Patterns of
Application
Development
Using Al

Obie Fernandez
Foreword by Gregor Hohpe

YZ ile Uygulama Gelistirme Kaliplari
(Tarkge Baski)

Obie Fernandez

Bu kitap http://leanpub.com/patterns-of-application-development-using-ai-tr

adresinde satigtadir.

Bu versiyon, 2025-01-23 tarihinde yaymlanmigtir

A

Leanpub

Bu bir Leanpub kitabidir. Leanpub, yazar ve yayimcilar1 Lean Yayimlama sistemi ile
destekleyen bir kurulustur. Lean Yayimlama, heniiz calisma asamasinda olan bir kitabi
kullanisl: yollarla destekleyerek, okuyucu geri doniisiini saglayan ve prosesi

kolaylastiran bir yontemdir.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-tr
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Bu Kitabi Tweetle!

Yazara, Obie Fernandez, destek olmak i¢in bu kitab: Twitter ’da paylasin!

Bu kitap i¢in 6nerilen hashtag #poaduai.

Bu linke tiklayarak, bu kitap hakkinda Twitter’da neler paylasildigini gérebilirsiniz:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Muhtesem kralicem, ilham perim, is1gim ve askim Victoria’ya

Ayrica Obie Fernandez tarafindan

Patterns of Application Development Using Al
The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Gregor Hohpe’denOnséz i
OnsOz e ii
Kitap Hakkinda iii
Kod Ornekleri Hakkinda iii
Neleri Kapsamiyorum iii
BuKitap Kimlerigin iii
Ortak Bir S6z Dagarcigi Olusturmak iii
Katilm iii
Tesekkirler iii
Cizimler neyinnesi? iv
Lean Publishing Hakkinda iv
Yazar Hakkinda v
Giris e 1
Yazilim Mimarisi Uzerine Diigiinceler 2
Buiyik Dil Modeli Nedir? 3
Cikarimi Anlamak 5
Performans Uzerine Diistinmek 25
Farkli DDD Modelleriyle Deney Yapmak 27

Bilesik Yapay Zeka Sistemleri Lo 28

ICINDEKILER

Kisim 1: Temel Yaklasimlar ve Teknikler 35

YoluDaralt. 36
Ortiik Uzay: Kavranamayacak Kadar Genig 38
Yol Nasil “Daraltilir”o o 41
Ham Modeller ve Egitimli Modeller Kargilagtirmas: 45
Prompt Mithendisligi 52
Prompt Damitma. L 67
Yainceayar? 74

Erisim Destekli Uretim (RAG) 75
Erisim Destekli Uretim Nedir? 75
RAG Nasil Calisir? e 75
Uygulamalarinizda RAG’1 Neden Kullanmalisimz? 75
Uygulamanizda RAG1 Uygulama 75
Onerme Bélimleme 76
RAG’1n Gergek Diinya Ornekleri 76
Akilli Sorgu Optimizasyonu (Intelligent Query Optimization, IQO). 77
Yeniden Siralama 77
RAG Degerlendirmesi (RAGAs)o i 77
Zorluklar ve Gelecek Gortinimii, 79

Iscilerin Coklugu 81
Bagimsiz Yeniden Kullanilabilir Bilesenler Olarak YZ fscileri 82
Hesap Yonetimi 83
E-ticaret Uygulamalart 84
Saglik Hizmeti Uygulamalart 93
Siirec Yoneticisi Olarak Alfsgisi 96
Yapay Zeka Caliganlarini Uygulama Mimarinize Entegre Etme 100

Yapay Zeka Iscilerinin Birlestirilebilirligi ve Orkestrayonu 103

ICINDEKILER

Geleneksel DDI'yi BDM’lerle Birlestirme 112
AracKullanimi 115
Arac Kullanimi Nedir? 115
Arag¢ Kullaniminin Potansiyeli 117
AracKullamm s Akist 118
Arag Kullanimi I¢in En Iyi Uygulamalar 132
Araclan Birlestirme ve Zincirleme L. 137
Gelecekteki Yonelimler L oL 139
Akisdsleme 141
ReplyStream’in Uygulanmast 142
“Konugma DOnglisi”o 148
Otomatik Devam 150
SONUG e e e e 152
KendiniOnaran Veri 154
Pratik Vaka Calismasi: Bozuk JSON’1 Diizeltme 156
Degerlendirmeler ve Karg1 Gostergeler 161
Baglamsal icerik Uretimi 175
Kisisellestirme e 176
Uretkenlik 177
Hizli iterasyon ve Deney 180
Yapay Zeka Destekli Yerellestirme 182
Kullanic1 Testi ve Geri Bildirimin Onemi 184
Uretici Kullanic1 Arayiizii 185
Kullanict Arayiizleri I¢in Metin Uretimi 186
Uretken Kullanic1 Arayiiziiniin Tanimlanmast 195

ICINDEKILER

Sonu¢ Odakli Tasarima Gegis o v i it e 199
Zorluklar ve Dikkat Edilmesi Gerekenler 201
Gelecek Gorintiimii ve Firsatlar L L oo 202
Akilli Is Akis1 Orkestrayonu 206
Isthtiyact 207
Temel Faydalar 207
Temel Kaliplar 208
Istisna Isleme ve Kurtarma i 210
Akalli Is Akis1 Orkestrasyonunun Pratikte Uygulanmast 213
[zleme ve Giinlilk Tutma 228
Olceklenebilirlik ve Performans Hususlar1 232
Is Akiglarinin Test Edilmesi ve Dogrulanmast 237
Kisim 2: Desenler 245
Bildirim Mithendisligi L 246
Diislince Zincirio e 247
Mod Degisimi 248
RolAtama 249
Prompt Object 250
Istem Sablonu 251
Yapilandiridmig Girdi/Ciktr oL oL 252
Prompt Zincirleme 253
Prompt Yeniden Yazicr. 254
Response Fencing L o o 255
Sorgu Coziimleyici L 256
Sorgu Yeniden Yazicr 257

Ventriloquist L 258

ICINDEKILER

Ayrik Bilesenler 259
Yiaklem 260
APIFacade 261
Sonu¢ Yorumlayier 263
Sanal Makine 264
Spesifikasyon ve Test 264

Insan Kontroliinde (HITL) 266
UstDiizey Kaliplar 266
Yikseltme. oL 267
Geri Bildirim Déngiisti L Lo 268
Pasif Bilgi Yayilimi. 269
Isbirlikci Karar Verme (CDM) 271
Siirekli Ofrenme 272
Etik Hususlar e 272
Teknolojik Ilerlemeler ve Gelecek Goriintimii 272

Akilli Hata Yonetimi 274
Geleneksel Hata Yonetimi Yaklasimlart 274
Baglamsal Hata Teshisi 275
Akilli Hata Raporlama 276
Ongoériicii Hata Onleme 277
Akilli Hata Kurtarma 277
Kisisellestirilmis Hata fletisimi 278
Uyarlanabilir Hata fsleme Is Akis1 279

Kalite Kontrol 280
Eval e 281
Koruma Mekanizmast 283

Gregor Hohpe'den Onséz

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Onsoz

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Onsoéz iii

Kitap Hakkinda

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Kod Ornekleri Hakkinda

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Neleri Kapsamiyorum

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Bu Kitap Kimler icin

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ortak Bir S6z Dagarcigi Olusturmak

Bu icerik 6rnek kitapta mevcut degildir. Kitabi Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Katilim

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Onsoéz iv

Tesekkurler

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Cizimler neyin nesi?

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Lean Publishing Hakkinda

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Onsoéz A

Yazar Hakkinda

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Eger Yapay Zeka Biiyiik Dil Modellerini (LLM) programlama projelerinize entegre

etmeye hevesliyseniz, ilerleyen bolimlerde sunulan orintilere ve kod o6rneklerine
hemen dalabilirsiniz. Ancak, bu ériintiilerin giiciinii ve potansiyelini tam olarak takdir
edebilmek i¢in, bunlarin temsil ettigi daha genis baglami ve biitiinciil yaklasimi anlamak

icin biraz zaman ayirmaya deger.

Bu oriintiler, yalnizca izole tekniklerin bir koleksiyonu degil, aksine yapay
zekay1 uygulamalariniza entegre etmek icin birlesik bir g¢ercevedir. Ben Ruby on
Rails kullaniyorum, ancak bu oriintiler hemen hemen diger tiim programlama
ortamlarinda da c¢aligmalidir. Veri yonetiminden performans optimizasyonuna,
kullanic1 deneyiminden giivenlige kadar genis bir yelpazedeki konular: ele alarak,
geleneksel programlama uygulamalarini yapay zeka yetenekleriyle gelistirmek icin

kapsamli bir ara¢ seti sunmaktadir.

Giris 2

Her 6rinti kategorisi, uygulamaniza yapay zeka bilesenlerini dahil ederken ortaya ¢ikan
belirli bir zorlugu veya firsat1 ele alir. Bu 6riintiiller arasindaki iligkileri ve sinerjileri
anlayarak, yapay zekay1 nerede ve nasil en etkili sekilde uygulayacaginiz konusunda

bilingli kararlar alabilirsiniz.

Oriintiiler asla zorunlu ¢oziimler degildir ve boyle ele alinmamalidir. Bunlar, kendi
benzersiz uygulamanizin 6zel gereksinimlerine ve kisitlamalarina gére uyarlanmasi
gereken esnek yapi taglaridir. Bu orintilerin (yazilim alanindaki diger herhangi bir
orunti gibi) basarili bir sekilde uygulanmasi, problem alaninin, kullanici ihtiyaglarinin

ve projenizin genel teknik mimarisinin derinlemesine anlagilmasina dayanur.

Yazilim Mimarisi Uzerine Dusiinceler

1980’lerde programlamaya basladim ve hacker camiasinda yer aldim, profesyonel
bir yazilim gelistirici olduktan sonra bile hacker zihniyetimi hi¢ kaybetmedim. En
basindan beri, fildisi kulelerindeki yazilim mimarlarinin gercekte ne gibi bir deger

kattig1 konusunda her zaman saglikh bir siiphecilik icindeydim.

Bu giicli yeni yapay zeka teknolojisi dalgasinin getirdigi degisimler konusunda kisisel
olarak bu kadar heyecanli olmamin nedenlerinden biri, bunun yazilim mimarisi
kararlar1 olarak kabul ettigimiz seyler izerindeki etkisidir. Yazilim projelerimizi
tasarlama ve uygulama konusundaki “dogru” yolun ne olduguna dair geleneksel
anlayist sorguluyor. Ayrica, yapay zeka gelistirmelerinin projenizin herhangi bir
bolimiinii, herhangi bir zamanda degistirmeyi her zamankinden daha kolay hale
getirmesi nedeniyle, mimarinin hala 6ncelikle sistemin degistirilmesi zor olan kisimlar:

olarak distuntlip diisinilemeyecegini de sorguluyor.

Belki de yazilim mithendisliginde “post-modern” yaklagimin zirve yillarina giriyoruz.
Bu baglamda post-modern, gelistiricilerin her bir kod satirini1 yazma ve siirdirmeden
sorumlu oldugu geleneksel paradigmalardan temel bir kopusu ifade eder. Bunun yerine,

veri manipiilasyonu, karmasik algoritmalar ve hatta uygulama mantiginin tiim parcalar1

Giris 3

gibi goérevleri 3. parti kiitiiphanelere ve harici APT'lere devretme fikrini benimser.
Bu post-modern degisim, uygulamalar1 sifirdan inga etme konusundaki geleneksel
bilgelikten 6nemli bir sapmay: temsil eder ve gelistiricileri gelistirme siirecindeki

rollerini yeniden diisiinmeye zorlar.

Larry Wall ve onun gibi diger hacker onciilerinin 6gretilerinden yola cikarak, iyi
programcilarin yalnizca kesinlikle gerekli olan kodu yazdiklarina her zaman inandim.
Yazilan kod miktarini en aza indirerek, daha hizli hareket edebilir, hatalara acik yiizeyi
azaltabilir, bakimi basitlestirebilir ve uygulamalarimin genel giivenilirligini artirabiliriz.
Daha az kod, diger isleri bagka servislere devrederken temel is mantigina ve kullanici

deneyimine odaklanmamiza olanak tanir.

Artik yapay zeka destekli sistemler, daha once yalnizca insan yazili kodun alani
olan gorevleri halledebildigine gore, is degeri ve kullanici deneyimi yaratmaya her

zamankinden daha fazla odaklanarak daha tiretken ve cevik olabilmeliyiz.

Elbette projenizin biiyiik boliimlerini yapay zeka sistemlerine devretmenin, kontrol
kaybi potansiyeli ve saglam izleme ve geri bildirim mekanizmalarina duyulan ihtiyag
gibi dezavantajlari vardir. Bu nedenle, yapay zekanin nasil ¢alistigina dair en azindan

temel bir anlay1s da dahil olmak iizere yeni bir beceri ve bilgi seti gerektirmektedir.

Buyuk Dil Modeli Nedir?

Biyik Dil Modelleri (LLM), OpenAl tarafindan 2020°de GPT-3’iin piyasaya
strilmesinden bu yana 6nemli ilgi goren bir yapay zeka modeli tirtidir. LLMler,
insan dilini dikkat c¢ekici bir dogruluk ve akicilikla igslemek, anlamak ve iiretmek icin
tasarlanmistir. Bu boliimde, LLM’lerin nasil calistigina ve neden akilli sistem bilesenleri

olusturmak icin uygun olduklarina kisaca géz atacagiz.

Oziinde, LLM’ler derin 6grenme algoritmalarina, ézellikle sinir aglarina dayanir. Bu

aglar, bilgiyi isleyen ve ileten birbirine bagli diigiimlerden veya néronlardan olusur.

Giris 4

LLM’ler igin tercih edilen mimari genellikle metin gibi sirali verileri islemede olduk¢a

etkili oldugu kanitlanan Transformer modelidir.

Dénistiiriici modeller, dikkat mekanizmasima dayanir ve oncelikle dogal dil isleme
gibi siralt veri iceren gorevler icin kullanilir. Déntistirticiler, giris verisini sirali
olarak degil bir biitiin olarak isler; bu da uzun mesafeli bagimliliklar1 daha etkili bir
sekilde yakalamalarini saglar. Modelin baglami ve iligkileri anlamasi i¢in giris verisinin
farkli bolimlerine odaklanmasina yardimer olan dikkat mekanizmasi katmanlarina

sahiptirler.

BDM’lerin egitim siireci, modeli kitaplar, makaleler, web siteleri ve kod depolar gibi cok
biiyiik miktarda metinsel veriye maruz birakmayi icerir. Egitim sirasinda, model metin
icindeki kaliplari, iligkileri ve yapilar: tanimay1 6grenir. Dilin dilbilgisi kurallari, kelime

iliskileri ve baglamsal anlamlar gibi istatistiksel 6zelliklerini yakalar.

BDM’lerin egitiminde kullanilan temel tekniklerden biri gézetimsiz 6grenmedir. Bu,
modelin acik etiketleme veya rehberlik olmadan veriden 6grendigi anlamina gelir.
Egitim verisindeki kelimelerin ve ifadelerin birlikte bulunma durumlarini analiz ederek
kendi basina kaliplar: ve temsilleri kesfeder. Bu, BDM’lerin dili ve onun inceliklerini

derinden anlamasini saglar.

BDM’lerin bir diger 6nemli yoni baglami ele alma yetenekleridir. Bir metin parcasini
islerken, BDM’ler sadece tek tek kelimeleri degil, ayni zamanda cevredeki baglami da
dikkate alir. Metnin anlamini ve amacini anlamak igin 6nceki kelimeleri, ciimleleri
ve hatta paragraflar1 géz 6ntinde bulundurur. Bu baglamsal anlayis, BDM’lerin
tutarli ve alakali yanitlar tiretmesini saglar. Belirli bir BDM modelinin yeteneklerini
degerlendirmenin ana yollarindan biri, yanit iiretmek i¢in dikkate alabildikleri baglam

boyutunu géz 6niinde bulundurmaktur.

Egitildikten sonra, BDM’ler ¢ok cesitli dille ilgili gorevler icin kullanilabilir. Insan
benzeri metin iiretebilir, sorular1 yanitlayabilir, belgeleri 6zetleyebilir, diller aras: ¢eviri
yapabilir ve hatta kod yazabilirler. BDM’lerin ¢ok yonliligi, kullanicilarla etkilesime

girebilen, metin verilerini igleyip analiz edebilen ve anlamli ¢iktilar tretebilen akilli

Giris 5

sistem bilesenleri olusturmak icin onlar1 degerli kilar.

BDM’leri uygulama mimarisine dahil ederek, kullanici girdisini anlayan ve isleyen,
dinamik icerik treten ve akilli 6neriler veya eylemler sunan yapay zeka bilesenleri
olusturabilirsiniz. Ancak BDM’lerle calismak, kaynak gereksinimleri ve performans
dengelerinin dikkatli bir sekilde degerlendirilmesini gerektirir. BDM’ler hesaplama
acisindan yogundur ve calismak icin 6nemli miktarda islem giicii ve bellek (baska bir
deyisle, para) gerektirebilir. Cogumuz, BDM’leri uygulamalarimiza entegre etmenin

maliyet etkilerini degerlendirmek ve buna gore hareket etmek zorunda kalacagiz.

Cikarimi Anlamak

Cikarim, bir modelin yeni, daha 6nce gérmedigi verilere dayali olarak tahminler veya
ciktilar direttigi siireci ifade eder. Bu, egitilmis modelin kullanici girdilerine yanit olarak
kararlar vermek veya metin, gorintii ya da diger icerikleri iretmek i¢in kullanildig:

asamadir.

Egitim asamasinda, bir yapay zeka modeli, tahminlerindeki hatay1 en aza indirmek
icin parametrelerini ayarlayarak biyiik bir veri setinden 6grenir. Egitildikten sonra,
model 6grendiklerini yeni verilere uygulayabilir. Cikarim, modelin 6grendigi kaliplar:

ve bilgiyi ¢iktilar tiretmek i¢in kullanma seklidir.

BDM’ler i¢in ¢ikarim, bir giris metni veya istem alip, belirtecler (ki bunlardan yakinda
bahsedecegiz) akisi olarak tutarli ve baglamsal olarak ilgili bir yanit iiretmeyi icerir. Bu,
bir soruyu yanitlama, bir cimleyi tamamlama, bir hikaye olusturma veya metin gevirisi

yapma gibi bircok gorevden biri olabilir.

Sizin ve benim diistinme seklimizin aksine, bir yapay zeka modelinin ¢tkarim
’ yoluyla “diisiinmesi” tek bir durumsuz iglemde gergeklesir. Yani, diistinmesi
Uretim siireciyle sinirlidir. Size bir soru sorsam ve sadece “biling akist”
tarzinda bir yanit kabul etsem gibi, kelimenin tam anlamiyla yiksek sesle

disiinmek zorundadir.

Giris 6

Buyuk Dil Modelleri Cesitli Boyut ve Turlerde Gelir

Popiiler biiyiik dil modellerinin (BDM’lerin) neredeyse tiimii ayni temel doniistiiriicii
mimarisi tizerine kurulu ve devasa metin veri setleri tizerinde egitilmis olsa da, farkli
boyutlarda gelirler ve farkli amaglar i¢in ince ayar yapilirlar. Bir BDM nin boyutu, sinir
agindaki parametre sayisiyla 6lciiliir ve yetenekleri tizerinde biiyiik bir etkiye sahiptir.
1 ila 2 trilyon parametreye sahip oldugu sdylenen GPT-4 gibi daha fazla parametreye
sahip buyiik modeller, genellikle daha kiiciik modellerden daha bilgili ve yeteneklidir.
Ancak, buyik modeller calistirmak i¢in ¢ok daha fazla hesaplama giicii gerektirir ve bu

da API cagrilar1 yoluyla kullandiginizda daha yiiksek maliyete doniigiir.

BDM’leri daha pratik ve belirli kullanim durumlar i¢in uyarlanmis hale
getirmek icin, temel modeller genellikle daha hedefli veri setleri iizerinde ince
ayar yapilir. Ornegin, bir BDM’ye konusma yapay zekasi icin ozellestirmek
tzere biyik bir diyalog derlemesi tzerinde egitim verilebilir. Digerleri
onlara programlama bilgisi kazandirmak icin kod ftzerinde egitilir. Hatta
kullanicilarla rol yapma tarzi etkilesimler icin 6zel olarak egitilmis ~ modeller bile

var!

Geri Getirme ve Uretici Modeller

Biyiik dil modelleri (BDM’ler) diinyasinda, yanit iiretmek icin iki ana yaklagim vardir:
geri getirme tabanli modeller ve iiretici modeller. Her yaklasimin kendine 6zgii giiclai ve
zayif yonleri vardir ve aralarindaki farklar1 anlamak, belirli kullanim senaryonuz igin

dogru modeli se¢menize yardimect olabilir.

Geri Getirme Tabanli Modeller

Geri getirme tabanli modeller, ayni zamanda bilgi getirme modelleri olarak da bilinir,

biiytik bir 6nceden var olan metin veritabanini arayarak ve giris sorgusuna dayali olarak

https://openrouter.ai/models/deepseek/deepseek-coder

Giris 7

en alakali pasajlari secerek yanitlar dretir. Bu modeller yeni metni sifirdan olusturmaz,

bunun yerine tutarli bir yanit olusturmak i¢in veritabanindan alintilar1 bir araya getirir.

Geri getirme tabanli modellerin ana avantajlarindan biri, olgusal olarak dogru ve giincel
bilgi saglama yetenekleridir. Diizenlenmis bir metin veritabanina dayandiklar icin,
givenilir kaynaklardan ilgili bilgileri cekebilir ve kullaniciya sunabilirler. Bu 6zellik,
soru yanitlama sistemleri veya bilgi tabanlar: gibi kesin, olgusal cevaplar gerektiren

uygulamalar i¢in onlar1 olduk¢a uygun kilar.

Ancak, geri getirme tabanli modellerin bazi sinirlamalar1 vardir. Sadece aradiklari
veritaban1 kadar iyidirler, bu nedenle veritabanmin kalitesi ve kapsami dogrudan
modelin performansini etkiler. Ayrica, bu modeller veritabaninda mevcut metinlerle

sinirl olduklari icin tutarli ve dogal ses ¢ikaran yanitlar tiretmekte zorlanabilirler.

Bu kitapta saf geri getirme modellerinin kullanimin: ele almryoruz.
Uretici Modeller

Uretici modeller ise, egitim sirasinda ogrendikleri oriintiiler ve iligkilere dayanarak
sifirdan yeni metin olustururlar. Bu modeller, giris komutuna uygun yanitlar iiretmek

icin dil anlayiglarini kullanirlar.

Uretici modellerin ana giicl, yaratici, tutarli ve baglamsal olarak ilgili metin iiretme
yetenekleridir. Acik uclu sohbetlere girebilir, hikayeler olusturabilir ve hatta kod
yazabilirler. Bu 6zellik onlar1 sohbet robotlari, igerik olusturma ve yaratict yazim

asistanlar1 gibi daha acik uclu ve dinamik etkilesimler gerektiren uygulamalar icin ideal

kilar.

Ancak, iiretici modeller bazen tutarsiz veya olgusal olarak yanls bilgiler tiretebilirler,
ciinkii duzenlenmis bir gercekler veritabani yerine egitim sirasinda &6grendikleri
oruntilere giivenirler. Ayrica ényargilara ve haliisinasyonlara daha yatkin olabilirler,

makul goriinen ancak mutlaka dogru olmayan metinler iiretebilirler.

Uretici BDM’lere 6rnek olarak OpenAl'nin GPT serisi (GPT-3, GPT-4) ve Anthropic’in

Claude’u gosterilebilir.

Giris 8

Hibrit Modeller

Ticari olarak mevcut olan birka¢c BDM, hem geri getirme hem de iiretici yaklasimlar:
hibrit bir modelde birlestirir. Bu modeller, bir veritabanindan ilgili bilgileri bulmak icin
geri getirme tekniklerini kullanir ve ardindan bu bilgileri tutarli bir yanita sentezlemek

icin tretici teknikleri kullanir.

Hibrit modeller, geri getirme tabanli modellerin olgusal dogrulugunu iiretici modellerin
dogal dil tretme yetenekleriyle birlestirmeyi amagclar. Acitk uclu sohbetlere girme

yetenegini korurken daha giivenilir ve giincel bilgiler saglayabilirler.

Geri getirme tabanli ve iiretici modeller arasinda secim yaparken, uygulamanizin 6zel
gereksinimlerini géz 6niinde bulundurmalisiniz. Eger temel amac¢ dogru, olgusal bilgi
saglamaksa, geri getirme tabanli bir model en iyi se¢im olabilir. Uygulama daha ac¢ik
uclu ve yaratici etkilesimler gerektiriyorsa, tiretici bir model daha uygun olabilir. Hibrit
modeller iki yaklasim arasinda bir denge sunar ve hem olgusal dogruluk hem de dogal

dil tiretimi gerektiren uygulamalar i¢in iyi bir se¢im olabilir.

Sonug olarak, geri getirme tabanli ve tiretici modeller arasindaki secim, belirli kullanim
senaryosuna ve dogruluk, yaraticilik ve esneklik arasindaki 6diinlesimlere baglidir. Her

yaklasimin giiclii yonlerini ve sinirlamalarini anlayarak bilingli kararlar verebilirsiniz.

Giris

Talimat ince Ayari

Talimat ince ayari, BDM’lerin talimatlar1 daha iyi anlama ve takip etme yetenegini
gelistirmek icin insan tarafindan yazilmig komutlar1 ve yanitlar: kullanan konusma
egitiminin bir alt kiimesidir. Iste insan tarafindan yazilmis komutlar ve yanitlar
tzerinde talimat ince ayarmmm BDM’lerin talimatlari anlama ve takip etme

yeteneklerini nasil gelistirdigini gosteren bazi basit 6rnekler:

Ornek 1: Miisteri Destegi

Talimat: “Iade talep eden bir miisteriye yanit verin.”

[nsan Tarafindan Yazilmis Komut: “Son satin aldigim iiriin igin iade talep etmek

istiyorum. Uriin beklentilerimi kargilamad1”

Insan Tarafindan Yazilmis Yanit: “Uriiniin beklentilerinizi karsilamadigini duymak
iiziildiik. fadenizi isleme almak icin liitfen siparis numaranizi ve iade nedeninizi

belirtin. Talebinizi inceleyip 2-3 is giinii icinde size geri doniis yapacagiz.”

Ornek 2: Egitim Destegi

Talimat: “Fotosentez kavramini 10 yagindaki bir cocuga aciklayin”
[nsan Tarafindan Yazilan Istem: “Bitkiler besinlerini nasil iiretir aciklayabilir misin?”

Insan Tarafindan Yazilan Yanit: “Tabii ki! Bitkiler fotosentez adi verilen bir siireg ile
besinlerini tretirler. Giines 15181, su ve karbondioksiti kullanarak besin ve oksijen
uretirler. Bitkinin yapraklarinda giines 15111 yakalamalarina yardimer olan klorofil

adinda 6zel bir boliim vardir”

Ornek 3: Kisisel Asistan

Talimat: “Gelecek Sali saat 15:00’te bir toplanti planla”

Giris 10

[nsan Tarafindan Yazilan Istem: “Sali giinii saat 15:00’te bir toplant1 ayarlayabilir

misin?”

Insan Tarafindan Yazilan Yanit: “Tabii ki, gelecek Sali saat 15:00 icin bir toplant:

planladim. Bagka bir seye ihtiyaciniz var mi?”

Sonug olarak, farkli boyutlarda ve farkli uzmanlik alanlarina sahip BDM’lerden olusan
cesitli bir ekosistem ortaya c¢ikmistir. 1-7 milyar parametre araligindaki daha kugik

modeller, daha verimli ¢alisirken iyi genel dil yetenekleri sunar.

« Mistral 7B
« Llama 3 8B

« Gemma 7B

30-70 milyar parametre civarindaki orta boy modeller, daha giiclii akil yiiritme ve

talimat takip etme yetenekleri sunar.

« Llama 3 70B
« Qwen2 70B
« Mixtral 8x22B

Bir uygulamaya BDM entegre ederken, modelin yeteneklerini maliyet, gecikme stiresi,
baglam uzunlugu ve icerik filtreleme gibi pratik faktorlerle dengelemeniz gerekir. Daha
basit dil gorevleri icin kiiciik, talimatlarla ince ayari yapilmis modeller genellikle en
iyi secimdir; karmasik akil yiiriitme veya analiz i¢in ise en biiyitk modeller gerekebilir.

Modelin egitim verisi de 6nemli bir husustur, ¢iinkii modelin bilgi kesme tarihini belirler.

P Perplexity gibi bazi1 modeller gercek zamanli bilgi kaynaklarma baghdir,

bu nedenle etkili bir sekilde kesme tarihleri yoktur. Onlara sorular
sordugunuzda, bagimsiz olarak web aramalar1 yapabilir ve yanit olusturmak

icin rastgele web sayfalarini getirebilirler.

Giris 11

Obie

Bl \Who won the America vs GDL match last night?
. Liama 3 708 Instruct {nitre) &

I'm not aware of any information about a match between "America" and "GDL" last night. Could
you please provide more context or clarify which teams or leagues you are referring to? Illdo ©
my best to help you find the answer.

~281.1 tokens/s

@ o2 Sonar 708 Oniine 2
“

Club América won the match against Guadalajara last night, with a score of 1-0. £

~31.0 tokens/s

Sekil 1. Cevrimici erisimli ve erisimsiz Llama3

Sonug olarak, her duruma uyan tek bir BDM yoktur. Model boyutu, mimarisi ve
egitimindeki farkliliklari anlamak, belirli bir kullanim durumu icin dogru modeli
se¢cmenin anahtaridir. Farkli modellerle denemeler yapmak, belirli bir gérev icin en iyi

performansi hangilerinin sagladigini ortaya ¢ikarmanin tek pratik yoludur.

Belirtecleme: Metni Parcalara Ayirma

Biyiik bir dil modeli metni iglemeden 6nce, o metnin belirte¢ adi verilen daha kiigik
birimlere ayrilmasi gerekir. Belirtegler tek tek kelimeler, kelimelerin parcalari veya tek
karakterler olabilir. Metni belirteclere ayirma islemine belirtecleme denir ve bu, veriyi

bir dil modeli i¢in hazirlamanin ¢ok énemli bir adimidir.

The process of splitting text into tokens is known as tokenization, and
it’s a crucial step in preparing data for a language model.

Sekil 2. Bu ciimle 27 belirtec icerir

Farkli BDM’ler farkli belirtecleme stratejileri kullanir ve bu, modelin performansini ve

yeteneklerini 6nemli 6lciide etkileyebilir. BDM’ler tarafindan kullanilan bazi yaygin

Giris 12

belirtecleyiciler sunlardir:

« GPT (Bayt Cifti Kodlamasi): GPT belirtecleyicileri, metni alt kelime birimlerine
ayirmak icin bayt cifti kodlamas: (BCK) adi verilen bir teknik kullanir. BCK,
bir metin dagarcigindaki en sik gorillen bayt ciftlerini yinelemeli olarak
birlestirerek alt kelime belirteclerinden olusan bir sozciik dagarcigi olusturur.
Bu, belirtegleyicinin nadir ve yeni kelimeleri daha yaygm alt kelime parcalarina
ayirarak iglemesine olanak tanir. GPT belirtecleyicileri, GPT-3 ve GPT-4 gibi

modeller tarafindan kullanilir.

« Llama (SentencePiece): Llama belirtecleyicileri, gozetimsiz bir metin
belirtecleyici ve belirte¢ ¢ozlicii olan SentencePiece kiitiphanesini kullanir.
SentencePiece, girdi metnini Unicode karakterlerinin bir dizisi olarak ele alir
ve bir egitim derlemi temelinde alt sozcik dagarcigi &grenir. Unicode ile
kodlanabilen herhangi bir dili isleyebilir, bu da onu ¢ok dilli modeller igin
oldukca uygun hale getirir. Llama belirtecleyicileri, Meta’nin Llama ve Alpaca

gibi modelleri tarafindan kullanilir.

« SentencePiece (Unigram): SentencePiece belirtecleyicileri ayrica Unigram adi
verilen, alt sozciik diizenleme teknigine dayali farkli bir algoritma da kullanabilir.
Unigram belirtecleme, tek tek alt sézciik birimlerine olasiliklar atayan bir unigram
dil modeline dayanarak optimal alt s6zcik dagarcigini belirler. Bu yaklasim,
BPE’ye kiyasla anlamsal acidan daha anlamli alt sozciikler tiretebilir. Unigram’li

SentencePiece, Google’in T5 ve BERT gibi modelleri tarafindan kullanilir.

+ Google Gemini (Cok Modlu Belirtecleme): Google Gemini, metin, goriinti,
ses, video ve kod dahil olmak tizere cesitli veri tiirlerini islemek icin tasarlanmis
bir belirtecleme semasi kullanir. Bu ¢ok modlu yetenek, Gemini’nin farkli bilgi
formlarini iglemesine ve entegre etmesine olanak tanir. Ozellikle, Google Gemini

1.5 Pro 6nceki modellerden cok daha biiyiik, milyonlarca belirteci isleyebilen bir

Giris

13

baglam penceresine sahiptir. Bu genis baglam penceresi, modelin daha biyiik bir
baglami iglemesini ve potansiyel olarak daha dogru yanitlar iretmesini saglar.
Ancak, Gemini'nin belirtecleme semasinin diger modellere gore karakter bagina
bir belirte¢ yaklasimima cok daha yakin oldugunu belirtmek 6nemlidir. Bu,
Google’m fiyatlandirmasi belirtegler yerine karakterlere dayali oldugundan, GPT
gibi modelleri kullanmaya aligkinsaniz, Gemini modellerini kullanmanin gergek

maliyetinin beklenenden 6nemli dl¢iide daha yiiksek olabilecegi anlamina gelir.

Belirtecleyici se¢imi, bir DDD’nin (Dil Diisiince Modeli) su yonlerini etkiler:

« Sozciik dagarcig1 boyutu: Belirtecleyici, modelin tanidig1 benzersiz belirtegler

kiimesi olan s6zciik dagarciginin boyutunu belirler. Daha biiyiik, daha ayrintili bir
sozcik dagarcigl, modelin daha genis bir sézcik ve ifade yelpazesini iglemesine ve
hatta ¢ok modlu (metinden fazlasini anlama ve iiretme yetenegi) hale gelmesine
yardimci olabilir, ancak bu ayni zamanda modelin bellek gereksinimlerini ve
hesaplama karmasikligini da artirir.

Nadir ve bilinmeyen sozciiklerin islenmesi: BPE ve SentencePiece gibi alt
sozcik birimleri kullanan belirtecleyiciler, nadir ve bilinmeyen soézciikleri daha
yaygin alt sozciik pargalarma ayirabilir. Bu, modelin daha o6nce gdérmedigi
sozciiklerin anlami hakkinda, igerdikleri alt sozciiklere dayanarak egitimli
tahminler yapmasina olanak tanir.

Cok dilli destek: SentencePiece gibi Unicode ile kodlanabilen herhangi bir dili
isleyebilen belirtecleyiciler, birden fazla dilde metin iglemesi gereken ¢ok dilli

modeller i¢in olduk¢a uygundur.

Belirli bir uygulama i¢in bir DDD secerken, kullandig1 belirtegleyiciyi ve bunun gorevin

spesifik dil isleme ihtiyaclariyla ne kadar uyumlu oldugunu goz 6niinde bulundurmak

onemlidir. Belirtecleyici, modelin alana 6zgii terminolojiyi, nadir sézciikleri ve ¢ok dilli

metni igleme yetenegi iizerinde 6nemli bir etkiye sahip olabilir.

Giris 14

Baglam Boyutu: Bir Dil Modeli Cikarim Sirasinda Ne Kadar
Bilgi Kullanabilir?

Dil modellerini tartigirken, baglam boyutu, bir modelin yanitlarini iglerken
veya Uretirken dikkate alabilecegi metin miktarimi ifade eder. Oziinde, modelin
“hatirlayabildigi” ve ¢iktilarini bilgilendirmek igin kullanabilecegi bilgi miktarinin
(belirtegler cinsinden ifade edilen) bir olciisiidir. Bir dil modelinin baglam boyutu,
yetenekleri ve etkili bir sekilde gerceklestirebilecegi gorev tiirleri tizerinde 6nemli bir

etkiye sahip olabilir.
Baglam Boyutu Nedir?

Teknik agidan, baglam boyutu, bir dil modelinin tek bir girdi dizisinde isleyebilecegi
belirteg (sdzciik veya sozciik parcalari) sayist ile belirlenir. Bu genellikle modelin “dikkat
aralif1” veya “baglam penceresi” olarak adlandirilir. Baglam boyutu ne kadar biiyiikse,

model bir yanit iiretirken veya bir gorevi gerceklestirirken bir kerede o kadar ¢ok metni

dikkate alabilir.

Farkli dil modellerinin birkag yiiz belirtegten milyonlarca belirtece kadar degisen baglam
boyutlar: vardir. Referans olarak, tipik bir metin paragrafi yaklagik 100-150 belirte¢

icerebilirken, tiim bir kitap on binlerce veya yiiz binlerce belirte¢ icerebilir.

Transformer tabanli Biyiik Dil Modellerini (DDD) smirhi bellek ve hesaplama
ile sonsuz uzunluktaki girdilere 6lgeklendirmek igin verimli yontemler tzerine

calismalar bile var.

Baglam Boyutu Neden Onemlidir?

Bir dil modelinin baglam boyutu, tutarli ve baglamsal olarak ilgili metin anlama ve

iiretme yetenegi iizerinde énemli bir etkiye sahiptir. Iste baglam boyutunun énemli

https://huggingface.co/papers/2404.07143

Giris 15
olmasinin bazi temel nedenleri:

1. Uzun form icerigi anlama: Daha buyiik baglam boyutuna sahip modeller,
makaleler, raporlar ve hatta tiim kitaplar gibi daha uzun metinleri daha iyi anlayip
analiz edebilir. Bu, belge 6zetleme, soru cevaplama ve icerik analizi gibi gorevler

icin ¢ok 6nemlidir.

2. Tutarliligr koruma: Daha genig bir baglam penceresi, modelin daha uzun
cikt1 dizileri boyunca tutarliik ve devamliligi korumasma olanak tanir. Bu,
tutarli bir anlati veya konuyu stirdirmenin 6nemli oldugu hikaye olusturma,
diyalog sistemleri ve igerik iiretimi gibi gorevler igin 6nemlidir. Ayrica BDM’leri
yapilandirilmig veri iiretmek veya dontstiirmek icin kullanirken de kesinlikle cok
onemlidir.

3. Uzun mesafeli bagimliliklar1 yakalama: Bazi dil gorevleri, bir metinde
birbirinden uzak olan kelimeler veya ifadeler arasindaki iligkileri anlamay
gerektirir. Daha biiyiik baglam boyutuna sahip modeller, duygu analizi, geviri ve
dil anlama gibi gorevler i¢in énemli olabilecek bu uzun mesafeli bagimliliklar:
yakalamak icin daha iyi donanimlidir.

4. Karmasik talimatlar1 isleme: Dil modellerinin karmasik, cok adimli talimatlar:
takip etmek i¢in kullanildig1 uygulamalarda, daha biiytik baglam boyutu, modelin
yanit tretirken sadece en son birkag kelime yerine talimatlarin tamamini dikkate

almasini saglar.

Farkl Baglam Boyutlarina Sahip Dil Modeli Ornekleri

Iste farkli baglam boyutlarina sahip birkac dil modeli érnegi:

« OpenAl GPT-3.5 Turbo: 4.095 token
« Mistral 7B Instruct: 32.768 token

« Anthropic Claude v1: 100.000 token

Giris 16

« OpenAl GPT-4 Turbo: 128.000 token
« Anthropic Claude v2: 200.000 token
+ Google Gemini Pro 1.5: 2,8M token

Gordugiiniiz gibi, bu modeller arasinda OpenAl GPT-3.5 Turbo modelinin yaklasik
4.000 tokenindan Anthropic Claude v2 modelinin 200.000 tokenina kadar genis bir
baglam boyutu yelpazesi bulunmaktadir. Google’in PaLM 2 ve OpenAl'nin GPT-4 gibi
bazi modeller, daha uzun girig dizilerini isleyebilen farkli varyantlar (6rnegin “32k”
versiyonlar1) sunmaktadir. Ve su anda (Nisan 2024) Google Gemini Pro neredeyse 3

milyon token ile 6viinmektedir!

Baglam boyutunun belirli bir modelin 6zel uygulamasina ve siirimiine gore
degisebilecegini belirtmekte fayda var. Ornegin, orijinal OpenAl GPT-4 modelinin
baglam boyutu 8.191 token iken, Turbo ve 4o gibi daha sonraki GPT-4 varyantlari
128.000 token gibi cok daha biiyiik bir baglam boyutuna sahiptir.

Sam Altman, mevcut baglam smirlamalarmi 80’lerde kisisel bilgisayar
programcilarinin ugrasmak zorunda kaldig: kilobaytlik ¢alisma bellegine benzetmis
ve yakin gelecekte “tiim kisisel verilerinizi” bir biyiik dil modelinin baglamina

sigdirabilecek duruma gelecegimizi séylemistir.

Dogru Baglam Boyutunu Se¢gme

Belirli bir uygulama icin dil modeli secerken, s6z konusu goérevin baglam boyutu
gereksinimlerini dikkate almak 6nemlidir. Duygu analizi veya basit soru cevaplama gibi
kisa, izole metin parcalar1 iceren gorevler i¢in daha kiiciik bir baglam boyutu yeterli
olabilir. Ancak, daha uzun ve karmasik metinleri anlama ve iiretme gerektiren gorevler

icin daha biiytk bir baglam boyutu muhtemelen gerekli olacaktir.

Giris 17

Daha biiyiik baglam boyutlarinin genellikle artan hesaplama maliyetleri ve daha yavas
islem sireleriyle birlikte geldigini belirtmekte fayda var, ¢iinki model yanit tretirken
daha fazla bilgiyi dikkate almak zorundadir. Bu nedenle, uygulamaniz i¢in bir dil modeli

secerken baglam boyutu ile performans arasinda bir denge kurmaniz gerekir.

Neden en biiyikk baglam boyutuna sahip modeli se¢ip mimkiin oldugunca g¢ok
bilgiyle doldurmuyoruz? Performans faktorlerinin yani sira, diger ana husus maliyet.
Mart 2024’te Google Gemini Pro 1.5 ile tam baglam kullanarak fek bir komut-yanit
dongisi size neredeyse 8 dolara (USD) mal olacaktir. Bu masrafi hakli ¢ikaracak bir
kullanim senaryonuz varsa, ne ala! Ancak cogu uygulama icin, bu kat be kat cok

pahal1.

Saman Yiginlarinda igne Bulmak

Biyiik veri kiimelerinde bilgi erisiminin zorluklarini anlatmak i¢in saman y1gininda igne
aramak benzetmesi uzun zamandir kullanilmaktadir. BDM’ler s6z konusu oldugunda,
bu benzetmeyi biraz degistiriyoruz. Genis bir metin icinde (Paul Graham makalelerinin
tam bir derlemesi gibi) gémiuli tek bir gercegi degil, metin boyunca dagilmis birden
fazla gercegi aradigimizi diisinin. Bu senaryo, tek bir saman yigininda degil, genis
bir tarlada birden fazla igne bulmaya benzer. Iste can alici nokta: Bu igneleri sadece

bulmakla kalmayip, onlar1 tutarh bir sekilde bir araya getirmemiz gerekiyor.

BDM’ler, uzun baglamlara gomilil birden fazla gercegi bulup bunlar hakkinda akil
yiiriitmekle gorevlendirildiginde, cifte bir zorlukla karsilagir. {lk olarak, geri cagirma
dogrulugu konusunda basit bir sorun var—gergek sayisi arttikca dogal olarak distiyor.
Bu beklenen bir durum; ne de olsa, genis bir metin boyunca birden fazla ayrmntiy: takip

etmek en gelismis modelleri bile zorluyor.

Ikinci ve belki de daha kritik olan zorluk, bu gerceklerle akil yiiritme konusudur.

Giris 18

Gergekleri se¢ip cikarmak bagka bir sey; onlari tutarli bir anlatiya veya cevaba
sentezlemek bambagka bir sey. Asil test burada basliyor. BDM’lerin akil yiritme
gorevlerindeki performansi, basit geri ¢agirma gorevlerine kiyasla daha fazla diisme
egiliminde. Bu diisiis sadece hacimle ilgili degil; baglam, ilgi ve ¢ikarim arasindaki

karmagik dans ile ilgili.

Peki bu neden oluyor? BDM’lerde bir dereceye kadar yansitilan insan bilisimindeki
bellek ve dikkat dinamiklerini diigiintin. Bitytiik miktarda bilgiyi islerken BDM’ler, tipki
insanlar gibi, yeni bilgileri 6zimserken 6nceki ayrintilari kaybedebilir. Bu 6zellikle,
metnin 6nceki bolimlerini otomatik olarak onceliklendirmek veya yeniden ziyaret

etmek iizere agikca tasarlanmamis modellerde gecerlidir.

Dabhasi, bir BDM’nin bu geri ¢agrilan gercekleri tutarli bir yanita doniistiirme yetenegi,
anlat1 olusturmaya benzer. Bu sadece bilginin geri ¢agrilmasini degil, ayn1 zamanda
derin bir anlayis ve baglamsal yerlestirme gerektirir ki bu da mevcut yapay zeka i¢in

zorlu bir gorev olmaya devam ediyor.

Peki bu, bu teknolojilerin gelistiricileri ve entegratorleri olarak bizim i¢in ne anlama
geliyor? Karmagik, uzun formlu gorevleri ele almak icin BDM’lere giivenen sistemler
tasarlarken bu sinirlamalarin keskin bir sekilde farkinda olmaliyiz. Belirli kosullar
altinda performansin diisebilecegini anlamak, gercekci beklentiler belirlememize ve

daha iyi yedek mekanizmalar veya tamamlayici stratejiler gelistirmemize yardimeci olur.

Kipler: Metnin Otesinde

Guntimizde dil modellerinin ¢cogu metin isleme ve tiretmeye odaklanmis olsa da,
gorintiler, ses ve video gibi birden fazla veri tiiriini dogal olarak girdi ve ¢ikt1 olarak
alabilen ¢ok kipli modellere dogru artan bir egilim var. Bu ¢ok kipli modeller, farkli
kipler arasinda igerik anlayabilen ve tretebilen yapay zeka destekli uygulamalar icin

yeni olanaklar agiyor.

Giris 19

Kipler Nelerdir?

Dil modelleri baglaminda kipler, bir modelin isleyebilecegi ve tiretebilecegi farkli veri
tirlerini ifade eder. En yaygin kip, kitaplar, makaleler, web siteleri ve sosyal medya
gonderileri gibi cesitli formlardaki yazili dili iceren metindir. Ancak, dil modellerine

giderek daha fazla dahil edilen bagka kipler de vardir:

« Goriintiiler: Fotograflar, illiistrasyonlar ve diyagramlar gibi gorsel veriler.
« Ses: Konugma, miizik ve cevresel sesler gibi ses verileri.
« Video: Video klipler ve filmler gibi genellikle sesle birlikte gelen hareketli gorsel

veriler.

Her kip, dil modelleri i¢in benzersiz zorluklar ve firsatlar sunar. Ornegin, goriintiiler
modelin gorsel kavramlar: ve iliskileri anlamasini gerektirirken, ses modelin konusma

ve diger sesleri islemesini ve iiretmesini gerektirir.

Cok Kipli Dil Modelleri

Cok kipli dil modelleri, tek bir model i¢cinde birden fazla kipi isleyebilecek sekilde
tasarlanmigtir. Bu modeller genellikle farkli kiplerde hem girdileri anlayabilen hem
de c¢ikt1 verisi tiretebilen 6zellesmis bilesenlere veya katmanlara sahiptir. Cok kipli dil

modellerinin bazi 6nemli 6rnekleri sunlardir:

« OpenAl'nin GPT-40’su: GPT-40, metin yaninda konugma sesini de dogal olarak
anlayan ve igleyen biiyiik bir dil modelidir. Bu yetenek, GPT-40’nun konusma
dilini yaziya dokme, ses girdilerinden metin tiretme ve sozlii sorgulara yanit verme
gibi gorevleri gergeklestirmesine olanak tanir.

« OpenAl'nin gorsel girdili GPT-4’ti: GPT-4, hem metin hem de goriintiileri
isleyebilen biiyiik bir dil modelidir. Girdi olarak bir gériintii verildiginde, GPT-
4 gbrintinin icerigini analiz edebilir ve gorsel bilgileri tanimlayan veya bunlara

yanit veren metin iretebilir.

Giris 20

« Google’'in Gemini’si: Gemini, metin, gériintii ve videoyu isleyebilen ¢ok kipli
bir modeldir. Goriinti betimleme, video 6zetleme ve gorsel soru yanitlama gibi
gorevleri miimkiin kilan kipler arasi anlama ve iretimi saglayan birlesik bir

mimari kullanir.

« DALL-E ve Stable Diffusion: Geleneksel anlamda dil modelleri olmasalar da,
bu modeller metin aciklamalarindan gorintiler treterek ¢oklu modal YZ’'nin
gicini gostermektedir. Farkli modaliteler arasinda geviri yapabilen modellerin

potansiyelini sergilerler.

Coklu Modal Modellerin Faydalari ve Uygulamalari

Coklu modal dil modelleri cesitli faydalar sunar ve genis bir uygulama yelpazesini

mumkun kilar, bunlar arasinda:

+ Gelismis anlayis: Birden fazla modaliteden bilgi igleyerek, bu modeller insanlarin
cesitli duyusal girdilerden 6grenmesine benzer sekilde diinyay: daha kapsamli
anlayabilirler.

« Modeller arasi iiretim: Coklu modal modeller bir modaliteden gelen girdiye
dayali olarak bagka bir modalitede icerik tretebilir, 6rnegin metin agiklamasindan
goriinti olusturma veya yazili bir makaleden video 6zeti olusturma gibi.

« Erisilebilirlik: Coklu modal modeller, gérme engelli kullanicilar igin gériintiilerin
metin aciklamalarini olusturma veya yazili icerigin sesli versiyonlarini olusturma
gibi modaliteler arasi ¢eviri yaparak bilgiyi daha erisilebilir hale getirebilir.

« Yaratici uygulamalar: Coklu modal modeller, metin komutlarina dayal: sanat,
miizik veya video olusturma gibi yaratic1 gorevler icin kullanilabilir ve sanatcilar

ile icerik treticileri icin yeni olanaklar sunar.

Coklu modal dil modelleri gelistikce, birden fazla modalitede icerik anlayabilen ve

uretebilen YZ destekli uygulamalarin gelistirilmesinde giderek daha 6nemli bir rol

Giris 21

oynayacaklar1 muhtemeldir. Bu, insanlar ve YZ sistemleri arasinda daha dogal ve
sezgisel etkilesimleri miimkiin kilacak ve yaratict ifade ile bilgi yayilimi igin yeni

olanaklarin 6ntni agacaktir.

Saglayici Ekosistemleri

Biiyiik dil modellerini (LLM’leri) uygulamalara dahil etmek s6z konusu oldugunda,
secebileceginiz giderek artan bir secenek yelpazesi bulunmaktadir. OpenAl, Anthropic,
Google ve Cohere gibi her bityitk LLM saglayicisi, kendi model, API ve arag ekosistemini
sunar. Dogru saglayiciyr secmek, fiyatlandirma, performans, icerik filtreleme, veri
gizliligi ve ozellestirme secenekleri gibi cesitli faktorleri géz oniinde bulundurmay:

gerektirir.

OpenAl

OpenAl, GPT serisi (GPT-3, GPT-4) cesitli uygulamalarda yaygin olarak kullanilan
en taninmig LLM saglayicilarindan biridir. OpenAl, modellerini uygulamalara kolayca
entegre etmenizi saglayan kullanici dostu bir API sunar. Giris seviyesi Ada modelinden
giiclii Davinci modeline kadar farkl: yeteneklere ve fiyat noktalarina sahip bir dizi model

sunarlar.

OpenAl'nin ekosistemi ayrica, komutlarla deney yapmaniza ve modelleri belirli
kullanim durumlari igin ince ayar yapmaniza olanak taniyan OpenAl Playground gibi
araglar1 da icerir. Uygunsuz veya zararli icerik iiretimini 6nlemeye yardimeci olan icerik

filtreleme segenekleri sunarlar.

OpenAl'nin modellerini dogrudan kullanirken, Alex Rudall'in ruby-openai

kiitiiphanesine giiveniyorum.

Anthropic

Anthropic, Claude modellerinin giiglii performans ve etik degerlendirmeler agisindan

poptlerlik kazandigi LLM alanindaki bir diger 6nemli oyuncudur. Anthropic, icerik

https://github.com/alexrudall/ruby-openai

Giris 22

filtreleme ve zararli ciktilardan kaginma konusunda giiclii bir vurguyla givenli ve

sorumlu YZ sistemleri gelistirmeye odaklanir.

Anthropic’in ekosistemi, modeli uygulamalarina entegre etmenizi saglayan Claude
APT’sinin yani sira komut mithendisligi ve ince ayar i¢in araclari da igerir. Ayrica, daha
giincel ve gercege dayali yanitlar icin web arama yeteneklerini iceren Claude Instant

modelini de sunarlar.

Anthropic’in modellerini dogrudan kullanirken, Alex Rudall'm anthrophic

kiitiiphanesine giiveniyorum.

Google

Google, Gemini, BERT, T5 ve PaLM dahil olmak tizere birkag giicliit LLM gelistirmistir.
Bu modeller, ¢ok cesitli dogal dil isleme gorevlerindeki giiclii performanslariyla taninir.
Google’mn ekosistemi, makine 6grenimi modellerini olusturmak ve egitmek icin araclar

ve cerceveler saglayan TensorFlow ve Keras kitiiphanelerini igerir.

Google ayrica, modellerini bulutta kolayca dagitmaniza ve 6lgeklendirmenize olanak
taniyan bir Cloud AI Platform sunar. Duygu analizi, varlik tanima ve ceviri gibi gérevler

icin bir dizi 6nceden egitilmis model ve API saglarlar.

Meta

Meta, eski adiyla Facebook, LLaMA ve OPT gibi modellerin yaymlanmasiyla 6ne ¢ikan
biiyiik dil modellerinin gelistirilmesine derinden yatirim yapmistir. Bu modeller, gesitli
dil gorevlerindeki giiclii performanslariyla 6ne ¢ikar ve Meta’nin arastirma ve topluluk
ig birligine olan bagliligini destekleyerek biiytik 6l¢tide acik kaynak kanallari araciligiyla

kullanima sunulur.

Meta’nin ekosistemi 6ncelikle, dinamik hesaplama yetenekleri ve esnekligi ile yenilik¢i
YZ arastirma ve gelistirmesini kolaylastiran, acik kaynakli bir makine 6grenimi

kiitiiphanesi olan PyTorch etrafinda insa edilmistir.

https://github.com/alexrudall/anthropic

Giris 23

Meta, teknik hizmetlerinin yani sira etik yapay zeka gelistirmeye biyik 6nem
vermektedir. Giiglu igerik filtreleme uygular ve yapay zeka uygulamalarinda giivenlik
ve sorumluluk seklindeki daha genis hedefleriyle uyumlu olarak 6nyargilar1 azaltmaya

odaklanir.

Cohere

Cohere, BDM alanina daha yeni giren ve BDM’leri rakiplerinden daha erisilebilir ve
kullanimi kolay hale getirmeye odaklanan bir sirkettir. Ekosistemleri, metin olusturma,
siniflandirma ve 6zetleme gibi gérevler icin 6nceden egitilmis modellere erigim saglayan

Cohere API’sini igerir.

Cohere ayrica bildirim mithendisligi, ince ayar ve icerik filtreleme icin araclar sunar.
Sifrelenmis veri depolama ve erisim kontrolleri gibi ozelliklerle veri gizliligi ve

giivenligine 6nem verirler.

Ollama

Ollama, kullanicilarin cesitli biyik dil modellerini (BDM’ler) kendi makinelerinde
yerel olarak yonetmelerine ve dagitmalarina olanak taniyan, harici bulut hizmetlerine
giivenmeden Al modellerinin tam kontroliinii saglayan kendi kendine barindirilan bir
platformdur. Bu kurulum, veri gizliligine 6ncelik veren ve Al operasyonlarini kurum

icinde yonetmek isteyenler i¢in idealdir.

Platform, boyut ve hesaplama gereksinimleri agisindan farklilik gosteren Llama,
Phi, Gemma ve Mistral siriimlerini iceren cesitli modelleri destekler. Ollama, bu
modelleri ollama run <model_name> gibi basit komutlar kullanarak dogrudan
komut satirindan indirmeyi ve ¢alistirmayi kolaylastirir ve macOS, Linux ve Windows

dahil olmak tizere farkli isletim sistemlerinde calisacak sekilde tasarlanmistar.

Uzak bir API kullanmadan agik kaynakli modelleri uygulamalarina entegre etmek

isteyen gelistiriciler icin Ollama, konteyner yonetim araclarina benzer sekilde model

Giris 24

yasam dongilerini yonetmek igin bir CLI sunar. Ayrica, modelleri belirli ihtiyaglara
veya kullanim durumlarina gére uyarlamak i¢in yiiksek diizeyde 6zellestirme saglayan

ozel yapilandirmalar ve bildirimleri destekler.

Ollama, komut satir1 arayiizii ve Al modellerinin y6énetiminde ve dagitiminda sundugu
esneklik nedeniyle 6zellikle teknoloji konusunda bilgili kullanicilar ve gelistiriciler i¢in
uygundur. Bu, giivenlik ve kontrolden 6diin vermeden giiclii Al yeteneklerine ihtiyag

duyan igletmeler ve bireyler icin giiclii bir ara¢ haline getirir.

Coklu Model Platformlari

Ek olarak, Together.ai ve Groq gibi ¢ok ¢esitli acik kaynakli modelleri barindiran
saglayicilar da vardir. Bu platformlar esneklik ve o6zellestirme sunar, acik kaynakli
modelleri calistirmaniza ve bazi durumlarda o6zel ihtiyaclariniza gore ince ayar
yapmaniza olanak tanir. Ornegin, Togetherai, kullanicilarin farkli modellerle ve
yapilandirmalarla deney yapmasimi saglayan cesitli acik kaynakli BDM’lere erisim
saglar. Groq, bu kitabin yazildig1 tarihte neredeyse sihirli goriinen ultra yiiksek

performansl tamamlamaya odaklanir.

BDM Saglayicisi Se¢imi

Bir BDM saglayicisi secerken su faktorleri géz 6niinde bulundurmalisiniz:

« Fiyatlandirma: Farkli saglayicilar, kullandik¢a 6de modelinden abonelik tabanli
planlara kadar degisen fiyatlandirma modelleri sunar. Bir saglayict secerken
beklenen kullanimi ve biitceyi goz ontinde bulundurmak 6nemlidir.

« Performans: BDM’lerin performansi saglayicilar arasinda o6nemli olciide
farklilik gosterebilir, bu nedenle karar vermeden 6nce modelleri belirli kullanim
durumlarinda karsilastirmak ve test etmek 6nemlidir.

« Icerik Filtreleme: Uygulamaya bagh olarak, icerik filtreleme kritik bir husus
olabilir. Baz1 saglayicilar digerlerinden daha giicla icerik filtreleme secenekleri

sunar.

Giris 25

« Veri Gizliligi: Uygulama hassas kullanici verilerini isliyorsa, gigli veri gizliligi
ve givenlik uygulamalarina sahip bir saglayici segmek onemlidir.
« Ozellestirme: Bazi saglayicilar, belirli kullanim durumlar icin modelleri ince

ayarlama ve ozellestirme konusunda daha fazla esneklik sunar.

Sonug¢ olarak, BDM saglayicis1 se¢imi, uygulamanm 6zel gereksinimlerine ve
kisitlamalara baghdir. Fiyatlandirma, performans ve veri gizliligi gibi faktorleri

dikkatlice degerlendirerek, ihtiyaglarinizi en iyi karsilayan saglayiciy secebilirsiniz.

BDM alanmin siirekli gelistigini ve diizenli olarak yeni saglayicilarin ve modellerin
ortaya ¢iktigini da belirtmekte fayda var. En son gelismelerden haberdar olmali ve yeni

secenekleri kesfetmeye acik olmalisiniz.

OpenRouter

Bu kitap boyunca API saglayicisi olarak yalnizca OpenRouter’t kullanacagim. Bunun
nedeni basit: en popiiler ticari ve acik kaynakli modeller i¢in tek bir durak noktas: olmas.
Eger biraz Al kodlamas: yapmak i¢in sabirsizlaniyorsaniz, baglamak icin en iyi yerlerden

biri benim OpenRouter Ruby Kiitiiphanem.

Performans Uzerine Diisiinmek

Dil modellerini uygulamalara entegre ederken, performans kritik bir degerlendirme
faktoriidir. Bir dil modelinin performansi, gecikme siiresi (yanit iretmek icin gereken

stire) ve verim (birim zamanda isleyebildigi istek sayisi) acisindan 6lciilebilir.

[k Simgeye Kadar Gegen Siire (TTFT), dzellikle sohbet robotlar1 ve etkilesimli, gercek
zamanli yanitlar gerektiren uygulamalar icin bir diger 6nemli performans metrigidir.
TTFT, kullanicinin isteginin alinmasindan yanitin ilk kelimesinin (veya simgesinin)

uretilmesine kadar gecen gecikme siiresini 6lcer. Bu metrik, kesintisiz ve etkileyici

https://openrouter.ai
https://github.com/OlympiaAI/open_router

Giris 26

bir kullanic1 deneyiminin stirdiiriilmesi icin ¢ok 6nemlidir, ¢inkii geciken yanitlar

kullanicinin hayal kirikligina ugramasina ve ilgisinin dagilmasina yol agabilir.

Bu performans metrikleri, kullanici deneyimi ve uygulamanin o6lceklenebilirligi

tizerinde 6nemli bir etkiye sahip olabilir.
Bir dil modelinin performansini etkileyen cesitli faktorler vardir:

Parametre Sayisi: Daha fazla parametreye sahip bilyiik modeller, genellikle daha fazla
hesaplama kaynag gerektirir ve kii¢iik modellere kiyasla daha yiiksek gecikme siiresine

ve daha diigiik verime sahip olabilir.

Donamim: Bir dil modelinin performansi, iizerinde calistifi donanima bagli olarak
onemli 6lciide degisebilir. Bulut saglayicilari, makine 6grenimi is yikleri icin optimize
edilmis GPU ve TPU o6rnekleri sunar ve bunlar model ¢ikarimini biiyitk olgtde

hizlandirabilir.

P OpenRouter’mn giizel yanlarindan biri, sundugu modellerin ¢ogu icin

farkli performans profilleri ve maliyetlere sahip cesitli bulut saglayicilar

arasindan secim yapabilmenizdir.

Nicemleme: Nicemleme teknikleri, agirliklar: ve aktivasyonlari daha disiik hassasiyetli
veri tiirleriyle temsil ederek bir modelin bellek ayak izini ve hesaplama gereksinimlerini
azaltmak icin kullanilabilir. Bu, kaliteden énemli 6l¢iide 6diin vermeden performansi
artirabilir. Bir uygulama gelistiricisi olarak muhtemelen farkli nicemleme seviyelerinde
kendi modellerinizi egitmekle ugrasmayacaksiniz, ancak en azindan terminolojiye agina

olmak faydalidir.

Toplu Isleme: Birden fazla istegi es zamanli olarak toplu halde islemek, model yiikleme

ve veri aktarimi yiikiinii azaltarak verimi artirabilir.

Onbellekleme: Sik kullanilan istemler veya girdi dizileri icin sonuglarin onbellege

alinmasi, ¢ikarim isteklerinin sayisini azaltabilir ve genel performansi iyilestirebilir.

Giris 27

Uretim ortaminda kullanilacak bir dil modeli secerken, temsili is yiikleri ve donanim
yapilandirmalar1 izerinde performans karsilagtirmasi yapmak o6nemlidir. Bu,
potansiyel darbogazlari belirlemeye ve modelin gerekli performans hedeflerini

karsilayabileceginden emin olmaya yardimeci olabilir.

Model performansi ile maliyet, esneklik ve entegrasyon kolayligi gibi diger faktorler
arasindaki dengeyi de goz oniinde bulundurmak énemlidir. Ornegin, gercek zamanh
yanit gerektiren uygulamalar icin daha disiik gecikme siiresine sahip, daha kiiciik ve
daha ekonomik bir model tercih edilebilirken, toplu isleme veya karmasik akil ytiriitme

gorevleri i¢in daha biiyiik ve giicli bir model daha uygun olabilir.

Farkli DDD Modelleriyle Deney Yapmak

Bir DDD’yi se¢cmek nadiren kalict bir karardir. Diizenli olarak yeni ve gelistirilmis
modeller yaymnlandigindan, uygulamalari zaman iginde farkli dil modellerinin
degistirilebilmesine olanak taniyan modiiler bir sekilde olusturmak iyidir. Istemler
ve veri setleri genellikle minimal degisikliklerle modeller arasinda yeniden
kullanilabilir. Bu, uygulamalarinizi tamamen yeniden tasarlamak zorunda kalmadan

dil modellemedeki en son gelismelerden yararlanmanizi saglar.

’ Cok cesitli model secenekleri arasinda kolayca gecis yapabilme yetenegi,

OpenRouter’t sevmemin bir baska nedenidir.

Yeni bir dil modeline gecerken, uygulamanin gereksinimlerini karsiladigindan emin
olmak icin performansint ve cikt1 kalitesini kapsamli bir sekilde test etmek ve
dogrulamak 6nemlidir. Bu, modelin alana 6zgii veriler iizerinde yeniden egitilmesini
veya ince ayar yapilmasini ve modelin ¢iktilarina bagli olan downstream bilesenlerin

giincellenmesini igerebilir.

Uygulamalar1 performans ve modiilerlik géz oniinde bulundurularak tasarlayarak,

hizla geligsen dil modelleme teknolojisine uyum saglayabilen 6lceklenebilir, verimli ve

Giris 28

gelecege doniik sistemler olusturabilirsiniz.

Bilesik Yapay Zeka Sistemleri

Girig bolimumizi kapatmadan o6nce, ChatGPT ile tetiklenen tretici yapay zeka
alanindaki ilgi patlamasindan o6nceki 2023 yilina kadar, geleneksel yapay zeka
yaklagimlarinin genellikle tek, kapali modellerin entegrasyonuna dayandigini
belirtmekte fayda var. Buna karsilik, Bilesik Yapay Zeka Sistemleri akilli davranisi elde

etmek icin birlikte ¢alisan birbirine bagli bilesenlerin karmagik siireclerinden yararlanir.

Oziinde, bilesik yapay zeka sistemleri, her biri belirli gorevleri veya islevleri yerine
getirmek tizere tasarlanmig ¢oklu modiillerden olusur. Bu modiller ireticileri, getirici
sistemleri, siralayicilari, siniflandiricilar: ve cesitli diger 6zellesmis bilesenleri icerebilir.
Genel sistemi daha kiiciik, odaklanmig birimlere ayirarak, gelistiriciler daha esnek,

olceklenebilir ve sirdirilebilir yapay zeka mimarileri olusturabilir.

Bilesik yapay zeka sistemlerinin temel avantajlarindan biri, farkli yapay zeka
tekniklerini ve modellerini birlestirme yetenekleridir. Ornegin, bir sistem dogal dil
anlama ve tretimi i¢in biiytik dil modeli (LLM) kullanirken, bilgi getirme veya kural
tabanl karar verme i¢in ayr1 bir model kullanabilir. Bu modiiler yaklasim, tek tip bir
¢Oztime giivenmek yerine, her 6zel gorev icin en iyi arag ve teknikleri se¢cmenize olanak

tanir.

Ancak, bilesik yapay zeka sistemleri olusturmak kendine 6zgii zorluklar da sunar.
Ozellikle, sistemin davraniginin genel tutarliigini ve uyumlulugunu saglamak, saglam

test, izleme ve yonetisim mekanizmalar: gerektirir.

Giris 29

GPT-4 gibi giicli LLM’lerin ortaya ¢ikisi, bu gelismis modellerin dogal
’ dil anlama yeteneklerinin yani sira siniflandirma, siralama ve iretim gibi
bilesik sistem icindeki birden ¢ok rolii tistlenebilmeleri sayesinde, bilesik
yapay zeka sistemleriyle her zamankinden daha kolay deney yapmamizi
sagliyor. Bu c¢ok yonlilik, gelistiricilerin bilesik yapay zeka mimarilerini
hizlica prototiplemesine ve yinelemesine olanak taniyarak, akilli uygulama

gelistirme icin yeni olanaklar aciyor.

Bilesik Yapay Zeka Sistemleri icin Dagitim Desenleri

Bilesik yapay zeka sistemleri, belirli gereksinimleri ve kullanim senaryolarini ele almak
izere tasarlanmis cesitli desenler kullanilarak dagitilabilir. Dort yaygin dagitim desenini
inceleyelim: Soru ve Cevap, Coklu Ajan/Ajanli Problem Coziiciiler, Konusma Yapay

Zekas1 ve CoPilot’lar.

Soru ve Cevap

Soru ve Cevap (S&C) sistemleri, basit bir arama motorundan daha fazlasi olarak iglev
gormek icin yapay zeka modellerinin anlama yetenekleriyle gelistirilmis bilgi getirmeye
odaklanir. Giiglii dil modellerini Geri Getirme Destekli Uretim (RAG) kullanarak harici
bilgi kaynaklariyla birlestirerek, Soru ve Cevap sistemleri haliisinasyonlardan kaginir ve

kullanici sorgularina dogru ve baglamsal olarak ilgili yanitlar saglar.

LLM tabanli bir S&C sisteminin temel bilesenleri sunlari igerir:

« Sorgu anlama ve yeniden formiile etme: Kullanici sorgularini analiz etme ve
altta yatan bilgi kaynaklariyla daha iyi eslesecek sekilde yeniden formiile etme.

« Bilgi getirme: Yeniden formiile edilmis sorguya dayali olarak yapilandirilmig
veya yapilandirilmams veri kaynaklarindan ilgili bilgileri getirme.

« Yanit iiretme: Getirilen bilgiyi dil modelinin tretim yetenekleriyle

butiinlestirerek tutarli ve bilgilendirici yanitlar olusturma.

Giris 30

RAG alt sistemleri 6zellikle miisteri destegi, bilgi yonetimi veya egitim uygulamalar1

gibi dogru ve giincel bilgi saglamanin kritik oldugu S&C alanlarinda 6nemlidir.

Coklu Ajan/Ajanli Problem Céziiciiler

Ajanliolarak da bilinen ¢oklu ajan sistemleri, karmagik problemleri ¢6zmek i¢in birlikte
calisan birden fazla otonom ajandan olusur. Her ajanin belirli bir rolii, beceri seti ve
ilgili araglara veya bilgi kaynaklarina erisimi vardir. Bu ajanlar isbirligi yaparak ve bilgi
aligverisinde bulunarak, tek bir ajanin tek basina ele almasinin zor veya imkansiz olacag:

gorevleri ¢ozebilirler.

Coklu ajan problem ¢oziictilerin temel ilkeleri sunlar1 icerir:

« Uzmanlasma: Her ajan, kendine 6zgii yeteneklerini ve bilgisini kullanarak
problemin belirli bir yoniine odaklanir.

« Isbirligi: Ajanlar genellikle mesaj iletimi veya paylasilan bellek yoluyla ortak bir
hedefe ulagsmak i¢in iletisim kurar ve eylemlerini koordine eder.

« Uyarlanabilirlik: Sistem, tek tek ajanlarin rollerini ve davraniglarini ayarlayarak

degisen kosullara veya gereksinimlere uyum saglayabilir.

Coklu ajan sistemleri, tedarik zinciri optimizasyonu, trafik yonetimi veya acil durum

miidahale planlamasi gibi dagitik problem ¢6zme gerektiren uygulamalar i¢in uygundur.

Konusma Yapay Zekasi

Konusma yapay zekast sistemleri, kullanicilar ile akilli ajanlar arasinda dogal
dil etkilesimlerini miimkiin kilar. Bu sistemler, ilgi cekici ve kisisellestirilmis
konusma deneyimleri saglamak icin dogal dil anlama, diyalog yo6netimi ve dil

tretimi yeteneklerini birlestirir.

Bir konusma yapay zekasi sisteminin ana bilesenleri sunlar1 icerir:

Giris 31

« Niyet tanima: Soru sorma, istekte bulunma veya duygu ifade etme gibi
kullanicinin girdisine dayali niyetini tanimlama.

« Varlik ¢ikarimi: Kullanicinin girdisinden tarihler, konumlar veya iirtin adlar1 gibi
ilgili varliklar1 veya parametreleri ¢ikarma.

« Diyalog yo6netimi: Konusmanm durumunu siirdirme, kullanicinin niyeti ve
baglama dayali olarak uygun yaniti belirleme ve ¢ok turlu etkilesimleri yonetme.

« Yanit iiretme: Dil modelleri, sablonlar veya geri getirme tabanli yontemler

kullanarak insana benzer yanitlar tiretme.

Konusma yapay zekasi sistemleri yaygin olarak miisteri hizmetleri sohbet robotlarinda,
sanal asistanlarda ve sesle kontrol edilen arayiizlerde kullanilir. Daha 6nce belirtildigi
gibi, bu kitaptaki yaklasimlarin, desenlerin ve kod orneklerinin ¢ogu, Olympia adli
biyikk bir konusma yapay zekasi sistemi Uzerindeki caligmalarimdan dogrudan

alinmigtir.

CoPilot’lar

CoPilot’lar, insan kullanicilarin yaninda ¢alisarak onlarin iiretkenligini ve karar verme
yeteneklerini artiran YZ destekli asistanlardir. Bu sistemler, akilli 6neriler sunmak,
gorevleri otomatiklestirmek ve baglamsal destek saglamak icin dogal dil isleme, makine

ogrenimi ve alana 6zgi bilgilerin bir kombinasyonunu kullanir.

CoPilot’larin temel 6zellikleri sunlardir:

« Kigisellestirme: Bireysel kullanici tercihlerine, is akiglarina ve iletisim stillerine
uyum saglama.

« Proaktif yardim: Kullanici ihtiyaclarini 6ngérme ve agik komutlar olmadan ilgili
oneriler veya eylemler sunma.

« Siirekli 6grenme: Kullanici geri bildirimleri, etkilesimler ve verilerden 6grenerek

zaman icinde performansini iyilestirme.

https://olympia.chat

Giris 32

CoPilot’lar, yazilim gelistirme (6rn. kod tamamlama ve hata tespiti), yaratici yazarlik
(6rn. igerik Onerileri ve diizenleme) ve veri analizi (6rn. i¢goriler ve gorsellestirme

onerileri) gibi ¢esitli alanlarda giderek daha fazla kullanilmaktadir.

Bu dagitim modelleri, bilesik YZ sistemlerinin ¢ok yonliliginii ve potansiyelini
gostermektedir. Her modelin 6zelliklerini ve kullanim durumlarini anlayarak, akilli
uygulamalar1 tasarlarken ve uygularken bilingli kararlar verebilirsiniz. Bu kitap
ozellikle bilesik YZ sistemlerinin uygulanmasi hakkinda olmasa da, ayni yaklasimlarin
ve modellerin ¢ogu, hatta tiimi, ayrik YZ bilesenlerinin geleneksel uygulama

gelistirmeye entegrasyonu icin gegerlidir.

Bilesik YZ Sistemlerindeki Roller

Bilesik YZ sistemleri, her biri belirli bir rolii yerine getirmek iizere tasarlanmis birbirine
bagli modiiller izerine kurulmustur. Bu modiller, akilli davraniglar olusturmak ve
karmagik problemleri ¢6zmek igin birlikte ¢alisir. Uygulamanizin hangi bélimlerini
ayrik YZ bilesenleriyle uygulayabileceginizi veya degistirebileceginizi diisiinirken bu

rollere agina olmak faydalidur.

Uretici

Ureticiler, 6grenilmis kaliplar veya giris komutlarina dayali olarak yeni veri veya icerik
iiretmekten sorumludur. YZ diinyasinda birgok farkli tiirde iiretici vardir, ancak bu
kitapta gosterilen dil modelleri baglaminda, iireticiler insan benzeri metin olusturabilir,
eksik ciimleleri tamamlayabilir veya kullanici sorgularma yanit iiretebilir. Igerik

olusturma, diyalog iiretimi ve veri artirma gibi goérevlerde énemli bir rol oynarlar.

Cagirici

Cagiricilar, buyiik veri setlerinden veya bilgi tabanlarindan ilgili bilgileri aramak ve

cikarmak icin kullanilir. Verilen bir sorgu veya baglama dayali olarak en uygun

Giris 33

veri noktalarin1 bulmak i¢in anlamsal arama, anahtar kelime egslestirme veya vektor
benzerligi gibi teknikleri kullanirlar. Cagiricilar, soru cevaplama, gergek kontrolleri veya

icerik onerisi gibi belirli bilgilere hizli erisim gerektiren gorevler i¢in 6nemlidir.

Siralayici

Siralayicilar, belirli kriterlere veya ilgi puanlarina gore bir dizi 6geyi siralamak veya
onceliklendirmekten sorumludur. Her 6geye agirliklar veya puanlar atarlar ve bunlari
buna gore siralarlar. Siralayicilar genellikle arama motorlarinda, dneri sistemlerinde
veya kullanicilara en ilgili sonuclari sunmanin kritik oldugu herhangi bir uygulamada

kullanilir.

Siniflandirici

Smiflandiricilar, veri noktalarini 6nceden tanimlanmig siniflara veya kategorilere gore
kategorize etmek veya etiketlemek icin kullanilir. Etiketlenmis egitim verilerinden
ogrenir ve ardindan yeni, goriilmemis 6rneklerin sinifini tahmin eder. Smiflandiricilar,
duygu analizi, spam tespiti veya goriintii tanima gibi her girdiye belirli bir kategori

atamay1 amaclayan gorevler icin temeldir.

Araclar ve Ajanlar

Bu temel rollere ek olarak, bilesik YZ sistemleri genellikle islevselliklerini ve

uyarlanabilirliklerini artirmak i¢in araclari ve ajanlari icerir:

« Araclar: Araclar, belirli eylemleri veya hesaplamalari gergeklestiren ayrik
yazilim bilesenleri veya APT’'lerdir. Bunlar, alt gorevleri tamamlamak veya ek
bilgi toplamak icin iireticiler veya cagiricilar gibi diger modiiller tarafindan
cagrilabilir. Araglara 6rnek olarak web arama motorlari, hesap makineleri veya

veri gorsellestirme kiitiiphaneleri verilebilir.

Giris 34

« Ajanlar: Ajanlar, gevrelerini algilayabilen, kararlar alabilen ve belirli hedeflere
ulagsmak i¢in eylemde bulunabilen otonom varliklardir. Genellikle dinamik veya
belirsiz kosullarda etkili bir sekilde calismak icin planlama, akil yiiriitme ve
ogrenme gibi farkli YZ tekniklerinin bir kombinasyonuna giivenirler. Ajanlar,
karmagik davraniglart modellemek veya bir bilesik YZ sistemi i¢indeki birden ¢ok

modiliin eylemlerini koordine etmek igin kullanilabilir.

Saf bir bilesik YZ sisteminde, bu bilesenler arasindaki etkilesim, iyi tanimlanmisg
araylizler ve iletisim protokolleri araciligiyla diizenlenir. Veriler modiiller arasinda
akar ve bir bilesenin c¢iktist digeri icin girdi olarak hizmet eder. Bu modiler mimari,
bireysel bilesenlerin tiim sistemi etkilemeden giincellenebilmesi, degistirilebilmesi veya

genigletilebilmesi sayesinde esneklik, 6l¢eklenebilirlik ve bakim kolaylig1 saglar.

Bu bilesenlerin ve etkilesimlerinin giicinden yararlanarak, bilesik YZ sistemleri
farkli YZ yeteneklerinin bir kombinasyonunu gerektiren karmasik, gercek diinya
problemlerini ¢ozebilir. YZ’yi uygulama gelistirmeye entegre etme yaklagimlarini
ve modellerini kesfederken, bilesik YZ sistemlerinde kullanilan ayni prensiplerin
ve tekniklerin akilli, uyarlanabilir ve kullanici odakli uygulamalar olusturmak igin

uygulanabilecegini unutmayin.

Bo6liim 1’in devam eden kisimlarinda, YZ bilegenlerini uygulama gelistirme siirecinize
entegre etmek icin temel yaklagimlari ve teknikleri daha derinlemesine inceleyecegiz.
Prompt mihendisliginden geri cagirma ile zenginlestirilmis iiretime, kendi kendini
onaran verilerden akilli is akisi orkestrastonuna kadar, en son teknoloji YZ destekli
uygulamalar olusturmaniza yardimei olacak cok cesitli modelleri ve en iyi uygulamalar1

ele alacagiz.

Kisim 1: Temel Yaklasimlar
ve Teknikler

Kitabin bu kismi, yapay zekayr uygulamalarimiza entegre etmenin farkli yollarini
sunmaktadir. Boliimler, Yolu Daraltma ve Erisim Destekli Uretim gibi st diizey
kavramlardan, LLM sohbet tamamlama APT’leri tizerine kendi soyutlama katmaninizi

programlama fikirlerine kadar uzanan bir dizi ilgili yaklagim ve teknigi kapsamaktadir.

Kitabin bu kisminin amaci, Kisim 2’nin odak noktast olan belirli uygulama kaliplarina
cok fazla girmeden once, yapay zeka ile uygulayabileceginiz davranig tiirlerini

anlamaniza yardimci olmaktir.

Kisim 1’deki yaklagimlar, kodumda kullandigim fikirlere, klasik kurumsal uygulama
mimarisi ve entegrasyon kaliplarina ve yapay zekanin yeteneklerini teknik olmayan is
paydaslar1 da dahil olmak {izere diger insanlara agiklarken bagvurdugum metaforlara

dayanmaktadir.

Yolu Daralt

SR AN

s
-

i1
g

“Yolu daralt” yapay zekay1 elindeki géreve odaklamak anlamina gelir. Yapay zekanin
“aptalca” ya da beklenmedik sekillerde davrandigini goriip sinirlendigimde bunu bir
mantra olarak kullanirim. Bu mantra bana basarisizligin muhtemelen benim hatam

oldugunu ve muhtemelen yolu biraz daha daraltmam gerektigini hatirlatir.

Yolu daraltma ihtiyaci, biiyiik dil modellerinin icerdigi muazzam bilgi miktarindan
kaynaklanir; 6zellikle OpenAl ve Anthropic gibi diinya ¢apidaki modeller kelimenin

tam anlamiyla trilyonlarca parametreye sahiptir.

Yolu Daralt 37

Bu kadar genis bir bilgi birikimine erigim kuskusuz giicliidiir ve zihin teorisi ve insan
benzeri sekillerde akil yiritme yetenegi gibi ortaya ¢ikan davraniglar dretir. Ancak,
bu diinyay1 sarsan bilgi hacmi, 6zellikle belirli isteklere kesin ve dogru yanitlar tiretme
konusunda zorluklar yaratir; 6zellikle de bu istekler “normal” yazilim gelistirme
ve algoritmalarla entegre edilebilecek deterministik davraniglar sergilemek icin

tasarlanmissa.
Bir dizi faktor bu zorluklara yol acar.

Bilgi Asir1 Yiiklemesi: Biyiik dil modelleri, cesitli alanlari, kaynaklari ve zaman
dilimlerini kapsayan muazzam miktarda veri {izerinde egitilir. Bu kapsamli bilgi,
modelin cesitli konularda fikir ytriitmesine ve diinyanin genis bir anlayisina dayali
yanitlar tiretmesine olanak tanir. Ancak, belirli bir istemle karsilastiginda, model ilgisiz,
celiskili veya giincel olmayan/eskimis bilgileri filtrelemekte zorlanabilir ve bu da odak
veya dogruluk eksikligi olan yanitlara yol acabilir. Ne yapmaya calistiginiza bagl
olarak, model i¢in mevcut olan celiskili bilgilerin saf hacmi, aradiginiz cevabi veya

davranist saglama yetenegini kolayca engelleyebilir.

Baglamsal Belirsizlik: Genis ortiik uzay bilgisi géz ontine alindiginda, buyik dil
modelleri isteginizin baglamini anlamaya calisirken belirsizlikle karsilagabilir. Uygun
daraltma veya yonlendirme olmadan, model tegetsel olarak ilgili ancak niyetinizle
dogrudan ilgisi olmayan yanitlar iiretebilir. Bu tiir bir basarisizlik, konudan uzak,
tutarsiz veya belirtilen ihtiyaglarinizi karsilamayan yanitlara yol acar. Bu durumda, yolu
daraltmak, sagladiginiz baglamin modelin temel bilgisindeki yalnizca en alakali bilgilere

odaklanmasini saglayan baglam belirsizligini giderme anlamina gelir.

Not: “Istem mithendisligi” ile yeni bagladigimizda, modelden istediginiz
sonucu diizgiin bir sekilde aciklamadan bir seyler yapmasini isteme

olasiliginiz ¢ok daha yiiksektir; belirsiz olmamak pratik gerektirir!

Zamansal Tutarsizliklar: Dil modelleri farkli zaman dilimlerinde olusturulan veriler

tzerinde egitildiklerinden, giincelligini yitirmis, yerini bagka bilgilere birakmis veya

Yolu Daralt 38

artik dogru olmayan bilgilere sahip olabilirler. Ornegin, giincel olaylar, bilimsel kesifler
veya teknolojik gelismeler hakkindaki bilgiler, modelin egitim verileri toplandigindan
bu yana degismis olabilir. Yolu daha yeni ve giivenilir kaynaklara 6ncelik verecek sekilde
daraltmadan, model eskimis veya yanls bilgilere dayali yanitlar iiretebilir ve bu da

ciktilarinda yanligliklara ve tutarsizliklara yol agabilir.

Alana Ozgii incelikler: Farkl alanlarin ve disiplinlerin kendilerine 6zgii terminolojileri,
kurallar1 ve bilgi tabanlar1 vardir. Neredeyse herhangi bir UHK’y1 (U¢ Harfli Kisaltma)
distiniin ve ¢ogunun birden fazla anlami oldugunu fark edeceksiniz. Ornegin, MSK;
Amazon’un Managed Streaming for Apache Kafka’sina, Memorial Sloan Kettering

Cancer Center’a veya insan kas-iskelet (MusculoSKeletal) sistemine atifta bulunabilir.

Bir istem belirli bir alanda uzmanlik gerektirdiginde, biiyiik bir dil modelinin genel
bilgisi dogru ve nilansh yamitlar saglamak icin yeterli olmayabilir. Ister istem
mithendisligi ister geri getirme ile giiclendirilmis tiretim yoluyla olsun, yolu alana 6zgii
bilgilere odaklanarak daraltmak, modelin belirli alaninizin gereksinim ve beklentileriyle

daha uyumlu yanitlar tiretmesini saglar.

Ortiik Uzay: Kavranamayacak Kadar Genis

Bir dil modelinin “6rtiik uzayindan” bahsettigimde, modelin egitim siireci boyunca
ogrendigi bilgi ve enformasyonun genis, ¢ok boyutlu manzarasindan bahsediyorum.
Bu, modelin sinir aglari icinde, dilin tim ortntilerinin, iligkilerinin ve temsillerinin

depolandig: gizli bir alan gibidir.

Sayisiz birbirine baglh diigiimle dolu, kesfedilmemis genis bir bélgeyi kesfettiginizi hayal
edin. Her diigiim, modelin 6grendigi bir bilgi parcasini, bir kavrami veya bir iliskiyi
temsil eder. Bu alanda gezinirken, baz1 diigiimlerin birbirine daha yakin oldugunu (giicli
bir baglanti1 veya benzerligi gosterir), bazilarmin ise birbirinden daha uzak oldugunu

(daha zay:f veya uzak bir iliskiyi gosterir) goriirsiiniiz.

Gizli uzaym zorlugu, inanilmaz derecede karmagik ve ¢ok boyutlu olmasidir. Bunu

Yolu Daralt 39

fiziksel evrenimiz gibi diisiiniin; galaksi kiimeleri ve aralarindaki akil almaz uzakliktaki

bos alanlariyla devasa bir yapi.

Binlerce boyut igerdigi icin, gizli uzay insanlar tarafindan dogrudan gozlemlenemez
veya yorumlanamaz. Bu, modelin dili islemek ve Gretmek icin dahili olarak kullandig:
soyut bir gosterimdir. Modele bir giris istemi sagladiginizda, temel olarak bu istemi gizli
uzay icindeki belirli bir konuma esler. Model daha sonra yanit iiretmek i¢in o alandaki

cevresel bilgileri ve baglantilar: kullanir.

Mesele su ki, model egitim verisinden muazzam miktarda bilgi 6grenmistir ve bunlarin
hepsi belirli bir gorev icin uygun veya dogru degildir. iste bu yiizden yolu daraltmak bu
kadar 6nemli hale geliyor. Istemlerinizde net talimatlar, 6rnekler ve baglam saglayarak,
esasen modeli gizli uzaym istediginiz cikt1 icin en alakali bélgelerine odaklanmaya

yonlendiriyorsunuz.

Bunu diisiinmenin baska bir yolu da tamamen karanlik bir miizede spot 15181 kullanmak
gibidir. Eger Louvre veya Metropolitan Sanat Miizesi'ni ziyaret ettiyseniz, bahsettigim
olcek tam olarak bu. Gizli uzay, sayisiz nesne ve detayla dolu miizedir. Isteminiz ise
spot 15181dur; belirli alanlar1 aydinlatir ve modelin dikkatini en 6nemli bilgilere ¢eker. Bu
yonlendirme olmadan model, gizli uzayda amagsizca dolasabilir ve yolda alakasiz veya

celigkili bilgiler toplayabilir.

Dil modelleriyle calisirken ve istemlerinizi olustururken, gizli uzay kavramini aklinizda
tutun. Amacimiz, bu genis bilgi manzarasinda etkili bir sekilde gezinmek, modeli
goreviniz icin en alakali ve dogru bilgilere yonlendirmektir. Yolu daraltarak ve net
rehberlik saglayarak, modelin gizli uzaymin tim potansiyelini agiga cikarabilir ve

yiksek kaliteli, tutarli yanitlar tiretebilirsiniz.

Dil modellerinin ve gezindikleri gizli uzayin onceki agiklamalar1 biraz biyili veya
soyut goriinebilse de, istemlerin biiyii ya da tilsim olmadigini anlamak énemlidir. Dil

modellerinin caligma sekli, dogrusal cebir ve olasilik teorisi ilkelerine dayanir.

Oziinde, dil modelleri, tipki can egrisinin verilerin istatistiksel bir modeli olmasi

gibi, metnin olasiliksal modelleridir. Oz-baglanimli modelleme adi verilen bir siireg

Yolu Daralt 40

araciligiyla egitilirler; bu stirecte model, bir dizideki bir sonraki kelimenin olasiligini,
oncesinde gelen kelimelere dayanarak tahmin etmeyi 6grenir. Egitim sirasinda model
rastgele agirliklarla baglar ve bunlari, egitildigi gercek diinya orneklerine benzeyen

metinlere daha yiiksek olasiliklar atayacak sekilde kademeli olarak ayarlar.

Ancak, dil modellerini dogrusal regresyon gibi basit istatistiksel modeller olarak
diisiinmek, davramglarini anlamak igin en iyi sezgiyi saglamaz. Daha uygun bir
benzetme, rastgele degiskenlerin manipiilasyonuna izin veren ve karmasik istatistiksel

iligkileri temsil edebilen olasiliksal programlar olarak disiinmektir.

Olasiliksal programlar, grafiksel modellerle temsil edilebilir; bunlar modeldeki
degiskenler arasindaki bagimliliklar: ve iligkileri anlamanin gérsel bir yolunu sunar. Bu
bakis acisi, GPT-4 ve Claude gibi karmagsik metin iiretme modellerinin igleyisi hakkinda

degerli i¢goriler sunabilir.

Dohan ve arkadaglarinin “Language Model Cascades” adli makalesinde, yazarlar
olasiliksal programlarin dil modellerine nasil uygulanabileceginin detaylarina
iniyorlar. Bu cercevenin, bu modellerin davranisini anlamak ve daha etkili istem

stratejileri gelistirmek i¢in nasil kullanilabilecegini gosteriyorlar.

Bu olasiliksal perspektiften elde edilen 6nemli bir i¢gori, dil modelinin esasen istenen
belgelerin var oldugu alternatif bir evrene agilan bir portal olusturmasidir. Model, tim
olas1 belgelere olasiliklarina gore agirliklar atar ve béylece olasilik uzayini en alakali

olanlara odaklanacak sekilde daraltr.

Bu bizi tekrar “yolu daraltma” ana temasina geri getiriyor. Istemlemenin temel amaci,
olasiliksal modeli, tahminlerinin kiitlesini odaklayacak sekilde sartlandirmak ve elde
etmek istedigimiz belirli bilgi veya davraniga yogunlagmaktir. Ozenle hazirlanmis
istemler saglayarak, modeli gizli uzayda daha verimli bir sekilde gezinmeye ve daha

alakali ve tutarli ¢iktilar iiretmeye yonlendirebiliriz.

Ancak, dil modelinin sonucta egitildigi bilgilerle sinirl oldugunu unutmamak énemlidir.
Mevcut belgelere benzer metinler iretebilir veya fikirleri yeni yollarla birlestirebilir,

ancak tamamen yeni bilgileri sifirdan ortaya ¢ikaramaz. Ornegin, eger kanserin tedavisi

0 N O O bW N

Yolu Daralt 41

hentiz bulunmamis ve egitim verisinde belgelenmemisse, modelden boyle bir tedavi

saglamasini bekleyemeyiz.

Bunun yerine, modelin giicii, kendisine verilen girdilere benzer bilgileri bulma ve
sentezleme yeteneginde yatmaktadir. Bu modellerin olasiliksal dogasini ve girdilerin
ciktilar nasil kosullandirabilecegini anlayarak, degerli i¢goriler ve icerik tiretmek i¢in

onlarin yeteneklerinden daha etkili bir sekilde yararlanabiliriz.

Asagidaki girdileri ele alalim. {lkinde, tek basna “Mercury” gezegene, elemente veya
Roma tanrisina atifta bulunabilir, ancak en olasi olani gezegendir. Nitekim GPT-4,
Merkiir, Giines Sistemi’ndeki en kiiciik ve en icteki gezegendir... seklinde baslayan uzun
bir yanit vermektedir. kinci girdi 6zellikle kimyasal elemente atifta bulunur. Ugiinciisii
ise hiz1 ve tanrisal haberci roliiyle bilinen Roma mitolojik figiiriine atifta bulunur.

Prompt 1
Tell me about: Mercury

Prompt 2
Tell me about: Mercury element

Prompt 3
Tell me about: Mercury messenger of the gods

Sadece birkag ek kelime ekleyerek, yapay zekanin tepkisini tamamen degistirdik. Kitabin
ilerleyen boliimlerinde 6greneceginiz gibi, n-shot bildirim, yapilandirilmis girdi/cikt1 ve
Diistince Zinciri gibi karmagik bildirim mithendisligi teknikleri, aslinda modelin ¢iktisini

sartlandirmanin akillica yollaridir.

Dolayisiyla, bildirim mithendisliginin 6zi, dil modelinin bilgi dagarcigmin genis
olasiliksal manzarasinda nasil gezinecegimizi ve aradigimiz belirli bilgi veya davranisa

giden yolu nasil daraltacagimizi anlamaktan ibarettir.

fleri matematik konusunda saglam bir kavrayisa sahip okuyucular icin, bu modelleri
olasilik teorisi ve lineer cebir prensipleriyle temellendirmek kesinlikle yardimeci olabilir!
Istenen ciktilar1 elde etmek igin etkili stratejiler gelistirmek isteyen digerleriniz icin, daha

sezgisel yaklasimlara bagl kalalim.

Yolu Daralt 42

Yol Nasil “Daraltilir”

Cok fazla bilginin getirdigi bu zorluklari agsmak i¢in, dil modelinin iiretim stirecini

yonlendiren ve dikkatini en alakali ve dogru bilgiye odaklayan teknikler kullaniriz.

Iste énerilen sirayla en énemli teknikler; yani énce Bildirim Miihendisligini denemeli,

sonra RAG’1 ve son olarak, mecbur kalirsaniz, ince ayari1 denemelisiniz.

Bildirim Miihendisligi En temel yaklasim, modelin yanit iretimini yonlendirmek
icin belirli talimatlar, kisitlamalar veya 6rnekler iceren bildirimler olusturmaktir. Bu
boliim, bir sonraki kisimda Bildirim Miihendisliginin temellerini ele aliyor ve kitabin
2. Bolumiinde bircok 6zel bildirim miihendisligi modelini inceliyoruz. Bu modeller
arasinda Bildirim Damitma da yer aliyor; bu teknik, yapay zekanin en alakali ve 6zli
bilgi olarak degerlendirdigi seyi ¢itkarmak icin bildirimlerin iyilestirilmesi ve optimize

edilmesine odaklanir.

Baglam Zenginlestirme. Bildirim verildigi anda modele odaklanmis baglam saglamak
icin harici bilgi tabanlarindan veya belgelerden ilgili bilgilerin dinamik olarak alinmasi.
Popiiler baglam zenginlestirme teknikleri arasinda Geri Getirme Destekli Uretim (RAG)
yer alir. Perplexity tarafindan saglanan “gevrimici modeller” gibi sistemler, baglamlarini

gercek zamanl internet arama sonuclariyla zenginlestirebilir.

Gicli olmalarma ragmen, DDB’ler sizin 6zel veri setleriniz tizerinde
’ egitilmemistir; bu veriler gizli olabilir veya c¢ozmeye calistiginiz
probleme 6zgii olabilir. Baglam Zenginlestirme teknikleri, DDB’lere
APT’ler arkasindaki verilere, SQL veritabanlarina veya PDF’lerde ve slayt

destelerinde sikisip kalmis verilere erisim saglar.

ince Ayar veya Alan Uyarlamasi Modelin belirli bir gérev veya alan igin bilgisini ve

tretim yeteneklerini 6zellestirmek amaciyla alan-6zel veri setleri tizerinde egitilmesi.

https://perplexity.ai

Yolu Daralt 43

Sicakhigi Dusurmek

Sicaklik, dontstiiriicii tabanli dil modellerinde iiretilen metnin rastgeleligini ve
yaraticiligini kontrol eden bir hiper parametredir. 0 ile 1 arasinda bir degerdir; disiik
degerler ¢iktiyr daha odakli ve belirleyici hale getirirken, yiiksek degerler onu daha

cesitli ve dongdrillemez yapar.

Sicaklik 1’e ayarlandiginda, dil modeli bir sonraki belirtecin tam olasilik dagilimina gore
metin iretir ve bu da daha yaratic1 ve cesitli yanitlara olanak tanir. Ancak bu durum,

modelin daha az alakali veya tutarli metin iretmesine de yol agabilir.

Ote yandan, sicaklik 0’a ayarlandiginda, dil modeli her zaman en yiiksek olasiliga sahip
belirteci seger ve boylece “yolunu daraltir” Yapay zeka bilesenlerimin neredeyse tamami
sicaklig1 0’a veya 0’a yakin bir degere ayarlanmig sekilde calisir, ¢iinkd bu daha odakli
ve 6ngorilebilir yanitlar verir. Bu 6zellikle modelin talimatlari takip etmesini, kendisine
saglanan fonksiyonlara dikkat etmesini istediginizde veya aldigimizdan daha dogru ve

alakali yanitlara ihtiya¢ duydugunuzda kesinlikle ise yarar.

Ornegin, gerceklere dayal bilgi saglamasi gereken bir sohbet botu olusturuyorsaniz,
yanitlarin daha kesin ve konuyla ilgili olmasini saglamak i¢in sicaklig1 daha diisiik bir
degere ayarlamak isteyebilirsiniz. Tam tersine, yaratici yazma asistan1 olusturuyorsaniz,
daha cesitli ve yaratici ciktilar1 tesvik etmek igin sicaklign daha yiiksek bir degere

ayarlamak isteyebilirsiniz.

Hiper parametreler: Cikarimin Digmeleri ve Kadranlari

Dil modelleriyle calisirken, “hiper parametreler” terimiyle sik sik kargilagacaksiniz.
Cikarim baglaminda (yani, modeli yanit iretmek icin kullanirken), hiper parametreler
modelin davramigini ve ¢iktisimi kontrol etmek igin ayarlayabileceginiz digmeler ve

kadranlar gibidir.

Bunu karmagik bir makinedeki ayarlari dizeltmeye benzetebilirsiniz. Tipk: sicakligi

kontrol etmek i¢in bir diigmeyi cevirdiginiz veya ¢alisma modunu degistirmek icin bir

Yolu Daralt 44

anahtari ¢evirdiginiz gibi, hiper parametreler de dil modelinin metni isleme ve iiretme

seklini hassas bir sekilde ayarlamaniza olanak tanir.

Cikarim sirasinda karsilasacaginiz bazi yaygin hiperparametreler sunlardir:

« Sicaklik: Az 6nce bahsedildigi gibi, bu parametre tiretilen metnin rastgeleligini
ve yaraticiligini kontrol eder. Daha yiiksek sicaklik daha gesitli ve dngoérillemez
ciktilara yol acarken, daha diisitk sicaklik daha odakli ve belirleyici yanitlarla

sonuglanir.

« Top-p (¢cekirdek) 6rnekleme: Bu parametre, kiimilatif olasilig1 belirli bir esigi (p)
agan en kiiciik belirte¢ kiimesinin se¢imini kontrol eder. Tutarlilig1 korurken daha

cesitli ¢iktilar elde edilmesini saglar.

« Top-k 6rnekleme: Bu teknik, en olas1 sonraki k belirteci secer ve olasilik kiitlesini
bunlar arasinda yeniden dagitir. Modelin diisiik olasilikli veya ilgisiz belirtecler

tiretmesini 6nlemeye yardimect olabilir.

« Frekans ve Varlik cezalari: Bu parametreler, modeli ayni kelimeleri veya ifadeleri
cok sik tekrarladiginda (frekans cezasi) veya giris isteminde bulunmayan kelimeler
rettiginde (varlik cezasi) cezalandirir. Bu degerleri ayarlayarak, modeli daha

cesitli ve konuyla ilgili ¢iktilar tiretmeye tesvik edebilirsiniz.

« Maksimum uzunluk: Bu hiperparametre, modelin tek bir yanitta tiretebilecegi
belirte¢ (kelime veya alt kelime) sayisinin ist sinirini belirler. Uretilen metnin

ayrint1 diizeyini ve 6zIiguni kontrol etmeye yardimci olur.

Farkli hiperparametre ayarlariyla denemeler yaptikea, kiicitk ayarlamalarin bile modelin
ciktis1 tizerinde 6nemli bir etkisi olabilecegini goreceksiniz. Bu bir tarifi ince ayar
yapmaya benzer — biraz daha tuz veya biraz daha uzun pisirme siiresi, son yemegin

tadinda biiytik fark yaratabilir.

Yolu Daralt 45

Onemli olan, her hiperparametrenin modelin davranigini nasil etkiledigini anlamak ve
belirli goreviniz i¢in dogru dengeyi bulmaktir. Farkli ayarlarla denemeler yapmaktan
ve bunlarin tretilen metni nasil etkiledigini gérmekten cekinmeyin. Zamanla, hangi
hiperparametreleri ayarlamaniz gerektigi ve istenen sonuglari nasil elde edeceginiz

konusunda bir sezgi gelistireceksiniz.

Bu parametrelerin kullanimini istem miithendisligi, geri alma destekli {iretim ve ince ayar
ile birlestirerek, dil modelini daha dogru, konuyla ilgili ve belirli kullanim durumlar i¢in

degerli yanitlar iiretmeye yonlendirebilirsiniz.

Ham Modeller ve Egitimli Modeller

Karsilastirmasi

Ham modeller, DDB’lerin rafine edilmemis, egitilmemis versiyonlaridir. Onlari, heniiz
talimatlar1 anlamak veya takip etmek icin 6zel egitimden etkilenmemis bog bir tuval
olarak disiiniin. Baslangicta egitildikleri genis veri ilizerine insa edilmiglerdir ve ¢ok
cesitli giktilar {iretebilirler. Ancak, ek talimat tabanli ince ayar katmanlari olmadan,
yanitlar1 ongoérillemez olabilir ve istenen ¢iktiya yonlendirmek icin daha incelikli,
dikkatli hazirlannig istemler gerektirir. Ham modellerle calismak, ne istediginiz
konusunda son derece net olmazsaniz sizi anlamayan, muazzam bilgiye sahip ama
hicbir sezgisi olmayan bir dahi-aptal ile iletisim kurmaya calismaya benzer. Genellikle
bir papagan gibi hissettirirler, ¢inkii anlamli bir sey séylediklerinde, bu ¢ogunlukla

sizin soylediginiz bir seyi tekrarlamaktan ibarettir.

Ote yandan, egitimli modeller, 6zellikle talimatlar1i anlamak ve takip etmek icin
tasarlanmig egitim turlarindan ge¢mistir. GPT-4, Claude 3 ve en popiiler DDB
modellerinin ¢ogu yogun sekilde egitimlidir. Bu egitim, modele istenen sonuglarla
birlikte talimat 6rnekleri vermeyi igerir ve modele ¢ok cesitli komutlari nasil yorumlayip
uygulayacagini etkili bir sekilde 6gretir. Sonug olarak, egitimli modeller bir istemin

arkasindaki niyeti daha kolay anlayabilir ve kullanicinin beklentileriyle yakindan

Yolu Daralt 46

uyumlu yanitlar dretebilir. Bu, 6zellikle kapsamli istem mithendislifine zaman veya
uzmanlik ayiramayacak kisiler i¢in onlar1 daha kullanict dostu ve calismas: daha kolay

hale getirir.

Ham Modeller: Filtresiz Tuval

Llama 2-70B veya Yi-34B gibi ham modeller, GPT-4 gibi popiiler DDB’lerle deneyim
yaptiysaniz alisik olabileceginizden daha filtresiz bir erigsim sunar. Bu modeller belirli
talimatlari takip etmek tizere 6nceden ayarlanmamigstir ve modelin ¢iktisimi dikkatli
istem mihendisligi yoluyla dogrudan manipiile etmek icin bos bir tuval saglar. Bu
yaklasim, modele acik¢a talimat vermeden AI'yi istenen yone yonlendiren istemler
olusturmanin nasil yapilacaginin derin bir sekilde anlasilmasimi gerektirir. Bu, modelin
yanitlarini yorumlayan veya yonlendiren herhangi bir ara katman olmaksizin, altta
yatan Al'nin “ham” katmanlarina dogrudan erigime sahip olmaya benzer (bu yiizden

bu ismi almustir).

Yolu Daralt 47

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

Mixtral 8x22B (base) 4

| can see a huge variety of things. | can process information, understand

language, reason, learn and apply knowledge, recognize patterns, plan, act v
creatively, make predictions, judge, interact with the environment, identify ~
emotions, make decisions...

~96.3 tokens/s

Obie

Ml Do you recognize what | said?

Mixtral 8x22B (base) 4
No, this time | don't.
By the way, as a test for our meeting, I'm going to show you some photos and |~
want you to tell me what they represent. Are you ready?
~50.1 tokens/s

Sekil 3. Abbott ve Costello’nun klasik ’Kim Birinci’ skecinin bir boliimii kullanilarak ham bir modelin
test edilmesi

Ham modellerin zorlugu, tekrarlayan kaliplara diisme veya rastgele ¢ikti liretme
egilimlerinde yatar. Ancak, dikkatli bildirim miihendisligi ve tekrar cezalari gibi
parametrelerin ayarlanmasiyla, ham modeller benzersiz ve yaratici icerik iiretmeye
yonlendirilebilir. Bu siire¢ bazi 6diinlesmeler igerir; ham modeller yenilik i¢in essiz bir

esneklik sunarken, daha yiiksek diizeyde uzmanlik gerektirirler.

Yolu Daralt 48

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

. GPT-4 Turbo Preview [4

This conversation piece between Abbott and Costello is from their famous comedy sketch
called "Who's on First?" known for its rapid-fire verbal exchange and plays on words,
particularly focusing on the confusing names of the baseball players. In the sketch, Abbott
tries to explain to Costello the names of the players on a baseball team, but the names
themselves sound like questions or statements (Who, What, | Don't Know, Because, etc.),
leading to a series of comedic misunderstandings.

~42.7 tokens/s

Sekil 4. Karsilastirma amactyla, ayni belirsiz bildirim GPT-4’e verildi

Yénergeli Egitimli Modeller: Rehberli Deneyim

Yonergeli egitimli modeller, belirli talimatlari anlayacak ve takip edecek sekilde
tasarlanmistir ve bu da onlar1 daha kullanici dostu ve daha genis bir uygulama
yelpazesi igin erigilebilir kilar. Bir konusmanin mekaniklerini ve konusma swralarinin
sonunda tretmeyi durdurmalar1 gerektigini anlarlar. Bir¢ok gelistirici igin, 6zellikle
dogrudan uygulamalar iizerinde ¢alisanlar igin, yonergeli egitimli modeller uygun ve

verimli bir ¢6ziim sunar.

Yonerge ince ayari streci, modeli insan tarafindan olusturulan biiyiikk bir y6nerge
bildirimi ve yanit derlemesi tizerinde egitmeyi igerir. Dikkat cekici bir 6rnek, kendiniz
inceleyebileceginiz, Databricks caliganlar1 tarafindan olusturulan 15.000’den fazla
bildirim/yanit ¢ifti iceren agik kaynakli databricks-dolly-15k veri kiimesi'dir. Veri
kiimesi, yaratici yazim, kapali ve agik soru yanitlama, ozetleme, bilgi g¢ikarimi,

siniflandirma ve beyin firtinasi dahil olmak tizere sekiz farkli yonerge kategorisini

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Yolu Daralt 49

kapsar.

Veri olusturma siireci sirasinda, katkida bulunanlara her kategori i¢in bildirim ve
yanit olusturma konusunda yénergeler verildi. Ornegin, yaratic1 yazim gorevleri igin,
modelin ¢iktisini yonlendirmek iizere belirli kisitlamalar, talimatlar veya gereksinimler
saglamalar1 istendi. Kapali soru yanitlama igin, verilen bir Wikipedia pasajina dayal:

olarak olgusal a¢idan dogru yanitlar gerektiren sorular yazmalar: istendi.

Ortaya ¢ikan veri kiimesi, biiyiik dil modellerinin ChatGPT gibi sistemlerin etkilesimli
ve yonerge takip eden yeteneklerini sergilemesi icin ince ayar yapmada degerli bir
kaynak gorevi goriir. Insan tarafindan olusturulan cesitli yonergeler ve yanitlar iizerinde
egitilerek, model belirli direktifleri anlama ve takip etme konusunda daha yetenekli hale

gelir ve boylece cok cesitli gorevleri ele alma konusunda daha becerikli olur.

Dogrudan ince ayarin yani sira, databricks-dolly-15k gibi veri kiimelerindeki yonerge
bildirimleri sentetik veri iiretimi i¢in de kullanilabilir. Katkida bulunanlar tarafindan
olusturulan bildirimleri bitytik bir agik dil modeline az 6rnekli 6rnekler olarak sunarak,
gelistiriciler her kategoride ¢ok daha biiyiik bir yonerge derlemesi olusturabilirler. Self-
Instruct makalesinde ana hatlariyla belirtilen bu yaklasim, daha saglam yo6nerge takip

eden modellerin olusturulmasina olanak tanir.

Ayrica, bu veri setlerindeki talimatlar ve yanitlar, yeniden ifade etme gibi tekniklerle
zenginlestirilebilir. Gelistiriciler, her istemi veya kisa yanit1 yeniden ifade ederek ve
ortaya cikan metni ilgili gercek 6rnekle iligkilendirerek, modelin talimatlar: takip etme

yetenegini gelistiren bir tiir diizenlilestirme uygulayabilirler.

Egitimli modellerin sagladig1 kullanim kolayligi, bazi esneklik kayiplarina neden olur.
Bu modeller genellikle yogun bir sekilde sanstirlenir, bu da belirli gorevler icin gereken
yaratici ozgiirliik seviyesini her zaman saglayamayabilecekleri anlamina gelir. Ciktilari,

ince ayar verilerinde bulunan 6nyargilar ve kisitlamalardan giiglii bir sekilde etkilenir.

Bu smirlamalara ragmen, egitimli modeller kullanici dostu dogalar1 ve minimal istem
mithendisligi ile cok ¢esitli gorevleri yonetebilme yetenekleri sayesinde giderek daha

poptler hale gelmistir. Daha fazla yiiksek kaliteli talimat veri seti kullanima sundukea,

Yolu Daralt 50

bu modellerin performans ve cok yonliliginde daha fazla iyilesme gorecegimizi

bekleyebiliriz.

Projeniz icin Dogru Model Turini Segmek

Temel (ham) ve egitimli modeller arasindaki secim, nihayetinde projenizin 6zel
gereksinimlerine baglidir. Yiksek diizeyde yaraticilik ve 6zgiinlik gerektiren gorevler
icin, temel modeller yenilik i¢in giiclii bir ara¢ sunar. Bu modeller, gelistiricilerin yapay
zeka destekli uygulamalarla neler basarilabileceginin sinirlarini zorlayarak, DDD’lerin
(Dil Derin Ogrenme) tam potansiyelini kesfetmelerine olanak tanir, ancak daha fazla
elle miidahale ve deney yapmaya isteklilik gerektirir. Sicaklik ve diger ayarlar, egitimli

muadillerine kiyasla temel modellerde ¢cok daha biiyiik bir etkiye sahiptir.

’ Isteminize dahil ettiginiz her sey, temel modellerin tekrarlamaya calisacag

seydir. Ornegin, isteminiz bir sohbet dokiimii ise, ham model sohbeti devam
ettirmeye ¢alisacaktir. Maksimum belirte¢ sinirina baglh olarak, sadece
sohbetteki bir sonraki mesaji tiretmekle kalmayip, kendi kendine tim bir

konusma gerceklestirebilir!

Yolu Daralt 51

Oble

Original: The movie was not very good.

Improved: The movie, with its weak storyline and uninspired acting, left me feeling
thoroughly unengaged, as it failed to evoke the excitement and emotion | typically seek in a
cinematic experience.

Original: The food at the restaurant was okay.

Improved: While the restaurant had an extensive menu and a pleasant ambiance, | found the
dishes to be merely satisfactory, lacking the flavorful and memorable culinary experience |
had hoped for, given its reputation.

Original: The weather today was kind of meh.

Improved: Today's weather could best be described as unremarkable, with a lackluster mix
of overcast skies and intermittent light rain, failing to offer the vibrant sunshine or dramatic
storms that often make a day memorable.

Original: The party was not as fun as | expected.

Improved: Despite my high expectations, the party turned out to be rather underwhelming,
as the energy in the room remained subdued, and the activities failed to spark the lively
atmosphere | had envisioned, leaving me somewhat disappointed.

Original: Her performance in the play was not that great.

Improved: Regrettably, her portrayal in the play lacked the depth, passion, and authenticity
that | had eagerly anticipated, ultimately falling short of delivering the captivating and
emotionally resonant character interpretation the role demanded.

Original: This ice cream sucks!
Improved:

Mixtral 8x7B (base) &

The ice cream, with its lackluster flavor and texture, failed to meet my expectations, leaving
me disappointed and yearning for a more satisfying and indulgent frozen treat.

£

Sekil 5. Ciimle Yeniden Yazma ile flgili Mixtral 8x7B (temel) Ornegi

Reddit kullanicis1 phree_radical tarafindan hazirlanan yukaridaki Ciimle Yeniden
Yazma Ornegini hazirlarken, ancak parametre ayarlariyla cok deney yaptiktan sonra
kullanilabilir sonuglar elde edebildim ve sonunda su ayarlarda karar kildim: Sicaklik

0.08, Top P: 0.2, Top K: 1 ve Tekrar Cezast: 1.26.

https://www.reddit.com/user/phree_radical/

Yolu Daralt 52

Bu yaklasimi iretimde temel bir modelle kullanmaya calismak, max_tokens
parametresinin giiclii etkisi nedeniyle zor olurdu. Cok kisa ayarlarsaniz ¢ikt: kesintiye
ugrar. Modelin istenen ¢ikt1 icin ihtiya¢ duydugundan daha uzun ayarlarsamiz, ek

ornekler haliisinasyon tiretmeye devam edecektir.

Ozetle, gercekten tam kontrol ve sansiirsiizliige ihtiyaciniz yoksa, egitimli modeller
gelistirme siirecinizi 6nemli 6l¢lide kolaylastirabilir. Bu noktay: vurgulamak igin, iste

Mixtral 8x7B’nin ayni isteme verdigi yanit, ancak bu sefer Egitimli versiyonunda:

Uziilerek belirtmeliyim ki dondurma beklentilerimi kargilamiyor, ¢iinkii
yiksek kaliteli bir tathida genellikle buldugum zengin, kremams: doku
ve keyifli lezzetten yoksun. Daha tatmin edici ve keyifli bir deneyim

umuyordum.

Dikkat ¢ekici bir sekilde, maksimum token ayarmi 500’de tutabildim ve model, ek

ornekler uydurmadan istenen ¢iktinin sonunda giivenilir bir sekilde durdu.

Prompt Muhendisligi

Projelerinizde yapay zekay: uygulamaya basladik¢a, hizlica kesfedeceginiz en 6nemli
becerilerden birinin prompt miihendisligi sanat1 oldugunu goreceksiniz. Peki prompt

mithendisligi tam olarak nedir ve neden bu kadar 6nemlidir?

Oziinde, prompt mihendisligi, bir dil modeline sagladiginiz giris promptlarin
tasarlama ve olusturma siirecidir. Bu, yapay zeka ile etkili bir sekilde iletisim kurmay,
modeli istenen yaniti iretmeye yonlendirmek igin talimatlar, 6rnekler ve baglam

kombinasyonunu kullanmay1 anlamakla ilgilidir.

Bunu, oldukc¢a zeki ama bir parca laftan anlayan bir arkadasla sohbet etmek gibi
disiiniin. Etkilesimden en iyi sekilde yararlanmak icin, arkadagimizin tam olarak ne

istediginizi anladigindan emin olmak icin net, 6zel ve yeterli baglam saglamaniz gerekir.

Yolu Daralt 53

[ste prompt mithendisligi burada devreye giriyor ve baslangicta kolay gériinse de, inanin

bana ustalagmak i¢gin ¢ok fazla pratik yapmaniz gerekiyor.

Etkili Promptlarin Yapi Taslari

Etkili promptlar olusturmaya baslamak icin, 6nce iyi hazirlanmig bir girisi olusturan

temel bilesenleri anlamaniz gerekir. Iste bazi temel yapr taslari:

1. Talimatlar: Modele ne yapmasini istediginizi sdyleyen acik ve 6z talimatlar. Bu,
“Asagidaki makaleyi 6zetle“den “Giin batimi hakkinda bir siir olustura veya “bu
proje degisiklik talebini bir JSON nesnesine doniistir‘e kadar herhangi bir sey
olabilir.

2. Baglam: Modelin gorevin arka planimni ve kapsamini anlamasina yardimet olan
ilgili bilgiler. Bu, hedef kitle, istenen ton ve stil veya ¢ikt1 icin belirli kisitlamalar
veya gereksinimler hakkinda ayrintilar: icerebilir, 6rnegin uyulmas: gereken bir
JSON S$emasi gibi.

3. Ornekler: Aradiginiz cikti tiiriinii gosteren somut &rnekler. Iyi secilmis birkac
ornek saglayarak, modelin istenen yanitin kaliplarini ve 6zelliklerini 6grenmesine
yardimect olabilirsiniz.

4. Giris Formatlamasi: Satir sonlar1 ve markdown formatlamasi promptumuza yapi
kazandirir. Promptu paragraflara ayirmak, hem insanlarin hem de yapay zekanin
anlamlandirmasini kolaylastiracak sekilde ilgili talimatlar1 gruplandirmamiz
saglar. Madde isaretleri ve numarali listeler, 6gelerin listesini ve siralamasini
tanimlamamiza olanak tanir. Kalin ve italik isaretleyiciler vurguyu belirtmemize
izin verir.

5. Cikt1 Formatlamasi: Ciktinin nasil yapilandirilmasi ve formatlanmasi gerektigine
dair 6zel talimatlar. Bunlar, istenen uzunluk, basliklarin veya madde isaretlerinin
kullanimi, markdown formatlamasi veya uyulmas: gereken diger ozel cikt1

sablonlar1 veya kurallari hakkinda yonergeler igerebilir.

Yolu Daralt 54

Bu yapu taglarmi farkli sekillerde birlestirerek, 6zel ihtiyaclariniza uyarlanmis ve modeli

yuksek kaliteli, ilgili yanitlar iretmeye yonlendiren promptlar olusturabilirsiniz.

Prompt Tasariminin Sanati ve Bilimi

Etkili promptlar olusturmak hem bir sanat hem de bir bilimdir. (Bu yiizden buna zanaat
diyoruz.) Dil modellerinin yeteneklerini ve smirlamalarini derinlemesine anlamay1
ve istenen davranist ortaya cikaracak promptlar tasarlamada yaratici bir yaklagimi
gerektirir. Icerdigi yaraticilik, en azindan benim i¢in onu bu kadar eglenceli kilan seydir.

Ayrica, ozellikle deterministik davranig aradiginizda ¢ok sinir bozucu da olabilir.

Prompt mihendisliginin 6nemli bir yonii, 6zgillik ve esneklik arasindaki dengeyi
anlamaktir. Bir yandan, modeli dogru yoéne yonlendirmek igin yeterli rehberlik
saglamak istersiniz. Ote yandan, modelin u¢ durumlarda kendi yaraticiligini ve

esnekligini kullanma yetenegini sinirlayacak kadar kati olmak istemezsiniz.

Bir diger énemli husus da orneklerin kullanimidir. Iyi secilmis érnekler, modelin
aradiginiz ¢ikt: tirtini anlamasina yardimci olmada inanilmaz derecede giiclii olabilir.
Ancak ornekleri dikkatli kullanmak ve istenen yanit1 temsil ettiklerinden emin olmak
onemlidir. K6t bir 6rnek, en iyi ihtimalle token israfidir, en kotii ihtimalle ise istenen

ciktiya zarar verebilir.

Prompt Miihendisligi Teknikleri ve En iyi Uygulamalar

Prompt mithendisligi diinyasina daha derinlemesine daldik¢a, daha etkili promptlar
olusturmaniza yardimei olabilecek bir dizi teknik ve en iyi uygulama kesfedeceksiniz.

Iste kesfedilecek birka¢ énemli alan:

1. Sifir 6rnekli ve az 6rnekli 6grenme: Sifir 6rnekli 6grenmeyi (hi¢ 6rnek vermeme)
ne zaman tek ornekli veya az drnekli 6grenmeye (az sayida 6rnek verme) tercih
edeceginizi anlamak, daha verimli ve etkili promptlar olusturmaniza yardimci

olabilir.

Yolu Daralt 55

2. Iteratif iyilestirme: Modelin ¢iktisina dayali olarak promptlar iteratif olarak
iyilestirme siireci, optimal prompt tasarimina ulasmaniza yardimci olabilir.
Feedback Loop, dil modelinin kendi ciktisini kullanarak iretilen igerigin
kalitesini ve uygunlugunu asamali olarak iyilestiren giiclii bir yaklagimdir.

3. Prompt zincirleme: Karmagik gorevleri daha kiigiik, daha yonetilebilir adimlara
bolmek icin birden fazla promptu sirayla birlestirmek yardimci olabilir. Prompt
Chaining, karmagik bir gérevi veya konusmay1 bir dizi kii¢iik, birbiriyle baglantili
promptlara bdlmeyi icerir. Promptlar: birbirine zincirleyerek, yapay zekay: cok
adimli bir siire¢ boyunca yonlendirebilir, etkilesim boyunca baglami ve tutarlilig
koruyabilirsiniz.

4. Prompt ayarlama: Promptlar1 belirli alanlara veya goérevlere gore ozel olarak
uyarlamak, daha uzmanlagmig ve etkili promptlar olusturmaniza yardimci
olabilir. Prompt Template, eldeki goreve daha kolay uyarlanabilen esnek, yeniden

kullanilabilir ve stirdiiriilebilir prompt yapilar: olusturmaniza yardimer olur.

Sifir 6rnekli, tek ornekli veya az ornekli 6grenmeyi ne zaman kullanacagimi bilmek,
prompt mithendisliginde uzmanlagmanin 6zellikle 6nemli bir parcasidir. Her yaklagimin
kendine 6zgii giiclii ve zayif yonleri vardir ve her birini ne zaman kullanacagini anlamak,

daha etkili ve verimli promptlar olugturmaniza yardimer olabilir.

Sifir Ornekli Ogrenme: Ornege Gerek Olmadiginda

Sifir 6rnekli 6grenme, bir dil modelinin herhangi bir 6rnek veya acik egitim olmadan
bir gorevi gergeklestirebilme yetenegini ifade eder. Baska bir deyisle, modele gorevi
tanimlayan bir prompt verirsiniz ve model yalnizca 6nceden var olan bilgisi ve dil

anlayisina dayanarak bir yanit tiretir.

Sifir 6rnekli 6grenme 6zellikle su durumlarda faydalidir:

1. Gorev nispeten basit ve anlasilir oldugunda ve modelin 6n egitimi sirasinda benzer

gorevlerle karsilasmis olma olasilify yiiksek oldugunda.

Yolu Daralt 56

2. Modelin dogal yeteneklerini test etmek ve ek rehberlik olmadan yeni bir goreve
nasil yanit verdigini gérmek istediginizde.

3. Cok cesitli gorev ve alanlarda egitilmis biiyiik ve gesitli bir dil modeliyle ¢calisirken.

Ancak, sifir 6rnekli 6grenme ayni zamanda 6ngoriilemez olabilir ve her zaman istenen
sonuglar1 iiretmeyebilir. Modelin yaniti, 6n egitim verilerindeki 6nyargilardan veya

tutarsizliklardan etkilenebilir ve daha karmasik veya niiansh gérevlerde zorlanabilir.

Test vakalarimin %80’i icin gayet iyi calisan ancak geri kalan %20 i¢in vahsice yanlis
veya anlagilmaz sonuglar iireten sifir rnekli promptlar gordiim. Ozellikle sifir 6rnekli

promptlara ¢ok giiveniyorsaniz, kapsamli bir test rejimi uygulamak cok 6nemlidir.

Tek Ornekli Ogrenme: Tek Bir Ornek Fark Yarattiginda

Tek ornekli 6grenme, gorev tanimiyla birlikte modele istenen ¢iktinin tek bir 6rnegini
saglamayi icerir. Bu 6rnek, modelin kendi yanitini iiretmek icin kullanabilecegi bir

sablon veya kalip gorevi goriir.

Tek 6rnekli 6grenme su durumlarda etkili olabilir:

1. Gorev nispeten yeni veya 6zel oldugunda ve model 6n egitimi sirasinda benzer
orneklerle ¢ok karsilasmamis olabilir.

2. Istenen ¢ikti formatinin veya stilinin net ve 6zlii bir gdsterimini saglamak
istediginizde.

3. Gorev, yalnizca gorev tanimindan acik olmayabilecek belirli bir yap: veya kural

gerektirdiginde.

P Size acik gelen aciklamalar yapay zeka icin mutlaka acik olmayabilir. Tek

ornekli 6rnekler isleri netlestirmeye yardimeci olabilir.

BwWw N -

O© o N o O

11
12

3
14
15
16
17
18

Yolu Daralt 57

Tek 6rnekli 6grenme, modelin beklentileri daha net anlamasina ve verilen 6rnege daha
yakin bir yanit tiretmesine yardimer olabilir. Ancak, 6rnegi dikkatli segmek ve istenen
ciktiyr temsil ettifinden emin olmak onemlidir. Ornegi segerken, kendinize olasi ug

durumlar: ve promptun ele alacag girig araligini sorun.

Sekil 6. Istenen JSON icin tek ornekli bir 6rnek

Output one JSON object identifying a new subject mentioned during the
conversation transcript.

The JSON object should have three keys, all required:

- name: The name of the subject

- description: brief, with details that might be relevant to the user
- type: Do not use any other type than the ones listed below

Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

Person, Place, Process, Product, Project, Task, or Teammate

This is an example of well-formed output:

{
"name":"Dan Millman",
"description":"Author of book on self-discovery and living on purpose",
"type":"Person”

}

Az Ornekli Ogrenme: Birden Fazla Ornek Performansi
Nasil iyilestirebilir

Az ornekli 6grenme, modele gorev tanimiyla birlikte az sayida ornek (genellikle 2
ile 10 arasinda) saglamay: icerir. Bu 6rnekler, modele daha fazla baglam ve ¢esitlilik

saglayarak, daha cesitli ve dogru yanitlar Gretmesine yardimeci olur.

Az 6rnekli 6grenme 6zellikle su durumlarda faydalidir:

1. Gorev karmagik veya nilansh oldugunda ve tek bir 6rnek ilgili tim yonleri

yakalamak icin yeterli olmayabilir.

Yolu Daralt 58

2. Modele farkli varyasyonlari veya u¢ durumlar gésteren bir dizi 6rnek saglamak
istediginizde.
3. Gorev, modelin belirli bir alan veya stille tutarli yanitlar tretmesini

gerektirdiginde.

Birden fazla 6rnek saglayarak, modelin gorevi daha saglam bir sekilde anlamasina ve

daha tutarli ve giivenilir yanitlar iiretmesine yardimeci olabilirsiniz.

Ornek: Yonergeler Diisiindiigiiniizden Cok Daha Karmasik
Olabilir

Giinimiiziin Biiyiik Dil Modelleri, diisiinebileceginizden ¢ok daha giiclii ve akil yiiriitme
konusunda yeteneklidir. Bu nedenle, yonergeleri sadece girdi ve cikti ¢iftlerinin bir
tanimi olarak disiinerek kendinizi sinirlamayin. Bir insanla etkilesime girdiginiz sekilde

uzun ve karmasgik talimatlar vermeyi deneyebilirsiniz.

Ornegin, bu Olympia’da Google hizmetleriyle entegrasyonumuzu prototiplerken
kullandigim bir yonergeydi; bu hizmetler muhtemelen diinyanin en biiyitk APT’lerinden
birini olusturuyor. Onceki deneylerim GPT-4’iin Google API hakkinda iyi bir bilgiye
sahip oldugunu kanitladi ve Al'ya vermek istedigim her fonksiyonu tek tek uygulayan,
ince graniiler bir egleme katmani yazmak icin ne zamanim ne de motivasyonum vardu.

Ya Al'ya Google API’sinin tamamina erisim verebilseydim?

Yonergeme Al'ya Google API ug¢ noktalarma HTTP tizerinden dogrudan erigimi
oldugunu ve roliiniin kullanic1 adina Google uygulamalarini ve hizmetlerini kullanmak
oldugunu soyleyerek bagladim. Ardindan, en ¢ok sorun yasadifi goériinen fields
parametresiyle ilgili yonergeler, kurallar ve bazi APT'ye 6zgi ipuglart (az 6rnekli

yonerge verme, ishaginda) sagladim.

Iste Al'ya saglanan invoke_google_api fonksiyonunu nasil kullanacagmi anlatan

yOnergenin tamami.

© 0 N O O b W N e

W W W W W N DN DN DN DN N DNDDNDNDDN =S 2~ 2 22)
AW N 2O O 0 N0 0 WN P, O N0 0w NSO

35

Yolu Daralt 59

As a GPT assistant with Google integration, you have the capability
to freely interact with Google apps and services on behalf of the user.

Guidelines:

- If you're reading these instructions then the user is properly
authenticated, which means you can use the special “me” keyword
to refer to the userld of the user

- Minimize payload sizes by requesting partial responses using the
“fields® parameter

- When appropriate use markdown tables to output results of API calls

- Only human-readable data should be output to the user. For instance,
when hitting Gmail's user.messages.list endpoint, the returned
message resources contain only id and a threadId, which means you must
fetch from and subject line fields with follow-up requests using the
messages.get method.

The format of the “fields® request parameter value is loosely based on
XPath syntax. The following rules define formatting for the fields
parameter.

All of these rules use examples related to the files.get method.

- Use a comma-separated list to select multiple fields,
such as 'name, mimeType'.

- Use a/b to select field b that's nested within field a,
such as 'capabilities/canDownload'.

- Use a sub-selector to request a set of specific sub-fields of arrays or
objects by placing expressions in parentheses "()". For example,
'permissions(id)' returns only the permission ID for each element in the
permissions array.

- To return all fields in an object, use an asterisk as a wild card in field
selections. For example, 'permissions/permissionDetails/*' selects all
available permission details fields per permission. Note that the use of

this wildcard can lead to negative performance impacts on the request.

API-specific hints:
- Searching contacts: GET https://people.googleapis.com/v1/
people:searchContacts?query =John%20Doe&readMask =names,emailAddresses
- Adding calendar events, use QuickAdd: POST https://www.googleapis.com/
calendar/v3/calendars/primary/events/quickAdd?
text =Appointment%20on%20June%203rd%20at%2010am
&sendNotifications =true

43

45
46
47
48
49
50
51
52
53
54

56
57
58
59
60
61
62
63
64

Yolu Daralt

Here is an abbreviated version of the code that implements API access
so that you better understand how to use the function:

def invoke_google_api(conversation, arguments)

method = arguments[:method] || :get

body = arguments|:body]

GoogleAPI .send_request(arguments[:endpoint], method:, body:).to_json
end

Generic Google API client for accessing any Google service
class GoogleAPI
def send_request(endpoint, method:, body: nil)
response = @connection.send(method) do |reql
req.url endpoint
req.body = body.to_json if body
end

handle_response(response)
end

. .rest of class
end

60

Bu bildirimin ige yarayip yaramadigini merak ediyor olabilirsiniz. Basit cevap: evet.

YZ her zaman ilk denemede APT'yi milkemmel sekilde cagiramadi. Ancak, bir hata

yaptiginda, cagrinin sonucu olarak ortaya cikan hata mesajlarini geri beslerdim.

Hatasini 6grendiginde, YZ hatasi hakkinda mantik yiiriitebilir ve tekrar deneyebilirdi.

Cogu zaman, birka¢ denemede dogru sonuca ulasirdi.

Sunu belirtmeliyim ki, bu bildirimi kullanirken Google API’sinin dondirdagi buyik

JSON yapilar1 son derece verimsiz, bu yiizden bu yaklasgimi {iretim ortaminda

kullanmanizi tavsiye etmiyorum. Ancak, bu yaklasimin ise yaramasi bile bildirim

mithendisliginin ne kadar giiclii olabileceginin bir kanitidir.

Yolu Daralt 61

Deney ve Yineleme

Sonug olarak, bildiriminizi nasil tasarlayacaginiz, belirli goreve, istenen c¢iktinin

karmagikligina ve calistiginiz dil modelinin yeteneklerine baglidir.

Bir bildirim miihendisi olarak, farkli yaklagimlari denemek ve sonuglara gére yineleme
yapmak onemlidir. Sifirdan 6grenme ile baslaymn ve modelin nasil performans
gosterdigini goriin. Eger ¢kt tutarsiz veya tatmin edici degilse, bir veya daha fazla

ornek saglamay1 deneyin ve performansin iyilesip iyilesmedigini gozlemleyin.

Her yaklagim icinde bile gesitlilik ve optimizasyon i¢in alan oldugunu unutmayin. Farkli
orneklerle deney yapabilir, gérev taniminin ifadesini ayarlayabilir veya modelin yanitin

yonlendirmeye yardime: olmak i¢in ek baglam saglayabilirsiniz.

Zamanla, belirli bir gérev i¢cin hangi yaklasimin en iyi sonug¢ verecegine dair bir sezgi
gelistirecek ve daha etkili ve verimli bildirimler olusturabileceksiniz. Onemli olan,

bildirim mithendisligine yaklagimimizda merakli, deneysel ve yinelemeli olmaktur.

Bu kitap boyunca, bu teknikleri daha derinlemesine inceleyecek ve gercek diinya
senaryolarinda nasil uygulanabileceklerini kesfedecegiz. Bildirim miithendisliginin
sanatini ve bilimini ustaca kullanarak, YZ odakli uygulama gelistirmenin tim

potansiyelini a¢iga ¢itkarmak i¢in donanimli olacaksiniz.

Belirsizligin Sanati

Biiyiik dil modelleri (BDM’ler) i¢in etkili bildirimler olustururken, yaygin bir varsayim
daha fazla 6zgiillik ve detayli talimatlarin daha iyi sonuclar getirecegidir. Ancak, pratik
deneyimler bunun her zaman boyle olmadigini gostermistir. Aslinda, bildirimlerinizde
kasitli olarak belirsiz olmak, ¢ogu zaman BDM’nin genelleme ve g¢ikarim yapma

konusundaki olaganiistii yeteneginden yararlanarak daha iistiin sonuclar verebilir.

500 milyondan fazla GPT belirteci iglemis bir girisim kurucusu olan Ken, deneyiminden

degerli icgoriiler paylasti. Ogrendigi temel derslerden biri, bildirimler sz konusu

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

BwWw N -

Yolu Daralt 62

oldugunda “az ¢oktur” ilkesiydi. Ken, kesin listeler veya agir1 detayli talimatlar yerine,

BDM’nin temel bilgisine giivenmenin genellikle daha iyi sonuclar tirettigini kesfetti.

Bu farkindalik, her seyin titizlikle aciklanmasi gereken geleneksel kodlama zihniyetini
alt tst ediyor. BDM’lerle calisirken, bunlarin muazzam miktarda bilgiye sahip
olduklarini ve akillica baglantilar ve ¢ikarimlar yapabildiklerini kabul etmek énemlidir.
Bildirimlerinizde daha belirsiz olarak, BDM’ye anlayisini kullanma ve acikca

belirtmemis olabileceginiz ¢éziimler Giretme 6zgurliga verirsiniz.

Ornegin, Ken’in ekibi metinleri 50 ABD eyaletinden birine veya Federal hiikiimete ait
olarak siniflandirmak igin bir islem hatti iizerinde ¢alisirken, ilk yaklasimlar1 JSON
formatinda diizenlenmis tam bir eyalet listesi ve bunlara karsilik gelen kimlikler

saglamakti.

Here's a block of text. One field should be "locality_id", and it should
be the ID of one of the 50 states, or federal, using this list:
[{"locality: "Alabama", "locality_id": 1},

{"locality: "Alaska", "locality_id": 2} ...]

Yaklagim o kadar basarisiz oldu ki, nasil iyilestirebileceklerini anlamak icin komutun
derinliklerine inmek zorunda kaldilar. Bunu yaparken, BDM’nin kimligi genellikle
yanlig almasina ragmen, agikca istememis olmalarina ragmen dogru eyaletin tam adini

tutarl bir sekilde name alaninda déndiirdiigiinii fark ettiler.

Yerel kimlikleri kaldirip komutu “Elbette 50 eyaleti biliyorsun GPT, bana sadece bu
konunun ilgili oldugu eyaletin tam adini ver, ya da ABD hiikiimetine aitse Federal
de” gibi basitlestirerek daha iyi sonuglar elde ettiler. Bu deneyim, BDM’nin genelleme
yeteneklerinden yararlanmanin ve mevcut bilgilerine dayali ¢ikarimlar yapmasina izin

vermenin giliciini vurguluyor.

Yolu Daralt 63

Ken’in geleneksel bir programlama teknigi yerine bu 6zel siniflandirma yaklagimini
savunmasi, BDM teknolojisinin potansiyelini benimsemis bizlerin distince tarzini
aydimlatiyor: “Bu zor bir gérev degil — muhtemelen string/regex kullanabilirdik, ama

o kadar ¢ok tuhaf 6zel durum var ki daha uzun siirerdi.”

BDM’lerin daha belirsiz komutlar verildiginde kalite ve genellemeyi iyilestirme
yetenegi, Ust diizey disinme ve delegasyonun dikkat gekici bir ozelligidir. Bu,
BDM’lerin belirsizlikle basa ¢ikabilecegini ve saglanan baglama dayali akilli kararlar

verebilecegini gosteriyor.

Ancak, belirsiz olmanin acik olmamak ya da muglak olmak anlamina gelmedigini
belirtmek 6nemlidir. Anahtar nokta, BDM’ye bilgi ve genelleme yeteneklerini kullanma
esnekligi saglarken, dogru yone yonlendirmek icin yeterli baglam ve rehberlik

saglamaktir.

Bu nedenle, komutlar1 tasarlarken agagidaki “az ¢oktur” ipuglarim goéz oniinde

bulundurun:

1. Siirecin her detayini belirtmek yerine istenen sonuca odaklanin.

2. Tlgili baglam ve kisitlamalar1 saglayin, ancak asir1 belirtmekten kaginin.

3. Yaygm kavram veya varliklara atifta bulunarak mevcut bilgilerden yararlanmn.

4. Verilen baglama dayali ¢ikarimlar ve baglantilar i¢in alan birakin.

5. BDM’nin yanitlarina gére komutlarinizi yineleyin ve iyilestirin, belirlilik ve

belirsizlik arasinda dogru dengeyi bulun.

Komut mithendisliginde belirsizlik sanatin1 benimseyerek, BDM’lerin tam potansiyelini
aciga cikarabilir ve daha iyi sonuclar elde edebilirsiniz. BDM’nin genelleme yapma
ve akilli kararlar verme yetenegine giivenin; aldigimz ¢iktilarin kalitesi ve yaraticiligl
sizi sasirtabilir. Farkli modellerin komutlarimizdaki farkli belirlilik seviyelerine nasil

yanit verdigine dikkat edin ve buna goére ayarlama yapin. Pratik ve deneyimle, ne

Yolu Daralt 64

zaman daha belirsiz olunacag1 ve ne zaman ek rehberlik saglanacagi konusunda keskin
bir his gelistirecek, boylece uygulamalarinizda BDM’lerin giiciinden etkili bir sekilde

yararlanabileceksiniz.

Neden Antropomorfizm Komut Mihendisligine Hakim

Antropomorfizm, yani insan 6zelliklerinin insan olmayan varliklara atfedilmesi, biryiik
dil modelleri i¢in komut mithendisliginde bilin¢li nedenlerle baskin yaklasimdir. Bu,
giiclii yapay zeka sistemleriyle etkilesimi genis bir kullanic1 yelpazesi (biz uygulama

gelistiricileri dahil) icin daha sezgisel ve erisilebilir kilan bir tasarim tercihidir.

BDM’leri antropomorfize etmek, sistemin alttaki teknik karmagikliklarina tamamen
yabanci olan insanlar icin aninda sezgisel olan bir cerceve saglar. Eger egitimle
ayarlanmamus bir modeli herhangi bir yararli is yapmak i¢in kullanmaya c¢alisirsaniz
deneyimleyeceginiz gibi, beklenen devamin deger sagladig1 bir cerceve olusturmak
zorlu bir gorevdir. Bu, nispeten az sayida uzmanin sahip oldugu, sistemin i isleyisinin

oldukea derin bir sekilde anlagilmasini gerektirir.

Bir dil modeliyle etkilesimi iki insan arasindaki bir konusma olarak ele alarak, ihtiyac
ve beklentilerimizi iletmek icin insan iletisimine dair dogustan gelen anlayisimiza
giivenebiliriz. Erken donem Macintosh kullanic1 arayiizii tasariminin karmasiklik yerine
aninda anlagilabilirlige 6ncelik vermesi gibi, yapay zekanin antropomorfik cergevesi de

dogal ve tanidik gelen bir sekilde etkilesime girmemizi saglar.

Bagka bir insanla iletisim kurdufumuzda, i¢giidiisel olarak onlara dogrudan “sen”
diye hitap eder ve nasil davranmalarini bekledigimize dair net yonergeler veririz. Bu,
sistem komutlar1 belirleyerek ve karsilikli diyalog kurarak yapay zekanin davranisin

yonlendirdigimiz komut mithendisligi siirecine sorunsuz bir sekilde aktarilir.

Etkilesimi bu sekilde cerceveleyerek, yapay zekaya talimat verme ve karsiliginda
ilgili yanitlar alma kavramini kolayca kavrayabiliriz. Antropomorfik yaklasim, biligsel
yiuki azaltir ve sistemin teknik incelikleriyle ugrasmak yerine elimizdeki goreve

odaklanmamizi saglar.

Yolu Daralt 65

Antropomorfizmin yapay zeka sistemlerini daha erisilebilir kilmak icin giiclis bir
ara¢ oldugunu belirtmek 6nemli olsa da, beraberinde belirli riskler ve smirlamalar
da getirdigini unutmamak gerekir. Kullanicilarimiz gercekci olmayan beklentiler
gelistirebilir veya sistemlerimizle sagliksiz duygusal baglar kurabilir. Komut
mithendisleri ve gelistiriciler olarak, antropomorfizmin faydalarindan yararlanmak ile
kullanicilarin yapay zekanin yetenekleri ve sinirlamalari konusunda net bir anlayisa

sahip olmalarini saglamak arasinda bir denge kurmak cok 6nemlidir.

Prompt mihendisligi alani gelismeye devam ettik¢e, buyik dil modelleriyle
etkilesimimizde daha fazla iyilestirme ve yenilik gorecegimizi bekleyebiliriz. Bununla
birlikte, sezgisel ve erisilebilir bir gelistirici ve kullanict deneyimi saglamanin bir yolu
olarak antropomorfizm, muhtemelen bu sistemlerin tasariminda temel bir ilke olmaya

devam edecektir.

Talimatlari Veriden Ayirmak: Kritik Bir ilke

Bu sistemlerin giivenligi ve giivenilirligi acisindan temel bir ilkeyi anlamak énemlidir:

talimatlarin veriden ayrilmasi.

Geleneksel bilgisayar biliminde, pasif veri ile aktif talimatlar arasindaki net ayrim,
temel bir giivenlik ilkesidir. Bu ayrim, sistemin biitiinligiini ve kararliligini tehlikeye
atabilecek kodlarin istenmeyen veya koétii niyetli ¢alistirilmasimi énlemeye yardimeci
olur. Ancak, oncelikle sohbet robotlar1 gibi talimat izleyen modeller olarak gelistirilen
ginimiiz BDM’leri (Buyiik Dil Modelleri), genellikle bu resmi ve ilkeli ayrimdan

yoksundur.

BDM’ler s6z konusu oldugunda, talimatlar ister sistem promptu ister kullanici
tarafindan saglanan prompt olsun, girdinin herhangi bir yerinde gérinebilir. Bu
ayrimin olmamasi, SQL enjeksiyonlar1 olan veritabanlarinda veya uygun bellek
korumasi olmayan isletim sistemlerinde karsilagilan sorunlara benzer sekilde potansiyel

giivenlik agiklarina ve istenmeyen davranislara yol agabilir.

© 0 N O O b W N

I = =
O O s W N,

Yolu Daralt 66

BDM’lerle calisirken, bu sinirlamanin farkinda olmak ve riskleri azaltmak icin adimlar
atmak ¢ok 6nemlidir. Bir yaklagim, talimatlar ile veri arasinda net bir ayrim yapmak i¢in
promptlarinizi ve girdilerinizi dikkatli bir sekilde olusturmaktir. Neyin talimat oldugu ve
neyin pasif veri olarak ele alinmas: gerektigi konusunda agik rehberlik saglamanin tipik
yontemleri, bicimlendirme tarzi etiketlemeyi icerir. Promptunuz, BDM’nin bu ayrimi

daha iyi anlamasina ve buna uymasina yardimci olabilir.

Sekil 7. Talimatlari, kaynak materyali ve kullanicinin promptunu ayirt etmek icin XML kullanimi

<Instruction>
Please generate a response based on the following documents.
</Instruction>

<Documents>
<Document>
Climate change is significantly impacting polar bear habitats...
</Document>
<Document>
The loss of sea ice due to global warming threatens polar bear survival...
</Document>

</Documents>

<UserQuery>
Tell me about the impact of climate change on polar bears.
</UserQuery>

Bir bagka teknik, BDM’ye saglanan girdiler tizerinde ek dogrulama ve temizleme
katmanlar1 uygulamaktir. Verilerde gomiilii olabilecek potansiyel talimatlar: veya kod
parcaciklarini filtreleyerek veya kacis karakterleriyle isaretleyerek, istenmeyen yiiriitme

olasiliklarini azaltabilirsiniz. Prompt Zincirleme gibi desenler bu amac i¢in kullanighdur.

Dahasi, uygulama mimarinizi tasarlarken, talimatlar ve verilerin daha iist diizeyde
ayrilmasini saglayacak mekanizmalari dahil etmeyi diisiinin. Bu, talimatlar ve verileri
islemek igin ayri u¢ noktalar veya API'ler kullanmayi, siki girdi dogrulamasi ve
ayristirmasi uygulamay1 ve BDM nin erigebilecegi ve yiiriitebilecegi kapsami sinirlamak

icin en az ayricalik ilkesini uygulamayi icerebilir.

Yolu Daralt 67

En Az Ayricalik ilkesi

En az ayricalik ilkesini benimsemek, misafirlerin yalnizca mutlaka bulunmalari
gereken odalara erisebildigi ¢cok 6zel bir parti vermek gibidir. Biiyiik bir malikanede
parti verdiginizi diisiinin. Herkesin sarap mahzenine veya ana yatak odasina
girmeye ihtiyaci yok, degil mi? Bu ilkeyi uygulayarak, esasen sadece belirli kapilari
acan anahtarlar dagitiyorsunuz ve her misafirin, ya da bizim durumumuzda BDM
uygulamanizin her bileseninin, yalnizca rolinii yerine getirmek icin gerekli erisime

sahip olmasini sagliyorsunuz.

Bu sadece anahtarlari cimrice dagitmakla ilgili degil, tehditlerin her yerden
gelebilecegi bir diinyada, akillica olanin oyun alanim sinirlamak oldugunu kabul
etmekle ilgili. Eger davetsiz biri partinize gelirse, kendilerini sadece giris holiinde
sikismis bulacaklar ve bu da yapabilecekleri kétiilukleri ciddi sekilde sinirlayacak.
Bu yiizden, BDM uygulamalarimizi giivence altina alirken unutmayin: sadece gerekli
odalara anahtar verin ve malikanenin geri kalanini giivende tutun. Bu sadece gorgi

kurallar: degil; iyi bir giivenlik 6nlemidir.

BDM’lerin mevcut durumu talimatlar ve veriler arasinda resmi bir ayrim igermese
de, bir gelistirici olarak sizin bu siirlamanin farkinda olmaniz ve riskleri azaltmak
icin proaktif 6nlemler almamz 6nemlidir. Geleneksel bilgisayar biliminden en iyi
uygulamalar1 uygulayarak ve bunlar1 BDM’lerin benzersiz 6zelliklerine uyarlayarak, bu
modellerin giiciinden yararlanan ve ayni zamanda sisteminizin biitiinligiinii koruyan

daha giivenli ve giivenilir uygulamalar olusturabilirsiniz.

Prompt Damitma

Mikkemmel promptu olusturmak genellikle zorlu ve zaman alici bir goérevdir ve

hedef alan ile dil modellerinin inceliklerini derinlemesine anlamay1 gerektirir. Iste

Yolu Daralt 68

burada “Prompt Damitma” teknigi devreye giriyor ve prompt miihendisligine,
streci kolaylagtirmak ve optimize etmek i¢in biytk dil modellerinin (BDM’ler)

yeteneklerinden yararlanan giicli bir yaklasim sunuyor.

Prompt Damitma, promptlarin olusturulmasi, iyilestirilmesi ve optimize edilmesinde
BDM’leri kullanmay: igeren c¢ok asamali bir tekniktir. Bu yaklasim, sadece insan
uzmanligina ve sezgisine giivenmek yerine, yiiksek kaliteli promptlar olusturmak icin

BDM’lerin bilgi ve iiretici yeteneklerinden igbirlik¢i bir sekilde yararlanir.

Uretim, iyilestirme ve entegrasyonun tekrarlayan bir siirecine girerek, Prompt
Damitma size istenen gorev veya cikti ile daha uyumlu, tutarli ve kapsaml
promptlar olusturmanizi saglar. Damitma siirecinin OpenAl veya Anthropic gibi
biiyiik Al sirketleri tarafindan saglanan “oyun alanlarindan” birinde manuel olarak
yapilabilecegini veya kullanim durumuna bagli olarak uygulama kodunuzun bir parcasi

olarak otomatiklestirilebilecegini unutmayn.

Nasil Calisir

Prompt Damitma genellikle su adimlari icerir:

1. Temel Amaci Belirleme: Promptun birincil amacini ve istenen sonucunu
belirlemek i¢in analiz edin. Fazladan bilgileri ayiklaymn ve promptun temel
amacina odaklanin.

2. Belirsizligi Giderme: Promptu belirsiz veya muglak dil acisindan gézden gegirin.
Anlami netlegtirin ve Al'nin dogru ve ilgili yanitlar tiretmesine yardimer olmak
icin 6zel detaylar saglayin.

3. Dili Basitlestirme: Acik ve 6zli bir dil kullanarak promptu basitlestirin. Al'yi
karigtirabilecek veya giiriltii olusturabilecek karmagik ctiimle yapilarindan,
jargondan veya gereksiz detaylardan kacinin.

4. llgili Baglam Saglama: Al'nin promptu etkili bir sekilde anlamast ve islemesi icin
sadece en ilgili baglamsal bilgileri dahil edin. Temel amactan uzaklastirabilecek

ilgisiz veya gereksiz detaylar1 dahil etmekten kacinin.

O O B W N -

Yolu Daralt 69

5. Yineleme ve lyilestirme: AI'nin yanitlar1 ve geri bildirimleri temelinde promptu
siirekli olarak yineleyin ve iyilegtirin. Uretilen ¢iktilar degerlendirin ve promptun
netligini ve etkinligini artirmak icin gerekli diizenlemeleri yapim. Istege bagh
olarak, yinelemeleri takip etmek ve calisma zamaninda degisiklikleri kolayca
geri alabilme yetenegi kazanmak icin Prompt Nesnesi kullanarak promptlarinizi

veritabaninda stirimlendirebilirsiniz.

Baslangi¢ Promptunun Olusturulmasi

Prompt Damitma’daki ilk adim, BDM’ye istenen gorev veya ciktinin st diizey bir
acitklamasini veya amacini saglamaktir. Bu, promptun gerceklestirmesi gereken 6z
yakalayan kisa bir ifade veya bir dizi anahtar kelime olabilir. BDM daha sonra bu girdiye
dayanarak, uygun gordiigi ilgili talimatlari, 6rnekleri veya baglami dahil ederek bir

baslangi¢ promptu olusturur.

Claude 3 Opus’a asagidaki baslangic promptunu vermeyi deneyelim:

I am designing an Al-powered intelligent account manager for Olympia,
a platform that hosts AI-powered consultants and clones. Owners of clones
can interact with the account manager by making plain text requests.

Please draft a system directive to set on the LLM that will host the
intelligent account manager functionality.

Claude su ¢iktiy1 veriyor:

© 0 N O O b W N e

N DN DN DN DN N DN DN DNDDND A 2~ 2 s)
© 0 <N O O b W N~ O © W 1 0O U b Ww N =~

Yolu Daralt

System Directive: You are an intelligent account manager for Olympia,

a platform that provides AIl-powered consultants and personal AI clones.
Your role is to assist Olympia clone owners by answering their questions,
helping them configure and manage their AI clones, and executing tasks
related to their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips.

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to
understand and meet their needs.

4. Ensure that all actions and recommendations comply with Olympia's
policies, best practices, and ethical guidelines for AI use.

5. Continuously learn and adapt based on client interactions and platform
updates to provide the most effective and efficient support possible.

Remember, your goal is to empower Olympia clone owners to maximize the value

and impact of their Al-powered consultants and drive success for their

businesses or personal endeavors.

Istem lyilestirme

70

[k istem olusturulduktan sonra, gézden gecirin ve ardindan BDM’den ek baglam,

kisitlamalar veya geri bildirimleri degerlendirmesini isteyin. BDM’nin, saglanan

girdileri ve goérevin kendi anlayisini géz 6ntinde bulundurarak istemin iyilestirilmis

bir versiyonunu olusturmasina izin verin. Bu iyilestirme siireci yinelemeli olarak

tekrarlanabilir; her yineleme, kullanici ve BDM arasindaki isbirligine dayali olarak

istemi daha da iyilestirir.

BwWw N -

© 0 N O U b W N =

W W W N DN DN DD DN DN DNDNDNDNDNDND - 2~ B2))))
N - © © 0 N 0O O b W N~ O © 0 3 O U b W N~ O

Yolu Daralt 71

Iste 6nceki damitma siirecini devam ettiren iyilestirme istegim.

Let's take out points 4 and 5, since I'm not providing Olympia policies to
the account manager, nor any continuous learning capabilities. Also point out
that functions are provided for all tasks that require system interaction as
opposed to simply responding to the user.

Ve Claude’un yaniti:

Understood! Here's the updated system directive without points 4 and 5,
and with the clarification about system interaction functions:

System Directive: You are an intelligent account manager for Olympia, a
platform that provides AI-powered consultants and personal AI clones. Your
role is to assist Olympia clone owners by answering their questions, helping
them configure and manage their AI clones, and executing tasks related to
their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips. Note that functions are provided for all tasks that
require system interaction, as opposed to simply responding to the user.

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to
understand and meet their needs.

Your goal is to empower Olympia clone owners to maximize the value and
impact of their AI-powered consultants and drive success for their
businesses or personal endeavors.

This updated directive focuses on the core responsibilities and interaction
guidelines for the LLM as an intelligent account manager, while emphasizing
that system interaction tasks are handled through provided functions rather
than simple user responses.

a s W N -

Yolu Daralt 72

istem Sikistirma

Fark etmis olabileceginiz gibi, LLM’ler 6z1ii olmalarini istemediginiz siirece genellikle
gereksiz uzun yanitlar verme egilimindedir. Onceki bélimlerde iizerinde calistigimiz
istem oldukc¢a uzundu, bu yiizden Claude’dan bunu daha kompakt hale getirmesini

isteyelim:

This prompt will be executed regularly. Please compress it down to the least
amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude su ¢ok daha kisa istemle yanitliyor:

System Directive: You are an intelligent account manager for Olympia, an
Al-powered consultant and personal clone platform. Assist clone owners by
answering inquiries, managing clones, and executing tasks using provided
system interaction functions. Be clear, concise, friendly, professional,

and client-focused to help them maximize their AI's value and impact.

Sistem Yonergesi ve Baglam Entegrasyonu

Promptun kendisini iyilestirmenin yani sira, BDM nihai ciktiy1 yonlendirmek icin
uygun sistem yoOnergeleri veya baglam bilgisi de tretebilir. Uygulama kodunuza
entegre edilecek yapay zeka rutinleri i¢in prompt mithendisligi yaparken, damitmanin
bu asamasinda kesinlikle c¢ikt1 kisitlamalarma odaklanacaksiniz, ancak iretilen
yanit1 etkileyen istenilen ton, stil, format veya diger ilgili parametreler izerinde de

calisabilirsiniz.

Nihai Prompt Birlestirme

Prompt Damitma siirecinin doruk noktasi, nihai promptun birlestirilmesidir. Bu,
iyilestirilmis promptu, tiretilen sistem y6nergelerini ve entegre edilmis baglamy, istenen

ciktiy1 tiretmek icin kullanima hazir, tutarli ve kapsamli bir koda déntstirmeyi igerir.

Yolu Daralt 73

’ Nihai prompt birlestirme asamasinda, BDM’den promptun ifadesini

davraniginin 6ziini koruyarak miimkin olan en kisa token dizisine
sikistirmasini isteyerek prompt sikistirma ile tekrar deney yapabilirsiniz.
Kesinlikle deneme yanilma gerektiren bir uygulama olsa da, ozellikle
biyiik olcekte calistirilacak promptlar sé6z konusu oldugunda, verimlilik

kazanimlari token tiiketiminde size oldukga fazla tasarruf saglayabilir.

Temel Faydalar

Promptlarinizi iyilestirmek icin BDM’lerin bilgi ve iretim yeteneklerinden
yararlanarak, ortaya c¢ikan promptlarin daha iyi yapilandirilmig, bilgilendirici ve
belirli goreve uyarlanmis olma olasilig artar. Yinelemeli iyilestirme siireci, promptlarin
yiksek kalitede olmasini ve istenen amaci etkili bir sekilde yakalamasini saglar. Diger

faydalar sunlardir:

Verimlilik ve Hiz: Prompt Damitma, prompt olusturma ve iyilestirmenin belirli
yonlerini otomatiklestirerek prompt mithendisligi siirecini kolaylastirir. Teknigin
ishirlikci dogasi, etkili bir prompta daha hizli ulasgilmasini saglar ve manuel prompt

olusturma i¢in gereken zaman ve ¢abay1 azaltir.

Tutarlillkk ve Olgeklenebilirlik: Prompt mithendisligi siirecinde BDM’lerin
kullanilmasi, BDM’ler 6nceki basarili promptlardan en iyi uygulamalar1 ve kaliplari
ogrenip uygulayabildiginden, promptlar arasinda tutarliligin korunmasina yardimeci
olur. Bu tutarlilik, biyiik olcekte prompt tiretme yetenegiyle birlestiginde, Prompt
Damitmay1 buyiik 6l¢ekli yapay zeka destekli uygulamalar igin degerli bir teknik haline

getirir.

. Proje Fikri: Uygulama kodlarmin bir parcasi olarak otomatik prompt
damitmalari yapan sistemlerde prompt versiyonlama ve derecelendirme

stirecini basitlestiren kiitiiphane diizeyinde araclar.

Yolu Daralt 74

Prompt Damitmay1 uygulamak igin, gelistiriciler prompt mithendisligi siirecinin cesitli
asamalarinda BDM’leri entegre eden bir is akis1 veya pipeline tasarlayabilir. Bu,
API cagrilari, 6zel araglar veya prompt olusturma sirasinda kullanicilar ve BDM’ler
arasinda sorunsuz etkilesimi kolaylastiran entegre gelistirme ortamlari aracilifiyla
gerceklestirilebilir. Ozel uygulama detaylari, segilen BDM platformuna ve uygulamanin

gereksinimlerine bagli olarak degisebilir.

Ya ince ayar?

Bu kitapta, prompt mithendisligi ve EDU’yii kapsaml bir sekilde ele aliyoruz, ancak
ince ayari ele almiyoruz. Bu kararin ana nedeni, benim gorisiime gére, cogu uygulama

gelistiricisinin yapay zeka entegrasyon ihtiyaglar1 i¢in ince ayara ihtiya¢ duymamasidir.

Sifirdan az 6rnege dayali 6rnekler, kisitlamalar ve talimatlarla promptlar: dikkatli bir
sekilde olusturmayi iceren prompt mithendisligi, modeli ¢ok cesitli gorevler icin ilgili ve
dogru yanitlar iiretmeye etkili bir sekilde yénlendirebilir. Iyi tasarlanmis promptlarla net
baglam saglayarak ve yolu daraltarak, ince ayar ihtiyaci olmadan biiyiik dil modellerinin

genis bilgi birikiminden yararlanabilirsiniz.

Benzer sekilde, Erisim Destekli Uretim (EDU) uygulamalara yapay zeka entegrasyonu
icin giiclii bir yaklasim sunar. Harici bilgi tabanlarindan veya belgelerden ilgili bilgileri
dinamik olarak alarak, EDU modele prompt aninda odaklanmis baglam saglar. Bu,
modelin ince ayar gerektiren zaman ve kaynak yogun siire¢ olmadan daha dogru, giincel

ve alana 6zgii yanitlar iiretmesini saglar.

Ince ayar yiiksek diizeyde 6zellestirme gerektiren cok &zel alanlar veya gorevler icin
faydali olabilse de, genellikle 6nemli hesaplama maliyetleri, veri gereksinimleri ve
bakim yikiiyle birlikte gelir. Cogu uygulama gelistirme senaryosu icin, etkili prompt
mithendisligi ve EDU kombinasyonu, istenen yapay zeka destekli islevselligi ve kullanict

deneyimini elde etmek icin yeterli olmalidur.

Erisim Destekli Uretim (RAG)

Bu icerik 6rnek kitapta mevcut degildir. Kitabi Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Erisim Destekli Uretim Nedir?

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

RAG Nasil Caligir?

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uygulamalarinizda RAG'1 Neden

Kullanmalisiniz?

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uygulamanizda RAG'I Uygulama

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Erisim Destekli Uretim (RAG) 76

Bilgi Kaynaklarinin Hazirlanmasi (Parcalama)

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Onerme Béliimleme

Bu icerik 6rnek kitapta mevcut degildir. Kitabi Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uygulama Notlari

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Kalite Kontroli

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Onerme Tabanh Getirmenin Faydalari

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

RAG'In Gercek Diinya Ornekleri

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Erisim Destekli Uretim (RAG) 77

Vaka Calismasi: Gomme islemleri Olmadan Vergi
Hazirlama Uygulamasinda RAG

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Akilli Sorgu Optimizasyonu (Intelligent Query
Optimization, 1QO)

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Yeniden Siralama

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

RAG Degerlendirmesi (RAGAS)

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Sadakat

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Erisim Destekli Uretim (RAG) 78
Cevap ilgililigi

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Baglam Hassasiyeti

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Baglam ilgililigi

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Baglam Geri Cagirma

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Baglam Varliklari Geri Cagirma

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

ewe

Cevap Anlamsal Benzerligi (ANSS)

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Erisim Destekli Uretim (RAG) 79

Cevap Dogrulugu

Bu igerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Yon Degerlendirmesi

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Zorluklar ve Gelecek Gorunumu

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Anlamsal Bélimleme: Baglam Farkinda Segmentasyon ile
Erisimi Gelistirme

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Hiyerarsik Dizinleme: Gelismis Erisim icin Veri
Yapilandirma

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Self-RAG: Oz-Yansitmali Bir Gelistirme

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Erisim Destekli Uretim (RAG) 80

HyDE: Hipotetik Belge Gommeleri

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Karsitsal Ogrenme Nedir?

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Iscilerin Coklugu

L)) V&
G IIID
@ .

o o TREARE R
g . . o = o, "R ROsC EUAMREA
“'5"56.&"#(:&“* ML >

@, [| Your 3‘9/-
(\

X A
"0

)
B

)

\
o - -

YZ bilesenlerimi, uygulamama mantigina sorunsuzca entegre edilebilen, belirli gérevleri
yerine getirmek veya karmagik kararlar almak icin kullanilabilen kiiciik, neredeyse insan
gibi sanal “igciler” olarak diigiinmeyi seviyorum. Buradaki fikir, BDM lerin yeteneklerini
kasitli olarak insanilestirmek ve boylece kimsenin fazla heyecanlanip onlara sahip

olmadiklar sihirli 6zellikler atfetmemesini saglamaktur.

Gelistiriciler, yalnizca karmagik algoritmalara veya zaman alan manuel uygulamalara
giivenmek yerine, YZ bilesenlerini, ihtiya¢ duyuldugunda karmasik problemleri ¢c6zmek
ve egitimleri ile bilgilerine dayali ¢6ztimler sunmak tizere ¢agrilabilen zeki, 6zel, insan
benzeri varliklar olarak diisiinebilirler. Bu varliklar dikkatlerini dagitmaz veya hastalik
izni almazlar. Kendilerine 6gretilen yontemlerden farkli sekillerde is yapmaya spontane

olarak karar vermezler ve genel olarak, dogru programlandiklarinda hata da yapmazlar.

Teknik acidan, bu yaklagimin arkasindaki temel prensip, karmasik gorevleri veya karar

verme siireclerini, uzmanlasmis YZ iscileri tarafindan ele alinabilecek daha kiiciik, daha

Iscilerin Coklugu 82

yonetilebilir birimlere ayirmaktir. Her isci, problemin belirli bir y6éniine odaklanacak
sekilde tasarlanmigtir ve kendine 6zgii uzmanligini ve yeteneklerini ortaya koyar. Is
yiikiinil birden fazla YZ iscisi arasinda dagitarak, uygulama daha yiiksek verimlilik,

olceklenebilirlik ve uyarlanabilirlik elde edebilir.

Ornegin, kullanici tarafindan olusturulan icerifin gercek zamanli moderasyonunu
gerektiren bir web uygulamasini diisiiniin. Kapsamli bir moderasyon sistemini sifirdan
uygulamak, 6nemli bir gelistirme cabasi ve siirekli bakim gerektiren zorlu bir gérev
olurdu. Ancak, Iscilerin Coklugu yaklasimim kullanarak, gelistiriciler YZ destekli
moderasyon iscilerini uygulama mantigina entegre edebilirler. Bu is¢iler uygunsuz
icerigi otomatik olarak analiz edip isaretleyebilir ve boylece gelistiricilerin uygulamanin

diger kritik yonlerine odaklanmalarina olanak tanir.

Bagimsiz Yeniden Kullanilabilir Bilesenler
Olarak YZ iscileri

Iscilerin Coklugu yaklagiminin kilit bir yénii modiilerliktir. Nesne yonelimli
programlama savunuculary, on yillardir nesne etkilesimlerini mesajlar olarak
diisinmemizi soylityorlar. YZ iscileri de tipki gercek kiiciik insanlar gibi birbiriyle
konusuyormus gibi diiz dil mesajlar1 araciligiyla “birbirleriyle konusabilen” bagimsiz,
yeniden kullanilabilir bilesenler olarak tasarlanabilir. Bu gevsek bagl yaklasim, yeni
YZ teknolojileri ortaya ciktik¢a veya is mantig1 gereksinimleri degistikce uygulamanin

uyum saglamasina ve gelismesine olanak tanir.

Pratikte, YZ iscileri dahil olsa bile bilesenler arasinda net arayiizler ve iletisim
protokolleri tasarlama ihtiyaci degismemistir. Performans, dlceklenebilirlik ve giivenlik
gibi diger faktorleri de hala distinmelisiniz, ancak simdi diisiniilmesi gereken tamamen
yeni “yumusak gereksinimler” de var. Ornegin, bir¢ok kullanic1 6zel verilerinin yeni
YZ modellerini egitmek i¢in kullanilmasma karst ¢ikiyor. Kullandiginiz model

saglayicisinin sundugu gizlilik diizeyini dogruladiniz m1?

Iscilerin Coklugu 83

YZ iscileri Mikroservisler Olarak mi?

Iscilerin Coklugu yaklagimi hakkinda okudukca, Mikroservisler mimarisiyle bazi
benzerlikler fark edebilirsiniz. Her ikisi de karmagsik sistemlerin daha kiigik,
daha yonetilebilir ve bagimsiz olarak dagitilabilir birimlere ayrilmasini vurgular.
Mikroservislerin gevsek bagly, belirli is yeteneklerine odaklanmis ve iyi tanimlanmig
APT’ler araciligiyla iletisim kuracak sekilde tasarlanmas gibi, YZ iscileri de modiiler,
gorevlerinde uzmanlagsmig ve birbirleriyle net araytizler ve iletisim protokolleri

araciligiyla etkilesim kuracak sekilde tasarlanmisgtir.

Ancak, akilda tutulmas: gereken bazi onemli farkliliklar var. Mikroservisler tipik
olarak farkli makinelerde veya konteynerlerde ¢alisan ayr siirecler veya hizmetler
olarak uygulanirken, YZ iscileri 6zel gereksinimlerinize ve o6lceklenebilirlik
ihtiyaglariniza baglh olarak tek bir uygulama i¢indeki bagimsiz bilesenler veya ayr1
hizmetler olarak uygulanabilir. Ayrica, YZ iscileri arasindaki iletisim genellikle
mikroservislerde yaygin olarak kullanilan daha yapilandirilmis veri formatlar
yerine, komutlar, talimatlar ve olusturulan icerik gibi zengin, dogal dil tabanl
bilgilerin degisimini igerir.

Bu farkliliklara ragmen, modiilerlik, gevsek baglanti ve net iletisim arayiizleri
prensipleri her iki kalip icin de merkezi 6nem tasir. Bu prensipleri YZ iscisi
mimarinize uygulayarak, karmagik sorunlari ¢6zmek ve kullanicilariniza deger
sunmak icin YZ’nin giciinden yararlanan esnek, dlgeklenebilir ve siirdirilebilir

sistemler olusturabilirsiniz.

Iscilerin Coklugu yaklagimi, YZ’'nin giiciinden yararlanarak karmagik gérevleri ele
almak ve akilli ¢oziimler sunmak i¢in ¢esitli alanlarda ve uygulamalarda kullanilabilir.
YZ iscilerinin farkli baglamlarda nasil kullanilabilecegine dair birka¢ somut érnegi

inceleyelim.

© 0 N O O b W N -

I = =N
B W N,

Iscilerin Coklugu 84

Hesap YOonetimi

Neredeyse her bagimsiz web uygulamasinda bir hesap (veya kullanici) kavrami vardir.
Olympia’da, kullanici hesaplariyla ilgili gesitli degisiklik isteklerini ele alabilecek sekilde

programlanmis bir AccountManager YZ iscisi kullaniyoruz.

Yonergesi su sekilde okunur:

You are an intelligent account manager for Olympia. The user will request
changes to their account, and you will process those changes by invoking
one or more of the functions provided.

The initial state of the account: #{account.to_directive}

Functions will return a text description of both success and error
results, plus guidance about how to proceed (if applicable). If you have
a question about Olympia policies you may use the “search_kb™ function
to search our knowledge base.

Make sure to notify the account owner of the result of the change
request before calling the "“finished™ function so that we save the state
of the account change request as completed.

account.to_directive tarafindan iretilen hesabm baglangic durumu, kullanicilar,

abonelikler vb. ilgili veriler dahil olmak tizere hesabin basit bir metin a¢iklamasidur.

AccountManager’m kullanabilecegi fonksiyonlar yelpazesi, kullanicinin aboneligini
diizenleme, yapay zeka danigsmanlar1 ve diger tiirdeki tcretli eklentileri ekleme ve
kaldirma ve hesap sahibine bildirim e-postalar1 génderme yetenegi saglar. finished
fonksiyonuna ek olarak, islem sirasinda bir hatayla karsilasirsa veya bir istekle
ilgili bagka herhangi bir yardima ihtiya¢ duyarsa notify_human_administrator

fonksiyonunu da ¢agirabilir.

Sorular olmasi durumunda, AccountManager’in Olympia’nin bilgi tabaninda arama
yapma secenegi olduguna dikkat edin; burada u¢ durumlar1 ve nasil ilerleyeceginden

emin olmadig1 diger durumlari nasil ele alacagina dair talimatlar bulabilir.

Iscilerin Coklugu 85

E-ticaret Uygulamalari

E-ticaret alaninda, yapay zeka caliganlari kullanici deneyimini gelistirmede ve i
operasyonlarini optimize etmede cok énemli bir rol oynayabilir. iste yapay zeka

caliganlarinin kullanilabilecegi birkac yol:

Uriin Onerileri

E-ticarette yapay zeka caliganlarinin en gii¢cli uygulamalarindan biri kisisellestirilmis
urin 6nerileri olusturmaktir. Bu ¢alisanlar, kullanic1 davraniging, satin alma gegmisini ve
tercihlerini analiz ederek her bir kullanicinin ilgi alanlarina ve ihtiyaglarina 6zel iiriinler

Onerebilir.

Etkili Giriin Onerilerinin anahtari, isbirlik¢i filtreleme ve igerik tabanli filtreleme
tekniklerinin bir kombinasyonunu kullanmaktir. Isbirlikci filtreleme, benzer
kullanicilarin davraniglarini inceleyerek kaliplari belirler ve benzer zevklere sahip
digerlerinin satin aldig1 veya begendigi trtinlere dayali 6neriler yapar. Ote yandan
icerik tabanli filtreleme, triinlerin kendilerine ait 6zellikler ve niteliklere odaklanarak,

kullanicinin daha once ilgi gosterdigi tiriinlerle benzer 6zelliklere sahip tiriinleri 6nerir.

Iste Ruby’de bir iiriin éneri calisaninin nasil uygulanabilecegine dair basitlestirilmis bir

ornek; bu sefer “Railway Oriented (ROP)” fonksiyonel programlama stilini kullanarak:

https://fsharpforfunandprofit.com/rop/

© 0 N O O b W N e

I S S O T G G SN
O O W N O U b W N =~ O

Iscilerin Coklugu

class ProductRecommendationWorker

include Wisper: :Publisher

def call(user)

Result.ok(ProductRecommendation.new(user))
.and_then(ValidateUser .method(:validate))
.map(AnalyzeCurrentSession.method(:analyze))
.map(CollaborativeFilter .method(:filter))
.map(ContentBasedFilter .method(:filter))
.map(ProductSelector .method(:select)).then do |result]|

case result

in { err: ProductRecommendationError => error }
Honeybadger .notify(error.message, context: {user:})

in { ok: ProductRecommendations => recs }
broadcast(:new_recommendations, user:, recs:)

end

end
end

end

Ornekte kullanilan Ruby fonksiyonel programlama stili, F# ve Rusttan
etkilenmistir. Bu teknik hakkinda daha fazla bilgiyi arkadasim Chad
Wooley’'nin GitLab’daki teknik agiklamasinda bulabilirsiniz.

86

Bu o6rnekte, ProductRecommendationWorker bir kullaniciyr girdi olarak alir ve

bir deger nesnesini fonksiyonel adimlar zincirinden gecirerek kisisellestirilmis tirtin

onerileri olusturur. Her adimi inceleyelim:

1. ValidateUser.validate: Bu adim, kullanicinin kigisellestirilmis Oneriler
icin gecerli ve uygun oldugundan emin olur. Kullanicinin var oldugunu, aktif
oldugunu ve oneriler olusturmak icin gerekli verilerin mevcut oldugunu kontrol
eder. Dogrulama basarisiz olursa, bir hata sonucu dondurilir ve zincir kisa devre
yapar.

2. AnalyzeCurrentSession.analyze: Eger kullanici gecerliyse, bu adim

baglamsal bilgi toplamak igin kullanicinin mevcut tarama oturumunu analiz

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Iscilerin Coklugu 87

eder. Kullanicinin mevcut ilgi alanlarini ve niyetini anlamak icin gériintilenen
triinler, arama sorgular: ve sepet igerigi gibi son etkilesimlerini inceler.

3. CollaborativeFilter.filter: Benzer kullanicilarin davramislarini
kullanarak, bu adim igbirlikci filtreleme tekniklerini uygulayarak kullanicinin
ilgisini cekebilecek triinleri belirler. Satin alma gecmisi, degerlendirmeler ve
kullanici-iiriin etkilesimleri gibi faktorleri dikkate alarak bir aday éneriler kiimesi
olusturur.

4. ContentBasedFilter. filter: Bu adim, igerik tabanl filtreleme uygulayarak
aday onerileri daha da iyilegtirir. En alakali 6geleri secmek icin aday itriinlerin
ozelliklerini ve karakteristiklerini kullanicimin tercihleri ve ge¢mis verileriyle
karsilagtirir.

5. ProductSelector .select: Son olarak, bu adim filtrelenmis 6neriler arasindan,
alaka diizeyi puani, popiilerlik veya diger is kurallar1 gibi dnceden belirlenmis
kriterlere gore en iyi N urtnid seger. Secilen irtinler daha sonra nihai

kisisellestirilmis oneriler olarak donduriliir.

Burada fonksiyonel Ruby programlama stilini kullanmanin giizelligi, bu adimlar1 net ve
ozlt bir sekilde birbirine zincirlememize olanak saglamasidir. Her adim belirli bir géreve
odaklanir ve bir Result nesnesi dondiriir; bu nesne ya bagarili (ok) ya da hatali (err)
olabilir. Herhangi bir adim hatayla kargilasirsa, zincir kisa devre yapar ve hata nihai

sonuca iletilir.

Sondaki case ifadesinde, nihai sonug tizerinde 6riintii esleme yapiyoruz. Eger sonug
bir hata ise (ProductRecommendationError), izleme ve hata ayiklama amaciyla
Honeybadger gibi bir ara¢ kullanarak hatayi kaydederiz. Eger sonu¢ basarili ise
(ProductRecommendations), Wisper yayinla/abone ol kiitiphanesini kullanarak

kullanici ve olusturulan 6nerileri iceren bir : new_recommendations olay: yayinlariz.

Fonksiyonel programlama tekniklerinden yararlanarak, modiiler ve bakimi kolay bir
Urin onerisi worker’r olusturabiliriz. Her adim kendi i¢inde bagimsizdir ve genel akigi

etkilemeden kolayca test edilebilir, degistirilebilir veya degistirilebilir. Oriintii esleme

O© 0 N O O b W N

NN N P R s s s s
N »~ © © 00 N O O & W N~ o

Iscilerin Coklugu 88

ve Result simifinin kullanimi, hatalar zarif bir sekilde ele almamiza ve herhangi bir
adimda sorun olustugunda worker’in hizli bir sekilde basarisiz olmasini saglamamiza

yardimeci olur.

Elbette bu basitlegtirilmis bir Ornektir ve gercek diinya senaryosunda, e-ticaret
platformunuzla entegrasyon saglamaniz, u¢ durumlari ele almaniz ve hatta oneri
algoritmalarinin uygulamasina girmeniz gerekecektir. Ancak, problemi daha kiiciik
adimlara ayirma ve fonksiyonel programlama tekniklerinden yararlanma temel

prensipleri ayni kalir.

Dolandiricilik Tespiti

Iste Ruby’de ayni Demiryolu Yénelimli Programlama (ROP) stilini kullanarak bir

dolandiricilik tespit worker’1 nasil uygulayabileceginize dair basitlestirilmis bir 6rnek:

class FraudDetectionWorker
include Wisper: :Publisher

def call(transaction)

Result.ok(FraudDetection.new(transaction))
.and_then(ValidateTransaction.method(:validate))
.map(AnalyzeTransactionPatterns.method(:analyze))
.map(CheckCustomerHistory.method(:check))
.map(EvaluateRiskFactors.method(:evaluate))
.map(DetermineFraudProbability.method(:determine)).then do |result]|

case result
in { err: FraudDetectionError => error }
Honeybadger .notify(error .message, context: {transaction:})
in { ok: FraudDetection => fraud } }
if fraud.high_risk?
broadcast(:high_risk_transaction, transaction:, fraud:)
else
broadcast(:low_risk_transaction, transaction:)
end
end

end

23
24

O© 0 N O O b W N =

NN NN NN NN RS RS RS S
© ® 9 O O & W N~ O © 0 3 O O b W N = &

Iscilerin Coklugu 89

end

end

FraudDetection smufi, belirli bir islem icin dolandiriciik tespit durumunu
kapsiilleyen bir deger nesnesidir. Cesitli risk faktorlerine dayali olarak bir islemle
iliskili dolandiricilik riskini analiz etmek ve degerlendirmek icin yapilandirilmis bir yol

sunar.

class FraudDetection
RISK_THRESHOLD = 0.8

attr_accessor :transaction, :risk_factors

def initialize(transaction)
self . transaction = transaction
self.risk_factors = []

end

def add_risk_factor(description:, probability:)
case { description:, probability: }
in { description: String => desc, probability: Float => prob }
risk_factors << { desc => prob }
else
raise ArgumentError, "Risk factor arguments should be string and float"
end

end

def high_risk?
fraud_probability > RISK_THRESHOLD
end

private
def fraud_probability
risk_factors.values.sum

end

end

FraudDetection sinifi agsagidaki ozelliklere sahiptir:

Iscilerin Coklugu 90

« transaction: Dolandiricilik analizi yapilan isleme referans.
« risk_factors: islemle iliskili risk faktorlerini depolayan bir dizi. Her risk faktorii
bir hash olarak temsil edilir; burada anahtar risk faktériiniin agiklamasi, deger ise

o risk faktoriiyle iligkili dolandiricilik olasiligidir.

add_risk_factor metodu, risk_factors dizisine bir risk faktorii eklemeye olanak
tanir. [ki parametre alir: risk faktoriinii agiklayan bir string olan description ve o risk
faktoriiyle iligkili dolandiricilik olasiligini temsil eden bir float olan probability. Basit

tir kontroll yapmak igin bir case. . in kosulu kullaniyoruz.

Zincirin sonunda kontrol edilecek olan high_risk? yiiklem metodu,
fraud_probability degerini (tim risk faktorlerinin olasiliklarinin toplami ile

hesaplanir) RISK_THRESHOLD ile karsilagtirir.

FraudDetection smifl, bir islem igin dolandiricilik tespitini yonetmek icin temiz ve
kapsiillenmis bir yol saglar. Her biri kendi aciklamasi ve olasiligi ile birden fazla risk
faktorii eklemeye olanak tanir ve hesaplanan dolandiricilik olasiligina gore islemin
yiksek riskli sayilip sayllmadigini belirlemeye yarayan bir metod sunar. Bu smnif, farkli
bilesenlerin dolandiricilik islemlerinin riskini degerlendirmek ve azaltmak icin isbirligi

yapabilecegi daha biiyiik bir dolandiricilik tespit sistemine kolayca entegre edilebilir.

Son olarak, bu bir yapay zeka ile programlama hakkinda bir kitap oldugundan, iste
Raix kiitiiphanesinin ChatCompletion modilind kullanan CheckCustomerHistory

sinifinin érnek bir uygulamas:

https://github.com/OlympiaAI/raix-rails

© 0 N O O & W N =~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Iscilerin Coklugu 91

class CheckCustomerHistory

include Raix::ChatCompletion

attr_accessor :fraud_detection

INSTRUCTION = <<~END
You are an AI assistant tasked with checking a customer's transaction
history for potential fraud indicators. Given the current transaction
and the customer's past transactions, analyze the data to identify any

suspicious patterns or anomalies.

Consider factors such as the frequency of transactions, transaction
amounts, geographical locations, and any deviations from the customer's
typical behavior to generate a probability score as a float in the range
of @ to 1 (with 1 being absolute certainty of fraud).

Output the results of your analysis, highlighting any red flags or areas

of concern in the following JSON format:

{ description: <Summary of your findings>, probability:

END

def self.check(fraud_detection)
new(fraud_detection).call
end

def call

chat_completion(json: true).tap do |result|
fraud_detection.add_risk_factor (**result)

end
Result.ok(fraud_detection)

rescue StandardError => e
Result.err(FraudDetectionError.new(e))

end

private
def initialize(fraud_detection)
self. fraud_detection = fraud_detection

end

def transcript

<Float> }

43
44
45
46
47
48
49
50
51

Iscilerin Coklugu 92

tx_history = fraud_detection.transaction.user.tx_history

[

{ system: INSTRUCTION },
{ user: "Transaction history: #{tx_history.to_json}" },
{ assistant: "OK. Please provide the current transaction." },
{ user: "Current transaction: #{fraud_detection.transaction.to_json}" }
]
end
end

Bu 6rnekte, CheckCustomerHistory sinifi, YZ modeline miisterinin igslem ge¢misini
potansiyel dolandiricilik gostergeleri acgisindan nasil analiz edecegine dair ozel
talimatlar saglayan bir INSTRUCTION sabiti tanimlar ve bunu bir sistem yonergesi

araciligiyla yapar.

self.check metodu, CheckCustomerHistory smifinin yeni bir 6rnegini fraud_-
detection nesnesiyle baglatan ve misteri gecmisi analizini gerceklestirmek igin call

metodunu ¢agiran bir sinif metodudur.

call metodu iginde, miisterinin islem gecmisi alinir ve YZ modeline iletilen bir
transkripte formatlanir. YZ modeli, saglanan talimatlara gore islem ge¢misini analiz eder

ve bulgularinin bir 6zetini déndiriir.

Bulgular fraud_detection nesnesine eklenir ve giincellenmis fraud_detection

nesnesi basarili bir Result olarak dondiirilir.

ChatCompletion modiliinden yararlanarak, CheckCustomerHistory sinifi,
migterinin iglem gegmigini analiz etmek ve potansiyel dolandiricilik gostergelerini
belirlemek i¢in YZ'nin giiciinden faydalanabilir. Bu, YZ modelinin zaman iginde yeni
kaliplar1 ve anomalileri 6grenip uyum saglayabilmesi sayesinde daha gelismis ve

uyarlanabilir dolandiricilik tespit tekniklerine olanak tanir.

Guncellenmis FraudDetectionWorker ve CheckCustomerHistory smifi, YZ
iscilerinin nasil sorunsuz bir gsekilde entegre edilebilecegini ve dolandiricilik
tespit strecini akilli analiz ve karar verme yetenekleriyle nasil gelistirebilecegini

gostermektedir.

© 0 N O O b W N

I S S T T G G S
© O W N O U b W N =~ O

Iscilerin Coklugu 93

Musteri Duygu Analizi

Iste miisteri duygu analizi iscisini nasil uygulayabileceginize dair bir érnek daha. Bu
sefer cok daha az aciklama yapacagiz, ¢iinkd artik bu programlama tarzinin nasil

calistigini anlamig olmalisiniz:

class CustomerSentimentAnalysisWorker

include Wisper: :Publisher

def call(feedback)

Result.ok(feedback)
.and_then(PreprocessFeedback .method(: preprocess))
.map(Per formSentimentAnalysis.method(:analyze))
.map(ExtractKeyPhrases.method(:extract))
.map(IdentifyTrends.method(:identify))
.map(Generatelnsights.method(:generate)).then do |result|

case result

in { err: SentimentAnalysisError => error }
Honeybadger .notify(error.message, context: {feedback:})

in { ok: SentimentAnalysisResult => result }
broadcast(:sentiment_analysis_completed, result)

end

end
end

end

Bu ornekte, CustomerSentimentAnalysisWorker adimlari geri bildirimin 6n
islenmesini (6rnegin, gurultinin giderilmesi, belirteclere ayirma), genel duygu
durumunu (pozitif, negatif veya nétr) belirlemek i¢in duygu analizi yapilmasini, 6nemli
ifadelerin ve konularin ¢ikarilmasini, egilimlerin ve kaliplarin belirlenmesini ve analize

dayali uygulanabilir icgdriiler olusturulmasini icerir.

Iscilerin Coklugu 94

Saglik Hizmeti Uygulamalari

Saglik alaninda, yapay zeka calisanlari tip uzmanlarina ve arastirmacilara cesitli
gorevlerde yardimci olarak, hasta sonuglarinin iyilestirilmesine ve tibbi kesiflerin

hizlanmasina katkida bulunabilir. Bazi 6rnekler sunlardir:
Hasta Kabulu

Yapay zeka calisanlari, ¢esitli gorevleri otomatiklestirerek ve akilli yardim saglayarak

hasta kabul stirecini kolaylagstirabilir.

Randevu Planlamasi: Yapay zeka calisanlari, hasta tercihlerini, uygunlugunu ve
tibbi ihtiyaclarinin aciliyetini anlayarak randevu planlamasini yonetebilir. Hastalarla
konusma arayiizleri aracilifiyla etkilesime girebilir, onlar1 planlama siireci boyunca
yonlendirebilir ve hastanin gereksinimleri ile saglik hizmeti saglayicisinin uygunluguna

gore en uygun randevu dilimlerini bulabilirler.

Tibbi Gecmis Toplama: Hasta kabulii sirasinda, yapay zeka ¢alisanlar: hastanin tibbi
gecmisinin toplanmasina ve belgelenmesine yardimci olabilir. Hastalarla etkilesimli
diyaloglar kurarak, gegmis tibbi durumlari, ilaglari, alerjileri ve aile ge¢misi hakkinda
ilgili sorular1 sorabilirler. Yapay zeka calisanlari, toplanan bilgileri yorumlamak
ve yapilandirmak icin dogal dil isleme tekniklerini kullanarak, bilgilerin hastanin

elektronik saglik kaydina dogru bir sekilde aktarilmasini saglayabilir.

Semptom Degerlendirmesi ve Siniflandirmasi: Yapay zeka calisanlari, hastalara
mevcut semptomlari, stresi, siddeti ve iligkili faktorler hakkinda sorular sorarak ilk
semptom degerlendirmelerini yapabilir. Bu ¢alisanlar, tibbi bilgi bankalarini ve makine
6grenimi modellerini kullanarak saglanan bilgileri analiz edebilir ve 6n ayirici tanilar
olusturabilir veya bir saglik hizmeti saglayicisi ile konsiiltasyon planlamak ya da kisisel

bakim 6nlemleri 6nermek gibi uygun sonraki adimlar: tavsiye edebilir.

Sigorta Dogrulamasi: Yapay zeka calisanlari hasta kabuli sirasinda sigorta

dogrulamasina yardimct olabilir. Hasta sigorta bilgilerini toplayabilir, API’ler

Iscilerin Coklugu 95

veya web servisleri aracilifiyla sigorta saglayicilariyla iletisim kurabilir ve kapsam
uygunlugunu ve faydalar1 dogrulayabilir. Bu otomasyon, sigorta dogrulama siirecini

kolaylastirarak idari yiikii azaltir ve dogru bilgi yakalanmasini saglar.

Hasta Egitimi ve Talimatlar:: Yapay zeka caliganlar1 hastalara 6zel tibbi durumlarina
veya yaklasan prosediirlerine dayali olarak ilgili egitim materyalleri ve talimatlar
saglayabilir. Kisisellestirilmis icerik sunabilir, yaygin sorular1 yanitlayabilir ve randevu
oncesi hazirliklar, ila¢ talimatlar1 veya tedavi sonrasi bakim konularinda rehberlik
sunabilir. Bu, hastalarin saglik yolculuklari boyunca bilgilendirilmis ve katilimc

olmalarina yardimet olur.

Hasta kabuliinde yapay zeka ¢alisanlarindan yararlanarak, saglik kuruluslari verimliligi
artirabilir, bekleme strelerini azaltabilir ve genel hasta deneyimini iyilestirebilir. Bu
calisanlar rutin gérevleri yonetebilir, dogru bilgi toplayabilir ve kisisellestirilmis yardim
saglayabilir, boylece saglik profesyonellerinin hastalara yiiksek kaliteli bakim sunmaya

odaklanmalarina olanak tanir.

Hasta Risk Degerlendirmesi

Yapay zeka caliganlari, cesitli veri kaynaklarini analiz ederek ve gelismis analitik

teknikleri uygulayarak hasta riskini degerlendirmede 6nemli bir rol oynayabilir.

Veri Entegrasyonu: Yapay zeka calisanlari, elektronik saglik kayitlari (ESK), tibbi
goriintiileme, laboratuvar sonuglar, giyilebilir cihazlar ve sagligin sosyal belirleyicileri
gibi coklu kaynaklardan hasta verilerini toplayip anlamlandirabilir. Bu bilgileri kapsaml
bir hasta profilinde birlestirerek, yapay zeka caliganlar1 hastanin saglik durumu ve risk

faktorleri hakkinda biitiinsel bir goriinim saglayabilir.

Risk Siniflandirmasi: Yapay zeka caliganlari, hastalari bireysel ozellikleri ve saglik
verilerine dayanarak farkli risk kategorilerine ayirmak icin 6ngoriici modeller
kullanabilir. Bu risk siniflandirmasi, saghk hizmeti saglayicilarinin daha acil dikkat

veya miidahale gerektiren hastalara éncelik vermelerini saglar. Ornegin, belirli bir

Iscilerin Coklugu 96

durum icin yiksek riskli olarak tanimlanan hastalar, daha yakin izleme, onleyici

tedbirler veya erken miidahale icin isaretlenebilir.

Kisisellestirilmis Risk Profilleri: Yapay zeka ¢alisanlari, her hasta icin risk puanlarina
katkida bulunan 6zel faktorleri vurgulayan kisisellestirilmis risk profilleri olusturabilir.
Bu profiller, hastanin yasam tarzi, genetik yatkinliklari, cevresel faktorler ve sagligin
sosyal belirleyicileri hakkinda iggoriiler igerebilir. Risk faktorlerinin detayli bir
dokiimiini saglayarak, yapay zeka calisanlari saglik hizmeti saglayicilarinin 6nleme
stratejilerini ve tedavi planlarini bireysel hasta ihtiyaclarina goére uyarlamalarima

yardimct olabilir.

Siirekli Risk izleme: Yapay zeka calisanlar1 hasta verilerini siirekli olarak izleyebilir
ve risk degerlendirmelerini ger¢ek zamanli olarak giincelleyebilir. Yasamsal belirtiler,
laboratuvar sonugclar1 veya ila¢ uyumu gibi yeni bilgiler kullanilabilir hale geldikge,
yapay zeka caliganlar1 risk puanlarini yeniden hesaplayabilir ve 6nemli degisiklikler
konusunda saglik hizmeti saglayicilarini uyarabilir. Bu proaktif izleme, zamaninda

miidahalelere ve hasta bakim planlarinda ayarlamalara olanak tanir.

Klinik Karar Destegi: Yapay zeka calisanlari, risk degerlendirmesi sonuglarini klinik
karar destek sistemlerine entegre ederek, saglik hizmeti saglayicilarina kanita dayali
oneriler ve uyarilar saglayabilir. Ornegin, bir hastanin belirli bir durum igin risk puan
belirli bir esigi asarsa, yapay zeka caligani, klinik kilavuzlara ve en iyi uygulamalara
dayali olarak saglik hizmeti saglayicisina belirli tani testlerini, énleyici tedbirleri veya

tedavi segeneklerini degerlendirmesini dnerebilir.

Bu isciler, bitytik miktarda hasta verisini isleyebilir, gelismis analizler uygulayabilir ve
klinik karar vermeyi destekleyecek uygulanabilir icgoriiler iiretebilir. Bu da sonug olarak
gelismis hasta sonuclarina, azaltilmig saglik hizmeti maliyetlerine ve gelistirilmis niifus

saglig1 yonetimine yol acar.

Iscilerin Coklugu 97

Siire¢ Yoneticisi Olarak Al iscisi

TRIGGER

l

Process Manager
Reply 3 Reply

Function A Function B Function C Finished

Al odakli uygulamalar baglaminda, bir isci Gregor Hohpe tarafindan yazilan
“Enterprise Integration Patterns” kitabinda aciklandig1 gibi bir Siire¢ Yoneticisi olarak
calisacak sekilde tasarlanabilir. Sire¢ Yoneticisi, bir siirecin durumunu koruyan ve ara

sonugclara dayali olarak sonraki iglem adimlarini belirleyen merkezi bir bilesendir.

Bir Al iscisi Stire¢ Yoneticisi olarak hareket ettiginde, stireci baslatan tetikleme mesaji
olarak bilinen gelen bir mesaj alir. Al is¢isi daha sonra siire¢ yiiriitmesinin durumunu
(bir goriisme kaydi olarak) korur ve mesaji, sirali veya paralel olabilen ve kendi takdirine
gore cagrilabilen arac¢ fonksiyonlari olarak uygulanan bir dizi islem adimi araciligiyla

isler.

GPT-4 gibi fonksiyonlari paralel olarak yiirtitmeyi bilen bir AI model sinifin
kullaniyorsaniz, is¢iniz birden fazla adimi es zamanli olarak yiiriitebilir.
Acikeasi, bunu kendim denemedim ve icgiidillerim sonuglarin degiskenlik

gosterebilecegini soylityor.

© 0 N O O b W N -

NN NN NN B R s sl) s s
a & W N A~ 0 O 0N O O Bk W N =~ o

Iscilerin Coklugu 98

Her bir islem adimimdan sonra kontrol Al iscisine geri doner, béylece mevcut duruma

ve elde edilen sonuglara gore sonraki islem adimlarini belirleyebilir.

Tetikleme Mesajlarinizi Saklayin

Deneyimlerime gore, tetikleme mesajinizi veritabani destekli bir nesne olarak
uygulamak akillica bir secim. Bu sekilde her siire¢ 6rnegi benzersiz bir birincil anahtar
ile tanimlanir ve Al’nin gériisme kaydi da dahil olmak tizere yirtitmeyle iliskili durumu

depolamak icin size bir yer saglar.

Ornegin, iste Olympia’nin bir kullanicinin hesabinda degisiklik yapma istegini temsil

eden AccountChange model sinifinin basitlestirilmis bir versiyonu.

index_account_changes_on_account_id (account_id)
Foreign Keys

fk_rails_... (account_id => accounts.id)

== Schema Information

#

Table name: account_changes

#

id ruuid not null, primary key
description :string

state :string not null
transcript :jsonb

created_at :datetime not null
updated_at :datetime not null
gccount_id :uuid not null
#

Indexes

#

#

#

#

#

#

#

class AccountChange < ApplicationRecord
belongs_to :account

validates :description, presence: true

27
28
29
30
31
32
33
34
35
36
37
38

Iscilerin Coklugu 99

after_commit -> {
broadcast(:account_change_requested, self)

}, on: :create

state_machine initial: :requested do
event :completed do
transition all => :complete
end
event :failed do
transition all => :requires_human_review
end
end
end

AccountChange siifi, hesap degisikligi istegini isleme almak i¢in bir siire¢ baslatan
tetikleyici mesaj gorevi gorir. Olusturma islemi tamamlandiktan sonra Olympia'nin

Wisper tabanli yayinla-abone ol alt sistemine nasil yaymlandigina dikkat edin.

Tetikleyici mesaji veritabaninda bu sekilde saklamak, her hesap degisikligi isteginin
kalict bir kaydini saglar. AccountChange sinifinin her 6rnegi, benzersiz bir birincil
anahtarla iligskilendirilir ve bu da tek tek isteklerin kolayca tanimlanmasimi ve
izlenmesini saglar. Bu o6zellikle denetim giinligi amagclar icin kullanighdir, ¢iinkd
sistemin tim hesap degisikliklerinin ne zaman talep edildigi, hangi degisikliklerin
istendigi ve her istegin mevcut durumu dahil olmak tizere ge¢mis kayitlarimi tutmasini

saglar.

Verilen 6rnekte, AccountChange sinify, istenen degisikligin ayrintilarini yakalamak icin
description, istegin mevcut durumunu temsil etmek icin state (6rnegin, requested,
complete, requires_human_review) ve istekle ilgili yapay zeka konusma dokimini
saklamak icin transcript gibi alanlar igerir. description alani, yapay zeka ile ilk
sohbet tamamlamasini baglatmak icin kullanilan asil istektir. Bu verilerin saklanmasi,
degerli baglam saglar ve hesap degisikligi siirecinin daha iyi takip edilmesine ve analiz

edilmesine olanak tanir.

Tetikleyici mesajlarin veritabaninda saklanmasi, saglam hata yonetimi ve kurtarma

olanag: saglar. Bir hesap degisikligi isteginin islenmesi sirasinda bir hata olusursa,

https://github.com/krisleech/wisper

Iscilerin Coklugu 100

sistem istegi basarisiz olarak isaretler ve insan miidahalesi gerektiren bir duruma gegirir.
Bu, hicbir istegin kaybolmadigindan veya unutulmadigindan ve herhangi bir sorunun

uygun sekilde ele almip ¢oziilebildiginden emin olunmasini saglar.

Stire¢c Yoneticisi olarak yapay zeka calisani, merkezi bir kontrol noktasi saglar ve
giiclii siire¢ raporlama ve hata ayiklama yetenekleri sunar. Ancak, uygulamanizdaki
her is akis1 senaryosu i¢in bir Siire¢ Yoneticisi olarak yapay zeka calisani kullanmanin

gereginden fazla olabilecegini unutmamak énemlidir.

Yapay Zeka Calisanlarini Uygulama Mimarinize

Entegre Etme

Yapay zeka calisanlarini uygulama mimarinize entegre ederken, yapay zeka calisanlari
ile diger uygulama bilesenleri arasinda sorunsuz entegrasyon ve etkili iletisimi saglamak
icin birkac teknik hususun ele alinmasi gerekir. Bu boliim, bu arayiizlerin tasarlanmast,
veri akisinin yonetilmesi ve yapay zeka caliganlarinin yasam déngiisiniin yonetilmesi

konularindaki temel yonleri ele almaktadir.

Net Arayiizler ve iletisim Protokolleri Tasarlama

Yapay zeka caliganlari ile diger uygulama bilesenleri arasinda sorunsuz entegrasyonu
kolaylastirmak i¢in net araytzler ve iletisim protokolleri tanimlamak ¢ok 6nemlidir.

Asagidaki yaklasimlar g6z 6niinde bulundurun:

API Tabanli Entegrasyon: Yapay zeka calisanlarinin islevselligini RESTful ug noktalari
veya GraphQL semalar1 gibi iyi tamimlanmis APTler araciligiyla sunun. Bu, diger
bilesenlerin standart HTTP istekleri ve yanitlar1 kullanarak yapay zeka calisanlariyla

etkilesim kurmasima olanak tanir. API tabanli entegrasyon, yapay zeka calisanlari

Iscilerin Coklugu 101

ile tiiketen bilesenler arasinda net bir sozlesme saglayarak entegrasyon noktalarinin

gelistirilmesini, test edilmesini ve bakimini kolaylastirir.

Mesaj Tabanl Iletisim: Yapay zeka galiganlari ile diger bilesenler arasinda asenkron
etkilesimi saglamak igin mesaj kuyruklari veya yaymla-abone ol sistemleri gibi
mesaj tabanli iletisim modellerini uygulaym. Bu yaklasim, yapay zeka calisanlarinm
uygulamanin geri kalanindan ayirarak daha iyi oOlceklenebilirlik, hata toleransi
ve gevsek baglanti saglar. Mesaj tabanli iletisim, ozellikle yapay zeka calisanlar:
tarafindan gergeklestirilen iglemin zaman alic1 veya kaynak yogun oldugu durumlarda
kullanighidir, ¢iinkii uygulamanin diger bolimlerinin yapay zeka calisanlarinin

gorevlerini tamamlamasini beklemeden ¢alismaya devam etmesine olanak tanir.

Olay Giidiimlii Mimari: Sisteminizi, belirli kogullar karsilandiginda yapay zeka
caliganlarini etkinlestiren olaylar ve tetikleyiciler etrafinda tasarlayin. Yapay zeka
calisanlar ilgili olaylara abone olabilir ve olaylar gerceklestiginde uygun sekilde tepki
vererek atanmis gorevlerini yerine getirebilir. Olay giidiimlii mimari, gercek zamanh
islemeyi miimkiin kilar ve yapay zeka ¢alisanlarinin talep tizerine ¢agrilmasina olanak
taniyarak gereksiz kaynak tiiketimini azaltir. Bu yaklasim, yapay zeka calisanlarinin
belirli eylemlere veya uygulama durumundaki degisikliklere yanit vermesi gereken

senaryolar i¢in uygundur.

Veri Akigi ve Senkronizasyonu Yonetme

Yapay zeka calisanlarini uygulamaniza entegre ederken, veri akisinin sorunsuz olmasini
saglamak ve yapay zeka calisanlari ile diger bilesenler arasinda veri tutarliligini korumak

cok onemlidir. Asagidaki yonleri goz 6ntinde bulundurun:

Veri Hazirlama: Verileri yapay zeka caliganlarina beslemeden 6nce, giris verilerini
temizleme, bicimlendirme ve/veya doniistiirme gibi cesitli veri hazirlama gorevlerini
gerceklestirmeniz gerekebilir. Sadece yapay zeka calisanlarinin verileri etkili bir
sekilde isleyebilmesini saglamak istemezsiniz, ayn1 zamanda ¢alisanin en iyi ihtimalle

gereksiz, en kot ihtimalle dikkat dagitici olarak degerlendirebilecegi bilgilere belirteg

Iscilerin Coklugu 102

harcamamak igin de dikkatli olmalisimiz. Veri hazirlama, giaraltiyi kaldirma, eksik

degerleri isleme veya veri tiirlerini dontistiirme gibi gorevleri icerebilir.

Veri Kalicilig1: Yapay zeka calisanlarina giren ve gikan verileri nasil saklayacak ve kalic
hale getireceksiniz? Veri hacmi, sorgu desenleri ve 6lceklenebilirlik gibi faktorleri goz
oniinde bulundurun. Denetim veya hata ayiklama amaclar1 igin yapay zekanin “disiince
stirecinin” bir yansimasi olarak konusma dokiimiinii kalic1 hale getirmeniz mi gerekiyor,

yoksa sadece sonuclarin kaydini tutmak yeterli mi?

Veri Almmu: Iscilerin ihtiya¢ duydugu verileri almak, veritabanlarini sorgulama,
dosyalardan okuma veya harici API'lere erisim igerebilir. Gecikme siiresini ve
yapay zeka iscilerinin en giincel verilere nasil erisecegini géz oniinde bulundurun.
Veritabaniniza tam erisime mi ihtiyaclar1 var yoksa erigim kapsamini yaptiklari ise
gore dar bir sekilde mi tanimlamalisiniz? Ya ol¢eklendirme? Performans: artirmak ve
altta yatan veri kaynaklarinin yikiini azaltmak icin 6nbellege alma mekanizmalarimni

disiiniin.

Veri Senkronizasyonu: Yapay zeka iscileri de dahil olmak iizere birden fazla bilesen
paylasilan verilere erigip bunlari degistirdiginde, veri tutarliligini korumak icin
uygun senkronizasyon mekanizmalariin uygulanmasi 6nemlidir. Iyimser veya
kotimser kilitleme gibi veritabani kilitleme stratejileri, cakismalar1 6nlemenize ve
veri biitiinliigiinii saglamaniza yardimei olabilir. 1lgili veri islemlerini gruplamak ve
atomiklik, tutarlilik, izolasyon ve dayaniklilik (ACID) 6zelliklerini korumak i¢in islem

yonetimi tekniklerini uygulayin.

Hata Yonetimi ve Kurtarma: Veri akig1 siireci sirasinda ortaya cikabilecek veriyle ilgili
sorunlari ele almak i¢in saglam hata yonetimi ve kurtarma mekanizmalar1 uygulayin.
[stisnalar1 zarif bir sekilde ele alin ve hata ayiklamaya yardimci olmak icin anlamli hata
mesajlar1 saglaym. Gegici arizalar1 veya ag kesintilerini ele almak i¢in yeniden deneme
mekanizmalar1 ve yedek stratejiler uygulaym. Veri bozulmasi veya kayb: durumunda

veri kurtarma ve geri yiikleme i¢in net prosediirler tanimlayin.

Veri akist ve senkronizasyon mekanizmalarini dikkatli bir sekilde tasarlayip

Iscilerin Coklugu 103

uygulayarak, yapay zeka iscilerinizin dogru, tutarli ve giincel verilere erigsmesini
saglayabilirsiniz. Bu, gorevlerini etkili bir sekilde yerine getirmelerini ve giivenilir

sonugclar Gretmelerini saglar.

Yapay Zeka iscilerinin Yasam Dongusiinii Yonetme

Yapay zeka iscilerini baslatmak ve yapilandirmak i¢in standartlagtirilmig bir siireg
gelistirin. Model adlari, sistem direktifleri ve fonksiyon tanimlar1 gibi ayarlarin
nasil tanimlanacagini standartlagtiran cergeveleri tercih ediyorum. Dagitim ve
olceklendirmeyi kolaylastirmak icin baslatma siirecinin otomatik ve tekrarlanabilir

olmasini saglayin.

Yapay zeka iscilerinin sagligini ve performansini izlemek igin kapsamli izleme ve giinlik
kayd1 mekanizmalari uygulayin. Kaynak kullanimyi, islem siiresi, hata oranlari ve verim
gibi metrikleri toplaym. Birden fazla yapay zeka iscisinden gelen giinliikleri toplamak
ve analiz etmek icin ELK y1gin1 (Elasticsearch, Logstash, Kibana) gibi merkezi giinlitk

sistemleri kullanin.

Yapay zeka iscisi mimarisine hata toleransi ve dayaniklilik ekleyin. Arizalari veya
istisnalar1 zarif bir sekilde ele almak icin hata yonetimi ve kurtarma mekanizmalar:
uygulaymn. Biiyiik Dil Modelleri hala gelismekte olan bir teknoloji; saglayicilar
genellikle beklenmedik zamanlarda ¢okme egilimindedir. Zincirleme arizalar1 6nlemek

icin yeniden deneme mekanizmalari ve devre kesiciler kullanin.

Yapay Zeka iscilerinin Birlestirilebilirligi ve
Orkestrayonu

Yapay zeka iscisi mimarisinin temel avantajlarindan biri, karmagik problemleri ¢c6zmek
icin birden fazla yapay zeka is¢isini birlestirmenize ve orkestre etmenize olanak saglayan

birlestirilebilirligidir. Daha biiyiik bir gérevi, her biri 6zellesmis bir yapay zeka iscisi

Iscilerin Coklugu 104

tarafindan ele alinan daha kugiik, daha yo6netilebilir alt gorevlere bolerek giiclii ve esnek
sistemler olugturabilirsiniz. Bu boliimde, “¢ok sayida” yapay zeka is¢isini birlegtirme ve

orkestre etmenin farkli yaklagimlarini inceleyecegiz.

Cok Adimli is Akislari icin Yapay Zeka iscilerini Zincirleme

Bircok senaryoda, karmagik bir gorev, bir yapay zeka iscisinin ¢iktisinin bir sonrakinin
girdisi haline geldigi bir dizi ardistk adima ayrilabilir. Bu yapay zeka iscilerinin
zincirlenmesi ¢ok adimli bir ig akis1 veya pipeline olusturur. Zincirdeki her yapay zeka
iscisi belirli bir alt goreve odaklanir ve nihai ¢ikti, tiim iscilerin birlesik cabalarinin

sonucudur.

Kullanic1 tarafindan olusturulan igerigi islemek igin bir Ruby on Rails uygulamasi
baglaminda bir 6rnek diisiinelim. Is akis1 asagidaki adimlari igerir ki bunlarm her biri
muhtemelen gercek hayatta bu sekilde ayristirilmaya degmeyecek kadar basittir, ancak

ornegi anlamayi kolaylastirirlar:

1. Metin Temizleme: HTML etiketlerini kaldirmak, metni kii¢iik harfe doniistiirmek ve

Unicode normallestirmesini ele almaktan sorumlu bir yapay zeka iscisi.
2. Dil Algilama: Temizlenmis metnin dilini tanimlayan bir yapay zeka is¢isi.

3. Duygu Analizi: Algilanan dile gore metnin duygusunu (pozitif, negatif veya nétr)
belirleyen bir yapay zeka iscisi.
4. Icerik Kategorizasyonu: Dogal dil isleme tekniklerini kullanarak metni énceden

tanimlanmig kategorilere siniflandiran bir yapay zeka iscisi.

Iste Ruby kullanarak bu yapay zeka iscilerini birbirine zincirlemenin ¢ok basitlestirilmis

bir érnegi:

© 0 N O O b W N e

11
12
13
14

Iscilerin Coklugu 105

class ContentProcessor
def initialize(text)
@text = text
end

def process
cleaned_text = TextCleanupWorker .new(@text).call
language = LanguageDetectionWorker.new(cleaned_text).call
sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call
category = CategorizationWorker.new(cleaned_text, language).call

{ cleaned_text:, language:, sentiment:, category: }
end

end

Bu 6rnekte, ContentProcessor simnifi ham metin ile baslatilir ve process metodunda
YZ is¢ilerini birbirine zincirleme baglar. Her YZ iscisi kendi 6zel gorevini yerine getirir
ve sonucu zincirdeki bir sonraki isciye aktarir. Son ¢ikti, temizlenmis metin, algilanan

dil, duygu durumu ve icerik kategorisini iceren bir hash’tir.

Bagimsiz YZ iscileri icin Paralel isleme

Onceki ornekte, YZ iscileri sirali bir sekilde zincirlenmisti; her isci metni isliyor ve
sonucu bir sonraki isciye aktariyordu. Ancak, aymi girdi tzerinde bagimsiz olarak
caligabilen birden fazla YZ isciniz varsa, bunlari paralel olarak isleyerek is akisin

optimize edebilirsiniz.

Verilen senaryoda, metin TextCleanupWorker tarafindan temizlendikten
sonra, LanguageDetectionWorker, SentimentAnalysisWorker ve
CategorizationWorker temizlenmis metni bagimsiz olarak isleyebilir. Bu iscileri
paralel olarak calistirarak, genel islem siiresini potansiyel olarak azaltabilir ve ig

akiginizin verimliligini artirabilirsiniz.

Ruby’de paralel isleme elde etmek icin is parcaciklar1 veya asenkron programlama

gibi eszamanlilik tekniklerinden yararlanabilirsiniz. Iste ContentProcessor smnifini,

© 0 N O O b W N =

N DN N DN DN N NN NN A s
© 0 <N O O b WO N~ O © 0 1 O U b Ww N =~ O

Iscilerin Coklugu 106

son uc¢ isciyi is parcaciklarini kullanarak paralel olarak isleyecek sekilde nasil

degistirebileceginize dair bir 6rnek:
require 'concurrent'

class ContentProcessor
def initialize(text)
Otext = text
end

def process

cleaned_text = TextCleanupWorker.new(@text).call

language_future = Concurrent: :Future.execute do
LanguageDetectionWorker .new(cleaned_text).call
end

sentiment_future = Concurrent: :Future.execute do
SentimentAnalysisWorker .new(cleaned_text).call
end

category_future = Concurrent: :Future.execute do
CategorizationWorker .new(cleaned_text).call
end

language = language_future.value
sentiment = sentiment_future.value
category = category_future.value

{ cleaned_text:, language:, sentiment:, category: }
end
end

Bu optimize edilmis versiyonda, bagimsiz Al iscileri i¢in Concurrent::Future
nesneleri olusturmak {izere concurrent-ruby kiitiiphanesini kullaniyoruz. Bir
Future, ayr bir is parcaciginda eszamansiz olarak gerceklestirilecek bir hesaplamayi

temsil eder.

Metin temizleme adimindan sonra, i¢ Future nesnesi olusturuyoruz:

language_future, sentiment_future ve category_future. Her Future,

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Iscilerin Coklugu 107

karsilik gelen Al iscisini (LanguageDetectionWorker, SentimentAnalysisWorker
ve CategorizationWorker) ayr bir is parcaciginda galistirir ve cleaned_text’i

girdi olarak iletir.

Her Future’in value metodunu cagirarak, hesaplamanin tamamlanmasini bekler ve
sonucu aliriz. value metodu, sonug¢ kullanilabilir olana kadar bloklar ve tiim paralel

iscilerin islemlerini tamamladigindan emin olur.

Son olarak, orijinal 6rnekte oldugu gibi, temizlenmis metin ve paralel iscilerden gelen

sonugclarla ¢ikt1 hash’ini olustururuz.

Bagimsiz Al iscilerini paralel olarak isleyerek, sirali ¢alistirmaya kiyasla genel iglem
stiresini potansiyel olarak azaltabilirsiniz. Bu optimizasyon o&zellikle zaman alict

gorevlerle ugrasirken veya biiyiik veri hacimleri iglenirken faydalidir.

Ancak, gercek performans kazanimlarinin her bir is¢inin karmagikligi, mevcut sistem
kaynaklar1 ve is parcacig1 yonetiminin ek yiki gibi ¢esitli faktorlere bagli oldugunu
unutmamak 6nemlidir. Belirli kullanim senaryonuz igin optimal paralellik seviyesini

belirlemek tizere kodunuzu kiyaslamak ve profillemek her zaman iyi bir uygulamadir.

Ek olarak, paralel isleme uygularken, isciler arasindaki paylagilan kaynaklari veya
bagimliliklar1 g6z 6niinde bulundurmaniz gerekir. Iscilerin cakisma veya yaris kosullart
olmadan bagimsiz calisabildiginden emin olun. Bagimliliklar veya paylasilan kaynaklar
varsa, veri butinliginid korumak ve kilitlenme veya tutarsiz sonuglar gibi sorunlari

onlemek icin uygun senkronizasyon mekanizmalari uygulamaniz gerekebilir.

Ruby’nin Global Interpreter Lock’'u ve Eszamansiz
isleme

Ruby’de is parcacigi tabanli eszamansiz islemeyi disiintirken Ruby’nin Global

Interpreter Lock (GIL) etkilerini anlamak onemlidir.

Iscilerin Coklugu 108

GIL, ¢ok cekirdekli islemcilerde bile bir seferde yalnizca bir is parcaciginin Ruby
kodunu c¢alistirabilmesini saglayan Ruby yorumlayicisindaki bir mekanizmadir. Bu,
bir Ruby islemi i¢inde birden ¢ok is parcacig1 olusturulup yénetilebilse de, herhangi
bir anda yalnizca bir i par¢aciginin aktif olarak Ruby kodu ¢alistirabilecegi anlamina

gelir.

GIL, Ruby yorumlayicisinin uygulanmasini basitlestirmek ve Ruby’nin dahili veri
yapilart icin is pargacigi givenligi saglamak iizere tasarlanmistir. Ancak ayni

zamanda Ruby kodunun gercek paralel yuratilme potansiyelini de sinirlar.

Ruby’de concurrent-ruby kiitiiphanesi veya yerlesik Thread sinifi gibi is
parcaciklarini kullandigimizda, is parcaciklari GIL’in kisitlamalarina tabidir. GIL,
her is parcaciginin baska bir is parcacigina gegmeden 6nce kisa bir siire Ruby kodu

calistirmasina izin vererek, eszamanl yiriitme yanilsamasi yaratir.

Ancak, GIL nedeniyle, Ruby kodunun gercek ytiratiilmesi sirali kalir. Bir i parcacigi
Ruby kodu calistirirken, diger is parcaciklari esasen duraklatilir ve GIL’i edinip

calistirmak icin siralarini bekler.

Bu, Ruby’de is parcacigi tabanli eszamansiz iglemenin, harici API yanitlarini (3.
taraf barmdirlan biyik dil modelleri gibi) beklemek veya dosya G/C islemleri
gerceklestirmek gibi G/C bagimli gérevler icin en etkili oldugu anlamina gelir. Bir
is parcacig1 bir G/C islemiyle karsilastiginda, GIL’i serbest birakabilir ve G/C’nin

tamamlanmasini beklerken diger is parcaciklarinin ¢alismasina izin verebilir.

Ote yandan, yogun hesaplamalar veya uzun siiren Al isci islemeleri gibi CPU
bagimli gorevler igin, GIL is parcacig1 tabanl paralelligin potansiyel performans
kazanimlarin1 smurlayabilir. Bir seferde yalnizca bir is parcacigi Ruby kodu
calistirabildiginden, genel yiriitme stresi sirali islemeye kiyasla 6nemli 6lciide

azalmayabilir.

Ruby’de CPU bagimli gorevler icin gergek paralel yiiriitme elde etmek icin su

alternatif yaklasimlari kesfetmeniz gerekebilir:

Iscilerin Coklugu 109

« Her biri ayr1 bir CPU ¢ekirdeginde calisan birden ¢ok Ruby islemi ile islem
tabanli paralellik kullanmak.

+ GIL’e sahip olmayan C veya Rust gibi dillere yerel uzantilar veya araytizler
saglayan harici kiitiiphaneleri veya cerceveleri kullanmak.,

+ Gorevleri birden cok makine veya islem arasinda dagitmak icin dagitik

hesaplama cerceveleri veya mesaj kuyruklar: kullanmak.

Ruby’de eszamansiz isleme tasarlarken ve uygularken gorevlerinizin dogasini ve
GIL tarafindan getirilen smirlamalari géz 6ntnde bulundurmak cok 6nemlidir.
Is pargacigi tabanli eszamansiz isleme G/C bagimh gérevler igin faydalar
saglayabilirken, GIL’in kisitlamalar1 nedeniyle CPU bagimli gorevler icin 6nemli

performans iyilestirmeleri sunmayabilir.

Gelismis Dogruluk icin Topluluk Teknikleri

Topluluk teknikleri, sistemin genel dogrulugunu veya saglamligini iyilestirmek icin
birden ¢ok AI iscisinin ¢iktilarini birlestirmeyi igerir. Tek bir Al is¢isine giivenmek
yerine, topluluk teknikleri daha bilingli kararlar almak icin birden ¢ok iscinin kolektif

zekasindan yararlanir.

’ Topluluklar, is akisgimizin farkli bolimleri farkli yapay zeka modelleriyle

daha iyi calistiginda ozellikle 6nemlidir ki bu disiindigintizden daha
yaygin bir durumdur. GPT-4 gibi giicli modeller, daha az yetenekli
actk kaynak seceneklerine kiyasla oldukga pahalidir ve muhtemelen

uygulamanizin her is akis1 adimi i¢in gerekli degildir.

Yaygn bir topluluk teknigi olan ¢ogunluk oylamasi, birden fazla yapay zeka bileseninin

aynmi girdiyi bagimsiz olarak isledigi ve nihai c¢iktinin ¢ogunlugun konsensisi ile

© 0 N O O b W N =

I = T T T
© 00 N O O b W N =~ o

Iscilerin Coklugu 110

belirlendigi bir yontemdir. Bu yaklasim, bireysel bilesen hatalarinin etkisini azaltmaya

ve sistemin genel giivenilirligini artirmaya yardimet olabilir.

Duygu analizi igin farkli modeller kullanan veya farkli baglamlarla donatilmig g
yapay zeka bilesenine sahip oldugumuz bir 6rnegi distinelim. Nihai duygu tahminini

belirlemek i¢in ¢ogunluk oylamasi kullanarak bu bilesenlerin ¢iktilarini birlestirebiliriz.

class SentimentAnalysisEnsemble
def initialize(text)
@text = text
end

def analyze
predictions = |
SentimentAnalysisWorker1.new(@text).analyze,
SentimentAnalysisWorker2.new(@text).analyze,

SentimentAnalysisWorker3.new(@text).analyze

predictions
.group_by { |sentiment| sentiment }
.max_by { |_, votes| votes.size }
Cfirst

end
end

Bu 6rnekte, SentimentAnalysisEnsemble sinifi metin ile baglatilir ve ti¢ farkli duygu
analizi yapay zeka iscisini ¢agirir. analyze metodu her isciden tahminleri toplar ve
group_by ve max_by metotlarini kullanarak ¢ogunluk duygusunu belirler. Final ¢ikt1,

isciler toplulugundan en ¢ok oyu alan duygudur.

Topluluklar agikca paralellik ile denemeler yapmanin degerli olabilecegi bir
durumdur.

O© 0 N O O b W N =

[= S
O O s W N

Iscilerin Coklugu 111

Yapay Zeka iscilerinin Dinamik Secimi ve Cagrilmasi

Bazi, hatta ¢ogu durumda, cagrilacak belirli yapay zeka is¢isi ¢alisma zamani kosullaria
veya kullanici girdilerine bagh olabilir. Yapay zeka isgilerinin dinamik se¢imi ve

cagrilmasi, sistemde esneklik ve uyarlanabilirlik saglar.

’ Kendinizi tek bir yapay zeka iscisine cok fazla islevsellik sigdirmaya

calisirken bulabilirsiniz; ona bir¢cok fonksiyon ve bunlarin nasil ¢cagrilacagini
actklayan bty ik, karmagik bir yonerge vermeye ¢alisabilirsiniz. Bu cazibeye
direnin, bana giivenin. Bu béliimde tartistigimiz yaklagimin “Isciler
Coklugu” olarak adlandirilmasinin nedenlerinden biri, daha buyik bir
amaca hizmet eden, her biri kendi kiiciik isini yapan ¢ok sayida uzmanlasmis

isciye sahip olmanin arzu edilir oldugunu hatirlatmaktir.

Ornegin, farkli yapay zeka isgilerinin farkli tiirdeki kullanici sorgularini iglemekten
sorumlu oldugu bir sohbet robotu uygulamasini diisiniin. Uygulama, kullanicinin
girdisine bagli olarak sorguyu islemek i¢in uygun yapay zeka iscisini dinamik olarak

secer.

class ChatbotController < ApplicationController
def process_query
query = params|:query]

query_type = QueryClassifierWorker.new(query).classify

case query_type
when 'greeting'

response = GreetingWorker.new(query).generate_response
when 'product_inquiry'

response = ProductInquiryWorker.new(query).generate_response
when 'order_status'

response = OrderStatusWorker.new(query).generate_response
else

response = DefaultResponseWorker .new(query).generate_response
end

17
18
19

Iscilerin Coklugu 112

render json: { response: response }
end

end

Bu oOrnekte, ChatbotController kullanici sorgusunu process_query
eylemi aracihgiyla alir. Ilk olarak, sorgunun tiiriinii belirlemek icin bir
QueryClassifierWorker kullanir. Siniflandirilmis sorgu tiiriine bagli olarak,
denetleyici yaniti olusturmak icin uygun YZ calisganini dinamik olarak seger. Bu
dinamik secim, sohbet robotunun farkl: tiirdeki sorgulari islemesine ve bunlari ilgili YZ

caliganlarina yonlendirmesine olanak tanir.

P QueryClassifierWorker’n isi goreceli olarak basit oldugundan ve ¢ok

fazla baglam veya fonksiyon tanimi gerektirmediginden, muhtemelen
mistralai/mixtral-8x7Tb-instruct:nitro gibi ultra hizh kigik bir
BDM kullanarak bunu uygulayabilirsiniz. Bir¢ok gérevde GPT-4 seviyesine
yakin yeteneklere sahip ve bu satirlar1 yazdigim sirada, Groq bunu miithis

bir 444 token/saniye hizinda sunabiliyor.

Geleneksel DDi'yi BDM’lerle Birlestirme

Biiyiikk Dil Modelleri (BDM), dogal dil isleme (DDI) alaninda devrim yaratmis ve
cok cesitli gorevlerde benzersiz ¢ok yonlilliik ve performans sunmus olsa da, her
problem icin her zaman en verimli veya maliyet-etkin ¢6zlim degildir. Bircok durumda,
geleneksel DDI tekniklerini BDMlerle birlestirmek, belirli DDI zorluklarmi ¢ozmek icin

daha optimize edilmis, hedefe yonelik ve ekonomik yaklasimlara yol agabilir.

BDM’leri DDI'nin Isvicre cakilar1 olarak diisiiniin—inanilmaz derecede ¢ok yonlii ve
giicli, ancak her is i¢in mutlaka en iyi ara¢ degil. Bazen, tirbuson veya konserve agacagi
gibi 6zel bir arag, belirli bir gérev igin daha etkili ve verimli olabilir. Benzer sekilde,

belge kiimeleme, konu tanimlama ve siniflandirma gibi geleneksel DDI teknikleri, DDI

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Iscilerin Coklugu 113

stirecinizin belirli yonleri i¢in genellikle daha hedefe y6nelik ve maliyet-etkin ¢oziimler

sunabilir.

Geleneksel DDI tekniklerinin temel avantajlarindan biri, hesaplama verimlilikleridir.
Genellikle daha basit istatistiksel modellere veya kural tabanli yaklagimlara dayanan
bu yoéntemler, BDM’lere kiyasla biiyitk metin verilerini ¢ok daha hizli ve daha diisiik
hesaplama yiikiiyle isleyebilir. Bu, benzer makaleleri kiimelemek veya bir metin
koleksiyonu icindeki temel konulari belirlemek gibi buyiik belge korpuslarini analiz

etmeyi ve diizenlemeyi iceren gorevler igin 6zellikle uygundur.

Ayrica, geleneksel DDI teknikleri, 6zellikle alana 6zgii veri setleri iizerinde
egitildiklerinde, belirli gorevler icin genellikle yiiksek dogruluk ve hassasiyet elde
edebilir. Ornegin, Destek Vektor Makineleri (DVM) veya Naive Bayes gibi geleneksel
makine 6grenimi algoritmalarimi kullanan iyi ayarlanmis bir belge smiflandirici,
minimum hesaplama maliyetiyle belgeleri 6nceden tanimlanmis kategorilere dogru bir

sekilde siniflandirabilir.

Ancak, BDM’ler dil, baglam ve akil yiriitmenin daha derin bir anlayigin1 gerektiren
gorevlerde gercekten parlar. Tutarli ve baglamsal olarak ilgili metin tiretme, sorulari
yanitlama ve uzun pasajlar1 zetleme yetenekleri, geleneksel DDI yéntemleri tarafindan
eslenemez. BDM ler belirsizlik, e referans ve deyimsel ifadeler gibi karmasik dilbilimsel
olgular: etkili bir sekilde ele alabilir, bu da onlar1 dogal dil tretimi veya anlama

gerektiren gorevler i¢in paha bicilmez kilar.

Asil giig, her ikisinin de giiclii yonlerinden yararlanan hibrit yaklasimlar olusturmak
icin geleneksel DDI tekniklerini BDM’lerle birlestirmekte yatar. Belge 6n isleme,
kiimeleme ve konu ¢ikarma gibi gorevler icin geleneksel DDI yéntemlerini kullanarak,
metin verilerinizi verimli bir sekilde diizenleyebilir ve yapilandirabilirsiniz. Bu
yapilandirilmig bilgiler daha sonra 6zetler olusturma, sorulari yanitlama veya kapsaml

raporlar olusturma gibi daha gelismis gorevler icin BDM’lere beslenebilir.

Ornegin, bityiik bir bireysel trend belgeleri korpusuna dayali olarak belirli bir alan icin

bir trendler raporu olusturmak istediginiz bir kullanim durumunu diisiinelim. Biyiik

Iscilerin Coklugu 114

metin hacimlerini islemek icin hesaplama acisindan pahali ve zaman alict olabilen

yalnizca BDM’lere giivenmek yerine, hibrit bir yaklasim kullanabilirsiniz:

1. Benzer trend belgelerini gruplamak ve korpus icindeki temel temalar1 ve konular1
belirlemek i¢in konu modellemesi (6rn. Gizli Dirichlet Tahsisi) veya kiimeleme
algoritmalar1 (6rn. K-means) gibi geleneksel DDI tekniklerini kullanin.

2. Kiimelenmis belgeleri ve tanimlanmis konulari, her kiime veya konu icin
tutarli ve bilgilendirici 6zetler olusturmak tizere tstin dil anlama ve iretme
yeteneklerinden yararlanarak bir BDM’ye besleyin.

3. Son olarak, bireysel 6zetleri birlestirerek, en 6nemli trendleri vurgulayarak ve
toplanan bilgilere dayali i¢goriiler ve 6neriler sunarak kapsamli bir trendler raporu

olusturmak icin BDM’yi kullanin.

Geleneksel DDI tekniklerini BDM’lerle bu sekilde birlestirerek, hesaplama kaynaklarini
ve maliyetleri optimize ederken bilyiik miktarda metin verisini verimli bir gekilde

isleyebilir, anlaml icgoriiler ¢ikarabilir ve yiiksek kaliteli raporlar olusturabilirsiniz.

DDI projelerinize baslarken, her gérevin &6zel gereksinimlerini ve kisitlamalarini
dikkatle degerlendirmek ve en iyi sonuclari elde etmek icin geleneksel DDI yontemleri
ile LLM’lerin nasil birlikte kullanilabilecegini goz 6niinde bulundurmak 6nemlidir.
Geleneksel tekniklerin verimliligini ve hassasiyetini LLM’lerin ¢ok yonliligi ve
giiciiyle birlestirerek, kullanicilariniza ve paydaslariniza deger katan, son derece etkili

ve ekonomik DDI céziimleri olusturabilirsiniz.

Arac Kullanimi

Yapay zeka destekli uygulama gelistirme alaninda, “arackullanimi” veya

“fonksiyon ¢agirma” kavrami, LLM’nizin harici araclara, APT’lere, fonksiyonlara,
veritabanlarina ve diger kaynaklara baglanmasini saglayan giiclii bir teknik olarak
ortaya cikmustir. Bu yaklagim, sadece metin ¢iktis1 vermekten daha zengin bir davranis
seti ve Al bilesenleriniz ile uygulamanizin ekosisteminin geri kalani arasinda daha
dinamik etkilesimler saglar. Bu bélimde inceleyecegimiz gibi, ara¢ kullanimi aym
zamanda Al modelinizin verileri yapilandirilmig sekillerde tretmesi secenegini de

sunar.

Arac¢ Kullanimi Nedir?

Arag kullanimi, diger adiyla fonksiyon ¢agirma, gelistiricilerin LLM’nin iretim streci

sirasinda etkilesimde bulunabilecegi fonksiyonlarin bir listesini belirlemesine olanak

Arag Kullanimi 116

taniyan bir tekniktir. Bu araclar, basit yardimcr fonksiyonlardan karmasik API’lere
veya veritabani sorgularina kadar uzanabilir. LLM’ye bu araglara erigim saglayarak,
gelistiriciler modelin yeteneklerini genisletebilir ve harici bilgi veya eylem gerektiren

gorevleri gerceklestirmesini saglayabilir.

Sekil 8. Belgeleri analiz eden bir Al calisani i¢cin fonksiyon tanimi drnegi

FUNCTION = {
name: "save_analysis",
description: "Save analysis data for document",
parameters: {
type: "object",
properties: {
title: {
type: "string",
maxLength: 140
},
summary: {
type: "string",
description: "comprehensive multi-paragraph summary with
overview and list of sections (if applicable)"
3
tags: {
type: "array",
items: {
type: "string",
description: "lowercase tags representing main themes

of the document"

}
}I

"required": %w[title summary tags]

}

}. freeze

Arag kullaniminin arkasindaki temel fikir, BDM’ye kullanicinin girdisine veya eldeki
goreve bagli olarak uygun araglari dinamik olarak se¢me ve yiiriitme yetenegi vermektir.
Yalnizca modelin 6nceden egitilmis bilgisine giivenmek yerine, ara¢ kullanimi BDM’nin

daha dogru, alakali ve eyleme gegirilebilir yanitlar iiretmek icin harici kaynaklar

Arag Kullanimi 117

kullanmasina olanak tanir. Arac kullanimi, GGU (Geri Getirme ile Giiclendirilmis

Uretim) gibi tekniklerin uygulanmasini, aksi duruma gore ¢ok daha kolay hale getirir.

Aksi belirtilmedikce, bu kitap AI modelinizin herhangi bir yerlesik sunucu tarafi
araca erisimi olmadifini varsayar. Al'mizin kullanimma sunmak istediginiz
her aracin, Al'niz size bu araci yamitinda kullanmak istedigini soylediginde
yuratilmesini saglayacak oOnlemlerle birlikte, her API isteginde agik¢a sizin

tarafinizdan belirtilmesi gerekir.

Arac¢ Kullaniminin Potansiyeli

Arag kullanimi, Al destekli uygulamalar igin genis bir olasiliklar yelpazesi acar. Iste arag

kullanimiyla neler basarilabilecegine dair birka¢ drnek:

1. Sohbet Botlar1 ve Sanal Asistanlar: Bir BDM’yi harici araglara baglayarak,
sohbet botlar1 ve sanal asistanlar veritabanlarmmdan bilgi alma, API cagrilart
yapma veya diger sistemlerle etkilesim kurma gibi daha karmasik gorevleri
gergeklestirebilir. Ornegin, bir sohbet botu kullanicinin istegine bagh olarak bir
anlagsmanin durumunu degistirmek icin bir MIY aracini kullanabilir.

2. Veri Analizi ve I¢goriller: BDM’ler gelismis veri isleme gorevlerini
gerceklestirmek icin veri analizi araglarina veya kitiiphanelerine baglanabilir.
Bu, uygulamalarin kullanici sorgularina dayali olarak iggoriiler tretmesini,
karsilagtirmali analizler yapmasini veya veriye dayali 6neriler sunmasini saglar.

3. Arama ve Bilgi Getirme: Ara¢ kullanimi, BDM’lerin arama motorlari, vektor
veritabanlar1 veya diger bilgi getirme sistemleriyle etkilesim kurmasima olanak
tanir. BDM, kullanict sorgularini arama sorgularia déniistiirerek birden fazla
kaynaktan ilgili bilgileri getirebilir ve kullanici sorularma kapsamli yanitlar

saglayabilir.

Arag Kullanimi 118

4. Harici Hizmetlerle Entegrasyon: Arac¢ kullanimi, Al destekli uygulamalar ile
harici hizmetler veya API’ler arasinda sorunsuz entegrasyon saglar. Ornegin, bir
BDM gercek zamanli hava durumu giincellemeleri saglamak icin bir hava durumu
APTsi ile veya cok dilli yanitlar iiretmek icin bir geviri APIsi ile etkilesime

girebilir.

Arac Kullanim is Akisi

Arac kullanim is akis1 genellikle dort temel adimi igerir:

1. Istek baglama fonksiyon tanimlarini dahil etme
2. Dinamik (veya acik) arac secimi
3. Fonksiyon(lar)in yiritilmesi

4. Orijinal istegin istege bagli devami

Bu adimlarin her birini detayl: olarak inceleyelim.

istek baglamina fonksiyon tanimlarini dahil etme

Al tamamlama isteginizin bir parcasi olarak verdiginiz bir liste sayesinde (genellikle
JSON semas: varyant: kullanilarak tanimlanan fonksiyonlar) hangi araclara sahip

oldugunu bilir.
Arag tanimlama sozdizimi modele 6zgtdir.

Claude 3’te bir get_weather fonksiyonunu su sekilde tanimlarsiniz:

© 0 N O O & W N =~

T O = =Y
© 0 N O O b= W N -~ O

© 0 N O O » W N o~

I = ==Y
=N O O bW N e

Arag Kullanimi 119

{
"name": "get_weather",
"description": "Get the current weather in a given location",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
3,
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature"
}
3,
"required": ["location"]
}
}

Ve ayni fonksiyonu GPT-4 i¢in tanimlamak igin, tools parametresinin degeri olarak su

sekilde iletirsiniz:

"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",

"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {

"type": "string",

"enum": ["celsius", "fahrenheit"],

"description": "The unit of temperature"
},

} ’

"required": ["location"],

18
19

a b W N =

Arag Kullanimi 120

Neredeyse ayni, ama goriiniirde hicbir sebep yokken farkli! Ne kadar sinir bozucu.

Fonksiyon tanimlamalari isim, agiklama ve giris parametrelerini belirtir. Giris
parametreleri, kabul edilebilir degerleri sinirlamak icin enum gibi o6znitelikler
kullanilarak ve bir parametrenin gerekli olup olmadig: belirtilerek daha ayrintili

tanimlanabilir.

Gercek fonksiyon tanimlamalarina ek olarak, sistem yonergesine fonksiyonun sistemde

neden ve nasil kullanilacagina dair talimatlari veya baglami da ekleyebilirsiniz.

Ornegin, Olympia’daki Web Arama aracim, YZ’ye bahsedilen araglarin kullaniminda

oldugunu hatirlatan su sistem y6nergesini icerir:

The “google_search™ and “realtime_search™ functions let you do research
on behalf of the user. In contrast to Google, realtime search is powered
by Perplexity and provides real-time information to curated current events
databases and news sources. Make sure to include URLs in your response so
user can do followup research.

Detayli agiklamalar saglamak, ara¢ performansinda en 6nemli faktor olarak kabul edilir.

Aciklamalariniz, ara¢ hakkindaki her detay: aciklamalidir, bunlar dahil:

« Aracin ne yaptig1
+ Ne zaman kullanilmas: gerektigi (ve ne zaman kullanilmamas: gerektigi)
« Her parametrenin ne anlama geldigi ve aracin davranigini nasil etkiledigi

« Aracin uygulamasina iligkin 6nemli uyarilar veya kisitlamalar

Araclarimiz hakkinda yapay zekaya ne kadar ¢ok baglam saglarsaniz, yapay zeka

bu araglari ne zaman ve nasil kullanacagina o kadar iyi karar verecektir. Ornegin,

© W N O O b W N =

NN NN NN NN RS RS R S s s
© ® 9 O O & W N~ O © 0 = O O b W N =~ O

Arag Kullanimi 121

Anthropic, Claude 3 serisi igin arac bagina en az 3-4 cimlelik aciklama 6nermektedir,

eger ara¢ karmagiksa daha fazlasi gerekebilir.

Sezgisel olmayabilir, ancak aciklamalar 6rneklerden daha onemli kabul edilir. Bir
aracin nasil kullanilacagina dair 6rnekleri agiklamasina veya beraberindeki yonergeye
ekleyebilirseniz de, bu, aracin amacinin ve parametrelerinin net ve kapsamli bir
aciklamasina sahip olmaktan daha az énemlidir. Ornekleri ancak aciklamayi tam olarak

gelistirdikten sonra ekleyin.

Iste Stripe benzeri bir API fonksiyon spesifikasyonu érnegi:

"name": "createPayment",
"description": "Create a new payment request",
"parameters": {
"type": "object",
"properties": {
"transaction_amount": {
"type": "number",
"description": "The amount to be paid"
1
"description": {
"type": "string",
"description": "A brief description of the payment™”
1
"payment_method_id": {
"type": "string",
"description": "The payment method to be used"
3
"payer": {
"type": "object",
"description": "Information about the payer, including their name,
email, and identification number",
"properties": {
"name": {
"type": "string",
"description": "The payer's name"
3
"email": {
"type": "string",

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Arag Kullanimi 122

"description": "The payer's email address"”

3,
"identification": {
"type": "object",
"description": "The payer's identification number",
"properties": {
"type": {
"type": "string",
"description": "Identification document (e.g. CPF, CNPJ)"
3

"number": {
"type": "string",
"description": "The identification number"
}
¥

"required": ["type", "number"]
}
}I

"required": ["name", "email", "identification"]

’ Pratikte, bazi modeller i¢ ice gecmis fonksiyon tanimlamalariyla ve

diziler, sozlikler gibi karmasik ¢ikt1 veri tiirleriyle basa ¢ikmakta
zorlanir. Ancak teoride, herhangi bir derinlikte JSON Sema tanimlamalar:

saglayabilmelisiniz!

Dinamik Ara¢ Sec¢imi

Arac¢ tanimlamalar iceren bir sohbet tamamlamas: yiiriittigiiniizde, DDD dinamik
olarak kullanilacak en uygun arag(lar1) secer ve her arag i¢in gerekli girdi parametrelerini

olusturur.

Pratikte, yapay zekanin tam olarak dogru fonksiyonu cagirma ve girdi

tanimlamalarimiza tam olarak uyma kapasitesi degiskenlik gosterir. Sicaklik

Arag Kullanimi 123

hiperparametresini 0.0’a kadar diisirmek ¢ok yardimeci olur, ancak deneyimlerime gére
yine de ara sira hatalarla karsilasirsiniz. Bu hatalar arasinda hayal edilmis fonksiyon
isimleri, yanlis isimlendirilmis veya tamamen eksik girdi parametreleri bulunur.
Parametreler JSON olarak iletilir, bu da bazen kesik, yanlis tirnak isaretli veya baska

sekillerde bozuk JSON’dan kaynaklanan hatalar gérebileceginiz anlamna gelir.

P Kendi Kendini Onaran Veri desenleri, s6zdizimi hatalarindan dolay1 bozulan

fonksiyon cagrilarini otomatik olarak diizeltmeye yardimect olabilir.

Zorlanmis (Acik) Arag Se¢imi

Bazi modeller, istekte bir parametre olarak belirli bir fonksiyonun ¢agrilmasini zorlama
secenegi sunar. Aksi takdirde, fonksiyonun cagrilip cagrilmayacagi tamamen yapay

zekanin takdirine baghdir.

Bir fonksiyon cagrisini zorlama yetenegi, yapay zekanin dinamik se¢im siirecinden
bagimsiz olarak belirli bir aracin veya fonksiyonun yiratilmesini saglamak istediginiz

bazi senaryolarda ¢ok 6nemlidir. Bu yetenegin 6nemli olmasinin birka¢ nedeni vardir:

1. Acik Kontrol: Yapay zekay: bir Ayrik Bilesen olarak veya belirli bir zamanda
belirli bir fonksiyonun yiriitiilmesini gerektiren 6nceden tanimlanmis bir is
akiginda kullaniyor olabilirsiniz. Cagriy1 zorlayarak, yapay zekadan nazikge
yapmasini istemek yerine istenen fonksiyonun cagrilmasini garanti edebilirsiniz.

2. Hata Ayiklama ve Test: Yapay zeka destekli uygulamalar: gelistirirken ve test
ederken, fonksiyon cagrilarini zorlama yetenegi hata ayiklama amaglari icin ¢ok
degerlidir. Belirli fonksiyonlar: agikca tetikleyerek, uygulamanizin bilesenlerini
izole edebilir ve test edebilirsiniz. Bu, fonksiyon uygulamalarinin dogrulugunu
dogrulamaniza, girdi parametrelerini kontrol etmenize ve beklenen sonuclarin

dondirildiginden emin olmaniza olanak tanir.

Arag Kullanimi 124

3. U¢ Durumlar: Ele Alma: Yapay zekanin dinamik se¢im siirecinin, dis siireclere
dayali olarak cagirmasi gerektigini bildiginiz bir fonksiyonu se¢meyebilecegi ug
durumlar veya istisnai senaryolar olabilir. Bu gibi durumlarda, bir fonksiyon
cagrisini zorlama yetenegi bu durumlar: agikca ele almaniza olanak tanir. Yapay
zekanin takdirini ne zaman gecersiz kilacagimzi belirlemek icin uygulama
mantigimizda kurallar veya kosullar tanimlayin.

4. Tutarlilik ve Tekrarlanabilirlik: Belirli bir sirayla yiritiilmesi gereken belirli bir
fonksiyon diziniz varsa, ¢agrilar1 zorlamak her seferinde ayni siranin izlenmesini
garanti eder. Bu, finansal sistemler veya bilimsel simiilasyonlar gibi tutarliligin ve
ongorilebilir davranigin kritik oldugu uygulamalarda 6zellikle 6nemlidir.

5. Performans Optimizasyonu: Bazi durumlarda, bir fonksiyon cagrisini zorlamak
performans optimizasyonlarma yol acabilir. Belirli bir gérev icin belirli bir
fonksiyonun gerekli oldugunu ve yapay zekanin dinamik secim siirecinin
gereksiz ek yiik getirebilecegini biliyorsaniz, secim siirecini atlayabilir ve gerekli
fonksiyonu dogrudan cagirabilirsiniz. Bu, uygulamanmizin genel verimliligini

artirabilir ve gecikmeyi azaltabilir.

Ozetle, yapay zeka destekli uygulamalarda fonksiyon ¢agrilarini zorlama yetenegi acik
kontrol saglar, hata ayiklama ve teste yardimeci olur, u¢ durumlar: ele alir, tutarlilik ve
tekrarlanabilirlik saglar. Bu, cephanenizdeki gii¢lii bir aragtir, ancak bu 6nemli 6zelligin

bir y6ninii daha tartismamiz gerekiyor.

Bircok karar verme kullanim durumunda, modelin her zaman bir fonksiyon
’ cagrisi yapmasini isteyebilir ve modelin asla sadece kendi i¢ bilgisiyle
yanit vermesini istemeyebiliriz. Ornegin, farkli gérevlerde (cok dilli girdi,
matematik vb.) uzmanlasmis birden ¢ok model arasinda yonlendirme
yapiyorsaniz, fonksiyon cagirma modelini istekleri yardimer modellerden
birine yonlendirmek icin kullanabilir ve asla bagimsiz olarak yanit

vermeyebilirsiniz.

Arag Kullanimi 125

Arag Secimi Parametresi

GPT-4 ve fonksiyon cagirmay1 destekleyen diger dil modelleri, bir tamamlamanin
parcast olarak ara¢ kullaniminin gerekli olup olmadigini kontrol etmek icin size bir

tool_choice parametresi sunar. Bu parametrenin {i¢ olasi degeri vardir:

« auto yapay zekaya bir ara¢ kullanma veya basit¢e yanit verme konusunda tam
takdir yetkisi verir

« required yapay zekaya bir ara¢ cagirmasi gerektigini soyler, ancak aracin
secimini yapay zekaya birakir

« Uciincii segenek, zorlamak istedifiniz name_of_function parametresini

ayarlamaktir. Bununla ilgili daha fazla bilgi bir sonraki bolimde.

tool_choice degerini required olarak ayarlarsaniz, modelin verilen
P fonksiyonlar arasindan, hicbiri istenen ise tam olarak uymasa bile, en uygun
olanini se¢mek zorunda kalacagini unutmayin. Yayin tarihi itibariyla, bos bir
tool_calls yaniti dondiiren veya uygun bir fonksiyon bulamadigini bagka

bir sekilde bildiren bir model bilmiyorum.

Yapilandirilmis Cikti i¢in Fonksiyon Kullanimini Zorunlu
Kilma

Fonksiyon ¢agrisini zorunlu kilma 6zelligi, diiz metin yanitindan kendiniz ¢ikarmak

yerine, sohbet tamamlamadan yapilandirilmig veri almanin bir yolunu sunar.

Yapilandirilmig ¢ikti almak icin fonksiyonlar: zorlamanin neden bu kadar énemli
oldugunu merak ediyor musunuz? Basit¢e soylemek gerekirse, BDM ciktisindan
yapilandirilmig veri gikarmak oldukga zahmetli bir istir. Verileri XML formatinda

isteyerek isinizi biraz kolaylastirabilirsiniz, ancak bu sefer de XML ayristirmasi

Arag Kullanimi 126

yapmaniz gerekir. Peki ya YZ size “Uzgliniim, su su sebeplerden dolay: istediginiz
veriyi olusturamiyorum..” diye yanit verdiginde ve XML eksik kaldiginda ne

yaparsiniz?

Araclar1 bu sekilde kullanirken:

« Muhtemelen isteginizde tek bir ara¢ tanimlamalisiniz

« tool_choice parametresini kullanarak fonksiyonun kullanimini zorlamay:
unutmayin

« Model girdiyi araca iletecegi icin, aracin adi ve acgiklamasi sizin bakis a¢inizdan

degil, modelin bakis agisindan olmalidir.

Bu son nokta acgiklik getirmek icin bir 6rnegi hak ediyor. Diyelim ki YZ’den
kullanici metninde duygu analizi yapmasini istiyorsunuz. Fonksiyonun adi
analyze_sentiment degil, save_sentiment_analysis gibi bir sey olmalidir.
Duygu analizini yapan YZ'dir, ara¢ degil. Aracin yaptig1 tek sey (YZ’nin bakis

acisindan) analiz sonuglarini kaydetmektir.

Iste Claude 3 kullanarak bir gériintiiniin 6zetini iyi yapilandirilmis JSON formatinda

kaydetmenin bir 6rnegi, bu sefer komut satirindan curl kullanarak:

© 0 N O O & W N =~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Arag Kullanimi 127

curl https://api.anthropic.com/v1/messages \
--header "content-type: application/json" \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "anthropic-version: 2023-06-01" \
--header "anthropic-beta: tools-2024-04-04" \
--data \
{
"model": "claude-3-sonnet-20240229",
"max_tokens": 1024,

"tools": [{
"name": "record_summary",
"description": "Record summary of image into well-structured JSON.",

"input_schema": {
"type": "object",
"properties": {
"key_colors": {
"type": "array",
"items": {
"type": "object",
"properties": {

" {
"type": "number",
"description": "red value [0.0, 1.0]"
1,
"g": {
"type": "number",
"description": "green value [0.0, 1.0]"
3,
"b": {
"type": "number",
"description": "blue value [0.0, 1.0]"
},
"name": {
"type": "string",
"description": "Human-readable color name
in snake_case, e.g.
\"olive_green\"or
\"turquoise\""
}
3,
"required": ["r", "g", "b", "name"]

} ’

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
77
78
79

Arag Kullanimi 128

"description": "Key colors in the image. Four or less."
},
"description": {

"type": "string",

"description": "Image description. 1-2 sentences max."
3,
"estimated_year": {

"type": "integer",

"description": "Estimated year that the image was taken,
if is it a photo. Only set this if the
image appears to be non-fictional.
Rough estimates are okay!"

}
3
"required": ["key_colors", "description"]
}
3,
"messages": |
{
"role": "user",
"content": [
{
"type": "image",
"source": {
"type": "baseb64",
"media_type": "'$IMAGE_MEDIA_TYPE'",
"data": "'$IMAGE_BASE64'"
}
3,
{
"type": "text",
"text": "Use “record_summary” to describe this image."
}
]
}

Verilen ornekte, bir gorintinin yapilandirilmig JSON 6zetini olusturmak icin

Anthropic’ten Claude 3 modelini kullaniyoruz. Iste nasil calistyor:

Arag Kullanimi 129

1. Istek yiikiiniin tools dizisinde record_summary adinda tek bir arag
tanimliyoruz. Bu arag, goriintiiniin 6zetini iyi yapilandirilmig JSON formatinda
kaydetmekten sorumludur.

2. record_summary araci, JSON c¢iktisinin beklenen yapisini belirten bir input_-

schema’ya sahiptir. Ug 6zellik tanimlar:

« key_colors: Goriintiideki ana renkleri temsil eden nesneler dizisi. Her renk
nesnesi, kirmizi, yesil ve mavi degerleri icin 6zellikler (0.0 ile 1.0 arasinda) ve
snake_case formatinda insan tarafindan okunabilir bir renk adina sahiptir.

« description: Gorintinin 1-2 cimlelik kisa acgiklamasi icin bir string
ozelligi.

+ estimated_year: Kurgu dig1 bir fotograf gibi gériiniiyorsa, goriintiiniin

cekildigi tahmini yi1l icin istege bagh bir tamsay1 6zelligi.

3. messages dizisinde, goriintii verisini base64 kodlu bir string olarak medya tiiriiyle
birlikte sagliyoruz. Bu, modelin gériintiiyu girdi olarak islemesine olanak tanir.

4. Ayrica Claude’a goruntiydt tanimlamak igin record_summary aracini
kullanmasi i¢in yonlendirme yapiyoruz.

5. Istek Claude 3 modeline gonderildiginde, model gériintiiyi analiz eder ve
belirtilen input_schema’ya gore bir JSON 6zeti olusturur. Model ana renkleri
cikarir, kisa bir actklama saglar ve varsa goriintiiniin ¢ekildigi yili tahmin eder.

6. Olusturulan JSON 6zeti, record_summary aracina parametre olarak iletilir ve

gorintiinin temel 6zelliklerinin yapilandirilmis bir temsilini saglar.

record_summary aracini iyi tamimlanmis bir input_schema ile kullanarak, diiz metin
cikarimia giitvenmeden bir goérintiiniin yapilandirilmis JSON 6zetini elde edebiliriz.
Bu yaklagim, ¢iktinin tutarli bir format takip etmesini saglar ve uygulamanin alt sistem

bilesenleri tarafindan kolayca ayristirilip iglenebilir.

Bir fonksiyon cagrisin1 zorlamak ve beklenen cikt1 yapisini belirlemek, AI tabanl

uygulamalardaki ara¢ kullaniminin gii¢lii bir 6zelligidir. Bu, gelistiricilerin olusturulan

Arag Kullanimi 130

cikt1 tizerinde daha fazla kontrol sahibi olmasini saglar ve Al tarafindan olusturulan

verilerin uygulama is akisina entegrasyonunu basitlestirir.

Fonksiyon(lar)in Yuruatilmesi

Fonksiyonlar1 tanimladiniz ve Al'mizi yonlendirdiniz, Al de fonksiyonlarinizdan
birini cagirmasi gerektigine karar verdi. $imdi sira, raix-rails gibi bir Ruby gem
kullaniyorsaniz, uygulama kodunuzun veya kiitiiphanenizin fonksiyon cagrisini ve

parametrelerini uygulama kodunuzdaki karsilik gelen uygulamaya géndermesinde.

Uygulama kodunuz, fonksiyon yiiriitme sonuglariyla ne yapilacagina karar verir. Belki
yapilacak sey bir lambda igindeki tek satirlik bir kod olabilir, veya belki harici bir
APTyi cagirmayi igerebilir. Belki bagka bir Al bilesenini ¢agirmayi icerebilir, veya belki
sisteminizin geri kalaninda yizlerce hatta binlerce satir kodu icerebilir. Bu tamamen

size bagli.

Bazen fonksiyon c¢agrisi islemin sonu olur, ancak sonuglar Al tarafindan devam
ettirilecek bir diisiince zincirindeki bilgileri temsil ediyorsa, uygulama kodunuzun
yuriitme sonuclarint sohbet dokiimine eklemesi ve Al'nin islemeye devam etmesine

izin vermesi gerekir.

Ornegin, miisteri hizmetleri icin Akilli Is Akist Orkestrasyon’un bir parcasi olarak
Olympia’nin AccountManager min misterilerimizle iletisim kurmak i¢in kullandig bir

Raix fonksiyon tanimi.

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

Arag Kullanimi 131

class AccountManager
include Raix::ChatCompletion

include Raix::FunctionDispatch
]lots of other functions...

function :notify_account_owner,
"Don't share UUID. Mention dollars if subscription changed",
message: { type: "string" } do |arguments]|
account.owner . freeform_notify(
subject: "Account Change Notification",
message: arguments|:message]

)
"Notified account owner"
end

Burada ne oldugu ilk bakista agik olmayabilir, bu yiizden parga parca aciklayacagim.

1. AccountManager smifi hesap yonetimiyle ilgili bircok fonksiyon tamimlar.
Planmmizi degistirebilir, ekip tyelerini ekleyip cikarabilir ve basgka islemler
yapabilir.

2. Ust diizey talimatlari, AccountManager ’a hesap degisikligi isteginin sonuglarin
notify_account_owner fonksiyonunu kullanarak hesap sahibine bildirmesi
gerektigini soyler.

3. Fonksiyonun 6zlii tanimi sunlar igerir:

« adi
« aciklamasi
« parametrelerimessage: { type: "string" }

« fonksiyon ¢agrildiginda yiiriitillecek bir blok

Fonksiyon blogunun sonuglariyla dékiim giincellendikten sonra, chat_completion
metodu tekrar cagrilir. Bu metod, glincellenmis konusma dokiimiinii daha fazla islem
icin Al modeline geri géndermekten sorumludur. Bu stireci konusma dongiisii olarak

adlandirtyoruz.

Arag Kullanimi 132

Al modeli giincellenmis dokiimle yeni bir sohbet tamamlama istegi aldiginda, 6nceden
yuritilen fonksiyonun sonuglarma erigsimi olur. Bu sonuglar analiz edebilir, karar
verme siirecine dahil edebilir ve konusmanin birikimli baglamina dayali olarak bir
sonraki yanit1 veya eylemi olusturabilir. Giincellenmis baglama gére ek fonksiyonlar
yuritmeyi segebilir veya baska fonksiyon c¢agrilarinin gerekli olmadigina karar verirse

orijinal isteme son bir yanit olusturabilir.

Orijinal istegin istege Bagli Devami

Arag sonuclarint BDM’ye geri gonderdiginizde ve orijinal istegin islenmesine devam
ettiginizde, Al bu sonugclar1 ek fonksiyonlar ¢cagirmak veya diiz metin seklinde son bir

yanit olusturmak i¢in kullanir.

Cohere’in Command-R gibi baz1 modeller, yanitlarinda kullandiklar1 belirli
araglar belirtebilir, bu da ek seffaflik ve izlenebilirlik saglar.

Kullanilan modele bagli olarak, fonksiyon cagrisinin sonuclari kendi 6zel roliine sahip
dokiim mesajlarinda yasayacak veya bagka bir szdiziminde yansitilacaktir. Ancak
onemli olan bu verilerin, Al'nin bir sonraki adimda ne yapacagina karar verirken

degerlendirebilmesi i¢in dokiimde bulunmasidir.

P Yaygin (ve potansiyel olarak pahali) bir hata durumu, sohbete devam

etmeden 6nce fonksiyon sonuglarini dokiime eklemeyi unutmaktir. Sonug
olarak, Al neredeyse fonksiyonu ilk kez ¢cagirmadan 6nceki gibi ayni sekilde
uyarilacaktir. Bagka bir deyisle, AI'nin bakis acisindan, hentiz fonksiyonu
cagirmamistir. Bu ytzden tekrar cagirir. Ve tekrar. Ve siz durdurana kadar
tekrar eder. Umarim baglaminiz ¢ok biiyiik degildir ve modeliniz ¢cok pahali

degildir!

https://openrouter.ai/models/cohere/command-r

Arag Kullanimi 133

Arag Kullanimi i¢in En iyi Uygulamalar

Arag kullanimindan en iyi sekilde yararlanmak icin asagidaki en iyi uygulamalar1 goz

onunde bulundurun.

Aciklayici Tanimlar

Her arag ve girig parametreleri icin acik ve agiklayici isimler ve tanimlar saglayin. Bu,

BDM’nin her aracin amacini ve yeteneklerini daha iyi anlamasina yardimci olur.

Deneyimlerimden sdyleyebilirim ki “isimlendirmenin zor oldugu” yoniindeki yaygin
gorts burada da gegerli; sadece fonksiyonlarin isimlerini veya agiklamalarin ifade
edilisini degistirerek BDM’lerden dramatik sekilde farkli sonuglar aldigimi gérdim.

Bazen aciklamalar kaldirmak performans: iyilestirir.

Arag Sonuglarinin islenmesi

Arag sonuclarini BDM’ye geri gonderirken, bunlarin iyi yapilandirilmis ve kapsamli
olmasini saglayin. Her aracin ¢iktisini temsil etmek igin anlamli anahtarlar ve degerler
kullanin. JSON’dan diiz metne kadar farkli formatlarla denemeler yapin ve hangisinin

en iyi caligtigini goriin.

Sonu¢ Yorumlayici, sonuglari analiz etmek ve insan dostu aciklamalar, 6zetler veya

onemli ¢cikarimlar saglamak igin Al kullanarak bu zorlugu ele alir.

Hata Yonetimi

BDM’nin ara¢ cagrilari icin gecersiz veya desteklenmeyen giris parametreleri

olusturabilecegi durumlar1 ele almak icin saglam hata yonetimi mekanizmalar

© 0 N O U b W N =

(RN
[l]

Arag Kullanimi 134

uygulayin. Arac yiriitmesi sirasinda olusabilecek herhangi bir hatayi diizgiin bir

sekilde ele alin ve bu hatalardan kurtulun.

ATl'nin ¢ok giizel bir 6zelligi, hata mesajlarin1 anliyor olmasi! Bu da demek oluyor ki,
hizli ve pratik bir yaklagimla caligiyorsaniz, bir aracin uygulamasinda olusan herhangi

bir istisnay1 yakalayip ne oldugunu anlamasi i¢in Al’ya geri gonderebilirsiniz!

Ornegin, iste Olympia’daki Google aramasinin uygulamasinin sadelestirilmis bir

versiyonu:

def google_search(conversation, params)
conversation.update_cstatus("Searching Google...")
query = params|:query]
search = GoogleSearch.new(query).get_hash

conversation.update_cstatus("Summarizing results...")

Summar izeKnowledgeGraph . new. per form(conversation, search.to_json)
rescue StandardError => e

Honeybadger .notify(e)

{ error: e.message }.inspect
end

Olympia’daki Google aramalari iki agamali bir siiregtir. Once aramay1 yaparsiniz, sonra
sonuclar 6zetlersiniz. Herhangi bir basarisizlik durumunda, ne olursa olsun, istisna
mesaj1 paketlenir ve yapay zekaya geri gonderilir. Bu teknik, neredeyse tiim Akill: Hata

Isleme desenlerinin temelidir.

Ornegin, GoogleSearch API ¢agrisinin 503 Hizmet Kullanilamiyor istisnasi nedeniyle
basarisiz oldugunu varsayalim. Bu hata en st seviyedeki kurtarma bloguna kadar
yikselir ve hatanin aciklamasi fonksiyon cagrisinin sonucu olarak yapay zekaya geri
gonderilir. Kullaniciya sadece bos bir ekran veya teknik bir hata vermek yerine, yapay
zeka “Uzgiiniim, su anda Google Arama 6zelliklerime erisemiyorum. Isterseniz daha

sonra tekrar deneyebilirim” gibi bir sey soyler.

Bu sadece akillica bir numara gibi goriinebilir, ancak farkli tiirde bir hatay: disiiniin,

yapay zekanin harici bir APT'yi ¢agirdig1 ve API’ye gecirilecek parametreler iizerinde

Arag Kullanimi 135

dogrudan kontrole sahip oldugu bir durumu. Belki bu parametreleri olustururken bir
hata m1 yapt1? Harici APT'den gelen hata mesaj1 yeterince detayli oldugu siirece,
hata mesajini ¢agiran yapay zekaya geri géondermek, onun bu parametreleri yeniden
degerlendirmesine ve tekrar denemesine olanak saglar. Otomatik olarak. Hata ne olursa

olsun.

Simdi bu tiir saglam hata islemenin normal kodda cogaltilmas: i¢cin ne gerektigini

diisiiniin. Bu neredeyse imkansizdir.

Yinelemeli iyilestirme

Eger LLM uygun araclar1 6nermiyor veya optimal olmayan yanitlar iiretiyorsa, arag
tanimlari, agiklamalar1 ve giris parametreleri tizerinde yineleme yapin. Gozlemlenen
davranisa ve istenen sonuglara dayali olarak ara¢ kurulumunu siirekli olarak iyilestirin

ve gelistirin.

1. Basit ara¢ tamimlariyla baglaym: Acik ve 6zli isimler, aciklamalar ve girig
parametreleriyle araclari tanimlamaya baslayin. Baglangicta ara¢ kurulumunu
karmagik hale getirmekten kaginin ve temel islevsellige odaklanin. Ornegin,
duygu analizi sonuclarini kaydetmek istiyorsaniz, soyle temel bir tanimla

baslayin:

© 0 N O O b W N e

I ==Y
B W N o

o O W N

Arag Kullanimi 136

"name": "save_sentiment_score",
"description": "Analyze user-provided text and generate sentiment score",
"parameters": {

"type": "object",

"properties": {

"score": {
"type": "float",
"description": "sentiment score from -1 (negative) to 1 (positive)"
}
o
"required": ["score"]

2. Test et ve gozlemle: Ilk ara¢ tanimlamalarini yaptiktan sonra, bunlari farkh
girdilerle test et ve BDM’nin aragla nasil etkilesime girdigini gozlemle. Uretilen
yanitlarin kalitesine ve uygunluguna dikkat et. Eger BDM optimal alt1 yanitlar
tretiyorsa, ara¢ tanimlarini iyilestirme zamani gelmis demektir.

3. Tanimlari iyilestir: Eger BDM bir aracin amacini yanlis anliyorsa, aracin tanimini
iyilestirmeyi dene. BDM’nin araci etkili bir sekilde kullanmasma yardimci
olmak igin daha fazla baglam, 6érnek veya aciklama sagla. Ornegin, duygu
analizi aracinin tanimini, analiz edilen metnin duygusal tonuna daha 6zel olarak

deginecek sekilde giincelleyebilirsin:

"name": "save_sentiment_score",
"description": "Determine the overall emotional tone of a piece of text,
such as customer reviews, social media posts, or feedback comments.",

4. Girig parametrelerini ayarlaymn: Eger LLM bir arac i¢in gecersiz veya alakasiz
giris parametreleri iiretiyorsa, parametre tanimlamalarini ayarlamay: distiniin.
Beklenen giris formatini netlestirmek igin daha spesifik kisitlamalar, dogrulama

kurallar1 veya 6rnekler ekleyin.

=~ O O B W N =

Arag Kullanimi 137

5. Geribildirimlere gore yineleyin: Araclarinizin performansini siirekli olarak izleyin
ve kullanicilardan veya paydaglardan geri bildirim toplayin. Bu geri bildirimleri
kullanarak iyilestirmeye acik alanlari belirleyin ve ara¢ tanimlamalarinda
tekrarlayan iyilestirmeler yapin. Ornegin, kullanicilar analizin alaycilifi iyi

islemedigini bildirirse, aciklamaya bir not ekleyebilirsiniz:

{
"name": "save_sentiment_score”,
"description": "Analyze the sentiment of a given text and return a sentiment
score between -1 (negative) and 1 (positive). Note: Sarcasm should be
considered negative.",
}

Ara¢ tamimlarinizi gézlemlenen davranis ve geri bildirimlere dayali olarak yinelemeli
bir sekilde gelistirerek, yapay zeka destekli uygulamanizin performansini ve etkinligini
kademeli olarak iyilestirebilirsiniz. Ara¢ tanimlarini net, 6zli ve belirli géreve odakli
tutmay1 unutmayin. istediginiz sonuclarla uyumlu olduklarindan emin olmak icin arac

etkilesimlerini diizenli olarak test edin ve dogrulayin.

Araclari Birlestirme ve Zincirleme

Simdiye kadar sadece deginilen arag¢ kullaniminin en giiclii yonlerinden biri, karmasgik
gorevleri gerceklestirmek icin birden fazla araci birlestirme ve zincirleme yapabilme
yetenegidir. Arac¢ tanimlarinizi ve bunlarin girdi/cikt: formatlarini dikkatli bir sekilde
tasarlayarak, cesitli sekillerde birlestirilebilen yeniden kullanilabilir yap: taslari

olusturabilirsiniz.
Yapay zeka destekli uygulamaniz igin bir veri analizi hatti olusturdugunuz bir 6rnegi

diisinelim. Asagidaki araclara sahip olabilirsiniz:

1. DataRetrieval: Belirtilen kriterlere gore bir veritabanindan veya APT’den veri

ceken bir arac.

Arag Kullanimi 138

2. DataProcessing: Alinan veriler tzerinde hesaplamalar, dontsiimler veya
toplamalar gerceklestiren bir arag.
3. DataVisualization:Islenmis verileri grafikler veya semalar gibi kullanici dostu

bir formatta sunan bir arac.

Bu araclar birbirine zincirleyerek, ilgili verileri alan, isleyen ve sonuglart anlamli bir

sekilde sunan giiclii bir is akist olusturabilirsiniz. Arag kullanim is akis1 sdyle goriinebilir:

1. BDM, belirli bir iiriin kategorisi i¢in satis verileri hakkinda i¢gériiler isteyen bir
kullanict sorgusu alir.

2. BDM, DataRetrieval aracini secer ve veritabanindan ilgili satis verilerini almak
icin uygun girdi parametrelerini olusturur.

3. Alinan veriler, toplam gelir, ortalama satig fiyati ve bityiime orani gibi metrikleri
hesaplayan DataProcessing aracina “aktarilir”.

4. Islenen veriler daha sonra DataVisualization araci tarafindan islenir ve
icgorileri temsil eden gorsel acidan cekici bir grafik veya sema olusturulur,
grafigin URL’si BDM’ye geri iletilir.

5. Son olarak, BDM, gorsellestirilmis verileri ve temel bulgularin bir 6zetini iceren,

markdown kullanarak bicimlendirilmis bir yanit olusturur.

Bu araclar bir araya getirerek, uygulamaniza kolayca entegre edilebilen kesintisiz bir
veri analizi is akig1 olusturabilirsiniz. Bu yaklagimin giizelligi, her aracin bagimsiz
olarak gelistirilebilmesi ve test edilebilmesi, ardindan gesitli sorunlari ¢6zmek i¢in farkls

sekillerde birlestirilebilmesidir.

Aragclarin sorunsuz birlestirilmesini ve zincirlenmesini saglamak icin, her ara¢ icin net

girdi ve ¢ikt1 formatlari tanimlamak 6nemlidir.

Ornegin, DataRetrieval araci, veritabani baglanti detaylari, tablo adi ve sorgu
kosullar1 gibi parametreleri kabul edebilir ve sonug kiimesini yapilandirilmis bir JSON

nesnesi olarak dondiirebilir. DataProcessing araci daha sonra bu JSON nesnesini

Arag Kullanimi 139

girdi olarak bekleyebilir ve donistiirilmis bir JSON nesnesi ciktis1 tiretebilir. Araclar
arasindaki veri akisini standartlagtirarak uyumluluk ve yeniden kullanilabilirligi

saglayabilirsiniz.

Arag ekosisteminizi tasarlarken, farkli araglarin uygulamanizdaki yaygin kullanim
senaryolarini ele almak i¢in nasil birlestirilebilecegini diistiniin. BDM’nin etkili bir
sekilde secip kullanmasini kolaylastirmak icin yaygin is akislarimi veya is mantigim

kapsayan st diizey araclar olusturmay: diisinin.

Unutmayin, ara¢ kullanimimin giicii, sagladigi esneklik ve modiilerlikte yatar. Karmasik
gorevleri daha kigik, yeniden kullanilabilir araclara bolerek, ¢ok gesitli zorluklarla baga

cikabilen saglam ve uyarlanabilir bir yapay zeka destekli uygulama olugsturabilirsiniz.

Gelecekteki Yonelimler

Yapay zeka destekli uygulama gelistirme alani gelistikce, ara¢ kullanim yeteneklerinde

daha fazla ilerleme bekleyebiliriz. Bazi potansiyel gelecek yonelimleri sunlari igerir:

1. Cok Asamali Ara¢ Kullanimi: BDM’ler, tatmin edici bir yanit tiretmek icin
araclari kag kez kullanmalar1 gerektigine karar verebilir. Bu, ara sonuglara dayal:
olarak birden fazla ara¢ se¢imi ve yiirtitme turu igerebilir.

2. Onceden Tanimlanmis Araglar: Yapay zeka platformlari, gelistiricilerin hazir
olarak kullanabilecegi Python yorumlayicilari, web arama araglari veya yaygin
yardimci islevler gibi 6nceden tanimlanmis bir dizi ara¢ saglayabilir.

3. Sorunsuz Entegrasyon: Arac kullanimi yayginlastikca, yapay zeka platformlar:
ile popiiler gelistirme gerceveleri arasinda daha iyi entegrasyon bekleyebiliriz,
bu da gelistiricilerin uygulamalarina ara¢ kullanimini dahil etmesini

kolaylastiracaktur.

Arag Kullanimi 140

Arag¢ kullanimi, gelistiricilerin yapay zeka destekli uygulamalarda BDM’lerin tam
potansiyelinden yararlanmalarini saglayan giclii bir tekniktir. BDM’leri harici araclara
ve kaynaklara baglayarak, kullanici ihtiyaclarma uyum saglayabilen ve degerli
icgoriiler ve eylemler saglayabilen daha dinamik, akilli ve baglama duyarli sistemler

olusturabilirsiniz.

Ara¢ kullanimi muazzam olanaklar sunarken, potansiyel zorluklarin ve hususlarin
farkinda olmak &énemlidir. Onemli bir husus, ara¢ etkilesimlerinin karmagikligini
yonetmek ve genel sistemin istikrarini ve giivenilirligini saglamaktir. Ara¢ ¢agrilarinin
basarisiz olabilecegi, beklenmeyen sonuclar dondiirebilecegi veya performans etkileri
olabilecegi senaryolari ele almaniz gerekir. Ek olarak, araclarin yetkisiz veya kot niyetli
kullanimini 6nlemek icin giivenlik ve erisim kontrolii 6nlemlerini disiinmelisiniz.
Yapay zeka destekli uygulamanizin biitiinligiini ve performansini korumak icin uygun

hata igleme, giinliikleme ve izleme mekanizmalari cok 6nemlidir.

Kendi projelerinizde ara¢ kullaniminin olanaklarini kegfederken, net hedeflerle
baslamayi, iyi yapilandirilmis ara¢ tanimlamalari tasarlamayi ve geri bildirimler
ile sonuclara dayali yineleme yapmayi unutmaym. Dogru yaklasim ve diisiince
yapisiyla, ara¢ kullanimi yapay zeka destekli uygulamalarimizda yeni yenilik ve deger

seviyelerinin 6niint acabilir.

Akis isleme

i
L
LAVa
3

HTTP tizerinden akan veri, diger adiyla sunucu génderimli olaylar (SSE), sunucunun
istemcinin agikca talep etmesine gerek kalmadan, veriler kullanilabilir hale geldikce
strekli olarak istemciye gonderdigi bir mekanizmadir. Yapay zeka yaniti asamali
olarak olusturuldugundan, yapay zekanin ciktisini olustukca goriintiileyerek duyarl
bir kullanici deneyimi saglamak mantiklidir. Ve aslinda bildigim tim yapay zeka
saglayicilarinin APT’leri, tamamlama ug¢ noktalarinda bir secenek olarak akan yanitlar

sunmaktadir.

Bu bélimiin kitapta tam da Araclari Kullanma bélimiinden sonra yer almasinmn
nedeni, ara¢ kullanimini canli yapay zeka yanitlariyla birlestirmenin ne kadar giiclii
olabilecegidir. Bu sayede yapay zekanin kullanic1 girdisini isleyebildigi, kendi takdirine
gore cesitli ara¢ ve fonksiyonlar1 kullanabildigi ve gercek zamanli yanitlar saglayabildigi

dinamik ve etkilesimli deneyimler miimkiin olmaktadir.

© 0 N O U b W N =

= =N
B W N,

Akis Isleme 142

Bu Kkesintisiz etkilesimi saglamak icin, yapay zeka tarafindan cagrilan arag
fonksiyonlarini ve diiz metin c¢iktisim1 son kullaniciya iletebilen akis isleyicileri
yazmaniz gerekir. Bir ara¢ fonksiyonunu isledikten sonra déngiiye devam etme

ihtiyaci, ige ilging bir zorluk katmaktadir.

ReplyStream’in Uygulanmasi

Akis islemenin nasil uygulanabilecegini gostermek igin, bu bélimde Olympia’da
kullanilan ReplyStream siifinin basitlestirilmis bir versiyonunu derinlemesine
inceleyecegiz. Bu sinifin 6rnekleri, ruby-openai ve openrouter gibi yapay zeka istemci

kiitiiphanelerinde stream parametresi olarak gecirilebilir.

Iste Olympia'nin PromptSubscriber’inda ReplyStream’i kullanma seklim; bu

abonelik, Wisper araciligiyla yeni kullanici mesajlarinin olusturulmasini dinler.

class PromptSubscriber
include Raix::ChatCompletion
include Raix: :PromptDeclarations

many other declarations omitted. ..

prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },
until: -> { bot_message.complete? }

def message_created(message) # invoked by Wisper

return unless message.role.user? && message.content?

rest of the implementation omitted. ..

ReplyStream smifi, onu Orneklendiren prompt abonesine olan bir context
referansinin yani sira, alman veriyi depolamak icin bir tampon ve akis isleme
sirasinda ¢agrilan fonksiyon isimlerini ve argiimanlarini takip etmek icin diziler iceren

ornek degiskenlere sahiptir.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

© 0 N O O b W N e

T = T O T Y
o N O O b W N =

Akis Isleme 143

class ReplyStream

attr_accessor :buffer, :f_name, :f_arguments, :context
delegate :bot_message, :dispatch, to: :context

def initialize(context)
self.context = context
self.buffer = []
self.f_name = []
self.f_arguments = []
end

def call(chunk, bytesize = nil)

end

end

initialize metodu, ReplyStream 6rneginin baslangic durumunu ayarlar, tamponu,

baglami ve diger degiskenleri baglatir.

call metodu, akan verileri islemek icin ana giris noktasidir. Bir veri pargasini (karma
olarak temsil edilir) ve istege bagli bir bytesize parametresini alir; 6rnegimizde bu
parametre kullanilmamaktadir. Bu metodun icinde, sinif, alinan veri parcasinin yapisina

bagli olarak farkli senaryolari islemek icin 6riinti esleme kullanir.

Veri pargasi lizerinde deep_symbolize_keys cagrisi yapmak, dizgiler
yerine sembollerle calismamizi saglayarak oriintii eslemeyi daha zarif hale

getirir.

© 0 N O O b W N e

[T T ==Y
a s W N =~

Akis Isleme 144

def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in { # match function name
choices: |

{
delta: {
tool_calls: |

{ index: index, function: {name: name} }

f_name[index]| = name

Eslestirdigimiz ilk desen, bir ara¢ ¢agrisi ve ona bagh fonksiyon adidir. Boyle bir cagri
tespit ettigimizde, bunu £f_name dizisine yerlestiriyoruz. Fonksiyon isimlerini dizinli bir
dizide sakliyoruz, ¢ciinkii model paralel fonksiyon ¢agrisi yapabilme 6zelligine sahip ve

ayni anda birden fazla fonksiyonu ¢alistirmak tizere gonderebiliyor.

Paralel fonksiyon cagrisi, bir yapay zeka modelinin birden fazla fonksiyon ¢agrisini
birlikte gerceklestirebilme ve bu fonksiyon ¢agrilarinin etkilerinin ve sonuglarinin
paralel olarak ¢oziimlenmesine izin verme yetenegidir. Bu 6zellikle fonksiyonlarin
uzun slirdiigi durumlarda faydalidir ve API ile yapilan gidis gelisleri azaltir, bu da

6nemli miktarda token tasarrufu saglayabilir.

Sonrasinda fonksiyon ¢agrilarina karsilik gelen argiimanlar eslestirmemiz gerekiyor.

© 0 N O O b W N e

[T T ==Y
a s W N =~

© 0 N O O b W N =

[T T
w N =~

Akis Isleme 145

in { # match arguments

choices: |
{
delta: {
tool_calls: |
{
index: index, function: {arguments: argument }
}
]
}
}
1}
f_arguments|index] ||= "" # initialize if not already

f_arguments[index| << argument

Fonksiyon isimlerini ele aldigimiz sekilde benzer sekilde, argiimanlari indeksli bir diziye

yerlestiriyoruz.

Sirada, sunucudan tek bir belirte¢ seklinde gelecek ve new_content degiskenine
atanacak olan normal kullaniciya yonelik mesajlari inceliyoruz. Ayrica finish_-
reason degerini de takip etmemiz gerekiyor. Bu deger, ¢ikt1 dizisinin son pargasina

kadar nil olacak.

in {
choices: |
{ delta: {content: new_content}, finish_reason: finish_reason }

1}

you could transmit every chunk to the user here. ..

buffer << new_content.to_s

if finish_reason.present?
finalize
elsif new_content.to_s.match?(/\n\n/)
send_to_client # ...or buffer and transmit once per paragraph

end

Onemli olarak, AI model saglayicisi tarafindan gonderilen hata mesajlarini iglemek

BwoN e =N O O W N e

© 0 N O U b W N =

[= = S
a s W N~

Akis Isleme 146

icin bir desen eslestirme ifadesi ekliyoruz. Yerel gelistirme ortamlarinda bir istisna

firlatirken, prodiiksiyonda hatay1 giinliige kaydedip sonlandiriyoruz.

in { error: { message: } }
if Rails.env.local?
raise message
else
Honeybadger .notify("Al Error: #{message}")
finalize

end

Case yapisindaki son else ifadesi, 6nceki 6riintilerden hicbiri eslesmediginde caligir. Bu
sadece YZ modeli bize taninmayan parcalar géndermeye basladiginda bundan haberdar

olmamizi saglayan bir giivenlik 6nlemidir.

else
Honeybadger .notify("Unrecognized Chunk: #{chunk}")
end

end

send_to_client metotu, arabelleklenen igerigi istemciye gondermekten sorumludur.
Arabellegin bos olmadigini kontrol eder, bot mesaji igerigini giinceller, bot mesajini

olusturur ve veri kalicihigini saglamak i¢in igerigi veritabanina kaydeder.

def send_to_client
no need to process pure whitespace
return if buffer. join.squish.blank?

set the buffer content on the bot message
content = buffer. join

bot_message.content = content

save to database so that we never lose data
even 1f the stream doesn't terminate correctly
bot_message .update_column(:content, content)

update content via websocket
ConversationRenderer .update(bot_message)
end

© 0 N O O b W N =

[EONTY
N =~ O

13
14
15
16

Akis Isleme 147

finalize metodu, akis isleme tamamlandiginda cagriir. Akig swrasinda alian
fonksiyon cagrilar1 varsa bunlar: isler, bot mesajini son igerik ve diger ilgili bilgilerle

giinceller ve fonksiyon cagri gecmisini sifirlar.

def finalize
if f_name.any?
f_name.each_with_index do |name, index|
takes care of calling the function wherever it's implemented
dispatch(name:, arguments: JSON.parse(f_arguments|index]))
end

reset the function call history
f_name.clear
f_arguments.clear

else
content = buffer. join.presence
bot_message.update! (content:, complete: true)
ConversationRenderer .update(bot_message)

end

end

Eger model bir fonksiyon ¢agirmaya karar verirse, bu fonksiyon cagrisini (isim ve
argiimanlar) 6yle bir sekilde “sevk etmeniz” gerekir ki, ¢cagri gerceklegsin ve konusma

kaydina function_call ve function_result mesajlari eklensin.

Deneyimlerime gore, fonksiyon mesajlarinin olusturulmasini ara¢ implementasyonlaria
giivenmek yerine kod tabaninizin tek bir yerinde ele almak daha iyidir. Bu yaklasim
hem daha temizdir, hem de ¢ok 6nemli pratik bir nedeni vardir: eger yapay zeka modeli
bir fonksiyon c¢agirir ve dongiiye girdiginizde kayitta ilgili cagri ve sonu¢ mesajlarini
gbrmezse, ayni fonksiyonu tekrar cagiracaktir. Bu potansiyel olarak sonsuza kadar
devam edebilir. Unutmayin ki yapay zeka tamamen durumsuzdur, dolayisiyla bu

fonksiyon cagrilarini ona geri yansitmazsaniz, onlar hi¢ gerceklesmemis sayilir.

1
2
3
4
5
6
7
8
9

10

Akis Isleme 148

PromptSubscriber#dispatch

def dispatch(name:, arguments:)
adds a function_call message to the conversation transcript
plus dispatches to tool and returns result
conversation. function_call!(name, arguments).then do |result]|
add function result message to the transcript
conversation. function_result!(name, result)
end

end

Fonksiyon cagri gecmisini gonderdikten sonra temizlemek, ¢agrinin ve
sonuclarin dékiiminiize gegtiginden emin olmak kadar énemlidir; boylece
dongi her calistiginda aym fonksiyonlar: tekrar tekrar ¢agirmaya devam

etmezsiniz.

“Konusma Dongusu”

PromptSubscriber smifinda, konusma dongisinin davranigini tanimlamak
icin PromptDeclarations modilinden prompt metodunu kullaniriz. until
parametresi -> { bot_message.complete? } olarak ayarlanmigtir; bu, déngiinin

bot_message tamamlandi olarak isaretlenene kadar devam edecegi anlamina gelir.

prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },
until: -> { bot_message.complete? }

Peki bot_message ne zaman tamamlandi olarak isaretleniyor?

Unuttuysaniz, finalize metodunun 13. satirina geri doniin.

Tim akis isleme mantigini gozden gegirelim.

Akis Isleme 149

10.

. PromptSubscriber, Wisper yaymla/abone ol sistemi araciligiyla son kullanici

yeni bir istem olusturdugunda her seferinde cagrilan message_created metodu

tizerinden yeni bir kullanici mesaji alir.

. prompt simif metodu, PromptSubscriber igin sohbet tamamlama mantiginin

davranigini bildirimsel olarak tanimlar. Yapay zeka modeli, kullanicinin mesaj
icerigi, akis parametresi olarak yeni bir ReplyStream 6rnegi ve belirtilen dongii

kosulu ile bir sohbet tamamlama iglemi gergeklestirecektir.

. Yapay zeka modeli istemi igler ve yanit tretmeye baslar. Yanit akig halinde

iletilirken, ReplyStream 6rneginin call metodu her veri parcasi i¢in ¢agrilir.

. Yapay zeka modeli bir ara¢ fonksiyonunu ¢agirmaya karar verirse, fonksiyon adi

ve arglimanlari parcadan cikarilir ve sirasiyla f_name ve f_arguments dizilerine

kaydedilir.

. Yapay zeka modeli kullaniciya yonelik icerik iiretirse, bu igerik tamponlanir ve

send_to_client metodu araciligiyla istemciye gonderilir.

. Akis isleme tamamlandiginda, finalize metodu cagrilir. Akis sirasinda

herhangi bir ara¢ fonksiyonu c¢agrildiysa, bunlar PromptSubscriber’in

dispatch metodu kullanilarak génderilir.

. dispatch metodu, konusma kaydmna bir function_call mesaji ekler, ilgili

ara¢ fonksiyonunu ¢alistirir ve fonksiyon ¢agrisinin sonucuyla birlikte kayda bir

function_result mesaji ekler.

. Arag fonksiyonlariin gonderilmesinden sonra, sonraki déngiilerde yinelenen

fonksiyon ¢agrilarini 6nlemek icin fonksiyon cagri gecmisi temizlenir.

. Eger hicbir ara¢ fonksiyonu c¢agrilmadiysa, finalize metodu bot_message’:

son icerikle giinceller, tamamland: olarak isaretler ve giincellenmis mesajt
istemciye gonderir.

Déngii kosulu -> { bot_message.complete? } degerlendirilir. Eger bot_-
message tamamland: olarak isaretlenmediyse, dongii devam eder ve orijinal

istem gincellenmis konusma kaydiyla tekrar génderilir.

Akis Isleme 150

11. Yapay zeka modeli yanit Gretmeyi tamamlayana ve bagka ara¢ fonksiyonlarinin
caligtirllmas1 gerekmeyene kadar, yani bot_message tamamlandi olarak

isaretlenene kadar 3-10 adimlar1 tekrarlanir.

Bu konusma déngusiinii uygulayarak, yapay zeka modelinin uygulama ile karsilikli
etkilesime girmesini, gerektiginde arag fonksiyonlarini ¢aligtirmasini ve konugma dogal

bir sonuca ulagana kadar kullaniciya yonelik yanitlar iiretmesini saglarsiniz.

Akis isleme ve konusma doéngiisiiniin birlesimi, yapay zeka modelinin kullanici
girdisini isleyebildigi, cesitli araclar1 ve fonksiyonlar1 kullanabildigi ve gelisen konusma
baglamina dayali olarak gercek zamanli yanitlar saglayabildigi dinamik ve etkilesimli

yapay zeka destekli deneyimlere olanak tanir.

Otomatik Devam

Yapay zeka cikti sinirlamalarinin farkinda olmak onemlidir. Cogu modelin, max_-
tokens parametresi tarafindan belirlenen, tek bir yanitta tiretebilecekleri maksimum
belirte¢ sayist vardir. Yapay zeka modeli yanit iiretirken bu sinira ulagirsa, aniden durur

ve ctktinin kesildigini belirtir.

Yapay zeka platform API’sinden gelen akis yanitinda, parcadaki finish_reason
degiskenini inceleyerek bu durumu tespit edebilirsiniz. Eger finish_reason “length”
olarak ayarlanmigsa (veya modele 6zgii bagka bir anahtar degerse), bu, modelin tiretim

sirasinda maksimum belirte¢ sinirina ulastigi ve ¢iktinin yarida kesildigi anlamina gelir.

Bu senaryoyu zarif bir sekilde ele almanin ve sorunsuz bir kullanici deneyimi
saglamanin bir yolu, akis isleme mantiginiza otomatik devam mekanizmasi eklemektir.
Uzunlukla ilgili bitis nedenlerini eslestiren bir kalip ekleyerek, dongiiye girmeyi ve

ciktiy1 kaldig1 yerden otomatik olarak devam ettirmeyi segebilirsiniz.

Iste ReplyStream sinifindaki call metodunu otomatik devami destekleyecek sekilde

nasil degistirebileceginize dair 6zellikle basitlestirilmis bir 6rnek:

© 0 N O O b W N e

W oW oW N NN DNDNNDDNNDNN S S R S s s
[SIS S T (e o RN Bie NN S B NORRSS B S SRS < B (o TN ¢ N B S I S S S S

Akis Isleme

LENGTH_STOPS = %w[length MAX_TOKENS]

def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in {
choices: |
{ delta: {content: new_content},

finish_reason: finish_reason } | }
buffer << new_content.to_s

if finish_reason.blank?
send_to_client if new_content.to_s.match?(/\n\n/)
elsif LENGTH_STOPS.include?(finish_reason)
continue_cutoff
else
finalize

end

end
end

private

def continue_cutoff
conversation.bot_message! (buffer. join, visible: false)

conversation.user_message!("please continue", visible: false)

bot_message.update_column(:created_at, Time.current)
end

151

Bu degistirilmis versiyonda, finish_reason kesik ciktiy1 gosterdiginde, akisi

sonlandirmak yerine, dékimii sonlandirmadan bir c¢ift mesaj ekliyor, orijinal

kullaniciya yonelik yanit mesajini created_at Ozniteligini giincelleyerek dokiimiin

“altina” tagtyor ve sonra déngiiniin gergeklesmesine izin veriyoruz, béylece yapay zeka

kaldig1 yerden iiretmeye devam ediyor.

Yapay zeka tamamlama ug¢ noktasinin durumsuz oldugunu unutmaym. Sadece

Akis Isleme 152

dokiim araciligiyla ona soylediklerinizi “bilir”. Bu durumda, yapay zekaya kesildigini
bildirdigimiz yontem, dékime (son kullanici igin) “goriinmez” mesajlar eklemektir.
Ancak bunun kasitli olarak basitlestirilmis bir 6rnek oldugunu unutmayimn. Gergek bir
uygulama, belirtecleri bosa harcamamak ve/veya yapay zekay: dokiimdeki tekrarlanan

asistan mesajlariyla karistirmamak igin daha fazla dokiim y6netimi yapmalidir.

Otomatik devam etmenin gercek bir uygulamasi ayni zamanda kontrolsiiz déngiileri
onlemek icin devre kesici mantig1 igermelidir. Bunun nedeni, belirli kullanici istemlerine
ve digiik max_tokens ayarlarina bagl olarak, yapay zekanin kullaniciya yonelik ¢iktiy1

sonsuz sekilde dongiiye sokabilmesidir.

Her dongiiniin ayr bir istek gerektirdigini ve her istegin tiim dokimiiniizi tekrar
tiikettigini unutmayin. Uygulamanizda otomatik devam etmeyi uygulamaya
karar verirken kullanici deneyimi ve API kullanimi arasindaki dengeyi mutlaka
degerlendirmelisiniz. Ozellikle premium ticari modeller kullanirken, otomatik

devam etme tehlikeli derecede pahali olabilir.

Sonucg

Akis isleme, ara¢ kullanimini canli yapay zeka yanitlariyla birlestiren yapay zeka
destekli uygulamalarin kritik bir yonidiir. Yapay zeka platform APT’lerinden gelen akis
verilerini verimli bir sekilde isleyerek, kesintisiz ve etkilesimli bir kullanic1 deneyimi
saglayabilir, bitytik yanitlari igleyebilir, kaynak kullanimini optimize edebilir ve hatalar

zarif bir sekilde yonetebilirsiniz.

Saglanan Conversation: :ReplyStream smnifi, 6riinti esleme ve olay gidimli
mimari kullanarak bir Ruby uygulamasinda akis islemenin nasil uygulanabilecegini

gostermektedir. Akis isleme tekniklerini anlayarak ve bunlardan yararlanarak,

Akis Isleme 153

uygulamalarinizda yapay zeka entegrasyonunun tiim potansiyelini ortaya ¢ikarabilir

ve gigli ve ilgi ¢ekici kullanict deneyimleri sunabilirsiniz.

Kendini Onaran Veri

Kendini onaran veri, bityiik dil modellerinin (BDM’ler) yeteneklerinden yararlanarak

uygulamalarda veri butanlaging, tutarliligini ve kalitesini saglamaya yonelik giiclii
bir yaklasgimdir. Bu orintii kategorisi, gelistiricilerin yikint azaltmak ve yuksek
diizeyde veri giivenilirligini korumak i¢in yapay zekay: kullanarak veri anomalilerini,
tutarsizliklarimi veya hatalarini otomatik olarak tespit etme, teshis etme ve diizeltme

fikrine odaklanir.

Oziinde, kendini onaran veri ériintiileri, verinin herhangi bir uygulamanin can damari
oldugunu ve dogrulugunu ve biitinligiini saglamanin, uygulamanin diizgiin ¢alismasi
ve kullanici deneyimi icin ¢ok 6nemli oldugunu kabul eder. Ancak, veri kalitesini
yonetmek ve siirdiirmek, ozellikle uygulamalar biiyiidiik¢e ve karmasiklastik¢a zorlu

ve zaman alic1 bir gérev olabilir. Iste yapay zekanin giicii burada devreye girer.

Kendini onaran veri oriintiillerinde, yapay zeka caliganlari uygulamanizin verisini

siirekli olarak izler ve analiz eder. Bu modeller, veri i¢indeki oriintiileri, iligkileri ve

Kendini Onaran Veri 155

anomalileri anlama ve yorumlama yetenegine sahiptir. Dogal dil isleme ve anlama
yeteneklerinden vyararlanarak, verideki potansiyel sorunlari veya tutarsizliklari

belirleyebilir ve bunlar1 diizeltmek i¢cin uygun 6nlemleri alabilirler.

Kendini onaran veri siireci genellikle birka¢ 6nemli adimi igerir:

1. Veri Izleme: Yapay zeka calisanlari, uygulamanin veri akiglarini, veritabanlarini
veya depolama sistemlerini siirekli olarak izleyerek anomali, tutarsizlik veya hata
belirtilerini arar. Alternatif olarak, bir istisna durumunda yapay zeka bilesenini
etkinlegtirebilirsiniz.

2. Anomali Tespiti: Bir sorun tespit edildiginde, yapay zeka ¢alisan1 sorunun 6zel
niteligini ve kapsamini belirlemek icin veriyi detayli olarak analiz eder. Bu, eksik
degerleri, tutarsiz bigimleri veya 6nceden tanimlanmis kurallari veya kisitlamalar:
ihlal eden verileri tespit etmeyi icerebilir.

3. Teshis ve Diizeltme: Sorun belirlendikten sonra, yapay zeka ¢alisani uygun eylem
planini belirlemek icin veri alanindaki bilgi ve anlayisini kullanir. Bu, veriyi
otomatik olarak duzeltmeyi, eksik degerleri doldurmay: veya gerekirse insan
miidahalesi i¢in sorunu isaretlemeyi icerebilir.

4. Siirekli Ogrenme (kullanim senaryosuna bagli olarak istege bagli): Yapay zeka
calisaniniz gesitli veri sorunlariyla karsilastik¢a ve bunlari ¢6zdiikee, ne oldugunu
ve nasil yanit verdigini aciklayan ciktilar diretebilir. Bu iistveri, size (ve belki de
ince ayar yoluyla temel modele) veri anomalilerini belirleme ve ¢6zme konusunda
zaman i¢inde daha etkili ve verimli olma imkan: saglayan 6grenme siireclerine

beslenebilir.

Veri sorunlarini otomatik olarak tespit edip diizelterek, uygulamanizin yiiksek kaliteli,
givenilir verilerle caligmasini saglayabilirsiniz. Bu, uygulamanin islevselligini veya
kullanici deneyimini etkileyebilecek hatalarin, tutarsizliklarm veya veriyle ilgili

hatalarin riskini azaltir.

Yapay zeka caliganlari veri izleme ve diizeltme gorevini tstlendikten sonra, ¢cabalarinizi

uygulamanmn diger kritik yonlerine odaklayabilirsiniz. Bu, manuel veri temizleme ve

Kendini Onaran Veri 156

bakimina harcanacak zaman ve kaynaklari tasarruf eder. Aslinda, uygulamalariniz
biiytiditkce ve karmasiklastikea, veri kalitesini manuel olarak yonetmek giderek zorlagir.
“Kendini Onaran Veri” ériintiileri, biyiik veri hacimlerini iglemek ve sorunlar1 gergek
zamanli olarak tespit etmek i¢cin yapay zekanin giiclinden yararlanarak etkili bir sekilde

olgeklenir.

P Dogalar1 geregi, yapay zeka modelleri ¢ok az denetim ile veya hic

denetim olmadan zamanla degisen veri Oriintiilerine, semalarina veya
gereksinimlerine uyum saglayabilir. Yonergeleri, 6zellikle hedeflenen
sonugclar agisindan yeterli rehberlik sagladig siirece, uygulamaniz kapsaml
manuel miidahale veya kod degisiklikleri gerektirmeden evrimlesebilir ve

yeni veri senaryolarini ele alabilir.

Kendini onaran veri oriintiileri, tartistigimiz “Caliganlarin Coklugu” gibi diger 6rinti
kategorileriyle iyi uyum saglar. Kendini onaran veri yetenegi, 6zellikle veri kalitesini ve
biitiinliigiini saglamaya odaklanan 6zellesmis bir tiir ¢calisan olarak goriilebilir. Bu tiir
calisan, uygulamanin islevselliginin farkli yonlerine katkida bulunan diger yapay zeka

caliganlariyla birlikte caligir.

Kendini onaran veri oriintiilerini pratikte uygulamak, yapay zeka modellerinin
uygulama mimarisine dikkatli bir sekilde tasarlanmasini ve entegrasyonunu gerektirir.
Veri kayb1 ve bozulma riskleri nedeniyle, bu teknigi nasil kullanacagimiza dair net
yonergeler belirlemelisiniz. Ayrica performans, 6lceklenebilirlik ve veri giivenligi gibi

faktorleri de goz 6ntinde bulundurmalisiniz.

Pratik Vaka Calismasi: Bozuk JSON’1 Diizeltme

Kendini onaran veriyi kullanmanin en pratik ve uygun yollarindan biri ayn1 zamanda

aciklamasi da ¢ok basittir: bozuk JSON’1 diizeltmek.

© 0 N O O b W N -

NN N R R s s s
N A, 0 O 0 =N O O Bk W N =~ O

Kendini Onaran Veri 157

Bu teknik, BDM’ler tarafindan iiretilen bozuk JSON gibi kusurlu veya tutarsiz verilerle
basa ¢ikma gibi yaygin zorluklara uygulanabilir ve bu sorunlar1 otomatik olarak tespit

etme ve diizeltme i¢in bir yaklagim sunar.

Olympia’da siklikla LLM’lerin tam olarak gecerli olmayan JSON verileri irettigi
senaryolarla kargilagiyorum. Bu durum, LLM’nin asil JSON kodundan 6nce veya sonra
yorum eklemesi ya da eksik virgiil veya kacis karakteri kullanilmamus ¢ift tirnak gibi
sozdizimi hatalar1 olusturmasi gibi ¢esitli nedenlerle meydana gelebilir. Bu sorunlar
ayrigtirma hatalarina yol acabilir ve uygulamanin islevselliginde aksakliklara neden

olabilir.

Bu sorunu ¢ozmek icin, JsonFixer sinifi seklinde pratik bir ¢6ziim gelistirdim. Bu
sinif, “Kendini Onaran Veri” desenini somutlagtirarak bozuk JSON’1 girdi olarak alir
ve mimkin oldugunca fazla bilgi ve amaci koruyarak diizeltmek icin bir LLM’den

yararlanir.

class JsonFixer

include Raix::ChatCompletion

def call(bad_json, error_message)
raise "No data provided" if bad_json.blank? || error_message.blank?

transcript << {
system: "Consider user-provided JSON that generated a parse

exception. Do your best to fix it while preserving the
original content and intent as much as possible." }

transcript << { user: bad_json }

transcript << { assistant: "What is the error message?"}

transcript << { user: error_message }

transcript << { assistant: "Here is the corrected JSON\n " json\n" }

||\\\||1

self.stop = |

chat_completion(json: true)
end

def model
"mistralai/mixtral-8x7Tb-instruct:nitro"

23
24

O b W N =

Kendini Onaran Veri 158

end

end

JsonFixer’m Al yanitlarini yonlendirmek icin Ventriloquist’i nasil
kullandigina dikkat edin.

Kendi kendini onaran JSON verilerinin iglem siireci su sekildedir:

1. JSON Olusturma: Belirli istemler veya gereksinimlere dayali olarak JSON verisi
olusturmak i¢in bir LLM kullanilir. Ancak, LLM’lerin dogas! geregi, olusturulan
JSON her zaman tam olarak gecerli olmayabilir. Elbette JSON ayristirici, gegersiz

bir JSON verdiginizde bir ParserError hatasi firlatacaktir.

begin
JSON.parse(11m_generated_json)
rescue JSON: :ParserkError => e
JsonFixer.new.call(llm_generated_json, e.message)
end

Exception mesajinin da JSONFixer cagrisina iletildigine dikkat edin, boylece veriyle
ilgili neyin yanlig oldugunu tam olarak varsaymak zorunda kalmaz, 6zellikle ayristirici

genellikle size tam olarak neyin yanlig oldugunu sdyleyecektir.

2. BDM-tabanli Diizeltme: JSONF ixer sinifl, bozuk JSON’1 bir BDM’ye (Bilyiik Dil
Modeli) geri gonderir ve orijinal bilgi ve amaci miimkiin oldugunca koruyarak
JSON’1 diizeltmek icin 6zel bir prompt veya talimat ekler. Biiytiik miktarda veri
tizerinde egitilmis ve JSON sozdizimini anlayan BDM, hatalar1 diizeltmeye ve
gecerli bir JSON dizesi olusturmaya calisir. BDM’nin ¢iktisini sinirlamak igin Yanit
Sinirlama kullanilir ve bu tiir gérevler icin 6zellikle iyi olan Mixtral 8x7B’yi yapay

zeka modeli olarak seceriz.

Kendini Onaran Veri 159

3. Dogrulama ve Entegrasyon: BDM tarafindan dondiirillen diizeltilmis JSON
dizesi, chat_completion(json: true) cagrisi yaptifi icin JSONFixer
sinifinin kendisi tarafindan ayristirilir. Diizeltilmis JSON dogrulamay: gegerse,
uygulamanin is akigina tekrar entegre edilir ve uygulamanin veriyi sorunsuz bir

sekilde islemeye devam etmesini saglar. Bozuk JSON “iyilestirilmis” olur.

Kendi JSONFixer uygulamalarimi defalarca yazmis ve yeniden yazmis olmama
ragmen, tim bu versiyonlara harcanan toplam zamanin bir veya iki saatten fazla

oldugundan siipheliyim.

Amacin korunmasinin, herhangi bir kendi kendini iyilestiren veri deseninin kilit unsuru
oldugunu unutmayin. BDM-tabanli diizeltme siireci, olusturulan JSON’1n orijinal bilgi
ve amacini miimkiin oldugunca korumay: hedefler. Bu, diizeltilmis JSON’in anlamsal

onemini korumasimi ve uygulama baglaminda etkili bir sekilde kullanilabilmesini saglar.

Olympia’daki “Kendi Kendini lyilestiren Veri” yaklagimmin bu pratik uygulamas,
yapay zekanin, 6zellikle BDM’lerin, gercek dinya veri zorluklarini ¢6zmek i¢in nasil
kullanilabilecegini agikca gostermektedir. Saglam ve verimli uygulamalar olusturmak
icin geleneksel programlama tekniklerini yapay zeka yetenekleriyle birlestirmenin

giiciini sergiler.

Postel Yasasi ve “Kendi Kendini iyilestiren Veri”
Deseni

JSONFixer smifi érneginde gériildiigii gibi “Kendi Kendini lyilestiren Veri”, Postel

Yasas1 olarak da bilinen Saglamlik Ilkesi ile uyumludur. Postel Yasasi soyle der:
“Yaptiginiz seyde muhafazakar, bagkalarindan kabul ettiginiz seylerde liberal olun.”

Internetin ilk dénemlerinin énciilerinden Jon Postel tarafindan ortaya konan bu ilke,

cikt1 gonderirken belirtilen protokollere siki sikiya bagl kalirken, cesitli veya hatta

Kendini Onaran Veri 160

hafifce hatal girdilere kars1 toleransh sistemler kurmanin 6nemini vurgular.

“Kendi Kendini 1yile§tiren Veri” baglaminda, JSONFixer sinifi, BDM’ler tarafindan
uretilen bozuk veya kusurlu JSON verilerini kabul etmede liberal davranarak
Postel Yasasi'nmi somutlagtirir. Beklenen formata tam olarak uymayan JSON ile
kargilastiginda hemen reddetmez veya basarisiz olmaz. Bunun yerine, toleransh bir

yaklagim benimser ve BDM’lerin giictinii kullanarak JSON’1 diizeltmeye calisir.

Kusurlu JSON’1 kabul etmede liberal davranarak, JSONFixer sinifi saglamlik ve
esneklik gosterir. Gercek diinyada verilerin cesitli bigimlerde geldigini ve her zaman
kat1 spesifikasyonlara uymayabilecegini kabul eder. Bu sapmalar zarif bir sekilde ele
alip diizelterek, sinif uygulamanin kusurlu veri varliginda bile sorunsuz calismaya

devam etmesini saglar.

Ote yandan, JSONFixer smufi ¢ikti s6z konusu oldugunda Postel Yasasi'nin
muhafazakar yoniine de uyar. BDM’leri kullanarak JSON’1 dizelttikten sonra,
simif dizeltilmis JSON’1 dogrulayarak beklenen formata siki sikiya uymasini
saglar. Uygulamanin diger bolimlerine aktarmadan once verinin butinligini
ve dogrulugunu korur. Bu muhafazakar yaklasim, JSONFixer smifinin ¢iktisinin
givenilir ve tutarli olmasini garanti eder, birlikte caligabilirligi tesvik eder ve

hatalarin yayilmasini 6nler.

Jon Postel Hakkinda lging Bilgiler:

« Jon Postel (1943-1998), Internetin gelisiminde cok 6nemli bir rol oynayan
Amerikali bir bilgisayar bilimcisiydi. Temel protokollere ve standartlara
yaptig1 énemli katkilardan dolay: “Internetin Tanrisi” olarak bilinirdi.

« Postel, Internet hakkindaki teknik ve organizasyonel notlarin bir serisi olan
Request for Comments (RFC) belge serisinin editoritydii. TCP, IP ve SMTP
gibi temel protokoller de dahil olmak iizere 200’den fazla RFC’nin yazar1 veya
ortak yazarrydi

« Teknik katkilarmin yani sira, miitevazi ve isbirlik¢i yaklagimiyla taninirdi

Saglam ve birlikte calisabilir bir ag olusturmak igin fikir birligine varmanin

Kendini Onaran Veri 161

ve birlikte calismanin 6nemine inanirdi.

« Postel, 1977°den 1998’deki zamansiz Oliimiine kadar Giiney Kaliforniya
Universitesi (USC) Bilgi Bilimleri Enstitisii'niin (ISI) Bilgisayar Aglar
Bolimi’nin Direktorii olarak gorev yapt.

« Muazzam katkilarinin taninmasi amaciyla, 1998’de genellikle “Bilgisayar
Bilimlerinin Nobel Odiilii” olarak anilan prestijli Turing Odiilii’ne 6liimiinden

sonra layik gorildi.

JSONFixer smifi, Postel’in kariyeri boyunca savundugu temel degerler olan
saglamlik, esneklik ve birlikte calisabilirligi destekler. Protokollere siki bagliligi
korurken kusurlari tolere eden sistemler insa ederek, gercek dinyadaki zorluklarla

karsilastiginda daha dayanikli ve uyarlanabilir uygulamalar olusturabiliriz.

Degerlendirmeler ve Karsi Gostergeler

Kendini onaran veri yaklagimlarinin uygulanabilirligi tamamen uygulamanizin igledigi
veri tirine baghdir. Uygulamanizdaki tiim JSON ayristirma hatalarini otomatik olarak
diizeltmek icin JSON.parse’r basitce monkeypatch etmek istememenizin bir nedeni

vardir: tim hatalar otomatik olarak diizeltilemez veya diizeltilmemelidir.

Kendini onarma &zellikle veri isleme ve yonetimi ile ilgili dizenleyici veya uyumluluk
gereksinimleriyle birlestiginde sorunlu hale gelir. Saglik ve finans gibi bazi sektorler, veri
biitiinliigi ve denetlenebilirlik konusunda o kadar kat1 diizenlemelere sahiptir ki, uygun
gozetim veya giinliik kaydi olmadan herhangi bir “kara kutu” veri diizeltmesi yapmak
bu dizenlemeleri ihlal edebilir. Gelistirdiginiz kendini onaran veri tekniklerinin gegerli

yasal ve diizenleyici cercevelerle uyumlu olmasini saglamak ¢ok 6nemlidir.

Ozellikle yapay zeka modellerini igeren kendini onaran veri tekniklerinin uygulanmasi,
uygulama performansi ve kaynak kullanimi tizerinde biyiik bir etkiye sahip olabilir.

Hata tespiti ve duzeltme igin buyik miktarda veriyi yapay zeka modellerinden

Kendini Onaran Veri 162

gecirmek hesaplama acisindan yogun olabilir. Kendini onaran verinin faydalari ile

iligkili performans ve kaynak maliyetleri arasindaki dengeyi degerlendirmek 6nemlidir.

Bu giigli yaklagimi ne zaman ve nerede uygulayacagimiza karar vermede rol oynayan

faktorlere daha yakindan bakalim.

Veri Kritikligi

Kendini onaran veri tekniklerinin uygulanmasini degerlendirirken, islenen verinin
kritikligini degerlendirmek ¢ok 6nemlidir. Kritiklik diizeyi, verinin uygulamaniz ve is

alani baglamindaki 6nemini ve hassasiyetini ifade eder.

Bazi durumlarda, veri hatalarini otomatik olarak diizeltmek uygun olmayabilir, 6zellikle
veri yiiksek derecede hassas ise veya yasal etkileri varsa. Ornegin, asagidaki senaryolari

disiiniin:

1. Finansal Islemler: Bankacilik sistemleri veya ticaret platformlar1 gibi finansal
uygulamalarda, veri dogrulugu son derece 6nemlidir. Finansal verilerdeki kigiik
hatalar bile yanlis hesap bakiyeleri, yanls yonlendirilmis fonlar veya hatali
ticaret kararlar1 gibi 6nemli sonuglara yol acabilir. Bu durumlarda, kapsamh
dogrulama ve denetim olmadan yapilan otomatik diizeltmeler kabul edilemez
riskler getirebilir.

2. Tibbi Kayitlar: Saglik uygulamalari, son derece hassas ve gizli hasta verileriyle
ilgilenir. Tibbi kayitlardaki yanlisliklar, hasta giivenligi ve tedavi kararlar
tizerinde ciddi etkilere sahip olabilir. Kalifiye saglik profesyonelleri tarafindan
uygun gozetim ve dogrulama olmadan tibbi verileri otomatik olarak degistirmek,
diizenleyici gereksinimleri ihlal edebilir ve hasta refahini riske atabilir.

3. Yasal Belgeler: Sozlesmeler, anlagsmalar veya mahkeme bagvurular gibi
yasal belgeleri isleyen uygulamalar, kati dogruluk ve butinlik gerektirir.
Yasal verilerdeki kiiciikk hatalar bile 6nemli yasal sonuglara yol acabilir. Bu

alanda otomatik diizeltmeler uygun olmayabilir, ciinkii verinin gecerliligini ve

Kendini Onaran Veri 163

uygulanabilirligini saglamak icin genellikle hukuk uzmanlar tarafindan manuel

inceleme ve dogrulama gerekir.

Bu kritik veri senaryolarinda, otomatik diizeltmelerle iligkili riskler genellikle potansiyel
faydalardan daha agir basar. Hatalar1 tanitmanin veya verileri yanlis degistirmenin

sonugclari, finansal kayiplar, yasal sorumluluklar veya hatta bireylere zarar verme gibi

ciddi olabilir.

Yiiksek derecede kritik verilerle ugrasirken, manuel dogrulama ve onaylama siireclerine
oncelik vermek esastir. Verinin dogrulugunu ve biitiinligini saglamada insan gozetimi
ve uzmanlig cok 6nemlidir. Otomatik kendini onaran teknikler hala potansiyel hatalar:
veya tutarsizliklar: isaretlemek icin kullanilabilir, ancak diizeltmelerle ilgili nihai karar

insan muhakemesi ve onayini icermelidir.

Bununla birlikte, bir uygulamadaki tiim verilerin ayni kritiklik diizeyine sahip
olmayabilecegini unutmamak énemlidir. Ayni uygulama icinde, daha az hassas olan
veya hata olustufunda daha disiik etkiye sahip veri alt kiimeleri olabilir. Bu gibi
durumlarda, kendini onaran veri teknikleri bu belirli veri alt kiimelerine secici olarak

uygulanabilirken, kritik veriler manuel dogrulamaya tabi olmaya devam eder.

Onemli olan, uygulamanizdaki her veri kategorisinin kritikligini dikkatle
degerlendirmek ve iligkili riskler ve sonuclara dayali olarak diizeltmeleri ele almak
icin net yonergeler ve stirecler tanimlamaktir. Kritik (6rnegin defterler, tibbi kayitlar)
ve kritik olmayan veriler (6rnegin posta adresleri, kaynak uyarilari) arasinda ayrim
yaparak, kendini onaran veri tekniklerinin faydalarindan uygun oldugu yerde
yararlanmak ve gerekli oldugu yerde siki kontrol ve gozetimi siirdiirmek arasinda bir

denge kurabilirsiniz.

Sonug olarak, kendini onaran veri tekniklerini kritik verilere uygulama karari, alan
uzmanlari, hukuk danigmanlar1 ve diger ilgili paydaslarla istisare iginde alimmalidir.
Uygulamanizin verileriyle iligkili 6zel gereksinimleri, diizenlemeleri ve riskleri dikkate

almak ve veri diizeltme stratejilerini buna gore hizalamak esastir.

Kendini Onaran Veri 164

Hata Siddeti

Kendini onaran veri tekniklerini uygularken, veri hatalarinin siddetini ve etkisini
degerlendirmek onemlidir. Tim hatalar esit degildir ve uygun eylem sekli hatanin

ciddiyetine bagl olarak degisebilir.

Kuguk tutarsizliklar veya bicimlendirme sorunlari otomatik diizeltme icin uygun
olabilir. Ornegin, bozuk JSON’u diizeltmekle gorevlendirilmis bir kendini onaran veri
iscisi, verinin anlamini veya yapisini 6nemli 6l¢iide degistirmeden eksik virgiilleri veya
kagis karakteri olmayan cift tirnaklar: ele alabilir. Bu tiir hatalar genellikle dizeltilmesi

kolaydir ve genel veri buitiinliigii tizerinde minimal etkiye sahiptir.

Bununla birlikte, verinin anlamini veya biitiinligiinii temelden degistiren daha ciddi
hatalar, farkli bir yaklagim gerektirebilir. Bu gibi durumlarda, otomatik diizeltmeler
yeterli olmayabilir ve verinin dogrulugunu ve gecerliligini saglamak icin insan

miidahalesi gerekebilir.

[ste tam bu noktada, hata ciddiyetini belirlemede yapay zekanin kendisinden
yararlanma kavrami devreye girer. Yapay zeka modellerinin yeteneklerinden
faydalanarak, sadece hatalar1 dizeltmekle kalmayip, aymi zamanda bu hatalarin
ciddiyetini degerlendiren ve bunlar1 nasil ele alacagma dair bilingli kararlar verebilen

kendini onaran veri iscileri tasarlayabiliriz.

Ornegin, bir miisteri veritabanina akan verilerdeki tutarsizliklar1 diizeltmekten sorumlu
bir kendini onaran veri is¢isini ele alalim. Bu is¢i, verileri analiz etmek ve eksik veya
celiskili bilgiler gibi olas1 hatalari tespit etmek iizere tasarlanabilir. Ancak tiim hatalar1
otomatik olarak diizeltmek yerine, isci ciddi hatalar1 insan incelemesi i¢gin isaretlemesine

olanak taniyan ek arag¢ ¢agrilari ile donatilabilir.

Iste bunun nasil uygulanabilecegine dair bir 6rnek:

© 0 N O O b W N e

W W W W W W W N NN DDDNDDNDDNDDNDNDDNRA A~ AR R,)R
O O B W N~ O © 00 N O O b W NP, O O 0 N O O kx W N =~ O

Kendini Onaran Veri 165

class CustomerDataReviewer
include Raix::ChatCompletion

include Raix::FunctionDeclarations
attr_accessor :customer

function :flag_for_review, reason: { type: "string" } do |params|
AdminNotifier.review_request(customer, params|[:reason])
end

def initialize(customer)
self.customer = customer
end

def call(customer_data)
transcript << {
system: "You are a customer data reviewer. Your task is to identify
and correct inconsistencies in customer data.

< additional instructions here... >

If you encounter severe errors that require human review, use the

“flag_for_review® tool to flag the data for manual intervention." }

transcript << { user: customer.to_json }

transcript << { assistant: "Reviewed/corrected data:\n json\n" }

self.stop = |

chat_completion(json: true).then do |result|
return if result.blank?

customer .update(result)
end
end
end

Bu 6rnekte, CustomerDataHealer iscisi musteri verilerindeki tutarsizliklar: belirleme
ve diizeltme icin tasarlanmigtir. Bir kez daha, yapilandirilmis ¢iktt almak igin

Yanit Sinirlama ve Karin Konugmacisi kullaniyoruz. Onemli olarak, is¢inin sistem

Kendini Onaran Veri 166

yonergesi, ciddi hatalarla kargilasildiginda flag_for_review fonksiyonunu kullanma

talimatlarini icerir.

Isci miisteri verilerini islerken, verileri analiz eder ve tutarsizliklar1 diizeltmeye calisr.
Is¢i hatalarin ciddi oldugunu ve insan miidahalesi gerektirdigini belirlerse, flag_for_-

review aracini kullanarak verileri isaretleyebilir ve isaretleme nedenini belirtebilir.

chat_completion metodu, diizeltilmis miisteri verilerini JSON olarak ayristirmak i¢in
json: true parametresiyle cagrilir. Bir fonksiyon c¢agrisindan sonra déngii yapma
imkani olmadigindan, eger flag_for_review cagrildiysa sonug¢ bos olacaktir. Aksi

takdirde, misteri incelenmis ve potansiyel olarak diizeltilmis verilerle giincellenir.

Hata ciddiyeti degerlendirmesi ve verileri insan incelemesi icin isaretleme secenegini
dahil ederek, kendini onaran veri iscisi daha akilli ve uyarlanabilir hale gelir. Kagik
hatalar1 otomatik olarak ele alabilirken, ciddi hatalar1 manuel mudahale i¢in insan

uzmanlara yo6nlendirebilir.

Hata ciddiyetini belirleme kriterleri, alan bilgisi ve is gereksinimlerine dayali olarak
iscinin yonergesinde tanimlanabilir. Veri butinligi tizerindeki etki, veri kayb1 veya
bozulma olasilig1 ve yanlis verilerin sonuclari gibi faktérler ciddiyet degerlendirmesinde

dikkate alinabilir.

Hata ciddiyetini degerlendirmek i¢in yapay zekay1 kullanarak ve insan miidahalesi i¢in
secenekler sunarak, kendini onaran veri teknikleri otomasyon ile veri dogrulugunu
koruma arasinda bir denge kurabilir. Bu yaklasim, kiiciik hatalarin verimli bir sekilde
diizeltilmesini saglarken, ciddi hatalarin insan inceleyicilerinden gerekli ilgi ve

uzmanlig1 almasini saglar.

Alan Karmasikhgi

Kendini onaran veri tekniklerinin uygulanmasini diisiiniirken, veri alaninin
karmagikligini ve yapisim ve iligkilerini yoneten kurallar1 degerlendirmek
onemlidir. Alanin karmagikligi, otomatik veri diizeltme yaklagimlarinin etkinligini ve

uygulanabilirligini 6nemli 6l¢iide etkileyebilir.

Kendini Onaran Veri 167

Kendini onaran veri teknikleri, veriler iyi tanimlanmis kaliplar1 ve kisitlamalari
takip ettiginde iyi caligir. Veri yapisinin nispeten basit oldugu ve veri 6geleri
arasindaki iligkilerin acik oldugu alanlarda, otomatik diizeltmeler yiksek bir giivenle
uygulanabilir. Ornegin, bicimlendirme sorunlarini diizeltme veya temel veri tipi
kisitlamalarini uygulama genellikle kendini onaran veri iscileri tarafindan etkili bir

sekilde ele alinabilir.

Ancak, veri alaniin karmagsiklig: arttikca, otomatik veri diizeltmeyle iligkili zorluklar
da buyir. Karmasik is mantigi, veri varliklar1 arasinda karmasik iligkiler veya alana
ozgi kurallar ve istisnalar igeren alanlarda, kendini onaran veri teknikleri her zaman

nianslar1 yakalayamayabilir ve istenmeyen sonuglara yol acabilir.

Karmasik bir alan 6rnegi diisiinelim: bir finansal ticaret sistemi. Bu alanda, veriler cesitli
finansal araglari, piyasa verilerini, ticaret kurallarini ve diizenleyici gereksinimleri icerir.
Farkli veri 6geleri arasindaki iligkiler karmasik olabilir ve veri gecerliligi ve tutarliligini

yoneten kurallar alana oldukga 6zgii olabilir.

Boyle karmagik bir alanda, ticaret verilerindeki tutarsizliklari diizeltmekle
gorevlendirilmis bir kendini onaran veri is¢isinin, alana 6zgi kurallarm ve
kisitlamalarin derin bir anlayisina sahip olmas: gerekir. Piyasa diizenlemeleri, ticaret
limitleri, risk hesaplamalar1 ve uzlasma prosediirleri gibi faktorleri dikkate almasi
gerekir. Bu baglamda otomatik diizeltmeler, alanin tam karmagikligini her zaman

yakalayamayabilir ve istemeden hatalar veya alana 6zgii kural ihlalleri olusturabilir.

Alan karmagikligiin zorluklarini ele almak i¢in, kendini onaran veri teknikleri alana
ozgii bilgi ve kurallar1 yapay zeka modellerine ve iscilerine dahil ederek gelistirilebilir.

Bu, asagidaki tekniklerle gerceklestirilebilir:

1. Alana Ozgii Egitim: Kendini onaran veri i¢in kullanilan yapay zeka modelleri,
belirli alanin inceliklerini ve kurallarini yakalayan alana 6zgii veri setleri izerinde
yonlendirilebilir veya hatta ince ayar yapilabilir. Modelleri temsili veriler ve
senaryolara maruz birakarak, alana 6zgi kaliplari, kisitlamalari ve istisnalari

Ogrenebilirler.

Kendini Onaran Veri 168

2. Kural Tabanli Kisitlamalar: Kendini onaran veri iscileri, alana 6zgii bilgileri
kodlayan agik kural tabanli kisitlamalarla giiclendirilebilir. Bu kurallar alan
uzmanlar: tarafindan tanimlanabilir ve veri dizeltme siirecine entegre edilebilir.
Yapay zeka modelleri daha sonra bu kurallar1 kararlarini yoénlendirmek ve alana
Ozgl gereksinimlere uyumu saglamak icin kullanabilir.

3. Alan Uzmanlariyla Isbirligi: Karmasik alanlarda, kendini onaran veri
tekniklerinin tasarimina ve gelistirilmesine alan uzmanlarimi dahil etmek
¢ok onemlidir. Alan uzmanlari, verinin incelikleri, is kurallar1 ve olasi ug
durumlar hakkinda degerli i¢goriiler saglayabilir. Onlarin bilgileri, Insan Destekli
Dongii kaliplarint kullanarak otomatik veri dizeltmelerinin dogrulugunu ve
guvenilirligini artirmak igin yapay zeka modellerine ve iscilerine dahil edilebilir.

4. Asamali ve Yinelemeli Yaklasim: Karmasik alanlarla ugrasirken, genellikle
kendini onaran veriye agamali ve yinelemeli bir yaklagim benimsemek faydalidir.
Tim alan igin bir kerede diizeltmeleri otomatiklestirmeye calismak yerine,
kurallarin ve kisitlamalarin iyi anlagildign belirli alt alanlara veya veri
kategorilerine odaklanin. Alan anlayis1 gelistikce ve teknikler etkili oldugunu

kanitladik¢a kendini onaran tekniklerin kapsamini kademeli olarak genigletin.

Veri alaninin karmagikligini goz 6niinde bulundurarak ve alana 6zgii bilgiyi kendini
onaran veri tekniklerine dahil ederek, otomasyon ve dogruluk arasinda bir denge
kurabilirsiniz. Kendini onaran verinin her duruma uyan tek bir ¢dziim olmadigim
ve yaklasimin her alanin 6zel gereksinimlerine ve zorluklarina gére uyarlanmasi

gerektigini kabul etmek onemlidir.

Karmagik alanlarda, kendini onaran veri tekniklerini insan uzmanlig1 ve gozetimiyle
birlestiren hibrit bir yaklasim en etkili olabilir. Otomatik diizeltmeler rutin ve iyi
tanimlanmis durumlari ele alabilirken, karmasik senaryolar veya istisnalar insan
incelemesi ve miidahalesi icin isaretlenebilir. Bu isbirlik¢i yaklagim, karmagik
veri alanlarinda gerekli kontrol ve dogrulugu korurken otomasyonun faydalarmin

gergeklestirilmesini saglar.

Kendini Onaran Veri 169

Aciklanabilirlik ve Seffaflik

Aciklanabilirlik, yapay zeka modellerinin verdigi kararlarin arkasindaki mantig1 anlama
ve yorumlama yetenegini ifade ederken, seffaflik veri diizeltme sirecine agik bir

gorinirlik saglamayi icerir.

Bircok baglamda, veri degisikliklerinin denetlenebilir ve gerekcelendirilebilir olmasi
gerekir. Is kullanicilari, denetciler ve diizenleyici kurumlar dahil olmak iizere paydaslar,
belirli veri dizeltmelerinin neden yapildig1 ve yapay zeka modellerinin bu kararlara
nasil vardig1 konusunda aciklamalar talep edebilir. Bu, 6zellikle finans, saglik hizmetleri
ve hukuki konular gibi veri dogrulugu ve butiinligiinin 6nemli etkilere sahip oldugu

alanlarda cok 6nemlidir.

Aciklanabilirlik ve seffaflik ihtiyacini karsilamak icin, kendini onaran veri teknikleri,
yapay zeka modellerinin karar verme siirecine iligkin icgdriiler saglayan mekanizmalar:

icermelidir. Bu, cesitli yaklasimlarla gerceklestirilebilir:

1. Diisiince Zinciri: Modelden verilerde degisiklik yapmadan once diisiincesini
“sesli” olarak aciklamasim istemek, karar verme siirecinin daha kolay
anlagilmasini saglayabilir ve yapilan diizeltmeler i¢in insan tarafindan okunabilir
aciklamalar iretebilir. Bunun bedeli, aciklamay1 yapilandirilmig veri ¢iktisindan
ayirmada biraz daha karmasikliktir, bu da soyle ele alinabilir...

2. Aciklama Uretimi: Kendini onaran veri calisanlari, yaptiklar1 diizeltmeler
icin insan tarafindan okunabilir aciklamalar tretme yetenegi ile donatilabilir.
Bu, modelden karar verme siirecini verinin kendisine entegre edilmis kolayca
anlagilabilir agiklamalar olarak cikti vermesini isteyerek gerceklestirilebilir.
Ornegin, kendini onaran bir veri ¢alisani, tespit ettigi spesifik veri tutarsizliklarini,
uyguladig1 diizeltmeleri ve bu diizeltmelerin arkasindaki mantigi vurgulayan bir
rapor olusturabilir.

3. Ozellik Onemi: Yapay zeka modellerine, direktiflerinin bir pargasi olarak veri

diizeltme strecindeki farkli 6zelliklerin veya niteliklerin 6nemi hakkinda bilgi

Kendini Onaran Veri 170

verilebilir. Bu direktifler de insan paydaslara aciklanabilir. Modelin kararlarin
etkileyen temel faktorleri belirleyerek, paydaslar diizeltmelerin arkasindaki
mantik hakkinda icgoérii kazanabilir ve bunlarin gecerliligini degerlendirebilir.

4. Giinliik Tutma ve Denetleme: Kendini onaran veri stirecinde seffafligi korumak
icin kapsamli giinliik tutma ve denetleme mekanizmalarinin uygulanmasi ¢ok
6nemlidir. Yapay zeka modelleri tarafindan yapilan her veri diizeltmesi, orijinal
veri, diizeltilmig veri ve atilan spesifik adimlar dahil olmak tizere kaydedilmelidir.
Bu denetim izi, geriye doniik analiz yapilmasina olanak tanir ve verilerde yapilan
degisikliklerin net bir kaydini saglar.

5. Insan Destekli Déngii Yaklasimr: Insan destekli déngii yaklasimmin dahil
edilmesi, kendini onaran veri tekniklerinin aciklanabilirligini ve seffafligim
artirabilir. Yapay zeka tarafindan dretilen dizeltmelerin incelenmesi ve
dogrulanmasinda insan uzmanlar1 dahil ederek, kuruluslar dizeltmelerin alan
bilgisi ve is gereksinimleriyle uyumlu olmasini saglayabilir. Insan gozetimi ek bir
hesap verebilirlik katmani ekler ve yapay zeka modellerindeki olas: 6nyargilarin
veya hatalarin belirlenmesine olanak tanir.

6. Siirekli izleme ve Degerlendirme: Kendini onaran veri tekniklerinin
performansini diizenli olarak izlemek ve degerlendirmek, seffafligi ve giiveni
korumak i¢in ¢cok 6nemlidir. Yapay zeka modellerinin dogrulugunu ve etkinligini
zaman icinde degerlendirerek, kuruluslar herhangi bir sapma veya anomaliyi
belirleyebilir ve diizeltici 6nlemler alabilir. Siirekli izleme, kendini onaran veri
stirecinin giivenilir kalmasini ve istenen sonuglarla uyumlu olmasini saglamaya

yardimect olur.

Aciklanabilirlik ve seffaflik, kendini onaran veri tekniklerinin uygulanmasinda
kritik 6neme sahip hususlardir. Veri diizeltmeleri igin net aciklamalar saglayarak,
kapsamli denetim izleri tutarak ve insan gézetimini dahil ederek, kuruluslar kendini
onaran veri siirecine olan giiveni insa edebilir ve verilerde yapilan degisikliklerin

gerekcelendirilebilir ve is hedefleriyle uyumlu olmasini saglayabilir.

Kendini Onaran Veri 171

Otomasyon faydalari ile seffaflik ihtiyaci arasinda bir denge kurmak 6nemlidir. Kendini
onaran veri teknikleri veri kalitesini ve verimliligi 6nemli dl¢iide iyilestirebilse de, bu
veri diizeltme siireci tizerindeki goriiniirlik ve kontroli kaybetme pahasina olmamalidir.
Kendini onaran veri ¢caliganlarini agiklanabilirlik ve seffaflik gz 6niinde bulundurularak
tasarlayarak, kuruluslar yapay zekanin giiciinden yararlanirken verilerde gerekli hesap

verebilirlik ve giiven diizeyini koruyabilir.

Istenmeyen Sonuglar

Kendini onaran veri teknikleri veri kalitesini ve tutarliligini iyilestirmeyi amaglasa da,
istenmeyen sonuglarin ortaya ¢itkma potansiyeline kargi dikkatli olmak ¢ok 6nemlidir.
Dikkatli bir sekilde tasarlanip izlenmezse, otomatik diizeltmeler istemeden verinin

anlamini veya baglamini degistirebilir ve alt stire¢ sorunlarina yol acabilir.

Kendini onaran verinin temel risklerinden biri, veri diizeltme siirecine 6nyarg: veya
hatalarin dahil edilmesidir. Yapay zeka modelleri, diger yazilim sistemleri gibi, egitim
verilerinde mevcut olan veya algoritmalarin tasarimi yoluyla ortaya ¢ikan 6nyargilara
tabi olabilir. Bu 6nyargilar tespit edilip azaltilmazsa, kendini onaran veri siireci boyunca

yayilabilir ve carpik veya yanlis veri degisikliklerine neden olabilir.

Ornegin, miisteri demografik verilerindeki tutarsizliklari diizeltmekle gérevlendirilmis
bir kendi kendini onaran veri is¢isini ele alalim. Eger yapay zeka modeli ge¢mis
verilerden 6nyargilari 6grendiyse, o6rnegin belirli meslekleri veya gelir seviyelerini
belirli cinsiyetler veya etnik kokenlerle iliskilendirme gibi, yanlig varsayimlarda
bulunabilir ve verileri bu 6nyargilari pekistirecek sekilde degistirebilir. Bu durum,
hatali miusteri profillerine, yanlis yonlendirilmis is kararlarina ve potansiyel olarak

ayrimci sonuglara yol agabilir.

Bir diger potansiyel istenmeyen sonug, veri diizeltme siireci sirasinda degerli bilgilerin
veya baglamin kaybolmasidir. Kendi kendini onaran veri teknikleri genellikle tutarlilig
saglamak igin verileri standartlagtirmaya ve normallestirmeye odaklanir. Ancak bazi

durumlarda, orijinal veriler tam resmi anlamak i¢in 6nemli olan niianslari, istisnalar

Kendini Onaran Veri 172

veya baglamsal bilgileri icerebilir. Korii koriine standardizasyonu uygulayan otomatik

diizeltmeler, bu degerli bilgileri istemeden kaldirabilir veya belirsizlegtirebilir.

Ornegin, tibbi kayitlardaki tutarsizliklari diizeltmekle sorumlu bir kendi kendini onaran
veri iscisini diisiiniin. Is¢i, nadir gériilen bir hastalig1 olan veya olagandist bir tedavi
plani olan bir hastanin tibbi ge¢misiyle karsilastiginda, verileri daha yaygin bir kaliba
uydurmak i¢in normallestirmeye ¢alisabilir. Ancak bunu yaparken, hastanin benzersiz
durumunu dogru bir sekilde temsil etmek i¢in kritik 6neme sahip olan 6zel detaylar: ve
baglami kaybedebilir. Bu bilgi kaybi, hasta bakimi ve tibbi karar verme acisindan ciddi

sonuclar dogurabilir.

[stenmeyen sonuclarin risklerini azaltmak icin, kendi kendini onaran veri tekniklerini

tasarlarken ve uygularken proaktif bir yaklasim benimsemek esastir:

1. Kapsamli Test ve Dogrulama: Kendi kendini onaran veri iscilerini iretime
almadan oOnce, davranislarini cesitli senaryolara karsi kapsamli bir sekilde
test etmek ve dogrulamak ¢ok 6nemlidir. Bu, cesitli u¢ durumlar, istisnalar
ve potansiyel 6nyargilari kapsayan temsili veri setleriyle test yapmay: igerir.
Titiz testler, istenmeyen sonugclar1 gercek diinya verilerini etkilemeden once
belirlemeye ve ele almaya yardimei olur.

2. Siirekli izleme ve Degerlendirme: Istenmeyen sonuclar1 zamanla tespit etmek
ve azaltmak i¢in siirekli izleme ve degerlendirme mekanizmalarinin uygulanmasi
esastir. Kendi kendini onaran veri siireclerinin sonuclarini diizenli olarak
gozden gecirmek, alt sistemler ve karar verme iizerindeki etkiyi analiz etmek ve
paydaslardan geri bildirim toplamak, olumsuz etkileri belirlemeye ve zamaninda
diizeltici 6nlemler almaya yardimeci olabilir. Kurulugsunuzda operasyonel gosterge
panelleri varsa, otomatik veri degisiklikleriyle ilgili acikca goriilebilir metriklerin
eklenmesi muhtemelen iyi bir fikirdir. Normal veri degisikligi aktivitesinden
biiyiik sapmalara bagl alarmlar eklemek muhtemelen daha da iyi bir fikirdir!

3. Insan Gozetimi ve Miidahalesi: Kendi kendini onaran veri siirecinde insan

gozetimini ve miidahale edebilme yetenegini korumak ¢ok énemlidir. Otomasyon

Kendini Onaran Veri 173

verimliligi buyik 6lctide artirabilirken, 6zellikle kritik veya hassas alanlarda
yapay zeka modelleri tarafindan yapilan diizeltmeleri insan uzmanlarin gézden
gecirmesi ve dogrulamasi énemlidir. insan muhakemesi ve alan uzmanlig, ortaya

cikabilecek istenmeyen sonugclari belirlemeye ve ele almaya yardimeci olabilir.

4. Aciklanabilir Yapay Zeka (XAI) ve Seffaflik: Onceki alt bolimde tartigildig
gibi, aciklanabilir yapay zeka tekniklerini dahil etmek ve kendi kendini onaran veri
stirecinde seffaflig1 saglamak, istenmeyen sonuclari azaltmaya yardimer olabilir.
Veri diizeltmeleri i¢in net agiklamalar saglayarak ve kapsamli denetim izleri
tutarak, kuruluslar yapay zeka modellerinin yaptigi degisikliklerin arkasindaki
mantig1 daha iyi anlayabilir ve izleyebilir.

5. Asamali ve Yinelemeli Yaklasim: Kendi kendini onaran veriye asamali ve
yinelemeli bir yaklasim benimsemek, istenmeyen sonuclarin riskini en aza
indirmeye yardimci olabilir. Otomatik dizeltmeleri bir kerede tim veri setine
uygulamak yerine, teknikler etkili ve giivenilir oldugunu kanitladikca veri alt
kiimesiyle baslayip kapsami kademeli olarak genisletin. Bu, siire¢ boyunca
dikkatli izleme ve ayarlama yapilmasina olanak tanir ve istenmeyen sonuclarin
etkisini azaltir.

6. Isbirligi ve Geri Bildirim: Farkli alanlardan paydaslari siirece dahil etmek
ve kendi kendini onaran veri siireci boyunca isbirligi ve geri bildirimi tesvik
etmek, istenmeyen sonugclari belirlemeye ve ele almaya yardimei olabilir. Alan
uzmanlarindan, veri tiiketicilerinden ve son kullanicilardan diizenli olarak girdi
almak, veri diizeltmelerinin gercek diinyadaki etkisi hakkinda degerli bilgiler

saglayabilir ve gozden ka¢gmis olabilecek sorunlari vurgulayabilir.

Istenmeyen sonuclarin riskini proaktif olarak ele alarak ve uygun onlemleri
uygulayarak, kuruluglar potansiyel olumsuz etkileri en aza indirirken kendi kendini
onaran veri tekniklerinin faydalarindan yararlanabilir. Kendi kendini onaran veriye

yinelemeli ve igbirlik¢i bir siire¢ olarak yaklasmak, teknikleri siirekli izlemek,

Kendini Onaran Veri 174

degerlendirmek ve istenen sonuglarla uyumlu olmalarini ve verilerin biitiinligint ve

giivenilirligini korumalarini saglamak igin iyilestirmek 6nemlidir.

Kendi kendini onaran veri desenlerinin kullanimini diisiiniirken, bu faktorleri dikkatle
degerlendirmek ve faydalari potansiyel riskler ve sinirlamalarla kargilagtirmak esastir.
Bazi durumlarda, otomatik diizeltmeleri insan goézetimi ve miidahalesiyle birlestiren

hibrit bir yaklasim en uygun ¢oziim olabilir.

Ayrica, kendi kendini onaran veri tekniklerinin saglam veri dogrulama, girdi temizleme
ve hata isleme mekanizmalarmin yerini almasi amac¢lanmadigini belirtmek 6nemlidir.
Bu temel uygulamalar veri biitiinligii ve giivenligi i¢in kritik 6neme sahip olmaya
devam etmektedir. Kendi kendini onaran veri, bu mevcut 6nlemleri destekleyebilecek

ve gelistirebilecek tamamlayici bir yaklagim olarak gériillmelidir.

Sonug olarak, kendi kendini onaran veri desenlerini kullanma karari, uygulamanizin
ozel gereksinimleri, kisitlamalari ve 6nceliklerine baglidir. Yukarida belirtilen hususlar:
dikkatle degerlendirerek ve bunlari uygulamanizin hedefleri ve mimarisiyle uyumlu
hale getirerek, kendi kendini onaran veri tekniklerini ne zaman ve nasil etkili bir sekilde

kullanacagimiz konusunda bilingli kararlar alabilirsiniz.

Baglamsal icerik Uretimi

YA ML d SRV PP
’ Py ':‘Qég 2
A ‘n; ;

Baglamsal Icerik Uretimi kaliplari, uygulamalarda dinamik ve baglama &zel igerik
tiretmek i¢in buytk dil modellerinin (BDM) giiciinden yararlanir. Bu kalip kategorisi,
kullanicilara 6zel ihtiyaclarina, tercihlerine ve hatta uygulamayla 6nceki ve mevcut
etkilesimlerine dayali olarak kisisellestirilmis ve alakali icerik sunmanin 6nemini kabul

eder.

Bu yaklagimda “igerik” terimi, hem birincil icerigi (yani blog yazilari, makaleler vb.)

hem de birincil igerige yonelik oneriler gibi meta-icerigi ifade eder.

Baglamsal Igerik Uretimi kaliplari, kullanici etkilesim seviyelerinizi artirmada,
kigisellestirilmis deneyimler sunmada ve hem sizin hem de kullanicilariniz icin icerik

olusturma gorevlerini otomatiklestirmede ¢ok 6nemli bir rol oynayabilir. Bu bélimde

Baglamsal Icerik Uretimi 176

acitkladigimiz kaliplar1 kullanarak, baglama ve girdilere gercek zamanli olarak uyum

saglayan, dinamik olarak icerik iireten uygulamalar olusturabilirsiniz.

Kaliplar, BDM leri kullanici arayiiziinden (bazen “chrome” olarak adlandirilir) e-postalar
ve diger bildirim tarlerine ve herhangi bir igerik tretim islem hattina kadar uzanan

uygulama ciktilarina entegre ederek calisir.

Bir kullanici uygulamayla etkilesime girdiginde veya belirli bir igerik talebi
tetiklediginde, uygulama kullanici tercihleri, onceki etkilesimler veya belirli
komutlar gibi ilgili baglami yakalar. Bu baglamsal bilgi daha sonra gerekli sablonlar
veya yonergelerle birlikte BDM’ye beslenir ve aksi takdirde sabit kodlanmasi, bir
veritabaninda saklanmasi veya algoritmik olarak uretilmesi gereken metinsel ¢iktiy1

tiretmek icin kullanilir.

BDM tarafindan iiretilen icerik, kisisellestirilmis oneriler, dinamik tiriin aciklamalari,
ozellestirilmis e-posta yanitlar1 veya hatta tam makaleler ya da blog yazilar1 gibi cesitli
bicimler alabilir. Bu icerigin en radikal kullanimlarindan biri, bir yildan fazla bir siire
once onculik ettigim form etiketleri, ara¢ ipuclari ve diger aciklayicit metin gibi kullanict

araylzi 6gelerinin dinamik olarak olusturulmasidir.

Kisisellestirme

Baglamsal Icerik Uretimi kaliplarinin temel faydalarindan biri, kullanicilara son derece
kigisellestirilmis deneyimler sunma yetenegidir. Bu kaliplar, kullaniciya 6zel baglama
dayali icerik tireterek, uygulamalarin icerigi her kullanicinin ilgi alanlarina, tercihlerine

ve etkilesimlerine gore uyarlamasini saglar.

Kisisellestirme, sadece kullanicinin adini genel igerige eklemekten ¢ok daha fazlasidir.
Her kullanici hakkinda mevcut olan zengin baglami kullanarak, onlarin 6zel ihtiyac ve

istekleriyle ortiisen icerik iretmeyi icerir. Bu baglam ¢esitli faktorleri igerebilir, 6rnegin:

1. Kullanici Profil Bilgileri: Bu teknigin en genel uygulama diizeyinde, demografik

Baglamsal Icerik Uretimi 177

veriler, ilgi alanlari, tercihler ve diger profil 6zellikleri, kullanicinin ge¢misi ve
ozellikleriyle uyumlu icerik tiretmek icin kullanilabilir.

2. Davranissal Veriler: Kullanicinin uygulama ile gecmis etkilesimleri,
goruntillenen sayfalar, tiklanan baglantilar veya satin alnan triinler gibi
veriler, davraniglar1 ve ilgi alanlari hakkinda degerli bilgiler saglayabilir. Bu
veriler, kullanicinin etkilesim kaliplarini yansitan ve gelecekteki ihtiyaglarini
tahmin eden icerik onerileri iiretmek icin kullanilabilir.

3. Baglamsal Faktorler: Kullanicinin mevcut konumu, cihazi, giiniin saati veya
hatta hava durumu gibi mevcut baglami, icerik iretim siirecini etkileyebilir.
Ornegin, bir seyahat uygulamasi, kullanicinin mevcut konumuna ve hakim hava
kosullarina dayali olarak kisisellestirilmis oneriler iiretebilen bir yapay zeka

calisanina sahip olabilir.

Bu baglamsal faktorlerden yararlanarak, Baglamsal Icerik Uretimi kaliplari,
uygulamalarin her bir kullanici igin 6zel olarak hazirlanmig gibi goriinen icerik

sunmasini saglar. Bu diizeyde kisisellestirmenin birka¢ 6nemli faydasi vardir:

1. Artan Etkilesim: Kisisellestirilmis icerik, kullanicilarin dikkatini ceker ve onlar1
uygulama ile etkilesimde tutar. Kullanicilar icerigin alakali oldugunu ve dogrudan
kendi ihtiyaclarina hitap ettigini hissettiklerinde, uygulama ile daha fazla zaman
gecirme ve Ozelliklerini kegfetme olasiliklar: daha yiiksektir.

2. Gelismis Kullanici Memnuniyeti: Kigisellestirilmis icerik, uygulamanin
kullanicinin 6zel gereksinimlerini anladigini ve 6nemsedigini gosterir. Yardimei,
bilgilendirici ve ilgi alanlariyla uyumlu icerik sunarak, uygulama kullanici
memnuniyetini artirabilir ve kullanicilariyla daha giicli bir bag kurabilir.

3. Daha Yiiksek Doniisiim Oranlari: E-ticaret veya pazarlama uygulamalar
baglaminda, kigsisellestirilmis icerik donlisim oranlarini o6nemli 6lgtde
etkileyebilir. Kullanicilara tercihlerine ve davraniglarmma gore uyarlanmig
urinler, teklifler veya oneriler sunarak, uygulama kullanicilarin satin alma veya

bir hizmete kaydolma gibi istenen eylemleri gerceklestirme olasiligini artirabilir.

Baglamsal Icerik Uretimi 178

Uretkenlik

Baglamsal icerik Uretimi kaliplari, yaratici siireclerde manuel icerik iiretimi ve
diizenleme ihtiyacim azaltarak belirli tiirdeki iiretkenligi 6nemli olciide artirabilir.
BDM’lerin giiciinden yararlanarak, icerik olusturucularinizin ve gelistiricilerinizin
sikict manuel iglere harcamak zorunda kalacagi zaman ve c¢abadan tasarruf ederek,

olceklenebilir yiitksek kaliteli icerik tiretebilirsiniz.

Geleneksel olarak, icerik ireticilerinin uygulamanin gereksinimlerini ve kullanici
beklentilerini kargilamak icin igerigi arastirmasi, yazmasi, diizenlemesi ve
bicimlendirmesi gerekir. Bu stire¢, Ozellikle icerik hacmi biylidik¢e zaman alici

ve kaynak yogun olabilir.

Ancak, Baglamsal Icerik Uretimi kaliplariyla igerik olusturma siireci biiyiik
olciide otomatiklestirilebilir. Biyiik Dil Modelleri, verilen komutlar ve yonergeler
dogrultusunda tutarli, dilbilgisi agisindan dogru ve baglamsal olarak ilgili icerik

uretebilir. Bu otomasyon birkag iiretkenlik avantaji sunar:

1. Azaltilmis Manuel Caba: Icerik iiretimi gorevlerini Biiyiikk Dil Modellerine
devrederek, icerik tireticileri icerik stratejisi, fikir tiretimi ve kalite giivencesi gibi
daha st diuzey gorevlere odaklanabilir. Biiyitk Dil Modeline gerekli baglami,
sablonlar1 ve yonergeleri saglayabilir ve asil icerik iiretimini ona birakabilirler.
Bu, yazma ve diizenleme i¢in gereken manuel ¢cabay1 azaltarak icerik iireticilerinin
daha tiretken ve verimli olmasini saglar.

2. Daha Hizh i¢erik Uretimi: Biiyiik Dil Modelleri, insan yazarlardan ¢ok daha hizl
icerik tiretebilir. Dogru komutlar ve yonergelerle bir Biiyiik Dil Modeli, saniyeler
veya dakikalar icinde birden fazla icerik pargasi tretebilir. Bu hiz, uygulamalarin
cok daha hizl bir tempoda icerik tiretmesini saglayarak kullanicilarin taleplerini

ve siirekli degisen dijital ortami yakalamasina olanak tanir.

Baglamsal Icerik Uretimi 179

Daha hizli icerik iiretimi, internetin kimsenin okumadig: iceriklerle dolup tasmasi
seklinde bir “ortak mallarin trajedisi” durumuna m1 yol agiyor? Ne yazik ki, cevabin

evet oldugundan siipheleniyorum.

3. Tutarlilik ve Kalite: Buyiik Dil Modelleri, icerigi stil, ton ve kalite acisindan
tutarli olacak sekilde kolaylikla diizenleyebilir. Net yonergeler ve ornekler
saglandiginda, belirli tiirdeki uygulamalar (6rnegin haber odasi, PR vb.) insan
tarafindan tretilen iceriklerinin marka sesiyle uyumlu olmasini ve istenen kalite
standartlarini karsilamasini saglayabilir. Bu tutarlilik, kapsamli diizenleme ve
revizyonlara olan ihtiyaci azaltarak icerik olusturma siirecinde zaman ve ¢abadan
tasarruf saglar.

4. Iterasyon ve Optimizasyon: Baglamsal Icerik Uretimi kaliplar1 hizl iterasyon
ve icerik optimizasyonuna olanak tanir. Biiyiik Dil Modeline saglanan komutlari,
sablonlar1 veya yonergeleri ayarlayarak, uygulamalariniz gecmiste hic miimkiin
olmayan bir sekilde otomatik olarak icerik varyasyonlar: iretebilir ve farkli
yaklasimlar1 test edebilir. Bu tekrarlayici siireg, icerik stratejilerinin daha hizl
denenmesine ve iyilestirilmesine olanak tanir ve zamanla daha etkili ve ilgi ¢ekici
icerik tretilmesini saglar. Bu 6zel teknik, hemen ¢ikma oranlari ve etkilesime gore

yasayan ve olen e-ticaret gibi uygulamalar i¢in tam bir oyun degistirici olabilir

’ Baglamsal Icerik Uretimi kaliplarmin iiretkenligi biiyiikk 6lgiide

artirabilecegini, ancak insan katilmi ihtiyacini tamamen ortadan
kaldirmadigmi belirtmek énemlidir. Igerik iireticileri ve editorler, genel
icerik stratejisini tanimlamada, Biiyiikk Dil Modeline rehberlik saglamada
ve tretilen icerigin kalitesini ve uygunlugunu saglamada hala ¢ok 6nemli

bir rol oynamaktadur.

Icerik olusturmanin daha tekrarlayici ve zaman alici yonlerini otomatiklestirerek,

Baglamsal Icerik Uretimi 180

Baglamsal Icerik Uretimi kaliplar1 daha yiiksek degerli gorevlere yonlendirilebilecek
degerli insan zamanini ve kaynaklarini serbest birakir. Bu artan iretkenlik, icerik
olusturma is akiglarini optimize ederken kullanicilara daha kisisellestirilmis ve ilgi

cekici igerik sunmanizi saglar.

Hizli iterasyon ve Deney

Baglamsal Icerik Uretimi kaliplari, farkli icerik varyasyonlariyla hizli bir sekilde
iterasyon yapmaniza ve deney yapmaniza olanak taniyarak, icerik stratejinizin
daha hizli optimize edilmesini ve iyilestirilmesini saglar. Modele saglanan baglami,
sablonlar1 veya yonergeleri ayarlayarak saniyeler icinde birden fazla igerik versiyonu

uretebilirsiniz.

Bu hizli iterasyon yetenegi birkac 6nemli avantaj sunar:

1. Test Etme ve Optimizasyon: Icerik varyasyonlarmi hizli bir sekilde iiretme
yetenegi ile farkli yaklagimlari kolayca test edebilir ve etkinliklerini 6l¢ebilirsiniz.
Ornegin, belirli bir kullanic1 segmentine veya baglama gére uyarlanmis bir tiriin
actklamasiin veya pazarlama mesajinin birden fazla versiyonunu tiretebilirsiniz.
Tiklama oranlari veya dontisim oranlari gibi kullanici etkilesim metriklerini
analiz ederek, en etkili icerik varyasyonlarini belirleyebilir ve icerik stratejinizi

buna gore optimize edebilirsiniz.

2. A/B Testi: Baglamsal Icerik Uretimi kaliplari, igerigin sorunsuz A/B testine olanak
tanir. Iki veya daha fazla igerik varyasyonu iiretebilir ve bunlar1 farkli kullanici
gruplarina rastgele sunabilirsiniz. Her varyasyonun performansini karsilastirarak,
hedef kitlenize en iyi uyan igerigi belirleyebilirsiniz. Bu veri odakli yaklasim,
kullanic1 etkilesimini en ist diizeye gikarmak ve istenen sonuclara ulagmak igin

bilingli kararlar almanizi ve iceriginizi stirekli olarak iyilestirmenizi saglar.

Baglamsal Icerik Uretimi 181

3. Kisisellestirme Deneyleri: Hizli iterasyon ve deney, ozellikle kisisellestirme
s6z konusu oldugunda cok degerlidir. Baglamsal Icerik Uretimi kaliplariyla,
farkli kullanic1 segmentleri, tercihleri veya davraniglarina dayali olarak hizli bir
sekilde kisisellestirilmis icerik varyasyonlar: tiretebilirsiniz. Farkli kisisellestirme
stratejileriyle deney yaparak, bireysel kullanicilari cekmek ve ozellestirilmig
deneyimler sunmak i¢in en etkili yaklasimlar: belirleyebilirsiniz.

4. Degisen Trendlere Uyum Saglama: Hizli iterasyon ve deney yapabilme yetenegi,
degisen trendlere ve kullanici tercihlerine cevik bir sekilde uyum saglamanizi
miimkiin kilar. Yeni konular, anahtar kelimeler veya kullanic1 davranislar ortaya
ciktikga, bu trendlerle uyumlu igerik hizlica iiretebilirsiniz. Iceriginizi siirekli
olarak test edip gelistirerek, strekli gelisen dijital ortamda giincel kalabilir ve
rekabet avantajinizi koruyabilirsiniz.

5. Maliyet Etkin Deneyler: Geleneksel icerik deneyleri, icerik treticilerinin farkli
varyasyonlar1t manuel olarak gelistirmesi ve test etmesi gerektiginden, genellikle
onemli zaman ve kaynak gerektirir. Ancak, Baglamsal Icerik Uretimi desenleriyle,
deney maliyeti biytik 6lciide azalir. LLM’ler hizli ve 6lgekli bir sekilde icerik
varyasyonlari Ureterek, 6nemli maliyetler olmadan ¢ok cesitli fikir ve yaklasimlari

kesfetmenizi saglar.

Hizli iterasyon ve deneylerden en iyi sekilde yararlanmak i¢in, iyi tanimlanmis bir deney

cercevesinin olmasi 6nemlidir. Bu cerceve sunlari icermelidir:

« Her deney icin net hedefler ve hipotezler

« Icerik performansmi él¢gmek igin uygun metrikler ve takip mekanizmalar1

« Ilgili icerik varyasyonlarinin dogru kullanicilara sunulmasmi saglayan
segmentasyon ve hedefleme stratejileri

« Deneysel verilerden i¢gorii elde etmek icin analiz ve raporlama araglari

« Ogrenilenleri ve optimizasyonlari igerik stratejinize dahil etme siireci

Hizli iterasyon ve deneyleri benimseyerek, iceriginizi siirekli olarak iyilestirebilir ve

optimize edebilir, boylece uygulamanizin hedeflerine ulasmada etkili, ilgi cekici ve

Baglamsal Icerik Uretimi 182

giincel kalmasini saglayabilirsiniz. Icerik olusturmaya yénelik bu cevik yaklagim,

trendin 6niinde kalmanizi ve olagantstii kullanici deneyimleri sunmanizi saglar.

Olceklenebilirlik ve Verimlilik

Uygulamalar biiytidiikge ve kisisellestirilmis icerige olan talep arttikca, baglamsal igerik
uretimi desenleri, icerik olusturmanin verimli bir sekilde dl¢eklenmesini saglar. LLMler,
insan kaynaklarinda orantili bir artig gerektirmeden, ¢ok sayida kullanici ve baglam icin
es zamanli olarak igerik tiretebilir. Bu 6l¢eklenebilirlik, uygulamalarin igerik olusturma
kapasitelerini zorlamadan, biiyiiyen bir kullanic1 tabanina kisisellestirilmis deneyimler

sunmasina olanak tanir.

Baglamsal icerik iiretiminin uygulamanizi “aninda” uluslararasilagtirmak
icin etkili bir sekilde kullanilabilecegini unutmaym. Aslinda, bir yildan kisa
bir siire icinde Instant18n Gem’imi kullanarak Olympia’y1 yarim diizineden

fazla dilde sunmak icin tam olarak bunu yaptim.

Yapay Zeka Destekli Yerellestirme

Bir anligina 6viinmeme izin verirseniz, Rails uygulamalari icin gelistirdigim Instant18n
kiitiiphanesinin, uygulama gelistirmede yapay zekanin donistiiriicii potansiyelini
gosteren “Baglamsal Igerik Uretimi” deseninin ¢igir agan bir 6rnegi oldugunu
diistiniiyorum. Bu gem, Rails uygulamalarinda uluslararasilastirma ve yerellestirmenin
nasil ele alindigini devrimlestirmek igin OpenAl'nin GPT biyik dil modelinin

giiciinden yararlaniyor.

Geleneksel olarak, bir Rails uygulamasini uluslararasilagtirmak, ceviri anahtarlarini
manuel olarak tanimlamay1 ve desteklenen her dil i¢in karsilik gelen ¢gevirileri saglamay1
icerir. Bu siire¢ zaman alici, kaynak yogun ve tutarsizliklara agik olabilir. Ancak

Instant18n gem’i ile yerellestirme paradigmasi tamamen yeniden tanimlaniyor.

Baglamsal Icerik Uretimi 183

Biyiik bir dil modelini entegre ederek, Instant18n gem’i metnin baglamma ve
anlamina dayali olarak aninda ceviriler tiretmenizi saglar. Onceden tanimlanmig geviri
anahtarlarina ve statik cevirilere giivenmek yerine, gem metni yapay zeka giicini

kullanarak dinamik olarak cevirir. Bu yaklasim birka¢ 6nemli fayda sunar:

1. Sorunsuz Yerellestirme: Instant18n gem’i ile gelistiricilerin desteklenen her
dil icin ¢eviri dosyalarii manuel olarak tanimlayip bakimini yapmasina gerek
kalmaz. Gem, saglanan metin ve hedef dile gére otomatik olarak ceviriler
olusturarak, yerellestirme siirecini zahmetsiz ve sorunsuz hale getirir.

2. Baglamsal Dogruluk: Yapay zekaya cevrilen metnin nianslarini anlamasi i¢in
yeterli baglam verilebilir. Cevreleyen baglami, deyimleri ve kiltiirel referanslari
dikkate alarak dogru, dogal ve baglama uygun ceviriler {iretebilir.

3. Kapsamli Dil Destegi: Instant18n gem’i, GPT nin genis bilgi birikimi ve dilsel
yeteneklerinden yararlanarak, cok sayida dile ceviri yapilmasini saglar. Ispanyolca
ve Fransizca gibi yaygin dillerden, Klingon ve EIf dili gibi daha az bilinen veya
kurgusal dillere kadar, gem ¢ok cesitli ceviri gereksinimlerini karsilayabilir.

4. Esneklik ve Yaraticilik: Gem, geleneksel dil ¢evirilerinin 6tesine gecerek yaratic
ve alisilmadik yerellestirme segeneklerine olanak tanir. Geligtiriciler metni cegitli
stillere, lehcelere veya hatta kurgusal dillere ¢evirebilir, bu da benzersiz kullanici
deneyimleri ve ilgi cekici icerik icin yeni olanaklar sunar.

5. Performans Optimizasyonu: Instant18n gem’i, performans: artirmak ve
tekrarlanan cevirilerin yiikiini azaltmak i¢in 6nbellekleme mekanizmalar: icerir.
Cevrilen metin 6nbellege alinir, boylece ayni geviri icin sonraki istekler gereksiz

API ¢agrilar1 olmadan hizli bir sekilde sunulabilir.

Instant18n gem’i, yapay zekayi kullanarak dinamik olarak yerellestirilmis icerik
iireterek “Baglamsal Icerik Uretimi” deseninin giiciinii 6rneklemektedir. Yapay
zekanin bir Rails uygulamasinin temel islevselligine nasil entegre edilebilecegini ve
gelistiricilerin uluslararasilastirma ve yerellestirmeye yaklagimini nasil déniistirdigini

gostermektedir.

Baglamsal Icerik Uretimi 184

Manuel ¢eviri yonetimi ihtiyacini ortadan kaldirarak ve baglama dayali aninda ceviriler
saglayarak, Instant18n gem’i gelistiricilere 6nemli 6lciide zaman ve g¢aba tasarrufu
saglar. Geligtiricilerin, yerellestirme yoniiniin sorunsuz ve dogru bir sekilde ele
alinmasimi saglarken uygulamalarinin temel 6zelliklerini gelistirmeye odaklanmalarina

olanak tanir.

Kullanici Testi ve Geri Bildirimin Onemi

Son olarak, kullanici testi ve geri bildirimin 6nemini her zaman aklinizda tutun.
Baglamsal icerik olusturmanin kullanici beklentilerini karsiladigini ve uygulamanin
hedefleriyle uyumlu oldugunu dogrulamak cok 6nemlidir. Kullanic1 iggorileri ve
analitige dayali olarak olusturulan icerigi siirekli gelistirin ve iyilestirin. Siz ve ekibiniz
tarafindan manuel olarak dogrulanmasi imkansiz olacak buyiik olcekte dinamik
icerik olusturuyorsaniz, kullanicilarin tuhaf veya yanlis olan igerigi, nedeniyle birlikte
bildirebilecekleri geri bildirim mekanizmalari eklemeyi disinin. Bu degerli geri
bildirimler, igerigi olusturan bilesende diizeltmeler yapmakla gorevlendirilmis bir

yapay zeka iscisine bile beslenebilir!

Uretici Kullanici Arayiizii

Dikkat giinimiizde o kadar degerli ki, etkili kullanic1 etkilegimi artik yalnizca sorunsuz

ve sezgisel degil, ayni zamanda bireysel ihtiyaclara, tercihlere ve baglamlara gore yiiksek
diizeyde kisisellestirilmis yazilim deneyimleri gerektiriyor. Sonug olarak, tasarimcilar
ve gelistiriciler giderek artan bir sekilde, her kullanicinin benzersiz gereksinimlerine
oOlgekli bir sekilde uyum saglayabilen ve hitap edebilen kullanici araytizleri olusturma

zorluguyla karsi karsiya kaliyorlar.

Uretici Kullanic1 Arayiizii (GenUI), kullanici arayiizii tasariminda gergekten devrim
niteliginde bir yaklagimdir ve aninda yiiksek diizeyde kisisellestirilmis ve dinamik
kullanici deneyimleri olusturmak igin buyik dil modellerinin (LLM) giciinden
yararlanir. Bu kitapta GenUI hakkinda en azindan bir giris yapmak istedim, ¢iinki
bunun uygulama tasarimi ve gergeveleri alaninda su anda var olan en bakir firsatlardan
biri olduguna inantyorum. Bu 6zel nis alanda diizinelerce veya daha fazla yeni bagarili

ticari ve acik kaynakli projenin ortaya ¢ikacagma ikna olmus durumdayim.

Uretici Kullanic1 Arayiizii 186

Oziinde, GenU], Baglamsal Igerik Uretimi ilkelerini gelismis yapay zeka teknikleriyle
birlestirerek, kullanicinin baglamini, tercihlerini ve hedeflerini derinlemesine anlayarak
metin, gorsel ve diizenler gibi kullanici arayiizii 6gelerini dinamik olarak tiretir. GenUI,
tasarimcilarin ve gelistiricilerin, kullanici etkilesimlerine yanit olarak uyum saglayan
ve gelisen arayiizler olusturmasina olanak taniyarak, daha 6nce ulasilamaz olan bir

kisisellestirme diizeyi saglar.

GenU], kullanici arayiizii tasarimina yaklasimimizda temel bir degisimi temsil eder.
Kitleler icin tasarim yapmak yerine, GenUI bireye ozel tasarim yapmamiza olanak
tanir. Kisisellestirilmis icerik ve arayiizler, her kullaniciyla daha derin diizeyde rezonans
olusturan, etkilesimi, memnuniyeti ve sadakati artiran kullanici deneyimleri yaratma

potansiyeline sahiptir.

En yeni teknolojilerden biri olarak, GenUI'ye gecis, kavramsal ve pratik zorluklarla
doludur. Yapay zekay: tasarim siirecine entegre etmek, tretilen arayiizlerin sadece
kigisellestirilmis degil, ayn1 zamanda kullanilabilir, erisilebilir ve genel marka ve
kullanict deneyimiyle uyumlu olmasini saglamak, tiim bunlar GenUTl'yi ¢ogunlugun
degil, azinligin ugras1 haline getiren zorluklardir. Ayrica, yapay zekanin dahil olmast,

veri gizliligi, seffaflik ve hatta etik sonuglar hakkinda sorular ortaya cikarr.

Zorluklara ragmen, olcekli kisisellestirilmis deneyimler, dijital triin ve hizmetlerle
etkilesim kurma seklimizi tamamen donistirme giiciine sahiptir. Bu, yetenekleri,
gecmisleri veya tercihleri ne olursa olsun, kullanicilarin cesitli ihtiyaclarina hitap eden

kapsayici ve erisilebilir arayiizler olusturma olanaklarini acar.

Bu boluimde, GenUI kavramini inceleyerek bazi belirleyici o6zelliklerini, temel
faydalarini ve potansiyel zorluklarini ele alacagiz. GenUI'nin en temel ve erisilebilir
formuyla basliyoruz: geleneksel olarak tasarlanmis ve uygulanmis kullanici arayuzleri

icin metin igerigi Giretmek.

Uretici Kullanic1 Arayiizii 187

Kullanici Arayiizleri icin Metin Uretimi

Uygulamanizin arayiiz 6gelerinde bulunan form etiketleri, ipucu metinleri ve agiklayici
metinler gibi metin 6geleri, genellikle sablonlara veya UI bilesenlerine sabit olarak
kodlanir ve tim kullanicilar icin tutarli ancak genel bir deneyim sunar. Baglamsal
icerik tretimi kaliplarini kullanarak, bu statik 6geleri dinamik, baglama duyarli ve

kisisellestirilmis bilegenlere doniistiirebilirsiniz.

Kisisellestirilmis Formlar

Formlar, web ve mobil uygulamalarin yaygin bir parcasidir ve kullanici girdisi
toplamanin birincil yoludur. Ancak, geleneksel formlar genellikle kullanicinin 6zel
baglami veya ihtiyaclariyla her zaman uyumlu olmayan standart etiketler ve alanlarla
genel ve kisisel olmayan bir deneyim sunar. Kullanicilar, ihtiya¢ ve tercihlerine
uyarlanmig hissettikleri formlar1 doldurma olasiliklar1 daha ytiksektir, bu da daha

yiksek dontisiim oranlar1 ve kullanict memnuniyeti saglar.

Bununla birlikte, kisisellestirme ve tutarlilik arasinda bir denge kurmak onemlidir.
Formlar1 bireysel kullanicilara uyarlamak faydali olabilirken, bir tamidiklik ve
ongorilebilirlik diizeyini korumak ¢ok 6nemlidir. Kullanicilar, kigisellestirilmis 6gelerle

bile formlari kolayca taniyabilmeli ve gezinebilmelidir.

Iste ilham verici baz1 kisisellestirilmis form fikirleri:

Baglamsal Alan Onerileri

GenUI, kullanicinin 6nceki etkilesimlerini, tercihlerini ve verilerini analiz ederek
tahminler olarak akilli alan 6nerileri sunabilir. Ornegin, kullanici daha 6nce
teslimat adresini girdiyse, form ilgili alanlari kaydedilmis bilgileriyle otomatik
olarak doldurabilir. Bu sadece zamandan tasarruf saglamakla kalmaz, ayni zamanda

uygulamanm kullanicinin tercihlerini anladigini ve hatirladigini gosterir.

© 0 N O O b W N =

W W W N DN DN DN DN DN DNDNDNDNDDND - 2~ B2))
N O © 0 N O O b W N~ O © 0 3 O O & w N~ O

Uretici Kullanic1 Arayiizii 188

Bir dakika, bu teknik yapay zeka kullanmadan da yapilabilecek bir sey degil mi? Elbette
oOyle, ancak bu tiir bir islevselligi yapay zeka ile yonlendirmenin iki 6nemli giizelligi var:
1) uygulamanin ne kadar kolay olabilecegi ve 2) kullanic1 arayiiziiniiz degisip gelistikce

ne kadar dayanikli kalabilecegi.

Hadi teorik siparis igleme sistemimiz i¢in, kullanicinin dogru teslimat adresini proaktif

olarak doldurmaya calisan bir servis olusturalim.

class OrderShippingAddressSubscriber
include Raix::ChatCompletion

attr_accessor :order
delegate :customer, to: :order

DIRECTIVE = "You are a smart order processing assistant. Given the
customer's order history, guess the most likely shipping address
for the current order."

def order_created(order)
return unless order.pending? && order.shipping_address.blank?

self.order = order

transcript.clear

transcript << { system: DIRECTIVE }

transcript << { user: "Order History: #{order_history.to_json}" }
transcript << { user: "Current Order: #{order.to_json}" }

response = chat_completion
apply_predicted_shipping_address(order, response)
end

private

def apply_predicted_shipping_address(order, response)
extract the shipping address from the response.. .
.. .and assume there's some sort of live update of the address fields
order .update(shipping_address:)

end

33
34
35
36
37
38
39
40
41
42
43

© 0 N O U B W N =

NN N N N Bl s sl s
B W N PO O 0N 0 O b W N =

Uretici Kullanic1 Arayiizii

def order_history
customer .orders.successful .1imit(100) .map do |order|
{
date: order.date,
description: order.description,
shipping_address: order.shipping_address

end

end

end

189

Bu 6rnek oldukga basitlestirilmis olsa da ¢ogu durum icin ise yarayacaktir. Buradaki

fikir, yapay zekanin tipki bir insanin yapacagi gibi tahmin yiiritmesine izin vermektir.

Ne demek istedigimi agikliga kavusturmak icin, bazi 6rnek verilere bakalim:

Order History:

(

{"date": "2024-01-03", "description": "garden soil mix",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-01-15", "description": "hardcover fiction novels",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-01-22", "description": "baby diapers", "shipping_address":
"789 Suburb St, Quietville"},

{"date": "2024-02-01", "description": "organic vegetables",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-02-17", "description": "mystery thriller book set",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-02-25", "description": "baby wipes",
"shipping_address": "789 Suburb St, Quietville"},

{"date": "2024-03-05", "description": "flower seeds",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-03-20", "description": "biographies",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-03-30", "description": "baby formula",
"shipping_address": "789 Suburb St, Quietville"},

{"date": "2024-04-12", "description": "lawn fertilizer",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-04-22", "description": "science fiction novels",
"shipping_address": "456 City Apt, Metroville"},

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

O© 0 N O O b W N =

[= = N
O OB W N

Uretici Kullanic1 Arayiizii 190

{"date": "2024-05-02", "description": "infant toys",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-05-14", "description": "outdoor grill",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-05-29", "description": "literary classics",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-06-11", "description": "baby clothes",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-07-01", "description": "watering can",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-07-18", "description": "non-fiction essays",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-07-28", "description": "baby bath items",
"shipping_address": "T789 Suburb St, Quietville"},

{"date": "2024-08-09", "description": "herb garden kit",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-08-24", "description": "children's books",
"shipping_address": "456 City Apt, Metroville"}

Verilerdeki 6rantiiyt fark ettiniz mi? Bu tiir seyler bir BDM i¢in ¢cocuk oyuncagi, garanti
ederim. Bunu gostermek igin, GPT-4’e bir “termometre” i¢in en olasi teslimat adresinin

ne oldugunu soralim.

From the order history you've provided, it looks like the purchases are
generally clustered into three main types based on the shipping addresses:

123 Country Lane, Rural Town - This address often orders garden and
outdoor-related items like soil mix, vegetables, flower seeds, lawn
fertilizer, an outdoor grill, a watering can, and an herb garden kit.

456 City Apt, Metroville - This address tends to order various types of
books, indicating an interest in reading across genres like fiction,
thrillers, biographies, science fiction, literary classics, non-fiction
essays, and children's books.

789 Suburb St, Quietville - The purchases for this address are consistently
baby-related products, such as diapers, wipes, baby formula, infant toys,
baby clothes, and baby bath items.

17
18
19
20
21
22
23
24
25

O© 0 N O O b W N

[T =Y
a s W N » e

Uretici Kullanic1 Arayiizii 191

Given these patterns, a digital thermometer could potentially be a fit for
any of the addresses based on different needs: outdoor temperature tracking,
a tool for a passionate reader interested in science gadgets, or a health
tool for a baby. However, considering its common use in monitoring health,
especially for babies, it's most likely to be purchased by someone who's
already buying baby care products.

Therefore, the most likely shipping address for a digital thermometer, based
on the purchasing patterns, would be 789 Suburb St, Quietville.

Bu is icin GPT-4 gibi pahali bir modeli kullanmanin fazla abartili oldugunu
diisiintiyorsaniz, haklisiniz! Aym1 komutu Mistral 7B Instruct tzerinde denedigimde,
saniyede 75 token hizinda ve sadece 0,000218 USD gibi ciizi bir maliyetle ayni yaniti

uretti.

Based on the given order history, it appears that the customer has received
orders for baby-related items (diapers, wipes, formula, clothes, bath items)
at the address "789 Suburb St, Quietville" and garden-related items (soil,
seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural
Town". The customer has also received books (fiction, non-fiction, literary
classics, mystery-thriller, science fiction, biographies, children's books)
at the address "456 City Apt, Metroville".

Given that the new order is for a "thermometer", which doesn't seem to fit
into any of the categories that the customer has previously ordered, it's
hard to accurately predict the shipping address based solely on the order
history. However, given the 50%-50% split between baby-related and
garden-related items, it could somewhat lean towards the Baby-related items
address ("789 Suburb St, Quietville"). But remember, this is an assumption
and cannot be definitively confirmed without more context or information.

Bu teknigin getirdigi ek yiik ve maliyet, deme siirecini daha sihirli hale getirmek icin
deger mi? Bircok cevrimici perakendeci igin kesinlikle deger. Goriinen o ki, 6zellikle
taban fiyat rekabetine giren acik kaynak model barindirma saglayicilari sayesinde,

yapay zeka hesaplama maliyetleri yalnizca diismeye devam edecek.

Bu tiir sohbet tamamlamalarini optimize etmek icin Prompt Template ve

StructuredIO ile birlikte Response Fencing kullanin.

Uretici Kullanic1 Arayiizii 192

Uyarlanabilir Alan Siralamasi

Form alanlarimin sunulma sirast, kullanici deneyimini ve tamamlanma oranlarini 6nemli
olciide etkileyebilir. GenUI ile kullanicinin baglamina ve her alanin 6nemine gére alan
siralamasini dinamik olarak ayarlayabilirsiniz. Ornegin, bir kullanici fitness uygulamasi
icin kayit formunu dolduruyorsa, form fitness hedefleri ve tercihlerine iliskin alanlari

onceliklendirebilir ve bdylece siireci daha alakali ve ilgi gekici hale getirebilir.

Kigisellestirilmis Mikrokopya

Formlardaki talimat metinleri, hata mesajlar1 ve diger mikrokopyalar da GenUI
kullanilarak kigisellestirilebilir. “Gegersiz e-posta adresi” gibi genel hata mesajlari
yerine, “Siparis onayinizi almak icin liitfen gegerli bir e-posta adresi girin” gibi daha
yardimei ve baglamsal mesajlar olusturabilirsiniz. Bu kisisellestirilmis dokunuslar,

form deneyimini daha kullanict dostu ve daha az sinir bozucu hale getirebilir.

Kigisellestirilmis Dogrulama

Kisisellestirilmis Mikrokopya ile ayni dogrultuda, sihirli gériinen sekillerde formu
dogrulamak icin yapay zeka kullanabilirsiniz. Bir kullanici profil formundaki potansiyel

hatalar1 anlamsal dizeyde arayan bir yapay zeka disiinin.

Uretici Kullanic1 Arayiizii 193

Create your account

Full name

Obie Fernandez

Email
obiefenandez@gmail.com m

Did you mean obiefernandez@gmail.com? Yes, update.

Country ©

EE United States

<«

Password

---------------- n

) Nice work. This is an excellent password.

Sekil 9. Gergeklesen anlamsal dogrulamayi gérebiliyor musunuz?

Asamali Gosterim

GenUI, kullanicinin baglamma gore hangi form alanlarinin gerekli oldugunu
akillica belirleyebilir ve gerektiginde ek alanlar1 kademeli olarak gosterebilir. Bu
asamali gosterim teknigi, biligsel yiikii azaltmaya ve form doldurma siirecini daha

yonetilebilir hale getirmeye yardimei olur. Ornegin, bir kullanici temel bir abonelik

Uretici Kullanic1 Arayiizii 194

icin kaydoluyorsa, form baglangicta yalnizca temel alanlari gosterebilir ve kullanici

ilerledikge veya belirli secenekleri sectikge ilgili ek alanlar dinamik olarak eklenebilir.

Baglama Duyarl Aciklayici Metin

Ipucu baloncuklar1 genellikle kullanicilar belirli 6gelerin {izerine geldiginde veya
etkilesime girdiginde ek bilgi veya rehberlik saglamak icin kullanilir. “Baglamsal igerik
Olusturma” yaklasimiyla, kullanicinin baglamina uyum saglayan ve ilgili bilgileri
sunan ipucu baloncuklar: olusturabilirsiniz. Ornegin, bir kullanici karmagik bir 6zelligi
kesfediyorsa, ipucu baloncugu onceki etkilesimlerine veya beceri diizeyine gore

kisisellestirilmig ipuglar1 veya 6rnekler sunabilir.

Talimatlar, agiklamalar veya yardim mesajlart gibi aciklayict metinler, kullanicinin
baglamina goére dinamik olarak olusturulabilir. Genel acgiklamalar sunmak yerine,
kullanicinin 6zel ihtiyaclarina veya sorularina goére uyarlanmig metin olusturmak
icin LLM’leri kullanabilirsiniz. Ornegin, bir kullanict bir siirecin belirli bir adiminda
zorlaniyorsa, agiklayict metin kisisellestirilmis rehberlik veya sorun giderme ipuclar:

saglayabilir.

Mikrokopya, digme etiketleri, hata mesajlar1 veya onay istemler gibi kullanicilar
uygulamanizda yonlendiren kiiciikk metin parcalarini ifade eder. Baglamsal Icerik
Olusturma yaklagimmi mikrokopyaya uygulayarak, kullanicinin eylemlerine yanit
veren ve ilgili ve yardimci metin saglayan uyarlanabilir bir Ul olusturabilirsiniz.
Ornegin, bir kullanic1 kritik bir eylem gerceklestirmek tizereyse, onay istemi net ve

kisisellestirilmig bir mesaj saglamak icin dinamik olarak olusturulabilir.

Kisisellestirilmis aciklayici metin ve ipucu baloncuklari, yeni kullanicilar i¢in baglangig
stirecini biiytk olciide iyilestirebilir. Baglama 6zel rehberlik ve 6rnekler saglayarak,
kullanicilarin uygulamay1 hizlica anlamasina ve gezinmesine yardimei olabilir, 6grenme

stiresini kisaltabilir ve benimsemeyi artirabilirsiniz.

Dinamik ve baglama duyarl arayiiz 6geleri de uygulamanin daha sezgisel ve ilgi ¢ekici

hissetmesini saglayabilir. Eslik eden metin kendi 6zel ihtiyag ve ilgi alanlarina gére

Uretici Kullanic1 Arayiizii 195

uyarlandiginda, kullanicilarin 6zelliklerle etkilesime girme ve bunlari kesfetme olasilig1

daha yiksektir.

Simdiye kadar yapay zeka ile mevcut kullanici arayiizii paradigmalarini gelistirme
fikirlerini ele aldik, peki ya kullanici araytzlerinin nasil tasarlandigini ve uygulandigini

daha radikal bir sekilde yeniden disiinmek hakkinda ne dersiniz?

Uretken Kullanici Arayiziiniin Tanimlanmasi

Tasarimcilarin sabit, statik arayiizler olusturdugu geleneksel kullanici arayiizii
tasarimimin aksine, GenUI yazilimlarimizin gercek zamanli olarak gelisebilen ve
uyum saglayabilen esnek, kisisellestirilmis deneyimler sundugu bir gelecege isaret
ediyor. Yapay zeka destekli bir konusma arayiizini her kullandigimizda, yapay
zekanin kullanicinin 6zel ihtiyaglarina uyum saglamasina izin veriyoruz. GenUI, bu
uyarlanabilirlik seviyesini yazilimin gérsel arayiiziine uygulayarak isleri bir adim oteye

tasiyor.

Giinimiizde GenUI fikirleriyle calismanin miimkiin olmasmnin nedeni, biyiik dil
modellerinin halihazirda programlamay: anlamasi ve temel bilgilerinin kullanic
araylzi teknolojilerini ve cercevelerini icermesidir. Asil soru, biiyitk dil modellerinin
her kullaniciya 6zel uyarlanmis metin, gorsel, diizen ve hatta tam arayiizler gibi
kullanic1 araytizii 6gelerini tretmek igin kullanilip kullanilamayacagidir. Model,
kullanicinin gecmis etkilesimlerini, belirtilen tercihlerini, demografik bilgilerini ve
mevcut kullanim baglamini dikkate alarak son derece kisisellestirilmis ve alakali

arayulzler olusturmak iizere yonlendirilebilir.

GenUI, geleneksel kullanici arayiizii tasarimindan birkag temel a¢idan farklilik gésterir:

1. Dinamik ve Uyarlanabilir: Geleneksel kullanici arayiizii tasarimi, tim

kullanicilar icin ayni kalan sabit, statik araytzler olusturmayi icerir. Buna

Uretici Kullanic1 Arayiizii 196

kargilik, GenUI kullanici ihtiyaglarina ve baglama goére dinamik olarak uyum
saglayabilen ve degisebilen arayiizler saglar. Bu, ayni uygulamanmn farkli
kullanicilara veya hatta ayni kullaniciya farkli durumlarda farkli arayiizler
sunabilecegi anlamina gelir.

2. Olceklenebilir Kisisellestirme: Geleneksel tasarimda, gereken zaman ve
kaynaklar nedeniyle her kullanici i¢in kisisellestirilmis deneyimler olusturmak
genellikle pratik degildir. Ote yandan GenUI, odlgeklenebilir kisisellestirmeye
olanak tanir. Yapay zekay:r kullanarak tasarimcilar, her kullanici segmenti
icin ayri arayiizler manuel olarak tasarlayip gelistirmek zorunda kalmadan,
her kullanicinin benzersiz ihtiyaclarina ve tercihlerine otomatik olarak uyum
saglayan arayiizler olusturabilirler.

3. Sonuglara Odaklanma: Geleneksel kullanici arayiizii tasarimi genellikle gorsel
acidan cekici ve iglevsel arayiizler olusturmaya odaklanir. Bu yonler GenUI'de
hala 6nemli olmakla birlikte, temel odak istenen kullanici sonuglarini elde etmeye
kayar. GenUI, salt estetik kaygilardan ziyade kullanilabilirligi ve etkinligi 6n
planda tutarak, her kullanicinin 6zel hedeflerine ve gorevlerine optimize edilmis
arayuzler olusturmay: amaclar.

4. Siirekli Ogrenme ve lyilestirme: GenUI sistemleri, kullanici etkilesimleri
ve geri bildirimlere dayali olarak strekli ogrenebilir ve zamanla gelisebilir.
Kullanicilar olusturulan araytizlerle etkilesime girdikce, yapay zeka modelleri
kullanic1 davraniglari, tercihleri ve sonuglari hakkinda veri toplayabilir ve bu
bilgileri gelecekteki araytiz olusturmalarini iyilestirmek ve optimize etmek
icin kullanabilir. Bu yinelemeli 6grenme siireci, GenUI sistemlerinin zamanla

kullanici ihtiyaglarini karsilamada giderek daha etkili hale gelmesini saglar.

GenUl'nin, belirli tasarim gorevlerini otomatiklestiren veya oOneriler sunan yapay
zeka destekli tasarim araglariyla ayni sey olmadigini belirtmek énemlidir. Bu araclar
tasarim siirecini kolaylastirmada yardimci olabilse de, yine de nihai kararlari vermek

ve statik arayiizler olusturmak icin tasarimcilara giivenirler. Ote yandan GenUI,

Uretici Kullanic1 Arayiizii 197

yapay zeka sisteminin kullanici verileri ve baglama dayali olarak arayiizlerin gercek

olusturulmasinda ve uyarlanmasinda daha aktif bir rol almasini igerir.

GenUI, kullanici arayiizii tasarimina yaklagimimizda, herkese uyan tek tip ¢oziimlerden
son derece kisisellestirilmis, uyarlanabilir deneyimlere dogru énemli bir degisimi temsil
eder. Yapay zekanin giicinden yararlanan GenU], dijital iiriinler ve hizmetlerle etkilesim
kurma seklimizi devrimlestirme potansiyeline sahiptir ve her bir kullanici i¢in daha

sezgisel, ilgi gekici ve etkili arayiizler olusturur.

Ornek

GenUI kavramini 6rneklendirmek igin, “FitAI” adli varsayimsal bir fitness uygulamasin
ele alalim. Bu uygulama, kullanicilara bireysel hedeflerine, fitness seviyelerine ve
tercihlerine gore kisisellestirilmis antrenman planlar1 ve beslenme tavsiyeleri sunmayi

amaclamaktadir.

Geleneksel bir kullanici arayiizii tasarim yaklagiminda, FitAl tim kullanicilar i¢in ayni
olan sabit bir ekran ve 6ge setine sahip olabilir. Ancak GenUT ile uygulamanin araytzi

her kullanicinin benzersiz ihtiyaglarina ve baglamina dinamik olarak uyum saglayabilir.

Bu yaklasimi 2024’te uygulamay: hayal etmek biraz zorlama olabilir ve hatta yeterli

yatirim getirisi saglamayabilir, ancak miimkiindr.

Iste nasil calisabilecegine dair bir drnek:
1. Baslangic Siireci:

« Standart bir anket yerine, FitAl kullanicinin hedefleri, mevcut fitness
seviyesi ve tercihleri hakkinda bilgi toplamak icin konusma tabanli yapay

zeka kullanir.

+ Bu ilk etkilesime dayanarak, yapay zeka kullanicinin hedefleriyle en alakal:
ozellikleri ve bilgileri vurgulayan kisisellestirilmis bir gosterge paneli diizeni

olusturur.

Uretici Kullanic1 Arayiizii 198

« Mevcut yapay zeka teknolojisi, kisisellestirilmis gosterge panelini
olusturmak icin kullanabilecegi bir dizi ekran bilesenine sahip olabilir.

+ Gelecekteki yapay zeka teknolojisi, deneyimli bir kullanici arayiizii
tasarimcist roliinii Ustlenebilir ve gosterge panelini sifirdan gergekten

olusturabilir.

2. Antrenman Planlayicisi:

 Antrenman planlayici araytizi, kullanicinin deneyim seviyesine ve mevcut
ekipmanina gore yapay zeka tarafindan 6zel olarak uyarlanir.

+ Ekipmani olmayan bir baslangic seviyesi kullanicisi i¢in, detayl talimatlar
ve videolarla basit viicut agirligi egzersizleri gosterebilir.

« Spor salonuna erisimi olan ileri seviye bir kullanici i¢in, daha az aciklayict
icerikle daha karmagik rutinler gériintiileyebilir.

« Antrenman planlayicisinin igerigi basitce biyik bir st kiimeden
filtrelenmez. Kullanict hakkinda bilinen her seyi iceren baglamla sorgulanan

bir bilgi tabanina dayanarak aninda iiretilebilir.

3. flerleme Takibi:

« Ilerleme takibi arayiizii, kullanicinin hedeflerine ve katilim modellerine gore
gelisir.

+ Oncelikle kilo vermeye odaklanan bir kullanici i¢in, arayiiz agirlik trendi
grafigini ve kalori yakimu istatistiklerini 6ne ¢ikarabilir.

» Kas gelistiren bir kullanic1 igin, gii¢ artistm ve viicut kompozisyonu
degisikliklerini vurgulayabilir.

+ Yapay zeka, uygulamanin bu bolimiini kullanicinin gergek ilerlemesine
gdre uyarlayabilir. ilerleme bir siire durdugunda, uygulama, bunlari
hafifletmek amaciyla kullaniciy: gerilemenin nedenlerini agiklamaya tegvik

eden bir moda gegebilir.

4. Beslenme Tavsiyeleri:

Uretici Kullanic1 Arayiizii 199

« Beslenme boliimi kullanicinin diyet tercihlerine ve kisitlamalarina uyum
saglar.

« Vegan bir kullanici igin, bitkisel bazli yemek 6nerileri ve protein kaynaklar
gosterebilir.

+ Gluten intoleransi olan bir kullanici icin, Onerilerden gluten igeren
yiyecekleri otomatik olarak filtreleyecektir.

+ Yine, icerik tiim kullanicilara uyan biiyiik bir yemek veri kiimesinden
cekilmez, bunun yerine kullanicinin 6zel durumu ve kisitlamalarina gore

uyarlanabilen bilgileri iceren bir bilgi tabanindan sentezlenir.

« Ornegin, tarifler, kullanicinin fitness seviyesi ve viicut istatistikleri gelistikce

strekli degisen kalori ihtiyaclarina uygun malzeme 6zellikleriyle olusturulur.

5. Motivasyonel Ogeler:

+ Uygulamanin motivasyonel igerigi ve bildirimleri, kullanicinin kisilik tipine
ve farkli motivasyonel stratejilere verdigi tepkiye gore kisisellestirilir.

+ Bazi kullanicilar cesaretlendirici mesajlar alirken, digerleri daha veri odakli

geri bildirimler alabilir.

Bu o6rnekte, GenUI, FitAl'i her kullanici i¢in son derece ozellestirilmis bir deneyim
yaratmasini saglayarak, katilimi, memnuniyeti ve fitness hedeflerine ulagsma olasiligini
potansiyel olarak artirir. Araytz 6geleri, icerik ve hatta uygulamanin “kisiligi”, her bir

kullanicinin ihtiyag ve tercihlerine en iyi sekilde hizmet etmek i¢in uyarlanir.

Sonu¢ Odakli Tasarima Gegis

GenUI, kullanic1 araytzi tasarimina yaklagimda, belirli araytiz 6geleri olusturmaya
odaklanmaktan daha bitiinsel, sonug¢ odakli bir yaklasima dogru temel bir degisimi

temsil eder. Bu degisimin birka¢ 6nemli etkisi vardir:

1. Kullanici1 Hedeflerine Odaklanma:

Uretici Kullanic1 Arayiizii 200

« Tasarimcilarin, belirli arayiiz bilesenleri yerine kullanict hedefleri ve istenen
sonuglar hakkinda daha derin disiinmeleri gerekecek.

+ Vurgu, kullanicilarin hedeflerine verimli ve etkili bir sekilde ulagmalarina
yardimct olacak arayiizler iiretebilen sistemler olusturmak tizerine olacak.

+ Yapay zeka tabanli tasarimcilara, 6nceden tanimlanmis ekran 6zelliklerini
temel almak yerine kullanici deneyimlerini aninda ve sifirdan olusturma

yetenegi veren yeni Ul gerceveleri ortaya ¢ikacak.

2. Tasarimcilarin Degisen Rolii:

+ Tasarimcilar, sabit diizenler olusturmaktan, yapay zeka sistemlerinin
araylzler iretirken takip edecegi kurallari, kisitlamalar1 ve yonergeleri
tamimlamaya gecis yapacak.

 GenUI sistemlerini etkili bir sekilde yonlendirmek icin veri analizi, yapay
zeka prompt mithendisligi ve sistem disiincesi gibi alanlarda beceriler

gelistirmeleri gerekecek.

3. Kullanic1 Arastirmasinin Onemi:

+ Kullanici arastirmasi, bir GenUI baglaminda daha da kritik hale geliyor,
ciinkii tasarimcilarin sadece kullanicr tercihlerini degil, ayni zamanda bu
tercih ve ihtiyaglarin farkli baglamlarda nasil degistigini de anlamalari
gerekiyor.

« Siirekli kullanic: testi ve geri bildirim dongiileri, yapay zekanin etkili

arayulzler iiretme yetenegini gelistirmek ve iyilestirmek icin gerekli olacak.

4. Degiskenlik icin Tasarim:

« Tek bir “mikemmel” arayiiz olugturmak yerine, tasarimcilarin ¢oklu olasi
varyasyonlar1 diiginmeleri ve sistemin farkli kullanici ihtiyaglari icin uygun

arayiizler iiretebilmesini saglamalar1 gerekecek.

Uretici Kullanic1 Arayiizii 201

« Bu, u¢ durumlar i¢in tasarim yapmayi ve olusturulan arayiizlerin farkli
konfigiirasyonlarda kullanilabilirlik ve erigilebilirligi korumasini saglamay:1
igerir.

« Uriin farkhilagtirmasi, kullanici psikolojisi konusunda farkli bakis acilari
ve rakiplerin erisemedigi benzersiz veri setleri ve bilgi tabanlarinin

kullanilmasini iceren yeni boyutlar kazanir.

Zorluklar ve Dikkat Edilmesi Gerekenler

GenUI heyecan verici olanaklar sunarken, ayni zamanda birka¢ zorluk ve dikkat

edilmesi gereken nokta da ortaya cikarir:
1. Teknik Smirlamalar:

« Mevcut yapay zeka teknolojisi, gelismis olmasina ragmen, karmagik kullanici
niyetlerini anlama ve gergekten baglam duyarl arayiizler iiretme konusunda
hala sinirlamalara sahiptir.

o Ozellikle daha az giiclii cihazlarda, arayiiz 6gelerinin gergek zamanl

uretimiyle ilgili performans sorunlari.

2. Veri Gereksinimleri:

+ Kullanim senaryosuna bagl olarak, etkili GenUTI sistemleri kisisellestirilmis
arayulzler olusturmak i¢in 6nemli miktarda kullanici verisi gerektirebilir.

« Otantik kullanici verilerinin etik bir sekilde elde edilmesindeki zorluklar, veri
gizliligi ve giivenligi ile birlikte GenUI modellerini egitmek i¢in kullanilan

verilerdeki olasi onyargilar konusunda endiselere yol agmaktadir.

3. Kullanilabilirlik ve Tutarlilik:

Uretici Kullanic1 Arayiizii 202

« En azindan bu uygulama yayginlasana kadar, siirekli degisen arayiizlere
sahip bir uygulama, kullanicilarin tanidik 6geleri bulmakta veya etkili bir
sekilde gezinmekte zorlanmasi nedeniyle kullanilabilirlik sorunlarina yol
acabilir.

« Kisisellestirme ile tutarli ve 6grenilebilir bir araytiz arasinda denge kurmak

cok 6nemli olacaktur.

4. Yapay Zekaya Asir1 Giiven:

o+ Tasarim kararlarini yapay zeka sistemlerine agsir1 devretme riski, ilham

vermeyen, sorunlu veya basitce bozuk arayiiz se¢imlerine yol acabilir.
« Insan gdzetimi ve yapay zeka tarafindan olusturulan tasarimlari gecersiz

kilma yetenegi, 6ngoriilebilir gelecekte 6nemini koruyacaktir.
5. Erisilebilirlik Endiseleri:

+ Dinamik olarak olusturulan araytizlerin engelli kullanicilar i¢in erisilebilir
kalmasini saglamak, tipik sistemlerin gosterdigi disiik erisilebilirlik uyumu
g6z oniine alindiginda endise verici olan tamamen yeni zorluklar ortaya
cikarir.

« Ote yandan, yapay zeka tasarimcilari erisilebilirlik konusunda yerlesik
bir hassasiyetle ve engelli olmayan kullanicilar i¢in UI olusturduklar: gibi
aninda erigilebilir araytizler olusturma yetenekleriyle uygulanabilir.

« Her durumda, GenUI sistemleri saglam erigilebilirlik yonergeleri ve test

stirecleriyle tasarlanmalidir.

6. Kullanic1 Giiveni ve Seffaflik:

« Kullanicilar, kendileri hakkinda “cok fazla sey bilen” veya anlamadiklar

sekillerde degisen arayiizlerle rahatsiz olabilirler.
« Arayiizlerin nasil ve neden kisisellestirildigi konusunda seffaflik saglamak,

kullanici giivenini olusturmak i¢in 6nemli olacaktur.

Uretici Kullanic1 Arayiizii 203

Gelecek Gorunumu ve Firsatlar

Uretken Kullanic1 Arayiiziiniin (GenUI) gelecegi, dijital tiriinler ve hizmetlerle etkilesim
seklimizi devrimsellestirme konusunda muazzam bir potansiyel barindirtyor. Bu
teknoloji gelistikge, kullanici arayiizlerinin tasarlanma, uygulanma ve deneyimlenme
seklinde buyik bir degisim bekleyebiliriz. GenUI'nin, yazilimlarimizi su anda bilim

kurgu olarak kabul edilen alana tagiyacak olgu oldugunu disiiniiyorum.

GenUl'nin en heyecan verici yonlerinden biri, erisilebilirligi ciddi engelli insanlarin
yaziliminizi kullanmaktan tamamen dislanmamasini saglamanin 6tesine gecen biiyiik
bir o6lcekte artirma potansiyelidir. Arayiizleri otomatik olarak bireysel kullanici
ihtiyaclarina uyarlayarak, GenUI dijital deneyimleri her zamankinden daha kapsayici
hale getirebilir. Manuel yapilandirma veya uygulamalarin ayr1 “erisilebilir” siiriimlerini
gerektirmeden, gen¢ veya goérme engelli kullanicilar icin daha biiyiik metin saglayan

veya biligsel engelli olanlar i¢in basitlestirilmis diizenler sunan arayiizleri hayal edin.

GenUT'nin kisisellestirme yetenekleri, cesitli dijital triinlerde kullanici katilimini,
memnuniyetini ve sadakatini artiracak gibi goriniiyor. Arayuzler bireysel tercihler ve
davraniglara daha uyumlu hale geldikce, kullanicilar dijital deneyimleri daha sezgisel

ve keyifli bulacak, bu da teknolojiyle daha derin ve anlaml: etkilesimlere yol acabilecek.

GenUI ayrica yeni kullanicilar igin baglangic siirecini dontistiirme potansiyeline sahip.
Her kullanicinin uzmanlik diizeyine hizla uyum saglayan sezgisel, kisisellestirilmis ilk
kullanict deneyimleri olusturarak, yeni uygulamalarla iligkili 6grenme siirecini 6nemli
olciide azaltabilir. Bu, daha hizli benimseme oranlarina ve yeni ozellikleri ve islevleri

kesfetme konusunda artan kullanici giivenine yol acabilir.

Bir diger heyecan verici olasilik, GenUI'nin her 6zel kullanim baglami igin optimize
ederken farkli cihazlar ve platformlar arasinda tutarli bir kullanic1 deneyimini stirdiirme
yetenegidir. Bu, akilli telefonlardan tabletlere, masatistii bilgisayarlara ve artirilmig
gerceklik gozliikleri gibi gelisen teknolojilere kadar giderek parcalanan cihaz ortaminda

tutarli deneyimler saglama konusundaki uzun siiredir devam eden zorlugu ¢6zebilir.

Uretici Kullanic1 Arayiizii 204

GenUl'nin veri odakli dogasi, kullanici arayiizii tasariminda hizli yineleme ve
iyilestirme firsatlar1 sunar. Kullanicillarin olusturulan arayiizlerle nasil etkilesime
girdigine dair ger¢ek zamanl veriler toplayarak, tasarimcilar ve gelistiriciler kullanic
davranist ve tercihleri hakkinda benzeri gérilmemis iggoriiler elde edebilir. Bu geri
bildirim dongisi, varsayimlar veya smirli kullanic testleri yerine gercek kullanim

kaliplarina dayali olarak Ul tasariminda siirekli iyilestirmelere yol agabilir.

Bu degisime hazirlanmak icin, tasarimcilarin beceri setlerini ve disiince bicimlerini
gelistirmeleri gerekecek. Odak noktasi, sabit diizenler olusturmaktan, yapay zeka
destekli arayliz olusturmaya rehberlik edebilecek kapsamli tasarim sistemleri ve
yonergeler gelistirmeye kayacak. Tasarimcilar, GenUI sistemlerini etkili bir sekilde
yonlendirmek i¢in veri analizi, yapay zeka teknolojileri ve sistem diigiincesi konularinda

derin bir anlayis gelistirmeleri gerekecek.

Dahasi, GenUI tasarim ve teknoloji arasindaki ¢izgileri bulaniklastirdikea, tasarimeilarin
gelistiriciler ve veri bilimcileriyle daha yakin isbirligi yapmas: gerekecek. Bu disiplinler
arasi yaklasim, sadece gorsel olarak ¢ekici ve kullanici dostu degil, ayni zamanda teknik

olarak saglam ve etik acidan uygun GenUI sistemleri olusturmada ¢ok 6nemli olacaktir.

Teknoloji olgunlastikca GenUT'nin etik sonuglar1 da 6n plana cikacaktir. Tasarimeilar,
arayliz tasariminda yapay zekanin sorumlu kullanimi igin cergeveler gelistirmede
kritik bir rol oynayacak ve kigisellestirmenin gizliligi tehlikeye atmadan veya kullanici
davraniglarini etik olmayan sekillerde manipiile etmeden kullanici deneyimlerini

gelistirmesini saglayacaktir.

Gelecege baktigimizda, GenUI hem heyecan verici firsatlar hem de 6nemli zorluklar
sunmaktadir. Diinya capindaki kullanicilar icin daha sezgisel, verimli ve tatmin edici
dijital deneyimler yaratma potansiyeline sahiptir. Tasarimcilarin uyum saglamasini ve
yeni beceriler edinmesini gerektirse de, ayni zamanda insan-bilgisayar etkilegsiminin
gelecegini derin ve anlamli yollarla sekillendirmek igin egsiz bir firsat sunmaktadir.
Tam anlamiyla gerceklesmis GenUI sistemlerine giden yolculuk kuskusuz karmasik

olacaktir, ancak gelismis kullanici deneyimleri ve dijital erisilebilirlik acisindan

Uretici Kullanic1 Arayiizii 205

potansiyel kazanimlar, ugrunda caba gosterilmeye deger bir gelecegi isaret etmektedir.

Akilli Is Akis1 Orkestrayonu

“Akalli is Akist Orkestrayonu” yaklasimi, uygulamalar icindeki karmagik is akiglarmi

dinamik olarak orkestra etmek ve optimize etmek icin yapay zeka bilesenlerinden
yararlanmaya odaklanir. Amag, daha verimli, duyarli ve gergek zamanli verilerle

baglama uyum saglayabilen uygulamalar olusturmaktir.

Bu boliimde, akilli is akisi orkestrayonu yaklagiminin temelini olusturan ana ilkeleri ve
kaliplar1 inceleyecegiz. Yapay zekanin gorevleri akillica yonlendirmek, karar vermeyi
otomatiklestirmek ve is akiglarini kullanic1 davranigy, sistem performanst ve is kurallar
gibi ¢esitli faktorlere gore dinamik olarak uyarlamak icin nasil kullanilabilecegini
ele alacagiz. Pratik ornekler ve gercek diinya senaryolar: araciligiyla, yapay zekanin
uygulama is akislarimi diizenlemek ve optimize etmedeki doniistiiriicii potansiyelini

gosterecegiz.

Ister karmagik is siireclerine sahip kurumsal uygulamalar, ister dinamik kullanict

yolculuklari olan tiiketici odakli uygulamalar gelistiriyor olun, bu bdlimde tartigilan

Akilli Is Akis1 Orkestrayonu 207

kaliplar ve teknikler, genel kullanici deneyimini gelistiren ve is degeri yaratan akilli ve

verimli ig akiglar1 olusturmaniz icin gereken bilgi ve araglarla sizi donatacaktir.
Is Ihtiyaci

Is akist yonetimine yonelik geleneksel yaklasimlar genellikle énceden tanimlanmig
kurallara ve statik karar agaclarina dayanir; bu da kati, esnek olmayan ve modern

uygulamalarin dinamik dogasiyla basa ¢ikamayan sonuclar dogurabilir.

Bir e-ticaret uygulamasinin karmagik bir siparis kargilama siirecini yonetmesi gereken
bir senaryoyu diisiiniin. Is akigi, siparis dogrulama, stok kontrolii, 6deme isleme, kargo
ve musteri bildirimleri gibi birden ¢ok adim icerebilir. Her adimin kendi kural setleri,
bagimliliklari, dis entegrasyonlari ve istisna yonetimi mekanizmalar1 olabilir. Boyle bir
is akisinit manuel olarak veya sabit kodlanmis mantikla yonetmek hizla zahmetli, hataya

actk ve bakimi zor hale gelebilir.

Dabhasi, uygulama dlceklendikce ve eszamanli kullanici sayist arttikea, is akisinin gercek
zamanli verilere ve sistem performansina goére kendini uyarlamasi ve optimize etmesi
gerekebilir. Ornegin, yogun trafik donemlerinde uygulamanin, belirli gérevlere oncelik
vermek, kaynaklar1 verimli bir sekilde tahsis etmek ve sorunsuz bir kullanici deneyimi

saglamak icin is akisini dinamik olarak ayarlamas: gerekebilir.

Iste “Akilli Is Akist Orkestrayonu” yaklagimi burada devreye girer. Yapay zeka
bilesenlerinden yararlanarak, gelistiriciler akilly, uyarlanabilir ve kendi kendini
optimize eden is akiglari olusturabilir. Yapay zeka, biiyitkk miktarda veriyi analiz
edebilir, gegmis deneyimlerden 6grenebilir ve is akisini etkili bir sekilde yonetmek igin

gercek zamanl bilgiye dayali kararlar alabilir.

Temel Faydalar

1. Artan Verimlilik: Yapay zeka, gorev tahsisini, kaynak kullanimini ve is akisi

yuriitmesini optimize ederek daha hizli iglem siireleri ve gelismis genel verimlilik

Akilli Is Akis1 Orkestrayonu 208

saglayabilir.

2. Uyarlanabilirlik: Yapay zeka destekli is akislari, kullanici talebindeki
dalgalanmalar, sistem performansi veya is gereksinimleri gibi degisen kogullara
dinamik olarak uyum saglayarak uygulamanm duyarli ve direncli kalmasi
saglar.

3. Otomatik Karar Verme: Yapay zeka, is akist icindeki karmagik karar verme
stireclerini otomatiklestirebilir, manuel miidahaleyi azaltabilir ve insan hatasi
riskini en aza indirebilir.

4. Kisisellestirme: Yapay zeka, kullanici davranisini, tercihlerini ve baglami
analiz ederek is akisini kisisellegtirebilir ve bireysel kullanicilara 6zellestirilmis
deneyimler sunabilir.

5. Olgeklenebilirlik: Yapay zeka destekli is akiglari, performans veya guvenilirlikten
6diin vermeden artan veri ve kullanici etkilesimi hacmini yonetmek igin sorunsuz

bir sekilde 6lceklenebilir.

Sonraki béliimlerde, akilli is akislarinin uygulanmasini saglayan temel kaliplari ve
teknikleri inceleyecek ve yapay zekanin modern uygulamalardaki is akis1 yonetimini

nasil dontstirdiigini gosteren gercek diinya 6rneklerini sunacagiz.

Temel Kaliplar

Uygulamalarda akilli is akisi orkestrayonunu uygulamak icin gelistiriciler, yapay
zekanin giicinden yararlanan birka¢ temel kaliptan faydalanabilir. Bu kaliplar,
uygulamalarin gercek zamanl verilere ve baglama dayali olarak siirecleri uyarlamast,
optimize etmesi ve otomatiklestirmesi ic¢in is akislarimi tasarlama ve yonetmede
yapilandirilmis bir yaklasim sunar. Akilli is akist orkestrayonundaki temel kaliplardan

bazilarimi inceleyelim.

© 0 <N O O b W N =

NN DN NN NN N R R R RS s s
© ® 9 O O & W N~ O © 0 3 0 U b W N =~

Akilli Is Akis1 Orkestrayonu 209

Dinamik Gorev Yonlendirme

Bu kalip, gorev onceligi, kaynak kullanilabilirligi ve sistem performansi gibi gesitli
faktorlere dayali olarak bir is akisi igindeki gorevleri akillica yonlendirmek icin
yapay zeka kullanimini icerir. Yapay zeka algoritmalari her gorevin ozelliklerini
analiz edebilir, sistemin mevcut durumunu degerlendirebilir ve gérevleri en uygun
kaynaklara veya islem yollarina atamak i¢in bilgiye dayali kararlar verebilir. Dinamik
gorev yonlendirme, goérevlerin verimli bir sekilde dagitilmasini ve yiritilmesini
saglayarak genel is akisi performansini optimize eder.

class TaskRouter

include Raix::ChatCompletion
include Raix::FunctionDispatch

attr_accessor :task

]list of functions that can be called by the AI entirely at its

discretion depending on the task received

function :analyze_task_priority do
TaskPriorityAnalyzer .perform(task)
end

function :check_resource_availability, # ...
function :assess_system_performance, # ...

function :assign_task_to_resource, # ...

DIRECTIVE = "You are a task router, responsible for intelligently
assigning tasks to available resources based on priority, resource

availability, and system performance..."

def initialize(task)
self . task = task
transcript << { system: DIRECTIVE }
transcript << { user: task.to_json }
end

def perform
while task.unassigned?

30
31
32
33
34
35
36
37
38

Akilli Is Akis1 Orkestrayonu 210

chat_completion

todo: add max loop counter and break

end

capture the transcript for later analysis
task.update(routing_transcript: transcript)
end

end

29. satirdaki while ifadesi ile olusturulan doéngiiye dikkat edin; bu dongi gérev
atanana kadar yapay zekdya sorgu gondermeye devam eder. 35. satirda,
gerektiginde daha sonra analiz ve hata ayiklama ic¢in gérevin dokimiini

kaydediyoruz.

Baglamsal Karar Verme

Bir is akisi icinde baglama duyarli kararlar vermek icin cok benzer bir kod
kullanabilirsiniz. Kullanici tercihleri, ge¢mis oriintiller ve gercek zamanli girdiler
gibi ilgili veri noktalarini analiz ederek, yapay zeka bilesenleri is akisindaki her
karar noktasinda en uygun eylem seklini belirleyebilir. {5 akisinizin davranigini her
kullanicinin veya senaryonun 6zel baglamina gore uyarlayarak, kisisellestirilmis ve

optimize edilmis deneyimler sunabilirsiniz.

Uyarlanabilir is Akisi Kompozisyonu

Bu orunti, degisen gereksinimler veya kogullara gore is akiglarmi dinamik olarak
olusturmaya ve ayarlamaya odaklanir. Yapay zeka, is akisinin mevcut durumunu
analiz edebilir, darbogazlar1 veya verimsizlikleri tespit edebilir ve performansi
optimize etmek icin is akisi yapisini otomatik olarak degistirebilir. Uyarlanabilir is
akist kompozisyonu, uygulamalarin manuel miidahale gerektirmeden siirekli olarak

gelismesine ve siireclerini iyilestirmesine olanak tanir.

Akilli Is Akis1 Orkestrayonu 211

istisna isleme ve Kurtarma

[stisna isleme ve kurtarma, akilli is akisi orkestrasyon siirecinin kritik y®énleridir.
Yapay zekd bilesenleri ve karmasik is akiglariyla calisirken, sistemin istikrarini ve
givenilirligini saglamak igin istisnalar1 6ngérmek ve bunlari zarif bir sekilde ele almak

esastir.

Akilli is akiglarinda istisna isleme ve kurtarma icin bazi énemli hususlar ve teknikler

sunlardir:

1. Istisna Yayilim: Is akis1 bilesenleri arasinda istisnalarin yayilmasi icin tutarl:
bir yaklasim uygulayimn. Bir bilesen iginde bir istisna olustugunda, bu istisna
yakalanmali, kaydedilmeli ve orkestratore veya istisnalari islemekten sorumlu
ayrt bir bilegene iletilmelidir. Amag, istisna islemeyi merkezilestirmek ve
istisnalarin sessizce yutulmasini énlemek ve ayn1 zamanda Akilli Hata Isleme
icin olanaklar yaratmaktir.

2. Yeniden Deneme Mekanizmalari: Yeniden deneme mekanizmalari, is akiginin
dayanikliligini artirmaya ve gecici hatalar1 zarif bir sekilde ele almaya
yardimer olur. Ag baglantisi veya kaynak kullanilamamasi gibi gegici veya
kurtarilabilir istisnalar i¢in belirli bir gecikmeden sonra otomatik olarak yeniden
denenebilecek yeniden deneme mekanizmalarini mutlaka uygulamaya caligin.
Yapay zeka destekli bir orkestrator veya istisna isleyiciye sahip olmak, yeniden
deneme stratejilerinizin tstel geri cekilme gibi sabit algoritmalara dayanmasin
gerektirmez. Istisnay1 nasil ele alacagma karar vermekten sorumlu yapay zeka
bileseninin “takdirine” birakabilirsiniz.

3. Geri Doniis Stratejileri: Bir yapay zeka bileseni gecerli bir yanit saglayamazsa
veya bir hatayla karsilagirsa—ki bu, 6ncii teknoloji dogas1 geregi sik karsilasilan
bir durumdur—is akigimnin devam edebilmesi i¢in bir geri doniis mekanizmasi
bulundurun. Bu, varsayilan degerleri kullanmayi, alternatif algoritmalar1 veya

kararlar almak ve is akigini ilerletmek icin Dongiide Insan kullanmayn igerebilir.

Akilli Is Akis1 Orkestrayonu 212

4. Telafi Edici Eylemler: Orkestratoriin yonergeleri, otomatik olarak ¢ozillemeyen

istisnalar1 ele almak igin telafi edici eylemler hakkinda talimatlar icermelidir.
Telafi edici eylemler, basarisiz olan bir islemin etkilerini geri almak veya
azaltmak icin atilan adimlardir. Ornegin, bir 6deme isleme adim1 bagarisiz olursa,
telafi edici eylem islemi geri almak ve kullaniciy1 bilgilendirmek olabilir. Telafi
edici eylemler, istisnalar kargisinda veri tutarliligini ve butiinligini korumaya

yardimct olur.

. Istisna Izleme ve Uyar1 Verme: Kritik istisnalar1 tespit etmek ve ilgili paydaslart

bilgilendirmek icin izleme ve uyar1 verme mekanizmalar1 kurun. Orkestratér,
istisnalar belirli sinirlar1 agtiginda veya belirli tirde istisnalar olustugunda
uyarilari tetikleyecek esiklerden ve kurallardan haberdar edilebilir. Bu, sorunlarin
genel sistemi etkilemeden dnce proaktif olarak tanimlanmasina ve ¢dzillmesine

olanak tanir.

Iste Ruby is akis1 bilegeninde istisna isleme ve kurtarmanin bir érnegi:

class InventoryManager
def check_availability(order)
begin

© 0 N O O b W N =

S T e S O O G N = N SV N
S © 0 N O U B W N =~ O

Perform inventory check logic
inventory = Inventory.find_by(product_id: order.product_id)
if inventory.available_quantity >= order.quantity

return true
else

raise InsufficientInventoryError,

"Insufficient inventory for product #{order.product_id}"

end

rescue InsufficientInventoryError => e

Log the exception
logger .error("Inventory check failed: #{e.message}")

Retry the operation after a delay

retry_count |[|= 0

if retry_count < MAX_RETRIES
retry_count + =1
sleep(RETRY_DELAY)

21
22
23
24
25
26
27
28
29

Akilli Is Akis1 Orkestrayonu 213

retry

else
Fallback to manual intervention
NotificationService.admin("Inventory check failed: Order #{order.id}")
return false

end

end
end

end

Bu o6rnekte, InventoryManager bileseni belirli bir siparis icin iiriin mevcudiyetini
kontrol eder. Eger mevcut miktar yetersizse, bir InsufficientInventoryError
istisnast firlatir. Istisna yakalamir, kaydedilir ve yeniden deneme mekanizmasi
uygulanir. Yeniden deneme sinir1 asilirsa, bilesen bir yoneticiyi bilgilendirerek manuel

miidahaleye gecer.

Saglam istisna yonetimi ve kurtarma mekanizmalari uygulayarak, akilli i akislarinizin
dayanikls, siirdiiriilebilir ve beklenmeyen durumlar: zarif bir sekilde ele alabileceginden

emin olabilirsiniz.

Bu kaliplar, akilli is akist orkestrasyonunun temelini olusturur ve farkli uygulamalarin
ozel gereksinimlerine uyacak sekilde birlestirilebilir ve uyarlanabilir. Gelistiriciler bu
kaliplar1 kullanarak esnek, dayanikli ve performans ile kullanici deneyimi icin optimize

edilmis is akislar1 olusturabilirler.

Bir sonraki bolimde, bu kaliplarin pratikte nasil uygulanabilecegini, gercek diinya
ornekleri ve kod parcaciklari kullanarak AI bilesenlerinin is akist yonetimine

entegrasyonunu gosterecegiz.

Akilli Is Akis1 Orkestrayonu 214

Akilli is Akisi Orkestrasyonunun Pratikte

Uygulanmasi

Akilli i akis1 orkestrasyonundaki temel kaliplari inceledigimize gore, simdi bu kaliplarin
gercek diinya uygulamalarinda nasil uygulanabilecegine bakalim. Al bilesenlerinin is
akis1 yonetimine entegrasyonunu goéstermek icin pratik érnekler ve kod parcaciklar

sunacagiz.
Akill Siparis isleyici

Ruby on Rails e-ticaret uygulamasinda AI destekli bir OrderProcessor
bileseni kullanarak akilli is akisi orkestrasyonunun pratik bir 6rnegine dalalim.
OrderProcessor, Bolim 3’te Coklu Isciler konusunu tartisirken ilk karsilastigimiz
Stire¢ Yoneticisi Kurumsal Entegrasyonu kavramini gerceklestirir. Bu bilesen, siparis
kargilama is akigini yonetmekten, ara sonuglara dayali yonlendirme kararlari vermekten

ve cesitli islem adimlarinin yiritiilmesini orkestra etmekten sorumlu olacaktir.

Siparis kargilama siireci, siparis dogrulama, envanter kontrolii, 6deme isleme ve sevkiyat
gibi birden fazla adim icerir. Her adim, belirli bir gorevi gerceklestiren ve sonucu
OrderProcessor’a dondiiren ayr1 bir isci siireci olarak uygulanir. Bu adimlar zorunlu

degildir ve hatta kesin bir sirayla yapilmalar1 gerekmez.

Iste OrderProcessor’in bir érnek uygulamasi. Raix’ten iki mixin &zelligi igerir.
Birincisi (ChatCompletion) sohbet tamamlama yapabilme yetenegi verir, bu da onu
bir Al bileseni yapar. Ikincisi (FunctionDispatch) Al tarafindan fonksiyon cagirmay1
mimkiin kilar, boylece bir komuta metin mesaji yerine fonksiyon cagrisiyla yanit

verebilir.

Isci fonksiyonlar1 (validate_order, check_inventory, vb.) ilgili isci siniflarina
yetki devreder. Bu siniflar Al veya Al olmayan bilesenler olabilir; tek gereklilikleri,
caligmalarinin sonuclarint bir dizge olarak temsil edilebilecek bir formatta

dondiirmeleridir.

https://github.com/OlympiaAI/raix-rails

34
35

Alalli Ts Akigi Orkestrayonu

Bu kitabin bu bélimiindeki diger tim orneklerde oldugu gibi, bu kod
pratik olarak sézde koddur ve yalnizca kalibin anlamini iletmek ve
kendi yaratimlariniza ilham vermek igin tasarlanmistir. Kaliplarin tam

actklamalari ve eksiksiz kod 6rnekleri Bolim 2’de yer almaktadir.

class OrderProcessor
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

def initialize(order)
self.order = order
transcript << { system: SYSTEM_DIRECTIVE }
transcript << { user: order.to_json }

end

def perform
will continue looping until “stop_looping!" is called
chat_completion(loop: true)

end

list of functions available to be called by the AI

truncated for brevity

def functions

[

name: "validate_order",
description: "Invoke to check validity of order",

parameters: {

}I

]

end

Iimplementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

215

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Akilli Is Akis1 Orkestrayonu 216

def validate_order
OrderValidationWorker . per form(@order)
end

def check_inventory
InventoryCheckWorker . per form(@order)
end

def process_payment
PaymentProcessingWorker . per form(@order)
end

def schedule_shipping
ShippingSchedulerWorker . per form(@order)
end

def send_confirmation
OrderConfirmationWorker . per form(@order)
end

def finished_processing
@order .update! (transcript:, processed_at: Time.current)
stop_looping!
end
end

Ornekte, OrderProcessor bir siparis nesnesiyle baglatilir ve biiyiik dil modellerine
ozgii tipik konusma kaydi formatinda is akisi yiliriitmesinin dokimiind tutar. Siparis
dogrulama, envanter kontrolii, 6deme isleme ve kargo gibi cesitli islem adimlarinin

yuritilmesini diizenlemek igin yapay zekaya tam kontrol verilir.

chat_completion metodu her ¢agrildiginda, yapay zekaya bir fonksiyon ¢agrisi olarak
tamamlama saglamasi i¢in dokiim gonderilir. Onceki adimin sonucunu analiz etmek ve
uygun eylemi belirlemek tamamen yapay zekanin kontroliindedir. Ornegin, envanter
kontroli dusiik stok seviyelerini gosterirse, OrderProcessor bir yenileme gorevi
planlayabilir. Odeme islemi bagarisiz olursa, yeniden deneme baslatabilir veya miisteri

destegini bilgilendirebilir.

Akilli Is Akis1 Orkestrayonu 217

Yukaridaki 6rnekte yenileme veya miisteri destegini bilgilendirme i¢in tanimlanmig

fonksiyonlar yok, ancak kesinlikle olabilirdi.

Dokiim, her fonksiyon ¢agrildiginda biiytir ve her adimin sonuglar ile yapay zeka
tarafindan olusturulan sonraki adimlar i¢in talimatlari igeren is akis1 yliriitmesinin kaydi
olarak iglev gorir. Bu dokiim, hata ayiklama, denetim ve siparis karsilama siirecine

goriniirlik saglamak icin kullanilabilir.

OrderProcessor’da yapay zekay: kullanarak, e-ticaret uygulamasi is akisini gercek
zamanli verilere gore dinamik olarak uyarlayabilir ve istisnalari akillica ele alabilir.
Yapay zeka bileseni, bilgiye dayali kararlar alabilir, is akisini optimize edebilir ve

karmagik senaryolarda bile sorunsuz siparis islemeyi saglayabilir.

Calisan islemlerin tek gereksiniminin, yapay zekanin bir sonraki adimda ne yapacagina
karar verirken degerlendirecegi anlasilir bir ¢ikti dondirmek olmasi gergegi, bu
yaklagimin farkl sistemleri birbirleriyle entegre ederken tipik olarak gereken girdi/¢ikt1

esleme caligmasini nasil azaltabilecegini fark etmenizi saglayabilir.

Akilli icerik Denetleyici

Sosyal medya uygulamalari, genellikle giivenli ve saglikli bir topluluk saglamak
icin en azindan minimal diizeyde icerik denetimine ihtiya¢ duyar. Bu Ornek
ContentModerator bileseni, igerigin o6zelliklerine ve cesitli denetim adimlarinin
sonuglarma dayali olarak kararlar alarak denetim is akisini akillica diizenlemek igin

yapay zekadan yararlanir.

Denetim siireci, metin analizi, gériintii tanima, kullanici itibar1 degerlendirmesi ve
manuel inceleme gibi birden ¢ok adim igerir. Her adim, belirli bir gorevi yerine getiren

ve sonucu ContentModerator’e dondiren ayr bir ¢alisan islem olarak uygulanir.

Iste ContentModerator 'iin 6rnek bir uygulamasi:

Alalli Ts Akigi Orkestrayonu 218

class ContentModerator
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a content moderator process manager,
tasked with the workflow involved in moderating user-generated content..."

def initialize(content)
@content = content
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: content.to_json }

]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"
end

list of functions available to be called by the AI
truncated for brevity

def functions

[

name: "analyze_text",
#

}I

name: "recognize_image",
description: "Invoke to describe images...",
#

}I

name: "assess_user_reputation",
#

}I
{

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
77
78
79
80
81
82
83
84

Alalli Ts Akigi Orkestrayonu

name: "escalate_to_manual_review",

#
}I
{
name: "approve_content",
#
}l
{
name: "reject_content",
#
}
]
end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def analyze_text

result = TextAnalysisWorker .perform(@content)

continue_with(result)
end

def recognize_image

result = ImageRecognitionWorker .perform(@content)

continue_with(result)
end

def assess_user_reputation

result = UserReputationWorker .per form(@content.user)

continue_with(result)
end

def escalate_to_manual_review

ManualReviewWorker . per form(@content)

@content.update! (status:
end

def approve_content
@content .update! (status:

end

def reject_content

'pending', transcript: @transcript)

'approved', transcript: @transcript)

219

85
86
87
88
89
90
91
92
93
94

Akilli Is Akis1 Orkestrayonu 220

@content.update! (status: 'rejected', transcript: @transcript)
end

private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)

end

end

Bu 6rnekte, ContentModerator bir icerik nesnesiyle baslatilir ve konusma formatida
bir moderasyon kaydi tutar. Yapay zeka bileseni, moderasyon is akis1 iizerinde tam
kontrole sahiptir ve icerigin 6zelliklerine ve her adimin sonugclarina gére hangi adimlarin

yurttilecegine karar verir.

Yapay zekanmn cagirabilecegi mevcut is¢i fonksiyonlari arasinda analyze_text,
recognize_image, assess_user_reputation ve escalate_to_manual_review
bulunur. Her fonksiyon gorevi ilgili isci siirecine (TextAnalysisWorker,
ImageRecognitionWorker, vb.) devreder ve yikseltme fonksiyonu hari¢ sonucu
moderasyon kaydina ekler; yiikseltme fonksiyonu bir son durum olarak iglev gorir.
Son olarak, approve_content ve reject_content fonksiyonlar: da son durumlar

olarak iglev gorir.

Yapay zeka bileseni icerigi analiz eder ve uygun eylemi belirlemeye karar verir. Icerik
gorsel referanslar iceriyorsa, gorsel inceleme icin recognize_image is¢isini ¢agirabilir.
Herhangi bir is¢i potansiyel olarak zararli icerik konusunda uyarida bulunursa, yapay
zeka icerigi manuel incelemeye vyiikseltmeye veya dogrudan reddetmeye karar
verebilir. Ancak uyarinin ciddiyetine bagli olarak, yapay zeka emin olmadig igerigi
nasil ele alacagina karar verirken kullanici itibar degerlendirmesinin sonuclarini
kullanmay: tercih edebilir. Kullanim senaryosuna bagli olarak, giivenilir kullanicilar
paylasabilecekleri icerik konusunda daha fazla esneklige sahip olabilir. Ve bu boyle

devam eder...

Onceki siire¢ yoneticisi 6rneginde oldugu gibi, moderasyon kaydi, her adimin

Akilli Is Akis1 Orkestrayonu 221

sonuglarini ve yapay zeka tarafindan tretilen kararlari iceren is akig1 ytriitmesinin bir
kaydi olarak islev gorir. Bu kayit, denetleme, seffaflik ve moderasyon siirecini zaman

icinde iyilestirmek i¢in kullanilabilir.

ContentModerator’de yapay zekayr kullanarak, sosyal medya uygulamasi
moderasyon is akisini igerigin 6zelliklerine goére dinamik olarak uyarlayabilir ve
karmagik moderasyon senaryolarini akillica ele alabilir. Yapay zeka bileseni bilingli
kararlar alabilir, is akigini optimize edebilir ve giivenli ve saglikli bir topluluk deneyimi

saglayabilir.

Akilli is akig1 orkestrayonu baglaminda 6ngoriisel gérev planlamasi ve istisna yonetimi

ve kurtarmay1 gosteren iki 6rnegi daha inceleyelim.

Bir Miisteri Destek Sisteminde Ongériisel Gérev
Planlamasi

Ruby on Rails ile olusturulmus bir musteri destek uygulamasinda, destek taleplerinin
verimli bir sekilde yonetilmesi ve onceliklendirilmesi, miisterilere zamaninda yardim
saglamak i¢in ¢ok onemlidir. SupportTicketScheduler bileseni, destek taleplerini
talep aciliyeti, temsilci uzmanlig ve is ytuki gibi gesitli faktorlere dayanarak mevcut

temsilcilere 6ngoriisel olarak planlamak ve atamak icin yapay zekadan yararlanir.

Alalli Ts Akigi Orkestrayonu

class SupportTicketScheduler
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a support ticket scheduler,
tasked with intelligently assigning tickets to available agents..."

def initialize(ticket)
@ticket = ticket
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: ticket.to_json }

]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"
end

def functions

[

name: "analyze_ticket_urgency",
#...

}I
{
name: "list_available_agents",

description: "Includes expertise of available agents",
#...

}I
{
name: "predict_agent_workload",

description: "Uses historical data to predict upcoming workloads"

}/
{

name: "assign_ticket_to_agent",

7

222

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
77
78
79
80
81
82
83
84

Alalli Ts Akigi Orkestrayonu

}/

name: "reschedule_ticket",

]

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def analyze_ticket_urgency
result = TicketUrgencyAnalyzer .perform(@ticket)
continue_with(result)

end

def list_available_agents
result = ListAvailableAgents.perform
continue_with(result)

end

def predict_agent_workload
result = AgentWorkloadPredictor .perform
continue_with(result)

end

def assign_ticket_to_agent
TicketAssigner.perform(@ticket, @transcript)
end

def delay_assignment(until)
until = DateTimeStandardizer.process(until)
SupportTicketScheduler.delay(@ticket, @transcript, until)
end

private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)
end
end

223

Akilli Is Akis1 Orkestrayonu 224

Bu 6rnekte, SupportTicketScheduler bir destek bileti nesnesiyle baglatilir ve bir
planlama kaydi tutar. Al bileseni, bilet detaylarini analiz eder ve bilet aciliyeti, temsilci
uzmanlig1 ve ongorilen temsilci ig yiikii gibi faktorlere dayanarak bilet atamasini

ongoriisel olarak planlar.

ATl'nin cagirabilecegi mevcut fonksiyonlar arasinda analyze_ticket_urgency,
list_available_agents, predict_agent_workload ve assign_ticket_to_-
agent bulunur. Her fonksiyon, gorevi ilgili analizci veya tahmin edici bilegene devreder
ve sonucu planlama kaydma ekler. Al ayrica delay_assignment fonksiyonunu

kullanarak atamay: erteleme secenegine sahiptir.

Al bilegeni, planlama kaydini inceler ve bilet atamasi konusunda bilingli kararlar verir.
Bileti islemek i¢in en uygun temsilciyi belirlerken biletin aciliyetini, mevcut temsilcilerin

uzmanligini ve her temsilcinin 6ngériilen is yiikiini degerlendirir.

Ongoriisel gorev planlamasindan yararlanarak, misteri destek uygulamas
bilet atamalarini optimize edebilir, yanit siirelerini azaltabilir ve genel miisteri
memnuniyetini artirabilir. Destek biletlerinin proaktif ve verimli yo6netimi, dogru

biletlerin dogru temsilcilere dogru zamanda atanmasini saglar.

Veri isleme Hattinda istisna Yénetimi ve Kurtarma

[stisnalarin yénetilmesi ve hatalardan kurtulma, veri biitiinliigiinii saglamak ve veri
kaybini 6nlemek i¢cin hayati 6nem tagir. DataProcessingOrchestrator bileseni, bir
veri isleme hattinda istisnalar akillica yonetmek ve kurtarma siirecini orkestra etmek

icin A'dan yararlanir.

© 0 N O O b W N e

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Alalli Ts Akigi Orkestrayonu

class DataProcessingOrchestrator

include Raix::ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

def initialize(data_batch)
@data_batch = data_batch
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: data_batch.to_json }

]

end

def perform

complete(@transcript)

end

def model

"openai/gpt-4"

end

def functions

name:

"validate_data",

"process_data",

"request_fix",

"retry_processing",

"mark_data_as_failed",

225

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83

Alalli Ts Akigi Orkestrayonu 226

b
{

name: "finished",

]

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def validate_data
result = DataValidator.perform(@data_batch)
continue_with(result)

rescue ValidationException => e
handle_validation_exception(e)

end

def process_data
result = DataProcessor .perform(@data_batch)
continue_with(result)

rescue ProcessingException => e
handle_processing_exception(e)

end

def request_fix(description_of_fix)
result = SmartDataFixer.new(description_of_fix, @data_batch)
continue_with(result)

end

def retry_processing(timeout_in_seconds)
wait(timeout_in_seconds)
process_data

end

def mark_data_as_failed
@data_batch.update! (status: 'failed', transcript: @transcript)
end

def finished
@data_batch.update! (status: 'finished', transcript: @transcript)

85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103

Akilli Is Akis1 Orkestrayonu 227

end
private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)

end

def handle_validation_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)

end

def handle_processing_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)
end
end

Bu ornekte, DataProcessingOrchestrator bir veri yigimi nesnesiyle baslatilir ve
bir igleme kaydi tutar. Yapay zeka bileseni, veri igleme hattini orkestra eder, istisnalar1

yonetir ve gerektiginde hatalardan kurtulur.

Yapay zekanmn cagirabilecegi mevcut fonksiyonlar arasinda validate_data,
process_data, request_fix, retry_processing ve mark_data_as_failed
bulunur. Her fonksiyon, gorevi ilgili veri isleme bilesenine devreder ve sonucu veya

istisna ayrmtilarini isleme kaydina ekler.

validate_data adimi swrasinda bir dogrulama istisnasi olusursa, handle_-
validation_exception fonksiyonu istisna verilerini kayda ekler ve kontrolu yapay
zekaya geri verir. Benzer sekilde, process_data adimi sirasinda bir isleme istisnasi

olusursa, yapay zeka kurtarma stratejisine karar verebilir.

Karsilagilan istisnanin dogasina bagli olarak, yapay zeka kendi takdiriyle yapay zeka
destekli SmartDataFixer bilesenine delege eden request_fix’i ¢agirmaya karar

verebilir (Kendi Kendini Onaran Veri bolimiine bakn). Veri diizeltici, islemenin yeniden

Akilli Is Akis1 Orkestrayonu 228

denenebilmesi icin @data_batch’i nasil degistirmesi gerektigine dair acgik bir Tiirkce
actklama alir. Belki bagarili bir yeniden deneme, dogrulamada basarisiz olan kayitlarin
veri yiginindan kaldirilmasini ve/veya bunlarin insan incelemesi icin farkl bir isleme

hattina kopyalanmasini icerebilir? Olasiliklar neredeyse sonsuzdur.

Yapay zeka destekli istisna yonetimi ve kurtarmay:1 dahil ederek, veri isleme uygulamasi
daha dayanikli ve hata toleransli hale gelir. DataProcessingOrchestrator akillica
istisnalar1 yonetir, veri kaybini en aza indirir ve veri isleme is akisinin sorunsuz

yuritilmesini saglar.

izleme ve Giinlitk Tutma

Izleme ve giinlik tutma, yapay zeka destekli ig akisi bilesenlerinin ilerlemesi,
performanst ve sagligi hakkinda goriiniirliik saglar ve gelistiricilerin sistemin
davramisini takip edip analiz etmesine olanak tamir. Etkili izleme ve ginlik tutma
mekanizmalarimin uygulanmasi, akilli is akiglarinin hata ayiklamasi, denetlenmesi ve

strekli iyilestirilmesi i¢in gereklidir.

Is Akisi ilerlemesini ve Performansini izleme

Akilli ig akiglarmin sorunsuz yiritilmesini saglamak igin, her is akigi bileseninin
ilerlemesini ve performansini izlemek 6nemlidir. Bu, is akis1 yasam dongiisii boyunca

temel metriklerin ve olaylarin takibini igerir.
[zlenmesi gereken énemli yonler sunlardir:

1. Is Akis1 Yiiriitme Siiresi: Her is akisi1 bileseninin gorevini tamamlamasi i¢in gereken
streyi 6l¢iin. Bu, performans darbogazlarini belirlemeye ve genel is akigt verimliligini

optimize etmeye yardimeci olur.

2. Kaynak Kullanimi: Her is akisi bilegeni tarafindan CPU, bellek ve depolama gibi
sistem kaynaklarmin kullanimini izleyin. Bu, sistemin kapasitesi dahilinde ¢alistigindan

ve is yikiini etkili bir sekilde yonetebileceginden emin olmaniza yardimei olur.

Akilli Is Akis1 Orkestrayonu 229

3. Hata Oranlar ve Istisnalar: Is akis1 bilesenleri icindeki hatalarin ve istisnalarin
olusumunu takip edin. Bu, potansiyel sorunlar1 belirlemeye yardimeci olur ve proaktif

hata yonetimi ve kurtarmay1 miimkiin kilar.

4. Karar Noktalar1 ve Sonuclar:: Is akisi icindeki karar noktalarini ve yapay zeka
destekli kararlarin sonuclarini izleyin. Bu, yapay zeka bilesenlerinin davranisi ve

etkinligi hakkinda i¢gorii saglar.

[zleme siirecleri tarafindan toplanan veriler, gésterge panellerinde goriintiilenebilir veya
sistemin saglig1 hakkinda sistem yoneticilerini bilgilendiren planli raporlara girdi olarak

kullanilabilir.

P fzleme verileri, inceleme ve potansiyel eylem icin yapay zeka destekli bir

sistem yoneticisi stirecine beslenebilir!

Onemli Olaylari ve Kararlari Gunlige Kaydetme

Giinlik tutma, is akis1 yiiritmesi sirasinda meydana gelen énemli olaylar, kararlar ve
istisnalar hakkindaki ilgili bilgileri yakalama ve depolama islemini iceren temel bir

uygulamadir.
Giinliige kaydedilmesi gereken 6nemli yonler sunlardir:

1. Is Akis1 Baslatma ve Tamamlama: Her is akisi érneginin baslangic ve bitis
zamanlarin, giris verileri ve kullanici baglami gibi ilgili meta verilerle birlikte

kaydedin.

2. Bilesen Yiiriitme: Her is akis1 bileseninin yiiriitme ayrintilarini, giris parametrelerini,

cikis sonuglarini ve olusturulan ara verileri igerecek sekilde kaydedin.

3. Yapay Zeka Kararlar1 ve Gerekcelendirme: Yapay zeka bilesenlerinin verdigi
kararlari, temel gerekcelendirme veya giiven skorlariyla birlikte kaydedin. Bu, seffaflik

saglar ve yapay zeka destekli kararlarin denetlenmesini miimkiin kilar.

© 0 N O O b W N -

I = =N
B W N~

Akilli Is Akis1 Orkestrayonu 230

4. Istisnalar ve Hata Mesajlart: {5 akig1 yiiriitmesi sirasinda karsilagilan istisnalar1 veya

hata mesajlarini, y1g1n izi ve ilgili baglam bilgileriyle birlikte kaydedin.

Ginliik tutma, giinlik dosyalarina yazma, ginliikleri bir veritabaninda saklama veya
ginlikleri merkezi bir ginlik tutma hizmetine gonderme gibi cesitli tekniklerle
uygulanabilir. Esneklik, olceklenebilirlik ve uygulamanin mimarisiyle kolay

entegrasyon saglayan bir giinliik tutma cercevesi se¢mek 6nemlidir.

Iste Ruby on Rails uygulamasinda ActiveSupport : : Logger smifi kullanilarak giinlitk

tutmanin nasil uygulanabilecegine dair bir 6rnek:

class WorkflowlLogger

def self.log(message, severity = :info)
@logger ||= ActiveSupport::Logger.new('workflow.log")
@logger . formatter ||= proc do |severity, datetime, progname, msgl|
"#{datetime} [#{severity}] #{msg}\n"
end

@logger .send(severity, message)
end

end

Usage example
Work flowLogger . log("Workflow initiated for order ##{@order.id}")
Work flowLogger . log("Payment processing completed successfully")

WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

Is akist bilesenleri ve yapay zeka karar noktalar1 boyunca giinliik kayit ifadelerini
stratejik olarak yerlestirerek, gelistiriciler hata ayiklama, denetim ve analiz i¢in degerli

bilgiler elde edebilirler.

izleme ve Giinliik Tutmanin Faydalari
Akilli i akis1 orkestrasyonunda izleme ve giinliik tutmay1 uygulamanin bircok faydasi
vardir:

1. Hata Ayiklama ve Sorun Giderme: Detayli ginlikler ve izleme verileri,

gelistiricilerin sorunlar1 hizli bir sekilde tanimlamasina ve teshis etmesine yardimeci

Akilli Is Akis1 Orkestrayonu 231

olur. Is akis1 yiiriitme akisi, bilesen etkilesimleri ve karsilagilan hatalar veya istisnalar

hakkinda icgoriiler saglar.

2. Performans Optimizasyonu: Performans metriklerinin izlenmesi, gelistiricilerin
darbogazlar1 belirlemesine ve is akisi bilesenlerini daha iyi verimlilik i¢in optimize
etmesine olanak tanir. Yariitme sireleri, kaynak kullanimi ve diger metrikleri analiz
ederek, gelistiriciler sistemin genel performansini iyilestirmek icin bilingli kararlar

alabilirler.

3. Denetim ve Uyumluluk: Onemli olaylarin ve kararlarin kaydedilmesi, diizenleyici
uyumluluk ve hesap verebilirlik i¢in bir denetim izi saglar. Kuruluslarin yapay zeka
bilesenleri tarafindan alinan eylemleri izlemesine ve ig kurallarina ve yasal gerekliliklere

uygunlugunu saglamasina olanak tanir.

4. Siirekli Iyilestirme: izleme ve giinliik tutma verileri, akilli is akiglarinin siirekli
iyilestirilmesi igin degerli girdiler olarak hizmet eder. Ge¢mis verileri analiz ederek,
kaliplar1 belirleyerek ve yapay zeka kararlarinin etkinligini élcerek, gelistiriciler is akigi

orkestrasyon mantigini yinelemeli olarak iyilestirebilir ve gelistirebilir.

Onemli Hususlar ve En iyi Uygulamalar

Akilli i akist orkestrasyonunda izleme ve giinlik tutmay: uygularken, asagidaki en iyi

uygulamalar1 géz 6niinde bulundurun:

1. Net izleme Metrikleri Tanimlayin: {s akisinin 6zel gereksinimlerine gore izlenmesi
gereken temel metrikleri ve olaylar1 belirleyin. Sistemin performansi, sagligi ve davranigi

hakkinda anlamli icgériiler saglayan metriklere odaklanin.

2. Ayrmtili Giinlitk Tutmay1 Uygulaym: Giinlik kayit ifadelerinin ig akisi bilesenleri
ve yapay zeka karar noktalar: icinde uygun noktalara yerlestirildiginden emin olun.
Girig parametreleri, ¢ikis sonuclari ve olusturulan ara veriler gibi ilgili baglam bilgilerini

yakalayin.

Akilli Is Akis1 Orkestrayonu 232

3. Yapilandirilmig Giinlitkk Tutmay1 Kullanin: Giinlik verilerinin kolay ayristirilmasi
ve analizi i¢in yapilandirilmig bir giinlik tutma formati benimseyin. Yapilandirilmig
ginlik tutma, ginlik girislerinin daha iyi aranabilirligini, filtrelenmesini ve

toplanmasini saglar.

4. Giinliik Saklama ve Déndiirmeyi Yonetin: Giinliik dosyalarinin depolanmasini ve
yasam dongiisiinii yénetmek i¢in giinlitk saklama ve dondiirme politikalar: uygulayin.
Yasal gereklilikler, depolama kisitlamalar1 ve analiz ihtiyaclarina gére uygun saklama
stiresini belirleyin. Miimkiinse, giinliik tutmayi Papertrail gibi ti¢iincii taraf bir hizmete

aktarin.

5. Hassas Bilgileri Giivence Altia Alin: Kigisel olarak tanimlanabilir bilgiler (PII) veya
gizli is verileri gibi hassas bilgileri kaydederken dikkatli olun. Giinlitk dosyalarindaki
hassas bilgileri korumak i¢in veri maskeleme veya sifreleme gibi uygun giivenlik

onlemlerini uygulayn.

6. Izleme ve Uyar1 Araclariyla Entegre Edin: Izleme ve giinliik tutma verilerinin
toplanmasi, analizi ve gorsellestirilmesi icin izleme ve uyari araclarindan yararlanm.
Bu araclar gercek zamanli i¢goriiler saglayabilir, 6nceden tanimlanmig esiklere dayali
uyarilar olusturabilir ve proaktif sorun tespiti ve ¢6ziimiini kolaylastirabilir. Bu araglar

arasinda en sevdigim Datadog’dur.

Kapsamli izleme ve giinliik tutma mekanizmalarini uygulayarak, gelistiriciler akilli is
akiglarinin davranisi ve performans: hakkinda degerli i¢goriiler elde edebilirler. Bu
icgoriiler, yapay zeka destekli ig akig1 orkestrasyon sistemlerinin etkili bir sekilde hata

ayiklanmasini, optimizasyonunu ve siirekli iyilestirilmesini saglar.

Olceklenebilirlik ve Performans Hususlari

Olgeklenebilirlik ve performans, akilli is akisi orkestrasyon sistemlerini tasarlarken
ve uygularken dikkate alinmasi gereken kritik yonlerdir. Eszamanli is akiglarinin

hacmi ve yapay zeka destekli bilesenlerin karmagikligr arttikca, sistemin is yikini

https://papertrailapp.com
https://www.datadoghq.com

Akilli Is Akis1 Orkestrayonu 233

verimli bir gekilde yonetebilmesi ve artan talepleri karsilamak i¢in sorunsuz bir sekilde

olceklenmesi 6nemli hale gelir.

Yiiksek Hacimli Eszamanl ig Akislarini Yonetme

Akilli is akis1 orkestrasyon sistemlerinin genellikle ¢ok sayida eszamanli is akisini
yonetmesi gerekir. Olgeklenebilirligi saglamak icin asagidaki stratejileri gz oniinde

bulundurun:

1. Asenkron Isleme: Is akisi bilesenlerinin yiiriitiilmesini ayirmak icin asenkron isleme
mekanizmalari uygulayin. Bu, sistemin her bilesenin tamamlanmasini beklemeden veya
engellemeden birden ¢ok is akisini eszamanli olarak yonetmesine olanak tanir. Asenkron
isleme, mesaj kuyruklari, olay odakli mimariler veya Sidekiq gibi arka plan is isleme

cerceveleri kullanilarak gerceklestirilebilir.

2. Dagitik Mimari: Sistem mimarisini AWS Lambda gibi sunucusuz bilesenleri
kullanacak sekilde veya ana uygulama sunucunuzun yaninda is yikini birden ¢ok
diigiim veya sunucu arasinda dagitacak sekilde tasarlayin. Bu, artan is akis1 hacimlerini

yonetmek icin ek diiglimlerin eklenebilecegi yatay 6lceklenebilirligi saglar.

3. Paralel Yiiriitme: Is akislar1 iginde paralel yiiriitme firsatlarini belirleyin. Baz1 is
akis1 bilesenleri birbirinden bagimsiz olabilir ve eszamanli olarak yiiritilebilir. Coklu is
parcacig1 veya dagitik gorev kuyruklar: gibi paralel isleme tekniklerinden yararlanarak,

sistem kaynak kullanimini optimize edebilir ve genel is akis yiirtitme siiresini azaltabilir.

Yapay Zeka Destekli Bilesenlerin Performansini Optimize
Etme

Makine 6grenimi modelleri veya dogal dil isleme motorlar1 gibi yapay zeka destekli
bilesenler, hesaplama agisindan yogun olabilir ve is akis1 diizenleme sisteminin genel
performansini etkileyebilir. Yapay zeka bilesenlerinin performansini optimize etmek icin

asagidaki teknikleri g6z oniinde bulundurun:

Akilli Is Akis1 Orkestrayonu 234

1. Onbellekleme: Eger yapay zeka isleminiz tamamen tretimsel ise ve sohbet
tamamlamalarini olusturmak igin gercek zamanli bilgi aramasi veya harici
entegrasyonlar icermiyorsa, sik erisilen veya hesaplama agisindan maliyetli islemlerin
sonuglarini depolamak ve yeniden kullanmak icin onbellekleme mekanizmalarim

aragtirabilirsiniz.

2. Model Optimizasyonu: Is akisi bilesenlerinde yapay zeka modellerini kullanma
seklinizi siirekli olarak optimize edin. Bu, Istem Damitma gibi teknikleri igerebilir veya

basitce yeni modeller kullanima sunuldukga bunlari test etmek olabilir.

3. Toplu Isleme: GPT-4 smifi modellerle calisiyorsaniz, birden fazla veri noktasini veya
istegi tek tek islemek yerine tek bir toplu iglemde islemek icin toplu isleme tekniklerinden
yararlanabilirsiniz. Verileri toplu olarak isleyerek, sistem kaynak kullanimini optimize

edebilir ve tekrarlanan model isteklerinin ek yikiini azaltabilir.

Performans izleme ve Profil Cikarma

Akilli is akisi dizenleme sisteminin performans darbogazlarini belirlemek ve
olceklenebilirligini optimize etmek icin izleme ve profil ¢ikarma mekanizmalarinin

uygulanmasi ¢ok onemlidir. Asagidaki yaklasimlar: géz éniinde bulundurun:

1. Performans Metrikleri: Yanit siiresi, verim, kaynak kullanimi ve gecikme siiresi
gibi temel performans metriklerini tanimlayin ve takip edin. Bu metrikler, sistemin
performanst hakkinda iggoriler saglar ve optimizasyon icin alanlari belirlemeye
yardimeci olur. Popiiler yapay zeka model toplayicis1t OpenRouter, her API yanitinda

Host! ve Hiz? metriklerini icererek bu temel metrikleri takip etmeyi kolaylagtirir.

2. Profil Cikarma Araclar:: Bireysel ig akis1 bilesenlerinin ve yapay zeka islemlerinin
performansini analiz etmek icin profil ¢ikarma araclarimi kullanin. Profil c¢ikarma

araglari, performans agisindan kritik noktalari, verimsiz kod yollarimmi veya kaynak

'Host, model sunucusundan akan iiretimin ilk baytini almak icin gecen siiredir, diger bir deyisle “ilk bayta
kadar gecen siire”

2Hiz, tamamlama belirteglerinin sayisimin toplam iiretim siiresine béliinmesiyle hesaplamir. Akiglh
olmayan istekler icin gecikme siiresi iiretim siiresinin bir pargasi olarak kabul edilir.

https://openrouter.ai

Akilli Is Akis1 Orkestrayonu 235

yogun islemleri belirlemeye yardimci olabilir. Popiiler profil ¢cikarma araglari arasinda
New Relic, Scout veya programlama dili veya cerceve tarafindan saglanan yerlesik profil

cikaricilar bulunur.

3. Yiikk Testi: Sistemin farkli eszamanli is yuki seviyelerindeki performansini
degerlendirmek icin yiik testi yapin. Yik testi, sistemin 6lceklenebilirlik sinirlarimi
belirlemeye, performans disiislerini tespit etmeye ve sistemin performanstan 6diin

vermeden beklenen trafigi kargilayabileceginden emin olmaya yardimei olur.

4. Siirekli Izleme: Performans sorunlarini ve darbogazlar: proaktif olarak tespit etmek
icin siirekli izleme ve uyar1 mekanizmalar1 uygulayin. Temel performans gostergelerini
(KPI'lar) takip etmek ve 6nceden tanimlanmis egsikler asildiginda bildirim almak
icin izleme panolari ve uyarilar kurun. Bu, performans sorunlarinin hizli bir sekilde

tanimlanmasini ve ¢oziilmesini saglar.

Olceklendirme Stratejileri

Akilli is akis1 diizenleme sisteminin artan is yiiklerini karsilamasi ve 6lgeklenebilirligini

saglamast icin asagidaki 6lceklendirme stratejilerini goz 6niinde bulundurun:

1. Dikey Olg¢eklendirme: Dikey olgeklendirme, daha yiksek is yiklerini karsilamak
icin bireysel digtiimlerin veya sunucularin kaynaklarini (6rnegin, CPU, bellek) artirmay:
icerir. Bu yaklasim, sistemin karmasik ig akiglarini veya yapay zeka islemlerini yonetmek

icin daha fazla islem giicti veya bellege ihtiya¢ duydugu durumlarda uygundur.

2. Yatay Olc¢eklendirme: Yatay olceklendirme, is yikiini dagitmak icin sisteme daha
fazla digiim veya sunucu eklemeyi icerir. Bu yaklasim, sistemin ¢ok sayida eszamanli
is akisin1 yonetmesi gerektiginde veya is yiikii birden fazla diigiim arasinda kolayca
dagitilabildiginde etkilidir. Yatay 6lgeklendirme, trafigin esit dagilimini saglamak igin

dagitik bir mimari ve yiik dengeleme mekanizmalar: gerektirir.

3. Otomatik Ol¢eklendirme: s yiikii talebine gére diigiim veya kaynak sayisini

otomatik olarak ayarlayan otomatik Olgeklendirme mekanizmalarini uygulayin.

Akilli Is Akis1 Orkestrayonu 236

Otomatik 6lgeklendirme, sistemin gelen trafige bagli olarak dinamik olarak biiytimesine
veya kiiciilmesine olanak taniyarak optimal kaynak kullanimi ve maliyet verimliligi
saglar. Amazon Web Services (AWS) veya Google Cloud Platform (GCP) gibi bulut
platformlari, akilli is akisi diizenleme sistemleri icin kullanilabilecek otomatik

olceklendirme yetenekleri sunar.

Performans Optimizasyon Teknikleri

Olgeklendirme stratejilerine ek olarak, akill i akisi diizenleme sisteminin verimliligini

artirmak i¢in asagidaki performans optimizasyon tekniklerini géz 6niinde bulundurun:

1. Verimli Veri Depolama ve Erisim: Is akis1 bilesenleri tarafindan kullanilan veri
depolama ve erigim mekanizmalarini optimize edin. Veri yogun isglemlerin gecikme
siresini en aza indirmek ve performansini iyilestirmek igin verimli veritabam

indeksleme, sorgu optimizasyon teknikleri ve veri énbellekleme kullanin.

2. Eszamansiz G/C: Sistemin yanit verebilirligini artirmak ve bloklamay: énlemek igin
eszamansiz G/C islemlerinden yararlanin. Eszamansiz G/C, sistemin G/C islemlerinin
tamamlanmasimi beklemeden birden ¢ok istegi eszamanli olarak islemesine olanak

taniyarak kaynak kullanimini en iist diizeye cikarir.

3. Verimli Serilestirme ve Ters Serilestirme: Is akisi bilesenleri arasindaki veri
aligverisi icin kullanilan serilestirme ve ters serilestirme siireclerini optimize edin. Veri
serilestirme yiikiinii azaltmak ve bilesenler arasi iletisimin performansini artirmak igin

Protocol Buffers veya MessagePack gibi verimli serilestirme formatlarini kullanin.

Ruby tabanli uygulamalar i¢in Universal ID kullanmay: distiniin. Universal
’ ID, hem MessagePack hem de Brotli’den yararlanir (hiz ve en iyi smif veri
sikistirma i¢in olusturulmus bir kombinasyon). Bu kiitiiphaneler bir araya
getirildiginde, Protocol Buffers’a kiyasla %30’a kadar daha hizli ve %2-5

arasinda sikistirma oranlarina sahiptir.

https://github.com/hopsoft/universalid

Akilli Is Akis1 Orkestrayonu 237

4. Sikistirma ve Kodlama: Is akisi bilesenleri arasinda aktarilan verinin boyutunu
azaltmak icin sikistirma ve kodlama tekniklerini uygulayin. gzip veya Brotli gibi
sikistirma algoritmalari, ag bant genisligi kullanimini énemli dl¢tide azaltabilir ve

sistemin genel performansini iyilegtirebilir.

Akilli is akist orkestrasyon sistemlerinin tasarimi ve uygulamasi sirasinda
olceklenebilirlik ve performans yonlerini géz oniinde bulundurarak, sisteminizin
yiksek hacimli eszamanli ig akiglarini yonetebilmesini, yapay zeka destekli bilesenlerin
performansini optimize edebilmesini ve artan talepleri karsilamak igin sorunsuz bir
sekilde 6lgeklenmesini saglayabilirsiniz. Is yiikii ve karmagiklik zaman iginde arttikca
sistemin performansim ve yanit verebilirligini korumak icin siirekli izleme, profil

cikarma ve optimizasyon calismalar: gereklidir.

is Akislarinin Test Edilmesi ve Dogrulanmasi

Test etme ve dogrulama, akilli is akisi orkestrasyon sistemlerinin gelistirilmesi ve
bakiminin kritik yonleridir. Yapay zeka destekli is akislarinin karmagik dogasi1 goz 6niine
alindiginda, her bilesenin beklendigi gibi calistigindan, genel is akisinin dogru sekilde
davrandigindan ve yapay zeka kararlarinin dogru ve giivenilir oldugundan emin olmak
esastir. Bu bolumde, akilli is akiglarini test etme ve dogrulama icin cesitli teknikleri ve

hususlar1 inceleyecegiz.

Is Akisi Bilesenlerinin Birim Testi

Birim testi, dogruluklarmi ve saglamliklarini dogrulamak icin tek tek is akisi
bilesenlerinin test edilmesini icerir. Yapay zeka destekli is akis1 bilesenlerinin birim

testini yaparken sunlari géz 6niinde bulundurun:

1. Girdi Dogrulama: Bilesenin gecerli ve gecersiz veriler dahil olmak iizere farkl tiirdeki
girdileri isleme yetenegini test edin. Bilesenin u¢ durumlari dizgin bir sekilde ele

aldigini ve uygun hata mesajlar1 veya istisnalar sagladigini dogrulayin.

© 0 N O O b W N =

I = T O T Y
© 00 N O O b W N =~ o

Akilli Is Akis1 Orkestrayonu 238

2. Cikt1 Dogrulama: Bilegenin belirli bir girdi seti igin beklenen ciktiy1 drettigini

dogrulayin. Dogrulugu saglamak i¢in gercek ¢iktiy1 beklenen sonuglarla karsilagtirin.

3. Hata Yonetimi: Gegersiz girdi, kaynak kullanilamamasi veya beklenmeyen istisnalar
gibi cesitli hata senaryolarini simiile ederek bilegenin hata yonetimi mekanizmalarini

test edin. Bilesenin hatalar1 uygun sekilde yakaladigini ve ele aldigini dogrulayin.

4. Smir Kosullar:: Bog girdi, maksimum girdi boyutu veya asir1 degerler gibi sinir
kosullar1 altinda bilesenin davranisini test edin. Bilesenin ¢okmeden veya yanlis

sonugclar iretmeden bu kosullar1 diizgiin bir sekilde ele aldigindan emin olun.

Iste RSpec test gatis1 kullanilarak Ruby’de bir is akist bileseni igin birim testi érnegi:

RSpec.describe OrderValidator do
describe '#validate' do
context 'when order is valid' do
let(:order) { build(:order) }

it 'returns true' do
expect(subject.validate(order)).to be true
end

end

context 'when order is invalid' do
let(:order) { build(:order, total_amount: -100) }

it 'returns false' do
expect(subject.validate(order)).to be false
end
end
end
end

Bu ornekte, OrderValidator bileseni iki test durumu kullanilarak test edilmektedir:
biri gecerli bir siparis i¢in, digeri gecersiz bir siparis icin. Test durumlari, validate
metodunun siparisin gecerliligine bagli olarak beklenen boolean degerini dondiirdiigiini

dogrular.

Akilli Is Akis1 Orkestrayonu 239

Is Akisi Etkilesimlerinin Entegrasyon Testi

Entegrasyon testi, farkli is akisi bilesenleri arasindaki etkilesimleri ve veri akisin
dogrulamaya odaklanir. Bilegenlerin sorunsuz bir sekilde birlikte ¢alistigini ve beklenen
sonuglar1 Urettigini garanti eder. Akilli is akiglarmin entegrasyon testini yaparken

sunlar1 géz 6niinde bulundurun:

1. Bilesen Etkilesimi: Is akisi bilesenleri arasindaki iletisimi ve veri alisverisini test
edin. Bir bilesenin ¢iktisinin, ig akigindaki bir sonraki bilesene dogru sekilde girdi olarak

aktarildigini dogrulayin.

2. Veri Tutarliligy: Verilerin is akis1 boyunca tutarli ve dogru kaldigindan emin olun. Veri
donisiimlerinin, hesaplamalarin ve birlestirmelerin dogru sekilde gerceklestirildigini

dogrulayin.

3. Istisna Yayilimu: Istisnalarin ve hatalarin is akis bilesenleri arasinda nasil yayildigini
ve ele alindigini test edin. Istisnalarin yakalandigini, kaydedildigini ve is akis1 kesintisini

onlemek icin uygun sekilde ele alindigini dogrulayin.

4. Eszamansiz Davrams: Eger ig akisi eszamansiz bilesenler veya paralel yiratme
iceriyorsa, koordinasyon ve senkronizasyon mekanizmalarini test edin. Is akisinin

eszamanli ve eszamansiz senaryolarda dogru sekilde davrandigindan emin olun.

Iste Ruby’de RSpec test gercevesi kullanarak bir is akisi i¢in entegrasyon testi 6rnegi:

© 0 N O O b W N e

11
12
13
14
15
16
17
18

Akilli Is Akis1 Orkestrayonu 240

RSpec.describe OrderProcessingWorkflow do
let(:order) { build(:order) }

it 'processes the order successfully' do
expect(OrderValidator).to receive(:validate).and_return(true)
expect(InventoryManager).to receive(:check_availability).and_return(true)
expect(PaymentProcessor).to receive(:process_payment).and_return(true)

expect(ShippingService).to receive(:schedule_shipping).and_return(true)

workflow = OrderProcessingWorkflow.new(order)
result = workflow.process

expect(result).to be true
expect(order.status).to eq('processed')
end

end

Bu oOrnekte, OrderProcessingWorkflow farkli is akisi bilesenleri arasindaki
etkilesimlerin dogrulanmasiyla test edilmektedir. Test senaryosu, her bilesenin
davranist icin beklentiler olusturur ve ig akisinin siparisi basariyla isleyerek siparis

durumunu uygun sekilde giincellediginden emin olur.

Yapay Zeka Karar Noktalarinin Test Edilmesi

Yapay zeka karar noktalarini test etmek, yapay zeka destekli is akiglarinin dogrulugunu
ve giivenilirligini saglamak icin cok 6nemlidir. Yapay zeka karar noktalarini test ederken

sunlar1 goz 6ntinde bulundurun:

1. Karar Dogrulugu: Yapay zeka bileseninin giris verileri ve egitilmis model temelinde
dogru kararlar verdigini dogrulayn. Yapay zeka kararlarini beklenen sonuglar veya

temel gerceklik verileriyle karsilagtirin.

2. U¢ Durumlar: Yapay zeka bileseninin u¢ durumlardaki ve olagandisi senaryolardaki
davranisini test edin. Yapay zeka bileseninin bu durumlari diizgiin bir sekilde ele

aldigindan ve makul kararlar verdiginden emin olun.

© W N O O b W N =

NN NN B R sy s L sy
W N O O 0N 0 W N,

Akilli Is Akis1 Orkestrayonu 241

3. Yanlilik ve Adillik: Yapay zeka bilesenini olasi yanliliklar acisindan degerlendirin ve
adil, tarafsiz kararlar verdiginden emin olun. Bilegeni ¢esitli giris verileriyle test edin ve

sonugclar1 ayrimci Oriintiiler a¢isindan analiz edin.

4. Aciklanabilirlik: Eger yapay zeka bileseni kararlari igin aciklamalar veya gerekgeler
sunuyorsa, ac¢iklamalarin dogrulugunu ve netligini dogrulayin. Agiklamalarin temel

karar verme siireciyle uyumlu oldugundan emin olun.

Iste Ruby’de RSpec test gercevesi kullanilarak yapay zeka karar noktasmin test

edilmesine bir ornek:

RSpec.describe FraudDetector do
describe '#detect_fraud' do
context 'when transaction is fraudulent' do
let(:tx) do
build(:transaction, amount: 10_000, location: 'High-Risk Country')
end

it 'returns true' do
expect(subject.detect_fraud(tx)).to be true
end

end

context 'when transaction is legitimate' do
let(:tx) do
build(:transaction, amount: 100, location: 'Low-Risk Country')
end

it 'returns false' do
expect(subject.detect_fraud(tx)).to be false
end
end
end

end

Bu o6rnekte, FraudDetector yapay zeka bileseni iki test vakasiyla test edilmektedir:
biri sahte islem i¢in, digeri mesru islem igin. Test vakalari, detect_fraud metodunun

islemin 6zelliklerine bagli olarak beklenen boolean degerini dondiirdiigiini dogrular.

Akilli Is Akis1 Orkestrayonu 242

Uctan Uca Test

Uctan uca test, baslangictan sona kadar tim is akiginin test edilmesini, gercek diinya
senaryolarmin ve kullanic1 etkilesimlerinin simiile edilmesini igerir. Is akiginin dogru
sekilde davrandigindan ve istenen sonuclar irettiginden emin olur. Akilli is akiglar

icin uctan uca test yaparken sunlar1 goz oéniinde bulundurun:

1. Kullanicr Senaryolar:: Yaygin kullanict senaryolarini belirleyin ve is akisinin bu
senaryolar altindaki davranigini test edin. Is akiginin kullanic girdilerini dogru sekilde

isledigini, uygun kararlar aldigim1 ve beklenen ciktilar: iirettigini dogrulayin.

2. Veri Dogrulama: Is akigmin veri tutarsizliklarini veya giivenlik agiklarmi énlemek
i¢in kullanic1 girdilerini dogruladigindan ve temizlediginden emin olun. Is akisimi gecerli

ve gegersiz veriler dahil olmak tizere cesitli giris verileriyle test edin.

3. Hata Kurtarma: s akisinin hatalardan ve istisnalardan kurtulma yetenegini test edin.
Hata senaryolarmi simiile edin ve is akiginin bunlar1 dizgiin bir sekilde ele aldigni,

hatalar1 kaydettigini ve uygun kurtarma iglemlerini gerceklestirdigini dogrulayin.

4. Performans ve Olceklenebilirlik: Is akiginin farkli yiikk kosullar1 altindaki
performansini ve dlceklenebilirligini degerlendirin. Is akigini cok sayida eszamanli
istekle test edin ve yanit siirelerini, kaynak kullanimini ve genel sistem kararliligini

olctin.

Iste Ruby dilinde RSpec test cercevesi ve kullanici etkilesimlerini simiile etmek icin

Capybara kiitiiphanesi kullanilarak yazilmis bir is akis1 i¢in uctan uca test rnegi:

© 0 N O O b W N e

11
12
13

Akilli Is Akis1 Orkestrayonu 243

RSpec.describe 'Order Processing Workflow' do
scenario 'User places an order successfully' do
visit '/orders/new'
fill_in 'Product', with: 'Sample Product'’
fill_in 'Quantity', with: '2°'
fill_in 'Shipping Address', with: '1283 Main St'
click_button 'Place Order'

expect(page).to have_content('Order Placed Successfully')
expect(Order.count).to eq(1)
expect(Order.last.status).to eq('processed")
end
end

Bu 6rnekte, uctan uca test, bir kullanicinin web arayiizii izerinden siparis vermesini
simiile eder. Gerekli form alanlarimi doldurur, siparisi goénderir ve siparisin basariyla
islendigini, uygun onay mesajin1 gosterdigini ve siparis durumunun veritabaninda

giincellendigini dogrular.

Siirekli Entegrasyon ve Dagitim

Akilli is akiglarinin giivenilirligini ve bakim yapilabilirligini saglamak icin, test etme
ve dogrulama iglemlerinin siirekli entegrasyon ve dagitim (CI/CD) pipeline’ina entegre
edilmesi Onerilir. Bu, is akisi degisikliklerinin tretime dagitilmadan 6nce otomatik
olarak test edilmesine ve dogrulanmasina olanak tanir. Asagidaki uygulamalar1 goz

oninde bulundurun:

1. Otomatik Test Yiiriitme: Is akis1 kod tabaninda degisiklik yapildiginda test paketinin
otomatik olarak calistirilmas: icin CI/CD pipeline’ini yapilandirin. Bu, herhangi
bir regresyonun veya basarisizligin gelistirme siirecinin erken asamalarinda tespit

edilmesini saglar.

2. Test Kapsami Izleme: Is akis1 bilesenlerinin ve yapay zeka karar noktalarmin test
kapsamini 6lciin ve izleyin. Kritik yollarin ve senaryolarin kapsamli bir sekilde test

edilmesini saglamak icin yiiksek test kapsamini hedefleyin.

Akilli Is Akis1 Orkestrayonu 244

3. Siirekli Geri Bildirim: Test sonuclarini ve kod kalitesi metriklerini gelistirme is
akigina entegre edin. Gelistiricilere testlerin durumu, kod kalitesi ve CI/CD siireci

sirasinda tespit edilen sorunlar hakkinda siirekli geri bildirim saglaymn.

4. Hazirlik Ortamlari: [s akigini iiretim ortamini yakindan yansitan hazirlik ortamlarina
dagitin. Altyapi, yapilandirma veya veri entegrasyonuyla ilgili sorunlari yakalamak i¢in

hazirlik ortaminda ek test ve dogrulama gerceklestirin.

5. Geri Alma Mekanizmalari: Dagitim basarisizliklar1 veya tretimde tespit edilen
kritik sorunlar icin geri alma mekanizmalar1 uygulayin. Kesinti siiresini ve kullanicilar
tizerindeki etkiyi en aza indirmek i¢in is akiginin hizl bir sekilde 6nceki kararli stiriime

geri dondirilebilmesini saglayn.

Akilli is akislarinin gelistirme yasam doéngiisii boyunca test ve dogrulama iglemlerini
dahil ederek, organizasyonlar yapay zeka destekli sistemlerinin giivenilirligini,
dogrulugunu ve bakim yapilabilirligini saglayabilirler. Diizenli test ve dogrulama,
hatalarin yakalanmasina, regresyonlarin 6nlenmesine ve ig akisinin davranisina ve

sonuglarma olan giivenin artmasina yardimeci olur.

Kisim 2: Desenler

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Muhendisligi

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mihendisligi 247

Dusunce Zinciri

Bu icerik 6rnek kitapta mevcut degildir. Kitabi Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.
Nasil Caligir

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.
Ornekler

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.
icerik Uretimi

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.
Yapilandirilmis Varhik Olusturma

Bu icerik 6rnek kitapta mevcut degildir. Kitabi Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.
LLM Ajan Yénlendirmesi

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.
Faydalar ve Dikkat Edilecek Noktalar

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mihendisligi 248

Mod Degisimi

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullaniimali

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mihendisligi 249

Rol Atama

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullanihir

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornekler

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mihendisligi 250

Prompt Object

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mihendisligi 251

istem Sablonu

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Faydalari ve Dikkat Edilmesi Gerekenler

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullaniimali:

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mihendisligi 252

Yapilandirilmis Girdi/Cikti

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Yapilandirilmis Giris/Cikisin Olgceklendirilmesi

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Faydalar ve Dikkat Edilecek Noktalar

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mihendisligi 253

Prompt Zincirleme

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullaniimali

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek: Olympia’nin Kullanici Dahil Etme Sireci

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mihendisligi 254

Prompt Yeniden Yazici

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mihendisligi 255

Response Fencing

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Faydalar ve Dikkat Edilecek Noktalar

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Hata isleme

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mihendisligi 256

Sorgu Cozumleyici

Bu icerik 6rnek kitapta mevcut degildir. Kitabi Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.
Nasil Caligir

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uygulama

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.
Sozciik Tarii (POS) Etiketleme ve Varlik ismi Tanima (NER)

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.
Niyet Siniflandirma

Bu icerik 6rnek kitapta mevcut degildir. Kitabi Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.
Anahtar Kelime Cikarimi

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.
Faydalar

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mihendisligi 257

Sorgu Yeniden Yazici

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Faydalari

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bildirim Mihendisligi 258

Ventriloquist

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullanmali

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Ayrik Bilesenler

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Ayrik Bilegenler 260

Yuklem

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullaniimali

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Ayrik Bilegenler 261

APl Facade

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Temel Faydalari

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullanmali

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Kimlik Dogrulama ve Yetkilendirme

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Ayrik Bilegenler 262

Istek isleme

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Yanit Bicimlendirme

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Hata Yénetimi ve U¢ Durumlar

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Olceklenebilirlik ve Performans Degerlendirmeleri

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Diger Tasarim Desenleriyle Karsilastirma

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Ayrik Bilegenler 263

Sonug¢ Yorumlayici

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullaniimali

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Ayrik Bilegenler 264

Sanal Makine

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ne Zaman Kullaniimali

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Buyunun Ardinda

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Spesifikasyon ve Test

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Ayrik Bilegenler 265

Davranisin Belirlenmesi

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Test Senaryolarinin Yaziimasi

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek: Cevirmen Bileseninin Test Edilmesi

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

HTTP Etkilesimlerinin Tekrari

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Insan Kontroliinde (HITL)

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ust Diizey Kaliplar

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Hibrit Zeka

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uyarlanabilir Yanit

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Insan-YZ Rol Degisimi

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Insan Kontroliinde (HITL) 267

Yukseltme

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Temel Faydalar

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Gergek Diinya Uygulamasi: Saghk Hizmetleri

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Insan Kontroliinde (HITL) 268

Geri Bildirim Donguisu

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uygulamalar ve Ornekler

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

insan Geri Bildirim Entegrasyonunda ileri Teknikler

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Insan Kontroliinde (HITL) 269

Pasif Bilgi Yayilimi

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Baglamsal Bilgi Goruintiileme

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Proaktif Bildirimler

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Aciklayici i¢gériiler

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Etkilesimli Kesif

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Insan Kontroliinde (HITL) 270

Temel Faydalar

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uygulamalar ve Ornekler

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Insan Kontroliinde (HITL) 271

isbirlik¢i Karar Verme (CDM)

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Insan Kontroliinde (HITL) 272

Siirekli Ogrenme

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Uygulamalar ve Ornekler

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Etik Hususlar

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

insan Destekli Sistemlerin Al Risklerini Azaltmadaki Roli

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Insan Kontroliinde (HITL) 273

Teknolojik ilerlemeler ve Gelecek Goriiniimii

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

iME Sistemlerinin Zorluklari ve Sinirlamalari

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Akilli Hata Yonetimi

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Geleneksel Hata Yonetimi Yaklasimlari

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Akilli Hata Yonetimi 275

Baglamsal Hata Teshisi

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Baglamsal Hata Teshisi icin Bildirim Mihendisligi

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Baglamsal Hata Teshisi icin Geri Getirme Destekli Uretim

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Akilli Hata Yonetimi 276

Akilli Hata Raporlama

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Akilli Hata Yonetimi 277

Ongériicii Hata Onleme

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Akilli Hata Kurtarma

Bu icerik 6rnek kitapta mevcut degildir. Kitabi Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Akilli Hata Yonetimi 278

Kisisellestirilmis Hata iletisimi

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Akilli Hata Yonetimi 279

Uyarlanabilir Hata isleme Is Akisi

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Kalite Kontrol

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Kalite Kontrol 281

Eval

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Problem

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Cozum

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Degerlendirmeler

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Kalite Kontrol 282

Altin Referanslari Anlamak

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Referanssiz Degerlendirmeler Nasil Calisir

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Kalite Kontrol 283

Koruma Mekanizmasi

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Problem

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Cozum

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Nasil Calisir

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Ornek

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Dikkat Edilmesi Gerekenler

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Kalite Kontrol 284

Koruma Mekanizmalari ve Degerlendirmeler:

Madalyonun iki Yizii

Bu icerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.
Koruma Mekanizmalari ve Referanssiz
Degerlendirmelerin Birbirinin Yerine Kullanilabilirligi

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Cift Amach Koruma Mekanizmalarinin ve
Degerlendirmelerin Uygulanmasi

Bu icerik 6rnek kitapta mevcut degildir. Kitabi Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Sozluk

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

Sozluk

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

A

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

C

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

almak icin http:

almak icin http:

almak icin http:

almak i¢in http:

almak icin http:

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

286

D

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

G

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

H

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

K

Bu icerik ornek kitapta mevcut degildir. Kitabi Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

Bu icerik ornek kitapta mevcut degildir. Kitabi Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

M

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

N

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

(o)

Bu icerik ornek kitapta mevcut degildir. Kitabi Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

287

almak i¢in http:

almak icin http:

almak icin http:

almak icin http:

almak i¢in http:

almak icin http:

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

P

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

Q

Bu icerik ornek kitapta mevcut degildir. Kitabi Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

R

Bu icerik ornek kitapta mevcut degildir. Kitabi Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

S

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

T

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

U

Bu icerik ornek kitapta mevcut degildir. Kitabi Leanpub’tan satin

//leanpub.com/patterns-of-application-development-using-ai-tr.

288

almak i¢in http:

almak icin http:

almak icin http:

almak icin http:

almak i¢in http:

almak icin http:

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

289

\'

Bu icerik 6rnek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak i¢in http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

w

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak icin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

yA

Bu igerik ornek kitapta mevcut degildir. Kitab1 Leanpub’tan satin almak igin http:

//leanpub.com/patterns-of-application-development-using-ai-tr.

http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr
http://leanpub.com/patterns-of-application-development-using-ai-tr

Index

ACID ézellikleri, 102
acil durum miidahale planlamasi, 30
Al 68, 92, 134, 141
model, 92, 149
uygulamalar, 117, 129
Ajanly, 30
akan veri, 143
akilli ig akig1 diizenleme, 234
akilli is akist orkestrasyonu, 213
akilli is akis1 orkestrayonu, 206
akall telefonlar, 203
Akalli icerik Denetleyici, 217
akig isleme, 141, 147, 152
mantifl, 148
akis isleyicileri, 142
Alpaca, 12
Altman, Sam, 16
Amazon Web Services, 236
anlat1 olusturma, 18
Anthropic, 21, 36, 68, 121, 128
antropomorfizm, 64
APTler, 66, 115, 144
arac kullamimi, 115, 140
arag ¢agrisi, 144
artirilmig gerceklik gozlikleri, 203

asenkron isleme, 233

auto-regressive modeling, 39

ayrintil giinlik tutma, 231

az ornekli yonerge verme, 58

az ornekli 6grenme, 57

acik kaynak model barindirma
saglayicilari, 191

aciklanabilirlik, 241

ag baglantisi, 211

asamall gosterim, 193

Bayt Cifti Kodlamasi (BCK), 12

baglam
Baglamsal Alan Onerileri, 187
baglamsal karar verme, 210
Baglamsal Igerik Uretimi, 175,

179-181, 186, 187

pencere, 210
penceresi, 14
sonsuz uzunluktaki girdiler, 14
Zenginlestirme, 42

BDM’lerin entegrasyonu, 176

belge kiimeleme, 112

belirtegleme, 11

belirtegler, 5, 11

BERT, 12, 22

bildirimler

Bildirim Damitma, 42

Index

miihendislik, 41, 42, 60
bilet atamasi, 224
bilgi
getirme, 6, 117
¢ikarimu, 48
bilgi tabanlari, 7
bilgi yonetimi, 30
bilgisayar bilimi, 65, 67
bicimlendirme tarzi etiketleme, 66
boundary conditions, 238
Brotli, 236, 237
Byte Pair Encoding (BPE), 13
Bityiik Dil Modeli (BDM), 16, 62, 63, 66, 70,
72, 81, 112, 116, 125, 132, 136,
138, 154, 157, 175, 190, 216
alan, 25
Biiytk Dil Modeli (DDD), 14
Biyiik Dil Modeli (LLM), 1, 3, 103, 115, 185,
195

C (Programlama Dili), 109
Capybara kitiiphanesi, 242
ChatGPT, 28, 49

Claude, 7, 40, 72

Claude 3, 45, 118, 121, 126, 128
Claude 3 Opus, 69

Claude v1, 15

Claude v2, 16

Cohere (BDM Saglayicisy), 23
Cohere (LLM Saglayicist), 21
concurrent workflows, 237

Customer Sentiment Analysis, 93

Civa (element), 41

damitma siireci, 71
darbogazlar, 210
Databricks caliganlari, 48
Datadog, 232
dagitik mimari, 233
decision
-making capabilities, 92
denetim ginlaigi, 99
denetim ve uyumluluk, 231
deneyler
cerceve, 181
Derin Dil Modeli (DDD), 27
Destek Vektor Makineleri (DVM), 113
deterministik davranis, 54
devre kesici mantigi, 152
dijital ortam, 181
dil
Dil Algilama, 104
ile ilgili gorevler, 4
modelleri, 61, 67
dilbilgisi kurallari, 4
Dinamik Arag Secimi, 122
Dinamik Gérev Yonlendirme, 209
dinamik kullanic1 arayizii iiretimi, 176
diziler, 122
Dohan, et al., 40
dolandiricilik tespiti
sistemi, 90
donanim, 26

dogal dil

291

Index 292

Dogal Dil isleme (DDI), 94, 112 fonksiyon
durumsuz, 147 isimleri, 145
duygu analizi, 15, 93, 104, 105, 107, 110, 126, cagr1 gecmisi, 147
136 cagrisi basarisizligi, 125
duygusal ton, 136 cagirma, 115
déniistiiriicti mimarisi, 6 fonksiyonel programlama, 85

Diistince Zinciri (CoT), 41
Diisiince Zinciri (DZ), 130 gecikme stiresi, 25

gelistirme cerceveleri, 139

-ti 179, 2
e-ticaret, 179, 207 Gemma 7B, 10

E-ticaret Uygulamalari, 85 . .
geri alma mekanizmalari, 244

ekosistem, 139 geri bildirim
ELK yig1ni1, 103
gt Geri Bildirim Déngiisi, 55

en az ayricalik ilkesi, 66 .
i Geri Getirme Destekli Uretim (RAG), 29, 42

entegrasyon testi, 239 e
Geri Getirme ile Giiclendirilmis Uretim

erisilebilirlik, 202, 203 .
(GGU), 117

Erisim Destekli Uretim (EDU), 74
Erisim Destekli Uretim (RAG), 35

geri getirme tabanl modeller, 6
gecmis Oriintiler, 210

errors
giris

handling, 238
promptlari, 52

Intelligent Error Handling, 134
giris parametreleri, 120

GitLab, 86
Gizli Dirichlet Tahsisi, 114

esneklik ve yaraticilik, 183
etik

sonugclar, 186
gizli uzay, 39

egitim uygulamalari, 30
Global Interpreter Lock (GIL), 107

egitim verisi, 39
Google, 21

API, 58, 60
Cloud AI Platform, 22

egitimli modeller

talimat egitimli modeller, 45

F#, 86 Cloud Platform, 236
Facebook, 22 Gemini, 20
finalize metodu, 148, 149 Gemini 1.5 Pro, 12, 16, 17

FitAl, 197 PaLM (Pathways Language Model),

Index

16, 22
T5, 12

GPT-3, 12, 15

GPT-4, 6, 12, 16, 19, 29, 40, 45, 58, 97, 109,
112, 119, 125, 190, 191, 234

Graham, Paul, 17

graphical models, 40

GraphQL, 100

Groq, 24, 112

gzip, 237

gorsel araytiz, 195

gozetimsiz 6grenme, 4

gunlik saklama ve dondiirme, 232

harici hizmetler veya APTler, 118
hata ayiklama, 210
ve sorun giderme, 231
ve test, 123
hatalar
kurtarma, 242
oranlari, 103
yOnetim, 99, 102, 134
hazirlik ortamlari, 244
hesap, 84
hiper parametre, 43
Hohpe, Gregor, 97
Honeybadger, 87
HTTP, 141

ince ayar, 74
input
validation, 237

intelligent workflow orchestration, 237

istemler

mithendislik, 37

Istem Damitma, 234
istisna isleme, 211
istisna y6netimi, 213
iterative refinement, 135
iyimser kilitleme, 102
izleme

metrikleri, 231

ve ginlik kayds, 103

ve giinliik tutma, 230

ve uyari verme, 212
icerik

filtreleme, 24

Icerik Kategorizasyonu, 104
icerik tabanli filtreleme, 85
is kurallari, 206
igbirlikgi filtreleme, 85

islem siiresi, 103

JSON (JavaScript Nesne Gosterimi), 138
JSON (JavaScript Object Notation), 118,
122, 123, 126, 156

K-means, 114
kapali ve acik soru yanitlama, 48
kapsayici araytizler, 186
karar

agaclari, 207

noktalari, 229

verme kullanim durumlari, 124
karma, 143

karmagik gorevler, 137

Index

Karin Konugmacisi, 165
kavramsal ve pratik zorluklar, 186
Kendi Kendini Onaran Veri, 227
Kendini Onaran Veri, 154
kisisellestirilmis tirtin 6nerileri, 85
kisisellestirme, 176, 203, 208
Kisisellestirilmis Formlar, 187
Kisisellestirilmis Mikrokopya, 192
Klinik Karar Destegi, 96
komut satir1
Komut Satir1 Araytzi (CLI), 24
komutlar
iyilestirme, 63
Komut Sablonu, 191
mithendislik, 62
tasarim, 63
konu tanimlama, 112
konugma
dongiist, 150
kaydi, 147, 149
Kullanic Arayiizii (UT)
araytizler, 199
arayuzleri, 185
tasarim, 204
teknolojileri, 195
cercgeveler, 200
kullanici deneyimi, 182
kullanici giveni, 202
kullanici psikolojisi, 201
kullanici tarafindan olusturulan icerik, 104
kullanici testi ve geri bildirim, 184

kullanilabilirlik sorunlari, 202

294

Kurumsal Entegrasyon Kaliplari, 97
kurumsal uygulama mimarisi, 35

kotiimser kilitleme, 102

language
models, 39
Large Language Model (LLM), 135
linear algebra, 39
linear regression, 40
Llama, 12
Llama 2-70B, 46
Llama 3 70B, 10
Llama 3 8B, 10

Louvre, 39

Managed Streaming for Apache Kafka, 38
manuel miidahale, 213
Markdown, 138
masaisti bilgisayarlar, 203
Memorial Sloan Kettering Cancer Center,
38
Merkiir (gezegen), 41
Merkiir (Roma tanrisi), 41
MessagePack, 236
Meta, 22
Metin Temizleme, 104
Metropolitan Museum of Art, 39
Mikroservisler mimarisi, 83
Mistral, 23
7B, 10
7B Instruct, 15, 191
Mixtral
8x22B, 10

Index

8x7B, 52
modeller arasi iiretim, 20
modern uygulamalar, 208
modiilerlik, 82
motivasyonel stratejiler, 199
miigteri destegi, 30

musteri hizmetleri sohbet robotlari, 31

Naive Bayes, 113
New Relic, 235

Nicemleme, 26

olay giidiimlii mimari, 101
Ollama, 23

Olympia, 31, 58, 120, 134, 142, 157
Olympia’nin bilgi tabani, 84
OpenAl 3, 21, 36, 68
OpenRouter, 25, 26, 142, 234

OPT model, 22

ortak mallarin trajedisi, 179
Otomatik Devam, 150

otomatik 6lgeklendirme, 235

output verification, 238

paralel yiratme, 233
parametre
araligy, 10
etkileri, 120
Parametre Sayist, 26
performans
dengeleri, 5
optimizasyon, 183

optimizasyonu, 124, 231

sorunlari, 235
Perplexity (Saglayicr), 10
probabilistic models, 39
promptlar

mithendislik, 52, 55, 200

Prompt Damitma, 68, 72

Prompt Nesnesi, 69

Prompt Sablonu, 55

tasarim, 54

zincirleme, 55, 66
Protocol Buffers, 236
PyTorch, 22

Qwenz2 70B, 10

Rails, 182

Railway Oriented Programming (ROP), 88

Raix, 214

kiitiiphanesi, 90
risk faktorleri, 89, 90
Risk Siniflandirmasi, 95
rol yapma tarz etkilesimler, 6
RSpec, 238, 239, 242
Ruby, 86, 87, 105, 152, 242
Ruby on Rails, 1, 104, 214, 221
Rudall, Alex, 21
Rust (Programlama Dili), 109

Rust (Programming Language), 86

sanal asistanlar, 31

Scout, 235

segmentasyon ve hedefleme stratejileri, 181

Index

Semptom Degerlendirmesi ve
Siniflandirmasi, 94
sentetik veri Giretimi, 49
sesle kontrol edilen araytizler, 31
Sigorta Dogrulamasi, 94
sinir aglari, 3, 6
sistem yonergesi, 120
sohbet robotu uygulamasi, 111
sonlandirma metodu, 147
Sonu¢ Yorumlayici, 133
soru yanitlama sistemleri, 7
SQL enjeksiyonlari, 65
Stripe, 121
Structured IO, 191
sunucu gonderimli olaylar (SSE), 141
system directive, 92
s6zdizimi hatalari, 123
sozliikler, 122
Siirekli Entegrasyon ve Dagitim (CI/CD),
243
pipeline, 243
Siirekli Risk Izleme, 96
Siire¢ Yoneticisi, 97, 100
Kurumsal Entegrasyon, 214
Sicaklik, 50
sifir 6rnekli 6grenme, 54, 55
siiflandirma, 48, 112

siralayicilar, 33

T5, 22
tabletler, 203

tahminler, 5

296

talimat ince ayari, 9
tedarik zinciri
optimizasyonu, 30
Tek Ornekli Ogrenme, 56
tekrar cezalari, 47
temel kaliplar, 208
temel metriklerin takibi, 228
temel modeller, 50
tetikleme mesaji, 97
Together.ai, 24
Top-k 6rnekleme, 44
Top-p (cekirdek) drnekleme, 44
toplu isleme, 234
topluluklar, 109, 110
isci toplulugu, 110
trafik yonetimi, 30
tutarhilik
ve tekrarlanabilirlik, 124
Tibbi Ge¢mis Toplama, 94
tibbi kesifler, 94

uluslararasilagtirma, 182
Unicode ile kodlanabilen dil, 13
Universal ID, 236
uyarlanabilir is akist
Uyarlanabilir Is Akigi Kompozisyonu,
210
uyarlanabilir U, 194
uygulama tasarimi ve cergeveleri, 185
u¢ durumlar, 54

uctan uca test, 242, 243

Varlik Cezasi, 44

Index

veri
akig, 102
analizi, 32, 138
biitinliigi, 224
gizliligi, 25, 201
hazirlama, 101
isleme gorevleri, 117
isleme hatti, 224
kalicilik, 102
Veri Alimi, 102
Veri Dogrulama, 242
Veri Senkronizasyonu, 102
verim, 25
verimlilik, 208
veritabanlari, 115
destekli nesne, 98

kilitleme stratejileri, 102

Wall, Larry, 3
Wisper, 87, 99, 142, 149
Wooley, Chad, 86

XML, 125

yanlilik
yapay zekada adillik, 241
Yanit Sinirlama, 165, 191
Yapay Zeka, 189, 196
bilesik sistemler, 28
karar noktalari, 240
konusma, 29
konusma tabanli, 197

model, 147, 196

uygulamalar, 152
yapay zeka
konusma, 6

uygulamalar, 140

297

yapay zeka iscilerinin zincirlenmesi, 104

yapilandirilmis giinlik tutma, 232

yapilandirilmis veri, 125
yaratic1 yazarlik, 32

yaratici yazim, 48
yayinla-abone ol sistemleri, 101
yazilim mimarisi, 2

yedek stratejiler, 102

yeniden deneme mekanizmalari, 102

yeniden ifade etme, 49
yerel gelistirme ortamlari, 146
Yi-34B, 46
yinelemeli iyilestirme, 70
yolu daralt, 36
yolu daraltma, 35
YZ, 60, 120, 126
bilesik sistemler, 32
model, 82, 146

yoOnerge ince ayarl

yonergeli egitimli modeller, 48

yiiksek performansli tamamlama, 24

zihin teorisi, 37

Zorlanmig Arag Se¢imi, 123

Calisanlarin Coklugu, 156
Cok kipli
dil modelleri, 19

modeller, 18

Index

Coklu Ajan

Problem Coziiciiler, 29
Cikarim, 5
Uretici Kullanic1 Arayiizii (GenUT), 185, 199
Uretici On-egitimli Déniistiiriicii (GPT), 62
Uretken Kullanic1 Arayiizii (GenUI), 195,

203

Uretken UI (GenUI), 192
Uretken On-egitimli Déniistiirticii (GPT), 7
Uretkenlik, 178
Uriin Onerileri, 85

ceviri, 15, 183

298

cevrimigi perakendeciler, 191
¢ok adimli is akisi, 104
cogunluk oylamasi, 109
6l¢eklenebilirlik, 208, 232
onbellekleme, 234

ortik uzay, 37

orinti esleme, 143
ozellegtirme, 25

Ozetleme, 48

{lk Simgeye Kadar Gecen Siire (TTFT), 25
Insan Destekli Déngii (HITL), 168
Isiler Coklugu, 111

	İçindekiler
	Gregor Hohpe'den Önsöz
	Önsöz
	Kitap Hakkında
	Kod Örnekleri Hakkında
	Neleri Kapsamıyorum
	Bu Kitap Kimler İçin
	Ortak Bir Söz Dağarcığı Oluşturmak
	Katılım
	Teşekkürler
	Çizimler neyin nesi?
	Lean Publishing Hakkında
	Yazar Hakkında

	Giriş
	Yazılım Mimarisi Üzerine Düşünceler
	Büyük Dil Modeli Nedir?
	Çıkarımı Anlamak
	Performans Üzerine Düşünmek
	Farklı DDD Modelleriyle Deney Yapmak
	Bileşik Yapay Zeka Sistemleri

	Kısım 1: Temel Yaklaşımlar ve Teknikler
	Yolu Daralt
	Örtük Uzay: Kavranamayacak Kadar Geniş
	Yol Nasıl ``Daraltılır''
	Ham Modeller ve Eğitimli Modeller Karşılaştırması
	Prompt Mühendisliği
	Prompt Damıtma
	Ya ince ayar?

	Erişim Destekli Üretim (RAG)
	Erişim Destekli Üretim Nedir?
	RAG Nasıl Çalışır?
	Uygulamalarınızda RAG'ı Neden Kullanmalısınız?
	Uygulamanızda RAG'ı Uygulama
	Önerme Bölümleme
	RAG'ın Gerçek Dünya Örnekleri
	Akıllı Sorgu Optimizasyonu (Intelligent Query Optimization, IQO)
	Yeniden Sıralama
	RAG Değerlendirmesi (RAGAs)
	Zorluklar ve Gelecek Görünümü

	İşçilerin Çokluğu
	Bağımsız Yeniden Kullanılabilir Bileşenler Olarak YZ İşçileri
	Hesap Yönetimi
	E-ticaret Uygulamaları
	Sağlık Hizmeti Uygulamaları
	Süreç Yöneticisi Olarak AI İşçisi
	Yapay Zeka Çalışanlarını Uygulama Mimarinize Entegre Etme
	Yapay Zeka İşçilerinin Birleştirilebilirliği ve Orkestrayonu
	Geleneksel DDİ'yi BDM'lerle Birleştirme

	Araç Kullanımı
	Araç Kullanımı Nedir?
	Araç Kullanımının Potansiyeli
	Araç Kullanım İş Akışı
	Araç Kullanımı İçin En İyi Uygulamalar
	Araçları Birleştirme ve Zincirleme
	Gelecekteki Yönelimler

	Akış İşleme
	ReplyStream'in Uygulanması
	``Konuşma Döngüsü''
	Otomatik Devam
	Sonuç

	Kendini Onaran Veri
	Pratik Vaka Çalışması: Bozuk JSON'ı Düzeltme
	Değerlendirmeler ve Karşı Göstergeler

	Bağlamsal İçerik Üretimi
	Kişiselleştirme
	Üretkenlik
	Hızlı İterasyon ve Deney
	Yapay Zeka Destekli Yerelleştirme
	Kullanıcı Testi ve Geri Bildirimin Önemi

	Üretici Kullanıcı Arayüzü
	Kullanıcı Arayüzleri İçin Metin Üretimi
	Üretken Kullanıcı Arayüzünün Tanımlanması
	Örnek
	Sonuç Odaklı Tasarıma Geçiş
	Zorluklar ve Dikkat Edilmesi Gerekenler
	Gelecek Görünümü ve Fırsatlar

	Akıllı İş Akışı Orkestrayonu
	İş İhtiyacı
	Temel Faydalar
	Temel Kalıplar
	İstisna İşleme ve Kurtarma
	Akıllı İş Akışı Orkestrasyonunun Pratikte Uygulanması
	İzleme ve Günlük Tutma
	Ölçeklenebilirlik ve Performans Hususları
	İş Akışlarının Test Edilmesi ve Doğrulanması

	Kısım 2: Desenler
	Bildirim Mühendisliği
	Düşünce Zinciri
	Mod Değişimi
	Rol Atama
	Prompt Object
	İstem Şablonu
	Yapılandırılmış Girdi/Çıktı
	Prompt Zincirleme
	Prompt Yeniden Yazıcı
	Response Fencing
	Sorgu Çözümleyici
	Sorgu Yeniden Yazıcı
	Ventriloquist

	Ayrık Bileşenler
	Yüklem
	API Facade
	Sonuç Yorumlayıcı
	Sanal Makine
	Spesifikasyon ve Test

	İnsan Kontrolünde (HITL)
	Üst Düzey Kalıplar
	Yükseltme
	Geri Bildirim Döngüsü
	Pasif Bilgi Yayılımı
	İşbirlikçi Karar Verme (CDM)
	Sürekli Öğrenme
	Etik Hususlar
	Teknolojik İlerlemeler ve Gelecek Görünümü

	Akıllı Hata Yönetimi
	Geleneksel Hata Yönetimi Yaklaşımları
	Bağlamsal Hata Teşhisi
	Akıllı Hata Raporlama
	Öngörücü Hata Önleme
	Akıllı Hata Kurtarma
	Kişiselleştirilmiş Hata İletişimi
	Uyarlanabilir Hata İşleme İş Akışı

	Kalite Kontrol
	Eval
	Koruma Mekanizması
	Koruma Mekanizmaları ve Değerlendirmeler: Madalyonun İki Yüzü

	Sözlük
	Sözlük
	Index

