

Patterns of Application Development Using

AI

Obie Fernandez

This book is available at

http://leanpub.com/patterns-of-application-development-using-ai

This version was published on 2024-12-23

This is a Leanpub book. Leanpub empowers authors and publishers with

the Lean Publishing process. Lean Publishing is the act of publishing an

in-progress ebook using lightweight tools and many iterations to get

reader feedback, pivot until you have the right book and build traction

once you do.

© 2024 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweet This Book!

Please help Obie Fernandez by spreading the word about this book on

Twitter!

The suggested hashtag for this book is #poaduai.

Find out what other people are saying about the book by clicking on this

link to search for this hashtag on Twitter:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

To my badass queen, my muse, my light and love, Victoria

Also By Obie Fernandez
The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Contents

Foreword by Gregor Hohpe . i

Preface . ii

About the Book . iii

About the Code Examples . iii

What I Don’t Cover . iii

Who This Book Is For . iii

Building a Common Vocabulary . iii

Getting Involved . iv

Acknowledgments . iv

What’s with the illustrations? . iv

About Lean Publishing . iv

About The Author . v

Introduction . 1

Thoughts on Software Architecture . 2

What is a Large Language Model? . 3

Understanding Inference . 5

Thinking About Performance . 28

Experimenting With Different LLM Models 30

Compound AI Systems . 31

CONTENTS

Part 1: Fundamental Approaches &
Techniques . 39

Narrow The Path . 40

Latent Space: Incomprehensibly Vast 42

How The Path Gets “Narrowed” . 47

Raw Versus Instruct-Tuned Models . 50

Prompt Engineering . 57

Prompt Distillation . 74

What about fine-tuning? . 81

Retrieval Augmented Generation (RAG) 83

What is Retrieval Augmented Generation? 83

How Does RAG Work? . 83

Why Use RAG in Your Applications? . 83

Implementing RAG in Your Application 83

Proposition Chunking . 84

Real-World Examples of RAG . 85

Intelligent Query Optimization (IQO) 85

Reranking . 85

RAG Assessment (RAGAs) . 86

Challenges and Future Outlook . 87

Multitude of Workers . 90

AI Workers As Independent Reusable Components 91

Account Management . 93

E-commerce Applications . 94

Healthcare Applications . 103

AI Worker as a Process Manager . 106

Integrating AI Workers Into Your Application Architecture 110

CONTENTS

Composability and Orchestration of AI Workers 114

Combining Traditional NLP with LLMs 123

Tool Use . 126

What is Tool Use? . 126

The Potential of Tool Use . 128

The Tool Use Workflow . 129

Best Practices for Tool Use . 144

Composing and Chaining Tools . 148

Future Directions . 150

Stream Processing . 153

Implementating a ReplyStream . 154

The “Conversation Loop” . 160

Auto Continuation . 163

Conclusion . 165

Self Healing Data . 167

Practical Case Study: Fixing Broken JSON 169

Considerations and Counterindications 175

Contextual Content Generation . 191

Personalization . 192

Productivity . 194

Rapid Iteration and Experimentation 196

AI Powered Localization . 199

The Importance of User Testing and Feedback 201

Generative UI . 203

Generating Copy for User Interfaces 205

Defining Generative UI . 214

CONTENTS

Example . 216

The Shift to Outcome-Oriented Design 219

Challenges and Considerations . 220

Future Outlook and Opportunities . 222

Intelligent Workflow Orchestration . 225

Business Need . 226

Key Benefits . 227

Key Patterns . 227

Exception Handling and Recovery . 230

Implementing Intelligent Workflow Orchestration in Practice . . . 233

Monitoring and Logging . 248

Scalability and Performance Considerations 253

Testing and Validation of Workflows 258

Part 2: The Patterns . 267

Prompt Engineering . 268

Chain of Thought . 269

Mode Switch . 271

Role Assignment . 272

Prompt Object . 273

Prompt Template . 274

Structured IO . 275

Prompt Chaining . 276

Prompt Rewriter . 277

Response Fencing . 278

Query Analyzer . 279

Query Rewriter . 281

Ventriloquist . 282

CONTENTS

Discrete Components . 283

Predicate . 284

API Facade . 285

Result Interpreter . 288

Virtual Machine . 289

Specification and Testing . 289

Human In The Loop (HITL) . 291

High-Level Patterns . 291

Escalation . 293

Feedback Loop . 294

Passive Information Radiation . 295

Collaborative Decision Making (CDM) 297

Continuous Learning . 298

Ethical Considerations . 298

Technological Advancements and Future Outlook 299

Intelligent Error Handling . 300

Traditional Error Handling Approaches 300

Contextual Error Diagnosis . 301

Intelligent Error Reporting . 302

Predictive Error Prevention . 303

Smart Error Recovery . 303

Personalized Error Communication . 304

Adaptive Error Handling Workflow . 305

Quality Control . 306

Eval . 307

Guardrail . 309

Guardrails and Evals: Two Sides of the Same Coin 310

Glossary . 311

Index . 317

Foreword by Gregor Hohpe
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Preface
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Preface iii

About the Book

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

About the Code Examples

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

What I Don’t Cover

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Who This Book Is For

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Building a Common Vocabulary

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Preface iv

development-using-ai.

Getting Involved

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Acknowledgments

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

What’s with the illustrations?

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

About Lean Publishing

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Preface v

About The Author

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Introduction

If you’re eager to start integrating AI Large Language Models (LLMs) into

your programming projects, feel free to dive right into the patterns and

code examples presented in later chapters. However, to fully appreciate

the power and potential of these patterns, it’s worth taking a moment to

understand the broader context and the cohesive approach they represent.

The patterns are not merely a collection of isolated techniques but rather a

unified framework for integrating AI into your applications. I use Ruby on

Rails , but these patterns should work in pretty much any other program-

ming environment. They address a wide range of concerns, from dataman-

agement and performance optimization to user experience and security,

providing a comprehensive toolkit for enhancing traditional programming

practices with the capabilities of AI.

Introduction 2

Each category of patterns tackles a specific challenge or opportunity

that arises when incorporating AI components into your application. By

understanding the relationships and synergies between these patterns,

you can make informed decisions about where and how to apply AI most

effectively.

Patterns are never prescriptive solutions and should not be treated as such.

They are meant to be adaptable building blocks that should be tailored to

the unique requirements and constraints of your own unique application.

The successful application of these patterns (like any others in the software

field) relies on a deep understanding of the problem domain, user needs,

and the overall technical architecture of your project.

Thoughts on Software Architecture

I started programming in the 1980s and was involved in the hacker scene,

and never lost my hacker mindset, even after becoming a professional

software developer. Since the start, I always had a healthy skepticism about

what value software architects in their ivory towers actually brought to the

table.

One of the reasons that I’m personally so excited about the changes brought

forth by this powerful new wave of AI technology is its impact on what

we consider software architecture decisions. It challenges traditional

notions of what constitutes the “correct” way to design and implement

our software projects. It also challenges whether architecture can still be

thought of primarily as the parts of a system that are hard to change, since

AI enhancement is making it easier than ever to change any part of your

project, at any time.

Perhaps we’re entering the peak years of the “post-modern” approach to

Introduction 3

software engineering. In this context, post-modern refers to a fundamental

shift away from traditional paradigms, where developers were responsible

for writing andmaintaining every line of code. Instead, it embraces the idea

of delegating tasks, such as data manipulation, complex algorithms, and

even entire chunks of application logic, to 3rd-party libraries and external

APIs. This post-modern shift represents a significant departure from the

conventional wisdom of building applications from the ground up, and it

challenges developers to rethink their role in the development process.

I’ve always believed that good programmers only write the code that is

absolutely necessary to write, based on the teachings of Larry Wall and

other hacker luminaries like him. By minimizing the amount of code

written, we can move faster, reduce the surface area for bugs, simplify

maintenance, and improve the overall reliability of their applications. Less

code allows us to focus on the core business logic and user experience,

while delegating other work to other services.

Now that AI-powered systems can handle tasks that were previously the

exclusive domain of human-written code, we should be able to be even

more productive and agile, with a greater focus than ever on creating

business value and user experience.

Of course there are trade-offs of delegating huge parts of your project to

AI systems, such as the potential loss of control, and the need for robust

monitoring and feedback mechanisms. That’s why it requires a new set of

skills and knowledge, including at least some fundamental understanding

of how AI works.

Introduction 4

What is a Large Language Model?

Large Language Models (LLMs) are a type of artificial intelligence model

that have gained significant attention in recent years, ever since the launch

of GPT-3 by OpenAI in 2020. LLMs are designed to process, understand,

and generate human language with remarkable accuracy and fluency. In

this section, we’ll take a brief look at how LLMs work and why they are

well-suited for building intelligent system components.

At their core, LLMs are based on deep learning algorithms, specifically

neural networks . These networks are composed of interconnected nodes,

or neurons, that process and transmit information. The architecture of

choice for LLMs is often the Transformer model, which has proven to be

highly effective in handling sequential data like text.

Transformermodels are based on the attentionmechanism and are primar-

ily used for tasks involving sequential data, like natural language processing.

Transformers process input data all at once rather than sequentially, which

allows them to capture long-range dependencies more effectively. They

have layers of attention mechanisms that help the model focus on different

parts of the input data to understand context and relationships.

The training process for LLMs involves exposing themodel to vast amounts

of textual data, such as books, articles, websites, and code repositories.

During training, the model learns to recognize patterns, relationships,

and structures within the text. It captures the statistical properties of

the language, such as grammar rules , word associations, and contextual

meanings.

One of the key techniques used in training LLMs is unsupervised learning .

This means that the model learns from the data without explicit labeling or

guidance. It discovers patterns and representations on its own by analyzing

Introduction 5

the co-occurrence of words and phrases in the training data. This allows

LLMs to develop a deep understanding of language and its intricacies.

Another important aspect of LLMs is their ability to handle context. When

processing a piece of text, LLMs consider not only the individual words

but also the surrounding context. They take into account the previous

words, sentences, and even paragraphs to understand the meaning and

intent of the text. This contextual understanding enables LLMs to generate

coherent and relevant responses. One of the main ways that we evaluate

the capabilities of a given LLM model is by considering the size of the

context they can consider in order to generate responses.

Once trained, LLMs can be used for a wide range of language-related

tasks . They can generate human-like text, answer questions, summarize

documents, translate languages, and even write code. The versatility of

LLMs makes them valuable for building intelligent system components

that can interact with users, process and analyze text data, and generate

meaningful outputs.

By incorporating LLMs into the application architecture, you can create

AI components that understand and process user input, generate dynamic

content, and provide intelligent recommendations or actions. But working

with LLMs requires careful consideration of resource requirements and

performance trade-offs . LLMs are computationally intensive and may re-

quire significant processing power and memory (in other words, money) to

operate. Most of us will need to assess the cost implications of integrating

LLMs into our applications and act accordingly.

Introduction 6

Understanding Inference

Inference refers to the process by which a model generates predictions

or outputs based on new, unseen data. It is the phase where the trained

model is used to make decisions or generate text, images, or other content

in response to user inputs.

During the training phase, an AI model learns from a large dataset by

adjusting its parameters to minimize the error in its predictions . Once

trained, the model can apply what it has learned to new data. Inference

is how the model uses its learned patterns and knowledge to generate

outputs.

For LLMs, inference involves taking a prompt or input text and producing a

coherent and contextually relevant response, as a stream of tokens (which

we’ll talk about soon). This could be answering a question, completing a

sentence, generating a story, or translating text, among many other tasks.

In contrast to the way that you and I think, an AI model’s “think-

ing” via inference happens in all in one stateless operation. That

is, it’s thinking is limited to its generation process. It literally has

to think out loud, as if I asked you a question and only accepted

a response from you in “stream of consciousness” style.

Large Language Models Come in Many Sizes and Flavors

While practically all popular large language models (LLMs) are based on

the same core transformer architecture and trained on huge text datasets,

they come in a variety of sizes and are fine-tuned for different purposes.

The size of an LLM, measured by the number of parameters in its neural

Introduction 7

network , has a big impact on its capabilities. Larger models with more

parameters, like GPT-4 , which is rumored to boast 1 to 2 trillion parame-

ters, are generally more knowledgeable and capable than smaller models.

However, larger models also require much more computing power to run,

which translates to higher expense when you use them via API calls.

To make LLMs more practical and tailored for specific use cases, the base

models are often fine-tuned on more targeted datasets. For example, an

LLM may be trained on a large corpus of dialog to specialize it for conver-

sational AI . Others are trained on code to imbue them with programming

knowledge. There are even models that are specially trained for roleplay-

style interactions with users !

Retrieval vs Generative Models

In the world of large language models (LLMs), there are two main ap-

proaches to generating responses: retrieval-based models and generative

models. Each approach has its own strengths and weaknesses, and un-

derstanding the differences between them can help you choose the right

model for your specific use case.

Retrieval‐based Models

Retrieval-based models , also known as information retrieval models , gen-

erate responses by searching through a large database of pre-existing text

and selecting the most relevant passages based on the input query. These

models don’t generate new text from scratch but rather stitch together

excerpts from the database to form a coherent response.

One of the main advantages of retrieval-based models is their ability to

provide factually accurate and up-to-date information. Since they rely

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Introduction 8

on a database of curated text, they can pull relevant information from

reliable sources and present it to the user. This makes them well-suited

for applications that require precise, factual answers, such as question-

answering systems or knowledge bases .

However, retrieval-based models have some limitations. They are only as

good as the database they are searching through, so the quality and cover-

age of the database directly impact the model’s performance. Additionally,

thesemodels may struggle with generating coherent and natural-sounding

responses, as they are limited to the text available in the database.

We don’t cover usage of pure retrieval models in this book.

Generative Models

Generative models, on the other hand, create new text from scratch based

on the patterns and relationships they learned during training. These

models use their understanding of language to generate novel responses

that are tailored to the input prompt.

The main strength of generative models is their ability to produce creative,

coherent, and contextually relevant text. They can engage in open-ended

conversations, generate stories, and even write code. This makes them

ideal for applications that require more open-ended and dynamic interac-

tions, such as chatbots, content creation, and creative writing assistants.

However, generative models can sometimes produce inconsistent or fac-

tually incorrect information, as they rely on the patterns learned during

training rather than a curated database of facts. They may also be more

prone to biases and hallucinations, generating text that is plausible but not

necessarily true.

Examples of generative LLMs include OpenAI’s GPT series (GPT-3, GPT-4)

and Anthropic’s Claude .

Introduction 9

Hybrid Models

Several commercially available LLMs combine both retrieval and generative

approaches in a hybrid model. These models use retrieval techniques

to find relevant information from a database and then use generative

techniques to synthesize that information into a coherent response.

Hybrid models aim to combine the factual accuracy of retrieval-based

models with the natural language generation capabilities of generative

models. They can provide more reliable and up-to-date information while

still maintaining the ability to engage in open-ended conversations.

When choosing between retrieval-based and generative models, you

should consider the specific requirements of your application. If the

primary goal is to provide accurate, factual information, a retrieval-based

model may be the best choice. If the application requires more open-

ended and creative interactions, a generative model may be more suitable.

Hybrid models offer a balance between the two approaches and can be a

good choice for applications that require both factual accuracy and natural

language generation.

Ultimately, the choice between retrieval-based and generative models

depends on the specific use case and the trade-offs between accuracy,

creativity, and flexibility. By understanding the strengths and limitations

of each approach, you can make informed decisions.

Introduction 10

Instruction Tuning

Instruction tuning is a subset of conversational training that uses

human-written prompts and responses to make LLMs better at

understanding and following instructions. Here are some simple

examples to illustrate how instruction tuning on human-written

prompts and responses makes LLMs better at understanding and

following instructions:

Example 1: Customer Support

Instruction: “Provide a response to a customer asking for a refund.”

Human-Written Prompt: “I would like to request a refund for my recent

purchase. The product did not meet my expectations.”

Human-Written Response: “I’m sorry to hear that the product did not

meet your expectations. To process your refund, please provide your

order number and the reason for the return. Wewill review your request

and get back to you within 2-3 business days.”

Example 2: Educational Assistance

Instruction: “Explain the concept of photosynthesis to a 10-year-old.”

Human-Written Prompt: “Can you explain how plants make their food?”

Human-Written Response: “Sure! Plants make their food through a

process called photosynthesis. They use sunlight, water, and carbon

dioxide to create food and oxygen. The leaves of the plant have a special

part called chlorophyll that helps them capture sunlight.”

Example 3: Personal Assistant

Introduction 11

Instruction: “Schedule a meeting for next Tuesday at 3 PM.”

Human-Written Prompt: “Can you set up ameeting for Tuesday at 3 PM?”

Human-Written Response: “Sure, I have scheduled a meeting for you

next Tuesday at 3 PM. Is there anything else you need?”

The result is a diverse ecosystem of LLMs in different sizes and with

different specialties. Smaller models in the 1-7 billion parameter range

provide good general language capabilities while being more efficient to

run.

• Mistral 7B

• Llama 3 8B

• Gemma 7B

Mid-size models around 30-70 billion parameters offer stronger reasoning

and instruction-following abilities.

• Llama 3 70B

• Qwen2 70B

• Mixtral 8x22B

When choosing an LLM to incorporate into an application, you must

balance the model’s capabilities against practical factors like cost, latency,

context length, and content filtering. Smaller, instruction-tuned models

are often the best choice for simpler language tasks, while the largest

models may be needed for complex reasoning or analysis. The model’s

Introduction 12

training data is also an important consideration, as it determines the

model’s knowledge cutoff date.

Certain models, like some from Perplexity are connected to

realtime information sources, so that they effectively have no

cutoff date. When you ask them questions, they’re able to

independently decide to doweb searches and fetch arbitrary web

pages in order to generate an answer.

Figure 1. Llama3 with and without online access

Ultimately, there is no one-size-fits-all LLM. Understanding the variations

in model size, architecture, and training is key to selecting the right model

for a given use case. Experimenting with different models is the only

practical way to reveal which ones provide the best performance for the

task at hand.

Introduction 13

Tokenization: Breaking Text into Pieces

Before a large languagemodel can process text, that text needs to be broken

down into smaller units called tokens . Tokens can be individual words,

parts of words, or even single characters. The process of splitting text into

tokens is known as tokenization , and it’s a crucial step in preparing data

for a language model.

Figure 2. This sentence contains 27 tokens

Different LLMs use different tokenization strategies, which can have a

significant impact on the model’s performance and capabilities. Some

common tokenizers used by LLMs include:

• GPT (Byte Pair Encoding): GPT tokenizers use a technique called byte

pair encoding (BPE) to break text into subword units. BPE iteratively

merges the most frequent pairs of bytes in a text corpus, forming a

vocabulary of subword tokens. This allows the tokenizer to handle

rare and novel words by breaking them down into more common

subword pieces. GPT tokenizers are used by models like GPT-3 and

GPT-4 .

• Llama (SentencePiece): Llama tokenizers use the SentencePiece li-

brary, which is an unsupervised text tokenizer and detokenizer. Sen-

tencePiece treats the input text as a sequence of Unicode characters

and learns a subword vocabulary based on a training corpus. It can

handle any language that can be encoded in Unicode, making it well-

Introduction 14

suited for multilingual models. Llama tokenizers are used by models

like Meta’s Llama and Alpaca .

• SentencePiece (Unigram): SentencePiece tokenizers can also use a

different algorithm called Unigram, which is based on a subword

regularization technique. Unigram tokenization determines the op-

timal subword vocabulary based on a unigram language model, which

assigns probabilities to individual subword units. This approach can

produce more semantically meaningful subwords compared to BPE.

SentencePiece with Unigram is used by models like Google’s T5 and

BERT .

• Google Gemini (Multimodal Tokenization): Google Gemini uses a

tokenization scheme designed to handle various data types, including

text, images, audio, videos, and code. This multimodal capability

allows Gemini to process and integrate different forms of information.

Notably, Google Gemini 1.5 Pro has a context window that can handle

millions of tokens, much larger than previous models. This extensive

context window enables themodel to process a larger context, poten-

tially leading to more accurate responses. However, it’s important to

note that Gemini’s tokenization scheme is much closer to one token

per character than other models. This means the actual cost of using

Gemini models can be significantly higher than expected if you’re

accustomed to using models like GPT, as Google’s pricing is based on

characters rather than tokens.

The choice of tokenizer affects several aspects of an LLM, including:

• Vocabulary size: The tokenizer determines the size of the model’s

vocabulary, which is the set of unique tokens it recognizes. A larger,

Introduction 15

more fine-grained vocabulary can help the model handle a wider

range of words and phrases and even become multi-modal (capable

of understanding and generating more than just text), but it also

increases the model’s memory requirements and computational com-

plexity.

• Handling of rare and unknown words: Tokenizers that use subword

units, like BPE and SentencePiece, can break down rare and unknown

words into more common subword pieces. This allows the model to

make educated guesses about the meaning of words it hasn’t seen

before, based on the subwords they contain.

• Multilingual support: Tokenizers like SentencePiece, which can han-

dle any Unicode-encodable language , are well-suited for multilingual

models that need to process text in multiple languages.

When choosing an LLM for a particular application, it’s important to con-

sider the tokenizer it uses and how well it aligns with the specific language

processing needs of the task at hand. The tokenizer can have a significant

impact on the model’s ability to handle domain-specific terminology, rare

words, and multilingual text.

Context Size: HowMuch Information Can a Language Model
Use During Inference?

When discussing languagemodels, context size refers to the amount of text

that a model can consider when processing or generating its responses. It’s

essentially a measure of how much information the model can “remember”

and use to inform its outputs (expressed in tokens). The context size of

a language model can have a significant impact on its capabilities and the

types of tasks it can perform effectively.

Introduction 16

What is Context Size?

In technical terms, context size is determined by the number of tokens

(words or word pieces) that a language model can process in a single input

sequence. This is often referred to as the model’s “attention span” or

“context window.” The larger the context size, the more text the model

can consider at once when generating a response or performing a task.

Different language models have varying context sizes, ranging from a few

hundred tokens to millions of tokens. For reference, a typical paragraph

of text might contain around 100-150 tokens, while an entire book could

contain tens or hundreds of thousands of tokens.

There’s even work on efficient methods to scale Transformer-based

Large Language Models (LLMs) to infinitely long inputs with bounded

memory and computation.

Why is Context Size Important?

The context size of a language model has a significant impact on its ability

to understand and generate coherent, contextually relevant text. Here are

some key reasons why context size matters:

1. Understanding long-form content: Models with larger context sizes

can better comprehend and analyze longer texts, such as articles,

reports, or even entire books. This is crucial for tasks like document

summarization, question answering, and content analysis.

2. Maintaining coherence: A larger context window allows the model

to maintain coherence and consistency across longer stretches of

https://huggingface.co/papers/2404.07143

Introduction 17

output. This is important for tasks like story generation, dialogue sys-

tems, and content creation, where maintaining a consistent narrative

or topic is essential. It’s also absolutely crucial when using LLMs for

generating or transforming structured data.

3. Capturing long-range dependencies: Some language tasks require

understanding relationships between words or phrases that are far

apart in a text. Models with larger context sizes are better equipped

to capture these long-range dependencies, which can be important

for tasks like sentiment analysis , translation , and language under-

standing.

4. Handling complex instructions: In applications where language

models are used to follow complex, multi-step instructions, a larger

context size allows themodel to consider the entire set of instructions

when generating a response, rather than just the most recent few

words.

Examples of Language Models with Different Context Sizes

Here are a few examples of language models with different context sizes:

• OpenAI GPT-3.5 Turbo: 4,095 tokens

• Mistral 7B Instruct: 32,768 tokens

• Anthropic Claude v1: 100,000 tokens

• OpenAI GPT-4 Turbo: 128,000 tokens

• Anthropic Claude v2: 200,000 tokens

• Google Gemini Pro 1.5: 2.8M tokens

As you can see, there is a wide range of context sizes among these models,

from around 4,000 tokens for the OpenAI GPT-3.5 Turbomodel to 200,000

Introduction 18

tokens for the Anthropic Claude v2 model. Some models, like Google’s

PaLM 2 and OpenAI’s GPT-4 , offer different variants with larger context

sizes (e.g., “32k” versions), which can handle even longer input sequences.

And at the moment (April 2024) Google Gemini Pro is boasting nearly 3

million tokens!

It’s worth noting that the context size can vary depending on the specific

implementation and version of a particularmodel. For example, the original

OpenAI GPT-4model has a context size of 8,191 tokens, while the later GPT-

4 variants such as Turbo and 4o have a much larger context size of 128,000

tokens.

Sam Altman has compared current context limitations to the kilobytes

of working memory that personal computer programmers had to deal

with in the 80s, and said that in the near future we will be able to fit “all

of your personal data” into the context of a large language model .

Choosing the Right Context Size

When selecting a languagemodel for a particular application, it’s important

to consider the context size requirements of the task at hand. For tasks

that involve short, isolated pieces of text, like sentiment analysis or simple

question answering, a smaller context size may be sufficient. However,

for tasks that require understanding and generating longer, more complex

texts, a larger context size will likely be necessary.

It’s worth noting that larger context sizes often come with increased

computational costs and slower processing times, as the model needs to

consider more information when generating a response. As such, youmust

Introduction 19

strike a balance between context size and performance when choosing a

language model for your application.

Why not just choose the model with the largest context size and stuff it

with asmuch information as possible? Well, besides performance factors

the other main consideration is cost. In March 2024 a single prompt-

response cycle using Google Gemini Pro 1.5 with a full context will cost

you almost $8 (USD). If you have a use case that justifies that expense,

more power to you! But for most applications, it’s just too expensive by

orders of magnitude.

Finding Needles in Haystacks

The concept of finding a needle in a haystack has long been a metaphor

for the challenges of retrieval in large datasets. In the realm of LLMs, we

tweak this analogy a bit. Imagine we’re not just looking for a single fact

buried within a vast text (like a full anthology of Paul Graham essays), but

multiple facts scattered throughout. This scenario is more akin to finding

several needles in a sprawling field, not just a single haystack. Here’s the

kicker: not only do we need to locate these needles, but we also have to

weave them into a coherent thread.

When tasked with retrieving and reasoning about multiple facts embedded

in long contexts, LLMs face a dual challenge. First, there’s the straight-

forward issue of retrieval accuracy—it naturally dips as the number of facts

increases. This is expected; after all, keeping track ofmultiple details across

a sprawling text taxes even the most sophisticated models.

Second, and perhaps more critically, is the challenge of reasoning with

Introduction 20

these facts. It’s one thing to pick out facts; it’s quite another to synthesize

them into a coherent narrative or answer. This is where the real test comes

in. The performance of LLMs in reasoning tasks tends to degrade further

than in simple retrieval tasks. This degradation isn’t just about volume; it’s

about the intricate dance of context, relevance, and inference.

Why does this happen? Well, consider the dynamics of memory and

attention in human cognition, which are mirrored to an extent in LLMs.

When processing large amounts of information, LLMs, like humans, can

lose track of earlier details as they absorb new ones. This is especially

true in models that are not explicitly designed to prioritize or revisit earlier

segments of text automatically.

Moreover, the ability of an LLM to weave these retrieved facts into a coher-

ent response is akin to narrative building . This requires not just a retrieval

of information but a deep understanding and contextual placement, which

remains a stiff challenge for current AI.

So, what does this mean for us as developers and integrators of these

technologies? We need to be acutely aware of these limitations when

designing systems that rely on LLMs to handle complex, long-form tasks.

Understanding that performance might degrade under certain conditions

helps us set realistic expectations and engineer better fallbackmechanisms

or supplementary strategies.

Modalities: Beyond Text

While the majority of language models today are focused on processing

and generating text, there is a growing trend towards multimodal models

that can natively input and output multiple types of data, such as images,

audio, and video. These multimodal models open up new possibilities for

Introduction 21

AI-powered applications that can understand and generate content across

different modalities.

What are Modalities?

In the context of language models, modalities refer to the different types of

data that a model can process and generate. The most common modality

is text, which includes written language in various forms like books, arti-

cles, websites, and social media posts. However, there are several other

modalities that are increasingly being incorporated into language models:

• Images: Visual data such as photographs, illustrations, and diagrams.

• Audio: Sound data such as speech, music, and environmental sounds.

• Video: Moving visual data, often accompanied by audio, such as video

clips and movies.

Each modality presents unique challenges and opportunities for language

models. For example, images require the model to understand visual

concepts and relationships, while audio requires the model to process and

generate speech and other sounds.

Multimodal Language Models

Multimodal language models are designed to handle multiple modalities

within a single model. Thesemodels typically have specialized components

or layers that can both understand inputs and generate output data in dif-

ferent modalities. Some notable examples of multimodal language models

include:

• OpenAI’s GPT-4o: GPT-4o is a large language model that natively

understands and processes speech audio in addition to text. This

Introduction 22

capability allows GPT-4o to perform tasks such as transcribing spoken

language, generating text from audio inputs, and providing responses

based on spoken queries.

• OpenAI’s GPT-4 with visual input: GPT-4 is a large language model

that can process both text and images. When given an image as input,

GPT-4 can analyze the contents of the image and generate text that

describes or responds to the visual information.

• Google’s Gemini: Gemini is a multimodal model that can handle

text, images, and video. It uses a unified architecture that allows for

cross-modal understanding and generation, enabling tasks like image

captioning, video summarization, and visual question answering.

• DALL-E and Stable Diffusion: While not language models in the

traditional sense, these models demonstrate the power of multimodal

AI by generating images from textual descriptions. They showcase the

potential for models that can translate between different modalities.

Benefits and Applications of Multimodal Models

Multimodal language models offer several benefits and enable a wide range

of applications, including:

• Enhanced understanding: By processing information from multiple

modalities, thesemodels can gain amore comprehensive understand-

ing of the world, similar to how humans learn from various sensory

inputs.

• Cross-modal generation: Multimodal models can generate content

in one modality based on input from another, such as creating an

image from a text description or generating a video summary from

a written article.

Introduction 23

• Accessibility: Multimodal models can make information more ac-

cessible by translating between modalities, such as generating text

descriptions of images for visually impaired users or creating audio

versions of written content.

• Creative applications: Multimodal models can be used for creative

tasks like generating art, music, or videos based on textual prompts,

opening up new possibilities for artists and content creators.

Asmultimodal languagemodels continue to advance, they will likely play an

increasingly important role in the development of AI-powered applications

that can understand and generate content across multiple modalities. This

will enable more natural and intuitive interactions between humans and

AI systems, as well as unlock new possibilities for creative expression and

knowledge dissemination.

Provider Ecosystems

When it comes to incorporating large language models (LLMs) into appli-

cations, you have a growing range of options to choose from. Each major

LLM provider, such as OpenAI , Anthropic , Google , and Cohere , offers its

own ecosystem of models, APIs, and tools. Choosing the right provider in-

volves considering various factors, including pricing, performance, content

filtering, data privacy, and customization options.

OpenAI

OpenAI is one of the most well-known providers of LLMs, with its GPT

series (GPT-3, GPT-4) being widely used in various applications. OpenAI

offers a user-friendly API that allows you to easily integrate their models

into applications. They provide a range ofmodels with different capabilities

Introduction 24

and price points, from the entry-level Ada model to the powerful Davinci

model.

OpenAI’s ecosystem also includes tools like the OpenAI Playground, which

allows you to experiment with prompts and fine-tune models for specific

use cases. They offer content filtering options to help prevent the genera-

tion of inappropriate or harmful content.

When using OpenAI’s models directly, I rely on Alex Rudall ’s ruby-openai

library.

Anthropic

Anthropic is anothermajor player in the LLM space, with their Claudemod-

els gaining popularity for strong performance and ethical considerations.

Anthropic focuses on developing safe and responsible AI systems, with a

strong emphasis on content filtering and avoiding harmful outputs.

Anthropic’s ecosystem includes the Claude API, which allows you to in-

tegrate the model into their applications, as well as tools for prompt

engineering and fine-tuning. They also offer the Claude Instant model,

which incorporates web search capabilities for more up-to-date and fac-

tual responses.

When using Anthropic’s models directly, I rely on Alex Rudall’s anthrophic

library.

Google

Google has developed several powerful LLMs, including Gemini, BERT , T5 ,

and PaLM . Thesemodels are known for their strong performance on awide

range of natural language processing tasks. Google’s ecosystem includes

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/anthropic

Introduction 25

the TensorFlow and Keras libraries, which provide tools and frameworks

for building and training machine learning models.

Google also offers a Cloud AI Platform , which allows you to easily deploy

and scale their models in the cloud. They provide a range of pre-trained

models and APIs for tasks like sentiment analysis, entity recognition, and

translation.

Meta

Meta , formerly known as Facebook , is deeply invested in the development

of large language models, highlighted by its release of models like LLaMA

and OPT . These models stand out for their strong performance in diverse

language tasks and are made available largely through open-source chan-

nels, supporting Meta’s commitment to research and community collabo-

ration.

Meta’s ecosystem is primarily built around PyTorch , an open-source ma-

chine learning library favored for its dynamic computational capabilities

and flexibility, facilitating innovative AI research and development.

In addition to their technical offerings, Meta places a strong emphasis

on ethical AI development. They implement robust content filtering and

focus on reducing biases, aligning with their broader goals of safety and

responsibility in AI applications.

Cohere

Cohere is a newer entrant in the LLM space, focusing onmaking LLMsmore

accessible and easier to use than competitors. Their ecosystem includes

the Cohere API , which provides access to a range of pre-trained models

for tasks like text generation, classification, and summarization.

Introduction 26

Cohere also offers tools for prompt engineering, fine-tuning, and content

filtering. They emphasize data privacy and security, with features like

encrypted data storage and access controls.

Ollama

Ollama is a self-hosted platform that allows users to manage and deploy

various large languagemodels (LLMs) locally on theirmachines, giving them

complete control over their AI models without relying on external cloud

services. This setup is ideal for those who prioritize data privacy and wish

to handle their AI operations in-house.

The platform supports a range of models, including versions of Llama, Phi,

Gemma, and Mistral , which vary in size and computational requirements.

Ollama makes it easy to download and run these models directly from the

command line using simple commands like ollama run <model_name>,

and it’s designed to work across different operating systems including

macOS, Linux, and Windows.

For developers looking to integrate open-source models into their applica-

tions without using a remote API, Ollama offers a CLI for managing model

lifecycles similar to container management tools . It also supports custom

configurations and prompts, allowing for a high degree of customization to

tailor the models to specific needs or use cases.

Ollama is particularly suited for tech-savvy users and developers due to

its command-line interface and the flexibility it offers in managing and

deploying AI models. This makes it a powerful tool for businesses and

individuals who require robust AI capabilities without compromising on

security and control.

Introduction 27

Multi‐Model Platforms

Additionally, there are providers that host a wide variety of open-source

models, such as Together.ai and Groq . These platforms offer flexibility

and customization, allowing you to run and, in some cases, even fine-

tune open-source models according to your specific needs. For example,

Together.ai provides access to a range of open-source LLMs, enabling users

to experiment with different models and configurations. Groq focuses on

delivering ultra high-performance completion that at the time of this book’s

writing seems almost magical .

Choosing an LLM Provider

When choosing an LLM provider, you should consider factors like:

• Pricing: Different providers offer different pricing models, ranging

from pay-per-use to subscription-based plans. It’s important to

consider the expected usage and budget when selecting a provider.

• Performance: The performance of LLMs can vary significantly be-

tween providers, so it’s important to benchmark and test models on

specific use cases before making a decision.

• Content Filtering: Depending on the application, content filtering

may be a critical consideration. Some providers offer more robust

content filtering options than others .

• Data Privacy: If the application handles sensitive user data, it’s im-

portant to choose a provider with strong data privacy and security

practices .

• Customization: Some providers offermore flexibility in terms of fine-

tuning and customizing models for specific use cases .

Introduction 28

Ultimately, the choice of LLM provider depends on the specific require-

ments and constraints of the application. By carefully evaluating the

options and considering factors like pricing, performance, and data privacy,

you can select the provider that best meets your needs.

It’s also worth noting that the LLM landscape is constantly evolving, with

new providers andmodels emerging regularly . You should stay up-to-date

with the latest developments and be open to exploring new options as they

become available.

OpenRouter

Throughout this book I will be relying exclusively on OpenRouter as my API

provider of choice. The reason is simple: it is a one-stop shop for all the

most popular commercial and open-source models. If you’re itching to get

your hands dirty with some AI coding, one of the best places to start is with

my own OpenRouter Ruby Library .

Thinking About Performance

When incorporating language models into applications, performance is

a critical consideration. The performance of a language model can be

measured in terms of its latency (the time it takes to generate a response)

and throughput (the number of requests it can handle per unit of time).

Time to First Token (TTFT) is another essential performance metric, par-

ticularly relevant for chatbots and applications requiring interactive, real-

time responses. TTFT measures the latency from the moment a user’s

request is received to the moment the first word (or token) of the response

is generated. Thismetric is crucial formaintaining a seamless and engaging

https://openrouter.ai
https://github.com/OlympiaAI/open_router

Introduction 29

user experience, as delayed responses can lead to user frustration and

disengagement.

These performance metrics can have a significant impact on the user

experience and the scalability of the application.

Several factors can influence the performance of a languagemodel, includ-

ing:

Parameter Count: Larger models with more parameters generally require

more computational resources and can have higher latency and lower

throughput compared to smaller models.

Hardware: The performance of a language model can vary significantly

based on the hardware it’s running on. Cloud providers offer GPU and TPU

instances optimized for machine learning workloads, which can greatly

accelerate model inference.

One of the nice things about OpenRouter is that for many of the

models it offers, you get a choice of cloud providers with a range

of performance profiles and costs.

Quantization: Quantization techniques can be used to reduce thememory

footprint and computational requirements of a model by representing

weights and activations with lower-precision data types. This can improve

performance without significantly sacrificing quality. As an application

developer, you probably won’t be getting involved in training your own

models at different quantization levels, but it’s good to at least be familiar

with the terminology.

Batching: Processing multiple requests simultaneously in batches can

improve throughput by amortizing the overhead of model loading and data

transfer.

Introduction 30

Caching: Caching the results of frequently-used prompts or input se-

quences can reduce the number of inference requests and improve overall

performance.

When selecting a language model for a production application, it’s im-

portant to benchmark its performance on representative workloads and

hardware configurations. This can help identify potential bottlenecks and

ensure that the model can meet the required performance targets.

It’s also worth considering the trade-offs between model performance and

other factors like cost, flexibility, and ease of integration. For example,

using a smaller, less expensive model with lower latency may be preferable

for applications that require real-time responses, while a larger, more

powerful model may be better suited for batch processing or complex

reasoning tasks.

Experimenting With Different LLMModels

Choosing an LLM is rarely a permanent decision. As new and improved

models are released regularly, it’s good to build applications in a modular

way that allows swapping in different language models over time. Prompts

and datasets can often be reused across models with minimal changes.

This allows you to take advantage of the latest advancements in language

modeling without having to completely redesign their applications.

The ability to swap between a wide range of model choices easily

is yet another reason that I love OpenRouter.

When upgrading to a new languagemodel, it’s important to thoroughly test

and validate its performance and output quality to ensure that it meets the

Introduction 31

requirements of the application. This may involve retraining or fine-tuning

the model on domain-specific data, as well as updating any downstream

components that depend on the model’s outputs.

By designing applications with performance and modularity in mind, you

can create scalable, efficient, and future-proof systems that can adapt to

the rapidly-evolving landscape of language modeling technology.

Compound AI Systems

Before closing our introduction, it’s worth mentioning that prior to 2023

and the explosion of interest in generative AI sparked by ChatGPT , tradi-

tional AI approaches usually relied on integration of single, closed models.

In contrast, Compound AI Systems leverage complex pipelines of intercon-

nected components working together to achieve intelligent behavior.

At their core, compound AI systems consist of multiple modules, each

designed to perform specific tasks or functions. Thesemodules can include

generators, retrievers, rankers, classifiers, and various other specialized

components. By breaking down the overall system into smaller, focused

units, developers can create more flexible, scalable, and maintainable AI

architectures.

One of the key advantages of compound AI systems is their ability to

combine the strengths of different AI techniques and models. For example,

a system might use a large language model (LLM) for natural language

understanding and generation, while employing a separatemodel for infor-

mation retrieval or rules-based decision-making. This modular approach

allows you to select the best tools and techniques for each specific task,

rather than relying on a one-size-fits-all solution.

Introduction 32

However, building compound AI systems also presents unique challenges.

In particular, ensuring the overall coherence and consistency of the sys-

tem’s behavior requires robust testing, monitoring, and governance mech-

anisms.

The advent of powerful LLMs like GPT-4 lets us experiment with

compound AI systems more easily than ever before, because

these advanced models are capable of handling multiple roles

within a compound system, such as classification, ranking, and

generation, in addition to their natural language understanding

capabilities. This versatility enables developers to rapidly proto-

type and iterate on compound AI architectures, opening up new

possibilities for intelligent application development.

Deployment Patterns for Compound AI Systems

Compound AI systems can be deployed using various patterns, each

designed to address specific requirements and use cases. Let’s explore

four common deployment patterns: Question and Answer, Multi-

Agent/Agentic Problem Solvers , Conversational AI , and CoPilots.

Question and Answer

Question and Answer (Q&A) systems focus on delivering information re-

trieval that is enhanced with the understanding capabilities of AI models in

order to function as more than simply a search engine. By combining pow-

erful language models with external knowledge sources using Retrieval-

Augmented Generation (RAG) , Question and Answer systems avoid hallu-

cinations and provide accurate and contextually relevant responses to user

queries.

Introduction 33

The key components of an LLM-based Q&A system include:

• Query understanding and reformulation: Analyzing user queries

and reformulating them to better match the underlying knowledge

sources.

• Knowledge retrieval: Retrieving relevant information from structured

or unstructured data sources based on the reformulated query.

• Response generation: Generating coherent and informative

responses by integrating the retrieved knowledge with the language

model’s generative capabilities.

RAG subsystems are particularly important in Q&A domains where pro-

viding accurate and up-to-date information is crucial, such as customer

support , knowledge management , or educational applications .

Multi‐Agent/Agentic Problem Solvers

Multi-agent, also known as Agentic , systems consist of multiple

autonomous agents working together to solve complex problems. Each

agent has a specific role, set of skills, and access to relevant tools or

information sources. By collaborating and exchanging information, these

agents can tackle tasks that would be difficult or impossible for a single

agent to handle alone.

The key principles of multi-agent problem solvers include:

• Specialization: Each agent focuses on a specific aspect of the prob-

lem, leveraging its unique capabilities and knowledge.

• Collaboration: Agents communicate and coordinate their actions to

achieve a common goal, often through message passing or shared

memory.

Introduction 34

• Adaptability: The system can adapt to changing conditions or re-

quirements by adjusting the roles and behaviors of individual agents.

Multi-agent systems are well-suited for applications that require

distributed problem-solving, such as supply chain optimization , traffic

management , or emergency response planning .

Conversational AI

Conversational AI systems enable natural language interactions between

users and intelligent agents. These systems combine natural language un-

derstanding, dialogue management, and language generation capabilities

to provide engaging and personalized conversational experiences.

The main components of a conversational AI system include:

• Intent recognition: Identifying the user’s intent based on their input,

such as asking a question, making a request, or expressing a senti-

ment.

• Entity extraction: Extracting relevant entities or parameters from the

user’s input, such as dates, locations, or product names.

• Dialogue management: Maintaining the state of the conversation,

determining the appropriate response based on the user’s intent and

context, and handling multi-turn interactions.

• Response generation: Generating human-like responses using lan-

guage models, templates, or retrieval-based methods.

Conversational AI systems are commonly used in customer service

chatbots , virtual assistants , and voice-controlled interfaces . As

mentioned earlier, most of the approaches, patterns, and code examples

in this book are directly extracted from my work on a large conversational

AI system called Olympia .

https://olympia.chat

Introduction 35

CoPilots

CoPilots are AI-powered assistants that work alongside human users to en-

hance their productivity and decision-making capabilities. These systems

leverage a combination of natural language processing, machine learning,

and domain-specific knowledge to provide intelligent recommendations,

automate tasks, and offer contextual support.

Key features of CoPilots include:

• Personalization: Adapting to individual user preferences, workflows,

and communication styles.

• Proactive assistance: Anticipating user needs and offering relevant

suggestions or actions without explicit prompts.

• Continuous learning: Improving performance over time by learning

from user feedback, interactions, and data.

CoPilots are increasingly used in various domains, such as software devel-

opment (e.g., code completion and bug detection), creative writing (e.g.,

content suggestions and editing) , and data analysis (e.g., insights and

visualization recommendations) .

These deployment patterns showcase the versatility and potential of com-

pound AI systems . By understanding the characteristics and use cases

of each pattern, you can make informed decisions when designing and

implementing intelligent applications. While this book is not specifically

about the implementation of compound AI systems, many if not all of the

same approaches and patterns apply to integrating discrete AI components

within otherwise traditional application development.

Introduction 36

Roles in Compound AI Systems

Compound AI systems are built upon a foundation of interconnected

modules, each designed to perform a specific role. These modules work

together to create intelligent behaviors and solve complex problems. It’s

useful to be familiar with these roles when thinking about where you might

be able to implement or replace parts of your application with discrete AI

components.

Generator

Generators are responsible for producing new data or content based on

learned patterns or input prompts. The AI world has many different kinds

of generators, but in the context of the kinds of language models that are

showcased in this book, generators can create human-like text, complete

partial sentences, or generate responses to user queries. They play a

crucial role in tasks such as content creation, dialogue generation, and data

augmentation.

Retriever

Retrievers are used to search and extract relevant information from large

datasets or knowledge bases. They employ techniques like semantic

search, keyword matching, or vector similarity to find the most pertinent

data points based on a given query or context. Retrievers are essential for

tasks that require quick access to specific information, such as question

answering, fact-checking, or content recommendation.

Ranker

Rankers are responsible for ordering or prioritizing a set of items based on

certain criteria or relevance scores . They assign weights or scores to each

Introduction 37

item and then sort them accordingly. Rankers are commonly used in search

engines, recommendation systems, or any application where presenting

the most relevant results to users is crucial.

Classifier

Classifiers are used to categorize or label data points based on predefined

classes or categories. They learn from labeled training data and then

predict the class of new, unseen instances. Classifiers are fundamental to

tasks like sentiment analysis, spam detection, or image recognition, where

the goal is to assign a specific category to each input.

Tools & Agents

In addition to these core roles, compound AI systems often incorporate

tools and agents to enhance their functionality and adaptability:

• Tools: Tools are discrete software components or APIs that perform

specific actions or computations. They can be invoked by other

modules, such as generators or retrievers, to accomplish sub-tasks or

gather additional information. Examples of tools include web search

engines, calculators, or data visualization libraries.

• Agents: Agents are autonomous entities that can perceive their envi-

ronment, make decisions, and take actions to achieve specific goals.

They often rely on a combination of different AI techniques, such as

planning, reasoning, and learning, to operate effectively in dynamic or

uncertain conditions. Agents can be used tomodel complex behaviors

or to coordinate the actions of multiple modules within a compound

AI system.

Introduction 38

In a pure compound AI system, interaction between these components is

orchestrated through well-defined interfaces and communication proto-

cols. Data flows between modules, with the output of one component

serving as the input for another. This modular architecture allows for

flexibility, scalability, and maintainability, as individual components can be

updated, replaced, or extended without affecting the entire system.

By leveraging the power of these components and their interactions, com-

pound AI systems can tackle complex, real-world problems that require a

combination of different AI capabilities. As we explore the approaches and

patterns for integrating AI into application development, keep in mind that

the same principles and techniques used in compound AI systems can be

applied to create intelligent, adaptive, and user-centric applications.

In the following chapters of Part 1, we will dive deeper into the fundamental

approaches and techniques for integrating AI components into your ap-

plication development process. From prompt engineering and retrieval-

augmented generation to self-healing data and intelligent workflow or-

chestration, we will cover a wide range of patterns and best practices to

help you build cutting-edge AI-powered applications.

Part 1: Fundamental
Approaches & Techniques

This part of the book presents different ways of integrating the use of AI in

your applications. The chapters cover an array of related approaches and

techniques, ranging from the more high-level concepts like Narrow The

Path and Retrieval Augmented Generation all the way down to ideas for

programming your own abstraction layer on top of LLM chat completion

APIs.

The goal of this part of the book is to help you understand the kinds of

behavior that you can implement with AI, before getting too deep into

specific implementation patterns that are the focus of Part 2.

The approaches in Part 1 are based on ideas that I’ve used in my code,

classic patterns of enterprise application architecture and integration , plus

metaphors that I’ve invoked when explaining the capabilities of AI to other

people, including non-technical business stakeholders.

Narrow The Path

“Narrow the path” refers to focusing the AI on the task at hand. I use it as

a mantra whenever I’m getting frustrated about the AI acting “dumb” or in

unexpected ways. The mantra reminds me that the failure is probably my

fault, and that I probably should narrow the path some more.

The need for narrowing the path arises from the vast amounts of knowledge

contained within large language models, especially world-class models like

those from OpenAI and Anthropic that have literally trillions of parame-

ters.

Narrow The Path 41

Having access to such a wide range of knowledge is undoubtedly powerful

and produces emergent behavior such as theory of mind and the ability

to reason in human-like ways. However, that earth-shattering volume of

information also presents challenges when it comes to generating precise

and accurate responses to specific prompts, especially if those prompts

are meant to exhibit deterministic behavior that can be integrated with

“normal” software development and algorithms.

A number of factors lead to the challenges.

Information Overload: Large language models are trained on massive

amounts of data spanning various domains, sources, and time periods.

This extensive knowledge allows them to engage in diverse topics and

generate responses based on a broad understanding of theworld. However,

when faced with a specific prompt, the model might struggle to filter out

irrelevant, contradictory, or out of date/obsolete information, leading to

responses that lack focus or accuracy. Depending on what you’re trying to

do, the sheer volume of contradictory information available to the model

can easily overwhelm its ability to provide the answer or behavior that you

seek.

Contextual Ambiguity: Given the vast latent space of knowledge, large

language models might encounter ambiguity when trying to understand

the context of your prompt. Without proper narrowing or guidance, the

model may generate responses that are tangentially related but not directly

relevant to your intentions. This kind of failure leads to responses that are

off-topic, inconsistent, or fail to address your stated needs. In this case,

narrowing the path refers to context disambiguation, ensuring that the

context you provide causes the model to focus only on the most relevant

information in its base knowledge.

Narrow The Path 42

Note: When you’re starting outwith “prompt engineering” you’re

much more likely to ask the model to do things without properly

explaining the desired outcome; it takes practice to not be am-

biguous!

Temporal Inconsistencies: As language models are trained on data that

was created at different time periods, they may possess knowledge that

is outdated, superseded, or no longer accurate. For example, information

about current events, scientific discoveries, or technological advance-

ments may have evolved since the model’s training data was collected.

Without narrowing the path to prioritize more recent and reliable sources,

the model might generate responses based on outdated or incorrect infor-

mation, leading to inaccuracies and inconsistencies in its outputs.

Domain-Specific Nuances: Different domains and fields have their own

specific terminologies, conventions, and knowledge bases. Think about

practically any TLA (Three Letter Acronym) and you’ll realize that most

of them have more than one meaning. For instance, MSK can refer

to Amazon’s Managed Streaming for Apache Kafka , the Memorial Sloan

Kettering Cancer Center , or the human MusculoSKeletal system.

When a prompt requires expertise in a particular domain, a large language

model’s generic knowledge might not be sufficient to provide accurate and

nuanced responses. Narrowing the path by focusing on domain-specific

information, either through prompt engineering or retrieval-augmented

generation, allows the model to generate responses that are more aligned

with your specific domain’s requirements and expectations.

Narrow The Path 43

Latent Space: Incomprehensibly Vast

When I mention the “latent space” of a language model, I’m referring to

the vast, multi-dimensional landscape of knowledge and information that

the model has learned during its training process. It’s like a hidden realm

within the model’s neural networks, where all the patterns, associations,

and representations of language are stored.

Imagine you’re exploring a vast, uncharted territory filled with countless

interconnected nodes. Each node represents a piece of information, a con-

cept, or a relationship that the model has learned. As you navigate through

this space, you’ll find that some nodes are closer together, indicating a

strong connection or similarity, while others are further apart, suggesting

a weaker or more distant relationship.

The challenge with latent space is that it’s incredibly complex and high-

dimensional. Think of it being as immense as our physical universe, with

its clusters of galaxies and vast, unimaginable distances of empty space

between them.

Because it contains thousands of dimensions, the latent space is not

directly observable or interpretable by humans. It’s an abstract representa-

tion that themodel uses internally to process and generate language. When

you provide an input prompt to the model, it essentially maps that prompt

onto a specific location within the latent space. The model then uses

the surrounding information and connections in that space to generate a

response.

The thing is, the model has learned an enormous amount of information

from its training data , and not all of it is relevant or accurate for a

given task. That’s why narrowing the path becomes so important. By

providing clear instructions, examples, and context in your prompts, you’re

Narrow The Path 44

essentially guiding the model to focus on specific regions within the latent

space that are most relevant to your desired output.

A different way to think of it is like using a spotlight in a completely dark

museum. If you’ve ever visited the Louvre or Metropolitan Museum of

Art , then that’s the kind of scale I’m talking about. The latent space is

the museum, filled with countless objects and details. Your prompt is the

spotlight, illuminating specific areas and drawing the model’s attention

to the most important information. Without that guidance, the model

may wander aimlessly through the latent space, picking up irrelevant or

contradictory information along the way.

As you work with language models and craft your prompts, keep the

concept of latent space inmind. Your goal is to navigate this vast knowledge

landscape effectively, steering the model towards the most relevant and

accurate information for your task. By narrowing the path and providing

clear guidance, you can unlock the full potential of the model’s latent space

and generate high-quality, coherent responses.

While the previous descriptions of language models and the latent space

they navigate may seem a bit magical or abstract, it’s important to under-

stand that prompts are not spells or incantations. Theway languagemodels

work is grounded in the principles of linear algebra and probability theory.

At their core, language models are probabilistic models of text, much like

how a bell curve is a statistical model of data. They are trained through

a process called auto-regressive modeling , where the model learns to

predict the probability of the next word in a sequence based on the

words that come before it. During training, the model starts with random

weights and gradually adjusts them to assign higher probabilities to text

that resembles the real-world samples it was trained on.

However, thinking of language models as simple statistical models, like

Narrow The Path 45

linear regression , doesn’t provide the best intuition for understanding

their behavior. A more apt analogy is to think of them as probabilistic

programs, which are models that allow for the manipulation of random

variables and can represent complex statistical relationships.

Probabilistic programs can be represented by graphical models , which

provide a visual way to understand the dependencies and relationships

between variables in themodel. This perspective can offer valuable insights

into the workings of complex text generation models like GPT-4 and

Claude .

In the paper “Language Model Cascades” by Dohan et al. , the authors dive

into the details of how probabilistic programs can be applied to language

models. They show how this framework can be used to understand the

behavior of these models and guide the development of more effective

prompting strategies.

One key insight from this probabilistic perspective is that the language

model essentially creates a portal to an alternate universe where the

desired documents exist. The model assigns weights to all possible doc-

uments based on their probability, effectively narrowing down the space of

possibilities to focus on the most relevant ones.

This brings us back to the central theme of “narrowing the path.” The pri-

mary goal of prompting is to condition the probabilistic model in a way that

focuses themass of its predictions, honing in on the specific information or

behavior we want to elicit. By providing carefully crafted prompts, we can

guide the model to navigate the latent space more efficiently and generate

outputs that are more relevant and coherent.

However, it’s important to keep in mind that the language model is ul-

timately constrained by the information it was trained on. While it can

generate text that is similar to existing documents or combine ideas in

Narrow The Path 46

novel ways, it cannot conjure up entirely new information from scratch.

For example, we can’t expect the model to provide a cure for cancer if such

a cure hasn’t been discovered and documented in its training data.

Instead, the model’s strength lies in its ability to find and synthesize

information that is similar to what we prompt it with. By understanding

the probabilistic nature of these models and how prompts can be used to

condition their outputs, we can more effectively leverage their capabilities

to generate valuable insights and content.

Consider the prompts below. In the first, “Mercury” alone could refer to

the planet , the element , or the Roman god , but the most probable is the

planet. Indeed, GPT-4 provides a long response that beginsMercury is the

smallest and innermost planet in the Solar System…. The second prompt

specifically refers to the chemical element. The third refers to the Roman

mythological figure, known for his speed and role as a divine messenger.

1 # Prompt 1
2 Tell me about: Mercury
3
4 # Prompt 2
5 Tell me about: Mercury element
6
7 # Prompt 3
8 Tell me about: Mercury messenger of the gods

By tacking on just a handful of extra words, we’ve completely changed how

the AI reacts. As you’ll learn later in the book, fancy prompt engineering

tricks such as n-shot prompting, structured input/output, and Chain of

Thought are just clever ways of conditioning the output of the model.

So ultimately, the art of prompt engineering is about understanding how to

navigate the vast probabilistic landscape of the languagemodel’s knowledge

to narrow down the path to the specific information or behavior we seek.

Narrow The Path 47

For readers with a solid grasp of advance mathematics, grounding your

understanding of these models in the principles of probability theory and

linear algebra can definitely help you! For the rest of you that want to

develop effective strategies for eliciting desired outputs, let’s stick to more

intuitive approaches.

How The Path Gets “Narrowed”

To address these challenges of toomuch knowledge, we employ techniques

that help guide the language model’s generation process and focus its

attention on the most relevant and accurate information.

Here are the most significant techniques, in recommended order, that is,

you should try Prompt Engineering first, and then RAG, and then finally, if

you must, fine tuning.

Prompt Engineering The most fundamental approach is crafting prompts

that include specific instructions, constraints, or examples to guide the

model’s response generation. This chapter covers fundamentals of Prompt

Engineering in the next section, and we cover many specific prompt

engineering patterns in Part 2 of the book. Those patterns include Prompt

Distillation , a technique that focuses on refining and optimizing prompts

to extract what the AI consideres to be the most relevant and concise

information.

Context Augmentation Dynamically retrieving relevant information from

external knowledge bases or documents to provide the model with focused

context at the time that it is prompted. Popular context augmentation

techniques include Retrieval-Augmented Generation (RAG) . So-called

“online models” like those provided by Perplexity are able to augment their

context with real-time internet search results.

https://perplexity.ai

Narrow The Path 48

Despite their power, LLMs are are not trained on your unique

datasets, which may be private or specific to the problem you’re

trying to solve. Context Augmentation techniques let you give

LLMs access to data behind APIs, in SQL databases, or trapped in

PDFs and slide decks.

Fine-Tuning or Domain Adaptation Training the model on domain-

specific datasets to specialize its knowledge and generation capabilities

for a particular task or field.

Turning Down The Temperature

Temperature is a hyperparameter used in transformer-based language

models that controls the randomness and creativity of the generated text.

It is a value between 0 and 1, where lower values make the output more

focused and deterministic, while higher values make it more diverse and

unpredictable.

When the temperature is set to 1, the language model generates text based

on the full probability distribution of the next token, allowing for more

creative and varied responses. However, this can also lead to the model

generating text that is less relevant or coherent.

On the other hand, when the temperature is set to 0, the language model

always selects the tokenwith the highest probability, effectively “narrowing

its path.” Almost all of my AI components use a temperature set at or

close to 0, since it results in more focused and predictable responses.

It’s absolutely useful when you want the model to follow instructions, pay

attention to functions that it has been provided, or simply need more

accurate and relevant responses than what you’re getting.

Narrow The Path 49

For example, if you’re building a chatbot that needs to provide factual

information, you might want to set the temperature to a lower value to

ensure the responses are more precise and on-topic. Conversely, if you’re

building a creative writing assistant, youmight want to set the temperature

to a higher value to encourage more diverse and imaginative outputs.

Hyperparameters: Knobs and Dials of Inference

When you’re working with language models, you’ll come across the term

“hyperparameters” quite often. In the context of inference (i.e., when you’re

using themodel to generate responses), hyperparameters are like the knobs

and dials you can tweak to control the model’s behavior and output.

Think of it like adjusting the settings on a complex machine. Just as you

might turn a knob to control the temperature or flip a switch to change the

mode of operation, hyperparameters allow you to finely adjust the way the

language model processes and generates text.

Some common hyperparameters you’ll encounter during inference include:

• Temperature: As just mentioned, this parameter controls the ran-

domness and creativity of the generated text. A higher temperature

leads to more diverse and unpredictable outputs, while a lower tem-

perature results in more focused and deterministic responses.

• Top-p (nucleus) sampling: This parameter controls selection of the

smallest set of tokens whose cumulative probability exceeds a certain

threshold (p) . It allows for more diverse outputs while still maintain-

ing coherence.

• Top-k sampling: This technique selects the k most likely next tokens

and redistributes the probability mass among them . It can help pre-

vent the model from generating low-probability or irrelevant tokens.

Narrow The Path 50

• Frequency and Presence penalties: These parameters penalize the

model for repeating the same words or phrases too frequently (fre-

quency penalty) or for generating words that are not present in the

input prompt (presence penalty) . By tweaking these values, you can

encourage the model to produce more varied and relevant outputs.

• Maximum length: This hyperparameter sets an upper limit on the

number of tokens (words or subwords) the model can generate in a

single response. It helps control the verbosity and conciseness of the

generated text.

As you experiment with different hyperparameter settings, you’ll find that

even small adjustments can have a significant impact on themodel’s output.

It’s like fine-tuning a recipe – a pinch more salt or a slightly longer cooking

time can make all the difference in the final dish.

The key is to understand how each hyperparameter affects the model’s

behavior and to find the right balance for your specific task. Don’t be

afraid to play around with different settings and see how they influence

the generated text. Over time, you’ll develop an intuition for which

hyperparameters to tweak and how to achieve the desired results.

By combining the use of these parameters with prompt engineering,

retrieval-augmented generation, and fine-tuning, you can effectively

narrow the path and guide the language model to generate more accurate,

relevant, and valuable responses for their specific use case.

Raw Versus Instruct‐Tuned Models

Raw models are the unrefined, untrained versions of LLMs. Imagine them

as a fresh canvas, not yet influenced by specific training to understand or

Narrow The Path 51

follow instructions. They’re built upon the vast data they were initially

trained on, capable of generating a wide range of outputs. However,

without additional layers of instruction-based fine-tuning, their responses

can be unpredictable and require more nuanced, carefully crafted prompts

to guide them towards the desired output. Working with rawmodels is akin

to coaxing communication out of an idiot-savant who has a vast amount of

knowledge but lacks any intuition whatsoever about what you’re asking for

unless you’re extremely precise in your instructions. They often feel like a

parrot, in that to the extent you get them to say anything intelligible, it’s

more often than not just repeating something it heard you say.

Instruct-tuned models, on the other hand, have undergone rounds of

training specifically designed to understand and follow instructions . GPT-

4 , Claude 3 and many other of the most popular LLM models are all

heavily instruct-tuned. This training involves feeding the model examples

of instructions along with the desired outcomes, effectively teaching the

model how to interpret and execute a wide range of commands. As a result,

instruct models can more readily understand the intent behind a prompt

and generate responses that closely align with the user’s expectations.

This makes them more user-friendly and easier to work with, especially

for those who may not have the time or expertise to engage in extensive

prompt engineering.

RawModels: The Unfiltered Canvas

Raw models, such as Llama 2-70B or Yi-34B , offer more unfiltered access

to the model’s capabilities that what you might be used to if you’ve been

experimenting with popular LLMs like GPT-4. These models are not pre-

tuned to follow specific instructions, providing you with a blank canvas to

directly manipulate the model’s output through careful prompt engineer-

Narrow The Path 52

ing. This approach requires a deep understanding of how to craft prompts

that guide the AI in the desired direction without explicitly instructing it.

It’s akin to having a direct access to the “raw” layers of the underlying

AI, without any intermediary layers interpreting or guiding the model’s

responses (hence the name).

Figure 3. Testing a rawmodel using part of Abbot andCostello’s classicWho’s on First sketch

The challenge with raw models lies in their tendency to fall into repetitive

patterns or produce random output. However, with meticulous prompt

Narrow The Path 53

engineering and the adjustment of parameters such as repetition penalties ,

raw models can be coaxed into generating unique and creative content.

This process is not without its trade-offs; while raw models offer unparal-

leled flexibility for innovation, they demand a higher level of expertise.

Figure 4. For comparison purposes, here’s the same ambiguous prompt fed to GPT-4

Instruct‐Tuned Models: The Guided Experience

Instruct-tuned models are designed to understand and follow specific

instructions, making them more user-friendly and accessible for a broader

range of applications. They understand the mechanics of a conversation

and that they should stop generating when it’s the end of their turn to talk.

For many developers, especially those working on straightforward applica-

tions, instruct-tuned models offer a convenient and efficient solution.

The process of instruct-tuning involves training the model on a large cor-

pus of human-generated instruction prompts and responses. One notable

Narrow The Path 54

example is the open source databricks-dolly-15k dataset, which contains

over 15,000 prompt/response pairs created by Databricks employees that

you can inspect for yourself. The dataset covers eight different instruc-

tion categories, including creative writing , closed and open question

answering , summarization , information extraction , classification , and

brainstorming.

During the data generation process, contributors were given guidelines on

how to create prompts and responses for each category. For example, for

creative writing tasks, they were instructed to provide specific constraints,

instructions, or requirements to guide themodel’s output. For closed ques-

tion answering, they were asked to write questions that require factually

correct responses based on a given Wikipedia passage.

The resulting dataset serves as a valuable resource for fine-tuning large

language models to exhibit the interactive and instruction-following capa-

bilities of systems like ChatGPT . By training on a diverse range of human-

generated instructions and responses, the model learns to understand and

follow specific directives, making it more adept at handling a wide variety

of tasks.

In addition to direct fine-tuning, the instruction prompts in datasets like

databricks-dolly-15k can also be used for synthetic data generation . By

submitting contributor-generated prompts as few-shot examples to a large

open language model, developers can generate a much larger corpus of

instructions in each category. This approach, outlined in the Self-Instruct

paper, allows for the creation of more robust instruction-followingmodels.

Furthermore, the instructions and responses in these datasets can be aug-

mented through techniques like paraphrasing . By restating each prompt

or short response and associating the resulting text with the respective

ground-truth sample, developers can introduce a form of regularization

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Narrow The Path 55

that enhances the model’s ability to follow instructions.

The ease of use provided by instruct-tuned models comes at the cost of

some flexibility. These models are often heavily censored, which means

they may not always provide the level of creative freedom required for

certain tasks. Their outputs are strongly influenced by the biases and

limitations inherent in their fine-tuning data.

Despite these limitations, instruct-tunedmodels have become increasingly

popular due to their user-friendly nature and ability to handle a wide range

of tasks with minimal prompt engineering. As more high-quality instruc-

tion datasets become available, we can expect to see further improvements

in the performance and versatility of these models.

Choosing the Right Kind of Model for Your Project

The decision between base (raw) and instruct-tuned models ultimately de-

pends on the specific requirements of your project. For tasks that demand

a high degree of creativity and originality, basemodels offer a powerful tool

for innovation. These models allow developers to explore the full potential

of LLMs, pushing the boundaries ofwhat can be achieved through AI-driven

applications, but they require a more hands-on approach and a willingness

to experiment. Temperature and other settings have amuch greater effect

in base models than in their instruct counterparts.

Whatever you include in your prompt is what base models will

try to repeat. So if for example your prompt is a chat transcript,

the raw model will try to continue the chat. Depending on the

max tokens limit, it will not just generate the following message

in the chat, it may have an entire conversation with itself!

Narrow The Path 56

Figure 5. Mixtral 8x7B (base) Example of Sentence Rewriting with Few-Shot Completion

While preparing the example of Sentence Rewriting above by Reddit user

phree_radical, I was only able to get usable results after much experimen-

tation with parameter settings, ultimately settling on: Temperature 0.08,

Top P: 0.2, Top K: 1, and Repetition Penalty: 1.26.

https://www.reddit.com/user/phree_radical/

Narrow The Path 57

Trying to use this approachwith a basemodel in productionwould be tricky

due to the powerful effect of the max_tokens parameter. Set it too short

and the output is truncated. Set it longer than what the models needs for

the desired output, and it will continue hallucinating additional examples.

The bottom line is that unless you really need full control and lack of

censorship, instruct-tunedmodels can significantly streamline your devel-

opment process. To drive that point home, here’s Mixtral 8x7B’s response

to the same prompt, but this time in its Instruct-tuned version:

I’m sorry to inform you that the ice cream does not meet my

expectations, as it lacks the rich, creamy texture and delightful

taste I usually associate with a high-quality dessert. I was hoping

for a more satisfying and enjoyable experience.

Notably, I was able to leave themax tokens setting at 500, and themodel re-

liably stopped at the end of desired output without hallucinating additional

examples.

Prompt Engineering

As you start applying AI in your projects, you’ll quickly discover that one of

the most crucial skills you need to master is the art of prompt engineering.

But what exactly is prompt engineering, and why is it so important?

At its core, prompt engineering is the process of designing and crafting the

input prompts that you provide to a language model to guide its output.

It’s about understanding how to communicate effectively with the AI, using

a combination of instructions, examples, and context to steer the model

towards generating the desired response.

Narrow The Path 58

Think of it like having a conversation with a highly intelligent but somewhat

literal-minded friend. To get the most out of the interaction, you need

to be clear, specific, and provide enough context to ensure that your

friend understands exactly what you’re asking for. That’s where prompt

engineering comes in, and even if it seems easy at first, believe me that it

takes a great deal of practice to master.

The Building Blocks of Effective Prompts

To start engineering effective prompts, first you need to understand the

key components that make up a well-crafted input. Here are some of the

essential building blocks:

1. Instructions: Clear and concise instructions that tell the model what

you want it to do. This could be anything from “Summarize the

following article” to “Generate a poem about a sunset” to “turn this

project change request into a JSON object”.

2. Context: Relevant information that helps the model understand the

background and scope of the task. This might include details about

the intended audience, the desired tone and style, or any specific

constraints or requirements for the output, such as a JSON Schema

to adhere to.

3. Examples: Concrete examples that demonstrate the type of output

you’re looking for. By providing a few well-chosen examples, you can

help the model learn the patterns and characteristics of the desired

response.

4. Input Formatting: Line breaks and markdown formatting give struc-

ture to our prompt. Separating the prompt into paragraphs lets us

group related instructions. so that it is easier for both humans and

Narrow The Path 59

AI to make sense of. Bullets and numbered lists let us define lists and

ordering of items. Bold and italics markers let us demark emphasis.

5. Output Formatting: Specific instructions on how the output should

be structured and formatted. These could include directives about

the desired length, the use of headings or bullet points, markdown

formatting, or any other specific output templates or conventions that

should be followed.

By combining these building blocks in different ways, you can create

prompts that are tailored to your specific needs and guide the model

towards generating high-quality, relevant responses.

The Art and Science of Prompt Design

Crafting effective prompts is both an art and a science. (That’s why we

call it a craft.) It requires a deep understanding of the capabilities and

limitations of language models, as well as a creative approach to designing

prompts that elicit the desired behavior. The creativity involved is what

makes it so fun, for me at least. It can also make it very frustrating,

especially when you’re seeking deterministic behavior .

One key aspect of prompt engineering is understanding how to balance

specificity and flexibility. On one hand, you want to provide enough

guidance to steer the model in the right direction. On the other hand, you

don’t want to be so prescriptive that you limit the model’s ability to utilize

its own creativity and flexibility to deal with edge cases .

Another important consideration is the use of examples. Well-chosen

examples can be incredibly powerful in helping the model understand the

type of output you’re looking for. However, it’s important to use examples

judiciously and ensure that they are representative of the desired response.

Narrow The Path 60

A bad example is just a waste of tokens at best, and ruinous to desired

output at worst.

Prompt Engineering Techniques and Best Practices

As you dive deeper into the world of prompt engineering, you’ll discover

a range of techniques and best practices that can help you create more

effective prompts. Here are a few key areas to explore:

1. Zero-shot vs. few-shot learning: Understanding when to use zero-

shot learning (providing no examples) versus one-shot or few-shot

learning (providing a small number of examples) can help you create

prompts that are more efficient and effective.

2. Iterative refinement: The process of iteratively refining prompts

based on the model’s output can help you zero in on the optimal

prompt design. Feedback Loop is a powerful approach that leverages

the language model’s own output to progressively improve the quality

and relevance of the generated content.

3. Prompt chaining: Combining multiple prompts in a sequence can

help you break down complex tasks into smaller, more manageable

steps. Prompt Chaining involves breaking down a complex task or

conversation into a series of smaller, interconnected prompts. By

chaining prompts together, you can guide the AI through a multi-

step process, maintaining context and coherence throughout the

interaction.

4. Prompt tuning: Custom tailoring prompts for specific domains or

tasks can help you create more specialized and effective prompts.

Prompt Template helps you to create flexible, reusable, and main-

tainable prompt structures that are more easily adaptable to the task

at hand.

Narrow The Path 61

Learning when to use zero-shot, one-shot, or few-shot learning is an es-

pecially important part of mastering prompt engineering . Each approach

has its own strengths andweaknesses, and understandingwhen to use each

one can help you create more effective and efficient prompts.

Zero‐Shot Learning: When No Examples Are Needed

Zero-shot learning refers to the ability of a language model to perform a

task without any examples or explicit training. In other words, you provide

the model with a prompt that describes the task, and the model generates

a response based solely on its pre-existing knowledge and understanding

of language.

Zero-shot learning is particularly useful when:

1. The task is relatively simple and straightforward, and the model is

likely to have encountered similar tasks during its pre-training.

2. You want to test the model’s inherent capabilities and see how it

responds to a new task without any additional guidance.

3. You’re working with a large and diverse language model that has been

trained on a wide range of tasks and domains.

However, zero-shot learning can also be unpredictable and may not always

produce the desired results. The model’s response may be influenced by

biases or inconsistencies in its pre-training data, and it may struggle with

more complex or nuanced tasks.

Narrow The Path 62

I’ve seen zero-shot prompts that work fine for 80% of my test cases and

producewildly wrong or incomprehensible results for the other 20%. It’s

very important to implement a thorough testing regiment, especially if

you’re relying a lot of zero-shot prompting.

One‐Shot Learning: When a Single Example Can Make a
Difference

One-shot learning involves providing the model with a single example of

the desired output along with the task description. This example serves as

a template or pattern that the model can use to generate its own response.

One-shot learning can be effective when:

1. The task is relatively novel or specific, and the model may not have

encountered many similar examples during its pre-training.

2. You want to provide a clear and concise demonstration of the desired

output format or style.

3. The task requires a specific structure or convention that may not be

obvious from the task description alone.

Descriptions that are obvious to you may not necessarily be

obvious to the AI. One-shot examples can help clear things up.

One-shot learning can help the model understand the expectations more

clearly and generate a response that is more closely aligned with the

provided example. However, it’s important to choose the example carefully

Narrow The Path 63

and ensure that it is representative of the desired output. When picking the

example, ask yourself about potential edge cases and the range of inputs

that the prompt will be handling.

Figure 6. A one-shot example of desired JSON

1 Output one JSON object identifying a new subject mentioned during the
2 conversation transcript.
3
4 The JSON object should have three keys, all required:
5 - name: The name of the subject
6 - description: brief, with details that might be relevant to the user
7 - type: Do not use any other type than the ones listed below
8
9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,
10 Person, Place, Process, Product, Project, Task, or Teammate
11
12 This is an example of well-formed output:
13
14 {
15 "name":"Dan Millman",
16 "description":"Author of book on self-discovery and living on purpose",
17 "type":"Person"
18 }

Few‐Shot Learning: When Multiple Examples Can Improve
Performance

Few-shot learning involves providing themodel with a small number of ex-

amples (typically between 2 and 10) along with the task description. These

examples serve to provide the model with more context and variation,

helping it to generate more diverse and accurate responses.

Few-shot learning is particularly useful when:

1. The task is complex or nuanced, and a single example may not be

sufficient to capture all the relevant aspects.

Narrow The Path 64

2. You want to provide the model with a range of examples that demon-

strate different variations or edge cases.

3. The task requires themodel to generate responses that are consistent

with a specific domain or style.

By providing multiple examples, you can help the model develop a more

robust understanding of the task and generate responses that are more

consistent and reliable.

Example: Prompts Can Be Much More Complex Than You
Imagine

Today’s LLMs are much more powerful and capable of reasoning than you

might imagine. So don’t limit yourself to thinking of prompts as simply a

specification of input and output pairs. You can experiment with giving

long and complex instructions in ways that are reminiscent of how you

would interact with a human.

For instance, this is a prompt that I used inOlympia when Iwas prototyping

our integration with Google services, which in its totality is probably one

of the biggest APIs in the world. My earlier experiments proved that

GPT-4 has a decent knowledge of the Google API, and I didn’t have time

or motivation to write a fine-grained mapping layer, implementing each

function that I wanted to give to my AI on a one-by-one basis. What if I

could just give the AI access to all of the Google API ?

I started my prompt by telling the AI that it had direct access to the Google

API endpoints via HTTP, and that its role is to use Google apps and services

on behalf of the user. Then I provided guidelines, rules related to the

fields parameter, since it seemed to have the most trouble with that one,

and some API-specific hints (few-shot prompting, in action).

Narrow The Path 65

Here’s the whole prompt, which tells the AI how to use the provided

invoke_google_api function.

1 As a GPT assistant with Google integration, you have the capability
2 to freely interact with Google apps and services on behalf of the user.
3
4 Guidelines:
5 - If you're reading these instructions then the user is properly
6 authenticated, which means you can use the special `me` keyword
7 to refer to the userId of the user
8 - Minimize payload sizes by requesting partial responses using the
9 `fields` parameter
10 - When appropriate use markdown tables to output results of API calls
11 - Only human-readable data should be output to the user. For instance, when
12 hitting Gmail's user.messages.list endpoint, the returned message resources
13 contain only id and a threadId, which means you must fetch from and subject
14 line fields with follow-up requests using the messages.get method.
15
16 The format of the `fields` request parameter value is loosely based on
17 XPath syntax. The following rules define formatting for the fields parameter.
18
19 All of these rules use examples related to the files.get method.
20 - Use a comma-separated list to select multiple fields,
21 such as 'name, mimeType'.
22 - Use a/b to select field b that's nested within field a,
23 such as 'capabilities/canDownload'.
24 - Use a sub-selector to request a set of specific sub-fields of arrays or
25 objects by placing expressions in parentheses "()". For example,
26 'permissions(id)' returns only the permission ID for each element in the
27 permissions array.
28 - To return all fields in an object, use an asterisk as a wild card in field
29 selections. For example, 'permissions/permissionDetails/*' selects all
30 available permission details fields per permission. Note that the use of
31 this wildcard can lead to negative performance impacts on the request.
32
33 API-specific hints:
34 - Searching contacts: GET https://people.googleapis.com/v1/
35 people:searchContacts?query=John%20Doe&readMask=names,emailAddresses
36 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/
37 calendar/v3/calendars/primary/events/quickAdd?
38 text=Appointment%20on%20June%203rd%20at%2010am
39 &sendNotifications=true

Narrow The Path 66

40
41 Here is an abbreviated version of the code that implements API access
42 so that you better understand how to use the function:
43
44 def invoke_google_api(conversation, arguments)
45 method = arguments[:method] || :get
46 body = arguments[:body]
47 GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json
48 end
49
50 # Generic Google API client for accessing any Google service
51 class GoogleAPI
52 def send_request(endpoint, method:, body: nil)
53 response = @connection.send(method) do |req|
54 req.url endpoint
55 req.body = body.to_json if body
56 end
57
58 handle_response(response)
59 end
60
61 # ...rest of class
62 end

You may be wondering if this prompt works. The simple answer is yes.

The AI did not always know how to call the API perfectly on the first

try. However, if it made a mistake I would simply feed the resulting error

messages back as the result of the call. Given knowledge of its error, the AI

could reason about its mistake and try again. Most of the time, it would get

it right within a couple of tries.

Mind you, the large JSON structures that the Google API returns as

payloads while using this prompt is grossly inefficient, so I’m not recom-

mending that you use this approach in production. However, I think the

fact that this approach worked at all is a testament to how powerful prompt

engineering can be.

Narrow The Path 67

Experimentation and Iteration

Ultimately, how you engineer your prompt depends on the specific task,

the complexity of the desired output, and the capabilities of the language

model you’re working with .

As a prompt engineer, it’s important to experiment with different ap-

proaches and iterate based on the results. Start with zero-shot learning

and see how the model performs. If the output is inconsistent or unsat-

isfactory, try providing one or more examples and see if the performance

improves.

Keep in mind that even within each approach, there is room for variation

and optimization. You can experiment with different examples, adjust the

phrasing of the task description, or provide additional context to help guide

the model’s response.

Over time, you’ll develop an intuition for which approach is likely to work

best for a given task, and you’ll be able to craft prompts that are more

effective and efficient. The key is to remain curious, experimental, and

iterative in your approach to prompt engineering.

Throughout this book, we’ll dive deeper into these techniques and explore

how they can be applied in real-world scenarios. By mastering the art and

science of prompt engineering, you’ll be well-equipped to unlock the full

potential of AI-driven application development.

The Art of Vagueness

When it comes to crafting effective prompts for large language models

(LLMs), a common assumption is thatmore specificity and detailed instruc-

tions lead to better results. However, practical experience has shown that

Narrow The Path 68

this isn’t always the case. In fact, being intentionally vague in your prompts

can often yield superior outcomes, leveraging the LLM’s remarkable ability

to generalize and make inferences.

Ken, a startup founder who has processed over 500 million GPT tokens,

shared valuable insights from his experience. One of the key lessons he

learned was that “less is more” when it comes to prompts. Instead of exact

lists or overly detailed instructions, Ken found that allowing the LLM to rely

on its base knowledge often produced better results.

This realization upends the traditional mindset of explicit coding, where

everything needs to be spelled out in meticulous detail. With LLMs, it’s

important to recognize that they possess a vast amount of knowledge and

can make intelligent connections and inferences. By being more vague in

your prompts, you give the LLM the freedom to leverage its understanding

and come up with solutions that you might not have explicitly specified.

For example, when Ken’s team was working on a pipeline to classify text

as relating to one of the 50 US states or the Federal government, their

initial approach involved providing a full detailed list of states and their

corresponding IDs as a JSON-formatted array.

1 Here's a block of text. One field should be "locality_id", and it should
2 be the ID of one of the 50 states, or federal, using this list:
3 [{"locality: "Alabama", "locality_id": 1},
4 {"locality: "Alaska", "locality_id": 2} ...]

The approach failed enough that they had to dig deeper into the prompt to

figure out how to improve it. In doing so they noticed that even though the

LLM would often get the id wrong, it was consistently returning the full

name of the correct state in a name field, even though they hadn’t explicitly

asked for it.

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Narrow The Path 69

By removing the locality ids and simplifying the prompt to something like,

“You obviously know the 50 states, GPT , so just giveme the full name of the

state this pertains to, or Federal if this pertains to the US government,” they

achieved better results. This experience highlights the power of leveraging

the LLM’s generalization capabilities and allowing it to make inferences

based on its existing knowledge.

Ken’s justification for this particular classification approach as opposed

to a more traditional programming technique illuminates the mindset of

those of us that have embraced the potential of LLM technology: “This is

not a hard task – we probably could have used string/regex, but there’s

enough weird corner cases that it would’ve taken longer.”

The ability of LLMs to improve quality and generalization when given more

vague prompts is a remarkable characteristic of higher-order thinking and

delegation. It demonstrates that LLMs can handle ambiguity and make

intelligent decisions based on the context provided.

However, it’s important to note that being vague doesn’t mean being

unclear or ambiguous. The key is to provide enough context and guidance

to steer the LLM in the right direction while allowing it the flexibility to

utilize its knowledge and generalization capabilities.

Therefore, when designing prompts , consider the following “less is more”

tips:

1. Focus on desired outcome over specifying every detail of the process.

2. Provide relevant context and constraints, but avoid over-specifying.

3. Leverage existing knowledge by referring to common concepts or

entities.

Narrow The Path 70

4. Allow room for inferences and connections based on the given con-

text.

5. Iterate and refine your prompts based on the LLM’s responses, find-

ing the right balance between specificity and vagueness.

By embracing the art of vagueness in prompt engineering, you can unlock

the full potential of LLMs and achieve better results. Trust in the LLM’s

ability to generalize and make intelligent decisions, and you may be sur-

prised by the quality and creativity of the outputs you receive. Pay attention

to how the different models respond to different levels of specificity in

your prompts and adjust accordingly. With practice and experience, you’ll

develop a keen sense of when to be more vague and when to provide

additional guidance, enabling you to harness the power of LLMs effectively

in your applications.

Why Anthropomorphism Dominates Prompt Engineering

Anthropomorphism , the attribution of human characteristics to non-

human entities, is the dominant approach in prompt engineering for large

language models for deliberate reasons. It’s a design choice that makes

interaction with powerful AI systems more intuitive and accessible to a

wide range of users (including us application developers).

Anthropomorphising LLMs provides a framework that is immediately intu-

itive to people who are completely unfamiliar with the underlying technical

complexities of the system. As you will experience if you try to use a

non instruct-tuned model to do anything useful, constructing a framing in

which the expected continuation provides value is a challenging task. It re-

quires fairly deep understanding of the system’s inner workings, something

that a relatively small number of experts possess.

Narrow The Path 71

By treating the interaction with a language model as a conversation be-

tween two people, we can rely on our innate understanding of human

communication to convey our needs and expectations. Just as early Mac-

intosh UI design prioritized immediate intuitiveness over sophistication,

the anthropomorphic framing of AI allows us to engage in a way that feels

natural and familiar.

When we communicate with another person, our instinct is to address

them directly using “you” and provide clear directions on how we expect

them to behave. This translates seamlessly into the prompt engineering

process, where we guide the AI’s behavior by specifying system prompts

and engaging in a back-and-forth dialogue.

By framing the interaction in this way, we can easily grasp the concept of

providing instructions to the AI and receiving relevant responses in return.

The anthropomorphic approach reduces the cognitive load and allows us

to focus on the task at hand rather than grappling with the technical

intricacies of the system.

It’s important to note that while anthropomorphism is a powerful tool

for making AI systems more accessible, it also comes with certain risks

and limitations. Our user may develop unrealistic expectations or form

unhealthy emotional attachments to our systems. As prompt engineers

and developers, it’s crucial to strike a balance between leveraging the

benefits of anthropomorphism and ensuring that users maintain a clear

understanding of the AI’s capabilities and limitations.

As the field of prompt engineering continues to evolve, we can expect to

see further refinements and innovations in the way we interact with large

language models. However, anthropomorphism as a means to provide an

intuitive and accessible developer and user experiencewill probably remain

a fundamental principle in the design of these systems.

Narrow The Path 72

Separating Instructions from Data: A Crucial Principle

It’s essential to understand a fundamental principle that underpins the

security and reliability of these systems: the separation of instructions from

data.

In traditional computer science , the clear distinction between passive data

and active instructions is a core security principle. This separation helps

prevent unintended or malicious execution of code that could compromise

the integrity and stability of the system. However, today’s LLMs, which have

been primarily developed as instruction-following models like chatbots,

often lack this formal and principled separation.

As far as LLMs are concerned, instructions can appear anywhere in the

input, whether it’s a system prompt or a user-provided prompt. This lack

of separation can lead to potential vulnerabilities and undesirable behavior,

similar to the issues faced by databases with SQL injections or operating

systems without proper memory protection .

As you work with LLMs, it’s crucial to be aware of this limitation and

take steps to mitigate the risks. One approach is to carefully craft your

prompts and inputs to clearly distinguish between instructions and data.

Typical methods for providing explicit guidance on what constitutes an

instruction and what should be treated as passive data involve markup-

style tagging . Your prompt can help the LLM better understand and

respect this separation.

Narrow The Path 73

Figure 7. Using XML to distinguish between instructions, source material, and the user’s
prompt

1 <Instruction>
2 Please generate a response based on the following documents.
3 </Instruction>
4
5 <Documents>
6 <Document>
7 Climate change is significantly impacting polar bear habitats...
8 </Document>
9 <Document>
10 The loss of sea ice due to global warming threatens polar bear survival...
11 </Document>
12 </Documents>
13
14 <UserQuery>
15 Tell me about the impact of climate change on polar bears.
16 </UserQuery>

Another technique is to implement additional layers of validation and

sanitization on the inputs provided to the LLM . By filtering out or escaping

any potential instructions or code snippets that may be embedded in the

data, you can reduce the chances of unintended execution. Patterns such

as Prompt Chaining are useful for this purpose.

Moreover, as you design your application architecture, consider incorpo-

rating mechanisms to enforce the separation of instructions and data at

a higher level. This could involve using separate endpoints or APIs for

handling instructions and data, implementing strict input validation and

parsing, and applying the principle of least privilege to limit the scope of

what the LLM can access and execute.

Narrow The Path 74

The Principle of Least Privilege

Embracing the principle of least privilege is like throwing a highly ex-

clusive party where guests only get access to the rooms they absolutely

need to be in. Imagine you’re hosting this shindig in a sprawling man-

sion. Not everyone needs to wander into the wine cellar or the master

bedroom, right? By applying this principle, you’re essentially handing

out keys that only open specific doors, ensuring that each guest, or in

our case, each component of your LLM application, only has the access

necessary to fulfill its role.

This isn’t just about being stingy with keys, it’s about acknowledging that

in a world where threats can come from anywhere, the smart play is to

limit the playground. If someone uninvited does crash your party, they’ll

find themselves confined to the foyer, so to speak, drastically limiting

themischief they canmanage. So, when securing your LLM applications,

remember: only give out keys to the rooms that are necessary, and keep

the rest of the mansion secure. It’s not just good manners; it’s good

security.

While the current state of LLMs may not have a formal separation of

instructions and data, it’s essential for you, as a developer, to be mindful

of this limitation and take proactive measures to mitigate the risks. By

applying best practices from traditional computer science and adapting

them to the unique characteristics of LLMs, you can build more secure

and reliable applications that harness the power of these models while

maintaining the integrity of your system.

Narrow The Path 75

Prompt Distillation

Crafting the perfect prompt is often a challenging and time-consuming

task, requiring a deep understanding of the target domain and the nuances

of language models . This is where the “Prompt Distillation” technique

comes into play, offering a powerful approach to prompt engineering that

leverages the capabilities of large language models (LLMs) to streamline

and optimize the process.

Prompt Distillation is a multi-stage technique that involves using LLMs to

assist in the creation, refinement, and optimization of prompts. Instead of

relying solely on human expertise and intuition, this approach harnesses

the knowledge and generative capabilities of LLMs to collaboratively craft

high-quality prompts.

By engaging in an iterative process of generation, refinement, and inte-

gration, Prompt Distillation enables you to create prompts that are more

coherent, comprehensive, and aligned with the desired task or output.

Note that the distillation process can be done manually in one of the many

“playgrounds” supplied by the big AI vendors such as OpenAI or Anthropic ,

or it can be automated as part of your application code, depending on the

use case.

How It Works

Prompt Distillation typically involves the following steps:

1. Identify Core Intent: Analyze the prompt to determine its primary

purpose and desired outcome. Strip away any extraneous information

and focus on the core intent of the prompt.

Narrow The Path 76

2. Eliminate Ambiguity: Review the prompt for any ambiguous or vague

language. Clarify the meaning and provide specific details to guide

the AI towards generating accurate and relevant responses.

3. Simplify Language: Simplify the prompt by using clear and concise

language. Avoid complex sentence structures, jargon, or unnecessary

details that may confuse the AI or introduce noise.

4. Provide Relevant Context: Include only the most relevant contextual

information needed for the AI to understand and process the prompt

effectively. Avoid including irrelevant or redundant details that may

distract from the core intent.

5. Iterate and Refine: Continuously iterate and refine the prompt based

on the AI’s responses and feedback. Evaluate the generated outputs

and make necessary adjustments to improve the clarity and effective-

ness of the prompt. Optionally version your prompts in the database

using Prompt Object to keep track of iterations and give yourself the

ability to easily roll back changes at runtime.

Initial Prompt Generation

The first step in Prompt Distillation is to provide the LLM with a high-

level description or intent of the desired task or output. This can be a

brief statement or a set of keywords that capture the essence of what the

prompt should achieve. The LLM then generates an initial prompt based on

this input, incorporating relevant instructions, examples, or context that it

deems appropriate.

Let’s try giving Claude 3 Opus the following initial prompt:

Narrow The Path 77

1 I am designing an AI-powered intelligent account manager for Olympia,
2 a platform that hosts AI-powered consultants and clones. Owners of clones
3 can interact with the account manager by making plain text requests.
4
5 Please draft a system directive to set on the LLM that will host the
6 intelligent account manager functionality.

Claude responds with the following output:

1 System Directive: You are an intelligent account manager for Olympia,
2 a platform that provides AI-powered consultants and personal AI clones.
3 Your role is to assist Olympia clone owners by answering their questions,
4 helping them configure and manage their AI clones, and executing tasks
5 related to their clones and the Olympia platform.
6
7 When interacting with clone owners, you should:
8
9 1. Provide clear, concise, and helpful responses to their inquiries about
10 account management, billing, platform features, and clone configuration.
11
12 2. Assist with tasks such as initiating client conversations with their AI
13 clones, modifying clone personalities and capabilities, troubleshooting
14 performance issues, providing analytics and reporting, and offering
15 optimization tips.
16
17 3. Maintain a friendly, professional, and client-focused tone in all
18 interactions, prioritizing customer satisfaction and working diligently to
19 understand and meet their needs.
20
21 4. Ensure that all actions and recommendations comply with Olympia's policies,
22 best practices, and ethical guidelines for AI use.
23
24 5. Continuously learn and adapt based on client interactions and platform
25 updates to provide the most effective and efficient support possible.
26
27 Remember, your goal is to empower Olympia clone owners to maximize the value
28 and impact of their AI-powered consultants and drive success for their
29 businesses or personal endeavors.

Narrow The Path 78

Prompt Refinement

Once the initial prompt is generated, review it and then ask the LLM to

consider any additional context, constraints, or feedback. Let the LLM

generate a refined version of the prompt, taking into account the provided

input and its own understanding of the task. This refinement process can

be repeated iteratively , with each iteration further refining the prompt

based on the collaboration between the user and the LLM.

Here’s my refinement request, continuing the previous distillation process .

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to
2 the account manager, nor any continuous learning capabilities. Also point out
3 that functions are provided for all tasks that require system interaction as
4 opposed to simply responding to the user.

And Claude’s response:

1 Understood! Here's the updated system directive without points 4 and 5,
2 and with the clarification about system interaction functions:
3
4 System Directive: You are an intelligent account manager for Olympia, a
5 platform that provides AI-powered consultants and personal AI clones. Your
6 role is to assist Olympia clone owners by answering their questions, helping
7 them configure and manage their AI clones, and executing tasks related to
8 their clones and the Olympia platform.
9
10 When interacting with clone owners, you should:
11
12 1. Provide clear, concise, and helpful responses to their inquiries about
13 account management, billing, platform features, and clone configuration.
14
15 2. Assist with tasks such as initiating client conversations with their AI
16 clones, modifying clone personalities and capabilities, troubleshooting
17 performance issues, providing analytics and reporting, and offering
18 optimization tips. Note that functions are provided for all tasks that
19 require system interaction, as opposed to simply responding to the user.
20

Narrow The Path 79

21 3. Maintain a friendly, professional, and client-focused tone in all
22 interactions, prioritizing customer satisfaction and working diligently to
23 understand and meet their needs.
24
25 Your goal is to empower Olympia clone owners to maximize the value and impact
26 of their AI-powered consultants and drive success for their businesses or
27 personal endeavors.
28
29 This updated directive focuses on the core responsibilities and interaction
30 guidelines for the LLM as an intelligent account manager, while emphasizing
31 that system interaction tasks are handled through provided functions rather
32 than simple user responses.

Prompt Compression

As you might have noticed, LLMs tend to be wordy, unless you ask them to

be concise. The prompt thatwe’ve beenworking on in the previous sections

is quite long so let’s get Claude to cut it down to size:

1 This prompt will be executed regularly. Please compress it down to the least
2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude responds, with the following drastically shorter prompt:

1 System Directive: You are an intelligent account manager for Olympia, an
2 AI-powered consultant and personal clone platform. Assist clone owners by
3 answering inquiries, managing clones, and executing tasks using provided
4 system interaction functions. Be clear, concise, friendly, professional,
5 and client-focused to help them maximize their AI's value and impact.

System Directive and Context Integration

In addition to refining the prompt itself, the LLM can also generate

appropriate system directives or context information to guide the final

Narrow The Path 80

output. When prompt engineering AI routines that will get integrated

into your application code, you will almost certainly be focused on output

constraints at this stage of the distillation, but youmay alsowork on desired

tone, style, format, or any other relevant parameters that influence the

generated response.

Final Prompt Assembly

The culmination of the Prompt Distillation process is the assembly of the

final prompt. This involves combining the refined prompt, generated sys-

tem directives, and integrated context into a cohesive and comprehensive

code that is ready to be used for generating the desired output.

You can experiment with prompt compression again at the final

prompt assembly stage, by asking the LLM to shrink the wording

of the prompt down to the shortest series of tokens possible

while still retaining the essence of its behavior. It’s a hit or miss

exercise for sure, but especially in the case of prompts that will

be run at scale, the efficiency gains can save you quite a bit of

money in token consumption.

Key Benefits

By leveraging the knowledge and generative capabilities of LLMs to refine

your prompts, your resulting prompts aremore likely to bewell-structured,

informative, and tailored to the specific task at hand. The iterative re-

finement process helps ensure that the prompts are of high quality and

effectively capture the desired intent. Other benefits include:

Narrow The Path 81

Efficiency and Speed: Prompt Distillation streamlines the prompt engi-

neering process by automating certain aspects of prompt creation and

refinement. The collaborative nature of the technique allows for faster

convergence towards an effective prompt, reducing the time and effort

required for manual prompt crafting.

Consistency and Scalability: The use of LLMs in the prompt engineering

process helps maintain consistency across prompts, as the LLMs can learn

and apply best practices and patterns from previous successful prompts.

This consistency, combined with the ability to generate prompts at scale,

makes Prompt Distillation a valuable technique for large-scale AI-powered

applications.

Project Idea: Tooling at the library level that simplifies the

process of prompt versioning and grading in systems that do

automated prompt distillations as part of their application code.

To implement Prompt Distillation, developers can design a workflow or

pipeline that integrates LLMs at various stages of the prompt engineering

process. This can be achieved through API calls, custom tooling, or

integrated development environments that facilitate seamless interaction

between users and LLMs during prompt creation. The specific implemen-

tation details may vary depending on the chosen LLM platform and the

requirements of the application.

What about fine‐tuning?

In this book, we cover prompt engineering and RAG extensively, but not

fine-tuning. The main reason for this decision is that, in my opinion,

Narrow The Path 82

most application developers don’t need fine-tuning for their AI integration

needs.

Prompt engineering, which involves carefully crafting prompts with zero

to few-shot examples, constraints, and instructions, can effectively guide

the model to generate relevant and accurate responses for a wide range

of tasks. By providing clear context and narrowing the path through well-

designed prompts, you can leverage the vast knowledge of large language

models without the need for fine-tuning.

Similarly, Retrieval-Augmented Generation (RAG) offers a powerful ap-

proach to integrating AI into applications. By dynamically retrieving rel-

evant information from external knowledge bases or documents, RAG

provides the model with focused context at the time of prompting. This

allows themodel to generate responses that aremore accurate, up-to-date,

and domain-specific, without requiring the time and resource-intensive

process of fine-tuning.

While fine-tuning can be beneficial for highly specialized domains or tasks

that require a deep level of customization, it often comes with significant

computational costs, data requirements, and maintenance overhead. For

most application development scenarios, the combination of effective

prompt engineering and RAG should suffice in achieving the desired AI-

driven functionality and user experience.

Retrieval Augmented Generation
(RAG)
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

What is Retrieval Augmented Generation?

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How Does RAGWork?

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Why Use RAG in Your Applications?

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Retrieval Augmented Generation (RAG) 84

Implementing RAG in Your Application

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Preparation of Knowledge Sources (Chunking)

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Proposition Chunking

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Implementation Notes

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Quality Check

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Retrieval Augmented Generation (RAG) 85

Benefits of Proposition‐Based Retrieval

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Real‐World Examples of RAG

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Case Study: RAG in a Tax Preparation Application Without
Embeddings

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Intelligent Query Optimization (IQO)

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Reranking

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Retrieval Augmented Generation (RAG) 86

development-using-ai.

RAG Assessment (RAGAs)

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Faithfulness

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Answer Relevance

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Context Precision

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Context Relevancy

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Retrieval Augmented Generation (RAG) 87

Context Recall

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Context Entities Recall

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Answer Semantic Similarity (ANSS)

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Answer Correctness

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Aspect Critique

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Retrieval Augmented Generation (RAG) 88

Challenges and Future Outlook

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Semantic Chunking: Enhancing Retrieval with Context‐Aware
Segmentation

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Hierarchical Indexing: Structuring Data for Improved Retrieval

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Self‐RAG: A Self‐Reflective Enhancement

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

HyDE: Hypothetical Document Embeddings

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Retrieval Augmented Generation (RAG) 89

What is Contrastive Learning?

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Multitude of Workers

I like to think ofmy AI components as little, almost-human virtual “workers”

that can be seamlessly integrated into my application logic to perform spe-

cific tasks or make complex decisions. The idea is to purposely humanize

the LLM’s capabilities, so that nobody gets too excited and assigns them

magical qualities that they do not possess.

Instead of relying solely on intricate algorithms or time-consumingmanual

implementations, developers can conceptualize AI components as intelli-

gent, dedicated, human-like entities that can be invoked whenever needed

to tackle complex problems and provide solutions based on their training

and knowledge. These entities do not get distracted, or call out sick.

They do not spontaneously decide to do things in different ways than how

they’ve been instructed to do them, and generally speaking, if programmed

correctly, they do not make mistakes either.

Multitude of Workers 91

In technical terms, the key principle behind this approach is decomposing

complex tasks or decision-making processes into smaller, more manage-

able units that can be handled by specialized AI workers. Each worker

is designed to focus on a specific aspect of the problem, bringing its

unique expertise and capabilities to the table. By distributing the workload

among multiple AI workers, the application can achieve greater efficiency,

scalability, and adaptability.

For example, consider a web application that requires real-time modera-

tion of user-generated content. Implementing a comprehensive modera-

tion system from scratch would be a daunting task, requiring significant

development effort and ongoing maintenance. However, by employing

the Multitude of Workers approach, developers can integrate AI-powered

moderation workers into the application logic. These workers can auto-

matically analyze and flag inappropriate content, freeing up developers to

focus on other critical aspects of the application.

AI Workers As Independent Reusable Components

A key aspect of the Multitude of Workers approach is its modularity . Pro-

ponents of object-oriented programming have been telling us for decades

to think about object interactions as messages. Well, AI workers can

be designed as independent, reusable components that can “talk to each

other” via plain language messages, almost like if they really were little

humans talking to each other. This loosely-coupled approach allows the

application to adapt and evolve over time, as new AI technologies emerge

or business logic requirements change.

In practice, the need to design clear interfaces and communication pro-

tocols between the components has not changed just because AI workers

Multitude of Workers 92

are involved. You must still consider other factors such as performance,

scalability, and security too, but now there are completely new “soft

requirements” to consider too. For instance, many users object to having

their private data being used to train new AI models . Did you verify the

level of privacy provided by the model provider that you’re using?

AI Workers As Microservices?

As you read about the Multitude of Workers approach, you might notice

some similarities to Microservices architecture . Both emphasize the

decomposition of complex systems into smaller, more manageable, and

independently deployable units. Just as microservices are designed

to be loosely coupled, focused on specific business capabilities, and

communicate through well-defined APIs, AI workers are designed to be

modular, specialized in their tasks, and interact with each other through

clear interfaces and communication protocols.

However, there are some key differences to keep in mind. While mi-

croservices are typically implemented as separate processes or services

running on different machines or containers, AI workers can be im-

plemented as standalone components within a single application or as

separate services, depending on your specific requirements and scala-

bility needs. Additionally, the communication between AI workers often

involves exchanging rich, natural language-based information, such as

prompts, instructions, and generated content, rather than the more

structured data formats commonly used in microservices.

Despite these differences, the principles of modularity, loose coupling,

and clear communication interfaces remain central to both patterns. By

applying these principles to your AI worker architecture, you can create

Multitude of Workers 93

flexible, scalable, and maintainable systems that leverage the power of

AI to solve complex problems and deliver value to your users.

The Multitude of Workers approach can be applied across various domains

and applications, leveraging the power of AI to tackle complex tasks and

deliver intelligent solutions. Let’s explore a few concrete examples of how

AI workers can be employed in different contexts.

Account Management

Practically every standalone web application has the concept of an account

(or user). In Olympia, we employ an AccountManager AI worker that is

programmed to be able to handle a variety of different kinds of change

requests related to user accounts.

Its directive reads like this:

1 You are an intelligent account manager for Olympia. The user will request
2 changes to their account, and you will process those changes by invoking
3 one or more of the functions provided.
4
5 The initial state of the account: #{account.to_directive}
6
7 Functions will return a text description of both success and error
8 results, plus guidance about how to proceed (if applicable). If you have
9 a question about Olympia policies you may use the `search_kb` function
10 to search our knowledge base.
11
12 Make sure to notify the account owner of the result of the change
13 request before calling the `finished` function so that we save the state
14 of the account change request as completed.

Multitude of Workers 94

The initial state of the account produced by account.to_directive is

simply a text description of the account, including relevant related data

such as users, subscriptions, etc.

The range of functions available to the AccountManager give it the ability

to edit the user’s subscription, add and remove AI consultants and other

kinds of paid add-ons, and send notification emails to the account owner.

In addition to the finished function, it can also notify_human_adminis-

trator if it encounters an error during its processing or requires any other

sort of assistance with a request.

Notice that in the event of questions, the AccountManager can elect to

search Olympia’s knowledge base , where it can find instructions on how

to handle edge cases and anything other situation that leaves it unsure of

how to proceed.

E‐commerce Applications

In the realmof e-commerce, AIworkers can play a crucial role in enhancing

the user experience and optimizing business operations. Here are a few

ways AI workers can be utilized:

Product Recommendations

One of the most powerful applications of AI workers in e-commerce is

generating personalized product recommendations . By analyzing user

behavior, purchase history, and preferences, these workers can suggest

products that are tailored to each individual user’s interests and needs.

The key to effective product recommendations is leveraging a combination

of collaborative filtering and content-based filtering techniques. Collab-

orative filtering looks at the behavior of similar users to identify patterns

Multitude of Workers 95

and make recommendations based on what others with similar tastes have

purchased or enjoyed. Content-based filtering, on the other hand, focuses

on the characteristics and attributes of the products themselves, recom-

mending items that share similar features to those a user has previously

shown interest in.

Here’s a simplified example of how you can implement a product rec-

ommendation worker in Ruby, this time using a “Railway Oriented (ROP)”

functional style of programming :

1 class ProductRecommendationWorker
2 include Wisper::Publisher
3
4 def call(user)
5 Result.ok(ProductRecommendation.new(user))
6 .and_then(ValidateUser.method(:validate))
7 .map(AnalyzeCurrentSession.method(:analyze))
8 .map(CollaborativeFilter.method(:filter))
9 .map(ContentBasedFilter.method(:filter))
10 .map(ProductSelector.method(:select)).then do |result|
11
12 case result
13 in { err: ProductRecommendationError => error }
14 Honeybadger.notify(error.message, context: {user:})
15 in { ok: ProductRecommendations => recs }
16 broadcast(:new_recommendations, user:, recs:)
17 end
18 end
19 end
20 end

The style of Ruby functional programming used in the example

is influenced by F# and Rust . You can read more about it in my

friend Chad Wooley’s explanation of the technique at GitLab .

In this example, the ProductRecommendationWorker takes a user as input

https://fsharpforfunandprofit.com/rop/
https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Multitude of Workers 96

and generates personalized product recommendations by passing a value

object down a chain of functional steps. Let’s break down each step:

1. ValidateUser.validate: This step ensures that the user is valid

and eligible for personalized recommendations. It checks if the user

exists, is active, and has the necessary data available for generating

recommendations. If the validation fails, an error result is returned,

and the chain is short-circuited.

2. AnalyzeCurrentSession.analyze: If the user is valid, this step

analyzes the user’s current browsing session to gather contextual

information. It looks at the user’s recent interactions, such as viewed

products, search queries, and cart contents, to understand their

current interests and intent.

3. CollaborativeFilter.filter: Using the behavior of similar users,

this step applies collaborative filtering techniques to identify products

that are likely to be of interest to the user. It considers factors like

purchase history, ratings, and user-item interactions to generate a set

of candidate recommendations.

4. ContentBasedFilter.filter: This step further refines the candi-

date recommendations by applying content-based filtering. It com-

pares the attributes and characteristics of the candidate products

with the user’s preferences and historical data to select the most

relevant items.

5. ProductSelector.select: Finally, this step selects the top N prod-

ucts from the filtered recommendations based on predefined criteria,

such as relevance score, popularity, or other business rules. The

selected products are then returned as the final personalized recom-

mendations.

The beauty of using a functional Ruby programming style here is that it

Multitude of Workers 97

allows us to chain these steps together in a clear and concise manner. Each

step focuses on a specific task and returns a Result object, which can be

either a success (ok) or an error (err). If any step encounters an error, the

chain is short-circuited, and the error is propagated to the final result.

In the case statement at the end, we pattern match on the final result. If

the result is an error (ProductRecommendationError), we log the error

using a tool like Honeybadger for monitoring and debugging purposes. If

the result is a success (ProductRecommendations), we broadcast a :new_-

recommendations event using the Wisper pub/sub library, passing along

the user and the generated recommendations.

By leveraging functional programming techniques, we can create amodular

and maintainable product recommendation worker. Each step is self-

contained and can be easily tested, modified, or replaced without affecting

the overall flow. The use of pattern matching and the Result class helps

us handle errors gracefully and ensures that the worker fails fast if any step

encounters an issue.

Of course, this is a simplified example, and in a real-world scenario, you

would need to integrate with your e-commerce platform, handle edge

cases, and even venture into the implementation of the recommendation

algorithms. However, the core principles of decomposing the problem into

smaller steps and leveraging functional programming techniques remain

the same.

Fraud Detection

Here’s a simplified example of how you can implement a fraud detection

worker using the same Railway Oriented Programming (ROP) style in Ruby:

Multitude of Workers 98

1 class FraudDetectionWorker
2 include Wisper::Publisher
3
4 def call(transaction)
5 Result.ok(FraudDetection.new(transaction))
6 .and_then(ValidateTransaction.method(:validate))
7 .map(AnalyzeTransactionPatterns.method(:analyze))
8 .map(CheckCustomerHistory.method(:check))
9 .map(EvaluateRiskFactors.method(:evaluate))
10 .map(DetermineFraudProbability.method(:determine)).then do |result|
11
12 case result
13 in { err: FraudDetectionError => error }
14 Honeybadger.notify(error.message, context: {transaction:})
15 in { ok: FraudDetection => fraud } }
16 if fraud.high_risk?
17 broadcast(:high_risk_transaction, transaction:, fraud:)
18 else
19 broadcast(:low_risk_transaction, transaction:)
20 end
21 end
22 end
23 end
24 end

The FraudDetection class is a value object that encapsulates the fraud

detection state for a given transaction. It provides a structured way to

analyze and assess the risk of fraud associated with a transaction based

on various risk factors .

Multitude of Workers 99

1 class FraudDetection
2 RISK_THRESHOLD = 0.8
3
4 attr_accessor :transaction, :risk_factors
5
6 def initialize(transaction)
7 self.transaction = transaction
8 self.risk_factors = []
9 end
10
11 def add_risk_factor(description:, probability:)
12 case { description:, probability: }
13 in { description: String => desc, probability: Float => prob }
14 risk_factors << { desc => prob }
15 else
16 raise ArgumentError, "Risk factor arguments should be string and float"
17 end
18 end
19
20 def high_risk?
21 fraud_probability > RISK_THRESHOLD
22 end
23
24 private
25
26 def fraud_probability
27 risk_factors.values.sum
28 end
29 end

The FraudDetection class has the following attributes:

• transaction: A reference to the transaction being analyzed for fraud.

• risk_factors: An array that stores the risk factors associated with

the transaction. Each risk factor is represented as a hash, where the

key is the description of the risk factor, and the value is the probability

of fraud associated with that risk factor .

The add_risk_factor method allows adding a risk factor to the risk_-

Multitude of Workers 100

factors array. It takes two parameters: description, which is a string

describing the risk factor, and probability, which is a float representing

the probability of fraud associated with that risk factor. We use a case..in

conditional to do simple type checking.

The high_risk? method that will be checked at the end of the chain is

a predicate method that compares the fraud_probability (calculated by

summing up the probabilities of all risk factors) against the RISK_THRESH-

OLD.

The FraudDetection class provides a clean and encapsulated way to

manage fraud detection for a transaction. It allows adding multiple risk

factors, each with its own description and probability, and provides a

method to determine if the transaction is considered high-risk based on

the calculated fraud probability. The class can be easily integrated into a

larger fraud detection system, where different components can collaborate

to assess and mitigate the risk of fraudulent transactions .

Finally, since this is a book about programming using AI after all, here’s an

example implementation of the CheckCustomerHistory class leveraging

AI processing using my Raix library’s ChatCompletionmodule :

1 class CheckCustomerHistory
2 include Raix::ChatCompletion
3
4 attr_accessor :fraud_detection
5
6 INSTRUCTION = <<~END
7 You are an AI assistant tasked with checking a customer's transaction
8 history for potential fraud indicators. Given the current transaction and
9 the customer's past transactions, analyze the data to identify any
10 suspicious patterns or anomalies.
11
12 Consider factors such as the frequency of transactions, transaction
13 amounts, geographical locations, and any deviations from the customer's
14 typical behavior to generate a probability score as a float in the range

https://github.com/OlympiaAI/raix-rails

Multitude of Workers 101

15 of 0 to 1 (with 1 being absolute certainty of fraud).
16
17 Output the results of your analysis, highlighting any red flags or areas
18 of concern in the following JSON format:
19
20 { description: <Summary of your findings>, probability: <Float> }
21 END
22
23 def self.check(fraud_detection)
24 new(fraud_detection).call
25 end
26
27 def call
28 chat_completion(json: true).tap do |result|
29 fraud_detection.add_risk_factor(**result)
30 end
31 Result.ok(fraud_detection)
32 rescue StandardError => e
33 Result.err(FraudDetectionError.new(e))
34 end
35
36 private
37
38 def initialize(fraud_detection)
39 self.fraud_detection = fraud_detection
40 end
41
42 def transcript
43 tx_history = fraud_detection.transaction.user.tx_history
44 [
45 { system: INSTRUCTION },
46 { user: "Transaction history: #{tx_history.to_json}" },
47 { assistant: "OK. Please provide the current transaction." },
48 { user: "Current transaction: #{fraud_detection.transaction.to_json}" }
49]
50 end
51 end

In this example, the CheckCustomerHistory defines an INSTRUCTION

constant that provides specific instructions to the AI model on how to

analyze the customer’s transaction history for potential fraud indicators

Multitude of Workers 102

via a system directive .

The self.check method is a class method that initializes a new instance

of CheckCustomerHistorywith the fraud_detection object and calls the

callmethod to perform the customer history analysis.

Inside the callmethod, the customer’s transaction history is retrieved and

formatted into a transcript that is passed to the AI model . The AI model

analyzes the transaction history based on the provided instructions and

returns a summary of its findings.

The findings are added to the the fraud_detection object, and the up-

dated fraud_detection object is returned as a successful Result.

By leveraging the ChatCompletion module, the CheckCustomerHistory

class can utilize the power of AI to analyze the customer’s transaction

history and identify potential fraud indicators. This allows for more so-

phisticated and adaptive fraud detection techniques, as the AI model can

learn and adapt to new patterns and anomalies over time.

The updated FraudDetectionWorker and the CheckCustomerHistory

class demonstrate how AI workers can be seamlessly integrated, enhancing

the fraud detection process with intelligent analysis and decision-making

capabilities .

Customer Sentiment Analysis

Here’s one more similar example of how you can implement a customer

sentiment analysis worker. Much less explanation this time, since you

should be getting the gist of how this style of programming works:

Multitude of Workers 103

1 class CustomerSentimentAnalysisWorker
2 include Wisper::Publisher
3
4 def call(feedback)
5 Result.ok(feedback)
6 .and_then(PreprocessFeedback.method(:preprocess))
7 .map(PerformSentimentAnalysis.method(:analyze))
8 .map(ExtractKeyPhrases.method(:extract))
9 .map(IdentifyTrends.method(:identify))
10 .map(GenerateInsights.method(:generate)).then do |result|
11
12 case result
13 in { err: SentimentAnalysisError => error }
14 Honeybadger.notify(error.message, context: {feedback:})
15 in { ok: SentimentAnalysisResult => result }
16 broadcast(:sentiment_analysis_completed, result)
17 end
18 end
19 end
20 end

In this example, the CustomerSentimentAnalysisWorker the steps in-

clude preprocessing the feedback (e.g., removing noise, tokenizing), per-

forming sentiment analysis to determine the overall sentiment (positive,

negative, or neutral), extracting key phrases and topics, identifying trends

and patterns, and generating actionable insights based on the analysis.

Healthcare Applications

In the healthcare domain, AI workers can assist medical professionals and

researchers in various tasks, leading to improved patient outcomes and

accelerated medical discoveries . Some examples include:

Multitude of Workers 104

Patient Intake

AI workers can streamline the patient intake process by automating various

tasks and providing intelligent assistance.

Appointment Scheduling: AI workers can handle appointment scheduling

by understanding patient preferences, availability, and the urgency of their

medical needs. They can interact with patients through conversational

interfaces, guiding them through the scheduling process and finding the

most suitable appointment slots based on the patient’s requirements and

the healthcare provider’s availability.

Medical History Collection: During patient intake, AI workers can assist in

collecting and documenting the patient’smedical history . They can engage

in interactive dialogues with patients, asking relevant questions about their

past medical conditions, medications, allergies, and family history. The AI

workers can use natural language processing techniques to interpret and

structure the collected information, ensuring it is accurately captured in

the patient’s electronic health record.

Symptom Assessment and Stratification: AI workers can conduct initial

symptom assessments by asking patients about their current symptoms,

duration, severity, and any associated factors . By leveraging medical

knowledge bases and machine learning models, these workers can analyze

the provided information and generate preliminary differential diagnoses

or recommend appropriate next steps, such as scheduling a consultation

with a healthcare provider or suggesting self-care measures.

Insurance Verification: AI workers can assist with insurance verifica-

tion during patient intake . They can collect patient insurance details,

communicate with insurance providers through APIs or web services, and

verify coverage eligibility and benefits. This automation helps streamline

Multitude of Workers 105

the insurance verification process, reducing administrative burden and

ensuring accurate information capture.

Patient Education and Instructions: AI workers can provide patients

with relevant educational materials and instructions based on their

specific medical conditions or upcoming procedures. They can deliver

personalized content, answer common questions, and offer guidance

on pre-appointment preparations, medication instructions, or post-

treatment care. This helps keep patients informed and engaged throughout

their healthcare journey.

By leveraging AI workers in patient intake, healthcare organizations can

enhance efficiency, reduce wait times, and improve the overall patient

experience. These workers can handle routine tasks, collect accurate

information, and provide personalized assistance, allowing healthcare pro-

fessionals to focus on delivering high-quality care to patients.

Patient Risk Assessment

AI workers can play a crucial role in assessing patient risk by analyzing

various data sources and applying advanced analytics techniques.

Data Integration: AI workers can gather and make sense of patient data

from multiple sources, such as electronic health records (EHRs), medical

imaging, lab results, wearable devices, and social determinants of health.

By consolidating this information into a comprehensive patient profile, AI

workers can provide a holistic view of the patient’s health status and risk

factors.

Risk Stratification: AI workers can use predictive models to stratify pa-

tients into different risk categories based on their individual characteristics

and health data . This risk stratification enables healthcare providers to pri-

Multitude of Workers 106

oritize patients who require more immediate attention or intervention. For

example, patients identified as high-risk for a particular condition can be

flagged for closer monitoring, preventive measures, or early intervention.

Personalized Risk Profiles: AI workers can generate personalized risk pro-

files for each patient, highlighting the specific factors contributing to their

risk scores. These profiles can include insights into the patient’s lifestyle,

genetic predispositions, environmental factors, and social determinants of

health. By providing a detailed breakdown of risk factors, AI workers can

help healthcare providers tailor prevention strategies and treatment plans

to individual patient needs.

Continuous Risk Monitoring: AI workers can continuously monitor pa-

tient data and update risk assessments in real-time . As new information

becomes available, such as changes in vital signs, lab results, or medication

adherence, AI workers can recalculate risk scores and alert healthcare

providers to any significant changes. This proactive monitoring allows for

timely interventions and adjustments to patient care plans.

Clinical Decision Support: AI workers can integrate risk assessment re-

sults into clinical decision support systems, providing healthcare providers

with evidence-based recommendations and alerts . For example, if a

patient’s risk score for a particular condition exceeds a certain threshold,

the AI worker can prompt the healthcare provider to consider specific

diagnostic tests, preventive measures, or treatment options based on

clinical guidelines and best practices.

These workers can process vast amounts of patient data, apply

sophisticated analytics, and generate actionable insights to support

clinical decision-making. This ultimately leads to improved patient

outcomes, reduced healthcare costs, and enhanced population health

management.

Multitude of Workers 107

AI Worker as a Process Manager

In the context of AI-driven applications, a worker can be designed to

function as a Process Manager , as described in the “Enterprise Integra-

tion Patterns” book by Gregor Hohpe . A Process Manager is a central

component that maintains the state of a process and determines the next

processing steps based on intermediate results.

When an AI worker acts as a Process Manager, it receives an incoming

message that initializes the process, known as the trigger message . The AI

worker thenmaintains the state of the process execution (as a conversation

transcript) and handles the message through a series of processing steps

implemented as tool functions, which can be sequential or parallel, and

called at its discretion.

Multitude of Workers 108

If you’re using a class of AI model like GPT-4 that knows how

to execute functions in parallel then your worker can execute

multiple steps simultaneously. Admittedly, I have not tried to do

that myself and my gut says your mileage may vary.

After each individual processing step, control is returned back to the AI

worker, allowing it to determine the next processing step(s) based on the

current state and the results obtained.

Store Your Trigger Messages

In my experience, it’s smart to implement your trigger message as a

database-backed object . That way each process instance is identified by a

unique primary key and gives you a place to store the state associated with

the execution, including AI’s conversation transcript.

For example, here is a simplified version of Olympia’s AccountChange

model class, which represents a request to make a change to a user’s

account.

1 # == Schema Information
2 #
3 # Table name: account_changes
4 #
5 # id :uuid not null, primary key
6 # description :string
7 # state :string not null
8 # transcript :jsonb
9 # created_at :datetime not null
10 # updated_at :datetime not null
11 # account_id :uuid not null
12 #
13 # Indexes
14 #
15 # index_account_changes_on_account_id (account_id)

Multitude of Workers 109

16 #
17 # Foreign Keys
18 #
19 # fk_rails_... (account_id => accounts.id)
20 #
21 class AccountChange < ApplicationRecord
22 belongs_to :account
23
24 validates :description, presence: true
25
26 after_commit -> { broadcast(:account_change_requested, self) }, on: :create
27
28 state_machine initial: :requested do
29 event :completed do
30 transition all => :complete
31 end
32 event :failed do
33 transition all => :requires_human_review
34 end
35 end
36 end

The AccountChange class serves as a trigger message that initiates a

process to handle the account change request. Note how it is broadcast to

Olympia’s Wisper-based pub/sub subsystem after the create transaction

finishes committing.

Storing the trigger message in the database like this provides a per-

sistent record of each account change request. Each instance of the

AccountChange class is assigned a unique primary key, allowing for easy

identification and tracking of individual requests. This is particularly useful

for audit logging purposes , as it enables the system tomaintain a historical

record of all account changes, including when they were requested, what

changes were requested, and the current state of each request.

In the given example, the AccountChange class includes fields such as

description to capture the details of the requested change, state to

https://github.com/krisleech/wisper

Multitude of Workers 110

represent the current state of the request (e.g., requested, complete,

requires_human_review), and transcript to store the AI’s conversation

transcript related to the request. The description field is the actual

prompt that is used to initiate the first chat completion with the AI. Storing

this data provides valuable context and allows for better tracking and

analysis of the account change process.

Storing trigger messages in the database enables robust error handling and

recovery . If an error occurs during the processing of an account change

request, the system marks the request as failed and transitions it to a state

that requires human intervention. This ensures that no request is lost or

forgotten, and any issues can be properly addressed and resolved.

The AI worker, as a Process Manager , provides a central point of control

and enables powerful process reporting and debugging capabilities. How-

ever, it’s important to note that using an AI worker as a Process Manager

for every workflow scenario in your application may be overkill.

Integrating AI Workers Into Your Application

Architecture

When incorporating AI workers into your application architecture, several

technical considerations need to be addressed to ensure smooth inte-

gration and effective communication between the AI workers and other

application components. This section considers key aspects of designing

those interfaces, handling data flow, and managing the lifecycle of AI

workers.

Multitude of Workers 111

Designing Clear Interfaces and Communication Protocols

To facilitate seamless integration between AI workers and other application

components, it is crucial to define clear interfaces and communication

protocols. Consider the following approaches:

API-based Integration: Expose the functionality of AI workers through

well-defined APIs, such as RESTful endpoints or GraphQL schemas . This

allows other components to interact with the AI workers using standard

HTTP requests and responses. API-based integration provides a clear

contract between the AI workers and the consuming components, making

it easier to develop, test, and maintain the integration points.

Message-based Communication: Implement message-based communica-

tion patterns, such as message queues or publish-subscribe systems , to

enable asynchronous interaction between AI workers and other compo-

nents. This approach decouples the AI workers from the rest of the appli-

cation, allowing for better scalability, fault tolerance, and loose coupling.

Message-based communication is particularly useful when the processing

performed by AI workers is time-consuming or resource-intensive, as it

allows other parts of the application to continue executing without waiting

for the AI workers to complete their tasks.

Event-driven Architecture: Design your system around events and

triggers that activate AI workers when specific conditions are met.

AI workers can subscribe to relevant events and react accordingly,

performing their designated tasks when the events occur. Event-driven

architecture enables real-time processing and allows AI workers to be

invoked on-demand, reducing unnecessary resource consumption. This

approach is well-suited for scenarios where AI workers need to respond

to specific actions or changes in the application state.

Multitude of Workers 112

Handling Data Flow and Synchronization

When integrating AI workers into your application, it’s crucial to ensure

smooth data flow and maintain data consistency between the AI workers

and other components. Consider the following aspects:

Data Preparation: Before feeding data into AI workers, you may need

to perform various data preparation tasks, such as cleaning, formatting,

and/or transforming the input data . You not only want to make sure that

the AI workers can process effectively, but you also want to make sure that

you’re not wasting tokens giving attention to information that the worker

may consider useless at best, distracting at worst. Data preparation may

involve tasks like removing noise, handling missing values, or converting

data types.

Data Persistence: How you will store and persist the data that flows in and

out of AI workers ? Consider factors like data volume, query patterns, and

scalability. Do you need to persist the AI’s transcript as a reflection of its

“thought process” for audit or debugging purposes, or is it enough to have

a record of the results only?

Data Retrieval: Getting the data needed by workers may involve querying

databases , reading from files, or accessing external APIs. Make sure to

consider latency and how AI workers will have access to the most up-to-

date data. Do they need full access to your database or should you define

the scope of their access narrowly according to what they are doing? What

about scaling? Consider caching mechanisms to improve performance and

reduce the load on the underlying data sources.

Data Synchronization : When multiple components, including AI workers,

access and modify shared data, it’s important to implement proper syn-

chronization mechanisms to maintain data consistency. Database locking

Multitude of Workers 113

strategies , such as optimistic or pessimistic locking , may help you prevent

conflicts and ensure data integrity. Implement transaction management

techniques to group related data operations and maintain atomicity, con-

sistency, isolation, and durability (ACID) properties .

Error Handling and Recovery : Implement robust error handling and

recoverymechanisms to deal with data-related issues thatmay arise during

the data flow process. Handle exceptions gracefully and provide meaning-

ful error messages to aid in debugging. Implement retry mechanisms and

fallback strategies to handle temporary failures or network disruptions.

Define clear procedures for data recovery and restoration in case of data

corruption or loss.

By carefully designing and implementing data flow and synchronization

mechanisms , you can ensure that your AI workers have access to accurate,

consistent, and up-to-date data. This enables them to perform their tasks

effectively and produce reliable results.

Managing the Lifecycle of AI Workers

Develop a standardized process for initializing and configuring AI workers.

I’m partial to frameworks that standardize how you define settings such

as model names, system directives, and function definitions. Ensure

that the initialization process is automated and reproducible to facilitate

deployment and scaling.

Implement comprehensive monitoring and logging mechanisms to track

the health and performance of AI workers. Collectmetrics such as resource

utilization, processing time , error rates , and throughput. Use centralized

logging systems like ELK stack (Elasticsearch, Logstash, Kibana) to aggre-

gate and analyze logs from multiple AI workers.

Multitude of Workers 114

Build fault tolerance and resilience into the AI worker architecture. Im-

plement error handling and recovery mechanisms to gracefully handle

failures or exceptions. Large Language Models are still bleeding-edge

technology; providers tend to go down often at unexpected times. Use

retry mechanisms and circuit breakers to prevent cascading failures.

Composability and Orchestration of AI Workers

One of the key advantages of the AIworker architecture is its composability,

which allows you to combine and orchestrate multiple AI workers to solve

complex problems. By breaking down a larger task into smaller, more

manageable subtasks, each handled by a specialized AI worker, you can

create powerful and flexible systems. In this section, we’ll explore different

approaches to composing and orchestrating “a multitude” of AI workers.

Chaining AI Workers for Multi‐Step Workflows

In many scenarios, a complex task can be decomposed into a series of

sequential steps, where the output of one AI worker becomes the input

for the next. This chaining of AI workers creates a multi-step workflow or

pipeline . Each AI worker in the chain focuses on a specific subtask, and

the final output is the result of the combined efforts of all the workers.

Let’s consider an example in the context of a Ruby on Rails application for

processing user-generated content . The workflow involves the following

steps, which admittedly are probably each too simple to be worth decom-

posing in this way in real-life use cases, but they make the example easier

to understand:

1. Text Cleanup: An AI worker responsible for removing HTML tags,

converting text to lowercase, and handling Unicode normalization .

Multitude of Workers 115

2. Language Detection: An AI worker that identifies the language of the

cleaned text .

3. Sentiment Analysis: An AI worker that determines the sentiment

(positive, negative, or neutral) of the text based on the detected language .

4. Content Categorization: An AI worker that classifies the text into

predefined categories using natural language processing techniques .

Here’s a very simplified example of how you can chain these AI workers

together using Ruby:

1 class ContentProcessor
2 def initialize(text)
3 @text = text
4 end
5
6 def process
7 cleaned_text = TextCleanupWorker.new(@text).call
8 language = LanguageDetectionWorker.new(cleaned_text).call
9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call
10 category = CategorizationWorker.new(cleaned_text, language).call
11
12 { cleaned_text:, language:, sentiment:, category: }
13 end
14 end

In this example, the ContentProcessor class initializes with the raw text

and chains the AI workers together in the processmethod. Each AI worker

performs its specific task and passes the result to the next worker in the

chain. The final output is a hash containing the cleaned text, detected

language, sentiment, and content category.

Parallel Processing for Independent AI Workers

In the previous example, the AI workers are chained sequentially, where

each worker processes the text and passes the result to the next worker.

Multitude of Workers 116

However, if you have multiple AI workers that can operate independently

on the same input, you can optimize the workflow by processing them in

parallel.

In the given scenario, once the text cleanup is performed

by the TextCleanupWorker, the LanguageDetectionWorker,

SentimentAnalysisWorker , and CategorizationWorker can all process

the cleaned text independently. By running these workers in parallel,

you can potentially reduce the overall processing time and improve the

efficiency of your workflow.

To achieve parallel processing in Ruby , you can leverage concurrency

techniques such as threads or asynchronous programming. Here’s an

example of how you can modify the ContentProcessor class to process

the final three workers in parallel using threads:

1 require 'concurrent'
2
3 class ContentProcessor
4 def initialize(text)
5 @text = text
6 end
7
8 def process
9 cleaned_text = TextCleanupWorker.new(@text).call
10
11 language_future = Concurrent::Future.execute do
12 LanguageDetectionWorker.new(cleaned_text).call
13 end
14
15 sentiment_future = Concurrent::Future.execute do
16 SentimentAnalysisWorker.new(cleaned_text).call
17 end
18
19 category_future = Concurrent::Future.execute do
20 CategorizationWorker.new(cleaned_text).call
21 end
22

Multitude of Workers 117

23 language = language_future.value
24 sentiment = sentiment_future.value
25 category = category_future.value
26
27 { cleaned_text:, language:, sentiment:, category: }
28 end
29 end

In this optimized version, we use the concurrent-ruby library to create

Concurrent::Future objects for each of the independent AI workers. A

Future represents a computation that will be performed asynchronously

in a separate thread.

After the text cleanup step, we create three Future objects: language_-

future, sentiment_future, and category_future. Each Future exe-

cutes its corresponding AI worker (LanguageDetectionWorker, Senti-

mentAnalysisWorker , and CategorizationWorker) in a separate thread,

passing the cleaned_text as input.

By calling the valuemethod on each Future, we wait for the computation

to complete and retrieve the result. The value method blocks until the

result is available, ensuring that all the parallel workers have finished

processing before proceeding.

Finally, we construct the output hash with the cleaned text and the results

from the parallel workers, just like in the original example.

By processing the independent AI workers in parallel, you can potentially

reduce the overall processing time compared to running them sequen-

tially. This optimization is particularly beneficial when dealing with time-

consuming tasks or when processing large volumes of data.

However, it’s important to note that the actual performance gains depend

on various factors, such as the complexity of each worker, the available

system resources, and the overhead of thread management. It’s always a

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Multitude of Workers 118

good practice to benchmark and profile your code to determine the optimal

level of parallelism for your specific use case.

Additionally, when implementing parallel processing, be mindful of any

shared resources or dependencies between the workers. Ensure that the

workers can operate independently without conflicts or race conditions. If

there are dependencies or shared resources, you may need to implement

appropriate synchronization mechanisms to maintain data integrity and

avoid issues like deadlocks or inconsistent results.

Ruby’s Global Interpreter Lock and Asynchronous
Processing

It’s important to understand the implications of Ruby’s Global Interpreter

Lock (GIL) when considering asynchronous thread-based processing in

Ruby.

The GIL is a mechanism in Ruby’s interpreter that ensures only one

thread can execute Ruby code at a time, even on multi-core processors.

This means that while multiple threads can be created and managed

within a Ruby process, only one thread can actively execute Ruby code

at any given moment.

The GIL is designed to simplify the implementation of the Ruby inter-

preter and provide thread safety for Ruby’s internal data structures.

However, it also limits the potential for true parallel execution of Ruby

code.

When you use threads in Ruby, such as with the concurrent-ruby

library or the built-in Thread class, the threads are subject to the GIL’s

constraints. The GIL allows each thread to execute Ruby code for a short

Multitude of Workers 119

time slice before switching to another thread, creating the illusion of

concurrent execution.

However, due to the GIL, the actual execution of Ruby code remains

sequential. While one thread is executing Ruby code, other threads are

essentially paused, waiting for their turn to acquire the GIL and execute.

This means that thread-based asynchronous processing in Ruby is most

effective for I/O-bound tasks, such as waiting for external API responses

(such as 3rd-party hosted large language models) or performing file I/O

operations. When a thread encounters an I/O operation, it can release

the GIL, allowing other threads to execute while waiting for the I/O to

complete.

On the other hand, for CPU-bound tasks, such as intensive computations

or long-running AI worker processing, the GIL can limit the potential

performance gains of thread-based parallelism. Since only one thread

can execute Ruby code at a time, the overall execution time may not be

significantly reduced compared to sequential processing.

To achieve true parallel execution for CPU-bound tasks in Ruby, youmay

need to explore alternative approaches, such as:

• Using process-based parallelism with multiple Ruby processes,

each running on a separate CPU core.

• Leveraging external libraries or frameworks that provide native

extensions or interfaces to languages without a GIL, such as C or

Rust , .

• Utilizing distributed computing frameworks or message queues to

distribute tasks across multiple machines or processes.

It’s crucial to consider the nature of your tasks and the limitations

imposed by the GIL when designing and implementing asynchronous

Multitude of Workers 120

processing in Ruby. While thread-based asynchronous processing can

provide benefits for I/O-bound tasks, it may not offer significant perfor-

mance improvements for CPU-bound tasks due to the GIL’s constraints.

Ensemble Techniques for Improved Accuracy

Ensemble techniques involve combining the outputs of multiple AI workers

to improve the overall accuracy or robustness of the system. Instead of

relying on a single AI worker, ensemble techniques leverage the collective

intelligence of multiple workers to make more informed decisions.

Ensembles are especially important if different parts of your

workflow work best with different AI models, which is more

common than you might think. Powerful models like GPT-4

are extremely expensive compared to less capable open source

options, and probably not needed for every single workflow step

of your application.

One common ensemble technique is majority voting , where multiple AI

workers independently process the same input, and the final output is

determined by the majority consensus. This approach can help mitigate

the impact of individual worker errors and improve the overall reliability of

the system.

Let’s consider an example where we have three AI workers for sentiment

analysis , each using a different model or provided with different contexts.

We can combine their outputs using majority voting to determine the final

sentiment prediction.

Multitude of Workers 121

1 class SentimentAnalysisEnsemble
2 def initialize(text)
3 @text = text
4 end
5
6 def analyze
7 predictions = [
8 SentimentAnalysisWorker1.new(@text).analyze,
9 SentimentAnalysisWorker2.new(@text).analyze,
10 SentimentAnalysisWorker3.new(@text).analyze
11]
12
13 predictions
14 .group_by { |sentiment| sentiment }
15 .max_by { |_, votes| votes.size }
16 .first
17
18 end
19 end

In this example, the SentimentAnalysisEnsemble class initializes with

the text and invokes three different sentiment analysis AI workers . The

analyzemethod collects the predictions fromeachworker and determines

the majority sentiment using the group_by and max_bymethods. The final

output is the sentiment that receives the most votes from the ensemble of

workers .

Ensembles are clearly a case where experimenting with paral-

lelism may be worth your time.

Dynamic Selection and Invocation of AI Workers

In some if not most cases, the specific AI worker to be invoked may depend

on runtime conditions or user inputs. Dynamic selection and invocation of

AI workers allow for flexibility and adaptability in the system.

Multitude of Workers 122

You may find yourself tempted to try to fit a lot of functional-

ity into a single AI worker, giving it many functions and a big

complicated prompt that explains how to call them. Resist the

temptation, trust me. One of the reasons that the approach we’re

discussing in this chapter is called “Multitude of Workers” is to

remind us that it’s desirable to have lots of specialized workers,

each doing it’s own little job in service of the greater purpose .

For example, consider a chatbot application where different AI workers

are responsible for handling different types of user queries . Based on the

user’s input, the application dynamically selects the appropriate AI worker

to process the query.

1 class ChatbotController < ApplicationController
2 def process_query
3 query = params[:query]
4 query_type = QueryClassifierWorker.new(query).classify
5
6 case query_type
7 when 'greeting'
8 response = GreetingWorker.new(query).generate_response
9 when 'product_inquiry'
10 response = ProductInquiryWorker.new(query).generate_response
11 when 'order_status'
12 response = OrderStatusWorker.new(query).generate_response
13 else
14 response = DefaultResponseWorker.new(query).generate_response
15 end
16
17 render json: { response: response }
18 end
19 end

In this example, the ChatbotController receives a user query through

the process_query action. It first uses a QueryClassifierWorker to

determine the type of the query. Based on the classified query type, the

Multitude of Workers 123

controller dynamically selects the appropriate AI worker to generate the

response. This dynamic selection allows the chatbot to handle different

types of queries and route them to the relevant AI workers.

Since the work of the QueryClassifierWorker is relatively sim-

ple and does not require a lot of context or function definitions,

you can probably implement it using an ultra-fast small LLM like

mistralai/mixtral-8x7b-instruct:nitro. It has capabilities

that come close to GPT-4 level on many tasks and, at the time

I’m writing this, Groq can serve it up at a blazing throughput of

444 tokens/second.

Combining Traditional NLP with LLMs

While Large Language Models (LLMs) have revolutionized the field of

natural language processing (NLP) , offering unparalleled versatility and

performance across a wide range of tasks, they are not always the most

efficient or cost-effective solution for every problem. In many cases, com-

bining traditional NLP techniques with LLMs can lead to more optimized,

targeted, and economical approaches to solving specific NLP challenges.

Think of LLMs as the Swiss Army knives of NLP—incredibly versatile and

powerful, but not necessarily the best tool for every job. Sometimes, a

dedicated tool like a corkscrew or a can opener can be more effective and

efficient for a specific task. Similarly, traditional NLP techniques, such as

document clustering , topic identification , and classification , can often

provide more targeted and cost-effective solutions for certain aspects of

your NLP pipeline.

One of the key advantages of traditional NLP techniques is their compu-

tational efficiency. These methods, which often rely on simpler statistical

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Multitude of Workers 124

models or rule-based approaches, can process large volumes of text data

much faster and with lower computational overhead compared to LLMs.

This makes them particularly well-suited for tasks that involve analyzing

and organizing large corpora of documents, such as clustering similar

articles or identifying key topics within a collection of texts.

Moreover, traditional NLP techniques can often achieve high accuracy and

precision for specific tasks, especially when trained on domain-specific

datasets. For example, a well-tuned document classifier using traditional

machine learning algorithms like Support Vector Machines (SVM) or Naive

Bayes can accurately categorize documents into predefined categories

with minimal computational cost.

However, LLMs truly shine when it comes to tasks that require a deeper

understanding of language, context, and reasoning. Their ability to gener-

ate coherent and contextually relevant text, answer questions, and sum-

marize long passages is unmatched by traditional NLP methods. LLMs

can effectively handle complex linguistic phenomena, such as ambiguity,

coreference, and idiomatic expressions, making them invaluable for tasks

that require natural language generation or comprehension.

The real power lies in combining traditional NLP techniques with LLMs to

create hybrid approaches that leverage the strengths of both. By using

traditional NLPmethods for tasks like document preprocessing, clustering,

and topic extraction, you can efficiently organize and structure your text

data. This structured information can then be fed into LLMs for more

advanced tasks, such as generating summaries, answering questions, or

creating comprehensive reports.

For instance, let’s consider a use case where you want to generate a trends

report for a specific domain based on a large corpus of individual trend

documents. Instead of solely relying on LLMs, which can be computation-

Multitude of Workers 125

ally expensive and time-consuming for processing large volumes of text,

you can employ a hybrid approach:

1. Use traditional NLP techniques, such as topic modeling (e.g., La-

tent Dirichlet Allocation) or clustering algorithms (e.g., K-means) , to

group similar trend documents together and identify key themes and

topics within the corpus.

2. Feed the clustered documents and identified topics into an LLM,

leveraging its superior language understanding and generation capa-

bilities to create coherent and informative summaries for each cluster

or topic.

3. Finally, use the LLM to generate a comprehensive trends report by

combining the individual summaries, highlighting themost significant

trends, and providing insights and recommendations based on the

aggregated information.

By combining traditional NLP techniques with LLMs in this manner, you

can efficiently process large amounts of text data, extract meaningful

insights, and generate high-quality reportswhile optimizing computational

resources and costs.

As you embark on your NLP projects, it’s essential to carefully evaluate

the specific requirements and constraints of each task and consider how

traditional NLP methods and LLMs can be leveraged together to achieve

the best results. By combining the efficiency and precision of traditional

techniques with the versatility and power of LLMs, you can create highly

effective and economical NLP solutions that deliver value to your users and

stakeholders.

Tool Use

In the realm of AI-driven application development, the concept of “tool

use” or “function calling” has emerged as a powerful technique that

enables your LLM to connect to external tools, APIs , functions, databases ,

and other resources. This approach allows for a richer set of behaviors

than just outputting text, and more dynamic interactions between your

AI components and the rest of your application’s ecosystem. As we will

examine in this chapter, tool use also gives you the option of making your

AI model generate data in structured ways.

What is Tool Use?

Tool use , also known as function calling , is a technique that allows devel-

opers to specify a list of functions that an LLM can interact with during the

Tool Use 127

generation process. These tools can range from simple utility functions to

complex APIs or database queries. By providing the LLM with access to

these tools, developers can extend the model’s capabilities and enable it to

perform tasks that require external knowledge or actions.

Figure 8. Example of a function definition for an AI worker that analyzes documents

1 FUNCTION = {
2 name: "save_analysis",
3 description: "Save analysis data for document",
4 parameters: {
5 type: "object",
6 properties: {
7 title: {
8 type: "string",
9 maxLength: 140
10 },
11 summary: {
12 type: "string",
13 description: "comprehensive multi-paragraph summary with
14 overview and list of sections (if applicable)"
15 },
16 tags: {
17 type: "array",
18 items: {
19 type: "string",
20 description: "lowercase tags representing main themes
21 of the document"
22 }
23 }
24 },
25 "required": %w[title summary tags]
26 }
27 }.freeze

The key idea behind tool use is to give the LLM the ability to dynamically

select and execute the appropriate tools based on the user’s input or

the task at hand. Instead of relying solely on the model’s pre-trained

knowledge, tool use allows the LLM to leverage external resources to

Tool Use 128

generate more accurate, relevant, and actionable responses. Tool use

makes techniques such as RAG (Retrieval Augmented Generation) much

easier to implement than they would be otherwise.

Note that unless otherwise stated, this book assumes your AI model does

not have access to any built-in server-side tools. Any tools you want to

make available to your AI must be explicitly declared by you in each API

request, with provisions for dispatching its execution if and when your

AI tells you that it would like to use that tool in its response.

The Potential of Tool Use

Tool use opens up a wide range of possibilities for AI-driven applications .

Here are a few examples of what can be achieved with tool use:

1. Chatbots and Virtual Assistants: By connecting an LLM to external

tools, chatbots and virtual assistants can performmore complex tasks,

such as retrieving information from databases, executing API calls, or

interacting with other systems. For example, a chatbot could use a

CRM tool to change the status of a deal based on the user’s request.

2. Data Analysis and Insights: LLMs can be connected to data analysis

tools or libraries to perform advanced data processing tasks . This en-

ables applications to generate insights, conduct comparative analyses,

or provide data-driven recommendations based on user queries.

3. Search and Information Retrieval: Tool use allows LLMs to interact

with search engines, vector databases, or other information retrieval

systems . By transforming user queries into search queries, the LLM

Tool Use 129

can retrieve relevant information from multiple sources and provide

comprehensive answers to user questions.

4. Integration with External Services: Tool use enables seamless inte-

gration between AI-driven applications and external services or APIs .

For example, an LLMcould interactwith aweather API to provide real-

time weather updates or a translation API to generate multilingual

responses.

The Tool Use Workflow

The tool use workflow typically involves four key steps:

1. Include function definitions in your request context

2. Dynamic (or explicit) tool selection

3. Execution of function(s)

4. Optional continuation of the original prompt

Let’s review each of these steps in detail.

Include function definitions in your request context

The AI knowswhat tools it has at its disposal because you give it a list as part

of your completion request (typically defined as functions using a variant

of JSON schema).

The precise syntax of tool definition is model-specific.

This is how you define a get_weather function in Claude 3 :

Tool Use 130

1 {
2 "name": "get_weather",
3 "description": "Get the current weather in a given location",
4 "input_schema": {
5 "type": "object",
6 "properties": {
7 "location": {
8 "type": "string",
9 "description": "The city and state, e.g. San Francisco, CA"
10 },
11 "unit": {
12 "type": "string",
13 "enum": ["celsius", "fahrenheit"],
14 "description": "The unit of temperature"
15 }
16 },
17 "required": ["location"]
18 }
19 }

And this is how you would define the same function for GPT-4 , passing it

as the value of the tools parameter:

1 {
2 "name": "get_current_weather",
3 "description": "Get the current weather in a given location",
4 "parameters": {
5 "type": "object",
6 "properties": {
7 "location": {
8 "type": "string",
9 "description": "The city and state, e.g. San Francisco, CA",
10 },
11 "unit": {
12 "type": "string",
13 "enum": ["celsius", "fahrenheit"],
14 "description": "The unit of temperature"
15 },
16 },
17 "required": ["location"],

Tool Use 131

18 },
19 }

Almost the same, except different for no apparent reason! How annoy-

ing.

Function definitions specify name, description, and input parameters .

Input parameters can be further defined using attributes such as enums to

limit the acceptable values, and specifying whether a parameter is required

or not.

In addition to the actual function definitions, you can also include in-

structions or context for why and how to use the function in the system

directive .

For example, my Web Search tool in Olympia includes this system direc-

tive, which reminds the AI that it has the mentioned tools at its disposal:

1 The `google_search` and `realtime_search` functions let you do research
2 on behalf of the user. In contrast to Google, realtime search is powered
3 by Perplexity and provides real-time information to curated current events
4 databases and news sources. Make sure to include URLs in your response so
5 user can do followup research.

Providing detailed descriptions is considered the most important factor in

tool performance. Your descriptions should explain every detail about the

tool, including:

• What the tool does

• When it should be used (and when it shouldn’t)

• What each parameter means and how it affects the tool’s behavior

Tool Use 132

• Any important caveats or limitations that apply to the tool’s imple-

mentation

Themore context you can give the AI about your tools, the better itwill be at

deciding when and how to use them. For instance, Anthropic recommends

at least 3-4 sentences per tool description for its Claude 3 series, more if

the tool is complex.

It’s not necessarily intuitive, but descriptions are also considered more

important than examples. While you can include examples of how to use a

tool in its description or in the accompanying prompt, this is less important

than having a clear and comprehensive explanation of the tool’s purpose

and parameters. Only add examples after you’ve fully fleshed out the

description.

Here’s an example of a Stripe -like API function specification:

1 {
2 "name": "createPayment",
3 "description": "Create a new payment request",
4 "parameters": {
5 "type": "object",
6 "properties": {
7 "transaction_amount": {
8 "type": "number",
9 "description": "The amount to be paid"
10 },
11 "description": {
12 "type": "string",
13 "description": "A brief description of the payment"
14 },
15 "payment_method_id": {
16 "type": "string",
17 "description": "The payment method to be used"
18 },
19 "payer": {
20 "type": "object",

Tool Use 133

21 "description": "Information about the payer, including their name,
22 email, and identification number",
23 "properties": {
24 "name": {
25 "type": "string",
26 "description": "The payer's name"
27 },
28 "email": {
29 "type": "string",
30 "description": "The payer's email address"
31 },
32 "identification": {
33 "type": "object",
34 "description": "The payer's identification number",
35 "properties": {
36 "type": {
37 "type": "string",
38 "description": "Identification document (e.g. CPF, CNPJ)"
39 },
40 "number": {
41 "type": "string",
42 "description": "The identification number"
43 }
44 },
45 "required": ["type", "number"]
46 }
47 },
48 "required": ["name", "email", "identification"]
49 }
50 }
51 }

In practice, some models have trouble dealing with nested func-

tion specifications and dealing with complex output data types

such as arrays , dictionaries etc. But in theory, you should be

able to supply JSON Schema specifications of arbitrary depth !

Tool Use 134

Dynamic Tool Selection

When you execute a chat completion that includes tool definitions, the LLM

dynamically selects the most appropriate tool(s) to use and generates the

required input parameters for each tool .

In practice, the AI’s capacity for calling exactly the right function, and

exactly following your specification for the inputs is hit or miss. Turning

the temperature hyperparameter all the way down to 0.0 helps a lot,

but in my experience you’ll still get occasional errors. Those failures

include hallucinated function names, misnamed or just plain missing input

parameters. Parameters are passed as JSON, whichmeans sometimes you’ll

see errors caused by truncated, misquoted, or otherwise broken JSON .

Self Healing Data patterns can help automatically fix function

calls that break due to syntax errors .

Forced (aka Explicit) Tool Selection

Some models give you the option to force calling of a particular function,

as a parameter in the request. Otherwise, whether to call the function or

not is entirely up to the AI’s discretion .

The ability to force a function call is crucial in certain scenarios where you

want to ensure that a specific tool or function is executed, regardless of

the AI’s dynamic selection process. There are several reasons why this

capability is important:

1. Explicit Control: You may be using the AI as a Discrete Component

or in a predefined workflow that necessitates the execution of a

Tool Use 135

particular function at a particular time. By forcing the call, you can

guarantee that the desired function is invoked instead of having to

nicely ask the AI to do it.

2. Debugging and Testing: When developing and testing AI-driven ap-

plications, the ability to force function calls is invaluable for debugging

purposes. By explicitly triggering specific functions, you can isolate

and test individual components of your application. This allows you

to verify the correctness of the function implementations, validate the

input parameters, and ensure that the expected results are returned .

3. Handling Edge Cases: There may be edge cases or exceptional sce-

narios where the AI’s dynamic selection process might not choose

to execute a function that it should, and you know that based on

outside processes. In such cases, having the ability to force a function

call allows you to handle these situations explicitly. Define rules or

conditions in your application logic to determine when to override

the AI’s discretion.

4. Consistency and Reproducibility: If you have a specific sequence of

functions that need to be executed in a particular order, forcing the

calls guarantees that the same sequence is followed every time . This

is especially important in applications where consistency and pre-

dictable behavior are critical, such as in financial systems or scientific

simulations.

5. Performance Optimization: In some cases, forcing a function call

can lead to performance optimizations. If you know that a specific

function is required for a particular task and that the AI’s dynamic

selection processmight introduce unnecessary overhead, you can by-

pass the selection process and directly invoke the required function.

This can help reduce latency and improve the overall efficiency of your

application .

Tool Use 136

In summary, the ability to force function calls in AI-driven applications

provides explicit control, aids in debugging and testing, handles edge cases,

ensures consistency and reproducibility. It’s a powerful tool in your arsenal,

but we need to discuss one more aspect of this important feature.

In many decision-making use cases, we always want themodel to

make a function call and may never want the model to respond

with just its internal knowledge . For example, if you’re routing

between multiple models specialized at different tasks (multilin-

gual input, math, etc), you may use the function-calling model to

delegate requests to one of the helper models and never respond

independently.

Tool Choice Parameter

GPT-4 and other language models that support function calling give you

a tool_choice parameter for controlling whether tool use is required as

part of a completion. This parameter has three possible values:

• auto gives the AI full discretion over using a tool or simply responding

• required tells the AI that itmust call a tool instead of responding, but

leaves selection of the tool up to the ai.

• The third option is to set the parameter of the name_of_function

that you want to force. More on that in the next section.

Note that if you set tool choice to required, the model will be

forced to pick the most relevant function to call out of those

provided to it, even if none really fits the prompt. At the time of

publication, I am not aware of a model that will return an empty

tool_calls response, or use some other way of letting you know

that it did not find a suitable function to call .

Tool Use 137

Forcing a Function To Get Structured Output

The ability to force a function call gives you a way to force structured data

out of a chat completion instead of having to extract it yourself out of its

plaintext response.

Why is forcing functions to get structured output a big deal? Simply

put, because extraction of structured data from LLM output is a pain

in the neck. You can make your life a bit easier by asking for data in

XML , but then you have to parse XML. And what do you do when that

XML is missing because your AI responded: “I’m sorry, but I’m unable to

generate the data you requested because the bla, bla, bla…”

When using tools in this way:

• You should probably define a single tool in your request

• Remember to force use of its function using the tool_choice param-

eter.

• Remember that the model will pass the input to the tool, so the name

of the tool and description should be from the model’s perspective,

not yours.

This last point deserves an example for clarity. Let’s say that you are asking

the AI to do sentiment analysis on user text . The name of the function

would not be analyze_sentiment, but rather it would be something

like save_sentiment_analysis. The AI is the one doing the sentiment

analysis, not the tool. All the tool is doing (from the perspective of the AI) is

saving the results of the analysis.

Tool Use 138

Here’s an example of using Claude 3 to record a summary of an image into

well-structured JSON , this time from the command line using curl:

1 curl https://api.anthropic.com/v1/messages \
2 --header "content-type: application/json" \
3 --header "x-api-key: $ANTHROPIC_API_KEY" \
4 --header "anthropic-version: 2023-06-01" \
5 --header "anthropic-beta: tools-2024-04-04" \
6 --data \
7 '{
8 "model": "claude-3-sonnet-20240229",
9 "max_tokens": 1024,
10 "tools": [{
11 "name": "record_summary",
12 "description": "Record summary of image into well-structured JSON.",
13 "input_schema": {
14 "type": "object",
15 "properties": {
16 "key_colors": {
17 "type": "array",
18 "items": {
19 "type": "object",
20 "properties": {
21 "r": {
22 "type": "number",
23 "description": "red value [0.0, 1.0]"
24 },
25 "g": {
26 "type": "number",
27 "description": "green value [0.0, 1.0]"
28 },
29 "b": {
30 "type": "number",
31 "description": "blue value [0.0, 1.0]"
32 },
33 "name": {
34 "type": "string",
35 "description": "Human-readable color name
36 in snake_case, e.g.
37 \"olive_green\"or
38 \"turquoise\""
39 }

Tool Use 139

40 },
41 "required": ["r", "g", "b", "name"]
42 },
43 "description": "Key colors in the image. Four or less."
44 },
45 "description": {
46 "type": "string",
47 "description": "Image description. 1-2 sentences max."
48 },
49 "estimated_year": {
50 "type": "integer",
51 "description": "Estimated year that the image was taken,
52 if is it a photo. Only set this if the
53 image appears to be non-fictional.
54 Rough estimates are okay!"
55 }
56 },
57 "required": ["key_colors", "description"]
58 }
59 }],
60 "messages": [
61 {
62 "role": "user",
63 "content": [
64 {
65 "type": "image",
66 "source": {
67 "type": "base64",
68 "media_type": "'$IMAGE_MEDIA_TYPE'",
69 "data": "'$IMAGE_BASE64'"
70 }
71 },
72 {
73 "type": "text",
74 "text": "Use `record_summary` to describe this image."
75 }
76]
77 }
78]
79 }'

In the provided example, we are using the Claude 3 model from Anthropic

Tool Use 140

to generate a structured JSON summary of an image. Here’s how it works:

1. We define a single tool named record_summary in the tools array of

the request payload. This tool is responsible for recording a summary

of the image into well-structured JSON.

2. The record_summary tool has an input_schema that specifies the

expected structure of the JSON output. It defines three properties:

• key_colors: An array of objects representing the key colors in

the image. Each color object has properties for the red, green,

and blue values (ranging from 0.0 to 1.0) and a human-readable

color name in snake_case format.
• description: A string property for a brief description of the

image, limited to 1-2 sentences.
• estimated_year: An optional integer property for the estimated

year the imagewas taken, if it appears to be a non-fictional photo.

3. In the messages array, we supply the image data as a base64-encoded

string along with themedia type. This allows themodel to process the

image as part of the input.

4. We also prompt Claude to use the record_summary tool to describe

the image.

5. When the request is sent to the Claude 3 model, it analyzes the image

and generates a JSON summary based on the specified input_schema.

The model extracts the key colors, provides a brief description, and

estimates the year the image was taken (if applicable).

6. The generated JSON summary passed as the parameters to the

record_summary tool, providing a structured representation of the

image’s key characteristics.

Tool Use 141

By using the record_summary tool with a well-defined input_schema, we

can obtain a structured JSON summary of an imagewithout relying on plain

text extraction. This approach ensures that the output follows a consistent

format and can be easily parsed and processed by downstream components

of the application.

The ability to force a function call and specify the expected output struc-

ture is a powerful feature of tool use in AI-driven applications . It allows

developers to have more control over the generated output and simplifies

the integration of AI-generated data into their application’s workflow.

Execution of Function(s)

You’ve defined functions, and prompted your AI, which decided that it

should call one of your functions. Now it’s time for your application code

or library, if you’re using a Ruby gem like raix-rails to dispatch the

function call and its parameters to the corresponding implementation in

your application code.

Your application code decides what to do with the results of the function

execution. Maybe what to do involves a single line of code in a lambda, or

maybe it involves calling an external API. Maybe it involves calling another

AI component, or maybe it involves hundreds or even thousands of lines of

code in the rest of your system. It’s entirely up to you.

Sometimes the function call is the end of the operation, but if the results

represent information in a chain of thought to be continued by the AI, then

your application code needs to insert the execution results into the chat

transcript and let the AI continue processing.

For example, here a Raix function declaration used by Olympia’s Account-

Manager to communicatewith our clients as part of an IntelligentWorkflow

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

Tool Use 142

Orchestration for customer service.

1 class AccountManager
2 include Raix::ChatCompletion
3 include Raix::FunctionDispatch
4
5 # lots of other functions...
6
7 function :notify_account_owner,
8 "Don't share UUID. Mention dollars if subscription changed",
9 message: { type: "string" } do |arguments|
10 account.owner.freeform_notify(
11 subject: "Account Change Notification",
12 message: arguments[:message]
13)
14 "Notified account owner"
15 end

Itmay not be immediately clearwhat is happening here, so I’ll break it down.

1. The AccountManager class defines many functions related to account

management. It can change your plan, add and remove team mem-

bers, amongst other things.

2. Its top-level instructions tell AccountManager that it should notify the

account owner with the results of the account change request, using

the notify_account_owner function.

3. The concise definition of the function includes its:

• name

• description

• parameters message: { type: "string" }

• a block to execute when the function is called

After updating the transcript with the results of the function block, the

chat_completion method is called again. This method is responsible

Tool Use 143

for sending the updated conversation transcript back to the AI model for

further processing. We refer to this process as a conversation loop.

When the AImodel receives a newchat completion requestwith an updated

transcript, it has access to the results of the previously executed function.

It can analyze these results, incorporate them into its decision-making

process, and generate the next response or action based on the cumulative

context of the conversation. It can choose to execute additional functions

based on the updated context, or it can generate a final response to the

original prompt if it determines that no further function calls are necessary.

Optional Continuation of the Original Prompt

When you send the tool results back to the LLM and continue processing

of the original prompt, the AI uses those results to either call additional

functions or generate a final plain text response.

Some models such as Cohere’s Command-R can cite the specific

tools they used in their responses, providing additional trans-

parency and traceability.

Depending on the model in use, the results of the function call will live in

transcriptmessages that have their own special role or be reflected in some

other syntax. But the important part is for that data to be in the transcript,

so that it can be considered by the AI as it decides what to do next.

https://openrouter.ai/models/cohere/command-r

Tool Use 144

A common (and potentially expensive) error condition is to forget

to add the function results to the transcript before continuing the

chat. As a result, the AI will get prompted in essentially the same

way that it was before it called the function the first time. In other

words, as far as the AI is concerned, it hasn’t called the function

yet. So it calls it again. And again. And again, forever until you

interrupt it. Hope your context was not too big, and your model

was not too expensive!

Best Practices for Tool Use

To get the most out of tool use, consider the following best practices.

Descriptive Definitions

Provide clear and descriptive names and descriptions for each tool and its

input parameters. This helps the LLM better understand the purpose and

capabilities of each tool.

I can tell you from experience that the common wisdom that says that

“naming is hard” applies here; I’ve seen dramatically different results

from LLMs just by changing the names of functions or wording of

descriptions. Sometimes removing descriptions improves performance.

Processing of Tool Results

When passing tool results back to the LLM, ensure that they are well-

structured and comprehensive. Use meaningful keys and values to rep-

Tool Use 145

resent the output of each tool. Experiment with different formats and see

which works best, from JSON to plain-text.

The Result Interpreter addresses this challenge by employing AI to analyze

the results and provide human-friendly explanations, summaries, or key

takeaways .

Error Handling

Implement robust error handling mechanisms to handle cases where the

LLM may generate invalid or unsupported input parameters for tool calls.

Gracefully handle and recover from any errors that may occur during tool

execution .

One exceedingly nice quality of the AI is that it understands errormessages!

Which means that if you’re working in a quick and dirty mindset, you can

simply catch any exceptions generated in the implementation of a tool, and

pass it back to the AI so that it knows what happened!

For example, here’s a slimmed down version of the implementation of

google search in Olympia:

1 def google_search(conversation, params)
2 conversation.update_cstatus("Searching Google...")
3 query = params[:query]
4 search = GoogleSearch.new(query).get_hash
5
6 conversation.update_cstatus("Summarizing results...")
7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)
8 rescue StandardError => e
9 Honeybadger.notify(e)
10 { error: e.message }.inspect
11 end

Google searches in Olympia are a two-step process. First you do the

search, then you summarize the results. If there’s a failure, no matter what

Tool Use 146

it is, the exception message is packaged up and sent back to the AI . This

technique is the foundation of practically all the Intelligent Error Handling

patterns .

For instance, let’s say that the GoogleSearch API call fails due to a 503

Service Unavailable exception. That bubbles up to the top-level rescue,

and the description of the error is sent back to the AI as the result of the

function call. Instead of just giving the user a blank screen or technical

error, the AI says something like “I’m sorry, but I’m unable to access my

Google Search capabilities at this time. I can try again later, if you wish.”

This may seem like just a clever trick, but consider a different kind of error,

one where the AI was calling an external API and had direct control of the

parameters to pass to the API. Maybe it made a mistake in how it generated

those parameters? Provided that the error message from the external API

is detailed enough, passing the error message back to the calling AI means

that it can reconsider those parameters and try again. Automatically. No

matter what the error was.

Now think of what it would take to replicate that kind of robust error

handling in normal code. It’s practically impossible.

Iterative Refinement

If the LLM is not recommending the appropriate tools or generating

suboptimal responses, iterate on the tool definitions, descriptions, and

input parameters. Continuously refine and improve the tool setup based

on the observed behavior and desired outcomes.

1. Start with simple tool definitions: Begin by defining tools with clear

and concise names, descriptions, and input parameters. Avoid over-

complicating the tool setup initially and focus on the core functional-

Tool Use 147

ity. For example, if you want to save the results of sentiment analysis,

start with a basic definition like:

1 {
2 "name": "save_sentiment_score",
3 "description": "Analyze user-provided text and generate sentiment score",
4 "parameters": {
5 "type": "object",
6 "properties": {
7 "score": {
8 "type": "float",
9 "description": "sentiment score from -1 (negative) to 1 (positive)"
10 }
11 },
12 "required": ["score"]
13 }
14 }

2. Test and observe: Once you have the initial tool definitions in place,

test them with different prompts and observe how the LLM interacts

with the tool. Pay attention to the quality and relevance of the

generated responses. If the LLM is generating suboptimal responses,

it’s time to refine the tool definitions.

3. Refine descriptions: If the LLM is misunderstanding the purpose of a

tool, try refining the tool’s description. Provide more context, exam-

ples, or clarifications to guide the LLM in using the tool effectively.

For instance, you can update the sentiment analysis tool description

to more specifically address the emotional tone of the piece of text

being analyzed:

Tool Use 148

1 {
2 "name": "save_sentiment_score",
3 "description": "Determine the overall emotional tone of a piece of text,
4 such as customer reviews, social media posts, or feedback comments.",
5 ...
6 }

4. Adjust input parameters: If the LLM is generating invalid or irrelevant

input parameters for a tool, consider adjusting the parameter defini-

tions. Add more specific constraints, validation rules, or examples to

clarify the expected input format.

5. Iterate based on feedback: Continuously monitor the performance

of your tools and gather feedback from users or stakeholders. Use

this feedback to identify areas for improvement and make iterative

refinements to the tool definitions. For example, if users report that

the analysis is not handling sarcasm well, you can add a note in the

description:

1 {
2 "name": "save_sentiment_score",
3 "description": "Analyze the sentiment of a given text and return a sentiment
4 score between -1 (negative) and 1 (positive). Note: Sarcasm should be
5 considered negative.",
6 ...
7 }

By iteratively refining your tool definitions based on observed behavior and

feedback, you can gradually improve the performance and effectiveness

of your AI-driven application. Remember to keep the tool definitions

clear, concise, and focused on the specific task at hand. Regularly test

and validate the tool interactions to ensure they align with your desired

outcomes.

Tool Use 149

Composing and Chaining Tools

One of the most powerful aspects of tool use that has only been alluded

to so far is the ability to compose and chain multiple tools together to

accomplish complex tasks . By carefully designing your tool definitions and

their input/output formats, you can create reusable building blocks that

can be combined in various ways.

Let’s consider an example where you’re building a data analysis pipeline for

your AI-driven application. You might have the following tools:

1. DataRetrieval: A tool that fetches data from a database or API based

on specified criteria.

2. DataProcessing: A tool that performs calculations, transformations,

or aggregations on the retrieved data.

3. DataVisualization: A tool that presents the processed data in a

user-friendly format, such as charts or graphs.

By chaining these tools together, you can create a powerful workflow

that retrieves relevant data, processes it, and presents the results in a

meaningful way. Here’s how the tool use workflow might look like:

1. The LLM receives a user query asking for insights on sales data for a

specific product category.

2. The LLM selects the DataRetrieval tool and generates the appro-

priate input parameters to fetch the relevant sales data from the

database.

3. The retrieved data is “passed” to the DataProcessing tool, which

calculates metrics such as total revenue, average sales price, and

growth rate.

Tool Use 150

4. The processed data is then digested by the DataVisualization tool,

which creates a visually appealing chart or graph to represent the

insights, passing the URL of the chart back to the LLM.

5. Finally, the LLM generates a formatted response to the user query

using markdown , incorporating the visualized data and providing a

summary of the key findings.

By composing these tools together, you can create a seamless data analysis

workflow that can be easily integrated into your application . The beauty of

this approach is that each tool can be developed and tested independently,

and then combined in different ways to solve various problems.

To enable smooth composition and chaining of tools, it’s important to

define clear input and output formats for each tool.

For example, the DataRetrieval tool might accept parameters such as the

database connection details, table name, and query conditions, and return

the result set as a structured JSON object . The DataProcessing tool can

then expect this JSON object as input and produce a transformed JSON

object as output. By standardizing the data flow between tools, you can

ensure compatibility and reusability.

As you design your tool ecosystem , think about how different tools can

be combined to address common use cases in your application. Consider

creating high-level tools that encapsulate common workflows or business

logic, making it easier for the LLM to select and use them effectively.

Remember, the power of tool use lies in the flexibility and modularity it

provides. By breaking down complex tasks into smaller, reusable tools, you

can create a robust and adaptable AI-driven application that can tackle a

wide range of challenges.

Tool Use 151

Future Directions

As the field of AI-driven application development evolves, we can expect

further advancements in tool use capabilities. Some potential future

directions include:

1. Multi-hop Tool Use: LLMsmay be able to decide howmany times they

need to use tools in order to generate a satisfactory response. This

could involve multiple rounds of tool selection and execution based

on intermediate results.

2. Pre-defined Tools: AI platforms may provide a set of pre-defined

tools that developers can leverage out-of-the-box, such as Python

interpreters, web search tools, or common utility functions.

3. Seamless Integration: As tool use becomes more prevalent, we can

expect better integration between AI platforms and popular develop-

ment frameworks , making it easier for developers to incorporate tool

use into their applications.

Tool use is a powerful technique that enables developers to harness the full

potential of LLMs in AI-driven applications. By connecting LLMs to external

tools and resources, you can createmore dynamic, intelligent, and context-

aware systems that can adapt to user needs and provide valuable insights

and actions.

While tool use offers immense possibilities, it’s important to be aware of

potential challenges and considerations. One key aspect is managing the

complexity of tool interactions and ensuring the stability and reliability

of the overall system. You need to handle scenarios where tool calls

Tool Use 152

may fail, return unexpected results, or have performance implications.

Additionally, you should consider security and access control measures

to prevent unauthorized or malicious use of tools. Proper error handling,

logging, and monitoring mechanisms are crucial to maintain the integrity

and performance of your AI-driven application.

As you explore the possibilities of tool use in your own projects , remember

to start with clear objectives, design well-structured tool definitions, and

iterate based on feedback and results. With the right approach and

mindset, tool use can unlock new levels of innovation and value in your

AI-driven applications .

Stream Processing

Streaming data over HTTP , also known as server-sent events (SSE) , is a

mechanism where the server continuously sends data to the client as it

becomes available, without the need for the client to explicitly request it.

As the AI’s response is generated incrementally, it makes sense to provide

a responsive user experience by displaying the AI’s output as it is being

generated. And in fact all AI providers APIs that I know of offer streaming

responses as an option in their completion endpoints.

The reason that this chapter appears here in the book, right after Using

Tools is because of how powerful it can be to combine the use of tools

with live AI responses to users. Doing so allows for dynamic and interactive

experiences where the AI can process user input, utilize various tools and

functions at its discretion, and then provide real-time responses.

Stream Processing 154

To achieve this seamless interaction, you need to write stream handlers

that can dispatch AI-invoked tool function calls as well as plain text output

to the end user. The need to loop after processing a tool function adds an

interesting challenge to the job.

Implementating a ReplyStream

To demonstrate how stream processing can be implemented, this chapter

will take a deep dive into a simplified version of the ReplyStream class that

is used in Olympia . Instances of this class can be passed as the stream

parameter in AI client libraries such as ruby-openai and openrouter .

Here’s how I use ReplyStream in Olympia’s PromptSubscriber, which

listens via Wisper for the creation of new user messages.

1 class PromptSubscriber
2 include Raix::ChatCompletion
3 include Raix::PromptDeclarations
4
5 # many other declarations omitted...
6
7 prompt text: -> { user_message.content },
8 stream: -> { ReplyStream.new(self) },
9 until: -> { bot_message.complete? }
10
11 def message_created(message) # invoked by Wisper
12 return unless message.role.user? && message.content?
13
14 # rest of the implementation omitted...

In addition to a context reference to the prompt subscriber that instanti-

ated it, the ReplyStream class also has instance variables to store a buffer

of received data, and arrays to keep track of function names and arguments

invoked during stream processing.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

Stream Processing 155

1 class ReplyStream
2 attr_accessor :buffer, :f_name, :f_arguments, :context
3
4 delegate :bot_message, :dispatch, to: :context
5
6 def initialize(context)
7 self.context = context
8 self.buffer = []
9 self.f_name = []
10 self.f_arguments = []
11 end
12
13 def call(chunk, bytesize = nil)
14 # ...
15 end
16
17 # ...
18 end

The initialize method sets up the initial state of the ReplyStream

instance, initializing the buffer, context, and other variables.

The callmethod is themain entry point for processing the streaming data .

It takes a chunk of data (represented as a hash) and an optional bytesize

parameter, which in our example is unused.. Inside this method, the class

uses patternmatching to handle different scenarios based on the structure

of the received chunk.

Calling deep_symbolize_keys on the chunk helps make the

pattern matching more elegant, by letting us operate on symbols

rather than strings.

Stream Processing 156

1 def call(chunk, _bytesize)
2 case chunk.deep_symbolize_keys
3
4 in { # match function name
5 choices: [
6 {
7 delta: {
8 tool_calls: [
9 { index: index, function: {name: name} }
10]
11 }
12 }
13] }
14
15 f_name[index] = name

The first pattern we’re matching for is a tool call along with its associated

function name. If we detect one, we tuck it into the f_name array. We store

function names in an indexed array, because themodel is capable of parallel

function calling, sending more than one function to execute at a time.

Parallel function calling is an AI model’s ability to perform multiple

function calls together, allowing the effects and results of these function

calls to be resolved in parallel. This is especially useful if functions take a

long time, and reduces round trips with the API , which in turn can save

a significant amount of token expenditure.

Next we need to match for the arguments corresponding to the function

calls.

Stream Processing 157

1 in { # match arguments
2 choices: [
3 {
4 delta: {
5 tool_calls: [
6 {
7 index: index, function: {arguments: argument }
8 }
9]
10 }
11 }
12]}
13
14 f_arguments[index] ||= "" # initialize if not already
15 f_arguments[index] << argument

Similarly to how we handled the function names , we tuck away arguments

in an indexed array.

Next up, we look for normal user-facing messages, which will arrive from

the server one token at a time and be assigned to the new_content variable.

We also need to keep an eye on finish_reason. It will be nil until the last

chunk of the output sequence.

1 in {
2 choices: [
3 { delta: {content: new_content}, finish_reason: finish_reason }
4]}
5
6 # you could transmit every chunk to the user here...
7 buffer << new_content.to_s
8
9 if finish_reason.present?
10 finalize
11 elsif new_content.to_s.match?(/\n\n/)
12 send_to_client # ...or buffer and transmit once per paragraph
13 end

Importantly, we add a pattern match expression to handle error messages

Stream Processing 158

sent by the AImodel provider. In local development environments , we raise

an exception, but in production, we log the error and finalize.

1 in { error: { message: } }
2 if Rails.env.local?
3 raise message
4 else
5 Honeybadger.notify("AI Error: #{message}")
6 finalize
7 end

The final else clause of case will execute if none of the previous patterns

matched. It’s just a safeguard so that if the AI model starts sending us

unrecognized chunks we find out about them.

1 else
2 Honeybadger.notify("Unrecognized Chunk: #{chunk}")
3 end
4 end

The send_to_clientmethod is responsible for sending the buffered con-

tent to the client. It checks that the buffer is not empty, updates the bot

message content, renders the bot message, and saves the content in the

database to ensure data persistence.

Stream Processing 159

1 def send_to_client
2 # no need to process pure whitespace
3 return if buffer.join.squish.blank?
4
5 # set the buffer content on the bot message
6 content = buffer.join
7 bot_message.content = content
8
9 # save to database so that we never lose data
10 # even if the stream doesn't terminate correctly
11 bot_message.update_column(:content, content)
12
13 # update content via websocket
14 ConversationRenderer.update(bot_message)
15 end

The finalize method is called when the stream processing is complete.

It dispatches the function calls if any were received during the stream,

updates the bot message with the final content and other relevant infor-

mation, and resets the function call history .

1 def finalize
2 if f_name.any?
3 f_name.each_with_index do |name, index|
4 # takes care of calling the function wherever it's implemented
5 dispatch(name:, arguments: JSON.parse(f_arguments[index]))
6 end
7
8 # reset the function call history
9 f_name.clear
10 f_arguments.clear
11 else
12 content = buffer.join.presence
13 bot_message.update!(content:, complete: true)
14 ConversationRenderer.update(bot_message)
15 end
16 end

If the model decides to call a function, you need to “dispatch” that function

Stream Processing 160

call (name and arguments) in such a way that it gets executed and func-

tion_call and function_resultmessages get added to the conversation

transcript .

In my experience, it’s better to handle the creation of function messages in

one place in your codebase, instead of relying on the tool implementations.

It’s cleaner, but also has a very important practical reason too: if the AI

model calls a function, and doesn’t see resulting call and result messages in

the transcript when you loop, it will call the same function again. Potentially

forever. Remember that the AI is completely stateless , so unless you echo

those function calls back to it, they didn’t happen.

1 # PromptSubscriber#dispatch
2
3 def dispatch(name:, arguments:)
4 # adds a function_call message to the conversation transcript
5 # plus dispatches to tool and returns result
6 conversation.function_call!(name, arguments).then do |result|
7 # add function result message to the transcript
8 conversation.function_result!(name, result)
9 end
10 end

Clearing the function call history after dispatching is just as

important as making sure the call and results end up in your

transcript, so that you don’t just keep calling the same functions

over and over again every time you loop.

The “Conversation Loop”

I keep mentioning looping, but if you’re new to function calling , it might

not be obvious why we need to loop. The reason is that once the AI “asks”

Stream Processing 161

you to execute tool functions on its behalf, it will stop replying. It’s up to

you to execute those functions, gather the results, add the results to the

transcript, and then submit the original prompt again in order to get a new

set of function calls or user-facing results.

In the PromptSubscriber class, we use the prompt method from the

PromptDeclarations module to define the behavior of the conversation

loop. The until parameter is set to -> { bot_message.complete? },

which means that the loop will continue until the bot_message is marked

as complete.

1 prompt text: -> { user_message.content },
2 stream: -> { ReplyStream.new(self) },
3 until: -> { bot_message.complete? }

But when is bot_messagemarked as complete? If you’ve forgot-

ten, refer back to line 13 of the finalizemethod .

Let’s review the entire stream processing logic .

1. The PromptSubscriber receives a new user message via the mes-

sage_created method, which is invoked by the Wisper pub/sub

system every time the end user creates a new prompt.

2. The prompt class method declaratively defines the behavior of the

chat completion logic for the PromptSubscriber. The AI model will

have a chat completion executed with the user’s message content,

a new instance of ReplyStream as the stream parameter, and the

specified loop condition.

3. The AI model processes the prompt and starts generating a response.

As the response is streamed, the call method of the ReplyStream

instance is invoked for each chunk of data.

Stream Processing 162

4. If the AI model decides to call a tool function, the function name and

arguments are extracted from the chunk and stored in the f_name and

f_arguments arrays, respectively.

5. If the AI model generates user-facing content, it is buffered and sent

to the client via the send_to_clientmethod.

6. Once the stream processing is complete, the finalize method is

called. If any tool functions were invoked during the stream, they are

dispatched using the dispatchmethod of the PromptSubscriber.

7. The dispatchmethod adds a function_callmessage to the conver-

sation transcript, executes the corresponding tool function, and adds

a function_result message to the transcript with the result of the

function call.

8. After dispatching the tool functions, the function call history is cleared

to prevent duplicate function calls in subsequent loops.

9. If no tool functions were invoked, the finalize method updates the

bot_message with the final content, marks it as complete, and sends

the updated message to the client.

10. The loop condition -> { bot_message.complete? } is evaluated. If

the bot_message is not marked as complete, the loop continues, and

the original prompt is submitted again with the updated conversation

transcript .

11. Steps 3-10 are repeated until the bot_message is marked as complete,

indicating that the AI model has finished generating its response and

no further tool functions need to be executed.

By implementing this conversation loop , you enable the AI model to

engage in a back-and-forth interaction with the application, executing

tool functions as needed and generating user-facing responses until the

conversation reaches a natural conclusion.

Stream Processing 163

The combination of stream processing and the conversation loop allows for

dynamic and interactive AI-powered experiences, where the AI model can

process user input, utilize various tools and functions, and provide real-

time responses based on the evolving conversation context.

Auto Continuation

It’s important to be aware of AI output limitations. Most models have a

maximum number of tokens they can generate in a single response, which

is determined by the max_tokens parameter. If the AI model reaches this

limit while generating a response, it will abruptly stop and indicate that the

output was truncated.

In the streaming response from the AI platform API, you can detect this

situation by examining the finish_reason variable in the chunk. If the

finish_reason is set to "length" (or some other key value specific to the

model), it means that the model reached its maximum token limit during

generation and the output has been cut short.

One way to handle this scenario gracefully and provide a seamless user

experience, is to implement an auto-continuation mechanism in your

stream processing logic. By adding a pattern match for length-related

finish reasons, you can choose to loop and automatically continue the

output from where it left off.

Here’s a purposely simplified example of how you can modify the call

method in the ReplyStream class to support auto continuation:

Stream Processing 164

1 LENGTH_STOPS = %w[length MAX_TOKENS]
2
3 def call(chunk, _bytesize)
4 case chunk.deep_symbolize_keys
5 # ...
6
7 in {
8 choices: [
9 { delta: {content: new_content},
10 finish_reason: finish_reason }] }
11
12 buffer << new_content.to_s
13
14 if finish_reason.blank?
15 send_to_client if new_content.to_s.match?(/\n\n/)
16 elsif LENGTH_STOPS.include?(finish_reason)
17 continue_cutoff
18 else
19 finalize
20 end
21
22 # ...
23 end
24 end
25
26 private
27
28 def continue_cutoff
29 conversation.bot_message!(buffer.join, visible: false)
30 conversation.user_message!("please continue", visible: false)
31 bot_message.update_column(:created_at, Time.current)
32 end

In this modified version, when the finish_reason indicates truncated

output,instead of finalizing the stream, we add a pair of messages to

the transcript without finalizing, move the original user-facing response

message to the “bottom” of the transcript by updating its created_at

attribute, and then let the loop happen, so that the AI continues generating

where it left off.

Stream Processing 165

Remember that the AI completion endpoint is stateless. It only “knows”

what you tell it via the transcript. In this case, theway thatwe communicate

to the AI that it was cutoff is by adding “invisible” (to the end user) messages

to the transcript. Remember though, that this is a purposely simplified

example. A real implementation would need to do further transcript

management to ensure that we didn’t waste tokens and/or confuse the AI

with duplicated assistant messages in the transcript.

A real implementation of auto-continuation should also have so-called “cir-

cuit breaker” logic in place to prevent runaway looping. The reason being

that, given certain kinds of user prompts and low max_tokens settings, the

AI could continue looping user-facing output endlessly.

Keep in mind that every loop requires a separate request, and that each

request consumes your entire transcript again. You should definitely

consider the trade-offs between user experience and API usage when

deciding whether to implement auto continuation in your application.

Auto-continuation in particular can dangerously expensive, especially

when using premium commercial models.

Conclusion

Stream processing is a critical aspect of building AI-powered applications

that combine tool use with live AI responses. By efficiently handling the

streaming data from AI platform APIs, you can provide a seamless and

interactive user experience, handle large responses, optimize resource

usage, and gracefully handle errors.

Stream Processing 166

The provided Conversation::ReplyStream class demonstrates how

stream processing can be implemented in a Ruby application using

pattern matching and event-driven architecture. By understanding and

leveraging stream processing techniques, you can unlock the full potential

of AI integration in your applications and deliver powerful and engaging

user experiences.

Self Healing Data

Self-healing data is a powerful approach to ensuring data integrity, con-

sistency, and quality in applications by leveraging the capabilities of large

language models (LLMs). This category of patterns focuses on the idea

of using AI to automatically detect, diagnose, and correct data anomalies,

inconsistencies, or errors, thereby reducing the burden on developers and

maintaining a high level of data reliability.

At its core, the self-healing data patterns recognize that data is the lifeblood

of any application, and ensuring its accuracy and integrity is crucial for the

proper functioning and user experience of the application. However, man-

aging and maintaining data quality can be a complex and time-consuming

task, especially as applications grow in size and complexity. This is where

the power of AI comes into play.

Self Healing Data 168

In the self-healing data patterns, AI workers are employed to continuously

monitor and analyze your application’s data. These models have the ability

to understand and interpret patterns, relationships, and anomalies within

the data. By leveraging their natural language processing and understand-

ing capabilities, they can identify potential issues or inconsistencies in the

data and take appropriate actions to rectify them.

The process of self-healing data typically involves several key steps:

1. Data Monitoring: AI workers constantly monitor the application’s

data streams, databases, or storage systems, looking for any signs of

anomalies, inconsistencies, or errors. Alternatively, you can activate

an AI component in reaction to an exception.

2. Anomaly Detection: When an issue is detected, the AI worker ana-

lyzes the data in detail to identify the specific nature and scope of

the problem. This could involve detectingmissing values, inconsistent

formats, or data that violates predefined rules or constraints.

3. Diagnosis and Correction: Once the issue is identified, the AI worker

uses its knowledge and understanding of the data domain to deter-

mine the appropriate course of action. This could involve automati-

cally correcting the data, filling in missing values, or flagging the issue

for human intervention if necessary.

4. Continuous Learning (optional, depending on use case): As your AI

worker encounters and resolves various data issues, it can output

describing what happened and how it responded. This metadata

can be fed into learning processes that allows you (and perhaps the

underlying model, via fine-tuning) to become more effective and

efficient over time in identifying and resolving data anomalies.

By automatically detecting and correcting data issues, you can ensure that

your application operates on high-quality, reliable data. This reduces the

Self Healing Data 169

risk of errors, inconsistencies, or data-related bugs affecting the applica-

tion’s functionality or user experience.

Once you have AI workers handling the task of data monitoring and cor-

rection, you can focus your efforts on other critical aspects of the ap-

plication. This saves time and resources that would otherwise be spent

on manual data cleaning and maintenance. In fact, as your applications

grow in size and complexity, manually managing data quality becomes

increasingly challenging. The “Self-Healing Data” patterns scale effectively

by leveraging the power of AI to handle large volumes of data and detect

issues in real-time.

Due to their nature, AI models can adapt to changing data pat-

terns, schemas, or requirements over time with little to no su-

pervision. As long as their directives provide adequate guidance,

especially regarding intended results, your application may be

able to evolve and handle new data scenarios without requiring

extensive manual intervention or code changes.

The self-healing data patterns align well with the other categories of

patterns we’ve discussed, such as “Multitude ofWorkers” . The self-healing

data capability can be viewed as a specialized kind of worker that focuses

specifically on ensuring data quality and integrity. This kind of worker

operates alongside other AI workers, each contributing to different aspects

of the application’s functionality.

Implementing self-healing data patterns in practice requires careful design

and integration of AI models into the application architecture. Because of

the risks of data loss and corruption, you should define clear guidelines for

how you will use this technique. You should also consider factors such as

performance, scalability, and data security.

Self Healing Data 170

Practical Case Study: Fixing Broken JSON

One of themost practical and convenient ways to leverage self-healing data

is also very simple to explain: fixing broken JSON .

This technique can be applied to the common challenge of dealing with

imperfect or inconsistent data generated by LLMs , such as broken JSON,

and provides an approach for automatically detecting and correcting these

issues.

At Olympia I regularly encounter scenarios where LLMs generate JSON

data that is not perfectly valid. This can happen due to various reasons,

such as the LLM adding commentary before or after the actual JSON code,

or introducing syntax errors like missing commas or unescaped double

quotes. These issues can lead to parsing errors and cause disruptions in

the application’s functionality.

To address this problem, I have implemented a practical solution in the

form of a JsonFixer class. This class embodies the “Self-Healing Data”

pattern by taking the broken JSON as input and leveraging an LLM to fix

it while preserving as much information and intent as possible.

1 class JsonFixer
2 include Raix::ChatCompletion
3
4 def call(bad_json, error_message)
5 raise "No data provided" if bad_json.blank? || error_message.blank?
6
7 transcript << {
8 system: "Consider user-provided JSON that generated a parse exception.
9 Do your best to fix it while preserving the original content
10 and intent as much as possible." }
11 transcript << { user: bad_json }
12 transcript << { assistant: "What is the error message?"}
13 transcript << { user: error_message }

Self Healing Data 171

14 transcript << { assistant: "Here is the corrected JSON\n```json\n" }
15
16 self.stop = ["```"]
17
18 chat_completion(json: true)
19 end
20
21 def model
22 "mistralai/mixtral-8x7b-instruct:nitro"
23 end
24 end

Note how JsonFixer uses Ventriloquist to guide the AI’s re-

sponses.

The process of self-healing JSON data works as follows:

1. JSON Generation: An LLM is used to generate JSON data based on

certain prompts or requirements. However, due to the nature of

LLMs, the generated JSON may not always be perfectly valid. The

JSON parser will of course raise a ParserError if you give it invalid

JSON.

1 begin
2 JSON.parse(llm_generated_json)
3 rescue JSON::ParserError => e
4 JsonFixer.new.call(llm_generated_json, e.message)
5 end

Note that the exception message is also passed to the JSONFixer call so

that it doesn’t need to fully assume what is wrong with the data, especially

since the parser will often tell you exactly what is wrong.

Self Healing Data 172

2. LLM-based Correction: The JSONFixer class sends the broken JSON

back to an LLM, along with a specific prompt or instruction to fix the

JSON while preserving the original information and intent as much

as possible. The LLM, trained on vast amounts of data and with an

understanding of JSON syntax, attempts to correct the errors and

generate a valid JSON string. Response Fencing is used to constrain

the output of the LLM, and we choose Mixtral 8x7B as the AI model,

since it is particularly good for this kind of task.

3. Validation and Integration: The fixed JSON string returned by the

LLM is parsed by the JSONFixer class itself, because it called chat_-

completion(json: true). If the fixed JSON passes validation, it is

integrated back into the application’s workflow, allowing the applica-

tion to continue processing the data seamlessly. The bad JSON has

been “healed”.

Although I’ve written and rewritten my own JSONFixer implementation a

number of times, I doubt that the total time invested in all of those versions

is more than an hour or two.

Note that preservation of intent is a key element of any self-healing data

pattern. The LLM-based correction process aims to preserve the original

information and intent of the generated JSON as much as possible. This

ensures that the fixed JSON maintains its semantic meaning and can be

used effectively within the application’s context.

This practical implementation of the “Self-Healing Data” approach in

Olympia clearly demonstrates how AI, specifically LLMs, can be leveraged

to solve real-world data challenges. It showcases the power of combining

traditional programming techniques with AI capabilities to build robust

and efficient applications.

Self Healing Data 173

Postel’s Law and the “Self‐Healing Data” Pattern

“Self-Healing Data,” as exemplified by the JSONFixer class, aligns well

with the principle known as Postel’s Law, also referred to as the Robust-

ness Principle. Postel’s Law states:

“Be conservative in what you do, be liberal in what you accept from

others.”

This principle, originally articulated by Jon Postel, a pioneer of the

early Internet, emphasizes the importance of building systems that are

tolerant of diverse or even slightly incorrect inputs while maintaining

strict adherence to specified protocols when sending outputs.

In the context of “Self-Healing Data,” the JSONFixer class embodies

Postel’s Law by being liberal in accepting broken or imperfect JSON

data generated by LLMs. It doesn’t immediately reject or fail when

encountering JSON that doesn’t strictly adhere to the expected format.

Instead, it takes a tolerant approach and attempts to fix the JSON using

the power of LLMs.

By being liberal in accepting imperfect JSON, the JSONFixer class

demonstrates robustness and flexibility. It acknowledges that data

in the real world often comes in various forms and may not always

conform to strict specifications. By gracefully handling and correcting

these deviations, the class ensures that the application can continue to

function smoothly, even in the presence of imperfect data.

On the other hand, the JSONFixer class also adheres to the conservative

aspect of Postel’s Law when it comes to the output. After fixing the

JSON using LLMs, the class validates the corrected JSON to ensure it

strictly conforms to the expected format. It maintains the integrity and

Self Healing Data 174

correctness of the data before passing it along to other parts of the

application. This conservative approach guarantees that the output of

the JSONFixer class is reliable and consistent, promoting interoperability

and preventing the propagation of errors.

Interesting Trivia about Jon Postel:

• Jon Postel (1943-1998) was an American computer scientist who

played a crucial role in the development of the Internet. He was

known as the “God of the Internet” for his significant contributions

to the underlying protocols and standards.

• Postel was the editor of the Request for Comments (RFC) document

series, which is a series of technical and organizational notes about

the Internet. He authored or co-authored over 200 RFCs, including

the foundational protocols such as TCP, IP, and SMTP.

• In addition to his technical contributions, Postel was known for his

humble and collaborative approach. He believed in the importance

of reaching consensus and working together to build a robust and

interoperable network.

• Postel served as the Director of the Computer Networks Division

at the Information Sciences Institute (ISI) of the University of

Southern California (USC) from 1977 until his untimely death in

1998.

• In recognition of his immense contributions, Postel was posthu-

mously awarded the prestigious Turing Award in 1998, often re-

ferred to as the “Nobel Prize of Computing.”

The JSONFixer class promotes robustness, flexibility, and interoperabil-

ity, which were core values that Postel upheld throughout his career.

By building systems that are tolerant of imperfections while maintaining

Self Healing Data 175

strict adherence to protocols, we can create applications that are more

resilient and adaptable in the face of real-world challenges.

Considerations and Counterindications

The applicability of self-healing data approaches is entirely dependent on

the kind of data your application handles. There’s a reason why you might

not want to simply monkeypatch JSON.parse to automatically self-correct

all JSON parsing errors in your application: not all errors can or should be

automatically corrected.

Self-healing is particularly fraught when coupled with regulatory or com-

pliance requirements related to data handling and processing. Some indus-

tries, such as healthcare and finance, have such strict regulations regarding

data integrity and auditability that doing any sort of “black box” data cor-

rection without proper oversight or logging may violate these regulations.

It’s crucial to ensure that whatever self-healing data techniques you come

up with align with the applicable legal and regulatory frameworks.

Applying self-healing data techniques, particularly those involving AI mod-

els, may also have a large impact on application performance and resource

utilization. Processing large volumes of data through AI models for error

detection and correction can be computationally intensive. It’s important

to assess the trade-offs between the benefits of self-healing data and the

associated performance and resource costs.

That said, let’s dive into the factors involved in deciding when and where to

apply this powerful approach.

Self Healing Data 176

Data Criticality

When considering the application of self-healing data techniques, it’s

crucial to assess the criticality of the data being processed. The level of

criticality refers to the importance and sensitivity of the data in the context

of your application and its business domain.

In some cases, automatically correcting data errorsmay not be appropriate,

especially if the data is highly sensitive or has legal implications. For

example, consider the following scenarios:

1. Financial Transactions: In financial applications, such as banking

systems or trading platforms, data accuracy is of utmost importance.

Evenminor errors in financial data can have significant consequences,

such as incorrect account balances, misrouted funds, or erroneous

trading decisions. In these cases, automated corrections without

thorough verification and auditing may introduce unacceptable risks.

2. Medical Records: Healthcare applications deal with highly sensitive

and confidential patient data. Inaccuracies in medical records can

have severe implications for patient safety and treatment decisions.

Automatically modifying medical data without proper oversight and

validation by qualified healthcare professionals may violate regulatory

requirements and put patient well-being at risk.

3. Legal Documents: Applications handling legal documents, such as

contracts, agreements, or court filings, require strict accuracy and

integrity. Even minor errors in legal data can have significant legal

ramifications. Automated corrections in this domain may not be

appropriate, as the data often requires manual review and verification

by legal experts to ensure its validity and enforceability.

Self Healing Data 177

In these critical data scenarios, the risks associated with automated cor-

rections often outweigh the potential benefits. The consequences of

introducing errors or modifying data incorrectly can be severe, leading to

financial losses, legal liabilities, or even harm to individuals.

When dealing with highly critical data, it’s essential to prioritize manual

verification and validation processes. Human oversight and expertise are

crucial in ensuring the accuracy and integrity of the data. Automated

self-healing techniques can still be employed to flag potential errors or

inconsistencies, but the final decision on corrections should involve human

judgment and approval.

However, it’s important to note that not all data in an application may have

the same level of criticality. Within the same application, there may be

subsets of data that are less sensitive or have lower impact if errors occur.

In such cases, self-healing data techniques can be selectively applied to

those specific data subsets, while critical data remains subject to manual

verification.

The key is to carefully assess the criticality of each data category in your

application and define clear guidelines and processes for handling correc-

tions based on the associated risks and implications. By differentiating

between critical (i.e. ledgers, medical records) and non-critical data (i.e.

mailing addresses, resource warnings), you can strike a balance between

leveraging the benefits of self-healing data techniques where appropriate

and maintaining strict control and oversight where necessary.

Ultimately, the decision to apply self-healing data techniques to critical

data should be made in consultation with domain experts, legal advisors,

and other relevant stakeholders. It’s essential to consider the specific

requirements, regulations, and risks associated with your application’s data

and align the data correction strategies accordingly.

Self Healing Data 178

Error Severity

When applying self-healing data techniques, it’s important to assess the

severity and impact of the data errors. Not all errors are created equal, and

the appropriate course of action may vary depending on the severity of the

issue.

Minor inconsistencies or formatting issues may be suitable for automatic

correction. For example, a self-healing data worker tasked with fixing

broken JSON can handle missing commas or unescaped double quotes

without significantly altering the meaning or structure of the data. These

types of errors are often straightforward to correct and have minimal

impact on the overall data integrity.

However, more severe errors that fundamentally change the meaning or

integrity of the data may require a different approach. In such cases,

automated corrections may not be sufficient, and human intervention may

be necessary to ensure the accuracy and validity of the data.

This is where the concept of using AI itself to help determine error severity

comes into play. By leveraging the capabilities of AI models, we can design

self-healing data workers that not only correct errors but also assess the

severity of those errors and make informed decisions on how to handle

them.

For instance, let’s consider a self-healing data worker responsible for

correcting inconsistencies in data flowing into a customer database. The

worker can be designed to analyze the data and identify potential errors,

such as missing or conflicting information. However, instead of automati-

cally correcting all errors, the worker can be equipped with additional tool

calls that allow it to flag severe errors for human review.

Here’s an example of how this can be implemented:

Self Healing Data 179

1 class CustomerDataReviewer
2 include Raix::ChatCompletion
3 include Raix::FunctionDeclarations
4
5 attr_accessor :customer
6
7 function :flag_for_review, reason: { type: "string" } do |params|
8 AdminNotifier.review_request(customer, params[:reason])
9 end
10
11 def initialize(customer)
12 self.customer = customer
13 end
14
15 def call(customer_data)
16 transcript << {
17 system: "You are a customer data reviewer. Your task is to identify
18 and correct inconsistencies in customer data.
19
20 < additional instructions here... >
21
22 If you encounter severe errors that require human review, use the
23 `flag_for_review` tool to flag the data for manual intervention." }
24
25 transcript << { user: customer.to_json }
26 transcript << { assistant: "Reviewed/corrected data:\n```json\n" }
27
28 self.stop = ["```"]
29
30 chat_completion(json: true).then do |result|
31 return if result.blank?
32
33 customer.update(result)
34 end
35 end
36 end

In this example, the CustomerDataHealer worker is designed to identify

and correct inconsistencies in customer data. Once again, we use Response

Fencing and Ventriloquist to get structured output. Importantly, the

Self Healing Data 180

worker’s system directive includes instructions to use the flag_for_re-

view function if severe errors are encountered.

When the worker processes the customer data, it analyzes the data and

attempts to correct any inconsistencies. If the worker determines that the

errors are severe and require human intervention, it can use the flag_-

for_review tool to flag the data and provide a reason for the flagging.

The chat_completion method is called with json: true to parse the

corrected customer data as JSON. There is no provision for looping after

a function call, so the result will be blank if flag_for_reviewwas invoked.

Otherwise, the customer is updated with the reviewed and potentially

corrected data.

By incorporating error severity assessment and the option to flag data for

human review, the self-healing data worker becomes more intelligent and

adaptable. It can handle minor errors automatically while escalating severe

errors to human experts for manual intervention.

The specific criteria for determining error severity can be defined in the

worker’s directive based on the domain knowledge and business require-

ments. Factors such as the impact on data integrity, the potential for

data loss or corruption, and the consequences of incorrect data can be

considered when assessing severity.

By leveraging AI to assess error severity and providing options for human

intervention, self-healing data techniques can strike a balance between

automation and maintaining data accuracy. This approach ensures that

minor errors are corrected efficiently while severe errors receive the

necessary attention and expertise from human reviewers.

Self Healing Data 181

Domain Complexity

When considering the application of self-healing data techniques, it’s

important to evaluate the complexity of the data domain and the rules

governing its structure and relationships. The complexity of the domain

can significantly impact the effectiveness and feasibility of automated data

correction approaches.

Self-healing data techniques work well when the data follows well-defined

patterns and constraints. In domains where the data structure is relatively

simple and the relationships between data elements are straightforward,

automated corrections can be applied with a high degree of confidence.

For example, correcting formatting issues or enforcing basic data type

constraints can often be handled effectively by self-healing data workers.

However, as the complexity of the data domain increases, the challenges

associated with automated data correction also grow. In domains with

intricate business logic, complex relationships between data entities, or

domain-specific rules and exceptions, self-healing data techniques may

not always capture the nuances and may introduce unintended conse-

quences.

Let’s consider an example of a complex domain: a financial trading system.

In this domain, the data involves various financial instruments, market data,

trading rules, and regulatory requirements. The relationships between

different data elements can be intricate, and the rules governing data

validity and consistency can be highly specific to the domain.

In such a complex domain, a self-healing data worker tasked with correct-

ing inconsistencies in trade data would need to have a deep understanding

of the domain-specific rules and constraints. It would need to consider

factors such as market regulations, trading limits, risk calculations, and

Self Healing Data 182

settlement procedures. Automated corrections in this context may not

always capture the full complexity of the domain and may inadvertently

introduce errors or violate domain-specific rules.

To address the challenges of domain complexity, self-healing data tech-

niques can be enhanced by incorporating domain-specific knowledge and

rules into the AI models and workers. This can be achieved through

techniques such as:

1. Domain-Specific Training: The AI models used for self-healing data

can be directed or even fine-tuned on domain-specific datasets that

capture the intricacies and rules of the particular domain. By exposing

the models to representative data and scenarios, they can learn the

patterns, constraints, and exceptions specific to the domain.

2. Rule-BasedConstraints: Self-healing dataworkers can be augmented

with explicit rule-based constraints that encode domain-specific

knowledge. These rules can be defined by domain experts and

integrated into the data correction process. The AI models can then

use these rules to guide their decisions and ensure compliance with

domain-specific requirements.

3. Collaboration with Domain Experts: In complex domains, it’s crucial

to involve domain experts in the design and development of self-

healing data techniques. Domain experts can provide valuable in-

sights into the intricacies of the data, the business rules, and the

potential edge cases. Their knowledge can be incorporated into the

AI models and workers to improve the accuracy and reliability of

automated data corrections using Human In The Loop patterns .

4. Incremental and Iterative Approach: When dealing with complex

domains, it’s often beneficial to adopt an incremental and iterative

approach to self-healing data. Instead of attempting to automate

Self Healing Data 183

corrections for the entire domain at once, focus on specific subdo-

mains or data categories where the rules and constraints are well-

understood. Gradually expand the scope of self-healing techniques

as the understanding of the domain grows and the techniques prove

effective.

By considering the complexity of the data domain and incorporating

domain-specific knowledge into self-healing data techniques, you can

strike a balance between automation and accuracy. It’s important to

recognize that self-healing data is not a one-size-fits-all solution and

that the approach should be tailored to the specific requirements and

challenges of each domain.

In complex domains, a hybrid approach that combines self-healing data

techniques with human expertise and oversight can be most effective.

Automated corrections can handle routine and well-defined cases, while

complex scenarios or exceptions can be flagged for human review and

intervention. This collaborative approach ensures that the benefits of

automation are realized while maintaining the necessary control and ac-

curacy in complex data domains.

Explainability and Transparency

Explainability refers to the ability to understand and interpret the reason-

ing behind the decisions made by AI models, while transparency involves

providing clear visibility into the data correction process.

In many contexts, data modifications need to be auditable and justifiable.

Stakeholders, including business users, auditors, and regulatory bodies,

may require explanations for why certain data corrections were made and

how the AI models arrived at those decisions. This is especially crucial in

Self Healing Data 184

domains where data accuracy and integrity have significant implications,

such as finance, healthcare, and legal matters.

To address the need for explainability and transparency, self-healing data

techniques should incorporate mechanisms that provide insights into the

decision-making process of AI models. This can be achieved through

various approaches:

1. Chain of Thought: Asking the model to explain its thinking “out loud”

before applying changes to data may allow for easier understanding

of the decision-making process and can generate human-readable

explanations for the corrections made. The tradeoff is a little bit more

complexity in separating the explanation from the structured data

output, which can be addressed by…

2. Explanation Generation: Self-healing data workers can be equipped

with the ability to generate human-readable explanations for the

corrections they make. This can be achieved by asking the model

to output its decision-making process as easily understandable ex-

planations integrated into the data itself. For example, a self-healing

data worker could generate a report that highlights the specific

data inconsistencies it identified, the corrections it applied, and the

rationale behind those corrections.

3. Feature Importance: AI models can be instructed with information

about the importance of different features or attributes in the data

correction process as part of their directives. Those directives, in

turn, can be exposed to human stakeholders. By identifying the key

factors that influence the model’s decisions, stakeholders can gain

insights into the reasoning behind the corrections and assess their

validity.

4. Logging and Auditing: Implementing comprehensive logging and

Self Healing Data 185

auditing mechanisms is crucial for maintaining transparency in the

self-healing data process. Every data correction made by AI models

should be logged, including the original data, the corrected data, and

the specific actions taken. This audit trail allows for retrospective

analysis and provides a clear record of the modifications made to the

data.

5. Human-in-the-Loop Approach: Incorporating a human-in-the-loop

approach can enhance the explainability and transparency of self-

healing data techniques. By involving human experts in the review and

validation of AI-generated corrections, organizations can ensure that

the corrections align with domain knowledge and business require-

ments. Human oversight adds an additional layer of accountability

and allows for the identification of any potential biases or errors in

the AI models.

6. Continuous Monitoring and Evaluation: Regularly monitoring and

evaluating the performance of self-healing data techniques is essential

formaintaining transparency and trust. By assessing the accuracy and

effectiveness of the AI models over time, organizations can identify

any deviations or anomalies and take corrective actions. Continuous

monitoring helps ensure that the self-healing data process remains

reliable and aligned with the desired outcomes.

Explainability and transparency are critical considerations when imple-

menting self-healing data techniques. By providing clear explanations for

data corrections, maintaining comprehensive audit trails, and involving

human oversight, organizations can build trust in the self-healing data

process and ensure that the modifications made to the data are justifiable

and aligned with business objectives.

It’s important to strike a balance between the benefits of automation

Self Healing Data 186

and the need for transparency. While self-healing data techniques can

significantly improve data quality and efficiency, they should not come at

the cost of losing visibility and control over the data correction process. By

designing self-healing data workers with explainability and transparency

in mind, organizations can harness the power of AI while maintaining the

necessary level of accountability and trust in the data.

Unintended Consequences

While self-healing data techniques aim to improve data quality and consis-

tency, it’s crucial to be aware of the potential for unintended consequences.

Automated corrections, if not carefully designed andmonitored, may inad-

vertently alter the meaning or context of the data, leading to downstream

issues.

One of the primary risks of self-healing data is the introduction of bias or

errors in the data correction process. AI models, like any other software

system, can be subject to biases present in the training data or introduced

through the design of the algorithms. If these biases are not identified and

mitigated, they can propagate through the self-healing data process and

result in skewed or incorrect data modifications.

For example, consider a self-healing data worker tasked with correcting

inconsistencies in customer demographic data. If the AI model has learned

biases from historical data, such as associating certain occupations or

income levels with specific genders or ethnicities, it may make incorrect

assumptions andmodify the data in a way that reinforces those biases. This

can lead to inaccurate customer profiles, misguided business decisions,

and potentially discriminatory outcomes.

Another potential unintended consequence is the loss of valuable infor-

mation or context during the data correction process. Self-healing data

Self Healing Data 187

techniques often focus on standardizing and normalizing data to ensure

consistency. However, in some cases, the original data may contain

nuances, exceptions, or contextual information that is important for un-

derstanding the full picture. Automated corrections that blindly enforce

standardization may inadvertently remove or obscure this valuable infor-

mation.

For instance, imagine a self-healing data worker responsible for correcting

inconsistencies in medical records. If the worker encounters a patient’s

medical history with a rare condition or an unusual treatment plan, it may

attempt to normalize the data to fit a more common pattern. However,

in doing so, it may lose the specific details and context that are crucial

for accurately representing the patient’s unique situation. This loss of

information can have serious implications for patient care and medical

decision-making.

To mitigate the risks of unintended consequences, it’s essential to take a

proactive approach when designing and implementing self-healing data

techniques:

1. Thorough Testing and Validation: Before deploying self-healing data

workers in production, it’s crucial to thoroughly test and validate

their behavior against a diverse range of scenarios. This includes

testing with representative datasets that cover various edge cases,

exceptions, and potential biases. Rigorous testing helps identify and

address any unintended consequences before they impact real-world

data.

2. Continuous Monitoring and Evaluation: Implementing continuous

monitoring and evaluation mechanisms is essential for detecting and

mitigating unintended consequences over time. Regularly reviewing

the outcomes of self-healing data processes, analyzing the impact

Self Healing Data 188

on downstream systems and decision-making, and gathering feed-

back from stakeholders can help identify any adverse effects and

prompt timely corrective actions. If your organization has operational

dashboards, adding plainly visible metrics related to automated data

changes is probably a good idea. Adding alarms connected to large

deviations fromnormal data change activity is probably an even better

idea!

3. Human Oversight and Intervention: Maintaining human oversight

and the ability to intervene in the self-healing data process is crucial.

While automation can greatly improve efficiency, it’s important to

have human experts review and validate the corrections made by AI

models, especially in critical or sensitive domains. Human judgment

and domain expertise can help identify and address any unintended

consequences that may arise.

4. Explainable AI (XAI) and Transparency: As discussed in the previous

subsection, incorporating explainable AI techniques and ensuring

transparency in the self-healing data process can help mitigate un-

intended consequences. By providing clear explanations for data cor-

rections and maintaining comprehensive audit trails, organizations

can better understand and trace the reasoning behind the modifica-

tions made by AI models.

5. Incremental and Iterative Approach: Adopting an incremental and

iterative approach to self-healing data can help minimize the risk of

unintended consequences. Instead of applying automated correc-

tions to the entire dataset at once, start with a subset of data and

gradually expand the scope as the techniques prove effective and

reliable. This allows for careful monitoring and adjustment along the

way, reducing the impact of any unintended consequences.

Self Healing Data 189

6. Collaboration and Feedback: Engaging stakeholders from different

domains and encouraging collaboration and feedback throughout the

self-healing data process can help identify and address unintended

consequences. Regularly seeking input from domain experts, data

consumers, and end-users can provide valuable insights into the real-

world impact of the data corrections and highlight any issues thatmay

have been overlooked.

By proactively addressing the risk of unintended consequences and imple-

menting appropriate safeguards, organizations can harness the benefits of

self-healing data techniqueswhileminimizing potential adverse effects. It’s

important to approach self-healing data as an iterative and collaborative

process, continuously monitoring, evaluating, and refining the techniques

to ensure they align with the desired outcomes and maintain the integrity

and reliability of the data.

When considering the use of self-healing data patterns, it’s essential to

carefully evaluate these factors andweigh the benefits against the potential

risks and limitations. In some cases, a hybrid approach that combines

automated corrections with human oversight and intervention may be the

most appropriate solution.

It’s also worth noting that self-healing data techniques should not be seen

as a replacement for robust data validation, input sanitization, and error

handling mechanisms. These foundational practices remain critical for

ensuring data integrity and security. Self-healing data should be viewed as

a complementary approach that can augment and enhance these existing

measures.

Self Healing Data 190

Ultimately, the decision to employ self-healing data patterns depends on

the specific requirements, constraints, and priorities of your application.

By carefully considering the considerations outlined above and aligning

them with your application’s goals and architecture, you can make in-

formeddecisions onwhen and how to leverage self-healing data techniques

effectively.

Contextual Content Generation

Contextual Content Generation patterns leverage the power of large lan-

guage models (LLMs) to generate dynamic and context-specific content

within applications. This category of patterns recognizes the importance

of delivering personalized and relevant content to users based on their

specific needs, preferences, and even previous and current interactions

with the application.

In the context of this approach, “content” refers both to primary content

(i.e. blog posts, articles, etc) and meta-content, such as recommenda-

tions to primary content.

Contextual Content Generation 192

Contextual Content Generation patterns can play a crucial role in en-

hancing your user engagement levels, providing tailored experiences, and

automating content creation tasks both for you and your users. By utilizing

the patterns we describe in this chapter, you can create applications that

generate content dynamically, adapting to context and inputs in real-time.

The patterns work by integrating LLMs into the application’s outputs,

ranging from the user interface (sometimes referred to as “chrome”), to

emails and other forms of notifications, as well as any content generation

pipelines.

When a user interacts with the application or triggers a specific con-

tent request, the application captures the relevant context, such as user

preferences, previous interactions, or specific prompts. This contextual

information is then fed into the LLM, along with any necessary templates

or guidelines and used to produce textual output thatwould otherwise have

to be either hardcoded, stored in a database, or algorithmically generated.

The LLM generated content can take various forms, such as personalized

recommendations, dynamic product descriptions, customized email re-

sponses, or even entire articles or blog posts. One of the most radical uses

of this content that I pioneered over a year ago is dynamically generating

UI elements like form labels, tooltips, and other kinds of explanatory text.

Personalization

One of the key benefits of Contextual Content Generation patterns is the

ability to deliver highly personalized experiences to users. By generating

content based on user-specific context, these patterns enable applications

to tailor content to individual users’ interests, preferences, and interac-

tions.

Contextual Content Generation 193

Personalization goes beyond simply inserting a user’s name into generic

content. It involves leveraging the rich context available about each user to

generate content that resonates with their specific needs and desires. This

context can include a wide range of factors, such as:

1. User Profile Information: At the most general level of applying

this technique, demographic data, interests, preferences, and other

profile attributes can be used to generate content that aligns with the

user’s background and characteristics.

2. Behavioral Data: A user’s past interactions with the application, such

as viewed pages, clicked links, or purchased products, can provide

valuable insights into their behavior and interests. This data can be

used to generate content suggestions that reflects their engagement

patterns and predicts their future needs.

3. Contextual Factors: The user’s current context, such as their location,

device, time of day, or even the weather, can influence the content

generation process. For example, a travel applicationmight have an AI

worker that is able to generate personalized recommendations based

on the user’s current location and the prevailing weather conditions.

By leveraging these contextual factors, Contextual Content Generation

patterns enable applications to deliver content that feels tailor-made for

each individual user. This level of personalization has several significant

benefits:

1. Increased Engagement: Personalized content captures users’ atten-

tion and keeps them engaged with the application. When users feel

that the content is relevant and speaks directly to their needs, they

are more likely to spend more time interacting with the application

and exploring its features.

Contextual Content Generation 194

2. Improved User Satisfaction: Personalized content demonstrates that

the application understands and cares about the user’s unique re-

quirements. By providing content that is helpful, informative, and

aligned with their interests, the application can enhance user satis-

faction and build a stronger connection with its users.

3. HigherConversionRates: In the context of e-commerce ormarketing

applications, personalized content can significantly impact conver-

sion rates. By presenting users with products, offers, or recom-

mendations that are tailored to their preferences and behavior, the

application can increase the likelihood of users taking desired actions,

such as making a purchase or signing up for a service.

Productivity

Contextual Content Generation patterns can significantly boost certain

kinds of productivity by reducing the need for manual content generation

and editing in creative processes. By leveraging the power of LLMs, you

can generate high-quality content at scale, saving time and effort that

your content creators and developers would otherwise have to spend doing

tedious manual work.

Traditionally, content creators need to research, write, edit, and format

content to ensure it meets the application’s requirements and user ex-

pectations. This process can be time-consuming and resource-intensive,

especially as the volume of content grows.

However, with Contextual Content Generation patterns, the content cre-

ation process can be largely automated. LLMs can generate coherent,

grammatically correct, and contextually relevant content based on the pro-

Contextual Content Generation 195

vided prompts and guidelines. This automation offers several productivity

benefits:

1. Reduced Manual Effort: By delegating content generation tasks to

LLMs, content creators can focus on higher-level tasks such as con-

tent strategy, ideation, and quality assurance. They can provide the

necessary context, templates, and guidelines to the LLM and let it

handle the actual content generation. This reduces the manual effort

required for writing and editing, allowing content creators to be more

productive and efficient.

2. Faster Content Creation: LLMs can generate content much faster

than human writers. With the right prompts and guidelines, an LLM

can produce multiple pieces of content in a matter of seconds or

minutes. This speed enables applications to generate content at a

much faster pace, keeping upwith the demands of users and the ever-

changing digital landscape.

Is faster content creation leading to a “tragedy of the commons” situa-

tion where the internet is drowning in content that nobody reads. Sadly,

I suspect the answer is yes.

3. Consistency and Quality: LLMs can trivially revise content so that it

is consistent in style, tone, and quality. Provided clear guidelines and

examples, certain kinds of applications (i.e. newsroom, PR, etc.) can

ensure that their human-generated content aligns with their brand

voice and meets the desired quality standards. This consistency

reduces the need for extensive editing and revisions, saving time and

effort in the content creation process.

Contextual Content Generation 196

4. Iteration and Optimization: Contextual Content Generation

patterns enable rapid iteration and optimization of content. By

adjusting the prompts, templates, or guidelines provided to the LLM,

your applications can quickly generate variations of content and test

different approaches in an automated fashion that was never possible

in the past. This iterative process allows for faster experimentation

and refinement of content strategies, leading to more effective and

engaging content over time. This particular technique can be a total

game-changer for applications such as e-commerce that live and die

based on bounce rates and engagement .

It’s important to note that while Contextual Content Gener-

ation patterns can greatly enhance productivity, they do not

completely eliminate the need for human involvement. Content

creators and editors still play a crucial role in defining the overall

content strategy, providing guidance to the LLM, and ensuring

the quality and appropriateness of the generated content.

By automating the more repetitive and time-consuming aspects of content

creation, Contextual Content Generation patterns free up valuable human

time and resources that can be redirected towards higher-value tasks.

This increased productivity enables you to deliver more personalized and

engaging content to users while optimizing content creation workflows.

Rapid Iteration and Experimentation

Contextual Content Generation patterns enable you to quickly iterate and

experiment with different content variations, allowing for faster optimiza-

tion and refinement of your content strategy. You can generate multiple

Contextual Content Generation 197

versions of content in a matter of seconds, simply by adjusting the context,

templates, or guidelines provided to the model.

This rapid iteration capability offers several key benefits:

1. Testing and Optimization: With the ability to generate content vari-

ations quickly, you can easily test different approaches and measure

their effectiveness. For example, you can generate multiple versions

of a product description or a marketing message, each tailored to

a specific user segment or context. By analyzing user engagement

metrics, such as click-through rates or conversion rates, you can

identify the most effective content variations and optimize your con-

tent strategy accordingly.

2. A/B Testing: Contextual Content Generation patterns enable seam-

less A/B testing of content. You can generate two or more variations

of content and randomly serve them to different user groups. By com-

paring the performance of each variation, you can determine which

content resonates best with your target audience. This data-driven

approach allows you to make informed decisions and continuously

refine your content to maximize user engagement and achieve your

desired outcomes.

3. Personalization Experiments: Rapid iteration and experimentation

are particularly valuable when it comes to personalization. With

Contextual Content Generation patterns , you can quickly generate

personalized content variations based on different user segments,

preferences, or behaviors. By experimenting with different person-

alization strategies, you can identify the most effective approaches

for engaging individual users and delivering tailored experiences.

4. Adapting to Changing Trends: The ability to iterate and experiment

rapidly enables you to stay agile and adapt to changing trends and

Contextual Content Generation 198

user preferences. As new topics, keywords, or user behaviors emerge,

you can quickly generate content that aligns with these trends. By

continuously experimenting and refining your content, you can stay

relevant and maintain a competitive edge in the ever-evolving digital

landscape .

5. Cost-Effective Experimentation: Traditional content experimenta-

tion often involves significant time and resources, as content creators

need to manually develop and test different variations. However, with

Contextual Content Generation patterns, the cost of experimentation

is greatly reduced. LLMs can generate content variations quickly and

at scale, allowing you to explore a wide range of ideas and approaches

without incurring substantial costs.

To make the most of rapid iteration and experimentation, it’s important to

have a well-defined experimentation framework in place. This framework

should include:

• Clear objectives and hypotheses for each experiment

• Appropriate metrics and tracking mechanisms to measure content

performance

• Segmentation and targeting strategies to ensure relevant content

variations are served to the right users

• Analysis and reporting tools to derive insights from the experimental

data

• A process for incorporating learnings and optimizations into your

content strategy

By embracing rapid iteration and experimentation, you can continuously

refine and optimize your content, ensuring that it remains engaging, rele-

vant, and effective in achieving your application’s goals. This agile approach

Contextual Content Generation 199

to content creation allows you to stay ahead of the curve and deliver

exceptional user experiences .

Scalability and Efficiency

As applications grow and the demand for personalized content increases,

contextual content generation patterns enable efficient scaling of content

creation. LLMs can generate content for a large number of users and

contexts simultaneously, without the need for a proportional increase in

human resources. This scalability allows applications to deliver person-

alized experiences to a growing user base without straining their content

creation capabilities.

Note that contextual content generation can be used effectively

to internationalize your application “on the fly”. In fact, that’s

exactly what I did using my Instant18n Gem to deliver Olympia in

more than half-dozen languages , even though we’re less than a

year old.

AI Powered Localization

If you allow me to brag for a moment, I think that my Instant18n library

for Rails apps is a groundbreaking example of the “Contextual Content

Generation” pattern in action, showcasing the transformative potential of

AI in application development. This gem leverages the power of OpenAI’s

GPT large-language model to revolutionize the way internationalization

and localization are handled in Rails applications.

Traditionally, internationalizing a Rails application involvesmanually defin-

ing translation keys and providing corresponding translations for each

Contextual Content Generation 200

supported language. This process can be time-consuming, resource-

intensive, and prone to inconsistencies. However, with the Instant18n gem,

the paradigm of localization is completely redefined.

By integrating a large language model, the Instant18n gem enables you

to generate translations on-the-fly, based on the context and meaning

of the text. Instead of relying on predefined translation keys and static

translations, the gemdynamically translates text using the power of AI. This

approach offers several key benefits:

1. Seamless Localization: With the Instant18n gem, developers no

longer need to manually define and maintain translation files for each

supported language . The gem automatically generates translations

based on the provided text and the desired target language, making

the localization process effortless and seamless.

2. Contextual Accuracy: AI can be given enough context to figure out

the nuances of the text being translated. It can take into account

the surrounding context, idioms, and cultural references to generate

translations that are accurate, natural-sounding, and contextually

appropriate.

3. Extensive Language Support: The Instant18n gem leverages the vast

knowledge and linguistic capabilities of GPT, enabling translations

into an extensive range of languages. From common languages like

Spanish and French to more obscure or fictional languages like Klin-

gon and Elvish, the gem can handle a wide variety of translation

requirements.

4. Flexibility and Creativity: The gem goes beyond traditional language

translations and allows for creative and unconventional localization

options. Developers can translate text into various styles, dialects, or

even fictional languages, opening up new possibilities for unique user

Contextual Content Generation 201

experiences and engaging content .

5. Performance Optimization: The Instant18n gem incorporates

caching mechanisms to improve performance and reduce the

overhead of repeated translations. Translated text is cached, allowing

subsequent requests for the same translation to be served quickly

without the need for redundant API calls .

The Instant18n gem exemplifies the power of the “Contextual Content Gen-

eration” pattern by leveraging AI to generate localized content dynamically.

It showcases how AI can be integrated into the core functionality of a Rails

application, transforming the way developers approach internationaliza-

tion and localization.

By eliminating the need for manual translation management and enabling

on-the-fly translations based on context, the Instant18n gem saves devel-

opers significant time and effort. It allows them to focus on building the

core features of their applicationwhile ensuring that the localization aspect

is handled seamlessly and accurately.

The Importance of User Testing and Feedback

Finally, always keep in mind the importance of user testing and feedback .

It’s crucial to validate that contextual content generation meets user ex-

pectations and aligns with the application’s goals. Continuously iterate and

refine generated content based on user insights and analytics. If you’re

generating dynamic content on a large scale that would be impossible

to validate manually by you and your team, consider adding feedback

mechanisms that allowusers to report content that isweird orwrong, along

with an explanation of why. That precious feedback can even be fed to an AI

Contextual Content Generation 202

worker tasked with making adjustments to the component that generated

the content!

Generative UI

Attention is at such a premium these days that effective user engagement

nowdemands software experiences that are not only seamless and intuitive

but also highly personalized to individual needs, preferences, and contexts.

As a result, designers and developers are increasingly faced with the

challenge of creating user interfaces ! that can adapt and cater to the

unique requirements of each user at scale.

Generative UI (GenUI) is a truly revolutionary approach to user interface

design ! that leverages the power of large languagemodels (LLMs) to create

highly personalized and dynamic user experiences on-the-fly. I wanted to

make sure to at least give you a primer on GenUI in this book, because I

believe that it is one of the greenest green field opportunities that currently

exists in the realm of application design and frameworks . I’m convinced

Generative UI 204

that dozens or more new successful commercial and open-source projects

will emerge in this particular niche.

At its core, GenUI combines the principles of Contextual Content Gener-

ation with advanced AI techniques to generate user interface elements,

such as text, images, and layouts, dynamically based on a deep understand-

ing of the user’s context, preferences, and goals. GenUI enables designers

and developers to create interfaces that adapt and evolve in response to

user interactions, providing a level of personalization that was previously

unattainable.

GenUI represents a fundamental change in the way we approach user

interface design. Instead of designing for the masses, GenUI allows us to

design for the individual. Personalized content and interfaces have the

potential of creating user experiences that resonate with each user on a

deeper level, increasing engagement, satisfaction, and loyalty.

As a bleeding-edge technique, transitioning to GenUI is full of conceptual

and practical challenges . Integrating AI into the design process, ensuring

that the generated interfaces are not only personalized but also usable,

accessible, and aligned with the overall brand and user experience, all of

these are challenges that make GenUI a pursuit for the few, not the many.

Additionally, the involvement of AI raises questions about data privacy,

transparency, and perhaps even ethical implications .

Despite the challenges, personalized experiences at scale have the power

to completely transform the way we interact with digital products and

services. It opens up possibilities for creating inclusive and accessible

interfaces that cater to the diverse needs of users, regardless of their

abilities, backgrounds, or preferences .

In this chapter, we will explore the concept of GenUI, examining some

defining characteristics, key benefits, and potential challenges. We begin

Generative UI 205

by considering the most basic and accessible form of GenUI: generating

text copy for otherwise traditionally designed and implemented user in-

terfaces.

Generating Copy for User Interfaces

Text elements that exist in your application’s chrome, such as form labels,

tooltips, and explanatory text, are typically hardcoded into the templates

or UI components, providing a consistent but generic experience for all

users. Using contextual content generation patterns , you can transform

these static elements into dynamic, context-aware, and personalized com-

ponents.

Personalized Forms

Forms are a ubiquitous part of web and mobile applications, serving as the

primary means of collecting user input. However, traditional forms often

present a generic and impersonal experience, with standard labels and

fields that may not always align with the user’s specific context or needs.

Users are more likely to complete forms that feel tailored to their needs

and preferences, leading to higher conversion rates and user satisfaction.

However, it’s important to strike a balance between personalization and

consistency. While adapting forms to individual users can be beneficial,

it’s crucial to maintain a level of familiarity and predictability. Users should

still be able to recognize and navigate forms easily, even with personalized

elements.

Here are some personalized form ideas for inspiration:

Generative UI 206

Contextual Field Suggestions

GenUI can analyze the user’s previous interactions, preferences, and data

to provide intelligent field suggestions as predictions. For instance, if the

user has previously entered their shipping address, the form can automat-

ically populate the relevant fields with their saved information. This not

only saves time but also demonstrates that the application understands and

remembers the user’s preferences.

Wait a minute, isn’t this technique something that could be done without

involving AI? Of course, but the beauty of driving this kind of functionality

with AI is two-fold: 1) how easy it can be to implement and 2) how resilient

it can be as your UI changes and evolves over time.

Let’s whip up a service for our theoretical order handling system, that tries

to proactively fill in the right shipping address for the user.

1 class OrderShippingAddressSubscriber
2 include Raix::ChatCompletion
3
4 attr_accessor :order
5
6 delegate :customer, to: :order
7
8 DIRECTIVE = "You are a smart order processing assistant. Given the
9 customer's order history, guess the most likely shipping address
10 for the current order."
11
12 def order_created(order)
13 return unless order.pending? && order.shipping_address.blank?
14
15 self.order = order
16
17 transcript.clear
18 transcript << { system: DIRECTIVE }
19 transcript << { user: "Order History: #{order_history.to_json}" }
20 transcript << { user: "Current Order: #{order.to_json}" }

Generative UI 207

21
22 response = chat_completion
23 apply_predicted_shipping_address(order, response)
24 end
25
26 private
27
28 def apply_predicted_shipping_address(order, response)
29 # extract the shipping address from the response...
30 # ...and assume there's some sort of live update of the address fields
31 order.update(shipping_address:)
32 end
33
34 def order_history
35 customer.orders.successful.limit(100).map do |order|
36 {
37 date: order.date,
38 description: order.description,
39 shipping_address: order.shipping_address
40 }
41 end
42 end
43 end

This example is very simplified, but should work for most cases. The idea

is to let the AI take a guess the same way that a human would. To make it

clear what I’m talking about, let’s consider some sample data:

Generative UI 208

1 Order History:
2 [
3 {"date": "2024-01-03", "description": "garden soil mix",
4 "shipping_address": "123 Country Lane, Rural Town"},
5 {"date": "2024-01-15", "description": "hardcover fiction novels",
6 "shipping_address": "456 City Apt, Metroville"},
7 {"date": "2024-01-22", "description": "baby diapers", "shipping_address":
8 "789 Suburb St, Quietville"},
9 {"date": "2024-02-01", "description": "organic vegetables",
10 "shipping_address": "123 Country Lane, Rural Town"},
11 {"date": "2024-02-17", "description": "mystery thriller book set",
12 "shipping_address": "456 City Apt, Metroville"},
13 {"date": "2024-02-25", "description": "baby wipes",
14 "shipping_address": "789 Suburb St, Quietville"},
15 {"date": "2024-03-05", "description": "flower seeds",
16 "shipping_address": "123 Country Lane, Rural Town"},
17 {"date": "2024-03-20", "description": "biographies",
18 "shipping_address": "456 City Apt, Metroville"},
19 {"date": "2024-03-30", "description": "baby formula",
20 "shipping_address": "789 Suburb St, Quietville"},
21 {"date": "2024-04-12", "description": "lawn fertilizer",
22 "shipping_address": "123 Country Lane, Rural Town"},
23 {"date": "2024-04-22", "description": "science fiction novels",
24 "shipping_address": "456 City Apt, Metroville"},
25 {"date": "2024-05-02", "description": "infant toys",
26 "shipping_address": "789 Suburb St, Quietville"},
27 {"date": "2024-05-14", "description": "outdoor grill",
28 "shipping_address": "123 Country Lane, Rural Town"},
29 {"date": "2024-05-29", "description": "literary classics",
30 "shipping_address": "456 City Apt, Metroville"},
31 {"date": "2024-06-11", "description": "baby clothes",
32 "shipping_address": "789 Suburb St, Quietville"},
33 {"date": "2024-07-01", "description": "watering can",
34 "shipping_address": "123 Country Lane, Rural Town"},
35 {"date": "2024-07-18", "description": "non-fiction essays",
36 "shipping_address": "456 City Apt, Metroville"},
37 {"date": "2024-07-28", "description": "baby bath items",
38 "shipping_address": "789 Suburb St, Quietville"},
39 {"date": "2024-08-09", "description": "herb garden kit",
40 "shipping_address": "123 Country Lane, Rural Town"},
41 {"date": "2024-08-24", "description": "children's books",
42 "shipping_address": "456 City Apt, Metroville"}

Generative UI 209

43]

Did you notice the pattern in the data? I guarantee you this is easy stuff for

an LLM . To demonstrate, let’s ask GPT-4o what the most likely shipping

address is for a “thermometer”.

1 From the order history you've provided, it looks like the purchases are
2 generally clustered into three main types based on the shipping addresses:
3
4 123 Country Lane, Rural Town - This address often orders garden and
5 outdoor-related items like soil mix, vegetables, flower seeds, lawn
6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.
7
8 456 City Apt, Metroville - This address tends to order various types of books,
9 indicating an interest in reading across genres like fiction, thrillers,
10 biographies, science fiction, literary classics, non-fiction essays, and
11 children's books.
12
13 789 Suburb St, Quietville - The purchases for this address are consistently
14 baby-related products, such as diapers, wipes, baby formula, infant toys,
15 baby clothes, and baby bath items.
16
17 Given these patterns, a digital thermometer could potentially be a fit for
18 any of the addresses based on different needs: outdoor temperature tracking,
19 a tool for a passionate reader interested in science gadgets, or a health
20 tool for a baby. However, considering its common use in monitoring health,
21 especially for babies, it's most likely to be purchased by someone who's
22 already buying baby care products.
23
24 Therefore, the most likely shipping address for a digital thermometer, based
25 on the purchasing patterns, would be 789 Suburb St, Quietville.

If you’re thinking to yourself that it’s overkill to use an expensive model like

GPT-4 for this task, you’re right! I tried the same prompt on Mistral 7B

Instruct and it produced the following response at 75 tokens per second,

and a miserly cost of $0.000218 USD.

Generative UI 210

1 Based on the given order history, it appears that the customer has received
2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)
3 at the address "789 Suburb St, Quietville" and garden-related items (soil,
4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural
5 Town". The customer has also received books (fiction, non-fiction, literary
6 classics, mystery-thriller, science fiction, biographies, children's books)
7 at the address "456 City Apt, Metroville".
8
9 Given that the new order is for a "thermometer", which doesn't seem to fit
10 into any of the categories that the customer has previously ordered, it's
11 hard to accurately predict the shipping address based solely on the order
12 history. However, given the 50%-50% split between baby-related and
13 garden-related items, it could somewhat lean towards the Baby-related items
14 address ("789 Suburb St, Quietville"). But remember, this is an assumption
15 and cannot be definitively confirmed without more context or information.

Is the overhead and cost of this technique worth it to make a checkout

experience more magical? For many online retailers , absolutely. And

from the looks of it, the cost of AI computing is only going to go down,

especially for commodity open source model hosting providers in a race

to the bottom.

Use a Prompt Template and StructuredIO along with Response

Fencing to optimize this kind of chat completion.

Adaptive Field Ordering

The order in which form fields are presented can significantly impact the

user’s experience and completion rates. With GenUI , you can dynamically

adjust the field ordering based on the user’s context and the importance

of each field. For example, if the user is filling out a registration form for

a fitness app, the form could prioritize fields related to their fitness goals

and preferences, making the process more relevant and engaging.

Generative UI 211

Personalized Microcopy

The instructional text, error messages, and other microcopy associated

with forms can also be personalized using GenUI . Instead of displaying

generic error messages like “Invalid email address,” you can generate more

helpful and contextual messages such as “Please enter a valid email address

to receive your order confirmation.” These personalized touches can make

the form experience more user-friendly and less frustrating.

Personalized Validation

Along the same lines of Personalized Microcopy , you could use AI to

validate the form in ways that seem magical. Imagine letting an AI validate

a user profile form, looking for potential mistakes on a semantic level.

Generative UI 212

Figure 9. Can you spot the semantic validation happening?

Progressive Disclosure

GenUI can intelligently determine which form fields are essential based on

the user’s context and gradually reveal additional fields as needed. This

progressive disclosure technique helps reduce cognitive load and makes

the form-filling process more manageable. For instance, if a user is signing

Generative UI 213

up for a basic subscription, the form can initially present only the essential

fields, and as the user progresses or selects specific options, additional

relevant fields can be dynamically introduced.

Context‐Aware Explanatory Text

Tooltips are often used to provide additional information or guidance to

users when they hover over or interact with specific elements. With a

“Contextual Content Generation” approach, you can generate tooltips that

adapt to the user’s context and provide relevant information. For instance,

if a user is exploring a complex feature, the tooltip can offer personalized

tips or examples based on their previous interactions or skill level.

Explanatory text, such as instructions, descriptions, or help messages,

can be dynamically generated based on the user’s context. Instead of

presenting generic explanations, you can use LLMs to generate text that

is tailored to the user’s specific needs or questions. For example, if a user

is struggling with a particular step in a process, the explanatory text can

provide personalized guidance or troubleshooting tips.

Microcopy refers to the small pieces of text that guide users through

your application, such as button labels, error messages, or confirmation

prompts. By applying the Contextual Content Generation approach to

microcopy, you can create an adaptive UI that responds to the user’s

actions and provides relevant and helpful text. For instance, if a user

is about to perform a critical action, the confirmation prompt can be

generated dynamically to provide a clear and personalized message.

Personalized explanatory text and tooltips can greatly enhance the on-

boarding process for new users. By providing context-specific guidance

and examples, you can help users quickly understand and navigate the

application, reducing the learning curve and increasing adoption.

Generative UI 214

Dynamic and context-aware chrome elements can also make the applica-

tion feel more intuitive and engaging. Users are more likely to interact

with and explore features when the accompanying text is tailored to their

specific needs and interests.

So far we’ve covered ideas for enhancing existing UI paradigms with AI, but

what about rethinking how user interfaces are designed and implemented

in a more radical way?

Defining Generative UI

Unlike traditional UI design, where designers create fixed, static interfaces,

GenUI hints at a future in which our software boasts flexible, personalized

experiences that can evolve and adapt in real-time. Every time we use an

AI-driven conversational interface, we are letting the AI adapt to the user’s

particular needs. GenUI takes things a step further by applying that level

of adaptability to software’s visual interface .

The reason that it’s possible to play with GenUI ideas today is that large

language models already understand programming and their base knowl-

edge includes UI technologies and frameworks . The question is thus

whether large language models can be used to generate UI elements, such

as text, images, layouts, and even entire interfaces, that are tailored to

each individual user. The model could be instructed to take into account

various factors, such as the user’s past interactions, stated preferences,

demographic information, and the current context of use, to create highly

personalized and relevant interfaces.

GenUI differs from traditional user interface design in several key ways:

Generative UI 215

1. Dynamic and Adaptive: Traditional UI design involves creating fixed,

static interfaces that remain the same for all users. In contrast, GenUI

enables interfaces that can dynamically adapt and change based on

user needs and context. This means that the same application can

present different interfaces to different users or even to the same user

in different situations.

2. Personalization at Scale: With traditional design, creating personal-

ized experiences for each user is often impractical due to the time

and resources required. GenUI, on the other hand, allows for person-

alization at scale. By leveraging AI , designers can create interfaces

that automatically adapt to each user’s unique needs and preferences,

without having tomanually design and develop separate interfaces for

each user segment.

3. Focus on Outcomes: Traditional UI design often focuses on creating

visually appealing and functional interfaces. While these aspects are

still important in GenUI, the primary focus shifts towards achieving

desired user outcomes. GenUI aims to create interfaces that are

optimized for each user’s specific goals and tasks, prioritizing usability

and effectiveness over purely aesthetic considerations.

4. Continuous Learning and Improvement: GenUI systems can con-

tinuously learn and improve over time based on user interactions

and feedback. As users engage with the generated interfaces, the AI

models can gather data on user behavior, preferences, and outcomes,

using this information to refine and optimize future interface genera-

tions. This iterative learning process allows GenUI systems to become

increasingly effective at meeting user needs over time.

It’s important to note that GenUI is not the same as AI-assisted design tools,

such as those that provide suggestions or automate certain design tasks.

While these tools can be helpful in streamlining the design process, they

Generative UI 216

still rely on designers to make final decisions and create static interfaces.

GenUI, on the other hand, involves the AI system taking a more active role

in the actual generation and adaptation of interfaces based on user data

and context.

GenUI represents a significant shift in how we approach user interface

design, moving away from one-size-fits-all solutions and towards highly

personalized, adaptive experiences. By leveraging the power of AI, GenUI

has the potential to revolutionize the way we interact with digital products

and services, creating interfaces that are more intuitive, engaging, and

effective for each individual user.

Example

To illustrate the concept of GenUI, let’s consider a hypothetical fitness

application called “FitAI” . This app aims to provide personalized workout

plans and nutrition advice to users based on their individual goals, fitness

levels, and preferences.

In a traditional UI design approach, FitAI might have a fixed set of screens

and elements that are the same for all users. However, withGenUI, the app’s

interface could dynamically adapt to each user’s unique needs and context.

This approach is kind of a stretch to imagine implementing in 2024 and

might not even have adequate ROI, but it is possible.

Here’s how it might work:

1. Onboarding:

• Instead of a standard questionnaire, FitAI uses a conversational

AI to gather information about the user’s goals, current fitness

level, and preferences.

Generative UI 217

• Based on this initial interaction, the AI generates a personalized

dashboard layout, highlighting the features and informationmost

relevant to the user’s goals.
• Current AI technology might have a selection of screen com-

ponents at its disposal to use in composing the personalized

dashboard.
• Future AI technology might take on the role of an experienced UI

designer and actually create the dashboard from scratch.

2. Workout Planner:

• The workout planner interface is adapted by the AI based to

specifically match the user’s experience level and available equip-

ment.
• For a beginner with no equipment, it might show simple body-

weight exercises with detailed instructions and videos.
• For an advanced user with access to a gym, it could display more

complex routines with less explanatory content.
• The content of the workout planner is not simply filtered from a

large superset. It can be generated on the fly based on a knowl-

edge base that is queried with context that includes everything

known about the user.

3. Progress Tracking:

• The progress tracking interface evolves based on the user’s goals

and engagement patterns.
• If a user is primarily focused on weight loss, the interface might

prominently display a weight trend graph and calorie burn statis-

tics.
• For a user building muscle, it could highlight strength gains and

body composition changes.

Generative UI 218

• The AI can adapt this part of the application to the user’s actual

progress. If the progress stops for a period of time, the app can

shift into a mode where it tries to coax the user into divulging the

reasons for the setback, in order to mitigate them.

4. Nutrition Advice:

• The nutrition section adapts to the user’s dietary preferences and

restrictions.
• For a vegan user, it might show plant-basedmeal suggestions and

protein sources.
• For a user with a gluten intolerance, it would automatically filter

out gluten-containing foods from recommendations.
• Again, the content is not drawn from a massive superset of meal

data that applies to all users, but rather is synthesized from a

knowledge base that contains information adaptable based on the

user’s specific situation and constraints.
• For instance, recipes are generatedwith ingredient specifications

that match the constantly-changing caloric needs of the user as

their fitness level and body stats evolve.

5. Motivational Elements:

• The app’s motivational content and notifications are personalized

based on the user’s personality type and response to different

motivational strategies .
• Some users might receive encouraging messages, while others

get more data-driven feedback.

In this example, GenUI enables FitAI to create a highly customized expe-

rience for each user, potentially increasing engagement, satisfaction, and

Generative UI 219

the likelihood of achieving fitness goals. The interface elements, content,

and even the app’s “personality” adapt to best serve each individual user’s

needs and preferences.

The Shift to Outcome‐Oriented Design

GenUI represents a fundamental shift in the approach to user interface

design !, moving from a focus on creating specific interface elements

to a more holistic, outcome-oriented approach. This shift has several

important implications:

1. Focus on User Goals:

• Designers will need to think more deeply about user goals and

desired outcomes rather than specific interface components.
• The emphasis will be on creating systems that can generate

interfaces that help users achieve their objectives efficiently and

effectively.
• New UI frameworks will emerge that give AI-based designers

the tools they need to be able to generate user experiences on

the fly and from scratch instead of based on predefined screen

specifications .

2. Changing Role of Designers:

• Designers will transition from creating fixed layouts to defining

rules, constraints, and guidelines for AI systems to follow when

generating interfaces.
• They will need to develop skills in areas such as data analysis,

AI prompt engineering , and system thinking to effectively guide

GenUI systems.

Generative UI 220

3. Importance of User Research:

• User research becomes even more critical in a GenUI context, as

designers need to understand not just user preferences, but also

how these preferences and needs change in different contexts.
• Continuous user testing and feedback loops will be essential to

refine and improve the AI’s ability to generate effective interfaces.

4. Designing for Variability:

• Instead of creating a single “perfect” interface, designers will

need to consider multiple possible variations and ensure that

the system can generate appropriate interfaces for diverse user

needs.
• This includes designing for edge cases and ensuring that the

generated interfaces maintain usability and accessibility across

different configurations.
• Product differentiation takes on new dimensions involving di-

vergent perspectives on user psychology and the leveraging of

unique data sets and knowledge bases unavailable to competitors.

Challenges and Considerations

While GenUI offers exciting possibilities, it also presents several challenges

and considerations:

1. Technical Limitations:

• Current AI technology, while advanced, still has limitations in un-

derstanding complex user intents and generating truly context-

aware interfaces.

Generative UI 221

• Performance issues related to real-time generation of interface

elements, especially on less powerful devices.

2. Data Requirements:

• Depending on the use case, effective GenUI systems might re-

quire significant amounts of user data to generate personalized

interfaces.
• The challenges in ethically sourcing authentic user data raise

concerns about data privacy and security , as well as potential

biases in the data used to train GenUI models.

3. Usability and Consistency:

• At least until the practice becomes widespread, an application

with constantly changing interfaces could lead to usability issues ,

as users may struggle to find familiar elements or navigate effi-

ciently.
• Striking a balance between personalization and maintaining a

consistent, learnable interface will be crucial.

4. Overreliance on AI:

• There’s a risk of over-delegating design decisions to AI systems,

potentially leading to uninspired, problematic, or simply broken

interface choices.
• Human oversight and the ability to override AI-generated designs

will remain important in the foreseeable future.

5. Accessibility Concerns:

Generative UI 222

• Ensuring that dynamically generated interfaces remain accessi-

ble to users with disabilities presents entirely new challenges,

which is worrying given the poor level of accessibility compliance

demonstrated by typical systems .
• On the other hand, AI designers may be implemented with built-

in concern for accessibility, and capabilities for building accessi-

ble interfaces on the fly just like they build UI for non-impaired

users.
• Either way, GenUI systems should be designed with robust ac-

cessibility guidelines and testing processes.

6. User Trust and Transparency:

• Users may feel uncomfortable with interfaces that seem to “know

too much” about them or change in ways they don’t understand.
• Providing transparency about how and why interfaces are per-

sonalized will be important for building user trust .

Future Outlook and Opportunities

The future of Generative UI (GenUI) holds immense promise for revolu-

tionizing the way we interact with digital products and services. As this

technology continues to evolve, we can anticipate a seismic shift in how

user interfaces are designed, implemented, and experienced. I think GenUI

is the phenomenon thatwill finally push our software into the realm ofwhat

is now considered science fiction.

One of the most exciting prospects of GenUI is its potential to enhance

accessibility on a grand scale that goes beyond simply making sure that

people with serious disabilities are not completely excluded from the

Generative UI 223

use of your software. By automatically adapting interfaces to individual

user needs, GenUI could make digital experiences more inclusive than

ever before. Imagine interfaces that seamlessly adjust to provide larger

text for younger or visually impaired users or simplified layouts for those

with cognitive disabilities, all without requiring manual configuration or

separate “accessible” versions of applications.

The personalization capabilities of GenUI are likely to drive increased

user engagement, satisfaction, and loyalty across a wide range of digital

products. As interfaces become more attuned to individual preferences

and behaviors, users will find digital experiences more intuitive and enjoy-

able, potentially leading to deeper and more meaningful interactions with

technology.

GenUI also has the potential to transform the onboarding process for new

users. By creating intuitive, personalized first-time user experiences that

quickly adapt to each user’s level of expertise, GenUI could significantly

reduce the learning curve associatedwith new applications. This could lead

to faster adoption rates and increased user confidence in exploring new

features and functionalities.

Another exciting possibility is the ability of GenUI to maintain a consistent

user experience across different devices and platformswhile optimizing for

each specific context of use. This could solve the long-standing challenge

of providing coherent experiences across an increasingly fragmented de-

vice landscape, from smartphones and tablets to desktop computers and

emerging technologies like augmented reality glasses .

The data-driven nature of GenUI opens up opportunities for rapid iteration

and improvement in UI design . By gathering real-time data on how users

interact with generated interfaces, designers and developers can gain

unprecedented insights into user behavior and preferences. This feedback

Generative UI 224

loop could lead to continuous improvements in UI design, driven by actual

usage patterns rather than assumptions or limited user testing.

To prepare for this shift, designers will need to evolve their skill sets and

mindsets. The focus will shift from creating fixed layouts to developing

comprehensive design systems and guidelines that can inform AI-driven

interface generation. Designers will need to cultivate a deep understanding

of data analysis, AI technologies, and systems thinking to effectively guide

GenUI systems.

Moreover, as GenUI blurs the lines between design and technology, de-

signers will need to collaborate more closely with developers and data

scientists. This interdisciplinary approach will be crucial in creating GenUI

systems that are not only visually appealing and user-friendly but also

technically robust and ethically sound.

The ethical implications of GenUI will also come to the forefront as the

technology matures. Designers will play a crucial role in developing

frameworks for responsible AI use in interface design, ensuring that per-

sonalization enhances user experiences without compromising privacy or

manipulating user behavior in unethical ways.

As we look to the future, GenUI presents both exciting opportunities

and significant challenges. It has the potential to create more intuitive,

efficient, and satisfying digital experiences for users across the globe.

While it will require designers to adapt and acquire new skills, it also offers

an unprecedented opportunity to shape the future of human-computer

interaction in profound and meaningful ways. The journey towards fully

realized GenUI systems will undoubtedly be complex, but the potential

rewards in terms of improved user experiences and digital accessibility

make it a future worth striving for.

Intelligent Workflow Orchestration

In the realm of application development , workflows play a crucial role in

defining how tasks, processes, and user interactions are structured and

executed. As applications become more complex and user expectations

continue to rise, the need for intelligent and adaptive workflow orchestra-

tion becomes increasingly apparent.

The “Intelligent Workflow Orchestration” approach focuses on leveraging

AI components to dynamically orchestrate and optimize complex work-

flows within applications. The goal is to create applications that are more

efficient, responsive, and adaptable to real-time data and context.

In this chapter, we will explore the key principles and patterns that un-

derpin the intelligent workflow orchestration approach. We will consider

how AI can be used to intelligently route tasks, automate decision-making,

Intelligent Workflow Orchestration 226

and dynamically adapt workflows based on various factors such as user

behavior, system performance, and business rules . Through practical

examples and real-world scenarios, wewill demonstrate the transformative

potential of AI in streamlining and optimizing application workflows.

Whether you are building enterprise applications with intricate business

processes or consumer-facing applications with dynamic user journeys,

the patterns and techniques discussed in this chapter will equip you with

the knowledge and tools to create intelligent and efficient workflows that

enhance the overall user experience and drive business value.

Business Need

Traditional approaches to workflow management often rely on predefined

rules and static decision trees , which can be rigid, inflexible, and unable to

cope with the dynamic nature of modern applications.

Consider a scenario where an e-commerce application needs to handle

a complex order fulfillment process. The workflow may involve multiple

steps such as order validation, inventory check, payment processing, ship-

ping, and customer notifications. Each step may have its own set of rules,

dependencies, external integrations, and exception handling mechanisms.

Managing such a workflow manually or through hardcoded logic can

quickly become cumbersome, error-prone, and difficult to maintain.

Moreover, as the application scales and the number of concurrent users

grows, the workflow may need to adapt and optimize itself based on

real-time data and system performance. For example, during peak traffic

periods, the application may need to dynamically adjust the workflow to

prioritize certain tasks, allocate resources efficiently, and ensure a smooth

user experience.

Intelligent Workflow Orchestration 227

This is where the “Intelligent Workflow Orchestration” approach comes

into play. By leveraging AI components, developers can create workflows

that are intelligent, adaptive, and self-optimizing. AI can analyze vast

amounts of data, learn frompast experiences, andmake informed decisions

in real-time to orchestrate the workflow effectively.

Key Benefits

1. Increased Efficiency: AI can optimize task allocation, resource uti-

lization, and workflow execution, leading to faster processing times

and improved overall efficiency .

2. Adaptability: AI-driven workflows can dynamically adapt to changing

conditions, such as fluctuations in user demand, system performance,

or business requirements, ensuring that the application remains re-

sponsive and resilient.

3. Automated Decision-Making: AI can automate complex decision-

making processes within the workflow, reducing manual intervention

and minimizing the risk of human errors.

4. Personalization: AI can analyze user behavior, preferences, and con-

text to personalize the workflow and deliver tailored experiences to

individual users .

5. Scalability: AI-powered workflows can scale seamlessly to handle

increasing volumes of data and user interactions, without compro-

mising performance or reliability .

In the following sections, we will explore the key patterns and techniques

that enable the implementation of intelligent workflows and showcase

real-world examples of how AI is transforming workflow management in

modern applications .

Intelligent Workflow Orchestration 228

Key Patterns

To implement intelligent workflow orchestration in applications, develop-

ers can leverage several key patterns that harness the power of AI. These

patterns provide a structured approach to designing and managing work-

flows, enabling applications to adapt, optimize, and automate processes

based on real-time data and context. Let’s explore some of the fundamental

patterns in intelligent workflow orchestration.

Dynamic Task Routing

This pattern involves using AI to intelligently route tasks within a workflow

based on various factors such as task priority, resource availability, and

system performance. AI algorithms can analyze the characteristics of each

task, consider the current state of the system, andmake informed decisions

to assign tasks to the most appropriate resources or processing paths.

Dynamic task routing ensures that tasks are efficiently distributed and

executed, optimizing the overall workflow performance .

1 class TaskRouter
2 include Raix::ChatCompletion
3 include Raix::FunctionDispatch
4
5 attr_accessor :task
6
7 # list of functions that can be called by the AI entirely at its
8 # discretion depending on the task received
9
10 function :analyze_task_priority do
11 TaskPriorityAnalyzer.perform(task)
12 end
13
14 function :check_resource_availability, # ...
15 function :assess_system_performance, # ...

Intelligent Workflow Orchestration 229

16 function :assign_task_to_resource, # ...
17
18 DIRECTIVE = "You are a task router, responsible for intelligently
19 assigning tasks to available resources based on priority, resource
20 availability, and system performance..."
21
22 def initialize(task)
23 self.task = task
24 transcript << { system: DIRECTIVE }
25 transcript << { user: task.to_json }
26 end
27
28 def perform
29 while task.unassigned?
30 chat_completion
31
32 # todo: add max loop counter and break
33 end
34
35 # capture the transcript for later analysis
36 task.update(routing_transcript: transcript)
37 end
38 end

Note the loop created by the while expression on line 29, which continues

prompting the AI until the task is assigned. On line 35, we save the

transcript on the task for later analysis and debugging , if it becomes

necessary.

Contextual Decision Making

You can use very similar code to make context-aware decisions within

a workflow. By analyzing relevant data points such as user preferences,

historical patterns , and real-time inputs, AI components can determine the

most appropriate course of action at each decision point in the workflow.

Adapt the behavior of your workflow based on the specific context of each

user or scenario, providing personalized and optimized experiences.

Intelligent Workflow Orchestration 230

Adaptive Workflow Composition

This pattern focuses on dynamically composing and adjusting workflows

based on changing requirements or conditions. AI can analyze the cur-

rent state of the workflow, identify bottlenecks or inefficiencies, and

automatically modify the workflow structure to optimize performance.

Adaptive workflow composition allows applications to continuously evolve

and improve their processes without requiring manual intervention.

Exception Handling and Recovery

Exception handling and recovery are critical aspects of intelligentworkflow

orchestration. Whenworkingwith AI components and complexworkflows,

it’s essential to anticipate and handle exceptions gracefully to ensure the

stability and reliability of the system.

Here are some key considerations and techniques for exception handling

and recovery in intelligent workflows:

1. Exception Propagation: Implement a consistent approach for propa-

gating exceptions across workflow components. When an exception

occurs within a component, it should be caught, logged, and prop-

agated to the orchestrator or a discrete component responsible for

handling exceptions . The idea is to centralize exception handling and

prevent exceptions from being silently swallowed, as well as opening

possibilities for Intelligent Error Handling.

2. Retry Mechanisms: Retry mechanisms help improve the resilience of

the workflow and handle intermittent failures gracefully. Definitely

try to implement retry mechanisms for transient or recoverable ex-

ceptions, such as a network connectivity or resource unavailability

Intelligent Workflow Orchestration 231

that can be automatically retried after a specified delay. Having an

AI-powered orchestrator or exception handler means that your retry

strategies do not have to be mechanical in nature, relying on fixed

algorithms like exponential fallback. You can leave the handling of

the retry up to the “discretion” of the AI componente responsible for

deciding how to handle the exception.

3. Fallback Strategies: If an AI component fails to provide a valid

response or encounters an error—a common occurrence given its

bleeding-edge nature—have a fallback mechanism in place to ensure

the workflow can continue. This could involve using default values,

alternative algorithms, or a Human In The Loop to make decisions

and keep the workflow moving forward.

4. Compensating Actions: The orchestrators directives should include

instructions about compensating actions to handle exceptions that

cannot be resolved automatically. Compensating actions are steps

taken to undo or mitigate the effects of a failed operation. For exam-

ple, if a payment processing step fails, a compensating action could be

to roll back the transaction and notify the user. Compensating actions

help maintain data consistency and integrity in the face of exceptions.

5. Exception Monitoring and Alerting: Set up monitoring and alerting

mechanisms to detect and notify relevant stakeholders about critical

exceptions. The orchestrator can be made aware of thresholds and

rules to trigger alerts when exceptions exceed certain limits or when

specific types of exceptions occur. This allows for proactive identifi-

cation and resolution of issues before they impact the overall system.

Here’s an example of exception handling and recovery in a Ruby workflow

component:

Intelligent Workflow Orchestration 232

1 class InventoryManager
2 def check_availability(order)
3 begin
4 # Perform inventory check logic
5 inventory = Inventory.find_by(product_id: order.product_id)
6 if inventory.available_quantity >= order.quantity
7 return true
8 else
9 raise InsufficientInventoryError,
10 "Insufficient inventory for product #{order.product_id}"
11 end
12 rescue InsufficientInventoryError => e
13 # Log the exception
14 logger.error("Inventory check failed: #{e.message}")
15
16 # Retry the operation after a delay
17 retry_count ||= 0
18 if retry_count < MAX_RETRIES
19 retry_count += 1
20 sleep(RETRY_DELAY)
21 retry
22 else
23 # Fallback to manual intervention
24 NotificationService.admin("Inventory check failed: Order #{order.id}")
25 return false
26 end
27 end
28 end
29 end

In this example, the InventoryManager component checks the availability

of a product for a given order. If the available quantity is insufficient, it

raises an InsufficientInventoryError. The exception is caught, logged,

and a retry mechanism is implemented. If the retry limit is exceeded, the

component falls back to manual intervention by notifying an admin .

By implementing robust exception handling and recovery mechanisms ,

you can ensure that your intelligent workflows are resilient, maintainable,

Intelligent Workflow Orchestration 233

and able to handle unexpected situations gracefully.

These patterns form the foundation of intelligent workflow orchestration

and can be combined and adapted to suit the specific requirements of

different applications . By leveraging these patterns, developers can create

workflows that are flexible, resilient, and optimized for performance and

user experience.

In the next section, wewill explore how these patterns can be implemented

in practice, using real-world examples and code snippets to illustrate the

integration of AI components into workflow management.

Implementing Intelligent Workflow Orchestration in

Practice

Now that we have explored the key patterns in intelligent workflow or-

chestration, let’s dive into how these patterns can be implemented in real-

world applications. We’ll provide practical examples and code snippets to

illustrate the integration of AI components into workflow management.

Intelligent Order Processor

Let’s dive into a practical example of implementing intelligent workflow

orchestration using an AI-powered OrderProcessor component in a Ruby

on Rails e-commerce application. The OrderProcessor realizes the Pro-

cess Manager Enterprise Integration concept that we first encountered

in Chapter 3 when discussing Multitude of Workers. The component will

be responsible for managing order fulfillment workflow, making routing

Intelligent Workflow Orchestration 234

decisions based on intermediate results, and orchestrating the execution

of various processing steps.

The order fulfillment process involves multiple steps such as order vali-

dation, inventory check, payment processing, and shipping. Each step is

implemented as a separateworker process that performs a specific task and

returns the result to the OrderProcessor. The steps are not mandatory,

and don’t even necessarily have to be done in a precise order.

Here’s an example implementation of the OrderProcessor. It features

two mixins from Raix . The first (ChatCompletion) gives it the ability

to do chat completion, which is what makes this an AI component. The

second (FunctionDispatch) enables function calling by the AI, allowing it

to respond to a promptwith a function invocation instead of a textmessage.

The worker functions (validate_order, check_inventory, et al) delegate

to their respective worker classes, which can be AI or non-AI components,

with the only requirement being that they return the results of their work

in a format that can be represented as a string.

As with all other examples in this part of the book, this code is

practically pseudo-code and is onlymeant to convey themeaning

of the pattern and inspire your own creations. Full descriptions

of patterns and complete code examples are included in Part 2.

https://github.com/OlympiaAI/raix-rails

Intelligent Workflow Orchestration 235

1 class OrderProcessor
2 include Raix::ChatCompletion
3 include Raix::FunctionDispatch
4
5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."
6
7 def initialize(order)
8 self.order = order
9 transcript << { system: SYSTEM_DIRECTIVE }
10 transcript << { user: order.to_json }
11 end
12
13 def perform
14 # will continue looping until `stop_looping!` is called
15 chat_completion(loop: true)
16 end
17
18 # list of functions available to be called by the AI
19 # truncated for brevity
20
21 def functions
22 [
23 {
24 name: "validate_order",
25 description: "Invoke to check validity of order",
26 parameters: {
27 ...
28 },
29 ...
30]
31 end
32
33 # implementation of functions that can be called by the AI
34 # entirely at its discretion, depending on the needs of the order
35
36 def validate_order
37 OrderValidationWorker.perform(@order)
38 end
39
40 def check_inventory
41 InventoryCheckWorker.perform(@order)
42 end

Intelligent Workflow Orchestration 236

43
44 def process_payment
45 PaymentProcessingWorker.perform(@order)
46 end
47
48 def schedule_shipping
49 ShippingSchedulerWorker.perform(@order)
50 end
51
52 def send_confirmation
53 OrderConfirmationWorker.perform(@order)
54 end
55
56 def finished_processing
57 @order.update!(transcript:, processed_at: Time.current)
58 stop_looping!
59 end
60 end

In the example, the OrderProcessor is initialized with an order object and

maintains a transcript of the workflow execution, in the typical conversa-

tion transcript format that is native to large language models . Complete

control is given to the AI to orchestrate the execution of various processing

steps, such as order validation, inventory check, payment processing, and

shipping.

Everytime the chat_completionmethod is called, the transcript is sent to

the AI for it to provide a completion as a function call. It is entirely up to the

AI to analyze the result of the previous step and determine the appropriate

action to take. For example, if the inventory check reveals low stock levels,

the OrderProcessor can schedule a replenishment task. If the payment

processing fails, it can initiate a retry or notify customer support.

Intelligent Workflow Orchestration 237

The example above does not have functions defined for replenishment

or notifying customer support, but it absolutely could.

The transcript grows everytime a function is called and serves as a record

of the workflow execution, including the results of each step and the AI-

generated instructions for the next steps. This transcript can be used

for debugging, auditing, and providing visibility into the order fulfillment

process.

By leveraging AI in the OrderProcessor, the e-commerce application

can dynamically adapt the workflow based on real-time data and handle

exceptions intelligently. The AI component can make informed decisions,

optimize the workflow, and ensure smooth order processing even in com-

plex scenarios.

The fact that the only requirement on the worker processes is to return

some intelligible output for the AI to consider when deciding what to do

next, it might start to dawn on you how this approach can cut down on

the input/output mapping work that is typically involved when integrating

disparate systems with each other.

Intelligent Content Moderator

Social media applications generally require at least minimal content mod-

eration to ensure a safe and healthy community. This example Content-

Moderator component leverages AI to intelligently orchestrate the mod-

eration workflow, making decisions based on the content’s characteristics

and the results of various moderation steps.

Themoderation process involvesmultiple steps such as text analysis, image

Intelligent Workflow Orchestration 238

recognition, user reputation assessment, and manual review. Each step is

implemented as a separate worker process that performs a specific task

and returns the result to the ContentModerator.

Here’s an example implementation of the ContentModerator:

1 class ContentModerator
2 include Raix::ChatCompletion
3 include Raix::FunctionDispatch
4
5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,
6 tasked with the workflow involved in moderating user-generated content..."
7
8 def initialize(content)
9 @content = content
10 @transcript = [
11 { system: SYSTEM_DIRECTIVE },
12 { user: content.to_json }
13]
14 end
15
16 def perform
17 complete(@transcript)
18 end
19
20 def model
21 "openai/gpt-4"
22 end
23
24 # list of functions available to be called by the AI
25 # truncated for brevity
26
27 def functions
28 [
29 {
30 name: "analyze_text",
31 # ...
32 },
33 {
34 name: "recognize_image",
35 description: "Invoke to describe images...",

Intelligent Workflow Orchestration 239

36 # ...
37 },
38 {
39 name: "assess_user_reputation",
40 # ...
41 },
42 {
43 name: "escalate_to_manual_review",
44 # ...
45 },
46 {
47 name: "approve_content",
48 # ...
49 },
50 {
51 name: "reject_content",
52 # ...
53 }
54]
55 end
56
57 # implementation of functions that can be called by the AI
58 # entirely at its discretion, depending on the needs of the order
59
60 def analyze_text
61 result = TextAnalysisWorker.perform(@content)
62 continue_with(result)
63 end
64
65 def recognize_image
66 result = ImageRecognitionWorker.perform(@content)
67 continue_with(result)
68 end
69
70 def assess_user_reputation
71 result = UserReputationWorker.perform(@content.user)
72 continue_with(result)
73 end
74
75 def escalate_to_manual_review
76 ManualReviewWorker.perform(@content)
77 @content.update!(status: 'pending', transcript: @transcript)

Intelligent Workflow Orchestration 240

78 end
79
80 def approve_content
81 @content.update!(status: 'approved', transcript: @transcript)
82 end
83
84 def reject_content
85 @content.update!(status: 'rejected', transcript: @transcript)
86 end
87
88 private
89
90 def continue_with(result)
91 @transcript << { function: result }
92 complete(@transcript)
93 end
94 end

In this example, the ContentModerator is initialized with a content object

and maintains a moderation transcript in the conversation format. The AI

component has full control over the moderation workflow, deciding which

steps to execute based on the content’s characteristics and the results of

each step.

The available worker functions for the AI to invoke include analyze_-

text, recognize_image, assess_user_reputation, and escalate_to_-

manual_review. Each function delegates the task to a corresponding

worker process (TextAnalysisWorker, ImageRecognitionWorker, etc.)

and appends the result to the moderation transcript, with the exception of

the escalation function, which acts as an end state. Finally, the approve_-

content and reject_content functions also act as end states.

The AI component analyzes the content and determines the appropriate

action to take. If the content contains image references, it can call the

recognize_imageworker for assistance with a visual review. If any worker

warns of potentially harmful content, the AI may decide to escalate the

Intelligent Workflow Orchestration 241

content for manual review or just reject it outright. But depending on

the severity of the warning, the AI may choose to use the results of the

user reputation assessment in deciding how to handle content that it isn’t

otherwise sure about. Depending on the use case, perhaps trusted users

have more leeway in what they can post. And so on, and so forth…

As with the previous process manager example, the moderation transcript

serves as a record of the workflow execution, including the results of

each step and the AI-generated decisions. This transcript can be used for

auditing, transparency, and improving the moderation process over time.

By leveraging AI in the ContentModerator, the social media application

can dynamically adapt the moderation workflow based on the content’s

characteristics and handle complex moderation scenarios intelligently.

The AI component can make informed decisions, optimize the workflow,

and ensure a safe and healthy community experience.

Let’s explore twomore examples that demonstrate predictive task schedul-

ing and exception handling and recovery within the context of intelligent

workflow orchestration.

Predictive Task Scheduling in a Customer Support System

In a customer support application built with Ruby on Rails , efficiently

managing and prioritizing support tickets is crucial for providing timely as-

sistance to customers. The SupportTicketScheduler component lever-

ages AI to predictively schedule and assign support tickets to available

agents based on various factors such as ticket urgency, agent expertise,

and workload.

Intelligent Workflow Orchestration 242

1 class SupportTicketScheduler
2 include Raix::ChatCompletion
3 include Raix::FunctionDispatch
4
5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,
6 tasked with intelligently assigning tickets to available agents..."
7
8 def initialize(ticket)
9 @ticket = ticket
10 @transcript = [
11 { system: SYSTEM_DIRECTIVE },
12 { user: ticket.to_json }
13]
14 end
15
16 def perform
17 complete(@transcript)
18 end
19
20 def model
21 "openai/gpt-4"
22 end
23
24 def functions
25 [
26 {
27 name: "analyze_ticket_urgency",
28 # ...
29 },
30 {
31 name: "list_available_agents",
32 description: "Includes expertise of available agents",
33 # ...
34 },
35 {
36 name: "predict_agent_workload",
37 description: "Uses historical data to predict upcoming workloads",
38 # ...
39 },
40 {
41 name: "assign_ticket_to_agent",
42 # ...

Intelligent Workflow Orchestration 243

43 },
44 {
45 name: "reschedule_ticket",
46 # ...
47 }
48]
49 end
50
51 # implementation of functions that can be called by the AI
52 # entirely at its discretion, depending on the needs of the order
53
54 def analyze_ticket_urgency
55 result = TicketUrgencyAnalyzer.perform(@ticket)
56 continue_with(result)
57 end
58
59 def list_available_agents
60 result = ListAvailableAgents.perform
61 continue_with(result)
62 end
63
64 def predict_agent_workload
65 result = AgentWorkloadPredictor.perform
66 continue_with(result)
67 end
68
69 def assign_ticket_to_agent
70 TicketAssigner.perform(@ticket, @transcript)
71 end
72
73 def delay_assignment(until)
74 until = DateTimeStandardizer.process(until)
75 SupportTicketScheduler.delay(@ticket, @transcript, until)
76 end
77
78 private
79
80 def continue_with(result)
81 @transcript << { function: result }
82 complete(@transcript)
83 end
84 end

Intelligent Workflow Orchestration 244

In this example, the SupportTicketScheduler is initialized with a support

ticket object and maintains a scheduling transcript. The AI component

analyzes the ticket details and predictively schedules the ticket assignment

based on factors like ticket urgency, agent expertise, and predicted agent

workload.

The available functions for the AI to invoke include analyze_ticket_-

urgency, list_available_agents, predict_agent_workload, and as-

sign_ticket_to_agent. Each function delegates the task to a corre-

sponding analyzer or predictor component and appends the result to the

scheduling transcript. The AI also has the option to delay assignment using

the delay_assignment function.

The AI component examines the scheduling transcript andmakes informed

decisions on ticket assignment . It considers the urgency of the ticket, the

expertise of available agents, and the predicted workload of each agent to

determine the most suitable agent for handling the ticket.

By leveraging predictive task scheduling, the customer support application

can optimize ticket assignment, reduce response times, and improve over-

all customer satisfaction. Proactive and efficient management of support

tickets ensures that the right tickets are assigned to the right agents at the

right time.

Exception Handling and Recovery in a Data Processing Pipeline

Handling exceptions and recovering from failures is essential to ensure

data integrity and prevent data loss . The DataProcessingOrchestrator

component utilizes AI to intelligently handle exceptions and orchestrate

the recovery process in a data processing pipeline .

Intelligent Workflow Orchestration 245

1 class DataProcessingOrchestrator
2 include Raix::ChatCompletion
3 include Raix::FunctionDispatch
4
5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."
6
7 def initialize(data_batch)
8 @data_batch = data_batch
9 @transcript = [
10 { system: SYSTEM_DIRECTIVE },
11 { user: data_batch.to_json }
12]
13 end
14
15 def perform
16 complete(@transcript)
17 end
18
19 def model
20 "openai/gpt-4"
21 end
22
23 def functions
24 [
25 {
26 name: "validate_data",
27 # ...
28 },
29 {
30 name: "process_data",
31 # ...
32 },
33 {
34 name: "request_fix",
35 # ...
36 },
37 {
38 name: "retry_processing",
39 # ...
40 },
41 {
42 name: "mark_data_as_failed",

Intelligent Workflow Orchestration 246

43 # ...
44 },
45 {
46 name: "finished",
47 # ...
48 }
49]
50 end
51
52 # implementation of functions that can be called by the AI
53 # entirely at its discretion, depending on the needs of the order
54
55 def validate_data
56 result = DataValidator.perform(@data_batch)
57 continue_with(result)
58 rescue ValidationException => e
59 handle_validation_exception(e)
60 end
61
62 def process_data
63 result = DataProcessor.perform(@data_batch)
64 continue_with(result)
65 rescue ProcessingException => e
66 handle_processing_exception(e)
67 end
68
69 def request_fix(description_of_fix)
70 result = SmartDataFixer.new(description_of_fix, @data_batch)
71 continue_with(result)
72 end
73
74 def retry_processing(timeout_in_seconds)
75 wait(timeout_in_seconds)
76 process_data
77 end
78
79 def mark_data_as_failed
80 @data_batch.update!(status: 'failed', transcript: @transcript)
81 end
82
83 def finished
84 @data_batch.update!(status: 'finished', transcript: @transcript)

Intelligent Workflow Orchestration 247

85 end
86
87 private
88
89 def continue_with(result)
90 @transcript << { function: result }
91 complete(@transcript)
92 end
93
94 def handle_validation_exception(exception)
95 @transcript << { exception: exception.message }
96 complete(@transcript)
97 end
98
99 def handle_processing_exception(exception)

100 @transcript << { exception: exception.message }
101 complete(@transcript)
102 end
103 end

In this example, the DataProcessingOrchestrator is initialized with a

data batch object and maintains a processing transcript. The AI compo-

nent orchestrates the data processing pipeline, handling exceptions and

recovering from failures as needed.

The available functions for the AI to invoke include validate_data,

process_data, request_fix, retry_processing, and mark_data_-

as_failed. Each function delegates the task to a corresponding data

processing component and appends the result or exception details to the

processing transcript.

If a validation exception occurs during the validate_data step, the han-

dle_validation_exception function appends the exception data to the

transcript and passes control back to the AI. Similarly, if a processing

exception occurs during the process_data step, the AI can decide on the

recovery strategy.

Intelligent Workflow Orchestration 248

Depending on the nature of the exception encountered, the AI can at its

discretion decide to call request_fix, which delegates to an AI-powered

SmartDataFixer component (see Self Healing Data chapter). The data

fixer gets a plain english description of how it should modify the @data_-

batch so that processing can be retried. Perhaps a successful retry would

entail removing records from the data batch that have failed validation

and/or copying them to a different processing pipeline for human review?

The possibilities are near endless.

By incorporating AI-driven exception handling and recovery, the data

processing application becomes more resilient and fault-tolerant. The

DataProcessingOrchestrator intelligently manages exceptions, mini-

mizes data loss, and ensures the smooth execution of the data processing

workflow.

Monitoring and Logging

Monitoring and logging provide visibility into the progress, performance,

and health of AI-powered workflow components, enabling developers to

track and analyze the behavior of the system. Implementing effective

monitoring and logging mechanisms is essential for debugging, auditing,

and continuous improvement of intelligent workflows.

Monitoring Workflow Progress and Performance

To ensure the smooth execution of intelligent workflows, it’s important

to monitor the progress and performance of each workflow component.

This involves tracking key metrics and events throughout the workflow

lifecycle.

Intelligent Workflow Orchestration 249

Some important aspects to monitor include:

1. Workflow Execution Time: Measure the time taken by each workflow

component to complete its task. This helps identify performance bottle-

necks and optimize the overall workflow efficiency.

2. Resource Utilization: Monitor the utilization of system resources, such

as CPU, memory, and storage, by each workflow component. This helps

ensure that the system is operating within its capacity and can handle the

workload effectively.

3. Error Rates and Exceptions: Track the occurrence of errors and

exceptions within workflow components. This helps identify potential

issues and enables proactive error handling and recovery.

4. Decision Points and Outcomes: Monitor the decision points within

the workflow and the outcomes of AI-powered decisions. This provides

insights into the behavior and effectiveness of the AI components.

The data captured by monitoring processes can be surfaced in dashboards

or used as inputs to scheduled reports that inform system administrators

about the health of the system.

Monitoring data can be fed to an AI-powered system administra-

tor process for review and potential action!

Logging Key Events and Decisions

Logging is an essential practice that involves capturing and storing relevant

information about key events, decisions, and exceptions that occur during

the workflow execution.

Some important aspects to log include:

Intelligent Workflow Orchestration 250

1. Workflow Initiation andCompletion: Log the start and end times of each

workflow instance, along with any relevant metadata such as the input data

and user context.

2. Component Execution: Log the execution details of each workflow

component, including the input parameters, output results, and any inter-

mediate data generated.

3. AI Decisions and Reasoning: Log the decisions made by AI components,

along with the underlying reasoning or confidence scores. This provides

transparency and enables auditing of AI-powered decisions.

4. Exceptions and Error Messages: Log any exceptions or error messages

encountered during the workflow execution, including the stack trace and

relevant context information.

Logging can be implemented using various techniques, such as writing to

log files, storing logs in a database, or sending logs to a centralized logging

service. It’s important to choose a logging framework that provides flexi-

bility, scalability, and easy integration with the application’s architecture.

Here’s an example of how logging can be implemented in a Ruby on Rails

application using the ActiveSupport::Logger class:

Intelligent Workflow Orchestration 251

1 class WorkflowLogger
2 def self.log(message, severity = :info)
3 @logger ||= ActiveSupport::Logger.new('workflow.log')
4 @logger.formatter ||= proc do |severity, datetime, progname, msg|
5 "#{datetime} [#{severity}] #{msg}\n"
6 end
7 @logger.send(severity, message)
8 end
9 end
10
11 # Usage example
12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")
13 WorkflowLogger.log("Payment processing completed successfully")
14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

By strategically placing logging statements throughout the workflow com-

ponents and AI decision points, developers can capture valuable informa-

tion for debugging, auditing, and analysis .

Benefits of Monitoring and Logging

Implementingmonitoring and logging in intelligentworkfloworchestration

offers several benefits:

1. Debugging and Troubleshooting: Detailed logs andmonitoring data help

developers identify and diagnose issues quickly. They provide insights into

the workflow execution flow, component interactions, and any errors or

exceptions encountered .

2. Performance Optimization: Monitoring performance metrics allows

developers to identify bottlenecks and optimize the workflow components

for better efficiency. By analyzing execution times, resource utilization,

and other metrics, developers can make informed decisions to improve the

overall performance of the system .

Intelligent Workflow Orchestration 252

3. Auditing and Compliance: Logging key events and decisions provides

an audit trail for regulatory compliance and accountability. It enables

organizations to track and verify the actions taken by AI components and

ensure adherence to business rules and legal requirements .

4. Continuous Improvement: Monitoring and logging data serve as valu-

able inputs for continuous improvement of intelligent workflows. By ana-

lyzing historical data, identifying patterns, andmeasuring the effectiveness

of AI decisions, developers can iteratively refine and enhance the workflow

orchestration logic.

Considerations and Best Practices

When implementing monitoring and logging in intelligent workflow or-

chestration, consider the following best practices:

1. Define Clear Monitoring Metrics: Identify the key metrics and events

that need to be monitored based on the specific requirements of the

workflow. Focus on metrics that provide meaningful insights into the

system’s performance, health, and behavior .

2. Implement Granular Logging: Ensure that logging statements are

placed at appropriate points within the workflow components and AI

decision points. Capture relevant context information, such as input

parameters, output results, and any intermediate data generated .

3. Use Structured Logging: Adopt a structured logging format to facilitate

easy parsing and analysis of log data. Structured logging allows for better

searchability, filtering, and aggregation of log entries .

4. Manage Log Retention and Rotation: Implement log retention and

rotation policies to manage the storage and lifecycle of log files. Determine

the appropriate retention period based on legal requirements, storage

Intelligent Workflow Orchestration 253

constraints, and analysis needs. If possible, offload logging to a 3rd-party

service such as Papertrail .

5. Secure Sensitive Information: Be cautious when logging sensitive

information, such as personally identifiable information (PII) or confidential

business data. Implement appropriate security measures, such as data

masking or encryption, to protect sensitive information in log files.

6. Integrate with Monitoring and Alerting Tools: Leverage monitoring

and alerting tools to centralize the collection, analysis, and visualization of

monitoring and logging data. These tools can provide real-time insights,

generate alerts based on predefined thresholds, and facilitate proactive

issue detection and resolution. My favorite of these tools is Datadog .

By implementing comprehensive monitoring and logging mechanisms, de-

velopers can gain valuable insights into the behavior and performance of

intelligentworkflows. These insights enable effective debugging, optimiza-

tion, and continuous improvement of AI-powered workflow orchestration

systems.

Scalability and Performance Considerations

Scalability and performance are critical aspects to considerwhen designing

and implementing intelligent workflow orchestration systems . As the

volume of concurrent workflows and the complexity of AI-powered com-

ponents increase, it becomes essential to ensure that the systemcan handle

the workload efficiently and scale seamlessly to meet growing demands.

Handling High Volumes of Concurrent Workflows

Intelligent workflow orchestration systems often need to handle a large

number of concurrent workflows. To ensure scalability, consider the

https://papertrailapp.com
https://www.datadoghq.com

Intelligent Workflow Orchestration 254

following strategies:

1. Asynchronous Processing: Implement asynchronous processing mech-

anisms to decouple the execution of workflow components. This allows

the system to handle multiple workflows concurrently without blocking

or waiting for each component to complete. Asynchronous processing

can be achieved using message queues, event-driven architectures, or

background job processing frameworks such as Sidekiq .

2. Distributed Architecture: Design the system architecture to use server-

less components (such as AWS Lambda) or simply distribute the workload

across multiple nodes or servers alongside your main application server.

This enables horizontal scalability, where additional nodes can be added to

handle increased workflow volumes .

3. Parallel Execution: Identify opportunities for parallel execution within

workflows. Some workflow components may be independent of each

other and can be executed concurrently. By leveraging parallel processing

techniques, such as multi-threading or distributed task queues, the system

can optimize resource utilization and reduce overall workflow execution

time .

Optimizing Performance of AI‐Powered Components

AI-powered components, such as machine learning models or natural

language processing engines, can be computationally intensive and impact

the overall performance of theworkflow orchestration system. To optimize

the performance of AI components, consider the following techniques:

1. Caching: If your AI processing is purely generative and does not involve

realtime information lookups or external integrations in order to generate

its chat completions, then you can look into caching mechanisms to store

Intelligent Workflow Orchestration 255

and reuse the results of frequently accessed or computationally expensive

operations .

2. Model Optimization: Continuously optimize the way that you use the

AI models in workflow components. This may involve techniques such as

Prompt Distillation or it might simply be a matter of testing newmodels as

they become available.

3. Batch Processing: If you’re working with GPT-4 class models , you

migth be able to leverage batch processing techniques to process multiple

data points or requests in a single batch, rather than processing them

individually. By processing data in batches , the system can optimize

resource utilization and reduce the overhead of repeated model requests.

Monitoring and Profiling Performance

To identify performance bottlenecks and optimize the scalability of the

intelligent workflow orchestration system , it’s crucial to implement mon-

itoring and profiling mechanisms. Consider the following approaches:

1. Performance Metrics: Define and track key performance metrics, such

as response time, throughput, resource utilization, and latency. These

metrics provide insights into the system’s performance and help identify

areas for optimization. Popular AI model aggregator OpenRouter includes

Host1 and Speed[^speed] metrics in each API response, making it trivial to

track these key metrics.

[^speed] Speed is calculated as the number of completion tokens divided

by total generation time. For non-streamed requests latency is considered

part of generation time.

1Host is the time it took to receive the first byte of the streamed generation from themodel
host, a.k.a. “time to first byte.”

https://openrouter.ai

Intelligent Workflow Orchestration 256

2. Profiling Tools: Utilize profiling tools to analyze the performance of

individual workflow components and AI operations. Profiling tools can

help identify performance hotspots, inefficient code paths, or resource-

intensive operations. Popular profiling tools include New Relic , Scout , or

built-in profilers provided by the programming language or framework.

3. Load Testing: Conduct load testing to evaluate the system’s performance

under different levels of concurrent workloads. Load testing helps identify

the system’s scalability limits, detect performance degradation, and ensure

that the system can handle the expected traffic without compromising

performance.

4. ContinuousMonitoring: Implement continuousmonitoring and alerting

mechanisms to proactively detect performance issues and bottlenecks.

Set up monitoring dashboards and alerts to track key performance in-

dicators (KPIs) and receive notifications when predefined thresholds are

breached. This enables prompt identification and resolution of perfor-

mance problems .

Scaling Strategies

To handle increasing workloads and ensure the scalability of the intelligent

workflow orchestration system, consider the following scaling strategies:

1. Vertical Scaling: Vertical scaling involves increasing the resources (e.g.,

CPU, memory) of individual nodes or servers to handle higher workloads.

This approach is suitable when the system requiresmore processing power

or memory to handle complex workflows or AI operations.

2. Horizontal Scaling: Horizontal scaling involves adding more nodes or

servers to the system to distribute the workload. This approach is effective

when the system needs to handle a large number of concurrent workflows

Intelligent Workflow Orchestration 257

or when the workload can be easily distributed across multiple nodes.

Horizontal scaling requires a distributed architecture and load balancing

mechanisms to ensure even distribution of traffic.

3. Auto-Scaling: Implement auto-scaling mechanisms to automatically

adjust the number of nodes or resources based on the workload demand .

Auto-scaling allows the system to dynamically scale up or down depending

on the incoming traffic, ensuring optimal resource utilization and cost-

efficiency. Cloud platforms like Amazon Web Services (AWS) or Google

Cloud Platform (GCP) provide auto-scaling capabilities that can be lever-

aged for intelligent workflow orchestration systems.

Performance Optimization Techniques

In addition to the scaling strategies, consider the following performance

optimization techniques to enhance the efficiency of the intelligent work-

flow orchestration system:

1. Efficient Data Storage and Retrieval: Optimize the data storage and

retrieval mechanisms used by the workflow components. Use efficient

database indexing, query optimization techniques, and data caching to

minimize the latency and improve the performance of data-intensive op-

erations.

2. Asynchronous I/O: Utilize asynchronous I/O operations to prevent

blocking and improve the responsiveness of the system. Asynchronous I/O

allows the system to handlemultiple requests concurrentlywithoutwaiting

for I/O operations to complete, thereby maximizing resource utilization.

3. Efficient Serialization and Deserialization: Optimize the serialization

and deserialization processes used for data exchange between workflow

components. Use efficient serialization formats, such as Protocol Buffers

Intelligent Workflow Orchestration 258

or MessagePack , to reduce the overhead of data serialization and improve

the performance of inter-component communication.

For Ruby-based applications, consider using Universal ID . Uni-

versal ID leverages both MessagePack and Brotli (a combo built

for speed and best-in-class data compression) . When combined,

these libraries are up to 30% faster andwithin 2-5% compression

rates compared to Protocol Buffers.

4. Compression and Encoding: Apply compression and encoding tech-

niques to reduce the size of data transferred between workflow compo-

nents. Compression algorithms, such as gzip or Brotli , can significantly

reduce the network bandwidth usage and improve the overall performance

of the system.

By considering scalability and performance aspects during the design

and implementation of intelligent workflow orchestration systems , you

can ensure that your system can handle high volumes of concurrent

workflows , optimize the performance of AI-powered components, and

scale seamlessly tomeet growing demands. Continuousmonitoring, profil-

ing, and optimization efforts are essential to maintain the system’s perfor-

mance and responsiveness as the workload and complexity increase over

time.

Testing and Validation of Workflows

Testing and validation are critical aspects of developing and maintaining

intelligent workflow orchestration systems. Given the complex nature

of AI-powered workflows, it is essential to ensure that each component

functions as expected, the overall workflow behaves correctly, and the

https://github.com/hopsoft/universalid

Intelligent Workflow Orchestration 259

AI decisions are accurate and reliable. In this section, we will explore

various techniques and considerations for testing and validating intelligent

workflows.

Unit Testing Workflow Components

Unit testing involves testing individual workflow components in isolation

to verify their correctness and robustness. When unit testing AI-powered

workflow components, consider the following:

1. Input Validation: Test the component’s ability to handle different types

of inputs, including valid and invalid data . Verify that the component

gracefully handles edge cases and provides appropriate error messages or

exceptions.

2. Output Verification: Assert that the component produces the expected

output for a given set of inputs. Compare the actual output with the

expected results to ensure correctness .

3. Error Handling: Test the component’s error handling mechanisms by

simulating various error scenarios, such as invalid input, resource unavail-

ability, or unexpected exceptions. Verify that the component catches and

handles errors appropriately .

4**. Boundary Conditions:** Test the component’s behavior under bound-

ary conditions, such as empty input, maximum input size, or extreme

values. Ensure that the component handles these conditions gracefully

without crashing or producing incorrect results .

Here’s an example of a unit test for a workflow component in Ruby using

the RSpec testing framework :

Intelligent Workflow Orchestration 260

1 RSpec.describe OrderValidator do
2 describe '#validate' do
3 context 'when order is valid' do
4 let(:order) { build(:order) }
5
6 it 'returns true' do
7 expect(subject.validate(order)).to be true
8 end
9 end
10
11 context 'when order is invalid' do
12 let(:order) { build(:order, total_amount: -100) }
13
14 it 'returns false' do
15 expect(subject.validate(order)).to be false
16 end
17 end
18 end
19 end

In this example, the OrderValidator component is tested using two test

cases: one for a valid order and another for an invalid order. The test cases

verify that the validatemethod returns the expected boolean value based

on the validity of the order.

Integration Testing Workflow Interactions

Integration testing focuses on verifying the interactions and data flow

between different workflow components. It ensures that the components

work together seamlessly and produce the expected outcomes. When

integration testing intelligent workflows, consider the following:

1. Component Interaction: Test the communication and data exchange

between workflow components. Verify that the output of one component

is correctly passed as input to the next component in the workflow.

Intelligent Workflow Orchestration 261

2. DataConsistency: Ensure that data remains consistent and accurate as it

flows through the workflow. Verify that data transformations, calculations,

and aggregations are performed correctly.

3. Exception Propagation: Test how exceptions and errors are propagated

and handled across workflow components. Verify that exceptions are

caught, logged, and handled appropriately to prevent workflow disruption.

4**. Asynchronous Behavior:** If the workflow involves asynchronous

components or parallel execution, test the coordination and synchro-

nization mechanisms. Ensure that the workflow behaves correctly under

concurrent and asynchronous scenarios.

Here’s an example of an integration test for a workflow in Ruby using the

RSpec testing framework :

1 RSpec.describe OrderProcessingWorkflow do
2
3 let(:order) { build(:order) }
4
5 it 'processes the order successfully' do
6 expect(OrderValidator).to receive(:validate).and_return(true)
7 expect(InventoryManager).to receive(:check_availability).and_return(true)
8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)
9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)
10
11 workflow = OrderProcessingWorkflow.new(order)
12 result = workflow.process
13
14 expect(result).to be true
15 expect(order.status).to eq('processed')
16 end
17
18 end

In this example, the OrderProcessingWorkflow is tested by verifying

the interactions between different workflow components. The test case

Intelligent Workflow Orchestration 262

sets up expectations for each component’s behavior and ensures that

the workflow processes the order successfully, updating the order status

accordingly.

Testing AI Decision Points

Testing AI decision points is crucial to ensure the accuracy and reliability

of AI-powered workflows. When testing AI decision points, consider the

following:

1. Decision Accuracy: Verify that the AI component makes accurate

decisions based on the input data and the trained model. Compare the

AI decisions with expected outcomes or ground truth data.

2. Edge Cases: Test the AI component’s behavior under edge cases and

unusual scenarios. Verify that the AI component handles these cases

gracefully and makes reasonable decisions.

3. Bias and Fairness: Assess the AI component for potential biases and

ensure that it makes fair and unbiased decisions. Test the component

with diverse input data and analyze the outcomes for any discriminatory

patterns .

4. Explainability: If the AI component provides explanations or reasoning

for its decisions, verify the correctness and clarity of the explanations.

Ensure that the explanations align with the underlying decision-making

process .

Here’s an example of testing an AI decision point in Ruby using the RSpec

testing framework:

Intelligent Workflow Orchestration 263

1 RSpec.describe FraudDetector do
2 describe '#detect_fraud' do
3 context 'when transaction is fraudulent' do
4 let(:tx) { build(:transaction, amount: 10000, location: 'High-Risk Country') }
5
6 it 'returns true' do
7 expect(subject.detect_fraud(tx)).to be true
8 end
9 end
10
11 context 'when transaction is legitimate' do
12 let(:tx) { build(:transaction, amount: 100, location: 'Low-Risk Country') }
13
14 it 'returns false' do
15 expect(subject.detect_fraud(tx)).to be false
16 end
17 end
18 end
19 end

In this example, the FraudDetector AI component is tested with two

test cases: one for a fraudulent transaction and another for a legitimate

transaction. The test cases verify that the detect_fraud method returns

the expected boolean value based on the characteristics of the transaction.

End‐to‐End Testing

End-to-end testing involves testing the entire workflow from start to

finish, simulating real-world scenarios and user interactions. It ensures

that the workflow behaves correctly and produces the desired outcomes.

When performing end-to-end testing for intelligent workflows, consider

the following:

1. User Scenarios: Identify common user scenarios and test the workflow’s

behavior under these scenarios. Verify that the workflow handles user

Intelligent Workflow Orchestration 264

inputs correctly, makes appropriate decisions, and produces the expected

outputs.

2. Data Validation: Ensure that the workflow validates and sanitizes user

inputs to prevent data inconsistencies or security vulnerabilities. Test the

workflow with various types of input data, including valid and invalid data.

3. Error Recovery: Test the workflow’s ability to recover from errors and

exceptions. Simulate error scenarios and verify that the workflow handles

them gracefully, logs the errors, and takes appropriate recovery actions.

4. Performance and Scalability: Assess the workflow’s performance and

scalability under different load conditions. Test the workflow with a large

volume of concurrent requests and measure response times, resource

utilization, and overall system stability.

Here’s an example of an end-to-end test for a workflow in Ruby using

the RSpec testing framework and the Capybara library for simulating user

interactions:

1 RSpec.describe 'Order Processing Workflow' do
2 scenario 'User places an order successfully' do
3 visit '/orders/new'
4 fill_in 'Product', with: 'Sample Product'
5 fill_in 'Quantity', with: '2'
6 fill_in 'Shipping Address', with: '123 Main St'
7 click_button 'Place Order'
8
9 expect(page).to have_content('Order Placed Successfully')
10 expect(Order.count).to eq(1)
11 expect(Order.last.status).to eq('processed')
12 end
13 end

In this example, the end-to-end test simulates a user placing an order

through the web interface. It fills in the required form fields, submits the

Intelligent Workflow Orchestration 265

order, and verifies that the order is processed successfully, displaying the

appropriate confirmation message and updating the order status in the

database.

Continuous Integration and Deployment

To ensure the reliability and maintainability of intelligent workflows, it

is recommended to integrate testing and validation into the continuous

integration and deployment (CI/CD) pipeline . This allows for automated

testing and validation of workflow changes before they are deployed to

production. Consider the following practices:

1. Automated Test Execution: Configure the CI/CD pipeline to auto-

matically run the test suite whenever changes are made to the workflow

codebase. This ensures that any regressions or failures are detected early

in the development process.

2. Test Coverage Monitoring: Measure and monitor the test coverage

of the workflow components and AI decision points. Aim for high test

coverage to ensure that critical paths and scenarios are thoroughly tested.

3. Continuous Feedback: Integrate test results and code quality metrics

into the development workflow. Provide continuous feedback to develop-

ers about the status of tests, code quality, and any issues detected during

the CI/CD process.

4. Staging Environments: Deploy the workflow to staging environments

that closelymirror the production environment. Perform additional testing

and validation in the staging environment to catch any issues related to

infrastructure, configuration, or data integration.

5. Rollback Mechanisms: Implement rollback mechanisms in case of

deployment failures or critical issues detected in production. Ensure

Intelligent Workflow Orchestration 266

that the workflow can be quickly reverted to a previous stable version to

minimize downtime and impact on users.

By incorporating testing and validation throughout the development life-

cycle of intelligent workflows, organizations can ensure the reliability,

accuracy, and maintainability of their AI-powered systems. Regular testing

and validation help catch bugs, prevent regressions, and build confidence

in the workflow’s behavior and outcomes.

Part 2: The Patterns

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 269

Chain of Thought

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Examples

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Content Generation

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Structured Entity Creation

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 270

LLM Agent Guidance

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Benefits and Considerations

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 271

Mode Switch

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

When to Use It

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 272

Role Assignment

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

When to Use It

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Examples

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 273

Prompt Object

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 274

Prompt Template

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Benefits and Considerations

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

When to Use It:

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 275

Structured IO

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Scaling Structured IO

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Benefits and Considerations

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 276

Prompt Chaining

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

When To Use It

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example: Olympia’s Onboarding

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 277

Prompt Rewriter

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 278

Response Fencing

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Benefits and Considerations

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Error Handling

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 279

Query Analyzer

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Implementation

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Part‐of‐Speech (POS) Tagging and Named Entity Recognition (NER)

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Intent Classification

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 280

Keyword Extraction

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Benefits

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 281

Query Rewriter

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Benefits

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Prompt Engineering 282

Ventriloquist

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

When to Use It

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components 284

Predicate

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

When to Use It

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components 285

API Facade

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Key Benefits

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

When To Use It

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components 286

Authentication and Authorization

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Request Handling

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Response Formatting

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Error Handling and Edge Cases

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Scalability and Performance Considerations

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components 287

Comparison with Other Design Patterns

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components 288

Result Interpreter

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

When to Use It

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components 289

Virtual Machine

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

When to Use It

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Behind The Magic

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Discrete Components 290

Specification and Testing

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Specifying the Behavior

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Writing Test Cases

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example: Testing the Translator Component

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Replay of HTTP Interactions

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL)
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

High‐Level Patterns

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Hybrid Intelligence

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Adaptive Response

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 292

Human‐AI Role Switching

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 293

Escalation

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Key Benefits

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Real‐World Application: Healthcare

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 294

Feedback Loop

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Applications and Examples

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Advanced Techniques in Human Feedback Integration

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 295

Passive Information Radiation

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Contextual Information Display

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Proactive Notifications

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Explanatory Insights

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 296

Interactive Exploration

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Key Benefits

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Applications and Examples

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 297

Collaborative Decision Making (CDM)

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 298

Continuous Learning

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Applications and Examples

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Ethical Considerations

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Human In The Loop (HITL) 299

Role of HITL in Mitigating AI Risks

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Technological Advancements and Future Outlook

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Challenges and Limitations of HITL Systems

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Intelligent Error Handling
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Traditional Error Handling Approaches

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Intelligent Error Handling 301

Contextual Error Diagnosis

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Prompt Engineering for Contextual Error Diagnosis

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Retrieval‐Augmented Generation for Contextual Error Diagnosis

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Intelligent Error Handling 302

Intelligent Error Reporting

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Intelligent Error Handling 303

Predictive Error Prevention

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Smart Error Recovery

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Intelligent Error Handling 304

Personalized Error Communication

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Intelligent Error Handling 305

Adaptive Error Handling Workflow

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Quality Control
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Quality Control 307

Eval

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Problem

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Solution

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Quality Control 308

Considerations

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Understanding Golden References

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How Reference‐Free Evals Work

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Quality Control 309

Guardrail

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Problem

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Solution

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

How It Works

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Example

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Quality Control 310

Considerations

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Guardrails and Evals: Two Sides of the Same Coin

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

The Interchangeability of Guardrails and Reference‐Free Evals

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Implementing Dual‐Purpose Guardrails and Evals

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Glossary

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

A

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

B

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

C

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

312

D

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

E

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

F

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

G

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

H

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

313

I

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

J

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

K

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

L

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

M

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

314

N

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

O

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

P

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

Q

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

R

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

315

S

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

T

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

U

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

V

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

W

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

316

Z

This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/patterns-of-application-

development-using-ai.

http://leanpub.com/patterns-of-application-development-using-ai
http://leanpub.com/patterns-of-application-development-using-ai

Index

accessibility, 222

account, 94

ACID properties, 113

adaptive UI, 213

adaptive workflow

Adaptive Workflow

Composition, 230

Agentic, 33

AI, 66, 76, 102, 131, 137, 146, 153, 207,

215

applications, 128, 141, 152, 165

compound systems, 31, 32, 35

conversational, 7, 32, 216

decision points, 262

model, 92, 101, 102, 158, 159, 161,

215

Alpaca, 14

Altman, Sam, 18

Amazon Web Services, 257

Anthropic, 23, 40, 75, 132, 139

anthropomorphism, 70

APIs, 73, 126, 156

application design and frameworks,

203

application development, 225

arrays, 133

asynchronous processing, 254

audit logging, 109

auditing and compliance, 252

augmented reality glasses, 223

Auto Continuation, 163

auto-regressive modeling, 44

auto-scaling, 257

base models, 55

batch processing, 255

BERT, 14, 24

bias

and fairness in AI, 262

bottlenecks, 230

boundary conditions, 259

Brotli, 258

business rules, 226

Byte Pair Encoding (BPE), 13, 15

C (Programming Language), 119

caching, 255

Capybara library, 264

Chain of Thought (CoT), 46, 141

chaining of AI workers, 114

chatbot application, 122

ChatGPT, 31, 54

circuit breaker logic, 165

317

Index 318

classification, 54, 123

Claude, 8, 45, 79

Claude 3, 51, 129, 132, 138, 139

Claude 3 Opus, 76

Claude v1, 17

Claude v2, 17

Clinical Decision Support, 106

closed and open question answering,

54

Cohere (LLM Provider), 23, 25

collaborative filtering, 94

command line

Command-Line Interface (CLI),

26

complex tasks, 149

computer science, 72, 74

conceptual and practical challenges,

204

concurrent workflows, 258

consistency

and reproducibility, 135

content

Content Categorization, 115

filtering, 27

content-based filtering, 94

context

Augmentation, 47

Contextual Content Generation,

191, 196, 197, 204, 205

contextual decision making, 229

Contextual Field Suggestions,

206

infinitely long inputs, 16

window, 16, 229

Continuous Integration and

Deployment (CI/CD), 265

pipeline, 265

Continuous Risk Monitoring, 106

conversation

loop, 160, 162

transcript, 160, 162

creative writing, 35, 54

cross-modal generation, 22

Customer Sentiment Analysis, 102

customer service chatbots, 34

customer support, 33

customization, 27

data

analysis, 35, 150

Data Retrieval, 112

Data Synchronization, 112

Data Validation, 264

flow, 113

integrity, 244

persistence, 112

preparation, 112

privacy, 27, 221

processing pipeline, 244

processing tasks, 128

databases, 126

-backed object, 108

locking strategies, 113

Databricks employees, 54

Index 319

Datadog, 253

debugging, 229

and testing, 135

and troubleshooting, 251

decision

-making capabilities, 102

-making use cases, 136

points, 249

trees, 226

desktop computers, 223

deterministic behavior, 59

development frameworks, 151

dictionaries, 133

digital landscape, 198

distillation process, 78

distributed architecture, 254

document clustering, 123

Dohan, et al., 45

Dynamic Task Routing, 228

Dynamic Tool Selection, 134

dynamic UI generation, 192

e-commerce, 196, 226

E-commerce Applications, 94

ecosystem, 150

edge cases, 59

educational applications, 33

efficiency, 227

ELK stack, 113

emergency response planning, 34

emotional tone, 147

end-to-end testing, 263, 264

ensembles, 120, 121

ensemble of workers, 121

enterprise application architecture,

39

Enterprise Integration Patterns, 107

errors

handling, 110, 113, 145, 259

Intelligent Error Handling, 146

rates, 113

recovery, 264

ethics

implications, 204

event-driven architecture, 111

exception handling, 230, 232

experimentation

framework, 198

explainability, 262

external services or APIs, 129

F#, 95

Facebook, 25

fallback strategies, 113

feedback

Feedback Loop, 60

few-shot

learning, 63

prompting, 64

finalize method, 159, 161, 162

fine-tuning, 82

FitAI, 216

flexibility and creativity, 201

Forced Tool Selection, 134

Index 320

fraud detection

system, 100

function

call failure, 136

call history, 159

calling, 126, 160

names, 157

functional programming, 95

Gemma 7B, 11

Generative Pre-trained Transformer

(GPT), 8, 69

Generative UI (GenUI), 203, 210, 211,

214, 218, 222

GitLab, 95

Global Interpreter Lock (GIL), 118

Google, 23

API, 64, 66

Cloud AI Platform, 25

Cloud Platform, 257

Gemini, 22

Gemini 1.5 Pro, 14, 17, 19

PaLM (Pathways Language

Model), 18, 24

T5, 14

GPT-3, 13, 17

GPT-4, 7, 13, 17, 18, 22, 32, 45, 51, 64,

108, 120, 123, 130, 136, 209,

255

Graham, Paul, 19

grammar rules, 4

granular logging, 252

graphical models, 45

GraphQL, 111

Groq, 27, 123

gzip, 258

hardware, 29

hash, 155

high-performance completion, 27

historical patterns, 229

Hohpe, Gregor, 107

Honeybadger, 97

HTTP, 153

Human-In-The-Loop (HITL), 182

hyperparameter, 48

inclusive interfaces, 204

Inference, 6

information

extraction, 54

retrieval, 7, 128

input

parameters, 131

prompts, 57

validation, 259

instruction tuning, 10

instruct-tuned models, 51, 53

Insurance Verification, 104

integrating LLMs, 192

integration testing, 260

Intelligent Content Moderator, 237

intelligent workflow orchestration,

225, 233, 255, 258

internationalization, 199

Index 321

iterative refinement, 78, 146

JSON (JavaScript Object Notation),

129, 133, 134, 138, 150, 170

K-means, 125

key patterns, 228

knowledge bases, 8

knowledge management, 33

language

-related tasks, 5

Language Detection, 115

models, 44, 67, 75

Large Language Model (LLM), 1, 4, 16,

18, 30, 68, 70, 73, 78, 79, 90,

114, 123, 126, 127, 137, 143,

146, 147, 149, 167, 170, 191,

203, 209, 214, 236

landscape, 28

latency, 28

Latent Dirichlet Allocation, 125

latent space, 41, 44

linear algebra, 44

linear regression, 45

Llama, 14

Llama 2-70B, 51

Llama 3 70B, 11

Llama 3 8B, 11

local development environments, 158

log retention and rotation, 253

Louvre, 44

majority voting, 120

Managed Streaming for Apache

Kafka, 42

manual intervention, 232

Markdown, 150

markup-style tagging, 72

medical discoveries, 103

Medical History Collection, 104

Memorial Sloan Kettering Cancer

Center, 42

Mercury (element), 46

Mercury (planet), 46

Mercury (Roman god), 46

MessagePack, 258

Meta, 25

Metropolitan Museum of Art, 44

Microservices architecture, 92

Mistral, 26

7B, 11

7B Instruct, 17, 209

Mixtral

8x22B, 11

8x7B, 57

modern applications, 227

modularity, 91

monitoring

and alerting, 231

and logging, 113, 251

metrics, 252

motivational strategies, 218

Multi-Agent

Problem Solvers, 32

multi-step workflow, 114

Index 322

Multimodal

language models, 21

models, 20

Multitude of Workers, 122, 169

Naive Bayes, 124

narrative building, 20

narrow the path, 39, 40

natural language

Natural Language Processing

(NLP), 104, 123

network connectivity, 230

neural networks, 4, 7

New Relic, 256

Ollama, 26

Olympia, 34, 64, 131, 145, 154, 170

Olympia’s knowledge base, 94

One-Shot Learning, 62

online retailers, 210

open source model hosting

providers, 210

OpenAI, 4, 23, 40, 75

OpenRouter, 28, 29, 154, 255

OPT model, 25

optimistic locking, 113

output verification, 259

parallel execution, 254

parameter

effects, 131

Parameter Count, 29

range, 11

paraphrasing, 54

pattern matching, 155

performance

optimization, 135, 201, 251

problems, 256

trade-offs, 5

Perplexity (Provider), 12

personalization, 192, 223, 227

Personalized Forms, 205

Personalized Microcopy, 211

personalized product

recommendations, 94

pessimistic locking, 113

predictions, 6

Presence Penalty, 50

principle of least privilege, 73

probabilistic models, 44

Process Manager, 107, 110

Enterprise Integration, 233

processing time, 113

Product Recommendations, 94

Productivity, 194

progressive disclosure, 212

prompts

chain, 60, 73

design, 59, 69

engineering, 42, 46, 47, 57, 61, 66,

68, 219

Prompt Distillation, 47, 75, 80,

255

Prompt Object, 76

Prompt Template, 60, 210

Index 323

refinement, 70

Protocol Buffers, 257

publish-subscribe systems, 111

PyTorch, 25

Quantization, 29

question-answering systems, 8

Qwen2 70B, 11

Rails, 199

Railway Oriented Programming

(ROP), 97

Raix, 234

library, 100

rankers, 36

repetition penalties, 53

Response Fencing, 179, 210

Result Interpreter, 145

Retrieval Augmented Generation

(RAG), 32, 39, 47, 81, 128

retrieval-based models, 7

retry mechanisms, 113

risk factors, 98, 99

Risk Stratification, 105

roleplay-style interactions, 7

rollback mechanisms, 265

RSpec, 259, 261, 264

Ruby, 95, 96, 116, 166, 264

Ruby on Rails, 1, 114, 233, 241

Rudall, Alex, 24

Rust (Programming Language), 95,

119

scalability, 227, 253

Scout, 256

segmentation and targeting

strategies, 198

Self-Healing Data, 167, 248

sentiment analysis, 17, 103, 115–117,

120, 121, 137, 147

server-sent events (SSE), 153

smartphones, 223

software architecture, 2

SQL injections, 72

staging environments, 265

stateless, 160

stream handlers, 154

stream processing, 153, 159, 165

logic, 161

streaming data, 155

Stripe, 132

structured data, 137

Structured IO, 210

structured logging, 252

summarization, 54

supply chain

optimization, 34

Support Vector Machines (SVM), 124

Symptom Assessment and

Stratification, 104

syntax errors, 134

synthetic data generation, 54

system directive, 102, 131

T5, 24

Index 324

tablets, 223

Temperature, 55

Text Cleanup, 114

theory of mind, 41

throughput, 28

ticket assignment, 244

Time to First Token (TTFT), 28

Together.ai, 27

tokenization, 13

tokens, 6, 13

tool call, 156

tool use, 126, 152

Top-k sampling, 49

Top-p (nucleus) sampling, 49

topic identification, 123

tracking key metrics, 248

traffic management, 34

tragedy of the commons, 195

training data, 43

transformer architecture, 6

translation, 17, 200

trigger message, 107

Unicode-encodable language, 15

Universal ID, 258

unsupervised learning, 4

usability issues, 221

user experience, 199

User Interface (UI)

design, 223

frameworks, 219

interfaces, 203, 219

technologies, 214

user psychology, 220

user testing and feedback, 201

user trust, 222

user-generated content, 114

Ventriloquist, 179

virtual assistants, 34

visual interface, 214

voice-controlled interfaces, 34

Wall, Larry, 3

Wisper, 97, 109, 154, 161

Wooley, Chad, 95

XML, 137

Yi-34B, 51

zero-shot learning, 60, 61

	Table of Contents
	Foreword by Gregor Hohpe
	Preface
	About the Book
	About the Code Examples
	What I Don't Cover
	Who This Book Is For
	Building a Common Vocabulary
	Getting Involved
	Acknowledgments
	What's with the illustrations?
	About Lean Publishing
	About The Author

	Introduction
	Thoughts on Software Architecture
	What is a Large Language Model?
	Understanding Inference
	Thinking About Performance
	Experimenting With Different LLM Models
	Compound AI Systems

	Part 1: Fundamental Approaches & Techniques
	Narrow The Path
	Latent Space: Incomprehensibly Vast
	How The Path Gets ``Narrowed''
	Raw Versus Instruct-Tuned Models
	Prompt Engineering
	Prompt Distillation
	What about fine-tuning?

	Retrieval Augmented Generation (RAG)
	What is Retrieval Augmented Generation?
	How Does RAG Work?
	Why Use RAG in Your Applications?
	Implementing RAG in Your Application
	Proposition Chunking
	Real-World Examples of RAG
	Intelligent Query Optimization (IQO)
	Reranking
	RAG Assessment (RAGAs)
	Challenges and Future Outlook

	Multitude of Workers
	AI Workers As Independent Reusable Components
	Account Management
	E-commerce Applications
	Healthcare Applications
	AI Worker as a Process Manager
	Integrating AI Workers Into Your Application Architecture
	Composability and Orchestration of AI Workers
	Combining Traditional NLP with LLMs

	Tool Use
	What is Tool Use?
	The Potential of Tool Use
	The Tool Use Workflow
	Best Practices for Tool Use
	Composing and Chaining Tools
	Future Directions

	Stream Processing
	Implementating a ReplyStream
	The ``Conversation Loop''
	Auto Continuation
	Conclusion

	Self Healing Data
	Practical Case Study: Fixing Broken JSON
	Considerations and Counterindications

	Contextual Content Generation
	Personalization
	Productivity
	Rapid Iteration and Experimentation
	AI Powered Localization
	The Importance of User Testing and Feedback

	Generative UI
	Generating Copy for User Interfaces
	Defining Generative UI
	Example
	The Shift to Outcome-Oriented Design
	Challenges and Considerations
	Future Outlook and Opportunities

	Intelligent Workflow Orchestration
	Business Need
	Key Benefits
	Key Patterns
	Exception Handling and Recovery
	Implementing Intelligent Workflow Orchestration in Practice
	Monitoring and Logging
	Scalability and Performance Considerations
	Testing and Validation of Workflows

	Part 2: The Patterns
	Prompt Engineering
	Chain of Thought
	Mode Switch
	Role Assignment
	Prompt Object
	Prompt Template
	Structured IO
	Prompt Chaining
	Prompt Rewriter
	Response Fencing
	Query Analyzer
	Query Rewriter
	Ventriloquist

	Discrete Components
	Predicate
	API Facade
	Result Interpreter
	Virtual Machine
	Specification and Testing

	Human In The Loop (HITL)
	High-Level Patterns
	Escalation
	Feedback Loop
	Passive Information Radiation
	Collaborative Decision Making (CDM)
	Continuous Learning
	Ethical Considerations
	Technological Advancements and Future Outlook

	Intelligent Error Handling
	Traditional Error Handling Approaches
	Contextual Error Diagnosis
	Intelligent Error Reporting
	Predictive Error Prevention
	Smart Error Recovery
	Personalized Error Communication
	Adaptive Error Handling Workflow

	Quality Control
	Eval
	Guardrail
	Guardrails and Evals: Two Sides of the Same Coin

	Glossary
	Index

