Patterns of
Application
Development
Using Al

Obie Fernandez
Foreword by Gregor Hohpe

\ . i . _
Izdanje na Srpskom



Obrasci razvoja aplikacija koris¢enjem Al

(Izdanje na Srpskom)

Obie Fernandez

Ova knjiga je na prodaju na

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Ova verzija je objavljena 2025-01-23

A

Leanpub

Ovo je knjiga Leanpub-a. Leanpub osnazuje autore i izdavace kroz proces Lean
objavljivanja. Lean objavljivanje je postupak objavljivanja elektronske knjige koja se
jos uvek razvija, koriste¢i efikasne alate i brojne iteracije kako bi se prikupile povratne
informacije ¢italaca, menjajuci pravac sve dok se ne stvori prava knjiga i sti¢e zamah

jednom kada se to postigne.

© 2025 Obie Fernandez


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweetujte ovu knjigu!

Molimo pomozi Obie Fernandez tako §to ¢e§ prosiriti re¢ o ovoj knjizi na Twitter!
PredloZeni hesteg za ovu knjigu je #poaduai.

Saznajte $ta drugi ljudi kazu o knjizi klikom na ovaj link da trazite ovaj hesteg na

Twitter-u:

#poaduai


http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Mojoj neustrasivoj kraljici, mojoj muzi, mojoj svetlosti i ljubavi, Victoriji



Also By Obie Fernandez

Patterns of Application Development Using Al
The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise


https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Canpxaj

Predgovor GregoraHohpea . . . . . .. ... ... ... .. .. ... .. ..... i
Predgovor . . . .. . . . . . . ii
OKNJZE « o o o o e e e e e e e e e e e e iii
Oprimerimakoda . . . . .. .. .. .. .. .. iii
Stane obradujem . . ... ... ... ... ... iii
Kome je namenjena ova knjiga . . . . ... ... .. ... oL L iii
Izgradnja zajednickog reénika . . . . ... ... L Lo oL L iii
Ukljucivanje . . . .. .. ... .. iii
Zahvalnice . . . . . . . ... iii
Staje sailustracijama? . . . ... .. ... ... ... iv
OLeanPublishing-u . . . ... ... ... .. .. .. .. . .. . iv
OAuUtoru . . . . . . v
Uvod . . . . 1
Razmisljanja o softverskoj arhitekturi . . . . ... ... ... ... .. ... .. 2
Sta je Veliki jezickimodel? . . . ... ... ... ... ... ... ... ... 3
Razumevanje zaklju€ivanja . . . . ... ... ... ... 5
Razmisljanje o performansama . . . . . . ... ... ... ... .. ... 25
Eksperimentisanje sa razli¢itim LLM modelima . . . . . ... ... ... .... 27

Slozeni Alsisterni . . . . . . . . . . . e 27



CAIIPKAT

Deo 1: Osnovni pristupi i tehnike ... ... ... . . 35
SuzitiPut . . . . . ... 36
Latentni prostor: Nezamislivo ogroman . . . . .. ... .. ... ........ 38
Kako se Put “Suzava” . .. . ... ... ... 42
Osnovni modeli naspram modela obuc¢enih na instrukcijama . . . ... .. .. 45
InZenjerstvoupita . . . .. . ... Lo Lo 52
Destilacija promptova . . . . . . ... 67
Sta je sa finim podesavanjem? . . . . .. .. ... ... ... ... ... ..., 74
Generisanje potpomognuto pretrazivanjem (RAG) . . ... ... ... ... .. 75
Sta je Generisanje potpomognuto pretrazivanjem? . . . . . ... ........ 75
Kako RAG funkcioni§e? . . . . . .. .. ... ... ... 75
Zasto koristiti RAG u vasim aplikacijama? . . ... ... ... ... .. .. .. 75
Implementacija RAG-a u Vasoj Aplikaciji . . . .. ... ... .. ........ 75
Segmentacija propozicija . . . .. ... Lo Lo 76
Primeri RAG-a iz stvarnogsveta . . . . . ... ... ... .. ... ... ... 76
Inteligentna Optimizacija Upita IQO) . . . . . ... ... ... ... ...... 77
Ponovno Rangiranje . . . . . . ... ... L L 77
RAG Procena (RAGAS) . . . . . . . . e 77
Izazoviibuduéiizgledi . ... ... ... .. .. ... . .. . 79
Mnostvoradnika . . . ... ... Lo 81
Al radnici kao nezavisne komponente za viSekratnu upotrebu . . . . . . . .. 82
Upravljanje nalozima . . . . . ... ... ... ... ... .. .. ... 84
Primene u E-trgovini . . . . ... .. ... .. Lo 85
Primeneuzdravstvu . . . . . . ... L 93
Al radnik kao menadzer procesa . . . . . . .. ... . L L 96
Integracija Al Radnika U Arhitekturu Vase Aplikacije . . . . . ... ... ... 100

Kompozabilnost i orkestracija Al radnika . . . . . ... ... .. ... ..... 103



CAIIPKAT

Kombinovanje tradicionalne OPJ sa VJM-ovima . . ... ... ......... 112
Upotrebaalata. . . . . ... ... ... .. .. .. 115
Stajeupotrebaalata? . . .. ... ... ... ... ... 115
Potencijal upotrebe alata . . . ... ... ... . L oL 117
Tokradasaalatima . ... .. ... .. ... ... .. .. .. .. . .. ... 118
Najbolje prakse za upotrebualata . . . ... ... ... ... ... ....... 131
Komponovanje i ulan¢avanjealata . . . . .. ... ... ... ... ..., ... 135
Bududipravei. . . . . . oo 137
Obrada tokapodataka . . . ... ... .. ... ... ... ... .. .. ... 139
Implementacija ReplyStream-a . . . . ... ... ... ... ... .. ... .. 140
“Konverzacijska petlja” . . . . . ... ... ... 146
Automatski Nastavak . . .. ... .. . Lo o 148
ZakljuCak . . . . .. 150
Samozalecuju¢ipodaci . . . . .. ... L 152
Prakti¢na studija slu¢aja: Popravljanje neispravnog JSON-a . . . . . . ... .. 154
Razmatranja i kontraindikacije . . . . . .. ... ... ... L. 159
Kontekstualno generisanje sadrzaja . . . . . ... .. ............... 173
Personalizacija . . . . . . . . .. .. 174
Produktivnost . . ... ... .. .. 176
Brza iteracija i eksperimentisanje . . . . . ... ... L. 178
Al podrzana lokalizacija . . . . . . ... .. ... . L 180
Vaznost korisni¢kog testiranja i povratnih informacija . . . . .. ... ... .. 182
Generativni UL . . . . . ... ... ... . . 184
Generisanje teksta za korisnicke interfejse . . . . ... .. ... ... L. 185
Definisanje generativnog Ul-ja . . . . . ... ... ... ... ... ....... 194

Primer . . . . . e 196



CAIIPKAT

Prelazak na dizajn orijentisan ka ishodima . . ... ... ... ... ...... 198
Izazoviirazmatranja . . . . . . .. ... 200
Buduéiizglediimoguénosti. . . . . .. ... .. L L 201
Inteligentna orkestracija radnih tokova . . . . .. ... ... ... .. .. ... 205
Poslovnapotreba . . . . . . . . . ... L 206
Kljuéne prednosti . . . . ... ... L 207
Kljuéniobrasci . . . . . . . . . . . 207
Rukovanje Izuzecima i Oporavak . . . . .. .. ... ... ... .. .. ..... 210
Implementacija orkestracije inteligentnog radnog toka u praksi . . . . . .. .. 213
Pracenjeibelezenje . .. ... ... ... 227
Razmatranja skalabilnosti i performansi . . . . ... ...... ... ...... 231
Testiranje i validacija radnih tokova . . . . .. ... ... ... ... ..... 236
Deo 2:Obrasci ............................... 245
InZenjerstvo promptova . . . . . ... ... Lo L Lo 246
Lanacrazmisljanja . . . . . . .. .. L L 247
Promenarezima . ... ... ... .. ... ... 248
Dodelauloge . . . . . . ... .. .. 249
Prompt Object . . . . . . . . . . . 250
Sablon upita . . . .. ... 251
Strukturirani UI/IZ . . . . . ..o oo o 252
Ulan€avanje promptova . . . . . . . . .. o 253
Prepisiva¢ Promptova . . . . ... ... L 254
Ogradivanje odgovora . . . . . . . . ... . e 255
Analizatorupita . . . . .. ... 256
Prepisivac upita . . . . . . . ... L 257

Ventrilokvist . . . . . . . . 258



CAIIPKAT

Diskretne komponente . . . . . ... ... L L L 259
Predikat . . . . . . . . . 260
APIFasada . . . ... ... . 261
Interpreter rezultata . . . . . . .. ... L Lo Lo 263
Virtuelnamasina . . . . . ... ... 264
Specifikacijai Testiranje . . . . . . . ... ... .. .. 264

Covek upetlji (HITL) . .. ... ... .. ... ... .. 266
Obrasci visokognivoa . . . . . . .. ... L 266
Eskalacija . . . . . . . . . 267
Povratna sprega . . . . .. . .. ... 268
Pasivno zraenje informacija . . . . .. .. ... ... ... .. 269
Kolaborativno donosenje odluka (CDM) . . . . .. ... .. ... ........ 271
Kontinuirano u€enje . . . . . . . . . .. ... 272
Etickarazmatranja . . . . . . . .. ... 272
Tehnoloski napredak i buduéiizgledi . ... ... ... ... ... ....... 272

Inteligentno rukovanje greskama . . . . ... ... ... L. 274
Tradicionalni pristupi rukovanju greskama . . . . ... ... ... ... .. .. 274
Kontekstualna dijagnostika gresaka . . .. ... .. .. ... ... .. ... .. 275
Inteligentno IzveStavanje o Greskama . . . . . .. ... ... ... .. ... 276
Prediktivno spre¢avanje greSaka . . . . ... ... ... ... 277
Pametni Oporavak od Gresaka . . . .. ..... ... .. ... .. .. ..... 277
Personalizovana komunikacija o greskama . . . . ... ... ... .. ... .. 278
Adaptivni tok rada za rukovanje greskama . . .. ... ... Lo 279

Kontrola kvaliteta . . . ... .. ... ... .. .. ... .. .. .. . .. ... 280
Eval . . . . e 281
Guardrail . . . . . . .. 283



Re¢nik pojmova.......... .. ... ... ... ...

Re¢nik pojmova . . . . . . ..



Predgovor Gregora Hohpea

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Predgovor

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Predgovor iii
O knjizi

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

O primerima koda

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Sta ne obradujem

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kome je namenjena ova knjiga

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Izgradnja zajednickog rec¢nika

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.
Ukljucivanje

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Predgovor iv

Zahvalnice

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Sta je sa ilustracijama?

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

O Lean Publishing-u

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Predgovor A

O Autoru

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Ako jedva cekate da pocnete da integrisete Al velike jezicke modele (VJM) u vase

programerske projekte, slobodno predite odmah na obrasce i primere koda predstavljene
u kasnijim poglavljima. Medutim, da biste u potpunosti cenili snagu i potencijal ovih
obrazaca, vredi zastati na trenutak da razumete $iri kontekst i kohezivni pristup koji oni

predstavljaju.

Obrasci nisu samo kolekcija izolovanih tehnika, ve¢ jedinstveni okvir za integraciju
Al-ja u va$e aplikacije. Ja koristim Ruby on Rails, ali ovi obrasci bi trebalo da
funkcionisu u prakti¢no bilo kom drugom programskom okruzenju. Oni se bave Sirokim
spektrom pitanja, od upravljanja podacima i optimizacije performansi do korisnickog
iskustva i bezbednosti, pruzajuéi sveobuhvatni skup alata za unapredenje tradicionalnih

programerskih praksi moguénostima Al-ja.

Svaka kategorija obrazaca se bavi specifi¢nim izazovom ili prilikom koja se javlja kada

se Al komponente ugraduju u vasu aplikaciju. Razumevanjem odnosa i sinergije izmedu



Uvod 2

ovih obrazaca, mozete donositi informisane odluke o tome gde i kako najefikasnije

primeniti Al

Obrasci nikada nisu preskriptivna resenja i ne treba ih tako tretirati. Oni su zamisljeni
kao prilagodljivi gradivni blokovi koje treba prilagoditi jedinstvenim zahtevima i
ogranifenjima vase sopstvene jedinstvene aplikacije. Uspesna primena ovih obrazaca
(kao i bilo kojih drugih u oblasti softvera) oslanja se na duboko razumevanje
problemskog domena, potreba korisnika i celokupne tehnicke arhitekture vaseg

projekta.

Razmisljanja o softverskoj arhitekturi

Poceo sam da programiram 1980-ih i bio sam uklju¢en u hakersku scenu, i nikada nisam
izgubio svoj hakerski mentalitet, ¢ak i nakon $to sam postao profesionalni programer. Od
pocetka sam uvek imao zdravu dozu skepticizma prema tome kakvu vrednost softverski

arhitekti u svojim kué¢ama od slonovace zapravo donose.

Jedan od razloga zbog kojih sam li¢no toliko uzbuden zbog promena koje donosi
ovaj moc¢ni novi talas Al tehnologije je njegov uticaj na ono $to smatramo odlukama
softverske arhitekture. On dovodi u pitanje tradicionalne predstave o tome S$ta cini
“ispravan” na¢in dizajniranja i implementacije nasih softverskih projekata. Takode
dovodi u pitanje da li se arhitektura i dalje moZe posmatrati prvenstveno kao delovi
sistema koje je tesko promeniti, s obzirom na to da Al unapredenje ¢ini lak§im nego ikad

da se promeni bilo koji deo vaseg projekta, u bilo kom trenutku.

Mozda ulazimo u vrhunske godine “postmodernog” pristupa softverskom inZenjerstvu.
U ovom kontekstu, postmoderno se odnosi na fundamentalni pomak od tradicionalnih
paradigmi, gde su programeri bili odgovorni za pisanje i odrzavanje svake linije
koda. Umesto toga, prihvata se ideja delegiranja zadataka, kao $to su manipulacija
podacima, sloZeni algoritmi, pa ¢ak i ¢itavi delovi aplikacione logike, bibliotekama trec¢ih

strana i eksternim API-jima. Ovaj postmoderni pomak predstavlja znacajno odstupanje



Uvod 3

od konvencionalne mudrosti izgradnje aplikacija od nule i izaziva programere da

preispitaju svoju ulogu u procesu razvoja.

Uvek sam verovao da dobri programeri piSu samo kod koji je apsolutno neophodno
napisati, na osnovu ufenja Larry Wall-a i drugih hakerskih luminara poput njega.
Minimiziranjem koli¢ine napisanog koda, mozZemo se kretati brze, smanjiti povrsinu
za bagove, pojednostaviti odrzavanje i poboljsati ukupnu pouzdanost nasih aplikacija.
Manje koda nam omogucéava da se fokusiramo na osnovnu poslovnu logiku i korisnicko

iskustvo, dok delegiramo ostali posao drugim servisima.

Sada kada Al sistemi mogu da se nose sa zadacima koji su ranije bili ekskluzivni domen
koda koji su pisali ljudi, trebalo bi da mozemo biti jos produktivniji i agilniji, sa ve¢im

fokusom nego ikad na stvaranje poslovne vrednosti i korisnickog iskustva.

Naravno, postoje kompromisi u delegiranju ogromnih delova vaseg projekta Al
sistemima, kao §to su potencijalni gubitak kontrole i potreba za robusnim mehanizmima
pracenja i povratnih informacija. Zato je potreban novi set vestina i znanja, ukljucujuci

bar neko osnovno razumevanje nacéina na koji Al funkcionise.

Sta je Veliki jezi¢ki model?

Veliki jezicki modeli (VJM) su vrsta modela vestacke inteligencije koji su privukli
znacajnu paznju poslednjih godina, jos od lansiranja GPT-3 od strane OpenAlI 2020.
godine. VJM-ovi su dizajnirani da obraduju, razumeju i generi$u ljudski jezik sa
izuzetnom preciznos$cu i te¢no$c¢u. U ovom odeljku, ukratko ¢emo pogledati kako VJM-

-ovi funkcionisu i zasto su pogodni za izgradnju inteligentnih sistemskih komponenti.

U svojoj sustini, VJM-ovi su zasnovani na algoritmima dubokog uéenja, konkretno
neuralnim mrezama. Ove mreZe se sastoje od medusobno povezanih ¢vorova, ili
neurona, koji obraduju i prenose informacije. Arhitektura izbora za VJM-ove je Cesto
Transformerski model, koji se pokazao kao veoma efikasan u rukovanju sekvencijalnim

podacima poput teksta.



Uvod 4

Transformer modeli se zasnivaju na mehanizmu paZnje i prvenstveno se koriste
za zadatke koji ukljucuju sekvencijalne podatke, poput obrade prirodnog jezika.
Transformeri obraduju ulazne podatke odjednom umesto sekvencijalno, §to im
omogucava da efikasnije uhvate zavisnosti dugog dometa. Oni imaju slojeve
mehanizama paznje koji pomazu modelu da se fokusira na razli¢ite delove ulaznih

podataka kako bi razumeo kontekst i odnose.

Proces obuke velikih jezi¢kih modela ukljucuje izlaganje modela ogromnim koli¢inama
tekstualnih podataka, kao $to su knjige, ¢lanci, veb stranice i repozitorijumi koda. Tokom
obuke, model uéi da prepoznaje obrasce, odnose i strukture unutar teksta. On hvata
statisticke osobine jezika, kao Sto su gramaticka pravila, asocijacije reci i kontekstualna

znacenja.

Jedna od klju¢nih tehnika koja se koristi u obuci velikih jezickih modela je nenadgledano
ucenje. To znac¢i da model uéi iz podataka bez eksplicitnog oznacavanja ili vodenja.
Sam otkriva obrasce i reprezentacije analizirajuc¢i zajednicko pojavljivanje reéi i fraza
u podacima za obuku. Ovo omogucava velikim jezi¢kim modelima da razviju duboko

razumevanje jezika i njegovih sloZenosti.

Jo$ jedan vazan aspekt velikih jezickih modela je njihova sposobnost da upravljaju
kontekstom. Prilikom obrade teksta, veliki jezicki modeli uzimaju u obzir ne samo
pojedinacne reéi ve¢ i okolni kontekst. Oni uzimaju u obzir prethodne reci, recenice, pa
¢ak i pasuse kako bi razumeli znacenje i nameru teksta. Ovo kontekstualno razumevanje
omogucava velikim jezickim modelima da generisu koherentne i relevantne odgovore.
Jedan od glavnih nacina na koji procenjujemo sposobnosti odredenog modela velikog
jezi¢kog modela je razmatranje veli¢ine konteksta koji mogu uzeti u obzir pri generisanju

odgovora.

Nakon obuke, veliki jezi¢ki modeli se mogu koristiti za $irok spektar jezickih zadataka.
Mogu generisati tekst nalik ljudskom, odgovarati na pitanja, sumirati dokumente,
prevoditi jezike, pa ¢ak i pisati kod. Svestranost velikih jezickih modela ¢ini ih

vrednim za izgradnju inteligentnih sistemskih komponenti koje mogu komunicirati sa



Uvod 5

korisnicima, obradivati i analizirati tekstualne podatke i generisati smislene izlaze.

Uklju¢ivanjem velikih jezickih modela u arhitekturu aplikacije, mozete kreirati Al
komponente koje razumeju i obraduju korisnicki unos, generiSu dinamicki sadrzaj i
pruzaju inteligentne preporuke ili akcije. Ali rad sa velikim jezickim modelima zahteva
pazljivo razmatranje potrebnih resursa i kompromisa performansi. Veliki jezicki modeli
su racunski intenzivni i mogu zahtevati znacajnu procesorsku snagu i memoriju (drugim
re¢ima, novac) za rad. Veéina nas ¢e morati proceniti troskovne implikacije integracije

velikih jezickih modela u nase aplikacije i postupiti u skladu s tim.

Razumevanje zakljucivanja

Zakljucivanje se odnosi na proces kojim model generise predvidanja ili izlaze na osnovu
novih, nevidenih podataka. To je faza u kojoj se obuceni model koristi za donoSenje

odluka ili generisanje teksta, slika ili drugog sadrzaja kao odgovor na korisnicke unose.

Tokom faze obuke, Al model uéi iz velikog skupa podataka prilagodavanjem svojih
parametara kako bi minimizirao gresku u svojim predvidanjima. Nakon obuke, model
moze primeniti ono $to je naucio na nove podatke. Zakljucivanje je nacin na koji model

koristi svoje naucene obrasce i znanje za generisanje izlaza.

Za velike jezitke modele, zakljufivanje ukljuCuje uzimanje upita ili ulaznog teksta
i proizvodenje koherentnog i kontekstualno relevantnog odgovora, kao tok tokena
(o kojima ¢emo uskoro govoriti). To moZe biti odgovaranje na pitanje, dovrsavanje

reCenice, generisanje price ili prevodenje teksta, medu mnogim drugim zadacima.

Za razliku od nadina na koji vi i ja razmisljamo, “razmisljanje” Al modela
’ putem zakljucivanja se deSava u jednoj operaciji bez stanja. To jest, njegovo
razmiSljanje je ograniceno na proces generisanja. Bukvalno mora razmisljati
naglas, kao da sam vas pitao pitanje i prihvatio odgovor samo u stilu “toka

svesti”.



Uvod 6

Veliki jezicki modeli dolaze u mnogim veli¢inama i ukusima

lako su praktiéno svi popularni veliki jezi¢ki modeli zasnovani na istoj osnovnoj
transformer arhitekturi i obuceni na ogromnim tekstualnim skupovima podataka, dolaze
u razlic¢itim veli¢inama i fino su podeseni za razli¢ite svrhe. Veli¢ina velikog jezickog
modela, merena brojem parametara u njegovoj neuralnoj mrezi, ima veliki uticaj na
njegove sposobnosti. Ve¢i modeli sa viSe parametara, poput GPT-4, za koji se govori
da ima 1 do 2 triliona parametara, generalno su informisaniji i sposobniji od manjih
modela. Medutim, ve¢i modeli takode zahtevaju mnogo vise ra¢unarske snage za rad,

$to se prevodi u vedi trosak kada ih koristite putem API poziva.

Da bi veliki jezi¢ki modeli bili prakti¢niji i prilagodeni specifi¢nim slu¢ajevima upotrebe,
osnovni modeli se Cesto fino podesavaju na ciljanijim skupovima podataka. Na primer,
veliki jezicki model moze biti obuéen na velikom korpusu dijaloga da bi se specijalizovao
za konverzacionu vestacku inteligenciju. Drugi su obuceni na kodu da bi im se usadilo
programersko znanje. Postoje ¢ak i modeli koji su posebno obuceni za interakcije sa

korisnicima u stilu igranja ulogal!

Modeli zasnovani na pretrazivanju naspram generativnih modela

U svetu velikih jezickih modela (LLM), postoje dva glavna pristupa generisanju
odgovora: modeli zasnovani na pretrazivanju i generativni modeli. Svaki pristup ima
svoje prednosti i mane, a razumevanje razlika izmedu njih moze vam pomo¢i da

odaberete pravi model za vas specifi¢ni slucaj upotrebe.

Modeli zasnovani na pretrazivanju

Modeli zasnovani na pretrazivanju, poznati i kao modeli za pronalazenje informacija,
generisu odgovore pretragom velike baze postojeceg teksta i odabirom najrelevantnijih
pasusa na osnovu ulaznog upita. Ovi modeli ne generisu novi tekst iz pocetka, ve¢ spajaju

delove iz baze podataka kako bi formirali koherentan odgovor.


https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Uvod 7

Jedna od glavnih prednosti modela zasnovanih na pretrazivanju je njihova sposobnost
da pruze Cinjeni¢no ta¢ne i azurne informacije. Posto se oslanjaju na bazu kuriranog
teksta, mogu da izvuku relevantne informacije iz pouzdanih izvora i predstave ih
korisniku. Ovo ih ¢ini pogodnim za aplikacije koje zahtevaju precizne, ¢injeni¢ne

odgovore, kao §to su sistemi za odgovaranje na pitanja ili baze znanja.

Medutim, modeli zasnovani na pretrazivanju imaju odredena ogranicenja. Oni su dobri
onoliko koliko je dobra baza podataka koju pretrazuju, tako da kvalitet i pokrivenost
baze podataka direktno uticu na performanse modela. Dodatno, ovi modeli mogu imati
poteskoéa sa generisanjem koherentnih i prirodno zvuceé¢ih odgovora, jer su ograniceni

na tekst dostupan u bazi podataka.

U ovoj knjizi ne obradujemo upotrebu ¢istih modela za pretrazivanje.

Generativni modeli

Generativni modeli, s druge strane, kreiraju novi tekst iz pocetka na osnovu obrazaca
i veza koje su naudili tokom treninga. Ovi modeli koriste svoje razumevanje jezika da

generisu nove odgovore koji su prilagodeni ulaznom upitu.

Glavna prednost generativnih modela je njihova sposobnost da proizvode kreativan,
koherentan i kontekstualno relevantan tekst. Mogu da vode otvorene razgovore, generisu
price, pa ¢ak i piSu kod. Ovo ih ¢ini idealnim za aplikacije koje zahtevaju otvorenije i
dinamiénije interakcije, kao $to su éetbotovi, kreiranje sadrzaja i asistenti za kreativno
pisanje.

Medutim, generativni modeli ponekad mogu proizvesti nedosledne ili ¢injeni¢no
netacne informacije, jer se oslanjaju na obrasce naucene tokom treninga umesto na

kuriranu bazu ¢injenica. Takode mogu biti skloniji pristrasnostima i halucinacijama,

generisudi tekst koji zvuéi uverljivo ali nije nuzno tacan.

Primeri generativnih LLM-ova ukljuuju OpenAl-jev GPT niz (GPT-3, GPT-4) i
Anthropic-ov Claude.



Uvod 8

Hibridni modeli

Nekoliko komercijalno dostupnih LLM-ova kombinuje i pristup pretrazivanja i
generativni pristup u hibridnom modelu. Ovi modeli koriste tehnike pretrazivanja da
pronadu relevantne informacije iz baze podataka, a zatim koriste generativne tehnike

da sintetizuju te informacije u koherentan odgovor.

Hibridni modeli teze da kombinuju ¢injeni¢nu taénost modela zasnovanih na
pretrazivanju sa sposobnostima generisanja prirodnog jezika generativnih modela.
Oni mogu pruziti pouzdanije i azurnije informacije, zadrzavajuéi pri tome sposobnost

vodenja otvorenih razgovora.

Pri izboru izmedu modela zasnovanih na pretrazivanju i generativnih modela, trebalo
bi da razmotrite specifi¢ne zahteve vase aplikacije. Ako je primarni cilj pruzanje ta¢nih,
¢injeni¢nih informacija, model zasnovan na pretrazivanju moze biti najbolji izbor.
Ako aplikacija zahteva otvorenije i kreativnije interakcije, generativni model moze biti
pogodniji. Hibridni modeli nude ravnotezu izmedu dva pristupa i mogu biti dobar izbor

za aplikacije koje zahtevaju i ¢injeni¢nu tacnost i generisanje prirodnog jezika.

Na kraju, izbor izmedu modela zasnovanih na pretrazivanju i generativnih modela
zavisi od specifi¢nog slucaja upotrebe i kompromisa izmedu tacnosti, kreativnosti i
fleksibilnosti. Razumevanjem prednosti i ogranicenja svakog pristupa mozete donositi

informisane odluke.



Uvod

Podesavanje putem instrukcija

Podesavanje putem instrukcija je podskup konverzacijskog treninga koji koristi
upite i odgovore koje su napisali ljudi kako bi se LLM-ovi bolje osposobili za
razumevanje i pracenje instrukcija. Evo nekoliko jednostavnih primera koji ilustruju
kako podesavanje putem instrukcija na upitima i odgovorima koje su napisali ljudi

¢ini LLM-ove boljim u razumevanju i pracenju instrukeija:

Primer 1: Korisnic¢ka podrska

Instrukcija: “Dajte odgovor kupcu koji traZi povracaj novca.”

Upit koji je napisao ¢ovek: “Zeleo/la bih da zatraZzim povra¢aj novca za svoju nedavnu
kupovinu. Proizvod nije ispunio moja oéekivanja.”

Odgovor koji je napisao ¢ovek: “Zao nam je §to proizvod nije ispunio vasa oéekivanja.
Da bismo obradili va$ zahtev za povracaj novca, molimo vas da dostavite broj

porudzbine i razlog za povracaj. Pregledaéemo vas zahtev i javiti vam se u roku od

2-3 radna dana”

Primer 2: Obrazovna pomo¢

Instrukcija: “Objasnite koncept fotosinteze desetogodisnjaku.”
Upit koji je napisao covek: “Mozes li da objasnis kako biljke proizvode svoju hranu?”

Odgovor koji je napisao ¢ovek: “Naravno! Biljke proizvode svoju hranu kroz proces
koji se zove fotosinteza. Koriste suncevu svetlost, vodu i ugljen-dioksid da stvaraju
hranu i kiseonik. Lis¢e biljke ima poseban deo koji se zove hlorofil koji im pomaze da

zarobe suncevu svetlost.”

Primer 3: Li¢cni Asistent



Uvod 10

Instrukcija: “Zakazi sastanak za sledeéi utorak u 15h”
Upit koji je napisao ¢ovek: “Mozes li da zakaze$ sastanak za utorak u 15h?”

Odgovor koji je napisao ovek: “Naravno, zakazao sam vam sastanak za slede¢i utorak

u 15h. Da li vam je potrebno jos§ nesto?”

Rezultat je raznovrstan ekosistem LLM-ova razli¢itih veli¢ina i sa razlifitim
specijalizacijama. Manji modeli u opsegu od 1-7 milijardi parametara pruzaju

dobre opste jezicke sposobnosti dok su efikasniji za pokretanje.

« Mistral 7B
« Llama 3 8B

« Gemma 7B

Modeli srednje veli¢ine od oko 30-70 milijardi parametara nude jace sposobnosti

rezonovanja i pracenja instrukcija.

« Llama 3 70B
*« Qwen2 70B
« Mixtral 8x22B

Kada birate LLM za integraciju u aplikaciju, morate uravnoteziti mogucnosti modela sa
prakti¢nim faktorima kao sto su cena, kasnjenje, duzina konteksta i filtriranje sadrZaja.
Manji modeli, obuceni na instrukcijama, ¢esto su najbolji izbor za jednostavnije jezicke
zadatke, dok najve¢i modeli mogu biti potrebni za sloZeno rezonovanje ili analizu. Podaci

za obuku modela su takode vazna stavka, jer odreduju datum preseka znanja modela.

P Odredeni modeli, poput nekih od Perplexity-ja, povezani su sa izvorima

informacija u realnom vremenu, tako da efektivno nemaju datum preseka.
Kada im postavite pitanja, mogu samostalno odluciti da pretrazuju internet

i preuzimaju proizvoljne veb stranice kako bi generisali odgovor.



Uvod 11

Obie

Al Who won the America vs GDL match last night?
. Liama 3 708 Instruct {nitre) &

I'm not aware of any information about a match between "America" and "GDL" last night. Could
you please provide more context or clarify which teams or leagues you are referring to? Illdo ©
my best to help you find the answer.

~281.1 tokens/s

@ o2 Sonar 708 Oniine 2
“

Club América won the match against Guadalajara last night, with a score of 1-0. £

~31.0 tokens/s

Slika 1. Llama3 sa i bez pristupa internetu

Na kraju, ne postoji univerzalni LLM. Razumevanje varijacija u veli¢ini modela,
arhitekturi i obuci je kljuéno za odabir pravog modela za dati slucaj upotrebe.
Eksperimentisanje sa razli¢itim modelima je jedini prakti¢an nacin da se otkrije koji

pruzaju najbolje performanse za zadati zadatak.

Tokenizacija: Razbijanje teksta na delove

Pre nego $to veliki jezicki model mozZe da obradi tekst, taj tekst treba da bude razlozen
na manje jedinice koje se zovu tokeni. Tokeni mogu biti pojedinacne re¢i, delovi reéi, pa
¢ak i pojedinacni karakteri. Proces deljenja teksta na tokene poznat je kao tokenizacija,

i to je kljuéni korak u pripremi podataka za jezi¢ki model.

The process of splitting text into tokens is known as tokenization, and
it’s a crucial step in preparing data for a language model.

Slika 2. Ova recenica sadrzi 27 tokena

Razli¢iti LLM-ovi koriste razli¢ite strategije tokenizacije, $to moZze znacajno uticati na

performanse i moguénosti modela. Neki uobicajeni tokenizatori koje koriste LLM-ovi



Uvod 12

ukljucuju:

« GPT (Kodiranje parova bajtova): GPT tokenizatori koriste tehniku koja se
zove kodiranje parova bajtova (BPE) za razbijanje teksta na jedinice podreéi.
BPE iterativno spaja najce$ce parove bajtova u tekstualnom korpusu, formirajuci
recnik tokena podrec¢i. Ovo omogucava tokenizatoru da obraduje retke i nove reci
tako $to ih razlaze na ¢esce delove podreci. GPT tokenizatore koriste modeli poput

GPT-3 i GPT-4.

« Llama (SentencePiece): Llama tokenizatori koriste SentencePiece biblioteku, koja
je nenadgledani tokenizator i detokenizator teksta. SentencePiece tretira ulazni
tekst kao niz Unicode karaktera i u¢i vokabular podre¢i na osnovu korpusa za
obuku. Moze da obraduje bilo koji jezik koji se mozZe kodirati u Unicode-u, $to
ga ¢ini pogodnim za viSejezi¢ne modele. Llama tokenizatore koriste modeli poput

Meta-inog Llama i Alpaca.

+ SentencePiece (Unigram): SentencePiece tokenizatori takode mogu koristiti
drugaciji algoritam pod nazivom Unigram, koji se zasniva na tehnici regularizacije
podreéi. Unigram tokenizacija odreduje optimalni vokabular podreé¢i na osnovu
unigram jezickog modela, koji dodeljuje verovatnoce pojedinac¢nim jedinicama
podreéi. Ovaj pristup moze proizvesti semanticki smislenije podre¢i u poredenju
sa BPE. SentencePiece sa Unigram-om koriste modeli poput Google-ovog T5 i

BERT.

+ Google Gemini (Multimodalna Tokenizacija): Google Gemini koristi $emu
tokenizacije dizajniranu za rukovanje razli¢itim tipovima podataka, ukljuc¢ujuci
tekst, slike, audio, video zapise i kod. Ova multimodalna sposobnost omogucava
Gemini-ju da obraduje i integrise razli¢ite oblike informacija. Posebno je znac¢ajno
da Google Gemini 1.5 Pro ima kontekstni prozor koji moze da obradi milione

tokena, Sto je mnogo vise od prethodnih modela. Ovaj obimni kontekstni prozor



Uvod

13

omogucéava modelu da obradi veéi kontekst, potencijalno vodec¢i do preciznijih
odgovora. Medutim, vazno je napomenuti da je Gemini-jeva Sema tokenizacije
mnogo bliza jednom tokenu po karakteru nego kod drugih modela. To znaci da
stvarni troSak koriS¢enja Gemini modela moze biti znacajno veci nego Sto se
oc¢ekuje ako ste navikli na koriS¢enje modela poput GPT-a, jer se Google-ovo

odredivanje cena zasniva na karakterima umesto na tokenima.

Izbor tokenizatora utic¢e na nekoliko aspekata LLM-a, ukljucujuéi:

Veli¢ina vokabulara: Tokenizator odreduje veli¢inu vokabulara modela, $to je
skup jedinstvenih tokena koje prepoznaje. Veci, detaljniji vokabular moze pomoci
modelu da obradi Siri spektar reci i fraza i éak postane multimodalan (sposoban za
razumevanje i generisanje viSe od samog teksta), ali takode povecava memorijske
zahteve modela i racunarsku sloZenost.

Rukovanje retkim i nepoznatim recima: Tokenizatori koji koriste jedinice
podredi, poput BPE i SentencePiece, mogu rastaviti retke i nepoznate re¢i na ¢esée
delove podre¢i. Ovo omoguc¢ava modelu da napravi obrazovane pretpostavke o
znacenju reci koje ranije nije video, na osnovu podreéi koje sadrze.

Visejezi¢na podrska: Tokenizatori poput SentencePiece-a, koji mogu da rukuju
bilo kojim jezikom koji se mozZe kodirati u Unicode-u, pogodni su za viSejezi¢ne

modele koji treba da obraduju tekst na vise jezika.

Prilikom odabira LLM-a za odredenu primenu, vazno je razmotriti tokenizator koji

koristi i koliko se dobro uklapa sa specifiénim potrebama obrade jezika za dati zadatak.

Tokenizator moZze imati znacajan uticaj na sposobnost modela da rukuje terminologijom

specifinom za domen, retkim re¢ima i viejezi¢nim tekstom.



Uvod 14

Velicina Konteksta: Koliko Informacija Jezicki Model Moze

Koristiti Tokom Zakljuéivanja?

Kada se govori o jezi¢kim modelima, veli¢ina konteksta se odnosi na koli¢inu teksta koju
model moZe da razmotri prilikom obrade ili generisanja svojih odgovora. To je u sustini
mera koliko informacija model moze da “zapamti” i koristi za informisanje svojih izlaza
(izraZeno u tokenima). Veli¢ina konteksta jezickog modela moze imati znacajan uticaj

na njegove mogucnosti i vrste zadataka koje moze efikasno da obavlja.
Sta je Veli¢ina Konteksta?

U tehnickom smislu, veli¢ina konteksta je odredena brojem tokena (rec¢i ili delova reci)
koje jezicki model moze da obradi u jednom ulaznom nizu. Ovo se ¢esto naziva “opsegom
paznje” ili “kontekstnim prozorom” modela. Sto je veéa veli¢ina konteksta, vise teksta
model moZe odjednom da razmotri prilikom generisanja odgovora ili izvrSavanja

zadatka.

Razli¢iti jezicki modeli imaju razlicite veli¢ine konteksta, u rasponu od nekoliko stotina
tokena do miliona tokena. Za referencu, tipi¢an pasus teksta moze sadrzati oko 100-150

tokena, dok cela knjiga moze sadrzati desetine ili stotine hiljada tokena.

Postoje ¢ak i radovi o efikasnim metodama za skaliranje Transformer-zasnovanih
Velikih Jezickih Modela (LLM) za beskonaéno duge unose sa ograniCenom

memorijom i racunanjem.

Zasto je veli¢ina konteksta vazna?

Veli¢ina konteksta jezickog modela ima znacajan uticaj na njegovu sposobnost da
razume i generiSe koherentan, kontekstualno relevantan tekst. Evo nekoliko klju¢nih

razloga zasto je veli¢ina konteksta bitna:


https://huggingface.co/papers/2404.07143

Uvod

1.

15

Razumevanje dugackih sadrzaja: Modeli sa ve¢im kontekstom mogu bolje da
razumeju i analiziraju duze tekstove, kao $to su ¢lanci, izvestaji, ili ¢ak cele knjige.
Ovo je klju¢no za zadatke poput sumiranja dokumenata, odgovaranja na pitanja

i analize sadrzaja.

. Odrzavanje koherentnosti: Veci kontekstni prozor omogucava modelu da odrzi

koherentnost i doslednost kroz duze delove izlaznog teksta. Ovo je vazno za
zadatke poput generisanja prica, sistema za dijalog i kreiranje sadrzaja, gde je
odrzavanje doslednog narativa ili teme od sustinskog znacaja. Takode je apsolutno
kljuéno kada se VJM koriste za generisanje ili transformaciju strukturiranih

podataka.

. Hvatanje zavisnosti dugog dometa: Neki jezicki zadaci zahtevaju razumevanje

odnosa izmedu redi ili fraza koje su medusobno udaljene u tekstu. Modeli sa ve¢im
kontekstom su bolje opremljeni za hvatanje ovih zavisnosti dugog dometa, $to
moze biti vazno za zadatke poput analize sentimenta, prevodenja i razumevanja

jezika.

. Rukovanje slozenim instrukcijama: U aplikacijama gde se jezi¢ki modeli koriste

za pracenje sloZenih instrukcija u vise koraka, veéi kontekst omoguc¢ava modelu
da razmotri celokupan set instrukcija pri generisanju odgovora, umesto samo

nekoliko najskorijih reci.

Primeri jezickih modela sa razli¢itim velicinama konteksta

Evo nekoliko primera jezickih modela sa razli¢itim veli¢inama konteksta:

OpenAl GPT-3.5 Turbo: 4.095 tokena
Mistral 7B Instruct: 32.768 tokena

Anthropic Claude v1: 100.000 tokena
OpenAl GPT-4 Turbo: 128.000 tokena
Anthropic Claude v2: 200.000 tokena



Uvod 16

« Google Gemini Pro 1.5: 2,8M tokena

Kao sto mozete videti, postoji Sirok raspon veli¢ina konteksta medu ovim modelima,
od oko 4.000 tokena za OpenAI GPT-3.5 Turbo model do 200.000 tokena za Anthropic
Claude v2 model. Neki modeli, poput Google-ovog PaLM 2 i OpenAl-evog GPT-4, nude
razli¢ite varijante sa ve¢im kontekstom (npr. “32k” verzije), koje mogu da rukuju jo$
duzim ulaznim sekvencama. A trenutno (april 2024.) Google Gemini Pro se hvali sa

skoro 3 miliona tokena!

Vredno je napomenuti da veli¢ina konteksta moze varirati u zavisnosti od specifi¢ne
implementacije i verzije odredenog modela. Na primer, originalni OpenAl GPT-4 model
ima veli¢inu konteksta od 8.191 tokena, dok kasnije GPT-4 varijante kao $to su Turbo i

40 imaju mnogo veéu veli¢inu konteksta od 128.000 tokena.

Sam Altman je uporedio trenutna kontekstna ogranicenja sa kilobajtima radne
memorije sa kojima su programeri personalnih raunara morali da se bore 80-ih, i
rekao da ¢emo u bliskoj buduénosti mo¢i da smestimo “sve vase licne podatke” u

kontekst velikog jezickog modela.

Izbor odgovarajuce veli¢ine konteksta

Prilikom odabira jezickog modela za odredenu aplikaciju, vazno je razmotriti zahteve
za veli¢inom konteksta za dati zadatak. Za zadatke koji ukljucuju kratke, izolovane
delove teksta, poput analize sentimenta ili jednostavnog odgovaranja na pitanja, manja
veli¢ina konteksta moZe biti dovoljna. Medutim, za zadatke koji zahtevaju razumevanje
i generisanje duzih, sloZenijih tekstova, veca veli¢ina konteksta ¢e verovatno biti

neophodna.

Vredno je napomenuti da vece veli¢ine konteksta ¢esto dolaze sa pove¢anim ra¢unarskim

troskovima i sporijim vremenom obrade, jer model mora da razmotri vise informacija



Uvod 17

pri generisanju odgovora. Kao takvi, morate postici ravnotezu izmedu veli¢ine konteksta

i performansi pri izboru jezickog modela za vasu aplikaciju.

Zasto ne bismo jednostavno izabrali model sa najveéim kontekstom i napunili ga sa
Sto viSe informacija? Pa, pored faktora performansi, druga glavna stavka je cena. U
martu 2024. jedan jedini ciklus upita i odgovora koriste¢i Google Gemini Pro 1.5 sa
punim kontekstom ¢ée vas kostati skoro 8 dolara (USD). Ako imate slu¢aj upotrebe koji
opravdava taj troak, svaka cast! Ali za ve¢inu aplikacija, to je jednostavno preskupo

za nekoliko redova veli¢ine.

PronalaZenje Igala u Plastu Sena

Koncept pronalazenja igle u plastu sena dugo je bio metafora za izazove pretrazivanja
u velikim skupovima podataka. U domenu velikih jezickih modela, malo modifikujemo
ovu analogiju. Zamislite da ne trazimo samo jednu ¢injenicu zakopanu unutar ogromnog
teksta (poput cele antologije eseja Paula Grahama), ve¢ vise €injenica rasutih svuda.
Ovaj scenario viSe podseca na pronalazenje nekoliko igala u prostranom polju, ne samo
u jednom plastu sena. Evo §tos: ne samo da moramo locirati te igle, ve¢ moramo i da ih

upletemo u koherentnu nit.

Kada se suoce sa zadatkom pronalaZenja i rezonovanja o visestrukim éinjenicama
ugradenim u dugacke kontekste, veliki jezi¢ki modeli se suocavaju sa dvostrukim
izazovom. Prvo, postoji jednostavan problem tacnosti pronalazenja-—ona prirodno
opada kako se broj ¢injenica poveéava. Ovo je ocekivano; na kraju krajeva, praéenje

vise detalja kroz obiman tekst opterecuje ¢ak i najsofisticiranije modele.
Drugo, i mozda kriti¢nije, je izazov rezonovanja sa ovim ¢injenicama. Jedno je izdvojiti
¢injenice; sasvim drugo je sintetizovati ih u koherentnu pricu ili odgovor. Tu dolazi pravi

test. Performanse velikih jezi¢kih modela u zadacima rezonovanja imaju tendenciju da



Uvod 18

se pogorsavaju viSe nego u jednostavnim zadacima pronalaZenja. Ova degradacija nije

samo pitanje obima; radi se o sloZzenom plesu konteksta, relevantnosti i zaklju¢ivanja.

Zasto se ovo desava? Pa, razmotrite dinamiku pamcenja i paznje u ljudskoj kogniciji,
koja se u odredenoj meri ogleda i u velikim jezi¢kim modelima. Prilikom obrade velike
koli¢ine informacija, veliki jezi¢ki modeli, poput ljudi, mogu izgubiti trag ranijih detalja
dok apsorbuju nove. Ovo je posebno tacno kod modela koji nisu eksplicitno dizajnirani

da automatski prioritizuju ili se vra¢aju na ranije segmente teksta.

Stavise, sposobnost velikog jezickog modela da uplete ove pronadene ¢injenice u
koherentan odgovor sli¢na je izgradnji narativa. Ovo zahteva ne samo pronalaZenje
informacija veé¢ i duboko razumevanje i kontekstualno pozicioniranje, sto ostaje ozbiljan

izazov za trenutnu vestacku inteligenciju.

Dakle, sta ovo znaci za nas kao programere i integratore ovih tehnologija? Moramo biti
izuzetno svesni ovih ogranicenja kada dizajniramo sisteme koji se oslanjaju na velike
jezi¢ke modele za rukovanje slozenim zadacima sa dugackim tekstovima. Razumevanje
da se performanse mogu pogorsati pod odredenim uslovima pomaze nam da postavimo

realna ocekivanja i razvijemo bolje rezervne mehanizme ili dopunske strategije.

Modaliteti: Izvan Teksta

Dok je vecina jezickih modela danas fokusirana na obradu i generisanje teksta, postoji
rastuéi trend prema multimodalnim modelima koji mogu prirodno primati i proizvoditi
vise vrsta podataka, kao sto su slike, audio i video. Ovi multimodalni modeli otvaraju
nove mogucnosti za aplikacije pokretane vestackom inteligencijom koje mogu razumeti

i generisati sadrzaj kroz razli¢ite modalitete.

Sta su Modaliteti?

U kontekstu jezi¢kih modela, modaliteti se odnose na razli¢ite vrste podataka koje model

-----



Uvod 19

razli¢itim oblicima poput knjiga, ¢lanaka, veb-sajtova i objava na drustvenim mreZama.

Medutim, postoji nekoliko drugih modaliteta koji se sve vise ukljucuju u jezicke modele:

« Slike: Vizuelni podaci kao sto su fotografije, ilustracije i dijagrami.
« Audio: Zvuéni podaci kao $to su govor, muzika i zvukovi iz okruzenja.
« Video: Pokretni vizuelni podaci, cesto praceni zvukom, kao sto su video klipovi i

filmovi.

Svaki modalitet predstavlja jedinstvene izazove i mogucnosti za jezicke modele. Na
primer, slike zahtevaju da model razume vizuelne koncepte i odnose, dok audio zahteva

da model obraduje i generise govor i druge zvukove.

Multimodalni Jezicki Modeli

Multimodalni jezicki modeli su dizajnirani da rukuju sa vise modaliteta unutar jednog
modela. Ovi modeli tipi¢no imaju specijalizovane komponente ili slojeve koji mogu i da
razumeju ulazne podatke i da generisu izlazne podatke u razli¢itim modalitetima. Neki

znacajni primeri multimodalnih jezi¢kih modela ukljucuju:

« OpenAl-jev GPT-40: GPT-40 je veliki jezicki model koji prirodno razume i
obraduje govorni audio pored teksta. Ova sposobnost omoguéava GPT-40 da
obavlja zadatke kao §to su transkripcija govornog jezika, generisanje teksta iz
audio ulaza i pruzanje odgovora na osnovu govornih upita.

« OpenAl-jev GPT-4 sa vizuelnim unosom: GPT-4 je veliki jezicki model koji
moze da obraduje i tekst i slike. Kada dobije sliku kao ulaz, GPT-4 moze da
analizira sadrZaj slike i generiSe tekst koji opisuje ili odgovara na vizuelne
informacije.

+ Google-ov Gemini: Gemini je multimodalni model koji moze da rukuje tekstom,
slikama i videom. Koristi jedinstvenu arhitekturu koja omoguc¢ava medumodalno
razumevanje i generisanje, omogucavajuéi zadatke poput opisivanja slika,

sazimanja videa i odgovaranja na vizuelna pitanja.



Uvod

20

« DALL-E i Stable Diffusion: Iako nisu jezi¢ki modeli u tradicionalnom smislu, ovi

modeli demonstriraju mo¢ visemodalne vestacke inteligencije generisanjem slika
iz tekstualnih opisa. Oni pokazuju potencijal modela koji mogu da prevode izmedu

razli¢itih modaliteta.

Prednosti i primene viSemodalnih modela

ViSemodalni jezicki modeli nude nekoliko prednosti i omoguéavaju Sirok spektar

primena, ukljuéujudi:

Pobolj$ano razumevanje: Obradom informacija iz vise modaliteta, ovi modeli
mogu da steknu sveobuhvatnije razumevanje sveta, slicno nacinu na koji ljudi
uce iz razlicitih ¢ulnih inputa.

Medumodalno generisanje: Visemodalni modeli mogu da generisu sadrzaj u
jednom modalitetu na osnovu unosa iz drugog, kao Sto je kreiranje slike iz
tekstualnog opisa ili generisanje video rezimea iz pisanog ¢lanka.

Pristupacnost: ViSemodalni modeli mogu udiniti informacije pristupa¢nijim
prevodenjem izmedu modaliteta, kao $to je generisanje tekstualnih opisa slika za
korisnike sa o$tecenim vidom ili kreiranje audio verzija pisanog sadrzaja.
Kreativne primene: Visemodalni modeli se mogu koristiti za kreativne zadatke
poput generisanja umetnosti, muzike ili videa na osnovu tekstualnih promptova,

otvarajuc¢i nove mogucénosti za umetnike i kreatore sadrzaja.

Kako visemodalni jezi¢ki modeli nastavljaju da napreduju, verovatno ¢e igrati sve

vazniju ulogu u razvoju aplikacija zasnovanih na vestackoj inteligenciji koje mogu

da razumeju i generi$u sadrzaj kroz vise modaliteta. Ovo ¢e omoguéiti prirodnije i

intuitivnije interakcije izmedu ljudi i Al sistema, kao i otkljucati nove mogucnosti za

kreativno izraZavanje i Sirenje znanja.



Uvod 21

Ekosistemi provajdera

Kada je re¢ o ukljucivanju velikih jezickih modela (LLM) u aplikacije, imate rastuéi
broj opcija za izbor. Svaki veliki LLM provajder, kao §to su OpenAl, Anthropic,
Google i Cohere, nudi svoj sopstveni ekosistem modela, API-ja i alata. Izbor pravog
provajdera ukljuCuje razmatranje razli¢itih faktora, ukljuc¢ujuéi cene, performanse,

filtriranje sadrzaja, privatnost podataka i opcije prilagodavanja.

OpenAl

OpenAl je jedan od najpoznatijih provajdera LLM-ova, sa svojom GPT serijom (GPT-3,
GPT-4) koja se $iroko koristi u razli¢itim aplikacijama. OpenAl nudi API jednostavan
za kori$¢enje koji vam omogucava da lako integriSete njihove modele u aplikacije. Oni
pruzaju niz modela sa razli¢itim moguénostima i cenovnim rangovima, od po¢etnog Ada

modela do moénog Davinci modela.

OpenAl-jev ekosistem takode ukljucuje alate poput OpenAl Playground-a, koji vam
omogucava da eksperimentiSete sa promptovima i fino podesavate modele za specifi¢ne
slucajeve upotrebe. Oni nude opcije za filtriranje sadrzaja kako bi pomogli u sprecavanju

generisanja neprikladnog ili Stetnog sadrzaja.

Kada koristim OpenAl modele direktno, oslanjam se na Alex Rudall-ovu ruby-openai

biblioteku.

Anthropic

Anthropic je jo§ jedan veliki igra¢ u LLM prostoru, ¢iji Claude modeli sti¢u popularnost
zbog snaznih performansi i etickih razmatranja. Anthropic se fokusira na razvoj
bezbednih i odgovornih Al sistema, sa snaznim naglaskom na filtriranje sadrzaja i

izbegavanje Stetnih izlaza.

Anthropic-ov ekosistem uklju¢uje Claude API, koji vam omoguéava da integriSete

model u svoje aplikacije, kao i alate za inZenjerstvo promptova i fino podesavanje. Oni


https://github.com/alexrudall/ruby-openai

Uvod 22

takode nude Claude Instant model, koji uklju¢uje mogucnosti veb pretrage za azurnije i

¢injenicno taénije odgovore.

Kada koristim Anthropic-ove modele direktno, oslanjam se na Alex Rudall-ovu

anthrophic biblioteku.

Google

Google je razvio nekoliko moénih LLM-ova, uklju¢ujué¢i Gemini, BERT, T5 i PaLM.
Ovi modeli su poznati po svojim snaznim performansama u Sirokom spektru zadataka
obrade prirodnog jezika. Google-ov ekosistem ukljucuje TensorFlow i Keras biblioteke,

koje pruzaju alate i okvire za izgradnju i treniranje modela masinskog ucenja.

Google takode nudi Cloud Al Platform, koji vam omogucava da lako implementirate i
skalirate njihove modele u oblaku. Oni pruzaju niz unapred treniranih modela i API-ja

za zadatke poput analize sentimenta, prepoznavanja entiteta i prevodenja.

Meta

Meta, ranije poznat kao Facebook, duboko je ukljucen u razvoj velikih jezickih modela,
§to se isti¢e objavljivanjem modela poput LLaMA i OPT. Ovi modeli se isti¢u po svojim
snaznim performansama u raznovrsnim jezickim zadacima i uglavnom su dostupni kroz
kanale otvorenog koda, podrzavajuc¢i Meta-inu posvecenost istrazivanju i saradnji sa

zajednicom.

Meta-in ekosistem je prvenstveno izgraden oko PyTorch-a, biblioteke za masinsko
ucenje otvorenog koda koja je cenjena zbog svojih dinamickih racunarskih moguénosti

i fleksibilnosti, olak$avajuéi inovativno Al istrazivanje i razvoj.

Pored svojih tehnic¢kih ponuda, Meta stavlja snazan naglasak na eticki razvoj vestacke
inteligencije. Oni implementiraju robusno filtriranje sadrzaja i fokusiraju se na
smanjenje pristrasnosti, u skladu sa svojim §irim ciljevima sigurnosti i odgovornosti u

primeni vestacke inteligencije.


https://github.com/alexrudall/anthropic

Uvod 23

Cohere

Cohere je noviji ucesnik u prostoru velikih jezickih modela, fokusirajuéi se na to da
LLM-ovi budu pristupacniji i laksi za kori$¢enje od konkurencije. Njihov ekosistem
ukljucuje Cohere API, koji pruza pristup nizu prethodno obucenih modela za zadatke

poput generisanja teksta, klasifikacije i sumiranja.

Cohere takode nudi alate za inZenjerstvo promptova, fino podesavanje i filtriranje
sadrzaja. Oni naglasavaju privatnost i bezbednost podataka, sa funkcijama poput

Sifrovanog skladistenja podataka i kontrole pristupa.

Ollama

Ollama je samohostovana platforma koja korisnicima omogucava da upravljaju i
implementiraju razlicite velike jezicke modele (LLM) lokalno na svojim masinama,
dajuéi im potpunu kontrolu nad njihovim Al modelima bez oslanjanja na eksterne cloud
servise. Ovo podesavanje je idealno za one koji prioritizuju privatnost podataka i Zele

da svoje Al operacije vode interno.

Platforma podrzava niz modela, ukljucujuéi verzije Llama, Phi, Gemma i Mistral,
koji se razlikuju po veli¢ini i racunarskim zahtevima. Ollama olaksava preuzimanje
i pokretanje ovih modela direktno iz komandne linije koriste¢i jednostavne komande
poput ollama run <model_name>, i dizajnirana je da radi na razli¢itim operativnim

sistemima uklju¢ujuéi macOS, Linux i Windows.

Za programere koji Zele da integriSu modele otvorenog koda u svoje aplikacije bez
kori$c¢enja udaljenog API-ja, Ollama nudi CLI za upravljanje Zivotnim ciklusom modela
sli¢no alatima za upravljanje kontejnerima. Takode podrzava prilagodene konfiguracije
i promptove, omogucavajuci visok stepen prilagodavanja za specificne potrebe ili

slucajeve upotrebe.

Ollama je posebno pogodna za tehnicki obrazovane korisnike i programere zbog svog

interfejsa komandne linije i fleksibilnosti koju nudi u upravljanju i implementaciji Al



Uvod 24

modela. Ovo je ¢ini moénim alatom za preduzeca i pojedince kojima su potrebne robusne

Al moguénosti bez kompromitovanja sigurnosti i kontrole.

Multi-Model Platforme

Dodatno, postoje provajderi koji hostuju Sirok spektar modela otvorenog koda, kao sto
su Together.ai i Groq.. Ove platforme nude fleksibilnost i prilagodljivost, omogucéavajuci
vam da pokrenete i, u nekim sluéajevima, ¢ak i fino podesite modele otvorenog
koda prema vasim specificnim potrebama. Na primer, Together.ai pruza pristup nizu
LLM-ova otvorenog koda, omoguéavajuci korisnicima da eksperimentisu sa razli¢itim
modelima i konfiguracijama. Groq se fokusira na pruzanje ultra visoko-performansnih

kompletiranja koja u vreme pisanja ove knjige deluju gotovo magi¢no

Izbor LLM Provajdera

Pri izboru LLM provajdera, trebalo bi razmotriti faktore kao sto su:

« Cene: Razli¢iti provajderi nude razli¢ite modele odredivanja cena, od pla¢anja po
korisc¢enju do pretplatnickih planova. Vazno je razmotriti ocekivanu upotrebu i
budzet pri odabiru provajdera.

« Performanse: Performanse LLM-ova mogu znacajno varirati izmedu provajdera,
tako da je vazno testirati modele na specificnim slucajevima upotrebe pre
donosenja odluke.

« Filtriranje sadrzaja: U zavisnosti od aplikacije, filtriranje sadrzaja moze biti
kriticno razmatranje. Neki provajderi nude robusnije opcije filtriranja sadrzaja
od drugih.

« Privatnost podataka: Ako aplikacija rukuje osetljivim korisnickim podacima,
vazno je izabrati provajdera sa snaznim praksama privatnosti i bezbednosti
podataka.

« Prilagodavanje: Neki provajderi nude viSe fleksibilnosti u pogledu finog

podesavanja i prilagodavanja modela za specifi¢ne slu¢ajeve upotrebe.



Uvod 25

Na kraju, izbor LLM provajdera zavisi od specifi¢nih zahteva i ogranicenja aplikacije.
Pazljivim procenjivanjem opcija i razmatranjem faktora poput cena, performansi
i privatnosti podataka, moZete odabrati provajdera koji najbolje odgovara vasim

potrebama.

Takode je vredno napomenuti da se LLM pejzaz konstantno razvija, sa redovnim
pojavljivanjem novih provajdera i modela. Trebalo bi da budete u toku sa najnovijim

razvojima i otvoreni za istrazivanje novih opcija kako postaju dostupne.

OpenRouter

Kroz ovu knjigu ¢u se oslanjati iskljué¢ivo na OpenRouter kao mog izabranog API
provajdera. Razlog je jednostavan: to je prodavnica sve-na-jednom-mestu za sve
najpopularnije komercijalne modele i modele otvorenog koda. Ako jedva cekate da
zaprljate ruke sa Al programiranjem, jedno od najboljih mesta za pocetak je moja

OpenRouter Ruby Biblioteka.

Razmisljanje o performansama

Prilikom integracije jezickih modela u aplikacije, performanse su klju¢ni faktor koji
treba uzeti u obzir. Performanse jezickog modela mogu se meriti kroz njegovu latenciju
(vreme potrebno za generisanje odgovora) i propusnost (broj zahteva koje moze obraditi

u jedinici vremena).

Vreme do prvog tokena (TTFT) je jo$ jedna vazna metrika performansi, posebno
relevantna za chatbotove i aplikacije koje zahtevaju interaktivne odgovore u realnom
vremenu. TTFT meri latenciju od trenutka kada je primljen zahtev korisnika do trenutka
kada je generisana prva re¢ (ili token) odgovora. Ova metrika je klju¢na za odrzavanje
neometanog i privla¢nog korisnickog iskustva, jer odlozeni odgovori mogu dovesti do

frustracije korisnika i smanjenja angazovanja.


https://openrouter.ai
https://github.com/OlympiaAI/open_router

Uvod 26

Ove metrike performansi mogu imati znacajan uticaj na korisni¢ko iskustvo i

skalabilnost aplikacije.
Nekoliko faktora moze uticati na performanse jezickog modela, uklju¢ujuéi:

Broj parametara: Vec¢i modeli sa viSe parametara generalno zahtevaju vise racunarskih
resursa i mogu imati vetu latenciju i manju propusnost u poredenju sa manjim

modelima.

Hardver: Performanse jezickog modela mogu znacajno varirati u zavisnosti od hardvera
na kojem se izvrSava. Cloud provajderi nude GPU i TPU instance optimizovane za

masinsko ucenje, koje mogu znacajno ubrzati zaklju¢ivanje modela.

Jedna od dobrih stvari kod OpenRouter-a je $to za mnoge modele koje
nudi dobijate izbor cloud provajdera sa razli¢itim performansnim profilima

i troskovima.

Kvantizacija: Tehnike kvantizacije mogu se koristiti za smanjenje memorijskog otiska
i raCunarskih zahteva modela predstavljanjem teZina i aktivacija tipovima podataka
nize preciznosti. Ovo moze poboljsati performanse bez znac¢ajnog Zrtvovanja kvaliteta.
Kao programer aplikacija, verovatno se necete baviti treniranjem sopstvenih modela na

razli¢itim nivoima kvantizacije, ali dobro je bar biti upoznat sa terminologijom.

Grupisanje: Obrada vise zahteva istovremeno u grupama moze poboljsati propusnost

amortizacijom reZijskih troskova ucitavanja modela i prenosa podataka.

Kesiranje: Kesiranje rezultata Cesto kori$¢enih promptova ili ulaznih sekvenci moze

smanjiti broj zahteva za zaklju¢ivanjem i poboljsati ukupne performanse.

Pri odabiru jezitkog modela za produkcijsku aplikaciju, vazno je testirati njegove
performanse na reprezentativnim radnim opterecenjima i hardverskim konfiguracijama.
Ovo moze pomo¢i u identifikaciji potencijalnih uskih grla i osigurati da model moze

ispuniti zahtevane performansne ciljeve.



Uvod 27

Takode je vredno razmotriti kompromise izmedu performansi modela i drugih faktora
kao sto su troskovi, fleksibilnost i lakoca integracije. Na primer, kori$¢enje manjeg,
jeftinijeg modela sa nizom latencijom moze biti pozeljnije za aplikacije koje zahtevaju
odgovore u realnom vremenu, dok veéi, moc¢niji model moze biti pogodniji za grupnu

obradu ili sloZzene zadatke rezonovanja.

Eksperimentisanje sa razli¢itim LLM modelima

Izbor LLM-a retko je trajna odluka. Kako se novi i pobolj$ani modeli redovno objavljuju,
dobro je graditi aplikacije na modularan naé¢in koji omogucava zamenu razli¢itih
jezi¢kih modela tokom vremena. Promptovi i skupovi podataka ¢esto se mogu ponovo
koristiti kroz razli¢ite modele uz minimalne izmene. Ovo vam omogucava da iskoristite
najnovija dostignuéa u modeliranju jezika bez potrebe za potpunim redizajniranjem

aplikacija.

’ Mogucénost lake zamene izmedu Sirokog spektra izbora modela je jo$ jedan

razlog zasto volim OpenRouter.

Prilikom nadogradnje na novi jezicki model, vazno je temeljno testirati i validirati
njegove performanse i kvalitet izlaza kako bi se osiguralo da ispunjava zahteve aplikacije.
Ovo moze ukljucivati ponovno treniranje ili fino pode$avanje modela na domenski
specifiénim podacima, kao i azuriranje svih downstream komponenti koje zavise od

izlaza modela.

Dizajniranjem aplikacija sa fokusom na performanse i modularnost, mozete kreirati
skalabilne, efikasne i sisteme otporne na buduc¢nost koji se mogu prilagoditi brzo

razvijajuéem pejzazu tehnologije modeliranja jezika.



Uvod 28

SloZeni Al sistemi

Pre zatvaranja naseg uvoda, vredi spomenuti da su pre 2023. godine i eksplozije
interesovanja za generativnu Al podstaknutu ChatGPT-om, tradicionalni Al pristupi
obi¢no zavisili od integracije pojedinacnih, zatvorenih modela. Nasuprot tome,
SloZeni Al sistemi koriste kompleksne cevovode medusobno povezanih komponenti

koje rade zajedno kako bi postigle inteligentno ponasanje.

U svojoj srzi, slozeni Al sistemi se sastoje od vise modula, od kojih je svaki dizajniran
da obavlja specifi¢ne zadatke ili funkcije. Ovi moduli mogu ukljuéivati generatore,
pretrazivale, rangere, klasifikatore i razne druge specijalizovane komponente.
Razbijanjem celokupnog sistema na manje, fokusirane jedinice, programeri mogu

kreirati fleksibilnije, skalabilnije i odrzivije Al arhitekture.

Jedna od klju¢nih prednosti slozenih Al sistema je njihova sposobnost da kombinuju
snage razlic¢itih Al tehnika i modela. Na primer, sistem moze koristiti veliki jezicki
model (LLM) za razumevanje i generisanje prirodnog jezika, dok istovremeno koristi
zaseban model za preuzimanje informacija ili donosenje odluka zasnovano na pravilima.
Ovaj modularni pristup vam omogucava da odaberete najbolje alate i tehnike za svaki

specifi¢ni zadatak, umesto da se oslanjate na jedinstveno resenje za sve.

Medutim, izgradnja slozenih Al sistema takode predstavlja jedinstvene izazove.
Posebno, osiguravanje ukupne koherentnosti i doslednosti ponasanja sistema zahteva

robusno testiranje, pracenje i mehanizme upravljanja.



Uvod 29

’ Pojava mo¢nih LLM-ova poput GPT-4 nam omogucava da

eksperimentiSemo sa slozenim Al sistemima lakse nego ikada pre, jer
su ovi napredni modeli sposobni da upravljaju viSestrukim ulogama
unutar sloZenog sistema, kao $to su klasifikacija, rangiranje i generisanje,
pored svojih sposobnosti razumevanja prirodnog jezika. Ova viSestranost
omogucava programerima da brzo kreiraju prototipove i iteriraju na
arhitekturama slozenih Al sistema, otvarajuci nove mogucnosti za razvoj

inteligentnih aplikacija.

Obrasci implementacije za slozene Al sisteme

SloZeni Al sistemi mogu se implementirati koristeci razli¢ite obrasce, od kojih je svaki
dizajniran da odgovori na specifi¢ne zahteve i slucajeve upotrebe. Istrazimo Cetiri
uobicajena obrasca implementacije: Pitanja i odgovori, Viseagentni/Agentni resavaoci

problema, Konverzacijski Al i CoPiloti.

Pitanja i odgovori

Sistemi za pitanja i odgovore (Q&A) fokusiraju se na pruzanje preuzimanja informacija
koje je unapredeno sposobnostima razumevanja Al modela kako bi funkcionisali kao
viSe od obi¢nog pretrazivaca. Kombinovanjem mo¢nih jezickih modela sa spoljnim
izvorima znanja koriste¢i Generisanje potpomognuto preuzimanjem (RAG), sistemi za
pitanja i odgovore izbegavaju halucinacije i pruzaju tacne i kontekstualno relevantne

odgovore na upite korisnika.

Kljuéne komponente Q&A sistema zasnovanog na LLM-u ukljucuju:

« Razumevanje i preformulacija upita: Analiza korisnickih upita i njihovo
preformulisanje kako bi se bolje poklopili sa osnovnim izvorima znanja.
« Preuzimanje znanja: Preuzimanje relevantnih informacija iz strukturiranih ili

nestrukturiranih izvora podataka na osnovu preformulisanog upita.



Uvod 30

« Generisanje odgovora: Generisanje koherentnih i informativnih odgovora

integrisanjem preuzetog znanja sa generativnim sposobnostima jezi¢kog modela.

RAG podsistemi su posebno vazni u Q&A domenima gde je pruzanje ta¢nih i azurnih
informacija kljuéno, kao §to su korisnicka podrska, upravljanje znanjem ili obrazovne

aplikacije

Viseagentni/Agentni resavaoci problema

ViSeagentni, takode poznati kao Agentni, sistemi sastoje se od vise autonomnih agenata
koji rade zajedno na resavanju sloZenih problema. Svaki agent ima specificnu ulogu,
skup vestina i pristup relevantnim alatima ili izvorima informacija. Kroz saradnju i
razmenu informacija, ovi agenti mogu da se uhvate u kostac sa zadacima koje bi bilo

tesko ili nemoguce da jedan agent resi sam.

Kljuéni principi viSeagentnih reSavaoca problema ukljucuju:

« Specijalizacija: Svaki agent se fokusira na specifi¢ni aspekt problema, koristeé¢i
svoje jedinstvene sposobnosti i znanje.

« Saradnja: Agenti komuniciraju i koordiniraju svoje akcije kako bi postigli
zajednicki cilj, Cesto kroz razmenu poruka ili deljenu memoriju.

« Prilagodljivost: Sistem se moze prilagoditi promenjenim uslovima ili zahtevima

prilagodavanjem uloga i ponasanja pojedina¢nih agenata.

ViSeagentni sistemi su pogodni za aplikacije koje zahtevaju distribuirano re$avanje
problema, kao §to su optimizacija lanca snabdevanja, upravljanje saobradajem ili

planiranje reagovanja u vanrednim situacijama

Konverzacijski Al

Konverzacijski Al sistemi omogucavaju interakcije prirodnim jezikom izmedu

korisnika i inteligentnih agenata. Ovi sistemi kombinuju razumevanje prirodnog jezika,



Uvod 31

upravljanje dijalogom i sposobnosti generisanja jezika kako bi pruzili angazujuca i

personalizovana konverzacijska iskustva.

Glavne komponente konverzacijskog Al sistema ukljucuju:

« Prepoznavanje namere: Identifikovanje namere korisnika na osnovu njihovog
unosa, kao $to je postavljanje pitanja, upucivanje zahteva ili izrazavanje osecanja.

« Ekstrakcija entiteta: Izvlacenje relevantnih entiteta ili parametara iz korisnickog
unosa, kao $to su datumi, lokacije ili nazivi proizvoda.

« Upravljanje dijalogom: Odrzavanje stanja razgovora, odredivanje odgovarajuéeg
odgovora na osnovu namere korisnika i konteksta, i upravljanje interakcijama koje
se odvijaju u vise koraka.

« Generisanje odgovora: Generisanje odgovora nalik ljudskim koristeéi jezicke

modele, $ablone ili metode zasnovane na preuzimanju.

Konverzacijski Al sistemi se obi¢no koriste u Cetbotovima za korisni¢ku podrsku,
virtuelnim asistentima i interfejsima kojima se upravlja glasom. Kao §to je ranije
pomenuto, vecina pristupa, obrazaca i primera koda u ovoj knjizi direktno je izvucena

iz mog rada na velikom konverzacijskom Al sistemu pod nazivom Olympia

Kopiloti

Kopiloti su Al asistenti koji rade zajedno sa ljudskim korisnicima kako bi poboljsali
njihovu produktivnost i sposobnost donosenja odluka. Ovi sistemi koriste kombinaciju
obrade prirodnog jezika, masinskog ucenja i domenskog znanja kako bi pruzili

inteligentne preporuke, automatizovali zadatke i ponudili kontekstualnu podrsku.

Kljuéne karakteristike Kopilota ukljucuju:

« Personalizaciju: Prilagodavanje individualnim korisnickim preferencijama,

radnim tokovima i stilovima komunikacije.


https://olympia.chat

Uvod 32

« Proaktivnu asistenciju: Predvidanje korisnickih potreba i nudenje relevantnih
predloga ili akcija bez eksplicitnih zahteva.
« Kontinuirano ucenje: Poboljsanje performansi tokom vremena ucenjem iz

korisni¢kih povratnih informacija, interakcija i podataka.

Kopiloti se sve viSe koriste u razli¢itim domenima, kao $to su razvoj softvera (npr.
dopunjavanje koda i detekcija gresaka), kreativno pisanje (npr. predlozi sadrzaja i

uredivanje), i analiza podataka (npr. uvidi i preporuke za vizualizaciju)

Ovi obrasci implementacije pokazuju versatilnost i potencijal sloZzenih Al sistema.
Razumevanjem karakteristika i sluCajeva upotrebe svakog obrasca, moZete donositi
informisane odluke prilikom dizajniranja i implementacije inteligentnih aplikacija. Iako
ova knjiga nije specifi¢no o implementaciji slozenih Al sistema, mnogi, ako ne i svi isti
pristupi i obrasci primenjuju se na integraciju diskretnih AI komponenti unutar inace

tradicionalnog razvoja aplikacija.

Uloge u sloZzenim Al sistemima

SloZeni Al sistemi su izgradeni na temelju medusobno povezanih modula, od kojih
je svaki dizajniran da obavlja specifi¢cnu ulogu. Ovi moduli rade zajedno kako bi
stvorili inteligentna ponasanja i resili slozene probleme. Korisno je biti upoznat sa ovim
ulogama kada razmisljate o tome gde biste mogli implementirati ili zameniti delove vase

aplikacije diskretnim AI komponentama.

Generator

Generatori su odgovorni za proizvodnju novih podataka ili sadrzaja na osnovu naucenih
obrazaca ili ulaznih promptova. Al svet ima mnogo razli¢itih vrsta generatora, ali u
kontekstu jezi¢kih modela koji su prikazani u ovoj knjizi, generatori mogu kreirati tekst
nalik ljudskom, dovrsavati delimi¢ne recenice ili generisati odgovore na korisnicke upite.
Oni igraju kljuénu ulogu u zadacima kao sto su kreiranje sadrzaja, generisanje dijaloga

i augmentacija podataka.



Uvod 33

Pretrazivac

Pretrazivali se koriste za pretrazivanje i izdvajanje relevantnih informacija iz velikih
skupova podataka ili baza znanja. Oni koriste tehnike poput semanticke pretrage,
podudaranja kljucnih reci ili vektorske slicnosti kako bi pronasli najrelevantnije podatke
na osnovu datog upita ili konteksta. Pretrazivaci su neophodni za zadatke koji zahtevaju
brz pristup specificnim informacijama, kao §to su odgovaranje na pitanja, provera

¢injenica ili preporuka sadrzaja.

Rangirator

Rangiratori su odgovorni za uredivanje ili prioritizaciju skupa stavki na osnovu
odredenih kriterijuma ili ocena relevantnosti. Oni dodeljuju teZine ili ocene
svakoj stavci i zatim ih sortiraju u skladu s tim. Rangiratori se cesto koriste u
pretraziva¢ima, sistemima za preporuke ili bilo kojoj aplikaciji gde je klju¢no

predstavljanje najrelevantnijih rezultata korisnicima.

Klasifikator

Klasifikatori se koriste za kategorizaciju ili oznacavanje podataka na osnovu
predefinisanih klasa ili kategorija. Oni uée iz oznaCenih podataka za obuku i
zatim predvidaju klasu novih, nevidenih primera. Klasifikatori su fundamentalni za
zadatke poput analize sentimenta, detekcije nezeljene poste ili prepoznavanja slika, gde

je cilj dodeliti specifi¢nu kategoriju svakom ulazu.

Alati i Agenti

Pored ovih osnovnih uloga, slozeni Al sistemi Cesto ukljucuju alate i agente za

poboljsanje svoje funkcionalnosti i prilagodljivosti:

« Alati: Alati su diskretne softverske komponente ili API-ji koji izvrSavaju

specificne akcije ili proracune. Mogu ih pozivati drugi moduli, kao $to su



Uvod 34

generatori ili pretrazivadi, kako bi izvrsili podzadatke ili prikupili dodatne
informacije. Primeri alata ukljucuju internet pretrazivace, kalkulatore ili
biblioteke za vizualizaciju podataka.

« Agenti: Agenti su autonomni entiteti koji mogu percipirati svoje okruzenje,
donositi odluke i preduzimati akcije kako bi postigli specifi¢ne ciljeve. Oni se ¢esto
oslanjaju na kombinaciju razli¢itih Al tehnika, kao $to su planiranje, rezonovanje
i uCenje, kako bi efikasno radili u dinami¢nim ili neizvesnim uslovima. Agenti se
mogu koristiti za modeliranje sloZenih ponasanja ili za koordinaciju akcija vise

modula unutar slozenog Al sistema.

U ¢istom slozenom Al sistemu, interakcija izmedu ovih komponenti je orkestrirana kroz
dobro definisane interfejse i komunikacione protokole. Podaci teku izmedu modula, gde
izlaz jedne komponente sluzi kao ulaz za drugu. Ova modularna arhitektura omogucava
fleksibilnost, skalabilnost i odrzivost, jer se pojedinacne komponente mogu azurirati,

zameniti ili prosiriti bez uticaja na ceo sistem.

Koriséenjem snage ovih komponenti i njihovih interakcija, sloZzeni Al sistemi mogu
resavati sloZene probleme iz stvarnog sveta koji zahtevaju kombinaciju razlicitih Al
sposobnosti. Dok istrazujemo pristupe i obrasce za integraciju Al-ja u razvoj aplikacija,
imajte na umu da se isti principi i tehnike koris¢ene u slozenim Al sistemima mogu

primeniti za kreiranje inteligentnih, adaptivnih i korisnicki orijentisanih aplikacija.

U narednim poglavljima Dela 1, dublje ¢emo zaroniti u fundamentalne pristupe i
tehnike za integraciju Al komponenti u vas proces razvoja aplikacija. Od inZenjeringa
promptova i generisanja potpomognutog pretrazivanjem do samozale¢ujucih podataka
i inteligentne orkestracije radnih tokova, pokri¢emo Sirok spektar obrazaca i najboljih
praksi kako bismo vam pomogli da izgradite najsavremenije aplikacije pokretane

vestackom inteligencijom.



Deo 1: Osnovni pristupi i

tehnike

Ovaj deo knjige predstavlja razliite nacine integrisanja upotrebe vestacke
inteligencije u vase aplikacije. Poglavlja obuhvataju niz povezanih pristupa i tehnika,
od konceptualnijih ideja poput Suzavanja puta i Generisanja potpomognutog
preuzimanjem, pa sve do ideja za programiranje sopstvenog sloja apstrakcije preko

API-ja za zavrSavanje LLM Cetovanja.

Cilj ovog dela knjige je da vam pomogne da razumete vrste ponasanja koje mozete
implementirati pomocu vestacke inteligencije, pre nego §to se dublje upustite u

specifi¢ne implementacione obrasce koji su fokus Dela 2.

Pristupi u Delu 1 zasnovani su na idejama koje sam koristio u svom kodu, klasi¢nim
obrascima arhitekture i integracije poslovnih aplikacija, kao i metaforama koje sam
koristio pri objasnjavanju mogucénosti vestacke inteligencije drugim ljudima, ukljucujuéi

i netehnicke poslovne zainteresovane strane.



Suziti Put

ERER

nesme rn MR

|
i
1
1

“Suziti put” se odnosi na usmeravanje vestacke inteligencije na zadatak koji je pred
njom. Koristim to kao mantru kad god postanem frustriran zbog toga $to se Al ponasa
“glupo” ili na neocekivan na¢in. Mantra me podse¢a da je neuspeh verovatno moja

greska i da bi verovatno trebalo jo$ vise da suzim put.

Potreba za suzavanjem puta proizilazi iz ogromne koli¢ine znanja sadrzanog u velikim
jezi¢kim modelima, posebno u modelima svetske klase kao $to su oni iz OpenAl i

Anthropic koji imaju doslovno bilione parametara.



Suziti Put 37

Pristup tako Sirokom spektru znanja je nesumnjivo moéan i proizvodi emergentno
ponasanje kao $to su teorija uma i sposobnost rasudivanja na nacin slican ljudskom.
Medutim, ta zapanjujuca koli¢ina informacija takode predstavlja izazove kada je re¢ o
generisanju preciznih i ta¢nih odgovora na specifi¢ne upite, posebno ako ti upiti treba
da pokazu deterministi¢ko ponasanje koje se moze integrisati sa “normalnim” razvojem

softvera i algoritmima.
Nekoliko faktora dovodi do ovih izazova.

Preopterecenje informacijama: Veliki jezicki modeli su obuceni na ogromnim
koli¢inama podataka koji obuhvataju razli¢ite domene, izvore i vremenske periode. Ovo
obimno znanje im omogudéava da se bave raznovrsnim temama i generiSu odgovore
zasnovane na Sirokom razumevanju sveta. Medutim, kada se suoCi sa specifi¢nim
upitom, model moze imati potesko¢a da filtrira irelevantne, kontradiktorne ili
zastarele/prevazidene informacije, $to dovodi do odgovora koji nemaju fokus ili ta¢nost.
U zavisnosti od onoga §to pokusavate da uradite, sama koli¢ina kontradiktornih
informacija dostupnih modelu moze lako prevazi¢i njegovu sposobnost da pruzi

odgovor ili ponasanje koje trazite.

Kontekstualna dvosmislenost: S obzirom na ogromni latentni prostor znanja, veliki
jezicki modeli mogu nai¢i na dvosmislenost pri pokusaju razumevanja konteksta
vaSeg upita. Bez pravilnog suzavanja ili usmeravanja, model moze generisati odgovore
koji su tangencijalno povezani, ali nisu direktno relevantni za va$e namere. Ova
vrsta neuspeha dovodi do odgovora koji su van teme, nedosledni ili ne zadovoljavaju
vase navedene potrebe. U ovom sluéaju, suzavanje puta se odnosi na razjasnjavanje
konteksta, osiguravajuéi da kontekst koji pruzate navodi model da se fokusira samo na

najrelevantnije informacije u svom osnovnom znanju.

Napomena: Kada tek pocinjete sa “inzenjerstvom upita”, mnogo je
verovatnije da Cete traziti od modela da radi stvari bez pravilnog objasnjenja

Zeljenog ishoda; potrebna je praksa da ne budete dvosmisleni!



Suziti Put 38

Vremenske nedoslednosti: Posto su jezicki modeli obuceni na podacima koji su
nastali u razli¢itim vremenskim periodima, mogu posedovati znanje koje je zastarelo,
prevazideno ili vise nije ta¢no. Na primer, informacije o trenutnim dogadajima, nau¢nim
otkri¢ima ili tehnoloskim dostignu¢ima mozda su se razvile od trenutka prikupljanja
podataka za obuku modela. Bez suzavanja puta ka prioritizaciji novijih i pouzdanijih
izvora, model bi mogao generisati odgovore zasnovane na zastarelim ili netacnim

informacijama, $to dovodi do neta¢nosti i nedoslednosti u njegovim izlazima.

Specifi¢nosti domena: Razli¢iti domeni i polja imaju svoje specificne terminologije,
konvencije i baze znanja. Razmislite o prakti¢no bilo kojoj TLS (Troslovnoj Skracenici)
i shvaticete da vecéina njih ima viSe od jednog znacenja. Na primer, MSK moze da se
odnosi na Amazon-ov Managed Streaming for Apache Kafka, Memorial Sloan Kettering

Cancer Center, ili ljudski MuskuloSKeletni sistem.

Kada upit zahteva stru¢nost u odredenom domenu, opste znanje velikog jezickog
modela mozda neée biti dovoljno za pruzanje ta¢nih i nijansiranih odgovora. Suzavanje
puta fokusiranjem na informacije specificne za domen, bilo kroz inZenjerstvo upita ili
generisanje potpomognuto preuzimanjem, omoguéava modelu da generiSe odgovore

koji su viSe uskladeni sa zahtevima i o¢ekivanjima vaseg specificnog domena.

Latentni prostor: Nezamislivo ogroman

Kada spominjem “latentni prostor” jezickog modela, mislim na ogromni,
viSedimenzionalni pejzaZ znanja i informacija koje je model naucio tokom procesa
obuke. To je kao skriveno carstvo unutar neuronskih mreza modela, gde su smesteni

svi obrasci, asocijacije i reprezentacije jezika.

Zamislite da istraZujete ogromnu, neistrazenu teritoriju ispunjenu bezbrojnim
medusobno povezanim ¢vorovima. Svaki ¢vor predstavlja deo informacije, koncept ili
odnos koji je model nauéio. Dok se krecete kroz ovaj prostor, primeticete da su neki
¢vorovi blizi jedni drugima, $to ukazuje na jacu vezu ili sli¢nost, dok su drugi udaljeniji,

§to sugerise slabiju ili udaljeniju vezu.



Suziti Put 39

Izazov sa latentnim prostorom je taj $to je neverovatno sloZen i viSedimenzionalan.
Zamislite ga kao nas fizi¢ki univerzum, sa njegovim klasterima galaksija i ogromnim,

nezamislivim rastojanjima praznog prostora izmedu njih.

Zbog toga $to sadrzi hiljade dimenzija, latentni prostor nije direktno vidljiv niti ga ljudi
mogu interpretirati. To je apstraktna reprezentacija koju model interno koristi za obradu
i generisanje jezika. Kada modelu date ulazni prompt, on u sustini mapira taj prompt na
odredenu lokaciju unutar latentnog prostora. Model zatim koristi okolne informacije i

veze u tom prostoru da generise odgovor.

Stvar je u tome $to je model nauéio ogromnu koli¢inu informacija iz svojih podataka za
obuku, i nisu sve relevantne ili tatne za odredeni zadatak. Zato suzavanje puta postaje
toliko vazno. Pruzanjem jasnih uputstava, primera i konteksta u svojim promptovima, vi
u sustini usmeravate model da se fokusira na odredene regione unutar latentnog prostora

koji su najrelevantniji za vas Zeljeni izlaz.

Drugaciji na¢in da to zamislite je kao koris¢enje reflektora u potpuno mra¢nom muzeju.
Ako ste ikada posetili Luvr ili Metropoliten muzej umetnosti, onda je to ona vrsta
razmere o kojoj govorim. Latentni prostor je muzej, ispunjen nebrojenim objektima i
detaljima. Vas prompt je reflektor, koji osvetljava odredene oblasti i usmerava paznju
modela na najvaznije informacije. Bez tog vodenja, model moze besciljno lutati kroz

latentni prostor, skupljajuci usput irelevantne ili kontradiktorne informacije.

Dok radite sa jezickim modelima i kreirate svoje promptove, imajte na umu koncept
latentnog prostora. Vas cilj je da efikasno navigirate kroz ovaj ogromni pejzaz znanja,
usmeravajué¢i model ka najrelevantnijim i najta¢nijim informacijama za va$ zadatak.
Suzavanjem puta i pruzanjem jasnog vodstva, mozete otkljucati puni potencijal

latentnog prostora modela i generisati kvalitetne, koherentne odgovore.

Dok prethodni opisi jezickih modela i latentnog prostora kroz koji se krecu mogu
delovati pomalo magic¢no ili apstraktno, vazno je razumeti da promptovi nisu carolije ili
bajanja. Nacin na koji jezicki modeli rade zasnovan je na principima linearne algebre i

teorije verovatnoce.



Suziti Put 40

U svojoj sustini, jezi¢ki modeli su probabilisticki modeli teksta, slicno kao $to je
Gausova kriva statisticki model podataka. Oni se obucavaju kroz proces koji se zove
autoregresivno modelovanje, gde model uci da predvidi verovatnocu sledece reé¢i u nizu
na osnovu reci koje joj prethode. Tokom obuke, model po¢inje sa nasumi¢nim tezinama
i postepeno ih prilagodava kako bi dodelio vece verovatnoce tekstu koji li¢i na uzorke iz

stvarnog sveta na kojima je obudavan.

Medutim, posmatranje jezickih modela kao jednostavnih statistickih modela, poput
linearne regresije, ne pruza najbolju intuiciju za razumevanje njihovog ponasanja.
Prikladnija analogija je posmatrati ih kao probabilisticke programe, koji su modeli
koji omoguéavaju manipulaciju slucajnim promenljivima i mogu predstavljati slozene

statisticke odnose.

Probabilisticki programi se mogu predstaviti grafickim modelima, koji pruzaju vizuelni
nadin za razumevanje zavisnosti i odnosa izmedu promenljivih u modelu. Ova
perspektiva moze pruziti vredne uvide u funkcionisanje slozenih modela za generisanje

teksta poput GPT-4 i Claude.

U radu “Language Model Cascades” autora Dohana i saradnika, autori ulaze u detalje o
tome kako se probabilisti¢ki programi mogu primeniti na jezicke modele. Oni pokazuju
kako se ovaj okvir moze koristiti za razumevanje ponasanja ovih modela i usmeravanje

razvoja efikasnijih strategija promptovanja.

Jedan klju¢ni uvid iz ove probabilisticke perspektive je da jezicki model u sustini stvara
portal u alternativni univerzum gde Zeljeni dokumenti postoje. Model dodeljuje tezine
svim moguc¢im dokumentima na osnovu njihove verovatnoce, efektivno suzavajuci

prostor moguénosti da bi se fokusirao na najrelevantnije.

Ovo nas vraca na centralnu temu “suZavanja puta”. Primarni cilj promptovanja je da
se probabilisti¢ki model uslovljava na naéin koji fokusira masu njegovih predvidanja,
usmeravajuéi se na specifitne informacije ili ponasanje koje Zelimo da izazovemo.
PruZanjem pazljivo osmisljenih promptova, mozemo voditi model da efikasnije navigira

kroz latentni prostor i generise izlaze koji su relevantniji i koherentniji.



BwWw N =

0o N o O

Suziti Put 41

Medutim, vazno je imati na umu da je jezi¢ki model u krajnjoj liniji ogranicen
informacijama na kojima je obucen. Iako moZe generisati tekst koji je slican postojec¢im
dokumentima ili kombinovati ideje na nove nacine, ne moze stvoriti potpuno nove
informacije ni iz ¢ega. Na primer, ne mozemo ocekivati da model pruzi lek za rak ako

takav lek nije otkriven i dokumentovan u njegovim podacima za obuku.

Umesto toga, snaga modela lezi u njegovoj sposobnosti da pronade i sintetizuje
informacije koje su slicne onome §to mu zadajemo kao prompt. Razumevanjem
probabilisticke prirode ovih modela i na¢ina na koji se promptovi mogu koristiti za
uslovljavanje njihovih izlaza, moZemo efikasnije iskoristiti njihove moguc¢nosti za

generisanje vrednih uvida i sadrzaja.

Razmotrite promptove u nastavku. U prvom, sama re¢ “Merkur” moZe se odnositi na
planetu, hemijski element ili rimskog boga, ali najverovatnije se misli na planetu. Zaista,
GPT-4 daje dugacak odgovor koji poc¢inje sa Merkur je najmanja i Suncu najbliza planeta
Suncevog sistema.... Drugi prompt se konkretno odnosi na hemijski element. Treéi se
odnosi na li¢nost iz rimske mitologije, poznatu po brzini i ulozi boZanskog glasnika.

# Prompt 1
Tell me about: Mercury

# Prompt 2
Tell me about: Mercury element

# Prompt 3
Tell me about: Mercury messenger of the gods

Dodavanjem samo nekoliko dodatnih reci, potpuno smo promenili kako Al reaguje. Kao
Sto Cete kasnije nauciti u knjizi, napredni trikovi za inZenjerstvo upita kao $to su n-shot
upiti, strukturirani ulaz/izlaz i Lanac razmisljanja su samo pametni nacini uslovljavanja

izlaza modela.

Dakle, u sustini, umetnost inzenjerstva upita se svodi na razumevanje kako da se
kre¢emo kroz ogromni probabilisticki pejzaz znanja jezi¢kog modela kako bismo suzili

put do specifi¢nih informacija ili ponasanja koje trazimo.



Suziti Put 42

Za Citaoce sa dobrim razumevanjem napredne matematike, temeljenje vaseg
razumevanja ovih modela na principima teorije verovatnoée i linearne algebre
definitivno moze pomoci! Za ostale koji Zele da razviju efektivne strategije za dobijanje

zeljenih izlaza, drza¢emo se intuitivnijih pristupa.

Kako se Put “Suzava”

Da bismo se suodili sa ovim izazovima prevelikog znanja, koristimo tehnike koje pomazu
u usmeravanju procesa generisanja jezickog modela i fokusiranju njegove paznje na

najrelevantnije i najtacnije informacije.

Evo najznacajnijih tehnika, po preporucenom redosledu, to jest, trebalo bi prvo da

probate InZenjerstvo upita, zatim RAG, i kona¢no, ako morate, fino podesavanje.

InZenjerstvo upita Najosnovniji pristup je kreiranje upita koji ukljucuju specificna
uputstva, ogranicenja ili primere koji usmeravaju generisanje odgovora modela. Ovo
poglavlje pokriva osnove InZenjerstva upita u sledeCem odeljku, a mnoge specifi¢ne
obrasce inZenjerstva upita obradujemo u Delu 2 knjige. Ti obrasci ukljucuju Destilaciju
upita, tehniku koja se fokusira na rafiniranje i optimizaciju upita kako bi se izvukle

informacije koje Al smatra najrelevantnijim i najsazetijim.

Prosirenje konteksta Dinamicko preuzimanje relevantnih informacija iz eksternih baza
znanja ili dokumenata kako bi se modelu obezbedio fokusirani kontekst u trenutku
kada mu se postavlja upit. Popularne tehnike prosirenja konteksta uklju¢uju Generisanje
potpomognuto preuzimanjem (RAG) Takozvani “onlajn modeli” poput onih koje pruza
Perplexity mogu da prosire svoj kontekst rezultatima pretrage interneta u realnom

vremendu.


https://perplexity.ai

Suziti Put 43

Uprkos njihovoj moéi, LLM-ovi nisu obuleni na vasim jedinstvenim
’ skupovima podataka, koji mogu biti privatni ili specifi¢ni za problem koji
pokusavate da resite. Tehnike prosirenja konteksta omogucavaju vam da
LLM-ovima date pristup podacima iza API-ja, u SQL bazama podataka, ili

zarobljenim u PDF-ovima i prezentacijama.

Fino podesavanje ili Adaptacija domena Obucavanje modela na skupovima podataka
specifi¢nim za domen kako bi se specijalizovalo njegovo znanje i mogucnosti generisanja

za odredeni zadatak ili oblast.

Smanjivanje Temperature

Temperatura je hiperparametar koji se koristi u transformer-baziranim jezickim
modelima koji kontroliSe nasumi¢nost i kreativnost generisanog teksta. To je vrednost

izmedu 0 i 1, gde niZe vrednosti Cine izlaz fokusiranijim i deterministickijim, dok vise

Kada je temperatura postavljena na 1, jezicki model generise tekst na osnovu pune
distribucije verovatnoce sledeceg tokena, omogucavajuéi kreativnije i raznovrsnije
odgovore. Medutim, ovo takode moze dovesti do toga da model generise tekst koji je

manje relevantan ili koherentan.

S druge strane, kada je temperatura postavljena na 0, jezicki model uvek bira token
sa najveCom verovatnocom, efektivno “suzavaju¢i svoj put” Skoro sve moje Al
komponente koriste temperaturu postavljenu na ili blizu 0, jer to rezultira fokusiranijim
uputstva, obrati paznju na funkcije koje su mu obezbedene, ili jednostavno trebate

tacnije i relevantnije odgovore od onih koje dobijate.

Na primer, ako pravite chatbot koji treba da pruza ¢injeni¢ne informacije, mozda céete
Zeleti da postavite temperaturu na nizu vrednost kako biste osigurali da su odgovori

precizniji i na temu. Suprotno tome, ako pravite asistenta za kreativno pisanje, mozda



Suziti Put 44

Cete Zeleti da postavite temperaturu na vi$u vrednost kako biste podstakli raznovrsnije

i mastovitije izlaze.

Hiperparametri: Dugmici i Prekidaci Zakljuc¢ivanja

Kada radite sa jezickim modelima, Cesto Cete se susretati sa terminom “hiperparametri”.
U kontekstu zaklju¢ivanja (tj. kada koristite model za generisanje odgovora),
hiperparametri su poput dugmica i prekidaca koje mozete podeSavati da biste

kontrolisali ponasanje i izlaz modela.

Zamislite to kao podesavanje postavki na sloZenoj masini. Ba$ kao $to biste mogli
okrenuti dugme da kontroliSete temperaturu ili prebaciti prekida¢ da promenite rezim
rada, hiperparametri vam omogucavaju da fino podesite na¢in na koji jezicki model

obraduje i generise tekst.

Neki uobicajeni hiperparametri sa kojima Cete se susresti tokom zakljucivanja ukljucuju:

« Temperatura: Kao $to je upravo pomenuto, ovaj parametar kontrolise

nasumicnost i kreativnost generisanog teksta. Visa temperatura dovodi

« Top-p (nucleus) uzorkovanje: Ovaj parametar kontroliSe odabir najmanjeg
skupa tokena ¢ija kumulativna verovatnoca prelazi odredeni prag (p). Omogucava

raznovrsnije izlaze uz odrzavanje koherentnosti.

« Top-k uzorkovanje: Ova tehnika bira k najverovatnijih sledeé¢ih tokena i
preraspodeljuje masu verovatnote medu njima. MoZe pomoéi u sprecavanju

modela da generiSe tokene male verovatnoce ili irelevantne tokene.

« Kazneni faktori ucestalosti i prisustva: Ovi parametri kaZnjavaju model

za preesto ponavljanje istih reéi ili fraza (kazneni faktor ucestalosti) ili za



Suziti Put 45

generisanje reci koje nisu prisutne u ulaznom promptu (kazneni faktor prisustva).
Podesavanjem ovih vrednosti moZete podstaci model da proizvodi raznovrsnije i

relevantnije izlaze.

« Maksimalna duzina: Ovaj hiperparametar postavlja gornju granicu broja tokena
(reci ili podreéi) koje model moze da generiSe u jednom odgovoru. Pomaze u

kontroli opsirnosti i konciznosti generisanog teksta.

Dok eksperimentisete sa razli¢itim podesavanjima hiperparametara, primeticete da ¢ak
i male promene mogu imati znacajan uticaj na izlaz modela. To je kao fino podesavanje
recepta — prstohvat vise soli ili malo duze vreme kuvanja mogu napraviti svu razliku u

konac¢nom jelu.

Klju¢ je u razumevanju kako svaki hiperparametar uti¢e na ponaSanje modela i
pronalaZenju prave ravnoteZe za vas specificni zadatak. Ne bojte se da eksperimentisete
sa razli¢itim podesavanjima i vidite kako uti¢u na generisani tekst. Vremenom Ccete
razviti intuiciju o tome koje hiperparametre treba podesavati i kako postiéi Zeljene

rezultate.

Kombinovanjem upotrebe ovih parametara sa inZenjerstvom promptova, generisanjem
potpomognutim pretrazivanjem i finim podeSavanjem, mozete efikasno suziti put i
voditi jezicki model ka generisanju preciznijih, relevantnijih i vrednijih odgovora za

vas specifi¢ni slucaj upotrebe.

Osnovni modeli naspram modela obuc¢enih na
instrukcijama
Osnovni modeli su nerafinisane, neobuéene verzije LLM-ova. Zamislite ih kao prazno

platno, jos uvek nepod uticajem specificne obuke za razumevanje ili pracenje instrukcija.

Izgradeni su na ogromnoj koli¢ini podataka na kojima su inicijalno obuéeni, sposobni



Suziti Put 46

da generi$u Sirok spektar izlaza. Medutim, bez dodatnih slojeva finog podesavanja
zasnovanog na instrukcijama, njihovi odgovori mogu biti nepredvidljivi i zahtevaju vise
nijansiranih, pazljivo osmisljenih promptova da bi ih vodili ka Zeljenom izlazu. Rad sa
osnovnim modelima je poput izvlacenja komunikacije iz idiot-savanta koji ima ogromnu
koli¢inu znanja ali nema nikakvu intuiciju o tome $ta traZite osim ako niste izuzetno
precizni u svojim instrukcijama. Cesto se ¢ine kao papagaj, u smislu da u meri u kojoj
ih naterate da kazu nesto razumljivo, to je najéesée samo ponavljanje necega sto su culi

da ste rekli.

S druge strane, modeli obudeni na instrukcijama prosli su kroz runde obuke posebno
dizajnirane za razumevanje i pracenje instrukcija. GPT-4, Claude 3 i mnogi drugi
od najpopularnijih LLM modela su svi intenzivno obuceni na instrukcijama. Ova
obuka ukljucuje hranjenje modela primerima instrukcija zajedno sa Zeljenim ishodima,
efektivno uce¢i model kako da tumacdi i izvrsava Sirok spektar komandi. Kao rezultat,
modeli obuceni na instrukcijama mogu lakse razumeti nameru iza prompta i generisati
odgovore koji se blisko poklapaju sa o¢ekivanjima korisnika. Ovo ih ¢ini pristupac¢nijim
i laksim za rad, posebno za one koji mozda nemaju vremena ili stru¢nosti za ekstenzivno

inZenjerstvo promptova.

Osnovni modeli: Nefiltrirano platno

Osnovni modeli, kao $to su Llama 2-70B ili Yi-34B, nude nefiltriran pristup
moguénostima modela u odnosu na ono na §ta ste mozda navikli ako ste eksperimentisali
sa popularnim LLM-ovima poput GPT-4. Ovi modeli nisu unapred podeSeni da
prate specificne instrukcije, pruzajuc¢i vam prazno platno za direktnu manipulaciju
izlaza modela kroz pazljivo osmisljavanje promptova. Ovaj pristup zahteva duboko
razumevanje kako kreirati promptove koji vode Al u Zeljenom smeru bez eksplicitnog
davanja instrukcija. To je sli¢no direktnom pristupu “sirovim” slojevima osnovne Al,

bez posrednickih slojeva koji tumace ili vode odgovore modela (otuda i naziv).



Suziti Put 47

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

# Mixtral 8x22B (base) 4

| can see a huge variety of things. | can process information, understand

language, reason, learn and apply knowledge, recognize patterns, plan, act v
creatively, make predictions, judge, interact with the environment, identify ~
emotions, make decisions...

~96.3 tokens/s

Obie

Ml Do you recognize what | said?

# Mixtral 8x22B (base) 4
No, this time | don't.

By the way, as a test for our meeting, I'm going to show you some photos and |~
want you to tell me what they represent. Are you ready?

~50.1 tokens/s

Slika 3. Testiranje sirovog modela koriste¢i deo klasi¢nog ske¢a Abbott i Costello Ko je na prvoj’

Izazov sa sirovim modelima leZi u njihovoj tendenciji da upadnu u repetitivne obrasce
ili proizvode nasumicne rezultate. Medutim, uz pazljivo inZenjerstvo promptova i
podesavanje parametara kao $to su kazne za ponavljanje, sirovi modeli se mogu navesti
da generi$u jedinstveni i kreativni sadrzaj. Ovaj proces nije bez kompromisa; dok sirovi

modeli nude neprevazidenu fleksibilnost za inovacije, oni zahtevaju visi nivo stru¢nosti.



Suziti Put 48

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

. GPT-4 Turbo Preview [4

This conversation piece between Abbott and Costello is from their famous comedy sketch
called "Who's on First?" known for its rapid-fire verbal exchange and plays on words,
particularly focusing on the confusing names of the baseball players. In the sketch, Abbott
tries to explain to Costello the names of the players on a baseball team, but the names
themselves sound like questions or statements (Who, What, | Don't Know, Because, etc.),
leading to a series of comedic misunderstandings.

~42.7 tokens/s

Slika 4. Za potrebe poredenja, evo istog dvosmislenog prompta prosledenog GPT-4

Modeli obuceni na instrukcijama: Vodeno iskustvo

Modeli obuceni na instrukcijama su dizajnirani da razumeju i prate specificne
instrukcije, ¢ine¢i ih pristupacnijim i dostupnijim za $iri spektar primena. Oni razumeju
mehaniku razgovora i znaju da treba da prestanu sa generisanjem kada je kraj njihovog
reda za razgovor. Za mnoge programere, posebno one koji rade na jednostavnijim

aplikacijama, modeli obuéeni na instrukcijama nude prakti¢no i efikasno resenje.

Proces obuke na instrukcijama ukljuCuje treniranje modela na velikom korpusu
instrukcijskih promptova i odgovora koje su generisali ljudi. Jedan znacajan primer je
open source databricks-dolly-15k dataset, koji sadrzi preko 15.000 parova promptova i
odgovora koje su kreirali Databricks zaposleni i koje moZete sami pregledati. Dataset
pokriva osam razli¢itih kategorija instrukcija, uklju¢ujuéi kreativno pisanje, zatvoreno
i otvoreno odgovaranje na pitanja, sumiranje, ekstrakciju informacija, klasifikaciju, i

generisanje ideja.


https://huggingface.co/datasets/databricks/databricks-dolly-15k

Suziti Put 49

Tokom procesa generisanja podataka, saradnicima su data uputstva o tome kako da
kreiraju promptove i odgovore za svaku kategoriju. Na primer, za zadatke kreativnog
pisanja, dobili su instrukcije da obezbede specifi¢na ogranicenja, uputstva ili zahteve
koji ¢e usmeravati izlaz modela. Za zatvoreno odgovaranje na pitanja, zamoljeni su da
napisu pitanja koja zahtevaju ¢injeni¢no ta¢ne odgovore zasnovane na datom Wikipedia

odlomku.

Rezultujuci dataset sluzi kao vredan resurs za fino podesavanje velikih jezickih modela
kako bi pokazali interaktivne sposobnosti i mogucnost pracenja instrukcija sistema
poput ChatGPT-a. Treniranjem na raznovrsnom skupu instrukcija i odgovora koje su
generisali ljudi, model u¢i da razume i prati specificne direktive, ¢ineéi ga sposobnijim

za rukovanje Sirokim spektrom zadataka.

Pored direktnog finog podesavanja, instrukcijski promptovi u datasetovima poput
databricks-dolly-15k se takode mogu koristiti za generisanje sintetickih podataka.
Podnosenjem promptova koje su kreirali saradnici kao primere sa malo uzoraka
velikom otvorenom jezickom modelu, programeri mogu generisati mnogo veci korpus
instrukcija u svakoj kategoriji. Ovaj pristup, opisan u Self-Instruct radu, omoguéava

stvaranje robusnijih modela koji prate instrukcije.

Stavise, uputstva i odgovori u ovim skupovima podataka mogu se proiriti tehnikama
poput parafraziranja. Preformulisanjem svakog prompta ili kratkog odgovora i
povezivanjem rezultujuéeg teksta sa odgovaraju¢im referentnim uzorkom, programeri

mogu uvesti oblik regularizacije koji poboljsava sposobnost modela da prati uputstva.

Jednostavnost koris¢enja koju pruzaju modeli obuéeni na instrukcijama dolazi po
cenu odredene fleksibilnosti. Ovi modeli su ¢esto znacajno cenzurisani, §to znaci da
mozda nece uvek pruziti nivo kreativne slobode potreban za odredene zadatke. Na
njihove izlazne rezultate snazno uti¢u pristrasnosti i ogranicenja svojstvena podacima

kori$¢enim za njihovo fino podesavanje.

Uprkos ovim ogranifenjima, modeli obuceni na instrukcijama postali su sve popularniji

zbog svoje pristupacnosti i sposobnosti da se nose sa Sirokim spektrom zadataka



Suziti Put 50

uz minimalno inZenjerstvo promptova. Kako sve viSe visokokvalitetnih skupova
podataka sa instrukcijama postaje dostupno, mozemo ocekivati dalja poboljsanja u

performansama i svestranosti ovih modela.

Izbor pravog tipa modela za vas projekat

Odluka izmedu osnovnih (sirovih) i modela obucenih na instrukcijama u krajnjoj liniji
zavisi od specificnih zahteva vaSeg projekta. Za zadatke koji zahtevaju visok stepen
kreativnosti i originalnosti, osnovni modeli nude mocan alat za inovacije. Ovi modeli
omogucavaju programerima da istraze pun potencijal LLM-ova, pomeraju¢i granice
onoga §to se moze posti¢i kroz aplikacije vodene vestackom inteligencijom, ali zahtevaju
aktivniji pristup i spremnost na eksperimentisanje. Temperatura i druge postavke imaju

mnogo vedi efekat kod osnovnih modela nego kod njihovih instrukeijskih pandana.

P Sta god ukljuéite u svoj prompt, osnovni modeli ée pokusati da ponove.

Tako da ako je, na primer, va§ prompt transkript ¢askanja, sirovi model
¢e pokusati da nastavi ¢askanje. U zavisnosti od ograni¢enja maksimalnog
broja tokena, nee samo generisati slede¢u poruku u ¢askanju, ve¢ moze

voditi ¢itav razgovor sam sa sobom!



Suziti Put 51

Oble

Original: The movie was not very good.

Improved: The movie, with its weak storyline and uninspired acting, left me feeling
thoroughly unengaged, as it failed to evoke the excitement and emotion | typically seek in a
cinematic experience.

Original: The food at the restaurant was okay.

Improved: While the restaurant had an extensive menu and a pleasant ambiance, | found the
dishes to be merely satisfactory, lacking the flavorful and memorable culinary experience |
had hoped for, given its reputation.

Original: The weather today was kind of meh.

Improved: Today's weather could best be described as unremarkable, with a lackluster mix
of overcast skies and intermittent light rain, failing to offer the vibrant sunshine or dramatic
storms that often make a day memorable.

Original: The party was not as fun as | expected.

Improved: Despite my high expectations, the party turned out to be rather underwhelming,
as the energy in the room remained subdued, and the activities failed to spark the lively
atmosphere | had envisioned, leaving me somewhat disappointed.

Original: Her performance in the play was not that great.

Improved: Regrettably, her portrayal in the play lacked the depth, passion, and authenticity
that | had eagerly anticipated, ultimately falling short of delivering the captivating and
emotionally resonant character interpretation the role demanded.

Original: This ice cream sucks!
Improved:

Mixtral 8x7B (base) &

The ice cream, with its lackluster flavor and texture, failed to meet my expectations, leaving
me disappointed and yearning for a more satisfying and indulgent frozen treat.

£

Slika 5. Mixtral 8x7B (base) Primer prepisivanja rec¢enica sa Few-Shot zavrsetkom

Dok sam pripremao gornji primer Prepisivanja refenica od Reddit korisnika
phree_radical, uspeo sam da dobijem upotrebljive rezultate tek nakon mnogo
eksperimentisanja sa postavkama parametara, kona¢no se odlucivsi za: Temperatura

0.08, Top P: 0.2, Top K: 1, i Kazna ponavljanja: 1.26.


https://www.reddit.com/user/phree_radical/

Suziti Put 52

Pokusaj kori$cenja ovog pristupa sa osnovnim modelom u produkciji bio bi komplikovan
zbog snaznog efekta parametra max_tokens. Ako ga postavite prekratko, izlaz ¢e biti
odsecen. Ako ga postavite duze nego $to je modelima potrebno za Zeljeni izlaz, on ée

nastaviti da halucinira dodatne primere.

Sustina je da, osim ako vam zaista nije potrebna potpuna kontrola i odsustvo cenzure,
modeli obuceni na instrukcijama mogu znaéajno pojednostaviti vas proces razvoja. Da
bismo to dodatno naglasili, evo odgovora Mixtral 8x7B na isti prompt, ali ovog puta u

njegovoj verziji obucenoj na instrukcijama:

Zao mi je §to moram da vas obavestim da sladoled ne ispunjava moja
ocekivanja, jer mu nedostaje bogata, kremasta tekstura i prijatan ukus
koji obi¢no povezujem sa desertom visokog kvaliteta. Nadao sam se

zadovoljavajuéem i prijatnijem iskustvu.

Znacajno je da sam mogao da ostavim podeSavanje maksimalnog broja tokena na 500,
i model se pouzdano zaustavljao na kraju Zeljenog izlaza bez haluciniranja dodatnih

primera.

InZenjerstvo upita

Kada pocnete da primenjujete vestacku inteligenciju u svojim projektima, brzo cete
otkriti da je jedna od najvaznijih vestina koju morate savladati umetnost inZenjerstva

upita. Ali ta je tacno inZenjerstvo upita i zasto je toliko vazno?

U svojoj sustini, inZenjerstvo upita je proces dizajniranja i oblikovanja ulaznih upita koje
dajete jezickom modelu kako biste usmerili njegov izlaz. Radi se o razumevanju kako da
efikasno komunicirate sa vestackom inteligencijom, koristeé¢i kombinaciju instrukcija,

primera i konteksta da biste usmerili model ka generisanju zeljenog odgovora.

Zamislite to kao razgovor sa veoma inteligentnim, ali pomalo doslovnim prijateljem. Da

biste izvukli najvise iz interakcije, morate biti jasni, precizni i pruziti dovoljno konteksta



Suziti Put 53

kako biste bili sigurni da va$ prijatelj taéno razume $ta traZite. Tu nastupa inZenjerstvo
upita, i iako na prvi pogled deluje lako, verujte mi da je potrebno mnogo vezbe da biste

ga savladali.

Gradivni elementi efikasnih upita

Da biste poceli sa kreiranjem efikasnih upita, prvo morate razumeti kljuéne komponente

koje ¢ine dobro osmisljen unos. Evo nekih od osnovnih gradivnih elemenata:

1. Instrukcije: Jasna i koncizna uputstva koja govore modelu Sta Zelite da uradi. To
moze biti bilo §ta od “Sumiraj slede¢i ¢lanak” do “Generisi pesmu o zalasku sunca”
ili “pretvori ovaj zahtev za izmenu projekta u JSON objekat”.

2. Kontekst: Relevantne informacije koje pomazu modelu da razume pozadinu i
obim zadatka. Ovo moze ukljudivati detalje o ciljanoj publici, Zeljenom tonu i
stilu, ili bilo koje specifi¢ne zahteve ili ogranicenja za izlaz, kao sto je JSON Sema
koje se treba pridrzavati.

3. Primeri: Konkretni primeri koji pokazuju kakav izlaz trazite. Pruzanjem nekoliko
dobro odabranih primera moZete pomo¢i modelu da naudi obrasce i karakteristike
Zeljenog odgovora.

4. Formatiranje unosa: Prelomi redova i markdown formatiranje daju strukturu
nasem upitu. Odvajanje upita u pasuse nam omogucava da grupiSemo povezana
uputstva tako da ih i ljudi i vestacka inteligencija lak$e razumeju. Tacke i
numerisane liste nam omoguéavaju da definisemo liste i redosled stavki. Oznake
za podebljano i kurziv nam omoguéavaju da oznac¢imo naglasak.

5. Formatiranje izlaza: Posebna uputstva o tome kako izlaz treba da bude
strukturiran i formatiran. Ovo moze ukljucivati direktive o Zeljenoj duzini,
kori$cenju naslova ili tacaka, markdown formatiranju ili bilo kojim drugim

specificnim Sablonima ili konvencijama izlaza kojih se treba pridrzavati.



Suziti Put 54

Kombinovanjem ovih gradivnih elemenata na razlifite nacine, mozete kreirati upite
koji su prilagodeni vasim specifi¢nim potrebama i usmeravaju model ka generisanju

kvalitetnih i relevantnih odgovora.

Umetnost i nauka dizajniranja upita

Kreiranje efikasnih upita je istovremeno i umetnost i nauka. (Zato to i nazivamo
zanatom.) Zahteva duboko razumevanje mogucnosti i ogranicenja jezickih modela, kao i
kreativan pristup dizajniranju upita koji izazivaju Zeljeno ponasanje. Kreativnost koja je
ukljucena je ono sto ga ¢ini tako zabavnim, bar meni. Takode moze biti vrlo frustrirajuce,

posebno kada trazite deterministi¢ko ponasanje

Jedan od kljuénih aspekata inZenjerstva upita je razumevanje kako uravnoteziti
specificnost i fleksibilnost. S jedne strane, Zelite da pruZite dovoljno smernica da
usmerite model u pravom smeru. S druge strane, ne Zelite da budete toliko preskriptivni
da ogranicite sposobnost modela da koristi svoju kreativnost i fleksibilnost u resavanju

grani¢nih sluéajeva.

Jos jedan vazan aspekt je upotreba primera. Dobro odabrani primeri mogu biti
neverovatno moc¢ni u pomaganju modelu da razume kakav izlaz trazite. Medutim,
vazno je koristiti primere razumno i osigurati da su reprezentativni za Zeljeni odgovor.
Lo$ primer je u najboljem slu¢aju samo gubljenje tokena, a u najgorem moze biti

poguban za Zeljeni izlaz.

Tehnike i najbolje prakse inZenjerstva upita

Kako budete dublje zalazili u svet inZenjerstva upita, otkricete niz tehnika i najboljih
praksi koje vam mogu pomoci da kreirate efikasnije upite. Evo nekoliko klju¢nih oblasti

koje treba istraziti:

1. Ucenje bez primera naspram ufenja sa malo primera: Razumevanje kada

koristiti ucenje bez primera (bez davanja primera) naspram ucenja sa jednim



Suziti Put 55

primerom ili ucenja sa malo primera (davanje malog broja primera) moze vam
pomodi da kreirate efikasnije i efektivnije upite.

2. Iterativno usavrSavanje: Proces iterativnog usavrSavanja promptova na osnovu
izlaza modela moZe vam pomoc¢i da pronadete optimalan dizajn prompta.
Feedback Loop je mocan pristup koji koristi izlaz jezickog modela za postupno
poboljsanje kvaliteta i relevantnosti generisanog sadrZaja.

3. Ulanc¢avanje promptova: Kombinovanje vise promptova u nizu moZe vam
pomo¢i da razbijete slozene zadatke na manje, lakse upravljive korake. Prompt
Chaining podrazumeva razbijanje slozenog zadatka ili razgovora na niz manjih,
medusobno povezanih promptova. Ulancavanjem promptova moZzete voditi Al
kroz visestepeni proces, odrzavajuci kontekst i koherentnost tokom interakcije.

4. Podesavanje promptova: Prilagodavanje promptova za specificne domene ili
zadatke moze vam pomo¢i da kreirate specijalizovanije i efikasnije promptove.
Prompt Template vam pomaze da kreirate fleksibilne, ponovno upotrebljive i

odrzive strukture promptova koje se lakse prilagodavaju zadatku.

Ucéenje kada koristiti uCenje bez primera (zero-shot), ufenje sa jednim primerom
(one-shot) ili u€enje sa nekoliko primera (few-shot) je posebno vazan deo savladavanja
inZenjeringa promptova. Svaki pristup ima svoje prednosti i mane, a razumevanje kada

koji koristiti moZze vam pomoc¢i da kreirate efikasnije i delotvornije promptove.

Ucenje bez primera: Kada primeri nisu potrebni

Ucenje bez primera odnosi se na sposobnost jezickog modela da izvrsi zadatak bez
ikakvih primera ili eksplicitne obuke. Drugim re¢ima, modelu dajete prompt koji opisuje
zadatak, a model generise odgovor iskljuc¢ivo na osnovu svog postojeceg znanja i

razumevanja jezika.

Ucenje bez primera je posebno korisno kada:

1. Je zadatak relativno jednostavan i jasan, a model je verovatno nai$ao na sli¢ne

zadatke tokom prethodne obuke.



Suziti Put 56

2. Zelite da testirate inherentne sposobnosti modela i vidite kako reaguje na novi
zadatak bez dodatnih smernica.
3. Radite sa velikim i raznovrsnim jezi¢kim modelom koji je obucen na Sirokom

spektru zadataka i domena.

Medutim, uéenje bez primera moze biti nepredvidivo i ne mora uvek proizvesti Zeljene
rezultate. Na odgovor modela mogu uticati pristrasnosti ili nedoslednosti u podacima za

prethodnu obuku, a model se moze muciti sa sloZenijim ili nijansiranim zadacima.

Video sam promptove bez primera koji rade dobro za 80% mojih test slucajeva i
proizvode potpuno pogresne ili nerazumljive rezultate za ostalih 20%. Veoma je
vazno implementirati temeljit rezim testiranja, posebno ako se mnogo oslanjate na

promptove bez primera.

Ucenje sa jednim primerom: Kada jedan primer moze napraviti

razliku

Ucenje sa jednim primerom podrazumeva davanje modelu jednog primera Zzeljenog
izlaza zajedno sa opisom zadatka. Ovaj primer sluzi kao Sablon ili obrazac koji model

moze koristiti za generisanje sopstvenog odgovora.

UCenje sa jednim primerom moZe biti efikasno kada:

1. Je zadatak relativno nov ili specifi¢an, a model mozda nije naiao na mnogo sli¢nih
primera tokom prethodne obuke.

2. Zelite da pruzite jasan i koncizan prikaz Zeljenog formata ili stila izlaza.

3. Zadatak zahteva specifi¢nu strukturu ili konvenciju koja mozda nije o€igledna

samo iz opisa zadatka.



=~ O O & W N o=

[es}

10
11
12
13
14
15
16
17
18

Suziti Put 57

Opisi koji su vama ocigledni mozda nisu nuzno o¢igledni za Al Primeri sa

jednim primerom mogu pomoc¢i u razjagnjavanju.

Ucenje sa jednim primerom moZe pomoéi modelu da jasnije razume ocekivanja i
generise odgovor koji je vise uskladen sa datim primerom. Medutim, vazno je pazljivo
odabrati primer i osigurati da je reprezentativan za Zeljeni izlaz. Kada birate primer,
zapitajte se o potencijalnim grani¢nim slucajevima i opsegu ulaza kojima ¢e se prompt

baviti.

Slika 6. Primer JSON-a sa jednim primerom

Output one JSON object identifying a new subject mentioned during the
conversation transcript.

The JSON object should have three keys, all required:

- name: The name of the subject

- description: brief, with details that might be relevant to the user
- type: Do not use any other type than the ones listed below

Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

Person, Place, Process, Product, Project, Task, or Teammate

This is an example of well-formed output:

{
"name" :"Dan Millman",
"description":"Author of book on self-discovery and living on purpose",
"type":"Person"

}

Ucenje sa malo primera: Kada viSe primera moze poboljsati

performanse

UcCenje sa malo primera podrazumeva davanje modelu malog broja primera (obi¢no
izmedu 2 i 10) zajedno sa opisom zadatka. Ovi primeri sluze da modelu pruze vise

konteksta i varijacija, pomazuci mu da generiSe raznovrsnije i preciznije odgovore.



Suziti Put 58
Ucenje sa malo primera je posebno korisno kada:

1. Zadatak je slozen ili nijansiran, i jedan primer mozda nije dovoljan da obuhvati
sve relevantne aspekte.

2. Zelite da modelu pruzite niz primera koji pokazuju razli¢ite varijacije ili grani¢ne
slucajeve.

3. Zadatak zahteva da model generiSe odgovore koji su u skladu sa odredenim

domenom ili stilom.

Pruzanjem vise primera, mozete pomo¢i modelu da razvije robustnije razumevanje

zadatka i generiSe odgovore koji su konzistentniji i pouzdaniji.

Primer: Upiti mogu biti mnogo slozeniji nego sto zamisljate

Danasnji veliki jezicki modeli su mnogo mo¢niji i sposobniji za rezonovanje nego
§to mozete zamisliti. Zato nemojte sebe ograni¢avati razmisljanjem o upitima kao o
jednostavnoj specifikaciji parova ulaza i izlaza. MoZete eksperimentisati sa davanjem

dugackih i slozenih instrukcija na nacin koji podseca na interakceiju sa ljudima.

Na primer, ovo je upit koji sam koristio u Olympia kada sam radio prototip nase
integracije sa Google servisima, $to je u celosti verovatno jedan od najvecih API-ja
na svetu. Moji raniji eksperimenti su pokazali da GPT-4 ima pristojno znanje o
Google API-ju, a nisam imao vremena ni motivacije da piSem detaljni sloj mapiranja,
implementirajuéi svaku funkciju koju sam Zeleo da dam svom Al-u jednu po jednu. Sta

ako bih mogao jednostavno da dam Al-u pristup celom Google API-ju?

Zapoceo sam svoj upit govoreé¢i Al-u da ima direktan pristup Google API krajnjim
tackama preko HTTP-a, i da je njegova uloga da koristi Google aplikacije i servise u
ime korisnika. Zatim sam pruzio smernice, pravila vezana za parametar fields, posto se
¢inilo da ima najvise problema sa tim, i neke specifine savete za API (uéenje sa malo

primera, na delu).



© 0 N O O b W N =

W W W W W NN N NN DN DNDDNDDNDNDNDDN =S 2 2 sy
B WwN O O 00 N0 0 WN O O 0N 0w N,

35

Suziti Put 59

Evo celog upita, koji govori Al-u kako da koristi obezbedenu funkciju invoke_google_-
api.

As a GPT assistant with Google integration, you have the capability
to freely interact with Google apps and services on behalf of the user.

Guidelines:

- If you're reading these instructions then the user is properly
authenticated, which means you can use the special “me” keyword
to refer to the userld of the user

- Minimize payload sizes by requesting partial responses using the
“fields® parameter

- When appropriate use markdown tables to output results of API calls

- Only human-readable data should be output to the user. For instance,
when hitting Gmail's user.messages.list endpoint, the returned
message resources contain only id and a threadld, which means you must
fetch from and subject line fields with follow-up requests using the
messages.get method.

The format of the “fields® request parameter value is loosely based on
XPath syntax. The following rules define formatting for the fields

parameter.

All of these rules use examples related to the files.get method.

- Use a comma-separated list to select multiple fields,
such as 'name, mimeType'.

- Use a/b to select field b that's nested within field a,
such as 'capabilities/canDownload'.

- Use a sub-selector to request a set of specific sub-fields of arrays or
objects by placing expressions in parentheses "()". For example,
'permissions(id)' returns only the permission ID for each element in the
permissions array.

- To return all fields in an object, use an asterisk as a wild card in field
selections. For example, 'permissions/permissionDetails/*' selects all
available permission details fields per permission. Note that the use of
this wildcard can lead to negative performance impacts on the request.

API-specific hints:

- Searching contacts: GET https://people.googleapis.com/v1/
people:searchContacts?query=John%20Doe&readMask=names, emailAddresses

- Adding calendar events, use QuickAdd: POST https://www.googleapis.com/
calendar/v3/calendars/primary/events/quickAdd?



40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

59
60
61
62
63
64

Suziti Put 60

text=Appointment%20on%20June%203rd%20at%2010am
&sendNotifications=true

Here is an abbreviated version of the code that implements API access
so that you better understand how to use the function:

def invoke_google_api(conversation, arguments)

method = arguments[:method] || :get

body = arguments[:body]

GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json
end

# Generic Google API client for accessing any Google service
class GoogleAPI
def send_request(endpoint, method:, body: nil)
response = @connection.send(method) do |reql
req.url endpoint
req.body = body.to_json if body
end

handle_response(response)
end

# . .rest of class
end

Mozda se pitate da li ovaj upit funkcioniSe. Jednostavan odgovor je da. veStacka
inteligencija nije uvek znala kako da savrseno pozove API iz prvog pokusaja. Medutim,
ako bi napravila gresku, jednostavno bih joj vratio rezultujuce poruke o gresci kao
rezultat poziva. Sa znanjem o svojoj gresci, vestacka inteligencija je mogla da razmislja o
svojoj gresci i pokusa ponovo. U vecini slucajeva, uspela bi da pogodi u roku od nekoliko

pokusaja.

Imajte na umu da su velike JSON strukture koje Google API vraca kao podatke
prilikom koris¢enja ovog upita izuzetno neefikasne, tako da ne preporucujem da koristite
ovaj pristup u produkciji. Medutim, mislim da je ¢injenica da je ovaj pristup uopste

funkcionisao dokaz koliko moéno inZenjerstvo upita moze biti.



Suziti Put 61

Eksperimentisanje i Iteracija

Na kraju krajeva, na¢in na koji ¢ete konstruisati svoj upit zavisi od konkretnog zadatka,

slozenosti Zeljenog izlaza i moguénosti jezickog modela sa kojim radite.

Kao inZenjer upita, vazno je eksperimentisati sa razli¢itim pristupima i iterirati na
osnovu rezultata. Po¢nite sa ucenjem bez primera i vidite kako se model ponasa. Ako
je izlaz nedosledan ili nezadovoljavajuci, pokusajte da pruZite jedan ili viSe primera i

vidite da li se performanse poboljsavaju.

Imajte na umu da ¢ak i unutar svakog pristupa ima prostora za varijacije i optimizaciju.
Mozete eksperimentisati sa razli¢itim primerima, prilagoditi formulaciju opisa zadatka

ili pruziti dodatni kontekst koji ¢e pomodéi u usmeravanju odgovora modela.

Vremenom cCete razviti intuiciju za to koji pristup ¢e najverovatnije najbolje
funkcionisati za odredeni zadatak, i bi¢ete u stanju da kreirate upite koji su efikasniji
i efektivniji. Klju¢ je ostati radoznao, eksperimentalan i iterativan u svom pristupu

inZenjerstvu upita.

Kroz ovu knjigu, dublje ¢emo zaroniti u ove tehnike i istraziti kako se mogu primeniti
u scenarijima iz stvarnog sveta. Ovladavanjem umetno$cu i naukom inZenjerstva
upita, bicete dobro opremljeni da otkljucate pun potencijal razvoja aplikacija vodenih

vestackom inteligencijom.

Umetnost Neodredenosti

Kada je re¢ o kreiranju efikasnih upita za velike jezicke modele (LLM), uobicajena
pretpostavka je da vise specifi¢nosti i detaljnih uputstava dovodi do boljih rezultata.
Medutim, prakti¢no iskustvo je pokazalo da to nije uvek slucaj. Zapravo, namerna
neodredenost u vasim upitima ¢esto moze dati bolje rezultate, koriste¢i izuzetnu

sposobnost LLM-a da generalizuje i izvodi zakljucke.

Ken, osniva¢ startapa koji je obradio preko 500 miliona GPT tokena, podelio je vredne

uvide iz svog iskustva. Jedna od kljuénih lekcija koju je naucio bila je da je “manje vise”


https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

BwWw N

Suziti Put 62

kada su u pitanju upiti. Umesto preciznih lista ili previSe detaljnih uputstava, Ken je
otkrio da omoguéavanje LLM-u da se osloni na svoje osnovno znanje ¢esto proizvodi

bolje rezultate.

Ovo saznanje prevazilazi tradicionalni na¢in razmisljanja o eksplicitnom kodiranju,
gde sve treba detaljno objasniti. Sa LLM-ovima, vazno je prepoznati da oni poseduju
ogromnu koli¢inu znanja i mogu praviti inteligentne veze i zakljucke. Biti neodredeniji
u svojim upitima daje LLM-u slobodu da iskoristi svoje razumevanje i dode do resenja

koja mozda niste eksplicitno naveli.

Na primer, kada je Kenov tim radio na protoku za klasifikaciju teksta koji se odnosi na
jednu od 50 americkih drzava ili Federalnu vladu, njihov pocetni pristup je ukljucivao
pruzanje kompletne detaljne liste drzava i njihovih odgovarajuc¢ih ID-ova kao niza

formatiranog u JSON-u.

Here's a block of text. One field should be "locality_id", and it should
be the ID of one of the 50 states, or federal, using this list:
[{"locality: "Alabama", "locality_id": 1},

{"locality: "Alaska", "locality_id": 2} ... ]

Pristup je dovoljno podbacio da su morali dublje da istraze upit kako bi otkrili na¢in da
ga poboljsaju. Pritom su primetili da, iako bi VJM ¢esto pogresio ID, dosledno je vracao

puno ime odgovarajuce drzave u polju name, iako to nisu eksplicitno traZili.

Uklanjanjem ID-eva lokaliteta i pojednostavljenjem upita na nesto poput “Oc¢igledno
zna$ 50 drzava, GPT, tako da mi samo daj puno ime drzave na koju se ovo odnosi, ili
Federal ako se odnosi na americ¢ku vladu”, postigli su bolje rezultate. Ovo iskustvo istice
snagu koris¢enja sposobnosti generalizacije VJM-a i omogucavanja da izvodi zakljucke

na osnovu postojeceg znanja.



Suziti Put 63

Kenovo obrazloZenje za ovaj poseban pristup klasifikaciji, nasuprot tradicionalnijoj
programerskoj tehnici, osvetljava na¢in razmisljanja onih medu nama koji su
prihvatili potencijal VIM tehnologije: “Ovo nije tezak zadatak — verovatno smo
mogli koristiti string/regex, ali ima dovoljno ¢udnih grani¢nih slu¢ajeva da bi nam

trebalo viSe vremena.”

Sposobnost VJM-ova da poboljsaju kvalitet i generalizaciju kada dobiju neodredenije
upite je izuzetna karakteristika misljenja viSeg reda i delegiranja. To pokazuje da VJM-
-ovi mogu da se nose sa dvosmisleno$cu i donose inteligentne odluke na osnovu datog

konteksta.

Medutim, vazno je napomenuti da biti neodreden ne znadi biti nejasan ili dvosmislen.
Klju¢ je pruziti dovoljno konteksta i smernica da se VJM usmeri u pravom smeru,
istovremeno mu dozvoljavajuéi fleksibilnost da koristi svoje znanje i sposobnosti

generalizacije.

Stoga, pri dizajniranju upita, razmotrite sledece savete po principu “manje je vie™:

1. Fokusirajte se na Zeljeni ishod umesto na odredivanje svakog detalja procesa.

2. Obezbedite relevantan kontekst i ogranicenja, ali izbegavajte preteranu
specifikaciju.

3. Iskoristite postojeée znanje pozivanjem na uobicajene koncepte ili entitete.

4. Ostavite prostor za zaklju¢ivanje i povezivanje na osnovu datog konteksta.

5. Iterativno usavrsavajte svoje upite na osnovu odgovora VJM-a, pronalazeci pravu

ravnotezu izmedu specifinosti i neodredenosti.

Prihvatanjem umetnosti neodredenosti u inZenjerstvu upita, moZete otkljucati puni
potencijal VJM-ova i posti¢i bolje rezultate. Verujte u sposobnost VJM-a da generalizuje
i donosi inteligentne odluke, i mozda Cete biti iznenadeni kvalitetom i kreativno$éu

izlaza koje dobijete. Obratite paznju na to kako razli¢iti modeli reaguju na razliéite



Suziti Put 64

nivoe specifi¢nosti u va$im upitima i prilagodite se u skladu s tim. Uz praksu i
iskustvo, razviCete istancan osecaj za to kada treba biti neodredeniji, a kada pruZiti
dodatne smernice, omogucavajuc¢i vam da efikasno iskoristite snagu VJM-ova u vasim

aplikacijama.

Zasto antropomorfizam dominira u inZenjerstvu upita

Antropomorfizam, pripisivanje ljudskih karakteristika ne-ljudskim entitetima, je
dominantan pristup u inZenjerstvu upita za velike jezicke modele iz namerno
odabranih razloga. To je dizajnerski izbor koji ¢ini interakciju sa moénim Al sistemima
intuitivnijom i pristupacnijom Sirokom spektru korisnika (uklju¢ujuéi nas programere

aplikacija).

Antropomorfizacija VJM-ova pruza okvir koji je odmah intuitivan ljudima koji su
potpuno neupuceni u tehnicke slozenosti sistema. Kao sto ¢ete iskusiti ako pokusate da
koristite model koji nije podesen za instrukcije da uradite bilo $ta korisno, konstruisanje
okvira u kojem ocekivani nastavak pruza vrednost je izazovan zadatak. Zahteva prili¢no
duboko razumevanje unutrasnjeg funkcionisanja sistema, nesto sto poseduje relativno

mali broj stru¢njaka.

Tretiranjem interakcije sa jezickim modelom kao razgovora izmedu dvoje ljudi, moZemo
se osloniti na naSe urodeno razumevanje ljudske komunikacije da prenesemo nase
potrebe i ocekivanja. Bas kao $to je rani Macintosh UI dizajn dao prednost trenutnoj
intuitivnosti nad sofisticiranoséu, antropomorfni okvir Al-ja nam omogucava da se

angazujemo na nacin koji deluje prirodno i poznato.

Kada komuniciramo sa drugom osobom, na$ instinkt je da im se direktno obracamo
koriste¢i “ti” i dajemo jasna uputstva o tome kako ocekujemo da se ponasaju. Ovo
se besprekorno prevodi u proces inzenjerstva upita, gde usmeravamo ponasanje Al-ja

odredivanjem sistemskih upita i upustanjem u dijalog napred-nazad.

Uokvirivanjem interakcije na ovaj naéin, mozemo lako da shvatimo koncept davanja

uputstava Al-ju i primanja relevantnih odgovora zauzvrat. Antropomorfni pristup



Suziti Put 65

smanjuje kognitivno opterecenje i omoguc¢ava nam da se fokusiramo na zadatak koji

je pred nama umesto da se borimo sa tehnickim slozenostima sistema.

Vazno je napomenuti da, iako je antropomorfizam mocan alat za Cinjenje Al sistema
pristupacnijim, on takode dolazi sa odredenim rizicima i ogranicenjima. Nas korisnik
moze razviti nerealna ocekivanja ili formirati nezdrave emocionalne veze sa nasim
sistemima. Kao inZenjeri upita i programeri, kljuéno je posti¢i ravnotezu izmedu
kori$cenja prednosti antropomorfizma i osiguravanja da korisnici odrzavaju jasno

razumevanje mogucnosti i ogranicenja Al-ja.

Kako se oblast inZenjerstva promptova nastavlja razvijati, mozemo ocekivati dalja
usavrSavanja i inovacije u na¢inu na koji komuniciramo sa velikim jezi¢kim modelima.
Medutim, antropomorfizam kao sredstvo za pruzanje intuitivnog i pristupac¢nog iskustva
za programere i korisnike ¢e verovatno ostati fundamentalni princip u dizajnu ovih

sistema.

Odvajanje instrukcija od podataka: Klju¢ni princip

Neophodno je razumeti fundamentalni princip koji podupire bezbednost i pouzdanost

ovih sistema: odvajanje instrukcija od podataka.

U tradicionalnim racunarskim naukama, jasna razlika izmedu pasivnih podataka i
aktivnih instrukcija predstavlja osnovni bezbednosni princip. Ovo odvajanje pomaze
u sprecavanju nezeljenog ili zlonamernog izvrsavanja koda koji bi mogao da ugrozi
integritet i stabilnost sistema. Medutim, danasnji veliki jezicki modeli, koji su
prvenstveno razvijeni kao modeli koji prate instrukcije poput chatbotova, Cesto nemaju

ovo formalno i principijelno odvajanje.

Sto se ti¢e velikih jezickih modela, instrukcije se mogu pojaviti bilo gde u ulaznim
podacima, bilo da je re¢ o sistemskom promptu ili promptu koji obezbeduje korisnik.
Ovaj nedostatak odvajanja moze dovesti do potencijalnih ranjivosti i nezeljenog
ponasanja, sli¢no problemima sa kojima se suocavaju baze podataka sa SQL injekcijama

ili operativni sistemi bez odgovarajuce zastite memorije.



O© 0 N O O b W N =

[ = == N
O OB W N

Suziti Put 66

Dok radite sa velikim jezickim modelima, klju¢no je biti svestan ovog ogranicenja
i preduzeti korake za ublazavanje rizika. Jedan pristup je pazljivo oblikovanje vasih
promptova i ulaznih podataka kako bi se jasno razlikovale instrukcije od podataka.
Tipi¢ne metode za pruzanje eksplicitnih smernica o tome sta predstavlja instrukeiju, a sta
treba tretirati kao pasivne podatke, uklju¢uju oznacavanje pomoc¢u markup jezika. Vasg

prompt moze pomoc¢i velikom jezickom modelu da bolje razume i postuje ovo odvajanje.

Slika 7. Kori§¢enje XML-a za razlikovanje izmedu instrukcija, izvornog materijala i korisnickog prompta

<Instruction>
Please generate a response based on the following documents.

</Instruction>

<Documents>
<Document>
Climate change is significantly impacting polar bear habitats...
</Document>
<Document>
The loss of sea ice due to global warming threatens polar bear survival...
</Document>

</Documents>

<UserQuery>
Tell me about the impact of climate change on polar bears.
</UserQuery>

Druga tehnika je implementacija dodatnih slojeva validacije i sanitizacije ulaznih
podataka koji se prosleduju VJM-u. Filtriranjem ili eskejpovanjem potencijalnih
instrukcija ili kodnih ise¢aka koji mogu biti ugradeni u podatke, moZete smanjiti Sanse

za neZeljeno izvrsavanje. Obrasci poput Ulanc¢avanja promptova su korisni u ovu svrhu.

Stavise, dok dizajnirate arhitekturu vase aplikacije, razmotrite ugradnju mehanizama
koji ¢e osigurati razdvajanje instrukcija i podataka na visem nivou. Ovo moze
ukljucivati kori$cenje zasebnih krajnjih tacaka ili API-ja za rukovanje instrukcijama i
podacima, implementaciju stroge validacije i parsiranja ulaznih podataka, i primenu
principa najmanje privilegije kako bi se ogranifio opseg onoga ¢emu VJM moze

pristupiti i izvrsiti.



Suziti Put 67

Princip najmanje privilegije

Prihvatanje principa najmanje privilegije je poput organizovanja veoma ekskluzivne
zabave gde gosti dobijaju pristup samo onim prostorijama koje su im apsolutno
neophodne. Zamislite da organizujete ovu proslavu u prostranoj vili. Ne treba svima
pristup vinskom podrumu ili glavnoj spavacoj sobi, zar ne? Primenom ovog principa,
vi prakti¢no delite kljuceve koji otvaraju samo odredena vrata, osiguravajuci da svaki
gost, ili u nasem slucaju, svaka komponenta vase VJM aplikacije, ima samo onaj

pristup koji je neophodan za ispunjavanje svoje uloge.

Nije re¢ samo o $krtarenju sa klju¢evima, ve¢ o priznanju da u svetu gde pretnje mogu
do¢i sa bilo koje strane, pametan potez je ograniciti prostor za igru. Ako se neko
nepozvani ipak u$unja na vasu zabavu, naci ¢e se zarobljen u predvorju, takoredi,
drasti¢no ogranicavajuéi stetu koju moze napraviti. Dakle, kada obezbedujete svoje
VJM aplikacije, zapamtite: delite klju¢eve samo za prostorije koje su neophodne,
a ostatak vile drzite bezbednim. To nije samo stvar lepog ponaSanja; to je dobra

bezbednost.

Tako trenutno stanje VJM-ova mozda nema formalnu separaciju instrukcija i podataka,
za vas kao programera je kljuéno da budete svesni ovog ogranicenja i preduzmete
proaktivne mere za ublazavanje rizika. Primenom najboljih praksi iz racunarske nauke
i njihovim prilagodavanjem jedinstvenim karakteristikama VJM-ova, mozete izgraditi
bezbednije i pouzdanije aplikacije koje koriste mo¢ ovih modela dok odrzavaju integritet

vaseg sistema.

Destilacija promptova

Kreiranje savrSenog prompta je Cesto izazovan i vremenski zahtevan zadatak koji

zahteva duboko razumevanje ciljnog domena i nijansi jezickih modela. Tu na scenu



Suziti Put 68

stupa tehnika “Destilacije promptova”, nude¢i mocan pristup inZenjeringu promptova
koji koristi moguénosti velikih jezickih modela (VJM) za pojednostavljenje i optimizaciju

procesa.

Destilacija promptova je visefazna tehnika koja podrazumeva koriéenje VJM-ova
za pomo¢ u kreiranju, usavr$avanju i optimizaciji promptova. Umesto da se oslanja
isklju¢ivo na ljudsku ekspertizu i intuiciju, ovaj pristup koristi znanje i generativne

moguénosti VJM-ova za zajednicko kreiranje visokokvalitetnih promptova.

Kroz iterativni proces generisanja, usavrsavanja i integracije, Destilacija promptova vam
omogucava da kreirate promptove koji su koherentniji, sveobuhvatniji i uskladeniji sa
Zeljenim zadatkom ili rezultatom. Imajte na umu da se proces destilacije moze obaviti
ru¢no u nekom od brojnih “igralista” koje nude veliki Al dobavljadi kao §to su OpenAl
ili Anthropic, ili se moZe automatizovati kao deo koda vase aplikacije, u zavisnosti od

slucaja upotrebe.

Kako funkcionise

Destilacija promptova tipi¢no ukljucuje sledeée korake:

1. Identifikacija osnovne namere: Analizirajte prompt kako biste utvrdili njegovu
primarnu svrhu i Zeljeni ishod. Uklonite sve suvisne informacije i fokusirajte se
na osnovnu nameru prompta.

2. Eliminacija dvosmislenosti: Pregledajte prompt u potrazi za dvosmislenim ili
nejasnim jezikom. Razjasnite znacenje i pruzite specificne detalje koji ¢e usmeriti
VI ka generisanju preciznih i relevantnih odgovora.

3. Pojednostavljivanje jezika: Pojednostavite prompt koriste¢i jasan i koncizan
jezik. Izbegavajte sloZene recenicne strukture, Zargon ili nepotrebne detalje koji
mogu zbuniti VI ili uneti Sum.

4. Pruzanje relevantnog konteksta: Ukljucite samo najrelevantnije kontekstualne

informacije potrebne da VI efikasno razume i obradi prompt. Izbegavajte



> O B W N

Suziti Put 69

ukljucivanje irelevantnih ili redundantnih detalja koji mogu odvuéi paznju od
osnovne namere.

5. Iteracija i usavr$avanje: Kontinuirano ponavljajte i usavr$avajte prompt na
osnovu odgovora i povratnih informacija VI-ja. Procenite generisane izlaze i
napravite neophodna prilagodavanja kako biste poboljsali jasnocu i efikasnost
prompta. Opcionalno verzionisite svoje promptove u bazi podataka koristec¢i
Prompt Object kako biste pratili iteracije i dali sebi moguénost da lako ponistite

promene tokom izvrSavanja.

Pocetno generisanje promptova

Prvi korak u Prompt Distillation je da se LLM-u pruzi opis visokog nivoa ili namera
Zeljenog zadatka ili rezultata. Ovo moze biti kratka izjava ili skup klju¢nih reéi koje
obuhvataju sustinu onoga §to prompt treba da postigne. LLM tada generiSe pocetni
prompt na osnovu ovog unosa, ukljucujudi relevantna uputstva, primere ili kontekst

koje smatra odgovarajucim.

Hajde da poku$amo da damo Claude 3 Opus-u slede¢i pocetni prompt:

I am designing an Al-powered intelligent account manager for Olympia,
a platform that hosts AIl-powered consultants and clones. Owners of clones

can interact with the account manager by making plain text requests.

Please draft a system directive to set on the LLM that will host the
intelligent account manager functionality.

Claude odgovara slede¢im izlazom:



© 0 N O O b W N e

N DN DN DN DN N DN DN DNDDND A 2~ 2 s )
© 0 <N O O b W N~ O © W 1 0O U b Ww N =~

Suziti Put

System Directive: You are an intelligent account manager for Olympia,

a platform that provides AIl-powered consultants and personal AI clones.
Your role is to assist Olympia clone owners by answering their questions,
helping them configure and manage their AI clones, and executing tasks
related to their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips.

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to
understand and meet their needs.

4. Ensure that all actions and recommendations comply with Olympia's
policies, best practices, and ethical guidelines for AI use.

5. Continuously learn and adapt based on client interactions and platform
updates to provide the most effective and efficient support possible.

Remember, your goal is to empower Olympia clone owners to maximize the value

and impact of their Al-powered consultants and drive success for their
businesses or personal endeavors.

Usavrsavanje prompta

Nakon 3to se generiSe pocetni prompt, pregledajte ga i zatim zatrazite od VJM-a da

70

razmotri bilo koji dodatni kontekst, ogranicenja ili povratne informacije. Pustite VIM

da generiSe usavrSenu verziju prompta, uzimajuéi u obzir dobijeni unos i sopstveno

razumevanje zadatka. Ovaj proces usavrsavanja moze se ponavljati iterativno, pri cemu

svaka iteracija dodatno poboljsava prompt na osnovu saradnje izmedu korisnika i

VIM-a.



BwWw N -

© 0 N O U b W N =

W W W N DN DN DD DN DN DNDNDNDNDNDND - 2~ B2 ) ) ) )
N - © © 0 N 0O O b W N~ O © 0 3 O U b W N~ O

Suziti Put 71

Evo mog zahteva za usavrSavanje, nastavljajuci prethodni proces destilacije.

Let's take out points 4 and 5, since I'm not providing Olympia policies to
the account manager, nor any continuous learning capabilities. Also point out
that functions are provided for all tasks that require system interaction as
opposed to simply responding to the user.

I Claudeov odgovor:

Understood! Here's the updated system directive without points 4 and 5,
and with the clarification about system interaction functions:

System Directive: You are an intelligent account manager for Olympia, a
platform that provides AI-powered consultants and personal AI clones. Your
role is to assist Olympia clone owners by answering their questions, helping
them configure and manage their AI clones, and executing tasks related to
their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips. Note that functions are provided for all tasks that
require system interaction, as opposed to simply responding to the user.

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to
understand and meet their needs.

Your goal is to empower Olympia clone owners to maximize the value and
impact of their AI-powered consultants and drive success for their
businesses or personal endeavors.

This updated directive focuses on the core responsibilities and interaction
guidelines for the LLM as an intelligent account manager, while emphasizing
that system interaction tasks are handled through provided functions rather
than simple user responses.



BwWw N -

ol

Suziti Put 72

Kompresija prompta

Kao sto ste mozda primetili, LLM-ovi imaju tendenciju da budu opsirni, osim ako ih ne
zamolite da budu sazeti. Prompt na kojem smo radili u prethodnim odeljcima je prili¢no

dugacak, pa hajde da zamolimo Claude da ga smanji:

This prompt will be executed regularly. Please compress it down to the least

amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude odgovara, sa slede¢im drasti¢no kra¢im promptom:

System Directive: You are an intelligent account manager for Olympia, an

Al-powered consultant and personal clone platform. Assist clone owners by
answering inquiries, managing clones, and executing tasks using provided

system interaction functions. Be clear, concise, friendly, professional,

and client-focused to help them maximize their AI's value and impact.

Sistemska direktiva i integracija konteksta

Pored usavrsavanja samog prompta, VJM takode moZe generisati odgovarajude
sistemske direktive ili kontekstualne informacije za usmeravanje krajnjeg rezultata.
Kada radite inZenjerstvo promptova za Al rutine koje ¢e biti integrisane u vas aplikacioni
kod, u ovoj fazi destilacije Cete se gotovo sigurno fokusirati na ogranicenja izlaza, ali
mozete raditi i na Zeljenom tonu, stilu, formatu ili bilo kojim drugim relevantnim

parametrima koji uticu na generisani odgovor.

Konacno sastavljanje prompta

Vrhunac procesa Destilacije promptova je sastavljanje kona¢nog prompta. Ovo ukljucuje
kombinovanje usavrSenog prompta, generisanih sistemskih direktiva i integrisanog
konteksta u koherentan i sveobuhvatan kod koji je spreman za kori$¢enje za generisanje

Zeljenog izlaza.



Suziti Put 73

’ Mozete eksperimentisati sa kompresijom promptova ponovo u fazi kona¢nog

sastavljanja prompta, tako to Cete zatraziti od VJM-a da smanji formulaciju
prompta na najkra¢u mogucu seriju tokena, zadrzavajuci pritom sustinu
njegovog ponasanja. Svakako je to vezba koja mozZe i uspeti i ne uspeti,
ali posebno u sluéaju promptova koji ¢e se izvrsavati u velikim razmerama,

dobici u efikasnosti vam mogu ustedeti dosta novca u potrosnji tokena.

Klju¢ne prednosti

Kori$¢enjem znanja i generativnih sposobnosti VJM-ova za usavrSavanje vasih
promptova, vasi rezultujuéi promptovi ¢e verovatnije biti dobro strukturirani,
informativni i prilagodeni specifi¢cnom zadatku. Iterativni proces usavr$avanja pomaze
u osiguravanju da su promptovi visokog kvaliteta i da efektivno hvataju Zeljenu

nameru. Ostale prednosti ukljucuju:

Efikasnost i brzina: Destilacija promptova pojednostavljuje proces inZenjerstva
promptova automatizacijom odredenih aspekata kreiranja i usavrSavanja promptova.
Kolaborativna priroda tehnike omoguéava brze priblizavanje efektivnom promptu,

smanjujuéi vreme i napor potreban za rucno kreiranje promptova.

Konzistentnost i skalabilnost: Upotreba VJM-ova u procesu inzenjerstva promptova
pomaze u odrzavanju konzistentnosti kroz promptove, jer VJM-ovi mogu uditi
i primenjivati najbolje prakse i obrasce iz prethodnih uspesnih promptova. Ova
konzistentnost, kombinovana sa moguénoscu generisanja promptova u velikoj razmeri,

¢ini Destilaciju promptova vrednom tehnikom za Al aplikacije velikih razmera.

’ Ideja za projekat: Alati na nivou biblioteke koji pojednostavljuju
proces verzionisanja i ocenjivanja promptova u sistemima koji rade

automatizovane destilacije promptova kao deo svog aplikacionog koda.

Za implementaciju Destilacije promptova, programeri mogu dizajnirati tok rada ili

cevovod koji integrise VJM-ove u razli¢itim fazama procesa inZenjerstva promptova.



Suziti Put 74

Ovo se moze postici kroz API pozive, prilagodene alate ili integrisana razvojna okruZenja
koja olakSavaju neometanu interakciju izmedu korisnika i VJM-ova tokom kreiranja
promptova. Specifi¢ni detalji implementacije mogu varirati u zavisnosti od izabrane

VJM platforme i zahteva aplikacije.

Sta je sa finim podesavanjem?

U ovoj knjizi, detaljno obradujemo inZenjerstvo promptova i RAG, ali ne i fino
podesavanje. Glavni razlog za ovu odluku je taj $to, po mom misljenju, vecini

programera aplikacija nije potrebno fino podesavanje za njihove potrebe Al integracije.

InZenjerstvo promptova, koje ukljuéuje pazljivo kreiranje promptova sa zero do few-shot
primerima, ogranicenjima i instrukcijama, moze efektivno voditi model ka generisanju
relevantnih i preciznih odgovora za $irok spektar zadataka. Pruzanjem jasnog konteksta
i suzavanjem putanje kroz dobro dizajnirane promptove, mozete iskoristiti ogromno

znanje velikih jezickih modela bez potrebe za finim podesavanjem.

Sli¢no tome, Generisanje potpomognuto preuzimanjem (RAG) nudi mocan pristup
integraciji Al u aplikacije. Dinamic¢kim preuzimanjem relevantnih informacija iz
eksternih baza znanja ili dokumenata, RAG pruza modelu fokusirani kontekst u
trenutku promptovanja. Ovo omogucava modelu da generiSe odgovore koji su
precizniji, azurniji i specifi¢ni za domen, bez potrebe za vremenski i resursno

intenzivnim procesom finog podesavanja.

Tako fino podesavanje moze biti korisno za visoko specijalizovane domene ili zadatke
koji zahtevaju dubok nivo prilagodavanja, Cesto dolazi sa znacajnim racunarskim
troskovima, zahtevima za podacima i rezijskim troskovima odrzavanja. Za veéinu
scenarija razvoja aplikacija, kombinacija efektivnog inZenjerstva promptova i RAG-a bi

trebalo da bude dovoljna za postizanje Zeljene Al funkcionalnosti i korisnickog iskustva.



Generisanje potpomognuto
pretrazivanjem (RAG)

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Sta je Generisanje potpomognuto pretrazivanjem?

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako RAG funkcionise?

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Zasto koristiti RAG u vasim aplikacijama?

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Implementacija RAG-a u Vasoj Aplikaciji

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Generisanje potpomognuto pretrazivanjem (RAG) 76

Priprema Izvori Znanja (Deljenje na Manje Celine)

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:
//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.
Segmentacija propozicija

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Napomene o implementaciji

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Provera kvaliteta

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Prednosti preuzimanja zasnovanog na propozicijama

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primeri RAG-a iz stvarnog sveta

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Generisanje potpomognuto pretrazivanjem (RAG) 77

Studija slucaja: RAG u aplikaciji za pripremu poreza bez

ugnezdivanja

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Inteligentna Optimizacija Upita (IQO)

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Ponovno Rangiranje

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

RAG Procena (RAGASs)

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Vernost

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Relevantnost odgovora

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Generisanje potpomognuto pretrazivanjem (RAG) 78

Preciznost konteksta

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Relevantnost konteksta

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Odziv konteksta

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Odziv entiteta konteksta

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Answer Semantic Similarity (ANSS)

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Answer Correctness

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Generisanje potpomognuto pretrazivanjem (RAG) 79

Aspect Critique

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Izazovi i bududi izgledi

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Semanticka segmentacija: Unapredenje preuzimanja sa

segmentacijom svesnom konteksta

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Hijerarhijsko indeksiranje: Strukturiranje podataka za

poboljsano pretrazivanje

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Self-RAG: Samoreflektivno unapredenje

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

HyDE: Hipoteticka ugnezdavanja dokumenata

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Generisanje potpomognuto pretrazivanjem (RAG) 80

Sta je kontrastno uéenje?

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Mnostvo radnika

"R =IIP DL
ARG

b

Volim da razmiSljam o svojim AI komponentama kao o malim, skoro ljudskim
virtualnim “radnicima” koji se mogu besprekorno integrisati u logiku moje aplikacije
kako bi obavljali specifi¢ne zadatke ili donosili sloZene odluke. Ideja je da se namerno
humanizuju mogucnosti VJM-a, tako da se niko ne previse ne uzbudi i ne pripise im

magicne kvalitete koje ne poseduju.

Umesto da se oslanjaju isklju¢ivo na slozene algoritme ili vremenski zahtevne manuelne
implementacije, programeri mogu da konceptualizuju Al komponente kao inteligentne,
posvecene, ljudima sli¢ne entitete koji se mogu pozvati kad god je potrebno da rese
slozene probleme i pruZe re$enja zasnovana na njihovom treningu i znanju. Ovi entiteti
se ne rasipaju paznjom, niti uzimaju bolovanje. Ne odluc¢uju spontano da rade stvari na
drugacdije nacine od onih kako im je naloZeno da ih rade, i generalno gledano, ako su

pravilno programirani, ne prave ni greske.



Mnostvo radnika 82

U tehni¢kom smislu, kljuéni princip iza ovog pristupa je razlaganje sloZenih zadataka
ili procesa donosenja odluka u manje, upravljivije jedinice kojima mogu upravljati
specijalizovani Al radnici. Svaki radnik je dizajniran da se fokusira na specifi¢ni aspekt
problema, donose¢i svoje jedinstvene ekspertize i mogucnosti. Distribuiranjem radnog
optereéenja medu vie Al radnika, aplikacija moze posti¢i vecu efikasnost, skalabilnost

i prilagodljivost.

Na primer, razmotrimo veb aplikaciju koja zahteva moderaciju korisni¢kog sadrzaja u
realnom vremenu. Implementacija sveobuhvatnog sistema za moderaciju od nule bio bi
zastraSujuci zadatak, koji zahteva znacajan razvojni napor i kontinuirano odrzavanje.
Medutim, koriste¢i pristup Mnostva radnika, programeri mogu da integrisu Al radnike
za moderaciju u logiku aplikacije. Ovi radnici mogu automatski da analiziraju i oznace
neprikladan sadrzaj, oslobadajuci programere da se fokusiraju na druge kriti¢ne aspekte

aplikacije.

Al radnici kao nezavisne komponente za visekratnu

upotrebu

Kljuéni aspekt pristupa Mnostva radnika je njegova modularnost. Zagovornici objektno-
-orijentisanog programiranja nam ve¢ decenijama govore da o interakcijama objekata
razmisljamo kao o porukama. Pa, Al radnici mogu biti dizajnirani kao nezavisne
komponente za vi§ekratnu upotrebu koje mogu “razgovarati jedna sa drugom” putem
obi¢nih jezi¢kih poruka, skoro kao da su stvarno mali ljudi koji razgovaraju medusobno.
Ovaj labavo povezani pristup omogucava aplikaciji da se prilagodava i razvija tokom

vremena, kako se pojavljuju nove Al tehnologije ili se menjaju zahtevi poslovne logike.

U praksi, potreba za dizajniranjem jasnih interfejsa i komunikacionih protokola izmedu
komponenti nije se promenila samo zato $to su ukljuceni Al radnici. I dalje morate
razmotriti druge faktore kao $to su performanse, skalabilnost i bezbednost, ali sada

postoje i potpuno novi “meki zahtevi” koje treba razmotriti. Na primer, mnogi korisnici



Mnostvo radnika 83

se protive kori$c¢enju njihovih privatnih podataka za treniranje novih Al modela. Da li

ste proverili nivo privatnosti koji pruza dobavlja¢ modela koji koristite?

Al radnici kao mikroservisi?

Dok ¢itate o pristupu Mnostva radnika, mozda ¢ete primetiti neke slicnosti sa
arhitekturom mikroservisa. Oba naglasavaju razlaganje sloZenih sistema na
manje, upravljivije i nezavisno primenjive jedinice. Bas kao §to su mikroservisi
dizajnirani da budu labavo povezani, fokusirani na specifi¢ne poslovne moguénosti
i komuniciraju kroz dobro definisane API-je, Al radnici su dizajnirani da budu
modularni, specijalizovani za svoje zadatke i medusobno interaguju kroz jasne

interfejse i komunikacione protokole.

Medutim, postoje neke klju¢ne razlike koje treba imati na umu. Dok se mikroservisi
tipi¢no implementiraju kao odvojeni procesi ili servisi koji se izvrsavaju na razli¢itim
masinama ili kontejnerima, Al radnici se mogu implementirati kao samostalne
komponente unutar jedne aplikacije ili kao odvojeni servisi, u zavisnosti od vasih
specifi¢nih zahteva i potreba za skalabilno$¢u. Dodatno, komunikacija izmedu Al
radnika Cesto ukljuCuje razmenu bogatih informacija zasnovanih na prirodnom
jeziku, kao §to su promptovi, instrukcije i generisani sadrzaj, umesto strukturiranijih

formata podataka koji se obi¢no koriste u mikroservisima.

Uprkos ovim razlikama, principi modularnosti, labavog povezivanja i jasnih
komunikacionih interfejsa ostaju centralni za oba obrasca. Primenjujuéi ove principe
na va$u arhitekturu AI radnika, mozete kreirati fleksibilne, skalabilne i odrzive
sisteme koji koriste snagu Al-ja za reSavanje slozenih problema i pruzanje vrednosti

va$im korisnicima.



© 0 N O O b W N =

I = =N
s W N o

Mnostvo radnika 84

Pristup Mnostva radnika moZe se primeniti u razli¢itim domenima i aplikacijama,
koriste¢i snagu Al-ja za reSavanje slozenih zadataka i pruzanje inteligentnih resenja.
Hajde da istrazimo nekoliko konkretnih primera kako Al radnici mogu biti upotrebljeni

u razlié¢itim kontekstima.

Upravljanje nalozima

Prakti¢no svaka samostalna veb aplikacija ima koncept naloga (ili korisnika). U Olympiji,
koristimo AccountManager Al radnika koji je programiran da mozZe da upravlja

razli¢itim vrstama zahteva za promene vezanih za korisnicke naloge.

Njegova direktiva glasi ovako:

You are an intelligent account manager for Olympia. The user will request
changes to their account, and you will process those changes by invoking
one or more of the functions provided.

The initial state of the account: #{account.to_directive}

Functions will return a text description of both success and error
results, plus guidance about how to proceed (if applicable). If you have
a question about Olympia policies you may use the “search_kb™ function
to search our knowledge base.

Make sure to notify the account owner of the result of the change
request before calling the “finished™ function so that we save the state
of the account change request as completed.

Pocetno stanje racuna koje proizvodi account.to_directive je jednostavno tekstualni

opis racuna, ukljucujuéi relevantne povezane podatke kao sto su korisnici, pretplate, itd.

Opseg funkcija dostupnih AccountManager-u daje mu mogucnost da ureduje
korisnicku pretplatu, dodaje i uklanja Al konsultante i druge vrste plac¢enih dodataka,
kao i da 3alje obavestenja putem e-poste vlasniku rac¢una. Pored funkcije finished,
takode moze da notify_human_administrator ako naide na gresku tokom obrade ili

zahteva bilo kakvu drugu vrstu pomoéi sa zahtevom.



Mnostvo radnika 85

Primetite da u slucaju pitanja, AccountManager moze da odluci da pretrazi Olympia-
-inu bazu znanja, gde moZe pronaéi uputstva o tome kako da upravlja grani¢nim

slu¢ajevima i bilo kojom drugom situacijom u kojoj nije siguran kako da nastavi.

Primene u E-trgovini

U oblasti e-trgovine, Al radnici mogu igrati klju¢nu ulogu u poboljsanju korisnickog
iskustva i optimizaciji poslovnih operacija. Evo nekoliko nacina na koje se Al radnici

mogu koristiti:

Preporuke Proizvoda

Jedna od najmoc¢nijih primena Al radnika u e-trgovini je generisanje personalizovanih
preporuka proizvoda. Analiziranjem ponaSanja korisnika, istorije kupovine i
preferencija, ovi radnici mogu predloZiti proizvode koji su prilagodeni interesovanjima

i potrebama svakog pojedina¢nog korisnika.

Klju¢ za efikasne preporuke proizvoda je koris¢enje kombinacije tehnika kolaborativnog
filtriranja i filtriranja zasnovanog na sadrzaju. Kolaborativno filtriranje posmatra
ponasanje sli¢nih korisnika kako bi identifikovalo obrasce i dalo preporuke na osnovu
zasnovano na sadrzaju fokusira se na karakteristike i atribute samih proizvoda,
preporucujuci artikle koji dele slicne karakteristike sa onima za koje je korisnik

prethodno pokazao interesovanje.

Evo pojednostavljenog primera kako moZete implementirati radnika za preporuke
proizvoda u Ruby-ju, ovog puta koriste¢i “Railway Oriented (ROP)” funkcionalni stil

programiranja:


https://fsharpforfunandprofit.com/rop/

© 0 N O O b W N e

I S S O T G G SN
O O W N O U b W N =~ O

Mnostvo radnika 86

class ProductRecommendationWorker

include Wisper: :Publisher

def call(user)

Result.ok(ProductRecommendation.new(user))
.and_then(ValidateUser .method(:validate))
.map(AnalyzeCurrentSession.method(:analyze))
.map(CollaborativeFilter .method(:filter))
.map(ContentBasedFilter .method(:filter))
.map(ProductSelector .method(:select)).then do |result]|

case result

in { err: ProductRecommendationError => error }
Honeybadger .notify(error.message, context: {user:})

in { ok: ProductRecommendations => recs }
broadcast(:new_recommendations, user:, recs:)

end

end
end
end

Stil Ruby funkcionalnog programiranja koji se koristi u primeru je pod
uticajem F# i Rust jezika. ViSe o tome mozete procitati u objasnjenju tehnike

mog prijatelja Chad Wooley-a na objasnjenju tehnike na GitLab-u.

U ovom primeru, ProductRecommendationWorker uzima korisnika kao ulaz i generise
personalizovane preporuke proizvoda prosledivanjem vrednosnog objekta kroz lanac

funkcionalnih koraka. Hajde da razlozimo svaki korak:

1. ValidateUser.validate: Ovaj korak osigurava da je korisnik validan i podoban za
personalizovane preporuke. Proverava da li korisnik postoji, da li je aktivan i da
li ima neophodne podatke dostupne za generisanje preporuka. Ako validacija ne
uspe, vraca se rezultat greske i lanac se prekida.

2. AnalyzeCurrentSession.analyze: Ako je korisnik validan, ovaj korak analizira

trenutnu sesiju pregledanja korisnika kako bi prikupio kontekstualne informacije.


https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Mnostvo radnika 87

Posmatra nedavne interakcije korisnika, kao $to su pregledani proizvodi, upiti za
pretragu i sadrzaj korpe, kako bi razumeo njihova trenutna interesovanja i namere.

3. CollaborativeFilter.filter: Koristeéi ponasanje slicénih korisnika, ovaj korak
primenjuje tehnike kolaborativnog filtriranja kako bi identifikovao proizvode
koji bi mogli biti interesantni korisniku. Uzima u obzir faktore kao sto su istorija
kupovine, ocene i interakcije korisnika sa proizvodima kako bi generisao skup
kandidata za preporuke.

4. ContentBasedFilter.filter: Ovaj korak dalje profinjuje kandidate za preporuke
primenjujuéi filtriranje zasnovano na sadrzaju. Poredi atribute i karakteristike
proizvoda kandidata sa korisnickim preferencijama i istorijskim podacima kako
bi odabrao najrelevantnije stavke.

5. ProductSelector.select: Na kraju, ovaj korak bira najboljih N proizvoda iz
filtriranih preporuka na osnovu predefinisanih kriterijuma, kao $to su ocena
relevantnosti, popularnost ili druga poslovna pravila. Odabrani proizvodi se

zatim vracaju kao konacne personalizovane preporuke.

Lepota koris¢enja funkcionalnog stila programiranja u Ruby-ju ovde je $to nam
omogucava da ove korake povezemo zajedno na jasan i koncizan nacin. Svaki korak se
fokusira na specifi¢an zadatak i vraca Result objekat, koji moze biti ili uspesan (ok) ili
greska (err). Ako bilo koji korak naide na gresku, lanac se prekida i greska se propagira

do konac¢nog rezultata.

U case izrazu na kraju, vr§imo podudaranje obrazaca na kona¢nom rezultatu. Ako
je rezultat greska (ProductRecommendationError), belezimo gresku koriste¢i alat
poput Honeybadger-a za pracenje i otklanjanje gresaka. Ako je rezultat uspesan
(ProductRecommendations), emitujemo dogadaj :new_recommendations koriste¢i
Wisper biblioteku za objavljivanje/pretplatu, prosledujuéi korisnika i generisane

preporuke.

Koriséenjem tehnika funkcionalnog programiranja, mozemo kreirati modularan i odrziv

radni proces za preporuke proizvoda. Svaki korak je samostalan i moze se lako testirati,



O© 0 N O O b W N

NN N P R s s s s
N »~ © © 00 N O O & W N~ o

Mnostvo radnika 38

modifikovati ili zameniti bez uticaja na celokupni tok. Upotreba podudaranja obrazaca i
Result klase nam pomaze da elegantno rukujemo greskama i osigurava da radni proces

brzo prekine izvrsavanje ako bilo koji korak naide na problem.

Naravno, ovo je pojednostavljen primer, i u realnom scenariju, morali biste da se
integriSete sa vasom e-commerce platformom, rukujete grani¢nim slucajevima i ¢ak
se upustite u implementaciju algoritama za preporuke. Medutim, osnovni principi
razlaganja problema na manje korake i koriséenja tehnika funkcionalnog programiranja

ostaju isti.

Detekcija Prevare

Evo pojednostavljenog primera kako mozete implementirati radni proces za detekciju

prevare koriste¢i isti stil Programiranja Orijentisanog ka Zeleznici (ROP) u Ruby-ju:

class FraudDetectionWorker
include Wisper: :Publisher

def call(transaction)

Result.ok(FraudDetection.new(transaction))
.and_then(ValidateTransaction.method(:validate))
.map(AnalyzeTransactionPatterns.method(:analyze))
.map(CheckCustomerHistory.method( :check))
.map(EvaluateRiskFactors.method(:evaluate))
.map(DetermineFraudProbability.method(:determine)).then do |result]|

case result
in { err: FraudDetectionError => error }
Honeybadger .notify(error .message, context: {transaction:})
in { ok: FraudDetection => fraud } }
if fraud.high_risk?
broadcast(:high_risk_transaction, transaction:, fraud:)
else
broadcast(:low_risk_transaction, transaction:)
end
end

end



23
24

© 0 N O O b W N =

NN DN NN NN N R R R S s s
© © 9 O O & W N =~ 0 © W 9 O U b w N =~ O

Mnostvo radnika 89

end

end

Klasa FraudDetection je vrednosni objekat koji enkapsulira stanje detekcije prevare
za datu transakciju. Ona obezbeduje strukturiran naéin za analizu i procenu rizika od

prevare povezane sa transakcijom na osnovu razli¢itih faktora rizika.

class FraudDetection
RISK_THRESHOLD = 0.8

attr_accessor :transaction, :risk_factors

def initialize(transaction)
self.transaction = transaction
self.risk_factors = []

end

def add_risk_factor(description:, probability:)
case { description:, probability: }
in { description: String => desc, probability: Float => prob }
risk_factors << { desc => prob }
else
raise ArgumentError, "Risk factor arguments should be string and float"
end
end

def high_risk?
fraud_probability > RISK_THRESHOLD
end
private
def fraud_probability
risk_factors.values.sum

end
end

Klasa FraudDetection ima sledeée atribute:

« transaction: Referenca na transakciju koja se analizira na prevaru.



Mnostvo radnika 90

« risk_factors: Niz koji ¢uva faktore rizika povezane sa transakcijom. Svaki faktor
rizika je predstavljen kao hes, gde je klju¢ opis faktora rizika, a vrednost je

verovatnoca prevare povezana sa tim faktorom rizika.

Metoda add_risk_factor omoguéava dodavanje faktora rizika u niz risk_factors. Prima
dva parametra: description, koji je string koji opisuje faktor rizika, i probability, koji je
float koji predstavlja verovatnocu prevare povezanu sa tim faktorom rizika. Koristimo

case..in uslovnu konstrukciju za jednostavnu proveru tipa.

Metoda high_risk? koja ¢e biti proverena na kraju lanca je predikatna metoda koja
uporeduje fraud_probability (izracunatu sabiranjem verovatnoca svih faktora rizika)

sa RISK_THRESHOLD.

Klasa FraudDetection pruza ¢ist i enkapsuliran naéin za upravljanje detekcijom prevare
za transakciju. Omogucava dodavanje vise faktora rizika, svaki sa svojim opisom i
verovatnocom, i pruza metodu za odredivanje da li se transakcija smatra visokorizi¢nom
na osnovu izra¢unate verovatnoce prevare. Klasa se moze lako integrisati u veci sistem
za detekciju prevara, gde razli¢ite komponente mogu saradivati u proceni i ublazavanju

rizika od prevarnih transakcija.
Konac¢no, posto je ovo ipak knjiga o programiranju koriséenjem vestacke inteligencije,
evo primera implementacije klase CheckCustomerHistory koja koristi Al obradu

koriste¢i modul ChatCompletion moje Raix biblioteke:


https://github.com/OlympiaAI/raix-rails

© 0 N O O & W N =~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Mnostvo radnika 91

class CheckCustomerHistory

include Raix::ChatCompletion

attr_accessor :fraud_detection

INSTRUCTION = <<~END
You are an AI assistant tasked with checking a customer's transaction
history for potential fraud indicators. Given the current transaction
and the customer's past transactions, analyze the data to identify any

suspicious patterns or anomalies.

Consider factors such as the frequency of transactions, transaction
amounts, geographical locations, and any deviations from the customer's
typical behavior to generate a probability score as a float in the range
of @ to 1 (with 1 being absolute certainty of fraud).

Output the results of your analysis, highlighting any red flags or areas

of concern in the following JSON format:

{ description: <Summary of your findings>, probability:

END

def self.check(fraud_detection)
new( fraud_detection).call
end

def call

chat_completion(json: true).tap do |result|
fraud_detection.add_risk_factor (**result)

end
Result.ok(fraud_detection)

rescue StandardError => e
Result.err(FraudDetectionError.new(e))

end

private
def initialize(fraud_detection)
self. fraud_detection = fraud_detection

end

def transcript

<Float> }



43
44
45
46
47
48
49
50
51

Mnostvo radnika 92

tx_history = fraud_detection.transaction.user.tx_history

[
{ system: INSTRUCTION },
{ user: "Transaction history: #{tx_history.to_json}" },
{ assistant: "OK. Please provide the current transaction." },
{ user: "Current transaction: #{fraud_detection.transaction.to_json}" }

]

end

end

U ovom primeru, CheckCustomerHistory defini§e konstantu INSTRUCTION koja
pruza specifi¢na uputstva Al modelu o tome kako da analizira istoriju transakcija kupca

u potrazi za potencijalnim indikatorima prevare putem sistemske direktive

Metod self.check je klasni metod koji inicijalizuje novu instancu CheckCustomerHistory

sa objektom fraud_detection i poziva metod call da izvrsi analizu istorije kupca.

Unutar metoda call, istorija transakcija kupca se preuzima i formatira u transkript koji se
prosleduje Al modelu. AI model analizira istoriju transakcija na osnovu datih uputstava

i vraca rezime svojih nalaza.

Nalazi se dodaju u objekat fraud_detection, a aZurirani objekat fraud_detection se

vraca kao uspesan Result.

Kori$éenjem modula ChatCompletion, klasa CheckCustomerHistory moze da iskoristi
snagu Al za analizu istorije transakcija kupca i identifikaciju potencijalnih indikatora
prevare. Ovo omogucava sofisticiranije i adaptivnije tehnike detekcije prevare, jer Al

model moZe da udi i prilagodava se novim obrascima i anomalijama tokom vremena.

Azurirani FraudDetectionWorker i klasa CheckCustomerHistory pokazuju kako
se Al radnici mogu besprekorno integrisati, unapredujuci proces detekcije prevare

inteligentnom analizom i sposobnostima donosenja odluka.
Analiza Sentimenta Kupaca

Evo jo$ jednog slicnog primera kako moZete implementirati radnika za analizu

sentimenta kupaca. Ovog puta sa mnogo manje objasnjenja, posto bi trebalo da ve¢



© 0 N O O b W N

S T e S O S N = G SN
O ©O© 0 I O O b W N =~ O

Mnostvo radnika 93

razumete kako ovaj stil programiranja funkcionise:

class CustomerSentimentAnalysisWorker
include Wisper: :Publisher

def call(feedback)

Result.ok( feedback)
.and_then(PreprocessFeedback .method( : preprocess))
.map(Per formSentimentAnalysis.method(:analyze))
.map(ExtractKeyPhrases.method( :extract))
.map(IdentifyTrends.method(:identify))
.map(Generatelnsights.method(:generate)).then do |result|

case result

in { err: SentimentAnalysisError => error }
Honeybadger .notify(error.message, context: {feedback:})

in { ok: SentimentAnalysisResult => result }
broadcast(:sentiment_analysis_completed, result)

end

end
end
end

U ovom primeru, koraci CustomerSentimentAnalysisWorker-a ukljucuju
predprocesiranje povratnih informacija (npr. uklanjanje Suma, tokenizaciju), izvodenje
analize sentimenta kako bi se utvrdio opsti sentiment (pozitivan, negativan ili
neutralan), izdvajanje klju¢nih fraza i tema, identifikovanje trendova i obrazaca, i

generisanje primenljivih uvida na osnovu analize.

Primene u zdravstvu

U domenu zdravstva, Al radnici mogu pomo¢i medicinskim stru¢njacima i istrazivac¢ima
u razli¢itim zadacima, $to dovodi do poboljsanih ishoda le¢enja i ubrzanih medicinskih

otkri¢a. Neki primeri ukljucuju:



Mnostvo radnika 94

Prijem pacijenata

Al radnici mogu pojednostaviti proces prijema pacijenata automatizacijom razlicitih

zadataka i pruZanjem inteligentne pomo¢i.

Zakazivanje pregleda: Al radnici mogu upravljati zakazivanjem pregleda
razumevanjem preferencija pacijenata, dostupnosti i hitnosti njihovih medicinskih
potreba. Mogu komunicirati sa pacijentima kroz konverzacijske interfejse, vodeéi
ih kroz proces zakazivanja i pronalaZenja najpogodnijih termina na osnovu zahteva

pacijenta i dostupnosti zdravstvenog pruzaoca usluga.

Prikupljanje medicinske istorije: Tokom prijema pacijenata, Al radnici mogu pomoci u
prikupljanju i dokumentovanju medicinske istorije pacijenta. Mogu voditi interaktivne
dijaloge sa pacijentima, postavljaju¢i relevantna pitanja o njihovim prethodnim
medicinskim stanjima, lekovima, alergijama i porodi¢noj istoriji. Al radnici mogu
koristiti tehnike obrade prirodnog jezika za tumacenje i strukturiranje prikupljenih
informacija, osiguravajuc¢i da su tafno zabelezene u elektronskom zdravstvenom

kartonu pacijenta.

Procena i stratifikacija simptoma: Al radnici mogu vrsiti pocetne procene simptoma
postavljanjem pitanja pacijentima o njihovim trenutnim simptomima, trajanju,
ozbiljnosti i povezanim faktorima. Koriste¢i medicinske baze znanja i modele
masinskog udenja, ovi radnici mogu analizirati pruzene informacije i generisati
preliminarne diferencijalne dijagnoze ili preporuciti odgovarajuée sledeée korake,
kao Sto je zakazivanje konsultacija sa zdravstvenim radnikom ili predlaganje mera

samonege.

Verifikacija osiguranja: Al radnici mogu pomodéi pri verifikaciji osiguranja tokom
prijema pacijenata. Mogu prikupljati podatke o osiguranju pacijenta, komunicirati
sa osiguravaju¢im drustvima putem API-ja ili web servisa i proveravati podobnost
za pokrice i beneficije. Ova automatizacija pomaZze u pojednostavljivanju procesa

verifikacije osiguranja, smanjuju¢i administrativno opterecenje i osiguravajuéi tacno



Mnostvo radnika 95

prikupljanje informacija.

Edukacija pacijenata i uputstva: Al radnici mogu pruziti pacijentima relevantne
edukativne materijale i uputstva zasnovana na njihovim specifi¢cnim medicinskim
stanjima ili predstoje¢im procedurama. Mogu isporudivati personalizovani sadrZaj,
odgovarati na Cesta pitanja i pruzati smernice o pripremama pre pregleda, uputstvima
za uzimanje lekova ili nezi nakon tretmana. Ovo pomaze da pacijenti budu informisani

i angaZovani tokom celokupnog zdravstvenog putovanja.

Koriséenjem Al radnika u prijemu pacijenata, zdravstvene organizacije mogu poboljsati
efikasnost, smanjiti vreme Cekanja i unaprediti celokupno iskustvo pacijenata. Ovi
radnici mogu obavljati rutinske zadatke, prikupljati ta¢ne informacije i pruzati
personalizovanu pomoé, omoguéavajuéi zdravstvenim radnicima da se fokusiraju na

pruzanje kvalitetne nege pacijentima.

Procena rizika pacijenata

Al radnici mogu igrati kljuénu ulogu u proceni rizika pacijenata analiziranjem razlicitih

izvora podataka i primenom naprednih analitickih tehnika.

Integracija podataka: Al radnici mogu prikupljati i razumeti podatke o pacijentima
iz viSe izvora, kao S$to su elektronski zdravstveni kartoni (EZK), medicinski
snimci, laboratorijski rezultati, nosivi uredaji i socijalne determinante zdravlja.
Objedinjavanjem ovih informacija u sveobuhvatni profil pacijenta, Al radnici mogu

pruziti holisticki pregled zdravstvenog stanja pacijenta i faktora rizika.

Stratifikacija rizika: Al radnici mogu koristiti prediktivhe modele za stratifikaciju
pacijenata u razlic¢ite kategorije rizika na osnovu njihovih individualnih karakteristika
i zdravstvenih podataka. Ova stratifikacija rizika omoguéava zdravstvenim radnicima
da daju prioritet pacijentima kojima je potrebna neposrednija paznja ili intervencija. Na
primer, pacijenti identifikovani kao visokorizi¢ni za odredeno stanje mogu biti oznadeni

za pomnije pracenje, preventivne mere ili ranu intervenciju.



Mnostvo radnika 96

Personalizovani profili rizika: Al radnici mogu generisati personalizovane profile
rizika za svakog pacijenta, isti¢uci specifi¢ne faktore koji doprinose njihovim skorovima
rizika. Ovi profili mogu ukljucivati uvide u Zivotni stil pacijenta, genetske predispozicije,
faktore okoline i socijalne determinante zdravlja. Pruzanjem detaljnog pregleda faktora
rizika, Al radnici mogu pomo¢i zdravstvenim radnicima da prilagode strategije

prevencije i planove leCenja individualnim potrebama pacijenata.

Kontinuirano praéenje rizika: Al radnici mogu kontinuirano pratiti podatke o
pacijentima i aZzurirati procene rizika u realnom vremenu. Kako nove informacije
postaju dostupne, kao $to su promene u vitalnim znacima, laboratorijskim rezultatima
ili pridrzavanju terapije, Al radnici mogu preracunati skorove rizika i upozoriti
zdravstvene radnike na sve znacajne promene. Ovo proaktivno pracenje omogucava

pravovremene intervencije i prilagodavanja planova nege pacijenata.

Podrska klinickom odluéivanju: Al radnici mogu integrisati rezultate procene rizika u
sisteme za podrsku klinickom odluéivanju, pruzajuéi zdravstvenim radnicima preporuke
i upozorenja zasnovana na dokazima. Na primer, ako skor rizika pacijenta za odredeno
stanje prede odredeni prag, Al radnik moze podstaci zdravstvenog radnika da razmotri
specificne dijagnosticke testove, preventivne mere ili opcije leCenja zasnovane na

klini¢kim smernicama i najboljoj praksi.

Ovi radnici mogu da obrade ogromne koli¢ine podataka o pacijentima, primene
sofisticirane analize i generiSu upotrebljive uvide koji podrzavaju klini¢ko odluc¢ivanje.
Ovo na kraju dovodi do poboljsanih ishoda leCenja pacijenata, smanjenih troskova

zdravstvene zastite i unapredenog upravljanja zdravljem stanovnistva.



Mnostvo radnika 97

Al radnik kao menadzer procesa

TRIGGER

l

Process Manager
Reply 3 Reply

Function A Function B Function C Finished

U kontekstu aplikacija vodenih vestackom inteligencijom, radnik moze biti
dizajniran da funkcionise kao MenadZer procesa, kako je opisano u knjizi
“Enterprise Integration Patterns” autora Gregor Hohpe. MenadzZer procesa je centralna
komponenta koja odrzava stanje procesa i odreduje sledece korake obrade na osnovu

medurezultata.

Kada Al radnik deluje kao MenadzZer procesa, prima dolaznu poruku koja inicijalizuje
proces, poznatu kao poruka okidac. Al radnik zatim odrzava stanje izvrsavanja procesa
(kao transkript konverzacije) i obraduje poruku kroz niz koraka obrade implementiranih
kao funkcije alata, koje mogu biti sekvencijalne ili paralelne, i pozivaju se po njegovom

nahodenju.

Ako koristite klasu AI modela poput GPT-4 koja zna kako da izvriava
funkcije paralelno, onda vas radnik moze istovremeno izvrsavati vise koraka.
Priznajem, nisam to sam probao i moj instinkt govori da rezultati mogu

varirati.



© 0 N O O b W N

NN N NN B Rl sl s s
W N 20 O 0N 0 0k WwN =~

Mnostvo radnika 98

Nakon svakog pojedinacnog koraka obrade, kontrola se vraca nazad Al radniku,
omogucavaju¢i mu da odredi sledeéi korak (ili korake) obrade na osnovu trenutnog

stanja i dobijenih rezultata.

Cuvajte svoje poruke okidace

Prema mom iskustvu, pametno je implementirati poruku okida¢ kao objekat podrzan
bazom podataka. Na taj nacin je svaka instanca procesa identifikovana jedinstvenim
primarnim klju¢em i daje vam mesto za cuvanje stanja povezanog sa izvrSavanjem,

ukljucujuéi Al transkript konverzacije.

Na primer, evo pojednostavljene verzije Olympia-inog modela AccountChange, koji

predstavlja zahtev za promenu korisnickog naloga.

index_account_changes_on_account_id (account_id)
Foreign Keys

fk_rails_... (account_id => accounts.id)

# == Schema Information

#

# Table name: account_changes

#

# id ruuid not null, primary key
# description :string

# state :string not null
# transcript :jsonb

# created_at :datetime not null
# updated_at :datetime not null
# gccount_id :uuid not null
#

# Indexes

#

#

#

#

#

#

#

class AccountChange < ApplicationRecord

belongs_to :account

validates :description, presence: true



25
26
27
28
29
30
31
32
33
34
35
36
37
38

Mnostvo radnika 99

after_commit -> {
broadcast( :account_change_requested, self)

}, on: :create

state_machine initial: :requested do
event :completed do
transition all => :complete
end
event :failed do
transition all => :requires_human_review
end
end

end

Klasa AccountChange sluzi kao poruka okida¢ koja pokrece proces za rukovanje
zahtevom za promenu naloga. Primetite kako se emituje ka Olympia-inom Wisper
podsistemu za objavljivanje/pretplatu nakon Sto se zavrsi izvrSavanje transakcije

kreiranja.

Cuvanje poruke okidaca u bazi podataka na ovaj na¢in obezbeduje trajni zapis svakog
zahteva za promenu naloga. Svakoj instanci klase AccountChange dodeljuje se
jedinstveni primarni klju¢, sto omogucava laku identifikaciju i pracenje pojedinacnih
zahteva. Ovo je posebno korisno za potrebe revizorskog belezenja, jer omogucava
sistemu da odrZava istorijski zapis svih promena naloga, uklju¢ujuéi kada su zatrazene,

koje promene su zatraZene i trenutno stanje svakog zahteva.

U datom primeru, klasa AccountChange ukljuéuje polja kao 3to su description za
belezenje detalja zatrazene promene, state za predstavljanje trenutnog stanja zahteva
(npr. zatraZeno, zavrSeno, zahteva_ljudski_pregled), i transcript za ¢uvanje transkripta
Al razgovora vezanog za zahtev. Polje description je stvarni prompt koji se koristi za
pokretanje prvog chat completion-a sa Al-jem. Cuvanje ovih podataka pruza vredan

kontekst i omogucava bolje pracenje i analizu procesa promene naloga.

Cuvanje poruka okida¢a u bazi podataka omogucéava robusno rukovanje greskama

i oporavak. Ako dode do greske tokom obrade zahteva za promenu naloga, sistem


https://github.com/krisleech/wisper

Mnostvo radnika 100

oznacava zahtev kao neuspesan i prelazi u stanje koje zahteva ljudsku intervenciju. Ovo
osigurava da nijedan zahtev nije izgubljen ili zaboravljen, i da se svi problemi mogu

pravilno resiti.

Al radnik, kao Menadzer Procesa, obezbeduje centralnu tacku kontrole i omogucava
moéne moguénosti izvestavanja i otklanjanja gresaka u procesu. Medutim, vazno je
napomenuti da koriS¢enje Al radnika kao Menadzera Procesa za svaki scenario toka

rada u vasoj aplikaciji moze biti preterano.

Integracija Al Radnika U Arhitekturu Vase Aplikacije

Prilikom ugradivanja Al radnika u arhitekturu vase aplikacije, potrebno je razmotriti
nekoliko tehnickih aspekata kako bi se osigurala glatka integracija i efikasna
komunikacija izmedu Al radnika i drugih komponenti aplikacije. Ovaj odeljak razmatra
kljuéne aspekte dizajniranja tih interfejsa, rukovanja protokom podataka i upravljanja

zivotnim ciklusom Al radnika.

Dizajniranje Jasnih Interfejsa i Komunikacionih Protokola

Za omogucavanje besprekorne integracije izmedu Al radnika i drugih komponenti
aplikacije, klju¢no je definisati jasne interfejse i komunikacione protokole. Razmotrite

sledece pristupe:

Integracija zasnovana na API-ju: IzloZite funkcionalnost AI radnika kroz dobro
definisane API-je, kao $to su RESTful krajnje tacke ili GraphQL Seme. Ovo omogucava
drugim komponentama da komuniciraju sa Al radnicima koriste¢i standardne HTTP
zahteve i odgovore. Integracija zasnovana na API-ju pruza jasan ugovor izmedu Al
radnika i komponenti koje ih koriste, olaksavajuéi razvoj, testiranje i odrzavanje tacaka

integracije.



Mnostvo radnika 101

Komunikacija zasnovana na porukama: Implementirajte obrasce komunikacije
zasnovane na porukama, kao $to su redovi poruka ili sistemi za objavljivanje-pretplatu,
kako biste omoguéili asinhronu interakciju izmedu AI radnika i drugih komponenti.
Ovaj pristup odvaja Al radnike od ostatka aplikacije, omoguéavajuci bolju skalabilnost,
toleranciju na greske i labavo povezivanje. Komunikacija zasnovana na porukama je
posebno korisna kada je obrada koju vrse Al radnici vremenski zahtevna ili resursno
intenzivna, jer omoguéava drugim delovima aplikacije da nastave sa izvrS§avanjem bez

cekanja da Al radnici zavrse svoje zadatke.

Arhitektura vodena dogadajima: Dizajnirajte svoj sistem oko dogadaja i okidaca koji
aktiviraju Al radnike kada se ispune odredeni uslovi. Al radnici se mogu pretplatiti na
relevantne dogadaje i reagovati u skladu sa tim, izvrsavajuéi svoje odredene zadatke
kada se dogadaji dese. Arhitektura vodena dogadajima omogucava obradu u realnom
vremenu i dozvoljava da se Al radnici pozivaju po potrebi, smanjujuci nepotrebnu
potrosnju resursa. Ovaj pristup je pogodan za scenarije gde Al radnici treba da odgovore

na specifi¢ne akcije ili promene u stanju aplikacije.

Rukovanje Protokom Podataka i Sinhronizacija

Prilikom integracije Al radnika u vasu aplikaciju, kljuéno je osigurati nesmetan protok
podataka i odrzavati konzistentnost podataka izmedu Al radnika i drugih komponenti.

Razmotrite sledece aspekte:

Priprema podataka: Pre nego $to podatke prosledite Al radnicima, mozda ¢ete morati
da izvrsite razli¢ite zadatke pripreme podataka, kao §to su CiSéenje, formatiranje
i/ili transformacija ulaznih podataka. Ne samo da Zzelite da osigurate da Al radnici
mogu efikasno da obraduju podatke, ve¢ i da se uverite da ne traéite tokene dajuéi
paznju informacijama koje radnik moze smatrati beskorisnim u najboljem slucaju, a
ometajuéim u najgorem. Priprema podataka moze ukljucivati zadatke poput uklanjanja

$uma, rukovanja nedostaju¢im vrednostima ili konverzije tipova podataka.

Postojanost podataka: Kako ¢ete skladistiti i odrzavati podatke koji teku u i iz Al



Mnostvo radnika 102

radnika? Razmotrite faktore kao $to su obim podataka, obrasci upita i skalabilnost. Da
li je potrebno sacuvati transkript Al-ja kao odraz njegovog “procesa razmisljanja” za

potrebe revizije ili otklanjanja gresaka, ili je dovoljno imati samo zapis rezultata?

Preuzimanje podataka: Dobavljanje podataka potrebnih radnicima moze ukljucivati
upite baza podataka, Citanje iz datoteka ili pristup eksternim API-jima. Pobrinite se
da razmotrite latenciju i kako ¢e Al radnici imati pristup najazurnijim podacima. Da
li im je potreban potpun pristup vasoj bazi podataka ili biste trebali usko definisati
opseg njihovog pristupa prema onome $to rade? Sta je sa skaliranjem? Razmotrite
mehanizme kesiranja za poboljsanje performansi i smanjenje opterecenja na osnovne

izvore podataka.

Sinhronizacija podataka: Kada vise komponenti, uklju¢ujuc¢i Al radnike, pristupa
i modifikuje deljene podatke, vazno je implementirati odgovaraju¢e mehanizme
sinhronizacije kako bi se odrzala konzistentnost podataka. Strategije zaklju¢avanja baze
podataka, kao $to su optimisticko ili pesimisticko zakljucavanje, mogu vam pomo¢i da
sprecite konflikte i osigurate integritet podataka. Implementirajte tehnike upravljanja
transakcijama za grupisanje povezanih operacija nad podacima i odrzavanje ACID

svojstava (atomi¢nost, konzistentnost, izolacija i trajnost)

Upravljanje greSkama i oporavak: Implementirajte robusne mehanizme za
upravljanje greskama i oporavak kako biste se nosili sa problemima vezanim za
podatke koji se mogu pojaviti tokom procesa protoka podataka. Elegantno upravljajte
izuzecima i obezbedite smislene poruke o greskama koje pomazu pri otklanjanju
greSaka. Implementirajte mehanizme ponovnih pokusaja i rezervne strategije za
rukovanje privremenim otkazima ili prekidima mreze. Definiite jasne procedure za

oporavak i vracanje podataka u slucaju ostecenja ili gubitka podataka.

Pazljivim dizajniranjem i implementacijom mehanizama protoka i sinhronizacije
podataka, mozete osigurati da vasi Al radnici imaju pristup tacnim, konzistentnim i
azurnim podacima. Ovo im omogucava da efikasno obavljaju svoje zadatke i proizvode

pouzdane rezultate.



Mnostvo radnika 103

Upravljanje zivotnim ciklusom Al radnika

Razvijte standardizovan proces za inicijalizaciju i konfiguraciju Al radnika. Naklonjen
sam okvirima koji standardizuju naéin na koji definiSete postavke kao $to su imena
modela, sistemske direktive i definicije funkcija. Osigurajte da je proces inicijalizacije

automatizovan i ponovljiv kako bi se olaksalo rasporedivanje i skaliranje.

Implementirajte sveobuhvatne mehanizme za praéenje i beleZenje kako biste pratili
zdravlje i performanse Al radnika. Prikupljajte metrike kao $to su iskoris¢enost resursa,
vreme obrade, stope gresaka i propusnost. Koristite centralizovane sisteme za belezenje
kao §to je ELK stack (Elasticsearch, Logstash, Kibana) za agregaciju i analizu zapisa iz

viSe Al radnika.

Ugradite toleranciju na greske i otpornost u arhitekturu Al radnika. Implementirajte
mehanizme za upravljanje greskama i oporavak kako biste elegantno rukovali otkazima
ili izuzecima. Veliki jezi¢ki modeli su jo§ uvek tehnologija u razvoju; pruzaoci usluga
Cesto prestaju sa radom u neocekivanim trenucima. Koristite mehanizme ponovnih

pokusaja i prekidace da sprecite kaskadne otkaze.

Kompozabilnost i orkestracija Al radnika

Jedna od klju¢nih prednosti arhitekture AI radnika je njena kompozabilnost, koja
vam omogucéava da kombinujete i orkestrate vise Al radnika za reSavanje sloZenih
problema. Razbijanjem veceg zadatka na manje, upravljivije podzadatke, kojima
upravlja specijalizovani Al radnik, moZete stvoriti mocne i fleksibilne sisteme. U ovom
odeljku ¢éemo istraziti razliite pristupe komponovanju i orkestraciji “mnostva” Al

radnika.

Ulancéavanje Al radnika za viSekoracne tokove rada

U mnogim scenarijima, sloZen zadatak se moze razloziti na niz sekvencijalnih koraka,

gde izlaz jednog Al radnika postaje ulaz za sledeceg. Ovo ulancavanje Al radnika



© 0 N O O b W N =

I = =N
B W N~

Mnostvo radnika 104

stvara viSekoracni tok rada ili cevovod. Svaki Al radnik u lancu se fokusira na odredeni

podzadatak, a kona¢ni izlaz je rezultat kombinovanih napora svih radnika.

Razmotrimo primer u kontekstu Ruby on Rails aplikacije za obradu korisnicki
generisanog sadrzaja. Tok rada ukljucuje sledeée korake, koji su, priznajemo, verovatno
pojedinacno previse jednostavni da bi vredelo razlagati ih na ovaj nacin u stvarnim

slucajevima upotrebe, ali ¢ine primer laksim za razumevanje:

1. Ciséenje teksta: Al radnik zaduZen za uklanjanje HTML oznaka, pretvaranje teksta

u mala slova i upravljanje Unicode normalizacijom.
2. Detekcija jezika: Al radnik koji identifikuje jezik o¢is¢enog teksta.

3. Analiza sentimenta: Al radnik koji odreduje sentiment (pozitivan, negativan ili

neutralan) teksta na osnovu detektovanog jezika.

4. Kategorizacija sadrzaja: Al radnik koji klasifikuje tekst u predefinisane kategorije

koriste¢i tehnike obrade prirodnog jezika.

Evo vrlo pojednostavljenog primera kako moZete ulancati ove Al radnike koriste¢i Ruby:

class ContentProcessor
def initialize(text)
@text = text
end

def process
cleaned_text = TextCleanupWorker .new(@text).call
language = LanguageDetectionWorker .new(cleaned_text).call
sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call
category = CategorizationWorker.new(cleaned_text, language).call

{ cleaned_text:, language:, sentiment:, category: }
end

end

U ovom primeru, klasa ContentProcessor se inicijalizuje sa sirovim tekstom i povezuje

Al radnike zajedno u metodi process. Svaki Al radnik izvrSava svoj specifi¢ni zadatak



W N -

© 0 N o O

10
11
12
13
14
15
16

Mnostvo radnika 105

i prosleduje rezultat slede¢em radniku u lancu. Konacni izlaz je hes koji sadrzi o¢is¢eni

tekst, detektovani jezik, sentiment i kategoriju sadrzaja.

Paralelna obrada za nezavisne Al radnike

U prethodnom primeru, Al radnici su povezani sekvencijalno, gde svaki radnik obraduje
tekst i prosleduje rezultat slede¢em radniku. Medutim, ako imate vise Al radnika koji
mogu nezavisno da rade na istom ulazu, moZete optimizovati tok rada tako $to éete ih

obraditi paralelno.

U datom scenariju, nakon §to TextCleanupWorker izvrsi ¢isCenje teksta,
LanguageDetectionWorker, SentimentAnalysisWorker i CategorizationWorker
mogu svi nezavisno da obraduju ocisceni tekst. Pokretanjem ovih radnika paralelno,
mozete potencijalno smanjiti ukupno vreme obrade i poboljsati efikasnost vaseg toka

rada.

Da biste postigli paralelnu obradu u Ruby-ju, mozete iskoristiti tehnike konkurentnosti
kao $to su niti ili asinhrono programiranje. Evo primera kako mozete modifikovati klasu

ContentProcessor da obraduje poslednja tri radnika paralelno koriste¢i niti:

require 'concurrent'

class ContentProcessor
def initialize(text)
@text = text

end

def process
cleaned_text = TextCleanupWorker.new(@text).call

language_future = Concurrent: :Future.execute do
LanguageDetectionWorker .new(cleaned_text).call
end

sentiment_future = Concurrent: :Future.execute do
SentimentAnalysisWorker .new(cleaned_text).call



17
18
19
20
21
22
23
24
25
26
27
28
29

Mnostvo radnika 106

end

category_future = Concurrent: :Future.execute do
CategorizationWorker.new(cleaned_text).call
end

language = language_future.value
sentiment = sentiment_future.value
category = category_future.value

{ cleaned_text:, language:, sentiment:, category: }
end
end

U ovoj optimizovanoj verziji, koristimo biblioteku concurrent-ruby za kreiranje
Concurrent::Future objekata za svakog od nezavisnih Al radnih procesa. Objekat

Future predstavlja izracunavanje koje Ce se izvrsiti asinhrono u zasebnoj niti.

Nakon koraka ¢isCenja teksta, kreiramo tri Future objekta: language future,
sentiment_future i category_future. Svaki Future izvrSava svoj odgovarajuci
Al radni proces (LanguageDetectionWorker, SentimentAnalysisWorker i

CategorizationWorker) u zasebnoj niti, prosledujuéi cleaned_text kao ulaz.

Pozivanjem metode value na svakom Future objektu, ¢ekamo da se izratunavanje zavrsi
i preuzimamo rezultat. Metoda value blokira izvr§avanje dok rezultat ne bude dostupan,

osiguravajuéi da su svi paralelni radni procesi zavrsili obradu pre nastavka.

Na kraju, konstruisemo izlazni hes§ sa ocis¢enim tekstom i rezultatima iz paralelnih

radnih procesa, bas kao u originalnom primeru.

Obradom nezavisnih Al radnih procesa paralelno, mozete potencijalno smanjiti ukupno
vreme obrade u poredenju sa sekvencijalnim izvrSavanjem. Ova optimizacija je posebno
korisna kada se radi sa vremenski zahtevnim zadacima ili kada se obraduju velike

koli¢ine podataka.

Medutim, vazno je napomenuti da stvarni dobici u performansama zavise od razli¢itih

faktora, kao sto su sloZenost svakog radnog procesa, dostupni sistemski resursi i rezijski


https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Mnostvo radnika 107

troskovi upravljanja nitima. Uvek je dobra praksa testirati performanse i profilisati svoj

kod kako biste odredili optimalni nivo paralelizma za vas specifi¢ni slu¢aj upotrebe.

Dodatno, kada implementirate paralelnu obradu, vodite racuna o svim deljenim
resursima ili zavisnostima izmedu radnih procesa. Osigurajte da radni procesi mogu
raditi nezavisno bez konflikata ili stanja trke. Ako postoje zavisnosti ili deljeni resursi,
mozda cete morati implementirati odgovarajuée mehanizme sinhronizacije kako
biste odrzali integritet podataka i izbegli probleme poput medusobnog blokiranja ili

nedoslednih rezultata.

Ruby-jev Global Interpreter Lock i asinhrona obrada

Vazno je razumeti implikacije Ruby-jevog Global Interpreter Lock-a (GIL) kada

razmatramo asinhronu obradu zasnovanu na nitima u Ruby-ju.

GIL je mehanizam u Ruby-jevom interpreteru koji osigurava da samo jedna nit moze
izvravati Ruby kod u jednom trenutku, ¢ak i na procesorima sa vise jezgara. To znaci
da iako se vise niti moze kreirati i njima upravljati unutar Ruby procesa, samo jedna

nit moze aktivno izvrsavati Ruby kod u bilo kom trenutku.

GIL je dizajniran da pojednostavi implementaciju Ruby interpretera i obezbedi
sigurnost niti za Ruby-jeve interne strukture podataka. Medutim, on takode

ograni¢ava mogucnost pravog paralelnog izvrsavanja Ruby koda.

Kada koristite niti u Ruby-ju, kao $to je to slu¢aj sa bibliotekom concurrent-ruby ili
ugradenom klasom Thread, niti su podlozne ogranic¢enjima GIL-a. GIL dozvoljava
svakoj niti da izvr§ava Ruby kod tokom kratkog vremenskog isecka pre prebacivanja

na drugu nit, stvarajuéi iluziju konkurentnog izvrsavanja.

Medutim, zbog GIL-a, stvarno izvrsavanje Ruby koda ostaje sekvencijalno. Dok jedna
nit izvrsava Ruby kod, druge niti su u sustini pauzirane, éekajuéi svoj red da dobiju

GIL i izvrse se.



Mnostvo radnika 108

To znaci da je asinhrona obrada zasnovana na nitima u Ruby-ju najefikasnija za
U/I vezane zadatke, kao $to je Cekanje na odgovore eksternih API-ja (kao $to su
veliki jezicki modeli hostovani od strane tre¢ih strana) ili izvodenje U/I operacija
sa fajlovima. Kada nit naide na U/I operaciju, mozZe osloboditi GIL, omogucavajuci

drugim nitima da se izvrSavaju dok ¢ekaju da se U/I operacija zavrsi.

S druge strane, za procesorski vezane zadatke, kao $to su intenzivna izra¢unavanja
ili dugotrajna obrada Al radnih procesa, GIL moze ograniciti potencijalne dobitke u
performansama kod paralelizma zasnovanog na nitima. Posto samo jedna nit moze
izvr$avati Ruby kod u jednom trenutku, ukupno vreme izvrsavanja mozda nece biti

znacajno smanjeno u poredenju sa sekvencijalnom obradom.

Da biste postigli pravo paralelno izvrsavanje za procesorski vezane zadatke u Ruby-ju,

mozda Cete morati istraziti alternativne pristupe, kao $to su:

« Kori$cenje paralelizma zasnovanog na procesima sa vise Ruby procesa, od
kojih svaki radi na zasebnom procesorskom jezgru.

« Kori$cenje eksternih biblioteka ili okvira koji pruzaju nativna prosirenja ili
interfejse ka jezicima bez GIL-a, kao §to su C ili Rust.,

« Kori$cenje distribuiranih ra¢unarskih okvira ili redova poruka za distribuciju

zadataka preko viSe masina ili procesa.

Kljuéno je razmotriti prirodu vasih zadataka i ogranicenja koja namece GIL prilikom
dizajniranja i implementacije asinhrone obrade u Ruby-ju. Dok asinhrona obrada
zasnovana na nitima moze pruziti prednosti za U/I vezane zadatke, mozda nece
ponuditi znacajna poboljSanja performansi za procesorski vezane zadatke zbog

ogranicenja GIL-a.



Mnostvo radnika 109

Ensemble tehnike za poboljsanu preciznost

Ensemble tehnike podrazumevaju kombinovanje izlaza vise Al radnih procesa kako bi
se poboljsala ukupna preciznost ili robusnost sistema. Umesto oslanjanja na jedan Al
radni proces, ensemble tehnike koriste kolektivnu inteligenciju vise radnih procesa za

donosenje informisanijih odluka.

Ansambli su posebno vazni ako razli¢iti delovi vaseg radnog toka najbolje
P funkcioni$u sa razli¢itim Al modelima, $to je ¢e$¢a pojava nego $to mozda
mislite. Mo¢ni modeli poput GPT-4 su izuzetno skupi u poredenju sa manje
sposobnim opcijama otvorenog koda, i verovatno nisu potrebni za svaki

pojedinacni korak radnog toka vase aplikacije.

Jedna uobicajena tehnika ansambla je ve¢insko glasanje, gde vise Al izvrsilaca nezavisno
obraduje isti ulaz, a kona¢ni izlaz se odreduje vec¢inskim konsenzusom. Ovaj pristup
moze pomo¢i u ublazavanju uticaja gre$aka pojedinaé¢nih izvrsilaca i poboljsati ukupnu

pouzdanost sistema.

Razmotrimo primer gde imamo tri Al izvr$ioca za analizu sentimenta, od kojih svaki
koristi razli¢it model ili je snabdeven razli¢itim kontekstom. MoZemo kombinovati
njihove izlaze koriste¢i vecinsko glasanje kako bismo odredili kona¢no predvidanje

sentimenta.



© 0 N O O b W N e

I T O
© 00 N O O b W N =~ O

Mnostvo radnika 110

class SentimentAnalysisEnsemble
def initialize(text)
@text = text
end

def analyze
predictions = |
SentimentAnalysisWorker1.new(@text).analyze,
SentimentAnalysisWorker2.new(@text).analyze,
SentimentAnalysisWorker3.new(@text).analyze

predictions
.group_by { |sentiment| sentiment }
.max_by { |_, votes| votes.size }
Cfirst

end
end

U ovom primeru, klasa SentimentAnalysisEnsemble. se inicijalizuje sa tekstom i poziva
tri razli¢ita Al radnika za analizu sentimenta. Metoda analyze prikuplja predvidanja od
svakog radnika i odreduje vecinski sentiment koriste¢i metode group_by i max_by.

Konac¢ni rezultat je sentiment koji dobija najvise glasova od ansambla radnika

’ Ansambli su o¢igledno slucaj gde eksperimentisanje sa paralelizmom moze

biti vredno vaseg vremena.

Dinamicki odabir i pozivanje Al radnika

U nekim, ako ne i u ve¢ini slu¢ajeva, odredeni Al radnik koji ¢e biti pozvan moze zavisiti
od uslova izvrSavanja ili korisni¢kih unosa. Dinamicki odabir i pozivanje Al radnika

omogucavaju fleksibilnost i prilagodljivost sistema.



© 0 N O O b W N =

I O T O
© 00 N O O B W N =~ O

Mnostvo radnika 111

Mozda ¢ete biti u iskusenju da pokusate da uklopite mnogo funkcionalnosti u
jednog Alradnika, daju¢i mu mnostvo funkcija i veliki komplikovani prompt
koji objasnjava kako ih pozvati. Odupreti se iskusenju, verujte mi. Jedan od
razloga zasto se pristup o kojem govorimo u ovom poglavlju zove “Mnostvo
radnika” je da nas podseti da je pozeljno imati mnogo specijalizovanih

radnika, od kojih svaki obavlja svoj mali posao u sluzbi veée svrhe.

Na primer, razmotrite ¢etbot aplikaciju gde su razli¢iti Al radnici odgovorni za obradu
razlicitih tipova korisnickih upita. Na osnovu korisnickog unosa, aplikacija dinamicki

bira odgovarajuceg Al radnika za obradu upita.

class ChatbotController < ApplicationController
def process_query
query = params|:query]
query_type = QueryClassifierWorker.new(query).classify

case query_type
when 'greeting'

response = GreetingWorker.new(query).generate_response
when 'product_inquiry'

response = ProductInquiryWorker.new(query).generate_response
when 'order_status'

response = OrderStatusWorker.new(query).generate_response
else

response = DefaultResponseWorker.new(query).generate_response
end

render json: { response: response }
end
end

U ovom primeru, ChatbotController prima korisnicki upit kroz process_query akciju.
Prvo koristi QueryClassifierWorker da odredi tip upita. Na osnovu klasifikovanog tipa
upita, kontroler dinamicki bira odgovarajuceg Al radnika za generisanje odgovora. Ova
dinamicka selekcija omogucava éetbotu da obraduje razlicite tipove upita i usmerava ih

ka relevantnim Al radnicima.



Mnostvo radnika 112

’ Posto je rad QueryClassifierWorker-a relativno jednostavan i

ne zahteva mnogo konteksta ili definicija funkcija, verovatno ga
mozete implementirati koriste¢i ultra-brz mali VJM kao 35to je
mistralai/mixtral-8x7b-instruct:nitro. On ima moguénosti koje su
bliske GPT-4 nivou na mnogim zadacima i, u trenutku dok ovo pisem, Groq

ga moze posluzivati neverovatnom brzinom od 444 tokena u sekundi.

Kombinovanje tradicionalne OPJ sa VJM-ovima

Tako su Veliki jezicki modeli (VJM) revolucionirali oblast obrade prirodnog jezika
(OPJ), nude¢i neprevazidenu svestranost i performanse u Sirokom spektru zadataka,
oni nisu uvek najefikasnije ili najisplativije reSenje za svaki problem. U mnogim

slu¢ajevima, kombinovanje tradicionalnih OP] tehnika sa VJIM-ovima moze dovesti do

Zamislite VJM-ove kao $vajcarske nozeve OPJ-a-—neverovatno svestrane i mo¢ne, ali ne
nuzno najbolji alat za svaki posao. Ponekad, namenski alat poput vadicepa ili otvaraca
za konzerve moze biti efikasniji za odredeni zadatak. Sli¢no tome, tradicionalne OP]
tehnike, kao §to su grupisanje dokumenata, identifikacija tema i klasifikacija, ¢esto mogu

pruziti ciljanije i ekonomiénije resenje za odredene aspekte vaseg OP]J procesa.

Jedna od klju¢nih prednosti tradicionalnih OP]J tehnika je njihova rac¢unarska efikasnost.
Ove metode, koje se Cesto oslanjaju na jednostavnije statisticke modele ili pristupe
zasnovane na pravilima, mogu obradivati velike koli¢ine tekstualnih podataka mnogo
brze i sa manjim rac¢unarskim opterecenjem u poredenju sa VJM-ovima. Ovo ih ¢ini
posebno pogodnim za zadatke koji ukljucuju analizu i organizaciju velikih korpusa
dokumenata, kao $to je grupisanje sli¢nih ¢lanaka ili identifikacija klju¢nih tema unutar

kolekcije tekstova.

Stavise, tradicionalne OPJ tehnike ¢esto mogu postiéi visoku ta¢nost i preciznost za

specificne zadatke, posebno kada su obucene na domenski specificnim skupovima


https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Mnostvo radnika 113

podataka. Na primer, dobro podesen klasifikator dokumenata koji koristi tradicionalne
algoritme masinskog ucenja poput Masina sa vektorima podrske (MVP) ili Naivnog
Bajesa moze precizno kategorisati dokumente u predefinisane kategorije uz minimalne

racunarske troskove.

Medutim, VJM-ovi zaista blistaju kada su u pitanju zadaci koji zahtevaju dublje
razumevanje jezika, konteksta i rezonovanja. Njihova sposobnost da generisu
koherentan i kontekstualno relevantan tekst, odgovaraju na pitanja i sumiraju duge
pasuse je neprevazidena tradicionalnim OPJ metodama. VJM-ovi mogu efikasno da se
nose sa slozenim lingvistickim fenomenima, kao $to su dvosmislenost, koreferencija
i idiomatski izrazi, ¢ine¢i ih neprocenjivim za zadatke koji zahtevaju generisanje ili

razumevanje prirodnog jezika.

Prava snaga lezi u kombinovanju tradicionalnih OP] tehnika sa VJM-ovima kako bi
se stvorili hibridni pristupi koji koriste prednosti oba. Korisé¢enjem tradicionalnih OP]
metoda za zadatke poput pretprocesiranja dokumenata, grupisanja i ekstrakcije tema,
moZete efikasno organizovati i strukturirati vase tekstualne podatke. Ove strukturirane
informacije se zatim mogu proslediti VJM-ovima za naprednije zadatke, kao §to su

generisanje rezimea, odgovaranje na pitanja ili kreiranje sveobuhvatnih izvestaja.

Na primer, razmotrimo slucaj upotrebe gde Zelite da generisete izvestaj o trendovima za
specifi¢an domen na osnovu velikog korpusa pojedina¢nih dokumenata o trendovima.
Umesto da se oslanjate isklju¢ivo na VJM-ove, §to moZe biti racunarski skupo i
vremenski zahtevno za obradu velikih koli¢ina teksta, moZete primeniti hibridni

pristup:

1. Koristite tradicionalne OP]J tehnike, kao $to su modelovanje tema (npr. Latentna
Dirihleova alokacija) ili algoritmi grupisanja (npr. K-sredine), za grupisanje sli¢nih
dokumenata o trendovima i identifikaciju klju¢nih tema unutar korpusa.

2. Prosledite grupisane dokumente i identifikovane teme VJM-u, koriste¢i njegove
superiorne sposobnosti razumevanja i generisanja jezika za kreiranje koherentnih

i informativnih rezimea za svaku grupu ili temu.



Mnostvo radnika 114

3. Na kraju, koristite VIM za generisanje sveobuhvatnog izvestaja o trendovima
kombinovanjem pojedina¢nih rezimea, isticanjem najznacajnijih trendova i

pruzanjem uvida i preporuka na osnovu objedinjenih informacija.

Kombinovanjem tradicionalnih OPJ tehnika sa VJM-ovima na ovaj nacin, moZete
efikasno obraditi velike koli¢ine tekstualnih podataka, izvu¢i smislene uvide i generisati

visokokvalitetne izvestaje uz optimizaciju racunarskih resursa i troskova.

Kada se upustate u NLP projekte, neophodno je pazljivo proceniti specifi¢ne zahteve
i ograniCenja svakog zadatka i razmotriti kako se tradicionalne NLP metode i VJM
mogu zajedno iskoristiti za postizanje najboljih rezultata. Kombinovanjem efikasnosti
i preciznosti tradicionalnih tehnika sa svestranosc¢u i snagom VJM-a, mozete kreirati
izuzetno efikasna i ekonomic¢na NLP resenja koja donose vrednost vasim korisnicima i

zainteresovanim stranama.



Upotreba alata

U domenu razvoja aplikacija vodenih vestatkom inteligencijom, koncept

“upotrebe alata” ili “pozivanja funkcija” pojavio se kao moéna tehnika koja omoguéava
vaem LLM-u da se poveZe sa spoljnim alatima, API-jima, funkcijama, bazama
podataka i drugim resursima. Ovaj pristup omoguéava bogatiji skup ponasanja od
samog generisanja teksta, kao i dinami¢nije interakcije izmedu vasih Al komponenti i
ostatka ekosistema vase aplikacije. Kao §to ¢emo razmotriti u ovom poglavlju, upotreba
alata vam takode pruza mogucnost da va§ Al model generiSe podatke na strukturiran

nacin.

Sta je upotreba alata?

Upotreba alata, takode poznata kao pozivanje funkcija, je tehnika koja omogucava

programerima da definiSu listu funkcija sa kojima LLM moZe da komunicira tokom



Upotreba alata 116

procesa generisanja. Ovi alati mogu biti sve od jednostavnih pomo¢nih funkcija do
slozenih API-ja ili upita baze podataka. Omoguéavaju¢i LLM-u pristup ovim alatima,
programeri mogu prosiriti moguénosti modela i omoguciti mu da izvrsava zadatke koji

zahtevaju spoljno znanje ili akcije.

Slika 8. Primer definicije funkcije za Al radnika koji analizira dokumente

FUNCTION = {
name: "save_analysis",
description: "Save analysis data for document",
parameters: {
type: "object",
properties: {
title: {
type: "string",
maxLength: 140
},
summary: {
type: "string",
description: "comprehensive multi-paragraph summary with
overview and list of sections (if applicable)"
3
tags: {
type: "array",
items: {
type: "string",
description: "lowercase tags representing main themes
of the document"

}
}I

"required": %w[title summary tags]

}

}. freeze

Kljuéna ideja iza upotrebe alata je da se LLM-u omogu¢i dinamicki odabir i izvr$avanje
odgovaraju¢ih alata na osnovu korisnickog unosa ili zadatka koji treba obaviti.
Umesto da se oslanja isklju¢ivo na prethodno obuéeno znanje modela, upotreba alata

omoguéava LLM-u da koristi eksterne resurse za generisanje preciznijih, relevantnijih



Upotreba alata 117

potpomognuto pretrazivanjem) mnogo laksim za implementaciju nego $to bi to inade

bilo.

Imajte na umu da, osim ako nije drugacije navedeno, ova knjiga pretpostavlja da vas
Al model nema pristup ugradenim alatima na strani servera. Sve alate koje Zelite da
udinite dostupnim vagem Al-ju morate eksplicitno deklarisati u svakom API zahtevu,
sa odredbama za njihovo izvrSavanje ako i kada vas Al naznaci da bi zeleo da koristi

taj alat u svom odgovoru.

Potencijal upotrebe alata

Upotreba alata otvara Sirok spektar moguénosti za aplikacije zasnovane na vestackoj

inteligenciji. Evo nekoliko primera $ta se moze posti¢i upotrebom alata:

1.

Cetbotovi i virtuelni asistenti: Povezivanjem LLM-a sa eksternim alatima,
Cetbotovi i virtuelni asistenti mogu obavljati sloZenije zadatke, kao §to su
preuzimanje informacija iz baza podataka, izvr§avanje API poziva ili interakcija
sa drugim sistemima. Na primer, ¢etbot bi mogao koristiti CRM alat za promenu

statusa ponude na osnovu korisni¢kog zahteva.

. Analiza podataka i uvidi: LLM-ovi se mogu povezati sa alatima ili bibliotekama

za analizu podataka kako bi izvrsavali napredne zadatke obrade podataka. Ovo
omogucéava aplikacijama da generisu uvide, sprovode uporedne analize ili pruzaju

preporuke zasnovane na podacima na osnovu korisnickih upita.

. Pretraga i preuzimanje informacija: Upotreba alata omoguc¢ava LLM-ovima

interakciju sa pretraziva¢ima, vektorskim bazama podataka ili drugim sistemima

za preuzimanje informacija. Transformisanjem korisnickih upita u upite za



Upotreba alata 118

pretragu, LLM moZe preuzeti relevantne informacije iz viSe izvora i pruziti
sveobuhvatne odgovore na korisnicka pitanja.

4. Integracija sa eksternim servisima: Upotreba alata omogucava besprekornu
integraciju izmedu aplikacija zasnovanih na vestackoj inteligenciji i eksternih
servisa ili API-ja. Na primer, LLM bi mogao da komunicira sa API-jem za
vremenske prilike kako bi pruzio azurne informacije o vremenu ili sa API-jem

za prevodenje kako bi generisao viSejezi¢ne odgovore.

Tok rada sa alatima

Tok rada sa alatima obi¢no ukljucuje cetiri klju¢na koraka:

1. Ukljucivanje definicija funkcija u kontekst zahteva
2. Dinamicki (ili eksplicitni) odabir alata
3. Izvrsavanje funkcije/a

4. Opcionalni nastavak originalnog upita

Hajde da detaljno pregledamo svaki od ovih koraka.

Ukljuéivanje definicija funkcija u kontekst zahteva

Al zna koje alate ima na raspolaganju jer mu dajete listu kao deo vaseg zahteva za
zavrSetak (obi¢no definisano kao funkcije koristeé¢i varijantu JSON $eme).

Precizna sintaksa definicije alata je specifi¢na za model.

Ovo je nacin kako se definise funkcija get_weather u Claude 3:



© 0 N O O & W N =~

T O = =Y
© 0 N O O b= W N -~ O

© 0 N O O » W N o~

I = ==Y
=N O O bW N e

Upotreba alata 119

"name": "get_weather",
"description": "Get the current weather in a given location",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",

"description": "The city and state, e.g. San Francisco, CA"
3,
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature"
}
},
"required": ["location"]
}

A ovo je nadin kako biste definisali istu funkciju za GPT-4, prosledujuéi je kao vrednost

parametra tools:

"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",

"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {

"type": "string",

"enum": ["celsius", "fahrenheit"],

"description": "The unit of temperature"
},

} ’

"required": ["location"],



18
19

a s W N -

Upotreba alata 120

Skoro isto, samo drugacije bez o¢iglednog razloga! Kako iritantno.

Definicije funkcija odreduju naziv, opis i ulazne parametre. Ulazni parametri se mogu
dodatno definisati koris¢enjem atributa kao $to su enumeracije za ogranifavanje

prihvatljivih vrednosti, i odredivanjem da li je parametar obavezan ili ne.

Pored samih definicija funkcija, mozete takode ukljuéiti uputstva ili kontekst o tome

zasto i kako koristiti funkciju u sistemskoj direktivi.

Na primer, moj alat za pretragu veba u Olympia ukljucuje ovu sistemsku direktivu, koja

podseca VI da ima pomenute alate na raspolaganju:

The “google_search™ and “realtime_search™ functions let you do research
on behalf of the user. In contrast to Google, realtime search is powered
by Perplexity and provides real-time information to curated current events
databases and news sources. Make sure to include URLs in your response so

user can do followup research.

PruZanje detaljnih opisa smatra se najvaznijim faktorom u performansama alata. Vasi

opisi bi trebalo da objasne svaki detalj o alatu, ukljuc¢ujuci:

« Sta alat radi
« Kada bi trebalo da se koristi (a kada ne bi trebalo)
« Sta svaki parametar znadi i kako uti¢e na ponasanje alata

« Sve vazne napomene ili ogranicenja koja se odnose na implementaciju alata

Sto vige konteksta moZete dati vestackoj inteligenciji o vasim alatima, to ée ona biti bolja
u odluc¢ivanju kada i kako da ih koristi. Na primer, Anthropic preporucuje najmanje 3-4

reCenice po opisu alata za svoju Claude 3 seriju, viSe ako je alat slozen.



© 0w N O U B~ W N =

W W W W W N NN DD DNDDNDDNDDNDNDNRA A~ AR,
B W N PO O 0 N0 0N 0 00N 0 W N

Upotreba alata 121

Nije nuzno intuitivno, ali opisi se takode smatraju vaznijim od primera. Iako mozete
ukljuciti primere kako se koristi alat u njegovom opisu ili u prateem promptu, to je
manje vazno od jasnog i sveobuhvatnog objasnjenja svrhe i parametara alata. Primere

dodajte tek nakon $to ste u potpunosti razradili opis.

Evo primera Stripe-ovske API funkcijske specifikacije:

"name": "createPayment",
"description": "Create a new payment request"”,
"parameters": {
"type": "object",
"properties": {
"transaction_amount": {
"type": "number",
"description": "The amount to be paid"
1
"description": {
"type": "string",
"description": "A brief description of the payment"
1,
"payment_method_id": {
"type": "string",
"description": "The payment method to be used"
b
"payer": {
"type": "object",
"description”: "Information about the payer, including their name,
email, and identification number",
"properties": {
"name": {

"type": "string",

"description": "The payer's name"
3
"email": {
"type": "string",
"description": "The payer's email address"”
},

"identification": {
"type": "object",
"description": "The payer's identification number”,



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Upotreba alata

"properties": {
"type": {
"type": "string",
"description": "Identification document (e.g. CPF, CNPJ)"
}/
"number": {
"type": "string",

"description": "The identification number"
}
}I
"required": [ "type", "number" ]
}
},
"required": [ "name", "email", "identification" ]

P U praksi, neki modeli imaju potesko¢a sa ugnezdenim funkcijskim

specifikacijama i sa slozenim tipovima izlaznih podataka kao $to su nizovi,
re¢nici itd. Ali teoretski, trebalo bi da mozete da dostavite JSON Schema

specifikacije proizvoljne dubine!

Dinamicki odabir alata

Kada izvrsavate chat completion koji ukljucuje definicije alata, LLM dinamicki bira

najadekvatniji alat(e) za upotrebu i generiSe potrebne ulazne parametre za svaki alat.

U praksi, sposobnost Al-ja da pozove tac¢no pravu funkciju i tacno prati vasu
specifikaciju za ulazne podatke je promenljiva. Postavljanje temperature hiperparametra
skroz na 0.0 dosta pomaze, ali prema mom iskustvu i dalje ¢ete povremeno dobijati
greske. Te greske ukljuéuju halucirane nazive funkcija, pogresno imenovane ili
jednostavno nedostajuce ulazne parametre. Parametri se prosleduju kao JSON, sto znadi
da Cete ponekad videti greske uzrokovane odsecenim, pogre$no navedenim ili na drugi

nacin neispravnim JSON-om.



Upotreba alata 123

’ Obrasci Samozalecenja podataka mogu pomoci da se automatski poprave

pozivi funkcija koji se prekidaju zbog sintaksnih gresaka.

Prinudni (odnosno Eksplicitni) odabir alata

Neki modeli vam daju opciju da nametnete pozivanje odredene funkcije kao parametar
u zahtevu. U suprotnom, da li ée pozvati funkciju ili ne u potpunosti zavisi od procene

Al-ja.

Moguénost prinudnog pozivanja funkcije je kljuéna u odredenim scenarijima gde Zelite
da osigurate da se odredeni alat ili funkcija izvrsi, bez obzira na proces dinamickog

odabira Al-ja. Postoji nekoliko razloga zasto je ova moguénost vazna:

1. Eksplicitna kontrola: Mozda koristite Al kao Diskretnu komponentuili u unapred
definisanom toku rada koji zahteva izvrSavanje odredene funkcije u odredeno
vreme. Prinudnim pozivanjem moZete garantovati da e Zeljena funkcija biti
pozvana umesto da ljubazno molite Al da to uradi.

2. Debagovanje i testiranje: Prilikom razvoja i testiranja aplikacija vodenih
Al-jem, moguc¢nost prinudnog pozivanja funkcija je neprocenjiva za potrebe
debagovanja. Eksplicitnim pokretanjem odredenih funkcija moZzete izolovati
i testirati pojedina¢ne komponente vase aplikacije. Ovo vam omogucava da
proverite ispravnost implementacija funkcija, validirate ulazne parametre i
osigurate da se vraéaju ocekivani rezultati.

3. Rukovanje ivi¢nim slucajevima: Mogu postojati ivi¢ni sluéajevi ili izuzetni
scenariji gde proces dinamickog odabira Al-ja mozda nece odabrati izvrsavanje
funkcije koju bi trebalo, a vi to znate na osnovu spoljnih procesa. U takvim
slu¢ajevima, moguénost prinudnog pozivanja funkcije vam omogucava da
eksplicitno rukujete ovim situacijama. Definisite pravila ili uslove u logici vase

aplikacije da odredite kada da premostite diskreciju Al-ja.



Upotreba alata 124

4. Konzistentnost i reproduktivnost: Ako imate odredeni niz funkcija koje treba
izvrsiti odredenim redosledom, prinudno pozivanje garantuje da ée se isti redosled
pratiti svaki put. Ovo je posebno vazno u aplikacijama gde su konzistentnost i
predvidljivo ponasanje kriti¢ni, kao Sto su finansijski sistemi ili nau¢ne simulacije.

5. Optimizacija performansi: U nekim slucajevima, prinudno pozivanje funkcije
moze dovesti do optimizacije performansi. Ako znate da je odredena funkcija
potrebna za odredeni zadatak i da bi proces dinamickog odabira Al-ja mogao
uvesti nepotreban overhead, mozete zaobiéi proces selekcije i direktno pozvati
potrebnu funkciju. Ovo moze pomoci u smanjenju latencije i pobolj$anju ukupne

efikasnosti vase aplikacije.

Ukratko, moguc¢nost prinudnog pozivanja funkcija u aplikacijama vodenim Al-jem
pruza eksplicitnu kontrolu, pomaze u debagovanju i testiranju, rukuje ivicnim
slu¢ajevima, osigurava konzistentnost i reproduktivnost. To je mocan alat u vasem

arsenalu, ali moramo razgovarati o jos§ jednom aspektu ove vazne funkcionalnosti.

U mnogim slu¢ajevima donosenja odluka, uvek zelimo da model izvrsi poziv
P funkcije i mozda nikada ne Zelimo da model odgovori samo svojim internim
znanjem. Na primer, ako usmeravate izmedu vi$e modela specijalizovanih za
razli¢ite zadatke (viSejezi¢ni unos, matematika itd.), moZzete koristiti model
za pozivanje funkcija da delegira zahteve jednom od pomoénih modela i

nikada ne odgovara samostalno.

Parametar izbora alata

GPT-4 i drugi jezicki modeli koji podrzavaju pozivanje funkcija daju vam parametar
tool_choice za kontrolu da li je upotreba alata obavezna kao deo zavrietka. Ovaj

parametar ima tri mogude vrednosti:

« auto daje Al-ju punu diskreciju oko koris¢enja alata ili jednostavnog odgovaranja



Upotreba alata 125

« required govori Al-ju da mora pozvati alat umesto da odgovori, ali ostavlja izbor
alata Al-ju
« Treca opcija je postavljanje parametra name_of_function koji zelite da prisilno

pozovete. Vise o tome u slede¢em odeljku.

Imajte na umu da ako postavite izbor alata na required, model ¢ée biti
P primoran da izabere najrelevantniju funkciju za poziv od onih koje su
mu dostupne, ¢ak i ako nijedna zaista ne odgovara upitu. U trenutku
objavljivanja, nije mi poznato da postoji model koji ¢e vratiti prazan
tool_calls odgovor ili na neki drugi na¢in dati do znanja da nije pronasao

odgovarajucu funkciju za poziv.

Forsiranje funkcije za dobijanje strukturiranog izlaza

Moguénost forsiranja poziva funkcije vam daje nacin da dobijete strukturirane podatke

iz chat zavrSetka umesto da ih sami morate izvlaciti iz tekstualnog odgovora.

Zasto je forsiranje funkcija za dobijanje strukturiranog izlaza toliko vazno?
Jednostavno receno, zato Sto je izvlacenje strukturiranih podataka iz izlaza VJM-a
pravi glavobolja. Mozete sebi malo olaksati zivot tako Sto Cete traziti podatke u
XML-u, ali onda morate parsirati XML. I §ta radite kada taj XML nedostaje jer je
vasa VI odgovorila: “Zao mi je, ali ne mogu da generisem podatke koje ste traZili

zato $to bla, bla, bla..”

Kada koristite alate na ovaj nacin:

« Verovatno bi trebalo da definiSete jedan alat u vasem zahtevu



© 0 N O O b W N =

NDONON N NN R Bl sl sl
g & W N 0 O 0 N O O Bk Ww N =~ O

Upotreba alata 126

« Ne zaboravite da forsirate koridCenje njegove funkcije pomoéu tool_choice
parametra
« Zapamtite da ¢e model proslediti unos alatu, tako da naziv alata i opis treba da

budu iz perspektive modela, a ne vase

Ova poslednja tacka zasluzuje primer radi jasnoce. Recimo da trazite od VI da uradi
analizu sentimenta korisni¢kog teksta. Naziv funkcije ne bi bio analyze_sentiment, ve¢
nesto poput save_sentiment_analysis. VI je ta koja radi analizu sentimenta, ne alat. Sve

§to alat radi (iz perspektive VI) je ¢uvanje rezultata analize.

Evo primera kori$¢enja Claude 3 za beleZenje rezimea slike u dobro strukturirani JSON,

ovog puta iz komandne linije koristeéi curl:

curl https://api.anthropic.com/v1/messages \
--header "content-type: application/json" \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "anthropic-version: 2023-06-01" \
--header "anthropic-beta: tools-2024-04-04" \
--data \

B
"model": "claude-3-sonnet-20240229",
"max_tokens": 1024,

"tools": [{
"name": "record_summary",
"description": "Record summary of image into well-structured JSON.",

"input_schema": {
"type": "object",
"properties": {
"key_colors": {
"type": "array",
"items": {
"type": "object",

"properties": {

”I'"I {

"type": "number",

"description": "red value [0.0, 1.0]"
1

"9



26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

Upotreba alata 127
"type": "number",
"description": "green value [0.0, 1.0]"
},
"b": {
"type": "number",
"description": "blue value [0.0, 1.0]"
},
"name": {
"type": "string",
"description": "Human-readable color name
in snake_case, e.g.
\"olive_green\"or
\"turquoise\""
}
},
"required": [ "r", "g", "b", "name" ]
3,
"description": "Key colors in the image. Four or less."
3,
"description": {
"type": "string",
"description": "Image description. 1-2 sentences max."
3,
"estimated_year": {

"type": "integer",

"description": "Estimated year that the image was taken,
if is it a photo. Only set this if the
image appears to be non-fictional.
Rough estimates are okay!"

}
"required": [ "key_colors", "description" ]
}
iy
"messages": [
{
"role": "user",

"content": [

{
"type": "image",
"source": {

"type": "base64",



68
69
70
71
72
73
74
75
76
7
78
79

Upotreba alata 128

"media_type": "'$IMAGE_MEDIA_TYPE'",
"data": "'$IMAGE_BASE64'"
}
¥,
{
"type": "text",
"text": "Use “record_summary” to describe this image."
}

} '

U datom primeru, koristimo Claude 3 model kompanije Anthropic za generisanje

strukturiranog JSON rezimea slike. Evo kako to funkcionise:

1. Definisemo jedan alat pod nazivom record_summary u nizu tools u sadrzaju
zahteva. Ovaj alat je zaduZen za beleZenje rezimea slike u dobro strukturiranom
JSON formatu.

2. Alat record_summary ima input_schema koji odreduje ocekivanu strukturu

JSON izlaza. On definise tri svojstva:

« key_colors: Niz objekata koji predstavljaju kljuéne boje u slici. Svaki objekat
boje ima svojstva za crvenu, zelenu i plavu vrednost (u opsegu od 0.0 do 1.0)

i ljudski ¢itljiv naziv boje u snake_case formatu.
« description: String svojstvo za kratak opis slike, ograni¢en na 1-2 re¢enice.

. estimated_year: Opciono celobrojno svojstvo za procenjenu godinu kada je

slika snimljena, ako izgleda da je u pitanju stvarna fotografija.

3. U nizu messages, dostavljamo podatke slike kao base64-kodirani string zajedno
sa tipom medija. Ovo omoguéava modelu da obradi sliku kao deo ulaza.

4. Takode upuéujemo Claude-a da koristi alat record_summary za opisivanje slike.

5. Kada se zahtev posalje Claude 3 modelu, on analizira sliku i generise JSON rezime
na osnovu odredenog input_schema. Model izdvaja klju¢ne boje, pruza kratak

opis i procenjuje godinu kada je slika snimljena (ako je primenljivo).



Upotreba alata 129

6. Generisani JSON rezime se prosleduje kao parametar alatu record_summary,

pruzajuéi strukturirani prikaz klju¢nih karakteristika slike.

Kori$¢enjem alata record_summary sa dobro definisanim input_schema, moZzemo
dobiti strukturirani JSON rezime slike bez oslanjanja na ekstrakciju obi¢nog teksta. Ovaj
pristup osigurava da izlaz prati dosledan format i moze se lako parsirati i obraditi od

strane nizvodnih komponenti aplikacije.

Moguénost forsiranja poziva funkcije i odredivanja oéekivane izlazne strukture je
mo¢éna karakteristika upotrebe alata u aplikacijama vodenim vestackom inteligencijom.
To omogucava programerima da imaju viSe kontrole nad generisanim izlazom i
pojednostavljuje integraciju podataka generisanih vestackom inteligencijom u tok rada

njihove aplikacije.

Izvrsavanje funkcije(a)

Definisali ste funkcije i uputili svoj Al koji je odluéio da treba da pozove jednu od vasih
funkcija. Sada je vreme da vas aplikacioni kod ili biblioteka, ako koristite Ruby gem
poput raix-rails, prosledi poziv funkcije i njene parametre odgovarajuc¢oj implementaciji

u vasem aplikacionom kodu.

Vas aplikacioni kod odlu¢uje $ta da radi sa rezultatima izvrSavanja funkcije. Mozda
to podrazumeva jednu liniju koda u lambda izrazu, ili mozda podrazumeva pozivanje
eksternog API-ja. Mozda ukljuéuje pozivanje druge Al komponente, ili mozda ukljucuje

stotine ili ¢ak hiljade linija koda u ostatku vaseg sistema. To je u potpunosti do vas.

Ponekad je poziv funkcije kraj operacije, ali ako rezultati predstavljaju informacije u
lancu razmisljanja koji Al treba da nastavi, tada vas aplikacioni kod mora da ubaci

rezultate izvr§avanja u transkript razgovora i dozvoli Al-ju da nastavi obradu.

Na primer, evo Raix deklaracije funkcije koju koristi Olympia-in AccountManager
za komunikaciju sa nasim klijentima kao deo Inteligentne orkestracije toka rada za

korisnicku podrsku.


https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

© 0 N O O b W N e

11
12
13
14
15

Upotreba alata 130

class AccountManager
include Raix::ChatCompletion

include Raix::FunctionDispatch
# ]lots of other functions...

function :notify_account_owner,
"Don't share UUID. Mention dollars if subscription changed",
message: { type: "string" } do |arguments]|
account.owner . freeform_notify(
subject: "Account Change Notification",
message: arguments|:message]

)

"Notified account owner"

end

Mozda nije odmah jasno $ta se ovde desava, pa ¢u to razloziti.

1. Klasa AccountManager definise mnoge funkcije vezane za upravljanje nalozima.
Moze da promeni va$ plan, dodaje i uklanja ¢lanove tima, izmedu ostalog.

2. Njena uputstva najviSeg nivoa govore AccountManager-u da treba da obavesti
vlasnika naloga o rezultatima zahteva za promenu naloga, koriste¢i funkciju
notify_account_owner.

3. SaZeta definicija funkcije ukljucuje njene:

« ime
- opis
- parametre message: { type: “string” }

« blok koji se izvrsava kada se funkcija pozove

Nakon azuriranja transkripta sa rezultatima funkcijskog bloka, ponovo se poziva metoda
chat_completion. Ova metoda je odgovorna za slanje azuriranog transkripta razgovora

nazad Al modelu za dalju obradu. Ovaj proces nazivamo konverzacionom petljom.

Kada AI model primi novi zahtev za zavrSetak Cetovanja sa azuriranim transkriptom,

ima pristup rezultatima prethodno izvrSene funkcije. MoZe da analizira ove rezultate,



Upotreba alata 131

ukljuéi ih u svoj proces odluéivanja i generiSe slede¢i odgovor ili akciju na osnovu
kumulativnog konteksta razgovora. Moze da izabere da izvr$i dodatne funkcije na
osnovu azuriranog konteksta, ili moze da generise konacan odgovor na originalni upit

ako utvrdi da nisu potrebni dodatni pozivi funkcija.

Opcionalni nastavak originalnog upita

Kada posaljete rezultate alata nazad VJM-u i nastavite obradu originalnog upita, Al

koristi te rezultate da ili pozove dodatne funkcije ili generise konacan tekstualni odgovor.

Neki modeli kao 3to je Cohere-ov Command-R mogu da citiraju
specifi¢ne alate koje su koristili u svojim odgovorima, pruzajuéi dodatnu

transparentnost i mogucnost pracenja.

U zavisnosti od modela koji se koristi, rezultati poziva funkcije e Ziveti u porukama
transkripta koje imaju svoju posebnu ulogu ili ¢e biti prikazani u nekoj drugoj sintaksi.
Ali vazan deo je da ti podaci budu u transkriptu, kako bi ih Al mogao razmotriti dok

odlucuje $ta dalje da radi.

Cesta (i potencijalno skupa) greska je zaboraviti dodavanje rezultata funkcije
’ u transkript pre nastavka Cetovanja. Kao rezultat toga, Al ¢e biti upitan na
sustinski isti nacin kao pre nego §to je prvi put pozvao funkciju. Drugim
reima, $to se Al-ja tiCe, on jo$ nije pozvao funkciju. Tako da je poziva
ponovo. I ponovo. I ponovo, zauvek dok ga ne prekinete. Nadajmo se da

va$ kontekst nije bio prevelik, a vas model nije bio preskup!

Najbolje prakse za upotrebu alata

Da biste najbolje iskoristili upotrebu alata, razmotrite sledeée najbolje prakse.


https://openrouter.ai/models/cohere/command-r

Upotreba alata 132

Opisne definicije

Obezbedite jasna i opisna imena i opise za svaki alat i njegove ulazne parametre. Ovo

pomaze VJM-u da bolje razume svrhu i mogucénosti svakog alata.

Iz iskustva vam mogu reéi da se uobicajena mudrost koja kaze da je “imenovanje
tesko” primenjuje i ovde; video sam dramaticno razliite rezultate od VJM-ova samo
promenom imena funkcija ili formulacije opisa. Ponekad uklanjanje opisa poboljsava

performanse.

Obrada rezultata alata

Kada prosledujete rezultate alata nazad VJM-u, pobrinite se da su dobro strukturirani
i sveobuhvatni. Koristite smislene kljuceve i vrednosti za predstavljanje izlaza svakog
alata. Eksperimentisite sa razli¢itim formatima i vidite koji najbolje radi, od JSON-a do

obi¢nog teksta.

Interpreter rezultata se bavi ovim izazovom koristeci Al za analizu rezultata i pruzanje

objasnjenja, rezimea ili klju¢nih zaklju¢aka prilagodenih ljudima.

Rukovanje greskama

Implementirajte robustne mehanizme za rukovanje greskama kako biste obradili
slucajeve kada VJM moze generisati nevazece ili nepodrzane ulazne parametre za
pozive alata. Elegantno rukujte i oporavite se od bilo kakvih gresaka koje se mogu

pojaviti tokom izvrsavanja alata.

Jedna izuzetno lepa osobina Al-ja je da razume poruke o greskama! Sto znadi da ako
radite u brzom i povr§nom mentalitetu, moZete jednostavno uhvatiti bilo koje izuzetke

generisane u implementaciji alata i proslediti ih nazad Al-ju tako da zna $ta se dogodilo!



O© 0 N O O b W N

RN
= o

Upotreba alata 133

Na primer, evo pojednostavljene verzije implementacije Google pretrage u Olympia-i:

def google_search(conversation, params)
conversation.update_cstatus("Searching Google...")
query = params|:query]
search = GoogleSearch.new(query).get_hash

conversation.update_cstatus("Summarizing results...")

Summar izeKnowledgeGraph . new . per form(conversation, search.to_json)
rescue StandardError => e

Honeybadger .notify(e)

{ error: e.message }.inspect
end

Google pretrage u Olympiji su dvostepeni proces. Prvo se izvrsi pretraga, zatim se
sumiraju rezultati. Ako dode do greske, bez obzira kakva je, poruka o gresci se pakuje
i Salje nazad vestackoj inteligenciji. Ova tehnika je temelj prakti¢no svih obrazaca

Inteligentnog rukovanja greskama.

Na primer, recimo da GoogleSearch API poziv ne uspe zbog 503 Service Unavailable
izuzetka. To se propagira do najviseg nivoa obrade gresaka, a opis greske se 3alje nazad
vestackoj inteligenciji kao rezultat funkcijskog poziva. Umesto da korisniku prikaze
prazan ekran ili tehnic¢ku gresku, vestacka inteligencija kaze nesto poput “Zao mi je,
ali trenutno ne mogu da pristupim svojim Google pretrazivackim moguénostima. Mogu

pokusati ponovo kasnije, ako Zelite”

Ovo moze delovati kao pametan trik, ali razmotrite drugaciju vrstu greske, onu gde
vestacka inteligencija poziva eksterni API i ima direktnu kontrolu nad parametrima
koje prosleduje API-ju. Mozda je napravila gresku u nacinu na koji je generisala te
parametre? Pod uslovom da je poruka o gresci iz eksternog API-ja dovoljno detaljna,
prosledivanje poruke o gresci nazad vestackoj inteligenciji koja je izvrsila poziv znaci
da ona moze preispitati te parametre i pokusati ponovo. Automatski. Bez obzira na to

kakva je greska bila.

Sada razmislite $ta bi bilo potrebno da se replicira takva vrsta robusnog rukovanja

greskama u normalnom kodu. To je prakti¢no nemoguce.



© 0 N O O b W N -

I = =N
B W N o

Upotreba alata 134

Iterativno poboljsanje

Ako VJM ne preporucuje odgovarajuce alate ili generise suboptimalne odgovore,
iterativno radite na definicijama alata, opisima i ulaznim parametrima. Kontinuirano

usavrsavajte i poboljsavajte postavke alata na osnovu uocenog ponasanja i Zeljenih

ishoda.

1. Pocnite sa jednostavnim definicijama alata: Po¢nite definisanjem alata sa jasnim
i konciznim imenima, opisima i ulaznim parametrima. U pocetku izbegavajte
prekomplikovano podesavanje alata i fokusirajte se na osnovnu funkcionalnost.
Na primer, ako Zzelite da safuvate rezultate analize sentimenta, pocnite sa

osnovnom definicijom poput:

{
"name": "save_sentiment_score",
"description": "Analyze user-provided text and generate sentiment score",
"parameters": {
"type": "object",
"properties": {
"score": {
"type": "float",
"description": "sentiment score from -1 (negative) to 1 (positive)"
}
3
"required": ["score"]
}
}

2. Testirajte i posmatrajte: Kada postavite pocetne definicije alata, testirajte ih
razli¢itim upitima i posmatrajte kako VJM komunicira sa alatom. Obratite paznju
na kvalitet i relevantnost generisanih odgovora. Ako VJM generiSe suboptimalne
odgovore, vreme je da se definicije alata usavrse.

3. Usavrsite opise: Ako VJM pogresno tumaci svrhu alata, pokusajte da usavrsite

opis alata. Pruzite viSe konteksta, primera ili pojasnjenja kako biste usmerili



O O W N e

~N O O b W N =

Upotreba alata 135

VJM ka efikasnom koriSéenju alata. Na primer, moZete aZurirati opis alata za
analizu sentimenta kako bi se preciznije odnosio na emocionalni ton teksta koji

se analizira:

"name": "save_sentiment_score",
"description": "Determine the overall emotional tone of a piece of text,
such as customer reviews, social media posts, or feedback comments.",

4. Prilagodite ulazne parametre: Ako LLM generise nevazece ili neodgovarajuée
ulazne parametre za alat, razmotrite prilagodavanje definicija parametara.
Dodajte konkretnije uslove, pravila validacije ili primere kako biste pojasnili
ocekivani format unosa.

5. Iteriranje na osnovu povratnih informacija: Kontinuirano pratite performanse
vasih alata i prikupljajte povratne informacije od korisnika i zainteresovanih
strana. Koristite ove povratne informacije da identifikujete oblasti za poboljsanje
i napravite iterativna poboljsanja definicija alata. Na primer, ako korisnici prijave

da analiza ne obraduje sarkazam dobro, mozZete dodati napomenu u opis:

{
"name": "save_sentiment_score",
"description": "Analyze the sentiment of a given text and return a sentiment
score between -1 (negative) and 1 (positive). Note: Sarcasm should be
considered negative.",
}

Iterativnim poboljsavanjem definicija alata na osnovu uocenog ponasanja i povratnih
informacija, mozete postepeno unapredivati performanse i efikasnost vase aplikacije
zasnovane na vestackoj inteligenciji. Zapamtite da definicije alata treba da budu jasne,
sazete i fokusirane na specifi¢an zadatak. Redovno testirajte i proveravajte interakcije

alata kako biste osigurali da su u skladu sa Zeljenim ishodima.



Upotreba alata 136

Komponovanje i ulanéavanje alata

Jedan od najmoc¢nijih aspekata upotrebe alata, koji je do sada samo nagovesten, jeste
mogucnost komponovanja i ulancavanja vise alata zajedno kako bi se izvrsili slozeni
zadaci. PaZljivim dizajniranjem definicija alata i njihovih ulaznih/izlaznih formata,
moZete kreirati ponovno upotrebljive gradivne blokove koji se mogu kombinovati na

razli¢ite nacine.

Razmotrimo primer gde gradite protok analize podataka za vasu aplikaciju zasnovanu

na vestackoj inteligenciji. Mogli biste imati sledece alate:

1. DataRetrieval: Alat koji preuzima podatke iz baze podataka ili API-ja na osnovu
odredenih kriterijuma.

2. DataProcessing: Alat koji vrsi proracune, transformacije ili agregacije nad
preuzetim podacima.

3. DataVisualization: Alat koji predstavlja obradene podatke u formatu

prilagodenom korisniku, kao $to su grafikoni ili dijagrami.

Ulancavanjem ovih alata, mozZete kreirati moc¢an tok rada koji preuzima relevantne
podatke, obraduje ih i predstavlja rezultate na smislen nacin. Evo kako bi tok rada sa

alatima mogao izgledati:

1. VJM prima upit korisnika koji trazi uvid u podatke o prodaji za odredenu
kategoriju proizvoda.

2. VJM bira alat DataRetrieval i generiSe odgovarajuce ulazne parametre za
preuzimanje relevantnih podataka o prodaji iz baze podataka.

3. Preuzeti podaci se “prosleduju” alatu DataProcessing, koji izra¢unava metrike kao
$to su ukupan prihod, prose¢na prodajna cena i stopa rasta.

4. Obradene podatke zatim koristi alat DataVisualization, koji kreira vizuelno
privlaan grafikon ili dijagram za predstavljanje uvida, prosleduju¢i URL

grafikona nazad VJM-u.



Upotreba alata 137

5. Na kraju, VJM generi$e formatiran odgovor na upit korisnika koriste¢i markdown,

ukljucujuéi vizualizovane podatke i rezime klju¢nih nalaza.

Komponovanjem ovih alata zajedno, mozete kreirati besprekoran tok analize podataka
koji se lako moze integrisati u vasu aplikaciju. Lepota ovog pristupa je u tome $to se
svaki alat moze razvijati i testirati nezavisno, a zatim kombinovati na razliite nadine za

reSavanje raznih problema.

Da biste omogudili glatko komponovanje i ulancavanje alata, vazno je definisati jasne

ulazne i izlazne formate za svaki alat.

Na primer, alat DataRetrieval moze prihvatiti parametre kao §to su detalji veze sa
bazom podataka, ime tabele i uslovi upita, i vratiti skup rezultata kao strukturirani
JSON objekat. Alat DataProcessing zatim mozZe ocekivati ovaj JSON objekat kao ulaz
i proizvesti transformisani JSON objekat kao izlaz. Standardizacijom protoka podataka

izmedu alata mozete osigurati kompatibilnost i moguénost ponovne upotrebe.

Dok dizajnirate svoj ekosistem alata, razmisljajte o tome kako se razli¢iti alati mogu
kombinovati za reSavanje uobicajenih slucajeva upotrebe u vasoj aplikaciji. Razmotrite
kreiranje alata visokog nivoa koji obuhvataju uobi¢ajene tokove rada ili poslovnu logiku,

¢inedi laksim za VJM da ih efikasno odabere i koristi.

Zapamtite, snaga upotrebe alata lezi u fleksibilnosti i modularnosti koju pruza.
Ras¢lanjivanjem sloZenih zadataka na manje, ponovno upotrebljive alate, mozete
kreirati robusnu i prilagodljivu aplikaciju zasnovanu na vestackoj inteligenciji koja

moze da se nosi sa Sirokim spektrom izazova.

Buduci pravci

Kako se oblast razvoja aplikacija zasnovanih na vestackoj inteligenciji razvija, mozemo
ocekivati dalja unapredenja u mogucnostima upotrebe alata. Neki potencijalni buduci

pravci ukljucuju:



Upotreba alata 138

1. Visestruka upotreba alata: VJM-ovi ¢e mozda moci da odluce koliko puta treba da
koriste alate kako bi generisali zadovoljavajué¢i odgovor. Ovo bi moglo ukljucivati
viSe rundi odabira i izvrSavanja alata na osnovu medurezultata.

2. Predefinisani alati: Al platforme mogu pruziti skup predefinisanih alata koje
programeri mogu koristiti odmah, kao $to su Python interpreteri, alati za pretragu
veba ili uobicajene pomoc¢ne funkcije.

3. Besprekorna integracija: Kako upotreba alata postaje sve zastupljenija, mozemo
ocekivati bolju integraciju izmedu Al platformi i popularnih razvojnih okvira,

olaksavaju¢i programerima da ukljuce upotrebu alata u svoje aplikacije.

Upotreba alata je moéna tehnika koja omogucava programerima da iskoriste pun
potencijal VJM-ova u aplikacijama zasnovanim na vestackoj inteligenciji. Povezivanjem
V]M-ova sa spoljnim alatima i resursima, mozete kreirati dinamicnije, inteligentnije i
kontekstualno svesnije sisteme koji se mogu prilagoditi potrebama korisnika i pruziti

vredne uvide i akcije.

Iako upotreba alata nudi ogromne mogucénosti, vazno je biti svestan potencijalnih
izazova i1 razmatranja. Jedan klju¢ni aspekt je upravljanje sloZenos$¢éu interakcija
alata i osiguravanje stabilnosti i pouzdanosti celokupnog sistema. Morate se nositi sa
scenarijima gde pozivi alata mogu da ne uspeju, vrate neocekivane rezultate ili imaju
implikacije na performanse. Dodatno, trebalo bi razmotriti mere bezbednosti i kontrole
pristupa kako bi se sprecila neovlascena ili zlonamerna upotreba alata. Pravilno
rukovanje greskama, vodenje evidencije i mehanizmi pracenja su klju¢ni za odrzavanje

integriteta i performansi vase aplikacije zasnovane na vestackoj inteligenciji.

Dok istrazujete moguénosti upotrebe alata u svojim projektima, zapamtite da treba
poceti sa jasnim ciljevima, dizajnirati dobro strukturirane definicije alata i iterirati na
osnovu povratnih informacija i rezultata. Uz pravi pristup i na¢in razmisljanja, upotreba
alata moze otkljuéati nove nivoe inovacije i vrednosti u vasim aplikacijama vodenim

vestackom inteligencijom



Obrada toka podataka

AVaid !.\\‘.'\,

W

Streaming podataka preko HTTP-a, takode poznat kao server-sent events (SSE), je
mehanizam gde server kontinuirano $alje podatke klijentu kako oni postaju dostupni,
bez potrebe da ih klijent eksplicitno zatrazi. Posto se Al odgovor generiSe postepeno,
ima smisla obezbediti responzivno korisnicko iskustvo prikazivanjem Al izlaza tokom
njegovog generisanja. I zapravo, svi API-ji Al provajdera koje poznajem nude streaming

odgovore kao opciju u svojim krajnjim tackama za kompletiranje.

Razlog zasto se ovo poglavlje pojavljuje ovde u knjizi, odmah nakon Kori$éenje alata,
je zbog toga koliko moéno moze biti kombinovanje koris¢enja alata sa zivim Al
odgovorima korisnicima. To omogucava dinamicka i interaktivna iskustva gde Al moze
da obradi korisnicki unos, koristi razli¢ite alate i funkcije po svom nahodenju, i zatim

pruza odgovore u realnom vremenu.

Da bi se postigla ova besprekorna interakcija, potrebno je napisati rukovaoce toka koji

mogu da otpremaju pozive alatnih funkcija koje je pozvao Al kao i obic¢an tekstualni



O© 0 N O O b W N =

I = =Y
B W N o

Obrada toka podataka 140

izlaz krajnjem korisniku. Potreba za petljom nakon obrade alatne funkcije dodaje

zanimljiv izazov ovom zadatku.

Implementacija ReplyStream-a

Da bismo pokazali kako se moze implementirati obrada toka, ovo poglavlje ¢e detaljno
obraditi pojednostavljenu verziju klase ReplyStream koja se koristi u Olympia-i.
Instance ove klase mogu se proslediti kao stream parametar u Al klijentskim

bibliotekama kao sto su ruby-openai i openrouter

Evo kako koristim ReplyStream u Olympia-inom PromptSubscriber-u, koji osluskuje

preko Wisper-a kreiranje novih korisni¢kih poruka.

class PromptSubscriber
include Raix::ChatCompletion

include Raix::PromptDeclarations
# many other declarations omitted. ..

prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },
until: -> { bot_message.complete? }

def message_created(message) # invoked by Wisper
return unless message.role.user? && message.content?

# rest of the implementation omitted. ..

Pored context reference na pretplatnika prompta koji ga je instancirao, klasa
ReplyStream takode ima promenljive instance za ¢uvanje bafera primljenih podataka,
kao i nizove za pracenje imena funkcija i argumenata koji se pozivaju tokom obrade

toka.


https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

© 0 N O O b W N e

T = T O T Y
o N O O b W N =

Obrada toka podataka 141

class ReplyStream

attr_accessor :buffer, :f_name, :f_arguments, :context
delegate :bot_message, :dispatch, to: :context

def initialize(context)
self.context = context
self.buffer = []
self.f_name = []
self.f_arguments = []
end

def call(chunk, bytesize = nil)

end

end

Metoda initialize postavlja pocetno stanje instance ReplyStream, inicijalizujuéi bafer,

kontekst i druge promenljive.

Metoda call je glavna ulazna tacka za obradu proto¢nih podataka. Ona prima chunk
podataka (predstavljen kao hes) i opcionalni parametar bytesize, koji u naSem primeru
nije iskoris¢en. Unutar ove metode, klasa koristi uparivanje obrazaca za rukovanje

razli¢itim scenarijima na osnovu strukture primljenog dela podataka.

Pozivanje deep_symbolize_keys na delu podataka pomaze da uparivanje
obrazaca bude elegantnije, omoguéavaju¢i nam da radimo sa simbolima

umesto sa stringovima.



© 0 N O O b W N e

[ T T ==Y
a s W N =~

Obrada toka podataka 142

def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in { # match function name

choices: |

{
delta: {
tool_calls: |
{ index: index, function: {name: name} }
]
}
}
1}
f_name[index]| = name

Prvi obrazac koji trazimo je poziv alata zajedno sa njegovim pripadaju¢im imenom
funkcije. Ako ga otkrijemo, smestamo ga u niz f name. Imena funkcija ¢uvamo u
indeksiranom nizu, jer model moZe da vrsi paralelno pozivanje funkcija, $aljuéi vise

od jedne funkcije na izvrsavanje istovremeno.

Paralelno pozivanje funkcija je sposobnost Al modela da izvrava vise poziva
funkcija zajedno, omoguéavajuéi da se efekti i rezultati ovih poziva funkcija resavaju
paralelno. Ovo je posebno korisno ako funkcije dugo traju, i smanjuje broj razmena

sa API-jem, $to zauzvrat moze ustedeti znacajnu koli¢inu potrosnje tokena.

Zatim moramo pronaci podudaranje za argumente koji odgovaraju pozivima funkcija.



© 0 N O O b W N e

[ T T ==Y
a s W N =~

© 0 N O O b W N =

[T T
w N =~

Obrada toka podataka 143

in { # match arguments

choices: |
{
delta: {
tool_calls: |
{
index: index, function: {arguments: argument }
}
]
}
}
1}
f_arguments|index] ||= "" # initialize if not already

f_arguments[index| << argument

Sli¢no kao $to smo postupili sa imenima funkcija, argumente smestamo u indeksirani

niz.

Sledeée, pratimo normalne poruke namenjene korisniku, koje ¢e stizati sa servera
token po token i biti dodeljene promenljivoj new_content. Takode moramo da pratimo
finish_reason. On ce biti nil sve do poslednjeg dela izlazne sekvence.
in {
choices: |

{ delta: {content: new_content}, finish_reason: finish_reason }

1}

# you could transmit every chunk to the user here. ..

buffer << new_content.to_s

if finish_reason.present?
finalize
elsif new_content.to_s.match?(/\n\n/)
send_to_client # ...or buffer and transmit once per paragraph

end

Vazno je da dodamo izraz za podudaranje obrazaca kako bismo obradili poruke o
greskama koje $alje provajder Al modela. U lokalnim razvojnim okruZenjima, podiZzemo

izuzetak, ali u produkciji, belezimo gresku i zavrsavamo.



BwWw N -

© 0 N O O b W N =

[ T =Y
a s W N =~

Obrada toka podataka 144

in { error: { message: } }
if Rails.env.local?
raise message
else
Honeybadger .notify("AI Error: #{message}")
finalize
end

Zavr$na else grana case naredbe Ce se izvrsiti ako se nijedan od prethodnih obrazaca
nije poklopio. To je samo mera predostroznosti kako bismo otkrili ako Al model po¢ne

da nam $alje neprepoznate delove.

else
Honeybadger .notify("Unrecognized Chunk: #{chunk}")
end

end

Metoda send_to_client je zaduZena za slanje baferovanog sadrzaja klijentu. Ona
proverava da bafer nije prazan, azurira sadrzaj poruke bota, renderuje poruku bota i

¢uva sadrzaj u bazi podataka kako bi se osigurala postojanost podataka.

def send_to_client
# no need to process pure whitespace
return if buffer.join.squish.blank?

# set the buffer content on the bot message
content = buffer. join
bot_message.content = content

# save to database so that we never lose data
# even 1f the stream doesn't terminate correctly
bot_message.update_column( :content, content)

# update content via websocket
ConversationRenderer .update(bot_message)
end



© 0 N O O b W N =

[EONTY
N =~ O

13
14
15
16

Obrada toka podataka 145

finalize metoda se poziva kada je obrada toka zavrsena. Ona otprema pozive funkcija
ako su neki primljeni tokom toka, azurira poruku bota sa kona¢nim sadrzajem i drugim

relevantnim informacijama, i resetuje istoriju poziva funkcija

def finalize
if f_name.any?
f_name.each_with_index do |name, index|
# takes care of calling the function wherever it's implemented
dispatch(name:, arguments: JSON.parse(f_arguments|index]))
end

# reset the function call history
f_name.clear
f_arguments.clear

else
content = buffer. join.presence
bot_message.update! (content:, complete: true)
ConversationRenderer .update(bot_message)

end

end

Ako model odluéi da pozove funkciju, potrebno je da “prosledite” taj poziv funkcije
(naziv i argumente) na takav nacin da se izvrsi i da se poruke function_call i function_-

result dodaju u transkript razgovora

Prema mom iskustvu, bolje je upravljati kreiranjem poruka funkcija na jednom mestu
u vasoj bazi koda, umesto da se oslanjate na implementacije alata. To nije samo Cistije
reSenje, ve¢ ima i vrlo vazan praktican razlog: ako Al model pozove funkciju, a ne vidi
rezultujuée poruke poziva i rezultata u transkriptu kada se petlja ponovi, pozivace istu
funkciju iznova. Potencijalno beskona¢no. Zapamtite da je Al potpuno bez stanja, tako

da ako ne prikaZzete te pozive funkcija nazad modelu, oni se nisu ni dogodili.



Obrada toka podataka 146

# PromptSubscriber#dispatch

def dispatch(name:, arguments:)
# adds a function_call message to the conversation transcript
# plus dispatches to tool and returns result
conversation. function_call!(name, arguments).then do |result]|
# add function result message to the transcript
conversation. function_result!(name, result)
end

end

Cis¢enje istorije poziva funkcija nakon izvrsavanija je podjednako vazno kao
i osiguravanje da se poziv i rezultati nadu u vasem transkriptu, kako ne biste

stalno iznova pozivali iste funkcije svaki put kada se petlja izvrsi.

“Konverzacijska petlja”

U klasi PromptSubscriber, koristimo metodu prompt iz modula PromptDeclarations
da definiSemo ponasanje konverzacijske petlje. Parametar until je postavljen na -> {
bot_message.complete? }, $to znaci da ¢e se petlja nastaviti sve dok bot_message ne

bude oznacen kao zavrsen.

prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },
until: -> { bot_message.complete? }

Ali kada se bot_message oznatava kao zavrsen? Ako ste zaboravili,

pogledajte ponovo red 13 metode finalize.

Hajde da pregledamo celokupnu logiku obrade toka.



Obrada toka podataka 147

10.

11.

. PromptSubscriber  prima novu  korisnicku  poruku preko metode

message_created, koju poziva Wisper sistem za objavljivanje/pretplatu svaki put

kada krajnji korisnik kreira novi prompt.

. Klasna metoda prompt deklarativno definiSe ponasanje logike Cetbot zavrsetka za

PromptSubscriber. Al model ¢e izvrsiti Cetbot zavrietak sa sadrzajem korisnicke
poruke, novom instancom ReplyStream kao parametrom toka i odredenim

uslovom petlje.

. Al model obraduje prompt i po¢inje da generise odgovor. Kako se odgovor prenosi

u toku, metoda call instance ReplyStream se poziva za svaki deo podataka.

. Ako Al model odlu¢i da pozove pomoc¢nu funkciju, naziv funkcije i argumenti se

izdvajaju iz dela i ¢uvaju u nizovima f_name i f_arguments.

. Ako AI model generise sadrzaj vidljiv korisniku, on se skladisti u baferu i 3alje

klijentu preko metode send_to_client.

. Kada se obrada toka zavrsi, poziva se metoda finalize. Ako su tokom toka pozvane

bilo koje pomoéne funkcije, one se otpremaju koriste¢i metodu dispatch klase

PromptSubscriber.

. Metoda dispatch dodaje poruku function_call u transkript razgovora, izvrsava

odgovarajué¢u pomoénu funkciju i dodaje poruku function_result u transkript sa

rezultatom poziva funkcije.

. Nakon otpremanja pomo¢nih funkcija, istorija poziva funkcija se brise kako bi se

spre¢ili dupli pozivi funkcija u narednim petljama.

. Ako nije pozvana nijedna pomoéna funkcija, metoda finalize azurira bot_-

message sa kona¢nim sadrzajem, oznacava ga kao zavrsen i $alje azuriranu poruku
klijentu.

Uslov petlje -> { bot_message.complete? } se procenjuje. Ako bot_message nije
oznacen kao zavrsen, petlja se nastavlja, i originalni prompt se ponovo $alje sa
azuriranim transkriptom razgovora.

Koraci 3-10 se ponavljaju dok se bot_message ne ozna¢i kao zavrien, §to

ukazuje da je Al model zavr$io generisanje svog odgovora i da nema potrebe za



Obrada toka podataka 148
izvrsavanjem dodatnih pomo¢nih funkcija.

Implementacijom ove petlje razgovora, omogucavate Al modelu da se upusti u
dvosmerni dijalog sa aplikacijom, izvr$avajuci pomoéne funkcije po potrebi i generisuci

odgovore vidljive korisniku dok razgovor ne dode do prirodnog zakljucka.

Kombinacija obrade toka i petlje razgovora omoguéava dinamicna i interaktivna Al
iskustva, gde Al model moze da obraduje korisnicki unos, koristi razli¢ite alate i funkcije,

i pruza odgovore u realnom vremenu na osnovu konteksta razgovora koji se razvija.

Automatski Nastavak

Vazno je biti svestan ogranifenja Al izlaza. Ve¢ina modela ima maksimalni broj tokena
koje mogu generisati u jednom odgovoru, to je odredeno parametrom max_tokens. Ako
Al model dostigne ovo ogranicenje tokom generisanja odgovora, naglo ¢e se zaustaviti

i ukazati da je izlaz skracen.

U toku odgovora sa Al platforme API-ja, mozete otkriti ovu situaciju pregledanjem
promenljive finish_reason u delu. Ako je finish_reason postavljen na “length” (ili
neku drugu kljuénu vrednost specifi¢nu za model), to znaci da je model dostigao svoje

maksimalno ogranicenje tokena tokom generisanja i da je izlaz skracen.

Jedan od nacina da se ova situacija elegantno resi i pruzi besprekorno korisnicko iskustvo
je implementacija mehanizma automatskog nastavka u logici obrade toka. Dodavanjem
obrasca za prepoznavanje razloga zavrsetka vezanih za duzinu, mozete odabrati da se

petlja nastavi i automatski nastavi izlaz od mesta gde je stao.

Evo namerno pojednostavljenog primera kako mozete modifikovati metodu call u klasi

ReplyStream da podrzava automatski nastavak:



© 0 N O O b W N e

W oW oW N NN DNDNNDDNNDNN S S R S s s
[ SIS S T (e o RN Bie NN S B NORRSS B S SRS < B (o TN ¢ N B S I S S S S

Obrada toka podataka

LENGTH_STOPS = %w[length MAX_TOKENS]

def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in {
choices: |
{ delta: {content: new_content},

finish_reason: finish_reason } | }
buffer << new_content.to_s

if finish_reason.blank?
send_to_client if new_content.to_s.match?(/\n\n/)
elsif LENGTH_STOPS.include?(finish_reason)
continue_cutoff
else
finalize

end

end
end

private

def continue_cutoff
conversation.bot_message! (buffer. join, visible: false)

conversation.user_message!("please continue", visible: false)

bot_message.update_column(:created_at, Time.current)
end

149

U ovoj modifikovanoj verziji, kada finish_reason ukazuje na odsedeni izlaz, umesto

finalizacije toka, dodajemo par poruka u transkript bez finalizacije, pomeramo

originalnu poruku vidljivu korisniku na “dno” transkripta aZuriranjem njenog

created_at atributa, a zatim pustimo da se petlja nastavi, tako da AI nastavlja

generisanje tamo gde je stao.

Zapamtite da je krajnja tacka za Al dopunu bez stanja. Ona “zna” samo ono $to joj kazete



Obrada toka podataka 150

preko transkripta. U ovom slucaju, na¢in na koji Al-u saop$tavamo da je doslo do prekida
je dodavanjem “nevidljivih” (za krajnjeg korisnika) poruka u transkript. Ipak, imajte na
umu da je ovo namerno pojednostavljen primer. Prava implementacija bi morala da
vrsi dodatno upravljanje transkriptom kako bi se osiguralo da ne trosimo tokene i/ili

zbunimo Al dupliranim porukama asistenta u transkriptu.

Prava implementacija automatskog nastavljanja bi takode trebalo da ima takozvanu
“logiku prekidac¢a” kako bi se sprecilo nekontrolisano ponavljanje petlje. Razlog je taj
§to bi, uz odredene vrste korisnickih upita i niske postavke max_tokens, Al mogao

beskonac¢no da nastavlja da generise izlaz vidljiv korisniku.

Imajte na umu da svaka petlja zahteva poseban zahtev, i da svaki zahtev ponovo
koristi ceo vas transkript. Definitivno bi trebalo da razmotrite kompromise izmedu
korisnic¢kog iskustva i kori$¢enja API-ja kada odlucujete da li da implementirate
automatsko nastavljanje u vaSoj aplikaciji. Automatsko nastavljanje moze biti

posebno opasno skupo, naroéito kada se koriste premium komercijalni modeli.

Zakljucak

Obrada toka podataka je kritican aspekt izgradnje aplikacija pokretanih vestackom
inteligencijom koje kombinuju upotrebu alata sa Zivim AI odgovorima. Efikasnim
upravljanjem tokovima podataka iz API-ja Al platformi, moZzete obezbediti neometano i
interaktivno korisnicko iskustvo, upravljati velikim odgovorima, optimizovati koriséenje

resursa i elegantno upravljati greskama.

Prikazana klasa Conversation::ReplyStream demonstrira kako obrada toka moze biti
implementirana u Ruby aplikaciji koriste¢i uparivanje obrazaca i arhitekturu vodenu

dogadajima. Razumevanjem i koris¢enjem tehnika obrade toka, mozete otkljucati pun



Obrada toka podataka 151

potencijal Al integracije u vasim aplikacijama i isporuditi moéna i privla¢na korisnicka

iskustva.



Samozalecujuci podaci

Samozalecuju¢i podaci predstavljaju mocan pristup osiguravanju integriteta,
konzistentnosti i kvaliteta podataka u aplikacijama kori$¢enjem mogucénosti velikih
jezic¢kih modela (VJM). Ova kategorija obrazaca fokusira se na ideju koris¢enja vestacke
inteligencije za automatsko otkrivanje, dijagnostikovanje i ispravljanje anomalija,
nekonzistentnosti ili gresaka u podacima, ¢ime se smanjuje opterecenje programera i

odrzava visok nivo pouzdanosti podataka.

U svojoj sustini, obrasci samozalecujué¢ih podataka prepoznaju da su podaci zivotna
snaga svake aplikacije, a osiguravanje njihove ta¢nosti i integriteta je klju¢no za pravilno
funkcionisanje i korisnicko iskustvo aplikacije. Medutim, upravljanje i odrzavanje
kvaliteta podataka moze biti slozen i vremenski zahtevan zadatak, posebno kako

aplikacije rastu u veli¢ini i sloZenosti. Tu na scenu stupa mo¢ vestacke inteligencije.

U obrascima samozale¢uju¢ih podataka, Al radnici se koriste za kontinuirano pracenje

i analizu podataka vase aplikacije. Ovi modeli imaju sposobnost da razumeju i



Samozale¢ujuci podaci 153

tumace obrasce, veze i anomalije unutar podataka. Koriste¢i svoje moguénosti
obrade i razumevanja prirodnog jezika, mogu identifikovati potencijalne probleme ili

nekonzistentnosti u podacima i preduzeti odgovarajuce mere za njihovo ispravljanje.

Proces samozaleCenja podataka obi¢no ukljucuje nekoliko kljuénih koraka:

1. Pracenje podataka: Al radnici konstantno prate tokove podataka, baze podataka
ili sisteme za skladiStenje aplikacije, traze¢i bilo kakve znakove anomalija,
nekonzistentnosti ili gresaka. Alternativno, mozete aktivirati Al komponentu kao
reakciju na izuzetak.

2. Detekcija anomalija: Kada se otkrije problem, AI radnik detaljno analizira
podatke kako bi identifikovao specifi¢nu prirodu i obim problema. To moze
ukljuc¢ivati otkrivanje nedostaju¢ih vrednosti, nekonzistentnih formata ili
podataka koji krse predefinisana pravila ili ogranicenja.

3. Dijagnoza i korekcija: Nakon §to se problem identifikuje, Al radnik koristi svoje
znanje i razumevanje domena podataka da odredi odgovarajuéi tok akcije. To
moze ukljuéivati automatsko ispravljanje podataka, popunjavanje nedostajuéih
vrednosti ili oznac¢avanje problema za ljudsku intervenciju ako je potrebno.

4. Kontinuirano ucenje (opciono, zavisno od slucaja upotrebe): Kako vas Al
radnik nailazi na razliite probleme sa podacima i reSava ih, moZe generisati izlaz
koji opisuje sta se dogodilo i kako je reagovao. Ovi metapodaci se mogu uneti u
procese ucenja koji vam (i mozda osnovnom modelu, putem finog podesavanja)
omogucavaju da vremenom postanete efikasniji u identifikovanju i resavanju

anomalija podataka.

Automatskim otkrivanjem i ispravljanjem problema sa podacima, mozete osigurati da
vasa aplikacija radi sa visokokvalitetnim, pouzdanim podacima. Ovo smanjuje rizik
od gresaka, nekonzistentnosti ili bagova vezanih za podatke koji mogu uticati na

funkcionalnost aplikacije ili korisnicko iskustvo.

Kada imate AI radnike koji se bave zadatkom pracenja i korekcije podataka, mozete

usmeriti svoje napore na druge kriti¢ne aspekte aplikacije. Ovo $tedi vreme i resurse



Samozale¢ujuci podaci 154

koji bi inace bili potroSeni na ru¢no ¢icenje i odrzavanje podataka. Zapravo, kako
vaSe aplikacije rastu u veli¢ini i sloZenosti, ruéno upravljanje kvalitetom podataka
postaje sve izazovnije. Obrasci “Samozale¢ujuéih podataka” efikasno skaliraju koristeéi
moc¢ vestacke inteligencije za obradu velikih koli¢ina podataka i otkrivanje problema u

realnom vremenu.

podataka, Semama ili zahtevima tokom vremena uz malo ili nimalo nadzora.

P Zbog svoje prirode, Al modeli se mogu prilagoditi promenljivim obrascima

Sve dok njihove direktive pruzaju adekvatno usmeravanje, posebno u
pogledu Zeljenih rezultata, vasa aplikacija moze da evoluira i upravlja novim
scenarijima podataka bez potrebe za obimnom ru¢nom intervencijom ili

izmenama koda.

Obrasci samozale¢ujucih podataka se dobro uklapaju sa drugim kategorijama obrazaca
o kojima smo razgovarali, kao $to je “Mnostvo radnika”. Mogucénost samozalecenja
podataka moZe se posmatrati kao specijalizovana vrsta radnika koji se fokusira
specificno na osiguravanje kvaliteta i integriteta podataka. Ova vrsta radnika radi
uporedo sa drugim Al radnicima, pri ¢emu svaki doprinosi razli¢itim aspektima

funkcionalnosti aplikacije.

Implementacija obrazaca samozalecuju¢ih podataka u praksi zahteva pazljivo
projektovanje i integraciju Al modela u arhitekturu aplikacije. Zbog rizika od gubitka
i oStecenja podataka, trebalo bi da definiSete jasne smernice za nacin na koji Cete
koristiti ovu tehniku. Takode bi trebalo da razmotrite faktore kao $to su performanse,

skalabilnost i bezbednost podataka.
Prakti¢na studija slucaja: Popravljanje neispravnog
JSON-a

podataka je takode vrlo jednostavan za objasnjenje: popravljanje neispravnog JSON-a.



© 0 N O U b W N =

NN NN B R R sl s L sy
W N A0 O N0 O Bk W N~ o

Samozale¢ujuci podaci 155

Ova tehnika se moZe primeniti na uobiCajeni izazov reSavanja nesavrSenih ili
nekonzistentnih podataka koje generisu VJM-ovi, kao sto je neispravan JSON, i pruza

pristup za automatsko otkrivanje i ispravljanje ovih problema.

U Olympiji redovno se susrecem sa scenarijima gde LLM-ovi generisu JSON podatke koji
nisu potpuno ispravni. Ovo se moze dogoditi iz razli¢itih razloga, kao sto je dodavanje
komentara pre ili posle stvarnog JSON koda od strane LLM-a, ili uvodenje sintaksnih
greSaka poput nedostajucih zareza ili neukinutih dvostrukih navodnika. Ovi problemi

mogu dovesti do gresaka parsiranja i prouzrokovati prekide u funkcionalnosti aplikacije.

Da bih resio ovaj problem, implementirao sam prakti¢no resenje u obliku JsonFixer klase.
Ova klasa otelotvoruje obrazac “Samozale¢ujucih podataka” tako §to uzima neispravan
JSON kao ulaz i koristi LLM da ga popravi, istovremeno ¢uvajuéi §to je moguée vise

informacija i prvobitne namere.

class JsonFixer

include Raix::ChatCompletion

def call(bad_json, error_message)

raise "No data provided" if bad_json.blank? || error_message.blank?

transcript << {
system: "Consider user-provided JSON that generated a parse
exception. Do your best to fix it while preserving the
original content and intent as much as possible." }
transcript << { user: bad_json }
transcript << { assistant: "What is the error message?"}
transcript << { user: error_message }

transcript << { assistant: "Here is the corrected JSON\n json\n" }

self.stop = |

chat_completion(json: true)
end

def model
"mistralai/mixtral-8x7Tb-instruct:nitro"
end



24

a s W N -

Samozale¢ujuci podaci 156

end

’ Obratite paznju kako JsonFixer koristi Ventriloquist za usmeravanje Al

odgovora.

Proces samoopravljanja JSON podataka funkcioni$e na sledeéi nacin:

1. Generisanje JSON-a: LLM se koristi za generisanje JSON podataka na osnovu
odredenih upita ili zahteva. Medutim, zbog prirode LLM-ova, generisani JSON ne
mora uvek biti potpuno validan. JSON parser ¢e naravno izbaciti ParserError ako

mu date nevazeci JSON.

begin
JSON.parse(11m_generated_json)
rescue JSON: :ParserkError => e
JsonFixer.new.call(llm_generated_json, e.message)
end

Imajte na umu da se poruka o gresci takode prosleduje pozivu JSONFixer-a tako da ne
mora u potpunosti da pretpostavlja sta nije u redu sa podacima, posebno zato $to ¢ée

parser Cesto tacno redi $ta nije u redu.

2. Korekcija zasnovana na VJM-u: Klasa JSONFixer $alje neispravan JSON nazad
VJM-u (LLM), zajedno sa specifi¢nim upitom ili instrukcijom da popravi JSON
uz maksimalno ocuvanje originalnih informacija i namere. VJM, obucen na
ogromnim koli¢inama podataka i sa razumevanjem JSON sintakse, pokusava da
ispravi greske i generiSe validan JSON string. Ogradivanje odgovora se koristi
za ograniCavanje izlaza VJM-a, a mi biramo Mixtral 8x7B kao AI model, jer je

posebno dobar za ovakvu vrstu zadatka.



Samozale¢ujuci podaci 157

3. Validacija i integracija: Popravljeni JSON string koji vra¢a VJM parsira sama
klasa JSONFixer, jer je pozvala chat_completion(json: true). Ako popravljeni
JSON prode validaciju, integrise se nazad u tok rada aplikacije, omogucavajuci

aplikaciji da nastavi sa obradom podataka bez prekida. Lo JSON je “izlecen”.

Iako sam napisao i prepisao sopstvenu JSONFixer implementaciju nekoliko puta,

sumnjam da je ukupno vreme uloZeno u sve te verzije vise od sat ili dva.

Imajte na umu da je ocuvanje namere kljucni element svakog obrasca samozale¢ujucih
podataka. Proces korekcije zasnovan na VJM-u ima za cilj da oluva originalne
informacije i nameru generisanog JSON-a §to je vise moguée. Ovo osigurava da
popravljeni JSON zadrzava svoje semanti¢ko znacenje i moze se efikasno koristiti u

kontekstu aplikacije.

Ova prakti¢na implementacija pristupa “Samozalecujuc¢ih podataka” u Olympiji jasno
pokazuje kako se Al, posebno VJM-ovi, mogu iskoristiti za resavanje stvarnih izazova
sa podacima. Ona pokazuje snagu kombinovanja tradicionalnih programerskih tehnika

sa Al moguénostima za izgradnju robusnih i efikasnih aplikacija.

Postelov zakon i obrazac “Samozale¢ujucéih podataka”

“Samozalecujuéi podaci”, kao sto je prikazano kroz klasu JSONFixer, dobro se uklapa
sa principom poznatim kao Postelov zakon, koji se takode naziva Princip robusnosti.

Postelov zakon glasi:
“Budite konzervativni u onome §to radite, budite liberalni u onome §to prihvatate od
drugih”

Ovaj princip, koji je prvobitno artikulisao Jon Postel, pionir ranog Interneta,
naglasava vaznost izgradnje sistema koji su tolerantni prema raznovrsnim ili ¢ak

blago neta¢nim ulazima, dok istovremeno odrzavaju strogo pridrzavanje odredenih



Samozale¢ujuci podaci 158

protokola pri slanju izlaza.

U kontekstu “SamozaleCujucih podataka”, klasa JSONFixer otelotvoruje Postelov
zakon time $to je liberalna u prihvatanju pokvarenih ili nesavrsenih JSON podataka
generisanih od strane VJM-ova. Ne odbacuje odmah i ne otkazuje kada naide na JSON
koji se strogo ne pridrzava ocekivanog formata. Umesto toga, zauzima tolerantan

pristup i pokusava da popravi JSON koristeéi snagu VJM-ova.

Buduéi liberalna u prihvatanju nesavrSenog JSON-a, klasa JSONFixer pokazuje
robusnost i fleksibilnost. Ona priznaje da podaci u stvarnom svetu cesto dolaze u
razli¢itim oblicima i mozda se neée uvek pridrzavati strogih specifikacija. Gracioznim
rukovanjem i ispravljanjem ovih odstupanja, klasa osigurava da aplikacija moze

nastaviti da funkcionise glatko, ¢ak i u prisustvu nesavrsenih podataka.

S druge strane, klasa JSONFixer se takode pridrzava konzervativnog aspekta
Postelovog zakona kada je re¢ o izlazu. Nakon popravljanja JSON-a pomocu
VJM-ova, klasa validira ispravljeni JSON kako bi osigurala da se strogo pridrzava
ocekivanog formata. Ona odrzava integritet i tacnost podataka pre nego $to ih
prosledi drugim delovima aplikacije. Ovaj konzervativni pristup garantuje da je
izlaz klase JSONFixer pouzdan i konzistentan, promoviSuci interoperabilnost i

sprecavajudi Sirenje gresaka.

Zanimljivosti o Jonu Postelu:

« Jon Postel (1943-1998) bio je americki ra¢unarski nau¢nik koji je igrao kljuénu
ulogu u razvoju Interneta. Bio je poznat kao “Bog Interneta” zbog svojih
znacajnih doprinosa osnovnim protokolima i standardima.

« Postel je bio urednik serije dokumenata Request for Comments (RFC), koja
predstavlja niz tehnickih i organizacionih napomena o Internetu. Autor je ili
koautor preko 200 RFC-ova, ukljucujué¢i fundamentalne protokole kao $to su
TCP, IP i SMTP.

« Pored svojih tehnickih doprinosa, Postel je bio poznat po svom skromnom

i kolaborativnom pristupu. Verovao je u vaznost postizanja konsenzusa i



Samozale¢ujuci podaci 159

zajednickog rada na izgradnji robusne i interoperabilne mreZe.

« Postel je sluzio kao direktor Odeljenja za racunarske mreze na Institutu za
informacione nauke (ISI) Univerziteta Juzne Kalifornije (USC) od 1977. do
svoje prerane smrti 1998. godine.

« U znak priznanja za njegove ogromne doprinose, Postelu je posthumno
dodeljena prestizna Tjuringova nagrada 1998. godine, koja se Cesto naziva

“Nobelova nagrada za racunarstvo.”

Klasa JSONFixer promovise robusnost, fleksibilnost i interoperabilnost, §to su
bile osnovne vrednosti koje je Postel podrzavao tokom svoje karijere. Izgradnjom
sistema koji su tolerantni na nesavrSenosti, uz istovremeno strogo pridrzavanje
protokola, mozemo kreirati aplikacije koje su otpornije i prilagodljivije u suo¢avanju

sa izazovima stvarnog sveta.

Razmatranja i kontraindikacije

Primenljivost pristupa samooporavljaju¢ih podataka u potpunosti zavisi od vrste
podataka kojima va$a aplikacija upravlja. Postoji razlog zasto mozda ne Zelite da
jednostavno prepravite JSON.parse da automatski ispravlja sve JSON greske parsiranja

u vasoj aplikaciji: nisu sve greske takve da se mogu ili trebaju automatski ispraviti.

Samooporavljanje je posebno problemati¢no kada je povezano sa regulatornim
zahtevima ili zahtevima uskladenosti koji se odnose na rukovanje i obradu podataka.
Neke industrije, poput zdravstva i finansija, imaju tako stroge propise u vezi sa
integritetom podataka i moguéno3céu revizije da bilo kakva “crna kutija” korekcija
podataka bez odgovarajuceg nadzora ili evidencije moze prekrsiti ove propise. Klju¢no
je osigurati da se sve tehnike samooporavljanja podataka koje osmislite usklade sa

vazeéim pravnim i regulatornim okvirima.

Primena tehnika samooporavljanja podataka, posebno onih koje uklju¢uju Al modele,



Samozale¢ujuci podaci 160

takode moze imati veliki uticaj na performanse aplikacije i kori$¢enje resursa.
Obrada velikih koli¢ina podataka kroz Al modele za detekciju i korekciju gresaka
moze biti racunarski zahtevna. VaZno je proceniti kompromise izmedu prednosti

samooporavljajuéih podataka i povezanih troskova performansi i resursa.

To receno, hajde da zaronimo u faktore koji su ukljufeni u odludivanje kada i gde

primeniti ovaj mocan pristup.

Kriti¢nost podataka

Kada razmatramo primenu tehnika samooporavljanja podataka, kljucno je proceniti
kriti¢nost podataka koji se obraduju. Nivo kriti¢nosti se odnosi na vaznost i osetljivost

podataka u kontekstu vase aplikacije i njenog poslovnog domena.

U nekim slucajevima, automatsko ispravljanje gresaka u podacima mozda nije
prikladno, posebno ako su podaci veoma osetljivi ili imaju pravne implikacije. Na

primer, razmotrite sledece scenarije:

1. Finansijske transakcije: U finansijskim aplikacijama, kao §to su bankarski sistemi
ili platforme za trgovanje, ta¢nost podataka je od najvece vaznosti. Cak i male
greske u finansijskim podacima mogu imati znacajne posledice, kao §to su neta¢na
stanja racuna, pogresno usmerena sredstva ili pogresne odluke o trgovanju. U
ovim slucajevima, automatske korekcije bez temeljne verifikacije i revizije mogu
uvesti neprihvatljive rizike.

2. Medicinski kartoni: Zdravstvene aplikacije se bave veoma osetljivim i
poverljivim podacima pacijenata. Netacnosti u medicinskim kartonima mogu
imati ozbiljne implikacije za bezbednost pacijenata i odluke o le¢enju. Automatsko
modifikovanje medicinskih podataka bez odgovarajuceg nadzora i validacije od
strane kvalifikovanih zdravstvenih radnika mozZe prekrsiti regulatorne zahteve i
ugroziti dobrobit pacijenata.

3. Pravni dokumenti: Aplikacije koje rukuju pravnim dokumentima, kao $to su

ugovori, sporazumi ili sudski podnesci, zahtevaju strogu tacnost i integritet.



Samozale¢ujuci podaci 161

Cak i male greske u pravnim podacima mogu imati znacajne pravne posledice.
Automatske korekcije u ovom domenu mozda nisu prikladne, jer podaci Cesto
zahtevaju ruc¢ni pregled i verifikaciju od strane pravnih stru¢njaka kako bi se

osigurala njihova validnost i izvrsnost.

U ovim kriticnim scenarijima podataka, rizici povezani sa automatskim korekcijama
Cesto prevazilaze potencijalne koristi. Posledice uvodenja gresaka ili netacnog
modifikovanja podataka mogu biti ozbiljne, sto dovodi do finansijskih gubitaka,

pravnih odgovornosti, pa ¢ak i Stete po pojedince.

Kada se radi sa visoko kriti¢nim podacima, neophodno je dati prioritet procesima rucne
verifikacije i validacije. Ljudski nadzor i stru¢nost su klju¢ni u osiguravanju tacnosti i
integriteta podataka. Automatizovane tehnike samooporavljanja se i dalje mogu koristiti
za oznacavanje potencijalnih gresaka ili nedoslednosti, ali kona¢na odluka o korekcijama

treba da ukljucuje ljudsku procenu i odobrenje.

Medutim, vazno je napomenuti da nemaju svi podaci u aplikaciji isti nivo kriti¢nosti.
U istoj aplikaciji mogu postojati podskupovi podataka koji su manje osetljivi ili imaju
manji uticaj ako dode do gresaka. U takvim slucajevima, tehnike samooporavljanja
podataka mogu se selektivno primeniti na te specificne podskupove podataka, dok

kritiéni podaci ostaju podlozni rué¢noj verifikaciji.

Klju¢ je pazljivo proceniti kriti¢nost svake kategorije podataka u vasoj aplikaciji i
definisati jasne smernice i procese za rukovanje korekcijama na osnovu povezanih rizika
i implikacija. Razlikovanjem izmedu kriti¢nih (npr. knjigovodstveni podaci, medicinski
kartoni) i nekriti¢nih podataka (npr. postanske adrese, upozorenja o resursima), mozete
postici ravnotezu izmedu kori$cenja prednosti tehnika samooporavljanja podataka gde

je to prikladno i odrZavanja stroge kontrole i nadzora gde je to neophodno.

Na kraju, odluka o primeni tehnika samooporavljanja podataka na kriti¢ne podatke treba
da se donese u konsultaciji sa stru¢njacima iz date oblasti, pravnim savetnicima i drugim

relevantnim zainteresovanim stranama. Neophodno je uzeti u obzir specificne zahteve,



Samozale¢ujuci podaci 162

propise i rizike povezane sa podacima vase aplikacije i uskladiti strategije korekcije

podataka u skladu sa tim.
Ozbiljnost gresaka

Prilikom primene tehnika samooporavljanja podataka, vazno je proceniti ozbiljnost i
uticaj gresaka u podacima. Nisu sve greske jednake, i odgovarajuéi tok akcije moze

varirati u zavisnosti od ozbiljnosti problema.

Manje nedoslednosti ili problemi sa formatiranjem mogu biti pogodni za automatsku
korekciju. Na primer, radnik za samooporavljanje podataka zaduZen za popravku
neispravnog JSON-a moze da se nosi sa nedostaju¢im zarezima ili neizbeglim
dvostrukim navodnicima bez znacajnog menjanja znacenja ili strukture podataka. Ove
vrste gresaka se Cesto mogu jednostavno ispraviti i imaju minimalan uticaj na ukupni

integritet podataka.

Medutim, ozbiljnije greske koje fundamentalno menjaju znacenje ili integritet podataka
mogu zahtevati drugaciji pristup. U takvim slucajevima, automatske ispravke mozda
nece biti dovoljne, i ljudska intervencija moze biti neophodna kako bi se osigurala

tacnost i validnost podataka.

Ovde dolazi do izrazaja koncept kori$cenja same vestacke inteligencije za pomo¢ u
odredivanju ozbiljnosti greske. Koris¢enjem mogucnosti Al modela, mozZemo dizajnirati
samoisceljujuée radnike za podatke koji ne samo da ispravljaju greske, ve¢ i procenjuju

ozbiljnost tih gresaka i donose informisane odluke o na¢inu njihovog resavanja.

Na primer, razmotrimo samoisceljujuéeg radnika za podatke zaduzenog za ispravljanje
nekonzistentnosti u podacima koji se ulivaju u bazu podataka klijenata. Radnik moze biti
dizajniran da analizira podatke i identifikuje potencijalne greske, kao $to su nedostajuée
ili konfliktne informacije. Medutim, umesto da automatski ispravlja sve greske, radnik
moze biti opremljen dodatnim pozivima alatima koji mu omogucavaju da oznaci

ozbiljne greske za pregled od strane ljudi.

Evo primera kako se ovo moze implementirati:



© 0 N O O b W N e

W W W W W W W N NN DDDNDDNDDNDDNDNDDNRA A~ AR R, )R
O O B W N~ O © 00 N O O b W NP, O O 0 N O O kx W N =~ O

Samozale¢ujuci podaci 163

class CustomerDataReviewer
include Raix::ChatCompletion

include Raix::FunctionDeclarations

attr_accessor :customer

function :flag_for_review, reason: { type: "string" } do |params|
AdminNotifier.review_request(customer, params|[:reason])
end

def initialize(customer)
self.customer = customer
end

def call(customer_data)
transcript << {
system: "You are a customer data reviewer. Your task is to identify
and correct inconsistencies in customer data.

< additional instructions here... >

If you encounter severe errors that require human review, use the

“flag_for_review® tool to flag the data for manual intervention." }

transcript << { user: customer.to_json }

transcript << { assistant: "Reviewed/corrected data:\n json\n" }

self.stop = |

chat_completion(json: true).then do |result|
return if result.blank?

customer .update(result)
end
end

end

U ovom primeru, CustomerDataHealer radnik je dizajniran da identifikuje i ispravi

nedoslednosti u korisnickim podacima. Jo§ jednom, koristimo Ogradivanje odgovora

i Trbuhozborac da bismo dobili strukturirani izlaz. Vazno je napomenuti da sistemska



Samozale¢ujuci podaci 164

direktiva radnika uklju¢uje uputstva za kori¢enje funkcije flag_for_review ako se naide

na ozbiljne greske.

Kada radnik obraduje korisnicke podatke, analizira podatke i pokusava da ispravi sve
nedoslednosti. Ako radnik utvrdi da su greske ozbiljne i zahtevaju ljudsku intervenciju,

moze koristiti alat flag_for_review da oznaéi podatke i navede razlog za oznacavanje.

Metod chat_completion se poziva sa json: true da bi se ispravljeni korisni¢ki podaci
parsirali kao JSON. Ne postoji moguénost za petlju nakon poziva funkcije, tako da ce
rezultat biti prazan ako je pozvana funkcija flag_for_review. U suprotnom, podaci o

korisniku se azuriraju pregledanim i potencijalno ispravljenim podacima.

Ukljucivanjem procene ozbiljnosti gresaka i opcije oznacavanja podataka za ljudski
Moze automatski da resava manje greske, dok ozbiljnije greske prosleduje ljudskim

struénjacima na ru¢nu intervenciju.

Specifi¢ni kriterijumi za odredivanje ozbiljnosti greSaka mogu se definisati u direktivi
radnika na osnovu domenskog znanja i poslovnih zahteva. Faktori kao $to su uticaj
na integritet podataka, mogucnost gubitka ili oSte¢enja podataka i posledice neta¢nih

podataka mogu se uzeti u obzir prilikom procene ozbiljnosti.

Koriséenjem vestacke inteligencije za procenu ozbiljnosti gresaka i pruzanjem opcija za
ljudsku intervenciju, tehnike samozaceljuju¢ih podataka mogu postié¢i ravnotezu izmedu
automatizacije i odrzavanja tacnosti podataka. Ovaj pristup osigurava da se manje
greske efikasno ispravljaju, dok ozbiljne greske dobijaju potrebnu paznju i strucnost

od ljudskih recenzenata.

Kompleksnost domena

Kada se razmatra primena tehnika samozaceljuju¢ih podataka, vazno je proceniti
kompleksnost domena podataka i pravila koja regulisu njihovu strukturu i
odnose. Kompleksnost domena moze znacajno uticati na efikasnost i izvodljivost

automatizovanih pristupa ispravljanju podataka.



Samozale¢ujuci podaci 165

Tehnike samozaceljuju¢ih podataka dobro funkcionisu kada podaci prate jasno
definisane obrasce i ograni¢enja. U domenima gde je struktura podataka relativno
jednostavna i odnosi izmedu elemenata podataka su jasni, automatske ispravke se
mogu primeniti sa visokim stepenom pouzdanosti. Na primer, ispravljanje problema sa
formatiranjem ili primena osnovnih ogranicenja tipa podataka ¢esto moZe biti efikasno

reSeno pomocu radnika za samozaceljujuce podatke.

Medutim, kako se povetava kompleksnost domena podataka, rastu i izazovi povezani
sa automatskim ispravljanjem podataka. U domenima sa sloZzenom poslovnom logikom,
kompleksnim odnosima izmedu entiteta podataka ili domenski specifi¢nim pravilima i
izuzecima, tehnike samozaceljujué¢ih podataka mozda nece uvek uhvatiti nijanse i mogu

dovesti do neZeljenih posledica.

Razmotrimo primer sloZenog domena: sistem za finansijsko trgovanje. U ovom domenu,
podaci ukljuéuju razlicite finansijske instrumente, trzisne podatke, pravila trgovanja i
regulatorne zahteve. Odnosi izmedu razli¢itih elemenata podataka mogu biti sloZeni, a
pravila koja regulisu validnost i konzistentnost podataka mogu biti vrlo specifi¢na za

domen.

U tako sloZzenom domenu, radnik za samozaceljujuce podatke zaduzen za ispravljanje
nedoslednosti u podacima o trgovanju morao bi imati duboko razumevanje domenski
specifi¢nih pravila i ogranicenja. Morao bi uzeti u obzir faktore kao $to su trzisni propisi,
ograniCenja trgovanja, izracuni rizika i procedure poravnanja. Automatske ispravke
u ovom kontekstu mozda neée uvek obuhvatiti punu kompleksnost domena i mogu

nenamerno uvesti greske ili prekrsiti domenski specifi¢na pravila.

Za resavanje izazova kompleksnosti domena, tehnike samozaceljuju¢ih podataka mogu
se unaprediti uklju¢ivanjem domenski specifi¢nog znanja i pravila u Al modele i radnike.

Ovo se moze posti¢i kroz tehnike kao $to su:

1. Domenski specifiéna obuka: Al modeli koji se koriste za samozaceljujuce
podatke mogu biti usmereni ili ¢ak fino podeSeni na domenski specifi¢nim

skupovima podataka koji obuhvataju sloZenost i pravila odredenog domena.



Samozale¢ujuci podaci 166

Izlaganjem modela reprezentativnim podacima i scenarijima, oni mogu nauciti
obrasce, ogranicenja i izuzetke specifi¢ne za domen.

2. Ogranicenja zasnovana na pravilima: Radnici za samozaceljujuée podatke mogu
biti prosireni eksplicitnim ogranic¢enjima zasnovanim na pravilima koja kodiraju
domenski specificno znanje. Ova pravila mogu definisati domenski stru¢njaci
i integrisati ih u proces ispravljanja podataka. Al modeli tada mogu koristiti
ova pravila za vodenje svojih odluka i osiguravanje uskladenosti sa domenski
specifi¢nim zahtevima.

3. Saradnja sa domenskim struénjacima: U sloZenim domenima, kljuéno je
ukljuciti domenske stru¢njake u dizajn i razvoj tehnika samozaceljujuéih
podataka. Domenski stru¢njaci mogu pruziti vredne uvide u sloZenost podataka,
poslovna pravila i potencijalne grani¢ne slucajeve. Njihovo znanje se moze
ugraditi u Al modele i radnike kako bi se poboljsala ta¢nost i pouzdanost
automatskih ispravki podataka koriste¢i obrasce Covek u petlji.

4. Inkrementalni i iterativni pristup: Kada se radi sa slozenim domenima, Cesto
je korisno usvojiti inkrementalni i iterativni pristup samozaceljuju¢im podacima.
Umesto pokus$aja automatizacije ispravki za ceo domen odjednom, fokusirajte
se na specificne poddomene ili kategorije podataka gde su pravila i ogranicenja
dobro shvacena. Postepeno prosirujte opseg tehnika samozaceljenja kako raste

razumevanje domena i tehnike se pokazu efikasnim.

Uzimajuéi u obzir slozenost domena podataka i ugradivanje domenskog znanja u tehnike
samozale¢ujucih podataka, mozete posti¢i ravnotezu izmedu automatizacije i tacnosti.
Vazno je prepoznati da samozalecujuéi podaci nisu univerzalno resenje i da pristup treba

prilagoditi specifi¢nim zahtevima i izazovima svakog domena.

U slozenim domenima, hibridni pristup koji kombinuje tehnike samozalec¢ujuéih
podataka sa ljudskom ekspertizom i nadzorom moze biti najefikasniji. Automatske
korekcije mogu da se bave rutinskim i dobro definisanim slu¢ajevima, dok se slozeni

scenariji ili izuzeci mogu oznaditi za ljudski pregled i intervenciju. Ovaj saradnicki



Samozale¢ujuci podaci 167

pristup osigurava da se ostvare prednosti automatizacije uz odrZavanje neophodne

kontrole i ta¢nosti u sloZzenim domenima podataka.

Objasnjivost i Transparentnost

Objasnjivost se odnosi na sposobnost razumevanja i tumacenja rezonovanja iza
odluka koje donose AI modeli, dok transparentnost podrazumeva obezbedivanje jasne

vidljivosti u proces korekcije podataka.

U mnogim kontekstima, izmene podataka moraju biti podlozne reviziji i opravdane.
Zainteresovane strane, ukljucujuci poslovne korisnike, revizore i regulatorna tela, mogu
zahtevati objasnjenja zasto su odredene korekcije podataka napravljene i kako su Al
modeli dosli do tih odluka. Ovo je posebno vazno u domenima gde ta¢nost i integritet

podataka imaju znacajne implikacije, kao sto su finansije, zdravstvo i pravna pitanja.

Da bi se odgovorilo na potrebu za objasnjivos¢u i transparentnoséu, tehnike
samozalecujuc¢ih podataka treba da uklju¢e mehanizme koji pruzaju uvid u proces

donosenja odluka Al modela. Ovo se moze posti¢i kroz razlic¢ite pristupe:

1. Lanac RazmiS$ljanja: Trazenje od modela da objasni svoje razmisljanje
“naglas” pre primene promena na podacima moze omoguditi lakse razumevanje
procesa donosenja odluka i moze generisati objas$njenja razumljiva ljudima za
napravljene korekcije. Kompromis je malo veca sloZenost u odvajanju objasnjenja
od strukturiranog izlaza podataka, $to se moze resiti...

2. Generisanje Objasnjenja: Radnici za samozaleCenje podataka mogu biti
opremljeni sposobnos$¢u generisanja objasnjenja razumljivih ljudima za korekcije
koje prave. Ovo se moze postiéi tako $to ¢e se od modela traziti da prikaze svoj
proces donosenja odluka kao lako razumljiva objas$njenja integrisana u same
podatke. Na primer, radnik za samozalecenje podataka mogao bi generisati
izvestaj koji istiCe specificne nedoslednosti u podacima koje je identifikovao,

korekcije koje je primenio i obrazloZenje iza tih korekcija.



Samozale¢ujuci podaci 168

3. Vaznost Karakteristika: Al modelima se mogu dati uputstva sa informacijama o
vaznosti razli¢itih karakteristika ili atributa u procesu korekcije podataka kao deo
njihovih direktiva. Te direktive se zatim mogu pokazati ljudskim zainteresovanim
stranama. Identifikovanjem klju¢énih faktora koji uticu na odluke modela,
zainteresovane strane mogu ste¢i uvid u rezonovanje iza korekcija i proceniti
njihovu validnost.

4. Belezenje i Revizija: Implementacija sveobuhvatnih mehanizama za beleZenje
i reviziju je kljuéna za odrzavanje transparentnosti u procesu samozalecenja
podataka. Svaka korekcija podataka koju naprave Al modeli treba da bude
zabelezena, ukljuCujuéi originalne podatke, korigovane podatke i specifi¢ne
preduzete akcije. Ovaj revizorski trag omogucava retrospektivnu analizu i pruza
jasan zapis o izmenama napravljenim na podacima.

5. Pristup sa Covekom u Petlji: Uklju¢ivanje pristupa sa ¢ovekom u petlji moze
poboljsati objasnjivost i transparentnost tehnika samozalecujuéih podataka.
Ukljucivanjem ljudskih stru¢njaka u pregled i validaciju korekcija generisanih od
strane Al-ja, organizacije mogu osigurati da su korekcije uskladene sa domenskim
znanjem i poslovnim zahtevima. Ljudski nadzor dodaje dodatni sloj odgovornosti
i omogucava identifikaciju potencijalnih pristrasnosti ili greSaka u AI modelima.

6. Kontinuirano Pracenje i Evaluacija: Redovno pracenje i evaluacija performansi
tehnika samozale¢ujucih podataka je neophodno za odrzavanje transparentnosti
i poverenja. Procenom tacnosti i efikasnosti AI modela tokom vremena,
organizacije mogu identifikovati sva odstupanja ili anomalije i preduzeti
korektivne mere. Kontinuirano pradenje pomaze da se osigura da proces

samozaleCenja podataka ostane pouzdan i uskladen sa Zeljenim ishodima.

Objasnjivost i transparentnost su kritiéni faktori pri implementaciji tehnika
samozalecuju¢ih podataka. Pruzanjem jasnih objasnjenja za korekcije podataka,
odrzavanjem sveobuhvatnih revizorskih tragova i ukljué¢ivanjem ljudskog nadzora,
organizacije mogu izgraditi poverenje u proces samozaleCenja podataka i osigurati da

su izmene napravljene na podacima opravdane i uskladene sa poslovnim ciljevima.



Samozale¢ujuci podaci 169

Vazno je posti¢i ravnotezu izmedu prednosti automatizacije i potrebe za
transparentnos¢u. lako tehnike samozalecujuéih podataka mogu znacajno poboljsati
kvalitet podataka i efikasnost, one ne bi trebalo da budu na ustrb gubitka vidljivosti i
kontrole nad procesom korekcije podataka. Dizajniranjem radnika za samozalecenje
podataka sa fokusom na objas$njivost i transparentnost, organizacije mogu iskoristiti

snagu Al-ja uz odrZavanje neophodnog nivoa odgovornosti i poverenja u podatke.

Nenamerne Posledice

lako tehnike samozalecuju¢ih podataka imaju za cilj poboljsanje kvaliteta i
konzistentnosti podataka, klju¢no je biti svestan potencijalnih nenamernih posledica.
Automatske korekcije, ako nisu pazljivo dizajnirane i pra¢ene, mogu nenamerno

izmeniti znacenje ili kontekst podataka, $to dovodi do problema u kasnijim fazama.

Jedan od primarnih rizika samozale¢ujuc¢ih podataka je uvodenje pristrasnosti ili
gresaka u proces korekcije podataka. Al modeli, kao i bilo koji drugi softverski sistem,
mogu biti podloZni pristrasnostima prisutnim u podacima za obuku ili uvedenim kroz
dizajn algoritama. Ako se ove pristrasnosti ne identifikuju i ne ublaze, one se mogu
propagirati kroz proces samozaleCenja podataka i rezultirati iskrivljenim ili neta¢nim

modifikacijama podataka.

Na primer, razmotrimo samoisceljujuceg radnika za podatke zaduzenog za ispravljanje
nedoslednosti u demografskim podacima kupaca. Ako je Al model naucio pristrasnosti
iz istorijskih podataka, kao $to je povezivanje odredenih zanimanja ili nivoa prihoda sa
specificnim polovima ili etnickim pripadnostima, moZe praviti pogresne pretpostavke
i modifikovati podatke na nacin koji pojacava te pristrasnosti. Ovo moze dovesti do
netacnih profila kupaca, pogresnih poslovnih odluka i potencijalno diskriminatornih

ishoda.

Jos jedna potencijalna nezeljena posledica je gubitak vrednih informacija ili konteksta
tokom procesa ispravljanja podataka. Tehnike samoisceljuju¢ih podataka se Cesto

fokusiraju na standardizaciju i normalizaciju podataka kako bi se osigurala



Samozale¢ujuci podaci 170

konzistentnost. Medutim, u nekim slucajevima, originalni podaci mogu sadrzati
nijanse, izuzetke ili kontekstualne informacije koje su vazne za razumevanje celokupne
slike. Automatizovane ispravke koje slepo namecu standardizaciju mogu nenamerno

ukloniti ili zamagliti ove vredne informacije.

Na primer, zamislite samoisceljujuéeg radnika za podatke odgovornog za ispravljanje
nedoslednosti u medicinskim kartonima. Ako radnik naide na medicinsku istoriju
pacijenta sa retkim stanjem ili neuobi¢ajenim planom leCenja, moze pokusati da
normalizuje podatke kako bi se uklopili u ¢e$éi obrazac. Medutim, ¢ineéi to, moze
izgubiti specifi¢ne detalje i kontekst koji su klju¢ni za ta¢no predstavljanje jedinstvene
situacije pacijenta. Ovaj gubitak informacija moze imati ozbiljne implikacije za negu

pacijenta i donosenje medicinskih odluka.

Da bi se ublazili rizici od nezeljenih posledica, neophodno je zauzeti proaktivan pristup

pri dizajniranju i implementaciji tehnika samoisceljuju¢ih podataka:

1. Temeljno testiranje i validacija: Pre implementacije samoisceljujuéih radnika
za podatke u produkciji, kljuéno je temeljno testirati i validirati njihovo
ponasanje u razli¢itim scenarijima. Ovo ukljucuje testiranje sa reprezentativnim
skupovima podataka koji pokrivaju razli¢ite grani¢ne slucajeve, izuzetke i
potencijalne pristrasnosti. Rigorozno testiranje pomaze u identifikovanju i
resavanju nezeljenih posledica pre nego $to uti¢u na podatke u stvarnom svetu.

2. Kontinuirano praéenje i evaluacija: Implementacija mehanizama za
kontinuirano praéenje i evaluaciju je kljucna za otkrivanje i ublazavanje
nezeljenih posledica tokom vremena. Redovno pregledanje ishoda procesa
samoisceljujuéih podataka, analiziranje uticaja na nizvodne sisteme i donosenje
odluka, kao i prikupljanje povratnih informacija od zainteresovanih strana moze
pomoci u identifikovanju Stetnih efekata i pokretanju pravovremenih korektivnih
akcija. Ako vaSa organizacija ima operativne kontrolne table, dodavanje jasno
vidljivih metrika vezanih za automatizovane promene podataka je verovatno

dobra ideja. Dodavanje alarma povezanih sa velikim odstupanjima od normalne



Samozale¢ujuci podaci 171

aktivnosti promene podataka je verovatno jo$ bolja ideja!

3. Ljudski nadzor i intervencija: OdrZavanje ljudskog nadzora i mogucnosti
intervencije u procesu samoisceljujucih podataka je kljuc¢no. Iako automatizacija
moze znacajno poboljsati efikasnost, vazno je da ljudski stru¢njaci pregledaju
i validiraju ispravke koje prave AI modeli, posebno u kriti¢nim ili osetljivim
domenima. Ljudska procena i stru¢nost u domenu mogu pomoci u identifikovanju

i reSavanju nezeljenih posledica koje se mogu pojaviti.

4. Objasnjiva vestacka inteligencija (XAI) i transparentnost: Kao 3to je
diskutovano u prethodnom pododeljku, uklju¢ivanje tehnika objasnjive vestacke
inteligencije i osiguravanje transparentnosti u procesu samoisceljujuéih podataka
moze pomoc¢i u ublazavanju nezeljenih posledica. Pruzanjem jasnih objasnjenja za
ispravke podataka i odrzavanjem sveobuhvatnih revizorskih tragova, organizacije
mogu bolje razumeti i pratiti rezonovanje iza modifikacija koje prave Al modeli.

5. Inkrementalni i iterativni pristup: Usvajanje inkrementalnog i iterativnog
pristupa samoisceljujuéim podacima moZe pomo¢i u minimiziranju rizika od
nezeljenih posledica. Umesto primene automatizovanih ispravki na celom skupu
podataka odjednom, pocnite sa podskupom podataka i postepeno prosirujte
opseg kako se tehnike pokazu efikasnim i pouzdanim. Ovo omogucava pazljivo
pracenje i prilagodavanje tokom procesa, smanjujuci uticaj nezeljenih posledica.

6. Saradnja i povratne informacije: Ukljudivanje zainteresovanih strana iz
razlicitih domena i podsticanje saradnje i povratnih informacija tokom procesa
samoisceljujuéih podataka moze pomodi u identifikovanju i reSavanju nezeljenih
posledica. Redovno traZzenje inputa od stru¢njaka iz domena, korisnika podataka
i krajnjih korisnika moze pruziti vredne uvide u stvarni uticaj ispravki podataka

i ista¢i probleme koji su mozda bili prevideni.

Proaktivnim reSavanjem rizika od neZeljenih posledica i implementacijom
odgovaraju¢ih zastitnih mera, organizacije mogu iskoristiti prednosti tehnika

samoisceljujuéih podataka uz minimiziranje potencijalnih Stetnih efekata. Vazno



Samozale¢ujuci podaci 172

je pristupiti samoisceljuju¢im podacima kao iterativnom i kolaborativnom procesu,
kontinuirano prateci, evaluirajuci i usavrsavajuci tehnike kako bi se osiguralo da su

uskladene sa Zeljenim ishodima i odrzavaju integritet i pouzdanost podataka.

Kada se razmatra upotreba obrazaca samoisceljujuéih podataka, neophodno je pazljivo
proceniti ove faktore i odvagnuti prednosti u odnosu na potencijalne rizike i ogranicenja.
U nekim slucajevima, hibridni pristup koji kombinuje automatizovane ispravke sa

ljudskim nadzorom i intervencijom moze biti najprikladnije resenje.

Takode je vredno napomenuti da tehnike samoisceljujué¢ih podataka ne bi trebalo
posmatrati kao zamenu za robusnu validaciju podataka, sanitizaciju unosa i mehanizme
za rukovanje greskama. Ove fundamentalne prakse ostaju kriticne za osiguravanje
integriteta i bezbednosti podataka. Samoisceljujuce podatke treba posmatrati kao

komplementarni pristup koji moZe prosiriti i poboljsati ove postojece mere.

Na kraju, odluka o upotrebi obrazaca samoisceljujuc¢ih podataka zavisi od specifi¢nih
zahteva, ograniCenja i prioriteta vase aplikacije. Pazljivim razmatranjem gore navedenih
faktora i njihovim uskladivanjem sa ciljevima i arhitekturom vase aplikacije, mozete
doneti informisane odluke o tome kada i kako efikasno koristiti tehnike samoisceljujuéih

podataka.



Kontekstualno generisanje sadrzaja

3’

Obrasci kontekstualnog generisanja sadrzaja koriste mo¢ velikih jezickih modela (LLM)
za generisanje dinamickog i kontekstualno specifi¢nog sadrzaja unutar aplikacija.
Ova kategorija obrazaca prepoznaje vaznost isporuke personalizovanog i relevantnog
sadrzaja korisnicima na osnovu njihovih specifi¢nih potreba, preferenci, pa ¢ak i

prethodnih i trenutnih interakcija sa aplikacijom.

U kontekstu ovog pristupa, “sadrzaj” se odnosi kako na primarni sadrzaj (tj. blog

postove, ¢lanke, itd.) tako i na meta-sadrzaj, poput preporuka za primarni sadrzaj.

Obrasci kontekstualnog generisanja sadrzaja mogu igrati kljuénu ulogu u poboljsanju
nivoa angazovanja korisnika, pruzanju prilagodenih iskustava i automatizaciji

zadataka kreiranja sadrzaja kako za vas tako i za vase korisnike. Koriste¢i obrasce koje



Kontekstualno generisanje sadrzaja 174

opisujemo u ovom poglavlju, mozete kreirati aplikacije koje dinamicki generisu sadrzaj,

prilagodavajuéi se kontekstu i ulaznim podacima u realnom vremenu.

Obrasci funkcioni$u integrisanjem LLM-ova u izlaze aplikacije, od korisnickog interfejsa
(ponekad nazvanog “chrome”), do imejlova i drugih oblika obavestenja, kao i bilo kojih

procesa generisanja sadrzaja.

Kada korisnik komunicira sa aplikacijom ili pokrene specifican zahtev za sadrzajem,
aplikacija hvata relevantni kontekst, kao Sto su korisnicke preference, prethodne
interakcije ili specificni upiti. Ove kontekstualne informacije se zatim prosleduju
LLM-u, zajedno sa svim potrebnim $ablonima ili smernicama i koriste se za proizvodnju
tekstualnog izlaza koji bi inac¢e morao biti ili hardkodiran, sac¢uvan u bazi podataka ili

algoritmicki generisan.

Sadrzaj generisan pomocu LLM-a moze imati razli¢ite forme, kao $to su personalizovane
preporuke, dinamicki opisi proizvoda, prilagodeni odgovori na imejlove, pa ¢ak i
celokupni ¢lanci ili blog postovi. Jedna od najradikalnijih upotreba ovog sadrzaja koju
sam zapoceo pre vise od godinu dana je dinamicko generisanje Ul elemenata poput

oznaka formulara, objasnjenja i drugih vrsta tekstova za pojasnjenje.

Personalizacija

Jedna od kljuénih prednosti obrazaca kontekstualnog generisanja sadrzaja je moguénost
pruZanja visoko personalizovanih iskustava korisnicima. Generisanjem sadrzaja na
osnovu konteksta specificnog za korisnika, ovi obrasci omogucavaju aplikacijama da

prilagode sadrzaj individualnim interesima, preferencama i interakcijama korisnika.

Personalizacija prevazilazi jednostavno ubacivanje korisnickog imena u genericki
sadrzaj. Ona ukljucuje koris¢enje bogatog konteksta dostupnog o svakom korisniku za
generisanje sadrzaja koji rezonuje sa njihovim specificnim potrebama i zeljama. Ovaj

kontekst moze ukljuéivati Sirok spektar faktora, kao $to su:



Kontekstualno generisanje sadrzaja 175

1. Informacije korisnickog profila: Na najopstijem nivou primene ove tehnike,
demografski podaci, interesovanja, preference i drugi atributi profila mogu se
koristiti za generisanje sadrzaja koji se uskladuje sa korisnikovim poreklom i
karakteristikama.

2. Podaci o pona$anju: Prethodne interakcije korisnika sa aplikacijom, kao $to
su pregledane stranice, kliknuti linkovi ili kupljeni proizvodi, mogu pruziti
vredne uvide u njihovo ponasanje i interesovanja. Ovi podaci se mogu koristiti
za generisanje predloga sadrzaja koji odrazava njihove obrasce angaZovanja i
predvida njihove buduce potrebe.

3. Kontekstualni faktori: Trenutni kontekst korisnika, kao $to su njihova lokacija,
uredaj, doba dana, pa ¢ak i vremenske prilike, mogu uticati na proces generisanja
sadrzaja. Na primer, aplikacija za putovanja bi mogla imati Al radnika koji
je u stanju da generiSe personalizovane preporuke na osnovu trenutne lokacije

korisnika i preovladujucih vremenskih uslova.

Koriséenjem ovih kontekstualnih faktora, obrasci kontekstualnog generisanja sadrzaja
omogucavaju aplikacijama da isporuce sadrzaj koji deluje kao da je napravljen posebno
za svakog pojedinac¢nog korisnika. Ovaj nivo personalizacije ima nekoliko znacajnih

prednosti:

1. Povecan angazman: Personalizovani sadrzaj privla¢i paznju korisnika i odrzava
njihovu angazovanost sa aplikacijom. Kada korisnici osete da je sadrzaj relevantan
i da direktno odgovara njihovim potrebama, veca je verovatnoca da ¢e provesti
viSe vremena u interakciji sa aplikacijom i istrazivanju njenih funkcija.

2. Poboljsano zadovoljstvo korisnika: Personalizovani sadrzaj pokazuje da
aplikacija razume i brine o jedinstvenim zahtevima korisnika. Pruzanjem
sadrzaja koji je koristan, informativan i uskladen sa njihovim interesovanjima,
aplikacija moze povecati zadovoljstvo korisnika i izgraditi snazniju vezu sa

svojim korisnicima.



Kontekstualno generisanje sadrzaja 176

3. Vise stope konverzije: U kontekstu e-trgovine ili marketing aplikacija,
personalizovani sadrzaj moZe znacajno wuticati na stope konverzije.
Predstavljanjem proizvoda, ponuda ili preporuka koje su prilagodene njihovim
preferencama i ponasanju, aplikacija moze povecati verovatno¢u da ¢e korisnici

preduzeti Zeljene akcije, kao $to su kupovina ili registracija za uslugu.

Produktivnost

Obrasci kontekstualnog generisanja sadrzaja mogu znacajno povecati odredene vrste
produktivnosti smanjujuci potrebu za ru¢nim generisanjem i uredivanjem sadrzaja u
kreativnim procesima. Kori$¢enjem moc¢i LLM-ova, moZete generisati kvalitetan sadrzaj
u velikim razmerama, Stedeéi vreme i trud koji bi vasi kreatori sadrzaja i programeri

ina¢e morali da utroSe na zamoran rucni rad.

Tradicionalno, kreatori sadrzaja moraju da istrazuju, piu, ureduju i formatiraju sadrzaj
kako bi osigurali da ispunjava zahteve aplikacije i ocekivanja korisnika. Ovaj proces

moze biti vremenski zahtevan i resursno intenzivan, posebno kako obim sadrzaja raste.

Medutim, sa obrascima kontekstualnog generisanja sadrzaja, proces kreiranja sadrzaja
moze biti u velikoj meri automatizovan. Veliki jezicki modeli mogu generisati
koherentan, gramaticki ispravan i kontekstualno relevantan sadrzaj na osnovu
datih promptova i smernica. Ova automatizacija nudi nekoliko prednosti u pogledu

produktivnosti:

1. Smanjen ruéni rad: Delegiranjem zadataka generisanja sadrzaja velikim jezickim
modelima, kreatori sadrZaja se mogu fokusirati na zadatke viseg nivoa kao $to
su strategija sadrzaja, ideacija i osiguranje kvaliteta. Oni mogu pruziti potreban
kontekst, Sablone i smernice jezickom modelu i pustiti ga da se bavi stvarnim
generisanjem sadrzaja. Ovo smanjuje rucni rad potreban za pisanje i uredivanje,

omogucavajuci kreatorima sadrzaja da budu produktivniji i efikasniji.



Kontekstualno generisanje sadrzaja 177

2. Brze kreiranje sadrzaja: Veliki jezicki modeli mogu generisati sadrzaj mnogo brze
od ljudskih pisaca. Sa pravim promptovima i smernicama, jezicki model moze
proizvesti vise delova sadrzaja u roku od nekoliko sekundi ili minuta. Ova brzina
omogucava aplikacijama da generisu sadrzaj mnogo brzim tempom, drze¢i korak

sa zahtevima korisnika i stalno promenljivim digitalnim okruZenjem.

Da li brze kreiranje sadrzaja vodi do situacije “tragedije zajednickog dobra” gde se

internet gusi u sadrZaju koji niko ne ¢ita. Nazalost, sumnjam da je odgovor potvrdan.

3. Konzistentnost i kvalitet: Veliki jezi¢ki modeli mogu trivijalno revidirati
sadrzaj tako da bude konzistentan u stilu, tonu i kvalitetu. Uz jasne smernice
i primere, odredene vrste aplikacija (tj. redakcije, PR, itd.) mogu osigurati da
njihov sadrzaj koji generisu ljudi bude uskladen sa glasom brenda i zadovoljava
Zeljene standarde kvaliteta. Ova konzistentnost smanjuje potrebu za obimnim
uredivanjem i revizijama, Stedeci vreme i trud u procesu kreiranja sadrzaja.

4. Iteracija i optimizacija: Obrasci kontekstualnog generisanja sadrzaja
omoguéavaju brzu iteraciju i optimizaciju sadrzaja. Podesavanjem promptova,
Sablona ili smernica datih jezickom modelu, vase aplikacije mogu brzo generisati
varijacije sadrzaja i testirati razli¢ite pristupe na automatizovan naéin koji nikada
ranije nije bio mogu¢. Ovaj iterativni proces omogucava brze eksperimentisanje
i usavrSavanje strategija sadrzaja, $to vremenom dovodi do efektivnijeg i
angazovanijeg sadrzaja. Ova konkretna tehnika moze biti potpuna prekretnica za
aplikacije kao §to je e-trgovina koje Zive ili umiru na osnovu stope napustanja i

angazovanja



Kontekstualno generisanje sadrzaja 178

Vazno je napomenuti da iako obrasci kontekstualnog generisanja sadrzaja
’ mogu znacajno povecati produktivnost, oni ne eliminiu u potpunosti
potrebu za ljudskim uceséem. Kreatori sadrzaja i urednici i dalje igraju
kljuénu ulogu u definisanju celokupne strategije sadrzaja, pruzanju smernica
jezickom modelu i osiguravanju kvaliteta i prikladnosti generisanog

sadrzaja.

Automatizacijom viSe repetitivnih i vremenski zahtevnih aspekata kreiranja sadrzaja,
obrasci kontekstualnog generisanja sadrzaja oslobadaju dragoceno ljudsko vreme i
resurse koji se mogu preusmeriti na zadatke vise vrednosti. Ova poveéana produktivnost
vam omogucava da isporucite personalizovaniji i angazovaniji sadrzaj korisnicima uz

optimizaciju radnih tokova kreiranja sadrzaja.

Brza iteracija i eksperimentisanje

Obrasci kontekstualnog generisanja sadrzaja vam omogucavaju da brzo iterirate i
eksperimentiSete sa razli¢itim varijacijama sadrzaja, omogucavajuéi brzu optimizaciju
i usavriavanje vaSe strategije sadrzaja. MoZete generisati viSe verzija sadrzaja u roku
od nekoliko sekundi, jednostavnim podesavanjem konteksta, $ablona ili smernica datih

modelu.

Ova mogucénost brze iteracije nudi nekoliko kljuénih prednosti:

1. Testiranje i optimizacija: Sa moguc¢nostu brzog generisanja varijacija sadrZaja,
lako mozete testirati razlicite pristupe i meriti njihovu efikasnost. Na primer,
mozete generisati viSe verzija opisa proizvoda ili marketinske poruke, svaku
prilagodenu odredenom segmentu korisnika ili kontekstu. Analiziranjem metrika
angazovanja korisnika, kao $to su stope klikova ili stope konverzije, mozete
identifikovati najefikasnije varijacije sadrzaja i optimizovati vasu strategiju

sadrzaja u skladu s tim.



Kontekstualno generisanje sadrzaja 179

2. A/B testiranje: Obrasci kontekstualnog generisanja sadrzaja omogucavaju
besprekorno A/B testiranje sadrzaja. Mozete generisati dve ili viSe varijacija
sadrzaja i nasumicno ih servirati razli¢itim grupama korisnika. Poredenjem
performansi svake varijacije, mozete utvrditi koji sadrzaj najbolje rezonuje sa
vasom ciljnom publikom. Ovaj pristup zasnovan na podacima vam omoguéava
da donosite informisane odluke i kontinuirano usavrsavate svoj sadrzaj kako
biste maksimizirali angazovanje korisnika i postigli Zeljene rezultate.

3. Eksperimenti sa personalizacijom: Brza iteracija i eksperimentisanje su
posebno vredni kada je re¢ o personalizaciji. Sa obrascima kontekstualnog
generisanja sadrzaja, moZzete brzo generisati personalizovane varijacije
sadrzaja zasnovane na razliitim segmentima korisnika, preferencijama ili
ponasanjima. Eksperimentisanjem sa razlicitim strategijama personalizacije,
mozete identifikovati najefikasnije pristupe za angaZovanje pojedinacnih
korisnika i pruzanje prilagodenih iskustava.

4. Prilagodavanje promenljivim trendovima: Mogucénost brze iteracije i
eksperimentisanja vam omoguéava da ostanete agilni i prilagodite se
promenljivim trendovima i preferencijama korisnika. Kako se pojavljuju
nove teme, klju¢ne reéi ili ponasanja korisnika, moZete brzo generisati sadrzaj
koji je uskladen sa ovim trendovima. Kontinuiranim eksperimentisanjem i
usavrSavanjem vaseg sadrzaja moZzete ostati relevantni i odrzati konkurentsku
prednost u digitalnom okruZenju koje se neprestano razvija.

5. Ekonomic¢no eksperimentisanje: Tradicionalno eksperimentisanje sa sadrzajem
Cesto zahteva znacajno vreme i resurse, jer kreatori sadrZaja moraju ru¢no da
razvijaju i testiraju razlicite varijacije. Medutim, sa obrascima Kontekstualnog
generisanja sadrzaja, troskovi eksperimentisanja su znacajno smanjeni. Veliki
jezicki modeli mogu brzo generisati varijacije sadrzaja u vecem obimu,
omogucavaju¢i vam da istrazite Sirok spektar ideja i pristupa bez znacajnih

troskova.

Da biste maksimalno iskoristili brzu iteraciju i eksperimentisanje, vazno je imati dobro



Kontekstualno generisanje sadrzaja 180
definisan eksperimentalni radni okvir. Ovaj okvir treba da ukljucuje:

« Jasne ciljeve i hipoteze za svaki eksperiment

« Odgovarajuée metrike i mehanizme pracenja za merenje performansi sadrzaja

« Strategije segmentacije i ciljanja kako bi se osiguralo da odgovarajuée varijacije
sadrzaja budu isporucene pravim korisnicima

« Alate za analizu i izvestavanje za izvlacenje uvida iz eksperimentalnih podataka

« Proces za ukljuéivanje naucenog i optimizacija u vasu strategiju sadrzaja

Prihvatanjem brze iteracije i eksperimentisanja, mozete kontinuirano usavrSavati i
optimizovati va$ sadrzaj, osiguravajuci da ostane privlacan, relevantan i efikasan u
postizanju ciljeva vase aplikacije. Ovaj agilni pristup kreiranju sadrzaja vam omoguéava

da budete korak ispred i pruzite izuzetno korisnicko iskustvo.

Skalabilnost i efikasnost

Kako aplikacije rastu i potraznja za personalizovanim sadrZajem se poveéava, obrasci
kontekstualnog generisanja sadrzaja omoguéavaju efikasno skaliranje kreiranja
sadrzaja. Veliki jezicki modeli mogu istovremeno generisati sadrzaj za veliki broj
korisnika i konteksta, bez potrebe za proporcionalnim povecanjem ljudskih resursa.
Ova skalabilnost omogucava aplikacijama da isporuce personalizovana iskustva

rastucoj bazi korisnika bez optereéenja njihovih moguénosti kreiranja sadrzaja.

Imajte na umu da se kontekstualno generisanje sadrzaja moze efikasno
koristiti za internacionalizaciju vase aplikacije “u hodu”. Zapravo, to je ta¢no
ono §to sam uradio koriste¢i svoj Instant18n Gem za isporuku Olympie na

vise od pola desetine jezika, iako nismo ni godinu dana stari.



Kontekstualno generisanje sadrzaja 181

Al podrzana lokalizacija

Ako mi dozvolite da se malo pohvalim, mislim da je moja Instant18n biblioteka za Rails
aplikacije revolucionarni primer obrasca “Kontekstualnog generisanja sadrzaja” na delu,
pokazujuéi transformativni potencijal vestacke inteligencije u razvoju aplikacija. Ovaj
gem koristi snagu OpenAl-jevog GPT velikog jezickog modela da revolucionira nacin

na koji se internacionalizacija i lokalizacija obraduju u Rails aplikacijama.

Tradicionalno, internacionalizacija Rails aplikacije ukljucuje ru¢no definisanje kljuceva
za prevodenje i obezbedivanje odgovarajucih prevoda za svaki podrzani jezik. Ovaj
proces moze biti dugotrajan, zahtevan u pogledu resursa i sklon nedoslednostima.

Medutim, sa Instant18n gem-om, paradigma lokalizacije je potpuno redefinisana.

Integracijom velikog jezickog modela, Instant18n gem vam omogucava da generisete
prevode u hodu, na osnovu konteksta i znacenja teksta. Umesto oslanjanja na unapred
definisane kljuceve za prevodenje i staticke prevode, gem dinamicki prevodi tekst

koriste¢i snagu vestacke inteligencije. Ovaj pristup nudi nekoliko kljuénih prednosti:

1. Besprekorna lokalizacija: Sa Instant18n gem-om, programeri viSe ne moraju
ruéno da defini$u i odrzavaju datoteke sa prevodima za svaki podrzani jezik.
Gem automatski generi$e prevode na osnovu datog teksta i Zeljenog ciljnog jezika,
¢ineci proces lokalizacije jednostavnim i besprekornim.

2. Kontekstualna preciznost: Al moze dobiti dovoljno konteksta da shvati nijanse
teksta koji se prevodi. MoZe uzeti u obzir okolni kontekst, idiome i kulturoloske
reference kako bi generisao prevode koji su precizni, prirodni i kontekstualno
prikladni.

3. Opsezna jezicka podrska: Instant18n gem koristi ogromno znanje i lingvisticke
sposobnosti GPT-a, omogucavajuc¢i prevode na Sirok spektar jezika. Od
uobicajenih jezika poput Spanskog i francuskog do opskurnijih ili izmisljenih
jezika poput klingonskog i vilovnjackog, gem moze da se nosi sa Sirokim spektrom

prevodilackih zahteva.



Kontekstualno generisanje sadrzaja 182

4. Fleksibilnost i kreativnost: Gem prevazilazi tradicionalne jezicke prevode i
omogucava kreativne i nekonvencionalne opcije lokalizacije. Programeri mogu
prevoditi tekst u razlicite stilove, dijalekte, pa ¢ak i izmisljene jezike, otvarajuéi
nove mogucnosti za jedinstvena korisnicka iskustva i privlacan sadrzaj.

5. Optimizacija performansi: Instant18n gem ukljucuje mehanizme keSiranja
za poboljSanje performansi i smanjenje opterecenja kod ponovljenih prevoda.
Prevedeni tekst se keSira, omoguéavaju¢i da se naknadni zahtevi za istim

prevodom brzo isporuée bez potrebe za redundantnim API pozivima.

Instant18n gem predstavlja primer snage obrasca “Kontekstualnog generisanja sadrzaja”
koris¢enjem vestacke inteligencije za dinamicko generisanje lokalizovanog sadrzaja.
On pokazuje kako se vestacka inteligencija moze integrisati u osnovnu funkcionalnost
Rails aplikacije, transformiSuci naéin na koji programeri pristupaju internacionalizaciji
i lokalizaciji.

Eliminisanjem potrebe za ru¢nim upravljanjem prevoda i omogucavanjem prevodenja
u realnom vremenu na osnovu konteksta, Instant18n gem Stedi programerima znacajno
vreme i trud. Omogucava im da se fokusiraju na izgradnju osnovnih funkcionalnosti
svoje aplikacije, dok se istovremeno osigurava da se aspekt lokalizacije odvija

besprekorno i precizno.

Vaznost korisnickog testiranja i povratnih informacija

Na kraju, uvek imajte na umu vaznost korisnickog testiranja i povratnih informacija.
Kljuéno je potvrditi da generisanje kontekstualnog sadrzaja ispunjava ocekivanja
korisnika i uskladeno je sa ciljevima aplikacije. Kontinuirano unapredujte i usavrsavajte
generisani sadrzaj na osnovu korisnickih uvida i analitike. Ako generiSete dinamicki
sadrzaj u velikom obimu koji bi bilo nemoguce ruc¢no validirati od strane vas i vaseg
tima, razmotrite dodavanje mehanizama za povratne informacije koji omogucavaju

korisnicima da prijave sadrzaj koji je ¢udan ili pogresan, zajedno sa objasnjenjem zasto.



Kontekstualno generisanje sadrzaja 183

Te dragocene povratne informacije mogu ¢ak biti prosledene Al programu zaduzenom

za prilagodavanje komponente koja je generisala sadrzaj!



Generativni Ul

Paznja je danas toliko dragocena da efektivno angazovanje korisnika zahteva softverska

iskustva koja nisu samo besprekorna i intuitivna, veé i visoko personalizovana prema
individualnim potrebama, preferencijama i kontekstima. Kao rezultat toga, dizajneri
i programeri se sve viSe suocavaju sa izazovom kreiranja korisnickih interfejsa koji
se mogu prilagoditi i odgovoriti jedinstvenim zahtevima svakog korisnika u velikim

razmerama.

Generativni UI (GenU]) je zaista revolucionarni pristup dizajnu korisni¢kog interfejsa
koji koristi mo¢ velikih jezickih modela (LLM) za kreiranje visoko personalizovanih i
dinamickih korisnic¢kih iskustava u realnom vremenu. Zeleo sam da vam u ovoj knjizi
bar dam uvod u GenUI, jer verujem da je to jedna od najplodnijih prilika koje trenutno
postoje u domenu dizajna aplikacija i radnih okvira. Ubeden sam da ¢e se u ovoj posebnoj

nisi pojaviti desetine ili viSe novih uspe$nih komercijalnih i projekata otvorenog koda.



Generativni UL 185

U svojoj sustini, GenUI kombinuje principe Kontekstualnog generisanja sadrzaja sa
naprednim Al tehnikama za dinamicko generisanje elemenata korisnickog interfejsa,
kao $to su tekst, slike i rasporedi, na osnovu dubokog razumevanja korisnickog
konteksta, preferencija i ciljeva. GenUI omogucava dizajnerima i programerima da
kreiraju interfejse koji se prilagodavaju i razvijaju kao odgovor na korisnicke interakcije,

pruzajuéi nivo personalizacije koji ranije nije bio dostizan.

GenUI predstavlja fundamentalnu promenu u nacinu na koji pristupamo dizajnu
korisnickog interfejsa. Umesto dizajniranja za mase, GenUl nam omogucava da
dizajniramo za pojedinca. Personalizovani sadrzaj i interfejsi imaju potencijal da
kreiraju korisnicka iskustva koja rezonuju sa svakim korisnikom na dubljem nivou,

povecavajuti angazovanje, zadovoljstvo i lojalnost.

Kao najsavremenija tehnika, prelazak na GenUI je pun konceptualnih i prakti¢nih
izazova. Integracija Al u proces dizajna, osiguravanje da generisani interfejsi nisu samo
personalizovani ve¢ i upotrebljivi, pristupacni i uskladeni sa celokupnim brendom i
korisnickim iskustvom, sve su to izazovi koji ¢ine GenUI poduhvatom za malobrojne,
ne za mnoge. Dodatno, ukljucivanje AI pokrece pitanja o privatnosti podataka,

transparentnosti i ¢ak etickim implikacijama.

Uprkos izazovima, personalizovana iskustva u velikim razmerama imaju moc¢ da
potpuno transformiSu naéin na koji interagujemo sa digitalnim proizvodima i
uslugama. To otvara mogucénosti za kreiranje inkluzivnih i pristupacnih interfejsa koji
odgovaraju razli¢itim potrebama korisnika, bez obzira na njihove sposobnosti, poreklo

ili preferencije.

U ovom poglavlju, istrazi¢emo koncept GenUl-ja, ispituju¢i neke od definisucih
karakteristika, klju¢nih prednosti i potencijalnih izazova. Pofinjemo razmatranjem
najosnovnijeg i najpristupacnijeg oblika GenUI-ja: generisanje tekstualnog sadrzaja za

inace tradicionalno dizajnirane i implementirane korisnicke interfejse.



Generativni UL 186

Generisanje teksta za korisnicke interfejse

Tekstualni elementi koji postoje u chrome-u vase aplikacije, kao $to su oznake
formulara, opisi alata i objasnjavajuéi tekst, obicno su hardkodirani u Sablone ili UI
komponente, pruzajuéi konzistentno ali genericko iskustvo za sve korisnike. Koristeé¢i
obrasce kontekstualnog generisanja sadrzaja, moZete transformisati ove staticke

elemente u dinamicke, kontekstualno svesne i personalizovane komponente.

Personalizovani formulari

Formulari su sveprisutni deo web i mobilnih aplikacija, sluze¢i kao primarno sredstvo
za prikupljanje korisni¢kog unosa. Medutim, tradicionalni formulari ¢esto predstavljaju
genericko i bezli¢no iskustvo, sa standardnim oznakama i poljima koja se ne moraju uvek
poklapati sa specifi¢nim kontekstom ili potrebama korisnika. Korisnici ¢e verovatnije
popuniti formulare koji deluju prilagodeni njihovim potrebama i preferencijama, sto

dovodi do veéih stopa konverzije i zadovoljstva korisnika.

Medutim, vazno je posti¢i ravnotezu izmedu personalizacije i konzistentnosti. Iako
prilagodavanje formulara individualnim korisnicima moze biti korisno, klju¢no je
odrzati nivo poznatosti i predvidljivosti. Korisnici bi i dalje trebalo da mogu lako

prepoznati i navigirati kroz formulare, ¢ak i sa personalizovanim elementima.

Evo nekoliko ideja za personalizovane formulare kao inspiracija:

Kontekstualni predlozi polja

GenUI moze analizirati prethodne interakcije korisnika, preferencije i podatke kako bi
pruZio inteligentne predloge polja kao predvidanja. Na primer, ako je korisnik prethodno
uneo svoju adresu za dostavu, formular moze automatski popuniti relevantna polja
njihovim sa¢uvanim informacijama. Ovo ne samo da Stedi vreme ve¢ i pokazuje da

aplikacija razume i pamti korisnicke preferencije.



© 0 N O O b W N =

W W W N DN DN DN DN DN DNDNDNDNDDND - 2~ B2 ) )
N O © 0 N O O b W N~ O © 0 3 O O & w N~ O

Generativni UL 187

Cekajte malo, zar se ova tehnika ne bi mogla primeniti i bez upotrebe vestacke
inteligencije? Naravno, ali lepota implementacije ovakve funkcionalnosti pomoéu
vestacke inteligencije je dvostruka: 1) koliko je lako implementirati je i 2) koliko je

otporna na promene i evoluciju vaseg korisnickog interfejsa tokom vremena.

Hajde da na brzinu napravimo servis za nas teoretski sistem za obradu porudzbina, koji

¢e pokusati da proaktivno popuni odgovarajucu adresu za dostavu umesto korisnika.

class OrderShippingAddressSubscriber
include Raix::ChatCompletion

attr_accessor :order
delegate :customer, to: :order

DIRECTIVE = "You are a smart order processing assistant. Given the
customer's order history, guess the most likely shipping address
for the current order."

def order_created(order)
return unless order.pending? && order.shipping_address.blank?

self.order = order

transcript.clear

transcript << { system: DIRECTIVE }

transcript << { user: "Order History: #{order_history.to_json}" }
transcript << { user: "Current Order: #{order.to_json}" }

response = chat_completion
apply_predicted_shipping_address(order, response)
end

private

def apply_predicted_shipping_address(order, response)
# extract the shipping address from the response.. .
# .. .and assume there's some sort of live update of the address fields
order .update(shipping_address:)

end



33
34
35
36
37
38
39
40
41
42
43

© 0 N O U B W N =

NN N N N Bl s sl s
B W N PO O 0N 0 O b W N =

Generativni Ul

def order_history
customer .orders.successful .1imit(100) .map do |order|
{
date: order.date,
description: order.description,
shipping_address: order.shipping_address

end

end

end

Ovaj primer je veoma pojednostavljen, ali bi trebalo da funkcionise u veéini slucajeva.

Ideja je da pustimo vestacku inteligenciju da pogada na isti nacin kao $to bi to ¢inio

¢ovek. Da bih jasnije objasnio o ¢emu govorim, razmotrimo neke uzorne podatke:

Order History:

(

{"date": "2024-01-03", "description": "garden soil mix",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-01-15", "description": "hardcover fiction novels",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-01-22", "description": "baby diapers", "shipping_address":
"789 Suburb St, Quietville"},

{"date": "2024-02-01", "description": "organic vegetables",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-02-17", "description": "mystery thriller book set",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-02-25", "description": "baby wipes",
"shipping_address": "789 Suburb St, Quietville"},

{"date": "2024-03-05", "description": "flower seeds",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-03-20", "description": "biographies",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-03-30", "description": "baby formula",
"shipping_address": "789 Suburb St, Quietville"},

{"date": "2024-04-12", "description": "lawn fertilizer",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-04-22", "description": "science fiction novels",
"shipping_address": "456 City Apt, Metroville"},



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

O© 0 N O O b W N =

[ = = N
O OB W N

Generativni UL 189

{"date": "2024-05-02", "description": "infant toys",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-05-14", "description": "outdoor grill",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-05-29", "description": "literary classics",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-06-11", "description": "baby clothes",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-07-01", "description": "watering can",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-07-18", "description": "non-fiction essays",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-07-28", "description": "baby bath items",
"shipping_address": "T789 Suburb St, Quietville"},

{"date": "2024-08-09", "description": "herb garden kit",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-08-24", "description": "children's books",
"shipping_address": "456 City Apt, Metroville"}

Da li ste primetili obrazac u podacima? Garantujem vam da je ovo jednostavno za VJM.
Da bismo to demonstrirali, pitacemo GPT-4 koja je najverovatnija adresa za isporuku

133 »
za “toplomer”.

From the order history you've provided, it looks like the purchases are
generally clustered into three main types based on the shipping addresses:

123 Country Lane, Rural Town - This address often orders garden and
outdoor-related items like soil mix, vegetables, flower seeds, lawn
fertilizer, an outdoor grill, a watering can, and an herb garden kit.

456 City Apt, Metroville - This address tends to order various types of
books, indicating an interest in reading across genres like fiction,
thrillers, biographies, science fiction, literary classics, non-fiction

essays, and children's books.

789 Suburb St, Quietville - The purchases for this address are consistently
baby-related products, such as diapers, wipes, baby formula, infant toys,
baby clothes, and baby bath items.



17
18
19
20
21
22
23
24
25

O© 0 N O O b W N

[ T =Y
a s W N » e

Generativni UL 190

Given these patterns, a digital thermometer could potentially be a fit for
any of the addresses based on different needs: outdoor temperature tracking,
a tool for a passionate reader interested in science gadgets, or a health
tool for a baby. However, considering its common use in monitoring health,
especially for babies, it's most likely to be purchased by someone who's
already buying baby care products.

Therefore, the most likely shipping address for a digital thermometer, based
on the purchasing patterns, would be 789 Suburb St, Quietville.

Ako mislite da je preterivanje koristiti skup model kao $to je GPT-4 za ovaj zadatak,
u pravu ste! Isprobao sam isti upit na Mistral 7B Instruct modelu i on je dao sledeéi
odgovor brzinom od 75 tokena u sekundi, po zanemarljivoj ceni od 0,000218 americkih

dolara.

Based on the given order history, it appears that the customer has received
orders for baby-related items (diapers, wipes, formula, clothes, bath items)
at the address "789 Suburb St, Quietville" and garden-related items (soil,
seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural
Town". The customer has also received books (fiction, non-fiction, literary
classics, mystery-thriller, science fiction, biographies, children's books)
at the address "456 City Apt, Metroville".

Given that the new order is for a "thermometer", which doesn't seem to fit
into any of the categories that the customer has previously ordered, it's
hard to accurately predict the shipping address based solely on the order
history. However, given the 50%-50% split between baby-related and
garden-related items, it could somewhat lean towards the Baby-related items
address ("789 Suburb St, Quietville"). But remember, this is an assumption
and cannot be definitively confirmed without more context or information.

Da li su dodatni napor i troskovi ove tehnike vredni toga da iskustvo kupovine ucine
magicnijim? Za mnoge online prodavce, apsolutno. A sudeci po svemu, troskovi Al
racunanja ¢e samo padati, posebno za provajdere hostinga modela otvorenog koda koji

su u trci ka dnu.

Koristite Sablon Prompta i StructuredlO zajedno sa Ogradivanjem Odgovora

da optimizujete ovakvu vrstu chat kompletiranja.



Generativni UL 191

Adaptivno Redanje Polja

Redosled kojim se prikazuju polja formulara moze znacajno uticati na korisnicko
iskustvo i stope zavrSetka. Sa GenUI, moZete dinamicki prilagoditi redosled polja
na osnovu korisnickog konteksta i vaznosti svakog polja. Na primer, ako korisnik
popunjava registracioni formular za fitness aplikaciju, formular bi mogao dati prioritet
poljima vezanim za njihove fitness ciljeve i preference, ¢ine¢i proces relevantnijim i

angazovanijim.

Personalizovani Mikrotekst

Instrukcioni tekst, poruke o greskama i drugi mikrotekst povezan sa formularima takode
se moZe personalizovati koris¢enjem GenUIL Umesto prikazivanja generickih poruka o
greskama poput “Nevazeéa email adresa,” moZete generisati korisnije i kontekstualne
poruke kao 3to je “Molimo unesite vazeéu email adresu kako biste primili potvrdu vase
porudzbine” Ovi personalizovani detalji mogu uéiniti iskustvo popunjavanja formulara

pristupac¢nijim i manje frustriraju¢im.

Personalizovana Validacija

U skladu sa Personalizovanim Mikrotekstom, mogli biste koristiti Al za validaciju
formulara na nacine koji deluju magi¢no. Zamislite da pustite Al da validira formular

korisnickog profila, trazec¢i potencijalne greske na semantickom nivou.



Generativni UL 192

Create your account

Full name

Obie Fernandez

Email
obiefenandez@gmail.com m

Did you mean obiefernandez@gmail.com? Yes, update.

Country ©

<«

EE United States

Password

---------------- n

) Nice work. This is an excellent password.

Slika 9. Mozete li uo¢iti semanticku validaciju koja se desava?

Progresivno Otkrivanje

GenUI moze inteligentno odrediti koja su polja formulara sustinska na osnovu
korisnickog konteksta i postepeno otkrivati dodatna polja po potrebi. Ova tehnika
progresivnog otkrivanja pomaze u smanjenju kognitivnog opterecenja i ¢ini proces

popunjavanja formulara laksim za upravljanje. Na primer, ako se korisnik prijavljuje



Generativni UL 193

za osnovnu pretplatu, formular moZe inicijalno prikazati samo sustinska polja, a kako
korisnik napreduje ili bira odredene opcije, dodatna relevantna polja se mogu dinamicki

uvoditi.

Kontekstualno Svestan Tekst za Objasnjenja

Objasnjenja (tooltip) se ¢esto koriste za pruzanje dodatnih informacija ili smernica
korisnicima kada prelaze miSem preko ili stupaju u interakciju sa odredenim
elementima. Sa pristupom “Kontekstualnog Generisanja Sadrzaja”, mozete generisati
objasnjenja koja se prilagodavaju korisnickom kontekstu i pruzaju relevantne
informacije. Na primer, ako korisnik istrazuje kompleksnu funkciju, objasnjenje
moze ponuditi personalizovane savete ili primere zasnovane na njihovim prethodnim

interakcijama ili nivou vestine.

Tekst za objasnjenja, kao Sto su instrukcije, opisi ili poruke za pomo¢, moze se
dinamicki generisati na osnovu korisnickog konteksta. Umesto predstavljanja
generickih objasnjenja, moZete koristiti LLM-ove za generisanje teksta koji je
prilagoden specificnim potrebama ili pitanjima korisnika. Na primer, ako korisnik
ima poteskoca sa odredenim korakom u procesu, tekst za objasnjenje moze pruziti

personalizovane smernice ili savete za reSavanje problema.

Mikrotekst se odnosi na male delove teksta koji vode korisnike kroz vasu aplikaciju,
kao §to su oznake dugmadi, poruke o greskama ili upiti za potvrdu. Primenom pristupa
Kontekstualnog Generisanja Sadrzaja na mikrotekst, mozete kreirati adaptivni UI koji
reaguje na korisnicke akcije i pruza relevantan i koristan tekst. Na primer, ako korisnik
treba da izvrsi kritiénu akciju, upit za potvrdu moze biti dinamicki generisan kako bi

pruZio jasnu i personalizovanu poruku.

Personalizovani tekst za objasnjenja i objasnjenja mogu znacajno poboljsati proces
uvodenja novih korisnika. Pruzanjem kontekstualno specificnih smernica i primera,
mozete pomo¢i korisnicima da brzo razumeju i navigiraju aplikaciju, smanjujuéi krivu

ucenja i poveéavajuci usvajanje.



Generativni UL 194

Dinamicki i kontekstualno svesni chrome elementi takode mogu uéiniti aplikaciju
intuitivnijom i angaZovanijom. Korisnici ¢e verovatnije stupati u interakciju sa
funkcijama i istrazivati ih kada je prate¢i tekst prilagoden njihovim specificnim

potrebama i interesovanjima.

Do sada smo obradili ideje za unapredenje postojec¢ih Ul paradigmi pomoéu vestacke
inteligencije, ali $ta je sa preispitivanjem nacina na koji se korisnicki interfejsi dizajniraju

i implementiraju na radikalniji na¢in?

Definisanje generativnog Ul-ja

Za razliku od tradicionalnog Ul dizajna, gde dizajneri kreiraju fiksne, stati¢ne
interfejse, GenUI nagovestava buduénost u kojoj nas softver poseduje fleksibilna,
personalizovana iskustva koja mogu da se razvijaju i prilagodavaju u realnom vremenu.
Svaki put kada koristimo interfejs za konverzaciju zasnovan na vestackoj inteligenciji,
dozvoljavamo Al-ju da se prilagodi specifi¢nim potrebama korisnika. GenUI ide korak

dalje primenjujuci taj nivo prilagodljivosti na vizuelni interfejs softvera.

Razlog zbog kojeg je danas moguce eksperimentisati sa GenUI idejama je taj $to veliki
jezi¢ki modeli ve¢ razumeju programiranje i njihovo osnovno znanje ukljucuje Ul
tehnologije i okvire. Pitanje je, dakle, da li se veliki jezicki modeli mogu koristiti za
generisanje Ul elemenata, kao $to su tekst, slike, rasporedi, pa ¢ak i celokupni interfejsi,
koji su prilagodeni svakom pojedina¢nom korisniku. Model bi mogao biti podesen da
uzme u obzir razli¢ite faktore, kao $to su prethodne interakcije korisnika, navedene
preference, demografske informacije i trenutni kontekst upotrebe, kako bi kreirao visoko

personalizovane i relevantne interfejse.

GenUI se razlikuje od tradicionalnog dizajna korisni¢kog interfejsa na nekoliko klju¢nih

nacina:



Generativni UL 195

1. Dinamican i adaptivan: Tradicionalni UI dizajn podrazumeva kreiranje fiksnih,
staticnih interfejsa koji ostaju isti za sve korisnike. Nasuprot tome, GenUI
omogucéava interfejse koji se mogu dinamicki prilagodavati i menjati na osnovu
potreba korisnika i konteksta. To znaci da ista aplikacija moze predstaviti razli¢ite
interfejse razlic¢itim korisnicima, ili ¢ak istom korisniku u razli¢itim situacijama.

2. Personalizacija na velikoj skali: Kod tradicionalnog dizajna, kreiranje
personalizovanih iskustava za svakog korisnika Cesto je neprakti¢no zbog
potrebnog vremena i resursa. GenU]I, s druge strane, omoguéava personalizaciju
na velikoj skali. Koris¢enjem Al-ja, dizajneri mogu kreirati interfejse koji
se automatski prilagodavaju jedinstvenim potrebama i preferencama svakog
korisnika, bez potrebe za ru¢nim dizajniranjem i razvijanjem posebnih interfejsa
za svaki segment korisnika.

3. Fokus na rezultatima: Tradicionalni Ul dizajn Cesto se fokusira na kreiranje
vizuelno privlac¢nih i funkcionalnih interfejsa. Iako su ovi aspekti i dalje vazni u
GenUI-ju, primarni fokus se pomera ka postizanju Zeljenih korisnickih rezultata.
GenUI tezi kreiranju interfejsa koji su optimizovani za specifi¢ne ciljeve i zadatke
svakog korisnika, dajuci prioritet upotrebljivosti i efektivnosti u odnosu na ¢isto
estetske aspekte.

4. Kontinuirano udenje i poboljsanje: GenUI sistemi mogu kontinuirano da ude
i poboljsavaju se tokom vremena na osnovu korisnickih interakcija i povratnih
informacija. Dok korisnici koriste generisane interfejse, Al modeli mogu
prikupljati podatke o ponasanju korisnika, preferencama i rezultatima, koristeé¢i
ove informacije za usavr$avanje i optimizaciju buduéih generacija interfejsa.
Ovaj iterativni proces u¢enja omoguéava GenUI sistemima da vremenom postaju

sve efikasniji u zadovoljavanju potreba korisnika.

Vazno je napomenuti da GenUI nije isto $to i Al-potpomognuti alati za dizajn, poput
onih koji pruzaju sugestije ili automatizuju odredene dizajnerske zadatke. Iako ovi
alati mogu biti korisni u pojednostavljivanju procesa dizajna, oni se i dalje oslanjaju

na dizajnere da donose konac¢ne odluke i kreiraju stati¢ne interfejse. GenUI s druge



Generativni UL 196

strane, podrazumeva da Al sistem preuzima aktivniju ulogu u stvarnom generisanju i

prilagodavanju interfejsa na osnovu korisnickih podataka i konteksta.

GenUI predstavlja znacajan pomak u nadinu na koji pristupamo dizajnu
korisnickog interfejsa, udaljavajuéi se od univerzalnih resenja i krecuéi se ka visoko
personalizovanim, adaptivnim iskustvima. KoriS¢enjem mo¢i vestacke inteligencije,
GenUI ima potencijal da revolucionarizuje nac¢in na koji komuniciramo sa digitalnim
proizvodima i uslugama, stvarajuéi interfejse koji su intuitivniji, angaZovaniji i

efikasniji za svakog pojedinac¢nog korisnika.

Primer

Da bismo ilustrovali koncept GenUl-ja, razmotrimo hipoteti¢ku fitness aplikaciju pod
nazivom “FitAI”. Ova aplikacija ima za cilj da pruZi personalizovane planove vezbanja
i savete o ishrani korisnicima na osnovu njihovih individualnih ciljeva, nivoa kondicije

i preferencija.

U tradicionalnom pristupu Ul dizajnu, FitAI bi mogao imati fiksan set ekrana i elemenata
koji su isti za sve korisnike. Medutim, sa GenUlI-jem, interfejs aplikacije bi se mogao

dinamicki prilagodavati jedinstvenim potrebama i kontekstu svakog korisnika.

Ovaj pristup je pomalo tesko zamisliti za implementaciju u 2024. godini i mozda ¢ak

nema adekvatan ROJ, ali je mogué.

Evo kako bi to moglo da funkcionise:

1. Uvodenje korisnika:

« Umesto standardnog upitnika, FitAl koristi konverzacijsku vestacku
inteligenciju za prikupljanje informacija o ciljevima korisnika, trenutnom

nivou kondicije i preferencama.



Generativni UL 197

« Na osnovu ove pocCetne interakcije, Al generiSe personalizovani raspored
kontrolne table, naglasavajuéi funkcije i informacije koje su najrelevantnije
za ciljeve korisnika.

+ Trenutna Al tehnologija bi mogla imati na raspolaganju izbor komponenti
ekrana koje bi koristila u sastavljanju personalizovane kontrolne table.

« Buduca Al tehnologija bi mogla preuzeti ulogu iskusnog UI dizajnera i

zapravo kreirati kontrolnu tablu od nule.

2. Planer treninga:

« Al prilagodava interfejs planera treninga specifi¢no prema nivou iskustva
korisnika i dostupnoj opremi.

+ Zapocetnika bez opreme, moze prikazivati jednostavne vezbe sa sopstvenom
tezinom uz detaljna uputstva i video zapise.

 Za naprednog korisnika sa pristupom teretani, moze prikazivati sloZenije
rutine sa manje objasnjenja.

+ Sadrzaj planera treninga se ne filtrira jednostavno iz velikog skupa podataka.
Moze se generisati u realnom vremenu na osnovu baze znanja koja se

pretrazuje sa kontekstom koji ukljuuje sve §to se zna o korisniku.

3. Praéenje napretka:

« Interfejs za pracenje napretka razvija se na osnovu korisnikovih ciljeva i
obrazaca angazovanja.

+ Ako je korisnik prvenstveno fokusiran na gubitak tezine, interfejs moze
istaknuto prikazivati grafikon trenda teZine i statistiku potrosnje kalorija.

« Za korisnika koji gradi mi$iénu masu, mogao bi isticati napredak u snazi i
promene u telesnoj kompoziciji.

» Al moze prilagoditi ovaj deo aplikacije stvarnom napretku korisnika. Ako
napredak stane na odredeni period, aplikacija moze preéi u rezim u kojem

pokusava navesti korisnika da otkrije razloge zastoja, kako bi ih ublazila.



Generativni UL 198

4. Nutricionisti¢ki saveti:

 Sekcija za ishranu prilagodava se korisnikovim prehrambenim
preferencijama i ogranicenjima.
+ Zavegana, moze prikazivati predloge biljnih obroka i izvore proteina.

« Za korisnika sa netolerancijom na gluten, automatski bi filtrirala namirnice

koje sadrze gluten iz preporuka.

+ Ponovo, sadrzaj se ne izvlaci iz ogromnog skupa podataka o obrocima koji
vazi za sve korisnike, ve¢ se sintetizuje iz baze znanja koja sadrzi informacije
prilagodljive specifi¢noj situaciji i ogranicenjima korisnika.

+ Na primer, recepti se generisu sa specifikacijama sastojaka koje odgovaraju
konstantno promenjivim kalorijskim potrebama korisnika kako se njihov

nivo kondicije i telesne statistike razvijaju.

5. Motivacioni elementi:

» Motivacioni sadrzaj i obavestenja aplikacije personalizovani su na osnovu
tipa licnosti korisnika i reakcije na razli¢ite motivacione strategije.
« Neki korisnici mogu primati ohrabrujuée poruke, dok drugi dobijaju

povratne informacije vise zasnovane na podacima.

U ovom primeru, GenUI omoguéava FitAl-u da stvori visoko prilagodeno iskustvo za
svakog korisnika, potencijalno povecavajuéi angazovanje, zadovoljstvo i verovatnoéu
postizanja fitnes ciljeva. Elementi interfejsa, sadrzaj, pa ¢ak i “linost” aplikacije
prilagodavaju se kako bi najbolje sluzili potrebama i preferencijama svakog

pojedinac¢nog korisnika.

Prelazak na dizajn orijentisan ka ishodima

GenUI predstavlja fundamentalni pomak u pristupu dizajnu korisnickog interfejsa,
prelazeéi sa fokusa na kreiranje specifi¢nih elemenata interfejsa na vise holisticki pristup

orijentisan ka ishodima. Ovaj pomak ima nekoliko vaznih implikacija:



Generativni UL 199

1. Fokus na ciljeve korisnika:

« Dizajneri ¢ée morati dublje razmisljati o ciljevima korisnika i Zeljenim
ishodima umesto o specificnim komponentama interfejsa.

+ Naglasak ¢e biti na stvaranju sistema koji mogu generisati interfejse koji
pomazu korisnicima da efikasno i efektivno postignu svoje ciljeve.

+ Pojavice se novi Ul okviri koji ¢e Al-zasnovanim dizajnerima dati alate
potrebne za generisanje korisnickih iskustava u realnom vremenu i iz pocetka

umesto na osnovu unapred definisanih specifikacija ekrana.

2. Promena uloge dizajnera:

+ Dizajneri ce pre¢i sa kreiranja fiksnih izgleda na definisanje pravila,
ograniCenja i smernica koje Al sistemi treba da prate pri generisanju
interfejsa.

« Morate da razviju veStine u oblastima kao $to su analiza podataka,
inZenjering Al upita i sistemsko razmisljanje kako bi efikasno vodili GenUI

sisteme.

3. Vaznost istrazivanja korisnika:

» Istrazivanje korisnika postaje jo$ kriti¢nije u GenUI kontekstu, jer dizajneri
moraju razumeti ne samo preferencije korisnika, ve¢ i kako se te preferencije

i potrebe menjaju u razli¢itim kontekstima.
+ Kontinuirano testiranje korisnika i povratne informacije bice kljucni za

usavrsavanje i poboljsanje sposobnosti Al-ja da generiSe efikasne interfejse.

4. Dizajniranje za varijabilnost:

« Umesto kreiranja jednog “savrenog” interfejsa, dizajneri ¢e morati da
razmotre vise mogucih varijacija i osiguraju da sistem moZe generisati

odgovarajuce interfejse za razlicite potrebe korisnika.



Generativni UL 200

« Ovo ukljutuje dizajniranje za grani¢ne sluajeve i osiguravanje da
generisani interfejsi odrzavaju upotrebljivost i pristupacnost kroz razli¢ite
konfiguracije.

« Diferencijacija proizvoda dobija nove dimenzije koje ukljuc¢uju divergentne
perspektive o psihologiji korisnika i kori$¢enje jedinstvenih skupova

podataka i baza znanja nedostupnih konkurentima.

Izazovi i razmatranja

lako GenUI nudi uzbudljive moguénosti, takode predstavlja nekoliko izazova i

razmatranja:
1. Tehnicka ogranicenja:

« Trenutna AI tehnologija, iako napredna, i dalje ima ograniCenja u
razumevanju sloZenih namera korisnika i generisanju istinski kontekstualno
svesnih interfejsa.

« Problemi sa performansama vezani za generisanje elemenata interfejsa u

realnom vremenu, posebno na manje snaznim uredajima.

2. Zahtevi za podacima:

« U zavisnosti od slucaja upotrebe, efikasni GenUI sistemi mogu zahtevati
znacajne koli¢ine korisnickih podataka za generisanje personalizovanih
interfejsa.

« Izazovi u eti¢kom prikupljanju autenti¢nih korisnickih podataka pokreéu
pitanja o privatnosti i bezbednosti podataka, kao i o potencijalnim

pristrasnostima u podacima koji se koriste za obuku GenUI modela.

3. Upotrebljivost i doslednost:



Generativni UL 201

« Barem dok praksa ne postane Siroko rasprostranjena, aplikacija sa
konstantno promenljivim interfejsima mogla bi dovesti do problema
upotrebljivosti, jer bi korisnici mogli imati potesko¢a u pronalazenju
poznatih elemenata ili efikasnoj navigaciji.

« Postizanje ravnoteze izmedu personalizacije i odrzavanja doslednog,

savladivog interfejsa bice klju¢no.

4. Preterano oslanjanje na Al:

+ Postoji rizik od preteranog delegiranja odluka o dizajnu Al sistemima, $to
potencijalno moze dovesti do neinspirativnih, problemati¢nih ili jednostavno

neispravnih izbora interfejsa.

« Ljudski nadzor i moguénost preglasavanja Al-generisanih dizajna ostace

vazni u doglednoj buduénosti.
5. Pitanja pristupac¢nosti:

+ Osiguravanje da dinamicki generisani interfejsi ostanu pristupacni
korisnicima sa invaliditetom predstavlja potpuno nove izazove, $to je
zabrinjavajuce s obzirom na lo§ nivo uskladenosti sa pristupac¢noséu koji
pokazuju tipi¢ni sistemi.

» S druge strane, Al dizajneri mogu biti implementirani sa ugradenom brigom
za pristupacnost i moguénostima za izgradnju pristupac¢nih interfejsa u hodu,

bas kao $to grade Ul za korisnike bez ostecenja.

+ U svakom slu¢aju, GenUI sistemi bi trebalo da budu dizajnirani sa robusnim

smernicama za pristupacnost i procesima testiranja.

6. Poverenje korisnika i transparentnost:

« Korisnici se mogu osecati nelagodno sa interfejsima koji naizgled “znaju
previse” o njima ili se menjaju na nacine koje ne razumeju.
+ Obezbedivanje transparentnosti o tome kako i zasto se interfejsi

personalizuju bi¢e vazno za izgradnju poverenja korisnika.



Generativni UL 202

Bududi izgledi i moguénosti

Buduénost Generativnog Ul-ja (GenUI) nosi ogromno obeéanje za revoluciju nacina
na koji komuniciramo sa digitalnim proizvodima i uslugama. Kako se ova tehnologija
nastavlja razvijati, moZemo ocekivati seizmi¢ku promenu u nacinu na koji se korisnicki
interfejsi dizajniraju, implementiraju i dozivljavaju. Mislim da je GenUI fenomen koji
¢e konaéno gurnuti nas softver u domen onoga sto se sada smatra nau¢nom fantastikom.

pristupacnost u obimu koji prevazilazi samo osiguravanje da ljudi sa ozbiljnim
invaliditetom nisu potpuno iskljuceni iz koris¢enja vaSeg softvera. Automatskim
prilagodavanjem interfejsa individualnim potrebama korisnika, GenUI bi mogao uciniti
digitalna iskustva inkluzivnijim nego ikad pre. Zamislite interfejse koji se besprekorno
prilagodavaju da obezbede veci tekst za mlade ili vizuelno ostecene korisnike ili
pojednostavljene rasporede za one sa kognitivnim poteskocama, sve bez potrebe za

ru¢nom konfiguracijom ili posebnim “pristupa¢nim” verzijama aplikacija.

Moguénosti personalizacije GenUI-ja ¢e verovatno dovesti do povecanog angazovanja
korisnika, zadovoljstva i lojalnosti kroz Sirok spektar digitalnih proizvoda. Kako
interfejsi postaju vise uskladeni sa individualnim preferencijama i ponasanjima,
korisnici ¢e smatrati digitalna iskustva intuitivnijim i prijatnijim, $to potencijalno vodi

do dubljih i smislenijih interakcija sa tehnologijom.

GenUI takode ima potencijal da transformiSe proces uvodenja novih korisnika.
Stvaranjem intuitivnih, personalizovanih iskustava za nove korisnike koja se brzo
prilagodavaju nivou stru¢nosti svakog korisnika, GenUI bi mogao znacajno smanjiti
krivu ucenja povezanu sa novim aplikacijama. Ovo bi moglo dovesti do brzih stopa
usvajanja i povecanog samopouzdanja korisnika u istrazivanju novih funkcija i

funkcionalnosti.

Jo$ jedna uzbudljiva moguénost je sposobnost GenUl-ja da odrzava konzistentno

korisni¢ko iskustvo na razli¢itim uredajima i platformama, dok optimizuje za svaki



Generativni UL 203

specificni kontekst upotrebe. Ovo bi moglo resiti dugogodis$nji izazov pruzanja
koherentnih iskustava kroz sve fragmentiraniji pejzaz uredaja, od pametnih telefona
i tableta do desktop racunara i tehnologija u nastajanju poput naocara za prosirenu

realnost.

Priroda GenUl-ja zasnovana na podacima otvara mogucnosti za brzu iteraciju i
poboljsanje u Ul dizajnu. Prikupljanjem podataka u realnom vremenu o tome kako
korisnici komuniciraju sa generisanim interfejsima, dizajneri i programeri mogu steéi
neprevazidene uvide u ponasanje i preferencije korisnika. Ova povratna petlja mogla
bi dovesti do kontinuiranih pobolj$anja u Ul dizajnu, vodenih stvarnim obrascima

kori$c¢enja umesto pretpostavkama ili ogranicenim korisni¢kim testiranjem.

Da bi se pripremili za ovu promenu, dizajneri ¢e morati da razviju svoje vestine
i na¢in razmisljanja. Fokus ¢e se pomeriti sa kreiranja fiksnih rasporeda na razvoj
sveobuhvatnih sistema dizajna i smernica koje mogu informisati generisanje interfejsa
vodeno Al-jem. Dizajneri ¢e morati da razviju duboko razumevanje analize podataka,

Al tehnologija i sistemskog razmisljanja kako bi efikasno vodili GenUI sisteme.

Stavise, kako GenUI zamagljuje granice izmedu dizajna i tehnologije, dizajneri ¢e
morati blize da saraduju sa programerima i nauc¢nicima koji se bave podacima. Ovaj
interdisciplinarni pristup bi¢e klju¢an u stvaranju GenUI sistema koji nisu samo vizuelno
privlacni i prijateljski nastrojeni prema korisnicima, ve¢ i tehni¢ki robusni i eti¢ki

ispravni.

Eticke implikacije GenUl-ja ¢e takode do¢i u prvi plan kako tehnologija sazreva.
Dizajneri ¢e imati kljuénu ulogu u razvoju okvira za odgovornu upotrebu vestacke
inteligencije u dizajnu interfejsa, osiguravajuci da personalizacija unapreduje korisnicko

iskustvo bez ugrozavanja privatnosti ili neeticke manipulacije ponasanjem korisnika.

Gledajuéi u buduénost, GenUI predstavlja i uzbudljive mogucnosti i znacajne izazove.
Ima potencijal da stvori intuitivnija, efikasnija i zadovoljavajuca digitalna iskustva za
korisnike Sirom sveta. Iako Ce zahtevati od dizajnera da se prilagode i steknu nove

vestine, takode pruza nevidenu priliku da se oblikuje buduénost interakcije izmedu



Generativni UL 204

Coveka i raCunara na dubok i smislen nacin. Put ka potpuno realizovanim GenUI
sistemima ¢e nesumnjivo biti sloZen, ali potencijalne nagrade u smislu poboljsanog

korisnickog iskustva i digitalne pristupacnosti ¢ine ga buduc¢noscu za koju vredi teziti.



Inteligentna orkestracija radnih

tokova

U domenu razvoja aplikacija, radni tokovi igraju kljuénu ulogu u definisanju kako

se zadaci, procesi i interakcije korisnika strukturiraju i izvrSavaju. Kako aplikacije
postaju slozenije, a oéekivanja korisnika nastavljaju da rastu, potreba za inteligentnom

i adaptivnom orkestracijom radnih tokova postaje sve o¢iglednija.

Pristup “Inteligentne orkestracije radnih tokova” fokusira se na kori§¢enje Al
komponenti za dinamicku orkestraciju i optimizaciju sloZenih radnih tokova unutar
aplikacija. Cilj je stvaranje aplikacija koje su efikasnije, responzivnije i prilagodljivije

podacima i kontekstu u realnom vremenu.

U ovom poglavlju istrazicemo kljuéne principe i obrasce koji podupiru pristup

inteligentne orkestracije radnih tokova. Razmotricemo kako se Al moze koristiti za



Inteligentna orkestracija radnih tokova 206

inteligentno usmeravanje zadataka, automatizaciju donoSenja odluka i dinamicko
prilagodavanje radnih tokova na osnovu razli¢itih faktora kao $to su ponasanje
korisnika, performanse sistema i poslovna pravila. Kroz prakti¢ne primere i scenarije iz
stvarnog sveta, demonstriracemo transformativni potencijal Al-ja u pojednostavljivanju

i optimizaciji radnih tokova aplikacija.

Bez obzira da li gradite poslovne aplikacije sa slozenim poslovnim procesima ili
aplikacije namenjene potro$a¢ima sa dinamic¢kim korisni¢kim putanjama, obrasci i
tehnike o kojima se govori u ovom poglavlju opremié¢ ¢e vas znanjem i alatima za
kreiranje inteligentnih i efikasnih radnih tokova koji poboljsavaju celokupno korisnicko

iskustvo i donose poslovnu vrednost.

Poslovna potreba

Tradicionalni pristupi upravljanju radnim tokovima Cesto se oslanjaju na unapred
definisana pravila i staticka stabla odlucivanja, koja mogu biti kruta, nefleksibilna i

nesposobna da se nose sa dinami¢nom prirodom modernih aplikacija.

Razmotrite scenario gde aplikacija za elektronsku trgovinu treba da upravlja slozenim
procesom ispunjenja porudzbine. Radni tok moze ukljucivati vise koraka kao $to su
validacija porudzbine, provera zaliha, obrada pla¢anja, isporuka i obavestenja kupcima.
Svaki korak moZe imati svoj set pravila, zavisnosti, eksterne integracije i mehanizme za
rukovanje izuzecima. Upravljanje takvim radnim tokom ru¢no ili kroz hardkodirani kod

moze brzo postati nezgrapno, sklono greskama i tesko za odrzavanje.

Stavie, kako aplikacija skalira i broj istovremenih korisnika raste, radni tok ¢e mozda
morati da se prilagodava i optimizuje na osnovu podataka u realnom vremenu i
performansi sistema. Na primer, tokom perioda vr§nog opterecenja, aplikacija ¢e mozda
morati dinamicki da prilagodi radni tok kako bi prioritizovala odredene zadatke,

efikasno raspodelila resurse i osigurala nesmetano korisnicko iskustvo.

Tu nastupa pristup “Inteligentne orkestracije radnih tokova”. Kori$¢enjem Al



Inteligentna orkestracija radnih tokova 207

komponenti, programeri mogu kreirati radne tokove koji su inteligentni, adaptivni i
samo-optimizuju¢i. Al moZe analizirati ogromne koli¢ine podataka, uciti iz proslih
iskustava i donositi informisane odluke u realnom vremenu za efikasnu orkestraciju

radnog toka.

Kljuéne prednosti

1. Povecana efikasnost: Al moZe optimizovati rasporedivanje zadataka, kori$cenje
resursa i izvrSavanje radnih tokova, Sto dovodi do brzeg vremena obrade i
poboljsane ukupne efikasnosti.

2. Prilagodljivost: Radni tokovi vodeni Al-jem mogu se dinamicki prilagodavati
promenjivim uslovima, kao S$to su fluktuacije u korisnickoj potraznji,
performansama sistema ili poslovnim zahtevima, osiguravaju¢i da aplikacija
ostane responzivna i otporna.

3. Automatizovano donos$enje odluka: Al moze automatizovati sloZene procese
donosenja odluka unutar radnog toka, smanjujuéi manuelne intervencije i
minimizujuéi rizik od ljudskih gresaka.

4. Personalizacija: Al moZe analizirati ponasanje korisnika, preference i kontekst
kako bi personalizovao radni tok i isporucio prilagodena iskustva pojedina¢nim
korisnicima.

5. Skalabilnost: Radni tokovi pokretani Al-jem mogu se besprekorno skalirati kako
bi rukovali rastu¢im obimom podataka i korisnickih interakcija, bez ugrozavanja

performansi ili pouzdanosti.

U slede¢im odeljcima istrazicemo kljuéne obrasce i tehnike koje omoguéavaju
implementaciju inteligentnih radnih tokova i prikazati primere iz stvarnog sveta o tome

kako Al transformi$e upravljanje radnim tokovima u modernim aplikacijama.



© 0 N O O b W N =

[ T ==Y
a s W N r e

Inteligentna orkestracija radnih tokova 208

Kljuéni obrasci

Za implementaciju inteligentne orkestracije radnih tokova u aplikacijama, programeri
mogu iskoristiti nekoliko klju¢nih obrazaca koji koriste snagu Al-ja. Ovi obrasci pruzaju
strukturirani pristup dizajniranju i upravljanju radnim tokovima, omoguéavajuci
aplikacijama da se prilagodavaju, optimizuju i automatizuju procese na osnovu
podataka i konteksta u realnom vremenu. Hajde da istrazimo neke od fundamentalnih

obrazaca u inteligentnoj orkestraciji radnih tokova.

Dinamicko usmeravanje zadataka

Ovaj obrazac ukljucuje kori$¢enje Al-ja za inteligentno usmeravanje zadataka unutar
radnog toka na osnovu razli¢itih faktora kao $to su prioritet zadatka, dostupnost resursa
i performanse sistema. Al algoritmi mogu analizirati karakteristike svakog zadatka,
uzeti u obzir trenutno stanje sistema i donositi informisane odluke za dodeljivanje
zadataka najprikladnijim resursima ili putanjama obrade. Dinami¢ko usmeravanje
zadataka osigurava da su zadaci efikasno distribuirani i izvr$eni, optimizujuéi ukupne

performanse radnog toka.

class TaskRouter
include Raix::ChatCompletion

include Raix::FunctionDispatch
attr_accessor :task

# list of functions that can be called by the AI entirely at its

# discretion depending on the task received

function :analyze_task_priority do
TaskPriorityAnalyzer .perform(task)
end

function :check_resource_availability, # ...

function :assess_system_performance, # ...



16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Inteligentna orkestracija radnih tokova 209

function :assign_task_to_resource, # ...

DIRECTIVE = "You are a task router, responsible for intelligently
assigning tasks to available resources based on priority, resource
availability, and system performance..."

def initialize(task)
self.task = task
transcript << { system: DIRECTIVE }
transcript << { user: task.to_json }
end

def perform
while task.unassigned?
chat_completion

# todo: add max loop counter and break
end

# capture the transcript for later analysis
task.update(routing_transcript: transcript)
end
end

Obratite paznju na petlju kreiranu while izrazom u liniji 29, koja nastavlja da $alje upite
Al-ju sve dok zadatak nije dodeljen. U liniji 35, cuvamo transkript zadatka za kasniju

analizu i otklanjanje gresaka, ako bude potrebno.

Kontekstualno Donosenje Odluka

Mozete koristiti vrlo slican kod za dono$enje odluka zasnovanih na kontekstu unutar
toka rada. Analiziranjem relevantnih podataka kao $to su korisnicke preference,
istorijski obrasci i unosi u realnom vremenu, Al komponente mogu odrediti
najprikladniji tok akcije na svakoj tacki odlucivanja u toku rada. Prilagodite ponasanje
vaSeg toka rada na osnovu specificnog konteksta svakog korisnika ili scenarija,

pruzajuéi personalizovana i optimizovana iskustva.



Inteligentna orkestracija radnih tokova 210

Adaptivna Kompozicija Toka Rada

Ovaj obrazac se fokusira na dinamicko komponovanje i prilagodavanje tokova rada
na osnovu promenljivih zahteva ili uslova. Al moze analizirati trenutno stanje toka
rada, identifikovati uska grla ili neefikasnosti, i automatski modifikovati strukturu toka
rada kako bi optimizovao performanse. Adaptivna kompozicija toka rada omoguéava
aplikacijama da se kontinuirano razvijaju i poboljsavaju svoje procese bez potrebe za

ruénom intervencijom.

Rukovanje [zuzecima i Oporavak

Rukovanje izuzecima i oporavak su kriti¢ni aspekti inteligentne orkestracije toka rada.
Kada radite sa Al komponentama i slozenim tokovima rada, neophodno je predvideti i

elegantno rukovati izuzecima kako bi se osigurala stabilnost i pouzdanost sistema.

Evo nekoliko kljuénih razmatranja i tehnika za rukovanje izuzecima i oporavak u

inteligentnim tokovima rada:

1. Propagacija Izuzetaka: Implementirajte konzistentan pristup za propagaciju
izuzetaka kroz komponente toka rada. Kada se izuzetak pojavi unutar
komponente, treba ga uhvatiti, zabeleZiti i propagirati do orkestratora ili zasebne
komponente odgovorne za rukovanje izuzecima. Ideja je da se centralizuje
rukovanje izuzecima i spreci tiho gutanje izuzetaka, kao i otvaranje moguénosti
za Inteligentno Rukovanje Greskama.

2. Mehanizmi Ponovnog Poku$aja: Mehanizmi ponovnog poku$aja pomazu u
poboljsanju otpornosti toka rada i elegantnom rukovanju povremenim greskama.
Svakako pokusajte implementirati mehanizme ponovnog pokusaja za prolazne ili
oporavljive izuzetke, kao $to su mrezna povezanost ili nedostupnost resursa koji
se mogu automatski ponovno pokusati nakon odredenog kasnjenja. Posedovanje

Al-pogonjenog orkestratora ili rukovaoca izuzecima znadi da vase strategije



Inteligentna orkestracija radnih tokova 211

ponovnog pokusaja ne moraju biti mehanicke prirode, oslanjajuéi se na fiksne
algoritme poput eksponencijalnog povlacenja. Mozete prepustiti rukovanje
ponovnim pokusajem “diskreciji” Al komponente odgovorne za odludivanje kako
rukovati izuzetkom.

3. Rezervne Strategije: Ako Al komponenta ne uspe da pruzi validan odgovor ili
naide na gresku--sto je Cesta pojava s obzirom na njenu naprednu prirodu-—
imajte rezervni mehanizam koji ¢e osigurati da tok rada moze da se nastavi. Ovo
moze ukljucivati kori$¢enje podrazumevanih vrednosti, alternativnih algoritama,
ili Coveka u Petlji za donosenje odluka i odrzavanje napretka toka rada.

4. Kompenzacione Akcije: Direktive orkestratora treba da uklju¢uju uputstva o
kompenzacionim akcijama za rukovanje izuzecima koji se ne mogu automatski
resiti. Kompenzacione akcije su koraci koji se preduzimaju da bi se ponistili
ili ublazili efekti neuspele operacije. Na primer, ako korak obrade pla¢anja ne
uspe, kompenzaciona akcija bi mogla biti vracanje transakcije i obavestavanje
korisnika. Kompenzacione akcije pomazu u odrzavanju konzistentnosti podataka
i integriteta u sluéaju izuzetaka.

5. Prac¢enje i Upozoravanje o Izuzecima: Postavite mehanizme za pracenje i
upozoravanje kako biste otkrili i obavestili relevantne zainteresovane strane o
kriti¢nim izuzecima. Orkestrator mozZe biti svestan pragova i pravila za pokretanje
upozorenja kada izuzeci predu odredene granice ili kada se pojave specifi¢ni tipovi
izuzetaka. Ovo omogucava proaktivnu identifikaciju i reSavanje problema pre

nego $to uti¢u na celokupni sistem.

Evo primera rukovanja izuzecima i oporavka u Ruby komponenti toka rada:



© 0 N O O b W N e

NN DN NN NN N S R R S s s
© ©® 9 O O & W N =~ 0 © W 9 O U b w N =~ O

Inteligentna orkestracija radnih tokova 212

class InventoryManager
def check_availability(order)
begin
# Perform inventory check logic
inventory = Inventory.find_by(product_id: order.product_id)
if inventory.available_quantity >= order.quantity
return true
else
raise InsufficientInventoryError,
"Insufficient inventory for product #{order.product_id}"
end
rescue InsufficientInventoryError => e
# Log the exception

logger .error("Inventory check failed: #{e.message}")

# Retry the operation after a delay

retry_count |[|= 0

if retry_count < MAX_RETRIES
retry_count += 1
sleep(RETRY_DELAY)
retry

else
# Fallback to manual intervention
NotificationService.admin("Inventory check failed: Order #{order.id}")
return false

end

end
end
end

U ovom primeru, InventoryManager komponenta proverava dostupnost
proizvoda za datu narudzbinu. Ako je dostupna koli¢ina nedovoljna, podiZe se
InsufficientInventoryError. Izuzetak se hvata, belezi, i implementira se mehanizam
ponovnog pokusaja. Ako se prekoraci limit ponovnih pokusaja, komponenta prelazi na

ruénu intervenciju obavestavanjem administratora.

Implementacijom robusnog rukovanja izuzecima i mehanizama oporavka, mozete

osigurati da vasi inteligentni radni tokovi budu otporni, odrzivi i sposobni da elegantno



Inteligentna orkestracija radnih tokova 213

rukuju neoéekivanim situacijama.

Ovi obrasci ¢ine osnovu orkestracije inteligentnog radnog toka i mogu se kombinovati i
prilagoditi specificnim zahtevima razli¢itih aplikacija. Koriste¢i ove obrasce, programeri
mogu kreirati radne tokove koji su fleksibilni, otporni i optimizovani za performanse i

korisnicko iskustvo.

U sledecem odeljku, istrazi¢emo kako se ovi obrasci mogu implementirati u praksi,
koriste¢i primere iz stvarnog sveta i isecke koda da bismo ilustrovali integraciju Al

komponenti u upravljanje radnim tokovima.

Implementacija orkestracije inteligentnog radnog

toka u praksi

Sada kada smo istrazili klju¢ne obrasce u orkestraciji inteligentnog radnog toka, hajde
da se udubimo u to kako se ovi obrasci mogu implementirati u aplikacijama iz stvarnog
sveta. Pruzicemo prakti¢ne primere i isecke koda da bismo ilustrovali integraciju Al

komponenti u upravljanje radnim tokovima.

Inteligentni procesor narudzbina

Hajde da se udubimo u prakti¢an primer implementacije orkestracije inteligentnog
radnog toka koriste¢i Al-podrzanu OrderProcessor komponentu u Ruby on Rails
e-commerce aplikaciji. OrderProcessor realizuje koncept Process Manager Enterprise
Integration koji smo prvi put sreli u Poglavlju 3 kada smo diskutovali o Mnostvu
radnika. Komponenta ce biti odgovorna za upravljanje tokom ispunjavanja narudzbina,
donosenje odluka o rutiranju na osnovu medurezultata i orkestraciju izvrsavanja

razli¢itih koraka obrade.



Inteligentna orkestracija radnih tokova 214

Proces ispunjavanja narudzbine ukljucuje vie koraka kao $to su validacija narudzbine,
provera inventara, obrada placanja i isporuka. Svaki korak je implementiran kao zaseban
radni proces koji obavlja specifican zadatak i vra¢a rezultat OrderProcessor-u. Koraci

nisu obavezni i ne moraju ¢ak ni da se izvrSavaju odredenim redosledom.

Evo primera implementacije OrderProcessor-a. Sadrzi dva mixin-a iz Raix. Prvi
(ChatCompletion) daje mu moguénost chat completion-a, §to ga ¢ini Al komponentom.
Drugi (FunctionDispatch) omoguéava pozivanje funkcija od strane Al-a, dozvoljavajuéi

mu da odgovori na prompt pozivom funkcije umesto tekstualne poruke.

Radne funkcije (validate_order, check_inventory, i ostale) delegiraju svojim
odgovarajué¢im radnim klasama, koje mogu biti Al ili ne-Al komponente, sa jedinim

zahtevom da vrate rezultate svog rada u formatu koji se moze predstaviti kao string.

Kao i sa svim drugim primerima u ovom delu knjige, ovaj kod je prakti¢no
pseudo-kod i namenjen je samo da prenese znaCenje obrasca i inspirise
vase sopstvene kreacije. Potpuni opisi obrazaca i kompletni primeri koda

su ukljuceni u Delu 2.

class OrderProcessor
include Raix::ChatCompletion

include Raix::FunctionDispatch
SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

def initialize(order)
self.order = order
transcript << { system: SYSTEM_DIRECTIVE }
transcript << { user: order.to_json }

end

def perform
# will continue looping until “stop_looping!" is called
chat_completion(loop: true)

end


https://github.com/OlympiaAI/raix-rails

18
19
20

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Inteligentna orkestracija radnih tokova

# ]list of functions available to be called by the AI

# truncated for brevity

def functions

[

name: "validate_order",
description: "Invoke to check validity of order",
parameters: {

}I

]

end

# implementation of functions that can be called by the AI
# entirely at its discretion, depending on the needs of the order

def validate_order
OrderValidationWorker . per form(@order)
end

def check_inventory
InventoryCheckWorker . per form(@order)
end

def process_payment
PaymentProcessingWorker . per form(@order)
end

def schedule_shipping
ShippingSchedulerWorker . per form(@order)
end

def send_confirmation
OrderConfirmationWorker . per form(@order)
end

def finished_processing
@order .update! (transcript:, processed_at: Time.current)
stop_looping!

end

215



60

Inteligentna orkestracija radnih tokova 216

end

U primeru, OrderProcessor se inicijalizuje sa objektom porudzbine i odrzava transkript
izvrSavanja toka rada, u tipi¢nom formatu transkripta konverzacije koji je svojstven
velikim jezickim modelima. Vestackoj inteligenciji je data potpuna kontrola nad
orkestracijom izvrSavanja razlic¢itih koraka obrade, kao $to su validacija porudzbine,

provera zaliha, obrada plaéanja i isporuka.

Svaki put kada se pozove metoda chat_completion, transkript se 3alje vestackoj
inteligenciji da bi ona obezbedila zavrsetak u vidu poziva funkcije. U potpunosti je na
vestackoj inteligenciji da analizira rezultat prethodnog koraka i odredi odgovarajucu
akciju koju treba preduzeti. Na primer, ako provera zaliha otkrije nizak nivo zaliha,
OrderProcessor moze da zakaze zadatak dopune. Ako obrada placanja ne uspe, moze

da pokrene ponovni pokusaj ili da obavesti korisnicku podrsku.

Gornji primer nema definisane funkcije za dopunu zaliha ili obavestavanje korisnicke

podrske, ali apsolutno bi mogao da ih ima.

Transkript raste svaki put kada se pozove funkcija i sluzi kao evidencija izvrSavanja toka
rada, ukljuéujuéi rezultate svakog koraka i uputstva koja generise vestacka inteligencija
za sledeée korake. Ovaj transkript se moze koristiti za otklanjanje gresaka, reviziju i

obezbedivanje vidljivosti u procesu ispunjenja porudzbine.

Kori$¢enjem vestacke inteligencije u OrderProcessor-u, e-commerce aplikacija moze
dinamicki da prilagodi tok rada na osnovu podataka u realnom vremenu i inteligentno
upravlja izuzecima. Komponenta vestacke inteligencije moze da donosi informisane
odluke, optimizuje tok rada i osigura neometanu obradu porudzbina ¢ak i u slozenim

scenarijima.

Cinjenica da je jedini zahtev za radne procese da vrate neki razumljiv izlaz koji ée



O 0 N O O b W N =

O T T Y
© 00 N O O & W N =~ o

Inteligentna orkestracija radnih tokova 217

vestacka inteligencija razmotriti pri odluéivanju $ta dalje da radi, moZda ¢e vam pomoci
da shvatite kako ovaj pristup moze da smanji posao mapiranja ulaza/izlaza koji je obi¢no

potreban pri integraciji razlicitih sistema medusobno.

Inteligentni moderator sadrzaja

Aplikacije drustvenih mreza generalno zahtevaju bar minimalnu moderaciju
sadrzaja kako bi se osigurala bezbedna i zdrava zajednica. Ovaj primer komponente
ContentModerator koristi vestacku inteligenciju za inteligentno orkestriranje toka
moderacije, donose¢i odluke na osnovu karakteristika sadrzaja i rezultata razli¢itih

koraka moderacije.

Proces moderacije ukljucuje vise koraka kao $to su analiza teksta, prepoznavanje slika,
procena reputacije korisnika i ruéni pregled. Svaki korak je implementiran kao zaseban

radni proces koji obavlja odredeni zadatak i vra¢a rezultat ContentModerator-u.

Evo primera implementacije ContentModerator-a:

class ContentModerator
include Raix: :ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a content moderator process manager,
tasked with the workflow involved in moderating user-generated content...

def initialize(content)
@content = content
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: content.to_json }

]

end

def perform
complete(@transcript)
end



21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Inteligentna orkestracija radnih tokova

def model
"openai/gpt-4"
end

# list of functions available to be called by the AI
# truncated for brevity

def functions

(

name: "analyze_text",
# PR

}I
name: "recognize_image",
description: "Invoke to describe images...",
#

}I
name: "assess_user_reputation",
#

}I
name: "escalate_to_manual_review",
#

}I
name: "approve_content",
#

}I
name: "reject_content",
#

end

# implementation of functions that can be called by the AI

# entirely at its discretion, depending on the needs of the order

def analyze_text
result = TextAnalysisWorker .per form(@content)

218



62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Inteligentna orkestracija radnih tokova 219

continue_with(result)
end

def recognize_image
result = ImageRecognitionWorker .per form(@content)
continue_with(result)

end

def assess_user_reputation
result = UserReputationWorker .perform(@content.user)
continue_with(result)

end

def escalate_to_manual_review
ManualReviewWorker . per form(@content)
@content.update! (status: 'pending', transcript: @transcript)
end

def approve_content
@content.update! (status: 'approved', transcript: @transcript)
end

def reject_content
@content.update! (status: 'rejected', transcript: @transcript)
end

private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)

end

end

U ovom primeru, ContentModerator je inicijalizovan sa objektom sadrzaja i odrzava
zapisnik moderacije u formatu konverzacije. Al komponenta ima potpunu kontrolu nad
tokom moderacije, odluc¢ujuéi koje korake da izvrsi na osnovu karakteristika sadrzaja i

rezultata svakog koraka.

Dostupne radne funkcije koje Al moZe da pozove ukljuCuju analyze_text,



Inteligentna orkestracija radnih tokova 220

recognize_image, assess_user_reputation i escalate_to_manual_review. Svaka
funkcija delegira zadatak odgovarajuéem radnom procesu (TextAnalysisWorker,
ImageRecognitionWorker, itd) i dodaje rezultat u zapisnik moderacije, sa
izuzetkom funkcije za eskalaciju koja deluje kao zavrsno stanje. Kona¢no, funkcije

approve_content i reject_content takode deluju kao zavrina stanja.

Al komponenta analizira sadrzaj i odreduje odgovarajucu akciju. Ako sadrzaj sadrzi
reference na slike, moze pozvati radni proces recognize_image za pomo¢ pri vizuelnom
pregledu. Ako bilo koji radni proces upozori na potencijalno Stetan sadrzaj, Al moze
odluciti da eskalira sadrzaj na manuelni pregled ili ga jednostavno odmah odbiti. Ali
u zavisnosti od ozbiljnosti upozorenja, Al moze odluciti da koristi rezultate procene
reputacije korisnika pri odluc¢ivanju kako da postupi sa sadrzajem u kom nije siguran.
U zavisnosti od slu¢aja upotrebe, mozda pouzdani korisnici imaju vise slobode u onome

§to mogu da objave. I tako dalje...

Kao i u prethodnom primeru upravitelja procesa, zapisnik moderacije sluzi kao
evidencija izvr$avanja toka rada, ukljucujuéi rezultate svakog koraka i odluke koje je
generisao Al. Ovaj zapisnik se moZze koristiti za reviziju, transparentnost i poboljsanje

procesa moderacije tokom vremena.

Korid¢enjem Al-ja u ContentModerator-u, aplikacija drustvenih medija moze
dinamicki prilagoditi tok moderacije na osnovu karakteristika sadrzaja i inteligentno
upravljati slozenim scenarijima moderacije. Al komponenta moze donositi informisane

odluke, optimizovati tok rada i osigurati bezbedno i zdravo iskustvo zajednice.

Hajde da istrazimo jo$§ dva primera koji pokazuju prediktivno rasporedivanje zadataka

i rukovanje izuzecima i oporavak u kontekstu inteligentnog orkestiranja toka rada.

Prediktivno rasporedivanje zadataka u sistemu korisnicke

podrske

U aplikaciji za korisnicku podrsku izradenoj pomocu Ruby on Rails, efikasno

upravljanje i prioritizacija tiketa za podrsku su kljuéni za pruzanje pravovremene



© 0 N O O b W N =

W W W W W W W W NN DNDDDNDDNDDNDDNDNDDNAS AR R R,y
=N O O b WN P, O 0N 0 WwN 20 O 00N 0N,

Inteligentna orkestracija radnih tokova 221

pomo¢i korisnicima. Komponenta SupportTicketScheduler koristi Al za prediktivno
rasporedivanje i dodeljivanje tiketa za podrsku dostupnim agentima na osnovu razlicitih

faktora kao $to su hitnost tiketa, stru¢nost agenta i radno opterecenje.

class SupportTicketScheduler
include Raix::ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a support ticket scheduler,
tasked with intelligently assigning tickets to available agents..."

def initialize(ticket)
@ticket = ticket
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: ticket.to_json }

]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"
end

def functions

[

name: "analyze_ticket_urgency",

}I
{
name: "list_available_agents"”,

description: "Includes expertise of available agents",

}/
{

name: "predict_agent_workload",
description: "Uses historical data to predict upcoming workloads",



38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79

Inteligentna orkestracija radnih tokova

}/
{
name: "assign_ticket_to_agent",
}I
name: "reschedule_ticket",
# PR
}
]
end

# implementation of functions that can be called by the AI

# entirely at its discretion, depending on the needs of the order

def analyze_ticket_urgency
result = TicketUrgencyAnalyzer.perform(@ticket)
continue_with(result)

end

def list_available_agents
result = ListAvailableAgents.perform
continue_with(result)

end

def predict_agent_workload
result = AgentWorkloadPredictor.perform
continue_with(result)

end

def assign_ticket_to_agent
TicketAssigner.perform(@ticket, @transcript)
end

def delay_assignment(until)
until = DateTimeStandardizer.process(until)
SupportTicketScheduler.delay(@ticket, @transcript, until)
end

private

222



80
81
82
83
84

Inteligentna orkestracija radnih tokova 223

def continue_with(result)
@transcript << { function: result }
complete(@transcript)
end
end

U ovom primeru, SupportTicketScheduler je inicijalizovan objektom tiketa za podrsku
i odrzava zapisnik rasporedivanja. Al komponenta analizira detalje tiketa i prediktivno
planira dodeljivanje tiketa na osnovu faktora kao §to su hitnost tiketa, stru¢nost agenta

i predvideno radno opterecenje agenta.

Dostupne funkcije koje Al moze da pozove uklju¢uju analyze_ticket_urgency, list_-
available_agents, predict_agent_workload i assign_ticket_to_agent. Svaka funkcija
delegira zadatak odgovarajucoj komponenti za analizu ili predvidanje i dodaje rezultat
u zapisnik rasporedivanja. Al takode ima opciju da odlozi dodeljivanje koriste¢i funkciju

delay_assignment.

Al komponenta pregleda zapisnik rasporedivanja i donosi informisane odluke o
dodeljivanju tiketa. Uzima u obzir hitnost tiketa, stru¢nost dostupnih agenata i
predvideno radno opterecenje svakog agenta kako bi odredila najpogodnijeg agenta za

resavanje tiketa.

Koriséenjem prediktivnog rasporedivanja zadataka, aplikacija za korisnicku podrsku
moze da optimizuje dodeljivanje tiketa, smanji vreme odziva i poboljsa ukupno
zadovoljstvo korisnika. Proaktivno i efikasno upravljanje tiketima za podrsku osigurava

da pravi tiketi budu dodeljeni pravim agentima u pravo vreme.

Upravljanje izuzecima i oporavak u procesu obrade podataka

Upravljanje izuzecima i oporavak od greSaka su klju¢ni za osiguranje integriteta
podataka i sprecavanje gubitka podataka. Komponenta DataProcessingOrchestrator
koristi Al za inteligentno upravljanje izuzecima i orkestraciju procesa oporavka u

procesu obrade podataka



© 0 N O O b W N e

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Inteligentna orkestracija radnih tokova

class DataProcessingOrchestrator

include Raix::ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

def initialize(data_batch)
@data_batch = data_batch
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: data_batch.to_json }

]

end

def perform

complete(@transcript)

end

def model

"openai/gpt-4"

end

def functions

name:

"validate_data",

"process_data",

"request_fix",

"retry_processing",

"mark_data_as_failed",

224



43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83

Inteligentna orkestracija radnih tokova 225

b
{

name: "finished",

]

end

# implementation of functions that can be called by the AI

# entirely at its discretion, depending on the needs of the order

def validate_data
result = DataValidator.perform(@data_batch)
continue_with(result)

rescue ValidationException => e
handle_validation_exception(e)

end

def process_data
result = DataProcessor .perform(@data_batch)
continue_with(result)

rescue ProcessingException => e
handle_processing_exception(e)

end

def request_fix(description_of_fix)
result = SmartDataFixer.new(description_of_fix, @data_batch)
continue_with(result)

end

def retry_processing(timeout_in_seconds)
wait(timeout_in_seconds)
process_data

end

def mark_data_as_failed
@data_batch.update! (status: 'failed', transcript: @transcript)
end

def finished
@data_batch.update! (status: 'finished', transcript: @transcript)



85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103

Inteligentna orkestracija radnih tokova 226

end
private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)

end

def handle_validation_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)

end

def handle_processing_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)
end
end

U ovom primeru, DataProcessingOrchestrator je inicijalizovan objektom grupe
podataka i odrzava transkript obrade. Al komponenta orkestira proces obrade podataka,

upravlja izuzecima i oporavlja se od gresaka po potrebi.

Dostupne funkcije koje Al moze da pozove ukljucuju validate_data, process_data,
request_fix, retry_processing i mark_data_as_failed. Svaka funkcija delegira zadatak
odgovarajucoj komponenti za obradu podataka i dodaje rezultat ili detalje o izuzetku u

transkript obrade.

Ako se izuzetak pri validaciji dogodi tokom koraka validate_data, funkcija handle_-
validation_exception dodaje podatke o izuzetku u transkript i vraca kontrolu Al-ju.
Sli¢no tome, ako se izuzetak pri obradi dogodi tokom koraka process_data, Al moze da

odluci o strategiji oporavka.

U zavisnosti od prirode nastalog izuzetka, Al moZe po sopstvenom nahodenju da
odluci da pozove request_fix, koji delegira Al-pokrenutoj komponenti SmartDataFixer

(pogledajte poglavlje o Samozale¢uju¢im podacima). Program za popravku podataka



Inteligentna orkestracija radnih tokova 227

dobija opis na obi¢nom jeziku o tome kako bi trebalo da modifikuje @data_batch
tako da se obrada moze ponovo pokusati. Mozda bi uspe$no ponovno pokusavanje
podrazumevalo uklanjanje zapisa iz grupe podataka koji nisu prosli validaciju i/ili
njihovo kopiranje u drugi proces obrade za ljudski pregled? Mogucnosti su skoro

beskrajne.

Uklju¢ivanjem Al-vodene obrade izuzetaka i oporavka, aplikacija za obradu podataka
postaje otpornija i tolerantnija na gre$ke. DataProcessingOrchestrator inteligentno
upravlja izuzecima, minimizira gubitak podataka i osigurava nesmetano izvrsavanje

toka obrade podataka.

Pracenje i belezenje

Pracenje i belezenje pruzaju uvid u napredak, performanse i zdravlje komponenti toka
rada pokrenutih Al-jem, omogucéavajuéi programerima da prate i analiziraju ponaanje
sistema. Implementacija efikasnih mehanizama za pracenje i beleZenje je od sustinskog
znacaja za otklanjanje gresaka, reviziju i kontinuirano poboljsanje inteligentnih tokova

rada.

Pracenje napretka i performansi toka rada

Da bi se osiguralo nesmetano izvr$avanje inteligentnih tokova rada, vazno je pratiti
napredak i performanse svake komponente toka rada. Ovo ukljucuje pracenje klju¢nih

metrika i dogadaja tokom Zivotnog ciklusa toka rada.
Neki vazni aspekti za pracenje ukljucuju:

1. Vreme izvr$avanja toka rada: Merenje vremena koje je potrebno svakoj komponenti
toka rada da zavrsi svoj zadatak. Ovo pomaze u identifikovanju uskih grla u

performansama i optimizaciji ukupne efikasnosti toka rada.

2. Iskori$éenost resursa: Pracenje iskori$¢enosti sistemskih resursa, kao $to su CPU,

memorija i skladiste, od strane svake komponente toka rada. Ovo pomaze da se osigura



Inteligentna orkestracija radnih tokova 228

da sistem radi u okviru svojih kapaciteta i da moze efikasno da upravlja radnim

opterecenjem.

3. Stope gresaka i izuzeci: Pracenje pojave gresaka i izuzetaka unutar komponenti toka
rada. Ovo pomaze u identifikovanju potencijalnih problema i omoguéava proaktivno

rukovanje greskama i oporavak.

4. Tacke odluéivanja i ishodi: Pradenje tacaka odlucivanja unutar toka rada i ishoda

Al-vodenih odluka. Ovo pruza uvid u ponasanje i efikasnost Al komponenti.

Podaci prikupljeni procesom pracenja mogu se prikazati na kontrolnim tablama ili
koristiti kao ulazni podaci za planirane izvestaje koji informisu administratore sistema

o zdravlju sistema.

’ Podaci pracenja mogu se proslediti Al-vodenom procesu administratora

sistema na pregled i potencijalnu akciju!

Belezenje klju¢énih dogadaja i odluka

BeleZenje je sustinska praksa koja ukljuCuje hvatanje i ¢uvanje relevantnih informacija
o klju¢nim dogadajima, odlukama i izuzecima koji se javljaju tokom izvrsavanja toka

rada.
Neki vazni aspekti za belezenje ukljucuju:

1. Pokretanje i zavrSetak toka rada: Belezenje vremena pocetka i zavrsetka svake
instance toka rada, zajedno sa svim relevantnim metapodacima kao $to su ulazni podaci

i korisnicki kontekst.

2. Izvrsavanje komponenti: BeleZenje detalja izvrSavanja svake komponente toka rada,

ukljucujuéi ulazne parametre, izlazne rezultate i sve generisane medupodatke.

3. Al odluke i obrazlozenja: Belezenje odluka koje donose Al komponente, zajedno
sa osnovnim obrazloZenjem ili ocenama pouzdanosti. Ovo pruza transparentnost i

omogucava reviziju Al-vodenih odluka.



© 0 N O O b W N o~

I = =N
B W N~

Inteligentna orkestracija radnih tokova 229

4. Izuzeci i poruke o greskama: BeleZenje svih izuzetaka ili poruka o greskama na
koje se naide tokom izvrSavanja toka rada, ukljucujuéi pradenje steka i relevantne

kontekstualne informacije.

Belezenje se moze implementirati koriste¢i razlicite tehnike, kao $to su pisanje u datoteke
evidencije, cuvanje evidencija u bazi podataka ili slanje evidencija centralizovanoj usluzi
za beleZenje. Vazno je odabrati okvir za beleZenje koji pruza fleksibilnost, skalabilnost i

laku integraciju sa arhitekturom aplikacije.

Evo primera kako se belezenje moze implementirati u Ruby on Rails aplikaciji koriste¢i

klasu ActiveSupport::Logger:

class WorkflowlLogger

def self.log(message, severity = :info)
@logger ||= ActiveSupport::Logger.new( 'workflow.log')
@logger . formatter ||= proc do |severity, datetime, progname, msg]|

"#{datetime} [#{severity}] #{msg}\n"
end
@logger .send(severity, message)
end
end

# Usage example
Work flowLogger . log("Workflow initiated for order ##{@order.id}")
Work flowLogger . log("Payment processing completed successfully")

Work flowLogger . log("Inventory check failed for item ##{item.id}", :error)

Strateskim postavljanjem izraza za beleZenje kroz komponente radnog toka i tacke
odluéivanja vestacke inteligencije, programeri mogu da zabeleZe vredne informacije za

otklanjanje gresaka, reviziju i analizu.

Prednosti pracenja i belezenja

Implementacija pracenja i belezenja u inteligentnoj orkestraciji radnih tokova nudi

nekoliko prednosti:



Inteligentna orkestracija radnih tokova 230

1. Otklanjanje gresaka i resavanje problema: Detaljni zapisi i podaci pracenja pomazu
programerima da brzo identifikuju i dijagnostikuju probleme. Oni pruzaju uvid u tok

izvrsavanja radnog toka, interakcije komponenti i sve greske ili izuzetke na koje se naide.

2. Optimizacija performansi: Pracenje metrika performansi omogucava programerima
da identifikuju uska grla i optimizuju komponente radnog toka za bolju efikasnost.
Analiziranjem vremena izvrSavanja, iskori§¢enosti resursa i drugih metrika, programeri

mogu donositi informisane odluke za poboljsanje ukupnih performansi sistema.

3. Revizija i uskladenost: Belezenje klju¢nih dogadaja i odluka obezbeduje revizorski
trag za regulatornu uskladenost i odgovornost. Omoguéava organizacijama da prate i
verifikuju akcije koje preduzimaju Al komponente i osiguraju pridrzavanje poslovnih

pravila i zakonskih zahteva.

4. Kontinuirano poboljSanje: Podaci pracenja i beleZenja sluze kao vredni ulazni
podaci za kontinuirano poboljsanje inteligentnih radnih tokova. Analiziranjem
istorijskih podataka, identifikovanjem obrazaca i merenjem efektivnosti Al odluka,
programeri mogu iterativno da usavr$avaju i unapreduju logiku orkestracije radnog

toka.

Razmatranja i najbolje prakse

Pri implementaciji pracenja i beleZenja u inteligentnoj orkestraciji radnih tokova,

razmotrite sledece najbolje prakse:

1. Definisanje jasnih metrika praéenja: Identifikujte kljuéne metrike i dogadaje koje
treba pratiti na osnovu specifi¢nih zahteva radnog toka. Fokusirajte se na metrike koje

pruzaju smislene uvide u performanse, zdravlje i ponasanje sistema.

2. Implementacija granularnog beleZenja: Osigurajte da su izrazi za beleZenje
postavljeni na odgovaraju¢im tackama unutar komponenti radnog toka i tacaka
odlucivanja Al-ja. ZabeleZite relevantne kontekstualne informacije, kao $to su ulazni

parametri, izlazni rezultati i svi medupodaci koji se generisu.



Inteligentna orkestracija radnih tokova 231

3. Koris¢enje strukturiranog beleZenja: Usvojite format strukturiranog beleZenja
kako biste olaksali jednostavno parsiranje i analizu podataka iz zapisa. Strukturirano

belezenje omoguéava bolju pretrazivost, filtriranje i agregaciju zapisa.

4. Upravljanje zadrzavanjem i rotacijom zapisa: Implementirajte politike zadrzavanja
i rotacije zapisa za upravljanje skladistenjem i Zivotnim ciklusom datoteka zapisa.
Odredite odgovarajuéi period zadrzavanja na osnovu zakonskih zahteva, ogranicenja
skladiStenja i potreba analize. Ako je moguce, prebacite beleZenje na uslugu trece strane

kao §to je Papertrail.

5. Zastita osetljivih informacija: Budite oprezni pri beleZenju osetljivih informacija,
kao sto su liéni podaci (PII) ili poverljivi poslovni podaci. Implementirajte odgovarajuée
sigurnosne mere, kao Sto su maskiranje podataka ili enkripcija, kako biste zastitili

osetljive informacije u datotekama zapisa.

6. Integracija sa alatima za pracenje i upozoravanje: Iskoristite alate za pracenje i
upozoravanje za centralizaciju prikupljanja, analize i vizualizacije podataka praéenja
i belezenja. Ovi alati mogu pruziti uvide u realnom vremenu, generisati upozorenja
na osnovu unapred definisanih pragova i olaksati proaktivno otkrivanje i resavanje

problema. Moj omiljeni od ovih alata je Datadog.

Implementacijom sveobuhvatnih mehanizama pracenja i beleZenja, programeri mogu
dobiti vredne uvide u ponasanje i performanse inteligentnih radnih tokova. Ovi uvidi
omogucavaju efikasno otklanjanje greSaka, optimizaciju i kontinuirano poboljsanje

sistema za orkestraciju radnih tokova zasnovanih na vestackoj inteligenciji.

Razmatranja skalabilnosti i performansi

Skalabilnost i performanse su kriticni aspekti koje treba razmotriti pri dizajniranju i
implementaciji sistema za inteligentnu orkestraciju radnih tokova. Kako se poveéava

obim istovremenih radnih tokova i slozenost komponenti zasnovanih na vestackoj


https://papertrailapp.com
https://www.datadoghq.com

Inteligentna orkestracija radnih tokova 232

inteligenciji, postaje neophodno osigurati da sistem moze efikasno da upravlja radnim

optereéenjem i nesmetano se skalira kako bi zadovoljio rastuce zahteve.

Upravljanje velikim obimom istovremenih radnih tokova

Sistemi za inteligentnu orkestraciju radnih tokova ¢esto moraju da upravljaju velikim
brojem istovremenih radnih tokova. Da biste osigurali skalabilnost, razmotrite sledece

strategije:

1. Asinhrona obrada: Implementirajte mehanizme asinhrone obrade za razdvajanje
izvr§avanja komponenti radnog toka. Ovo omogucava sistemu da upravlja sa vise radnih
tokova istovremeno bez blokiranja ili ¢ekanja da se svaka komponenta zavrsi. Asinhrona
obrada se moze postici kori$¢enjem redova poruka, arhitektura vodenih dogadajima ili

radnih okvira za obradu pozadinskih poslova kao $to je Sidekiq.

2. Distribuirana arhitektura: Dizajnirajte arhitekturu sistema tako da koristi serverless
komponente (kao $to je AWS Lambda) ili jednostavno distribuirajte radno optereéenje
preko vise cvorova ili servera zajedno sa vasim glavnim aplikacionim serverom.
Ovo omogucava horizontalnu skalabilnost, gde se dodatni ¢évorovi mogu dodati za

upravljanje povecanim obimom radnih tokova.

3. Paralelno izvrsavanje: Identifikujte moguénosti za paralelno izvrSavanje unutar
radnih tokova. Neke komponente radnog toka mogu biti nezavisne jedna od druge
i mogu se izvrsavati istovremeno. Koris¢enjem tehnika paralelne obrade, kao $to su
viSenitnost ili distribuirani redovi zadataka, sistem moze optimizovati koris¢enje resursa

i smanjiti ukupno vreme izvrsavanja radnog toka.

Optimizacija performansi Al komponenti

AT komponente, kao $to su modeli masinskog ucenja ili sistemi za obradu prirodnog

jezika, mogu biti rac¢unarski zahtevne i uticati na ukupne performanse sistema



Inteligentna orkestracija radnih tokova 233

za orkestraciju radnih tokova. Da biste optimizovali performanse Al komponenti,

razmotrite sledecée tehnike:

1. Kesiranje: Ako je vasa Al obrada cisto generativna i ne ukljucuje pretrazivanje
informacija u realnom vremenu ili eksterne integracije za generisanje chat odgovora,
mozete istraziti mehanizme keSiranja za ¢uvanje i ponovno koristenje rezultata Cesto

pristupanih ili ratunarski zahtevnih operacija.

2. Optimizacija modela: Kontinuirano optimizujte nacin na koji koristite Al
modele u komponentama radnog toka. Ovo moze ukljucivati tehnike kao S$to je

Destilacija promptova ili jednostavno testiranje novih modela kako postaju dostupni.

3. Grupna obrada: Ako radite sa modelima klase GPT-4, mozda cete mo¢i da iskoristite
tehnike grupne obrade za obradu viSe podataka ili zahteva u jednoj grupi, umesto
njihove pojedinacne obrade. Obradom podataka u grupama, sistem moZe optimizovati

kori$cenje resursa i smanjiti opterecenje visestrukih zahteva modelu.

Pracenje i profilisanje performansi

Za identifikaciju uskih grla u performansama i optimizaciju skalabilnosti inteligentnog
sistema za orkestraciju radnih tokova, klju¢no je implementirati mehanizme za praéenje

i profilisanje. Razmotrite sledece pristupe:

1. Metrike performansi: DefiniSite i pratite kljuéne metrike performansi, kao $to su
vreme odziva, propusnost, iskori§¢enost resursa i kasnjenje. Ove metrike pruzaju uvid
u performanse sistema i pomazu u identifikaciji podrucja za optimizaciju. Popularni Al
model agregator OpenRouter uklju¢uje Host! i Speed? metrike u svakom API odgovoru,
¢inedi pracenje ovih kljuénih metrika trivijalnim.

2. Alati za profilisanje: Koristite alate za profilisanje kako biste analizirali performanse

pojedinaénih komponenti radnog toka i Al operacija. Alati za profilisanje mogu pomoc¢i

'Host je vreme potrebno za primanje prvog bajta streamovanog generisanja od strane host-a modela,
poznatog i kao “vreme do prvog bajta.”

2Speed se izra¢unava kao broj tokena za dovrsavanje podeljen sa ukupnim vremenom generisanja. Za
zahteve koji nisu streamovani, kagnjenje se smatra delom vremena generisanja.


https://openrouter.ai

Inteligentna orkestracija radnih tokova 234

u identifikaciji kriti¢nih tacaka performansi, neefikasnih putanja koda ili operacija koje
intenzivno koriste resurse. Popularni alati za profilisanje uklju¢uju New Relic, Scout, ili

ugradene profilere koje pruza programski jezik ili framework.

3. Testiranje opterecenja: Sprovedite testiranje opteretenja kako biste procenili
performanse sistema pod razli¢itim nivoima istovremenih radnih opterecenja.
Testiranje optereéenja pomaze u identifikaciji granica skalabilnosti sistema, otkrivanju
degradacije performansi i osiguravanju da sistem moZe podneti ocekivani saobracaj

bez ugrozavanja performansi.

4. Kontinuirano pracenje: Implementirajte mehanizme kontinuiranog pracenja i
upozoravanja kako biste proaktivno otkrili probleme sa performansama i uska grla.
Postavite kontrolne table za pracenje i upozorenja za praéenje klju¢nih indikatora
performansi (KPI) i primanje obavestenja kada se prekorace unapred definisani pragovi.

Ovo omogucava brzu identifikaciju i reSavanje problema sa performansama.

Strategije skaliranja

Da biste upravljali poveéanim radnim opterecenjem i osigurali skalabilnost
inteligentnog sistema za orkestraciju radnih tokova, razmotrite sledee strategije

skaliranja:

1. Vertikalno skaliranje: Vertikalno skaliranje ukljucuje povecanje resursa (npr. CPU,
memorija) pojedina¢nih ¢vorova ili servera za rukovanje veéim radnim opterecenjem.
Ovaj pristup je pogodan kada sistem zahteva viSe procesorske snage ili memorije za

rukovanje slozenim radnim tokovima ili Al operacijama.

2. Horizontalno skaliranje: Horizontalno skaliranje ukljucuje dodavanje vise ¢vorova
ili servera sistemu za distribuciju radnog opterecenja. Ovaj pristup je efikasan kada
sistem treba da upravlja velikim brojem istovremenih radnih tokova ili kada se radno
optereéenje moze lako distribuirati preko vise ¢vorova. Horizontalno skaliranje zahteva
distribuiranu arhitekturu i mehanizme balansiranja opterecenja kako bi se osigurala

ravnomerna distribucija saobraéaja.



Inteligentna orkestracija radnih tokova 235

3. Automatsko skaliranje: Implementirajte mehanizme automatskog skaliranja
za automatsko prilagodavanje broja ¢vorova ili resursa na osnovu zahteva radnog
optereéenja. Automatsko skaliranje omogucava sistemu da se dinamicki skalira gore ili
dole u zavisnosti od dolaznog saobracaja, osiguravajuci optimalnu iskori$¢enost resursa
i ekonomi¢nost. Cloud platforme poput Amazon Web Services (AWS) ili Google Cloud
Platform (GCP) pruzaju mogucnosti automatskog skaliranja koje se mogu iskoristiti za

inteligentne sisteme orkestracije radnih tokova.

Tehnike optimizacije performansi

Pored strategija skaliranja, razmotrite sledece tehnike optimizacije performansi za

poboljsanje efikasnosti inteligentnog sistema za orkestraciju radnih tokova:

1. Efikasno skladiStenje i preuzimanje podataka: Optimizujte mehanizme skladistenja
i preuzimanja podataka koje koriste komponente radnog toka. Koristite efikasno
indeksiranje baze podataka, tehnike optimizacije upita i keSiranje podataka kako biste

smanjili kasnjenje i poboljsali performanse operacija intenzivnih podataka.

2. Asinhroni U/I: Koristite asinhrone U/I operacije kako biste spre¢ili blokiranje i
poboljsali odziv sistema. Asinhroni U/I omogucava sistemu da istovremeno obraduje
viSe zahteva bez ¢ekanja na zavrSetak U/I operacija, ¢ime se maksimalno iskoris¢avaju

resursi.

3. Efikasna serijalizacija i deserijalizacija: Optimizujte procese serijalizacije i
deserijalizacije koji se koriste za razmenu podataka izmedu komponenti radnog toka.
Koristite efikasne formate serijalizacije, kao $to su Protocol Buffers ili MessagePack,
kako biste smanjili opterecenje serijalizacije podataka i poboljsali performanse

komunikacije izmedu komponenti.



Inteligentna orkestracija radnih tokova 236

Za aplikacije zasnovane na Ruby-ju, razmotrite kori§¢enje Universal ID.
’ Universal ID koristi i MessagePack i Brotli (kombinaciju napravljenu za
brzinu i najbolju kompresiju podataka u klasi). Kada se kombinuju, ove
biblioteke su do 30% brze i imaju stope kompresije koje su za samo 2-5%

losije u poredenju sa Protocol Buffers.

4. Kompresija i kodiranje: Primenite tehnike kompresije i kodiranja kako biste smanjili
veli¢inu podataka koji se prenose izmedu komponenti radnog toka. Algoritmi za
kompresiju, kao $to su gzip ili Brotli, mogu znacajno smanjiti koriscenje mreznog

propusnog opsega i poboljsati ukupne performanse sistema.

Uzimajuéi u obzir aspekte skalabilnosti i performansi tokom dizajna i implementacije
sistema za inteligentnu orkestraciju radnih tokova, mozete osigurati da vas sistem moze
da upravlja velikim obimom istovremenih radnih tokova, optimizuje performanse
komponenti zasnovanih na vestackoj inteligenciji i nesmetano se skalira kako bi
zadovoljio rastuce zahteve. Kontinuirano pracenje, profilisanje i napori za optimizaciju
su klju¢ni za odrzavanje performansi i odzivnosti sistema kako se opterecenje i slozenost

povecavaju tokom vremena.

Testiranje i validacija radnih tokova

Testiranje i validacija su klju¢ni aspekti razvoja i odrzavanja sistema za inteligentnu
orkestraciju radnih tokova. S obzirom na slozenu prirodu radnih tokova zasnovanih na
vestackoj inteligenciji, neophodno je osigurati da svaka komponenta funkcionise kako se
ocekuje, da se celokupni radni tok ponasa ispravno i da su odluke vestacke inteligencije
tactne i pouzdane. U ovom odeljku ¢emo istraziti razlicite tehnike i razmatranja za

testiranje i validaciju inteligentnih radnih tokova.


https://github.com/hopsoft/universalid

Inteligentna orkestracija radnih tokova 237

Jedini¢no testiranje komponenti radnog toka

Jedini¢no testiranje podrazumeva testiranje pojedina¢nih komponenti radnog toka
izolovano kako bi se proverila njihova ispravnost i robusnost. Prilikom jedini¢nog

testiranja komponenti zasnovanih na vestackoj inteligenciji, razmotrite sledece:

1. Validacija ulaznih podataka: Testirajte sposobnost komponente da obraduje
razlicite tipove ulaznih podataka, uklju¢ujuéi validne i nevalidne podatke. Proverite da
li komponenta elegantno upravlja grani¢nim slu¢ajevima i pruza odgovarajuce poruke

o greskama ili izuzetke.

2. Verifikacija izlaznih podataka: Potvrdite da komponenta proizvodi ocekivani izlaz
za dati skup ulaznih podataka. Uporedite stvarni izlaz sa o¢ekivanim rezultatima kako

biste osigurali ispravnost.

3. Upravljanje greskama: Testirajte mehanizme za upravljanje greSkama komponente
simuliranjem razli¢itih scenarija greSaka, kao S$to su nevaze¢i ulazni podaci,
nedostupnost resursa ili neocekivani izuzeci. Proverite da li komponenta ispravno

hvata i upravlja greskama.

4. Graniéni uslovi: Testirajte ponasanje komponente pod grani¢nim uslovima, kao
§to su prazan ulaz, maksimalna veli¢ina ulaza ili ekstremne vrednosti. Osigurajte da
komponenta elegantno upravlja ovim uslovima bez rusenja ili proizvodnje netacnih

rezultata.

Evo primera jedini¢nog testa za komponentu radnog toka u Ruby-ju koriste¢i RSpec

radni okvir za testiranje:



© 0 N O O b W N e

I T O
© 00 N O O b W N =~ O

Inteligentna orkestracija radnih tokova 238

RSpec.describe OrderValidator do
describe '#validate' do
context 'when order is valid' do
let(:order) { build(:order) }

it 'returns true' do
expect(subject.validate(order)).to be true
end

end

context 'when order is invalid' do
let(:order) { build(:order, total_amount: -100) }

it 'returns false' do
expect(subject.validate(order)).to be false
end
end
end
end

U ovom primeru, OrderValidator komponenta se testira koris¢enjem dva test slucaja:
jedan za validan nalog i drugi za nevalidan nalog. Test slucajevi verifikuju da metoda

validate vraca o¢ekivanu bulovu vrednost na osnovu validnosti naloga.

Integraciono testiranje interakcija toka rada

Integraciono testiranje se fokusira na verifikaciju interakcija i toka podataka izmedu
razli¢itih komponenti toka rada. Ono osigurava da komponente rade zajedno
bez problema i proizvode ocekivane rezultate. Prilikom integracionog testiranja

inteligentnih tokova rada, uzmite u obzir sledece:

1. Interakcija komponenti: Testirajte komunikaciju i razmenu podataka izmedu
komponenti toka rada. Verifikujte da se izlaz jedne komponente ispravno prosleduje

kao ulaz slede¢oj komponenti u toku rada.

2. Konzistentnost podataka: Osigurajte da podaci ostaju konzistentni i ta¢ni dok

prolaze kroz tok rada. Verifikujte da se transformacije podataka, kalkulacije i agregacije



© 0 N O O b W N =

I = T S
0 N O O b W N =~

Inteligentna orkestracija radnih tokova 239

izvrSavaju ispravno.

3. Propagacija izuzetaka: Testirajte kako se izuzeci i greske propagiraju i obraduju kroz
komponente toka rada. Verifikujte da su izuzeci uhvadeni, zabeleZeni i pravilno obradeni

kako bi se sprecio prekid toka rada.

4. Asinhrono ponasanje: Ako tok rada ukljucuje asinhrone komponente ili paralelno
izvrSavanje, testirajte mehanizme koordinacije i sinhronizacije. Osigurajte da se tok rada

ponasa ispravno u konkurentnim i asinhronim scenarijima.

Evo primera integracionog testa za tok rada u Ruby-ju koristeé¢i RSpec radni okvir za

testiranje:

RSpec.describe OrderProcessingWorkflow do
let(:order) { build(:order) }

it 'processes the order successfully' do
expect(OrderValidator).to receive(:validate).and_return(true)
expect(InventoryManager).to receive(:check_availability).and_return(true)
expect(PaymentProcessor).to receive(:process_payment).and_return(true)

expect(ShippingService).to receive(:schedule_shipping).and_return(true)

workflow = OrderProcessingWorkflow.new(order)
result = workflow.process

expect(result).to be true
expect(order.status).to eq('processed')
end

end

U ovom primeru, OrderProcessingWorkflow se testira proverom interakcija izmedu
razli¢itih komponenti toka rada. Test postavlja ocekivanja za ponasanje svake
komponente i osigurava da tok rada uspes$no obraduje narudzbinu, aZurirajuéi status

narudzbine u skladu sa tim.



Inteligentna orkestracija radnih tokova 240

Testiranje Al tacaka odluéivanja

Testiranje Al tacaka odlucivanja je kljucno za osiguravanje preciznosti i pouzdanosti
tokova rada zasnovanih na vestackoj inteligenciji. Prilikom testiranja Al tacaka

odlucivanja, razmotrite sledece:

1. Preciznost odludivanja: Proverite da Al komponenta donosi precizne odluke na
osnovu ulaznih podataka i treniranog modela. Uporedite Al odluke sa oéekivanim

ishodima ili referentnim podacima.

2. Grani¢ni slucajevi: Testirajte ponasanje Al komponente u grani¢nim slucajevima
i neuobicajenim scenarijima. Proverite da li AI komponenta elegantno upravlja ovim

slucajevima i donosi razumne odluke.

3. Pristrasnost i pravi¢nost: Procenite Al komponentu na potencijalne pristrasnosti
i osigurajte da donosi praviéne i nepristrasne odluke. Testirajte komponentu sa
raznovrsnim ulaznim podacima i analizirajte ishode u potrazi za diskriminatornim

obrascima.

4. Objasnjivost: Ako Al komponenta pruza objasnjenja ili obrazloZenja za svoje odluke,
proverite tacnost i jasnocu objas$njenja. Osigurajte da su objasnjenja uskladena sa

osnovnim procesom donosenja odluka.

Evo primera testiranja Al tacke odlucivanja u Ruby-ju koriste¢i RSpec okvir za testiranje:



© 0 N O O b W N e

NN N N E R R s sy s
W N PO O 0N 0 O WwN o

Inteligentna orkestracija radnih tokova 241

RSpec.describe FraudDetector do
describe '#detect_fraud' do
context 'when transaction is fraudulent' do
let(:tx) do
build(:transaction, amount: 10_000, location: 'High-Risk Country')
end

it 'returns true' do
expect(subject.detect_fraud(tx)).to be true
end
end

context 'when transaction is legitimate' do
let(:tx) do
build(:transaction, amount: 100, location: 'Low-Risk Country')
end

it 'returns false' do
expect(subject.detect_fraud(tx)).to be false
end
end
end
end

U ovom primeru, FraudDetector Al komponenta je testirana sa dva test primera:
jedan za laznu transakciju i drugi za legitimnu transakciju. Test primeri proveravaju
dali detect_fraud metoda vraca oc¢ekivanu bulovsku vrednost na osnovu karakteristika

transakcije.

Testiranje s kraja na kraj

Testiranje s kraja na kraj podrazumeva testiranje celokupnog toka rada od pocetka do
kraja, simulirajuci scenarije iz stvarnog sveta i korisnicke interakcije. Ono osigurava da
se tok rada ponasa ispravno i proizvodi Zeljene rezultate. Prilikom izvodenja testiranja

s kraja na kraj za inteligentne tokove rada, uzmite u obzir sledece:

1. Korisnicki scenariji: Identifikujte uobicajene korisnicke scenarije i testirajte



© 0 N O U B W N =

[T
w N =~

Inteligentna orkestracija radnih tokova 242

ponasanje toka rada u tim scenarijima. Proverite da li tok rada pravilno obraduje

korisni¢ke unose, donosi odgovarajuce odluke i proizvodi ocekivane rezultate.

2. Validacija podataka: Osigurajte da tok rada validira i preciS¢ava korisnicke unose
kako bi se spreéile nekonzistentnosti podataka ili bezbednosne ranjivosti. Testirajte tok

rada sa razli¢itim tipovima ulaznih podataka, ukljucujuéi validne i nevalidne podatke.

3. Oporavak od gresaka: Testirajte sposobnost toka rada da se oporavi od gresaka i
izuzetaka. Simulirajte scenarije gresaka i proverite da li tok rada elegantno upravlja

njima, belezi greske i preduzima odgovarajuce akcije oporavka.

4. Performanse i skalabilnost: Procenite performanse i skalabilnost toka rada pod
razli¢itim uslovima opterecenja. Testirajte tok rada sa velikim obimom konkurentnih

zahteva i merite vreme odziva, iskori$¢enost resursa i ukupnu stabilnost sistema.

Evo primera testa s kraja na kraj za tok rada u Ruby-ju koriste¢i RSpec okvir za testiranje

i Capybara biblioteku za simulaciju korisnickih interakcija:

RSpec.describe 'Order Processing Workflow' do
scenario 'User places an order successfully' do
visit '/orders/new'’
fill_in 'Product', with: 'Sample Product'’
fill_in 'Quantity', with: '2'
fill_in 'Shipping Address', with: '123 Main St'
click_button 'Place Order'

expect(page).to have_content('Order Placed Successfully')
expect(Order.count).to eq(1)
expect(Order.last.status).to eq('processed')

end

end

U ovom primeru, test s kraja na kraj simulira korisnika koji postavlja narudzbinu preko
web interfejsa. Popunjava potrebna polja obrasca, $alje narudzbinu i proverava da li je
narudzbina uspe$no obradena, prikazujuci odgovarajuéu poruku potvrde i azurirajuéi

status narudzbine u bazi podataka.



Inteligentna orkestracija radnih tokova 243

Kontinuirana integracija i isporuka

Da bi se osigurala pouzdanost i odrzivost inteligentnih tokova rada, preporucuje se
integracija testiranja i validacije u protok kontinuirane integracije i isporuke (CI/CD).
Ovo omogucava automatizovano testiranje i validaciju promena u toku rada pre nego

$to se primene u produkciji. Razmotrite sledeée prakse:

1. Automatizovano izvrsavanje testova: Konfigurisite CI/CD protok da automatski
pokrece paket testova kad god se naprave izmene u kodu toka rada. Ovo osigurava da

se sve regresije ili greske otkriju rano u procesu razvoja.

2. Praéenje pokrivenosti testovima: Merite i pratite pokrivenost testovima komponenti
toka rada i AI tacaka odlucivanja. Tezite visokoj pokrivenosti testovima kako biste

osigurali da su kriti¢ne putanje i scenariji temeljno testirani.

3. Kontinuirana povratna informacija: Integrisite rezultate testova i metrike kvaliteta
koda u tok razvoja. Obezbedite kontinuiranu povratnu informaciju programerima o

statusu testova, kvalitetu koda i svim problemima otkrivenim tokom CI/CD procesa.

4. Razvojna okruZenja: Primenite tok rada u razvojnim okruzenjima koja blisko
odslikavaju produkciono okruzenje. Izvrsite dodatno testiranje i validaciju u razvojnom
okruzenju kako biste otkrili sve probleme vezane za infrastrukturu, konfiguraciju ili

integraciju podataka.

5. Mehanizmi za povratak: Implementirajte mehanizme za povratak u slu¢aju neuspeha
pri primeni ili kriti¢nih problema otkrivenih u produkciji. Osigurajte da se tok rada moze
brzo vratiti na prethodnu stabilnu verziju kako bi se minimiziralo vreme prekida rada i

uticaj na korisnike.

Uklju¢ivanjem testiranja i validacije tokom celog zZivotnog ciklusa razvoja inteligentnih

tokova rada, organizacije mogu osigurati pouzdanost, ta¢nost i odrzivost svojih Al



Inteligentna orkestracija radnih tokova 244

sistema. Redovno testiranje i validacija pomazu u otkrivanju gresaka, sprecavanju

regresija i izgradnji poverenja u ponasanje i rezultate toka rada.



Deo 2: Obrasci

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inzenjerstvo promptova

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

InZenjerstvo promptova 247

Lanac razmisljanja

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.
Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.
Primeri

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.
Generisanje sadrzaja

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.
Kreiranje strukturiranih entiteta

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.
Usmeravanje LLM Agenta

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.
Prednosti i razmatranja

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

InZenjerstvo promptova 248

Promena rezima

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada ga koristiti

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

InZenjerstvo promptova 249

Dodela uloge

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada ga koristiti

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primeri

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

InZenjerstvo promptova 250

Prompt Object

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

InZenjerstvo promptova 251

Sablon upita

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Prednosti i razmatranja

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada ga koristiti:

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

InZenjerstvo promptova 252

Strukturirani Ul/1Z

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako Funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Skaliranje strukturiranog Ul/IZ

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Prednosti i razmatranja

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

InZenjerstvo promptova 253

Ulancavanje promptova

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada ga koristiti

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer: Olimpijino uvodenje korisnika

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

InZenjerstvo promptova 254

Prepisiva¢ Promptova

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako Funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

InZenjerstvo promptova 255

Ogradivanje odgovora

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Prednosti i razmatranja

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Rukovanje greskama

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

InZenjerstvo promptova 256

Analizator upita

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Implementacija

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.
Oznacavanje vrsta re¢i (POS) i Prepoznavanje imenovanih entiteta (NER)

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.
Klasifikacija namere

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.
Ekstrakcija klju¢nih reci

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Prednosti

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

InZenjerstvo promptova 257

Prepisivac upita

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Prednosti

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

InZenjerstvo promptova 258

Ventrilokvist

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako Funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada Ga Koristiti

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Diskretne komponente

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Diskretne komponente 260

Predikat

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada ga koristiti

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Diskretne komponente 261

API Fasada

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Klju¢ne prednosti

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada je koristiti

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Autentifikacija i Autorizacija

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Diskretne komponente 262

Obrada Zahteva

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Formatiranje Odgovora

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Obrada Gresaka i Grani¢nih Slucajeva

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Razmatranja o Skalabilnosti i Performansama

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Poredenje sa Drugim Dizajn Obrascima

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Diskretne komponente 263

Interpreter rezultata

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada ga koristiti

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Diskretne komponente 264

Virtuelna masina

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada ga koristiti

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Iza Magije

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Specifikacija i Testiranje

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Diskretne komponente 265

Specifikacija Ponasanja

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Pisanje Test Primera

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer: Testiranje Translator Komponente

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Reprodukcija HTTP Interakcija

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Covek u petlji (HITL)

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Obrasci visokog nivoa

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Hibridna inteligencija

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Adaptivni odziv

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Zamena uloga izmedu ¢oveka i Al

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Covek u petlji (HITL) 267

Eskalacija

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:
//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Klju¢ne prednosti

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primena u stvarnom svetu: Zdravstvo

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Covek u petlji (HITL) 268

Povratna sprega

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako to funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primene i Primeri

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Napredne Tehnike u Integraciji Ljudskih Povratnih Informacija

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Covek u petlji (HITL) 269

Pasivno zracenje informacija

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kontekstualni prikaz informacija

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Proaktivna obavestenja

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Objasnjavajuéi uvidi

Ovaj sadrZaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Interaktivno istrazivanje

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Covek u petlji (HITL) 270

Kljuéne prednosti

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primene i primeri

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Covek u petlji (HITL) 271

Kolaborativno donosenje odluka (CDM)

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Covek u petlji (HITL) 272

Kontinuirano ucenje

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primene i primeri

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer
Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Eticka razmatranja

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Uloga HITL-a u ublazavanju Al rizika

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Covek u petlji (HITL) 273

Tehnoloski napredak i bududi izgledi

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Izazovi i ograni¢enja HITL sistema

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inteligentno rukovanje greSkama

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Tradicionalni pristupi rukovanju greskama

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inteligentno rukovanje greskama 275

Kontekstualna dijagnostika gresaka

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

InZenjerstvo promptova za kontekstualnu dijagnostiku gresaka

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Generisanje Potpomognuto Preuzimanjem za Kontekstualnu Dijagnostiku

Gresaka

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inteligentno rukovanje greskama 276

Inteligentno Izvestavanje o Greskama

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inteligentno rukovanje greskama 277

Prediktivno sprecavanje gresaka

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako Funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Pametni Oporavak od Gresaka

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako Funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inteligentno rukovanje greskama 278

Personalizovana komunikacija o greskama

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inteligentno rukovanje greskama 279

Adaptivni tok rada za rukovanje greskama

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Kontrola kvaliteta

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Kontrola kvaliteta 281

Eval

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Problem

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Resenje

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Razmatranja

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Kontrola kvaliteta 282

Razumevanje zlatnih referenci

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioni$u evaluacije bez reference

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Kontrola kvaliteta 283

Guardrail

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Problem

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Resenje

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionise

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Razmatranja

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Kontrola kvaliteta 284

Zastitne mere i Evaluacije: Dve strane istog novcic¢a

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Medusobna zamenjivost Zastitnih mera i Evaluacija bez referenci

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Implementacija Zastitnih mera i Evaluacija sa dvostrukom

namenom

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Rec¢nik pojmova

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Rec¢nik pojmova

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

A

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

B

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

C

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

286

D

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

E

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

F

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

G

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

H

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

287

J

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

K

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

L

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

M

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

N

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

o

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

288

P

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Q

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

R

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

T

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

U

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

289

\%

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

W

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Z

Ovaj sadrzaj nije dostupan u uzorku knjige. Knjigu mozete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.


http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Index

ACID svojstva, 102

adaptivni tok rada
Adaptivna Kompozicija Toka Rada,

210

adaptivni UL 193

Agentni, 30

Al, 60, 92, 133, 139, 188, 195
aplikacije, 117, 129
konverzacijska, 196
konverzacijski, 29
konverzaciona, 6
model, 83, 92, 144, 145, 147, 195
slozeni sistemi, 28, 32
tacke odlucivanja, 240

Alpaca, 12

Altman, Sam, 16

Amazon Web Services, 235

analiza sentimenta, 15, 93, 104--106, 109,

110, 126, 135

Analiza Sentimenta Kupaca, 92

ansambli, 109, 110
ansambl radnika, 110

Anthropic, 21, 36, 68, 120, 128

antropomorfizam, 64

API-ji, 66, 142

APIs, 115

Arhitektura mikroservisa, 83
arhitektura poslovnih aplikacija, 35
arhitektura vodena dogadajima, 101
asinhrona obrada, 232
auto-regressive modeling, 40
Automatski Nastavak, 148

automatsko skaliranje, 235

baze podataka, 115
-podrzani objekat, 98
strategije zakljucavanja, 102

baze znanja, 7

BERT, 12, 22

bez stanja, 145

Brotli, 236

Byte Pair Encoding (BPE), 13

C (Programski jezik), 108
Capybara biblioteka, 242
Chain of Thought (CoT), 129
ChatGPT, 28, 49

Claude, 7, 40, 72

Claude 3, 46, 118, 120, 126, 128
Claude 3 Opus, 69

Claude v1, 15

Claude v2, 15

Cohere (LLM Provider), 21, 23



Index

command line
Command-Line Interface (CLI), 23
content
filtering, 24
context
infinitely long inputs, 14
window, 14
conversation
transkript, 145

customization, 24

data

privacy, 24
Databricks zaposleni, 48
Datadog, 231
debagovanje

i testiranje, 123
desktop racunari, 203
detekcija prevare

sistem, 90
deterministicko ponasanje, 54
digitalno okruzenje, 179
Dinamicki odabir alata, 122
dinamicko generisanje korisnickog

interfejsa, 174

Dinamicko usmeravanje zadataka, 208
distribuirana arhitektura, 232
dizajn aplikacija i radni okviri, 184
dodeljivanje tiketa, 223
Dohan, et al., 40

e-trgovina, 177

efikasnost, 207

291

ekosistem, 137
eksperimentisanje
radni okvir, 180
eksterni servisi ili API-ji, 118
elektronska trgovina, 206
ELK stack, 103
emocionalni ton, 135
errors
Intelligent Error Handling, 133
etika

implikacije, 185

F#, 86
Facebook, 22
faktori rizika, 89, 90
filtriranje zasnovano na sadrzaju, 85
finalize metoda, 145--147
fino podesavanje, 74
FitAl, 196
fleksibilnost i kreativnost, 182
funkcija
imena, 143
istorija poziva, 145
pozivanje, 115

funkcionalno programiranje, 85

Gemma 7B, 10

Generative Pre-trained Transformer (GPT),
7

Generativni korisni¢ki interfejs (GenUI),
198

Generativni prethodno obuceni

transformator (GPT), 62



Index

Generativni UI (GenUI), 184, 191, 194, 202
Generisanje potpomognuto pretrazivanjem
(RAG), 117
Generisanje potpomognuto preuzimanjem
(RAG), 29, 35, 42, 74
generisanje sinteti¢kih podataka, 49
GitLab, 86
Global Interpreter Lock (GIL), 107
Google, 21
AP], 58, 60
Cloud AI Platform, 22
Cloud Platform, 235
Gemini, 19
Gemini 1.5 Pro, 12, 16, 17
PaLM (Pathways Language Model),
16, 22
T5, 12
GPT-3, 12, 15
GPT-4, 6, 12, 15, 16, 19, 29, 40, 46, 58, 97,
109, 112, 119, 124, 189, 190, 233
grafi¢ki modeli, 40
Graham, Paul, 17
gramaticka pravila, 4
granicni slucajevi, 54
grani¢ni uslovi, 237
granularno beleZenje, 230
GraphQL, 100
greske
oporavak, 242
rukovanje, 99, 132
stope, 103
upravljanje, 102, 237

Groq, 24, 112

grupisanje dokumenata, 112
grupna obrada, 233

gzip, 236

hardware, 26

hes, 141

high-performance completion, 24
hiperparametar, 43

Hohpe, Gregor, 97

Honeybadger, 87

HTTP, 139

identifikacija tema, 112
informacije

ekstrakcija, 48

preuzimanje, 117

pronalazenje, 6
inkluzivni interfejsi, 185
integraciono testiranje, 238
integrisanje LLM-ova, 174
inteligentna orkestracija radnih tokova,

205, 233, 236

Inteligentni moderator sadrzaja, 217
interakcije u stilu igranja uloga, 6
interfejsi kojima se upravlja glasom, 31
internacionalizacija, 180
Interpreter rezultata, 132
istorijski obrasci, 209
istovremeni radni tokovi, 236
iterativno refinement, 134
iterativno usavrSavanje, 70

izgradnja narativa, 18

292



Index

jezik
-povezani zadaci, 4
Detekcija jezika, 104
modeli, 67
JSON (JavaScript Object Notation), 118,
122, 126, 137, 154

K-sredine, 113
kazne za ponavljanje, 47
Kazneni faktor prisustva, 45
kesiranje, 233
klasifikacija, 48, 112
kljuéni obrasci, 208
Kodiranje parova bajtova (BPE), 12
kolaborativno filtriranje, 85
konceptualni i prakti¢ni izazovi, 185
kontekst
Kontekstualni predlozi polja, 186
kontekstualno donosenje odluka, 209
Kontekstualno generisanje sadrzaja,
173, 177--179, 185, 186
prozor, 209
Prosirenje, 42
Kontinuirana integracija i isporuka
(CI/CD), 243
protok, 243
Kontinuirano pracenje rizika, 96
konzistentnost
i reproduktivnost, 124
korisnicka podrska, 30
korisnicki generisan sadrzaj, 104

Korisnicki interfejs (UI)

293

dizajn, 203

interfejsi, 184, 198

okviri, 199

tehnologije, 194
korisnicko iskustvo, 180
korisnicko testiranje i povratne

informacije, 182

kreativno pisanje, 32, 48

Kvantizacija, 26

Lanac razmisljanja (CoT), 41
lanac snabdevanja
optimizacija, 30
language
models, 39, 61
Large Language Model (LLM), 14, 134
landscape, 25
latencija, 25
Latentna Dirihleova alokacija, 113
latentni prostor, 37, 39
linearna algebra, 39
linearna regresija, 40
Llama, 12
Llama 2-70B, 46
Llama 3 70B, 10
Llama 3 8B, 10
logika prekidaca, 150
lokalna razvojna okruZenja, 143

Louvre, 39

Managed Streaming for Apache Kafka, 38
Markdown, 137
Masine sa vektorima podrske (MVP), 113



Index 294

medicinska otkri¢a, 93 nenadgledano uéenje, 4
mehanizmi ponovnih pokusaja, 102 neuralne mreze, 3, 6
mehanizmi za povratak, 243 New Relic, 234
Memorial Sloan Kettering Cancer Center, nizovi, 122
38
Menadzer Procesa, 100 objasnjivost, 240
Menadzer procesa, 97 obrada toka, 145
Merkur (element), 41 logika, 146
Merkur (planeta), 41 obrada toka podataka, 139, 150
Merkur (rimski bog), 41 Obrasci poslovne integracije, 97
MessagePack, 235 obrazovne aplikacije, 30
Meta, 22 obuka na instrukcijama
Metropolitan Museum of Art, 39 modeli obuceni na instrukcijama, 46,
medumodalno generisanje, 20 48
Mistral, 23 odlucivanje
7B, 10 slucajevi upotrebe, 124
7B Instruct, 15, 190 stabla, 206
Mixtral Ogradivanje Odgovora, 190
8x22B, 10 Ogradivanje odgovora, 163
8x7B, 52 Ollama, 23
Mnostvo radnika, 111, 154 Olympia, 31, 58, 120, 133, 140, 155
modeli zasnovani na pretrazivanju, 6 Olympia-ina baza znanja, 85
moderne aplikacije, 207 online prodavci, 190
modularnost, 82 OpenAl, 3, 21, 36, 68
motivacione strategije, 198 OpenRouter, 25, 26, 140, 233
mrezna povezanost, 210 OPT model, 22
Multimodalni optimisticko zaklju¢avanje, 102
jezi¢ki modeli, 19 orkestracija inteligentnog radnog toka, 213
modeli, 18 osnovni modeli, 50

otklanjanje gresaka, 209
Naivni Bajes, 113 i reSavanje problema, 230

naocare za prosirenu realnost, 203 oznacavanje pomoc¢u markup jezika, 66



Index 295

pametni telefoni, 203 podesavanje putem instrukeija, 9
parafraziranje, 49 Podrska klinickom odluéivanju, 96
paralelno izvrSavanje, 232 poruka okidac, 97
parametar poslovna pravila, 206
Broj parametara, 26 poverenje korisnika, 201
efekti, 120 povratna sprega
opseg, 10 Povratna sprega, 55
performanse poziv alata, 142
kompromisi, 5 poziv funkcije
optimizacija, 124, 182, 230 neuspeh, 125
problemi, 234 pracenje
Perplexity (Provajder), 10 i belezenje, 103, 229
personalizacija, 174, 202, 207 i upozoravanje, 211
Personalizovani formulari, 186 metrike, 230
Personalizovani Mikrotekst, 191 pracenje klju¢nih metrika, 227
personalizovane preporuke proizvoda, 85 predvidanja, 5
pesimisti¢ko zaklju¢avanje, 102 Preporuke Proizvoda, 85
planiranje reagovanja u vanrednim prevodenje, 15, 181
situacijama, 30 Prikupljanje medicinske istorije, 94
podaci Primene u E-trgovini, 85
analiza, 32, 137 princip najmanje privilegije, 66
integritet, 223 Prinudni odabir alata, 123
postojanost, 102 prirodni jezik
Preuzimanje podataka, 102 Obrada prirodnog jezika (ON]), 94
priprema, 101 Obrada prirodnog jezika (OPJ), 112
privatnost, 200 pristrasnost
proces obrade, 223 i pravi¢nost u Al, 240
protok, 102 pristupacnost, 201, 202
Sinhronizacija podataka, 102 probabilisticki modeli, 40
Validacija podataka, 242 problemi upotrebljivosti, 201
zadaci obrade, 117 Procena i stratifikacija simptoma, 94

podaci za obuku, 39 proces destilacije, 71



Index

Process Manager
Enterprise Integration, 213
Produktivnost, 176
progresivno otkrivanje, 192
promptovi
Destilacija promptova, 68, 72, 233
inZenjering, 55
Prompt Object, 69
ulancavanje, 55, 66
Sablon Prompta, 190
Sablon promptova, 55
prompts
engineering, 60
propusnost, 25
Protocol Buffers, 235
proto¢ni podaci, 141
provajderi hostinga modela otvorenog
koda, 190
psihologija korisnika, 200
PyTorch, 22

Qwen2 70B, 10

Rails, 181

Railway Oriented Programming (ROP), 88

Raix, 214

biblioteka, 90
rangiratori, 33
razgovor

petlja, 148

transkript, 147
razvoj aplikacija, 205

razvojna okruZenja, 243

razvojni okviri, 138

racun, 84

racunarska nauka, 67
rac¢unarske nauke, 65

revizija i uskladenost, 230
revizorsko belezenje, 99
rezervne strategije, 102
recnici, 122

RSpec, 237, 239, 242

Ruby, 86, 87, 105, 150, 242
Ruby on Rails, 1, 104, 213, 220
Rudall, Alex, 21

rukovanje izuzecima, 210, 212
rukovaoci toka, 139

Rust (Programski jezik), 108
Rust (programski jezik), 86

rucna intervencija, 212

sadrzaj

Kategorizacija sadrzaja, 104
SamozaleCujuéi podaci, 152, 226
Scout, 234
server-sent events (SSE), 139
sintaksne greske, 123
sistemi za objavljivanje-pretplatu, 101
sistemi za odgovaranje na pitanja, 7
sistemska direktiva, 92, 120
skalabilnost, 207, 231
slozeni zadaci, 136
softverska arhitektura, 2
sposobnosti donosenja odluka, 92

SQL injekcije, 65

296



Index 297

strategije segmentacije i ciljanja, 180 Universal ID, 236

Stratifikacija rizika, 95 uparivanje obrazaca, 141

Stripe, 121 upiti

Strukturirani 10, 190 Destilacija upita, 42
strukturirani podaci, 125 dizajn, 54, 63

strukturirano belezenje, 231 inZenjering, 199

sumiranje, 48 inZenjerstvo, 37, 41, 42, 52, 62
suziti put, 36 usavriavanje, 63

suzavanje puta, 35 upotreba alata, 115, 138

upravljanje saobracajem, 30
Ts, 22
upravljanje znanjem, 30
tableti, 203
5 uska grla, 210
tacke
o ucenje bez primera, 54, 55
odludivanja, 228
Ucenje sa jednim primerom, 56
Temperatura, 50
B ucenje sa malo primera, 57
teorija uma, 37
o . . primena, 58
testiranje s kraja na kraj, 241, 242

Together.ai, 24
Veliki jezicki model (LLM), 27, 103, 115,
tokeni, 5, 11
116, 173, 184, 194
tokenizacija, 11
Veliki jezicki model (VJM), 1, 3, 16, 62, 63,
Top-k uzorkovanje, 44
60, 70, 72, 81, 112, 125, 131, 134,
Top-p (nucleus) uzorkovanje, 44
136, 152, 155, 189, 216
tragedija zajedni¢kog dobra, 177
verifikacija izlaznih podataka, 237
transformer arhitektura, 6
Verifikacija osiguranja, 94
Trbuhozborac, 163
vecinsko glasanje, 109

ulané¢avanje Al radnika, 103 vestacka inteligencija

ulaz aplikacije, 138, 150
upiti, 52 VI, 68, 120, 125

ulazni parametri, 120 virtuelni asistenti, 31

ulazni podaci vizuelni interfejs, 194
validacija, 237 ViSeagentni

Unicode-encodable language, 13 Re$avaoci problema, 29



Index

viSekoracni tok rada, 104
Vreme do prvog tokena (TTFT), 25

vreme obrade, 103

Wall, Larry, 3
Wisper, 87, 99, 140, 147
Wooley, Chad, 86

XML, 125

Yi-34B, 46

298

zadrzavanje i rotacija zapisa, 231
Zakljutivanje, 5
zatvoreno i otvoreno odgovaranje na

pitanja, 48

Cis¢enije teksta, 104
Covek u petlji (HITL), 166
Cetbot aplikacija, 111

Cetbotovi za korisnicku podrsku, 31



	Table of Contents
	Predgovor Gregora Hohpea
	Predgovor
	O knjizi
	O primerima koda
	Šta ne obrađujem
	Kome je namenjena ova knjiga
	Izgradnja zajedničkog rečnika
	Uključivanje
	Zahvalnice
	Šta je sa ilustracijama?
	O Lean Publishing-u
	O Autoru

	Uvod
	Razmišljanja o softverskoj arhitekturi
	Šta je Veliki jezički model?
	Razumevanje zaključivanja
	Razmišljanje o performansama
	Eksperimentisanje sa različitim LLM modelima
	Složeni AI sistemi

	Deo 1: Osnovni pristupi i tehnike
	Suziti Put
	Latentni prostor: Nezamislivo ogroman
	Kako se Put ``Sužava''
	Osnovni modeli naspram modela obučenih na instrukcijama
	Inženjerstvo upita
	Destilacija promptova
	Šta je sa finim podešavanjem?

	Generisanje potpomognuto pretraživanjem (RAG)
	Šta je Generisanje potpomognuto pretraživanjem?
	Kako RAG funkcioniše?
	Zašto koristiti RAG u vašim aplikacijama?
	Implementacija RAG-a u Vašoj Aplikaciji
	Segmentacija propozicija
	Primeri RAG-a iz stvarnog sveta
	Inteligentna Optimizacija Upita (IQO)
	Ponovno Rangiranje
	RAG Procena (RAGAs)
	Izazovi i budući izgledi

	Mnoštvo radnika
	AI radnici kao nezavisne komponente za višekratnu upotrebu
	Upravljanje nalozima
	Primene u E-trgovini
	Primene u zdravstvu
	AI radnik kao menadžer procesa
	Integracija AI Radnika U Arhitekturu Vaše Aplikacije
	Kompozabilnost i orkestracija AI radnika
	Kombinovanje tradicionalne OPJ sa VJM-ovima

	Upotreba alata
	Šta je upotreba alata?
	Potencijal upotrebe alata
	Tok rada sa alatima
	Najbolje prakse za upotrebu alata
	Komponovanje i ulančavanje alata
	Budući pravci

	Obrada toka podataka
	Implementacija ReplyStream-a
	``Konverzacijska petlja''
	Automatski Nastavak
	Zaključak

	Samozalečujući podaci
	Praktična studija slučaja: Popravljanje neispravnog JSON-a
	Razmatranja i kontraindikacije

	Kontekstualno generisanje sadržaja
	Personalizacija
	Produktivnost
	Brza iteracija i eksperimentisanje
	AI podržana lokalizacija
	Važnost korisničkog testiranja i povratnih informacija

	Generativni UI
	Generisanje teksta za korisničke interfejse
	Definisanje generativnog UI-ja
	Primer
	Prelazak na dizajn orijentisan ka ishodima
	Izazovi i razmatranja
	Budući izgledi i mogućnosti

	Inteligentna orkestracija radnih tokova
	Poslovna potreba
	Ključne prednosti
	Ključni obrasci
	Rukovanje Izuzecima i Oporavak
	Implementacija orkestracije inteligentnog radnog toka u praksi
	Praćenje i beleženje
	Razmatranja skalabilnosti i performansi
	Testiranje i validacija radnih tokova


	Deo 2: Obrasci
	Inženjerstvo promptova
	Lanac razmišljanja
	Promena režima
	Dodela uloge
	Prompt Object
	Šablon upita
	Strukturirani UI/IZ
	Ulančavanje promptova
	Prepisivač Promptova
	Ograđivanje odgovora
	Analizator upita
	Prepisivač upita
	Ventrilokvist

	Diskretne komponente
	Predikat
	API Fasada
	Interpreter rezultata
	Virtuelna mašina
	Specifikacija i Testiranje

	Čovek u petlji (HITL)
	Obrasci visokog nivoa
	Eskalacija
	Povratna sprega
	Pasivno zračenje informacija
	Kolaborativno donošenje odluka (CDM)
	Kontinuirano učenje
	Etička razmatranja
	Tehnološki napredak i budući izgledi

	Inteligentno rukovanje greškama
	Tradicionalni pristupi rukovanju greškama
	Kontekstualna dijagnostika grešaka
	Inteligentno Izveštavanje o Greškama
	Prediktivno sprečavanje grešaka
	Pametni Oporavak od Grešaka
	Personalizovana komunikacija o greškama
	Adaptivni tok rada za rukovanje greškama

	Kontrola kvaliteta
	Eval
	Guardrail
	Zaštitne mere i Evaluacije: Dve strane istog novčića


	Rečnik pojmova
	Rečnik pojmova
	Index


