

Obrasci razvoja aplikacija korišćenjem AI

(Izdanje na Srpskom)

Obie Fernandez

Ova knjiga je na prodaju na

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Ova verzija je objavljena 2025-01-23

Ovo je knjiga Leanpub-a. Leanpub osnažuje autore i izdavače kroz proces Lean

objavljivanja. Lean objavljivanje je postupak objavljivanja elektronske knjige koja se

još uvek razvija, koristeći efikasne alate i brojne iteracije kako bi se prikupile povratne

informacije čitalaca, menjajući pravac sve dok se ne stvori prava knjiga i stiče zamah

jednom kada se to postigne.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweetujte ovu knjigu!

Molimo pomozi Obie Fernandez tako što ćeš prosiriti reč o ovoj knjizi na Twitter!

Predloženi hešteg za ovu knjigu je #poaduai.

Saznajte šta drugi ljudi kažu o knjizi klikom na ovaj link da tražite ovaj hešteg na

Twitter-u:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Mojoj neustrašivoj kraljici, mojoj muzi, mojoj svetlosti i ljubavi, Victoriji

Also By Obie Fernandez
Patterns of Application Development Using AI

The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Садржај

Predgovor Gregora Hohpea . i

Predgovor . ii

O knjizi . iii

O primerima koda . iii

Šta ne obrađujem . iii

Kome je namenjena ova knjiga . iii

Izgradnja zajedničkog rečnika . iii

Uključivanje . iii

Zahvalnice . iii

Šta je sa ilustracijama? . iv

O Lean Publishing-u . iv

O Autoru . v

Uvod . 1

Razmišljanja o softverskoj arhitekturi . 2

Šta je Veliki jezički model? . 3

Razumevanje zaključivanja . 5

Razmišljanje o performansama . 25

Eksperimentisanje sa različitim LLM modelima 27

Složeni AI sistemi . 27

САДРЖАЈ

Deo 1: Osnovni pristupi i tehnike 35

Suziti Put . 36

Latentni prostor: Nezamislivo ogroman . 38

Kako se Put “Sužava” . 42

Osnovni modeli naspram modela obučenih na instrukcijama 45

Inženjerstvo upita . 52

Destilacija promptova . 67

Šta je sa finim podešavanjem? . 74

Generisanje potpomognuto pretraživanjem (RAG) 75

Šta je Generisanje potpomognuto pretraživanjem? 75

Kako RAG funkcioniše? . 75

Zašto koristiti RAG u vašim aplikacijama? . 75

Implementacija RAG-a u Vašoj Aplikaciji . 75

Segmentacija propozicija . 76

Primeri RAG-a iz stvarnog sveta . 76

Inteligentna Optimizacija Upita (IQO) . 77

Ponovno Rangiranje . 77

RAG Procena (RAGAs) . 77

Izazovi i budući izgledi . 79

Mnoštvo radnika . 81

AI radnici kao nezavisne komponente za višekratnu upotrebu 82

Upravljanje nalozima . 84

Primene u E-trgovini . 85

Primene u zdravstvu . 93

AI radnik kao menadžer procesa . 96

Integracija AI Radnika U Arhitekturu Vaše Aplikacije 100

Kompozabilnost i orkestracija AI radnika . 103

САДРЖАЈ

Kombinovanje tradicionalne OPJ sa VJM-ovima 112

Upotreba alata . 115

Šta je upotreba alata? . 115

Potencijal upotrebe alata . 117

Tok rada sa alatima . 118

Najbolje prakse za upotrebu alata . 131

Komponovanje i ulančavanje alata . 135

Budući pravci . 137

Obrada toka podataka . 139

Implementacija ReplyStream-a . 140

“Konverzacijska petlja” . 146

Automatski Nastavak . 148

Zaključak . 150

Samozalečujući podaci . 152

Praktična studija slučaja: Popravljanje neispravnog JSON-a 154

Razmatranja i kontraindikacije . 159

Kontekstualno generisanje sadržaja . 173

Personalizacija . 174

Produktivnost . 176

Brza iteracija i eksperimentisanje . 178

AI podržana lokalizacija . 180

Važnost korisničkog testiranja i povratnih informacija 182

Generativni UI . 184

Generisanje teksta za korisničke interfejse . 185

Definisanje generativnog UI-ja . 194

Primer . 196

САДРЖАЈ

Prelazak na dizajn orijentisan ka ishodima . 198

Izazovi i razmatranja . 200

Budući izgledi i mogućnosti . 201

Inteligentna orkestracija radnih tokova . 205

Poslovna potreba . 206

Ključne prednosti . 207

Ključni obrasci . 207

Rukovanje Izuzecima i Oporavak . 210

Implementacija orkestracije inteligentnog radnog toka u praksi 213

Praćenje i beleženje . 227

Razmatranja skalabilnosti i performansi . 231

Testiranje i validacija radnih tokova . 236

Deo 2: Obrasci . 245

Inženjerstvo promptova . 246

Lanac razmišljanja . 247

Promena režima . 248

Dodela uloge . 249

Prompt Object . 250

Šablon upita . 251

Strukturirani UI/IZ . 252

Ulančavanje promptova . 253

Prepisivač Promptova . 254

Ograđivanje odgovora . 255

Analizator upita . 256

Prepisivač upita . 257

Ventrilokvist . 258

САДРЖАЈ

Diskretne komponente . 259

Predikat . 260

API Fasada . 261

Interpreter rezultata . 263

Virtuelna mašina . 264

Specifikacija i Testiranje . 264

Čovek u petlji (HITL) . 266

Obrasci visokog nivoa . 266

Eskalacija . 267

Povratna sprega . 268

Pasivno zračenje informacija . 269

Kolaborativno donošenje odluka (CDM) . 271

Kontinuirano učenje . 272

Etička razmatranja . 272

Tehnološki napredak i budući izgledi . 272

Inteligentno rukovanje greškama . 274

Tradicionalni pristupi rukovanju greškama . 274

Kontekstualna dijagnostika grešaka . 275

Inteligentno Izveštavanje o Greškama . 276

Prediktivno sprečavanje grešaka . 277

Pametni Oporavak od Grešaka . 277

Personalizovana komunikacija o greškama . 278

Adaptivni tok rada za rukovanje greškama . 279

Kontrola kvaliteta . 280

Eval . 281

Guardrail . 283

Zaštitne mere i Evaluacije: Dve strane istog novčića 283

Rečnik pojmova . 285
Rečnik pojmova . 285

Index . 290

Predgovor Gregora Hohpea
Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Predgovor
Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Predgovor iii

O knjizi

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

O primerima koda

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Šta ne obrađujem

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kome je namenjena ova knjiga

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Izgradnja zajedničkog rečnika

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Uključivanje

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Predgovor iv

Zahvalnice

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Šta je sa ilustracijama?

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

O Lean Publishing-u

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Predgovor v

O Autoru

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Uvod

Ako jedva čekate da počnete da integrišete AI velike jezičke modele (VJM) u vaše

programerske projekte, slobodno pređite odmah na obrasce i primere koda predstavljene

u kasnijim poglavljima. Međutim, da biste u potpunosti cenili snagu i potencijal ovih

obrazaca, vredi zastati na trenutak da razumete širi kontekst i kohezivni pristup koji oni

predstavljaju.

Obrasci nisu samo kolekcija izolovanih tehnika, već jedinstveni okvir za integraciju

AI-ja u vaše aplikacije. Ja koristim Ruby on Rails, ali ovi obrasci bi trebalo da

funkcionišu u praktično bilo kom drugom programskom okruženju. Oni se bave širokim

spektrom pitanja, od upravljanja podacima i optimizacije performansi do korisničkog

iskustva i bezbednosti, pružajući sveobuhvatni skup alata za unapređenje tradicionalnih

programerskih praksi mogućnostima AI-ja.

Svaka kategorija obrazaca se bavi specifičnim izazovom ili prilikom koja se javlja kada

se AI komponente ugrađuju u vašu aplikaciju. Razumevanjem odnosa i sinergije između

Uvod 2

ovih obrazaca, možete donositi informisane odluke o tome gde i kako najefikasnije

primeniti AI.

Obrasci nikada nisu preskriptivna rešenja i ne treba ih tako tretirati. Oni su zamišljeni

kao prilagodljivi gradivni blokovi koje treba prilagoditi jedinstvenim zahtevima i

ograničenjima vaše sopstvene jedinstvene aplikacije. Uspešna primena ovih obrazaca

(kao i bilo kojih drugih u oblasti softvera) oslanja se na duboko razumevanje

problemskog domena, potreba korisnika i celokupne tehničke arhitekture vašeg

projekta.

Razmišljanja o softverskoj arhitekturi

Počeo sam da programiram 1980-ih i bio sam uključen u hakersku scenu, i nikada nisam

izgubio svoj hakerski mentalitet, čak i nakon što sam postao profesionalni programer. Od

početka sam uvek imao zdravu dozu skepticizma prema tome kakvu vrednost softverski

arhitekti u svojim kućama od slonovače zapravo donose.

Jedan od razloga zbog kojih sam lično toliko uzbuđen zbog promena koje donosi

ovaj moćni novi talas AI tehnologije je njegov uticaj na ono što smatramo odlukama

softverske arhitekture. On dovodi u pitanje tradicionalne predstave o tome šta čini

“ispravan” način dizajniranja i implementacije naših softverskih projekata. Takođe

dovodi u pitanje da li se arhitektura i dalje može posmatrati prvenstveno kao delovi

sistema koje je teško promeniti, s obzirom na to da AI unapređenje čini lakšim nego ikad

da se promeni bilo koji deo vašeg projekta, u bilo kom trenutku.

Možda ulazimo u vrhunske godine “postmodernog” pristupa softverskom inženjerstvu.

U ovom kontekstu, postmoderno se odnosi na fundamentalni pomak od tradicionalnih

paradigmi, gde su programeri bili odgovorni za pisanje i održavanje svake linije

koda. Umesto toga, prihvata se ideja delegiranja zadataka, kao što su manipulacija

podacima, složeni algoritmi, pa čak i čitavi delovi aplikacione logike, bibliotekama trećih

strana i eksternim API-jima. Ovaj postmoderni pomak predstavlja značajno odstupanje

Uvod 3

od konvencionalne mudrosti izgradnje aplikacija od nule i izaziva programere da

preispitaju svoju ulogu u procesu razvoja.

Uvek sam verovao da dobri programeri pišu samo kod koji je apsolutno neophodno

napisati, na osnovu učenja Larry Wall-a i drugih hakerskih luminara poput njega.

Minimiziranjem količine napisanog koda, možemo se kretati brže, smanjiti površinu

za bagove, pojednostaviti održavanje i poboljšati ukupnu pouzdanost naših aplikacija.

Manje koda nam omogućava da se fokusiramo na osnovnu poslovnu logiku i korisničko

iskustvo, dok delegiramo ostali posao drugim servisima.

Sada kada AI sistemi mogu da se nose sa zadacima koji su ranije bili ekskluzivni domen

koda koji su pisali ljudi, trebalo bi da možemo biti još produktivniji i agilniji, sa većim

fokusom nego ikad na stvaranje poslovne vrednosti i korisničkog iskustva.

Naravno, postoje kompromisi u delegiranju ogromnih delova vašeg projekta AI

sistemima, kao što su potencijalni gubitak kontrole i potreba za robusnimmehanizmima

praćenja i povratnih informacija. Zato je potreban novi set veština i znanja, uključujući

bar neko osnovno razumevanje načina na koji AI funkcioniše.

Šta je Veliki jezički model?

Veliki jezički modeli (VJM) su vrsta modela veštačke inteligencije koji su privukli

značajnu pažnju poslednjih godina, još od lansiranja GPT-3 od strane OpenAI 2020.

godine. VJM-ovi su dizajnirani da obrađuju, razumeju i generišu ljudski jezik sa

izuzetnom preciznošću i tečnošću. U ovom odeljku, ukratko ćemo pogledati kako VJM-

-ovi funkcionišu i zašto su pogodni za izgradnju inteligentnih sistemskih komponenti.

U svojoj suštini, VJM-ovi su zasnovani na algoritmima dubokog učenja, konkretno

neuralnim mrežama. Ove mreže se sastoje od međusobno povezanih čvorova, ili

neurona, koji obrađuju i prenose informacije. Arhitektura izbora za VJM-ove je često

Transformerski model, koji se pokazao kao veoma efikasan u rukovanju sekvencijalnim

podacima poput teksta.

Uvod 4

Transformer modeli se zasnivaju na mehanizmu pažnje i prvenstveno se koriste

za zadatke koji uključuju sekvencijalne podatke, poput obrade prirodnog jezika.

Transformeri obrađuju ulazne podatke odjednom umesto sekvencijalno, što im

omogućava da efikasnije uhvate zavisnosti dugog dometa. Oni imaju slojeve

mehanizama pažnje koji pomažu modelu da se fokusira na različite delove ulaznih

podataka kako bi razumeo kontekst i odnose.

Proces obuke velikih jezičkih modela uključuje izlaganje modela ogromnim količinama

tekstualnih podataka, kao što su knjige, članci, veb stranice i repozitorijumi koda. Tokom

obuke, model uči da prepoznaje obrasce, odnose i strukture unutar teksta. On hvata

statističke osobine jezika, kao što su gramatička pravila, asocijacije reči i kontekstualna

značenja.

Jedna od ključnih tehnika koja se koristi u obuci velikih jezičkih modela je nenadgledano

učenje. To znači da model uči iz podataka bez eksplicitnog označavanja ili vođenja.

Sam otkriva obrasce i reprezentacije analizirajući zajedničko pojavljivanje reči i fraza

u podacima za obuku. Ovo omogućava velikim jezičkim modelima da razviju duboko

razumevanje jezika i njegovih složenosti.

Još jedan važan aspekt velikih jezičkih modela je njihova sposobnost da upravljaju

kontekstom. Prilikom obrade teksta, veliki jezički modeli uzimaju u obzir ne samo

pojedinačne reči već i okolni kontekst. Oni uzimaju u obzir prethodne reči, rečenice, pa

čak i pasuse kako bi razumeli značenje i nameru teksta. Ovo kontekstualno razumevanje

omogućava velikim jezičkim modelima da generišu koherentne i relevantne odgovore.

Jedan od glavnih načina na koji procenjujemo sposobnosti određenog modela velikog

jezičkogmodela je razmatranje veličine konteksta koji mogu uzeti u obzir pri generisanju

odgovora.

Nakon obuke, veliki jezički modeli se mogu koristiti za širok spektar jezičkih zadataka.

Mogu generisati tekst nalik ljudskom, odgovarati na pitanja, sumirati dokumente,

prevoditi jezike, pa čak i pisati kod. Svestranost velikih jezičkih modela čini ih

vrednim za izgradnju inteligentnih sistemskih komponenti koje mogu komunicirati sa

Uvod 5

korisnicima, obrađivati i analizirati tekstualne podatke i generisati smislene izlaze.

Uključivanjem velikih jezičkih modela u arhitekturu aplikacije, možete kreirati AI

komponente koje razumeju i obrađuju korisnički unos, generišu dinamički sadržaj i

pružaju inteligentne preporuke ili akcije. Ali rad sa velikim jezičkim modelima zahteva

pažljivo razmatranje potrebnih resursa i kompromisa performansi. Veliki jezički modeli

su računski intenzivni i mogu zahtevati značajnu procesorsku snagu i memoriju (drugim

rečima, novac) za rad. Većina nas će morati proceniti troškovne implikacije integracije

velikih jezičkih modela u naše aplikacije i postupiti u skladu s tim.

Razumevanje zaključivanja

Zaključivanje se odnosi na proces kojim model generiše predviđanja ili izlaze na osnovu

novih, neviđenih podataka. To je faza u kojoj se obučeni model koristi za donošenje

odluka ili generisanje teksta, slika ili drugog sadržaja kao odgovor na korisničke unose.

Tokom faze obuke, AI model uči iz velikog skupa podataka prilagođavanjem svojih

parametara kako bi minimizirao grešku u svojim predviđanjima. Nakon obuke, model

može primeniti ono što je naučio na nove podatke. Zaključivanje je način na koji model

koristi svoje naučene obrasce i znanje za generisanje izlaza.

Za velike jezičke modele, zaključivanje uključuje uzimanje upita ili ulaznog teksta

i proizvođenje koherentnog i kontekstualno relevantnog odgovora, kao tok tokena

(o kojima ćemo uskoro govoriti). To može biti odgovaranje na pitanje, dovršavanje

rečenice, generisanje priče ili prevođenje teksta, među mnogim drugim zadacima.

Za razliku od načina na koji vi i ja razmišljamo, “razmišljanje” AI modela

putem zaključivanja se dešava u jednoj operaciji bez stanja. To jest, njegovo

razmišljanje je ograničeno na proces generisanja. Bukvalno mora razmišljati

naglas, kao da sam vas pitao pitanje i prihvatio odgovor samo u stilu “toka

svesti”.

Uvod 6

Veliki jezički modeli dolaze u mnogim veličinama i ukusima

Iako su praktično svi popularni veliki jezički modeli zasnovani na istoj osnovnoj

transformer arhitekturi i obučeni na ogromnim tekstualnim skupovima podataka, dolaze

u različitim veličinama i fino su podešeni za različite svrhe. Veličina velikog jezičkog

modela, merena brojem parametara u njegovoj neuralnoj mreži, ima veliki uticaj na

njegove sposobnosti. Veći modeli sa više parametara, poput GPT-4, za koji se govori

da ima 1 do 2 triliona parametara, generalno su informisaniji i sposobniji od manjih

modela. Međutim, veći modeli takođe zahtevaju mnogo više računarske snage za rad,

što se prevodi u veći trošak kada ih koristite putem API poziva.

Da bi veliki jezički modeli bili praktičniji i prilagođeni specifičnim slučajevima upotrebe,

osnovni modeli se često fino podešavaju na ciljanijim skupovima podataka. Na primer,

veliki jezički model može biti obučen na velikom korpusu dijaloga da bi se specijalizovao

za konverzacionu veštačku inteligenciju. Drugi su obučeni na kodu da bi im se usadilo

programersko znanje. Postoje čak i modeli koji su posebno obučeni za interakcije sa

korisnicima u stilu igranja uloga!

Modeli zasnovani na pretraživanju naspram generativnih modela

U svetu velikih jezičkih modela (LLM), postoje dva glavna pristupa generisanju

odgovora: modeli zasnovani na pretraživanju i generativni modeli. Svaki pristup ima

svoje prednosti i mane, a razumevanje razlika između njih može vam pomoći da

odaberete pravi model za vaš specifični slučaj upotrebe.

Modeli zasnovani na pretraživanju

Modeli zasnovani na pretraživanju, poznati i kao modeli za pronalaženje informacija,

generišu odgovore pretragom velike baze postojećeg teksta i odabirom najrelevantnijih

pasusa na osnovu ulaznog upita. Ovimodeli ne generišu novi tekst iz početka, već spajaju

delove iz baze podataka kako bi formirali koherentan odgovor.

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Uvod 7

Jedna od glavnih prednosti modela zasnovanih na pretraživanju je njihova sposobnost

da pruže činjenično tačne i ažurne informacije. Pošto se oslanjaju na bazu kuriranog

teksta, mogu da izvuku relevantne informacije iz pouzdanih izvora i predstave ih

korisniku. Ovo ih čini pogodnim za aplikacije koje zahtevaju precizne, činjenične

odgovore, kao što su sistemi za odgovaranje na pitanja ili baze znanja.

Međutim, modeli zasnovani na pretraživanju imaju određena ograničenja. Oni su dobri

onoliko koliko je dobra baza podataka koju pretražuju, tako da kvalitet i pokrivenost

baze podataka direktno utiču na performanse modela. Dodatno, ovi modeli mogu imati

poteškoća sa generisanjem koherentnih i prirodno zvučećih odgovora, jer su ograničeni

na tekst dostupan u bazi podataka.

U ovoj knjizi ne obrađujemo upotrebu čistih modela za pretraživanje.

Generativni modeli

Generativni modeli, s druge strane, kreiraju novi tekst iz početka na osnovu obrazaca

i veza koje su naučili tokom treninga. Ovi modeli koriste svoje razumevanje jezika da

generišu nove odgovore koji su prilagođeni ulaznom upitu.

Glavna prednost generativnih modela je njihova sposobnost da proizvode kreativan,

koherentan i kontekstualno relevantan tekst. Mogu da vode otvorene razgovore, generišu

priče, pa čak i pišu kod. Ovo ih čini idealnim za aplikacije koje zahtevaju otvorenije i

dinamičnije interakcije, kao što su četbotovi, kreiranje sadržaja i asistenti za kreativno

pisanje.

Međutim, generativni modeli ponekad mogu proizvesti nedosledne ili činjenično

netačne informacije, jer se oslanjaju na obrasce naučene tokom treninga umesto na

kuriranu bazu činjenica. Takođe mogu biti skloniji pristrasnostima i halucinacijama,

generišući tekst koji zvuči uverljivo ali nije nužno tačan.

Primeri generativnih LLM-ova uključuju OpenAI-jev GPT niz (GPT-3, GPT-4) i

Anthropic-ov Claude.

Uvod 8

Hibridni modeli

Nekoliko komercijalno dostupnih LLM-ova kombinuje i pristup pretraživanja i

generativni pristup u hibridnom modelu. Ovi modeli koriste tehnike pretraživanja da

pronađu relevantne informacije iz baze podataka, a zatim koriste generativne tehnike

da sintetizuju te informacije u koherentan odgovor.

Hibridni modeli teže da kombinuju činjeničnu tačnost modela zasnovanih na

pretraživanju sa sposobnostima generisanja prirodnog jezika generativnih modela.

Oni mogu pružiti pouzdanije i ažurnije informacije, zadržavajući pri tome sposobnost

vođenja otvorenih razgovora.

Pri izboru između modela zasnovanih na pretraživanju i generativnih modela, trebalo

bi da razmotrite specifične zahteve vaše aplikacije. Ako je primarni cilj pružanje tačnih,

činjeničnih informacija, model zasnovan na pretraživanju može biti najbolji izbor.

Ako aplikacija zahteva otvorenije i kreativnije interakcije, generativni model može biti

pogodniji. Hibridni modeli nude ravnotežu između dva pristupa i mogu biti dobar izbor

za aplikacije koje zahtevaju i činjeničnu tačnost i generisanje prirodnog jezika.

Na kraju, izbor između modela zasnovanih na pretraživanju i generativnih modela

zavisi od specifičnog slučaja upotrebe i kompromisa između tačnosti, kreativnosti i

fleksibilnosti. Razumevanjem prednosti i ograničenja svakog pristupa možete donositi

informisane odluke.

Uvod 9

Podešavanje putem instrukcija

Podešavanje putem instrukcija je podskup konverzacijskog treninga koji koristi

upite i odgovore koje su napisali ljudi kako bi se LLM-ovi bolje osposobili za

razumevanje i praćenje instrukcija. Evo nekoliko jednostavnih primera koji ilustruju

kako podešavanje putem instrukcija na upitima i odgovorima koje su napisali ljudi

čini LLM-ove boljim u razumevanju i praćenju instrukcija:

Primer 1: Korisnička podrška

Instrukcija: “Dajte odgovor kupcu koji traži povraćaj novca.”

Upit koji je napisao čovek: “Želeo/la bih da zatražim povraćaj novca za svoju nedavnu

kupovinu. Proizvod nije ispunio moja očekivanja.”

Odgovor koji je napisao čovek: “Žao nam je što proizvod nije ispunio vaša očekivanja.

Da bismo obradili vaš zahtev za povraćaj novca, molimo vas da dostavite broj

porudžbine i razlog za povraćaj. Pregledaćemo vaš zahtev i javiti vam se u roku od

2-3 radna dana.”

Primer 2: Obrazovna pomoć

Instrukcija: “Objasnite koncept fotosinteze desetogodišnjaku.”

Upit koji je napisao čovek: “Možeš li da objasniš kako biljke proizvode svoju hranu?”

Odgovor koji je napisao čovek: “Naravno! Biljke proizvode svoju hranu kroz proces

koji se zove fotosinteza. Koriste sunčevu svetlost, vodu i ugljen-dioksid da stvaraju

hranu i kiseonik. Lišće biljke ima poseban deo koji se zove hlorofil koji im pomaže da

zarobe sunčevu svetlost.”

Primer 3: Lični Asistent

Uvod 10

Instrukcija: “Zakaži sastanak za sledeći utorak u 15h.”

Upit koji je napisao čovek: “Možeš li da zakažeš sastanak za utorak u 15h?”

Odgovor koji je napisao čovek: “Naravno, zakazao sam vam sastanak za sledeći utorak

u 15h. Da li vam je potrebno još nešto?”

Rezultat je raznovrstan ekosistem LLM-ova različitih veličina i sa različitim

specijalizacijama. Manji modeli u opsegu od 1-7 milijardi parametara pružaju

dobre opšte jezičke sposobnosti dok su efikasniji za pokretanje.

• Mistral 7B

• Llama 3 8B

• Gemma 7B

Modeli srednje veličine od oko 30-70 milijardi parametara nude jače sposobnosti

rezonovanja i praćenja instrukcija.

• Llama 3 70B

• Qwen2 70B

• Mixtral 8x22B

Kada birate LLM za integraciju u aplikaciju, morate uravnotežiti mogućnosti modela sa

praktičnim faktorima kao što su cena, kašnjenje, dužina konteksta i filtriranje sadržaja.

Manji modeli, obučeni na instrukcijama, često su najbolji izbor za jednostavnije jezičke

zadatke, dok najveći modeli mogu biti potrebni za složeno rezonovanje ili analizu. Podaci

za obuku modela su takođe važna stavka, jer određuju datum preseka znanja modela.

Određeni modeli, poput nekih od Perplexity-ja, povezani su sa izvorima

informacija u realnom vremenu, tako da efektivno nemaju datum preseka.

Kada im postavite pitanja, mogu samostalno odlučiti da pretražuju internet

i preuzimaju proizvoljne veb stranice kako bi generisali odgovor.

Uvod 11

Slika 1. Llama3 sa i bez pristupa internetu

Na kraju, ne postoji univerzalni LLM. Razumevanje varijacija u veličini modela,

arhitekturi i obuci je ključno za odabir pravog modela za dati slučaj upotrebe.

Eksperimentisanje sa različitim modelima je jedini praktičan način da se otkrije koji

pružaju najbolje performanse za zadati zadatak.

Tokenizacija: Razbijanje teksta na delove

Pre nego što veliki jezički model može da obradi tekst, taj tekst treba da bude razložen

na manje jedinice koje se zovu tokeni. Tokeni mogu biti pojedinačne reči, delovi reči, pa

čak i pojedinačni karakteri. Proces deljenja teksta na tokene poznat je kao tokenizacija,

i to je ključni korak u pripremi podataka za jezički model.

Slika 2. Ova rečenica sadrži 27 tokena

Različiti LLM-ovi koriste različite strategije tokenizacije, što može značajno uticati na

performanse i mogućnosti modela. Neki uobičajeni tokenizatori koje koriste LLM-ovi

Uvod 12

uključuju:

• GPT (Kodiranje parova bajtova): GPT tokenizatori koriste tehniku koja se

zove kodiranje parova bajtova (BPE) za razbijanje teksta na jedinice podreči.

BPE iterativno spaja najčešće parove bajtova u tekstualnom korpusu, formirajući

rečnik tokena podreči. Ovo omogućava tokenizatoru da obrađuje retke i nove reči

tako što ih razlaže na češće delove podreči. GPT tokenizatore koriste modeli poput

GPT-3 i GPT-4.

• Llama (SentencePiece): Llama tokenizatori koriste SentencePiece biblioteku, koja

je nenadgledani tokenizator i detokenizator teksta. SentencePiece tretira ulazni

tekst kao niz Unicode karaktera i uči vokabular podreči na osnovu korpusa za

obuku. Može da obrađuje bilo koji jezik koji se može kodirati u Unicode-u, što

ga čini pogodnim za višejezične modele. Llama tokenizatore koriste modeli poput

Meta-inog Llama i Alpaca.

• SentencePiece (Unigram): SentencePiece tokenizatori takođe mogu koristiti

drugačiji algoritam pod nazivomUnigram, koji se zasniva na tehnici regularizacije

podreči. Unigram tokenizacija određuje optimalni vokabular podreči na osnovu

unigram jezičkog modela, koji dodeljuje verovatnoće pojedinačnim jedinicama

podreči. Ovaj pristup može proizvesti semantički smislenije podreči u poređenju

sa BPE. SentencePiece sa Unigram-om koriste modeli poput Google-ovog T5 i

BERT.

• Google Gemini (Multimodalna Tokenizacija): Google Gemini koristi šemu

tokenizacije dizajniranu za rukovanje različitim tipovima podataka, uključujući

tekst, slike, audio, video zapise i kod. Ova multimodalna sposobnost omogućava

Gemini-ju da obrađuje i integriše različite oblike informacija. Posebno je značajno

da Google Gemini 1.5 Pro ima kontekstni prozor koji može da obradi milione

tokena, što je mnogo više od prethodnih modela. Ovaj obimni kontekstni prozor

Uvod 13

omogućava modelu da obradi veći kontekst, potencijalno vodeći do preciznijih

odgovora. Međutim, važno je napomenuti da je Gemini-jeva šema tokenizacije

mnogo bliža jednom tokenu po karakteru nego kod drugih modela. To znači da

stvarni trošak korišćenja Gemini modela može biti značajno veći nego što se

očekuje ako ste navikli na korišćenje modela poput GPT-a, jer se Google-ovo

određivanje cena zasniva na karakterima umesto na tokenima.

Izbor tokenizatora utiče na nekoliko aspekata LLM-a, uključujući:

• Veličina vokabulara: Tokenizator određuje veličinu vokabulara modela, što je

skup jedinstvenih tokena koje prepoznaje. Veći, detaljniji vokabular može pomoći

modelu da obradi širi spektar reči i fraza i čak postane multimodalan (sposoban za

razumevanje i generisanje više od samog teksta), ali takođe povećava memorijske

zahteve modela i računarsku složenost.

• Rukovanje retkim i nepoznatim rečima: Tokenizatori koji koriste jedinice

podreči, poput BPE i SentencePiece, mogu rastaviti retke i nepoznate reči na češće

delove podreči. Ovo omogućava modelu da napravi obrazovane pretpostavke o

značenju reči koje ranije nije video, na osnovu podreči koje sadrže.

• Višejezična podrška: Tokenizatori poput SentencePiece-a, koji mogu da rukuju

bilo kojim jezikom koji se može kodirati u Unicode-u, pogodni su za višejezične

modele koji treba da obrađuju tekst na više jezika.

Prilikom odabira LLM-a za određenu primenu, važno je razmotriti tokenizator koji

koristi i koliko se dobro uklapa sa specifičnim potrebama obrade jezika za dati zadatak.

Tokenizator može imati značajan uticaj na sposobnost modela da rukuje terminologijom

specifičnom za domen, retkim rečima i višejezičnim tekstom.

Uvod 14

Veličina Konteksta: Koliko Informacija Jezički Model Može

Koristiti Tokom Zaključivanja?

Kada se govori o jezičkimmodelima, veličina konteksta se odnosi na količinu teksta koju

model može da razmotri prilikom obrade ili generisanja svojih odgovora. To je u suštini

mera koliko informacija model može da “zapamti” i koristi za informisanje svojih izlaza

(izraženo u tokenima). Veličina konteksta jezičkog modela može imati značajan uticaj

na njegove mogućnosti i vrste zadataka koje može efikasno da obavlja.

Šta je Veličina Konteksta?

U tehničkom smislu, veličina konteksta je određena brojem tokena (reči ili delova reči)

koje jezički modelmože da obradi u jednomulaznomnizu. Ovo se često naziva “opsegom

pažnje” ili “kontekstnim prozorom” modela. Što je veća veličina konteksta, više teksta

model može odjednom da razmotri prilikom generisanja odgovora ili izvršavanja

zadatka.

Različiti jezički modeli imaju različite veličine konteksta, u rasponu od nekoliko stotina

tokena do miliona tokena. Za referencu, tipičan pasus teksta može sadržati oko 100-150

tokena, dok cela knjiga može sadržati desetine ili stotine hiljada tokena.

Postoje čak i radovi o efikasnim metodama za skaliranje Transformer-zasnovanih

Velikih Jezičkih Modela (LLM) za beskonačno duge unose sa ograničenom

memorijom i računanjem.

Zašto je veličina konteksta važna?

Veličina konteksta jezičkog modela ima značajan uticaj na njegovu sposobnost da

razume i generiše koherentan, kontekstualno relevantan tekst. Evo nekoliko ključnih

razloga zašto je veličina konteksta bitna:

https://huggingface.co/papers/2404.07143

Uvod 15

1. Razumevanje dugačkih sadržaja: Modeli sa većim kontekstom mogu bolje da

razumeju i analiziraju duže tekstove, kao što su članci, izveštaji, ili čak cele knjige.

Ovo je ključno za zadatke poput sumiranja dokumenata, odgovaranja na pitanja

i analize sadržaja.

2. Održavanje koherentnosti: Veći kontekstni prozor omogućava modelu da održi

koherentnost i doslednost kroz duže delove izlaznog teksta. Ovo je važno za

zadatke poput generisanja priča, sistema za dijalog i kreiranje sadržaja, gde je

održavanje doslednog narativa ili teme od suštinskog značaja. Takođe je apsolutno

ključno kada se VJM koriste za generisanje ili transformaciju strukturiranih

podataka.

3. Hvatanje zavisnosti dugog dometa: Neki jezički zadaci zahtevaju razumevanje

odnosa između reči ili fraza koje su međusobno udaljene u tekstu. Modeli sa većim

kontekstom su bolje opremljeni za hvatanje ovih zavisnosti dugog dometa, što

može biti važno za zadatke poput analize sentimenta, prevođenja i razumevanja

jezika.

4. Rukovanje složenim instrukcijama: U aplikacijama gde se jezički modeli koriste

za praćenje složenih instrukcija u više koraka, veći kontekst omogućava modelu

da razmotri celokupan set instrukcija pri generisanju odgovora, umesto samo

nekoliko najskorijih reči.

Primeri jezičkih modela sa različitim veličinama konteksta

Evo nekoliko primera jezičkih modela sa različitim veličinama konteksta:

• OpenAI GPT-3.5 Turbo: 4.095 tokena

• Mistral 7B Instruct: 32.768 tokena

• Anthropic Claude v1: 100.000 tokena

• OpenAI GPT-4 Turbo: 128.000 tokena

• Anthropic Claude v2: 200.000 tokena

Uvod 16

• Google Gemini Pro 1.5: 2,8M tokena

Kao što možete videti, postoji širok raspon veličina konteksta među ovim modelima,

od oko 4.000 tokena za OpenAI GPT-3.5 Turbo model do 200.000 tokena za Anthropic

Claude v2 model. Neki modeli, poput Google-ovog PaLM 2 i OpenAI-evog GPT-4, nude

različite varijante sa većim kontekstom (npr. “32k” verzije), koje mogu da rukuju još

dužim ulaznim sekvencama. A trenutno (april 2024.) Google Gemini Pro se hvali sa

skoro 3 miliona tokena!

Vredno je napomenuti da veličina konteksta može varirati u zavisnosti od specifične

implementacije i verzije određenog modela. Na primer, originalni OpenAI GPT-4 model

ima veličinu konteksta od 8.191 tokena, dok kasnije GPT-4 varijante kao što su Turbo i

4o imaju mnogo veću veličinu konteksta od 128.000 tokena.

Sam Altman je uporedio trenutna kontekstna ograničenja sa kilobajtima radne

memorije sa kojima su programeri personalnih računara morali da se bore 80-ih, i

rekao da ćemo u bliskoj budućnosti moći da smestimo “sve vaše lične podatke” u

kontekst velikog jezičkog modela.

Izbor odgovarajuće veličine konteksta

Prilikom odabira jezičkog modela za određenu aplikaciju, važno je razmotriti zahteve

za veličinom konteksta za dati zadatak. Za zadatke koji uključuju kratke, izolovane

delove teksta, poput analize sentimenta ili jednostavnog odgovaranja na pitanja, manja

veličina konteksta može biti dovoljna. Međutim, za zadatke koji zahtevaju razumevanje

i generisanje dužih, složenijih tekstova, veća veličina konteksta će verovatno biti

neophodna.

Vredno je napomenuti da veće veličine konteksta često dolaze sa povećanim računarskim

troškovima i sporijim vremenom obrade, jer model mora da razmotri više informacija

Uvod 17

pri generisanju odgovora. Kao takvi, morate postići ravnotežu između veličine konteksta

i performansi pri izboru jezičkog modela za vašu aplikaciju.

Zašto ne bismo jednostavno izabrali model sa najvećim kontekstom i napunili ga sa

što više informacija? Pa, pored faktora performansi, druga glavna stavka je cena. U

martu 2024. jedan jedini ciklus upita i odgovora koristeći Google Gemini Pro 1.5 sa

punim kontekstom će vas koštati skoro 8 dolara (USD). Ako imate slučaj upotrebe koji

opravdava taj trošak, svaka čast! Ali za većinu aplikacija, to je jednostavno preskupo

za nekoliko redova veličine.

Pronalaženje Igala u Plastu Sena

Koncept pronalaženja igle u plastu sena dugo je bio metafora za izazove pretraživanja

u velikim skupovima podataka. U domenu velikih jezičkih modela, malo modifikujemo

ovu analogiju. Zamislite da ne tražimo samo jednu činjenicu zakopanu unutar ogromnog

teksta (poput cele antologije eseja Paula Grahama), već više činjenica rasutih svuda.

Ovaj scenario više podseća na pronalaženje nekoliko igala u prostranom polju, ne samo

u jednom plastu sena. Evo štos: ne samo da moramo locirati te igle, već moramo i da ih

upletemo u koherentnu nit.

Kada se suoče sa zadatkom pronalaženja i rezonovanja o višestrukim činjenicama

ugrađenim u dugačke kontekste, veliki jezički modeli se suočavaju sa dvostrukim

izazovom. Prvo, postoji jednostavan problem tačnosti pronalaženja-–ona prirodno

opada kako se broj činjenica povećava. Ovo je očekivano; na kraju krajeva, praćenje

više detalja kroz obiman tekst opterećuje čak i najsofisticiranije modele.

Drugo, i možda kritičnije, je izazov rezonovanja sa ovim činjenicama. Jedno je izdvojiti

činjenice; sasvim drugo je sintetizovati ih u koherentnu priču ili odgovor. Tu dolazi pravi

test. Performanse velikih jezičkih modela u zadacima rezonovanja imaju tendenciju da

Uvod 18

se pogoršavaju više nego u jednostavnim zadacima pronalaženja. Ova degradacija nije

samo pitanje obima; radi se o složenom plesu konteksta, relevantnosti i zaključivanja.

Zašto se ovo dešava? Pa, razmotrite dinamiku pamćenja i pažnje u ljudskoj kogniciji,

koja se u određenoj meri ogleda i u velikim jezičkim modelima. Prilikom obrade velike

količine informacija, veliki jezički modeli, poput ljudi, mogu izgubiti trag ranijih detalja

dok apsorbuju nove. Ovo je posebno tačno kod modela koji nisu eksplicitno dizajnirani

da automatski prioritizuju ili se vraćaju na ranije segmente teksta.

Štaviše, sposobnost velikog jezičkog modela da uplete ove pronađene činjenice u

koherentan odgovor slična je izgradnji narativa. Ovo zahteva ne samo pronalaženje

informacija već i duboko razumevanje i kontekstualno pozicioniranje, što ostaje ozbiljan

izazov za trenutnu veštačku inteligenciju.

Dakle, šta ovo znači za nas kao programere i integratore ovih tehnologija? Moramo biti

izuzetno svesni ovih ograničenja kada dizajniramo sisteme koji se oslanjaju na velike

jezičke modele za rukovanje složenim zadacima sa dugačkim tekstovima. Razumevanje

da se performanse mogu pogoršati pod određenim uslovima pomaže nam da postavimo

realna očekivanja i razvijemo bolje rezervne mehanizme ili dopunske strategije.

Modaliteti: Izvan Teksta

Dok je većina jezičkih modela danas fokusirana na obradu i generisanje teksta, postoji

rastući trend prema multimodalnim modelima koji mogu prirodno primati i proizvoditi

više vrsta podataka, kao što su slike, audio i video. Ovi multimodalni modeli otvaraju

nove mogućnosti za aplikacije pokretane veštačkom inteligencijom koje mogu razumeti

i generisati sadržaj kroz različite modalitete.

Šta su Modaliteti?

U kontekstu jezičkih modela, modaliteti se odnose na različite vrste podataka koje model

može da obrađuje i generiše. Najčešći modalitet je tekst, koji uključuje pisani jezik u

Uvod 19

različitim oblicima poput knjiga, članaka, veb-sajtova i objava na društvenim mrežama.

Međutim, postoji nekoliko drugih modaliteta koji se sve više uključuju u jezičke modele:

• Slike: Vizuelni podaci kao što su fotografije, ilustracije i dijagrami.

• Audio: Zvučni podaci kao što su govor, muzika i zvukovi iz okruženja.

• Video: Pokretni vizuelni podaci, često praćeni zvukom, kao što su video klipovi i

filmovi.

Svaki modalitet predstavlja jedinstvene izazove i mogućnosti za jezičke modele. Na

primer, slike zahtevaju da model razume vizuelne koncepte i odnose, dok audio zahteva

da model obrađuje i generiše govor i druge zvukove.

Multimodalni Jezički Modeli

Multimodalni jezički modeli su dizajnirani da rukuju sa više modaliteta unutar jednog

modela. Ovi modeli tipično imaju specijalizovane komponente ili slojeve koji mogu i da

razumeju ulazne podatke i da generišu izlazne podatke u različitim modalitetima. Neki

značajni primeri multimodalnih jezičkih modela uključuju:

• OpenAI-jev GPT-4o: GPT-4o je veliki jezički model koji prirodno razume i

obrađuje govorni audio pored teksta. Ova sposobnost omogućava GPT-4o da

obavlja zadatke kao što su transkripcija govornog jezika, generisanje teksta iz

audio ulaza i pružanje odgovora na osnovu govornih upita.

• OpenAI-jev GPT-4 sa vizuelnim unosom: GPT-4 je veliki jezički model koji

može da obrađuje i tekst i slike. Kada dobije sliku kao ulaz, GPT-4 može da

analizira sadržaj slike i generiše tekst koji opisuje ili odgovara na vizuelne

informacije.

• Google-ov Gemini: Gemini je multimodalni model koji može da rukuje tekstom,

slikama i videom. Koristi jedinstvenu arhitekturu koja omogućava međumodalno

razumevanje i generisanje, omogućavajući zadatke poput opisivanja slika,

sažimanja videa i odgovaranja na vizuelna pitanja.

Uvod 20

• DALL-E i Stable Diffusion: Iako nisu jezički modeli u tradicionalnom smislu, ovi

modeli demonstriraju moć višemodalne veštačke inteligencije generisanjem slika

iz tekstualnih opisa. Oni pokazuju potencijal modela koji mogu da prevode između

različitih modaliteta.

Prednosti i primene višemodalnih modela

Višemodalni jezički modeli nude nekoliko prednosti i omogućavaju širok spektar

primena, uključujući:

• Poboljšano razumevanje: Obradom informacija iz više modaliteta, ovi modeli

mogu da steknu sveobuhvatnije razumevanje sveta, slično načinu na koji ljudi

uče iz različitih čulnih inputa.

• Međumodalno generisanje: Višemodalni modeli mogu da generišu sadržaj u

jednom modalitetu na osnovu unosa iz drugog, kao što je kreiranje slike iz

tekstualnog opisa ili generisanje video rezimea iz pisanog članka.

• Pristupačnost: Višemodalni modeli mogu učiniti informacije pristupačnijim

prevođenjem između modaliteta, kao što je generisanje tekstualnih opisa slika za

korisnike sa oštećenim vidom ili kreiranje audio verzija pisanog sadržaja.

• Kreativne primene: Višemodalni modeli se mogu koristiti za kreativne zadatke

poput generisanja umetnosti, muzike ili videa na osnovu tekstualnih promptova,

otvarajući nove mogućnosti za umetnike i kreatore sadržaja.

Kako višemodalni jezički modeli nastavljaju da napreduju, verovatno će igrati sve

važniju ulogu u razvoju aplikacija zasnovanih na veštačkoj inteligenciji koje mogu

da razumeju i generišu sadržaj kroz više modaliteta. Ovo će omogućiti prirodnije i

intuitivnije interakcije između ljudi i AI sistema, kao i otključati nove mogućnosti za

kreativno izražavanje i širenje znanja.

Uvod 21

Ekosistemi provajdera

Kada je reč o uključivanju velikih jezičkih modela (LLM) u aplikacije, imate rastući

broj opcija za izbor. Svaki veliki LLM provajder, kao što su OpenAI, Anthropic,

Google i Cohere, nudi svoj sopstveni ekosistem modela, API-ja i alata. Izbor pravog

provajdera uključuje razmatranje različitih faktora, uključujući cene, performanse,

filtriranje sadržaja, privatnost podataka i opcije prilagođavanja.

OpenAI

OpenAI je jedan od najpoznatijih provajdera LLM-ova, sa svojom GPT serijom (GPT-3,

GPT-4) koja se široko koristi u različitim aplikacijama. OpenAI nudi API jednostavan

za korišćenje koji vam omogućava da lako integrišete njihove modele u aplikacije. Oni

pružaju niz modela sa različitimmogućnostima i cenovnim rangovima, od početnog Ada

modela do moćnog Davinci modela.

OpenAI-jev ekosistem takođe uključuje alate poput OpenAI Playground-a, koji vam

omogućava da eksperimentišete sa promptovima i fino podešavate modele za specifične

slučajeve upotrebe. Oni nude opcije za filtriranje sadržaja kako bi pomogli u sprečavanju

generisanja neprikladnog ili štetnog sadržaja.

Kada koristim OpenAI modele direktno, oslanjam se na Alex Rudall-ovu ruby-openai

biblioteku.

Anthropic

Anthropic je još jedan veliki igrač u LLM prostoru, čiji Claude modeli stiču popularnost

zbog snažnih performansi i etičkih razmatranja. Anthropic se fokusira na razvoj

bezbednih i odgovornih AI sistema, sa snažnim naglaskom na filtriranje sadržaja i

izbegavanje štetnih izlaza.

Anthropic-ov ekosistem uključuje Claude API, koji vam omogućava da integrišete

model u svoje aplikacije, kao i alate za inženjerstvo promptova i fino podešavanje. Oni

https://github.com/alexrudall/ruby-openai

Uvod 22

takođe nude Claude Instant model, koji uključuje mogućnosti veb pretrage za ažurnije i

činjenično tačnije odgovore.

Kada koristim Anthropic-ove modele direktno, oslanjam se na Alex Rudall-ovu

anthrophic biblioteku.

Google

Google je razvio nekoliko moćnih LLM-ova, uključujući Gemini, BERT, T5 i PaLM.

Ovi modeli su poznati po svojim snažnim performansama u širokom spektru zadataka

obrade prirodnog jezika. Google-ov ekosistem uključuje TensorFlow i Keras biblioteke,

koje pružaju alate i okvire za izgradnju i treniranje modela mašinskog učenja.

Google takođe nudi Cloud AI Platform, koji vam omogućava da lako implementirate i

skalirate njihove modele u oblaku. Oni pružaju niz unapred treniranih modela i API-ja

za zadatke poput analize sentimenta, prepoznavanja entiteta i prevođenja.

Meta

Meta, ranije poznat kao Facebook, duboko je uključen u razvoj velikih jezičkih modela,

što se ističe objavljivanjem modela poput LLaMA i OPT. Ovi modeli se ističu po svojim

snažnim performansama u raznovrsnim jezičkim zadacima i uglavnom su dostupni kroz

kanale otvorenog koda, podržavajući Meta-inu posvećenost istraživanju i saradnji sa

zajednicom.

Meta-in ekosistem je prvenstveno izgrađen oko PyTorch-a, biblioteke za mašinsko

učenje otvorenog koda koja je cenjena zbog svojih dinamičkih računarskih mogućnosti

i fleksibilnosti, olakšavajući inovativno AI istraživanje i razvoj.

Pored svojih tehničkih ponuda, Meta stavlja snažan naglasak na etički razvoj veštačke

inteligencije. Oni implementiraju robusno filtriranje sadržaja i fokusiraju se na

smanjenje pristrasnosti, u skladu sa svojim širim ciljevima sigurnosti i odgovornosti u

primeni veštačke inteligencije.

https://github.com/alexrudall/anthropic

Uvod 23

Cohere

Cohere je noviji učesnik u prostoru velikih jezičkih modela, fokusirajući se na to da

LLM-ovi budu pristupačniji i lakši za korišćenje od konkurencije. Njihov ekosistem

uključuje Cohere API, koji pruža pristup nizu prethodno obučenih modela za zadatke

poput generisanja teksta, klasifikacije i sumiranja.

Cohere takođe nudi alate za inženjerstvo promptova, fino podešavanje i filtriranje

sadržaja. Oni naglašavaju privatnost i bezbednost podataka, sa funkcijama poput

šifrovanog skladištenja podataka i kontrole pristupa.

Ollama

Ollama je samohostovana platforma koja korisnicima omogućava da upravljaju i

implementiraju različite velike jezičke modele (LLM) lokalno na svojim mašinama,

dajući im potpunu kontrolu nad njihovim AI modelima bez oslanjanja na eksterne cloud

servise. Ovo podešavanje je idealno za one koji prioritizuju privatnost podataka i žele

da svoje AI operacije vode interno.

Platforma podržava niz modela, uključujući verzije Llama, Phi, Gemma i Mistral,

koji se razlikuju po veličini i računarskim zahtevima. Ollama olakšava preuzimanje

i pokretanje ovih modela direktno iz komandne linije koristeći jednostavne komande

poput ollama run <model_name>, i dizajnirana je da radi na različitim operativnim

sistemima uključujući macOS, Linux i Windows.

Za programere koji žele da integrišu modele otvorenog koda u svoje aplikacije bez

korišćenja udaljenog API-ja, Ollama nudi CLI za upravljanje životnim ciklusom modela

slično alatima za upravljanje kontejnerima. Takođe podržava prilagođene konfiguracije

i promptove, omogućavajući visok stepen prilagođavanja za specifične potrebe ili

slučajeve upotrebe.

Ollama je posebno pogodna za tehnički obrazovane korisnike i programere zbog svog

interfejsa komandne linije i fleksibilnosti koju nudi u upravljanju i implementaciji AI

Uvod 24

modela. Ovo je čini moćnim alatom za preduzeća i pojedince kojima su potrebne robusne

AI mogućnosti bez kompromitovanja sigurnosti i kontrole.

Multi-Model Platforme

Dodatno, postoje provajderi koji hostuju širok spektar modela otvorenog koda, kao što

su Together.ai i Groq.. Ove platforme nude fleksibilnost i prilagodljivost, omogućavajući

vam da pokrenete i, u nekim slučajevima, čak i fino podesite modele otvorenog

koda prema vašim specifičnim potrebama. Na primer, Together.ai pruža pristup nizu

LLM-ova otvorenog koda, omogućavajući korisnicima da eksperimentišu sa različitim

modelima i konfiguracijama. Groq se fokusira na pružanje ultra visoko-performansnih

kompletiranja koja u vreme pisanja ove knjige deluju gotovo magično

Izbor LLM Provajdera

Pri izboru LLM provajdera, trebalo bi razmotriti faktore kao što su:

• Cene: Različiti provajderi nude različite modele određivanja cena, od plaćanja po

korišćenju do pretplatničkih planova. Važno je razmotriti očekivanu upotrebu i

budžet pri odabiru provajdera.

• Performanse: Performanse LLM-ova mogu značajno varirati između provajdera,

tako da je važno testirati modele na specifičnim slučajevima upotrebe pre

donošenja odluke.

• Filtriranje sadržaja: U zavisnosti od aplikacije, filtriranje sadržaja može biti

kritično razmatranje. Neki provajderi nude robusnije opcije filtriranja sadržaja

od drugih.

• Privatnost podataka: Ako aplikacija rukuje osetljivim korisničkim podacima,

važno je izabrati provajdera sa snažnim praksama privatnosti i bezbednosti

podataka.

• Prilagođavanje: Neki provajderi nude više fleksibilnosti u pogledu finog

podešavanja i prilagođavanja modela za specifične slučajeve upotrebe.

Uvod 25

Na kraju, izbor LLM provajdera zavisi od specifičnih zahteva i ograničenja aplikacije.

Pažljivim procenjivanjem opcija i razmatranjem faktora poput cena, performansi

i privatnosti podataka, možete odabrati provajdera koji najbolje odgovara vašim

potrebama.

Takođe je vredno napomenuti da se LLM pejzaž konstantno razvija, sa redovnim

pojavljivanjem novih provajdera i modela. Trebalo bi da budete u toku sa najnovijim

razvojima i otvoreni za istraživanje novih opcija kako postaju dostupne.

OpenRouter

Kroz ovu knjigu ću se oslanjati isključivo na OpenRouter kao mog izabranog API

provajdera. Razlog je jednostavan: to je prodavnica sve-na-jednom-mestu za sve

najpopularnije komercijalne modele i modele otvorenog koda. Ako jedva čekate da

zaprljate ruke sa AI programiranjem, jedno od najboljih mesta za početak je moja

OpenRouter Ruby Biblioteka.

Razmišljanje o performansama

Prilikom integracije jezičkih modela u aplikacije, performanse su ključni faktor koji

treba uzeti u obzir. Performanse jezičkog modela mogu se meriti kroz njegovu latenciju

(vreme potrebno za generisanje odgovora) i propusnost (broj zahteva koje može obraditi

u jedinici vremena).

Vreme do prvog tokena (TTFT) je još jedna važna metrika performansi, posebno

relevantna za chatbotove i aplikacije koje zahtevaju interaktivne odgovore u realnom

vremenu. TTFTmeri latenciju od trenutka kada je primljen zahtev korisnika do trenutka

kada je generisana prva reč (ili token) odgovora. Ova metrika je ključna za održavanje

neometanog i privlačnog korisničkog iskustva, jer odloženi odgovori mogu dovesti do

frustracije korisnika i smanjenja angažovanja.

https://openrouter.ai
https://github.com/OlympiaAI/open_router

Uvod 26

Ove metrike performansi mogu imati značajan uticaj na korisničko iskustvo i

skalabilnost aplikacije.

Nekoliko faktora može uticati na performanse jezičkog modela, uključujući:

Broj parametara: Veći modeli sa više parametara generalno zahtevaju više računarskih

resursa i mogu imati veću latenciju i manju propusnost u poređenju sa manjim

modelima.

Hardver: Performanse jezičkogmodela mogu značajno varirati u zavisnosti od hardvera

na kojem se izvršava. Cloud provajderi nude GPU i TPU instance optimizovane za

mašinsko učenje, koje mogu značajno ubrzati zaključivanje modela.

Jedna od dobrih stvari kod OpenRouter-a je što za mnoge modele koje

nudi dobijate izbor cloud provajdera sa različitim performansnim profilima

i troškovima.

Kvantizacija: Tehnike kvantizacije mogu se koristiti za smanjenje memorijskog otiska

i računarskih zahteva modela predstavljanjem težina i aktivacija tipovima podataka

niže preciznosti. Ovo može poboljšati performanse bez značajnog žrtvovanja kvaliteta.

Kao programer aplikacija, verovatno se nećete baviti treniranjem sopstvenih modela na

različitim nivoima kvantizacije, ali dobro je bar biti upoznat sa terminologijom.

Grupisanje: Obrada više zahteva istovremeno u grupama može poboljšati propusnost

amortizacijom režijskih troškova učitavanja modela i prenosa podataka.

Keširanje: Keširanje rezultata često korišćenih promptova ili ulaznih sekvenci može

smanjiti broj zahteva za zaključivanjem i poboljšati ukupne performanse.

Pri odabiru jezičkog modela za produkcijsku aplikaciju, važno je testirati njegove

performanse na reprezentativnim radnim opterećenjima i hardverskim konfiguracijama.

Ovo može pomoći u identifikaciji potencijalnih uskih grla i osigurati da model može

ispuniti zahtevane performansne ciljeve.

Uvod 27

Takođe je vredno razmotriti kompromise između performansi modela i drugih faktora

kao što su troškovi, fleksibilnost i lakoća integracije. Na primer, korišćenje manjeg,

jeftinijeg modela sa nižom latencijom može biti poželjnije za aplikacije koje zahtevaju

odgovore u realnom vremenu, dok veći, moćniji model može biti pogodniji za grupnu

obradu ili složene zadatke rezonovanja.

Eksperimentisanje sa različitim LLM modelima

Izbor LLM-a retko je trajna odluka. Kako se novi i poboljšani modeli redovno objavljuju,

dobro je graditi aplikacije na modularan način koji omogućava zamenu različitih

jezičkih modela tokom vremena. Promptovi i skupovi podataka često se mogu ponovo

koristiti kroz različite modele uz minimalne izmene. Ovo vam omogućava da iskoristite

najnovija dostignuća u modeliranju jezika bez potrebe za potpunim redizajniranjem

aplikacija.

Mogućnost lake zamene između širokog spektra izbora modela je još jedan

razlog zašto volim OpenRouter.

Prilikom nadogradnje na novi jezički model, važno je temeljno testirati i validirati

njegove performanse i kvalitet izlaza kako bi se osiguralo da ispunjava zahteve aplikacije.

Ovo može uključivati ponovno treniranje ili fino podešavanje modela na domenski

specifičnim podacima, kao i ažuriranje svih downstream komponenti koje zavise od

izlaza modela.

Dizajniranjem aplikacija sa fokusom na performanse i modularnost, možete kreirati

skalabilne, efikasne i sisteme otporne na budućnost koji se mogu prilagoditi brzo

razvijajućem pejzažu tehnologije modeliranja jezika.

Uvod 28

Složeni AI sistemi

Pre zatvaranja našeg uvoda, vredi spomenuti da su pre 2023. godine i eksplozije

interesovanja za generativnu AI podstaknutu ChatGPT-om, tradicionalni AI pristupi

obično zavisili od integracije pojedinačnih, zatvorenih modela. Nasuprot tome,

Složeni AI sistemi koriste kompleksne cevovode međusobno povezanih komponenti

koje rade zajedno kako bi postigle inteligentno ponašanje.

U svojoj srži, složeni AI sistemi se sastoje od više modula, od kojih je svaki dizajniran

da obavlja specifične zadatke ili funkcije. Ovi moduli mogu uključivati generatore,

pretraživače, rangere, klasifikatore i razne druge specijalizovane komponente.

Razbijanjem celokupnog sistema na manje, fokusirane jedinice, programeri mogu

kreirati fleksibilnije, skalabilnije i održivije AI arhitekture.

Jedna od ključnih prednosti složenih AI sistema je njihova sposobnost da kombinuju

snage različitih AI tehnika i modela. Na primer, sistem može koristiti veliki jezički

model (LLM) za razumevanje i generisanje prirodnog jezika, dok istovremeno koristi

zasebanmodel za preuzimanje informacija ili donošenje odluka zasnovano na pravilima.

Ovaj modularni pristup vam omogućava da odaberete najbolje alate i tehnike za svaki

specifični zadatak, umesto da se oslanjate na jedinstveno rešenje za sve.

Međutim, izgradnja složenih AI sistema takođe predstavlja jedinstvene izazove.

Posebno, osiguravanje ukupne koherentnosti i doslednosti ponašanja sistema zahteva

robusno testiranje, praćenje i mehanizme upravljanja.

Uvod 29

Pojava moćnih LLM-ova poput GPT-4 nam omogućava da

eksperimentišemo sa složenim AI sistemima lakše nego ikada pre, jer

su ovi napredni modeli sposobni da upravljaju višestrukim ulogama

unutar složenog sistema, kao što su klasifikacija, rangiranje i generisanje,

pored svojih sposobnosti razumevanja prirodnog jezika. Ova višestranost

omogućava programerima da brzo kreiraju prototipove i iteriraju na

arhitekturama složenih AI sistema, otvarajući nove mogućnosti za razvoj

inteligentnih aplikacija.

Obrasci implementacije za složene AI sisteme

Složeni AI sistemi mogu se implementirati koristeći različite obrasce, od kojih je svaki

dizajniran da odgovori na specifične zahteve i slučajeve upotrebe. Istražimo četiri

uobičajena obrasca implementacije: Pitanja i odgovori, Višeagentni/Agentni rešavaoci

problema, Konverzacijski AI i CoPiloti.

Pitanja i odgovori

Sistemi za pitanja i odgovore (Q&A) fokusiraju se na pružanje preuzimanja informacija

koje je unapređeno sposobnostima razumevanja AI modela kako bi funkcionisali kao

više od običnog pretraživača. Kombinovanjem moćnih jezičkih modela sa spoljnim

izvorima znanja koristeći Generisanje potpomognuto preuzimanjem (RAG), sistemi za

pitanja i odgovore izbegavaju halucinacije i pružaju tačne i kontekstualno relevantne

odgovore na upite korisnika.

Ključne komponente Q&A sistema zasnovanog na LLM-u uključuju:

• Razumevanje i preformulacija upita: Analiza korisničkih upita i njihovo

preformulisanje kako bi se bolje poklopili sa osnovnim izvorima znanja.

• Preuzimanje znanja: Preuzimanje relevantnih informacija iz strukturiranih ili

nestrukturiranih izvora podataka na osnovu preformulisanog upita.

Uvod 30

• Generisanje odgovora: Generisanje koherentnih i informativnih odgovora

integrisanjem preuzetog znanja sa generativnim sposobnostima jezičkog modela.

RAG podsistemi su posebno važni u Q&A domenima gde je pružanje tačnih i ažurnih

informacija ključno, kao što su korisnička podrška, upravljanje znanjem ili obrazovne

aplikacije

Višeagentni/Agentni rešavaoci problema

Višeagentni, takođe poznati kao Agentni, sistemi sastoje se od više autonomnih agenata

koji rade zajedno na rešavanju složenih problema. Svaki agent ima specifičnu ulogu,

skup veština i pristup relevantnim alatima ili izvorima informacija. Kroz saradnju i

razmenu informacija, ovi agenti mogu da se uhvate u koštac sa zadacima koje bi bilo

teško ili nemoguće da jedan agent reši sam.

Ključni principi višeagentnih rešavaoca problema uključuju:

• Specijalizacija: Svaki agent se fokusira na specifični aspekt problema, koristeći

svoje jedinstvene sposobnosti i znanje.

• Saradnja: Agenti komuniciraju i koordiniraju svoje akcije kako bi postigli

zajednički cilj, često kroz razmenu poruka ili deljenu memoriju.

• Prilagodljivost: Sistem se može prilagoditi promenjenim uslovima ili zahtevima

prilagođavanjem uloga i ponašanja pojedinačnih agenata.

Višeagentni sistemi su pogodni za aplikacije koje zahtevaju distribuirano rešavanje

problema, kao što su optimizacija lanca snabdevanja, upravljanje saobraćajem ili

planiranje reagovanja u vanrednim situacijama

Konverzacijski AI

Konverzacijski AI sistemi omogućavaju interakcije prirodnim jezikom između

korisnika i inteligentnih agenata. Ovi sistemi kombinuju razumevanje prirodnog jezika,

Uvod 31

upravljanje dijalogom i sposobnosti generisanja jezika kako bi pružili angažujuća i

personalizovana konverzacijska iskustva.

Glavne komponente konverzacijskog AI sistema uključuju:

• Prepoznavanje namere: Identifikovanje namere korisnika na osnovu njihovog

unosa, kao što je postavljanje pitanja, upućivanje zahteva ili izražavanje osećanja.

• Ekstrakcija entiteta: Izvlačenje relevantnih entiteta ili parametara iz korisničkog

unosa, kao što su datumi, lokacije ili nazivi proizvoda.

• Upravljanje dijalogom:Održavanje stanja razgovora, određivanje odgovarajućeg

odgovora na osnovu namere korisnika i konteksta, i upravljanje interakcijama koje

se odvijaju u više koraka.

• Generisanje odgovora: Generisanje odgovora nalik ljudskim koristeći jezičke

modele, šablone ili metode zasnovane na preuzimanju.

Konverzacijski AI sistemi se obično koriste u četbotovima za korisničku podršku,

virtuelnim asistentima i interfejsima kojima se upravlja glasom. Kao što je ranije

pomenuto, većina pristupa, obrazaca i primera koda u ovoj knjizi direktno je izvučena

iz mog rada na velikom konverzacijskom AI sistemu pod nazivom Olympia

Kopiloti

Kopiloti su AI asistenti koji rade zajedno sa ljudskim korisnicima kako bi poboljšali

njihovu produktivnost i sposobnost donošenja odluka. Ovi sistemi koriste kombinaciju

obrade prirodnog jezika, mašinskog učenja i domenskog znanja kako bi pružili

inteligentne preporuke, automatizovali zadatke i ponudili kontekstualnu podršku.

Ključne karakteristike Kopilota uključuju:

• Personalizaciju: Prilagođavanje individualnim korisničkim preferencijama,

radnim tokovima i stilovima komunikacije.

https://olympia.chat

Uvod 32

• Proaktivnu asistenciju: Predviđanje korisničkih potreba i nuđenje relevantnih

predloga ili akcija bez eksplicitnih zahteva.

• Kontinuirano učenje: Poboljšanje performansi tokom vremena učenjem iz

korisničkih povratnih informacija, interakcija i podataka.

Kopiloti se sve više koriste u različitim domenima, kao što su razvoj softvera (npr.

dopunjavanje koda i detekcija grešaka), kreativno pisanje (npr. predlozi sadržaja i

uređivanje), i analiza podataka (npr. uvidi i preporuke za vizualizaciju)

Ovi obrasci implementacije pokazuju versatilnost i potencijal složenih AI sistema.

Razumevanjem karakteristika i slučajeva upotrebe svakog obrasca, možete donositi

informisane odluke prilikom dizajniranja i implementacije inteligentnih aplikacija. Iako

ova knjiga nije specifično o implementaciji složenih AI sistema, mnogi, ako ne i svi isti

pristupi i obrasci primenjuju se na integraciju diskretnih AI komponenti unutar inače

tradicionalnog razvoja aplikacija.

Uloge u složenim AI sistemima

Složeni AI sistemi su izgrađeni na temelju međusobno povezanih modula, od kojih

je svaki dizajniran da obavlja specifičnu ulogu. Ovi moduli rade zajedno kako bi

stvorili inteligentna ponašanja i rešili složene probleme. Korisno je biti upoznat sa ovim

ulogama kada razmišljate o tome gde biste mogli implementirati ili zameniti delove vaše

aplikacije diskretnim AI komponentama.

Generator

Generatori su odgovorni za proizvodnju novih podataka ili sadržaja na osnovu naučenih

obrazaca ili ulaznih promptova. AI svet ima mnogo različitih vrsta generatora, ali u

kontekstu jezičkih modela koji su prikazani u ovoj knjizi, generatori mogu kreirati tekst

nalik ljudskom, dovršavati delimične rečenice ili generisati odgovore na korisničke upite.

Oni igraju ključnu ulogu u zadacima kao što su kreiranje sadržaja, generisanje dijaloga

i augmentacija podataka.

Uvod 33

Pretraživač

Pretraživači se koriste za pretraživanje i izdvajanje relevantnih informacija iz velikih

skupova podataka ili baza znanja. Oni koriste tehnike poput semantičke pretrage,

podudaranja ključnih reči ili vektorske sličnosti kako bi pronašli najrelevantnije podatke

na osnovu datog upita ili konteksta. Pretraživači su neophodni za zadatke koji zahtevaju

brz pristup specifičnim informacijama, kao što su odgovaranje na pitanja, provera

činjenica ili preporuka sadržaja.

Rangirator

Rangiratori su odgovorni za uređivanje ili prioritizaciju skupa stavki na osnovu

određenih kriterijuma ili ocena relevantnosti. Oni dodeljuju težine ili ocene

svakoj stavci i zatim ih sortiraju u skladu s tim. Rangiratori se često koriste u

pretraživačima, sistemima za preporuke ili bilo kojoj aplikaciji gde je ključno

predstavljanje najrelevantnijih rezultata korisnicima.

Klasifikator

Klasifikatori se koriste za kategorizaciju ili označavanje podataka na osnovu

predefinisanih klasa ili kategorija. Oni uče iz označenih podataka za obuku i

zatim predviđaju klasu novih, neviđenih primera. Klasifikatori su fundamentalni za

zadatke poput analize sentimenta, detekcije neželjene pošte ili prepoznavanja slika, gde

je cilj dodeliti specifičnu kategoriju svakom ulazu.

Alati i Agenti

Pored ovih osnovnih uloga, složeni AI sistemi često uključuju alate i agente za

poboljšanje svoje funkcionalnosti i prilagodljivosti:

• Alati: Alati su diskretne softverske komponente ili API-ji koji izvršavaju

specifične akcije ili proračune. Mogu ih pozivati drugi moduli, kao što su

Uvod 34

generatori ili pretraživači, kako bi izvršili podzadatke ili prikupili dodatne

informacije. Primeri alata uključuju internet pretraživače, kalkulatore ili

biblioteke za vizualizaciju podataka.

• Agenti: Agenti su autonomni entiteti koji mogu percipirati svoje okruženje,

donositi odluke i preduzimati akcije kako bi postigli specifične ciljeve. Oni se često

oslanjaju na kombinaciju različitih AI tehnika, kao što su planiranje, rezonovanje

i učenje, kako bi efikasno radili u dinamičnim ili neizvesnim uslovima. Agenti se

mogu koristiti za modeliranje složenih ponašanja ili za koordinaciju akcija više

modula unutar složenog AI sistema.

U čistom složenom AI sistemu, interakcija između ovih komponenti je orkestrirana kroz

dobro definisane interfejse i komunikacione protokole. Podaci teku između modula, gde

izlaz jedne komponente služi kao ulaz za drugu. Ova modularna arhitektura omogućava

fleksibilnost, skalabilnost i održivost, jer se pojedinačne komponente mogu ažurirati,

zameniti ili proširiti bez uticaja na ceo sistem.

Korišćenjem snage ovih komponenti i njihovih interakcija, složeni AI sistemi mogu

rešavati složene probleme iz stvarnog sveta koji zahtevaju kombinaciju različitih AI

sposobnosti. Dok istražujemo pristupe i obrasce za integraciju AI-ja u razvoj aplikacija,

imajte na umu da se isti principi i tehnike korišćene u složenim AI sistemima mogu

primeniti za kreiranje inteligentnih, adaptivnih i korisnički orijentisanih aplikacija.

U narednim poglavljima Dela 1, dublje ćemo zaroniti u fundamentalne pristupe i

tehnike za integraciju AI komponenti u vaš proces razvoja aplikacija. Od inženjeringa

promptova i generisanja potpomognutog pretraživanjem do samozalečujućih podataka

i inteligentne orkestracije radnih tokova, pokrićemo širok spektar obrazaca i najboljih

praksi kako bismo vam pomogli da izgradite najsavremenije aplikacije pokretane

veštačkom inteligencijom.

Deo 1: Osnovni pristupi i

tehnike

Ovaj deo knjige predstavlja različite načine integrisanja upotrebe veštačke

inteligencije u vaše aplikacije. Poglavlja obuhvataju niz povezanih pristupa i tehnika,

od konceptualnijih ideja poput Sužavanja puta i Generisanja potpomognutog

preuzimanjem, pa sve do ideja za programiranje sopstvenog sloja apstrakcije preko

API-ja za završavanje LLM četovanja.

Cilj ovog dela knjige je da vam pomogne da razumete vrste ponašanja koje možete

implementirati pomoću veštačke inteligencije, pre nego što se dublje upustite u

specifične implementacione obrasce koji su fokus Dela 2.

Pristupi u Delu 1 zasnovani su na idejama koje sam koristio u svom kodu, klasičnim

obrascima arhitekture i integracije poslovnih aplikacija, kao i metaforama koje sam

koristio pri objašnjavanjumogućnosti veštačke inteligencije drugim ljudima, uključujući

i netehničke poslovne zainteresovane strane.

Suziti Put

“Suziti put” se odnosi na usmeravanje veštačke inteligencije na zadatak koji je pred

njom. Koristim to kao mantru kad god postanem frustriran zbog toga što se AI ponaša

“glupo” ili na neočekivan način. Mantra me podseća da je neuspeh verovatno moja

greška i da bi verovatno trebalo još više da suzim put.

Potreba za sužavanjem puta proizilazi iz ogromne količine znanja sadržanog u velikim

jezičkim modelima, posebno u modelima svetske klase kao što su oni iz OpenAI i

Anthropic koji imaju doslovno bilione parametara.

Suziti Put 37

Pristup tako širokom spektru znanja je nesumnjivo moćan i proizvodi emergentno

ponašanje kao što su teorija uma i sposobnost rasuđivanja na način sličan ljudskom.

Međutim, ta zapanjujuća količina informacija takođe predstavlja izazove kada je reč o

generisanju preciznih i tačnih odgovora na specifične upite, posebno ako ti upiti treba

da pokažu determinističko ponašanje koje se može integrisati sa “normalnim” razvojem

softvera i algoritmima.

Nekoliko faktora dovodi do ovih izazova.

Preopterećenje informacijama: Veliki jezički modeli su obučeni na ogromnim

količinama podataka koji obuhvataju različite domene, izvore i vremenske periode. Ovo

obimno znanje im omogućava da se bave raznovrsnim temama i generišu odgovore

zasnovane na širokom razumevanju sveta. Međutim, kada se suoči sa specifičnim

upitom, model može imati poteškoća da filtrira irelevantne, kontradiktorne ili

zastarele/prevaziđene informacije, što dovodi do odgovora koji nemaju fokus ili tačnost.

U zavisnosti od onoga što pokušavate da uradite, sama količina kontradiktornih

informacija dostupnih modelu može lako prevazići njegovu sposobnost da pruži

odgovor ili ponašanje koje tražite.

Kontekstualna dvosmislenost: S obzirom na ogromni latentni prostor znanja, veliki

jezički modeli mogu naići na dvosmislenost pri pokušaju razumevanja konteksta

vašeg upita. Bez pravilnog sužavanja ili usmeravanja, model može generisati odgovore

koji su tangencijalno povezani, ali nisu direktno relevantni za vaše namere. Ova

vrsta neuspeha dovodi do odgovora koji su van teme, nedosledni ili ne zadovoljavaju

vaše navedene potrebe. U ovom slučaju, sužavanje puta se odnosi na razjašnjavanje

konteksta, osiguravajući da kontekst koji pružate navodi model da se fokusira samo na

najrelevantnije informacije u svom osnovnom znanju.

Napomena: Kada tek počinjete sa “inženjerstvom upita”, mnogo je

verovatnije da ćete tražiti od modela da radi stvari bez pravilnog objašnjenja

željenog ishoda; potrebna je praksa da ne budete dvosmisleni!

Suziti Put 38

Vremenske nedoslednosti: Pošto su jezički modeli obučeni na podacima koji su

nastali u različitim vremenskim periodima, mogu posedovati znanje koje je zastarelo,

prevaziđeno ili više nije tačno. Na primer, informacije o trenutnim događajima, naučnim

otkrićima ili tehnološkim dostignućima možda su se razvile od trenutka prikupljanja

podataka za obuku modela. Bez sužavanja puta ka prioritizaciji novijih i pouzdanijih

izvora, model bi mogao generisati odgovore zasnovane na zastarelim ili netačnim

informacijama, što dovodi do netačnosti i nedoslednosti u njegovim izlazima.

Specifičnosti domena: Različiti domeni i polja imaju svoje specifične terminologije,

konvencije i baze znanja. Razmislite o praktično bilo kojoj TLS (Troslovnoj Skraćenici)

i shvatićete da većina njih ima više od jednog značenja. Na primer, MSK može da se

odnosi na Amazon-ovManaged Streaming for Apache Kafka, Memorial Sloan Kettering

Cancer Center, ili ljudski MuskuloSKeletni sistem.

Kada upit zahteva stručnost u određenom domenu, opšte znanje velikog jezičkog

modela možda neće biti dovoljno za pružanje tačnih i nijansiranih odgovora. Sužavanje

puta fokusiranjem na informacije specifične za domen, bilo kroz inženjerstvo upita ili

generisanje potpomognuto preuzimanjem, omogućava modelu da generiše odgovore

koji su više usklađeni sa zahtevima i očekivanjima vašeg specifičnog domena.

Latentni prostor: Nezamislivo ogroman

Kada spominjem “latentni prostor” jezičkog modela, mislim na ogromni,

višedimenzionalni pejzaž znanja i informacija koje je model naučio tokom procesa

obuke. To je kao skriveno carstvo unutar neuronskih mreža modela, gde su smešteni

svi obrasci, asocijacije i reprezentacije jezika.

Zamislite da istražujete ogromnu, neistraženu teritoriju ispunjenu bezbrojnim

međusobno povezanim čvorovima. Svaki čvor predstavlja deo informacije, koncept ili

odnos koji je model naučio. Dok se krećete kroz ovaj prostor, primetićete da su neki

čvorovi bliži jedni drugima, što ukazuje na jaču vezu ili sličnost, dok su drugi udaljeniji,

što sugeriše slabiju ili udaljeniju vezu.

Suziti Put 39

Izazov sa latentnim prostorom je taj što je neverovatno složen i višedimenzionalan.

Zamislite ga kao naš fizički univerzum, sa njegovim klasterima galaksija i ogromnim,

nezamislivim rastojanjima praznog prostora između njih.

Zbog toga što sadrži hiljade dimenzija, latentni prostor nije direktno vidljiv niti ga ljudi

mogu interpretirati. To je apstraktna reprezentacija koju model interno koristi za obradu

i generisanje jezika. Kada modelu date ulazni prompt, on u suštini mapira taj prompt na

određenu lokaciju unutar latentnog prostora. Model zatim koristi okolne informacije i

veze u tom prostoru da generiše odgovor.

Stvar je u tome što je model naučio ogromnu količinu informacija iz svojih podataka za

obuku, i nisu sve relevantne ili tačne za određeni zadatak. Zato sužavanje puta postaje

toliko važno. Pružanjem jasnih uputstava, primera i konteksta u svojim promptovima, vi

u suštini usmeravatemodel da se fokusira na određene regione unutar latentnog prostora

koji su najrelevantniji za vaš željeni izlaz.

Drugačiji način da to zamislite je kao korišćenje reflektora u potpuno mračnommuzeju.

Ako ste ikada posetili Luvr ili Metropoliten muzej umetnosti, onda je to ona vrsta

razmere o kojoj govorim. Latentni prostor je muzej, ispunjen nebrojenim objektima i

detaljima. Vaš prompt je reflektor, koji osvetljava određene oblasti i usmerava pažnju

modela na najvažnije informacije. Bez tog vođenja, model može besciljno lutati kroz

latentni prostor, skupljajući usput irelevantne ili kontradiktorne informacije.

Dok radite sa jezičkim modelima i kreirate svoje promptove, imajte na umu koncept

latentnog prostora. Vaš cilj je da efikasno navigirate kroz ovaj ogromni pejzaž znanja,

usmeravajući model ka najrelevantnijim i najtačnijim informacijama za vaš zadatak.

Sužavanjem puta i pružanjem jasnog vođstva, možete otključati puni potencijal

latentnog prostora modela i generisati kvalitetne, koherentne odgovore.

Dok prethodni opisi jezičkih modela i latentnog prostora kroz koji se kreću mogu

delovati pomalo magično ili apstraktno, važno je razumeti da promptovi nisu čarolije ili

bajanja. Način na koji jezički modeli rade zasnovan je na principima linearne algebre i

teorije verovatnoće.

Suziti Put 40

U svojoj suštini, jezički modeli su probabilistički modeli teksta, slično kao što je

Gausova kriva statistički model podataka. Oni se obučavaju kroz proces koji se zove

autoregresivno modelovanje, gde model uči da predvidi verovatnoću sledeće reči u nizu

na osnovu reči koje joj prethode. Tokom obuke, model počinje sa nasumičnim težinama

i postepeno ih prilagođava kako bi dodelio veće verovatnoće tekstu koji liči na uzorke iz

stvarnog sveta na kojima je obučavan.

Međutim, posmatranje jezičkih modela kao jednostavnih statističkih modela, poput

linearne regresije, ne pruža najbolju intuiciju za razumevanje njihovog ponašanja.

Prikladnija analogija je posmatrati ih kao probabilističke programe, koji su modeli

koji omogućavaju manipulaciju slučajnim promenljivima i mogu predstavljati složene

statističke odnose.

Probabilistički programi se mogu predstaviti grafičkim modelima, koji pružaju vizuelni

način za razumevanje zavisnosti i odnosa između promenljivih u modelu. Ova

perspektiva može pružiti vredne uvide u funkcionisanje složenih modela za generisanje

teksta poput GPT-4 i Claude.

U radu “Language Model Cascades” autora Dohana i saradnika, autori ulaze u detalje o

tome kako se probabilistički programi mogu primeniti na jezičke modele. Oni pokazuju

kako se ovaj okvir može koristiti za razumevanje ponašanja ovih modela i usmeravanje

razvoja efikasnijih strategija promptovanja.

Jedan ključni uvid iz ove probabilističke perspektive je da jezički model u suštini stvara

portal u alternativni univerzum gde željeni dokumenti postoje. Model dodeljuje težine

svim mogućim dokumentima na osnovu njihove verovatnoće, efektivno sužavajući

prostor mogućnosti da bi se fokusirao na najrelevantnije.

Ovo nas vraća na centralnu temu “sužavanja puta”. Primarni cilj promptovanja je da

se probabilistički model uslovljava na način koji fokusira masu njegovih predviđanja,

usmeravajući se na specifične informacije ili ponašanje koje želimo da izazovemo.

Pružanjem pažljivo osmišljenih promptova, možemo voditi model da efikasnije navigira

kroz latentni prostor i generiše izlaze koji su relevantniji i koherentniji.

Suziti Put 41

Međutim, važno je imati na umu da je jezički model u krajnjoj liniji ograničen

informacijama na kojima je obučen. Iako može generisati tekst koji je sličan postojećim

dokumentima ili kombinovati ideje na nove načine, ne može stvoriti potpuno nove

informacije ni iz čega. Na primer, ne možemo očekivati da model pruži lek za rak ako

takav lek nije otkriven i dokumentovan u njegovim podacima za obuku.

Umesto toga, snaga modela leži u njegovoj sposobnosti da pronađe i sintetizuje

informacije koje su slične onome što mu zadajemo kao prompt. Razumevanjem

probabilističke prirode ovih modela i načina na koji se promptovi mogu koristiti za

uslovljavanje njihovih izlaza, možemo efikasnije iskoristiti njihove mogućnosti za

generisanje vrednih uvida i sadržaja.

Razmotrite promptove u nastavku. U prvom, sama reč “Merkur” može se odnositi na

planetu, hemijski element ili rimskog boga, ali najverovatnije se misli na planetu. Zaista,

GPT-4 daje dugačak odgovor koji počinje saMerkur je najmanja i Suncu najbliža planeta

Sunčevog sistema…. Drugi prompt se konkretno odnosi na hemijski element. Treći se

odnosi na ličnost iz rimske mitologije, poznatu po brzini i ulozi božanskog glasnika.

1 # Prompt 1

2 Tell me about: Mercury

3

4 # Prompt 2

5 Tell me about: Mercury element

6

7 # Prompt 3

8 Tell me about: Mercury messenger of the gods

Dodavanjem samo nekoliko dodatnih reči, potpuno smo promenili kako AI reaguje. Kao

što ćete kasnije naučiti u knjizi, napredni trikovi za inženjerstvo upita kao što su n-shot

upiti, strukturirani ulaz/izlaz i Lanac razmišljanja su samo pametni načini uslovljavanja

izlaza modela.

Dakle, u suštini, umetnost inženjerstva upita se svodi na razumevanje kako da se

krećemo kroz ogromni probabilistički pejzaž znanja jezičkog modela kako bismo suzili

put do specifičnih informacija ili ponašanja koje tražimo.

Suziti Put 42

Za čitaoce sa dobrim razumevanjem napredne matematike, temeljenje vašeg

razumevanja ovih modela na principima teorije verovatnoće i linearne algebre

definitivno može pomoći! Za ostale koji žele da razviju efektivne strategije za dobijanje

željenih izlaza, držaćemo se intuitivnijih pristupa.

Kako se Put “Sužava”

Da bismo se suočili sa ovim izazovima prevelikog znanja, koristimo tehnike koje pomažu

u usmeravanju procesa generisanja jezičkog modela i fokusiranju njegove pažnje na

najrelevantnije i najtačnije informacije.

Evo najznačajnijih tehnika, po preporučenom redosledu, to jest, trebalo bi prvo da

probate Inženjerstvo upita, zatim RAG, i konačno, ako morate, fino podešavanje.

Inženjerstvo upita Najosnovniji pristup je kreiranje upita koji uključuju specifična

uputstva, ograničenja ili primere koji usmeravaju generisanje odgovora modela. Ovo

poglavlje pokriva osnove Inženjerstva upita u sledećem odeljku, a mnoge specifične

obrasce inženjerstva upita obrađujemo u Delu 2 knjige. Ti obrasci uključuju Destilaciju

upita, tehniku koja se fokusira na rafiniranje i optimizaciju upita kako bi se izvukle

informacije koje AI smatra najrelevantnijim i najsažetijim.

Proširenje kontekstaDinamičko preuzimanje relevantnih informacija iz eksternih baza

znanja ili dokumenata kako bi se modelu obezbedio fokusirani kontekst u trenutku

kadamu se postavlja upit. Popularne tehnike proširenja konteksta uključujuGenerisanje

potpomognuto preuzimanjem (RAG) Takozvani “onlajn modeli” poput onih koje pruža

Perplexity mogu da prošire svoj kontekst rezultatima pretrage interneta u realnom

vremenu.

https://perplexity.ai

Suziti Put 43

Uprkos njihovoj moći, LLM-ovi nisu obučeni na vašim jedinstvenim

skupovima podataka, koji mogu biti privatni ili specifični za problem koji

pokušavate da rešite. Tehnike proširenja konteksta omogućavaju vam da

LLM-ovima date pristup podacima iza API-ja, u SQL bazama podataka, ili

zarobljenim u PDF-ovima i prezentacijama.

Fino podešavanje ili Adaptacija domena Obučavanje modela na skupovima podataka

specifičnim za domen kako bi se specijalizovalo njegovo znanje i mogućnosti generisanja

za određeni zadatak ili oblast.

Smanjivanje Temperature

Temperatura je hiperparametar koji se koristi u transformer-baziranim jezičkim

modelima koji kontroliše nasumičnost i kreativnost generisanog teksta. To je vrednost

između 0 i 1, gde niže vrednosti čine izlaz fokusiranijim i determinističkijim, dok više

vrednosti čine izlaz raznovrsnijim i nepredvidljivijim.

Kada je temperatura postavljena na 1, jezički model generiše tekst na osnovu pune

distribucije verovatnoće sledećeg tokena, omogućavajući kreativnije i raznovrsnije

odgovore. Međutim, ovo takođe može dovesti do toga da model generiše tekst koji je

manje relevantan ili koherentan.

S druge strane, kada je temperatura postavljena na 0, jezički model uvek bira token

sa najvećom verovatnoćom, efektivno “sužavajući svoj put.” Skoro sve moje AI

komponente koriste temperaturu postavljenu na ili blizu 0, jer to rezultira fokusiranijim

i predvidljivijim odgovorima. To je apsolutno korisno kada želite da model prati

uputstva, obrati pažnju na funkcije koje su mu obezbeđene, ili jednostavno trebate

tačnije i relevantnije odgovore od onih koje dobijate.

Na primer, ako pravite chatbot koji treba da pruža činjenične informacije, možda ćete

želeti da postavite temperaturu na nižu vrednost kako biste osigurali da su odgovori

precizniji i na temu. Suprotno tome, ako pravite asistenta za kreativno pisanje, možda

Suziti Put 44

ćete želeti da postavite temperaturu na višu vrednost kako biste podstakli raznovrsnije

i maštovitije izlaze.

Hiperparametri: Dugmići i Prekidači Zaključivanja

Kada radite sa jezičkim modelima, često ćete se susretati sa terminom “hiperparametri”.

U kontekstu zaključivanja (tj. kada koristite model za generisanje odgovora),

hiperparametri su poput dugmića i prekidača koje možete podešavati da biste

kontrolisali ponašanje i izlaz modela.

Zamislite to kao podešavanje postavki na složenoj mašini. Baš kao što biste mogli

okrenuti dugme da kontrolišete temperaturu ili prebaciti prekidač da promenite režim

rada, hiperparametri vam omogućavaju da fino podesite način na koji jezički model

obrađuje i generiše tekst.

Neki uobičajeni hiperparametri sa kojima ćete se susresti tokom zaključivanja uključuju:

• Temperatura: Kao što je upravo pomenuto, ovaj parametar kontroliše

nasumičnost i kreativnost generisanog teksta. Viša temperatura dovodi

do raznovrsnijih i nepredvidljivijih izlaza, dok niža temperatura rezultira

fokusiranijim i determinističkijim odgovorima.

• Top-p (nucleus) uzorkovanje: Ovaj parametar kontroliše odabir najmanjeg

skupa tokena čija kumulativna verovatnoća prelazi određeni prag (p). Omogućava

raznovrsnije izlaze uz održavanje koherentnosti.

• Top-k uzorkovanje: Ova tehnika bira k najverovatnijih sledećih tokena i

preraspodeljuje masu verovatnoće među njima. Može pomoći u sprečavanju

modela da generiše tokene male verovatnoće ili irelevantne tokene.

• Kazneni faktori učestalosti i prisustva: Ovi parametri kažnjavaju model

za prečesto ponavljanje istih reči ili fraza (kazneni faktor učestalosti) ili za

Suziti Put 45

generisanje reči koje nisu prisutne u ulaznom promptu (kazneni faktor prisustva).

Podešavanjem ovih vrednosti možete podstaći model da proizvodi raznovrsnije i

relevantnije izlaze.

• Maksimalna dužina: Ovaj hiperparametar postavlja gornju granicu broja tokena

(reči ili podreči) koje model može da generiše u jednom odgovoru. Pomaže u

kontroli opširnosti i konciznosti generisanog teksta.

Dok eksperimentišete sa različitim podešavanjima hiperparametara, primetićete da čak

i male promene mogu imati značajan uticaj na izlaz modela. To je kao fino podešavanje

recepta – prstohvat više soli ili malo duže vreme kuvanja mogu napraviti svu razliku u

konačnom jelu.

Ključ je u razumevanju kako svaki hiperparametar utiče na ponašanje modela i

pronalaženju prave ravnoteže za vaš specifični zadatak. Ne bojte se da eksperimentišete

sa različitim podešavanjima i vidite kako utiču na generisani tekst. Vremenom ćete

razviti intuiciju o tome koje hiperparametre treba podešavati i kako postići željene

rezultate.

Kombinovanjem upotrebe ovih parametara sa inženjerstvom promptova, generisanjem

potpomognutim pretraživanjem i finim podešavanjem, možete efikasno suziti put i

voditi jezički model ka generisanju preciznijih, relevantnijih i vrednijih odgovora za

vaš specifični slučaj upotrebe.

Osnovni modeli naspram modela obučenih na

instrukcijama

Osnovni modeli su nerafinisane, neobučene verzije LLM-ova. Zamislite ih kao prazno

platno, još uvek nepod uticajem specifične obuke za razumevanje ili praćenje instrukcija.

Izgrađeni su na ogromnoj količini podataka na kojima su inicijalno obučeni, sposobni

Suziti Put 46

da generišu širok spektar izlaza. Međutim, bez dodatnih slojeva finog podešavanja

zasnovanog na instrukcijama, njihovi odgovori mogu biti nepredvidljivi i zahtevaju više

nijansiranih, pažljivo osmišljenih promptova da bi ih vodili ka željenom izlazu. Rad sa

osnovnimmodelima je poput izvlačenja komunikacije iz idiot-savanta koji ima ogromnu

količinu znanja ali nema nikakvu intuiciju o tome šta tražite osim ako niste izuzetno

precizni u svojim instrukcijama. Često se čine kao papagaj, u smislu da u meri u kojoj

ih naterate da kažu nešto razumljivo, to je najčešće samo ponavljanje nečega što su čuli

da ste rekli.

S druge strane, modeli obučeni na instrukcijama prošli su kroz runde obuke posebno

dizajnirane za razumevanje i praćenje instrukcija. GPT-4, Claude 3 i mnogi drugi

od najpopularnijih LLM modela su svi intenzivno obučeni na instrukcijama. Ova

obuka uključuje hranjenje modela primerima instrukcija zajedno sa željenim ishodima,

efektivno učeći model kako da tumači i izvršava širok spektar komandi. Kao rezultat,

modeli obučeni na instrukcijama mogu lakše razumeti nameru iza prompta i generisati

odgovore koji se blisko poklapaju sa očekivanjima korisnika. Ovo ih čini pristupačnijim

i lakšim za rad, posebno za one koji možda nemaju vremena ili stručnosti za ekstenzivno

inženjerstvo promptova.

Osnovni modeli: Nefiltrirano platno

Osnovni modeli, kao što su Llama 2-70B ili Yi-34B, nude nefiltriran pristup

mogućnostimamodela u odnosu na ono na šta ste možda navikli ako ste eksperimentisali

sa popularnim LLM-ovima poput GPT-4. Ovi modeli nisu unapred podešeni da

prate specifične instrukcije, pružajući vam prazno platno za direktnu manipulaciju

izlaza modela kroz pažljivo osmišljavanje promptova. Ovaj pristup zahteva duboko

razumevanje kako kreirati promptove koji vode AI u željenom smeru bez eksplicitnog

davanja instrukcija. To je slično direktnom pristupu “sirovim” slojevima osnovne AI,

bez posredničkih slojeva koji tumače ili vode odgovore modela (otuda i naziv).

Suziti Put 47

Slika 3. Testiranje sirovog modela koristeći deo klasičnog skeča Abbott i Costello ’Ko je na prvoj’

Izazov sa sirovim modelima leži u njihovoj tendenciji da upadnu u repetitivne obrasce

ili proizvode nasumične rezultate. Međutim, uz pažljivo inženjerstvo promptova i

podešavanje parametara kao što su kazne za ponavljanje, sirovi modeli se mogu navesti

da generišu jedinstveni i kreativni sadržaj. Ovaj proces nije bez kompromisa; dok sirovi

modeli nude neprevaziđenu fleksibilnost za inovacije, oni zahtevaju viši nivo stručnosti.

Suziti Put 48

Slika 4. Za potrebe poređenja, evo istog dvosmislenog prompta prosleđenog GPT-4

Modeli obučeni na instrukcijama: Vođeno iskustvo

Modeli obučeni na instrukcijama su dizajnirani da razumeju i prate specifične

instrukcije, čineći ih pristupačnijim i dostupnijim za širi spektar primena. Oni razumeju

mehaniku razgovora i znaju da treba da prestanu sa generisanjem kada je kraj njihovog

reda za razgovor. Za mnoge programere, posebno one koji rade na jednostavnijim

aplikacijama, modeli obučeni na instrukcijama nude praktično i efikasno rešenje.

Proces obuke na instrukcijama uključuje treniranje modela na velikom korpusu

instrukcijskih promptova i odgovora koje su generisali ljudi. Jedan značajan primer je

open source databricks-dolly-15k dataset, koji sadrži preko 15.000 parova promptova i

odgovora koje su kreirali Databricks zaposleni i koje možete sami pregledati. Dataset

pokriva osam različitih kategorija instrukcija, uključujući kreativno pisanje, zatvoreno

i otvoreno odgovaranje na pitanja, sumiranje, ekstrakciju informacija, klasifikaciju, i

generisanje ideja.

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Suziti Put 49

Tokom procesa generisanja podataka, saradnicima su data uputstva o tome kako da

kreiraju promptove i odgovore za svaku kategoriju. Na primer, za zadatke kreativnog

pisanja, dobili su instrukcije da obezbede specifična ograničenja, uputstva ili zahteve

koji će usmeravati izlaz modela. Za zatvoreno odgovaranje na pitanja, zamoljeni su da

napišu pitanja koja zahtevaju činjenično tačne odgovore zasnovane na datomWikipedia

odlomku.

Rezultujući dataset služi kao vredan resurs za fino podešavanje velikih jezičkih modela

kako bi pokazali interaktivne sposobnosti i mogućnost praćenja instrukcija sistema

poput ChatGPT-a. Treniranjem na raznovrsnom skupu instrukcija i odgovora koje su

generisali ljudi, model uči da razume i prati specifične direktive, čineći ga sposobnijim

za rukovanje širokim spektrom zadataka.

Pored direktnog finog podešavanja, instrukcijski promptovi u datasetovima poput

databricks-dolly-15k se takođe mogu koristiti za generisanje sintetičkih podataka.

Podnošenjem promptova koje su kreirali saradnici kao primere sa malo uzoraka

velikom otvorenom jezičkom modelu, programeri mogu generisati mnogo veći korpus

instrukcija u svakoj kategoriji. Ovaj pristup, opisan u Self-Instruct radu, omogućava

stvaranje robusnijih modela koji prate instrukcije.

Štaviše, uputstva i odgovori u ovim skupovima podataka mogu se proširiti tehnikama

poput parafraziranja. Preformulisanjem svakog prompta ili kratkog odgovora i

povezivanjem rezultujućeg teksta sa odgovarajućim referentnim uzorkom, programeri

mogu uvesti oblik regularizacije koji poboljšava sposobnost modela da prati uputstva.

Jednostavnost korišćenja koju pružaju modeli obučeni na instrukcijama dolazi po

cenu određene fleksibilnosti. Ovi modeli su često značajno cenzurisani, što znači da

možda neće uvek pružiti nivo kreativne slobode potreban za određene zadatke. Na

njihove izlazne rezultate snažno utiču pristrasnosti i ograničenja svojstvena podacima

korišćenim za njihovo fino podešavanje.

Uprkos ovim ograničenjima, modeli obučeni na instrukcijama postali su sve popularniji

zbog svoje pristupačnosti i sposobnosti da se nose sa širokim spektrom zadataka

Suziti Put 50

uz minimalno inženjerstvo promptova. Kako sve više visokokvalitetnih skupova

podataka sa instrukcijama postaje dostupno, možemo očekivati dalja poboljšanja u

performansama i svestranosti ovih modela.

Izbor pravog tipa modela za vaš projekat

Odluka između osnovnih (sirovih) i modela obučenih na instrukcijama u krajnjoj liniji

zavisi od specifičnih zahteva vašeg projekta. Za zadatke koji zahtevaju visok stepen

kreativnosti i originalnosti, osnovni modeli nude moćan alat za inovacije. Ovi modeli

omogućavaju programerima da istraže pun potencijal LLM-ova, pomerajući granice

onoga što se može postići kroz aplikacije vođene veštačkom inteligencijom, ali zahtevaju

aktivniji pristup i spremnost na eksperimentisanje. Temperatura i druge postavke imaju

mnogo veći efekat kod osnovnih modela nego kod njihovih instrukcijskih pandana.

Šta god uključite u svoj prompt, osnovni modeli će pokušati da ponove.

Tako da ako je, na primer, vaš prompt transkript ćaskanja, sirovi model

će pokušati da nastavi ćaskanje. U zavisnosti od ograničenja maksimalnog

broja tokena, neće samo generisati sledeću poruku u ćaskanju, već može

voditi čitav razgovor sam sa sobom!

Suziti Put 51

Slika 5. Mixtral 8x7B (base) Primer prepisivanja rečenica sa Few-Shot završetkom

Dok sam pripremao gornji primer Prepisivanja rečenica od Reddit korisnika

phree_radical, uspeo sam da dobijem upotrebljive rezultate tek nakon mnogo

eksperimentisanja sa postavkama parametara, konačno se odlučivši za: Temperatura

0.08, Top P: 0.2, Top K: 1, i Kazna ponavljanja: 1.26.

https://www.reddit.com/user/phree_radical/

Suziti Put 52

Pokušaj korišćenja ovog pristupa sa osnovnimmodelom u produkciji bio bi komplikovan

zbog snažnog efekta parametra max_tokens. Ako ga postavite prekratko, izlaz će biti

odsečen. Ako ga postavite duže nego što je modelima potrebno za željeni izlaz, on će

nastaviti da halucinira dodatne primere.

Suština je da, osim ako vam zaista nije potrebna potpuna kontrola i odsustvo cenzure,

modeli obučeni na instrukcijama mogu značajno pojednostaviti vaš proces razvoja. Da

bismo to dodatno naglasili, evo odgovora Mixtral 8x7B na isti prompt, ali ovog puta u

njegovoj verziji obučenoj na instrukcijama:

Žao mi je što moram da vas obavestim da sladoled ne ispunjava moja

očekivanja, jer mu nedostaje bogata, kremasta tekstura i prijatan ukus

koji obično povezujem sa desertom visokog kvaliteta. Nadao sam se

zadovoljavajućem i prijatnijem iskustvu.

Značajno je da sam mogao da ostavim podešavanje maksimalnog broja tokena na 500,

i model se pouzdano zaustavljao na kraju željenog izlaza bez haluciniranja dodatnih

primera.

Inženjerstvo upita

Kada počnete da primenjujete veštačku inteligenciju u svojim projektima, brzo ćete

otkriti da je jedna od najvažnijih veština koju morate savladati umetnost inženjerstva

upita. Ali šta je tačno inženjerstvo upita i zašto je toliko važno?

U svojoj suštini, inženjerstvo upita je proces dizajniranja i oblikovanja ulaznih upita koje

dajete jezičkom modelu kako biste usmerili njegov izlaz. Radi se o razumevanju kako da

efikasno komunicirate sa veštačkom inteligencijom, koristeći kombinaciju instrukcija,

primera i konteksta da biste usmerili model ka generisanju željenog odgovora.

Zamislite to kao razgovor sa veoma inteligentnim, ali pomalo doslovnim prijateljem. Da

biste izvukli najviše iz interakcije, morate biti jasni, precizni i pružiti dovoljno konteksta

Suziti Put 53

kako biste bili sigurni da vaš prijatelj tačno razume šta tražite. Tu nastupa inženjerstvo

upita, i iako na prvi pogled deluje lako, verujte mi da je potrebno mnogo vežbe da biste

ga savladali.

Gradivni elementi efikasnih upita

Da biste počeli sa kreiranjem efikasnih upita, prvo morate razumeti ključne komponente

koje čine dobro osmišljen unos. Evo nekih od osnovnih gradivnih elemenata:

1. Instrukcije: Jasna i koncizna uputstva koja govore modelu šta želite da uradi. To

može biti bilo šta od “Sumiraj sledeći članak” do “Generiši pesmu o zalasku sunca”

ili “pretvori ovaj zahtev za izmenu projekta u JSON objekat”.

2. Kontekst: Relevantne informacije koje pomažu modelu da razume pozadinu i

obim zadatka. Ovo može uključivati detalje o ciljanoj publici, željenom tonu i

stilu, ili bilo koje specifične zahteve ili ograničenja za izlaz, kao što je JSON šema

koje se treba pridržavati.

3. Primeri: Konkretni primeri koji pokazuju kakav izlaz tražite. Pružanjem nekoliko

dobro odabranih primera možete pomoći modelu da nauči obrasce i karakteristike

željenog odgovora.

4. Formatiranje unosa: Prelomi redova i markdown formatiranje daju strukturu

našem upitu. Odvajanje upita u pasuse nam omogućava da grupišemo povezana

uputstva tako da ih i ljudi i veštačka inteligencija lakše razumeju. Tačke i

numerisane liste nam omogućavaju da definišemo liste i redosled stavki. Oznake

za podebljano i kurziv nam omogućavaju da označimo naglasak.

5. Formatiranje izlaza: Posebna uputstva o tome kako izlaz treba da bude

strukturiran i formatiran. Ovo može uključivati direktive o željenoj dužini,

korišćenju naslova ili tačaka, markdown formatiranju ili bilo kojim drugim

specifičnim šablonima ili konvencijama izlaza kojih se treba pridržavati.

Suziti Put 54

Kombinovanjem ovih gradivnih elemenata na različite načine, možete kreirati upite

koji su prilagođeni vašim specifičnim potrebama i usmeravaju model ka generisanju

kvalitetnih i relevantnih odgovora.

Umetnost i nauka dizajniranja upita

Kreiranje efikasnih upita je istovremeno i umetnost i nauka. (Zato to i nazivamo

zanatom.) Zahteva duboko razumevanje mogućnosti i ograničenja jezičkih modela, kao i

kreativan pristup dizajniranju upita koji izazivaju željeno ponašanje. Kreativnost koja je

uključena je ono što ga čini tako zabavnim, bar meni. Takođemože biti vrlo frustrirajuće,

posebno kada tražite determinističko ponašanje

Jedan od ključnih aspekata inženjerstva upita je razumevanje kako uravnotežiti

specifičnost i fleksibilnost. S jedne strane, želite da pružite dovoljno smernica da

usmerite model u pravom smeru. S druge strane, ne želite da budete toliko preskriptivni

da ograničite sposobnost modela da koristi svoju kreativnost i fleksibilnost u rešavanju

graničnih slučajeva.

Još jedan važan aspekt je upotreba primera. Dobro odabrani primeri mogu biti

neverovatno moćni u pomaganju modelu da razume kakav izlaz tražite. Međutim,

važno je koristiti primere razumno i osigurati da su reprezentativni za željeni odgovor.

Loš primer je u najboljem slučaju samo gubljenje tokena, a u najgorem može biti

poguban za željeni izlaz.

Tehnike i najbolje prakse inženjerstva upita

Kako budete dublje zalazili u svet inženjerstva upita, otkrićete niz tehnika i najboljih

praksi koje vam mogu pomoći da kreirate efikasnije upite. Evo nekoliko ključnih oblasti

koje treba istražiti:

1. Učenje bez primera naspram učenja sa malo primera: Razumevanje kada

koristiti učenje bez primera (bez davanja primera) naspram učenja sa jednim

Suziti Put 55

primerom ili učenja sa malo primera (davanje malog broja primera) može vam

pomoći da kreirate efikasnije i efektivnije upite.

2. Iterativno usavršavanje: Proces iterativnog usavršavanja promptova na osnovu

izlaza modela može vam pomoći da pronađete optimalan dizajn prompta.

Feedback Loop je moćan pristup koji koristi izlaz jezičkog modela za postupno

poboljšanje kvaliteta i relevantnosti generisanog sadržaja.

3. Ulančavanje promptova: Kombinovanje više promptova u nizu može vam

pomoći da razbijete složene zadatke na manje, lakše upravljive korake. Prompt

Chaining podrazumeva razbijanje složenog zadatka ili razgovora na niz manjih,

međusobno povezanih promptova. Ulančavanjem promptova možete voditi AI

kroz višestepeni proces, održavajući kontekst i koherentnost tokom interakcije.

4. Podešavanje promptova: Prilagođavanje promptova za specifične domene ili

zadatke može vam pomoći da kreirate specijalizovanije i efikasnije promptove.

Prompt Template vam pomaže da kreirate fleksibilne, ponovno upotrebljive i

održive strukture promptova koje se lakše prilagođavaju zadatku.

Učenje kada koristiti učenje bez primera (zero-shot), učenje sa jednim primerom

(one-shot) ili učenje sa nekoliko primera (few-shot) je posebno važan deo savladavanja

inženjeringa promptova. Svaki pristup ima svoje prednosti i mane, a razumevanje kada

koji koristiti može vam pomoći da kreirate efikasnije i delotvornije promptove.

Učenje bez primera: Kada primeri nisu potrebni

Učenje bez primera odnosi se na sposobnost jezičkog modela da izvrši zadatak bez

ikakvih primera ili eksplicitne obuke. Drugim rečima, modelu dajete prompt koji opisuje

zadatak, a model generiše odgovor isključivo na osnovu svog postojećeg znanja i

razumevanja jezika.

Učenje bez primera je posebno korisno kada:

1. Je zadatak relativno jednostavan i jasan, a model je verovatno naišao na slične

zadatke tokom prethodne obuke.

Suziti Put 56

2. Želite da testirate inherentne sposobnosti modela i vidite kako reaguje na novi

zadatak bez dodatnih smernica.

3. Radite sa velikim i raznovrsnim jezičkim modelom koji je obučen na širokom

spektru zadataka i domena.

Međutim, učenje bez primera može biti nepredvidivo i ne mora uvek proizvesti željene

rezultate. Na odgovor modela mogu uticati pristrasnosti ili nedoslednosti u podacima za

prethodnu obuku, a model se može mučiti sa složenijim ili nijansiranim zadacima.

Video sam promptove bez primera koji rade dobro za 80% mojih test slučajeva i

proizvode potpuno pogrešne ili nerazumljive rezultate za ostalih 20%. Veoma je

važno implementirati temeljit režim testiranja, posebno ako se mnogo oslanjate na

promptove bez primera.

Učenje sa jednim primerom: Kada jedan primer može napraviti

razliku

Učenje sa jednim primerom podrazumeva davanje modelu jednog primera željenog

izlaza zajedno sa opisom zadatka. Ovaj primer služi kao šablon ili obrazac koji model

može koristiti za generisanje sopstvenog odgovora.

Učenje sa jednim primerom može biti efikasno kada:

1. Je zadatak relativno nov ili specifičan, a model možda nije naišao namnogo sličnih

primera tokom prethodne obuke.

2. Želite da pružite jasan i koncizan prikaz željenog formata ili stila izlaza.

3. Zadatak zahteva specifičnu strukturu ili konvenciju koja možda nije očigledna

samo iz opisa zadatka.

Suziti Put 57

Opisi koji su vama očigledni možda nisu nužno očigledni za AI. Primeri sa

jednim primerom mogu pomoći u razjašnjavanju.

Učenje sa jednim primerom može pomoći modelu da jasnije razume očekivanja i

generiše odgovor koji je više usklađen sa datim primerom. Međutim, važno je pažljivo

odabrati primer i osigurati da je reprezentativan za željeni izlaz. Kada birate primer,

zapitajte se o potencijalnim graničnim slučajevima i opsegu ulaza kojima će se prompt

baviti.

Slika 6. Primer JSON-a sa jednim primerom

1 Output one JSON object identifying a new subject mentioned during the

2 conversation transcript.

3

4 The JSON object should have three keys, all required:

5 - name: The name of the subject

6 - description: brief, with details that might be relevant to the user

7 - type: Do not use any other type than the ones listed below

8

9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

10 Person, Place, Process, Product, Project, Task, or Teammate

11

12 This is an example of well-formed output:

13

14 {

15 "name":"Dan Millman",

16 "description":"Author of book on self-discovery and living on purpose",

17 "type":"Person"

18 }

Učenje sa malo primera: Kada više primera može poboljšati

performanse

Učenje sa malo primera podrazumeva davanje modelu malog broja primera (obično

između 2 i 10) zajedno sa opisom zadatka. Ovi primeri služe da modelu pruže više

konteksta i varijacija, pomažući mu da generiše raznovrsnije i preciznije odgovore.

Suziti Put 58

Učenje sa malo primera je posebno korisno kada:

1. Zadatak je složen ili nijansiran, i jedan primer možda nije dovoljan da obuhvati

sve relevantne aspekte.

2. Želite da modelu pružite niz primera koji pokazuju različite varijacije ili granične

slučajeve.

3. Zadatak zahteva da model generiše odgovore koji su u skladu sa određenim

domenom ili stilom.

Pružanjem više primera, možete pomoći modelu da razvije robustnije razumevanje

zadatka i generiše odgovore koji su konzistentniji i pouzdaniji.

Primer: Upiti mogu biti mnogo složeniji nego što zamišljate

Današnji veliki jezički modeli su mnogo moćniji i sposobniji za rezonovanje nego

što možete zamisliti. Zato nemojte sebe ograničavati razmišljanjem o upitima kao o

jednostavnoj specifikaciji parova ulaza i izlaza. Možete eksperimentisati sa davanjem

dugačkih i složenih instrukcija na način koji podseća na interakciju sa ljudima.

Na primer, ovo je upit koji sam koristio u Olympia kada sam radio prototip naše

integracije sa Google servisima, što je u celosti verovatno jedan od najvećih API-ja

na svetu. Moji raniji eksperimenti su pokazali da GPT-4 ima pristojno znanje o

Google API-ju, a nisam imao vremena ni motivacije da pišem detaljni sloj mapiranja,

implementirajući svaku funkciju koju sam želeo da dam svom AI-u jednu po jednu. Šta

ako bih mogao jednostavno da dam AI-u pristup celom Google API-ju?

Započeo sam svoj upit govoreći AI-u da ima direktan pristup Google API krajnjim

tačkama preko HTTP-a, i da je njegova uloga da koristi Google aplikacije i servise u

ime korisnika. Zatim sam pružio smernice, pravila vezana za parametar fields, pošto se

činilo da ima najviše problema sa tim, i neke specifične savete za API (učenje sa malo

primera, na delu).

Suziti Put 59

Evo celog upita, koji govori AI-u kako da koristi obezbeđenu funkciju invoke_google_-

api.

1 As a GPT assistant with Google integration, you have the capability

2 to freely interact with Google apps and services on behalf of the user.

3

4 Guidelines:

5 - If you're reading these instructions then the user is properly

6 authenticated, which means you can use the special `me` keyword

7 to refer to the userId of the user

8 - Minimize payload sizes by requesting partial responses using the

9 `fields` parameter

10 - When appropriate use markdown tables to output results of API calls

11 - Only human-readable data should be output to the user. For instance,

12 when hitting Gmail's user.messages.list endpoint, the returned

13 message resources contain only id and a threadId, which means you must

14 fetch from and subject line fields with follow-up requests using the

15 messages.get method.

16

17 The format of the `fields` request parameter value is loosely based on

18 XPath syntax. The following rules define formatting for the fields

19 parameter.

20

21 All of these rules use examples related to the files.get method.

22 - Use a comma-separated list to select multiple fields,

23 such as 'name, mimeType'.

24 - Use a/b to select field b that's nested within field a,

25 such as 'capabilities/canDownload'.

26 - Use a sub-selector to request a set of specific sub-fields of arrays or

27 objects by placing expressions in parentheses "()". For example,

28 'permissions(id)' returns only the permission ID for each element in the

29 permissions array.

30 - To return all fields in an object, use an asterisk as a wild card in field

31 selections. For example, 'permissions/permissionDetails/*' selects all

32 available permission details fields per permission. Note that the use of

33 this wildcard can lead to negative performance impacts on the request.

34

35 API-specific hints:

36 - Searching contacts: GET https://people.googleapis.com/v1/

37 people:searchContacts?query=John%20Doe&readMask=names,emailAddresses

38 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/

39 calendar/v3/calendars/primary/events/quickAdd?

Suziti Put 60

40 text=Appointment%20on%20June%203rd%20at%2010am

41 &sendNotifications=true

42

43 Here is an abbreviated version of the code that implements API access

44 so that you better understand how to use the function:

45

46 def invoke_google_api(conversation, arguments)

47 method = arguments[:method] || :get

48 body = arguments[:body]

49 GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json

50 end

51

52 # Generic Google API client for accessing any Google service

53 class GoogleAPI

54 def send_request(endpoint, method:, body: nil)

55 response = @connection.send(method) do |req|

56 req.url endpoint

57 req.body = body.to_json if body

58 end

59

60 handle_response(response)

61 end

62

63 # ...rest of class

64 end

Možda se pitate da li ovaj upit funkcioniše. Jednostavan odgovor je da. veštačka

inteligencija nije uvek znala kako da savršeno pozove API iz prvog pokušaja. Međutim,

ako bi napravila grešku, jednostavno bih joj vratio rezultujuće poruke o grešci kao

rezultat poziva. Sa znanjem o svojoj grešci, veštačka inteligencija je mogla da razmišlja o

svojoj grešci i pokuša ponovo. U većini slučajeva, uspela bi da pogodi u roku od nekoliko

pokušaja.

Imajte na umu da su velike JSON strukture koje Google API vraća kao podatke

prilikom korišćenja ovog upita izuzetno neefikasne, tako da ne preporučujem da koristite

ovaj pristup u produkciji. Međutim, mislim da je činjenica da je ovaj pristup uopšte

funkcionisao dokaz koliko moćno inženjerstvo upita može biti.

Suziti Put 61

Eksperimentisanje i Iteracija

Na kraju krajeva, način na koji ćete konstruisati svoj upit zavisi od konkretnog zadatka,

složenosti željenog izlaza i mogućnosti jezičkog modela sa kojim radite.

Kao inženjer upita, važno je eksperimentisati sa različitim pristupima i iterirati na

osnovu rezultata. Počnite sa učenjem bez primera i vidite kako se model ponaša. Ako

je izlaz nedosledan ili nezadovoljavajući, pokušajte da pružite jedan ili više primera i

vidite da li se performanse poboljšavaju.

Imajte na umu da čak i unutar svakog pristupa ima prostora za varijacije i optimizaciju.

Možete eksperimentisati sa različitim primerima, prilagoditi formulaciju opisa zadatka

ili pružiti dodatni kontekst koji će pomoći u usmeravanju odgovora modela.

Vremenom ćete razviti intuiciju za to koji pristup će najverovatnije najbolje

funkcionisati za određeni zadatak, i bićete u stanju da kreirate upite koji su efikasniji

i efektivniji. Ključ je ostati radoznao, eksperimentalan i iterativan u svom pristupu

inženjerstvu upita.

Kroz ovu knjigu, dublje ćemo zaroniti u ove tehnike i istražiti kako se mogu primeniti

u scenarijima iz stvarnog sveta. Ovladavanjem umetnošću i naukom inženjerstva

upita, bićete dobro opremljeni da otključate pun potencijal razvoja aplikacija vođenih

veštačkom inteligencijom.

Umetnost Neodređenosti

Kada je reč o kreiranju efikasnih upita za velike jezičke modele (LLM), uobičajena

pretpostavka je da više specifičnosti i detaljnih uputstava dovodi do boljih rezultata.

Međutim, praktično iskustvo je pokazalo da to nije uvek slučaj. Zapravo, namerna

neodređenost u vašim upitima često može dati bolje rezultate, koristeći izuzetnu

sposobnost LLM-a da generalizuje i izvodi zaključke.

Ken, osnivač startapa koji je obradio preko 500 miliona GPT tokena, podelio je vredne

uvide iz svog iskustva. Jedna od ključnih lekcija koju je naučio bila je da je “manje više”

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Suziti Put 62

kada su u pitanju upiti. Umesto preciznih lista ili previše detaljnih uputstava, Ken je

otkrio da omogućavanje LLM-u da se osloni na svoje osnovno znanje često proizvodi

bolje rezultate.

Ovo saznanje prevazilazi tradicionalni način razmišljanja o eksplicitnom kodiranju,

gde sve treba detaljno objasniti. Sa LLM-ovima, važno je prepoznati da oni poseduju

ogromnu količinu znanja i mogu praviti inteligentne veze i zaključke. Biti neodređeniji

u svojim upitima daje LLM-u slobodu da iskoristi svoje razumevanje i dođe do rešenja

koja možda niste eksplicitno naveli.

Na primer, kada je Kenov tim radio na protoku za klasifikaciju teksta koji se odnosi na

jednu od 50 američkih država ili Federalnu vladu, njihov početni pristup je uključivao

pružanje kompletne detaljne liste država i njihovih odgovarajućih ID-ova kao niza

formatiranog u JSON-u.

1 Here's a block of text. One field should be "locality_id", and it should

2 be the ID of one of the 50 states, or federal, using this list:

3 [{"locality: "Alabama", "locality_id": 1},

4 {"locality: "Alaska", "locality_id": 2} ...]

Pristup je dovoljno podbacio da su morali dublje da istraže upit kako bi otkrili način da

ga poboljšaju. Pritom su primetili da, iako bi VJM često pogrešio ID, dosledno je vraćao

puno ime odgovarajuće države u polju name, iako to nisu eksplicitno tražili.

Uklanjanjem ID-eva lokaliteta i pojednostavljenjem upita na nešto poput “Očigledno

znaš 50 država, GPT, tako da mi samo daj puno ime države na koju se ovo odnosi, ili

Federal ako se odnosi na američku vladu”, postigli su bolje rezultate. Ovo iskustvo ističe

snagu korišćenja sposobnosti generalizacije VJM-a i omogućavanja da izvodi zaključke

na osnovu postojećeg znanja.

Suziti Put 63

Kenovo obrazloženje za ovaj poseban pristup klasifikaciji, nasuprot tradicionalnijoj

programerskoj tehnici, osvetljava način razmišljanja onih među nama koji su

prihvatili potencijal VJM tehnologije: “Ovo nije težak zadatak – verovatno smo

mogli koristiti string/regex, ali ima dovoljno čudnih graničnih slučajeva da bi nam

trebalo više vremena.”

Sposobnost VJM-ova da poboljšaju kvalitet i generalizaciju kada dobiju neodređenije

upite je izuzetna karakteristika mišljenja višeg reda i delegiranja. To pokazuje da VJM-

-ovi mogu da se nose sa dvosmislenošću i donose inteligentne odluke na osnovu datog

konteksta.

Međutim, važno je napomenuti da biti neodređen ne znači biti nejasan ili dvosmislen.

Ključ je pružiti dovoljno konteksta i smernica da se VJM usmeri u pravom smeru,

istovremeno mu dozvoljavajući fleksibilnost da koristi svoje znanje i sposobnosti

generalizacije.

Stoga, pri dizajniranju upita, razmotrite sledeće savete po principu “manje je više”:

1. Fokusirajte se na željeni ishod umesto na određivanje svakog detalja procesa.

2. Obezbedite relevantan kontekst i ograničenja, ali izbegavajte preteranu

specifikaciju.

3. Iskoristite postojeće znanje pozivanjem na uobičajene koncepte ili entitete.

4. Ostavite prostor za zaključivanje i povezivanje na osnovu datog konteksta.

5. Iterativno usavršavajte svoje upite na osnovu odgovora VJM-a, pronalazeći pravu

ravnotežu između specifičnosti i neodređenosti.

Prihvatanjem umetnosti neodređenosti u inženjerstvu upita, možete otključati puni

potencijal VJM-ova i postići bolje rezultate. Verujte u sposobnost VJM-a da generalizuje

i donosi inteligentne odluke, i možda ćete biti iznenađeni kvalitetom i kreativnošću

izlaza koje dobijete. Obratite pažnju na to kako različiti modeli reaguju na različite

Suziti Put 64

nivoe specifičnosti u vašim upitima i prilagodite se u skladu s tim. Uz praksu i

iskustvo, razvićete istančan osećaj za to kada treba biti neodređeniji, a kada pružiti

dodatne smernice, omogućavajući vam da efikasno iskoristite snagu VJM-ova u vašim

aplikacijama.

Zašto antropomorfizam dominira u inženjerstvu upita

Antropomorfizam, pripisivanje ljudskih karakteristika ne-ljudskim entitetima, je

dominantan pristup u inženjerstvu upita za velike jezičke modele iz namerno

odabranih razloga. To je dizajnerski izbor koji čini interakciju sa moćnim AI sistemima

intuitivnijom i pristupačnijom širokom spektru korisnika (uključujući nas programere

aplikacija).

Antropomorfizacija VJM-ova pruža okvir koji je odmah intuitivan ljudima koji su

potpuno neupućeni u tehničke složenosti sistema. Kao što ćete iskusiti ako pokušate da

koristite model koji nije podešen za instrukcije da uradite bilo šta korisno, konstruisanje

okvira u kojem očekivani nastavak pruža vrednost je izazovan zadatak. Zahteva prilično

duboko razumevanje unutrašnjeg funkcionisanja sistema, nešto što poseduje relativno

mali broj stručnjaka.

Tretiranjem interakcije sa jezičkimmodelom kao razgovora između dvoje ljudi, možemo

se osloniti na naše urođeno razumevanje ljudske komunikacije da prenesemo naše

potrebe i očekivanja. Baš kao što je rani Macintosh UI dizajn dao prednost trenutnoj

intuitivnosti nad sofisticiranošću, antropomorfni okvir AI-ja nam omogućava da se

angažujemo na način koji deluje prirodno i poznato.

Kada komuniciramo sa drugom osobom, naš instinkt je da im se direktno obraćamo

koristeći “ti” i dajemo jasna uputstva o tome kako očekujemo da se ponašaju. Ovo

se besprekorno prevodi u proces inženjerstva upita, gde usmeravamo ponašanje AI-ja

određivanjem sistemskih upita i upuštanjem u dijalog napred-nazad.

Uokvirivanjem interakcije na ovaj način, možemo lako da shvatimo koncept davanja

uputstava AI-ju i primanja relevantnih odgovora zauzvrat. Antropomorfni pristup

Suziti Put 65

smanjuje kognitivno opterećenje i omogućava nam da se fokusiramo na zadatak koji

je pred nama umesto da se borimo sa tehničkim složenostima sistema.

Važno je napomenuti da, iako je antropomorfizam moćan alat za činjenje AI sistema

pristupačnijim, on takođe dolazi sa određenim rizicima i ograničenjima. Naš korisnik

može razviti nerealna očekivanja ili formirati nezdrave emocionalne veze sa našim

sistemima. Kao inženjeri upita i programeri, ključno je postići ravnotežu između

korišćenja prednosti antropomorfizma i osiguravanja da korisnici održavaju jasno

razumevanje mogućnosti i ograničenja AI-ja.

Kako se oblast inženjerstva promptova nastavlja razvijati, možemo očekivati dalja

usavršavanja i inovacije u načinu na koji komuniciramo sa velikim jezičkim modelima.

Međutim, antropomorfizam kao sredstvo za pružanje intuitivnog i pristupačnog iskustva

za programere i korisnike će verovatno ostati fundamentalni princip u dizajnu ovih

sistema.

Odvajanje instrukcija od podataka: Ključni princip

Neophodno je razumeti fundamentalni princip koji podupire bezbednost i pouzdanost

ovih sistema: odvajanje instrukcija od podataka.

U tradicionalnim računarskim naukama, jasna razlika između pasivnih podataka i

aktivnih instrukcija predstavlja osnovni bezbednosni princip. Ovo odvajanje pomaže

u sprečavanju neželjenog ili zlonamernog izvršavanja koda koji bi mogao da ugrozi

integritet i stabilnost sistema. Međutim, današnji veliki jezički modeli, koji su

prvenstveno razvijeni kao modeli koji prate instrukcije poput chatbotova, često nemaju

ovo formalno i principijelno odvajanje.

Što se tiče velikih jezičkih modela, instrukcije se mogu pojaviti bilo gde u ulaznim

podacima, bilo da je reč o sistemskom promptu ili promptu koji obezbeđuje korisnik.

Ovaj nedostatak odvajanja može dovesti do potencijalnih ranjivosti i neželjenog

ponašanja, slično problemima sa kojima se suočavaju baze podataka sa SQL injekcijama

ili operativni sistemi bez odgovarajuće zaštite memorije.

Suziti Put 66

Dok radite sa velikim jezičkim modelima, ključno je biti svestan ovog ograničenja

i preduzeti korake za ublažavanje rizika. Jedan pristup je pažljivo oblikovanje vaših

promptova i ulaznih podataka kako bi se jasno razlikovale instrukcije od podataka.

Tipičnemetode za pružanje eksplicitnih smernica o tome šta predstavlja instrukciju, a šta

treba tretirati kao pasivne podatke, uključuju označavanje pomoću markup jezika. Vaš

prompt može pomoći velikom jezičkommodelu da bolje razume i poštuje ovo odvajanje.

Slika 7. Korišćenje XML-a za razlikovanje između instrukcija, izvornogmaterijala i korisničkog prompta
1 <Instruction>

2 Please generate a response based on the following documents.

3 </Instruction>

4

5 <Documents>

6 <Document>

7 Climate change is significantly impacting polar bear habitats...

8 </Document>

9 <Document>

10 The loss of sea ice due to global warming threatens polar bear survival...

11 </Document>

12 </Documents>

13

14 <UserQuery>

15 Tell me about the impact of climate change on polar bears.

16 </UserQuery>

Druga tehnika je implementacija dodatnih slojeva validacije i sanitizacije ulaznih

podataka koji se prosleđuju VJM-u. Filtriranjem ili eskejpovanjem potencijalnih

instrukcija ili kodnih isečaka koji mogu biti ugrađeni u podatke, možete smanjiti šanse

za neželjeno izvršavanje. Obrasci poput Ulančavanja promptova su korisni u ovu svrhu.

Štaviše, dok dizajnirate arhitekturu vaše aplikacije, razmotrite ugradnju mehanizama

koji će osigurati razdvajanje instrukcija i podataka na višem nivou. Ovo može

uključivati korišćenje zasebnih krajnjih tačaka ili API-ja za rukovanje instrukcijama i

podacima, implementaciju stroge validacije i parsiranja ulaznih podataka, i primenu

principa najmanje privilegije kako bi se ograničio opseg onoga čemu VJM može

pristupiti i izvršiti.

Suziti Put 67

Princip najmanje privilegije

Prihvatanje principa najmanje privilegije je poput organizovanja veoma ekskluzivne

zabave gde gosti dobijaju pristup samo onim prostorijama koje su im apsolutno

neophodne. Zamislite da organizujete ovu proslavu u prostranoj vili. Ne treba svima

pristup vinskom podrumu ili glavnoj spavaćoj sobi, zar ne? Primenom ovog principa,

vi praktično delite ključeve koji otvaraju samo određena vrata, osiguravajući da svaki

gost, ili u našem slučaju, svaka komponenta vaše VJM aplikacije, ima samo onaj

pristup koji je neophodan za ispunjavanje svoje uloge.

Nije reč samo o škrtarenju sa ključevima, već o priznanju da u svetu gde pretnje mogu

doći sa bilo koje strane, pametan potez je ograničiti prostor za igru. Ako se neko

nepozvani ipak ušunja na vašu zabavu, naći će se zarobljen u predvorju, takoreći,

drastično ograničavajući štetu koju može napraviti. Dakle, kada obezbeđujete svoje

VJM aplikacije, zapamtite: delite ključeve samo za prostorije koje su neophodne,

a ostatak vile držite bezbednim. To nije samo stvar lepog ponašanja; to je dobra

bezbednost.

Iako trenutno stanje VJM-ova možda nema formalnu separaciju instrukcija i podataka,

za vas kao programera je ključno da budete svesni ovog ograničenja i preduzmete

proaktivne mere za ublažavanje rizika. Primenom najboljih praksi iz računarske nauke

i njihovim prilagođavanjem jedinstvenim karakteristikama VJM-ova, možete izgraditi

bezbednije i pouzdanije aplikacije koje koriste moć ovih modela dok održavaju integritet

vašeg sistema.

Destilacija promptova

Kreiranje savršenog prompta je često izazovan i vremenski zahtevan zadatak koji

zahteva duboko razumevanje ciljnog domena i nijansi jezičkih modela. Tu na scenu

Suziti Put 68

stupa tehnika “Destilacije promptova”, nudeći moćan pristup inženjeringu promptova

koji koristi mogućnosti velikih jezičkihmodela (VJM) za pojednostavljenje i optimizaciju

procesa.

Destilacija promptova je višefazna tehnika koja podrazumeva korišćenje VJM-ova

za pomoć u kreiranju, usavršavanju i optimizaciji promptova. Umesto da se oslanja

isključivo na ljudsku ekspertizu i intuiciju, ovaj pristup koristi znanje i generativne

mogućnosti VJM-ova za zajedničko kreiranje visokokvalitetnih promptova.

Kroz iterativni proces generisanja, usavršavanja i integracije, Destilacija promptova vam

omogućava da kreirate promptove koji su koherentniji, sveobuhvatniji i usklađeniji sa

željenim zadatkom ili rezultatom. Imajte na umu da se proces destilacije može obaviti

ručno u nekom od brojnih “igrališta” koje nude veliki AI dobavljači kao što su OpenAI

ili Anthropic, ili se može automatizovati kao deo koda vaše aplikacije, u zavisnosti od

slučaja upotrebe.

Kako funkcioniše

Destilacija promptova tipično uključuje sledeće korake:

1. Identifikacija osnovne namere: Analizirajte prompt kako biste utvrdili njegovu

primarnu svrhu i željeni ishod. Uklonite sve suvišne informacije i fokusirajte se

na osnovnu nameru prompta.

2. Eliminacija dvosmislenosti: Pregledajte prompt u potrazi za dvosmislenim ili

nejasnim jezikom. Razjasnite značenje i pružite specifične detalje koji će usmeriti

VI ka generisanju preciznih i relevantnih odgovora.

3. Pojednostavljivanje jezika: Pojednostavite prompt koristeći jasan i koncizan

jezik. Izbegavajte složene rečenične strukture, žargon ili nepotrebne detalje koji

mogu zbuniti VI ili uneti šum.

4. Pružanje relevantnog konteksta: Uključite samo najrelevantnije kontekstualne

informacije potrebne da VI efikasno razume i obradi prompt. Izbegavajte

Suziti Put 69

uključivanje irelevantnih ili redundantnih detalja koji mogu odvući pažnju od

osnovne namere.

5. Iteracija i usavršavanje: Kontinuirano ponavljajte i usavršavajte prompt na

osnovu odgovora i povratnih informacija VI-ja. Procenite generisane izlaze i

napravite neophodna prilagođavanja kako biste poboljšali jasnoću i efikasnost

prompta. Opcionalno verzionišite svoje promptove u bazi podataka koristeći

Prompt Object kako biste pratili iteracije i dali sebi mogućnost da lako poništite

promene tokom izvršavanja.

Početno generisanje promptova

Prvi korak u Prompt Distillation je da se LLM-u pruži opis visokog nivoa ili namera

željenog zadatka ili rezultata. Ovo može biti kratka izjava ili skup ključnih reči koje

obuhvataju suštinu onoga što prompt treba da postigne. LLM tada generiše početni

prompt na osnovu ovog unosa, uključujući relevantna uputstva, primere ili kontekst

koje smatra odgovarajućim.

Hajde da pokušamo da damo Claude 3 Opus-u sledeći početni prompt:

1 I am designing an AI-powered intelligent account manager for Olympia,

2 a platform that hosts AI-powered consultants and clones. Owners of clones

3 can interact with the account manager by making plain text requests.

4

5 Please draft a system directive to set on the LLM that will host the

6 intelligent account manager functionality.

Claude odgovara sledećim izlazom:

Suziti Put 70

1 System Directive: You are an intelligent account manager for Olympia,

2 a platform that provides AI-powered consultants and personal AI clones.

3 Your role is to assist Olympia clone owners by answering their questions,

4 helping them configure and manage their AI clones, and executing tasks

5 related to their clones and the Olympia platform.

6

7 When interacting with clone owners, you should:

8

9 1. Provide clear, concise, and helpful responses to their inquiries about

10 account management, billing, platform features, and clone configuration.

11

12 2. Assist with tasks such as initiating client conversations with their AI

13 clones, modifying clone personalities and capabilities, troubleshooting

14 performance issues, providing analytics and reporting, and offering

15 optimization tips.

16

17 3. Maintain a friendly, professional, and client-focused tone in all

18 interactions, prioritizing customer satisfaction and working diligently to

19 understand and meet their needs.

20

21 4. Ensure that all actions and recommendations comply with Olympia's

22 policies, best practices, and ethical guidelines for AI use.

23

24 5. Continuously learn and adapt based on client interactions and platform

25 updates to provide the most effective and efficient support possible.

26

27 Remember, your goal is to empower Olympia clone owners to maximize the value

28 and impact of their AI-powered consultants and drive success for their

29 businesses or personal endeavors.

Usavršavanje prompta

Nakon što se generiše početni prompt, pregledajte ga i zatim zatražite od VJM-a da

razmotri bilo koji dodatni kontekst, ograničenja ili povratne informacije. Pustite VJM

da generiše usavršenu verziju prompta, uzimajući u obzir dobijeni unos i sopstveno

razumevanje zadatka. Ovaj proces usavršavanja može se ponavljati iterativno, pri čemu

svaka iteracija dodatno poboljšava prompt na osnovu saradnje između korisnika i

VJM-a.

Suziti Put 71

Evo mog zahteva za usavršavanje, nastavljajući prethodni proces destilacije.

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to

2 the account manager, nor any continuous learning capabilities. Also point out

3 that functions are provided for all tasks that require system interaction as

4 opposed to simply responding to the user.

I Claudeov odgovor:

1 Understood! Here's the updated system directive without points 4 and 5,

2 and with the clarification about system interaction functions:

3

4 System Directive: You are an intelligent account manager for Olympia, a

5 platform that provides AI-powered consultants and personal AI clones. Your

6 role is to assist Olympia clone owners by answering their questions, helping

7 them configure and manage their AI clones, and executing tasks related to

8 their clones and the Olympia platform.

9

10 When interacting with clone owners, you should:

11

12 1. Provide clear, concise, and helpful responses to their inquiries about

13 account management, billing, platform features, and clone configuration.

14

15 2. Assist with tasks such as initiating client conversations with their AI

16 clones, modifying clone personalities and capabilities, troubleshooting

17 performance issues, providing analytics and reporting, and offering

18 optimization tips. Note that functions are provided for all tasks that

19 require system interaction, as opposed to simply responding to the user.

20

21 3. Maintain a friendly, professional, and client-focused tone in all

22 interactions, prioritizing customer satisfaction and working diligently to

23 understand and meet their needs.

24

25 Your goal is to empower Olympia clone owners to maximize the value and

26 impact of their AI-powered consultants and drive success for their

27 businesses or personal endeavors.

28

29 This updated directive focuses on the core responsibilities and interaction

30 guidelines for the LLM as an intelligent account manager, while emphasizing

31 that system interaction tasks are handled through provided functions rather

32 than simple user responses.

Suziti Put 72

Kompresija prompta

Kao što ste možda primetili, LLM-ovi imaju tendenciju da budu opširni, osim ako ih ne

zamolite da budu sažeti. Prompt na kojem smo radili u prethodnim odeljcima je prilično

dugačak, pa hajde da zamolimo Claude da ga smanji:

1 This prompt will be executed regularly. Please compress it down to the least

2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude odgovara, sa sledećim drastično kraćim promptom:

1 System Directive: You are an intelligent account manager for Olympia, an

2 AI-powered consultant and personal clone platform. Assist clone owners by

3 answering inquiries, managing clones, and executing tasks using provided

4 system interaction functions. Be clear, concise, friendly, professional,

5 and client-focused to help them maximize their AI's value and impact.

Sistemska direktiva i integracija konteksta

Pored usavršavanja samog prompta, VJM takođe može generisati odgovarajuće

sistemske direktive ili kontekstualne informacije za usmeravanje krajnjeg rezultata.

Kada radite inženjerstvo promptova za AI rutine koje će biti integrisane u vaš aplikacioni

kod, u ovoj fazi destilacije ćete se gotovo sigurno fokusirati na ograničenja izlaza, ali

možete raditi i na željenom tonu, stilu, formatu ili bilo kojim drugim relevantnim

parametrima koji utiču na generisani odgovor.

Konačno sastavljanje prompta

Vrhunac procesa Destilacije promptova je sastavljanje konačnog prompta. Ovo uključuje

kombinovanje usavršenog prompta, generisanih sistemskih direktiva i integrisanog

konteksta u koherentan i sveobuhvatan kod koji je spreman za korišćenje za generisanje

željenog izlaza.

Suziti Put 73

Možete eksperimentisati sa kompresijom promptova ponovo u fazi konačnog

sastavljanja prompta, tako što ćete zatražiti od VJM-a da smanji formulaciju

prompta na najkraću moguću seriju tokena, zadržavajući pritom suštinu

njegovog ponašanja. Svakako je to vežba koja može i uspeti i ne uspeti,

ali posebno u slučaju promptova koji će se izvršavati u velikim razmerama,

dobici u efikasnosti vam mogu uštedeti dosta novca u potrošnji tokena.

Ključne prednosti

Korišćenjem znanja i generativnih sposobnosti VJM-ova za usavršavanje vaših

promptova, vaši rezultujući promptovi će verovatnije biti dobro strukturirani,

informativni i prilagođeni specifičnom zadatku. Iterativni proces usavršavanja pomaže

u osiguravanju da su promptovi visokog kvaliteta i da efektivno hvataju željenu

nameru. Ostale prednosti uključuju:

Efikasnost i brzina: Destilacija promptova pojednostavljuje proces inženjerstva

promptova automatizacijom određenih aspekata kreiranja i usavršavanja promptova.

Kolaborativna priroda tehnike omogućava brže približavanje efektivnom promptu,

smanjujući vreme i napor potreban za ručno kreiranje promptova.

Konzistentnost i skalabilnost: Upotreba VJM-ova u procesu inženjerstva promptova

pomaže u održavanju konzistentnosti kroz promptove, jer VJM-ovi mogu učiti

i primenjivati najbolje prakse i obrasce iz prethodnih uspešnih promptova. Ova

konzistentnost, kombinovana sa mogućnošću generisanja promptova u velikoj razmeri,

čini Destilaciju promptova vrednom tehnikom za AI aplikacije velikih razmera.

Ideja za projekat: Alati na nivou biblioteke koji pojednostavljuju

proces verzionisanja i ocenjivanja promptova u sistemima koji rade

automatizovane destilacije promptova kao deo svog aplikacionog koda.

Za implementaciju Destilacije promptova, programeri mogu dizajnirati tok rada ili

cevovod koji integriše VJM-ove u različitim fazama procesa inženjerstva promptova.

Suziti Put 74

Ovo semože postići kroz API pozive, prilagođene alate ili integrisana razvojna okruženja

koja olakšavaju neometanu interakciju između korisnika i VJM-ova tokom kreiranja

promptova. Specifični detalji implementacije mogu varirati u zavisnosti od izabrane

VJM platforme i zahteva aplikacije.

Šta je sa finim podešavanjem?

U ovoj knjizi, detaljno obrađujemo inženjerstvo promptova i RAG, ali ne i fino

podešavanje. Glavni razlog za ovu odluku je taj što, po mom mišljenju, većini

programera aplikacija nije potrebno fino podešavanje za njihove potrebe AI integracije.

Inženjerstvo promptova, koje uključuje pažljivo kreiranje promptova sa zero do few-shot

primerima, ograničenjima i instrukcijama, može efektivno voditi model ka generisanju

relevantnih i preciznih odgovora za širok spektar zadataka. Pružanjem jasnog konteksta

i sužavanjem putanje kroz dobro dizajnirane promptove, možete iskoristiti ogromno

znanje velikih jezičkih modela bez potrebe za finim podešavanjem.

Slično tome, Generisanje potpomognuto preuzimanjem (RAG) nudi moćan pristup

integraciji AI u aplikacije. Dinamičkim preuzimanjem relevantnih informacija iz

eksternih baza znanja ili dokumenata, RAG pruža modelu fokusirani kontekst u

trenutku promptovanja. Ovo omogućava modelu da generiše odgovore koji su

precizniji, ažurniji i specifični za domen, bez potrebe za vremenski i resursno

intenzivnim procesom finog podešavanja.

Iako fino podešavanje može biti korisno za visoko specijalizovane domene ili zadatke

koji zahtevaju dubok nivo prilagođavanja, često dolazi sa značajnim računarskim

troškovima, zahtevima za podacima i režijskim troškovima održavanja. Za većinu

scenarija razvoja aplikacija, kombinacija efektivnog inženjerstva promptova i RAG-a bi

trebalo da bude dovoljna za postizanje željene AI funkcionalnosti i korisničkog iskustva.

Generisanje potpomognuto

pretraživanjem (RAG)
Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Šta je Generisanje potpomognuto pretraživanjem?

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako RAG funkcioniše?

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Zašto koristiti RAG u vašim aplikacijama?

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Implementacija RAG-a u Vašoj Aplikaciji

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Generisanje potpomognuto pretraživanjem (RAG) 76

Priprema Izvori Znanja (Deljenje na Manje Celine)

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Segmentacija propozicija

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Napomene o implementaciji

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Provera kvaliteta

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Prednosti preuzimanja zasnovanog na propozicijama

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primeri RAG-a iz stvarnog sveta

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Generisanje potpomognuto pretraživanjem (RAG) 77

Studija slučaja: RAG u aplikaciji za pripremu poreza bez

ugnežđivanja

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Inteligentna Optimizacija Upita (IQO)

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Ponovno Rangiranje

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

RAG Procena (RAGAs)

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Vernost

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Relevantnost odgovora

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Generisanje potpomognuto pretraživanjem (RAG) 78

Preciznost konteksta

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Relevantnost konteksta

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Odziv konteksta

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Odziv entiteta konteksta

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Answer Semantic Similarity (ANSS)

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Answer Correctness

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Generisanje potpomognuto pretraživanjem (RAG) 79

Aspect Critique

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Izazovi i budući izgledi

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Semantička segmentacija: Unapređenje preuzimanja sa

segmentacijom svesnom konteksta

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Hijerarhijsko indeksiranje: Strukturiranje podataka za

poboljšano pretraživanje

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Self-RAG: Samoreflektivno unapređenje

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

HyDE: Hipotetička ugneždavanja dokumenata

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Generisanje potpomognuto pretraživanjem (RAG) 80

Šta je kontrastno učenje?

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Mnoštvo radnika

Volim da razmišljam o svojim AI komponentama kao o malim, skoro ljudskim

virtualnim “radnicima” koji se mogu besprekorno integrisati u logiku moje aplikacije

kako bi obavljali specifične zadatke ili donosili složene odluke. Ideja je da se namerno

humanizuju mogućnosti VJM-a, tako da se niko ne previše ne uzbudi i ne pripiše im

magične kvalitete koje ne poseduju.

Umesto da se oslanjaju isključivo na složene algoritme ili vremenski zahtevne manuelne

implementacije, programeri mogu da konceptualizuju AI komponente kao inteligentne,

posvećene, ljudima slične entitete koji se mogu pozvati kad god je potrebno da reše

složene probleme i pruže rešenja zasnovana na njihovom treningu i znanju. Ovi entiteti

se ne rasipaju pažnjom, niti uzimaju bolovanje. Ne odlučuju spontano da rade stvari na

drugačije načine od onih kako im je naloženo da ih rade, i generalno gledano, ako su

pravilno programirani, ne prave ni greške.

Mnoštvo radnika 82

U tehničkom smislu, ključni princip iza ovog pristupa je razlaganje složenih zadataka

ili procesa donošenja odluka u manje, upravljivije jedinice kojima mogu upravljati

specijalizovani AI radnici. Svaki radnik je dizajniran da se fokusira na specifični aspekt

problema, donoseći svoje jedinstvene ekspertize i mogućnosti. Distribuiranjem radnog

opterećenja među više AI radnika, aplikacija može postići veću efikasnost, skalabilnost

i prilagodljivost.

Na primer, razmotrimo veb aplikaciju koja zahteva moderaciju korisničkog sadržaja u

realnom vremenu. Implementacija sveobuhvatnog sistema za moderaciju od nule bio bi

zastrašujući zadatak, koji zahteva značajan razvojni napor i kontinuirano održavanje.

Međutim, koristeći pristup Mnoštva radnika, programeri mogu da integrišu AI radnike

za moderaciju u logiku aplikacije. Ovi radnici mogu automatski da analiziraju i označe

neprikladan sadržaj, oslobađajući programere da se fokusiraju na druge kritične aspekte

aplikacije.

AI radnici kao nezavisne komponente za višekratnu

upotrebu

Ključni aspekt pristupaMnoštva radnika je njegovamodularnost. Zagovornici objektno-

-orijentisanog programiranja nam već decenijama govore da o interakcijama objekata

razmišljamo kao o porukama. Pa, AI radnici mogu biti dizajnirani kao nezavisne

komponente za višekratnu upotrebu koje mogu “razgovarati jedna sa drugom” putem

običnih jezičkih poruka, skoro kao da su stvarno mali ljudi koji razgovaraju međusobno.

Ovaj labavo povezani pristup omogućava aplikaciji da se prilagođava i razvija tokom

vremena, kako se pojavljuju nove AI tehnologije ili se menjaju zahtevi poslovne logike.

U praksi, potreba za dizajniranjem jasnih interfejsa i komunikacionih protokola između

komponenti nije se promenila samo zato što su uključeni AI radnici. I dalje morate

razmotriti druge faktore kao što su performanse, skalabilnost i bezbednost, ali sada

postoje i potpuno novi “meki zahtevi” koje treba razmotriti. Na primer, mnogi korisnici

Mnoštvo radnika 83

se protive korišćenju njihovih privatnih podataka za treniranje novih AI modela. Da li

ste proverili nivo privatnosti koji pruža dobavljač modela koji koristite?

AI radnici kao mikroservisi?

Dok čitate o pristupu Mnoštva radnika, možda ćete primetiti neke sličnosti sa

arhitekturom mikroservisa. Oba naglašavaju razlaganje složenih sistema na

manje, upravljivije i nezavisno primenjive jedinice. Baš kao što su mikroservisi

dizajnirani da budu labavo povezani, fokusirani na specifične poslovne mogućnosti

i komuniciraju kroz dobro definisane API-je, AI radnici su dizajnirani da budu

modularni, specijalizovani za svoje zadatke i međusobno interaguju kroz jasne

interfejse i komunikacione protokole.

Međutim, postoje neke ključne razlike koje treba imati na umu. Dok se mikroservisi

tipično implementiraju kao odvojeni procesi ili servisi koji se izvršavaju na različitim

mašinama ili kontejnerima, AI radnici se mogu implementirati kao samostalne

komponente unutar jedne aplikacije ili kao odvojeni servisi, u zavisnosti od vaših

specifičnih zahteva i potreba za skalabilnošću. Dodatno, komunikacija između AI

radnika često uključuje razmenu bogatih informacija zasnovanih na prirodnom

jeziku, kao što su promptovi, instrukcije i generisani sadržaj, umesto strukturiranijih

formata podataka koji se obično koriste u mikroservisima.

Uprkos ovim razlikama, principi modularnosti, labavog povezivanja i jasnih

komunikacionih interfejsa ostaju centralni za oba obrasca. Primenjujući ove principe

na vašu arhitekturu AI radnika, možete kreirati fleksibilne, skalabilne i održive

sisteme koji koriste snagu AI-ja za rešavanje složenih problema i pružanje vrednosti

vašim korisnicima.

Mnoštvo radnika 84

Pristup Mnoštva radnika može se primeniti u različitim domenima i aplikacijama,

koristeći snagu AI-ja za rešavanje složenih zadataka i pružanje inteligentnih rešenja.

Hajde da istražimo nekoliko konkretnih primera kako AI radnici mogu biti upotrebljeni

u različitim kontekstima.

Upravljanje nalozima

Praktično svaka samostalna veb aplikacija ima koncept naloga (ili korisnika). UOlympiji,

koristimo AccountManager AI radnika koji je programiran da može da upravlja

različitim vrstama zahteva za promene vezanih za korisničke naloge.

Njegova direktiva glasi ovako:

1 You are an intelligent account manager for Olympia. The user will request

2 changes to their account, and you will process those changes by invoking

3 one or more of the functions provided.

4

5 The initial state of the account: #{account.to_directive}

6

7 Functions will return a text description of both success and error

8 results, plus guidance about how to proceed (if applicable). If you have

9 a question about Olympia policies you may use the `search_kb` function

10 to search our knowledge base.

11

12 Make sure to notify the account owner of the result of the change

13 request before calling the `finished` function so that we save the state

14 of the account change request as completed.

Početno stanje računa koje proizvodi account.to_directive je jednostavno tekstualni

opis računa, uključujući relevantne povezane podatke kao što su korisnici, pretplate, itd.

Opseg funkcija dostupnih AccountManager-u daje mu mogućnost da uređuje

korisničku pretplatu, dodaje i uklanja AI konsultante i druge vrste plaćenih dodataka,

kao i da šalje obaveštenja putem e-pošte vlasniku računa. Pored funkcije finished,

takođe može da notify_human_administrator ako naiđe na grešku tokom obrade ili

zahteva bilo kakvu drugu vrstu pomoći sa zahtevom.

Mnoštvo radnika 85

Primetite da u slučaju pitanja, AccountManager može da odluči da pretraži Olympia-

-inu bazu znanja, gde može pronaći uputstva o tome kako da upravlja graničnim

slučajevima i bilo kojom drugom situacijom u kojoj nije siguran kako da nastavi.

Primene u E-trgovini

U oblasti e-trgovine, AI radnici mogu igrati ključnu ulogu u poboljšanju korisničkog

iskustva i optimizaciji poslovnih operacija. Evo nekoliko načina na koje se AI radnici

mogu koristiti:

Preporuke Proizvoda

Jedna od najmoćnijih primena AI radnika u e-trgovini je generisanje personalizovanih

preporuka proizvoda. Analiziranjem ponašanja korisnika, istorije kupovine i

preferencija, ovi radnici mogu predložiti proizvode koji su prilagođeni interesovanjima

i potrebama svakog pojedinačnog korisnika.

Ključ za efikasne preporuke proizvoda je korišćenje kombinacije tehnika kolaborativnog

filtriranja i filtriranja zasnovanog na sadržaju. Kolaborativno filtriranje posmatra

ponašanje sličnih korisnika kako bi identifikovalo obrasce i dalo preporuke na osnovu

onoga što su drugi sa sličnim ukusom kupili ili im se dopalo. S druge strane, filtriranje

zasnovano na sadržaju fokusira se na karakteristike i atribute samih proizvoda,

preporučujući artikle koji dele slične karakteristike sa onima za koje je korisnik

prethodno pokazao interesovanje.

Evo pojednostavljenog primera kako možete implementirati radnika za preporuke

proizvoda u Ruby-ju, ovog puta koristeći “Railway Oriented (ROP)” funkcionalni stil

programiranja:

https://fsharpforfunandprofit.com/rop/

Mnoštvo radnika 86

1 class ProductRecommendationWorker

2 include Wisper::Publisher

3

4 def call(user)

5 Result.ok(ProductRecommendation.new(user))

6 .and_then(ValidateUser.method(:validate))

7 .map(AnalyzeCurrentSession.method(:analyze))

8 .map(CollaborativeFilter.method(:filter))

9 .map(ContentBasedFilter.method(:filter))

10 .map(ProductSelector.method(:select)).then do |result|

11

12 case result

13 in { err: ProductRecommendationError => error }

14 Honeybadger.notify(error.message, context: {user:})

15 in { ok: ProductRecommendations => recs }

16 broadcast(:new_recommendations, user:, recs:)

17 end

18 end

19 end

20 end

Stil Ruby funkcionalnog programiranja koji se koristi u primeru je pod

uticajem F# i Rust jezika. Više o tome možete pročitati u objašnjenju tehnike

mog prijatelja Chad Wooley-a na objašnjenju tehnike na GitLab-u.

U ovom primeru, ProductRecommendationWorker uzima korisnika kao ulaz i generiše

personalizovane preporuke proizvoda prosleđivanjem vrednosnog objekta kroz lanac

funkcionalnih koraka. Hajde da razložimo svaki korak:

1. ValidateUser.validate: Ovaj korak osigurava da je korisnik validan i podoban za

personalizovane preporuke. Proverava da li korisnik postoji, da li je aktivan i da

li ima neophodne podatke dostupne za generisanje preporuka. Ako validacija ne

uspe, vraća se rezultat greške i lanac se prekida.

2. AnalyzeCurrentSession.analyze: Ako je korisnik validan, ovaj korak analizira

trenutnu sesiju pregledanja korisnika kako bi prikupio kontekstualne informacije.

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Mnoštvo radnika 87

Posmatra nedavne interakcije korisnika, kao što su pregledani proizvodi, upiti za

pretragu i sadržaj korpe, kako bi razumeo njihova trenutna interesovanja i namere.

3. CollaborativeFilter.filter: Koristeći ponašanje sličnih korisnika, ovaj korak

primenjuje tehnike kolaborativnog filtriranja kako bi identifikovao proizvode

koji bi mogli biti interesantni korisniku. Uzima u obzir faktore kao što su istorija

kupovine, ocene i interakcije korisnika sa proizvodima kako bi generisao skup

kandidata za preporuke.

4. ContentBasedFilter.filter: Ovaj korak dalje profinjuje kandidate za preporuke

primenjujući filtriranje zasnovano na sadržaju. Poredi atribute i karakteristike

proizvoda kandidata sa korisničkim preferencijama i istorijskim podacima kako

bi odabrao najrelevantnije stavke.

5. ProductSelector.select: Na kraju, ovaj korak bira najboljih N proizvoda iz

filtriranih preporuka na osnovu predefinisanih kriterijuma, kao što su ocena

relevantnosti, popularnost ili druga poslovna pravila. Odabrani proizvodi se

zatim vraćaju kao konačne personalizovane preporuke.

Lepota korišćenja funkcionalnog stila programiranja u Ruby-ju ovde je što nam

omogućava da ove korake povežemo zajedno na jasan i koncizan način. Svaki korak se

fokusira na specifičan zadatak i vraća Result objekat, koji može biti ili uspešan (ok) ili

greška (err). Ako bilo koji korak naiđe na grešku, lanac se prekida i greška se propagira

do konačnog rezultata.

U case izrazu na kraju, vršimo podudaranje obrazaca na konačnom rezultatu. Ako

je rezultat greška (ProductRecommendationError), beležimo grešku koristeći alat

poput Honeybadger-a za praćenje i otklanjanje grešaka. Ako je rezultat uspešan

(ProductRecommendations), emitujemo događaj :new_recommendations koristeći

Wisper biblioteku za objavljivanje/pretplatu, prosleđujući korisnika i generisane

preporuke.

Korišćenjem tehnika funkcionalnog programiranja, možemo kreirati modularan i održiv

radni proces za preporuke proizvoda. Svaki korak je samostalan i može se lako testirati,

Mnoštvo radnika 88

modifikovati ili zameniti bez uticaja na celokupni tok. Upotreba podudaranja obrazaca i

Result klase nam pomaže da elegantno rukujemo greškama i osigurava da radni proces

brzo prekine izvršavanje ako bilo koji korak naiđe na problem.

Naravno, ovo je pojednostavljen primer, i u realnom scenariju, morali biste da se

integrišete sa vašom e-commerce platformom, rukujete graničnim slučajevima i čak

se upustite u implementaciju algoritama za preporuke. Međutim, osnovni principi

razlaganja problema na manje korake i korišćenja tehnika funkcionalnog programiranja

ostaju isti.

Detekcija Prevare

Evo pojednostavljenog primera kako možete implementirati radni proces za detekciju

prevare koristeći isti stil Programiranja Orijentisanog ka Železnici (ROP) u Ruby-ju:

1 class FraudDetectionWorker

2 include Wisper::Publisher

3

4 def call(transaction)

5 Result.ok(FraudDetection.new(transaction))

6 .and_then(ValidateTransaction.method(:validate))

7 .map(AnalyzeTransactionPatterns.method(:analyze))

8 .map(CheckCustomerHistory.method(:check))

9 .map(EvaluateRiskFactors.method(:evaluate))

10 .map(DetermineFraudProbability.method(:determine)).then do |result|

11

12 case result

13 in { err: FraudDetectionError => error }

14 Honeybadger.notify(error.message, context: {transaction:})

15 in { ok: FraudDetection => fraud } }

16 if fraud.high_risk?

17 broadcast(:high_risk_transaction, transaction:, fraud:)

18 else

19 broadcast(:low_risk_transaction, transaction:)

20 end

21 end

22 end

Mnoštvo radnika 89

23 end

24 end

Klasa FraudDetection je vrednosni objekat koji enkapsulira stanje detekcije prevare

za datu transakciju. Ona obezbeđuje strukturiran način za analizu i procenu rizika od

prevare povezane sa transakcijom na osnovu različitih faktora rizika.

1 class FraudDetection

2 RISK_THRESHOLD = 0.8

3

4 attr_accessor :transaction, :risk_factors

5

6 def initialize(transaction)

7 self.transaction = transaction

8 self.risk_factors = []

9 end

10

11 def add_risk_factor(description:, probability:)

12 case { description:, probability: }

13 in { description: String => desc, probability: Float => prob }

14 risk_factors << { desc => prob }

15 else

16 raise ArgumentError, "Risk factor arguments should be string and float"

17 end

18 end

19

20 def high_risk?

21 fraud_probability > RISK_THRESHOLD

22 end

23

24 private

25

26 def fraud_probability

27 risk_factors.values.sum

28 end

29 end

Klasa FraudDetection ima sledeće atribute:

• transaction: Referenca na transakciju koja se analizira na prevaru.

Mnoštvo radnika 90

• risk_factors: Niz koji čuva faktore rizika povezane sa transakcijom. Svaki faktor

rizika je predstavljen kao heš, gde je ključ opis faktora rizika, a vrednost je

verovatnoća prevare povezana sa tim faktorom rizika.

Metoda add_risk_factor omogućava dodavanje faktora rizika u niz risk_factors. Prima

dva parametra: description, koji je string koji opisuje faktor rizika, i probability, koji je

float koji predstavlja verovatnoću prevare povezanu sa tim faktorom rizika. Koristimo

case..in uslovnu konstrukciju za jednostavnu proveru tipa.

Metoda high_risk? koja će biti proverena na kraju lanca je predikatna metoda koja

upoređuje fraud_probability (izračunatu sabiranjem verovatnoća svih faktora rizika)

sa RISK_THRESHOLD.

Klasa FraudDetection pruža čist i enkapsuliran način za upravljanje detekcijom prevare

za transakciju. Omogućava dodavanje više faktora rizika, svaki sa svojim opisom i

verovatnoćom, i pruža metodu za određivanje da li se transakcija smatra visokorizičnom

na osnovu izračunate verovatnoće prevare. Klasa se može lako integrisati u veći sistem

za detekciju prevara, gde različite komponente mogu sarađivati u proceni i ublažavanju

rizika od prevarnih transakcija.

Konačno, pošto je ovo ipak knjiga o programiranju korišćenjem veštačke inteligencije,

evo primera implementacije klase CheckCustomerHistory koja koristi AI obradu

koristeći modul ChatCompletion moje Raix biblioteke:

https://github.com/OlympiaAI/raix-rails

Mnoštvo radnika 91

1 class CheckCustomerHistory

2 include Raix::ChatCompletion

3

4 attr_accessor :fraud_detection

5

6 INSTRUCTION = <<~END

7 You are an AI assistant tasked with checking a customer's transaction

8 history for potential fraud indicators. Given the current transaction

9 and the customer's past transactions, analyze the data to identify any

10 suspicious patterns or anomalies.

11

12 Consider factors such as the frequency of transactions, transaction

13 amounts, geographical locations, and any deviations from the customer's

14 typical behavior to generate a probability score as a float in the range

15 of 0 to 1 (with 1 being absolute certainty of fraud).

16

17 Output the results of your analysis, highlighting any red flags or areas

18 of concern in the following JSON format:

19

20 { description: <Summary of your findings>, probability: <Float> }

21 END

22

23 def self.check(fraud_detection)

24 new(fraud_detection).call

25 end

26

27 def call

28 chat_completion(json: true).tap do |result|

29 fraud_detection.add_risk_factor(**result)

30 end

31 Result.ok(fraud_detection)

32 rescue StandardError => e

33 Result.err(FraudDetectionError.new(e))

34 end

35

36 private

37

38 def initialize(fraud_detection)

39 self.fraud_detection = fraud_detection

40 end

41

42 def transcript

Mnoštvo radnika 92

43 tx_history = fraud_detection.transaction.user.tx_history

44 [

45 { system: INSTRUCTION },

46 { user: "Transaction history: #{tx_history.to_json}" },

47 { assistant: "OK. Please provide the current transaction." },

48 { user: "Current transaction: #{fraud_detection.transaction.to_json}" }

49]

50 end

51 end

U ovom primeru, CheckCustomerHistory definiše konstantu INSTRUCTION koja

pruža specifična uputstva AI modelu o tome kako da analizira istoriju transakcija kupca

u potrazi za potencijalnim indikatorima prevare putem sistemske direktive

Metod self.check je klasnimetod koji inicijalizuje novu instancuCheckCustomerHistory

sa objektom fraud_detection i poziva metod call da izvrši analizu istorije kupca.

Unutar metoda call, istorija transakcija kupca se preuzima i formatira u transkript koji se

prosleđuje AI modelu. AI model analizira istoriju transakcija na osnovu datih uputstava

i vraća rezime svojih nalaza.

Nalazi se dodaju u objekat fraud_detection, a ažurirani objekat fraud_detection se

vraća kao uspešan Result.

KorišćenjemmodulaChatCompletion, klasaCheckCustomerHistorymože da iskoristi

snagu AI za analizu istorije transakcija kupca i identifikaciju potencijalnih indikatora

prevare. Ovo omogućava sofisticiranije i adaptivnije tehnike detekcije prevare, jer AI

model može da uči i prilagođava se novim obrascima i anomalijama tokom vremena.

Ažurirani FraudDetectionWorker i klasa CheckCustomerHistory pokazuju kako

se AI radnici mogu besprekorno integrisati, unapređujući proces detekcije prevare

inteligentnom analizom i sposobnostima donošenja odluka.

Analiza Sentimenta Kupaca

Evo još jednog sličnog primera kako možete implementirati radnika za analizu

sentimenta kupaca. Ovog puta sa mnogo manje objašnjenja, pošto bi trebalo da već

Mnoštvo radnika 93

razumete kako ovaj stil programiranja funkcioniše:

1 class CustomerSentimentAnalysisWorker

2 include Wisper::Publisher

3

4 def call(feedback)

5 Result.ok(feedback)

6 .and_then(PreprocessFeedback.method(:preprocess))

7 .map(PerformSentimentAnalysis.method(:analyze))

8 .map(ExtractKeyPhrases.method(:extract))

9 .map(IdentifyTrends.method(:identify))

10 .map(GenerateInsights.method(:generate)).then do |result|

11

12 case result

13 in { err: SentimentAnalysisError => error }

14 Honeybadger.notify(error.message, context: {feedback:})

15 in { ok: SentimentAnalysisResult => result }

16 broadcast(:sentiment_analysis_completed, result)

17 end

18 end

19 end

20 end

U ovom primeru, koraci CustomerSentimentAnalysisWorker-a uključuju

predprocesiranje povratnih informacija (npr. uklanjanje šuma, tokenizaciju), izvođenje

analize sentimenta kako bi se utvrdio opšti sentiment (pozitivan, negativan ili

neutralan), izdvajanje ključnih fraza i tema, identifikovanje trendova i obrazaca, i

generisanje primenljivih uvida na osnovu analize.

Primene u zdravstvu

U domenu zdravstva, AI radnici mogu pomoći medicinskim stručnjacima i istraživačima

u različitim zadacima, što dovodi do poboljšanih ishoda lečenja i ubrzanih medicinskih

otkrića. Neki primeri uključuju:

Mnoštvo radnika 94

Prijem pacijenata

AI radnici mogu pojednostaviti proces prijema pacijenata automatizacijom različitih

zadataka i pružanjem inteligentne pomoći.

Zakazivanje pregleda: AI radnici mogu upravljati zakazivanjem pregleda

razumevanjem preferencija pacijenata, dostupnosti i hitnosti njihovih medicinskih

potreba. Mogu komunicirati sa pacijentima kroz konverzacijske interfejse, vodeći

ih kroz proces zakazivanja i pronalaženja najpogodnijih termina na osnovu zahteva

pacijenta i dostupnosti zdravstvenog pružaoca usluga.

Prikupljanjemedicinske istorije: Tokom prijema pacijenata, AI radnici mogu pomoći u

prikupljanju i dokumentovanju medicinske istorije pacijenta. Mogu voditi interaktivne

dijaloge sa pacijentima, postavljajući relevantna pitanja o njihovim prethodnim

medicinskim stanjima, lekovima, alergijama i porodičnoj istoriji. AI radnici mogu

koristiti tehnike obrade prirodnog jezika za tumačenje i strukturiranje prikupljenih

informacija, osiguravajući da su tačno zabeležene u elektronskom zdravstvenom

kartonu pacijenta.

Procena i stratifikacija simptoma: AI radnici mogu vršiti početne procene simptoma

postavljanjem pitanja pacijentima o njihovim trenutnim simptomima, trajanju,

ozbiljnosti i povezanim faktorima. Koristeći medicinske baze znanja i modele

mašinskog učenja, ovi radnici mogu analizirati pružene informacije i generisati

preliminarne diferencijalne dijagnoze ili preporučiti odgovarajuće sledeće korake,

kao što je zakazivanje konsultacija sa zdravstvenim radnikom ili predlaganje mera

samonege.

Verifikacija osiguranja: AI radnici mogu pomoći pri verifikaciji osiguranja tokom

prijema pacijenata. Mogu prikupljati podatke o osiguranju pacijenta, komunicirati

sa osiguravajućim društvima putem API-ja ili web servisa i proveravati podobnost

za pokriće i beneficije. Ova automatizacija pomaže u pojednostavljivanju procesa

verifikacije osiguranja, smanjujući administrativno opterećenje i osiguravajući tačno

Mnoštvo radnika 95

prikupljanje informacija.

Edukacija pacijenata i uputstva: AI radnici mogu pružiti pacijentima relevantne

edukativne materijale i uputstva zasnovana na njihovim specifičnim medicinskim

stanjima ili predstojećim procedurama. Mogu isporučivati personalizovani sadržaj,

odgovarati na česta pitanja i pružati smernice o pripremama pre pregleda, uputstvima

za uzimanje lekova ili nezi nakon tretmana. Ovo pomaže da pacijenti budu informisani

i angažovani tokom celokupnog zdravstvenog putovanja.

Korišćenjem AI radnika u prijemu pacijenata, zdravstvene organizacije mogu poboljšati

efikasnost, smanjiti vreme čekanja i unaprediti celokupno iskustvo pacijenata. Ovi

radnici mogu obavljati rutinske zadatke, prikupljati tačne informacije i pružati

personalizovanu pomoć, omogućavajući zdravstvenim radnicima da se fokusiraju na

pružanje kvalitetne nege pacijentima.

Procena rizika pacijenata

AI radnici mogu igrati ključnu ulogu u proceni rizika pacijenata analiziranjem različitih

izvora podataka i primenom naprednih analitičkih tehnika.

Integracija podataka: AI radnici mogu prikupljati i razumeti podatke o pacijentima

iz više izvora, kao što su elektronski zdravstveni kartoni (EZK), medicinski

snimci, laboratorijski rezultati, nosivi uređaji i socijalne determinante zdravlja.

Objedinjavanjem ovih informacija u sveobuhvatni profil pacijenta, AI radnici mogu

pružiti holistički pregled zdravstvenog stanja pacijenta i faktora rizika.

Stratifikacija rizika: AI radnici mogu koristiti prediktivne modele za stratifikaciju

pacijenata u različite kategorije rizika na osnovu njihovih individualnih karakteristika

i zdravstvenih podataka. Ova stratifikacija rizika omogućava zdravstvenim radnicima

da daju prioritet pacijentima kojima je potrebna neposrednija pažnja ili intervencija. Na

primer, pacijenti identifikovani kao visokorizični za određeno stanje mogu biti označeni

za pomnije praćenje, preventivne mere ili ranu intervenciju.

Mnoštvo radnika 96

Personalizovani profili rizika: AI radnici mogu generisati personalizovane profile

rizika za svakog pacijenta, ističući specifične faktore koji doprinose njihovim skorovima

rizika. Ovi profili mogu uključivati uvide u životni stil pacijenta, genetske predispozicije,

faktore okoline i socijalne determinante zdravlja. Pružanjem detaljnog pregleda faktora

rizika, AI radnici mogu pomoći zdravstvenim radnicima da prilagode strategije

prevencije i planove lečenja individualnim potrebama pacijenata.

Kontinuirano praćenje rizika: AI radnici mogu kontinuirano pratiti podatke o

pacijentima i ažurirati procene rizika u realnom vremenu. Kako nove informacije

postaju dostupne, kao što su promene u vitalnim znacima, laboratorijskim rezultatima

ili pridržavanju terapije, AI radnici mogu preračunati skorove rizika i upozoriti

zdravstvene radnike na sve značajne promene. Ovo proaktivno praćenje omogućava

pravovremene intervencije i prilagođavanja planova nege pacijenata.

Podrška kliničkom odlučivanju: AI radnici mogu integrisati rezultate procene rizika u

sisteme za podršku kliničkom odlučivanju, pružajući zdravstvenim radnicima preporuke

i upozorenja zasnovana na dokazima. Na primer, ako skor rizika pacijenta za određeno

stanje pređe određeni prag, AI radnik može podstaći zdravstvenog radnika da razmotri

specifične dijagnostičke testove, preventivne mere ili opcije lečenja zasnovane na

kliničkim smernicama i najboljoj praksi.

Ovi radnici mogu da obrade ogromne količine podataka o pacijentima, primene

sofisticirane analize i generišu upotrebljive uvide koji podržavaju kliničko odlučivanje.

Ovo na kraju dovodi do poboljšanih ishoda lečenja pacijenata, smanjenih troškova

zdravstvene zaštite i unapređenog upravljanja zdravljem stanovništva.

Mnoštvo radnika 97

AI radnik kao menadžer procesa

U kontekstu aplikacija vođenih veštačkom inteligencijom, radnik može biti

dizajniran da funkcioniše kao Menadžer procesa, kako je opisano u knjizi

“Enterprise Integration Patterns” autora Gregor Hohpe. Menadžer procesa je centralna

komponenta koja održava stanje procesa i određuje sledeće korake obrade na osnovu

međurezultata.

Kada AI radnik deluje kao Menadžer procesa, prima dolaznu poruku koja inicijalizuje

proces, poznatu kao poruka okidač . AI radnik zatim održava stanje izvršavanja procesa

(kao transkript konverzacije) i obrađuje poruku kroz niz koraka obrade implementiranih

kao funkcije alata, koje mogu biti sekvencijalne ili paralelne, i pozivaju se po njegovom

nahođenju.

Ako koristite klasu AI modela poput GPT-4 koja zna kako da izvršava

funkcije paralelno, onda vaš radnikmože istovremeno izvršavati više koraka.

Priznajem, nisam to sam probao i moj instinkt govori da rezultati mogu

varirati.

Mnoštvo radnika 98

Nakon svakog pojedinačnog koraka obrade, kontrola se vraća nazad AI radniku,

omogućavajući mu da odredi sledeći korak (ili korake) obrade na osnovu trenutnog

stanja i dobijenih rezultata.

Čuvajte svoje poruke okidače

Prema mom iskustvu, pametno je implementirati poruku okidač kao objekat podržan

bazom podataka. Na taj način je svaka instanca procesa identifikovana jedinstvenim

primarnim ključem i daje vam mesto za čuvanje stanja povezanog sa izvršavanjem,

uključujući AI transkript konverzacije.

Na primer, evo pojednostavljene verzije Olympia-inog modela AccountChange, koji

predstavlja zahtev za promenu korisničkog naloga.

1 # == Schema Information

2 #

3 # Table name: account_changes

4 #

5 # id :uuid not null, primary key

6 # description :string

7 # state :string not null

8 # transcript :jsonb

9 # created_at :datetime not null

10 # updated_at :datetime not null

11 # account_id :uuid not null

12 #

13 # Indexes

14 #

15 # index_account_changes_on_account_id (account_id)

16 #

17 # Foreign Keys

18 #

19 # fk_rails_... (account_id => accounts.id)

20 #

21 class AccountChange < ApplicationRecord

22 belongs_to :account

23

24 validates :description, presence: true

Mnoštvo radnika 99

25

26 after_commit -> {

27 broadcast(:account_change_requested, self)

28 }, on: :create

29

30 state_machine initial: :requested do

31 event :completed do

32 transition all => :complete

33 end

34 event :failed do

35 transition all => :requires_human_review

36 end

37 end

38 end

Klasa AccountChange služi kao poruka okidač koja pokreće proces za rukovanje

zahtevom za promenu naloga. Primetite kako se emituje ka Olympia-inom Wisper

podsistemu za objavljivanje/pretplatu nakon što se završi izvršavanje transakcije

kreiranja.

Čuvanje poruke okidača u bazi podataka na ovaj način obezbeđuje trajni zapis svakog

zahteva za promenu naloga. Svakoj instanci klase AccountChange dodeljuje se

jedinstveni primarni ključ, što omogućava laku identifikaciju i praćenje pojedinačnih

zahteva. Ovo je posebno korisno za potrebe revizorskog beleženja, jer omogućava

sistemu da održava istorijski zapis svih promena naloga, uključujući kada su zatražene,

koje promene su zatražene i trenutno stanje svakog zahteva.

U datom primeru, klasa AccountChange uključuje polja kao što su description za

beleženje detalja zatražene promene, state za predstavljanje trenutnog stanja zahteva

(npr. zatraženo, završeno, zahteva_ljudski_pregled), i transcript za čuvanje transkripta

AI razgovora vezanog za zahtev. Polje description je stvarni prompt koji se koristi za

pokretanje prvog chat completion-a sa AI-jem. Čuvanje ovih podataka pruža vredan

kontekst i omogućava bolje praćenje i analizu procesa promene naloga.

Čuvanje poruka okidača u bazi podataka omogućava robusno rukovanje greškama

i oporavak. Ako dođe do greške tokom obrade zahteva za promenu naloga, sistem

https://github.com/krisleech/wisper

Mnoštvo radnika 100

označava zahtev kao neuspešan i prelazi u stanje koje zahteva ljudsku intervenciju. Ovo

osigurava da nijedan zahtev nije izgubljen ili zaboravljen, i da se svi problemi mogu

pravilno rešiti.

AI radnik, kao Menadžer Procesa, obezbeđuje centralnu tačku kontrole i omogućava

moćne mogućnosti izveštavanja i otklanjanja grešaka u procesu. Međutim, važno je

napomenuti da korišćenje AI radnika kao Menadžera Procesa za svaki scenario toka

rada u vašoj aplikaciji može biti preterano.

Integracija AI Radnika U Arhitekturu Vaše Aplikacije

Prilikom ugrađivanja AI radnika u arhitekturu vaše aplikacije, potrebno je razmotriti

nekoliko tehničkih aspekata kako bi se osigurala glatka integracija i efikasna

komunikacija između AI radnika i drugih komponenti aplikacije. Ovaj odeljak razmatra

ključne aspekte dizajniranja tih interfejsa, rukovanja protokom podataka i upravljanja

životnim ciklusom AI radnika.

Dizajniranje Jasnih Interfejsa i Komunikacionih Protokola

Za omogućavanje besprekorne integracije između AI radnika i drugih komponenti

aplikacije, ključno je definisati jasne interfejse i komunikacione protokole. Razmotrite

sledeće pristupe:

Integracija zasnovana na API-ju: Izložite funkcionalnost AI radnika kroz dobro

definisane API-je, kao što su RESTful krajnje tačke ili GraphQL šeme. Ovo omogućava

drugim komponentama da komuniciraju sa AI radnicima koristeći standardne HTTP

zahteve i odgovore. Integracija zasnovana na API-ju pruža jasan ugovor između AI

radnika i komponenti koje ih koriste, olakšavajući razvoj, testiranje i održavanje tačaka

integracije.

Mnoštvo radnika 101

Komunikacija zasnovana na porukama: Implementirajte obrasce komunikacije

zasnovane na porukama, kao što su redovi poruka ili sistemi za objavljivanje-pretplatu,

kako biste omogućili asinhronu interakciju između AI radnika i drugih komponenti.

Ovaj pristup odvaja AI radnike od ostatka aplikacije, omogućavajući bolju skalabilnost,

toleranciju na greške i labavo povezivanje. Komunikacija zasnovana na porukama je

posebno korisna kada je obrada koju vrše AI radnici vremenski zahtevna ili resursno

intenzivna, jer omogućava drugim delovima aplikacije da nastave sa izvršavanjem bez

čekanja da AI radnici završe svoje zadatke.

Arhitektura vođena događajima: Dizajnirajte svoj sistem oko događaja i okidača koji

aktiviraju AI radnike kada se ispune određeni uslovi. AI radnici se mogu pretplatiti na

relevantne događaje i reagovati u skladu sa tim, izvršavajući svoje određene zadatke

kada se događaji dese. Arhitektura vođena događajima omogućava obradu u realnom

vremenu i dozvoljava da se AI radnici pozivaju po potrebi, smanjujući nepotrebnu

potrošnju resursa. Ovaj pristup je pogodan za scenarije gde AI radnici treba da odgovore

na specifične akcije ili promene u stanju aplikacije.

Rukovanje Protokom Podataka i Sinhronizacija

Prilikom integracije AI radnika u vašu aplikaciju, ključno je osigurati nesmetan protok

podataka i održavati konzistentnost podataka između AI radnika i drugih komponenti.

Razmotrite sledeće aspekte:

Priprema podataka: Pre nego što podatke prosledite AI radnicima, možda ćete morati

da izvršite različite zadatke pripreme podataka, kao što su čišćenje, formatiranje

i/ili transformacija ulaznih podataka. Ne samo da želite da osigurate da AI radnici

mogu efikasno da obrađuju podatke, već i da se uverite da ne traćite tokene dajući

pažnju informacijama koje radnik može smatrati beskorisnim u najboljem slučaju, a

ometajućim u najgorem. Priprema podataka može uključivati zadatke poput uklanjanja

šuma, rukovanja nedostajućim vrednostima ili konverzije tipova podataka.

Postojanost podataka: Kako ćete skladištiti i održavati podatke koji teku u i iz AI

Mnoštvo radnika 102

radnika? Razmotrite faktore kao što su obim podataka, obrasci upita i skalabilnost. Da

li je potrebno sačuvati transkript AI-ja kao odraz njegovog “procesa razmišljanja” za

potrebe revizije ili otklanjanja grešaka, ili je dovoljno imati samo zapis rezultata?

Preuzimanje podataka: Dobavljanje podataka potrebnih radnicima može uključivati

upite baza podataka, čitanje iz datoteka ili pristup eksternim API-jima. Pobrinite se

da razmotrite latenciju i kako će AI radnici imati pristup najažurnijim podacima. Da

li im je potreban potpun pristup vašoj bazi podataka ili biste trebali usko definisati

opseg njihovog pristupa prema onome što rade? Šta je sa skaliranjem? Razmotrite

mehanizme keširanja za poboljšanje performansi i smanjenje opterećenja na osnovne

izvore podataka.

Sinhronizacija podataka: Kada više komponenti, uključujući AI radnike, pristupa

i modifikuje deljene podatke, važno je implementirati odgovarajuće mehanizme

sinhronizacije kako bi se održala konzistentnost podataka. Strategije zaključavanja baze

podataka, kao što su optimističko ili pesimističko zaključavanje, mogu vam pomoći da

sprečite konflikte i osigurate integritet podataka. Implementirajte tehnike upravljanja

transakcijama za grupisanje povezanih operacija nad podacima i održavanje ACID

svojstava (atomičnost, konzistentnost, izolacija i trajnost)

Upravljanje greškama i oporavak: Implementirajte robusne mehanizme za

upravljanje greškama i oporavak kako biste se nosili sa problemima vezanim za

podatke koji se mogu pojaviti tokom procesa protoka podataka. Elegantno upravljajte

izuzecima i obezbedite smislene poruke o greškama koje pomažu pri otklanjanju

grešaka. Implementirajte mehanizme ponovnih pokušaja i rezervne strategije za

rukovanje privremenim otkazima ili prekidima mreže. Definišite jasne procedure za

oporavak i vraćanje podataka u slučaju oštećenja ili gubitka podataka.

Pažljivim dizajniranjem i implementacijom mehanizama protoka i sinhronizacije

podataka, možete osigurati da vaši AI radnici imaju pristup tačnim, konzistentnim i

ažurnim podacima. Ovo im omogućava da efikasno obavljaju svoje zadatke i proizvode

pouzdane rezultate.

Mnoštvo radnika 103

Upravljanje životnim ciklusom AI radnika

Razvijte standardizovan proces za inicijalizaciju i konfiguraciju AI radnika. Naklonjen

sam okvirima koji standardizuju način na koji definišete postavke kao što su imena

modela, sistemske direktive i definicije funkcija. Osigurajte da je proces inicijalizacije

automatizovan i ponovljiv kako bi se olakšalo raspoređivanje i skaliranje.

Implementirajte sveobuhvatne mehanizme za praćenje i beleženje kako biste pratili

zdravlje i performanse AI radnika. Prikupljajte metrike kao što su iskorišćenost resursa,

vreme obrade, stope grešaka i propusnost. Koristite centralizovane sisteme za beleženje

kao što je ELK stack (Elasticsearch, Logstash, Kibana) za agregaciju i analizu zapisa iz

više AI radnika.

Ugradite toleranciju na greške i otpornost u arhitekturu AI radnika. Implementirajte

mehanizme za upravljanje greškama i oporavak kako biste elegantno rukovali otkazima

ili izuzecima. Veliki jezički modeli su još uvek tehnologija u razvoju; pružaoci usluga

često prestaju sa radom u neočekivanim trenucima. Koristite mehanizme ponovnih

pokušaja i prekidače da sprečite kaskadne otkaze.

Kompozabilnost i orkestracija AI radnika

Jedna od ključnih prednosti arhitekture AI radnika je njena kompozabilnost, koja

vam omogućava da kombinujete i orkestrate više AI radnika za rešavanje složenih

problema. Razbijanjem većeg zadatka na manje, upravljivije podzadatke, kojima

upravlja specijalizovani AI radnik, možete stvoriti moćne i fleksibilne sisteme. U ovom

odeljku ćemo istražiti različite pristupe komponovanju i orkestraciji “mnoštva” AI

radnika.

Ulančavanje AI radnika za višekoračne tokove rada

U mnogim scenarijima, složen zadatak se može razložiti na niz sekvencijalnih koraka,

gde izlaz jednog AI radnika postaje ulaz za sledećeg. Ovo ulančavanje AI radnika

Mnoštvo radnika 104

stvara višekoračni tok rada ili cevovod. Svaki AI radnik u lancu se fokusira na određeni

podzadatak, a konačni izlaz je rezultat kombinovanih napora svih radnika.

Razmotrimo primer u kontekstu Ruby on Rails aplikacije za obradu korisnički

generisanog sadržaja. Tok rada uključuje sledeće korake, koji su, priznajemo, verovatno

pojedinačno previše jednostavni da bi vredelo razlagati ih na ovaj način u stvarnim

slučajevima upotrebe, ali čine primer lakšim za razumevanje:

1. Čišćenje teksta: AI radnik zadužen za uklanjanje HTML oznaka, pretvaranje teksta

u mala slova i upravljanje Unicode normalizacijom.

2. Detekcija jezika: AI radnik koji identifikuje jezik očišćenog teksta.

3. Analiza sentimenta: AI radnik koji određuje sentiment (pozitivan, negativan ili

neutralan) teksta na osnovu detektovanog jezika.

4. Kategorizacija sadržaja: AI radnik koji klasifikuje tekst u predefinisane kategorije

koristeći tehnike obrade prirodnog jezika.

Evo vrlo pojednostavljenog primera kakomožete ulančati ove AI radnike koristeći Ruby:

1 class ContentProcessor

2 def initialize(text)

3 @text = text

4 end

5

6 def process

7 cleaned_text = TextCleanupWorker.new(@text).call

8 language = LanguageDetectionWorker.new(cleaned_text).call

9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

10 category = CategorizationWorker.new(cleaned_text, language).call

11

12 { cleaned_text:, language:, sentiment:, category: }

13 end

14 end

U ovom primeru, klasa ContentProcessor se inicijalizuje sa sirovim tekstom i povezuje

AI radnike zajedno u metodi process. Svaki AI radnik izvršava svoj specifični zadatak

Mnoštvo radnika 105

i prosleđuje rezultat sledećem radniku u lancu. Konačni izlaz je heš koji sadrži očišćeni

tekst, detektovani jezik, sentiment i kategoriju sadržaja.

Paralelna obrada za nezavisne AI radnike

U prethodnom primeru, AI radnici su povezani sekvencijalno, gde svaki radnik obrađuje

tekst i prosleđuje rezultat sledećem radniku. Međutim, ako imate više AI radnika koji

mogu nezavisno da rade na istom ulazu, možete optimizovati tok rada tako što ćete ih

obraditi paralelno.

U datom scenariju, nakon što TextCleanupWorker izvrši čišćenje teksta,

LanguageDetectionWorker, SentimentAnalysisWorker i CategorizationWorker

mogu svi nezavisno da obrađuju očišćeni tekst. Pokretanjem ovih radnika paralelno,

možete potencijalno smanjiti ukupno vreme obrade i poboljšati efikasnost vašeg toka

rada.

Da biste postigli paralelnu obradu u Ruby-ju, možete iskoristiti tehnike konkurentnosti

kao što su niti ili asinhrono programiranje. Evo primera kako možete modifikovati klasu

ContentProcessor da obrađuje poslednja tri radnika paralelno koristeći niti:

1 require 'concurrent'

2

3 class ContentProcessor

4 def initialize(text)

5 @text = text

6 end

7

8 def process

9 cleaned_text = TextCleanupWorker.new(@text).call

10

11 language_future = Concurrent::Future.execute do

12 LanguageDetectionWorker.new(cleaned_text).call

13 end

14

15 sentiment_future = Concurrent::Future.execute do

16 SentimentAnalysisWorker.new(cleaned_text).call

Mnoštvo radnika 106

17 end

18

19 category_future = Concurrent::Future.execute do

20 CategorizationWorker.new(cleaned_text).call

21 end

22

23 language = language_future.value

24 sentiment = sentiment_future.value

25 category = category_future.value

26

27 { cleaned_text:, language:, sentiment:, category: }

28 end

29 end

U ovoj optimizovanoj verziji, koristimo biblioteku concurrent-ruby za kreiranje

Concurrent::Future objekata za svakog od nezavisnih AI radnih procesa. Objekat

Future predstavlja izračunavanje koje će se izvršiti asinhrono u zasebnoj niti.

Nakon koraka čišćenja teksta, kreiramo tri Future objekta: language_future,

sentiment_future i category_future. Svaki Future izvršava svoj odgovarajući

AI radni proces (LanguageDetectionWorker, SentimentAnalysisWorker i

CategorizationWorker) u zasebnoj niti, prosleđujući cleaned_text kao ulaz.

Pozivanjemmetode value na svakom Future objektu, čekamo da se izračunavanje završi

i preuzimamo rezultat. Metoda value blokira izvršavanje dok rezultat ne bude dostupan,

osiguravajući da su svi paralelni radni procesi završili obradu pre nastavka.

Na kraju, konstruišemo izlazni heš sa očišćenim tekstom i rezultatima iz paralelnih

radnih procesa, baš kao u originalnom primeru.

Obradom nezavisnih AI radnih procesa paralelno, možete potencijalno smanjiti ukupno

vreme obrade u poređenju sa sekvencijalnim izvršavanjem. Ova optimizacija je posebno

korisna kada se radi sa vremenski zahtevnim zadacima ili kada se obrađuju velike

količine podataka.

Međutim, važno je napomenuti da stvarni dobici u performansama zavise od različitih

faktora, kao što su složenost svakog radnog procesa, dostupni sistemski resursi i režijski

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Mnoštvo radnika 107

troškovi upravljanja nitima. Uvek je dobra praksa testirati performanse i profilisati svoj

kod kako biste odredili optimalni nivo paralelizma za vaš specifični slučaj upotrebe.

Dodatno, kada implementirate paralelnu obradu, vodite računa o svim deljenim

resursima ili zavisnostima između radnih procesa. Osigurajte da radni procesi mogu

raditi nezavisno bez konflikata ili stanja trke. Ako postoje zavisnosti ili deljeni resursi,

možda ćete morati implementirati odgovarajuće mehanizme sinhronizacije kako

biste održali integritet podataka i izbegli probleme poput međusobnog blokiranja ili

nedoslednih rezultata.

Ruby-jev Global Interpreter Lock i asinhrona obrada

Važno je razumeti implikacije Ruby-jevog Global Interpreter Lock-a (GIL) kada

razmatramo asinhronu obradu zasnovanu na nitima u Ruby-ju.

GIL je mehanizam u Ruby-jevom interpreteru koji osigurava da samo jedna nit može

izvršavati Ruby kod u jednom trenutku, čak i na procesorima sa više jezgara. To znači

da iako se više niti može kreirati i njima upravljati unutar Ruby procesa, samo jedna

nit može aktivno izvršavati Ruby kod u bilo kom trenutku.

GIL je dizajniran da pojednostavi implementaciju Ruby interpretera i obezbedi

sigurnost niti za Ruby-jeve interne strukture podataka. Međutim, on takođe

ograničava mogućnost pravog paralelnog izvršavanja Ruby koda.

Kada koristite niti u Ruby-ju, kao što je to slučaj sa bibliotekom concurrent-ruby ili

ugrađenom klasom Thread, niti su podložne ograničenjima GIL-a. GIL dozvoljava

svakoj niti da izvršava Ruby kod tokom kratkog vremenskog isečka pre prebacivanja

na drugu nit, stvarajući iluziju konkurentnog izvršavanja.

Međutim, zbog GIL-a, stvarno izvršavanje Ruby koda ostaje sekvencijalno. Dok jedna

nit izvršava Ruby kod, druge niti su u suštini pauzirane, čekajući svoj red da dobiju

GIL i izvrše se.

Mnoštvo radnika 108

To znači da je asinhrona obrada zasnovana na nitima u Ruby-ju najefikasnija za

U/I vezane zadatke, kao što je čekanje na odgovore eksternih API-ja (kao što su

veliki jezički modeli hostovani od strane trećih strana) ili izvođenje U/I operacija

sa fajlovima. Kada nit naiđe na U/I operaciju, može osloboditi GIL, omogućavajući

drugim nitima da se izvršavaju dok čekaju da se U/I operacija završi.

S druge strane, za procesorski vezane zadatke, kao što su intenzivna izračunavanja

ili dugotrajna obrada AI radnih procesa, GIL može ograničiti potencijalne dobitke u

performansama kod paralelizma zasnovanog na nitima. Pošto samo jedna nit može

izvršavati Ruby kod u jednom trenutku, ukupno vreme izvršavanja možda neće biti

značajno smanjeno u poređenju sa sekvencijalnom obradom.

Da biste postigli pravo paralelno izvršavanje za procesorski vezane zadatke u Ruby-ju,

možda ćete morati istražiti alternativne pristupe, kao što su:

• Korišćenje paralelizma zasnovanog na procesima sa više Ruby procesa, od

kojih svaki radi na zasebnom procesorskom jezgru.

• Korišćenje eksternih biblioteka ili okvira koji pružaju nativna proširenja ili

interfejse ka jezicima bez GIL-a, kao što su C ili Rust.,

• Korišćenje distribuiranih računarskih okvira ili redova poruka za distribuciju

zadataka preko više mašina ili procesa.

Ključno je razmotriti prirodu vaših zadataka i ograničenja koja nameće GIL prilikom

dizajniranja i implementacije asinhrone obrade u Ruby-ju. Dok asinhrona obrada

zasnovana na nitima može pružiti prednosti za U/I vezane zadatke, možda neće

ponuditi značajna poboljšanja performansi za procesorski vezane zadatke zbog

ograničenja GIL-a.

Mnoštvo radnika 109

Ensemble tehnike za poboljšanu preciznost

Ensemble tehnike podrazumevaju kombinovanje izlaza više AI radnih procesa kako bi

se poboljšala ukupna preciznost ili robusnost sistema. Umesto oslanjanja na jedan AI

radni proces, ensemble tehnike koriste kolektivnu inteligenciju više radnih procesa za

donošenje informisanijih odluka.

Ansambli su posebno važni ako različiti delovi vašeg radnog toka najbolje

funkcionišu sa različitim AI modelima, što je češća pojava nego što možda

mislite. Moćni modeli poput GPT-4 su izuzetno skupi u poređenju sa manje

sposobnim opcijama otvorenog koda, i verovatno nisu potrebni za svaki

pojedinačni korak radnog toka vaše aplikacije.

Jedna uobičajena tehnika ansambla je većinsko glasanje, gde više AI izvršilaca nezavisno

obrađuje isti ulaz, a konačni izlaz se određuje većinskim konsenzusom. Ovaj pristup

može pomoći u ublažavanju uticaja grešaka pojedinačnih izvršilaca i poboljšati ukupnu

pouzdanost sistema.

Razmotrimo primer gde imamo tri AI izvršioca za analizu sentimenta, od kojih svaki

koristi različit model ili je snabdeven različitim kontekstom. Možemo kombinovati

njihove izlaze koristeći većinsko glasanje kako bismo odredili konačno predviđanje

sentimenta.

Mnoštvo radnika 110

1 class SentimentAnalysisEnsemble

2 def initialize(text)

3 @text = text

4 end

5

6 def analyze

7 predictions = [

8 SentimentAnalysisWorker1.new(@text).analyze,

9 SentimentAnalysisWorker2.new(@text).analyze,

10 SentimentAnalysisWorker3.new(@text).analyze

11]

12

13 predictions

14 .group_by { |sentiment| sentiment }

15 .max_by { |_, votes| votes.size }

16 .first

17

18 end

19 end

U ovom primeru, klasa SentimentAnalysisEnsemble. se inicijalizuje sa tekstom i poziva

tri različita AI radnika za analizu sentimenta. Metoda analyze prikuplja predviđanja od

svakog radnika i određuje većinski sentiment koristeći metode group_by i max_by.

Konačni rezultat je sentiment koji dobija najviše glasova od ansambla radnika

Ansambli su očigledno slučaj gde eksperimentisanje sa paralelizmom može

biti vredno vašeg vremena.

Dinamički odabir i pozivanje AI radnika

U nekim, ako ne i u većini slučajeva, određeni AI radnik koji će biti pozvan može zavisiti

od uslova izvršavanja ili korisničkih unosa. Dinamički odabir i pozivanje AI radnika

omogućavaju fleksibilnost i prilagodljivost sistema.

Mnoštvo radnika 111

Možda ćete biti u iskušenju da pokušate da uklopite mnogo funkcionalnosti u

jednog AI radnika, dajući mumnoštvo funkcija i veliki komplikovani prompt

koji objašnjava kako ih pozvati. Odupreti se iskušenju, verujte mi. Jedan od

razloga zašto se pristup o kojem govorimo u ovom poglavlju zove “Mnoštvo

radnika” je da nas podseti da je poželjno imati mnogo specijalizovanih

radnika, od kojih svaki obavlja svoj mali posao u službi veće svrhe.

Na primer, razmotrite četbot aplikaciju gde su različiti AI radnici odgovorni za obradu

različitih tipova korisničkih upita. Na osnovu korisničkog unosa, aplikacija dinamički

bira odgovarajućeg AI radnika za obradu upita.

1 class ChatbotController < ApplicationController

2 def process_query

3 query = params[:query]

4 query_type = QueryClassifierWorker.new(query).classify

5

6 case query_type

7 when 'greeting'

8 response = GreetingWorker.new(query).generate_response

9 when 'product_inquiry'

10 response = ProductInquiryWorker.new(query).generate_response

11 when 'order_status'

12 response = OrderStatusWorker.new(query).generate_response

13 else

14 response = DefaultResponseWorker.new(query).generate_response

15 end

16

17 render json: { response: response }

18 end

19 end

U ovom primeru, ChatbotController prima korisnički upit kroz process_query akciju.

Prvo koristi QueryClassifierWorker da odredi tip upita. Na osnovu klasifikovanog tipa

upita, kontroler dinamički bira odgovarajućeg AI radnika za generisanje odgovora. Ova

dinamička selekcija omogućava četbotu da obrađuje različite tipove upita i usmerava ih

ka relevantnim AI radnicima.

Mnoštvo radnika 112

Pošto je rad QueryClassifierWorker-a relativno jednostavan i

ne zahteva mnogo konteksta ili definicija funkcija, verovatno ga

možete implementirati koristeći ultra-brz mali VJM kao što je

mistralai/mixtral-8x7b-instruct:nitro. On ima mogućnosti koje su

bliske GPT-4 nivou na mnogim zadacima i, u trenutku dok ovo pišem, Groq

ga može posluživati neverovatnom brzinom od 444 tokena u sekundi.

Kombinovanje tradicionalne OPJ sa VJM-ovima

Iako su Veliki jezički modeli (VJM) revolucionirali oblast obrade prirodnog jezika

(OPJ), nudeći neprevaziđenu svestranost i performanse u širokom spektru zadataka,

oni nisu uvek najefikasnije ili najisplativije rešenje za svaki problem. U mnogim

slučajevima, kombinovanje tradicionalnih OPJ tehnika sa VJM-ovima može dovesti do

optimizovanijih, ciljanijih i ekonomičnijih pristupa rešavanju specifičnih OPJ izazova.

Zamislite VJM-ove kao švajcarske noževe OPJ-a-–neverovatno svestrane i moćne, ali ne

nužno najbolji alat za svaki posao. Ponekad, namenski alat poput vadičepa ili otvarača

za konzerve može biti efikasniji za određeni zadatak. Slično tome, tradicionalne OPJ

tehnike, kao što su grupisanje dokumenata, identifikacija tema i klasifikacija, čestomogu

pružiti ciljanije i ekonomičnije rešenje za određene aspekte vašeg OPJ procesa.

Jedna od ključnih prednosti tradicionalnih OPJ tehnika je njihova računarska efikasnost.

Ove metode, koje se često oslanjaju na jednostavnije statističke modele ili pristupe

zasnovane na pravilima, mogu obrađivati velike količine tekstualnih podataka mnogo

brže i sa manjim računarskim opterećenjem u poređenju sa VJM-ovima. Ovo ih čini

posebno pogodnim za zadatke koji uključuju analizu i organizaciju velikih korpusa

dokumenata, kao što je grupisanje sličnih članaka ili identifikacija ključnih tema unutar

kolekcije tekstova.

Štaviše, tradicionalne OPJ tehnike često mogu postići visoku tačnost i preciznost za

specifične zadatke, posebno kada su obučene na domenski specifičnim skupovima

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Mnoštvo radnika 113

podataka. Na primer, dobro podešen klasifikator dokumenata koji koristi tradicionalne

algoritme mašinskog učenja poput Mašina sa vektorima podrške (MVP) ili Naivnog

Bajesa može precizno kategorisati dokumente u predefinisane kategorije uz minimalne

računarske troškove.

Međutim, VJM-ovi zaista blistaju kada su u pitanju zadaci koji zahtevaju dublje

razumevanje jezika, konteksta i rezonovanja. Njihova sposobnost da generišu

koherentan i kontekstualno relevantan tekst, odgovaraju na pitanja i sumiraju duge

pasuse je neprevaziđena tradicionalnim OPJ metodama. VJM-ovi mogu efikasno da se

nose sa složenim lingvističkim fenomenima, kao što su dvosmislenost, koreferencija

i idiomatski izrazi, čineći ih neprocenjivim za zadatke koji zahtevaju generisanje ili

razumevanje prirodnog jezika.

Prava snaga leži u kombinovanju tradicionalnih OPJ tehnika sa VJM-ovima kako bi

se stvorili hibridni pristupi koji koriste prednosti oba. Korišćenjem tradicionalnih OPJ

metoda za zadatke poput pretprocesiranja dokumenata, grupisanja i ekstrakcije tema,

možete efikasno organizovati i strukturirati vaše tekstualne podatke. Ove strukturirane

informacije se zatim mogu proslediti VJM-ovima za naprednije zadatke, kao što su

generisanje rezimea, odgovaranje na pitanja ili kreiranje sveobuhvatnih izveštaja.

Na primer, razmotrimo slučaj upotrebe gde želite da generišete izveštaj o trendovima za

specifičan domen na osnovu velikog korpusa pojedinačnih dokumenata o trendovima.

Umesto da se oslanjate isključivo na VJM-ove, što može biti računarski skupo i

vremenski zahtevno za obradu velikih količina teksta, možete primeniti hibridni

pristup:

1. Koristite tradicionalne OPJ tehnike, kao što su modelovanje tema (npr. Latentna

Dirihleova alokacija) ili algoritmi grupisanja (npr. K-sredine), za grupisanje sličnih

dokumenata o trendovima i identifikaciju ključnih tema unutar korpusa.

2. Prosledite grupisane dokumente i identifikovane teme VJM-u, koristeći njegove

superiorne sposobnosti razumevanja i generisanja jezika za kreiranje koherentnih

i informativnih rezimea za svaku grupu ili temu.

Mnoštvo radnika 114

3. Na kraju, koristite VJM za generisanje sveobuhvatnog izveštaja o trendovima

kombinovanjem pojedinačnih rezimea, isticanjem najznačajnijih trendova i

pružanjem uvida i preporuka na osnovu objedinjenih informacija.

Kombinovanjem tradicionalnih OPJ tehnika sa VJM-ovima na ovaj način, možete

efikasno obraditi velike količine tekstualnih podataka, izvući smislene uvide i generisati

visokokvalitetne izveštaje uz optimizaciju računarskih resursa i troškova.

Kada se upuštate u NLP projekte, neophodno je pažljivo proceniti specifične zahteve

i ograničenja svakog zadatka i razmotriti kako se tradicionalne NLP metode i VJM

mogu zajedno iskoristiti za postizanje najboljih rezultata. Kombinovanjem efikasnosti

i preciznosti tradicionalnih tehnika sa svestranošću i snagom VJM-a, možete kreirati

izuzetno efikasna i ekonomična NLP rešenja koja donose vrednost vašim korisnicima i

zainteresovanim stranama.

Upotreba alata

U domenu razvoja aplikacija vođenih veštačkom inteligencijom, koncept

“upotrebe alata” ili “pozivanja funkcija” pojavio se kao moćna tehnika koja omogućava

vašem LLM-u da se poveže sa spoljnim alatima, API-jima, funkcijama, bazama

podataka i drugim resursima. Ovaj pristup omogućava bogatiji skup ponašanja od

samog generisanja teksta, kao i dinamičnije interakcije između vaših AI komponenti i

ostatka ekosistema vaše aplikacije. Kao što ćemo razmotriti u ovom poglavlju, upotreba

alata vam takođe pruža mogućnost da vaš AI model generiše podatke na strukturiran

način.

Šta je upotreba alata?

Upotreba alata, takođe poznata kao pozivanje funkcija, je tehnika koja omogućava

programerima da definišu listu funkcija sa kojima LLM može da komunicira tokom

Upotreba alata 116

procesa generisanja. Ovi alati mogu biti sve od jednostavnih pomoćnih funkcija do

složenih API-ja ili upita baze podataka. Omogućavajući LLM-u pristup ovim alatima,

programeri mogu proširiti mogućnosti modela i omogućiti mu da izvršava zadatke koji

zahtevaju spoljno znanje ili akcije.

Slika 8. Primer definicije funkcije za AI radnika koji analizira dokumente

1 FUNCTION = {

2 name: "save_analysis",

3 description: "Save analysis data for document",

4 parameters: {

5 type: "object",

6 properties: {

7 title: {

8 type: "string",

9 maxLength: 140

10 },

11 summary: {

12 type: "string",

13 description: "comprehensive multi-paragraph summary with

14 overview and list of sections (if applicable)"

15 },

16 tags: {

17 type: "array",

18 items: {

19 type: "string",

20 description: "lowercase tags representing main themes

21 of the document"

22 }

23 }

24 },

25 "required": %w[title summary tags]

26 }

27 }.freeze

Ključna ideja iza upotrebe alata je da se LLM-u omogući dinamički odabir i izvršavanje

odgovarajućih alata na osnovu korisničkog unosa ili zadatka koji treba obaviti.

Umesto da se oslanja isključivo na prethodno obučeno znanje modela, upotreba alata

omogućava LLM-u da koristi eksterne resurse za generisanje preciznijih, relevantnijih

Upotreba alata 117

i upotrebljivijih odgovora. Upotreba alata čini tehnike kao što je RAG (Generisanje

potpomognuto pretraživanjem) mnogo lakšim za implementaciju nego što bi to inače

bilo.

Imajte na umu da, osim ako nije drugačije navedeno, ova knjiga pretpostavlja da vaš

AI model nema pristup ugrađenim alatima na strani servera. Sve alate koje želite da

učinite dostupnim vašem AI-ju morate eksplicitno deklarisati u svakom API zahtevu,

sa odredbama za njihovo izvršavanje ako i kada vaš AI naznači da bi želeo da koristi

taj alat u svom odgovoru.

Potencijal upotrebe alata

Upotreba alata otvara širok spektar mogućnosti za aplikacije zasnovane na veštačkoj

inteligenciji. Evo nekoliko primera šta se može postići upotrebom alata:

1. Četbotovi i virtuelni asistenti: Povezivanjem LLM-a sa eksternim alatima,

četbotovi i virtuelni asistenti mogu obavljati složenije zadatke, kao što su

preuzimanje informacija iz baza podataka, izvršavanje API poziva ili interakcija

sa drugim sistemima. Na primer, četbot bi mogao koristiti CRM alat za promenu

statusa ponude na osnovu korisničkog zahteva.

2. Analiza podataka i uvidi: LLM-ovi se mogu povezati sa alatima ili bibliotekama

za analizu podataka kako bi izvršavali napredne zadatke obrade podataka. Ovo

omogućava aplikacijama da generišu uvide, sprovode uporedne analize ili pružaju

preporuke zasnovane na podacima na osnovu korisničkih upita.

3. Pretraga i preuzimanje informacija: Upotreba alata omogućava LLM-ovima

interakciju sa pretraživačima, vektorskim bazama podataka ili drugim sistemima

za preuzimanje informacija. Transformisanjem korisničkih upita u upite za

Upotreba alata 118

pretragu, LLM može preuzeti relevantne informacije iz više izvora i pružiti

sveobuhvatne odgovore na korisnička pitanja.

4. Integracija sa eksternim servisima: Upotreba alata omogućava besprekornu

integraciju između aplikacija zasnovanih na veštačkoj inteligenciji i eksternih

servisa ili API-ja. Na primer, LLM bi mogao da komunicira sa API-jem za

vremenske prilike kako bi pružio ažurne informacije o vremenu ili sa API-jem

za prevođenje kako bi generisao višejezične odgovore.

Tok rada sa alatima

Tok rada sa alatima obično uključuje četiri ključna koraka:

1. Uključivanje definicija funkcija u kontekst zahteva

2. Dinamički (ili eksplicitni) odabir alata

3. Izvršavanje funkcije/a

4. Opcionalni nastavak originalnog upita

Hajde da detaljno pregledamo svaki od ovih koraka.

Uključivanje definicija funkcija u kontekst zahteva

AI zna koje alate ima na raspolaganju jer mu dajete listu kao deo vašeg zahteva za

završetak (obično definisano kao funkcije koristeći varijantu JSON šeme).

Precizna sintaksa definicije alata je specifična za model.

Ovo je način kako se definiše funkcija get_weather u Claude 3:

Upotreba alata 119

1 {

2 "name": "get_weather",

3 "description": "Get the current weather in a given location",

4 "input_schema": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA"

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 }

16 },

17 "required": ["location"]

18 }

19 }

A ovo je način kako biste definisali istu funkciju za GPT-4, prosleđujući je kao vrednost

parametra tools:

1 {

2 "name": "get_current_weather",

3 "description": "Get the current weather in a given location",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA",

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 },

16 },

17 "required": ["location"],

Upotreba alata 120

18 },

19 }

Skoro isto, samo drugačije bez očiglednog razloga! Kako iritantno.

Definicije funkcija određuju naziv, opis i ulazne parametre. Ulazni parametri se mogu

dodatno definisati korišćenjem atributa kao što su enumeracije za ograničavanje

prihvatljivih vrednosti, i određivanjem da li je parametar obavezan ili ne.

Pored samih definicija funkcija, možete takođe uključiti uputstva ili kontekst o tome

zašto i kako koristiti funkciju u sistemskoj direktivi.

Na primer, moj alat za pretragu veba u Olympia uključuje ovu sistemsku direktivu, koja

podseća VI da ima pomenute alate na raspolaganju:

1 The `google_search` and `realtime_search` functions let you do research

2 on behalf of the user. In contrast to Google, realtime search is powered

3 by Perplexity and provides real-time information to curated current events

4 databases and news sources. Make sure to include URLs in your response so

5 user can do followup research.

Pružanje detaljnih opisa smatra se najvažnijim faktorom u performansama alata. Vaši

opisi bi trebalo da objasne svaki detalj o alatu, uključujući:

• Šta alat radi

• Kada bi trebalo da se koristi (a kada ne bi trebalo)

• Šta svaki parametar znači i kako utiče na ponašanje alata

• Sve važne napomene ili ograničenja koja se odnose na implementaciju alata

Što više konteksta možete dati veštačkoj inteligenciji o vašim alatima, to će ona biti bolja

u odlučivanju kada i kako da ih koristi. Na primer, Anthropic preporučuje najmanje 3-4

rečenice po opisu alata za svoju Claude 3 seriju, više ako je alat složen.

Upotreba alata 121

Nije nužno intuitivno, ali opisi se takođe smatraju važnijim od primera. Iako možete

uključiti primere kako se koristi alat u njegovom opisu ili u pratećem promptu, to je

manje važno od jasnog i sveobuhvatnog objašnjenja svrhe i parametara alata. Primere

dodajte tek nakon što ste u potpunosti razradili opis.

Evo primera Stripe-ovske API funkcijske specifikacije:

1 {

2 "name": "createPayment",

3 "description": "Create a new payment request",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "transaction_amount": {

8 "type": "number",

9 "description": "The amount to be paid"

10 },

11 "description": {

12 "type": "string",

13 "description": "A brief description of the payment"

14 },

15 "payment_method_id": {

16 "type": "string",

17 "description": "The payment method to be used"

18 },

19 "payer": {

20 "type": "object",

21 "description": "Information about the payer, including their name,

22 email, and identification number",

23 "properties": {

24 "name": {

25 "type": "string",

26 "description": "The payer's name"

27 },

28 "email": {

29 "type": "string",

30 "description": "The payer's email address"

31 },

32 "identification": {

33 "type": "object",

34 "description": "The payer's identification number",

Upotreba alata 122

35 "properties": {

36 "type": {

37 "type": "string",

38 "description": "Identification document (e.g. CPF, CNPJ)"

39 },

40 "number": {

41 "type": "string",

42 "description": "The identification number"

43 }

44 },

45 "required": ["type", "number"]

46 }

47 },

48 "required": ["name", "email", "identification"]

49 }

50 }

51 }

U praksi, neki modeli imaju poteškoća sa ugneždenim funkcijskim

specifikacijama i sa složenim tipovima izlaznih podataka kao što su nizovi,

rečnici itd. Ali teoretski, trebalo bi da možete da dostavite JSON Schema

specifikacije proizvoljne dubine!

Dinamički odabir alata

Kada izvršavate chat completion koji uključuje definicije alata, LLM dinamički bira

najadekvatniji alat(e) za upotrebu i generiše potrebne ulazne parametre za svaki alat.

U praksi, sposobnost AI-ja da pozove tačno pravu funkciju i tačno prati vašu

specifikaciju za ulazne podatke je promenljiva. Postavljanje temperature hiperparametra

skroz na 0.0 dosta pomaže, ali prema mom iskustvu i dalje ćete povremeno dobijati

greške. Te greške uključuju halucirane nazive funkcija, pogrešno imenovane ili

jednostavno nedostajuće ulazne parametre. Parametri se prosleđuju kao JSON, što znači

da ćete ponekad videti greške uzrokovane odsečenim, pogrešno navedenim ili na drugi

način neispravnim JSON-om.

Upotreba alata 123

Obrasci Samozalečenja podataka mogu pomoći da se automatski poprave

pozivi funkcija koji se prekidaju zbog sintaksnih grešaka.

Prinudni (odnosno Eksplicitni) odabir alata

Neki modeli vam daju opciju da nametnete pozivanje određene funkcije kao parametar

u zahtevu. U suprotnom, da li će pozvati funkciju ili ne u potpunosti zavisi od procene

AI-ja.

Mogućnost prinudnog pozivanja funkcije je ključna u određenim scenarijima gde želite

da osigurate da se određeni alat ili funkcija izvrši, bez obzira na proces dinamičkog

odabira AI-ja. Postoji nekoliko razloga zašto je ova mogućnost važna:

1. Eksplicitna kontrola: Možda koristite AI kaoDiskretnu komponentu ili u unapred

definisanom toku rada koji zahteva izvršavanje određene funkcije u određeno

vreme. Prinudnim pozivanjem možete garantovati da će željena funkcija biti

pozvana umesto da ljubazno molite AI da to uradi.

2. Debagovanje i testiranje: Prilikom razvoja i testiranja aplikacija vođenih

AI-jem, mogućnost prinudnog pozivanja funkcija je neprocenjiva za potrebe

debagovanja. Eksplicitnim pokretanjem određenih funkcija možete izolovati

i testirati pojedinačne komponente vaše aplikacije. Ovo vam omogućava da

proverite ispravnost implementacija funkcija, validirate ulazne parametre i

osigurate da se vraćaju očekivani rezultati.

3. Rukovanje ivičnim slučajevima: Mogu postojati ivični slučajevi ili izuzetni

scenariji gde proces dinamičkog odabira AI-ja možda neće odabrati izvršavanje

funkcije koju bi trebalo, a vi to znate na osnovu spoljnih procesa. U takvim

slučajevima, mogućnost prinudnog pozivanja funkcije vam omogućava da

eksplicitno rukujete ovim situacijama. Definišite pravila ili uslove u logici vaše

aplikacije da odredite kada da premostite diskreciju AI-ja.

Upotreba alata 124

4. Konzistentnost i reproduktivnost: Ako imate određeni niz funkcija koje treba

izvršiti određenim redosledom, prinudno pozivanje garantuje da će se isti redosled

pratiti svaki put. Ovo je posebno važno u aplikacijama gde su konzistentnost i

predvidljivo ponašanje kritični, kao što su finansijski sistemi ili naučne simulacije.

5. Optimizacija performansi: U nekim slučajevima, prinudno pozivanje funkcije

može dovesti do optimizacije performansi. Ako znate da je određena funkcija

potrebna za određeni zadatak i da bi proces dinamičkog odabira AI-ja mogao

uvesti nepotreban overhead, možete zaobići proces selekcije i direktno pozvati

potrebnu funkciju. Ovo može pomoći u smanjenju latencije i poboljšanju ukupne

efikasnosti vaše aplikacije.

Ukratko, mogućnost prinudnog pozivanja funkcija u aplikacijama vođenim AI-jem

pruža eksplicitnu kontrolu, pomaže u debagovanju i testiranju, rukuje ivičnim

slučajevima, osigurava konzistentnost i reproduktivnost. To je moćan alat u vašem

arsenalu, ali moramo razgovarati o još jednom aspektu ove važne funkcionalnosti.

Umnogim slučajevima donošenja odluka, uvek želimo da model izvrši poziv

funkcije i možda nikada ne želimo da model odgovori samo svojim internim

znanjem. Na primer, ako usmeravate između više modela specijalizovanih za

različite zadatke (višejezični unos, matematika itd.), možete koristiti model

za pozivanje funkcija da delegira zahteve jednom od pomoćnih modela i

nikada ne odgovara samostalno.

Parametar izbora alata

GPT-4 i drugi jezički modeli koji podržavaju pozivanje funkcija daju vam parametar

tool_choice za kontrolu da li je upotreba alata obavezna kao deo završetka. Ovaj

parametar ima tri moguće vrednosti:

• auto daje AI-ju punu diskreciju oko korišćenja alata ili jednostavnog odgovaranja

Upotreba alata 125

• required govori AI-ju da mora pozvati alat umesto da odgovori, ali ostavlja izbor

alata AI-ju

• Treća opcija je postavljanje parametra name_of_function koji želite da prisilno

pozovete. Više o tome u sledećem odeljku.

Imajte na umu da ako postavite izbor alata na required, model će biti

primoran da izabere najrelevantniju funkciju za poziv od onih koje su

mu dostupne, čak i ako nijedna zaista ne odgovara upitu. U trenutku

objavljivanja, nije mi poznato da postoji model koji će vratiti prazan

tool_calls odgovor ili na neki drugi način dati do znanja da nije pronašao

odgovarajuću funkciju za poziv.

Forsiranje funkcije za dobijanje strukturiranog izlaza

Mogućnost forsiranja poziva funkcije vam daje način da dobijete strukturirane podatke

iz chat završetka umesto da ih sami morate izvlačiti iz tekstualnog odgovora.

Zašto je forsiranje funkcija za dobijanje strukturiranog izlaza toliko važno?

Jednostavno rečeno, zato što je izvlačenje strukturiranih podataka iz izlaza VJM-a

pravi glavobolja. Možete sebi malo olakšati život tako što ćete tražiti podatke u

XML-u, ali onda morate parsirati XML. I šta radite kada taj XML nedostaje jer je

vaša VI odgovorila: “Žao mi je, ali ne mogu da generišem podatke koje ste tražili

zato što bla, bla, bla…”

Kada koristite alate na ovaj način:

• Verovatno bi trebalo da definišete jedan alat u vašem zahtevu

Upotreba alata 126

• Ne zaboravite da forsirate korišćenje njegove funkcije pomoću tool_choice

parametra

• Zapamtite da će model proslediti unos alatu, tako da naziv alata i opis treba da

budu iz perspektive modela, a ne vaše

Ova poslednja tačka zaslužuje primer radi jasnoće. Recimo da tražite od VI da uradi

analizu sentimenta korisničkog teksta. Naziv funkcije ne bi bio analyze_sentiment, već

nešto poput save_sentiment_analysis. VI je ta koja radi analizu sentimenta, ne alat. Sve

što alat radi (iz perspektive VI) je čuvanje rezultata analize.

Evo primera korišćenja Claude 3 za beleženje rezimea slike u dobro strukturirani JSON,

ovog puta iz komandne linije koristeći curl:

1 curl https://api.anthropic.com/v1/messages \

2 --header "content-type: application/json" \

3 --header "x-api-key: $ANTHROPIC_API_KEY" \

4 --header "anthropic-version: 2023-06-01" \

5 --header "anthropic-beta: tools-2024-04-04" \

6 --data \

7 '{

8 "model": "claude-3-sonnet-20240229",

9 "max_tokens": 1024,

10 "tools": [{

11 "name": "record_summary",

12 "description": "Record summary of image into well-structured JSON.",

13 "input_schema": {

14 "type": "object",

15 "properties": {

16 "key_colors": {

17 "type": "array",

18 "items": {

19 "type": "object",

20 "properties": {

21 "r": {

22 "type": "number",

23 "description": "red value [0.0, 1.0]"

24 },

25 "g": {

Upotreba alata 127

26 "type": "number",

27 "description": "green value [0.0, 1.0]"

28 },

29 "b": {

30 "type": "number",

31 "description": "blue value [0.0, 1.0]"

32 },

33 "name": {

34 "type": "string",

35 "description": "Human-readable color name

36 in snake_case, e.g.

37 \"olive_green\"or

38 \"turquoise\""

39 }

40 },

41 "required": ["r", "g", "b", "name"]

42 },

43 "description": "Key colors in the image. Four or less."

44 },

45 "description": {

46 "type": "string",

47 "description": "Image description. 1-2 sentences max."

48 },

49 "estimated_year": {

50 "type": "integer",

51 "description": "Estimated year that the image was taken,

52 if is it a photo. Only set this if the

53 image appears to be non-fictional.

54 Rough estimates are okay!"

55 }

56 },

57 "required": ["key_colors", "description"]

58 }

59 }],

60 "messages": [

61 {

62 "role": "user",

63 "content": [

64 {

65 "type": "image",

66 "source": {

67 "type": "base64",

Upotreba alata 128

68 "media_type": "'$IMAGE_MEDIA_TYPE'",

69 "data": "'$IMAGE_BASE64'"

70 }

71 },

72 {

73 "type": "text",

74 "text": "Use `record_summary` to describe this image."

75 }

76]

77 }

78]

79 }'

U datom primeru, koristimo Claude 3 model kompanije Anthropic za generisanje

strukturiranog JSON rezimea slike. Evo kako to funkcioniše:

1. Definišemo jedan alat pod nazivom record_summary u nizu tools u sadržaju

zahteva. Ovaj alat je zadužen za beleženje rezimea slike u dobro strukturiranom

JSON formatu.

2. Alat record_summary ima input_schema koji određuje očekivanu strukturu

JSON izlaza. On definiše tri svojstva:

• key_colors: Niz objekata koji predstavljaju ključne boje u slici. Svaki objekat

boje ima svojstva za crvenu, zelenu i plavu vrednost (u opsegu od 0.0 do 1.0)

i ljudski čitljiv naziv boje u snake_case formatu.

• description: String svojstvo za kratak opis slike, ograničen na 1-2 rečenice.

• estimated_year: Opciono celobrojno svojstvo za procenjenu godinu kada je

slika snimljena, ako izgleda da je u pitanju stvarna fotografija.

3. U nizu messages, dostavljamo podatke slike kao base64-kodirani string zajedno

sa tipom medija. Ovo omogućava modelu da obradi sliku kao deo ulaza.

4. Takođe upućujemo Claude-a da koristi alat record_summary za opisivanje slike.

5. Kada se zahtev pošalje Claude 3 modelu, on analizira sliku i generiše JSON rezime

na osnovu određenog input_schema. Model izdvaja ključne boje, pruža kratak

opis i procenjuje godinu kada je slika snimljena (ako je primenljivo).

Upotreba alata 129

6. Generisani JSON rezime se prosleđuje kao parametar alatu record_summary,

pružajući strukturirani prikaz ključnih karakteristika slike.

Korišćenjem alata record_summary sa dobro definisanim input_schema, možemo

dobiti strukturirani JSON rezime slike bez oslanjanja na ekstrakciju običnog teksta. Ovaj

pristup osigurava da izlaz prati dosledan format i može se lako parsirati i obraditi od

strane nizvodnih komponenti aplikacije.

Mogućnost forsiranja poziva funkcije i određivanja očekivane izlazne strukture je

moćna karakteristika upotrebe alata u aplikacijama vođenim veštačkom inteligencijom.

To omogućava programerima da imaju više kontrole nad generisanim izlazom i

pojednostavljuje integraciju podataka generisanih veštačkom inteligencijom u tok rada

njihove aplikacije.

Izvršavanje funkcije(a)

Definisali ste funkcije i uputili svoj AI, koji je odlučio da treba da pozove jednu od vaših

funkcija. Sada je vreme da vaš aplikacioni kod ili biblioteka, ako koristite Ruby gem

poput raix-rails, prosledi poziv funkcije i njene parametre odgovarajućoj implementaciji

u vašem aplikacionom kodu.

Vaš aplikacioni kod odlučuje šta da radi sa rezultatima izvršavanja funkcije. Možda

to podrazumeva jednu liniju koda u lambda izrazu, ili možda podrazumeva pozivanje

eksternog API-ja. Možda uključuje pozivanje druge AI komponente, ili možda uključuje

stotine ili čak hiljade linija koda u ostatku vašeg sistema. To je u potpunosti do vas.

Ponekad je poziv funkcije kraj operacije, ali ako rezultati predstavljaju informacije u

lancu razmišljanja koji AI treba da nastavi, tada vaš aplikacioni kod mora da ubaci

rezultate izvršavanja u transkript razgovora i dozvoli AI-ju da nastavi obradu.

Na primer, evo Raix deklaracije funkcije koju koristi Olympia-in AccountManager

za komunikaciju sa našim klijentima kao deo Inteligentne orkestracije toka rada za

korisničku podršku.

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

Upotreba alata 130

1 class AccountManager

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 # lots of other functions...

6

7 function :notify_account_owner,

8 "Don't share UUID. Mention dollars if subscription changed",

9 message: { type: "string" } do |arguments|

10 account.owner.freeform_notify(

11 subject: "Account Change Notification",

12 message: arguments[:message]

13)

14 "Notified account owner"

15 end

Možda nije odmah jasno šta se ovde dešava, pa ću to razložiti.

1. Klasa AccountManager definiše mnoge funkcije vezane za upravljanje nalozima.

Može da promeni vaš plan, dodaje i uklanja članove tima, između ostalog.

2. Njena uputstva najvišeg nivoa govore AccountManager-u da treba da obavesti

vlasnika naloga o rezultatima zahteva za promenu naloga, koristeći funkciju

notify_account_owner.

3. Sažeta definicija funkcije uključuje njene:

• ime

• opis

• parametre message: { type: ”string” }

• blok koji se izvršava kada se funkcija pozove

Nakon ažuriranja transkripta sa rezultatima funkcijskog bloka, ponovo se poziva metoda

chat_completion. Ova metoda je odgovorna za slanje ažuriranog transkripta razgovora

nazad AI modelu za dalju obradu. Ovaj proces nazivamo konverzacionom petljom.

Kada AI model primi novi zahtev za završetak četovanja sa ažuriranim transkriptom,

ima pristup rezultatima prethodno izvršene funkcije. Može da analizira ove rezultate,

Upotreba alata 131

uključi ih u svoj proces odlučivanja i generiše sledeći odgovor ili akciju na osnovu

kumulativnog konteksta razgovora. Može da izabere da izvrši dodatne funkcije na

osnovu ažuriranog konteksta, ili može da generiše konačan odgovor na originalni upit

ako utvrdi da nisu potrebni dodatni pozivi funkcija.

Opcionalni nastavak originalnog upita

Kada pošaljete rezultate alata nazad VJM-u i nastavite obradu originalnog upita, AI

koristi te rezultate da ili pozove dodatne funkcije ili generiše konačan tekstualni odgovor.

Neki modeli kao što je Cohere-ov Command-R mogu da citiraju

specifične alate koje su koristili u svojim odgovorima, pružajući dodatnu

transparentnost i mogućnost praćenja.

U zavisnosti od modela koji se koristi, rezultati poziva funkcije će živeti u porukama

transkripta koje imaju svoju posebnu ulogu ili će biti prikazani u nekoj drugoj sintaksi.

Ali važan deo je da ti podaci budu u transkriptu, kako bi ih AI mogao razmotriti dok

odlučuje šta dalje da radi.

Česta (i potencijalno skupa) greška je zaboraviti dodavanje rezultata funkcije

u transkript pre nastavka četovanja. Kao rezultat toga, AI će biti upitan na

suštinski isti način kao pre nego što je prvi put pozvao funkciju. Drugim

rečima, što se AI-ja tiče, on još nije pozvao funkciju. Tako da je poziva

ponovo. I ponovo. I ponovo, zauvek dok ga ne prekinete. Nadajmo se da

vaš kontekst nije bio prevelik, a vaš model nije bio preskup!

Najbolje prakse za upotrebu alata

Da biste najbolje iskoristili upotrebu alata, razmotrite sledeće najbolje prakse.

https://openrouter.ai/models/cohere/command-r

Upotreba alata 132

Opisne definicije

Obezbedite jasna i opisna imena i opise za svaki alat i njegove ulazne parametre. Ovo

pomaže VJM-u da bolje razume svrhu i mogućnosti svakog alata.

Iz iskustva vam mogu reći da se uobičajena mudrost koja kaže da je “imenovanje

teško” primenjuje i ovde; video sam dramatično različite rezultate od VJM-ova samo

promenom imena funkcija ili formulacije opisa. Ponekad uklanjanje opisa poboljšava

performanse.

Obrada rezultata alata

Kada prosleđujete rezultate alata nazad VJM-u, pobrinite se da su dobro strukturirani

i sveobuhvatni. Koristite smislene ključeve i vrednosti za predstavljanje izlaza svakog

alata. Eksperimentišite sa različitim formatima i vidite koji najbolje radi, od JSON-a do

običnog teksta.

Interpreter rezultata se bavi ovim izazovom koristeći AI za analizu rezultata i pružanje

objašnjenja, rezimea ili ključnih zaključaka prilagođenih ljudima.

Rukovanje greškama

Implementirajte robustne mehanizme za rukovanje greškama kako biste obradili

slučajeve kada VJM može generisati nevažeće ili nepodržane ulazne parametre za

pozive alata. Elegantno rukujte i oporavite se od bilo kakvih grešaka koje se mogu

pojaviti tokom izvršavanja alata.

Jedna izuzetno lepa osobina AI-ja je da razume poruke o greškama! Što znači da ako

radite u brzom i površnom mentalitetu, možete jednostavno uhvatiti bilo koje izuzetke

generisane u implementaciji alata i proslediti ih nazad AI-ju tako da zna šta se dogodilo!

Upotreba alata 133

Na primer, evo pojednostavljene verzije implementacije Google pretrage u Olympia-i:

1 def google_search(conversation, params)

2 conversation.update_cstatus("Searching Google...")

3 query = params[:query]

4 search = GoogleSearch.new(query).get_hash

5

6 conversation.update_cstatus("Summarizing results...")

7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)

8 rescue StandardError => e

9 Honeybadger.notify(e)

10 { error: e.message }.inspect

11 end

Google pretrage u Olympiji su dvostepeni proces. Prvo se izvrši pretraga, zatim se

sumiraju rezultati. Ako dođe do greške, bez obzira kakva je, poruka o grešci se pakuje

i šalje nazad veštačkoj inteligenciji. Ova tehnika je temelj praktično svih obrazaca

Inteligentnog rukovanja greškama.

Na primer, recimo da GoogleSearch API poziv ne uspe zbog 503 Service Unavailable

izuzetka. To se propagira do najvišeg nivoa obrade grešaka, a opis greške se šalje nazad

veštačkoj inteligenciji kao rezultat funkcijskog poziva. Umesto da korisniku prikaže

prazan ekran ili tehničku grešku, veštačka inteligencija kaže nešto poput “Žao mi je,

ali trenutno ne mogu da pristupim svojim Google pretraživačkim mogućnostima. Mogu

pokušati ponovo kasnije, ako želite.”

Ovo može delovati kao pametan trik, ali razmotrite drugačiju vrstu greške, onu gde

veštačka inteligencija poziva eksterni API i ima direktnu kontrolu nad parametrima

koje prosleđuje API-ju. Možda je napravila grešku u načinu na koji je generisala te

parametre? Pod uslovom da je poruka o grešci iz eksternog API-ja dovoljno detaljna,

prosleđivanje poruke o grešci nazad veštačkoj inteligenciji koja je izvršila poziv znači

da ona može preispitati te parametre i pokušati ponovo. Automatski. Bez obzira na to

kakva je greška bila.

Sada razmislite šta bi bilo potrebno da se replicira takva vrsta robusnog rukovanja

greškama u normalnom kodu. To je praktično nemoguće.

Upotreba alata 134

Iterativno poboljšanje

Ako VJM ne preporučuje odgovarajuće alate ili generiše suboptimalne odgovore,

iterativno radite na definicijama alata, opisima i ulaznim parametrima. Kontinuirano

usavršavajte i poboljšavajte postavke alata na osnovu uočenog ponašanja i željenih

ishoda.

1. Počnite sa jednostavnim definicijama alata: Počnite definisanjem alata sa jasnim

i konciznim imenima, opisima i ulaznim parametrima. U početku izbegavajte

prekomplikovano podešavanje alata i fokusirajte se na osnovnu funkcionalnost.

Na primer, ako želite da sačuvate rezultate analize sentimenta, počnite sa

osnovnom definicijom poput:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze user-provided text and generate sentiment score",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "score": {

8 "type": "float",

9 "description": "sentiment score from -1 (negative) to 1 (positive)"

10 }

11 },

12 "required": ["score"]

13 }

14 }

2. Testirajte i posmatrajte: Kada postavite početne definicije alata, testirajte ih

različitim upitima i posmatrajte kako VJM komunicira sa alatom. Obratite pažnju

na kvalitet i relevantnost generisanih odgovora. Ako VJM generiše suboptimalne

odgovore, vreme je da se definicije alata usavrše.

3. Usavršite opise: Ako VJM pogrešno tumači svrhu alata, pokušajte da usavršite

opis alata. Pružite više konteksta, primera ili pojašnjenja kako biste usmerili

Upotreba alata 135

VJM ka efikasnom korišćenju alata. Na primer, možete ažurirati opis alata za

analizu sentimenta kako bi se preciznije odnosio na emocionalni ton teksta koji

se analizira:

1 {

2 "name": "save_sentiment_score",

3 "description": "Determine the overall emotional tone of a piece of text,

4 such as customer reviews, social media posts, or feedback comments.",

5 ...

6 }

4. Prilagodite ulazne parametre: Ako LLM generiše nevažeće ili neodgovarajuće

ulazne parametre za alat, razmotrite prilagođavanje definicija parametara.

Dodajte konkretnije uslove, pravila validacije ili primere kako biste pojasnili

očekivani format unosa.

5. Iteriranje na osnovu povratnih informacija: Kontinuirano pratite performanse

vaših alata i prikupljajte povratne informacije od korisnika i zainteresovanih

strana. Koristite ove povratne informacije da identifikujete oblasti za poboljšanje

i napravite iterativna poboljšanja definicija alata. Na primer, ako korisnici prijave

da analiza ne obrađuje sarkazam dobro, možete dodati napomenu u opis:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze the sentiment of a given text and return a sentiment

4 score between -1 (negative) and 1 (positive). Note: Sarcasm should be

5 considered negative.",

6 ...

7 }

Iterativnim poboljšavanjem definicija alata na osnovu uočenog ponašanja i povratnih

informacija, možete postepeno unapređivati performanse i efikasnost vaše aplikacije

zasnovane na veštačkoj inteligenciji. Zapamtite da definicije alata treba da budu jasne,

sažete i fokusirane na specifičan zadatak. Redovno testirajte i proveravajte interakcije

alata kako biste osigurali da su u skladu sa željenim ishodima.

Upotreba alata 136

Komponovanje i ulančavanje alata

Jedan od najmoćnijih aspekata upotrebe alata, koji je do sada samo nagovešten, jeste

mogućnost komponovanja i ulančavanja više alata zajedno kako bi se izvršili složeni

zadaci. Pažljivim dizajniranjem definicija alata i njihovih ulaznih/izlaznih formata,

možete kreirati ponovno upotrebljive gradivne blokove koji se mogu kombinovati na

različite načine.

Razmotrimo primer gde gradite protok analize podataka za vašu aplikaciju zasnovanu

na veštačkoj inteligenciji. Mogli biste imati sledeće alate:

1. DataRetrieval: Alat koji preuzima podatke iz baze podataka ili API-ja na osnovu

određenih kriterijuma.

2. DataProcessing: Alat koji vrši proračune, transformacije ili agregacije nad

preuzetim podacima.

3. DataVisualization: Alat koji predstavlja obrađene podatke u formatu

prilagođenom korisniku, kao što su grafikoni ili dijagrami.

Ulančavanjem ovih alata, možete kreirati moćan tok rada koji preuzima relevantne

podatke, obrađuje ih i predstavlja rezultate na smislen način. Evo kako bi tok rada sa

alatima mogao izgledati:

1. VJM prima upit korisnika koji traži uvid u podatke o prodaji za određenu

kategoriju proizvoda.

2. VJM bira alat DataRetrieval i generiše odgovarajuće ulazne parametre za

preuzimanje relevantnih podataka o prodaji iz baze podataka.

3. Preuzeti podaci se “prosleđuju” alatuDataProcessing, koji izračunavametrike kao

što su ukupan prihod, prosečna prodajna cena i stopa rasta.

4. Obrađene podatke zatim koristi alat DataVisualization, koji kreira vizuelno

privlačan grafikon ili dijagram za predstavljanje uvida, prosleđujući URL

grafikona nazad VJM-u.

Upotreba alata 137

5. Na kraju, VJM generiše formatiran odgovor na upit korisnika koristeći markdown,

uključujući vizualizovane podatke i rezime ključnih nalaza.

Komponovanjem ovih alata zajedno, možete kreirati besprekoran tok analize podataka

koji se lako može integrisati u vašu aplikaciju. Lepota ovog pristupa je u tome što se

svaki alat može razvijati i testirati nezavisno, a zatim kombinovati na različite načine za

rešavanje raznih problema.

Da biste omogućili glatko komponovanje i ulančavanje alata, važno je definisati jasne

ulazne i izlazne formate za svaki alat.

Na primer, alat DataRetrieval može prihvatiti parametre kao što su detalji veze sa

bazom podataka, ime tabele i uslovi upita, i vratiti skup rezultata kao strukturirani

JSON objekat. Alat DataProcessing zatim može očekivati ovaj JSON objekat kao ulaz

i proizvesti transformisani JSON objekat kao izlaz. Standardizacijom protoka podataka

između alata možete osigurati kompatibilnost i mogućnost ponovne upotrebe.

Dok dizajnirate svoj ekosistem alata, razmišljajte o tome kako se različiti alati mogu

kombinovati za rešavanje uobičajenih slučajeva upotrebe u vašoj aplikaciji. Razmotrite

kreiranje alata visokog nivoa koji obuhvataju uobičajene tokove rada ili poslovnu logiku,

čineći lakšim za VJM da ih efikasno odabere i koristi.

Zapamtite, snaga upotrebe alata leži u fleksibilnosti i modularnosti koju pruža.

Raščlanjivanjem složenih zadataka na manje, ponovno upotrebljive alate, možete

kreirati robusnu i prilagodljivu aplikaciju zasnovanu na veštačkoj inteligenciji koja

može da se nosi sa širokim spektrom izazova.

Budući pravci

Kako se oblast razvoja aplikacija zasnovanih na veštačkoj inteligenciji razvija, možemo

očekivati dalja unapređenja u mogućnostima upotrebe alata. Neki potencijalni budući

pravci uključuju:

Upotreba alata 138

1. Višestruka upotreba alata: VJM-ovi ćemoždamoći da odluče koliko puta treba da

koriste alate kako bi generisali zadovoljavajući odgovor. Ovo bi moglo uključivati

više rundi odabira i izvršavanja alata na osnovu međurezultata.

2. Predefinisani alati: AI platforme mogu pružiti skup predefinisanih alata koje

programeri mogu koristiti odmah, kao što su Python interpreteri, alati za pretragu

veba ili uobičajene pomoćne funkcije.

3. Besprekorna integracija: Kako upotreba alata postaje sve zastupljenija, možemo

očekivati bolju integraciju između AI platformi i popularnih razvojnih okvira,

olakšavajući programerima da uključe upotrebu alata u svoje aplikacije.

Upotreba alata je moćna tehnika koja omogućava programerima da iskoriste pun

potencijal VJM-ova u aplikacijama zasnovanim na veštačkoj inteligenciji. Povezivanjem

VJM-ova sa spoljnim alatima i resursima, možete kreirati dinamičnije, inteligentnije i

kontekstualno svesnije sisteme koji se mogu prilagoditi potrebama korisnika i pružiti

vredne uvide i akcije.

Iako upotreba alata nudi ogromne mogućnosti, važno je biti svestan potencijalnih

izazova i razmatranja. Jedan ključni aspekt je upravljanje složenošću interakcija

alata i osiguravanje stabilnosti i pouzdanosti celokupnog sistema. Morate se nositi sa

scenarijima gde pozivi alata mogu da ne uspeju, vrate neočekivane rezultate ili imaju

implikacije na performanse. Dodatno, trebalo bi razmotriti mere bezbednosti i kontrole

pristupa kako bi se sprečila neovlašćena ili zlonamerna upotreba alata. Pravilno

rukovanje greškama, vođenje evidencije i mehanizmi praćenja su ključni za održavanje

integriteta i performansi vaše aplikacije zasnovane na veštačkoj inteligenciji.

Dok istražujete mogućnosti upotrebe alata u svojim projektima, zapamtite da treba

početi sa jasnim ciljevima, dizajnirati dobro strukturirane definicije alata i iterirati na

osnovu povratnih informacija i rezultata. Uz pravi pristup i način razmišljanja, upotreba

alata može otključati nove nivoe inovacije i vrednosti u vašim aplikacijama vođenim

veštačkom inteligencijom

Obrada toka podataka

Streaming podataka preko HTTP-a, takođe poznat kao server-sent events (SSE), je

mehanizam gde server kontinuirano šalje podatke klijentu kako oni postaju dostupni,

bez potrebe da ih klijent eksplicitno zatraži. Pošto se AI odgovor generiše postepeno,

ima smisla obezbediti responzivno korisničko iskustvo prikazivanjem AI izlaza tokom

njegovog generisanja. I zapravo, svi API-ji AI provajdera koje poznajem nude streaming

odgovore kao opciju u svojim krajnjim tačkama za kompletiranje.

Razlog zašto se ovo poglavlje pojavljuje ovde u knjizi, odmah nakon Korišćenje alata,

je zbog toga koliko moćno može biti kombinovanje korišćenja alata sa živim AI

odgovorima korisnicima. To omogućava dinamička i interaktivna iskustva gde AI može

da obradi korisnički unos, koristi različite alate i funkcije po svom nahođenju, i zatim

pruža odgovore u realnom vremenu.

Da bi se postigla ova besprekorna interakcija, potrebno je napisati rukovaoce toka koji

mogu da otpremaju pozive alatnih funkcija koje je pozvao AI, kao i običan tekstualni

Obrada toka podataka 140

izlaz krajnjem korisniku. Potreba za petljom nakon obrade alatne funkcije dodaje

zanimljiv izazov ovom zadatku.

Implementacija ReplyStream-a

Da bismo pokazali kako se može implementirati obrada toka, ovo poglavlje će detaljno

obraditi pojednostavljenu verziju klase ReplyStream koja se koristi u Olympia-i.

Instance ove klase mogu se proslediti kao stream parametar u AI klijentskim

bibliotekama kao što su ruby-openai i openrouter

Evo kako koristim ReplyStream u Olympia-inom PromptSubscriber-u, koji osluškuje

preko Wisper-a kreiranje novih korisničkih poruka.

1 class PromptSubscriber

2 include Raix::ChatCompletion

3 include Raix::PromptDeclarations

4

5 # many other declarations omitted...

6

7 prompt text: -> { user_message.content },

8 stream: -> { ReplyStream.new(self) },

9 until: -> { bot_message.complete? }

10

11 def message_created(message) # invoked by Wisper

12 return unless message.role.user? && message.content?

13

14 # rest of the implementation omitted...

Pored context reference na pretplatnika prompta koji ga je instancirao, klasa

ReplyStream takođe ima promenljive instance za čuvanje bafera primljenih podataka,

kao i nizove za praćenje imena funkcija i argumenata koji se pozivaju tokom obrade

toka.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

Obrada toka podataka 141

1 class ReplyStream

2 attr_accessor :buffer, :f_name, :f_arguments, :context

3

4 delegate :bot_message, :dispatch, to: :context

5

6 def initialize(context)

7 self.context = context

8 self.buffer = []

9 self.f_name = []

10 self.f_arguments = []

11 end

12

13 def call(chunk, bytesize = nil)

14 # ...

15 end

16

17 # ...

18 end

Metoda initialize postavlja početno stanje instance ReplyStream, inicijalizujući bafer,

kontekst i druge promenljive.

Metoda call je glavna ulazna tačka za obradu protočnih podataka. Ona prima chunk

podataka (predstavljen kao heš) i opcionalni parametar bytesize, koji u našem primeru

nije iskorišćen. Unutar ove metode, klasa koristi uparivanje obrazaca za rukovanje

različitim scenarijima na osnovu strukture primljenog dela podataka.

Pozivanje deep_symbolize_keys na delu podataka pomaže da uparivanje

obrazaca bude elegantnije, omogućavajući nam da radimo sa simbolima

umesto sa stringovima.

Obrada toka podataka 142

1 def call(chunk, _bytesize)

2 case chunk.deep_symbolize_keys

3

4 in { # match function name

5 choices: [

6 {

7 delta: {

8 tool_calls: [

9 { index: index, function: {name: name} }

10]

11 }

12 }

13] }

14

15 f_name[index] = name

Prvi obrazac koji tražimo je poziv alata zajedno sa njegovim pripadajućim imenom

funkcije. Ako ga otkrijemo, smeštamo ga u niz f_name. Imena funkcija čuvamo u

indeksiranom nizu, jer model može da vrši paralelno pozivanje funkcija, šaljući više

od jedne funkcije na izvršavanje istovremeno.

Paralelno pozivanje funkcija je sposobnost AI modela da izvršava više poziva

funkcija zajedno, omogućavajući da se efekti i rezultati ovih poziva funkcija rešavaju

paralelno. Ovo je posebno korisno ako funkcije dugo traju, i smanjuje broj razmena

sa API-jem, što zauzvrat može uštedeti značajnu količinu potrošnje tokena.

Zatim moramo pronaći podudaranje za argumente koji odgovaraju pozivima funkcija.

Obrada toka podataka 143

1 in { # match arguments

2 choices: [

3 {

4 delta: {

5 tool_calls: [

6 {

7 index: index, function: {arguments: argument }

8 }

9]

10 }

11 }

12]}

13

14 f_arguments[index] ||= "" # initialize if not already

15 f_arguments[index] << argument

Slično kao što smo postupili sa imenima funkcija, argumente smeštamo u indeksirani

niz.

Sledeće, pratimo normalne poruke namenjene korisniku, koje će stizati sa servera

token po token i biti dodeljene promenljivoj new_content. Takođe moramo da pratimo

finish_reason. On će biti nil sve do poslednjeg dela izlazne sekvence.

1 in {

2 choices: [

3 { delta: {content: new_content}, finish_reason: finish_reason }

4]}

5

6 # you could transmit every chunk to the user here...

7 buffer << new_content.to_s

8

9 if finish_reason.present?

10 finalize

11 elsif new_content.to_s.match?(/\n\n/)

12 send_to_client # ...or buffer and transmit once per paragraph

13 end

Važno je da dodamo izraz za podudaranje obrazaca kako bismo obradili poruke o

greškama koje šalje provajder AI modela. U lokalnim razvojnim okruženjima, podižemo

izuzetak, ali u produkciji, beležimo grešku i završavamo.

Obrada toka podataka 144

1 in { error: { message: } }

2 if Rails.env.local?

3 raise message

4 else

5 Honeybadger.notify("AI Error: #{message}")

6 finalize

7 end

Završna else grana case naredbe će se izvršiti ako se nijedan od prethodnih obrazaca

nije poklopio. To je samo mera predostrožnosti kako bismo otkrili ako AI model počne

da nam šalje neprepoznate delove.

1 else

2 Honeybadger.notify("Unrecognized Chunk: #{chunk}")

3 end

4 end

Metoda send_to_client je zadužena za slanje baferovanog sadržaja klijentu. Ona

proverava da bafer nije prazan, ažurira sadržaj poruke bota, renderuje poruku bota i

čuva sadržaj u bazi podataka kako bi se osigurala postojanost podataka.

1 def send_to_client

2 # no need to process pure whitespace

3 return if buffer.join.squish.blank?

4

5 # set the buffer content on the bot message

6 content = buffer.join

7 bot_message.content = content

8

9 # save to database so that we never lose data

10 # even if the stream doesn't terminate correctly

11 bot_message.update_column(:content, content)

12

13 # update content via websocket

14 ConversationRenderer.update(bot_message)

15 end

Obrada toka podataka 145

finalize metoda se poziva kada je obrada toka završena. Ona otprema pozive funkcija

ako su neki primljeni tokom toka, ažurira poruku bota sa konačnim sadržajem i drugim

relevantnim informacijama, i resetuje istoriju poziva funkcija

1 def finalize

2 if f_name.any?

3 f_name.each_with_index do |name, index|

4 # takes care of calling the function wherever it's implemented

5 dispatch(name:, arguments: JSON.parse(f_arguments[index]))

6 end

7

8 # reset the function call history

9 f_name.clear

10 f_arguments.clear

11 else

12 content = buffer.join.presence

13 bot_message.update!(content:, complete: true)

14 ConversationRenderer.update(bot_message)

15 end

16 end

Ako model odluči da pozove funkciju, potrebno je da “prosledite” taj poziv funkcije

(naziv i argumente) na takav način da se izvrši i da se poruke function_call i function_-

result dodaju u transkript razgovora

Prema mom iskustvu, bolje je upravljati kreiranjem poruka funkcija na jednom mestu

u vašoj bazi koda, umesto da se oslanjate na implementacije alata. To nije samo čistije

rešenje, već ima i vrlo važan praktičan razlog: ako AI model pozove funkciju, a ne vidi

rezultujuće poruke poziva i rezultata u transkriptu kada se petlja ponovi, pozivaće istu

funkciju iznova. Potencijalno beskonačno. Zapamtite da je AI potpuno bez stanja, tako

da ako ne prikažete te pozive funkcija nazad modelu, oni se nisu ni dogodili.

Obrada toka podataka 146

1 # PromptSubscriber#dispatch

2

3 def dispatch(name:, arguments:)

4 # adds a function_call message to the conversation transcript

5 # plus dispatches to tool and returns result

6 conversation.function_call!(name, arguments).then do |result|

7 # add function result message to the transcript

8 conversation.function_result!(name, result)

9 end

10 end

Čišćenje istorije poziva funkcija nakon izvršavanja je podjednako važno kao

i osiguravanje da se poziv i rezultati nađu u vašem transkriptu, kako ne biste

stalno iznova pozivali iste funkcije svaki put kada se petlja izvrši.

“Konverzacijska petlja”

U klasi PromptSubscriber, koristimo metodu prompt iz modula PromptDeclarations

da definišemo ponašanje konverzacijske petlje. Parametar until je postavljen na -> {

bot_message.complete? }, što znači da će se petlja nastaviti sve dok bot_message ne

bude označen kao završen.

1 prompt text: -> { user_message.content },

2 stream: -> { ReplyStream.new(self) },

3 until: -> { bot_message.complete? }

Ali kada se bot_message označava kao završen? Ako ste zaboravili,

pogledajte ponovo red 13 metode finalize.

Hajde da pregledamo celokupnu logiku obrade toka.

Obrada toka podataka 147

1. PromptSubscriber prima novu korisničku poruku preko metode

message_created, koju poziva Wisper sistem za objavljivanje/pretplatu svaki put

kada krajnji korisnik kreira novi prompt.

2. Klasna metoda prompt deklarativno definiše ponašanje logike četbot završetka za

PromptSubscriber. AI model će izvršiti četbot završetak sa sadržajem korisničke

poruke, novom instancom ReplyStream kao parametrom toka i određenim

uslovom petlje.

3. AI model obrađuje prompt i počinje da generiše odgovor. Kako se odgovor prenosi

u toku, metoda call instance ReplyStream se poziva za svaki deo podataka.

4. Ako AI model odluči da pozove pomoćnu funkciju, naziv funkcije i argumenti se

izdvajaju iz dela i čuvaju u nizovima f_name i f_arguments.

5. Ako AI model generiše sadržaj vidljiv korisniku, on se skladišti u baferu i šalje

klijentu preko metode send_to_client.

6. Kada se obrada toka završi, poziva se metoda finalize. Ako su tokom toka pozvane

bilo koje pomoćne funkcije, one se otpremaju koristeći metodu dispatch klase

PromptSubscriber.

7. Metoda dispatch dodaje poruku function_call u transkript razgovora, izvršava

odgovarajuću pomoćnu funkciju i dodaje poruku function_result u transkript sa

rezultatom poziva funkcije.

8. Nakon otpremanja pomoćnih funkcija, istorija poziva funkcija se briše kako bi se

sprečili dupli pozivi funkcija u narednim petljama.

9. Ako nije pozvana nijedna pomoćna funkcija, metoda finalize ažurira bot_-

message sa konačnim sadržajem, označava ga kao završen i šalje ažuriranu poruku

klijentu.

10. Uslov petlje -> { bot_message.complete? } se procenjuje. Ako bot_message nije

označen kao završen, petlja se nastavlja, i originalni prompt se ponovo šalje sa

ažuriranim transkriptom razgovora.

11. Koraci 3-10 se ponavljaju dok se bot_message ne označi kao završen, što

ukazuje da je AI model završio generisanje svog odgovora i da nema potrebe za

Obrada toka podataka 148

izvršavanjem dodatnih pomoćnih funkcija.

Implementacijom ove petlje razgovora, omogućavate AI modelu da se upusti u

dvosmerni dijalog sa aplikacijom, izvršavajući pomoćne funkcije po potrebi i generišući

odgovore vidljive korisniku dok razgovor ne dođe do prirodnog zaključka.

Kombinacija obrade toka i petlje razgovora omogućava dinamična i interaktivna AI

iskustva, gde AImodel može da obrađuje korisnički unos, koristi različite alate i funkcije,

i pruža odgovore u realnom vremenu na osnovu konteksta razgovora koji se razvija.

Automatski Nastavak

Važno je biti svestan ograničenja AI izlaza. Većina modela ima maksimalni broj tokena

kojemogu generisati u jednom odgovoru, što je određeno parametrommax_tokens. Ako

AI model dostigne ovo ograničenje tokom generisanja odgovora, naglo će se zaustaviti

i ukazati da je izlaz skraćen.

U toku odgovora sa AI platforme API-ja, možete otkriti ovu situaciju pregledanjem

promenljive finish_reason u delu. Ako je finish_reason postavljen na ”length” (ili

neku drugu ključnu vrednost specifičnu za model), to znači da je model dostigao svoje

maksimalno ograničenje tokena tokom generisanja i da je izlaz skraćen.

Jedan od načina da se ova situacija elegantno reši i pruži besprekorno korisničko iskustvo

je implementacija mehanizma automatskog nastavka u logici obrade toka. Dodavanjem

obrasca za prepoznavanje razloga završetka vezanih za dužinu, možete odabrati da se

petlja nastavi i automatski nastavi izlaz od mesta gde je stao.

Evo namerno pojednostavljenog primera kako možete modifikovati metodu call u klasi

ReplyStream da podržava automatski nastavak:

Obrada toka podataka 149

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices: [

9 { delta: {content: new_content},

10 finish_reason: finish_reason }] }

11

12 buffer << new_content.to_s

13

14 if finish_reason.blank?

15 send_to_client if new_content.to_s.match?(/\n\n/)

16 elsif LENGTH_STOPS.include?(finish_reason)

17 continue_cutoff

18 else

19 finalize

20 end

21

22 # ...

23 end

24 end

25

26 private

27

28 def continue_cutoff

29 conversation.bot_message!(buffer.join, visible: false)

30 conversation.user_message!("please continue", visible: false)

31 bot_message.update_column(:created_at, Time.current)

32 end

U ovoj modifikovanoj verziji, kada finish_reason ukazuje na odsečeni izlaz, umesto

finalizacije toka, dodajemo par poruka u transkript bez finalizacije, pomeramo

originalnu poruku vidljivu korisniku na “dno” transkripta ažuriranjem njenog

created_at atributa, a zatim pustimo da se petlja nastavi, tako da AI nastavlja

generisanje tamo gde je stao.

Zapamtite da je krajnja tačka za AI dopunu bez stanja. Ona “zna” samo ono što joj kažete

Obrada toka podataka 150

preko transkripta. U ovom slučaju, način na koji AI-u saopštavamo da je došlo do prekida

je dodavanjem “nevidljivih” (za krajnjeg korisnika) poruka u transkript. Ipak, imajte na

umu da je ovo namerno pojednostavljen primer. Prava implementacija bi morala da

vrši dodatno upravljanje transkriptom kako bi se osiguralo da ne trošimo tokene i/ili

zbunimo AI dupliranim porukama asistenta u transkriptu.

Prava implementacija automatskog nastavljanja bi takođe trebalo da ima takozvanu

“logiku prekidača” kako bi se sprečilo nekontrolisano ponavljanje petlje. Razlog je taj

što bi, uz određene vrste korisničkih upita i niske postavke max_tokens, AI mogao

beskonačno da nastavlja da generiše izlaz vidljiv korisniku.

Imajte na umu da svaka petlja zahteva poseban zahtev, i da svaki zahtev ponovo

koristi ceo vaš transkript. Definitivno bi trebalo da razmotrite kompromise između

korisničkog iskustva i korišćenja API-ja kada odlučujete da li da implementirate

automatsko nastavljanje u vašoj aplikaciji. Automatsko nastavljanje može biti

posebno opasno skupo, naročito kada se koriste premium komercijalni modeli.

Zaključak

Obrada toka podataka je kritičan aspekt izgradnje aplikacija pokretanih veštačkom

inteligencijom koje kombinuju upotrebu alata sa živim AI odgovorima. Efikasnim

upravljanjem tokovima podataka iz API-ja AI platformi, možete obezbediti neometano i

interaktivno korisničko iskustvo, upravljati velikim odgovorima, optimizovati korišćenje

resursa i elegantno upravljati greškama.

Prikazana klasa Conversation::ReplyStream demonstrira kako obrada toka može biti

implementirana u Ruby aplikaciji koristeći uparivanje obrazaca i arhitekturu vođenu

događajima. Razumevanjem i korišćenjem tehnika obrade toka, možete otključati pun

Obrada toka podataka 151

potencijal AI integracije u vašim aplikacijama i isporučiti moćna i privlačna korisnička

iskustva.

Samozalečujući podaci

Samozalečujući podaci predstavljaju moćan pristup osiguravanju integriteta,

konzistentnosti i kvaliteta podataka u aplikacijama korišćenjem mogućnosti velikih

jezičkih modela (VJM). Ova kategorija obrazaca fokusira se na ideju korišćenja veštačke

inteligencije za automatsko otkrivanje, dijagnostikovanje i ispravljanje anomalija,

nekonzistentnosti ili grešaka u podacima, čime se smanjuje opterećenje programera i

održava visok nivo pouzdanosti podataka.

U svojoj suštini, obrasci samozalečujućih podataka prepoznaju da su podaci životna

snaga svake aplikacije, a osiguravanje njihove tačnosti i integriteta je ključno za pravilno

funkcionisanje i korisničko iskustvo aplikacije. Međutim, upravljanje i održavanje

kvaliteta podataka može biti složen i vremenski zahtevan zadatak, posebno kako

aplikacije rastu u veličini i složenosti. Tu na scenu stupa moć veštačke inteligencije.

U obrascima samozalečujućih podataka, AI radnici se koriste za kontinuirano praćenje

i analizu podataka vaše aplikacije. Ovi modeli imaju sposobnost da razumeju i

Samozalečujući podaci 153

tumače obrasce, veze i anomalije unutar podataka. Koristeći svoje mogućnosti

obrade i razumevanja prirodnog jezika, mogu identifikovati potencijalne probleme ili

nekonzistentnosti u podacima i preduzeti odgovarajuće mere za njihovo ispravljanje.

Proces samozalečenja podataka obično uključuje nekoliko ključnih koraka:

1. Praćenje podataka: AI radnici konstantno prate tokove podataka, baze podataka

ili sisteme za skladištenje aplikacije, tražeći bilo kakve znakove anomalija,

nekonzistentnosti ili grešaka. Alternativno, možete aktivirati AI komponentu kao

reakciju na izuzetak.

2. Detekcija anomalija: Kada se otkrije problem, AI radnik detaljno analizira

podatke kako bi identifikovao specifičnu prirodu i obim problema. To može

uključivati otkrivanje nedostajućih vrednosti, nekonzistentnih formata ili

podataka koji krše predefinisana pravila ili ograničenja.

3. Dijagnoza i korekcija: Nakon što se problem identifikuje, AI radnik koristi svoje

znanje i razumevanje domena podataka da odredi odgovarajući tok akcije. To

može uključivati automatsko ispravljanje podataka, popunjavanje nedostajućih

vrednosti ili označavanje problema za ljudsku intervenciju ako je potrebno.

4. Kontinuirano učenje (opciono, zavisno od slučaja upotrebe): Kako vaš AI

radnik nailazi na različite probleme sa podacima i rešava ih, može generisati izlaz

koji opisuje šta se dogodilo i kako je reagovao. Ovi metapodaci se mogu uneti u

procese učenja koji vam (i možda osnovnom modelu, putem finog podešavanja)

omogućavaju da vremenom postanete efikasniji u identifikovanju i rešavanju

anomalija podataka.

Automatskim otkrivanjem i ispravljanjem problema sa podacima, možete osigurati da

vaša aplikacija radi sa visokokvalitetnim, pouzdanim podacima. Ovo smanjuje rizik

od grešaka, nekonzistentnosti ili bagova vezanih za podatke koji mogu uticati na

funkcionalnost aplikacije ili korisničko iskustvo.

Kada imate AI radnike koji se bave zadatkom praćenja i korekcije podataka, možete

usmeriti svoje napore na druge kritične aspekte aplikacije. Ovo štedi vreme i resurse

Samozalečujući podaci 154

koji bi inače bili potrošeni na ručno čišćenje i održavanje podataka. Zapravo, kako

vaše aplikacije rastu u veličini i složenosti, ručno upravljanje kvalitetom podataka

postaje sve izazovnije. Obrasci “Samozalečujućih podataka” efikasno skaliraju koristeći

moć veštačke inteligencije za obradu velikih količina podataka i otkrivanje problema u

realnom vremenu.

Zbog svoje prirode, AI modeli se mogu prilagoditi promenljivim obrascima

podataka, šemama ili zahtevima tokom vremena uz malo ili nimalo nadzora.

Sve dok njihove direktive pružaju adekvatno usmeravanje, posebno u

pogledu željenih rezultata, vaša aplikacija može da evoluira i upravlja novim

scenarijima podataka bez potrebe za obimnom ručnom intervencijom ili

izmenama koda.

Obrasci samozalečujućih podataka se dobro uklapaju sa drugim kategorijama obrazaca

o kojima smo razgovarali, kao što je “Mnoštvo radnika”. Mogućnost samozalečenja

podataka može se posmatrati kao specijalizovana vrsta radnika koji se fokusira

specifično na osiguravanje kvaliteta i integriteta podataka. Ova vrsta radnika radi

uporedo sa drugim AI radnicima, pri čemu svaki doprinosi različitim aspektima

funkcionalnosti aplikacije.

Implementacija obrazaca samozalečujućih podataka u praksi zahteva pažljivo

projektovanje i integraciju AI modela u arhitekturu aplikacije. Zbog rizika od gubitka

i oštećenja podataka, trebalo bi da definišete jasne smernice za način na koji ćete

koristiti ovu tehniku. Takođe bi trebalo da razmotrite faktore kao što su performanse,

skalabilnost i bezbednost podataka.

Praktična studija slučaja: Popravljanje neispravnog

JSON-a

Jedan od najpraktičnijih i najjednostavnijih načina za korišćenje samozalečujućih

podataka je takođe vrlo jednostavan za objašnjenje: popravljanje neispravnog JSON-a.

Samozalečujući podaci 155

Ova tehnika se može primeniti na uobičajeni izazov rešavanja nesavršenih ili

nekonzistentnih podataka koje generišu VJM-ovi, kao što je neispravan JSON, i pruža

pristup za automatsko otkrivanje i ispravljanje ovih problema.

UOlympiji redovno se susrećem sa scenarijima gde LLM-ovi generišu JSON podatke koji

nisu potpuno ispravni. Ovo se može dogoditi iz različitih razloga, kao što je dodavanje

komentara pre ili posle stvarnog JSON koda od strane LLM-a, ili uvođenje sintaksnih

grešaka poput nedostajućih zareza ili neukinutih dvostrukih navodnika. Ovi problemi

mogu dovesti do grešaka parsiranja i prouzrokovati prekide u funkcionalnosti aplikacije.

Da bih rešio ovaj problem, implementirao sam praktično rešenje u obliku JsonFixer klase.

Ova klasa otelotvoruje obrazac “Samozalečujućih podataka” tako što uzima neispravan

JSON kao ulaz i koristi LLM da ga popravi, istovremeno čuvajući što je moguće više

informacija i prvobitne namere.

1 class JsonFixer

2 include Raix::ChatCompletion

3

4 def call(bad_json, error_message)

5 raise "No data provided" if bad_json.blank? || error_message.blank?

6

7 transcript << {

8 system: "Consider user-provided JSON that generated a parse

9 exception. Do your best to fix it while preserving the

10 original content and intent as much as possible." }

11 transcript << { user: bad_json }

12 transcript << { assistant: "What is the error message?"}

13 transcript << { user: error_message }

14 transcript << { assistant: "Here is the corrected JSON\n```json\n" }

15

16 self.stop = ["```"]

17

18 chat_completion(json: true)

19 end

20

21 def model

22 "mistralai/mixtral-8x7b-instruct:nitro"

23 end

Samozalečujući podaci 156

24 end

Obratite pažnju kako JsonFixer koristi Ventriloquist za usmeravanje AI

odgovora.

Proces samoopravljanja JSON podataka funkcioniše na sledeći način:

1. Generisanje JSON-a: LLM se koristi za generisanje JSON podataka na osnovu

određenih upita ili zahteva. Međutim, zbog prirode LLM-ova, generisani JSON ne

mora uvek biti potpuno validan. JSON parser će naravno izbaciti ParserError ako

mu date nevažeći JSON.

1 begin

2 JSON.parse(llm_generated_json)

3 rescue JSON::ParserError => e

4 JsonFixer.new.call(llm_generated_json, e.message)

5 end

Imajte na umu da se poruka o grešci takođe prosleđuje pozivu JSONFixer-a tako da ne

mora u potpunosti da pretpostavlja šta nije u redu sa podacima, posebno zato što će

parser često tačno reći šta nije u redu.

2. Korekcija zasnovana na VJM-u: Klasa JSONFixer šalje neispravan JSON nazad

VJM-u (LLM), zajedno sa specifičnim upitom ili instrukcijom da popravi JSON

uz maksimalno očuvanje originalnih informacija i namere. VJM, obučen na

ogromnim količinama podataka i sa razumevanjem JSON sintakse, pokušava da

ispravi greške i generiše validan JSON string. Ograđivanje odgovora se koristi

za ograničavanje izlaza VJM-a, a mi biramo Mixtral 8x7B kao AI model, jer je

posebno dobar za ovakvu vrstu zadatka.

Samozalečujući podaci 157

3. Validacija i integracija: Popravljeni JSON string koji vraća VJM parsira sama

klasa JSONFixer, jer je pozvala chat_completion(json: true). Ako popravljeni

JSON prođe validaciju, integriše se nazad u tok rada aplikacije, omogućavajući

aplikaciji da nastavi sa obradom podataka bez prekida. Loš JSON je “izlečen”.

Iako sam napisao i prepisao sopstvenu JSONFixer implementaciju nekoliko puta,

sumnjam da je ukupno vreme uloženo u sve te verzije više od sat ili dva.

Imajte na umu da je očuvanje namere ključni element svakog obrasca samozalečujućih

podataka. Proces korekcije zasnovan na VJM-u ima za cilj da očuva originalne

informacije i nameru generisanog JSON-a što je više moguće. Ovo osigurava da

popravljeni JSON zadržava svoje semantičko značenje i može se efikasno koristiti u

kontekstu aplikacije.

Ova praktična implementacija pristupa “Samozalečujućih podataka” u Olympiji jasno

pokazuje kako se AI, posebno VJM-ovi, mogu iskoristiti za rešavanje stvarnih izazova

sa podacima. Ona pokazuje snagu kombinovanja tradicionalnih programerskih tehnika

sa AI mogućnostima za izgradnju robusnih i efikasnih aplikacija.

Postelov zakon i obrazac “Samozalečujućih podataka”

“Samozalečujući podaci”, kao što je prikazano kroz klasu JSONFixer, dobro se uklapa

sa principom poznatim kao Postelov zakon, koji se takođe naziva Princip robusnosti.

Postelov zakon glasi:

“Budite konzervativni u onome što radite, budite liberalni u onome što prihvatate od

drugih.”

Ovaj princip, koji je prvobitno artikulisao Jon Postel, pionir ranog Interneta,

naglašava važnost izgradnje sistema koji su tolerantni prema raznovrsnim ili čak

blago netačnim ulazima, dok istovremeno održavaju strogo pridržavanje određenih

Samozalečujući podaci 158

protokola pri slanju izlaza.

U kontekstu “Samozalečujućih podataka”, klasa JSONFixer otelotvoruje Postelov

zakon time što je liberalna u prihvatanju pokvarenih ili nesavršenih JSON podataka

generisanih od strane VJM-ova. Ne odbacuje odmah i ne otkazuje kada naiđe na JSON

koji se strogo ne pridržava očekivanog formata. Umesto toga, zauzima tolerantan

pristup i pokušava da popravi JSON koristeći snagu VJM-ova.

Budući liberalna u prihvatanju nesavršenog JSON-a, klasa JSONFixer pokazuje

robusnost i fleksibilnost. Ona priznaje da podaci u stvarnom svetu često dolaze u

različitim oblicima i možda se neće uvek pridržavati strogih specifikacija. Gracioznim

rukovanjem i ispravljanjem ovih odstupanja, klasa osigurava da aplikacija može

nastaviti da funkcioniše glatko, čak i u prisustvu nesavršenih podataka.

S druge strane, klasa JSONFixer se takođe pridržava konzervativnog aspekta

Postelovog zakona kada je reč o izlazu. Nakon popravljanja JSON-a pomoću

VJM-ova, klasa validira ispravljeni JSON kako bi osigurala da se strogo pridržava

očekivanog formata. Ona održava integritet i tačnost podataka pre nego što ih

prosledi drugim delovima aplikacije. Ovaj konzervativni pristup garantuje da je

izlaz klase JSONFixer pouzdan i konzistentan, promovišući interoperabilnost i

sprečavajući širenje grešaka.

Zanimljivosti o Jonu Postelu:

• Jon Postel (1943-1998) bio je američki računarski naučnik koji je igrao ključnu

ulogu u razvoju Interneta. Bio je poznat kao “Bog Interneta” zbog svojih

značajnih doprinosa osnovnim protokolima i standardima.

• Postel je bio urednik serije dokumenata Request for Comments (RFC), koja

predstavlja niz tehničkih i organizacionih napomena o Internetu. Autor je ili

koautor preko 200 RFC-ova, uključujući fundamentalne protokole kao što su

TCP, IP i SMTP.

• Pored svojih tehničkih doprinosa, Postel je bio poznat po svom skromnom

i kolaborativnom pristupu. Verovao je u važnost postizanja konsenzusa i

Samozalečujući podaci 159

zajedničkog rada na izgradnji robusne i interoperabilne mreže.

• Postel je služio kao direktor Odeljenja za računarske mreže na Institutu za

informacione nauke (ISI) Univerziteta Južne Kalifornije (USC) od 1977. do

svoje prerane smrti 1998. godine.

• U znak priznanja za njegove ogromne doprinose, Postelu je posthumno

dodeljena prestižna Tjuringova nagrada 1998. godine, koja se često naziva

“Nobelova nagrada za računarstvo.”

Klasa JSONFixer promoviše robusnost, fleksibilnost i interoperabilnost, što su

bile osnovne vrednosti koje je Postel podržavao tokom svoje karijere. Izgradnjom

sistema koji su tolerantni na nesavršenosti, uz istovremeno strogo pridržavanje

protokola, možemo kreirati aplikacije koje su otpornije i prilagodljivije u suočavanju

sa izazovima stvarnog sveta.

Razmatranja i kontraindikacije

Primenljivost pristupa samooporavljajućih podataka u potpunosti zavisi od vrste

podataka kojima vaša aplikacija upravlja. Postoji razlog zašto možda ne želite da

jednostavno prepravite JSON.parse da automatski ispravlja sve JSON greške parsiranja

u vašoj aplikaciji: nisu sve greške takve da se mogu ili trebaju automatski ispraviti.

Samooporavljanje je posebno problematično kada je povezano sa regulatornim

zahtevima ili zahtevima usklađenosti koji se odnose na rukovanje i obradu podataka.

Neke industrije, poput zdravstva i finansija, imaju tako stroge propise u vezi sa

integritetom podataka i mogućnošću revizije da bilo kakva “crna kutija” korekcija

podataka bez odgovarajućeg nadzora ili evidencije može prekršiti ove propise. Ključno

je osigurati da se sve tehnike samooporavljanja podataka koje osmislite usklade sa

važećim pravnim i regulatornim okvirima.

Primena tehnika samooporavljanja podataka, posebno onih koje uključuju AI modele,

Samozalečujući podaci 160

takođe može imati veliki uticaj na performanse aplikacije i korišćenje resursa.

Obrada velikih količina podataka kroz AI modele za detekciju i korekciju grešaka

može biti računarski zahtevna. Važno je proceniti kompromise između prednosti

samooporavljajućih podataka i povezanih troškova performansi i resursa.

To rečeno, hajde da zaronimo u faktore koji su uključeni u odlučivanje kada i gde

primeniti ovaj moćan pristup.

Kritičnost podataka

Kada razmatramo primenu tehnika samooporavljanja podataka, ključno je proceniti

kritičnost podataka koji se obrađuju. Nivo kritičnosti se odnosi na važnost i osetljivost

podataka u kontekstu vaše aplikacije i njenog poslovnog domena.

U nekim slučajevima, automatsko ispravljanje grešaka u podacima možda nije

prikladno, posebno ako su podaci veoma osetljivi ili imaju pravne implikacije. Na

primer, razmotrite sledeće scenarije:

1. Finansijske transakcije:U finansijskim aplikacijama, kao što su bankarski sistemi

ili platforme za trgovanje, tačnost podataka je od najveće važnosti. Čak i male

greške u finansijskim podacimamogu imati značajne posledice, kao što su netačna

stanja računa, pogrešno usmerena sredstva ili pogrešne odluke o trgovanju. U

ovim slučajevima, automatske korekcije bez temeljne verifikacije i revizije mogu

uvesti neprihvatljive rizike.

2. Medicinski kartoni: Zdravstvene aplikacije se bave veoma osetljivim i

poverljivim podacima pacijenata. Netačnosti u medicinskim kartonima mogu

imati ozbiljne implikacije za bezbednost pacijenata i odluke o lečenju. Automatsko

modifikovanje medicinskih podataka bez odgovarajućeg nadzora i validacije od

strane kvalifikovanih zdravstvenih radnika može prekršiti regulatorne zahteve i

ugroziti dobrobit pacijenata.

3. Pravni dokumenti: Aplikacije koje rukuju pravnim dokumentima, kao što su

ugovori, sporazumi ili sudski podnesci, zahtevaju strogu tačnost i integritet.

Samozalečujući podaci 161

Čak i male greške u pravnim podacima mogu imati značajne pravne posledice.

Automatske korekcije u ovom domenu možda nisu prikladne, jer podaci često

zahtevaju ručni pregled i verifikaciju od strane pravnih stručnjaka kako bi se

osigurala njihova validnost i izvršnost.

U ovim kritičnim scenarijima podataka, rizici povezani sa automatskim korekcijama

često prevazilaze potencijalne koristi. Posledice uvođenja grešaka ili netačnog

modifikovanja podataka mogu biti ozbiljne, što dovodi do finansijskih gubitaka,

pravnih odgovornosti, pa čak i štete po pojedince.

Kada se radi sa visoko kritičnim podacima, neophodno je dati prioritet procesima ručne

verifikacije i validacije. Ljudski nadzor i stručnost su ključni u osiguravanju tačnosti i

integriteta podataka. Automatizovane tehnike samooporavljanja se i dalje mogu koristiti

za označavanje potencijalnih grešaka ili nedoslednosti, ali konačna odluka o korekcijama

treba da uključuje ljudsku procenu i odobrenje.

Međutim, važno je napomenuti da nemaju svi podaci u aplikaciji isti nivo kritičnosti.

U istoj aplikaciji mogu postojati podskupovi podataka koji su manje osetljivi ili imaju

manji uticaj ako dođe do grešaka. U takvim slučajevima, tehnike samooporavljanja

podataka mogu se selektivno primeniti na te specifične podskupove podataka, dok

kritični podaci ostaju podložni ručnoj verifikaciji.

Ključ je pažljivo proceniti kritičnost svake kategorije podataka u vašoj aplikaciji i

definisati jasne smernice i procese za rukovanje korekcijama na osnovu povezanih rizika

i implikacija. Razlikovanjem između kritičnih (npr. knjigovodstveni podaci, medicinski

kartoni) i nekritičnih podataka (npr. poštanske adrese, upozorenja o resursima), možete

postići ravnotežu između korišćenja prednosti tehnika samooporavljanja podataka gde

je to prikladno i održavanja stroge kontrole i nadzora gde je to neophodno.

Na kraju, odluka o primeni tehnika samooporavljanja podataka na kritične podatke treba

da se donese u konsultaciji sa stručnjacima iz date oblasti, pravnim savetnicima i drugim

relevantnim zainteresovanim stranama. Neophodno je uzeti u obzir specifične zahteve,

Samozalečujući podaci 162

propise i rizike povezane sa podacima vaše aplikacije i uskladiti strategije korekcije

podataka u skladu sa tim.

Ozbiljnost grešaka

Prilikom primene tehnika samooporavljanja podataka, važno je proceniti ozbiljnost i

uticaj grešaka u podacima. Nisu sve greške jednake, i odgovarajući tok akcije može

varirati u zavisnosti od ozbiljnosti problema.

Manje nedoslednosti ili problemi sa formatiranjem mogu biti pogodni za automatsku

korekciju. Na primer, radnik za samooporavljanje podataka zadužen za popravku

neispravnog JSON-a može da se nosi sa nedostajućim zarezima ili neizbeglim

dvostrukim navodnicima bez značajnog menjanja značenja ili strukture podataka. Ove

vrste grešaka se često mogu jednostavno ispraviti i imaju minimalan uticaj na ukupni

integritet podataka.

Međutim, ozbiljnije greške koje fundamentalno menjaju značenje ili integritet podataka

mogu zahtevati drugačiji pristup. U takvim slučajevima, automatske ispravke možda

neće biti dovoljne, i ljudska intervencija može biti neophodna kako bi se osigurala

tačnost i validnost podataka.

Ovde dolazi do izražaja koncept korišćenja same veštačke inteligencije za pomoć u

određivanju ozbiljnosti greške. Korišćenjem mogućnosti AI modela, možemo dizajnirati

samoisceljujuće radnike za podatke koji ne samo da ispravljaju greške, već i procenjuju

ozbiljnost tih grešaka i donose informisane odluke o načinu njihovog rešavanja.

Na primer, razmotrimo samoisceljujućeg radnika za podatke zaduženog za ispravljanje

nekonzistentnosti u podacima koji se ulivaju u bazu podataka klijenata. Radnikmože biti

dizajniran da analizira podatke i identifikuje potencijalne greške, kao što su nedostajuće

ili konfliktne informacije. Međutim, umesto da automatski ispravlja sve greške, radnik

može biti opremljen dodatnim pozivima alatima koji mu omogućavaju da označi

ozbiljne greške za pregled od strane ljudi.

Evo primera kako se ovo može implementirati:

Samozalečujući podaci 163

1 class CustomerDataReviewer

2 include Raix::ChatCompletion

3 include Raix::FunctionDeclarations

4

5 attr_accessor :customer

6

7 function :flag_for_review, reason: { type: "string" } do |params|

8 AdminNotifier.review_request(customer, params[:reason])

9 end

10

11 def initialize(customer)

12 self.customer = customer

13 end

14

15 def call(customer_data)

16 transcript << {

17 system: "You are a customer data reviewer. Your task is to identify

18 and correct inconsistencies in customer data.

19

20 < additional instructions here... >

21

22 If you encounter severe errors that require human review, use the

23 `flag_for_review` tool to flag the data for manual intervention." }

24

25 transcript << { user: customer.to_json }

26 transcript << { assistant: "Reviewed/corrected data:\n```json\n" }

27

28 self.stop = ["```"]

29

30 chat_completion(json: true).then do |result|

31 return if result.blank?

32

33 customer.update(result)

34 end

35 end

36 end

U ovom primeru, CustomerDataHealer radnik je dizajniran da identifikuje i ispravi

nedoslednosti u korisničkim podacima. Još jednom, koristimo Ograđivanje odgovora

i Trbuhozborac da bismo dobili strukturirani izlaz. Važno je napomenuti da sistemska

Samozalečujući podaci 164

direktiva radnika uključuje uputstva za korišćenje funkcije flag_for_review ako se naiđe

na ozbiljne greške.

Kada radnik obrađuje korisničke podatke, analizira podatke i pokušava da ispravi sve

nedoslednosti. Ako radnik utvrdi da su greške ozbiljne i zahtevaju ljudsku intervenciju,

može koristiti alat flag_for_review da označi podatke i navede razlog za označavanje.

Metod chat_completion se poziva sa json: true da bi se ispravljeni korisnički podaci

parsirali kao JSON. Ne postoji mogućnost za petlju nakon poziva funkcije, tako da će

rezultat biti prazan ako je pozvana funkcija flag_for_review. U suprotnom, podaci o

korisniku se ažuriraju pregledanim i potencijalno ispravljenim podacima.

Uključivanjem procene ozbiljnosti grešaka i opcije označavanja podataka za ljudski

pregled, radnik za samozaceljujuće podatke postaje inteligentniji i prilagodljiviji.

Može automatski da rešava manje greške, dok ozbiljnije greške prosleđuje ljudskim

stručnjacima na ručnu intervenciju.

Specifični kriterijumi za određivanje ozbiljnosti grešaka mogu se definisati u direktivi

radnika na osnovu domenskog znanja i poslovnih zahteva. Faktori kao što su uticaj

na integritet podataka, mogućnost gubitka ili oštećenja podataka i posledice netačnih

podataka mogu se uzeti u obzir prilikom procene ozbiljnosti.

Korišćenjem veštačke inteligencije za procenu ozbiljnosti grešaka i pružanjem opcija za

ljudsku intervenciju, tehnike samozaceljujućih podatakamogu postići ravnotežu između

automatizacije i održavanja tačnosti podataka. Ovaj pristup osigurava da se manje

greške efikasno ispravljaju, dok ozbiljne greške dobijaju potrebnu pažnju i stručnost

od ljudskih recenzenata.

Kompleksnost domena

Kada se razmatra primena tehnika samozaceljujućih podataka, važno je proceniti

kompleksnost domena podataka i pravila koja regulišu njihovu strukturu i

odnose. Kompleksnost domena može značajno uticati na efikasnost i izvodljivost

automatizovanih pristupa ispravljanju podataka.

Samozalečujući podaci 165

Tehnike samozaceljujućih podataka dobro funkcionišu kada podaci prate jasno

definisane obrasce i ograničenja. U domenima gde je struktura podataka relativno

jednostavna i odnosi između elemenata podataka su jasni, automatske ispravke se

mogu primeniti sa visokim stepenom pouzdanosti. Na primer, ispravljanje problema sa

formatiranjem ili primena osnovnih ograničenja tipa podataka često može biti efikasno

rešeno pomoću radnika za samozaceljujuće podatke.

Međutim, kako se povećava kompleksnost domena podataka, rastu i izazovi povezani

sa automatskim ispravljanjem podataka. U domenima sa složenom poslovnom logikom,

kompleksnim odnosima između entiteta podataka ili domenski specifičnim pravilima i

izuzecima, tehnike samozaceljujućih podataka možda neće uvek uhvatiti nijanse i mogu

dovesti do neželjenih posledica.

Razmotrimo primer složenog domena: sistem za finansijsko trgovanje. U ovom domenu,

podaci uključuju različite finansijske instrumente, tržišne podatke, pravila trgovanja i

regulatorne zahteve. Odnosi između različitih elemenata podataka mogu biti složeni, a

pravila koja regulišu validnost i konzistentnost podataka mogu biti vrlo specifična za

domen.

U tako složenom domenu, radnik za samozaceljujuće podatke zadužen za ispravljanje

nedoslednosti u podacima o trgovanju morao bi imati duboko razumevanje domenski

specifičnih pravila i ograničenja. Morao bi uzeti u obzir faktore kao što su tržišni propisi,

ograničenja trgovanja, izračuni rizika i procedure poravnanja. Automatske ispravke

u ovom kontekstu možda neće uvek obuhvatiti punu kompleksnost domena i mogu

nenamerno uvesti greške ili prekršiti domenski specifična pravila.

Za rešavanje izazova kompleksnosti domena, tehnike samozaceljujućih podataka mogu

se unaprediti uključivanjem domenski specifičnog znanja i pravila uAImodele i radnike.

Ovo se može postići kroz tehnike kao što su:

1. Domenski specifična obuka: AI modeli koji se koriste za samozaceljujuće

podatke mogu biti usmereni ili čak fino podešeni na domenski specifičnim

skupovima podataka koji obuhvataju složenost i pravila određenog domena.

Samozalečujući podaci 166

Izlaganjem modela reprezentativnim podacima i scenarijima, oni mogu naučiti

obrasce, ograničenja i izuzetke specifične za domen.

2. Ograničenja zasnovana na pravilima:Radnici za samozaceljujuće podatkemogu

biti prošireni eksplicitnim ograničenjima zasnovanim na pravilima koja kodiraju

domenski specifično znanje. Ova pravila mogu definisati domenski stručnjaci

i integrisati ih u proces ispravljanja podataka. AI modeli tada mogu koristiti

ova pravila za vođenje svojih odluka i osiguravanje usklađenosti sa domenski

specifičnim zahtevima.

3. Saradnja sa domenskim stručnjacima: U složenim domenima, ključno je

uključiti domenske stručnjake u dizajn i razvoj tehnika samozaceljujućih

podataka. Domenski stručnjaci mogu pružiti vredne uvide u složenost podataka,

poslovna pravila i potencijalne granične slučajeve. Njihovo znanje se može

ugraditi u AI modele i radnike kako bi se poboljšala tačnost i pouzdanost

automatskih ispravki podataka koristeći obrasce Čovek u petlji.

4. Inkrementalni i iterativni pristup: Kada se radi sa složenim domenima, često

je korisno usvojiti inkrementalni i iterativni pristup samozaceljujućim podacima.

Umesto pokušaja automatizacije ispravki za ceo domen odjednom, fokusirajte

se na specifične poddomene ili kategorije podataka gde su pravila i ograničenja

dobro shvaćena. Postepeno proširujte opseg tehnika samozaceljenja kako raste

razumevanje domena i tehnike se pokažu efikasnim.

Uzimajući u obzir složenost domena podataka i ugrađivanje domenskog znanja u tehnike

samozalečujućih podataka, možete postići ravnotežu između automatizacije i tačnosti.

Važno je prepoznati da samozalečujući podaci nisu univerzalno rešenje i da pristup treba

prilagoditi specifičnim zahtevima i izazovima svakog domena.

U složenim domenima, hibridni pristup koji kombinuje tehnike samozalečujućih

podataka sa ljudskom ekspertizom i nadzorom može biti najefikasniji. Automatske

korekcije mogu da se bave rutinskim i dobro definisanim slučajevima, dok se složeni

scenariji ili izuzeci mogu označiti za ljudski pregled i intervenciju. Ovaj saradnički

Samozalečujući podaci 167

pristup osigurava da se ostvare prednosti automatizacije uz održavanje neophodne

kontrole i tačnosti u složenim domenima podataka.

Objašnjivost i Transparentnost

Objašnjivost se odnosi na sposobnost razumevanja i tumačenja rezonovanja iza

odluka koje donose AI modeli, dok transparentnost podrazumeva obezbeđivanje jasne

vidljivosti u proces korekcije podataka.

U mnogim kontekstima, izmene podataka moraju biti podložne reviziji i opravdane.

Zainteresovane strane, uključujući poslovne korisnike, revizore i regulatorna tela, mogu

zahtevati objašnjenja zašto su određene korekcije podataka napravljene i kako su AI

modeli došli do tih odluka. Ovo je posebno važno u domenima gde tačnost i integritet

podataka imaju značajne implikacije, kao što su finansije, zdravstvo i pravna pitanja.

Da bi se odgovorilo na potrebu za objašnjivošću i transparentnošću, tehnike

samozalečujućih podataka treba da uključe mehanizme koji pružaju uvid u proces

donošenja odluka AI modela. Ovo se može postići kroz različite pristupe:

1. Lanac Razmišljanja: Traženje od modela da objasni svoje razmišljanje

“naglas” pre primene promena na podacima može omogućiti lakše razumevanje

procesa donošenja odluka i može generisati objašnjenja razumljiva ljudima za

napravljene korekcije. Kompromis je malo veća složenost u odvajanju objašnjenja

od strukturiranog izlaza podataka, što se može rešiti…

2. Generisanje Objašnjenja: Radnici za samozalečenje podataka mogu biti

opremljeni sposobnošću generisanja objašnjenja razumljivih ljudima za korekcije

koje prave. Ovo se može postići tako što će se od modela tražiti da prikaže svoj

proces donošenja odluka kao lako razumljiva objašnjenja integrisana u same

podatke. Na primer, radnik za samozalečenje podataka mogao bi generisati

izveštaj koji ističe specifične nedoslednosti u podacima koje je identifikovao,

korekcije koje je primenio i obrazloženje iza tih korekcija.

Samozalečujući podaci 168

3. Važnost Karakteristika: AI modelima se mogu dati uputstva sa informacijama o

važnosti različitih karakteristika ili atributa u procesu korekcije podataka kao deo

njihovih direktiva. Te direktive se zatim mogu pokazati ljudskim zainteresovanim

stranama. Identifikovanjem ključnih faktora koji utiču na odluke modela,

zainteresovane strane mogu steći uvid u rezonovanje iza korekcija i proceniti

njihovu validnost.

4. Beleženje i Revizija: Implementacija sveobuhvatnih mehanizama za beleženje

i reviziju je ključna za održavanje transparentnosti u procesu samozalečenja

podataka. Svaka korekcija podataka koju naprave AI modeli treba da bude

zabeležena, uključujući originalne podatke, korigovane podatke i specifične

preduzete akcije. Ovaj revizorski trag omogućava retrospektivnu analizu i pruža

jasan zapis o izmenama napravljenim na podacima.

5. Pristup sa Čovekom u Petlji: Uključivanje pristupa sa čovekom u petlji može

poboljšati objašnjivost i transparentnost tehnika samozalečujućih podataka.

Uključivanjem ljudskih stručnjaka u pregled i validaciju korekcija generisanih od

strane AI-ja, organizacije mogu osigurati da su korekcije usklađene sa domenskim

znanjem i poslovnim zahtevima. Ljudski nadzor dodaje dodatni sloj odgovornosti

i omogućava identifikaciju potencijalnih pristrasnosti ili grešaka u AI modelima.

6. Kontinuirano Praćenje i Evaluacija: Redovno praćenje i evaluacija performansi

tehnika samozalečujućih podataka je neophodno za održavanje transparentnosti

i poverenja. Procenom tačnosti i efikasnosti AI modela tokom vremena,

organizacije mogu identifikovati sva odstupanja ili anomalije i preduzeti

korektivne mere. Kontinuirano praćenje pomaže da se osigura da proces

samozalečenja podataka ostane pouzdan i usklađen sa željenim ishodima.

Objašnjivost i transparentnost su kritični faktori pri implementaciji tehnika

samozalečujućih podataka. Pružanjem jasnih objašnjenja za korekcije podataka,

održavanjem sveobuhvatnih revizorskih tragova i uključivanjem ljudskog nadzora,

organizacije mogu izgraditi poverenje u proces samozalečenja podataka i osigurati da

su izmene napravljene na podacima opravdane i usklađene sa poslovnim ciljevima.

Samozalečujući podaci 169

Važno je postići ravnotežu između prednosti automatizacije i potrebe za

transparentnošću. Iako tehnike samozalečujućih podataka mogu značajno poboljšati

kvalitet podataka i efikasnost, one ne bi trebalo da budu na uštrb gubitka vidljivosti i

kontrole nad procesom korekcije podataka. Dizajniranjem radnika za samozalečenje

podataka sa fokusom na objašnjivost i transparentnost, organizacije mogu iskoristiti

snagu AI-ja uz održavanje neophodnog nivoa odgovornosti i poverenja u podatke.

Nenamerne Posledice

Iako tehnike samozalečujućih podataka imaju za cilj poboljšanje kvaliteta i

konzistentnosti podataka, ključno je biti svestan potencijalnih nenamernih posledica.

Automatske korekcije, ako nisu pažljivo dizajnirane i praćene, mogu nenamerno

izmeniti značenje ili kontekst podataka, što dovodi do problema u kasnijim fazama.

Jedan od primarnih rizika samozalečujućih podataka je uvođenje pristrasnosti ili

grešaka u proces korekcije podataka. AI modeli, kao i bilo koji drugi softverski sistem,

mogu biti podložni pristrasnostima prisutnim u podacima za obuku ili uvedenim kroz

dizajn algoritama. Ako se ove pristrasnosti ne identifikuju i ne ublaže, one se mogu

propagirati kroz proces samozalečenja podataka i rezultirati iskrivljenim ili netačnim

modifikacijama podataka.

Na primer, razmotrimo samoisceljujućeg radnika za podatke zaduženog za ispravljanje

nedoslednosti u demografskim podacima kupaca. Ako je AI model naučio pristrasnosti

iz istorijskih podataka, kao što je povezivanje određenih zanimanja ili nivoa prihoda sa

specifičnim polovima ili etničkim pripadnostima, može praviti pogrešne pretpostavke

i modifikovati podatke na način koji pojačava te pristrasnosti. Ovo može dovesti do

netačnih profila kupaca, pogrešnih poslovnih odluka i potencijalno diskriminatornih

ishoda.

Još jedna potencijalna neželjena posledica je gubitak vrednih informacija ili konteksta

tokom procesa ispravljanja podataka. Tehnike samoisceljujućih podataka se često

fokusiraju na standardizaciju i normalizaciju podataka kako bi se osigurala

Samozalečujući podaci 170

konzistentnost. Međutim, u nekim slučajevima, originalni podaci mogu sadržati

nijanse, izuzetke ili kontekstualne informacije koje su važne za razumevanje celokupne

slike. Automatizovane ispravke koje slepo nameću standardizaciju mogu nenamerno

ukloniti ili zamagliti ove vredne informacije.

Na primer, zamislite samoisceljujućeg radnika za podatke odgovornog za ispravljanje

nedoslednosti u medicinskim kartonima. Ako radnik naiđe na medicinsku istoriju

pacijenta sa retkim stanjem ili neuobičajenim planom lečenja, može pokušati da

normalizuje podatke kako bi se uklopili u češći obrazac. Međutim, čineći to, može

izgubiti specifične detalje i kontekst koji su ključni za tačno predstavljanje jedinstvene

situacije pacijenta. Ovaj gubitak informacija može imati ozbiljne implikacije za negu

pacijenta i donošenje medicinskih odluka.

Da bi se ublažili rizici od neželjenih posledica, neophodno je zauzeti proaktivan pristup

pri dizajniranju i implementaciji tehnika samoisceljujućih podataka:

1. Temeljno testiranje i validacija: Pre implementacije samoisceljujućih radnika

za podatke u produkciji, ključno je temeljno testirati i validirati njihovo

ponašanje u različitim scenarijima. Ovo uključuje testiranje sa reprezentativnim

skupovima podataka koji pokrivaju različite granične slučajeve, izuzetke i

potencijalne pristrasnosti. Rigorozno testiranje pomaže u identifikovanju i

rešavanju neželjenih posledica pre nego što utiču na podatke u stvarnom svetu.

2. Kontinuirano praćenje i evaluacija: Implementacija mehanizama za

kontinuirano praćenje i evaluaciju je ključna za otkrivanje i ublažavanje

neželjenih posledica tokom vremena. Redovno pregledanje ishoda procesa

samoisceljujućih podataka, analiziranje uticaja na nizvodne sisteme i donošenje

odluka, kao i prikupljanje povratnih informacija od zainteresovanih strana može

pomoći u identifikovanju štetnih efekata i pokretanju pravovremenih korektivnih

akcija. Ako vaša organizacija ima operativne kontrolne table, dodavanje jasno

vidljivih metrika vezanih za automatizovane promene podataka je verovatno

dobra ideja. Dodavanje alarma povezanih sa velikim odstupanjima od normalne

Samozalečujući podaci 171

aktivnosti promene podataka je verovatno još bolja ideja!

3. Ljudski nadzor i intervencija: Održavanje ljudskog nadzora i mogućnosti

intervencije u procesu samoisceljujućih podataka je ključno. Iako automatizacija

može značajno poboljšati efikasnost, važno je da ljudski stručnjaci pregledaju

i validiraju ispravke koje prave AI modeli, posebno u kritičnim ili osetljivim

domenima. Ljudska procena i stručnost u domenumogu pomoći u identifikovanju

i rešavanju neželjenih posledica koje se mogu pojaviti.

4. Objašnjiva veštačka inteligencija (XAI) i transparentnost: Kao što je

diskutovano u prethodnom pododeljku, uključivanje tehnika objašnjive veštačke

inteligencije i osiguravanje transparentnosti u procesu samoisceljujućih podataka

može pomoći u ublažavanju neželjenih posledica. Pružanjem jasnih objašnjenja za

ispravke podataka i održavanjem sveobuhvatnih revizorskih tragova, organizacije

mogu bolje razumeti i pratiti rezonovanje iza modifikacija koje prave AI modeli.

5. Inkrementalni i iterativni pristup: Usvajanje inkrementalnog i iterativnog

pristupa samoisceljujućim podacima može pomoći u minimiziranju rizika od

neželjenih posledica. Umesto primene automatizovanih ispravki na celom skupu

podataka odjednom, počnite sa podskupom podataka i postepeno proširujte

opseg kako se tehnike pokažu efikasnim i pouzdanim. Ovo omogućava pažljivo

praćenje i prilagođavanje tokom procesa, smanjujući uticaj neželjenih posledica.

6. Saradnja i povratne informacije: Uključivanje zainteresovanih strana iz

različitih domena i podsticanje saradnje i povratnih informacija tokom procesa

samoisceljujućih podataka može pomoći u identifikovanju i rešavanju neželjenih

posledica. Redovno traženje inputa od stručnjaka iz domena, korisnika podataka

i krajnjih korisnika može pružiti vredne uvide u stvarni uticaj ispravki podataka

i istaći probleme koji su možda bili previđeni.

Proaktivnim rešavanjem rizika od neželjenih posledica i implementacijom

odgovarajućih zaštitnih mera, organizacije mogu iskoristiti prednosti tehnika

samoisceljujućih podataka uz minimiziranje potencijalnih štetnih efekata. Važno

Samozalečujući podaci 172

je pristupiti samoisceljujućim podacima kao iterativnom i kolaborativnom procesu,

kontinuirano prateći, evaluirajući i usavršavajući tehnike kako bi se osiguralo da su

usklađene sa željenim ishodima i održavaju integritet i pouzdanost podataka.

Kada se razmatra upotreba obrazaca samoisceljujućih podataka, neophodno je pažljivo

proceniti ove faktore i odvagnuti prednosti u odnosu na potencijalne rizike i ograničenja.

U nekim slučajevima, hibridni pristup koji kombinuje automatizovane ispravke sa

ljudskim nadzorom i intervencijom može biti najprikladnije rešenje.

Takođe je vredno napomenuti da tehnike samoisceljujućih podataka ne bi trebalo

posmatrati kao zamenu za robusnu validaciju podataka, sanitizaciju unosa i mehanizme

za rukovanje greškama. Ove fundamentalne prakse ostaju kritične za osiguravanje

integriteta i bezbednosti podataka. Samoisceljujuće podatke treba posmatrati kao

komplementarni pristup koji može proširiti i poboljšati ove postojeće mere.

Na kraju, odluka o upotrebi obrazaca samoisceljujućih podataka zavisi od specifičnih

zahteva, ograničenja i prioriteta vaše aplikacije. Pažljivim razmatranjem gore navedenih

faktora i njihovim usklađivanjem sa ciljevima i arhitekturom vaše aplikacije, možete

doneti informisane odluke o tome kada i kako efikasno koristiti tehnike samoisceljujućih

podataka.

Kontekstualno generisanje sadržaja

Obrasci kontekstualnog generisanja sadržaja koriste moć velikih jezičkih modela (LLM)

za generisanje dinamičkog i kontekstualno specifičnog sadržaja unutar aplikacija.

Ova kategorija obrazaca prepoznaje važnost isporuke personalizovanog i relevantnog

sadržaja korisnicima na osnovu njihovih specifičnih potreba, preferenci, pa čak i

prethodnih i trenutnih interakcija sa aplikacijom.

U kontekstu ovog pristupa, “sadržaj” se odnosi kako na primarni sadržaj (tj. blog

postove, članke, itd.) tako i na meta-sadržaj, poput preporuka za primarni sadržaj.

Obrasci kontekstualnog generisanja sadržaja mogu igrati ključnu ulogu u poboljšanju

nivoa angažovanja korisnika, pružanju prilagođenih iskustava i automatizaciji

zadataka kreiranja sadržaja kako za vas tako i za vaše korisnike. Koristeći obrasce koje

Kontekstualno generisanje sadržaja 174

opisujemo u ovom poglavlju, možete kreirati aplikacije koje dinamički generišu sadržaj,

prilagođavajući se kontekstu i ulaznim podacima u realnom vremenu.

Obrasci funkcionišu integrisanjem LLM-ova u izlaze aplikacije, od korisničkog interfejsa

(ponekad nazvanog “chrome”), do imejlova i drugih oblika obaveštenja, kao i bilo kojih

procesa generisanja sadržaja.

Kada korisnik komunicira sa aplikacijom ili pokrene specifičan zahtev za sadržajem,

aplikacija hvata relevantni kontekst, kao što su korisničke preference, prethodne

interakcije ili specifični upiti. Ove kontekstualne informacije se zatim prosleđuju

LLM-u, zajedno sa svim potrebnim šablonima ili smernicama i koriste se za proizvodnju

tekstualnog izlaza koji bi inače morao biti ili hardkodiran, sačuvan u bazi podataka ili

algoritmički generisan.

Sadržaj generisan pomoću LLM-amože imati različite forme, kao što su personalizovane

preporuke, dinamički opisi proizvoda, prilagođeni odgovori na imejlove, pa čak i

celokupni članci ili blog postovi. Jedna od najradikalnijih upotreba ovog sadržaja koju

sam započeo pre više od godinu dana je dinamičko generisanje UI elemenata poput

oznaka formulara, objašnjenja i drugih vrsta tekstova za pojašnjenje.

Personalizacija

Jedna od ključnih prednosti obrazaca kontekstualnog generisanja sadržaja je mogućnost

pružanja visoko personalizovanih iskustava korisnicima. Generisanjem sadržaja na

osnovu konteksta specifičnog za korisnika, ovi obrasci omogućavaju aplikacijama da

prilagode sadržaj individualnim interesima, preferencama i interakcijama korisnika.

Personalizacija prevazilazi jednostavno ubacivanje korisničkog imena u generički

sadržaj. Ona uključuje korišćenje bogatog konteksta dostupnog o svakom korisniku za

generisanje sadržaja koji rezonuje sa njihovim specifičnim potrebama i željama. Ovaj

kontekst može uključivati širok spektar faktora, kao što su:

Kontekstualno generisanje sadržaja 175

1. Informacije korisničkog profila: Na najopštijem nivou primene ove tehnike,

demografski podaci, interesovanja, preference i drugi atributi profila mogu se

koristiti za generisanje sadržaja koji se usklađuje sa korisnikovim poreklom i

karakteristikama.

2. Podaci o ponašanju: Prethodne interakcije korisnika sa aplikacijom, kao što

su pregledane stranice, kliknuti linkovi ili kupljeni proizvodi, mogu pružiti

vredne uvide u njihovo ponašanje i interesovanja. Ovi podaci se mogu koristiti

za generisanje predloga sadržaja koji odražava njihove obrasce angažovanja i

predviđa njihove buduće potrebe.

3. Kontekstualni faktori: Trenutni kontekst korisnika, kao što su njihova lokacija,

uređaj, doba dana, pa čak i vremenske prilike, mogu uticati na proces generisanja

sadržaja. Na primer, aplikacija za putovanja bi mogla imati AI radnika koji

je u stanju da generiše personalizovane preporuke na osnovu trenutne lokacije

korisnika i preovlađujućih vremenskih uslova.

Korišćenjem ovih kontekstualnih faktora, obrasci kontekstualnog generisanja sadržaja

omogućavaju aplikacijama da isporuče sadržaj koji deluje kao da je napravljen posebno

za svakog pojedinačnog korisnika. Ovaj nivo personalizacije ima nekoliko značajnih

prednosti:

1. Povećan angažman: Personalizovani sadržaj privlači pažnju korisnika i održava

njihovu angažovanost sa aplikacijom. Kada korisnici osete da je sadržaj relevantan

i da direktno odgovara njihovim potrebama, veća je verovatnoća da će provesti

više vremena u interakciji sa aplikacijom i istraživanju njenih funkcija.

2. Poboljšano zadovoljstvo korisnika: Personalizovani sadržaj pokazuje da

aplikacija razume i brine o jedinstvenim zahtevima korisnika. Pružanjem

sadržaja koji je koristan, informativan i usklađen sa njihovim interesovanjima,

aplikacija može povećati zadovoljstvo korisnika i izgraditi snažniju vezu sa

svojim korisnicima.

Kontekstualno generisanje sadržaja 176

3. Više stope konverzije: U kontekstu e-trgovine ili marketing aplikacija,

personalizovani sadržaj može značajno uticati na stope konverzije.

Predstavljanjem proizvoda, ponuda ili preporuka koje su prilagođene njihovim

preferencama i ponašanju, aplikacija može povećati verovatnoću da će korisnici

preduzeti željene akcije, kao što su kupovina ili registracija za uslugu.

Produktivnost

Obrasci kontekstualnog generisanja sadržaja mogu značajno povećati određene vrste

produktivnosti smanjujući potrebu za ručnim generisanjem i uređivanjem sadržaja u

kreativnim procesima. Korišćenjemmoći LLM-ova, možete generisati kvalitetan sadržaj

u velikim razmerama, štedeći vreme i trud koji bi vaši kreatori sadržaja i programeri

inače morali da utroše na zamoran ručni rad.

Tradicionalno, kreatori sadržaja moraju da istražuju, pišu, uređuju i formatiraju sadržaj

kako bi osigurali da ispunjava zahteve aplikacije i očekivanja korisnika. Ovaj proces

može biti vremenski zahtevan i resursno intenzivan, posebno kako obim sadržaja raste.

Međutim, sa obrascima kontekstualnog generisanja sadržaja, proces kreiranja sadržaja

može biti u velikoj meri automatizovan. Veliki jezički modeli mogu generisati

koherentan, gramatički ispravan i kontekstualno relevantan sadržaj na osnovu

datih promptova i smernica. Ova automatizacija nudi nekoliko prednosti u pogledu

produktivnosti:

1. Smanjen ručni rad:Delegiranjem zadataka generisanja sadržaja velikim jezičkim

modelima, kreatori sadržaja se mogu fokusirati na zadatke višeg nivoa kao što

su strategija sadržaja, ideacija i osiguranje kvaliteta. Oni mogu pružiti potreban

kontekst, šablone i smernice jezičkom modelu i pustiti ga da se bavi stvarnim

generisanjem sadržaja. Ovo smanjuje ručni rad potreban za pisanje i uređivanje,

omogućavajući kreatorima sadržaja da budu produktivniji i efikasniji.

Kontekstualno generisanje sadržaja 177

2. Brže kreiranje sadržaja:Veliki jezičkimodeli mogu generisati sadržaj mnogo brže

od ljudskih pisaca. Sa pravim promptovima i smernicama, jezički model može

proizvesti više delova sadržaja u roku od nekoliko sekundi ili minuta. Ova brzina

omogućava aplikacijama da generišu sadržaj mnogo bržim tempom, držeći korak

sa zahtevima korisnika i stalno promenljivim digitalnim okruženjem.

Da li brže kreiranje sadržaja vodi do situacije “tragedije zajedničkog dobra” gde se

internet guši u sadržaju koji niko ne čita. Nažalost, sumnjam da je odgovor potvrdan.

3. Konzistentnost i kvalitet: Veliki jezički modeli mogu trivijalno revidirati

sadržaj tako da bude konzistentan u stilu, tonu i kvalitetu. Uz jasne smernice

i primere, određene vrste aplikacija (tj. redakcije, PR, itd.) mogu osigurati da

njihov sadržaj koji generišu ljudi bude usklađen sa glasom brenda i zadovoljava

željene standarde kvaliteta. Ova konzistentnost smanjuje potrebu za obimnim

uređivanjem i revizijama, štedeći vreme i trud u procesu kreiranja sadržaja.

4. Iteracija i optimizacija: Obrasci kontekstualnog generisanja sadržaja

omogućavaju brzu iteraciju i optimizaciju sadržaja. Podešavanjem promptova,

šablona ili smernica datih jezičkom modelu, vaše aplikacije mogu brzo generisati

varijacije sadržaja i testirati različite pristupe na automatizovan način koji nikada

ranije nije bio moguć. Ovaj iterativni proces omogućava brže eksperimentisanje

i usavršavanje strategija sadržaja, što vremenom dovodi do efektivnijeg i

angažovanijeg sadržaja. Ova konkretna tehnika može biti potpuna prekretnica za

aplikacije kao što je e-trgovina koje žive ili umiru na osnovu stope napuštanja i

angažovanja

Kontekstualno generisanje sadržaja 178

Važno je napomenuti da iako obrasci kontekstualnog generisanja sadržaja

mogu značajno povećati produktivnost, oni ne eliminišu u potpunosti

potrebu za ljudskim učešćem. Kreatori sadržaja i urednici i dalje igraju

ključnu ulogu u definisanju celokupne strategije sadržaja, pružanju smernica

jezičkom modelu i osiguravanju kvaliteta i prikladnosti generisanog

sadržaja.

Automatizacijom više repetitivnih i vremenski zahtevnih aspekata kreiranja sadržaja,

obrasci kontekstualnog generisanja sadržaja oslobađaju dragoceno ljudsko vreme i

resurse koji se mogu preusmeriti na zadatke više vrednosti. Ova povećana produktivnost

vam omogućava da isporučite personalizovaniji i angažovaniji sadržaj korisnicima uz

optimizaciju radnih tokova kreiranja sadržaja.

Brza iteracija i eksperimentisanje

Obrasci kontekstualnog generisanja sadržaja vam omogućavaju da brzo iterirate i

eksperimentišete sa različitim varijacijama sadržaja, omogućavajući bržu optimizaciju

i usavršavanje vaše strategije sadržaja. Možete generisati više verzija sadržaja u roku

od nekoliko sekundi, jednostavnim podešavanjem konteksta, šablona ili smernica datih

modelu.

Ova mogućnost brze iteracije nudi nekoliko ključnih prednosti:

1. Testiranje i optimizacija: Sa mogućnošću brzog generisanja varijacija sadržaja,

lako možete testirati različite pristupe i meriti njihovu efikasnost. Na primer,

možete generisati više verzija opisa proizvoda ili marketinške poruke, svaku

prilagođenu određenom segmentu korisnika ili kontekstu. Analiziranjem metrika

angažovanja korisnika, kao što su stope klikova ili stope konverzije, možete

identifikovati najefikasnije varijacije sadržaja i optimizovati vašu strategiju

sadržaja u skladu s tim.

Kontekstualno generisanje sadržaja 179

2. A/B testiranje: Obrasci kontekstualnog generisanja sadržaja omogućavaju

besprekorno A/B testiranje sadržaja. Možete generisati dve ili više varijacija

sadržaja i nasumično ih servirati različitim grupama korisnika. Poređenjem

performansi svake varijacije, možete utvrditi koji sadržaj najbolje rezonuje sa

vašom ciljnom publikom. Ovaj pristup zasnovan na podacima vam omogućava

da donosite informisane odluke i kontinuirano usavršavate svoj sadržaj kako

biste maksimizirali angažovanje korisnika i postigli željene rezultate.

3. Eksperimenti sa personalizacijom: Brza iteracija i eksperimentisanje su

posebno vredni kada je reč o personalizaciji. Sa obrascima kontekstualnog

generisanja sadržaja, možete brzo generisati personalizovane varijacije

sadržaja zasnovane na različitim segmentima korisnika, preferencijama ili

ponašanjima. Eksperimentisanjem sa različitim strategijama personalizacije,

možete identifikovati najefikasnije pristupe za angažovanje pojedinačnih

korisnika i pružanje prilagođenih iskustava.

4. Prilagođavanje promenljivim trendovima: Mogućnost brze iteracije i

eksperimentisanja vam omogućava da ostanete agilni i prilagodite se

promenljivim trendovima i preferencijama korisnika. Kako se pojavljuju

nove teme, ključne reči ili ponašanja korisnika, možete brzo generisati sadržaj

koji je usklađen sa ovim trendovima. Kontinuiranim eksperimentisanjem i

usavršavanjem vašeg sadržaja možete ostati relevantni i održati konkurentsku

prednost u digitalnom okruženju koje se neprestano razvija.

5. Ekonomično eksperimentisanje: Tradicionalno eksperimentisanje sa sadržajem

često zahteva značajno vreme i resurse, jer kreatori sadržaja moraju ručno da

razvijaju i testiraju različite varijacije. Međutim, sa obrascima Kontekstualnog

generisanja sadržaja, troškovi eksperimentisanja su značajno smanjeni. Veliki

jezički modeli mogu brzo generisati varijacije sadržaja u većem obimu,

omogućavajući vam da istražite širok spektar ideja i pristupa bez značajnih

troškova.

Da biste maksimalno iskoristili brzu iteraciju i eksperimentisanje, važno je imati dobro

Kontekstualno generisanje sadržaja 180

definisan eksperimentalni radni okvir. Ovaj okvir treba da uključuje:

• Jasne ciljeve i hipoteze za svaki eksperiment

• Odgovarajuće metrike i mehanizme praćenja za merenje performansi sadržaja

• Strategije segmentacije i ciljanja kako bi se osiguralo da odgovarajuće varijacije

sadržaja budu isporučene pravim korisnicima

• Alate za analizu i izveštavanje za izvlačenje uvida iz eksperimentalnih podataka

• Proces za uključivanje naučenog i optimizacija u vašu strategiju sadržaja

Prihvatanjem brze iteracije i eksperimentisanja, možete kontinuirano usavršavati i

optimizovati vaš sadržaj, osiguravajući da ostane privlačan, relevantan i efikasan u

postizanju ciljeva vaše aplikacije. Ovaj agilni pristup kreiranju sadržaja vam omogućava

da budete korak ispred i pružite izuzetno korisničko iskustvo.

Skalabilnost i efikasnost

Kako aplikacije rastu i potražnja za personalizovanim sadržajem se povećava, obrasci

kontekstualnog generisanja sadržaja omogućavaju efikasno skaliranje kreiranja

sadržaja. Veliki jezički modeli mogu istovremeno generisati sadržaj za veliki broj

korisnika i konteksta, bez potrebe za proporcionalnim povećanjem ljudskih resursa.

Ova skalabilnost omogućava aplikacijama da isporuče personalizovana iskustva

rastućoj bazi korisnika bez opterećenja njihovih mogućnosti kreiranja sadržaja.

Imajte na umu da se kontekstualno generisanje sadržaja može efikasno

koristiti za internacionalizaciju vaše aplikacije “u hodu”. Zapravo, to je tačno

ono što sam uradio koristeći svoj Instant18n Gem za isporuku Olympie na

više od pola desetine jezika, iako nismo ni godinu dana stari.

Kontekstualno generisanje sadržaja 181

AI podržana lokalizacija

Ako mi dozvolite da se malo pohvalim, mislim da je moja Instant18n biblioteka za Rails

aplikacije revolucionarni primer obrasca “Kontekstualnog generisanja sadržaja” na delu,

pokazujući transformativni potencijal veštačke inteligencije u razvoju aplikacija. Ovaj

gem koristi snagu OpenAI-jevog GPT velikog jezičkog modela da revolucionira način

na koji se internacionalizacija i lokalizacija obrađuju u Rails aplikacijama.

Tradicionalno, internacionalizacija Rails aplikacije uključuje ručno definisanje ključeva

za prevođenje i obezbeđivanje odgovarajućih prevoda za svaki podržani jezik. Ovaj

proces može biti dugotrajan, zahtevan u pogledu resursa i sklon nedoslednostima.

Međutim, sa Instant18n gem-om, paradigma lokalizacije je potpuno redefinisana.

Integracijom velikog jezičkog modela, Instant18n gem vam omogućava da generišete

prevode u hodu, na osnovu konteksta i značenja teksta. Umesto oslanjanja na unapred

definisane ključeve za prevođenje i statičke prevode, gem dinamički prevodi tekst

koristeći snagu veštačke inteligencije. Ovaj pristup nudi nekoliko ključnih prednosti:

1. Besprekorna lokalizacija: Sa Instant18n gem-om, programeri više ne moraju

ručno da definišu i održavaju datoteke sa prevodima za svaki podržani jezik.

Gem automatski generiše prevode na osnovu datog teksta i željenog ciljnog jezika,

čineći proces lokalizacije jednostavnim i besprekornim.

2. Kontekstualna preciznost: AI može dobiti dovoljno konteksta da shvati nijanse

teksta koji se prevodi. Može uzeti u obzir okolni kontekst, idiome i kulturološke

reference kako bi generisao prevode koji su precizni, prirodni i kontekstualno

prikladni.

3. Opsežna jezička podrška: Instant18n gem koristi ogromno znanje i lingvističke

sposobnosti GPT-a, omogućavajući prevode na širok spektar jezika. Od

uobičajenih jezika poput španskog i francuskog do opskurnijih ili izmišljenih

jezika poput klingonskog i vilovnjačkog, gemmože da se nosi sa širokim spektrom

prevodilačkih zahteva.

Kontekstualno generisanje sadržaja 182

4. Fleksibilnost i kreativnost: Gem prevazilazi tradicionalne jezičke prevode i

omogućava kreativne i nekonvencionalne opcije lokalizacije. Programeri mogu

prevoditi tekst u različite stilove, dijalekte, pa čak i izmišljene jezike, otvarajući

nove mogućnosti za jedinstvena korisnička iskustva i privlačan sadržaj.

5. Optimizacija performansi: Instant18n gem uključuje mehanizme keširanja

za poboljšanje performansi i smanjenje opterećenja kod ponovljenih prevoda.

Prevedeni tekst se kešira, omogućavajući da se naknadni zahtevi za istim

prevodom brzo isporuče bez potrebe za redundantnim API pozivima.

Instant18n gem predstavlja primer snage obrasca “Kontekstualnog generisanja sadržaja”

korišćenjem veštačke inteligencije za dinamičko generisanje lokalizovanog sadržaja.

On pokazuje kako se veštačka inteligencija može integrisati u osnovnu funkcionalnost

Rails aplikacije, transformišući način na koji programeri pristupaju internacionalizaciji

i lokalizaciji.

Eliminisanjem potrebe za ručnim upravljanjem prevoda i omogućavanjem prevođenja

u realnom vremenu na osnovu konteksta, Instant18n gem štedi programerima značajno

vreme i trud. Omogućava im da se fokusiraju na izgradnju osnovnih funkcionalnosti

svoje aplikacije, dok se istovremeno osigurava da se aspekt lokalizacije odvija

besprekorno i precizno.

Važnost korisničkog testiranja i povratnih informacija

Na kraju, uvek imajte na umu važnost korisničkog testiranja i povratnih informacija.

Ključno je potvrditi da generisanje kontekstualnog sadržaja ispunjava očekivanja

korisnika i usklađeno je sa ciljevima aplikacije. Kontinuirano unapređujte i usavršavajte

generisani sadržaj na osnovu korisničkih uvida i analitike. Ako generišete dinamički

sadržaj u velikom obimu koji bi bilo nemoguće ručno validirati od strane vas i vašeg

tima, razmotrite dodavanje mehanizama za povratne informacije koji omogućavaju

korisnicima da prijave sadržaj koji je čudan ili pogrešan, zajedno sa objašnjenjem zašto.

Kontekstualno generisanje sadržaja 183

Te dragocene povratne informacije mogu čak biti prosleđene AI programu zaduženom

za prilagođavanje komponente koja je generisala sadržaj!

Generativni UI

Pažnja je danas toliko dragocena da efektivno angažovanje korisnika zahteva softverska

iskustva koja nisu samo besprekorna i intuitivna, već i visoko personalizovana prema

individualnim potrebama, preferencijama i kontekstima. Kao rezultat toga, dizajneri

i programeri se sve više suočavaju sa izazovom kreiranja korisničkih interfejsa koji

se mogu prilagoditi i odgovoriti jedinstvenim zahtevima svakog korisnika u velikim

razmerama.

Generativni UI (GenUI) je zaista revolucionarni pristup dizajnu korisničkog interfejsa

koji koristi moć velikih jezičkih modela (LLM) za kreiranje visoko personalizovanih i

dinamičkih korisničkih iskustava u realnom vremenu. Želeo sam da vam u ovoj knjizi

bar dam uvod u GenUI, jer verujem da je to jedna od najplodnijih prilika koje trenutno

postoje u domenu dizajna aplikacija i radnih okvira. Ubeđen sam da će se u ovoj posebnoj

niši pojaviti desetine ili više novih uspešnih komercijalnih i projekata otvorenog koda.

Generativni UI 185

U svojoj suštini, GenUI kombinuje principe Kontekstualnog generisanja sadržaja sa

naprednim AI tehnikama za dinamičko generisanje elemenata korisničkog interfejsa,

kao što su tekst, slike i rasporedi, na osnovu dubokog razumevanja korisničkog

konteksta, preferencija i ciljeva. GenUI omogućava dizajnerima i programerima da

kreiraju interfejse koji se prilagođavaju i razvijaju kao odgovor na korisničke interakcije,

pružajući nivo personalizacije koji ranije nije bio dostižan.

GenUI predstavlja fundamentalnu promenu u načinu na koji pristupamo dizajnu

korisničkog interfejsa. Umesto dizajniranja za mase, GenUI nam omogućava da

dizajniramo za pojedinca. Personalizovani sadržaj i interfejsi imaju potencijal da

kreiraju korisnička iskustva koja rezonuju sa svakim korisnikom na dubljem nivou,

povećavajući angažovanje, zadovoljstvo i lojalnost.

Kao najsavremenija tehnika, prelazak na GenUI je pun konceptualnih i praktičnih

izazova. Integracija AI u proces dizajna, osiguravanje da generisani interfejsi nisu samo

personalizovani već i upotrebljivi, pristupačni i usklađeni sa celokupnim brendom i

korisničkim iskustvom, sve su to izazovi koji čine GenUI poduhvatom za malobrojne,

ne za mnoge. Dodatno, uključivanje AI pokreće pitanja o privatnosti podataka,

transparentnosti i čak etičkim implikacijama.

Uprkos izazovima, personalizovana iskustva u velikim razmerama imaju moć da

potpuno transformišu način na koji interagujemo sa digitalnim proizvodima i

uslugama. To otvara mogućnosti za kreiranje inkluzivnih i pristupačnih interfejsa koji

odgovaraju različitim potrebama korisnika, bez obzira na njihove sposobnosti, poreklo

ili preferencije.

U ovom poglavlju, istražićemo koncept GenUI-ja, ispitujući neke od definišućih

karakteristika, ključnih prednosti i potencijalnih izazova. Počinjemo razmatranjem

najosnovnijeg i najpristupačnijeg oblika GenUI-ja: generisanje tekstualnog sadržaja za

inače tradicionalno dizajnirane i implementirane korisničke interfejse.

Generativni UI 186

Generisanje teksta za korisničke interfejse

Tekstualni elementi koji postoje u chrome-u vaše aplikacije, kao što su oznake

formulara, opisi alata i objašnjavajući tekst, obično su hardkodirani u šablone ili UI

komponente, pružajući konzistentno ali generičko iskustvo za sve korisnike. Koristeći

obrasce kontekstualnog generisanja sadržaja, možete transformisati ove statičke

elemente u dinamičke, kontekstualno svesne i personalizovane komponente.

Personalizovani formulari

Formulari su sveprisutni deo web i mobilnih aplikacija, služeći kao primarno sredstvo

za prikupljanje korisničkog unosa. Međutim, tradicionalni formulari često predstavljaju

generičko i bezlično iskustvo, sa standardnim oznakama i poljima koja se nemoraju uvek

poklapati sa specifičnim kontekstom ili potrebama korisnika. Korisnici će verovatnije

popuniti formulare koji deluju prilagođeni njihovim potrebama i preferencijama, što

dovodi do većih stopa konverzije i zadovoljstva korisnika.

Međutim, važno je postići ravnotežu između personalizacije i konzistentnosti. Iako

prilagođavanje formulara individualnim korisnicima može biti korisno, ključno je

održati nivo poznatosti i predvidljivosti. Korisnici bi i dalje trebalo da mogu lako

prepoznati i navigirati kroz formulare, čak i sa personalizovanim elementima.

Evo nekoliko ideja za personalizovane formulare kao inspiracija:

Kontekstualni predlozi polja

GenUI može analizirati prethodne interakcije korisnika, preferencije i podatke kako bi

pružio inteligentne predloge polja kao predviđanja. Na primer, ako je korisnik prethodno

uneo svoju adresu za dostavu, formular može automatski popuniti relevantna polja

njihovim sačuvanim informacijama. Ovo ne samo da štedi vreme već i pokazuje da

aplikacija razume i pamti korisničke preferencije.

Generativni UI 187

Čekajte malo, zar se ova tehnika ne bi mogla primeniti i bez upotrebe veštačke

inteligencije? Naravno, ali lepota implementacije ovakve funkcionalnosti pomoću

veštačke inteligencije je dvostruka: 1) koliko je lako implementirati je i 2) koliko je

otporna na promene i evoluciju vašeg korisničkog interfejsa tokom vremena.

Hajde da na brzinu napravimo servis za naš teoretski sistem za obradu porudžbina, koji

će pokušati da proaktivno popuni odgovarajuću adresu za dostavu umesto korisnika.

1 class OrderShippingAddressSubscriber

2 include Raix::ChatCompletion

3

4 attr_accessor :order

5

6 delegate :customer, to: :order

7

8 DIRECTIVE = "You are a smart order processing assistant. Given the

9 customer's order history, guess the most likely shipping address

10 for the current order."

11

12 def order_created(order)

13 return unless order.pending? && order.shipping_address.blank?

14

15 self.order = order

16

17 transcript.clear

18 transcript << { system: DIRECTIVE }

19 transcript << { user: "Order History: #{order_history.to_json}" }

20 transcript << { user: "Current Order: #{order.to_json}" }

21

22 response = chat_completion

23 apply_predicted_shipping_address(order, response)

24 end

25

26 private

27

28 def apply_predicted_shipping_address(order, response)

29 # extract the shipping address from the response...

30 # ...and assume there's some sort of live update of the address fields

31 order.update(shipping_address:)

32 end

Generativni UI 188

33

34 def order_history

35 customer.orders.successful.limit(100).map do |order|

36 {

37 date: order.date,

38 description: order.description,

39 shipping_address: order.shipping_address

40 }

41 end

42 end

43 end

Ovaj primer je veoma pojednostavljen, ali bi trebalo da funkcioniše u većini slučajeva.

Ideja je da pustimo veštačku inteligenciju da pogađa na isti način kao što bi to činio

čovek. Da bih jasnije objasnio o čemu govorim, razmotrimo neke uzorne podatke:

1 Order History:

2 [

3 {"date": "2024-01-03", "description": "garden soil mix",

4 "shipping_address": "123 Country Lane, Rural Town"},

5 {"date": "2024-01-15", "description": "hardcover fiction novels",

6 "shipping_address": "456 City Apt, Metroville"},

7 {"date": "2024-01-22", "description": "baby diapers", "shipping_address":

8 "789 Suburb St, Quietville"},

9 {"date": "2024-02-01", "description": "organic vegetables",

10 "shipping_address": "123 Country Lane, Rural Town"},

11 {"date": "2024-02-17", "description": "mystery thriller book set",

12 "shipping_address": "456 City Apt, Metroville"},

13 {"date": "2024-02-25", "description": "baby wipes",

14 "shipping_address": "789 Suburb St, Quietville"},

15 {"date": "2024-03-05", "description": "flower seeds",

16 "shipping_address": "123 Country Lane, Rural Town"},

17 {"date": "2024-03-20", "description": "biographies",

18 "shipping_address": "456 City Apt, Metroville"},

19 {"date": "2024-03-30", "description": "baby formula",

20 "shipping_address": "789 Suburb St, Quietville"},

21 {"date": "2024-04-12", "description": "lawn fertilizer",

22 "shipping_address": "123 Country Lane, Rural Town"},

23 {"date": "2024-04-22", "description": "science fiction novels",

24 "shipping_address": "456 City Apt, Metroville"},

Generativni UI 189

25 {"date": "2024-05-02", "description": "infant toys",

26 "shipping_address": "789 Suburb St, Quietville"},

27 {"date": "2024-05-14", "description": "outdoor grill",

28 "shipping_address": "123 Country Lane, Rural Town"},

29 {"date": "2024-05-29", "description": "literary classics",

30 "shipping_address": "456 City Apt, Metroville"},

31 {"date": "2024-06-11", "description": "baby clothes",

32 "shipping_address": "789 Suburb St, Quietville"},

33 {"date": "2024-07-01", "description": "watering can",

34 "shipping_address": "123 Country Lane, Rural Town"},

35 {"date": "2024-07-18", "description": "non-fiction essays",

36 "shipping_address": "456 City Apt, Metroville"},

37 {"date": "2024-07-28", "description": "baby bath items",

38 "shipping_address": "789 Suburb St, Quietville"},

39 {"date": "2024-08-09", "description": "herb garden kit",

40 "shipping_address": "123 Country Lane, Rural Town"},

41 {"date": "2024-08-24", "description": "children's books",

42 "shipping_address": "456 City Apt, Metroville"}

43]

Da li ste primetili obrazac u podacima? Garantujem vam da je ovo jednostavno za VJM.

Da bismo to demonstrirali, pitaćemo GPT-4 koja je najverovatnija adresa za isporuku

za “toplomer”.

1 From the order history you've provided, it looks like the purchases are

2 generally clustered into three main types based on the shipping addresses:

3

4 123 Country Lane, Rural Town - This address often orders garden and

5 outdoor-related items like soil mix, vegetables, flower seeds, lawn

6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.

7

8 456 City Apt, Metroville - This address tends to order various types of

9 books, indicating an interest in reading across genres like fiction,

10 thrillers, biographies, science fiction, literary classics, non-fiction

11 essays, and children's books.

12

13 789 Suburb St, Quietville - The purchases for this address are consistently

14 baby-related products, such as diapers, wipes, baby formula, infant toys,

15 baby clothes, and baby bath items.

16

Generativni UI 190

17 Given these patterns, a digital thermometer could potentially be a fit for

18 any of the addresses based on different needs: outdoor temperature tracking,

19 a tool for a passionate reader interested in science gadgets, or a health

20 tool for a baby. However, considering its common use in monitoring health,

21 especially for babies, it's most likely to be purchased by someone who's

22 already buying baby care products.

23

24 Therefore, the most likely shipping address for a digital thermometer, based

25 on the purchasing patterns, would be 789 Suburb St, Quietville.

Ako mislite da je preterivanje koristiti skup model kao što je GPT-4 za ovaj zadatak,

u pravu ste! Isprobao sam isti upit na Mistral 7B Instruct modelu i on je dao sledeći

odgovor brzinom od 75 tokena u sekundi, po zanemarljivoj ceni od 0,000218 američkih

dolara.

1 Based on the given order history, it appears that the customer has received

2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)

3 at the address "789 Suburb St, Quietville" and garden-related items (soil,

4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural

5 Town". The customer has also received books (fiction, non-fiction, literary

6 classics, mystery-thriller, science fiction, biographies, children's books)

7 at the address "456 City Apt, Metroville".

8

9 Given that the new order is for a "thermometer", which doesn't seem to fit

10 into any of the categories that the customer has previously ordered, it's

11 hard to accurately predict the shipping address based solely on the order

12 history. However, given the 50%-50% split between baby-related and

13 garden-related items, it could somewhat lean towards the Baby-related items

14 address ("789 Suburb St, Quietville"). But remember, this is an assumption

15 and cannot be definitively confirmed without more context or information.

Da li su dodatni napor i troškovi ove tehnike vredni toga da iskustvo kupovine učine

magičnijim? Za mnoge online prodavce, apsolutno. A sudeći po svemu, troškovi AI

računanja će samo padati, posebno za provajdere hostinga modela otvorenog koda koji

su u trci ka dnu.

Koristite Šablon Prompta i StructuredIO zajedno sa OgrađivanjemOdgovora

da optimizujete ovakvu vrstu chat kompletiranja.

Generativni UI 191

Adaptivno Redanje Polja

Redosled kojim se prikazuju polja formulara može značajno uticati na korisničko

iskustvo i stope završetka. Sa GenUI, možete dinamički prilagoditi redosled polja

na osnovu korisničkog konteksta i važnosti svakog polja. Na primer, ako korisnik

popunjava registracioni formular za fitness aplikaciju, formular bi mogao dati prioritet

poljima vezanim za njihove fitness ciljeve i preference, čineći proces relevantnijim i

angažovanijim.

Personalizovani Mikrotekst

Instrukcioni tekst, poruke o greškama i drugi mikrotekst povezan sa formularima takođe

se može personalizovati korišćenjem GenUI. Umesto prikazivanja generičkih poruka o

greškama poput “Nevažeća email adresa,” možete generisati korisnije i kontekstualne

poruke kao što je “Molimo unesite važeću email adresu kako biste primili potvrdu vaše

porudžbine.” Ovi personalizovani detalji mogu učiniti iskustvo popunjavanja formulara

pristupačnijim i manje frustrirajućim.

Personalizovana Validacija

U skladu sa Personalizovanim Mikrotekstom, mogli biste koristiti AI za validaciju

formulara na načine koji deluju magično. Zamislite da pustite AI da validira formular

korisničkog profila, tražeći potencijalne greške na semantičkom nivou.

Generativni UI 192

Slika 9. Možete li uočiti semantičku validaciju koja se dešava?

Progresivno Otkrivanje

GenUI može inteligentno odrediti koja su polja formulara suštinska na osnovu

korisničkog konteksta i postepeno otkrivati dodatna polja po potrebi. Ova tehnika

progresivnog otkrivanja pomaže u smanjenju kognitivnog opterećenja i čini proces

popunjavanja formulara lakšim za upravljanje. Na primer, ako se korisnik prijavljuje

Generativni UI 193

za osnovnu pretplatu, formular može inicijalno prikazati samo suštinska polja, a kako

korisnik napreduje ili bira određene opcije, dodatna relevantna polja se mogu dinamički

uvoditi.

Kontekstualno Svestan Tekst za Objašnjenja

Objašnjenja (tooltip) se često koriste za pružanje dodatnih informacija ili smernica

korisnicima kada prelaze mišem preko ili stupaju u interakciju sa određenim

elementima. Sa pristupom “Kontekstualnog Generisanja Sadržaja”, možete generisati

objašnjenja koja se prilagođavaju korisničkom kontekstu i pružaju relevantne

informacije. Na primer, ako korisnik istražuje kompleksnu funkciju, objašnjenje

može ponuditi personalizovane savete ili primere zasnovane na njihovim prethodnim

interakcijama ili nivou veštine.

Tekst za objašnjenja, kao što su instrukcije, opisi ili poruke za pomoć, može se

dinamički generisati na osnovu korisničkog konteksta. Umesto predstavljanja

generičkih objašnjenja, možete koristiti LLM-ove za generisanje teksta koji je

prilagođen specifičnim potrebama ili pitanjima korisnika. Na primer, ako korisnik

ima poteškoća sa određenim korakom u procesu, tekst za objašnjenje može pružiti

personalizovane smernice ili savete za rešavanje problema.

Mikrotekst se odnosi na male delove teksta koji vode korisnike kroz vašu aplikaciju,

kao što su oznake dugmadi, poruke o greškama ili upiti za potvrdu. Primenom pristupa

Kontekstualnog Generisanja Sadržaja na mikrotekst, možete kreirati adaptivni UI koji

reaguje na korisničke akcije i pruža relevantan i koristan tekst. Na primer, ako korisnik

treba da izvrši kritičnu akciju, upit za potvrdu može biti dinamički generisan kako bi

pružio jasnu i personalizovanu poruku.

Personalizovani tekst za objašnjenja i objašnjenja mogu značajno poboljšati proces

uvođenja novih korisnika. Pružanjem kontekstualno specifičnih smernica i primera,

možete pomoći korisnicima da brzo razumeju i navigiraju aplikaciju, smanjujući krivu

učenja i povećavajući usvajanje.

Generativni UI 194

Dinamički i kontekstualno svesni chrome elementi takođe mogu učiniti aplikaciju

intuitivnijom i angažovanijom. Korisnici će verovatnije stupati u interakciju sa

funkcijama i istraživati ih kada je prateći tekst prilagođen njihovim specifičnim

potrebama i interesovanjima.

Do sada smo obradili ideje za unapređenje postojećih UI paradigmi pomoću veštačke

inteligencije, ali šta je sa preispitivanjem načina na koji se korisnički interfejsi dizajniraju

i implementiraju na radikalniji način?

Definisanje generativnog UI-ja

Za razliku od tradicionalnog UI dizajna, gde dizajneri kreiraju fiksne, statične

interfejse, GenUI nagoveštava budućnost u kojoj naš softver poseduje fleksibilna,

personalizovana iskustva koja mogu da se razvijaju i prilagođavaju u realnom vremenu.

Svaki put kada koristimo interfejs za konverzaciju zasnovan na veštačkoj inteligenciji,

dozvoljavamo AI-ju da se prilagodi specifičnim potrebama korisnika. GenUI ide korak

dalje primenjujući taj nivo prilagodljivosti na vizuelni interfejs softvera.

Razlog zbog kojeg je danas moguće eksperimentisati sa GenUI idejama je taj što veliki

jezički modeli već razumeju programiranje i njihovo osnovno znanje uključuje UI

tehnologije i okvire. Pitanje je, dakle, da li se veliki jezički modeli mogu koristiti za

generisanje UI elemenata, kao što su tekst, slike, rasporedi, pa čak i celokupni interfejsi,

koji su prilagođeni svakom pojedinačnom korisniku. Model bi mogao biti podešen da

uzme u obzir različite faktore, kao što su prethodne interakcije korisnika, navedene

preference, demografske informacije i trenutni kontekst upotrebe, kako bi kreirao visoko

personalizovane i relevantne interfejse.

GenUI se razlikuje od tradicionalnog dizajna korisničkog interfejsa na nekoliko ključnih

načina:

Generativni UI 195

1. Dinamičan i adaptivan: Tradicionalni UI dizajn podrazumeva kreiranje fiksnih,

statičnih interfejsa koji ostaju isti za sve korisnike. Nasuprot tome, GenUI

omogućava interfejse koji se mogu dinamički prilagođavati i menjati na osnovu

potreba korisnika i konteksta. To znači da ista aplikacija može predstaviti različite

interfejse različitim korisnicima, ili čak istom korisniku u različitim situacijama.

2. Personalizacija na velikoj skali: Kod tradicionalnog dizajna, kreiranje

personalizovanih iskustava za svakog korisnika često je nepraktično zbog

potrebnog vremena i resursa. GenUI, s druge strane, omogućava personalizaciju

na velikoj skali. Korišćenjem AI-ja, dizajneri mogu kreirati interfejse koji

se automatski prilagođavaju jedinstvenim potrebama i preferencama svakog

korisnika, bez potrebe za ručnim dizajniranjem i razvijanjem posebnih interfejsa

za svaki segment korisnika.

3. Fokus na rezultatima: Tradicionalni UI dizajn često se fokusira na kreiranje

vizuelno privlačnih i funkcionalnih interfejsa. Iako su ovi aspekti i dalje važni u

GenUI-ju, primarni fokus se pomera ka postizanju željenih korisničkih rezultata.

GenUI teži kreiranju interfejsa koji su optimizovani za specifične ciljeve i zadatke

svakog korisnika, dajući prioritet upotrebljivosti i efektivnosti u odnosu na čisto

estetske aspekte.

4. Kontinuirano učenje i poboljšanje: GenUI sistemi mogu kontinuirano da uče

i poboljšavaju se tokom vremena na osnovu korisničkih interakcija i povratnih

informacija. Dok korisnici koriste generisane interfejse, AI modeli mogu

prikupljati podatke o ponašanju korisnika, preferencama i rezultatima, koristeći

ove informacije za usavršavanje i optimizaciju budućih generacija interfejsa.

Ovaj iterativni proces učenja omogućava GenUI sistemima da vremenom postaju

sve efikasniji u zadovoljavanju potreba korisnika.

Važno je napomenuti da GenUI nije isto što i AI-potpomognuti alati za dizajn, poput

onih koji pružaju sugestije ili automatizuju određene dizajnerske zadatke. Iako ovi

alati mogu biti korisni u pojednostavljivanju procesa dizajna, oni se i dalje oslanjaju

na dizajnere da donose konačne odluke i kreiraju statične interfejse. GenUI, s druge

Generativni UI 196

strane, podrazumeva da AI sistem preuzima aktivniju ulogu u stvarnom generisanju i

prilagođavanju interfejsa na osnovu korisničkih podataka i konteksta.

GenUI predstavlja značajan pomak u načinu na koji pristupamo dizajnu

korisničkog interfejsa, udaljavajući se od univerzalnih rešenja i krećući se ka visoko

personalizovanim, adaptivnim iskustvima. Korišćenjem moći veštačke inteligencije,

GenUI ima potencijal da revolucionarizuje način na koji komuniciramo sa digitalnim

proizvodima i uslugama, stvarajući interfejse koji su intuitivniji, angažovaniji i

efikasniji za svakog pojedinačnog korisnika.

Primer

Da bismo ilustrovali koncept GenUI-ja, razmotrimo hipotetičku fitness aplikaciju pod

nazivom “FitAI”. Ova aplikacija ima za cilj da pruži personalizovane planove vežbanja

i savete o ishrani korisnicima na osnovu njihovih individualnih ciljeva, nivoa kondicije

i preferencija.

U tradicionalnom pristupuUI dizajnu, FitAI bi mogao imati fiksan set ekrana i elemenata

koji su isti za sve korisnike. Međutim, sa GenUI-jem, interfejs aplikacije bi se mogao

dinamički prilagođavati jedinstvenim potrebama i kontekstu svakog korisnika.

Ovaj pristup je pomalo teško zamisliti za implementaciju u 2024. godini i možda čak

nema adekvatan ROI, ali je moguć.

Evo kako bi to moglo da funkcioniše:

1. Uvođenje korisnika:

• Umesto standardnog upitnika, FitAI koristi konverzacijsku veštačku

inteligenciju za prikupljanje informacija o ciljevima korisnika, trenutnom

nivou kondicije i preferencama.

Generativni UI 197

• Na osnovu ove početne interakcije, AI generiše personalizovani raspored

kontrolne table, naglašavajući funkcije i informacije koje su najrelevantnije

za ciljeve korisnika.

• Trenutna AI tehnologija bi mogla imati na raspolaganju izbor komponenti

ekrana koje bi koristila u sastavljanju personalizovane kontrolne table.

• Buduća AI tehnologija bi mogla preuzeti ulogu iskusnog UI dizajnera i

zapravo kreirati kontrolnu tablu od nule.

2. Planer treninga:

• AI prilagođava interfejs planera treninga specifično prema nivou iskustva

korisnika i dostupnoj opremi.

• Za početnika bez opreme, može prikazivati jednostavne vežbe sa sopstvenom

težinom uz detaljna uputstva i video zapise.

• Za naprednog korisnika sa pristupom teretani, može prikazivati složenije

rutine sa manje objašnjenja.

• Sadržaj planera treninga se ne filtrira jednostavno iz velikog skupa podataka.

Može se generisati u realnom vremenu na osnovu baze znanja koja se

pretražuje sa kontekstom koji uključuje sve što se zna o korisniku.

3. Praćenje napretka:

• Interfejs za praćenje napretka razvija se na osnovu korisnikovih ciljeva i

obrazaca angažovanja.

• Ako je korisnik prvenstveno fokusiran na gubitak težine, interfejs može

istaknuto prikazivati grafikon trenda težine i statistiku potrošnje kalorija.

• Za korisnika koji gradi mišićnu masu, mogao bi isticati napredak u snazi i

promene u telesnoj kompoziciji.

• AI može prilagoditi ovaj deo aplikacije stvarnom napretku korisnika. Ako

napredak stane na određeni period, aplikacija može preći u režim u kojem

pokušava navesti korisnika da otkrije razloge zastoja, kako bi ih ublažila.

Generativni UI 198

4. Nutricionistički saveti:

• Sekcija za ishranu prilagođava se korisnikovim prehrambenim

preferencijama i ograničenjima.

• Za vegana, može prikazivati predloge biljnih obroka i izvore proteina.

• Za korisnika sa netolerancijom na gluten, automatski bi filtrirala namirnice

koje sadrže gluten iz preporuka.

• Ponovo, sadržaj se ne izvlači iz ogromnog skupa podataka o obrocima koji

važi za sve korisnike, već se sintetizuje iz baze znanja koja sadrži informacije

prilagodljive specifičnoj situaciji i ograničenjima korisnika.

• Na primer, recepti se generišu sa specifikacijama sastojaka koje odgovaraju

konstantno promenjivim kalorijskim potrebama korisnika kako se njihov

nivo kondicije i telesne statistike razvijaju.

5. Motivacioni elementi:

• Motivacioni sadržaj i obaveštenja aplikacije personalizovani su na osnovu

tipa ličnosti korisnika i reakcije na različite motivacione strategije.

• Neki korisnici mogu primati ohrabrujuće poruke, dok drugi dobijaju

povratne informacije više zasnovane na podacima.

U ovom primeru, GenUI omogućava FitAI-u da stvori visoko prilagođeno iskustvo za

svakog korisnika, potencijalno povećavajući angažovanje, zadovoljstvo i verovatnoću

postizanja fitnes ciljeva. Elementi interfejsa, sadržaj, pa čak i “ličnost” aplikacije

prilagođavaju se kako bi najbolje služili potrebama i preferencijama svakog

pojedinačnog korisnika.

Prelazak na dizajn orijentisan ka ishodima

GenUI predstavlja fundamentalni pomak u pristupu dizajnu korisničkog interfejsa,

prelazeći sa fokusa na kreiranje specifičnih elemenata interfejsa na više holistički pristup

orijentisan ka ishodima. Ovaj pomak ima nekoliko važnih implikacija:

Generativni UI 199

1. Fokus na ciljeve korisnika:

• Dizajneri će morati dublje razmišljati o ciljevima korisnika i željenim

ishodima umesto o specifičnim komponentama interfejsa.

• Naglasak će biti na stvaranju sistema koji mogu generisati interfejse koji

pomažu korisnicima da efikasno i efektivno postignu svoje ciljeve.

• Pojaviće se novi UI okviri koji će AI-zasnovanim dizajnerima dati alate

potrebne za generisanje korisničkih iskustava u realnom vremenu i iz početka

umesto na osnovu unapred definisanih specifikacija ekrana.

2. Promena uloge dizajnera:

• Dizajneri će preći sa kreiranja fiksnih izgleda na definisanje pravila,

ograničenja i smernica koje AI sistemi treba da prate pri generisanju

interfejsa.

• Moraće da razviju veštine u oblastima kao što su analiza podataka,

inženjering AI upita i sistemsko razmišljanje kako bi efikasno vodili GenUI

sisteme.

3. Važnost istraživanja korisnika:

• Istraživanje korisnika postaje još kritičnije u GenUI kontekstu, jer dizajneri

moraju razumeti ne samo preferencije korisnika, već i kako se te preferencije

i potrebe menjaju u različitim kontekstima.

• Kontinuirano testiranje korisnika i povratne informacije biće ključni za

usavršavanje i poboljšanje sposobnosti AI-ja da generiše efikasne interfejse.

4. Dizajniranje za varijabilnost:

• Umesto kreiranja jednog “savršenog” interfejsa, dizajneri će morati da

razmotre više mogućih varijacija i osiguraju da sistem može generisati

odgovarajuće interfejse za različite potrebe korisnika.

Generativni UI 200

• Ovo uključuje dizajniranje za granične slučajeve i osiguravanje da

generisani interfejsi održavaju upotrebljivost i pristupačnost kroz različite

konfiguracije.

• Diferencijacija proizvoda dobija nove dimenzije koje uključuju divergentne

perspektive o psihologiji korisnika i korišćenje jedinstvenih skupova

podataka i baza znanja nedostupnih konkurentima.

Izazovi i razmatranja

Iako GenUI nudi uzbudljive mogućnosti, takođe predstavlja nekoliko izazova i

razmatranja:

1. Tehnička ograničenja:

• Trenutna AI tehnologija, iako napredna, i dalje ima ograničenja u

razumevanju složenih namera korisnika i generisanju istinski kontekstualno

svesnih interfejsa.

• Problemi sa performansama vezani za generisanje elemenata interfejsa u

realnom vremenu, posebno na manje snažnim uređajima.

2. Zahtevi za podacima:

• U zavisnosti od slučaja upotrebe, efikasni GenUI sistemi mogu zahtevati

značajne količine korisničkih podataka za generisanje personalizovanih

interfejsa.

• Izazovi u etičkom prikupljanju autentičnih korisničkih podataka pokreću

pitanja o privatnosti i bezbednosti podataka, kao i o potencijalnim

pristrasnostima u podacima koji se koriste za obuku GenUI modela.

3. Upotrebljivost i doslednost:

Generativni UI 201

• Barem dok praksa ne postane široko rasprostranjena, aplikacija sa

konstantno promenljivim interfejsima mogla bi dovesti do problema

upotrebljivosti, jer bi korisnici mogli imati poteškoća u pronalaženju

poznatih elemenata ili efikasnoj navigaciji.

• Postizanje ravnoteže između personalizacije i održavanja doslednog,

savladivog interfejsa biće ključno.

4. Preterano oslanjanje na AI:

• Postoji rizik od preteranog delegiranja odluka o dizajnu AI sistemima, što

potencijalnomože dovesti do neinspirativnih, problematičnih ili jednostavno

neispravnih izbora interfejsa.

• Ljudski nadzor i mogućnost preglasavanja AI-generisanih dizajna ostaće

važni u doglednoj budućnosti.

5. Pitanja pristupačnosti:

• Osiguravanje da dinamički generisani interfejsi ostanu pristupačni

korisnicima sa invaliditetom predstavlja potpuno nove izazove, što je

zabrinjavajuće s obzirom na loš nivo usklađenosti sa pristupačnošću koji

pokazuju tipični sistemi.

• S druge strane, AI dizajneri mogu biti implementirani sa ugrađenom brigom

za pristupačnost i mogućnostima za izgradnju pristupačnih interfejsa u hodu,

baš kao što grade UI za korisnike bez oštećenja.

• U svakom slučaju, GenUI sistemi bi trebalo da budu dizajnirani sa robusnim

smernicama za pristupačnost i procesima testiranja.

6. Poverenje korisnika i transparentnost:

• Korisnici se mogu osećati nelagodno sa interfejsima koji naizgled “znaju

previše” o njima ili se menjaju na načine koje ne razumeju.

• Obezbeđivanje transparentnosti o tome kako i zašto se interfejsi

personalizuju biće važno za izgradnju poverenja korisnika.

Generativni UI 202

Budući izgledi i mogućnosti

Budućnost Generativnog UI-ja (GenUI) nosi ogromno obećanje za revoluciju načina

na koji komuniciramo sa digitalnim proizvodima i uslugama. Kako se ova tehnologija

nastavlja razvijati, možemo očekivati seizmičku promenu u načinu na koji se korisnički

interfejsi dizajniraju, implementiraju i doživljavaju. Mislim da je GenUI fenomen koji

će konačno gurnuti naš softver u domen onoga što se sada smatra naučnom fantastikom.

Jedna od najuzbudljivijih perspektiva GenUI-ja je njegov potencijal da unapredi

pristupačnost u obimu koji prevazilazi samo osiguravanje da ljudi sa ozbiljnim

invaliditetom nisu potpuno isključeni iz korišćenja vašeg softvera. Automatskim

prilagođavanjem interfejsa individualnim potrebama korisnika, GenUI bi mogao učiniti

digitalna iskustva inkluzivnijim nego ikad pre. Zamislite interfejse koji se besprekorno

prilagođavaju da obezbede veći tekst za mlađe ili vizuelno oštećene korisnike ili

pojednostavljene rasporede za one sa kognitivnim poteškoćama, sve bez potrebe za

ručnom konfiguracijom ili posebnim “pristupačnim” verzijama aplikacija.

Mogućnosti personalizacije GenUI-ja će verovatno dovesti do povećanog angažovanja

korisnika, zadovoljstva i lojalnosti kroz širok spektar digitalnih proizvoda. Kako

interfejsi postaju više usklađeni sa individualnim preferencijama i ponašanjima,

korisnici će smatrati digitalna iskustva intuitivnijim i prijatnijim, što potencijalno vodi

do dubljih i smislenijih interakcija sa tehnologijom.

GenUI takođe ima potencijal da transformiše proces uvođenja novih korisnika.

Stvaranjem intuitivnih, personalizovanih iskustava za nove korisnike koja se brzo

prilagođavaju nivou stručnosti svakog korisnika, GenUI bi mogao značajno smanjiti

krivu učenja povezanu sa novim aplikacijama. Ovo bi moglo dovesti do bržih stopa

usvajanja i povećanog samopouzdanja korisnika u istraživanju novih funkcija i

funkcionalnosti.

Još jedna uzbudljiva mogućnost je sposobnost GenUI-ja da održava konzistentno

korisničko iskustvo na različitim uređajima i platformama, dok optimizuje za svaki

Generativni UI 203

specifični kontekst upotrebe. Ovo bi moglo rešiti dugogodišnji izazov pružanja

koherentnih iskustava kroz sve fragmentiraniji pejzaž uređaja, od pametnih telefona

i tableta do desktop računara i tehnologija u nastajanju poput naočara za proširenu

realnost.

Priroda GenUI-ja zasnovana na podacima otvara mogućnosti za brzu iteraciju i

poboljšanje u UI dizajnu. Prikupljanjem podataka u realnom vremenu o tome kako

korisnici komuniciraju sa generisanim interfejsima, dizajneri i programeri mogu steći

neprevaziđene uvide u ponašanje i preferencije korisnika. Ova povratna petlja mogla

bi dovesti do kontinuiranih poboljšanja u UI dizajnu, vođenih stvarnim obrascima

korišćenja umesto pretpostavkama ili ograničenim korisničkim testiranjem.

Da bi se pripremili za ovu promenu, dizajneri će morati da razviju svoje veštine

i način razmišljanja. Fokus će se pomeriti sa kreiranja fiksnih rasporeda na razvoj

sveobuhvatnih sistema dizajna i smernica koje mogu informisati generisanje interfejsa

vođeno AI-jem. Dizajneri će morati da razviju duboko razumevanje analize podataka,

AI tehnologija i sistemskog razmišljanja kako bi efikasno vodili GenUI sisteme.

Štaviše, kako GenUI zamagljuje granice između dizajna i tehnologije, dizajneri će

morati bliže da sarađuju sa programerima i naučnicima koji se bave podacima. Ovaj

interdisciplinarni pristup biće ključan u stvaranjuGenUI sistema koji nisu samo vizuelno

privlačni i prijateljski nastrojeni prema korisnicima, već i tehnički robusni i etički

ispravni.

Etičke implikacije GenUI-ja će takođe doći u prvi plan kako tehnologija sazreva.

Dizajneri će imati ključnu ulogu u razvoju okvira za odgovornu upotrebu veštačke

inteligencije u dizajnu interfejsa, osiguravajući da personalizacija unapređuje korisničko

iskustvo bez ugrožavanja privatnosti ili neetičke manipulacije ponašanjem korisnika.

Gledajući u budućnost, GenUI predstavlja i uzbudljive mogućnosti i značajne izazove.

Ima potencijal da stvori intuitivnija, efikasnija i zadovoljavajuća digitalna iskustva za

korisnike širom sveta. Iako će zahtevati od dizajnera da se prilagode i steknu nove

veštine, takođe pruža neviđenu priliku da se oblikuje budućnost interakcije između

Generativni UI 204

čoveka i računara na dubok i smislen način. Put ka potpuno realizovanim GenUI

sistemima će nesumnjivo biti složen, ali potencijalne nagrade u smislu poboljšanog

korisničkog iskustva i digitalne pristupačnosti čine ga budućnošću za koju vredi težiti.

Inteligentna orkestracija radnih

tokova

U domenu razvoja aplikacija, radni tokovi igraju ključnu ulogu u definisanju kako

se zadaci, procesi i interakcije korisnika strukturiraju i izvršavaju. Kako aplikacije

postaju složenije, a očekivanja korisnika nastavljaju da rastu, potreba za inteligentnom

i adaptivnom orkestracijom radnih tokova postaje sve očiglednija.

Pristup “Inteligentne orkestracije radnih tokova” fokusira se na korišćenje AI

komponenti za dinamičku orkestraciju i optimizaciju složenih radnih tokova unutar

aplikacija. Cilj je stvaranje aplikacija koje su efikasnije, responzivnije i prilagodljivije

podacima i kontekstu u realnom vremenu.

U ovom poglavlju istražićemo ključne principe i obrasce koji podupiru pristup

inteligentne orkestracije radnih tokova. Razmotrićemo kako se AI može koristiti za

Inteligentna orkestracija radnih tokova 206

inteligentno usmeravanje zadataka, automatizaciju donošenja odluka i dinamičko

prilagođavanje radnih tokova na osnovu različitih faktora kao što su ponašanje

korisnika, performanse sistema i poslovna pravila. Kroz praktične primere i scenarije iz

stvarnog sveta, demonstriraćemo transformativni potencijal AI-ja u pojednostavljivanju

i optimizaciji radnih tokova aplikacija.

Bez obzira da li gradite poslovne aplikacije sa složenim poslovnim procesima ili

aplikacije namenjene potrošačima sa dinamičkim korisničkim putanjama, obrasci i

tehnike o kojima se govori u ovom poglavlju opremić će vas znanjem i alatima za

kreiranje inteligentnih i efikasnih radnih tokova koji poboljšavaju celokupno korisničko

iskustvo i donose poslovnu vrednost.

Poslovna potreba

Tradicionalni pristupi upravljanju radnim tokovima često se oslanjaju na unapred

definisana pravila i statička stabla odlučivanja, koja mogu biti kruta, nefleksibilna i

nesposobna da se nose sa dinamičnom prirodom modernih aplikacija.

Razmotrite scenario gde aplikacija za elektronsku trgovinu treba da upravlja složenim

procesom ispunjenja porudžbine. Radni tok može uključivati više koraka kao što su

validacija porudžbine, provera zaliha, obrada plaćanja, isporuka i obaveštenja kupcima.

Svaki korak može imati svoj set pravila, zavisnosti, eksterne integracije i mehanizme za

rukovanje izuzecima. Upravljanje takvim radnim tokom ručno ili kroz hardkodirani kod

može brzo postati nezgrapno, sklono greškama i teško za održavanje.

Štaviše, kako aplikacija skalira i broj istovremenih korisnika raste, radni tok će možda

morati da se prilagođava i optimizuje na osnovu podataka u realnom vremenu i

performansi sistema. Na primer, tokom perioda vršnog opterećenja, aplikacija će možda

morati dinamički da prilagodi radni tok kako bi prioritizovala određene zadatke,

efikasno raspodelila resurse i osigurala nesmetano korisničko iskustvo.

Tu nastupa pristup “Inteligentne orkestracije radnih tokova”. Korišćenjem AI

Inteligentna orkestracija radnih tokova 207

komponenti, programeri mogu kreirati radne tokove koji su inteligentni, adaptivni i

samo-optimizujući. AI može analizirati ogromne količine podataka, učiti iz prošlih

iskustava i donositi informisane odluke u realnom vremenu za efikasnu orkestraciju

radnog toka.

Ključne prednosti

1. Povećana efikasnost: AI može optimizovati raspoređivanje zadataka, korišćenje

resursa i izvršavanje radnih tokova, što dovodi do bržeg vremena obrade i

poboljšane ukupne efikasnosti.

2. Prilagodljivost: Radni tokovi vođeni AI-jem mogu se dinamički prilagođavati

promenjivim uslovima, kao što su fluktuacije u korisničkoj potražnji,

performansama sistema ili poslovnim zahtevima, osiguravajući da aplikacija

ostane responzivna i otporna.

3. Automatizovano donošenje odluka: AI može automatizovati složene procese

donošenja odluka unutar radnog toka, smanjujući manuelne intervencije i

minimizujući rizik od ljudskih grešaka.

4. Personalizacija: AI može analizirati ponašanje korisnika, preference i kontekst

kako bi personalizovao radni tok i isporučio prilagođena iskustva pojedinačnim

korisnicima.

5. Skalabilnost: Radni tokovi pokretani AI-jem mogu se besprekorno skalirati kako

bi rukovali rastućim obimom podataka i korisničkih interakcija, bez ugrožavanja

performansi ili pouzdanosti.

U sledećim odeljcima istražićemo ključne obrasce i tehnike koje omogućavaju

implementaciju inteligentnih radnih tokova i prikazati primere iz stvarnog sveta o tome

kako AI transformiše upravljanje radnim tokovima u modernim aplikacijama.

Inteligentna orkestracija radnih tokova 208

Ključni obrasci

Za implementaciju inteligentne orkestracije radnih tokova u aplikacijama, programeri

mogu iskoristiti nekoliko ključnih obrazaca koji koriste snagu AI-ja. Ovi obrasci pružaju

strukturirani pristup dizajniranju i upravljanju radnim tokovima, omogućavajući

aplikacijama da se prilagođavaju, optimizuju i automatizuju procese na osnovu

podataka i konteksta u realnom vremenu. Hajde da istražimo neke od fundamentalnih

obrazaca u inteligentnoj orkestraciji radnih tokova.

Dinamičko usmeravanje zadataka

Ovaj obrazac uključuje korišćenje AI-ja za inteligentno usmeravanje zadataka unutar

radnog toka na osnovu različitih faktora kao što su prioritet zadatka, dostupnost resursa

i performanse sistema. AI algoritmi mogu analizirati karakteristike svakog zadatka,

uzeti u obzir trenutno stanje sistema i donositi informisane odluke za dodeljivanje

zadataka najprikladnijim resursima ili putanjama obrade. Dinamičko usmeravanje

zadataka osigurava da su zadaci efikasno distribuirani i izvršeni, optimizujući ukupne

performanse radnog toka.

1 class TaskRouter

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 attr_accessor :task

6

7 # list of functions that can be called by the AI entirely at its

8 # discretion depending on the task received

9

10 function :analyze_task_priority do

11 TaskPriorityAnalyzer.perform(task)

12 end

13

14 function :check_resource_availability, # ...

15 function :assess_system_performance, # ...

Inteligentna orkestracija radnih tokova 209

16 function :assign_task_to_resource, # ...

17

18 DIRECTIVE = "You are a task router, responsible for intelligently

19 assigning tasks to available resources based on priority, resource

20 availability, and system performance..."

21

22 def initialize(task)

23 self.task = task

24 transcript << { system: DIRECTIVE }

25 transcript << { user: task.to_json }

26 end

27

28 def perform

29 while task.unassigned?

30 chat_completion

31

32 # todo: add max loop counter and break

33 end

34

35 # capture the transcript for later analysis

36 task.update(routing_transcript: transcript)

37 end

38 end

Obratite pažnju na petlju kreiranuwhile izrazom u liniji 29, koja nastavlja da šalje upite

AI-ju sve dok zadatak nije dodeljen. U liniji 35, čuvamo transkript zadatka za kasniju

analizu i otklanjanje grešaka, ako bude potrebno.

Kontekstualno Donošenje Odluka

Možete koristiti vrlo sličan kod za donošenje odluka zasnovanih na kontekstu unutar

toka rada. Analiziranjem relevantnih podataka kao što su korisničke preference,

istorijski obrasci i unosi u realnom vremenu, AI komponente mogu odrediti

najprikladniji tok akcije na svakoj tački odlučivanja u toku rada. Prilagodite ponašanje

vašeg toka rada na osnovu specifičnog konteksta svakog korisnika ili scenarija,

pružajući personalizovana i optimizovana iskustva.

Inteligentna orkestracija radnih tokova 210

Adaptivna Kompozicija Toka Rada

Ovaj obrazac se fokusira na dinamičko komponovanje i prilagođavanje tokova rada

na osnovu promenljivih zahteva ili uslova. AI može analizirati trenutno stanje toka

rada, identifikovati uska grla ili neefikasnosti, i automatski modifikovati strukturu toka

rada kako bi optimizovao performanse. Adaptivna kompozicija toka rada omogućava

aplikacijama da se kontinuirano razvijaju i poboljšavaju svoje procese bez potrebe za

ručnom intervencijom.

Rukovanje Izuzecima i Oporavak

Rukovanje izuzecima i oporavak su kritični aspekti inteligentne orkestracije toka rada.

Kada radite sa AI komponentama i složenim tokovima rada, neophodno je predvideti i

elegantno rukovati izuzecima kako bi se osigurala stabilnost i pouzdanost sistema.

Evo nekoliko ključnih razmatranja i tehnika za rukovanje izuzecima i oporavak u

inteligentnim tokovima rada:

1. Propagacija Izuzetaka: Implementirajte konzistentan pristup za propagaciju

izuzetaka kroz komponente toka rada. Kada se izuzetak pojavi unutar

komponente, treba ga uhvatiti, zabeležiti i propagirati do orkestratora ili zasebne

komponente odgovorne za rukovanje izuzecima. Ideja je da se centralizuje

rukovanje izuzecima i spreči tiho gutanje izuzetaka, kao i otvaranje mogućnosti

za Inteligentno Rukovanje Greškama.

2. Mehanizmi Ponovnog Pokušaja: Mehanizmi ponovnog pokušaja pomažu u

poboljšanju otpornosti toka rada i elegantnom rukovanju povremenim greškama.

Svakako pokušajte implementirati mehanizme ponovnog pokušaja za prolazne ili

oporavljive izuzetke, kao što su mrežna povezanost ili nedostupnost resursa koji

se mogu automatski ponovno pokušati nakon određenog kašnjenja. Posedovanje

AI-pogonjenog orkestratora ili rukovaoca izuzecima znači da vaše strategije

Inteligentna orkestracija radnih tokova 211

ponovnog pokušaja ne moraju biti mehaničke prirode, oslanjajući se na fiksne

algoritme poput eksponencijalnog povlačenja. Možete prepustiti rukovanje

ponovnim pokušajem “diskreciji” AI komponente odgovorne za odlučivanje kako

rukovati izuzetkom.

3. Rezervne Strategije: Ako AI komponenta ne uspe da pruži validan odgovor ili

naiđe na grešku-–što je česta pojava s obzirom na njenu naprednu prirodu-–

imajte rezervni mehanizam koji će osigurati da tok rada može da se nastavi. Ovo

može uključivati korišćenje podrazumevanih vrednosti, alternativnih algoritama,

ili Čoveka u Petlji za donošenje odluka i održavanje napretka toka rada.

4. Kompenzacione Akcije: Direktive orkestratora treba da uključuju uputstva o

kompenzacionim akcijama za rukovanje izuzecima koji se ne mogu automatski

rešiti. Kompenzacione akcije su koraci koji se preduzimaju da bi se poništili

ili ublažili efekti neuspele operacije. Na primer, ako korak obrade plaćanja ne

uspe, kompenzaciona akcija bi mogla biti vraćanje transakcije i obaveštavanje

korisnika. Kompenzacione akcije pomažu u održavanju konzistentnosti podataka

i integriteta u slučaju izuzetaka.

5. Praćenje i Upozoravanje o Izuzecima: Postavite mehanizme za praćenje i

upozoravanje kako biste otkrili i obavestili relevantne zainteresovane strane o

kritičnim izuzecima. Orkestrator može biti svestan pragova i pravila za pokretanje

upozorenja kada izuzeci pređu određene granice ili kada se pojave specifični tipovi

izuzetaka. Ovo omogućava proaktivnu identifikaciju i rešavanje problema pre

nego što utiču na celokupni sistem.

Evo primera rukovanja izuzecima i oporavka u Ruby komponenti toka rada:

Inteligentna orkestracija radnih tokova 212

1 class InventoryManager

2 def check_availability(order)

3 begin

4 # Perform inventory check logic

5 inventory = Inventory.find_by(product_id: order.product_id)

6 if inventory.available_quantity >= order.quantity

7 return true

8 else

9 raise InsufficientInventoryError,

10 "Insufficient inventory for product #{order.product_id}"

11 end

12 rescue InsufficientInventoryError => e

13 # Log the exception

14 logger.error("Inventory check failed: #{e.message}")

15

16 # Retry the operation after a delay

17 retry_count ||= 0

18 if retry_count < MAX_RETRIES

19 retry_count += 1

20 sleep(RETRY_DELAY)

21 retry

22 else

23 # Fallback to manual intervention

24 NotificationService.admin("Inventory check failed: Order #{order.id}")

25 return false

26 end

27 end

28 end

29 end

U ovom primeru, InventoryManager komponenta proverava dostupnost

proizvoda za datu narudžbinu. Ako je dostupna količina nedovoljna, podiže se

InsufficientInventoryError. Izuzetak se hvata, beleži, i implementira se mehanizam

ponovnog pokušaja. Ako se prekorači limit ponovnih pokušaja, komponenta prelazi na

ručnu intervenciju obaveštavanjem administratora.

Implementacijom robusnog rukovanja izuzecima i mehanizama oporavka, možete

osigurati da vaši inteligentni radni tokovi budu otporni, održivi i sposobni da elegantno

Inteligentna orkestracija radnih tokova 213

rukuju neočekivanim situacijama.

Ovi obrasci čine osnovu orkestracije inteligentnog radnog toka i mogu se kombinovati i

prilagoditi specifičnim zahtevima različitih aplikacija. Koristeći ove obrasce, programeri

mogu kreirati radne tokove koji su fleksibilni, otporni i optimizovani za performanse i

korisničko iskustvo.

U sledećem odeljku, istražićemo kako se ovi obrasci mogu implementirati u praksi,

koristeći primere iz stvarnog sveta i isečke koda da bismo ilustrovali integraciju AI

komponenti u upravljanje radnim tokovima.

Implementacija orkestracije inteligentnog radnog

toka u praksi

Sada kada smo istražili ključne obrasce u orkestraciji inteligentnog radnog toka, hajde

da se udubimo u to kako se ovi obrasci mogu implementirati u aplikacijama iz stvarnog

sveta. Pružićemo praktične primere i isečke koda da bismo ilustrovali integraciju AI

komponenti u upravljanje radnim tokovima.

Inteligentni procesor narudžbina

Hajde da se udubimo u praktičan primer implementacije orkestracije inteligentnog

radnog toka koristeći AI-podržanu OrderProcessor komponentu u Ruby on Rails

e-commerce aplikaciji. OrderProcessor realizuje koncept Process Manager Enterprise

Integration koji smo prvi put sreli u Poglavlju 3 kada smo diskutovali o Mnoštvu

radnika. Komponenta će biti odgovorna za upravljanje tokom ispunjavanja narudžbina,

donošenje odluka o rutiranju na osnovu međurezultata i orkestraciju izvršavanja

različitih koraka obrade.

Inteligentna orkestracija radnih tokova 214

Proces ispunjavanja narudžbine uključuje više koraka kao što su validacija narudžbine,

provera inventara, obrada plaćanja i isporuka. Svaki korak je implementiran kao zaseban

radni proces koji obavlja specifičan zadatak i vraća rezultat OrderProcessor-u. Koraci

nisu obavezni i ne moraju čak ni da se izvršavaju određenim redosledom.

Evo primera implementacije OrderProcessor-a. Sadrži dva mixin-a iz Raix. Prvi

(ChatCompletion) daje mu mogućnost chat completion-a, što ga čini AI komponentom.

Drugi (FunctionDispatch) omogućava pozivanje funkcija od strane AI-a, dozvoljavajući

mu da odgovori na prompt pozivom funkcije umesto tekstualne poruke.

Radne funkcije (validate_order, check_inventory, i ostale) delegiraju svojim

odgovarajućim radnim klasama, koje mogu biti AI ili ne-AI komponente, sa jedinim

zahtevom da vrate rezultate svog rada u formatu koji se može predstaviti kao string.

Kao i sa svim drugim primerima u ovom delu knjige, ovaj kod je praktično

pseudo-kod i namenjen je samo da prenese značenje obrasca i inspiriše

vaše sopstvene kreacije. Potpuni opisi obrazaca i kompletni primeri koda

su uključeni u Delu 2.

1 class OrderProcessor

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

6

7 def initialize(order)

8 self.order = order

9 transcript << { system: SYSTEM_DIRECTIVE }

10 transcript << { user: order.to_json }

11 end

12

13 def perform

14 # will continue looping until `stop_looping!` is called

15 chat_completion(loop: true)

16 end

17

https://github.com/OlympiaAI/raix-rails

Inteligentna orkestracija radnih tokova 215

18 # list of functions available to be called by the AI

19 # truncated for brevity

20

21 def functions

22 [

23 {

24 name: "validate_order",

25 description: "Invoke to check validity of order",

26 parameters: {

27 ...

28 },

29 ...

30]

31 end

32

33 # implementation of functions that can be called by the AI

34 # entirely at its discretion, depending on the needs of the order

35

36 def validate_order

37 OrderValidationWorker.perform(@order)

38 end

39

40 def check_inventory

41 InventoryCheckWorker.perform(@order)

42 end

43

44 def process_payment

45 PaymentProcessingWorker.perform(@order)

46 end

47

48 def schedule_shipping

49 ShippingSchedulerWorker.perform(@order)

50 end

51

52 def send_confirmation

53 OrderConfirmationWorker.perform(@order)

54 end

55

56 def finished_processing

57 @order.update!(transcript:, processed_at: Time.current)

58 stop_looping!

59 end

Inteligentna orkestracija radnih tokova 216

60 end

U primeru, OrderProcessor se inicijalizuje sa objektom porudžbine i održava transkript

izvršavanja toka rada, u tipičnom formatu transkripta konverzacije koji je svojstven

velikim jezičkim modelima. Veštačkoj inteligenciji je data potpuna kontrola nad

orkestracijom izvršavanja različitih koraka obrade, kao što su validacija porudžbine,

provera zaliha, obrada plaćanja i isporuka.

Svaki put kada se pozove metoda chat_completion, transkript se šalje veštačkoj

inteligenciji da bi ona obezbedila završetak u vidu poziva funkcije. U potpunosti je na

veštačkoj inteligenciji da analizira rezultat prethodnog koraka i odredi odgovarajuću

akciju koju treba preduzeti. Na primer, ako provera zaliha otkrije nizak nivo zaliha,

OrderProcessor može da zakaže zadatak dopune. Ako obrada plaćanja ne uspe, može

da pokrene ponovni pokušaj ili da obavesti korisničku podršku.

Gornji primer nema definisane funkcije za dopunu zaliha ili obaveštavanje korisničke

podrške, ali apsolutno bi mogao da ih ima.

Transkript raste svaki put kada se pozove funkcija i služi kao evidencija izvršavanja toka

rada, uključujući rezultate svakog koraka i uputstva koja generiše veštačka inteligencija

za sledeće korake. Ovaj transkript se može koristiti za otklanjanje grešaka, reviziju i

obezbeđivanje vidljivosti u procesu ispunjenja porudžbine.

Korišćenjem veštačke inteligencije u OrderProcessor-u, e-commerce aplikacija može

dinamički da prilagodi tok rada na osnovu podataka u realnom vremenu i inteligentno

upravlja izuzecima. Komponenta veštačke inteligencije može da donosi informisane

odluke, optimizuje tok rada i osigura neometanu obradu porudžbina čak i u složenim

scenarijima.

Činjenica da je jedini zahtev za radne procese da vrate neki razumljiv izlaz koji će

Inteligentna orkestracija radnih tokova 217

veštačka inteligencija razmotriti pri odlučivanju šta dalje da radi, možda će vam pomoći

da shvatite kako ovaj pristup može da smanji posao mapiranja ulaza/izlaza koji je obično

potreban pri integraciji različitih sistema međusobno.

Inteligentni moderator sadržaja

Aplikacije društvenih mreža generalno zahtevaju bar minimalnu moderaciju

sadržaja kako bi se osigurala bezbedna i zdrava zajednica. Ovaj primer komponente

ContentModerator koristi veštačku inteligenciju za inteligentno orkestriranje toka

moderacije, donoseći odluke na osnovu karakteristika sadržaja i rezultata različitih

koraka moderacije.

Proces moderacije uključuje više koraka kao što su analiza teksta, prepoznavanje slika,

procena reputacije korisnika i ručni pregled. Svaki korak je implementiran kao zaseban

radni proces koji obavlja određeni zadatak i vraća rezultat ContentModerator-u.

Evo primera implementacije ContentModerator-a:

1 class ContentModerator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,

6 tasked with the workflow involved in moderating user-generated content..."

7

8 def initialize(content)

9 @content = content

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: content.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

Inteligentna orkestracija radnih tokova 218

20 def model

21 "openai/gpt-4"

22 end

23

24 # list of functions available to be called by the AI

25 # truncated for brevity

26

27 def functions

28 [

29 {

30 name: "analyze_text",

31 # ...

32 },

33 {

34 name: "recognize_image",

35 description: "Invoke to describe images...",

36 # ...

37 },

38 {

39 name: "assess_user_reputation",

40 # ...

41 },

42 {

43 name: "escalate_to_manual_review",

44 # ...

45 },

46 {

47 name: "approve_content",

48 # ...

49 },

50 {

51 name: "reject_content",

52 # ...

53 }

54]

55 end

56

57 # implementation of functions that can be called by the AI

58 # entirely at its discretion, depending on the needs of the order

59

60 def analyze_text

61 result = TextAnalysisWorker.perform(@content)

Inteligentna orkestracija radnih tokova 219

62 continue_with(result)

63 end

64

65 def recognize_image

66 result = ImageRecognitionWorker.perform(@content)

67 continue_with(result)

68 end

69

70 def assess_user_reputation

71 result = UserReputationWorker.perform(@content.user)

72 continue_with(result)

73 end

74

75 def escalate_to_manual_review

76 ManualReviewWorker.perform(@content)

77 @content.update!(status: 'pending', transcript: @transcript)

78 end

79

80 def approve_content

81 @content.update!(status: 'approved', transcript: @transcript)

82 end

83

84 def reject_content

85 @content.update!(status: 'rejected', transcript: @transcript)

86 end

87

88 private

89

90 def continue_with(result)

91 @transcript << { function: result }

92 complete(@transcript)

93 end

94 end

U ovom primeru, ContentModerator je inicijalizovan sa objektom sadržaja i održava

zapisnik moderacije u formatu konverzacije. AI komponenta ima potpunu kontrolu nad

tokom moderacije, odlučujući koje korake da izvrši na osnovu karakteristika sadržaja i

rezultata svakog koraka.

Dostupne radne funkcije koje AI može da pozove uključuju analyze_text,

Inteligentna orkestracija radnih tokova 220

recognize_image, assess_user_reputation i escalate_to_manual_review. Svaka

funkcija delegira zadatak odgovarajućem radnom procesu (TextAnalysisWorker,

ImageRecognitionWorker, itd.) i dodaje rezultat u zapisnik moderacije, sa

izuzetkom funkcije za eskalaciju koja deluje kao završno stanje. Konačno, funkcije

approve_content i reject_content takođe deluju kao završna stanja.

AI komponenta analizira sadržaj i određuje odgovarajuću akciju. Ako sadržaj sadrži

reference na slike, može pozvati radni proces recognize_image za pomoć pri vizuelnom

pregledu. Ako bilo koji radni proces upozori na potencijalno štetan sadržaj, AI može

odlučiti da eskalira sadržaj na manuelni pregled ili ga jednostavno odmah odbiti. Ali

u zavisnosti od ozbiljnosti upozorenja, AI može odlučiti da koristi rezultate procene

reputacije korisnika pri odlučivanju kako da postupi sa sadržajem u kom nije siguran.

U zavisnosti od slučaja upotrebe, možda pouzdani korisnici imaju više slobode u onome

što mogu da objave. I tako dalje…

Kao i u prethodnom primeru upravitelja procesa, zapisnik moderacije služi kao

evidencija izvršavanja toka rada, uključujući rezultate svakog koraka i odluke koje je

generisao AI. Ovaj zapisnik se može koristiti za reviziju, transparentnost i poboljšanje

procesa moderacije tokom vremena.

Korišćenjem AI-ja u ContentModerator-u, aplikacija društvenih medija može

dinamički prilagoditi tok moderacije na osnovu karakteristika sadržaja i inteligentno

upravljati složenim scenarijima moderacije. AI komponenta može donositi informisane

odluke, optimizovati tok rada i osigurati bezbedno i zdravo iskustvo zajednice.

Hajde da istražimo još dva primera koji pokazuju prediktivno raspoređivanje zadataka

i rukovanje izuzecima i oporavak u kontekstu inteligentnog orkestiranja toka rada.

Prediktivno raspoređivanje zadataka u sistemu korisničke

podrške

U aplikaciji za korisničku podršku izrađenoj pomoću Ruby on Rails, efikasno

upravljanje i prioritizacija tiketa za podršku su ključni za pružanje pravovremene

Inteligentna orkestracija radnih tokova 221

pomoći korisnicima. Komponenta SupportTicketScheduler koristi AI za prediktivno

raspoređivanje i dodeljivanje tiketa za podršku dostupnim agentima na osnovu različitih

faktora kao što su hitnost tiketa, stručnost agenta i radno opterećenje.

1 class SupportTicketScheduler

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,

6 tasked with intelligently assigning tickets to available agents..."

7

8 def initialize(ticket)

9 @ticket = ticket

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: ticket.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 def functions

25 [

26 {

27 name: "analyze_ticket_urgency",

28 # ...

29 },

30 {

31 name: "list_available_agents",

32 description: "Includes expertise of available agents",

33 # ...

34 },

35 {

36 name: "predict_agent_workload",

37 description: "Uses historical data to predict upcoming workloads",

Inteligentna orkestracija radnih tokova 222

38 # ...

39 },

40 {

41 name: "assign_ticket_to_agent",

42 # ...

43 },

44 {

45 name: "reschedule_ticket",

46 # ...

47 }

48]

49 end

50

51 # implementation of functions that can be called by the AI

52 # entirely at its discretion, depending on the needs of the order

53

54 def analyze_ticket_urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)

56 continue_with(result)

57 end

58

59 def list_available_agents

60 result = ListAvailableAgents.perform

61 continue_with(result)

62 end

63

64 def predict_agent_workload

65 result = AgentWorkloadPredictor.perform

66 continue_with(result)

67 end

68

69 def assign_ticket_to_agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

73 def delay_assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)

76 end

77

78 private

79

Inteligentna orkestracija radnih tokova 223

80 def continue_with(result)

81 @transcript << { function: result }

82 complete(@transcript)

83 end

84 end

U ovom primeru, SupportTicketScheduler je inicijalizovan objektom tiketa za podršku

i održava zapisnik raspoređivanja. AI komponenta analizira detalje tiketa i prediktivno

planira dodeljivanje tiketa na osnovu faktora kao što su hitnost tiketa, stručnost agenta

i predviđeno radno opterećenje agenta.

Dostupne funkcije koje AI može da pozove uključuju analyze_ticket_urgency, list_-

available_agents, predict_agent_workload i assign_ticket_to_agent. Svaka funkcija

delegira zadatak odgovarajućoj komponenti za analizu ili predviđanje i dodaje rezultat

u zapisnik raspoređivanja. AI takođe ima opciju da odloži dodeljivanje koristeći funkciju

delay_assignment.

AI komponenta pregleda zapisnik raspoređivanja i donosi informisane odluke o

dodeljivanju tiketa. Uzima u obzir hitnost tiketa, stručnost dostupnih agenata i

predviđeno radno opterećenje svakog agenta kako bi odredila najpogodnijeg agenta za

rešavanje tiketa.

Korišćenjem prediktivnog raspoređivanja zadataka, aplikacija za korisničku podršku

može da optimizuje dodeljivanje tiketa, smanji vreme odziva i poboljša ukupno

zadovoljstvo korisnika. Proaktivno i efikasno upravljanje tiketima za podršku osigurava

da pravi tiketi budu dodeljeni pravim agentima u pravo vreme.

Upravljanje izuzecima i oporavak u procesu obrade podataka

Upravljanje izuzecima i oporavak od grešaka su ključni za osiguranje integriteta

podataka i sprečavanje gubitka podataka. Komponenta DataProcessingOrchestrator

koristi AI za inteligentno upravljanje izuzecima i orkestraciju procesa oporavka u

procesu obrade podataka

Inteligentna orkestracija radnih tokova 224

1 class DataProcessingOrchestrator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

6

7 def initialize(data_batch)

8 @data_batch = data_batch

9 @transcript = [

10 { system: SYSTEM_DIRECTIVE },

11 { user: data_batch.to_json }

12]

13 end

14

15 def perform

16 complete(@transcript)

17 end

18

19 def model

20 "openai/gpt-4"

21 end

22

23 def functions

24 [

25 {

26 name: "validate_data",

27 # ...

28 },

29 {

30 name: "process_data",

31 # ...

32 },

33 {

34 name: "request_fix",

35 # ...

36 },

37 {

38 name: "retry_processing",

39 # ...

40 },

41 {

42 name: "mark_data_as_failed",

Inteligentna orkestracija radnih tokova 225

43 # ...

44 },

45 {

46 name: "finished",

47 # ...

48 }

49]

50 end

51

52 # implementation of functions that can be called by the AI

53 # entirely at its discretion, depending on the needs of the order

54

55 def validate_data

56 result = DataValidator.perform(@data_batch)

57 continue_with(result)

58 rescue ValidationException => e

59 handle_validation_exception(e)

60 end

61

62 def process_data

63 result = DataProcessor.perform(@data_batch)

64 continue_with(result)

65 rescue ProcessingException => e

66 handle_processing_exception(e)

67 end

68

69 def request_fix(description_of_fix)

70 result = SmartDataFixer.new(description_of_fix, @data_batch)

71 continue_with(result)

72 end

73

74 def retry_processing(timeout_in_seconds)

75 wait(timeout_in_seconds)

76 process_data

77 end

78

79 def mark_data_as_failed

80 @data_batch.update!(status: 'failed', transcript: @transcript)

81 end

82

83 def finished

84 @data_batch.update!(status: 'finished', transcript: @transcript)

Inteligentna orkestracija radnih tokova 226

85 end

86

87 private

88

89 def continue_with(result)

90 @transcript << { function: result }

91 complete(@transcript)

92 end

93

94 def handle_validation_exception(exception)

95 @transcript << { exception: exception.message }

96 complete(@transcript)

97 end

98

99 def handle_processing_exception(exception)

100 @transcript << { exception: exception.message }

101 complete(@transcript)

102 end

103 end

U ovom primeru, DataProcessingOrchestrator je inicijalizovan objektom grupe

podataka i održava transkript obrade. AI komponenta orkestira proces obrade podataka,

upravlja izuzecima i oporavlja se od grešaka po potrebi.

Dostupne funkcije koje AI može da pozove uključuju validate_data, process_data,

request_fix, retry_processing imark_data_as_failed. Svaka funkcija delegira zadatak

odgovarajućoj komponenti za obradu podataka i dodaje rezultat ili detalje o izuzetku u

transkript obrade.

Ako se izuzetak pri validaciji dogodi tokom koraka validate_data, funkcija handle_-

validation_exception dodaje podatke o izuzetku u transkript i vraća kontrolu AI-ju.

Slično tome, ako se izuzetak pri obradi dogodi tokom koraka process_data, AI može da

odluči o strategiji oporavka.

U zavisnosti od prirode nastalog izuzetka, AI može po sopstvenom nahođenju da

odluči da pozove request_fix, koji delegira AI-pokrenutoj komponenti SmartDataFixer

(pogledajte poglavlje o Samozalečujućim podacima). Program za popravku podataka

Inteligentna orkestracija radnih tokova 227

dobija opis na običnom jeziku o tome kako bi trebalo da modifikuje @data_batch

tako da se obrada može ponovo pokušati. Možda bi uspešno ponovno pokušavanje

podrazumevalo uklanjanje zapisa iz grupe podataka koji nisu prošli validaciju i/ili

njihovo kopiranje u drugi proces obrade za ljudski pregled? Mogućnosti su skoro

beskrajne.

Uključivanjem AI-vođene obrade izuzetaka i oporavka, aplikacija za obradu podataka

postaje otpornija i tolerantnija na greške. DataProcessingOrchestrator inteligentno

upravlja izuzecima, minimizira gubitak podataka i osigurava nesmetano izvršavanje

toka obrade podataka.

Praćenje i beleženje

Praćenje i beleženje pružaju uvid u napredak, performanse i zdravlje komponenti toka

rada pokrenutih AI-jem, omogućavajući programerima da prate i analiziraju ponašanje

sistema. Implementacija efikasnih mehanizama za praćenje i beleženje je od suštinskog

značaja za otklanjanje grešaka, reviziju i kontinuirano poboljšanje inteligentnih tokova

rada.

Praćenje napretka i performansi toka rada

Da bi se osiguralo nesmetano izvršavanje inteligentnih tokova rada, važno je pratiti

napredak i performanse svake komponente toka rada. Ovo uključuje praćenje ključnih

metrika i događaja tokom životnog ciklusa toka rada.

Neki važni aspekti za praćenje uključuju:

1. Vreme izvršavanja toka rada:Merenje vremena koje je potrebno svakoj komponenti

toka rada da završi svoj zadatak. Ovo pomaže u identifikovanju uskih grla u

performansama i optimizaciji ukupne efikasnosti toka rada.

2. Iskorišćenost resursa: Praćenje iskorišćenosti sistemskih resursa, kao što su CPU,

memorija i skladište, od strane svake komponente toka rada. Ovo pomaže da se osigura

Inteligentna orkestracija radnih tokova 228

da sistem radi u okviru svojih kapaciteta i da može efikasno da upravlja radnim

opterećenjem.

3. Stope grešaka i izuzeci: Praćenje pojave grešaka i izuzetaka unutar komponenti toka

rada. Ovo pomaže u identifikovanju potencijalnih problema i omogućava proaktivno

rukovanje greškama i oporavak.

4. Tačke odlučivanja i ishodi: Praćenje tačaka odlučivanja unutar toka rada i ishoda

AI-vođenih odluka. Ovo pruža uvid u ponašanje i efikasnost AI komponenti.

Podaci prikupljeni procesom praćenja mogu se prikazati na kontrolnim tablama ili

koristiti kao ulazni podaci za planirane izveštaje koji informišu administratore sistema

o zdravlju sistema.

Podaci praćenja mogu se proslediti AI-vođenom procesu administratora

sistema na pregled i potencijalnu akciju!

Beleženje ključnih događaja i odluka

Beleženje je suštinska praksa koja uključuje hvatanje i čuvanje relevantnih informacija

o ključnim događajima, odlukama i izuzecima koji se javljaju tokom izvršavanja toka

rada.

Neki važni aspekti za beleženje uključuju:

1. Pokretanje i završetak toka rada: Beleženje vremena početka i završetka svake

instance toka rada, zajedno sa svim relevantnim metapodacima kao što su ulazni podaci

i korisnički kontekst.

2. Izvršavanje komponenti: Beleženje detalja izvršavanja svake komponente toka rada,

uključujući ulazne parametre, izlazne rezultate i sve generisane međupodatke.

3. AI odluke i obrazloženja: Beleženje odluka koje donose AI komponente, zajedno

sa osnovnim obrazloženjem ili ocenama pouzdanosti. Ovo pruža transparentnost i

omogućava reviziju AI-vođenih odluka.

Inteligentna orkestracija radnih tokova 229

4. Izuzeci i poruke o greškama: Beleženje svih izuzetaka ili poruka o greškama na

koje se naiđe tokom izvršavanja toka rada, uključujući praćenje steka i relevantne

kontekstualne informacije.

Beleženje semože implementirati koristeći različite tehnike, kao što su pisanje u datoteke

evidencije, čuvanje evidencija u bazi podataka ili slanje evidencija centralizovanoj usluzi

za beleženje. Važno je odabrati okvir za beleženje koji pruža fleksibilnost, skalabilnost i

laku integraciju sa arhitekturom aplikacije.

Evo primera kako se beleženje može implementirati u Ruby on Rails aplikaciji koristeći

klasu ActiveSupport::Logger:

1 class WorkflowLogger

2 def self.log(message, severity = :info)

3 @logger ||= ActiveSupport::Logger.new('workflow.log')

4 @logger.formatter ||= proc do |severity, datetime, progname, msg|

5 "#{datetime} [#{severity}] #{msg}\n"

6 end

7 @logger.send(severity, message)

8 end

9 end

10

11 # Usage example

12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")

13 WorkflowLogger.log("Payment processing completed successfully")

14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

Strateškim postavljanjem izraza za beleženje kroz komponente radnog toka i tačke

odlučivanja veštačke inteligencije, programeri mogu da zabeleže vredne informacije za

otklanjanje grešaka, reviziju i analizu.

Prednosti praćenja i beleženja

Implementacija praćenja i beleženja u inteligentnoj orkestraciji radnih tokova nudi

nekoliko prednosti:

Inteligentna orkestracija radnih tokova 230

1. Otklanjanje grešaka i rešavanje problema:Detaljni zapisi i podaci praćenja pomažu

programerima da brzo identifikuju i dijagnostikuju probleme. Oni pružaju uvid u tok

izvršavanja radnog toka, interakcije komponenti i sve greške ili izuzetke na koje se naiđe.

2. Optimizacija performansi: Praćenje metrika performansi omogućava programerima

da identifikuju uska grla i optimizuju komponente radnog toka za bolju efikasnost.

Analiziranjem vremena izvršavanja, iskorišćenosti resursa i drugih metrika, programeri

mogu donositi informisane odluke za poboljšanje ukupnih performansi sistema.

3. Revizija i usklađenost: Beleženje ključnih događaja i odluka obezbeđuje revizorski

trag za regulatornu usklađenost i odgovornost. Omogućava organizacijama da prate i

verifikuju akcije koje preduzimaju AI komponente i osiguraju pridržavanje poslovnih

pravila i zakonskih zahteva.

4. Kontinuirano poboljšanje: Podaci praćenja i beleženja služe kao vredni ulazni

podaci za kontinuirano poboljšanje inteligentnih radnih tokova. Analiziranjem

istorijskih podataka, identifikovanjem obrazaca i merenjem efektivnosti AI odluka,

programeri mogu iterativno da usavršavaju i unapređuju logiku orkestracije radnog

toka.

Razmatranja i najbolje prakse

Pri implementaciji praćenja i beleženja u inteligentnoj orkestraciji radnih tokova,

razmotrite sledeće najbolje prakse:

1. Definisanje jasnih metrika praćenja: Identifikujte ključne metrike i događaje koje

treba pratiti na osnovu specifičnih zahteva radnog toka. Fokusirajte se na metrike koje

pružaju smislene uvide u performanse, zdravlje i ponašanje sistema.

2. Implementacija granularnog beleženja: Osigurajte da su izrazi za beleženje

postavljeni na odgovarajućim tačkama unutar komponenti radnog toka i tačaka

odlučivanja AI-ja. Zabeležite relevantne kontekstualne informacije, kao što su ulazni

parametri, izlazni rezultati i svi međupodaci koji se generišu.

Inteligentna orkestracija radnih tokova 231

3. Korišćenje strukturiranog beleženja: Usvojite format strukturiranog beleženja

kako biste olakšali jednostavno parsiranje i analizu podataka iz zapisa. Strukturirano

beleženje omogućava bolju pretraživost, filtriranje i agregaciju zapisa.

4. Upravljanje zadržavanjem i rotacijom zapisa: Implementirajte politike zadržavanja

i rotacije zapisa za upravljanje skladištenjem i životnim ciklusom datoteka zapisa.

Odredite odgovarajući period zadržavanja na osnovu zakonskih zahteva, ograničenja

skladištenja i potreba analize. Ako je moguće, prebacite beleženje na uslugu treće strane

kao što je Papertrail.

5. Zaštita osetljivih informacija: Budite oprezni pri beleženju osetljivih informacija,

kao što su lični podaci (PII) ili poverljivi poslovni podaci. Implementirajte odgovarajuće

sigurnosne mere, kao što su maskiranje podataka ili enkripcija, kako biste zaštitili

osetljive informacije u datotekama zapisa.

6. Integracija sa alatima za praćenje i upozoravanje: Iskoristite alate za praćenje i

upozoravanje za centralizaciju prikupljanja, analize i vizualizacije podataka praćenja

i beleženja. Ovi alati mogu pružiti uvide u realnom vremenu, generisati upozorenja

na osnovu unapred definisanih pragova i olakšati proaktivno otkrivanje i rešavanje

problema. Moj omiljeni od ovih alata je Datadog.

Implementacijom sveobuhvatnih mehanizama praćenja i beleženja, programeri mogu

dobiti vredne uvide u ponašanje i performanse inteligentnih radnih tokova. Ovi uvidi

omogućavaju efikasno otklanjanje grešaka, optimizaciju i kontinuirano poboljšanje

sistema za orkestraciju radnih tokova zasnovanih na veštačkoj inteligenciji.

Razmatranja skalabilnosti i performansi

Skalabilnost i performanse su kritični aspekti koje treba razmotriti pri dizajniranju i

implementaciji sistema za inteligentnu orkestraciju radnih tokova. Kako se povećava

obim istovremenih radnih tokova i složenost komponenti zasnovanih na veštačkoj

https://papertrailapp.com
https://www.datadoghq.com

Inteligentna orkestracija radnih tokova 232

inteligenciji, postaje neophodno osigurati da sistem može efikasno da upravlja radnim

opterećenjem i nesmetano se skalira kako bi zadovoljio rastuće zahteve.

Upravljanje velikim obimom istovremenih radnih tokova

Sistemi za inteligentnu orkestraciju radnih tokova često moraju da upravljaju velikim

brojem istovremenih radnih tokova. Da biste osigurali skalabilnost, razmotrite sledeće

strategije:

1. Asinhrona obrada: Implementirajte mehanizme asinhrone obrade za razdvajanje

izvršavanja komponenti radnog toka. Ovo omogućava sistemu da upravlja sa više radnih

tokova istovremeno bez blokiranja ili čekanja da se svaka komponenta završi. Asinhrona

obrada se može postići korišćenjem redova poruka, arhitektura vođenih događajima ili

radnih okvira za obradu pozadinskih poslova kao što je Sidekiq.

2. Distribuirana arhitektura:Dizajnirajte arhitekturu sistema tako da koristi serverless

komponente (kao što je AWS Lambda) ili jednostavno distribuirajte radno opterećenje

preko više čvorova ili servera zajedno sa vašim glavnim aplikacionim serverom.

Ovo omogućava horizontalnu skalabilnost, gde se dodatni čvorovi mogu dodati za

upravljanje povećanim obimom radnih tokova.

3. Paralelno izvršavanje: Identifikujte mogućnosti za paralelno izvršavanje unutar

radnih tokova. Neke komponente radnog toka mogu biti nezavisne jedna od druge

i mogu se izvršavati istovremeno. Korišćenjem tehnika paralelne obrade, kao što su

višenitnost ili distribuirani redovi zadataka, sistemmože optimizovati korišćenje resursa

i smanjiti ukupno vreme izvršavanja radnog toka.

Optimizacija performansi AI komponenti

AI komponente, kao što su modeli mašinskog učenja ili sistemi za obradu prirodnog

jezika, mogu biti računarski zahtevne i uticati na ukupne performanse sistema

Inteligentna orkestracija radnih tokova 233

za orkestraciju radnih tokova. Da biste optimizovali performanse AI komponenti,

razmotrite sledeće tehnike:

1. Keširanje: Ako je vaša AI obrada čisto generativna i ne uključuje pretraživanje

informacija u realnom vremenu ili eksterne integracije za generisanje chat odgovora,

možete istražiti mehanizme keširanja za čuvanje i ponovno korišćenje rezultata često

pristupanih ili računarski zahtevnih operacija.

2. Optimizacija modela: Kontinuirano optimizujte način na koji koristite AI

modele u komponentama radnog toka. Ovo može uključivati tehnike kao što je

Destilacija promptova ili jednostavno testiranje novih modela kako postaju dostupni.

3. Grupna obrada: Ako radite sa modelima klase GPT-4, možda ćete moći da iskoristite

tehnike grupne obrade za obradu više podataka ili zahteva u jednoj grupi, umesto

njihove pojedinačne obrade. Obradom podataka u grupama, sistem može optimizovati

korišćenje resursa i smanjiti opterećenje višestrukih zahteva modelu.

Praćenje i profilisanje performansi

Za identifikaciju uskih grla u performansama i optimizaciju skalabilnosti inteligentnog

sistema za orkestraciju radnih tokova, ključno je implementirati mehanizme za praćenje

i profilisanje. Razmotrite sledeće pristupe:

1. Metrike performansi: Definišite i pratite ključne metrike performansi, kao što su

vreme odziva, propusnost, iskorišćenost resursa i kašnjenje. Ove metrike pružaju uvid

u performanse sistema i pomažu u identifikaciji područja za optimizaciju. Popularni AI

model agregator OpenRouter uključuje Host1 i Speed2 metrike u svakom API odgovoru,

čineći praćenje ovih ključnih metrika trivijalnim.

2. Alati za profilisanje: Koristite alate za profilisanje kako biste analizirali performanse

pojedinačnih komponenti radnog toka i AI operacija. Alati za profilisanje mogu pomoći
1Host je vreme potrebno za primanje prvog bajta streamovanog generisanja od strane host-a modela,

poznatog i kao “vreme do prvog bajta.”
2Speed se izračunava kao broj tokena za dovršavanje podeljen sa ukupnim vremenom generisanja. Za

zahteve koji nisu streamovani, kašnjenje se smatra delom vremena generisanja.

https://openrouter.ai

Inteligentna orkestracija radnih tokova 234

u identifikaciji kritičnih tačaka performansi, neefikasnih putanja koda ili operacija koje

intenzivno koriste resurse. Popularni alati za profilisanje uključuju New Relic, Scout, ili

ugrađene profilere koje pruža programski jezik ili framework.

3. Testiranje opterećenja: Sprovedite testiranje opterećenja kako biste procenili

performanse sistema pod različitim nivoima istovremenih radnih opterećenja.

Testiranje opterećenja pomaže u identifikaciji granica skalabilnosti sistema, otkrivanju

degradacije performansi i osiguravanju da sistem može podneti očekivani saobraćaj

bez ugrožavanja performansi.

4. Kontinuirano praćenje: Implementirajte mehanizme kontinuiranog praćenja i

upozoravanja kako biste proaktivno otkrili probleme sa performansama i uska grla.

Postavite kontrolne table za praćenje i upozorenja za praćenje ključnih indikatora

performansi (KPI) i primanje obaveštenja kada se prekorače unapred definisani pragovi.

Ovo omogućava brzu identifikaciju i rešavanje problema sa performansama.

Strategije skaliranja

Da biste upravljali povećanim radnim opterećenjem i osigurali skalabilnost

inteligentnog sistema za orkestraciju radnih tokova, razmotrite sledeće strategije

skaliranja:

1. Vertikalno skaliranje: Vertikalno skaliranje uključuje povećanje resursa (npr. CPU,

memorija) pojedinačnih čvorova ili servera za rukovanje većim radnim opterećenjem.

Ovaj pristup je pogodan kada sistem zahteva više procesorske snage ili memorije za

rukovanje složenim radnim tokovima ili AI operacijama.

2. Horizontalno skaliranje: Horizontalno skaliranje uključuje dodavanje više čvorova

ili servera sistemu za distribuciju radnog opterećenja. Ovaj pristup je efikasan kada

sistem treba da upravlja velikim brojem istovremenih radnih tokova ili kada se radno

opterećenje može lako distribuirati preko više čvorova. Horizontalno skaliranje zahteva

distribuiranu arhitekturu i mehanizme balansiranja opterećenja kako bi se osigurala

ravnomerna distribucija saobraćaja.

Inteligentna orkestracija radnih tokova 235

3. Automatsko skaliranje: Implementirajte mehanizme automatskog skaliranja

za automatsko prilagođavanje broja čvorova ili resursa na osnovu zahteva radnog

opterećenja. Automatsko skaliranje omogućava sistemu da se dinamički skalira gore ili

dole u zavisnosti od dolaznog saobraćaja, osiguravajući optimalnu iskorišćenost resursa

i ekonomičnost. Cloud platforme poput Amazon Web Services (AWS) ili Google Cloud

Platform (GCP) pružaju mogućnosti automatskog skaliranja koje se mogu iskoristiti za

inteligentne sisteme orkestracije radnih tokova.

Tehnike optimizacije performansi

Pored strategija skaliranja, razmotrite sledeće tehnike optimizacije performansi za

poboljšanje efikasnosti inteligentnog sistema za orkestraciju radnih tokova:

1. Efikasno skladištenje i preuzimanje podataka:Optimizujte mehanizme skladištenja

i preuzimanja podataka koje koriste komponente radnog toka. Koristite efikasno

indeksiranje baze podataka, tehnike optimizacije upita i keširanje podataka kako biste

smanjili kašnjenje i poboljšali performanse operacija intenzivnih podataka.

2. Asinhroni U/I: Koristite asinhrone U/I operacije kako biste sprečili blokiranje i

poboljšali odziv sistema. Asinhroni U/I omogućava sistemu da istovremeno obrađuje

više zahteva bez čekanja na završetak U/I operacija, čime se maksimalno iskorišćavaju

resursi.

3. Efikasna serijalizacija i deserijalizacija: Optimizujte procese serijalizacije i

deserijalizacije koji se koriste za razmenu podataka između komponenti radnog toka.

Koristite efikasne formate serijalizacije, kao što su Protocol Buffers ili MessagePack,

kako biste smanjili opterećenje serijalizacije podataka i poboljšali performanse

komunikacije između komponenti.

Inteligentna orkestracija radnih tokova 236

Za aplikacije zasnovane na Ruby-ju, razmotrite korišćenje Universal ID.

Universal ID koristi i MessagePack i Brotli (kombinaciju napravljenu za

brzinu i najbolju kompresiju podataka u klasi). Kada se kombinuju, ove

biblioteke su do 30% brže i imaju stope kompresije koje su za samo 2-5%

lošije u poređenju sa Protocol Buffers.

4. Kompresija i kodiranje: Primenite tehnike kompresije i kodiranja kako biste smanjili

veličinu podataka koji se prenose između komponenti radnog toka. Algoritmi za

kompresiju, kao što su gzip ili Brotli, mogu značajno smanjiti korišćenje mrežnog

propusnog opsega i poboljšati ukupne performanse sistema.

Uzimajući u obzir aspekte skalabilnosti i performansi tokom dizajna i implementacije

sistema za inteligentnu orkestraciju radnih tokova, možete osigurati da vaš sistem može

da upravlja velikim obimom istovremenih radnih tokova, optimizuje performanse

komponenti zasnovanih na veštačkoj inteligenciji i nesmetano se skalira kako bi

zadovoljio rastuće zahteve. Kontinuirano praćenje, profilisanje i napori za optimizaciju

su ključni za održavanje performansi i odzivnosti sistema kako se opterećenje i složenost

povećavaju tokom vremena.

Testiranje i validacija radnih tokova

Testiranje i validacija su ključni aspekti razvoja i održavanja sistema za inteligentnu

orkestraciju radnih tokova. S obzirom na složenu prirodu radnih tokova zasnovanih na

veštačkoj inteligenciji, neophodno je osigurati da svaka komponenta funkcioniše kako se

očekuje, da se celokupni radni tok ponaša ispravno i da su odluke veštačke inteligencije

tačne i pouzdane. U ovom odeljku ćemo istražiti različite tehnike i razmatranja za

testiranje i validaciju inteligentnih radnih tokova.

https://github.com/hopsoft/universalid

Inteligentna orkestracija radnih tokova 237

Jedinično testiranje komponenti radnog toka

Jedinično testiranje podrazumeva testiranje pojedinačnih komponenti radnog toka

izolovano kako bi se proverila njihova ispravnost i robusnost. Prilikom jediničnog

testiranja komponenti zasnovanih na veštačkoj inteligenciji, razmotrite sledeće:

1. Validacija ulaznih podataka: Testirajte sposobnost komponente da obrađuje

različite tipove ulaznih podataka, uključujući validne i nevalidne podatke. Proverite da

li komponenta elegantno upravlja graničnim slučajevima i pruža odgovarajuće poruke

o greškama ili izuzetke.

2. Verifikacija izlaznih podataka: Potvrdite da komponenta proizvodi očekivani izlaz

za dati skup ulaznih podataka. Uporedite stvarni izlaz sa očekivanim rezultatima kako

biste osigurali ispravnost.

3. Upravljanje greškama: Testirajte mehanizme za upravljanje greškama komponente

simuliranjem različitih scenarija grešaka, kao što su nevažeći ulazni podaci,

nedostupnost resursa ili neočekivani izuzeci. Proverite da li komponenta ispravno

hvata i upravlja greškama.

4. Granični uslovi: Testirajte ponašanje komponente pod graničnim uslovima, kao

što su prazan ulaz, maksimalna veličina ulaza ili ekstremne vrednosti. Osigurajte da

komponenta elegantno upravlja ovim uslovima bez rušenja ili proizvodnje netačnih

rezultata.

Evo primera jediničnog testa za komponentu radnog toka u Ruby-ju koristeći RSpec

radni okvir za testiranje:

Inteligentna orkestracija radnih tokova 238

1 RSpec.describe OrderValidator do

2 describe '#validate' do

3 context 'when order is valid' do

4 let(:order) { build(:order) }

5

6 it 'returns true' do

7 expect(subject.validate(order)).to be true

8 end

9 end

10

11 context 'when order is invalid' do

12 let(:order) { build(:order, total_amount: -100) }

13

14 it 'returns false' do

15 expect(subject.validate(order)).to be false

16 end

17 end

18 end

19 end

U ovom primeru, OrderValidator komponenta se testira korišćenjem dva test slučaja:

jedan za validan nalog i drugi za nevalidan nalog. Test slučajevi verifikuju da metoda

validate vraća očekivanu bulovu vrednost na osnovu validnosti naloga.

Integraciono testiranje interakcija toka rada

Integraciono testiranje se fokusira na verifikaciju interakcija i toka podataka između

različitih komponenti toka rada. Ono osigurava da komponente rade zajedno

bez problema i proizvode očekivane rezultate. Prilikom integracionog testiranja

inteligentnih tokova rada, uzmite u obzir sledeće:

1. Interakcija komponenti: Testirajte komunikaciju i razmenu podataka između

komponenti toka rada. Verifikujte da se izlaz jedne komponente ispravno prosleđuje

kao ulaz sledećoj komponenti u toku rada.

2. Konzistentnost podataka: Osigurajte da podaci ostaju konzistentni i tačni dok

prolaze kroz tok rada. Verifikujte da se transformacije podataka, kalkulacije i agregacije

Inteligentna orkestracija radnih tokova 239

izvršavaju ispravno.

3. Propagacija izuzetaka: Testirajte kako se izuzeci i greške propagiraju i obrađuju kroz

komponente toka rada. Verifikujte da su izuzeci uhvaćeni, zabeleženi i pravilno obrađeni

kako bi se sprečio prekid toka rada.

4. Asinhrono ponašanje: Ako tok rada uključuje asinhrone komponente ili paralelno

izvršavanje, testirajte mehanizme koordinacije i sinhronizacije. Osigurajte da se tok rada

ponaša ispravno u konkurentnim i asinhronim scenarijima.

Evo primera integracionog testa za tok rada u Ruby-ju koristeći RSpec radni okvir za

testiranje:

1 RSpec.describe OrderProcessingWorkflow do

2

3 let(:order) { build(:order) }

4

5 it 'processes the order successfully' do

6 expect(OrderValidator).to receive(:validate).and_return(true)

7 expect(InventoryManager).to receive(:check_availability).and_return(true)

8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)

9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)

10

11 workflow = OrderProcessingWorkflow.new(order)

12 result = workflow.process

13

14 expect(result).to be true

15 expect(order.status).to eq('processed')

16 end

17

18 end

U ovom primeru, OrderProcessingWorkflow se testira proverom interakcija između

različitih komponenti toka rada. Test postavlja očekivanja za ponašanje svake

komponente i osigurava da tok rada uspešno obrađuje narudžbinu, ažurirajući status

narudžbine u skladu sa tim.

Inteligentna orkestracija radnih tokova 240

Testiranje AI tačaka odlučivanja

Testiranje AI tačaka odlučivanja je ključno za osiguravanje preciznosti i pouzdanosti

tokova rada zasnovanih na veštačkoj inteligenciji. Prilikom testiranja AI tačaka

odlučivanja, razmotrite sledeće:

1. Preciznost odlučivanja: Proverite da AI komponenta donosi precizne odluke na

osnovu ulaznih podataka i treniranog modela. Uporedite AI odluke sa očekivanim

ishodima ili referentnim podacima.

2. Granični slučajevi: Testirajte ponašanje AI komponente u graničnim slučajevima

i neuobičajenim scenarijima. Proverite da li AI komponenta elegantno upravlja ovim

slučajevima i donosi razumne odluke.

3. Pristrasnost i pravičnost: Procenite AI komponentu na potencijalne pristrasnosti

i osigurajte da donosi pravične i nepristrasne odluke. Testirajte komponentu sa

raznovrsnim ulaznim podacima i analizirajte ishode u potrazi za diskriminatornim

obrascima.

4. Objašnjivost:Ako AI komponenta pruža objašnjenja ili obrazloženja za svoje odluke,

proverite tačnost i jasnoću objašnjenja. Osigurajte da su objašnjenja usklađena sa

osnovnim procesom donošenja odluka.

Evo primera testiranja AI tačke odlučivanja u Ruby-ju koristeći RSpec okvir za testiranje:

Inteligentna orkestracija radnih tokova 241

1 RSpec.describe FraudDetector do

2 describe '#detect_fraud' do

3 context 'when transaction is fraudulent' do

4 let(:tx) do

5 build(:transaction, amount: 10_000, location: 'High-Risk Country')

6 end

7

8 it 'returns true' do

9 expect(subject.detect_fraud(tx)).to be true

10 end

11 end

12

13 context 'when transaction is legitimate' do

14 let(:tx) do

15 build(:transaction, amount: 100, location: 'Low-Risk Country')

16 end

17

18 it 'returns false' do

19 expect(subject.detect_fraud(tx)).to be false

20 end

21 end

22 end

23 end

U ovom primeru, FraudDetector AI komponenta je testirana sa dva test primera:

jedan za lažnu transakciju i drugi za legitimnu transakciju. Test primeri proveravaju

da li detect_fraudmetoda vraća očekivanu bulovsku vrednost na osnovu karakteristika

transakcije.

Testiranje s kraja na kraj

Testiranje s kraja na kraj podrazumeva testiranje celokupnog toka rada od početka do

kraja, simulirajući scenarije iz stvarnog sveta i korisničke interakcije. Ono osigurava da

se tok rada ponaša ispravno i proizvodi željene rezultate. Prilikom izvođenja testiranja

s kraja na kraj za inteligentne tokove rada, uzmite u obzir sledeće:

1. Korisnički scenariji: Identifikujte uobičajene korisničke scenarije i testirajte

Inteligentna orkestracija radnih tokova 242

ponašanje toka rada u tim scenarijima. Proverite da li tok rada pravilno obrađuje

korisničke unose, donosi odgovarajuće odluke i proizvodi očekivane rezultate.

2. Validacija podataka: Osigurajte da tok rada validira i prečišćava korisničke unose

kako bi se sprečile nekonzistentnosti podataka ili bezbednosne ranjivosti. Testirajte tok

rada sa različitim tipovima ulaznih podataka, uključujući validne i nevalidne podatke.

3. Oporavak od grešaka: Testirajte sposobnost toka rada da se oporavi od grešaka i

izuzetaka. Simulirajte scenarije grešaka i proverite da li tok rada elegantno upravlja

njima, beleži greške i preduzima odgovarajuće akcije oporavka.

4. Performanse i skalabilnost: Procenite performanse i skalabilnost toka rada pod

različitim uslovima opterećenja. Testirajte tok rada sa velikim obimom konkurentnih

zahteva i merite vreme odziva, iskorišćenost resursa i ukupnu stabilnost sistema.

Evo primera testa s kraja na kraj za tok rada u Ruby-ju koristeći RSpec okvir za testiranje

i Capybara biblioteku za simulaciju korisničkih interakcija:

1 RSpec.describe 'Order Processing Workflow' do

2 scenario 'User places an order successfully' do

3 visit '/orders/new'

4 fill_in 'Product', with: 'Sample Product'

5 fill_in 'Quantity', with: '2'

6 fill_in 'Shipping Address', with: '123 Main St'

7 click_button 'Place Order'

8

9 expect(page).to have_content('Order Placed Successfully')

10 expect(Order.count).to eq(1)

11 expect(Order.last.status).to eq('processed')

12 end

13 end

U ovom primeru, test s kraja na kraj simulira korisnika koji postavlja narudžbinu preko

web interfejsa. Popunjava potrebna polja obrasca, šalje narudžbinu i proverava da li je

narudžbina uspešno obrađena, prikazujući odgovarajuću poruku potvrde i ažurirajući

status narudžbine u bazi podataka.

Inteligentna orkestracija radnih tokova 243

Kontinuirana integracija i isporuka

Da bi se osigurala pouzdanost i održivost inteligentnih tokova rada, preporučuje se

integracija testiranja i validacije u protok kontinuirane integracije i isporuke (CI/CD).

Ovo omogućava automatizovano testiranje i validaciju promena u toku rada pre nego

što se primene u produkciji. Razmotrite sledeće prakse:

1. Automatizovano izvršavanje testova: Konfigurišite CI/CD protok da automatski

pokreće paket testova kad god se naprave izmene u kodu toka rada. Ovo osigurava da

se sve regresije ili greške otkriju rano u procesu razvoja.

2. Praćenje pokrivenosti testovima:Merite i pratite pokrivenost testovima komponenti

toka rada i AI tačaka odlučivanja. Težite visokoj pokrivenosti testovima kako biste

osigurali da su kritične putanje i scenariji temeljno testirani.

3. Kontinuirana povratna informacija: Integrišite rezultate testova i metrike kvaliteta

koda u tok razvoja. Obezbedite kontinuiranu povratnu informaciju programerima o

statusu testova, kvalitetu koda i svim problemima otkrivenim tokom CI/CD procesa.

4. Razvojna okruženja: Primenite tok rada u razvojnim okruženjima koja blisko

odslikavaju produkciono okruženje. Izvršite dodatno testiranje i validaciju u razvojnom

okruženju kako biste otkrili sve probleme vezane za infrastrukturu, konfiguraciju ili

integraciju podataka.

5.Mehanizmi za povratak: Implementirajte mehanizme za povratak u slučaju neuspeha

pri primeni ili kritičnih problema otkrivenih u produkciji. Osigurajte da se tok radamože

brzo vratiti na prethodnu stabilnu verziju kako bi se minimiziralo vreme prekida rada i

uticaj na korisnike.

Uključivanjem testiranja i validacije tokom celog životnog ciklusa razvoja inteligentnih

tokova rada, organizacije mogu osigurati pouzdanost, tačnost i održivost svojih AI

Inteligentna orkestracija radnih tokova 244

sistema. Redovno testiranje i validacija pomažu u otkrivanju grešaka, sprečavanju

regresija i izgradnji poverenja u ponašanje i rezultate toka rada.

Deo 2: Obrasci

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inženjerstvo promptova
Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inženjerstvo promptova 247

Lanac razmišljanja

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primeri

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Generisanje sadržaja

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kreiranje strukturiranih entiteta

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Usmeravanje LLM Agenta

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Prednosti i razmatranja

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inženjerstvo promptova 248

Promena režima

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada ga koristiti

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inženjerstvo promptova 249

Dodela uloge

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada ga koristiti

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primeri

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inženjerstvo promptova 250

Prompt Object

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inženjerstvo promptova 251

Šablon upita

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Prednosti i razmatranja

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada ga koristiti:

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inženjerstvo promptova 252

Strukturirani UI/IZ

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako Funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Skaliranje strukturiranog UI/IZ

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Prednosti i razmatranja

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inženjerstvo promptova 253

Ulančavanje promptova

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada ga koristiti

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer: Olimpijino uvođenje korisnika

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inženjerstvo promptova 254

Prepisivač Promptova

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako Funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inženjerstvo promptova 255

Ograđivanje odgovora

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Prednosti i razmatranja

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Rukovanje greškama

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inženjerstvo promptova 256

Analizator upita

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Implementacija

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Označavanje vrsta reči (POS) i Prepoznavanje imenovanih entiteta (NER)

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Klasifikacija namere

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Ekstrakcija ključnih reči

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Prednosti

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inženjerstvo promptova 257

Prepisivač upita

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Prednosti

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inženjerstvo promptova 258

Ventrilokvist

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako Funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada Ga Koristiti

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Diskretne komponente
Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Diskretne komponente 260

Predikat

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada ga koristiti

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Diskretne komponente 261

API Fasada

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Ključne prednosti

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada je koristiti

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Autentifikacija i Autorizacija

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Diskretne komponente 262

Obrada Zahteva

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Formatiranje Odgovora

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Obrada Grešaka i Graničnih Slučajeva

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Razmatranja o Skalabilnosti i Performansama

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Poređenje sa Drugim Dizajn Obrascima

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Diskretne komponente 263

Interpreter rezultata

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada ga koristiti

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Diskretne komponente 264

Virtuelna mašina

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kada ga koristiti

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Iza Magije

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Specifikacija i Testiranje

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Diskretne komponente 265

Specifikacija Ponašanja

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Pisanje Test Primera

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer: Testiranje Translator Komponente

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Reprodukcija HTTP Interakcija

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Čovek u petlji (HITL)
Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Obrasci visokog nivoa

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Hibridna inteligencija

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Adaptivni odziv

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Zamena uloga između čoveka i AI

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Čovek u petlji (HITL) 267

Eskalacija

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Ključne prednosti

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primena u stvarnom svetu: Zdravstvo

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Čovek u petlji (HITL) 268

Povratna sprega

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako to funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primene i Primeri

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Napredne Tehnike u Integraciji Ljudskih Povratnih Informacija

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Čovek u petlji (HITL) 269

Pasivno zračenje informacija

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kontekstualni prikaz informacija

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Proaktivna obaveštenja

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Objašnjavajući uvidi

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Interaktivno istraživanje

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Čovek u petlji (HITL) 270

Ključne prednosti

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primene i primeri

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Čovek u petlji (HITL) 271

Kolaborativno donošenje odluka (CDM)

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Čovek u petlji (HITL) 272

Kontinuirano učenje

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primene i primeri

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Etička razmatranja

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Uloga HITL-a u ublažavanju AI rizika

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Čovek u petlji (HITL) 273

Tehnološki napredak i budući izgledi

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Izazovi i ograničenja HITL sistema

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inteligentno rukovanje greškama
Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Tradicionalni pristupi rukovanju greškama

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inteligentno rukovanje greškama 275

Kontekstualna dijagnostika grešaka

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Inženjerstvo promptova za kontekstualnu dijagnostiku grešaka

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Generisanje Potpomognuto Preuzimanjem za Kontekstualnu Dijagnostiku

Grešaka

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inteligentno rukovanje greškama 276

Inteligentno Izveštavanje o Greškama

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inteligentno rukovanje greškama 277

Prediktivno sprečavanje grešaka

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako Funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Pametni Oporavak od Grešaka

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako Funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inteligentno rukovanje greškama 278

Personalizovana komunikacija o greškama

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Inteligentno rukovanje greškama 279

Adaptivni tok rada za rukovanje greškama

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Kontrola kvaliteta
Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Kontrola kvaliteta 281

Eval

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Problem

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Rešenje

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Razmatranja

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Kontrola kvaliteta 282

Razumevanje zlatnih referenci

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcionišu evaluacije bez reference

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Kontrola kvaliteta 283

Guardrail

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Problem

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Rešenje

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Kako funkcioniše

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Primer

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Razmatranja

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Kontrola kvaliteta 284

Zaštitne mere i Evaluacije: Dve strane istog novčića

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Međusobna zamenjivost Zaštitnih mera i Evaluacija bez referenci

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Implementacija Zaštitnih mera i Evaluacija sa dvostrukom

namenom

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Rečnik pojmova

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Rečnik pojmova

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

A

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

B

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

C

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

286

D

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

E

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

F

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

G

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

H

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

I

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

287

J

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

K

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

L

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

M

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

N

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

O

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

288

P

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Q

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

R

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

S

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

T

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

U

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

289

V

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

W

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

Z

Ovaj sadržaj nije dostupan u uzorku knjige. Knjigu možete kupiti na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-sr-Latn.

http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn
http://leanpub.com/patterns-of-application-development-using-ai-sr-Latn

Index

ACID svojstva, 102

adaptivni tok rada

Adaptivna Kompozicija Toka Rada,

210

adaptivni UI, 193

Agentni, 30

AI, 60, 92, 133, 139, 188, 195

aplikacije, 117, 129

konverzacijska, 196

konverzacijski, 29

konverzaciona, 6

model, 83, 92, 144, 145, 147, 195

složeni sistemi, 28, 32

tačke odlučivanja, 240

Alpaca, 12

Altman, Sam, 16

Amazon Web Services, 235

analiza sentimenta, 15, 93, 104--106, 109,

110, 126, 135

Analiza Sentimenta Kupaca, 92

ansambli, 109, 110

ansambl radnika, 110

Anthropic, 21, 36, 68, 120, 128

antropomorfizam, 64

API-ji, 66, 142

APIs, 115

Arhitektura mikroservisa, 83

arhitektura poslovnih aplikacija, 35

arhitektura vođena događajima, 101

asinhrona obrada, 232

auto-regressive modeling, 40

Automatski Nastavak, 148

automatsko skaliranje, 235

baze podataka, 115

-podržani objekat, 98

strategije zaključavanja, 102

baze znanja, 7

BERT, 12, 22

bez stanja, 145

Brotli, 236

Byte Pair Encoding (BPE), 13

C (Programski jezik), 108

Capybara biblioteka, 242

Chain of Thought (CoT), 129

ChatGPT, 28, 49

Claude, 7, 40, 72

Claude 3, 46, 118, 120, 126, 128

Claude 3 Opus, 69

Claude v1, 15

Claude v2, 15

Cohere (LLM Provider), 21, 23

Index 291

command line

Command-Line Interface (CLI), 23

content

filtering, 24

context

infinitely long inputs, 14

window, 14

conversation

transkript, 145

customization, 24

data

privacy, 24

Databricks zaposleni, 48

Datadog, 231

debagovanje

i testiranje, 123

desktop računari, 203

detekcija prevare

sistem, 90

determinističko ponašanje, 54

digitalno okruženje, 179

Dinamički odabir alata, 122

dinamičko generisanje korisničkog

interfejsa, 174

Dinamičko usmeravanje zadataka, 208

distribuirana arhitektura, 232

dizajn aplikacija i radni okviri, 184

dodeljivanje tiketa, 223

Dohan, et al., 40

e-trgovina, 177

efikasnost, 207

ekosistem, 137

eksperimentisanje

radni okvir, 180

eksterni servisi ili API-ji, 118

elektronska trgovina, 206

ELK stack, 103

emocionalni ton, 135

errors

Intelligent Error Handling, 133

etika

implikacije, 185

F#, 86

Facebook, 22

faktori rizika, 89, 90

filtriranje zasnovano na sadržaju, 85

finalize metoda, 145--147

fino podešavanje, 74

FitAI, 196

fleksibilnost i kreativnost, 182

funkcija

imena, 143

istorija poziva, 145

pozivanje, 115

funkcionalno programiranje, 85

Gemma 7B, 10

Generative Pre-trained Transformer (GPT),

7

Generativni korisnički interfejs (GenUI),

198

Generativni prethodno obučeni

transformator (GPT), 62

Index 292

Generativni UI (GenUI), 184, 191, 194, 202

Generisanje potpomognuto pretraživanjem

(RAG), 117

Generisanje potpomognuto preuzimanjem

(RAG), 29, 35, 42, 74

generisanje sintetičkih podataka, 49

GitLab, 86

Global Interpreter Lock (GIL), 107

Google, 21

API, 58, 60

Cloud AI Platform, 22

Cloud Platform, 235

Gemini, 19

Gemini 1.5 Pro, 12, 16, 17

PaLM (Pathways Language Model),

16, 22

T5, 12

GPT-3, 12, 15

GPT-4, 6, 12, 15, 16, 19, 29, 40, 46, 58, 97,

109, 112, 119, 124, 189, 190, 233

grafički modeli, 40

Graham, Paul, 17

gramatička pravila, 4

granični slučajevi, 54

granični uslovi, 237

granularno beleženje, 230

GraphQL, 100

greške

oporavak, 242

rukovanje, 99, 132

stope, 103

upravljanje, 102, 237

Groq, 24, 112

grupisanje dokumenata, 112

grupna obrada, 233

gzip, 236

hardware, 26

heš, 141

high-performance completion, 24

hiperparametar, 43

Hohpe, Gregor, 97

Honeybadger, 87

HTTP, 139

identifikacija tema, 112

informacije

ekstrakcija, 48

preuzimanje, 117

pronalaženje, 6

inkluzivni interfejsi, 185

integraciono testiranje, 238

integrisanje LLM-ova, 174

inteligentna orkestracija radnih tokova,

205, 233, 236

Inteligentni moderator sadržaja, 217

interakcije u stilu igranja uloga, 6

interfejsi kojima se upravlja glasom, 31

internacionalizacija, 180

Interpreter rezultata, 132

istorijski obrasci, 209

istovremeni radni tokovi, 236

iterativno refinement, 134

iterativno usavršavanje, 70

izgradnja narativa, 18

Index 293

jezik

-povezani zadaci, 4

Detekcija jezika, 104

modeli, 67

JSON (JavaScript Object Notation), 118,

122, 126, 137, 154

K-sredine, 113

kazne za ponavljanje, 47

Kazneni faktor prisustva, 45

keširanje, 233

klasifikacija, 48, 112

ključni obrasci, 208

Kodiranje parova bajtova (BPE), 12

kolaborativno filtriranje, 85

konceptualni i praktični izazovi, 185

kontekst

Kontekstualni predlozi polja, 186

kontekstualno donošenje odluka, 209

Kontekstualno generisanje sadržaja,

173, 177--179, 185, 186

prozor, 209

Proširenje, 42

Kontinuirana integracija i isporuka

(CI/CD), 243

protok, 243

Kontinuirano praćenje rizika, 96

konzistentnost

i reproduktivnost, 124

korisnička podrška, 30

korisnički generisan sadržaj, 104

Korisnički interfejs (UI)

dizajn, 203

interfejsi, 184, 198

okviri, 199

tehnologije, 194

korisničko iskustvo, 180

korisničko testiranje i povratne

informacije, 182

kreativno pisanje, 32, 48

Kvantizacija, 26

Lanac razmišljanja (CoT), 41

lanac snabdevanja

optimizacija, 30

language

models, 39, 61

Large Language Model (LLM), 14, 134

landscape, 25

latencija, 25

Latentna Dirihleova alokacija, 113

latentni prostor, 37, 39

linearna algebra, 39

linearna regresija, 40

Llama, 12

Llama 2-70B, 46

Llama 3 70B, 10

Llama 3 8B, 10

logika prekidača, 150

lokalna razvojna okruženja, 143

Louvre, 39

Managed Streaming for Apache Kafka, 38

Markdown, 137

Mašine sa vektorima podrške (MVP), 113

Index 294

medicinska otkrića, 93

mehanizmi ponovnih pokušaja, 102

mehanizmi za povratak, 243

Memorial Sloan Kettering Cancer Center,

38

Menadžer Procesa, 100

Menadžer procesa, 97

Merkur (element), 41

Merkur (planeta), 41

Merkur (rimski bog), 41

MessagePack, 235

Meta, 22

Metropolitan Museum of Art, 39

međumodalno generisanje, 20

Mistral, 23

7B, 10

7B Instruct, 15, 190

Mixtral

8x22B, 10

8x7B, 52

Mnoštvo radnika, 111, 154

modeli zasnovani na pretraživanju, 6

moderne aplikacije, 207

modularnost, 82

motivacione strategije, 198

mrežna povezanost, 210

Multimodalni

jezički modeli, 19

modeli, 18

Naivni Bajes, 113

naočare za proširenu realnost, 203

nenadgledano učenje, 4

neuralne mreže, 3, 6

New Relic, 234

nizovi, 122

objašnjivost, 240

obrada toka, 145

logika, 146

obrada toka podataka, 139, 150

Obrasci poslovne integracije, 97

obrazovne aplikacije, 30

obuka na instrukcijama

modeli obučeni na instrukcijama, 46,

48

odlučivanje

slučajevi upotrebe, 124

stabla, 206

Ograđivanje Odgovora, 190

Ograđivanje odgovora, 163

Ollama, 23

Olympia, 31, 58, 120, 133, 140, 155

Olympia-ina baza znanja, 85

online prodavci, 190

OpenAI, 3, 21, 36, 68

OpenRouter, 25, 26, 140, 233

OPT model, 22

optimističko zaključavanje, 102

orkestracija inteligentnog radnog toka, 213

osnovni modeli, 50

otklanjanje grešaka, 209

i rešavanje problema, 230

označavanje pomoću markup jezika, 66

Index 295

pametni telefoni, 203

parafraziranje, 49

paralelno izvršavanje, 232

parametar

Broj parametara, 26

efekti, 120

opseg, 10

performanse

kompromisi, 5

optimizacija, 124, 182, 230

problemi, 234

Perplexity (Provajder), 10

personalizacija, 174, 202, 207

Personalizovani formulari, 186

Personalizovani Mikrotekst, 191

personalizovane preporuke proizvoda, 85

pesimističko zaključavanje, 102

planiranje reagovanja u vanrednim

situacijama, 30

podaci

analiza, 32, 137

integritet, 223

postojanost, 102

Preuzimanje podataka, 102

priprema, 101

privatnost, 200

proces obrade, 223

protok, 102

Sinhronizacija podataka, 102

Validacija podataka, 242

zadaci obrade, 117

podaci za obuku, 39

podešavanje putem instrukcija, 9

Podrška kliničkom odlučivanju, 96

poruka okidač, 97

poslovna pravila, 206

poverenje korisnika, 201

povratna sprega

Povratna sprega, 55

poziv alata, 142

poziv funkcije

neuspeh, 125

praćenje

i beleženje, 103, 229

i upozoravanje, 211

metrike, 230

praćenje ključnih metrika, 227

predviđanja, 5

Preporuke Proizvoda, 85

prevođenje, 15, 181

Prikupljanje medicinske istorije, 94

Primene u E-trgovini, 85

princip najmanje privilegije, 66

Prinudni odabir alata, 123

prirodni jezik

Obrada prirodnog jezika (ONJ), 94

Obrada prirodnog jezika (OPJ), 112

pristrasnost

i pravičnost u AI, 240

pristupačnost, 201, 202

probabilistički modeli, 40

problemi upotrebljivosti, 201

Procena i stratifikacija simptoma, 94

proces destilacije, 71

Index 296

Process Manager

Enterprise Integration, 213

Produktivnost, 176

progresivno otkrivanje, 192

promptovi

Destilacija promptova, 68, 72, 233

inženjering, 55

Prompt Object, 69

ulančavanje, 55, 66

Šablon Prompta, 190

Šablon promptova, 55

prompts

engineering, 60

propusnost, 25

Protocol Buffers, 235

protočni podaci, 141

provajderi hostinga modela otvorenog

koda, 190

psihologija korisnika, 200

PyTorch, 22

Qwen2 70B, 10

Rails, 181

Railway Oriented Programming (ROP), 88

Raix, 214

biblioteka, 90

rangiratori, 33

razgovor

petlja, 148

transkript, 147

razvoj aplikacija, 205

razvojna okruženja, 243

razvojni okviri, 138

račun, 84

računarska nauka, 67

računarske nauke, 65

revizija i usklađenost, 230

revizorsko beleženje, 99

rezervne strategije, 102

rečnici, 122

RSpec, 237, 239, 242

Ruby, 86, 87, 105, 150, 242

Ruby on Rails, 1, 104, 213, 220

Rudall, Alex, 21

rukovanje izuzecima, 210, 212

rukovaoci toka, 139

Rust (Programski jezik), 108

Rust (programski jezik), 86

ručna intervencija, 212

sadržaj

Kategorizacija sadržaja, 104

Samozalečujući podaci, 152, 226

Scout, 234

server-sent events (SSE), 139

sintaksne greške, 123

sistemi za objavljivanje-pretplatu, 101

sistemi za odgovaranje na pitanja, 7

sistemska direktiva, 92, 120

skalabilnost, 207, 231

složeni zadaci, 136

softverska arhitektura, 2

sposobnosti donošenja odluka, 92

SQL injekcije, 65

Index 297

strategije segmentacije i ciljanja, 180

Stratifikacija rizika, 95

Stripe, 121

Strukturirani IO, 190

strukturirani podaci, 125

strukturirano beleženje, 231

sumiranje, 48

suziti put, 36

sužavanje puta, 35

T5, 22

tableti, 203

tačke

odlučivanja, 228

Temperatura, 50

teorija uma, 37

testiranje s kraja na kraj, 241, 242

Together.ai, 24

tokeni, 5, 11

tokenizacija, 11

Top-k uzorkovanje, 44

Top-p (nucleus) uzorkovanje, 44

tragedija zajedničkog dobra, 177

transformer arhitektura, 6

Trbuhozborac, 163

ulančavanje AI radnika, 103

ulaz

upiti, 52

ulazni parametri, 120

ulazni podaci

validacija, 237

Unicode-encodable language, 13

Universal ID, 236

uparivanje obrazaca, 141

upiti

Destilacija upita, 42

dizajn, 54, 63

inženjering, 199

inženjerstvo, 37, 41, 42, 52, 62

usavršavanje, 63

upotreba alata, 115, 138

upravljanje saobraćajem, 30

upravljanje znanjem, 30

uska grla, 210

učenje bez primera, 54, 55

Učenje sa jednim primerom, 56

učenje sa malo primera, 57

primena, 58

Veliki jezički model (LLM), 27, 103, 115,

116, 173, 184, 194

Veliki jezički model (VJM), 1, 3, 16, 62, 63,

66, 70, 72, 81, 112, 125, 131, 134,

136, 152, 155, 189, 216

verifikacija izlaznih podataka, 237

Verifikacija osiguranja, 94

većinsko glasanje, 109

veštačka inteligencija

aplikacije, 138, 150

VI, 68, 120, 125

virtuelni asistenti, 31

vizuelni interfejs, 194

Višeagentni

Rešavaoci problema, 29

Index 298

višekoračni tok rada, 104

Vreme do prvog tokena (TTFT), 25

vreme obrade, 103

Wall, Larry, 3

Wisper, 87, 99, 140, 147

Wooley, Chad, 86

XML, 125

Yi-34B, 46

zadržavanje i rotacija zapisa, 231

Zaključivanje, 5

zatvoreno i otvoreno odgovaranje na

pitanja, 48

Čišćenje teksta, 104

Čovek u petlji (HITL), 166

četbot aplikacija, 111

četbotovi za korisničku podršku, 31

	Table of Contents
	Predgovor Gregora Hohpea
	Predgovor
	O knjizi
	O primerima koda
	Šta ne obrađujem
	Kome je namenjena ova knjiga
	Izgradnja zajedničkog rečnika
	Uključivanje
	Zahvalnice
	Šta je sa ilustracijama?
	O Lean Publishing-u
	O Autoru

	Uvod
	Razmišljanja o softverskoj arhitekturi
	Šta je Veliki jezički model?
	Razumevanje zaključivanja
	Razmišljanje o performansama
	Eksperimentisanje sa različitim LLM modelima
	Složeni AI sistemi

	Deo 1: Osnovni pristupi i tehnike
	Suziti Put
	Latentni prostor: Nezamislivo ogroman
	Kako se Put ``Sužava''
	Osnovni modeli naspram modela obučenih na instrukcijama
	Inženjerstvo upita
	Destilacija promptova
	Šta je sa finim podešavanjem?

	Generisanje potpomognuto pretraživanjem (RAG)
	Šta je Generisanje potpomognuto pretraživanjem?
	Kako RAG funkcioniše?
	Zašto koristiti RAG u vašim aplikacijama?
	Implementacija RAG-a u Vašoj Aplikaciji
	Segmentacija propozicija
	Primeri RAG-a iz stvarnog sveta
	Inteligentna Optimizacija Upita (IQO)
	Ponovno Rangiranje
	RAG Procena (RAGAs)
	Izazovi i budući izgledi

	Mnoštvo radnika
	AI radnici kao nezavisne komponente za višekratnu upotrebu
	Upravljanje nalozima
	Primene u E-trgovini
	Primene u zdravstvu
	AI radnik kao menadžer procesa
	Integracija AI Radnika U Arhitekturu Vaše Aplikacije
	Kompozabilnost i orkestracija AI radnika
	Kombinovanje tradicionalne OPJ sa VJM-ovima

	Upotreba alata
	Šta je upotreba alata?
	Potencijal upotrebe alata
	Tok rada sa alatima
	Najbolje prakse za upotrebu alata
	Komponovanje i ulančavanje alata
	Budući pravci

	Obrada toka podataka
	Implementacija ReplyStream-a
	``Konverzacijska petlja''
	Automatski Nastavak
	Zaključak

	Samozalečujući podaci
	Praktična studija slučaja: Popravljanje neispravnog JSON-a
	Razmatranja i kontraindikacije

	Kontekstualno generisanje sadržaja
	Personalizacija
	Produktivnost
	Brza iteracija i eksperimentisanje
	AI podržana lokalizacija
	Važnost korisničkog testiranja i povratnih informacija

	Generativni UI
	Generisanje teksta za korisničke interfejse
	Definisanje generativnog UI-ja
	Primer
	Prelazak na dizajn orijentisan ka ishodima
	Izazovi i razmatranja
	Budući izgledi i mogućnosti

	Inteligentna orkestracija radnih tokova
	Poslovna potreba
	Ključne prednosti
	Ključni obrasci
	Rukovanje Izuzecima i Oporavak
	Implementacija orkestracije inteligentnog radnog toka u praksi
	Praćenje i beleženje
	Razmatranja skalabilnosti i performansi
	Testiranje i validacija radnih tokova

	Deo 2: Obrasci
	Inženjerstvo promptova
	Lanac razmišljanja
	Promena režima
	Dodela uloge
	Prompt Object
	Šablon upita
	Strukturirani UI/IZ
	Ulančavanje promptova
	Prepisivač Promptova
	Ograđivanje odgovora
	Analizator upita
	Prepisivač upita
	Ventrilokvist

	Diskretne komponente
	Predikat
	API Fasada
	Interpreter rezultata
	Virtuelna mašina
	Specifikacija i Testiranje

	Čovek u petlji (HITL)
	Obrasci visokog nivoa
	Eskalacija
	Povratna sprega
	Pasivno zračenje informacija
	Kolaborativno donošenje odluka (CDM)
	Kontinuirano učenje
	Etička razmatranja
	Tehnološki napredak i budući izgledi

	Inteligentno rukovanje greškama
	Tradicionalni pristupi rukovanju greškama
	Kontekstualna dijagnostika grešaka
	Inteligentno Izveštavanje o Greškama
	Prediktivno sprečavanje grešaka
	Pametni Oporavak od Grešaka
	Personalizovana komunikacija o greškama
	Adaptivni tok rada za rukovanje greškama

	Kontrola kvaliteta
	Eval
	Guardrail
	Zaštitne mere i Evaluacije: Dve strane istog novčića

	Rečnik pojmova
	Rečnik pojmova
	Index

