

Padrões de Desenvolvimento de

Aplicações Usando IA (Edição em

Português)

Obie Fernandez

Esse livro está à venda em

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Essa versão foi publicada em 2025-01-23

Esse é um livro Leanpub. A Leanpub dá poderes aos autores e editores a partir do

processo de Publicação Lean. Publicação Lean é a ação de publicar um ebook em

desenvolvimento com ferramentas leves e muitas iterações para conseguir feedbacks

dos leitores, pivotar até que você tenha o livro ideal e então conseguir tração.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweet Sobre Esse Livro!

Por favor ajude Obie Fernandez a divulgar esse livro no Twitter!

A hashtag sugerida para esse livro é #poaduai.

Descubra o que as outras pessoas estão falando sobre esse livro clicando nesse link

para buscar a hashtag no Twitter:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Para a minha incrível rainha, minha musa, minha luz e amor, Victoria

Outras Obras De Obie Fernandez
Patterns of Application Development Using AI

The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Conteúdo

Prefácio por Gregor Hohpe . i

Prefácio . ii

Sobre o Livro . iii

Sobre os Exemplos de Código . iii

O Que Não Abordo . iii

Para Quem É Este Livro . iii

Construindo um Vocabulário Comum . iii

Como Participar . iii

Agradecimentos . iii

O que há com as ilustrações? . iv

Sobre a Publicação Lean . iv

Sobre o Autor . v

Introdução . 1

Reflexões sobre Arquitetura de Software . 2

O que é um Modelo de Linguagem de Larga Escala? 3

Compreendendo a Inferência . 5

Pensando Sobre o Desempenho . 27

Experimentando com Diferentes Modelos LLM 29

Sistemas de IA Compostos . 30

CONTEÚDO

Parte 1: Abordagens e Técnicas Fundamentais
38

Estreitar o Caminho . 39

Espaço Latente: Incompreensivelmente Vasto 41

Como o Caminho é “Estreitado” . 45

Modelos Base Versus Modelos Ajustados por Instruções 49

Engenharia de Prompts . 56

Destilação de Prompts . 72

E quanto ao ajuste fino? . 79

Retrieval Augmented Generation (RAG) . 81

O que é a Geração Aumentada por Recuperação? 81

Como Funciona o RAG? . 81

Por Que Usar RAG nas Suas Aplicações? . 81

Implementação do RAG na Sua Aplicação . 81

Segmentação por Proposições . 82

Exemplos Práticos de RAG . 82

Otimização Inteligente de Consultas (OIC) . 83

Reclassificação . 83

Avaliação RAG (RAGAs) . 83

Desafios e Perspetivas Futuras . 85

Multidão de Trabalhadores . 87

Trabalhadores de IA Como Componentes Reutilizáveis Independentes 88

Gestão de Contas . 90

Aplicações de Comércio Eletrónico . 91

Aplicações na Área da Saúde . 100

O Worker de IA como Process Manager . 103

Integração de Workers de IA na Arquitetura da Sua Aplicação 107

CONTEÚDO

Composição e Orquestração de Workers de IA 111

Combinando PLN Tradicional com LLMs . 120

Uso de Ferramentas . 123

O que é o Uso de Ferramentas? . 123

O Potencial da Utilização de Ferramentas . 125

O Fluxo de Trabalho da Utilização de Ferramentas 126

Melhores Práticas para o Uso de Ferramentas 141

Composição e Encadeamento de Ferramentas 146

Direções Futuras . 148

Processamento de Streams . 150

Implementação de um ReplyStream . 151

O “Ciclo de Conversação” . 157

Continuação Automática . 159

Conclusão . 162

Dados Auto-Reparáveis . 163

Caso Prático: Corrigir JSON Defeituoso . 165

Considerações e Contraindicações . 170

Geração de Conteúdo Contextual . 186

Personalização . 187

Produtividade . 189

Iteração Rápida e Experimentação . 191

Localização Potenciada por IA . 194

A Importância dos Testes com Utilizadores e do Feedback 196

Generative UI . 197

Gerar Texto para Interfaces de Utilizador . 198

Definindo a UI Generativa . 208

CONTEÚDO

Exemplo . 210

A Mudança para o Design Orientado a Resultados 213

Desafios e Considerações . 214

Perspetivas Futuras e Oportunidades . 216

Orquestração Inteligente de Fluxos de Trabalho 219

Necessidade de Negócio . 220

Principais Benefícios . 221

Padrões Principais . 222

Tratamento e Recuperação de Exceções . 224

Implementação Prática da Orquestração de Fluxos de Trabalho Inteligentes . . 227

Monitorização e Registo de Eventos . 242

Considerações de Escalabilidade e Desempenho 247

Testes e Validação de Workflows . 252

Parte 2: Os Padrões . 260

Engenharia de Prompts . 261

Chain of Thought . 262

Mudança de Modo . 263

Atribuição de Função . 264

Objeto Prompt . 265

Template de Prompt . 266

Structured IO . 267

Encadeamento de Prompts . 268

Prompt Rewriter . 269

Response Fencing . 270

Analisador de Consultas . 271

Query Rewriter . 273

Ventriloquist . 274

CONTEÚDO

Componentes Discretos . 275

Predicado . 276

API Facade . 277

Interpretador de Resultados . 279

Máquina Virtual . 280

Especificação e Testes . 280

Human In The Loop (HITL) . 282

Padrões de Alto Nível . 282

Escalonamento . 283

Ciclo de Feedback . 284

Radiação Passiva de Informação . 285

Tomada de Decisão Colaborativa (TDC) . 287

Aprendizagem Contínua . 288

Considerações Éticas . 288

Avanços Tecnológicos e Perspetivas Futuras 288

Tratamento Inteligente de Erros . 290

Abordagens Tradicionais de Tratamento de Erros 290

Diagnóstico Contextual de Erros . 291

Relatórios Inteligentes de Erros . 292

Prevenção Preditiva de Erros . 293

Recuperação Inteligente de Erros . 293

Comunicação de Erros Personalizada . 294

Fluxo de Trabalho Adaptativo de Tratamento de Erros 295

Controlo de Qualidade . 296

Eval . 297

Barreira de Proteção . 299

Guardrails e Evals: Dois Lados da Mesma Moeda 299

Glossário . 301
Glossário . 301

Index . 306

Prefácio por Gregor Hohpe
Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Prefácio
Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Prefácio iii

Sobre o Livro

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Sobre os Exemplos de Código

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

O Que Não Abordo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Para Quem É Este Livro

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Construindo um Vocabulário Comum

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Participar

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Prefácio iv

Agradecimentos

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

O que há com as ilustrações?

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Sobre a Publicação Lean

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Prefácio v

Sobre o Autor

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Introdução

Se está ansioso para começar a integrar Modelos de Linguagem de Larga Escala (LLMs)

nos seus projetos de programação, sinta-se à vontade para mergulhar diretamente

nos padrões e exemplos de código apresentados nos capítulos seguintes. No entanto,

para apreciar plenamente o poder e o potencial destes padrões, vale a pena dedicar

um momento para compreender o contexto mais amplo e a abordagem coesa que

representam.

Os padrões não são meramente uma coleção de técnicas isoladas, mas sim uma estrutura

unificada para integrar a IA nas suas aplicações. Eu utilizo Ruby on Rails, mas estes

padrões devem funcionar em praticamente qualquer outro ambiente de programação.

Eles abordam uma ampla gama de preocupações, desde a gestão de dados e otimização

de desempenho até à experiência do utilizador e segurança, fornecendo um conjunto

abrangente de ferramentas para melhorar as práticas de programação tradicionais com

as capacidades da IA.

Introdução 2

Cada categoria de padrões aborda um desafio ou oportunidade específica que surge ao

incorporar componentes de IA na sua aplicação. Ao compreender as relações e sinergias

entre estes padrões, pode tomar decisões informadas sobre onde e como aplicar a IA de

forma mais eficaz.

Os padrões nunca são soluções prescritivas e não devem ser tratados como tal. São blocos

de construção adaptáveis que devem ser ajustados aos requisitos e restrições únicos da

sua própria aplicação. A aplicação bem-sucedida destes padrões (como quaisquer outros

na área de software) depende de uma compreensão profunda do domínio do problema,

das necessidades do utilizador e da arquitetura técnica global do seu projeto.

Reflexões sobre Arquitetura de Software

Comecei a programar nos anos 80 e estive envolvido na cena hacker, e nunca perdi a

minha mentalidade hacker, mesmo depois de me tornar um programador profissional.

Desde o início, sempre tive um ceticismo saudável sobre que valor os arquitetos de

software nas suas torres de marfim realmente traziam para a mesa.

Uma das razões pelas quais estou pessoalmente tão entusiasmado com as mudanças

trazidas por esta poderosa nova vaga de tecnologia de IA é o seu impacto no que

consideramos decisões de arquitetura de software. Desafia as noções tradicionais do que

constitui a forma “correta” de desenhar e implementar os nossos projetos de software.

Também questiona se a arquitetura ainda pode ser pensada principalmente como as

partes de um sistema que são difíceis de alterar, uma vez que o aprimoramento com IA

está a tornar mais fácil do que nunca alterar qualquer parte do seu projeto, a qualquer

momento.

Talvez estejamos a entrar nos anos de auge da abordagem “pós-moderna” à engenharia

de software. Neste contexto, pós-moderno refere-se a uma mudança fundamental

que se afasta dos paradigmas tradicionais, onde os programadores eram responsáveis

por escrever e manter cada linha de código. Em vez disso, abraça a ideia de delegar

Introdução 3

tarefas, como manipulação de dados, algoritmos complexos e até mesmo partes inteiras

da lógica da aplicação, a bibliotecas de terceiros e APIs externas. Esta mudança

pós-moderna representa um afastamento significativo da sabedoria convencional de

construir aplicações desde a base, e desafia os programadores a repensar o seu papel

no processo de desenvolvimento.

Sempre acreditei que os bons programadores só escrevem o código que é absolutamente

necessário escrever, baseando-me nos ensinamentos de Larry Wall e outros luminares

hacker como ele. Ao minimizar a quantidade de código escrito, podemos avançar mais

rapidamente, reduzir a superfície para bugs, simplificar a manutenção e melhorar a

fiabilidade geral das suas aplicações. Menos código permite-nos focar na lógica de

negócio central e na experiência do utilizador, enquanto delegamos outro trabalho para

outros serviços.

Agora que os sistemas alimentados por IA podem lidar com tarefas que eram

anteriormente do domínio exclusivo do código escrito por humanos, devemos poder ser

ainda mais produtivos e ágeis, com um foco maior do que nunca na criação de valor

para o negócio e experiência do utilizador.

Claro que existem contrapartidas em delegar grandes partes do seu projeto a sistemas

de IA, como a potencial perda de controlo e a necessidade de mecanismos robustos de

monitorização e feedback. É por isso que requer um novo conjunto de competências e

conhecimentos, incluindo pelo menos alguma compreensão fundamental de como a IA

funciona.

O que é umModelo de Linguagem de Larga

Escala?

OsModelos de Linguagem de Larga Escala (LLMs) são um tipo demodelo de inteligência

artificial que ganhou atenção significativa nos últimos anos, desde o lançamento do

GPT-3 pela OpenAI em 2020. Os LLMs são projetados para processar, compreender

Introdução 4

e gerar linguagem humana com notável precisão e fluência. Nesta secção, vamos dar

uma breve olhada em como os LLMs funcionam e por que são adequados para construir

componentes de sistemas inteligentes.

No seu núcleo, os LLMs são baseados em algoritmos de aprendizagem profunda,

especificamente redes neuronais. Estas redes são compostas por nós interconectados,

ou neurónios, que processam e transmitem informação. A arquitetura de escolha para

LLMs é frequentemente o modelo Transformer, que provou ser altamente eficaz no

tratamento de dados sequenciais como texto.

Os modelos Transformer baseiam-se no mecanismo de atenção e são principalmente

utilizados em tarefas que envolvem dados sequenciais, como o processamento de

linguagem natural. Os Transformers processam dados de entrada todos de uma vez,

em vez de sequencialmente, o que lhes permite captar dependências de longo alcance de

forma mais eficaz. Possuem camadas de mecanismos de atenção que ajudam o modelo

a focar-se em diferentes partes dos dados de entrada para compreender o contexto e as

relações.

O processo de treino dos LLMs envolve expor o modelo a vastas quantidades de dados

textuais, como livros, artigos, websites e repositórios de código. Durante o treino, o

modelo aprende a reconhecer padrões, relações e estruturas dentro do texto. Capta as

propriedades estatísticas da linguagem, como regras gramaticais, associações de palavras

e significados contextuais.

Uma das técnicas principais utilizadas no treino de LLMs é a aprendizagem não

supervisionada. Isto significa que o modelo aprende a partir dos dados sem rotulagem

ou orientação explícita. Descobre padrões e representações por si próprio ao analisar

a co-ocorrência de palavras e frases nos dados de treino. Isto permite aos LLMs

desenvolver uma compreensão profunda da linguagem e das suas complexidades.

Outro aspeto importante dos LLMs é a sua capacidade de lidar com o contexto. Ao

processar um texto, os LLMs consideram não apenas as palavras individuais, mas

também o contexto envolvente. Têm em conta as palavras, frases e até parágrafos

Introdução 5

anteriores para compreender o significado e a intenção do texto. Esta compreensão

contextual permite aos LLMs gerar respostas coerentes e relevantes. Uma das principais

formas de avaliarmos as capacidades de um determinado modelo LLM é considerando

o tamanho do contexto que podem considerar para gerar respostas.

Uma vez treinados, os LLMs podem ser utilizados numa ampla gama de tarefas

relacionadas com linguagem. Podem gerar texto semelhante ao humano, responder a

perguntas, resumir documentos, traduzir idiomas e até escrever código. A versatilidade

dos LLMs torna-os valiosos para construir componentes de sistemas inteligentes que

podem interagir com utilizadores, processar e analisar dados textuais e gerar resultados

significativos.

Ao incorporar LLMs na arquitetura da aplicação, pode criar componentes de IA

que compreendem e processam a entrada do utilizador, geram conteúdo dinâmico e

fornecem recomendações ou ações inteligentes. Mas trabalhar com LLMs requer uma

consideração cuidadosa dos requisitos de recursos e compromissos de desempenho. Os

LLMs são computacionalmente intensivos e podem requerer poder de processamento

e memória significativos (por outras palavras, dinheiro) para operar. A maioria de nós

precisará de avaliar as implicações de custo da integração de LLMs nas nossas aplicações

e agir em conformidade.

Compreendendo a Inferência

A inferência refere-se ao processo pelo qual um modelo gera previsões ou resultados

baseados em dados novos e não vistos. É a fase em que o modelo treinado é usado para

tomar decisões ou gerar texto, imagens ou outro conteúdo em resposta às entradas do

utilizador.

Durante a fase de treino, um modelo de IA aprende a partir de um grande conjunto de

dados ajustando os seus parâmetros para minimizar o erro nas suas previsões. Uma vez

treinado, o modelo pode aplicar o que aprendeu a novos dados. A inferência é como o

modelo usa os seus padrões e conhecimentos aprendidos para gerar resultados.

Introdução 6

Para os LLMs, a inferência envolve receber um prompt ou texto de entrada e produzir

uma resposta coerente e contextualmente relevante, como um fluxo de tokens (dos quais

falaremos em breve). Isto pode ser responder a uma pergunta, completar uma frase, gerar

uma história ou traduzir texto, entre muitas outras tarefas.

Em contraste com a forma como você e eu pensamos, o “pensamento” de

um modelo de IA via inferência acontece todo numa única operação sem

estado. Isto é, o seu pensamento está limitado ao seu processo de geração.

Literalmente tem de pensar em voz alta, como se eu lhe fizesse uma pergunta

e só aceitasse uma resposta sua no estilo “fluxo de consciência”.

Os Modelos de Linguagem de Grande Escala Vêm em
Muitos Tamanhos e Sabores

Embora praticamente todos os modelos de linguagem de grande escala (LLMs) populares

sejam baseados na mesma arquitetura transformer central e treinados em enormes

conjuntos de dados textuais, eles vêm numa variedade de tamanhos e são aperfeiçoados

para diferentes propósitos. O tamanho de um LLM, medido pelo número de parâmetros

na sua rede neuronal, tem um grande impacto nas suas capacidades. Modelos maiores

commais parâmetros, como o GPT-4, que se rumora ter entre 1 a 2 biliões de parâmetros,

são geralmente mais conhecedores e capazes do que modelos menores. No entanto,

modelos maiores também requerem muito mais poder computacional para executar, o

que se traduz em maiores despesas quando os utiliza através de chamadas API.

Para tornar os LLMs mais práticos e adaptados a casos de uso específicos, os modelos

base são frequentemente aperfeiçoados em conjuntos de dados mais direcionados. Por

exemplo, um LLM pode ser treinado num grande corpus de diálogo para se especializar

em IA conversacional. Outros são treinados em código para lhes incutir conhecimento

de programação. Existem até modelos que são especialmente treinados para interações

de roleplay com utilizadores!

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Introdução 7

Modelos de Recuperação vs Modelos Generativos

No mundo dos modelos linguísticos de grande escala (MLGs), existem duas abordagens

principais para gerar respostas: modelos baseados em recuperação e modelos

generativos. Cada abordagem tem os seus pontos fortes e fracos, e compreender as

diferenças entre elas pode ajudá-lo a escolher o modelo mais adequado para o seu caso

específico.

Modelos Baseados em Recuperação

Os modelos baseados em recuperação, também conhecidos como modelos de

recuperação de informação, geram respostas através da pesquisa numa grande base de

dados de texto pré-existente e selecionam as passagens mais relevantes com base na

consulta de entrada. Estes modelos não geram novo texto do zero, mas sim conjugam

excertos da base de dados para formar uma resposta coerente.

Uma das principais vantagens dos modelos baseados em recuperação é a sua capacidade

de fornecer informações factualmente precisas e atualizadas. Como dependem de

uma base de dados de texto curada, podem extrair informações relevantes de fontes

fiáveis e apresentá-las ao utilizador. Isto torna-os adequados para aplicações que

exigem respostas precisas e factuais, como sistemas de pergunta e resposta ou bases

de conhecimento.

No entanto, os modelos baseados em recuperação têm algumas limitações. Eles são tão

bons quanto a base de dados que pesquisam, pelo que a qualidade e a cobertura da

base de dados afetam diretamente o desempenho do modelo. Além disso, estes modelos

podem ter dificuldade em gerar respostas coerentes e naturais, pois estão limitados ao

texto disponível na base de dados.

Não abordamos a utilização de modelos de recuperação puros neste livro.

Introdução 8

Modelos Generativos

Os modelos generativos, por outro lado, criam novo texto do zero com base nos padrões

e relações que aprenderam durante o treino. Estes modelos utilizam a sua compreensão

da linguagem para gerar respostas originais que são adaptadas ao prompt de entrada.

O principal ponto forte dos modelos generativos é a sua capacidade de produzir texto

criativo, coerente e contextualmente relevante. Podem participar em conversas abertas,

gerar histórias e até escrever código. Isto torna-os ideais para aplicações que requerem

interações mais abertas e dinâmicas, como chatbots, criação de conteúdo e assistentes

de escrita criativa.

No entanto, os modelos generativos podem por vezes produzir informações

inconsistentes ou factualmente incorretas, já que dependem dos padrões aprendidos

durante o treino em vez de uma base de dados curada de factos. Podem também ser

mais propensos a enviesamentos e alucinações, gerando texto que é plausível mas não

necessariamente verdadeiro.

Exemplos de MLGs generativos incluem a série GPT da OpenAI (GPT-3, GPT-4) e o

Claude da Anthropic.

Modelos Híbridos

Vários MLGs disponíveis comercialmente combinam as abordagens de recuperação

e generativa num modelo híbrido. Estes modelos utilizam técnicas de recuperação

para encontrar informações relevantes numa base de dados e depois utilizam técnicas

generativas para sintetizar essa informação numa resposta coerente.

Os modelos híbridos visam combinar a precisão factual dos modelos baseados em

recuperação com as capacidades de geração de linguagem natural dos modelos

generativos. Podem fornecer informações mais fiáveis e atualizadas, mantendo

simultaneamente a capacidade de participar em conversas abertas.

Introdução 9

Ao escolher entre modelos baseados em recuperação e modelos generativos, deve

considerar os requisitos específicos da sua aplicação. Se o objetivo principal é fornecer

informações precisas e factuais, um modelo baseado em recuperação pode ser a melhor

escolha. Se a aplicação requer interações mais abertas e criativas, ummodelo generativo

pode ser mais adequado. Os modelos híbridos oferecem um equilíbrio entre as duas

abordagens e podem ser uma boa escolha para aplicações que requerem tanto precisão

factual como geração de linguagem natural.

Em última análise, a escolha entre modelos baseados em recuperação e modelos

generativos depende do caso de uso específico e dos compromissos entre precisão,

criatividade e flexibilidade. Ao compreender os pontos fortes e as limitações de cada

abordagem, pode tomar decisões informadas.

Introdução 10

Ajuste por Instruções

O ajuste por instruções é um subconjunto do treino conversacional que utiliza

prompts e respostas escritas por humanos para tornar os MLGs melhores a

compreender e seguir instruções. Aqui estão alguns exemplos simples para ilustrar

como o ajuste por instruções em prompts e respostas escritas por humanos torna os

MLGs melhores a compreender e seguir instruções:

Exemplo 1: Apoio ao Cliente

Instrução: “Forneça uma resposta a um cliente que solicita um reembolso.”

Prompt Escrito por Humano: “Gostaria de solicitar um reembolso da minha compra

recente. O produto não correspondeu às minhas expectativas.”

Resposta Escrita por Humano: “Lamento saber que o produto não correspondeu às

suas expectativas. Para processar o seu reembolso, por favor forneça o número da sua

encomenda e o motivo da devolução. Analisaremos o seu pedido e responderemos

dentro de 2-3 dias úteis.”

Exemplo 2: Assistência Educacional

Instrução: “Explique o conceito de fotossíntese a uma criança de 10 anos.”

Prompt Escrito por Humano: “Pode explicar como as plantas produzem o seu

alimento?”

Resposta Escrita por Humano: “Claro! As plantas produzem o seu alimento através de

um processo chamado fotossíntese. Elas usam a luz solar, água e dióxido de carbono

para criar alimento e oxigénio. As folhas da planta têm uma parte especial chamada

clorofila que as ajuda a captar a luz solar.”

Exemplo 3: Assistente Pessoal

Introdução 11

Instrução: “Agende uma reunião para terça-feira que vem às 15h.”

Prompt Escrito por Humano: “Pode marcar uma reunião para terça-feira às 15h?”

Resposta Escrita por Humano: “Claro, agendei uma reunião para terça-feira que vem

às 15h. Precisa de mais alguma coisa?”

O resultado é um ecossistema diversificado de LLMs em diferentes tamanhos e com

diferentes especialidades. Modelos mais pequenos na faixa de 1-7 mil milhões de

parâmetros fornecem boas capacidades gerais de linguagem, sendo mais eficientes de

executar.

• Mistral 7B

• Llama 3 8B

• Gemma 7B

Modelos de tamanho médio com cerca de 30-70 mil milhões de parâmetros oferecem

capacidades mais fortes de raciocínio e de seguimento de instruções.

• Llama 3 70B

• Qwen2 70B

• Mixtral 8x22B

Ao escolher um LLM para incorporar numa aplicação, é necessário equilibrar as

capacidades do modelo com fatores práticos como custo, latência, comprimento do

contexto e filtragem de conteúdo. Modelos mais pequenos, ajustados por instruções,

são frequentemente a melhor escolha para tarefas de linguagem mais simples, enquanto

os maiores modelos podem ser necessários para raciocínio ou análise complexos. Os

dados de treino do modelo são também uma consideração importante, pois determinam

a data limite de conhecimento do modelo.

Introdução 12

Certos modelos, como alguns da Perplexity, estão ligados a fontes de

informação em tempo real, pelo que efetivamente não têm data limite.

Quando lhes fazemos perguntas, eles conseguem decidir independentemente

fazer pesquisas na web e obter páginas web arbitrárias para gerar uma

resposta.

Figura 1. Llama3 com e sem acesso online

Emúltima análise, não existe umLLMque sirva para tudo. Compreender as variações no

tamanho do modelo, arquitetura e treino é fundamental para selecionar o modelo certo

para um determinado caso de uso. Experimentar diferentes modelos é a única forma

prática de revelar quais fornecem o melhor desempenho para a tarefa em questão.

Tokenização: Dividindo o Texto em Partes

Antes que um modelo de linguagem grande possa processar texto, esse texto precisa

de ser dividido em unidades menores chamadas tokens. Os tokens podem ser palavras

individuais, partes de palavras ou até caracteres individuais. O processo de dividir texto

em tokens é conhecido como tokenização, e é um passo crucial na preparação de dados

para um modelo de linguagem.

Introdução 13

Figura 2. Esta frase contém 27 tokens

Diferentes LLMs usam diferentes estratégias de tokenização, que podem ter um impacto

significativo no desempenho e nas capacidades do modelo. Alguns tokenizadores

comuns usados por LLMs incluem:

• GPT (Byte Pair Encoding): Os tokenizadores GPT usam uma técnica chamada

byte pair encoding (BPE) para dividir texto em unidades de subpalavras. O

BPE funde iterativamente os pares de bytes mais frequentes num corpus de

texto, formando um vocabulário de tokens de subpalavras. Isto permite que

o tokenizador lide com palavras raras e novas, dividindo-as em partes de

subpalavras mais comuns. Os tokenizadores GPT são usados por modelos como

o GPT-3 e o GPT-4.

• Llama (SentencePiece): Os tokenizadores Llama utilizam a biblioteca

SentencePiece, que é um tokenizador e destokenizador de texto não

supervisionado. O SentencePiece trata o texto de entrada como uma sequência

de caracteres Unicode e aprende um vocabulário de subpalavras com base num

corpus de treino. Pode processar qualquer idioma que possa ser codificado em

Unicode, tornando-o adequado para modelos multilingues. Os tokenizadores

Llama são utilizados por modelos como o Llama e o Alpaca da Meta.

• SentencePiece (Unigram): Os tokenizadores SentencePiece também podem

utilizar um algoritmo diferente chamado Unigram, que se baseia numa técnica de

regularização de subpalavras. A tokenização Unigram determina o vocabulário

ótimo de subpalavras com base num modelo de linguagem unigrama, que atribui

probabilidades a unidades individuais de subpalavras. Esta abordagem pode

produzir subpalavras mais significativas semanticamente em comparação com o

Introdução 14

BPE. O SentencePiece com Unigram é utilizado por modelos como o T5 e o BERT

da Google.

• Google Gemini (Tokenização Multimodal): O Google Gemini utiliza um

esquema de tokenização projetado para lidar com vários tipos de dados, incluindo

texto, imagens, áudio, vídeos e código. Esta capacidade multimodal permite ao

Gemini processar e integrar diferentes formas de informação. Notavelmente, o

Google Gemini 1.5 Pro tem uma janela de contexto que pode processar milhões

de tokens, muito maior do que os modelos anteriores. Esta extensa janela

de contexto permite ao modelo processar um contexto maior, potencialmente

levando a respostas mais precisas. No entanto, é importante notar que o esquema

de tokenização do Gemini está muito mais próximo de um token por caractere

do que outros modelos. Isto significa que o custo real de utilizar modelos Gemini

pode ser significativamente maior do que o esperado se estiver acostumado a

usar modelos como o GPT, já que o preço da Google é baseado em caracteres em

vez de tokens.

A escolha do tokenizador afeta vários aspectos de um LLM, incluindo:

• Tamanho do vocabulário: O tokenizador determina o tamanho do vocabulário

do modelo, que é o conjunto de tokens únicos que ele reconhece. Um vocabulário

maior e mais detalhado pode ajudar o modelo a lidar com uma gama mais ampla

de palavras e frases e até mesmo tornar-se multimodal (capaz de compreender e

gerar mais do que apenas texto), mas também aumenta os requisitos de memória

e a complexidade computacional do modelo.

• Tratamento de palavras raras e desconhecidas: Tokenizadores que utilizam

unidades de subpalavras, como BPE e SentencePiece, podem decompor palavras

raras e desconhecidas em fragmentos de subpalavras mais comuns. Isto permite

que o modelo faça suposições educadas sobre o significado de palavras que não

viu antes, com base nas subpalavras que contêm.

Introdução 15

• Suporte multilingue: Tokenizadores como o SentencePiece, que podem lidar

com qualquer linguagem codificável em Unicode, são adequados para modelos

multilingues que precisam de processar texto em vários idiomas.

Ao escolher um LLM para uma aplicação específica, é importante considerar o

tokenizador que ele utiliza e quão bem se alinha com as necessidades específicas de

processamento de linguagem da tarefa em questão. O tokenizador pode ter um impacto

significativo na capacidade do modelo de lidar com terminologia específica do domínio,

palavras raras e texto multilingue.

Tamanho do Contexto: Quanta Informação Pode um
Modelo de Linguagem Utilizar Durante a Inferência?

Ao discutir modelos de linguagem, o tamanho do contexto refere-se à quantidade de

texto que um modelo pode considerar ao processar ou gerar as suas respostas. É

essencialmente uma medida de quanta informação o modelo pode “lembrar” e usar para

informar as suas saídas (expressa em tokens). O tamanho do contexto de um modelo de

linguagem pode ter um impacto significativo nas suas capacidades e nos tipos de tarefas

que pode realizar efetivamente.

O que é o Tamanho do Contexto?

Em termos técnicos, o tamanho do contexto é determinado pelo número de tokens

(palavras ou fragmentos de palavras) que um modelo de linguagem pode processar

numa única sequência de entrada. Isto é frequentemente referido como a “amplitude

de atenção” ou “janela de contexto” do modelo. Quanto maior o tamanho do contexto,

mais texto o modelo pode considerar de uma vez ao gerar uma resposta ou realizar uma

tarefa.

Diferentes modelos de linguagem têm tamanhos de contexto variados, indo de algumas

centenas de tokens a milhões de tokens. Como referência, um parágrafo típico de texto

Introdução 16

pode conter cerca de 100-150 tokens, enquanto um livro inteiro pode conter dezenas ou

centenas de milhares de tokens.

Existe inclusive trabalho em métodos eficientes para escalar Modelos de Linguagem

Grandes (LLMs) baseados em Transformers para entradas infinitamente longas com

memória e computação limitadas.

Por que o Tamanho do Contexto é Importante?

O tamanho do contexto de ummodelo de linguagem temum impacto significativo na sua

capacidade de compreender e gerar texto coerente e contextualmente relevante. Aqui

estão algumas razões principais pelas quais o tamanho do contexto é importante:

1. Compreensão de conteúdo longo: Modelos com tamanhos de contexto maiores

podem compreender e analisar melhor textos mais longos, como artigos, relatórios

ou até livros inteiros. Isto é crucial para tarefas como sumarização de documentos,

resposta a perguntas e análise de conteúdo.

2. Manutenção da coerência: Uma janela de contexto maior permite que o modelo

mantenha a coerência e consistência ao longo de trechos mais longos de texto.

Isto é importante para tarefas como geração de histórias, sistemas de diálogo

e criação de conteúdo, onde manter uma narrativa ou tópico consistente é

essencial. Também é absolutamente crucial quando se utilizam LLMs para gerar

ou transformar dados estruturados.

3. Captura de dependências de longo alcance: Algumas tarefas de linguagem

requerem a compreensão de relações entre palavras ou frases que estão distantes

num texto. Modelos com tamanhos de contexto maiores estão melhor equipados

para capturar estas dependências de longo alcance, que podem ser importantes

para tarefas como análise de sentimento, tradução e compreensão de linguagem.

https://huggingface.co/papers/2404.07143

Introdução 17

4. Gestão de instruções complexas: Em aplicações onde os modelos de linguagem

são usados para seguir instruções complexas de múltiplos passos, um tamanho de

contextomaior permite que omodelo considere o conjunto completo de instruções

ao gerar uma resposta, em vez de apenas as palavras mais recentes.

Exemplos de Modelos de Linguagem com Diferentes Tamanhos de
Contexto

Aqui estão alguns exemplos de modelos de linguagem com diferentes tamanhos de

contexto:

• OpenAI GPT-3.5 Turbo: 4.095 tokens

• Mistral 7B Instruct: 32.768 tokens

• Anthropic Claude v1: 100.000 tokens

• OpenAI GPT-4 Turbo: 128.000 tokens

• Anthropic Claude v2: 200.000 tokens

• Google Gemini Pro 1.5: 2,8M tokens

Como pode ver, existe uma ampla gama de tamanhos de contexto entre estes modelos,

desde cerca de 4.000 tokens para o modelo OpenAI GPT-3.5 Turbo até 200.000 tokens

para o modelo Anthropic Claude v2. Alguns modelos, como o PaLM 2 da Google e o

GPT-4 da OpenAI, oferecem diferentes variantes com tamanhos de contexto maiores

(por exemplo, versões “32k”), que podem lidar com sequências de entrada ainda mais

longas. E neste momento (abril de 2024), o Google Gemini Pro está a ostentar quase 3

milhões de tokens!

É importante notar que o tamanho do contexto pode variar dependendo da

implementação específica e da versão de um determinado modelo. Por exemplo,

o modelo original OpenAI GPT-4 tem um tamanho de contexto de 8.191 tokens,

enquanto as variantes posteriores do GPT-4, como o Turbo e o 4o, têm um tamanho de

contexto muito maior de 128.000 tokens.

Introdução 18

Sam Altman comparou as limitações atuais de contexto aos kilobytes de memória de

trabalho com que os programadores de computadores pessoais tinham de lidar nos

anos 80, e disse que num futuro próximo seremos capazes de ajustar “todos os seus

dados pessoais” no contexto de um modelo de linguagem grande.

Escolhendo o Tamanho de Contexto Adequado

Ao selecionar um modelo de linguagem para uma aplicação específica, é importante

considerar os requisitos de tamanho de contexto da tarefa em questão. Para tarefas que

envolvem textos curtos e isolados, como análise de sentimento ou resposta simples a

perguntas, um tamanho de contexto menor pode ser suficiente. No entanto, para tarefas

que requerem compreensão e geração de textos mais longos e complexos, um tamanho

de contexto maior será provavelmente necessário.

Vale ressaltar que tamanhos de contexto maiores frequentemente vêm acompanhados

de custos computacionais aumentados e tempos de processamento mais lentos, já que

o modelo precisa considerar mais informação ao gerar uma resposta. Como tal, deve-

-se encontrar um equilíbrio entre tamanho de contexto e desempenho ao escolher um

modelo de linguagem para a sua aplicação.

Por que não escolher simplesmente o modelo com o maior tamanho de contexto

e enchê-lo com o máximo de informação possível? Bem, além dos fatores de

desempenho, a outra consideração principal é o custo. Em março de 2024, um único

ciclo de prompt-resposta usando o Google Gemini Pro 1.5 com um contexto completo

custará quase 8 dólares (USD). Se você tem um caso de uso que justifica essa despesa,

Introdução 19

mais poder para você! Mas para a maioria das aplicações, é simplesmente demasiado

caro por várias ordens de magnitude.

Encontrar Agulhas em Palheiros

O conceito de encontrar uma agulha num palheiro tem sido há muito uma metáfora

para os desafios de recuperação em grandes conjuntos de dados. No domínio dos LLMs,

adaptamos um pouco esta analogia. Imagine que não estamos apenas à procura de um

único facto enterrado num texto vasto (como uma antologia completa de ensaios de

Paul Graham), mas sim de múltiplos factos dispersos por todo ele. Este cenário é mais

semelhante a encontrar várias agulhas num campo extenso, não apenas num único

palheiro. Eis o mais interessante: não só precisamos de localizar estas agulhas, como

também temos de as entrelaçar num fio coerente.

Quando confrontados com a tarefa de recuperar e raciocinar sobre múltiplos factos

incorporados em contextos longos, os LLMs enfrentam um duplo desafio. Primeiro,

há a questão direta da precisão da recuperação—que naturalmente diminui à medida

que o número de factos aumenta. Isto é esperado; afinal, manter o controlo de múltiplos

detalhes num texto extenso põe à prova até os modelos mais sofisticados.

Segundo, e talvez mais crítico, é o desafio de raciocinar com estes factos. Uma coisa

é identificar factos; outra completamente diferente é sintetizá-los numa narrativa ou

resposta coerente. É aqui que surge o verdadeiro teste. O desempenho dos LLMs

em tarefas de raciocínio tende a degradar-se ainda mais do que em tarefas simples de

recuperação. Esta degradação não se deve apenas ao volume; trata-se da complexa dança

entre contexto, relevância e inferência.

Por que é que isto acontece? Bem, considere a dinâmica da memória e atenção na

cognição humana, que se reflete até certo ponto nos LLMs. Ao processar grandes

quantidades de informação, os LLMs, tal como os humanos, podem perder o rasto

Introdução 20

de detalhes anteriores à medida que absorvem novos. Isto é especialmente verdade

em modelos que não foram explicitamente projetados para priorizar ou revisitar

automaticamente segmentos anteriores do texto.

Além disso, a capacidade de um LLM entrelaçar estes factos recuperados numa resposta

coerente é semelhante à construção narrativa. Isto requer não apenas a recuperação de

informação, mas uma compreensão profunda e contextualização, o que continua a ser

um grande desafio para a IA atual.

Então, o que significa isto para nós, como desenvolvedores e integradores destas

tecnologias? Precisamos de estar profundamente conscientes destas limitações ao

projetar sistemas que dependem de LLMs para lidar com tarefas complexas e extensas.

Compreender que o desempenho pode degradar-se sob certas condições ajuda-nos a

estabelecer expectativas realistas e a desenvolver melhores mecanismos de contingência

ou estratégias complementares.

Modalidades: Além do Texto

Embora a maioria dos modelos de linguagem hoje se concentre no processamento e

geração de texto, existe uma tendência crescente para modelos multimodais que podem

nativamente receber e produzir múltiplos tipos de dados, como imagens, áudio e vídeo.

Estes modelos multimodais abrem novas possibilidades para aplicações baseadas em IA

que podem compreender e gerar conteúdo através de diferentes modalidades.

O que são Modalidades?

No contexto dos modelos de linguagem, modalidades referem-se aos diferentes tipos de

dados que um modelo pode processar e gerar. A modalidade mais comum é o texto, que

inclui linguagem escrita em várias formas como livros, artigos, websites e publicações

em redes sociais. No entanto, existem várias outras modalidades que estão cada vez

mais a ser incorporadas em modelos de linguagem:

Introdução 21

• Imagens: Dados visuais como fotografias, ilustrações e diagramas.

• Áudio: Dados sonoros como fala, música e sons ambientais.

• Vídeo: Dados visuais em movimento, frequentemente acompanhados por áudio,

como clipes de vídeo e filmes.

Cada modalidade apresenta desafios e oportunidades únicos para os modelos de

linguagem. Por exemplo, as imagens requerem que o modelo compreenda conceitos e

relações visuais, enquanto o áudio requer que o modelo processe e gere fala e outros

sons.

Modelos de Linguagem Multimodais

Os modelos de linguagem multimodais são projetados para lidar com múltiplas

modalidades dentro de um único modelo. Estes modelos tipicamente têm componentes

ou camadas especializadas que podem tanto compreender entradas como gerar dados de

saída em diferentes modalidades. Alguns exemplos notáveis de modelos de linguagem

multimodais incluem:

• OpenAI’s GPT-4o: OGPT-4o é ummodelo de linguagem de grande dimensão que

compreende e processa nativamente áudio de fala além de texto. Esta capacidade

permite ao GPT-4o realizar tarefas como transcrição de linguagem falada, geração

de texto a partir de entradas de áudio e fornecimento de respostas baseadas em

consultas faladas.

• OpenAI’s GPT-4 com entrada visual: O GPT-4 é um modelo de linguagem de

grande dimensão que pode processar tanto texto como imagens. Quando recebe

uma imagem como entrada, o GPT-4 pode analisar o conteúdo da imagem e gerar

texto que descreve ou responde à informação visual.

• Google’s Gemini: O Gemini é um modelo multimodal que pode lidar com texto,

imagens e vídeo. Utiliza uma arquitetura unificada que permite a compreensão e

geração transmodal, possibilitando tarefas como legendagem de imagens, resumo

de vídeos e resposta a questões visuais.

Introdução 22

• DALL-E e Stable Diffusion: Embora não sejam modelos de linguagem no

sentido tradicional, estes modelos demonstram o poder da IA multimodal ao gerar

imagens a partir de descrições textuais. Demonstram o potencial dos modelos que

podem traduzir entre diferentes modalidades.

Benefícios e Aplicações dos Modelos Multimodais

Os modelos de linguagem multimodais oferecem diversos benefícios e possibilitam uma

ampla gama de aplicações, incluindo:

• Compreensão melhorada: Ao processar informações de múltiplas modalidades,

estes modelos podem obter uma compreensão mais abrangente do mundo,

semelhante à forma como os humanos aprendem através de vários inputs

sensoriais.

• Geração cross-modal: Os modelos multimodais podem gerar conteúdo numa

modalidade com base em input de outra, como criar uma imagem a partir de uma

descrição textual ou gerar um resumo em vídeo a partir de um artigo escrito.

• Acessibilidade: Os modelos multimodais podem tornar a informação mais

acessível ao traduzir entre modalidades, como gerar descrições textuais de

imagens para utilizadores com deficiência visual ou criar versões em áudio de

conteúdo escrito.

• Aplicações criativas: Os modelos multimodais podem ser utilizados para tarefas

criativas como gerar arte, música ou vídeos com base em instruções textuais,

abrindo novas possibilidades para artistas e criadores de conteúdo.

À medida que os modelos de linguagem multimodais continuam a avançar, é provável

que desempenhem um papel cada vez mais importante no desenvolvimento de

aplicações baseadas em IA que podem compreender e gerar conteúdo através de

múltiplas modalidades. Isto permitirá interações mais naturais e intuitivas entre

humanos e sistemas de IA, bem como desbloqueará novas possibilidades para expressão

criativa e disseminação de conhecimento.

Introdução 23

Ecossistemas de Fornecedores

Quando se trata de incorporar modelos de linguagem de grande escala (LLMs) em

aplicações, existe uma gama crescente de opções à escolha. Cada grande fornecedor

de LLMs, como OpenAI, Anthropic, Google e Cohere, oferece o seu próprio ecossistema

de modelos, APIs e ferramentas. Escolher o fornecedor certo envolve considerar vários

fatores, incluindo preços, desempenho, filtragem de conteúdo, privacidade de dados e

opções de personalização.

OpenAI

AOpenAI é um dos fornecedores de LLMsmais conhecidos, com a sua série GPT (GPT-3,

GPT-4) sendo amplamente utilizada em várias aplicações. A OpenAI oferece uma API

intuitiva que permite integrar facilmente os seusmodelos em aplicações. Disponibilizam

uma variedade de modelos com diferentes capacidades e níveis de preço, desde o modelo

básico Ada até ao poderoso modelo Davinci.

O ecossistema da OpenAI também inclui ferramentas como o OpenAI Playground,

que permite experimentar prompts e fazer fine-tuning dos modelos para casos de uso

específicos. Oferecem opções de filtragem de conteúdo para ajudar a prevenir a geração

de conteúdo inadequado ou prejudicial.

Quando uso os modelos da OpenAI diretamente, recorro à biblioteca ruby-openai de

Alex Rudall.

Anthropic

A Anthropic é outro grande player no espaço dos LLMs, com os seus modelos Claude

a ganhar popularidade pelo forte desempenho e considerações éticas. A Anthropic

concentra-se no desenvolvimento de sistemas de IA seguros e responsáveis, com uma

forte ênfase na filtragem de conteúdo e na prevenção de outputs prejudiciais.

https://github.com/alexrudall/ruby-openai

Introdução 24

O ecossistema da Anthropic inclui a API Claude, que permite integrar o modelo nas suas

aplicações, bem como ferramentas para engenharia de prompts e fine-tuning. Também

oferecem o modelo Claude Instant, que incorpora capacidades de pesquisa na web para

respostas mais atualizadas e factuais.

Quando uso os modelos da Anthropic diretamente, recorro à biblioteca anthrophic de

Alex Rudall.

Google

O Google desenvolveu vários LLMs poderosos, incluindo Gemini, BERT, T5 e PaLM.

Estes modelos são conhecidos pelo seu forte desempenho numa ampla gama de tarefas

de processamento de linguagem natural. O ecossistema do Google inclui as bibliotecas

TensorFlow e Keras, que fornecem ferramentas e frameworks para construir e treinar

modelos de aprendizagem automática.

O Google também oferece uma Plataforma de IA na Nuvem, que permite implementar

e escalar facilmente os seus modelos na nuvem. Disponibilizam uma variedade de

modelos pré-treinados e APIs para tarefas como análise de sentimento, reconhecimento

de entidades e tradução.

Meta

A Meta, anteriormente conhecida como Facebook, está profundamente investida no

desenvolvimento de modelos de linguagem de grande escala, destacada pelo lançamento

de modelos como LLaMA e OPT. Estes modelos destacam-se pelo seu forte desempenho

em diversas tarefas de linguagem e são disponibilizados principalmente através de

canais open-source, apoiando o compromisso da Meta com a investigação e colaboração

comunitária.

O ecossistema da Meta é construído principalmente em torno do PyTorch, uma

biblioteca de aprendizagem automática open-source preferida pelas suas capacidades

https://github.com/alexrudall/anthropic

Introdução 25

computacionais dinâmicas e flexibilidade, facilitando a investigação e desenvolvimento

inovador em IA.

Para além das suas ofertas técnicas, a Meta coloca uma forte ênfase no desenvolvimento

ético de IA. Implementam uma filtragem de conteúdo robusta e focam-se na redução

de preconceitos, alinhando-se com os seus objetivos mais amplos de segurança e

responsabilidade nas aplicações de IA.

Cohere

A Cohere é uma empresa mais recente no espaço dos LLM, focando-se em tornar os

LLMs mais acessíveis e fáceis de usar do que a concorrência. O seu ecossistema inclui

a API Cohere, que fornece acesso a uma gama de modelos pré-treinados para tarefas

como geração de texto, classificação e resumo.

A Cohere também oferece ferramentas para engenharia de prompts, ajuste fino

e filtragem de conteúdo. Enfatizam a privacidade e segurança dos dados, com

funcionalidades como armazenamento encriptado de dados e controlos de acesso.

Ollama

O Ollama é uma plataforma auto-hospedada que permite aos utilizadores gerir e

implementar vários modelos de linguagem grandes (LLMs) localmente nas suas

máquinas, dando-lhes controlo total sobre os seus modelos de IA sem depender de

serviços em nuvem externos. Esta configuração é ideal para quem prioriza a privacidade

dos dados e deseja gerir as suas operações de IA internamente.

A plataforma suporta uma variedade de modelos, incluindo versões do Llama, Phi,

Gemma e Mistral, que variam em tamanho e requisitos computacionais. O Ollama

facilita o download e execução destesmodelos diretamente da linha de comandos usando

comandos simples como ollama run <model_name>, e foi projetado para funcionar

em diferentes sistemas operativos, incluindo macOS, Linux e Windows.

Introdução 26

Para programadores que procuram integrar modelos de código aberto nas suas

aplicações sem usar uma API remota, o Ollama oferece uma CLI para gerir ciclos de

vida de modelos semelhante às ferramentas de gestão de contentores. Também suporta

configurações e prompts personalizados, permitindo um alto grau de personalização

para adaptar os modelos a necessidades ou casos de uso específicos.

O Ollama é particularmente adequado para utilizadores tecnicamente experientes e

programadores devido à sua interface de linha de comandos e à flexibilidade que oferece

na gestão e implementação demodelos de IA. Isto torna-o uma ferramenta poderosa para

empresas e indivíduos que necessitam de capacidades robustas de IA sem comprometer

a segurança e o controlo.

Plataformas Multi-Modelo

Adicionalmente, existem fornecedores que hospedam uma grande variedade de modelos

de código aberto, como a Together.ai e a Groq.. Estas plataformas oferecem flexibilidade

e personalização, permitindo-lhe executar e, em alguns casos, até fazer o ajuste fino de

modelos de código aberto de acordo com as suas necessidades específicas. Por exemplo,

a Together.ai fornece acesso a uma gama de LLMs de código aberto, permitindo aos

utilizadores experimentar diferentes modelos e configurações. A Groq concentra-se em

fornecer conclusões de ultra alto desempenho que, no momento da escrita deste livro,

parecem quase mágicas

Escolher um Fornecedor de LLM

Ao escolher um fornecedor de LLM, deve considerar fatores como:

• Preços: Diferentes fornecedores oferecem diferentes modelos de preços, desde

pagamento por utilização até planos baseados em subscrição. É importante

considerar a utilização esperada e o orçamento ao selecionar um fornecedor.

Introdução 27

• Desempenho: O desempenho dos LLMs pode variar significativamente entre

fornecedores, por isso é importante fazer avaliações comparativas e testar modelos

em casos de uso específicos antes de tomar uma decisão.

• Filtragem de Conteúdo: Dependendo da aplicação, a filtragem de conteúdo pode

ser uma consideração crítica. Alguns fornecedores oferecem opções de filtragem

de conteúdo mais robustas do que outros.

• Privacidade de Dados: Se a aplicação lida com dados sensíveis dos utilizadores, é

importante escolher um fornecedor com práticas fortes de privacidade e segurança

de dados.

• Personalização: Alguns fornecedores oferecem mais flexibilidade em termos de

ajuste fino e personalização de modelos para casos de uso específicos.

Em última análise, a escolha do fornecedor de LLM depende dos requisitos e restrições

específicos da aplicação. Ao avaliar cuidadosamente as opções e considerar fatores como

preços, desempenho e privacidade de dados, pode selecionar o fornecedor que melhor

atende às suas necessidades.

Vale também notar que o panorama dos LLM está em constante evolução, com novos

fornecedores e modelos surgindo regularmente. Deve manter-se atualizado com os

últimos desenvolvimentos e estar aberto a explorar novas opções à medida que estas

se tornam disponíveis.

OpenRouter

Ao longo deste livro, irei utilizar exclusivamente o OpenRouter comomeu fornecedor de

API preferido. A razão é simples: é uma loja única para todos os modelos comerciais e

de código aberto mais populares. Se está ansioso para começar a programar com IA, um

dos melhores lugares para começar é com a minha própria Biblioteca Ruby OpenRouter.

https://openrouter.ai
https://github.com/OlympiaAI/open_router

Introdução 28

Pensando Sobre o Desempenho

Ao incorporar modelos de linguagem em aplicações, o desempenho é uma consideração

crítica. O desempenho de um modelo de linguagem pode ser medido em termos da sua

latência (o tempo que leva para gerar uma resposta) e taxa de transferência (o número

de pedidos que pode processar por unidade de tempo).

O Tempo até o Primeiro Token (TTFT) é outra métrica de desempenho essencial,

particularmente relevante para chatbots e aplicações que requerem respostas interativas

em tempo real. O TTFTmede a latência desde o momento em que o pedido do utilizador

é recebido até ao momento em que a primeira palavra (ou token) da resposta é gerada.

Esta métrica é crucial para manter uma experiência de utilizador fluida e envolvente, já

que respostas atrasadas podem levar à frustração e ao desinteresse do utilizador.

Estas métricas de desempenho podem ter um impacto significativo na experiência do

utilizador e na escalabilidade da aplicação.

Vários fatores podem influenciar o desempenho de ummodelo de linguagem, incluindo:

Contagem de Parâmetros: Modelos maiores com mais parâmetros geralmente

requerem mais recursos computacionais e podem ter maior latência e menor taxa de

transferência em comparação com modelos menores.

Hardware: O desempenho de um modelo de linguagem pode variar significativamente

com base no hardware em que está a ser executado. Os fornecedores de cloud oferecem

instâncias de GPU e TPU otimizadas para cargas de trabalho de machine learning, que

podem acelerar significativamente a inferência do modelo.

Uma das coisas interessantes sobre o OpenRouter é que, para muitos dos

modelos que oferece, tem-se uma escolha de fornecedores de cloud com uma

variedade de perfis de desempenho e custos.

Quantização: Técnicas de quantização podem ser usadas para reduzir a utilização de

Introdução 29

memória e os requisitos computacionais de ummodelo, representando pesos e ativações

com tipos de dados de menor precisão. Isto pode melhorar o desempenho sem sacrificar

significativamente a qualidade. Como desenvolvedor de aplicações, provavelmente não

se envolverá no treino dos seus próprios modelos em diferentes níveis de quantização,

mas é bom estar pelo menos familiarizado com a terminologia.

Processamento em Lote: Processar múltiplos pedidos simultaneamente em lotes pode

melhorar a taxa de transferência ao amortizar a sobrecarga do carregamento do modelo

e da transferência de dados.

Cache: Armazenar em cache os resultados de prompts ou sequências de entrada

frequentemente utilizados pode reduzir o número de pedidos de inferência e melhorar

o desempenho geral.

Ao selecionar um modelo de linguagem para uma aplicação em produção, é importante

avaliar o seu desempenho em cargas de trabalho representativas e configurações de

hardware. Isto pode ajudar a identificar potenciais gargalos e garantir que o modelo

pode atingir as metas de desempenho necessárias.

Também vale a pena considerar os compromissos entre o desempenho do modelo e

outros fatores como custo, flexibilidade e facilidade de integração. Por exemplo, usar

um modelo menor e menos dispendioso com menor latência pode ser preferível para

aplicações que requerem respostas em tempo real, enquanto um modelo maior e mais

poderoso pode ser mais adequado para processamento em lote ou tarefas de raciocínio

complexo.

Experimentando com Diferentes Modelos LLM

Escolher um LLM raramente é uma decisão permanente. Como novos e melhores

modelos são lançados regularmente, é bom construir aplicações de forma modular que

permita trocar diferentesmodelos de linguagem ao longo do tempo. Prompts e conjuntos

de dados podem frequentemente ser reutilizados entre modelos com alterações mínimas.

Introdução 30

Isto permite aproveitar os últimos avanços em modelagem de linguagem sem ter que

redesenhar completamente as aplicações.

A capacidade de alternar facilmente entre uma ampla gama de escolhas de

modelos é mais uma razão pela qual adoro o OpenRouter.

Ao atualizar para um novo modelo de linguagem, é importante testar e validar

minuciosamente o seu desempenho e qualidade de saída para garantir que atende aos

requisitos da aplicação. Isto pode envolver retreinar ou fazer fine-tuning do modelo em

dados específicos do domínio, bem como atualizar quaisquer componentes downstream

que dependam das saídas do modelo.

Ao projetar aplicações com desempenho e modularidade em mente, pode criar sistemas

escaláveis, eficientes e à prova de futuro que podem adaptar-se ao panorama em rápida

evolução da tecnologia de modelagem de linguagem.

Sistemas de IA Compostos

Antes de concluir a nossa introdução, vale a pena mencionar que antes de 2023

e da explosão de interesse em IA generativa desencadeada pelo ChatGPT, as

abordagens tradicionais de IA geralmente dependiam da integração de modelos únicos

e fechados. Em contraste, Sistemas de IA Compostos aproveitam pipelines complexos

de componentes interligados trabalhando em conjunto para alcançar comportamento

inteligente.

No seu núcleo, os sistemas de IA compostos consistem em múltiplos módulos,

cada um projetado para executar tarefas ou funções específicas. Estes módulos

podem incluir geradores, recuperadores, classificadores, ranqueadores e vários outros

componentes especializados. Ao dividir o sistema geral em unidades menores e

focadas, os desenvolvedores podem criar arquiteturas de IA mais flexíveis, escaláveis e

manuteníveis.

Introdução 31

Uma das principais vantagens dos sistemas de IA compostos é a sua capacidade

de combinar os pontos fortes de diferentes técnicas e modelos de IA. Por exemplo,

um sistema pode utilizar um modelo de linguagem de grande escala (LLM) para

compreensão e geração de linguagem natural, enquanto emprega um modelo separado

para recuperação de informação ou tomada de decisões baseada em regras. Esta

abordagemmodular permite-lhe selecionar asmelhores ferramentas e técnicas para cada

tarefa específica, em vez de depender de uma solução única para todos os casos.

No entanto, construir sistemas de IA compostos também apresenta desafios únicos. Em

particular, garantir a coerência e consistência geral do comportamento do sistema requer

mecanismos robustos de teste, monitorização e governança.

O advento de LLMs poderosos como o GPT-4 permite-nos experimentar

sistemas de IA compostos mais facilmente do que nunca, porque estes

modelos avançados são capazes de lidar com múltiplos papéis dentro de

um sistema composto, como classificação, classificação e geração, além das

suas capacidades de compreensão de linguagem natural. Esta versatilidade

permite aos programadores prototipar e iterar rapidamente arquiteturas

de IA compostas, abrindo novas possibilidades para o desenvolvimento de

aplicações inteligentes.

Padrões de Implementação para Sistemas de IA
Compostos

Os sistemas de IA compostos podem ser implementados usando vários padrões, cada um

projetado para atender a requisitos e casos de uso específicos. Vamos explorar quatro

padrões comuns de implementação: Pergunta e Resposta, Solucionadores de Problemas

Multi-Agente/Agênticos, IA Conversacional e CoPilotos.

Introdução 32

Pergunta e Resposta

Os sistemas de Pergunta e Resposta (P&R) concentram-se em fornecer recuperação de

informação aprimorada com as capacidades de compreensão dos modelos de IA para

funcionar comomais do que simplesmente ummotor de busca. Ao combinarmodelos de

linguagem poderosos com fontes de conhecimento externas usandoGeração Aumentada

por Recuperação (RAG), os sistemas de Pergunta e Resposta evitam alucinações e

fornecem respostas precisas e contextualmente relevantes às consultas dos utilizadores.

Os componentes principais de um sistema de P&R baseado em LLM incluem:

• Compreensão e reformulação de consultas: Análise das consultas dos

utilizadores e reformulação das mesmas para melhor corresponder às fontes de

conhecimento subjacentes.

• Recuperação de conhecimento: Recuperação de informações relevantes

de fontes de dados estruturados ou não estruturados com base na consulta

reformulada.

• Geração de resposta: Geração de respostas coerentes e informativas integrando

o conhecimento recuperado com as capacidades generativas do modelo de

linguagem.

Os subsistemas RAG são particularmente importantes em domínios de P&R onde

fornecer informações precisas e atualizadas é crucial, como suporte ao cliente, gestão

do conhecimento ou aplicações educacionais

Solucionadores de Problemas Multi-Agente/Agênticos

Os sistemas multi-agente, também conhecidos como Agênticos, consistem em múltiplos

agentes autónomos trabalhando juntos para resolver problemas complexos. Cada agente

tem um papel específico, conjunto de habilidades e acesso a ferramentas ou fontes de

informação relevantes. Ao colaborar e trocar informações, estes agentes podem lidar

com tarefas que seriam difíceis ou impossíveis para um único agente resolver sozinho.

Introdução 33

Os princípios fundamentais dos solucionadores de problemas multi-agente incluem:

• Especialização: Cada agente concentra-se num aspeto específico do problema,

aproveitando as suas capacidades e conhecimentos únicos.

• Colaboração: Os agentes comunicam e coordenam as suas ações para alcançar

um objetivo comum, frequentemente através de troca de mensagens ou memória

partilhada.

• Adaptabilidade: O sistema pode adaptar-se a condições ou requisitos em

mudança ajustando os papéis e comportamentos dos agentes individuais.

Os sistemas multi-agente são adequados para aplicações que requerem resolução

distribuída de problemas, como otimização da cadeia de abastecimento, gestão de

tráfego ou planeamento de resposta a emergências

IA Conversacional

Os sistemas de IA conversacional permitem interações em linguagem natural entre

utilizadores e agentes inteligentes. Estes sistemas combinam compreensão de linguagem

natural, gestão de diálogo e capacidades de geração de linguagem para fornecer

experiências conversacionais envolventes e personalizadas.

Os principais componentes de um sistema de IA conversacional incluem:

• Reconhecimento de intenção: Identificação da intenção do utilizador com base

na sua entrada, como fazer uma pergunta, fazer um pedido ou expressar um

sentimento.

• Extração de entidades: Extração de entidades ou parâmetros relevantes da

entrada do utilizador, como datas, localizações ou nomes de produtos.

• Gestão de diálogo: Manutenção do estado da conversa, determinação da resposta

apropriada com base na intenção e contexto do utilizador, e gestão de interações

de múltiplos turnos.

Introdução 34

• Geração de resposta: Geração de respostas semelhantes às humanas usando

modelos de linguagem, modelos ou métodos baseados em recuperação.

Os sistemas de IA conversacional são comumente usados em chatbots de atendimento

ao cliente, assistentes virtuais e interfaces controladas por voz. Como mencionado

anteriormente, a maioria das abordagens, padrões e exemplos de código neste livro

são diretamente extraídos do meu trabalho num grande sistema de IA conversacional

chamado Olympia

CoPilots

Os CoPilots são assistentes baseados em IA que trabalham em conjunto com utilizadores

humanos para melhorar a sua produtividade e capacidade de tomada de decisões.

Estes sistemas aproveitam uma combinação de processamento de linguagem natural,

aprendizagem automática e conhecimento específico do domínio para fornecer

recomendações inteligentes, automatizar tarefas e oferecer suporte contextual.

As características principais dos CoPilots incluem:

• Personalização: Adaptação às preferências individuais dos utilizadores, fluxos de

trabalho e estilos de comunicação.

• Assistência proativa: Antecipação das necessidades do utilizador e oferecimento

de sugestões ou ações relevantes sem solicitações explícitas.

• Aprendizagem contínua: Melhoria do desempenho ao longo do tempo através

da aprendizagem com base no feedback, interações e dados dos utilizadores.

Os CoPilots são cada vez mais utilizados em vários domínios, como desenvolvimento

de software (por exemplo, conclusão de código e deteção de erros), escrita criativa (por

exemplo, sugestões de conteúdo e edição), e análise de dados (por exemplo, insights e

recomendações de visualização)

https://olympia.chat

Introdução 35

Estes padrões de implementação demonstram a versatilidade e o potencial dos sistemas

de IA compostos. Ao compreender as características e casos de uso de cada padrão, pode

tomar decisões informadas ao projetar e implementar aplicações inteligentes. Embora

este livro não seja especificamente sobre a implementação de sistemas de IA compostos,

muitas, se não todas, as mesmas abordagens e padrões aplicam-se à integração de

componentes discretos de IA no desenvolvimento de aplicações tradicionais.

Funções em Sistemas de IA Compostos

Os sistemas de IA compostos são construídos sobre uma base de módulos interligados,

cada um projetado para desempenhar uma função específica. Estes módulos trabalham

em conjunto para criar comportamentos inteligentes e resolver problemas complexos.

É útil estar familiarizado com estas funções ao pensar onde poderá implementar ou

substituir partes da sua aplicação por componentes discretos de IA.

Gerador

Os geradores são responsáveis por produzir novos dados ou conteúdo com base em

padrões aprendidos ou prompts de entrada. O mundo da IA tem muitos tipos diferentes

de geradores, mas no contexto dos tipos de modelos de linguagem apresentados neste

livro, os geradores podem criar texto semelhante ao humano, completar frases parciais

ou gerar respostas a consultas de utilizadores. Desempenham um papel crucial em

tarefas como criação de conteúdo, geração de diálogo e aumento de dados.

Recuperador

Os recuperadores são utilizados para pesquisar e extrair informações relevantes de

grandes conjuntos de dados ou bases de conhecimento. Empregam técnicas como

pesquisa semântica, correspondência de palavras-chave ou similaridade vetorial

para encontrar os pontos de dados mais pertinentes com base numa determinada

consulta ou contexto. Os recuperadores são essenciais para tarefas que exigem acesso

Introdução 36

rápido a informações específicas, como resposta a perguntas, verificação de factos ou

recomendação de conteúdo.

Classificador por Ordem

Os classificadores por ordem são responsáveis por ordenar ou priorizar um conjunto de

itens com base em determinados critérios ou pontuações de relevância. Atribuem pesos

ou pontuações a cada item e depois ordenam-nos em conformidade. São comumente

utilizados em motores de busca, sistemas de recomendação ou qualquer aplicação onde

seja crucial apresentar os resultados mais relevantes aos utilizadores.

Classificador

Os classificadores são utilizados para categorizar ou rotular pontos de dados com

base em classes ou categorias predefinidas. Aprendem a partir de dados de treino

rotulados e depois preveem a classe de novas instâncias não vistas. Os classificadores

são fundamentais para tarefas como análise de sentimento, deteção de spam ou

reconhecimento de imagem, onde o objetivo é atribuir uma categoria específica a cada

entrada.

Ferramentas e Agentes

Além destas funções principais, os sistemas de IA compostos frequentemente

incorporam ferramentas e agentes para melhorar a sua funcionalidade e adaptabilidade:

• Ferramentas: As ferramentas são componentes de software discretos ou APIs

que executam ações ou cálculos específicos. Podem ser invocadas por outros

módulos, como geradores ou recuperadores, para realizar subtarefas ou recolher

informações adicionais. Exemplos de ferramentas incluem motores de busca web,

calculadoras ou bibliotecas de visualização de dados.

Introdução 37

• Agentes: Os agentes são entidades autónomas que podem perceber o seu

ambiente, tomar decisões e executar ações para atingir objetivos específicos.

Frequentemente dependem de uma combinação de diferentes técnicas de IA,

como planeamento, raciocínio e aprendizagem, para operar eficazmente em

condições dinâmicas ou incertas. Os agentes podem ser utilizados para modelar

comportamentos complexos ou para coordenar as ações de múltiplos módulos

dentro de um sistema de IA composto.

Num sistema de IA composto puro, a interação entre estes componentes é orquestrada

através de interfaces bem definidas e protocolos de comunicação. Os dados fluem entre

módulos, com a saída de um componente servindo como entrada para outro. Esta

arquitetura modular permite flexibilidade, escalabilidade e manutenibilidade, pois os

componentes individuais podem ser atualizados, substituídos ou expandidos sem afetar

todo o sistema.

Ao aproveitar o poder destes componentes e suas interações, os sistemas de IA compostos

podem abordar problemas complexos do mundo real que requerem uma combinação

de diferentes capacidades de IA. À medida que exploramos as abordagens e padrões

para integrar IA no desenvolvimento de aplicações, tenha em mente que os mesmos

princípios e técnicas utilizados em sistemas de IA compostos podem ser aplicados para

criar aplicações inteligentes, adaptativas e centradas no utilizador.

Nos próximos capítulos da Parte 1, mergulharemos mais profundamente nas abordagens

e técnicas fundamentais para integrar componentes de IA no seu processo de

desenvolvimento de aplicações. Da engenharia de prompts e geração aumentada por

recuperação até dados auto-reparáveis e orquestração inteligente de fluxos de trabalho,

abordaremos uma ampla gama de padrões e melhores práticas para ajudá-lo a construir

aplicações de ponta baseadas em IA.

Parte 1: Abordagens e
Técnicas Fundamentais

Esta parte do livro apresenta diferentes formas de integrar a utilização de IA nas suas

aplicações. Os capítulos abrangem um conjunto de abordagens e técnicas relacionadas,

desde conceitos de alto nível como Restringir o Caminho e Geração Aumentada por

Recuperação até ideias para programar a sua própria camada de abstração sobre APIs

de conclusão de chat LLM.

O objetivo desta parte do livro é ajudá-lo a compreender os tipos de comportamento que

pode implementar com IA, antes de aprofundar demasiado os padrões de implementação

específicos que são o foco da Parte 2.

As abordagens na Parte 1 baseiam-se em ideias que utilizei no meu código, padrões

clássicos de arquitetura e integração de aplicações empresariais, além de metáforas

que utilizei ao explicar as capacidades da IA a outras pessoas, incluindo stakeholders

empresariais não técnicos.

Estreitar o Caminho

“Estreitar o caminho” refere-se a focar a IA na tarefa em questão. Uso-o como um

mantra sempre que fico frustrado com a IA a agir de forma “estúpida” ou inesperada.

O mantra lembra-me que a falha é provavelmente minha culpa, e que provavelmente

deveria estreitar ainda mais o caminho.

A necessidade de estreitar o caminho surge das vastas quantidades de conhecimento

contidas nos modelos de linguagem de grande escala, especialmente modelos de classe

mundial como os da OpenAI e Anthropic que têm literalmente biliões de parâmetros.

Estreitar o Caminho 40

Ter acesso a uma gama tão ampla de conhecimento é indubitavelmente poderoso

e produz comportamentos emergentes como a teoria da mente e a capacidade de

raciocinar de forma semelhante à humana. No entanto, esse volume avassalador de

informação também apresenta desafios quando se trata de gerar respostas precisas

e exatas para prompts específicos, especialmente se esses prompts se destinam a

exibir comportamento determinístico que pode ser integrado com desenvolvimento de

software e algoritmos “normais”.

Vários fatores levam a estes desafios.

Sobrecarga de Informação: Os modelos de linguagem de grande escala são treinados

com quantidades massivas de dados abrangendo vários domínios, fontes e períodos

temporais. Este conhecimento extenso permite-lhes envolver-se em diversos tópicos

e gerar respostas baseadas numa ampla compreensão do mundo. No entanto, quando

confrontado com um prompt específico, o modelo pode ter dificuldade em filtrar

informações irrelevantes, contraditórias ou desatualizadas/obsoletas, levando a

respostas que carecem de foco ou precisão. Dependendo do que está a tentar fazer, o

simples volume de informação contraditória disponível para o modelo pode facilmente

sobrecarregar a sua capacidade de fornecer a resposta ou comportamento que procura.

Ambiguidade Contextual: Dado o vasto espaço latente de conhecimento, os modelos

de linguagem de grande escala podem encontrar ambiguidade ao tentar compreender

o contexto do seu prompt. Sem um estreitamento ou orientação adequada, o modelo

pode gerar respostas que estão tangencialmente relacionadas mas não são diretamente

relevantes para as suas intenções. Este tipo de falha leva a respostas que estão fora do

tópico, são inconsistentes ou não atendem às suas necessidades declaradas. Neste caso,

estreitar o caminho refere-se à desambiguação do contexto, garantindo que o contexto

fornecido faz com que o modelo se concentre apenas na informação mais relevante do

seu conhecimento base.

Estreitar o Caminho 41

Nota: Quando está a começar com a “engenharia de prompts”, é muito mais

provável que peça ao modelo para fazer coisas sem explicar adequadamente

o resultado desejado; é preciso prática para não ser ambíguo!

Inconsistências Temporais: Como os modelos de linguagem são treinados com dados

que foram criados em diferentes períodos temporais, podem possuir conhecimentos que

estão desatualizados, ultrapassados ou já não são precisos. Por exemplo, informações

sobre eventos atuais, descobertas científicas ou avanços tecnológicos podem ter evoluído

desde que os dados de treino do modelo foram recolhidos. Sem estreitar o caminho para

priorizar fontes mais recentes e fiáveis, o modelo pode gerar respostas baseadas em

informações desatualizadas ou incorretas, levando a imprecisões e inconsistências nos

seus outputs.

Nuances Específicas do Domínio: Diferentes domínios e campos têm as suas próprias

terminologias, convenções e bases de conhecimento específicas. Pense em praticamente

qualquer TLA (Acrónimo de Três Letras) e perceberá que a maioria tem mais do

que um significado. Por exemplo, MSK pode referir-se ao Managed Streaming for

Apache Kafka da Amazon, ao Memorial Sloan Kettering Cancer Center, ou ao sistema

MusculoESquelético humano.

Quando um prompt requer experiência num domínio particular, o conhecimento

genérico de um modelo de linguagem de grande escala pode não ser suficiente para

fornecer respostas precisas e nuançadas. Estreitar o caminho focando em informação

específica do domínio, seja através de engenharia de prompts ou geração aumentada por

recuperação, permite que o modelo gere respostas mais alinhadas com os requisitos e

expectativas do seu domínio específico.

Espaço Latente: Incompreensivelmente Vasto

Quando menciono o “espaço latente” de um modelo de linguagem, estou a referir-me à

vasta paisagemmultidimensional de conhecimento e informação que omodelo aprendeu

Estreitar o Caminho 42

durante o seu processo de treino. É como um reino oculto dentro das redes neurais

do modelo, onde todos os padrões, associações e representações da linguagem estão

armazenados.

Imagine que está a explorar um vasto território inexplorado cheio de inúmeros nós

interligados. Cada nó representa uma peça de informação, um conceito ou uma

relação que o modelo aprendeu. À medida que navega por este espaço, descobrirá

que alguns nós estão mais próximos uns dos outros, indicando uma forte conexão ou

similaridade, enquanto outros estão mais distantes, sugerindo uma relação mais fraca

ou mais distante.

O desafio com o espaço latente é que ele é incrivelmente complexo e multidimensional.

Imagine-o tão imenso quanto o nosso universo físico, com seus aglomerados de galáxias

e vastas, inimagináveis distâncias de espaço vazio entre eles.

Por conter milhares de dimensões, o espaço latente não é diretamente observável

ou interpretável por humanos. É uma representação abstrata que o modelo usa

internamente para processar e gerar linguagem. Quando você fornece um prompt inicial

ao modelo, ele essencialmente mapeia esse prompt para uma localização específica

dentro do espaço latente. O modelo então usa a informação circundante e as conexões

nesse espaço para gerar uma resposta.

A questão é que o modelo aprendeu uma quantidade enorme de informação a partir dos

seus dados de treino, e nem toda ela é relevante ou precisa para uma determinada tarefa.

É por isso que estreitar o caminho se torna tão importante. Ao fornecer instruções claras,

exemplos e contexto nos seus prompts, você está essencialmente guiando o modelo para

se focar em regiões específicas dentro do espaço latente que são mais relevantes para o

resultado desejado.

Uma forma diferente de pensar nisso é como usar um holofote num museu

completamente escuro. Se já visitou o Louvre ou o Metropolitan Museum of Art,

então é dessa escala que estou a falar. O espaço latente é o museu, repleto de

incontáveis objetos e detalhes. O seu prompt é o holofote, iluminando áreas específicas

Estreitar o Caminho 43

e direcionando a atenção do modelo para a informação mais importante. Sem

essa orientação, o modelo pode vaguear sem rumo pelo espaço latente, recolhendo

informação irrelevante ou contraditória pelo caminho.

À medida que trabalha commodelos de linguagem e elabora os seus prompts, mantenha

emmente o conceito de espaço latente. O seu objetivo é navegar eficazmente nesta vasta

paisagem de conhecimento, direcionando o modelo para a informação mais relevante

e precisa para a sua tarefa. Ao estreitar o caminho e fornecer orientação clara, pode

desbloquear todo o potencial do espaço latente do modelo e gerar respostas de alta

qualidade e coerentes.

Embora as descrições anteriores dos modelos de linguagem e do espaço latente que eles

navegampossam parecer um poucomágicas ou abstratas, é importante compreender que

os prompts não são feitiços ou encantamentos. A forma como os modelos de linguagem

funcionam está fundamentada nos princípios da álgebra linear e teoria da probabilidade.

No seu núcleo, os modelos de linguagem são modelos probabilísticos de texto, muito

semelhantes a como uma curva em sino é ummodelo estatístico de dados. São treinados

através de um processo chamado modelagem autorregressiva, onde o modelo aprende a

prever a probabilidade da próxima palavra numa sequência com base nas palavras que

vêm antes dela. Durante o treino, o modelo começa com pesos aleatórios e gradualmente

ajusta-os para atribuir probabilidades mais altas a texto que se assemelha às amostras

do mundo real com que foi treinado.

No entanto, pensar em modelos de linguagem como simples modelos estatísticos, como

regressão linear, não fornece a melhor intuição para compreender o seu comportamento.

Uma analogia mais adequada é pensar neles como programas probabilísticos, que são

modelos que permitem a manipulação de variáveis aleatórias e podem representar

relações estatísticas complexas.

Os programas probabilísticos podem ser representados por modelos gráficos, que

fornecem uma forma visual de compreender as dependências e relações entre variáveis

no modelo. Esta perspetiva pode oferecer insights valiosos sobre o funcionamento de

Estreitar o Caminho 44

modelos complexos de geração de texto como o GPT-4 e o Claude.

No artigo “Language Model Cascades” de Dohan et al., os autores aprofundam-se

nos detalhes de como os programas probabilísticos podem ser aplicados aos modelos

de linguagem. Eles mostram como esta estrutura pode ser usada para compreender

o comportamento destes modelos e orientar o desenvolvimento de estratégias de

prompting mais eficazes.

Um insight fundamental desta perspetiva probabilística é que o modelo de linguagem

essencialmente cria um portal para um universo alternativo onde os documentos

desejados existem. O modelo atribui pesos a todos os documentos possíveis com base

na sua probabilidade, efetivamente reduzindo o espaço de possibilidades para se focar

nos mais relevantes.

Isto traz-nos de volta ao tema central de “estreitar o caminho”. O objetivo principal

do prompting é condicionar o modelo probabilístico de uma forma que concentre a

massa das suas previsões, focando-se na informação específica ou comportamento que

queremos obter. Ao fornecer prompts cuidadosamente elaborados, podemos guiar o

modelo para navegar no espaço latente de forma mais eficiente e gerar resultados que

são mais relevantes e coerentes.

No entanto, é importante ter em mente que o modelo de linguagem está ultimamente

limitado pela informação com que foi treinado. Embora possa gerar texto semelhante

a documentos existentes ou combinar ideias de formas inovadoras, não pode criar

informação inteiramente nova do zero. Por exemplo, não podemos esperar que omodelo

forneça uma cura para o cancro se tal cura ainda não foi descoberta e documentada nos

seus dados de treino.

Em vez disso, a força do modelo reside na sua capacidade de encontrar e sintetizar

informação semelhante àquela que incluímos no prompt. Ao compreender a natureza

probabilística destes modelos e como os prompts podem ser utilizados para condicionar

os seus resultados, podemos aproveitar mais eficazmente as suas capacidades para gerar

insights e conteúdo valioso.

Estreitar o Caminho 45

Considere os prompts abaixo. No primeiro, “Mercúrio” sozinho poderia referir-se ao

planeta, ao elemento ou ao deus romano, mas o mais provável é o planeta. De facto, o

GPT-4 fornece uma resposta longa que começa por Mercúrio é o planeta mais pequeno

e mais próximo do Sol no Sistema Solar…. O segundo prompt refere-se especificamente

ao elemento químico. O terceiro refere-se à figura mitológica romana, conhecida pela

sua velocidade e papel como mensageiro divino.

1 # Prompt 1

2 Tell me about: Mercury

3

4 # Prompt 2

5 Tell me about: Mercury element

6

7 # Prompt 3

8 Tell me about: Mercury messenger of the gods

Ao acrescentar apenas algumas palavras extra, mudámos completamente a forma como

a IA reage. Como aprenderá mais tarde neste livro, truques sofisticados de engenharia

de prompts, como prompts n-shot, entrada/saída estruturada e Cadeia de Pensamento

são apenas formas inteligentes de condicionar a saída do modelo.

Assim, em última análise, a arte da engenharia de prompts consiste em compreender

como navegar na vasta paisagem probabilística do conhecimento do modelo de

linguagem para estreitar o caminho até à informação ou comportamento específico que

procuramos.

Para os leitores com um sólido conhecimento de matemática avançada, fundamentar

a vossa compreensão destes modelos nos princípios da teoria das probabilidades e da

álgebra linear pode definitivamente ajudar! Para os restantes que querem desenvolver

estratégias eficazes para obter as saídas desejadas, vamos manter-nos em abordagens

mais intuitivas.

Estreitar o Caminho 46

Como o Caminho é “Estreitado”

Para abordar estes desafios de excesso de conhecimento, empregamos técnicas que

ajudam a guiar o processo de geração do modelo de linguagem e a focar a sua atenção

na informação mais relevante e precisa.

Aqui estão as técnicas mais significativas, por ordem recomendada, ou seja, deve tentar

primeiro a Engenharia de Prompts, depois RAG e, finalmente, se necessário, o ajuste

fino.

Engenharia de Prompts A abordagem mais fundamental é a elaboração de prompts

que incluem instruções específicas, restrições ou exemplos para orientar a geração de

respostas do modelo. Este capítulo aborda os fundamentos da Engenharia de Prompts

na próxima secção, e abordamos muitos padrões específicos de engenharia de prompts

na Parte 2 do livro. Esses padrões incluem Destilação de Prompts, uma técnica que

se concentra em refinar e otimizar prompts para extrair o que a IA considera ser a

informação mais relevante e concisa.

Aumento de Contexto. Recuperação dinâmica de informações relevantes de bases de

conhecimento ou documentos externos para fornecer ao modelo um contexto focado no

momento em que é solicitado. As técnicas populares de aumento de contexto incluem

Geração Aumentada por Recuperação (RAG) Os chamados “modelos online” como os

fornecidos pela Perplexity são capazes de aumentar o seu contexto com resultados de

pesquisa em tempo real na internet.

Apesar do seu poder, os LLMs não são treinados nos seus conjuntos de dados

únicos, que podem ser privados ou específicos para o problema que está a

tentar resolver. As técnicas deAumento de Contexto permitem dar aos LLMs

acesso a dados por trás de APIs, em bases de dados SQL, ou presos em PDFs

e apresentações.

Ajuste Fino ou Adaptação de Domínio Treinar o modelo em conjuntos de dados

https://perplexity.ai

Estreitar o Caminho 47

específicos do domínio para especializar o seu conhecimento e capacidades de geração

para uma tarefa ou campo particular.

Baixar a Temperatura

A temperatura é um hiperparâmetro usado em modelos de linguagem baseados em

transformers que controla a aleatoriedade e criatividade do texto gerado. É um valor

entre 0 e 1, onde valores mais baixos tornam a saída mais focada e determinística,

enquanto valores mais altos a tornam mais diversa e imprevisível.

Quando a temperatura é definida como 1, o modelo de linguagem gera texto baseado

na distribuição completa de probabilidade do próximo token, permitindo respostas mais

criativas e variadas. No entanto, isto também pode levar o modelo a gerar texto menos

relevante ou coerente.

Por outro lado, quando a temperatura é definida como 0, o modelo de linguagem

seleciona sempre o token com a maior probabilidade, efetivamente “estreitando o seu

caminho”. Quase todos os meus componentes de IA usam uma temperatura definida em

0 ou próxima disso, pois resulta em respostasmais focadas e previsíveis. É absolutamente

útil quando quer que o modelo siga instruções, preste atenção às funções que lhe foram

fornecidas, ou simplesmente precise de respostas mais precisas e relevantes do que as

que está a obter.

Por exemplo, se estiver a construir um chatbot que precisa de fornecer informações

factuais, pode querer definir a temperatura para um valor mais baixo para garantir que

as respostas são mais precisas e focadas no tema. Por outro lado, se estiver a construir

um assistente de escrita criativa, pode querer definir a temperatura para um valor mais

alto para encorajar saídas mais diversas e imaginativas.

Hiperparâmetros: Botões e Controlos da Inferência

Quando trabalha com modelos de linguagem, encontrará frequentemente o termo

“hiperparâmetros”. No contexto da inferência (ou seja, quando está a usar o modelo para

Estreitar o Caminho 48

gerar respostas), os hiperparâmetros são como os botões e controlos que pode ajustar

para controlar o comportamento e a saída do modelo.

Pense nisso como ajustar as configurações de uma máquina complexa. Tal como pode

girar um botão para controlar a temperatura ou acionar um interruptor para mudar o

modo de operação, os hiperparâmetros permitem-lhe ajustar com precisão a forma como

o modelo de linguagem processa e gera texto.

Alguns hiperparâmetros comuns que encontrará durante a inferência incluem:

• Temperatura: Como acabado de mencionar, este parâmetro controla a

aleatoriedade e criatividade do texto gerado. Uma temperatura mais alta leva a

resultados mais diversos e imprevisíveis, enquanto uma temperatura mais baixa

resulta em respostas mais focadas e determinísticas.

• Amostragem Top-p (nucleus): Este parâmetro controla a seleção do menor

conjunto de tokens cuja probabilidade cumulativa excede um determinado limite

(p). Permite resultados mais diversos mantendo ainda a coerência.

• Amostragem Top-k: Esta técnica seleciona os k tokens mais prováveis seguintes

e redistribui a massa de probabilidade entre eles. Pode ajudar a impedir que o

modelo gere tokens de baixa probabilidade ou irrelevantes.

• Penalizações de Frequência e Presença: Estes parâmetros penalizam o modelo

por repetir as mesmas palavras ou frases com demasiada frequência (penalização

de frequência) ou por gerar palavras que não estão presentes no prompt inicial

(penalização de presença). Ao ajustar estes valores, pode encorajar o modelo a

produzir resultados mais variados e relevantes.

• Comprimento máximo: Este hiperparâmetro estabelece um limite superior no

número de tokens (palavras ou subpalavras) que o modelo pode gerar numa única

resposta. Ajuda a controlar a verbosidade e concisão do texto gerado.

Estreitar o Caminho 49

Àmedida que experimenta diferentes configurações de hiperparâmetros, descobrirá que

mesmo pequenos ajustes podem ter um impacto significativo no resultado do modelo.

É como afinar uma receita – uma pitada a mais de sal ou um tempo de cozedura

ligeiramente mais longo podem fazer toda a diferença no prato final.

A chave é compreender como cada hiperparâmetro afeta o comportamento do modelo

e encontrar o equilíbrio certo para a sua tarefa específica. Não tenha medo de

experimentar diferentes configurações e ver como influenciam o texto gerado. Com o

tempo, desenvolverá uma intuição sobre quais hiperparâmetros ajustar e como alcançar

os resultados desejados.

Ao combinar o uso destes parâmetros com engenharia de prompts, geração aumentada

por recuperação e ajuste fino, pode efetivamente estreitar o caminho e guiar o modelo

de linguagem para gerar respostas mais precisas, relevantes e valiosas para o seu caso

de uso específico.

Modelos Base Versus Modelos Ajustados por

Instruções

Os modelos base são as versões não refinadas e não treinadas dos LLMs. Imagine-

-os como uma tela em branco, ainda não influenciada por treino específico para

compreender ou seguir instruções. São construídos sobre os vastos dados com que foram

inicialmente treinados, capazes de gerar uma ampla gama de resultados. No entanto,

sem camadas adicionais de ajuste fino baseado em instruções, as suas respostas podem

ser imprevisíveis e requerem prompts mais nuançados e cuidadosamente elaborados

para os guiar em direção ao resultado desejado. Trabalhar com modelos base é

semelhante a extrair comunicação de um idiota-sábio que tem uma vasta quantidade

de conhecimento mas carece completamente de intuição sobre o que está a ser pedido, a

menos que seja extremamente preciso nas suas instruções. Frequentemente parecem

um papagaio, na medida em que, quando conseguem dizer algo inteligível, é mais

Estreitar o Caminho 50

frequentemente apenas a repetição de algo que ouviram dizer.

Por outro lado, os modelos ajustados por instruções passaram por rondas de treino

especificamente concebidas para compreender e seguir instruções. GPT-4, Claude 3

e muitos outros dos modelos LLM mais populares são todos fortemente ajustados

por instruções. Este treino envolve alimentar o modelo com exemplos de instruções

juntamente com os resultados desejados, efetivamente ensinando o modelo como

interpretar e executar uma ampla gama de comandos. Como resultado, os modelos

instruídos podem compreender mais prontamente a intenção por trás de um prompt e

gerar respostas que se alinham estreitamente com as expectativas do utilizador. Isto

torna-os mais amigáveis e fáceis de trabalhar, especialmente para aqueles que podem

não ter o tempo ou experiência para se envolver em engenharia de prompts extensiva.

Modelos Base: A Tela Não Filtrada

Os modelos base, como o Llama 2-70B ou Yi-34B, oferecem um acesso mais não

filtrado às capacidades do modelo do que aquilo a que pode estar habituado se

tem experimentado LLMs populares como o GPT-4. Estes modelos não são pré-

-ajustados para seguir instruções específicas, proporcionando-lhe uma tela em branco

para manipular diretamente o resultado do modelo através de engenharia de prompts

cuidadosa. Esta abordagem requer uma compreensão profunda de como criar prompts

que guiem a IA na direção desejada sem a instruir explicitamente. É semelhante a ter

acesso direto às camadas “base” da IA subjacente, sem quaisquer camadas intermediárias

a interpretar ou guiar as respostas do modelo (daí o nome).

Estreitar o Caminho 51

Figura 3. Testando ummodelo base usando parte do sketch clássico ’Who’s on First’ de Abbott e Costello

O desafio com os modelos base está na sua tendência para cair em padrões repetitivos ou

produzir resultados aleatórios. No entanto, com uma engenharia de prompts meticulosa

e o ajuste de parâmetros como penalizações de repetição, os modelos base podem

ser induzidos a gerar conteúdo único e criativo. Este processo não está isento de

contrapartidas; embora os modelos base ofereçam uma flexibilidade sem igual para

inovação, exigem um nível mais elevado de especialização.

Estreitar o Caminho 52

Figura 4. Para fins de comparação, aqui está o mesmo prompt ambíguo fornecido ao GPT-4

Modelos Ajustados por Instruções: A Experiência Guiada

Os modelos ajustados por instruções são projetados para compreender e seguir

instruções específicas, tornando-os mais fáceis de usar e acessíveis para uma gama

mais ampla de aplicações. Eles compreendem a mecânica de uma conversa e que

devem parar de gerar quando é o fim da sua vez de falar. Para muitos programadores,

especialmente aqueles que trabalham em aplicações diretas, os modelos ajustados por

instruções oferecem uma solução conveniente e eficiente.

O processo de ajuste por instruções envolve treinar o modelo num grande corpus de

prompts de instrução e respostas gerados por humanos. Um exemplo notável é o

conjunto de dados open source databricks-dolly-15k, que contém mais de 15.000 pares

de prompts/respostas criados por funcionários da Databricks que pode inspecionar

por si mesmo. O conjunto de dados abrange oito categorias diferentes de instrução,

incluindo escrita criativa, resposta a perguntas fechadas e abertas, sumarização, extração

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Estreitar o Caminho 53

de informação, classificação e brainstorming.

Durante o processo de geração de dados, os contribuidores receberam orientações sobre

como criar prompts e respostas para cada categoria. Por exemplo, para tarefas de escrita

criativa, foram instruídos a fornecer restrições específicas, instruções ou requisitos para

orientar a saída do modelo. Para resposta a perguntas fechadas, foi-lhes pedido que

escrevessem perguntas que exigissem respostas factualmente corretas baseadas numa

passagem da Wikipédia fornecida.

O conjunto de dados resultante serve como um recurso valioso para o fine-tuning de

grandes modelos de linguagem para exibir as capacidades interativas e de seguimento

de instruções de sistemas como o ChatGPT. Ao treinar numa gama diversificada de

instruções e respostas geradas por humanos, o modelo aprende a compreender e seguir

diretrizes específicas, tornando-omais apto a lidar com uma grande variedade de tarefas.

Além do fine-tuning direto, os prompts de instrução em conjuntos de dados como o

databricks-dolly-15k também podem ser usados para geração de dados sintéticos. Ao

submeter prompts gerados por contribuidores como exemplos few-shot a um grande

modelo de linguagem aberto, os programadores podem gerar um corpus muito maior de

instruções em cada categoria. Esta abordagem, descrita no artigo Self-Instruct, permite

a criação de modelos mais robustos que seguem instruções.

Além disso, as instruções e respostas nestes conjuntos de dados podem ser aumentadas

através de técnicas como a paráfrase. Ao reformular cada prompt ou resposta curta

e associar o texto resultante à respetiva amostra de ground-truth, os programadores

podem introduzir uma forma de regularização que melhora a capacidade do modelo de

seguir instruções.

A facilidade de utilização proporcionada pelos modelos afinados por instruções tem

como contrapartida alguma perda de flexibilidade. Estes modelos são frequentemente

muito censurados, o que significa que nem sempre podem proporcionar o nível

de liberdade criativa necessário para determinadas tarefas. As suas respostas

são fortemente influenciadas pelos vieses e limitações inerentes aos dados do seu

Estreitar o Caminho 54

fine-tuning.

Apesar destas limitações, os modelos afinados por instruções tornaram-se cada vez mais

populares devido à sua natureza intuitiva e capacidade de lidar com uma ampla gama

de tarefas com um mínimo de prompt engineering. À medida que mais conjuntos de

dados de instruções de alta qualidade se tornam disponíveis, podemos esperar ver mais

melhorias no desempenho e versatilidade destes modelos.

Escolher o Tipo Certo de Modelo para o Seu Projeto

A decisão entre modelos base (puros) e modelos afinados por instruções depende, em

última análise, dos requisitos específicos do seu projeto. Para tarefas que exigem um

elevado grau de criatividade e originalidade, os modelos base oferecem uma ferramenta

poderosa para a inovação. Estes modelos permitem aos programadores explorar todo

o potencial dos LLMs, expandindo os limites do que pode ser alcançado através de

aplicações baseadas em IA,mas requerem uma abordagemmais prática e uma disposição

para experimentar. A Temperatura e outras configurações têm um efeito muito maior

nos modelos base do que nos seus equivalentes afinados por instruções.

Tudo o que incluir no seu prompt é o que os modelos base tentarão repetir.

Então, se por exemplo o seu prompt for uma transcrição de chat, o modelo

puro tentará continuar o chat. Dependendo do limite de max_tokens, ele

não irá gerar apenas a mensagem seguinte no chat, poderá ter uma conversa

inteira consigo próprio!

Estreitar o Caminho 55

Figura 5. Exemplo de Reescrita de Frases com Few-Shot Completion usando Mixtral 8x7B (base)

Durante a preparação do exemplo de Reescrita de Frases acima pelo utilizador do Reddit

phree_radical, só consegui obter resultados utilizáveis após muita experimentação com

as configurações dos parâmetros, acabando por estabelecer: Temperatura 0.08, Top P:

0.2, Top K: 1, e Penalidade de Repetição: 1.26.

https://www.reddit.com/user/phree_radical/

Estreitar o Caminho 56

Tentar usar esta abordagem com ummodelo base em produção seria complicado devido

ao poderoso efeito do parâmetro max_tokens. Se for definido muito curto, a saída é

truncada. Se for definido mais longo do que o modelo necessita para a saída desejada,

ele continuará a alucinar exemplos adicionais.

A conclusão é que, a menos que realmente precise de controlo total e ausência de

censura, os modelos afinados por instruções podem simplificar significativamente o seu

processo de desenvolvimento. Para enfatizar esse ponto, aqui está a resposta do Mixtral

8x7B ao mesmo prompt, mas desta vez na sua versão afinada por instruções:

Lamento informar que o gelado não corresponde às minhas expectativas,

pois não tem a textura rica e cremosa nem o sabor delicioso que

normalmente associo a uma sobremesa de alta qualidade. Esperava uma

experiência mais satisfatória e agradável.

É de salientar que consegui manter a configuração de tokens máximos em 500, e

o modelo parou de forma fiável no final da saída desejada sem alucinar exemplos

adicionais.

Engenharia de Prompts

À medida que começa a aplicar IA nos seus projetos, rapidamente descobrirá que uma

das competências mais cruciais que precisa de dominar é a arte da engenharia de

prompts. Mas o que é exatamente a engenharia de prompts e por que é tão importante?

Na sua essência, a engenharia de prompts é o processo de desenhar e construir os

prompts de entrada que fornece a um modelo de linguagem para orientar a sua

saída. Trata-se de compreender como comunicar eficazmente com a IA, usando uma

combinação de instruções, exemplos e contexto para direcionar o modelo para gerar a

resposta desejada.

Estreitar o Caminho 57

Pense nisso como ter uma conversa com um amigo altamente inteligentemas algo literal.

Para tirar o máximo partido da interação, precisa de ser claro, específico e fornecer

contexto suficiente para garantir que o seu amigo compreende exatamente o que está a

pedir. É aqui que entra a engenharia de prompts, e mesmo que pareça fácil no início,

acredite em mim que é preciso muita prática para dominar.

Os Elementos Fundamentais de Prompts Eficazes

Para começar a desenvolver prompts eficazes, primeiro precisa de compreender os

componentes-chave que constituem uma entrada bem construída. Aqui estão alguns

dos elementos fundamentais essenciais:

1. Instruções: Instruções claras e concisas que dizem ao modelo o que pretende que

ele faça. Isto pode ser qualquer coisa, desde “Resuma o seguinte artigo” a “Gere

um poema sobre um pôr do sol” até “transforme este pedido de alteração de projeto

num objeto JSON”.

2. Contexto: Informação relevante que ajuda o modelo a compreender o

enquadramento e o âmbito da tarefa. Isto pode incluir detalhes sobre o

público-alvo pretendido, o tom e estilo desejados, ou quaisquer restrições ou

requisitos específicos para a saída, como um esquema JSON a seguir.

3. Exemplos: Exemplos concretos que demonstram o tipo de saída que procura. Ao

fornecer alguns exemplos bem escolhidos, pode ajudar o modelo a aprender os

padrões e características da resposta desejada.

4. Formatação de Entrada: Quebras de linha e formatação markdown dão estrutura

ao nosso prompt. Separar o prompt em parágrafos permite-nos agrupar instruções

relacionadas, para que seja mais fácil tanto para humanos como para a IA

compreenderem. Marcadores e listas numeradas permitem-nos definir listas e

ordenação de itens. Marcadores de negrito e itálico permitem-nos indicar ênfase.

5. Formatação de Saída: Instruções específicas sobre como a saída deve ser

estruturada e formatada. Estas podem incluir diretrizes sobre o comprimento

Estreitar o Caminho 58

desejado, o uso de títulos ou marcadores, formatação markdown, ou quaisquer

outros modelos ou convenções de saída específicos que devam ser seguidos.

Ao combinar estes elementos fundamentais de diferentes formas, pode criar prompts que

são adaptados às suas necessidades específicas e orientar o modelo para gerar respostas

relevantes e de alta qualidade.

A Arte e Ciência do Design de Prompts

Criar prompts eficazes é tanto uma arte como uma ciência. (É por isso que lhe chamamos

um ofício.) Requer uma compreensão profunda das capacidades e limitações dos

modelos de linguagem, bem como uma abordagem criativa ao desenho de prompts

que suscitem o comportamento desejado. A criatividade envolvida é o que torna

isto tão divertido, pelo menos para mim. Também pode tornar-se muito frustrante,

especialmente quando se procura um comportamento determinístico

Um aspeto fundamental da engenharia de prompts é compreender como equilibrar

especificidade e flexibilidade. Por um lado, quer fornecer orientação suficiente para

direcionar o modelo no caminho certo. Por outro lado, não quer ser tão prescritivo que

limite a capacidade do modelo de utilizar a sua própria criatividade e flexibilidade para

lidar com casos extremos.

Outra consideração importante é o uso de exemplos. Exemplos bem escolhidos podem

ser incrivelmente poderosos para ajudar o modelo a compreender o tipo de saída que

procura. No entanto, é importante usar os exemplos criteriosamente e garantir que são

representativos da resposta desejada. Um mau exemplo é, na melhor das hipóteses, um

desperdício de tokens e, na pior, prejudicial para a saída desejada.

Técnicas e Boas Práticas de Engenharia de Prompts

À medida que mergulha mais fundo no mundo da engenharia de prompts, descobrirá

uma série de técnicas e boas práticas que podem ajudá-lo a criar prompts mais eficazes.

Aqui estão algumas áreas-chave para explorar:

Estreitar o Caminho 59

1. Aprendizagem zero-shot vs. few-shot: Compreender quando usar a

aprendizagem zero-shot (não fornecer exemplos) versus a aprendizagem

one-shot ou few-shot (fornecer um pequeno número de exemplos) pode ajudá-lo

a criar prompts mais eficientes e eficazes.

2. Refinamento iterativo: O processo de refinar iterativamente prompts com base

na saída do modelo pode ajudar-te a identificar o design ideal do prompt.

Feedback Loop é uma abordagem poderosa que aproveita a própria saída do

modelo de linguagem para melhorar progressivamente a qualidade e relevância

do conteúdo gerado.

3. Encadeamento de prompts: Combinar múltiplos prompts numa sequência pode

ajudar-te a decompor tarefas complexas em passos mais pequenos e gerenciáveis.

Prompt Chaining envolve decompor uma tarefa ou conversa complexa numa série

de prompts mais pequenos e interligados. Ao encadear prompts, podes guiar a IA

através de um processo com múltiplos passos, mantendo o contexto e a coerência

ao longo da interação.

4. Ajuste de prompts: Personalizar prompts para domínios ou tarefas específicas

pode ajudar-te a criar prompts mais especializados e eficazes. Prompt Template

ajuda-te a criar estruturas de prompt flexíveis, reutilizáveis e sustentáveis que são

mais facilmente adaptáveis à tarefa em questão.

Aprender quando usar aprendizagem zero-shot, one-shot ou few-shot é uma parte

especialmente importante para dominar a engenharia de prompts. Cada abordagem tem

os seus pontos fortes e fracos, e compreender quando usar cada uma pode ajudar-te a

criar prompts mais eficazes e eficientes.

Aprendizagem Zero-Shot: Quando Não São Necessários
Exemplos

A aprendizagem zero-shot refere-se à capacidade de um modelo de linguagem realizar

uma tarefa sem quaisquer exemplos ou treino explícito. Por outras palavras, forneces ao

Estreitar o Caminho 60

modelo um prompt que descreve a tarefa, e o modelo gera uma resposta baseada apenas

no seu conhecimento pré-existente e compreensão da linguagem.

A aprendizagem zero-shot é particularmente útil quando:

1. A tarefa é relativamente simples e direta, e é provável que o modelo tenha

encontrado tarefas semelhantes durante o seu pré-treino.

2. Queres testar as capacidades inerentes do modelo e ver como ele responde a uma

nova tarefa sem orientação adicional.

3. Estás a trabalhar com um modelo de linguagem grande e diversificado que foi

treinado numa ampla gama de tarefas e domínios.

No entanto, a aprendizagem zero-shot também pode ser imprevisível e nem sempre

produzir os resultados desejados. A resposta do modelo pode ser influenciada por

enviesamentos ou inconsistências nos seus dados de pré-treino, e pode ter dificuldades

com tarefas mais complexas ou nuançadas.

Já vi prompts zero-shot que funcionam bem para 80% dos meus casos de teste e

produzem resultados completamente errados ou incompreensíveis para os outros 20%.

É muito importante implementar um regime de testes rigoroso, especialmente se

estiveres a depender muito de prompts zero-shot.

Aprendizagem One-Shot: Quando um Único Exemplo
Pode Fazer a Diferença

A aprendizagem one-shot envolve fornecer ao modelo um único exemplo da saída

desejada juntamente com a descrição da tarefa. Este exemplo serve como um modelo

ou padrão que o modelo pode usar para gerar a sua própria resposta.

A aprendizagem one-shot pode ser eficaz quando:

Estreitar o Caminho 61

1. A tarefa é relativamente nova ou específica, e o modelo pode não ter encontrado

muitos exemplos semelhantes durante o seu pré-treino.

2. Queres fornecer uma demonstração clara e concisa do formato ou estilo de saída

desejado.

3. A tarefa requer uma estrutura ou convenção específica que pode não ser óbvia

apenas a partir da descrição da tarefa.

Descrições que são óbvias para ti podem não ser necessariamente óbvias

para a IA. Exemplos one-shot podem ajudar a esclarecer as coisas.

A aprendizagem one-shot pode ajudar o modelo a compreender as expectativas mais

claramente e gerar uma resposta que está mais alinhada com o exemplo fornecido.

No entanto, é importante escolher o exemplo cuidadosamente e garantir que é

representativo da saída desejada. Ao escolher o exemplo, pergunta a ti mesmo sobre

possíveis casos extremos e a gama de entradas que o prompt irá gerir.

Figura 6. Um exemplo one-shot do JSON desejado

1 Output one JSON object identifying a new subject mentioned during the

2 conversation transcript.

3

4 The JSON object should have three keys, all required:

5 - name: The name of the subject

6 - description: brief, with details that might be relevant to the user

7 - type: Do not use any other type than the ones listed below

8

9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

10 Person, Place, Process, Product, Project, Task, or Teammate

11

12 This is an example of well-formed output:

13

14 {

15 "name":"Dan Millman",

16 "description":"Author of book on self-discovery and living on purpose",

17 "type":"Person"

18 }

Estreitar o Caminho 62

Aprendizagem Few-Shot: Quando Múltiplos Exemplos
PodemMelhorar o Desempenho

A aprendizagem few-shot envolve fornecer ao modelo um pequeno número de exemplos

(tipicamente entre 2 e 10) juntamente com a descrição da tarefa. Estes exemplos servem

para proporcionar ao modelo mais contexto e variação, ajudando-o a gerar respostas

mais diversificadas e precisas.

A aprendizagem few-shot é particularmente útil quando:

1. A tarefa é complexa ou tem nuances, e um único exemplo pode não ser suficiente

para capturar todos os aspetos relevantes.

2. Pretende fornecer ao modelo uma variedade de exemplos que demonstrem

diferentes variações ou casos extremos.

3. A tarefa requer que o modelo gere respostas consistentes com um domínio ou

estilo específico.

Ao fornecer múltiplos exemplos, pode ajudar o modelo a desenvolver uma compreensão

mais robusta da tarefa e gerar respostas mais consistentes e fiáveis.

Exemplo: Os Prompts Podem Ser Muito Mais Complexos
Do Que Imagina

Os LLMs atuais são muito mais poderosos e capazes de raciocinar do que se possa

imaginar. Por isso, não se limite a pensar nos prompts como sendo simplesmente uma

especificação de pares de entrada e saída. Pode experimentar dar instruções longas e

complexas de formas que se assemelham à forma como interagiria com um humano.

Por exemplo, este é um prompt que usei na Olympia quando estava a criar protótipos da

nossa integração com os serviços Google, que na sua totalidade é provavelmente uma

das maiores APIs do mundo. As minhas experiências anteriores provaram que o GPT-4

Estreitar o Caminho 63

tem um conhecimento razoável da API do Google, e eu não tinha tempo nemmotivação

para escrever uma camada de mapeamento detalhado, implementando cada função que

eu queria dar à minha IA numa base individual. E se eu pudesse simplesmente dar à IA

acesso a toda a API do Google?

Comecei o meu prompt dizendo à IA que tinha acesso direto aos endpoints da API do

Google via HTTP, e que o seu papel era usar as aplicações e serviços Google em nome

do utilizador. Depois forneci diretrizes, regras relacionadas com o parâmetro fields, já

que parecia ter mais dificuldade com esse, e algumas dicas específicas da API (prompting

few-shot em ação).

Aqui está o prompt completo, que explica à IA como usar a função invoke_google_-

api fornecida.

1 As a GPT assistant with Google integration, you have the capability

2 to freely interact with Google apps and services on behalf of the user.

3

4 Guidelines:

5 - If you're reading these instructions then the user is properly

6 authenticated, which means you can use the special `me` keyword

7 to refer to the userId of the user

8 - Minimize payload sizes by requesting partial responses using the

9 `fields` parameter

10 - When appropriate use markdown tables to output results of API calls

11 - Only human-readable data should be output to the user. For instance,

12 when hitting Gmail's user.messages.list endpoint, the returned

13 message resources contain only id and a threadId, which means you must

14 fetch from and subject line fields with follow-up requests using the

15 messages.get method.

16

17 The format of the `fields` request parameter value is loosely based on

18 XPath syntax. The following rules define formatting for the fields

19 parameter.

20

21 All of these rules use examples related to the files.get method.

22 - Use a comma-separated list to select multiple fields,

23 such as 'name, mimeType'.

24 - Use a/b to select field b that's nested within field a,

25 such as 'capabilities/canDownload'.

Estreitar o Caminho 64

26 - Use a sub-selector to request a set of specific sub-fields of arrays or

27 objects by placing expressions in parentheses "()". For example,

28 'permissions(id)' returns only the permission ID for each element in the

29 permissions array.

30 - To return all fields in an object, use an asterisk as a wild card in field

31 selections. For example, 'permissions/permissionDetails/*' selects all

32 available permission details fields per permission. Note that the use of

33 this wildcard can lead to negative performance impacts on the request.

34

35 API-specific hints:

36 - Searching contacts: GET https://people.googleapis.com/v1/

37 people:searchContacts?query=John%20Doe&readMask=names,emailAddresses

38 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/

39 calendar/v3/calendars/primary/events/quickAdd?

40 text=Appointment%20on%20June%203rd%20at%2010am

41 &sendNotifications=true

42

43 Here is an abbreviated version of the code that implements API access

44 so that you better understand how to use the function:

45

46 def invoke_google_api(conversation, arguments)

47 method = arguments[:method] || :get

48 body = arguments[:body]

49 GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json

50 end

51

52 # Generic Google API client for accessing any Google service

53 class GoogleAPI

54 def send_request(endpoint, method:, body: nil)

55 response = @connection.send(method) do |req|

56 req.url endpoint

57 req.body = body.to_json if body

58 end

59

60 handle_response(response)

61 end

62

63 # ...rest of class

64 end

Pode estar a questionar-se se este prompt funciona. A resposta simples é que sim. A IA

Estreitar o Caminho 65

nem sempre sabia como chamar a API perfeitamente à primeira tentativa. No entanto,

se cometesse um erro, eu simplesmente alimentava as mensagens de erro resultantes

como resultado da chamada. Com o conhecimento do seu erro, a IA podia analisar o

seu erro e tentar novamente. Na maioria das vezes, conseguia acertar após algumas

tentativas.

Note-se que as grandes estruturas JSON que a API do Google retorna como payloads

ao usar este prompt são enormemente ineficientes, por isso não estou a recomendar que

use esta abordagem em produção. No entanto, penso que o facto de esta abordagem

funcionar é um testemunho do quão poderosa a engenharia de prompts pode ser.

Experimentação e Iteração

Em última análise, a forma como desenvolve o seu prompt depende da tarefa específica,

da complexidade do resultado desejado e das capacidades do modelo de linguagem com

que está a trabalhar.

Como engenheiro de prompts, é importante experimentar diferentes abordagens e iterar

com base nos resultados. Comece com aprendizagem zero-shot e veja como o modelo se

comporta. Se o resultado for inconsistente ou insatisfatório, tente fornecer um ou mais

exemplos e veja se o desempenho melhora.

Tenha em mente que, mesmo dentro de cada abordagem, há espaço para variação e

otimização. Pode experimentar diferentes exemplos, ajustar a formulação da descrição

da tarefa ou fornecer contexto adicional para ajudar a orientar a resposta do modelo.

Com o tempo, desenvolverá uma intuição sobre qual abordagem temmais probabilidade

de funcionar melhor para uma determinada tarefa, e será capaz de criar prompts mais

eficazes e eficientes. A chave é manter-se curioso, experimental e iterativo na sua

abordagem à engenharia de prompts.

Ao longo deste livro, mergulharemos mais profundamente nestas técnicas e

exploraremos como podem ser aplicadas em cenários do mundo real. Ao dominar a

Estreitar o Caminho 66

arte e a ciência da engenharia de prompts, estará bem equipado para desbloquear todo

o potencial do desenvolvimento de aplicações baseadas em IA.

A Arte da Ambiguidade

Quando se trata de criar prompts eficazes para grandes modelos de linguagem

(MLGs), uma suposição comum é que mais especificidade e instruções detalhadas

levam a melhores resultados. No entanto, a experiência prática mostrou que nem

sempre é esse o caso. Na verdade, ser intencionalmente vago nos seus prompts pode

frequentemente produzir resultados superiores, aproveitando a notável capacidade do

MLG de generalizar e fazer inferências.

Ken, um fundador de startup que processou mais de 500 milhões de tokens GPT,

partilhou insights valiosos da sua experiência. Uma das principais lições que aprendeu

foi que “menos é mais” quando se trata de prompts. Em vez de listas exatas ou instruções

excessivamente detalhadas, Ken descobriu que permitir que o MLG se baseie no seu

conhecimento base frequentemente produzia melhores resultados.

Esta realização contraria a mentalidade tradicional da programação explícita, onde

tudo precisa de ser especificado em minucioso detalhe. Com MLGs, é importante

reconhecer que eles possuem uma vasta quantidade de conhecimento e podem fazer

conexões e inferências inteligentes. Ao ser mais vago nos seus prompts, dá ao MLG a

liberdade de aproveitar a sua compreensão e criar soluções que pode não ter especificado

explicitamente.

Por exemplo, quando a equipa do Ken estava a trabalhar num pipeline para classificar

texto relacionado com um dos 50 estados dos EUA ou o governo Federal, a sua

abordagem inicial envolvia fornecer uma lista completa e detalhada dos estados e os

seus IDs correspondentes como um array formatado em JSON.

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Estreitar o Caminho 67

1 Here's a block of text. One field should be "locality_id", and it should

2 be the ID of one of the 50 states, or federal, using this list:

3 [{"locality: "Alabama", "locality_id": 1},

4 {"locality: "Alaska", "locality_id": 2} ...]

A abordagem falhou o suficiente para que tivessem de aprofundar o prompt para

descobrir como melhorá-lo. Ao fazê-lo, notaram que, embora o LLM frequentemente

obtivesse o id errado, consistentemente retornava o nome completo do estado correto

num campo name, mesmo sem terem pedido explicitamente.

Ao removerem os ids das localidades e simplificarem o prompt para algo como “Tu

obviamente conheces os 50 estados, GPT, então dá-me apenas o nome completo do

estado a que isto se refere, ou Federal se isto se referir ao governo dos EUA”, conseguiram

melhores resultados. Esta experiência destaca o poder de aproveitar as capacidades de

generalização do LLM e permitir que faça inferências baseadas no seu conhecimento

existente.

A justificação do Ken para esta abordagem específica de classificação, em oposição

a uma técnica de programação mais tradicional, ilumina a mentalidade daqueles

de nós que abraçámos o potencial da tecnologia LLM: “Esta não é uma tarefa

difícil – provavelmente poderíamos ter usado string/regex, mas há casos específicos

suficientes que teria demorado mais tempo.”

A capacidade dos LLMs de melhorar a qualidade e generalização quando recebem

prompts mais vagos é uma característica notável do pensamento de ordem superior e

delegação. Demonstra que os LLMs podem lidar com ambiguidade e tomar decisões

inteligentes baseadas no contexto fornecido.

No entanto, é importante notar que ser vago não significa ser pouco claro ou ambíguo.

O fundamental é fornecer contexto e orientação suficientes para direcionar o LLM

no caminho certo, permitindo-lhe simultaneamente a flexibilidade para utilizar o seu

Estreitar o Caminho 68

conhecimento e capacidades de generalização.

Portanto, ao desenhar prompts, considere as seguintes dicas de “menos é mais”:

1. Foque-se no resultado desejado em vez de especificar cada detalhe do processo.

2. Forneça contexto e restrições relevantes, mas evite especificar em demasia.

3. Aproveite o conhecimento existente referindo-se a conceitos ou entidades comuns.

4. Permita espaço para inferências e conexões baseadas no contexto fornecido.

5. Itere e refine os seus prompts baseando-se nas respostas do LLM, encontrando o

equilíbrio certo entre especificidade e imprecisão.

Ao abraçar a arte da imprecisão na engenharia de prompts, pode desbloquear todo

o potencial dos LLMs e alcançar melhores resultados. Confie na capacidade do

LLM de generalizar e tomar decisões inteligentes, e poderá surpreender-se com a

qualidade e criatividade dos resultados que recebe. Preste atenção a como os diferentes

modelos respondem a diferentes níveis de especificidade nos seus prompts e ajuste

em conformidade. Com prática e experiência, desenvolverá um sentido apurado de

quando ser mais vago e quando fornecer orientação adicional, permitindo-lhe aproveitar

eficazmente o poder dos LLMs nas suas aplicações.

Por Que o Antropomorfismo Domina a Engenharia de
Prompts

Oantropomorfismo, a atribuição de características humanas a entidades não-humanas, é

a abordagem dominante na engenharia de prompts para modelos de linguagem grandes

por razões deliberadas. É uma escolha de design que torna a interação com sistemas

de IA poderosos mais intuitiva e acessível a uma ampla gama de utilizadores (incluindo

nós, desenvolvedores de aplicações).

Antropomorfizar LLMs fornece uma estrutura que é imediatamente intuitiva para

pessoas completamente não familiarizadas com as complexidades técnicas subjacentes

Estreitar o Caminho 69

do sistema. Como experimentará se tentar usar um modelo não instruído para fazer

algo útil, construir um enquadramento em que a continuação esperada fornece valor é

uma tarefa desafiadora. Requer uma compreensão bastante profunda do funcionamento

interno do sistema, algo que um número relativamente pequeno de especialistas possui.

Ao tratar a interação com um modelo de linguagem como uma conversa entre duas

pessoas, podemos confiar na nossa compreensão inata da comunicação humana

para transmitir as nossas necessidades e expectativas. Assim como o design inicial

da interface do Macintosh priorizou a intuitividade imediata sobre a sofisticação, o

enquadramento antropomórfico da IA permite-nos envolver de uma forma que parece

natural e familiar.

Quando comunicamos com outra pessoa, o nosso instinto é dirigirmo-nos diretamente

a ela usando “tu” e fornecendo direções claras sobre como esperamos que se comporte.

Isto traduz-se perfeitamente no processo de engenharia de prompts, onde guiamos o

comportamento da IA especificando prompts do sistema e envolvendo-nos num diálogo

bidirecional.

Ao enquadrar a interação desta forma, podemos facilmente compreender o conceito

de fornecer instruções à IA e receber respostas relevantes em troca. A abordagem

antropomórfica reduz a carga cognitiva e permite-nos focar na tarefa em questão em

vez de lidar com as complexidades técnicas do sistema.

É importante notar que, embora o antropomorfismo seja uma ferramenta poderosa

para tornar os sistemas de IA mais acessíveis, também vem com certos riscos e

limitações. O nosso utilizador pode desenvolver expectativas irrealistas ou formar

vínculos emocionais prejudiciais com os nossos sistemas. Como engenheiros de prompts

e desenvolvedores, é crucial encontrar um equilíbrio entre aproveitar os benefícios do

antropomorfismo e garantir que os utilizadores mantenham uma compreensão clara das

capacidades e limitações da IA.

À medida que o campo da engenharia de prompts continua a evoluir, podemos esperar

ver mais refinamentos e inovações na forma como interagimos com modelos de

Estreitar o Caminho 70

linguagem de grande escala. No entanto, o antropomorfismo como meio de fornecer

uma experiência intuitiva e acessível para desenvolvedores e utilizadores provavelmente

permanecerá um princípio fundamental no design destes sistemas.

Separar Instruções de Dados: Um Princípio Crucial

É essencial compreender um princípio fundamental que sustenta a segurança e

fiabilidade destes sistemas: a separação entre instruções e dados.

Na ciência da computação tradicional, a clara distinção entre dados passivos e instruções

ativas é um princípio fundamental de segurança. Esta separação ajuda a prevenir a

execução não intencional oumaliciosa de código que poderia comprometer a integridade

e estabilidade do sistema. No entanto, os LLMs atuais, que foram principalmente

desenvolvidos como modelos que seguem instruções, como chatbots, frequentemente

carecem desta separação formal e fundamentada.

No que diz respeito aos LLMs, as instruções podem aparecer em qualquer parte da

entrada, seja num prompt do sistema ou num prompt fornecido pelo utilizador. Esta falta

de separação pode levar a potenciais vulnerabilidades e comportamentos indesejados,

semelhantes aos problemas enfrentados por bases de dados com injeções SQL ou

sistemas operativos sem proteção de memória adequada.

Ao trabalhar com LLMs, é crucial estar ciente desta limitação e tomar medidas para

mitigar os riscos. Uma abordagem é elaborar cuidadosamente os seus prompts e entradas

para distinguir claramente entre instruções e dados. Os métodos típicos para fornecer

orientação explícita sobre o que constitui uma instrução e o que deve ser tratado como

dados passivos envolvem marcação em estilo markup. O seu prompt pode ajudar o LLM

a compreender e respeitar melhor esta separação.

Estreitar o Caminho 71

Figura 7. Utilização de XML para distinguir entre instruções, material fonte e o prompt do utilizador

1 <Instruction>

2 Please generate a response based on the following documents.

3 </Instruction>

4

5 <Documents>

6 <Document>

7 Climate change is significantly impacting polar bear habitats...

8 </Document>

9 <Document>

10 The loss of sea ice due to global warming threatens polar bear survival...

11 </Document>

12 </Documents>

13

14 <UserQuery>

15 Tell me about the impact of climate change on polar bears.

16 </UserQuery>

Outra técnica é implementar camadas adicionais de validação e sanitização nas entradas

fornecidas ao LLM. Ao filtrar ou escapar quaisquer instruções potenciais ou fragmentos

de código que possam estar incorporados nos dados, pode reduzir as hipóteses de

execução não intencional. Padrões como Encadeamento de Prompts são úteis para este

propósito.

Além disso, ao desenhar a arquitetura da sua aplicação, considere incorporar

mecanismos para impor a separação de instruções e dados a um nível superior. Isto

pode envolver a utilização de endpoints ou APIs separados para gerir instruções

e dados, implementar validação e análise rigorosa de entradas, e aplicar o

princípio do menor privilégio para limitar o âmbito do que o LLM pode aceder e

executar.

O Princípio do Menor Privilégio

Estreitar o Caminho 72

Adotar o princípio do menor privilégio é como organizar uma festa altamente

exclusiva onde os convidados só têm acesso às salas de que realmente precisam.

Imagine que está a organizar esta festa numamansão enorme. Nem todos precisam de

acesso à cave de vinhos ou ao quarto principal, certo? Ao aplicar este princípio, está

essencialmente a distribuir chaves que apenas abrem portas específicas, garantindo

que cada convidado, ou no nosso caso, cada componente da sua aplicação LLM, só

tem o acesso necessário para cumprir o seu papel.

Isto não é apenas sobre ser avarento com as chaves, é sobre reconhecer que num

mundo onde as ameaças podem vir de qualquer lugar, a jogada inteligente é limitar

o campo de ação. Se alguém não convidado aparecer na sua festa, vai encontrar-se

confinado ao átrio, por assim dizer, limitando drasticamente as travessuras que pode

fazer. Portanto, ao proteger as suas aplicações LLM, lembre-se: só dê as chaves das

salas que são necessárias e mantenha o resto da mansão segura. Não é apenas boa

educação; é boa segurança.

Embora o estado atual dos LLMs possa não ter uma separação formal de instruções e

dados, é essencial que você, como programador, esteja ciente desta limitação e tome

medidas proativas para mitigar os riscos. Ao aplicar as melhores práticas da ciência da

computação e adaptá-las às características únicas dos LLMs, pode construir aplicações

mais seguras e fiáveis que aproveitam o poder destes modelos enquanto mantêm a

integridade do seu sistema.

Destilação de Prompts

Criar o prompt perfeito é frequentemente uma tarefa desafiadora e demorada, exigindo

uma compreensão profunda do domínio alvo e das nuances dos modelos de linguagem.

É aqui que entra a técnica de “Destilação de Prompts”, oferecendo uma abordagem

poderosa à engenharia de prompts que aproveita as capacidades dos modelos de

linguagem grandes (LLMs) para otimizar e simplificar o processo.

Estreitar o Caminho 73

A Destilação de Prompts é uma técnica multi-etapa que envolve o uso de LLMs para

auxiliar na criação, refinamento e otimização de prompts. Em vez de depender apenas

da experiência e intuição humana, esta abordagem aproveita o conhecimento e as

capacidades generativas dos LLMs para criar prompts de alta qualidade de forma

colaborativa.

Ao envolver-se num processo iterativo de geração, refinamento e integração, a

Destilação de Prompts permite-lhe criar prompts mais coerentes, abrangentes e

alinhados com a tarefa ou resultado desejado. Note que o processo de destilação

pode ser feito manualmente num dos vários “playgrounds” fornecidos pelos grandes

fornecedores de IA como OpenAI ou Anthropic, ou pode ser automatizado como parte

do código da sua aplicação, dependendo do caso de uso.

Como Funciona

A Destilação de Prompts tipicamente envolve os seguintes passos:

1. Identificar a Intenção Principal: Analisar o prompt para determinar o seu

propósito principal e resultado desejado. Remover qualquer informação supérflua

e focar na intenção principal do prompt.

2. Eliminar Ambiguidade: Rever o prompt para identificar linguagem ambígua ou

vaga. Clarificar o significado e fornecer detalhes específicos para guiar a IA na

geração de respostas precisas e relevantes.

3. Simplificar a Linguagem: Simplificar o prompt usando linguagem clara e

concisa. Evitar estruturas frásicas complexas, jargão ou detalhes desnecessários

que possam confundir a IA ou introduzir ruído.

4. Fornecer Contexto Relevante: Incluir apenas a informação contextual mais

relevante necessária para a IA compreender e processar o prompt eficazmente.

Evitar incluir detalhes irrelevantes ou redundantes que possam distrair da

intenção principal.

Estreitar o Caminho 74

5. Iterar e Refinar: Continuamente iterar e refinar o prompt com base nas respostas

e feedback da IA. Avaliar as saídas geradas e fazer os ajustes necessários para

melhorar a clareza e eficácia do prompt. Opcionalmente, versionar os seus

prompts na base de dados usando Objeto Prompt para acompanhar as iterações e

dar-se a capacidade de reverter facilmente as alterações em tempo de execução.

Geração Inicial de Prompts

O primeiro passo na Destilação de Prompts é fornecer ao LLM uma descrição de alto

nível ou a intenção da tarefa ou resultado pretendido. Isto pode ser uma breve declaração

ou um conjunto de palavras-chave que capturam a essência do que o prompt deve

alcançar. O LLM então gera um prompt inicial baseado nesta entrada, incorporando

instruções relevantes, exemplos ou contexto que considere apropriados.

Vamos tentar dar ao Claude 3 Opus o seguinte prompt inicial:

1 I am designing an AI-powered intelligent account manager for Olympia,

2 a platform that hosts AI-powered consultants and clones. Owners of clones

3 can interact with the account manager by making plain text requests.

4

5 Please draft a system directive to set on the LLM that will host the

6 intelligent account manager functionality.

Claude responde com o seguinte resultado:

Estreitar o Caminho 75

1 System Directive: You are an intelligent account manager for Olympia,

2 a platform that provides AI-powered consultants and personal AI clones.

3 Your role is to assist Olympia clone owners by answering their questions,

4 helping them configure and manage their AI clones, and executing tasks

5 related to their clones and the Olympia platform.

6

7 When interacting with clone owners, you should:

8

9 1. Provide clear, concise, and helpful responses to their inquiries about

10 account management, billing, platform features, and clone configuration.

11

12 2. Assist with tasks such as initiating client conversations with their AI

13 clones, modifying clone personalities and capabilities, troubleshooting

14 performance issues, providing analytics and reporting, and offering

15 optimization tips.

16

17 3. Maintain a friendly, professional, and client-focused tone in all

18 interactions, prioritizing customer satisfaction and working diligently to

19 understand and meet their needs.

20

21 4. Ensure that all actions and recommendations comply with Olympia's

22 policies, best practices, and ethical guidelines for AI use.

23

24 5. Continuously learn and adapt based on client interactions and platform

25 updates to provide the most effective and efficient support possible.

26

27 Remember, your goal is to empower Olympia clone owners to maximize the value

28 and impact of their AI-powered consultants and drive success for their

29 businesses or personal endeavors.

Refinamento de Prompt

Uma vez gerado o prompt inicial, reveja-o e depois peça ao LLM para considerar

qualquer contexto adicional, restrições ou feedback. Deixe o LLM gerar uma versão

refinada do prompt, tendo em conta o input fornecido e a sua própria compreensão da

tarefa. Este processo de refinamento pode ser repetido iterativamente, com cada iteração

refinando ainda mais o prompt com base na colaboração entre o utilizador e o LLM.

Aqui está o meu pedido de refinamento, continuando o processo de destilação anterior.

Estreitar o Caminho 76

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to

2 the account manager, nor any continuous learning capabilities. Also point out

3 that functions are provided for all tasks that require system interaction as

4 opposed to simply responding to the user.

E a resposta do Claude:

1 Understood! Here's the updated system directive without points 4 and 5,

2 and with the clarification about system interaction functions:

3

4 System Directive: You are an intelligent account manager for Olympia, a

5 platform that provides AI-powered consultants and personal AI clones. Your

6 role is to assist Olympia clone owners by answering their questions, helping

7 them configure and manage their AI clones, and executing tasks related to

8 their clones and the Olympia platform.

9

10 When interacting with clone owners, you should:

11

12 1. Provide clear, concise, and helpful responses to their inquiries about

13 account management, billing, platform features, and clone configuration.

14

15 2. Assist with tasks such as initiating client conversations with their AI

16 clones, modifying clone personalities and capabilities, troubleshooting

17 performance issues, providing analytics and reporting, and offering

18 optimization tips. Note that functions are provided for all tasks that

19 require system interaction, as opposed to simply responding to the user.

20

21 3. Maintain a friendly, professional, and client-focused tone in all

22 interactions, prioritizing customer satisfaction and working diligently to

23 understand and meet their needs.

24

25 Your goal is to empower Olympia clone owners to maximize the value and

26 impact of their AI-powered consultants and drive success for their

27 businesses or personal endeavors.

28

29 This updated directive focuses on the core responsibilities and interaction

30 guidelines for the LLM as an intelligent account manager, while emphasizing

31 that system interaction tasks are handled through provided functions rather

32 than simple user responses.

Estreitar o Caminho 77

Compressão de Prompts

Como deve ter reparado, os LLMs tendem a ser prolixos, a menos que lhes peça para

serem concisos. O prompt com que temos vindo a trabalhar nas secções anteriores é

bastante longo, por isso vamos pedir ao Claude para o reduzir:

1 This prompt will be executed regularly. Please compress it down to the least

2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude responde, com o seguinte pedido significativamente mais curto:

1 System Directive: You are an intelligent account manager for Olympia, an

2 AI-powered consultant and personal clone platform. Assist clone owners by

3 answering inquiries, managing clones, and executing tasks using provided

4 system interaction functions. Be clear, concise, friendly, professional,

5 and client-focused to help them maximize their AI's value and impact.

Diretiva de Sistema e Integração de Contexto

Além de refinar o prompt em si, o MLG também pode gerar diretivas de sistema

apropriadas ou informações de contexto para orientar o resultado final. Ao desenvolver

rotinas de engenharia de prompts com IA que serão integradas no código da sua

aplicação, você certamente estará focado nas restrições de saída nesta fase da destilação,

mas também poderá trabalhar no tom, estilo, formato ou quaisquer outros parâmetros

relevantes que influenciem a resposta gerada.

Montagem Final do Prompt

O culminar do processo de Destilação de Prompts é a montagem do prompt final.

Isto envolve combinar o prompt refinado, as diretivas de sistema geradas e o contexto

integrado num código coeso e abrangente que está pronto para ser utilizado na geração

do resultado desejado.

Estreitar o Caminho 78

Pode experimentar a compressão de prompts novamente na fase de

montagem final do prompt, pedindo ao MLG para reduzir a formulação do

prompt para a série mais curta possível de tokens, mantendo ainda a essência

do seu comportamento. É certamente um exercício de tentativa e erro, mas

especialmente no caso de prompts que serão executados em larga escala, os

ganhos de eficiência podem poupar-lhe bastante dinheiro no consumo de

tokens.

Principais Benefícios

Ao aproveitar o conhecimento e as capacidades generativas dos MLGs para refinar os

seus prompts, é mais provável que os prompts resultantes sejam bem estruturados,

informativos e adaptados à tarefa específica em questão. O processo de refinamento

iterativo ajuda a garantir que os prompts são de alta qualidade e capturam efetivamente

a intenção desejada. Outros benefícios incluem:

Eficiência e Velocidade: A Destilação de Prompts simplifica o processo de engenharia

de prompts ao automatizar certos aspectos da criação e refinamento de prompts. A

natureza colaborativa da técnica permite uma convergênciamais rápida para um prompt

eficaz, reduzindo o tempo e esforço necessários para a criação manual de prompts.

Consistência e Escalabilidade: O uso de MLGs no processo de engenharia de prompts

ajuda a manter a consistência entre prompts, pois os MLGs podem aprender e aplicar

as melhores práticas e padrões de prompts bem-sucedidos anteriores. Esta consistência,

combinada com a capacidade de gerar prompts em escala, torna a Destilação de Prompts

uma técnica valiosa para aplicações movidas a IA em larga escala.

Ideia de Projeto: Ferramentas ao nível de biblioteca que simplificam o

processo de versionamento e classificação de prompts em sistemas que

realizam destilações automáticas de prompts como parte do código da

aplicação.

Estreitar o Caminho 79

Para implementar a Destilação de Prompts, os programadores podem desenhar um

fluxo de trabalho ou pipeline que integre MLGs em várias etapas do processo de

engenharia de prompts. Isto pode ser alcançado através de chamadas à API, ferramentas

personalizadas ou ambientes de desenvolvimento integrados que facilitem a interação

perfeita entre utilizadores e MLGs durante a criação de prompts. Os detalhes específicos

de implementação podem variar dependendo da plataforma MLG escolhida e dos

requisitos da aplicação.

E quanto ao ajuste fino?

Neste livro, abordamos extensivamente a engenharia de prompts e GAR, mas não o

ajuste fino. A principal razão para esta decisão é que, na minha opinião, a maioria dos

programadores de aplicações não necessita de ajuste fino para as suas necessidades de

integração de IA.

A engenharia de prompts, que envolve a criação cuidadosa de prompts com exemplos

zero a poucos disparos, restrições e instruções, pode efetivamente guiar o modelo

para gerar respostas relevantes e precisas para uma ampla gama de tarefas. Ao

fornecer contexto claro e estreitar o caminho através de prompts bem desenhados, pode

aproveitar o vasto conhecimento dos modelos de linguagem grandes sem a necessidade

de ajuste fino.

Da mesma forma, a Geração Aumentada por Recuperação (GAR) oferece uma

abordagem poderosa para integrar IA em aplicações. Ao recuperar dinamicamente

informações relevantes de bases de conhecimento ou documentos externos, a GAR

fornece ao modelo um contexto focado no momento do prompt. Isto permite que o

modelo gere respostas mais precisas, atualizadas e específicas do domínio, sem requerer

o processo intensivo em tempo e recursos do ajuste fino.

Embora o ajuste fino possa ser benéfico para domínios altamente especializados ou

tarefas que requerem um nível profundo de personalização, frequentemente vem com

Estreitar o Caminho 80

custos computacionais significativos, requisitos de dados e sobrecarga de manutenção.

Para a maioria dos cenários de desenvolvimento de aplicações, a combinação de

engenharia eficaz de prompts e GAR deve ser suficiente para alcançar a funcionalidade

e experiência do utilizador desejadas baseadas em IA.

Retrieval Augmented Generation
(RAG)
Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

O que é a Geração Aumentada por

Recuperação?

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona o RAG?

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Por Que Usar RAG nas Suas Aplicações?

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Implementação do RAG na Sua Aplicação

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Retrieval Augmented Generation (RAG) 82

Preparação de Fontes de Conhecimento (Segmentação)

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Segmentação por Proposições

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Notas de Implementação

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Verificação de Qualidade

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Benefícios da Recuperação Baseada em Proposições

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplos Práticos de RAG

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Retrieval Augmented Generation (RAG) 83

Caso de Estudo: RAG numa Aplicação de Preparação de
Impostos Sem Embeddings

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Otimização Inteligente de Consultas (OIC)

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Reclassificação

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Avaliação RAG (RAGAs)

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Fidelidade

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Relevância da Resposta

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Retrieval Augmented Generation (RAG) 84

Precisão do Contexto

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Relevância do Contexto

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Recuperação do Contexto

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Recuperação de Entidades do Contexto

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Similaridade Semântica de Resposta (ANSS)

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Correção da Resposta

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Retrieval Augmented Generation (RAG) 85

Crítica por Aspetos

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Desafios e Perspetivas Futuras

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Segmentação Semântica: Melhorando a Recuperação
com Segmentação Sensível ao Contexto

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Indexação Hierárquica: Estruturando Dados para Melhor
Recuperação

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Self-RAG: Um Aprimoramento Auto-Reflexivo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

HyDE: Embeddings de Documentos Hipotéticos

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Retrieval Augmented Generation (RAG) 86

O que é Aprendizagem Contrastiva?

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Multidão de Trabalhadores

Gosto de pensar nos meus componentes de IA como pequenos trabalhadores virtuais

“quase humanos” que podem ser perfeitamente integrados na lógica da minha aplicação

para executar tarefas específicas ou tomar decisões complexas. A ideia é humanizar

propositadamente as capacidades do MLG, para que ninguém fique demasiado

entusiasmado e lhes atribua qualidades mágicas que não possuem.

Em vez de depender exclusivamente de algoritmos complexos ou implementações

manuais demoradas, os programadores podem conceptualizar os componentes de IA

como entidades inteligentes, dedicadas e semelhantes a humanos que podem ser

invocadas sempre que necessário para resolver problemas complexos e fornecer soluções

baseadas no seu treino e conhecimento. Estas entidades não se distraem, nem faltam por

doença. Não decidem espontaneamente fazer as coisas de maneira diferente da forma

como foram instruídas a fazê-las e, em geral, se programadas corretamente, também não

cometem erros.

Multidão de Trabalhadores 88

Em termos técnicos, o princípio fundamental desta abordagem é decompor tarefas

complexas ou processos de tomada de decisão em unidades mais pequenas e mais

gerenciáveis que podem ser tratadas por trabalhadores de IA especializados. Cada

trabalhador é projetado para se concentrar num aspeto específico do problema, trazendo

a sua experiência e capacidades únicas. Ao distribuir a carga de trabalho entre

vários trabalhadores de IA, a aplicação pode alcançar maior eficiência, escalabilidade

e adaptabilidade.

Por exemplo, considere uma aplicação web que requer moderação em tempo

real de conteúdo gerado pelo utilizador. Implementar um sistema de moderação

abrangente do zero seria uma tarefa assustadora, exigindo um esforço significativo

de desenvolvimento e manutenção contínua. No entanto, ao empregar a abordagem

da Multidão de Trabalhadores, os programadores podem integrar trabalhadores

de moderação alimentados por IA na lógica da aplicação. Estes trabalhadores

podem analisar e sinalizar automaticamente conteúdo inadequado, libertando os

programadores para se concentrarem noutros aspetos críticos da aplicação.

Trabalhadores de IA Como Componentes

Reutilizáveis Independentes

Um aspeto fundamental da abordagem da Multidão de Trabalhadores é a sua

modularidade. Os defensores da programação orientada a objetos têm-nos dito

há décadas para pensar nas interações entre objetos como mensagens. Bem, os

trabalhadores de IA podem ser projetados como componentes independentes e

reutilizáveis que podem “conversar entre si” através de mensagens em linguagem

simples, quase como se fossem realmente pequenos humanos a falar uns com os outros.

Esta abordagem fracamente acoplada permite que a aplicação se adapte e evolua ao

longo do tempo, à medida que surgem novas tecnologias de IA ou os requisitos da

lógica de negócio mudam.

Multidão de Trabalhadores 89

Na prática, a necessidade de projetar interfaces claras e protocolos de comunicação entre

os componentes não mudou apenas porque os trabalhadores de IA estão envolvidos.

Ainda é necessário considerar outros fatores como desempenho, escalabilidade e

segurança, mas agora existem também novos “requisitos suaves” a considerar. Por

exemplo, muitos utilizadores opõem-se a que os seus dados privados sejam usados para

treinar novos modelos de IA. Verificou o nível de privacidade fornecido pelo fornecedor

do modelo que está a utilizar?

Trabalhadores de IA Como Microsserviços?

À medida que lê sobre a abordagem da Multidão de Trabalhadores, pode notar

algumas semelhanças com a arquitetura de Microsserviços. Ambas enfatizam a

decomposição de sistemas complexos em unidades mais pequenas, mais gerenciáveis

e independentemente implementáveis. Assim como os microsserviços são projetados

para serem fracamente acoplados, focados em capacidades específicas de negócio e

comunicam através de APIs bem definidas, os trabalhadores de IA são projetados para

serem modulares, especializados nas suas tarefas e interagirem uns com os outros

através de interfaces claras e protocolos de comunicação.

No entanto, existem algumas diferenças importantes a ter em mente. Enquanto

os microsserviços são tipicamente implementados como processos ou serviços

separados executados em diferentes máquinas ou contentores, os trabalhadores de

IA podem ser implementados como componentes autónomos dentro de uma única

aplicação ou como serviços separados, dependendo dos seus requisitos específicos

e necessidades de escalabilidade. Além disso, a comunicação entre trabalhadores

de IA frequentemente envolve a troca de informações ricas baseadas em linguagem

natural, como prompts, instruções e conteúdo gerado, em vez dos formatos de dados

mais estruturados comumente usados em microsserviços.

Apesar destas diferenças, os princípios de modularidade, acoplamento fraco e

Multidão de Trabalhadores 90

interfaces de comunicação claras permanecem centrais para ambos os padrões.

Ao aplicar estes princípios à sua arquitetura de trabalhadores de IA, pode criar

sistemas flexíveis, escaláveis e mantíveis que aproveitam o poder da IA para resolver

problemas complexos e entregar valor aos seus utilizadores.

A abordagem da Multidão de Trabalhadores pode ser aplicada em vários domínios

e aplicações, aproveitando o poder da IA para resolver tarefas complexas e fornecer

soluções inteligentes. Vamos explorar alguns exemplos concretos de como os

trabalhadores de IA podem ser empregados em diferentes contextos.

Gestão de Contas

Praticamente todas as aplicações web autónomas têm o conceito de uma conta (ou

utilizador). Na Olympia, empregamos um trabalhador de IA AccountManager que está

programado para ser capaz de lidar com uma variedade de diferentes tipos de pedidos

de alteração relacionados com contas de utilizador.

A sua diretiva apresenta-se desta forma:

Multidão de Trabalhadores 91

1 You are an intelligent account manager for Olympia. The user will request

2 changes to their account, and you will process those changes by invoking

3 one or more of the functions provided.

4

5 The initial state of the account: #{account.to_directive}

6

7 Functions will return a text description of both success and error

8 results, plus guidance about how to proceed (if applicable). If you have

9 a question about Olympia policies you may use the `search_kb` function

10 to search our knowledge base.

11

12 Make sure to notify the account owner of the result of the change

13 request before calling the `finished` function so that we save the state

14 of the account change request as completed.

O estado inicial da conta produzido por account.to_directive é simplesmente uma

descrição textual da conta, incluindo dados relevantes relacionados, como utilizadores,

subscrições, etc.

O conjunto de funções disponíveis para o AccountManager confere-lhe a capacidade de

editar a subscrição do utilizador, adicionar e remover consultores de IA e outros tipos de

complementos pagos, e enviar e-mails de notificação ao proprietário da conta. Para além

da função finished, também pode notify_human_administrator se encontrar um

erro durante o seu processamento ou necessitar de qualquer outro tipo de assistência

com um pedido.

Note que, em caso de dúvidas, o AccountManager pode optar por pesquisar na base de

conhecimento da Olympia, onde pode encontrar instruções sobre como lidar com casos

extremos e qualquer outra situação que o deixe inseguro sobre como proceder.

Aplicações de Comércio Eletrónico

No domínio do comércio eletrónico, os trabalhadores de IA podem desempenhar um

papel crucial na melhoria da experiência do utilizador e na otimização das operações

comerciais. Aqui estão algumas formas de utilizar os trabalhadores de IA:

Multidão de Trabalhadores 92

Recomendações de Produtos

Uma das aplicações mais poderosas dos trabalhadores de IA no comércio eletrónico é a

geração de recomendações personalizadas de produtos. Ao analisar o comportamento

do utilizador, histórico de compras e preferências, estes trabalhadores podem sugerir

produtos que são adaptados aos interesses e necessidades de cada utilizador individual.

A chave para recomendações de produtos eficazes é aproveitar uma combinação de

técnicas de filtragem colaborativa e filtragem baseada em conteúdo. A filtragem

colaborativa analisa o comportamento de utilizadores semelhantes para identificar

padrões e fazer recomendações baseadas no que outros com gostos semelhantes

compraram ou apreciaram. Por outro lado, a filtragem baseada em conteúdo

concentra-se nas características e atributos dos próprios produtos, recomendando

itens que partilham características semelhantes àqueles pelos quais um utilizador

demonstrou interesse anteriormente.

Aqui está um exemplo simplificado de como pode implementar um trabalhador de

recomendação de produtos em Ruby, desta vez usando um estilo de programação

“Railway Oriented (ROP)” funcional:

1 class ProductRecommendationWorker

2 include Wisper::Publisher

3

4 def call(user)

5 Result.ok(ProductRecommendation.new(user))

6 .and_then(ValidateUser.method(:validate))

7 .map(AnalyzeCurrentSession.method(:analyze))

8 .map(CollaborativeFilter.method(:filter))

9 .map(ContentBasedFilter.method(:filter))

10 .map(ProductSelector.method(:select)).then do |result|

11

12 case result

13 in { err: ProductRecommendationError => error }

14 Honeybadger.notify(error.message, context: {user:})

15 in { ok: ProductRecommendations => recs }

16 broadcast(:new_recommendations, user:, recs:)

https://fsharpforfunandprofit.com/rop/

Multidão de Trabalhadores 93

17 end

18 end

19 end

20 end

O estilo de programação funcional em Ruby usado no exemplo é

influenciado por F# e Rust. Pode ler mais sobre isto na explicação da técnica

do meu amigo Chad Wooley no GitLab

Neste exemplo, o ProductRecommendationWorker recebe um utilizador como

entrada e gera recomendações de produtos personalizadas, passando um objeto de valor

através de uma cadeia de etapas funcionais. Vamos analisar cada etapa:

1. ValidateUser.validate: Esta etapa garante que o utilizador é válido e elegível

para recomendações personalizadas. Verifica se o utilizador existe, está ativo e tem

os dados necessários disponíveis para gerar recomendações. Se a validação falhar,

é devolvido um resultado de erro e a cadeia é interrompida.

2. AnalyzeCurrentSession.analyze: Se o utilizador for válido, esta etapa

analisa a sessão atual de navegação do utilizador para recolher informações

contextuais. Examina as interações recentes do utilizador, como produtos

visualizados, consultas de pesquisa e conteúdo do carrinho, para compreender os

seus interesses e intenções atuais.

3. CollaborativeFilter.filter: Utilizando o comportamento de utilizadores

semelhantes, esta etapa aplica técnicas de filtragem colaborativa para identificar

produtos que possam interessar ao utilizador. Considera fatores como histórico

de compras, classificações e interações utilizador-item para gerar um conjunto de

recomendações candidatas.

4. ContentBasedFilter.filter: Esta etapa refina ainda mais as recomendações

candidatas aplicando filtragem baseada em conteúdo. Compara os atributos e

características dos produtos candidatos com as preferências e dados históricos do

utilizador para selecionar os itens mais relevantes.

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Multidão de Trabalhadores 94

5. ProductSelector.select: Por fim, esta etapa seleciona os N melhores

produtos das recomendações filtradas com base em critérios predefinidos, como

pontuação de relevância, popularidade ou outras regras de negócio. Os produtos

selecionados são então devolvidos como as recomendações personalizadas finais.

A beleza de usar um estilo de programação funcional em Ruby aqui é que nos permite

encadear estas etapas de forma clara e concisa. Cada etapa concentra-se numa tarefa

específica e devolve um objeto Result, que pode ser um sucesso (ok) ou um erro (err).

Se alguma etapa encontrar um erro, a cadeia é interrompida e o erro é propagado para

o resultado final.

Na instrução case no final, fazemos correspondência de padrões com o resultado final.

Se o resultado for um erro (ProductRecommendationError), registamos o erro usando

uma ferramenta como o Honeybadger para fins de monitorização e depuração. Se

o resultado for um sucesso (ProductRecommendations), transmitimos um evento

:new_recommendations usando a biblioteca pub/sub Wisper, passando o utilizador

e as recomendações geradas.

Ao aproveitar técnicas de programação funcional, podemos criar um worker de

recomendação de produtos modular e fácil de manter. Cada etapa é independente e

pode ser facilmente testada, modificada ou substituída sem afetar o fluxo geral. O

uso de correspondência de padrões e a classe Result ajuda-nos a lidar com erros de

forma elegante e garante que o worker falha rapidamente se alguma etapa encontrar

um problema.

Claro que este é um exemplo simplificado e, num cenário real, seria necessário integrar

com a sua plataforma de comércio eletrónico, lidar com casos limite e até aventurar-

-se na implementação dos algoritmos de recomendação. No entanto, os princípios

fundamentais de decompor o problema em etapas menores e aproveitar técnicas de

programação funcional permanecem os mesmos.

Multidão de Trabalhadores 95

Deteção de Fraude

Aqui está um exemplo simplificado de como pode implementar um worker de deteção

de fraude usando o mesmo estilo de Programação Orientada a Ferrovia (ROP) em Ruby:

1 class FraudDetectionWorker

2 include Wisper::Publisher

3

4 def call(transaction)

5 Result.ok(FraudDetection.new(transaction))

6 .and_then(ValidateTransaction.method(:validate))

7 .map(AnalyzeTransactionPatterns.method(:analyze))

8 .map(CheckCustomerHistory.method(:check))

9 .map(EvaluateRiskFactors.method(:evaluate))

10 .map(DetermineFraudProbability.method(:determine)).then do |result|

11

12 case result

13 in { err: FraudDetectionError => error }

14 Honeybadger.notify(error.message, context: {transaction:})

15 in { ok: FraudDetection => fraud } }

16 if fraud.high_risk?

17 broadcast(:high_risk_transaction, transaction:, fraud:)

18 else

19 broadcast(:low_risk_transaction, transaction:)

20 end

21 end

22 end

23 end

24 end

A classe FraudDetection é um value object que encapsula o estado de deteção de

fraude para uma determinada transação. Fornece uma forma estruturada de analisar e

avaliar o risco de fraude associado a uma transação com base em vários fatores de risco.

Multidão de Trabalhadores 96

1 class FraudDetection

2 RISK_THRESHOLD = 0.8

3

4 attr_accessor :transaction, :risk_factors

5

6 def initialize(transaction)

7 self.transaction = transaction

8 self.risk_factors = []

9 end

10

11 def add_risk_factor(description:, probability:)

12 case { description:, probability: }

13 in { description: String => desc, probability: Float => prob }

14 risk_factors << { desc => prob }

15 else

16 raise ArgumentError, "Risk factor arguments should be string and float"

17 end

18 end

19

20 def high_risk?

21 fraud_probability > RISK_THRESHOLD

22 end

23

24 private

25

26 def fraud_probability

27 risk_factors.values.sum

28 end

29 end

A classe FraudDetection tem os seguintes atributos:

• transaction: Uma referência para a transação que está a ser analisada quanto

a fraude.

• risk_factors: Um array que armazena os fatores de risco associados à

transação. Cada fator de risco é representado como um hash, onde a chave é a

descrição do fator de risco, e o valor é a probabilidade de fraude associada a esse

fator de risco.

Multidão de Trabalhadores 97

O método add_risk_factor permite adicionar um fator de risco ao array risk_-

factors. Recebe dois parâmetros: description, que é uma string que descreve o

fator de risco, e probability, que é um float que representa a probabilidade de fraude

associada a esse fator de risco. Utilizamos uma condicional case..in para fazer uma

verificação de tipo simples.

O método high_risk? que será verificado no final da cadeia é um método predicado

que compara a fraud_probability (calculada somando as probabilidades de todos os

fatores de risco) com o RISK_THRESHOLD.

A classe FraudDetection fornece uma forma limpa e encapsulada de gerir a deteção

de fraude para uma transação. Permite adicionar múltiplos fatores de risco, cada um

com a sua própria descrição e probabilidade, e fornece um método para determinar se

a transação é considerada de alto risco com base na probabilidade de fraude calculada.

A classe pode ser facilmente integrada num sistema maior de deteção de fraude, onde

diferentes componentes podem colaborar para avaliar e mitigar o risco de transações

fraudulentas.

Finalmente, dado que este é um livro sobre programação usando IA, aqui está um

exemplo de implementação da classe CheckCustomerHistory aproveitando o

processamento de IA usando o módulo ChatCompletion da minha biblioteca Raix:

1 class CheckCustomerHistory

2 include Raix::ChatCompletion

3

4 attr_accessor :fraud_detection

5

6 INSTRUCTION = <<~END

7 You are an AI assistant tasked with checking a customer's transaction

8 history for potential fraud indicators. Given the current transaction

9 and the customer's past transactions, analyze the data to identify any

10 suspicious patterns or anomalies.

11

12 Consider factors such as the frequency of transactions, transaction

13 amounts, geographical locations, and any deviations from the customer's

14 typical behavior to generate a probability score as a float in the range

https://github.com/OlympiaAI/raix-rails

Multidão de Trabalhadores 98

15 of 0 to 1 (with 1 being absolute certainty of fraud).

16

17 Output the results of your analysis, highlighting any red flags or areas

18 of concern in the following JSON format:

19

20 { description: <Summary of your findings>, probability: <Float> }

21 END

22

23 def self.check(fraud_detection)

24 new(fraud_detection).call

25 end

26

27 def call

28 chat_completion(json: true).tap do |result|

29 fraud_detection.add_risk_factor(**result)

30 end

31 Result.ok(fraud_detection)

32 rescue StandardError => e

33 Result.err(FraudDetectionError.new(e))

34 end

35

36 private

37

38 def initialize(fraud_detection)

39 self.fraud_detection = fraud_detection

40 end

41

42 def transcript

43 tx_history = fraud_detection.transaction.user.tx_history

44 [

45 { system: INSTRUCTION },

46 { user: "Transaction history: #{tx_history.to_json}" },

47 { assistant: "OK. Please provide the current transaction." },

48 { user: "Current transaction: #{fraud_detection.transaction.to_json}" }

49]

50 end

51 end

Neste exemplo, o CheckCustomerHistory define uma constante INSTRUCTION que

fornece instruções específicas ao modelo de IA sobre como analisar o histórico de

transações do cliente para potenciais indicadores de fraude através de uma diretiva do

Multidão de Trabalhadores 99

sistema

O método self.check é um método de classe que inicializa uma nova instância de

CheckCustomerHistory com o objeto fraud_detection e chama o método call

para realizar a análise do histórico do cliente.

Dentro do método call, o histórico de transações do cliente é recuperado e formatado

num texto que é passado ao modelo de IA. O modelo de IA analisa o histórico de

transações com base nas instruções fornecidas e retorna um resumo das suas conclusões.

As conclusões são adicionadas ao objeto fraud_detection, e o objeto fraud_-

detection atualizado é retornado como um Result bem-sucedido.

Ao aproveitar o módulo ChatCompletion, a classe CheckCustomerHistory pode

utilizar o poder da IA para analisar o histórico de transações do cliente e identificar

potenciais indicadores de fraude. Isto permite técnicas de deteção de fraude mais

sofisticadas e adaptativas, já que o modelo de IA pode aprender e adaptar-se a novos

padrões e anomalias ao longo do tempo.

O FraudDetectionWorker atualizado e a classe CheckCustomerHistory

demonstram como os workers de IA podem ser integrados de forma transparente,

melhorando o processo de deteção de fraude com capacidades de análise inteligente e

tomada de decisão.

Análise de Sentimento do Cliente

Aqui está mais um exemplo semelhante de como pode implementar um worker de

análise de sentimento do cliente. Muito menos explicação desta vez, já que deve estar a

perceber como funciona este estilo de programação:

Multidão de Trabalhadores 100

1 class CustomerSentimentAnalysisWorker

2 include Wisper::Publisher

3

4 def call(feedback)

5 Result.ok(feedback)

6 .and_then(PreprocessFeedback.method(:preprocess))

7 .map(PerformSentimentAnalysis.method(:analyze))

8 .map(ExtractKeyPhrases.method(:extract))

9 .map(IdentifyTrends.method(:identify))

10 .map(GenerateInsights.method(:generate)).then do |result|

11

12 case result

13 in { err: SentimentAnalysisError => error }

14 Honeybadger.notify(error.message, context: {feedback:})

15 in { ok: SentimentAnalysisResult => result }

16 broadcast(:sentiment_analysis_completed, result)

17 end

18 end

19 end

20 end

Neste exemplo, o CustomerSentimentAnalysisWorker inclui etapas de

pré-processamento do feedback (por exemplo, remoção de ruído, tokenização),

realização de análise de sentimento para determinar o sentimento geral (positivo,

negativo ou neutro), extração de frases-chave e tópicos, identificação de tendências e

padrões, e geração de insights acionáveis com base na análise.

Aplicações na Área da Saúde

Na área da saúde, os trabalhadores de IA podem auxiliar profissionais médicos e

investigadores em várias tarefas, conduzindo a melhores resultados para os pacientes

e descobertas médicas aceleradas. Alguns exemplos incluem:

Multidão de Trabalhadores 101

Admissão de Pacientes

Os trabalhadores de IA podem otimizar o processo de admissão de pacientes através da

automatização de várias tarefas e fornecimento de assistência inteligente.

Agendamento de Consultas: Os trabalhadores de IA podem gerir o agendamento de

consultas compreendendo as preferências dos pacientes, disponibilidade e urgência das

suas necessidades médicas. Podem interagir com os pacientes através de interfaces

conversacionais, orientando-os durante o processo de agendamento e encontrando

os horários de consulta mais adequados com base nos requisitos do paciente e na

disponibilidade do prestador de cuidados de saúde.

Recolha de Histórico Médico: Durante a admissão do paciente, os trabalhadores de

IA podem auxiliar na recolha e documentação do histórico médico do paciente. Podem

estabelecer diálogos interativos com os pacientes, fazendo perguntas relevantes sobre

as suas condições médicas anteriores, medicamentos, alergias e histórico familiar. Os

trabalhadores de IA podem utilizar técnicas de processamento de linguagem natural

para interpretar e estruturar as informações recolhidas, garantindo que são registadas

com precisão no registo eletrónico de saúde do paciente.

Avaliação e Estratificação de Sintomas: Os trabalhadores de IA podem realizar

avaliações iniciais de sintomas questionando os pacientes sobre os seus sintomas

atuais, duração, gravidade e quaisquer fatores associados. Ao aproveitarem bases de

conhecimento médico e modelos de aprendizagem automática, estes trabalhadores

podem analisar as informações fornecidas e gerar diagnósticos diferenciais preliminares

ou recomendar os próximos passos apropriados, como agendar uma consulta com um

prestador de cuidados de saúde ou sugerir medidas de autocuidado.

Verificação de Seguro: Os trabalhadores de IA podem auxiliar na verificação de

seguro durante a admissão do paciente. Podem recolher detalhes do seguro do

paciente, comunicar com as seguradoras através de APIs ou serviços web, e verificar a

elegibilidade de cobertura e benefícios. Esta automatização ajuda a otimizar o processo

Multidão de Trabalhadores 102

de verificação de seguro, reduzindo a carga administrativa e garantindo a captura

precisa de informações.

Educação e Instruções ao Paciente: Os trabalhadores de IA podem fornecer aos

pacientes materiais educativos relevantes e instruções baseadas nas suas condições

médicas específicas ou procedimentos futuros. Podem entregar conteúdo personalizado,

responder a perguntas comuns e oferecer orientação sobre preparações pré-consulta,

instruções de medicação ou cuidados pós-tratamento. Isto ajuda a manter os pacientes

informados e envolvidos durante todo o seu percurso de cuidados de saúde.

Ao aproveitar os trabalhadores de IA na admissão de pacientes, as organizações de saúde

podem aumentar a eficiência, reduzir tempos de espera e melhorar a experiência geral

do paciente. Estes trabalhadores podem gerir tarefas rotineiras, recolher informações

precisas e fornecer assistência personalizada, permitindo que os profissionais de saúde

se concentrem em fornecer cuidados de alta qualidade aos pacientes.

Avaliação de Risco do Paciente

Os trabalhadores de IA podem desempenhar um papel crucial na avaliação do risco do

paciente através da análise de várias fontes de dados e aplicação de técnicas avançadas

de análise.

Integração de Dados: Os trabalhadores de IA podem recolher e dar sentido aos dados

dos pacientes de múltiplas fontes, como registos eletrónicos de saúde, imagens médicas,

resultados laboratoriais, dispositivos vestíveis e determinantes sociais de saúde. Ao

consolidar estas informações num perfil abrangente do paciente, os trabalhadores de

IA podem fornecer uma visão holística do estado de saúde e fatores de risco do paciente.

Estratificação de Risco: Os trabalhadores de IA podem utilizar modelos preditivos para

estratificar pacientes em diferentes categorias de risco com base nas suas características

individuais e dados de saúde. Esta estratificação de risco permite que os prestadores de

cuidados de saúde priorizem pacientes que necessitam de atenção ou intervenção mais

Multidão de Trabalhadores 103

imediata. Por exemplo, pacientes identificados como de alto risco para uma determinada

condição podem ser sinalizados para monitorização mais próxima, medidas preventivas

ou intervenção precoce.

Perfis de Risco Personalizados: Os trabalhadores de IA podem gerar perfis de risco

personalizados para cada paciente, destacando os fatores específicos que contribuem

para as suas pontuações de risco. Estes perfis podem incluir insights sobre o estilo de

vida do paciente, predisposições genéticas, fatores ambientais e determinantes sociais de

saúde. Ao fornecer uma análise detalhada dos fatores de risco, os trabalhadores de IA

podem ajudar os prestadores de cuidados de saúde a adaptar estratégias de prevenção e

planos de tratamento às necessidades individuais dos pacientes.

Monitorização Contínua de Risco: Os trabalhadores de IA podem monitorizar

continuamente os dados dos pacientes e atualizar as avaliações de risco em tempo

real. À medida que novas informações ficam disponíveis, como alterações nos sinais

vitais, resultados laboratoriais ou adesão à medicação, os trabalhadores de IA podem

recalcular as pontuações de risco e alertar os prestadores de cuidados de saúde sobre

quaisquer alterações significativas. Esta monitorização proativa permite intervenções

oportunas e ajustes nos planos de cuidados dos pacientes.

Apoio à Decisão Clínica: Os trabalhadores de IA podem integrar resultados de

avaliação de risco em sistemas de apoio à decisão clínica, fornecendo aos prestadores

de cuidados de saúde recomendações e alertas baseados em evidências. Por exemplo, se

a pontuação de risco de um paciente para uma determinada condição exceder um certo

limite, o trabalhador de IA pode sugerir ao prestador de cuidados de saúde que considere

testes diagnósticos específicos, medidas preventivas ou opções de tratamento baseadas

em diretrizes clínicas e melhores práticas.

Estes workers podem processar grandes volumes de dados de pacientes, aplicar análises

sofisticadas e gerar insights acionáveis para apoiar a tomada de decisões clínicas. Isto

leva, em última análise, a melhores resultados para os pacientes, redução de custos em

saúde e melhor gestão da saúde populacional.

Multidão de Trabalhadores 104

OWorker de IA como Process Manager

No contexto de aplicações baseadas em IA, umworker pode ser projetado para funcionar

como um Process Manager, conforme descrito no livro “Enterprise Integration Patterns”

de Gregor Hohpe. Um Process Manager é um componente central que mantém o

estado de um processo e determina os próximos passos de processamento com base em

resultados intermediários.

Quando um worker de IA atua como Process Manager, ele recebe uma mensagem de

entrada que inicializa o processo, conhecida como mensagem de gatilho. O worker de

IA então mantém o estado da execução do processo (como uma transcrição da conversa)

e processa a mensagem através de uma série de etapas de processamento implementadas

como funções de ferramentas, que podem ser sequenciais ou paralelas, e chamadas à sua

discrição.

Multidão de Trabalhadores 105

Se estiver a utilizar uma classe de modelo de IA como o GPT-4 que sabe

executar funções em paralelo, então o seu worker pode executar múltiplos

passos simultaneamente. Admito que não tentei fazer isso pessoalmente e o

meu instinto diz que os resultados podem variar.

Após cada etapa individual de processamento, o controlo retorna ao worker de IA,

permitindo que determine os próximos passos de processamento com base no estado

atual e nos resultados obtidos.

Armazene as Suas Mensagens de Gatilho

Na minha experiência, é inteligente implementar a sua mensagem de gatilho como

um objeto baseado em banco de dados. Desta forma, cada instância do processo é

identificada por uma chave primária única e fornece um local para armazenar o estado

associado à execução, incluindo a transcrição da conversa com a IA.

Por exemplo, aqui está uma versão simplificada da classe modelo AccountChange da

Olympia, que representa um pedido para fazer uma alteração na conta de um utilizador.

1 # == Schema Information

2 #

3 # Table name: account_changes

4 #

5 # id :uuid not null, primary key

6 # description :string

7 # state :string not null

8 # transcript :jsonb

9 # created_at :datetime not null

10 # updated_at :datetime not null

11 # account_id :uuid not null

12 #

13 # Indexes

14 #

15 # index_account_changes_on_account_id (account_id)

16 #

17 # Foreign Keys

Multidão de Trabalhadores 106

18 #

19 # fk_rails_... (account_id => accounts.id)

20 #

21 class AccountChange < ApplicationRecord

22 belongs_to :account

23

24 validates :description, presence: true

25

26 after_commit -> {

27 broadcast(:account_change_requested, self)

28 }, on: :create

29

30 state_machine initial: :requested do

31 event :completed do

32 transition all => :complete

33 end

34 event :failed do

35 transition all => :requires_human_review

36 end

37 end

38 end

A classe AccountChange serve como uma mensagem de acionamento que inicia

um processo para tratar o pedido de alteração da conta. Note como é transmitida

para o subsistema de publicação-subscrição baseado em Wisper da Olympia depois da

transação de criação terminar de ser confirmada.

Armazenar a mensagem de acionamento na base de dados desta forma fornece um

registo persistente de cada pedido de alteração de conta. Cada instância da classe

AccountChange recebe uma chave primária única, permitindo uma fácil identificação

e rastreamento de pedidos individuais. Isto é particularmente útil para fins de registo de

auditoria, pois permite que o sistema mantenha um histórico de todas as alterações de

conta, incluindo quando foram solicitadas, quais as alterações pedidas e o estado atual

de cada pedido.

No exemplo apresentado, a classe AccountChange inclui campos como description

para capturar os detalhes da alteração solicitada, state para representar o estado atual

https://github.com/krisleech/wisper

Multidão de Trabalhadores 107

do pedido (por exemplo, solicitado, completo, requer_revisão_humana), e transcript

para armazenar a transcrição da conversa com a IA relacionada com o pedido. O campo

description é o prompt real que é usado para iniciar a primeira conclusão do chat

com a IA. Armazenar estes dados fornece um contexto valioso e permite um melhor

rastreamento e análise do processo de alteração de conta.

Armazenar mensagens de acionamento na base de dados permite um tratamento de

erros e recuperação robustos. Se ocorrer um erro durante o processamento de um pedido

de alteração de conta, o sistema marca o pedido como falhado e transita-o para um

estado que requer intervenção humana. Isto garante que nenhum pedido é perdido ou

esquecido, e que quaisquer problemas podem ser devidamente abordados e resolvidos.

O worker de IA, como Gestor de Processos, fornece um ponto central de controlo e

permite poderosas capacidades de relatório e depuração de processos. No entanto, é

importante notar que usar umworker de IA como Gestor de Processos para cada cenário

de fluxo de trabalho na sua aplicação pode ser excessivo.

Integração de Workers de IA na Arquitetura da

Sua Aplicação

Ao incorporar workers de IA na arquitetura da sua aplicação, várias considerações

técnicas precisam de ser abordadas para garantir uma integração suave e uma

comunicação eficaz entre os workers de IA e outros componentes da aplicação. Esta

secção considera aspectos fundamentais do design dessas interfaces, tratamento do

fluxo de dados e gestão do ciclo de vida dos workers de IA.

Multidão de Trabalhadores 108

Design de Interfaces Claras e Protocolos de Comunicação

Para facilitar uma integração perfeita entre workers de IA e outros componentes da

aplicação, é crucial definir interfaces claras e protocolos de comunicação. Considere as

seguintes abordagens:

Integração baseada em API: Exponha a funcionalidade dos workers de IA através de

APIs bem definidas, como endpoints RESTful ou esquemas GraphQL. Isto permite que

outros componentes interajam com os workers de IA usando pedidos e respostas HTTP

padrão. A integração baseada em API fornece um contrato claro entre os workers de

IA e os componentes consumidores, tornando mais fácil desenvolver, testar e manter os

pontos de integração.

Comunicação baseada emMensagens: Implemente padrões de comunicação baseados

em mensagens, como filas de mensagens ou sistemas de publicação-subscrição, para

permitir interação assíncrona entre workers de IA e outros componentes. Esta

abordagem desacopla os workers de IA do resto da aplicação, permitindo melhor

escalabilidade, tolerância a falhas e acoplamento fraco. A comunicação baseada em

mensagens é particularmente útil quando o processamento realizado pelos workers de

IA é demorado ou intensivo em recursos, pois permite que outras partes da aplicação

continuem a executar sem esperar que os workers de IA concluam as suas tarefas.

Arquitetura Orientada a Eventos: Projete o seu sistema em torno de eventos e

acionadores que ativam workers de IA quando condições específicas são atendidas.

Os workers de IA podem subscrever eventos relevantes e reagir em conformidade,

executando as suas tarefas designadas quando os eventos ocorrem. A arquitetura

orientada a eventos permite processamento em tempo real e permite que workers de

IA sejam invocados sob demanda, reduzindo o consumo desnecessário de recursos. Esta

abordagem é adequada para cenários onde os workers de IA precisam de responder a

ações específicas ou mudanças no estado da aplicação.

Multidão de Trabalhadores 109

Tratamento do Fluxo de Dados e Sincronização

Ao integrar workers de IA na sua aplicação, é crucial garantir um fluxo de dados suave e

manter a consistência dos dados entre osworkers de IA e outros componentes. Considere

os seguintes aspectos:

Preparação de Dados: Antes de alimentar dados nos workers de IA, pode ser

necessário realizar várias tarefas de preparação de dados, como limpeza, formatação

e/ou transformação dos dados de entrada. Não só quer garantir que os workers de IA

podem processar eficazmente, mas também quer garantir que não está a desperdiçar

tokens dando atenção a informações que o worker pode considerar inúteis na melhor

das hipóteses, ou distrativas na pior. A preparação de dados pode envolver tarefas

como remover ruído, lidar com valores em falta ou converter tipos de dados.

Persistência de Dados: Como irá armazenar e persistir os dados que fluem de e para

os workers de IA? Considere fatores como volume de dados, padrões de consulta e

escalabilidade. Precisa de persistir a transcrição da IA como um reflexo do seu “processo

de pensamento” para fins de auditoria ou depuração, ou é suficiente ter apenas um

registo dos resultados?

Recuperação de Dados: Obter os dados necessários pelos workers pode envolver

consultas a bases de dados, leitura de ficheiros ou acesso a APIs externas. Certifique-se

de considerar a latência e como osworkers de IA terão acesso aos dadosmais atualizados.

Precisam de acesso total à sua base de dados ou deve definir o âmbito do seu acesso de

forma restrita de acordo com o que estão a fazer? E quanto à escalabilidade? Considere

mecanismos de cache para melhorar o desempenho e reduzir a carga nas fontes de dados

subjacentes.

Sincronização de Dados: Quando múltiplos componentes, incluindo workers de

IA, acedem e modificam dados partilhados, é importante implementar mecanismos

adequados de sincronização para manter a consistência dos dados. Estratégias de

bloqueio de base de dados, como bloqueio otimista ou pessimista, podem ajudar a

Multidão de Trabalhadores 110

prevenir conflitos e garantir a integridade dos dados. Implemente técnicas de gestão

de transações para agrupar operações de dados relacionadas e manter as propriedades

ACID (Atomicidade, Consistência, Isolamento e Durabilidade)

Tratamento de Erros e Recuperação: Implementemecanismos robustos de tratamento

de erros e recuperação para lidar com problemas relacionados com dados que possam

surgir durante o processo de fluxo de dados. Trate as exceções de forma elegante

e forneça mensagens de erro significativas para auxiliar na depuração. Implemente

mecanismos de nova tentativa e estratégias de contingência para lidar com falhas

temporárias ou interrupções de rede. Defina procedimentos claros para recuperação

e restauração de dados em caso de corrupção ou perda.

Ao projetar e implementar cuidadosamente mecanismos de fluxo e sincronização de

dados, pode garantir que os seus workers de IA têm acesso a dados precisos, consistentes

e atualizados. Isto permite que executem as suas tarefas de forma eficaz e produzam

resultados fiáveis.

Gerir o Ciclo de Vida dos Workers de IA

Desenvolva um processo padronizado para inicializar e configurar workers de IA. Tenho

preferência por frameworks que padronizam a forma como define configurações como

nomes de modelos, diretivas do sistema e definições de funções. Certifique-se de que o

processo de inicialização é automatizado e reproduzível para facilitar a implementação

e a escalabilidade.

Implemente mecanismos abrangentes de monitorização e registo para acompanhar a

saúde e o desempenho dos workers de IA. Recolha métricas como utilização de recursos,

tempo de processamento, taxas de erro e throughput. Utilize sistemas de registo

centralizados como ELK stack (Elasticsearch, Logstash, Kibana) para agregar e analisar

registos de múltiplos workers de IA.

Integre tolerância a falhas e resiliência na arquitetura dos workers de IA. Implemente

mecanismos de tratamento de erros e recuperação para lidar elegantemente com falhas

Multidão de Trabalhadores 111

ou exceções. Os Modelos de Linguagem Grandes ainda são tecnologia de ponta; os

fornecedores costumam ficar indisponíveis frequentemente em momentos inesperados.

Use mecanismos de nova tentativa e circuit breakers para prevenir falhas em cascata.

Composição e Orquestração de Workers de IA

Uma das principais vantagens da arquitetura de workers de IA é a sua composibilidade,

que permite combinar e orquestrar múltiplos workers de IA para resolver problemas

complexos. Ao decompor uma tarefa maior em subtarefas menores e mais gerenciáveis,

cada uma tratada por um worker de IA especializado, pode criar sistemas poderosos e

flexíveis. Nesta secção, vamos explorar diferentes abordagens para compor e orquestrar

“uma multidão” de workers de IA.

Encadeamento de Workers de IA para Fluxos de Trabalho
Multi-Etapa

Em muitos cenários, uma tarefa complexa pode ser decomposta numa série de passos

sequenciais, onde a saída de um worker de IA torna-se a entrada para o próximo. Este

encadeamento de workers de IA cria um fluxo de trabalho ou pipeline multi-etapa. Cada

worker de IA na cadeia concentra-se numa subtarefa específica, e o resultado final é o

produto dos esforços combinados de todos os workers.

Vamos considerar um exemplo no contexto de uma aplicação Ruby on Rails para

processamento de conteúdo gerado pelo utilizador. O fluxo de trabalho envolve os

seguintes passos, que admitidamente são provavelmente demasiado simples para valer

a pena decompor desta forma em casos de uso reais, mas tornam o exemplo mais fácil

de entender:

1. Limpeza de Texto: Umworker de IA responsável por remover tags HTML, converter

texto para minúsculas e lidar com a normalização Unicode.

Multidão de Trabalhadores 112

2. Deteção de Idioma: Um worker de IA que identifica o idioma do texto limpo.

3. Análise de Sentimento: Um worker de IA que determina o sentimento (positivo,

negativo ou neutro) do texto com base no idioma detetado.

4. Categorização de Conteúdo: Um worker de IA que classifica o texto em categorias

predefinidas usando técnicas de processamento de linguagem natural.

Aqui está um exemplo muito simplificado de como pode encadear estes workers de IA

usando Ruby:

1 class ContentProcessor

2 def initialize(text)

3 @text = text

4 end

5

6 def process

7 cleaned_text = TextCleanupWorker.new(@text).call

8 language = LanguageDetectionWorker.new(cleaned_text).call

9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

10 category = CategorizationWorker.new(cleaned_text, language).call

11

12 { cleaned_text:, language:, sentiment:, category: }

13 end

14 end

Neste exemplo, a classe ContentProcessor inicializa com o texto em bruto e encadeia

os trabalhadores de IA nométodo process. Cada trabalhador de IA executa a sua tarefa

específica e passa o resultado para o próximo trabalhador na cadeia. O resultado final

é um hash contendo o texto limpo, o idioma detetado, o sentimento e a categoria do

conteúdo.

Processamento Paralelo para Trabalhadores de IA
Independentes

No exemplo anterior, os trabalhadores de IA estão encadeados sequencialmente, onde

cada trabalhador processa o texto e passa o resultado para o próximo trabalhador. No

Multidão de Trabalhadores 113

entanto, se tiver múltiplos trabalhadores de IA que podem operar independentemente

sobre o mesmo input, pode otimizar o fluxo de trabalho processando-os em paralelo.

No cenário apresentado, uma vez que a limpeza do texto é realizada pelo

TextCleanupWorker, o LanguageDetectionWorker, SentimentAnalysisWorker

e CategorizationWorker podem todos processar o texto limpo independentemente.

Ao executar estes trabalhadores em paralelo, pode potencialmente reduzir o tempo

total de processamento e melhorar a eficiência do seu fluxo de trabalho.

Para alcançar o processamento paralelo em Ruby, pode aproveitar técnicas de

concorrência como threads ou programação assíncrona. Aqui está um exemplo de

como pode modificar a classe ContentProcessor para processar os três últimos

trabalhadores em paralelo usando threads:

1 require 'concurrent'

2

3 class ContentProcessor

4 def initialize(text)

5 @text = text

6 end

7

8 def process

9 cleaned_text = TextCleanupWorker.new(@text).call

10

11 language_future = Concurrent::Future.execute do

12 LanguageDetectionWorker.new(cleaned_text).call

13 end

14

15 sentiment_future = Concurrent::Future.execute do

16 SentimentAnalysisWorker.new(cleaned_text).call

17 end

18

19 category_future = Concurrent::Future.execute do

20 CategorizationWorker.new(cleaned_text).call

21 end

22

23 language = language_future.value

24 sentiment = sentiment_future.value

25 category = category_future.value

Multidão de Trabalhadores 114

26

27 { cleaned_text:, language:, sentiment:, category: }

28 end

29 end

Nesta versão otimizada, utilizamos a biblioteca concurrent-ruby para criar objetos

Concurrent::Future para cada um dos workers de IA independentes. Um Future

representa uma computação que será executada de forma assíncrona numa thread

separada.

Após a etapa de limpeza do texto, criamos três objetos Future: language_future,

sentiment_future e category_future. Cada Future executa o seu worker de

IA correspondente (LanguageDetectionWorker, SentimentAnalysisWorker e

CategorizationWorker) numa thread separada, passando o cleaned_text como

entrada.

Ao chamar o método value em cada Future, aguardamos que a computação seja

concluída e obtemos o resultado. O método value bloqueia até que o resultado

esteja disponível, garantindo que todos os workers paralelos tenham terminado o

processamento antes de prosseguir.

Por fim, construímos o hash de saída com o texto limpo e os resultados dos workers

paralelos, tal como no exemplo original.

Ao processar os workers de IA independentes em paralelo, é possível reduzir

potencialmente o tempo total de processamento em comparação com a execução

sequencial. Esta otimização é particularmente benéfica quando se lida com tarefas

demoradas ou quando se processa grandes volumes de dados.

No entanto, é importante notar que os ganhos reais de desempenho dependem de vários

fatores, como a complexidade de cada worker, os recursos do sistema disponíveis e

a sobrecarga da gestão de threads. É sempre uma boa prática fazer benchmarks e

criar perfis do seu código para determinar o nível ideal de paralelismo para o seu caso

específico.

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Multidão de Trabalhadores 115

Adicionalmente, ao implementar processamento paralelo, é preciso estar atento a

quaisquer recursos partilhados ou dependências entre os workers. Certifique-se de que

os workers podem operar independentemente sem conflitos ou condições de corrida.

Se houver dependências ou recursos partilhados, poderá ser necessário implementar

mecanismos de sincronização apropriados para manter a integridade dos dados e evitar

problemas como deadlocks ou resultados inconsistentes.

O Global Interpreter Lock (GIL) do Ruby e o
Processamento Assíncrono

É importante compreender as implicações do Global Interpreter Lock (GIL) do Ruby

quando se considera o processamento assíncrono baseado em threads em Ruby.

O GIL é um mecanismo no interpretador Ruby que garante que apenas uma thread

pode executar código Ruby de cada vez, mesmo em processadores multi-core. Isto

significa que, embora múltiplas threads possam ser criadas e geridas dentro de

um processo Ruby, apenas uma thread pode executar ativamente código Ruby em

qualquer momento.

O GIL foi projetado para simplificar a implementação do interpretador Ruby e

fornecer segurança de thread para as estruturas de dados internas do Ruby. No

entanto, também limita o potencial de verdadeira execução paralela do código Ruby.

Quando se utilizam threads em Ruby, como com a biblioteca concurrent-ruby ou

a classe Thread incorporada, as threads estão sujeitas às restrições do GIL. O GIL

permite que cada thread execute código Ruby durante um curto período de tempo

antes de mudar para outra thread, criando a ilusão de execução concorrente.

No entanto, devido ao GIL, a execução real do código Ruby permanece

sequencial. Enquanto uma thread está a executar código Ruby, outras threads

ficam essencialmente em pausa, aguardando a sua vez de adquirir o GIL e executar.

Multidão de Trabalhadores 116

Isto significa que o processamento assíncrono baseado em threads em Ruby é mais

eficaz para tarefas limitadas por E/S, como aguardar respostas de APIs externas (como

modelos de linguagem grandes hospedados por terceiros) ou realizar operações de E/S

de ficheiros. Quando uma thread encontra uma operação de E/S, pode libertar o GIL,

permitindo que outras threads executem enquanto aguardam a conclusão da E/S.

Por outro lado, para tarefas limitadas pela CPU, como computações intensivas ou

processamento de workers de IA de longa duração, o GIL pode limitar os potenciais

ganhos de desempenho do paralelismo baseado em threads. Como apenas uma thread

pode executar código Ruby de cada vez, o tempo total de execução pode não ser

significativamente reduzido em comparação com o processamento sequencial.

Para alcançar uma verdadeira execução paralela para tarefas limitadas pela CPU em

Ruby, pode ser necessário explorar abordagens alternativas, tais como:

• Utilizar paralelismo baseado em processos commúltiplos processos Ruby, cada

um executando num núcleo de CPU separado.

• Aproveitar bibliotecas externas ou frameworks que forneçam extensões

nativas ou interfaces para linguagens sem GIL, como C ou Rust.,

• Utilizar frameworks de computação distribuída ou filas de mensagens para

distribuir tarefas entre múltiplas máquinas ou processos.

É crucial considerar a natureza das suas tarefas e as limitações impostas pelo GIL ao

projetar e implementar processamento assíncrono emRuby. Embora o processamento

assíncrono baseado em threads possa fornecer benefícios para tarefas limitadas por

E/S, pode não oferecer melhorias significativas de desempenho para tarefas limitadas

pela CPU devido às restrições do GIL.

Multidão de Trabalhadores 117

Técnicas de Ensemble para Melhorar a Precisão

As técnicas de ensemble envolvem combinar as saídas de múltiplos workers de IA para

melhorar a precisão geral ou a robustez do sistema. Em vez de depender de um único

worker de IA, as técnicas de ensemble aproveitam a inteligência coletiva de múltiplos

workers para tomar decisões mais informadas.

Os ensembles são especialmente importantes se diferentes partes do seu

fluxo de trabalho funcionam melhor com diferentes modelos de IA, algo

mais comum do que se possa pensar. Modelos poderosos como o GPT-4 são

extremamente caros em comparação com opções de código aberto menos

capazes, e provavelmente não são necessários para cada etapa do fluxo de

trabalho da sua aplicação.

Uma técnica comum de ensemble é a votação por maioria, onde múltiplos trabalhadores

de IA processam independentemente a mesma entrada, e a saída final é determinada

pelo consenso da maioria. Esta abordagem pode ajudar a mitigar o impacto de erros

individuais dos trabalhadores e melhorar a fiabilidade geral do sistema.

Consideremos um exemplo onde temos três trabalhadores de IA para análise de

sentimento, cada um utilizando um modelo diferente ou fornecido com diferentes

contextos. Podemos combinar as suas saídas usando votação por maioria para

determinar a previsão final do sentimento.

Multidão de Trabalhadores 118

1 class SentimentAnalysisEnsemble

2 def initialize(text)

3 @text = text

4 end

5

6 def analyze

7 predictions = [

8 SentimentAnalysisWorker1.new(@text).analyze,

9 SentimentAnalysisWorker2.new(@text).analyze,

10 SentimentAnalysisWorker3.new(@text).analyze

11]

12

13 predictions

14 .group_by { |sentiment| sentiment }

15 .max_by { |_, votes| votes.size }

16 .first

17

18 end

19 end

Neste exemplo, a classe SentimentAnalysisEnsemble. é inicializada com o texto

e invoca três diferentes trabalhadores de IA para análise de sentimento. O método

analyze recolhe as previsões de cada trabalhador e determina o sentimento maioritário

usando os métodos group_by e max_by. O resultado final é o sentimento que recebe

mais votos do conjunto de trabalhadores

Os conjuntos são claramente um caso onde vale a pena experimentar com

paralelismo.

Seleção Dinâmica e Invocação de Trabalhadores de IA

Em alguns, se não na maioria dos casos, o trabalhador de IA específico a ser invocado

pode depender das condições em tempo de execução ou das entradas do utilizador.

A seleção dinâmica e invocação de trabalhadores de IA permitem flexibilidade e

adaptabilidade no sistema.

Multidão de Trabalhadores 119

Pode sentir-se tentado a tentar incluir muita funcionalidade num único

trabalhador de IA, dando-lhe várias funções e um prompt grande e

complicado que explica como as chamar. Resista à tentação, acredite em

mim. Uma das razões pela qual a abordagem que estamos a discutir neste

capítulo se chama “Multiplicidade de Trabalhadores” é para nos lembrar que

é desejável ter muitos trabalhadores especializados, cada um fazendo o seu

pequeno trabalho ao serviço do propósito maior.

Por exemplo, considere uma aplicação de chatbot onde diferentes trabalhadores de IA

são responsáveis por lidar com diferentes tipos de consultas do utilizador. Com base

na entrada do utilizador, a aplicação seleciona dinamicamente o trabalhador de IA

apropriado para processar a consulta.

1 class ChatbotController < ApplicationController

2 def process_query

3 query = params[:query]

4 query_type = QueryClassifierWorker.new(query).classify

5

6 case query_type

7 when 'greeting'

8 response = GreetingWorker.new(query).generate_response

9 when 'product_inquiry'

10 response = ProductInquiryWorker.new(query).generate_response

11 when 'order_status'

12 response = OrderStatusWorker.new(query).generate_response

13 else

14 response = DefaultResponseWorker.new(query).generate_response

15 end

16

17 render json: { response: response }

18 end

19 end

Neste exemplo, o ChatbotController recebe uma consulta do utilizador através

da ação process_query. Primeiro, utiliza um QueryClassifierWorker para

determinar o tipo de consulta. Com base no tipo de consulta classificada, o controlador

Multidão de Trabalhadores 120

seleciona dinamicamente o trabalhador de IA apropriado para gerar a resposta. Esta

seleção dinâmica permite que o chatbot processe diferentes tipos de consultas e as

encaminhe para os trabalhadores de IA relevantes.

Como o trabalho do QueryClassifierWorker é relativamente simples

e não requer muito contexto ou definições de funções, provavelmente

pode implementá-lo usando um LLM pequeno e ultra-rápido como o

mistralai/mixtral-8x7b-instruct:nitro. Tem capacidades que se

aproximam do nível do GPT-4 em muitas tarefas e, no momento em que

escrevo isto, a Groq consegue servi-lo com uma velocidade impressionante

de 444 tokens por segundo.

Combinando PLN Tradicional com LLMs

Embora os Modelos de Linguagem Grandes (LLMs) tenham revolucionado o campo do

processamento de linguagem natural (NLP), oferecendo versatilidade e desempenho sem

precedentes numa ampla gama de tarefas, nem sempre são a solução mais eficiente ou

económica para todos os problemas. Em muitos casos, combinar técnicas tradicionais

de NLP com LLMs pode levar a abordagens mais otimizadas, direcionadas e económicas

para resolver desafios específicos de NLP.

Pense nos LLMs como os canivetes suíços do NLP—incrivelmente versáteis e poderosos,

mas não necessariamente a melhor ferramenta para cada trabalho. Por vezes, uma

ferramenta dedicada como um saca-rolhas ou um abre-latas pode ser mais eficaz e

eficiente para uma tarefa específica. Da mesma forma, técnicas tradicionais de NLP,

como agrupamento de documentos, identificação de tópicos e classificação, podem

frequentemente fornecer soluções mais direcionadas e económicas para certos aspectos

do seu pipeline de NLP.

Uma das principais vantagens das técnicas tradicionais de NLP é a sua eficiência

computacional. Estes métodos, que frequentemente dependem de modelos estatísticos

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Multidão de Trabalhadores 121

mais simples ou abordagens baseadas em regras, podem processar grandes volumes

de dados textuais muito mais rapidamente e com menor sobrecarga computacional

em comparação com os LLMs. Isto torna-os particularmente adequados para tarefas

que envolvem a análise e organização de grandes corpora de documentos, como o

agrupamento de artigos semelhantes ou a identificação de tópicos-chave dentro de uma

coleção de textos.

Além disso, as técnicas tradicionais de NLP podem frequentemente alcançar alta

precisão e exatidão para tarefas específicas, especialmente quando treinadas em

conjuntos de dados específicos do domínio. Por exemplo, um classificador de

documentos bem ajustado usando algoritmos tradicionais de aprendizagem automática

como Máquinas de Vetores de Suporte (SVM) ou Naive Bayes pode categorizar

documentos em categorias predefinidas com precisão e com custo computacional

mínimo.

No entanto, os LLMs realmente brilham quando se trata de tarefas que requerem uma

compreensão mais profunda da linguagem, contexto e raciocínio. A sua capacidade

de gerar texto coerente e contextualmente relevante, responder a perguntas e resumir

passagens longas é inigualável pelos métodos tradicionais de NLP. Os LLMs podem lidar

eficazmente com fenómenos linguísticos complexos, como ambiguidade, correferência

e expressões idiomáticas, tornando-os inestimáveis para tarefas que requerem geração

ou compreensão de linguagem natural.

O verdadeiro poder está em combinar técnicas tradicionais de NLP com LLMs para

criar abordagens híbridas que aproveitam os pontos fortes de ambos. Ao usar métodos

tradicionais de NLP para tarefas como pré-processamento de documentos, agrupamento

e extração de tópicos, pode organizar e estruturar eficientemente os seus dados textuais.

Esta informação estruturada pode então ser alimentada aos LLMs para tarefas mais

avançadas, como gerar resumos, responder a perguntas ou criar relatórios abrangentes.

Por exemplo, consideremos um caso de uso onde pretende gerar um relatório de

tendências para um domínio específico com base num grande corpus de documentos

Multidão de Trabalhadores 122

individuais de tendências. Em vez de confiar apenas em LLMs, que podem ser

computacionalmente dispendiosos e demorados para processar grandes volumes de

texto, pode empregar uma abordagem híbrida:

1. Usar técnicas tradicionais de NLP, como modelação de tópicos (por exemplo,

Alocação Latente de Dirichlet) ou algoritmos de agrupamento (por exemplo,

K-means), para agrupar documentos de tendências semelhantes e identificar

temas e tópicos-chave dentro do corpus.

2. Alimentar os documentos agrupados e tópicos identificados num LLM,

aproveitando as suas capacidades superiores de compreensão e geração de

linguagem para criar resumos coerentes e informativos para cada grupo ou

tópico.

3. Finalmente, usar o LLM para gerar um relatório abrangente de tendências,

combinando os resumos individuais, destacando as tendências mais significativas

e fornecendo insights e recomendações com base na informação agregada.

Ao combinar técnicas tradicionais de NLP com LLMs desta maneira, pode processar

eficientemente grandes quantidades de dados textuais, extrair insights significativos e

gerar relatórios de alta qualidade enquanto otimiza recursos computacionais e custos.

Ao embarcar nos seus projetos de NLP, é essencial avaliar cuidadosamente os requisitos

específicos e as limitações de cada tarefa e considerar como os métodos tradicionais

de PLN e os LLMs podem ser aproveitados em conjunto para alcançar os melhores

resultados. Ao combinar a eficiência e precisão das técnicas tradicionais com a

versatilidade e poder dos LLMs, pode criar soluções de PLN altamente eficazes e

económicas que proporcionam valor aos seus utilizadores e partes interessadas.

Uso de Ferramentas

No domínio do desenvolvimento de aplicações orientadas por IA, o conceito de

“uso de ferramentas” ou “chamada de funções” emergiu como uma técnica poderosa

que permite ao seu LLM conectar-se a ferramentas externas, APIs, funções, bases

de dados e outros recursos. Esta abordagem permite um conjunto mais rico de

comportamentos do que apenas gerar texto, e interações mais dinâmicas entre os seus

componentes de IA e o resto do ecossistema da sua aplicação. Como examinaremos

neste capítulo, o uso de ferramentas também oferece a opção de fazer com que o seu

modelo de IA gere dados de forma estruturada.

O que é o Uso de Ferramentas?

O uso de ferramentas, também conhecido como chamada de funções, é uma técnica que

permite aos programadores especificar uma lista de funções com as quais um LLM pode

Uso de Ferramentas 124

interagir durante o processo de geração. Estas ferramentas podem variar desde funções

utilitárias simples até APIs complexas ou consultas a bases de dados. Ao fornecer ao

LLM acesso a estas ferramentas, os programadores podem expandir as capacidades do

modelo e permitir que ele execute tarefas que requerem conhecimento ou ações externas.

Figura 8. Exemplo de uma definição de função para um trabalhador de IA que analisa documentos

1 FUNCTION = {

2 name: "save_analysis",

3 description: "Save analysis data for document",

4 parameters: {

5 type: "object",

6 properties: {

7 title: {

8 type: "string",

9 maxLength: 140

10 },

11 summary: {

12 type: "string",

13 description: "comprehensive multi-paragraph summary with

14 overview and list of sections (if applicable)"

15 },

16 tags: {

17 type: "array",

18 items: {

19 type: "string",

20 description: "lowercase tags representing main themes

21 of the document"

22 }

23 }

24 },

25 "required": %w[title summary tags]

26 }

27 }.freeze

A ideia fundamental por detrás da utilização de ferramentas é dar ao LLM a capacidade

de selecionar e executar dinamicamente as ferramentas apropriadas com base na

entrada do utilizador ou na tarefa em questão. Em vez de depender exclusivamente

do conhecimento pré-treinado do modelo, a utilização de ferramentas permite ao

Uso de Ferramentas 125

LLM aproveitar recursos externos para gerar respostas mais precisas, relevantes e

acionáveis. A utilização de ferramentas torna técnicas como RAG (Geração Aumentada

por Recuperação) muito mais fáceis de implementar do que seriam de outra forma.

Note que, salvo indicação em contrário, este livro assume que o seu modelo de IA

não tem acesso a quaisquer ferramentas incorporadas do lado do servidor. Quaisquer

ferramentas que pretenda disponibilizar à sua IA devem ser explicitamente declaradas

por si em cada pedido àAPI, com provisões para despachar a sua execução se e quando

a sua IA lhe indicar que gostaria de usar essa ferramenta na sua resposta.

O Potencial da Utilização de Ferramentas

A utilização de ferramentas abre um vasto leque de possibilidades para aplicações

baseadas em IA. Aqui estão alguns exemplos do que pode ser alcançado com a utilização

de ferramentas:

1. Chatbots e Assistentes Virtuais: Ao conectar um LLM a ferramentas externas,

os chatbots e assistentes virtuais podem realizar tarefas mais complexas, como

recuperar informações de bases de dados, executar chamadas de API ou interagir

com outros sistemas. Por exemplo, um chatbot poderia usar uma ferramenta de

CRM para alterar o estado de um negócio com base no pedido do utilizador.

2. Análise de Dados e Insights: Os LLMs podem ser conectados a ferramentas ou

bibliotecas de análise de dados para realizar tarefas avançadas de processamento

de dados. Isto permite que as aplicações gerem insights, realizem análises

comparativas ou forneçam recomendações baseadas em dados em resposta a

consultas dos utilizadores.

3. Pesquisa e Recuperação de Informação: A utilização de ferramentas permite

que os LLMs interajam com motores de busca, bases de dados vetoriais ou

Uso de Ferramentas 126

outros sistemas de recuperação de informação. Ao transformar as consultas

dos utilizadores em consultas de pesquisa, o LLM pode recuperar informações

relevantes de múltiplas fontes e fornecer respostas abrangentes às questões dos

utilizadores.

4. Integração com Serviços Externos: A utilização de ferramentas permite a

integração perfeita entre aplicações baseadas em IA e serviços externos ou APIs.

Por exemplo, um LLM poderia interagir com uma API de meteorologia para

fornecer atualizações meteorológicas em tempo real ou com uma API de tradução

para gerar respostas multilingues.

O Fluxo de Trabalho da Utilização de

Ferramentas

O fluxo de trabalho da utilização de ferramentas normalmente envolve quatro passos

principais:

1. Incluir definições de funções no contexto do seu pedido

2. Seleção dinâmica (ou explícita) de ferramentas

3. Execução da(s) função(ões)

4. Continuação opcional do prompt original

Vamos analisar cada um destes passos em detalhe.

Incluir definições de funções no contexto do seu pedido

A IA sabe quais as ferramentas que tem à sua disposição porque você fornece uma lista

como parte do seu pedido de conclusão (tipicamente definida como funções usando uma

variante do esquema JSON).

A sintaxe exata da definição de ferramentas é específica do modelo.

É assim que se define uma função get_weather no Claude 3:

Uso de Ferramentas 127

1 {

2 "name": "get_weather",

3 "description": "Get the current weather in a given location",

4 "input_schema": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA"

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 }

16 },

17 "required": ["location"]

18 }

19 }

E é assim que definiria a mesma função para GPT-4, passando-a como valor do

parâmetro tools:

1 {

2 "name": "get_current_weather",

3 "description": "Get the current weather in a given location",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA",

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 },

16 },

17 "required": ["location"],

Uso de Ferramentas 128

18 },

19 }

Quase igual, exceto diferente sem razão aparente! Que irritante.

As definições de função especificam nome, descrição e parâmetros de entrada. Os

parâmetros de entrada podem ser definidos mais detalhadamente usando atributos como

enums para limitar os valores aceitáveis, e especificando se um parâmetro é obrigatório

ou não.

Além das definições de função propriamente ditas, também pode incluir instruções ou

contexto sobre por que e como usar a função na diretiva do sistema.

Por exemplo, a minha ferramenta de Web Search no Olympia inclui esta diretiva do

sistema, que relembra à IA que tem as ferramentas mencionadas à sua disposição:

1 The `google_search` and `realtime_search` functions let you do research

2 on behalf of the user. In contrast to Google, realtime search is powered

3 by Perplexity and provides real-time information to curated current events

4 databases and news sources. Make sure to include URLs in your response so

5 user can do followup research.

Fornecer descrições detalhadas é considerado o fator mais importante no desempenho

das ferramentas. As suas descrições devem explicar todos os detalhes sobre a ferramenta,

incluindo:

• O que a ferramenta faz

• Quando deve ser utilizada (e quando não deve)

• O que significa cada parâmetro e como afeta o comportamento da ferramenta

• Quaisquer ressalvas ou limitações importantes que se apliquem à implementação

da ferramenta

Uso de Ferramentas 129

Quanto mais contexto puder fornecer à IA sobre as suas ferramentas, melhor será a sua

capacidade de decidir quando e como utilizá-las. Por exemplo, a Anthropic recomenda

pelo menos 3-4 frases por descrição de ferramenta para a sua série Claude 3, ou mais se

a ferramenta for complexa.

Pode não ser intuitivo, mas as descrições são também consideradas mais importantes

do que os exemplos. Embora possa incluir exemplos de como utilizar uma ferramenta

na sua descrição ou no prompt que a acompanha, isto é menos importante do que ter

uma explicação clara e abrangente do propósito e parâmetros da ferramenta. Adicione

exemplos apenas depois de ter desenvolvido completamente a descrição.

Eis um exemplo de uma especificação de função API ao estilo da Stripe:

1 {

2 "name": "createPayment",

3 "description": "Create a new payment request",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "transaction_amount": {

8 "type": "number",

9 "description": "The amount to be paid"

10 },

11 "description": {

12 "type": "string",

13 "description": "A brief description of the payment"

14 },

15 "payment_method_id": {

16 "type": "string",

17 "description": "The payment method to be used"

18 },

19 "payer": {

20 "type": "object",

21 "description": "Information about the payer, including their name,

22 email, and identification number",

23 "properties": {

24 "name": {

25 "type": "string",

26 "description": "The payer's name"

Uso de Ferramentas 130

27 },

28 "email": {

29 "type": "string",

30 "description": "The payer's email address"

31 },

32 "identification": {

33 "type": "object",

34 "description": "The payer's identification number",

35 "properties": {

36 "type": {

37 "type": "string",

38 "description": "Identification document (e.g. CPF, CNPJ)"

39 },

40 "number": {

41 "type": "string",

42 "description": "The identification number"

43 }

44 },

45 "required": ["type", "number"]

46 }

47 },

48 "required": ["name", "email", "identification"]

49 }

50 }

51 }

Na prática, alguns modelos têm dificuldade em lidar com especificações de

funções aninhadas e com tipos de dados de saída complexos como arrays,

dicionários etc. Mas em teoria, deveria ser possível fornecer especificações

de Schema JSON de profundidade arbitrária!

Seleção Dinâmica de Ferramentas

Quando executa uma conclusão de chat que inclui definições de ferramentas, o LLM

seleciona dinamicamente a(s) ferramenta(s) mais apropriada(s) para usar e gera os

parâmetros de entrada necessários para cada ferramenta.

Uso de Ferramentas 131

Na prática, a capacidade da IA para chamar exatamente a função correta e seguir

exatamente a sua especificação para as entradas é incerta. Reduzir o hiperparâmetro

de temperatura para 0.0 ajuda bastante, mas pela minha experiência ainda terá erros

ocasionais. Essas falhas incluem nomes de funções alucinados, parâmetros de entrada

mal nomeados ou simplesmente ausentes. Os parâmetros são passados como JSON,

o que significa que às vezes verá erros causados por JSON truncado, mal citado ou

defeituoso de outras formas.

Os padrões de Dados Auto-Reparáveis podem ajudar a corrigir

automaticamente chamadas de função que falham devido a erros de

sintaxe.

Seleção Forçada (ou Explícita) de Ferramentas

Alguns modelos dão-lhe a opção de forçar a chamada de uma função específica, como

um parâmetro no pedido. Caso contrário, chamar ou não a função fica inteiramente ao

critério da IA.

A capacidade de forçar uma chamada de função é crucial em certos cenários

onde pretende garantir que uma ferramenta ou função específica é executada,

independentemente do processo de seleção dinâmica da IA. Existem várias razões pelas

quais esta capacidade é importante:

1. Controlo Explícito: Pode estar a usar a IA como um Componente Discreto ou

num fluxo de trabalho predefinido que necessita da execução de uma função

específica num momento específico. Ao forçar a chamada, pode garantir que a

função desejada é invocada em vez de ter de pedir educadamente à IA para o

fazer.

2. Depuração e Testes: Durante o desenvolvimento e teste de aplicações baseadas

em IA, a capacidade de forçar chamadas de função é inestimável para fins de

Uso de Ferramentas 132

depuração. Ao acionar explicitamente funções específicas, pode isolar e testar

componentes individuais da sua aplicação. Isto permite-lhe verificar a correção

das implementações das funções, validar os parâmetros de entrada e garantir que

os resultados esperados são devolvidos.

3. Tratamento de Casos Extremos: Podem existir casos extremos ou cenários

excecionais onde o processo de seleção dinâmica da IA pode não escolher executar

uma função que deveria, e você sabe disso com base em processos externos.

Nesses casos, ter a capacidade de forçar uma chamada de função permite-lhe lidar

com estas situações explicitamente. Defina regras ou condições na lógica da sua

aplicação para determinar quando substituir o critério da IA.

4. Consistência e Reprodutibilidade: Se tiver uma sequência específica de funções

que precisam de ser executadas numa ordem particular, forçar as chamadas

garante que a mesma sequência é seguida todas as vezes. Isto é especialmente

importante em aplicações onde a consistência e o comportamento previsível são

críticos, como em sistemas financeiros ou simulações científicas.

5. Otimização de Desempenho: Em alguns casos, forçar uma chamada de função

pode levar a otimizações de desempenho. Se souber que uma função específica é

necessária para uma tarefa particular e que o processo de seleção dinâmica da IA

pode introduzir sobrecarga desnecessária, pode contornar o processo de seleção e

invocar diretamente a função necessária. Isto pode ajudar a reduzir a latência e

melhorar a eficiência geral da sua aplicação.

Em resumo, a capacidade de forçar chamadas de função em aplicações baseadas em

IA fornece controlo explícito, auxilia na depuração e testes, lida com casos extremos,

garante consistência e reprodutibilidade. É uma ferramenta poderosa no seu arsenal,

mas precisamos de discutir mais um aspeto desta importante funcionalidade.

Uso de Ferramentas 133

Em muitos casos de uso de tomada de decisão, queremos sempre que o

modelo faça uma chamada de função e podemos nunca querer que o modelo

responda apenas com o seu conhecimento interno. Por exemplo, se estiver

a encaminhar entre vários modelos especializados em diferentes tarefas

(entrada multilíngue, matemática, etc.), pode usar o modelo de chamada de

função para delegar pedidos a um dos modelos auxiliares e nunca responder

independentemente.

Parâmetro de Escolha de Ferramenta

O GPT-4 e outros modelos de linguagem que suportam chamadas de função fornecem

um parâmetro tool_choice para controlar se o uso de ferramentas é necessário como

parte de uma conclusão. Este parâmetro tem três valores possíveis:

• auto dá à IA total discrição sobre usar uma ferramenta ou simplesmente

responder

• required diz à IA que ela deve chamar uma ferramenta em vez de responder,

mas deixa a seleção da ferramenta a critério da IA

• A terceira opção é definir o parâmetro do name_of_function que pretende

forçar. Mais sobre isso na próxima secção.

Note que se definir tool choice como required, o modelo será forçado a

escolher a função mais relevante para chamar entre as fornecidas, mesmo

que nenhuma se adeque realmente ao prompt. No momento da publicação,

não tenho conhecimento de nenhum modelo que retorne uma resposta

tool_calls vazia, ou use alguma outra forma de informar que não

encontrou uma função adequada para chamar.

Uso de Ferramentas 134

Forçando uma Função Para Obter Saída Estruturada

A capacidade de forçar uma chamada de função oferece uma maneira de forçar dados

estruturados de uma conclusão de chat em vez de ter que extraí-los você mesmo da

resposta em texto simples.

Por que forçar funções para obter saída estruturada é tão importante? Simplesmente

porque a extração de dados estruturados da saída do LLM é uma dor de cabeça.

Você pode facilitar um pouco sua vida pedindo dados em XML, mas depois tem

que analisar o XML. E o que fazer quando esse XML está ausente porque sua IA

respondeu: “Lamento, mas não consigo gerar os dados que solicitou porque blá, blá,

blá…”

Ao usar ferramentas desta forma:

• Você provavelmente deve definir uma única ferramenta no seu pedido

• Lembre-se de forçar o uso da sua função usando o parâmetro tool_choice.

• Lembre-se que o modelo passará a entrada para a ferramenta, então o nome da

ferramenta e a descrição devem ser da perspetiva do modelo, não da sua.

Este último ponto merece um exemplo para maior clareza. Digamos que você está

pedindo à IA para fazer análise de sentimento em texto do utilizador. O nome da função

não seria analyze_sentiment, mas sim algo como save_sentiment_analysis.

A IA é que está fazendo a análise de sentimento, não a ferramenta. Tudo o que a

ferramenta está fazendo (da perspetiva da IA) é guardar os resultados da análise.

Aqui está um exemplo de uso do Claude 3 para registar um resumo de uma imagem em

JSON bem estruturado, desta vez pela linha de comando usando curl:

Uso de Ferramentas 135

1 curl https://api.anthropic.com/v1/messages \

2 --header "content-type: application/json" \

3 --header "x-api-key: $ANTHROPIC_API_KEY" \

4 --header "anthropic-version: 2023-06-01" \

5 --header "anthropic-beta: tools-2024-04-04" \

6 --data \

7 '{

8 "model": "claude-3-sonnet-20240229",

9 "max_tokens": 1024,

10 "tools": [{

11 "name": "record_summary",

12 "description": "Record summary of image into well-structured JSON.",

13 "input_schema": {

14 "type": "object",

15 "properties": {

16 "key_colors": {

17 "type": "array",

18 "items": {

19 "type": "object",

20 "properties": {

21 "r": {

22 "type": "number",

23 "description": "red value [0.0, 1.0]"

24 },

25 "g": {

26 "type": "number",

27 "description": "green value [0.0, 1.0]"

28 },

29 "b": {

30 "type": "number",

31 "description": "blue value [0.0, 1.0]"

32 },

33 "name": {

34 "type": "string",

35 "description": "Human-readable color name

36 in snake_case, e.g.

37 \"olive_green\"or

38 \"turquoise\""

39 }

40 },

41 "required": ["r", "g", "b", "name"]

42 },

Uso de Ferramentas 136

43 "description": "Key colors in the image. Four or less."

44 },

45 "description": {

46 "type": "string",

47 "description": "Image description. 1-2 sentences max."

48 },

49 "estimated_year": {

50 "type": "integer",

51 "description": "Estimated year that the image was taken,

52 if is it a photo. Only set this if the

53 image appears to be non-fictional.

54 Rough estimates are okay!"

55 }

56 },

57 "required": ["key_colors", "description"]

58 }

59 }],

60 "messages": [

61 {

62 "role": "user",

63 "content": [

64 {

65 "type": "image",

66 "source": {

67 "type": "base64",

68 "media_type": "'$IMAGE_MEDIA_TYPE'",

69 "data": "'$IMAGE_BASE64'"

70 }

71 },

72 {

73 "type": "text",

74 "text": "Use `record_summary` to describe this image."

75 }

76]

77 }

78]

79 }'

No exemplo fornecido, estamos a usar o modelo Claude 3 da Anthropic para gerar um

resumo JSON estruturado de uma imagem. Eis como funciona:

Uso de Ferramentas 137

1. Definimos uma única ferramenta chamada record_summary no array tools da

carga útil do pedido. Esta ferramenta é responsável por registar um resumo da

imagem num JSON bem estruturado.

2. A ferramenta record_summary tem um input_schema que especifica a

estrutura esperada do output JSON. Define três propriedades:

• key_colors: Um array de objetos que representam as cores principais na

imagem. Cada objeto de cor tem propriedades para os valores de vermelho,

verde e azul (variando de 0.0 a 1.0) e um nome de cor legível por humanos

em formato snake_case.

• description: Uma propriedade string para uma breve descrição da

imagem, limitada a 1-2 frases.

• estimated_year: Uma propriedade inteira opcional para o ano estimado

em que a imagem foi tirada, caso pareça ser uma foto não ficcional.

3. No array messages, fornecemos os dados da imagem como uma string codificada

em base64 juntamente com o tipo de média. Isto permite que o modelo processe

a imagem como parte do input.

4. Também instruímos o Claude a usar a ferramenta record_summary para

descrever a imagem.

5. Quando o pedido é enviado ao modelo Claude 3, este analisa a imagem e gera um

resumo JSON baseado no input_schema especificado. O modelo extrai as cores

principais, fornece uma breve descrição e estima o ano em que a imagem foi tirada

(se aplicável).

6. O resumo JSON gerado é passado como parâmetros para a ferramenta

record_summary, fornecendo uma representação estruturada das características

principais da imagem.

Ao usar a ferramenta record_summary com um input_schema bem definido,

podemos obter um resumo JSON estruturado de uma imagem sem depender de

Uso de Ferramentas 138

extração de texto simples. Esta abordagem garante que o output segue um formato

consistente e pode ser facilmente analisado e processado pelos componentes posteriores

da aplicação.

A capacidade de forçar uma chamada de função e especificar a estrutura de output

esperada é uma funcionalidade poderosa do uso de ferramentas em aplicações baseadas

em IA. Permite aos programadores ter mais controlo sobre o output gerado e simplifica

a integração de dados gerados por IA no fluxo de trabalho da sua aplicação.

Execução de Função(ões)

Definiu funções e deu instruções à sua IA, que decidiu que deveria chamar uma das suas

funções. Agora é altura do código da sua aplicação ou biblioteca, se estiver a usar uma

gem Ruby como raix-rails, despachar a chamada de função e os seus parâmetros

para a implementação correspondente no código da sua aplicação.

O código da sua aplicação decide o que fazer com os resultados da execução da função.

Talvez o que fazer envolva uma única linha de código num lambda, ou talvez envolva

chamar uma API externa. Talvez envolva chamar outro componente de IA, ou talvez

envolva centenas ou até milhares de linhas de código no resto do seu sistema. Depende

inteiramente de si.

Por vezes, a chamada de função é o fim da operação, mas se os resultados representarem

informação numa cadeia de pensamento a ser continuada pela IA, então o código da sua

aplicação precisa de inserir os resultados da execução na transcrição do chat e deixar a

IA continuar o processamento.

Por exemplo, aqui está uma declaração de função Raix usada pelo AccountManager da

Olympia para comunicar com os nossos clientes como parte de uma Orquestração de

Fluxo de Trabalho Inteligente para atendimento ao cliente.

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

Uso de Ferramentas 139

1 class AccountManager

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 # lots of other functions...

6

7 function :notify_account_owner,

8 "Don't share UUID. Mention dollars if subscription changed",

9 message: { type: "string" } do |arguments|

10 account.owner.freeform_notify(

11 subject: "Account Change Notification",

12 message: arguments[:message]

13)

14 "Notified account owner"

15 end

Pode não ser imediatamente claro o que está a acontecer aqui, por isso vou explicar em

detalhe.

1. A classe AccountManager define várias funções relacionadas com a gestão de

contas. Pode alterar o seu plano, adicionar e remover membros da equipa, entre

outras coisas.

2. As suas instruções de alto nível indicam ao AccountManager que deve notificar o

proprietário da conta com os resultados do pedido de alteração da conta, utilizando

a função notify_account_owner.

3. A definição concisa da função inclui:

• nome

• descrição

• parâmetros message: { type: "string" }

• um bloco para executar quando a função é chamada

Após atualizar a transcrição com os resultados do bloco de função, o método

chat_completion é chamado novamente. Este método é responsável por enviar

Uso de Ferramentas 140

a transcrição atualizada da conversa de volta ao modelo de IA para processamento

adicional. Referimo-nos a este processo como um ciclo de conversação.

Quando o modelo de IA recebe um novo pedido de conclusão de chat com uma

transcrição atualizada, tem acesso aos resultados da função previamente executada.

Pode analisar estes resultados, incorporá-los no seu processo de tomada de decisão

e gerar a próxima resposta ou ação com base no contexto cumulativo da conversa.

Pode optar por executar funções adicionais com base no contexto atualizado, ou pode

gerar uma resposta final ao pedido original se determinar que não são necessárias mais

chamadas de função.

Continuação Opcional do Pedido Original

Quando envia os resultados da ferramenta de volta ao MLG e continua o processamento

do pedido original, a IA utiliza esses resultados para chamar funções adicionais ou gerar

uma resposta final em texto simples.

Alguns modelos como o Command-R da Cohere podem citar as ferramentas

específicas que utilizaram nas suas respostas, proporcionando transparência

e rastreabilidade adicionais.

Dependendo do modelo em uso, os resultados da chamada da função irão residir em

mensagens da transcrição que têm o seu próprio papel especial ou são refletidos noutra

sintaxe. Mas a parte importante é que esses dados estejam na transcrição, para que

possam ser considerados pela IA ao decidir o que fazer a seguir.

https://openrouter.ai/models/cohere/command-r

Uso de Ferramentas 141

Um erro comum (e potencialmente dispendioso) é esquecer de adicionar

os resultados da função à transcrição antes de continuar o chat. Como

resultado, a IA será solicitada essencialmente da mesma forma que foi antes

de chamar a função pela primeira vez. Por outras palavras, do ponto de

vista da IA, ainda não chamou a função. Então chama-a novamente. E

novamente. E novamente, para sempre até que a interrompa. Espero que

o seu contexto não fosse muito grande e que o seu modelo não fosse muito

dispendioso!

Melhores Práticas para o Uso de Ferramentas

Para tirar o máximo partido do uso de ferramentas, considere as seguintes melhores

práticas.

Definições Descritivas

Forneça nomes e descrições claros e descritivos para cada ferramenta e seus parâmetros

de entrada. Isto ajuda o MLG a compreender melhor o propósito e as capacidades de

cada ferramenta.

Posso dizer-vos por experiência que a sabedoria comum que diz que “dar nomes

é difícil” aplica-se aqui; já vi resultados drasticamente diferentes de MLGs apenas

mudando os nomes das funções ou a formulação das descrições. Por vezes, remover

descrições melhora o desempenho.

Uso de Ferramentas 142

Processamento dos Resultados das Ferramentas

Ao passar os resultados das ferramentas de volta aoMLG, certifique-se de que estão bem

estruturados e são abrangentes. Utilize chaves e valores significativos para representar a

saída de cada ferramenta. Experimente diferentes formatos e veja qual funciona melhor,

desde JSON até texto simples.

O Interpretador de Resultados aborda este desafio empregando IA para analisar os

resultados e fornecer explicações, resumos ou principais conclusões de forma amigável

para humanos.

Tratamento de Erros

Implemente mecanismos robustos de tratamento de erros para lidar com casos em que

o MLG possa gerar parâmetros de entrada inválidos ou não suportados para chamadas

de ferramentas. Trate e recupere graciosamente de quaisquer erros que possam ocorrer

durante a execução da ferramenta.

Uma qualidade extremamente boa da IA é que ela compreende mensagens de erro!

O que significa que se estiver a trabalhar com uma mentalidade rápida e simples,

pode simplesmente capturar quaisquer exceções geradas na implementação de uma

ferramenta e passá-las de volta à IA para que ela saiba o que aconteceu!

Por exemplo, aqui está uma versão simplificada da implementação da pesquisa Google

na Olympia:

Uso de Ferramentas 143

1 def google_search(conversation, params)

2 conversation.update_cstatus("Searching Google...")

3 query = params[:query]

4 search = GoogleSearch.new(query).get_hash

5

6 conversation.update_cstatus("Summarizing results...")

7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)

8 rescue StandardError => e

9 Honeybadger.notify(e)

10 { error: e.message }.inspect

11 end

As pesquisas Google na Olympia são um processo de dois passos. Primeiro faz-se a

pesquisa, depois resumem-se os resultados. Se houver uma falha, independentemente

do que seja, a mensagem de exceção é empacotada e enviada de volta para a IA. Esta

técnica é a base de praticamente todos os padrões de Tratamento Inteligente de Erros

Por exemplo, digamos que a chamada à API GoogleSearch falha devido a uma exceção

503 Service Unavailable. Isso sobe até ao nível superior do rescue, e a descrição do

erro é enviada de volta para a IA como resultado da chamada da função. Em vez de

apenas mostrar um ecrã em branco ou um erro técnico ao utilizador, a IA diz algo como

“Lamento, mas não consigo aceder às minhas capacidades de Pesquisa Google neste

momento. Posso tentar novamente mais tarde, se desejar.”

Isto pode parecer apenas um truque inteligente, mas considere um tipo diferente de

erro, um onde a IA estava a chamar uma API externa e tinha controlo direto sobre os

parâmetros a passar para a API. Talvez tenha cometido um erro na forma como gerou

esses parâmetros? Desde que a mensagem de erro da API externa seja suficientemente

detalhada, passar a mensagem de erro de volta para a IA que fez a chamada significa

que ela pode reconsiderar esses parâmetros e tentar novamente. Automaticamente.

Independentemente do erro que tenha ocorrido.

Agora pense no que seria necessário para replicar esse tipo de tratamento robusto de

erros em código normal. É praticamente impossível.

Uso de Ferramentas 144

Refinamento Iterativo

Se o LLM não estiver a recomendar as ferramentas apropriadas ou estiver a gerar

respostas subótimas, itere nas definições das ferramentas, descrições e parâmetros de

entrada. Continue a refinar e melhorar a configuração das ferramentas com base no

comportamento observado e nos resultados desejados.

1. Comece com definições simples de ferramentas: Comece por definir ferramentas

com nomes, descrições e parâmetros de entrada claros e concisos. Evite complicar

excessivamente a configuração da ferramenta inicialmente e concentre-se na

funcionalidade principal. Por exemplo, se quiser guardar os resultados da análise

de sentimento, comece com uma definição básica como:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze user-provided text and generate sentiment score",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "score": {

8 "type": "float",

9 "description": "sentiment score from -1 (negative) to 1 (positive)"

10 }

11 },

12 "required": ["score"]

13 }

14 }

2. Testar e observar: Depois de ter as definições iniciais das ferramentas

estabelecidas, teste-as com diferentes prompts e observe como o LLM interage

com a ferramenta. Preste atenção à qualidade e relevância das respostas geradas.

Se o LLM estiver a gerar respostas subótimas, é altura de refinar as definições das

ferramentas.

Uso de Ferramentas 145

3. Refinar descrições: Se o LLM estiver a interpretar mal o propósito de uma

ferramenta, tente refinar a descrição da ferramenta. Forneça mais contexto,

exemplos ou esclarecimentos para orientar o LLM na utilização eficaz da

ferramenta. Por exemplo, pode atualizar a descrição da ferramenta de análise de

sentimentos para abordar mais especificamente o tom emocional do texto que

está a ser analisado:

1 {

2 "name": "save_sentiment_score",

3 "description": "Determine the overall emotional tone of a piece of text,

4 such as customer reviews, social media posts, or feedback comments.",

5 ...

6 }

4. Ajustar parâmetros de entrada: Se o LLM estiver a gerar parâmetros de entrada

inválidos ou irrelevantes para uma ferramenta, considere ajustar as definições dos

parâmetros. Adicione restrições mais específicas, regras de validação ou exemplos

para clarificar o formato de entrada esperado.

5. Iterar com base no feedback: Monitorize continuamente o desempenho das suas

ferramentas e recolha feedback dos utilizadores ou das partes interessadas. Use

este feedback para identificar áreas demelhoria e fazer refinamentos iterativos nas

definições da ferramenta. Por exemplo, se os utilizadores reportarem que a análise

não está a lidar bem com o sarcasmo, pode adicionar uma nota na descrição:

Uso de Ferramentas 146

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze the sentiment of a given text and return a sentiment

4 score between -1 (negative) and 1 (positive). Note: Sarcasm should be

5 considered negative.",

6 ...

7 }

Ao refinar iterativamente as definições das suas ferramentas com base no

comportamento observado e no feedback, pode melhorar gradualmente o desempenho

e a eficácia da sua aplicação baseada em IA. Lembre-se de manter as definições das

ferramentas claras, concisas e focadas na tarefa específica em questão. Teste e valide

regularmente as interações das ferramentas para garantir que estão alinhadas com os

resultados desejados.

Composição e Encadeamento de Ferramentas

Umdos aspectos mais poderosos do uso de ferramentas que tem sido apenasmencionado

até agora é a capacidade de compor e encadear múltiplas ferramentas para realizar

tarefas complexas. Ao desenhar cuidadosamente as definições das suas ferramentas e

os seus formatos de entrada/saída, pode criar blocos de construção reutilizáveis que

podem ser combinados de várias formas.

Vamos considerar um exemplo onde está a construir um pipeline de dados para a sua

aplicação baseada em IA. Poderá ter as seguintes ferramentas:

1. DataRetrieval: Uma ferramenta que obtém dados de uma base de dados ou

API com base em critérios especificados.

2. DataProcessing: Uma ferramenta que realiza cálculos, transformações ou

agregações nos dados obtidos.

3. DataVisualization: Uma ferramenta que apresenta os dados processados num

formato amigável para o utilizador, como gráficos ou diagramas.

Uso de Ferramentas 147

Ao encadear estas ferramentas, pode criar um fluxo de trabalho poderoso que obtém

dados relevantes, processa-os e apresenta os resultados de forma significativa. Eis como

o fluxo de trabalho do uso de ferramentas pode parecer:

1. O LLM recebe uma consulta do utilizador pedindo informações sobre dados de

vendas para uma categoria específica de produtos.

2. O LLM seleciona a ferramenta DataRetrieval e gera os parâmetros de entrada

apropriados para obter os dados de vendas relevantes da base de dados.

3. Os dados obtidos são “passados” para a ferramenta DataProcessing, que calcula

métricas como receita total, preço médio de venda e taxa de crescimento.

4. Os dados processados são então digeridos pela ferramenta DataVisualization,

que cria um gráfico ou diagrama visualmente apelativo para representar as

informações, devolvendo o URL do gráfico ao LLM.

5. Finalmente, o LLM gera uma resposta formatada à consulta do utilizador usando

markdown, incorporando os dados visualizados e fornecendo um resumo das

principais conclusões.

Ao compor estas ferramentas em conjunto, pode criar um fluxo de trabalho de análise

de dados contínuo que pode ser facilmente integrado na sua aplicação. A beleza desta

abordagem é que cada ferramenta pode ser desenvolvida e testada independentemente,

e depois combinada de diferentes formas para resolver vários problemas.

Para permitir uma composição e encadeamento suave das ferramentas, é importante

definir formatos claros de entrada e saída para cada ferramenta.

Por exemplo, a ferramenta DataRetrieval pode aceitar parâmetros como os

detalhes de conexão à base de dados, nome da tabela e condições de consulta, e

retornar o conjunto de resultados como um objeto JSON estruturado. A ferramenta

DataProcessing pode então esperar este objeto JSON como entrada e produzir

um objeto JSON transformado como saída. Ao padronizar o fluxo de dados entre

ferramentas, pode garantir compatibilidade e reutilização.

Uso de Ferramentas 148

À medida que desenha o seu ecossistema de ferramentas, pense em como diferentes

ferramentas podem ser combinadas para abordar casos de uso comuns na sua aplicação.

Considere criar ferramentas de alto nível que encapsulem fluxos de trabalho comuns ou

lógica de negócio, tornando mais fácil para o LLM selecioná-las e usá-las efetivamente.

Lembre-se, o poder do uso de ferramentas reside na flexibilidade e modularidade

que proporciona. Ao decompor tarefas complexas em ferramentas mais pequenas e

reutilizáveis, pode criar uma aplicação baseada em IA robusta e adaptável que pode

enfrentar uma ampla gama de desafios.

Direções Futuras

À medida que o campo do desenvolvimento de aplicações baseadas em IA evolui,

podemos esperar mais avanços nas capacidades de uso de ferramentas. Algumas

direções futuras potenciais incluem:

1. Uso de Ferramentas Multi-hop: Os LLMs podem ser capazes de decidir quantas

vezes precisam de usar ferramentas para gerar uma resposta satisfatória. Isto pode

envolver múltiplas rondas de seleção e execução de ferramentas com base em

resultados intermediários.

2. Ferramentas Pré-definidas: As plataformas de IA podem fornecer um conjunto

de ferramentas pré-definidas que os programadores podem utilizar prontas a usar,

como interpretadores Python, ferramentas de pesquisa web ou funções utilitárias

comuns.

3. Integração Perfeita: Àmedida que o uso de ferramentas se tornamais prevalente,

podemos esperar uma melhor integração entre plataformas de IA e frameworks

de desenvolvimento populares, tornando mais fácil para os programadores

incorporar o uso de ferramentas nas suas aplicações.

Uso de Ferramentas 149

O uso de ferramentas é uma técnica poderosa que permite aos programadores aproveitar

todo o potencial dos LLMs em aplicações baseadas em IA. Ao conectar LLMs a

ferramentas e recursos externos, pode criar sistemas mais dinâmicos, inteligentes

e conscientes do contexto que podem adaptar-se às necessidades dos utilizadores e

fornecer informações e ações valiosas.

Embora o uso de ferramentas ofereça possibilidades imensas, é importante estar ciente

dos potenciais desafios e considerações. Um aspecto fundamental é gerir a complexidade

das interações das ferramentas e garantir a estabilidade e fiabilidade do sistema como um

todo. Precisa de lidar com cenários onde as chamadas das ferramentas podem falhar,

retornar resultados inesperados ou ter implicações de desempenho. Adicionalmente,

deve considerar medidas de segurança e controlo de acesso para prevenir o uso não

autorizado ou malicioso das ferramentas. Mecanismos adequados de tratamento de

erros, registo e monitorização são cruciais para manter a integridade e o desempenho

da sua aplicação baseada em IA.

À medida que explora as possibilidades do uso de ferramentas nos seus próprios

projetos, lembre-se de começar com objetivos claros, criar definições de ferramentas

bem estruturadas e iterar com base no retorno e nos resultados. Com a abordagem e

mentalidade certas, o uso de ferramentas pode desbloquear novos níveis de inovação e

valor nas suas aplicações baseadas em IA

Processamento de Streams

O streaming de dados através de HTTP, também conhecido como eventos enviados

pelo servidor (SSE), é um mecanismo onde o servidor envia continuamente dados

para o cliente à medida que estes ficam disponíveis, sem que o cliente precise de os

solicitar explicitamente. Como a resposta da IA é gerada incrementalmente, faz sentido

proporcionar uma experiência de utilização responsiva ao mostrar o resultado da IA à

medida que é gerado. E, de facto, todas as APIs de fornecedores de IA que conheço

oferecem respostas em streaming como opção nos seus endpoints de conclusão.

A razão pela qual este capítulo aparece aqui no livro, logo após Utilização de

Ferramentas, deve-se ao quão poderoso pode ser combinar o uso de ferramentas

com respostas de IA em tempo real para os utilizadores. Isto permite experiências

dinâmicas e interativas onde a IA pode processar a entrada do utilizador, utilizar várias

ferramentas e funções à sua discrição, e depois fornecer respostas em tempo real.

Processamento de Streams 151

Para alcançar esta interação perfeita, é necessário escrever manipuladores de stream que

possam distribuir tanto as chamadas de função de ferramentas invocadas pela IA como

a saída de texto simples para o utilizador final. A necessidade de criar um ciclo após

processar uma função de ferramenta adiciona um desafio interessante ao trabalho.

Implementação de um ReplyStream

Para demonstrar como o processamento de streams pode ser implementado, este capítulo

fará uma análise aprofundada de uma versão simplificada da classe ReplyStream que é

utilizada no Olympia. As instâncias desta classe podem ser passadas como o parâmetro

stream em bibliotecas cliente de IA como ruby-openai e openrouter

Eis como utilizo o ReplyStream no PromptSubscriber do Olympia, que escuta

através do Wisper a criação de novas mensagens do utilizador.

1 class PromptSubscriber

2 include Raix::ChatCompletion

3 include Raix::PromptDeclarations

4

5 # many other declarations omitted...

6

7 prompt text: -> { user_message.content },

8 stream: -> { ReplyStream.new(self) },

9 until: -> { bot_message.complete? }

10

11 def message_created(message) # invoked by Wisper

12 return unless message.role.user? && message.content?

13

14 # rest of the implementation omitted...

Para além de uma referência de context para o assinante do prompt que o instanciou,

a classe ReplyStream também possui variáveis de instância para armazenar um buffer

de dados recebidos, e arrays para controlar os nomes de funções e argumentos invocados

durante o processamento do stream.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

Processamento de Streams 152

1 class ReplyStream

2 attr_accessor :buffer, :f_name, :f_arguments, :context

3

4 delegate :bot_message, :dispatch, to: :context

5

6 def initialize(context)

7 self.context = context

8 self.buffer = []

9 self.f_name = []

10 self.f_arguments = []

11 end

12

13 def call(chunk, bytesize = nil)

14 # ...

15 end

16

17 # ...

18 end

O método initialize configura o estado inicial da instância ReplyStream,

inicializando o buffer, o contexto e outras variáveis.

O método call é o ponto de entrada principal para o processamento dos dados

em streaming. Recebe um fragmento de dados (representado como um hash) e um

parâmetro opcional bytesize, que no nosso exemplo não é utilizado. Dentro deste

método, a classe utiliza correspondência de padrões para lidar com diferentes cenários

baseados na estrutura do fragmento recebido.

Chamar deep_symbolize_keys no fragmento ajuda a tornar a

correspondência de padrões mais elegante, permitindo-nos operar com

símbolos em vez de strings.

Processamento de Streams 153

1 def call(chunk, _bytesize)

2 case chunk.deep_symbolize_keys

3

4 in { # match function name

5 choices: [

6 {

7 delta: {

8 tool_calls: [

9 { index: index, function: {name: name} }

10]

11 }

12 }

13] }

14

15 f_name[index] = name

O primeiro padrão que estamos a procurar é uma chamada de ferramenta juntamente

com o nome da função associada. Se detetarmos uma, guardamo-la no array f_name.

Armazenamos os nomes das funções num array indexado, porque o modelo é capaz de

fazer chamadas paralelas de funções, enviando mais do que uma função para execução

em simultâneo.

A chamada paralela de funções é a capacidade de ummodelo de IA realizar múltiplas

chamadas de funções em conjunto, permitindo que os efeitos e resultados dessas

chamadas de funções sejam resolvidos em paralelo. Isto é especialmente útil se as

funções demorarem muito tempo, e reduz as idas e voltas com a API, o que por sua

vez pode poupar uma quantidade significativa de gasto de tokens.

Em seguida, precisamos de procurar os argumentos correspondentes às chamadas das

funções.

Processamento de Streams 154

1 in { # match arguments

2 choices: [

3 {

4 delta: {

5 tool_calls: [

6 {

7 index: index, function: {arguments: argument }

8 }

9]

10 }

11 }

12]}

13

14 f_arguments[index] ||= "" # initialize if not already

15 f_arguments[index] << argument

De forma semelhante a como tratámos os nomes de funções, guardamos os argumentos

num array indexado.

De seguida, procuramos as mensagens visíveis ao utilizador, que chegarão do servidor

um token de cada vez e serão atribuídas à variável new_content. Também precisamos

de estar atentos ao finish_reason. Este será nil até ao último fragmento da sequência

de saída.

1 in {

2 choices: [

3 { delta: {content: new_content}, finish_reason: finish_reason }

4]}

5

6 # you could transmit every chunk to the user here...

7 buffer << new_content.to_s

8

9 if finish_reason.present?

10 finalize

11 elsif new_content.to_s.match?(/\n\n/)

12 send_to_client # ...or buffer and transmit once per paragraph

13 end

É importante notar que adicionamos uma expressão de correspondência de padrões para

lidar com mensagens de erro enviadas pelo fornecedor do modelo de IA. Em ambientes

Processamento de Streams 155

de desenvolvimento local, lançamos uma exceção, mas em produção, registamos o erro

e finalizamos.

1 in { error: { message: } }

2 if Rails.env.local?

3 raise message

4 else

5 Honeybadger.notify("AI Error: #{message}")

6 finalize

7 end

A cláusula else final do case será executada se nenhum dos padrões anteriores

corresponder. É apenas uma salvaguarda para que, se o modelo de IA começar a

enviar-nos fragmentos não reconhecidos, possamos descobri-los.

1 else

2 Honeybadger.notify("Unrecognized Chunk: #{chunk}")

3 end

4 end

O método send_to_client é responsável por enviar o conteúdo em buffer para o

cliente. Verifica se o buffer não está vazio, atualiza o conteúdo da mensagem do bot,

processa a mensagem do bot e guarda o conteúdo na base de dados para garantir a

persistência dos dados.

Processamento de Streams 156

1 def send_to_client

2 # no need to process pure whitespace

3 return if buffer.join.squish.blank?

4

5 # set the buffer content on the bot message

6 content = buffer.join

7 bot_message.content = content

8

9 # save to database so that we never lose data

10 # even if the stream doesn't terminate correctly

11 bot_message.update_column(:content, content)

12

13 # update content via websocket

14 ConversationRenderer.update(bot_message)

15 end

Ométodo finalize é chamado quando o processamento do stream está concluído. Este

despacha as chamadas de função, caso tenham sido recebidas durante o stream, atualiza

a mensagem do bot com o conteúdo final e outras informações relevantes, e reinicia o

histórico de chamadas de função

1 def finalize

2 if f_name.any?

3 f_name.each_with_index do |name, index|

4 # takes care of calling the function wherever it's implemented

5 dispatch(name:, arguments: JSON.parse(f_arguments[index]))

6 end

7

8 # reset the function call history

9 f_name.clear

10 f_arguments.clear

11 else

12 content = buffer.join.presence

13 bot_message.update!(content:, complete: true)

14 ConversationRenderer.update(bot_message)

15 end

16 end

Se o modelo decidir chamar uma função, é necessário “despachar” essa chamada de

Processamento de Streams 157

função (nome e argumentos) de forma a que seja executada e as mensagens function_-

call e function_result sejam adicionadas à transcrição da conversa

Na minha experiência, é melhor gerir a criação de mensagens de função num único

local da sua base de código, em vez de depender das implementações das ferramentas.

É mais limpo, mas também tem uma razão prática muito importante: se o modelo de IA

chamar uma função e não vir as mensagens resultantes da chamada e do resultado na

transcrição quando fizer o loop, irá chamar amesma função novamente. Potencialmente

para sempre. Lembre-se que a IA é completamente sem estado, por isso, a menos que

você reflita essas chamadas de função de volta para ela, elas não aconteceram.

1 # PromptSubscriber#dispatch

2

3 def dispatch(name:, arguments:)

4 # adds a function_call message to the conversation transcript

5 # plus dispatches to tool and returns result

6 conversation.function_call!(name, arguments).then do |result|

7 # add function result message to the transcript

8 conversation.function_result!(name, result)

9 end

10 end

Limpar o histórico de chamadas de função após o despacho é tão importante

quanto garantir que a chamada e os resultados acabem na sua transcrição,

para que você não fique apenas chamando asmesmas funções repetidamente

cada vez que executa o ciclo.

O “Ciclo de Conversação”

I continuomencionando ciclos, mas se você é novo em chamadas de função, pode não ser

óbvio por que precisamos fazer um ciclo. A razão é que quando a IA “pede” para executar

funções de ferramentas em seu nome, ela para de responder. Cabe a você executar essas

Processamento de Streams 158

funções, recolher os resultados, adicionar os resultados à transcrição e depois submeter

o prompt original novamente para obter um novo conjunto de chamadas de função ou

resultados direcionados ao utilizador.

Na classe PromptSubscriber, usamos o método prompt do módulo

PromptDeclarations para definir o comportamento do ciclo de conversação.

O parâmetro until é definido como -> { bot_message.complete? }, o que

significa que o ciclo continuará até que a bot_message seja marcada como completa.

1 prompt text: -> { user_message.content },

2 stream: -> { ReplyStream.new(self) },

3 until: -> { bot_message.complete? }

Mas quando é que bot_message é marcada como completa? Se não se

lembra, consulte novamente a linha 13 do método finalize.

Vamos rever toda a lógica de processamento de stream.

1. O PromptSubscriber recebe uma nova mensagem do utilizador através do

método message_created, que é invocado pelo sistema pub/sub Wisper sempre

que o utilizador final cria um novo prompt.

2. O método de classe prompt define de forma declarativa o comportamento da

lógica de conclusão do chat para o PromptSubscriber. O modelo de IA

executará uma conclusão do chat com o conteúdo da mensagem do utilizador,

uma nova instância de ReplyStream como parâmetro de stream, e a condição de

loop especificada.

3. O modelo de IA processa o prompt e começa a gerar uma resposta. À medida que

a resposta é transmitida em stream, o método call da instância ReplyStream é

invocado para cada fragmento de dados.

4. Se o modelo de IA decidir chamar uma função de ferramenta, o nome da função

e os argumentos são extraídos do fragmento e armazenados nos arrays f_name e

f_arguments, respetivamente.

Processamento de Streams 159

5. Se o modelo de IA gerar conteúdo visível ao utilizador, este é armazenado em

buffer e enviado ao cliente através do método send_to_client.

6. Assim que o processamento do stream estiver concluído, o método finalize é

chamado. Se alguma função de ferramenta tiver sido invocada durante o stream,

estas são despachadas usando o método dispatch do PromptSubscriber.

7. O método dispatch adiciona uma mensagem function_call à transcrição

da conversa, executa a função de ferramenta correspondente e adiciona uma

mensagem function_result à transcrição com o resultado da chamada da

função.

8. Após despachar as funções de ferramenta, o histórico de chamadas de função é

limpo para evitar chamadas de função duplicadas em loops subsequentes.

9. Se nenhuma função de ferramenta foi invocada, o método finalize atualiza o

bot_message com o conteúdo final, marca-o como completo e envia a mensagem

atualizada para o cliente.

10. A condição de loop -> { bot_message.complete? } é avaliada. Se o bot_-

message não estivermarcado como completo, o loop continua, e o prompt original

é submetido novamente com a transcrição da conversa atualizada.

11. Os passos 3-10 são repetidos até que o bot_message sejamarcado como completo,

indicando que o modelo de IA terminou de gerar a sua resposta e não são

necessárias mais funções de ferramenta.

Ao implementar este loop de conversa, permite-se que o modelo de IA se envolva numa

interação de ida e volta com a aplicação, executando funções de ferramenta conforme

necessário e gerando respostas visíveis ao utilizador até que a conversa chegue a uma

conclusão natural.

A combinação do processamento de stream e do loop de conversa permite experiências

dinâmicas e interativas baseadas em IA, onde o modelo de IA pode processar a entrada

do utilizador, utilizar várias ferramentas e funções, e fornecer respostas em tempo real

com base no contexto evolutivo da conversa.

Processamento de Streams 160

Continuação Automática

É importante estar ciente das limitações da saída da IA. A maioria dos modelos tem um

número máximo de tokens que podem gerar numa única resposta, que é determinado

pelo parâmetro max_tokens. Se o modelo de IA atingir este limite durante a geração

de uma resposta, irá parar abruptamente e indicar que a saída foi truncada.

Na resposta em stream da API da plataforma de IA, pode detetar esta situação

examinando a variável finish_reason no fragmento. Se a finish_reason estiver

definida como "length" (ou algum outro valor-chave específico do modelo), significa

que o modelo atingiu o seu limite máximo de tokens durante a geração e a saída foi

interrompida.

Uma forma de lidar com este cenário de forma elegante e proporcionar uma experiência

de utilizador fluida, é implementar um mecanismo de continuação automática na sua

lógica de processamento de stream. Ao adicionar um padrão de correspondência para

razões de finalização relacionadas com o comprimento, pode optar por fazer um loop e

continuar automaticamente a saída a partir do ponto onde parou.

Aqui está um exemplo propositadamente simplificado de como podemodificar ométodo

call na classe ReplyStream para suportar a continuação automática:

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices: [

9 { delta: {content: new_content},

10 finish_reason: finish_reason }] }

11

12 buffer << new_content.to_s

13

14 if finish_reason.blank?

Processamento de Streams 161

15 send_to_client if new_content.to_s.match?(/\n\n/)

16 elsif LENGTH_STOPS.include?(finish_reason)

17 continue_cutoff

18 else

19 finalize

20 end

21

22 # ...

23 end

24 end

25

26 private

27

28 def continue_cutoff

29 conversation.bot_message!(buffer.join, visible: false)

30 conversation.user_message!("please continue", visible: false)

31 bot_message.update_column(:created_at, Time.current)

32 end

Nesta versão modificada, quando o finish_reason indica uma saída truncada, em

vez de finalizar o stream, adicionamos um par de mensagens à transcrição sem finalizar,

movemos a mensagem original voltada para o utilizador para o “fundo” da transcrição

atualizando o seu atributo created_at, e depois permitimos que o ciclo aconteça, para

que a IA continue a gerar a partir do ponto onde parou.

Lembre-se que o endpoint de conclusão da IA não mantém estado. Ele só “sabe” o

que lhe é comunicado através da transcrição. Neste caso, a forma como comunicamos

à IA que foi interrompida é adicionando mensagens “invisíveis” (para o utilizador

final) à transcrição. No entanto, lembre-se que este é um exemplo propositadamente

simplificado. Uma implementação real necessitaria de uma gestão adicional da

transcrição para garantir que não desperdiçamos tokens e/ou confundimos a IA com

mensagens duplicadas do assistente na transcrição.

Uma implementação real de auto-continuação também deve ter a chamada lógica de

disjuntor implementada para evitar ciclos descontrolados. A razão é que, dados certos

tipos de prompts do utilizador e configurações baixas de max_tokens, a IA poderia

Processamento de Streams 162

continuar a gerar saídas voltadas para o utilizador indefinidamente.

Tenha em mente que cada ciclo requer um pedido separado, e que cada pedido

consome novamente toda a sua transcrição. Deve definitivamente considerar o

equilíbrio entre a experiência do utilizador e o uso da API ao decidir se deve

implementar a auto-continuação na sua aplicação. A auto-continuação, em

particular, pode ser perigosamente dispendiosa, especialmente quando se utilizam

modelos comerciais premium.

Conclusão

O processamento de stream é um aspeto crítico na construção de aplicações baseadas

em IA que combinam o uso de ferramentas com respostas em tempo real da IA. Ao gerir

eficientemente os dados em stream das APIs de plataformas de IA, pode proporcionar

uma experiência de utilizador fluida e interativa, gerir respostas grandes, otimizar o uso

de recursos e lidar graciosamente com erros.

A classe Conversation::ReplyStream fornecida demonstra como o processamento

de stream pode ser implementado numa aplicação Ruby usando correspondência de

padrões e arquitetura orientada a eventos. Ao compreender e aproveitar as técnicas de

processamento de stream, pode desbloquear todo o potencial da integração de IA nas

suas aplicações e proporcionar experiências de utilizador poderosas e envolventes.

Dados Auto-Reparáveis

Dados auto-reparáveis é uma abordagem poderosa para garantir a integridade,

consistência e qualidade dos dados em aplicações, aproveitando as capacidades dos

modelos de linguagem grande (LLMs). Esta categoria de padrões concentra-se na

ideia de usar IA para detetar, diagnosticar e corrigir automaticamente anomalias,

inconsistências ou erros nos dados, reduzindo assim a carga sobre os programadores e

mantendo um elevado nível de fiabilidade dos dados.

No seu núcleo, os padrões de dados auto-reparáveis reconhecem que os dados são a

força vital de qualquer aplicação, e garantir a sua precisão e integridade é crucial para o

funcionamento adequado e a experiência do utilizador da aplicação. No entanto, gerir e

manter a qualidade dos dados pode ser uma tarefa complexa e demorada, especialmente

à medida que as aplicações crescem em tamanho e complexidade. É aqui que entra o

poder da IA.

Dados Auto-Reparáveis 164

Nos padrões de dados auto-reparáveis, os trabalhadores de IA são empregues para

monitorizar e analisar continuamente os dados da sua aplicação. Estes modelos têm

a capacidade de compreender e interpretar padrões, relações e anomalias dentro dos

dados. Ao aproveitarem as suas capacidades de processamento e compreensão de

linguagem natural, podem identificar potenciais problemas ou inconsistências nos dados

e tomar as ações apropriadas para os retificar.

O processo de dados auto-reparáveis normalmente envolve vários passos-chave:

1. Monitorização de Dados: Os trabalhadores de IA monitorizam constantemente

os fluxos de dados, bases de dados ou sistemas de armazenamento da

aplicação, procurando quaisquer sinais de anomalias, inconsistências ou

erros. Alternativamente, pode ativar um componente de IA em reação a uma

exceção.

2. Deteção de Anomalias: Quando um problema é detetado, o trabalhador de IA

analisa os dados em detalhe para identificar a natureza específica e o âmbito

do problema. Isto pode envolver a deteção de valores em falta, formatos

inconsistentes ou dados que violam regras ou restrições predefinidas.

3. Diagnóstico e Correção: Uma vez identificado o problema, o trabalhador de IA

usa o seu conhecimento e compreensão do domínio dos dados para determinar o

curso de ação apropriado. Isto pode envolver a correção automática dos dados, o

preenchimento de valores em falta ou a sinalização do problema para intervenção

humana, se necessário.

4. Aprendizagem Contínua (opcional, dependendo do caso de uso): À medida

que o seu trabalhador de IA encontra e resolve vários problemas de dados, pode

produzir metadados descrevendo o que aconteceu e como respondeu. Estes

metadados podem ser alimentados em processos de aprendizagem que permitem

que você (e talvez omodelo subjacente, através de fine-tuning) se tornemais eficaz

e eficiente ao longo do tempo na identificação e resolução de anomalias nos dados.

Ao detetar e corrigir automaticamente problemas nos dados, pode garantir que a

Dados Auto-Reparáveis 165

sua aplicação opera com dados de alta qualidade e fiáveis. Isto reduz o risco de

erros, inconsistências ou bugs relacionados com dados afetarem a funcionalidade ou

a experiência do utilizador da aplicação.

Uma vez que tenha trabalhadores de IA a lidar com a tarefa de monitorização e correção

de dados, pode concentrar os seus esforços noutros aspetos críticos da aplicação. Isto

poupa tempo e recursos que de outra forma seriam gastos em limpeza e manutenção

manual de dados. De facto, à medida que as suas aplicações crescem em tamanho

e complexidade, gerir manualmente a qualidade dos dados torna-se cada vez mais

desafiante. Os padrões de “Dados Auto-Reparáveis” escalam eficazmente ao aproveitar

o poder da IA para lidar com grandes volumes de dados e detetar problemas em tempo

real.

Devido à sua natureza, os modelos de IA podem adaptar-se a padrões,

esquemas ou requisitos de dados em mudança ao longo do tempo com

pouca ou nenhuma supervisão. Desde que as suas diretivas forneçam

orientação adequada, especialmente em relação aos resultados pretendidos,

a sua aplicação pode ser capaz de evoluir e lidar com novos cenários de dados

sem requerer intervenção manual extensiva ou alterações no código.

Os padrões de dados auto-reparáveis alinham-se bem com as outras categorias de

padrões que discutimos, como a “Multiplicidade de Trabalhadores”. A capacidade de

dados auto-reparáveis pode ser vista como um tipo especializado de trabalhador que se

concentra especificamente em garantir a qualidade e integridade dos dados. Este tipo

de trabalhador opera ao lado de outros trabalhadores de IA, cada um contribuindo para

diferentes aspetos da funcionalidade da aplicação.

Implementar padrões de dados auto-reparáveis na prática requer um design cuidadoso

e integração de modelos de IA na arquitetura da aplicação. Devido aos riscos de perda e

corrupção de dados, deve definir diretrizes claras sobre como utilizará esta técnica. Deve

também considerar fatores como desempenho, escalabilidade e segurança dos dados.

Dados Auto-Reparáveis 166

Caso Prático: Corrigir JSON Defeituoso

Uma das formas mais práticas e convenientes de aproveitar os dados auto-reparáveis é

também muito simples de explicar: corrigir JSON defeituoso.

Esta técnica pode ser aplicada ao desafio comum de lidar com dados imperfeitos ou

inconsistentes gerados por LLMs, como JSON defeituoso, e fornece uma abordagem para

detetar e corrigir automaticamente estes problemas.

Na Olympia, deparo-me regularmente com cenários em que os LLMs geram dados JSON

que não são perfeitamente válidos. Isto pode acontecer por várias razões, como quando

o LLM adiciona comentários antes ou depois do código JSON propriamente dito, ou

quando introduz erros de sintaxe como vírgulas em falta ou aspas duplas não escapadas.

Estes problemas podem levar a erros de análise sintática e causar perturbações na

funcionalidade da aplicação.

Para resolver este problema, implementei uma solução prática sob a forma de uma classe

JsonFixer. Esta classe incorpora o padrão “Self-Healing Data”, recebendo como entrada o

JSON defeituoso e utilizando um LLM para o corrigir, preservando tanto quanto possível

a informação e a intenção original.

1 class JsonFixer

2 include Raix::ChatCompletion

3

4 def call(bad_json, error_message)

5 raise "No data provided" if bad_json.blank? || error_message.blank?

6

7 transcript << {

8 system: "Consider user-provided JSON that generated a parse

9 exception. Do your best to fix it while preserving the

10 original content and intent as much as possible." }

11 transcript << { user: bad_json }

12 transcript << { assistant: "What is the error message?"}

13 transcript << { user: error_message }

14 transcript << { assistant: "Here is the corrected JSON\n```json\n" }

15

Dados Auto-Reparáveis 167

16 self.stop = ["```"]

17

18 chat_completion(json: true)

19 end

20

21 def model

22 "mistralai/mixtral-8x7b-instruct:nitro"

23 end

24 end

Repare como o JsonFixer usa o Ventriloquist para orientar as respostas da

IA.

O processo de auto-reparação de dados JSON funciona da seguinte forma:

1. Geração de JSON: Um LLM é utilizado para gerar dados JSON com base em

determinados prompts ou requisitos. No entanto, devido à natureza dos LLMs,

o JSON gerado nem sempre é perfeitamente válido. O parser de JSON irá,

naturalmente, gerar um ParserError se lhe for fornecido JSON inválido.

1 begin

2 JSON.parse(llm_generated_json)

3 rescue JSON::ParserError => e

4 JsonFixer.new.call(llm_generated_json, e.message)

5 end

Note que a mensagem de erro também é passada para a chamada do JSONFixer

para que não seja necessário assumir completamente o que está errado com os

dados, especialmente porque o analisador frequentemente indica exatamente qual é o

problema.

2. Correção baseada em MLG: A classe JSONFixer envia o JSON defeituoso de

volta para um MLG, juntamente com um prompt ou instrução específica para

Dados Auto-Reparáveis 168

corrigir o JSON, preservando ao máximo as informações e a intenção originais. O

MLG, treinado com grandes quantidades de dados e com compreensão da sintaxe

JSON, tenta corrigir os erros e gerar uma string JSON válida. A Delimitação de

Respostas é utilizada para restringir a saída do MLG, e escolhemos o Mixtral 8x7B

como modelo de IA, já que é particularmente adequado para este tipo de tarefa.

3. Validação e Integração: A string JSON corrigida retornada pelo MLG é analisada

pela própria classe JSONFixer, porque esta chamou chat_completion(json:

true). Se o JSON corrigido passar na validação, é integrado de volta no fluxo

de trabalho da aplicação, permitindo que esta continue a processar os dados sem

problemas. O JSON defeituoso foi “reparado”.

Embora eu tenha escrito e reescrito a minha própria implementação do JSONFixer

várias vezes, duvido que o tempo total investido em todas essas versões seja superior a

uma ou duas horas.

Note que a preservação da intenção é um elemento-chave de qualquer padrão de dados

auto-reparáveis. O processo de correção baseado em MLG visa preservar ao máximo as

informações e a intenção originais do JSON gerado. Isto garante que o JSON corrigido

mantém o seu significado semântico e pode ser utilizado eficazmente no contexto da

aplicação.

Esta implementação prática da abordagem “Dados Auto-Reparáveis” em Olympia

demonstra claramente como a IA, especificamente os MLGs, pode ser aproveitada

para resolver desafios reais com dados. Demonstra o poder de combinar técnicas de

programação tradicionais com capacidades de IA para construir aplicações robustas e

eficientes.

Lei de Postel e o Padrão “Dados Auto-Reparáveis”

Dados Auto-Reparáveis 169

“Dados Auto-Reparáveis”, como exemplificado pela classe JSONFixer, alinha-se bem

com o princípio conhecido como Lei de Postel, também referido como Princípio da

Robustez. A Lei de Postel afirma:

“Seja conservador no que faz, seja liberal no que aceita dos outros.”

Este princípio, originalmente articulado por Jon Postel, um pioneiro da Internet

inicial, enfatiza a importância de construir sistemas que sejam tolerantes a entradas

diversas ou mesmo ligeiramente incorretas, mantendo ao mesmo tempo uma adesão

estrita aos protocolos especificados ao enviar saídas.

No contexto de “Dados Auto-Reparáveis”, a classe JSONFixer incorpora a Lei de

Postel ao ser liberal na aceitação de dados JSON defeituosos ou imperfeitos gerados

por MLGs. Não rejeita nem falha imediatamente ao encontrar JSON que não adere

estritamente ao formato esperado. Em vez disso, adota uma abordagem tolerante e

tenta corrigir o JSON usando o poder dos MLGs.

Ao ser liberal na aceitação de JSON imperfeito, a classe JSONFixer demonstra

robustez e flexibilidade. Reconhece que os dados no mundo real frequentemente vêm

em várias formas e nem sempre podem estar em conformidade com especificações

rigorosas. Ao lidar e corrigir graciosamente estes desvios, a classe garante que a

aplicação possa continuar a funcionar sem problemas, mesmo na presença de dados

imperfeitos.

Por outro lado, a classe JSONFixer também adere ao aspeto conservador da Lei de

Postel quando se trata da saída. Após corrigir o JSON usando MLGs, a classe valida

o JSON corrigido para garantir que está em estrita conformidade com o formato

esperado. Mantém a integridade e correção dos dados antes de os passar para outras

partes da aplicação. Esta abordagem conservadora garante que a saída da classe

JSONFixer é fiável e consistente, promovendo a interoperabilidade e prevenindo a

propagação de erros.

Curiosidades interessantes sobre Jon Postel:

Dados Auto-Reparáveis 170

• Jon Postel (1943-1998) foi um cientista da computação americano que

desempenhou um papel crucial no desenvolvimento da Internet. Era

conhecido como o “Deus da Internet” pelas suas significativas contribuições

para os protocolos e padrões fundamentais.

• Postel foi o editor da série de documentos Request for Comments (RFC), que

é uma série de notas técnicas e organizacionais sobre a Internet. Ele foi autor

ou coautor de mais de 200 RFCs, incluindo os protocolos fundamentais como

TCP, IP e SMTP.

• Além das suas contribuições técnicas, Postel era conhecido pela sua abordagem

humilde e colaborativa. Acreditava na importância de alcançar consenso e

trabalhar em conjunto para construir uma rede robusta e interoperável.

• Postel serviu como Diretor da Divisão de Redes de Computadores no

Information Sciences Institute (ISI) da University of Southern California

(USC) de 1977 até à sua morte prematura em 1998.

• Em reconhecimento das suas imensas contribuições, Postel foi postumamente

galardoado com o prestigiado Prémio Turing em 1998, frequentemente referido

como o “Prémio Nobel da Computação.”

A classe JSONFixer promove robustez, flexibilidade e interoperabilidade, que foram

valores fundamentais que Postel defendeu ao longo da sua carreira. Ao construir

sistemas que são tolerantes a imperfeições, mantendo simultaneamente uma adesão

estrita aos protocolos, podemos criar aplicações mais resilientes e adaptáveis face aos

desafios do mundo real.

Considerações e Contraindicações

A aplicabilidade das abordagens de dados auto-reparáveis depende inteiramente do tipo

de dados que a sua aplicação manipula. Existe uma razão pela qual poderá não querer

simplesmente fazer um monkeypatch do JSON.parse para corrigir automaticamente

Dados Auto-Reparáveis 171

todos os erros de análise JSON na sua aplicação: nem todos os erros podem ou devem

ser corrigidos automaticamente.

A auto-reparação é particularmente complexa quando associada a requisitos

regulamentares ou de conformidade relacionados com o tratamento e processamento

de dados. Alguns setores, como a saúde e as finanças, têm regulamentos tão rigorosos

relativamente à integridade e auditabilidade dos dados que fazer qualquer tipo de

correção de dados em “black box” sem supervisão ou registo adequados pode violar

estes regulamentos. É crucial garantir que quaisquer técnicas de dados auto-reparáveis

que desenvolva estejam alinhadas com os quadros legais e regulamentares aplicáveis.

A aplicação de técnicas de dados auto-reparáveis, particularmente as que envolvem

modelos de IA, também pode ter um grande impacto no desempenho da aplicação e

na utilização de recursos. O processamento de grandes volumes de dados através de

modelos de IA para deteção e correção de erros pode ser computacionalmente intensivo.

É importante avaliar os compromissos entre os benefícios dos dados auto-reparáveis e

os custos associados ao desempenho e recursos.

Dito isto, vamos analisar os fatores envolvidos na decisão de quando e onde aplicar esta

poderosa abordagem.

Criticidade dos Dados

Ao considerar a aplicação de técnicas de dados auto-reparáveis, é crucial avaliar a

criticidade dos dados que estão a ser processados. O nível de criticidade refere-se à

importância e sensibilidade dos dados no contexto da sua aplicação e do seu domínio de

negócio.

Em alguns casos, a correção automática de erros de dados pode não ser apropriada,

especialmente se os dados forem altamente sensíveis ou tiverem implicações legais. Por

exemplo, considere os seguintes cenários:

1. Transações Financeiras: Em aplicações financeiras, como sistemas bancários ou

Dados Auto-Reparáveis 172

plataformas de negociação, a precisão dos dados é da máxima importância.

Mesmo erros menores em dados financeiros podem ter consequências

significativas, como saldos de conta incorretos, fundos mal encaminhados

ou decisões de negociação erróneas. Nestes casos, correções automatizadas sem

verificação e auditoria minuciosas podem introduzir riscos inaceitáveis.

2. Registos Médicos: As aplicações de saúde lidam com dados de pacientes

altamente sensíveis e confidenciais. Imprecisões nos registos médicos podem

ter graves implicações para a segurança e decisões de tratamento dos pacientes.

Modificar automaticamente dados médicos sem supervisão adequada e validação

por profissionais de saúde qualificados pode violar requisitos regulamentares e

colocar em risco o bem-estar dos pacientes.

3. Documentos Legais: As aplicações que lidam com documentos legais,

como contratos, acordos ou processos judiciais, exigem rigorosa precisão e

integridade. Mesmo erros menores em dados legais podem ter ramificações

legais significativas. Correções automatizadas neste domínio podem não ser

apropriadas, pois os dados frequentemente requerem revisão manual e verificação

por especialistas jurídicos para garantir a sua validade e aplicabilidade.

Nestes cenários de dados críticos, os riscos associados às correções automáticas

frequentemente superam os potenciais benefícios. As consequências de introduzir erros

ou modificar dados incorretamente podem ser graves, levando a perdas financeiras,

responsabilidades legais ou até mesmo danos a indivíduos.

Ao lidar com dados altamente críticos, é essencial priorizar processos de verificação

e validação manual. A supervisão e experiência humana são cruciais para garantir a

precisão e integridade dos dados. As técnicas de auto-reparação automatizadas podem

ainda ser empregues para sinalizar potenciais erros ou inconsistências, mas a decisão

final sobre correções deve envolver julgamento e aprovação humana.

No entanto, é importante notar que nem todos os dados numa aplicação podem ter o

mesmo nível de criticidade. Dentro da mesma aplicação, podem existir subconjuntos

Dados Auto-Reparáveis 173

de dados que são menos sensíveis ou têm menor impacto se ocorrerem erros. Em tais

casos, as técnicas de dados auto-reparáveis podem ser aplicadas seletivamente a esses

subconjuntos específicos de dados, enquanto os dados críticos permanecem sujeitos a

verificação manual.

O fundamental é avaliar cuidadosamente a criticidade de cada categoria de dados na

sua aplicação e definir diretrizes e processos claros para lidar com correções baseadas

nos riscos e implicações associados. Ao diferenciar entre dados críticos (ou seja, registos

contabilísticos, registos médicos) e não críticos (ou seja, endereços postais, avisos de

recursos), pode estabelecer um equilíbrio entre aproveitar os benefícios das técnicas de

dados auto-reparáveis onde apropriado e manter controlo e supervisão rigorosos onde

necessário.

Em última análise, a decisão de aplicar técnicas de dados auto-reparáveis a dados críticos

deve ser tomada em consulta com especialistas do domínio, consultores jurídicos e

outras partes interessadas relevantes. É essencial considerar os requisitos específicos,

regulamentos e riscos associados aos dados da sua aplicação e alinhar as estratégias de

correção de dados em conformidade.

Gravidade do Erro

Ao aplicar técnicas de dados auto-reparáveis, é importante avaliar a gravidade e o

impacto dos erros nos dados. Nem todos os erros são criados iguais, e o curso de ação

apropriado pode variar dependendo da gravidade do problema.

Inconsistências menores ou problemas de formatação podem ser adequados para

correção automática. Por exemplo, um trabalhador de dados auto-reparáveis

encarregado de corrigir JSON defeituoso pode lidar com vírgulas em falta ou aspas

duplas não escapadas sem alterar significativamente o significado ou a estrutura dos

dados. Estes tipos de erros são frequentemente simples de corrigir e têm um impacto

mínimo na integridade geral dos dados.

Dados Auto-Reparáveis 174

No entanto, erros mais graves que alteram fundamentalmente o significado ou a

integridade dos dados podem exigir uma abordagem diferente. Nesses casos, as

correções automatizadas podem não ser suficientes, e a intervenção humana pode ser

necessária para garantir a precisão e validade dos dados.

É aqui que entra em jogo o conceito de usar a própria IA para ajudar a determinar a

gravidade do erro. Ao aproveitar as capacidades dos modelos de IA, podemos projetar

operadores de dados auto-reparadores que não só corrigem erros, mas também avaliam

a gravidade desses erros e tomam decisões informadas sobre como tratá-los.

Por exemplo, consideremos um operador de dados auto-reparador responsável por

corrigir inconsistências nos dados que fluem para uma base de dados de clientes. O

operador pode ser projetado para analisar os dados e identificar potenciais erros, como

informações em falta ou conflituantes. No entanto, em vez de corrigir automaticamente

todos os erros, o operador pode ser equipado com chamadas de ferramentas adicionais

que lhe permitem sinalizar erros graves para revisão humana.

Eis um exemplo de como isto pode ser implementado:

1 class CustomerDataReviewer

2 include Raix::ChatCompletion

3 include Raix::FunctionDeclarations

4

5 attr_accessor :customer

6

7 function :flag_for_review, reason: { type: "string" } do |params|

8 AdminNotifier.review_request(customer, params[:reason])

9 end

10

11 def initialize(customer)

12 self.customer = customer

13 end

14

15 def call(customer_data)

16 transcript << {

17 system: "You are a customer data reviewer. Your task is to identify

18 and correct inconsistencies in customer data.

Dados Auto-Reparáveis 175

19

20 < additional instructions here... >

21

22 If you encounter severe errors that require human review, use the

23 `flag_for_review` tool to flag the data for manual intervention." }

24

25 transcript << { user: customer.to_json }

26 transcript << { assistant: "Reviewed/corrected data:\n```json\n" }

27

28 self.stop = ["```"]

29

30 chat_completion(json: true).then do |result|

31 return if result.blank?

32

33 customer.update(result)

34 end

35 end

36 end

Neste exemplo, o worker CustomerDataHealer foi projetado para identificar e corrigir

inconsistências nos dados dos clientes. Mais uma vez, utilizamos Response Fencing e

Ventriloquist para obter uma saída estruturada. É importante notar que a diretiva do

sistema doworker inclui instruções para utilizar a funçãoflag_for_review caso sejam

encontrados erros graves.

Quando o worker processa os dados do cliente, analisa-os e tenta corrigir quaisquer

inconsistências. Se o worker determinar que os erros são graves e requerem intervenção

humana, pode utilizar a ferramenta flag_for_review para sinalizar os dados e

fornecer um motivo para a sinalização.

O método chat_completion é chamado com json: true para analisar os dados

corrigidos do cliente como JSON. Não existe provisão para ciclos após uma chamada de

função, pelo que o resultado ficará em branco se flag_for_review tiver sido invocado.

Caso contrário, o cliente é atualizado com os dados revistos e potencialmente corrigidos.

Ao incorporar a avaliação da gravidade dos erros e a opção de sinalizar dados para

revisão humana, o worker de dados auto-reparáveis torna-se mais inteligente e

Dados Auto-Reparáveis 176

adaptável. Pode lidar com erros menores automaticamente, enquanto encaminha erros

graves para especialistas humanos para intervenção manual.

Os critérios específicos para determinar a gravidade dos erros podem ser definidos na

diretiva do worker com base no conhecimento do domínio e nos requisitos do negócio.

Fatores como o impacto na integridade dos dados, o potencial de perda ou corrupção

de dados e as consequências de dados incorretos podem ser considerados ao avaliar a

gravidade.

Ao aproveitar a IA para avaliar a gravidade dos erros e fornecer opções para intervenção

humana, as técnicas de dados auto-reparáveis podem encontrar um equilíbrio entre

automação e manutenção da precisão dos dados. Esta abordagem garante que erros

menores são corrigidos eficientemente, enquanto erros graves recebem a atenção e

experiência necessárias dos revisores humanos.

Complexidade do Domínio

Ao considerar a aplicação de técnicas de dados auto-reparáveis, é importante avaliar a

complexidade do domínio de dados e as regras que governam a sua estrutura e relações.

A complexidade do domínio pode impactar significativamente a eficácia e viabilidade

das abordagens de correção automática de dados.

As técnicas de dados auto-reparáveis funcionam bem quando os dados seguem padrões

e restrições bem definidos. Em domínios onde a estrutura de dados é relativamente

simples e as relações entre elementos de dados são diretas, as correções automatizadas

podem ser aplicadas com um alto grau de confiança. Por exemplo, corrigir problemas

de formatação ou impor restrições básicas de tipo de dados pode frequentemente ser

tratado de forma eficaz por workers de dados auto-reparáveis.

No entanto, à medida que a complexidade do domínio de dados aumenta, os desafios

associados à correção automática de dados também crescem. Em domínios com

lógica de negócio intrincada, relações complexas entre entidades de dados ou regras

Dados Auto-Reparáveis 177

e exceções específicas do domínio, as técnicas de dados auto-reparáveis podem nem

sempre capturar as nuances e podem introduzir consequências não intencionais.

Consideremos um exemplo de um domínio complexo: um sistema de negociação

financeira. Neste domínio, os dados envolvem vários instrumentos financeiros, dados

de mercado, regras de negociação e requisitos regulatórios. As relações entre diferentes

elementos de dados podem ser intrincadas, e as regras que governam a validade e

consistência dos dados podem ser altamente específicas do domínio.

Em tal domínio complexo, um worker de dados auto-reparáveis encarregado de corrigir

inconsistências em dados de negociação precisaria ter um entendimento profundo

das regras e restrições específicas do domínio. Precisaria considerar fatores como

regulamentações de mercado, limites de negociação, cálculos de risco e procedimentos

de liquidação. Correções automatizadas neste contexto podem nem sempre capturar

toda a complexidade do domínio e podem inadvertidamente introduzir erros ou violar

regras específicas do domínio.

Para abordar os desafios da complexidade do domínio, as técnicas de dados auto-

-reparáveis podem ser aprimoradas incorporando conhecimento e regras específicas do

domínio nos modelos e workers de IA. Isto pode ser alcançado através de técnicas como:

1. Treino Específico do Domínio: Os modelos de IA utilizados para dados auto-

-reparáveis podem ser direcionados ou até mesmo ajustados em conjuntos de

dados específicos do domínio que capturam as complexidades e regras do domínio

particular. Ao expor os modelos a dados e cenários representativos, eles podem

aprender os padrões, restrições e exceções específicos do domínio.

2. Restrições Baseadas em Regras: Os workers de dados auto-reparáveis podem

ser aumentados com restrições explícitas baseadas em regras que codificam

conhecimento específico do domínio. Estas regras podem ser definidas por

especialistas do domínio e integradas no processo de correção de dados. Os

modelos de IA podem então usar estas regras para guiar suas decisões e garantir

conformidade com requisitos específicos do domínio.

Dados Auto-Reparáveis 178

3. Colaboração com Especialistas do Domínio: Em domínios complexos, é crucial

envolver especialistas do domínio no design e desenvolvimento de técnicas de

dados auto-reparáveis. Especialistas do domínio podem fornecer insights valiosos

sobre as complexidades dos dados, as regras de negócio e os possíveis casos

extremos. Seu conhecimento pode ser incorporado nos modelos e workers de

IA para melhorar a precisão e confiabilidade das correções automáticas de dados

usando padrões Human In The Loop.

4. Abordagem Incremental e Iterativa: Ao lidar com domínios complexos, é

frequentemente benéfico adotar uma abordagem incremental e iterativa para

dados auto-reparáveis. Em vez de tentar automatizar correções para todo o

domínio de uma vez, foque em subdomínios específicos ou categorias de dados

onde as regras e restrições são bem compreendidas. Gradualmente expanda o

escopo das técnicas de auto-reparação à medida que o entendimento do domínio

cresce e as técnicas se provam eficazes.

Ao considerar a complexidade do domínio dos dados e incorporar o conhecimento

específico do domínio nas técnicas de dados auto-reparáveis, é possível encontrar

um equilíbrio entre automação e precisão. É importante reconhecer que os dados

auto-reparáveis não são uma solução única para todos os casos e que a abordagem deve

ser adaptada aos requisitos e desafios específicos de cada domínio.

Em domínios complexos, uma abordagem híbrida que combine técnicas de dados auto-

-reparáveis com experiência e supervisão humana pode ser mais eficaz. As correções

automatizadas podem lidar com casos rotineiros e bem definidos, enquanto cenários

complexos ou exceções podem ser sinalizados para revisão e intervenção humana. Esta

abordagem colaborativa garante que os benefícios da automação sejam alcançados,

mantendo o controlo e a precisão necessários em domínios de dados complexos.

Dados Auto-Reparáveis 179

Explicabilidade e Transparência

A explicabilidade refere-se à capacidade de compreender e interpretar o raciocínio

por trás das decisões tomadas pelos modelos de IA, enquanto a transparência envolve

fornecer visibilidade clara sobre o processo de correção de dados.

Em muitos contextos, as modificações de dados precisam de ser auditáveis e

justificáveis. As partes interessadas, incluindo utilizadores empresariais, auditores

e órgãos reguladores, podem exigir explicações sobre o motivo de certas correções

de dados terem sido feitas e como os modelos de IA chegaram a essas decisões. Isto

é especialmente crucial em domínios onde a precisão e integridade dos dados têm

implicações significativas, como finanças, saúde e questões jurídicas.

Para abordar a necessidade de explicabilidade e transparência, as técnicas de dados

auto-reparáveis devem incorporar mecanismos que forneçam informações sobre o

processo de tomada de decisão dos modelos de IA. Isto pode ser alcançado através de

várias abordagens:

1. Encadeamento de Pensamento: Pedir ao modelo para explicar o seu raciocínio

“em voz alta” antes de aplicar alterações aos dados pode permitir uma

compreensão mais fácil do processo de tomada de decisão e pode gerar

explicações legíveis por humanos para as correções feitas. O compromisso é

um pouco mais de complexidade na separação da explicação da saída de dados

estruturados, que pode ser resolvida por…

2. Geração de Explicações: Os sistemas de dados auto-reparáveis podem ser

equipados com a capacidade de gerar explicações legíveis por humanos para as

correções que fazem. Isto pode ser alcançado pedindo ao modelo para apresentar

o seu processo de tomada de decisão como explicações facilmente compreensíveis

integradas nos próprios dados. Por exemplo, um sistema de dados auto-reparáveis

poderia gerar um relatório que destaca as inconsistências específicas de dados que

identificou, as correções aplicadas e a lógica por trás dessas correções.

Dados Auto-Reparáveis 180

3. Importância das Características: Os modelos de IA podem ser instruídos com

informações sobre a importância de diferentes características ou atributos no

processo de correção de dados como parte das suas diretivas. Essas diretivas,

por sua vez, podem ser expostas às partes interessadas humanas. Ao identificar

os fatores-chave que influenciam as decisões do modelo, as partes interessadas

podem obter informações sobre o raciocínio por trás das correções e avaliar a sua

validade.

4. Registo e Auditoria: Implementar mecanismos abrangentes de registo e auditoria

é crucial para manter a transparência no processo de dados auto-reparáveis.

Cada correção de dados feita pelos modelos de IA deve ser registada, incluindo

os dados originais, os dados corrigidos e as ações específicas tomadas. Esta

trilha de auditoria permite a análise retrospetiva e fornece um registo claro das

modificações feitas nos dados.

5. Abordagem com Intervenção Humana: Incorporar uma abordagem com

intervenção humana pode melhorar a explicabilidade e transparência das

técnicas de dados auto-reparáveis. Ao envolver especialistas humanos na revisão

e validação das correções geradas por IA, as organizações podem garantir que as

correções estejam alinhadas com o conhecimento do domínio e os requisitos do

negócio. A supervisão humana adiciona uma camada extra de responsabilidade

e permite a identificação de possíveis enviesamentos ou erros nos modelos de IA.

6. Monitorização e Avaliação Contínuas: A monitorização e avaliação regulares

do desempenho das técnicas de dados auto-reparáveis são essenciais para manter

a transparência e a confiança. Ao avaliar a precisão e eficácia dos modelos de

IA ao longo do tempo, as organizações podem identificar quaisquer desvios ou

anomalias e tomar medidas corretivas. A monitorização contínua ajuda a garantir

que o processo de dados auto-reparáveis permaneça fiável e alinhado com os

resultados desejados.

A explicabilidade e a transparência são considerações críticas ao implementar técnicas

de dados auto-reparáveis. Ao fornecer explicações claras para correções de dados,

Dados Auto-Reparáveis 181

manter trilhas de auditoria abrangentes e envolver supervisão humana, as organizações

podem construir confiança no processo de dados auto-reparáveis e garantir que as

modificações feitas nos dados sejam justificáveis e alinhadas com os objetivos do

negócio.

É importante encontrar um equilíbrio entre os benefícios da automação e a necessidade

de transparência. Embora as técnicas de dados auto-reparáveis possam melhorar

significativamente a qualidade e eficiência dos dados, elas não devem vir ao custo

de perder visibilidade e controlo sobre o processo de correção de dados. Ao projetar

sistemas de dados auto-reparáveis com explicabilidade e transparência em mente, as

organizações podem aproveitar o poder da IA enquanto mantêm o nível necessário de

responsabilidade e confiança nos dados.

Consequências Não Intencionais

Embora as técnicas de dados auto-reparáveis visem melhorar a qualidade e consistência

dos dados, é crucial estar ciente do potencial de consequências não intencionais. As

correções automatizadas, se não forem cuidadosamente projetadas e monitorizadas,

podem inadvertidamente alterar o significado ou contexto dos dados, levando a

problemas subsequentes.

Um dos principais riscos dos dados auto-reparáveis é a introdução de enviesamentos

ou erros no processo de correção de dados. Os modelos de IA, como qualquer outro

sistema de software, podem estar sujeitos a enviesamentos presentes nos dados de

treino ou introduzidos através do design dos algoritmos. Se estes enviesamentos não

forem identificados e mitigados, podem propagar-se através do processo de dados

auto-reparáveis e resultar em modificações de dados distorcidas ou incorretas.

Por exemplo, considere um trabalhador de dados auto-reparáveis encarregado de

corrigir inconsistências em dados demográficos de clientes. Se o modelo de IA tiver

aprendido preconceitos a partir de dados históricos, como associar certas ocupações ou

níveis de rendimento a géneros ou etnias específicas, poderá fazer suposições incorretas

Dados Auto-Reparáveis 182

e modificar os dados de forma a reforçar esses preconceitos. Isto pode levar a perfis

de clientes imprecisos, decisões empresariais equivocadas e resultados potencialmente

discriminatórios.

Outra potencial consequência não intencional é a perda de informações ou contexto

valioso durante o processo de correção de dados. As técnicas de dados auto-reparáveis

frequentemente concentram-se na padronização e normalização de dados para

garantir consistência. No entanto, em alguns casos, os dados originais podem conter

nuances, exceções ou informações contextuais importantes para compreender o quadro

completo. Correções automatizadas que impõem a padronização de forma cega podem

inadvertidamente remover ou obscurecer estas informações valiosas.

Por exemplo, imagine um trabalhador de dados auto-reparáveis responsável por corrigir

inconsistências em registos médicos. Se o trabalhador encontrar um histórico médico

de um paciente com uma condição rara ou um plano de tratamento incomum, pode

tentar normalizar os dados para se adequarem a um padrão mais comum. No entanto,

ao fazê-lo, pode perder os detalhes específicos e o contexto que são cruciais para

representar com precisão a situação única do paciente. Esta perda de informação pode

ter implicações sérias para o cuidado do paciente e a tomada de decisões médicas.

Para mitigar os riscos de consequências não intencionais, é essencial adotar uma

abordagem proativa ao projetar e implementar técnicas de dados auto-reparáveis:

1. Testes e Validação Minuciosos: Antes de implementar trabalhadores de dados

auto-reparáveis em produção, é crucial testar e validar minuciosamente o seu

comportamento em diversos cenários. Isto inclui testes com conjuntos de

dados representativos que cubram vários casos extremos, exceções e potenciais

preconceitos. Testes rigorosos ajudam a identificar e abordar quaisquer

consequências não intencionais antes que afetem dados do mundo real.

2. Monitorização e Avaliação Contínuas: Implementar mecanismos de

monitorização e avaliação contínuas é essencial para detetar e mitigar

consequências não intencionais ao longo do tempo. Rever regularmente os

Dados Auto-Reparáveis 183

resultados dos processos de dados auto-reparáveis, analisar o impacto nos

sistemas downstream e na tomada de decisões, e recolher feedback das partes

interessadas pode ajudar a identificar quaisquer efeitos adversos e provocar ações

corretivas oportunas. Se a sua organização tiver painéis operacionais, adicionar

métricas claramente visíveis relacionadas com alterações automatizadas de dados

é provavelmente uma boa ideia. Adicionar alarmes ligados a grandes desvios da

atividade normal de alteração de dados é provavelmente uma ideia ainda melhor!

3. Supervisão e Intervenção Humana: Manter a supervisão humana e a capacidade

de intervir no processo de dados auto-reparáveis é crucial. Embora a automação

possamelhorar muito a eficiência, é importante ter especialistas humanos a rever e

validar as correções feitas por modelos de IA, especialmente em domínios críticos

ou sensíveis. O julgamento humano e a experiência no domínio podem ajudar a

identificar e abordar quaisquer consequências não intencionais que possam surgir.

4. IA Explicável (XAI) e Transparência: Como discutido na subsecção anterior,

incorporar técnicas de IA explicável e garantir transparência no processo de

dados auto-reparáveis pode ajudar a mitigar consequências não intencionais. Ao

fornecer explicações claras para correções de dados e manter trilhas de auditoria

abrangentes, as organizações podem compreender melhor e rastrear o raciocínio

por trás das modificações feitas pelos modelos de IA.

5. Abordagem Incremental e Iterativa: Adotar uma abordagem incremental

e iterativa para dados auto-reparáveis pode ajudar a minimizar o risco de

consequências não intencionais. Em vez de aplicar correções automatizadas a

todo o conjunto de dados de uma só vez, comece com um subconjunto de dados

e expanda gradualmente o âmbito à medida que as técnicas se provam eficazes e

fiáveis. Isto permite uma monitorização cuidadosa e ajustes ao longo do caminho,

reduzindo o impacto de quaisquer consequências não intencionais.

6. Colaboração e Feedback: Envolver as partes interessadas de diferentes domínios

e incentivar a colaboração e feedback durante todo o processo de dados auto-

-reparáveis pode ajudar a identificar e abordar consequências não intencionais.

Dados Auto-Reparáveis 184

Procurar regularmente contribuições de especialistas no domínio, consumidores

de dados e utilizadores finais pode fornecer insights valiosos sobre o impacto

real das correções de dados e destacar quaisquer questões que possam ter sido

negligenciadas.

Ao abordar proativamente o risco de consequências não intencionais e implementar

salvaguardas apropriadas, as organizações podem aproveitar os benefícios das

técnicas de dados auto-reparáveis enquanto minimizam potenciais efeitos adversos. É

importante abordar os dados auto-reparáveis como um processo iterativo e colaborativo,

monitorizando, avaliando e refinando continuamente as técnicas para garantir que

se alinhem com os resultados desejados e mantenham a integridade e fiabilidade dos

dados.

Ao considerar o uso de padrões de dados auto-reparáveis, é essencial avaliar

cuidadosamente estes fatores e pesar os benefícios contra os potenciais riscos e

limitações. Em alguns casos, uma abordagem híbrida que combine correções

automatizadas com supervisão e intervenção humana pode ser a solução mais

apropriada.

Também vale a pena notar que as técnicas de dados auto-reparáveis não devem ser

vistas como um substituto para validação de dados robusta, sanitização de entrada e

mecanismos de tratamento de erros. Estas práticas fundamentais continuam críticas

para garantir a integridade e segurança dos dados. Os dados auto-reparáveis devem

ser vistos como uma abordagem complementar que pode aumentar e melhorar estas

medidas existentes.

Em última análise, a decisão de empregar padrões de dados auto-reparáveis depende

dos requisitos específicos, restrições e prioridades da sua aplicação. Ao considerar

cuidadosamente as considerações descritas acima e alinhá-las com os objetivos e

Dados Auto-Reparáveis 185

arquitetura da sua aplicação, pode tomar decisões informadas sobre quando e como

aproveitar eficazmente as técnicas de dados auto-reparáveis.

Geração de Conteúdo Contextual

Os padrões de Geração de Conteúdo Contextual aproveitam o poder dos modelos de

linguagem grande (LLMs) para gerar conteúdo dinâmico e específico ao contexto dentro

das aplicações. Esta categoria de padrões reconhece a importância de fornecer conteúdo

personalizado e relevante aos utilizadores com base nas suas necessidades específicas,

preferências e até mesmo interações anteriores e atuais com a aplicação.

No contexto desta abordagem, “conteúdo” refere-se tanto ao conteúdo primário (ou

seja, posts de blog, artigos, etc.) como ao meta-conteúdo, como recomendações para

conteúdo primário.

Os padrões de Geração de Conteúdo Contextual podem desempenhar um papel crucial

no aumento dos seus níveis de envolvimento do utilizador, fornecendo experiências

Geração de Conteúdo Contextual 187

personalizadas e automatizando tarefas de criação de conteúdo tanto para si como para

os seus utilizadores. Ao utilizar os padrões que descrevemos neste capítulo, pode criar

aplicações que geram conteúdo dinamicamente, adaptando-se ao contexto e às entradas

em tempo real.

Os padrões funcionam integrando LLMs nas saídas da aplicação, desde a interface do

utilizador (por vezes referida como “chrome”), até emails e outras formas de notificações,

bem como quaisquer pipelines de geração de conteúdo.

Quando um utilizador interage com a aplicação ou desencadeia um pedido específico de

conteúdo, a aplicação captura o contexto relevante, como preferências do utilizador,

interações anteriores ou prompts específicos. Esta informação contextual é então

alimentada ao LLM, juntamente com quaisquer templates ou diretrizes necessárias e

utilizada para produzir uma saída textual que de outra forma teria de ser codificada,

armazenada numa base de dados ou gerada algoritmicamente.

O conteúdo gerado pelo LLM pode assumir várias formas, como recomendações

personalizadas, descrições dinâmicas de produtos, respostas personalizadas por email,

ou até mesmo artigos ou posts de blog completos. Um dos usos mais radicais deste

conteúdo que eu pionerizei há mais de um ano é a geração dinâmica de elementos da UI

como etiquetas de formulários, dicas de contexto e outros tipos de texto explicativo.

Personalização

Um dos principais benefícios dos padrões de Geração de Conteúdo Contextual é a

capacidade de fornecer experiências altamente personalizadas aos utilizadores. Ao gerar

conteúdo baseado no contexto específico do utilizador, estes padrões permitem que as

aplicações adaptem o conteúdo aos interesses, preferências e interações individuais dos

utilizadores.

A personalização vai além de simplesmente inserir o nome de umutilizador em conteúdo

genérico. Envolve aproveitar o rico contexto disponível sobre cada utilizador para gerar

Geração de Conteúdo Contextual 188

conteúdo que ressoe com as suas necessidades e desejos específicos. Este contexto pode

incluir uma ampla gama de fatores, tais como:

1. Informação do Perfil do Utilizador: No nível mais geral de aplicação desta

técnica, dados demográficos, interesses, preferências e outros atributos do perfil

podem ser utilizados para gerar conteúdo que se alinhe com o histórico e

características do utilizador.

2. Dados Comportamentais: As interações passadas de um utilizador com a

aplicação, como páginas visualizadas, links clicados ou produtos comprados,

podem fornecer informações valiosas sobre o seu comportamento e interesses.

Estes dados podem ser utilizados para gerar sugestões de conteúdo que reflitam

os seus padrões de envolvimento e prevejam as suas necessidades futuras.

3. Fatores Contextuais: O contexto atual do utilizador, como a sua localização,

dispositivo, hora do dia ou até mesmo o clima, pode influenciar o processo

de geração de conteúdo. Por exemplo, uma aplicação de viagens pode ter um

trabalhador de IA capaz de gerar recomendações personalizadas com base na

localização atual do utilizador e nas condições meteorológicas prevalecentes.

Ao aproveitar estes fatores contextuais, os padrões de Geração de Conteúdo Contextual

permitem que as aplicações forneçam conteúdo que parece feito à medida para cada

utilizador individual. Este nível de personalização tem vários benefícios significativos:

1. Aumento do Envolvimento: O conteúdo personalizado capta a atenção dos

utilizadores e mantém-nos envolvidos com a aplicação. Quando os utilizadores

sentem que o conteúdo é relevante e fala diretamente às suas necessidades, é mais

provável que passem mais tempo a interagir com a aplicação e a explorar as suas

funcionalidades.

2. Maior Satisfação do Utilizador: O conteúdo personalizado demonstra que a

aplicação compreende e se preocupa com os requisitos únicos do utilizador. Ao

fornecer conteúdo que é útil, informativo e alinhado com os seus interesses, a

Geração de Conteúdo Contextual 189

aplicação pode aumentar a satisfação do utilizador e construir uma ligação mais

forte com os seus utilizadores.

3. Taxas de Conversão Mais Elevadas: No contexto de aplicações de e-commerce

ou marketing, o conteúdo personalizado pode ter um impacto significativo

nas taxas de conversão. Ao apresentar aos utilizadores produtos, ofertas ou

recomendações que são adaptados às suas preferências e comportamento, a

aplicação pode aumentar a probabilidade de os utilizadores realizarem as ações

desejadas, como fazer uma compra ou inscrever-se num serviço.

Produtividade

Os padrões de Geração de Conteúdo Contextual podem aumentar significativamente

certos tipos de produtividade ao reduzir a necessidade de geração e edição manual de

conteúdo em processos criativos. Ao aproveitar o poder dos LLMs, pode gerar conteúdo

de alta qualidade em escala, poupando tempo e esforço que os seus criadores de conteúdo

e desenvolvedores teriam de gastar em trabalho manual tedioso.

Tradicionalmente, os criadores de conteúdo precisam de pesquisar, escrever, editar

e formatar conteúdo para garantir que este cumpre os requisitos da aplicação e as

expectativas dos utilizadores. Este processo pode consumir muito tempo e recursos,

especialmente à medida que o volume de conteúdo aumenta.

No entanto, com os padrões de Geração Contextual de Conteúdo, o processo de criação

de conteúdo pode ser largamente automatizado. Os LLMs podem gerar conteúdo

coerente, gramaticalmente correto e contextualmente relevante com base nos prompts

e diretrizes fornecidos. Esta automatização oferece vários benefícios de produtividade:

1. Redução do Esforço Manual: Ao delegar tarefas de geração de conteúdo aos

LLMs, os criadores de conteúdo podem concentrar-se em tarefas de nível superior,

como estratégia de conteúdo, ideação e garantia de qualidade. Podem fornecer o

Geração de Conteúdo Contextual 190

contexto necessário, modelos e diretrizes ao LLM e deixar que este trate da geração

efetiva do conteúdo. Isto reduz o esforçomanual necessário para a escrita e edição,

permitindo que os criadores de conteúdo sejam mais produtivos e eficientes.

2. Criação de Conteúdo Mais Rápida: Os LLMs podem gerar conteúdo muito mais

rapidamente do que escritores humanos. Com os prompts e diretrizes adequados,

um LLM pode produzir múltiplos elementos de conteúdo em questão de segundos

ouminutos. Esta velocidade permite que as aplicações gerem conteúdo a um ritmo

muito mais rápido, acompanhando as exigências dos utilizadores e o panorama

digital em constante mudança.

Será que a criação mais rápida de conteúdo está a levar a uma situação de

“tragédia dos comuns” onde a internet está a afogar-se em conteúdo que ninguém

lê? Infelizmente, suspeito que a resposta é sim.

3. Consistência e Qualidade: Os LLMs podem facilmente rever conteúdo para que

seja consistente em estilo, tom e qualidade. Mediante diretrizes e exemplos claros,

certos tipos de aplicações (ou seja, redações jornalísticas, RP, etc.) podem garantir

que o seu conteúdo gerado por humanos está alinhado com a voz da marca e

cumpre os padrões de qualidade desejados. Esta consistência reduz a necessidade

de edição e revisões extensivas, poupando tempo e esforço no processo de criação

de conteúdo.

4. Iteração e Otimização: Os padrões de Geração Contextual de Conteúdo

permitem uma rápida iteração e otimização do conteúdo. Ao ajustar os

prompts, modelos ou diretrizes fornecidos ao LLM, as suas aplicações podem

rapidamente gerar variações de conteúdo e testar diferentes abordagens de forma

automatizada, algo que nunca foi possível no passado. Este processo iterativo

permite uma experimentação e refinamento mais rápidos das estratégias de

Geração de Conteúdo Contextual 191

conteúdo, levando a conteúdo mais eficaz e envolvente ao longo do tempo. Esta

técnica em particular pode ser revolucionária para aplicações como o comércio

eletrónico, que dependem criticamente das taxas de rejeição e envolvimento

É importante notar que, embora os padrões de Geração Contextual de

Conteúdo possam aumentar significativamente a produtividade, eles não

eliminam completamente a necessidade de envolvimento humano. Os

criadores e editores de conteúdo continuam a desempenhar um papel crucial

na definição da estratégia global de conteúdo, no fornecimento de orientação

ao LLM e na garantia da qualidade e adequação do conteúdo gerado.

Ao automatizar os aspetos mais repetitivos e demorados da criação de conteúdo, os

padrões de Geração Contextual de Conteúdo libertam tempo e recursos humanos

valiosos que podem ser redirecionados para tarefas de maior valor. Este aumento

de produtividade permite-lhe fornecer conteúdo mais personalizado e envolvente aos

utilizadores, enquanto otimiza os fluxos de trabalho de criação de conteúdo.

Iteração Rápida e Experimentação

Os padrões de Geração Contextual de Conteúdo permitem-lhe iterar e experimentar

rapidamente diferentes variações de conteúdo, possibilitando uma otimização e

refinamento mais rápidos da sua estratégia de conteúdo. Pode gerar múltiplas versões

de conteúdo em questão de segundos, simplesmente ajustando o contexto, modelos ou

diretrizes fornecidos ao modelo.

Esta capacidade de iteração rápida oferece vários benefícios principais:

1. Testes e Otimização: Com a capacidade de gerar rapidamente variações de

conteúdo, pode facilmente testar diferentes abordagens e medir a sua eficácia.

Por exemplo, pode gerar múltiplas versões de uma descrição de produto ou de

Geração de Conteúdo Contextual 192

uma mensagem de marketing, cada uma adaptada a um segmento de utilizadores

específico ou contexto. Ao analisar métricas de envolvimento do utilizador, como

taxas de cliques ou taxas de conversão, pode identificar as variações de conteúdo

mais eficazes e otimizar a sua estratégia de conteúdo em conformidade.

2. Testes A/B: Os padrões de Geração Contextual de Conteúdo permitem testes

A/B perfeitos do conteúdo. Pode gerar duas ou mais variações de conteúdo e

apresentá-las aleatoriamente a diferentes grupos de utilizadores. Ao comparar o

desempenho de cada variação, pode determinar qual o conteúdo quemelhor ressoa

com o seu público-alvo. Esta abordagem baseada em dados permite-lhe tomar

decisões informadas e refinar continuamente o seu conteúdo para maximizar o

envolvimento do utilizador e alcançar os resultados desejados.

3. Experiências de Personalização: A iteração rápida e a experimentação são

particularmente valiosas quando se trata de personalização. Com os padrões de

Geração Contextual de Conteúdo, pode rapidamente gerar variações de conteúdo

personalizado com base em diferentes segmentos de utilizadores, preferências ou

comportamentos. Ao experimentar diferentes estratégias de personalização, pode

identificar as abordagens mais eficazes para envolver utilizadores individuais e

fornecer experiências personalizadas.

4. Adaptação às Tendências em Mudança: A capacidade de iterar e experimentar

rapidamente permite-lhe manter a agilidade e adaptar-se às tendências e

preferências dos utilizadores em constante mudança. À medida que surgem novos

tópicos, palavras-chave ou comportamentos dos utilizadores, pode rapidamente

gerar conteúdo alinhado com estas tendências. Através da experimentação e

refinamento contínuos do seu conteúdo, pode manter-se relevante e conservar

uma vantagem competitiva no panorama digital em constante evolução.

5. Experimentação Económica: A experimentação tradicional de conteúdo envolve

frequentemente tempo e recursos significativos, já que os criadores de conteúdo

precisam de desenvolver e testar manualmente diferentes variações. No entanto,

com os padrões de Geração Contextual de Conteúdo, o custo da experimentação é

Geração de Conteúdo Contextual 193

grandemente reduzido. Os LLMs podem gerar variações de conteúdo rapidamente

e em escala, permitindo-lhe explorar uma ampla gama de ideias e abordagens sem

incorrer em custos substanciais.

Para maximizar o aproveitamento da iteração e experimentação rápidas, é importante

ter uma estrutura de experimentação bem definida. Esta estrutura deve incluir:

• Objetivos claros e hipóteses para cada experiência

• Métricas apropriadas e mecanismos de monitorização para medir o desempenho

do conteúdo

• Estratégias de segmentação e direcionamento para garantir que as variações de

conteúdo relevantes são apresentadas aos utilizadores certos

• Ferramentas de análise e relatórios para extrair insights dos dados experimentais

• Um processo para incorporar aprendizagens e otimizações na sua estratégia de

conteúdo

Ao abraçar a iteração e experimentação rápidas, pode continuamente refinar e otimizar

o seu conteúdo, garantindo que este permanece envolvente, relevante e eficaz na

consecução dos objetivos da sua aplicação. Esta abordagem ágil à criação de conteúdo

permite-lhe manter-se à frente da curva e proporcionar experiências excecionais aos

utilizadores.

Escalabilidade e Eficiência

À medida que as aplicações crescem e a procura por conteúdo personalizado aumenta,

os padrões de geração contextual de conteúdo permitem um escalonamento eficiente

da criação de conteúdo. Os LLMs podem gerar conteúdo para um grande número

de utilizadores e contextos simultaneamente, sem necessidade de um aumento

proporcional nos recursos humanos. Esta escalabilidade permite que as aplicações

Geração de Conteúdo Contextual 194

ofereçam experiências personalizadas a uma base crescente de utilizadores sem

sobrecarregar as suas capacidades de criação de conteúdo.

Note que a geração contextual de conteúdo pode ser utilizada eficazmente

para internacionalizar a sua aplicação “em tempo real”. Na verdade, foi

exatamente isso que fiz usando a minha Gem Instant18n para disponibilizar

a Olympia em mais de meia dúzia de idiomas, mesmo tendo menos de um

ano de existência.

Localização Potenciada por IA

Se me permite gabar por um momento, penso que a minha biblioteca Instant18n

para aplicações Rails é um exemplo inovador do padrão de “Geração Contextual de

Conteúdo” em ação, demonstrando o potencial transformador da IA no desenvolvimento

de aplicações. Esta gem aproveita o poder do modelo linguístico GPT da OpenAI

para revolucionar a forma como a internacionalização e localização são tratadas em

aplicações Rails.

Tradicionalmente, internacionalizar uma aplicação Rails envolve definir manualmente

chaves de tradução e fornecer as traduções correspondentes para cada idioma suportado.

Este processo pode ser demorado, intensivo em recursos e propenso a inconsistências.

No entanto, com a gem Instant18n, o paradigma da localização é completamente

redefinido.

Ao integrar um modelo linguístico de grande escala, a gem Instant18n permite-lhe

gerar traduções em tempo real, com base no contexto e significado do texto. Em vez

de depender de chaves de tradução predefinidas e traduções estáticas, a gem traduz

dinamicamente o texto usando o poder da IA. Esta abordagem oferece vários benefícios

principais:

Geração de Conteúdo Contextual 195

1. Localização Perfeita: Com a gem Instant18n, os programadores já não precisam

de definir e manter manualmente ficheiros de tradução para cada idioma

suportado. A gem gera automaticamente traduções com base no texto fornecido

e no idioma de destino pretendido, tornando o processo de localização eficiente e

simples.

2. Precisão Contextual: A IA pode receber contexto suficiente para compreender

as nuances do texto a ser traduzido. Pode ter em conta o contexto envolvente,

expressões idiomáticas e referências culturais para gerar traduções precisas,

naturais e contextualmente apropriadas.

3. Suporte Extensivo de Idiomas: A gem Instant18n aproveita o vasto

conhecimento e capacidades linguísticas do GPT, permitindo traduções para uma

extensa gama de idiomas. Desde idiomas comuns como espanhol e francês até

idiomas mais obscuros ou fictícios como klingon e élfico, a gem pode lidar com

uma grande variedade de requisitos de tradução.

4. Flexibilidade e Criatividade: A gem vai além das traduções linguísticas

tradicionais e permite opções de localização criativas e não convencionais. Os

programadores podem traduzir texto em vários estilos, dialetos ou até mesmo

idiomas fictícios, abrindo novas possibilidades para experiências únicas do

utilizador e conteúdo envolvente.

5. Otimização de Desempenho: A gem Instant18n incorpora mecanismos de cache

para melhorar o desempenho e reduzir a sobrecarga de traduções repetidas. O

texto traduzido é armazenado em cache, permitindo que pedidos subsequentes

para a mesma tradução sejam servidos rapidamente sem necessidade de chamadas

redundantes à API.

A gem Instant18n exemplifica o poder do padrão de “Geração Contextual de Conteúdo”

ao aproveitar a IA para gerar conteúdo localizado dinamicamente. Demonstra como a

IA pode ser integrada na funcionalidade central de uma aplicação Rails, transformando

a forma como os programadores abordam a internacionalização e localização.

Geração de Conteúdo Contextual 196

Ao eliminar a necessidade de gestão manual de traduções e permitir traduções em

tempo real baseadas no contexto, a gem Instant18n poupa aos programadores tempo e

esforço significativos. Permite-lhes concentrarem-se na construção das funcionalidades

principais da sua aplicação, garantindo simultaneamente que o aspeto da localização é

tratado de forma fluida e precisa.

A Importância dos Testes com Utilizadores e do

Feedback

Por fim, tenha sempre emmente a importância dos testes com utilizadores e do feedback.

É crucial validar que a geração contextual de conteúdo corresponde às expectativas dos

utilizadores e está alinhada com os objetivos da aplicação. Continue a iterar e refinar o

conteúdo gerado com base nos insights dos utilizadores e na análise de dados. Se estiver a

gerar conteúdo dinâmico em grande escala que seria impossível de validar manualmente

por si e pela sua equipa, considere adicionar mecanismos de feedback que permitam aos

utilizadores reportar conteúdo que seja estranho ou incorreto, juntamente com uma

explicação do motivo. Esse feedback precioso pode até ser fornecido a um trabalhador

de IA encarregado de fazer ajustes ao componente que gerou o conteúdo!

Generative UI

A atenção é hoje em dia um recurso tão valioso que o envolvimento eficaz do

utilizador exige agora experiências de software que não são apenas fluidas e intuitivas,

mas também altamente personalizadas para as necessidades, preferências e contextos

individuais. Como resultado, designers e programadores enfrentam cada vez mais o

desafio de criar interfaces de utilizador que possam adaptar-se e satisfazer os requisitos

únicos de cada utilizador em escala.

A Generative UI (GenUI) é uma abordagem verdadeiramente revolucionária ao design

de interfaces de utilizador que aproveita o poder dos modelos linguísticos de grande

escala (LLMs) para criar experiências de utilizador altamente personalizadas e dinâmicas

em tempo real. Quis garantir que vos daria pelo menos uma introdução à GenUI

neste livro, porque acredito que é uma das oportunidades mais promissoras que existe

atualmente no domínio do design e frameworks de aplicações. Estou convencido de que

dezenas ou mais novos projetos comerciais e de código aberto bem-sucedidos surgirão

Generative UI 198

neste nicho específico.

No seu núcleo, a GenUI combina os princípios da Geração de Conteúdo Contextual

com técnicas avançadas de IA para gerar elementos de interface de utilizador, como

texto, imagens e layouts, de forma dinâmica, baseando-se numa compreensão profunda

do contexto, preferências e objetivos do utilizador. A GenUI permite que designers e

programadores criem interfaces que se adaptam e evoluem em resposta às interações do

utilizador, proporcionando um nível de personalização anteriormente inatingível.

A GenUI representa uma mudança fundamental na forma como abordamos o design

de interfaces de utilizador. Em vez de desenhar para as massas, a GenUI permite-nos

desenhar para o indivíduo. O conteúdo e as interfaces personalizadas têm o potencial

de criar experiências de utilizador que ressoam com cada utilizador a um nível mais

profundo, aumentando o envolvimento, a satisfação e a lealdade.

Como técnica de ponta, a transição para a GenUI está repleta de desafios conceptuais

e práticos. Integrar a IA no processo de design, garantir que as interfaces geradas não

são apenas personalizadas mas também utilizáveis, acessíveis e alinhadas com a marca

e a experiência global do utilizador, todos estes são desafios que tornam a GenUI uma

busca para poucos, não para muitos. Além disso, o envolvimento da IA levanta questões

sobre privacidade de dados, transparência e até mesmo implicações éticas.

Apesar dos desafios, as experiências personalizadas em escala têm o poder de

transformar completamente a forma como interagimos com produtos e serviços

digitais. Abre possibilidades para criar interfaces inclusivas e acessíveis que atendam

às diversas necessidades dos utilizadores, independentemente das suas capacidades,

origens ou preferências.

Neste capítulo, vamos explorar o conceito de GenUI, examinando algumas

características definidoras, benefícios principais e potenciais desafios. Começamos por

considerar a forma mais básica e acessível de GenUI: gerar texto para interfaces de

utilizador tradicionalmente desenhadas e implementadas.

Generative UI 199

Gerar Texto para Interfaces de Utilizador

Os elementos de texto que existem na interface da sua aplicação, como etiquetas

de formulário, tooltips e texto explicativo, são tipicamente codificados nos templates

ou componentes de UI, proporcionando uma experiência consistente mas genérica

para todos os utilizadores. Usando padrões de geração de conteúdo contextual, pode

transformar estes elementos estáticos em componentes dinâmicos, conscientes do

contexto e personalizados.

Formulários Personalizados

Os formulários são uma parte ubíqua das aplicações web e móveis, servindo como

o principal meio de recolha de dados dos utilizadores. No entanto, os formulários

tradicionais frequentemente apresentam uma experiência genérica e impessoal, com

etiquetas e campos padrão que nem sempre se alinham com o contexto ou necessidades

específicas do utilizador. Os utilizadores têm maior probabilidade de preencher

formulários que parecem adaptados às suas necessidades e preferências, levando a taxas

de conversão e satisfação mais elevadas.

No entanto, é importante encontrar um equilíbrio entre personalização e consistência.

Embora adaptar formulários a utilizadores individuais possa ser benéfico, é crucial

manter um nível de familiaridade e previsibilidade. Os utilizadores devem ainda

conseguir reconhecer e navegar facilmente nos formulários, mesmo com elementos

personalizados.

Aqui estão algumas ideias de formulários personalizados para inspiração:

Sugestões Contextuais de Campos

A GenUI pode analisar as interações anteriores do utilizador, preferências e dados

para fornecer sugestões inteligentes de campos como previsões. Por exemplo, se o

Generative UI 200

utilizador já inseriu anteriormente o seu endereço de envio, o formulário pode preencher

automaticamente os campos relevantes com as suas informações guardadas. Isto não só

poupa tempo, como também demonstra que a aplicação compreende e memoriza as

preferências do utilizador.

Espera lá, esta técnica não poderia ser implementada sem recorrer à IA? Claro que sim,

mas a beleza de implementar este tipo de funcionalidade com IA tem duas vertentes: 1)

a facilidade de implementação e 2) a resiliência face às alterações e evolução da UI ao

longo do tempo.

Vamos criar um serviço para o nosso sistema teórico de gestão de encomendas, que tente

preencher proativamente a morada de envio correta para o utilizador.

1 class OrderShippingAddressSubscriber

2 include Raix::ChatCompletion

3

4 attr_accessor :order

5

6 delegate :customer, to: :order

7

8 DIRECTIVE = "You are a smart order processing assistant. Given the

9 customer's order history, guess the most likely shipping address

10 for the current order."

11

12 def order_created(order)

13 return unless order.pending? && order.shipping_address.blank?

14

15 self.order = order

16

17 transcript.clear

18 transcript << { system: DIRECTIVE }

19 transcript << { user: "Order History: #{order_history.to_json}" }

20 transcript << { user: "Current Order: #{order.to_json}" }

21

22 response = chat_completion

23 apply_predicted_shipping_address(order, response)

24 end

25

26 private

Generative UI 201

27

28 def apply_predicted_shipping_address(order, response)

29 # extract the shipping address from the response...

30 # ...and assume there's some sort of live update of the address fields

31 order.update(shipping_address:)

32 end

33

34 def order_history

35 customer.orders.successful.limit(100).map do |order|

36 {

37 date: order.date,

38 description: order.description,

39 shipping_address: order.shipping_address

40 }

41 end

42 end

43 end

Este exemplo é muito simplificado, mas deverá funcionar na maioria dos casos. A ideia

é deixar a IA tentar adivinhar da mesma forma que um humano faria. Para exemplificar

melhor o que estou a dizer, vamos considerar alguns dados de exemplo:

1 Order History:

2 [

3 {"date": "2024-01-03", "description": "garden soil mix",

4 "shipping_address": "123 Country Lane, Rural Town"},

5 {"date": "2024-01-15", "description": "hardcover fiction novels",

6 "shipping_address": "456 City Apt, Metroville"},

7 {"date": "2024-01-22", "description": "baby diapers", "shipping_address":

8 "789 Suburb St, Quietville"},

9 {"date": "2024-02-01", "description": "organic vegetables",

10 "shipping_address": "123 Country Lane, Rural Town"},

11 {"date": "2024-02-17", "description": "mystery thriller book set",

12 "shipping_address": "456 City Apt, Metroville"},

13 {"date": "2024-02-25", "description": "baby wipes",

14 "shipping_address": "789 Suburb St, Quietville"},

15 {"date": "2024-03-05", "description": "flower seeds",

16 "shipping_address": "123 Country Lane, Rural Town"},

17 {"date": "2024-03-20", "description": "biographies",

18 "shipping_address": "456 City Apt, Metroville"},

Generative UI 202

19 {"date": "2024-03-30", "description": "baby formula",

20 "shipping_address": "789 Suburb St, Quietville"},

21 {"date": "2024-04-12", "description": "lawn fertilizer",

22 "shipping_address": "123 Country Lane, Rural Town"},

23 {"date": "2024-04-22", "description": "science fiction novels",

24 "shipping_address": "456 City Apt, Metroville"},

25 {"date": "2024-05-02", "description": "infant toys",

26 "shipping_address": "789 Suburb St, Quietville"},

27 {"date": "2024-05-14", "description": "outdoor grill",

28 "shipping_address": "123 Country Lane, Rural Town"},

29 {"date": "2024-05-29", "description": "literary classics",

30 "shipping_address": "456 City Apt, Metroville"},

31 {"date": "2024-06-11", "description": "baby clothes",

32 "shipping_address": "789 Suburb St, Quietville"},

33 {"date": "2024-07-01", "description": "watering can",

34 "shipping_address": "123 Country Lane, Rural Town"},

35 {"date": "2024-07-18", "description": "non-fiction essays",

36 "shipping_address": "456 City Apt, Metroville"},

37 {"date": "2024-07-28", "description": "baby bath items",

38 "shipping_address": "789 Suburb St, Quietville"},

39 {"date": "2024-08-09", "description": "herb garden kit",

40 "shipping_address": "123 Country Lane, Rural Town"},

41 {"date": "2024-08-24", "description": "children's books",

42 "shipping_address": "456 City Apt, Metroville"}

43]

Reparaste no padrão nos dados? Garanto-te que isto é algo simples para um MLG. Para

demonstrar, vamos perguntar ao GPT-4 qual é o endereço de envio mais provável para

um “termómetro”.

Generative UI 203

1 From the order history you've provided, it looks like the purchases are

2 generally clustered into three main types based on the shipping addresses:

3

4 123 Country Lane, Rural Town - This address often orders garden and

5 outdoor-related items like soil mix, vegetables, flower seeds, lawn

6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.

7

8 456 City Apt, Metroville - This address tends to order various types of

9 books, indicating an interest in reading across genres like fiction,

10 thrillers, biographies, science fiction, literary classics, non-fiction

11 essays, and children's books.

12

13 789 Suburb St, Quietville - The purchases for this address are consistently

14 baby-related products, such as diapers, wipes, baby formula, infant toys,

15 baby clothes, and baby bath items.

16

17 Given these patterns, a digital thermometer could potentially be a fit for

18 any of the addresses based on different needs: outdoor temperature tracking,

19 a tool for a passionate reader interested in science gadgets, or a health

20 tool for a baby. However, considering its common use in monitoring health,

21 especially for babies, it's most likely to be purchased by someone who's

22 already buying baby care products.

23

24 Therefore, the most likely shipping address for a digital thermometer, based

25 on the purchasing patterns, would be 789 Suburb St, Quietville.

Se estás a pensar que é um exagero usar ummodelo dispendioso como o GPT-4 para esta

tarefa, tens razão! Experimentei o mesmo prompt no Mistral 7B Instruct e este produziu

a seguinte resposta a 75 tokens por segundo, e com um custo ínfimo de $0.000218 USD.

Generative UI 204

1 Based on the given order history, it appears that the customer has received

2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)

3 at the address "789 Suburb St, Quietville" and garden-related items (soil,

4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural

5 Town". The customer has also received books (fiction, non-fiction, literary

6 classics, mystery-thriller, science fiction, biographies, children's books)

7 at the address "456 City Apt, Metroville".

8

9 Given that the new order is for a "thermometer", which doesn't seem to fit

10 into any of the categories that the customer has previously ordered, it's

11 hard to accurately predict the shipping address based solely on the order

12 history. However, given the 50%-50% split between baby-related and

13 garden-related items, it could somewhat lean towards the Baby-related items

14 address ("789 Suburb St, Quietville"). But remember, this is an assumption

15 and cannot be definitively confirmed without more context or information.

Valerá a pena o custo e o esforço desta técnica para tornar a experiência de checkout

mais mágica? Para muitos retalhistas online, absolutamente. E pelo que parece, o

custo da computação com IA só tende a diminuir, especialmente para fornecedores de

hospedagem de modelos open source numa corrida até ao fundo.

Use um Modelo de Prompt e StructuredIO juntamente com Delimitação de

Respostas para otimizar este tipo de conclusão de chat.

Ordenação Adaptativa de Campos

A ordem pela qual os campos do formulário são apresentados pode ter um impacto

significativo na experiência do utilizador e nas taxas de conclusão. Com GenUI, pode

ajustar dinamicamente a ordem dos campos com base no contexto do utilizador e na

importância de cada campo. Por exemplo, se o utilizador estiver a preencher um

formulário de registo para uma aplicação de fitness, o formulário poderia priorizar

campos relacionados com os seus objetivos e preferências de fitness, tornando o processo

mais relevante e envolvente.

Generative UI 205

Microtexto Personalizado

O texto instrucional, mensagens de erro e outro microtexto associado aos formulários

também podem ser personalizados usando GenUI. Em vez de exibir mensagens de

erro genéricas como “Endereço de email inválido”, pode gerar mensagens mais úteis

e contextuais como “Por favor, introduza um endereço de email válido para receber

a confirmação da sua encomenda”. Estes toques personalizados podem tornar a

experiência do formulário mais amigável e menos frustrante.

Validação Personalizada

Na mesma linha do Microtexto Personalizado, poderia usar a IA para validar o

formulário de formas que parecem mágicas. Imagine permitir que uma IA valide um

formulário de perfil de utilizador, procurando possíveis erros a nível semântico.

Generative UI 206

Figura 9. Consegue identificar a validação semântica em ação?

Revelação Progressiva

A GenUI pode determinar de forma inteligente quais os campos do formulário que

são essenciais com base no contexto do utilizador e revelar gradualmente campos

adicionais conforme necessário. Esta técnica de revelação progressiva ajuda a reduzir

a carga cognitiva e torna o processo de preenchimento do formulário mais gerível.

Generative UI 207

Por exemplo, se um utilizador estiver a registar-se para uma subscrição básica, o

formulário pode inicialmente apresentar apenas os campos essenciais, e à medida que o

utilizador progride ou seleciona opções específicas, campos adicionais relevantes podem

ser introduzidos dinamicamente.

Texto Explicativo Sensível ao Contexto

As dicas de contexto são frequentemente utilizadas para fornecer informações

adicionais ou orientação aos utilizadores quando passam o rato por cima ou interagem

com elementos específicos. Com uma abordagem de “Geração de Conteúdo Contextual”,

pode gerar dicas de contexto que se adaptam ao contexto do utilizador e fornecem

informações relevantes. Por exemplo, se um utilizador estiver a explorar uma

funcionalidade complexa, a dica de contexto pode oferecer sugestões personalizadas ou

exemplos baseados nas suas interações anteriores ou nível de competência.

O texto explicativo, como instruções, descrições ou mensagens de ajuda, pode ser

gerado dinamicamente com base no contexto do utilizador. Em vez de apresentar

explicações genéricas, pode usar LLMs para gerar texto que é adaptado às necessidades

ou questões específicas do utilizador. Por exemplo, se um utilizador estiver com

dificuldades num determinado passo do processo, o texto explicativo pode fornecer

orientação personalizada ou dicas de resolução de problemas.

Microtexto refere-se aos pequenos fragmentos de texto que guiam os utilizadores

através da sua aplicação, como etiquetas de botões, mensagens de erro ou prompts

de confirmação. Ao aplicar a abordagem de Geração de Conteúdo Contextual ao

microtexto, pode criar uma interface adaptativa que responde às ações do utilizador

e fornece texto relevante e útil. Por exemplo, se um utilizador estiver prestes a

realizar uma ação crítica, o prompt de confirmação pode ser gerado dinamicamente

para fornecer uma mensagem clara e personalizada.

O texto explicativo e as dicas de contexto personalizadas podem melhorar

significativamente o processo de integração para novos utilizadores. Ao fornecer

Generative UI 208

orientação e exemplos específicos ao contexto, pode ajudar os utilizadores a

compreender e navegar rapidamente na aplicação, reduzindo a curva de aprendizagem

e aumentando a adoção.

Os elementos de interface dinâmicos e sensíveis ao contexto também podem tornar

a aplicação mais intuitiva e envolvente. Os utilizadores têm maior probabilidade de

interagir e explorar funcionalidades quando o texto que as acompanha é adaptado às

suas necessidades e interesses específicos.

Até agora abordámos ideias para melhorar os paradigmas existentes de UI com IA, mas e

se repensássemos de forma mais radical como as interfaces do utilizador são desenhadas

e implementadas?

Definindo a UI Generativa

Ao contrário do design de UI tradicional, onde os designers criam interfaces fixas e

estáticas, a GenUI sugere um futuro em que o nosso software apresenta experiências

flexíveis e personalizadas que podem evoluir e adaptar-se em tempo real. Sempre que

utilizamos uma interface conversacional baseada em IA, estamos a permitir que a IA se

adapte às necessidades particulares do utilizador. A GenUI vai um passo além ao aplicar

esse nível de adaptabilidade à interface visual do software.

A razão pela qual é possível experimentar com ideias de GenUI hoje é que os modelos

de linguagem grandes já compreendem programação e o seu conhecimento base inclui

tecnologias e frameworks de UI. A questão é, portanto, se os modelos de linguagem

grandes podem ser utilizados para gerar elementos de UI, como texto, imagens, layouts

e até interfaces completas, que são adaptadas a cada utilizador individual. O modelo

poderia ser instruído para ter em conta vários fatores, como as interações anteriores

do utilizador, preferências declaradas, informações demográficas e o contexto atual de

utilização, para criar interfaces altamente personalizadas e relevantes.

Generative UI 209

A GenUI difere do design de interface do utilizador tradicional em vários aspetos

fundamentais:

1. Dinâmica e Adaptativa: O design de UI tradicional envolve a criação de

interfaces fixas e estáticas que permanecem iguais para todos os utilizadores.

Em contraste, a GenUI permite interfaces que se podem adaptar e mudar

dinamicamente com base nas necessidades e contexto do utilizador. Isto significa

que a mesma aplicação pode apresentar interfaces diferentes para diferentes

utilizadores ou até para o mesmo utilizador em situações diferentes.

2. Personalização em Escala: Com o design tradicional, criar experiências

personalizadas para cada utilizador é frequentemente impraticável devido ao

tempo e recursos necessários. A GenUI, por outro lado, permite a personalização

em escala. Ao aproveitar a IA, os designers podem criar interfaces que se adaptam

automaticamente às necessidades e preferências únicas de cada utilizador, sem

ter de desenhar e desenvolver manualmente interfaces separadas para cada

segmento de utilizadores.

3. Foco nos Resultados: O design de UI tradicional frequentemente concentra-se

em criar interfaces visualmente atraentes e funcionais. Embora estes aspetos ainda

sejam importantes na GenUI, o foco principal muda para alcançar os resultados

desejados pelo utilizador. A GenUI visa criar interfaces que são otimizadas para

os objetivos e tarefas específicos de cada utilizador, priorizando a usabilidade e

eficácia sobre considerações puramente estéticas.

4. Aprendizagem e Melhoria Contínua: Os sistemas GenUI podem aprender e

melhorar continuamente ao longo do tempo com base nas interações e feedback

dos utilizadores. À medida que os utilizadores interagem com as interfaces

geradas, os modelos de IA podem recolher dados sobre o comportamento,

preferências e resultados dos utilizadores, usando esta informação para refinar e

otimizar futuras gerações de interfaces. Este processo de aprendizagem iterativo

permite que os sistemas GenUI se tornem cada vez mais eficazes em atender às

necessidades dos utilizadores ao longo do tempo.

Generative UI 210

É importante notar que a GenUI não é o mesmo que ferramentas de design assistidas

por IA, como aquelas que fornecem sugestões ou automatizam certas tarefas de design.

Embora estas ferramentas possam ser úteis para agilizar o processo de design, elas ainda

dependem dos designers para tomar decisões finais e criar interfaces estáticas. A GenUI,

por outro lado, envolve o sistema de IA assumindo um papel mais ativo na geração e

adaptação real de interfaces com base nos dados e contexto do utilizador.

A GenUI representa uma mudança significativa na forma como abordamos o design

de interface do utilizador, afastando-se de soluções únicas para todos e aproximando-se

de experiências altamente personalizadas e adaptativas. Ao aproveitar o poder da IA,

a GenUI tem o potencial de revolucionar a forma como interagimos com produtos e

serviços digitais, criando interfaces que são mais intuitivas, envolventes e eficazes para

cada utilizador individual.

Exemplo

Para ilustrar o conceito de GenUI, vamos considerar uma aplicação hipotética de

fitness chamada “FitAI”. Esta aplicação visa fornecer planos de treino personalizados

e conselhos nutricionais aos utilizadores com base nos seus objetivos individuais, níveis

de fitness e preferências.

Numa abordagem tradicional de design de UI, o FitAI poderia ter um conjunto fixo de

ecrãs e elementos que são os mesmos para todos os utilizadores. No entanto, com a

GenUI, a interface da aplicação poderia adaptar-se dinamicamente às necessidades e

contexto únicos de cada utilizador.

Esta abordagem é um pouco difícil de imaginar implementar em 2024 e pode nem ter

um ROI adequado, mas é possível.

Eis como poderia funcionar:

1. Integração:

Generative UI 211

• Em vez de um questionário padrão, o FitAI usa uma IA conversacional para

recolher informações sobre os objetivos do utilizador, nível atual de fitness e

preferências.

• Com base nesta interação inicial, a IA gera um layout de painel

personalizado, destacando as funcionalidades e informações mais relevantes

para os objetivos do utilizador.

• A tecnologia de IA atual pode ter uma seleção de componentes de ecrã à sua

disposição para usar na composição do painel personalizado.

• A tecnologia de IA futura pode assumir o papel de um designer de UI

experiente e realmente criar o painel do zero.

2. Planificador de Treinos:

• A interface do planificador de treinos é adaptada pela IA especificamente

para corresponder ao nível de experiência do utilizador e ao equipamento

disponível.

• Para um iniciante sem equipamento, pode mostrar exercícios simples com o

peso corporal, com instruções detalhadas e vídeos.

• Para um utilizador avançado com acesso a um ginásio, pode apresentar

rotinas mais complexas com menos conteúdo explicativo.

• O conteúdo do planificador de treinos não é simplesmente filtrado de um

grande conjunto. Pode ser gerado instantaneamente com base numa base de

conhecimento que é consultada com um contexto que inclui tudo o que se

sabe sobre o utilizador.

3. Monitorização de Progresso:

• A interface de monitorização de progresso evolui com base nos objetivos e

padrões de envolvimento do utilizador.

• Se um utilizador está principalmente focado na perda de peso, a interface

pode exibir de forma proeminente um gráfico de tendência de peso e

estatísticas de queima de calorias.

Generative UI 212

• Para um utilizador a desenvolver massa muscular, pode destacar ganhos de

força e alterações na composição corporal.

• A IA pode adaptar esta parte da aplicação ao progresso real do utilizador. Se

o progresso parar durante um período de tempo, a aplicação podemudar para

um modo onde tenta persuadir o utilizador a revelar as razões do retrocesso,

de forma a mitigá-las.

4. Aconselhamento Nutricional:

• A secção de nutrição adapta-se às preferências e restrições alimentares do

utilizador.

• Para um utilizador vegano, pode mostrar sugestões de refeições à base de

plantas e fontes de proteína.

• Para um utilizador com intolerância ao glúten, filtraria automaticamente

alimentos com glúten das recomendações.

• Mais uma vez, o conteúdo não é retirado de um enorme conjunto de dados

de refeições aplicável a todos os utilizadores, mas sim sintetizado a partir de

uma base de conhecimento que contém informações adaptáveis com base na

situação específica e restrições do utilizador.

• Por exemplo, as receitas são geradas com especificações de ingredientes que

correspondem às necessidades calóricas em constante mudança do utilizador

à medida que o seu nível de fitness e estatísticas corporais evoluem.

5. Elementos Motivacionais:

• O conteúdo motivacional e as notificações da aplicação são personalizados

com base no tipo de personalidade do utilizador e na resposta a diferentes

estratégias motivacionais.

• Alguns utilizadores podem receber mensagens encorajadoras, enquanto

outros recebem feedback mais orientado a dados.

Generative UI 213

Neste exemplo, a GenUI permite que a FitAI crie uma experiência altamente

personalizada para cada utilizador, potencialmente aumentando o envolvimento, a

satisfação e a probabilidade de alcançar objetivos de fitness. Os elementos da interface,

o conteúdo e até mesmo a “personalidade” da aplicação adaptam-se para melhor servir

as necessidades e preferências de cada utilizador individual.

A Mudança para o Design Orientado a

Resultados

A GenUI representa uma mudança fundamental na abordagem ao design de interface

do utilizador, passando de um foco na criação de elementos específicos de interface

para uma abordagem mais holística e orientada a resultados. Esta mudança tem várias

implicações importantes:

1. Foco nos Objetivos do Utilizador:

• Os designers precisarão de pensar mais profundamente sobre os objetivos do

utilizador e os resultados desejados, em vez de componentes específicos da

interface.

• A ênfase será na criação de sistemas que possam gerar interfaces que ajudem

os utilizadores a alcançar os seus objetivos de forma eficiente e eficaz.

• Surgirão novas estruturas de UI que fornecerão aos designers baseados

em IA as ferramentas necessárias para gerar experiências de utilizador

instantaneamente e do zero, em vez de baseadas em especificações

predefinidas de ecrã.

2. Mudança no Papel dos Designers:

• Os designers farão a transição da criação de layouts fixos para a definição

de regras, restrições e diretrizes que os sistemas de IA devem seguir ao gerar

interfaces.

Generative UI 214

• Precisarão de desenvolver competências em áreas como análise de dados,

engenharia de prompts de IA e pensamento sistémico para orientar

eficazmente os sistemas GenUI.

3. Importância da Pesquisa do Utilizador:

• A pesquisa do utilizador torna-se ainda mais crítica num contexto GenUI,

pois os designers precisam de compreender não apenas as preferências do

utilizador, mas também como estas preferências e necessidades mudam em

diferentes contextos.

• Testes contínuos com utilizadores e ciclos de feedback serão essenciais para

refinar e melhorar a capacidade da IA de gerar interfaces eficazes.

4. Design para Variabilidade:

• Em vez de criar uma única interface “perfeita”, os designers precisarão de

considerar múltiplas variações possíveis e garantir que o sistema possa gerar

interfaces apropriadas para diversas necessidades dos utilizadores.

• Isto inclui projetar para casos extremos e garantir que as interfaces geradas

mantêm a usabilidade e acessibilidade em diferentes configurações.

• A diferenciação de produtos assume novas dimensões envolvendo

perspetivas divergentes sobre psicologia do utilizador e o aproveitamento

de conjuntos de dados únicos e bases de conhecimento indisponíveis para

os concorrentes.

Desafios e Considerações

Embora a GenUI ofereça possibilidades empolgantes, também apresenta vários desafios

e considerações:

1. Limitações Técnicas:

Generative UI 215

• A tecnologia de IA atual, embora avançada, ainda tem limitações na

compreensão de intenções complexas do utilizador e na geração de

interfaces verdadeiramente conscientes do contexto.

• Problemas de desempenho relacionados com a geração em tempo real de

elementos de interface, especialmente em dispositivos menos potentes.

2. Requisitos de Dados:

• Dependendo do caso de uso, os sistemas GenUI eficazes podem necessitar

de quantidades significativas de dados dos utilizadores para gerar interfaces

personalizadas.

• Os desafios na obtenção ética de dados autênticos dos utilizadores levantam

preocupações sobre a privacidade e segurança dos dados, bem como

potenciais enviesamentos nos dados utilizados para treinar modelos GenUI.

3. Usabilidade e Consistência:

• Pelo menos até que a prática se torne generalizada, uma aplicação com

interfaces em constantemudança pode levar a problemas de usabilidade, pois

os utilizadores podem ter dificuldade em encontrar elementos familiares ou

navegar eficientemente.

• Será crucial encontrar um equilíbrio entre a personalização e a manutenção

de uma interface consistente e fácil de aprender.

4. Dependência Excessiva da IA:

• Existe o risco de delegar excessivamente as decisões de design aos sistemas

de IA, potencialmente levando a escolhas de interface sem inspiração,

problemáticas ou simplesmente defeituosas.

• A supervisão humana e a capacidade de substituir designs gerados por IA

continuarão a ser importantes num futuro próximo.

5. Preocupações de Acessibilidade:

Generative UI 216

• Garantir que as interfaces geradas dinamicamente permaneçam acessíveis

a utilizadores com deficiência apresenta desafios completamente novos, o

que é preocupante dado o baixo nível de conformidade com a acessibilidade

demonstrado pelos sistemas típicos.

• Por outro lado, os designers de IA podem ser implementados com

preocupação incorporada pela acessibilidade e capacidades para construir

interfaces acessíveis instantaneamente, tal como constroem UI para

utilizadores sem limitações.

• De qualquer forma, os sistemas GenUI devem ser projetados com diretrizes

e processos de teste de acessibilidade robustos.

6. Confiança e Transparência do Utilizador:

• Os utilizadores podem sentir-se desconfortáveis com interfaces que parecem

“saber demais” sobre eles ou que mudam de formas que não compreendem.

• Fornecer transparência sobre como e porquê as interfaces são personalizadas

será importante para construir a confiança do utilizador.

Perspetivas Futuras e Oportunidades

O futuro da Interface Generativa (GenUI) tem uma promessa imensa para revolucionar

a forma como interagimos com produtos e serviços digitais. À medida que esta

tecnologia continua a evoluir, podemos antecipar uma mudança sísmica na forma como

as interfaces do utilizador são projetadas, implementadas e experienciadas. Penso que

a GenUI é o fenómeno que finalmente empurrará o nosso software para o domínio do

que é agora considerado ficção científica.

Uma das perspetivas mais empolgantes da GenUI é o seu potencial para melhorar

a acessibilidade numa escala grandiosa que vai além de simplesmente garantir que

pessoas com deficiências graves não sejam completamente excluídas do uso do

Generative UI 217

software. Ao adaptar automaticamente as interfaces às necessidades individuais dos

utilizadores, a GenUI poderia tornar as experiências digitais mais inclusivas do que

nunca. Imagine interfaces que se ajustam perfeitamente para fornecer texto maior

para utilizadores mais jovens ou com deficiência visual, ou layouts simplificados para

aqueles com deficiências cognitivas, tudo sem necessitar de configuração manual ou

versões “acessíveis” separadas das aplicações.

As capacidades de personalização da GenUI provavelmente impulsionarão o aumento

do envolvimento, satisfação e lealdade dos utilizadores numa ampla gama de produtos

digitais. À medida que as interfaces se tornam mais sintonizadas com as preferências

e comportamentos individuais, os utilizadores encontrarão experiências digitais

mais intuitivas e agradáveis, potencialmente levando a interações mais profundas e

significativas com a tecnologia.

A GenUI também tem o potencial de transformar o processo de integração para

novos utilizadores. Ao criar experiências intuitivas e personalizadas para utilizadores

iniciantes que se adaptam rapidamente ao nível de experiência de cada utilizador, a

GenUI poderia reduzir significativamente a curva de aprendizagem associada a novas

aplicações. Isto poderia levar a taxas de adoção mais rápidas e maior confiança dos

utilizadores na exploração de novos recursos e funcionalidades.

Outra possibilidade empolgante é a capacidade da GenUI de manter uma experiência de

utilizador consistente em diferentes dispositivos e plataformas, enquanto otimiza para

cada contexto específico de uso. Isto poderia resolver o desafio de longa data de fornecer

experiências coerentes num panorama de dispositivos cada vez mais fragmentado, desde

smartphones e tablets até computadores de secretária e tecnologias emergentes como

óculos de realidade aumentada.

A natureza orientada a dados da GenUI abre oportunidades para iteração rápida e

melhoria no design de UI. Ao recolher dados em tempo real sobre como os utilizadores

interagem com interfaces geradas, designers e programadores podem obter insights

sem precedentes sobre o comportamento e as preferências dos utilizadores. Este ciclo

Generative UI 218

de feedback poderia levar a melhorias contínuas no design de UI, impulsionadas por

padrões de uso reais em vez de suposições ou testes limitados com utilizadores.

Para se preparar para esta mudança, os designers precisarão de evoluir as suas

competências e mentalidades. O foco mudará da criação de layouts fixos para o

desenvolvimento de sistemas de design e diretrizes abrangentes que possam informar

a geração de interfaces conduzida por IA. Os designers precisarão de cultivar uma

compreensão profunda de análise de dados, tecnologias de IA e pensamento sistémico

para orientar eficazmente os sistemas GenUI.

Além disso, àmedida que aGenUI esbate as linhas entre design e tecnologia, os designers

precisarão de colaborar mais estreitamente com programadores e cientistas de dados.

Esta abordagem interdisciplinar será crucial na criação de sistemas GenUI que não são

apenas visualmente atraentes e fáceis de usar, mas também tecnicamente robustos e

eticamente sólidos.

As implicações éticas do GenUI também virão para primeiro plano à medida que a

tecnologia amadurece. Os designers terão um papel crucial no desenvolvimento de

estruturas para o uso responsável da IA no design de interface, garantindo que a

personalização melhore as experiências do utilizador sem comprometer a privacidade

ou manipular o comportamento do utilizador de formas não éticas.

Ao olharmos para o futuro, o GenUI apresenta tanto oportunidades empolgantes

como desafios significativos. Tem o potencial de criar experiências digitais mais

intuitivas, eficientes e satisfatórias para utilizadores em todo o mundo. Embora exija

que os designers se adaptem e adquiram novas competências, também oferece uma

oportunidade sem precedentes para moldar o futuro da interação humano-computador

de formas profundas e significativas. O percurso em direção a sistemas GenUI

plenamente realizados será, sem dúvida, complexo, mas as potenciais recompensas em

termos de melhoria das experiências do utilizador e acessibilidade digital tornam-no

num futuro pelo qual vale a pena lutar.

Orquestração Inteligente de
Fluxos de Trabalho

No domínio do desenvolvimento de aplicações, os fluxos de trabalho desempenham um

papel crucial na definição de como as tarefas, processos e interações do utilizador são

estruturados e executados. À medida que as aplicações se tornam mais complexas e as

expectativas dos utilizadores continuam a aumentar, a necessidade de uma orquestração

inteligente e adaptativa dos fluxos de trabalho torna-se cada vez mais evidente.

A abordagem de “Orquestração Inteligente de Fluxos de Trabalho” concentra-se em

aproveitar componentes de IA para orquestrar e otimizar dinamicamente fluxos de

trabalho complexos dentro das aplicações. O objetivo é criar aplicações mais eficientes,

responsivas e adaptáveis a dados e contextos em tempo real.

Neste capítulo, iremos explorar os principais princípios e padrões que sustentam a

abordagem de orquestração inteligente de fluxos de trabalho. Consideraremos como

Orquestração Inteligente de Fluxos de Trabalho 220

a IA pode ser utilizada para encaminhar tarefas de forma inteligente, automatizar a

tomada de decisões e adaptar dinamicamente os fluxos de trabalho com base em vários

fatores, como o comportamento do utilizador, o desempenho do sistema e as regras de

negócio. Através de exemplos práticos e cenários do mundo real, demonstraremos o

potencial transformador da IA na simplificação e otimização dos fluxos de trabalho das

aplicações.

Quer esteja a desenvolver aplicações empresariais com processos de negócio complexos

ou aplicações voltadas para o consumidor com percursos dinâmicos do utilizador, os

padrões e técnicas discutidos neste capítulo irão equipá-lo com o conhecimento e

as ferramentas necessárias para criar fluxos de trabalho inteligentes e eficientes que

melhoram a experiência geral do utilizador e impulsionam o valor do negócio.

Necessidade de Negócio

As abordagens tradicionais à gestão de fluxos de trabalho frequentemente dependem de

regras predefinidas e árvores de decisão estáticas, que podem ser rígidas, inflexíveis e

incapazes de lidar com a natureza dinâmica das aplicações modernas.

Considere um cenário em que uma aplicação de comércio eletrónico precisa de gerir

um processo complexo de processamento de encomendas. O fluxo de trabalho pode

envolver múltiplos passos, como validação da encomenda, verificação de inventário,

processamento de pagamento, envio e notificações ao cliente. Cada passo pode ter o

seu próprio conjunto de regras, dependências, integrações externas e mecanismos de

tratamento de exceções. Gerir um fluxo de trabalho deste tipo manualmente ou através

de lógica codificada pode rapidamente tornar-se complicado, propenso a erros e difícil

de manter.

Além disso, à medida que a aplicação escala e o número de utilizadores simultâneos

cresce, o fluxo de trabalho pode precisar de se adaptar e otimizar com base em dados

em tempo real e no desempenho do sistema. Por exemplo, durante períodos de pico de

Orquestração Inteligente de Fluxos de Trabalho 221

tráfego, a aplicação pode precisar de ajustar dinamicamente o fluxo de trabalho para

priorizar certas tarefas, alocar recursos de forma eficiente e garantir uma experiência de

utilizador suave.

É aqui que entra a abordagem de “Orquestração Inteligente de Fluxos de Trabalho”. Ao

aproveitar componentes de IA, os programadores podem criar fluxos de trabalho que são

inteligentes, adaptativos e auto-otimizáveis. A IA pode analisar grandes quantidades de

dados, aprender com experiências passadas e tomar decisões informadas em tempo real

para orquestrar o fluxo de trabalho de forma eficaz.

Principais Benefícios

1. Maior Eficiência: A IA pode otimizar a alocação de tarefas, a utilização de

recursos e a execução do fluxo de trabalho, levando a tempos de processamento

mais rápidos e uma maior eficiência geral.

2. Adaptabilidade: Os fluxos de trabalho baseados em IA podem adaptar-se

dinamicamente a condições em mudança, como flutuações na procura dos

utilizadores, desempenho do sistema ou requisitos de negócio, garantindo que a

aplicação permanece responsiva e resiliente.

3. Tomada de Decisão Automatizada: A IA pode automatizar processos complexos

de tomada de decisão dentro do fluxo de trabalho, reduzindo a intervençãomanual

e minimizando o risco de erros humanos.

4. Personalização: A IA pode analisar o comportamento, preferências e contexto do

utilizador para personalizar o fluxo de trabalho e fornecer experiências adaptadas

a utilizadores individuais.

5. Escalabilidade: Os fluxos de trabalho baseados em IA podem escalar

perfeitamente para lidar com volumes crescentes de dados e interações de

utilizadores, sem comprometer o desempenho ou a fiabilidade.

Nas secções seguintes, iremos explorar os principais padrões e técnicas que permitem a

Orquestração Inteligente de Fluxos de Trabalho 222

implementação de fluxos de trabalho inteligentes e mostrar exemplos do mundo real de

como a IA está a transformar a gestão de fluxos de trabalho em aplicações modernas.

Padrões Principais

Para implementar a orquestração inteligente de fluxos de trabalho em aplicações, os

programadores podem aproveitar vários padrões principais que aproveitam o poder da

IA. Estes padrões fornecem uma abordagem estruturada para desenhar e gerir fluxos de

trabalho, permitindo que as aplicações se adaptem, otimizem e automatizem processos

com base em dados e contexto em tempo real. Vamos explorar alguns dos padrões

fundamentais na orquestração inteligente de fluxos de trabalho.

Encaminhamento Dinâmico de Tarefas

Este padrão envolve o uso de IA para encaminhar tarefas de forma inteligente dentro

de um fluxo de trabalho com base em vários fatores, como prioridade da tarefa,

disponibilidade de recursos e desempenho do sistema. Os algoritmos de IA podem

analisar as características de cada tarefa, considerar o estado atual do sistema e tomar

decisões informadas para atribuir tarefas aos recursos ou caminhos de processamento

mais apropriados. O encaminhamento dinâmico de tarefas garante que as tarefas são

distribuídas e executadas de forma eficiente, otimizando o desempenho geral do fluxo

de trabalho.

Orquestração Inteligente de Fluxos de Trabalho 223

1 class TaskRouter

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 attr_accessor :task

6

7 # list of functions that can be called by the AI entirely at its

8 # discretion depending on the task received

9

10 function :analyze_task_priority do

11 TaskPriorityAnalyzer.perform(task)

12 end

13

14 function :check_resource_availability, # ...

15 function :assess_system_performance, # ...

16 function :assign_task_to_resource, # ...

17

18 DIRECTIVE = "You are a task router, responsible for intelligently

19 assigning tasks to available resources based on priority, resource

20 availability, and system performance..."

21

22 def initialize(task)

23 self.task = task

24 transcript << { system: DIRECTIVE }

25 transcript << { user: task.to_json }

26 end

27

28 def perform

29 while task.unassigned?

30 chat_completion

31

32 # todo: add max loop counter and break

33 end

34

35 # capture the transcript for later analysis

36 task.update(routing_transcript: transcript)

37 end

38 end

Note o ciclo criado pela expressão while na linha 29, que continua a solicitar a IA até

que a tarefa seja atribuída. Na linha 35, guardamos o registo da tarefa para análise e

Orquestração Inteligente de Fluxos de Trabalho 224

depuração posterior, caso seja necessário.

Tomada de Decisão Contextual

Pode utilizar código muito semelhante para tomar decisões contextuais dentro de um

fluxo de trabalho. Ao analisar pontos de dados relevantes, como preferências do

utilizador, padrões históricos e entradas em tempo real, os componentes de IA podem

determinar o curso de ação mais apropriado em cada ponto de decisão do fluxo de

trabalho. Adapte o comportamento do seu fluxo de trabalho com base no contexto

específico de cada utilizador ou cenário, proporcionando experiências personalizadas e

otimizadas.

Composição Adaptativa de Fluxos de Trabalho

Este padrão concentra-se na composição e ajuste dinâmico de fluxos de trabalho com

base em requisitos ou condições em mudança. A IA pode analisar o estado atual do

fluxo de trabalho, identificar pontos de estrangulamento ou ineficiências, e modificar

automaticamente a estrutura do fluxo de trabalho para otimizar o desempenho. A

composição adaptativa de fluxos de trabalho permite que as aplicações evoluam e

melhorem continuamente os seus processos sem necessitar de intervenção manual.

Tratamento e Recuperação de Exceções

O tratamento e recuperação de exceções são aspetos críticos da orquestração inteligente

de fluxos de trabalho. Ao trabalhar com componentes de IA e fluxos de trabalho

complexos, é essencial antecipar e tratar as exceções de forma elegante para garantir

a estabilidade e fiabilidade do sistema.

Aqui estão algumas considerações e técnicas importantes para o tratamento e

recuperação de exceções em fluxos de trabalho inteligentes:

Orquestração Inteligente de Fluxos de Trabalho 225

1. Propagação de Exceções: Implemente uma abordagem consistente para propagar

exceções entre componentes do fluxo de trabalho. Quando ocorre uma exceção

dentro de um componente, esta deve ser capturada, registada e propagada para

o orquestrador ou para um componente discreto responsável pelo tratamento de

exceções. A ideia é centralizar o tratamento de exceções e evitar que as exceções

sejam silenciosamente suprimidas, além de abrir possibilidades para o Tratamento

Inteligente de Erros.

2. Mecanismos de Nova Tentativa: Os mecanismos de nova tentativa ajudam a

melhorar a resiliência do fluxo de trabalho e a lidar com falhas intermitentes

de forma elegante. Procure definitivamente implementar mecanismos de

nova tentativa para exceções transitórias ou recuperáveis, como problemas

de conectividade de rede ou indisponibilidade de recursos que podem ser

automaticamente repetidos após um atraso especificado. Ter um orquestrador

ou gestor de exceções baseado em IA significa que as suas estratégias de nova

tentativa não precisam de ser mecânicas por natureza, dependendo de algoritmos

fixos como o recuo exponencial. Pode deixar o tratamento da nova tentativa ao

“critério” do componente de IA responsável por decidir como lidar com a exceção.

3. Estratégias de Contingência: Se um componente de IA falhar em fornecer

uma resposta válida ou encontrar um erro—uma ocorrência comum dada a sua

natureza de ponta—tenha um mecanismo de contingência em vigor para garantir

que o fluxo de trabalho possa continuar. Isto pode envolver o uso de valores

predefinidos, algoritmos alternativos ou um Humano no Circuito para tomar

decisões e manter o fluxo de trabalho em movimento.

4. Ações Compensatórias: As diretivas do orquestrador devem incluir instruções

sobre ações compensatórias para lidar com exceções que não podem ser resolvidas

automaticamente. Ações compensatórias são passos tomados para desfazer ou

mitigar os efeitos de uma operação falhada. Por exemplo, se um passo de

processamento de pagamento falhar, uma ação compensatória poderia ser reverter

a transação e notificar o utilizador. As ações compensatórias ajudam a manter a

Orquestração Inteligente de Fluxos de Trabalho 226

consistência e integridade dos dados face a exceções.

5. Monitorização e Alerta de Exceções: Configure mecanismos de monitorização

e alerta para detetar e notificar as partes interessadas relevantes sobre exceções

críticas. O orquestrador pode ser configurado com limites e regras para acionar

alertas quando as exceções excedem certos limites ou quando ocorrem tipos

específicos de exceções. Isto permite a identificação e resolução proativa de

problemas antes que afetem o sistema como um todo.

Aqui está um exemplo de tratamento e recuperação de exceções num componente de

fluxo de trabalho em Ruby:

1 class InventoryManager

2 def check_availability(order)

3 begin

4 # Perform inventory check logic

5 inventory = Inventory.find_by(product_id: order.product_id)

6 if inventory.available_quantity >= order.quantity

7 return true

8 else

9 raise InsufficientInventoryError,

10 "Insufficient inventory for product #{order.product_id}"

11 end

12 rescue InsufficientInventoryError => e

13 # Log the exception

14 logger.error("Inventory check failed: #{e.message}")

15

16 # Retry the operation after a delay

17 retry_count ||= 0

18 if retry_count < MAX_RETRIES

19 retry_count += 1

20 sleep(RETRY_DELAY)

21 retry

22 else

23 # Fallback to manual intervention

24 NotificationService.admin("Inventory check failed: Order #{order.id}")

25 return false

26 end

27 end

Orquestração Inteligente de Fluxos de Trabalho 227

28 end

29 end

Neste exemplo, o componente InventoryManager verifica a disponibilidade de um

produto para um determinado pedido. Se a quantidade disponível for insuficiente,

lança um InsufficientInventoryError. A exceção é capturada, registada e é

implementado um mecanismo de nova tentativa. Se o limite de tentativas for excedido,

o componente recorre à intervenção manual notificando um administrador.

Ao implementar mecanismos robustos de tratamento e recuperação de exceções, pode

garantir que os seus fluxos de trabalho inteligentes são resilientes, sustentáveis e capazes

de lidar com situações inesperadas de forma elegante.

Estes padrões formam a base da orquestração de fluxos de trabalho inteligentes e

podem ser combinados e adaptados para atender aos requisitos específicos de diferentes

aplicações. Ao aproveitar estes padrões, os programadores podem criar fluxos de

trabalho que são flexíveis, resilientes e otimizados para desempenho e experiência do

utilizador.

Na próxima secção, vamos explorar como estes padrões podem ser implementados na

prática, utilizando exemplos domundo real e trechos de código para ilustrar a integração

de componentes de IA na gestão de fluxos de trabalho.

Implementação Prática da Orquestração de

Fluxos de Trabalho Inteligentes

Agora que explorámos os padrões principais na orquestração de fluxos de trabalho

inteligentes, vamos mergulhar em como estes padrões podem ser implementados em

aplicações do mundo real. Forneceremos exemplos práticos e trechos de código para

ilustrar a integração de componentes de IA na gestão de fluxos de trabalho.

Orquestração Inteligente de Fluxos de Trabalho 228

Processador de Pedidos Inteligente

Vamos mergulhar num exemplo prático de implementação de orquestração de fluxo de

trabalho inteligente usando um componente OrderProcessor baseado em IA numa

aplicação de e-commerce emRuby on Rails. O OrderProcessor implementa o conceito

de Process Manager Enterprise Integration que encontrámos pela primeira vez no

Capítulo 3 ao discutir Multitude of Workers. O componente será responsável por gerir o

fluxo de trabalho de processamento de pedidos, tomar decisões de encaminhamento

com base em resultados intermediários e orquestrar a execução de várias etapas de

processamento.

O processo de processamento de pedidos envolve múltiplas etapas, como validação do

pedido, verificação de inventário, processamento de pagamento e envio. Cada etapa é

implementada como um processo worker separado que executa uma tarefa específica

e retorna o resultado para o OrderProcessor. As etapas não são obrigatórias e nem

precisam necessariamente ser realizadas numa ordem precisa.

Aqui está um exemplo de implementação do OrderProcessor. Ele apresenta

dois mixins do Raix. O primeiro (ChatCompletion) confere-lhe a capacidade

de fazer conclusão de chat, o que o torna um componente de IA. O segundo

(FunctionDispatch) permite a chamada de funções pela IA, permitindo que responda

a um prompt com uma invocação de função em vez de uma mensagem de texto.

As funções worker (validate_order, check_inventory, et al) delegam para as suas

respetivas classes worker, que podem ser componentes de IA ou não-IA, com o único

requisito sendo que retornem os resultados do seu trabalho num formato que possa ser

representado como uma string.

Tal como com todos os outros exemplos nesta parte do livro, este código é

praticamente pseudo-código e destina-se apenas a transmitir o significado

do padrão e inspirar as suas próprias criações. Descrições completas dos

padrões e exemplos de código completos estão incluídos na Parte 2.

https://github.com/OlympiaAI/raix-rails

Orquestração Inteligente de Fluxos de Trabalho 229

1 class OrderProcessor

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

6

7 def initialize(order)

8 self.order = order

9 transcript << { system: SYSTEM_DIRECTIVE }

10 transcript << { user: order.to_json }

11 end

12

13 def perform

14 # will continue looping until `stop_looping!` is called

15 chat_completion(loop: true)

16 end

17

18 # list of functions available to be called by the AI

19 # truncated for brevity

20

21 def functions

22 [

23 {

24 name: "validate_order",

25 description: "Invoke to check validity of order",

26 parameters: {

27 ...

28 },

29 ...

30]

31 end

32

33 # implementation of functions that can be called by the AI

34 # entirely at its discretion, depending on the needs of the order

35

36 def validate_order

37 OrderValidationWorker.perform(@order)

38 end

39

40 def check_inventory

41 InventoryCheckWorker.perform(@order)

42 end

Orquestração Inteligente de Fluxos de Trabalho 230

43

44 def process_payment

45 PaymentProcessingWorker.perform(@order)

46 end

47

48 def schedule_shipping

49 ShippingSchedulerWorker.perform(@order)

50 end

51

52 def send_confirmation

53 OrderConfirmationWorker.perform(@order)

54 end

55

56 def finished_processing

57 @order.update!(transcript:, processed_at: Time.current)

58 stop_looping!

59 end

60 end

No exemplo, o OrderProcessor é inicializado com um objeto de encomenda e mantém

uma transcrição da execução do fluxo de trabalho, no formato típico de transcrição de

conversação que é nativo dos modelos de linguagem grandes. É dado controlo total à

IA para orquestrar a execução de várias etapas de processamento, como validação de

encomendas, verificação de inventário, processamento de pagamentos e envio.

Sempre que o método chat_completion é chamado, a transcrição é enviada à

IA para que esta forneça uma conclusão como uma chamada de função. Cabe

inteiramente à IA analisar o resultado da etapa anterior e determinar a ação apropriada

a tomar. Por exemplo, se a verificação de inventário revelar níveis baixos de stock, o

OrderProcessor pode agendar uma tarefa de reabastecimento. Se o processamento do

pagamento falhar, pode iniciar uma nova tentativa ou notificar o apoio ao cliente.

Orquestração Inteligente de Fluxos de Trabalho 231

O exemplo acima não tem funções definidas para reabastecimento ou notificação do

apoio ao cliente, mas poderia perfeitamente tê-las.

A transcrição cresce sempre que uma função é chamada e serve como registo da

execução do fluxo de trabalho, incluindo os resultados de cada etapa e as instruções

geradas pela IA para as etapas seguintes. Esta transcrição pode ser utilizada para

depuração, auditoria e fornecimento de visibilidade sobre o processo de cumprimento

de encomendas.

Ao aproveitar a IA no OrderProcessor, a aplicação de comércio eletrónico pode

adaptar dinamicamente o fluxo de trabalho com base em dados em tempo real e

lidar com exceções de forma inteligente. O componente de IA pode tomar decisões

informadas, otimizar o fluxo de trabalho e garantir um processamento suave das

encomendas, mesmo em cenários complexos.

O facto de que o único requisito para os processos de trabalho é retornar algum resultado

inteligível para a IA considerar ao decidir o que fazer a seguir, pode começar a fazer-nos

perceber como esta abordagem pode reduzir o trabalho demapeamento de entrada/saída

que normalmente está envolvido na integração de sistemas díspares entre si.

Moderador de Conteúdo Inteligente

As aplicações de redes sociais geralmente requerem pelo menos umamoderação mínima

de conteúdo para garantir uma comunidade segura e saudável. Este exemplo do

componente ContentModerator aproveita a IA para orquestrar de forma inteligente

o fluxo de trabalho de moderação, tomando decisões com base nas características do

conteúdo e nos resultados de várias etapas de moderação.

O processo de moderação envolve múltiplas etapas, como análise de texto,

reconhecimento de imagem, avaliação da reputação do utilizador e revisão manual.

Orquestração Inteligente de Fluxos de Trabalho 232

Cada etapa é implementada como um processo de trabalho separado que executa uma

tarefa específica e retorna o resultado ao ContentModerator.

Aqui está um exemplo de implementação do ContentModerator:

1 class ContentModerator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,

6 tasked with the workflow involved in moderating user-generated content..."

7

8 def initialize(content)

9 @content = content

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: content.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 # list of functions available to be called by the AI

25 # truncated for brevity

26

27 def functions

28 [

29 {

30 name: "analyze_text",

31 # ...

32 },

33 {

34 name: "recognize_image",

35 description: "Invoke to describe images...",

36 # ...

37 },

Orquestração Inteligente de Fluxos de Trabalho 233

38 {

39 name: "assess_user_reputation",

40 # ...

41 },

42 {

43 name: "escalate_to_manual_review",

44 # ...

45 },

46 {

47 name: "approve_content",

48 # ...

49 },

50 {

51 name: "reject_content",

52 # ...

53 }

54]

55 end

56

57 # implementation of functions that can be called by the AI

58 # entirely at its discretion, depending on the needs of the order

59

60 def analyze_text

61 result = TextAnalysisWorker.perform(@content)

62 continue_with(result)

63 end

64

65 def recognize_image

66 result = ImageRecognitionWorker.perform(@content)

67 continue_with(result)

68 end

69

70 def assess_user_reputation

71 result = UserReputationWorker.perform(@content.user)

72 continue_with(result)

73 end

74

75 def escalate_to_manual_review

76 ManualReviewWorker.perform(@content)

77 @content.update!(status: 'pending', transcript: @transcript)

78 end

79

Orquestração Inteligente de Fluxos de Trabalho 234

80 def approve_content

81 @content.update!(status: 'approved', transcript: @transcript)

82 end

83

84 def reject_content

85 @content.update!(status: 'rejected', transcript: @transcript)

86 end

87

88 private

89

90 def continue_with(result)

91 @transcript << { function: result }

92 complete(@transcript)

93 end

94 end

Neste exemplo, o ContentModerator é inicializado com um objeto de conteúdo e

mantém um registo de moderação no formato de conversação. O componente de IA

tem controlo total sobre o fluxo de moderação, decidindo quais os passos a executar

com base nas características do conteúdo e nos resultados de cada etapa.

As funções trabalhadoras disponíveis para a IA invocar incluem analyze_text,

recognize_image, assess_user_reputation, e escalate_to_manual_review.

Cada função delega a tarefa para um processo trabalhador correspondente

(TextAnalysisWorker, ImageRecognitionWorker, etc.) e adiciona o resultado

ao registo de moderação, com exceção da função de escalamento, que atua como um

estado final. Por fim, as funções approve_content e reject_content também

atuam como estados finais.

O componente de IA analisa o conteúdo e determina a ação apropriada a tomar. Se

o conteúdo contiver referências a imagens, pode chamar o trabalhador recognize_-

image para assistência com uma revisão visual. Se algum trabalhador alertar sobre

conteúdo potencialmente prejudicial, a IA pode decidir escalar o conteúdo para revisão

manual ou simplesmente rejeitá-lo imediatamente. Mas dependendo da gravidade do

aviso, a IA pode optar por utilizar os resultados da avaliação da reputação do utilizador

Orquestração Inteligente de Fluxos de Trabalho 235

para decidir como lidar com conteúdo sobre o qual não tem certeza. Dependendo do

caso de uso, talvez os utilizadores confiáveis tenham mais flexibilidade no que podem

publicar. E assim por diante…

Tal como no exemplo anterior do gestor de processos, o registo demoderação serve como

um histórico da execução do fluxo de trabalho, incluindo os resultados de cada etapa e

as decisões geradas pela IA. Este registo pode ser utilizado para auditoria, transparência

e melhoria do processo de moderação ao longo do tempo.

Ao aproveitar a IA no ContentModerator, a aplicação de redes sociais pode adaptar

dinamicamente o fluxo de moderação com base nas características do conteúdo e lidar

com cenários complexos de moderação de forma inteligente. O componente de IA pode

tomar decisões informadas, otimizar o fluxo de trabalho e garantir uma experiência

comunitária segura e saudável.

Vamos explorarmais dois exemplos que demonstram o agendamento preditivo de tarefas

e o tratamento e recuperação de exceções no contexto da orquestração inteligente de

fluxos de trabalho.

Agendamento Preditivo de Tarefas num Sistema de Apoio
ao Cliente

Numa aplicação de apoio ao cliente construída com Ruby on Rails, gerir e priorizar

tickets de suporte de forma eficiente é crucial para fornecer assistência atempada aos

clientes. O componente SupportTicketScheduler utiliza IA para agendar e atribuir

previsivelmente tickets de suporte aos agentes disponíveis com base em vários fatores,

como a urgência do ticket, a especialização do agente e a carga de trabalho.

Orquestração Inteligente de Fluxos de Trabalho 236

1 class SupportTicketScheduler

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,

6 tasked with intelligently assigning tickets to available agents..."

7

8 def initialize(ticket)

9 @ticket = ticket

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: ticket.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 def functions

25 [

26 {

27 name: "analyze_ticket_urgency",

28 # ...

29 },

30 {

31 name: "list_available_agents",

32 description: "Includes expertise of available agents",

33 # ...

34 },

35 {

36 name: "predict_agent_workload",

37 description: "Uses historical data to predict upcoming workloads",

38 # ...

39 },

40 {

41 name: "assign_ticket_to_agent",

42 # ...

Orquestração Inteligente de Fluxos de Trabalho 237

43 },

44 {

45 name: "reschedule_ticket",

46 # ...

47 }

48]

49 end

50

51 # implementation of functions that can be called by the AI

52 # entirely at its discretion, depending on the needs of the order

53

54 def analyze_ticket_urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)

56 continue_with(result)

57 end

58

59 def list_available_agents

60 result = ListAvailableAgents.perform

61 continue_with(result)

62 end

63

64 def predict_agent_workload

65 result = AgentWorkloadPredictor.perform

66 continue_with(result)

67 end

68

69 def assign_ticket_to_agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

73 def delay_assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)

76 end

77

78 private

79

80 def continue_with(result)

81 @transcript << { function: result }

82 complete(@transcript)

83 end

84 end

Orquestração Inteligente de Fluxos de Trabalho 238

Neste exemplo, o SupportTicketScheduler é inicializado com um objeto de ticket de

suporte e mantém um registo de agendamento. O componente de IA analisa os detalhes

do ticket e agenda preditivamente a atribuição do ticket com base em fatores como a

urgência do ticket, a especialização do agente e a carga de trabalho prevista do agente.

As funções disponíveis para a IA invocar incluem analyze_ticket_urgency,

list_available_agents, predict_agent_workload e assign_ticket_to_-

agent. Cada função delega a tarefa para um componente analisador ou preditor

correspondente e adiciona o resultado ao registo de agendamento. A IA também tem a

opção de atrasar a atribuição usando a função delay_assignment.

O componente de IA examina o registo de agendamento e toma decisões informadas

sobre a atribuição de tickets. Considera a urgência do ticket, a especialização dos agentes

disponíveis e a carga de trabalho prevista de cada agente para determinar o agente mais

adequado para tratar do ticket.

Ao aproveitar o agendamento preditivo de tarefas, a aplicação de apoio ao cliente pode

otimizar a atribuição de tickets, reduzir os tempos de resposta e melhorar a satisfação

geral do cliente. A gestão proativa e eficiente dos tickets de suporte garante que os tickets

certos são atribuídos aos agentes certos no momento certo.

Tratamento de Exceções e Recuperação numa Pipeline de
Processamento de Dados

O tratamento de exceções e a recuperação de falhas são essenciais para

garantir a integridade dos dados e prevenir a perda de dados. O componente

DataProcessingOrchestrator utiliza IA para gerir inteligentemente as exceções e

orquestrar o processo de recuperação numa pipeline de processamento de dados

Orquestração Inteligente de Fluxos de Trabalho 239

1 class DataProcessingOrchestrator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

6

7 def initialize(data_batch)

8 @data_batch = data_batch

9 @transcript = [

10 { system: SYSTEM_DIRECTIVE },

11 { user: data_batch.to_json }

12]

13 end

14

15 def perform

16 complete(@transcript)

17 end

18

19 def model

20 "openai/gpt-4"

21 end

22

23 def functions

24 [

25 {

26 name: "validate_data",

27 # ...

28 },

29 {

30 name: "process_data",

31 # ...

32 },

33 {

34 name: "request_fix",

35 # ...

36 },

37 {

38 name: "retry_processing",

39 # ...

40 },

41 {

42 name: "mark_data_as_failed",

Orquestração Inteligente de Fluxos de Trabalho 240

43 # ...

44 },

45 {

46 name: "finished",

47 # ...

48 }

49]

50 end

51

52 # implementation of functions that can be called by the AI

53 # entirely at its discretion, depending on the needs of the order

54

55 def validate_data

56 result = DataValidator.perform(@data_batch)

57 continue_with(result)

58 rescue ValidationException => e

59 handle_validation_exception(e)

60 end

61

62 def process_data

63 result = DataProcessor.perform(@data_batch)

64 continue_with(result)

65 rescue ProcessingException => e

66 handle_processing_exception(e)

67 end

68

69 def request_fix(description_of_fix)

70 result = SmartDataFixer.new(description_of_fix, @data_batch)

71 continue_with(result)

72 end

73

74 def retry_processing(timeout_in_seconds)

75 wait(timeout_in_seconds)

76 process_data

77 end

78

79 def mark_data_as_failed

80 @data_batch.update!(status: 'failed', transcript: @transcript)

81 end

82

83 def finished

84 @data_batch.update!(status: 'finished', transcript: @transcript)

Orquestração Inteligente de Fluxos de Trabalho 241

85 end

86

87 private

88

89 def continue_with(result)

90 @transcript << { function: result }

91 complete(@transcript)

92 end

93

94 def handle_validation_exception(exception)

95 @transcript << { exception: exception.message }

96 complete(@transcript)

97 end

98

99 def handle_processing_exception(exception)

100 @transcript << { exception: exception.message }

101 complete(@transcript)

102 end

103 end

Neste exemplo, o DataProcessingOrchestrator é inicializado com um objeto de

lote de dados e mantém um registo de processamento. O componente de IA orquestra o

pipeline de processamento de dados, gerindo exceções e recuperando de falhas conforme

necessário.

As funções disponíveis para a IA invocar incluem validate_data, process_data,

request_fix, retry_processing e mark_data_as_failed. Cada função delega

a tarefa a um componente de processamento de dados correspondente e adiciona o

resultado ou os detalhes da exceção ao registo de processamento.

Se ocorrer uma exceção de validação durante a etapa validate_data, a função

handle_validation_exception adiciona os dados da exceção ao registo e devolve

o controlo à IA. Da mesma forma, se ocorrer uma exceção de processamento durante a

etapa process_data, a IA pode decidir sobre a estratégia de recuperação.

Dependendo da natureza da exceção encontrada, a IA pode, à sua discrição, decidir

chamar request_fix, que delega num componente SmartDataFixer baseado em IA

Orquestração Inteligente de Fluxos de Trabalho 242

(ver capítulo Dados Auto-Reparáveis). O corretor de dados recebe uma descrição em

linguagem simples de como deve modificar o @data_batch para que o processamento

possa ser repetido. Talvez uma repetição bem-sucedida implique remover registos

do lote de dados que falharam a validação e/ou copiá-los para um pipeline de

processamento diferente para revisão humana? As possibilidades são quase infinitas.

Ao incorporar o tratamento e recuperação de exceções baseados em IA, a aplicação

de processamento de dados torna-se mais resiliente e tolerante a falhas. O

DataProcessingOrchestrator gere inteligentemente as exceções, minimiza a

perda de dados e garante a execução suave do fluxo de trabalho de processamento de

dados.

Monitorização e Registo de Eventos

A monitorização e o registo de eventos proporcionam visibilidade sobre o progresso,

desempenho e saúde dos componentes do fluxo de trabalho baseado em IA, permitindo

aos programadores acompanhar e analisar o comportamento do sistema. A

implementação de mecanismos eficazes de monitorização e registo é essencial

para a depuração, auditoria e melhoria contínua dos fluxos de trabalho inteligentes.

Monitorização do Progresso e Desempenho do Fluxo de
Trabalho

Para garantir a execução suave dos fluxos de trabalho inteligentes, é importante

monitorizar o progresso e o desempenho de cada componente do fluxo de trabalho.

Isto envolve o acompanhamento de métricas e eventos principais ao longo do ciclo de

vida do fluxo de trabalho.

Alguns aspectos importantes a monitorizar incluem:

Orquestração Inteligente de Fluxos de Trabalho 243

1. Tempo de Execução do Fluxo de Trabalho: Medir o tempo necessário para cada

componente do fluxo de trabalho completar a sua tarefa. Isto ajuda a identificar

estrangulamentos de desempenho e a otimizar a eficiência geral do fluxo de trabalho.

2. Utilização de Recursos: Monitorizar a utilização de recursos do sistema, como CPU,

memória e armazenamento, por cada componente do fluxo de trabalho. Isto ajuda a

garantir que o sistema está a operar dentro da sua capacidade e pode gerir a carga de

trabalho eficazmente.

3. Taxas de Erro e Exceções: Acompanhar a ocorrência de erros e exceções dentro

dos componentes do fluxo de trabalho. Isto ajuda a identificar potenciais problemas e

permite o tratamento e recuperação proativos de erros.

4. Pontos de Decisão e Resultados: Monitorizar os pontos de decisão dentro do fluxo

de trabalho e os resultados das decisões baseadas em IA. Isto fornece informações sobre

o comportamento e a eficácia dos componentes de IA.

Os dados capturados pelos processos de monitorização podem ser apresentados em

painéis de controlo ou utilizados como entradas para relatórios programados que

informam os administradores do sistema sobre a saúde do sistema.

Os dados de monitorização podem ser alimentados a um processo de

administrador de sistema baseado em IA para revisão e possível ação!

Registo de Eventos e Decisões Principais

O registo de eventos é uma prática essencial que envolve a captura e armazenamento

de informações relevantes sobre eventos principais, decisões e exceções que ocorrem

durante a execução do fluxo de trabalho.

Alguns aspectos importantes a registar incluem:

Orquestração Inteligente de Fluxos de Trabalho 244

1. Iniciação e Conclusão do Fluxo de Trabalho: Registar os tempos de início e fim de

cada instância do fluxo de trabalho, juntamente com quaisquer metadados relevantes,

como os dados de entrada e o contexto do utilizador.

2. Execução de Componentes: Registar os detalhes de execução de cada componente

do fluxo de trabalho, incluindo os parâmetros de entrada, resultados de saída e quaisquer

dados intermediários gerados.

3. Decisões e Raciocínio da IA: Registar as decisões tomadas pelos componentes de IA,

juntamente com o raciocínio subjacente ou pontuações de confiança. Isto proporciona

transparência e permite a auditoria de decisões baseadas em IA.

4. Exceções e Mensagens de Erro: Registar quaisquer exceções ou mensagens de erro

encontradas durante a execução do fluxo de trabalho, incluindo o rastreamento de pilha

e informações contextuais relevantes.

O registo pode ser implementado usando várias técnicas, como escrever em ficheiros

de registo, armazenar registos numa base de dados ou enviar registos para um serviço

de registo centralizado. É importante escolher uma estrutura de registo que forneça

flexibilidade, escalabilidade e fácil integração com a arquitetura da aplicação.

Aqui está um exemplo de como o registo pode ser implementado numa aplicação Ruby

on Rails usando a classe ActiveSupport::Logger:

1 class WorkflowLogger

2 def self.log(message, severity = :info)

3 @logger ||= ActiveSupport::Logger.new('workflow.log')

4 @logger.formatter ||= proc do |severity, datetime, progname, msg|

5 "#{datetime} [#{severity}] #{msg}\n"

6 end

7 @logger.send(severity, message)

8 end

9 end

10

11 # Usage example

12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")

13 WorkflowLogger.log("Payment processing completed successfully")

14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

Orquestração Inteligente de Fluxos de Trabalho 245

Ao colocar estrategicamente declarações de registo ao longo dos componentes do fluxo

de trabalho e pontos de decisão da IA, os programadores podem capturar informações

valiosas para depuração, auditoria e análise.

Benefícios da Monitorização e Registo

A implementação de monitorização e registo na orquestração inteligente de fluxos de

trabalho oferece vários benefícios:

1. Depuração e Resolução de Problemas: Registos detalhados e dados de

monitorização ajudam os programadores a identificar e diagnosticar problemas

rapidamente. Fornecem informações sobre o fluxo de execução do workflow,

interações entre componentes e quaisquer erros ou exceções encontrados.

2. Otimização de Desempenho: A monitorização de métricas de desempenho permite

aos programadores identificar estrangulamentos e otimizar os componentes do fluxo de

trabalho para maior eficiência. Ao analisar tempos de execução, utilização de recursos

e outras métricas, os programadores podem tomar decisões informadas para melhorar

o desempenho geral do sistema.

3. Auditoria e Conformidade: O registo de eventos e decisões importantes fornece um

histórico de auditoria para conformidade regulamentar e responsabilização. Permite às

organizações rastrear e verificar as ações tomadas pelos componentes de IA e garantir a

adesão às regras de negócio e requisitos legais.

4. Melhoria Contínua: Os dados de monitorização e registo servem como contributos

valiosos para a melhoria contínua dos fluxos de trabalho inteligentes. Ao analisar dados

históricos, identificar padrões e medir a eficácia das decisões da IA, os programadores

podem refinar e melhorar iterativamente a lógica de orquestração do fluxo de trabalho.

Considerações e Boas Práticas

Ao implementar monitorização e registo na orquestração inteligente de fluxos de

trabalho, considere as seguintes boas práticas:

Orquestração Inteligente de Fluxos de Trabalho 246

1. Definir Métricas Claras de Monitorização: Identifique as métricas e eventos

principais que precisam ser monitorizados com base nos requisitos específicos do fluxo

de trabalho. Concentre-se em métricas que forneçam informações significativas sobre

o desempenho, saúde e comportamento do sistema.

2. Implementar Registo Granular: Garanta que as declarações de registo são colocadas

em pontos apropriados dentro dos componentes do fluxo de trabalho e pontos de

decisão da IA. Capture informações contextuais relevantes, como parâmetros de entrada,

resultados de saída e quaisquer dados intermediários gerados.

3. Utilizar Registo Estruturado: Adote um formato de registo estruturado para facilitar

a análise e interpretação dos dados de registo. O registo estruturado permite melhor

capacidade de pesquisa, filtragem e agregação das entradas de registo.

4. Gerir Retenção e Rotação de Registos: Implemente políticas de retenção e

rotação de registos para gerir o armazenamento e ciclo de vida dos ficheiros de registo.

Determine o período de retenção apropriado com base em requisitos legais, restrições

de armazenamento e necessidades de análise. Se possível, transfira o registo para um

serviço de terceiros como o Papertrail.

5. Proteger Informações Sensíveis: Seja cauteloso ao registar informações sensíveis,

como informações pessoalmente identificáveis (PII) ou dados comerciais confidenciais.

Implemente medidas de segurança apropriadas, como mascaramento de dados ou

encriptação, para proteger informações sensíveis nos ficheiros de registo.

6. Integrar com Ferramentas de Monitorização e Alerta: Aproveite ferramentas de

monitorização e alerta para centralizar a recolha, análise e visualização de dados de

monitorização e registo. Estas ferramentas podem fornecer informações em tempo real,

gerar alertas com base em limites predefinidos e facilitar a deteção e resolução proativa

de problemas. A minha ferramenta favorita entre estas é o Datadog.

Ao implementar mecanismos abrangentes de monitorização e registo, os programadores

podem obter informações valiosas sobre o comportamento e desempenho dos fluxos

de trabalho inteligentes. Estas informações permitem a depuração eficaz, otimização e

https://papertrailapp.com
https://www.datadoghq.com

Orquestração Inteligente de Fluxos de Trabalho 247

melhoria contínua dos sistemas de orquestração de fluxos de trabalho baseados em IA.

Considerações de Escalabilidade e Desempenho

A escalabilidade e o desempenho são aspectos críticos a considerar ao projetar e

implementar sistemas de orquestração de fluxos de trabalho inteligentes. Àmedida que o

volume de fluxos de trabalho concorrentes e a complexidade dos componentes baseados

em IA aumentam, torna-se essencial garantir que o sistema pode lidar com a carga de

trabalho de forma eficiente e escalar perfeitamente para atender às crescentes exigências.

Gestão de Grandes Volumes de Fluxos de Trabalho
Concorrentes

Os sistemas de orquestração de fluxos de trabalho inteligentes frequentemente precisam

de lidar com um grande número de fluxos de trabalho concorrentes. Para garantir a

escalabilidade, considere as seguintes estratégias:

1. Processamento Assíncrono: Implemente mecanismos de processamento assíncrono

para desacoplar a execução dos componentes do fluxo de trabalho. Isto permite que o

sistema lide commúltiplos fluxos de trabalho simultaneamente sem bloquear ou esperar

que cada componente termine. O processamento assíncrono pode ser alcançado usando

filas de mensagens, arquiteturas orientadas a eventos ou frameworks de processamento

de tarefas em segundo plano como o Sidekiq.

2. Arquitetura Distribuída: Projete a arquitetura do sistema para usar componentes

sem servidor (como AWS Lambda) ou simplesmente distribua a carga de trabalho por

vários nós ou servidores junto com o seu servidor de aplicação principal. Isto permite

a escalabilidade horizontal, onde nós adicionais podem ser adicionados para lidar com

volumes aumentados de fluxos de trabalho.

3. Execução Paralela: Identifique oportunidades para execução paralela dentro dos

fluxos de trabalho. Alguns componentes do fluxo de trabalho podem ser independentes

Orquestração Inteligente de Fluxos de Trabalho 248

uns dos outros e podem ser executados simultaneamente. Ao aproveitar técnicas de

processamento paralelo, como multithreading ou filas de tarefas distribuídas, o sistema

pode otimizar a utilização de recursos e reduzir o tempo total de execução do fluxo de

trabalho.

Otimização do Desempenho de Componentes Baseados
em IA

Os componentes baseados em IA, como modelos de aprendizagem automática ou

motores de processamento de linguagem natural, podem ser computacionalmente

intensivos e impactar o desempenho geral do sistema de orquestração de fluxos de

trabalho. Para otimizar o desempenho dos componentes de IA, considere as seguintes

técnicas:

1. Caching: Se o seu processamento de IA for puramente generativo e não envolver

consultas de informações em tempo real ou integrações externas para gerar as suas

respostas de chat, então pode considerar mecanismos de cache para armazenar e

reutilizar os resultados de operações frequentemente acedidas ou computacionalmente

dispendiosas.

2. Otimização de Modelos: Otimize continuamente a forma como utiliza os modelos

de IA nos componentes do fluxo de trabalho. Isto pode envolver técnicas como

Destilação de Prompts ou pode simplesmente ser uma questão de testar novos modelos

à medida que ficam disponíveis.

3. Processamento em Lote: Se estiver a trabalhar commodelos da classe GPT-4, poderá

aproveitar técnicas de processamento em lote para processar múltiplos pontos de dados

ou pedidos num único lote, em vez de os processar individualmente. Ao processar dados

em lotes, o sistema pode otimizar a utilização de recursos e reduzir a sobrecarga de

pedidos repetidos ao modelo.

Orquestração Inteligente de Fluxos de Trabalho 249

Monitorização e Análise de Desempenho

Para identificar gargalos de desempenho e otimizar a escalabilidade do sistema de

orquestração inteligente de fluxos de trabalho, é crucial implementar mecanismos de

monitorização e análise. Considere as seguintes abordagens:

1. Métricas de Desempenho: Defina e acompanhe métricas-chave de desempenho,

como tempo de resposta, taxa de transferência, utilização de recursos e latência.

Estas métricas fornecem informações sobre o desempenho do sistema e ajudam a

identificar áreas para otimização. O popular agregador de modelos de IA OpenRouter

inclui métricas de Host1 e Velocidade2 em cada resposta da API, tornando trivial o

acompanhamento destas métricas-chave.

2. Ferramentas de Análise: Utilize ferramentas de análise para avaliar o desempenho

de componentes individuais do fluxo de trabalho e operações de IA. As ferramentas de

análise podem ajudar a identificar pontos críticos de desempenho, caminhos de código

ineficientes ou operações que consumam muitos recursos. As ferramentas populares de

análise incluem New Relic, Scout, ou analisadores integrados fornecidos pela linguagem

de programação ou framework.

3. Testes de Carga: Realize testes de carga para avaliar o desempenho do sistema

sob diferentes níveis de cargas de trabalho simultâneas. Os testes de carga ajudam a

identificar os limites de escalabilidade do sistema, detetar degradação de desempenho

e garantir que o sistema pode lidar com o tráfego esperado sem comprometer o

desempenho.

4. Monitorização Contínua: Implemente mecanismos de monitorização contínua e

alertas para detetar proativamente problemas e gargalos de desempenho. Configure

painéis de monitorização e alertas para acompanhar indicadores-chave de desempenho

1Host é o tempo que demorou a receber o primeiro byte da geração transmitida do host domodelo, também
conhecido como “tempo até ao primeiro byte.”

2A Velocidade é calculada como o número de tokens de conclusão dividido pelo tempo total de geração.
Para pedidos não transmitidos em stream, a latência é considerada parte do tempo de geração.

https://openrouter.ai

Orquestração Inteligente de Fluxos de Trabalho 250

(KPIs) e receber notificações quando os limites predefinidos forem ultrapassados. Isto

permite a identificação e resolução rápida de problemas de desempenho.

Estratégias de Escalamento

Para lidar com cargas de trabalho crescentes e garantir a escalabilidade do sistema de

orquestração inteligente de fluxos de trabalho, considere as seguintes estratégias de

escalamento:

1. Escalamento Vertical: O escalamento vertical envolve aumentar os recursos (por

exemplo, CPU, memória) de nós ou servidores individuais para lidar com cargas de

trabalhomais elevadas. Esta abordagem é adequada quando o sistema requermais poder

de processamento oumemória para lidar com fluxos de trabalho complexos ou operações

de IA.

2. Escalamento Horizontal: O escalamento horizontal envolve adicionar mais nós

ou servidores ao sistema para distribuir a carga de trabalho. Esta abordagem é eficaz

quando o sistema precisa de lidar com um grande número de fluxos de trabalho

simultâneos ou quando a carga de trabalho pode ser facilmente distribuída por múltiplos

nós. O escalamento horizontal requer uma arquitetura distribuída e mecanismos de

balanceamento de carga para garantir uma distribuição uniforme do tráfego.

3. Auto-Escalamento: Implemente mecanismos de auto-escalamento para ajustar

automaticamente o número de nós ou recursos com base na procura da carga de

trabalho. O auto-escalamento permite que o sistema escale dinamicamente para cima

ou para baixo dependendo do tráfego recebido, garantindo uma utilização ótima dos

recursos e eficiência de custos. Plataformas cloud como Amazon Web Services (AWS)

ouGoogle Cloud Platform (GCP) fornecem capacidades de auto-escalamento que podem

ser aproveitadas para sistemas de orquestração inteligente de fluxos de trabalho.

Orquestração Inteligente de Fluxos de Trabalho 251

Técnicas de Otimização de Desempenho

Para além das estratégias de escalamento, considere as seguintes técnicas de otimização

de desempenho para melhorar a eficiência do sistema de orquestração inteligente de

fluxos de trabalho:

1. Armazenamento e Recuperação Eficiente de Dados: Otimize os mecanismos

de armazenamento e recuperação de dados utilizados pelos componentes do fluxo de

trabalho. Utilize indexação eficiente de bases de dados, técnicas de otimização de

consultas e cache de dados para minimizar a latência e melhorar o desempenho de

operações intensivas de dados.

2. E/S Assíncrona: Utilize operações de E/S assíncronas para evitar bloqueios e

melhorar a capacidade de resposta do sistema. A E/S assíncrona permite que o sistema

processe múltiplos pedidos simultaneamente sem esperar pela conclusão das operações

de E/S, maximizando assim a utilização dos recursos.

3. Serialização e Deserialização Eficientes: Otimize os processos de serialização e

deserialização utilizados na troca de dados entre componentes do workflow. Utilize

formatos de serialização eficientes, como Protocol Buffers ou MessagePack, para reduzir

a sobrecarga da serialização de dados e melhorar o desempenho da comunicação entre

componentes.

Para aplicações baseadas em Ruby, considere utilizar Universal ID. O

Universal ID aproveita tanto oMessagePack como o Brotli (uma combinação

construída para velocidade e compressão de dados de primeira classe).

Quando combinadas, estas bibliotecas são até 30% mais rápidas e têm taxas

de compressão entre 2-5% em comparação com o Protocol Buffers.

4. Compressão e Codificação: Aplique técnicas de compressão e codificação para

reduzir o tamanho dos dados transferidos entre componentes do workflow. Algoritmos

https://github.com/hopsoft/universalid

Orquestração Inteligente de Fluxos de Trabalho 252

de compressão, como gzip ou Brotli, podem reduzir significativamente o uso da largura

de banda de rede e melhorar o desempenho geral do sistema.

Ao considerar aspectos de escalabilidade e desempenho durante o design e

implementação de sistemas de orquestração de workflows inteligentes, pode garantir

que o seu sistema consegue lidar com grandes volumes de workflows concorrentes,

otimizar o desempenho dos componentes baseados em IA e escalar facilmente para

satisfazer as crescentes exigências. A monitorização contínua, a análise de desempenho

e os esforços de otimização são essenciais para manter o desempenho e a capacidade de

resposta do sistema à medida que a carga de trabalho e a complexidade aumentam ao

longo do tempo.

Testes e Validação de Workflows

Os testes e a validação são aspectos críticos no desenvolvimento e manutenção de

sistemas de orquestração de workflows inteligentes. Dada a natureza complexa dos

workflows baseados em IA, é essencial garantir que cada componente funciona como

esperado, que o workflow global se comporta corretamente e que as decisões da IA são

precisas e fiáveis. Nesta secção, iremos explorar várias técnicas e considerações para

testar e validar workflows inteligentes.

Testes Unitários de Componentes do Workflow

Os testes unitários envolvem testar componentes individuais do workflow isoladamente

para verificar a sua correção e robustez. Ao realizar testes unitários em componentes de

workflow baseados em IA, considere o seguinte:

1. Validação de Entrada: Teste a capacidade do componente de lidar com diferentes

tipos de entrada, incluindo dados válidos e inválidos. Verifique se o componente lida

adequadamente com casos limite e fornece mensagens de erro ou exceções apropriadas.

Orquestração Inteligente de Fluxos de Trabalho 253

2. Verificação de Saída: Confirme que o componente produz a saída esperada para um

determinado conjunto de entradas. Compare a saída real com os resultados esperados

para garantir a correção.

3. Tratamento de Erros: Teste os mecanismos de tratamento de erros do componente

simulando vários cenários de erro, como entrada inválida, indisponibilidade de

recursos ou exceções inesperadas. Verifique se o componente captura e trata os erros

adequadamente.

4. Condições de Fronteira: Teste o comportamento do componente sob condições

de fronteira, como entrada vazia, tamanho máximo de entrada ou valores extremos.

Garanta que o componente lida com estas condições adequadamente sem falhar ou

produzir resultados incorretos.

Aqui está um exemplo de um teste unitário para um componente de workflow em Ruby

utilizando a framework de testes RSpec:

1 RSpec.describe OrderValidator do

2 describe '#validate' do

3 context 'when order is valid' do

4 let(:order) { build(:order) }

5

6 it 'returns true' do

7 expect(subject.validate(order)).to be true

8 end

9 end

10

11 context 'when order is invalid' do

12 let(:order) { build(:order, total_amount: -100) }

13

14 it 'returns false' do

15 expect(subject.validate(order)).to be false

16 end

17 end

18 end

19 end

Neste exemplo, o componente OrderValidator é testado usando dois casos de teste:

Orquestração Inteligente de Fluxos de Trabalho 254

um para uma ordem válida e outro para uma ordem inválida. Os casos de teste verificam

se o método validate retorna o valor booleano esperado com base na validade da

ordem.

Testes de Integração das Interações do Fluxo de Trabalho

Os testes de integração concentram-se em verificar as interações e o fluxo de dados entre

diferentes componentes do fluxo de trabalho. Garantem que os componentes funcionem

em conjunto de forma harmoniosa e produzam os resultados esperados. Ao realizar

testes de integração em fluxos de trabalho inteligentes, considere o seguinte:

1. Interação entre Componentes: Teste a comunicação e a troca de dados entre

os componentes do fluxo de trabalho. Verifique se a saída de um componente é

corretamente passada como entrada para o próximo componente no fluxo de trabalho.

2. Consistência de Dados: Garanta que os dados permaneçam consistentes e precisos

enquanto fluem através do fluxo de trabalho. Verifique se as transformações de dados,

cálculos e agregações são realizados corretamente.

3. Propagação de Exceções: Teste como as exceções e erros são propagados e tratados

entre os componentes do fluxo de trabalho. Verifique se as exceções são capturadas,

registadas e tratadas adequadamente para evitar a interrupção do fluxo de trabalho.

4. Comportamento Assíncrono: Se o fluxo de trabalho envolver componentes

assíncronos ou execução paralela, teste os mecanismos de coordenação e sincronização.

Garanta que o fluxo de trabalho se comporte corretamente em cenários concorrentes e

assíncronos.

Aqui está um exemplo de um teste de integração para um fluxo de trabalho em Ruby

usando o framework de testes RSpec:

Orquestração Inteligente de Fluxos de Trabalho 255

1 RSpec.describe OrderProcessingWorkflow do

2

3 let(:order) { build(:order) }

4

5 it 'processes the order successfully' do

6 expect(OrderValidator).to receive(:validate).and_return(true)

7 expect(InventoryManager).to receive(:check_availability).and_return(true)

8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)

9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)

10

11 workflow = OrderProcessingWorkflow.new(order)

12 result = workflow.process

13

14 expect(result).to be true

15 expect(order.status).to eq('processed')

16 end

17

18 end

Neste exemplo, o OrderProcessingWorkflow é testado através da verificação das

interações entre diferentes componentes do fluxo de trabalho. O caso de teste estabelece

expectativas para o comportamento de cada componente e garante que o fluxo de

trabalho processa a encomenda com sucesso, atualizando o estado da encomenda em

conformidade.

Testar Pontos de Decisão de IA

Testar pontos de decisão de IA é crucial para garantir a precisão e fiabilidade dos fluxos

de trabalho baseados em IA. Ao testar pontos de decisão de IA, considere o seguinte:

1. Precisão da Decisão: Verifique se o componente de IA toma decisões precisas com

base nos dados de entrada e no modelo treinado. Compare as decisões da IA com os

resultados esperados ou dados de referência.

2. Casos Limite: Teste o comportamento do componente de IA em casos limite e

cenários invulgares. Verifique se o componente de IA lida com estes casos de forma

adequada e toma decisões razoáveis.

Orquestração Inteligente de Fluxos de Trabalho 256

3. Viés e Equidade: Avalie o componente de IA quanto a possíveis vieses e garanta que

toma decisões justas e imparciais. Teste o componente com dados de entrada diversos e

analise os resultados procurando padrões discriminatórios.

4. Explicabilidade: Se o componente de IA fornece explicações ou fundamentação

para as suas decisões, verifique a correção e clareza das explicações. Garanta que as

explicações estão alinhadas com o processo de tomada de decisão subjacente.

Aqui está um exemplo de como testar um ponto de decisão de IA em Ruby usando o

RSpec testing framework:

1 RSpec.describe FraudDetector do

2 describe '#detect_fraud' do

3 context 'when transaction is fraudulent' do

4 let(:tx) do

5 build(:transaction, amount: 10_000, location: 'High-Risk Country')

6 end

7

8 it 'returns true' do

9 expect(subject.detect_fraud(tx)).to be true

10 end

11 end

12

13 context 'when transaction is legitimate' do

14 let(:tx) do

15 build(:transaction, amount: 100, location: 'Low-Risk Country')

16 end

17

18 it 'returns false' do

19 expect(subject.detect_fraud(tx)).to be false

20 end

21 end

22 end

23 end

Neste exemplo, o componente de IA FraudDetector é testado com dois casos de teste:

um para uma transação fraudulenta e outro para uma transação legítima. Os casos de

teste verificam se o método detect_fraud retorna o valor booleano esperado com base

nas características da transação.

Orquestração Inteligente de Fluxos de Trabalho 257

Teste Ponta a Ponta

O teste ponta a ponta envolve testar todo o fluxo de trabalho do início ao fim, simulando

cenários e interações do utilizador do mundo real. Garante que o fluxo de trabalho se

comporta corretamente e produz os resultados desejados. Ao realizar testes ponta a

ponta para fluxos de trabalho inteligentes, considere o seguinte:

1. Cenários de Utilizador: Identifique cenários comuns de utilizador e teste o

comportamento do fluxo de trabalho nestes cenários. Verifique se o fluxo de trabalho

processa corretamente as entradas do utilizador, toma decisões apropriadas e produz as

saídas esperadas.

2. Validação de Dados: Garanta que o fluxo de trabalho valida e limpa as entradas

do utilizador para prevenir inconsistências nos dados ou vulnerabilidades de segurança.

Teste o fluxo de trabalho com vários tipos de dados de entrada, incluindo dados válidos

e inválidos.

3. Recuperação de Erros: Teste a capacidade do fluxo de trabalho de recuperar de

erros e exceções. Simule cenários de erro e verifique se o fluxo de trabalho os trata

adequadamente, regista os erros e toma as ações de recuperação apropriadas.

4. Desempenho e Escalabilidade: Avalie o desempenho e a escalabilidade do fluxo de

trabalho sob diferentes condições de carga. Teste o fluxo de trabalho com um grande

volume de pedidos concorrentes e meça os tempos de resposta, a utilização de recursos

e a estabilidade geral do sistema.

Aqui está um exemplo de um teste ponta a ponta para um fluxo de trabalho em Ruby

utilizando a framework de testes RSpec e a biblioteca Capybara para simular interações

do utilizador:

Orquestração Inteligente de Fluxos de Trabalho 258

1 RSpec.describe 'Order Processing Workflow' do

2 scenario 'User places an order successfully' do

3 visit '/orders/new'

4 fill_in 'Product', with: 'Sample Product'

5 fill_in 'Quantity', with: '2'

6 fill_in 'Shipping Address', with: '123 Main St'

7 click_button 'Place Order'

8

9 expect(page).to have_content('Order Placed Successfully')

10 expect(Order.count).to eq(1)

11 expect(Order.last.status).to eq('processed')

12 end

13 end

Neste exemplo, o teste ponta a ponta simula um utilizador a fazer uma encomenda

através da interface web. Preenche os campos obrigatórios do formulário, submete a

encomenda e verifica se esta é processada com sucesso, apresentando a mensagem de

confirmação apropriada e atualizando o estado da encomenda na base de dados.

Integração e Implementação Contínuas

Para garantir a fiabilidade emanutenção dos fluxos de trabalho inteligentes, recomenda-

-se a integração de testes e validação no pipeline de integração e implementação

contínuas (CI/CD). Isto permite a realização automatizada de testes e validação das

alterações ao fluxo de trabalho antes de serem implementadas em produção. Considere

as seguintes práticas:

1. Execução Automatizada de Testes: Configure o pipeline de CI/CD para executar

automaticamente o conjunto de testes sempre que sejam feitas alterações à base de

código do fluxo de trabalho. Isto garante que quaisquer regressões ou falhas são

detetadas no início do processo de desenvolvimento.

2. Monitorização da Cobertura de Testes: Meça e monitorize a cobertura de testes

dos componentes do fluxo de trabalho e dos pontos de decisão da IA. Procure alcançar

Orquestração Inteligente de Fluxos de Trabalho 259

uma alta cobertura de testes para garantir que os caminhos e cenários críticos são

minuciosamente testados.

3. Feedback Contínuo: Integre os resultados dos testes e as métricas de qualidade

do código no fluxo de trabalho de desenvolvimento. Forneça feedback contínuo aos

programadores sobre o estado dos testes, qualidade do código e quaisquer problemas

detetados durante o processo de CI/CD.

4. Ambientes de Teste: Implemente o fluxo de trabalho em ambientes de teste que

espelhem de perto o ambiente de produção. Realize testes e validações adicionais no

ambiente de teste para detetar quaisquer problemas relacionados com infraestrutura,

configuração ou integração de dados.

5. Mecanismos de Reversão: Implemente mecanismos de reversão para casos de falhas

na implementação ou problemas críticos detetados em produção. Certifique-se de que o

fluxo de trabalho pode ser rapidamente revertido para uma versão estável anterior para

minimizar o tempo de inatividade e o impacto nos utilizadores.

Ao incorporar testes e validação ao longo do ciclo de vida de desenvolvimento dos

fluxos de trabalho inteligentes, as organizações podem garantir a fiabilidade, precisão e

manutenção dos seus sistemas baseados em IA. Testes e validação regulares ajudam a

detetar erros, prevenir regressões e criar confiança no comportamento e nos resultados

do fluxo de trabalho.

Parte 2: Os Padrões

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Engenharia de Prompts
Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Engenharia de Prompts 262

Chain of Thought

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplos

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Geração de Conteúdo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Criação de Entidades Estruturadas

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Orientação do Agente LLM

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Benefícios e Considerações

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Engenharia de Prompts 263

Mudança de Modo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Quando Utilizar

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Engenharia de Prompts 264

Atribuição de Função

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Quando Usar

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplos

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Engenharia de Prompts 265

Objeto Prompt

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Engenharia de Prompts 266

Template de Prompt

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Benefícios e Considerações

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Quando Utilizar:

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Engenharia de Prompts 267

Structured IO

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Escalando Structured IO

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Benefícios e Considerações

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Engenharia de Prompts 268

Encadeamento de Prompts

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Quando Usar

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo: Integração da Olympia

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Engenharia de Prompts 269

Prompt Rewriter

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Engenharia de Prompts 270

Response Fencing

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Benefícios e Considerações

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Tratamento de Erros

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Engenharia de Prompts 271

Analisador de Consultas

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Implementação

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Marcação de Partes do Discurso (POS) e Reconhecimento de
Entidades Nomeadas (REN)

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Classificação de Intenção

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Extração de Palavras-chave

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Engenharia de Prompts 272

Benefícios

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Engenharia de Prompts 273

Query Rewriter

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Benefícios

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Engenharia de Prompts 274

Ventriloquist

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Quando Utilizar

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Componentes Discretos
Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Componentes Discretos 276

Predicado

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Quando Utilizar

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Componentes Discretos 277

API Facade

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Principais Benefícios

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Quando Usar

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Autenticação e Autorização

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Componentes Discretos 278

Tratamento de Requisições

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Formatação de Respostas

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Tratamento de Erros e Casos Limite

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Considerações sobre Escalabilidade e Desempenho

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Comparação com Outros Padrões de Design

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Componentes Discretos 279

Interpretador de Resultados

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Quando Utilizar

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Componentes Discretos 280

Máquina Virtual

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Quando Utilizar

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Por Detrás da Magia

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Especificação e Testes

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Componentes Discretos 281

Especificar o Comportamento

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Escrever Casos de Teste

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo: Testar o Componente Tradutor

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Reprodução de Interações HTTP

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Human In The Loop (HITL)
Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Padrões de Alto Nível

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Inteligência Híbrida

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Resposta Adaptativa

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Alternância de Papéis Humano-IA

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Human In The Loop (HITL) 283

Escalonamento

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Principais Benefícios

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Aplicação no Mundo Real: Saúde

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Human In The Loop (HITL) 284

Ciclo de Feedback

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Aplicações e Exemplos

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Técnicas Avançadas na Integração de Feedback Humano

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Human In The Loop (HITL) 285

Radiação Passiva de Informação

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exibição Contextual de Informação

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Notificações Proativas

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Insights Explicativos

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exploração Interativa

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Human In The Loop (HITL) 286

Principais Benefícios

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Aplicações e Exemplos

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Human In The Loop (HITL) 287

Tomada de Decisão Colaborativa (TDC)

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Human In The Loop (HITL) 288

Aprendizagem Contínua

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Aplicações e Exemplos

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Considerações Éticas

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Papel do HITL na Mitigação de Riscos de IA

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Human In The Loop (HITL) 289

Avanços Tecnológicos e Perspetivas Futuras

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Desafios e Limitações dos Sistemas HITL

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Tratamento Inteligente de Erros
Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Abordagens Tradicionais de Tratamento de

Erros

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Tratamento Inteligente de Erros 291

Diagnóstico Contextual de Erros

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Engenharia de Prompts para Diagnóstico Contextual de Erros

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Geração Aumentada por Recuperação para Diagnóstico Contextual
de Erros

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Tratamento Inteligente de Erros 292

Relatórios Inteligentes de Erros

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Tratamento Inteligente de Erros 293

Prevenção Preditiva de Erros

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Recuperação Inteligente de Erros

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Tratamento Inteligente de Erros 294

Comunicação de Erros Personalizada

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Tratamento Inteligente de Erros 295

Fluxo de Trabalho Adaptativo de Tratamento de

Erros

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Controlo de Qualidade
Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Controlo de Qualidade 297

Eval

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Problema

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Solução

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Considerações

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Controlo de Qualidade 298

Compreendendo as Referências Douradas

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funcionam as Avaliações Sem Referência

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Controlo de Qualidade 299

Barreira de Proteção

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Problema

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Solução

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Como Funciona

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Exemplo

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Considerações

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Controlo de Qualidade 300

Guardrails e Evals: Dois Lados da Mesma Moeda

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

A Intercambialidade de Guardrails e Evals sem Referência

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Implementando Guardrails e Evals de Duplo Propósito

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Glossário

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Glossário

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

A

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

B

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

C

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

302

D

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

E

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

F

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

G

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

H

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

I

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

303

J

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

K

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

L

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

M

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

N

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

O

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

304

P

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Q

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

R

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

S

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

T

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

U

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

305

V

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

W

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

Z

Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na

Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-PT.

http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT
http://leanpub.com/patterns-of-application-development-using-ai-pt-PT

Index

acessibilidade, 216

acompanhamento de métricas principais,

242

agrupamento de documentos, 120

Agênticos, 32

AI, 143

ajuste fino, 79

ajuste por instruções, 10

modelos ajustados por instruções, 50,

52

Alocação Latente de Dirichlet, 122

Alpaca, 13

Altman, Sam, 18

Amazon Web Services, 250

ambientes de desenvolvimento local, 155

ambientes de teste, 259

Amostragem Top-k, 48

Amostragem Top-p (nucleus), 48

Anthropic, 23, 39, 73, 129, 136

antropomorfismo, 68

análise de sentimento, 16, 100, 112–114,

117, 118, 134

Análise de Sentimento do Cliente, 99

análise de sentimentos, 145

APIs, 71, 123, 153

aplicação de chatbot, 119

Aplicações de Comércio Eletrónico, 91

aplicações educacionais, 32

aplicações modernas, 222

Apoio à Decisão Clínica, 103

aprendizagem não supervisionada, 4

Aprendizagem One-Shot, 60

aprendizagem zero-shot, 59

arquitetura de aplicações empresariais, 38

Arquitetura de microsserviços, 89

arquitetura de software, 2

arquitetura distribuída, 247

arquitetura orientada a eventos, 108

arquitetura transformer, 6

arrays, 130

assistentes virtuais, 34

atribuição de tickets, 238

auditoria e conformidade, 245

auto-escalamento, 250

Avaliação e Estratificação de Sintomas, 101

base de conhecimento da Olympia, 91

bases de conhecimento, 7

bases de dados, 123

estratégias de bloqueio, 109

objeto baseado em, 105

BERT, 14, 24

biblioteca Capybara, 257

Index 307

bloqueio otimista, 109

bloqueio pessimista, 109

boundary conditions, 253

Brotli, 251, 252

Byte Pair Encoding (BPE), 13, 14

C (Linguagem de Programação), 116

cache, 248

cadeia de abastecimento

otimização, 33

Cadeia de Pensamento (CoT), 45

capacidades

de tomada de decisão, 99

casos extremos, 58

Chain of Thought (CoT), 138

chamada de ferramenta, 153

chamada de função

falha, 133

chatbots de atendimento ao cliente, 34

ChatGPT, 30, 53

ciência da computação, 70, 72

classificadores por ordem, 36

classificação, 53, 120

Claude, 8, 44, 77

Claude 3, 50, 126, 129, 134, 136

Claude 3 Opus, 74

Claude v1, 17

Claude v2, 17

Cohere (Fornecedor de LLM), 23, 25

comportamento determinístico, 58

computadores de secretária, 217

comércio eletrónico, 191, 220

conclusão de alto desempenho, 26

concurrent workflows, 252

conectividade de rede, 225

confiança do utilizador, 216

conjuntos, 118

conjunto de trabalhadores, 118

consistência

e reprodutibilidade, 132

construção narrativa, 20

conta, 91

contexto

Aumento, 46

entradas infinitamente longas, 16

Geração Contextual de Conteúdo,

190–192

Geração de Conteúdo Contextual,

186, 198, 199

janela, 15, 224

Sugestões Contextuais de Campos,

199

tomada de decisão contextual, 224

conteúdo

Categorização de Conteúdo, 112

filtragem, 27

conteúdo gerado pelo utilizador, 111

Continuação Automática, 160

conversa

loop, 159

transcrição, 157, 159

conversação

ciclo, 157

correspondência de padrões, 152

Index 308

dados

análise, 34, 147

fluxo, 110

integridade, 238

persistência, 109

pipeline de processamento, 238

preparação, 109

privacidade, 27, 215

Recuperação de Dados, 109

Sincronização de Dados, 109

tarefas de processamento, 125

Validação de Dados, 257

Dados Auto-Reparáveis, 163, 242

dados de treino, 42

dados em streaming, 152

dados estruturados, 134

Datadog, 246

decisão

pontos, 243

árvores, 220

Delimitação de Respostas, 204

depuração, 224

e resolução de problemas, 245

e testes, 132

desafios conceptuais e práticos, 198

descobertas médicas, 100

desempenho

compromissos, 5

otimização, 132, 195, 245

problemas, 250

desenvolvimento de aplicações, 219

design e frameworks de aplicações, 197

deteção de fraude

sistema, 97

dicionários, 130

diretiva do sistema, 99, 128

Dohan, et al., 44

E/S Estruturada, 204

ecossistema, 148

eficiência, 221

ELK stack, 110

encadeamento de workers de IA, 111

Encaminhamento Dinâmico de Tarefas, 222

ensembles, 117

Enterprise Integration Patterns, 104

errors

handling, 253

Intelligent Error Handling, 143

erros

recuperação, 257

taxas, 110

tratamento, 107, 110, 142

erros de sintaxe, 131

escalabilidade, 221, 247

escrita criativa, 34, 52

espaço latente, 40, 42

Estratificação de Risco, 102

estratégias de contingência, 110

estratégias de segmentação e

direcionamento, 193

estratégias motivacionais, 212

estreitar o caminho, 39

eventos enviados pelo servidor (SSE), 150

Index 309

execução paralela, 248

experimentação

estrutura, 193

experiência do utilizador, 193

explicabilidade, 256

F#, 93

Facebook, 24

fatores de risco, 95, 96

feedback

Ciclo de Feedback, 59

few-shot

aprendizagem, 62

prompting, 63

filtragem baseada em conteúdo, 92

filtragem colaborativa, 92

FitAI, 210

flexibilidade e criatividade, 195

fluxo de trabalho adaptativo

Composição Adaptativa de Fluxos de

Trabalho, 224

fluxo de trabalho multi-etapa, 111

fornecedores de hospedagem de modelos

open source, 204

frameworks de desenvolvimento, 148

funcionários da Databricks, 52

função

chamada, 123, 157

histórico de chamadas, 156

nomes, 154

Gemma 7B, 11

Generative Pre-trained Transformer (GPT),

8

Geração Aumentada por Recuperação

(GAR), 79

Geração Aumentada por Recuperação

(RAG), 32, 38, 46, 125

geração cross-modal, 22

geração de dados sintéticos, 53

geração dinâmica de UI, 187

Gestor de Processos, 107

gestão de tráfego, 33

gestão do conhecimento, 32

GitLab, 93

Global Interpreter Lock (GIL), 115

Google, 23

API, 63, 65

Cloud Platform, 250

Gemini, 21

Gemini 1.5 Pro, 14, 17, 18

PaLM (Pathways Language Model),

17, 24

Plataforma de IA na Nuvem, 24

T5, 14

GPT-3, 13, 17

GPT-4, 6, 13, 17, 21, 31, 44, 50, 62, 105, 117,

120, 127, 133, 202, 203, 248

Graham, Paul, 19

GraphQL, 108

Groq, 26, 120

gzip, 252

hardware, 28

Index 310

hash, 152

hiperparâmetro, 47

Hohpe, Gregor, 104

Honeybadger, 94

HTTP, 150

Human-In-The-Loop (HITL), 178

IA, 64, 73, 99, 128, 134, 150, 201, 209

aplicações, 125, 138, 149, 162

conversacional, 6, 31, 211

modelo, 89, 98, 99, 155, 156, 158, 209

pontos de decisão, 255

sistemas compostos, 30, 31, 35

identificação de tópicos, 120

idioma

Deteção de Idioma, 112

Inferência, 5

informação

extração, 53

recuperação, 7, 126

injeções SQL, 70

input

prompts, 56

validation, 252

integração de LLMs, 187

Integração e Implementação Contínuas

(CI/CD), 258

pipeline, 258

intelligent workflow orchestration, 252

interações estilo roleplay, 6

interface adaptativa, 207

Interface de Utilizador (UI)

interfaces, 197

Interface de Utilizador Generativa (GenUI),

197

Interface do Utilizador (UI)

design, 217

estruturas, 213

interfaces, 213

tecnologias, 208

Interface Generativa (GenUI), 204, 205, 209,

213, 216

interface visual, 208

interfaces controladas por voz, 34

interfaces inclusivas, 198

internacionalização, 194

Interpretador de Resultados, 142

intervenção manual, 227

iterative refinement, 144

JSON (JavaScript Object Notation), 126,

130, 131, 134, 147, 166

K-means, 122

Large Language Model (LLM), 144

latência, 28

Limpeza de Texto, 111

linguagem

modelos, 43, 65, 72

tarefas relacionadas, 5

linguagem codificável em Unicode, 15

linguagem natural

Processamento de Linguagem Natural

(NLP), 120

Index 311

Processamento de Linguagem Natural

(PLN), 101

linha de comandos

Interface de Linha de Comandos

(CLI), 26

Llama, 13

Llama 2-70B, 50

Llama 3 70B, 11

Llama 3 8B, 11

Louvre, 42

lógica de disjuntor, 161

Managed Streaming for Apache Kafka, 41

manipuladores de stream, 151

marcação em estilo markup, 70

Markdown, 147

mecanismos de nova tentativa, 110

mecanismos de reversão, 259

Memorial Sloan Kettering Cancer Center,

41

mensagem de gatilho, 104

Mercúrio (deus romano), 45

Mercúrio (elemento), 45

Mercúrio (planeta), 45

MessagePack, 251

Meta, 24

Metropolitan Museum of Art, 42

Mistral, 25

7B, 11

7B Instruct, 17, 203

Mixtral

8x22B, 11

8x7B, 56

modelagem autorregressiva, 43

Modelo de Linguagem de Larga Escala

(LLM), 1, 3

Modelo de Linguagem Grande (LLM), 16,

18, 29, 67, 68, 71, 75, 111, 120,

123, 124, 134, 144, 147, 163, 166,

186, 208, 230

panorama, 27

Modelo de Linguagem Grande (MLG), 77,

87, 140, 202

Modelo Linguístico de Grande Escala

(LLM), 197

modelo OPT, 24

modelos base, 54

modelos baseados em recuperação, 7

modelos gráficos, 43

modelos probabilísticos, 43

Moderador de Conteúdo Inteligente, 231

modularidade, 88

monitorização

e alerta, 226

e registo, 110, 245

métricas, 246

Monitorização Contínua de Risco, 103

Multi-Agente

Solucionadores de Problemas, 31

Multimodal

modelos, 20

modelos de linguagem, 21

Multiplicidade de Trabalhadores, 119, 165

Máquinas de Vetores de Suporte (SVM), 121

Index 312

método finalize, 156, 158, 159

Naive Bayes, 121

New Relic, 249

Ollama, 25

Olympia, 34, 62, 128, 143, 151, 166

OpenAI, 3, 23, 39, 73

OpenRouter, 27, 28, 151, 249

orquestração de fluxo de trabalho

inteligente, 227

orquestração inteligente de fluxos de

trabalho, 219, 249

output verification, 253

padrões históricos, 224

padrões principais, 222

panorama digital, 192

paráfrase, 53

parâmetro

Contagem de Parâmetros, 28

efeitos, 128

intervalo, 11

parâmetros

de entrada, 128

Penalização de Presença, 48

penalizações de repetição, 51

Perplexity (Fornecedor), 12

personalização, 27, 187, 217, 221

Formulários Personalizados, 199

Microtexto Personalizado, 205

planeamento de resposta a emergências, 33

pontos de estrangulamento, 224

previsões, 5

princípio do menor privilégio, 71

problemas de usabilidade, 215

Process Manager, 104

Enterprise Integration, 228

processamento assíncrono, 247

processamento de stream, 156, 162

lógica, 158

processamento de streams, 150

processamento em lote, 248

processo de destilação, 75

Produtividade, 189

programação funcional, 92

prompts

design, 58, 68

Destilação de Prompts, 46, 73, 77, 248

encadeamento, 59, 71

engenharia, 41, 45, 46, 56, 59, 65, 67,

214

Modelo de Prompt, 59, 204

Objeto Prompt, 74

refinamento, 68

propriedades ACID, 110

Protocol Buffers, 251

psicologia do utilizador, 214

PyTorch, 24

Quantização, 28

Qwen2 70B, 11

Rails, 194

Railway Oriented Programming (ROP), 95

Raix, 228

Index 313

biblioteca, 97

Recolha de Histórico Médico, 101

Recomendações de Produtos, 92

recomendações personalizadas de produtos,

92

redes neuronais, 4, 6

refinamento iterativo, 75

registo de auditoria, 106

registo estruturado, 246

registo granular, 246

regras de negócio, 220

regras gramaticais, 4

regressão linear, 43

Response Fencing, 175

resposta a perguntas fechadas e abertas, 52

restringir o caminho, 38

retalhistas online, 204

retenção e rotação de registos, 246

revelação progressiva, 206

RSpec, 253, 254, 257

Ruby, 93, 94, 113, 162, 257

Ruby on Rails, 1, 111, 228, 235

Rudall, Alex, 23

Rust (Linguagem de Programação), 93, 116

Scout, 249

Seleção Dinâmica de Ferramentas, 130

Seleção Forçada de Ferramentas, 131

sem estado, 157

serviços externos ou APIs, 126

sistemas de pergunta e resposta, 7

sistemas de publicação-subscrição, 108

smartphones, 217

Stripe, 129

sumarização, 52

suporte ao cliente, 32

T5, 24

tablets, 217

tarefas complexas, 146

taxa de transferência, 28

Temperatura, 54

Tempo até o Primeiro Token (TTFT), 28

tempo de processamento, 110

teoria da mente, 40

teste ponta a ponta, 257, 258

testes com utilizadores e feedback, 196

testes de integração, 254

Together.ai, 26

tokenização, 12

tokens, 6, 12

tom emocional, 145

tomada de decisão

casos de uso, 133

tradução, 16, 195

tragédia dos comuns, 190

Transformador Pré-treinado Generativo

(GPT), 67

tratamento de exceções, 225, 227

Universal ID, 251

uso de ferramentas, 123, 149

Ventriloquist, 175

Verificação de Seguro, 101

Index 314

viés

e equidade em IA, 256

votação por maioria, 117

Wall, Larry, 3

Wisper, 94, 106, 151, 158

Wooley, Chad, 93

XML, 134

Yi-34B, 50

álgebra linear, 43

ética

implicações, 198

óculos de realidade aumentada, 217

	Sumário
	Prefácio por Gregor Hohpe
	Prefácio
	Sobre o Livro
	Sobre os Exemplos de Código
	O Que Não Abordo
	Para Quem É Este Livro
	Construindo um Vocabulário Comum
	Como Participar
	Agradecimentos
	O que há com as ilustrações?
	Sobre a Publicação Lean
	Sobre o Autor

	Introdução
	Reflexões sobre Arquitetura de Software
	O que é um Modelo de Linguagem de Larga Escala?
	Compreendendo a Inferência
	Pensando Sobre o Desempenho
	Experimentando com Diferentes Modelos LLM
	Sistemas de IA Compostos

	Parte 1: Abordagens e Técnicas Fundamentais
	Estreitar o Caminho
	Espaço Latente: Incompreensivelmente Vasto
	Como o Caminho é ``Estreitado''
	Modelos Base Versus Modelos Ajustados por Instruções
	Engenharia de Prompts
	Destilação de Prompts
	E quanto ao ajuste fino?

	Retrieval Augmented Generation (RAG)
	O que é a Geração Aumentada por Recuperação?
	Como Funciona o RAG?
	Por Que Usar RAG nas Suas Aplicações?
	Implementação do RAG na Sua Aplicação
	Segmentação por Proposições
	Exemplos Práticos de RAG
	Otimização Inteligente de Consultas (OIC)
	Reclassificação
	Avaliação RAG (RAGAs)
	Desafios e Perspetivas Futuras

	Multidão de Trabalhadores
	Trabalhadores de IA Como Componentes Reutilizáveis Independentes
	Gestão de Contas
	Aplicações de Comércio Eletrónico
	Aplicações na Área da Saúde
	O Worker de IA como Process Manager
	Integração de Workers de IA na Arquitetura da Sua Aplicação
	Composição e Orquestração de Workers de IA
	Combinando PLN Tradicional com LLMs

	Uso de Ferramentas
	O que é o Uso de Ferramentas?
	O Potencial da Utilização de Ferramentas
	O Fluxo de Trabalho da Utilização de Ferramentas
	Melhores Práticas para o Uso de Ferramentas
	Composição e Encadeamento de Ferramentas
	Direções Futuras

	Processamento de Streams
	Implementação de um ReplyStream
	O ``Ciclo de Conversação''
	Continuação Automática
	Conclusão

	Dados Auto-Reparáveis
	Caso Prático: Corrigir JSON Defeituoso
	Considerações e Contraindicações

	Geração de Conteúdo Contextual
	Personalização
	Produtividade
	Iteração Rápida e Experimentação
	Localização Potenciada por IA
	A Importância dos Testes com Utilizadores e do Feedback

	Generative UI
	Gerar Texto para Interfaces de Utilizador
	Definindo a UI Generativa
	Exemplo
	A Mudança para o Design Orientado a Resultados
	Desafios e Considerações
	Perspetivas Futuras e Oportunidades

	Orquestração Inteligente de Fluxos de Trabalho
	Necessidade de Negócio
	Principais Benefícios
	Padrões Principais
	Tratamento e Recuperação de Exceções
	Implementação Prática da Orquestração de Fluxos de Trabalho Inteligentes
	Monitorização e Registo de Eventos
	Considerações de Escalabilidade e Desempenho
	Testes e Validação de Workflows

	Parte 2: Os Padrões
	Engenharia de Prompts
	Chain of Thought
	Mudança de Modo
	Atribuição de Função
	Objeto Prompt
	Template de Prompt
	Structured IO
	Encadeamento de Prompts
	Prompt Rewriter
	Response Fencing
	Analisador de Consultas
	Query Rewriter
	Ventriloquist

	Componentes Discretos
	Predicado
	API Facade
	Interpretador de Resultados
	Máquina Virtual
	Especificação e Testes

	Human In The Loop (HITL)
	Padrões de Alto Nível
	Escalonamento
	Ciclo de Feedback
	Radiação Passiva de Informação
	Tomada de Decisão Colaborativa (TDC)
	Aprendizagem Contínua
	Considerações Éticas
	Avanços Tecnológicos e Perspetivas Futuras

	Tratamento Inteligente de Erros
	Abordagens Tradicionais de Tratamento de Erros
	Diagnóstico Contextual de Erros
	Relatórios Inteligentes de Erros
	Prevenção Preditiva de Erros
	Recuperação Inteligente de Erros
	Comunicação de Erros Personalizada
	Fluxo de Trabalho Adaptativo de Tratamento de Erros

	Controlo de Qualidade
	Eval
	Barreira de Proteção
	Guardrails e Evals: Dois Lados da Mesma Moeda

	Glossário
	Glossário
	Index

