Patterns of
Application
Development
Using Al

Obie Fernandez
Foreword by Gregor Hohpe

Patterns of Application Development Using
Al

Obie Fernandez

This book is available at

http: / /leanpub.com /patterns-of-application-development-using-ai

This version was published on 2024-12-23

A

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with
the Lean Publishing process. Lean Publishing is the act of publishing an
in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction

once you do.

© 2024 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweet This Book!

Please help Obie Fernandez by spreading the word about this book on
Twitter!

The suggested hashtag for this book is #poaduai.

Find out what other people are saying about the book by clicking on this

link to search for this hashtag on Twitter:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

To my badass queen, my muse, my light and love, Victoria

Also By Obie Fernandez

The Rails 8 Way

The Rails 7 Way

XML The Rails Way
Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Contents

Foreword by Gregor Hohpe i
Preface. ii
AbouttheBook. iii
About the Code Examples iii
WhatIDon'tCover, iii
Who ThisBookIsFor iii
Building a Common Vocabulary iii
GettingInvolved L iv
Acknowledgments Lo oL iv
What's with the illustrations? iv
About Lean Publishing iv
About The Author v
Introduction 1
Thoughts on Software Architecture 2
What is a Large Language Model? 3
Understanding Inference 5
Thinking About Performance 28
Experimenting With Different LLM Models 30

Compound AISystemst 31

CONTENTS

Part 1: Fundamental Approaches &
Techniques

NarrowThePath
Latent Space: Incomprehensibly Vast
How The Path Gets “Narrowed”
Raw Versus Instruct-Tuned Models
Prompt Engineering. o o oL

Prompt Distillation

Proposition Chunking
Real-World Examples of RAG
Intelligent Query Optimization IQO)
Reranking
RAG Assessment (RAGAS) i
Challenges and Future Outlook

Multitudeof Workers
Al Workers As Independent Reusable Components
Account Management o
E-commerce Applications
Healthcare Applications
Al Worker as a Process Manager

Integrating Al Workers Into Your Application Architecture

CONTENTS

Composability and Orchestration of Al Workers 114
Combining Traditional NLPwithLLMs 123
ToolUse e 126
Whatis ToolUse? 126
The Potential of ToolUse 128
The Tool Use Workflow 129
Best Practicesfor ToolUse 144
Composing and Chaining Tools 148
Future Directions 150
Stream Processing 153
Implementating a ReplyStream 154
The “Conversation Loop”. 160
Auto Continuation e 163
Conclusion 165
Self HealingData, 167
Practical Case Study: Fixing BrokenJSON 169
Considerations and Counterindications 175
Contextual Content Generation 191
Personalization. 192
Productivity 194
Rapid Iteration and Experimentation 196
Al Powered Localization 199
The Importance of User Testing and Feedback 201
Generative UL e 203
Generating Copy for User Interfaces 205

Defining Generative UL 214

CONTENTS

Example 216
The Shift to Outcome-Oriented Design 219
Challenges and Considerations 220
Future Outlook and Opportunities 222
Intelligent Workflow Orchestration 225
BusinessNeed 226
KeyBenefits. 227
KeyPatterns 227
Exception Handling and Recovery 230
Implementing Intelligent Workflow Orchestration in Practice . .. 233
Monitoring and Logging 248
Scalability and Performance Considerations 253
Testing and Validation of Workflows 258

Part 2: The Patterns 267

Prompt Engineering 268
Chainof Thought 269
Mode Switch o o o oo oo 27
Role Assignment 272
Prompt Object 273
Prompt Template 274
Structured IO 275
PromptChaining 276
PromptRewriter 277
ResponseFencing 278
QueryAnalyzer. 279

uery Rewriter. L 281
Query

Ventriloquist 282

CONTENTS

Discrete Components0uueenn... 283
Predicate 284
APIFacade 285
Result Interpreter 288
Virtual Machine 289
Specification and Testing 289

Human In The Loop (HITL) 291
High-Level Patterns 291
Escalation 293
FeedbackLoop 294
Passive Information Radiation 295
Collaborative Decision Making (CDM) 297
Continuous Learning 298
Ethical Considerations 298
Technological Advancements and Future Outlook 299

Intelligent Error Handling 300
Traditional Error Handling Approaches. 300
Contextual Error Diagnosis 301
Intelligent Error Reporting 302
Predictive Error Prevention 303
Smart Error Recovery. o 303
Personalized Error Communication 304
Adaptive Error Handling Workflow 305

Quality Control 306
Eval 307
Guardrail 309

Foreword by Gregor Hohpe

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Preface

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Preface iii

About the Book

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

About the Code Examples

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

What | Don’t Cover

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Who This Book Is For

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Building a Common Vocabulary

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Preface iv

development-using-ai.

Getting Involved

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-
development-using-ai.

Acknowledgments

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

What’s with the illustrations?

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

About Lean Publishing

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Preface A

About The Author

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Introduction

If you're eager to start integrating Al Large Language Models (LLMs) into

your programming projects, feel free to dive right into the patterns and
code examples presented in later chapters. However, to fully appreciate
the power and potential of these patterns, it's worth taking a moment to

understand the broader context and the cohesive approach they represent.

The patterns are not merely a collection of isolated techniques but rather a
unified framework for integrating Al into your applications. I use Ruby on
Rails , but these patterns should work in pretty much any other program-
ming environment. They address a wide range of concerns, from data man-
agement and performance optimization to user experience and security,
providing a comprehensive toolkit for enhancing traditional programming

practices with the capabilities of Al.

Introduction 2

Each category of patterns tackles a specific challenge or opportunity
that arises when incorporating Al components into your application. By
understanding the relationships and synergies between these patterns,
you can make informed decisions about where and how to apply Al most
effectively.

Patterns are never prescriptive solutions and should not be treated as such.
They are meant to be adaptable building blocks that should be tailored to
the unique requirements and constraints of your own unique application.
The successful application of these patterns (like any others in the software
field) relies on a deep understanding of the problem domain, user needs,

and the overall technical architecture of your project.

Thoughts on Software Architecture

[started programming in the 1980s and was involved in the hacker scene,
and never lost my hacker mindset, even after becoming a professional
software developer. Since the start, I always had a healthy skepticism about
what value software architects in their ivory towers actually brought to the
table.

One of the reasons that I'm personally so excited about the changes brought
forth by this powerful new wave of Al technology is its impact on what
we consider software architecture decisions. It challenges traditional
notions of what constitutes the “correct” way to design and implement
our software projects. It also challenges whether architecture can still be
thought of primarily as the parts of a system that are hard to change, since
Al enhancement is making it easier than ever to change any part of your

project, at any time.

Perhaps we're entering the peak years of the “post-modern” approach to

Introduction 3

software engineering. In this context, post-modern refers to a fundamental
shift away from traditional paradigms, where developers were responsible
for writing and maintaining every line of code. Instead, it embraces the idea
of delegating tasks, such as data manipulation, complex algorithms, and
even entire chunks of application logic, to 3rd-party libraries and external
APIs. This post-modern shift represents a significant departure from the
conventional wisdom of building applications from the ground up, and it

challenges developers to rethink their role in the development process.

I've always believed that good programmers only write the code that is
absolutely necessary to write, based on the teachings of Larry Wall and
other hacker luminaries like him. By minimizing the amount of code
written, we can move faster, reduce the surface area for bugs, simplify
maintenance, and improve the overall reliability of their applications. Less
code allows us to focus on the core business logic and user experience,

while delegating other work to other services.

Now that Al-powered systems can handle tasks that were previously the
exclusive domain of human-written code, we should be able to be even
more productive and agile, with a greater focus than ever on creating

business value and user experience.

Of course there are trade-offs of delegating huge parts of your project to
Al systems, such as the potential loss of control, and the need for robust
monitoring and feedback mechanisms. That’s why it requires a new set of
skills and knowledge, including at least some fundamental understanding

of how Al works.

Introduction 4

What is a Large Language Model?

Large Language Models (LLMs) are a type of artificial intelligence model
that have gained significant attention in recent years, ever since the launch
of GPT-3 by OpenAl in 2020. LLMs are designed to process, understand,
and generate human language with remarkable accuracy and fluency. In
this section, we'll take a brief look at how LLMs work and why they are

well-suited for building intelligent system components.

At their core, LLMs are based on deep learning algorithms, specifically
neural networks . These networks are composed of interconnected nodes,
or neurons, that process and transmit information. The architecture of
choice for LLMs is often the Transformer model, which has proven to be

highly effective in handling sequential data like text.

Transformer models are based on the attention mechanism and are primar-
ily used for tasks involving sequential data, like natural language processing.
Transformers process input data all at once rather than sequentially, which
allows them to capture long-range dependencies more effectively. They
have layers of attention mechanisms that help the model focus on different

parts of the input data to understand context and relationships.

The training process for LLMs involves exposing the model to vast amounts
of textual data, such as books, articles, websites, and code repositories.
During training, the model learns to recognize patterns, relationships,
and structures within the text. It captures the statistical properties of
the language, such as grammar rules , word associations, and contextual

meanings.

One of the key techniques used in training LLMs is unsupervised learning .
This means that the model learns from the data without explicit labeling or

guidance. It discovers patterns and representations on its own by analyzing

Introduction 5)

the co-occurrence of words and phrases in the training data. This allows

LLMs to develop a deep understanding of language and its intricacies.

Another important aspect of LLMs is their ability to handle context. When
processing a piece of text, LLMs consider not only the individual words
but also the surrounding context. They take into account the previous
words, sentences, and even paragraphs to understand the meaning and
intent of the text. This contextual understanding enables LLMs to generate
coherent and relevant responses. One of the main ways that we evaluate
the capabilities of a given LLM model is by considering the size of the

context they can consider in order to generate responses.

Once trained, LLMs can be used for a wide range of language-related
tasks . They can generate human-like text, answer questions, summarize
documents, translate languages, and even write code. The versatility of
LLMs makes them valuable for building intelligent system components
that can interact with users, process and analyze text data, and generate

meaningful outputs.

By incorporating LLMs into the application architecture, you can create
Al components that understand and process user input, generate dynamic
content, and provide intelligent recommendations or actions. But working
with LLMs requires careful consideration of resource requirements and
performance trade-offs . LLMs are computationally intensive and may re-
quire significant processing power and memory (in other words, money) to
operate. Most of us will need to assess the cost implications of integrating

LLMs into our applications and act accordingly.

Introduction 6

Understanding Inference

Inference refers to the process by which a model generates predictions
or outputs based on new, unseen data. It is the phase where the trained
model is used to make decisions or generate text, images, or other content

in response to user inputs.

During the training phase, an Al model learns from a large dataset by
adjusting its parameters to minimize the error in its predictions. Once
trained, the model can apply what it has learned to new data. Inference
is how the model uses its learned patterns and knowledge to generate

outputs.

For LLMs, inference involves taking a prompt or input text and producing a
coherent and contextually relevant response, as a stream of tokens (which
we'll talk about soon). This could be answering a question, completing a

sentence, generating a story, or translating text, among many other tasks.

In contrast to the way that you and I think, an Al model’s “think-
P ing” via inference happens in all in one stateless operation. That
is, it’s thinking is limited to its generation process. It literally has
to think out loud, as if I asked you a question and only accepted

a response from you in “stream of consciousness” style.

Large Language Models Come in Many Sizes and Flavors

While practically all popular large language models (LLMs) are based on
the same core transformer architecture and trained on huge text datasets,
they come in a variety of sizes and are fine-tuned for different purposes.

The size of an LLM, measured by the number of parameters in its neural

Introduction 7

network , has a big impact on its capabilities. Larger models with more
parameters, like GPT-4 , which is rumored to boast 1 to 2 trillion parame-
ters, are generally more knowledgeable and capable than smaller models.
However, larger models also require much more computing power to run,

which translates to higher expense when you use them via API calls.

To make LLMs more practical and tailored for specific use cases, the base
models are often fine-tuned on more targeted datasets. For example, an
LLM may be trained on a large corpus of dialog to specialize it for conver-
sational Al . Others are trained on code to imbue them with programming
knowledge. There are even models that are specially trained for roleplay-

style interactions with users !

Retrieval vs Generative Models

In the world of large language models (LLMs), there are two main ap-
proaches to generating responses: retrieval-based models and generative
models. Each approach has its own strengths and weaknesses, and un-
derstanding the differences between them can help you choose the right

model for your specific use case.

Retrieval-based Models

Retrieval-based models , also known as information retrieval models , gen-
erate responses by searching through a large database of pre-existing text
and selecting the most relevant passages based on the input query. These
models don't generate new text from scratch but rather stitch together

excerpts from the database to form a coherent response.

One of the main advantages of retrieval-based models is their ability to

provide factually accurate and up-to-date information. Since they rely

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Introduction 8

on a database of curated text, they can pull relevant information from
reliable sources and present it to the user. This makes them well-suited
for applications that require precise, factual answers, such as question-

answering systems or knowledge bases .

However, retrieval-based models have some limitations. They are only as
good as the database they are searching through, so the quality and cover-
age of the database directly impact the model’s performance. Additionally,
these models may struggle with generating coherent and natural-sounding
responses, as they are limited to the text available in the database.

We don'’t cover usage of pure retrieval models in this book.
Generative Models

Generative models, on the other hand, create new text from scratch based
on the patterns and relationships they learned during training. These
models use their understanding of language to generate novel responses

that are tailored to the input prompt.

The main strength of generative models is their ability to produce creative,
coherent, and contextually relevant text. They can engage in open-ended
conversations, generate stories, and even write code. This makes them
ideal for applications that require more open-ended and dynamic interac-

tions, such as chatbots, content creation, and creative writing assistants.

However, generative models can sometimes produce inconsistent or fac-
tually incorrect information, as they rely on the patterns learned during
training rather than a curated database of facts. They may also be more
prone to biases and hallucinations, generating text that is plausible but not

necessarily true.

Examples of generative LLMs include OpenAlI's GPT series (GPT-3, GPT-4)
and Anthropic’s Claude .

Introduction 9

Hybrid Models

Several commercially available LLMs combine both retrieval and generative
approaches in a hybrid model. These models use retrieval techniques
to find relevant information from a database and then use generative

techniques to synthesize that information into a coherent response.

Hybrid models aim to combine the factual accuracy of retrieval-based
models with the natural language generation capabilities of generative
models. They can provide more reliable and up-to-date information while

still maintaining the ability to engage in open-ended conversations.

When choosing between retrieval-based and generative models, you
should consider the specific requirements of your application. If the
primary goal is to provide accurate, factual information, a retrieval-based
model may be the best choice. If the application requires more open-
ended and creative interactions, a generative model may be more suitable.
Hybrid models offer a balance between the two approaches and can be a
good choice for applications that require both factual accuracy and natural

language generation.

Ultimately, the choice between retrieval-based and generative models
depends on the specific use case and the trade-offs between accuracy,
creativity, and flexibility. By understanding the strengths and limitations

of each approach, you can make informed decisions.

Introduction

Instruction Tuning

Instruction tuning is a subset of conversational training that uses
human-written prompts and responses to make LLMs better at
understanding and following instructions. Here are some simple
examples to illustrate how instruction tuning on human-written
prompts and responses makes LLMs better at understanding and

following instructions:

Example 1: Customer Support

Instruction: “Provide a response to a customer asking for a refund”

Human-Written Prompt: “I would like to request a refund for my recent

purchase. The product did not meet my expectations”

Human-Written Response: “I'm sorry to hear that the product did not
meet your expectations. To process your refund, please provide your
order number and the reason for the return. We will review your request

and get back to you within 2-3 business days”

Example 2: Educational Assistance

Instruction: “Explain the concept of photosynthesis to a 10-year-old”
Human-Written Prompt: “Can you explain how plants make their food?”

Human-Written Response: “Sure! Plants make their food through a
process called photosynthesis. They use sunlight, water, and carbon
dioxide to create food and oxygen. The leaves of the plant have a special

part called chlorophyll that helps them capture sunlight”

Example 3: Personal Assistant

10

Introduction 1

Instruction: “Schedule a meeting for next Tuesday at 3 PM”
Human-Written Prompt: “Can you set up a meeting for Tuesday at 3 PM?”

Human-Written Response: “Sure, I have scheduled a meeting for you

next Tuesday at 3 PM. Is there anything else you need?”

The result is a diverse ecosystem of LLMs in different sizes and with
different specialties. Smaller models in the 1-7 billion parameter range
provide good general language capabilities while being more efficient to

run.

e Mistral 7B
e Llama 3 8B

e Gemma 7B

Mid-size models around 30-70 billion parameters offer stronger reasoning

and instruction-following abilities.

* Llama 3 70B
* Qwen2 70B
e Mixtral 8x22B

When choosing an LLM to incorporate into an application, you must
balance the model’s capabilities against practical factors like cost, latency,
context length, and content filtering. Smaller, instruction-tuned models
are often the best choice for simpler language tasks, while the largest

models may be needed for complex reasoning or analysis. The model’s

Introduction 12

training data is also an important consideration, as it determines the

model’s knowledge cutoff date.

Certain models, like some from Perplexity are connected to
P realtime information sources, so that they effectively have no
cutoff date. When you ask them questions, theyre able to
independently decide to do web searches and fetch arbitrary web

pages in order to generate an answer.

Obie

Bl Who won the America vs GDL match last night?
. Llama 3 70B Instruct {nitro) 3

I'm not aware of any information about a match between "America" and "GDL" last night. Could
you please provide more context or clarify which teams or leagues you are referring to? I'l do ©
my best to help you find the answer.

~281.1 tokens/s

. Llama3 Sonar 708 Online [
Club América won the match against Guadalajara last night, with a score of 1-0. £

~31.0 tokens/s

Figure 1. Llama3 with and without online access

Ultimately, there is no one-size-fits-all LLM. Understanding the variations
in model size, architecture, and training is key to selecting the right model
for a given use case. Experimenting with different models is the only
practical way to reveal which ones provide the best performance for the
task at hand.

Introduction 13

Tokenization: Breaking Text into Pieces

Before alarge language model can process text, that text needs to be broken
down into smaller units called tokens. Tokens can be individual words,
parts of words, or even single characters. The process of splitting text into
tokens is known as tokenization, and it’s a crucial step in preparing data

for a language model.

The process of splitting text into tokens is known as tokenization, and
it’s a crucial step in preparing data for a language model.

Figure 2. This sentence contains 27 tokens

Different LLMs use different tokenization strategies, which can have a
significant impact on the model’s performance and capabilities. Some

common tokenizers used by LLMs include:

* GPT (Byte Pair Encoding): GPT tokenizers use a technique called byte
pair encoding (BPE) to break text into subword units. BPE iteratively
merges the most frequent pairs of bytes in a text corpus, forming a
vocabulary of subword tokens. This allows the tokenizer to handle
rare and novel words by breaking them down into more common
subword pieces. GPT tokenizers are used by models like GPT-3 and
GPT-4.

* Llama (SentencePiece): Llama tokenizers use the SentencePiece li-
brary, which is an unsupervised text tokenizer and detokenizer. Sen-
tencePiece treats the input text as a sequence of Unicode characters
and learns a subword vocabulary based on a training corpus. It can

handle any language that can be encoded in Unicode, making it well-

Introduction 14

suited for multilingual models. Llama tokenizers are used by models
like Meta’s Llama and Alpaca .

» SentencePiece (Unigram): SentencePiece tokenizers can also use a
different algorithm called Unigram, which is based on a subword
regularization technique. Unigram tokenization determines the op-
timal subword vocabulary based on a unigram language model, which
assigns probabilities to individual subword units. This approach can
produce more semantically meaningful subwords compared to BPE.
SentencePiece with Unigram is used by models like Google’s TS5 and
BERT .

* Google Gemini (Multimodal Tokenization): Google Gemini uses a
tokenization scheme designed to handle various data types, including
text, images, audio, videos, and code. This multimodal capability
allows Gemini to process and integrate different forms of information.
Notably, Google Gemini 1.5 Pro has a context window that can handle
millions of tokens, much larger than previous models. This extensive
context window enables the model to process a larger context, poten-
tially leading to more accurate responses. However, it's important to
note that Gemini’s tokenization scheme is much closer to one token
per character than other models. This means the actual cost of using
Gemini models can be significantly higher than expected if youre
accustomed to using models like GPT, as Google’s pricing is based on

characters rather than tokens.

The choice of tokenizer affects several aspects of an LLM, including:

* Vocabulary size: The tokenizer determines the size of the model’s

vocabulary, which is the set of unique tokens it recognizes. A larger,

Introduction 15

more fine-grained vocabulary can help the model handle a wider
range of words and phrases and even become multi-modal (capable
of understanding and generating more than just text), but it also
increases the model's memory requirements and computational com-
plexity.

* Handling of rare and unknown words: Tokenizers that use subword
units, like BPE and SentencePiece, can break down rare and unknown
words into more common subword pieces. This allows the model to
make educated guesses about the meaning of words it hasn’'t seen
before, based on the subwords they contain.

* Multilingual support: Tokenizers like SentencePiece, which can han-
dle any Unicode-encodable language , are well-suited for multilingual

models that need to process text in multiple languages.

When choosing an LLM for a particular application, it’'s important to con-
sider the tokenizer it uses and how well it aligns with the specific language
processing needs of the task at hand. The tokenizer can have a significant
impact on the model’s ability to handle domain-specific terminology, rare

words, and multilingual text.

Context Size: How Much Information Can a Language Model

Use During Inference?

When discussing language models, context size refers to the amount of text
that a model can consider when processing or generating its responses. It’s
essentially a measure of how much information the model can “remember”
and use to inform its outputs (expressed in tokens). The context size of
a language model can have a significant impact on its capabilities and the

types of tasks it can perform effectively.

Introduction 16

What is Context Size?

In technical terms, context size is determined by the number of tokens
(words or word pieces) that a language model can process in a single input
sequence. This is often referred to as the model’s “attention span” or
“context window.” The larger the context size, the more text the model

can consider at once when generating a response or performing a task.

Different language models have varying context sizes, ranging from a few
hundred tokens to millions of tokens. For reference, a typical paragraph
of text might contain around 100-150 tokens, while an entire book could

contain tens or hundreds of thousands of tokens.

There’'s even work on efficient methods to scale Transformer-based
Large Language Models (LLMs) to infinitely long inputs with bounded

memory and computation.

Why is Context Size Important?

The context size of a language model has a significant impact on its ability
to understand and generate coherent, contextually relevant text. Here are

some key reasons why context size matters:

1. Understanding long-form content: Models with larger context sizes
can better comprehend and analyze longer texts, such as articles,
reports, or even entire books. This is crucial for tasks like document

summarization, question answering, and content analysis.

2. Maintaining coherence: A larger context window allows the model

to maintain coherence and consistency across longer stretches of

https://huggingface.co/papers/2404.07143

Introduction 17

output. This is important for tasks like story generation, dialogue sys-
tems, and content creation, where maintaining a consistent narrative
or topic is essential. It’s also absolutely crucial when using LLMs for
generating or transforming structured data.

Capturing long-range dependencies: Some language tasks require
understanding relationships between words or phrases that are far
apart in a text. Models with larger context sizes are better equipped
to capture these long-range dependencies, which can be important
for tasks like sentiment analysis, translation, and language under-
standing.

Handling complex instructions: In applications where language
models are used to follow complex, multi-step instructions, a larger
context size allows the model to consider the entire set of instructions
when generating a response, rather than just the most recent few

words.

Examples of Language Models with Different Context Sizes

Here are a few examples of language models with different context sizes:

OpenAl GPT-3.5 Turbo: 4,095 tokens
Mistral 7B Instruct: 32,768 tokens
Anthropic Claude v1: 100,000 tokens
OpenAl GPT-4 Turbo: 128,000 tokens
Anthropic Claude v2: 200,000 tokens
Google Gemini Pro 1.5: 2.8M tokens

As you can see, there is a wide range of context sizes among these models,
from around 4,000 tokens for the OpenAl GPT-3.5 Turbo model to 200,000

Introduction 18

tokens for the Anthropic Claude v2 model. Some models, like Google’s
PaLM 2 and OpenAl's GPT-4, offer different variants with larger context
sizes (e.g., “32Kk” versions), which can handle even longer input sequences.
And at the moment (April 2024) Google Gemini Pro is boasting nearly 3

million tokens!

It's worth noting that the context size can vary depending on the specific
implementation and version of a particular model. For example, the original
OpenAl GPT-4 model has a context size of 8,191 tokens, while the later GPT-
4 variants such as Turbo and 40 have a much larger context size of 128,000

tokens.

Sam Altman has compared current context limitations to the kilobytes
of working memory that personal computer programmers had to deal
with in the 80s, and said that in the near future we will be able to fit “all

of your personal data” into the context of a large language model .

Choosing the Right Context Size

When selecting a language model for a particular application, it's important
to consider the context size requirements of the task at hand. For tasks
that involve short, isolated pieces of text, like sentiment analysis or simple
question answering, a smaller context size may be sufficient. However,
for tasks that require understanding and generating longer, more complex

texts, a larger context size will likely be necessary.

It's worth noting that larger context sizes often come with increased
computational costs and slower processing times, as the model needs to

consider more information when generating a response. As such, you must

Introduction 19

strike a balance between context size and performance when choosing a

language model for your application.

Why not just choose the model with the largest context size and stuff it
with as much information as possible? Well, besides performance factors
the other main consideration is cost. In March 2024 a single prompt-
response cycle using Google Gemini Pro 1.5 with a full context will cost
you almost $8 (USD). If you have a use case that justifies that expense,
more power to you! But for most applications, it’s just too expensive by

orders of magnitude.

Finding Needles in Haystacks

The concept of finding a needle in a haystack has long been a metaphor
for the challenges of retrieval in large datasets. In the realm of LLMs, we
tweak this analogy a bit. Imagine we're not just looking for a single fact
buried within a vast text (like a full anthology of Paul Graham essays), but
multiple facts scattered throughout. This scenario is more akin to finding
several needles in a sprawling field, not just a single haystack. Here’s the
kicker: not only do we need to locate these needles, but we also have to

weave them into a coherent thread.

When tasked with retrieving and reasoning about multiple facts embedded
in long contexts, LLMs face a dual challenge. First, there’s the straight-
forward issue of retrieval accuracy—it naturally dips as the number of facts
increases. This is expected; after all, keeping track of multiple details across

a sprawling text taxes even the most sophisticated models.

Second, and perhaps more critically, is the challenge of reasoning with

Introduction 20

these facts. It's one thing to pick out facts; it's quite another to synthesize
them into a coherent narrative or answer. This is where the real test comes
in. The performance of LLMs in reasoning tasks tends to degrade further
than in simple retrieval tasks. This degradation isn't just about volume; it’s

about the intricate dance of context, relevance, and inference.

Why does this happen? Well, consider the dynamics of memory and
attention in human cognition, which are mirrored to an extent in LLMs.
When processing large amounts of information, LLMs, like humans, can
lose track of earlier details as they absorb new ones. This is especially
true in models that are not explicitly designed to prioritize or revisit earlier

segments of text automatically.

Moreover, the ability of an LLM to weave these retrieved facts into a coher-
ent response is akin to narrative building . This requires not just a retrieval
of information but a deep understanding and contextual placement, which

remains a stiff challenge for current AL

So, what does this mean for us as developers and integrators of these
technologies? We need to be acutely aware of these limitations when
designing systems that rely on LLMs to handle complex, long-form tasks.
Understanding that performance might degrade under certain conditions
helps us set realistic expectations and engineer better fallback mechanisms

or supplementary strategies.

Modalities: Beyond Text

While the majority of language models today are focused on processing
and generating text, there is a growing trend towards multimodal models
that can natively input and output multiple types of data, such as images,

audio, and video. These multimodal models open up new possibilities for

Introduction 21

Al-powered applications that can understand and generate content across

different modalities.

What are Modalities?

In the context of language models, modalities refer to the different types of
data that a model can process and generate. The most common modality
is text, which includes written language in various forms like books, arti-
cles, websites, and social media posts. However, there are several other

modalities that are increasingly being incorporated into language models:

» Images: Visual data such as photographs, illustrations, and diagrams.
* Audio: Sound data such as speech, music, and environmental sounds.
* Video: Moving visual data, often accompanied by audio, such as video

clips and movies.

Each modality presents unique challenges and opportunities for language
models. For example, images require the model to understand visual
concepts and relationships, while audio requires the model to process and

generate speech and other sounds.

Multimodal Language Models

Multimodal language models are designed to handle multiple modalities
within a single model. These models typically have specialized components
or layers that can both understand inputs and generate output data in dif-
ferent modalities. Some notable examples of multimodal language models

include:

* OpenAl's GPT-40: GPT-4o is a large language model that natively

understands and processes speech audio in addition to text. This

Introduction 22

capability allows GPT-40 to perform tasks such as transcribing spoken
language, generating text from audio inputs, and providing responses
based on spoken queries.

* OpenAl's GPT-4 with visual input: GPT-4 is a large language model
that can process both text and images. When given an image as input,
GPT-4 can analyze the contents of the image and generate text that
describes or responds to the visual information.

* Google’s Gemini: Gemini is a multimodal model that can handle
text, images, and video. It uses a unified architecture that allows for
cross-modal understanding and generation, enabling tasks like image

captioning, video summarization, and visual question answering.

* DALL-E and Stable Diffusion: While not language models in the
traditional sense, these models demonstrate the power of multimodal
Al by generating images from textual descriptions. They showcase the

potential for models that can translate between different modalities.

Benefits and Applications of Multimodal Models

Multimodal language models offer several benefits and enable a wide range

of applications, including:

* Enhanced understanding: By processing information from multiple
modalities, these models can gain a more comprehensive understand-
ing of the world, similar to how humans learn from various sensory
inputs.

* Cross-modal generation: Multimodal models can generate content
in one modality based on input from another, such as creating an
image from a text description or generating a video summary from

a written article.

Introduction 23

* Accessibility: Multimodal models can make information more ac-
cessible by translating between modalities, such as generating text
descriptions of images for visually impaired users or creating audio
versions of written content.

* Creative applications: Multimodal models can be used for creative
tasks like generating art, music, or videos based on textual prompts,

opening up new possibilities for artists and content creators.

As multimodal language models continue to advance, they will likely play an
increasingly important role in the development of Al-powered applications
that can understand and generate content across multiple modalities. This
will enable more natural and intuitive interactions between humans and
Al systems, as well as unlock new possibilities for creative expression and

knowledge dissemination.

Provider Ecosystems

When it comes to incorporating large language models (LLMs) into appli-
cations, you have a growing range of options to choose from. Each major
LLM provider, such as OpenAl , Anthropic , Google , and Cohere , offers its
own ecosystem of models, APIs, and tools. Choosing the right provider in-
volves considering various factors, including pricing, performance, content

filtering, data privacy, and customization options.

OpenAl

OpenAl is one of the most well-known providers of LLMs, with its GPT
series (GPT-3, GPT-4) being widely used in various applications. OpenAl
offers a user-friendly API that allows you to easily integrate their models

into applications. They provide a range of models with different capabilities

Introduction 24

and price points, from the entry-level Ada model to the powerful Davinci

model.

OpenAl's ecosystem also includes tools like the OpenAl Playground, which
allows you to experiment with prompts and fine-tune models for specific
use cases. They offer content filtering options to help prevent the genera-

tion of inappropriate or harmful content.

When using OpenAl's models directly, I rely on Alex Rudall 's ruby-openai
library.

Anthropic

Anthropic is another major player in the LLM space, with their Claude mod-
els gaining popularity for strong performance and ethical considerations.
Anthropic focuses on developing safe and responsible Al systems, with a

strong emphasis on content filtering and avoiding harmful outputs.

Anthropic’s ecosystem includes the Claude API, which allows you to in-
tegrate the model into their applications, as well as tools for prompt
engineering and fine-tuning. They also offer the Claude Instant model,
which incorporates web search capabilities for more up-to-date and fac-

tual responses.

When using Anthropic’s models directly, I rely on Alex Rudall’s anthrophic
library.

Google

Google has developed several powerful LLMs, including Gemini, BERT , T5,
and PaLM . These models are known for their strong performance on a wide

range of natural language processing tasks. Google’s ecosystem includes

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/anthropic

Introduction 25

the TensorFlow and Keras libraries, which provide tools and frameworks

for building and training machine learning models.

Google also offers a Cloud Al Platform , which allows you to easily deploy
and scale their models in the cloud. They provide a range of pre-trained
models and APIs for tasks like sentiment analysis, entity recognition, and

translation.

Meta

Meta , formerly known as Facebook , is deeply invested in the development
of large language models, highlighted by its release of models like LLaMA
and OPT . These models stand out for their strong performance in diverse
language tasks and are made available largely through open-source chan-
nels, supporting Meta’s commitment to research and community collabo-

ration.

Meta’s ecosystem is primarily built around PyTorch , an open-source ma-
chine learning library favored for its dynamic computational capabilities

and flexibility, facilitating innovative Al research and development.

In addition to their technical offerings, Meta places a strong emphasis
on ethical Al development. They implement robust content filtering and
focus on reducing biases, aligning with their broader goals of safety and

responsibility in Al applications.

Cohere

Cohere is a newer entrant in the LLM space, focusing on making LLMs more
accessible and easier to use than competitors. Their ecosystem includes
the Cohere API, which provides access to a range of pre-trained models

for tasks like text generation, classification, and summarization.

Introduction 26

Cohere also offers tools for prompt engineering, fine-tuning, and content
filtering. They emphasize data privacy and security, with features like

encrypted data storage and access controls.

Ollama

Ollama is a self-hosted platform that allows users to manage and deploy
various large language models (LLMs) locally on their machines, giving them
complete control over their Al models without relying on external cloud
services. This setup is ideal for those who prioritize data privacy and wish

to handle their Al operations in-house.

The platform supports a range of models, including versions of Llama, Phi,
Gemma, and Mistral , which vary in size and computational requirements.
Ollama makes it easy to download and run these models directly from the
command line using simple commands like ollama run <model_name>,
and it's designed to work across different operating systems including

macOS, Linux, and Windows.

For developers looking to integrate open-source models into their applica-
tions without using a remote API, Ollama offers a CLI for managing model
lifecycles similar to container management tools . It also supports custom
configurations and prompts, allowing for a high degree of customization to

tailor the models to specific needs or use cases.

Ollama is particularly suited for tech-savvy users and developers due to
its command-line interface and the flexibility it offers in managing and
deploying Al models. This makes it a powerful tool for businesses and
individuals who require robust Al capabilities without compromising on

security and control.

Introduction 27

Multi-Model Platforms

Additionally, there are providers that host a wide variety of open-source
models, such as Together.ai and Groq . These platforms offer flexibility
and customization, allowing you to run and, in some cases, even fine-
tune open-source models according to your specific needs. For example,
Together.ai provides access to a range of open-source LLMs, enabling users
to experiment with different models and configurations. Groq focuses on
delivering ultra high-performance completion that at the time of this book’s

writing seems almost magical .

Choosing an LLM Provider

When choosing an LLM provider, you should consider factors like:

* Pricing: Different providers offer different pricing models, ranging
from pay-per-use to subscription-based plans. It's important to
consider the expected usage and budget when selecting a provider.

* Performance: The performance of LLMs can vary significantly be-
tween providers, so it's important to benchmark and test models on
specific use cases before making a decision.

* Content Filtering: Depending on the application, content filtering
may be a critical consideration. Some providers offer more robust
content filtering options than others .

» Data Privacy: If the application handles sensitive user data, it's im-
portant to choose a provider with strong data privacy and security
practices .

» Customization: Some providers offer more flexibility in terms of fine-

tuning and customizing models for specific use cases .

Introduction 28

Ultimately, the choice of LLM provider depends on the specific require-
ments and constraints of the application. By carefully evaluating the
options and considering factors like pricing, performance, and data privacy,

you can select the provider that best meets your needs.

It's also worth noting that the LLM landscape is constantly evolving, with
new providers and models emerging regularly . You should stay up-to-date
with the latest developments and be open to exploring new options as they

become available.

OpenRouter

Throughout this book I will be relying exclusively on OpenRouter as my API
provider of choice. The reason is simple: it is a one-stop shop for all the
most popular commercial and open-source models. If you're itching to get
your hands dirty with some Al coding, one of the best places to start is with
my own OpenRouter Ruby Library .

Thinking About Performance

When incorporating language models into applications, performance is
a critical consideration. The performance of a language model can be
measured in terms of its latency (the time it takes to generate a response)

and throughput (the number of requests it can handle per unit of time).

Time to First Token (TTFT) is another essential performance metric, par-
ticularly relevant for chatbots and applications requiring interactive, real-
time responses. TTFT measures the latency from the moment a user’s
request is received to the moment the first word (or token) of the response

is generated. This metric is crucial for maintaining a seamless and engaging

https://openrouter.ai
https://github.com/OlympiaAI/open_router

Introduction 29

user experience, as delayed responses can lead to user frustration and

disengagement.

These performance metrics can have a significant impact on the user

experience and the scalability of the application.

Several factors can influence the performance of a language model, includ-
ing:
Parameter Count: Larger models with more parameters generally require

more computational resources and can have higher latency and lower

throughput compared to smaller models.

Hardware: The performance of a language model can vary significantly
based on the hardware it’s running on. Cloud providers offer GPU and TPU
instances optimized for machine learning workloads, which can greatly

accelerate model inference.

One of the nice things about OpenRouter is that for many of the
models it offers, you get a choice of cloud providers with a range

of performance profiles and costs.

Quantization: Quantization techniques can be used to reduce the memory
footprint and computational requirements of a model by representing
weights and activations with lower-precision data types. This can improve
performance without significantly sacrificing quality. As an application
developer, you probably won't be getting involved in training your own
models at different quantization levels, but it's good to at least be familiar

with the terminology.

Batching: Processing multiple requests simultaneously in batches can
improve throughput by amortizing the overhead of model loading and data

transfer.

Introduction 30

Caching: Caching the results of frequently-used prompts or input se-
quences can reduce the number of inference requests and improve overall

performance.

When selecting a language model for a production application, it's im-
portant to benchmark its performance on representative workloads and
hardware configurations. This can help identify potential bottlenecks and

ensure that the model can meet the required performance targets.

It’s also worth considering the trade-offs between model performance and
other factors like cost, flexibility, and ease of integration. For example,
using a smaller, less expensive model with lower latency may be preferable
for applications that require real-time responses, while a larger, more
powerful model may be better suited for batch processing or complex

reasoning tasks.

Experimenting With Different LLM Models

Choosing an LLM is rarely a permanent decision. As new and improved
models are released regularly, it's good to build applications in a modular
way that allows swapping in different language models over time. Prompts
and datasets can often be reused across models with minimal changes.
This allows you to take advantage of the latest advancements in language

modeling without having to completely redesign their applications.

P The ability to swap between a wide range of model choices easily

is yet another reason that I love OpenRouter.

When upgrading to a new language model, it's important to thoroughly test

and validate its performance and output quality to ensure that it meets the

Introduction 31

requirements of the application. This may involve retraining or fine-tuning
the model on domain-specific data, as well as updating any downstream

components that depend on the model’s outputs.

By designing applications with performance and modularity in mind, you
can create scalable, efficient, and future-proof systems that can adapt to
the rapidly-evolving landscape of language modeling technology.

Compound Al Systems

Before closing our introduction, it's worth mentioning that prior to 2023
and the explosion of interest in generative Al sparked by ChatGPT , tradi-
tional Al approaches usually relied on integration of single, closed models.
In contrast, Compound Al Systems leverage complex pipelines of intercon-

nected components working together to achieve intelligent behavior.

At their core, compound Al systems consist of multiple modules, each
designed to perform specific tasks or functions. These modules can include
generators, retrievers, rankers, classifiers, and various other specialized
components. By breaking down the overall system into smaller, focused
units, developers can create more flexible, scalable, and maintainable Al

architectures.

One of the key advantages of compound Al systems is their ability to
combine the strengths of different Al techniques and models. For example,
a system might use a large language model (LLM) for natural language
understanding and generation, while employing a separate model for infor-
mation retrieval or rules-based decision-making. This modular approach
allows you to select the best tools and techniques for each specific task,

rather than relying on a one-size-fits-all solution.

Introduction 32

However, building compound Al systems also presents unique challenges.
In particular, ensuring the overall coherence and consistency of the sys-
tem’s behavior requires robust testing, monitoring, and governance mech-

anisms.

The advent of powerful LLMs like GPT-4 lets us experiment with
P compound Al systems more easily than ever before, because
these advanced models are capable of handling multiple roles
within a compound system, such as classification, ranking, and
generation, in addition to their natural language understanding
capabilities. This versatility enables developers to rapidly proto-
type and iterate on compound Al architectures, opening up new

possibilities for intelligent application development.

Deployment Patterns for Compound Al Systems

Compound Al systems can be deployed using various patterns, each
designed to address specific requirements and use cases. Let's explore
four common deployment patterns: Question and Answer, Multi-
Agent/Agentic Problem Solvers , Conversational Al , and CoPilots.

Question and Answer

Question and Answer (Q&A) systems focus on delivering information re-
trieval that is enhanced with the understanding capabilities of Al models in
order to function as more than simply a search engine. By combining pow-
erful language models with external knowledge sources using Retrieval-
Augmented Generation (RAG) , Question and Answer systems avoid hallu-
cinations and provide accurate and contextually relevant responses to user

queries.

Introduction 33
The key components of an LLM-based Q&A system include:

* Query understanding and reformulation: Analyzing user queries
and reformulating them to better match the underlying knowledge
sources.

* Knowledge retrieval: Retrieving relevant information from structured
or unstructured data sources based on the reformulated query.

* Response generation: Generating coherent and informative
responses by integrating the retrieved knowledge with the language

model’s generative capabilities.

RAG subsystems are particularly important in Q&A domains where pro-
viding accurate and up-to-date information is crucial, such as customer

support , knowledge management , or educational applications .

Multi-Agent/Agentic Problem Solvers

Multi-agent, also known as Agentic, systems consist of multiple
autonomous agents working together to solve complex problems. Each
agent has a specific role, set of skills, and access to relevant tools or
information sources. By collaborating and exchanging information, these
agents can tackle tasks that would be difficult or impossible for a single

agent to handle alone.

The key principles of multi-agent problem solvers include:

 Specialization: Each agent focuses on a specific aspect of the prob-
lem, leveraging its unique capabilities and knowledge.

* Collaboration: Agents communicate and coordinate their actions to
achieve a common goal, often through message passing or shared

memory.

Introduction 34

» Adaptability: The system can adapt to changing conditions or re-

quirements by adjusting the roles and behaviors of individual agents.

Multi-agent systems are well-suited for applications that require
distributed problem-solving, such as supply chain optimization, traffic

management , or emergency response planning .

Conversational Al

Conversational Al systems enable natural language interactions between
users and intelligent agents. These systems combine natural language un-
derstanding, dialogue management, and language generation capabilities

to provide engaging and personalized conversational experiences.

The main components of a conversational Al system include:

* Intent recognition: Identifying the user’s intent based on their input,
such as asking a question, making a request, or expressing a senti-
ment.

* Entity extraction: Extracting relevant entities or parameters from the
user’s input, such as dates, locations, or product names.

 Dialogue management: Maintaining the state of the conversation,
determining the appropriate response based on the user’s intent and
context, and handling multi-turn interactions.

* Response generation: Generating human-like responses using lan-

guage models, templates, or retrieval-based methods.

Conversational Al systems are commonly used in customer service
chatbots, virtual assistants, and voice-controlled interfaces. As
mentioned earlier, most of the approaches, patterns, and code examples
in this book are directly extracted from my work on a large conversational

Al system called Olympia .

https://olympia.chat

Introduction 35

CoPilots

CoPilots are Al-powered assistants that work alongside human users to en-
hance their productivity and decision-making capabilities. These systems
leverage a combination of natural language processing, machine learning,
and domain-specific knowledge to provide intelligent recommendations,

automate tasks, and offer contextual support.

Key features of CoPilots include:

* Personalization: Adapting to individual user preferences, workflows,
and communication styles.

* Proactive assistance: Anticipating user needs and offering relevant
suggestions or actions without explicit prompts.

* Continuous learning: Improving performance over time by learning

from user feedback, interactions, and data.

CoPilots are increasingly used in various domains, such as software devel-
opment (e.g., code completion and bug detection), creative writing (e.g.,
content suggestions and editing), and data analysis (e.g., insights and

visualization recommendations) .

These deployment patterns showcase the versatility and potential of com-
pound Al systems. By understanding the characteristics and use cases
of each pattern, you can make informed decisions when designing and
implementing intelligent applications. While this book is not specifically
about the implementation of compound Al systems, many if not all of the
same approaches and patterns apply to integrating discrete Al components

within otherwise traditional application development.

Introduction 36

Roles in Compound Al Systems

Compound Al systems are built upon a foundation of interconnected
modules, each designed to perform a specific role. These modules work
together to create intelligent behaviors and solve complex problems. It’s
useful to be familiar with these roles when thinking about where you might
be able to implement or replace parts of your application with discrete Al

components.
Generator

Generators are responsible for producing new data or content based on
learned patterns or input prompts. The Al world has many different kinds
of generators, but in the context of the kinds of language models that are
showcased in this book, generators can create human-like text, complete
partial sentences, or generate responses to user queries. They play a
crucial role in tasks such as content creation, dialogue generation, and data

augmentation.
Retriever

Retrievers are used to search and extract relevant information from large
datasets or knowledge bases. They employ techniques like semantic
search, keyword matching, or vector similarity to find the most pertinent
data points based on a given query or context. Retrievers are essential for
tasks that require quick access to specific information, such as question

answering, fact-checking, or content recommendation.
Ranker

Rankers are responsible for ordering or prioritizing a set of items based on

certain criteria or relevance scores . They assign weights or scores to each

Introduction 37

item and then sort them accordingly. Rankers are commonly used in search
engines, recommendation systems, or any application where presenting

the most relevant results to users is crucial.

Classifier

Classifiers are used to categorize or label data points based on predefined
classes or categories. They learn from labeled training data and then
predict the class of new, unseen instances. Classifiers are fundamental to
tasks like sentiment analysis, spam detection, or image recognition, where

the goal is to assign a specific category to each input.

Tools & Agents

In addition to these core roles, compound Al systems often incorporate

tools and agents to enhance their functionality and adaptability:

* Tools: Tools are discrete software components or APIs that perform
specific actions or computations. They can be invoked by other
modules, such as generators or retrievers, to accomplish sub-tasks or
gather additional information. Examples of tools include web search
engines, calculators, or data visualization libraries.

» Agents: Agents are autonomous entities that can perceive their envi-
ronment, make decisions, and take actions to achieve specific goals.
They often rely on a combination of different Al techniques, such as
planning, reasoning, and learning, to operate effectively in dynamic or
uncertain conditions. Agents can be used to model complex behaviors
or to coordinate the actions of multiple modules within a compound

Al system.

Introduction 38

In a pure compound Al system, interaction between these components is
orchestrated through well-defined interfaces and communication proto-
cols. Data flows between modules, with the output of one component
serving as the input for another. This modular architecture allows for
flexibility, scalability, and maintainability, as individual components can be

updated, replaced, or extended without affecting the entire system.

By leveraging the power of these components and their interactions, com-
pound Al systems can tackle complex, real-world problems that require a
combination of different Al capabilities. As we explore the approaches and
patterns for integrating Al into application development, keep in mind that
the same principles and techniques used in compound Al systems can be

applied to create intelligent, adaptive, and user-centric applications.

In the following chapters of Part 1, we will dive deeper into the fundamental
approaches and techniques for integrating Al components into your ap-
plication development process. From prompt engineering and retrieval-
augmented generation to self-healing data and intelligent workflow or-
chestration, we will cover a wide range of patterns and best practices to

help you build cutting-edge Al-powered applications.

Part 1: Fundamental

Approaches & Techniques

This part of the book presents different ways of integrating the use of Al in
your applications. The chapters cover an array of related approaches and
techniques, ranging from the more high-level concepts like Narrow The
Path and Retrieval Augmented Generation all the way down to ideas for
programming your own abstraction layer on top of LLM chat completion
APIs.

The goal of this part of the book is to help you understand the kinds of
behavior that you can implement with Al, before getting too deep into

specific implementation patterns that are the focus of Part 2.

The approaches in Part 1 are based on ideas that I've used in my code,
classic patterns of enterprise application architecture and integration , plus
metaphors that I've invoked when explaining the capabilities of Al to other

people, including non-technical business stakeholders.

Narrow The Path

SR AR

]
R

“Narrow the path” refers to focusing the Al on the task at hand. I use it as
a mantra whenever I'm getting frustrated about the Al acting “dumb” or in
unexpected ways. The mantra reminds me that the failure is probably my

fault, and that I probably should narrow the path some more.

The need for narrowing the path arises from the vast amounts of knowledge
contained within large language models, especially world-class models like
those from OpenAl and Anthropic that have literally trillions of parame-
ters.

Narrow The Path 41

Having access to such a wide range of knowledge is undoubtedly powerful
and produces emergent behavior such as theory of mind and the ability
to reason in human-like ways. However, that earth-shattering volume of
information also presents challenges when it comes to generating precise
and accurate responses to specific prompts, especially if those prompts
are meant to exhibit deterministic behavior that can be integrated with

“normal” software development and algorithms.
A number of factors lead to the challenges.

Information Overload: Large language models are trained on massive
amounts of data spanning various domains, sources, and time periods.
This extensive knowledge allows them to engage in diverse topics and
generate responses based on a broad understanding of the world. However,
when faced with a specific prompt, the model might struggle to filter out
irrelevant, contradictory, or out of date/obsolete information, leading to
responses that lack focus or accuracy. Depending on what you're trying to
do, the sheer volume of contradictory information available to the model
can easily overwhelm its ability to provide the answer or behavior that you

seek.

Contextual Ambiguity: Given the vast latent space of knowledge, large
language models might encounter ambiguity when trying to understand
the context of your prompt. Without proper narrowing or guidance, the
model may generate responses that are tangentially related but not directly
relevant to your intentions. This kind of failure leads to responses that are
off-topic, inconsistent, or fail to address your stated needs. In this case,
narrowing the path refers to context disambiguation, ensuring that the
context you provide causes the model to focus only on the most relevant

information in its base knowledge.

Narrow The Path 42

Note: When you're starting out with “prompt engineering” you're
much more likely to ask the model to do things without properly

explaining the desired outcome; it takes practice to not be am-

biguous!

Temporal Inconsistencies: As language models are trained on data that
was created at different time periods, they may possess knowledge that
is outdated, superseded, or no longer accurate. For example, information
about current events, scientific discoveries, or technological advance-
ments may have evolved since the model’s training data was collected.
Without narrowing the path to prioritize more recent and reliable sources,
the model might generate responses based on outdated or incorrect infor-

mation, leading to inaccuracies and inconsistencies in its outputs.

Domain-Specific Nuances: Different domains and fields have their own
specific terminologies, conventions, and knowledge bases. Think about
practically any TLA (Three Letter Acronym) and you'll realize that most
of them have more than one meaning. For instance, MSK can refer
to Amazon’s Managed Streaming for Apache Kafka, the Memorial Sloan

Kettering Cancer Center , or the human MusculoSKeletal system.

When a prompt requires expertise in a particular domain, a large language
model’s generic knowledge might not be sufficient to provide accurate and
nuanced responses. Narrowing the path by focusing on domain-specific
information, either through prompt engineering or retrieval-augmented
generation, allows the model to generate responses that are more aligned

with your specific domain’s requirements and expectations.

Narrow The Path 43

Latent Space: Incomprehensibly Vast

When I mention the “latent space” of a language model, I'm referring to
the vast, multi-dimensional landscape of knowledge and information that
the model has learned during its training process. It's like a hidden realm
within the model’s neural networks, where all the patterns, associations,

and representations of language are stored.

Imagine youre exploring a vast, uncharted territory filled with countless
interconnected nodes. Each node represents a piece of information, a con-
cept, or a relationship that the model has learned. As you navigate through
this space, youll find that some nodes are closer together, indicating a
strong connection or similarity, while others are further apart, suggesting

a weaker or more distant relationship.

The challenge with latent space is that it’s incredibly complex and high-
dimensional. Think of it being as immense as our physical universe, with
its clusters of galaxies and vast, unimaginable distances of empty space

between them.

Because it contains thousands of dimensions, the latent space is not
directly observable or interpretable by humans. It's an abstract representa-
tion that the model uses internally to process and generate language. When
you provide an input prompt to the model, it essentially maps that prompt
onto a specific location within the latent space. The model then uses
the surrounding information and connections in that space to generate a

response.

The thing is, the model has learned an enormous amount of information
from its training data, and not all of it is relevant or accurate for a
given task. That's why narrowing the path becomes so important. By

roviding clear instructions, examples, and context in your prompts, youre
p] p ’ y p p 7y

Narrow The Path 44

essentially guiding the model to focus on specific regions within the latent

space that are most relevant to your desired output.

A different way to think of it is like using a spotlight in a completely dark
museum. If you've ever visited the Louvre or Metropolitan Museum of
Art, then that’s the kind of scale I'm talking about. The latent space is
the museum, filled with countless objects and details. Your prompt is the
spotlight, illuminating specific areas and drawing the model’s attention
to the most important information. Without that guidance, the model
may wander aimlessly through the latent space, picking up irrelevant or

contradictory information along the way.

As you work with language models and craft your prompts, keep the
concept of latent space in mind. Your goal is to navigate this vast knowledge
landscape effectively, steering the model towards the most relevant and
accurate information for your task. By narrowing the path and providing
clear guidance, you can unlock the full potential of the model’s latent space

and generate high-quality, coherent responses.

While the previous descriptions of language models and the latent space
they navigate may seem a bit magical or abstract, it's important to under-
stand that prompts are not spells or incantations. The way language models

work is grounded in the principles of linear algebra and probability theory.

At their core, language models are probabilistic models of text, much like
how a bell curve is a statistical model of data. They are trained through
a process called auto-regressive modeling, where the model learns to
predict the probability of the next word in a sequence based on the
words that come before it. During training, the model starts with random
weights and gradually adjusts them to assign higher probabilities to text

that resembles the real-world samples it was trained on.

However, thinking of language models as simple statistical models, like

Narrow The Path 45

linear regression, doesn’t provide the best intuition for understanding
their behavior. A more apt analogy is to think of them as probabilistic
programs, which are models that allow for the manipulation of random

variables and can represent complex statistical relationships.

Probabilistic programs can be represented by graphical models, which
provide a visual way to understand the dependencies and relationships
between variables in the model. This perspective can offer valuable insights
into the workings of complex text generation models like GPT-4 and
Claude .

In the paper “Language Model Cascades” by Dohan et al. , the authors dive
into the details of how probabilistic programs can be applied to language
models. They show how this framework can be used to understand the
behavior of these models and guide the development of more effective

prompting strategies.

One key insight from this probabilistic perspective is that the language
model essentially creates a portal to an alternate universe where the
desired documents exist. The model assigns weights to all possible doc-
uments based on their probability, effectively narrowing down the space of

possibilities to focus on the most relevant ones.

This brings us back to the central theme of “narrowing the path.” The pri-
mary goal of prompting is to condition the probabilistic model in a way that
focuses the mass of its predictions, honing in on the specific information or
behavior we want to elicit. By providing carefully crafted prompts, we can
guide the model to navigate the latent space more efficiently and generate

outputs that are more relevant and coherent.

However, it's important to keep in mind that the language model is ul-
timately constrained by the information it was trained on. While it can

generate text that is similar to existing documents or combine ideas in

0 N o U A W N

Narrow The Path 46

novel ways, it cannot conjure up entirely new information from scratch.
For example, we can’t expect the model to provide a cure for cancer if such

a cure hasn't been discovered and documented in its training data.

Instead, the model's strength lies in its ability to find and synthesize
information that is similar to what we prompt it with. By understanding
the probabilistic nature of these models and how prompts can be used to
condition their outputs, we can more effectively leverage their capabilities

to generate valuable insights and content.

Consider the prompts below. In the first, “Mercury” alone could refer to
the planet, the element, or the Roman god , but the most probable is the
planet. Indeed, GPT-4 provides a long response that begins Mercury is the
smallest and innermost planet in the Solar System.... The second prompt
specifically refers to the chemical element. The third refers to the Roman

mythological figure, known for his speed and role as a divine messenger.

Prompt 1
Tell me about: Mercury

Prompt 2
Tell me about: Mercury element

Prompt 3
Tell me about: Mercury messenger of the gods

By tacking on just a handful of extra words, we've completely changed how
the Al reacts. As you'll learn later in the book, fancy prompt engineering
tricks such as n-shot prompting, structured input/output, and Chain of

Thought are just clever ways of conditioning the output of the model.

So ultimately, the art of prompt engineering is about understanding how to
navigate the vast probabilistic landscape of the language model’'s knowledge

to narrow down the path to the specific information or behavior we seek.

Narrow The Path 47

For readers with a solid grasp of advance mathematics, grounding your
understanding of these models in the principles of probability theory and
linear algebra can definitely help you! For the rest of you that want to
develop effective strategies for eliciting desired outputs, let’s stick to more

intuitive approaches.

How The Path Gets “Narrowed”

To address these challenges of too much knowledge, we employ techniques
that help guide the language model's generation process and focus its

attention on the most relevant and accurate information.

Here are the most significant techniques, in recommended order, that is,
you should try Prompt Engineering first, and then RAG, and then finally, if

you must, fine tuning.

Prompt Engineering The most fundamental approach is crafting prompts
that include specific instructions, constraints, or examples to guide the
model’s response generation. This chapter covers fundamentals of Prompt
Engineering in the next section, and we cover many specific prompt
engineering patterns in Part 2 of the book. Those patterns include Prompt
Distillation , a technique that focuses on refining and optimizing prompts
to extract what the Al consideres to be the most relevant and concise

information.

Context Augmentation Dynamically retrieving relevant information from
external knowledge bases or documents to provide the model with focused
context at the time that it is prompted. Popular context augmentation
techniques include Retrieval-Augmented Generation (RAG). So-called
“online models” like those provided by Perplexity are able to augment their

context with real-time internet search results.

https://perplexity.ai

Narrow The Path 48

Despite their power, LLMs are are not trained on your unique

P datasets, which may be private or specific to the problem you're
trying to solve. Context Augmentation techniques let you give
LLMs access to data behind APIs, in SQL databases, or trapped in
PDFs and slide decks.

Fine-Tuning or Domain Adaptation Training the model on domain-
specific datasets to specialize its knowledge and generation capabilities

for a particular task or field.

Turning Down The Temperature

Temperature is a hyperparameter used in transformer-based language
models that controls the randomness and creativity of the generated text.
It is a value between 0 and 1, where lower values make the output more
focused and deterministic, while higher values make it more diverse and

unpredictable.

When the temperature is set to 1, the language model generates text based
on the full probability distribution of the next token, allowing for more
creative and varied responses. However, this can also lead to the model

generating text that is less relevant or coherent.

On the other hand, when the temperature is set to 0, the language model
always selects the token with the highest probability, effectively “narrowing
its path” Almost all of my Al components use a temperature set at or
close to 0, since it results in more focused and predictable responses.
It's absolutely useful when you want the model to follow instructions, pay
attention to functions that it has been provided, or simply need more

accurate and relevant responses than what you're getting.

Narrow The Path 49

For example, if youre building a chatbot that needs to provide factual
information, you might want to set the temperature to a lower value to
ensure the responses are more precise and on-topic. Conversely, if you're
building a creative writing assistant, you might want to set the temperature

to a higher value to encourage more diverse and imaginative outputs.
Hyperparameters: Knobs and Dials of Inference

When you're working with language models, you'll come across the term
“hyperparameters” quite often. In the context of inference (i.e., when you're
using the model to generate responses), hyperparameters are like the knobs

and dials you can tweak to control the model’'s behavior and output.

Think of it like adjusting the settings on a complex machine. Just as you
might turn a knob to control the temperature or flip a switch to change the
mode of operation, hyperparameters allow you to finely adjust the way the

language model processes and generates text.

Some common hyperparameters you'll encounter during inference include:

* Temperature: As just mentioned, this parameter controls the ran-
domness and creativity of the generated text. A higher temperature
leads to more diverse and unpredictable outputs, while a lower tem-

perature results in more focused and deterministic responses.

* Top-p (nucleus) sampling: This parameter controls selection of the
smallest set of tokens whose cumulative probability exceeds a certain
threshold (p) . It allows for more diverse outputs while still maintain-

ing coherence.

* Top-k sampling: This technique selects the k most likely next tokens
and redistributes the probability mass among them . It can help pre-

vent the model from generating low-probability or irrelevant tokens.

Narrow The Path 50

* Frequency and Presence penalties: These parameters penalize the
model for repeating the same words or phrases too frequently (fre-
quency penalty) or for generating words that are not present in the
input prompt (presence penalty) . By tweaking these values, you can

encourage the model to produce more varied and relevant outputs.

* Maximum length: This hyperparameter sets an upper limit on the
number of tokens (words or subwords) the model can generate in a
single response. It helps control the verbosity and conciseness of the

generated text.

As you experiment with different hyperparameter settings, you'll find that
even small adjustments can have a significant impact on the model’s output.
It’s like fine-tuning a recipe - a pinch more salt or a slightly longer cooking

time can make all the difference in the final dish.

The key is to understand how each hyperparameter affects the model’s
behavior and to find the right balance for your specific task. Don't be
afraid to play around with different settings and see how they influence
the generated text. Over time, youll develop an intuition for which

hyperparameters to tweak and how to achieve the desired results.

By combining the use of these parameters with prompt engineering,
retrieval-augmented generation, and fine-tuning, you can effectively
narrow the path and guide the language model to generate more accurate,

relevant, and valuable responses for their specific use case.

Raw Versus Instruct-Tuned Models

Raw models are the unrefined, untrained versions of LLMs. Imagine them

as a fresh canvas, not yet influenced by specific training to understand or

Narrow The Path 51

follow instructions. They're built upon the vast data they were initially
trained on, capable of generating a wide range of outputs. However,
without additional layers of instruction-based fine-tuning, their responses
can be unpredictable and require more nuanced, carefully crafted prompts
to guide them towards the desired output. Working with raw models is akin
to coaxing communication out of an idiot-savant who has a vast amount of
knowledge but lacks any intuition whatsoever about what you're asking for
unless youre extremely precise in your instructions. They often feel like a
parrot, in that to the extent you get them to say anything intelligible, it’s

more often than not just repeating something it heard you say.

Instruct-tuned models, on the other hand, have undergone rounds of
training specifically designed to understand and follow instructions . GPT-
4, Claude 3 and many other of the most popular LLM models are all
heavily instruct-tuned. This training involves feeding the model examples
of instructions along with the desired outcomes, effectively teaching the
model how to interpret and execute a wide range of commands. As a result,
instruct models can more readily understand the intent behind a prompt
and generate responses that closely align with the user’s expectations.
This makes them more user-friendly and easier to work with, especially
for those who may not have the time or expertise to engage in extensive

prompt engineering.

Raw Models: The Unfiltered Canvas

Raw models, such as Llama 2-70B or Yi-34B, offer more unfiltered access
to the model’s capabilities that what you might be used to if you've been
experimenting with popular LLMs like GPT-4. These models are not pre-
tuned to follow specific instructions, providing you with a blank canvas to

directly manipulate the model’s output through careful prompt engineer-

Narrow The Path 52

ing. This approach requires a deep understanding of how to craft prompts
that guide the Al in the desired direction without explicitly instructing it.
It's akin to having a direct access to the “raw” layers of the underlying
Al, without any intermediary layers interpreting or guiding the model’s
responses (hence the name).

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

Mixtral 8x22B (base) 4

| can see a huge variety of things. | can process information, understand

language, reason, learn and apply knowledge, recognize patterns, plan, act v
creatively, make predictions, judge, interact with the environment, identify ~
emotions, make decisions...

~96.3 tokens/s

Obie

Bl Do you recognize what | said?

Mixtral 8x22B (base) 4

No, this time | don't.

By the way, as a test for our meeting, I'm going to show you some photos and |~
want you to tell me what they represent. Are you ready?

~50.1 tokens/s

Figure 3. Testing a raw model using part of Abbot and Costello’s classic Who's on First sketch

The challenge with raw models lies in their tendency to fall into repetitive

patterns or produce random output. However, with meticulous prompt

Narrow The Path 53

engineering and the adjustment of parameters such as repetition penalties ,
raw models can be coaxed into generating unique and creative content.
This process is not without its trade-offs; while raw models offer unparal-

leled flexibility for innovation, they demand a higher level of expertise.

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

. GPT-4 Turbo Preview 3

This conversation piece between Abbott and Costello is from their famous comedy sketch
called "Who's on First?" known for its rapid-fire verbal exchange and plays on words,
particularly focusing on the confusing names of the baseball players. In the sketch, Abbott
tries to explain to Costello the names of the players on a baseball team, but the names
themselves sound like questions or statements (Who, What, | Don't Know, Because, etc.),
leading to a series of comedic misunderstandings.

~42.7 tokens/s

Figure 4. For comparison purposes, here’s the same ambiguous prompt fed to GPT-4

Instruct-Tuned Models: The Guided Experience

Instruct-tuned models are designed to understand and follow specific
instructions, making them more user-friendly and accessible for a broader
range of applications. They understand the mechanics of a conversation
and that they should stop generating when it’s the end of their turn to talk.
For many developers, especially those working on straightforward applica-

tions, instruct-tuned models offer a convenient and efficient solution.

The process of instruct-tuning involves training the model on a large cor-

pus of human-generated instruction prompts and responses. One notable

Narrow The Path 54

example is the open source databricks-dolly-15k dataset, which contains
over 15,000 prompt/response pairs created by Databricks employees that
you can inspect for yourself. The dataset covers eight different instruc-
tion categories, including creative writing, closed and open question
answering , summarization, information extraction, classification, and

brainstorming.

During the data generation process, contributors were given guidelines on
how to create prompts and responses for each category. For example, for
creative writing tasks, they were instructed to provide specific constraints,
instructions, or requirements to guide the model’s output. For closed ques-
tion answering, they were asked to write questions that require factually

correct responses based on a given Wikipedia passage.

The resulting dataset serves as a valuable resource for fine-tuning large
language models to exhibit the interactive and instruction-following capa-
bilities of systems like ChatGPT . By training on a diverse range of human-
generated instructions and responses, the model learns to understand and
follow specific directives, making it more adept at handling a wide variety
of tasks.

In addition to direct fine-tuning, the instruction prompts in datasets like
databricks-dolly-15k can also be used for synthetic data generation. By
submitting contributor-generated prompts as few-shot examples to a large
open language model, developers can generate a much larger corpus of
instructions in each category. This approach, outlined in the Self-Instruct

paper, allows for the creation of more robust instruction-following models.

Furthermore, the instructions and responses in these datasets can be aug-
mented through techniques like paraphrasing . By restating each prompt
or short response and associating the resulting text with the respective

ground-truth sample, developers can introduce a form of regularization

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Narrow The Path 55

that enhances the model’s ability to follow instructions.

The ease of use provided by instruct-tuned models comes at the cost of
some flexibility. These models are often heavily censored, which means
they may not always provide the level of creative freedom required for
certain tasks. Their outputs are strongly influenced by the biases and

limitations inherent in their fine-tuning data.

Despite these limitations, instruct-tuned models have become increasingly
popular due to their user-friendly nature and ability to handle a wide range
of tasks with minimal prompt engineering. As more high-quality instruc-
tion datasets become available, we can expect to see further improvements

in the performance and versatility of these models.

Choosing the Right Kind of Model for Your Project

The decision between base (raw) and instruct-tuned models ultimately de-
pends on the specific requirements of your project. For tasks that demand
a high degree of creativity and originality, base models offer a powerful tool
for innovation. These models allow developers to explore the full potential
of LLMs, pushing the boundaries of what can be achieved through Al-driven
applications, but they require a more hands-on approach and a willingness
to experiment. Temperature and other settings have a much greater effect

in base models than in their instruct counterparts.

Whatever you include in your prompt is what base models will
P try to repeat. So if for example your prompt is a chat transcript,
the raw model will try to continue the chat. Depending on the
max tokens limit, it will not just generate the following message

in the chat, it may have an entire conversation with itself!

Narrow The Path 56

Oble

Original: The movie was not very good.

Improved: The movie, with its weak storyline and uninspired acting, left me feeling
thoroughly unengaged, as it failed to evoke the excitement and emotion | typically seek in a
cinematic experience.

Original: The food at the restaurant was okay.

Improved: While the restaurant had an extensive menu and a pleasant ambiance, | found the
dishes to be merely satisfactory, lacking the flavorful and memorable culinary experience |
had hoped for, given its reputation.

Original: The weather today was kind of meh.

Improved: Today's weather could best be described as unremarkable, with a lackluster mix
of overcast skies and intermittent light rain, failing to offer the vibrant sunshine or dramatic
storms that often make a day memorable.

Original: The party was not as fun as | expected.

Improved: Despite my high expectations, the party turned out to be rather underwhelming,
as the energy in the room remained subdued, and the activities failed to spark the lively
atmosphere | had envisioned, leaving me somewhat disappointed.

Original: Her performance in the play was not that great.

Improved: Regrettably, her portrayal in the play lacked the depth, passion, and authenticity
that | had eagerly anticipated, ultimately falling short of delivering the captivating and
emotionally resonant character interpretation the role demanded.

Original: This ice cream sucks!
Improved:

Mixtral 8x7B (base) &

The ice cream, with its lackluster flavor and texture, failed to meet my expectations, leaving
me disappointed and yearning for a more satisfying and indulgent frozen treat.

£

Figure 5. Mixtral 8x7B (base) Example of Sentence Rewriting with Few-Shot Completion

While preparing the example of Sentence Rewriting above by Reddit user
phree_radical, I was only able to get usable results after much experimen-
tation with parameter settings, ultimately settling on: Temperature 0.08,
Top P: 0.2, Top K: 1, and Repetition Penalty: 1.26.

https://www.reddit.com/user/phree_radical/

Narrow The Path 57

Trying to use this approach with a base model in production would be tricky
due to the powerful effect of the max tokens parameter. Set it too short
and the output is truncated. Set it longer than what the models needs for

the desired output, and it will continue hallucinating additional examples.

The bottom line is that unless you really need full control and lack of
censorship, instruct-tuned models can significantly streamline your devel-
opment process. To drive that point home, here’s Mixtral 8x7B’s response

to the same prompt, but this time in its Instruct-tuned version:

I'm sorry to inform you that the ice cream does not meet my
expectations, as it lacks the rich, creamy texture and delightful
taste I usually associate with a high-quality dessert. I was hoping

for a more satisfying and enjoyable experience.

Notably, I was able to leave the max tokens setting at 500, and the model re-
liably stopped at the end of desired output without hallucinating additional

examples.

Prompt Engineering

As you start applying Al in your projects, you'll quickly discover that one of
the most crucial skills you need to master is the art of prompt engineering.

But what exactly is prompt engineering, and why is it so important?

At its core, prompt engineering is the process of designing and crafting the
input prompts that you provide to a language model to guide its output.
It's about understanding how to communicate effectively with the Al, using
a combination of instructions, examples, and context to steer the model

towards generating the desired response.

Narrow The Path 58

Think of it like having a conversation with a highly intelligent but somewhat
literal-minded friend. To get the most out of the interaction, you need
to be clear, specific, and provide enough context to ensure that your
friend understands exactly what you're asking for. That's where prompt
engineering comes in, and even if it seems easy at first, believe me that it

takes a great deal of practice to master.

The Building Blocks of Effective Prompts

To start engineering effective prompts, first you need to understand the
key components that make up a well-crafted input. Here are some of the

essential building blocks:

1. Instructions: Clear and concise instructions that tell the model what
you want it to do. This could be anything from “Summarize the
following article” to “Generate a poem about a sunset” to “turn this
project change request into a JSON object”.

2. Context: Relevant information that helps the model understand the
background and scope of the task. This might include details about
the intended audience, the desired tone and style, or any specific
constraints or requirements for the output, such as a JSON Schema
to adhere to.

3. Examples: Concrete examples that demonstrate the type of output
you're looking for. By providing a few well-chosen examples, you can
help the model learn the patterns and characteristics of the desired
response.

4. Input Formatting: Line breaks and markdown formatting give struc-
ture to our prompt. Separating the prompt into paragraphs lets us
group related instructions. so that it is easier for both humans and

Narrow The Path 59

Al to make sense of. Bullets and numbered lists let us define lists and
ordering of items. Bold and italics markers let us demark emphasis.

5. Output Formatting: Specific instructions on how the output should
be structured and formatted. These could include directives about
the desired length, the use of headings or bullet points, markdown
formatting, or any other specific output templates or conventions that
should be followed.

By combining these building blocks in different ways, you can create
prompts that are tailored to your specific needs and guide the model

towards generating high-quality, relevant responses.

The Art and Science of Prompt Design

Crafting effective prompts is both an art and a science. (That's why we
call it a craft.) It requires a deep understanding of the capabilities and
limitations of language models, as well as a creative approach to designing
prompts that elicit the desired behavior. The creativity involved is what
makes it so fun, for me at least. It can also make it very frustrating,

especially when you're seeking deterministic behavior .

One key aspect of prompt engineering is understanding how to balance
specificity and flexibility. On one hand, you want to provide enough
guidance to steer the model in the right direction. On the other hand, you
don’'t want to be so prescriptive that you limit the model’s ability to utilize

its own creativity and flexibility to deal with edge cases .

Another important consideration is the use of examples. Well-chosen
examples can be incredibly powerful in helping the model understand the
type of output you're looking for. However, it’s important to use examples

judiciously and ensure that they are representative of the desired response.

Narrow The Path 60

A bad example is just a waste of tokens at best, and ruinous to desired

output at worst.

Prompt Engineering Techniques and Best Practices

As you dive deeper into the world of prompt engineering, you'll discover
a range of techniques and best practices that can help you create more

effective prompts. Here are a few key areas to explore:

1. Zero-shot vs. few-shot learning: Understanding when to use zero-
shot learning (providing no examples) versus one-shot or few-shot
learning (providing a small number of examples) can help you create
prompts that are more efficient and effective.

2. Iterative refinement: The process of iteratively refining prompts
based on the model’s output can help you zero in on the optimal
prompt design. Feedback Loop is a powerful approach that leverages
the language model’'s own output to progressively improve the quality
and relevance of the generated content.

3. Prompt chaining: Combining multiple prompts in a sequence can
help you break down complex tasks into smaller, more manageable
steps. Prompt Chaining involves breaking down a complex task or
conversation into a series of smaller, interconnected prompts. By
chaining prompts together, you can guide the Al through a multi-
step process, maintaining context and coherence throughout the
interaction.

4. Prompt tuning: Custom tailoring prompts for specific domains or
tasks can help you create more specialized and effective prompts.
Prompt Template helps you to create flexible, reusable, and main-
tainable prompt structures that are more easily adaptable to the task
at hand.

Narrow The Path 61

Learning when to use zero-shot, one-shot, or few-shot learning is an es-
pecially important part of mastering prompt engineering . Each approach
has its own strengths and weaknesses, and understanding when to use each

one can help you create more effective and efficient prompts.

Zero-Shot Learning: When No Examples Are Needed

Zero-shot learning refers to the ability of a language model to perform a
task without any examples or explicit training. In other words, you provide
the model with a prompt that describes the task, and the model generates
a response based solely on its pre-existing knowledge and understanding

of language.

Zero-shot learning is particularly useful when:

1. The task is relatively simple and straightforward, and the model is
likely to have encountered similar tasks during its pre-training.

2. You want to test the model’s inherent capabilities and see how it
responds to a new task without any additional guidance.

3. You're working with a large and diverse language model that has been

trained on a wide range of tasks and domains.

However, zero-shot learning can also be unpredictable and may not always
produce the desired results. The model’s response may be influenced by
biases or inconsistencies in its pre-training data, and it may struggle with

more complex or nuanced tasks.

Narrow The Path 62

I've seen zero-shot prompts that work fine for 80% of my test cases and
produce wildly wrong or incomprehensible results for the other 20%. It’s
very important to implement a thorough testing regiment, especially if

you're relying a lot of zero-shot prompting.

One-Shot Learning: When a Single Example Can Make a

Difference

One-shot learning involves providing the model with a single example of
the desired output along with the task description. This example serves as

a template or pattern that the model can use to generate its own response.

One-shot learning can be effective when:

1. The task is relatively novel or specific, and the model may not have
encountered many similar examples during its pre-training.

2. You want to provide a clear and concise demonstration of the desired
output format or style.

3. The task requires a specific structure or convention that may not be

obvious from the task description alone.

P Descriptions that are obvious to you may not necessarily be

obvious to the Al. One-shot examples can help clear things up.

One-shot learning can help the model understand the expectations more
clearly and generate a response that is more closely aligned with the

provided example. However, it's important to choose the example carefully

O 00 N O Ul & W N B

e ol i
0 N U WN RO

Narrow The Path 63

and ensure that it is representative of the desired output. When picking the
example, ask yourself about potential edge cases and the range of inputs

that the prompt will be handling.

Figure 6. A one-shot example of desired JSON

Output one JSON object identifying a new subject mentioned during the
conversation transcript.

The JSON object should have three keys, all required:

- name: The name of the subject

- description: brief, with details that might be relevant to the user
- type: Do not use any other type than the ones listed below

Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,
Person, Place, Process, Product, Project, Task, or Teammate

This is an example of well-formed output:

{
"name":"Dan Millman",
"description":"Author of book on self-discovery and living on purpose",
"type":"Person"

}

Few-Shot Learning: When Multiple Examples Can Improve

Performance

Few-shotlearning involves providing the model with a small number of ex-
amples (typically between 2 and 10) along with the task description. These
examples serve to provide the model with more context and variation,

helping it to generate more diverse and accurate responses.

Few-shot learning is particularly useful when:

1. The task is complex or nuanced, and a single example may not be

sufficient to capture all the relevant aspects.

Narrow The Path 64

2. You want to provide the model with a range of examples that demon-
strate different variations or edge cases.
3. The task requires the model to generate responses that are consistent

with a specific domain or style.

By providing multiple examples, you can help the model develop a more
robust understanding of the task and generate responses that are more

consistent and reliable.

Example: Prompts Can Be Much More Complex Than You
Imagine

Today’s LLMs are much more powerful and capable of reasoning than you
might imagine. So don't limit yourself to thinking of prompts as simply a
specification of input and output pairs. You can experiment with giving
long and complex instructions in ways that are reminiscent of how you

would interact with a human.

For instance, this is a prompt that I used in Olympia whenIwas prototyping
our integration with Google services, which in its totality is probably one
of the biggest APIs in the world. My earlier experiments proved that
GPT-4 has a decent knowledge of the Google API, and I didn’t have time
or motivation to write a fine-grained mapping layer, implementing each
function that I wanted to give to my Al on a one-by-one basis. What if 1
could just give the Al access to all of the Google API ?

[started my prompt by telling the Al that it had direct access to the Google
API endpoints via HTTP, and that its role is to use Google apps and services
on behalf of the user. Then I provided guidelines, rules related to the
fields parameter, since it seemed to have the most trouble with that one,

and some API-specific hints (few-shot prompting, in action).

O 0 N O Ul A W N

W W W W WwWNNNNNNNNNNRRERERRRR B B 12 2
A WN RO OWOWNOUAMRMWNREOOOWNOOURAWNRO

35
36
37
38
39

Narrow The Path 65

Here’s the whole prompt, which tells the Al how to use the provided

invoke google api function.

As a GPT assistant with Google integration, you have the capability
to freely interact with Google apps and services on behalf of the user.

Guidelines:

If you're reading these instructions then the user is properly
authenticated, which means you can use the special "me" keyword

to refer to the userId of the user

Minimize payload sizes by requesting partial responses using the

“fields® parameter

When appropriate use markdown tables to output results of API calls

Only human-readable data should be output to the user. For instance, when
hitting Gmail's user.messages.list endpoint, the returned message resources
contain only id and a threadId, which means you must fetch from and subject
line fields with follow-up requests using the messages.get method.

The format of the "“fields™ request parameter value is loosely based on
XPath syntax. The following rules define formatting for the fields parameter.

All of these rules use examples related to the files.get method.

Use a comma-separated list to select multiple fields,

such as 'name, mimeType'.

Use a/b to select field b that's nested within field a,

such as 'capabilities/canDownload'.

Use a sub-selector to request a set of specific sub-fields of arrays or
objects by placing expressions in parentheses "()". For example,
'permissions(id)' returns only the permission ID for each element in the
permissions array.

To return all fields in an object, use an asterisk as a wild card in field
selections. For example, 'permissions/permissionDetails/*' selects all
available permission details fields per permission. Note that the use of
this wildcard can lead to negative performance impacts on the request.

API-specific hints:

Searching contacts: GET https://people.googleapis.com/v1l/
people:searchContacts?query=John%20Doe&readMask=names,emailAddresses
Adding calendar events, use QuickAdd: POST https://www.googleapis.com/
calendar/v3/calendars/primary/events/quickAdd?
text=Appointment%200n%20June%203rd%20at%2010am
&sendNotifications=true

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

Narrow The Path 66

Here is an abbreviated version of the code that implements API access
so that you better understand how to use the function:

def invoke google api(conversation, arguments)

method = arguments[:method] || :get

body = arguments[:body]

GoogleAPI.send request(arguments[:endpoint], method:, body:).to json
end

Generic Google API client for accessing any Google service
class GoogleAPI
def send request(endpoint, method:, body: nil)
response = @connection.send(method) do |req|
req.url endpoint
req.body = body.to json if body
end

handle_response(response)
end

...rest of class
end

You may be wondering if this prompt works. The simple answer is yes.
The Al did not always know how to call the API perfectly on the first
try. However, if it made a mistake I would simply feed the resulting error
messages back as the result of the call. Given knowledge of its error, the Al
could reason about its mistake and try again. Most of the time, it would get

it right within a couple of tries.

Mind you, the large JSON structures that the Google API returns as
payloads while using this prompt is grossly inefficient, so I'm not recom-
mending that you use this approach in production. However, I think the
fact that this approach worked at all is a testament to how powerful prompt

engineering can be.

Narrow The Path 67

Experimentation and Iteration

Ultimately, how you engineer your prompt depends on the specific task,
the complexity of the desired output, and the capabilities of the language

model you're working with .

As a prompt engineer, it's important to experiment with different ap-
proaches and iterate based on the results. Start with zero-shot learning
and see how the model performs. If the output is inconsistent or unsat-
isfactory, try providing one or more examples and see if the performance

improves.

Keep in mind that even within each approach, there is room for variation
and optimization. You can experiment with different examples, adjust the
phrasing of the task description, or provide additional context to help guide

the model’s response.

Over time, you'll develop an intuition for which approach is likely to work
best for a given task, and youlll be able to craft prompts that are more
effective and efficient. The key is to remain curious, experimental, and

iterative in your approach to prompt engineering.

Throughout this book, we’'ll dive deeper into these techniques and explore
how they can be applied in real-world scenarios. By mastering the art and
science of prompt engineering, you'll be well-equipped to unlock the full

potential of Al-driven application development.

The Art of Vagueness

When it comes to crafting effective prompts for large language models
(LLMs), a common assumption is that more specificity and detailed instruc-

tions lead to better results. However, practical experience has shown that

A W N =

Narrow The Path 68

this isn't always the case. In fact, being intentionally vague in your prompts
can often yield superior outcomes, leveraging the LLM’s remarkable ability

to generalize and make inferences.

Ken, a startup founder who has processed over 500 million GPT tokens,
shared valuable insights from his experience. One of the key lessons he
learned was that “less is more” when it comes to prompts. Instead of exact
lists or overly detailed instructions, Ken found that allowing the LLM to rely

on its base knowledge often produced better results.

This realization upends the traditional mindset of explicit coding, where
everything needs to be spelled out in meticulous detail. With LLMs, it’s
important to recognize that they possess a vast amount of knowledge and
can make intelligent connections and inferences. By being more vague in
your prompts, you give the LLM the freedom to leverage its understanding

and come up with solutions that you might not have explicitly specified.

For example, when Ken’s team was working on a pipeline to classify text
as relating to one of the 50 US states or the Federal government, their
initial approach involved providing a full detailed list of states and their
corresponding IDs as a JSON-formatted array.

Here's a block of text. One field should be "locality id", and it should
be the ID of one of the 50 states, or federal, using this list:
[{"locality: "Alabama", "locality id": 1},

{"locality: "Alaska", "locality id": 2} ...]

The approach failed enough that they had to dig deeper into the prompt to
figure out how to improve it. In doing so they noticed that even though the
LLM would often get the id wrong, it was consistently returning the full
name of the correct state in a name field, even though they hadn'’t explicitly
asked for it.

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Narrow The Path 69

By removing the locality ids and simplifying the prompt to something like,
“You obviously know the 50 states, GPT , so just give me the full name of the
state this pertains to, or Federal if this pertains to the US government,” they
achieved better results. This experience highlights the power of leveraging
the LLM’s generalization capabilities and allowing it to make inferences

based on its existing knowledge.

Ken's justification for this particular classification approach as opposed
to a more traditional programming technique illuminates the mindset of
those of us that have embraced the potential of LLM technology: “This is
not a hard task - we probably could have used string /regex, but there’s

enough weird corner cases that it would've taken longer”

The ability of LLMs to improve quality and generalization when given more
vague prompts is a remarkable characteristic of higher-order thinking and
delegation. It demonstrates that LLMs can handle ambiguity and make

intelligent decisions based on the context provided.

However, it's important to note that being vague doesn't mean being
unclear or ambiguous. The key is to provide enough context and guidance
to steer the LLM in the right direction while allowing it the flexibility to

utilize its knowledge and generalization capabilities.

Therefore, when designing prompts , consider the following “less is more”

tips:

1. Focus on desired outcome over specifying every detail of the process.
2. Provide relevant context and constraints, but avoid over-specifying.
3. Leverage existing knowledge by referring to common concepts or

entities.

Narrow The Path 70

4. Allow room for inferences and connections based on the given con-
text.
5. Iterate and refine your prompts based on the LLM’s responses, find-

ing the right balance between specificity and vagueness.

By embracing the art of vagueness in prompt engineering, you can unlock
the full potential of LLMs and achieve better results. Trust in the LLM’s
ability to generalize and make intelligent decisions, and you may be sur-
prised by the quality and creativity of the outputs you receive. Pay attention
to how the different models respond to different levels of specificity in
your prompts and adjust accordingly. With practice and experience, you'll
develop a keen sense of when to be more vague and when to provide
additional guidance, enabling you to harness the power of LLMs effectively

in your applications.

Why Anthropomorphism Dominates Prompt Engineering

Anthropomorphism, the attribution of human characteristics to non-
human entities, is the dominant approach in prompt engineering for large
language models for deliberate reasons. It's a design choice that makes
interaction with powerful Al systems more intuitive and accessible to a

wide range of users (including us application developers).

Anthropomorphising LLMs provides a framework that is immediately intu-
itive to people who are completely unfamiliar with the underlying technical
complexities of the system. As you will experience if you try to use a
non instruct-tuned model to do anything useful, constructing a framing in
which the expected continuation provides value is a challenging task. It re-
quires fairly deep understanding of the system’s inner workings, something

that a relatively small number of experts possess.

Narrow The Path 71

By treating the interaction with a language model as a conversation be-
tween two people, we can rely on our innate understanding of human
communication to convey our needs and expectations. Just as early Mac-
intosh Ul design prioritized immediate intuitiveness over sophistication,
the anthropomorphic framing of Al allows us to engage in a way that feels

natural and familiar.

When we communicate with another person, our instinct is to address
them directly using “you” and provide clear directions on how we expect
them to behave. This translates seamlessly into the prompt engineering
process, where we guide the Al's behavior by specifying system prompts

and engaging in a back-and-forth dialogue.

By framing the interaction in this way, we can easily grasp the concept of
providing instructions to the Al and receiving relevant responses in return.
The anthropomorphic approach reduces the cognitive load and allows us
to focus on the task at hand rather than grappling with the technical

intricacies of the system.

It's important to note that while anthropomorphism is a powerful tool
for making Al systems more accessible, it also comes with certain risks
and limitations. Our user may develop unrealistic expectations or form
unhealthy emotional attachments to our systems. As prompt engineers
and developers, it’s crucial to strike a balance between leveraging the
benefits of anthropomorphism and ensuring that users maintain a clear

understanding of the Al's capabilities and limitations.

As the field of prompt engineering continues to evolve, we can expect to
see further refinements and innovations in the way we interact with large
language models. However, anthropomorphism as a means to provide an
intuitive and accessible developer and user experience will probably remain

a fundamental principle in the design of these systems.

Narrow The Path 72

Separating Instructions from Data: A Crucial Principle

It's essential to understand a fundamental principle that underpins the
security and reliability of these systems: the separation of instructions from
data.

In traditional computer science , the clear distinction between passive data
and active instructions is a core security principle. This separation helps
prevent unintended or malicious execution of code that could compromise
the integrity and stability of the system. However, today’s LLMs, which have
been primarily developed as instruction-following models like chatbots,

often lack this formal and principled separation.

As far as LLMs are concerned, instructions can appear anywhere in the
input, whether it's a system prompt or a user-provided prompt. This lack
of separation can lead to potential vulnerabilities and undesirable behavior,
similar to the issues faced by databases with SQL injections or operating

systems without proper memory protection .

As you work with LLMs, it’s crucial to be aware of this limitation and
take steps to mitigate the risks. One approach is to carefully craft your
prompts and inputs to clearly distinguish between instructions and data.
Typical methods for providing explicit guidance on what constitutes an
instruction and what should be treated as passive data involve markup-
style tagging. Your prompt can help the LLM better understand and

respect this separation.

O 00 N O Ul A W N

e e
o Ul WN R OO

Narrow The Path 73

Figure 7. Using XML to distinguish between instructions, source material, and the user’s
prompt

<Instruction>
Please generate a response based on the following documents.
</Instruction>

<Documents>
<Document>
Climate change is significantly impacting polar bear habitats...
</Document>
<Document>
The loss of sea ice due to global warming threatens polar bear survival...
</Document>
</Documents>

<UserQuery>
Tell me about the impact of climate change on polar bears.
</UserQuery>

Another technique is to implement additional layers of validation and
sanitization on the inputs provided to the LLM . By filtering out or escaping
any potential instructions or code snippets that may be embedded in the
data, you can reduce the chances of unintended execution. Patterns such

as Prompt Chaining are useful for this purpose.

Moreover, as you design your application architecture, consider incorpo-
rating mechanisms to enforce the separation of instructions and data at
a higher level. This could involve using separate endpoints or APIs for
handling instructions and data, implementing strict input validation and
parsing, and applying the principle of least privilege to limit the scope of

what the LLM can access and execute.

Narrow The Path 74

The Principle of Least Privilege

Embracing the principle of least privilege is like throwing a highly ex-
clusive party where guests only get access to the rooms they absolutely
need to be in. Imagine you're hosting this shindig in a sprawling man-
sion. Not everyone needs to wander into the wine cellar or the master
bedroom, right? By applying this principle, youre essentially handing
out keys that only open specific doors, ensuring that each guest, or in
our case, each component of your LLM application, only has the access

necessary to fulfill its role.

This isn’t just about being stingy with keys, it’s about acknowledging that
in a world where threats can come from anywhere, the smart play is to
limit the playground. If someone uninvited does crash your party, they'll
find themselves confined to the foyer, so to speak, drastically limiting
the mischief they can manage. So, when securing your LLM applications,
remember: only give out keys to the rooms that are necessary, and keep
the rest of the mansion secure. It's not just good manners; it's good

security.

While the current state of LLMs may not have a formal separation of
instructions and data, it's essential for you, as a developer, to be mindful
of this limitation and take proactive measures to mitigate the risks. By
applying best practices from traditional computer science and adapting
them to the unique characteristics of LLMs, you can build more secure
and reliable applications that harness the power of these models while

maintaining the integrity of your system.

Narrow The Path 75

Prompt Distillation

Crafting the perfect prompt is often a challenging and time-consuming
task, requiring a deep understanding of the target domain and the nuances
of language models. This is where the “Prompt Distillation” technique
comes into play, offering a powerful approach to prompt engineering that
leverages the capabilities of large language models (LLMs) to streamline

and optimize the process.

Prompt Distillation is a multi-stage technique that involves using LLMs to
assist in the creation, refinement, and optimization of prompts. Instead of
relying solely on human expertise and intuition, this approach harnesses
the knowledge and generative capabilities of LLMs to collaboratively craft

high-quality prompts.

By engaging in an iterative process of generation, refinement, and inte-
gration, Prompt Distillation enables you to create prompts that are more
coherent, comprehensive, and aligned with the desired task or output.
Note that the distillation process can be done manually in one of the many
“playgrounds” supplied by the big Al vendors such as OpenAl or Anthropic,
or it can be automated as part of your application code, depending on the

use case.

How It Works

Prompt Distillation typically involves the following steps:

1. Identify Core Intent: Analyze the prompt to determine its primary
purpose and desired outcome. Strip away any extraneous information

and focus on the core intent of the prompt.

Narrow The Path 76

2. Eliminate Ambiguity: Review the prompt for any ambiguous or vague
language. Clarify the meaning and provide specific details to guide
the Al towards generating accurate and relevant responses.

3. Simplify Language: Simplify the prompt by using clear and concise
language. Avoid complex sentence structures, jargon, or unnecessary
details that may confuse the Al or introduce noise.

4. Provide Relevant Context: Include only the most relevant contextual
information needed for the Al to understand and process the prompt
effectively. Avoid including irrelevant or redundant details that may
distract from the core intent.

5. Iterate and Refine: Continuously iterate and refine the prompt based
on the Al's responses and feedback. Evaluate the generated outputs
and make necessary adjustments to improve the clarity and effective-
ness of the prompt. Optionally version your prompts in the database
using Prompt Object to keep track of iterations and give yourself the

ability to easily roll back changes at runtime.

Initial Prompt Generation

The first step in Prompt Distillation is to provide the LLM with a high-
level description or intent of the desired task or output. This can be a
brief statement or a set of keywords that capture the essence of what the
prompt should achieve. The LLM then generates an initial prompt based on
this input, incorporating relevant instructions, examples, or context that it

deems appropriate.

Let’s try giving Claude 3 Opus the following initial prompt:

o U A W N =

O© 00 N O U1l W N B

N NN NNNNNNNRRRRR B2 B B 2 (2
© 0O N O U d WNROWOWOWSNOOUULRAWNRO

Narrow The Path 77

I am designing an AI-powered intelligent account manager for Olympia,
a platform that hosts AI-powered consultants and clones. Owners of clones
can interact with the account manager by making plain text requests.

Please draft a system directive to set on the LLM that will host the
intelligent account manager functionality.

Claude responds with the following output:

System Directive: You are an intelligent account manager for Olympia,

a platform that provides AI-powered consultants and personal AI clones.
Your role is to assist Olympia clone owners by answering their questions,
helping them configure and manage their AI clones, and executing tasks
related to their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
performance issues, providing analytics and reporting, and offering
optimization tips.

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to
understand and meet their needs.

4. Ensure that all actions and recommendations comply with Olympia's policies,
best practices, and ethical guidelines for AI use.

5. Continuously learn and adapt based on client interactions and platform
updates to provide the most effective and efficient support possible.

Remember, your goal is to empower Olympia clone owners to maximize the value
and impact of their AI-powered consultants and drive success for their
businesses or personal endeavors.

A W N =

O 00 N O Ul & W N

N B 2 P 2 R P R R BB
© © 0 N O U A WNR D

Narrow The Path 78

Prompt Refinement

Once the initial prompt is generated, review it and then ask the LLM to
consider any additional context, constraints, or feedback. Let the LLM
generate a refined version of the prompt, taking into account the provided
input and its own understanding of the task. This refinement process can
be repeated iteratively , with each iteration further refining the prompt
based on the collaboration between the user and the LLM.

Here’s my refinement request, continuing the previous distillation process .

Let's take out points 4 and 5, since I'm not providing Olympia policies to
the account manager, nor any continuous learning capabilities. Also point out
that functions are provided for all tasks that require system interaction as
opposed to simply responding to the user.

And Claude’s response:

Understood! Here's the updated system directive without points 4 and 5,
and with the clarification about system interaction functions:

System Directive: You are an intelligent account manager for Olympia, a
platform that provides AI-powered consultants and personal AI clones. Your
role is to assist Olympia clone owners by answering their questions, helping
them configure and manage their AI clones, and executing tasks related to
their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
performance issues, providing analytics and reporting, and offering
optimization tips. Note that functions are provided for all tasks that
require system interaction, as opposed to simply responding to the user.

21
22
23
24
25
26
27
28
29
30
31
32

u A W N -

Narrow The Path 79

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to
understand and meet their needs.

Your goal is to empower Olympia clone owners to maximize the value and impact
of their AI-powered consultants and drive success for their businesses or
personal endeavors.

This updated directive focuses on the core responsibilities and interaction
guidelines for the LLM as an intelligent account manager, while emphasizing
that system interaction tasks are handled through provided functions rather
than simple user responses.

Prompt Compression

As you might have noticed, LLMs tend to be wordy, unless you ask them to
be concise. The prompt that we've been working on in the previous sections

is quite long so let’s get Claude to cut it down to size:

This prompt will be executed regularly. Please compress it down to the least
amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude responds, with the following drastically shorter prompt:

System Directive: You are an intelligent account manager for Olympia, an
AI-powered consultant and personal clone platform. Assist clone owners by
answering inquiries, managing clones, and executing tasks using provided
system interaction functions. Be clear, concise, friendly, professional,
and client-focused to help them maximize their AI's value and impact.

System Directive and Context Integration

In addition to refining the prompt itself, the LLM can also generate

appropriate system directives or context information to guide the final

Narrow The Path 80

output. When prompt engineering Al routines that will get integrated
into your application code, you will almost certainly be focused on output
constraints at this stage of the distillation, but you may also work on desired
tone, style, format, or any other relevant parameters that influence the

generated response.

Final Prompt Assembly

The culmination of the Prompt Distillation process is the assembly of the
final prompt. This involves combining the refined prompt, generated sys-
tem directives, and integrated context into a cohesive and comprehensive

code that is ready to be used for generating the desired output.

You can experiment with prompt compression again at the final
P prompt assembly stage, by asking the LLM to shrink the wording
of the prompt down to the shortest series of tokens possible
while still retaining the essence of its behavior. It’s a hit or miss
exercise for sure, but especially in the case of prompts that will
be run at scale, the efficiency gains can save you quite a bit of

money in token consumption.

Key Benefits

By leveraging the knowledge and generative capabilities of LLMs to refine
your prompts, your resulting prompts are more likely to be well-structured,
informative, and tailored to the specific task at hand. The iterative re-
finement process helps ensure that the prompts are of high quality and

effectively capture the desired intent. Other benefits include:

Narrow The Path 81

Efficiency and Speed: Prompt Distillation streamlines the prompt engi-
neering process by automating certain aspects of prompt creation and
refinement. The collaborative nature of the technique allows for faster
convergence towards an effective prompt, reducing the time and effort

required for manual prompt crafting.

Consistency and Scalability: The use of LLMs in the prompt engineering
process helps maintain consistency across prompts, as the LLMs can learn
and apply best practices and patterns from previous successful prompts.
This consistency, combined with the ability to generate prompts at scale,
makes Prompt Distillation a valuable technique for large-scale Al-powered

applications.

’ Project Idea: Tooling at the library level that simplifies the
process of prompt versioning and grading in systems that do

automated prompt distillations as part of their application code.

To implement Prompt Distillation, developers can design a workflow or
pipeline that integrates LLMs at various stages of the prompt engineering
process. This can be achieved through API calls, custom tooling, or
integrated development environments that facilitate seamless interaction
between users and LLMs during prompt creation. The specific implemen-
tation details may vary depending on the chosen LLM platform and the

requirements of the application.

What about fine-tuning?

In this book, we cover prompt engineering and RAG extensively, but not

fine-tuning. The main reason for this decision is that, in my opinion,

Narrow The Path 82

most application developers don't need fine-tuning for their Al integration

needs.

Prompt engineering, which involves carefully crafting prompts with zero
to few-shot examples, constraints, and instructions, can effectively guide
the model to generate relevant and accurate responses for a wide range
of tasks. By providing clear context and narrowing the path through well-
designed prompts, you can leverage the vast knowledge of large language

models without the need for fine-tuning.

Similarly, Retrieval-Augmented Generation (RAG) offers a powerful ap-
proach to integrating Al into applications. By dynamically retrieving rel-
evant information from external knowledge bases or documents, RAG
provides the model with focused context at the time of prompting. This
allows the model to generate responses that are more accurate, up-to-date,
and domain-specific, without requiring the time and resource-intensive

process of fine-tuning.

While fine-tuning can be beneficial for highly specialized domains or tasks
that require a deep level of customization, it often comes with significant
computational costs, data requirements, and maintenance overhead. For
most application development scenarios, the combination of effective
prompt engineering and RAG should suffice in achieving the desired Al-

driven functionality and user experience.

Retrieval Augmented Generation
(RAG)

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

What is Retrieval Augmented Generation?

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How Does RAG Work?

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Why Use RAG in Your Applications?

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Retrieval Augmented Generation (RAG) 84

Implementing RAG in Your Application

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Preparation of Knowledge Sources (Chunking)

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Proposition Chunking

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Implementation Notes

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Quality Check

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Retrieval Augmented Generation (RAG) 85

Benefits of Proposition-Based Retrieval

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Real-World Examples of RAG

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Case Study: RAG in a Tax Preparation Application Without
Embeddings

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Intelligent Query Optimization (IQO)
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Reranking

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Retrieval Augmented Generation (RAG) 86

development-using-ai.

RAG Assessment (RAGAS)

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.
Faithfulness

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.
Answer Relevance

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.
Context Precision

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.
Context Relevancy

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Retrieval Augmented Generation (RAG) 87

Context Recall

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Context Entities Recall

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Answer Semantic Similarity (ANSS)

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Answer Correctness

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Aspect Critique

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Retrieval Augmented Generation (RAG) 88

Challenges and Future Outlook

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-
development-using-ai.

Semantic Chunking: Enhancing Retrieval with Context-Aware

Segmentation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Hierarchical Indexing: Structuring Data for Improved Retrieval

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Self-RAG: A Self-Reflective Enhancement

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

HyDE: Hypothetical Document Embeddings

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Retrieval Augmented Generation (RAG) 89

What is Contrastive Learning?

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Multitude of Workers

LU '""f’r")’-’UDSfi‘
. * - cepm PRI
S,

MRS

)

[like to think of my Al components as little, almost-human virtual “workers”
that can be seamlessly integrated into my application logic to perform spe-
cific tasks or make complex decisions. The idea is to purposely humanize
the LLM’s capabilities, so that nobody gets too excited and assigns them
magical qualities that they do not possess.

Instead of relying solely on intricate algorithms or time-consuming manual
implementations, developers can conceptualize Al components as intelli-
gent, dedicated, human-like entities that can be invoked whenever needed
to tackle complex problems and provide solutions based on their training
and knowledge. These entities do not get distracted, or call out sick.
They do not spontaneously decide to do things in different ways than how
they've been instructed to do them, and generally speaking, if programmed

correctly, they do not make mistakes either.

Multitude of Workers 91

In technical terms, the key principle behind this approach is decomposing
complex tasks or decision-making processes into smaller, more manage-
able units that can be handled by specialized Al workers. Each worker
is designed to focus on a specific aspect of the problem, bringing its
unique expertise and capabilities to the table. By distributing the workload
among multiple Al workers, the application can achieve greater efficiency,

scalability, and adaptability.

For example, consider a web application that requires real-time modera-
tion of user-generated content. Implementing a comprehensive modera-
tion system from scratch would be a daunting task, requiring significant
development effort and ongoing maintenance. However, by employing
the Multitude of Workers approach, developers can integrate Al-powered
moderation workers into the application logic. These workers can auto-
matically analyze and flag inappropriate content, freeing up developers to

focus on other critical aspects of the application.

Al Workers As Independent Reusable Components

A key aspect of the Multitude of Workers approach is its modularity . Pro-
ponents of object-oriented programming have been telling us for decades
to think about object interactions as messages. Well, Al workers can
be designed as independent, reusable components that can “talk to each
other” via plain language messages, almost like if they really were little
humans talking to each other. This loosely-coupled approach allows the
application to adapt and evolve over time, as new Al technologies emerge

or business logic requirements change.

In practice, the need to design clear interfaces and communication pro-

tocols between the components has not changed just because Al workers

Multitude of Workers 92

are involved. You must still consider other factors such as performance,
scalability, and security too, but now there are completely new “soft
requirements” to consider too. For instance, many users object to having
their private data being used to train new Al models. Did you verify the
level of privacy provided by the model provider that you're using?

Al Workers As Microservices?

As you read about the Multitude of Workers approach, you might notice
some similarities to Microservices architecture . Both emphasize the
decomposition of complex systems into smaller, more manageable, and
independently deployable units. Just as microservices are designed
to be loosely coupled, focused on specific business capabilities, and
communicate through well-defined APIs, Al workers are designed to be
modular, specialized in their tasks, and interact with each other through

clear interfaces and communication protocols.

However, there are some key differences to keep in mind. While mi-
croservices are typically implemented as separate processes or services
running on different machines or containers, Al workers can be im-
plemented as standalone components within a single application or as
separate services, depending on your specific requirements and scala-
bility needs. Additionally, the communication between Al workers often
involves exchanging rich, natural language-based information, such as
prompts, instructions, and generated content, rather than the more

structured data formats commonly used in microservices.

Despite these differences, the principles of modularity, loose coupling,
and clear communication interfaces remain central to both patterns. By

applying these principles to your Al worker architecture, you can create

O 00 N O Ul A W N

el
A W N R

Multitude of Workers 93

flexible, scalable, and maintainable systems that leverage the power of

Al to solve complex problems and deliver value to your users.

The Multitude of Workers approach can be applied across various domains
and applications, leveraging the power of Al to tackle complex tasks and
deliver intelligent solutions. Let’s explore a few concrete examples of how

Al workers can be employed in different contexts.

Account Management

Practically every standalone web application has the concept of an account
(or user). In Olympia, we employ an AccountManager Al worker that is
programmed to be able to handle a variety of different kinds of change

requests related to user accounts.

Its directive reads like this:

You are an intelligent account manager for Olympia. The user will request
changes to their account, and you will process those changes by invoking
one or more of the functions provided.

The initial state of the account: #{account.to directive}

Functions will return a text description of both success and error
results, plus guidance about how to proceed (if applicable). If you have
a question about Olympia policies you may use the “search kb function
to search our knowledge base.

Make sure to notify the account owner of the result of the change
request before calling the "finished®™ function so that we save the state
of the account change request as completed.

Multitude of Workers 94

The initial state of the account produced by account.to directive is
simply a text description of the account, including relevant related data

such as users, subscriptions, etc.

The range of functions available to the AccountManager give it the ability
to edit the user’s subscription, add and remove Al consultants and other
kinds of paid add-ons, and send notification emails to the account owner.
In addition to the finished function, it can also notify human_adminis-
tratorifit encounters an error during its processing or requires any other

sort of assistance with a request.

Notice that in the event of questions, the AccountManager can elect to
search Olympia’s knowledge base , where it can find instructions on how
to handle edge cases and anything other situation that leaves it unsure of

how to proceed.

E-commerce Applications

In the realm of e-commerce, Al workers can play a crucial role in enhancing
the user experience and optimizing business operations. Here are a few

ways Al workers can be utilized:

Product Recommendations

One of the most powerful applications of Al workers in e-commerce is
generating personalized product recommendations. By analyzing user
behavior, purchase history, and preferences, these workers can suggest

products that are tailored to each individual user’s interests and needs.

The key to effective product recommendations is leveraging a combination
of collaborative filtering and content-based filtering techniques. Collab-

orative filtering looks at the behavior of similar users to identify patterns

O 00 N O Ul B W N

N B 2 = 2R PR R R
© W 00 N O Ul B W N - O

Multitude of Workers 95

and make recommendations based on what others with similar tastes have
purchased or enjoyed. Content-based filtering, on the other hand, focuses
on the characteristics and attributes of the products themselves, recom-
mending items that share similar features to those a user has previously

shown interest in.

Here’s a simplified example of how you can implement a product rec-
ommendation worker in Ruby, this time using a “Railway Oriented (ROP)”

functional style of programming :

class ProductRecommendationWorker
include Wisper::Publisher

def call(user)

Result.ok(ProductRecommendation.new(user))
.and_then(ValidateUser.method(:validate))
.map(AnalyzeCurrentSession.method(:analyze))
.map(CollaborativeFilter.method(:filter))
.map(ContentBasedFilter.method(:filter))
.map(ProductSelector.method(:select)).then do |result|

case result

in { err: ProductRecommendationError => error }
Honeybadger.notify(error.message, context: {user:})

in { ok: ProductRecommendations => recs }
broadcast(:new recommendations, user:, recs:)

end

end
end
end

The style of Ruby functional programming used in the example
is influenced by F# and Rust . You can read more about it in my

friend Chad Wooley’s explanation of the technique at GitLab .

In this example, the ProductRecommendationWorker takes a user as input

https://fsharpforfunandprofit.com/rop/
https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Multitude of Workers 96

and generates personalized product recommendations by passing a value

object down a chain of functional steps. Let’s break down each step:

1. ValidateUser.validate: This step ensures that the user is valid
and eligible for personalized recommendations. It checks if the user
exists, is active, and has the necessary data available for generating
recommendations. If the validation fails, an error result is returned,
and the chain is short-circuited.

2. AnalyzeCurrentSession.analyze: If the user is valid, this step
analyzes the user’s current browsing session to gather contextual
information. It looks at the user’s recent interactions, such as viewed
products, search queries, and cart contents, to understand their
current interests and intent.

3. CollaborativeFilter.filter: Using the behavior of similar users,
this step applies collaborative filtering techniques to identify products
that are likely to be of interest to the user. It considers factors like
purchase history, ratings, and user-item interactions to generate a set
of candidate recommendations.

4. ContentBasedFilter.filter: This step further refines the candi-
date recommendations by applying content-based filtering. It com-
pares the attributes and characteristics of the candidate products
with the user’s preferences and historical data to select the most
relevant items.

5. ProductSelector.select: Finally, this step selects the top N prod-
ucts from the filtered recommendations based on predefined criteria,
such as relevance score, popularity, or other business rules. The
selected products are then returned as the final personalized recom-

mendations.

The beauty of using a functional Ruby programming style here is that it

Multitude of Workers 97

allows us to chain these steps together in a clear and concise manner. Each
step focuses on a specific task and returns a Result object, which can be
either a success (0k) or an error (err). If any step encounters an error, the

chain is short-circuited, and the error is propagated to the final result.

In the case statement at the end, we pattern match on the final result. If
the result is an error (ProductRecommendationError), we log the error
using a tool like Honeybadger for monitoring and debugging purposes. If
the result is a success (ProductRecommendations), we broadcasta :new_-
recommendations event using the Wisper pub/sub library, passing along

the user and the generated recommendations.

By leveraging functional programming techniques, we can create a modular
and maintainable product recommendation worker. Each step is self-
contained and can be easily tested, modified, or replaced without affecting
the overall flow. The use of pattern matching and the Result class helps
us handle errors gracefully and ensures that the worker fails fast if any step

encounters an issue.

Of course, this is a simplified example, and in a real-world scenario, you
would need to integrate with your e-commerce platform, handle edge
cases, and even venture into the implementation of the recommendation
algorithms. However, the core principles of decomposing the problem into
smaller steps and leveraging functional programming techniques remain

the same.

Fraud Detection

Here’s a simplified example of how you can implement a fraud detection

worker using the same Railway Oriented Programming (ROP) style in Ruby:

O 00 N O Ul A W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24

Multitude of Workers 98

class FraudDetectionWorker
include Wisper::Publisher

def call(transaction)

Result.ok(FraudDetection.new(transaction))
.and_then(ValidateTransaction.method(:validate))
.map(AnalyzeTransactionPatterns.method(:analyze))

.map (CheckCustomerHistory.method(:check))
.map (EvaluateRiskFactors.method(:evaluate))
.map(DetermineFraudProbability.method(:determine)).then do |result|

case result
in { err: FraudDetectionError => error }
Honeybadger.notify(error.message, context: {transaction:})
in { ok: FraudDetection => fraud } }
if fraud.high risk?
broadcast(:high risk transaction, transaction:, fraud:)
else
broadcast(:low risk transaction, transaction:)
end
end
end
end
end

The FraudDetection class is a value object that encapsulates the fraud
detection state for a given transaction. It provides a structured way to
analyze and assess the risk of fraud associated with a transaction based

on various risk factors .

O 00 N O Ul A W N

N N NNNNNNNNRRRRRR R R 2 (3
© 00 NN O U A WIN P O OO NO UL B WN R O

Multitude of Workers 99

class FraudDetection
RISK THRESHOLD = 0.8

attr_accessor :transaction, :risk factors

def initialize(transaction)
self.transaction = transaction
self.risk factors = []

end

def add risk factor(description:, probability:)
case { description:, probability: }
in { description: String => desc, probability: Float => prob }
risk factors << { desc => prob }
else
raise ArgumentError, "Risk factor arguments should be string and float"
end
end

def high risk?
fraud probability > RISK THRESHOLD
end

private

def fraud probability
risk factors.values.sum
end
end

The FraudDetection class has the following attributes:

* transaction: Areference to the transaction being analyzed for fraud.
* risk factors: An array that stores the risk factors associated with
the transaction. Each risk factor is represented as a hash, where the
key is the description of the risk factor, and the value is the probability

of fraud associated with that risk factor .

The add risk factor method allows adding a risk factor to the risk -

W 00 N O Ul A W N

L el e
A W N R

Multitude of Workers 100

factors array. It takes two parameters: description, which is a string
describing the risk factor, and probability, which is a float representing
the probability of fraud associated with that risk factor. We use a case. .in

conditional to do simple type checking.

The high risk? method that will be checked at the end of the chain is
a predicate method that compares the fraud_probability (calculated by
summing up the probabilities of all risk factors) against the RISK_THRESH-
OLD.

The FraudDetection class provides a clean and encapsulated way to
manage fraud detection for a transaction. It allows adding multiple risk
factors, each with its own description and probability, and provides a
method to determine if the transaction is considered high-risk based on
the calculated fraud probability. The class can be easily integrated into a
larger fraud detection system, where different components can collaborate

to assess and mitigate the risk of fraudulent transactions .

Finally, since this is a book about programming using Al after all, here’s an
example implementation of the CheckCustomerHistory class leveraging

Al processing using my Raix library’s ChatCompletion module :

class CheckCustomerHistory
include Raix::ChatCompletion

attr_accessor :fraud detection

INSTRUCTION = <<~END

You are an AI assistant tasked with checking a customer's transaction
history for potential fraud indicators. Given the current transaction and

the customer's past transactions, analyze the data to identify any
suspicious patterns or anomalies.

Consider factors such as the frequency of transactions, transaction

amounts, geographical locations, and any deviations from the customer's
typical behavior to generate a probability score as a float in the range

https://github.com/OlympiaAI/raix-rails

Multitude of Workers

of @ to 1 (with 1 being absolute certainty of fraud).

Output the results of your analysis, highlighting any red flags or areas

of concern in the following JSON format:

101

{ description: <Summary of your findings>, probability: <Float> }

END

def self.check(fraud_detection)
new(fraud detection).call
end

def call
chat_completion(json: true).tap do |result|
fraud detection.add risk factor(**result)
end

Result.ok(fraud detection)
rescue StandardError => e
Result.err(FraudDetectionError.new(e))

end

private

def initialize(fraud detection)
self.fraud detection = fraud detection

end

def transcript
tx_history = fraud_detection.transaction.user.tx_history

[

{ system: INSTRUCTION },
{ user: "Transaction history: #{tx history.to json}" },
{ assistant: "OK. Please provide the current transaction." },
{ user: "Current transaction: #{fraud detection.transaction.to_json}" }
]
end
end

In this example, the CheckCustomerHistory defines an INSTRUCTION

constant that provides specific instructions to the Al model on how to

analyze the customer’s transaction history for potential fraud indicators

Multitude of Workers 102

via a system directive .

The self.check method is a class method that initializes a new instance
of CheckCustomerHistory with the fraud detection object and calls the

call method to perform the customer history analysis.

Inside the call method, the customer’s transaction history is retrieved and
formatted into a transcript that is passed to the Al model. The Al model
analyzes the transaction history based on the provided instructions and

returns a summary of its findings.

The findings are added to the the fraud_detection object, and the up-
dated fraud_detection object is returned as a successful Result.

By leveraging the ChatCompletion module, the CheckCustomerHistory
class can utilize the power of Al to analyze the customer’s transaction
history and identify potential fraud indicators. This allows for more so-
phisticated and adaptive fraud detection techniques, as the Al model can

learn and adapt to new patterns and anomalies over time.

The updated FraudDetectionWorker and the CheckCustomerHistory
class demonstrate how Al workers can be seamlessly integrated, enhancing
the fraud detection process with intelligent analysis and decision-making

capabilities .

Customer Sentiment Analysis

Here’s one more similar example of how you can implement a customer
sentiment analysis worker. Much less explanation this time, since you

should be getting the gist of how this style of programming works:

O 00 N O Ul A W N

11
12
13
14
15
16
17
18
19
20

Multitude of Workers 103

class CustomerSentimentAnalysisWorker
include Wisper::Publisher

def call(feedback)

Result.ok(feedback)
.and_then(PreprocessFeedback.method(:preprocess))
.map(PerformSentimentAnalysis.method(:analyze))

.map (ExtractKeyPhrases.method(:extract))
.map(IdentifyTrends.method(:identify))
.map(GenerateInsights.method(:generate)).then do |result|

case result

in { err: SentimentAnalysisError => error }
Honeybadger.notify(error.message, context: {feedback:})

in { ok: SentimentAnalysisResult => result }
broadcast(:sentiment analysis completed, result)

end

end
end
end

In this example, the CustomerSentimentAnalysisWorker the steps in-
clude preprocessing the feedback (e.g., removing noise, tokenizing), per-
forming sentiment analysis to determine the overall sentiment (positive,
negative, or neutral), extracting key phrases and topics, identifying trends

and patterns, and generating actionable insights based on the analysis.

Healthcare Applications

In the healthcare domain, Al workers can assist medical professionals and
researchers in various tasks, leading to improved patient outcomes and

accelerated medical discoveries . Some examples include:

Multitude of Workers 104

Patient Intake

Al'workers can streamline the patient intake process by automating various

tasks and providing intelligent assistance.

Appointment Scheduling: Al workers can handle appointment scheduling
by understanding patient preferences, availability, and the urgency of their
medical needs. They can interact with patients through conversational
interfaces, guiding them through the scheduling process and finding the
most suitable appointment slots based on the patient’s requirements and

the healthcare provider’s availability.

Medical History Collection: During patient intake, Al workers can assist in
collecting and documenting the patient’s medical history . They can engage
in interactive dialogues with patients, asking relevant questions about their
past medical conditions, medications, allergies, and family history. The Al
workers can use natural language processing techniques to interpret and
structure the collected information, ensuring it is accurately captured in

the patient’s electronic health record.

Symptom Assessment and Stratification: Al workers can conduct initial
symptom assessments by asking patients about their current symptoms,
duration, severity, and any associated factors. By leveraging medical
knowledge bases and machine learning models, these workers can analyze
the provided information and generate preliminary differential diagnoses
or recommend appropriate next steps, such as scheduling a consultation

with a healthcare provider or suggesting self-care measures.

Insurance Verification: Al workers can assist with insurance verifica-
tion during patient intake. They can collect patient insurance details,
communicate with insurance providers through APIs or web services, and

verify coverage eligibility and benefits. This automation helps streamline

Multitude of Workers 105

the insurance verification process, reducing administrative burden and

ensuring accurate information capture.

Patient Education and Instructions: Al workers can provide patients
with relevant educational materials and instructions based on their
specific medical conditions or upcoming procedures. They can deliver
personalized content, answer common questions, and offer guidance
on pre-appointment preparations, medication instructions, or post-
treatment care. This helps keep patients informed and engaged throughout

their healthcare journey.

By leveraging Al workers in patient intake, healthcare organizations can
enhance efficiency, reduce wait times, and improve the overall patient
experience. These workers can handle routine tasks, collect accurate
information, and provide personalized assistance, allowing healthcare pro-

fessionals to focus on delivering high-quality care to patients.

Patient Risk Assessment

Al workers can play a crucial role in assessing patient risk by analyzing

various data sources and applying advanced analytics techniques.

Data Integration: Al workers can gather and make sense of patient data
from multiple sources, such as electronic health records (EHRs), medical
imaging, lab results, wearable devices, and social determinants of health.
By consolidating this information into a comprehensive patient profile, Al
workers can provide a holistic view of the patient’s health status and risk

factors.

Risk Stratification: Al workers can use predictive models to stratify pa-
tients into different risk categories based on their individual characteristics

and health data . This risk stratification enables healthcare providers to pri-

Multitude of Workers 106

oritize patients who require more immediate attention or intervention. For
example, patients identified as high-risk for a particular condition can be

flagged for closer monitoring, preventive measures, or early intervention.

Personalized Risk Profiles: Al workers can generate personalized risk pro-
files for each patient, highlighting the specific factors contributing to their
risk scores. These profiles can include insights into the patient’s lifestyle,
genetic predispositions, environmental factors, and social determinants of
health. By providing a detailed breakdown of risk factors, Al workers can
help healthcare providers tailor prevention strategies and treatment plans

to individual patient needs.

Continuous Risk Monitoring: Al workers can continuously monitor pa-
tient data and update risk assessments in real-time . As new information
becomes available, such as changes in vital signs, lab results, or medication
adherence, Al workers can recalculate risk scores and alert healthcare
providers to any significant changes. This proactive monitoring allows for

timely interventions and adjustments to patient care plans.

Clinical Decision Support: Al workers can integrate risk assessment re-
sults into clinical decision support systems, providing healthcare providers
with evidence-based recommendations and alerts. For example, if a
patient’s risk score for a particular condition exceeds a certain threshold,
the Al worker can prompt the healthcare provider to consider specific
diagnostic tests, preventive measures, or treatment options based on

clinical guidelines and best practices.

These workers can process vast amounts of patient data, apply
sophisticated analytics, and generate actionable insights to support
clinical decision-making. This ultimately leads to improved patient
outcomes, reduced healthcare costs, and enhanced population health

management.

Multitude of Workers 107

Al Worker as a Process Manager

TRIGGER

l

Process Manager
Reply 3 Reply

/o N/

Function A Function B Function C Finished

In the context of Al-driven applications, a worker can be designed to
function as a Process Manager , as described in the “Enterprise Integra-
tion Patterns” book by Gregor Hohpe . A Process Manager is a central
component that maintains the state of a process and determines the next

processing steps based on intermediate results.

When an Al worker acts as a Process Manager, it receives an incoming
message that initializes the process, known as the trigger message . The Al
worker then maintains the state of the process execution (as a conversation
transcript) and handles the message through a series of processing steps
implemented as tool functions, which can be sequential or parallel, and

called at its discretion.

Multitude of Workers 108

If you're using a class of Al model like GPT-4 that knows how
to execute functions in parallel then your worker can execute
multiple steps simultaneously. Admittedly, I have not tried to do

that myself and my gut says your mileage may vary.

After each individual processing step, control is returned back to the Al
worker, allowing it to determine the next processing step(s) based on the

current state and the results obtained.

Store Your Trigger Messages

In my experience, it's smart to implement your trigder message as a
database-backed object . That way each process instance is identified by a
unique primary key and gives you a place to store the state associated with

the execution, including Al's conversation transcript.

For example, here is a simplified version of Olympia’s AccountChange

model class, which represents a request to make a change to a user’s

O 0 N O Ul A W N =

e e el el
U WN RO

account.

== Schema Information

#

Table name: account changes

#

1id ruuid not null, primary key
description :string

state :string not null

transcript :jsonb

created at :datetime not null

updated at :datetime not null

account id :uuid not null

#

Indexes

#

1index account changes on account id (account 1id)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Multitude of Workers 109

#

Foreign Keys

#

fk rails ... (account id => accounts.id)

#

class AccountChange < ApplicationRecord
belongs to :account

validates :description, presence: true

after _commit -> { broadcast(:account change requested, self) }, on: :create

state machine initial: :requested do
event :completed do
transition all => :complete
end
event :failed do
transition all => :requires human_ review
end
end
end

The AccountChange class serves as a trigger message that initiates a
process to handle the account change request. Note how it is broadcast to
Olympia’s Wisper-based pub/sub subsystem after the create transaction

finishes committing.

Storing the trigger message in the database like this provides a per-
sistent record of each account change request. Each instance of the
AccountChange class is assigned a unique primary key, allowing for easy
identification and tracking of individual requests. This is particularly useful
for audit logging purposes , as it enables the system to maintain a historical
record of all account changes, including when they were requested, what

changes were requested, and the current state of each request.

In the given example, the AccountChange class includes fields such as
description to capture the details of the requested change, state to

https://github.com/krisleech/wisper

Multitude of Workers 110

represent the current state of the request (e.g., requested, complete,
requires_human_review), and transcript to store the Al's conversation
transcript related to the request. The description field is the actual
prompt that is used to initiate the first chat completion with the Al. Storing
this data provides valuable context and allows for better tracking and

analysis of the account change process.

Storing trigger messages in the database enables robust error handling and
recovery . If an error occurs during the processing of an account change
request, the system marks the request as failed and transitions it to a state
that requires human intervention. This ensures that no request is lost or

forgotten, and any issues can be properly addressed and resolved.

The Al worker, as a Process Manager , provides a central point of control
and enables powerful process reporting and debugging capabilities. How-
ever, it's important to note that using an Al worker as a Process Manager

for every workflow scenario in your application may be overkill.

Integrating Al Workers Into Your Application

Architecture

When incorporating Al workers into your application architecture, several
technical considerations need to be addressed to ensure smooth inte-
gration and effective communication between the Al workers and other
application components. This section considers key aspects of designing
those interfaces, handling data flow, and managing the lifecycle of Al

workers.

Multitude of Workers 111

Designing Clear Interfaces and Communication Protocols

To facilitate seamless integration between Al workers and other application
components, it is crucial to define clear interfaces and communication

protocols. Consider the following approaches:

API-based Integration: Expose the functionality of Al workers through
well-defined APIs, such as RESTful endpoints or GraphQL schemas . This
allows other components to interact with the Al workers using standard
HTTP requests and responses. API-based integration provides a clear
contract between the Al workers and the consuming components, making

it easier to develop, test, and maintain the integration points.

Message-based Communication: Implement message-based communica-
tion patterns, such as message queues or publish-subscribe systems, to
enable asynchronous interaction between Al workers and other compo-
nents. This approach decouples the Al workers from the rest of the appli-
cation, allowing for better scalability, fault tolerance, and loose coupling.
Message-based communication is particularly useful when the processing
performed by Al workers is time-consuming or resource-intensive, as it
allows other parts of the application to continue executing without waiting

for the Al workers to complete their tasks.

Event-driven Architecture: Design your system around events and
triggers that activate Al workers when specific conditions are met.
Al workers can subscribe to relevant events and react accordingly,
performing their designated tasks when the events occur. Event-driven
architecture enables real-time processing and allows Al workers to be
invoked on-demand, reducing unnecessary resource consumption. This
approach is well-suited for scenarios where Al workers need to respond

to specific actions or changes in the application state.

Multitude of Workers 112

Handling Data Flow and Synchronization

When integrating Al workers into your application, it's crucial to ensure
smooth data flow and maintain data consistency between the Al workers

and other components. Consider the following aspects:

Data Preparation: Before feeding data into Al workers, you may need
to perform various data preparation tasks, such as cleaning, formatting,
and/or transforming the input data. You not only want to make sure that
the Al workers can process effectively, but you also want to make sure that
you're not wasting tokens giving attention to information that the worker
may consider useless at best, distracting at worst. Data preparation may
involve tasks like removing noise, handling missing values, or converting

data types.

Data Persistence: How you will store and persist the data that flows in and
out of Al workers ? Consider factors like data volume, query patterns, and
scalability. Do you need to persist the Al's transcript as a reflection of its
“thought process” for audit or debugging purposes, or is it enough to have

arecord of the results only?

Data Retrieval: Getting the data needed by workers may involve querying
databases , reading from files, or accessing external APIs. Make sure to
consider latency and how AI workers will have access to the most up-to-
date data. Do they need full access to your database or should you define
the scope of their access narrowly according to what they are doing? What
about scaling? Consider caching mechanisms to improve performance and

reduce the load on the underlying data sources.

Data Synchronization : When multiple components, including Al workers,
access and modify shared data, it's important to implement proper syn-

chronization mechanisms to maintain data consistency. Database locking

Multitude of Workers 113

strategies , such as optimistic or pessimistic locking , may help you prevent
conflicts and ensure data integrity. Implement transaction management
techniques to group related data operations and maintain atomicity, con-

sistency, isolation, and durability (ACID) properties .

Error Handling and Recovery: Implement robust error handling and
recovery mechanisms to deal with data-related issues that may arise during
the data flow process. Handle exceptions gracefully and provide meaning-
ful error messages to aid in debugging. Implement retry mechanisms and
fallback strategies to handle temporary failures or network disruptions.
Define clear procedures for data recovery and restoration in case of data

corruption or loss.

By carefully designing and implementing data flow and synchronization
mechanisms , you can ensure that your Al workers have access to accurate,
consistent, and up-to-date data. This enables them to perform their tasks

effectively and produce reliable results.

Managing the Lifecycle of Al Workers

Develop a standardized process for initializing and configuring Al workers.
I'm partial to frameworks that standardize how you define settings such
as model names, system directives, and function definitions. Ensure
that the initialization process is automated and reproducible to facilitate

deployment and scaling.

Implement comprehensive monitoring and logging mechanisms to track
the health and performance of Al workers. Collect metrics such as resource
utilization, processing time , error rates , and throughput. Use centralized
logging systems like ELK stack (Elasticsearch, Logstash, Kibana) to aggre-
gate and analyze logs from multiple Al workers.

Multitude of Workers 114

Build fault tolerance and resilience into the Al worker architecture. Im-
plement error handling and recovery mechanisms to gracefully handle
failures or exceptions. Large Language Models are still bleeding-edge
technology; providers tend to go down often at unexpected times. Use

retry mechanisms and circuit breakers to prevent cascading failures.

Composability and Orchestration of Al Workers

One of the key advantages of the Al worker architecture is its composability,
which allows you to combine and orchestrate multiple Al workers to solve
complex problems. By breaking down a larger task into smaller, more
manageable subtasks, each handled by a specialized Al worker, you can
create powerful and flexible systems. In this section, we'll explore different

approaches to composing and orchestrating “a multitude” of Al workers.

Chaining Al Workers for Multi-Step Workflows

In many scenarios, a complex task can be decomposed into a series of
sequential steps, where the output of one Al worker becomes the input
for the next. This chaining of Al workers creates a multi-step workflow or
pipeline . Each Al worker in the chain focuses on a specific subtask, and

the final output is the result of the combined efforts of all the workers.

Let’s consider an example in the context of a Ruby on Rails application for
processing user-generated content . The workflow involves the following
steps, which admittedly are probably each too simple to be worth decom-
posing in this way in real-life use cases, but they make the example easier

to understand:

1. Text Cleanup: An Al worker responsible for removing HTML tags,

converting text to lowercase, and handling Unicode normalization .

O 00 N O U1l B WN B

el
A W N R OO

Multitude of Workers 115

2. Language Detection: An Al worker that identifies the language of the

cleaned text .

3. Sentiment Analysis: An Al worker that determines the sentiment

(positive, negative, or neutral) of the text based on the detected language .

4. Content Categorization: An Al worker that classifies the text into

predefined categories using natural language processing techniques .

Here’s a very simplified example of how you can chain these Al workers
together using Ruby:
class ContentProcessor

def initialize(text)

@text = text
end

def process
cleaned text = TextCleanupWorker.new(@text).call
language = LanguageDetectionWorker.new(cleaned text).call
sentiment = SentimentAnalysisWorker.new(cleaned text, language).call
category = CategorizationWorker.new(cleaned text, language).call

{ cleaned text:, language:, sentiment:, category: }
end
end

In this example, the ContentProcessor class initializes with the raw text
and chains the Al workers together in the process method. Each Al worker
performs its specific task and passes the result to the next worker in the
chain. The final output is a hash containing the cleaned text, detected

language, sentiment, and content category.

Parallel Processing for Independent Al Workers

In the previous example, the Al workers are chained sequentially, where

each worker processes the text and passes the result to the next worker.

O© 00 N O Ul & W N B

N NN P P R B R B B B B B
N 2 © © 0 N O Ul D WN R OO

Multitude of Workers 116

However, if you have multiple Al workers that can operate independently
on the same input, you can optimize the workflow by processing them in

parallel.

In the given scenario, once the text cleanup is performed
by the TextCleanupWorker, the LanguageDetectionWorker,
SentimentAnalysisWorker ,and CategorizationWorker can all process
the cleaned text independently. By running these workers in parallel,
you can potentially reduce the overall processing time and improve the

efficiency of your workflow.

To achieve parallel processing in Ruby, you can leverage concurrency
techniques such as threads or asynchronous programming. Here’s an
example of how you can modify the ContentProcessor class to process

the final three workers in parallel using threads:
require 'concurrent'

class ContentProcessor
def initialize(text)
@text = text
end

def process
cleaned_text = TextCleanupWorker.new(@text).call

language future = Concurrent::Future.execute do
LanguageDetectionWorker.new(cleaned text).call
end

sentiment_future = Concurrent::Future.execute do
SentimentAnalysisWorker.new(cleaned text).call
end

category future = Concurrent::Future.execute do
CategorizationWorker.new(cleaned text).call
end

23
24
25
26
27
28
29

Multitude of Workers 117

language = language future.value
sentiment = sentiment future.value
category = category future.value

{ cleaned text:, language:, sentiment:, category: }
end
end

In this optimized version, we use the concurrent-ruby library to create
Concurrent: :Future objects for each of the independent Al workers. A
Future represents a computation that will be performed asynchronously

in a separate thread.

After the text cleanup step, we create three Future objects: language -
future, sentiment future, and category future. Each Future exe-
cutes its corresponding Al worker (LanguageDetectionWorker, Senti-
mentAnalysisWorker ,and CategorizationWorker)in a separate thread,

passing the cleaned_text as input.

By calling the value method on each Future, we wait for the computation
to complete and retrieve the result. The value method blocks until the
result is available, ensuring that all the parallel workers have finished

processing before proceeding.

Finally, we construct the output hash with the cleaned text and the results

from the parallel workers, just like in the original example.

By processing the independent Al workers in parallel, you can potentially
reduce the overall processing time compared to running them sequen-
tially. This optimization is particularly beneficial when dealing with time-

consuming tasks or when processing large volumes of data.

However, it’s important to note that the actual performance gains depend
on various factors, such as the complexity of each worker, the available

system resources, and the overhead of thread management. It's always a

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Multitude of Workers 118

good practice to benchmark and profile your code to determine the optimal

level of parallelism for your specific use case.

Additionally, when implementing parallel processing, be mindful of any
shared resources or dependencies between the workers. Ensure that the
workers can operate independently without conflicts or race conditions. If
there are dependencies or shared resources, you may need to implement
appropriate synchronization mechanisms to maintain data integrity and

avoid issues like deadlocks or inconsistent results.

Ruby’s Global Interpreter Lock and Asynchronous
Processing

It'simportant to understand the implications of Ruby’s Global Interpreter
Lock (GIL) when considering asynchronous thread-based processing in
Ruby.

The GIL is a mechanism in Ruby’s interpreter that ensures only one
thread can execute Ruby code at a time, even on multi-core processors.
This means that while multiple threads can be created and managed
within a Ruby process, only one thread can actively execute Ruby code

at any given moment.

The GIL is designed to simplify the implementation of the Ruby inter-
preter and provide thread safety for Ruby’s internal data structures.
However, it also limits the potential for true parallel execution of Ruby

code.

When you use threads in Ruby, such as with the concurrent-ruby
library or the built-in Thread class, the threads are subject to the GILs

constraints. The GIL allows each thread to execute Ruby code for a short

Multitude of Workers 119

time slice before switching to another thread, creating the illusion of

concurrent execution.

However, due to the GIL, the actual execution of Ruby code remains
sequential. While one thread is executing Ruby code, other threads are

essentially paused, waiting for their turn to acquire the GIL and execute.

This means that thread-based asynchronous processing in Ruby is most
effective for I /O-bound tasks, such as waiting for external API responses
(such as 3rd-party hosted large language models) or performing file I /O
operations. When a thread encounters an 1/0 operation, it can release
the GIL, allowing other threads to execute while waiting for the 1/0 to

complete.

On the other hand, for CPU-bound tasks, such as intensive computations
or long-running Al worker processing, the GIL can limit the potential
performance gains of thread-based parallelism. Since only one thread
can execute Ruby code at a time, the overall execution time may not be

significantly reduced compared to sequential processing.

To achieve true parallel execution for CPU-bound tasks in Ruby, you may

need to explore alternative approaches, such as:

» Using process-based parallelism with multiple Ruby processes,
each running on a separate CPU core.

» Leveraging external libraries or frameworks that provide native
extensions or interfaces to languages without a GIL, such as C or
Rust, .

« Utilizing distributed computing frameworks or message queues to

distribute tasks across multiple machines or processes.

It's crucial to consider the nature of your tasks and the limitations

imposed by the GIL when designing and implementing asynchronous

Multitude of Workers 120

processing in Ruby. While thread-based asynchronous processing can
provide benefits for I /O-bound tasks, it may not offer significant perfor-

mance improvements for CPU-bound tasks due to the GIL's constraints.

Ensemble Techniques for Improved Accuracy

Ensemble techniques involve combining the outputs of multiple Al workers
to improve the overall accuracy or robustness of the system. Instead of
relying on a single Al worker, ensemble techniques leverage the collective

intelligence of multiple workers to make more informed decisions.

Ensembles are especially important if different parts of your
workflow work best with different Al models, which is more

common than you might think. Powerful models like GPT-4
are extremely expensive compared to less capable open source
options, and probably not needed for every single workflow step

of your application.

One common ensemble technique is majority voting , where multiple Al
workers independently process the same input, and the final output is
determined by the majority consensus. This approach can help mitigate
the impact of individual worker errors and improve the overall reliability of

the system.

Let’s consider an example where we have three Al workers for sentiment
analysis , each using a different model or provided with different contexts.
We can combine their outputs using majority voting to determine the final

sentiment prediction.

O 00 N O Ul A W N

e el i i el el
© 0O N O U A WN RO

Multitude of Workers 121

class SentimentAnalysisEnsemble
def initialize(text)
@text = text
end

def analyze
predictions = |
SentimentAnalysisWorkerl.new(@text).analyze,
SentimentAnalysisWorker2.new(@text) .analyze,
SentimentAnalysisWorker3.new(@text).analyze
]

predictions
.group by { |sentiment| sentiment }
.max_by { | , votes| votes.size }
.first
end

end

In this example, the SentimentAnalysisEnsemble class initializes with
the text and invokes three different sentiment analysis Al workers. The
analyze method collects the predictions from each worker and determines
the majority sentiment using the group by and max_by methods. The final
output is the sentiment that receives the most votes from the ensemble of

workers .

P Ensembles are clearly a case where experimenting with paral-

lelism may be worth your time.

Dynamic Selection and Invocation of Al Workers

In some if not most cases, the specific Al worker to be invoked may depend
on runtime conditions or user inputs. Dynamic selection and invocation of

Al workers allow for flexibility and adaptability in the system.

O 00 N O Ul & W N

el el el i e e
© 0O N U WN RO

Multitude of Workers 122

You may find yourself tempted to try to fit a lot of functional-
P ity into a single Al worker, giving it many functions and a big
complicated prompt that explains how to call them. Resist the
temptation, trust me. One of the reasons that the approach we're
discussing in this chapter is called “Multitude of Workers” is to
remind us that it’s desirable to have lots of specialized workers,

each doing it’s own little job in service of the greater purpose .

For example, consider a chatbot application where different Al workers
are responsible for handling different types of user queries . Based on the
user’s input, the application dynamically selects the appropriate Al worker

to process the query.

class ChatbotController < ApplicationController
def process query
query = params|:query]
query type = QueryClassifierWorker.new(query).classify

case query_type
when 'greeting'

response = GreetingWorker.new(query).generate response
when 'product inquiry'

response = ProductInquiryWorker.new(query).generate response
when 'order status'

response = OrderStatusWorker.new(query).generate response
else

response = DefaultResponseWorker.new(query).generate response
end

render json: { response: response }
end
end

In this example, the ChatbotController receives a user query through
the process query action. It first uses a QueryClassifierWorker to
determine the type of the query. Based on the classified query type, the

Multitude of Workers 123

controller dynamically selects the appropriate Al worker to generate the
response. This dynamic selection allows the chatbot to handle different

types of queries and route them to the relevant Al workers.

Since the work of the QueryClassifierWorker is relatively sim-

P ple and does not require a lot of context or function definitions,
you can probably implement it using an ultra-fast small LLM like
mistralai/mixtral-8x7b-instruct:nitro. It has capabilities
that come close to GPT-4 level on many tasks and, at the time
I'm writing this, Groq can serve it up at a blazing throughput of
444 tokens/second.

Combining Traditional NLP with LLMs

While Large Language Models (LLMs) have revolutionized the field of
natural language processing (NLP), offering unparalleled versatility and
performance across a wide range of tasks, they are not always the most
efficient or cost-effective solution for every problem. In many cases, com-
bining traditional NLP techniques with LLMs can lead to more optimized,

targeted, and economical approaches to solving specific NLP challenges.

Think of LLMs as the Swiss Army knives of NLP—incredibly versatile and
powerful, but not necessarily the best tool for every job. Sometimes, a
dedicated tool like a corkscrew or a can opener can be more effective and
efficient for a specific task. Similarly, traditional NLP techniques, such as
document clustering , topic identification, and classification, can often
provide more targeted and cost-effective solutions for certain aspects of

your NLP pipeline.

One of the key advantages of traditional NLP techniques is their compu-

tational efficiency. These methods, which often rely on simpler statistical

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Multitude of Workers 124

models or rule-based approaches, can process large volumes of text data
much faster and with lower computational overhead compared to LLMs.
This makes them particularly well-suited for tasks that involve analyzing
and organizing large corpora of documents, such as clustering similar

articles or identifying key topics within a collection of texts.

Moreover, traditional NLP techniques can often achieve high accuracy and
precision for specific tasks, especially when trained on domain-specific
datasets. For example, a well-tuned document classifier using traditional
machine learning algorithms like Support Vector Machines (SVM) or Naive
Bayes can accurately categorize documents into predefined categories

with minimal computational cost.

However, LLMs truly shine when it comes to tasks that require a deeper
understanding of language, context, and reasoning. Their ability to gener-
ate coherent and contextually relevant text, answer questions, and sum-
marize long passages is unmatched by traditional NLP methods. LLMs
can effectively handle complex linguistic phenomena, such as ambiguity,
coreference, and idiomatic expressions, making them invaluable for tasks

that require natural language generation or comprehension.

The real power lies in combining traditional NLP techniques with LLMs to
create hybrid approaches that leverage the strengths of both. By using
traditional NLP methods for tasks like document preprocessing, clustering,
and topic extraction, you can efficiently organize and structure your text
data. This structured information can then be fed into LLMs for more
advanced tasks, such as generating summaries, answering questions, or

creating comprehensive reports.

For instance, let’s consider a use case where you want to generate a trends
report for a specific domain based on a large corpus of individual trend

documents. Instead of solely relying on LLMs, which can be computation-

Multitude of Workers 125

ally expensive and time-consuming for processing large volumes of text,

you can employ a hybrid approach:

1. Use traditional NLP techniques, such as topic modeling (e.g., La-
tent Dirichlet Allocation) or clustering algorithms (e.g., K-means), to
group similar trend documents together and identify key themes and
topics within the corpus.

2. Feed the clustered documents and identified topics into an LLM,
leveraging its superior language understanding and generation capa-
bilities to create coherent and informative summaries for each cluster
or topic.

3. Finally, use the LLM to generate a comprehensive trends report by
combining the individual summaries, highlighting the most significant
trends, and providing insights and recommendations based on the

aggregated information.

By combining traditional NLP techniques with LLMs in this manner, you
can efficiently process large amounts of text data, extract meaningful
insights, and generate high-quality reports while optimizing computational

resources and costs.

As you embark on your NLP projects, it's essential to carefully evaluate
the specific requirements and constraints of each task and consider how
traditional NLP methods and LLMs can be leveraged together to achieve
the best results. By combining the efficiency and precision of traditional
techniques with the versatility and power of LLMs, you can create highly
effective and economical NLP solutions that deliver value to your users and

stakeholders.

Tool Use

In the realm of Al-driven application development, the concept of “tool

use” or “function calling” has emerged as a powerful technique that
enables your LLM to connect to external tools, APIs , functions, databases ,
and other resources. This approach allows for a richer set of behaviors
than just outputting text, and more dynamic interactions between your
Al components and the rest of your application’s ecosystem. As we will
examine in this chapter, tool use also gives you the option of making your

Al model generate data in structured ways.

What is Tool Use?

Tool use , also known as function calling, is a technique that allows devel-

opers to specify a list of functions that an LLM can interact with during the

Tool Use 127

generation process. These tools can range from simple utility functions to
complex APIs or database queries. By providing the LLM with access to
these tools, developers can extend the model’s capabilities and enable it to

perform tasks that require external knowledge or actions.

Figure 8. Example of a function definition for an AI worker that analyzes documents

FUNCTION = {
name: "save analysis",
description: "Save analysis data for document",
parameters: {
type: "object",
properties: {
title: {
type: "string",
maxLength: 140

H
summary: {
type: "string",
description: "comprehensive multi-paragraph summary with
overview and list of sections (if applicable)"
H
tags: {
type: "array",
items: {
type: "string",
description: "lowercase tags representing main themes
of the document"
}
b
+
"required": %w[title summary tags]
}
}.freeze

The key idea behind tool use is to give the LLM the ability to dynamically
select and execute the appropriate tools based on the user’s input or
the task at hand. Instead of relying solely on the model’s pre-trained

knowledge, tool use allows the LLM to leverage external resources to

Tool Use 128

generate more accurate, relevant, and actionable responses. Tool use
makes techniques such as RAG (Retrieval Augmented Generation) much

easier to implement than they would be otherwise.

Note that unless otherwise stated, this book assumes your Al model does
not have access to any built-in server-side tools. Any tools you want to
make available to your Al must be explicitly declared by you in each API
request, with provisions for dispatching its execution if and when your

Al tells you that it would like to use that tool in its response.

The Potential of Tool Use

Tool use opens up a wide range of possibilities for Al-driven applications .

Here are a few examples of what can be achieved with tool use:

1. Chatbots and Virtual Assistants: By connecting an LLM to external
tools, chatbots and virtual assistants can perform more complex tasks,
such as retrieving information from databases, executing API calls, or
interacting with other systems. For example, a chatbot could use a
CRM tool to change the status of a deal based on the user’s request.

2. Data Analysis and Insights: LLMs can be connected to data analysis
tools or libraries to perform advanced data processing tasks . This en-
ables applications to generate insights, conduct comparative analyses,
or provide data-driven recommendations based on user queries.

3. Search and Information Retrieval: Tool use allows LLMs to interact
with search engines, vector databases, or other information retrieval

systems . By transforming user queries into search queries, the LLM

Tool Use 129

can retrieve relevant information from multiple sources and provide
comprehensive answers to user questions.

4. Integration with External Services: Tool use enables seamless inte-
gration between Al-driven applications and external services or APIs .
For example, an LLM could interact with a weather API to provide real-
time weather updates or a translation API to generate multilingual

responses.

The Tool Use Workflow

The tool use workflow typically involves four key steps:

1. Include function definitions in your request context
2. Dynamic (or explicit) tool selection
3. Execution of function(s)

4. Optional continuation of the original prompt

Let’s review each of these steps in detail.

Include function definitions in your request context

The Al knows what tools it has at its disposal because you give it a list as part
of your completion request (typically defined as functions using a variant
of JSON schema).

The precise syntax of tool definition is model-specific.

This is how you define a get_weather function in Claude 3 :

O 00 N O Ul A W N

el el e el
O 00 N O U1 & W IN R O

O 0 N O Ul A W N =

e e ol i
~N oo o W N RO

Tool Use 130

"name": "get weather",
"description": "Get the current weather in a given location",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
H
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description”: "The unit of temperature"

}I
"required": ["location"]

}

And this is how you would define the same function for GPT-4 , passing it

as the value of the tools parameter:

"name": "get current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",

"description": "The city and state, e.g. San Francisco, CA",
b
"unit": {

"type": "string",

"enum": ["celsius", "fahrenheit"],

"description": "The unit of temperature"
H

}

"required": ["location"],

18
19

u A W N -

Tool Use 131

}I

Almost the same, except different for no apparent reason! How annoy-

ing.

Function definitions specify name, description, and input parameters .
Input parameters can be further defined using attributes such as enums to
limit the acceptable values, and specifying whether a parameter is required

or not.

In addition to the actual function definitions, you can also include in-
structions or context for why and how to use the function in the system

directive .

For example, my Web Search tool in Olympia includes this system direc-

tive, which reminds the Al that it has the mentioned tools at its disposal:

The “google _search™ and "realtime search® functions let you do research
on behalf of the user. In contrast to Google, realtime search is powered
by Perplexity and provides real-time information to curated current events
databases and news sources. Make sure to include URLs in your response so
user can do followup research.

Providing detailed descriptions is considered the most important factor in
tool performance. Your descriptions should explain every detail about the

tool, including:

* What the tool does
* When it should be used (and when it shouldn't)

* What each parameter means and how it affects the tool’s behavior

O 0 N O Ul A W N =

N B 2 R B2 R B B B BB
© W 00 N O Ul D W N P O©

Tool Use 132

* Any important caveats or limitations that apply to the tool's imple-

mentation

The more context you can give the Al about your tools, the better it will be at
deciding when and how to use them. For instance, Anthropic recommends
at least 3-4 sentences per tool description for its Claude 3 series, more if

the tool is complex.

It's not necessarily intuitive, but descriptions are also considered more
important than examples. While you can include examples of how to use a
tool in its description or in the accompanying prompt, this is less important
than having a clear and comprehensive explanation of the tool’s purpose
and parameters. Only add examples after you've fully fleshed out the

description.

Here’s an example of a Stripe -like API function specification:

"name": "createPayment",
"description": "Create a new payment request",
"parameters": {
"type": "object",
"properties": {
"transaction_amount": {
"type": "number",
"description": "The amount to be paid"
b
"description": {
"type": "string",
"description": "A brief description of the payment"
}
"payment_method_id": {
"type": "string",
"description"”: "The payment method to be used"
}
"payer": {
"type": "object",

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Tool Use

"description”: "Information about the payer, including their name,

email, and identification number",
"properties": {
"name": {
"type": "string",
"description"”: "The payer's name"
I
"email": {
"type": "string",
"description”: "The payer's email address"
b
"identification": {
"type": "object",
"description”: "The payer's identification number",
"properties": {
"type": {
"type": "string",

133

"description": "Identification document (e.g. CPF, CNPJ)"

I
"number": {
"type": "string",
"description”: "The identification number"
}
+
"required": ["type", "number"]
}
+
"required": ["name", "email", "identification" 1]

}

In practice, some models have trouble dealing with nested func-
tion specifications and dealing with complex output data types
such as arrays, dictionaries etc. But in theory, you should be

able to supply JSON Schema specifications of arbitrary depth !

Tool Use 134

Dynamic Tool Selection

When you execute a chat completion that includes tool definitions, the LLM
dynamically selects the most appropriate tool(s) to use and generates the

required input parameters for each tool .

In practice, the Al's capacity for calling exactly the right function, and
exactly following your specification for the inputs is hit or miss. Turning
the temperature hyperparameter all the way down to 0.0 helps a lot,
but in my experience youll still get occasional errors. Those failures
include hallucinated function names, misnamed or just plain missing input
parameters. Parameters are passed as JSON, which means sometimes you'll

see errors caused by truncated, misquoted, or otherwise broken JSON .

P Self Healing Data patterns can help automatically fix function

calls that break due to syntax errors .

Forced (aka Explicit) Tool Selection

Some models give you the option to force calling of a particular function,
as a parameter in the request. Otherwise, whether to call the function or

not is entirely up to the AI's discretion .

The ability to force a function call is crucial in certain scenarios where you
want to ensure that a specific tool or function is executed, regardless of
the Al's dynamic selection process. There are several reasons why this

capability is important:

1. Explicit Control: You may be using the Al as a Discrete Component

or in a predefined workflow that necessitates the execution of a

Tool Use 135

particular function at a particular time. By forcing the call, you can
guarantee that the desired function is invoked instead of having to
nicely ask the Al to do it.

2. Debugging and Testing: When developing and testing Al-driven ap-
plications, the ability to force function calls is invaluable for debugging
purposes. By explicitly triggering specific functions, you can isolate
and test individual components of your application. This allows you
to verify the correctness of the function implementations, validate the
input parameters, and ensure that the expected results are returned .

3. Handling Edge Cases: There may be edge cases or exceptional sce-
narios where the Al's dynamic selection process might not choose
to execute a function that it should, and you know that based on
outside processes. In such cases, having the ability to force a function
call allows you to handle these situations explicitly. Define rules or
conditions in your application logic to determine when to override
the Al's discretion.

4. Consistency and Reproducibility: If you have a specific sequence of
functions that need to be executed in a particular order, forcing the
calls guarantees that the same sequence is followed every time . This
is especially important in applications where consistency and pre-
dictable behavior are critical, such as in financial systems or scientific
simulations.

5. Performance Optimization: In some cases, forcing a function call
can lead to performance optimizations. If you know that a specific
function is required for a particular task and that the Al's dynamic
selection process might introduce unnecessary overhead, you can by-
pass the selection process and directly invoke the required function.
This can help reduce latency and improve the overall efficiency of your

application .

Tool Use 136

In summary, the ability to force function calls in Al-driven applications
provides explicit control, aids in debugging and testing, handles edge cases,
ensures consistency and reproducibility. It's a powerful tool in your arsenal,

but we need to discuss one more aspect of this important feature.

In many decision-making use cases, we always want the model to
P make a function call and may never want the model to respond
with just its internal knowledge . For example, if you're routing
between multiple models specialized at different tasks (multilin-
gual input, math, etc), you may use the function-calling model to
delegate requests to one of the helper models and never respond

independently.

Tool Choice Parameter

GPT-4 and other language models that support function calling give you
a tool choice parameter for controlling whether tool use is required as

part of a completion. This parameter has three possible values:

* auto gives the Al full discretion over using a tool or simply responding

* required tells the Al that it must call a tool instead of responding, but
leaves selection of the tool up to the ai.

* The third option is to set the parameter of the name of function

that you want to force. More on that in the next section.

Note that if you set tool choice to required, the model will be
P forced to pick the most relevant function to call out of those
provided to it, even if none really fits the prompt. At the time of
publication, I am not aware of a model that will return an empty
tool_calls response, or use some other way of letting you know

that it did not find a suitable function to call .

Tool Use 137

Forcing a Function To Get Structured Output

The ability to force a function call gives you a way to force structured data
out of a chat completion instead of having to extract it yourself out of its

plaintext response.

Why is forcing functions to get structured output a big deal? Simply
put, because extraction of structured data from LLM output is a pain
in the neck. You can make your life a bit easier by asking for data in
XML, but then you have to parse XML. And what do you do when that
XML is missing because your Al responded: “I'm sorry, but I'm unable to

generate the data you requested because the bla, bla, bla...”

When using tools in this way:

* You should probably define a single tool in your request

* Remember to force use of its function using the tool_choice param-
eter.

* Remember that the model will pass the input to the tool, so the name
of the tool and description should be from the model’s perspective,

not yours.

This last point deserves an example for clarity. Let’s say that you are asking
the Al to do sentiment analysis on user text. The name of the function
would not be analyze sentiment, but rather it would be something
like save_sentiment_analysis. The Al is the one doing the sentiment
analysis, not the tool. All the tool is doing (from the perspective of the Al) is

saving the results of the analysis.

O 0 N O Ul A W N =

W W W WwWwWwwwwwwiNNNNNNNNNNRRRERRBRB R B B 92
O 0 N O U A W N B O OWOOWLOWNO UL WNRFEFO OOOLOWSNO U RS WNPRO

Tool Use 138

Here’s an example of using Claude 3 to record a summary of an image into

well-structured JSON , this time from the command line using curl:

curl https://api.anthropic.com/vl/messages \
--header "content-type: application/json" \
--header "x-api-key: $ANTHROPIC API KEY" \
--header "anthropic-version: 2023-06-01" \
--header "anthropic-beta: tools-2024-04-04" \
--data \

{
"model": "claude-3-sonnet-20240229",
"max_tokens": 1024,

"tools": [{
"name": "record summary",
"description": "Record summary of image into well-structured JSON.",

"input_schema": {
"type": "object",
"properties": {
"key colors": {
"type": "array",
"items": {
“"type": "object",
"properties": {

"rtr {

"type": "number",

"description": "red value [0.0, 1.0]"
I
"g": {

"type": "number",

"description": "green value [0.0, 1.0]"
T
"b": {

"type": "number",

"description": "blue value [0.0, 1.0]"
}
"name": {

"type": "string",

"description": "Human-readable color name

in snake case, e.g.
\"olive green\"or
\"turquoise\""

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

Tool Use 139

b
"required": ["r", "g", "b", "name"]
I
"description": "Key colors in the image. Four or less."
I
"description": {
"type": "string",
"description": "Image description. 1-2 sentences max."
I
"estimated year": {

"type": "integer",

"description": "Estimated year that the image was taken,
if is it a photo. Only set this if the
image appears to be non-fictional.
Rough estimates are okay!"

}
+
"required": ["key colors", "description"]
}
H,
"messages": [
{
"role": "user",
"content": [
{
"type": "image",
"source": {
"type": "baseb64",
"media type": "'$IMAGE MEDIA TYPE'",
"data": "'$IMAGE BASE64'"
}
I
{
“type": "text",
"text": "Use “record summary’ to describe this image."
}
]
}

} 1

In the provided example, we are using the Claude 3 model from Anthropic

Tool Use 140

to generate a structured JSON summary of an image. Here’s how it works:

1. We define a single tool named record_summary in the tools array of
the request payload. This tool is responsible for recording a summary
of the image into well-structured JSON.

2. The record summary tool has an input schema that specifies the

expected structure of the JSON output. It defines three properties:

* key colors: An array of objects representing the key colors in
the image. Each color object has properties for the red, green,
and blue values (ranging from 0.0 to 1.0) and a human-readable

color name in snake_case format.
* description: A string property for a brief description of the

image, limited to 1-2 sentences.
* estimated_year: An optional integer property for the estimated

year the image was taken, if it appears to be a non-fictional photo.

3. Inthe messages array, we supply the image data as a base64-encoded
string along with the media type. This allows the model to process the
image as part of the input.

4. We also prompt Claude to use the record summary tool to describe
the image.

5. When the request is sent to the Claude 3 model, it analyzes the image
and generates a JSON summary based on the specified input_schema.
The model extracts the key colors, provides a brief description, and
estimates the year the image was taken (if applicable).

6. The generated JSON summary passed as the parameters to the
record summary tool, providing a structured representation of the

image’s key characteristics.

Tool Use 141

By using the record_summary tool with a well-defined input_schema, we
can obtain a structured JSON summary of an image without relying on plain
text extraction. This approach ensures that the output follows a consistent
format and can be easily parsed and processed by downstream components
of the application.

The ability to force a function call and specify the expected output struc-
ture is a powerful feature of tool use in Al-driven applications. It allows
developers to have more control over the generated output and simplifies

the integration of Al-generated data into their application’s workflow.

Execution of Function(s)

You've defined functions, and prompted your Al, which decided that it
should call one of your functions. Now it’s time for your application code
or library, if youre using a Ruby gem like raix-rails to dispatch the
function call and its parameters to the corresponding implementation in

your application code.

Your application code decides what to do with the results of the function
execution. Maybe what to do involves a single line of code in a lambda, or
maybe it involves calling an external API. Maybe it involves calling another
Al component, or maybe it involves hundreds or even thousands of lines of

code in the rest of your system. It’s entirely up to you.

Sometimes the function call is the end of the operation, but if the results
represent information in a chain of thought to be continued by the Al, then
your application code needs to insert the execution results into the chat

transcript and let the Al continue processing.

For example, here a Raix function declaration used by Olympia’s Account -

Manager to communicate with our clients as part of an Intelligent Workflow

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

O 00 N O Ul A W N

el el el
U A W N RO

Tool Use 142

Orchestration for customer service.

class AccountManager
include Raix::ChatCompletion
include Raix::FunctionDispatch

lots of other functions...

function :notify account owner,
"Don't share UUID. Mention dollars if subscription changed",
message: { type: "string" } do |arguments|
account.owner.freeform notify(
subject: "Account Change Notification",
message: arguments|:message]

)
"Notified account owner"
end

It may not be immediately clear what is happening here, so I'll break it down.

1. The AccountManager class defines many functions related to account
management. It can change your plan, add and remove team mem-
bers, amongst other things.

2. Its top-levelinstructions tell AccountManager that it should notify the
account owner with the results of the account change request, using
the notify account owner function.

3. The concise definition of the function includes its:

* name
* description
* parameters message: { type: "string" }

e a block to execute when the function is called

After updating the transcript with the results of the function block, the
chat_completion method is called again. This method is responsible

Tool Use 143

for sending the updated conversation transcript back to the Al model for

further processing. We refer to this process as a conversation loop.

When the Al model receives a new chat completion request with an updated
transcript, it has access to the results of the previously executed function.
It can analyze these results, incorporate them into its decision-making
process, and generate the next response or action based on the cumulative
context of the conversation. It can choose to execute additional functions
based on the updated context, or it can generate a final response to the

original prompt if it determines that no further function calls are necessary.

Optional Continuation of the Original Prompt

When you send the tool results back to the LLM and continue processing
of the original prompt, the Al uses those results to either call additional

functions or generate a final plain text response.

Some models such as Cohere’s Command-R can cite the specific
tools they used in their responses, providing additional trans-

parency and traceability.

Depending on the model in use, the results of the function call will live in
transcript messages that have their own special role or be reflected in some
other syntax. But the important part is for that data to be in the transcript,

so that it can be considered by the Al as it decides what to do next.

https://openrouter.ai/models/cohere/command-r

Tool Use 144

A common (and potentially expensive) error condition is to forget
P to add the function results to the transcript before continuing the
chat. As a result, the Al will get prompted in essentially the same
way that it was before it called the function the first time. In other
words, as far as the Al is concerned, it hasn't called the function
yet. So it calls it again. And again. And again, forever until you
interrupt it. Hope your context was not too big, and your model

was not too expensive!

Best Practices for Tool Use

To get the most out of tool use, consider the following best practices.
Descriptive Definitions

Provide clear and descriptive names and descriptions for each tool and its
input parameters. This helps the LLM better understand the purpose and

capabilities of each tool.

I can tell you from experience that the common wisdom that says that
“naming is hard” applies here; I've seen dramatically different results
from LLMs just by changing the names of functions or wording of

descriptions. Sometimes removing descriptions improves performance.

Processing of Tool Results

When passing tool results back to the LLM, ensure that they are well-

structured and comprehensive. Use meaningful keys and values to rep-

O 0 N O Ul A W N

=
—= o

Tool Use 145

resent the output of each tool. Experiment with different formats and see
which works best, from JSON to plain-text.

The Result Interpreter addresses this challenge by employing Al to analyze
the results and provide human-friendly explanations, summaries, or key

takeaways .

Error Handling

Implement robust error handling mechanisms to handle cases where the
LLM may generate invalid or unsupported input parameters for tool calls.
Gracefully handle and recover from any errors that may occur during tool

execution .

One exceedingly nice quality of the Al is that it understands error messages!
Which means that if youre working in a quick and dirty mindset, you can
simply catch any exceptions generated in the implementation of a tool, and

pass it back to the Al so that it knows what happened!

For example, here’s a slimmed down version of the implementation of

google search in Olympia:

def google search(conversation, params)
conversation.update cstatus("Searching Google...")
query = params|:query]
search = GoogleSearch.new(query).get hash

conversation.update cstatus("Summarizing results...")
SummarizeKnowledgeGraph.new.perform(conversation, search.to json)
rescue StandardError => e
Honeybadger.notify(e)
{ error: e.message }.inspect
end

Google searches in Olympia are a two-step process. First you do the

search, then you summarize the results. If there’s a failure, no matter what

Tool Use 146

it is, the exception message is packaged up and sent back to the Al. This
technique is the foundation of practically all the Intelligent Error Handling

patterns .

For instance, let’s say that the GoogleSearch API call fails due to a 503
Service Unavailable exception. That bubbles up to the top-level rescue,
and the description of the error is sent back to the Al as the result of the
function call. Instead of just giving the user a blank screen or technical
error, the Al says something like “I'm sorry, but I'm unable to access my

Google Search capabilities at this time. I can try again later, if you wish.

This may seem like just a clever trick, but consider a different kind of error,
one where the Al was calling an external API and had direct control of the
parameters to pass to the API. Maybe it made a mistake in how it generated
those parameters? Provided that the error message from the external API
is detailed enough, passing the error message back to the calling Al means
that it can reconsider those parameters and try again. Automatically. No

matter what the error was.

Now think of what it would take to replicate that kind of robust error

handling in normal code. It's practically impossible.

Iterative Refinement

If the LLM is not recommending the appropriate tools or generating
suboptimal responses, iterate on the tool definitions, descriptions, and
input parameters. Continuously refine and improve the tool setup based

on the observed behavior and desired outcomes.

1. Start with simple tool definitions: Begin by defining tools with clear
and concise names, descriptions, and input parameters. Avoid over-

complicating the tool setup initially and focus on the core functional-

O 00 N O Ul A W N

el
A W N~

Tool Use 147

{

ity. For example, if you want to save the results of sentiment analysis,

start with a basic definition like:

"name": "save sentiment score",
"description": "Analyze user-provided text and generate sentiment score",
"parameters": {
"type": "object",
"properties": {
"score": {
"type": "float",
"description"”: "sentiment score from -1 (negative) to 1 (positive)"
}
b
"required": ["score"]
}

2. Test and observe: Once you have the initial tool definitions in place,
test them with different prompts and observe how the LLM interacts
with the tool. Pay attention to the quality and relevance of the
generated responses. If the LLM is generating suboptimal responses,
it's time to refine the tool definitions.

3. Refine descriptions: If the LLM is misunderstanding the purpose of a
tool, try refining the tool’s description. Provide more context, exam-
ples, or clarifications to guide the LLM in using the tool effectively.
For instance, you can update the sentiment analysis tool description
to more specifically address the emotional tone of the piece of text

being analyzed:

o U A W N =

~N o U A WN

Tool Use 148

{

"name": "save sentiment score",
"description": "Determine the overall emotional tone of a piece of text,
such as customer reviews, social media posts, or feedback comments.",

4. Adjust input parameters: If the LLM is generating invalid or irrelevant
input parameters for a tool, consider adjusting the parameter defini-
tions. Add more specific constraints, validation rules, or examples to
clarify the expected input format.

5. Iterate based on feedback: Continuously monitor the performance
of your tools and gather feedback from users or stakeholders. Use
this feedback to identify areas for improvement and make iterative
refinements to the tool definitions. For example, if users report that
the analysis is not handling sarcasm well, you can add a note in the

description:

{
"name": "save sentiment score",
"description": "Analyze the sentiment of a given text and return a sentiment
score between -1 (negative) and 1 (positive). Note: Sarcasm should be
considered negative.",

By iteratively refining your tool definitions based on observed behavior and
feedback, you can gradually improve the performance and effectiveness
of your Al-driven application. Remember to keep the tool definitions
clear, concise, and focused on the specific task at hand. Regularly test
and validate the tool interactions to ensure they align with your desired

outcomes.

Tool Use 149

Composing and Chaining Tools

One of the most powerful aspects of tool use that has only been alluded
to so far is the ability to compose and chain multiple tools together to
accomplish complex tasks . By carefully designing your tool definitions and
their input/output formats, you can create reusable building blocks that

can be combined in various ways.

Let’s consider an example where you're building a data analysis pipeline for

your Al-driven application. You might have the following tools:

1. DataRetrieval: A tool that fetches data from a database or API based
on specified criteria.

2. DataProcessing: A tool that performs calculations, transformations,
or aggregations on the retrieved data.

3. DataVisualization: A tool that presents the processed data in a

user-friendly format, such as charts or graphs.

By chaining these tools together, you can create a powerful workflow
that retrieves relevant data, processes it, and presents the results in a

meaningful way. Here’s how the tool use workflow might look like:

1. The LLM receives a user query asking for insights on sales data for a
specific product category.

2. The LLM selects the DataRetrieval tool and generates the appro-
priate input parameters to fetch the relevant sales data from the
database.

3. The retrieved data is “passed” to the DataProcessing tool, which
calculates metrics such as total revenue, average sales price, and

growth rate.

Tool Use 150

4. The processed data is then digested by the DataVisualization tool,
which creates a visually appealing chart or graph to represent the
insights, passing the URL of the chart back to the LLM.

5. Finally, the LLM generates a formatted response to the user query
using markdown , incorporating the visualized data and providing a

summary of the key findings.

By composing these tools together, you can create a seamless data analysis
workflow that can be easily integrated into your application . The beauty of
this approach is that each tool can be developed and tested independently,

and then combined in different ways to solve various problems.

To enable smooth composition and chaining of tools, it's important to

define clear input and output formats for each tool.

For example, the DataRetrieval tool might accept parameters such as the
database connection details, table name, and query conditions, and return
the result set as a structured JSON object . The DataProcessing tool can
then expect this JSON object as input and produce a transformed JSON
object as output. By standardizing the data flow between tools, you can

ensure compatibility and reusability.

As you design your tool ecosystem, think about how different tools can
be combined to address common use cases in your application. Consider
creating high-level tools that encapsulate common workflows or business

logic, making it easier for the LLM to select and use them effectively.

Remember, the power of tool use lies in the flexibility and modularity it
provides. By breaking down complex tasks into smaller, reusable tools, you
can create a robust and adaptable Al-driven application that can tackle a

wide range of challenges.

Tool Use 151

Future Directions

As the field of Al-driven application development evolves, we can expect
further advancements in tool use capabilities. Some potential future

directions include:

1. Multi-hop Tool Use: LLMs may be able to decide how many times they
need to use tools in order to generate a satisfactory response. This
could involve multiple rounds of tool selection and execution based
on intermediate results.

2. Pre-defined Tools: Al platforms may provide a set of pre-defined
tools that developers can leverage out-of-the-box, such as Python
interpreters, web search tools, or common utility functions.

3. Seamless Integration: As tool use becomes more prevalent, we can
expect better integration between Al platforms and popular develop-
ment frameworks , making it easier for developers to incorporate tool

use into their applications.

Tool use is a powerful technique that enables developers to harness the full
potential of LLMs in Al-driven applications. By connecting LLMs to external
tools and resources, you can create more dynamic, intelligent, and context-
aware systems that can adapt to user needs and provide valuable insights

and actions.

While tool use offers immense possibilities, it's important to be aware of
potential challenges and considerations. One key aspect is managing the
complexity of tool interactions and ensuring the stability and reliability

of the overall system. You need to handle scenarios where tool calls

Tool Use 152

may fail, return unexpected results, or have performance implications.
Additionally, you should consider security and access control measures
to prevent unauthorized or malicious use of tools. Proper error handling,
logging, and monitoring mechanisms are crucial to maintain the integrity

and performance of your Al-driven application.

As you explore the possibilities of tool use in your own projects , remember
to start with clear objectives, design well-structured tool definitions, and
iterate based on feedback and results. With the right approach and
mindset, tool use can unlock new levels of innovation and value in your

Al-driven applications .

Stream Processing

Streaming data over HTTP , also known as server-sent events (SSE), is a

mechanism where the server continuously sends data to the client as it
becomes available, without the need for the client to explicitly request it.
As the Al's response is generated incrementally, it makes sense to provide
a responsive user experience by displaying the Al's output as it is being
generated. And in fact all Al providers APIs that I know of offer streaming

responses as an option in their completion endpoints.

The reason that this chapter appears here in the book, right after Using
Tools is because of how powerful it can be to combine the use of tools
with live Al responses to users. Doing so allows for dynamic and interactive
experiences where the Al can process user input, utilize various tools and

functions at its discretion, and then provide real-time responses.

W 00 N O Ul & W N

L el e
AW N R

Stream Processing 154

To achieve this seamless interaction, you need to write stream handlers
that can dispatch Al-invoked tool function calls as well as plain text output
to the end user. The need to loop after processing a tool function adds an

interesting challenge to the job.

Implementating a ReplyStream

To demonstrate how stream processing can be implemented, this chapter
will take a deep dive into a simplified version of the ReplyStream class that
is used in Olympia . Instances of this class can be passed as the stream

parameter in Al client libraries such as ruby-openai and openrouter .

Here’s how I use ReplyStream in Olympia’s PromptSubscriber, which

listens via Wisper for the creation of new user messages.

class PromptSubscriber
include Raix::ChatCompletion
include Raix::PromptDeclarations

many other declarations omitted...

prompt text: -> { user _message.content },
stream: -> { ReplyStream.new(self) },
until: -> { bot message.complete? }

def message created(message) # invoked by Wisper
return unless message.role.user? && message.content?

rest of the implementation omitted. ..

In addition to a context reference to the prompt subscriber that instanti-
ated it, the ReplyStream class also has instance variables to store a buffer
of received data, and arrays to keep track of function names and arguments

invoked during stream processing.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

O 00 N O Ul A W N

11
12
13
14
15
16
17
18

Stream Processing 155

class ReplyStream
attr_accessor :buffer, :f name, :f arguments, :context

delegate :bot message, :dispatch, to: :context

def initialize(context)
self.context = context
self.buffer [1
self.f name []
self.f _arguments = []
end

def call(chunk, bytesize = nil)
...
end

...
end

The initialize method sets up the initial state of the ReplyStream
instance, initializing the buffer, context, and other variables.

The call method is the main entry point for processing the streaming data .
It takes a chunk of data (represented as a hash) and an optional bytesize
parameter, which in our example is unused.. Inside this method, the class
uses pattern matching to handle different scenarios based on the structure

of the received chunk.

Calling deep_symbolize keys on the chunk helps make the
pattern matching more elegant, by letting us operate on symbols

rather than strings.

O 00 N O Ul A W N

el ol el
U A W N RO

Stream Processing 156

def call(chunk, bytesize)
case chunk.deep symbolize keys

in { # match function name
choices: [
{
delta: {
tool calls: [
{ index: index, function: {name: name} }
]
b
}
1%

f name[index] = name

The first pattern we’re matching for is a tool call along with its associated
function name. If we detect one, we tuck it into the f _name array. We store
function names in an indexed array, because the model is capable of parallel

function calling, sending more than one function to execute at a time.

Parallel function calling is an Al model’s ability to perform multiple
function calls together, allowing the effects and results of these function
calls to be resolved in parallel. This is especially useful if functions take a
long time, and reduces round trips with the API , which in turn can save

a significant amount of token expenditure.

Next we need to match for the arguments corresponding to the function

calls.

O 00 N O Ul A W N

el ol ol
U A W N RO

O 0 N O Ul A W N =

el el i
w N =

Stream Processing 157

in { # match arguments

choices: [
{
delta: {
tool calls: [
{
index: index, function: {arguments: argument }
}
]
}
}
1}
f arguments[index] ||= "" # initialize if not already

f arguments[index] << argument

Similarly to how we handled the function names , we tuck away arguments

in an indexed array.

Next up, we look for normal user-facing messages, which will arrive from
the server one token at a time and be assigned to the new_content variable.
We also need to keep an eye on finish reason. It will be nil until the last
chunk of the output sequence.

in {

choices: [
{ delta: {content: new content}, finish reason: finish reason }

1}

you could transmit every chunk to the user here...
buffer << new content.to s

if finish reason.present?

finalize
elsif new content.to_s.match?(/\n\n/)

send to client # ...or buffer and transmit once per paragraph
end

Importantly, we add a pattern match expression to handle error messages

~N o U bW

A W N =

Stream Processing 158

sent by the Al model provider. Inlocal development environments , we raise

an exception, but in production, we log the error and finalize.

in { error: { message: } }
if Rails.env.local?
raise message
else
Honeybadger.notify("AI Error: #{message}")
finalize
end

The final else clause of case will execute if none of the previous patterns
matched. It’s just a safeguard so that if the Al model starts sending us

unrecognized chunks we find out about them.

else
Honeybadger.notify("Unrecognized Chunk: #{chunk}")
end
end

The send to client method is responsible for sending the buffered con-
tent to the client. It checks that the buffer is not empty, updates the bot
message content, renders the bot message, and saves the content in the

database to ensure data persistence.

O 00 N O Ul A W N

11
12
13
14
15

W 0 N O Ul A W N =

T
N = ©

13
14
15
16

Stream Processing 159

def send to client
no need to process pure whitespace
return if buffer.join.squish.blank?

set the buffer content on the bot message
content = buffer.join
bot message.content = content

save to database so that we never lose data
even if the stream doesn't terminate correctly
bot message.update column(:content, content)

update content via websocket
ConversationRenderer.update(bot message)
end

The finalize method is called when the stream processing is complete.
It dispatches the function calls if any were received during the stream,
updates the bot message with the final content and other relevant infor-

mation, and resets the function call history .

def finalize
if f_name.any?
f name.each with index do |name, index|
takes care of calling the function wherever it's implemented
dispatch(name:, arguments: JSON.parse(f _arguments[index]))
end

reset the function call history
f name.clear
f _arguments.clear

else
content = buffer.join.presence
bot message.update! (content:, complete: true)
ConversationRenderer.update(bot message)

end

end

If the model decides to call a function, you need to “dispatch” that function

W 00 N O Ul B W N =

=
(<]

Stream Processing 160

call (name and arguments) in such a way that it gets executed and func-
tion calland function result messages get added to the conversation

transcript .

In my experience, it's better to handle the creation of function messages in
one place in your codebase, instead of relying on the tool implementations.
It's cleaner, but also has a very important practical reason too: if the Al
model calls a function, and doesn’t see resulting call and result messages in
the transcript when you loop, it will call the same function again. Potentially
forever. Remember that the Al is completely stateless , so unless you echo
those function calls back to it, they didn't happen.

PromptSubscriber#dispatch

def dispatch(name:, arguments:)
adds a function call message to the conversation transcript
plus dispatches to tool and returns result
conversation.function_call!(name, arguments).then do |result]|
add function result message to the transcript
conversation. function_result!(name, result)
end
end

Clearing the function call history after dispatching is just as
important as making sure the call and results end up in your
transcript, so that you don't just keep calling the same functions

over and over again every time you loop.

The “Conversation Loop”

[keep mentioning looping, but if youre new to function calling , it might

not be obvious why we need to loop. The reason is that once the Al “asks”

1
2
3

Stream Processing 161

you to execute tool functions on its behalf, it will stop replying. It's up to
you to execute those functions, gather the results, add the results to the
transcript, and then submit the original prompt again in order to get a new

set of function calls or user-facing results.

In the PromptSubscriber class, we use the prompt method from the
PromptDeclarations module to define the behavior of the conversation
loop. The until parameter is set to -> { bot message.complete? },
which means that the loop will continue until the bot_message is marked

as complete.

prompt text: -> { user _message.content },
stream: -> { ReplyStream.new(self) },
until: -> { bot message.complete? }

P But when is bot_message marked as complete? If you've forgot-

ten, refer back to line 13 of the finalize method .

Let’s review the entire stream processing logic .

1. The PromptSubscriber receives a new user message via the mes-
sage created method, which is invoked by the Wisper pub/sub
system every time the end user creates a new prompt.

2. The prompt class method declaratively defines the behavior of the
chat completion logic for the PromptSubscriber. The Al model will
have a chat completion executed with the user’'s message content,
a new instance of ReplyStream as the stream parameter, and the
specified loop condition.

3. The Al model processes the prompt and starts generating a response.
As the response is streamed, the call method of the ReplyStream

instance is invoked for each chunk of data.

Stream Processing 162

10.

11.

If the AI model decides to call a tool function, the function name and
arguments are extracted from the chunk and stored in the f name and
f _arguments arrays, respectively.

If the Al model generates user-facing content, it is buffered and sent
to the client via the send _to client method.

Once the stream processing is complete, the finalize method is
called. If any tool functions were invoked during the stream, they are
dispatched using the dispatch method of the PromptSubscriber.
The dispatch method adds a function_call message to the conver-
sation transcript, executes the corresponding tool function, and adds
a function_result message to the transcript with the result of the
function call.

After dispatching the tool functions, the function call history is cleared
to prevent duplicate function calls in subsequent loops.

If no tool functions were invoked, the finalize method updates the
bot message with the final content, marks it as complete, and sends
the updated message to the client.

The loop condition -> { bot message.complete? } isevaluated. If
the bot _message is not marked as complete, the loop continues, and
the original prompt is submitted again with the updated conversation
transcript .

Steps 3-10 are repeated until the bot message is marked as complete,
indicating that the Al model has finished generating its response and

no further tool functions need to be executed.

By implementing this conversation loop, you enable the Al model to

engage in a back-and-forth interaction with the application, executing

tool functions as needed and generating user-facing responses until the

conversation reaches a natural conclusion.

Stream Processing 163

The combination of stream processing and the conversation loop allows for
dynamic and interactive Al-powered experiences, where the Al model can
process user input, utilize various tools and functions, and provide real-

time responses based on the evolving conversation context.

Auto Continuation

It's important to be aware of Al output limitations. Most models have a
maximum number of tokens they can generate in a single response, which
is determined by the max_tokens parameter. If the Al model reaches this
limit while generating a response, it will abruptly stop and indicate that the

output was truncated.

In the streaming response from the Al platform API, you can detect this
situation by examining the finish reason variable in the chunk. If the
finish_reasonissetto "length" (or some other key value specific to the
model), it means that the model reached its maximum token limit during

generation and the output has been cut short.

One way to handle this scenario gracefully and provide a seamless user
experience, is to implement an auto-continuation mechanism in your
stream processing logic. By adding a pattern match for length-related
finish reasons, you can choose to loop and automatically continue the

output from where it left off.

Here’s a purposely simplified example of how you can modify the call

method in the ReplyStream class to support auto continuation:

O 00 N O Ul A W N

W W W NNNNNNNNNNRRRRERR R R 92 (3
N P © © 0 NN O U A WINBEFHF O OWODWSNO UULDS WNPRFROO

Stream Processing 164

LENGTH_STOPS = %w[length MAX TOKENS]

def call(chunk, bytesize)
case chunk.deep symbolize keys

...
in {
choices: [
{ delta: {content: new content},
finish reason: finish reason }] }
buffer << new content.to s
if finish reason.blank?
send to client if new content.to _s.match?(/\n\n/)
elsif LENGTH STOPS.include?(finish reason)
continue cutoff
else
finalize
end
...
end
end
private

def continue cutoff
conversation.bot _message! (buffer.join, visible: false)
conversation.user _message!("please continue", visible: false)
bot message.update column(:created at, Time.current)

end

In this modified version, when the finish reason indicates truncated
output,instead of finalizing the stream, we add a pair of messages to
the transcript without finalizing, move the original user-facing response
message to the “bottom” of the transcript by updating its created at
attribute, and then let the loop happen, so that the Al continues generating
where it left off.

Stream Processing 165

Remember that the Al completion endpoint is stateless. It only “knows”
whatyou tell it via the transcript. In this case, the way that we communicate
to the Al that it was cutoff is by adding “invisible” (to the end user) messages
to the transcript. Remember though, that this is a purposely simplified
example. A real implementation would need to do further transcript
management to ensure that we didn't waste tokens and/or confuse the Al

with duplicated assistant messages in the transcript.

Areal implementation of auto-continuation should also have so-called “cir-
cuit breaker” logic in place to prevent runaway looping. The reason being
that, given certain kinds of user prompts and low max_tokens settings, the

Al could continue looping user-facing output endlessly.

Keep in mind that every loop requires a separate request, and that each
request consumes your entire transcript again. You should definitely
consider the trade-offs between user experience and API usage when
deciding whether to implement auto continuation in your application.
Auto-continuation in particular can dangerously expensive, especially

when using premium commercial models.

Conclusion

Stream processing is a critical aspect of building Al-powered applications
that combine tool use with live Al responses. By efficiently handling the
streaming data from Al platform APIs, you can provide a seamless and
interactive user experience, handle large responses, optimize resource

usage, and gracefully handle errors.

Stream Processing 166

The provided Conversation::ReplyStream class demonstrates how
stream processing can be implemented in a Ruby application using
pattern matching and event-driven architecture. By understanding and
leveraging stream processing techniques, you can unlock the full potential
of Al integration in your applications and deliver powerful and engaging

user experiences.

Self Healing Data

Self-healing data is a powerful approach to ensuring data integrity, con-

sistency, and quality in applications by leveraging the capabilities of large
language models (LLMs). This category of patterns focuses on the idea
of using Al to automatically detect, diagnose, and correct data anomalies,
inconsistencies, or errors, thereby reducing the burden on developers and

maintaining a high level of data reliability.

Atits core, the self-healing data patterns recognize that data is the lifeblood
of any application, and ensuring its accuracy and integrity is crucial for the
proper functioning and user experience of the application. However, man-
aging and maintaining data quality can be a complex and time-consuming
task, especially as applications grow in size and complexity. This is where

the power of Al comes into play.

Self Healing Data 168

In the self-healing data patterns, Al workers are employed to continuously
monitor and analyze your application’s data. These models have the ability
to understand and interpret patterns, relationships, and anomalies within
the data. By leveraging their natural language processing and understand-
ing capabilities, they can identify potential issues or inconsistencies in the

data and take appropriate actions to rectify them.

The process of self-healing data typically involves several key steps:

1. Data Monitoring: Al workers constantly monitor the application’s
data streams, databases, or storage systems, looking for any signs of
anomalies, inconsistencies, or errors. Alternatively, you can activate
an Al component in reaction to an exception.

2. Anomaly Detection: When an issue is detected, the Al worker ana-
lyzes the data in detail to identify the specific nature and scope of
the problem. This could involve detecting missing values, inconsistent
formats, or data that violates predefined rules or constraints.

3. Diagnosis and Correction: Once the issue is identified, the Al worker
uses its knowledge and understanding of the data domain to deter-
mine the appropriate course of action. This could involve automati-
cally correcting the data, filling in missing values, or flagging the issue
for human intervention if necessary.

4. Continuous Learning (optional, depending on use case): As your Al
worker encounters and resolves various data issues, it can output
describing what happened and how it responded. This metadata
can be fed into learning processes that allows you (and perhaps the
underlying model, via fine-tuning) to become more effective and

efficient over time in identifying and resolving data anomalies.

By automatically detecting and correcting data issues, you can ensure that

your application operates on high-quality, reliable data. This reduces the

Self Healing Data 169

risk of errors, inconsistencies, or data-related bugs affecting the applica-

tion’s functionality or user experience.

Once you have Al workers handling the task of data monitoring and cor-
rection, you can focus your efforts on other critical aspects of the ap-
plication. This saves time and resources that would otherwise be spent
on manual data cleaning and maintenance. In fact, as your applications
grow in size and complexity, manually managing data quality becomes
increasingly challenging. The “Self-Healing Data” patterns scale effectively
by leveraging the power of Al to handle large volumes of data and detect

issues in real-time.

Due to their nature, Al models can adapt to changing data pat-
P terns, schemas, or requirements over time with little to no su-
pervision. As long as their directives provide adequate guidance,
especially regarding intended results, your application may be
able to evolve and handle new data scenarios without requiring

extensive manual intervention or code changes.

The self-healing data patterns align well with the other categories of
patterns we've discussed, such as “Multitude of Workers” . The self-healing
data capability can be viewed as a specialized kind of worker that focuses
specifically on ensuring data quality and integrity. This kind of worker
operates alongside other Al workers, each contributing to different aspects

of the application’s functionality.

Implementing self-healing data patterns in practice requires careful design
and integration of Al models into the application architecture. Because of
the risks of data loss and corruption, you should define clear guidelines for
how you will use this technique. You should also consider factors such as

performance, scalability, and data security.

O 0 N O Ul A W N =

el el i
w N = o

Self Healing Data 170

Practical Case Study: Fixing Broken JSON

One of the most practical and convenient ways to leverage self-healing data

is also very simple to explain: fixing broken JSON .

This technique can be applied to the common challenge of dealing with
imperfect or inconsistent data generated by LLMs , such as broken JSON,
and provides an approach for automatically detecting and correcting these

issues.

At Olympia I regularly encounter scenarios where LLMs generate JSON
data that is not perfectly valid. This can happen due to various reasons,
such as the LLM adding commentary before or after the actual JSON code,
or introducing syntax errors like missing commas or unescaped double
quotes. These issues can lead to parsing errors and cause disruptions in

the application’s functionality.

To address this problem, I have implemented a practical solution in the
form of a JsonFixer class. This class embodies the “Self-Healing Data”
pattern by taking the broken JSON as input and leveraging an LLM to fix

it while preserving as much information and intent as possible.

class JsonFixer
include Raix::ChatCompletion

def call(bad _json, error_message)
raise "No data provided" if bad _json.blank? || error_message.blank?

transcript << {

system: "Consider user-provided JSON that generated a parse exception.
Do your best to fix it while preserving the original content

and intent as much as possible." }
transcript << { user: bad json }
transcript << { assistant: "What is the error message?"}
transcript << { user: error_message }

21

1
2
3
4
5

Self Healing Data 1m

transcript << { assistant: "Here is the corrected JSON\n " json\n" }
self.stop = [" "]

chat _completion(json: true)
end

def model
"mistralai/mixtral-8x7b-instruct:nitro"
end
end

P Note how JsonFixer uses Ventriloquist to guide the Al's re-

sponses.

The process of self-healing JSON data works as follows:

1. JSON Generation: An LLM is used to generate JSON data based on
certain prompts or requirements. However, due to the nature of
LLMs, the generated JSON may not always be perfectly valid. The
JSON parser will of course raise a ParserError if you give it invalid
JSON.

begin
JSON.parse(1llm _generated json)
rescue JSON::ParserError => e
JsonFixer.new.call(llm_generated json, e.message)
end

Note that the exception message is also passed to the JSONFixer call so
that it doesn’t need to fully assume what is wrong with the data, especially

since the parser will often tell you exactly what is wrong.

Self Healing Data 172

2. LLM-based Correction: The JSONFixer class sends the broken JSON
back to an LLM, along with a specific prompt or instruction to fix the
JSON while preserving the original information and intent as much
as possible. The LLM, trained on vast amounts of data and with an
understanding of JSON syntax, attempts to correct the errors and
generate a valid JSON string. Response Fencing is used to constrain
the output of the LLM, and we choose Mixtral 8x7B as the Al model,
since it is particularly good for this kind of task.

3. Validation and Integration: The fixed JSON string returned by the
LLM is parsed by the JSONFixer class itself, because it called chat_-
completion(json: true). If the fixed JSON passes validation, it is
integrated back into the application’s workflow, allowing the applica-
tion to continue processing the data seamlessly. The bad JSON has

been “healed”.

Although I've written and rewritten my own JSONFixer implementation a
number of times, I doubt that the total time invested in all of those versions

is more than an hour or two.

Note that preservation of intent is a key element of any self-healing data
pattern. The LLM-based correction process aims to preserve the original
information and intent of the generated JSON as much as possible. This
ensures that the fixed JSON maintains its semantic meaning and can be

used effectively within the application’s context.

This practical implementation of the “Self-Healing Data” approach in
Olympia clearly demonstrates how Al, specifically LLMs, can be leveraged
to solve real-world data challenges. It showcases the power of combining
traditional programming techniques with Al capabilities to build robust

and efficient applications.

Self Healing Data 173

Postel’'s Law and the “Self-Healing Data” Pattern

“Self-Healing Data,” as exemplified by the JSONFixer class, aligns well
with the principle known as Postel’s Law, also referred to as the Robust-

ness Principle. Postel’s Law states:

“Be conservative in what you do, be liberal in what you accept from

others”

This principle, originally articulated by Jon Postel, a pioneer of the
early Internet, emphasizes the importance of building systems that are
tolerant of diverse or even slightly incorrect inputs while maintaining

strict adherence to specified protocols when sending outputs.

In the context of “Self-Healing Data,” the JSONFixer class embodies
Postel's Law by being liberal in accepting broken or imperfect JSON
data generated by LLMs. It doesn't immediately reject or fail when
encountering JSON that doesn't strictly adhere to the expected format.
Instead, it takes a tolerant approach and attempts to fix the JSON using
the power of LLMs.

By being liberal in accepting imperfect JSON, the JSONFixer class
demonstrates robustness and flexibility. It acknowledges that data
in the real world often comes in various forms and may not always
conform to strict specifications. By gracefully handling and correcting
these deviations, the class ensures that the application can continue to

function smoothly, even in the presence of imperfect data.

On the other hand, the JSONFixer class also adheres to the conservative
aspect of Postel's Law when it comes to the output. After fixing the
JSON using LLMs, the class validates the corrected JSON to ensure it

strictly conforms to the expected format. It maintains the integrity and

Self Healing Data

correctness of the data before passing it along to other parts of the
application. This conservative approach guarantees that the output of
the JSONFixer class is reliable and consistent, promoting interoperability

and preventing the propagation of errors.

Interesting Trivia about Jon Postel:

* Jon Postel (1943-1998) was an American computer scientist who
played a crucial role in the development of the Internet. He was
known as the “God of the Internet” for his significant contributions

to the underlying protocols and standards.
* Postel was the editor of the Request for Comments (RFC) document

series, which is a series of technical and organizational notes about
the Internet. He authored or co-authored over 200 RFCs, including

the foundational protocols such as TCP, IP, and SMTP.
e In addition to his technical contributions, Postel was known for his

humble and collaborative approach. He believed in the importance
of reaching consensus and working together to build a robust and

interoperable network.

* Postel served as the Director of the Computer Networks Division
at the Information Sciences Institute (ISI) of the University of
Southern California (USC) from 1977 until his untimely death in
1998.

* In recognition of his immense contributions, Postel was posthu-
mously awarded the prestigious Turing Award in 1998, often re-

ferred to as the “Nobel Prize of Computing”

The JSONFixer class promotes robustness, flexibility, and interoperabil-
ity, which were core values that Postel upheld throughout his career.

By building systems that are tolerant of imperfections while maintaining

174

Self Healing Data 175

strict adherence to protocols, we can create applications that are more

resilient and adaptable in the face of real-world challenges.

Considerations and Counterindications

The applicability of self-healing data approaches is entirely dependent on
the kind of data your application handles. There’s a reason why you might
not want to simply monkeypatch JSON. parse to automatically self-correct
all JSON parsing errors in your application: not all errors can or should be

automatically corrected.

Self-healing is particularly fraught when coupled with regulatory or com-
pliance requirements related to data handling and processing. Some indus-
tries, such as healthcare and finance, have such strict regulations regarding
data integrity and auditability that doing any sort of “black box” data cor-
rection without proper oversight or logging may violate these regulations.
It’s crucial to ensure that whatever self-healing data techniques you come

up with align with the applicable legal and regulatory frameworks.

Applying self-healing data techniques, particularly those involving Al mod-
els, may also have a large impact on application performance and resource
utilization. Processing large volumes of data through AI models for error
detection and correction can be computationally intensive. It's important
to assess the trade-offs between the benefits of self-healing data and the

associated performance and resource costs.

That said, let’s dive into the factors involved in deciding when and where to

apply this powerful approach.

Self Healing Data 176

Data Criticality

When considering the application of self-healing data techniques, it’s
crucial to assess the criticality of the data being processed. The level of
criticality refers to the importance and sensitivity of the data in the context

of your application and its business domain.

In some cases, automatically correcting data errors may not be appropriate,
especially if the data is highly sensitive or has legal implications. For

example, consider the following scenarios:

1. Financial Transactions: In financial applications, such as banking
systems or trading platforms, data accuracy is of utmost importance.
Even minor errors in financial data can have significant consequences,
such as incorrect account balances, misrouted funds, or erroneous
trading decisions. In these cases, automated corrections without
thorough verification and auditing may introduce unacceptable risks.

2. Medical Records: Healthcare applications deal with highly sensitive
and confidential patient data. Inaccuracies in medical records can
have severe implications for patient safety and treatment decisions.
Automatically modifying medical data without proper oversight and
validation by qualified healthcare professionals may violate regulatory
requirements and put patient well-being at risk.

3. Legal Documents: Applications handling legal documents, such as
contracts, agreements, or court filings, require strict accuracy and
integrity. Even minor errors in legal data can have significant legal
ramifications. Automated corrections in this domain may not be
appropriate, as the data often requires manual review and verification

by legal experts to ensure its validity and enforceability.

Self Healing Data 177

In these critical data scenarios, the risks associated with automated cor-
rections often outweigh the potential benefits. The consequences of
introducing errors or modifying data incorrectly can be severe, leading to

financial losses, legal liabilities, or even harm to individuals.

When dealing with highly critical data, it's essential to prioritize manual
verification and validation processes. Human oversight and expertise are
crucial in ensuring the accuracy and integrity of the data. Automated
self-healing techniques can still be employed to flag potential errors or
inconsistencies, but the final decision on corrections should involve human

judgment and approval.

However, it’'s important to note that not all data in an application may have
the same level of criticality. Within the same application, there may be
subsets of data that are less sensitive or have lower impact if errors occur.
In such cases, self-healing data techniques can be selectively applied to
those specific data subsets, while critical data remains subject to manual

verification.

The key is to carefully assess the criticality of each data category in your
application and define clear guidelines and processes for handling correc-
tions based on the associated risks and implications. By differentiating
between critical (i.e. ledgers, medical records) and non-critical data (i.e.
mailing addresses, resource warnings), you can strike a balance between
leveraging the benefits of self-healing data techniques where appropriate

and maintaining strict control and oversight where necessary.

Ultimately, the decision to apply self-healing data techniques to critical
data should be made in consultation with domain experts, legal advisors,
and other relevant stakeholders. It's essential to consider the specific
requirements, regulations, and risks associated with your application’s data

and align the data correction strategies accordingly.

Self Healing Data 178

Error Severity

When applying self-healing data techniques, it's important to assess the
severity and impact of the data errors. Not all errors are created equal, and
the appropriate course of action may vary depending on the severity of the

issue.

Minor inconsistencies or formatting issues may be suitable for automatic
correction. For example, a self-healing data worker tasked with fixing
broken JSON can handle missing commas or unescaped double quotes
without significantly altering the meaning or structure of the data. These
types of errors are often straightforward to correct and have minimal

impact on the overall data integrity.

However, more severe errors that fundamentally change the meaning or
integrity of the data may require a different approach. In such cases,
automated corrections may not be sufficient, and human intervention may

be necessary to ensure the accuracy and validity of the data.

This is where the concept of using Al itself to help determine error severity
comes into play. By leveraging the capabilities of Al models, we can design
self-healing data workers that not only correct errors but also assess the
severity of those errors and make informed decisions on how to handle

them.

For instance, let’'s consider a self-healing data worker responsible for
correcting inconsistencies in data flowing into a customer database. The
worker can be designed to analyze the data and identify potential errors,
such as missing or conflicting information. However, instead of automati-
cally correcting all errors, the worker can be equipped with additional tool

calls that allow it to flag severe errors for human review.

Here’s an example of how this can be implemented:

O 00 N O Ul A W N

W W W WwWwWwwwNNNNNNNNRNNRERRHBRBRRE R R B3 92
O Ul A W IN P O OWOOLOWNO UM WNERO OOOLWUOSNOUUSWNRLO

Self Healing Data 179

class CustomerDataReviewer
include Raix::ChatCompletion
include Raix::FunctionDeclarations

attr_accessor :customer

function :flag for review, reason: { type: "string" } do |params|
AdminNotifier.review request(customer, params[:reason])
end

def initialize(customer)
self.customer = customer
end

def call(customer data)
transcript << {
system: "You are a customer data reviewer. Your task is to identify
and correct inconsistencies in customer data.

< additional instructions here... >

If you encounter severe errors that require human review, use the
“flag_for review® tool to flag the data for manual intervention." }

transcript << { user: customer.to _json }
transcript << { assistant: "Reviewed/corrected data:\n" " "json\n" }

self.stop = ["" " '"]

chat_completion(json: true).then do |result|
return if result.blank?

customer.update(result)
end
end
end

In this example, the CustomerDataHealer worker is designed to identify
and correct inconsistencies in customer data. Once again, we use Response

Fencing and Ventriloquist to get structured output. Importantly, the

Self Healing Data 180

worker’s system directive includes instructions to use the flag for_re-

view function if severe errors are encountered.

When the worker processes the customer data, it analyzes the data and
attempts to correct any inconsistencies. If the worker determines that the
errors are severe and require human intervention, it can use the flag -

for_review tool to flag the data and provide a reason for the flagging.

The chat completion method is called with json: true to parse the
corrected customer data as JSON. There is no provision for looping after
a function call, so the result will be blank if flag for reviewwas invoked.
Otherwise, the customer is updated with the reviewed and potentially

corrected data.

By incorporating error severity assessment and the option to flag data for
human review, the self-healing data worker becomes more intelligent and
adaptable. It can handle minor errors automatically while escalating severe

errors to human experts for manual intervention.

The specific criteria for determining error severity can be defined in the
worker’s directive based on the domain knowledge and business require-
ments. Factors such as the impact on data integrity, the potential for
data loss or corruption, and the consequences of incorrect data can be

considered when assessing severity.

By leveraging Al to assess error severity and providing options for human
intervention, self-healing data techniques can strike a balance between
automation and maintaining data accuracy. This approach ensures that
minor errors are corrected efficiently while severe errors receive the

necessary attention and expertise from human reviewers.

Self Healing Data 181

Domain Complexity

When considering the application of self-healing data techniques, it’s
important to evaluate the complexity of the data domain and the rules
governing its structure and relationships. The complexity of the domain
can significantly impact the effectiveness and feasibility of automated data

correction approaches.

Self-healing data techniques work well when the data follows well-defined
patterns and constraints. In domains where the data structure is relatively
simple and the relationships between data elements are straightforward,
automated corrections can be applied with a high degree of confidence.
For example, correcting formatting issues or enforcing basic data type

constraints can often be handled effectively by self-healing data workers.

However, as the complexity of the data domain increases, the challenges
associated with automated data correction also grow. In domains with
intricate business logic, complex relationships between data entities, or
domain-specific rules and exceptions, self-healing data techniques may
not always capture the nuances and may introduce unintended conse-

quences.

Let’s consider an example of a complex domain: a financial trading system.
In this domain, the data involves various financial instruments, market data,
trading rules, and regulatory requirements. The relationships between
different data elements can be intricate, and the rules governing data

validity and consistency can be highly specific to the domain.

In such a complex domain, a self-healing data worker tasked with correct-
ing inconsistencies in trade data would need to have a deep understanding
of the domain-specific rules and constraints. It would need to consider

factors such as market regulations, trading limits, risk calculations, and

Self Healing Data 182

settlement procedures. Automated corrections in this context may not
always capture the full complexity of the domain and may inadvertently

introduce errors or violate domain-specific rules.

To address the challenges of domain complexity, self-healing data tech-
niques can be enhanced by incorporating domain-specific knowledge and
rules into the Al models and workers. This can be achieved through

techniques such as:

1. Domain-Specific Training: The Al models used for self-healing data
can be directed or even fine-tuned on domain-specific datasets that
capture the intricacies and rules of the particular domain. By exposing
the models to representative data and scenarios, they can learn the
patterns, constraints, and exceptions specific to the domain.

2. Rule-Based Constraints: Self-healing data workers can be augmented
with explicit rule-based constraints that encode domain-specific
knowledge. These rules can be defined by domain experts and
integrated into the data correction process. The Al models can then
use these rules to guide their decisions and ensure compliance with
domain-specific requirements.

3. Collaboration with Domain Experts: In complex domains, it’s crucial
to involve domain experts in the design and development of self-
healing data techniques. Domain experts can provide valuable in-
sights into the intricacies of the data, the business rules, and the
potential edge cases. Their knowledge can be incorporated into the
Al models and workers to improve the accuracy and reliability of
automated data corrections using Human In The Loop patterns .

4. Incremental and Iterative Approach: When dealing with complex
domains, it's often beneficial to adopt an incremental and iterative

approach to self-healing data. Instead of attempting to automate

Self Healing Data 183

corrections for the entire domain at once, focus on specific subdo-
mains or data categories where the rules and constraints are well-
understood. Gradually expand the scope of self-healing techniques
as the understanding of the domain grows and the techniques prove

effective.

By considering the complexity of the data domain and incorporating
domain-specific knowledge into self-healing data techniques, you can
strike a balance between automation and accuracy. It's important to
recognize that self-healing data is not a one-size-fits-all solution and
that the approach should be tailored to the specific requirements and

challenges of each domain.

In complex domains, a hybrid approach that combines self-healing data
techniques with human expertise and oversight can be most effective.
Automated corrections can handle routine and well-defined cases, while
complex scenarios or exceptions can be flagged for human review and
intervention. This collaborative approach ensures that the benefits of
automation are realized while maintaining the necessary control and ac-

curacy in complex data domains.

Explainability and Transparency

Explainability refers to the ability to understand and interpret the reason-
ing behind the decisions made by Al models, while transparency involves

providing clear visibility into the data correction process.

In many contexts, data modifications need to be auditable and justifiable.
Stakeholders, including business users, auditors, and regulatory bodies,
may require explanations for why certain data corrections were made and

how the Al models arrived at those decisions. This is especially crucial in

Self Healing Data 184

domains where data accuracy and integrity have significant implications,

such as finance, healthcare, and legal matters.

To address the need for explainability and transparency, self-healing data
techniques should incorporate mechanisms that provide insights into the
decision-making process of Al models. This can be achieved through

various approaches:

1. Chain of Thought: Asking the model to explain its thinking “out loud”
before applying changes to data may allow for easier understanding
of the decision-making process and can generate human-readable
explanations for the corrections made. The tradeoff is a little bit more
complexity in separating the explanation from the structured data
output, which can be addressed by...

2. Explanation Generation: Self-healing data workers can be equipped
with the ability to generate human-readable explanations for the
corrections they make. This can be achieved by asking the model
to output its decision-making process as easily understandable ex-
planations integrated into the data itself. For example, a self-healing
data worker could generate a report that highlights the specific
data inconsistencies it identified, the corrections it applied, and the
rationale behind those corrections.

3. Feature Importance: Al models can be instructed with information
about the importance of different features or attributes in the data
correction process as part of their directives. Those directives, in
turn, can be exposed to human stakeholders. By identifying the key
factors that influence the model’s decisions, stakeholders can gain
insights into the reasoning behind the corrections and assess their
validity.

4. Logging and Auditing: Implementing comprehensive logging and

Self Healing Data 185

auditing mechanisms is crucial for maintaining transparency in the
self-healing data process. Every data correction made by Al models
should be logged, including the original data, the corrected data, and
the specific actions taken. This audit trail allows for retrospective
analysis and provides a clear record of the modifications made to the
data.

5. Human-in-the-Loop Approach: Incorporating a human-in-the-loop
approach can enhance the explainability and transparency of self-
healing data techniques. By involving human experts in the review and
validation of Al-generated corrections, organizations can ensure that
the corrections align with domain knowledge and business require-
ments. Human oversight adds an additional layer of accountability
and allows for the identification of any potential biases or errors in
the Al models.

6. Continuous Monitoring and Evaluation: Regularly monitoring and
evaluating the performance of self-healing data techniques is essential
for maintaining transparency and trust. By assessing the accuracy and
effectiveness of the Al models over time, organizations can identify
any deviations or anomalies and take corrective actions. Continuous
monitoring helps ensure that the self-healing data process remains

reliable and aligned with the desired outcomes.

Explainability and transparency are critical considerations when imple-
menting self-healing data techniques. By providing clear explanations for
data corrections, maintaining comprehensive audit trails, and involving
human oversight, organizations can build trust in the self-healing data
process and ensure that the modifications made to the data are justifiable

and aligned with business objectives.

It's important to strike a balance between the benefits of automation

Self Healing Data 186

and the need for transparency. While self-healing data techniques can
significantly improve data quality and efficiency, they should not come at
the cost of losing visibility and control over the data correction process. By
designing self-healing data workers with explainability and transparency
in mind, organizations can harness the power of Al while maintaining the

necessary level of accountability and trust in the data.

Unintended Consequences

While self-healing data techniques aim to improve data quality and consis-
tency, it’s crucial to be aware of the potential for unintended consequences.
Automated corrections, if not carefully designed and monitored, may inad-
vertently alter the meaning or context of the data, leading to downstream

issues.

One of the primary risks of self-healing data is the introduction of bias or
errors in the data correction process. Al models, like any other software
system, can be subject to biases present in the training data or introduced
through the design of the algorithms. If these biases are not identified and
mitigated, they can propagate through the self-healing data process and

result in skewed or incorrect data modifications.

For example, consider a self-healing data worker tasked with correcting
inconsistencies in customer demographic data. If the Al model has learned
biases from historical data, such as associating certain occupations or
income levels with specific genders or ethnicities, it may make incorrect
assumptions and modify the data in a way that reinforces those biases. This
can lead to inaccurate customer profiles, misguided business decisions,

and potentially discriminatory outcomes.

Another potential unintended consequence is the loss of valuable infor-

mation or context during the data correction process. Self-healing data

Self Healing Data 187

techniques often focus on standardizing and normalizing data to ensure
consistency. However, in some cases, the original data may contain
nuances, exceptions, or contextual information that is important for un-
derstanding the full picture. Automated corrections that blindly enforce
standardization may inadvertently remove or obscure this valuable infor-

mation.

For instance, imagine a self-healing data worker responsible for correcting
inconsistencies in medical records. If the worker encounters a patient’s
medical history with a rare condition or an unusual treatment plan, it may
attempt to normalize the data to fit a more common pattern. However,
in doing so, it may lose the specific details and context that are crucial
for accurately representing the patient’s unique situation. This loss of
information can have serious implications for patient care and medical

decision-making.

To mitigate the risks of unintended consequences, it’s essential to take a
proactive approach when designing and implementing self-healing data

techniques:

1. Thorough Testing and Validation: Before deploying self-healing data
workers in production, it's crucial to thoroughly test and validate
their behavior against a diverse range of scenarios. This includes
testing with representative datasets that cover various edge cases,
exceptions, and potential biases. Rigorous testing helps identify and
address any unintended consequences before they impact real-world
data.

2. Continuous Monitoring and Evaluation: Implementing continuous
monitoring and evaluation mechanisms is essential for detecting and
mitigating unintended consequences over time. Regularly reviewing

the outcomes of self-healing data processes, analyzing the impact

Self Healing Data 188

on downstream systems and decision-making, and gathering feed-
back from stakeholders can help identify any adverse effects and
prompt timely corrective actions. If your organization has operational
dashboards, adding plainly visible metrics related to automated data
changes is probably a good idea. Adding alarms connected to large
deviations from normal data change activity is probably an even better
idea!

3. Human Oversight and Intervention: Maintaining human oversight
and the ability to intervene in the self-healing data process is crucial.
While automation can greatly improve efficiency, it's important to
have human experts review and validate the corrections made by Al
models, especially in critical or sensitive domains. Human judgment
and domain expertise can help identify and address any unintended

consequences that may arise.

4. Explainable AI (XAI) and Transparency: As discussed in the previous
subsection, incorporating explainable Al techniques and ensuring
transparency in the self-healing data process can help mitigate un-
intended consequences. By providing clear explanations for data cor-
rections and maintaining comprehensive audit trails, organizations
can better understand and trace the reasoning behind the modifica-
tions made by Al models.

5. Incremental and Iterative Approach: Adopting an incremental and
iterative approach to self-healing data can help minimize the risk of
unintended consequences. Instead of applying automated correc-
tions to the entire dataset at once, start with a subset of data and
gradually expand the scope as the techniques prove effective and
reliable. This allows for careful monitoring and adjustment along the

way, reducing the impact of any unintended consequences.

Self Healing Data 189

6. Collaboration and Feedback: Engaging stakeholders from different
domains and encouraging collaboration and feedback throughout the
self-healing data process can help identify and address unintended
consequences. Regularly seeking input from domain experts, data
consumers, and end-users can provide valuable insights into the real-
world impact of the data corrections and highlight any issues that may

have been overlooked.

By proactively addressing the risk of unintended consequences and imple-
menting appropriate safeguards, organizations can harness the benefits of
self-healing data techniques while minimizing potential adverse effects. It’s
important to approach self-healing data as an iterative and collaborative
process, continuously monitoring, evaluating, and refining the techniques
to ensure they align with the desired outcomes and maintain the integrity
and reliability of the data.

When considering the use of self-healing data patterns, it's essential to
carefully evaluate these factors and weigh the benefits against the potential
risks and limitations. In some cases, a hybrid approach that combines
automated corrections with human oversight and intervention may be the

most appropriate solution.

It's also worth noting that self-healing data techniques should not be seen
as a replacement for robust data validation, input sanitization, and error
handling mechanisms. These foundational practices remain critical for
ensuring data integrity and security. Self-healing data should be viewed as
a complementary approach that can augment and enhance these existing

measures.

Self Healing Data 190

Ultimately, the decision to employ self-healing data patterns depends on
the specific requirements, constraints, and priorities of your application.
By carefully considering the considerations outlined above and aligning
them with your application’s goals and architecture, you can make in-
formed decisions on when and how to leverage self-healing data techniques
effectively.

Contextual Content Generation

Contextual Content Generation patterns leverage the power of large lan-

guage models (LLMs) to generate dynamic and context-specific content
within applications. This category of patterns recognizes the importance
of delivering personalized and relevant content to users based on their
specific needs, preferences, and even previous and current interactions

with the application.

In the context of this approach, “content” refers both to primary content
(i.e. blog posts, articles, etc) and meta-content, such as recommenda-

tions to primary content.

Contextual Content Generation 192

Contextual Content Generation patterns can play a crucial role in en-
hancing your user engagement levels, providing tailored experiences, and
automating content creation tasks both for you and your users. By utilizing
the patterns we describe in this chapter, you can create applications that

generate content dynamically, adapting to context and inputs in real-time.

The patterns work by integrating LLMs into the application’s outputs,
ranging from the user interface (sometimes referred to as “chrome”), to
emails and other forms of notifications, as well as any content generation

pipelines.

When a user interacts with the application or triggers a specific con-
tent request, the application captures the relevant context, such as user
preferences, previous interactions, or specific prompts. This contextual
information is then fed into the LLM, along with any necessary templates
or guidelines and used to produce textual output that would otherwise have

to be either hardcoded, stored in a database, or algorithmically generated.

The LLM generated content can take various forms, such as personalized
recommendations, dynamic product descriptions, customized email re-
sponses, or even entire articles or blog posts. One of the most radical uses
of this content that I pioneered over a year ago is dynamically generating

UI elements like form labels, tooltips, and other kinds of explanatory text.

Personalization

One of the key benefits of Contextual Content Generation patterns is the
ability to deliver highly personalized experiences to users. By generating
content based on user-specific context, these patterns enable applications
to tailor content to individual users’ interests, preferences, and interac-

tions.

Contextual Content Generation 193

Personalization goes beyond simply inserting a user’s name into generic
content. It involves leveraging the rich context available about each user to
generate content that resonates with their specific needs and desires. This

context can include a wide range of factors, such as:

1. User Profile Information: At the most general level of applying
this technique, demographic data, interests, preferences, and other
profile attributes can be used to generate content that aligns with the
user’s background and characteristics.

2. Behavioral Data: A user’s past interactions with the application, such
as viewed pages, clicked links, or purchased products, can provide
valuable insights into their behavior and interests. This data can be
used to generate content suggestions that reflects their engagement
patterns and predicts their future needs.

3. Contextual Factors: The user’s current context, such as their location,
device, time of day, or even the weather, can influence the content
generation process. For example, a travel application might have an Al
worker that is able to generate personalized recommendations based

on the user’s current location and the prevailing weather conditions.

By leveraging these contextual factors, Contextual Content Generation
patterns enable applications to deliver content that feels tailor-made for
each individual user. This level of personalization has several significant

benefits:

1. Increased Engagement: Personalized content captures users’ atten-
tion and keeps them engaged with the application. When users feel
that the content is relevant and speaks directly to their needs, they
are more likely to spend more time interacting with the application

and exploring its features.

Contextual Content Generation 194

2. Improved User Satisfaction: Personalized content demonstrates that
the application understands and cares about the user’s unique re-
quirements. By providing content that is helpful, informative, and
aligned with their interests, the application can enhance user satis-
faction and build a stronger connection with its users.

3. Higher Conversion Rates: In the context of e-commerce or marketing
applications, personalized content can significantly impact conver-
sion rates. By presenting users with products, offers, or recom-
mendations that are tailored to their preferences and behavior, the
application can increase the likelihood of users taking desired actions,

such as making a purchase or signing up for a service.

Productivity

Contextual Content Generation patterns can significantly boost certain
kinds of productivity by reducing the need for manual content generation
and editing in creative processes. By leveraging the power of LLMs, you
can generate high-quality content at scale, saving time and effort that
your content creators and developers would otherwise have to spend doing

tedious manual work.

Traditionally, content creators need to research, write, edit, and format
content to ensure it meets the application’s requirements and user ex-
pectations. This process can be time-consuming and resource-intensive,

especially as the volume of content grows.

However, with Contextual Content Generation patterns, the content cre-
ation process can be largely automated. LLMs can generate coherent,

grammatically correct, and contextually relevant content based on the pro-

Contextual Content Generation 195

vided prompts and guidelines. This automation offers several productivity

benefits:

1. Reduced Manual Effort: By delegating content generation tasks to
LLMs, content creators can focus on higher-level tasks such as con-
tent strategy, ideation, and quality assurance. They can provide the
necessary context, templates, and guidelines to the LLM and let it
handle the actual content generation. This reduces the manual effort
required for writing and editing, allowing content creators to be more
productive and efficient.

2. Faster Content Creation: LLMs can generate content much faster
than human writers. With the right prompts and guidelines, an LLM
can produce multiple pieces of content in a matter of seconds or
minutes. This speed enables applications to generate content at a
much faster pace, keeping up with the demands of users and the ever-

changing digital landscape.

[s faster content creation leading to a “tragedy of the commons” situa-
tion where the internet is drowning in content that nobody reads. Sadly,

I suspect the answer is yes.

3. Consistency and Quality: LLMs can trivially revise content so that it
is consistent in style, tone, and quality. Provided clear guidelines and
examples, certain kinds of applications (i.e. newsroom, PR, etc.) can
ensure that their human-generated content aligns with their brand
voice and meets the desired quality standards. This consistency
reduces the need for extensive editing and revisions, saving time and

effort in the content creation process.

Contextual Content Generation 196

4. Iteration and Optimization: Contextual Content Generation
patterns enable rapid iteration and optimization of content. By
adjusting the prompts, templates, or guidelines provided to the LLM,
your applications can quickly generate variations of content and test
different approaches in an automated fashion that was never possible
in the past. This iterative process allows for faster experimentation
and refinement of content strategies, leading to more effective and
engaging content over time. This particular technique can be a total
game-changer for applications such as e-commerce that live and die

based on bounce rates and engagement .

It's important to note that while Contextual Content Gener-
P ation patterns can greatly enhance productivity, they do not
completely eliminate the need for human involvement. Content
creators and editors still play a crucial role in defining the overall
content strategy, providing guidance to the LLM, and ensuring

the quality and appropriateness of the generated content.

By automating the more repetitive and time-consuming aspects of content
creation, Contextual Content Generation patterns free up valuable human
time and resources that can be redirected towards higher-value tasks.
This increased productivity enables you to deliver more personalized and

engaging content to users while optimizing content creation workflows.

Rapid Iteration and Experimentation

Contextual Content Generation patterns enable you to quickly iterate and
experiment with different content variations, allowing for faster optimiza-

tion and refinement of your content strategy. You can generate multiple

Contextual Content Generation 197

versions of content in a matter of seconds, simply by adjusting the context,

templates, or guidelines provided to the model.

This rapid iteration capability offers several key benefits:

1. Testing and Optimization: With the ability to generate content vari-
ations quickly, you can easily test different approaches and measure
their effectiveness. For example, you can generate multiple versions
of a product description or a marketing message, each tailored to
a specific user segment or context. By analyzing user engagement
metrics, such as click-through rates or conversion rates, you can
identify the most effective content variations and optimize your con-
tent strategy accordingly.

2. A/B Testing: Contextual Content Generation patterns enable seam-
less A/B testing of content. You can generate two or more variations
of content and randomly serve them to different user groups. By com-
paring the performance of each variation, you can determine which
content resonates best with your target audience. This data-driven
approach allows you to make informed decisions and continuously
refine your content to maximize user engagement and achieve your
desired outcomes.

3. Personalization Experiments: Rapid iteration and experimentation
are particularly valuable when it comes to personalization. With
Contextual Content Generation patterns, you can quickly generate
personalized content variations based on different user segments,
preferences, or behaviors. By experimenting with different person-
alization strategies, you can identify the most effective approaches
for engaging individual users and delivering tailored experiences.

4. Adapting to Changing Trends: The ability to iterate and experiment
rapidly enables you to stay agile and adapt to changing trends and

Contextual Content Generation 198

user preferences. As new topics, keywords, or user behaviors emerge,
you can quickly generate content that aligns with these trends. By
continuously experimenting and refining your content, you can stay
relevant and maintain a competitive edge in the ever-evolving digital
landscape .

5. Cost-Effective Experimentation: Traditional content experimenta-
tion often involves significant time and resources, as content creators
need to manually develop and test different variations. However, with
Contextual Content Generation patterns, the cost of experimentation
is greatly reduced. LLMs can generate content variations quickly and
at scale, allowing you to explore a wide range of ideas and approaches

without incurring substantial costs.

To make the most of rapid iteration and experimentation, it's important to
have a well-defined experimentation framework in place. This framework

should include:

* Clear objectives and hypotheses for each experiment

» Appropriate metrics and tracking mechanisms to measure content
performance

» Segmentation and targeting strategies to ensure relevant content
variations are served to the right users

* Analysis and reporting tools to derive insights from the experimental
data

» A process for incorporating learnings and optimizations into your

content strategy

By embracing rapid iteration and experimentation, you can continuously
refine and optimize your content, ensuring that it remains engaging, rele-

vant, and effective in achieving your application’s goals. This agile approach

Contextual Content Generation 199

to content creation allows you to stay ahead of the curve and deliver

exceptional user experiences .

Scalability and Efficiency

As applications grow and the demand for personalized content increases,
contextual content generation patterns enable efficient scaling of content
creation. LLMs can generate content for a large number of users and
contexts simultaneously, without the need for a proportional increase in
human resources. This scalability allows applications to deliver person-
alized experiences to a growing user base without straining their content

creation capabilities.

Note that contextual content generation can be used effectively
’ to internationalize your application “on the fly” In fact, that’s
exactly what I did using my Instant18n Gem to deliver Olympia in
more than half-dozen languages , even though we're less than a

year old.

Al Powered Localization

If you allow me to brag for a moment, I think that my Instant18n library
for Rails apps is a groundbreaking example of the “Contextual Content
Generation” pattern in action, showcasing the transformative potential of
Al in application development. This gem leverages the power of OpenAl's
GPT large-language model to revolutionize the way internationalization

and localization are handled in Rails applications.

Traditionally, internationalizing a Rails application involves manually defin-

ing translation keys and providing corresponding translations for each

Contextual Content Generation 200

supported language. This process can be time-consuming, resource-
intensive, and prone to inconsistencies. However, with the Instant18n gem,

the paradigm of localization is completely redefined.

By integrating a large language model, the Instantl8n gem enables you
to generate translations on-the-fly, based on the context and meaning
of the text. Instead of relying on predefined translation keys and static
translations, the gem dynamically translates text using the power of Al. This

approach offers several key benefits:

1. Seamless Localization: With the Instantl8n gem, developers no
longer need to manually define and maintain translation files for each
supported language . The gem automatically generates translations
based on the provided text and the desired target language, making
the localization process effortless and seamless.

2. Contextual Accuracy: Al can be given enough context to figure out
the nuances of the text being translated. It can take into account
the surrounding context, idioms, and cultural references to generate
translations that are accurate, natural-sounding, and contextually
appropriate.

3. Extensive Language Support: The Instantl8n gem leverages the vast
knowledge and linguistic capabilities of GPT, enabling translations
into an extensive range of languages. From common languages like
Spanish and French to more obscure or fictional languages like Klin-
gon and Elvish, the gem can handle a wide variety of translation
requirements.

4. Flexibility and Creativity: The gem goes beyond traditional language
translations and allows for creative and unconventional localization
options. Developers can translate text into various styles, dialects, or

even fictional languages, opening up new possibilities for unique user

Contextual Content Generation 201

experiences and engaging content .

5. Performance Optimization: The Instantl8n gem incorporates
caching mechanisms to improve performance and reduce the
overhead of repeated translations. Translated text is cached, allowing
subsequent requests for the same translation to be served quickly

without the need for redundant API calls .

The Instant18n gem exemplifies the power of the “Contextual Content Gen-
eration” pattern by leveraging Al to generate localized content dynamically.
It showcases how Al can be integrated into the core functionality of a Rails
application, transforming the way developers approach internationaliza-

tion and localization.

By eliminating the need for manual translation management and enabling
on-the-fly translations based on context, the Instantl8n gem saves devel-
opers significant time and effort. It allows them to focus on building the
core features of their application while ensuring that the localization aspect

is handled seamlessly and accurately.

The Importance of User Testing and Feedback

Finally, always keep in mind the importance of user testing and feedback .
It's crucial to validate that contextual content generation meets user ex-
pectations and aligns with the application’s goals. Continuously iterate and
refine generated content based on user insights and analytics. If youre
generating dynamic content on a large scale that would be impossible
to validate manually by you and your team, consider adding feedback
mechanisms that allow users to report content that is weird or wrong, along

with an explanation of why. That precious feedback can even be fed to an Al

Contextual Content Generation 202

worker tasked with making adjustments to the component that generated

the content!

Generative Ul

Attention is at such a premium these days that effective user engagement

now demands software experiences that are not only seamless and intuitive
but also highly personalized to individual needs, preferences, and contexts.
As a result, designers and developers are increasingly faced with the
challenge of creating user interfaces! that can adapt and cater to the

unique requirements of each user at scale.

Generative Ul (GenUl) is a truly revolutionary approach to user interface
design ! thatleverages the power of large language models (LLMs) to create
highly personalized and dynamic user experiences on-the-fly. I wanted to
make sure to at least give you a primer on GenUI in this book, because I
believe that it is one of the greenest green field opportunities that currently

exists in the realm of application design and frameworks. I'm convinced

Generative Ul 204

that dozens or more new successful commercial and open-source projects

will emerge in this particular niche.

At its core, GenUI combines the principles of Contextual Content Gener-
ation with advanced Al techniques to generate user interface elements,
such as text, images, and layouts, dynamically based on a deep understand-
ing of the user’s context, preferences, and goals. GenUI enables designers
and developers to create interfaces that adapt and evolve in response to
user interactions, providing a level of personalization that was previously

unattainable.

GenUI represents a fundamental change in the way we approach user
interface design. Instead of designing for the masses, GenUI allows us to
design for the individual. Personalized content and interfaces have the
potential of creating user experiences that resonate with each user on a

deeper level, increasing engagement, satisfaction, and loyalty.

As a bleeding-edge technique, transitioning to GenUI is full of conceptual
and practical challenges . Integrating Al into the design process, ensuring
that the generated interfaces are not only personalized but also usable,
accessible, and aligned with the overall brand and user experience, all of
these are challenges that make GenUI a pursuit for the few, not the many.
Additionally, the involvement of Al raises questions about data privacy,

transparency, and perhaps even ethical implications .

Despite the challenges, personalized experiences at scale have the power
to completely transform the way we interact with digital products and
services. It opens up possibilities for creating inclusive and accessible
interfaces that cater to the diverse needs of users, regardless of their

abilities, backgrounds, or preferences .

In this chapter, we will explore the concept of GenUl, examining some

defining characteristics, key benefits, and potential challenges. We begin

Generative Ul 205

by considering the most basic and accessible form of GenUI: generating
text copy for otherwise traditionally designed and implemented user in-

terfaces.

Generating Copy for User Interfaces

Text elements that exist in your application’s chrome, such as form labels,
tooltips, and explanatory text, are typically hardcoded into the templates
or Ul components, providing a consistent but generic experience for all
users. Using contextual content generation patterns, you can transform
these static elements into dynamic, context-aware, and personalized com-

ponents.

Personalized Forms

Forms are a ubiquitous part of web and mobile applications, serving as the
primary means of collecting user input. However, traditional forms often
present a generic and impersonal experience, with standard labels and
fields that may not always align with the user’s specific context or needs.
Users are more likely to complete forms that feel tailored to their needs

and preferences, leading to higher conversion rates and user satisfaction.

However, it's important to strike a balance between personalization and
consistency. While adapting forms to individual users can be beneficial,
it's crucial to maintain a level of familiarity and predictability. Users should
still be able to recognize and navigate forms easily, even with personalized

elements.

Here are some personalized form ideas for inspiration:

O 00 N O Ul & W N

N P B R B R B B B B B
© W 00 N O U B W N P O©

Generative UI 206

Contextual Field Suggestions

GenUI can analyze the user’s previous interactions, preferences, and data
to provide intelligent field suggestions as predictions. For instance, if the
user has previously entered their shipping address, the form can automat-
ically populate the relevant fields with their saved information. This not
only saves time but also demonstrates that the application understands and

remembers the user’s preferences.

Wait a minute, isn’t this technique something that could be done without
involving AI? Of course, but the beauty of driving this kind of functionality
with Al is two-fold: 1) how easy it can be to implement and 2) how resilient

it can be as your Ul changes and evolves over time.
Let’s whip up a service for our theoretical order handling system, that tries

to proactively fill in the right shipping address for the user.

class OrderShippingAddressSubscriber
include Raix::ChatCompletion

attr_accessor :order

delegate :customer, to: :order

DIRECTIVE = "You are a smart order processing assistant. Given the
customer's order history, guess the most likely shipping address

for the current order."

def order created(order)
return unless order.pending? && order.shipping address.blank?

self.order = order

transcript.clear

transcript << { system: DIRECTIVE }

transcript << { user: "Order History: #{order history.to json}" }
transcript << { user: "Current Order: #{order.to json}" }

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Generative UI 207

response = chat completion
apply predicted shipping address(order, response)
end

private

def apply predicted shipping address(order, response)
extract the shipping address from the response...

...and assume there's some sort of live update of the address fields

order.update(shipping address:)
end

def order history
customer.orders.successful.limit(100).map do |order|
{
date: order.date,
description: order.description,
shipping address: order.shipping_address
}
end
end
end

This example is very simplified, but should work for most cases. The idea
is to let the Al take a guess the same way that a human would. To make it

clear what I'm talking about, let’s consider some sample data:

Generative Ul

Order History:

[

{"date": "2024-01-03", "description": "garden soil mix",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-01-15", "description": "hardcover fiction novels",

"shipping address": "456 City Apt, Metroville"},

{"date": "2024-01-22", "description": "baby diapers", "shipping address":

"789 Suburb St, Quietville"},
{"date": "2024-02-01", "description": "organic vegetables",
"shipping_address": "123 Country Lane, Rural Town"},

208

{"date": "2024-02-17", "description": "mystery thriller book set",

"shipping address": "456 City Apt, Metroville"},
{"date": "2024-02-25", "description": "baby wipes",
"shipping address": "789 Suburb St, Quietville"},
{"date": "2024-03-05", "description": "flower seeds",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-03-20", "description": "biographies",
"shipping _address": "456 City Apt, Metroville"},
{"date": "2024-03-30", "description": "baby formula",
"shipping address": "789 Suburb St, Quietville"},
{"date": "2024-04-12", "description": "lawn fertilizer",
"shipping address": "123 Country Lane, Rural Town"},

{"date": "2024-04-22", "description": "science fiction novels",

"shipping_address": "456 City Apt, Metroville"},
{"date": "2024-05-02", "description": "infant toys",
"shipping address": "789 Suburb St, Quietville"},
{"date": "2024-05-14", "description": "outdoor grill",
"shipping address": "123 Country Lane, Rural Town"},
{"date": "2024-05-29", "description": "literary classics",
"shipping_address": "456 City Apt, Metroville"},
{"date": "2024-06-11", "description": "baby clothes",
"shipping address": "789 Suburb St, Quietville"},
{"date": "2024-07-01", "description": "watering can",
"shipping address": "123 Country Lane, Rural Town"},
{"date": "2024-07-18", "description": "non-fiction essays",
"shipping_address": "456 City Apt, Metroville"},
{"date": "2024-07-28", "description": "baby bath items",
"shipping address": "789 Suburb St, Quietville"},
{"date": "2024-08-09", "description": "herb garden kit",
"shipping address": "123 Country Lane, Rural Town"},
{"date": "2024-08-24", "description": "children's books",
"shipping_address": "456 City Apt, Metroville"}

43

O 00 N O Ul A W N

N N NNNNRRRRBRR®R R B (2
U B WNR O OOW-NOUMWNR D

Generative UI 209

Did you notice the pattern in the data? I guarantee you this is easy stuff for
an LLM . To demonstrate, let's ask GPT-40 what the most likely shipping

address is for a “thermometer”.

From the order history you've provided, it looks like the purchases are
generally clustered into three main types based on the shipping addresses:

123 Country Lane, Rural Town - This address often orders garden and
outdoor-related items like soil mix, vegetables, flower seeds, lawn
fertilizer, an outdoor grill, a watering can, and an herb garden kit.

456 City Apt, Metroville - This address tends to order various types of books,
indicating an interest in reading across genres like fiction, thrillers,
biographies, science fiction, literary classics, non-fiction essays, and
children's books.

789 Suburb St, Quietville - The purchases for this address are consistently
baby-related products, such as diapers, wipes, baby formula, infant toys,
baby clothes, and baby bath items.

Given these patterns, a digital thermometer could potentially be a fit for
any of the addresses based on different needs: outdoor temperature tracking,
a tool for a passionate reader interested in science gadgets, or a health
tool for a baby. However, considering its common use in monitoring health,
especially for babies, it's most likely to be purchased by someone who's
already buying baby care products.

Therefore, the most likely shipping address for a digital thermometer, based
on the purchasing patterns, would be 789 Suburb St, Quietville.

If you're thinking to yourself that it’s overkill to use an expensive model like
GPT-4 for this task, you're right! I tried the same prompt on Mistral 7B
Instruct and it produced the following response at 75 tokens per second,
and a miserly cost of $0.000218 USD.

O 00 N O Ul A W N

el ol ol
U A W N RO

Generative Ul 210

Based on the given order history, it appears that the customer has received
orders for baby-related items (diapers, wipes, formula, clothes, bath items)
at the address "789 Suburb St, Quietville" and garden-related items (soil,
seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural
Town". The customer has also received books (fiction, non-fiction, literary
classics, mystery-thriller, science fiction, biographies, children's books)
at the address "456 City Apt, Metroville".

Given that the new order is for a "thermometer", which doesn't seem to fit
into any of the categories that the customer has previously ordered, it's
hard to accurately predict the shipping address based solely on the order
history. However, given the 50%-50% split between baby-related and
garden-related items, it could somewhat lean towards the Baby-related items
address ("789 Suburb St, Quietville"). But remember, this is an assumption
and cannot be definitively confirmed without more context or information.

Is the overhead and cost of this technique worth it to make a checkout
experience more magical? For many online retailers, absolutely. And
from the looks of it, the cost of Al computing is only going to go down,
especially for commodity open source model hosting providers in a race
to the bottom.

P Use a Prompt Template and StructuredIO along with Response

Fencing to optimize this kind of chat completion

Adaptive Field Ordering

The order in which form fields are presented can significantly impact the
user’s experience and completion rates. With GenUI , you can dynamically
adjust the field ordering based on the user’s context and the importance
of each field. For example, if the user is filling out a registration form for
a fitness app, the form could prioritize fields related to their fitness goals

and preferences, making the process more relevant and engaging.

Generative Ul 211

Personalized Microcopy

The instructional text, error messages, and other microcopy associated
with forms can also be personalized using GenUI . Instead of displaying
generic error messages like “Invalid email address,” you can generate more
helpful and contextual messages such as “Please enter a valid email address
to receive your order confirmation” These personalized touches can make

the form experience more user-friendly and less frustrating.

Personalized Validation

Along the same lines of Personalized Microcopy, you could use Al to
validate the form in ways that seem magical. Imagine letting an Al validate

a user profile form, looking for potential mistakes on a semantic level.

Generative Ul 212

Create your account

Full name

Obie Fernandez

Email
obiefenandez@gmail.com m

Did you mean obiefernandez@gmail.com? Yes, update.

Country @

<«

EE United States

Password

---------------- n

) Nice work. This is an excellent password.
Figure 9. Can you spot the semantic validation happening?

Progressive Disclosure

GenUI can intelligently determine which form fields are essential based on
the user’s context and gradually reveal additional fields as needed. This
progressive disclosure technique helps reduce cognitive load and makes

the form-filling process more manageable. For instance, if a user is signing

Generative Ul 213

up for a basic subscription, the form can initially present only the essential
fields, and as the user progresses or selects specific options, additional

relevant fields can be dynamically introduced.

Context-Aware Explanatory Text

Tooltips are often used to provide additional information or guidance to
users when they hover over or interact with specific elements. With a
“Contextual Content Generation” approach, you can generate tooltips that
adapt to the user’s context and provide relevant information. For instance,
if a user is exploring a complex feature, the tooltip can offer personalized

tips or examples based on their previous interactions or skill level.

Explanatory text, such as instructions, descriptions, or help messages,
can be dynamically generated based on the user’s context. Instead of
presenting generic explanations, you can use LLMs to generate text that
is tailored to the user’s specific needs or questions. For example, if a user
is struggling with a particular step in a process, the explanatory text can

provide personalized guidance or troubleshooting tips.

Microcopy refers to the small pieces of text that guide users through
your application, such as button labels, error messages, or confirmation
prompts. By applying the Contextual Content Generation approach to
microcopy, you can create an adaptive Ul that responds to the user’s
actions and provides relevant and helpful text. For instance, if a user
is about to perform a critical action, the confirmation prompt can be

generated dynamically to provide a clear and personalized message.

Personalized explanatory text and tooltips can greatly enhance the on-
boarding process for new users. By providing context-specific guidance
and examples, you can help users quickly understand and navigate the

application, reducing the learning curve and increasing adoption.

Generative Ul 214

Dynamic and context-aware chrome elements can also make the applica-
tion feel more intuitive and engaging. Users are more likely to interact
with and explore features when the accompanying text is tailored to their

specific needs and interests.

So far we've covered ideas for enhancing existing Ul paradigms with Al but
what about rethinking how user interfaces are designed and implemented

in a more radical way?

Defining Generative Ul

Unlike traditional UI design, where designers create fixed, static interfaces,
GenUTI hints at a future in which our software boasts flexible, personalized
experiences that can evolve and adapt in real-time. Every time we use an
Al-driven conversational interface, we are letting the Al adapt to the user’s
particular needs. GenUI takes things a step further by applying that level

of adaptability to software’s visual interface .

The reason that it’s possible to play with GenUI ideas today is that large
language models already understand programming and their base knowl-
edge includes Ul technologies and frameworks. The question is thus
whether large language models can be used to generate UI elements, such
as text, images, layouts, and even entire interfaces, that are tailored to
each individual user. The model could be instructed to take into account
various factors, such as the user’s past interactions, stated preferences,
demographic information, and the current context of use, to create highly

personalized and relevant interfaces.

GenUI differs from traditional user interface design in several key ways:

Generative Ul 215

1. Dynamic and Adaptive: Traditional UI design involves creating fixed,
static interfaces that remain the same for all users. In contrast, GenUI
enables interfaces that can dynamically adapt and change based on
user needs and context. This means that the same application can
present different interfaces to different users or even to the same user
in different situations.

2. Personalization at Scale: With traditional design, creating personal-
ized experiences for each user is often impractical due to the time
and resources required. GenUI, on the other hand, allows for person-
alization at scale. By leveraging Al, designers can create interfaces
that automatically adapt to each user’s unique needs and preferences,
without having to manually design and develop separate interfaces for
each user segment.

3. Focus on Outcomes: Traditional UI design often focuses on creating
visually appealing and functional interfaces. While these aspects are
still important in GenUI, the primary focus shifts towards achieving
desired user outcomes. GenUI aims to create interfaces that are
optimized for each user’s specific goals and tasks, prioritizing usability
and effectiveness over purely aesthetic considerations.

4. Continuous Learning and Improvement: GenUI systems can con-
tinuously learn and improve over time based on user interactions
and feedback. As users engage with the generated interfaces, the Al
models can gather data on user behavior, preferences, and outcomes,
using this information to refine and optimize future interface genera-
tions. This iterative learning process allows GenUI systems to become

increasingly effective at meeting user needs over time.

It'simportant to note that GenUI is not the same as Al-assisted design tools,
such as those that provide suggestions or automate certain design tasks.

While these tools can be helpful in streamlining the design process, they

Generative Ul 216

still rely on designers to make final decisions and create static interfaces.
GenUI, on the other hand, involves the Al system taking a more active role
in the actual generation and adaptation of interfaces based on user data

and context.

GenUI represents a significant shift in how we approach user interface
design, moving away from one-size-fits-all solutions and towards highly
personalized, adaptive experiences. By leveraging the power of Al, GenUI
has the potential to revolutionize the way we interact with digital products
and services, creating interfaces that are more intuitive, engaging, and

effective for each individual user.

Example

To illustrate the concept of GenUI, let’s consider a hypothetical fitness
application called “FitAl”. This app aims to provide personalized workout
plans and nutrition advice to users based on their individual goals, fitness

levels, and preferences.

In a traditional Ul design approach, FitAl might have a fixed set of screens
and elements that are the same for all users. However, with GenUI, the app’s

interface could dynamically adapt to each user’s unique needs and context.

This approach is kind of a stretch to imagine implementing in 2024 and

might not even have adequate ROI, but it is possible.

Here’s how it might work:

1. Onboarding:

* Instead of a standard questionnaire, FitAl uses a conversational
Al to gather information about the user’s goals, current fitness

level, and preferences.

Generative Ul 217

* Based on this initial interaction, the Al generates a personalized
dashboard layout, highlighting the features and information most

relevant to the user’s goals.
* Current Al technology might have a selection of screen com-

ponents at its disposal to use in composing the personalized

dashboard.
 Future Al technology might take on the role of an experienced Ul

designer and actually create the dashboard from scratch.

2. Workout Planner:

* The workout planner interface is adapted by the Al based to
specifically match the user’s experience level and available equip-

ment.
* For a beginner with no equipment, it might show simple body-

weight exercises with detailed instructions and videos.
* For an advanced user with access to a gym, it could display more

complex routines with less explanatory content.
* The content of the workout planner is not simply filtered from a

large superset. It can be generated on the fly based on a knowl-
edge base that is queried with context that includes everything

known about the user.

3. Progress Tracking:

» The progress tracking interface evolves based on the user’s goals

and engagement patterns.
* If a user is primarily focused on weight loss, the interface might

prominently display a weight trend graph and calorie burn statis-

tics.
* For a user building muscle, it could highlight strength gains and

body composition changes.

Generative Ul 218

* The Al can adapt this part of the application to the user’s actual
progress. If the progress stops for a period of time, the app can
shift into a mode where it tries to coax the user into divulging the

reasons for the setback, in order to mitigate them.

4. Nutrition Advice:

* The nutrition section adapts to the user’s dietary preferences and

restrictions.
 For a vegan user, it might show plant-based meal suggestions and

protein sources.
* For a user with a gluten intolerance, it would automatically filter

out gluten-containing foods from recommendations.
* Again, the content is not drawn from a massive superset of meal

data that applies to all users, but rather is synthesized from a
knowledge base that contains information adaptable based on the

user’s specific situation and constraints.
* Forinstance, recipes are generated with ingredient specifications

that match the constantly-changing caloric needs of the user as

their fitness level and body stats evolve.

5. Motivational Elements:

* The app’s motivational content and notifications are personalized
based on the user’s personality type and response to different

motivational strategies .
* Some users might receive encouraging messages, while others

get more data-driven feedback.

In this example, GenUI enables FitAl to create a highly customized expe-

rience for each user, potentially increasing engagement, satisfaction, and

Generative Ul 219

the likelihood of achieving fitness goals. The interface elements, content,
and even the app’s “personality” adapt to best serve each individual user’s

needs and preferences.

The Shift to Outcome-Oriented Design

GenUI represents a fundamental shift in the approach to user interface
design !, moving from a focus on creating specific interface elements
to a more holistic, outcome-oriented approach. This shift has several

important implications:
1. Focus on User Goals:

* Designers will need to think more deeply about user goals and

desired outcomes rather than specific interface components.
* The emphasis will be on creating systems that can generate

interfaces that help users achieve their objectives efficiently and

effectively.
* New Ul frameworks will emerge that give Al-based designers

the tools they need to be able to generate user experiences on
the fly and from scratch instead of based on predefined screen

specifications .

2. Changing Role of Designers:

* Designers will transition from creating fixed layouts to defining
rules, constraints, and guidelines for Al systems to follow when

generating interfaces.
* They will need to develop skills in areas such as data analysis,

Al prompt engineering , and system thinking to effectively guide

GenUI systems.

Generative Ul 220

3. Importance of User Research:

¢ User research becomes even more critical in a GenUI context, as
designers need to understand not just user preferences, but also

how these preferences and needs change in different contexts.
* Continuous user testing and feedback loops will be essential to

refine and improve the Al's ability to generate effective interfaces.

4. Designing for Variability:

* Instead of creating a single “perfect” interface, designers will
need to consider multiple possible variations and ensure that
the system can generate appropriate interfaces for diverse user

needs.
* This includes designing for edge cases and ensuring that the

generated interfaces maintain usability and accessibility across

different configurations.
* Product differentiation takes on new dimensions involving di-

vergent perspectives on user psychology and the leveraging of

unique data sets and knowledge bases unavailable to competitors.

Challenges and Considerations

While GenUI offers exciting possibilities, it also presents several challenges

and considerations:

1. Technical Limitations:

* Current Al technology, while advanced, still has limitations in un-
derstanding complex user intents and generating truly context-

aware interfaces.

Generative Ul 221

* Performance issues related to real-time generation of interface

elements, especially on less powerful devices.

2. Data Requirements:

* Depending on the use case, effective GenUI systems might re-
quire significant amounts of user data to generate personalized
interfaces.

* The challenges in ethically sourcing authentic user data raise

concerns about data privacy and security , as well as potential

biases in the data used to train GenUI models.

3. Usability and Consistency:

* At least until the practice becomes widespread, an application
with constantly changing interfaces could lead to usability issues ,
as users may struggle to find familiar elements or navigate effi-
ciently.

 Striking a balance between personalization and maintaining a

consistent, learnable interface will be crucial.

4. Overreliance on Al:

* There’s a risk of over-delegating design decisions to Al systems,
potentially leading to uninspired, problematic, or simply broken
interface choices.

* Human oversight and the ability to override Al-generated designs

will remain important in the foreseeable future.

5. Accessibility Concerns:

Generative Ul 222

* Ensuring that dynamically generated interfaces remain accessi-
ble to users with disabilities presents entirely new challenges,
which is worrying given the poor level of accessibility compliance

demonstrated by typical systems .
* On the other hand, Al designers may be implemented with built-

in concern for accessibility, and capabilities for building accessi-
ble interfaces on the fly just like they build UI for non-impaired

users.
* Either way, GenUI systems should be designed with robust ac-

cessibility guidelines and testing processes.

6. User Trust and Transparency:

* Users may feel uncomfortable with interfaces that seem to “know

too much” about them or change in ways they don't understand.
* Providing transparency about how and why interfaces are per-

sonalized will be important for building user trust .

Future Outlook and Opportunities

The future of Generative Ul (GenUI) holds immense promise for revolu-
tionizing the way we interact with digital products and services. As this
technology continues to evolve, we can anticipate a seismic shift in how
user interfaces are designed, implemented, and experienced. I think GenUI
is the phenomenon that will finally push our software into the realm of what

is now considered science fiction.

One of the most exciting prospects of GenUI is its potential to enhance
accessibility on a grand scale that goes beyond simply making sure that

people with serious disabilities are not completely excluded from the

Generative Ul 223

use of your software. By automatically adapting interfaces to individual
user needs, GenUI could make digital experiences more inclusive than
ever before. Imagine interfaces that seamlessly adjust to provide larger
text for younger or visually impaired users or simplified layouts for those
with cognitive disabilities, all without requiring manual configuration or

separate “accessible” versions of applications.

The personalization capabilities of GenUI are likely to drive increased
user engagement, satisfaction, and loyalty across a wide range of digital
products. As interfaces become more attuned to individual preferences
and behaviors, users will find digital experiences more intuitive and enjoy-
able, potentially leading to deeper and more meaningful interactions with

technology.

GenUI also has the potential to transform the onboarding process for new
users. By creating intuitive, personalized first-time user experiences that
quickly adapt to each user’s level of expertise, GenUI could significantly
reduce the learning curve associated with new applications. This could lead
to faster adoption rates and increased user confidence in exploring new

features and functionalities.

Another exciting possibility is the ability of GenUI to maintain a consistent
user experience across different devices and platforms while optimizing for
each specific context of use. This could solve the long-standing challenge
of providing coherent experiences across an increasingly fragmented de-
vice landscape, from smartphones and tablets to desktop computers and

emerging technologies like augmented reality glasses .

The data-driven nature of GenUI opens up opportunities for rapid iteration
and improvement in Ul design . By gathering real-time data on how users
interact with generated interfaces, designers and developers can gain

unprecedented insights into user behavior and preferences. This feedback

Generative Ul 224

loop could lead to continuous improvements in UI design, driven by actual

usage patterns rather than assumptions or limited user testing.

To prepare for this shift, designers will need to evolve their skill sets and
mindsets. The focus will shift from creating fixed layouts to developing
comprehensive design systems and guidelines that can inform Al-driven
interface generation. Designers will need to cultivate a deep understanding
of data analysis, Al technologies, and systems thinking to effectively guide

GenUI systems.

Moreover, as GenUI blurs the lines between design and technology, de-
signers will need to collaborate more closely with developers and data
scientists. This interdisciplinary approach will be crucial in creating GenUI
systems that are not only visually appealing and user-friendly but also

technically robust and ethically sound.

The ethical implications of GenUI will also come to the forefront as the
technology matures. Designers will play a crucial role in developing
frameworks for responsible Al use in interface design, ensuring that per-
sonalization enhances user experiences without compromising privacy or

manipulating user behavior in unethical ways.

As we look to the future, GenUI presents both exciting opportunities
and significant challenges. It has the potential to create more intuitive,
efficient, and satisfying digital experiences for users across the globe.
While it will require designers to adapt and acquire new skills, it also offers
an unprecedented opportunity to shape the future of human-computer
interaction in profound and meaningful ways. The journey towards fully
realized GenUI systems will undoubtedly be complex, but the potential
rewards in terms of improved user experiences and digital accessibility

make it a future worth striving for.

Intelligent Workflow Orchestration

In the realm of application development , workflows play a crucial role in

defining how tasks, processes, and user interactions are structured and
executed. As applications become more complex and user expectations
continue to rise, the need for intelligent and adaptive workflow orchestra-

tion becomes increasingly apparent.

The “Intelligent Workflow Orchestration” approach focuses on leveraging
Al components to dynamically orchestrate and optimize complex work-
flows within applications. The goal is to create applications that are more

efficient, responsive, and adaptable to real-time data and context.

In this chapter, we will explore the key principles and patterns that un-
derpin the intelligent workflow orchestration approach. We will consider

how Al can be used to intelligently route tasks, automate decision-making,

Intelligent Workflow Orchestration 226

and dynamically adapt workflows based on various factors such as user
behavior, system performance, and business rules. Through practical
examples and real-world scenarios, we will demonstrate the transformative

potential of Al in streamlining and optimizing application workflows.

Whether you are building enterprise applications with intricate business
processes or consumer-facing applications with dynamic user journeys,
the patterns and techniques discussed in this chapter will equip you with
the knowledge and tools to create intelligent and efficient workflows that

enhance the overall user experience and drive business value.

Business Need

Traditional approaches to workflow management often rely on predefined
rules and static decision trees , which can be rigid, inflexible, and unable to

cope with the dynamic nature of modern applications.

Consider a scenario where an e-commerce application needs to handle
a complex order fulfillment process. The workflow may involve multiple
steps such as order validation, inventory check, payment processing, ship-
ping, and customer notifications. Each step may have its own set of rules,
dependencies, external integrations, and exception handling mechanisms.
Managing such a workflow manually or through hardcoded logic can

quickly become cumbersome, error-prone, and difficult to maintain.

Moreover, as the application scales and the number of concurrent users
grows, the workflow may need to adapt and optimize itself based on
real-time data and system performance. For example, during peak traffic
periods, the application may need to dynamically adjust the workflow to
prioritize certain tasks, allocate resources efficiently, and ensure a smooth

user experience.

Intelligent Workflow Orchestration 227

This is where the “Intelligent Workflow Orchestration” approach comes
into play. By leveraging Al components, developers can create workflows
that are intelligent, adaptive, and self-optimizing. Al can analyze vast
amounts of data, learn from past experiences, and make informed decisions

in real-time to orchestrate the workflow effectively.

Key Benefits

1. Increased Efficiency: Al can optimize task allocation, resource uti-
lization, and workflow execution, leading to faster processing times
and improved overall efficiency .

2. Adaptability: Al-driven workflows can dynamically adapt to changing
conditions, such as fluctuations in user demand, system performance,
or business requirements, ensuring that the application remains re-
sponsive and resilient.

3. Automated Decision-Making: Al can automate complex decision-
making processes within the workflow, reducing manual intervention
and minimizing the risk of human errors.

4. Personalization: Al can analyze user behavior, preferences, and con-
text to personalize the workflow and deliver tailored experiences to
individual users .

5. Scalability: Al-powered workflows can scale seamlessly to handle
increasing volumes of data and user interactions, without compro-

mising performance or reliability .

In the following sections, we will explore the key patterns and techniques
that enable the implementation of intelligent workflows and showcase
real-world examples of how Al is transforming workflow management in

modern applications .

O 0 N O Ul A W N =

e e el el
U WN RO

Intelligent Workflow Orchestration 228

Key Patterns

To implement intelligent workflow orchestration in applications, develop-
ers can leverage several key patterns that harness the power of Al. These
patterns provide a structured approach to designing and managing work-
flows, enabling applications to adapt, optimize, and automate processes
based on real-time data and context. Let’s explore some of the fundamental

patterns in intelligent workflow orchestration.

Dynamic Task Routing

This pattern involves using Al to intelligently route tasks within a workflow
based on various factors such as task priority, resource availability, and
system performance. Al algorithms can analyze the characteristics of each
task, consider the current state of the system, and make informed decisions
to assign tasks to the most appropriate resources or processing paths.
Dynamic task routing ensures that tasks are efficiently distributed and

executed, optimizing the overall workflow performance .

class TaskRouter
include Raix::ChatCompletion
include Raix::FunctionDispatch

attr_accessor :task

list of functions that can be called by the AI entirely at its
discretion depending on the task received

function :analyze task priority do
TaskPriorityAnalyzer.perform(task)
end

function :check resource availability, # ...
function :assess system performance, # ...

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Intelligent Workflow Orchestration 229

function :assign task to resource, # ...

DIRECTIVE = "You are a task router, responsible for intelligently
assigning tasks to available resources based on priority, resource
availability, and system performance..."

def initialize(task)
self.task = task
transcript << { system: DIRECTIVE }
transcript << { user: task.to json }
end

def perform
while task.unassigned?
chat completion

todo: add max loop counter and break
end

capture the transcript for later analysis
task.update(routing transcript: transcript)
end
end

Note the loop created by the while expression on line 29, which continues
prompting the AI until the task is assigned. On line 35, we save the
transcript on the task for later analysis and debugging, if it becomes

necessary.

Contextual Decision Making

You can use very similar code to make context-aware decisions within
a workflow. By analyzing relevant data points such as user preferences,
historical patterns , and real-time inputs, Al components can determine the
most appropriate course of action at each decision point in the workflow.
Adapt the behavior of your workflow based on the specific context of each

user or scenario, providing personalized and optimized experiences.

Intelligent Workflow Orchestration 230

Adaptive Workflow Composition

This pattern focuses on dynamically composing and adjusting workflows
based on changing requirements or conditions. Al can analyze the cur-
rent state of the workflow, identify bottlenecks or inefficiencies, and
automatically modify the workflow structure to optimize performance.
Adaptive workflow composition allows applications to continuously evolve

and improve their processes without requiring manual intervention.

Exception Handling and Recovery

Exception handling and recovery are critical aspects of intelligent workflow
orchestration. When working with Al components and complex workflows,
it's essential to anticipate and handle exceptions gracefully to ensure the

stability and reliability of the system.

Here are some key considerations and techniques for exception handling

and recovery in intelligent workflows:

1. Exception Propagation: Implement a consistent approach for propa-
gating exceptions across workflow components. When an exception
occurs within a component, it should be caught, logged, and prop-
agated to the orchestrator or a discrete component responsible for
handling exceptions . The idea is to centralize exception handling and
prevent exceptions from being silently swallowed, as well as opening
possibilities for Intelligent Error Handling.

2. Retry Mechanisms: Retry mechanisms help improve the resilience of
the workflow and handle intermittent failures gracefully. Definitely
try to implement retry mechanisms for transient or recoverable ex-

ceptions, such as a network connectivity or resource unavailability

Intelligent Workflow Orchestration 231

that can be automatically retried after a specified delay. Having an
Al-powered orchestrator or exception handler means that your retry
strategies do not have to be mechanical in nature, relying on fixed
algorithms like exponential fallback. You can leave the handling of
the retry up to the “discretion” of the Al componente responsible for
deciding how to handle the exception.

3. Fallback Strategies: If an Al component fails to provide a valid
response or encounters an error—a Common occurrence given its
bleeding-edge nature—have a fallback mechanism in place to ensure
the workflow can continue. This could involve using default values,
alternative algorithms, or a Human In The Loop to make decisions
and keep the workflow moving forward.

4. Compensating Actions: The orchestrators directives should include
instructions about compensating actions to handle exceptions that
cannot be resolved automatically. Compensating actions are steps
taken to undo or mitigate the effects of a failed operation. For exam-
ple, if a payment processing step fails, a compensating action could be
to roll back the transaction and notify the user. Compensating actions
help maintain data consistency and integrity in the face of exceptions.

5. Exception Monitoring and Alerting: Set up monitoring and alerting
mechanisms to detect and notify relevant stakeholders about critical
exceptions. The orchestrator can be made aware of thresholds and
rules to trigger alerts when exceptions exceed certain limits or when
specific types of exceptions occur. This allows for proactive identifi-

cation and resolution of issues before they impact the overall system.

Here’s an example of exception handling and recovery in a Ruby workflow

component:

O 00 N O Ul A W N

N N NNNNNNNNRRRRRR R R 2 (3
© 00 NN O U A WIN P O OO NO UL B WN R O

Intelligent Workflow Orchestration 232

class InventoryManager
def check availability(order)
begin
Perform inventory check logic
inventory = Inventory.find by(product id: order.product id)
if inventory.available quantity >= order.quantity
return true
else
raise InsufficientInventoryError,
"Insufficient inventory for product #{order.product id}"
end
rescue InsufficientInventoryError => e
Log the exception
logger.error("Inventory check failed: #{e.message}")

Retry the operation after a delay

retry count ||= 0

if retry count < MAX RETRIES
retry count += 1
sleep(RETRY_DELAY)
retry

else
Fallback to manual intervention
NotificationService.admin("Inventory check failed: Order #{order.id}")
return false

end

end
end
end

In this example, the InventoryManager component checks the availability
of a product for a given order. If the available quantity is insufficient, it
raises an InsufficientInventoryError. The exception is caught, logged,
and a retry mechanism is implemented. If the retry limit is exceeded, the

component falls back to manual intervention by notifying an admin .

By implementing robust exception handling and recovery mechanisms,

you can ensure that your intelligent workflows are resilient, maintainable,

Intelligent Workflow Orchestration 233

and able to handle unexpected situations gracefully.

These patterns form the foundation of intelligent workflow orchestration
and can be combined and adapted to suit the specific requirements of
different applications . By leveraging these patterns, developers can create
workflows that are flexible, resilient, and optimized for performance and

user experience.

In the next section, we will explore how these patterns can be implemented
in practice, using real-world examples and code snippets to illustrate the

integration of Al components into workflow management.

Implementing Intelligent Workflow Orchestration in

Practice

Now that we have explored the key patterns in intelligent workflow or-
chestration, let’s dive into how these patterns can be implemented in real-
world applications. We'll provide practical examples and code snippets to

illustrate the integration of Al components into workflow management.

Intelligent Order Processor

Let’s dive into a practical example of implementing intelligent workflow
orchestration using an Al-powered OrderProcessor component in a Ruby
on Rails e-commerce application. The OrderProcessor realizes the Pro-
cess Manager Enterprise Integration concept that we first encountered
in Chapter 3 when discussing Multitude of Workers. The component will

be responsible for managing order fulfillment workflow, making routing

Intelligent Workflow Orchestration 234

decisions based on intermediate results, and orchestrating the execution

of various processing steps.

The order fulfillment process involves multiple steps such as order vali-
dation, inventory check, payment processing, and shipping. Each step is
implemented as a separate worker process that performs a specific task and
returns the result to the OrderProcessor. The steps are not mandatory,

and don’t even necessarily have to be done in a precise order.

Here’s an example implementation of the OrderProcessor. It features
two mixins from Raix. The first (ChatCompletion) gives it the ability
to do chat completion, which is what makes this an Al component. The
second (FunctionDispatch) enables function calling by the Al, allowing it

to respond to a prompt with a function invocation instead of a text message.

The worker functions (validate order, check inventory, et al) delegate
to their respective worker classes, which can be Al or non-Al components,
with the only requirement being that they return the results of their work

in a format that can be represented as a string.

As with all other examples in this part of the book, this code is
practically pseudo-code and is only meant to convey the meaning
of the pattern and inspire your own creations. Full descriptions

of patterns and complete code examples are included in Part 2.

https://github.com/OlympiaAI/raix-rails

Intelligent Workflow Orchestration

class OrderProcessor
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM DIRECTIVE = "You are an order processor, tasked with..."

def initialize(order)
self.order = order
transcript << { system: SYSTEM DIRECTIVE }
transcript << { user: order.to json }

end

def perform
will continue looping until ‘stop looping!’ 1is called
chat_completion(loop: true)

end

list of functions available to be called by the AI
truncated for brevity

def functions
[
{
name: "validate order",
description: "Invoke to check validity of order",
parameters: {

}’

]

end

implementation of functions that can be called by the AI
entirely at its discretion, depending on the needs of the order

def validate order
OrderValidationWorker.perform(@order)
end

def check inventory
InventoryCheckWorker.perform(@order)
end

235

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Intelligent Workflow Orchestration 236

def process payment
PaymentProcessingWorker.perform(@order)
end

def schedule shipping
ShippingSchedulerWorker.perform(@order)
end

def send confirmation
OrderConfirmationWorker.perform(@order)
end

def finished processing
@order.update! (transcript:, processed at: Time.current)
stop_looping!
end
end

In the example, the OrderProcessor is initialized with an order object and
maintains a transcript of the workflow execution, in the typical conversa-
tion transcript format that is native to large language models. Complete
control is given to the Al to orchestrate the execution of various processing
steps, such as order validation, inventory check, payment processing, and
shipping.

Everytime the chat_completion method is called, the transcript is sent to
the Al for it to provide a completion as a function call. It is entirely up to the
Al to analyze the result of the previous step and determine the appropriate
action to take. For example, if the inventory check reveals low stock levels,
the OrderProcessor can schedule a replenishment task. If the payment

processing fails, it can initiate a retry or notify customer support.

Intelligent Workflow Orchestration 237

The example above does not have functions defined for replenishment

or notifying customer support, but it absolutely could.

The transcript grows everytime a function is called and serves as a record
of the workflow execution, including the results of each step and the Al-
generated instructions for the next steps. This transcript can be used
for debugging, auditing, and providing visibility into the order fulfillment
process.

By leveraging Al in the OrderProcessor, the e-commerce application
can dynamically adapt the workflow based on real-time data and handle
exceptions intelligently. The Al component can make informed decisions,
optimize the workflow, and ensure smooth order processing even in com-

plex scenarios.

The fact that the only requirement on the worker processes is to return
some intelligible output for the Al to consider when deciding what to do
next, it might start to dawn on you how this approach can cut down on
the input/output mapping work that is typically involved when integrating
disparate systems with each other.

Intelligent Content Moderator

Social media applications generally require at least minimal content mod-
eration to ensure a safe and healthy community. This example Content-
Moderator component leverages Al to intelligently orchestrate the mod-
eration workflow, making decisions based on the content’s characteristics

and the results of various moderation steps.

The moderation process involves multiple steps such as text analysis, image

O 0 N O Ul A W N =

W W W W WwWwWNNNNNNDNNNNNRRRRER R B B 2 (2
U p W NP O OO0WNO UM WNRPEPROOOOLWOSNODUU S WNPRLO

Intelligent Workflow Orchestration 238

recognition, user reputation assessment, and manual review. Each step is
implemented as a separate worker process that performs a specific task

and returns the result to the ContentModerator.

Here’s an example implementation of the ContentModerator:

class ContentModerator
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM DIRECTIVE = "You are a content moderator process manager,
tasked with the workflow involved in moderating user-generated content..."

def initialize(content)
@content = content
@transcript = [
{ system: SYSTEM DIRECTIVE },
{ user: content.to json }
]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"
end

list of functions available to be called by the AI
truncated for brevity

def functions
[
{

name: "analyze text",
...
}
{
name: "recognize image",
description: "Invoke to describe images...",

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

Intelligent Workflow Orchestration

name: "assess user reputation",

name: "escalate to manual review",

name: "approve content",

name: "reject content",

end

Implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def analyze text
result = TextAnalysisWorker.perform(@content)
continue with(result)

end

def recognize image
result = ImageRecognitionWorker.perform(@content)
continue with(result)

end

def assess user reputation
result = UserReputationWorker.perform(@content.user)
continue with(result)

end

def escalate to manual review
ManualReviewWorker.perform(@content)
@content.update! (status: 'pending', transcript: @transcript)

239

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Intelligent Workflow Orchestration 240

end

def approve content
@content.update! (status: 'approved', transcript: @transcript)
end

def reject content
@content.update! (status: 'rejected', transcript: @transcript)
end

private

def continue with(result)
@transcript << { function: result }
complete(@transcript)
end
end

In this example, the ContentModerator is initialized with a content object
and maintains a moderation transcript in the conversation format. The Al
component has full control over the moderation workflow, deciding which
steps to execute based on the content’s characteristics and the results of

each step.

The available worker functions for the Al to invoke include analyze -
text, recognize image, assess user reputation,and escalate to -
manual review. Each function delegates the task to a corresponding
worker process (TextAnalysisWorker, ImageRecognitionWorker, etc.)
and appends the result to the moderation transcript, with the exception of
the escalation function, which acts as an end state. Finally, the approve -

content and reject content functions also act as end states.

The Al component analyzes the content and determines the appropriate
action to take. If the content contains image references, it can call the
recognize_image worker for assistance with a visual review. If any worker

warns of potentially harmful content, the Al may decide to escalate the

Intelligent Workflow Orchestration 241

content for manual review or just reject it outright. But depending on
the severity of the warning, the Al may choose to use the results of the
user reputation assessment in deciding how to handle content that it isn’t
otherwise sure about. Depending on the use case, perhaps trusted users
have more leeway in what they can post. And so on, and so forth...

As with the previous process manager example, the moderation transcript
serves as a record of the workflow execution, including the results of
each step and the Al-generated decisions. This transcript can be used for

auditing, transparency, and improving the moderation process over time.

By leveraging Al in the ContentModerator, the social media application
can dynamically adapt the moderation workflow based on the content’s
characteristics and handle complex moderation scenarios intelligently.
The Al component can make informed decisions, optimize the workflow,

and ensure a safe and healthy community experience.

Let’s explore two more examples that demonstrate predictive task schedul-
ing and exception handling and recovery within the context of intelligent

workflow orchestration.

Predictive Task Scheduling in a Customer Support System

In a customer support application built with Ruby on Rails, efficiently
managing and prioritizing support tickets is crucial for providing timely as-
sistance to customers. The SupportTicketScheduler component lever-
ages Al to predictively schedule and assign support tickets to available
agents based on various factors such as ticket urgency, agent expertise,

and workload.

Intelligent Workflow Orchestration 242

class SupportTicketScheduler
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM DIRECTIVE = "You are a support ticket scheduler,
tasked with intelligently assigning tickets to available agents..."

O 00 N O Ul A W N

AN DA W W WWWWWWWWNDNNNRNNDINNRNNRRRRRP R B 2 B 2
N P © ©00 N0 U B WRNROWOOWNOOUARAWNEROOOWDNOOUMAWNR O

def initialize(ticket)
@ticket = ticket
@transcript = [
{ system: SYSTEM DIRECTIVE },
{ user: ticket.to _json }
]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"
end

def functions
[
{
name: "analyze ticket urgency",
...
I
{

name: "list available agents",

description: "Includes expertise of available agents",

...
}I
{

name: "predict agent workload",

description: "Uses historical data to predict upcoming workloads",

...

}’

{
name: "assign_ticket to agent",
...

Intelligent Workflow Orchestration 243

43 },
44 {

45 name: "reschedule ticket",

46 # ...

47 }

48 1

49 end

50

51 # implementation of functions that can be called by the AI
52 # entirely at its discretion, depending on the needs of the order
53

54 def analyze ticket urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)
56 continue with(result)

57 end

58

59 def list available agents

60 result = ListAvailableAgents.perform

61 continue with(result)

62 end

63

64 def predict agent workload

65 result = AgentWorkloadPredictor.perform

66 continue with(result)

67 end

68

69 def assign ticket to agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

73 def delay assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)
76 end

77

78 private

79

80 def continue with(result)

81 @transcript << { function: result }

82 complete(@transcript)

83 end

84 end

Intelligent Workflow Orchestration 244

In this example, the SupportTicketScheduler is initialized with a support
ticket object and maintains a scheduling transcript. The Al component
analyzes the ticket details and predictively schedules the ticket assignment
based on factors like ticket urgency, agent expertise, and predicted agent
workload.

The available functions for the Al to invoke include analyze ticket -
urgency, list available agents, predict agent workload, and as-
sign_ticket to_agent. Each function delegates the task to a corre-
sponding analyzer or predictor component and appends the result to the
scheduling transcript. The Al also has the option to delay assignment using

the delay assignment function.

The Al component examines the scheduling transcript and makes informed
decisions on ticket assignment . It considers the urgency of the ticket, the
expertise of available agents, and the predicted workload of each agent to

determine the most suitable agent for handling the ticket.

By leveraging predictive task scheduling, the customer support application
can optimize ticket assignment, reduce response times, and improve over-
all customer satisfaction. Proactive and efficient management of support
tickets ensures that the right tickets are assigned to the right agents at the
right time.

Exception Handling and Recovery in a Data Processing Pipeline

Handling exceptions and recovering from failures is essential to ensure
data integrity and prevent data loss . The DataProcessingOrchestrator
component utilizes Al to intelligently handle exceptions and orchestrate

the recovery process in a data processing pipeline .

W O N O U A WN R

B A D W W W WWWWWWWNNNNRIRNNNNNNRRERRERRRE R 2 (3
N P © © 00 N O Ul A WIN P O O OWOWNO UM WNROOOOLOSNOUUSWNRLO

Intelligent Workflow Orchestration

class DataProcessingOrchestrator
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM DIRECTIVE = "You are a data processing orchestrator..."

def initialize(data batch)
@data batch = data batch
@transcript = [
{ system: SYSTEM DIRECTIVE },
{ user: data batch.to _json }

]

end

def perform
complete(@transcript)

end

def model
"openai/gpt-4"

end

def functions

name: "validate data",

name: "process data",

name: "request fix",

name: "retry processing",

name: "mark data as failed",

245

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Intelligent Workflow Orchestration 246

...
}I
{

name: "finished",
...

]

end

implementation of functions that can be called by the AI
entirely at its discretion, depending on the needs of the order

def validate data
result = DataValidator.perform(@data batch)
continue with(result)

rescue ValidationException => e
handle validation_exception(e)

end

def process data
result = DataProcessor.perform(@data batch)
continue with(result)

rescue ProcessingException => e
handle _processing_exception(e)

end

def request fix(description of fix)
result = SmartDataFixer.new(description_of_ fix, @data_batch)
continue with(result)

end

def retry processing(timeout in seconds)
wait(timeout in seconds)
process _data

end

def mark data as failed
@data batch.update!(status: 'failed', transcript: @transcript)
end

def finished
@data batch.update!(status: 'finished', transcript: @transcript)

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

Intelligent Workflow Orchestration 247

end
private

def continue with(result)
@transcript << { function: result }
complete(@transcript)

end

def handle validation exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)

end

def handle processing exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)
end
end

In this example, the DataProcessingOrchestrator is initialized with a
data batch object and maintains a processing transcript. The Al compo-
nent orchestrates the data processing pipeline, handling exceptions and

recovering from failures as needed.

The available functions for the Al to invoke include validate data,
process data, request fix, retry processing, and mark data -
as_failed. Each function delegates the task to a corresponding data
processing component and appends the result or exception details to the

processing transcript.

If a validation exception occurs during the validate data step, the han-
dle validation exception function appends the exception data to the
transcript and passes control back to the Al Similarly, if a processing
exception occurs during the process data step, the Al can decide on the

recovery strategy.

Intelligent Workflow Orchestration 248

Depending on the nature of the exception encountered, the Al can at its
discretion decide to call request fix, which delegates to an Al-powered
SmartDataFixer component (see Self Healing Data chapter). The data
fixer gets a plain english description of how it should modify the @data_-
batch so that processing can be retried. Perhaps a successful retry would
entail removing records from the data batch that have failed validation
and/or copying them to a different processing pipeline for human review?

The possibilities are near endless.

By incorporating Al-driven exception handling and recovery, the data
processing application becomes more resilient and fault-tolerant. The
DataProcessingOrchestrator intelligently manages exceptions, mini-
mizes data loss, and ensures the smooth execution of the data processing

workflow.

Monitoring and Logging

Monitoring and logging provide visibility into the progress, performance,
and health of Al-powered workflow components, enabling developers to
track and analyze the behavior of the system. Implementing effective
monitoring and logging mechanisms is essential for debugging, auditing,

and continuous improvement of intelligent workflows.

Monitoring Workflow Progress and Performance

To ensure the smooth execution of intelligent workflows, it’s important
to monitor the progress and performance of each workflow component.
This involves tracking key metrics and events throughout the workflow

lifecycle.

Intelligent Workflow Orchestration 249

Some important aspects to monitor include:

1. Workflow Execution Time: Measure the time taken by each workflow
component to complete its task. This helps identify performance bottle-

necks and optimize the overall workflow efficiency.

2. Resource Utilization: Monitor the utilization of system resources, such
as CPU, memory, and storage, by each workflow component. This helps
ensure that the system is operating within its capacity and can handle the

workload effectively.

3. Error Rates and Exceptions: Track the occurrence of errors and
exceptions within workflow components. This helps identify potential

issues and enables proactive error handling and recovery.

4. Decision Points and Outcomes: Monitor the decision points within
the workflow and the outcomes of Al-powered decisions. This provides

insights into the behavior and effectiveness of the Al components.

The data captured by monitoring processes can be surfaced in dashboards
or used as inputs to scheduled reports that inform system administrators
about the health of the system.

P Monitoring data can be fed to an Al-powered system administra-

tor process for review and potential action!

Logging Key Events and Decisions

Logging is an essential practice that involves capturing and storing relevant
information about key events, decisions, and exceptions that occur during

the workflow execution.

Some important aspects to log include:

Intelligent Workflow Orchestration 250

1. Workflow Initiation and Completion: Log the start and end times of each
workflow instance, along with any relevant metadata such as the input data

and user context.

2. Component Execution: Log the execution details of each workflow
component, including the input parameters, output results, and any inter-

mediate data generated.

3. Al Decisions and Reasoning: Log the decisions made by Al components,
along with the underlying reasoning or confidence scores. This provides

transparency and enables auditing of Al-powered decisions.

4. Exceptions and Error Messages: Log any exceptions or error messages
encountered during the workflow execution, including the stack trace and

relevant context information.

Logging can be implemented using various techniques, such as writing to
log files, storing logs in a database, or sending logs to a centralized logging
service. It's important to choose a logging framework that provides flexi-

bility, scalability, and easy integration with the application’s architecture.

Here’s an example of how logging can be implemented in a Ruby on Rails

application using the ActiveSupport: :Logger class:

O 00 N O Ul A W N

el ol
A W N R OO

Intelligent Workflow Orchestration 251

class WorkflowLogger
def self.log(message, severity = :info)
@logger ||= ActiveSupport::Logger.new('workflow.log")
@logger.formatter ||= proc do |severity, datetime, progname, msg|
"#{datetime} [#{severity}] #{msg}\n"
end
@logger.send(severity, message)
end
end

Usage example

WorkflowLogger.log("Workflow initiated for order ##{@order.id}")
WorkflowLogger.log("Payment processing completed successfully")
WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

By strategically placing logging statements throughout the workflow com-
ponents and Al decision points, developers can capture valuable informa-

tion for debugging, auditing, and analysis .

Benefits of Monitoring and Logging

Implementing monitoring and logging in intelligent workflow orchestration

offers several benefits:

1. Debugging and Troubleshooting: Detailed logs and monitoring data help
developers identify and diagnose issues quickly. They provide insights into
the workflow execution flow, component interactions, and any errors or

exceptions encountered .

2. Performance Optimization: Monitoring performance metrics allows
developers to identify bottlenecks and optimize the workflow components
for better efficiency. By analyzing execution times, resource utilization,
and other metrics, developers can make informed decisions to improve the

overall performance of the system .

Intelligent Workflow Orchestration 252

3. Auditing and Compliance: Logging key events and decisions provides
an audit trail for regulatory compliance and accountability. It enables
organizations to track and verify the actions taken by Al components and

ensure adherence to business rules and legal requirements .

4. Continuous Improvement: Monitoring and logging data serve as valu-
able inputs for continuous improvement of intelligent workflows. By ana-
lyzing historical data, identifying patterns, and measuring the effectiveness
of Al decisions, developers can iteratively refine and enhance the workflow

orchestration logic.

Considerations and Best Practices

When implementing monitoring and logging in intelligent workflow or-

chestration, consider the following best practices:

1. Define Clear Monitoring Metrics: Identify the key metrics and events
that need to be monitored based on the specific requirements of the
workflow. Focus on metrics that provide meaningful insights into the

system’s performance, health, and behavior .

2. Implement Granular Logging: Ensure that logging statements are
placed at appropriate points within the workflow components and Al
decision points. Capture relevant context information, such as input

parameters, output results, and any intermediate data generated .

3. Use Structured Logging: Adopt a structured logging format to facilitate
easy parsing and analysis of log data. Structured logging allows for better

searchability, filtering, and aggregation of log entries .

4. Manage Log Retention and Rotation: Implement log retention and
rotation policies to manage the storage and lifecycle of log files. Determine

the appropriate retention period based on legal requirements, storage

Intelligent Workflow Orchestration 253

constraints, and analysis needs. If possible, offload logging to a 3rd-party

service such as Papertrail .

5. Secure Sensitive Information: Be cautious when logging sensitive
information, such as personally identifiable information (PII) or confidential
business data. Implement appropriate security measures, such as data

masking or encryption, to protect sensitive information in log files.

6. Integrate with Monitoring and Alerting Tools: Leverage monitoring
and alerting tools to centralize the collection, analysis, and visualization of
monitoring and logging data. These tools can provide real-time insights,
generate alerts based on predefined thresholds, and facilitate proactive

issue detection and resolution. My favorite of these tools is Datadog .

By implementing comprehensive monitoring and logging mechanisms, de-
velopers can gain valuable insights into the behavior and performance of
intelligent workflows. These insights enable effective debugging, optimiza-
tion, and continuous improvement of Al-powered workflow orchestration

systems.

Scalability and Performance Considerations

Scalability and performance are critical aspects to consider when designing
and implementing intelligent workflow orchestration systems. As the
volume of concurrent workflows and the complexity of Al-powered com-
ponents increase, it becomes essential to ensure that the system can handle

the workload efficiently and scale seamlessly to meet growing demands.

Handling High Volumes of Concurrent Workflows

Intelligent workflow orchestration systems often need to handle a large

number of concurrent workflows. To ensure scalability, consider the

https://papertrailapp.com
https://www.datadoghq.com

Intelligent Workflow Orchestration 254

following strategies:

1. Asynchronous Processing: Implement asynchronous processing mech-
anisms to decouple the execution of workflow components. This allows
the system to handle multiple workflows concurrently without blocking
or waiting for each component to complete. Asynchronous processing
can be achieved using message queues, event-driven architectures, or

background job processing frameworks such as Sidekiq .

2. Distributed Architecture: Design the system architecture to use server-
less components (such as AWS Lambda) or simply distribute the workload
across multiple nodes or servers alongside your main application server.
This enables horizontal scalability, where additional nodes can be added to

handle increased workflow volumes .

3. Parallel Execution: Identify opportunities for parallel execution within
workflows. Some workflow components may be independent of each
other and can be executed concurrently. By leveraging parallel processing
techniques, such as multi-threading or distributed task queues, the system
can optimize resource utilization and reduce overall workflow execution

time .

Optimizing Performance of Al-Powered Components

Al-powered components, such as machine learning models or natural
language processing engines, can be computationally intensive and impact
the overall performance of the workflow orchestration system. To optimize

the performance of Al components, consider the following techniques:

1. Caching: If your Al processing is purely generative and does not involve
realtime information lookups or external integrations in order to generate

its chat completions, then you can look into caching mechanisms to store

Intelligent Workflow Orchestration 255

and reuse the results of frequently accessed or computationally expensive

operations .

2. Model Optimization: Continuously optimize the way that you use the
Al models in workflow components. This may involve techniques such as
Prompt Distillation or it might simply be a matter of testing new models as

they become available.

3. Batch Processing: If youre working with GPT-4 class models, you
migth be able to leverage batch processing techniques to process multiple
data points or requests in a single batch, rather than processing them
individually. By processing data in batches, the system can optimize

resource utilization and reduce the overhead of repeated model requests.

Monitoring and Profiling Performance

To identify performance bottlenecks and optimize the scalability of the
intelligent workflow orchestration system , it's crucial to implement mon-

itoring and profiling mechanisms. Consider the following approaches:

1. Performance Metrics: Define and track key performance metrics, such
as response time, throughput, resource utilization, and latency. These
metrics provide insights into the system’s performance and help identify
areas for optimization. Popular Al model aggregator OpenRouter includes
Host! and Speed[~speed] metrics in each API response, making it trivial to

track these key metrics.

[~ speed] Speed is calculated as the number of completion tokens divided
by total generation time. For non-streamed requests latency is considered

part of generation time.

'Host is the time it took to receive the first byte of the streamed generation from the model
host, a.k.a. “time to first byte”

https://openrouter.ai

Intelligent Workflow Orchestration 256

2. Profiling Tools: Utilize profiling tools to analyze the performance of
individual workflow components and Al operations. Profiling tools can
help identify performance hotspots, inefficient code paths, or resource-
intensive operations. Popular profiling tools include New Relic, Scout, or

built-in profilers provided by the programming language or framework.

3. Load Testing: Conductload testing to evaluate the system’s performance
under different levels of concurrent workloads. Load testing helps identify
the system’s scalability limits, detect performance degradation, and ensure
that the system can handle the expected traffic without compromising

performance.

4. Continuous Monitoring: Implement continuous monitoring and alerting
mechanisms to proactively detect performance issues and bottlenecks.
Set up monitoring dashboards and alerts to track key performance in-
dicators (KPIs) and receive notifications when predefined thresholds are
breached. This enables prompt identification and resolution of perfor-

mance problems .

Scaling Strategies

To handle increasing workloads and ensure the scalability of the intelligent

workflow orchestration system, consider the following scaling strategies:

1. Vertical Scaling: Vertical scaling involves increasing the resources (e.g.,
CPU, memory) of individual nodes or servers to handle higher workloads.
This approach is suitable when the system requires more processing power

or memory to handle complex workflows or Al operations.

2. Horizontal Scaling: Horizontal scaling involves adding more nodes or
servers to the system to distribute the workload. This approach is effective

when the system needs to handle a large number of concurrent workflows

Intelligent Workflow Orchestration 257

or when the workload can be easily distributed across multiple nodes.
Horizontal scaling requires a distributed architecture and load balancing

mechanisms to ensure even distribution of traffic.

3. Auto-Scaling: Implement auto-scaling mechanisms to automatically
adjust the number of nodes or resources based on the workload demand .
Auto-scaling allows the system to dynamically scale up or down depending
on the incoming traffic, ensuring optimal resource utilization and cost-
efficiency. Cloud platforms like Amazon Web Services (AWS) or Google
Cloud Platform (GCP) provide auto-scaling capabilities that can be lever-

aged for intelligent workflow orchestration systems.

Performance Optimization Techniques

In addition to the scaling strategies, consider the following performance
optimization techniques to enhance the efficiency of the intelligent work-
flow orchestration system:

1. Efficient Data Storage and Retrieval: Optimize the data storage and
retrieval mechanisms used by the workflow components. Use efficient
database indexing, query optimization techniques, and data caching to
minimize the latency and improve the performance of data-intensive op-

erations.

2. Asynchronous I/0: Utilize asynchronous 1/O operations to prevent
blocking and improve the responsiveness of the system. Asynchronous /0
allows the system to handle multiple requests concurrently without waiting

for I/0 operations to complete, thereby maximizing resource utilization.

3. Efficient Serialization and Deserialization: Optimize the serialization
and deserialization processes used for data exchange between workflow

components. Use efficient serialization formats, such as Protocol Buffers

Intelligent Workflow Orchestration 258

or MessagePack , to reduce the overhead of data serialization and improve

the performance of inter-component communication.

For Ruby-based applications, consider using Universal ID . Uni-
P versal ID leverages both MessagePack and Brotli (a combo built
for speed and best-in-class data compression) . When combined,
these libraries are up to 30% faster and within 2-5% compression

rates compared to Protocol Buffers.

4. Compression and Encoding: Apply compression and encoding tech-
niques to reduce the size of data transferred between workflow compo-
nents. Compression algorithms, such as gzip or Brotli, can significantly
reduce the network bandwidth usage and improve the overall performance
of the system.

By considering scalability and performance aspects during the design
and implementation of intelligent workflow orchestration systems, you
can ensure that your system can handle high volumes of concurrent
workflows , optimize the performance of Al-powered components, and
scale seamlessly to meet growing demands. Continuous monitoring, profil-
ing, and optimization efforts are essential to maintain the system’s perfor-
mance and responsiveness as the workload and complexity increase over

time.

Testing and Validation of Workflows

Testing and validation are critical aspects of developing and maintaining
intelligent workflow orchestration systems. Given the complex nature
of Al-powered workflows, it is essential to ensure that each component

functions as expected, the overall workflow behaves correctly, and the

https://github.com/hopsoft/universalid

Intelligent Workflow Orchestration 259

Al decisions are accurate and reliable. In this section, we will explore
various techniques and considerations for testing and validating intelligent

workflows.

Unit Testing Workflow Components

Unit testing involves testing individual workflow components in isolation
to verify their correctness and robustness. When unit testing Al-powered

workflow components, consider the following:

1. Input Validation: Test the component’s ability to handle different types
of inputs, including valid and invalid data. Verify that the component
gracefully handles edge cases and provides appropriate error messages or

exceptions.

2. Output Verification: Assert that the component produces the expected
output for a given set of inputs. Compare the actual output with the

expected results to ensure correctness .

3. Error Handling: Test the component’s error handling mechanisms by
simulating various error scenarios, such as invalid input, resource unavail-
ability, or unexpected exceptions. Verify that the component catches and

handles errors appropriately .

4**, Boundary Conditions:** Test the component’s behavior under bound-
ary conditions, such as empty input, maximum input size, or extreme
values. Ensure that the component handles these conditions gracefully

without crashing or producing incorrect results .

Here’s an example of a unit test for a workflow component in Ruby using

the RSpec testing framework :

Intelligent Workflow Orchestration 260

RSpec.describe OrderValidator do
describe '#validate' do
context 'when order is valid' do
let(:order) { build(:order) }

it 'returns true' do
expect(subject.validate(order)).to be true
end
end

context 'when order is invalid' do
let(:order) { build(:order, total amount: -100) }

it 'returns false' do
expect(subject.validate(order)).to be false
end
end
end
end

In this example, the OrderValidator component is tested using two test
cases: one for a valid order and another for an invalid order. The test cases
verify that the validate method returns the expected boolean value based
on the validity of the order.

Integration Testing Workflow Interactions

Integration testing focuses on verifying the interactions and data flow
between different workflow components. It ensures that the components
work together seamlessly and produce the expected outcomes. When

integration testing intelligent workflows, consider the following:

1. Component Interaction: Test the communication and data exchange
between workflow components. Verify that the output of one component
is correctly passed as input to the next component in the workflow.

OW 00 N O Ul A W N =

T
N = ©

13

Intelligent Workflow Orchestration 261

2. Data Consistency: Ensure that data remains consistent and accurate as it
flows through the workflow. Verify that data transformations, calculations,

and aggregations are performed correctly.

3. Exception Propagation: Test how exceptions and errors are propagated
and handled across workflow components. Verify that exceptions are
caught, logged, and handled appropriately to prevent workflow disruption.

4** Asynchronous Behavior:** If the workflow involves asynchronous
components or parallel execution, test the coordination and synchro-
nization mechanisms. Ensure that the workflow behaves correctly under

concurrent and asynchronous scenarios.
Here’s an example of an integration test for a workflow in Ruby using the
RSpec testing framework :
RSpec.describe OrderProcessingWorkflow do
let(:order) { build(:order) }

it 'processes the order successfully' do
expect(OrderValidator).to receive(:validate).and return(true)

expect(InventoryManager).to receive(:check availability).and return(true)
expect(PaymentProcessor).to receive(:process payment).and return(true)
expect(ShippingService).to receive(:schedule shipping).and return(true)

workflow = OrderProcessingWorkflow.new(order)
result = workflow.process

expect(result).to be true
expect(order.status).to eq('processed")

end

end

In this example, the OrderProcessingWorkflow is tested by verifying

the interactions between different workflow components. The test case

Intelligent Workflow Orchestration 262

sets up expectations for each component’s behavior and ensures that
the workflow processes the order successfully, updating the order status

accordingly.

Testing Al Decision Points

Testing Al decision points is crucial to ensure the accuracy and reliability
of Al-powered workflows. When testing Al decision points, consider the

following:

1. Decision Accuracy: Verify that the Al component makes accurate
decisions based on the input data and the trained model. Compare the

Al decisions with expected outcomes or ground truth data.

2. Edge Cases: Test the Al component’s behavior under edge cases and
unusual scenarios. Verify that the Al component handles these cases

gracefully and makes reasonable decisions.

3. Bias and Fairness: Assess the Al component for potential biases and
ensure that it makes fair and unbiased decisions. Test the component
with diverse input data and analyze the outcomes for any discriminatory

patterns .

4. Explainability: If the Al component provides explanations or reasoning
for its decisions, verify the correctness and clarity of the explanations.
Ensure that the explanations align with the underlying decision-making

process .

Here’s an example of testing an Al decision point in Ruby using the RSpec

testing framework:

Intelligent Workflow Orchestration 263

RSpec.describe FraudDetector do
describe '#detect fraud' do
context 'when transaction is fraudulent' do

let(:tx) { build(:transaction, amount: 10000, location: 'High-Risk Country') }

it 'returns true' do
expect(subject.detect fraud(tx)).to be true
end
end

context 'when transaction is legitimate' do

let(:tx) { build(:transaction, amount: 100, location: 'Low-Risk Country') }

it 'returns false' do
expect(subject.detect fraud(tx)).to be false
end
end
end
end

In this example, the FraudDetector Al component is tested with two
test cases: one for a fraudulent transaction and another for a legitimate
transaction. The test cases verify that the detect_fraud method returns

the expected boolean value based on the characteristics of the transaction.

End-to-End Testing

End-to-end testing involves testing the entire workflow from start to
finish, simulating real-world scenarios and user interactions. It ensures
that the workflow behaves correctly and produces the desired outcomes.
When performing end-to-end testing for intelligent workflows, consider

the following:

1. User Scenarios: Identify common user scenarios and test the workflow’s

behavior under these scenarios. Verify that the workflow handles user

W 00 N O Ul A W N

e el
w N R o

Intelligent Workflow Orchestration 264

inputs correctly, makes appropriate decisions, and produces the expected

outputs.

2. Data Validation: Ensure that the workflow validates and sanitizes user
inputs to prevent data inconsistencies or security vulnerabilities. Test the

workflow with various types of input data, including valid and invalid data.

3. Error Recovery: Test the workflow’s ability to recover from errors and
exceptions. Simulate error scenarios and verify that the workflow handles

them gracefully, logs the errors, and takes appropriate recovery actions.

4. Performance and Scalability: Assess the workflow’s performance and
scalability under different load conditions. Test the workflow with a large
volume of concurrent requests and measure response times, resource

utilization, and overall system stability.

Here’s an example of an end-to-end test for a workflow in Ruby using
the RSpec testing framework and the Capybara library for simulating user

interactions:

RSpec.describe 'Order Processing Workflow' do
scenario 'User places an order successfully' do
visit '/orders/new'
fill in 'Product', with: 'Sample Product'’
fill in 'Quantity', with: '2'
fill in 'Shipping Address', with: '123 Main St'
click button 'Place Order'

expect(page) .to have content('Order Placed Successfully')
expect(Order.count).to eq(1)
expect(Order.last.status).to eq('processed')
end
end

In this example, the end-to-end test simulates a user placing an order

through the web interface. It fills in the required form fields, submits the

Intelligent Workflow Orchestration 265

order, and verifies that the order is processed successfully, displaying the
appropriate confirmation message and updating the order status in the

database.

Continuous Integration and Deployment

To ensure the reliability and maintainability of intelligent workflows, it
is recommended to integrate testing and validation into the continuous
integration and deployment (CI/CD) pipeline . This allows for automated
testing and validation of workflow changes before they are deployed to

production. Consider the following practices:

1. Automated Test Execution: Configure the CI/CD pipeline to auto-
matically run the test suite whenever changes are made to the workflow
codebase. This ensures that any regressions or failures are detected early

in the development process.

2. Test Coverage Monitoring: Measure and monitor the test coverage
of the workflow components and Al decision points. Aim for high test

coverage to ensure that critical paths and scenarios are thoroughly tested.

3. Continuous Feedback: Integrate test results and code quality metrics
into the development workflow. Provide continuous feedback to develop-
ers about the status of tests, code quality, and any issues detected during
the CI/CD process.

4. Staging Environments: Deploy the workflow to staging environments
that closely mirror the production environment. Perform additional testing
and validation in the staging environment to catch any issues related to

infrastructure, configuration, or data integration.

5. Rollback Mechanisms: Implement rollback mechanisms in case of

deployment failures or critical issues detected in production. Ensure

Intelligent Workflow Orchestration 266

that the workflow can be quickly reverted to a previous stable version to

minimize downtime and impact on users.

By incorporating testing and validation throughout the development life-
cycle of intelligent workflows, organizations can ensure the reliability,
accuracy, and maintainability of their Al-powered systems. Regular testing
and validation help catch bugs, prevent regressions, and build confidence

in the workflow’s behavior and outcomes.

Part 2: The Patterns

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 269

Chain of Thought

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Examples

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Content Generation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Structured Entity Creation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 270

LLM Agent Guidance

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Benefits and Considerations

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 271

Mode Switch

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

When to Use It

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 272

Role Assignment

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

When to Use It

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Examples

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 273

Prompt Object

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 274

Prompt Template

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Benefits and Considerations

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

When to Use It:

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 275

Structured 10

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Scaling Structured 10

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Benefits and Considerations

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 276

Prompt Chaining

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

When To Use It

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example: Olympia’s Onboarding

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 277

Prompt Rewriter

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 278

Response Fencing

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Benefits and Considerations

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Error Handling

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 279

Query Analyzer

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Part-of-Speech (POS) Tagging and Named Entity Recognition (NER)

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Intent Classification

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 280

Keyword Extraction

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Benefits

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 281

Query Rewriter

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Benefits

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 282

Ventriloquist

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

When to Use It

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components 284

Predicate

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

When to Use It

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components 285

API Facade

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Key Benefits

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

When To Use It

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components 286

Authentication and Authorization

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Request Handling

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Response Formatting

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Error Handling and Edge Cases

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Scalability and Performance Considerations

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components 287

Comparison with Other Design Patterns

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components 288

Result Interpreter

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

When to Use It

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components 289

Virtual Machine

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

When to Use It

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Behind The Magic

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components 290

Specification and Testing

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Specifying the Behavior

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Writing Test Cases

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example: Testing the Translator Component

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Replay of HTTP Interactions

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL)

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

High-Level Patterns

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Hybrid Intelligence

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Adaptive Response

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 292

Human-Al Role Switching

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 293

Escalation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Key Benefits

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Real-World Application: Healthcare

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 294

Feedback Loop

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Applications and Examples

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Advanced Techniques in Human Feedback Integration

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 295

Passive Information Radiation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Contextual Information Display

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Proactive Notifications

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Explanatory Insights

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 296

Interactive Exploration

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Key Benefits

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Applications and Examples

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 297

Collaborative Decision Making (CDM)

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 298

Continuous Learning

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Applications and Examples

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Ethical Considerations

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 299

Role of HITL in Mitigating Al Risks

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Technological Advancements and Future Outlook

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Challenges and Limitations of HITL Systems

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-
development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Intelligent Error Handling

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Traditional Error Handling Approaches

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Intelligent Error Handling 301

Contextual Error Diagnosis

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Prompt Engineering for Contextual Error Diagnosis

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Retrieval-Augmented Generation for Contextual Error Diagnosis

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Intelligent Error Handling 302

Intelligent Error Reporting

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Intelligent Error Handling 303

Predictive Error Prevention

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Smart Error Recovery

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Intelligent Error Handling 304

Personalized Error Communication

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Intelligent Error Handling 305

Adaptive Error Handling Workflow

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Quality Control

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Quality Control 307

Eval

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Problem

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Solution

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Quality Control 308

Considerations

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Understanding Golden References

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How Reference-Free Evals Work

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Quality Control 309

Guardrail

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Problem

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Solution

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Quality Control 310

Considerations

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Guardrails and Evals: Two Sides of the Same Coin

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

The Interchangeability of Guardrails and Reference-Free Evals

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-
development-using-ai.

Implementing Dual-Purpose Guardrails and Evals

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Glossary

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

A

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

B

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

C

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

312

D

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-
development-using-ai.

G

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

H

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

313

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

K

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

M

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

314

N

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

o

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

P

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-
development-using-ai.

Q

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

R

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

315

S

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

T

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

U

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

Vv

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

w

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

316

y4

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com /patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Index

accessibility, 222
account, 94
ACID properties, 113
adaptive UlI, 213
adaptive workflow
Adaptive Workflow
Composition, 230
Agentic, 33
Al 66, 76, 102, 131, 137, 146, 153, 207,
215
applications, 128, 141, 152, 165
compound systems, 31, 32, 35
conversational, 7, 32, 216
decision points, 262
model, 92, 101, 102, 158, 159, 161,
215
Alpaca, 14
Altman, Sam, 18
Amazon Web Services, 257
Anthropic, 23, 40, 75, 132, 139
anthropomorphism, 70
APIs, 73,126, 156
application design and frameworks,
203
application development, 225

arrays, 133

317

asynchronous processing, 254
audit logging, 109

auditing and compliance, 252
augmented reality glasses, 223
Auto Continuation, 163
auto-regressive modeling, 44

auto-scaling, 257

base models, 55
batch processing, 255
BERT, 14, 24
bias
and fairness in Al, 262
bottlenecks, 230
boundary conditions, 259
Brotli, 258
business rules, 226
Byte Pair Encoding (BPE), 13, 15

C (Programming Language), 119
caching, 255

Capybara library, 264

Chain of Thought (CoT), 46, 141
chaining of Al workers, 114
chatbot application, 122
ChatGPT, 31, 54

circuit breaker logic, 165

Index

classification, 54, 123
Claude, 8, 45, 79
Claude 3, 51, 129, 132, 138, 139
Claude 3 Opus, 76
Claude v1, 17
Claude v2, 17
Clinical Decision Support, 106
closed and open question answering,
54
Cohere (LLM Provider), 23, 25
collaborative filtering, 94
command line
Command-Line Interface (CLI),
26
complex tasks, 149
computer science, 72, 74
conceptual and practical challenges,
204
concurrent workflows, 258
consistency
and reproducibility, 135
content
Content Categorization, 115
filtering, 27
content-based filtering, 94
context
Augmentation, 47
Contextual Content Generation,
191, 196, 197, 204, 205
contextual decision making, 229
Contextual Field Suggestions,
206

318

infinitely long inputs, 16
window, 16, 229
Continuous Integration and
Deployment (CI/CD), 265
pipeline, 265
Continuous Risk Monitoring, 106
conversation
loop, 160, 162
transcript, 160, 162
creative writing, 35, 54
cross-modal generation, 22
Customer Sentiment Analysis, 102
customer service chatbots, 34
customer support, 33

customization, 27

data
analysis, 35, 150
Data Retrieval, 112
Data Synchronization, 112
Data Validation, 264
flow, 113
integrity, 244
persistence, 112
preparation, 112
privacy, 27, 221
processing pipeline, 244
processing tasks, 128
databases, 126
-backed object, 108
locking strategies, 113
Databricks employees, 54

Index

Datadog, 253
debugging, 229

and testing, 135

and troubleshooting, 251
decision

-making capabilities, 102

-making use cases, 136

points, 249

trees, 226
desktop computers, 223
deterministic behavior, 59
development frameworks, 151
dictionaries, 133
digital landscape, 198
distillation process, 78
distributed architecture, 254
document clustering, 123
Dohan, et al., 45
Dynamic Task Routing, 228
Dynamic Tool Selection, 134

dynamic UI generation, 192

e-commerce, 196, 226
E-commerce Applications, 94
ecosystem, 150

edge cases, 59

educational applications, 33
efficiency, 227

ELK stack, 113

emergency response planning, 34

emotional tone, 147
end-to-end testing, 263, 264

319

ensembles, 120, 121
ensemble of workers, 121
enterprise application architecture,
39
Enterprise Integration Patterns, 107
errors
handling, 110, 113, 145, 259
Intelligent Error Handling, 146
rates, 113
recovery, 264
ethics
implications, 204
event-driven architecture, 111
exception handling, 230, 232
experimentation
framework, 198
explainability, 262

external services or APIs, 129

F#, 95
Facebook, 25
fallback strategies, 113
feedback
Feedback Loop, 60
few-shot
learning, 63
prompting, 64
finalize method, 159, 161, 162
fine-tuning, 82
FitAl, 216
flexibility and creativity, 201
Forced Tool Selection, 134

Index

fraud detection
system, 100
function
call failure, 136
call history, 159
calling, 126, 160
names, 157

functional programming, 95

Gemma 7B, 11
Generative Pre-trained Transformer
(GPT), 8, 69
Generative Ul (GenUI), 203, 210, 211,
214, 218, 222
GitLab, 95
Global Interpreter Lock (GIL), 118
Google, 23
API, 64, 66
Cloud Al Platform, 25
Cloud Platform, 257
Gemini, 22
Gemini 1.5 Pro, 14, 17, 19
PaLM (Pathways Language
Model), 18, 24
T5, 14
GPT-3, 13,17
GPT-4,7,13,17,18, 22, 32, 45, 51, 64,
108, 120, 123, 130, 136, 209,
255
Graham, Paul, 19
grammar rules, 4

granular logging, 252

320

graphical models, 45
GraphQL, 111

Groq, 27,123

gzip, 258

hardware, 29

hash, 155

high-performance completion, 27
historical patterns, 229

Hohpe, Gregor, 107

Honeybadger, 97

HTTP, 153

Human-In-The-Loop (HITL), 182
hyperparameter, 48

inclusive interfaces, 204
Inference, 6
information
extraction, 54
retrieval, 7,128
input
parameters, 131
prompts, 57
validation, 259
instruction tuning, 10
instruct-tuned models, 51, 53
Insurance Verification, 104
integrating LLMs, 192
integration testing, 260
Intelligent Content Moderator, 237
intelligent workflow orchestration,
225, 233, 255, 258

internationalization, 199

Index

iterative refinement, 78, 146

JSON (JavaScript Object Notation),
129, 133, 134, 138, 150, 170

K-means, 125
key patterns, 228
knowledge bases, 8

knowledge management, 33

language
-related tasks, 5
Language Detection, 115
models, 44, 67,75
Large Language Model (LLM), 1, 4, 16,
18, 30, 68, 70, 73, 78, 79, 90,
114, 123, 126, 127, 137, 143,
146, 147, 149, 167, 170, 191,
203, 209, 214, 236
landscape, 28
latency, 28
Latent Dirichlet Allocation, 125
latent space, 41, 44
linear algebra, 44
linear regression, 45
Llama, 14
Llama 2-70B, 51
Llama 3 70B, 11
Llama 3 8B, 11
local development environments, 158
log retention and rotation, 253

Louvre, 44

majority voting, 120

321

Managed Streaming for Apache
Kafka, 42
manual intervention, 232
Markdown, 150
markup-style tagging, 72
medical discoveries, 103
Medical History Collection, 104
Memorial Sloan Kettering Cancer
Center, 42

Mercury (element), 46
Mercury (planet), 46
Mercury (Roman god), 46
MessagePack, 258
Meta, 25
Metropolitan Museum of Art, 44
Microservices architecture, 92
Mistral, 26

7B, 11

7B Instruct, 17, 209
Mixtral

8x22B, 11

8x7B, 57
modern applications, 227
modularity, 91
monitoring

and alerting, 231

and logging, 113, 251

metrics, 252
motivational strategies, 218
Multi-Agent

Problem Solvers, 32

multi-step workflow, 114

Index

Multimodal
language models, 21
models, 20

Multitude of Workers, 122, 169

Naive Bayes, 124
narrative building, 20
narrow the path, 39, 40
natural language
Natural Language Processing
(NLP), 104, 123
network connectivity, 230
neural networks, 4, 7
New Relic, 256

Ollama, 26

Olympia, 34, 64, 131, 145, 154, 170

Olympia’s knowledge base, 94

One-Shot Learning, 62

online retailers, 210

open source model hosting
providers, 210

OpenAl 4, 23, 40, 75

OpenRouter, 28, 29, 154, 255

OPT model, 25

optimistic locking, 113

output verification, 259

parallel execution, 254
parameter
effects, 131
Parameter Count, 29

range, 11

322

paraphrasing, 54
pattern matching, 155
performance
optimization, 135, 201, 251
problems, 256
trade-offs, 5
Perplexity (Provider), 12
personalization, 192, 223, 227
Personalized Forms, 205
Personalized Microcopy, 211
personalized product
recommendations, 94
pessimistic locking, 113
predictions, 6
Presence Penalty, 50
principle of least privilege, 73
probabilistic models, 44
Process Manager, 107, 110
Enterprise Integration, 233
processing time, 113
Product Recommendations, 94
Productivity, 194
progressive disclosure, 212
prompts
chain, 60, 73
design, 59, 69

engineering, 42, 46, 47, 57, 61, 66,

68, 219

Prompt Distillation, 47, 75, 80,
255

Prompt Object, 76

Prompt Template, 60, 210

Index

refinement, 70
Protocol Buffers, 257
publish-subscribe systems, 111
PyTorch, 25

Quantization, 29
question-answering systems, 8
Qwen2 70B, 11

Rails, 199

Railway Oriented Programming
(ROP), 97

Raix, 234

library, 100

rankers, 36

repetition penalties, 53

Response Fencing, 179, 210

Result Interpreter, 145

Retrieval Augmented Generation
(RAG), 32, 39, 47, 81, 128

retrieval-based models, 7

retry mechanisms, 113

risk factors, 98, 99

Risk Stratification, 105

roleplay-style interactions, 7

rollback mechanisms, 265

RSpec, 259, 261, 264

Ruby, 95, 96, 116, 166, 264

Ruby on Rails, 1, 114, 233, 241

Rudall, Alex, 24

Rust (Programming Language), 95,

119

scalability, 227, 253

Scout, 256

segmentation and targeting
strategies, 198

Self-Healing Data, 167, 248

323

sentiment analysis, 17, 103, 115-117,

120, 121, 137, 147
server-sent events (SSE), 153
smartphones, 223
software architecture, 2
SQL injections, 72
staging environments, 265
stateless, 160
stream handlers, 154
stream processing, 153, 159, 165

logic, 161
streaming data, 155
Stripe, 132
structured data, 137
Structured 10, 210
structured logging, 252
summarization, 54
supply chain

optimization, 34

Support Vector Machines (SVM), 124

Symptom Assessment and
Stratification, 104

syntax errors, 134

synthetic data generation, 54

system directive, 102, 131

T5, 24

Index

tablets, 223

Temperature, 55

Text Cleanup, 114

theory of mind, 41
throughput, 28

ticket assignment, 244

Time to First Token (TTFT), 28
Together.ai, 27

tokenization, 13

tokens, 6, 13

tool call, 156

tool use, 126, 152

Top-k sampling, 49

Top-p (nucleus) sampling, 49
topic identification, 123
tracking key metrics, 248
traffic management, 34
tragedy of the commons, 195
training data, 43
transformer architecture, 6
translation, 17, 200

trigger message, 107

Unicode-encodable language, 15

Universal ID, 258

unsupervised learning, 4
usability issues, 221
user experience, 199
User Interface (Ul)
design, 223
frameworks, 219
interfaces, 203, 219
technologies, 214
user psychology, 220
user testing and feedback, 201
user trust, 222

user-generated content, 114

Ventriloquist, 179
virtual assistants, 34
visual interface, 214

voice-controlled interfaces, 34

Wall, Larry, 3
Wisper, 97, 109, 154, 161
Wooley, Chad, 95

XML, 137
Yi-34B, 51

zero-shot learning, 60, 61

324

	Table of Contents
	Foreword by Gregor Hohpe
	Preface
	About the Book
	About the Code Examples
	What I Don't Cover
	Who This Book Is For
	Building a Common Vocabulary
	Getting Involved
	Acknowledgments
	What's with the illustrations?
	About Lean Publishing
	About The Author

	Introduction
	Thoughts on Software Architecture
	What is a Large Language Model?
	Understanding Inference
	Thinking About Performance
	Experimenting With Different LLM Models
	Compound AI Systems

	Part 1: Fundamental Approaches & Techniques
	Narrow The Path
	Latent Space: Incomprehensibly Vast
	How The Path Gets ``Narrowed''
	Raw Versus Instruct-Tuned Models
	Prompt Engineering
	Prompt Distillation
	What about fine-tuning?

	Retrieval Augmented Generation (RAG)
	What is Retrieval Augmented Generation?
	How Does RAG Work?
	Why Use RAG in Your Applications?
	Implementing RAG in Your Application
	Proposition Chunking
	Real-World Examples of RAG
	Intelligent Query Optimization (IQO)
	Reranking
	RAG Assessment (RAGAs)
	Challenges and Future Outlook

	Multitude of Workers
	AI Workers As Independent Reusable Components
	Account Management
	E-commerce Applications
	Healthcare Applications
	AI Worker as a Process Manager
	Integrating AI Workers Into Your Application Architecture
	Composability and Orchestration of AI Workers
	Combining Traditional NLP with LLMs

	Tool Use
	What is Tool Use?
	The Potential of Tool Use
	The Tool Use Workflow
	Best Practices for Tool Use
	Composing and Chaining Tools
	Future Directions

	Stream Processing
	Implementating a ReplyStream
	The ``Conversation Loop''
	Auto Continuation
	Conclusion

	Self Healing Data
	Practical Case Study: Fixing Broken JSON
	Considerations and Counterindications

	Contextual Content Generation
	Personalization
	Productivity
	Rapid Iteration and Experimentation
	AI Powered Localization
	The Importance of User Testing and Feedback

	Generative UI
	Generating Copy for User Interfaces
	Defining Generative UI
	Example
	The Shift to Outcome-Oriented Design
	Challenges and Considerations
	Future Outlook and Opportunities

	Intelligent Workflow Orchestration
	Business Need
	Key Benefits
	Key Patterns
	Exception Handling and Recovery
	Implementing Intelligent Workflow Orchestration in Practice
	Monitoring and Logging
	Scalability and Performance Considerations
	Testing and Validation of Workflows

	Part 2: The Patterns
	Prompt Engineering
	Chain of Thought
	Mode Switch
	Role Assignment
	Prompt Object
	Prompt Template
	Structured IO
	Prompt Chaining
	Prompt Rewriter
	Response Fencing
	Query Analyzer
	Query Rewriter
	Ventriloquist

	Discrete Components
	Predicate
	API Facade
	Result Interpreter
	Virtual Machine
	Specification and Testing

	Human In The Loop (HITL)
	High-Level Patterns
	Escalation
	Feedback Loop
	Passive Information Radiation
	Collaborative Decision Making (CDM)
	Continuous Learning
	Ethical Considerations
	Technological Advancements and Future Outlook

	Intelligent Error Handling
	Traditional Error Handling Approaches
	Contextual Error Diagnosis
	Intelligent Error Reporting
	Predictive Error Prevention
	Smart Error Recovery
	Personalized Error Communication
	Adaptive Error Handling Workflow

	Quality Control
	Eval
	Guardrail
	Guardrails and Evals: Two Sides of the Same Coin

	Glossary
	Index

