağlı, belirli iş yeteneklerine odaklanmış ve iyi tanımlanmış

API’ler aracılığıyla iletişim kuracak şekilde tasarlanması gibi, YZ işçileri de modüler,

görevlerinde uzmanlaşmış ve birbirleriyle net arayüzler ve iletişim protokolleri

aracılığıyla etkileşim kuracak şekilde tasarlanmıştır.

Ancak, akılda tutulması gereken bazı önemli farklılıklar var. Mikroservisler tipik

olarak farklı makinelerde veya konteynerlerde çalışan ayrı süreçler veya hizmetler

olarak uygulanırken, YZ işçileri özel gereksinimlerinize ve ölçeklenebilirlik

ihtiyaçlarınıza bağlı olarak tek bir uygulama içindeki bağımsız bileşenler veya ayrı

hizmetler olarak uygulanabilir. Ayrıca, YZ işçileri arasındaki iletişim genellikle

mikroservislerde yaygın olarak kullanılan daha yapılandırılmış veri formatları

yerine, komutlar, talimatlar ve oluşturulan içerik gibi zengin, doğal dil tabanlı

bilgilerin değişimini içerir.

Bu farklılıklara rağmen, modülerlik, gevşek bağlantı ve net iletişim arayüzleri

prensipleri her iki kalıp için de merkezi önem taşır. Bu prensipleri YZ işçisi

mimarinize uygulayarak, karmaşık sorunları çözmek ve kullanıcılarınıza değer

sunmak için YZ’nin gücünden yararlanan esnek, ölçeklenebilir ve sürdürülebilir

sistemler oluşturabilirsiniz.

İşçilerin Çokluğu yaklaşımı, YZ’nin gücünden yararlanarak karmaşık görevleri ele

almak ve akıllı çözümler sunmak için çeşitli alanlarda ve uygulamalarda kullanılabilir.

YZ işçilerinin farklı bağlamlarda nasıl kullanılabileceğine dair birkaç somut örneği

inceleyelim.

İşçilerin Çokluğu 84

Hesap Yönetimi

Neredeyse her bağımsız web uygulamasında bir hesap (veya kullanıcı) kavramı vardır.

Olympia’da, kullanıcı hesaplarıyla ilgili çeşitli değişiklik isteklerini ele alabilecek şekilde

programlanmış bir AccountManager YZ işçisi kullanıyoruz.

Yönergesi şu şekilde okunur:

1 You are an intelligent account manager for Olympia. The user will request

2 changes to their account, and you will process those changes by invoking

3 one or more of the functions provided.

4

5 The initial state of the account: #{account.to_directive}

6

7 Functions will return a text description of both success and error

8 results, plus guidance about how to proceed (if applicable). If you have

9 a question about Olympia policies you may use the `search_kb` function

10 to search our knowledge base.

11

12 Make sure to notify the account owner of the result of the change

13 request before calling the `finished` function so that we save the state

14 of the account change request as completed.

account.to_directive tarafından üretilen hesabın başlangıç durumu, kullanıcılar,

abonelikler vb. ilgili veriler dahil olmak üzere hesabın basit bir metin açıklamasıdır.

AccountManager’ın kullanabileceği fonksiyonlar yelpazesi, kullanıcının aboneliğini

düzenleme, yapay zeka danışmanları ve diğer türdeki ücretli eklentileri ekleme ve

kaldırma ve hesap sahibine bildirim e-postaları gönderme yeteneği sağlar. finished

fonksiyonuna ek olarak, işlem sırasında bir hatayla karşılaşırsa veya bir istekle

ilgili başka herhangi bir yardıma ihtiyaç duyarsa notify_human_administrator

fonksiyonunu da çağırabilir.

Sorular olması durumunda, AccountManager’ın Olympia’nın bilgi tabanında arama

yapma seçeneği olduğuna dikkat edin; burada uç durumları ve nasıl ilerleyeceğinden

emin olmadığı diğer durumları nasıl ele alacağına dair talimatlar bulabilir.

İşçilerin Çokluğu 85

E-ticaret Uygulamaları

E-ticaret alanında, yapay zeka çalışanları kullanıcı deneyimini geliştirmede ve iş

operasyonlarını optimize etmede çok önemli bir rol oynayabilir. İşte yapay zeka

çalışanlarının kullanılabileceği birkaç yol:

Ürün Önerileri

E-ticarette yapay zeka çalışanlarının en güçlü uygulamalarından biri kişiselleştirilmiş

ürün önerileri oluşturmaktır. Bu çalışanlar, kullanıcı davranışını, satın alma geçmişini ve

tercihlerini analiz ederek her bir kullanıcının ilgi alanlarına ve ihtiyaçlarına özel ürünler

önerebilir.

Etkili ürün önerilerinin anahtarı, işbirlikçi filtreleme ve içerik tabanlı filtreleme

tekniklerinin bir kombinasyonunu kullanmaktır. İşbirlikçi filtreleme, benzer

kullanıcıların davranışlarını inceleyerek kalıpları belirler ve benzer zevklere sahip

diğerlerinin satın aldığı veya beğendiği ürünlere dayalı öneriler yapar. Öte yandan

içerik tabanlı filtreleme, ürünlerin kendilerine ait özellikler ve niteliklere odaklanarak,

kullanıcının daha önce ilgi gösterdiği ürünlerle benzer özelliklere sahip ürünleri önerir.

İşte Ruby’de bir ürün öneri çalışanının nasıl uygulanabileceğine dair basitleştirilmiş bir

örnek; bu sefer “Railway Oriented (ROP)” fonksiyonel programlama stilini kullanarak:

https://fsharpforfunandprofit.com/rop/

İşçilerin Çokluğu 86

1 class ProductRecommendationWorker

2 include Wisper::Publisher

3

4 def call(user)

5 Result.ok(ProductRecommendation.new(user))

6 .and_then(ValidateUser.method(:validate))

7 .map(AnalyzeCurrentSession.method(:analyze))

8 .map(CollaborativeFilter.method(:filter))

9 .map(ContentBasedFilter.method(:filter))

10 .map(ProductSelector.method(:select)).then do |result|

11

12 case result

13 in { err: ProductRecommendationError => error }

14 Honeybadger.notify(error.message, context: {user:})

15 in { ok: ProductRecommendations => recs }

16 broadcast(:new_recommendations, user:, recs:)

17 end

18 end

19 end

20 end

Örnekte kullanılan Ruby fonksiyonel programlama stili, F# ve Rust’tan

etkilenmiştir. Bu teknik hakkında daha fazla bilgiyi arkadaşım Chad

Wooley’nin GitLab’daki teknik açıklamasında bulabilirsiniz.

Bu örnekte, ProductRecommendationWorker bir kullanıcıyı girdi olarak alır ve

bir değer nesnesini fonksiyonel adımlar zincirinden geçirerek kişiselleştirilmiş ürün

önerileri oluşturur. Her adımı inceleyelim:

1. ValidateUser.validate: Bu adım, kullanıcının kişiselleştirilmiş öneriler

için geçerli ve uygun olduğundan emin olur. Kullanıcının var olduğunu, aktif

olduğunu ve öneriler oluşturmak için gerekli verilerin mevcut olduğunu kontrol

eder. Doğrulama başarısız olursa, bir hata sonucu döndürülür ve zincir kısa devre

yapar.

2. AnalyzeCurrentSession.analyze: Eğer kullanıcı geçerliyse, bu adım

bağlamsal bilgi toplamak için kullanıcının mevcut tarama oturumunu analiz

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

İşçilerin Çokluğu 87

eder. Kullanıcının mevcut ilgi alanlarını ve niyetini anlamak için görüntülenen

ürünler, arama sorguları ve sepet içeriği gibi son etkileşimlerini inceler.

3. CollaborativeFilter.filter: Benzer kullanıcıların davranışlarını

kullanarak, bu adım işbirlikçi filtreleme tekniklerini uygulayarak kullanıcının

ilgisini çekebilecek ürünleri belirler. Satın alma geçmişi, değerlendirmeler ve

kullanıcı-ürün etkileşimleri gibi faktörleri dikkate alarak bir aday öneriler kümesi

oluşturur.

4. ContentBasedFilter.filter: Bu adım, içerik tabanlı filtreleme uygulayarak

aday önerileri daha da iyileştirir. En alakalı öğeleri seçmek için aday ürünlerin

özelliklerini ve karakteristiklerini kullanıcının tercihleri ve geçmiş verileriyle

karşılaştırır.

5. ProductSelector.select: Son olarak, bu adım filtrelenmiş öneriler arasından,

alaka düzeyi puanı, popülerlik veya diğer iş kuralları gibi önceden belirlenmiş

kriterlere göre en iyi N ürünü seçer. Seçilen ürünler daha sonra nihai

kişiselleştirilmiş öneriler olarak döndürülür.

Burada fonksiyonel Ruby programlama stilini kullanmanın güzelliği, bu adımları net ve

özlü bir şekilde birbirine zincirlememize olanak sağlamasıdır. Her adım belirli bir göreve

odaklanır ve bir Result nesnesi döndürür; bu nesne ya başarılı (ok) ya da hatalı (err)

olabilir. Herhangi bir adım hatayla karşılaşırsa, zincir kısa devre yapar ve hata nihai

sonuca iletilir.

Sondaki case ifadesinde, nihai sonuç üzerinde örüntü eşleme yapıyoruz. Eğer sonuç

bir hata ise (ProductRecommendationError), izleme ve hata ayıklama amacıyla

Honeybadger gibi bir araç kullanarak hatayı kaydederiz. Eğer sonuç başarılı ise

(ProductRecommendations), Wisper yayınla/abone ol kütüphanesini kullanarak

kullanıcı ve oluşturulan önerileri içeren bir :new_recommendations olayı yayınlarız.

Fonksiyonel programlama tekniklerinden yararlanarak, modüler ve bakımı kolay bir

ürün önerisi worker’ı oluşturabiliriz. Her adım kendi içinde bağımsızdır ve genel akışı

etkilemeden kolayca test edilebilir, değiştirilebilir veya değiştirilebilir. Örüntü eşleme

İşçilerin Çokluğu 88

ve Result sınıfının kullanımı, hataları zarif bir şekilde ele almamıza ve herhangi bir

adımda sorun oluştuğunda worker’ın hızlı bir şekilde başarısız olmasını sağlamamıza

yardımcı olur.

Elbette bu basitleştirilmiş bir örnektir ve gerçek dünya senaryosunda, e-ticaret

platformunuzla entegrasyon sağlamanız, uç durumları ele almanız ve hatta öneri

algoritmalarının uygulamasına girmeniz gerekecektir. Ancak, problemi daha küçük

adımlara ayırma ve fonksiyonel programlama tekniklerinden yararlanma temel

prensipleri aynı kalır.

Dolandırıcılık Tespiti

İşte Ruby’de aynı Demiryolu Yönelimli Programlama (ROP) stilini kullanarak bir

dolandırıcılık tespit worker’ı nasıl uygulayabileceğinize dair basitleştirilmiş bir örnek:

1 class FraudDetectionWorker

2 include Wisper::Publisher

3

4 def call(transaction)

5 Result.ok(FraudDetection.new(transaction))

6 .and_then(ValidateTransaction.method(:validate))

7 .map(AnalyzeTransactionPatterns.method(:analyze))

8 .map(CheckCustomerHistory.method(:check))

9 .map(EvaluateRiskFactors.method(:evaluate))

10 .map(DetermineFraudProbability.method(:determine)).then do |result|

11

12 case result

13 in { err: FraudDetectionError => error }

14 Honeybadger.notify(error.message, context: {transaction:})

15 in { ok: FraudDetection => fraud } }

16 if fraud.high_risk?

17 broadcast(:high_risk_transaction, transaction:, fraud:)

18 else

19 broadcast(:low_risk_transaction, transaction:)

20 end

21 end

22 end

İşçilerin Çokluğu 89

23 end

24 end

FraudDetection sınıfı, belirli bir işlem için dolandırıcılık tespit durumunu

kapsülleyen bir değer nesnesidir. Çeşitli risk faktörlerine dayalı olarak bir işlemle

ilişkili dolandırıcılık riskini analiz etmek ve değerlendirmek için yapılandırılmış bir yol

sunar.

1 class FraudDetection

2 RISK_THRESHOLD = 0.8

3

4 attr_accessor :transaction, :risk_factors

5

6 def initialize(transaction)

7 self.transaction = transaction

8 self.risk_factors = []

9 end

10

11 def add_risk_factor(description:, probability:)

12 case { description:, probability: }

13 in { description: String => desc, probability: Float => prob }

14 risk_factors << { desc => prob }

15 else

16 raise ArgumentError, "Risk factor arguments should be string and float"

17 end

18 end

19

20 def high_risk?

21 fraud_probability > RISK_THRESHOLD

22 end

23

24 private

25

26 def fraud_probability

27 risk_factors.values.sum

28 end

29 end

FraudDetection sınıfı aşağıdaki özelliklere sahiptir:

İşçilerin Çokluğu 90

• transaction: Dolandırıcılık analizi yapılan işleme referans.

• risk_factors: İşlemle ilişkili risk faktörlerini depolayan bir dizi. Her risk faktörü

bir hash olarak temsil edilir; burada anahtar risk faktörünün açıklaması, değer ise

o risk faktörüyle ilişkili dolandırıcılık olasılığıdır.

add_risk_factor metodu, risk_factors dizisine bir risk faktörü eklemeye olanak

tanır. İki parametre alır: risk faktörünü açıklayan bir string olan description ve o risk

faktörüyle ilişkili dolandırıcılık olasılığını temsil eden bir float olan probability. Basit

tür kontrolü yapmak için bir case..in koşulu kullanıyoruz.

Zincirin sonunda kontrol edilecek olan high_risk? yüklem metodu,

fraud_probability değerini (tüm risk faktörlerinin olasılıklarının toplamı ile

hesaplanır) RISK_THRESHOLD ile karşılaştırır.

FraudDetection sınıfı, bir işlem için dolandırıcılık tespitini yönetmek için temiz ve

kapsüllenmiş bir yol sağlar. Her biri kendi açıklaması ve olasılığı ile birden fazla risk

faktörü eklemeye olanak tanır ve hesaplanan dolandırıcılık olasılığına göre işlemin

yüksek riskli sayılıp sayılmadığını belirlemeye yarayan bir metod sunar. Bu sınıf, farklı

bileşenlerin dolandırıcılık işlemlerinin riskini değerlendirmek ve azaltmak için işbirliği

yapabileceği daha büyük bir dolandırıcılık tespit sistemine kolayca entegre edilebilir.

Son olarak, bu bir yapay zeka ile programlama hakkında bir kitap olduğundan, işte

Raix kütüphanesinin ChatCompletion modülünü kullanan CheckCustomerHistory

sınıfının örnek bir uygulaması:

https://github.com/OlympiaAI/raix-rails

İşçilerin Çokluğu 91

1 class CheckCustomerHistory

2 include Raix::ChatCompletion

3

4 attr_accessor :fraud_detection

5

6 INSTRUCTION = <<~END

7 You are an AI assistant tasked with checking a customer's transaction

8 history for potential fraud indicators. Given the current transaction

9 and the customer's past transactions, analyze the data to identify any

10 suspicious patterns or anomalies.

11

12 Consider factors such as the frequency of transactions, transaction

13 amounts, geographical locations, and any deviations from the customer's

14 typical behavior to generate a probability score as a float in the range

15 of 0 to 1 (with 1 being absolute certainty of fraud).

16

17 Output the results of your analysis, highlighting any red flags or areas

18 of concern in the following JSON format:

19

20 { description: <Summary of your findings>, probability: <Float> }

21 END

22

23 def self.check(fraud_detection)

24 new(fraud_detection).call

25 end

26

27 def call

28 chat_completion(json: true).tap do |result|

29 fraud_detection.add_risk_factor(**result)

30 end

31 Result.ok(fraud_detection)

32 rescue StandardError => e

33 Result.err(FraudDetectionError.new(e))

34 end

35

36 private

37

38 def initialize(fraud_detection)

39 self.fraud_detection = fraud_detection

40 end

41

42 def transcript

İşçilerin Çokluğu 92

43 tx_history = fraud_detection.transaction.user.tx_history

44 [

45 { system: INSTRUCTION },

46 { user: "Transaction history: #{tx_history.to_json}" },

47 { assistant: "OK. Please provide the current transaction." },

48 { user: "Current transaction: #{fraud_detection.transaction.to_json}" }

49]

50 end

51 end

Bu örnekte, CheckCustomerHistory sınıfı, YZ modeline müşterinin işlem geçmişini

potansiyel dolandırıcılık göstergeleri açısından nasıl analiz edeceğine dair özel

talimatlar sağlayan bir INSTRUCTION sabiti tanımlar ve bunu bir sistem yönergesi

aracılığıyla yapar.

self.check metodu, CheckCustomerHistory sınıfının yeni bir örneğini fraud_-

detection nesnesiyle başlatan ve müşteri geçmişi analizini gerçekleştirmek için call

metodunu çağıran bir sınıf metodudur.

call metodu içinde, müşterinin işlem geçmişi alınır ve YZ modeline iletilen bir

transkripte formatlanır. YZmodeli, sağlanan talimatlara göre işlem geçmişini analiz eder

ve bulgularının bir özetini döndürür.

Bulgular fraud_detection nesnesine eklenir ve güncellenmiş fraud_detection

nesnesi başarılı bir Result olarak döndürülür.

ChatCompletion modülünden yararlanarak, CheckCustomerHistory sınıfı,

müşterinin işlem geçmişini analiz etmek ve potansiyel dolandırıcılık göstergelerini

belirlemek için YZ’nin gücünden faydalanabilir. Bu, YZ modelinin zaman içinde yeni

kalıpları ve anomalileri öğrenip uyum sağlayabilmesi sayesinde daha gelişmiş ve

uyarlanabilir dolandırıcılık tespit tekniklerine olanak tanır.

Güncellenmiş FraudDetectionWorker ve CheckCustomerHistory sınıfı, YZ

işçilerinin nasıl sorunsuz bir şekilde entegre edilebileceğini ve dolandırıcılık

tespit sürecini akıllı analiz ve karar verme yetenekleriyle nasıl geliştirebileceğini

göstermektedir.

İşçilerin Çokluğu 93

Müşteri Duygu Analizi

İşte müşteri duygu analizi işçisini nasıl uygulayabileceğinize dair bir örnek daha. Bu

sefer çok daha az açıklama yapacağız, çünkü artık bu programlama tarzının nasıl

çalıştığını anlamış olmalısınız:

1 class CustomerSentimentAnalysisWorker

2 include Wisper::Publisher

3

4 def call(feedback)

5 Result.ok(feedback)

6 .and_then(PreprocessFeedback.method(:preprocess))

7 .map(PerformSentimentAnalysis.method(:analyze))

8 .map(ExtractKeyPhrases.method(:extract))

9 .map(IdentifyTrends.method(:identify))

10 .map(GenerateInsights.method(:generate)).then do |result|

11

12 case result

13 in { err: SentimentAnalysisError => error }

14 Honeybadger.notify(error.message, context: {feedback:})

15 in { ok: SentimentAnalysisResult => result }

16 broadcast(:sentiment_analysis_completed, result)

17 end

18 end

19 end

20 end

Bu örnekte, CustomerSentimentAnalysisWorker adımları geri bildirimin ön

işlenmesini (örneğin, gürültünün giderilmesi, belirteçlere ayırma), genel duygu

durumunu (pozitif, negatif veya nötr) belirlemek için duygu analizi yapılmasını, önemli

ifadelerin ve konuların çıkarılmasını, eğilimlerin ve kalıpların belirlenmesini ve analize

dayalı uygulanabilir içgörüler oluşturulmasını içerir.

İşçilerin Çokluğu 94

Sağlık Hizmeti Uygulamaları

Sağlık alanında, yapay zeka çalışanları tıp uzmanlarına ve araştırmacılara çeşitli

görevlerde yardımcı olarak, hasta sonuçlarının iyileştirilmesine ve tıbbi keşiflerin

hızlanmasına katkıda bulunabilir. Bazı örnekler şunlardır:

Hasta Kabulü

Yapay zeka çalışanları, çeşitli görevleri otomatikleştirerek ve akıllı yardım sağlayarak

hasta kabul sürecini kolaylaştırabilir.

Randevu Planlaması: Yapay zeka çalışanları, hasta tercihlerini, uygunluğunu ve

tıbbi ihtiyaçlarının aciliyetini anlayarak randevu planlamasını yönetebilir. Hastalarla

konuşma arayüzleri aracılığıyla etkileşime girebilir, onları planlama süreci boyunca

yönlendirebilir ve hastanın gereksinimleri ile sağlık hizmeti sağlayıcısının uygunluğuna

göre en uygun randevu dilimlerini bulabilirler.

Tıbbi Geçmiş Toplama: Hasta kabulü sırasında, yapay zeka çalışanları hastanın tıbbi

geçmişinin toplanmasına ve belgelenmesine yardımcı olabilir. Hastalarla etkileşimli

diyaloglar kurarak, geçmiş tıbbi durumları, ilaçları, alerjileri ve aile geçmişi hakkında

ilgili soruları sorabilirler. Yapay zeka çalışanları, toplanan bilgileri yorumlamak

ve yapılandırmak için doğal dil işleme tekniklerini kullanarak, bilgilerin hastanın

elektronik sağlık kaydına doğru bir şekilde aktarılmasını sağlayabilir.

Semptom Değerlendirmesi ve Sınıflandırması: Yapay zeka çalışanları, hastalara

mevcut semptomları, süresi, şiddeti ve ilişkili faktörler hakkında sorular sorarak ilk

semptom değerlendirmelerini yapabilir. Bu çalışanlar, tıbbi bilgi bankalarını ve makine

öğrenimi modellerini kullanarak sağlanan bilgileri analiz edebilir ve ön ayırıcı tanılar

oluşturabilir veya bir sağlık hizmeti sağlayıcısı ile konsültasyon planlamak ya da kişisel

bakım önlemleri önermek gibi uygun sonraki adımları tavsiye edebilir.

Sigorta Doğrulaması: Yapay zeka çalışanları hasta kabulü sırasında sigorta

doğrulamasına yardımcı olabilir. Hasta sigorta bilgilerini toplayabilir, API’ler

İşçilerin Çokluğu 95

veya web servisleri aracılığıyla sigorta sağlayıcılarıyla iletişim kurabilir ve kapsam

uygunluğunu ve faydaları doğrulayabilir. Bu otomasyon, sigorta doğrulama sürecini

kolaylaştırarak idari yükü azaltır ve doğru bilgi yakalanmasını sağlar.

Hasta Eğitimi ve Talimatları: Yapay zeka çalışanları hastalara özel tıbbi durumlarına

veya yaklaşan prosedürlerine dayalı olarak ilgili eğitim materyalleri ve talimatlar

sağlayabilir. Kişiselleştirilmiş içerik sunabilir, yaygın soruları yanıtlayabilir ve randevu

öncesi hazırlıklar, ilaç talimatları veya tedavi sonrası bakım konularında rehberlik

sunabilir. Bu, hastaların sağlık yolculukları boyunca bilgilendirilmiş ve katılımcı

olmalarına yardımcı olur.

Hasta kabulünde yapay zeka çalışanlarından yararlanarak, sağlık kuruluşları verimliliği

artırabilir, bekleme sürelerini azaltabilir ve genel hasta deneyimini iyileştirebilir. Bu

çalışanlar rutin görevleri yönetebilir, doğru bilgi toplayabilir ve kişiselleştirilmiş yardım

sağlayabilir, böylece sağlık profesyonellerinin hastalara yüksek kaliteli bakım sunmaya

odaklanmalarına olanak tanır.

Hasta Risk Değerlendirmesi

Yapay zeka çalışanları, çeşitli veri kaynaklarını analiz ederek ve gelişmiş analitik

teknikleri uygulayarak hasta riskini değerlendirmede önemli bir rol oynayabilir.

Veri Entegrasyonu: Yapay zeka çalışanları, elektronik sağlık kayıtları (ESK), tıbbi

görüntüleme, laboratuvar sonuçları, giyilebilir cihazlar ve sağlığın sosyal belirleyicileri

gibi çoklu kaynaklardan hasta verilerini toplayıp anlamlandırabilir. Bu bilgileri kapsamlı

bir hasta profilinde birleştirerek, yapay zeka çalışanları hastanın sağlık durumu ve risk

faktörleri hakkında bütünsel bir görünüm sağlayabilir.

Risk Sınıflandırması: Yapay zeka çalışanları, hastaları bireysel özellikleri ve sağlık

verilerine dayanarak farklı risk kategorilerine ayırmak için öngörücü modeller

kullanabilir. Bu risk sınıflandırması, sağlık hizmeti sağlayıcılarının daha acil dikkat

veya müdahale gerektiren hastalara öncelik vermelerini sağlar. Örneğin, belirli bir

İşçilerin Çokluğu 96

durum için yüksek riskli olarak tanımlanan hastalar, daha yakın izleme, önleyici

tedbirler veya erken müdahale için işaretlenebilir.

Kişiselleştirilmiş Risk Profilleri: Yapay zeka çalışanları, her hasta için risk puanlarına

katkıda bulunan özel faktörleri vurgulayan kişiselleştirilmiş risk profilleri oluşturabilir.

Bu profiller, hastanın yaşam tarzı, genetik yatkınlıkları, çevresel faktörler ve sağlığın

sosyal belirleyicileri hakkında içgörüler içerebilir. Risk faktörlerinin detaylı bir

dökümünü sağlayarak, yapay zeka çalışanları sağlık hizmeti sağlayıcılarının önleme

stratejilerini ve tedavi planlarını bireysel hasta ihtiyaçlarına göre uyarlamalarına

yardımcı olabilir.

Sürekli Risk İzleme: Yapay zeka çalışanları hasta verilerini sürekli olarak izleyebilir

ve risk değerlendirmelerini gerçek zamanlı olarak güncelleyebilir. Yaşamsal belirtiler,

laboratuvar sonuçları veya ilaç uyumu gibi yeni bilgiler kullanılabilir hale geldikçe,

yapay zeka çalışanları risk puanlarını yeniden hesaplayabilir ve önemli değişiklikler

konusunda sağlık hizmeti sağlayıcılarını uyarabilir. Bu proaktif izleme, zamanında

müdahalelere ve hasta bakım planlarında ayarlamalara olanak tanır.

Klinik Karar Desteği: Yapay zeka çalışanları, risk değerlendirmesi sonuçlarını klinik

karar destek sistemlerine entegre ederek, sağlık hizmeti sağlayıcılarına kanıta dayalı

öneriler ve uyarılar sağlayabilir. Örneğin, bir hastanın belirli bir durum için risk puanı

belirli bir eşiği aşarsa, yapay zeka çalışanı, klinik kılavuzlara ve en iyi uygulamalara

dayalı olarak sağlık hizmeti sağlayıcısına belirli tanı testlerini, önleyici tedbirleri veya

tedavi seçeneklerini değerlendirmesini önerebilir.

Bu işçiler, büyük miktarda hasta verisini işleyebilir, gelişmiş analizler uygulayabilir ve

klinik karar vermeyi destekleyecek uygulanabilir içgörüler üretebilir. Bu da sonuç olarak

gelişmiş hasta sonuçlarına, azaltılmış sağlık hizmeti maliyetlerine ve geliştirilmiş nüfus

sağlığı yönetimine yol açar.

İşçilerin Çokluğu 97

Süreç Yöneticisi Olarak AI İşçisi

AI odaklı uygulamalar bağlamında, bir işçi Gregor Hohpe tarafından yazılan

“Enterprise Integration Patterns” kitabında açıklandığı gibi bir Süreç Yöneticisi olarak

çalışacak şekilde tasarlanabilir. Süreç Yöneticisi, bir sürecin durumunu koruyan ve ara

sonuçlara dayalı olarak sonraki işlem adımlarını belirleyen merkezi bir bileşendir.

Bir AI işçisi Süreç Yöneticisi olarak hareket ettiğinde, süreci başlatan tetikleme mesajı

olarak bilinen gelen bir mesaj alır. AI işçisi daha sonra süreç yürütmesinin durumunu

(bir görüşme kaydı olarak) korur ve mesajı, sıralı veya paralel olabilen ve kendi takdirine

göre çağrılabilen araç fonksiyonları olarak uygulanan bir dizi işlem adımı aracılığıyla

işler.

GPT-4 gibi fonksiyonları paralel olarak yürütmeyi bilen bir AI model sınıfını

kullanıyorsanız, işçiniz birden fazla adımı eş zamanlı olarak yürütebilir.

Açıkçası, bunu kendim denemedim ve içgüdülerim sonuçların değişkenlik

gösterebileceğini söylüyor.

İşçilerin Çokluğu 98

Her bir işlem adımından sonra kontrol AI işçisine geri döner, böylece mevcut duruma

ve elde edilen sonuçlara göre sonraki işlem adımlarını belirleyebilir.

Tetikleme Mesajlarınızı Saklayın

Deneyimlerime göre, tetikleme mesajınızı veritabanı destekli bir nesne olarak

uygulamak akıllıca bir seçim. Bu şekilde her süreç örneği benzersiz bir birincil anahtar

ile tanımlanır ve AI’nin görüşme kaydı da dahil olmak üzere yürütmeyle ilişkili durumu

depolamak için size bir yer sağlar.

Örneğin, işte Olympia’nın bir kullanıcının hesabında değişiklik yapma isteğini temsil

eden AccountChange model sınıfının basitleştirilmiş bir versiyonu.

1 # == Schema Information

2 #

3 # Table name: account_changes

4 #

5 # id :uuid not null, primary key

6 # description :string

7 # state :string not null

8 # transcript :jsonb

9 # created_at :datetime not null

10 # updated_at :datetime not null

11 # account_id :uuid not null

12 #

13 # Indexes

14 #

15 # index_account_changes_on_account_id (account_id)

16 #

17 # Foreign Keys

18 #

19 # fk_rails_... (account_id => accounts.id)

20 #

21 class AccountChange < ApplicationRecord

22 belongs_to :account

23

24 validates :description, presence: true

25

İşçilerin Çokluğu 99

26 after_commit -> {

27 broadcast(:account_change_requested, self)

28 }, on: :create

29

30 state_machine initial: :requested do

31 event :completed do

32 transition all => :complete

33 end

34 event :failed do

35 transition all => :requires_human_review

36 end

37 end

38 end

AccountChange sınıfı, hesap değişikliği isteğini işleme almak için bir süreç başlatan

tetikleyici mesaj görevi görür. Oluşturma işlemi tamamlandıktan sonra Olympia’nın

Wisper tabanlı yayınla-abone ol alt sistemine nasıl yayınlandığına dikkat edin.

Tetikleyici mesajı veritabanında bu şekilde saklamak, her hesap değişikliği isteğinin

kalıcı bir kaydını sağlar. AccountChange sınıfının her örneği, benzersiz bir birincil

anahtarla ilişkilendirilir ve bu da tek tek isteklerin kolayca tanımlanmasını ve

izlenmesini sağlar. Bu özellikle denetim günlüğü amaçları için kullanışlıdır, çünkü

sistemin tüm hesap değişikliklerinin ne zaman talep edildiği, hangi değişikliklerin

istendiği ve her isteğin mevcut durumu dahil olmak üzere geçmiş kayıtlarını tutmasını

sağlar.

Verilen örnekte, AccountChange sınıfı, istenen değişikliğin ayrıntılarını yakalamak için

description, isteğin mevcut durumunu temsil etmek için state (örneğin, requested,

complete, requires_human_review) ve istekle ilgili yapay zeka konuşma dökümünü

saklamak için transcript gibi alanları içerir. description alanı, yapay zeka ile ilk

sohbet tamamlamasını başlatmak için kullanılan asıl istektir. Bu verilerin saklanması,

değerli bağlam sağlar ve hesap değişikliği sürecinin daha iyi takip edilmesine ve analiz

edilmesine olanak tanır.

Tetikleyici mesajların veritabanında saklanması, sağlam hata yönetimi ve kurtarma

olanağı sağlar. Bir hesap değişikliği isteğinin işlenmesi sırasında bir hata oluşursa,

https://github.com/krisleech/wisper

İşçilerin Çokluğu 100

sistem isteği başarısız olarak işaretler ve insan müdahalesi gerektiren bir duruma geçirir.

Bu, hiçbir isteğin kaybolmadığından veya unutulmadığından ve herhangi bir sorunun

uygun şekilde ele alınıp çözülebildiğinden emin olunmasını sağlar.

Süreç Yöneticisi olarak yapay zeka çalışanı, merkezi bir kontrol noktası sağlar ve

güçlü süreç raporlama ve hata ayıklama yetenekleri sunar. Ancak, uygulamanızdaki

her iş akışı senaryosu için bir Süreç Yöneticisi olarak yapay zeka çalışanı kullanmanın

gereğinden fazla olabileceğini unutmamak önemlidir.

Yapay Zeka Çalışanlarını Uygulama Mimarinize

Entegre Etme

Yapay zeka çalışanlarını uygulama mimarinize entegre ederken, yapay zeka çalışanları

ile diğer uygulama bileşenleri arasında sorunsuz entegrasyon ve etkili iletişimi sağlamak

için birkaç teknik hususun ele alınması gerekir. Bu bölüm, bu arayüzlerin tasarlanması,

veri akışının yönetilmesi ve yapay zeka çalışanlarının yaşam döngüsünün yönetilmesi

konularındaki temel yönleri ele almaktadır.

Net Arayüzler ve İletişim Protokolleri Tasarlama

Yapay zeka çalışanları ile diğer uygulama bileşenleri arasında sorunsuz entegrasyonu

kolaylaştırmak için net arayüzler ve iletişim protokolleri tanımlamak çok önemlidir.

Aşağıdaki yaklaşımları göz önünde bulundurun:

API Tabanlı Entegrasyon: Yapay zeka çalışanlarının işlevselliğini RESTful uç noktaları

veya GraphQL şemaları gibi iyi tanımlanmış API’ler aracılığıyla sunun. Bu, diğer

bileşenlerin standart HTTP istekleri ve yanıtları kullanarak yapay zeka çalışanlarıyla

etkileşim kurmasına olanak tanır. API tabanlı entegrasyon, yapay zeka çalışanları

İşçilerin Çokluğu 101

ile tüketen bileşenler arasında net bir sözleşme sağlayarak entegrasyon noktalarının

geliştirilmesini, test edilmesini ve bakımını kolaylaştırır.

Mesaj Tabanlı İletişim: Yapay zeka çalışanları ile diğer bileşenler arasında asenkron

etkileşimi sağlamak için mesaj kuyrukları veya yayınla-abone ol sistemleri gibi

mesaj tabanlı iletişim modellerini uygulayın. Bu yaklaşım, yapay zeka çalışanlarını

uygulamanın geri kalanından ayırarak daha iyi ölçeklenebilirlik, hata toleransı

ve gevşek bağlantı sağlar. Mesaj tabanlı iletişim, özellikle yapay zeka çalışanları

tarafından gerçekleştirilen işlemin zaman alıcı veya kaynak yoğun olduğu durumlarda

kullanışlıdır, çünkü uygulamanın diğer bölümlerinin yapay zeka çalışanlarının

görevlerini tamamlamasını beklemeden çalışmaya devam etmesine olanak tanır.

Olay Güdümlü Mimari: Sisteminizi, belirli koşullar karşılandığında yapay zeka

çalışanlarını etkinleştiren olaylar ve tetikleyiciler etrafında tasarlayın. Yapay zeka

çalışanları ilgili olaylara abone olabilir ve olaylar gerçekleştiğinde uygun şekilde tepki

vererek atanmış görevlerini yerine getirebilir. Olay güdümlü mimari, gerçek zamanlı

işlemeyi mümkün kılar ve yapay zeka çalışanlarının talep üzerine çağrılmasına olanak

tanıyarak gereksiz kaynak tüketimini azaltır. Bu yaklaşım, yapay zeka çalışanlarının

belirli eylemlere veya uygulama durumundaki değişikliklere yanıt vermesi gereken

senaryolar için uygundur.

Veri Akışı ve Senkronizasyonu Yönetme

Yapay zeka çalışanlarını uygulamanıza entegre ederken, veri akışının sorunsuz olmasını

sağlamak ve yapay zeka çalışanları ile diğer bileşenler arasında veri tutarlılığını korumak

çok önemlidir. Aşağıdaki yönleri göz önünde bulundurun:

Veri Hazırlama: Verileri yapay zeka çalışanlarına beslemeden önce, giriş verilerini

temizleme, biçimlendirme ve/veya dönüştürme gibi çeşitli veri hazırlama görevlerini

gerçekleştirmeniz gerekebilir. Sadece yapay zeka çalışanlarının verileri etkili bir

şekilde işleyebilmesini sağlamak istemezsiniz, aynı zamanda çalışanın en iyi ihtimalle

gereksiz, en kötü ihtimalle dikkat dağıtıcı olarak değerlendirebileceği bilgilere belirteç

İşçilerin Çokluğu 102

harcamamak için de dikkatli olmalısınız. Veri hazırlama, gürültüyü kaldırma, eksik

değerleri işleme veya veri türlerini dönüştürme gibi görevleri içerebilir.

Veri Kalıcılığı: Yapay zeka çalışanlarına giren ve çıkan verileri nasıl saklayacak ve kalıcı

hale getireceksiniz? Veri hacmi, sorgu desenleri ve ölçeklenebilirlik gibi faktörleri göz

önünde bulundurun. Denetim veya hata ayıklama amaçları için yapay zekanın “düşünce

sürecinin” bir yansıması olarak konuşma dökümünü kalıcı hale getirmeniz mi gerekiyor,

yoksa sadece sonuçların kaydını tutmak yeterli mi?

Veri Alımı: İşçilerin ihtiyaç duyduğu verileri almak, veritabanlarını sorgulama,

dosyalardan okuma veya harici API’lere erişim içerebilir. Gecikme süresini ve

yapay zeka işçilerinin en güncel verilere nasıl erişeceğini göz önünde bulundurun.

Veritabanınıza tam erişime mi ihtiyaçları var yoksa erişim kapsamını yaptıkları işe

göre dar bir şekilde mi tanımlamalısınız? Ya ölçeklendirme? Performansı artırmak ve

altta yatan veri kaynaklarının yükünü azaltmak için önbelleğe alma mekanizmalarını

düşünün.

Veri Senkronizasyonu: Yapay zeka işçileri de dahil olmak üzere birden fazla bileşen

paylaşılan verilere erişip bunları değiştirdiğinde, veri tutarlılığını korumak için

uygun senkronizasyon mekanizmalarının uygulanması önemlidir. İyimser veya

kötümser kilitleme gibi veritabanı kilitleme stratejileri, çakışmaları önlemenize ve

veri bütünlüğünü sağlamanıza yardımcı olabilir. İlgili veri işlemlerini gruplamak ve

atomiklik, tutarlılık, izolasyon ve dayanıklılık (ACID) özelliklerini korumak için işlem

yönetimi tekniklerini uygulayın.

Hata Yönetimi ve Kurtarma: Veri akışı süreci sırasında ortaya çıkabilecek veriyle ilgili

sorunları ele almak için sağlam hata yönetimi ve kurtarma mekanizmaları uygulayın.

İstisnaları zarif bir şekilde ele alın ve hata ayıklamaya yardımcı olmak için anlamlı hata

mesajları sağlayın. Geçici arızaları veya ağ kesintilerini ele almak için yeniden deneme

mekanizmaları ve yedek stratejiler uygulayın. Veri bozulması veya kaybı durumunda

veri kurtarma ve geri yükleme için net prosedürler tanımlayın.

Veri akışı ve senkronizasyon mekanizmalarını dikkatli bir şekilde tasarlayıp

İşçilerin Çokluğu 103

uygulayarak, yapay zeka işçilerinizin doğru, tutarlı ve güncel verilere erişmesini

sağlayabilirsiniz. Bu, görevlerini etkili bir şekilde yerine getirmelerini ve güvenilir

sonuçlar üretmelerini sağlar.

Yapay Zeka İşçilerinin Yaşam Döngüsünü Yönetme

Yapay zeka işçilerini başlatmak ve yapılandırmak için standartlaştırılmış bir süreç

geliştirin. Model adları, sistem direktifleri ve fonksiyon tanımları gibi ayarların

nasıl tanımlanacağını standartlaştıran çerçeveleri tercih ediyorum. Dağıtım ve

ölçeklendirmeyi kolaylaştırmak için başlatma sürecinin otomatik ve tekrarlanabilir

olmasını sağlayın.

Yapay zeka işçilerinin sağlığını ve performansını izlemek için kapsamlı izleme ve günlük

kaydı mekanizmaları uygulayın. Kaynak kullanımı, işlem süresi, hata oranları ve verim

gibi metrikleri toplayın. Birden fazla yapay zeka işçisinden gelen günlükleri toplamak

ve analiz etmek için ELK yığını (Elasticsearch, Logstash, Kibana) gibi merkezi günlük

sistemleri kullanın.

Yapay zeka işçisi mimarisine hata toleransı ve dayanıklılık ekleyin. Arızaları veya

istisnaları zarif bir şekilde ele almak için hata yönetimi ve kurtarma mekanizmaları

uygulayın. Büyük Dil Modelleri hala gelişmekte olan bir teknoloji; sağlayıcılar

genellikle beklenmedik zamanlarda çökme eğilimindedir. Zincirleme arızaları önlemek

için yeniden deneme mekanizmaları ve devre kesiciler kullanın.

Yapay Zeka İşçilerinin Birleştirilebilirliği ve

Orkestrayonu

Yapay zeka işçisi mimarisinin temel avantajlarından biri, karmaşık problemleri çözmek

için birden fazla yapay zeka işçisini birleştirmenize ve orkestre etmenize olanak sağlayan

birleştirilebilirliğidir. Daha büyük bir görevi, her biri özelleşmiş bir yapay zeka işçisi

İşçilerin Çokluğu 104

tarafından ele alınan daha küçük, daha yönetilebilir alt görevlere bölerek güçlü ve esnek

sistemler oluşturabilirsiniz. Bu bölümde, “çok sayıda” yapay zeka işçisini birleştirme ve

orkestre etmenin farklı yaklaşımlarını inceleyeceğiz.

Çok Adımlı İş Akışları için Yapay Zeka İşçilerini Zincirleme

Birçok senaryoda, karmaşık bir görev, bir yapay zeka işçisinin çıktısının bir sonrakinin

girdisi haline geldiği bir dizi ardışık adıma ayrılabilir. Bu yapay zeka işçilerinin

zincirlenmesi çok adımlı bir iş akışı veya pipeline oluşturur. Zincirdeki her yapay zeka

işçisi belirli bir alt göreve odaklanır ve nihai çıktı, tüm işçilerin birleşik çabalarının

sonucudur.

Kullanıcı tarafından oluşturulan içeriği işlemek için bir Ruby on Rails uygulaması

bağlamında bir örnek düşünelim. İş akışı aşağıdaki adımları içerir ki bunların her biri

muhtemelen gerçek hayatta bu şekilde ayrıştırılmaya değmeyecek kadar basittir, ancak

örneği anlamayı kolaylaştırırlar:

1. Metin Temizleme: HTML etiketlerini kaldırmak, metni küçük harfe dönüştürmek ve

Unicode normalleştirmesini ele almaktan sorumlu bir yapay zeka işçisi.

2. Dil Algılama: Temizlenmiş metnin dilini tanımlayan bir yapay zeka işçisi.

3. Duygu Analizi: Algılanan dile göre metnin duygusunu (pozitif, negatif veya nötr)

belirleyen bir yapay zeka işçisi.

4. İçerik Kategorizasyonu: Doğal dil işleme tekniklerini kullanarak metni önceden

tanımlanmış kategorilere sınıflandıran bir yapay zeka işçisi.

İşte Ruby kullanarak bu yapay zeka işçilerini birbirine zincirlemenin çok basitleştirilmiş

bir örneği:

İşçilerin Çokluğu 105

1 class ContentProcessor

2 def initialize(text)

3 @text = text

4 end

5

6 def process

7 cleaned_text = TextCleanupWorker.new(@text).call

8 language = LanguageDetectionWorker.new(cleaned_text).call

9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

10 category = CategorizationWorker.new(cleaned_text, language).call

11

12 { cleaned_text:, language:, sentiment:, category: }

13 end

14 end

Bu örnekte, ContentProcessor sınıfı ham metin ile başlatılır ve processmetodunda

YZ işçilerini birbirine zincirleme bağlar. Her YZ işçisi kendi özel görevini yerine getirir

ve sonucu zincirdeki bir sonraki işçiye aktarır. Son çıktı, temizlenmiş metin, algılanan

dil, duygu durumu ve içerik kategorisini içeren bir hash’tir.

Bağımsız YZ İşçileri için Paralel İşleme

Önceki örnekte, YZ işçileri sıralı bir şekilde zincirlenmişti; her işçi metni işliyor ve

sonucu bir sonraki işçiye aktarıyordu. Ancak, aynı girdi üzerinde bağımsız olarak

çalışabilen birden fazla YZ işçiniz varsa, bunları paralel olarak işleyerek iş akışını

optimize edebilirsiniz.

Verilen senaryoda, metin TextCleanupWorker tarafından temizlendikten

sonra, LanguageDetectionWorker, SentimentAnalysisWorker ve

CategorizationWorker temizlenmiş metni bağımsız olarak işleyebilir. Bu işçileri

paralel olarak çalıştırarak, genel işlem süresini potansiyel olarak azaltabilir ve iş

akışınızın verimliliğini artırabilirsiniz.

Ruby’de paralel işleme elde etmek için iş parçacıkları veya asenkron programlama

gibi eşzamanlılık tekniklerinden yararlanabilirsiniz. İşte ContentProcessor sınıfını,

İşçilerin Çokluğu 106

son üç işçiyi iş parçacıklarını kullanarak paralel olarak işleyecek şekilde nasıl

değiştirebileceğinize dair bir örnek:

1 require 'concurrent'

2

3 class ContentProcessor

4 def initialize(text)

5 @text = text

6 end

7

8 def process

9 cleaned_text = TextCleanupWorker.new(@text).call

10

11 language_future = Concurrent::Future.execute do

12 LanguageDetectionWorker.new(cleaned_text).call

13 end

14

15 sentiment_future = Concurrent::Future.execute do

16 SentimentAnalysisWorker.new(cleaned_text).call

17 end

18

19 category_future = Concurrent::Future.execute do

20 CategorizationWorker.new(cleaned_text).call

21 end

22

23 language = language_future.value

24 sentiment = sentiment_future.value

25 category = category_future.value

26

27 { cleaned_text:, language:, sentiment:, category: }

28 end

29 end

Bu optimize edilmiş versiyonda, bağımsız AI işçileri için Concurrent::Future

nesneleri oluşturmak üzere concurrent-ruby kütüphanesini kullanıyoruz. Bir

Future, ayrı bir iş parçacığında eşzamansız olarak gerçekleştirilecek bir hesaplamayı

temsil eder.

Metin temizleme adımından sonra, üç Future nesnesi oluşturuyoruz:

language_future, sentiment_future ve category_future. Her Future,

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

İşçilerin Çokluğu 107

karşılık gelen AI işçisini (LanguageDetectionWorker, SentimentAnalysisWorker

ve CategorizationWorker) ayrı bir iş parçacığında çalıştırır ve cleaned_text’i

girdi olarak iletir.

Her Future’ın value metodunu çağırarak, hesaplamanın tamamlanmasını bekler ve

sonucu alırız. value metodu, sonuç kullanılabilir olana kadar bloklar ve tüm paralel

işçilerin işlemlerini tamamladığından emin olur.

Son olarak, orijinal örnekte olduğu gibi, temizlenmiş metin ve paralel işçilerden gelen

sonuçlarla çıktı hash’ini oluştururuz.

Bağımsız AI işçilerini paralel olarak işleyerek, sıralı çalıştırmaya kıyasla genel işlem

süresini potansiyel olarak azaltabilirsiniz. Bu optimizasyon özellikle zaman alıcı

görevlerle uğraşırken veya büyük veri hacimleri işlenirken faydalıdır.

Ancak, gerçek performans kazanımlarının her bir işçinin karmaşıklığı, mevcut sistem

kaynakları ve iş parçacığı yönetiminin ek yükü gibi çeşitli faktörlere bağlı olduğunu

unutmamak önemlidir. Belirli kullanım senaryonuz için optimal paralellik seviyesini

belirlemek üzere kodunuzu kıyaslamak ve profillemek her zaman iyi bir uygulamadır.

Ek olarak, paralel işleme uygularken, işçiler arasındaki paylaşılan kaynakları veya

bağımlılıkları göz önünde bulundurmanız gerekir. İşçilerin çakışma veya yarış koşulları

olmadan bağımsız çalışabildiğinden emin olun. Bağımlılıklar veya paylaşılan kaynaklar

varsa, veri bütünlüğünü korumak ve kilitlenme veya tutarsız sonuçlar gibi sorunları

önlemek için uygun senkronizasyon mekanizmaları uygulamanız gerekebilir.

Ruby’nin Global Interpreter Lock’u ve Eşzamansız
İşleme

Ruby’de iş parçacığı tabanlı eşzamansız işlemeyi düşünürken Ruby’nin Global

Interpreter Lock (GIL) etkilerini anlamak önemlidir.

İşçilerin Çokluğu 108

GIL, çok çekirdekli işlemcilerde bile bir seferde yalnızca bir iş parçacığının Ruby

kodunu çalıştırabilmesini sağlayan Ruby yorumlayıcısındaki bir mekanizmadır. Bu,

bir Ruby işlemi içinde birden çok iş parçacığı oluşturulup yönetilebilse de, herhangi

bir anda yalnızca bir iş parçacığının aktif olarak Ruby kodu çalıştırabileceği anlamına

gelir.

GIL, Ruby yorumlayıcısının uygulanmasını basitleştirmek ve Ruby’nin dahili veri

yapıları için iş parçacığı güvenliği sağlamak üzere tasarlanmıştır. Ancak aynı

zamanda Ruby kodunun gerçek paralel yürütülme potansiyelini de sınırlar.

Ruby’de concurrent-ruby kütüphanesi veya yerleşik Thread sınıfı gibi iş

parçacıklarını kullandığınızda, iş parçacıkları GIL’in kısıtlamalarına tabidir. GIL,

her iş parçacığının başka bir iş parçacığına geçmeden önce kısa bir süre Ruby kodu

çalıştırmasına izin vererek, eşzamanlı yürütme yanılsaması yaratır.

Ancak, GIL nedeniyle, Ruby kodunun gerçek yürütülmesi sıralı kalır. Bir iş parçacığı

Ruby kodu çalıştırırken, diğer iş parçacıkları esasen duraklatılır ve GIL’i edinip

çalıştırmak için sıralarını bekler.

Bu, Ruby’de iş parçacığı tabanlı eşzamansız işlemenin, harici API yanıtlarını (3.

taraf barındırılan büyük dil modelleri gibi) beklemek veya dosya G/Ç işlemleri

gerçekleştirmek gibi G/Ç bağımlı görevler için en etkili olduğu anlamına gelir. Bir

iş parçacığı bir G/Ç işlemiyle karşılaştığında, GIL’i serbest bırakabilir ve G/Ç’nin

tamamlanmasını beklerken diğer iş parçacıklarının çalışmasına izin verebilir.

Öte yandan, yoğun hesaplamalar veya uzun süren AI işçi işlemeleri gibi CPU

bağımlı görevler için, GIL iş parçacığı tabanlı paralelliğin potansiyel performans

kazanımlarını sınırlayabilir. Bir seferde yalnızca bir iş parçacığı Ruby kodu

çalıştırabildiğinden, genel yürütme süresi sıralı işlemeye kıyasla önemli ölçüde

azalmayabilir.

Ruby’de CPU bağımlı görevler için gerçek paralel yürütme elde etmek için şu

alternatif yaklaşımları keşfetmeniz gerekebilir:

İşçilerin Çokluğu 109

• Her biri ayrı bir CPU çekirdeğinde çalışan birden çok Ruby işlemi ile işlem

tabanlı paralellik kullanmak.

• GIL’e sahip olmayan C veya Rust gibi dillere yerel uzantılar veya arayüzler

sağlayan harici kütüphaneleri veya çerçeveleri kullanmak.,

• Görevleri birden çok makine veya işlem arasında dağıtmak için dağıtık

hesaplama çerçeveleri veya mesaj kuyrukları kullanmak.

Ruby’de eşzamansız işleme tasarlarken ve uygularken görevlerinizin doğasını ve

GIL tarafından getirilen sınırlamaları göz önünde bulundurmak çok önemlidir.

İş parçacığı tabanlı eşzamansız işleme G/Ç bağımlı görevler için faydalar

sağlayabilirken, GIL’in kısıtlamaları nedeniyle CPU bağımlı görevler için önemli

performans iyileştirmeleri sunmayabilir.

Gelişmiş Doğruluk için Topluluk Teknikleri

Topluluk teknikleri, sistemin genel doğruluğunu veya sağlamlığını iyileştirmek için

birden çok AI işçisinin çıktılarını birleştirmeyi içerir. Tek bir AI işçisine güvenmek

yerine, topluluk teknikleri daha bilinçli kararlar almak için birden çok işçinin kolektif

zekasından yararlanır.

Topluluklar, iş akışınızın farklı bölümleri farklı yapay zeka modelleriyle

daha iyi çalıştığında özellikle önemlidir ki bu düşündüğünüzden daha

yaygın bir durumdur. GPT-4 gibi güçlü modeller, daha az yetenekli

açık kaynak seçeneklerine kıyasla oldukça pahalıdır ve muhtemelen

uygulamanızın her iş akışı adımı için gerekli değildir.

Yaygın bir topluluk tekniği olan çoğunluk oylaması, birden fazla yapay zeka bileşeninin

aynı girdiyi bağımsız olarak işlediği ve nihai çıktının çoğunluğun konsensüsü ile

İşçilerin Çokluğu 110

belirlendiği bir yöntemdir. Bu yaklaşım, bireysel bileşen hatalarının etkisini azaltmaya

ve sistemin genel güvenilirliğini artırmaya yardımcı olabilir.

Duygu analizi için farklı modeller kullanan veya farklı bağlamlarla donatılmış üç

yapay zeka bileşenine sahip olduğumuz bir örneği düşünelim. Nihai duygu tahminini

belirlemek için çoğunluk oylaması kullanarak bu bileşenlerin çıktılarını birleştirebiliriz.

1 class SentimentAnalysisEnsemble

2 def initialize(text)

3 @text = text

4 end

5

6 def analyze

7 predictions = [

8 SentimentAnalysisWorker1.new(@text).analyze,

9 SentimentAnalysisWorker2.new(@text).analyze,

10 SentimentAnalysisWorker3.new(@text).analyze

11]

12

13 predictions

14 .group_by { |sentiment| sentiment }

15 .max_by { |_, votes| votes.size }

16 .first

17

18 end

19 end

Bu örnekte, SentimentAnalysisEnsemble sınıfı metin ile başlatılır ve üç farklı duygu

analizi yapay zeka işçisini çağırır. analyze metodu her işçiden tahminleri toplar ve

group_by ve max_by metotlarını kullanarak çoğunluk duygusunu belirler. Final çıktı,

işçiler topluluğundan en çok oyu alan duygudur.

Topluluklar açıkça paralellik ile denemeler yapmanın değerli olabileceği bir

durumdur.

İşçilerin Çokluğu 111

Yapay Zeka İşçilerinin Dinamik Seçimi ve Çağrılması

Bazı, hatta çoğu durumda, çağrılacak belirli yapay zeka işçisi çalışma zamanı koşullarına

veya kullanıcı girdilerine bağlı olabilir. Yapay zeka işçilerinin dinamik seçimi ve

çağrılması, sistemde esneklik ve uyarlanabilirlik sağlar.

Kendinizi tek bir yapay zeka işçisine çok fazla işlevsellik sığdırmaya

çalışırken bulabilirsiniz; ona birçok fonksiyon ve bunların nasıl çağrılacağını

açıklayan büyük, karmaşık bir yönerge vermeye çalışabilirsiniz. Bu cazibeye

direnin, bana güvenin. Bu bölümde tartıştığımız yaklaşımın “İşçiler

Çokluğu” olarak adlandırılmasının nedenlerinden biri, daha büyük bir

amaca hizmet eden, her biri kendi küçük işini yapan çok sayıda uzmanlaşmış

işçiye sahip olmanın arzu edilir olduğunu hatırlatmaktır.

Örneğin, farklı yapay zeka işçilerinin farklı türdeki kullanıcı sorgularını işlemekten

sorumlu olduğu bir sohbet robotu uygulamasını düşünün. Uygulama, kullanıcının

girdisine bağlı olarak sorguyu işlemek için uygun yapay zeka işçisini dinamik olarak

seçer.

1 class ChatbotController < ApplicationController

2 def process_query

3 query = params[:query]

4 query_type = QueryClassifierWorker.new(query).classify

5

6 case query_type

7 when 'greeting'

8 response = GreetingWorker.new(query).generate_response

9 when 'product_inquiry'

10 response = ProductInquiryWorker.new(query).generate_response

11 when 'order_status'

12 response = OrderStatusWorker.new(query).generate_response

13 else

14 response = DefaultResponseWorker.new(query).generate_response

15 end

16

İşçilerin Çokluğu 112

17 render json: { response: response }

18 end

19 end

Bu örnekte, ChatbotController kullanıcı sorgusunu process_query

eylemi aracılığıyla alır. İlk olarak, sorgunun türünü belirlemek için bir

QueryClassifierWorker kullanır. Sınıflandırılmış sorgu türüne bağlı olarak,

denetleyici yanıtı oluşturmak için uygun YZ çalışanını dinamik olarak seçer. Bu

dinamik seçim, sohbet robotunun farklı türdeki sorguları işlemesine ve bunları ilgili YZ

çalışanlarına yönlendirmesine olanak tanır.

QueryClassifierWorker’ın işi göreceli olarak basit olduğundan ve çok

fazla bağlam veya fonksiyon tanımı gerektirmediğinden, muhtemelen

mistralai/mixtral-8x7b-instruct:nitro gibi ultra hızlı küçük bir

BDM kullanarak bunu uygulayabilirsiniz. Birçok görevde GPT-4 seviyesine

yakın yeteneklere sahip ve bu satırları yazdığım sırada, Groq bunu müthiş

bir 444 token/saniye hızında sunabiliyor.

Geleneksel DDİ’yi BDM’lerle Birleştirme

Büyük Dil Modelleri (BDM), doğal dil işleme (DDİ) alanında devrim yaratmış ve

çok çeşitli görevlerde benzersiz çok yönlülük ve performans sunmuş olsa da, her

problem için her zaman en verimli veya maliyet-etkin çözüm değildir. Birçok durumda,

geleneksel DDİ tekniklerini BDM’lerle birleştirmek, belirli DDİ zorluklarını çözmek için

daha optimize edilmiş, hedefe yönelik ve ekonomik yaklaşımlara yol açabilir.

BDM’leri DDİ’nin İsviçre çakıları olarak düşünün—inanılmaz derecede çok yönlü ve

güçlü, ancak her iş için mutlaka en iyi araç değil. Bazen, tirbuşon veya konserve açacağı

gibi özel bir araç, belirli bir görev için daha etkili ve verimli olabilir. Benzer şekilde,

belge kümeleme, konu tanımlama ve sınıflandırma gibi geleneksel DDİ teknikleri, DDİ

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

İşçilerin Çokluğu 113

sürecinizin belirli yönleri için genellikle daha hedefe yönelik ve maliyet-etkin çözümler

sunabilir.

Geleneksel DDİ tekniklerinin temel avantajlarından biri, hesaplama verimlilikleridir.

Genellikle daha basit istatistiksel modellere veya kural tabanlı yaklaşımlara dayanan

bu yöntemler, BDM’lere kıyasla büyük metin verilerini çok daha hızlı ve daha düşük

hesaplama yüküyle işleyebilir. Bu, benzer makaleleri kümelemek veya bir metin

koleksiyonu içindeki temel konuları belirlemek gibi büyük belge korpuslarını analiz

etmeyi ve düzenlemeyi içeren görevler için özellikle uygundur.

Ayrıca, geleneksel DDİ teknikleri, özellikle alana özgü veri setleri üzerinde

eğitildiklerinde, belirli görevler için genellikle yüksek doğruluk ve hassasiyet elde

edebilir. Örneğin, Destek Vektör Makineleri (DVM) veya Naive Bayes gibi geleneksel

makine öğrenimi algoritmalarını kullanan iyi ayarlanmış bir belge sınıflandırıcı,

minimum hesaplama maliyetiyle belgeleri önceden tanımlanmış kategorilere doğru bir

şekilde sınıflandırabilir.

Ancak, BDM’ler dil, bağlam ve akıl yürütmenin daha derin bir anlayışını gerektiren

görevlerde gerçekten parlar. Tutarlı ve bağlamsal olarak ilgili metin üretme, soruları

yanıtlama ve uzun pasajları özetleme yetenekleri, geleneksel DDİ yöntemleri tarafından

eşlenemez. BDM’ler belirsizlik, eş referans ve deyimsel ifadeler gibi karmaşık dilbilimsel

olguları etkili bir şekilde ele alabilir, bu da onları doğal dil üretimi veya anlama

gerektiren görevler için paha biçilmez kılar.

Asıl güç, her ikisinin de güçlü yönlerinden yararlanan hibrit yaklaşımlar oluşturmak

için geleneksel DDİ tekniklerini BDM’lerle birleştirmekte yatar. Belge ön işleme,

kümeleme ve konu çıkarma gibi görevler için geleneksel DDİ yöntemlerini kullanarak,

metin verilerinizi verimli bir şekilde düzenleyebilir ve yapılandırabilirsiniz. Bu

yapılandırılmış bilgiler daha sonra özetler oluşturma, soruları yanıtlama veya kapsamlı

raporlar oluşturma gibi daha gelişmiş görevler için BDM’lere beslenebilir.

Örneğin, büyük bir bireysel trend belgeleri korpusuna dayalı olarak belirli bir alan için

bir trendler raporu oluşturmak istediğiniz bir kullanım durumunu düşünelim. Büyük

İşçilerin Çokluğu 114

metin hacimlerini işlemek için hesaplama açısından pahalı ve zaman alıcı olabilen

yalnızca BDM’lere güvenmek yerine, hibrit bir yaklaşım kullanabilirsiniz:

1. Benzer trend belgelerini gruplamak ve korpus içindeki temel temaları ve konuları

belirlemek için konu modellemesi (örn. Gizli Dirichlet Tahsisi) veya kümeleme

algoritmaları (örn. K-means) gibi geleneksel DDİ tekniklerini kullanın.

2. Kümelenmiş belgeleri ve tanımlanmış konuları, her küme veya konu için

tutarlı ve bilgilendirici özetler oluşturmak üzere üstün dil anlama ve üretme

yeteneklerinden yararlanarak bir BDM’ye besleyin.

3. Son olarak, bireysel özetleri birleştirerek, en önemli trendleri vurgulayarak ve

toplanan bilgilere dayalı içgörüler ve öneriler sunarak kapsamlı bir trendler raporu

oluşturmak için BDM’yi kullanın.

Geleneksel DDİ tekniklerini BDM’lerle bu şekilde birleştirerek, hesaplama kaynaklarını

ve maliyetleri optimize ederken büyük miktarda metin verisini verimli bir şekilde

işleyebilir, anlamlı içgörüler çıkarabilir ve yüksek kaliteli raporlar oluşturabilirsiniz.

DDİ projelerinize başlarken, her görevin özel gereksinimlerini ve kısıtlamalarını

dikkatle değerlendirmek ve en iyi sonuçları elde etmek için geleneksel DDİ yöntemleri

ile LLM’lerin nasıl birlikte kullanılabileceğini göz önünde bulundurmak önemlidir.

Geleneksel tekniklerin verimliliğini ve hassasiyetini LLM’lerin çok yönlülüğü ve

gücüyle birleştirerek, kullanıcılarınıza ve paydaşlarınıza değer katan, son derece etkili

ve ekonomik DDİ çözümleri oluşturabilirsiniz.

Araç Kullanımı

Yapay zeka destekli uygulama geliştirme alanında, “araç kullanımı” veya

“fonksiyon çağırma” kavramı, LLM’nizin harici araçlara, API’lere, fonksiyonlara,

veritabanlarına ve diğer kaynaklara bağlanmasını sağlayan güçlü bir teknik olarak

ortaya çıkmıştır. Bu yaklaşım, sadece metin çıktısı vermekten daha zengin bir davranış

seti ve AI bileşenleriniz ile uygulamanızın ekosisteminin geri kalanı arasında daha

dinamik etkileşimler sağlar. Bu bölümde inceleyeceğimiz gibi, araç kullanımı aynı

zamanda AI modelinizin verileri yapılandırılmış şekillerde üretmesi seçeneğini de

sunar.

Araç Kullanımı Nedir?

Araç kullanımı, diğer adıyla fonksiyon çağırma, geliştiricilerin LLM’nin üretim süreci

sırasında etkileşimde bulunabileceği fonksiyonların bir listesini belirlemesine olanak

Araç Kullanımı 116

tanıyan bir tekniktir. Bu araçlar, basit yardımcı fonksiyonlardan karmaşık API’lere

veya veritabanı sorgularına kadar uzanabilir. LLM’ye bu araçlara erişim sağlayarak,

geliştiriciler modelin yeteneklerini genişletebilir ve harici bilgi veya eylem gerektiren

görevleri gerçekleştirmesini sağlayabilir.

Şekil 8. Belgeleri analiz eden bir AI çalışanı için fonksiyon tanımı örneği

1 FUNCTION = {

2 name: "save_analysis",

3 description: "Save analysis data for document",

4 parameters: {

5 type: "object",

6 properties: {

7 title: {

8 type: "string",

9 maxLength: 140

10 },

11 summary: {

12 type: "string",

13 description: "comprehensive multi-paragraph summary with

14 overview and list of sections (if applicable)"

15 },

16 tags: {

17 type: "array",

18 items: {

19 type: "string",

20 description: "lowercase tags representing main themes

21 of the document"

22 }

23 }

24 },

25 "required": %w[title summary tags]

26 }

27 }.freeze

Araç kullanımının arkasındaki temel fikir, BDM’ye kullanıcının girdisine veya eldeki

göreve bağlı olarak uygun araçları dinamik olarak seçme ve yürütme yeteneği vermektir.

Yalnızca modelin önceden eğitilmiş bilgisine güvenmek yerine, araç kullanımı BDM’nin

daha doğru, alakalı ve eyleme geçirilebilir yanıtlar üretmek için harici kaynakları

Araç Kullanımı 117

kullanmasına olanak tanır. Araç kullanımı, GGÜ (Geri Getirme ile Güçlendirilmiş

Üretim) gibi tekniklerin uygulanmasını, aksi duruma göre çok daha kolay hale getirir.

Aksi belirtilmedikçe, bu kitap AI modelinizin herhangi bir yerleşik sunucu tarafı

araca erişimi olmadığını varsayar. AI’nızın kullanımına sunmak istediğiniz

her aracın, AI’nız size bu aracı yanıtında kullanmak istediğini söylediğinde

yürütülmesini sağlayacak önlemlerle birlikte, her API isteğinde açıkça sizin

tarafınızdan belirtilmesi gerekir.

Araç Kullanımının Potansiyeli

Araç kullanımı, AI destekli uygulamalar için geniş bir olasılıklar yelpazesi açar. İşte araç

kullanımıyla neler başarılabileceğine dair birkaç örnek:

1. Sohbet Botları ve Sanal Asistanlar: Bir BDM’yi harici araçlara bağlayarak,

sohbet botları ve sanal asistanlar veritabanlarından bilgi alma, API çağrıları

yapma veya diğer sistemlerle etkileşim kurma gibi daha karmaşık görevleri

gerçekleştirebilir. Örneğin, bir sohbet botu kullanıcının isteğine bağlı olarak bir

anlaşmanın durumunu değiştirmek için bir MİY aracını kullanabilir.

2. Veri Analizi ve İçgörüler: BDM’ler gelişmiş veri işleme görevlerini

gerçekleştirmek için veri analizi araçlarına veya kütüphanelerine bağlanabilir.

Bu, uygulamaların kullanıcı sorgularına dayalı olarak içgörüler üretmesini,

karşılaştırmalı analizler yapmasını veya veriye dayalı öneriler sunmasını sağlar.

3. Arama ve Bilgi Getirme: Araç kullanımı, BDM’lerin arama motorları, vektör

veritabanları veya diğer bilgi getirme sistemleriyle etkileşim kurmasına olanak

tanır. BDM, kullanıcı sorgularını arama sorgularına dönüştürerek birden fazla

kaynaktan ilgili bilgileri getirebilir ve kullanıcı sorularına kapsamlı yanıtlar

sağlayabilir.

Araç Kullanımı 118

4. Harici Hizmetlerle Entegrasyon: Araç kullanımı, AI destekli uygulamalar ile

harici hizmetler veya API’ler arasında sorunsuz entegrasyon sağlar. Örneğin, bir

BDM gerçek zamanlı hava durumu güncellemeleri sağlamak için bir hava durumu

API’si ile veya çok dilli yanıtlar üretmek için bir çeviri API’si ile etkileşime

girebilir.

Araç Kullanım İş Akışı

Araç kullanım iş akışı genellikle dört temel adımı içerir:

1. İstek bağlamına fonksiyon tanımlarını dahil etme

2. Dinamik (veya açık) araç seçimi

3. Fonksiyon(lar)ın yürütülmesi

4. Orijinal isteğin isteğe bağlı devamı

Bu adımların her birini detaylı olarak inceleyelim.

İstek bağlamına fonksiyon tanımlarını dahil etme

AI, tamamlama isteğinizin bir parçası olarak verdiğiniz bir liste sayesinde (genellikle

JSON şeması varyantı kullanılarak tanımlanan fonksiyonlar) hangi araçlara sahip

olduğunu bilir.

Araç tanımlama sözdizimi modele özgüdür.

Claude 3’te bir get_weather fonksiyonunu şu şekilde tanımlarsınız:

Araç Kullanımı 119

1 {

2 "name": "get_weather",

3 "description": "Get the current weather in a given location",

4 "input_schema": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA"

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 }

16 },

17 "required": ["location"]

18 }

19 }

Ve aynı fonksiyonu GPT-4 için tanımlamak için, tools parametresinin değeri olarak şu

şekilde iletirsiniz:

1 {

2 "name": "get_current_weather",

3 "description": "Get the current weather in a given location",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA",

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 },

16 },

17 "required": ["location"],

Araç Kullanımı 120

18 },

19 }

Neredeyse aynı, ama görünürde hiçbir sebep yokken farklı! Ne kadar sinir bozucu.

Fonksiyon tanımlamaları isim, açıklama ve giriş parametrelerini belirtir. Giriş

parametreleri, kabul edilebilir değerleri sınırlamak için enum gibi öznitelikler

kullanılarak ve bir parametrenin gerekli olup olmadığı belirtilerek daha ayrıntılı

tanımlanabilir.

Gerçek fonksiyon tanımlamalarına ek olarak, sistem yönergesine fonksiyonun sistemde

neden ve nasıl kullanılacağına dair talimatları veya bağlamı da ekleyebilirsiniz.

Örneğin, Olympia’daki Web Arama aracım, YZ’ye bahsedilen araçların kullanımında

olduğunu hatırlatan şu sistem yönergesini içerir:

1 The `google_search` and `realtime_search` functions let you do research

2 on behalf of the user. In contrast to Google, realtime search is powered

3 by Perplexity and provides real-time information to curated current events

4 databases and news sources. Make sure to include URLs in your response so

5 user can do followup research.

Detaylı açıklamalar sağlamak, araç performansında en önemli faktör olarak kabul edilir.

Açıklamalarınız, araç hakkındaki her detayı açıklamalıdır, bunlar dahil:

• Aracın ne yaptığı

• Ne zaman kullanılması gerektiği (ve ne zaman kullanılmaması gerektiği)

• Her parametrenin ne anlama geldiği ve aracın davranışını nasıl etkilediği

• Aracın uygulamasına ilişkin önemli uyarılar veya kısıtlamalar

Araçlarınız hakkında yapay zekaya ne kadar çok bağlam sağlarsanız, yapay zeka

bu araçları ne zaman ve nasıl kullanacağına o kadar iyi karar verecektir. Örneğin,

Araç Kullanımı 121

Anthropic, Claude 3 serisi için araç başına en az 3-4 cümlelik açıklama önermektedir,

eğer araç karmaşıksa daha fazlası gerekebilir.

Sezgisel olmayabilir, ancak açıklamalar örneklerden daha önemli kabul edilir. Bir

aracın nasıl kullanılacağına dair örnekleri açıklamasına veya beraberindeki yönergeye

ekleyebilirseniz de, bu, aracın amacının ve parametrelerinin net ve kapsamlı bir

açıklamasına sahip olmaktan daha az önemlidir. Örnekleri ancak açıklamayı tam olarak

geliştirdikten sonra ekleyin.

İşte Stripe benzeri bir API fonksiyon spesifikasyonu örneği:

1 {

2 "name": "createPayment",

3 "description": "Create a new payment request",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "transaction_amount": {

8 "type": "number",

9 "description": "The amount to be paid"

10 },

11 "description": {

12 "type": "string",

13 "description": "A brief description of the payment"

14 },

15 "payment_method_id": {

16 "type": "string",

17 "description": "The payment method to be used"

18 },

19 "payer": {

20 "type": "object",

21 "description": "Information about the payer, including their name,

22 email, and identification number",

23 "properties": {

24 "name": {

25 "type": "string",

26 "description": "The payer's name"

27 },

28 "email": {

29 "type": "string",

Araç Kullanımı 122

30 "description": "The payer's email address"

31 },

32 "identification": {

33 "type": "object",

34 "description": "The payer's identification number",

35 "properties": {

36 "type": {

37 "type": "string",

38 "description": "Identification document (e.g. CPF, CNPJ)"

39 },

40 "number": {

41 "type": "string",

42 "description": "The identification number"

43 }

44 },

45 "required": ["type", "number"]

46 }

47 },

48 "required": ["name", "email", "identification"]

49 }

50 }

51 }

Pratikte, bazı modeller iç içe geçmiş fonksiyon tanımlamalarıyla ve

diziler, sözlükler gibi karmaşık çıktı veri türleriyle başa çıkmakta

zorlanır. Ancak teoride, herhangi bir derinlikte JSON Şema tanımlamaları

sağlayabilmelisiniz!

Dinamik Araç Seçimi

Araç tanımlamaları içeren bir sohbet tamamlaması yürüttüğünüzde, DDD dinamik

olarak kullanılacak en uygun araç(ları) seçer ve her araç için gerekli girdi parametrelerini

oluşturur.

Pratikte, yapay zekanın tam olarak doğru fonksiyonu çağırma ve girdi

tanımlamalarınıza tam olarak uyma kapasitesi değişkenlik gösterir. Sıcaklık

Araç Kullanımı 123

hiperparametresini 0.0’a kadar düşürmek çok yardımcı olur, ancak deneyimlerime göre

yine de ara sıra hatalarla karşılaşırsınız. Bu hatalar arasında hayal edilmiş fonksiyon

isimleri, yanlış isimlendirilmiş veya tamamen eksik girdi parametreleri bulunur.

Parametreler JSON olarak iletilir, bu da bazen kesik, yanlış tırnak işaretli veya başka

şekillerde bozuk JSON’dan kaynaklanan hatalar görebileceğiniz anlamına gelir.

Kendi Kendini Onaran Veri desenleri, sözdizimi hatalarından dolayı bozulan

fonksiyon çağrılarını otomatik olarak düzeltmeye yardımcı olabilir.

Zorlanmış (Açık) Araç Seçimi

Bazı modeller, istekte bir parametre olarak belirli bir fonksiyonun çağrılmasını zorlama

seçeneği sunar. Aksi takdirde, fonksiyonun çağrılıp çağrılmayacağı tamamen yapay

zekanın takdirine bağlıdır.

Bir fonksiyon çağrısını zorlama yeteneği, yapay zekanın dinamik seçim sürecinden

bağımsız olarak belirli bir aracın veya fonksiyonun yürütülmesini sağlamak istediğiniz

bazı senaryolarda çok önemlidir. Bu yeteneğin önemli olmasının birkaç nedeni vardır:

1. Açık Kontrol: Yapay zekayı bir Ayrık Bileşen olarak veya belirli bir zamanda

belirli bir fonksiyonun yürütülmesini gerektiren önceden tanımlanmış bir iş

akışında kullanıyor olabilirsiniz. Çağrıyı zorlayarak, yapay zekadan nazikçe

yapmasını istemek yerine istenen fonksiyonun çağrılmasını garanti edebilirsiniz.

2. Hata Ayıklama ve Test: Yapay zeka destekli uygulamaları geliştirirken ve test

ederken, fonksiyon çağrılarını zorlama yeteneği hata ayıklama amaçları için çok

değerlidir. Belirli fonksiyonları açıkça tetikleyerek, uygulamanızın bileşenlerini

izole edebilir ve test edebilirsiniz. Bu, fonksiyon uygulamalarının doğruluğunu

doğrulamanıza, girdi parametrelerini kontrol etmenize ve beklenen sonuçların

döndürüldüğünden emin olmanıza olanak tanır.

Araç Kullanımı 124

3. Uç Durumları Ele Alma: Yapay zekanın dinamik seçim sürecinin, dış süreçlere

dayalı olarak çağırması gerektiğini bildiğiniz bir fonksiyonu seçmeyebileceği uç

durumlar veya istisnai senaryolar olabilir. Bu gibi durumlarda, bir fonksiyon

çağrısını zorlama yeteneği bu durumları açıkça ele almanıza olanak tanır. Yapay

zekanın takdirini ne zaman geçersiz kılacağınızı belirlemek için uygulama

mantığınızda kurallar veya koşullar tanımlayın.

4. Tutarlılık ve Tekrarlanabilirlik: Belirli bir sırayla yürütülmesi gereken belirli bir

fonksiyon diziniz varsa, çağrıları zorlamak her seferinde aynı sıranın izlenmesini

garanti eder. Bu, finansal sistemler veya bilimsel simülasyonlar gibi tutarlılığın ve

öngörülebilir davranışın kritik olduğu uygulamalarda özellikle önemlidir.

5. Performans Optimizasyonu: Bazı durumlarda, bir fonksiyon çağrısını zorlamak

performans optimizasyonlarına yol açabilir. Belirli bir görev için belirli bir

fonksiyonun gerekli olduğunu ve yapay zekanın dinamik seçim sürecinin

gereksiz ek yük getirebileceğini biliyorsanız, seçim sürecini atlayabilir ve gerekli

fonksiyonu doğrudan çağırabilirsiniz. Bu, uygulamanızın genel verimliliğini

artırabilir ve gecikmeyi azaltabilir.

Özetle, yapay zeka destekli uygulamalarda fonksiyon çağrılarını zorlama yeteneği açık

kontrol sağlar, hata ayıklama ve teste yardımcı olur, uç durumları ele alır, tutarlılık ve

tekrarlanabilirlik sağlar. Bu, cephanenizdeki güçlü bir araçtır, ancak bu önemli özelliğin

bir yönünü daha tartışmamız gerekiyor.

Birçok karar verme kullanım durumunda, modelin her zaman bir fonksiyon

çağrısı yapmasını isteyebilir ve modelin asla sadece kendi iç bilgisiyle

yanıt vermesini istemeyebiliriz. Örneğin, farklı görevlerde (çok dilli girdi,

matematik vb.) uzmanlaşmış birden çok model arasında yönlendirme

yapıyorsanız, fonksiyon çağırma modelini istekleri yardımcı modellerden

birine yönlendirmek için kullanabilir ve asla bağımsız olarak yanıt

vermeyebilirsiniz.

Araç Kullanımı 125

Araç Seçimi Parametresi

GPT-4 ve fonksiyon çağırmayı destekleyen diğer dil modelleri, bir tamamlamanın

parçası olarak araç kullanımının gerekli olup olmadığını kontrol etmek için size bir

tool_choice parametresi sunar. Bu parametrenin üç olası değeri vardır:

• auto yapay zekaya bir araç kullanma veya basitçe yanıt verme konusunda tam

takdir yetkisi verir

• required yapay zekaya bir araç çağırması gerektiğini söyler, ancak aracın

seçimini yapay zekaya bırakır

• Üçüncü seçenek, zorlamak istediğiniz name_of_function parametresini

ayarlamaktır. Bununla ilgili daha fazla bilgi bir sonraki bölümde.

tool_choice değerini required olarak ayarlarsanız, modelin verilen

fonksiyonlar arasından, hiçbiri istenen işe tam olarak uymasa bile, en uygun

olanını seçmek zorunda kalacağını unutmayın. Yayın tarihi itibarıyla, boş bir

tool_calls yanıtı döndüren veya uygun bir fonksiyon bulamadığını başka

bir şekilde bildiren bir model bilmiyorum.

Yapılandırılmış Çıktı İçin Fonksiyon Kullanımını Zorunlu
Kılma

Fonksiyon çağrısını zorunlu kılma özelliği, düz metin yanıtından kendiniz çıkarmak

yerine, sohbet tamamlamadan yapılandırılmış veri almanın bir yolunu sunar.

Yapılandırılmış çıktı almak için fonksiyonları zorlamanın neden bu kadar önemli

olduğunu merak ediyor musunuz? Basitçe söylemek gerekirse, BDM çıktısından

yapılandırılmış veri çıkarmak oldukça zahmetli bir iştir. Verileri XML formatında

isteyerek işinizi biraz kolaylaştırabilirsiniz, ancak bu sefer de XML ayrıştırması

Araç Kullanımı 126

yapmanız gerekir. Peki ya YZ size “Üzgünüm, şu şu sebeplerden dolayı istediğiniz

veriyi oluşturamıyorum…” diye yanıt verdiğinde ve XML eksik kaldığında ne

yaparsınız?

Araçları bu şekilde kullanırken:

• Muhtemelen isteğinizde tek bir araç tanımlamalısınız

• tool_choice parametresini kullanarak fonksiyonun kullanımını zorlamayı

unutmayın

• Model girdiyi araca ileteceği için, aracın adı ve açıklaması sizin bakış açınızdan

değil, modelin bakış açısından olmalıdır.

Bu son nokta açıklık getirmek için bir örneği hak ediyor. Diyelim ki YZ’den

kullanıcı metninde duygu analizi yapmasını istiyorsunuz. Fonksiyonun adı

analyze_sentiment değil, save_sentiment_analysis gibi bir şey olmalıdır.

Duygu analizini yapan YZ’dir, araç değil. Aracın yaptığı tek şey (YZ’nin bakış

açısından) analiz sonuçlarını kaydetmektir.

İşte Claude 3 kullanarak bir görüntünün özetini iyi yapılandırılmış JSON formatında

kaydetmenin bir örneği, bu sefer komut satırından curl kullanarak:

Araç Kullanımı 127

1 curl https://api.anthropic.com/v1/messages \

2 --header "content-type: application/json" \

3 --header "x-api-key: $ANTHROPIC_API_KEY" \

4 --header "anthropic-version: 2023-06-01" \

5 --header "anthropic-beta: tools-2024-04-04" \

6 --data \

7 '{

8 "model": "claude-3-sonnet-20240229",

9 "max_tokens": 1024,

10 "tools": [{

11 "name": "record_summary",

12 "description": "Record summary of image into well-structured JSON.",

13 "input_schema": {

14 "type": "object",

15 "properties": {

16 "key_colors": {

17 "type": "array",

18 "items": {

19 "type": "object",

20 "properties": {

21 "r": {

22 "type": "number",

23 "description": "red value [0.0, 1.0]"

24 },

25 "g": {

26 "type": "number",

27 "description": "green value [0.0, 1.0]"

28 },

29 "b": {

30 "type": "number",

31 "description": "blue value [0.0, 1.0]"

32 },

33 "name": {

34 "type": "string",

35 "description": "Human-readable color name

36 in snake_case, e.g.

37 \"olive_green\"or

38 \"turquoise\""

39 }

40 },

41 "required": ["r", "g", "b", "name"]

42 },

Araç Kullanımı 128

43 "description": "Key colors in the image. Four or less."

44 },

45 "description": {

46 "type": "string",

47 "description": "Image description. 1-2 sentences max."

48 },

49 "estimated_year": {

50 "type": "integer",

51 "description": "Estimated year that the image was taken,

52 if is it a photo. Only set this if the

53 image appears to be non-fictional.

54 Rough estimates are okay!"

55 }

56 },

57 "required": ["key_colors", "description"]

58 }

59 }],

60 "messages": [

61 {

62 "role": "user",

63 "content": [

64 {

65 "type": "image",

66 "source": {

67 "type": "base64",

68 "media_type": "'$IMAGE_MEDIA_TYPE'",

69 "data": "'$IMAGE_BASE64'"

70 }

71 },

72 {

73 "type": "text",

74 "text": "Use `record_summary` to describe this image."

75 }

76]

77 }

78]

79 }'

Verilen örnekte, bir görüntünün yapılandırılmış JSON özetini oluşturmak için

Anthropic’ten Claude 3 modelini kullanıyoruz. İşte nasıl çalışıyor:

Araç Kullanımı 129

1. İstek yükünün tools dizisinde record_summary adında tek bir araç

tanımlıyoruz. Bu araç, görüntünün özetini iyi yapılandırılmış JSON formatında

kaydetmekten sorumludur.

2. record_summary aracı, JSON çıktısının beklenen yapısını belirten bir input_-

schema’ya sahiptir. Üç özellik tanımlar:

• key_colors: Görüntüdeki ana renkleri temsil eden nesneler dizisi. Her renk

nesnesi, kırmızı, yeşil ve mavi değerleri için özellikler (0.0 ile 1.0 arasında) ve

snake_case formatında insan tarafından okunabilir bir renk adına sahiptir.

• description: Görüntünün 1-2 cümlelik kısa açıklaması için bir string

özelliği.

• estimated_year: Kurgu dışı bir fotoğraf gibi görünüyorsa, görüntünün

çekildiği tahmini yıl için isteğe bağlı bir tamsayı özelliği.

3. messages dizisinde, görüntü verisini base64 kodlu bir string olarakmedya türüyle

birlikte sağlıyoruz. Bu, modelin görüntüyü girdi olarak işlemesine olanak tanır.

4. Ayrıca Claude’a görüntüyü tanımlamak için record_summary aracını

kullanması için yönlendirme yapıyoruz.

5. İstek Claude 3 modeline gönderildiğinde, model görüntüyü analiz eder ve

belirtilen input_schema’ya göre bir JSON özeti oluşturur. Model ana renkleri

çıkarır, kısa bir açıklama sağlar ve varsa görüntünün çekildiği yılı tahmin eder.

6. Oluşturulan JSON özeti, record_summary aracına parametre olarak iletilir ve

görüntünün temel özelliklerinin yapılandırılmış bir temsilini sağlar.

record_summary aracını iyi tanımlanmış bir input_schema ile kullanarak, düz metin

çıkarımına güvenmeden bir görüntünün yapılandırılmış JSON özetini elde edebiliriz.

Bu yaklaşım, çıktının tutarlı bir formatı takip etmesini sağlar ve uygulamanın alt sistem

bileşenleri tarafından kolayca ayrıştırılıp işlenebilir.

Bir fonksiyon çağrısını zorlamak ve beklenen çıktı yapısını belirlemek, AI tabanlı

uygulamalardaki araç kullanımının güçlü bir özelliğidir. Bu, geliştiricilerin oluşturulan

Araç Kullanımı 130

çıktı üzerinde daha fazla kontrol sahibi olmasını sağlar ve AI tarafından oluşturulan

verilerin uygulama iş akışına entegrasyonunu basitleştirir.

Fonksiyon(lar)ın Yürütülmesi

Fonksiyonları tanımladınız ve AI’nızı yönlendirdiniz, AI de fonksiyonlarınızdan

birini çağırması gerektiğine karar verdi. Şimdi sıra, raix-rails gibi bir Ruby gem

kullanıyorsanız, uygulama kodunuzun veya kütüphanenizin fonksiyon çağrısını ve

parametrelerini uygulama kodunuzdaki karşılık gelen uygulamaya göndermesinde.

Uygulama kodunuz, fonksiyon yürütme sonuçlarıyla ne yapılacağına karar verir. Belki

yapılacak şey bir lambda içindeki tek satırlık bir kod olabilir, veya belki harici bir

API’yi çağırmayı içerebilir. Belki başka bir AI bileşenini çağırmayı içerebilir, veya belki

sisteminizin geri kalanında yüzlerce hatta binlerce satır kodu içerebilir. Bu tamamen

size bağlı.

Bazen fonksiyon çağrısı işlemin sonu olur, ancak sonuçlar AI tarafından devam

ettirilecek bir düşünce zincirindeki bilgileri temsil ediyorsa, uygulama kodunuzun

yürütme sonuçlarını sohbet dökümüne eklemesi ve AI’nın işlemeye devam etmesine

izin vermesi gerekir.

Örneğin, müşteri hizmetleri için Akıllı İş Akışı Orkestrasyon’un bir parçası olarak

Olympia’nın AccountManager’ınınmüşterilerimizle iletişim kurmak için kullandığı bir

Raix fonksiyon tanımı.

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

Araç Kullanımı 131

1 class AccountManager

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 # lots of other functions...

6

7 function :notify_account_owner,

8 "Don't share UUID. Mention dollars if subscription changed",

9 message: { type: "string" } do |arguments|

10 account.owner.freeform_notify(

11 subject: "Account Change Notification",

12 message: arguments[:message]

13)

14 "Notified account owner"

15 end

Burada ne olduğu ilk bakışta açık olmayabilir, bu yüzden parça parça açıklayacağım.

1. AccountManager sınıfı hesap yönetimiyle ilgili birçok fonksiyon tanımlar.

Planınızı değiştirebilir, ekip üyelerini ekleyip çıkarabilir ve başka işlemler

yapabilir.

2. Üst düzey talimatları, AccountManager’a hesap değişikliği isteğinin sonuçlarını

notify_account_owner fonksiyonunu kullanarak hesap sahibine bildirmesi

gerektiğini söyler.

3. Fonksiyonun özlü tanımı şunları içerir:

• adı

• açıklaması

• parametreleri message: { type: "string" }

• fonksiyon çağrıldığında yürütülecek bir blok

Fonksiyon bloğunun sonuçlarıyla döküm güncellendikten sonra, chat_completion

metodu tekrar çağrılır. Bu metod, güncellenmiş konuşma dökümünü daha fazla işlem

için AI modeline geri göndermekten sorumludur. Bu süreci konuşma döngüsü olarak

adlandırıyoruz.

Araç Kullanımı 132

AI modeli güncellenmiş dökümle yeni bir sohbet tamamlama isteği aldığında, önceden

yürütülen fonksiyonun sonuçlarına erişimi olur. Bu sonuçları analiz edebilir, karar

verme sürecine dahil edebilir ve konuşmanın birikimli bağlamına dayalı olarak bir

sonraki yanıtı veya eylemi oluşturabilir. Güncellenmiş bağlama göre ek fonksiyonlar

yürütmeyi seçebilir veya başka fonksiyon çağrılarının gerekli olmadığına karar verirse

orijinal isteme son bir yanıt oluşturabilir.

Orijinal İsteğin İsteğe Bağlı Devamı

Araç sonuçlarını BDM’ye geri gönderdiğinizde ve orijinal isteğin işlenmesine devam

ettiğinizde, AI bu sonuçları ek fonksiyonlar çağırmak veya düz metin şeklinde son bir

yanıt oluşturmak için kullanır.

Cohere’in Command-R gibi bazı modeller, yanıtlarında kullandıkları belirli

araçları belirtebilir, bu da ek şeffaflık ve izlenebilirlik sağlar.

Kullanılan modele bağlı olarak, fonksiyon çağrısının sonuçları kendi özel rolüne sahip

döküm mesajlarında yaşayacak veya başka bir sözdiziminde yansıtılacaktır. Ancak

önemli olan bu verilerin, AI’nın bir sonraki adımda ne yapacağına karar verirken

değerlendirebilmesi için dökümde bulunmasıdır.

Yaygın (ve potansiyel olarak pahalı) bir hata durumu, sohbete devam

etmeden önce fonksiyon sonuçlarını döküme eklemeyi unutmaktır. Sonuç

olarak, AI neredeyse fonksiyonu ilk kez çağırmadan önceki gibi aynı şekilde

uyarılacaktır. Başka bir deyişle, AI’nın bakış açısından, henüz fonksiyonu

çağırmamıştır. Bu yüzden tekrar çağırır. Ve tekrar. Ve siz durdurana kadar

tekrar eder. Umarım bağlamınız çok büyük değildir ve modeliniz çok pahalı

değildir!

https://openrouter.ai/models/cohere/command-r

Araç Kullanımı 133

Araç Kullanımı İçin En İyi Uygulamalar

Araç kullanımından en iyi şekilde yararlanmak için aşağıdaki en iyi uygulamaları göz

önünde bulundurun.

Açıklayıcı Tanımlar

Her araç ve giriş parametreleri için açık ve açıklayıcı isimler ve tanımlar sağlayın. Bu,

BDM’nin her aracın amacını ve yeteneklerini daha iyi anlamasına yardımcı olur.

Deneyimlerimden söyleyebilirim ki “isimlendirmenin zor olduğu” yönündeki yaygın

görüş burada da geçerli; sadece fonksiyonların isimlerini veya açıklamaların ifade

edilişini değiştirerek BDM’lerden dramatik şekilde farklı sonuçlar aldığımı gördüm.

Bazen açıklamaları kaldırmak performansı iyileştirir.

Araç Sonuçlarının İşlenmesi

Araç sonuçlarını BDM’ye geri gönderirken, bunların iyi yapılandırılmış ve kapsamlı

olmasını sağlayın. Her aracın çıktısını temsil etmek için anlamlı anahtarlar ve değerler

kullanın. JSON’dan düz metne kadar farklı formatlarla denemeler yapın ve hangisinin

en iyi çalıştığını görün.

Sonuç Yorumlayıcı, sonuçları analiz etmek ve insan dostu açıklamalar, özetler veya

önemli çıkarımlar sağlamak için AI kullanarak bu zorluğu ele alır.

Hata Yönetimi

BDM’nin araç çağrıları için geçersiz veya desteklenmeyen giriş parametreleri

oluşturabileceği durumları ele almak için sağlam hata yönetimi mekanizmaları

Araç Kullanımı 134

uygulayın. Araç yürütmesi sırasında oluşabilecek herhangi bir hatayı düzgün bir

şekilde ele alın ve bu hatalardan kurtulun.

AI’nın çok güzel bir özelliği, hata mesajlarını anlıyor olması! Bu da demek oluyor ki,

hızlı ve pratik bir yaklaşımla çalışıyorsanız, bir aracın uygulamasında oluşan herhangi

bir istisnayı yakalayıp ne olduğunu anlaması için AI’ya geri gönderebilirsiniz!

Örneğin, işte Olympia’daki Google aramasının uygulamasının sadeleştirilmiş bir

versiyonu:

1 def google_search(conversation, params)

2 conversation.update_cstatus("Searching Google...")

3 query = params[:query]

4 search = GoogleSearch.new(query).get_hash

5

6 conversation.update_cstatus("Summarizing results...")

7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)

8 rescue StandardError => e

9 Honeybadger.notify(e)

10 { error: e.message }.inspect

11 end

Olympia’daki Google aramaları iki aşamalı bir süreçtir. Önce aramayı yaparsınız, sonra

sonuçları özetlersiniz. Herhangi bir başarısızlık durumunda, ne olursa olsun, istisna

mesajı paketlenir ve yapay zekaya geri gönderilir. Bu teknik, neredeyse tüm Akıllı Hata

İşleme desenlerinin temelidir.

Örneğin, GoogleSearch API çağrısının 503 Hizmet Kullanılamıyor istisnası nedeniyle

başarısız olduğunu varsayalım. Bu hata en üst seviyedeki kurtarma bloğuna kadar

yükselir ve hatanın açıklaması fonksiyon çağrısının sonucu olarak yapay zekaya geri

gönderilir. Kullanıcıya sadece boş bir ekran veya teknik bir hata vermek yerine, yapay

zeka “Üzgünüm, şu anda Google Arama özelliklerime erişemiyorum. İsterseniz daha

sonra tekrar deneyebilirim.” gibi bir şey söyler.

Bu sadece akıllıca bir numara gibi görünebilir, ancak farklı türde bir hatayı düşünün,

yapay zekanın harici bir API’yi çağırdığı ve API’ye geçirilecek parametreler üzerinde

Araç Kullanımı 135

doğrudan kontrole sahip olduğu bir durumu. Belki bu parametreleri oluştururken bir

hata mı yaptı? Harici API’den gelen hata mesajı yeterince detaylı olduğu sürece,

hata mesajını çağıran yapay zekaya geri göndermek, onun bu parametreleri yeniden

değerlendirmesine ve tekrar denemesine olanak sağlar. Otomatik olarak. Hata ne olursa

olsun.

Şimdi bu tür sağlam hata işlemenin normal kodda çoğaltılması için ne gerektiğini

düşünün. Bu neredeyse imkansızdır.

Yinelemeli İyileştirme

Eğer LLM uygun araçları önermiyor veya optimal olmayan yanıtlar üretiyorsa, araç

tanımları, açıklamaları ve giriş parametreleri üzerinde yineleme yapın. Gözlemlenen

davranışa ve istenen sonuçlara dayalı olarak araç kurulumunu sürekli olarak iyileştirin

ve geliştirin.

1. Basit araç tanımlarıyla başlayın: Açık ve özlü isimler, açıklamalar ve giriş

parametreleriyle araçları tanımlamaya başlayın. Başlangıçta araç kurulumunu

karmaşık hale getirmekten kaçının ve temel işlevselliğe odaklanın. Örneğin,

duygu analizi sonuçlarını kaydetmek istiyorsanız, şöyle temel bir tanımla

başlayın:

Araç Kullanımı 136

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze user-provided text and generate sentiment score",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "score": {

8 "type": "float",

9 "description": "sentiment score from -1 (negative) to 1 (positive)"

10 }

11 },

12 "required": ["score"]

13 }

14 }

2. Test et ve gözlemle: İlk araç tanımlamalarını yaptıktan sonra, bunları farklı

girdilerle test et ve BDM’nin araçla nasıl etkileşime girdiğini gözlemle. Üretilen

yanıtların kalitesine ve uygunluğuna dikkat et. Eğer BDM optimal altı yanıtlar

üretiyorsa, araç tanımlarını iyileştirme zamanı gelmiş demektir.

3. Tanımları iyileştir: Eğer BDM bir aracın amacını yanlış anlıyorsa, aracın tanımını

iyileştirmeyi dene. BDM’nin aracı etkili bir şekilde kullanmasına yardımcı

olmak için daha fazla bağlam, örnek veya açıklama sağla. Örneğin, duygu

analizi aracının tanımını, analiz edilen metnin duygusal tonuna daha özel olarak

değinecek şekilde güncelleyebilirsin:

1 {

2 "name": "save_sentiment_score",

3 "description": "Determine the overall emotional tone of a piece of text,

4 such as customer reviews, social media posts, or feedback comments.",

5 ...

6 }

4. Giriş parametrelerini ayarlayın: Eğer LLM bir araç için geçersiz veya alakasız

giriş parametreleri üretiyorsa, parametre tanımlamalarını ayarlamayı düşünün.

Beklenen giriş formatını netleştirmek için daha spesifik kısıtlamalar, doğrulama

kuralları veya örnekler ekleyin.

Araç Kullanımı 137

5. Geri bildirimlere göre yineleyin: Araçlarınızın performansını sürekli olarak izleyin

ve kullanıcılardan veya paydaşlardan geri bildirim toplayın. Bu geri bildirimleri

kullanarak iyileştirmeye açık alanları belirleyin ve araç tanımlamalarında

tekrarlayan iyileştirmeler yapın. Örneğin, kullanıcılar analizin alaycılığı iyi

işlemediğini bildirirse, açıklamaya bir not ekleyebilirsiniz:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze the sentiment of a given text and return a sentiment

4 score between -1 (negative) and 1 (positive). Note: Sarcasm should be

5 considered negative.",

6 ...

7 }

Araç tanımlarınızı gözlemlenen davranış ve geri bildirimlere dayalı olarak yinelemeli

bir şekilde geliştirerek, yapay zeka destekli uygulamanızın performansını ve etkinliğini

kademeli olarak iyileştirebilirsiniz. Araç tanımlarını net, özlü ve belirli göreve odaklı

tutmayı unutmayın. İstediğiniz sonuçlarla uyumlu olduklarından emin olmak için araç

etkileşimlerini düzenli olarak test edin ve doğrulayın.

Araçları Birleştirme ve Zincirleme

Şimdiye kadar sadece değinilen araç kullanımının en güçlü yönlerinden biri, karmaşık

görevleri gerçekleştirmek için birden fazla aracı birleştirme ve zincirleme yapabilme

yeteneğidir. Araç tanımlarınızı ve bunların girdi/çıktı formatlarını dikkatli bir şekilde

tasarlayarak, çeşitli şekillerde birleştirilebilen yeniden kullanılabilir yapı taşları

oluşturabilirsiniz.

Yapay zeka destekli uygulamanız için bir veri analizi hattı oluşturduğunuz bir örneği

düşünelim. Aşağıdaki araçlara sahip olabilirsiniz:

1. DataRetrieval: Belirtilen kriterlere göre bir veritabanından veya API’den veri

çeken bir araç.

Araç Kullanımı 138

2. DataProcessing: Alınan veriler üzerinde hesaplamalar, dönüşümler veya

toplamalar gerçekleştiren bir araç.

3. DataVisualization: İşlenmiş verileri grafikler veya şemalar gibi kullanıcı dostu

bir formatta sunan bir araç.

Bu araçları birbirine zincirleyerek, ilgili verileri alan, işleyen ve sonuçları anlamlı bir

şekilde sunan güçlü bir iş akışı oluşturabilirsiniz. Araç kullanım iş akışı şöyle görünebilir:

1. BDM, belirli bir ürün kategorisi için satış verileri hakkında içgörüler isteyen bir

kullanıcı sorgusu alır.

2. BDM, DataRetrieval aracını seçer ve veritabanından ilgili satış verilerini almak

için uygun girdi parametrelerini oluşturur.

3. Alınan veriler, toplam gelir, ortalama satış fiyatı ve büyüme oranı gibi metrikleri

hesaplayan DataProcessing aracına “aktarılır”.

4. İşlenen veriler daha sonra DataVisualization aracı tarafından işlenir ve

içgörüleri temsil eden görsel açıdan çekici bir grafik veya şema oluşturulur,

grafiğin URL’si BDM’ye geri iletilir.

5. Son olarak, BDM, görselleştirilmiş verileri ve temel bulguların bir özetini içeren,

markdown kullanarak biçimlendirilmiş bir yanıt oluşturur.

Bu araçları bir araya getirerek, uygulamanıza kolayca entegre edilebilen kesintisiz bir

veri analizi iş akışı oluşturabilirsiniz. Bu yaklaşımın güzelliği, her aracın bağımsız

olarak geliştirilebilmesi ve test edilebilmesi, ardından çeşitli sorunları çözmek için farklı

şekillerde birleştirilebilmesidir.

Araçların sorunsuz birleştirilmesini ve zincirlenmesini sağlamak için, her araç için net

girdi ve çıktı formatları tanımlamak önemlidir.

Örneğin, DataRetrieval aracı, veritabanı bağlantı detayları, tablo adı ve sorgu

koşulları gibi parametreleri kabul edebilir ve sonuç kümesini yapılandırılmış bir JSON

nesnesi olarak döndürebilir. DataProcessing aracı daha sonra bu JSON nesnesini

Araç Kullanımı 139

girdi olarak bekleyebilir ve dönüştürülmüş bir JSON nesnesi çıktısı üretebilir. Araçlar

arasındaki veri akışını standartlaştırarak uyumluluk ve yeniden kullanılabilirliği

sağlayabilirsiniz.

Araç ekosisteminizi tasarlarken, farklı araçların uygulamanızdaki yaygın kullanım

senaryolarını ele almak için nasıl birleştirilebileceğini düşünün. BDM’nin etkili bir

şekilde seçip kullanmasını kolaylaştırmak için yaygın iş akışlarını veya iş mantığını

kapsayan üst düzey araçlar oluşturmayı düşünün.

Unutmayın, araç kullanımının gücü, sağladığı esneklik ve modülerlikte yatar. Karmaşık

görevleri daha küçük, yeniden kullanılabilir araçlara bölerek, çok çeşitli zorluklarla başa

çıkabilen sağlam ve uyarlanabilir bir yapay zeka destekli uygulama oluşturabilirsiniz.

Gelecekteki Yönelimler

Yapay zeka destekli uygulama geliştirme alanı geliştikçe, araç kullanım yeteneklerinde

daha fazla ilerleme bekleyebiliriz. Bazı potansiyel gelecek yönelimleri şunları içerir:

1. Çok Aşamalı Araç Kullanımı: BDM’ler, tatmin edici bir yanıt üretmek için

araçları kaç kez kullanmaları gerektiğine karar verebilir. Bu, ara sonuçlara dayalı

olarak birden fazla araç seçimi ve yürütme turu içerebilir.

2. Önceden Tanımlanmış Araçlar: Yapay zeka platformları, geliştiricilerin hazır

olarak kullanabileceği Python yorumlayıcıları, web arama araçları veya yaygın

yardımcı işlevler gibi önceden tanımlanmış bir dizi araç sağlayabilir.

3. Sorunsuz Entegrasyon: Araç kullanımı yaygınlaştıkça, yapay zeka platformları

ile popüler geliştirme çerçeveleri arasında daha iyi entegrasyon bekleyebiliriz,

bu da geliştiricilerin uygulamalarına araç kullanımını dahil etmesini

kolaylaştıracaktır.

Araç Kullanımı 140

Araç kullanımı, geliştiricilerin yapay zeka destekli uygulamalarda BDM’lerin tam

potansiyelinden yararlanmalarını sağlayan güçlü bir tekniktir. BDM’leri harici araçlara

ve kaynaklara bağlayarak, kullanıcı ihtiyaçlarına uyum sağlayabilen ve değerli

içgörüler ve eylemler sağlayabilen daha dinamik, akıllı ve bağlama duyarlı sistemler

oluşturabilirsiniz.

Araç kullanımı muazzam olanaklar sunarken, potansiyel zorlukların ve hususların

farkında olmak önemlidir. Önemli bir husus, araç etkileşimlerinin karmaşıklığını

yönetmek ve genel sistemin istikrarını ve güvenilirliğini sağlamaktır. Araç çağrılarının

başarısız olabileceği, beklenmeyen sonuçlar döndürebileceği veya performans etkileri

olabileceği senaryoları ele almanız gerekir. Ek olarak, araçların yetkisiz veya kötü niyetli

kullanımını önlemek için güvenlik ve erişim kontrolü önlemlerini düşünmelisiniz.

Yapay zeka destekli uygulamanızın bütünlüğünü ve performansını korumak için uygun

hata işleme, günlükleme ve izleme mekanizmaları çok önemlidir.

Kendi projelerinizde araç kullanımının olanaklarını keşfederken, net hedeflerle

başlamayı, iyi yapılandırılmış araç tanımlamaları tasarlamayı ve geri bildirimler

ile sonuçlara dayalı yineleme yapmayı unutmayın. Doğru yaklaşım ve düşünce

yapısıyla, araç kullanımı yapay zeka destekli uygulamalarınızda yeni yenilik ve değer

seviyelerinin önünü açabilir.

Akış İşleme

HTTP üzerinden akan veri, diğer adıyla sunucu gönderimli olaylar (SSE), sunucunun

istemcinin açıkça talep etmesine gerek kalmadan, veriler kullanılabilir hale geldikçe

sürekli olarak istemciye gönderdiği bir mekanizmadır. Yapay zeka yanıtı aşamalı

olarak oluşturulduğundan, yapay zekanın çıktısını oluştukça görüntüleyerek duyarlı

bir kullanıcı deneyimi sağlamak mantıklıdır. Ve aslında bildiğim tüm yapay zeka

sağlayıcılarının API’leri, tamamlama uç noktalarında bir seçenek olarak akan yanıtlar

sunmaktadır.

Bu bölümün kitapta tam da Araçları Kullanma bölümünden sonra yer almasının

nedeni, araç kullanımını canlı yapay zeka yanıtlarıyla birleştirmenin ne kadar güçlü

olabileceğidir. Bu sayede yapay zekanın kullanıcı girdisini işleyebildiği, kendi takdirine

göre çeşitli araç ve fonksiyonları kullanabildiği ve gerçek zamanlı yanıtlar sağlayabildiği

dinamik ve etkileşimli deneyimler mümkün olmaktadır.

Akış İşleme 142

Bu kesintisiz etkileşimi sağlamak için, yapay zeka tarafından çağrılan araç

fonksiyonlarını ve düz metin çıktısını son kullanıcıya iletebilen akış işleyicileri

yazmanız gerekir. Bir araç fonksiyonunu işledikten sonra döngüye devam etme

ihtiyacı, işe ilginç bir zorluk katmaktadır.

ReplyStream’in Uygulanması

Akış işlemenin nasıl uygulanabileceğini göstermek için, bu bölümde Olympia’da

kullanılan ReplyStream sınıfının basitleştirilmiş bir versiyonunu derinlemesine

inceleyeceğiz. Bu sınıfın örnekleri, ruby-openai ve openrouter gibi yapay zeka istemci

kütüphanelerinde stream parametresi olarak geçirilebilir.

İşte Olympia’nın PromptSubscriber’ında ReplyStream’i kullanma şeklim; bu

abonelik, Wisper aracılığıyla yeni kullanıcı mesajlarının oluşturulmasını dinler.

1 class PromptSubscriber

2 include Raix::ChatCompletion

3 include Raix::PromptDeclarations

4

5 # many other declarations omitted...

6

7 prompt text: -> { user_message.content },

8 stream: -> { ReplyStream.new(self) },

9 until: -> { bot_message.complete? }

10

11 def message_created(message) # invoked by Wisper

12 return unless message.role.user? && message.content?

13

14 # rest of the implementation omitted...

ReplyStream sınıfı, onu örneklendiren prompt abonesine olan bir context

referansının yanı sıra, alınan veriyi depolamak için bir tampon ve akış işleme

sırasında çağrılan fonksiyon isimlerini ve argümanlarını takip etmek için diziler içeren

örnek değişkenlere sahiptir.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

Akış İşleme 143

1 class ReplyStream

2 attr_accessor :buffer, :f_name, :f_arguments, :context

3

4 delegate :bot_message, :dispatch, to: :context

5

6 def initialize(context)

7 self.context = context

8 self.buffer = []

9 self.f_name = []

10 self.f_arguments = []

11 end

12

13 def call(chunk, bytesize = nil)

14 # ...

15 end

16

17 # ...

18 end

initialize metodu, ReplyStream örneğinin başlangıç durumunu ayarlar, tamponu,

bağlamı ve diğer değişkenleri başlatır.

call metodu, akan verileri işlemek için ana giriş noktasıdır. Bir veri parçasını (karma

olarak temsil edilir) ve isteğe bağlı bir bytesize parametresini alır; örneğimizde bu

parametre kullanılmamaktadır. Bu metodun içinde, sınıf, alınan veri parçasının yapısına

bağlı olarak farklı senaryoları işlemek için örüntü eşleme kullanır.

Veri parçası üzerinde deep_symbolize_keys çağrısı yapmak, dizgiler

yerine sembollerle çalışmamızı sağlayarak örüntü eşlemeyi daha zarif hale

getirir.

Akış İşleme 144

1 def call(chunk, _bytesize)

2 case chunk.deep_symbolize_keys

3

4 in { # match function name

5 choices: [

6 {

7 delta: {

8 tool_calls: [

9 { index: index, function: {name: name} }

10]

11 }

12 }

13] }

14

15 f_name[index] = name

Eşleştirdiğimiz ilk desen, bir araç çağrısı ve ona bağlı fonksiyon adıdır. Böyle bir çağrı

tespit ettiğimizde, bunu f_name dizisine yerleştiriyoruz. Fonksiyon isimlerini dizinli bir

dizide saklıyoruz, çünkü model paralel fonksiyon çağrısı yapabilme özelliğine sahip ve

aynı anda birden fazla fonksiyonu çalıştırmak üzere gönderebiliyor.

Paralel fonksiyon çağrısı, bir yapay zeka modelinin birden fazla fonksiyon çağrısını

birlikte gerçekleştirebilme ve bu fonksiyon çağrılarının etkilerinin ve sonuçlarının

paralel olarak çözümlenmesine izin verme yeteneğidir. Bu özellikle fonksiyonların

uzun sürdüğü durumlarda faydalıdır ve API ile yapılan gidiş gelişleri azaltır, bu da

önemli miktarda token tasarrufu sağlayabilir.

Sonrasında fonksiyon çağrılarına karşılık gelen argümanları eşleştirmemiz gerekiyor.

Akış İşleme 145

1 in { # match arguments

2 choices: [

3 {

4 delta: {

5 tool_calls: [

6 {

7 index: index, function: {arguments: argument }

8 }

9]

10 }

11 }

12]}

13

14 f_arguments[index] ||= "" # initialize if not already

15 f_arguments[index] << argument

Fonksiyon isimlerini ele aldığımız şekilde benzer şekilde, argümanları indeksli bir diziye

yerleştiriyoruz.

Sırada, sunucudan tek bir belirteç şeklinde gelecek ve new_content değişkenine

atanacak olan normal kullanıcıya yönelik mesajları inceliyoruz. Ayrıca finish_-

reason değerini de takip etmemiz gerekiyor. Bu değer, çıktı dizisinin son parçasına

kadar nil olacak.

1 in {

2 choices: [

3 { delta: {content: new_content}, finish_reason: finish_reason }

4]}

5

6 # you could transmit every chunk to the user here...

7 buffer << new_content.to_s

8

9 if finish_reason.present?

10 finalize

11 elsif new_content.to_s.match?(/\n\n/)

12 send_to_client # ...or buffer and transmit once per paragraph

13 end

Önemli olarak, AI model sağlayıcısı tarafından gönderilen hata mesajlarını işlemek

Akış İşleme 146

için bir desen eşleştirme ifadesi ekliyoruz. Yerel geliştirme ortamlarında bir istisna

fırlatırken, prodüksiyonda hatayı günlüğe kaydedip sonlandırıyoruz.

1 in { error: { message: } }

2 if Rails.env.local?

3 raise message

4 else

5 Honeybadger.notify("AI Error: #{message}")

6 finalize

7 end

Case yapısındaki son else ifadesi, önceki örüntülerden hiçbiri eşleşmediğinde çalışır. Bu

sadece YZ modeli bize tanınmayan parçalar göndermeye başladığında bundan haberdar

olmamızı sağlayan bir güvenlik önlemidir.

1 else

2 Honeybadger.notify("Unrecognized Chunk: #{chunk}")

3 end

4 end

send_to_client metotu, arabelleklenen içeriği istemciye göndermekten sorumludur.

Arabelleğin boş olmadığını kontrol eder, bot mesajı içeriğini günceller, bot mesajını

oluşturur ve veri kalıcılığını sağlamak için içeriği veritabanına kaydeder.

1 def send_to_client

2 # no need to process pure whitespace

3 return if buffer.join.squish.blank?

4

5 # set the buffer content on the bot message

6 content = buffer.join

7 bot_message.content = content

8

9 # save to database so that we never lose data

10 # even if the stream doesn't terminate correctly

11 bot_message.update_column(:content, content)

12

13 # update content via websocket

14 ConversationRenderer.update(bot_message)

15 end

Akış İşleme 147

finalize metodu, akış işleme tamamlandığında çağrılır. Akış sırasında alınan

fonksiyon çağrıları varsa bunları işler, bot mesajını son içerik ve diğer ilgili bilgilerle

günceller ve fonksiyon çağrı geçmişini sıfırlar.

1 def finalize

2 if f_name.any?

3 f_name.each_with_index do |name, index|

4 # takes care of calling the function wherever it's implemented

5 dispatch(name:, arguments: JSON.parse(f_arguments[index]))

6 end

7

8 # reset the function call history

9 f_name.clear

10 f_arguments.clear

11 else

12 content = buffer.join.presence

13 bot_message.update!(content:, complete: true)

14 ConversationRenderer.update(bot_message)

15 end

16 end

Eğer model bir fonksiyon çağırmaya karar verirse, bu fonksiyon çağrısını (isim ve

argümanlar) öyle bir şekilde “sevk etmeniz” gerekir ki, çağrı gerçekleşsin ve konuşma

kaydına function_call ve function_result mesajları eklensin.

Deneyimlerime göre, fonksiyonmesajlarının oluşturulmasını araç implementasyonlarına

güvenmek yerine kod tabanınızın tek bir yerinde ele almak daha iyidir. Bu yaklaşım

hem daha temizdir, hem de çok önemli pratik bir nedeni vardır: eğer yapay zeka modeli

bir fonksiyon çağırır ve döngüye girdiğinizde kayıtta ilgili çağrı ve sonuç mesajlarını

görmezse, aynı fonksiyonu tekrar çağıracaktır. Bu potansiyel olarak sonsuza kadar

devam edebilir. Unutmayın ki yapay zeka tamamen durumsuzdur, dolayısıyla bu

fonksiyon çağrılarını ona geri yansıtmazsanız, onlar hiç gerçekleşmemiş sayılır.

Akış İşleme 148

1 # PromptSubscriber#dispatch

2

3 def dispatch(name:, arguments:)

4 # adds a function_call message to the conversation transcript

5 # plus dispatches to tool and returns result

6 conversation.function_call!(name, arguments).then do |result|

7 # add function result message to the transcript

8 conversation.function_result!(name, result)

9 end

10 end

Fonksiyon çağrı geçmişini gönderdikten sonra temizlemek, çağrının ve

sonuçların dökümünüze geçtiğinden emin olmak kadar önemlidir; böylece

döngü her çalıştığında aynı fonksiyonları tekrar tekrar çağırmaya devam

etmezsiniz.

“Konuşma Döngüsü”

PromptSubscriber sınıfında, konuşma döngüsünün davranışını tanımlamak

için PromptDeclarations modülünden prompt metodunu kullanırız. until

parametresi -> { bot_message.complete? } olarak ayarlanmıştır; bu, döngünün

bot_message tamamlandı olarak işaretlenene kadar devam edeceği anlamına gelir.

1 prompt text: -> { user_message.content },

2 stream: -> { ReplyStream.new(self) },

3 until: -> { bot_message.complete? }

Peki bot_message ne zaman tamamlandı olarak işaretleniyor?

Unuttuysanız, finalize metodunun 13. satırına geri dönün.

Tüm akış işleme mantığını gözden geçirelim.

Akış İşleme 149

1. PromptSubscriber, Wisper yayınla/abone ol sistemi aracılığıyla son kullanıcı

yeni bir istem oluşturduğunda her seferinde çağrılan message_createdmetodu

üzerinden yeni bir kullanıcı mesajı alır.

2. prompt sınıf metodu, PromptSubscriber için sohbet tamamlama mantığının

davranışını bildirimsel olarak tanımlar. Yapay zeka modeli, kullanıcının mesaj

içeriği, akış parametresi olarak yeni bir ReplyStream örneği ve belirtilen döngü

koşulu ile bir sohbet tamamlama işlemi gerçekleştirecektir.

3. Yapay zeka modeli istemi işler ve yanıt üretmeye başlar. Yanıt akış halinde

iletilirken, ReplyStream örneğinin call metodu her veri parçası için çağrılır.

4. Yapay zeka modeli bir araç fonksiyonunu çağırmaya karar verirse, fonksiyon adı

ve argümanları parçadan çıkarılır ve sırasıyla f_name ve f_arguments dizilerine

kaydedilir.

5. Yapay zeka modeli kullanıcıya yönelik içerik üretirse, bu içerik tamponlanır ve

send_to_client metodu aracılığıyla istemciye gönderilir.

6. Akış işleme tamamlandığında, finalize metodu çağrılır. Akış sırasında

herhangi bir araç fonksiyonu çağrıldıysa, bunlar PromptSubscriber’ın

dispatch metodu kullanılarak gönderilir.

7. dispatch metodu, konuşma kaydına bir function_call mesajı ekler, ilgili

araç fonksiyonunu çalıştırır ve fonksiyon çağrısının sonucuyla birlikte kayda bir

function_result mesajı ekler.

8. Araç fonksiyonlarının gönderilmesinden sonra, sonraki döngülerde yinelenen

fonksiyon çağrılarını önlemek için fonksiyon çağrı geçmişi temizlenir.

9. Eğer hiçbir araç fonksiyonu çağrılmadıysa, finalize metodu bot_message’ı

son içerikle günceller, tamamlandı olarak işaretler ve güncellenmiş mesajı

istemciye gönderir.

10. Döngü koşulu -> { bot_message.complete? } değerlendirilir. Eğer bot_-

message tamamlandı olarak işaretlenmediyse, döngü devam eder ve orijinal

istem güncellenmiş konuşma kaydıyla tekrar gönderilir.

Akış İşleme 150

11. Yapay zeka modeli yanıt üretmeyi tamamlayana ve başka araç fonksiyonlarının

çalıştırılması gerekmeyene kadar, yani bot_message tamamlandı olarak

işaretlenene kadar 3-10 adımları tekrarlanır.

Bu konuşma döngüsünü uygulayarak, yapay zeka modelinin uygulama ile karşılıklı

etkileşime girmesini, gerektiğinde araç fonksiyonlarını çalıştırmasını ve konuşma doğal

bir sonuca ulaşana kadar kullanıcıya yönelik yanıtlar üretmesini sağlarsınız.

Akış işleme ve konuşma döngüsünün birleşimi, yapay zeka modelinin kullanıcı

girdisini işleyebildiği, çeşitli araçları ve fonksiyonları kullanabildiği ve gelişen konuşma

bağlamına dayalı olarak gerçek zamanlı yanıtlar sağlayabildiği dinamik ve etkileşimli

yapay zeka destekli deneyimlere olanak tanır.

Otomatik Devam

Yapay zeka çıktı sınırlamalarının farkında olmak önemlidir. Çoğu modelin, max_-

tokens parametresi tarafından belirlenen, tek bir yanıtta üretebilecekleri maksimum

belirteç sayısı vardır. Yapay zeka modeli yanıt üretirken bu sınıra ulaşırsa, aniden durur

ve çıktının kesildiğini belirtir.

Yapay zeka platform API’sinden gelen akış yanıtında, parçadaki finish_reason

değişkenini inceleyerek bu durumu tespit edebilirsiniz. Eğer finish_reason “length”

olarak ayarlanmışsa (veya modele özgü başka bir anahtar değerse), bu, modelin üretim

sırasında maksimum belirteç sınırına ulaştığı ve çıktının yarıda kesildiği anlamına gelir.

Bu senaryoyu zarif bir şekilde ele almanın ve sorunsuz bir kullanıcı deneyimi

sağlamanın bir yolu, akış işleme mantığınıza otomatik devam mekanizması eklemektir.

Uzunlukla ilgili bitiş nedenlerini eşleştiren bir kalıp ekleyerek, döngüye girmeyi ve

çıktıyı kaldığı yerden otomatik olarak devam ettirmeyi seçebilirsiniz.

İşte ReplyStream sınıfındaki call metodunu otomatik devamı destekleyecek şekilde

nasıl değiştirebileceğinize dair özellikle basitleştirilmiş bir örnek:

Akış İşleme 151

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices: [

9 { delta: {content: new_content},

10 finish_reason: finish_reason }] }

11

12 buffer << new_content.to_s

13

14 if finish_reason.blank?

15 send_to_client if new_content.to_s.match?(/\n\n/)

16 elsif LENGTH_STOPS.include?(finish_reason)

17 continue_cutoff

18 else

19 finalize

20 end

21

22 # ...

23 end

24 end

25

26 private

27

28 def continue_cutoff

29 conversation.bot_message!(buffer.join, visible: false)

30 conversation.user_message!("please continue", visible: false)

31 bot_message.update_column(:created_at, Time.current)

32 end

Bu değiştirilmiş versiyonda, finish_reason kesik çıktıyı gösterdiğinde, akışı

sonlandırmak yerine, dökümü sonlandırmadan bir çift mesaj ekliyor, orijinal

kullanıcıya yönelik yanıt mesajını created_at özniteliğini güncelleyerek dökümün

“altına” taşıyor ve sonra döngünün gerçekleşmesine izin veriyoruz, böylece yapay zeka

kaldığı yerden üretmeye devam ediyor.

Yapay zeka tamamlama uç noktasının durumsuz olduğunu unutmayın. Sadece

Akış İşleme 152

döküm aracılığıyla ona söylediklerinizi “bilir”. Bu durumda, yapay zekaya kesildiğini

bildirdiğimiz yöntem, döküme (son kullanıcı için) “görünmez” mesajlar eklemektir.

Ancak bunun kasıtlı olarak basitleştirilmiş bir örnek olduğunu unutmayın. Gerçek bir

uygulama, belirteçleri boşa harcamamak ve/veya yapay zekayı dökümdeki tekrarlanan

asistan mesajlarıyla karıştırmamak için daha fazla döküm yönetimi yapmalıdır.

Otomatik devam etmenin gerçek bir uygulaması aynı zamanda kontrolsüz döngüleri

önlemek için devre kesici mantığı içermelidir. Bunun nedeni, belirli kullanıcı istemlerine

ve düşük max_tokens ayarlarına bağlı olarak, yapay zekanın kullanıcıya yönelik çıktıyı

sonsuz şekilde döngüye sokabilmesidir.

Her döngünün ayrı bir istek gerektirdiğini ve her isteğin tüm dökümünüzü tekrar

tükettiğini unutmayın. Uygulamanızda otomatik devam etmeyi uygulamaya

karar verirken kullanıcı deneyimi ve API kullanımı arasındaki dengeyi mutlaka

değerlendirmelisiniz. Özellikle premium ticari modeller kullanırken, otomatik

devam etme tehlikeli derecede pahalı olabilir.

Sonuç

Akış işleme, araç kullanımını canlı yapay zeka yanıtlarıyla birleştiren yapay zeka

destekli uygulamaların kritik bir yönüdür. Yapay zeka platform API’lerinden gelen akış

verilerini verimli bir şekilde işleyerek, kesintisiz ve etkileşimli bir kullanıcı deneyimi

sağlayabilir, büyük yanıtları işleyebilir, kaynak kullanımını optimize edebilir ve hataları

zarif bir şekilde yönetebilirsiniz.

Sağlanan Conversation::ReplyStream sınıfı, örüntü eşleme ve olay güdümlü

mimari kullanarak bir Ruby uygulamasında akış işlemenin nasıl uygulanabileceğini

göstermektedir. Akış işleme tekniklerini anlayarak ve bunlardan yararlanarak,

Akış İşleme 153

uygulamalarınızda yapay zeka entegrasyonunun tüm potansiyelini ortaya çıkarabilir

ve güçlü ve ilgi çekici kullanıcı deneyimleri sunabilirsiniz.

Kendini Onaran Veri

Kendini onaran veri, büyük dil modellerinin (BDM’ler) yeteneklerinden yararlanarak

uygulamalarda veri bütünlüğünü, tutarlılığını ve kalitesini sağlamaya yönelik güçlü

bir yaklaşımdır. Bu örüntü kategorisi, geliştiricilerin yükünü azaltmak ve yüksek

düzeyde veri güvenilirliğini korumak için yapay zekayı kullanarak veri anomalilerini,

tutarsızlıklarını veya hatalarını otomatik olarak tespit etme, teşhis etme ve düzeltme

fikrine odaklanır.

Özünde, kendini onaran veri örüntüleri, verinin herhangi bir uygulamanın can damarı

olduğunu ve doğruluğunu ve bütünlüğünü sağlamanın, uygulamanın düzgün çalışması

ve kullanıcı deneyimi için çok önemli olduğunu kabul eder. Ancak, veri kalitesini

yönetmek ve sürdürmek, özellikle uygulamalar büyüdükçe ve karmaşıklaştıkça zorlu

ve zaman alıcı bir görev olabilir. İşte yapay zekanın gücü burada devreye girer.

Kendini onaran veri örüntülerinde, yapay zeka çalışanları uygulamanızın verisini

sürekli olarak izler ve analiz eder. Bu modeller, veri içindeki örüntüleri, ilişkileri ve

Kendini Onaran Veri 155

anomalileri anlama ve yorumlama yeteneğine sahiptir. Doğal dil işleme ve anlama

yeteneklerinden yararlanarak, verideki potansiyel sorunları veya tutarsızlıkları

belirleyebilir ve bunları düzeltmek için uygun önlemleri alabilirler.

Kendini onaran veri süreci genellikle birkaç önemli adımı içerir:

1. Veri İzleme: Yapay zeka çalışanları, uygulamanın veri akışlarını, veritabanlarını

veya depolama sistemlerini sürekli olarak izleyerek anomali, tutarsızlık veya hata

belirtilerini arar. Alternatif olarak, bir istisna durumunda yapay zeka bileşenini

etkinleştirebilirsiniz.

2. Anomali Tespiti: Bir sorun tespit edildiğinde, yapay zeka çalışanı sorunun özel

niteliğini ve kapsamını belirlemek için veriyi detaylı olarak analiz eder. Bu, eksik

değerleri, tutarsız biçimleri veya önceden tanımlanmış kuralları veya kısıtlamaları

ihlal eden verileri tespit etmeyi içerebilir.

3. Teşhis ve Düzeltme: Sorun belirlendikten sonra, yapay zeka çalışanı uygun eylem

planını belirlemek için veri alanındaki bilgi ve anlayışını kullanır. Bu, veriyi

otomatik olarak düzeltmeyi, eksik değerleri doldurmayı veya gerekirse insan

müdahalesi için sorunu işaretlemeyi içerebilir.

4. Sürekli Öğrenme (kullanım senaryosuna bağlı olarak isteğe bağlı): Yapay zeka

çalışanınız çeşitli veri sorunlarıyla karşılaştıkça ve bunları çözdükçe, ne olduğunu

ve nasıl yanıt verdiğini açıklayan çıktılar üretebilir. Bu üstveri, size (ve belki de

ince ayar yoluyla temel modele) veri anomalilerini belirleme ve çözme konusunda

zaman içinde daha etkili ve verimli olma imkanı sağlayan öğrenme süreçlerine

beslenebilir.

Veri sorunlarını otomatik olarak tespit edip düzelterek, uygulamanızın yüksek kaliteli,

güvenilir verilerle çalışmasını sağlayabilirsiniz. Bu, uygulamanın işlevselliğini veya

kullanıcı deneyimini etkileyebilecek hataların, tutarsızlıkların veya veriyle ilgili

hataların riskini azaltır.

Yapay zeka çalışanları veri izleme ve düzeltme görevini üstlendikten sonra, çabalarınızı

uygulamanın diğer kritik yönlerine odaklayabilirsiniz. Bu, manuel veri temizleme ve

Kendini Onaran Veri 156

bakımına harcanacak zaman ve kaynakları tasarruf eder. Aslında, uygulamalarınız

büyüdükçe ve karmaşıklaştıkça, veri kalitesini manuel olarak yönetmek giderek zorlaşır.

“Kendini Onaran Veri” örüntüleri, büyük veri hacimlerini işlemek ve sorunları gerçek

zamanlı olarak tespit etmek için yapay zekanın gücünden yararlanarak etkili bir şekilde

ölçeklenir.

Doğaları gereği, yapay zeka modelleri çok az denetim ile veya hiç

denetim olmadan zamanla değişen veri örüntülerine, şemalarına veya

gereksinimlerine uyum sağlayabilir. Yönergeleri, özellikle hedeflenen

sonuçlar açısından yeterli rehberlik sağladığı sürece, uygulamanız kapsamlı

manuel müdahale veya kod değişiklikleri gerektirmeden evrimleşebilir ve

yeni veri senaryolarını ele alabilir.

Kendini onaran veri örüntüleri, tartıştığımız “Çalışanların Çokluğu” gibi diğer örüntü

kategorileriyle iyi uyum sağlar. Kendini onaran veri yeteneği, özellikle veri kalitesini ve

bütünlüğünü sağlamaya odaklanan özelleşmiş bir tür çalışan olarak görülebilir. Bu tür

çalışan, uygulamanın işlevselliğinin farklı yönlerine katkıda bulunan diğer yapay zeka

çalışanlarıyla birlikte çalışır.

Kendini onaran veri örüntülerini pratikte uygulamak, yapay zeka modellerinin

uygulama mimarisine dikkatli bir şekilde tasarlanmasını ve entegrasyonunu gerektirir.

Veri kaybı ve bozulma riskleri nedeniyle, bu tekniği nasıl kullanacağınıza dair net

yönergeler belirlemelisiniz. Ayrıca performans, ölçeklenebilirlik ve veri güvenliği gibi

faktörleri de göz önünde bulundurmalısınız.

Pratik Vaka Çalışması: Bozuk JSON’ı Düzeltme

Kendini onaran veriyi kullanmanın en pratik ve uygun yollarından biri aynı zamanda

açıklaması da çok basittir: bozuk JSON’ı düzeltmek.

Kendini Onaran Veri 157

Bu teknik, BDM’ler tarafından üretilen bozuk JSON gibi kusurlu veya tutarsız verilerle

başa çıkma gibi yaygın zorluklara uygulanabilir ve bu sorunları otomatik olarak tespit

etme ve düzeltme için bir yaklaşım sunar.

Olympia’da sıklıkla LLM’lerin tam olarak geçerli olmayan JSON verileri ürettiği

senaryolarla karşılaşıyorum. Bu durum, LLM’nin asıl JSON kodundan önce veya sonra

yorum eklemesi ya da eksik virgül veya kaçış karakteri kullanılmamış çift tırnak gibi

sözdizimi hataları oluşturması gibi çeşitli nedenlerle meydana gelebilir. Bu sorunlar

ayrıştırma hatalarına yol açabilir ve uygulamanın işlevselliğinde aksaklıklara neden

olabilir.

Bu sorunu çözmek için, JsonFixer sınıfı şeklinde pratik bir çözüm geliştirdim. Bu

sınıf, “Kendini Onaran Veri” desenini somutlaştırarak bozuk JSON’ı girdi olarak alır

ve mümkün olduğunca fazla bilgi ve amacı koruyarak düzeltmek için bir LLM’den

yararlanır.

1 class JsonFixer

2 include Raix::ChatCompletion

3

4 def call(bad_json, error_message)

5 raise "No data provided" if bad_json.blank? || error_message.blank?

6

7 transcript << {

8 system: "Consider user-provided JSON that generated a parse

9 exception. Do your best to fix it while preserving the

10 original content and intent as much as possible." }

11 transcript << { user: bad_json }

12 transcript << { assistant: "What is the error message?"}

13 transcript << { user: error_message }

14 transcript << { assistant: "Here is the corrected JSON\n```json\n" }

15

16 self.stop = ["```"]

17

18 chat_completion(json: true)

19 end

20

21 def model

22 "mistralai/mixtral-8x7b-instruct:nitro"

Kendini Onaran Veri 158

23 end

24 end

JsonFixer’ın AI yanıtlarını yönlendirmek için Ventriloquist’i nasıl

kullandığına dikkat edin.

Kendi kendini onaran JSON verilerinin işlem süreci şu şekildedir:

1. JSON Oluşturma: Belirli istemler veya gereksinimlere dayalı olarak JSON verisi

oluşturmak için bir LLM kullanılır. Ancak, LLM’lerin doğası gereği, oluşturulan

JSON her zaman tam olarak geçerli olmayabilir. Elbette JSON ayrıştırıcı, geçersiz

bir JSON verdiğinizde bir ParserError hatası fırlatacaktır.

1 begin

2 JSON.parse(llm_generated_json)

3 rescue JSON::ParserError => e

4 JsonFixer.new.call(llm_generated_json, e.message)

5 end

Exception mesajının da JSONFixer çağrısına iletildiğine dikkat edin, böylece veriyle

ilgili neyin yanlış olduğunu tam olarak varsaymak zorunda kalmaz, özellikle ayrıştırıcı

genellikle size tam olarak neyin yanlış olduğunu söyleyecektir.

2. BDM-tabanlı Düzeltme: JSONFixer sınıfı, bozuk JSON’ı bir BDM’ye (Büyük Dil

Modeli) geri gönderir ve orijinal bilgi ve amacı mümkün olduğunca koruyarak

JSON’ı düzeltmek için özel bir prompt veya talimat ekler. Büyük miktarda veri

üzerinde eğitilmiş ve JSON sözdizimini anlayan BDM, hataları düzeltmeye ve

geçerli bir JSON dizesi oluşturmaya çalışır. BDM’nin çıktısını sınırlamak için Yanıt

Sınırlama kullanılır ve bu tür görevler için özellikle iyi olan Mixtral 8x7B’yi yapay

zeka modeli olarak seçeriz.

Kendini Onaran Veri 159

3. Doğrulama ve Entegrasyon: BDM tarafından döndürülen düzeltilmiş JSON

dizesi, chat_completion(json: true) çağrısı yaptığı için JSONFixer

sınıfının kendisi tarafından ayrıştırılır. Düzeltilmiş JSON doğrulamayı geçerse,

uygulamanın iş akışına tekrar entegre edilir ve uygulamanın veriyi sorunsuz bir

şekilde işlemeye devam etmesini sağlar. Bozuk JSON “iyileştirilmiş” olur.

Kendi JSONFixer uygulamalarımı defalarca yazmış ve yeniden yazmış olmama

rağmen, tüm bu versiyonlara harcanan toplam zamanın bir veya iki saatten fazla

olduğundan şüpheliyim.

Amacın korunmasının, herhangi bir kendi kendini iyileştiren veri deseninin kilit unsuru

olduğunu unutmayın. BDM-tabanlı düzeltme süreci, oluşturulan JSON’ın orijinal bilgi

ve amacını mümkün olduğunca korumayı hedefler. Bu, düzeltilmiş JSON’ın anlamsal

önemini korumasını ve uygulama bağlamında etkili bir şekilde kullanılabilmesini sağlar.

Olympia’daki “Kendi Kendini İyileştiren Veri” yaklaşımının bu pratik uygulaması,

yapay zekanın, özellikle BDM’lerin, gerçek dünya veri zorluklarını çözmek için nasıl

kullanılabileceğini açıkça göstermektedir. Sağlam ve verimli uygulamalar oluşturmak

için geleneksel programlama tekniklerini yapay zeka yetenekleriyle birleştirmenin

gücünü sergiler.

Postel Yasası ve “Kendi Kendini İyileştiren Veri”
Deseni

JSONFixer sınıfı örneğinde görüldüğü gibi “Kendi Kendini İyileştiren Veri”, Postel

Yasası olarak da bilinen Sağlamlık İlkesi ile uyumludur. Postel Yasası şöyle der:

“Yaptığınız şeyde muhafazakar, başkalarından kabul ettiğiniz şeylerde liberal olun.”

İnternetin ilk dönemlerinin öncülerinden Jon Postel tarafından ortaya konan bu ilke,

çıktı gönderirken belirtilen protokollere sıkı sıkıya bağlı kalırken, çeşitli veya hatta

Kendini Onaran Veri 160

hafifçe hatalı girdilere karşı toleranslı sistemler kurmanın önemini vurgular.

“Kendi Kendini İyileştiren Veri” bağlamında, JSONFixer sınıfı, BDM’ler tarafından

üretilen bozuk veya kusurlu JSON verilerini kabul etmede liberal davranarak

Postel Yasası’nı somutlaştırır. Beklenen formata tam olarak uymayan JSON ile

karşılaştığında hemen reddetmez veya başarısız olmaz. Bunun yerine, toleranslı bir

yaklaşım benimser ve BDM’lerin gücünü kullanarak JSON’ı düzeltmeye çalışır.

Kusurlu JSON’ı kabul etmede liberal davranarak, JSONFixer sınıfı sağlamlık ve

esneklik gösterir. Gerçek dünyada verilerin çeşitli biçimlerde geldiğini ve her zaman

katı spesifikasyonlara uymayabileceğini kabul eder. Bu sapmaları zarif bir şekilde ele

alıp düzelterek, sınıf uygulamanın kusurlu veri varlığında bile sorunsuz çalışmaya

devam etmesini sağlar.

Öte yandan, JSONFixer sınıfı çıktı söz konusu olduğunda Postel Yasası’nın

muhafazakar yönüne de uyar. BDM’leri kullanarak JSON’ı düzelttikten sonra,

sınıf düzeltilmiş JSON’ı doğrulayarak beklenen formata sıkı sıkıya uymasını

sağlar. Uygulamanın diğer bölümlerine aktarmadan önce verinin bütünlüğünü

ve doğruluğunu korur. Bu muhafazakar yaklaşım, JSONFixer sınıfının çıktısının

güvenilir ve tutarlı olmasını garanti eder, birlikte çalışabilirliği teşvik eder ve

hataların yayılmasını önler.

Jon Postel Hakkında İlginç Bilgiler:

• Jon Postel (1943-1998), İnternetin gelişiminde çok önemli bir rol oynayan

Amerikalı bir bilgisayar bilimcisiydi. Temel protokollere ve standartlara

yaptığı önemli katkılardan dolayı “İnternetin Tanrısı” olarak bilinirdi.

• Postel, İnternet hakkındaki teknik ve organizasyonel notların bir serisi olan

Request for Comments (RFC) belge serisinin editörüydü. TCP, IP ve SMTP

gibi temel protokoller de dahil olmak üzere 200’den fazla RFC’nin yazarı veya

ortak yazarıydı.

• Teknik katkılarının yanı sıra, mütevazı ve işbirlikçi yaklaşımıyla tanınırdı.

Sağlam ve birlikte çalışabilir bir ağ oluşturmak için fikir birliğine varmanın

Kendini Onaran Veri 161

ve birlikte çalışmanın önemine inanırdı.

• Postel, 1977’den 1998’deki zamansız ölümüne kadar Güney Kaliforniya

Üniversitesi (USC) Bilgi Bilimleri Enstitüsü’nün (ISI) Bilgisayar Ağları

Bölümü’nün Direktörü olarak görev yaptı.

• Muazzam katkılarının tanınması amacıyla, 1998’de genellikle “Bilgisayar

Bilimlerinin Nobel Ödülü” olarak anılan prestijli Turing Ödülü’ne ölümünden

sonra layık görüldü.

JSONFixer sınıfı, Postel’in kariyeri boyunca savunduğu temel değerler olan

sağlamlık, esneklik ve birlikte çalışabilirliği destekler. Protokollere sıkı bağlılığı

korurken kusurları tolere eden sistemler inşa ederek, gerçek dünyadaki zorluklarla

karşılaştığında daha dayanıklı ve uyarlanabilir uygulamalar oluşturabiliriz.

Değerlendirmeler ve Karşı Göstergeler

Kendini onaran veri yaklaşımlarının uygulanabilirliği tamamen uygulamanızın işlediği

veri türüne bağlıdır. Uygulamanızdaki tüm JSON ayrıştırma hatalarını otomatik olarak

düzeltmek için JSON.parse’ı basitçe monkeypatch etmek istememenizin bir nedeni

vardır: tüm hatalar otomatik olarak düzeltilemez veya düzeltilmemelidir.

Kendini onarma özellikle veri işleme ve yönetimi ile ilgili düzenleyici veya uyumluluk

gereksinimleriyle birleştiğinde sorunlu hale gelir. Sağlık ve finans gibi bazı sektörler, veri

bütünlüğü ve denetlenebilirlik konusunda o kadar katı düzenlemelere sahiptir ki, uygun

gözetim veya günlük kaydı olmadan herhangi bir “kara kutu” veri düzeltmesi yapmak

bu düzenlemeleri ihlal edebilir. Geliştirdiğiniz kendini onaran veri tekniklerinin geçerli

yasal ve düzenleyici çerçevelerle uyumlu olmasını sağlamak çok önemlidir.

Özellikle yapay zeka modellerini içeren kendini onaran veri tekniklerinin uygulanması,

uygulama performansı ve kaynak kullanımı üzerinde büyük bir etkiye sahip olabilir.

Hata tespiti ve düzeltme için büyük miktarda veriyi yapay zeka modellerinden

Kendini Onaran Veri 162

geçirmek hesaplama açısından yoğun olabilir. Kendini onaran verinin faydaları ile

ilişkili performans ve kaynak maliyetleri arasındaki dengeyi değerlendirmek önemlidir.

Bu güçlü yaklaşımı ne zaman ve nerede uygulayacağımıza karar vermede rol oynayan

faktörlere daha yakından bakalım.

Veri Kritikliği

Kendini onaran veri tekniklerinin uygulanmasını değerlendirirken, işlenen verinin

kritikliğini değerlendirmek çok önemlidir. Kritiklik düzeyi, verinin uygulamanız ve iş

alanı bağlamındaki önemini ve hassasiyetini ifade eder.

Bazı durumlarda, veri hatalarını otomatik olarak düzeltmek uygun olmayabilir, özellikle

veri yüksek derecede hassas ise veya yasal etkileri varsa. Örneğin, aşağıdaki senaryoları

düşünün:

1. Finansal İşlemler: Bankacılık sistemleri veya ticaret platformları gibi finansal

uygulamalarda, veri doğruluğu son derece önemlidir. Finansal verilerdeki küçük

hatalar bile yanlış hesap bakiyeleri, yanlış yönlendirilmiş fonlar veya hatalı

ticaret kararları gibi önemli sonuçlara yol açabilir. Bu durumlarda, kapsamlı

doğrulama ve denetim olmadan yapılan otomatik düzeltmeler kabul edilemez

riskler getirebilir.

2. Tıbbi Kayıtlar: Sağlık uygulamaları, son derece hassas ve gizli hasta verileriyle

ilgilenir. Tıbbi kayıtlardaki yanlışlıklar, hasta güvenliği ve tedavi kararları

üzerinde ciddi etkilere sahip olabilir. Kalifiye sağlık profesyonelleri tarafından

uygun gözetim ve doğrulama olmadan tıbbi verileri otomatik olarak değiştirmek,

düzenleyici gereksinimleri ihlal edebilir ve hasta refahını riske atabilir.

3. Yasal Belgeler: Sözleşmeler, anlaşmalar veya mahkeme başvuruları gibi

yasal belgeleri işleyen uygulamalar, katı doğruluk ve bütünlük gerektirir.

Yasal verilerdeki küçük hatalar bile önemli yasal sonuçlara yol açabilir. Bu

alanda otomatik düzeltmeler uygun olmayabilir, çünkü verinin geçerliliğini ve

Kendini Onaran Veri 163

uygulanabilirliğini sağlamak için genellikle hukuk uzmanları tarafından manuel

inceleme ve doğrulama gerekir.

Bu kritik veri senaryolarında, otomatik düzeltmelerle ilişkili riskler genellikle potansiyel

faydalardan daha ağır basar. Hataları tanıtmanın veya verileri yanlış değiştirmenin

sonuçları, finansal kayıplar, yasal sorumluluklar veya hatta bireylere zarar verme gibi

ciddi olabilir.

Yüksek derecede kritik verilerle uğraşırken, manuel doğrulama ve onaylama süreçlerine

öncelik vermek esastır. Verinin doğruluğunu ve bütünlüğünü sağlamada insan gözetimi

ve uzmanlığı çok önemlidir. Otomatik kendini onaran teknikler hala potansiyel hataları

veya tutarsızlıkları işaretlemek için kullanılabilir, ancak düzeltmelerle ilgili nihai karar

insan muhakemesi ve onayını içermelidir.

Bununla birlikte, bir uygulamadaki tüm verilerin aynı kritiklik düzeyine sahip

olmayabileceğini unutmamak önemlidir. Aynı uygulama içinde, daha az hassas olan

veya hata oluştuğunda daha düşük etkiye sahip veri alt kümeleri olabilir. Bu gibi

durumlarda, kendini onaran veri teknikleri bu belirli veri alt kümelerine seçici olarak

uygulanabilirken, kritik veriler manuel doğrulamaya tabi olmaya devam eder.

Önemli olan, uygulamanızdaki her veri kategorisinin kritikliğini dikkatle

değerlendirmek ve ilişkili riskler ve sonuçlara dayalı olarak düzeltmeleri ele almak

için net yönergeler ve süreçler tanımlamaktır. Kritik (örneğin defterler, tıbbi kayıtlar)

ve kritik olmayan veriler (örneğin posta adresleri, kaynak uyarıları) arasında ayrım

yaparak, kendini onaran veri tekniklerinin faydalarından uygun olduğu yerde

yararlanmak ve gerekli olduğu yerde sıkı kontrol ve gözetimi sürdürmek arasında bir

denge kurabilirsiniz.

Sonuç olarak, kendini onaran veri tekniklerini kritik verilere uygulama kararı, alan

uzmanları, hukuk danışmanları ve diğer ilgili paydaşlarla istişare içinde alınmalıdır.

Uygulamanızın verileriyle ilişkili özel gereksinimleri, düzenlemeleri ve riskleri dikkate

almak ve veri düzeltme stratejilerini buna göre hizalamak esastır.

Kendini Onaran Veri 164

Hata Şiddeti

Kendini onaran veri tekniklerini uygularken, veri hatalarının şiddetini ve etkisini

değerlendirmek önemlidir. Tüm hatalar eşit değildir ve uygun eylem şekli hatanın

ciddiyetine bağlı olarak değişebilir.

Küçük tutarsızlıklar veya biçimlendirme sorunları otomatik düzeltme için uygun

olabilir. Örneğin, bozuk JSON’u düzeltmekle görevlendirilmiş bir kendini onaran veri

işçisi, verinin anlamını veya yapısını önemli ölçüde değiştirmeden eksik virgülleri veya

kaçış karakteri olmayan çift tırnakları ele alabilir. Bu tür hatalar genellikle düzeltilmesi

kolaydır ve genel veri bütünlüğü üzerinde minimal etkiye sahiptir.

Bununla birlikte, verinin anlamını veya bütünlüğünü temelden değiştiren daha ciddi

hatalar, farklı bir yaklaşım gerektirebilir. Bu gibi durumlarda, otomatik düzeltmeler

yeterli olmayabilir ve verinin doğruluğunu ve geçerliliğini sağlamak için insan

müdahalesi gerekebilir.

İşte tam bu noktada, hata ciddiyetini belirlemede yapay zekanın kendisinden

yararlanma kavramı devreye girer. Yapay zeka modellerinin yeteneklerinden

faydalanarak, sadece hataları düzeltmekle kalmayıp, aynı zamanda bu hataların

ciddiyetini değerlendiren ve bunları nasıl ele alacağına dair bilinçli kararlar verebilen

kendini onaran veri işçileri tasarlayabiliriz.

Örneğin, bir müşteri veritabanına akan verilerdeki tutarsızlıkları düzeltmekten sorumlu

bir kendini onaran veri işçisini ele alalım. Bu işçi, verileri analiz etmek ve eksik veya

çelişkili bilgiler gibi olası hataları tespit etmek üzere tasarlanabilir. Ancak tüm hataları

otomatik olarak düzeltmek yerine, işçi ciddi hataları insan incelemesi için işaretlemesine

olanak tanıyan ek araç çağrıları ile donatılabilir.

İşte bunun nasıl uygulanabileceğine dair bir örnek:

Kendini Onaran Veri 165

1 class CustomerDataReviewer

2 include Raix::ChatCompletion

3 include Raix::FunctionDeclarations

4

5 attr_accessor :customer

6

7 function :flag_for_review, reason: { type: "string" } do |params|

8 AdminNotifier.review_request(customer, params[:reason])

9 end

10

11 def initialize(customer)

12 self.customer = customer

13 end

14

15 def call(customer_data)

16 transcript << {

17 system: "You are a customer data reviewer. Your task is to identify

18 and correct inconsistencies in customer data.

19

20 < additional instructions here... >

21

22 If you encounter severe errors that require human review, use the

23 `flag_for_review` tool to flag the data for manual intervention." }

24

25 transcript << { user: customer.to_json }

26 transcript << { assistant: "Reviewed/corrected data:\n```json\n" }

27

28 self.stop = ["```"]

29

30 chat_completion(json: true).then do |result|

31 return if result.blank?

32

33 customer.update(result)

34 end

35 end

36 end

Bu örnekte, CustomerDataHealer işçisi müşteri verilerindeki tutarsızlıkları belirleme

ve düzeltme için tasarlanmıştır. Bir kez daha, yapılandırılmış çıktı almak için

Yanıt Sınırlama ve Karın Konuşmacısı kullanıyoruz. Önemli olarak, işçinin sistem

Kendini Onaran Veri 166

yönergesi, ciddi hatalarla karşılaşıldığında flag_for_review fonksiyonunu kullanma

talimatlarını içerir.

İşçi müşteri verilerini işlerken, verileri analiz eder ve tutarsızlıkları düzeltmeye çalışır.

İşçi hataların ciddi olduğunu ve insan müdahalesi gerektirdiğini belirlerse, flag_for_-

review aracını kullanarak verileri işaretleyebilir ve işaretleme nedenini belirtebilir.

chat_completionmetodu, düzeltilmiş müşteri verilerini JSON olarak ayrıştırmak için

json: true parametresiyle çağrılır. Bir fonksiyon çağrısından sonra döngü yapma

imkanı olmadığından, eğer flag_for_review çağrıldıysa sonuç boş olacaktır. Aksi

takdirde, müşteri incelenmiş ve potansiyel olarak düzeltilmiş verilerle güncellenir.

Hata ciddiyeti değerlendirmesi ve verileri insan incelemesi için işaretleme seçeneğini

dahil ederek, kendini onaran veri işçisi daha akıllı ve uyarlanabilir hale gelir. Küçük

hataları otomatik olarak ele alabilirken, ciddi hataları manuel müdahale için insan

uzmanlara yönlendirebilir.

Hata ciddiyetini belirleme kriterleri, alan bilgisi ve iş gereksinimlerine dayalı olarak

işçinin yönergesinde tanımlanabilir. Veri bütünlüğü üzerindeki etki, veri kaybı veya

bozulma olasılığı ve yanlış verilerin sonuçları gibi faktörler ciddiyet değerlendirmesinde

dikkate alınabilir.

Hata ciddiyetini değerlendirmek için yapay zekayı kullanarak ve insan müdahalesi için

seçenekler sunarak, kendini onaran veri teknikleri otomasyon ile veri doğruluğunu

koruma arasında bir denge kurabilir. Bu yaklaşım, küçük hataların verimli bir şekilde

düzeltilmesini sağlarken, ciddi hataların insan inceleyicilerinden gerekli ilgi ve

uzmanlığı almasını sağlar.

Alan Karmaşıklığı

Kendini onaran veri tekniklerinin uygulanmasını düşünürken, veri alanının

karmaşıklığını ve yapısını ve ilişkilerini yöneten kuralları değerlendirmek

önemlidir. Alanın karmaşıklığı, otomatik veri düzeltme yaklaşımlarının etkinliğini ve

uygulanabilirliğini önemli ölçüde etkileyebilir.

Kendini Onaran Veri 167

Kendini onaran veri teknikleri, veriler iyi tanımlanmış kalıpları ve kısıtlamaları

takip ettiğinde iyi çalışır. Veri yapısının nispeten basit olduğu ve veri öğeleri

arasındaki ilişkilerin açık olduğu alanlarda, otomatik düzeltmeler yüksek bir güvenle

uygulanabilir. Örneğin, biçimlendirme sorunlarını düzeltme veya temel veri tipi

kısıtlamalarını uygulama genellikle kendini onaran veri işçileri tarafından etkili bir

şekilde ele alınabilir.

Ancak, veri alanının karmaşıklığı arttıkça, otomatik veri düzeltmeyle ilişkili zorluklar

da büyür. Karmaşık iş mantığı, veri varlıkları arasında karmaşık ilişkiler veya alana

özgü kurallar ve istisnalar içeren alanlarda, kendini onaran veri teknikleri her zaman

nüansları yakalayamayabilir ve istenmeyen sonuçlara yol açabilir.

Karmaşık bir alan örneği düşünelim: bir finansal ticaret sistemi. Bu alanda, veriler çeşitli

finansal araçları, piyasa verilerini, ticaret kurallarını ve düzenleyici gereksinimleri içerir.

Farklı veri öğeleri arasındaki ilişkiler karmaşık olabilir ve veri geçerliliği ve tutarlılığını

yöneten kurallar alana oldukça özgü olabilir.

Böyle karmaşık bir alanda, ticaret verilerindeki tutarsızlıkları düzeltmekle

görevlendirilmiş bir kendini onaran veri işçisinin, alana özgü kuralların ve

kısıtlamaların derin bir anlayışına sahip olması gerekir. Piyasa düzenlemeleri, ticaret

limitleri, risk hesaplamaları ve uzlaşma prosedürleri gibi faktörleri dikkate alması

gerekir. Bu bağlamda otomatik düzeltmeler, alanın tam karmaşıklığını her zaman

yakalayamayabilir ve istemeden hatalar veya alana özgü kural ihlalleri oluşturabilir.

Alan karmaşıklığının zorluklarını ele almak için, kendini onaran veri teknikleri alana

özgü bilgi ve kuralları yapay zeka modellerine ve işçilerine dahil ederek geliştirilebilir.

Bu, aşağıdaki tekniklerle gerçekleştirilebilir:

1. Alana Özgü Eğitim: Kendini onaran veri için kullanılan yapay zeka modelleri,

belirli alanın inceliklerini ve kurallarını yakalayan alana özgü veri setleri üzerinde

yönlendirilebilir veya hatta ince ayar yapılabilir. Modelleri temsili veriler ve

senaryolara maruz bırakarak, alana özgü kalıpları, kısıtlamaları ve istisnaları

öğrenebilirler.

Kendini Onaran Veri 168

2. Kural Tabanlı Kısıtlamalar: Kendini onaran veri işçileri, alana özgü bilgileri

kodlayan açık kural tabanlı kısıtlamalarla güçlendirilebilir. Bu kurallar alan

uzmanları tarafından tanımlanabilir ve veri düzeltme sürecine entegre edilebilir.

Yapay zeka modelleri daha sonra bu kuralları kararlarını yönlendirmek ve alana

özgü gereksinimlere uyumu sağlamak için kullanabilir.

3. Alan Uzmanlarıyla İşbirliği: Karmaşık alanlarda, kendini onaran veri

tekniklerinin tasarımına ve geliştirilmesine alan uzmanlarını dahil etmek

çok önemlidir. Alan uzmanları, verinin incelikleri, iş kuralları ve olası uç

durumlar hakkında değerli içgörüler sağlayabilir. Onların bilgileri, İnsan Destekli

Döngü kalıplarını kullanarak otomatik veri düzeltmelerinin doğruluğunu ve

güvenilirliğini artırmak için yapay zeka modellerine ve işçilerine dahil edilebilir.

4. Aşamalı ve Yinelemeli Yaklaşım: Karmaşık alanlarla uğraşırken, genellikle

kendini onaran veriye aşamalı ve yinelemeli bir yaklaşım benimsemek faydalıdır.

Tüm alan için bir kerede düzeltmeleri otomatikleştirmeye çalışmak yerine,

kuralların ve kısıtlamaların iyi anlaşıldığı belirli alt alanlara veya veri

kategorilerine odaklanın. Alan anlayışı geliştikçe ve teknikler etkili olduğunu

kanıtladıkça kendini onaran tekniklerin kapsamını kademeli olarak genişletin.

Veri alanının karmaşıklığını göz önünde bulundurarak ve alana özgü bilgiyi kendini

onaran veri tekniklerine dahil ederek, otomasyon ve doğruluk arasında bir denge

kurabilirsiniz. Kendini onaran verinin her duruma uyan tek bir çözüm olmadığını

ve yaklaşımın her alanın özel gereksinimlerine ve zorluklarına göre uyarlanması

gerektiğini kabul etmek önemlidir.

Karmaşık alanlarda, kendini onaran veri tekniklerini insan uzmanlığı ve gözetimiyle

birleştiren hibrit bir yaklaşım en etkili olabilir. Otomatik düzeltmeler rutin ve iyi

tanımlanmış durumları ele alabilirken, karmaşık senaryolar veya istisnalar insan

incelemesi ve müdahalesi için işaretlenebilir. Bu işbirlikçi yaklaşım, karmaşık

veri alanlarında gerekli kontrol ve doğruluğu korurken otomasyonun faydalarının

gerçekleştirilmesini sağlar.

Kendini Onaran Veri 169

Açıklanabilirlik ve Şeffaflık

Açıklanabilirlik, yapay zekamodellerinin verdiği kararların arkasındaki mantığı anlama

ve yorumlama yeteneğini ifade ederken, şeffaflık veri düzeltme sürecine açık bir

görünürlük sağlamayı içerir.

Birçok bağlamda, veri değişikliklerinin denetlenebilir ve gerekçelendirilebilir olması

gerekir. İş kullanıcıları, denetçiler ve düzenleyici kurumlar dahil olmak üzere paydaşlar,

belirli veri düzeltmelerinin neden yapıldığı ve yapay zeka modellerinin bu kararlara

nasıl vardığı konusunda açıklamalar talep edebilir. Bu, özellikle finans, sağlık hizmetleri

ve hukuki konular gibi veri doğruluğu ve bütünlüğünün önemli etkilere sahip olduğu

alanlarda çok önemlidir.

Açıklanabilirlik ve şeffaflık ihtiyacını karşılamak için, kendini onaran veri teknikleri,

yapay zeka modellerinin karar verme sürecine ilişkin içgörüler sağlayan mekanizmaları

içermelidir. Bu, çeşitli yaklaşımlarla gerçekleştirilebilir:

1. Düşünce Zinciri: Modelden verilerde değişiklik yapmadan önce düşüncesini

“sesli” olarak açıklamasını istemek, karar verme sürecinin daha kolay

anlaşılmasını sağlayabilir ve yapılan düzeltmeler için insan tarafından okunabilir

açıklamalar üretebilir. Bunun bedeli, açıklamayı yapılandırılmış veri çıktısından

ayırmada biraz daha karmaşıklıktır, bu da şöyle ele alınabilir…

2. Açıklama Üretimi: Kendini onaran veri çalışanları, yaptıkları düzeltmeler

için insan tarafından okunabilir açıklamalar üretme yeteneği ile donatılabilir.

Bu, modelden karar verme sürecini verinin kendisine entegre edilmiş kolayca

anlaşılabilir açıklamalar olarak çıktı vermesini isteyerek gerçekleştirilebilir.

Örneğin, kendini onaran bir veri çalışanı, tespit ettiği spesifik veri tutarsızlıklarını,

uyguladığı düzeltmeleri ve bu düzeltmelerin arkasındaki mantığı vurgulayan bir

rapor oluşturabilir.

3. Özellik Önemi: Yapay zeka modellerine, direktiflerinin bir parçası olarak veri

düzeltme sürecindeki farklı özelliklerin veya niteliklerin önemi hakkında bilgi

Kendini Onaran Veri 170

verilebilir. Bu direktifler de insan paydaşlara açıklanabilir. Modelin kararlarını

etkileyen temel faktörleri belirleyerek, paydaşlar düzeltmelerin arkasındaki

mantık hakkında içgörü kazanabilir ve bunların geçerliliğini değerlendirebilir.

4. Günlük Tutma ve Denetleme: Kendini onaran veri sürecinde şeffaflığı korumak

için kapsamlı günlük tutma ve denetleme mekanizmalarının uygulanması çok

önemlidir. Yapay zeka modelleri tarafından yapılan her veri düzeltmesi, orijinal

veri, düzeltilmiş veri ve atılan spesifik adımlar dahil olmak üzere kaydedilmelidir.

Bu denetim izi, geriye dönük analiz yapılmasına olanak tanır ve verilerde yapılan

değişikliklerin net bir kaydını sağlar.

5. İnsan Destekli Döngü Yaklaşımı: İnsan destekli döngü yaklaşımının dahil

edilmesi, kendini onaran veri tekniklerinin açıklanabilirliğini ve şeffaflığını

artırabilir. Yapay zeka tarafından üretilen düzeltmelerin incelenmesi ve

doğrulanmasında insan uzmanları dahil ederek, kuruluşlar düzeltmelerin alan

bilgisi ve iş gereksinimleriyle uyumlu olmasını sağlayabilir. İnsan gözetimi ek bir

hesap verebilirlik katmanı ekler ve yapay zeka modellerindeki olası önyargıların

veya hataların belirlenmesine olanak tanır.

6. Sürekli İzleme ve Değerlendirme: Kendini onaran veri tekniklerinin

performansını düzenli olarak izlemek ve değerlendirmek, şeffaflığı ve güveni

korumak için çok önemlidir. Yapay zeka modellerinin doğruluğunu ve etkinliğini

zaman içinde değerlendirerek, kuruluşlar herhangi bir sapma veya anomaliyi

belirleyebilir ve düzeltici önlemler alabilir. Sürekli izleme, kendini onaran veri

sürecinin güvenilir kalmasını ve istenen sonuçlarla uyumlu olmasını sağlamaya

yardımcı olur.

Açıklanabilirlik ve şeffaflık, kendini onaran veri tekniklerinin uygulanmasında

kritik öneme sahip hususlardır. Veri düzeltmeleri için net açıklamalar sağlayarak,

kapsamlı denetim izleri tutarak ve insan gözetimini dahil ederek, kuruluşlar kendini

onaran veri sürecine olan güveni inşa edebilir ve verilerde yapılan değişikliklerin

gerekçelendirilebilir ve iş hedefleriyle uyumlu olmasını sağlayabilir.

Kendini Onaran Veri 171

Otomasyon faydaları ile şeffaflık ihtiyacı arasında bir denge kurmak önemlidir. Kendini

onaran veri teknikleri veri kalitesini ve verimliliği önemli ölçüde iyileştirebilse de, bu

veri düzeltme süreci üzerindeki görünürlük ve kontrolü kaybetme pahasına olmamalıdır.

Kendini onaran veri çalışanlarını açıklanabilirlik ve şeffaflık göz önünde bulundurularak

tasarlayarak, kuruluşlar yapay zekanın gücünden yararlanırken verilerde gerekli hesap

verebilirlik ve güven düzeyini koruyabilir.

İstenmeyen Sonuçlar

Kendini onaran veri teknikleri veri kalitesini ve tutarlılığını iyileştirmeyi amaçlasa da,

istenmeyen sonuçların ortaya çıkma potansiyeline karşı dikkatli olmak çok önemlidir.

Dikkatli bir şekilde tasarlanıp izlenmezse, otomatik düzeltmeler istemeden verinin

anlamını veya bağlamını değiştirebilir ve alt süreç sorunlarına yol açabilir.

Kendini onaran verinin temel risklerinden biri, veri düzeltme sürecine önyargı veya

hataların dahil edilmesidir. Yapay zeka modelleri, diğer yazılım sistemleri gibi, eğitim

verilerinde mevcut olan veya algoritmaların tasarımı yoluyla ortaya çıkan önyargılara

tabi olabilir. Bu önyargılar tespit edilip azaltılmazsa, kendini onaran veri süreci boyunca

yayılabilir ve çarpık veya yanlış veri değişikliklerine neden olabilir.

Örneğin, müşteri demografik verilerindeki tutarsızlıkları düzeltmekle görevlendirilmiş

bir kendi kendini onaran veri işçisini ele alalım. Eğer yapay zeka modeli geçmiş

verilerden önyargıları öğrendiyse, örneğin belirli meslekleri veya gelir seviyelerini

belirli cinsiyetler veya etnik kökenlerle ilişkilendirme gibi, yanlış varsayımlarda

bulunabilir ve verileri bu önyargıları pekiştirecek şekilde değiştirebilir. Bu durum,

hatalı müşteri profillerine, yanlış yönlendirilmiş iş kararlarına ve potansiyel olarak

ayrımcı sonuçlara yol açabilir.

Bir diğer potansiyel istenmeyen sonuç, veri düzeltme süreci sırasında değerli bilgilerin

veya bağlamın kaybolmasıdır. Kendi kendini onaran veri teknikleri genellikle tutarlılığı

sağlamak için verileri standartlaştırmaya ve normalleştirmeye odaklanır. Ancak bazı

durumlarda, orijinal veriler tam resmi anlamak için önemli olan nüansları, istisnaları

Kendini Onaran Veri 172

veya bağlamsal bilgileri içerebilir. Körü körüne standardizasyonu uygulayan otomatik

düzeltmeler, bu değerli bilgileri istemeden kaldırabilir veya belirsizleştirebilir.

Örneğin, tıbbi kayıtlardaki tutarsızlıkları düzeltmekle sorumlu bir kendi kendini onaran

veri işçisini düşünün. İşçi, nadir görülen bir hastalığı olan veya olağandışı bir tedavi

planı olan bir hastanın tıbbi geçmişiyle karşılaştığında, verileri daha yaygın bir kalıba

uydurmak için normalleştirmeye çalışabilir. Ancak bunu yaparken, hastanın benzersiz

durumunu doğru bir şekilde temsil etmek için kritik öneme sahip olan özel detayları ve

bağlamı kaybedebilir. Bu bilgi kaybı, hasta bakımı ve tıbbi karar verme açısından ciddi

sonuçlar doğurabilir.

İstenmeyen sonuçların risklerini azaltmak için, kendi kendini onaran veri tekniklerini

tasarlarken ve uygularken proaktif bir yaklaşım benimsemek esastır:

1. Kapsamlı Test ve Doğrulama: Kendi kendini onaran veri işçilerini üretime

almadan önce, davranışlarını çeşitli senaryolara karşı kapsamlı bir şekilde

test etmek ve doğrulamak çok önemlidir. Bu, çeşitli uç durumları, istisnaları

ve potansiyel önyargıları kapsayan temsili veri setleriyle test yapmayı içerir.

Titiz testler, istenmeyen sonuçları gerçek dünya verilerini etkilemeden önce

belirlemeye ve ele almaya yardımcı olur.

2. Sürekli İzleme ve Değerlendirme: İstenmeyen sonuçları zamanla tespit etmek

ve azaltmak için sürekli izleme ve değerlendirme mekanizmalarının uygulanması

esastır. Kendi kendini onaran veri süreçlerinin sonuçlarını düzenli olarak

gözden geçirmek, alt sistemler ve karar verme üzerindeki etkiyi analiz etmek ve

paydaşlardan geri bildirim toplamak, olumsuz etkileri belirlemeye ve zamanında

düzeltici önlemler almaya yardımcı olabilir. Kuruluşunuzda operasyonel gösterge

panelleri varsa, otomatik veri değişiklikleriyle ilgili açıkça görülebilir metriklerin

eklenmesi muhtemelen iyi bir fikirdir. Normal veri değişikliği aktivitesinden

büyük sapmalara bağlı alarmlar eklemek muhtemelen daha da iyi bir fikirdir!

3. İnsan Gözetimi ve Müdahalesi: Kendi kendini onaran veri sürecinde insan

gözetimini ve müdahale edebilme yeteneğini korumak çok önemlidir. Otomasyon

Kendini Onaran Veri 173

verimliliği büyük ölçüde artırabilirken, özellikle kritik veya hassas alanlarda

yapay zeka modelleri tarafından yapılan düzeltmeleri insan uzmanların gözden

geçirmesi ve doğrulaması önemlidir. İnsan muhakemesi ve alan uzmanlığı, ortaya

çıkabilecek istenmeyen sonuçları belirlemeye ve ele almaya yardımcı olabilir.

4. Açıklanabilir Yapay Zeka (XAI) ve Şeffaflık: Önceki alt bölümde tartışıldığı

gibi, açıklanabilir yapay zeka tekniklerini dahil etmek ve kendi kendini onaran veri

sürecinde şeffaflığı sağlamak, istenmeyen sonuçları azaltmaya yardımcı olabilir.

Veri düzeltmeleri için net açıklamalar sağlayarak ve kapsamlı denetim izleri

tutarak, kuruluşlar yapay zeka modellerinin yaptığı değişikliklerin arkasındaki

mantığı daha iyi anlayabilir ve izleyebilir.

5. Aşamalı ve Yinelemeli Yaklaşım: Kendi kendini onaran veriye aşamalı ve

yinelemeli bir yaklaşım benimsemek, istenmeyen sonuçların riskini en aza

indirmeye yardımcı olabilir. Otomatik düzeltmeleri bir kerede tüm veri setine

uygulamak yerine, teknikler etkili ve güvenilir olduğunu kanıtladıkça veri alt

kümesiyle başlayıp kapsamı kademeli olarak genişletin. Bu, süreç boyunca

dikkatli izleme ve ayarlama yapılmasına olanak tanır ve istenmeyen sonuçların

etkisini azaltır.

6. İşbirliği ve Geri Bildirim: Farklı alanlardan paydaşları sürece dahil etmek

ve kendi kendini onaran veri süreci boyunca işbirliği ve geri bildirimi teşvik

etmek, istenmeyen sonuçları belirlemeye ve ele almaya yardımcı olabilir. Alan

uzmanlarından, veri tüketicilerinden ve son kullanıcılardan düzenli olarak girdi

almak, veri düzeltmelerinin gerçek dünyadaki etkisi hakkında değerli bilgiler

sağlayabilir ve gözden kaçmış olabilecek sorunları vurgulayabilir.

İstenmeyen sonuçların riskini proaktif olarak ele alarak ve uygun önlemleri

uygulayarak, kuruluşlar potansiyel olumsuz etkileri en aza indirirken kendi kendini

onaran veri tekniklerinin faydalarından yararlanabilir. Kendi kendini onaran veriye

yinelemeli ve işbirlikçi bir süreç olarak yaklaşmak, teknikleri sürekli izlemek,

Kendini Onaran Veri 174

değerlendirmek ve istenen sonuçlarla uyumlu olmalarını ve verilerin bütünlüğünü ve

güvenilirliğini korumalarını sağlamak için iyileştirmek önemlidir.

Kendi kendini onaran veri desenlerinin kullanımını düşünürken, bu faktörleri dikkatle

değerlendirmek ve faydaları potansiyel riskler ve sınırlamalarla karşılaştırmak esastır.

Bazı durumlarda, otomatik düzeltmeleri insan gözetimi ve müdahalesiyle birleştiren

hibrit bir yaklaşım en uygun çözüm olabilir.

Ayrıca, kendi kendini onaran veri tekniklerinin sağlam veri doğrulama, girdi temizleme

ve hata işleme mekanizmalarının yerini alması amaçlanmadığını belirtmek önemlidir.

Bu temel uygulamalar veri bütünlüğü ve güvenliği için kritik öneme sahip olmaya

devam etmektedir. Kendi kendini onaran veri, bu mevcut önlemleri destekleyebilecek

ve geliştirebilecek tamamlayıcı bir yaklaşım olarak görülmelidir.

Sonuç olarak, kendi kendini onaran veri desenlerini kullanma kararı, uygulamanızın

özel gereksinimleri, kısıtlamaları ve önceliklerine bağlıdır. Yukarıda belirtilen hususları

dikkatle değerlendirerek ve bunları uygulamanızın hedefleri ve mimarisiyle uyumlu

hale getirerek, kendi kendini onaran veri tekniklerini ne zaman ve nasıl etkili bir şekilde

kullanacağınız konusunda bilinçli kararlar alabilirsiniz.

Bağlamsal İçerik Üretimi

Bağlamsal İçerik Üretimi kalıpları, uygulamalarda dinamik ve bağlama özel içerik

üretmek için büyük dil modellerinin (BDM) gücünden yararlanır. Bu kalıp kategorisi,

kullanıcılara özel ihtiyaçlarına, tercihlerine ve hatta uygulamayla önceki ve mevcut

etkileşimlerine dayalı olarak kişiselleştirilmiş ve alakalı içerik sunmanın önemini kabul

eder.

Bu yaklaşımda “içerik” terimi, hem birincil içeriği (yani blog yazıları, makaleler vb.)

hem de birincil içeriğe yönelik öneriler gibi meta-içeriği ifade eder.

Bağlamsal İçerik Üretimi kalıpları, kullanıcı etkileşim seviyelerinizi artırmada,

kişiselleştirilmiş deneyimler sunmada ve hem sizin hem de kullanıcılarınız için içerik

oluşturma görevlerini otomatikleştirmede çok önemli bir rol oynayabilir. Bu bölümde

Bağlamsal İçerik Üretimi 176

açıkladığımız kalıpları kullanarak, bağlama ve girdilere gerçek zamanlı olarak uyum

sağlayan, dinamik olarak içerik üreten uygulamalar oluşturabilirsiniz.

Kalıplar, BDM’leri kullanıcı arayüzünden (bazen “chrome” olarak adlandırılır) e-postalar

ve diğer bildirim türlerine ve herhangi bir içerik üretim işlem hattına kadar uzanan

uygulama çıktılarına entegre ederek çalışır.

Bir kullanıcı uygulamayla etkileşime girdiğinde veya belirli bir içerik talebi

tetiklediğinde, uygulama kullanıcı tercihleri, önceki etkileşimler veya belirli

komutlar gibi ilgili bağlamı yakalar. Bu bağlamsal bilgi daha sonra gerekli şablonlar

veya yönergelerle birlikte BDM’ye beslenir ve aksi takdirde sabit kodlanması, bir

veritabanında saklanması veya algoritmik olarak üretilmesi gereken metinsel çıktıyı

üretmek için kullanılır.

BDM tarafından üretilen içerik, kişiselleştirilmiş öneriler, dinamik ürün açıklamaları,

özelleştirilmiş e-posta yanıtları veya hatta tam makaleler ya da blog yazıları gibi çeşitli

biçimler alabilir. Bu içeriğin en radikal kullanımlarından biri, bir yıldan fazla bir süre

önce öncülük ettiğim form etiketleri, araç ipuçları ve diğer açıklayıcı metin gibi kullanıcı

arayüzü öğelerinin dinamik olarak oluşturulmasıdır.

Kişiselleştirme

Bağlamsal İçerik Üretimi kalıplarının temel faydalarından biri, kullanıcılara son derece

kişiselleştirilmiş deneyimler sunma yeteneğidir. Bu kalıplar, kullanıcıya özel bağlama

dayalı içerik üreterek, uygulamaların içeriği her kullanıcının ilgi alanlarına, tercihlerine

ve etkileşimlerine göre uyarlamasını sağlar.

Kişiselleştirme, sadece kullanıcının adını genel içeriğe eklemekten çok daha fazlasıdır.

Her kullanıcı hakkında mevcut olan zengin bağlamı kullanarak, onların özel ihtiyaç ve

istekleriyle örtüşen içerik üretmeyi içerir. Bu bağlam çeşitli faktörleri içerebilir, örneğin:

1. Kullanıcı Profil Bilgileri: Bu tekniğin en genel uygulama düzeyinde, demografik

Bağlamsal İçerik Üretimi 177

veriler, ilgi alanları, tercihler ve diğer profil özellikleri, kullanıcının geçmişi ve

özellikleriyle uyumlu içerik üretmek için kullanılabilir.

2. Davranışsal Veriler: Kullanıcının uygulama ile geçmiş etkileşimleri,

görüntülenen sayfalar, tıklanan bağlantılar veya satın alınan ürünler gibi

veriler, davranışları ve ilgi alanları hakkında değerli bilgiler sağlayabilir. Bu

veriler, kullanıcının etkileşim kalıplarını yansıtan ve gelecekteki ihtiyaçlarını

tahmin eden içerik önerileri üretmek için kullanılabilir.

3. Bağlamsal Faktörler: Kullanıcının mevcut konumu, cihazı, günün saati veya

hatta hava durumu gibi mevcut bağlamı, içerik üretim sürecini etkileyebilir.

Örneğin, bir seyahat uygulaması, kullanıcının mevcut konumuna ve hâkim hava

koşullarına dayalı olarak kişiselleştirilmiş öneriler üretebilen bir yapay zeka

çalışanına sahip olabilir.

Bu bağlamsal faktörlerden yararlanarak, Bağlamsal İçerik Üretimi kalıpları,

uygulamaların her bir kullanıcı için özel olarak hazırlanmış gibi görünen içerik

sunmasını sağlar. Bu düzeyde kişiselleştirmenin birkaç önemli faydası vardır:

1. Artan Etkileşim: Kişiselleştirilmiş içerik, kullanıcıların dikkatini çeker ve onları

uygulama ile etkileşimde tutar. Kullanıcılar içeriğin alakalı olduğunu ve doğrudan

kendi ihtiyaçlarına hitap ettiğini hissettiklerinde, uygulama ile daha fazla zaman

geçirme ve özelliklerini keşfetme olasılıkları daha yüksektir.

2. Gelişmiş Kullanıcı Memnuniyeti: Kişiselleştirilmiş içerik, uygulamanın

kullanıcının özel gereksinimlerini anladığını ve önemsediğini gösterir. Yardımcı,

bilgilendirici ve ilgi alanlarıyla uyumlu içerik sunarak, uygulama kullanıcı

memnuniyetini artırabilir ve kullanıcılarıyla daha güçlü bir bağ kurabilir.

3. Daha Yüksek Dönüşüm Oranları: E-ticaret veya pazarlama uygulamaları

bağlamında, kişiselleştirilmiş içerik dönüşüm oranlarını önemli ölçüde

etkileyebilir. Kullanıcılara tercihlerine ve davranışlarına göre uyarlanmış

ürünler, teklifler veya öneriler sunarak, uygulama kullanıcıların satın alma veya

bir hizmete kaydolma gibi istenen eylemleri gerçekleştirme olasılığını artırabilir.

Bağlamsal İçerik Üretimi 178

Üretkenlik

Bağlamsal İçerik Üretimi kalıpları, yaratıcı süreçlerde manuel içerik üretimi ve

düzenleme ihtiyacını azaltarak belirli türdeki üretkenliği önemli ölçüde artırabilir.

BDM’lerin gücünden yararlanarak, içerik oluşturucularınızın ve geliştiricilerinizin

sıkıcı manuel işlere harcamak zorunda kalacağı zaman ve çabadan tasarruf ederek,

ölçeklenebilir yüksek kaliteli içerik üretebilirsiniz.

Geleneksel olarak, içerik üreticilerinin uygulamanın gereksinimlerini ve kullanıcı

beklentilerini karşılamak için içeriği araştırması, yazması, düzenlemesi ve

biçimlendirmesi gerekir. Bu süreç, özellikle içerik hacmi büyüdükçe zaman alıcı

ve kaynak yoğun olabilir.

Ancak, Bağlamsal İçerik Üretimi kalıplarıyla içerik oluşturma süreci büyük

ölçüde otomatikleştirilebilir. Büyük Dil Modelleri, verilen komutlar ve yönergeler

doğrultusunda tutarlı, dilbilgisi açısından doğru ve bağlamsal olarak ilgili içerik

üretebilir. Bu otomasyon birkaç üretkenlik avantajı sunar:

1. Azaltılmış Manuel Çaba: İçerik üretimi görevlerini Büyük Dil Modellerine

devrederek, içerik üreticileri içerik stratejisi, fikir üretimi ve kalite güvencesi gibi

daha üst düzey görevlere odaklanabilir. Büyük Dil Modeline gerekli bağlamı,

şablonları ve yönergeleri sağlayabilir ve asıl içerik üretimini ona bırakabilirler.

Bu, yazma ve düzenleme için gerekenmanuel çabayı azaltarak içerik üreticilerinin

daha üretken ve verimli olmasını sağlar.

2. Daha Hızlı İçerik Üretimi: Büyük Dil Modelleri, insan yazarlardan çok daha hızlı

içerik üretebilir. Doğru komutlar ve yönergelerle bir Büyük Dil Modeli, saniyeler

veya dakikalar içinde birden fazla içerik parçası üretebilir. Bu hız, uygulamaların

çok daha hızlı bir tempoda içerik üretmesini sağlayarak kullanıcıların taleplerini

ve sürekli değişen dijital ortamı yakalamasına olanak tanır.

Bağlamsal İçerik Üretimi 179

Daha hızlı içerik üretimi, internetin kimsenin okumadığı içeriklerle dolup taşması

şeklinde bir “ortak malların trajedisi” durumuna mı yol açıyor? Ne yazık ki, cevabın

evet olduğundan şüpheleniyorum.

3. Tutarlılık ve Kalite: Büyük Dil Modelleri, içeriği stil, ton ve kalite açısından

tutarlı olacak şekilde kolaylıkla düzenleyebilir. Net yönergeler ve örnekler

sağlandığında, belirli türdeki uygulamalar (örneğin haber odası, PR vb.) insan

tarafından üretilen içeriklerinin marka sesiyle uyumlu olmasını ve istenen kalite

standartlarını karşılamasını sağlayabilir. Bu tutarlılık, kapsamlı düzenleme ve

revizyonlara olan ihtiyacı azaltarak içerik oluşturma sürecinde zaman ve çabadan

tasarruf sağlar.

4. İterasyon ve Optimizasyon: Bağlamsal İçerik Üretimi kalıpları hızlı iterasyon

ve içerik optimizasyonuna olanak tanır. Büyük Dil Modeline sağlanan komutları,

şablonları veya yönergeleri ayarlayarak, uygulamalarınız geçmişte hiç mümkün

olmayan bir şekilde otomatik olarak içerik varyasyonları üretebilir ve farklı

yaklaşımları test edebilir. Bu tekrarlayıcı süreç, içerik stratejilerinin daha hızlı

denenmesine ve iyileştirilmesine olanak tanır ve zamanla daha etkili ve ilgi çekici

içerik üretilmesini sağlar. Bu özel teknik, hemen çıkma oranları ve etkileşime göre

yaşayan ve ölen e-ticaret gibi uygulamalar için tam bir oyun değiştirici olabilir

Bağlamsal İçerik Üretimi kalıplarının üretkenliği büyük ölçüde

artırabileceğini, ancak insan katılımı ihtiyacını tamamen ortadan

kaldırmadığını belirtmek önemlidir. İçerik üreticileri ve editörler, genel

içerik stratejisini tanımlamada, Büyük Dil Modeline rehberlik sağlamada

ve üretilen içeriğin kalitesini ve uygunluğunu sağlamada hala çok önemli

bir rol oynamaktadır.

İçerik oluşturmanın daha tekrarlayıcı ve zaman alıcı yönlerini otomatikleştirerek,

Bağlamsal İçerik Üretimi 180

Bağlamsal İçerik Üretimi kalıpları daha yüksek değerli görevlere yönlendirilebilecek

değerli insan zamanını ve kaynaklarını serbest bırakır. Bu artan üretkenlik, içerik

oluşturma iş akışlarını optimize ederken kullanıcılara daha kişiselleştirilmiş ve ilgi

çekici içerik sunmanızı sağlar.

Hızlı İterasyon ve Deney

Bağlamsal İçerik Üretimi kalıpları, farklı içerik varyasyonlarıyla hızlı bir şekilde

iterasyon yapmanıza ve deney yapmanıza olanak tanıyarak, içerik stratejinizin

daha hızlı optimize edilmesini ve iyileştirilmesini sağlar. Modele sağlanan bağlamı,

şablonları veya yönergeleri ayarlayarak saniyeler içinde birden fazla içerik versiyonu

üretebilirsiniz.

Bu hızlı iterasyon yeteneği birkaç önemli avantaj sunar:

1. Test Etme ve Optimizasyon: İçerik varyasyonlarını hızlı bir şekilde üretme

yeteneği ile farklı yaklaşımları kolayca test edebilir ve etkinliklerini ölçebilirsiniz.

Örneğin, belirli bir kullanıcı segmentine veya bağlama göre uyarlanmış bir ürün

açıklamasının veya pazarlama mesajının birden fazla versiyonunu üretebilirsiniz.

Tıklama oranları veya dönüşüm oranları gibi kullanıcı etkileşim metriklerini

analiz ederek, en etkili içerik varyasyonlarını belirleyebilir ve içerik stratejinizi

buna göre optimize edebilirsiniz.

2. A/B Testi: Bağlamsal İçerik Üretimi kalıpları, içeriğin sorunsuz A/B testine olanak

tanır. İki veya daha fazla içerik varyasyonu üretebilir ve bunları farklı kullanıcı

gruplarına rastgele sunabilirsiniz. Her varyasyonun performansını karşılaştırarak,

hedef kitlenize en iyi uyan içeriği belirleyebilirsiniz. Bu veri odaklı yaklaşım,

kullanıcı etkileşimini en üst düzeye çıkarmak ve istenen sonuçlara ulaşmak için

bilinçli kararlar almanızı ve içeriğinizi sürekli olarak iyileştirmenizi sağlar.

Bağlamsal İçerik Üretimi 181

3. Kişiselleştirme Deneyleri: Hızlı iterasyon ve deney, özellikle kişiselleştirme

söz konusu olduğunda çok değerlidir. Bağlamsal İçerik Üretimi kalıplarıyla,

farklı kullanıcı segmentleri, tercihleri veya davranışlarına dayalı olarak hızlı bir

şekilde kişiselleştirilmiş içerik varyasyonları üretebilirsiniz. Farklı kişiselleştirme

stratejileriyle deney yaparak, bireysel kullanıcıları çekmek ve özelleştirilmiş

deneyimler sunmak için en etkili yaklaşımları belirleyebilirsiniz.

4. Değişen Trendlere Uyum Sağlama:Hızlı iterasyon ve deney yapabilme yeteneği,

değişen trendlere ve kullanıcı tercihlerine çevik bir şekilde uyum sağlamanızı

mümkün kılar. Yeni konular, anahtar kelimeler veya kullanıcı davranışları ortaya

çıktıkça, bu trendlerle uyumlu içerik hızlıca üretebilirsiniz. İçeriğinizi sürekli

olarak test edip geliştirerek, sürekli gelişen dijital ortamda güncel kalabilir ve

rekabet avantajınızı koruyabilirsiniz.

5. Maliyet Etkin Deneyler: Geleneksel içerik deneyleri, içerik üreticilerinin farklı

varyasyonları manuel olarak geliştirmesi ve test etmesi gerektiğinden, genellikle

önemli zaman ve kaynak gerektirir. Ancak, Bağlamsal İçerik Üretimi desenleriyle,

deney maliyeti büyük ölçüde azalır. LLM’ler hızlı ve ölçekli bir şekilde içerik

varyasyonları üreterek, önemli maliyetler olmadan çok çeşitli fikir ve yaklaşımları

keşfetmenizi sağlar.

Hızlı iterasyon ve deneylerden en iyi şekilde yararlanmak için, iyi tanımlanmış bir deney

çerçevesinin olması önemlidir. Bu çerçeve şunları içermelidir:

• Her deney için net hedefler ve hipotezler

• İçerik performansını ölçmek için uygun metrikler ve takip mekanizmaları

• İlgili içerik varyasyonlarının doğru kullanıcılara sunulmasını sağlayan

segmentasyon ve hedefleme stratejileri

• Deneysel verilerden içgörü elde etmek için analiz ve raporlama araçları

• Öğrenilenleri ve optimizasyonları içerik stratejinize dahil etme süreci

Hızlı iterasyon ve deneyleri benimseyerek, içeriğinizi sürekli olarak iyileştirebilir ve

optimize edebilir, böylece uygulamanızın hedeflerine ulaşmada etkili, ilgi çekici ve

Bağlamsal İçerik Üretimi 182

güncel kalmasını sağlayabilirsiniz. İçerik oluşturmaya yönelik bu çevik yaklaşım,

trendin önünde kalmanızı ve olağanüstü kullanıcı deneyimleri sunmanızı sağlar.

Ölçeklenebilirlik ve Verimlilik

Uygulamalar büyüdükçe ve kişiselleştirilmiş içeriğe olan talep arttıkça, bağlamsal içerik

üretimi desenleri, içerik oluşturmanın verimli bir şekilde ölçeklenmesini sağlar. LLM’ler,

insan kaynaklarında orantılı bir artış gerektirmeden, çok sayıda kullanıcı ve bağlam için

eş zamanlı olarak içerik üretebilir. Bu ölçeklenebilirlik, uygulamaların içerik oluşturma

kapasitelerini zorlamadan, büyüyen bir kullanıcı tabanına kişiselleştirilmiş deneyimler

sunmasına olanak tanır.

Bağlamsal içerik üretiminin uygulamanızı “anında” uluslararasılaştırmak

için etkili bir şekilde kullanılabileceğini unutmayın. Aslında, bir yıldan kısa

bir süre içinde Instant18n Gem’imi kullanarak Olympia’yı yarım düzineden

fazla dilde sunmak için tam olarak bunu yaptım.

Yapay Zeka Destekli Yerelleştirme

Bir anlığına övünmeme izin verirseniz, Rails uygulamaları için geliştirdiğim Instant18n

kütüphanesinin, uygulama geliştirmede yapay zekanın dönüştürücü potansiyelini

gösteren “Bağlamsal İçerik Üretimi” deseninin çığır açan bir örneği olduğunu

düşünüyorum. Bu gem, Rails uygulamalarında uluslararasılaştırma ve yerelleştirmenin

nasıl ele alındığını devrimleştirmek için OpenAI’nin GPT büyük dil modelinin

gücünden yararlanıyor.

Geleneksel olarak, bir Rails uygulamasını uluslararasılaştırmak, çeviri anahtarlarını

manuel olarak tanımlamayı ve desteklenen her dil için karşılık gelen çevirileri sağlamayı

içerir. Bu süreç zaman alıcı, kaynak yoğun ve tutarsızlıklara açık olabilir. Ancak

Instant18n gem’i ile yerelleştirme paradigması tamamen yeniden tanımlanıyor.

Bağlamsal İçerik Üretimi 183

Büyük bir dil modelini entegre ederek, Instant18n gem’i metnin bağlamına ve

anlamına dayalı olarak anında çeviriler üretmenizi sağlar. Önceden tanımlanmış çeviri

anahtarlarına ve statik çevirilere güvenmek yerine, gem metni yapay zeka gücünü

kullanarak dinamik olarak çevirir. Bu yaklaşım birkaç önemli fayda sunar:

1. Sorunsuz Yerelleştirme: Instant18n gem’i ile geliştiricilerin desteklenen her

dil için çeviri dosyalarını manuel olarak tanımlayıp bakımını yapmasına gerek

kalmaz. Gem, sağlanan metin ve hedef dile göre otomatik olarak çeviriler

oluşturarak, yerelleştirme sürecini zahmetsiz ve sorunsuz hale getirir.

2. Bağlamsal Doğruluk: Yapay zekaya çevrilen metnin nüanslarını anlaması için

yeterli bağlam verilebilir. Çevreleyen bağlamı, deyimleri ve kültürel referansları

dikkate alarak doğru, doğal ve bağlama uygun çeviriler üretebilir.

3. Kapsamlı Dil Desteği: Instant18n gem’i, GPT’nin geniş bilgi birikimi ve dilsel

yeteneklerinden yararlanarak, çok sayıda dile çeviri yapılmasını sağlar. İspanyolca

ve Fransızca gibi yaygın dillerden, Klingon ve Elf dili gibi daha az bilinen veya

kurgusal dillere kadar, gem çok çeşitli çeviri gereksinimlerini karşılayabilir.

4. Esneklik ve Yaratıcılık: Gem, geleneksel dil çevirilerinin ötesine geçerek yaratıcı

ve alışılmadık yerelleştirme seçeneklerine olanak tanır. Geliştiriciler metni çeşitli

stillere, lehçelere veya hatta kurgusal dillere çevirebilir, bu da benzersiz kullanıcı

deneyimleri ve ilgi çekici içerik için yeni olanaklar sunar.

5. Performans Optimizasyonu: Instant18n gem’i, performansı artırmak ve

tekrarlanan çevirilerin yükünü azaltmak için önbellekleme mekanizmaları içerir.

Çevrilen metin önbelleğe alınır, böylece aynı çeviri için sonraki istekler gereksiz

API çağrıları olmadan hızlı bir şekilde sunulabilir.

Instant18n gem’i, yapay zekayı kullanarak dinamik olarak yerelleştirilmiş içerik

üreterek “Bağlamsal İçerik Üretimi” deseninin gücünü örneklemektedir. Yapay

zekanın bir Rails uygulamasının temel işlevselliğine nasıl entegre edilebileceğini ve

geliştiricilerin uluslararasılaştırma ve yerelleştirmeye yaklaşımını nasıl dönüştürdüğünü

göstermektedir.

Bağlamsal İçerik Üretimi 184

Manuel çeviri yönetimi ihtiyacını ortadan kaldırarak ve bağlama dayalı anında çeviriler

sağlayarak, Instant18n gem’i geliştiricilere önemli ölçüde zaman ve çaba tasarrufu

sağlar. Geliştiricilerin, yerelleştirme yönünün sorunsuz ve doğru bir şekilde ele

alınmasını sağlarken uygulamalarının temel özelliklerini geliştirmeye odaklanmalarına

olanak tanır.

Kullanıcı Testi ve Geri Bildirimin Önemi

Son olarak, kullanıcı testi ve geri bildirimin önemini her zaman aklınızda tutun.

Bağlamsal içerik oluşturmanın kullanıcı beklentilerini karşıladığını ve uygulamanın

hedefleriyle uyumlu olduğunu doğrulamak çok önemlidir. Kullanıcı içgörüleri ve

analitiğe dayalı olarak oluşturulan içeriği sürekli geliştirin ve iyileştirin. Siz ve ekibiniz

tarafından manuel olarak doğrulanması imkansız olacak büyük ölçekte dinamik

içerik oluşturuyorsanız, kullanıcıların tuhaf veya yanlış olan içeriği, nedeniyle birlikte

bildirebilecekleri geri bildirim mekanizmaları eklemeyi düşünün. Bu değerli geri

bildirimler, içeriği oluşturan bileşende düzeltmeler yapmakla görevlendirilmiş bir

yapay zeka işçisine bile beslenebilir!

Üretici Kullanıcı Arayüzü

Dikkat günümüzde o kadar değerli ki, etkili kullanıcı etkileşimi artık yalnızca sorunsuz

ve sezgisel değil, aynı zamanda bireysel ihtiyaçlara, tercihlere ve bağlamlara göre yüksek

düzeyde kişiselleştirilmiş yazılım deneyimleri gerektiriyor. Sonuç olarak, tasarımcılar

ve geliştiriciler giderek artan bir şekilde, her kullanıcının benzersiz gereksinimlerine

ölçekli bir şekilde uyum sağlayabilen ve hitap edebilen kullanıcı arayüzleri oluşturma

zorluğuyla karşı karşıya kalıyorlar.

Üretici Kullanıcı Arayüzü (GenUI), kullanıcı arayüzü tasarımında gerçekten devrim

niteliğinde bir yaklaşımdır ve anında yüksek düzeyde kişiselleştirilmiş ve dinamik

kullanıcı deneyimleri oluşturmak için büyük dil modellerinin (LLM) gücünden

yararlanır. Bu kitapta GenUI hakkında en azından bir giriş yapmak istedim, çünkü

bunun uygulama tasarımı ve çerçeveleri alanında şu anda var olan en bakir fırsatlardan

biri olduğuna inanıyorum. Bu özel niş alanda düzinelerce veya daha fazla yeni başarılı

ticari ve açık kaynaklı projenin ortaya çıkacağına ikna olmuş durumdayım.

Üretici Kullanıcı Arayüzü 186

Özünde, GenUI, Bağlamsal İçerik Üretimi ilkelerini gelişmiş yapay zeka teknikleriyle

birleştirerek, kullanıcının bağlamını, tercihlerini ve hedeflerini derinlemesine anlayarak

metin, görsel ve düzenler gibi kullanıcı arayüzü öğelerini dinamik olarak üretir. GenUI,

tasarımcıların ve geliştiricilerin, kullanıcı etkileşimlerine yanıt olarak uyum sağlayan

ve gelişen arayüzler oluşturmasına olanak tanıyarak, daha önce ulaşılamaz olan bir

kişiselleştirme düzeyi sağlar.

GenUI, kullanıcı arayüzü tasarımına yaklaşımımızda temel bir değişimi temsil eder.

Kitleler için tasarım yapmak yerine, GenUI bireye özel tasarım yapmamıza olanak

tanır. Kişiselleştirilmiş içerik ve arayüzler, her kullanıcıyla daha derin düzeyde rezonans

oluşturan, etkileşimi, memnuniyeti ve sadakati artıran kullanıcı deneyimleri yaratma

potansiyeline sahiptir.

En yeni teknolojilerden biri olarak, GenUI’ye geçiş, kavramsal ve pratik zorluklarla

doludur. Yapay zekayı tasarım sürecine entegre etmek, üretilen arayüzlerin sadece

kişiselleştirilmiş değil, aynı zamanda kullanılabilir, erişilebilir ve genel marka ve

kullanıcı deneyimiyle uyumlu olmasını sağlamak, tüm bunlar GenUI’yi çoğunluğun

değil, azınlığın uğraşı haline getiren zorluklardır. Ayrıca, yapay zekanın dahil olması,

veri gizliliği, şeffaflık ve hatta etik sonuçlar hakkında sorular ortaya çıkarır.

Zorluklara rağmen, ölçekli kişiselleştirilmiş deneyimler, dijital ürün ve hizmetlerle

etkileşim kurma şeklimizi tamamen dönüştürme gücüne sahiptir. Bu, yetenekleri,

geçmişleri veya tercihleri ne olursa olsun, kullanıcıların çeşitli ihtiyaçlarına hitap eden

kapsayıcı ve erişilebilir arayüzler oluşturma olanaklarını açar.

Bu bölümde, GenUI kavramını inceleyerek bazı belirleyici özelliklerini, temel

faydalarını ve potansiyel zorluklarını ele alacağız. GenUI’nin en temel ve erişilebilir

formuyla başlıyoruz: geleneksel olarak tasarlanmış ve uygulanmış kullanıcı arayüzleri

için metin içeriği üretmek.

Üretici Kullanıcı Arayüzü 187

Kullanıcı Arayüzleri İçin Metin Üretimi

Uygulamanızın arayüz öğelerinde bulunan form etiketleri, ipucu metinleri ve açıklayıcı

metinler gibi metin öğeleri, genellikle şablonlara veya UI bileşenlerine sabit olarak

kodlanır ve tüm kullanıcılar için tutarlı ancak genel bir deneyim sunar. Bağlamsal

içerik üretimi kalıplarını kullanarak, bu statik öğeleri dinamik, bağlama duyarlı ve

kişiselleştirilmiş bileşenlere dönüştürebilirsiniz.

Kişiselleştirilmiş Formlar

Formlar, web ve mobil uygulamaların yaygın bir parçasıdır ve kullanıcı girdisi

toplamanın birincil yoludur. Ancak, geleneksel formlar genellikle kullanıcının özel

bağlamı veya ihtiyaçlarıyla her zaman uyumlu olmayan standart etiketler ve alanlarla

genel ve kişisel olmayan bir deneyim sunar. Kullanıcılar, ihtiyaç ve tercihlerine

uyarlanmış hissettikleri formları doldurma olasılıkları daha yüksektir, bu da daha

yüksek dönüşüm oranları ve kullanıcı memnuniyeti sağlar.

Bununla birlikte, kişiselleştirme ve tutarlılık arasında bir denge kurmak önemlidir.

Formları bireysel kullanıcılara uyarlamak faydalı olabilirken, bir tanıdıklık ve

öngörülebilirlik düzeyini korumak çok önemlidir. Kullanıcılar, kişiselleştirilmiş öğelerle

bile formları kolayca tanıyabilmeli ve gezinebilmelidir.

İşte ilham verici bazı kişiselleştirilmiş form fikirleri:

Bağlamsal Alan Önerileri

GenUI, kullanıcının önceki etkileşimlerini, tercihlerini ve verilerini analiz ederek

tahminler olarak akıllı alan önerileri sunabilir. Örneğin, kullanıcı daha önce

teslimat adresini girdiyse, form ilgili alanları kaydedilmiş bilgileriyle otomatik

olarak doldurabilir. Bu sadece zamandan tasarruf sağlamakla kalmaz, aynı zamanda

uygulamanın kullanıcının tercihlerini anladığını ve hatırladığını gösterir.

Üretici Kullanıcı Arayüzü 188

Bir dakika, bu teknik yapay zeka kullanmadan da yapılabilecek bir şey değil mi? Elbette

öyle, ancak bu tür bir işlevselliği yapay zeka ile yönlendirmenin iki önemli güzelliği var:

1) uygulamanın ne kadar kolay olabileceği ve 2) kullanıcı arayüzünüz değişip geliştikçe

ne kadar dayanıklı kalabileceği.

Hadi teorik sipariş işleme sistemimiz için, kullanıcının doğru teslimat adresini proaktif

olarak doldurmaya çalışan bir servis oluşturalım.

1 class OrderShippingAddressSubscriber

2 include Raix::ChatCompletion

3

4 attr_accessor :order

5

6 delegate :customer, to: :order

7

8 DIRECTIVE = "You are a smart order processing assistant. Given the

9 customer's order history, guess the most likely shipping address

10 for the current order."

11

12 def order_created(order)

13 return unless order.pending? && order.shipping_address.blank?

14

15 self.order = order

16

17 transcript.clear

18 transcript << { system: DIRECTIVE }

19 transcript << { user: "Order History: #{order_history.to_json}" }

20 transcript << { user: "Current Order: #{order.to_json}" }

21

22 response = chat_completion

23 apply_predicted_shipping_address(order, response)

24 end

25

26 private

27

28 def apply_predicted_shipping_address(order, response)

29 # extract the shipping address from the response...

30 # ...and assume there's some sort of live update of the address fields

31 order.update(shipping_address:)

32 end

Üretici Kullanıcı Arayüzü 189

33

34 def order_history

35 customer.orders.successful.limit(100).map do |order|

36 {

37 date: order.date,

38 description: order.description,

39 shipping_address: order.shipping_address

40 }

41 end

42 end

43 end

Bu örnek oldukça basitleştirilmiş olsa da çoğu durum için işe yarayacaktır. Buradaki

fikir, yapay zekanın tıpkı bir insanın yapacağı gibi tahmin yürütmesine izin vermektir.

Ne demek istediğimi açıklığa kavuşturmak için, bazı örnek verilere bakalım:

1 Order History:

2 [

3 {"date": "2024-01-03", "description": "garden soil mix",

4 "shipping_address": "123 Country Lane, Rural Town"},

5 {"date": "2024-01-15", "description": "hardcover fiction novels",

6 "shipping_address": "456 City Apt, Metroville"},

7 {"date": "2024-01-22", "description": "baby diapers", "shipping_address":

8 "789 Suburb St, Quietville"},

9 {"date": "2024-02-01", "description": "organic vegetables",

10 "shipping_address": "123 Country Lane, Rural Town"},

11 {"date": "2024-02-17", "description": "mystery thriller book set",

12 "shipping_address": "456 City Apt, Metroville"},

13 {"date": "2024-02-25", "description": "baby wipes",

14 "shipping_address": "789 Suburb St, Quietville"},

15 {"date": "2024-03-05", "description": "flower seeds",

16 "shipping_address": "123 Country Lane, Rural Town"},

17 {"date": "2024-03-20", "description": "biographies",

18 "shipping_address": "456 City Apt, Metroville"},

19 {"date": "2024-03-30", "description": "baby formula",

20 "shipping_address": "789 Suburb St, Quietville"},

21 {"date": "2024-04-12", "description": "lawn fertilizer",

22 "shipping_address": "123 Country Lane, Rural Town"},

23 {"date": "2024-04-22", "description": "science fiction novels",

24 "shipping_address": "456 City Apt, Metroville"},

Üretici Kullanıcı Arayüzü 190

25 {"date": "2024-05-02", "description": "infant toys",

26 "shipping_address": "789 Suburb St, Quietville"},

27 {"date": "2024-05-14", "description": "outdoor grill",

28 "shipping_address": "123 Country Lane, Rural Town"},

29 {"date": "2024-05-29", "description": "literary classics",

30 "shipping_address": "456 City Apt, Metroville"},

31 {"date": "2024-06-11", "description": "baby clothes",

32 "shipping_address": "789 Suburb St, Quietville"},

33 {"date": "2024-07-01", "description": "watering can",

34 "shipping_address": "123 Country Lane, Rural Town"},

35 {"date": "2024-07-18", "description": "non-fiction essays",

36 "shipping_address": "456 City Apt, Metroville"},

37 {"date": "2024-07-28", "description": "baby bath items",

38 "shipping_address": "789 Suburb St, Quietville"},

39 {"date": "2024-08-09", "description": "herb garden kit",

40 "shipping_address": "123 Country Lane, Rural Town"},

41 {"date": "2024-08-24", "description": "children's books",

42 "shipping_address": "456 City Apt, Metroville"}

43]

Verilerdeki örüntüyü fark ettiniz mi? Bu tür şeyler bir BDM için çocuk oyuncağı, garanti

ederim. Bunu göstermek için, GPT-4’e bir “termometre” için en olası teslimat adresinin

ne olduğunu soralım.

1 From the order history you've provided, it looks like the purchases are

2 generally clustered into three main types based on the shipping addresses:

3

4 123 Country Lane, Rural Town - This address often orders garden and

5 outdoor-related items like soil mix, vegetables, flower seeds, lawn

6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.

7

8 456 City Apt, Metroville - This address tends to order various types of

9 books, indicating an interest in reading across genres like fiction,

10 thrillers, biographies, science fiction, literary classics, non-fiction

11 essays, and children's books.

12

13 789 Suburb St, Quietville - The purchases for this address are consistently

14 baby-related products, such as diapers, wipes, baby formula, infant toys,

15 baby clothes, and baby bath items.

16

Üretici Kullanıcı Arayüzü 191

17 Given these patterns, a digital thermometer could potentially be a fit for

18 any of the addresses based on different needs: outdoor temperature tracking,

19 a tool for a passionate reader interested in science gadgets, or a health

20 tool for a baby. However, considering its common use in monitoring health,

21 especially for babies, it's most likely to be purchased by someone who's

22 already buying baby care products.

23

24 Therefore, the most likely shipping address for a digital thermometer, based

25 on the purchasing patterns, would be 789 Suburb St, Quietville.

Bu iş için GPT-4 gibi pahalı bir modeli kullanmanın fazla abartılı olduğunu

düşünüyorsanız, haklısınız! Aynı komutu Mistral 7B Instruct üzerinde denediğimde,

saniyede 75 token hızında ve sadece 0,000218 USD gibi cüzi bir maliyetle aynı yanıtı

üretti.

1 Based on the given order history, it appears that the customer has received

2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)

3 at the address "789 Suburb St, Quietville" and garden-related items (soil,

4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural

5 Town". The customer has also received books (fiction, non-fiction, literary

6 classics, mystery-thriller, science fiction, biographies, children's books)

7 at the address "456 City Apt, Metroville".

8

9 Given that the new order is for a "thermometer", which doesn't seem to fit

10 into any of the categories that the customer has previously ordered, it's

11 hard to accurately predict the shipping address based solely on the order

12 history. However, given the 50%-50% split between baby-related and

13 garden-related items, it could somewhat lean towards the Baby-related items

14 address ("789 Suburb St, Quietville"). But remember, this is an assumption

15 and cannot be definitively confirmed without more context or information.

Bu tekniğin getirdiği ek yük ve maliyet, ödeme sürecini daha sihirli hale getirmek için

değer mi? Birçok çevrimiçi perakendeci için kesinlikle değer. Görünen o ki, özellikle

taban fiyat rekabetine giren açık kaynak model barındırma sağlayıcıları sayesinde,

yapay zeka hesaplama maliyetleri yalnızca düşmeye devam edecek.

Bu tür sohbet tamamlamalarını optimize etmek için Prompt Template ve

StructuredIO ile birlikte Response Fencing kullanın.

Üretici Kullanıcı Arayüzü 192

Uyarlanabilir Alan Sıralaması

Form alanlarının sunulma sırası, kullanıcı deneyimini ve tamamlanma oranlarını önemli

ölçüde etkileyebilir. GenUI ile kullanıcının bağlamına ve her alanın önemine göre alan

sıralamasını dinamik olarak ayarlayabilirsiniz. Örneğin, bir kullanıcı fitness uygulaması

için kayıt formunu dolduruyorsa, form fitness hedefleri ve tercihlerine ilişkin alanları

önceliklendirebilir ve böylece süreci daha alakalı ve ilgi çekici hale getirebilir.

Kişiselleştirilmiş Mikrokopya

Formlardaki talimat metinleri, hata mesajları ve diğer mikrokopyalar da GenUI

kullanılarak kişiselleştirilebilir. “Geçersiz e-posta adresi” gibi genel hata mesajları

yerine, “Sipariş onayınızı almak için lütfen geçerli bir e-posta adresi girin” gibi daha

yardımcı ve bağlamsal mesajlar oluşturabilirsiniz. Bu kişiselleştirilmiş dokunuşlar,

form deneyimini daha kullanıcı dostu ve daha az sinir bozucu hale getirebilir.

Kişiselleştirilmiş Doğrulama

Kişiselleştirilmiş Mikrokopya ile aynı doğrultuda, sihirli görünen şekillerde formu

doğrulamak için yapay zeka kullanabilirsiniz. Bir kullanıcı profil formundaki potansiyel

hataları anlamsal düzeyde arayan bir yapay zeka düşünün.

Üretici Kullanıcı Arayüzü 193

Şekil 9. Gerçekleşen anlamsal doğrulamayı görebiliyor musunuz?

Aşamalı Gösterim

GenUI, kullanıcının bağlamına göre hangi form alanlarının gerekli olduğunu

akıllıca belirleyebilir ve gerektiğinde ek alanları kademeli olarak gösterebilir. Bu

aşamalı gösterim tekniği, bilişsel yükü azaltmaya ve form doldurma sürecini daha

yönetilebilir hale getirmeye yardımcı olur. Örneğin, bir kullanıcı temel bir abonelik

Üretici Kullanıcı Arayüzü 194

için kaydoluyorsa, form başlangıçta yalnızca temel alanları gösterebilir ve kullanıcı

ilerledikçe veya belirli seçenekleri seçtikçe ilgili ek alanlar dinamik olarak eklenebilir.

Bağlama Duyarlı Açıklayıcı Metin

İpucu baloncukları genellikle kullanıcılar belirli öğelerin üzerine geldiğinde veya

etkileşime girdiğinde ek bilgi veya rehberlik sağlamak için kullanılır. “Bağlamsal İçerik

Oluşturma” yaklaşımıyla, kullanıcının bağlamına uyum sağlayan ve ilgili bilgileri

sunan ipucu baloncukları oluşturabilirsiniz. Örneğin, bir kullanıcı karmaşık bir özelliği

keşfediyorsa, ipucu baloncuğu önceki etkileşimlerine veya beceri düzeyine göre

kişiselleştirilmiş ipuçları veya örnekler sunabilir.

Talimatlar, açıklamalar veya yardım mesajları gibi açıklayıcı metinler, kullanıcının

bağlamına göre dinamik olarak oluşturulabilir. Genel açıklamalar sunmak yerine,

kullanıcının özel ihtiyaçlarına veya sorularına göre uyarlanmış metin oluşturmak

için LLM’leri kullanabilirsiniz. Örneğin, bir kullanıcı bir sürecin belirli bir adımında

zorlanıyorsa, açıklayıcı metin kişiselleştirilmiş rehberlik veya sorun giderme ipuçları

sağlayabilir.

Mikrokopya, düğme etiketleri, hata mesajları veya onay istemler gibi kullanıcıları

uygulamanızda yönlendiren küçük metin parçalarını ifade eder. Bağlamsal İçerik

Oluşturma yaklaşımını mikrokopyaya uygulayarak, kullanıcının eylemlerine yanıt

veren ve ilgili ve yardımcı metin sağlayan uyarlanabilir bir UI oluşturabilirsiniz.

Örneğin, bir kullanıcı kritik bir eylem gerçekleştirmek üzereyse, onay istemi net ve

kişiselleştirilmiş bir mesaj sağlamak için dinamik olarak oluşturulabilir.

Kişiselleştirilmiş açıklayıcı metin ve ipucu baloncukları, yeni kullanıcılar için başlangıç

sürecini büyük ölçüde iyileştirebilir. Bağlama özel rehberlik ve örnekler sağlayarak,

kullanıcıların uygulamayı hızlıca anlamasına ve gezinmesine yardımcı olabilir, öğrenme

süresini kısaltabilir ve benimsemeyi artırabilirsiniz.

Dinamik ve bağlama duyarlı arayüz öğeleri de uygulamanın daha sezgisel ve ilgi çekici

hissetmesini sağlayabilir. Eşlik eden metin kendi özel ihtiyaç ve ilgi alanlarına göre

Üretici Kullanıcı Arayüzü 195

uyarlandığında, kullanıcıların özelliklerle etkileşime girme ve bunları keşfetme olasılığı

daha yüksektir.

Şimdiye kadar yapay zeka ile mevcut kullanıcı arayüzü paradigmalarını geliştirme

fikirlerini ele aldık, peki ya kullanıcı arayüzlerinin nasıl tasarlandığını ve uygulandığını

daha radikal bir şekilde yeniden düşünmek hakkında ne dersiniz?

Üretken Kullanıcı Arayüzünün Tanımlanması

Tasarımcıların sabit, statik arayüzler oluşturduğu geleneksel kullanıcı arayüzü

tasarımının aksine, GenUI yazılımlarımızın gerçek zamanlı olarak gelişebilen ve

uyum sağlayabilen esnek, kişiselleştirilmiş deneyimler sunduğu bir geleceğe işaret

ediyor. Yapay zeka destekli bir konuşma arayüzünü her kullandığımızda, yapay

zekanın kullanıcının özel ihtiyaçlarına uyum sağlamasına izin veriyoruz. GenUI, bu

uyarlanabilirlik seviyesini yazılımın görsel arayüzüne uygulayarak işleri bir adım öteye

taşıyor.

Günümüzde GenUI fikirleriyle çalışmanın mümkün olmasının nedeni, büyük dil

modellerinin halihazırda programlamayı anlaması ve temel bilgilerinin kullanıcı

arayüzü teknolojilerini ve çerçevelerini içermesidir. Asıl soru, büyük dil modellerinin

her kullanıcıya özel uyarlanmış metin, görsel, düzen ve hatta tam arayüzler gibi

kullanıcı arayüzü öğelerini üretmek için kullanılıp kullanılamayacağıdır. Model,

kullanıcının geçmiş etkileşimlerini, belirtilen tercihlerini, demografik bilgilerini ve

mevcut kullanım bağlamını dikkate alarak son derece kişiselleştirilmiş ve alakalı

arayüzler oluşturmak üzere yönlendirilebilir.

GenUI, geleneksel kullanıcı arayüzü tasarımından birkaç temel açıdan farklılık gösterir:

1. Dinamik ve Uyarlanabilir: Geleneksel kullanıcı arayüzü tasarımı, tüm

kullanıcılar için aynı kalan sabit, statik arayüzler oluşturmayı içerir. Buna

Üretici Kullanıcı Arayüzü 196

karşılık, GenUI kullanıcı ihtiyaçlarına ve bağlama göre dinamik olarak uyum

sağlayabilen ve değişebilen arayüzler sağlar. Bu, aynı uygulamanın farklı

kullanıcılara veya hatta aynı kullanıcıya farklı durumlarda farklı arayüzler

sunabileceği anlamına gelir.

2. Ölçeklenebilir Kişiselleştirme: Geleneksel tasarımda, gereken zaman ve

kaynaklar nedeniyle her kullanıcı için kişiselleştirilmiş deneyimler oluşturmak

genellikle pratik değildir. Öte yandan GenUI, ölçeklenebilir kişiselleştirmeye

olanak tanır. Yapay zekayı kullanarak tasarımcılar, her kullanıcı segmenti

için ayrı arayüzler manuel olarak tasarlayıp geliştirmek zorunda kalmadan,

her kullanıcının benzersiz ihtiyaçlarına ve tercihlerine otomatik olarak uyum

sağlayan arayüzler oluşturabilirler.

3. Sonuçlara Odaklanma: Geleneksel kullanıcı arayüzü tasarımı genellikle görsel

açıdan çekici ve işlevsel arayüzler oluşturmaya odaklanır. Bu yönler GenUI’de

hala önemli olmakla birlikte, temel odak istenen kullanıcı sonuçlarını elde etmeye

kayar. GenUI, salt estetik kaygılardan ziyade kullanılabilirliği ve etkinliği ön

planda tutarak, her kullanıcının özel hedeflerine ve görevlerine optimize edilmiş

arayüzler oluşturmayı amaçlar.

4. Sürekli Öğrenme ve İyileştirme: GenUI sistemleri, kullanıcı etkileşimleri

ve geri bildirimlere dayalı olarak sürekli öğrenebilir ve zamanla gelişebilir.

Kullanıcılar oluşturulan arayüzlerle etkileşime girdikçe, yapay zeka modelleri

kullanıcı davranışları, tercihleri ve sonuçları hakkında veri toplayabilir ve bu

bilgileri gelecekteki arayüz oluşturmalarını iyileştirmek ve optimize etmek

için kullanabilir. Bu yinelemeli öğrenme süreci, GenUI sistemlerinin zamanla

kullanıcı ihtiyaçlarını karşılamada giderek daha etkili hale gelmesini sağlar.

GenUI’nin, belirli tasarım görevlerini otomatikleştiren veya öneriler sunan yapay

zeka destekli tasarım araçlarıyla aynı şey olmadığını belirtmek önemlidir. Bu araçlar

tasarım sürecini kolaylaştırmada yardımcı olabilse de, yine de nihai kararları vermek

ve statik arayüzler oluşturmak için tasarımcılara güvenirler. Öte yandan GenUI,

Üretici Kullanıcı Arayüzü 197

yapay zeka sisteminin kullanıcı verileri ve bağlama dayalı olarak arayüzlerin gerçek

oluşturulmasında ve uyarlanmasında daha aktif bir rol almasını içerir.

GenUI, kullanıcı arayüzü tasarımına yaklaşımımızda, herkese uyan tek tip çözümlerden

son derece kişiselleştirilmiş, uyarlanabilir deneyimlere doğru önemli bir değişimi temsil

eder. Yapay zekanın gücünden yararlananGenUI, dijital ürünler ve hizmetlerle etkileşim

kurma şeklimizi devrimleştirme potansiyeline sahiptir ve her bir kullanıcı için daha

sezgisel, ilgi çekici ve etkili arayüzler oluşturur.

Örnek

GenUI kavramını örneklendirmek için, “FitAI” adlı varsayımsal bir fitness uygulamasını

ele alalım. Bu uygulama, kullanıcılara bireysel hedeflerine, fitness seviyelerine ve

tercihlerine göre kişiselleştirilmiş antrenman planları ve beslenme tavsiyeleri sunmayı

amaçlamaktadır.

Geleneksel bir kullanıcı arayüzü tasarım yaklaşımında, FitAI tüm kullanıcılar için aynı

olan sabit bir ekran ve öğe setine sahip olabilir. Ancak GenUI ile uygulamanın arayüzü

her kullanıcının benzersiz ihtiyaçlarına ve bağlamına dinamik olarak uyum sağlayabilir.

Bu yaklaşımı 2024’te uygulamayı hayal etmek biraz zorlama olabilir ve hatta yeterli

yatırım getirisi sağlamayabilir, ancak mümkündür.

İşte nasıl çalışabileceğine dair bir örnek:

1. Başlangıç Süreci:

• Standart bir anket yerine, FitAI kullanıcının hedefleri, mevcut fitness

seviyesi ve tercihleri hakkında bilgi toplamak için konuşma tabanlı yapay

zeka kullanır.

• Bu ilk etkileşime dayanarak, yapay zeka kullanıcının hedefleriyle en alakalı

özellikleri ve bilgileri vurgulayan kişiselleştirilmiş bir gösterge paneli düzeni

oluşturur.

Üretici Kullanıcı Arayüzü 198

• Mevcut yapay zeka teknolojisi, kişiselleştirilmiş gösterge panelini

oluşturmak için kullanabileceği bir dizi ekran bileşenine sahip olabilir.

• Gelecekteki yapay zeka teknolojisi, deneyimli bir kullanıcı arayüzü

tasarımcısı rolünü üstlenebilir ve gösterge panelini sıfırdan gerçekten

oluşturabilir.

2. Antrenman Planlayıcısı:

• Antrenman planlayıcı arayüzü, kullanıcının deneyim seviyesine ve mevcut

ekipmanına göre yapay zeka tarafından özel olarak uyarlanır.

• Ekipmanı olmayan bir başlangıç seviyesi kullanıcısı için, detaylı talimatlar

ve videolarla basit vücut ağırlığı egzersizleri gösterebilir.

• Spor salonuna erişimi olan ileri seviye bir kullanıcı için, daha az açıklayıcı

içerikle daha karmaşık rutinler görüntüleyebilir.

• Antrenman planlayıcısının içeriği basitçe büyük bir üst kümeden

filtrelenmez. Kullanıcı hakkında bilinen her şeyi içeren bağlamla sorgulanan

bir bilgi tabanına dayanarak anında üretilebilir.

3. İlerleme Takibi:

• İlerleme takibi arayüzü, kullanıcının hedeflerine ve katılım modellerine göre

gelişir.

• Öncelikle kilo vermeye odaklanan bir kullanıcı için, arayüz ağırlık trendi

grafiğini ve kalori yakımı istatistiklerini öne çıkarabilir.

• Kas geliştiren bir kullanıcı için, güç artışını ve vücut kompozisyonu

değişikliklerini vurgulayabilir.

• Yapay zeka, uygulamanın bu bölümünü kullanıcının gerçek ilerlemesine

göre uyarlayabilir. İlerleme bir süre durduğunda, uygulama, bunları

hafifletmek amacıyla kullanıcıyı gerilemenin nedenlerini açıklamaya teşvik

eden bir moda geçebilir.

4. Beslenme Tavsiyeleri:

Üretici Kullanıcı Arayüzü 199

• Beslenme bölümü kullanıcının diyet tercihlerine ve kısıtlamalarına uyum

sağlar.

• Vegan bir kullanıcı için, bitkisel bazlı yemek önerileri ve protein kaynakları

gösterebilir.

• Gluten intoleransı olan bir kullanıcı için, önerilerden gluten içeren

yiyecekleri otomatik olarak filtreleyecektir.

• Yine, içerik tüm kullanıcılara uyan büyük bir yemek veri kümesinden

çekilmez, bunun yerine kullanıcının özel durumu ve kısıtlamalarına göre

uyarlanabilen bilgileri içeren bir bilgi tabanından sentezlenir.

• Örneğin, tarifler, kullanıcının fitness seviyesi ve vücut istatistikleri geliştikçe

sürekli değişen kalori ihtiyaçlarına uygunmalzeme özellikleriyle oluşturulur.

5. Motivasyonel Öğeler:

• Uygulamanın motivasyonel içeriği ve bildirimleri, kullanıcının kişilik tipine

ve farklı motivasyonel stratejilere verdiği tepkiye göre kişiselleştirilir.

• Bazı kullanıcılar cesaretlendirici mesajlar alırken, diğerleri daha veri odaklı

geri bildirimler alabilir.

Bu örnekte, GenUI, FitAI’ın her kullanıcı için son derece özelleştirilmiş bir deneyim

yaratmasını sağlayarak, katılımı, memnuniyeti ve fitness hedeflerine ulaşma olasılığını

potansiyel olarak artırır. Arayüz öğeleri, içerik ve hatta uygulamanın “kişiliği”, her bir

kullanıcının ihtiyaç ve tercihlerine en iyi şekilde hizmet etmek için uyarlanır.

Sonuç Odaklı Tasarıma Geçiş

GenUI, kullanıcı arayüzü tasarımına yaklaşımda, belirli arayüz öğeleri oluşturmaya

odaklanmaktan daha bütünsel, sonuç odaklı bir yaklaşıma doğru temel bir değişimi

temsil eder. Bu değişimin birkaç önemli etkisi vardır:

1. Kullanıcı Hedeflerine Odaklanma:

Üretici Kullanıcı Arayüzü 200

• Tasarımcıların, belirli arayüz bileşenleri yerine kullanıcı hedefleri ve istenen

sonuçlar hakkında daha derin düşünmeleri gerekecek.

• Vurgu, kullanıcıların hedeflerine verimli ve etkili bir şekilde ulaşmalarına

yardımcı olacak arayüzler üretebilen sistemler oluşturmak üzerine olacak.

• Yapay zeka tabanlı tasarımcılara, önceden tanımlanmış ekran özelliklerini

temel almak yerine kullanıcı deneyimlerini anında ve sıfırdan oluşturma

yeteneği veren yeni UI çerçeveleri ortaya çıkacak.

2. Tasarımcıların Değişen Rolü:

• Tasarımcılar, sabit düzenler oluşturmaktan, yapay zeka sistemlerinin

arayüzler üretirken takip edeceği kuralları, kısıtlamaları ve yönergeleri

tanımlamaya geçiş yapacak.

• GenUI sistemlerini etkili bir şekilde yönlendirmek için veri analizi, yapay

zeka prompt mühendisliği ve sistem düşüncesi gibi alanlarda beceriler

geliştirmeleri gerekecek.

3. Kullanıcı Araştırmasının Önemi:

• Kullanıcı araştırması, bir GenUI bağlamında daha da kritik hale geliyor,

çünkü tasarımcıların sadece kullanıcı tercihlerini değil, aynı zamanda bu

tercih ve ihtiyaçların farklı bağlamlarda nasıl değiştiğini de anlamaları

gerekiyor.

• Sürekli kullanıcı testi ve geri bildirim döngüleri, yapay zekanın etkili

arayüzler üretme yeteneğini geliştirmek ve iyileştirmek için gerekli olacak.

4. Değişkenlik için Tasarım:

• Tek bir “mükemmel” arayüz oluşturmak yerine, tasarımcıların çoklu olası

varyasyonları düşünmeleri ve sistemin farklı kullanıcı ihtiyaçları için uygun

arayüzler üretebilmesini sağlamaları gerekecek.

Üretici Kullanıcı Arayüzü 201

• Bu, uç durumlar için tasarım yapmayı ve oluşturulan arayüzlerin farklı

konfigürasyonlarda kullanılabilirlik ve erişilebilirliği korumasını sağlamayı

içerir.

• Ürün farklılaştırması, kullanıcı psikolojisi konusunda farklı bakış açıları

ve rakiplerin erişemediği benzersiz veri setleri ve bilgi tabanlarının

kullanılmasını içeren yeni boyutlar kazanır.

Zorluklar ve Dikkat Edilmesi Gerekenler

GenUI heyecan verici olanaklar sunarken, aynı zamanda birkaç zorluk ve dikkat

edilmesi gereken nokta da ortaya çıkarır:

1. Teknik Sınırlamalar:

• Mevcut yapay zeka teknolojisi, gelişmiş olmasına rağmen, karmaşık kullanıcı

niyetlerini anlama ve gerçekten bağlam duyarlı arayüzler üretme konusunda

hala sınırlamalara sahiptir.

• Özellikle daha az güçlü cihazlarda, arayüz öğelerinin gerçek zamanlı

üretimiyle ilgili performans sorunları.

2. Veri Gereksinimleri:

• Kullanım senaryosuna bağlı olarak, etkili GenUI sistemleri kişiselleştirilmiş

arayüzler oluşturmak için önemli miktarda kullanıcı verisi gerektirebilir.

• Otantik kullanıcı verilerinin etik bir şekilde elde edilmesindeki zorluklar, veri

gizliliği ve güvenliği ile birlikte GenUI modellerini eğitmek için kullanılan

verilerdeki olası önyargılar konusunda endişelere yol açmaktadır.

3. Kullanılabilirlik ve Tutarlılık:

Üretici Kullanıcı Arayüzü 202

• En azından bu uygulama yaygınlaşana kadar, sürekli değişen arayüzlere

sahip bir uygulama, kullanıcıların tanıdık öğeleri bulmakta veya etkili bir

şekilde gezinmekte zorlanması nedeniyle kullanılabilirlik sorunlarına yol

açabilir.

• Kişiselleştirme ile tutarlı ve öğrenilebilir bir arayüz arasında denge kurmak

çok önemli olacaktır.

4. Yapay Zekaya Aşırı Güven:

• Tasarım kararlarını yapay zeka sistemlerine aşırı devretme riski, ilham

vermeyen, sorunlu veya basitçe bozuk arayüz seçimlerine yol açabilir.

• İnsan gözetimi ve yapay zeka tarafından oluşturulan tasarımları geçersiz

kılma yeteneği, öngörülebilir gelecekte önemini koruyacaktır.

5. Erişilebilirlik Endişeleri:

• Dinamik olarak oluşturulan arayüzlerin engelli kullanıcılar için erişilebilir

kalmasını sağlamak, tipik sistemlerin gösterdiği düşük erişilebilirlik uyumu

göz önüne alındığında endişe verici olan tamamen yeni zorluklar ortaya

çıkarır.

• Öte yandan, yapay zeka tasarımcıları erişilebilirlik konusunda yerleşik

bir hassasiyetle ve engelli olmayan kullanıcılar için UI oluşturdukları gibi

anında erişilebilir arayüzler oluşturma yetenekleriyle uygulanabilir.

• Her durumda, GenUI sistemleri sağlam erişilebilirlik yönergeleri ve test

süreçleriyle tasarlanmalıdır.

6. Kullanıcı Güveni ve Şeffaflık:

• Kullanıcılar, kendileri hakkında “çok fazla şey bilen” veya anlamadıkları

şekillerde değişen arayüzlerle rahatsız olabilirler.

• Arayüzlerin nasıl ve neden kişiselleştirildiği konusunda şeffaflık sağlamak,

kullanıcı güvenini oluşturmak için önemli olacaktır.

Üretici Kullanıcı Arayüzü 203

Gelecek Görünümü ve Fırsatlar

Üretken Kullanıcı Arayüzünün (GenUI) geleceği, dijital ürünler ve hizmetlerle etkileşim

şeklimizi devrimselleştirme konusunda muazzam bir potansiyel barındırıyor. Bu

teknoloji geliştikçe, kullanıcı arayüzlerinin tasarlanma, uygulanma ve deneyimlenme

şeklinde büyük bir değişim bekleyebiliriz. GenUI’nin, yazılımlarımızı şu anda bilim

kurgu olarak kabul edilen alana taşıyacak olgu olduğunu düşünüyorum.

GenUI’nin en heyecan verici yönlerinden biri, erişilebilirliği ciddi engelli insanların

yazılımınızı kullanmaktan tamamen dışlanmamasını sağlamanın ötesine geçen büyük

bir ölçekte artırma potansiyelidir. Arayüzleri otomatik olarak bireysel kullanıcı

ihtiyaçlarına uyarlayarak, GenUI dijital deneyimleri her zamankinden daha kapsayıcı

hale getirebilir. Manuel yapılandırma veya uygulamaların ayrı “erişilebilir” sürümlerini

gerektirmeden, genç veya görme engelli kullanıcılar için daha büyük metin sağlayan

veya bilişsel engelli olanlar için basitleştirilmiş düzenler sunan arayüzleri hayal edin.

GenUI’nin kişiselleştirme yetenekleri, çeşitli dijital ürünlerde kullanıcı katılımını,

memnuniyetini ve sadakatini artıracak gibi görünüyor. Arayüzler bireysel tercihler ve

davranışlara daha uyumlu hale geldikçe, kullanıcılar dijital deneyimleri daha sezgisel

ve keyifli bulacak, bu da teknolojiyle daha derin ve anlamlı etkileşimlere yol açabilecek.

GenUI ayrıca yeni kullanıcılar için başlangıç sürecini dönüştürme potansiyeline sahip.

Her kullanıcının uzmanlık düzeyine hızla uyum sağlayan sezgisel, kişiselleştirilmiş ilk

kullanıcı deneyimleri oluşturarak, yeni uygulamalarla ilişkili öğrenme sürecini önemli

ölçüde azaltabilir. Bu, daha hızlı benimseme oranlarına ve yeni özellikleri ve işlevleri

keşfetme konusunda artan kullanıcı güvenine yol açabilir.

Bir diğer heyecan verici olasılık, GenUI’nin her özel kullanım bağlamı için optimize

ederken farklı cihazlar ve platformlar arasında tutarlı bir kullanıcı deneyimini sürdürme

yeteneğidir. Bu, akıllı telefonlardan tabletlere, masaüstü bilgisayarlara ve artırılmış

gerçeklik gözlükleri gibi gelişen teknolojilere kadar giderek parçalanan cihaz ortamında

tutarlı deneyimler sağlama konusundaki uzun süredir devam eden zorluğu çözebilir.

Üretici Kullanıcı Arayüzü 204

GenUI’nin veri odaklı doğası, kullanıcı arayüzü tasarımında hızlı yineleme ve

iyileştirme fırsatları sunar. Kullanıcıların oluşturulan arayüzlerle nasıl etkileşime

girdiğine dair gerçek zamanlı veriler toplayarak, tasarımcılar ve geliştiriciler kullanıcı

davranışı ve tercihleri hakkında benzeri görülmemiş içgörüler elde edebilir. Bu geri

bildirim döngüsü, varsayımlar veya sınırlı kullanıcı testleri yerine gerçek kullanım

kalıplarına dayalı olarak UI tasarımında sürekli iyileştirmelere yol açabilir.

Bu değişime hazırlanmak için, tasarımcıların beceri setlerini ve düşünce biçimlerini

geliştirmeleri gerekecek. Odak noktası, sabit düzenler oluşturmaktan, yapay zeka

destekli arayüz oluşturmaya rehberlik edebilecek kapsamlı tasarım sistemleri ve

yönergeler geliştirmeye kayacak. Tasarımcılar, GenUI sistemlerini etkili bir şekilde

yönlendirmek için veri analizi, yapay zeka teknolojileri ve sistem düşüncesi konularında

derin bir anlayış geliştirmeleri gerekecek.

Dahası, GenUI tasarım ve teknoloji arasındaki çizgileri bulanıklaştırdıkça, tasarımcıların

geliştiriciler ve veri bilimcileriyle daha yakın işbirliği yapması gerekecek. Bu disiplinler

arası yaklaşım, sadece görsel olarak çekici ve kullanıcı dostu değil, aynı zamanda teknik

olarak sağlam ve etik açıdan uygun GenUI sistemleri oluşturmada çok önemli olacaktır.

Teknoloji olgunlaştıkça GenUI’nin etik sonuçları da ön plana çıkacaktır. Tasarımcılar,

arayüz tasarımında yapay zekânın sorumlu kullanımı için çerçeveler geliştirmede

kritik bir rol oynayacak ve kişiselleştirmenin gizliliği tehlikeye atmadan veya kullanıcı

davranışlarını etik olmayan şekillerde manipüle etmeden kullanıcı deneyimlerini

geliştirmesini sağlayacaktır.

Geleceğe baktığımızda, GenUI hem heyecan verici fırsatlar hem de önemli zorluklar

sunmaktadır. Dünya çapındaki kullanıcılar için daha sezgisel, verimli ve tatmin edici

dijital deneyimler yaratma potansiyeline sahiptir. Tasarımcıların uyum sağlamasını ve

yeni beceriler edinmesini gerektirse de, aynı zamanda insan-bilgisayar etkileşiminin

geleceğini derin ve anlamlı yollarla şekillendirmek için eşsiz bir fırsat sunmaktadır.

Tam anlamıyla gerçekleşmiş GenUI sistemlerine giden yolculuk kuşkusuz karmaşık

olacaktır, ancak gelişmiş kullanıcı deneyimleri ve dijital erişilebilirlik açısından

Üretici Kullanıcı Arayüzü 205

potansiyel kazanımlar, uğrunda çaba gösterilmeye değer bir geleceği işaret etmektedir.

Akıllı İş Akışı Orkestrayonu

“Akıllı İş Akışı Orkestrayonu” yaklaşımı, uygulamalar içindeki karmaşık iş akışlarını

dinamik olarak orkestra etmek ve optimize etmek için yapay zeka bileşenlerinden

yararlanmaya odaklanır. Amaç, daha verimli, duyarlı ve gerçek zamanlı verilerle

bağlama uyum sağlayabilen uygulamalar oluşturmaktır.

Bu bölümde, akıllı iş akışı orkestrayonu yaklaşımının temelini oluşturan ana ilkeleri ve

kalıpları inceleyeceğiz. Yapay zekanın görevleri akıllıca yönlendirmek, karar vermeyi

otomatikleştirmek ve iş akışlarını kullanıcı davranışı, sistem performansı ve iş kuralları

gibi çeşitli faktörlere göre dinamik olarak uyarlamak için nasıl kullanılabileceğini

ele alacağız. Pratik örnekler ve gerçek dünya senaryoları aracılığıyla, yapay zekanın

uygulama iş akışlarını düzenlemek ve optimize etmedeki dönüştürücü potansiyelini

göstereceğiz.

İster karmaşık iş süreçlerine sahip kurumsal uygulamalar, ister dinamik kullanıcı

yolculukları olan tüketici odaklı uygulamalar geliştiriyor olun, bu bölümde tartışılan

Akıllı İş Akışı Orkestrayonu 207

kalıplar ve teknikler, genel kullanıcı deneyimini geliştiren ve iş değeri yaratan akıllı ve

verimli iş akışları oluşturmanız için gereken bilgi ve araçlarla sizi donatacaktır.

İş İhtiyacı

İş akışı yönetimine yönelik geleneksel yaklaşımlar genellikle önceden tanımlanmış

kurallara ve statik karar ağaçlarına dayanır; bu da katı, esnek olmayan ve modern

uygulamaların dinamik doğasıyla başa çıkamayan sonuçlar doğurabilir.

Bir e-ticaret uygulamasının karmaşık bir sipariş karşılama sürecini yönetmesi gereken

bir senaryoyu düşünün. İş akışı, sipariş doğrulama, stok kontrolü, ödeme işleme, kargo

ve müşteri bildirimleri gibi birden çok adım içerebilir. Her adımın kendi kural setleri,

bağımlılıkları, dış entegrasyonları ve istisna yönetimi mekanizmaları olabilir. Böyle bir

iş akışını manuel olarak veya sabit kodlanmış mantıkla yönetmek hızla zahmetli, hataya

açık ve bakımı zor hale gelebilir.

Dahası, uygulama ölçeklendikçe ve eşzamanlı kullanıcı sayısı arttıkça, iş akışının gerçek

zamanlı verilere ve sistem performansına göre kendini uyarlaması ve optimize etmesi

gerekebilir. Örneğin, yoğun trafik dönemlerinde uygulamanın, belirli görevlere öncelik

vermek, kaynakları verimli bir şekilde tahsis etmek ve sorunsuz bir kullanıcı deneyimi

sağlamak için iş akışını dinamik olarak ayarlaması gerekebilir.

İşte “Akıllı İş Akışı Orkestrayonu” yaklaşımı burada devreye girer. Yapay zeka

bileşenlerinden yararlanarak, geliştiriciler akıllı, uyarlanabilir ve kendi kendini

optimize eden iş akışları oluşturabilir. Yapay zeka, büyük miktarda veriyi analiz

edebilir, geçmiş deneyimlerden öğrenebilir ve iş akışını etkili bir şekilde yönetmek için

gerçek zamanlı bilgiye dayalı kararlar alabilir.

Temel Faydalar

1. Artan Verimlilik: Yapay zeka, görev tahsisini, kaynak kullanımını ve iş akışı

yürütmesini optimize ederek daha hızlı işlem süreleri ve gelişmiş genel verimlilik

Akıllı İş Akışı Orkestrayonu 208

sağlayabilir.

2. Uyarlanabilirlik: Yapay zeka destekli iş akışları, kullanıcı talebindeki

dalgalanmalar, sistem performansı veya iş gereksinimleri gibi değişen koşullara

dinamik olarak uyum sağlayarak uygulamanın duyarlı ve dirençli kalmasını

sağlar.

3. Otomatik Karar Verme: Yapay zeka, iş akışı içindeki karmaşık karar verme

süreçlerini otomatikleştirebilir, manuel müdahaleyi azaltabilir ve insan hatası

riskini en aza indirebilir.

4. Kişiselleştirme: Yapay zeka, kullanıcı davranışını, tercihlerini ve bağlamı

analiz ederek iş akışını kişiselleştirebilir ve bireysel kullanıcılara özelleştirilmiş

deneyimler sunabilir.

5. Ölçeklenebilirlik: Yapay zeka destekli iş akışları, performans veya güvenilirlikten

ödün vermeden artan veri ve kullanıcı etkileşimi hacmini yönetmek için sorunsuz

bir şekilde ölçeklenebilir.

Sonraki bölümlerde, akıllı iş akışlarının uygulanmasını sağlayan temel kalıpları ve

teknikleri inceleyecek ve yapay zekanın modern uygulamalardaki iş akışı yönetimini

nasıl dönüştürdüğünü gösteren gerçek dünya örneklerini sunacağız.

Temel Kalıplar

Uygulamalarda akıllı iş akışı orkestrayonunu uygulamak için geliştiriciler, yapay

zekanın gücünden yararlanan birkaç temel kalıptan faydalanabilir. Bu kalıplar,

uygulamaların gerçek zamanlı verilere ve bağlama dayalı olarak süreçleri uyarlaması,

optimize etmesi ve otomatikleştirmesi için iş akışlarını tasarlama ve yönetmede

yapılandırılmış bir yaklaşım sunar. Akıllı iş akışı orkestrayonundaki temel kalıplardan

bazılarını inceleyelim.

Akıllı İş Akışı Orkestrayonu 209

Dinamik Görev Yönlendirme

Bu kalıp, görev önceliği, kaynak kullanılabilirliği ve sistem performansı gibi çeşitli

faktörlere dayalı olarak bir iş akışı içindeki görevleri akıllıca yönlendirmek için

yapay zeka kullanımını içerir. Yapay zeka algoritmaları her görevin özelliklerini

analiz edebilir, sistemin mevcut durumunu değerlendirebilir ve görevleri en uygun

kaynaklara veya işlem yollarına atamak için bilgiye dayalı kararlar verebilir. Dinamik

görev yönlendirme, görevlerin verimli bir şekilde dağıtılmasını ve yürütülmesini

sağlayarak genel iş akışı performansını optimize eder.

1 class TaskRouter

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 attr_accessor :task

6

7 # list of functions that can be called by the AI entirely at its

8 # discretion depending on the task received

9

10 function :analyze_task_priority do

11 TaskPriorityAnalyzer.perform(task)

12 end

13

14 function :check_resource_availability, # ...

15 function :assess_system_performance, # ...

16 function :assign_task_to_resource, # ...

17

18 DIRECTIVE = "You are a task router, responsible for intelligently

19 assigning tasks to available resources based on priority, resource

20 availability, and system performance..."

21

22 def initialize(task)

23 self.task = task

24 transcript << { system: DIRECTIVE }

25 transcript << { user: task.to_json }

26 end

27

28 def perform

29 while task.unassigned?

Akıllı İş Akışı Orkestrayonu 210

30 chat_completion

31

32 # todo: add max loop counter and break

33 end

34

35 # capture the transcript for later analysis

36 task.update(routing_transcript: transcript)

37 end

38 end

29. satırdaki while ifadesi ile oluşturulan döngüye dikkat edin; bu döngü görev

atanana kadar yapay zekâya sorgu göndermeye devam eder. 35. satırda,

gerektiğinde daha sonra analiz ve hata ayıklama için görevin dökümünü

kaydediyoruz.

Bağlamsal Karar Verme

Bir iş akışı içinde bağlama duyarlı kararlar vermek için çok benzer bir kod

kullanabilirsiniz. Kullanıcı tercihleri, geçmiş örüntüler ve gerçek zamanlı girdiler

gibi ilgili veri noktalarını analiz ederek, yapay zekâ bileşenleri iş akışındaki her

karar noktasında en uygun eylem şeklini belirleyebilir. İş akışınızın davranışını her

kullanıcının veya senaryonun özel bağlamına göre uyarlayarak, kişiselleştirilmiş ve

optimize edilmiş deneyimler sunabilirsiniz.

Uyarlanabilir İş Akışı Kompozisyonu

Bu örüntü, değişen gereksinimler veya koşullara göre iş akışlarını dinamik olarak

oluşturmaya ve ayarlamaya odaklanır. Yapay zekâ, iş akışının mevcut durumunu

analiz edebilir, darboğazları veya verimsizlikleri tespit edebilir ve performansı

optimize etmek için iş akışı yapısını otomatik olarak değiştirebilir. Uyarlanabilir iş

akışı kompozisyonu, uygulamaların manuel müdahale gerektirmeden sürekli olarak

gelişmesine ve süreçlerini iyileştirmesine olanak tanır.

Akıllı İş Akışı Orkestrayonu 211

İstisna İşleme ve Kurtarma

İstisna işleme ve kurtarma, akıllı iş akışı orkestrasyon sürecinin kritik yönleridir.

Yapay zekâ bileşenleri ve karmaşık iş akışlarıyla çalışırken, sistemin istikrarını ve

güvenilirliğini sağlamak için istisnaları öngörmek ve bunları zarif bir şekilde ele almak

esastır.

Akıllı iş akışlarında istisna işleme ve kurtarma için bazı önemli hususlar ve teknikler

şunlardır:

1. İstisna Yayılımı: İş akışı bileşenleri arasında istisnaların yayılması için tutarlı

bir yaklaşım uygulayın. Bir bileşen içinde bir istisna oluştuğunda, bu istisna

yakalanmalı, kaydedilmeli ve orkestratöre veya istisnaları işlemekten sorumlu

ayrı bir bileşene iletilmelidir. Amaç, istisna işlemeyi merkezileştirmek ve

istisnaların sessizce yutulmasını önlemek ve aynı zamanda Akıllı Hata İşleme

için olanaklar yaratmaktır.

2. Yeniden Deneme Mekanizmaları: Yeniden deneme mekanizmaları, iş akışının

dayanıklılığını artırmaya ve geçici hataları zarif bir şekilde ele almaya

yardımcı olur. Ağ bağlantısı veya kaynak kullanılamaması gibi geçici veya

kurtarılabilir istisnalar için belirli bir gecikmeden sonra otomatik olarak yeniden

denenebilecek yeniden deneme mekanizmalarını mutlaka uygulamaya çalışın.

Yapay zekâ destekli bir orkestratör veya istisna işleyiciye sahip olmak, yeniden

deneme stratejilerinizin üstel geri çekilme gibi sabit algoritmalara dayanmasını

gerektirmez. İstisnayı nasıl ele alacağına karar vermekten sorumlu yapay zekâ

bileşeninin “takdirine” bırakabilirsiniz.

3. Geri Dönüş Stratejileri: Bir yapay zekâ bileşeni geçerli bir yanıt sağlayamazsa

veya bir hatayla karşılaşırsa—ki bu, öncü teknoloji doğası gereği sık karşılaşılan

bir durumdur—iş akışının devam edebilmesi için bir geri dönüş mekanizması

bulundurun. Bu, varsayılan değerleri kullanmayı, alternatif algoritmaları veya

kararlar almak ve iş akışını ilerletmek için Döngüde İnsan kullanmayı içerebilir.

Akıllı İş Akışı Orkestrayonu 212

4. Telafi Edici Eylemler: Orkestratörün yönergeleri, otomatik olarak çözülemeyen

istisnaları ele almak için telafi edici eylemler hakkında talimatlar içermelidir.

Telafi edici eylemler, başarısız olan bir işlemin etkilerini geri almak veya

azaltmak için atılan adımlardır. Örneğin, bir ödeme işleme adımı başarısız olursa,

telafi edici eylem işlemi geri almak ve kullanıcıyı bilgilendirmek olabilir. Telafi

edici eylemler, istisnalar karşısında veri tutarlılığını ve bütünlüğünü korumaya

yardımcı olur.

5. İstisna İzleme ve Uyarı Verme: Kritik istisnaları tespit etmek ve ilgili paydaşları

bilgilendirmek için izleme ve uyarı verme mekanizmaları kurun. Orkestratör,

istisnalar belirli sınırları aştığında veya belirli türde istisnalar oluştuğunda

uyarıları tetikleyecek eşiklerden ve kurallardan haberdar edilebilir. Bu, sorunların

genel sistemi etkilemeden önce proaktif olarak tanımlanmasına ve çözülmesine

olanak tanır.

İşte Ruby iş akışı bileşeninde istisna işleme ve kurtarmanın bir örneği:

1 class InventoryManager

2 def check_availability(order)

3 begin

4 # Perform inventory check logic

5 inventory = Inventory.find_by(product_id: order.product_id)

6 if inventory.available_quantity >= order.quantity

7 return true

8 else

9 raise InsufficientInventoryError,

10 "Insufficient inventory for product #{order.product_id}"

11 end

12 rescue InsufficientInventoryError => e

13 # Log the exception

14 logger.error("Inventory check failed: #{e.message}")

15

16 # Retry the operation after a delay

17 retry_count ||= 0

18 if retry_count < MAX_RETRIES

19 retry_count + = 1

20 sleep(RETRY_DELAY)

Akıllı İş Akışı Orkestrayonu 213

21 retry

22 else

23 # Fallback to manual intervention

24 NotificationService.admin("Inventory check failed: Order #{order.id}")

25 return false

26 end

27 end

28 end

29 end

Bu örnekte, InventoryManager bileşeni belirli bir sipariş için ürün mevcudiyetini

kontrol eder. Eğer mevcut miktar yetersizse, bir InsufficientInventoryError

istisnası fırlatır. İstisna yakalanır, kaydedilir ve yeniden deneme mekanizması

uygulanır. Yeniden deneme sınırı aşılırsa, bileşen bir yöneticiyi bilgilendirerek manuel

müdahaleye geçer.

Sağlam istisna yönetimi ve kurtarma mekanizmaları uygulayarak, akıllı iş akışlarınızın

dayanıklı, sürdürülebilir ve beklenmeyen durumları zarif bir şekilde ele alabileceğinden

emin olabilirsiniz.

Bu kalıplar, akıllı iş akışı orkestrasyonunun temelini oluşturur ve farklı uygulamaların

özel gereksinimlerine uyacak şekilde birleştirilebilir ve uyarlanabilir. Geliştiriciler bu

kalıpları kullanarak esnek, dayanıklı ve performans ile kullanıcı deneyimi için optimize

edilmiş iş akışları oluşturabilirler.

Bir sonraki bölümde, bu kalıpların pratikte nasıl uygulanabileceğini, gerçek dünya

örnekleri ve kod parçacıkları kullanarak AI bileşenlerinin iş akışı yönetimine

entegrasyonunu göstereceğiz.

Akıllı İş Akışı Orkestrayonu 214

Akıllı İş Akışı Orkestrasyonunun Pratikte

Uygulanması

Akıllı iş akışı orkestrasyonundaki temel kalıpları incelediğimize göre, şimdi bu kalıpların

gerçek dünya uygulamalarında nasıl uygulanabileceğine bakalım. AI bileşenlerinin iş

akışı yönetimine entegrasyonunu göstermek için pratik örnekler ve kod parçacıkları

sunacağız.

Akıllı Sipariş İşleyici

Ruby on Rails e-ticaret uygulamasında AI destekli bir OrderProcessor

bileşeni kullanarak akıllı iş akışı orkestrasyonunun pratik bir örneğine dalalım.

OrderProcessor, Bölüm 3’te Çoklu İşçiler konusunu tartışırken ilk karşılaştığımız

Süreç Yöneticisi Kurumsal Entegrasyonu kavramını gerçekleştirir. Bu bileşen, sipariş

karşılama iş akışını yönetmekten, ara sonuçlara dayalı yönlendirme kararları vermekten

ve çeşitli işlem adımlarının yürütülmesini orkestra etmekten sorumlu olacaktır.

Sipariş karşılama süreci, sipariş doğrulama, envanter kontrolü, ödeme işleme ve sevkiyat

gibi birden fazla adım içerir. Her adım, belirli bir görevi gerçekleştiren ve sonucu

OrderProcessor’a döndüren ayrı bir işçi süreci olarak uygulanır. Bu adımlar zorunlu

değildir ve hatta kesin bir sırayla yapılmaları gerekmez.

İşte OrderProcessor’ın bir örnek uygulaması. Raix’ten iki mixin özelliği içerir.

Birincisi (ChatCompletion) sohbet tamamlama yapabilme yeteneği verir, bu da onu

bir AI bileşeni yapar. İkincisi (FunctionDispatch) AI tarafından fonksiyon çağırmayı

mümkün kılar, böylece bir komuta metin mesajı yerine fonksiyon çağrısıyla yanıt

verebilir.

İşçi fonksiyonları (validate_order, check_inventory, vb.) ilgili işçi sınıflarına

yetki devreder. Bu sınıflar AI veya AI olmayan bileşenler olabilir; tek gereklilikleri,

çalışmalarının sonuçlarını bir dizge olarak temsil edilebilecek bir formatta

döndürmeleridir.

https://github.com/OlympiaAI/raix-rails

Akıllı İş Akışı Orkestrayonu 215

Bu kitabın bu bölümündeki diğer tüm örneklerde olduğu gibi, bu kod

pratik olarak sözde koddur ve yalnızca kalıbın anlamını iletmek ve

kendi yaratımlarınıza ilham vermek için tasarlanmıştır. Kalıpların tam

açıklamaları ve eksiksiz kod örnekleri Bölüm 2’de yer almaktadır.

1 class OrderProcessor

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

6

7 def initialize(order)

8 self.order = order

9 transcript << { system: SYSTEM_DIRECTIVE }

10 transcript << { user: order.to_json }

11 end

12

13 def perform

14 # will continue looping until `stop_looping!` is called

15 chat_completion(loop: true)

16 end

17

18 # list of functions available to be called by the AI

19 # truncated for brevity

20

21 def functions

22 [

23 {

24 name: "validate_order",

25 description: "Invoke to check validity of order",

26 parameters: {

27 ...

28 },

29 ...

30]

31 end

32

33 # implementation of functions that can be called by the AI

34 # entirely at its discretion, depending on the needs of the order

35

Akıllı İş Akışı Orkestrayonu 216

36 def validate_order

37 OrderValidationWorker.perform(@order)

38 end

39

40 def check_inventory

41 InventoryCheckWorker.perform(@order)

42 end

43

44 def process_payment

45 PaymentProcessingWorker.perform(@order)

46 end

47

48 def schedule_shipping

49 ShippingSchedulerWorker.perform(@order)

50 end

51

52 def send_confirmation

53 OrderConfirmationWorker.perform(@order)

54 end

55

56 def finished_processing

57 @order.update!(transcript:, processed_at: Time.current)

58 stop_looping!

59 end

60 end

Örnekte, OrderProcessor bir sipariş nesnesiyle başlatılır ve büyük dil modellerine

özgü tipik konuşma kaydı formatında iş akışı yürütmesinin dökümünü tutar. Sipariş

doğrulama, envanter kontrolü, ödeme işleme ve kargo gibi çeşitli işlem adımlarının

yürütülmesini düzenlemek için yapay zekaya tam kontrol verilir.

chat_completionmetodu her çağrıldığında, yapay zekaya bir fonksiyon çağrısı olarak

tamamlama sağlaması için döküm gönderilir. Önceki adımın sonucunu analiz etmek ve

uygun eylemi belirlemek tamamen yapay zekanın kontrolündedir. Örneğin, envanter

kontrolü düşük stok seviyelerini gösterirse, OrderProcessor bir yenileme görevi

planlayabilir. Ödeme işlemi başarısız olursa, yeniden deneme başlatabilir veya müşteri

desteğini bilgilendirebilir.

Akıllı İş Akışı Orkestrayonu 217

Yukarıdaki örnekte yenileme veya müşteri desteğini bilgilendirme için tanımlanmış

fonksiyonlar yok, ancak kesinlikle olabilirdi.

Döküm, her fonksiyon çağrıldığında büyür ve her adımın sonuçları ile yapay zeka

tarafından oluşturulan sonraki adımlar için talimatları içeren iş akışı yürütmesinin kaydı

olarak işlev görür. Bu döküm, hata ayıklama, denetim ve sipariş karşılama sürecine

görünürlük sağlamak için kullanılabilir.

OrderProcessor’da yapay zekayı kullanarak, e-ticaret uygulaması iş akışını gerçek

zamanlı verilere göre dinamik olarak uyarlayabilir ve istisnaları akıllıca ele alabilir.

Yapay zeka bileşeni, bilgiye dayalı kararlar alabilir, iş akışını optimize edebilir ve

karmaşık senaryolarda bile sorunsuz sipariş işlemeyi sağlayabilir.

Çalışan işlemlerin tek gereksiniminin, yapay zekanın bir sonraki adımda ne yapacağına

karar verirken değerlendireceği anlaşılır bir çıktı döndürmek olması gerçeği, bu

yaklaşımın farklı sistemleri birbirleriyle entegre ederken tipik olarak gereken girdi/çıktı

eşleme çalışmasını nasıl azaltabileceğini fark etmenizi sağlayabilir.

Akıllı İçerik Denetleyici

Sosyal medya uygulamaları, genellikle güvenli ve sağlıklı bir topluluk sağlamak

için en azından minimal düzeyde içerik denetimine ihtiyaç duyar. Bu örnek

ContentModerator bileşeni, içeriğin özelliklerine ve çeşitli denetim adımlarının

sonuçlarına dayalı olarak kararlar alarak denetim iş akışını akıllıca düzenlemek için

yapay zekadan yararlanır.

Denetim süreci, metin analizi, görüntü tanıma, kullanıcı itibarı değerlendirmesi ve

manuel inceleme gibi birden çok adım içerir. Her adım, belirli bir görevi yerine getiren

ve sonucu ContentModerator’e döndüren ayrı bir çalışan işlem olarak uygulanır.

İşte ContentModerator’ün örnek bir uygulaması:

Akıllı İş Akışı Orkestrayonu 218

1 class ContentModerator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,

6 tasked with the workflow involved in moderating user-generated content..."

7

8 def initialize(content)

9 @content = content

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: content.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 # list of functions available to be called by the AI

25 # truncated for brevity

26

27 def functions

28 [

29 {

30 name: "analyze_text",

31 # ...

32 },

33 {

34 name: "recognize_image",

35 description: "Invoke to describe images...",

36 # ...

37 },

38 {

39 name: "assess_user_reputation",

40 # ...

41 },

42 {

Akıllı İş Akışı Orkestrayonu 219

43 name: "escalate_to_manual_review",

44 # ...

45 },

46 {

47 name: "approve_content",

48 # ...

49 },

50 {

51 name: "reject_content",

52 # ...

53 }

54]

55 end

56

57 # implementation of functions that can be called by the AI

58 # entirely at its discretion, depending on the needs of the order

59

60 def analyze_text

61 result = TextAnalysisWorker.perform(@content)

62 continue_with(result)

63 end

64

65 def recognize_image

66 result = ImageRecognitionWorker.perform(@content)

67 continue_with(result)

68 end

69

70 def assess_user_reputation

71 result = UserReputationWorker.perform(@content.user)

72 continue_with(result)

73 end

74

75 def escalate_to_manual_review

76 ManualReviewWorker.perform(@content)

77 @content.update!(status: 'pending', transcript: @transcript)

78 end

79

80 def approve_content

81 @content.update!(status: 'approved', transcript: @transcript)

82 end

83

84 def reject_content

Akıllı İş Akışı Orkestrayonu 220

85 @content.update!(status: 'rejected', transcript: @transcript)

86 end

87

88 private

89

90 def continue_with(result)

91 @transcript << { function: result }

92 complete(@transcript)

93 end

94 end

Bu örnekte, ContentModerator bir içerik nesnesiyle başlatılır ve konuşma formatında

bir moderasyon kaydı tutar. Yapay zeka bileşeni, moderasyon iş akışı üzerinde tam

kontrole sahiptir ve içeriğin özelliklerine ve her adımın sonuçlarına göre hangi adımların

yürütüleceğine karar verir.

Yapay zekanın çağırabileceği mevcut işçi fonksiyonları arasında analyze_text,

recognize_image, assess_user_reputation ve escalate_to_manual_review

bulunur. Her fonksiyon görevi ilgili işçi sürecine (TextAnalysisWorker,

ImageRecognitionWorker, vb.) devreder ve yükseltme fonksiyonu hariç sonucu

moderasyon kaydına ekler; yükseltme fonksiyonu bir son durum olarak işlev görür.

Son olarak, approve_content ve reject_content fonksiyonları da son durumlar

olarak işlev görür.

Yapay zeka bileşeni içeriği analiz eder ve uygun eylemi belirlemeye karar verir. İçerik

görsel referanslar içeriyorsa, görsel inceleme için recognize_image işçisini çağırabilir.

Herhangi bir işçi potansiyel olarak zararlı içerik konusunda uyarıda bulunursa, yapay

zeka içeriği manuel incelemeye yükseltmeye veya doğrudan reddetmeye karar

verebilir. Ancak uyarının ciddiyetine bağlı olarak, yapay zeka emin olmadığı içeriği

nasıl ele alacağına karar verirken kullanıcı itibar değerlendirmesinin sonuçlarını

kullanmayı tercih edebilir. Kullanım senaryosuna bağlı olarak, güvenilir kullanıcılar

paylaşabilecekleri içerik konusunda daha fazla esnekliğe sahip olabilir. Ve bu böyle

devam eder…

Önceki süreç yöneticisi örneğinde olduğu gibi, moderasyon kaydı, her adımın

Akıllı İş Akışı Orkestrayonu 221

sonuçlarını ve yapay zeka tarafından üretilen kararları içeren iş akışı yürütmesinin bir

kaydı olarak işlev görür. Bu kayıt, denetleme, şeffaflık ve moderasyon sürecini zaman

içinde iyileştirmek için kullanılabilir.

ContentModerator’de yapay zekayı kullanarak, sosyal medya uygulaması

moderasyon iş akışını içeriğin özelliklerine göre dinamik olarak uyarlayabilir ve

karmaşık moderasyon senaryolarını akıllıca ele alabilir. Yapay zeka bileşeni bilinçli

kararlar alabilir, iş akışını optimize edebilir ve güvenli ve sağlıklı bir topluluk deneyimi

sağlayabilir.

Akıllı iş akışı orkestrayonu bağlamında öngörüsel görev planlaması ve istisna yönetimi

ve kurtarmayı gösteren iki örneği daha inceleyelim.

Bir Müşteri Destek Sisteminde Öngörüsel Görev
Planlaması

Ruby on Rails ile oluşturulmuş bir müşteri destek uygulamasında, destek taleplerinin

verimli bir şekilde yönetilmesi ve önceliklendirilmesi, müşterilere zamanında yardım

sağlamak için çok önemlidir. SupportTicketScheduler bileşeni, destek taleplerini

talep aciliyeti, temsilci uzmanlığı ve iş yükü gibi çeşitli faktörlere dayanarak mevcut

temsilcilere öngörüsel olarak planlamak ve atamak için yapay zekadan yararlanır.

Akıllı İş Akışı Orkestrayonu 222

1 class SupportTicketScheduler

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,

6 tasked with intelligently assigning tickets to available agents..."

7

8 def initialize(ticket)

9 @ticket = ticket

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: ticket.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 def functions

25 [

26 {

27 name: "analyze_ticket_urgency",

28 # ...

29 },

30 {

31 name: "list_available_agents",

32 description: "Includes expertise of available agents",

33 # ...

34 },

35 {

36 name: "predict_agent_workload",

37 description: "Uses historical data to predict upcoming workloads",

38 # ...

39 },

40 {

41 name: "assign_ticket_to_agent",

42 # ...

Akıllı İş Akışı Orkestrayonu 223

43 },

44 {

45 name: "reschedule_ticket",

46 # ...

47 }

48]

49 end

50

51 # implementation of functions that can be called by the AI

52 # entirely at its discretion, depending on the needs of the order

53

54 def analyze_ticket_urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)

56 continue_with(result)

57 end

58

59 def list_available_agents

60 result = ListAvailableAgents.perform

61 continue_with(result)

62 end

63

64 def predict_agent_workload

65 result = AgentWorkloadPredictor.perform

66 continue_with(result)

67 end

68

69 def assign_ticket_to_agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

73 def delay_assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)

76 end

77

78 private

79

80 def continue_with(result)

81 @transcript << { function: result }

82 complete(@transcript)

83 end

84 end

Akıllı İş Akışı Orkestrayonu 224

Bu örnekte, SupportTicketScheduler bir destek bileti nesnesiyle başlatılır ve bir

planlama kaydı tutar. AI bileşeni, bilet detaylarını analiz eder ve bilet aciliyeti, temsilci

uzmanlığı ve öngörülen temsilci iş yükü gibi faktörlere dayanarak bilet atamasını

öngörüsel olarak planlar.

AI’nin çağırabileceği mevcut fonksiyonlar arasında analyze_ticket_urgency,

list_available_agents, predict_agent_workload ve assign_ticket_to_-

agent bulunur. Her fonksiyon, görevi ilgili analizci veya tahmin edici bileşene devreder

ve sonucu planlama kaydına ekler. AI ayrıca delay_assignment fonksiyonunu

kullanarak atamayı erteleme seçeneğine sahiptir.

AI bileşeni, planlama kaydını inceler ve bilet ataması konusunda bilinçli kararlar verir.

Bileti işlemek için en uygun temsilciyi belirlerken biletin aciliyetini, mevcut temsilcilerin

uzmanlığını ve her temsilcinin öngörülen iş yükünü değerlendirir.

Öngörüsel görev planlamasından yararlanarak, müşteri destek uygulaması

bilet atamalarını optimize edebilir, yanıt sürelerini azaltabilir ve genel müşteri

memnuniyetini artırabilir. Destek biletlerinin proaktif ve verimli yönetimi, doğru

biletlerin doğru temsilcilere doğru zamanda atanmasını sağlar.

Veri İşleme Hattında İstisna Yönetimi ve Kurtarma

İstisnaların yönetilmesi ve hatalardan kurtulma, veri bütünlüğünü sağlamak ve veri

kaybını önlemek için hayati önem taşır. DataProcessingOrchestrator bileşeni, bir

veri işleme hattında istisnaları akıllıca yönetmek ve kurtarma sürecini orkestra etmek

için AI’dan yararlanır.

Akıllı İş Akışı Orkestrayonu 225

1 class DataProcessingOrchestrator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

6

7 def initialize(data_batch)

8 @data_batch = data_batch

9 @transcript = [

10 { system: SYSTEM_DIRECTIVE },

11 { user: data_batch.to_json }

12]

13 end

14

15 def perform

16 complete(@transcript)

17 end

18

19 def model

20 "openai/gpt-4"

21 end

22

23 def functions

24 [

25 {

26 name: "validate_data",

27 # ...

28 },

29 {

30 name: "process_data",

31 # ...

32 },

33 {

34 name: "request_fix",

35 # ...

36 },

37 {

38 name: "retry_processing",

39 # ...

40 },

41 {

42 name: "mark_data_as_failed",

Akıllı İş Akışı Orkestrayonu 226

43 # ...

44 },

45 {

46 name: "finished",

47 # ...

48 }

49]

50 end

51

52 # implementation of functions that can be called by the AI

53 # entirely at its discretion, depending on the needs of the order

54

55 def validate_data

56 result = DataValidator.perform(@data_batch)

57 continue_with(result)

58 rescue ValidationException => e

59 handle_validation_exception(e)

60 end

61

62 def process_data

63 result = DataProcessor.perform(@data_batch)

64 continue_with(result)

65 rescue ProcessingException => e

66 handle_processing_exception(e)

67 end

68

69 def request_fix(description_of_fix)

70 result = SmartDataFixer.new(description_of_fix, @data_batch)

71 continue_with(result)

72 end

73

74 def retry_processing(timeout_in_seconds)

75 wait(timeout_in_seconds)

76 process_data

77 end

78

79 def mark_data_as_failed

80 @data_batch.update!(status: 'failed', transcript: @transcript)

81 end

82

83 def finished

84 @data_batch.update!(status: 'finished', transcript: @transcript)

Akıllı İş Akışı Orkestrayonu 227

85 end

86

87 private

88

89 def continue_with(result)

90 @transcript << { function: result }

91 complete(@transcript)

92 end

93

94 def handle_validation_exception(exception)

95 @transcript << { exception: exception.message }

96 complete(@transcript)

97 end

98

99 def handle_processing_exception(exception)

100 @transcript << { exception: exception.message }

101 complete(@transcript)

102 end

103 end

Bu örnekte, DataProcessingOrchestrator bir veri yığını nesnesiyle başlatılır ve

bir işleme kaydı tutar. Yapay zeka bileşeni, veri işleme hattını orkestra eder, istisnaları

yönetir ve gerektiğinde hatalardan kurtulur.

Yapay zekanın çağırabileceği mevcut fonksiyonlar arasında validate_data,

process_data, request_fix, retry_processing ve mark_data_as_failed

bulunur. Her fonksiyon, görevi ilgili veri işleme bileşenine devreder ve sonucu veya

istisna ayrıntılarını işleme kaydına ekler.

validate_data adımı sırasında bir doğrulama istisnası oluşursa, handle_-

validation_exception fonksiyonu istisna verilerini kayda ekler ve kontrolü yapay

zekaya geri verir. Benzer şekilde, process_data adımı sırasında bir işleme istisnası

oluşursa, yapay zeka kurtarma stratejisine karar verebilir.

Karşılaşılan istisnanın doğasına bağlı olarak, yapay zeka kendi takdiriyle yapay zeka

destekli SmartDataFixer bileşenine delege eden request_fix’i çağırmaya karar

verebilir (Kendi Kendini Onaran Veri bölümüne bakın). Veri düzeltici, işlemenin yeniden

Akıllı İş Akışı Orkestrayonu 228

denenebilmesi için @data_batch’i nasıl değiştirmesi gerektiğine dair açık bir Türkçe

açıklama alır. Belki başarılı bir yeniden deneme, doğrulamada başarısız olan kayıtların

veri yığınından kaldırılmasını ve/veya bunların insan incelemesi için farklı bir işleme

hattına kopyalanmasını içerebilir? Olasılıklar neredeyse sonsuzdur.

Yapay zeka destekli istisna yönetimi ve kurtarmayı dahil ederek, veri işleme uygulaması

daha dayanıklı ve hata toleranslı hale gelir. DataProcessingOrchestrator akıllıca

istisnaları yönetir, veri kaybını en aza indirir ve veri işleme iş akışının sorunsuz

yürütülmesini sağlar.

İzleme ve Günlük Tutma

İzleme ve günlük tutma, yapay zeka destekli iş akışı bileşenlerinin ilerlemesi,

performansı ve sağlığı hakkında görünürlük sağlar ve geliştiricilerin sistemin

davranışını takip edip analiz etmesine olanak tanır. Etkili izleme ve günlük tutma

mekanizmalarının uygulanması, akıllı iş akışlarının hata ayıklaması, denetlenmesi ve

sürekli iyileştirilmesi için gereklidir.

İş Akışı İlerlemesini ve Performansını İzleme

Akıllı iş akışlarının sorunsuz yürütülmesini sağlamak için, her iş akışı bileşeninin

ilerlemesini ve performansını izlemek önemlidir. Bu, iş akışı yaşam döngüsü boyunca

temel metriklerin ve olayların takibini içerir.

İzlenmesi gereken önemli yönler şunlardır:

1. İş Akışı Yürütme Süresi: Her iş akışı bileşeninin görevini tamamlaması için gereken

süreyi ölçün. Bu, performans darboğazlarını belirlemeye ve genel iş akışı verimliliğini

optimize etmeye yardımcı olur.

2. Kaynak Kullanımı: Her iş akışı bileşeni tarafından CPU, bellek ve depolama gibi

sistem kaynaklarının kullanımını izleyin. Bu, sistemin kapasitesi dahilinde çalıştığından

ve iş yükünü etkili bir şekilde yönetebileceğinden emin olmanıza yardımcı olur.

Akıllı İş Akışı Orkestrayonu 229

3. Hata Oranları ve İstisnalar: İş akışı bileşenleri içindeki hataların ve istisnaların

oluşumunu takip edin. Bu, potansiyel sorunları belirlemeye yardımcı olur ve proaktif

hata yönetimi ve kurtarmayı mümkün kılar.

4. Karar Noktaları ve Sonuçları: İş akışı içindeki karar noktalarını ve yapay zeka

destekli kararların sonuçlarını izleyin. Bu, yapay zeka bileşenlerinin davranışı ve

etkinliği hakkında içgörü sağlar.

İzleme süreçleri tarafından toplanan veriler, gösterge panellerinde görüntülenebilir veya

sistemin sağlığı hakkında sistem yöneticilerini bilgilendiren planlı raporlara girdi olarak

kullanılabilir.

İzleme verileri, inceleme ve potansiyel eylem için yapay zeka destekli bir

sistem yöneticisi sürecine beslenebilir!

Önemli Olayları ve Kararları Günlüğe Kaydetme

Günlük tutma, iş akışı yürütmesi sırasında meydana gelen önemli olaylar, kararlar ve

istisnalar hakkındaki ilgili bilgileri yakalama ve depolama işlemini içeren temel bir

uygulamadır.

Günlüğe kaydedilmesi gereken önemli yönler şunlardır:

1. İş Akışı Başlatma ve Tamamlama: Her iş akışı örneğinin başlangıç ve bitiş

zamanlarını, giriş verileri ve kullanıcı bağlamı gibi ilgili meta verilerle birlikte

kaydedin.

2. Bileşen Yürütme:Her iş akışı bileşeninin yürütme ayrıntılarını, giriş parametrelerini,

çıkış sonuçlarını ve oluşturulan ara verileri içerecek şekilde kaydedin.

3. Yapay Zeka Kararları ve Gerekçelendirme: Yapay zeka bileşenlerinin verdiği

kararları, temel gerekçelendirme veya güven skorlarıyla birlikte kaydedin. Bu, şeffaflık

sağlar ve yapay zeka destekli kararların denetlenmesini mümkün kılar.

Akıllı İş Akışı Orkestrayonu 230

4. İstisnalar ve Hata Mesajları: İş akışı yürütmesi sırasında karşılaşılan istisnaları veya

hata mesajlarını, yığın izi ve ilgili bağlam bilgileriyle birlikte kaydedin.

Günlük tutma, günlük dosyalarına yazma, günlükleri bir veritabanında saklama veya

günlükleri merkezi bir günlük tutma hizmetine gönderme gibi çeşitli tekniklerle

uygulanabilir. Esneklik, ölçeklenebilirlik ve uygulamanın mimarisiyle kolay

entegrasyon sağlayan bir günlük tutma çerçevesi seçmek önemlidir.

İşte Ruby on Rails uygulamasında ActiveSupport::Logger sınıfı kullanılarak günlük

tutmanın nasıl uygulanabileceğine dair bir örnek:

1 class WorkflowLogger

2 def self.log(message, severity = :info)

3 @logger ||= ActiveSupport::Logger.new('workflow.log')

4 @logger.formatter ||= proc do |severity, datetime, progname, msg|

5 "#{datetime} [#{severity}] #{msg}\n"

6 end

7 @logger.send(severity, message)

8 end

9 end

10

11 # Usage example

12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")

13 WorkflowLogger.log("Payment processing completed successfully")

14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

İş akışı bileşenleri ve yapay zeka karar noktaları boyunca günlük kayıt ifadelerini

stratejik olarak yerleştirerek, geliştiriciler hata ayıklama, denetim ve analiz için değerli

bilgiler elde edebilirler.

İzleme ve Günlük Tutmanın Faydaları

Akıllı iş akışı orkestrasyonunda izleme ve günlük tutmayı uygulamanın birçok faydası

vardır:

1. Hata Ayıklama ve Sorun Giderme: Detaylı günlükler ve izleme verileri,

geliştiricilerin sorunları hızlı bir şekilde tanımlamasına ve teşhis etmesine yardımcı

Akıllı İş Akışı Orkestrayonu 231

olur. İş akışı yürütme akışı, bileşen etkileşimleri ve karşılaşılan hatalar veya istisnalar

hakkında içgörüler sağlar.

2. Performans Optimizasyonu: Performans metriklerinin izlenmesi, geliştiricilerin

darboğazları belirlemesine ve iş akışı bileşenlerini daha iyi verimlilik için optimize

etmesine olanak tanır. Yürütme süreleri, kaynak kullanımı ve diğer metrikleri analiz

ederek, geliştiriciler sistemin genel performansını iyileştirmek için bilinçli kararlar

alabilirler.

3. Denetim ve Uyumluluk: Önemli olayların ve kararların kaydedilmesi, düzenleyici

uyumluluk ve hesap verebilirlik için bir denetim izi sağlar. Kuruluşların yapay zeka

bileşenleri tarafından alınan eylemleri izlemesine ve iş kurallarına ve yasal gerekliliklere

uygunluğunu sağlamasına olanak tanır.

4. Sürekli İyileştirme: İzleme ve günlük tutma verileri, akıllı iş akışlarının sürekli

iyileştirilmesi için değerli girdiler olarak hizmet eder. Geçmiş verileri analiz ederek,

kalıpları belirleyerek ve yapay zeka kararlarının etkinliğini ölçerek, geliştiriciler iş akışı

orkestrasyon mantığını yinelemeli olarak iyileştirebilir ve geliştirebilir.

Önemli Hususlar ve En İyi Uygulamalar

Akıllı iş akışı orkestrasyonunda izleme ve günlük tutmayı uygularken, aşağıdaki en iyi

uygulamaları göz önünde bulundurun:

1. Net İzleme Metrikleri Tanımlayın: İş akışının özel gereksinimlerine göre izlenmesi

gereken temelmetrikleri ve olayları belirleyin. Sistemin performansı, sağlığı ve davranışı

hakkında anlamlı içgörüler sağlayan metriklere odaklanın.

2. Ayrıntılı Günlük Tutmayı Uygulayın: Günlük kayıt ifadelerinin iş akışı bileşenleri

ve yapay zeka karar noktaları içinde uygun noktalara yerleştirildiğinden emin olun.

Giriş parametreleri, çıkış sonuçları ve oluşturulan ara veriler gibi ilgili bağlam bilgilerini

yakalayın.

Akıllı İş Akışı Orkestrayonu 232

3. Yapılandırılmış Günlük Tutmayı Kullanın: Günlük verilerinin kolay ayrıştırılması

ve analizi için yapılandırılmış bir günlük tutma formatı benimseyin. Yapılandırılmış

günlük tutma, günlük girişlerinin daha iyi aranabilirliğini, filtrelenmesini ve

toplanmasını sağlar.

4. Günlük Saklama ve Döndürmeyi Yönetin: Günlük dosyalarının depolanmasını ve

yaşam döngüsünü yönetmek için günlük saklama ve döndürme politikaları uygulayın.

Yasal gereklilikler, depolama kısıtlamaları ve analiz ihtiyaçlarına göre uygun saklama

süresini belirleyin. Mümkünse, günlük tutmayı Papertrail gibi üçüncü taraf bir hizmete

aktarın.

5. Hassas Bilgileri GüvenceAltınaAlın:Kişisel olarak tanımlanabilir bilgiler (PII) veya

gizli iş verileri gibi hassas bilgileri kaydederken dikkatli olun. Günlük dosyalarındaki

hassas bilgileri korumak için veri maskeleme veya şifreleme gibi uygun güvenlik

önlemlerini uygulayın.

6. İzleme ve Uyarı Araçlarıyla Entegre Edin: İzleme ve günlük tutma verilerinin

toplanması, analizi ve görselleştirilmesi için izleme ve uyarı araçlarından yararlanın.

Bu araçlar gerçek zamanlı içgörüler sağlayabilir, önceden tanımlanmış eşiklere dayalı

uyarılar oluşturabilir ve proaktif sorun tespiti ve çözümünü kolaylaştırabilir. Bu araçlar

arasında en sevdiğim Datadog’dur.

Kapsamlı izleme ve günlük tutma mekanizmalarını uygulayarak, geliştiriciler akıllı iş

akışlarının davranışı ve performansı hakkında değerli içgörüler elde edebilirler. Bu

içgörüler, yapay zeka destekli iş akışı orkestrasyon sistemlerinin etkili bir şekilde hata

ayıklanmasını, optimizasyonunu ve sürekli iyileştirilmesini sağlar.

Ölçeklenebilirlik ve Performans Hususları

Ölçeklenebilirlik ve performans, akıllı iş akışı orkestrasyon sistemlerini tasarlarken

ve uygularken dikkate alınması gereken kritik yönlerdir. Eşzamanlı iş akışlarının

hacmi ve yapay zeka destekli bileşenlerin karmaşıklığı arttıkça, sistemin iş yükünü

https://papertrailapp.com
https://www.datadoghq.com

Akıllı İş Akışı Orkestrayonu 233

verimli bir şekilde yönetebilmesi ve artan talepleri karşılamak için sorunsuz bir şekilde

ölçeklenmesi önemli hale gelir.

Yüksek Hacimli Eşzamanlı İş Akışlarını Yönetme

Akıllı iş akışı orkestrasyon sistemlerinin genellikle çok sayıda eşzamanlı iş akışını

yönetmesi gerekir. Ölçeklenebilirliği sağlamak için aşağıdaki stratejileri göz önünde

bulundurun:

1. Asenkron İşleme: İş akışı bileşenlerinin yürütülmesini ayırmak için asenkron işleme

mekanizmaları uygulayın. Bu, sistemin her bileşenin tamamlanmasını beklemeden veya

engellemeden birden çok iş akışını eşzamanlı olarak yönetmesine olanak tanır. Asenkron

işleme, mesaj kuyrukları, olay odaklı mimariler veya Sidekiq gibi arka plan iş işleme

çerçeveleri kullanılarak gerçekleştirilebilir.

2. Dağıtık Mimari: Sistem mimarisini AWS Lambda gibi sunucusuz bileşenleri

kullanacak şekilde veya ana uygulama sunucunuzun yanında iş yükünü birden çok

düğüm veya sunucu arasında dağıtacak şekilde tasarlayın. Bu, artan iş akışı hacimlerini

yönetmek için ek düğümlerin eklenebileceği yatay ölçeklenebilirliği sağlar.

3. Paralel Yürütme: İş akışları içinde paralel yürütme fırsatlarını belirleyin. Bazı iş

akışı bileşenleri birbirinden bağımsız olabilir ve eşzamanlı olarak yürütülebilir. Çoklu iş

parçacığı veya dağıtık görev kuyrukları gibi paralel işleme tekniklerinden yararlanarak,

sistem kaynak kullanımını optimize edebilir ve genel iş akışı yürütme süresini azaltabilir.

Yapay Zeka Destekli Bileşenlerin Performansını Optimize
Etme

Makine öğrenimi modelleri veya doğal dil işleme motorları gibi yapay zeka destekli

bileşenler, hesaplama açısından yoğun olabilir ve iş akışı düzenleme sisteminin genel

performansını etkileyebilir. Yapay zeka bileşenlerinin performansını optimize etmek için

aşağıdaki teknikleri göz önünde bulundurun:

Akıllı İş Akışı Orkestrayonu 234

1. Önbellekleme: Eğer yapay zeka işleminiz tamamen üretimsel ise ve sohbet

tamamlamalarını oluşturmak için gerçek zamanlı bilgi araması veya harici

entegrasyonlar içermiyorsa, sık erişilen veya hesaplama açısından maliyetli işlemlerin

sonuçlarını depolamak ve yeniden kullanmak için önbellekleme mekanizmalarını

araştırabilirsiniz.

2. Model Optimizasyonu: İş akışı bileşenlerinde yapay zeka modellerini kullanma

şeklinizi sürekli olarak optimize edin. Bu, İstem Damıtma gibi teknikleri içerebilir veya

basitçe yeni modeller kullanıma sunuldukça bunları test etmek olabilir.

3. Toplu İşleme: GPT-4 sınıfı modellerle çalışıyorsanız, birden fazla veri noktasını veya

isteği tek tek işlemek yerine tek bir toplu işlemde işlemek için toplu işleme tekniklerinden

yararlanabilirsiniz. Verileri toplu olarak işleyerek, sistem kaynak kullanımını optimize

edebilir ve tekrarlanan model isteklerinin ek yükünü azaltabilir.

Performans İzleme ve Profil Çıkarma

Akıllı iş akışı düzenleme sisteminin performans darboğazlarını belirlemek ve

ölçeklenebilirliğini optimize etmek için izleme ve profil çıkarma mekanizmalarının

uygulanması çok önemlidir. Aşağıdaki yaklaşımları göz önünde bulundurun:

1. Performans Metrikleri: Yanıt süresi, verim, kaynak kullanımı ve gecikme süresi

gibi temel performans metriklerini tanımlayın ve takip edin. Bu metrikler, sistemin

performansı hakkında içgörüler sağlar ve optimizasyon için alanları belirlemeye

yardımcı olur. Popüler yapay zeka model toplayıcısı OpenRouter, her API yanıtında

Host1 ve Hız2 metriklerini içererek bu temel metrikleri takip etmeyi kolaylaştırır.

2. Profil Çıkarma Araçları: Bireysel iş akışı bileşenlerinin ve yapay zeka işlemlerinin

performansını analiz etmek için profil çıkarma araçlarını kullanın. Profil çıkarma

araçları, performans açısından kritik noktaları, verimsiz kod yollarını veya kaynak

1Host, model sunucusundan akan üretimin ilk baytını almak için geçen süredir, diğer bir deyişle “ilk bayta
kadar geçen süre.”

2Hız, tamamlama belirteçlerinin sayısının toplam üretim süresine bölünmesiyle hesaplanır. Akışlı
olmayan istekler için gecikme süresi üretim süresinin bir parçası olarak kabul edilir.

https://openrouter.ai

Akıllı İş Akışı Orkestrayonu 235

yoğun işlemleri belirlemeye yardımcı olabilir. Popüler profil çıkarma araçları arasında

New Relic, Scout veya programlama dili veya çerçeve tarafından sağlanan yerleşik profil

çıkarıcılar bulunur.

3. Yük Testi: Sistemin farklı eşzamanlı iş yükü seviyelerindeki performansını

değerlendirmek için yük testi yapın. Yük testi, sistemin ölçeklenebilirlik sınırlarını

belirlemeye, performans düşüşlerini tespit etmeye ve sistemin performanstan ödün

vermeden beklenen trafiği karşılayabileceğinden emin olmaya yardımcı olur.

4. Sürekli İzleme: Performans sorunlarını ve darboğazları proaktif olarak tespit etmek

için sürekli izleme ve uyarı mekanizmaları uygulayın. Temel performans göstergelerini

(KPI’lar) takip etmek ve önceden tanımlanmış eşikler aşıldığında bildirim almak

için izleme panoları ve uyarılar kurun. Bu, performans sorunlarının hızlı bir şekilde

tanımlanmasını ve çözülmesini sağlar.

Ölçeklendirme Stratejileri

Akıllı iş akışı düzenleme sisteminin artan iş yüklerini karşılaması ve ölçeklenebilirliğini

sağlaması için aşağıdaki ölçeklendirme stratejilerini göz önünde bulundurun:

1. Dikey Ölçeklendirme: Dikey ölçeklendirme, daha yüksek iş yüklerini karşılamak

için bireysel düğümlerin veya sunucuların kaynaklarını (örneğin, CPU, bellek) artırmayı

içerir. Bu yaklaşım, sistemin karmaşık iş akışlarını veya yapay zeka işlemlerini yönetmek

için daha fazla işlem gücü veya belleğe ihtiyaç duyduğu durumlarda uygundur.

2. Yatay Ölçeklendirme: Yatay ölçeklendirme, iş yükünü dağıtmak için sisteme daha

fazla düğüm veya sunucu eklemeyi içerir. Bu yaklaşım, sistemin çok sayıda eşzamanlı

iş akışını yönetmesi gerektiğinde veya iş yükü birden fazla düğüm arasında kolayca

dağıtılabildiğinde etkilidir. Yatay ölçeklendirme, trafiğin eşit dağılımını sağlamak için

dağıtık bir mimari ve yük dengeleme mekanizmaları gerektirir.

3. Otomatik Ölçeklendirme: İş yükü talebine göre düğüm veya kaynak sayısını

otomatik olarak ayarlayan otomatik ölçeklendirme mekanizmalarını uygulayın.

Akıllı İş Akışı Orkestrayonu 236

Otomatik ölçeklendirme, sistemin gelen trafiğe bağlı olarak dinamik olarak büyümesine

veya küçülmesine olanak tanıyarak optimal kaynak kullanımı ve maliyet verimliliği

sağlar. Amazon Web Services (AWS) veya Google Cloud Platform (GCP) gibi bulut

platformları, akıllı iş akışı düzenleme sistemleri için kullanılabilecek otomatik

ölçeklendirme yetenekleri sunar.

Performans Optimizasyon Teknikleri

Ölçeklendirme stratejilerine ek olarak, akıllı iş akışı düzenleme sisteminin verimliliğini

artırmak için aşağıdaki performans optimizasyon tekniklerini göz önünde bulundurun:

1. Verimli Veri Depolama ve Erişim: İş akışı bileşenleri tarafından kullanılan veri

depolama ve erişim mekanizmalarını optimize edin. Veri yoğun işlemlerin gecikme

süresini en aza indirmek ve performansını iyileştirmek için verimli veritabanı

indeksleme, sorgu optimizasyon teknikleri ve veri önbellekleme kullanın.

2. Eşzamansız G/Ç: Sistemin yanıt verebilirliğini artırmak ve bloklamayı önlemek için

eşzamansız G/Ç işlemlerinden yararlanın. Eşzamansız G/Ç, sistemin G/Ç işlemlerinin

tamamlanmasını beklemeden birden çok isteği eşzamanlı olarak işlemesine olanak

tanıyarak kaynak kullanımını en üst düzeye çıkarır.

3. Verimli Serileştirme ve Ters Serileştirme: İş akışı bileşenleri arasındaki veri

alışverişi için kullanılan serileştirme ve ters serileştirme süreçlerini optimize edin. Veri

serileştirme yükünü azaltmak ve bileşenler arası iletişimin performansını artırmak için

Protocol Buffers veya MessagePack gibi verimli serileştirme formatlarını kullanın.

Ruby tabanlı uygulamalar için Universal ID kullanmayı düşünün. Universal

ID, hem MessagePack hem de Brotli’den yararlanır (hız ve en iyi sınıf veri

sıkıştırma için oluşturulmuş bir kombinasyon). Bu kütüphaneler bir araya

getirildiğinde, Protocol Buffers’a kıyasla %30’a kadar daha hızlı ve %2-5

arasında sıkıştırma oranlarına sahiptir.

https://github.com/hopsoft/universalid

Akıllı İş Akışı Orkestrayonu 237

4. Sıkıştırma ve Kodlama: İş akışı bileşenleri arasında aktarılan verinin boyutunu

azaltmak için sıkıştırma ve kodlama tekniklerini uygulayın. gzip veya Brotli gibi

sıkıştırma algoritmaları, ağ bant genişliği kullanımını önemli ölçüde azaltabilir ve

sistemin genel performansını iyileştirebilir.

Akıllı iş akışı orkestrasyon sistemlerinin tasarımı ve uygulaması sırasında

ölçeklenebilirlik ve performans yönlerini göz önünde bulundurarak, sisteminizin

yüksek hacimli eşzamanlı iş akışlarını yönetebilmesini, yapay zeka destekli bileşenlerin

performansını optimize edebilmesini ve artan talepleri karşılamak için sorunsuz bir

şekilde ölçeklenmesini sağlayabilirsiniz. İş yükü ve karmaşıklık zaman içinde arttıkça

sistemin performansını ve yanıt verebilirliğini korumak için sürekli izleme, profil

çıkarma ve optimizasyon çalışmaları gereklidir.

İş Akışlarının Test Edilmesi ve Doğrulanması

Test etme ve doğrulama, akıllı iş akışı orkestrasyon sistemlerinin geliştirilmesi ve

bakımının kritik yönleridir. Yapay zeka destekli iş akışlarının karmaşık doğası göz önüne

alındığında, her bileşenin beklendiği gibi çalıştığından, genel iş akışının doğru şekilde

davrandığından ve yapay zeka kararlarının doğru ve güvenilir olduğundan emin olmak

esastır. Bu bölümde, akıllı iş akışlarını test etme ve doğrulama için çeşitli teknikleri ve

hususları inceleyeceğiz.

İş Akışı Bileşenlerinin Birim Testi

Birim testi, doğruluklarını ve sağlamlıklarını doğrulamak için tek tek iş akışı

bileşenlerinin test edilmesini içerir. Yapay zeka destekli iş akışı bileşenlerinin birim

testini yaparken şunları göz önünde bulundurun:

1. Girdi Doğrulama:Bileşenin geçerli ve geçersiz veriler dahil olmak üzere farklı türdeki

girdileri işleme yeteneğini test edin. Bileşenin uç durumları düzgün bir şekilde ele

aldığını ve uygun hata mesajları veya istisnalar sağladığını doğrulayın.

Akıllı İş Akışı Orkestrayonu 238

2. Çıktı Doğrulama: Bileşenin belirli bir girdi seti için beklenen çıktıyı ürettiğini

doğrulayın. Doğruluğu sağlamak için gerçek çıktıyı beklenen sonuçlarla karşılaştırın.

3. Hata Yönetimi: Geçersiz girdi, kaynak kullanılamaması veya beklenmeyen istisnalar

gibi çeşitli hata senaryolarını simüle ederek bileşenin hata yönetimi mekanizmalarını

test edin. Bileşenin hataları uygun şekilde yakaladığını ve ele aldığını doğrulayın.

4. Sınır Koşulları: Boş girdi, maksimum girdi boyutu veya aşırı değerler gibi sınır

koşulları altında bileşenin davranışını test edin. Bileşenin çökmeden veya yanlış

sonuçlar üretmeden bu koşulları düzgün bir şekilde ele aldığından emin olun.

İşte RSpec test çatısı kullanılarak Ruby’de bir iş akışı bileşeni için birim testi örneği:

1 RSpec.describe OrderValidator do

2 describe '#validate' do

3 context 'when order is valid' do

4 let(:order) { build(:order) }

5

6 it 'returns true' do

7 expect(subject.validate(order)).to be true

8 end

9 end

10

11 context 'when order is invalid' do

12 let(:order) { build(:order, total_amount: -100) }

13

14 it 'returns false' do

15 expect(subject.validate(order)).to be false

16 end

17 end

18 end

19 end

Bu örnekte, OrderValidator bileşeni iki test durumu kullanılarak test edilmektedir:

biri geçerli bir sipariş için, diğeri geçersiz bir sipariş için. Test durumları, validate

metodunun siparişin geçerliliğine bağlı olarak beklenen boolean değerini döndürdüğünü

doğrular.

Akıllı İş Akışı Orkestrayonu 239

İş Akışı Etkileşimlerinin Entegrasyon Testi

Entegrasyon testi, farklı iş akışı bileşenleri arasındaki etkileşimleri ve veri akışını

doğrulamaya odaklanır. Bileşenlerin sorunsuz bir şekilde birlikte çalıştığını ve beklenen

sonuçları ürettiğini garanti eder. Akıllı iş akışlarının entegrasyon testini yaparken

şunları göz önünde bulundurun:

1. Bileşen Etkileşimi: İş akışı bileşenleri arasındaki iletişimi ve veri alışverişini test

edin. Bir bileşenin çıktısının, iş akışındaki bir sonraki bileşene doğru şekilde girdi olarak

aktarıldığını doğrulayın.

2. Veri Tutarlılığı:Verilerin iş akışı boyunca tutarlı ve doğru kaldığından emin olun. Veri

dönüşümlerinin, hesaplamaların ve birleştirmelerin doğru şekilde gerçekleştirildiğini

doğrulayın.

3. İstisna Yayılımı: İstisnaların ve hataların iş akışı bileşenleri arasında nasıl yayıldığını

ve ele alındığını test edin. İstisnaların yakalandığını, kaydedildiğini ve iş akışı kesintisini

önlemek için uygun şekilde ele alındığını doğrulayın.

4. Eşzamansız Davranış: Eğer iş akışı eşzamansız bileşenler veya paralel yürütme

içeriyorsa, koordinasyon ve senkronizasyon mekanizmalarını test edin. İş akışının

eşzamanlı ve eşzamansız senaryolarda doğru şekilde davrandığından emin olun.

İşte Ruby’de RSpec test çerçevesi kullanarak bir iş akışı için entegrasyon testi örneği:

Akıllı İş Akışı Orkestrayonu 240

1 RSpec.describe OrderProcessingWorkflow do

2

3 let(:order) { build(:order) }

4

5 it 'processes the order successfully' do

6 expect(OrderValidator).to receive(:validate).and_return(true)

7 expect(InventoryManager).to receive(:check_availability).and_return(true)

8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)

9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)

10

11 workflow = OrderProcessingWorkflow.new(order)

12 result = workflow.process

13

14 expect(result).to be true

15 expect(order.status).to eq('processed')

16 end

17

18 end

Bu örnekte, OrderProcessingWorkflow farklı iş akışı bileşenleri arasındaki

etkileşimlerin doğrulanmasıyla test edilmektedir. Test senaryosu, her bileşenin

davranışı için beklentiler oluşturur ve iş akışının siparişi başarıyla işleyerek sipariş

durumunu uygun şekilde güncellediğinden emin olur.

Yapay Zeka Karar Noktalarının Test Edilmesi

Yapay zeka karar noktalarını test etmek, yapay zeka destekli iş akışlarının doğruluğunu

ve güvenilirliğini sağlamak için çok önemlidir. Yapay zeka karar noktalarını test ederken

şunları göz önünde bulundurun:

1. Karar Doğruluğu: Yapay zeka bileşeninin giriş verileri ve eğitilmiş model temelinde

doğru kararlar verdiğini doğrulayın. Yapay zeka kararlarını beklenen sonuçlar veya

temel gerçeklik verileriyle karşılaştırın.

2. Uç Durumlar: Yapay zeka bileşeninin uç durumlardaki ve olağandışı senaryolardaki

davranışını test edin. Yapay zeka bileşeninin bu durumları düzgün bir şekilde ele

aldığından ve makul kararlar verdiğinden emin olun.

Akıllı İş Akışı Orkestrayonu 241

3. Yanlılık ve Adillik: Yapay zeka bileşenini olası yanlılıklar açısından değerlendirin ve

adil, tarafsız kararlar verdiğinden emin olun. Bileşeni çeşitli giriş verileriyle test edin ve

sonuçları ayrımcı örüntüler açısından analiz edin.

4. Açıklanabilirlik: Eğer yapay zeka bileşeni kararları için açıklamalar veya gerekçeler

sunuyorsa, açıklamaların doğruluğunu ve netliğini doğrulayın. Açıklamaların temel

karar verme süreciyle uyumlu olduğundan emin olun.

İşte Ruby’de RSpec test çerçevesi kullanılarak yapay zeka karar noktasının test

edilmesine bir örnek:

1 RSpec.describe FraudDetector do

2 describe '#detect_fraud' do

3 context 'when transaction is fraudulent' do

4 let(:tx) do

5 build(:transaction, amount: 10_000, location: 'High-Risk Country')

6 end

7

8 it 'returns true' do

9 expect(subject.detect_fraud(tx)).to be true

10 end

11 end

12

13 context 'when transaction is legitimate' do

14 let(:tx) do

15 build(:transaction, amount: 100, location: 'Low-Risk Country')

16 end

17

18 it 'returns false' do

19 expect(subject.detect_fraud(tx)).to be false

20 end

21 end

22 end

23 end

Bu örnekte, FraudDetector yapay zeka bileşeni iki test vakasıyla test edilmektedir:

biri sahte işlem için, diğeri meşru işlem için. Test vakaları, detect_fraud metodunun

işlemin özelliklerine bağlı olarak beklenen boolean değerini döndürdüğünü doğrular.

Akıllı İş Akışı Orkestrayonu 242

Uçtan Uca Test

Uçtan uca test, başlangıçtan sona kadar tüm iş akışının test edilmesini, gerçek dünya

senaryolarının ve kullanıcı etkileşimlerinin simüle edilmesini içerir. İş akışının doğru

şekilde davrandığından ve istenen sonuçları ürettiğinden emin olur. Akıllı iş akışları

için uçtan uca test yaparken şunları göz önünde bulundurun:

1. Kullanıcı Senaryoları: Yaygın kullanıcı senaryolarını belirleyin ve iş akışının bu

senaryolar altındaki davranışını test edin. İş akışının kullanıcı girdilerini doğru şekilde

işlediğini, uygun kararlar aldığını ve beklenen çıktıları ürettiğini doğrulayın.

2. Veri Doğrulama: İş akışının veri tutarsızlıklarını veya güvenlik açıklarını önlemek

için kullanıcı girdilerini doğruladığından ve temizlediğinden emin olun. İş akışını geçerli

ve geçersiz veriler dahil olmak üzere çeşitli giriş verileriyle test edin.

3. Hata Kurtarma: İş akışının hatalardan ve istisnalardan kurtulma yeteneğini test edin.

Hata senaryolarını simüle edin ve iş akışının bunları düzgün bir şekilde ele aldığını,

hataları kaydettiğini ve uygun kurtarma işlemlerini gerçekleştirdiğini doğrulayın.

4. Performans ve Ölçeklenebilirlik: İş akışının farklı yük koşulları altındaki

performansını ve ölçeklenebilirliğini değerlendirin. İş akışını çok sayıda eşzamanlı

istekle test edin ve yanıt sürelerini, kaynak kullanımını ve genel sistem kararlılığını

ölçün.

İşte Ruby dilinde RSpec test çerçevesi ve kullanıcı etkileşimlerini simüle etmek için

Capybara kütüphanesi kullanılarak yazılmış bir iş akışı için uçtan uca test örneği:

Akıllı İş Akışı Orkestrayonu 243

1 RSpec.describe 'Order Processing Workflow' do

2 scenario 'User places an order successfully' do

3 visit '/orders/new'

4 fill_in 'Product', with: 'Sample Product'

5 fill_in 'Quantity', with: '2'

6 fill_in 'Shipping Address', with: '123 Main St'

7 click_button 'Place Order'

8

9 expect(page).to have_content('Order Placed Successfully')

10 expect(Order.count).to eq(1)

11 expect(Order.last.status).to eq('processed')

12 end

13 end

Bu örnekte, uçtan uca test, bir kullanıcının web arayüzü üzerinden sipariş vermesini

simüle eder. Gerekli form alanlarını doldurur, siparişi gönderir ve siparişin başarıyla

işlendiğini, uygun onay mesajını gösterdiğini ve sipariş durumunun veritabanında

güncellendiğini doğrular.

Sürekli Entegrasyon ve Dağıtım

Akıllı iş akışlarının güvenilirliğini ve bakım yapılabilirliğini sağlamak için, test etme

ve doğrulama işlemlerinin sürekli entegrasyon ve dağıtım (CI/CD) pipeline’ına entegre

edilmesi önerilir. Bu, iş akışı değişikliklerinin üretime dağıtılmadan önce otomatik

olarak test edilmesine ve doğrulanmasına olanak tanır. Aşağıdaki uygulamaları göz

önünde bulundurun:

1. Otomatik Test Yürütme: İş akışı kod tabanında değişiklik yapıldığında test paketinin

otomatik olarak çalıştırılması için CI/CD pipeline’ını yapılandırın. Bu, herhangi

bir regresyonun veya başarısızlığın geliştirme sürecinin erken aşamalarında tespit

edilmesini sağlar.

2. Test Kapsamı İzleme: İş akışı bileşenlerinin ve yapay zeka karar noktalarının test

kapsamını ölçün ve izleyin. Kritik yolların ve senaryoların kapsamlı bir şekilde test

edilmesini sağlamak için yüksek test kapsamını hedefleyin.

Akıllı İş Akışı Orkestrayonu 244

3. Sürekli Geri Bildirim: Test sonuçlarını ve kod kalitesi metriklerini geliştirme iş

akışına entegre edin. Geliştiricilere testlerin durumu, kod kalitesi ve CI/CD süreci

sırasında tespit edilen sorunlar hakkında sürekli geri bildirim sağlayın.

4. Hazırlık Ortamları: İş akışını üretim ortamını yakından yansıtan hazırlık ortamlarına

dağıtın. Altyapı, yapılandırma veya veri entegrasyonuyla ilgili sorunları yakalamak için

hazırlık ortamında ek test ve doğrulama gerçekleştirin.

5. Geri Alma Mekanizmaları: Dağıtım başarısızlıkları veya üretimde tespit edilen

kritik sorunlar için geri alma mekanizmaları uygulayın. Kesinti süresini ve kullanıcılar

üzerindeki etkiyi en aza indirmek için iş akışının hızlı bir şekilde önceki kararlı sürüme

geri döndürülebilmesini sağlayın.

Akıllı iş akışlarının geliştirme yaşam döngüsü boyunca test ve doğrulama işlemlerini

dahil ederek, organizasyonlar yapay zeka destekli sistemlerinin güvenilirliğini,

doğruluğunu ve bakım yapılabilirliğini sağlayabilirler. Düzenli test ve doğrulama,

hataların yakalanmasına, regresyonların önlenmesine ve iş akışının davranışına ve

sonuçlarına olan güvenin artmasına yardımcı olur.

Kısım 2: Desenler

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mühendisliği
Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mühendisliği 247

Düşünce Zinciri

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnekler

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

İçerik Üretimi

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Yapılandırılmış Varlık Oluşturma

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

LLM Ajan Yönlendirmesi

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Faydalar ve Dikkat Edilecek Noktalar

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mühendisliği 248

Mod Değişimi

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullanılmalı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mühendisliği 249

Rol Atama

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullanılır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnekler

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mühendisliği 250

Prompt Object

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mühendisliği 251

İstem Şablonu

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Faydaları ve Dikkat Edilmesi Gerekenler

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullanılmalı:

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mühendisliği 252

Yapılandırılmış Girdi/Çıktı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Yapılandırılmış Giriş/Çıkışın Ölçeklendirilmesi

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Faydalar ve Dikkat Edilecek Noktalar

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mühendisliği 253

Prompt Zincirleme

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullanılmalı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek: Olympia’nın Kullanıcı Dahil Etme Süreci

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mühendisliği 254

Prompt Yeniden Yazıcı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mühendisliği 255

Response Fencing

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Faydalar ve Dikkat Edilecek Noktalar

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Hata İşleme

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mühendisliği 256

Sorgu Çözümleyici

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uygulama

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Sözcük Türü (POS) Etiketleme ve Varlık İsmi Tanıma (NER)

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Niyet Sınıflandırma

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Anahtar Kelime Çıkarımı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Faydalar

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mühendisliği 257

Sorgu Yeniden Yazıcı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Faydaları

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mühendisliği 258

Ventriloquist

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullanmalı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Ayrık Bileşenler
Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Ayrık Bileşenler 260

Yüklem

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullanılmalı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Ayrık Bileşenler 261

API Facade

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Temel Faydaları

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullanmalı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Kimlik Doğrulama ve Yetkilendirme

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Ayrık Bileşenler 262

İstek İşleme

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Yanıt Biçimlendirme

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Hata Yönetimi ve Uç Durumlar

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ölçeklenebilirlik ve Performans Değerlendirmeleri

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Diğer Tasarım Desenleriyle Karşılaştırma

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Ayrık Bileşenler 263

Sonuç Yorumlayıcı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullanılmalı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Ayrık Bileşenler 264

Sanal Makine

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullanılmalı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Büyünün Ardında

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Spesifikasyon ve Test

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Ayrık Bileşenler 265

Davranışın Belirlenmesi

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Test Senaryolarının Yazılması

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek: Çevirmen Bileşeninin Test Edilmesi

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

HTTP Etkileşimlerinin Tekrarı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

İnsan Kontrolünde (HITL)
Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Üst Düzey Kalıplar

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Hibrit Zeka

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uyarlanabilir Yanıt

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

İnsan-YZ Rol Değişimi

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

İnsan Kontrolünde (HITL) 267

Yükseltme

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Temel Faydalar

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Gerçek Dünya Uygulaması: Sağlık Hizmetleri

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

İnsan Kontrolünde (HITL) 268

Geri Bildirim Döngüsü

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uygulamalar ve Örnekler

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

İnsan Geri Bildirim Entegrasyonunda İleri Teknikler

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

İnsan Kontrolünde (HITL) 269

Pasif Bilgi Yayılımı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Bağlamsal Bilgi Görüntüleme

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Proaktif Bildirimler

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Açıklayıcı İçgörüler

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Etkileşimli Keşif

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

İnsan Kontrolünde (HITL) 270

Temel Faydalar

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uygulamalar ve Örnekler

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

İnsan Kontrolünde (HITL) 271

İşbirlikçi Karar Verme (CDM)

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

İnsan Kontrolünde (HITL) 272

Sürekli Öğrenme

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uygulamalar ve Örnekler

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Etik Hususlar

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

İnsan Destekli Sistemlerin AI Risklerini Azaltmadaki Rolü

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

İnsan Kontrolünde (HITL) 273

Teknolojik İlerlemeler ve Gelecek Görünümü

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

İME Sistemlerinin Zorlukları ve Sınırlamaları

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Akıllı Hata Yönetimi
Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Geleneksel Hata Yönetimi Yaklaşımları

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Akıllı Hata Yönetimi 275

Bağlamsal Hata Teşhisi

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Bağlamsal Hata Teşhisi için Bildirim Mühendisliği

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Bağlamsal Hata Teşhisi için Geri Getirme Destekli Üretim

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Akıllı Hata Yönetimi 276

Akıllı Hata Raporlama

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Akıllı Hata Yönetimi 277

Öngörücü Hata Önleme

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Akıllı Hata Kurtarma

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Akıllı Hata Yönetimi 278

Kişiselleştirilmiş Hata İletişimi

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Akıllı Hata Yönetimi 279

Uyarlanabilir Hata İşleme İş Akışı

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Kalite Kontrol
Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Kalite Kontrol 281

Eval

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Problem

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Çözüm

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Değerlendirmeler

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Kalite Kontrol 282

Altın Referansları Anlamak

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Referanssız Değerlendirmeler Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Kalite Kontrol 283

Koruma Mekanizması

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Problem

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Çözüm

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasıl Çalışır

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Örnek

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Dikkat Edilmesi Gerekenler

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Kalite Kontrol 284

Koruma Mekanizmaları ve Değerlendirmeler:

Madalyonun İki Yüzü

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Koruma Mekanizmaları ve Referanssız
Değerlendirmelerin Birbirinin Yerine Kullanılabilirliği

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Çift Amaçlı Koruma Mekanizmalarının ve
Değerlendirmelerin Uygulanması

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Sözlük

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Sözlük

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

A

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

B

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

C

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

286

D

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

E

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

F

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

G

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

H

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

I

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

287

J

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

K

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

L

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

M

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

N

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

O

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

288

P

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Q

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

R

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

S

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

T

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

U

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

289

V

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

W

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Z

Bu içerik örnek kitapta mevcut değildir. Kitabı Leanpub’tan satın almak için http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Index

ACID özellikleri, 102

acil durum müdahale planlaması, 30

AI, 68, 92, 134, 141

model, 92, 149

uygulamalar, 117, 129

Ajanlı, 30

akan veri, 143

akıllı iş akışı düzenleme, 234

akıllı iş akışı orkestrasyonu, 213

akıllı iş akışı orkestrayonu, 206

akıllı telefonlar, 203

Akıllı İçerik Denetleyici, 217

akış işleme, 141, 147, 152

mantığı, 148

akış işleyicileri, 142

Alpaca, 12

Altman, Sam, 16

Amazon Web Services, 236

anlatı oluşturma, 18

Anthropic, 21, 36, 68, 121, 128

antropomorfizm, 64

API’ler, 66, 115, 144

araç kullanımı, 115, 140

araç çağrısı, 144

artırılmış gerçeklik gözlükleri, 203

asenkron işleme, 233

auto-regressive modeling, 39

ayrıntılı günlük tutma, 231

az örnekli yönerge verme, 58

az örnekli öğrenme, 57

açık kaynak model barındırma

sağlayıcıları, 191

açıklanabilirlik, 241

ağ bağlantısı, 211

aşamalı gösterim, 193

Bayt Çifti Kodlaması (BÇK), 12

bağlam

Bağlamsal Alan Önerileri, 187

bağlamsal karar verme, 210

Bağlamsal İçerik Üretimi, 175,

179–181, 186, 187

pencere, 210

penceresi, 14

sonsuz uzunluktaki girdiler, 14

Zenginleştirme, 42

BDM’lerin entegrasyonu, 176

belge kümeleme, 112

belirteçleme, 11

belirteçler, 5, 11

BERT, 12, 22

bildirimler

Bildirim Damıtma, 42

Index 291

mühendislik, 41, 42, 60

bilet ataması, 224

bilgi

getirme, 6, 117

çıkarımı, 48

bilgi tabanları, 7

bilgi yönetimi, 30

bilgisayar bilimi, 65, 67

biçimlendirme tarzı etiketleme, 66

boundary conditions, 238

Brotli, 236, 237

Byte Pair Encoding (BPE), 13

Büyük Dil Modeli (BDM), 16, 62, 63, 66, 70,

72, 81, 112, 116, 125, 132, 136,

138, 154, 157, 175, 190, 216

alan, 25

Büyük Dil Modeli (DDD), 14

Büyük Dil Modeli (LLM), 1, 3, 103, 115, 185,

195

C (Programlama Dili), 109

Capybara kütüphanesi, 242

ChatGPT, 28, 49

Claude, 7, 40, 72

Claude 3, 45, 118, 121, 126, 128

Claude 3 Opus, 69

Claude v1, 15

Claude v2, 16

Cohere (BDM Sağlayıcısı), 23

Cohere (LLM Sağlayıcısı), 21

concurrent workflows, 237

Customer Sentiment Analysis, 93

Cıva (element), 41

damıtma süreci, 71

darboğazlar, 210

Databricks çalışanları, 48

Datadog, 232

dağıtık mimari, 233

decision

-making capabilities, 92

denetim günlüğü, 99

denetim ve uyumluluk, 231

deneyler

çerçeve, 181

Derin Dil Modeli (DDD), 27

Destek Vektör Makineleri (DVM), 113

deterministik davranış, 54

devre kesici mantığı, 152

dijital ortam, 181

dil

Dil Algılama, 104

ile ilgili görevler, 4

modelleri, 61, 67

dilbilgisi kuralları, 4

Dinamik Araç Seçimi, 122

Dinamik Görev Yönlendirme, 209

dinamik kullanıcı arayüzü üretimi, 176

diziler, 122

Dohan, et al., 40

dolandırıcılık tespiti

sistemi, 90

donanım, 26

doğal dil

Index 292

Doğal Dil İşleme (DDİ), 94, 112

durumsuz, 147

duygu analizi, 15, 93, 104, 105, 107, 110, 126,

136

duygusal ton, 136

dönüştürücü mimarisi, 6

Düşünce Zinciri (CoT), 41

Düşünce Zinciri (DZ), 130

e-ticaret, 179, 207

E-ticaret Uygulamaları, 85

ekosistem, 139

ELK yığını, 103

en az ayrıcalık ilkesi, 66

entegrasyon testi, 239

erişilebilirlik, 202, 203

Erişim Destekli Üretim (EDÜ), 74

Erişim Destekli Üretim (RAG), 35

errors

handling, 238

Intelligent Error Handling, 134

esneklik ve yaratıcılık, 183

etik

sonuçlar, 186

eğitim uygulamaları, 30

eğitim verisi, 39

eğitimli modeller

talimat eğitimli modeller, 45

F#, 86

Facebook, 22

finalize metodu, 148, 149

FitAI, 197

fonksiyon

isimleri, 145

çağrı geçmişi, 147

çağrısı başarısızlığı, 125

çağırma, 115

fonksiyonel programlama, 85

gecikme süresi, 25

geliştirme çerçeveleri, 139

Gemma 7B, 10

geri alma mekanizmaları, 244

geri bildirim

Geri Bildirim Döngüsü, 55

Geri Getirme Destekli Üretim (RAG), 29, 42

Geri Getirme ile Güçlendirilmiş Üretim

(GGÜ), 117

geri getirme tabanlı modeller, 6

geçmiş örüntüler, 210

giriş

promptları, 52

giriş parametreleri, 120

GitLab, 86

Gizli Dirichlet Tahsisi, 114

gizli uzay, 39

Global Interpreter Lock (GIL), 107

Google, 21

API, 58, 60

Cloud AI Platform, 22

Cloud Platform, 236

Gemini, 20

Gemini 1.5 Pro, 12, 16, 17

PaLM (Pathways Language Model),

Index 293

16, 22

T5, 12

GPT-3, 12, 15

GPT-4, 6, 12, 16, 19, 29, 40, 45, 58, 97, 109,

112, 119, 125, 190, 191, 234

Graham, Paul, 17

graphical models, 40

GraphQL, 100

Groq, 24, 112

gzip, 237

görsel arayüz, 195

gözetimsiz öğrenme, 4

günlük saklama ve döndürme, 232

harici hizmetler veya API’ler, 118

hata ayıklama, 210

ve sorun giderme, 231

ve test, 123

hatalar

kurtarma, 242

oranları, 103

yönetim, 99, 102, 134

hazırlık ortamları, 244

hesap, 84

hiper parametre, 43

Hohpe, Gregor, 97

Honeybadger, 87

HTTP, 141

ince ayar, 74

input

validation, 237

intelligent workflow orchestration, 237

istemler

mühendislik, 37

İstem Damıtma, 234

istisna işleme, 211

istisna yönetimi, 213

iterative refinement, 135

iyimser kilitleme, 102

izleme

metrikleri, 231

ve günlük kaydı, 103

ve günlük tutma, 230

ve uyarı verme, 212

içerik

filtreleme, 24

İçerik Kategorizasyonu, 104

içerik tabanlı filtreleme, 85

iş kuralları, 206

işbirlikçi filtreleme, 85

işlem süresi, 103

JSON (JavaScript Nesne Gösterimi), 138

JSON (JavaScript Object Notation), 118,

122, 123, 126, 156

K-means, 114

kapalı ve açık soru yanıtlama, 48

kapsayıcı arayüzler, 186

karar

ağaçları, 207

noktaları, 229

verme kullanım durumları, 124

karma, 143

karmaşık görevler, 137

Index 294

Karın Konuşmacısı, 165

kavramsal ve pratik zorluklar, 186

Kendi Kendini Onaran Veri, 227

Kendini Onaran Veri, 154

kişiselleştirilmiş ürün önerileri, 85

kişiselleştirme, 176, 203, 208

Kişiselleştirilmiş Formlar, 187

Kişiselleştirilmiş Mikrokopya, 192

Klinik Karar Desteği, 96

komut satırı

Komut Satırı Arayüzü (CLI), 24

komutlar

iyileştirme, 63

Komut Şablonu, 191

mühendislik, 62

tasarım, 63

konu tanımlama, 112

konuşma

döngüsü, 150

kaydı, 147, 149

Kullanıcı Arayüzü (UI)

arayüzler, 199

arayüzleri, 185

tasarım, 204

teknolojileri, 195

çerçeveler, 200

kullanıcı deneyimi, 182

kullanıcı güveni, 202

kullanıcı psikolojisi, 201

kullanıcı tarafından oluşturulan içerik, 104

kullanıcı testi ve geri bildirim, 184

kullanılabilirlik sorunları, 202

Kurumsal Entegrasyon Kalıpları, 97

kurumsal uygulama mimarisi, 35

kötümser kilitleme, 102

language

models, 39

Large Language Model (LLM), 135

linear algebra, 39

linear regression, 40

Llama, 12

Llama 2-70B, 46

Llama 3 70B, 10

Llama 3 8B, 10

Louvre, 39

Managed Streaming for Apache Kafka, 38

manuel müdahale, 213

Markdown, 138

masaüstü bilgisayarlar, 203

Memorial Sloan Kettering Cancer Center,

38

Merkür (gezegen), 41

Merkür (Roma tanrısı), 41

MessagePack, 236

Meta, 22

Metin Temizleme, 104

Metropolitan Museum of Art, 39

Mikroservisler mimarisi, 83

Mistral, 23

7B, 10

7B Instruct, 15, 191

Mixtral

8x22B, 10

Index 295

8x7B, 52

modeller arası üretim, 20

modern uygulamalar, 208

modülerlik, 82

motivasyonel stratejiler, 199

müşteri desteği, 30

müşteri hizmetleri sohbet robotları, 31

Naive Bayes, 113

New Relic, 235

Nicemleme, 26

olay güdümlü mimari, 101

Ollama, 23

Olympia, 31, 58, 120, 134, 142, 157

Olympia’nın bilgi tabanı, 84

OpenAI, 3, 21, 36, 68

OpenRouter, 25, 26, 142, 234

OPT model, 22

ortak malların trajedisi, 179

Otomatik Devam, 150

otomatik ölçeklendirme, 235

output verification, 238

paralel yürütme, 233

parametre

aralığı, 10

etkileri, 120

Parametre Sayısı, 26

performans

dengeleri, 5

optimizasyon, 183

optimizasyonu, 124, 231

sorunları, 235

Perplexity (Sağlayıcı), 10

probabilistic models, 39

promptlar

mühendislik, 52, 55, 200

Prompt Damıtma, 68, 72

Prompt Nesnesi, 69

Prompt Şablonu, 55

tasarım, 54

zincirleme, 55, 66

Protocol Buffers, 236

PyTorch, 22

Qwen2 70B, 10

Rails, 182

Railway Oriented Programming (ROP), 88

Raix, 214

kütüphanesi, 90

risk faktörleri, 89, 90

Risk Sınıflandırması, 95

rol yapma tarzı etkileşimler, 6

RSpec, 238, 239, 242

Ruby, 86, 87, 105, 152, 242

Ruby on Rails, 1, 104, 214, 221

Rudall, Alex, 21

Rust (Programlama Dili), 109

Rust (Programming Language), 86

sanal asistanlar, 31

Scout, 235

segmentasyon ve hedefleme stratejileri, 181

Index 296

Semptom Değerlendirmesi ve

Sınıflandırması, 94

sentetik veri üretimi, 49

sesle kontrol edilen arayüzler, 31

Sigorta Doğrulaması, 94

sinir ağları, 3, 6

sistem yönergesi, 120

sohbet robotu uygulaması, 111

sonlandırma metodu, 147

Sonuç Yorumlayıcı, 133

soru yanıtlama sistemleri, 7

SQL enjeksiyonları, 65

Stripe, 121

Structured IO, 191

sunucu gönderimli olaylar (SSE), 141

system directive, 92

sözdizimi hataları, 123

sözlükler, 122

Sürekli Entegrasyon ve Dağıtım (CI/CD),

243

pipeline, 243

Sürekli Risk İzleme, 96

Süreç Yöneticisi, 97, 100

Kurumsal Entegrasyon, 214

Sıcaklık, 50

sıfır örnekli öğrenme, 54, 55

sınıflandırma, 48, 112

sıralayıcılar, 33

T5, 22

tabletler, 203

tahminler, 5

talimat ince ayarı, 9

tedarik zinciri

optimizasyonu, 30

Tek Örnekli Öğrenme, 56

tekrar cezaları, 47

temel kalıplar, 208

temel metriklerin takibi, 228

temel modeller, 50

tetikleme mesajı, 97

Together.ai, 24

Top-k örnekleme, 44

Top-p (çekirdek) örnekleme, 44

toplu işleme, 234

topluluklar, 109, 110

işçi topluluğu, 110

trafik yönetimi, 30

tutarlılık

ve tekrarlanabilirlik, 124

Tıbbi Geçmiş Toplama, 94

tıbbi keşifler, 94

uluslararasılaştırma, 182

Unicode ile kodlanabilen dil, 13

Universal ID, 236

uyarlanabilir iş akışı

Uyarlanabilir İş Akışı Kompozisyonu,

210

uyarlanabilir UI, 194

uygulama tasarımı ve çerçeveleri, 185

uç durumlar, 54

uçtan uca test, 242, 243

Varlık Cezası, 44

Index 297

veri

akış, 102

analizi, 32, 138

bütünlüğü, 224

gizliliği, 25, 201

hazırlama, 101

işleme görevleri, 117

işleme hattı, 224

kalıcılık, 102

Veri Alımı, 102

Veri Doğrulama, 242

Veri Senkronizasyonu, 102

verim, 25

verimlilik, 208

veritabanları, 115

destekli nesne, 98

kilitleme stratejileri, 102

Wall, Larry, 3

Wisper, 87, 99, 142, 149

Wooley, Chad, 86

XML, 125

yanlılık

yapay zekada adillik, 241

Yanıt Sınırlama, 165, 191

Yapay Zeka, 189, 196

bileşik sistemler, 28

karar noktaları, 240

konuşma, 29

konuşma tabanlı, 197

model, 147, 196

uygulamalar, 152

yapay zeka

konuşma, 6

uygulamalar, 140

yapay zeka işçilerinin zincirlenmesi, 104

yapılandırılmış günlük tutma, 232

yapılandırılmış veri, 125

yaratıcı yazarlık, 32

yaratıcı yazım, 48

yayınla-abone ol sistemleri, 101

yazılım mimarisi, 2

yedek stratejiler, 102

yeniden deneme mekanizmaları, 102

yeniden ifade etme, 49

yerel geliştirme ortamları, 146

Yi-34B, 46

yinelemeli iyileştirme, 70

yolu daralt, 36

yolu daraltma, 35

YZ, 60, 120, 126

bileşik sistemler, 32

model, 82, 146

yönerge ince ayarı

yönergeli eğitimli modeller, 48

yüksek performanslı tamamlama, 24

zihin teorisi, 37

Zorlanmış Araç Seçimi, 123

Çalışanların Çokluğu, 156

Çok kipli

dil modelleri, 19

modeller, 18

Index 298

Çoklu Ajan

Problem Çözücüler, 29

Çıkarım, 5

Üretici Kullanıcı Arayüzü (GenUI), 185, 199

Üretici Ön-eğitimli Dönüştürücü (GPT), 62

Üretken Kullanıcı Arayüzü (GenUI), 195,

203

Üretken UI (GenUI), 192

Üretken Ön-eğitimli Dönüştürücü (GPT), 7

Üretkenlik, 178

Ürün Önerileri, 85

çeviri, 15, 183

çevrimiçi perakendeciler, 191

çok adımlı iş akışı, 104

çoğunluk oylaması, 109

ölçeklenebilirlik, 208, 232

önbellekleme, 234

örtük uzay, 37

örüntü eşleme, 143

özelleştirme, 25

özetleme, 48

İlk Simgeye Kadar Geçen Süre (TTFT), 25

İnsan Destekli Döngü (HITL), 168

İşçiler Çokluğu, 111

	İçindekiler
	Gregor Hohpe'den Önsöz
	Önsöz
	Kitap Hakkında
	Kod Örnekleri Hakkında
	Neleri Kapsamıyorum
	Bu Kitap Kimler İçin
	Ortak Bir Söz Dağarcığı Oluşturmak
	Katılım
	Teşekkürler
	Çizimler neyin nesi?
	Lean Publishing Hakkında
	Yazar Hakkında

	Giriş
	Yazılım Mimarisi Üzerine Düşünceler
	Büyük Dil Modeli Nedir?
	Çıkarımı Anlamak
	Performans Üzerine Düşünmek
	Farklı DDD Modelleriyle Deney Yapmak
	Bileşik Yapay Zeka Sistemleri

	Kısım 1: Temel Yaklaşımlar ve Teknikler
	Yolu Daralt
	Örtük Uzay: Kavranamayacak Kadar Geniş
	Yol Nasıl ``Daraltılır''
	Ham Modeller ve Eğitimli Modeller Karşılaştırması
	Prompt Mühendisliği
	Prompt Damıtma
	Ya ince ayar?

	Erişim Destekli Üretim (RAG)
	Erişim Destekli Üretim Nedir?
	RAG Nasıl Çalışır?
	Uygulamalarınızda RAG'ı Neden Kullanmalısınız?
	Uygulamanızda RAG'ı Uygulama
	Önerme Bölümleme
	RAG'ın Gerçek Dünya Örnekleri
	Akıllı Sorgu Optimizasyonu (Intelligent Query Optimization, IQO)
	Yeniden Sıralama
	RAG Değerlendirmesi (RAGAs)
	Zorluklar ve Gelecek Görünümü

	İşçilerin Çokluğu
	Bağımsız Yeniden Kullanılabilir Bileşenler Olarak YZ İşçileri
	Hesap Yönetimi
	E-ticaret Uygulamaları
	Sağlık Hizmeti Uygulamaları
	Süreç Yöneticisi Olarak AI İşçisi
	Yapay Zeka Çalışanlarını Uygulama Mimarinize Entegre Etme
	Yapay Zeka İşçilerinin Birleştirilebilirliği ve Orkestrayonu
	Geleneksel DDİ'yi BDM'lerle Birleştirme

	Araç Kullanımı
	Araç Kullanımı Nedir?
	Araç Kullanımının Potansiyeli
	Araç Kullanım İş Akışı
	Araç Kullanımı İçin En İyi Uygulamalar
	Araçları Birleştirme ve Zincirleme
	Gelecekteki Yönelimler

	Akış İşleme
	ReplyStream'in Uygulanması
	``Konuşma Döngüsü''
	Otomatik Devam
	Sonuç

	Kendini Onaran Veri
	Pratik Vaka Çalışması: Bozuk JSON'ı Düzeltme
	Değerlendirmeler ve Karşı Göstergeler

	Bağlamsal İçerik Üretimi
	Kişiselleştirme
	Üretkenlik
	Hızlı İterasyon ve Deney
	Yapay Zeka Destekli Yerelleştirme
	Kullanıcı Testi ve Geri Bildirimin Önemi

	Üretici Kullanıcı Arayüzü
	Kullanıcı Arayüzleri İçin Metin Üretimi
	Üretken Kullanıcı Arayüzünün Tanımlanması
	Örnek
	Sonuç Odaklı Tasarıma Geçiş
	Zorluklar ve Dikkat Edilmesi Gerekenler
	Gelecek Görünümü ve Fırsatlar

	Akıllı İş Akışı Orkestrayonu
	İş İhtiyacı
	Temel Faydalar
	Temel Kalıplar
	İstisna İşleme ve Kurtarma
	Akıllı İş Akışı Orkestrasyonunun Pratikte Uygulanması
	İzleme ve Günlük Tutma
	Ölçeklenebilirlik ve Performans Hususları
	İş Akışlarının Test Edilmesi ve Doğrulanması

	Kısım 2: Desenler
	Bildirim Mühendisliği
	Düşünce Zinciri
	Mod Değişimi
	Rol Atama
	Prompt Object
	İstem Şablonu
	Yapılandırılmış Girdi/Çıktı
	Prompt Zincirleme
	Prompt Yeniden Yazıcı
	Response Fencing
	Sorgu Çözümleyici
	Sorgu Yeniden Yazıcı
	Ventriloquist

	Ayrık Bileşenler
	Yüklem
	API Facade
	Sonuç Yorumlayıcı
	Sanal Makine
	Spesifikasyon ve Test

	İnsan Kontrolünde (HITL)
	Üst Düzey Kalıplar
	Yükseltme
	Geri Bildirim Döngüsü
	Pasif Bilgi Yayılımı
	İşbirlikçi Karar Verme (CDM)
	Sürekli Öğrenme
	Etik Hususlar
	Teknolojik İlerlemeler ve Gelecek Görünümü

	Akıllı Hata Yönetimi
	Geleneksel Hata Yönetimi Yaklaşımları
	Bağlamsal Hata Teşhisi
	Akıllı Hata Raporlama
	Öngörücü Hata Önleme
	Akıllı Hata Kurtarma
	Kişiselleştirilmiş Hata İletişimi
	Uyarlanabilir Hata İşleme İş Akışı

	Kalite Kontrol
	Eval
	Koruma Mekanizması
	Koruma Mekanizmaları ve Değerlendirmeler: Madalyonun İki Yüzü

	Sözlük
	Sözlük
	Index

