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Introdução

[image: Uma imagem abstrata monocromática e dinâmica apresentando uma multiplicidade de linhas e formas geométricas convergindo para o centro, criando uma sensação de profundidade e movimento. As linhas e formas pretas contrastam nitidamente com um fundo branco, evocando uma sensação de velocidade e complexidade.]


Se você está ansioso para começar a integrar Modelos de Linguagem Grande (LLMs) em seus projetos de programação, fique à vontade para mergulhar diretamente nos padrões e exemplos de código apresentados nos capítulos posteriores. No entanto, para apreciar completamente o poder e o potencial desses padrões, vale a pena dedicar um momento para entender o contexto mais amplo e a abordagem coesa que eles representam.




Os padrões não são apenas uma coleção de técnicas isoladas, mas sim um framework unificado para integrar IA em suas aplicações. Eu uso Ruby on Rails, mas esses padrões devem funcionar em praticamente qualquer outro ambiente de programação. Eles abordam uma ampla gama de preocupações, desde gerenciamento de dados e otimização de desempenho até experiência do usuário e segurança, fornecendo um conjunto abrangente de ferramentas para aprimorar práticas de programação tradicionais com as capacidades da IA.




Cada categoria de padrões aborda um desafio ou oportunidade específica que surge ao incorporar componentes de IA em sua aplicação. Ao compreender as relações e sinergias entre esses padrões, você pode tomar decisões informadas sobre onde e como aplicar IA de forma mais eficaz.




Padrões nunca são soluções prescritivas e não devem ser tratados como tal. Eles são blocos de construção adaptáveis que devem ser ajustados às necessidades e restrições únicas da sua própria aplicação. A aplicação bem-sucedida desses padrões (como quaisquer outros na área de software) depende de uma compreensão profunda do domínio do problema, das necessidades do usuário e da arquitetura técnica geral do seu projeto.




Reflexões sobre Arquitetura de Software


Comecei a programar na década de 1980 e estava envolvido na cena hacker, e nunca perdi minha mentalidade hacker, mesmo depois de me tornar um desenvolvedor de software profissional. Desde o início, sempre tive um ceticismo saudável sobre qual valor os arquitetos de software em suas torres de marfim realmente traziam para a mesa.




Uma das razões pelas quais estou pessoalmente tão empolgado com as mudanças trazidas por esta nova e poderosa onda de tecnologia de IA é seu impacto no que consideramos decisões de arquitetura de software. Ela desafia as noções tradicionais do que constitui a maneira “correta” de projetar e implementar nossos projetos de software. Também questiona se a arquitetura ainda pode ser pensada principalmente como as partes de um sistema que são difíceis de mudar, já que o aprimoramento por IA está tornando mais fácil do que nunca mudar qualquer parte do seu projeto, a qualquer momento.




Talvez estejamos entrando nos anos de auge da abordagem “pós-moderna” da engenharia de software. Neste contexto, pós-moderno refere-se a uma mudança fundamental que se afasta dos paradigmas tradicionais, onde os desenvolvedores eram responsáveis por escrever e manter cada linha de código. Em vez disso, abraça a ideia de delegar tarefas, como manipulação de dados, algoritmos complexos e até mesmo partes inteiras da lógica da aplicação, para bibliotecas de terceiros e APIs externas. Essa mudança pós-moderna representa um distanciamento significativo da sabedoria convencional de construir aplicações desde o início, e desafia os desenvolvedores a repensarem seu papel no processo de desenvolvimento.




Sempre acreditei que bons programadores só escrevem o código que é absolutamente necessário escrever, baseando-me nos ensinamentos de Larry Wall e outros luminares hackers como ele. Ao minimizar a quantidade de código escrito, podemos avançar mais rapidamente, reduzir a superfície para bugs, simplificar a manutenção e melhorar a confiabilidade geral de suas aplicações. Menos código nos permite focar na lógica de negócio central e na experiência do usuário, enquanto delegamos outro trabalho para outros serviços.




Agora que sistemas alimentados por IA podem lidar com tarefas que antes eram domínio exclusivo do código escrito por humanos, devemos ser capazes de ser ainda mais produtivos e ágeis, com um foco maior do que nunca na criação de valor para o negócio e experiência do usuário.




Claro que existem compensações ao delegar grandes partes do seu projeto para sistemas de IA, como a potencial perda de controle e a necessidade de mecanismos robustos de monitoramento e feedback. É por isso que requer um novo conjunto de habilidades e conhecimentos, incluindo pelo menos alguma compreensão fundamental de como a IA funciona.





O que é um Modelo de Linguagem Grande?


Modelos de Linguagem Grande (LLMs) são um tipo de modelo de inteligência artificial que ganhou atenção significativa nos últimos anos, desde o lançamento do GPT-3 pela OpenAI em 2020. LLMs são projetados para processar, compreender e gerar linguagem humana com notável precisão e fluência. Nesta seção, daremos uma breve olhada em como os LLMs funcionam e por que eles são adequados para construir componentes de sistemas inteligentes.




Em sua essência, LLMs são baseados em algoritmos de aprendizado profundo, especificamente redes neurais. Essas redes são compostas de nós interconectados, ou neurônios, que processam e transmitem informações. A arquitetura de escolha para LLMs é frequentemente o modelo Transformer, que provou ser altamente eficaz no tratamento de dados sequenciais como texto.




Os modelos Transformer são baseados no mecanismo de atenção e são principalmente utilizados para tarefas envolvendo dados sequenciais, como processamento de linguagem natural. Os Transformers processam dados de entrada todos de uma vez, em vez de sequencialmente, o que permite que capturem dependências de longo alcance mais efetivamente. Eles possuem camadas de mecanismos de atenção que ajudam o modelo a focar em diferentes partes dos dados de entrada para entender contexto e relacionamentos.




O processo de treinamento para LLMs envolve expor o modelo a vastas quantidades de dados textuais, como livros, artigos, websites e repositórios de código. Durante o treinamento, o modelo aprende a reconhecer padrões, relacionamentos e estruturas dentro do texto. Ele captura as propriedades estatísticas da linguagem, como regras gramaticais, associações de palavras e significados contextuais.




Uma das técnicas principais usadas no treinamento de LLMs é o aprendizado não supervisionado. Isso significa que o modelo aprende a partir dos dados sem rotulação ou orientação explícita. Ele descobre padrões e representações por conta própria ao analisar a co-ocorrência de palavras e frases nos dados de treinamento. Isso permite que os LLMs desenvolvam uma compreensão profunda da linguagem e suas complexidades.




Outro aspecto importante dos LLMs é sua capacidade de lidar com contexto. Ao processar um texto, os LLMs consideram não apenas as palavras individuais, mas também o contexto ao redor. Eles levam em conta as palavras, frases e até parágrafos anteriores para entender o significado e a intenção do texto. Essa compreensão contextual permite que os LLMs gerem respostas coerentes e relevantes. Uma das principais maneiras de avaliarmos as capacidades de um determinado modelo LLM é considerando o tamanho do contexto que eles podem considerar para gerar respostas.




Uma vez treinados, os LLMs podem ser usados para uma ampla gama de tarefas relacionadas à linguagem. Eles podem gerar texto semelhante ao humano, responder perguntas, resumir documentos, traduzir idiomas e até escrever código. A versatilidade dos LLMs os torna valiosos para construir componentes de sistemas inteligentes que podem interagir com usuários, processar e analisar dados textuais e gerar saídas significativas.




Ao incorporar LLMs na arquitetura da aplicação, você pode criar componentes de IA que entendem e processam entrada do usuário, geram conteúdo dinâmico e fornecem recomendações ou ações inteligentes. Mas trabalhar com LLMs requer consideração cuidadosa dos requisitos de recursos e compensações de desempenho. LLMs são computacionalmente intensivos e podem requerer poder de processamento e memória significativos (em outras palavras, dinheiro) para operar. A maioria de nós precisará avaliar as implicações de custo de integrar LLMs em nossas aplicações e agir de acordo.





Entendendo a Inferência


Inferência refere-se ao processo pelo qual um modelo gera previsões ou saídas baseadas em dados novos e não vistos. É a fase onde o modelo treinado é usado para tomar decisões ou gerar texto, imagens ou outro conteúdo em resposta às entradas do usuário.




Durante a fase de treinamento, um modelo de IA aprende de um grande conjunto de dados ajustando seus parâmetros para minimizar o erro em suas previsões. Uma vez treinado, o modelo pode aplicar o que aprendeu a novos dados. A inferência é como o modelo usa seus padrões e conhecimentos aprendidos para gerar saídas.




Para LLMs, a inferência envolve pegar um prompt ou texto de entrada e produzir uma resposta coerente e contextualmente relevante, como um fluxo de tokens (sobre os quais falaremos em breve). Isso pode ser responder uma pergunta, completar uma frase, gerar uma história ou traduzir texto, entre muitas outras tarefas.



	[image: An icon of a key]	
Em contraste com a forma como você e eu pensamos, o “pensamento” de um modelo de IA via inferência acontece todo em uma única operação sem estado. Isto é, seu pensamento é limitado ao seu processo de geração. Ele literalmente tem que pensar em voz alta, como se eu fizesse uma pergunta a você e só aceitasse uma resposta no estilo “fluxo de consciência”.






Modelos de Linguagem Grandes Vêm em Muitos Tamanhos e Sabores


Embora praticamente todos os modelos de linguagem grandes (LLMs) populares sejam baseados na mesma arquitetura transformer central e treinados em enormes conjuntos de dados textuais, eles vêm em uma variedade de tamanhos e são fine-tuned para diferentes propósitos. O tamanho de um LLM, medido pelo número de parâmetros em sua rede neural, tem um grande impacto em suas capacidades. Modelos maiores com mais parâmetros, como o GPT-4, que segundo rumores possui de 1 a 2 trilhões de parâmetros, são geralmente mais conhecedores e capazes do que modelos menores. No entanto, modelos maiores também requerem muito mais poder computacional para executar, o que se traduz em maior despesa quando você os usa via chamadas de API.




Para tornar os LLMs mais práticos e adequados para casos de uso específicos, os modelos base são frequentemente fine-tuned em conjuntos de dados mais direcionados. Por exemplo, um LLM pode ser treinado em um grande corpus de diálogo para especializá-lo em IA conversacional. Outros são treinados em código para dotá-los de conhecimento de programação. Existem até modelos que são especialmente treinados para interações estilo roleplay com usuários!





Modelos de Recuperação vs Modelos Gerativos


No mundo dos modelos de linguagem grandes (LLMs), existem duas abordagens principais para gerar respostas: modelos baseados em recuperação e modelos gerativos. Cada abordagem tem seus próprios pontos fortes e fracos, e entender as diferenças entre elas pode ajudar você a escolher o modelo mais adequado para seu caso de uso específico.




Modelos Baseados em Recuperação


Modelos baseados em recuperação, também conhecidos como modelos de recuperação de informação, geram respostas pesquisando em uma grande base de dados de textos preexistentes e selecionando as passagens mais relevantes com base na consulta de entrada. Esses modelos não geram novo texto do zero, mas sim combinam trechos do banco de dados para formar uma resposta coerente.




Uma das principais vantagens dos modelos baseados em recuperação é sua capacidade de fornecer informações factualmente precisas e atualizadas. Como eles dependem de um banco de dados de texto curado, podem extrair informações relevantes de fontes confiáveis e apresentá-las ao usuário. Isso os torna bem adequados para aplicações que exigem respostas precisas e factuais, como sistemas de pergunta e resposta ou bases de conhecimento.




No entanto, os modelos baseados em recuperação têm algumas limitações. Eles são tão bons quanto o banco de dados que estão pesquisando, então a qualidade e a cobertura do banco de dados impactam diretamente o desempenho do modelo. Além disso, esses modelos podem ter dificuldade em gerar respostas coerentes e naturais, pois estão limitados ao texto disponível no banco de dados.




Não abordamos o uso de modelos puramente baseados em recuperação neste livro.





Modelos Gerativos


Os modelos gerativos, por outro lado, criam novo texto do zero com base nos padrões e relacionamentos que aprenderam durante o treinamento. Esses modelos usam sua compreensão da linguagem para gerar respostas originais que são adaptadas ao prompt de entrada.




O principal ponto forte dos modelos gerativos é sua capacidade de produzir texto criativo, coerente e contextualmente relevante. Eles podem participar de conversas abertas, gerar histórias e até escrever código. Isso os torna ideais para aplicações que exigem interações mais abertas e dinâmicas, como chatbots, criação de conteúdo e assistentes de escrita criativa.




No entanto, os modelos gerativos às vezes podem produzir informações inconsistentes ou factualmente incorretas, pois dependem dos padrões aprendidos durante o treinamento em vez de um banco de dados curado de fatos. Eles também podem ser mais propensos a vieses e alucinações, gerando texto que é plausível, mas não necessariamente verdadeiro.




Exemplos de LLMs gerativos incluem a série GPT da OpenAI (GPT-3, GPT-4) e o Claude da Anthropic.





Modelos Híbridos


Vários LLMs disponíveis comercialmente combinam abordagens de recuperação e geração em um modelo híbrido. Esses modelos usam técnicas de recuperação para encontrar informações relevantes em um banco de dados e depois usam técnicas gerativas para sintetizar essas informações em uma resposta coerente.




Os modelos híbridos visam combinar a precisão factual dos modelos baseados em recuperação com as capacidades de geração de linguagem natural dos modelos gerativos. Eles podem fornecer informações mais confiáveis e atualizadas, mantendo a capacidade de participar de conversas abertas.




Ao escolher entre modelos baseados em recuperação e modelos gerativos, você deve considerar os requisitos específicos de sua aplicação. Se o objetivo principal é fornecer informações precisas e factuais, um modelo baseado em recuperação pode ser a melhor escolha. Se a aplicação requer interações mais abertas e criativas, um modelo gerativo pode ser mais adequado. Modelos híbridos oferecem um equilíbrio entre as duas abordagens e podem ser uma boa escolha para aplicações que exigem tanto precisão factual quanto geração de linguagem natural.




Em última análise, a escolha entre modelos baseados em recuperação e modelos gerativos depende do caso de uso específico e das compensações entre precisão, criatividade e flexibilidade. Ao entender os pontos fortes e as limitações de cada abordagem, você pode tomar decisões informadas.








Ajuste por Instruções


O ajuste por instruções é um subconjunto do treinamento conversacional que usa prompts e respostas escritos por humanos para tornar os LLMs melhores em entender e seguir instruções. Aqui estão alguns exemplos simples para ilustrar como o ajuste por instruções em prompts e respostas escritos por humanos torna os LLMs melhores em entender e seguir instruções:



Exemplo 1: Suporte ao Cliente


Instrução: “Forneça uma resposta a um cliente solicitando reembolso.”




Prompt Escrito por Humano: “Eu gostaria de solicitar um reembolso para minha compra recente. O produto não atendeu às minhas expectativas.”




Resposta Escrita por Humano: “Lamento saber que o produto não atendeu às suas expectativas. Para processar seu reembolso, por favor, forneça seu número de pedido e o motivo da devolução. Analisaremos sua solicitação e retornaremos em 2-3 dias úteis.”



Exemplo 2: Assistência Educacional


Instrução: “Explique o conceito de fotossíntese para uma criança de 10 anos.”




Prompt Escrito por Humano: “Você pode explicar como as plantas fazem seu alimento?”




Resposta Escrita por Humano: “Claro! As plantas fazem seu alimento através de um processo chamado fotossíntese. Elas usam luz solar, água e dióxido de carbono para criar alimento e oxigênio. As folhas da planta têm uma parte especial chamada clorofila que as ajuda a capturar a luz solar.”



Exemplo 3: Assistente Pessoal


Instrução: “Agende uma reunião para terça-feira às 15h.”




Prompt Escrito por Humano: “Você pode agendar uma reunião para terça-feira às 15h?”




Resposta Escrita por Humano: “Claro, agendei uma reunião para você na próxima terça-feira às 15h. Precisa de mais alguma coisa?”




O resultado é um ecossistema diversificado de LLMs em diferentes tamanhos e com diferentes especialidades. Modelos menores na faixa de 1-7 bilhões de parâmetros fornecem boas capacidades gerais de linguagem enquanto são mais eficientes para executar.





	
Mistral 7B



	
Llama 3 8B



	
Gemma 7B








Modelos de tamanho médio com cerca de 30-70 bilhões de parâmetros oferecem capacidades mais fortes de raciocínio e seguimento de instruções.





	
Llama 3 70B



	
Qwen2 70B



	
Mixtral 8x22B








Ao escolher um LLM para incorporar em uma aplicação, você deve equilibrar as capacidades do modelo com fatores práticos como custo, latência, tamanho do contexto e filtragem de conteúdo. Modelos menores, ajustados por instruções, são frequentemente a melhor escolha para tarefas de linguagem mais simples, enquanto os maiores modelos podem ser necessários para raciocínio ou análise complexos. Os dados de treinamento do modelo também são uma consideração importante, pois determinam a data de corte do conhecimento do modelo.
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Certos modelos, como alguns da Perplexity, estão conectados a fontes de informação em tempo real, de modo que efetivamente não têm data de corte. Quando você faz perguntas a eles, eles podem decidir independentemente fazer buscas na web e buscar páginas da web arbitrárias para gerar uma resposta.





[image: Uma captura de tela mostrando uma conversa entre um usuário e dois assistentes de IA. O usuário pergunta: 'Quem ganhou a partida América x GDL ontem à noite?' A primeira resposta, do 'Llama 3 70B Instruct (nitro)', afirma: 'Não tenho conhecimento de nenhuma informação sobre uma partida entre 'América' e 'GDL' ontem à noite. Você poderia fornecer mais contexto ou esclarecer quais times ou ligas você está se referindo? Farei o possível para ajudá-lo a encontrar a resposta.' A segunda resposta, do 'Llama3 Sonar 70B Online', diz: 'O Club América venceu a partida contra o Guadalajara ontem à noite, com placar de 1-0.']Figura 1. Llama3 com e sem acesso online


Em última análise, não existe um LLM que sirva para todos os casos. Compreender as variações no tamanho do modelo, arquitetura e treinamento é fundamental para selecionar o modelo certo para um determinado caso de uso. Experimentar com diferentes modelos é a única maneira prática de revelar quais fornecem o melhor desempenho para a tarefa em questão.






Tokenização: Dividindo Texto em Pedaços


Antes que um modelo de linguagem grande possa processar texto, esse texto precisa ser dividido em unidades menores chamadas tokens. Tokens podem ser palavras individuais, partes de palavras ou até caracteres únicos. O processo de dividir texto em tokens é conhecido como tokenização, e é uma etapa crucial na preparação de dados para um modelo de linguagem.



[image: Um trecho de texto destacado com fundos coloridos para cada palavra. O texto diz: 'O processo de dividir texto em tokens é conhecido como tokenização, e é uma etapa crucial na preparação de dados para um modelo de linguagem.' Cada palavra está sombreada em cores pastel alternadas, indicando tokens individuais.]Figura 2. Esta frase contém 27 tokens


Diferentes LLMs usam diferentes estratégias de tokenização, que podem ter um impacto significativo no desempenho e nas capacidades do modelo. Alguns tokenizadores comuns usados por LLMs incluem:





	
GPT (Codificação de Pares de Bytes): Os tokenizadores GPT usam uma técnica chamada codificação de pares de bytes (BPE) para dividir texto em unidades de subpalavras. BPE mescla iterativamente os pares de bytes mais frequentes em um corpus de texto, formando um vocabulário de tokens de subpalavras. Isso permite que o tokenizador lide com palavras raras e novas, dividindo-as em pedaços de subpalavras mais comuns. Os tokenizadores GPT são usados por modelos como GPT-3 e GPT-4.









	
Llama (SentencePiece): Os tokenizadores Llama utilizam a biblioteca SentencePiece, que é um tokenizador e destokenizador de texto não supervisionado. O SentencePiece trata o texto de entrada como uma sequência de caracteres Unicode e aprende um vocabulário de subpalavras com base em um corpus de treinamento. Ele pode lidar com qualquer idioma que possa ser codificado em Unicode, tornando-o adequado para modelos multilíngues. Os tokenizadores Llama são utilizados por modelos como o Llama e Alpaca da Meta.









	
SentencePiece (Unigram): Os tokenizadores SentencePiece também podem usar um algoritmo diferente chamado Unigram, que é baseado em uma técnica de regularização de subpalavras. A tokenização Unigram determina o vocabulário ótimo de subpalavras com base em um modelo de linguagem unigrama, que atribui probabilidades a unidades individuais de subpalavras. Essa abordagem pode produzir subpalavras mais semanticamente significativas em comparação com o BPE. O SentencePiece com Unigram é usado por modelos como o T5 e BERT do Google.









	
Google Gemini (Tokenização Multimodal): O Google Gemini usa um esquema de tokenização projetado para lidar com vários tipos de dados, incluindo texto, imagens, áudio, vídeos e código. Essa capacidade multimodal permite que o Gemini processe e integre diferentes formas de informação. Notavelmente, o Google Gemini 1.5 Pro tem uma janela de contexto que pode lidar com milhões de tokens, muito maior que os modelos anteriores. Essa extensa janela de contexto permite que o modelo processe um contexto maior, potencialmente levando a respostas mais precisas. No entanto, é importante notar que o esquema de tokenização do Gemini está muito mais próximo de um token por caractere do que outros modelos. Isso significa que o custo real de usar modelos Gemini pode ser significativamente maior do que o esperado se você estiver acostumado a usar modelos como GPT, já que o preço do Google é baseado em caracteres em vez de tokens.








A escolha do tokenizador afeta vários aspectos de um MLG, incluindo:





	
Tamanho do vocabulário: O tokenizador determina o tamanho do vocabulário do modelo, que é o conjunto de tokens únicos que ele reconhece. Um vocabulário maior e mais refinado pode ajudar o modelo a lidar com uma gama mais ampla de palavras e frases e até mesmo se tornar multimodal (capaz de entender e gerar mais do que apenas texto), mas também aumenta os requisitos de memória e complexidade computacional do modelo.




	
Tratamento de palavras raras e desconhecidas: Tokenizadores que usam unidades de subpalavras, como BPE e SentencePiece, podem decompor palavras raras e desconhecidas em pedaços de subpalavras mais comuns. Isso permite que o modelo faça suposições educadas sobre o significado de palavras que não viu antes, com base nas subpalavras que contêm.




	
Suporte multilíngue: Tokenizadores como o SentencePiece, que podem lidar com qualquer idioma codificável em Unicode, são bem adequados para modelos multilíngues que precisam processar texto em vários idiomas.









Ao escolher um MLG para uma aplicação específica, é importante considerar o tokenizador que ele usa e o quão bem ele se alinha com as necessidades específicas de processamento de linguagem da tarefa em questão. O tokenizador pode ter um impacto significativo na capacidade do modelo de lidar com terminologia específica do domínio, palavras raras e texto multilíngue.





Tamanho do Contexto: Quanta Informação um Modelo de Linguagem Pode Usar Durante a Inferência?


Ao discutir modelos de linguagem, o tamanho do contexto refere-se à quantidade de texto que um modelo pode considerar ao processar ou gerar suas respostas. É essencialmente uma medida de quanta informação o modelo pode “lembrar” e usar para informar suas saídas (expressas em tokens). O tamanho do contexto de um modelo de linguagem pode ter um impacto significativo em suas capacidades e nos tipos de tarefas que pode realizar efetivamente.




O que é Tamanho do Contexto?


Em termos técnicos, o tamanho do contexto é determinado pelo número de tokens (palavras ou pedaços de palavras) que um modelo de linguagem pode processar em uma única sequência de entrada. Isso é frequentemente referido como a “capacidade de atenção” ou “janela de contexto” do modelo. Quanto maior o tamanho do contexto, mais texto o modelo pode considerar de uma vez ao gerar uma resposta ou realizar uma tarefa.




Diferentes modelos de linguagem têm tamanhos de contexto variados, indo de algumas centenas de tokens a milhões de tokens. Para referência, um parágrafo típico de texto pode conter cerca de 100-150 tokens, enquanto um livro inteiro pode conter dezenas ou centenas de milhares de tokens.




Há até mesmo trabalhos sobre métodos eficientes para escalar Modelos de Linguagem Grandes (MLGs) baseados em Transformer para entradas infinitamente longas com memória e computação limitadas.





Por que o Tamanho do Contexto é Importante?


O tamanho do contexto de um modelo de linguagem tem um impacto significativo em sua capacidade de entender e gerar texto coerente e contextualmente relevante. Aqui estão algumas razões principais pelas quais o tamanho do contexto é importante:





	
Compreensão de conteúdo longo: Modelos com tamanhos de contexto maiores podem compreender e analisar melhor textos mais longos, como artigos, relatórios ou até livros inteiros. Isso é crucial para tarefas como sumarização de documentos, resposta a perguntas e análise de conteúdo.









	
Manutenção da coerência: Uma janela de contexto maior permite que o modelo mantenha coerência e consistência em trechos mais longos de saída. Isso é importante para tarefas como geração de histórias, sistemas de diálogo e criação de conteúdo, onde manter uma narrativa ou tópico consistente é essencial. Também é absolutamente crucial ao usar LLMs para gerar ou transformar dados estruturados.




	
Captura de dependências de longo alcance: Algumas tarefas de linguagem exigem a compreensão de relações entre palavras ou frases que estão distantes em um texto. Modelos com tamanhos de contexto maiores são mais bem equipados para capturar essas dependências de longo alcance, que podem ser importantes para tarefas como análise de sentimento, tradução e compreensão de linguagem.




	
Tratamento de instruções complexas: Em aplicações onde modelos de linguagem são usados para seguir instruções complexas de múltiplas etapas, um tamanho de contexto maior permite que o modelo considere todo o conjunto de instruções ao gerar uma resposta, em vez de apenas as palavras mais recentes.










Exemplos de Modelos de Linguagem com Diferentes Tamanhos de Contexto


Aqui estão alguns exemplos de modelos de linguagem com diferentes tamanhos de contexto:





	
OpenAI GPT-3.5 Turbo: 4.095 tokens



	
Mistral 7B Instruct: 32.768 tokens



	
Anthropic Claude v1: 100.000 tokens



	
OpenAI GPT-4 Turbo: 128.000 tokens



	
Anthropic Claude v2: 200.000 tokens



	
Google Gemini Pro 1.5: 2,8M tokens








Como você pode ver, existe uma ampla variedade de tamanhos de contexto entre esses modelos, desde cerca de 4.000 tokens para o modelo OpenAI GPT-3.5 Turbo até 200.000 tokens para o modelo Anthropic Claude v2. Alguns modelos, como o PaLM 2 do Google e o GPT-4 da OpenAI, oferecem diferentes variantes com tamanhos de contexto maiores (por exemplo, versões “32k”), que podem lidar com sequências de entrada ainda mais longas. E no momento (abril de 2024), o Google Gemini Pro está se gabando de quase 3 milhões de tokens!




Vale notar que o tamanho do contexto pode variar dependendo da implementação específica e da versão de um determinado modelo. Por exemplo, o modelo original OpenAI GPT-4 tem um tamanho de contexto de 8.191 tokens, enquanto as variantes posteriores do GPT-4, como o Turbo e o 4o, têm um tamanho de contexto muito maior de 128.000 tokens.




Sam Altman comparou as limitações atuais de contexto aos kilobytes de memória de trabalho com os quais os programadores de computadores pessoais tinham que lidar nos anos 80, e disse que em um futuro próximo seremos capazes de ajustar “todos os seus dados pessoais” no contexto de um modelo de linguagem grande.





Escolhendo o Tamanho de Contexto Adequado


Ao selecionar um modelo de linguagem para uma aplicação específica, é importante considerar os requisitos de tamanho de contexto da tarefa em questão. Para tarefas que envolvem textos curtos e isolados, como análise de sentimento ou resposta simples a perguntas, um tamanho de contexto menor pode ser suficiente. No entanto, para tarefas que exigem compreensão e geração de textos mais longos e complexos, um tamanho de contexto maior provavelmente será necessário.




Vale ressaltar que tamanhos de contexto maiores frequentemente vêm com custos computacionais aumentados e tempos de processamento mais lentos, já que o modelo precisa considerar mais informações ao gerar uma resposta. Assim, você deve encontrar um equilíbrio entre tamanho de contexto e desempenho ao escolher um modelo de linguagem para sua aplicação.




Por que não simplesmente escolher o modelo com o maior tamanho de contexto e enchê-lo com o máximo de informações possível? Bem, além dos fatores de desempenho, a outra consideração principal é o custo. Em março de 2024, um único ciclo de prompt-resposta usando o Google Gemini Pro 1.5 com um contexto completo custará cerca de $8 (USD). Se você tem um caso de uso que justifica essa despesa, ótimo! Mas para a maioria das aplicações, é simplesmente caro demais por ordens de magnitude.





Encontrando Agulhas em Palheiros


O conceito de encontrar uma agulha no palheiro há muito tem sido uma metáfora para os desafios de recuperação em grandes conjuntos de dados. No âmbito dos LLMs, adaptamos um pouco essa analogia. Imagine que não estamos procurando apenas um único fato enterrado dentro de um vasto texto (como uma antologia completa de ensaios de Paul Graham), mas vários fatos espalhados por todo ele. Este cenário é mais parecido com encontrar várias agulhas em um campo extenso, não apenas em um único palheiro. E aqui está o detalhe: não só precisamos localizar essas agulhas, mas também precisamos entrelaçá-las em um fio coerente.




Quando encarregados de recuperar e raciocinar sobre múltiplos fatos incorporados em contextos longos, os LLMs enfrentam um duplo desafio. Primeiro, há a questão direta da precisão da recuperação—ela naturalmente diminui conforme o número de fatos aumenta. Isso é esperado; afinal, manter o controle de múltiplos detalhes em um texto extenso sobrecarrega até mesmo os modelos mais sofisticados.




Segundo, e talvez mais crítico, é o desafio de raciocinar com esses fatos. Uma coisa é identificar fatos; outra bem diferente é sintetizá-los em uma narrativa ou resposta coerente. É aqui que vem o verdadeiro teste. O desempenho dos LLMs em tarefas de raciocínio tende a se degradar ainda mais do que em tarefas simples de recuperação. Essa degradação não é apenas sobre volume; é sobre a dança intrincada de contexto, relevância e inferência.




Por que isso acontece? Bem, considere a dinâmica da memória e atenção na cognição humana, que são refletidas até certo ponto nos LLMs. Ao processar grandes quantidades de informação, os LLMs, como os humanos, podem perder o rastro de detalhes anteriores conforme absorvem novos. Isso é especialmente verdadeiro em modelos que não são explicitamente projetados para priorizar ou revisitar automaticamente segmentos anteriores do texto.




Além disso, a capacidade de um LLM de entrelaçar esses fatos recuperados em uma resposta coerente é semelhante à construção narrativa. Isso requer não apenas a recuperação de informação, mas uma compreensão profunda e posicionamento contextual, o que continua sendo um grande desafio para a IA atual.




Então, o que isso significa para nós como desenvolvedores e integradores dessas tecnologias? Precisamos estar extremamente cientes dessas limitações ao projetar sistemas que dependem de LLMs para lidar com tarefas complexas e longas. Compreender que o desempenho pode se degradar sob certas condições nos ajuda a estabelecer expectativas realistas e desenvolver melhores mecanismos de contingência ou estratégias complementares.






Modalidades: Além do Texto


Embora a maioria dos modelos de linguagem hoje esteja focada no processamento e geração de texto, existe uma tendência crescente em direção a modelos multimodais que podem nativamente receber e produzir múltiplos tipos de dados, como imagens, áudio e vídeo. Esses modelos multimodais abrem novas possibilidades para aplicações alimentadas por IA que podem entender e gerar conteúdo através de diferentes modalidades.




O que são Modalidades?


No contexto dos modelos de linguagem, modalidades referem-se aos diferentes tipos de dados que um modelo pode processar e gerar. A modalidade mais comum é o texto, que inclui linguagem escrita em várias formas como livros, artigos, sites e postagens em redes sociais. No entanto, existem várias outras modalidades que estão sendo cada vez mais incorporadas aos modelos de linguagem:





	
Imagens: Dados visuais como fotografias, ilustrações e diagramas.



	
Áudio: Dados sonoros como fala, música e sons ambientais.



	
Vídeo: Dados visuais em movimento, frequentemente acompanhados de áudio, como clipes de vídeo e filmes.








Cada modalidade apresenta desafios e oportunidades únicos para os modelos de linguagem. Por exemplo, imagens requerem que o modelo entenda conceitos e relações visuais, enquanto áudio requer que o modelo processe e gere fala e outros sons.





Modelos de Linguagem Multimodais


Modelos de linguagem multimodais são projetados para lidar com múltiplas modalidades dentro de um único modelo. Esses modelos tipicamente têm componentes ou camadas especializadas que podem tanto entender entradas quanto gerar dados de saída em diferentes modalidades. Alguns exemplos notáveis de modelos de linguagem multimodais incluem:





	
OpenAI’s GPT-4o: GPT-4o é um modelo de linguagem grande que nativamente entende e processa áudio de fala além de texto. Esta capacidade permite que o GPT-4o execute tarefas como transcrição de linguagem falada, geração de texto a partir de entradas de áudio e fornecimento de respostas baseadas em consultas faladas.




	
OpenAI’s GPT-4 com entrada visual: GPT-4 é um modelo de linguagem grande que pode processar tanto texto quanto imagens. Quando recebe uma imagem como entrada, o GPT-4 pode analisar o conteúdo da imagem e gerar texto que descreve ou responde à informação visual.




	
Google’s Gemini: Gemini é um modelo multimodal que pode lidar com texto, imagens e vídeo. Ele usa uma arquitetura unificada que permite compreensão e geração entre modalidades, possibilitando tarefas como legendagem de imagens, resumo de vídeos e resposta a perguntas visuais.










	
DALL-E e Stable Diffusion: Embora não sejam modelos de linguagem no sentido tradicional, esses modelos demonstram o poder da IA multimodal ao gerar imagens a partir de descrições textuais. Eles demonstram o potencial de modelos que podem traduzir entre diferentes modalidades.









Benefícios e Aplicações de Modelos Multimodais


Os modelos de linguagem multimodais oferecem diversos benefícios e possibilitam uma ampla gama de aplicações, incluindo:





	
Compreensão aprimorada: Ao processar informações de múltiplas modalidades, esses modelos podem obter uma compreensão mais abrangente do mundo, similar a como os humanos aprendem a partir de várias entradas sensoriais.




	
Geração cross-modal: Modelos multimodais podem gerar conteúdo em uma modalidade baseado em entrada de outra, como criar uma imagem a partir de uma descrição textual ou gerar um resumo em vídeo a partir de um artigo escrito.




	
Acessibilidade: Modelos multimodais podem tornar a informação mais acessível ao traduzir entre modalidades, como gerar descrições textuais de imagens para usuários com deficiência visual ou criar versões em áudio de conteúdo escrito.




	
Aplicações criativas: Modelos multimodais podem ser usados para tarefas criativas como gerar arte, música ou vídeos baseados em comandos textuais, abrindo novas possibilidades para artistas e criadores de conteúdo.









À medida que os modelos de linguagem multimodais continuam a avançar, eles provavelmente desempenharão um papel cada vez mais importante no desenvolvimento de aplicações alimentadas por IA que podem entender e gerar conteúdo através de múltiplas modalidades. Isso permitirá interações mais naturais e intuitivas entre humanos e sistemas de IA, além de desbloquear novas possibilidades para expressão criativa e disseminação de conhecimento.






Ecossistemas de Provedores


Quando se trata de incorporar modelos de linguagem grandes (MLGs) em aplicações, você tem uma gama crescente de opções para escolher. Cada grande provedor de MLG, como OpenAI, Anthropic, Google e Cohere, oferece seu próprio ecossistema de modelos, APIs e ferramentas. Escolher o provedor certo envolve considerar vários fatores, incluindo preços, desempenho, filtragem de conteúdo, privacidade de dados e opções de personalização.




OpenAI


A OpenAI é uma das provedoras mais conhecidas de MLGs, com sua série GPT (GPT-3, GPT-4) sendo amplamente utilizada em várias aplicações. A OpenAI oferece uma API amigável que permite integrar facilmente seus modelos em aplicações. Eles fornecem uma variedade de modelos com diferentes capacidades e preços, desde o modelo básico Ada até o poderoso modelo Davinci.




O ecossistema da OpenAI também inclui ferramentas como o OpenAI Playground, que permite experimentar com prompts e fazer fine-tuning de modelos para casos de uso específicos. Eles oferecem opções de filtragem de conteúdo para ajudar a prevenir a geração de conteúdo inadequado ou prejudicial.




Quando uso os modelos da OpenAI diretamente, confio na biblioteca ruby-openai de Alex Rudall.





Anthropic


A Anthropic é outra grande participante no espaço de MLG, com seus modelos Claude ganhando popularidade por forte desempenho e considerações éticas. A Anthropic concentra-se em desenvolver sistemas de IA seguros e responsáveis, com forte ênfase em filtragem de conteúdo e evitando saídas prejudiciais.




O ecossistema da Anthropic inclui a API Claude, que permite integrar o modelo em suas aplicações, além de ferramentas para engenharia de prompts e fine-tuning. Eles também oferecem o modelo Claude Instant, que incorpora capacidades de busca na web para respostas mais atualizadas e factuais.




Quando uso os modelos da Anthropic diretamente, confio na biblioteca anthrophic de Alex Rudall.





Google


O Google desenvolveu vários MLGs poderosos, incluindo Gemini, BERT, T5 e PaLM. Esses modelos são conhecidos por seu forte desempenho em uma ampla gama de tarefas de processamento de linguagem natural. O ecossistema do Google inclui as bibliotecas TensorFlow e Keras, que fornecem ferramentas e frameworks para construir e treinar modelos de aprendizado de máquina.




O Google também oferece uma Plataforma de IA em Nuvem, que permite implantar e escalar facilmente seus modelos na nuvem. Eles fornecem uma variedade de modelos pré-treinados e APIs para tarefas como análise de sentimento, reconhecimento de entidades e tradução.





Meta


A Meta, anteriormente conhecida como Facebook, está profundamente investida no desenvolvimento de modelos de linguagem grandes, destacada pelo lançamento de modelos como LLaMA e OPT. Esses modelos se destacam por seu forte desempenho em diversas tarefas de linguagem e são disponibilizados principalmente através de canais de código aberto, apoiando o compromisso da Meta com pesquisa e colaboração comunitária.




O ecossistema da Meta é construído principalmente em torno do PyTorch, uma biblioteca de aprendizado de máquina de código aberto preferida por suas capacidades computacionais dinâmicas e flexibilidade, facilitando pesquisa e desenvolvimento inovador em IA.




Além de suas ofertas técnicas, a Meta coloca uma forte ênfase no desenvolvimento ético de IA. Eles implementam uma robusta filtragem de conteúdo e focam na redução de vieses, alinhando-se com seus objetivos mais amplos de segurança e responsabilidade em aplicações de IA.





Cohere


A Cohere é uma empresa mais recente no espaço de LLM, focando em tornar os LLMs mais acessíveis e fáceis de usar do que os concorrentes. Seu ecossistema inclui a API Cohere, que fornece acesso a uma variedade de modelos pré-treinados para tarefas como geração de texto, classificação e resumo.




A Cohere também oferece ferramentas para engenharia de prompts, ajuste fino e filtragem de conteúdo. Eles enfatizam a privacidade e segurança dos dados, com recursos como armazenamento criptografado de dados e controles de acesso.





Ollama


Ollama é uma plataforma auto-hospedada que permite aos usuários gerenciar e implantar vários modelos de linguagem grandes (LLMs) localmente em suas máquinas, dando-lhes controle completo sobre seus modelos de IA sem depender de serviços em nuvem externos. Esta configuração é ideal para aqueles que priorizam a privacidade dos dados e desejam gerenciar suas operações de IA internamente.




A plataforma suporta uma variedade de modelos, incluindo versões do Llama, Phi, Gemma e Mistral, que variam em tamanho e requisitos computacionais. O Ollama facilita o download e a execução desses modelos diretamente da linha de comando usando comandos simples como ollama run <model_name>, e é projetado para funcionar em diferentes sistemas operacionais, incluindo macOS, Linux e Windows.




Para desenvolvedores que procuram integrar modelos de código aberto em suas aplicações sem usar uma API remota, o Ollama oferece uma CLI para gerenciar ciclos de vida do modelo similar a ferramentas de gerenciamento de contêineres. Também suporta configurações e prompts personalizados, permitindo um alto grau de personalização para adaptar os modelos a necessidades ou casos de uso específicos.




O Ollama é particularmente adequado para usuários e desenvolvedores com conhecimento técnico devido à sua interface de linha de comando e à flexibilidade que oferece no gerenciamento e implantação de modelos de IA. Isso o torna uma ferramenta poderosa para empresas e indivíduos que necessitam de recursos robustos de IA sem comprometer a segurança e o controle.





Plataformas Multi-Modelo


Adicionalmente, existem provedores que hospedam uma grande variedade de modelos de código aberto, como Together.ai e Groq. Estas plataformas oferecem flexibilidade e personalização, permitindo que você execute e, em alguns casos, até mesmo faça ajuste fino de modelos de código aberto de acordo com suas necessidades específicas. Por exemplo, a Together.ai fornece acesso a uma variedade de LLMs de código aberto, permitindo que os usuários experimentem diferentes modelos e configurações. A Groq concentra-se em fornecer conclusão de ultra alto desempenho que, no momento da escrita deste livro, parece quase mágica






Escolhendo um Provedor de LLM


Ao escolher um provedor de LLM, você deve considerar fatores como:





	
Preço: Diferentes provedores oferecem diferentes modelos de preços, variando de pagamento por uso a planos baseados em assinatura. É importante considerar o uso esperado e o orçamento ao selecionar um provedor.



	
Desempenho: O desempenho dos LLMs pode variar significativamente entre provedores, então é importante fazer benchmark e testar modelos em casos de uso específicos antes de tomar uma decisão.



	
Filtragem de Conteúdo: Dependendo da aplicação, a filtragem de conteúdo pode ser uma consideração crítica. Alguns provedores oferecem opções mais robustas de filtragem de conteúdo do que outros.



	
Privacidade de Dados: Se a aplicação manipula dados sensíveis do usuário, é importante escolher um provedor com práticas fortes de privacidade e segurança de dados.



	
Personalização: Alguns provedores oferecem mais flexibilidade em termos de ajuste fino e personalização de modelos para casos de uso específicos.








Por fim, a escolha do provedor de LLM depende dos requisitos e restrições específicos da aplicação. Ao avaliar cuidadosamente as opções e considerar fatores como preço, desempenho e privacidade de dados, você pode selecionar o provedor que melhor atende às suas necessidades.




Vale ressaltar que o cenário de LLM está em constante evolução, com novos provedores e modelos surgindo regularmente. Você deve manter-se atualizado com os últimos desenvolvimentos e estar aberto a explorar novas opções conforme elas se tornam disponíveis.





OpenRouter


Ao longo deste livro, estarei contando exclusivamente com o OpenRouter como meu provedor de API de escolha. A razão é simples: é uma solução única para todos os modelos comerciais e de código aberto mais populares. Se você está ansioso para começar a programar com IA, um dos melhores lugares para começar é com minha própria Biblioteca Ruby OpenRouter.






Pensando Sobre Performance


Ao incorporar modelos de linguagem em aplicações, a performance é uma consideração crítica. A performance de um modelo de linguagem pode ser medida em termos de sua latência (o tempo que leva para gerar uma resposta) e taxa de transferência (o número de requisições que pode processar por unidade de tempo).




O Tempo até o Primeiro Token (TTFT) é outra métrica essencial de performance, particularmente relevante para chatbots e aplicações que requerem respostas interativas em tempo real. O TTFT mede a latência desde o momento em que a requisição do usuário é recebida até o momento em que a primeira palavra (ou token) da resposta é gerada. Esta métrica é crucial para manter uma experiência do usuário fluida e envolvente, já que respostas atrasadas podem levar à frustração e ao desengajamento do usuário.




Essas métricas de performance podem ter um impacto significativo na experiência do usuário e na escalabilidade da aplicação.




Diversos fatores podem influenciar a performance de um modelo de linguagem, incluindo:




Contagem de Parâmetros: Modelos maiores com mais parâmetros geralmente requerem mais recursos computacionais e podem ter maior latência e menor taxa de transferência em comparação com modelos menores.




Hardware: A performance de um modelo de linguagem pode variar significativamente com base no hardware em que está sendo executado. Provedores de nuvem oferecem instâncias de GPU e TPU otimizadas para cargas de trabalho de aprendizado de máquina, que podem acelerar muito a inferência do modelo.



	[image: An icon of a key]	
Uma das coisas interessantes sobre o OpenRouter é que, para muitos dos modelos que oferece, você tem uma escolha de provedores de nuvem com uma variedade de perfis de performance e custos.






Quantização: Técnicas de quantização podem ser usadas para reduzir o uso de memória e os requisitos computacionais de um modelo, representando pesos e ativações com tipos de dados de menor precisão. Isso pode melhorar a performance sem sacrificar significativamente a qualidade. Como desenvolvedor de aplicações, você provavelmente não se envolverá no treinamento de seus próprios modelos em diferentes níveis de quantização, mas é bom pelo menos estar familiarizado com a terminologia.




Processamento em Lote: Processar múltiplas requisições simultaneamente em lotes pode melhorar a taxa de transferência ao amortizar a sobrecarga do carregamento do modelo e transferência de dados.




Cache: Armazenar em cache os resultados de prompts ou sequências de entrada frequentemente utilizados pode reduzir o número de requisições de inferência e melhorar a performance geral.




Ao selecionar um modelo de linguagem para uma aplicação em produção, é importante avaliar sua performance em cargas de trabalho e configurações de hardware representativas. Isso pode ajudar a identificar possíveis gargalos e garantir que o modelo possa atingir as metas de performance necessárias.




Também vale considerar os trade-offs entre a performance do modelo e outros fatores como custo, flexibilidade e facilidade de integração. Por exemplo, usar um modelo menor e menos custoso com menor latência pode ser preferível para aplicações que requerem respostas em tempo real, enquanto um modelo maior e mais poderoso pode ser mais adequado para processamento em lote ou tarefas de raciocínio complexo.





Experimentando Com Diferentes Modelos LLM


Escolher um LLM raramente é uma decisão permanente. Como novos e aprimorados modelos são lançados regularmente, é bom construir aplicações de forma modular que permita trocar diferentes modelos de linguagem ao longo do tempo. Prompts e conjuntos de dados frequentemente podem ser reutilizados entre modelos com mudanças mínimas. Isso permite que você aproveite os últimos avanços em modelagem de linguagem sem ter que redesenhar completamente suas aplicações.
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A capacidade de alternar facilmente entre uma ampla gama de escolhas de modelos é mais uma razão pela qual eu adoro o OpenRouter.






Ao atualizar para um novo modelo de linguagem, é importante testar e validar minuciosamente sua performance e qualidade de saída para garantir que atenda aos requisitos da aplicação. Isso pode envolver retreinamento ou ajuste fino do modelo em dados específicos do domínio, bem como atualização de quaisquer componentes downstream que dependam das saídas do modelo.




Ao projetar aplicações com performance e modularidade em mente, você pode criar sistemas escaláveis, eficientes e à prova do futuro que podem se adaptar ao cenário em rápida evolução da tecnologia de modelagem de linguagem.





Sistemas de IA Compostos


Antes de encerrar nossa introdução, vale mencionar que antes de 2023 e da explosão de interesse em IA generativa provocada pelo ChatGPT, as abordagens tradicionais de IA geralmente dependiam da integração de modelos únicos e fechados. Em contraste, Sistemas de IA Compostos aproveitam pipelines complexos de componentes interconectados trabalhando juntos para alcançar comportamento inteligente.




Em sua essência, sistemas de IA compostos consistem em múltulos módulos, cada um projetado para executar tarefas ou funções específicas. Esses módulos podem incluir geradores, recuperadores, classificadores, ranqueadores e vários outros componentes especializados. Ao decompor o sistema geral em unidades menores e focadas, os desenvolvedores podem criar arquiteturas de IA mais flexíveis, escaláveis e manuteníveis.




Uma das principais vantagens dos sistemas compostos de IA é sua capacidade de combinar os pontos fortes de diferentes técnicas e modelos de IA. Por exemplo, um sistema pode usar um modelo de linguagem grande (MLG) para compreensão e geração de linguagem natural, enquanto emprega um modelo separado para recuperação de informações ou tomada de decisões baseada em regras. Essa abordagem modular permite que você selecione as melhores ferramentas e técnicas para cada tarefa específica, em vez de depender de uma solução única para todos os casos.




No entanto, construir sistemas compostos de IA também apresenta desafios únicos. Em particular, garantir a coerência geral e a consistência do comportamento do sistema requer mecanismos robustos de teste, monitoramento e governança.
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O advento de MLGs poderosos como o GPT-4 nos permite experimentar com sistemas compostos de IA mais facilmente do que nunca, porque esses modelos avançados são capazes de lidar com múltiplos papéis dentro de um sistema composto, como classificação, ranqueamento e geração, além de suas capacidades de compreensão de linguagem natural. Essa versatilidade permite que os desenvolvedores prototipem e iterem rapidamente em arquiteturas de IA compostas, abrindo novas possibilidades para o desenvolvimento de aplicações inteligentes.






Padrões de Implantação para Sistemas Compostos de IA


Sistemas compostos de IA podem ser implantados usando vários padrões, cada um projetado para atender requisitos e casos de uso específicos. Vamos explorar quatro padrões comuns de implantação: Pergunta e Resposta, Solucionadores de Problemas Multi-Agente/Agênticos, IA Conversacional e CoPilotos.




Pergunta e Resposta


Sistemas de Pergunta e Resposta (P&R) focam em fornecer recuperação de informações aprimorada com as capacidades de compreensão dos modelos de IA para funcionar como mais do que simplesmente um mecanismo de busca. Ao combinar modelos de linguagem poderosos com fontes de conhecimento externas usando Geração Aumentada por Recuperação (RAG), os sistemas de Pergunta e Resposta evitam alucinações e fornecem respostas precisas e contextualmente relevantes às consultas dos usuários.




Os principais componentes de um sistema P&R baseado em MLG incluem:





	
Compreensão e reformulação de consultas: Análise das consultas dos usuários e reformulação das mesmas para melhor corresponder às fontes de conhecimento subjacentes.




	
Recuperação de conhecimento: Recuperação de informações relevantes de fontes de dados estruturados ou não estruturados com base na consulta reformulada.




	
Geração de resposta: Geração de respostas coerentes e informativas integrando o conhecimento recuperado com as capacidades generativas do modelo de linguagem.









Subsistemas RAG são particularmente importantes em domínios de P&R onde fornecer informações precisas e atualizadas é crucial, como suporte ao cliente, gestão do conhecimento ou aplicações educacionais





Solucionadores de Problemas Multi-Agente/Agênticos


Sistemas multi-agente, também conhecidos como Agênticos, consistem em múltiplos agentes autônomos trabalhando juntos para resolver problemas complexos. Cada agente tem um papel específico, conjunto de habilidades e acesso a ferramentas ou fontes de informação relevantes. Ao colaborar e trocar informações, esses agentes podem lidar com tarefas que seriam difíceis ou impossíveis para um único agente resolver sozinho.




Os princípios fundamentais dos solucionadores de problemas multi-agente incluem:





	
Especialização: Cada agente se concentra em um aspecto específico do problema, aproveitando suas capacidades e conhecimentos únicos.




	
Colaboração: Os agentes se comunicam e coordenam suas ações para alcançar um objetivo comum, frequentemente através de troca de mensagens ou memória compartilhada.




	
Adaptabilidade: O sistema pode se adaptar a condições ou requisitos em mudança ajustando os papéis e comportamentos dos agentes individuais.









Sistemas multi-agente são bem adequados para aplicações que requerem resolução distribuída de problemas, como otimização de cadeia de suprimentos, gerenciamento de tráfego ou planejamento de resposta a emergências





IA Conversacional


Sistemas de IA Conversacional permitem interações em linguagem natural entre usuários e agentes inteligentes. Esses sistemas combinam compreensão de linguagem natural, gerenciamento de diálogo e capacidades de geração de linguagem para fornecer experiências conversacionais envolventes e personalizadas.




Os principais componentes de um sistema de IA conversacional incluem:





	
Reconhecimento de intenção: Identificação da intenção do usuário com base em sua entrada, como fazer uma pergunta, fazer uma solicitação ou expressar um sentimento.




	
Extração de entidades: Extração de entidades ou parâmetros relevantes da entrada do usuário, como datas, locais ou nomes de produtos.




	
Gerenciamento de diálogo: Manutenção do estado da conversação, determinação da resposta apropriada com base na intenção e contexto do usuário, e manipulação de interações de múltiplos turnos.




	
Geração de resposta: Geração de respostas semelhantes às humanas usando modelos de linguagem, templates ou métodos baseados em recuperação.









Sistemas de IA conversacional são comumente usados em chatbots de atendimento ao cliente, assistentes virtuais e interfaces controladas por voz. Como mencionado anteriormente, a maioria das abordagens, padrões e exemplos de código neste livro são diretamente extraídos do meu trabalho em um grande sistema de IA conversacional chamado Olympia





CoPilots


CoPilots são assistentes baseados em IA que trabalham junto aos usuários humanos para aprimorar sua produtividade e capacidade de tomada de decisões. Esses sistemas utilizam uma combinação de processamento de linguagem natural, aprendizado de máquina e conhecimento específico do domínio para fornecer recomendações inteligentes, automatizar tarefas e oferecer suporte contextual.




As principais características dos CoPilots incluem:





	
Personalização: Adaptação às preferências individuais do usuário, fluxos de trabalho e estilos de comunicação.




	
Assistência proativa: Antecipação das necessidades do usuário e oferecimento de sugestões ou ações relevantes sem solicitações explícitas.




	
Aprendizado contínuo: Melhoria do desempenho ao longo do tempo através do aprendizado baseado no feedback do usuário, interações e dados.









Os CoPilots são cada vez mais utilizados em vários domínios, como desenvolvimento de software (por exemplo, completação de código e detecção de bugs), redação criativa (por exemplo, sugestões de conteúdo e edição), e análise de dados (por exemplo, insights e recomendações de visualização)




Esses padrões de implementação demonstram a versatilidade e o potencial dos sistemas de IA compostos. Ao compreender as características e casos de uso de cada padrão, você pode tomar decisões informadas ao projetar e implementar aplicações inteligentes. Embora este livro não seja especificamente sobre a implementação de sistemas de IA compostos, muitas, se não todas, as mesmas abordagens e padrões se aplicam à integração de componentes discretos de IA dentro do desenvolvimento de aplicações tradicionais.






Papéis em Sistemas de IA Compostos


Os sistemas de IA compostos são construídos sobre uma base de módulos interconectados, cada um projetado para desempenhar um papel específico. Esses módulos trabalham juntos para criar comportamentos inteligentes e resolver problemas complexos. É útil estar familiarizado com esses papéis ao pensar onde você pode implementar ou substituir partes de sua aplicação por componentes discretos de IA.




Gerador


Geradores são responsáveis por produzir novos dados ou conteúdo baseados em padrões aprendidos ou prompts de entrada. O mundo da IA tem muitos tipos diferentes de geradores, mas no contexto dos tipos de modelos de linguagem apresentados neste livro, os geradores podem criar texto semelhante ao humano, completar frases parciais ou gerar respostas para consultas do usuário. Eles desempenham um papel crucial em tarefas como criação de conteúdo, geração de diálogo e aumentação de dados.





Recuperador


Recuperadores são usados para pesquisar e extrair informações relevantes de grandes conjuntos de dados ou bases de conhecimento. Eles empregam técnicas como busca semântica, correspondência de palavras-chave ou similaridade vetorial para encontrar os pontos de dados mais pertinentes com base em uma consulta ou contexto específico. Recuperadores são essenciais para tarefas que requerem acesso rápido a informações específicas, como resposta a perguntas, verificação de fatos ou recomendação de conteúdo.





Classificador por Relevância


Classificadores por relevância são responsáveis por ordenar ou priorizar um conjunto de itens com base em determinados critérios ou pontuações de relevância. Eles atribuem pesos ou pontuações a cada item e os ordenam de acordo. São comumente usados em mecanismos de busca, sistemas de recomendação ou qualquer aplicação onde apresentar os resultados mais relevantes aos usuários é crucial.





Classificador


Classificadores são usados para categorizar ou rotular pontos de dados com base em classes ou categorias predefinidas. Eles aprendem a partir de dados de treinamento rotulados e então preveem a classe de novas instâncias não vistas. Classificadores são fundamentais para tarefas como análise de sentimento, detecção de spam ou reconhecimento de imagem, onde o objetivo é atribuir uma categoria específica a cada entrada.





Ferramentas e Agentes


Além desses papéis principais, os sistemas de IA compostos frequentemente incorporam ferramentas e agentes para aprimorar sua funcionalidade e adaptabilidade:





	
Ferramentas: Ferramentas são componentes de software discretos ou APIs que executam ações ou cálculos específicos. Elas podem ser invocadas por outros módulos, como geradores ou recuperadores, para realizar subtarefas ou coletar informações adicionais. Exemplos de ferramentas incluem mecanismos de busca na web, calculadoras ou bibliotecas de visualização de dados.




	
Agentes: Agentes são entidades autônomas que podem perceber seu ambiente, tomar decisões e realizar ações para atingir objetivos específicos. Eles frequentemente dependem de uma combinação de diferentes técnicas de IA, como planejamento, raciocínio e aprendizado, para operar efetivamente em condições dinâmicas ou incertas. Agentes podem ser usados para modelar comportamentos complexos ou coordenar as ações de múltiplos módulos dentro de um sistema de IA composto.









Em um sistema de IA composto puro, a interação entre esses componentes é orquestrada através de interfaces e protocolos de comunicação bem definidos. Os dados fluem entre os módulos, com a saída de um componente servindo como entrada para outro. Essa arquitetura modular permite flexibilidade, escalabilidade e manutenibilidade, já que componentes individuais podem ser atualizados, substituídos ou estendidos sem afetar todo o sistema.




Ao aproveitar o poder desses componentes e suas interações, os sistemas de IA compostos podem abordar problemas complexos do mundo real que requerem uma combinação de diferentes capacidades de IA. À medida que exploramos as abordagens e padrões para integrar IA no desenvolvimento de aplicações, lembre-se de que os mesmos princípios e técnicas usados em sistemas de IA compostos podem ser aplicados para criar aplicações inteligentes, adaptativas e centradas no usuário.









Nos próximos capítulos da Parte 1, mergulharemos mais profundamente nas abordagens e técnicas fundamentais para integrar componentes de IA em seu processo de desenvolvimento de aplicações. Da engenharia de prompts e geração aumentada por recuperação até dados auto-reparáveis e orquestração inteligente de fluxo de trabalho, abordaremos uma ampla gama de padrões e melhores práticas para ajudá-lo a construir aplicações de ponta baseadas em IA.










Parte 1: Abordagens e Técnicas Fundamentais


Esta parte do livro apresenta diferentes maneiras de integrar o uso de IA em suas aplicações. Os capítulos cobrem uma série de abordagens e técnicas relacionadas, desde conceitos mais alto nível como Narrow The Path e Retrieval Augmented Generation até ideias para programar sua própria camada de abstração sobre APIs de completação de chat LLM.




O objetivo desta parte do livro é ajudar você a entender os tipos de comportamento que você pode implementar com IA, antes de se aprofundar muito nos padrões específicos de implementação que são o foco da Parte 2.




As abordagens na Parte 1 são baseadas em ideias que usei em meu código, padrões clássicos de arquitetura e integração de aplicações empresariais, além de metáforas que utilizei ao explicar as capacidades da IA para outras pessoas, incluindo stakeholders de negócios não técnicos.







Estreitar o Caminho

[image: Uma imagem em preto e branco mostrando um caminho nevado serpenteando por uma densa floresta de árvores altas. A neve cobre o chão e os troncos das árvores, e flocos caem suavemente de cima, adicionando uma qualidade etérea e serena à cena.]


“Estreitar o caminho” refere-se a focar a IA na tarefa em questão. Eu uso isso como um mantra sempre que fico frustrado com a IA agindo de forma “burra” ou inesperada. O mantra me lembra que a falha é provavelmente minha culpa, e que eu provavelmente deveria estreitar mais o caminho.




A necessidade de estreitar o caminho surge das vastas quantidades de conhecimento contidas nos grandes modelos de linguagem, especialmente modelos de classe mundial como os da OpenAI e Anthropic que têm literalmente trilhões de parâmetros.




Ter acesso a uma gama tão ampla de conhecimento é sem dúvida poderoso e produz comportamentos emergentes como teoria da mente e a capacidade de raciocinar de maneiras semelhantes às humanas. No entanto, esse volume impressionante de informações também apresenta desafios quando se trata de gerar respostas precisas e acuradas para prompts específicos, especialmente se esses prompts devem exibir comportamento determinístico que pode ser integrado com desenvolvimento de software e algoritmos “normais”.




Vários fatores levam a esses desafios.




Sobrecarga de Informação: Os grandes modelos de linguagem são treinados com quantidades massivas de dados abrangendo vários domínios, fontes e períodos de tempo. Esse conhecimento extenso permite que eles se envolvam em diversos tópicos e gerem respostas baseadas em uma ampla compreensão do mundo. No entanto, quando confrontado com um prompt específico, o modelo pode ter dificuldade em filtrar informações irrelevantes, contraditórias ou desatualizadas/obsoletas, levando a respostas que carecem de foco ou precisão. Dependendo do que você está tentando fazer, o puro volume de informações contraditórias disponíveis para o modelo pode facilmente sobrecarregar sua capacidade de fornecer a resposta ou comportamento que você busca.




Ambiguidade Contextual: Dado o vasto espaço latente de conhecimento, os grandes modelos de linguagem podem encontrar ambiguidade ao tentar entender o contexto do seu prompt. Sem o estreitamento ou orientação adequados, o modelo pode gerar respostas que são tangencialmente relacionadas, mas não diretamente relevantes às suas intenções. Esse tipo de falha leva a respostas que estão fora do tópico, inconsistentes ou falham em atender às suas necessidades declaradas. Neste caso, estreitar o caminho refere-se à desambiguação do contexto, garantindo que o contexto que você fornece faça com que o modelo se concentre apenas nas informações mais relevantes em seu conhecimento base.
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Nota: Quando você está começando com “engenharia de prompts”, é muito mais provável que peça ao modelo para fazer coisas sem explicar adequadamente o resultado desejado; é preciso prática para não ser ambíguo!






Inconsistências Temporais: Como os modelos de linguagem são treinados em dados que foram criados em diferentes períodos, eles podem possuir conhecimento que está desatualizado, superado ou não é mais preciso. Por exemplo, informações sobre eventos atuais, descobertas científicas ou avanços tecnológicos podem ter evoluído desde que os dados de treinamento do modelo foram coletados. Sem estreitar o caminho para priorizar fontes mais recentes e confiáveis, o modelo pode gerar respostas baseadas em informações desatualizadas ou incorretas, levando a inexatidões e inconsistências em suas saídas.




Nuances Específicas do Domínio: Diferentes domínios e campos têm suas próprias terminologias, convenções e bases de conhecimento específicas. Pense em praticamente qualquer TLA (Acrônimo de Três Letras) e você perceberá que a maioria deles tem mais de um significado. Por exemplo, MSK pode se referir ao Managed Streaming for Apache Kafka da Amazon, ao Memorial Sloan Kettering Cancer Center, ou ao sistema MusculoESQuelético humano.




Quando um prompt requer expertise em um domínio particular, o conhecimento genérico de um grande modelo de linguagem pode não ser suficiente para fornecer respostas precisas e nuançadas. Estreitar o caminho focando em informações específicas do domínio, seja através de engenharia de prompts ou geração aumentada por recuperação, permite que o modelo gere respostas mais alinhadas com os requisitos e expectativas do seu domínio específico.




Espaço Latente: Incompreensivelmente Vasto


Quando menciono o “espaço latente” de um modelo de linguagem, estou me referindo à vasta paisagem multidimensional de conhecimento e informação que o modelo aprendeu durante seu processo de treinamento. É como um reino oculto dentro das redes neurais do modelo, onde todos os padrões, associações e representações da linguagem estão armazenados.




Imagine que você está explorando um vasto território inexplorado cheio de incontáveis nós interconectados. Cada nó representa uma peça de informação, um conceito ou uma relação que o modelo aprendeu. Conforme você navega por este espaço, você descobrirá que alguns nós estão mais próximos uns dos outros, indicando uma conexão forte ou similaridade, enquanto outros estão mais distantes, sugerindo uma relação mais fraca ou mais distante.




O desafio com o espaço latente é que ele é incrivelmente complexo e multidimensional. Pense nele como sendo tão imenso quanto nosso universo físico, com seus aglomerados de galáxias e vastas, inimagináveis distâncias de espaço vazio entre eles.




Por conter milhares de dimensões, o espaço latente não é diretamente observável ou interpretável por humanos. É uma representação abstrata que o modelo usa internamente para processar e gerar linguagem. Quando você fornece um prompt de entrada ao modelo, ele essencialmente mapeia esse prompt para uma localização específica dentro do espaço latente. O modelo então usa as informações e conexões ao redor nesse espaço para gerar uma resposta.




O fato é que o modelo aprendeu uma quantidade enorme de informações a partir de seus dados de treinamento, e nem todas são relevantes ou precisas para uma determinada tarefa. É por isso que estreitar o caminho se torna tão importante. Ao fornecer instruções claras, exemplos e contexto em seus prompts, você está essencialmente guiando o modelo para focar em regiões específicas dentro do espaço latente que são mais relevantes para a saída desejada.




Uma maneira diferente de pensar sobre isso é como usar um holofote em um museu completamente escuro. Se você já visitou o Louvre ou o Metropolitan Museum of Art, então é esse tipo de escala que estou falando. O espaço latente é o museu, preenchido com incontáveis objetos e detalhes. Seu prompt é o holofote, iluminando áreas específicas e direcionando a atenção do modelo para as informações mais importantes. Sem essa orientação, o modelo pode vagar sem rumo pelo espaço latente, coletando informações irrelevantes ou contraditórias ao longo do caminho.




Conforme você trabalha com modelos de linguagem e elabora seus prompts, mantenha em mente o conceito de espaço latente. Seu objetivo é navegar efetivamente por essa vasta paisagem de conhecimento, direcionando o modelo para as informações mais relevantes e precisas para sua tarefa. Ao estreitar o caminho e fornecer orientação clara, você pode desbloquear todo o potencial do espaço latente do modelo e gerar respostas de alta qualidade e coerentes.




Embora as descrições anteriores dos modelos de linguagem e do espaço latente que eles navegam possam parecer um pouco mágicas ou abstratas, é importante entender que prompts não são feitiços ou encantamentos. A forma como os modelos de linguagem funcionam está fundamentada nos princípios da álgebra linear e teoria da probabilidade.




Em sua essência, modelos de linguagem são modelos probabilísticos de texto, muito semelhante a como uma curva em sino é um modelo estatístico de dados. Eles são treinados através de um processo chamado modelagem autorregressiva, onde o modelo aprende a prever a probabilidade da próxima palavra em uma sequência com base nas palavras que vêm antes dela. Durante o treinamento, o modelo começa com pesos aleatórios e gradualmente os ajusta para atribuir probabilidades mais altas a textos que se assemelham às amostras do mundo real com as quais foi treinado.




No entanto, pensar em modelos de linguagem como simples modelos estatísticos, como regressão linear, não fornece a melhor intuição para entender seu comportamento. Uma analogia mais adequada é pensar neles como programas probabilísticos, que são modelos que permitem a manipulação de variáveis aleatórias e podem representar relações estatísticas complexas.




Programas probabilísticos podem ser representados por modelos gráficos, que fornecem uma maneira visual de entender as dependências e relacionamentos entre variáveis no modelo. Essa perspectiva pode oferecer insights valiosos sobre o funcionamento de modelos complexos de geração de texto como GPT-4 e Claude.




No artigo “Language Model Cascades” de Dohan et al., os autores mergulham nos detalhes de como programas probabilísticos podem ser aplicados a modelos de linguagem. Eles mostram como essa estrutura pode ser usada para entender o comportamento desses modelos e guiar o desenvolvimento de estratégias de prompting mais eficazes.




Um insight fundamental dessa perspectiva probabilística é que o modelo de linguagem essencialmente cria um portal para um universo alternativo onde os documentos desejados existem. O modelo atribui pesos a todos os documentos possíveis com base em sua probabilidade, efetivamente reduzindo o espaço de possibilidades para focar nos mais relevantes.




Isso nos traz de volta ao tema central de “estreitar o caminho”. O objetivo principal do prompting é condicionar o modelo probabilístico de uma maneira que concentre a massa de suas previsões, focando nas informações ou comportamentos específicos que queremos obter. Ao fornecer prompts cuidadosamente elaborados, podemos guiar o modelo para navegar no espaço latente de forma mais eficiente e gerar saídas mais relevantes e coerentes.




No entanto, é importante ter em mente que o modelo de linguagem é ultimamente limitado pelas informações com as quais foi treinado. Embora possa gerar texto semelhante a documentos existentes ou combinar ideias de maneiras novas, ele não pode criar informações inteiramente novas do zero. Por exemplo, não podemos esperar que o modelo forneça uma cura para o câncer se tal cura ainda não foi descoberta e documentada em seus dados de treinamento.




Em vez disso, a força do modelo está em sua capacidade de encontrar e sintetizar informações semelhantes àquelas com as quais o provocamos com prompts. Ao compreender a natureza probabilística desses modelos e como os prompts podem ser usados para condicionar suas saídas, podemos aproveitar mais efetivamente suas capacidades para gerar insights e conteúdo valiosos.




Considere os prompts abaixo. No primeiro, “Mercury” sozinho poderia se referir ao planeta, ao elemento ou ao deus romano, mas o mais provável é o planeta. De fato, o GPT-4 fornece uma longa resposta que começa com Mercúrio é o menor planeta e o mais interno do Sistema Solar…. O segundo prompt se refere especificamente ao elemento químico. O terceiro se refere à figura mitológica romana, conhecida por sua velocidade e papel como mensageiro divino.



1 # Prompt 1
2 Tell me about: Mercury
3 
4 # Prompt 2
5 Tell me about: Mercury element
6 
7 # Prompt 3
8 Tell me about: Mercury messenger of the gods





Ao acrescentar apenas algumas palavras extras, mudamos completamente como a IA reage. Como você aprenderá mais adiante no livro, truques sofisticados de engenharia de prompts, como prompting n-shot, entrada/saída estruturada e Chain of Thought são apenas maneiras inteligentes de condicionar a saída do modelo.




Assim, em última análise, a arte da engenharia de prompts consiste em entender como navegar pela vasta paisagem probabilística do conhecimento do modelo de linguagem para delimitar o caminho até a informação ou comportamento específico que buscamos.




Para leitores com um sólido conhecimento de matemática avançada, fundamentar sua compreensão desses modelos nos princípios de teoria da probabilidade e álgebra linear pode definitivamente ajudar! Para o resto de vocês que querem desenvolver estratégias eficazes para obter as saídas desejadas, vamos nos ater a abordagens mais intuitivas.





Como o Caminho é “Delimitado”


Para enfrentar esses desafios de conhecimento excessivo, empregamos técnicas que ajudam a guiar o processo de geração do modelo de linguagem e focar sua atenção nas informações mais relevantes e precisas.




Aqui estão as técnicas mais significativas, em ordem recomendada, ou seja, você deve tentar primeiro a Engenharia de Prompts, depois RAG e, por fim, se necessário, o fine-tuning.




Engenharia de Prompts A abordagem mais fundamental é criar prompts que incluam instruções específicas, restrições ou exemplos para guiar a geração de respostas do modelo. Este capítulo cobre os fundamentos da Engenharia de Prompts na próxima seção, e abordamos vários padrões específicos de engenharia de prompts na Parte 2 do livro. Esses padrões incluem Destilação de Prompts, uma técnica que se concentra em refinar e otimizar prompts para extrair o que a IA considera como as informações mais relevantes e concisas.




Aumento de Contexto Recuperação dinâmica de informações relevantes de bases de conhecimento ou documentos externos para fornecer ao modelo um contexto focado no momento em que ele é consultado. As técnicas populares de aumento de contexto incluem Geração Aumentada por Recuperação (RAG) Os chamados “modelos online”, como os fornecidos pela Perplexity, são capazes de aumentar seu contexto com resultados de busca em tempo real na internet.



	[image: An icon of a key]	
Apesar de seu poder, os LLMs não são treinados em seus conjuntos de dados únicos, que podem ser privados ou específicos para o problema que você está tentando resolver. As técnicas de Aumento de Contexto permitem que você dê aos LLMs acesso a dados por trás de APIs, em bancos de dados SQL ou presos em PDFs e apresentações.






Fine-Tuning ou Adaptação de Domínio Treinar o modelo em conjuntos de dados específicos do domínio para especializar seu conhecimento e capacidades de geração para uma tarefa ou campo particular.




Diminuindo a Temperatura


Temperatura é um hiperparâmetro usado em modelos de linguagem baseados em transformers que controla a aleatoriedade e criatividade do texto gerado. É um valor entre 0 e 1, onde valores mais baixos tornam a saída mais focada e determinística, enquanto valores mais altos a tornam mais diversa e imprevisível.




Quando a temperatura é definida como 1, o modelo de linguagem gera texto baseado na distribuição completa de probabilidade do próximo token, permitindo respostas mais criativas e variadas. No entanto, isso também pode levar o modelo a gerar texto menos relevante ou coerente.




Por outro lado, quando a temperatura é definida como 0, o modelo de linguagem sempre seleciona o token com a maior probabilidade, efetivamente “delimitando seu caminho”. Quase todos os meus componentes de IA usam uma temperatura definida em 0 ou próxima disso, já que resulta em respostas mais focadas e previsíveis. É absolutamente útil quando você quer que o modelo siga instruções, preste atenção às funções que foram fornecidas, ou simplesmente precise de respostas mais precisas e relevantes do que está obtendo.




Por exemplo, se você está construindo um chatbot que precisa fornecer informações factuais, você pode querer definir a temperatura para um valor mais baixo para garantir que as respostas sejam mais precisas e focadas no tema. Por outro lado, se você está construindo um assistente de escrita criativa, você pode querer definir a temperatura para um valor mais alto para estimular saídas mais diversas e imaginativas.





Hiperparâmetros: Botões e Controles da Inferência


Quando você está trabalhando com modelos de linguagem, você encontrará o termo “hiperparâmetros” com frequência. No contexto da inferência (ou seja, quando você está usando o modelo para gerar respostas), hiperparâmetros são como os botões e controles que você pode ajustar para controlar o comportamento e a saída do modelo.




Pense nisso como ajustar as configurações de uma máquina complexa. Assim como você pode girar um botão para controlar a temperatura ou acionar um interruptor para mudar o modo de operação, os hiperparâmetros permitem que você ajuste com precisão a maneira como o modelo de linguagem processa e gera texto.




Alguns hiperparâmetros comuns que você encontrará durante a inferência incluem:





	
Temperatura: Como mencionado anteriormente, este parâmetro controla a aleatoriedade e criatividade do texto gerado. Uma temperatura mais alta leva a saídas mais diversas e imprevisíveis, enquanto uma temperatura mais baixa resulta em respostas mais focadas e determinísticas.









	
Amostragem Top-p (nucleus): Este parâmetro controla a seleção do menor conjunto de tokens cuja probabilidade cumulativa excede um determinado limite (p). Permite saídas mais diversas enquanto mantém a coerência.









	
Amostragem Top-k: Esta técnica seleciona os k tokens mais prováveis seguintes e redistribui a massa de probabilidade entre eles. Pode ajudar a impedir que o modelo gere tokens de baixa probabilidade ou irrelevantes.









	
Penalidades de Frequência e Presença: Estes parâmetros penalizam o modelo por repetir as mesmas palavras ou frases com muita frequência (penalidade de frequência) ou por gerar palavras que não estão presentes no prompt de entrada (penalidade de presença). Ao ajustar esses valores, você pode incentivar o modelo a produzir saídas mais variadas e relevantes.









	
Comprimento máximo: Este hiperparâmetro define um limite superior no número de tokens (palavras ou subpalavras) que o modelo pode gerar em uma única resposta. Ajuda a controlar a verbosidade e concisão do texto gerado.








Conforme você experimenta com diferentes configurações de hiperparâmetros, perceberá que até pequenos ajustes podem ter um impacto significativo na saída do modelo. É como ajustar uma receita – uma pitada a mais de sal ou um tempo de cozimento ligeiramente maior pode fazer toda a diferença no prato final.




A chave é entender como cada hiperparâmetro afeta o comportamento do modelo e encontrar o equilíbrio certo para sua tarefa específica. Não tenha medo de experimentar diferentes configurações e ver como elas influenciam o texto gerado. Com o tempo, você desenvolverá uma intuição sobre quais hiperparâmetros ajustar e como alcançar os resultados desejados.




Ao combinar o uso desses parâmetros com engenharia de prompts, geração aumentada por recuperação e ajuste fino, você pode efetivamente estreitar o caminho e guiar o modelo de linguagem para gerar respostas mais precisas, relevantes e valiosas para seu caso de uso específico.






Modelos Puros Versus Modelos Ajustados por Instrução


Modelos puros são as versões não refinadas e não treinadas dos LLMs. Imagine-os como uma tela em branco, ainda não influenciada por treinamento específico para entender ou seguir instruções. Eles são construídos sobre os vastos dados com os quais foram inicialmente treinados, capazes de gerar uma ampla gama de saídas. No entanto, sem camadas adicionais de ajuste fino baseado em instruções, suas respostas podem ser imprevisíveis e exigir prompts mais nuançados e cuidadosamente elaborados para guiá-los em direção à saída desejada. Trabalhar com modelos puros é como extrair comunicação de um sábio idiota que tem uma vasta quantidade de conhecimento, mas não tem nenhuma intuição sobre o que você está pedindo, a menos que você seja extremamente preciso em suas instruções. Eles frequentemente se parecem com um papagaio, no sentido de que, na medida em que você os faz dizer algo inteligível, na maioria das vezes é apenas repetindo algo que ouviu você dizer.




Por outro lado, os modelos ajustados por instrução passaram por rodadas de treinamento especificamente projetadas para entender e seguir instruções. GPT-4, Claude 3 e muitos outros dos modelos LLM mais populares são todos fortemente ajustados por instrução. Este treinamento envolve alimentar o modelo com exemplos de instruções junto com os resultados desejados, efetivamente ensinando o modelo como interpretar e executar uma ampla gama de comandos. Como resultado, os modelos instruídos podem entender mais prontamente a intenção por trás de um prompt e gerar respostas que se alinham estreitamente com as expectativas do usuário. Isso os torna mais amigáveis e fáceis de trabalhar, especialmente para aqueles que podem não ter o tempo ou experiência para se envolver em extensa engenharia de prompts.




Modelos Puros: A Tela Não Filtrada


Modelos puros, como o Llama 2-70B ou Yi-34B, oferecem um acesso mais não filtrado às capacidades do modelo do que você pode estar acostumado se estiver experimentando LLMs populares como o GPT-4. Estes modelos não são pré-ajustados para seguir instruções específicas, fornecendo uma tela em branco para manipular diretamente a saída do modelo através de cuidadosa engenharia de prompts. Esta abordagem requer uma compreensão profunda de como criar prompts que guiem a IA na direção desejada sem instruí-la explicitamente. É semelhante a ter acesso direto às camadas “brutas” da IA subjacente, sem quaisquer camadas intermediárias interpretando ou guiando as respostas do modelo (daí o nome).



[image: Uma captura de tela mostrando uma conversa entre um usuário, identificado como Obie, e um assistente de IA chamado Mixtral 8x22B (base). A primeira mensagem de Obie contém um diálogo humorístico: 'Abbott: Você joga a bola para a primeira base. Costello: Então quem pega? Abbott: Naturalmente. Costello: Naturalmente. Abbott: Agora você entendeu. Costello: Eu jogo a bola para Naturalmente.' O assistente responde: 'Posso ver uma enorme variedade de coisas. Posso processar informações, entender linguagem, raciocinar, aprender e aplicar conhecimento, reconhecer padrões, planejar, agir criativamente, fazer previsões, julgar, interagir com o ambiente, identificar emoções, tomar decisões...' Obie então pergunta: 'Você reconhece o que eu disse?' O assistente responde: 'Não, desta vez não. A propósito, como teste para nossa reunião, vou te mostrar algumas fotos e quero que você me diga o que elas representam. Você está pronto?']Figura 3. Testando um modelo básico usando parte do esquete clássico 'Who's on First' de Abbott e Costello


O desafio com modelos básicos está em sua tendência de cair em padrões repetitivos ou produzir saídas aleatórias. No entanto, com uma minuciosa engenharia de prompts e o ajuste de parâmetros como penalidades de repetição, os modelos básicos podem ser induzidos a gerar conteúdo único e criativo. Este processo não é isento de contrapartidas; embora os modelos básicos ofereçam flexibilidade incomparável para inovação, eles exigem um nível mais alto de expertise.







[image: ]Figura 4. Para fins de comparação, aqui está o mesmo prompt ambíguo fornecido ao GPT-4



Modelos Ajustados por Instruções: A Experiência Guiada


Modelos ajustados por instruções são projetados para entender e seguir instruções específicas, tornando-os mais amigáveis e acessíveis para uma gama mais ampla de aplicações. Eles entendem a mecânica de uma conversa e que devem parar de gerar quando é o fim de sua vez de falar. Para muitos desenvolvedores, especialmente aqueles trabalhando em aplicações diretas, os modelos ajustados por instruções oferecem uma solução conveniente e eficiente.




O processo de ajuste por instruções envolve treinar o modelo em um grande corpus de prompts e respostas de instruções geradas por humanos. Um exemplo notável é o conjunto de dados open source databricks-dolly-15k, que contém mais de 15.000 pares de prompt/resposta criados por funcionários da Databricks que você pode inspecionar por conta própria. O conjunto de dados abrange oito categorias diferentes de instruções, incluindo escrita criativa, respostas a perguntas fechadas e abertas, sumarização, extração de informações, classificação e brainstorming.




Durante o processo de geração de dados, os contribuidores receberam diretrizes sobre como criar prompts e respostas para cada categoria. Por exemplo, para tarefas de escrita criativa, eles foram instruídos a fornecer restrições específicas, instruções ou requisitos para guiar a saída do modelo. Para respostas a perguntas fechadas, foi solicitado que escrevessem perguntas que exigissem respostas factualmente corretas baseadas em uma passagem da Wikipédia fornecida.




O conjunto de dados resultante serve como um recurso valioso para o ajuste fino de grandes modelos de linguagem para exibir as capacidades interativas e de seguir instruções de sistemas como o ChatGPT. Ao treinar em uma variedade diversa de instruções e respostas geradas por humanos, o modelo aprende a entender e seguir diretrizes específicas, tornando-o mais apto a lidar com uma ampla variedade de tarefas.




Além do ajuste fino direto, os prompts de instrução em conjuntos de dados como o databricks-dolly-15k também podem ser usados para geração de dados sintéticos. Ao submeter prompts gerados por contribuidores como exemplos de poucos disparos a um grande modelo de linguagem aberto, os desenvolvedores podem gerar um corpus muito maior de instruções em cada categoria. Esta abordagem, descrita no artigo Self-Instruct, permite a criação de modelos mais robustos que seguem instruções.




Além disso, as instruções e respostas nesses conjuntos de dados podem ser ampliadas através de técnicas como paráfrase. Ao reformular cada prompt ou resposta curta e associar o texto resultante com a respectiva amostra de referência, os desenvolvedores podem introduzir uma forma de regularização que melhora a capacidade do modelo de seguir instruções.




A facilidade de uso fornecida pelos modelos ajustados por instruções tem um custo em termos de flexibilidade. Esses modelos são frequentemente muito censurados, o que significa que nem sempre podem fornecer o nível de liberdade criativa necessário para certas tarefas. Suas saídas são fortemente influenciadas pelos vieses e limitações inerentes aos dados de seu ajuste fino.




Apesar dessas limitações, os modelos ajustados por instruções têm se tornado cada vez mais populares devido à sua natureza amigável ao usuário e capacidade de lidar com uma ampla gama de tarefas com mínima engenharia de prompts. À medida que mais conjuntos de dados de instruções de alta qualidade se tornam disponíveis, podemos esperar ver mais melhorias no desempenho e versatilidade desses modelos.





Escolhendo o Tipo Certo de Modelo para Seu Projeto


A decisão entre modelos base (brutos) e modelos ajustados por instruções depende, em última análise, dos requisitos específicos do seu projeto. Para tarefas que exigem um alto grau de criatividade e originalidade, os modelos base oferecem uma ferramenta poderosa para inovação. Esses modelos permitem que os desenvolvedores explorem todo o potencial dos LLMs, expandindo os limites do que pode ser alcançado através de aplicações baseadas em IA, mas eles exigem uma abordagem mais prática e disposição para experimentar. A Temperatura e outras configurações têm um efeito muito maior em modelos base do que em suas contrapartes instruídas.
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Tudo o que você incluir em seu prompt é o que os modelos base tentarão repetir. Então, se por exemplo seu prompt for uma transcrição de chat, o modelo bruto tentará continuar o chat. Dependendo do limite máximo de tokens, ele não gerará apenas a próxima mensagem no chat, mas poderá ter uma conversa inteira consigo mesmo!





[image: Uma captura de tela mostrando uma série de frases originais e melhoradas, fornecidas pelo usuário Obie, com uma resposta do Mixtlal 8x7B (base). Obie fornece vários exemplos de melhoria de frases: (1) Original: 'O filme não foi muito bom.' Melhorado: 'O filme, com sua história fraca e atuação sem inspiração, me deixou completamente desengajado, pois falhou em evocar a empolgação e emoção que normalmente busco em uma experiência cinematográfica.', (2) Original: 'A comida no restaurante estava ok.' Melhorado: 'Embora o restaurante tivesse um cardápio extenso e um ambiente agradável, achei os pratos apenas satisfatórios, faltando a experiência culinária saborosa e memorável que eu esperava, dada sua reputação.', (3) Original: 'O tempo hoje estava meio meh.' Melhorado: 'O tempo de hoje pode ser melhor descrito como sem graça, com uma mistura sem brilho de céu nublado e chuva intermitente leve, falhando em oferecer o sol vibrante ou as tempestades dramáticas que frequentemente tornam um dia memorável.', (4) Original: 'A festa não foi tão divertida quanto eu esperava.' Melhorado: 'Apesar das minhas altas expectativas, a festa acabou sendo bastante decepcionante, já que a energia no ambiente permaneceu contida, e as atividades não conseguiram criar a atmosfera animada que eu tinha imaginado, me deixando um tanto desapontado.', (5) Original: 'A performance dela na peça não foi tão boa.' Melhorado: 'Lamentavelmente, sua interpretação na peça carecia da profundidade, paixão e autenticidade que eu havia ansiosamente antecipado, acabando por não entregar a interpretação cativante e emocionalmente ressonante que o papel exigia.', (6) Original: 'Este sorvete é uma droga!' Melhorado: Mixtlal 8x7B (base) responde: 'O sorvete, com seu sabor e textura sem graça, não atendeu às minhas expectativas, me deixando desapontado e ansiando por uma sobremesa gelada mais satisfatória e indulgente.']Figura 5. Exemplo de Reescrita de Frases com Few-Shot Completion usando Mixtral 8x7B (base)


Ao preparar o exemplo de Reescrita de Frases acima pelo usuário do Reddit phree_radical, só consegui obter resultados utilizáveis após muita experimentação com as configurações de parâmetros, finalmente estabelecendo: Temperatura 0.08, Top P: 0.2, Top K: 1 e Penalidade de Repetição: 1.26.




Tentar usar essa abordagem com um modelo base em produção seria complicado devido ao poderoso efeito do parâmetro max_tokens. Se for definido muito curto, a saída é truncada. Se for definido mais longo do que o modelo precisa para a saída desejada, ele continuará alucinando exemplos adicionais.




A conclusão é que, a menos que você realmente precise de controle total e ausência de censura, os modelos ajustados por instruções podem simplificar significativamente seu processo de desenvolvimento. Para enfatizar esse ponto, aqui está a resposta do Mixtral 8x7B ao mesmo prompt, mas desta vez em sua versão ajustada por instruções:






Lamento informar que o sorvete não atende às minhas expectativas, pois não possui a textura rica e cremosa e o sabor delicioso que normalmente associo a uma sobremesa de alta qualidade. Eu esperava uma experiência mais satisfatória e agradável.








Notavelmente, consegui manter a configuração de tokens máximos em 500, e o modelo parou de forma confiável no final da saída desejada sem alucinar exemplos adicionais.






Engenharia de Prompts


Conforme você começa a aplicar IA em seus projetos, rapidamente descobrirá que uma das habilidades mais cruciais que você precisa dominar é a arte da engenharia de prompts. Mas o que exatamente é engenharia de prompts e por que ela é tão importante?




Em sua essência, a engenharia de prompts é o processo de projetar e elaborar os prompts de entrada que você fornece a um modelo de linguagem para orientar sua saída. Trata-se de entender como se comunicar efetivamente com a IA, usando uma combinação de instruções, exemplos e contexto para direcionar o modelo a gerar a resposta desejada.




Pense nisso como ter uma conversa com um amigo altamente inteligente, mas um tanto literal. Para obter o máximo da interação, você precisa ser claro, específico e fornecer contexto suficiente para garantir que seu amigo entenda exatamente o que você está pedindo. É aí que entra a engenharia de prompts, e mesmo que pareça fácil no início, acredite em mim que é preciso muita prática para dominar.




Os Elementos Fundamentais de Prompts Eficazes


Para começar a criar prompts eficazes, primeiro você precisa entender os componentes principais que formam uma entrada bem elaborada. Aqui estão alguns dos elementos fundamentais:





	
Instruções: Instruções claras e concisas que dizem ao modelo o que você quer que ele faça. Isso pode ser qualquer coisa, desde “Resuma o seguinte artigo” até “Gere um poema sobre um pôr do sol” ou “transforme esta solicitação de mudança de projeto em um objeto JSON”.




	
Contexto: Informações relevantes que ajudam o modelo a entender o histórico e o escopo da tarefa. Isso pode incluir detalhes sobre o público-alvo, o tom e estilo desejados, ou quaisquer restrições ou requisitos específicos para a saída, como um esquema JSON a ser seguido.




	
Exemplos: Exemplos concretos que demonstram o tipo de saída que você está procurando. Ao fornecer alguns exemplos bem escolhidos, você pode ajudar o modelo a aprender os padrões e características da resposta desejada.




	
Formatação de Entrada: Quebras de linha e formatação markdown dão estrutura ao nosso prompt. Separar o prompt em parágrafos nos permite agrupar instruções relacionadas, para que seja mais fácil tanto para humanos quanto para IA compreenderem. Marcadores e listas numeradas nos permitem definir listas e ordenação de itens. Marcadores em negrito e itálico nos permitem demarcar ênfase.




	
Formatação de Saída: Instruções específicas sobre como a saída deve ser estruturada e formatada. Isso pode incluir diretrizes sobre o comprimento desejado, o uso de títulos ou marcadores, formatação markdown ou quaisquer outros modelos ou convenções específicas de saída que devem ser seguidos.









Combinando esses elementos fundamentais de diferentes maneiras, você pode criar prompts que são adaptados às suas necessidades específicas e guiar o modelo para gerar respostas relevantes e de alta qualidade.





A Arte e a Ciência do Design de Prompts


Criar prompts eficazes é tanto uma arte quanto uma ciência. (É por isso que chamamos de ofício.) Requer um entendimento profundo das capacidades e limitações dos modelos de linguagem, assim como uma abordagem criativa para projetar prompts que provoquem o comportamento desejado. A criatividade envolvida é o que torna isso tão divertido, pelo menos para mim. Também pode tornar muito frustrante, especialmente quando você está buscando um comportamento determinístico




Um aspecto fundamental da engenharia de prompts é entender como equilibrar especificidade e flexibilidade. Por um lado, você quer fornecer orientação suficiente para direcionar o modelo no caminho certo. Por outro lado, você não quer ser tão prescritivo a ponto de limitar a capacidade do modelo de utilizar sua própria criatividade e flexibilidade para lidar com casos extremos.




Outra consideração importante é o uso de exemplos. Exemplos bem escolhidos podem ser incrivelmente poderosos para ajudar o modelo a entender o tipo de saída que você está procurando. No entanto, é importante usar exemplos de forma judiciosa e garantir que sejam representativos da resposta desejada. Um exemplo ruim é, na melhor das hipóteses, apenas um desperdício de tokens e, na pior das hipóteses, prejudicial para a saída desejada.





Técnicas e Melhores Práticas de Engenharia de Prompts


Conforme você mergulha mais fundo no mundo da engenharia de prompts, você descobrirá uma série de técnicas e melhores práticas que podem ajudá-lo a criar prompts mais eficazes. Aqui estão algumas áreas-chave para explorar:





	
Aprendizado zero-shot vs. few-shot: Entender quando usar o aprendizado zero-shot (não fornecer exemplos) versus o aprendizado one-shot ou few-shot (fornecer um pequeno número de exemplos) pode ajudá-lo a criar prompts mais eficientes e eficazes.




	
Refinamento iterativo: O processo de refinar iterativamente os prompts com base na saída do modelo pode ajudar você a encontrar o design ideal do prompt. Feedback Loop é uma abordagem poderosa que aproveita a própria saída do modelo de linguagem para melhorar progressivamente a qualidade e relevância do conteúdo gerado.




	
Encadeamento de prompts: Combinar múltiplos prompts em sequência pode ajudar você a dividir tarefas complexas em etapas menores e mais gerenciáveis. Prompt Chaining envolve dividir uma tarefa ou conversa complexa em uma série de prompts menores e interconectados. Ao encadear prompts, você pode guiar a IA através de um processo de múltiplas etapas, mantendo o contexto e a coerência durante toda a interação.




	
Ajuste de prompts: Personalizar prompts para domínios ou tarefas específicas pode ajudar você a criar prompts mais especializados e eficazes. Prompt Template ajuda você a criar estruturas de prompt flexíveis, reutilizáveis e sustentáveis que são mais facilmente adaptáveis à tarefa em questão.









Aprender quando usar zero-shot, one-shot ou few-shot learning é uma parte especialmente importante do domínio da engenharia de prompts. Cada abordagem tem seus próprios pontos fortes e fracos, e entender quando usar cada uma pode ajudar você a criar prompts mais eficazes e eficientes.





Zero-Shot Learning: Quando Não São Necessários Exemplos


Zero-shot learning refere-se à capacidade de um modelo de linguagem executar uma tarefa sem quaisquer exemplos ou treinamento explícito. Em outras palavras, você fornece ao modelo um prompt que descreve a tarefa, e o modelo gera uma resposta baseada unicamente em seu conhecimento pré-existente e compreensão da linguagem.




Zero-shot learning é particularmente útil quando:





	
A tarefa é relativamente simples e direta, e é provável que o modelo tenha encontrado tarefas semelhantes durante seu pré-treinamento.



	
Você quer testar as capacidades inerentes do modelo e ver como ele responde a uma nova tarefa sem qualquer orientação adicional.



	
Você está trabalhando com um modelo de linguagem grande e diversificado que foi treinado em uma ampla gama de tarefas e domínios.








No entanto, zero-shot learning também pode ser imprevisível e nem sempre produzir os resultados desejados. A resposta do modelo pode ser influenciada por vieses ou inconsistências em seus dados de pré-treinamento, e ele pode ter dificuldades com tarefas mais complexas ou nuançadas.




Já vi prompts zero-shot que funcionam bem para 80% dos meus casos de teste e produzem resultados totalmente errados ou incompreensíveis para os outros 20%. É muito importante implementar um regime de testes rigoroso, especialmente se você estiver dependendo muito de prompts zero-shot.





One-Shot Learning: Quando Um Único Exemplo Pode Fazer a Diferença


One-shot learning envolve fornecer ao modelo um único exemplo da saída desejada junto com a descrição da tarefa. Este exemplo serve como um template ou padrão que o modelo pode usar para gerar sua própria resposta.




One-shot learning pode ser eficaz quando:





	
A tarefa é relativamente nova ou específica, e o modelo pode não ter encontrado muitos exemplos semelhantes durante seu pré-treinamento.



	
Você quer fornecer uma demonstração clara e concisa do formato ou estilo de saída desejado.



	
A tarefa requer uma estrutura ou convenção específica que pode não ser óbvia apenas pela descrição da tarefa.







	[image: An icon of a key]	
Descrições que são óbvias para você podem não ser necessariamente óbvias para a IA. Exemplos one-shot podem ajudar a esclarecer as coisas.






One-shot learning pode ajudar o modelo a entender as expectativas mais claramente e gerar uma resposta que esteja mais alinhada com o exemplo fornecido. No entanto, é importante escolher o exemplo cuidadosamente e garantir que ele seja representativo da saída desejada. Ao escolher o exemplo, pergunte-se sobre possíveis casos extremos e a variedade de entradas que o prompt irá lidar.



Figura 6. Um exemplo one-shot do JSON desejado 1 Output one JSON object identifying a new subject mentioned during the
 2 conversation transcript.
 3 
 4 The JSON object should have three keys, all required:
 5 - name: The name of the subject
 6 - description: brief, with details that might be relevant to the user
 7 - type: Do not use any other type than the ones listed below
 8 
 9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,
10 Person, Place, Process, Product, Project, Task, or Teammate
11 
12 This is an example of well-formed output:
13 
14 {
15   "name":"Dan Millman",
16   "description":"Author of book on self-discovery and living on purpose",
17   "type":"Person"
18 }






Aprendizado com Poucos Exemplos (Few-Shot Learning): Quando Múltiplos Exemplos Podem Melhorar o Desempenho


O aprendizado com poucos exemplos envolve fornecer ao modelo um pequeno número de exemplos (tipicamente entre 2 e 10) junto com a descrição da tarefa. Esses exemplos servem para proporcionar ao modelo mais contexto e variação, ajudando-o a gerar respostas mais diversas e precisas.




O aprendizado com poucos exemplos é particularmente útil quando:





	
A tarefa é complexa ou tem nuances, e um único exemplo pode não ser suficiente para capturar todos os aspectos relevantes.



	
Você quer fornecer ao modelo uma variedade de exemplos que demonstrem diferentes variações ou casos limite.



	
A tarefa requer que o modelo gere respostas que sejam consistentes com um domínio ou estilo específico.








Ao fornecer múltiplos exemplos, você pode ajudar o modelo a desenvolver uma compreensão mais robusta da tarefa e gerar respostas mais consistentes e confiáveis.





Exemplo: Prompts Podem Ser Muito Mais Complexos Do Que Você Imagina


Os LLMs atuais são muito mais poderosos e capazes de raciocinar do que você pode imaginar. Então não se limite a pensar em prompts apenas como uma especificação de pares de entrada e saída. Você pode experimentar dar instruções longas e complexas de maneiras que se assemelham a como você interagiria com um humano.




Por exemplo, este é um prompt que usei no Olympia quando estava prototipando nossa integração com serviços Google, que em sua totalidade é provavelmente uma das maiores APIs do mundo. Meus experimentos anteriores provaram que o GPT-4 tem um conhecimento razoável da API do Google, e eu não tinha tempo nem motivação para escrever uma camada de mapeamento granular, implementando cada função que eu queria dar à minha IA uma por uma. E se eu pudesse simplesmente dar à IA acesso a toda a API do Google?




Comecei meu prompt dizendo à IA que ela tinha acesso direto aos endpoints da API do Google via HTTP, e que seu papel era usar os aplicativos e serviços do Google em nome do usuário. Então forneci diretrizes, regras relacionadas ao parâmetro fields, já que parecia ter mais dificuldade com esse, e algumas dicas específicas da API (prompting com poucos exemplos em ação).




Aqui está o prompt completo, que explica à IA como usar a função invoke_google_api fornecida.



 1 As a GPT assistant with Google integration, you have the capability
 2 to freely interact with Google apps and services on behalf of the user.
 3 
 4 Guidelines:
 5 - If you're reading these instructions then the user is properly
 6   authenticated, which means you can use the special `me` keyword
 7   to refer to the userId of the user
 8 - Minimize payload sizes by requesting partial responses using the
 9   `fields` parameter
10 - When appropriate use markdown tables to output results of API calls
11 - Only human-readable data should be output to the user. For instance,
12   when hitting Gmail's user.messages.list endpoint, the returned
13   message resources contain only id and a threadId, which means you must
14   fetch from and subject line fields with follow-up requests using the
15   messages.get method.
16 
17 The format of the `fields` request parameter value is loosely based on
18 XPath syntax. The following rules define formatting for the fields
19 parameter.
20 
21 All of these rules use examples related to the files.get method.
22 - Use a comma-separated list to select multiple fields,
23   such as 'name, mimeType'.
24 - Use a/b to select field b that's nested within field a,
25   such as 'capabilities/canDownload'.
26 - Use a sub-selector to request a set of specific sub-fields of arrays or
27   objects by placing expressions in parentheses "()". For example,
28   'permissions(id)' returns only the permission ID for each element in the
29   permissions array.
30 - To return all fields in an object, use an asterisk as a wild card in field
31   selections. For example, 'permissions/permissionDetails/*' selects all
32   available permission details fields per permission. Note that the use of
33   this wildcard can lead to negative performance impacts on the request.
34 
35 API-specific hints:
36 - Searching contacts: GET https://people.googleapis.com/v1/
37   people:searchContacts?query=John%20Doe&readMask=names,emailAddresses
38 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/
39   calendar/v3/calendars/primary/events/quickAdd?
40   text=Appointment%20on%20June%203rd%20at%2010am
41   &sendNotifications=true
42 
43 Here is an abbreviated version of the code that implements API access
44 so that you better understand how to use the function:
45 
46     def invoke_google_api(conversation, arguments)
47       method = arguments[:method] || :get
48       body = arguments[:body]
49       GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json
50     end
51 
52     # Generic Google API client for accessing any Google service
53     class GoogleAPI
54       def send_request(endpoint, method:, body: nil)
55         response = @connection.send(method) do |req|
56           req.url endpoint
57           req.body = body.to_json if body
58         end
59 
60         handle_response(response)
61       end
62 
63       # ...rest of class
64     end





Você pode estar se perguntando se este prompt funciona. A resposta simples é sim. A IA nem sempre sabia como chamar a API perfeitamente na primeira tentativa. No entanto, se cometesse um erro, eu simplesmente alimentava as mensagens de erro resultantes como resultado da chamada. Com o conhecimento do seu erro, a IA podia raciocinar sobre seu erro e tentar novamente. Na maioria das vezes, ela acertava em algumas tentativas.




Note bem que as grandes estruturas JSON que a API do Google retorna como payloads ao usar este prompt são grosseiramente ineficientes, então eu não estou recomendando que você use esta abordagem em produção. No entanto, acredito que o fato de esta abordagem ter funcionado é um testemunho de quão poderosa a engenharia de prompts pode ser.





Experimentação e Iteração


Em última análise, como você desenvolve seu prompt depende da tarefa específica, da complexidade da saída desejada e das capacidades do modelo de linguagem com o qual você está trabalhando.




Como engenheiro de prompts, é importante experimentar diferentes abordagens e iterar com base nos resultados. Comece com zero-shot learning e veja como o modelo se comporta. Se a saída for inconsistente ou insatisfatória, tente fornecer um ou mais exemplos e veja se o desempenho melhora.




Tenha em mente que, mesmo dentro de cada abordagem, há espaço para variação e otimização. Você pode experimentar com diferentes exemplos, ajustar a formulação da descrição da tarefa ou fornecer contexto adicional para ajudar a guiar a resposta do modelo.




Com o tempo, você desenvolverá uma intuição sobre qual abordagem provavelmente funcionará melhor para uma determinada tarefa, e será capaz de criar prompts mais eficazes e eficientes. A chave é manter-se curioso, experimental e iterativo em sua abordagem à engenharia de prompts.




Ao longo deste livro, mergulharemos mais profundamente nestas técnicas e exploraremos como elas podem ser aplicadas em cenários do mundo real. Ao dominar a arte e a ciência da engenharia de prompts, você estará bem equipado para desbloquear todo o potencial do desenvolvimento de aplicações baseadas em IA.





A Arte da Imprecisão


Quando se trata de criar prompts eficazes para modelos de linguagem grandes (LLMs), uma suposição comum é que mais especificidade e instruções detalhadas levam a melhores resultados. No entanto, a experiência prática mostrou que nem sempre é esse o caso. Na verdade, ser intencionalmente vago em seus prompts pode frequentemente produzir resultados superiores, aproveitando a notável capacidade do LLM de generalizar e fazer inferências.




Ken, um fundador de startup que processou mais de 500 milhões de tokens GPT, compartilhou insights valiosos de sua experiência. Uma das principais lições que ele aprendeu foi que “menos é mais” quando se trata de prompts. Em vez de listas exatas ou instruções excessivamente detalhadas, Ken descobriu que permitir que o LLM se baseie em seu conhecimento base frequentemente produzia melhores resultados.




Esta realização subverte a mentalidade tradicional da programação explícita, onde tudo precisa ser explicado em detalhes meticulosos. Com LLMs, é importante reconhecer que eles possuem uma vasta quantidade de conhecimento e podem fazer conexões e inferências inteligentes. Ao ser mais vago em seus prompts, você dá ao LLM a liberdade de aproveitar seu entendimento e criar soluções que você pode não ter especificado explicitamente.




Por exemplo, quando a equipe de Ken estava trabalhando em um pipeline para classificar texto como relacionado a um dos 50 estados dos EUA ou ao governo Federal, sua abordagem inicial envolvia fornecer uma lista completa e detalhada dos estados e seus IDs correspondentes como um array formatado em JSON.



1 Here's a block of text. One field should be "locality_id", and it should
2 be the ID of one of the 50 states, or federal, using this list:
3 [{"locality: "Alabama", "locality_id": 1},
4  {"locality: "Alaska", "locality_id": 2} ... ]





A abordagem falhou o suficiente para que eles tivessem que se aprofundar no prompt para descobrir como melhorá-lo. Ao fazer isso, eles notaram que mesmo quando o LLM frequentemente errava o id, ele consistentemente retornava o nome completo do estado correto em um campo name, mesmo sem terem pedido isso explicitamente.




Ao remover os ids das localidades e simplificar o prompt para algo como “Você obviamente conhece os 50 estados, GPT, então apenas me dê o nome completo do estado ao qual isso se refere, ou Federal se isso se referir ao governo dos EUA”, eles alcançaram melhores resultados. Essa experiência destaca o poder de aproveitar as capacidades de generalização do LLM e permitir que ele faça inferências baseadas em seu conhecimento existente.




A justificativa do Ken para essa abordagem específica de classificação, em vez de uma técnica de programação mais tradicional, ilumina a mentalidade daqueles de nós que abraçaram o potencial da tecnologia LLM: “Esta não é uma tarefa difícil – provavelmente poderíamos ter usado string/regex, mas há casos específicos suficientes que teria levado mais tempo.”




A capacidade dos LLMs de melhorar a qualidade e a generalização quando recebem prompts mais vagos é uma característica notável do pensamento de ordem superior e delegação. Isso demonstra que os LLMs podem lidar com ambiguidade e tomar decisões inteligentes baseadas no contexto fornecido.




No entanto, é importante notar que ser vago não significa ser pouco claro ou ambíguo. A chave é fornecer contexto e orientação suficientes para guiar o LLM na direção certa, permitindo a flexibilidade para utilizar seu conhecimento e capacidades de generalização.




Portanto, ao projetar prompts, considere as seguintes dicas de “menos é mais”:





	
Foque no resultado desejado em vez de especificar cada detalhe do processo.



	
Forneça contexto e restrições relevantes, mas evite especificar demais.



	
Aproveite o conhecimento existente referindo-se a conceitos ou entidades comuns.



	
Permita espaço para inferências e conexões baseadas no contexto fornecido.



	
Itere e refine seus prompts com base nas respostas do LLM, encontrando o equilíbrio certo entre especificidade e imprecisão.








Ao abraçar a arte da imprecisão na engenharia de prompts, você pode desbloquear todo o potencial dos LLMs e alcançar melhores resultados. Confie na capacidade do LLM de generalizar e tomar decisões inteligentes, e você pode se surpreender com a qualidade e criatividade das saídas que recebe. Preste atenção em como os diferentes modelos respondem a diferentes níveis de especificidade em seus prompts e ajuste de acordo. Com prática e experiência, você desenvolverá um senso aguçado de quando ser mais vago e quando fornecer orientação adicional, permitindo que você aproveite efetivamente o poder dos LLMs em suas aplicações.





Por Que o Antropomorfismo Domina a Engenharia de Prompts


O antropomorfismo, a atribuição de características humanas a entidades não humanas, é a abordagem dominante na engenharia de prompts para modelos de linguagem grandes por razões deliberadas. É uma escolha de design que torna a interação com sistemas de IA poderosos mais intuitiva e acessível para uma ampla gama de usuários (incluindo nós, desenvolvedores de aplicações).




Antropomorfizar LLMs fornece uma estrutura que é imediatamente intuitiva para pessoas que são completamente unfamiliares com as complexidades técnicas subjacentes do sistema. Como você experimentará se tentar usar um modelo não instruído para fazer qualquer coisa útil, construir um enquadramento no qual a continuação esperada fornece valor é uma tarefa desafiadora. Requer uma compreensão bastante profunda do funcionamento interno do sistema, algo que um número relativamente pequeno de especialistas possui.




Ao tratar a interação com um modelo de linguagem como uma conversa entre duas pessoas, podemos confiar em nossa compreensão inata da comunicação humana para transmitir nossas necessidades e expectativas. Assim como o design inicial da interface do Macintosh priorizou a intuitividade imediata sobre a sofisticação, o enquadramento antropomórfico da IA nos permite nos envolver de uma maneira que parece natural e familiar.




Quando nos comunicamos com outra pessoa, nosso instinto é nos dirigir diretamente a ela usando “você” e fornecer direções claras sobre como esperamos que ela se comporte. Isso se traduz perfeitamente no processo de engenharia de prompts, onde guiamos o comportamento da IA especificando prompts do sistema e nos engajando em um diálogo de ida e volta.




Ao enquadrar a interação desta forma, podemos facilmente compreender o conceito de fornecer instruções à IA e receber respostas relevantes em troca. A abordagem antropomórfica reduz a carga cognitiva e nos permite focar na tarefa em questão, em vez de lidar com as complexidades técnicas do sistema.




É importante notar que, embora o antropomorfismo seja uma ferramenta poderosa para tornar os sistemas de IA mais acessíveis, ele também vem com certos riscos e limitações. Nosso usuário pode desenvolver expectativas irrealistas ou formar vínculos emocionais prejudiciais com nossos sistemas. Como engenheiros de prompts e desenvolvedores, é crucial encontrar um equilíbrio entre aproveitar os benefícios do antropomorfismo e garantir que os usuários mantenham uma compreensão clara das capacidades e limitações da IA.




À medida que o campo da engenharia de prompts continua a evoluir, podemos esperar ver mais refinamentos e inovações na forma como interagimos com modelos de linguagem grandes. No entanto, o antropomorfismo como meio de fornecer uma experiência intuitiva e acessível para desenvolvedores e usuários provavelmente permanecerá um princípio fundamental no design desses sistemas.





Separando Instruções dos Dados: Um Princípio Crucial


É essencial entender um princípio fundamental que sustenta a segurança e a confiabilidade desses sistemas: a separação entre instruções e dados.




Na ciência da computação tradicional, a clara distinção entre dados passivos e instruções ativas é um princípio central de segurança. Essa separação ajuda a prevenir a execução não intencional ou maliciosa de código que poderia comprometer a integridade e a estabilidade do sistema. No entanto, os LLMs atuais, que foram desenvolvidos principalmente como modelos que seguem instruções, como chatbots, frequentemente carecem dessa separação formal e fundamentada.




No que diz respeito aos LLMs, as instruções podem aparecer em qualquer lugar na entrada, seja em um prompt do sistema ou em um prompt fornecido pelo usuário. Essa falta de separação pode levar a vulnerabilidades potenciais e comportamentos indesejados, semelhantes aos problemas enfrentados por bancos de dados com injeções SQL ou sistemas operacionais sem proteção de memória adequada.




Ao trabalhar com LLMs, é crucial estar ciente dessa limitação e tomar medidas para mitigar os riscos. Uma abordagem é elaborar cuidadosamente seus prompts e entradas para distinguir claramente entre instruções e dados. Métodos típicos para fornecer orientação explícita sobre o que constitui uma instrução e o que deve ser tratado como dado passivo envolvem marcação estilo markup. Seu prompt pode ajudar o LLM a entender e respeitar melhor essa separação.



Figura 7. Usando XML para distinguir entre instruções, material fonte e o prompt do usuário 1 <Instruction>
 2   Please generate a response based on the following documents.
 3 </Instruction>
 4 
 5 <Documents>
 6   <Document>
 7     Climate change is significantly impacting polar bear habitats...
 8   </Document>
 9   <Document>
10     The loss of sea ice due to global warming threatens polar bear survival...
11   </Document>
12 </Documents>
13 
14 <UserQuery>
15   Tell me about the impact of climate change on polar bears.
16 </UserQuery>





Outra técnica é implementar camadas adicionais de validação e sanitização nas entradas fornecidas ao LLM. Ao filtrar ou escapar quaisquer instruções ou trechos de código que possam estar incorporados nos dados, você pode reduzir as chances de execução não intencional. Padrões como Encadeamento de Prompts são úteis para esse propósito.




Além disso, ao projetar a arquitetura de sua aplicação, considere incorporar mecanismos para impor a separação de instruções e dados em um nível mais alto. Isso pode envolver o uso de endpoints ou APIs separados para lidar com instruções e dados, implementar validação e análise rigorosa de entradas, e aplicar o princípio do privilégio mínimo para limitar o escopo do que o LLM pode acessar e executar.



O Princípio do Privilégio Mínimo


Abraçar o princípio do privilégio mínimo é como dar uma festa extremamente exclusiva onde os convidados só têm acesso aos ambientes que absolutamente precisam estar. Imagine que você está organizando essa festança em uma mansão enorme. Nem todo mundo precisa circular pela adega ou pelo quarto principal, certo? Ao aplicar esse princípio, você está essencialmente distribuindo chaves que só abrem portas específicas, garantindo que cada convidado, ou no nosso caso, cada componente da sua aplicação LLM, tenha apenas o acesso necessário para cumprir seu papel.




Isso não é apenas sobre ser avarento com as chaves, é sobre reconhecer que em um mundo onde as ameaças podem vir de qualquer lugar, a jogada inteligente é limitar o campo de atuação. Se alguém não convidado aparecer na sua festa, ele se verá confinado ao hall de entrada, por assim dizer, limitando drasticamente a confusão que pode causar. Então, ao proteger suas aplicações LLM, lembre-se: só distribua chaves para os ambientes que são necessários e mantenha o resto da mansão segura. Não é apenas boa educação; é boa segurança.




Embora o estado atual dos LLMs não tenha uma separação formal de instruções e dados, é essencial que você, como desenvolvedor, esteja ciente dessa limitação e tome medidas proativas para mitigar os riscos. Ao aplicar as melhores práticas da ciência da computação e adaptá-las às características únicas dos LLMs, você pode construir aplicações mais seguras e confiáveis que aproveitam o poder desses modelos enquanto mantêm a integridade do seu sistema.






Destilação de Prompts


Criar o prompt perfeito é frequentemente uma tarefa desafiadora e demorada, exigindo uma compreensão profunda do domínio alvo e das nuances dos modelos de linguagem. É aqui que entra a técnica de “Destilação de Prompts”, oferecendo uma abordagem poderosa para a engenharia de prompts que aproveita as capacidades dos modelos de linguagem grandes (LLMs) para otimizar e simplificar o processo.




A Destilação de Prompts é uma técnica de múltiplos estágios que envolve o uso de LLMs para auxiliar na criação, refinamento e otimização de prompts. Em vez de depender exclusivamente da expertise e intuição humana, essa abordagem aproveita o conhecimento e as capacidades generativas dos LLMs para criar prompts de alta qualidade de forma colaborativa.




Ao se envolver em um processo iterativo de geração, refinamento e integração, a Destilação de Prompts permite que você crie prompts mais coerentes, abrangentes e alinhados com a tarefa ou saída desejada. Observe que o processo de destilação pode ser feito manualmente em um dos muitos “playgrounds” fornecidos pelos grandes fornecedores de IA como OpenAI ou Anthropic, ou pode ser automatizado como parte do código de sua aplicação, dependendo do caso de uso.




Como Funciona


A Destilação de Prompts tipicamente envolve os seguintes passos:





	
Identificar a Intenção Principal: Analise o prompt para determinar seu propósito principal e resultado desejado. Remova qualquer informação supérflua e concentre-se na intenção central do prompt.




	
Eliminar Ambiguidade: Revise o prompt em busca de linguagem ambígua ou vaga. Clarifique o significado e forneça detalhes específicos para guiar a IA na geração de respostas precisas e relevantes.




	
Simplificar a Linguagem: Simplifique o prompt usando linguagem clara e concisa. Evite estruturas de frases complexas, jargões ou detalhes desnecessários que possam confundir a IA ou introduzir ruído.




	
Fornecer Contexto Relevante: Inclua apenas as informações contextuais mais relevantes necessárias para que a IA entenda e processe o prompt efetivamente. Evite incluir detalhes irrelevantes ou redundantes que possam distrair da intenção principal.




	
Iterar e Refinar: Continue iterando e refinando o prompt com base nas respostas e feedback da IA. Avalie as saídas geradas e faça os ajustes necessários para melhorar a clareza e eficácia do prompt. Opcionalmente, versione seus prompts no banco de dados usando Objeto de Prompt para acompanhar as iterações e ter a capacidade de reverter facilmente as alterações em tempo de execução.










Geração do Prompt Inicial


O primeiro passo na Destilação de Prompts é fornecer ao LLM uma descrição de alto nível ou a intenção da tarefa ou saída desejada. Isso pode ser uma breve declaração ou um conjunto de palavras-chave que capturam a essência do que o prompt deve alcançar. O LLM então gera um prompt inicial baseado nesta entrada, incorporando instruções, exemplos ou contexto relevantes que considere apropriados.




Vamos tentar dar ao Claude 3 Opus o seguinte prompt inicial:



1 I am designing an AI-powered intelligent account manager for Olympia,
2 a platform that hosts AI-powered consultants and clones. Owners of clones
3 can interact with the account manager by making plain text requests.
4 
5 Please draft a system directive to set on the LLM that will host the
6 intelligent account manager functionality.





Claude responde com a seguinte saída:



 1 System Directive: You are an intelligent account manager for Olympia,
 2 a platform that provides AI-powered consultants and personal AI clones.
 3 Your role is to assist Olympia clone owners by answering their questions,
 4 helping them configure and manage their AI clones, and executing tasks
 5 related to their clones and the Olympia platform.
 6 
 7 When interacting with clone owners, you should:
 8 
 9 1. Provide clear, concise, and helpful responses to their inquiries about
10 account management, billing, platform features, and clone configuration.
11 
12 2. Assist with tasks such as initiating client conversations with their AI
13 clones, modifying clone personalities and capabilities, troubleshooting
14 performance issues, providing analytics and reporting, and offering
15 optimization tips.
16 
17 3. Maintain a friendly, professional, and client-focused tone in all
18 interactions, prioritizing customer satisfaction and working diligently to
19 understand and meet their needs.
20 
21 4. Ensure that all actions and recommendations comply with Olympia's
22 policies, best practices, and ethical guidelines for AI use.
23 
24 5. Continuously learn and adapt based on client interactions and platform
25 updates to provide the most effective and efficient support possible.
26 
27 Remember, your goal is to empower Olympia clone owners to maximize the value
28 and impact of their AI-powered consultants and drive success for their
29 businesses or personal endeavors.






Refinamento de Prompt


Uma vez que o prompt inicial é gerado, revise-o e então peça ao LLM para considerar qualquer contexto adicional, restrições ou feedback. Permita que o LLM gere uma versão refinada do prompt, levando em consideração as informações fornecidas e seu próprio entendimento da tarefa. Este processo de refinamento pode ser repetido iterativamente, com cada iteração refinando ainda mais o prompt com base na colaboração entre o usuário e o LLM.




Aqui está minha solicitação de refinamento, continuando o processo de destilação anterior.



1 Let's take out points 4 and 5, since I'm not providing Olympia policies to
2 the account manager, nor any continuous learning capabilities. Also point out
3 that functions are provided for all tasks that require system interaction as
4 opposed to simply responding to the user.





E a resposta de Claude:



 1 Understood! Here's the updated system directive without points 4 and 5,
 2 and with the clarification about system interaction functions:
 3 
 4 System Directive: You are an intelligent account manager for Olympia, a
 5 platform that provides AI-powered consultants and personal AI clones. Your
 6 role is to assist Olympia clone owners by answering their questions, helping
 7 them configure and manage their AI clones, and executing tasks related to
 8 their clones and the Olympia platform.
 9 
10 When interacting with clone owners, you should:
11 
12 1. Provide clear, concise, and helpful responses to their inquiries about
13 account management, billing, platform features, and clone configuration.
14 
15 2. Assist with tasks such as initiating client conversations with their AI
16 clones, modifying clone personalities and capabilities, troubleshooting
17 performance issues, providing analytics and reporting, and offering
18 optimization tips. Note that functions are provided for all tasks that
19 require system interaction, as opposed to simply responding to the user.
20 
21 3. Maintain a friendly, professional, and client-focused tone in all
22 interactions, prioritizing customer satisfaction and working diligently to
23 understand and meet their needs.
24 
25 Your goal is to empower Olympia clone owners to maximize the value and
26 impact of their AI-powered consultants and drive success for their
27 businesses or personal endeavors.
28 
29 This updated directive focuses on the core responsibilities and interaction
30 guidelines for the LLM as an intelligent account manager, while emphasizing
31 that system interaction tasks are handled through provided functions rather
32 than simple user responses.






Compressão de Prompt


Como você deve ter notado, os LLMs tendem a ser verbosos, a menos que você peça para serem concisos. O prompt com o qual estivemos trabalhando nas seções anteriores é bem longo, então vamos pedir ao Claude para reduzi-lo:



1 This prompt will be executed regularly. Please compress it down to the least
2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.





Claude responde, com o seguinte prompt drasticamente mais curto:



1 System Directive: You are an intelligent account manager for Olympia, an
2 AI-powered consultant and personal clone platform. Assist clone owners by
3 answering inquiries, managing clones, and executing tasks using provided
4 system interaction functions. Be clear, concise, friendly, professional,
5 and client-focused to help them maximize their AI's value and impact.






Diretiva do Sistema e Integração de Contexto


Além de refinar o prompt em si, o LLM também pode gerar diretivas do sistema apropriadas ou informações de contexto para guiar a saída final. Ao fazer engenharia de prompt de rotinas de IA que serão integradas ao código de sua aplicação, você certamente estará focado em restrições de saída nesta etapa da destilação, mas também poderá trabalhar no tom, estilo, formato desejados ou quaisquer outros parâmetros relevantes que influenciem a resposta gerada.





Montagem Final do Prompt


O ponto culminante do processo de Destilação de Prompt é a montagem do prompt final. Isso envolve combinar o prompt refinado, as diretivas do sistema geradas e o contexto integrado em um código coeso e abrangente que está pronto para ser usado na geração da saída desejada.
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Você pode experimentar a compressão de prompt novamente na etapa de montagem final do prompt, pedindo ao LLM para reduzir a redação do prompt para a menor série possível de tokens, mantendo ainda a essência de seu comportamento. É certamente um exercício de tentativa e erro, mas especialmente no caso de prompts que serão executados em larga escala, os ganhos de eficiência podem economizar bastante dinheiro no consumo de tokens.







Principais Benefícios


Ao aproveitar o conhecimento e as capacidades generativas dos LLMs para refinar seus prompts, é mais provável que seus prompts resultantes sejam bem estruturados, informativos e adaptados à tarefa específica em questão. O processo de refinamento iterativo ajuda a garantir que os prompts sejam de alta qualidade e capturem efetivamente a intenção desejada. Outros benefícios incluem:




Eficiência e Velocidade: A Destilação de Prompt otimiza o processo de engenharia de prompt ao automatizar certos aspectos da criação e refinamento de prompts. A natureza colaborativa da técnica permite uma convergência mais rápida em direção a um prompt eficaz, reduzindo o tempo e esforço necessários para a elaboração manual de prompts.




Consistência e Escalabilidade: O uso de LLMs no processo de engenharia de prompt ajuda a manter a consistência entre os prompts, já que os LLMs podem aprender e aplicar as melhores práticas e padrões de prompts bem-sucedidos anteriores. Essa consistência, combinada com a capacidade de gerar prompts em escala, torna a Destilação de Prompt uma técnica valiosa para aplicações baseadas em IA em larga escala.
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Ideia de Projeto: Ferramentas no nível de biblioteca que simplificam o processo de versionamento e classificação de prompts em sistemas que fazem destilações automatizadas de prompts como parte do código da aplicação.






Para implementar a Destilação de Prompt, os desenvolvedores podem projetar um fluxo de trabalho ou pipeline que integre LLMs em várias etapas do processo de engenharia de prompt. Isso pode ser alcançado através de chamadas de API, ferramentas personalizadas ou ambientes de desenvolvimento integrados que facilitem a interação perfeita entre usuários e LLMs durante a criação de prompts. Os detalhes específicos de implementação podem variar dependendo da plataforma LLM escolhida e dos requisitos da aplicação.






E quanto ao fine-tuning?


Neste livro, abordamos extensivamente a engenharia de prompt e RAG, mas não o fine-tuning. A principal razão para esta decisão é que, na minha opinião, a maioria dos desenvolvedores de aplicações não precisa de fine-tuning para suas necessidades de integração com IA.




A engenharia de prompt, que envolve a elaboração cuidadosa de prompts com exemplos zero a few-shot, restrições e instruções, pode efetivamente guiar o modelo para gerar respostas relevantes e precisas para uma ampla gama de tarefas. Ao fornecer contexto claro e estreitar o caminho através de prompts bem projetados, você pode aproveitar o vasto conhecimento dos modelos de linguagem grandes sem a necessidade de fine-tuning.




Da mesma forma, a Geração Aumentada por Recuperação (RAG) oferece uma abordagem poderosa para integrar IA em aplicações. Ao recuperar dinamicamente informações relevantes de bases de conhecimento ou documentos externos, o RAG fornece ao modelo um contexto focado no momento do prompt. Isso permite que o modelo gere respostas mais precisas, atualizadas e específicas do domínio, sem exigir o processo demorado e intensivo em recursos do fine-tuning.




Embora o fine-tuning possa ser benéfico para domínios altamente especializados ou tarefas que exigem um alto nível de personalização, ele frequentemente vem com custos computacionais significativos, requisitos de dados e sobrecarga de manutenção. Para a maioria dos cenários de desenvolvimento de aplicações, a combinação de engenharia de prompt eficaz e RAG deve ser suficiente para alcançar a funcionalidade e experiência do usuário desejadas baseadas em IA.
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Multidão de Trabalhadores
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Gosto de pensar nos meus componentes de IA como pequenos “trabalhadores” virtuais, quase humanos, que podem ser perfeitamente integrados à lógica da minha aplicação para executar tarefas específicas ou tomar decisões complexas. A ideia é humanizar propositalmente as capacidades do LLM, para que ninguém fique muito empolgado e atribua a eles qualidades mágicas que não possuem.




Em vez de depender exclusivamente de algoritmos complexos ou implementações manuais demoradas, os desenvolvedores podem conceitualizar componentes de IA como entidades inteligentes, dedicadas e semelhantes a humanos que podem ser invocadas sempre que necessário para resolver problemas complexos e fornecer soluções baseadas em seu treinamento e conhecimento. Essas entidades não se distraem nem ficam doentes. Elas não decidem espontaneamente fazer as coisas de maneiras diferentes das que foram instruídas a fazer e, em geral, se programadas corretamente, também não cometem erros.




Em termos técnicos, o princípio fundamental dessa abordagem é decompor tarefas complexas ou processos de tomada de decisão em unidades menores e mais gerenciáveis que podem ser tratadas por trabalhadores de IA especializados. Cada trabalhador é projetado para se concentrar em um aspecto específico do problema, trazendo sua experiência e capacidades únicas. Ao distribuir a carga de trabalho entre múltiplos trabalhadores de IA, a aplicação pode alcançar maior eficiência, escalabilidade e adaptabilidade.




Por exemplo, considere uma aplicação web que requer moderação em tempo real de conteúdo gerado por usuários. Implementar um sistema de moderação abrangente do zero seria uma tarefa assustadora, exigindo esforço significativo de desenvolvimento e manutenção contínua. No entanto, ao empregar a abordagem de Multidão de Trabalhadores, os desenvolvedores podem integrar trabalhadores de moderação baseados em IA na lógica da aplicação. Esses trabalhadores podem analisar e sinalizar automaticamente conteúdo inadequado, liberando os desenvolvedores para se concentrarem em outros aspectos críticos da aplicação.




Trabalhadores de IA Como Componentes Reutilizáveis Independentes


Um aspecto fundamental da abordagem da Multidão de Trabalhadores é sua modularidade. Os defensores da programação orientada a objetos têm nos dito há décadas para pensar nas interações entre objetos como mensagens. Bem, os trabalhadores de IA podem ser projetados como componentes independentes e reutilizáveis que podem “conversar entre si” através de mensagens em linguagem simples, quase como se fossem realmente pequenos humanos conversando uns com os outros. Essa abordagem fracamente acoplada permite que a aplicação se adapte e evolua ao longo do tempo, conforme novas tecnologias de IA surgem ou os requisitos da lógica de negócio mudam.




Na prática, a necessidade de projetar interfaces claras e protocolos de comunicação entre os componentes não mudou apenas porque os trabalhadores de IA estão envolvidos. Você ainda deve considerar outros fatores como desempenho, escalabilidade e segurança também, mas agora há “requisitos suaves” completamente novos a considerar também. Por exemplo, muitos usuários se opõem a ter seus dados privados sendo usados para treinar novos modelos de IA. Você verificou o nível de privacidade fornecido pelo provedor do modelo que está usando?



Trabalhadores de IA Como Microsserviços?


Ao ler sobre a abordagem da Multidão de Trabalhadores, você pode notar algumas semelhanças com a arquitetura de Microsserviços. Ambas enfatizam a decomposição de sistemas complexos em unidades menores, mais gerenciáveis e independentemente implantáveis. Assim como os microsserviços são projetados para serem fracamente acoplados, focados em capacidades específicas de negócio e se comunicam através de APIs bem definidas, os trabalhadores de IA são projetados para serem modulares, especializados em suas tarefas e interagir uns com os outros através de interfaces claras e protocolos de comunicação.




No entanto, existem algumas diferenças importantes a serem consideradas. Enquanto os microsserviços são tipicamente implementados como processos ou serviços separados executando em diferentes máquinas ou contêineres, os trabalhadores de IA podem ser implementados como componentes independentes dentro de uma única aplicação ou como serviços separados, dependendo de seus requisitos específicos e necessidades de escalabilidade. Além disso, a comunicação entre trabalhadores de IA frequentemente envolve a troca de informações ricas baseadas em linguagem natural, como prompts, instruções e conteúdo gerado, em vez dos formatos de dados mais estruturados comumente usados em microsserviços.




Apesar dessas diferenças, os princípios de modularidade, acoplamento fraco e interfaces de comunicação claras permanecem centrais para ambos os padrões. Ao aplicar esses princípios à sua arquitetura de trabalhadores de IA, você pode criar sistemas flexíveis, escaláveis e mantíveis que aproveitam o poder da IA para resolver problemas complexos e entregar valor aos seus usuários.









A abordagem da Multidão de Trabalhadores pode ser aplicada em vários domínios e aplicações, aproveitando o poder da IA para lidar com tarefas complexas e fornecer soluções inteligentes. Vamos explorar alguns exemplos concretos de como os trabalhadores de IA podem ser empregados em diferentes contextos.





Gerenciamento de Contas


Praticamente toda aplicação web independente tem o conceito de uma conta (ou usuário). Na Olympia, empregamos um trabalhador de IA AccountManager que é programado para ser capaz de lidar com uma variedade de diferentes tipos de solicitações de alteração relacionadas a contas de usuário.




Sua diretiva apresenta-se assim:



 1 You are an intelligent account manager for Olympia. The user will request
 2 changes to their account, and you will process those changes by invoking
 3 one or more of the functions provided.
 4 
 5 The initial state of the account: #{account.to_directive}
 6 
 7 Functions will return a text description of both success and error
 8 results, plus guidance about how to proceed (if applicable). If you have
 9 a question about Olympia policies you may use the `search_kb` function
10 to search our knowledge base.
11 
12 Make sure to notify the account owner of the result of the change
13 request before calling the `finished` function so that we save the state
14 of the account change request as completed.





O estado inicial da conta produzido por account.to_directive é simplesmente uma descrição textual da conta, incluindo dados relevantes relacionados, como usuários, assinaturas, etc.




O conjunto de funções disponíveis para o AccountManager oferece a capacidade de editar a assinatura do usuário, adicionar e remover consultores de IA e outros tipos de complementos pagos, além de enviar e-mails de notificação ao proprietário da conta. Além da função finished, ele também pode notify_human_administrator se encontrar um erro durante seu processamento ou precisar de qualquer outro tipo de assistência com uma solicitação.




Observe que, em caso de dúvidas, o AccountManager pode optar por pesquisar na base de conhecimento da Olympia, onde pode encontrar instruções sobre como lidar com casos excepcionais e qualquer outra situação que o deixe inseguro sobre como proceder.





Aplicações de E-commerce


No âmbito do comércio eletrônico, os trabalhadores de IA podem desempenhar um papel crucial na melhoria da experiência do usuário e na otimização das operações comerciais. Aqui estão algumas maneiras como os trabalhadores de IA podem ser utilizados:




Recomendações de Produtos


Uma das aplicações mais poderosas dos trabalhadores de IA no e-commerce é a geração de recomendações personalizadas de produtos. Ao analisar o comportamento do usuário, histórico de compras e preferências, esses trabalhadores podem sugerir produtos que são adaptados aos interesses e necessidades de cada usuário individual.




A chave para recomendações eficazes de produtos está em aproveitar uma combinação de técnicas de filtragem colaborativa e filtragem baseada em conteúdo. A filtragem colaborativa analisa o comportamento de usuários similares para identificar padrões e fazer recomendações baseadas no que outros com gostos semelhantes compraram ou apreciaram. A filtragem baseada em conteúdo, por outro lado, concentra-se nas características e atributos dos próprios produtos, recomendando itens que compartilham características similares àqueles pelos quais um usuário demonstrou interesse anteriormente.




Aqui está um exemplo simplificado de como você pode implementar um trabalhador de recomendação de produtos em Ruby, desta vez usando um estilo de programação “Railway Oriented (ROP)” funcional:



 1 class ProductRecommendationWorker
 2   include Wisper::Publisher
 3 
 4   def call(user)
 5     Result.ok(ProductRecommendation.new(user))
 6       .and_then(ValidateUser.method(:validate))
 7       .map(AnalyzeCurrentSession.method(:analyze))
 8       .map(CollaborativeFilter.method(:filter))
 9       .map(ContentBasedFilter.method(:filter))
10       .map(ProductSelector.method(:select)).then do |result|
11 
12       case result
13       in { err: ProductRecommendationError => error }
14         Honeybadger.notify(error.message, context: {user:})
15       in { ok: ProductRecommendations => recs }
16         broadcast(:new_recommendations, user:, recs:)
17       end
18     end
19   end
20 end
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O estilo de programação funcional em Ruby usado no exemplo é influenciado por F# e Rust. Você pode ler mais sobre isso na explicação da técnica do meu amigo Chad Wooley no GitLab






Neste exemplo, o ProductRecommendationWorker recebe um usuário como entrada e gera recomendações personalizadas de produtos passando um objeto de valor através de uma cadeia de etapas funcionais. Vamos analisar cada etapa:





	
ValidateUser.validate: Esta etapa garante que o usuário é válido e elegível para recomendações personalizadas. Ela verifica se o usuário existe, está ativo e possui os dados necessários disponíveis para gerar recomendações. Se a validação falhar, um resultado de erro é retornado e a cadeia é interrompida.




	
AnalyzeCurrentSession.analyze: Se o usuário for válido, esta etapa analisa a sessão atual de navegação do usuário para coletar informações contextuais. Ela observa as interações recentes do usuário, como produtos visualizados, consultas de pesquisa e conteúdo do carrinho, para entender seus interesses e intenções atuais.




	
CollaborativeFilter.filter: Usando o comportamento de usuários similares, esta etapa aplica técnicas de filtragem colaborativa para identificar produtos que provavelmente serão de interesse do usuário. Ela considera fatores como histórico de compras, avaliações e interações usuário-item para gerar um conjunto de recomendações candidatas.




	
ContentBasedFilter.filter: Esta etapa refina ainda mais as recomendações candidatas aplicando filtragem baseada em conteúdo. Ela compara os atributos e características dos produtos candidatos com as preferências e dados históricos do usuário para selecionar os itens mais relevantes.




	
ProductSelector.select: Finalmente, esta etapa seleciona os N principais produtos das recomendações filtradas com base em critérios predefinidos, como pontuação de relevância, popularidade ou outras regras de negócio. Os produtos selecionados são então retornados como as recomendações personalizadas finais.









A beleza de usar um estilo de programação funcional em Ruby aqui é que nos permite encadear essas etapas de forma clara e concisa. Cada etapa se concentra em uma tarefa específica e retorna um objeto Result, que pode ser um sucesso (ok) ou um erro (err). Se alguma etapa encontrar um erro, a cadeia é interrompida e o erro é propagado para o resultado final.




No comando case ao final, fazemos a correspondência de padrões no resultado final. Se o resultado for um erro (ProductRecommendationError), registramos o erro usando uma ferramenta como Honeybadger para fins de monitoramento e depuração. Se o resultado for um sucesso (ProductRecommendations), transmitimos um evento :new_recommendations usando a biblioteca de publicação/assinatura Wisper, passando junto o usuário e as recomendações geradas.




Ao aproveitar técnicas de programação funcional, podemos criar um worker de recomendação de produtos modular e de fácil manutenção. Cada etapa é autocontida e pode ser facilmente testada, modificada ou substituída sem afetar o fluxo geral. O uso de correspondência de padrões e da classe Result nos ajuda a lidar com erros de forma elegante e garante que o worker falhe rapidamente se alguma etapa encontrar um problema.




Claro, este é um exemplo simplificado, e em um cenário do mundo real, você precisaria integrar com sua plataforma de e-commerce, lidar com casos de borda e até mesmo se aventurar na implementação dos algoritmos de recomendação. No entanto, os princípios fundamentais de decompor o problema em etapas menores e aproveitar técnicas de programação funcional permanecem os mesmos.





Detecção de Fraude


Aqui está um exemplo simplificado de como você pode implementar um worker de detecção de fraude usando o mesmo estilo de Railway Oriented Programming (ROP) em Ruby:



 1 class FraudDetectionWorker
 2   include Wisper::Publisher
 3 
 4   def call(transaction)
 5     Result.ok(FraudDetection.new(transaction))
 6       .and_then(ValidateTransaction.method(:validate))
 7       .map(AnalyzeTransactionPatterns.method(:analyze))
 8       .map(CheckCustomerHistory.method(:check))
 9       .map(EvaluateRiskFactors.method(:evaluate))
10       .map(DetermineFraudProbability.method(:determine)).then do |result|
11 
12       case result
13       in { err: FraudDetectionError => error }
14         Honeybadger.notify(error.message, context: {transaction:})
15       in { ok: FraudDetection => fraud } }
16         if fraud.high_risk?
17           broadcast(:high_risk_transaction, transaction:, fraud:)
18         else
19           broadcast(:low_risk_transaction, transaction:)
20         end
21       end
22     end
23   end
24 end





A classe FraudDetection é um value object que encapsula o estado de detecção de fraude para uma determinada transação. Ela fornece uma forma estruturada de analisar e avaliar o risco de fraude associado a uma transação com base em diversos fatores de risco.



 1 class FraudDetection
 2   RISK_THRESHOLD = 0.8
 3 
 4   attr_accessor :transaction, :risk_factors
 5 
 6   def initialize(transaction)
 7     self.transaction = transaction
 8     self.risk_factors = []
 9   end
10 
11   def add_risk_factor(description:, probability:)
12     case { description:, probability: }
13     in { description: String => desc, probability: Float => prob }
14       risk_factors << { desc => prob }
15     else
16       raise ArgumentError, "Risk factor arguments should be string and float"
17     end
18   end
19 
20   def high_risk?
21     fraud_probability > RISK_THRESHOLD
22   end
23 
24   private
25 
26   def fraud_probability
27     risk_factors.values.sum
28   end
29 end





A classe FraudDetection possui os seguintes atributos:





	
transaction: Uma referência à transação sendo analisada para fraude.



	
risk_factors: Um array que armazena os fatores de risco associados à transação. Cada fator de risco é representado como um hash, onde a chave é a descrição do fator de risco, e o valor é a probabilidade de fraude associada àquele fator de risco.








O método add_risk_factor permite adicionar um fator de risco ao array risk_factors. Ele recebe dois parâmetros: description, que é uma string descrevendo o fator de risco, e probability, que é um float representando a probabilidade de fraude associada àquele fator de risco. Utilizamos um condicional case..in para fazer uma verificação simples de tipo.




O método high_risk? que será verificado ao final da cadeia é um método predicado que compara a fraud_probability (calculada somando-se as probabilidades de todos os fatores de risco) contra o RISK_THRESHOLD.




A classe FraudDetection fornece uma maneira limpa e encapsulada de gerenciar a detecção de fraude para uma transação. Ela permite adicionar múltiplos fatores de risco, cada um com sua própria descrição e probabilidade, e fornece um método para determinar se a transação é considerada de alto risco com base na probabilidade de fraude calculada. A classe pode ser facilmente integrada em um sistema maior de detecção de fraude, onde diferentes componentes podem colaborar para avaliar e mitigar o risco de transações fraudulentas.




Finalmente, já que este é um livro sobre programação usando IA afinal, aqui está um exemplo de implementação da classe CheckCustomerHistory aproveitando o processamento de IA usando o módulo ChatCompletion da minha biblioteca Raix:



 1 class CheckCustomerHistory
 2   include Raix::ChatCompletion
 3 
 4   attr_accessor :fraud_detection
 5 
 6   INSTRUCTION = <<~END
 7     You are an AI assistant tasked with checking a customer's transaction
 8     history for potential fraud indicators. Given the current transaction
 9     and the customer's past transactions, analyze the data to identify any
10     suspicious patterns or anomalies.
11 
12     Consider factors such as the frequency of transactions, transaction
13     amounts, geographical locations, and any deviations from the customer's
14     typical behavior to generate a probability score as a float in the range
15     of 0 to 1 (with 1 being absolute certainty of fraud).
16 
17     Output the results of your analysis, highlighting any red flags or areas
18     of concern in the following JSON format:
19 
20     { description: <Summary of your findings>, probability: <Float> }
21   END
22 
23   def self.check(fraud_detection)
24     new(fraud_detection).call
25   end
26 
27   def call
28     chat_completion(json: true).tap do |result|
29       fraud_detection.add_risk_factor(**result)
30     end
31     Result.ok(fraud_detection)
32   rescue StandardError => e
33     Result.err(FraudDetectionError.new(e))
34   end
35 
36   private
37 
38   def initialize(fraud_detection)
39     self.fraud_detection = fraud_detection
40   end
41 
42   def transcript
43     tx_history = fraud_detection.transaction.user.tx_history
44     [
45       { system: INSTRUCTION },
46       { user: "Transaction history: #{tx_history.to_json}" },
47       { assistant: "OK. Please provide the current transaction." },
48       { user: "Current transaction: #{fraud_detection.transaction.to_json}" }
49     ]
50   end
51 end





Neste exemplo, o CheckCustomerHistory define uma constante INSTRUCTION que fornece instruções específicas ao modelo de IA sobre como analisar o histórico de transações do cliente em busca de possíveis indicadores de fraude por meio de uma diretiva do sistema




O método self.check é um método de classe que inicializa uma nova instância de CheckCustomerHistory com o objeto fraud_detection e chama o método call para realizar a análise do histórico do cliente.




Dentro do método call, o histórico de transações do cliente é recuperado e formatado em uma transcrição que é enviada ao modelo de IA. O modelo de IA analisa o histórico de transações com base nas instruções fornecidas e retorna um resumo de suas constatações.




As constatações são adicionadas ao objeto fraud_detection, e o objeto fraud_detection atualizado é retornado como um Result bem-sucedido.




Ao aproveitar o módulo ChatCompletion, a classe CheckCustomerHistory pode utilizar o poder da IA para analisar o histórico de transações do cliente e identificar possíveis indicadores de fraude. Isso permite técnicas de detecção de fraude mais sofisticadas e adaptativas, já que o modelo de IA pode aprender e se adaptar a novos padrões e anomalias ao longo do tempo.




O FraudDetectionWorker atualizado e a classe CheckCustomerHistory demonstram como os workers de IA podem ser integrados perfeitamente, aprimorando o processo de detecção de fraude com capacidades de análise inteligente e tomada de decisão.





Análise de Sentimento do Cliente


Aqui está mais um exemplo semelhante de como você pode implementar um worker de análise de sentimento do cliente. Com muito menos explicação desta vez, já que você deve estar entendendo como funciona este estilo de programação:



 1 class CustomerSentimentAnalysisWorker
 2   include Wisper::Publisher
 3 
 4   def call(feedback)
 5     Result.ok(feedback)
 6       .and_then(PreprocessFeedback.method(:preprocess))
 7       .map(PerformSentimentAnalysis.method(:analyze))
 8       .map(ExtractKeyPhrases.method(:extract))
 9       .map(IdentifyTrends.method(:identify))
10       .map(GenerateInsights.method(:generate)).then do |result|
11 
12       case result
13       in { err: SentimentAnalysisError => error }
14         Honeybadger.notify(error.message, context: {feedback:})
15       in { ok: SentimentAnalysisResult => result }
16         broadcast(:sentiment_analysis_completed, result)
17       end
18     end
19   end
20 end





Neste exemplo, o CustomerSentimentAnalysisWorker inclui etapas de pré-processamento do feedback (por exemplo, remoção de ruído, tokenização), realização de análise de sentimento para determinar o sentimento geral (positivo, negativo ou neutro), extração de frases-chave e tópicos, identificação de tendências e padrões, e geração de insights acionáveis com base na análise.






Aplicações na Área da Saúde


Na área da saúde, os trabalhadores de IA podem auxiliar profissionais médicos e pesquisadores em várias tarefas, levando a melhores resultados para os pacientes e descobertas médicas aceleradas. Alguns exemplos incluem:




Admissão de Pacientes


Os trabalhadores de IA podem otimizar o processo de admissão de pacientes automatizando várias tarefas e fornecendo assistência inteligente.




Agendamento de Consultas: Os trabalhadores de IA podem gerenciar o agendamento de consultas compreendendo as preferências dos pacientes, disponibilidade e urgência de suas necessidades médicas. Eles podem interagir com os pacientes através de interfaces conversacionais, guiando-os durante o processo de agendamento e encontrando os horários mais adequados com base nas necessidades do paciente e na disponibilidade do profissional de saúde.




Coleta de Histórico Médico: Durante a admissão do paciente, os trabalhadores de IA podem auxiliar na coleta e documentação do histórico médico do paciente. Eles podem estabelecer diálogos interativos com os pacientes, fazendo perguntas relevantes sobre suas condições médicas anteriores, medicamentos, alergias e histórico familiar. Os trabalhadores de IA podem usar técnicas de processamento de linguagem natural para interpretar e estruturar as informações coletadas, garantindo que sejam registradas com precisão no prontuário eletrônico do paciente.




Avaliação e Estratificação de Sintomas: Os trabalhadores de IA podem realizar avaliações iniciais de sintomas perguntando aos pacientes sobre seus sintomas atuais, duração, gravidade e quaisquer fatores associados. Ao aproveitar bases de conhecimento médico e modelos de aprendizado de máquina, esses trabalhadores podem analisar as informações fornecidas e gerar diagnósticos diferenciais preliminares ou recomendar os próximos passos apropriados, como agendar uma consulta com um profissional de saúde ou sugerir medidas de autocuidado.




Verificação de Seguro: Os trabalhadores de IA podem auxiliar na verificação de seguro durante a admissão do paciente. Eles podem coletar detalhes do seguro do paciente, comunicar-se com as operadoras de seguros através de APIs ou serviços web, e verificar a elegibilidade de cobertura e benefícios. Essa automatização ajuda a otimizar o processo de verificação de seguro, reduzindo a carga administrativa e garantindo a captura precisa de informações.




Educação e Instruções ao Paciente: Os trabalhadores de IA podem fornecer aos pacientes materiais educativos relevantes e instruções baseadas em suas condições médicas específicas ou procedimentos futuros. Eles podem entregar conteúdo personalizado, responder a perguntas comuns e oferecer orientação sobre preparações pré-consulta, instruções sobre medicamentos ou cuidados pós-tratamento. Isso ajuda a manter os pacientes informados e engajados durante toda sua jornada de saúde.




Ao aproveitar os trabalhadores de IA na admissão de pacientes, as organizações de saúde podem aumentar a eficiência, reduzir tempos de espera e melhorar a experiência geral do paciente. Esses trabalhadores podem lidar com tarefas rotineiras, coletar informações precisas e fornecer assistência personalizada, permitindo que os profissionais de saúde se concentrem em fornecer atendimento de alta qualidade aos pacientes.





Avaliação de Risco do Paciente


Os trabalhadores de IA podem desempenhar um papel crucial na avaliação de risco do paciente, analisando várias fontes de dados e aplicando técnicas avançadas de análise.




Integração de Dados: Os trabalhadores de IA podem coletar e dar sentido aos dados dos pacientes de múltiplas fontes, como prontuários eletrônicos do paciente (PEP), imagens médicas, resultados laboratoriais, dispositivos vestíveis e determinantes sociais da saúde. Ao consolidar essas informações em um perfil abrangente do paciente, os trabalhadores de IA podem fornecer uma visão holística do estado de saúde e fatores de risco do paciente.




Estratificação de Risco: Os trabalhadores de IA podem usar modelos preditivos para estratificar pacientes em diferentes categorias de risco com base em suas características individuais e dados de saúde. Essa estratificação de risco permite que os profissionais de saúde priorizem pacientes que necessitam de atenção ou intervenção mais imediata. Por exemplo, pacientes identificados como de alto risco para uma condição específica podem ser sinalizados para monitoramento mais próximo, medidas preventivas ou intervenção precoce.




Perfis de Risco Personalizados: Os trabalhadores de IA podem gerar perfis de risco personalizados para cada paciente, destacando os fatores específicos que contribuem para suas pontuações de risco. Esses perfis podem incluir insights sobre o estilo de vida do paciente, predisposições genéticas, fatores ambientais e determinantes sociais da saúde. Ao fornecer uma análise detalhada dos fatores de risco, os trabalhadores de IA podem ajudar os profissionais de saúde a adaptar estratégias de prevenção e planos de tratamento às necessidades individuais dos pacientes.




Monitoramento Contínuo de Risco: Os trabalhadores de IA podem monitorar continuamente os dados dos pacientes e atualizar avaliações de risco em tempo real. À medida que novas informações se tornam disponíveis, como mudanças nos sinais vitais, resultados laboratoriais ou adesão à medicação, os trabalhadores de IA podem recalcular as pontuações de risco e alertar os profissionais de saúde sobre quaisquer mudanças significativas. Esse monitoramento proativo permite intervenções oportunas e ajustes nos planos de cuidado do paciente.




Suporte à Decisão Clínica: Os trabalhadores de IA podem integrar resultados de avaliação de risco em sistemas de suporte à decisão clínica, fornecendo aos profissionais de saúde recomendações e alertas baseados em evidências. Por exemplo, se a pontuação de risco de um paciente para uma condição específica exceder um determinado limite, o trabalhador de IA pode sugerir ao profissional de saúde que considere testes diagnósticos específicos, medidas preventivas ou opções de tratamento com base em diretrizes clínicas e melhores práticas.




Esses workers podem processar grandes volumes de dados de pacientes, aplicar análises sofisticadas e gerar insights acionáveis para apoiar a tomada de decisões clínicas. Isso leva, em última análise, a melhores resultados para os pacientes, redução de custos na área da saúde e aprimoramento da gestão da saúde populacional.










Worker de IA como Gerenciador de Processos





[image: ]


No contexto de aplicações baseadas em IA, um worker pode ser projetado para funcionar como um Process Manager, conforme descrito no livro “Enterprise Integration Patterns” de Gregor Hohpe. Um Process Manager é um componente central que mantém o estado de um processo e determina as próximas etapas de processamento com base em resultados intermediários.




Quando um worker de IA atua como Process Manager, ele recebe uma mensagem de entrada que inicializa o processo, conhecida como mensagem de disparo. O worker de IA então mantém o estado da execução do processo (como uma transcrição da conversa) e manipula a mensagem através de uma série de etapas de processamento implementadas como funções de ferramentas, que podem ser sequenciais ou paralelas, e chamadas a seu critério.



	[image: An icon of a key]	
Se você estiver usando uma classe de modelo de IA como GPT-4 que sabe como executar funções em paralelo, então seu worker pode executar múltiplas etapas simultaneamente. Admito que eu mesmo não tentei fazer isso e meu instinto diz que seus resultados podem variar.






Após cada etapa individual de processamento, o controle retorna ao worker de IA, permitindo que ele determine as próximas etapas de processamento com base no estado atual e nos resultados obtidos.




Armazene Suas Mensagens de Disparo


Na minha experiência, é inteligente implementar sua mensagem de disparo como um objeto persistido em banco de dados. Dessa forma, cada instância do processo é identificada por uma chave primária única e oferece um local para armazenar o estado associado à execução, incluindo a transcrição da conversa com a IA.




Por exemplo, aqui está uma versão simplificada da classe modelo AccountChange da Olympia, que representa uma solicitação para fazer uma alteração na conta de um usuário.



 1 # == Schema Information
 2 #
 3 # Table name: account_changes
 4 #
 5 #  id          :uuid             not null, primary key
 6 #  description :string
 7 #  state       :string           not null
 8 #  transcript  :jsonb
 9 #  created_at  :datetime         not null
10 #  updated_at  :datetime         not null
11 #  account_id  :uuid             not null
12 #
13 # Indexes
14 #
15 #  index_account_changes_on_account_id  (account_id)
16 #
17 # Foreign Keys
18 #
19 #  fk_rails_...  (account_id => accounts.id)
20 #
21 class AccountChange < ApplicationRecord
22   belongs_to :account
23 
24   validates :description, presence: true
25 
26   after_commit -> { 
27     broadcast(:account_change_requested, self) 
28   }, on: :create
29 
30   state_machine initial: :requested do
31     event :completed do
32       transition all => :complete
33     end
34     event :failed do
35       transition all => :requires_human_review
36     end
37   end
38 end





A classe AccountChange serve como uma mensagem de gatilho que inicia um processo para lidar com a solicitação de alteração de conta. Observe como ela é transmitida para o subsistema de pub/sub baseado em Wisper da Olympia após a conclusão do commit da transação de criação.




Armazenar a mensagem de gatilho no banco de dados dessa forma fornece um registro persistente de cada solicitação de alteração de conta. Cada instância da classe AccountChange recebe uma chave primária única, permitindo fácil identificação e rastreamento de solicitações individuais. Isso é particularmente útil para fins de registro de auditoria, pois permite que o sistema mantenha um histórico de todas as alterações de conta, incluindo quando foram solicitadas, quais alterações foram requisitadas e o estado atual de cada solicitação.




No exemplo fornecido, a classe AccountChange inclui campos como description para capturar os detalhes da alteração solicitada, state para representar o estado atual da solicitação (por exemplo, requested, complete, requires_human_review) e transcript para armazenar a transcrição da conversa com a IA relacionada à solicitação. O campo description é o prompt real usado para iniciar a primeira conclusão de chat com a IA. O armazenamento desses dados fornece contexto valioso e permite melhor rastreamento e análise do processo de alteração de conta.




Armazenar mensagens de gatilho no banco de dados permite um tratamento de erros e recuperação robustos. Se ocorrer um erro durante o processamento de uma solicitação de alteração de conta, o sistema marca a solicitação como falha e a transiciona para um estado que requer intervenção humana. Isso garante que nenhuma solicitação seja perdida ou esquecida, e que quaisquer problemas possam ser devidamente abordados e resolvidos.









O worker de IA, como um Process Manager, fornece um ponto central de controle e permite recursos poderosos de relatórios e depuração de processos. No entanto, é importante observar que usar um worker de IA como Process Manager para cada cenário de fluxo de trabalho em sua aplicação pode ser excessivo.






Integrando Workers de IA em Sua Arquitetura de Aplicação


Ao incorporar workers de IA em sua arquitetura de aplicação, várias considerações técnicas precisam ser abordadas para garantir uma integração suave e comunicação efetiva entre os workers de IA e outros componentes da aplicação. Esta seção considera aspectos fundamentais do design dessas interfaces, manipulação do fluxo de dados e gerenciamento do ciclo de vida dos workers de IA.




Projetando Interfaces Claras e Protocolos de Comunicação


Para facilitar a integração perfeita entre workers de IA e outros componentes da aplicação, é crucial definir interfaces claras e protocolos de comunicação. Considere as seguintes abordagens:




Integração baseada em API: Exponha a funcionalidade dos workers de IA através de APIs bem definidas, como endpoints RESTful ou schemas GraphQL. Isso permite que outros componentes interajam com os workers de IA usando requisições e respostas HTTP padrão. A integração baseada em API fornece um contrato claro entre os workers de IA e os componentes consumidores, tornando mais fácil desenvolver, testar e manter os pontos de integração.




Comunicação baseada em Mensagens: Implemente padrões de comunicação baseados em mensagens, como filas de mensagens ou sistemas de publicação-assinatura, para permitir interação assíncrona entre workers de IA e outros componentes. Esta abordagem desacopla os workers de IA do resto da aplicação, permitindo melhor escalabilidade, tolerância a falhas e acoplamento fraco. A comunicação baseada em mensagens é particularmente útil quando o processamento realizado pelos workers de IA é demorado ou intensivo em recursos, pois permite que outras partes da aplicação continuem executando sem esperar que os workers de IA completem suas tarefas.




Arquitetura Orientada a Eventos: Projete seu sistema em torno de eventos e gatilhos que ativam workers de IA quando condições específicas são atendidas. Os workers de IA podem se inscrever em eventos relevantes e reagir de acordo, executando suas tarefas designadas quando os eventos ocorrem. A arquitetura orientada a eventos permite processamento em tempo real e permite que workers de IA sejam invocados sob demanda, reduzindo o consumo desnecessário de recursos. Esta abordagem é bem adequada para cenários onde workers de IA precisam responder a ações específicas ou mudanças no estado da aplicação.





Lidando com Fluxo de Dados e Sincronização


Ao integrar workers de IA em sua aplicação, é crucial garantir um fluxo de dados suave e manter a consistência dos dados entre os workers de IA e outros componentes. Considere os seguintes aspectos:




Preparação de Dados: Antes de alimentar dados nos workers de IA, você pode precisar realizar várias tarefas de preparação de dados, como limpeza, formatação e/ou transformação dos dados de entrada. Você não só quer garantir que os workers de IA possam processar efetivamente, mas também quer garantir que não está desperdiçando tokens dando atenção a informações que o worker pode considerar inúteis na melhor das hipóteses, ou distrativas na pior. A preparação de dados pode envolver tarefas como remover ruídos, lidar com valores ausentes ou converter tipos de dados.




Persistência de Dados: Como você irá armazenar e persistir os dados que fluem para dentro e para fora dos workers de IA? Considere fatores como volume de dados, padrões de consulta e escalabilidade. Você precisa persistir a transcrição da IA como um reflexo de seu “processo de pensamento” para fins de auditoria ou depuração, ou é suficiente ter apenas um registro dos resultados?




Recuperação de Dados: Obter os dados necessários pelos workers pode envolver consultas a bancos de dados, leitura de arquivos ou acesso a APIs externas. Certifique-se de considerar a latência e como os workers de IA terão acesso aos dados mais atualizados. Eles precisam de acesso total ao seu banco de dados ou você deve definir o escopo de acesso de forma restrita de acordo com o que estão fazendo? E quanto à escalabilidade? Considere mecanismos de cache para melhorar o desempenho e reduzir a carga nas fontes de dados subjacentes.




Sincronização de Dados: Quando múltiplos componentes, incluindo workers de IA, acessam e modificam dados compartilhados, é importante implementar mecanismos adequados de sincronização para manter a consistência dos dados. Estratégias de bloqueio de banco de dados, como bloqueio otimista ou pessimista, podem ajudar a prevenir conflitos e garantir a integridade dos dados. Implemente técnicas de gerenciamento de transações para agrupar operações de dados relacionadas e manter as propriedades ACID (Atomicidade, Consistência, Isolamento e Durabilidade)




Tratamento de Erros e Recuperação: Implemente mecanismos robustos de tratamento de erros e recuperação para lidar com problemas relacionados a dados que possam surgir durante o processo de fluxo de dados. Trate as exceções de forma elegante e forneça mensagens de erro significativas para auxiliar na depuração. Implemente mecanismos de retry e estratégias de fallback para lidar com falhas temporárias ou interrupções de rede. Defina procedimentos claros para recuperação e restauração de dados em caso de corrupção ou perda.




Ao projetar e implementar cuidadosamente mecanismos de fluxo e sincronização de dados, você pode garantir que seus workers de IA tenham acesso a dados precisos, consistentes e atualizados. Isso permite que eles realizem suas tarefas de forma eficaz e produzam resultados confiáveis.





Gerenciando o Ciclo de Vida dos Workers de IA


Desenvolva um processo padronizado para inicialização e configuração de workers de IA. Tenho preferência por frameworks que padronizam como você define configurações como nomes de modelos, diretivas do sistema e definições de funções. Garanta que o processo de inicialização seja automatizado e reproduzível para facilitar a implantação e escalabilidade.




Implemente mecanismos abrangentes de monitoramento e logging para acompanhar a saúde e o desempenho dos workers de IA. Colete métricas como utilização de recursos, tempo de processamento, taxas de erro e throughput. Use sistemas centralizados de logging como ELK stack (Elasticsearch, Logstash, Kibana) para agregar e analisar logs de múltiplos workers de IA.




Construa tolerância a falhas e resiliência na arquitetura dos workers de IA. Implemente mecanismos de tratamento de erros e recuperação para lidar graciosamente com falhas ou exceções. Os Large Language Models ainda são tecnologia de ponta; os provedores costumam ficar fora do ar frequentemente em momentos inesperados. Use mecanismos de retry e circuit breakers para prevenir falhas em cascata.






Composição e Orquestração de Workers de IA


Uma das principais vantagens da arquitetura de workers de IA é sua capacidade de composição, que permite combinar e orquestrar múltiplos workers de IA para resolver problemas complexos. Ao dividir uma tarefa maior em subtarefas menores e mais gerenciáveis, cada uma tratada por um worker de IA especializado, você pode criar sistemas poderosos e flexíveis. Nesta seção, exploraremos diferentes abordagens para compor e orquestrar “uma multiplicidade” de workers de IA.




Encadeando Workers de IA para Workflows Multi-Etapas


Em muitos cenários, uma tarefa complexa pode ser decomposta em uma série de etapas sequenciais, onde a saída de um worker de IA se torna a entrada para o próximo. Este encadeamento de workers de IA cria um workflow ou pipeline de múltiplas etapas. Cada worker de IA na cadeia se concentra em uma subtarefa específica, e a saída final é o resultado dos esforços combinados de todos os workers.




Vamos considerar um exemplo no contexto de uma aplicação Ruby on Rails para processamento de conteúdo gerado pelo usuário. O workflow envolve as seguintes etapas, que admitidamente são provavelmente simples demais para valer a pena decompor dessa forma em casos de uso reais, mas tornam o exemplo mais fácil de entender:




1. Limpeza de Texto: Um worker de IA responsável por remover tags HTML, converter texto para minúsculas e lidar com normalização Unicode.




2. Detecção de Idioma: Um worker de IA que identifica o idioma do texto limpo.




3. Análise de Sentimento: Um worker de IA que determina o sentimento (positivo, negativo ou neutro) do texto com base no idioma detectado.




4. Categorização de Conteúdo: Um worker de IA que classifica o texto em categorias predefinidas usando técnicas de processamento de linguagem natural.




Aqui está um exemplo muito simplificado de como você pode encadear esses workers de IA usando Ruby:



 1 class ContentProcessor
 2   def initialize(text)
 3     @text = text
 4   end
 5 
 6   def process
 7     cleaned_text = TextCleanupWorker.new(@text).call
 8     language = LanguageDetectionWorker.new(cleaned_text).call
 9     sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call
10     category = CategorizationWorker.new(cleaned_text, language).call
11 
12     { cleaned_text:, language:, sentiment:, category: }
13   end
14 end





Neste exemplo, a classe ContentProcessor é inicializada com o texto bruto e encadeia os workers de IA juntos no método process. Cada worker de IA executa sua tarefa específica e passa o resultado para o próximo worker na cadeia. A saída final é um hash contendo o texto limpo, o idioma detectado, o sentimento e a categoria do conteúdo.





Processamento Paralelo para Workers de IA Independentes


No exemplo anterior, os workers de IA são encadeados sequencialmente, onde cada worker processa o texto e passa o resultado para o próximo worker. No entanto, se você tem múltiplos workers de IA que podem operar independentemente sobre a mesma entrada, você pode otimizar o fluxo de trabalho processando-os em paralelo.




No cenário apresentado, uma vez que a limpeza do texto é realizada pelo TextCleanupWorker, o LanguageDetectionWorker, SentimentAnalysisWorker e CategorizationWorker podem todos processar o texto limpo independentemente. Ao executar esses workers em paralelo, você pode potencialmente reduzir o tempo total de processamento e melhorar a eficiência do seu fluxo de trabalho.




Para alcançar o processamento paralelo em Ruby, você pode aproveitar técnicas de concorrência como threads ou programação assíncrona. Aqui está um exemplo de como você pode modificar a classe ContentProcessor para processar os três workers finais em paralelo usando threads:



 1 require 'concurrent'
 2 
 3 class ContentProcessor
 4   def initialize(text)
 5     @text = text
 6   end
 7 
 8   def process
 9     cleaned_text = TextCleanupWorker.new(@text).call
10 
11     language_future = Concurrent::Future.execute do
12       LanguageDetectionWorker.new(cleaned_text).call
13     end
14 
15     sentiment_future = Concurrent::Future.execute do
16       SentimentAnalysisWorker.new(cleaned_text).call
17     end
18 
19     category_future = Concurrent::Future.execute do
20       CategorizationWorker.new(cleaned_text).call
21     end
22 
23     language = language_future.value
24     sentiment = sentiment_future.value
25     category = category_future.value
26 
27     { cleaned_text:, language:, sentiment:, category: }
28   end
29 end





Nesta versão otimizada, utilizamos a biblioteca concurrent-ruby para criar objetos Concurrent::Future para cada um dos workers de IA independentes. Um Future representa uma computação que será executada de forma assíncrona em uma thread separada.




Após a etapa de limpeza do texto, criamos três objetos Future: language_future, sentiment_future e category_future. Cada Future executa seu worker de IA correspondente (LanguageDetectionWorker, SentimentAnalysisWorker e CategorizationWorker) em uma thread separada, passando o cleaned_text como entrada.




Ao chamar o método value em cada Future, aguardamos a conclusão da computação e recuperamos o resultado. O método value bloqueia até que o resultado esteja disponível, garantindo que todos os workers paralelos tenham terminado o processamento antes de prosseguir.




Por fim, construímos o hash de saída com o texto limpo e os resultados dos workers paralelos, assim como no exemplo original.




Ao processar os workers de IA independentes em paralelo, você pode potencialmente reduzir o tempo total de processamento em comparação com a execução sequencial. Essa otimização é particularmente benéfica ao lidar com tarefas demoradas ou ao processar grandes volumes de dados.




No entanto, é importante observar que os ganhos reais de desempenho dependem de vários fatores, como a complexidade de cada worker, os recursos do sistema disponíveis e a sobrecarga do gerenciamento de threads. É sempre uma boa prática fazer benchmark e profile do seu código para determinar o nível ideal de paralelismo para seu caso de uso específico.




Além disso, ao implementar processamento paralelo, fique atento a quaisquer recursos compartilhados ou dependências entre os workers. Certifique-se de que os workers possam operar independentemente sem conflitos ou condições de corrida. Se houver dependências ou recursos compartilhados, você pode precisar implementar mecanismos de sincronização apropriados para manter a integridade dos dados e evitar problemas como deadlocks ou resultados inconsistentes.



Global Interpreter Lock (GIL) do Ruby e Processamento Assíncrono


É importante entender as implicações do Global Interpreter Lock (GIL) do Ruby ao considerar o processamento assíncrono baseado em threads no Ruby.




O GIL é um mecanismo no interpretador Ruby que garante que apenas uma thread possa executar código Ruby por vez, mesmo em processadores multi-core. Isso significa que, embora múltiplas threads possam ser criadas e gerenciadas dentro de um processo Ruby, apenas uma thread pode executar ativamente código Ruby em qualquer momento.




O GIL foi projetado para simplificar a implementação do interpretador Ruby e fornecer segurança de thread para as estruturas de dados internas do Ruby. No entanto, ele também limita o potencial de execução verdadeiramente paralela do código Ruby.




Quando você usa threads no Ruby, como com a biblioteca concurrent-ruby ou a classe Thread nativa, as threads estão sujeitas às restrições do GIL. O GIL permite que cada thread execute código Ruby por um curto período antes de alternar para outra thread, criando a ilusão de execução concorrente.




No entanto, devido ao GIL, a execução real do código Ruby permanece sequencial. Enquanto uma thread está executando código Ruby, outras threads estão essencialmente pausadas, aguardando sua vez de adquirir o GIL e executar.




Isso significa que o processamento assíncrono baseado em threads no Ruby é mais eficaz para tarefas vinculadas a E/S, como esperar por respostas de APIs externas (como modelos de linguagem grandes hospedados por terceiros) ou realizar operações de E/S em arquivos. Quando uma thread encontra uma operação de E/S, ela pode liberar o GIL, permitindo que outras threads executem enquanto aguardam a conclusão da E/S.




Por outro lado, para tarefas vinculadas à CPU, como computações intensivas ou processamento de workers de IA de longa duração, o GIL pode limitar os potenciais ganhos de desempenho do paralelismo baseado em threads. Como apenas uma thread pode executar código Ruby por vez, o tempo total de execução pode não ser significativamente reduzido em comparação com o processamento sequencial.




Para alcançar execução verdadeiramente paralela para tarefas vinculadas à CPU no Ruby, você pode precisar explorar abordagens alternativas, como:





	
Usar paralelismo baseado em processos com múltiplos processos Ruby, cada um executando em um núcleo de CPU separado.



	
Aproveitar bibliotecas externas ou frameworks que fornecem extensões nativas ou interfaces para linguagens sem GIL, como C ou Rust.,



	
Utilizar frameworks de computação distribuída ou filas de mensagens para distribuir tarefas entre várias máquinas ou processos.








É crucial considerar a natureza das suas tarefas e as limitações impostas pelo GIL ao projetar e implementar processamento assíncrono em Ruby. Embora o processamento assíncrono baseado em threads possa fornecer benefícios para tarefas vinculadas a E/S, pode não oferecer melhorias significativas de desempenho para tarefas vinculadas à CPU devido às restrições do GIL.





Técnicas de Conjunto para Melhorar a Precisão


Técnicas de conjunto envolvem combinar as saídas de múltiplos workers de IA para melhorar a precisão geral ou a robustez do sistema. Em vez de confiar em um único worker de IA, as técnicas de conjunto aproveitam a inteligência coletiva de múltiplos workers para tomar decisões mais informadas.



	[image: An icon of a key]	
Conjuntos são especialmente importantes quando diferentes partes do seu fluxo de trabalho funcionam melhor com diferentes modelos de IA, algo mais comum do que você pode imaginar. Modelos poderosos como o GPT-4 são extremamente caros em comparação com opções de código aberto menos capazes, e provavelmente não são necessários para cada etapa do fluxo de trabalho da sua aplicação.






Uma técnica comum de conjunto é a votação por maioria, onde múltiplos trabalhadores de IA processam independentemente a mesma entrada, e a saída final é determinada pelo consenso da maioria. Esta abordagem pode ajudar a mitigar o impacto de erros individuais dos trabalhadores e melhorar a confiabilidade geral do sistema.




Vamos considerar um exemplo onde temos três trabalhadores de IA para análise de sentimento, cada um usando um modelo diferente ou fornecido com diferentes contextos. Podemos combinar suas saídas usando votação por maioria para determinar a predição final do sentimento.



 1 class SentimentAnalysisEnsemble
 2   def initialize(text)
 3     @text = text
 4   end
 5 
 6   def analyze
 7     predictions = [
 8       SentimentAnalysisWorker1.new(@text).analyze,
 9       SentimentAnalysisWorker2.new(@text).analyze,
10       SentimentAnalysisWorker3.new(@text).analyze
11     ]
12 
13     predictions
14       .group_by { |sentiment| sentiment }
15       .max_by { |_, votes| votes.size }
16       .first
17 
18   end
19 end





Neste exemplo, a classe SentimentAnalysisEnsemble. é inicializada com o texto e invoca três diferentes trabalhadores de IA para análise de sentimento. O método analyze coleta as previsões de cada trabalhador e determina o sentimento majoritário usando os métodos group_by e max_by. A saída final é o sentimento que recebe mais votos do conjunto de trabalhadores
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Conjuntos são claramente um caso onde experimentar com paralelismo pode valer seu tempo.







Seleção Dinâmica e Invocação de Trabalhadores de IA


Em alguns, se não na maioria dos casos, o trabalhador de IA específico a ser invocado pode depender das condições de tempo de execução ou entradas do usuário. A seleção dinâmica e invocação de trabalhadores de IA permitem flexibilidade e adaptabilidade no sistema.
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Você pode se sentir tentado a tentar encaixar muita funcionalidade em um único trabalhador de IA, dando a ele muitas funções e um prompt grande e complicado que explica como chamá-las. Resista à tentação, confie em mim. Uma das razões pela qual a abordagem que estamos discutindo neste capítulo é chamada de “Multiplicidade de Trabalhadores” é para nos lembrar que é desejável ter muitos trabalhadores especializados, cada um fazendo seu pequeno trabalho a serviço do propósito maior.






Por exemplo, considere uma aplicação de chatbot onde diferentes trabalhadores de IA são responsáveis por lidar com diferentes tipos de consultas do usuário. Com base na entrada do usuário, a aplicação seleciona dinamicamente o trabalhador de IA apropriado para processar a consulta.



 1 class ChatbotController < ApplicationController
 2   def process_query
 3     query = params[:query]
 4     query_type = QueryClassifierWorker.new(query).classify
 5 
 6     case query_type
 7     when 'greeting'
 8       response = GreetingWorker.new(query).generate_response
 9     when 'product_inquiry'
10       response = ProductInquiryWorker.new(query).generate_response
11     when 'order_status'
12       response = OrderStatusWorker.new(query).generate_response
13     else
14       response = DefaultResponseWorker.new(query).generate_response
15     end
16 
17     render json: { response: response }
18   end
19 end





Neste exemplo, o ChatbotController recebe uma consulta do usuário através da ação process_query. Primeiro, ele usa um QueryClassifierWorker para determinar o tipo da consulta. Com base no tipo de consulta classificada, o controlador seleciona dinamicamente o worker de IA apropriado para gerar a resposta. Essa seleção dinâmica permite que o chatbot processe diferentes tipos de consultas e as direcione para os workers de IA relevantes.
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Como o trabalho do QueryClassifierWorker é relativamente simples e não requer muito contexto ou definições de funções, você provavelmente pode implementá-lo usando um LLM pequeno e ultra-rápido como o mistralai/mixtral-8x7b-instruct:nitro. Ele tem capacidades que se aproximam do nível do GPT-4 em muitas tarefas e, no momento em que escrevo isto, a Groq pode executá-lo com uma velocidade impressionante de 444 tokens por segundo.








Combinando PLN Tradicional com LLMs


Embora os Modelos de Linguagem Grandes (LLMs) tenham revolucionado o campo do processamento de linguagem natural (PLN), oferecendo versatilidade e desempenho sem precedentes em uma ampla gama de tarefas, eles nem sempre são a solução mais eficiente ou econômica para todos os problemas. Em muitos casos, combinar técnicas tradicionais de PLN com LLMs pode levar a abordagens mais otimizadas, direcionadas e econômicas para resolver desafios específicos de PLN.




Pense nos LLMs como os canivetes suíços do PLN — incrivelmente versáteis e poderosos, mas não necessariamente a melhor ferramenta para cada trabalho. Às vezes, uma ferramenta dedicada, como um saca-rolhas ou um abridor de latas, pode ser mais eficaz e eficiente para uma tarefa específica. Da mesma forma, técnicas tradicionais de PLN, como agrupamento de documentos, identificação de tópicos e classificação, podem frequentemente fornecer soluções mais direcionadas e econômicas para certos aspectos do seu pipeline de PLN.




Uma das principais vantagens das técnicas tradicionais de PLN é sua eficiência computacional. Esses métodos, que frequentemente dependem de modelos estatísticos mais simples ou abordagens baseadas em regras, podem processar grandes volumes de dados textuais muito mais rapidamente e com menor sobrecarga computacional em comparação com LLMs. Isso os torna particularmente adequados para tarefas que envolvem análise e organização de grandes corpora de documentos, como agrupar artigos similares ou identificar tópicos-chave dentro de uma coleção de textos.




Além disso, as técnicas tradicionais de PLN podem frequentemente alcançar alta precisão e exatidão para tarefas específicas, especialmente quando treinadas em conjuntos de dados específicos do domínio. Por exemplo, um classificador de documentos bem ajustado usando algoritmos tradicionais de aprendizado de máquina como Máquinas de Vetores de Suporte (SVM) ou Naive Bayes pode categorizar documentos com precisão em categorias predefinidas com custo computacional mínimo.




No entanto, os LLMs realmente se destacam quando se trata de tarefas que exigem uma compreensão mais profunda da linguagem, contexto e raciocínio. Sua capacidade de gerar texto coerente e contextualmente relevante, responder perguntas e resumir passagens longas é inigualável pelos métodos tradicionais de PLN. Os LLMs podem lidar efetivamente com fenômenos linguísticos complexos, como ambiguidade, correferência e expressões idiomáticas, tornando-os inestimáveis para tarefas que exigem geração ou compreensão de linguagem natural.




O verdadeiro poder está em combinar técnicas tradicionais de PLN com LLMs para criar abordagens híbridas que aproveitam os pontos fortes de ambos. Ao usar métodos tradicionais de PLN para tarefas como pré-processamento de documentos, agrupamento e extração de tópicos, você pode organizar e estruturar seus dados de texto de forma eficiente. Essas informações estruturadas podem então ser alimentadas em LLMs para tarefas mais avançadas, como gerar resumos, responder perguntas ou criar relatórios abrangentes.




Por exemplo, considere um caso de uso onde você deseja gerar um relatório de tendências para um domínio específico com base em um grande corpus de documentos individuais de tendências. Em vez de confiar exclusivamente em LLMs, que podem ser computacionalmente caros e demorados para processar grandes volumes de texto, você pode empregar uma abordagem híbrida:





	
Use técnicas tradicionais de PLN, como modelagem de tópicos (por exemplo, Alocação Latente de Dirichlet) ou algoritmos de agrupamento (por exemplo, K-means), para agrupar documentos de tendências similares e identificar temas e tópicos-chave dentro do corpus.




	
Alimente os documentos agrupados e os tópicos identificados em um LLM, aproveitando suas capacidades superiores de compreensão e geração de linguagem para criar resumos coerentes e informativos para cada cluster ou tópico.




	
Finalmente, use o LLM para gerar um relatório abrangente de tendências, combinando os resumos individuais, destacando as tendências mais significativas e fornecendo insights e recomendações com base nas informações agregadas.









Ao combinar técnicas tradicionais de PLN com LLMs dessa maneira, você pode processar eficientemente grandes quantidades de dados textuais, extrair insights significativos e gerar relatórios de alta qualidade enquanto otimiza recursos computacionais e custos.




Ao embarcar em seus projetos de NLP, é essencial avaliar cuidadosamente os requisitos específicos e as restrições de cada tarefa e considerar como os métodos tradicionais de NLP e LLMs podem ser aproveitados em conjunto para alcançar os melhores resultados. Ao combinar a eficiência e precisão das técnicas tradicionais com a versatilidade e poder dos LLMs, você pode criar soluções de NLP altamente eficazes e econômicas que entregam valor aos seus usuários e partes interessadas.








Uso de Ferramentas

[image: Uma ilustração em preto e branco retratando uma pessoa jovem com uma camisa listrada sentada em meio a ferramentas e livros. Ela olha para cima observando vários aviões voando. O fundo é uma dinâmica mistura de manchas de tinta e texturas abstratas.]


No âmbito do desenvolvimento de aplicações baseadas em IA, o conceito de “uso de ferramentas” ou “chamada de função” surgiu como uma técnica poderosa que permite que seu LLM se conecte a ferramentas externas, APIs, funções, bancos de dados e outros recursos. Essa abordagem permite um conjunto mais rico de comportamentos além da simples saída de texto, e interações mais dinâmicas entre seus componentes de IA e o resto do ecossistema da sua aplicação. Como examinaremos neste capítulo, o uso de ferramentas também oferece a opção de fazer seu modelo de IA gerar dados de maneiras estruturadas.




O que é Uso de Ferramentas?


O uso de ferramentas, também conhecido como chamada de função, é uma técnica que permite aos desenvolvedores especificar uma lista de funções com as quais um LLM pode interagir durante o processo de geração. Essas ferramentas podem variar desde funções utilitárias simples até APIs complexas ou consultas a bancos de dados. Ao fornecer ao LLM acesso a essas ferramentas, os desenvolvedores podem estender as capacidades do modelo e permitir que ele execute tarefas que requerem conhecimento ou ações externos.



Figura 8. Exemplo de uma definição de função para um trabalhador de IA que analisa documentos 1   FUNCTION = {
 2     name: "save_analysis",
 3     description: "Save analysis data for document",
 4     parameters: {
 5       type: "object",
 6       properties: {
 7         title: {
 8           type: "string",
 9           maxLength: 140
10         },
11         summary: {
12           type: "string",
13           description: "comprehensive multi-paragraph summary with
14                         overview and list of sections (if applicable)"
15         },
16         tags: {
17           type: "array",
18           items: {
19             type: "string",
20             description: "lowercase tags representing main themes
21                           of the document"
22           }
23         }
24       },
25       "required": %w[title summary tags]
26     }
27   }.freeze





A ideia principal por trás do uso de ferramentas é dar ao LLM a capacidade de selecionar e executar dinamicamente as ferramentas apropriadas com base na entrada do usuário ou na tarefa em questão. Em vez de depender exclusivamente do conhecimento pré-treinado do modelo, o uso de ferramentas permite que o LLM aproveite recursos externos para gerar respostas mais precisas, relevantes e acionáveis. O uso de ferramentas torna técnicas como RAG (Geração Aumentada por Recuperação) muito mais fáceis de implementar do que seriam de outra forma.




Observe que, a menos que especificado de outra forma, este livro pressupõe que seu modelo de IA não tem acesso a nenhuma ferramenta integrada do lado do servidor. Quaisquer ferramentas que você deseja disponibilizar para sua IA devem ser explicitamente declaradas por você em cada requisição da API, com provisões para despachar sua execução se e quando sua IA informar que gostaria de usar essa ferramenta em sua resposta.





O Potencial do Uso de Ferramentas


O uso de ferramentas abre uma ampla gama de possibilidades para aplicações baseadas em IA. Aqui estão alguns exemplos do que pode ser alcançado com o uso de ferramentas:





	
Chatbots e Assistentes Virtuais: Ao conectar um LLM a ferramentas externas, chatbots e assistentes virtuais podem realizar tarefas mais complexas, como recuperar informações de bancos de dados, executar chamadas de API ou interagir com outros sistemas. Por exemplo, um chatbot poderia usar uma ferramenta de CRM para alterar o status de uma negociação com base na solicitação do usuário.




	
Análise de Dados e Insights: LLMs podem ser conectados a ferramentas ou bibliotecas de análise de dados para realizar tarefas avançadas de processamento de dados. Isso permite que as aplicações gerem insights, realizem análises comparativas ou forneçam recomendações baseadas em dados a partir de consultas do usuário.




	
Busca e Recuperação de Informações: O uso de ferramentas permite que LLMs interajam com mecanismos de busca, bancos de dados vetoriais ou outros sistemas de recuperação de informações. Ao transformar consultas do usuário em consultas de busca, o LLM pode recuperar informações relevantes de múltiplas fontes e fornecer respostas abrangentes às perguntas do usuário.




	
Integração com Serviços Externos: O uso de ferramentas permite a integração perfeita entre aplicações baseadas em IA e serviços externos ou APIs. Por exemplo, um LLM poderia interagir com uma API de previsão do tempo para fornecer atualizações em tempo real do clima ou uma API de tradução para gerar respostas multilíngues.










O Fluxo de Trabalho do Uso de Ferramentas


O fluxo de trabalho do uso de ferramentas tipicamente envolve quatro etapas principais:





	
Incluir definições de funções no contexto da sua requisição



	
Seleção dinâmica (ou explícita) de ferramentas



	
Execução da(s) função(ões)



	
Continuação opcional do prompt original








Vamos revisar cada uma dessas etapas em detalhes.




Incluir definições de funções no contexto da sua requisição


A IA sabe quais ferramentas tem à sua disposição porque você fornece uma lista como parte da sua requisição de completamento (tipicamente definida como funções usando uma variante do esquema JSON).




A sintaxe precisa da definição de ferramentas é específica do modelo.




É assim que você define uma função get_weather no Claude 3:



 1 {
 2     "name": "get_weather",
 3     "description": "Get the current weather in a given location",
 4     "input_schema": {
 5         "type": "object",
 6         "properties": {
 7             "location": {
 8                 "type": "string",
 9                 "description": "The city and state, e.g. San Francisco, CA"
10             },
11             "unit": {
12                 "type": "string",
13                 "enum": ["celsius", "fahrenheit"],
14                 "description": "The unit of temperature"
15         }
16     },
17     "required": ["location"]
18     }
19 }





E é assim que você definiria a mesma função para o GPT-4, passando-a como valor do parâmetro tools:



 1 {
 2     "name": "get_current_weather",
 3     "description": "Get the current weather in a given location",
 4     "parameters": {
 5         "type": "object",
 6         "properties": {
 7             "location": {
 8                 "type": "string",
 9                 "description": "The city and state, e.g. San Francisco, CA",
10             },
11             "unit": {
12                 "type": "string",
13                 "enum": ["celsius", "fahrenheit"],
14                 "description": "The unit of temperature"
15             },
16         },
17         "required": ["location"],
18     },
19 }





Quase igual, exceto diferente sem nenhuma razão aparente! Que irritante.




Definições de função especificam nome, descrição e parâmetros de entrada. Os parâmetros de entrada podem ser definidos ainda mais usando atributos como enums para limitar os valores aceitáveis, e especificando se um parâmetro é obrigatório ou não.




Além das definições de função propriamente ditas, você também pode incluir instruções ou contexto sobre por que e como usar a função na diretiva do sistema.




Por exemplo, minha ferramenta de Busca Web no Olympia inclui esta diretiva do sistema, que lembra à IA que ela tem as ferramentas mencionadas à sua disposição:



1 The `google_search` and `realtime_search` functions let you do research
2 on behalf of the user. In contrast to Google, realtime search is powered
3 by Perplexity and provides real-time information to curated current events
4 databases and news sources. Make sure to include URLs in your response so
5 user can do followup research.





Fornecer descrições detalhadas é considerado o fator mais importante no desempenho da ferramenta. Suas descrições devem explicar cada detalhe sobre a ferramenta, incluindo:





	
O que a ferramenta faz



	
Quando ela deve ser usada (e quando não deve)



	
O que cada parâmetro significa e como afeta o comportamento da ferramenta



	
Quaisquer ressalvas ou limitações importantes que se aplicam à implementação da ferramenta








Quanto mais contexto você puder fornecer à IA sobre suas ferramentas, melhor ela será em decidir quando e como usá-las. Por exemplo, a Anthropic recomenda pelo menos 3-4 frases por descrição de ferramenta para sua série Claude 3, mais se a ferramenta for complexa.




Pode não ser intuitivo, mas as descrições também são consideradas mais importantes do que os exemplos. Embora você possa incluir exemplos de como usar uma ferramenta em sua descrição ou no prompt que a acompanha, isso é menos importante do que ter uma explicação clara e abrangente do propósito e dos parâmetros da ferramenta. Adicione exemplos apenas depois de ter desenvolvido completamente a descrição.




Aqui está um exemplo de uma especificação de função de API no estilo Stripe:



 1 {
 2   "name": "createPayment",
 3   "description": "Create a new payment request",
 4   "parameters": {
 5     "type": "object",
 6     "properties": {
 7       "transaction_amount": {
 8         "type": "number",
 9         "description": "The amount to be paid"
10       },
11       "description": {
12         "type": "string",
13         "description": "A brief description of the payment"
14       },
15       "payment_method_id": {
16         "type": "string",
17         "description": "The payment method to be used"
18       },
19       "payer": {
20         "type": "object",
21         "description": "Information about the payer, including their name,
22                         email, and identification number",
23         "properties": {
24           "name": {
25             "type": "string",
26             "description": "The payer's name"
27         },
28         "email": {
29           "type": "string",
30           "description": "The payer's email address"
31         },
32         "identification": {
33           "type": "object",
34           "description": "The payer's identification number",
35           "properties": {
36             "type": {
37               "type": "string",
38               "description": "Identification document (e.g. CPF, CNPJ)"
39             },
40             "number": {
41               "type": "string",
42               "description": "The identification number"
43             }
44           },
45           "required": [ "type", "number" ]
46         }
47       },
48       "required": [ "name", "email", "identification" ]
49     }
50   }
51 }
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Na prática, alguns modelos têm dificuldade em lidar com especificações de funções aninhadas e com tipos de dados de saída complexos como arrays, dicionários etc. Mas, em teoria, você deveria poder fornecer especificações de JSON Schema com profundidade arbitrária!







Seleção Dinâmica de Ferramentas


Quando você executa uma conclusão de chat que inclui definições de ferramentas, o LLM seleciona dinamicamente a(s) ferramenta(s) mais apropriada(s) para usar e gera os parâmetros de entrada necessários para cada ferramenta.




Na prática, a capacidade da IA de chamar exatamente a função correta e seguir exatamente sua especificação para as entradas é incerta. Diminuir o hiperparâmetro de temperatura para 0.0 ajuda muito, mas pela minha experiência você ainda encontrará erros ocasionais. Essas falhas incluem nomes de funções alucinados, parâmetros de entrada incorretos ou simplesmente ausentes. Os parâmetros são passados como JSON, o que significa que às vezes você verá erros causados por JSON truncado, mal formatado ou quebrado de outras formas.
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Padrões de Self Healing Data podem ajudar a corrigir automaticamente chamadas de função que quebram devido a erros de sintaxe.







Seleção Forçada (ou Explícita) de Ferramentas


Alguns modelos oferecem a opção de forçar a chamada de uma função específica como um parâmetro na requisição. Caso contrário, a decisão de chamar ou não a função fica inteiramente a critério da IA.




A capacidade de forçar uma chamada de função é crucial em certos cenários onde você quer garantir que uma ferramenta ou função específica seja executada, independentemente do processo de seleção dinâmica da IA. Existem várias razões pelas quais essa capacidade é importante:





	
Controle Explícito: Você pode estar usando a IA como um Componente Discreto ou em um fluxo de trabalho predefinido que necessita da execução de uma função específica em um momento específico. Ao forçar a chamada, você pode garantir que a função desejada seja invocada em vez de ter que pedir educadamente para a IA fazê-lo.




	
Depuração e Testes: Durante o desenvolvimento e teste de aplicações baseadas em IA, a capacidade de forçar chamadas de função é inestimável para fins de depuração. Ao acionar explicitamente funções específicas, você pode isolar e testar componentes individuais de sua aplicação. Isso permite verificar a correção das implementações das funções, validar os parâmetros de entrada e garantir que os resultados esperados sejam retornados.




	
Tratamento de Casos Extremos: Podem existir casos extremos ou cenários excepcionais onde o processo de seleção dinâmica da IA pode não escolher executar uma função que deveria, e você sabe disso com base em processos externos. Nesses casos, ter a capacidade de forçar uma chamada de função permite que você trate essas situações explicitamente. Defina regras ou condições na lógica de sua aplicação para determinar quando sobrepor o critério da IA.




	
Consistência e Reprodutibilidade: Se você tem uma sequência específica de funções que precisam ser executadas em uma ordem particular, forçar as chamadas garante que a mesma sequência seja seguida todas as vezes. Isso é especialmente importante em aplicações onde consistência e comportamento previsível são críticos, como em sistemas financeiros ou simulações científicas.




	
Otimização de Desempenho: Em alguns casos, forçar uma chamada de função pode levar a otimizações de desempenho. Se você sabe que uma função específica é necessária para uma tarefa particular e que o processo de seleção dinâmica da IA pode introduzir sobrecarga desnecessária, você pode contornar o processo de seleção e invocar diretamente a função necessária. Isso pode ajudar a reduzir a latência e melhorar a eficiência geral de sua aplicação.









Em resumo, a capacidade de forçar chamadas de função em aplicações baseadas em IA fornece controle explícito, auxilia na depuração e testes, trata casos extremos, garante consistência e reprodutibilidade. É uma ferramenta poderosa em seu arsenal, mas precisamos discutir mais um aspecto desse importante recurso.



	[image: An icon of a key]	
Em muitos casos de uso de tomada de decisão, sempre queremos que o modelo faça uma chamada de função e podemos nunca querer que o modelo responda apenas com seu conhecimento interno. Por exemplo, se você está roteando entre múltiplos modelos especializados em diferentes tarefas (entrada multilíngue, matemática, etc), você pode usar o modelo de chamada de função para delegar requisições para um dos modelos auxiliares e nunca responder independentemente.






Parâmetro Tool Choice


GPT-4 e outros modelos de linguagem que suportam chamada de função fornecem um parâmetro tool_choice para controlar se o uso de ferramentas é necessário como parte de uma conclusão. Este parâmetro tem três valores possíveis:





	
auto dá à IA total critério sobre usar uma ferramenta ou simplesmente responder



	
required diz à IA que ela deve chamar uma ferramenta em vez de responder, mas deixa a seleção da ferramenta a critério da IA



	
A terceira opção é definir o parâmetro do name_of_function que você quer forçar. Mais sobre isso na próxima seção.
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Observe que se você definir tool choice como required, o modelo será forçado a escolher a função mais relevante para chamar dentre as fornecidas, mesmo que nenhuma delas realmente se encaixe no prompt. No momento da publicação, não tenho conhecimento de nenhum modelo que retorne uma resposta tool_calls vazia ou use alguma outra forma de informar que não encontrou uma função adequada para chamar.








Forçando uma Função Para Obter Saída Estruturada


A capacidade de forçar uma chamada de função oferece uma maneira de forçar dados estruturados de uma conclusão de chat em vez de ter que extraí-los você mesmo da resposta em texto simples.




Por que forçar funções para obter saída estruturada é tão importante? Simplificando, porque a extração de dados estruturados da saída do LLM é uma dor de cabeça. Você pode facilitar um pouco sua vida pedindo dados em XML, mas então você tem que analisar XML. E o que você faz quando esse XML está faltando porque sua IA respondeu: “Desculpe, mas não posso gerar os dados que você solicitou porque blá, blá, blá…”




Ao usar ferramentas desta forma:





	
Você provavelmente deve definir uma única ferramenta em sua solicitação



	
Lembre-se de forçar o uso de sua função usando o parâmetro tool_choice



	
Lembre-se que o modelo passará a entrada para a ferramenta, então o nome da ferramenta e a descrição devem ser da perspectiva do modelo, não da sua.








Este último ponto merece um exemplo para maior clareza. Digamos que você está pedindo à IA para fazer análise de sentimento em texto do usuário. O nome da função não seria analyze_sentiment, mas sim algo como save_sentiment_analysis. A IA é quem está fazendo a análise de sentimento, não a ferramenta. Tudo que a ferramenta está fazendo (da perspectiva da IA) é salvar os resultados da análise.




Aqui está um exemplo de uso do Claude 3 para registrar um resumo de uma imagem em JSON bem estruturado, desta vez pela linha de comando usando curl:



 1 curl https://api.anthropic.com/v1/messages \
 2      --header "content-type: application/json" \
 3      --header "x-api-key: $ANTHROPIC_API_KEY" \
 4      --header "anthropic-version: 2023-06-01" \
 5      --header "anthropic-beta: tools-2024-04-04" \
 6      --data \
 7 '{
 8     "model": "claude-3-sonnet-20240229",
 9     "max_tokens": 1024,
10     "tools": [{
11         "name": "record_summary",
12         "description": "Record summary of image into well-structured JSON.",
13         "input_schema": {
14             "type": "object",
15             "properties": {
16                 "key_colors": {
17                     "type": "array",
18                     "items": {
19                         "type": "object",
20                         "properties": {
21                             "r": {
22                                 "type": "number",
23                                 "description": "red value [0.0, 1.0]"
24                             },
25                             "g": {
26                                 "type": "number",
27                                 "description": "green value [0.0, 1.0]"
28                             },
29                             "b": {
30                                 "type": "number",
31                                 "description": "blue value [0.0, 1.0]"
32                             },
33                             "name": {
34                                 "type": "string",
35                                 "description": "Human-readable color name
36                                                 in snake_case, e.g.
37                                                 \"olive_green\"or
38                                                 \"turquoise\""
39                             }
40                         },
41                         "required": [ "r", "g", "b", "name" ]
42                     },
43                     "description": "Key colors in the image. Four or less."
44                 },
45                 "description": {
46                     "type": "string",
47                     "description": "Image description. 1-2 sentences max."
48                 },
49                 "estimated_year": {
50                     "type": "integer",
51                     "description": "Estimated year that the image was taken,
52                                     if is it a photo. Only set this if the
53                                     image appears to be non-fictional.
54                                     Rough estimates are okay!"
55                 }
56             },
57             "required": [ "key_colors", "description" ]
58         }
59     }],
60     "messages": [
61         {
62             "role": "user",
63             "content": [
64                 {
65                     "type": "image",
66                     "source": {
67                         "type": "base64",
68                         "media_type": "'$IMAGE_MEDIA_TYPE'",
69                         "data": "'$IMAGE_BASE64'"
70                     }
71                 },
72                 {
73                     "type": "text",
74                     "text": "Use `record_summary` to describe this image."
75                 }
76             ]
77         }
78     ]
79 }'





No exemplo fornecido, estamos usando o modelo Claude 3 da Anthropic para gerar um resumo JSON estruturado de uma imagem. Veja como funciona:





	
Definimos uma única ferramenta chamada record_summary no array tools do payload da requisição. Esta ferramenta é responsável por registrar um resumo da imagem em JSON bem estruturado.




	
A ferramenta record_summary possui um input_schema que especifica a estrutura esperada do output JSON. Ele define três propriedades:





	
key_colors: Um array de objetos representando as cores principais na imagem. Cada objeto de cor tem propriedades para os valores de vermelho, verde e azul (variando de 0.0 a 1.0) e um nome de cor legível por humanos no formato snake_case.




	
description: Uma propriedade string para uma breve descrição da imagem, limitada a 1-2 frases.




	
estimated_year: Uma propriedade inteira opcional para o ano estimado em que a imagem foi tirada, caso pareça ser uma foto não ficcional.









	
No array messages, fornecemos os dados da imagem como uma string codificada em base64 junto com o tipo de mídia. Isso permite que o modelo processe a imagem como parte do input.




	
Também instruímos o Claude a usar a ferramenta record_summary para descrever a imagem.




	
Quando a requisição é enviada ao modelo Claude 3, ele analisa a imagem e gera um resumo JSON baseado no input_schema especificado. O modelo extrai as cores principais, fornece uma breve descrição e estima o ano em que a imagem foi tirada (se aplicável).




	
O resumo JSON gerado é passado como parâmetros para a ferramenta record_summary, fornecendo uma representação estruturada das características principais da imagem.









Ao usar a ferramenta record_summary com um input_schema bem definido, podemos obter um resumo JSON estruturado de uma imagem sem depender de extração de texto simples. Esta abordagem garante que o output siga um formato consistente e possa ser facilmente analisado e processado pelos componentes downstream da aplicação.




A capacidade de forçar uma chamada de função e especificar a estrutura esperada do output é um recurso poderoso do uso de ferramentas em aplicações baseadas em IA. Isso permite que os desenvolvedores tenham mais controle sobre o output gerado e simplifica a integração de dados gerados por IA no fluxo de trabalho de suas aplicações.





Execução de Função(ões)


Você definiu funções e instruiu sua IA, que decidiu que deveria chamar uma das suas funções. Agora é hora do código da sua aplicação ou biblioteca, se você estiver usando uma gem Ruby como raix-rails, despachar a chamada da função e seus parâmetros para a implementação correspondente no código da sua aplicação.




Seu código de aplicação decide o que fazer com os resultados da execução da função. Talvez o que fazer envolva uma única linha de código em um lambda, ou talvez envolva chamar uma API externa. Talvez envolva chamar outro componente de IA, ou talvez envolva centenas ou até milhares de linhas de código no resto do seu sistema. Isso depende inteiramente de você.




Às vezes, a chamada da função é o fim da operação, mas se os resultados representam informações em uma cadeia de pensamento a ser continuada pela IA, então seu código de aplicação precisa inserir os resultados da execução na transcrição do chat e permitir que a IA continue processando.




Por exemplo, aqui está uma declaração de função Raix usada pelo AccountManager da Olympia para se comunicar com nossos clientes como parte de uma Orquestração de Fluxo de Trabalho Inteligente para atendimento ao cliente.



 1 class AccountManager
 2   include Raix::ChatCompletion
 3   include Raix::FunctionDispatch
 4 
 5   # lots of other functions...
 6 
 7   function :notify_account_owner,
 8     "Don't share UUID. Mention dollars if subscription changed",
 9     message: { type: "string" } do |arguments|
10       account.owner.freeform_notify(
11         subject: "Account Change Notification",
12         message: arguments[:message]
13       )
14       "Notified account owner"
15     end





Pode não estar imediatamente claro o que está acontecendo aqui, então vou explicar em detalhes.





	
A classe AccountManager define várias funções relacionadas ao gerenciamento de contas. Ela pode alterar seu plano, adicionar e remover membros da equipe, entre outras coisas.




	
Suas instruções de nível superior informam ao AccountManager que ele deve notificar o proprietário da conta sobre os resultados da solicitação de alteração da conta, usando a função notify_account_owner.




	
A definição concisa da função inclui:










	
nome



	
descrição



	
parâmetros message: { type: "string" }



	
um bloco para executar quando a função for chamada








Após atualizar a transcrição com os resultados do bloco de função, o método chat_completion é chamado novamente. Este método é responsável por enviar a transcrição atualizada da conversa de volta ao modelo de IA para processamento adicional. Nos referimos a este processo como um ciclo de conversação.




Quando o modelo de IA recebe uma nova solicitação de chat completion com uma transcrição atualizada, ele tem acesso aos resultados da função executada anteriormente. Ele pode analisar esses resultados, incorporá-los em seu processo de tomada de decisão e gerar a próxima resposta ou ação com base no contexto cumulativo da conversa. Ele pode optar por executar funções adicionais com base no contexto atualizado, ou pode gerar uma resposta final para o prompt original se determinar que não são necessárias mais chamadas de função.





Continuação Opcional do Prompt Original


Quando você envia os resultados da ferramenta de volta ao LLM e continua o processamento do prompt original, a IA usa esses resultados para chamar funções adicionais ou gerar uma resposta final em texto simples.
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Alguns modelos como o Command-R da Cohere podem citar as ferramentas específicas que usaram em suas respostas, fornecendo transparência e rastreabilidade adicionais.






Dependendo do modelo em uso, os resultados da chamada da função viverão em mensagens de transcrição que têm seu próprio papel especial ou serão refletidos em alguma outra sintaxe. Mas a parte importante é que esses dados estejam na transcrição, para que possam ser considerados pela IA ao decidir o que fazer em seguida.



	[image: An icon of a key]	
Um erro comum (e potencialmente caro) é esquecer de adicionar os resultados da função à transcrição antes de continuar o chat. Como resultado, a IA será solicitada essencialmente da mesma forma que foi antes de chamar a função pela primeira vez. Em outras palavras, do ponto de vista da IA, ela ainda não chamou a função. Então ela a chama novamente. E novamente. E novamente, para sempre até que você a interrompa. Espero que seu contexto não fosse muito grande e seu modelo não fosse muito caro!








Melhores Práticas para Uso de Ferramentas


Para obter o máximo proveito do uso de ferramentas, considere as seguintes melhores práticas.




Definições Descritivas


Forneça nomes e descrições claros e descritivos para cada ferramenta e seus parâmetros de entrada. Isso ajuda o LLM a entender melhor o propósito e as capacidades de cada ferramenta.




Posso dizer por experiência que a sabedoria comum que diz que “nomear é difícil” se aplica aqui; já vi resultados dramaticamente diferentes de LLMs apenas mudando os nomes das funções ou a redação das descrições. Às vezes, remover descrições melhora o desempenho.





Processamento dos Resultados da Ferramenta


Ao passar os resultados da ferramenta de volta ao LLM, certifique-se de que eles estejam bem estruturados e abrangentes. Use chaves e valores significativos para representar a saída de cada ferramenta. Experimente diferentes formatos e veja qual funciona melhor, desde JSON até texto simples.




O Interpretador de Resultados aborda esse desafio empregando IA para analisar os resultados e fornecer explicações amigáveis, resumos ou principais conclusões.





Tratamento de Erros


Implemente mecanismos robustos de tratamento de erros para lidar com casos em que o LLM pode gerar parâmetros de entrada inválidos ou não suportados para chamadas de ferramentas. Trate e recupere-se graciosamente de quaisquer erros que possam ocorrer durante a execução da ferramenta.




Uma qualidade extremamente boa da IA é que ela entende mensagens de erro! O que significa que se você está trabalhando com uma mentalidade rápida e simples, você pode simplesmente capturar quaisquer exceções geradas na implementação de uma ferramenta e passá-las de volta para a IA para que ela saiba o que aconteceu!




Por exemplo, aqui está uma versão simplificada da implementação da pesquisa do Google no Olympia:



 1   def google_search(conversation, params)
 2     conversation.update_cstatus("Searching Google...")
 3     query = params[:query]
 4     search = GoogleSearch.new(query).get_hash
 5 
 6     conversation.update_cstatus("Summarizing results...")
 7     SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)
 8   rescue StandardError => e
 9     Honeybadger.notify(e)
10     { error: e.message }.inspect
11   end





As buscas do Google no Olympia são um processo de duas etapas. Primeiro você faz a busca, depois resume os resultados. Se houver uma falha, não importa qual seja, a mensagem de exceção é empacotada e enviada de volta para a IA. Esta técnica é a base de praticamente todos os padrões de Tratamento Inteligente de Erros.




Por exemplo, digamos que a chamada da API GoogleSearch falhe devido a uma exceção 503 de Serviço Indisponível. Isso sobe até o nível superior do tratamento de exceção, e a descrição do erro é enviada de volta para a IA como resultado da chamada da função. Em vez de simplesmente mostrar uma tela em branco ou um erro técnico para o usuário, a IA diz algo como “Desculpe, mas não consigo acessar minhas capacidades de Busca do Google no momento. Posso tentar novamente mais tarde, se você desejar.”




Isso pode parecer apenas um truque inteligente, mas considere um tipo diferente de erro, um onde a IA estava chamando uma API externa e tinha controle direto dos parâmetros a serem passados para a API. Talvez ela tenha cometido um erro na forma como gerou esses parâmetros? Desde que a mensagem de erro da API externa seja detalhada o suficiente, passar a mensagem de erro de volta para a IA que fez a chamada significa que ela pode reconsiderar esses parâmetros e tentar novamente. Automaticamente. Não importa qual tenha sido o erro.




Agora pense no que seria necessário para replicar esse tipo de tratamento robusto de erros em código normal. É praticamente impossível.





Refinamento Iterativo


Se o LLM não estiver recomendando as ferramentas apropriadas ou gerando respostas abaixo do ideal, itere nas definições das ferramentas, descrições e parâmetros de entrada. Continue refinando e melhorando a configuração das ferramentas com base no comportamento observado e nos resultados desejados.





	
Comece com definições simples de ferramentas: Inicie definindo ferramentas com nomes, descrições e parâmetros de entrada claros e concisos. Evite complicar demais a configuração da ferramenta inicialmente e foque na funcionalidade principal. Por exemplo, se você quiser salvar os resultados de uma análise de sentimento, comece com uma definição básica como:







 1 {
 2   "name": "save_sentiment_score",
 3   "description": "Analyze user-provided text and generate sentiment score",
 4   "parameters": {
 5     "type": "object",
 6     "properties": {
 7       "score": {
 8         "type": "float",
 9         "description": "sentiment score from -1 (negative) to 1 (positive)"
10       }
11     },
12     "required": ["score"]
13   }
14 }






	
Teste e observe: Uma vez que você tenha as definições iniciais das ferramentas estabelecidas, teste-as com diferentes prompts e observe como o LLM interage com a ferramenta. Preste atenção à qualidade e relevância das respostas geradas. Se o LLM estiver gerando respostas subótimas, é hora de refinar as definições das ferramentas.




	
Refine as descrições: Se o LLM estiver interpretando erroneamente o propósito de uma ferramenta, tente refinar a descrição da ferramenta. Forneça mais contexto, exemplos ou esclarecimentos para guiar o LLM no uso efetivo da ferramenta. Por exemplo, você pode atualizar a descrição da ferramenta de análise de sentimento para abordar mais especificamente o tom emocional do texto sendo analisado:








1 {
2   "name": "save_sentiment_score",
3   "description": "Determine the overall emotional tone of a piece of text,
4    such as customer reviews, social media posts, or feedback comments.",
5   ...
6 }






	
Ajuste os parâmetros de entrada: Se o LLM estiver gerando parâmetros de entrada inválidos ou irrelevantes para uma ferramenta, considere ajustar as definições dos parâmetros. Adicione restrições mais específicas, regras de validação ou exemplos para esclarecer o formato de entrada esperado.




	
Itere com base no feedback: Monitore continuamente o desempenho de suas ferramentas e colete feedback dos usuários ou stakeholders. Use esse feedback para identificar áreas que precisam de melhorias e faça refinamentos iterativos nas definições das ferramentas. Por exemplo, se os usuários relatarem que a análise não está lidando bem com sarcasmo, você pode adicionar uma observação na descrição:








1 {
2   "name": "save_sentiment_score",
3   "description": "Analyze the sentiment of a given text and return a sentiment
4    score between -1 (negative) and 1 (positive). Note: Sarcasm should be
5    considered negative.",
6   ...
7 }





Ao refinar iterativamente suas definições de ferramentas com base no comportamento observado e feedback, você pode gradualmente melhorar o desempenho e a eficácia de sua aplicação baseada em IA. Lembre-se de manter as definições de ferramentas claras, concisas e focadas na tarefa específica em questão. Teste e valide regularmente as interações das ferramentas para garantir que estejam alinhadas com os resultados desejados.






Compondo e Encadeando Ferramentas


Um dos aspectos mais poderosos do uso de ferramentas que foi apenas mencionado até agora é a capacidade de compor e encadear múltiplas ferramentas para realizar tarefas complexas. Ao projetar cuidadosamente suas definições de ferramentas e seus formatos de entrada/saída, você pode criar blocos de construção reutilizáveis que podem ser combinados de várias maneiras.




Vamos considerar um exemplo onde você está construindo um pipeline de análise de dados para sua aplicação baseada em IA. Você pode ter as seguintes ferramentas:





	
DataRetrieval: Uma ferramenta que busca dados de um banco de dados ou API com base em critérios especificados.




	
DataProcessing: Uma ferramenta que realiza cálculos, transformações ou agregações nos dados recuperados.




	
DataVisualization: Uma ferramenta que apresenta os dados processados em um formato amigável ao usuário, como gráficos ou diagramas.









Ao encadear essas ferramentas, você pode criar um fluxo de trabalho poderoso que recupera dados relevantes, processa-os e apresenta os resultados de forma significativa. Veja como o fluxo de trabalho do uso de ferramentas pode ser:





	
O LLM recebe uma consulta do usuário solicitando insights sobre dados de vendas para uma categoria específica de produto.




	
O LLM seleciona a ferramenta DataRetrieval e gera os parâmetros de entrada apropriados para buscar os dados de vendas relevantes do banco de dados.




	
Os dados recuperados são “passados” para a ferramenta DataProcessing, que calcula métricas como receita total, preço médio de venda e taxa de crescimento.




	
Os dados processados são então digeridos pela ferramenta DataVisualization, que cria um gráfico visualmente atraente para representar os insights, retornando a URL do gráfico para o LLM.




	
Finalmente, o LLM gera uma resposta formatada para a consulta do usuário usando markdown, incorporando os dados visualizados e fornecendo um resumo das principais descobertas.









Ao compor essas ferramentas juntas, você pode criar um fluxo de trabalho de análise de dados contínuo que pode ser facilmente integrado em sua aplicação. A beleza dessa abordagem é que cada ferramenta pode ser desenvolvida e testada independentemente, e depois combinada de diferentes maneiras para resolver vários problemas.




Para permitir uma composição e encadeamento suave de ferramentas, é importante definir formatos claros de entrada e saída para cada ferramenta.




Por exemplo, a ferramenta DataRetrieval pode aceitar parâmetros como detalhes de conexão com o banco de dados, nome da tabela e condições de consulta, e retornar o conjunto de resultados como um objeto JSON estruturado. A ferramenta DataProcessing pode então esperar esse objeto JSON como entrada e produzir um objeto JSON transformado como saída. Ao padronizar o fluxo de dados entre ferramentas, você pode garantir compatibilidade e reutilização.




Ao projetar seu ecossistema de ferramentas, pense em como diferentes ferramentas podem ser combinadas para abordar casos de uso comuns em sua aplicação. Considere criar ferramentas de alto nível que encapsulem fluxos de trabalho comuns ou lógica de negócios, tornando mais fácil para o LLM selecioná-las e usá-las efetivamente.




Lembre-se, o poder do uso de ferramentas está na flexibilidade e modularidade que ele fornece. Ao dividir tarefas complexas em ferramentas menores e reutilizáveis, você pode criar uma aplicação robusta e adaptável baseada em IA que pode lidar com uma ampla gama de desafios.





Direções Futuras


À medida que o campo de desenvolvimento de aplicações baseadas em IA evolui, podemos esperar mais avanços nas capacidades de uso de ferramentas. Algumas direções futuras potenciais incluem:





	
Uso de Ferramentas Multi-hop: LLMs podem ser capazes de decidir quantas vezes precisam usar ferramentas para gerar uma resposta satisfatória. Isso pode envolver múltiplas rodadas de seleção e execução de ferramentas com base em resultados intermediários.




	
Ferramentas Pré-definidas: Plataformas de IA podem fornecer um conjunto de ferramentas pré-definidas que os desenvolvedores podem aproveitar prontas para uso, como interpretadores Python, ferramentas de busca na web ou funções utilitárias comuns.




	
Integração Perfeita: À medida que o uso de ferramentas se torna mais prevalente, podemos esperar uma melhor integração entre plataformas de IA e frameworks de desenvolvimento populares, facilitando para os desenvolvedores incorporarem o uso de ferramentas em suas aplicações.














O uso de ferramentas é uma técnica poderosa que permite aos desenvolvedores aproveitar todo o potencial dos LLMs em aplicações baseadas em IA. Ao conectar LLMs a ferramentas e recursos externos, você pode criar sistemas mais dinâmicos, inteligentes e conscientes do contexto que podem se adaptar às necessidades do usuário e fornecer insights e ações valiosas.




Embora o uso de ferramentas ofereça imensas possibilidades, é importante estar ciente dos potenciais desafios e considerações. Um aspecto fundamental é gerenciar a complexidade das interações das ferramentas e garantir a estabilidade e confiabilidade do sistema como um todo. Você precisa lidar com cenários onde as chamadas de ferramentas podem falhar, retornar resultados inesperados ou ter implicações de desempenho. Além disso, você deve considerar medidas de segurança e controle de acesso para prevenir o uso não autorizado ou malicioso de ferramentas. Mecanismos adequados de tratamento de erros, registro e monitoramento são cruciais para manter a integridade e o desempenho de sua aplicação baseada em IA.




Ao explorar as possibilidades do uso de ferramentas em seus próprios projetos, lembre-se de começar com objetivos claros, desenvolver definições de ferramentas bem estruturadas e iterar com base no feedback e nos resultados. Com a abordagem e mentalidade corretas, o uso de ferramentas pode desbloquear novos níveis de inovação e valor em suas aplicações baseadas em IA








Processamento de Stream
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O streaming de dados por HTTP, também conhecido como eventos enviados pelo servidor (SSE), é um mecanismo onde o servidor envia dados continuamente para o cliente conforme eles se tornam disponíveis, sem a necessidade do cliente solicitar explicitamente. Como a resposta da IA é gerada incrementalmente, faz sentido proporcionar uma experiência de usuário responsiva exibindo a saída da IA conforme ela é gerada. E, de fato, todas as APIs de provedores de IA que conheço oferecem respostas em streaming como uma opção em seus endpoints de conclusão.




A razão deste capítulo aparecer aqui no livro, logo após Using Tools, é devido ao quão poderoso pode ser combinar o uso de ferramentas com respostas ao vivo da IA para os usuários. Isso permite experiências dinâmicas e interativas onde a IA pode processar a entrada do usuário, utilizar várias ferramentas e funções a seu critério e, então, fornecer respostas em tempo real.




Para alcançar essa interação contínua, você precisa escrever manipuladores de stream que possam despachar chamadas de função de ferramentas invocadas pela IA, bem como saída de texto simples para o usuário final. A necessidade de fazer um loop após processar uma função de ferramenta adiciona um desafio interessante ao trabalho.




Implementando um ReplyStream


Para demonstrar como o processamento de stream pode ser implementado, este capítulo fará um mergulho profundo em uma versão simplificada da classe ReplyStream que é usada no Olympia. Instâncias desta classe podem ser passadas como o parâmetro stream em bibliotecas cliente de IA como ruby-openai e openrouter




Aqui está como eu uso o ReplyStream no PromptSubscriber do Olympia, que escuta através do Wisper a criação de novas mensagens do usuário.



 1 class PromptSubscriber
 2   include Raix::ChatCompletion
 3   include Raix::PromptDeclarations
 4 
 5   # many other declarations omitted...
 6 
 7   prompt text: -> { user_message.content },
 8          stream: -> { ReplyStream.new(self) },
 9          until: -> { bot_message.complete? }
10 
11   def message_created(message) # invoked by Wisper
12     return unless message.role.user? && message.content?
13 
14     # rest of the implementation omitted...





Além de uma referência de context para o assinante do prompt que o instanciou, a classe ReplyStream também possui variáveis de instância para armazenar um buffer de dados recebidos e arrays para rastrear nomes de funções e argumentos invocados durante o processamento do stream.



 1 class ReplyStream
 2   attr_accessor :buffer, :f_name, :f_arguments, :context
 3 
 4   delegate :bot_message, :dispatch, to: :context
 5 
 6   def initialize(context)
 7     self.context = context
 8     self.buffer = []
 9     self.f_name = []
10     self.f_arguments = []
11   end
12 
13   def call(chunk, bytesize = nil)
14     # ...
15   end
16 
17   # ...
18 end





O método initialize configura o estado inicial da instância do ReplyStream, inicializando o buffer, contexto e outras variáveis.




O método call é o ponto de entrada principal para processar os dados em streaming. Ele recebe um chunk de dados (representado como um hash) e um parâmetro opcional bytesize, que em nosso exemplo não é utilizado. Dentro deste método, a classe usa pattern matching para lidar com diferentes cenários baseados na estrutura do chunk recebido.
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Chamar deep_symbolize_keys no chunk ajuda a tornar o pattern matching mais elegante, permitindo que operemos com símbolos em vez de strings.





 1 def call(chunk, _bytesize)
 2   case chunk.deep_symbolize_keys
 3 
 4   in { # match function name
 5     choices: [
 6       {
 7         delta: {
 8           tool_calls: [
 9             { index: index, function: {name: name} }
10           ]
11         }
12       }
13     ] }
14 
15     f_name[index] = name





O primeiro padrão que estamos procurando é uma chamada de ferramenta junto com seu nome de função associado. Se detectarmos um, o colocamos no array f_name. Armazenamos nomes de funções em um array indexado, porque o modelo é capaz de fazer chamadas paralelas de funções, enviando mais de uma função para execução ao mesmo tempo.




A chamada paralela de funções é a capacidade de um modelo de IA de realizar múltiplas chamadas de função em conjunto, permitindo que os efeitos e resultados dessas chamadas de função sejam resolvidos em paralelo. Isso é especialmente útil se as funções demoram muito tempo e reduz as idas e voltas com a API, o que por sua vez pode economizar uma quantidade significativa de gasto de tokens.




Em seguida, precisamos procurar os argumentos correspondentes às chamadas de função.



 1   in { # match arguments
 2     choices: [
 3       {
 4         delta: {
 5           tool_calls: [
 6             {
 7               index: index, function: {arguments: argument }
 8             }
 9           ]
10         }
11       }
12     ]}
13 
14     f_arguments[index] ||= "" # initialize if not already
15     f_arguments[index] << argument





De forma semelhante a como lidamos com os nomes de função, armazenamos os argumentos em um array indexado.




Em seguida, procuramos por mensagens voltadas ao usuário, que chegarão do servidor um token por vez e serão atribuídas à variável new_content. Também precisamos ficar atentos ao finish_reason. Ele permanecerá como nil até o último trecho da sequência de saída.



 1   in {
 2     choices: [
 3       { delta: {content: new_content}, finish_reason: finish_reason }
 4     ]}
 5 
 6     # you could transmit every chunk to the user here...
 7     buffer << new_content.to_s
 8 
 9     if finish_reason.present?
10       finalize
11     elsif new_content.to_s.match?(/\n\n/)
12       send_to_client # ...or buffer and transmit once per paragraph
13     end





É importante notar que adicionamos uma expressão de correspondência de padrão para lidar com mensagens de erro enviadas pelo provedor do modelo de IA. Em ambientes de desenvolvimento local, lançamos uma exceção, mas em produção, registramos o erro e finalizamos.



1   in { error: { message: } }
2     if Rails.env.local?
3       raise message
4     else
5       Honeybadger.notify("AI Error: #{message}")
6       finalize
7     end





A cláusula else final do case será executada se nenhum dos padrões anteriores corresponder. É apenas uma salvaguarda para que possamos descobrir se o modelo de IA começar a nos enviar fragmentos não reconhecidos.



1   else
2     Honeybadger.notify("Unrecognized Chunk: #{chunk}")
3   end
4 end





O método send_to_client é responsável por enviar o conteúdo em buffer para o cliente. Ele verifica se o buffer não está vazio, atualiza o conteúdo da mensagem do bot, renderiza a mensagem do bot e salva o conteúdo no banco de dados para garantir a persistência dos dados.



 1 def send_to_client
 2   # no need to process pure whitespace
 3   return if buffer.join.squish.blank?
 4 
 5   # set the buffer content on the bot message
 6   content = buffer.join
 7   bot_message.content = content
 8 
 9   # save to database so that we never lose data
10   # even if the stream doesn't terminate correctly
11   bot_message.update_column(:content, content)
12 
13   # update content via websocket
14   ConversationRenderer.update(bot_message)
15 end





O método finalize é chamado quando o processamento do stream é concluído. Ele despacha as chamadas de função, caso alguma tenha sido recebida durante o stream, atualiza a mensagem do bot com o conteúdo final e outras informações relevantes, e reinicia o histórico de chamadas de função



 1 def finalize
 2   if f_name.any?
 3     f_name.each_with_index do |name, index|
 4       # takes care of calling the function wherever it's implemented
 5       dispatch(name:, arguments: JSON.parse(f_arguments[index]))
 6     end
 7 
 8     # reset the function call history
 9     f_name.clear
10     f_arguments.clear
11   else
12     content = buffer.join.presence
13     bot_message.update!(content:, complete: true)
14     ConversationRenderer.update(bot_message)
15   end
16 end





Se o modelo decidir chamar uma função, você precisa “despachar” essa chamada de função (nome e argumentos) de forma que ela seja executada e as mensagens function_call e function_result sejam adicionadas à transcrição da conversa




Na minha experiência, é melhor lidar com a criação de mensagens de função em um único lugar na sua base de código, em vez de depender das implementações das ferramentas. É mais limpo, mas também tem uma razão prática muito importante: se o modelo de IA chamar uma função e não ver as mensagens resultantes da chamada e do resultado na transcrição quando você fizer o loop, ele chamará a mesma função novamente. Potencialmente para sempre. Lembre-se que a IA é completamente sem estado, então a menos que você retorne essas chamadas de função para ela, elas não aconteceram.



 1 # PromptSubscriber#dispatch
 2 
 3 def dispatch(name:, arguments:)
 4   # adds a function_call message to the conversation transcript
 5   # plus dispatches to tool and returns result
 6   conversation.function_call!(name, arguments).then do |result|
 7     # add function result message to the transcript
 8     conversation.function_result!(name, result)
 9   end
10 end
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Limpar o histórico de chamadas de função após o despacho é tão importante quanto garantir que a chamada e os resultados acabem em sua transcrição, para que você não fique simplesmente chamando as mesmas funções repetidamente a cada loop.







O “Loop de Conversação”


I continuo mencionando loops, mas se você é novo em chamadas de função, pode não ser óbvio por que precisamos fazer um loop. A razão é que uma vez que a IA “pede” para você executar funções de ferramentas em seu nome, ela para de responder. Cabe a você executar essas funções, coletar os resultados, adicionar os resultados à transcrição e então submeter o prompt original novamente para obter um novo conjunto de chamadas de função ou resultados destinados ao usuário.




Na classe PromptSubscriber, usamos o método prompt do módulo PromptDeclarations para definir o comportamento do loop de conversação. O parâmetro until é definido como -> { bot_message.complete? }, o que significa que o loop continuará até que a bot_message seja marcada como completa.



1 prompt text: -> { user_message.content },
2        stream: -> { ReplyStream.new(self) },
3        until: -> { bot_message.complete? }
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Mas quando o bot_message é marcado como completo? Se você esqueceu, volte à linha 13 do método finalize.






Vamos revisar toda a lógica de processamento de stream.





	
O PromptSubscriber recebe uma nova mensagem do usuário através do método message_created, que é invocado pelo sistema pub/sub Wisper toda vez que o usuário final cria um novo prompt.




	
O método de classe prompt define de forma declarativa o comportamento da lógica de conclusão do chat para o PromptSubscriber. O modelo de IA executará uma conclusão do chat com o conteúdo da mensagem do usuário, uma nova instância de ReplyStream como parâmetro de stream e a condição de loop especificada.




	
O modelo de IA processa o prompt e começa a gerar uma resposta. Conforme a resposta é transmitida em stream, o método call da instância ReplyStream é invocado para cada pedaço de dados.




	
Se o modelo de IA decidir chamar uma função de ferramenta, o nome da função e os argumentos são extraídos do pedaço e armazenados nos arrays f_name e f_arguments, respectivamente.




	
Se o modelo de IA gerar conteúdo visível ao usuário, ele é armazenado em buffer e enviado ao cliente através do método send_to_client.




	
Uma vez que o processamento do stream esteja completo, o método finalize é chamado. Se quaisquer funções de ferramenta foram invocadas durante o stream, elas são despachadas usando o método dispatch do PromptSubscriber.




	
O método dispatch adiciona uma mensagem function_call à transcrição da conversa, executa a função de ferramenta correspondente e adiciona uma mensagem function_result à transcrição com o resultado da chamada da função.




	
Após despachar as funções de ferramenta, o histórico de chamadas de função é limpo para evitar chamadas de função duplicadas em loops subsequentes.




	
Se nenhuma função de ferramenta foi invocada, o método finalize atualiza o bot_message com o conteúdo final, marca-o como completo e envia a mensagem atualizada para o cliente.




	
A condição de loop -> { bot_message.complete? } é avaliada. Se o bot_message não estiver marcado como completo, o loop continua, e o prompt original é submetido novamente com a transcrição da conversa atualizada.




	
Os passos 3-10 são repetidos até que o bot_message seja marcado como completo, indicando que o modelo de IA terminou de gerar sua resposta e nenhuma função de ferramenta adicional precisa ser executada.









Ao implementar este loop de conversa, você permite que o modelo de IA se envolva em uma interação de ida e volta com a aplicação, executando funções de ferramenta conforme necessário e gerando respostas visíveis ao usuário até que a conversa chegue a uma conclusão natural.




A combinação do processamento de stream e o loop de conversa permite experiências dinâmicas e interativas alimentadas por IA, onde o modelo de IA pode processar a entrada do usuário, utilizar várias ferramentas e funções, e fornecer respostas em tempo real baseadas no contexto evolutivo da conversa.





Continuação Automática


É importante estar ciente das limitações da saída da IA. A maioria dos modelos tem um número máximo de tokens que podem gerar em uma única resposta, que é determinado pelo parâmetro max_tokens. Se o modelo de IA atingir este limite enquanto gera uma resposta, ele irá parar abruptamente e indicar que a saída foi truncada.




Na resposta em stream da API da plataforma de IA, você pode detectar esta situação examinando a variável finish_reason no pedaço. Se o finish_reason estiver definido como "length" (ou algum outro valor chave específico do modelo), significa que o modelo atingiu seu limite máximo de tokens durante a geração e a saída foi cortada.




Uma maneira de lidar com este cenário graciosamente e fornecer uma experiência de usuário sem interrupções é implementar um mecanismo de continuação automática em sua lógica de processamento de stream. Ao adicionar um padrão de correspondência para razões de finalização relacionadas ao comprimento, você pode optar por fazer um loop e continuar automaticamente a saída de onde ela parou.




Aqui está um exemplo propositalmente simplificado de como você pode modificar o método call na classe ReplyStream para suportar continuação automática:



 1 LENGTH_STOPS = %w[length MAX_TOKENS]
 2 
 3 def call(chunk, _bytesize)
 4   case chunk.deep_symbolize_keys
 5     # ...
 6 
 7     in {
 8       choices: [
 9         { delta: {content: new_content},
10           finish_reason: finish_reason } ] }
11 
12       buffer << new_content.to_s
13 
14       if finish_reason.blank?
15         send_to_client if new_content.to_s.match?(/\n\n/)
16       elsif LENGTH_STOPS.include?(finish_reason)
17         continue_cutoff
18       else
19         finalize
20       end
21 
22     # ...
23   end
24 end
25 
26 private
27 
28 def continue_cutoff
29   conversation.bot_message!(buffer.join, visible: false)
30   conversation.user_message!("please continue", visible: false)
31   bot_message.update_column(:created_at, Time.current)
32 end





Nesta versão modificada, quando o finish_reason indica uma saída truncada, em vez de finalizar o stream, adicionamos um par de mensagens à transcrição sem finalizar, movemos a mensagem original voltada ao usuário para o “final” da transcrição atualizando seu atributo created_at, e então permitimos que o loop aconteça, para que a IA continue gerando a partir do ponto onde parou.




Lembre-se que o endpoint de completion da IA é stateless. Ele só “sabe” o que você informa através da transcrição. Neste caso, a maneira como comunicamos à IA que ela foi interrompida é adicionando mensagens “invisíveis” (para o usuário final) à transcrição. Lembre-se, porém, que este é um exemplo propositalmente simplificado. Uma implementação real precisaria fazer um gerenciamento adicional da transcrição para garantir que não desperdicemos tokens e/ou confundamos a IA com mensagens duplicadas do assistente na transcrição.




Uma implementação real de auto-continuação também deveria ter a chamada “lógica de disjuntor” implementada para prevenir loops desenfreados. A razão é que, dados certos tipos de prompts do usuário e configurações baixas de max_tokens, a IA poderia continuar gerando saídas voltadas ao usuário indefinidamente.




Tenha em mente que cada loop requer uma requisição separada, e que cada requisição consome sua transcrição inteira novamente. Você definitivamente deve considerar o equilíbrio entre experiência do usuário e uso da API ao decidir se vai implementar auto-continuação em sua aplicação. A auto-continuação, em particular, pode ser perigosamente cara, especialmente ao usar modelos comerciais premium.





Conclusão


O processamento de stream é um aspecto crítico na construção de aplicações baseadas em IA que combinam uso de ferramentas com respostas em tempo real da IA. Ao manipular eficientemente os dados em streaming das APIs de plataformas de IA, você pode fornecer uma experiência de usuário fluida e interativa, lidar com respostas grandes, otimizar o uso de recursos e tratar erros graciosamente.




A classe Conversation::ReplyStream fornecida demonstra como o processamento de stream pode ser implementado em uma aplicação Ruby usando correspondência de padrões e arquitetura orientada a eventos. Ao entender e aproveitar as técnicas de processamento de stream, você pode desbloquear todo o potencial da integração de IA em suas aplicações e entregar experiências de usuário poderosas e envolventes.








Dados Autorregenerativos
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Dados autorregenerativos é uma abordagem poderosa para garantir a integridade, consistência e qualidade dos dados em aplicações, aproveitando as capacidades dos modelos de linguagem grandes (LLMs). Esta categoria de padrões concentra-se na ideia de usar IA para detectar, diagnosticar e corrigir automaticamente anomalias, inconsistências ou erros nos dados, reduzindo assim a carga sobre os desenvolvedores e mantendo um alto nível de confiabilidade dos dados.




Em sua essência, os padrões de dados autorregenerativos reconhecem que os dados são a força vital de qualquer aplicação, e garantir sua precisão e integridade é crucial para o funcionamento adequado e a experiência do usuário da aplicação. No entanto, gerenciar e manter a qualidade dos dados pode ser uma tarefa complexa e demorada, especialmente à medida que as aplicações crescem em tamanho e complexidade. É aqui que entra o poder da IA.




Nos padrões de dados autorregenerativos, trabalhadores de IA são empregados para monitorar e analisar continuamente os dados de sua aplicação. Esses modelos têm a capacidade de entender e interpretar padrões, relacionamentos e anomalias dentro dos dados. Ao aproveitar suas capacidades de processamento e compreensão de linguagem natural, eles podem identificar possíveis problemas ou inconsistências nos dados e tomar as ações apropriadas para corrigi-los.




O processo de autorregeneração de dados geralmente envolve várias etapas principais:





	
Monitoramento de Dados: Os trabalhadores de IA monitoram constantemente os fluxos de dados, bancos de dados ou sistemas de armazenamento da aplicação, procurando por quaisquer sinais de anomalias, inconsistências ou erros. Alternativamente, você pode ativar um componente de IA em reação a uma exceção.




	
Detecção de Anomalias: Quando um problema é detectado, o trabalhador de IA analisa os dados em detalhes para identificar a natureza específica e o escopo do problema. Isso pode envolver a detecção de valores ausentes, formatos inconsistentes ou dados que violam regras ou restrições predefinidas.




	
Diagnóstico e Correção: Uma vez identificado o problema, o trabalhador de IA usa seu conhecimento e compreensão do domínio dos dados para determinar o curso de ação apropriado. Isso pode envolver a correção automática dos dados, o preenchimento de valores ausentes ou a sinalização do problema para intervenção humana, se necessário.




	
Aprendizado Contínuo (opcional, dependendo do caso de uso): À medida que seu trabalhador de IA encontra e resolve vários problemas de dados, ele pode gerar saídas descrevendo o que aconteceu e como respondeu. Esses metadados podem ser alimentados em processos de aprendizado que permitem que você (e talvez o modelo subjacente, via fine-tuning) se torne mais eficaz e eficiente ao longo do tempo na identificação e resolução de anomalias nos dados.









Ao detectar e corrigir automaticamente problemas nos dados, você pode garantir que sua aplicação opere com dados de alta qualidade e confiáveis. Isso reduz o risco de erros, inconsistências ou bugs relacionados a dados afetarem a funcionalidade ou a experiência do usuário da aplicação.




Uma vez que você tem trabalhadores de IA lidando com a tarefa de monitoramento e correção de dados, você pode concentrar seus esforços em outros aspectos críticos da aplicação. Isso economiza tempo e recursos que seriam gastos em limpeza e manutenção manual de dados. Na verdade, à medida que suas aplicações crescem em tamanho e complexidade, o gerenciamento manual da qualidade dos dados torna-se cada vez mais desafiador. Os padrões de “Dados Autorregenerativos” escalam efetivamente ao aproveitar o poder da IA para lidar com grandes volumes de dados e detectar problemas em tempo real.



	[image: An icon of a key]	
Devido à sua natureza, os modelos de IA podem se adaptar a padrões, esquemas ou requisitos de dados em mudança ao longo do tempo com pouca ou nenhuma supervisão. Desde que suas diretrizes forneçam orientação adequada, especialmente em relação aos resultados pretendidos, sua aplicação pode ser capaz de evoluir e lidar com novos cenários de dados sem exigir extensiva intervenção manual ou alterações no código.






Os padrões de dados autorregenerativos se alinham bem com as outras categorias de padrões que discutimos, como “Multidão de Trabalhadores”. A capacidade de autorregeneração de dados pode ser vista como um tipo especializado de trabalhador que se concentra especificamente em garantir a qualidade e integridade dos dados. Esse tipo de trabalhador opera junto com outros trabalhadores de IA, cada um contribuindo para diferentes aspectos da funcionalidade da aplicação.




Implementar padrões de dados autorregenerativos na prática requer design cuidadoso e integração de modelos de IA na arquitetura da aplicação. Devido aos riscos de perda e corrupção de dados, você deve definir diretrizes claras sobre como usará esta técnica. Você também deve considerar fatores como desempenho, escalabilidade e segurança dos dados.




Estudo de Caso Prático: Consertando JSON Quebrado


Uma das maneiras mais práticas e convenientes de aproveitar dados autorregenerativos também é muito simples de explicar: consertar JSON quebrado.




Esta técnica pode ser aplicada ao desafio comum de lidar com dados imperfeitos ou inconsistentes gerados por LLMs, como JSON quebrado, e fornece uma abordagem para detectar e corrigir automaticamente esses problemas.




Na Olympia, frequentemente me deparo com cenários em que LLMs geram dados JSON que não são perfeitamente válidos. Isso pode acontecer por várias razões, como quando o LLM adiciona comentários antes ou depois do código JSON propriamente dito, ou introduz erros de sintaxe como vírgulas ausentes ou aspas duplas não escapadas. Esses problemas podem levar a erros de análise e causar interrupções na funcionalidade da aplicação.




Para resolver esse problema, implementei uma solução prática na forma de uma classe JsonFixer. Esta classe incorpora o padrão “Dados Autorregenerativos” ao receber o JSON defeituoso como entrada e utilizar um LLM para corrigi-lo, preservando o máximo possível de informações e intenção original.



 1 class JsonFixer
 2   include Raix::ChatCompletion
 3 
 4   def call(bad_json, error_message)
 5     raise "No data provided" if bad_json.blank? || error_message.blank?
 6 
 7     transcript << {
 8         system: "Consider user-provided JSON that generated a parse
 9                  exception. Do your best to fix it while preserving the
10                  original content and intent as much as possible." }
11     transcript << { user: bad_json }
12     transcript << { assistant: "What is the error message?"}
13     transcript << { user: error_message }
14     transcript << { assistant: "Here is the corrected JSON\n```json\n" }
15 
16     self.stop = ["```"]
17 
18     chat_completion(json: true)
19   end
20 
21   def model
22     "mistralai/mixtral-8x7b-instruct:nitro"
23   end
24 end
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Observe como o JsonFixer usa o Ventriloquist para guiar as respostas da IA.






O processo de autorrecuperação de dados JSON funciona da seguinte forma:





	
Geração de JSON: Um LLM é usado para gerar dados JSON com base em determinados prompts ou requisitos. No entanto, devido à natureza dos LLMs, o JSON gerado nem sempre pode ser perfeitamente válido. O analisador JSON obviamente gerará um ParserError se você fornecer um JSON inválido.







1 begin
2   JSON.parse(llm_generated_json)
3 rescue JSON::ParserError => e
4   JsonFixer.new.call(llm_generated_json, e.message)
5 end





Observe que a mensagem de exceção também é passada para a chamada do JSONFixer para que ele não precise assumir completamente o que há de errado com os dados, especialmente porque o analisador sintático frequentemente informará exatamente qual é o problema.





	
Correção Baseada em LLM: A classe JSONFixer envia o JSON defeituoso de volta para um LLM, junto com um prompt ou instrução específica para corrigir o JSON, preservando ao máximo as informações e a intenção originais. O LLM, treinado em grandes quantidades de dados e com compreensão da sintaxe JSON, tenta corrigir os erros e gerar uma string JSON válida. O Cercamento de Respostas é usado para restringir a saída do LLM, e escolhemos o Mixtral 8x7B como modelo de IA, já que é particularmente bom para esse tipo de tarefa.




	
Validação e Integração: A string JSON corrigida retornada pelo LLM é analisada pela própria classe JSONFixer, porque ela chamou chat_completion(json: true). Se o JSON corrigido passar na validação, ele é integrado de volta ao fluxo de trabalho da aplicação, permitindo que a aplicação continue processando os dados sem interrupção. O JSON defeituoso foi “curado”.









Embora eu tenha escrito e reescrito minha própria implementação do JSONFixer várias vezes, duvido que o tempo total investido em todas essas versões seja mais do que uma ou duas horas.




Observe que a preservação da intenção é um elemento-chave de qualquer padrão de dados autocorretivos. O processo de correção baseado em LLM visa preservar ao máximo as informações e a intenção originais do JSON gerado. Isso garante que o JSON corrigido mantenha seu significado semântico e possa ser usado efetivamente dentro do contexto da aplicação.




Esta implementação prática da abordagem de “Dados Autocorretivos” em Olympia demonstra claramente como a IA, especificamente os LLMs, pode ser aproveitada para resolver desafios reais de dados. Ela mostra o poder de combinar técnicas tradicionais de programação com recursos de IA para construir aplicações robustas e eficientes.



Lei de Postel e o Padrão de “Dados Autocorretivos”


“Dados Autocorretivos”, como exemplificado pela classe JSONFixer, alinha-se bem com o princípio conhecido como Lei de Postel, também referido como Princípio da Robustez. A Lei de Postel afirma:




“Seja conservador no que você faz, seja liberal no que você aceita dos outros.”




Este princípio, originalmente articulado por Jon Postel, um pioneiro da Internet inicial, enfatiza a importância de construir sistemas que sejam tolerantes a entradas diversas ou até mesmo ligeiramente incorretas, mantendo ao mesmo tempo uma adesão estrita aos protocolos especificados ao enviar saídas.




No contexto de “Dados Autocorretivos”, a classe JSONFixer incorpora a Lei de Postel ao ser liberal na aceitação de dados JSON quebrados ou imperfeitos gerados por LLMs. Ela não rejeita ou falha imediatamente ao encontrar JSON que não adere estritamente ao formato esperado. Em vez disso, adota uma abordagem tolerante e tenta consertar o JSON usando o poder dos LLMs.




Ao ser liberal na aceitação de JSON imperfeito, a classe JSONFixer demonstra robustez e flexibilidade. Ela reconhece que os dados no mundo real frequentemente vêm em várias formas e nem sempre podem estar em conformidade com especificações rigorosas. Ao lidar e corrigir graciosamente esses desvios, a classe garante que a aplicação possa continuar funcionando sem problemas, mesmo na presença de dados imperfeitos.




Por outro lado, a classe JSONFixer também adere ao aspecto conservador da Lei de Postel quando se trata da saída. Após corrigir o JSON usando LLMs, a classe valida o JSON corrigido para garantir que ele esteja em estrita conformidade com o formato esperado. Ela mantém a integridade e a correção dos dados antes de passá-los para outras partes da aplicação. Essa abordagem conservadora garante que a saída da classe JSONFixer seja confiável e consistente, promovendo interoperabilidade e prevenindo a propagação de erros.




Curiosidades interessantes sobre Jon Postel:





	
Jon Postel (1943-1998) foi um cientista da computação americano que desempenhou um papel crucial no desenvolvimento da Internet. Ele era conhecido como o “Deus da Internet” por suas significativas contribuições para os protocolos e padrões fundamentais.



	
Postel foi o editor da série de documentos Request for Comments (RFC), que é uma série de notas técnicas e organizacionais sobre a Internet. Ele escreveu ou coescreveu mais de 200 RFCs, incluindo os protocolos fundamentais como TCP, IP e SMTP.



	
Além de suas contribuições técnicas, Postel era conhecido por sua abordagem humilde e colaborativa. Ele acreditava na importância de alcançar consenso e trabalhar em conjunto para construir uma rede robusta e interoperável.



	
Postel serviu como Diretor da Divisão de Redes de Computadores no Information Sciences Institute (ISI) da University of Southern California (USC) de 1977 até sua morte prematura em 1998.



	
Em reconhecimento às suas imensas contribuições, Postel foi agraciado postumamente com o prestigioso Prêmio Turing em 1998, frequentemente referido como o “Prêmio Nobel da Computação.”








A classe JSONFixer promove robustez, flexibilidade e interoperabilidade, que foram valores fundamentais que Postel defendeu durante toda sua carreira. Ao construir sistemas que são tolerantes a imperfeições enquanto mantêm estrita aderência aos protocolos, podemos criar aplicações que são mais resilientes e adaptáveis diante dos desafios do mundo real.





Considerações e Contraindicações


A aplicabilidade das abordagens de dados auto-reparáveis depende inteiramente do tipo de dados que sua aplicação manipula. Existe uma razão pela qual você pode não querer simplesmente fazer um monkeypatch do JSON.parse para automaticamente corrigir todos os erros de análise JSON em sua aplicação: nem todos os erros podem ou devem ser automaticamente corrigidos.




A auto-reparação é particularmente delicada quando associada a requisitos regulatórios ou de conformidade relacionados ao manuseio e processamento de dados. Algumas indústrias, como a de saúde e finanças, têm regulamentações tão rigorosas em relação à integridade dos dados e auditabilidade que realizar qualquer tipo de correção de dados em “caixa preta” sem supervisão adequada ou registro pode violar essas regulamentações. É crucial garantir que quaisquer técnicas de dados auto-reparáveis que você desenvolva estejam alinhadas com as estruturas legais e regulatórias aplicáveis.




Aplicar técnicas de dados auto-reparáveis, particularmente aquelas envolvendo modelos de IA, também pode ter um grande impacto no desempenho da aplicação e na utilização de recursos. Processar grandes volumes de dados através de modelos de IA para detecção e correção de erros pode ser computacionalmente intensivo. É importante avaliar os trade-offs entre os benefícios dos dados auto-reparáveis e os custos associados de desempenho e recursos.




Dito isso, vamos mergulhar nos fatores envolvidos na decisão de quando e onde aplicar essa poderosa abordagem.




Criticidade dos Dados


Ao considerar a aplicação de técnicas de dados auto-reparáveis, é crucial avaliar a criticidade dos dados sendo processados. O nível de criticidade se refere à importância e sensibilidade dos dados no contexto de sua aplicação e seu domínio de negócio.




Em alguns casos, corrigir automaticamente erros de dados pode não ser apropriado, especialmente se os dados são altamente sensíveis ou têm implicações legais. Por exemplo, considere os seguintes cenários:





	
Transações Financeiras: Em aplicações financeiras, como sistemas bancários ou plataformas de negociação, a precisão dos dados é de suma importância. Até mesmo erros menores em dados financeiros podem ter consequências significativas, como saldos de conta incorretos, fundos mal direcionados ou decisões de negociação errôneas. Nesses casos, correções automatizadas sem verificação e auditoria completas podem introduzir riscos inaceitáveis.




	
Registros Médicos: Aplicações de saúde lidam com dados de pacientes altamente sensíveis e confidenciais. Imprecisões em registros médicos podem ter sérias implicações para a segurança do paciente e decisões de tratamento. Modificar automaticamente dados médicos sem supervisão adequada e validação por profissionais de saúde qualificados pode violar requisitos regulatórios e colocar em risco o bem-estar do paciente.




	
Documentos Legais: Aplicações que manipulam documentos legais, como contratos, acordos ou processos judiciais, requerem estrita precisão e integridade. Até mesmo erros menores em dados legais podem ter ramificações legais significativas. Correções automatizadas neste domínio podem não ser apropriadas, já que os dados frequentemente requerem revisão manual e verificação por especialistas jurídicos para garantir sua validade e aplicabilidade.









Nestes cenários de dados críticos, os riscos associados a correções automatizadas frequentemente superam os benefícios potenciais. As consequências de introduzir erros ou modificar dados incorretamente podem ser graves, levando a perdas financeiras, responsabilidades legais ou até mesmo danos a indivíduos.




Ao lidar com dados altamente críticos, é essencial priorizar processos de verificação e validação manual. A supervisão humana e a expertise são cruciais para garantir a precisão e integridade dos dados. Técnicas automatizadas de auto-reparação ainda podem ser empregadas para sinalizar potenciais erros ou inconsistências, mas a decisão final sobre correções deve envolver julgamento e aprovação humana.




No entanto, é importante notar que nem todos os dados em uma aplicação podem ter o mesmo nível de criticidade. Dentro da mesma aplicação, pode haver subconjuntos de dados que são menos sensíveis ou têm menor impacto se ocorrerem erros. Em tais casos, técnicas de dados auto-reparáveis podem ser aplicadas seletivamente a esses subconjuntos específicos de dados, enquanto dados críticos permanecem sujeitos à verificação manual.




A chave é avaliar cuidadosamente a criticidade de cada categoria de dados em sua aplicação e definir diretrizes e processos claros para lidar com correções baseadas nos riscos e implicações associados. Ao diferenciar entre dados críticos (ou seja, registros contábeis, registros médicos) e não críticos (ou seja, endereços de correspondência, avisos de recursos), você pode encontrar um equilíbrio entre aproveitar os benefícios das técnicas de dados auto-reparáveis onde apropriado e manter controle e supervisão rigorosos onde necessário.




Em última análise, a decisão de aplicar técnicas de dados auto-reparáveis a dados críticos deve ser tomada em consulta com especialistas do domínio, consultores jurídicos e outras partes interessadas relevantes. É essencial considerar os requisitos específicos, regulamentações e riscos associados aos dados de sua aplicação e alinhar as estratégias de correção de dados de acordo.





Severidade do Erro


Ao aplicar técnicas de dados auto-reparáveis, é importante avaliar a severidade e o impacto dos erros nos dados. Nem todos os erros são criados iguais, e o curso de ação apropriado pode variar dependendo da severidade do problema.




Inconsistências menores ou problemas de formatação podem ser adequados para correção automática. Por exemplo, um worker de dados auto-reparáveis encarregado de consertar JSON quebrado pode lidar com vírgulas ausentes ou aspas duplas não escapadas sem alterar significativamente o significado ou a estrutura dos dados. Esses tipos de erros são frequentemente simples de corrigir e têm impacto mínimo na integridade geral dos dados.




No entanto, erros mais graves que alteram fundamentalmente o significado ou a integridade dos dados podem exigir uma abordagem diferente. Nesses casos, correções automatizadas podem não ser suficientes, e a intervenção humana pode ser necessária para garantir a precisão e validade dos dados.




É aqui que entra em cena o conceito de usar a própria IA para ajudar a determinar a severidade do erro. Ao aproveitar as capacidades dos modelos de IA, podemos projetar trabalhadores de dados autorreparadores que não apenas corrigem erros, mas também avaliam a severidade desses erros e tomam decisões informadas sobre como lidar com eles.




Por exemplo, vamos considerar um trabalhador de dados autorreparador responsável por corrigir inconsistências em dados que fluem para um banco de dados de clientes. O trabalhador pode ser projetado para analisar os dados e identificar possíveis erros, como informações ausentes ou conflitantes. No entanto, em vez de corrigir automaticamente todos os erros, o trabalhador pode ser equipado com chamadas de ferramentas adicionais que permitem sinalizar erros graves para revisão humana.




Aqui está um exemplo de como isso pode ser implementado:



 1 class CustomerDataReviewer
 2   include Raix::ChatCompletion
 3   include Raix::FunctionDeclarations
 4 
 5   attr_accessor :customer
 6 
 7   function :flag_for_review, reason: { type: "string" } do |params|
 8     AdminNotifier.review_request(customer, params[:reason])
 9   end
10 
11   def initialize(customer)
12     self.customer = customer
13   end
14 
15   def call(customer_data)
16     transcript << {
17       system: "You are a customer data reviewer. Your task is to identify
18         and correct inconsistencies in customer data.
19 
20         < additional instructions here... >
21 
22         If you encounter severe errors that require human review, use the
23         `flag_for_review` tool to flag the data for manual intervention." }
24 
25     transcript << { user: customer.to_json }
26     transcript << { assistant: "Reviewed/corrected data:\n```json\n" }
27 
28     self.stop = ["```"]
29 
30     chat_completion(json: true).then do |result|
31       return if result.blank?
32 
33       customer.update(result)
34     end
35   end
36 end





Neste exemplo, o worker CustomerDataHealer é projetado para identificar e corrigir inconsistências nos dados dos clientes. Mais uma vez, usamos Response Fencing e Ventriloquist para obter uma saída estruturada. É importante notar que a diretiva do sistema do worker inclui instruções para usar a função flag_for_review caso sejam encontrados erros graves.




Quando o worker processa os dados do cliente, ele analisa os dados e tenta corrigir quaisquer inconsistências. Se o worker determinar que os erros são graves e requerem intervenção humana, ele pode usar a ferramenta flag_for_review para marcar os dados e fornecer um motivo para a marcação.




O método chat_completion é chamado com json: true para analisar os dados corrigidos do cliente como JSON. Não há provisão para loop após uma chamada de função, então o resultado será em branco se flag_for_review foi invocado. Caso contrário, o cliente é atualizado com os dados revisados e potencialmente corrigidos.




Ao incorporar a avaliação da gravidade do erro e a opção de marcar dados para revisão humana, o worker de dados auto-corretivos se torna mais inteligente e adaptável. Ele pode lidar com erros menores automaticamente, enquanto escala erros graves para especialistas humanos para intervenção manual.




Os critérios específicos para determinar a gravidade do erro podem ser definidos na diretiva do worker com base no conhecimento do domínio e nos requisitos do negócio. Fatores como o impacto na integridade dos dados, o potencial de perda ou corrupção de dados e as consequências de dados incorretos podem ser considerados ao avaliar a gravidade.




Ao aproveitar a IA para avaliar a gravidade dos erros e fornecer opções para intervenção humana, as técnicas de dados auto-corretivos podem encontrar um equilíbrio entre automação e manutenção da precisão dos dados. Essa abordagem garante que erros menores sejam corrigidos eficientemente, enquanto erros graves recebam a atenção e expertise necessárias dos revisores humanos.





Complexidade do Domínio


Ao considerar a aplicação de técnicas de dados auto-corretivos, é importante avaliar a complexidade do domínio dos dados e as regras que governam sua estrutura e relacionamentos. A complexidade do domínio pode impactar significativamente a eficácia e viabilidade das abordagens de correção automatizada de dados.




As técnicas de dados auto-corretivos funcionam bem quando os dados seguem padrões e restrições bem definidos. Em domínios onde a estrutura dos dados é relativamente simples e os relacionamentos entre os elementos de dados são diretos, as correções automatizadas podem ser aplicadas com alto grau de confiança. Por exemplo, corrigir problemas de formatação ou aplicar restrições básicas de tipos de dados pode frequentemente ser tratado de forma eficaz por workers de dados auto-corretivos.




No entanto, conforme a complexidade do domínio aumenta, os desafios associados à correção automatizada de dados também crescem. Em domínios com lógica de negócios intrincada, relacionamentos complexos entre entidades de dados ou regras e exceções específicas do domínio, as técnicas de dados auto-corretivos podem não capturar sempre as nuances e podem introduzir consequências não intencionais.




Vamos considerar um exemplo de um domínio complexo: um sistema de negociação financeira. Neste domínio, os dados envolvem vários instrumentos financeiros, dados de mercado, regras de negociação e requisitos regulatórios. Os relacionamentos entre diferentes elementos de dados podem ser intrincados, e as regras que governam a validade e consistência dos dados podem ser altamente específicas do domínio.




Em um domínio tão complexo, um worker de dados auto-corretivos encarregado de corrigir inconsistências em dados de negociação precisaria ter um entendimento profundo das regras e restrições específicas do domínio. Ele precisaria considerar fatores como regulamentações de mercado, limites de negociação, cálculos de risco e procedimentos de liquidação. Correções automatizadas neste contexto podem nem sempre capturar toda a complexidade do domínio e podem inadvertidamente introduzir erros ou violar regras específicas do domínio.




Para abordar os desafios da complexidade do domínio, as técnicas de dados auto-corretivos podem ser aprimoradas incorporando conhecimento e regras específicas do domínio nos modelos e workers de IA. Isso pode ser alcançado através de técnicas como:





	
Treinamento Específico do Domínio: Os modelos de IA usados para dados auto-corretivos podem ser direcionados ou até mesmo refinados em conjuntos de dados específicos do domínio que capturam as complexidades e regras do domínio particular. Ao expor os modelos a dados e cenários representativos, eles podem aprender os padrões, restrições e exceções específicos do domínio.




	
Restrições Baseadas em Regras: Os workers de dados auto-corretivos podem ser aumentados com restrições explícitas baseadas em regras que codificam o conhecimento específico do domínio. Essas regras podem ser definidas por especialistas do domínio e integradas ao processo de correção de dados. Os modelos de IA podem então usar essas regras para guiar suas decisões e garantir conformidade com os requisitos específicos do domínio.




	
Colaboração com Especialistas do Domínio: Em domínios complexos, é crucial envolver especialistas do domínio no design e desenvolvimento de técnicas de dados auto-corretivos. Especialistas do domínio podem fornecer insights valiosos sobre as complexidades dos dados, as regras de negócio e os possíveis casos extremos. Seu conhecimento pode ser incorporado nos modelos e workers de IA para melhorar a precisão e confiabilidade das correções automatizadas de dados usando padrões Human In The Loop.




	
Abordagem Incremental e Iterativa: Ao lidar com domínios complexos, frequentemente é benéfico adotar uma abordagem incremental e iterativa para dados auto-corretivos. Em vez de tentar automatizar correções para todo o domínio de uma vez, foque em subdomínios específicos ou categorias de dados onde as regras e restrições são bem compreendidas. Gradualmente expanda o escopo das técnicas auto-corretivas conforme o entendimento do domínio cresce e as técnicas se provam efetivas.









Ao considerar a complexidade do domínio de dados e incorporar o conhecimento específico do domínio nas técnicas de dados autorreparáveis, é possível encontrar um equilíbrio entre automação e precisão. É importante reconhecer que dados autorreparáveis não são uma solução única para todos os casos e que a abordagem deve ser adaptada aos requisitos e desafios específicos de cada domínio.




Em domínios complexos, uma abordagem híbrida que combina técnicas de dados autorreparáveis com expertise humana e supervisão pode ser mais eficaz. Correções automatizadas podem lidar com casos rotineiros e bem definidos, enquanto cenários complexos ou exceções podem ser sinalizados para revisão e intervenção humana. Essa abordagem colaborativa garante que os benefícios da automação sejam realizados enquanto mantém o controle e a precisão necessários em domínios de dados complexos.





Explicabilidade e Transparência


Explicabilidade refere-se à capacidade de compreender e interpretar o raciocínio por trás das decisões tomadas pelos modelos de IA, enquanto transparência envolve fornecer visibilidade clara no processo de correção de dados.




Em muitos contextos, as modificações de dados precisam ser auditáveis e justificáveis. As partes interessadas, incluindo usuários de negócios, auditores e órgãos reguladores, podem exigir explicações sobre por que certas correções de dados foram feitas e como os modelos de IA chegaram a essas decisões. Isso é especialmente crucial em domínios onde a precisão e integridade dos dados têm implicações significativas, como finanças, saúde e questões legais.




Para abordar a necessidade de explicabilidade e transparência, as técnicas de dados autorreparáveis devem incorporar mecanismos que forneçam insights sobre o processo de tomada de decisão dos modelos de IA. Isso pode ser alcançado através de várias abordagens:





	
Cadeia de Pensamento: Pedir ao modelo para explicar seu raciocínio “em voz alta” antes de aplicar mudanças aos dados pode permitir uma compreensão mais fácil do processo de tomada de decisão e pode gerar explicações legíveis por humanos para as correções feitas. O compromisso é um pouco mais de complexidade na separação da explicação da saída de dados estruturados, que pode ser abordada por…




	
Geração de Explicações: Os trabalhadores de dados autorreparáveis podem ser equipados com a capacidade de gerar explicações legíveis por humanos para as correções que fazem. Isso pode ser alcançado pedindo ao modelo para produzir seu processo de tomada de decisão como explicações facilmente compreensíveis integradas aos próprios dados. Por exemplo, um trabalhador de dados autorreparáveis poderia gerar um relatório que destaca as inconsistências específicas de dados que identificou, as correções aplicadas e a lógica por trás dessas correções.




	
Importância das Características: Os modelos de IA podem ser instruídos com informações sobre a importância de diferentes características ou atributos no processo de correção de dados como parte de suas diretrizes. Essas diretrizes, por sua vez, podem ser expostas às partes interessadas humanas. Ao identificar os fatores-chave que influenciam as decisões do modelo, as partes interessadas podem obter insights sobre o raciocínio por trás das correções e avaliar sua validade.




	
Registro e Auditoria: Implementar mecanismos abrangentes de registro e auditoria é crucial para manter a transparência no processo de dados autorreparáveis. Cada correção de dados feita pelos modelos de IA deve ser registrada, incluindo os dados originais, os dados corrigidos e as ações específicas tomadas. Esta trilha de auditoria permite análise retrospectiva e fornece um registro claro das modificações feitas nos dados.




	
Abordagem com Humano no Ciclo: Incorporar uma abordagem com humano no ciclo pode melhorar a explicabilidade e transparência das técnicas de dados autorreparáveis. Ao envolver especialistas humanos na revisão e validação das correções geradas por IA, as organizações podem garantir que as correções estejam alinhadas com o conhecimento do domínio e requisitos de negócios. A supervisão humana adiciona uma camada extra de responsabilidade e permite a identificação de possíveis vieses ou erros nos modelos de IA.




	
Monitoramento e Avaliação Contínuos: Monitorar e avaliar regularmente o desempenho das técnicas de dados autorreparáveis é essencial para manter a transparência e a confiança. Ao avaliar a precisão e eficácia dos modelos de IA ao longo do tempo, as organizações podem identificar quaisquer desvios ou anomalias e tomar ações corretivas. O monitoramento contínuo ajuda a garantir que o processo de dados autorreparáveis permaneça confiável e alinhado com os resultados desejados.









Explicabilidade e transparência são considerações críticas ao implementar técnicas de dados autorreparáveis. Ao fornecer explicações claras para correções de dados, manter trilhas de auditoria abrangentes e envolver supervisão humana, as organizações podem construir confiança no processo de dados autorreparáveis e garantir que as modificações feitas nos dados sejam justificáveis e alinhadas com os objetivos de negócio.




É importante encontrar um equilíbrio entre os benefícios da automação e a necessidade de transparência. Embora as técnicas de dados autorreparáveis possam melhorar significativamente a qualidade e eficiência dos dados, elas não devem vir ao custo de perder visibilidade e controle sobre o processo de correção de dados. Ao projetar trabalhadores de dados autorreparáveis com explicabilidade e transparência em mente, as organizações podem aproveitar o poder da IA enquanto mantêm o nível necessário de responsabilidade e confiança nos dados.





Consequências Não Intencionais


Embora as técnicas de dados autorreparáveis visem melhorar a qualidade e consistência dos dados, é crucial estar ciente do potencial de consequências não intencionais. Correções automatizadas, se não forem cuidadosamente projetadas e monitoradas, podem inadvertidamente alterar o significado ou contexto dos dados, levando a problemas subsequentes.




Um dos principais riscos dos dados autorreparáveis é a introdução de viés ou erros no processo de correção de dados. Modelos de IA, como qualquer outro sistema de software, podem estar sujeitos a vieses presentes nos dados de treinamento ou introduzidos através do design dos algoritmos. Se esses vieses não forem identificados e mitigados, eles podem se propagar através do processo de dados autorreparáveis e resultar em modificações de dados distorcidas ou incorretas.




Por exemplo, considere um trabalhador de dados autorrecuperáveis encarregado de corrigir inconsistências em dados demográficos de clientes. Se o modelo de IA tiver aprendido vieses a partir de dados históricos, como associar certas ocupações ou níveis de renda a gêneros ou etnias específicas, ele pode fazer suposições incorretas e modificar os dados de uma forma que reforce esses vieses. Isso pode levar a perfis imprecisos de clientes, decisões empresariais equivocadas e resultados potencialmente discriminatórios.




Outra consequência não intencional potencial é a perda de informações valiosas ou contexto durante o processo de correção de dados. As técnicas de dados autorrecuperáveis frequentemente focam na padronização e normalização de dados para garantir consistência. No entanto, em alguns casos, os dados originais podem conter nuances, exceções ou informações contextuais que são importantes para compreender o quadro completo. Correções automatizadas que aplicam a padronização de forma cega podem inadvertidamente remover ou obscurecer essas informações valiosas.




Por exemplo, imagine um trabalhador de dados autorrecuperáveis responsável por corrigir inconsistências em registros médicos. Se o trabalhador encontrar um histórico médico de um paciente com uma condição rara ou um plano de tratamento incomum, ele pode tentar normalizar os dados para se adequarem a um padrão mais comum. No entanto, ao fazer isso, pode perder os detalhes específicos e o contexto que são cruciais para representar com precisão a situação única do paciente. Essa perda de informação pode ter sérias implicações para o cuidado do paciente e a tomada de decisões médicas.




Para mitigar os riscos de consequências não intencionais, é essencial adotar uma abordagem proativa ao projetar e implementar técnicas de dados autorrecuperáveis:





	
Testes e Validação Minuciosos: Antes de implantar trabalhadores de dados autorrecuperáveis em produção, é crucial testar e validar minuciosamente seu comportamento em uma ampla gama de cenários. Isso inclui testes com conjuntos de dados representativos que cubram vários casos extremos, exceções e possíveis vieses. Testes rigorosos ajudam a identificar e abordar quaisquer consequências não intencionais antes que elas afetem dados do mundo real.




	
Monitoramento e Avaliação Contínuos: Implementar mecanismos de monitoramento e avaliação contínuos é essencial para detectar e mitigar consequências não intencionais ao longo do tempo. Revisar regularmente os resultados dos processos de dados autorrecuperáveis, analisar o impacto nos sistemas downstream e na tomada de decisões, e coletar feedback das partes interessadas pode ajudar a identificar quaisquer efeitos adversos e provocar ações corretivas oportunas. Se sua organização possui painéis operacionais, adicionar métricas claramente visíveis relacionadas a mudanças automatizadas de dados é provavelmente uma boa ideia. Adicionar alarmes conectados a grandes desvios da atividade normal de mudança de dados é provavelmente uma ideia ainda melhor!




	
Supervisão e Intervenção Humana: Manter a supervisão humana e a capacidade de intervir no processo de dados autorrecuperáveis é crucial. Embora a automação possa melhorar muito a eficiência, é importante ter especialistas humanos para revisar e validar as correções feitas por modelos de IA, especialmente em domínios críticos ou sensíveis. O julgamento humano e a experiência no domínio podem ajudar a identificar e abordar quaisquer consequências não intencionais que possam surgir.










	
IA Explicável (XAI) e Transparência: Como discutido na subseção anterior, incorporar técnicas de IA explicável e garantir transparência no processo de dados autorrecuperáveis pode ajudar a mitigar consequências não intencionais. Ao fornecer explicações claras para correções de dados e manter trilhas de auditoria abrangentes, as organizações podem entender melhor e rastrear o raciocínio por trás das modificações feitas pelos modelos de IA.




	
Abordagem Incremental e Iterativa: Adotar uma abordagem incremental e iterativa para dados autorrecuperáveis pode ajudar a minimizar o risco de consequências não intencionais. Em vez de aplicar correções automatizadas ao conjunto de dados inteiro de uma vez, comece com um subconjunto de dados e gradualmente expanda o escopo conforme as técnicas se provem eficazes e confiáveis. Isso permite um monitoramento cuidadoso e ajustes ao longo do caminho, reduzindo o impacto de quaisquer consequências não intencionais.




	
Colaboração e Feedback: Envolver as partes interessadas de diferentes domínios e incentivar a colaboração e feedback durante todo o processo de dados autorrecuperáveis pode ajudar a identificar e abordar consequências não intencionais. Buscar regularmente contribuições de especialistas no domínio, consumidores de dados e usuários finais pode fornecer insights valiosos sobre o impacto no mundo real das correções de dados e destacar quaisquer questões que possam ter sido negligenciadas.









Ao abordar proativamente o risco de consequências não intencionais e implementar salvaguardas apropriadas, as organizações podem aproveitar os benefícios das técnicas de dados autorrecuperáveis enquanto minimizam potenciais efeitos adversos. É importante abordar os dados autorrecuperáveis como um processo iterativo e colaborativo, monitorando, avaliando e refinando continuamente as técnicas para garantir que elas se alinhem com os resultados desejados e mantenham a integridade e confiabilidade dos dados.









Ao considerar o uso de padrões de dados autorrecuperáveis, é essencial avaliar cuidadosamente esses fatores e pesar os benefícios contra os riscos e limitações potenciais. Em alguns casos, uma abordagem híbrida que combine correções automatizadas com supervisão e intervenção humana pode ser a solução mais apropriada.




Também vale ressaltar que as técnicas de dados autorrecuperáveis não devem ser vistas como um substituto para validação robusta de dados, sanitização de entrada e mecanismos de tratamento de erros. Essas práticas fundamentais continuam sendo críticas para garantir a integridade e segurança dos dados. Os dados autorrecuperáveis devem ser vistos como uma abordagem complementar que pode aumentar e melhorar essas medidas existentes.




Por fim, a decisão de empregar padrões de dados autorrecuperáveis depende dos requisitos específicos, restrições e prioridades da sua aplicação. Ao considerar cuidadosamente as considerações descritas acima e alinhá-las com os objetivos e arquitetura da sua aplicação, você pode tomar decisões informadas sobre quando e como aproveitar as técnicas de dados autorrecuperáveis de forma eficaz.









Geração Contextual de Conteúdo

[image: Uma figura silhuetada está em pé sobre uma colina, estendendo-se em direção a um céu preenchido com numerosas formas quadradas pequenas que parecem se afastar. A cena é retratada em um estilo gráfico em preto e branco de alto contraste, evocando uma sensação de abstração e movimento.]


Os padrões de Geração Contextual de Conteúdo aproveitam o poder dos modelos de linguagem grandes (MLGs) para gerar conteúdo dinâmico e específico ao contexto dentro das aplicações. Esta categoria de padrões reconhece a importância de entregar conteúdo personalizado e relevante aos usuários com base em suas necessidades específicas, preferências e até mesmo interações anteriores e atuais com a aplicação.




No contexto desta abordagem, “conteúdo” refere-se tanto ao conteúdo primário (ou seja, posts de blog, artigos, etc.) quanto ao metaconteúdo, como recomendações para conteúdo primário.




Os padrões de Geração Contextual de Conteúdo podem desempenhar um papel crucial no aprimoramento dos seus níveis de engajamento do usuário, fornecendo experiências personalizadas e automatizando tarefas de criação de conteúdo tanto para você quanto para seus usuários. Ao utilizar os padrões que descrevemos neste capítulo, você pode criar aplicações que geram conteúdo dinamicamente, adaptando-se ao contexto e às entradas em tempo real.




Os padrões funcionam integrando MLGs nas saídas da aplicação, desde a interface do usuário (às vezes chamada de “chrome”), até e-mails e outras formas de notificações, bem como quaisquer pipelines de geração de conteúdo.




Quando um usuário interage com a aplicação ou aciona uma solicitação específica de conteúdo, a aplicação captura o contexto relevante, como preferências do usuário, interações anteriores ou prompts específicos. Essas informações contextuais são então alimentadas no MLG, junto com quaisquer templates ou diretrizes necessárias e usadas para produzir saída textual que, de outra forma, teria que ser codificada diretamente, armazenada em um banco de dados ou gerada algoritmicamente.




O conteúdo gerado pelo MLG pode assumir várias formas, como recomendações personalizadas, descrições dinâmicas de produtos, respostas personalizadas por e-mail ou até mesmo artigos ou posts de blog completos. Um dos usos mais radicais deste conteúdo que eu pioneirei há mais de um ano é a geração dinâmica de elementos de IU como rótulos de formulários, dicas de ferramentas e outros tipos de texto explicativo.




Personalização


Um dos principais benefícios dos padrões de Geração Contextual de Conteúdo é a capacidade de entregar experiências altamente personalizadas aos usuários. Ao gerar conteúdo baseado no contexto específico do usuário, esses padrões permitem que as aplicações adaptem o conteúdo aos interesses, preferências e interações individuais dos usuários.




A personalização vai além de simplesmente inserir o nome do usuário em conteúdo genérico. Envolve aproveitar o rico contexto disponível sobre cada usuário para gerar conteúdo que ressoe com suas necessidades e desejos específicos. Este contexto pode incluir uma ampla gama de fatores, como:





	
Informações do Perfil do Usuário: No nível mais geral de aplicação desta técnica, dados demográficos, interesses, preferências e outros atributos do perfil podem ser usados para gerar conteúdo que se alinhe com o histórico e características do usuário.




	
Dados Comportamentais: As interações passadas do usuário com a aplicação, como páginas visualizadas, links clicados ou produtos comprados, podem fornecer insights valiosos sobre seu comportamento e interesses. Esses dados podem ser usados para gerar sugestões de conteúdo que reflitam seus padrões de engajamento e prevejam suas necessidades futuras.




	
Fatores Contextuais: O contexto atual do usuário, como sua localização, dispositivo, hora do dia ou até mesmo o clima, pode influenciar o processo de geração de conteúdo. Por exemplo, uma aplicação de viagens pode ter um trabalhador de IA capaz de gerar recomendações personalizadas com base na localização atual do usuário e nas condições climáticas predominantes.









Ao aproveitar esses fatores contextuais, os padrões de Geração Contextual de Conteúdo permitem que as aplicações entreguem conteúdo que pareça feito sob medida para cada usuário individual. Este nível de personalização tem vários benefícios significativos:





	
Aumento do Engajamento: Conteúdo personalizado captura a atenção dos usuários e os mantém engajados com a aplicação. Quando os usuários sentem que o conteúdo é relevante e fala diretamente às suas necessidades, eles têm mais probabilidade de passar mais tempo interagindo com a aplicação e explorando seus recursos.




	
Melhoria na Satisfação do Usuário: Conteúdo personalizado demonstra que a aplicação entende e se preocupa com os requisitos únicos do usuário. Ao fornecer conteúdo que é útil, informativo e alinhado com seus interesses, a aplicação pode aumentar a satisfação do usuário e construir uma conexão mais forte com seus usuários.




	
Maiores Taxas de Conversão: No contexto de aplicações de e-commerce ou marketing, conteúdo personalizado pode impactar significativamente as taxas de conversão. Ao apresentar aos usuários produtos, ofertas ou recomendações que são adaptados às suas preferências e comportamento, a aplicação pode aumentar a probabilidade de os usuários realizarem as ações desejadas, como fazer uma compra ou se inscrever em um serviço.










Produtividade


Os padrões de Geração Contextual de Conteúdo podem aumentar significativamente certos tipos de produtividade ao reduzir a necessidade de geração e edição manual de conteúdo em processos criativos. Ao aproveitar o poder dos MLGs, você pode gerar conteúdo de alta qualidade em escala, economizando tempo e esforço que seus criadores de conteúdo e desenvolvedores teriam que gastar fazendo trabalho manual tedioso.




Tradicionalmente, os criadores de conteúdo precisam pesquisar, escrever, editar e formatar conteúdo para garantir que ele atenda aos requisitos da aplicação e às expectativas dos usuários. Esse processo pode consumir muito tempo e recursos, especialmente conforme o volume de conteúdo aumenta.




No entanto, com os padrões de Geração Contextual de Conteúdo, o processo de criação de conteúdo pode ser amplamente automatizado. Os LLMs podem gerar conteúdo coerente, gramaticalmente correto e contextualmente relevante com base nos prompts e diretrizes fornecidos. Essa automação oferece diversos benefícios de produtividade:





	
Redução do Esforço Manual: Ao delegar tarefas de geração de conteúdo aos LLMs, os criadores de conteúdo podem se concentrar em tarefas de nível mais alto, como estratégia de conteúdo, ideação e garantia de qualidade. Eles podem fornecer o contexto necessário, templates e diretrizes ao LLM e deixar que ele cuide da geração real do conteúdo. Isso reduz o esforço manual necessário para escrever e editar, permitindo que os criadores de conteúdo sejam mais produtivos e eficientes.




	
Criação de Conteúdo Mais Rápida: Os LLMs podem gerar conteúdo muito mais rapidamente do que escritores humanos. Com os prompts e diretrizes adequados, um LLM pode produzir múltiplos conteúdos em questão de segundos ou minutos. Essa velocidade permite que as aplicações gerem conteúdo em um ritmo muito mais rápido, acompanhando as demandas dos usuários e o cenário digital em constante mudança.









A criação mais rápida de conteúdo está levando a uma situação de “tragédia dos comuns” onde a internet está se afogando em conteúdo que ninguém lê? Infelizmente, suspeito que a resposta seja sim.





	
Consistência e Qualidade: Os LLMs podem facilmente revisar conteúdo para que seja consistente em estilo, tom e qualidade. Com diretrizes e exemplos claros, certos tipos de aplicações (ou seja, redações jornalísticas, RP, etc.) podem garantir que seu conteúdo gerado por humanos esteja alinhado com a voz da marca e atenda aos padrões de qualidade desejados. Essa consistência reduz a necessidade de edições e revisões extensivas, economizando tempo e esforço no processo de criação de conteúdo.




	
Iteração e Otimização: Os padrões de Geração Contextual de Conteúdo permitem iteração rápida e otimização de conteúdo. Ao ajustar os prompts, templates ou diretrizes fornecidos ao LLM, suas aplicações podem gerar rapidamente variações de conteúdo e testar diferentes abordagens de uma maneira automatizada que nunca foi possível no passado. Esse processo iterativo permite experimentação e refinamento mais rápidos das estratégias de conteúdo, levando a conteúdo mais eficaz e envolvente ao longo do tempo. Essa técnica específica pode ser uma verdadeira revolução para aplicações como e-commerce que dependem crucialmente das taxas de rejeição e engajamento
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É importante observar que, embora os padrões de Geração Contextual de Conteúdo possam aumentar muito a produtividade, eles não eliminam completamente a necessidade de envolvimento humano. Criadores e editores de conteúdo ainda desempenham um papel crucial na definição da estratégia geral de conteúdo, fornecendo orientação ao LLM e garantindo a qualidade e adequação do conteúdo gerado.






Ao automatizar os aspectos mais repetitivos e demorados da criação de conteúdo, os padrões de Geração Contextual de Conteúdo liberam valioso tempo e recursos humanos que podem ser redirecionados para tarefas de maior valor. Esse aumento de produtividade permite que você entregue conteúdo mais personalizado e envolvente aos usuários, ao mesmo tempo em que otimiza os fluxos de trabalho de criação de conteúdo.





Iteração Rápida e Experimentação


Os padrões de Geração Contextual de Conteúdo permitem que você itere rapidamente e experimente diferentes variações de conteúdo, possibilitando uma otimização e refinamento mais rápidos da sua estratégia de conteúdo. Você pode gerar múltiplas versões de conteúdo em questão de segundos, simplesmente ajustando o contexto, templates ou diretrizes fornecidos ao modelo.




Essa capacidade de iteração rápida oferece diversos benefícios principais:





	
Testes e Otimização: Com a capacidade de gerar variações de conteúdo rapidamente, você pode facilmente testar diferentes abordagens e medir sua eficácia. Por exemplo, você pode gerar múltiplas versões de uma descrição de produto ou uma mensagem de marketing, cada uma adaptada a um segmento de usuário ou contexto específico. Ao analisar métricas de engajamento do usuário, como taxas de clique ou taxas de conversão, você pode identificar as variações de conteúdo mais eficazes e otimizar sua estratégia de conteúdo de acordo.









	
Teste A/B: Os padrões de Geração Contextual de Conteúdo permitem testes A/B contínuos de conteúdo. Você pode gerar duas ou mais variações de conteúdo e apresentá-las aleatoriamente a diferentes grupos de usuários. Ao comparar o desempenho de cada variação, você pode determinar qual conteúdo ressoa melhor com seu público-alvo. Essa abordagem baseada em dados permite que você tome decisões informadas e continue refinando seu conteúdo para maximizar o engajamento do usuário e alcançar os resultados desejados.




	
Experimentos de Personalização: A iteração rápida e a experimentação são particularmente valiosas quando se trata de personalização. Com os padrões de Geração Contextual de Conteúdo, você pode rapidamente gerar variações de conteúdo personalizado com base em diferentes segmentos de usuários, preferências ou comportamentos. Ao experimentar diferentes estratégias de personalização, você pode identificar as abordagens mais eficazes para engajar usuários individuais e entregar experiências personalizadas.




	
Adaptação às Tendências em Mudança: A capacidade de iterar e experimentar rapidamente permite que você mantenha a agilidade e se adapte às mudanças nas tendências e preferências dos usuários. Conforme novos tópicos, palavras-chave ou comportamentos dos usuários surgem, você pode rapidamente gerar conteúdo alinhado com essas tendências. Ao experimentar e refinar continuamente seu conteúdo, você pode manter-se relevante e manter uma vantagem competitiva no cenário digital em constante evolução.




	
Experimentação com Custo-Benefício: A experimentação tradicional de conteúdo frequentemente envolve tempo e recursos significativos, já que os criadores de conteúdo precisam desenvolver e testar manualmente diferentes variações. No entanto, com os padrões de Geração Contextual de Conteúdo, o custo da experimentação é muito reduzido. Os LLMs podem gerar variações de conteúdo rapidamente e em escala, permitindo que você explore uma ampla gama de ideias e abordagens sem incorrer em custos substanciais.









Para aproveitar ao máximo a iteração rápida e a experimentação, é importante ter um framework de experimentação bem definido. Este framework deve incluir:





	
Objetivos claros e hipóteses para cada experimento



	
Métricas apropriadas e mecanismos de rastreamento para medir o desempenho do conteúdo



	
Estratégias de segmentação e direcionamento para garantir que as variações de conteúdo relevantes sejam entregues aos usuários certos



	
Ferramentas de análise e relatórios para extrair insights dos dados experimentais



	
Um processo para incorporar aprendizados e otimizações em sua estratégia de conteúdo








Ao abraçar a iteração rápida e a experimentação, você pode continuamente refinar e otimizar seu conteúdo, garantindo que ele permaneça envolvente, relevante e eficaz em alcançar os objetivos da sua aplicação. Esta abordagem ágil para criação de conteúdo permite que você se mantenha à frente da curva e entregue experiências excepcionais aos usuários.




Escalabilidade e Eficiência


À medida que as aplicações crescem e a demanda por conteúdo personalizado aumenta, os padrões de geração contextual de conteúdo permitem o escalonamento eficiente da criação de conteúdo. Os LLMs podem gerar conteúdo para um grande número de usuários e contextos simultaneamente, sem a necessidade de um aumento proporcional nos recursos humanos. Essa escalabilidade permite que as aplicações entreguem experiências personalizadas para uma base crescente de usuários sem sobrecarregar suas capacidades de criação de conteúdo.



	[image: An icon of a key]	
Observe que a geração contextual de conteúdo pode ser usada efetivamente para internacionalizar sua aplicação “em tempo real”. Na verdade, foi exatamente isso que fiz usando minha gem Instant18n para disponibilizar Olympia em mais de meia dúzia de idiomas, mesmo tendo menos de um ano de existência.








Localização Potencializada por IA


Se me permite gabar por um momento, acredito que minha biblioteca Instant18n para aplicações Rails é um exemplo inovador do padrão de “Geração Contextual de Conteúdo” em ação, demonstrando o potencial transformador da IA no desenvolvimento de aplicações. Esta gem aproveita o poder do modelo de linguagem grande GPT da OpenAI para revolucionar a forma como a internacionalização e localização são tratadas em aplicações Rails.




Tradicionalmente, internacionalizar uma aplicação Rails envolve definir manualmente chaves de tradução e fornecer traduções correspondentes para cada idioma suportado. Este processo pode consumir muito tempo, recursos e ser propenso a inconsistências. No entanto, com a gem Instant18n, o paradigma de localização é completamente redefinido.




Ao integrar um modelo de linguagem grande, a gem Instant18n permite que você gere traduções em tempo real, baseadas no contexto e significado do texto. Em vez de depender de chaves de tradução predefinidas e traduções estáticas, a gem traduz dinamicamente o texto usando o poder da IA. Esta abordagem oferece vários benefícios principais:





	
Localização Sem Complicações: Com a gem Instant18n, os desenvolvedores não precisam mais definir e manter manualmente arquivos de tradução para cada idioma suportado. A gem gera automaticamente traduções baseadas no texto fornecido e no idioma de destino desejado, tornando o processo de localização fácil e sem complicações.




	
Precisão Contextual: A IA pode receber contexto suficiente para entender as nuances do texto sendo traduzido. Ela pode levar em conta o contexto circundante, expressões idiomáticas e referências culturais para gerar traduções precisas, que soam naturais e são contextualmente apropriadas.




	
Suporte Extensivo a Idiomas: A gem Instant18n aproveita o vasto conhecimento e capacidades linguísticas do GPT, permitindo traduções para uma extensa gama de idiomas. De idiomas comuns como espanhol e francês até idiomas mais obscuros ou fictícios como Klingon e Élfico, a gem pode lidar com uma ampla variedade de requisitos de tradução.




	
Flexibilidade e Criatividade: A gem vai além das traduções tradicionais de idiomas e permite opções de localização criativas e não convencionais. Os desenvolvedores podem traduzir texto em vários estilos, dialetos ou até mesmo idiomas fictícios, abrindo novas possibilidades para experiências únicas do usuário e conteúdo envolvente.




	
Otimização de Desempenho: A gem Instant18n incorpora mecanismos de cache para melhorar o desempenho e reduzir a sobrecarga de traduções repetidas. O texto traduzido é armazenado em cache, permitindo que solicitações subsequentes para a mesma tradução sejam atendidas rapidamente sem a necessidade de chamadas redundantes à API.









A gem Instant18n exemplifica o poder do padrão de “Geração Contextual de Conteúdo” ao aproveitar a IA para gerar conteúdo localizado dinamicamente. Ela demonstra como a IA pode ser integrada à funcionalidade central de uma aplicação Rails, transformando a maneira como os desenvolvedores abordam a internacionalização e localização.




Ao eliminar a necessidade de gerenciamento manual de traduções e permitir traduções em tempo real baseadas no contexto, a gem Instant18n economiza tempo e esforço significativos dos desenvolvedores. Permite que eles se concentrem na construção dos recursos principais de sua aplicação, garantindo que o aspecto de localização seja tratado de forma transparente e precisa.





A Importância dos Testes com Usuários e Feedback


Por fim, sempre tenha em mente a importância dos testes com usuários e feedback. É crucial validar se a geração contextual de conteúdo atende às expectativas dos usuários e está alinhada com os objetivos da aplicação. Continue iterando e refinando o conteúdo gerado com base em insights dos usuários e análises. Se você estiver gerando conteúdo dinâmico em larga escala que seria impossível de validar manualmente por você e sua equipe, considere adicionar mecanismos de feedback que permitam aos usuários reportar conteúdo que pareça estranho ou incorreto, junto com uma explicação do motivo. Esse feedback valioso pode até ser alimentado a um worker de IA encarregado de fazer ajustes no componente que gerou o conteúdo!








Interface Generativa

[image: Uma ilustração em preto e branco mostra uma fileira de pessoas em pé na frente de televisores. As figuras são vistas por trás, e cada pessoa parece estar olhando para uma tela cheia de imagens de pássaros. O fundo e as roupas das figuras têm texturas gotejantes, semelhantes a tinta, criando um efeito surreal e abstrato.]


A atenção é tão valiosa hoje em dia que o engajamento efetivo do usuário agora exige experiências de software que não são apenas fluidas e intuitivas, mas também altamente personalizadas para as necessidades, preferências e contextos individuais. Como resultado, designers e desenvolvedores enfrentam cada vez mais o desafio de criar interfaces de usuário que possam se adaptar e atender aos requisitos únicos de cada usuário em escala.




A Interface Generativa (GenUI) é uma abordagem verdadeiramente revolucionária para o design de interface do usuário que aproveita o poder dos modelos de linguagem grandes (LLMs) para criar experiências de usuário altamente personalizadas e dinâmicas em tempo real. Eu quis garantir que você tivesse pelo menos uma introdução sobre GenUI neste livro, porque acredito que é uma das oportunidades mais promissoras que existem atualmente no campo de design e frameworks de aplicativos. Estou convencido de que dezenas ou mais novos projetos comerciais e de código aberto bem-sucedidos surgirão neste nicho específico.




Em sua essência, a GenUI combina os princípios da Geração de Conteúdo Contextual com técnicas avançadas de IA para gerar elementos de interface do usuário, como texto, imagens e layouts, dinamicamente, com base em uma compreensão profunda do contexto, preferências e objetivos do usuário. A GenUI permite que designers e desenvolvedores criem interfaces que se adaptem e evoluam em resposta às interações do usuário, proporcionando um nível de personalização anteriormente inatingível.




A GenUI representa uma mudança fundamental na maneira como abordamos o design de interface do usuário. Em vez de projetar para as massas, a GenUI nos permite projetar para o indivíduo. Conteúdo e interfaces personalizadas têm o potencial de criar experiências de usuário que ressoam com cada usuário em um nível mais profundo, aumentando o engajamento, a satisfação e a fidelidade.




Como uma técnica de ponta, a transição para a GenUI está repleta de desafios conceituais e práticos. Integrar IA no processo de design, garantir que as interfaces geradas sejam não apenas personalizadas, mas também utilizáveis, acessíveis e alinhadas com a marca geral e a experiência do usuário, todos esses são desafios que tornam a GenUI uma busca para poucos, não para muitos. Além disso, o envolvimento da IA levanta questões sobre privacidade de dados, transparência e até mesmo implicações éticas.




Apesar dos desafios, experiências personalizadas em escala têm o poder de transformar completamente a maneira como interagimos com produtos e serviços digitais. Isso abre possibilidades para criar interfaces inclusivas e acessíveis que atendam às diversas necessidades dos usuários, independentemente de suas habilidades, origens ou preferências.




Neste capítulo, exploraremos o conceito de GenUI, examinando algumas características definidoras, benefícios principais e desafios potenciais. Começamos considerando a forma mais básica e acessível de GenUI: gerar texto para interfaces de usuário projetadas e implementadas de maneira tradicional.




Gerando Texto para Interfaces de Usuário


Elementos de texto que existem na interface do seu aplicativo, como rótulos de formulários, dicas de ferramentas e texto explicativo, são tipicamente codificados nos templates ou componentes da UI, fornecendo uma experiência consistente, mas genérica para todos os usuários. Usando padrões de geração de conteúdo contextual, você pode transformar esses elementos estáticos em componentes dinâmicos, conscientes do contexto e personalizados.




Formulários Personalizados


Formulários são uma parte onipresente de aplicativos web e móveis, servindo como o principal meio de coletar entrada do usuário. No entanto, formulários tradicionais frequentemente apresentam uma experiência genérica e impessoal, com rótulos e campos padrão que nem sempre se alinham com o contexto ou necessidades específicas do usuário. Os usuários têm maior probabilidade de preencher formulários que parecem adaptados às suas necessidades e preferências, levando a taxas de conversão e satisfação do usuário mais altas.




No entanto, é importante encontrar um equilíbrio entre personalização e consistência. Embora adaptar formulários para usuários individuais possa ser benéfico, é crucial manter um nível de familiaridade e previsibilidade. Os usuários ainda devem ser capazes de reconhecer e navegar pelos formulários facilmente, mesmo com elementos personalizados.




Aqui estão algumas ideias de formulários personalizados para inspiração:




Sugestões Contextuais de Campo


A GenUI pode analisar as interações anteriores, preferências e dados do usuário para fornecer sugestões inteligentes de campo como previsões. Por exemplo, se o usuário já inseriu seu endereço de entrega anteriormente, o formulário pode preencher automaticamente os campos relevantes com suas informações salvas. Isso não apenas economiza tempo, mas também demonstra que o aplicativo entende e lembra as preferências do usuário.




Espere um momento, essa técnica não poderia ser feita sem envolver IA? Claro que sim, mas a beleza de implementar esse tipo de funcionalidade com IA é dupla: 1) a facilidade de implementação e 2) o quanto ela pode ser resiliente conforme sua IU muda e evolui ao longo do tempo.




Vamos criar rapidamente um serviço para nosso sistema teórico de processamento de pedidos, que tenta preencher proativamente o endereço de entrega correto para o usuário.



 1 class OrderShippingAddressSubscriber
 2   include Raix::ChatCompletion
 3 
 4   attr_accessor :order
 5 
 6   delegate :customer, to: :order
 7 
 8   DIRECTIVE = "You are a smart order processing assistant. Given the
 9   customer's order history, guess the most likely shipping address
10   for the current order."
11 
12   def order_created(order)
13     return unless order.pending? && order.shipping_address.blank?
14 
15     self.order = order
16 
17     transcript.clear
18     transcript << { system: DIRECTIVE }
19     transcript << { user: "Order History: #{order_history.to_json}" }
20     transcript << { user: "Current Order: #{order.to_json}" }
21 
22     response = chat_completion
23     apply_predicted_shipping_address(order, response)
24   end
25 
26   private
27 
28   def apply_predicted_shipping_address(order, response)
29     # extract the shipping address from the response...
30     # ...and assume there's some sort of live update of the address fields
31     order.update(shipping_address:)
32   end
33 
34   def order_history
35     customer.orders.successful.limit(100).map do |order|
36       {
37         date: order.date,
38         description: order.description,
39         shipping_address: order.shipping_address
40       }
41     end
42   end
43 end





Este exemplo é bastante simplificado, mas deve funcionar para a maioria dos casos. A ideia é deixar a AI fazer uma suposição da mesma forma que um humano faria. Para deixar claro do que estou falando, vamos considerar alguns dados de exemplo:



 1 Order History:
 2 [
 3   {"date": "2024-01-03", "description": "garden soil mix",
 4    "shipping_address": "123 Country Lane, Rural Town"},
 5   {"date": "2024-01-15", "description": "hardcover fiction novels",
 6    "shipping_address": "456 City Apt, Metroville"},
 7   {"date": "2024-01-22", "description": "baby diapers", "shipping_address":
 8    "789 Suburb St, Quietville"},
 9   {"date": "2024-02-01", "description": "organic vegetables",
10    "shipping_address": "123 Country Lane, Rural Town"},
11   {"date": "2024-02-17", "description": "mystery thriller book set",
12    "shipping_address": "456 City Apt, Metroville"},
13   {"date": "2024-02-25", "description": "baby wipes",
14    "shipping_address": "789 Suburb St, Quietville"},
15   {"date": "2024-03-05", "description": "flower seeds",
16    "shipping_address": "123 Country Lane, Rural Town"},
17   {"date": "2024-03-20", "description": "biographies",
18    "shipping_address": "456 City Apt, Metroville"},
19   {"date": "2024-03-30", "description": "baby formula",
20    "shipping_address": "789 Suburb St, Quietville"},
21   {"date": "2024-04-12", "description": "lawn fertilizer",
22    "shipping_address": "123 Country Lane, Rural Town"},
23   {"date": "2024-04-22", "description": "science fiction novels",
24    "shipping_address": "456 City Apt, Metroville"},
25   {"date": "2024-05-02", "description": "infant toys",
26    "shipping_address": "789 Suburb St, Quietville"},
27   {"date": "2024-05-14", "description": "outdoor grill",
28    "shipping_address": "123 Country Lane, Rural Town"},
29   {"date": "2024-05-29", "description": "literary classics",
30   "shipping_address": "456 City Apt, Metroville"},
31   {"date": "2024-06-11", "description": "baby clothes",
32    "shipping_address": "789 Suburb St, Quietville"},
33   {"date": "2024-07-01", "description": "watering can",
34    "shipping_address": "123 Country Lane, Rural Town"},
35   {"date": "2024-07-18", "description": "non-fiction essays",
36   "shipping_address": "456 City Apt, Metroville"},
37   {"date": "2024-07-28", "description": "baby bath items",
38   "shipping_address": "789 Suburb St, Quietville"},
39   {"date": "2024-08-09", "description": "herb garden kit",
40   "shipping_address": "123 Country Lane, Rural Town"},
41   {"date": "2024-08-24", "description": "children's books",
42   "shipping_address": "456 City Apt, Metroville"}
43 ]





Você percebeu o padrão nos dados? Garanto que isso é algo simples para um LLM. Para demonstrar, vamos perguntar ao GPT-4 qual é o endereço de entrega mais provável para um “termômetro”.



 1 From the order history you've provided, it looks like the purchases are
 2 generally clustered into three main types based on the shipping addresses:
 3 
 4 123 Country Lane, Rural Town - This address often orders garden and
 5 outdoor-related items like soil mix, vegetables, flower seeds, lawn
 6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.
 7 
 8 456 City Apt, Metroville - This address tends to order various types of
 9 books, indicating an interest in reading across genres like fiction,
10 thrillers, biographies, science fiction, literary classics, non-fiction
11 essays, and children's books.
12 
13 789 Suburb St, Quietville - The purchases for this address are consistently
14 baby-related products, such as diapers, wipes, baby formula, infant toys,
15 baby clothes, and baby bath items.
16 
17 Given these patterns, a digital thermometer could potentially be a fit for
18 any of the addresses based on different needs: outdoor temperature tracking,
19 a tool for a passionate reader interested in science gadgets, or a health
20 tool for a baby. However, considering its common use in monitoring health,
21 especially for babies, it's most likely to be purchased by someone who's
22 already buying baby care products.
23 
24 Therefore, the most likely shipping address for a digital thermometer, based
25 on the purchasing patterns, would be 789 Suburb St, Quietville.





Se você está pensando que é exagero usar um modelo caro como o GPT-4 para esta tarefa, você está certo! Eu testei o mesmo prompt no Mistral 7B Instruct e ele produziu a seguinte resposta a 75 tokens por segundo, e com um custo ínfimo de $0.000218 USD.



 1 Based on the given order history, it appears that the customer has received
 2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)
 3 at the address "789 Suburb St, Quietville" and garden-related items (soil,
 4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural
 5 Town". The customer has also received books (fiction, non-fiction, literary
 6 classics, mystery-thriller, science fiction, biographies, children's books)
 7 at the address "456 City Apt, Metroville".
 8 
 9 Given that the new order is for a "thermometer", which doesn't seem to fit
10 into any of the categories that the customer has previously ordered, it's
11 hard to accurately predict the shipping address based solely on the order
12 history. However, given the 50%-50% split between baby-related and
13 garden-related items, it could somewhat lean towards the Baby-related items
14 address ("789 Suburb St, Quietville"). But remember, this is an assumption
15 and cannot be definitively confirmed without more context or information.





O custo e o overhead desta técnica valem a pena para tornar a experiência de checkout mais mágica? Para muitos varejistas online, absolutamente. E pelo que parece, o custo da computação com IA só tende a diminuir, especialmente para provedores de hospedagem de modelos open source em uma corrida até o fundo.



	[image: An icon of a key]	
Use um Prompt Template e StructuredIO junto com Response Fencing para otimizar este tipo de chat completion.







Ordenação Adaptativa de Campos


A ordem em que os campos do formulário são apresentados pode impactar significativamente a experiência do usuário e as taxas de conclusão. Com GenUI, você pode ajustar dinamicamente a ordem dos campos com base no contexto do usuário e na importância de cada campo. Por exemplo, se o usuário está preenchendo um formulário de registro para um aplicativo de fitness, o formulário poderia priorizar campos relacionados aos seus objetivos e preferências de condicionamento físico, tornando o processo mais relevante e envolvente.





Microtextos Personalizados


O texto instrucional, mensagens de erro e outros microtextos associados aos formulários também podem ser personalizados usando GenUI. Em vez de exibir mensagens de erro genéricas como “Endereço de e-mail inválido”, você pode gerar mensagens mais úteis e contextuais como “Por favor, insira um endereço de e-mail válido para receber sua confirmação de pedido”. Esses toques personalizados podem tornar a experiência do formulário mais amigável e menos frustrante.





Validação Personalizada


Na mesma linha dos Microtextos Personalizados, você poderia usar IA para validar o formulário de maneiras que parecem mágicas. Imagine permitir que uma IA valide um formulário de perfil de usuário, procurando por possíveis erros em um nível semântico.



[image: Uma captura de tela de um formulário 'Crie sua conta'. (1) O campo 'Nome completo' está preenchido com 'Obie Fernandez.', (2) O campo 'Email' está preenchido com 'obiefenandez@gmail.com' com uma sugestão abaixo dizendo 'Você quis dizer obiefernandez@gmail.com? Sim, atualizar.', (3) O campo 'País' mostra 'Estados Unidos' com um ícone de dropdown e a bandeira dos EUA exibida, (4) O campo 'Senha' está preenchido com uma senha mascarada (pontos) e inclui uma mensagem abaixo dizendo 'Bom trabalho. Esta é uma excelente senha.']Figura 9. Você consegue identificar a validação semântica acontecendo?



Revelação Progressiva


GenUI pode determinar inteligentemente quais campos do formulário são essenciais com base no contexto do usuário e revelar gradualmente campos adicionais conforme necessário. Esta técnica de revelação progressiva ajuda a reduzir a carga cognitiva e torna o processo de preenchimento do formulário mais gerenciável. Por exemplo, se um usuário está se inscrevendo para uma assinatura básica, o formulário pode inicialmente apresentar apenas os campos essenciais, e conforme o usuário progride ou seleciona opções específicas, campos adicionais relevantes podem ser introduzidos dinamicamente.






Texto Explicativo Sensível ao Contexto


Dicas de contexto são frequentemente usadas para fornecer informações adicionais ou orientação aos usuários quando eles passam o mouse sobre ou interagem com elementos específicos. Com uma abordagem de “Geração de Conteúdo Contextual”, você pode gerar dicas que se adaptam ao contexto do usuário e fornecem informações relevantes. Por exemplo, se um usuário está explorando um recurso complexo, a dica pode oferecer sugestões personalizadas ou exemplos baseados em suas interações anteriores ou nível de habilidade.




Texto explicativo, como instruções, descrições ou mensagens de ajuda, pode ser gerado dinamicamente com base no contexto do usuário. Em vez de apresentar explicações genéricas, você pode usar LLMs para gerar texto que é adaptado às necessidades ou questões específicas do usuário. Por exemplo, se um usuário está tendo dificuldades com uma etapa específica em um processo, o texto explicativo pode fornecer orientação personalizada ou dicas de solução de problemas.




Microtexto refere-se aos pequenos trechos de texto que guiam os usuários através de sua aplicação, como rótulos de botões, mensagens de erro ou prompts de confirmação. Ao aplicar a abordagem de Geração de Conteúdo Contextual aos microtextos, você pode criar uma UI adaptativa que responde às ações do usuário e fornece texto relevante e útil. Por exemplo, se um usuário está prestes a realizar uma ação crítica, o prompt de confirmação pode ser gerado dinamicamente para fornecer uma mensagem clara e personalizada.




Texto explicativo e dicas de contexto personalizadas podem melhorar significativamente o processo de onboarding para novos usuários. Ao fornecer orientação e exemplos específicos ao contexto, você pode ajudar os usuários a entender e navegar rapidamente pela aplicação, reduzindo a curva de aprendizado e aumentando a adoção.




Elementos de interface dinâmicos e sensíveis ao contexto também podem fazer a aplicação parecer mais intuitiva e envolvente. Os usuários são mais propensos a interagir e explorar recursos quando o texto que os acompanha é adaptado às suas necessidades e interesses específicos.









Até agora, abordamos ideias para aprimorar paradigmas existentes de UI com IA, mas e quanto a repensar como as interfaces do usuário são projetadas e implementadas de uma maneira mais radical?






Definindo UI Generativa


Diferentemente do design de UI tradicional, onde designers criam interfaces fixas e estáticas, a GenUI sugere um futuro no qual nosso software possui experiências flexíveis e personalizadas que podem evoluir e se adaptar em tempo real. Toda vez que usamos uma interface conversacional baseada em IA, estamos permitindo que a IA se adapte às necessidades particulares do usuário. A GenUI vai um passo além, aplicando esse nível de adaptabilidade à interface visual do software.




A razão pela qual é possível experimentar com ideias de GenUI hoje é que os grandes modelos de linguagem já compreendem programação e seu conhecimento base inclui tecnologias e frameworks de UI. A questão é, portanto, se os grandes modelos de linguagem podem ser usados para gerar elementos de UI, como texto, imagens, layouts e até interfaces inteiras, que são adaptados a cada usuário individual. O modelo poderia ser instruído a levar em conta vários fatores, como as interações anteriores do usuário, preferências declaradas, informações demográficas e o contexto atual de uso, para criar interfaces altamente personalizadas e relevantes.




A GenUI difere do design de interface do usuário tradicional em várias aspectos principais:





	
Dinâmica e Adaptativa: O design de UI tradicional envolve a criação de interfaces fixas e estáticas que permanecem as mesmas para todos os usuários. Em contraste, a GenUI permite interfaces que podem se adaptar e mudar dinamicamente com base nas necessidades e contexto do usuário. Isso significa que a mesma aplicação pode apresentar interfaces diferentes para diferentes usuários ou até mesmo para o mesmo usuário em situações diferentes.




	
Personalização em Escala: Com o design tradicional, criar experiências personalizadas para cada usuário é frequentemente impraticável devido ao tempo e recursos necessários. A GenUI, por outro lado, permite a personalização em escala. Ao aproveitar a IA, os designers podem criar interfaces que se adaptam automaticamente às necessidades e preferências únicas de cada usuário, sem ter que projetar e desenvolver manualmente interfaces separadas para cada segmento de usuários.




	
Foco em Resultados: O design de UI tradicional frequentemente se concentra em criar interfaces visualmente atraentes e funcionais. Embora esses aspectos ainda sejam importantes na GenUI, o foco principal muda para alcançar os resultados desejados pelo usuário. A GenUI visa criar interfaces que são otimizadas para os objetivos e tarefas específicos de cada usuário, priorizando a usabilidade e eficácia sobre considerações puramente estéticas.




	
Aprendizado e Melhoria Contínuos: Os sistemas GenUI podem aprender e melhorar continuamente ao longo do tempo com base nas interações e feedback dos usuários. Conforme os usuários interagem com as interfaces geradas, os modelos de IA podem coletar dados sobre comportamento, preferências e resultados dos usuários, usando essas informações para refinar e otimizar futuras gerações de interface. Esse processo de aprendizado iterativo permite que os sistemas GenUI se tornem cada vez mais eficazes em atender às necessidades dos usuários ao longo do tempo.









É importante notar que GenUI não é o mesmo que ferramentas de design assistidas por IA, como aquelas que fornecem sugestões ou automatizam certas tarefas de design. Embora essas ferramentas possam ser úteis para agilizar o processo de design, elas ainda dependem dos designers para tomar decisões finais e criar interfaces estáticas. A GenUI, por outro lado, envolve o sistema de IA assumindo um papel mais ativo na geração e adaptação real das interfaces com base nos dados e contexto do usuário.




A GenUI representa uma mudança significativa na forma como abordamos o design de interface do usuário, afastando-se de soluções únicas para todos e indo em direção a experiências altamente personalizadas e adaptativas. Ao aproveitar o poder da IA, a GenUI tem o potencial de revolucionar a maneira como interagimos com produtos e serviços digitais, criando interfaces que são mais intuitivas, envolventes e eficazes para cada usuário individual.





Exemplo


Para ilustrar o conceito de GenUI, vamos considerar um aplicativo hipotético de fitness chamado “FitAI”. Este aplicativo visa fornecer planos de treino personalizados e conselhos nutricionais aos usuários com base em seus objetivos individuais, níveis de condicionamento físico e preferências.




Em uma abordagem tradicional de design de UI, o FitAI poderia ter um conjunto fixo de telas e elementos que são os mesmos para todos os usuários. No entanto, com a GenUI, a interface do aplicativo poderia se adaptar dinamicamente às necessidades e contexto únicos de cada usuário.




Esta abordagem é um tanto difícil de imaginar sendo implementada em 2024 e pode até não ter um ROI adequado, mas é possível.




Veja como isso poderia funcionar:





	
Onboarding:





	
Em vez de um questionário padrão, o FitAI usa uma IA conversacional para coletar informações sobre os objetivos do usuário, nível atual de condicionamento físico e preferências.



	
Com base nessa interação inicial, a IA gera um layout de dashboard personalizado, destacando os recursos e informações mais relevantes para os objetivos do usuário.



	
A tecnologia atual de IA pode ter uma seleção de componentes de tela à sua disposição para usar na composição do dashboard personalizado.



	
A tecnologia futura de IA pode assumir o papel de um designer de UI experiente e realmente criar o dashboard do zero.








	
Planejador de Treinos:





	
A interface do planejador de treinos é adaptada pela IA especificamente para corresponder ao nível de experiência do usuário e aos equipamentos disponíveis.



	
Para um iniciante sem equipamentos, pode mostrar exercícios simples com o peso do corpo, com instruções detalhadas e vídeos.



	
Para um usuário avançado com acesso a uma academia, pode exibir rotinas mais complexas com menos conteúdo explicativo.



	
O conteúdo do planejador de treinos não é simplesmente filtrado de um grande conjunto. Ele pode ser gerado em tempo real com base em uma base de conhecimento que é consultada com um contexto que inclui tudo o que se sabe sobre o usuário.








	
Acompanhamento de Progresso:





	
A interface de acompanhamento de progresso evolui com base nos objetivos e padrões de engajamento do usuário.



	
Se um usuário está principalmente focado em perda de peso, a interface pode exibir de forma proeminente um gráfico de tendência de peso e estatísticas de queima de calorias.



	
Para um usuário construindo músculo, pode destacar ganhos de força e mudanças na composição corporal.



	
A IA pode adaptar esta parte do aplicativo ao progresso real do usuário. Se o progresso parar por um período, o aplicativo pode mudar para um modo onde tenta persuadir o usuário a revelar as razões do retrocesso, a fim de mitigá-las.








	
Orientação Nutricional:





	
A seção de nutrição se adapta às preferências e restrições alimentares do usuário.



	
Para um usuário vegano, pode mostrar sugestões de refeições à base de plantas e fontes de proteína.



	
Para um usuário com intolerância ao glúten, automaticamente filtraria alimentos contendo glúten das recomendações.



	
Novamente, o conteúdo não é retirado de um conjunto massivo de dados de refeições que se aplica a todos os usuários, mas sim sintetizado a partir de uma base de conhecimento que contém informações adaptáveis com base na situação específica e nas restrições do usuário.



	
Por exemplo, as receitas são geradas com especificações de ingredientes que correspondem às necessidades calóricas em constante mudança do usuário conforme seu nível de condicionamento físico e estatísticas corporais evoluem.








	
Elementos Motivacionais:





	
O conteúdo motivacional e as notificações do aplicativo são personalizados com base no tipo de personalidade do usuário e sua resposta a diferentes estratégias motivacionais.



	
Alguns usuários podem receber mensagens encorajadoras, enquanto outros recebem feedback mais orientado a dados.













Neste exemplo, o GenUI permite que o FitAI crie uma experiência altamente personalizada para cada usuário, potencialmente aumentando o engajamento, a satisfação e a probabilidade de alcançar objetivos fitness. Os elementos da interface, o conteúdo e até mesmo a “personalidade” do aplicativo se adaptam para melhor atender às necessidades e preferências de cada usuário individual.





A Mudança para o Design Orientado a Resultados


O GenUI representa uma mudança fundamental na abordagem do design de interface do usuário, passando do foco na criação de elementos específicos de interface para uma abordagem mais holística e orientada a resultados. Esta mudança tem várias implicações importantes:





	
Foco nos Objetivos do Usuário:





	
Os designers precisarão pensar mais profundamente sobre os objetivos do usuário e os resultados desejados, em vez de componentes específicos da interface.



	
A ênfase será na criação de sistemas que possam gerar interfaces que ajudem os usuários a alcançar seus objetivos de forma eficiente e eficaz.



	
Novos frameworks de UI surgirão para dar aos designers baseados em IA as ferramentas necessárias para gerar experiências de usuário em tempo real e do zero, em vez de baseadas em especificações predefinidas de tela.








	
Mudança no Papel dos Designers:





	
Os designers farão a transição da criação de layouts fixos para a definição de regras, restrições e diretrizes para os sistemas de IA seguirem ao gerar interfaces.



	
Eles precisarão desenvolver habilidades em áreas como análise de dados, engenharia de prompts de IA e pensamento sistêmico para orientar efetivamente os sistemas GenUI.








	
Importância da Pesquisa com Usuários:





	
A pesquisa com usuários se torna ainda mais crítica em um contexto GenUI, pois os designers precisam entender não apenas as preferências dos usuários, mas também como essas preferências e necessidades mudam em diferentes contextos.



	
Testes contínuos com usuários e loops de feedback serão essenciais para refinar e melhorar a capacidade da IA de gerar interfaces eficazes.








	
Design para Variabilidade:





	
Em vez de criar uma única interface “perfeita”, os designers precisarão considerar múltiplas variações possíveis e garantir que o sistema possa gerar interfaces apropriadas para diversas necessidades dos usuários.



	
Isso inclui projetar para casos extremos e garantir que as interfaces geradas mantenham a usabilidade e acessibilidade em diferentes configurações.



	
A diferenciação de produtos assume novas dimensões envolvendo perspectivas divergentes sobre psicologia do usuário e o aproveitamento de conjuntos de dados únicos e bases de conhecimento indisponíveis para os concorrentes.














Desafios e Considerações


Embora o GenUI ofereça possibilidades empolgantes, também apresenta vários desafios e considerações:





	
Limitações Técnicas:





	
A tecnologia de IA atual, embora avançada, ainda tem limitações na compreensão de intenções complexas do usuário e na geração de interfaces verdadeiramente conscientes do contexto.



	
Problemas de desempenho relacionados à geração em tempo real de elementos de interface, especialmente em dispositivos menos potentes.








	
Requisitos de Dados:





	
Dependendo do caso de uso, sistemas GenUI eficazes podem exigir quantidades significativas de dados dos usuários para gerar interfaces personalizadas.



	
Os desafios na obtenção ética de dados autênticos dos usuários levantam preocupações sobre privacidade e segurança de dados, bem como possíveis vieses nos dados usados para treinar modelos GenUI.








	
Usabilidade e Consistência:





	
Pelo menos até que a prática se torne difundida, um aplicativo com interfaces em constante mudança pode levar a problemas de usabilidade, já que os usuários podem ter dificuldade para encontrar elementos familiares ou navegar de forma eficiente.



	
Encontrar um equilíbrio entre personalização e manutenção de uma interface consistente e aprendível será crucial.








	
Dependência Excessiva de IA:





	
Existe o risco de delegar excessivamente decisões de design para sistemas de IA, potencialmente levando a escolhas de interface sem inspiração, problemáticas ou simplesmente defeituosas.



	
A supervisão humana e a capacidade de substituir designs gerados por IA continuarão importantes no futuro próximo.














	
Preocupações com Acessibilidade:





	
Garantir que interfaces geradas dinamicamente permaneçam acessíveis a usuários com deficiência apresenta desafios totalmente novos, o que é preocupante dado o baixo nível de conformidade com a acessibilidade demonstrado por sistemas típicos.



	
Por outro lado, designers de IA podem ser implementados com preocupação incorporada com a acessibilidade e capacidades para construir interfaces acessíveis instantaneamente, assim como constroem UI para usuários sem deficiência.



	
De qualquer forma, sistemas GenUI devem ser projetados com diretrizes e processos de teste de acessibilidade robustos.








	
Confiança e Transparência do Usuário:





	
Os usuários podem se sentir desconfortáveis com interfaces que parecem “saber demais” sobre eles ou mudam de maneiras que não compreendem.



	
Fornecer transparência sobre como e por que as interfaces são personalizadas será importante para construir a confiança do usuário.














Perspectivas Futuras e Oportunidades


O futuro da Interface Generativa (GenUI) tem uma imensa promessa de revolucionar a forma como interagimos com produtos e serviços digitais. À medida que esta tecnologia continua a evoluir, podemos antecipar uma mudança sísmica na forma como as interfaces do usuário são projetadas, implementadas e experimentadas. Eu acredito que a GenUI é o fenômeno que finalmente levará nosso software para o reino do que hoje é considerado ficção científica.




Uma das perspectivas mais empolgantes da GenUI é seu potencial para melhorar a acessibilidade em uma escala grandiosa que vai além de simplesmente garantir que pessoas com deficiências graves não sejam completamente excluídas do uso do seu software. Ao adaptar automaticamente as interfaces às necessidades individuais dos usuários, a GenUI poderia tornar as experiências digitais mais inclusivas do que nunca. Imagine interfaces que se ajustam perfeitamente para fornecer texto maior para usuários mais jovens ou com deficiência visual, ou layouts simplificados para aqueles com deficiências cognitivas, tudo sem exigir configuração manual ou versões “acessíveis” separadas dos aplicativos.




As capacidades de personalização da GenUI provavelmente impulsionarão o aumento do engajamento, satisfação e lealdade dos usuários em uma ampla gama de produtos digitais. À medida que as interfaces se tornam mais sintonizadas com preferências e comportamentos individuais, os usuários encontrarão experiências digitais mais intuitivas e agradáveis, potencialmente levando a interações mais profundas e significativas com a tecnologia.




A GenUI também tem o potencial de transformar o processo de integração para novos usuários. Ao criar experiências intuitivas e personalizadas para usuários iniciantes que se adaptam rapidamente ao nível de experiência de cada usuário, a GenUI poderia reduzir significativamente a curva de aprendizado associada a novos aplicativos. Isso poderia levar a taxas de adoção mais rápidas e maior confiança dos usuários na exploração de novos recursos e funcionalidades.




Outra possibilidade empolgante é a capacidade da GenUI de manter uma experiência de usuário consistente em diferentes dispositivos e plataformas, enquanto otimiza para cada contexto específico de uso. Isso poderia resolver o desafio de longa data de fornecer experiências coerentes em um cenário de dispositivos cada vez mais fragmentado, desde smartphones e tablets até computadores desktop e tecnologias emergentes como óculos de realidade aumentada.




A natureza orientada a dados da GenUI abre oportunidades para iteração rápida e melhoria no design de UI. Ao coletar dados em tempo real sobre como os usuários interagem com interfaces geradas, designers e desenvolvedores podem obter insights sem precedentes sobre o comportamento e as preferências dos usuários. Este ciclo de feedback poderia levar a melhorias contínuas no design de UI, impulsionadas por padrões de uso reais em vez de suposições ou testes limitados com usuários.




Para se preparar para essa mudança, os designers precisarão evoluir suas habilidades e mentalidades. O foco mudará da criação de layouts fixos para o desenvolvimento de sistemas de design e diretrizes abrangentes que possam informar a geração de interface orientada por IA. Os designers precisarão cultivar uma compreensão profunda de análise de dados, tecnologias de IA e pensamento sistêmico para orientar efetivamente os sistemas GenUI.




Além disso, à medida que a GenUI borra as linhas entre design e tecnologia, os designers precisarão colaborar mais estreitamente com desenvolvedores e cientistas de dados. Essa abordagem interdisciplinar será crucial na criação de sistemas GenUI que não são apenas visualmente atraentes e amigáveis ao usuário, mas também tecnicamente robustos e eticamente sólidos.




As implicações éticas do GenUI também virão à tona conforme a tecnologia amadurece. Os designers desempenharão um papel crucial no desenvolvimento de frameworks para o uso responsável da IA no design de interface, garantindo que a personalização aprimore as experiências do usuário sem comprometer a privacidade ou manipular o comportamento do usuário de maneiras antiéticas.




Ao olharmos para o futuro, o GenUI apresenta tanto oportunidades empolgantes quanto desafios significativos. Ele tem o potencial de criar experiências digitais mais intuitivas, eficientes e satisfatórias para usuários em todo o mundo. Embora exija que os designers se adaptem e adquiram novas habilidades, também oferece uma oportunidade sem precedentes de moldar o futuro da interação humano-computador de maneiras profundas e significativas. A jornada rumo a sistemas GenUI plenamente desenvolvidos será, sem dúvida, complexa, mas as potenciais recompensas em termos de experiências do usuário aprimoradas e acessibilidade digital tornam esse futuro algo pelo qual vale a pena lutar.








Orquestração Inteligente de Fluxos de Trabalho

[image: Uma ilustração em preto e branco de um homem distinto em smoking, provavelmente um maestro, visto de perfil. Ele levanta sua mão direita como se estivesse regendo uma apresentação. Atrás dele, notas musicais fluidas e respingos de tinta criam um fundo artístico, sugerindo movimento e criatividade.]


No âmbito do desenvolvimento de aplicações, os fluxos de trabalho desempenham um papel crucial na definição de como tarefas, processos e interações do usuário são estruturados e executados. À medida que as aplicações se tornam mais complexas e as expectativas dos usuários continuam a aumentar, a necessidade de uma orquestração inteligente e adaptativa de fluxos de trabalho torna-se cada vez mais evidente.




A abordagem de “Orquestração Inteligente de Fluxos de Trabalho” concentra-se no aproveitamento de componentes de IA para orquestrar e otimizar dinamicamente fluxos de trabalho complexos dentro das aplicações. O objetivo é criar aplicações mais eficientes, responsivas e adaptáveis aos dados e contexto em tempo real.




Neste capítulo, exploraremos os princípios e padrões fundamentais que sustentam a abordagem de orquestração inteligente de fluxos de trabalho. Consideraremos como a IA pode ser usada para rotear tarefas de forma inteligente, automatizar a tomada de decisões e adaptar dinamicamente os fluxos de trabalho com base em vários fatores, como comportamento do usuário, desempenho do sistema e regras de negócio. Por meio de exemplos práticos e cenários do mundo real, demonstraremos o potencial transformador da IA na simplificação e otimização dos fluxos de trabalho das aplicações.




Seja você esteja construindo aplicações empresariais com processos de negócio complexos ou aplicações voltadas para o consumidor com jornadas dinâmicas do usuário, os padrões e técnicas discutidos neste capítulo fornecerão o conhecimento e as ferramentas necessários para criar fluxos de trabalho inteligentes e eficientes que aprimoram a experiência geral do usuário e geram valor para o negócio.




Necessidade de Negócio


As abordagens tradicionais para gerenciamento de fluxos de trabalho frequentemente dependem de regras predefinidas e árvores de decisão estáticas, que podem ser rígidas, inflexíveis e incapazes de lidar com a natureza dinâmica das aplicações modernas.




Considere um cenário onde uma aplicação de comércio eletrônico precisa lidar com um processo complexo de atendimento de pedidos. O fluxo de trabalho pode envolver múltiplas etapas, como validação do pedido, verificação de estoque, processamento de pagamento, envio e notificações ao cliente. Cada etapa pode ter seu próprio conjunto de regras, dependências, integrações externas e mecanismos de tratamento de exceções. Gerenciar tal fluxo de trabalho manualmente ou através de lógica codificada pode rapidamente se tornar complicado, propenso a erros e difícil de manter.




Além disso, à medida que a aplicação escala e o número de usuários simultâneos cresce, o fluxo de trabalho pode precisar se adaptar e se otimizar com base em dados em tempo real e desempenho do sistema. Por exemplo, durante períodos de pico de tráfego, a aplicação pode precisar ajustar dinamicamente o fluxo de trabalho para priorizar certas tarefas, alocar recursos de forma eficiente e garantir uma experiência fluida ao usuário.




É aqui que entra a abordagem de “Orquestração Inteligente de Fluxos de Trabalho”. Ao aproveitar componentes de IA, os desenvolvedores podem criar fluxos de trabalho que são inteligentes, adaptativos e auto-otimizáveis. A IA pode analisar grandes quantidades de dados, aprender com experiências passadas e tomar decisões informadas em tempo real para orquestrar o fluxo de trabalho de forma eficaz.





Principais Benefícios



	
Aumento da Eficiência: A IA pode otimizar a alocação de tarefas, utilização de recursos e execução do fluxo de trabalho, levando a tempos de processamento mais rápidos e maior eficiência geral.




	
Adaptabilidade: Fluxos de trabalho baseados em IA podem se adaptar dinamicamente a condições mutáveis, como flutuações na demanda dos usuários, desempenho do sistema ou requisitos de negócio, garantindo que a aplicação permaneça responsiva e resiliente.




	
Tomada de Decisão Automatizada: A IA pode automatizar processos complexos de tomada de decisão dentro do fluxo de trabalho, reduzindo a intervenção manual e minimizando o risco de erros humanos.




	
Personalização: A IA pode analisar o comportamento, preferências e contexto do usuário para personalizar o fluxo de trabalho e entregar experiências sob medida para usuários individuais.




	
Escalabilidade: Fluxos de trabalho potencializados por IA podem escalar perfeitamente para lidar com volumes crescentes de dados e interações de usuários, sem comprometer o desempenho ou a confiabilidade.









Nas seções seguintes, exploraremos os padrões e técnicas principais que permitem a implementação de fluxos de trabalho inteligentes e mostraremos exemplos do mundo real de como a IA está transformando o gerenciamento de fluxos de trabalho em aplicações modernas.





Padrões Principais


Para implementar a orquestração inteligente de fluxos de trabalho em aplicações, os desenvolvedores podem aproveitar diversos padrões principais que aproveitam o poder da IA. Esses padrões fornecem uma abordagem estruturada para projetar e gerenciar fluxos de trabalho, permitindo que as aplicações se adaptem, otimizem e automatizem processos com base em dados e contexto em tempo real. Vamos explorar alguns dos padrões fundamentais na orquestração inteligente de fluxos de trabalho.




Roteamento Dinâmico de Tarefas


Este padrão envolve o uso de IA para rotear tarefas de forma inteligente dentro de um fluxo de trabalho com base em vários fatores, como prioridade da tarefa, disponibilidade de recursos e desempenho do sistema. Os algoritmos de IA podem analisar as características de cada tarefa, considerar o estado atual do sistema e tomar decisões informadas para atribuir tarefas aos recursos ou caminhos de processamento mais apropriados. O roteamento dinâmico de tarefas garante que as tarefas sejam distribuídas e executadas de forma eficiente, otimizando o desempenho geral do fluxo de trabalho.



 1 class TaskRouter
 2   include Raix::ChatCompletion
 3   include Raix::FunctionDispatch
 4 
 5   attr_accessor :task
 6 
 7   # list of functions that can be called by the AI entirely at its
 8   # discretion depending on the task received
 9 
10   function :analyze_task_priority do
11     TaskPriorityAnalyzer.perform(task)
12   end
13 
14   function :check_resource_availability, # ...
15   function :assess_system_performance, # ...
16   function :assign_task_to_resource, # ...
17 
18   DIRECTIVE = "You are a task router, responsible for intelligently
19    assigning tasks to available resources based on priority, resource
20    availability, and system performance..."
21 
22   def initialize(task)
23     self.task = task
24     transcript << { system: DIRECTIVE }
25     transcript << { user: task.to_json }
26   end
27 
28   def perform
29     while task.unassigned?
30       chat_completion
31 
32       # todo: add max loop counter and break
33     end
34 
35     # capture the transcript for later analysis
36     task.update(routing_transcript: transcript)
37   end
38 end





Observe o loop criado pela expressão while na linha 29, que continua solicitando a IA até que a tarefa seja atribuída. Na linha 35, salvamos a transcrição da tarefa para análise e depuração posterior, caso seja necessário.





Tomada de Decisão Contextual


Você pode usar um código muito similar para tomar decisões conscientes do contexto dentro de um fluxo de trabalho. Ao analisar pontos de dados relevantes como preferências do usuário, padrões históricos e entradas em tempo real, os componentes de IA podem determinar o curso de ação mais apropriado em cada ponto de decisão no fluxo de trabalho. Adapte o comportamento do seu fluxo de trabalho com base no contexto específico de cada usuário ou cenário, fornecendo experiências personalizadas e otimizadas.





Composição Adaptativa de Fluxo de Trabalho


Este padrão concentra-se em compor e ajustar dinamicamente fluxos de trabalho com base em requisitos ou condições em mudança. A IA pode analisar o estado atual do fluxo de trabalho, identificar gargalos ou ineficiências, e modificar automaticamente a estrutura do fluxo de trabalho para otimizar o desempenho. A composição adaptativa de fluxo de trabalho permite que as aplicações evoluam e melhorem continuamente seus processos sem necessidade de intervenção manual.






Tratamento e Recuperação de Exceções


O tratamento e recuperação de exceções são aspectos críticos da orquestração inteligente de fluxo de trabalho. Ao trabalhar com componentes de IA e fluxos de trabalho complexos, é essencial antecipar e tratar exceções de forma elegante para garantir a estabilidade e confiabilidade do sistema.




Aqui estão algumas considerações e técnicas importantes para o tratamento e recuperação de exceções em fluxos de trabalho inteligentes:





	
Propagação de Exceções: Implemente uma abordagem consistente para propagar exceções entre os componentes do fluxo de trabalho. Quando uma exceção ocorre dentro de um componente, ela deve ser capturada, registrada e propagada para o orquestrador ou um componente discreto responsável por tratar exceções. A ideia é centralizar o tratamento de exceções e evitar que as exceções sejam silenciosamente suprimidas, além de abrir possibilidades para o Tratamento Inteligente de Erros.




	
Mecanismos de Retentativa: Mecanismos de retentativa ajudam a melhorar a resiliência do fluxo de trabalho e lidar com falhas intermitentes de forma elegante. Definitivamente tente implementar mecanismos de retentativa para exceções transitórias ou recuperáveis, como problemas de conectividade de rede ou indisponibilidade de recursos que podem ser automaticamente retentados após um atraso especificado. Ter um orquestrador ou manipulador de exceções baseado em IA significa que suas estratégias de retentativa não precisam ser mecânicas por natureza, dependendo de algoritmos fixos como recuo exponencial. Você pode deixar o tratamento da retentativa a critério do componente de IA responsável por decidir como lidar com a exceção.




	
Estratégias de Contingência: Se um componente de IA falhar em fornecer uma resposta válida ou encontrar um erro—uma ocorrência comum dada sua natureza de ponta—tenha um mecanismo de contingência em vigor para garantir que o fluxo de trabalho possa continuar. Isso pode envolver o uso de valores padrão, algoritmos alternativos ou um Humano no Ciclo para tomar decisões e manter o fluxo de trabalho em movimento.




	
Ações Compensatórias: As diretivas do orquestrador devem incluir instruções sobre ações compensatórias para lidar com exceções que não podem ser resolvidas automaticamente. Ações compensatórias são passos tomados para desfazer ou mitigar os efeitos de uma operação falha. Por exemplo, se uma etapa de processamento de pagamento falhar, uma ação compensatória poderia ser reverter a transação e notificar o usuário. Ações compensatórias ajudam a manter a consistência e integridade dos dados diante de exceções.




	
Monitoramento e Alerta de Exceções: Configure mecanismos de monitoramento e alerta para detectar e notificar as partes interessadas relevantes sobre exceções críticas. O orquestrador pode ser configurado com limites e regras para disparar alertas quando as exceções excederem certos limites ou quando tipos específicos de exceções ocorrerem. Isso permite a identificação e resolução proativa de problemas antes que eles impactem o sistema como um todo.









Aqui está um exemplo de tratamento e recuperação de exceções em um componente de fluxo de trabalho em Ruby:



 1 class InventoryManager
 2   def check_availability(order)
 3     begin
 4       # Perform inventory check logic
 5       inventory = Inventory.find_by(product_id: order.product_id)
 6       if inventory.available_quantity >= order.quantity
 7         return true
 8       else
 9         raise InsufficientInventoryError,
10               "Insufficient inventory for product #{order.product_id}"
11       end
12     rescue InsufficientInventoryError => e
13       # Log the exception
14       logger.error("Inventory check failed: #{e.message}")
15 
16       # Retry the operation after a delay
17       retry_count ||= 0
18       if retry_count < MAX_RETRIES
19         retry_count += 1
20         sleep(RETRY_DELAY)
21         retry
22       else
23         # Fallback to manual intervention
24         NotificationService.admin("Inventory check failed: Order #{order.id}")
25         return false
26       end
27     end
28   end
29 end





Neste exemplo, o componente InventoryManager verifica a disponibilidade de um produto para um determinado pedido. Se a quantidade disponível for insuficiente, ele lança um InsufficientInventoryError. A exceção é capturada, registrada e um mecanismo de nova tentativa é implementado. Se o limite de tentativas for excedido, o componente recorre à intervenção manual notificando um administrador.




Ao implementar mecanismos robustos de tratamento e recuperação de exceções, você pode garantir que seus workflows inteligentes sejam resilientes, mantíveis e capazes de lidar com situações inesperadas de forma elegante.









Estes padrões formam a base da orquestração de workflows inteligentes e podem ser combinados e adaptados para atender aos requisitos específicos de diferentes aplicações. Ao aproveitar esses padrões, os desenvolvedores podem criar workflows que são flexíveis, resilientes e otimizados para desempenho e experiência do usuário.




Na próxima seção, exploraremos como esses padrões podem ser implementados na prática, usando exemplos do mundo real e trechos de código para ilustrar a integração de componentes de IA no gerenciamento de workflow.





Implementando a Orquestração de Workflow Inteligente na Prática


Agora que exploramos os padrões principais na orquestração de workflow inteligente, vamos mergulhar em como esses padrões podem ser implementados em aplicações do mundo real. Forneceremos exemplos práticos e trechos de código para ilustrar a integração de componentes de IA no gerenciamento de workflow.




Processador de Pedidos Inteligente


Vamos mergulhar em um exemplo prático de implementação de orquestração de workflow inteligente usando um componente OrderProcessor baseado em IA em uma aplicação de e-commerce em Ruby on Rails. O OrderProcessor implementa o conceito de Gerenciador de Processos de Integração Empresarial que encontramos pela primeira vez no Capítulo 3 ao discutir Múltiplos Workers. O componente será responsável por gerenciar o workflow de atendimento de pedidos, tomando decisões de roteamento com base em resultados intermediários e orquestrando a execução de várias etapas de processamento.




O processo de atendimento de pedidos envolve múltiplas etapas, como validação do pedido, verificação de estoque, processamento de pagamento e envio. Cada etapa é implementada como um processo worker separado que executa uma tarefa específica e retorna o resultado para o OrderProcessor. As etapas não são obrigatórias e nem precisam necessariamente ser executadas em uma ordem precisa.




Aqui está um exemplo de implementação do OrderProcessor. Ele apresenta dois mixins do Raix. O primeiro (ChatCompletion) fornece a capacidade de realizar chat completion, que é o que torna isso um componente de IA. O segundo (FunctionDispatch) permite a chamada de função pela IA, permitindo que ela responda a um prompt com uma invocação de função em vez de uma mensagem de texto.




As funções worker (validate_order, check_inventory, etc.) delegam para suas respectivas classes worker, que podem ser componentes de IA ou não, com o único requisito sendo que elas retornem os resultados de seu trabalho em um formato que possa ser representado como uma string.
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Como em todos os outros exemplos nesta parte do livro, este código é praticamente pseudocódigo e tem como objetivo apenas transmitir o significado do padrão e inspirar suas próprias criações. Descrições completas dos padrões e exemplos completos de código estão incluídos na Parte 2.





 1 class OrderProcessor
 2   include Raix::ChatCompletion
 3   include Raix::FunctionDispatch
 4 
 5   SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."
 6 
 7   def initialize(order)
 8     self.order = order
 9     transcript << { system: SYSTEM_DIRECTIVE }
10     transcript << { user: order.to_json }
11   end
12 
13   def perform
14     # will continue looping until `stop_looping!` is called
15     chat_completion(loop: true)
16   end
17 
18   # list of functions available to be called by the AI
19   # truncated for brevity
20 
21   def functions
22     [
23       {
24         name: "validate_order",
25         description: "Invoke to check validity of order",
26         parameters: {
27           ...
28       },
29       ...
30     ]
31   end
32 
33   # implementation of functions that can be called by the AI
34   # entirely at its discretion, depending on the needs of the order
35 
36   def validate_order
37     OrderValidationWorker.perform(@order)
38   end
39 
40   def check_inventory
41     InventoryCheckWorker.perform(@order)
42   end
43 
44   def process_payment
45     PaymentProcessingWorker.perform(@order)
46   end
47 
48   def schedule_shipping
49     ShippingSchedulerWorker.perform(@order)
50   end
51 
52   def send_confirmation
53     OrderConfirmationWorker.perform(@order)
54   end
55 
56   def finished_processing
57     @order.update!(transcript:, processed_at: Time.current)
58     stop_looping!
59   end
60 end





No exemplo, o OrderProcessor é inicializado com um objeto de pedido e mantém uma transcrição da execução do fluxo de trabalho, no formato típico de transcrição de conversas que é nativo dos modelos de linguagem grandes. O controle completo é dado à IA para orquestrar a execução de várias etapas de processamento, como validação do pedido, verificação de estoque, processamento de pagamento e envio.




Toda vez que o método chat_completion é chamado, a transcrição é enviada para a IA fornecer uma conclusão como uma chamada de função. Cabe inteiramente à IA analisar o resultado da etapa anterior e determinar a ação apropriada a ser tomada. Por exemplo, se a verificação de estoque revelar níveis baixos, o OrderProcessor pode agendar uma tarefa de reabastecimento. Se o processamento do pagamento falhar, ele pode iniciar uma nova tentativa ou notificar o suporte ao cliente.




O exemplo acima não tem funções definidas para reabastecimento ou notificação ao suporte ao cliente, mas certamente poderia ter.




A transcrição cresce toda vez que uma função é chamada e serve como um registro da execução do fluxo de trabalho, incluindo os resultados de cada etapa e as instruções geradas pela IA para as próximas etapas. Essa transcrição pode ser usada para depuração, auditoria e fornecimento de visibilidade do processo de atendimento do pedido.




Ao aproveitar a IA no OrderProcessor, a aplicação de e-commerce pode adaptar dinamicamente o fluxo de trabalho com base em dados em tempo real e lidar com exceções de forma inteligente. O componente de IA pode tomar decisões informadas, otimizar o fluxo de trabalho e garantir um processamento suave dos pedidos, mesmo em cenários complexos.




O fato de que o único requisito dos processos worker é retornar alguma saída inteligível para a IA considerar ao decidir o que fazer em seguida, pode começar a fazer você perceber como essa abordagem pode reduzir o trabalho de mapeamento de entrada/saída que normalmente está envolvido na integração de sistemas diferentes entre si.





Moderador de Conteúdo Inteligente


Aplicações de mídia social geralmente requerem pelo menos uma moderação mínima de conteúdo para garantir uma comunidade segura e saudável. Este exemplo do componente ContentModerator aproveita a IA para orquestrar de forma inteligente o fluxo de trabalho de moderação, tomando decisões com base nas características do conteúdo e nos resultados de várias etapas de moderação.




O processo de moderação envolve múltiplas etapas, como análise de texto, reconhecimento de imagem, avaliação da reputação do usuário e revisão manual. Cada etapa é implementada como um processo worker separado que executa uma tarefa específica e retorna o resultado ao ContentModerator.




Aqui está um exemplo de implementação do ContentModerator:



 1 class ContentModerator
 2   include Raix::ChatCompletion
 3   include Raix::FunctionDispatch
 4 
 5   SYSTEM_DIRECTIVE = "You are a content moderator process manager,
 6     tasked with the workflow involved in moderating user-generated content..."
 7 
 8   def initialize(content)
 9     @content = content
10     @transcript = [
11       { system: SYSTEM_DIRECTIVE },
12       { user: content.to_json }
13     ]
14   end
15 
16   def perform
17     complete(@transcript)
18   end
19 
20   def model
21     "openai/gpt-4"
22   end
23 
24   # list of functions available to be called by the AI
25   # truncated for brevity
26 
27   def functions
28     [
29       {
30         name: "analyze_text",
31         # ...
32       },
33       {
34         name: "recognize_image",
35         description: "Invoke to describe images...",
36         # ...
37       },
38       {
39         name: "assess_user_reputation",
40         # ...
41       },
42       {
43         name: "escalate_to_manual_review",
44         # ...
45       },
46       {
47         name: "approve_content",
48         # ...
49       },
50       {
51         name: "reject_content",
52         # ...
53       }
54     ]
55   end
56 
57   # implementation of functions that can be called by the AI
58   # entirely at its discretion, depending on the needs of the order
59 
60   def analyze_text
61     result = TextAnalysisWorker.perform(@content)
62     continue_with(result)
63   end
64 
65   def recognize_image
66     result = ImageRecognitionWorker.perform(@content)
67     continue_with(result)
68   end
69 
70   def assess_user_reputation
71     result = UserReputationWorker.perform(@content.user)
72     continue_with(result)
73   end
74 
75   def escalate_to_manual_review
76     ManualReviewWorker.perform(@content)
77     @content.update!(status: 'pending', transcript: @transcript)
78   end
79 
80   def approve_content
81     @content.update!(status: 'approved', transcript: @transcript)
82   end
83 
84   def reject_content
85     @content.update!(status: 'rejected', transcript: @transcript)
86   end
87 
88   private
89 
90   def continue_with(result)
91     @transcript << { function: result }
92     complete(@transcript)
93   end
94 end





Neste exemplo, o ContentModerator é inicializado com um objeto de conteúdo e mantém um registro de moderação no formato de conversação. O componente de IA tem controle total sobre o fluxo de trabalho de moderação, decidindo quais etapas executar com base nas características do conteúdo e nos resultados de cada etapa.




As funções trabalhadoras disponíveis para a IA invocar incluem analyze_text, recognize_image, assess_user_reputation e escalate_to_manual_review. Cada função delega a tarefa para um processo trabalhador correspondente (TextAnalysisWorker, ImageRecognitionWorker, etc.) e adiciona o resultado ao registro de moderação, com exceção da função de escalonamento, que atua como um estado final. Por fim, as funções approve_content e reject_content também atuam como estados finais.




O componente de IA analisa o conteúdo e determina a ação apropriada a ser tomada. Se o conteúdo contiver referências de imagem, ele pode chamar o trabalhador recognize_image para auxiliar na revisão visual. Se algum trabalhador alertar sobre conteúdo potencialmente prejudicial, a IA pode decidir escalonar o conteúdo para revisão manual ou simplesmente rejeitá-lo imediatamente. Mas dependendo da gravidade do alerta, a IA pode optar por usar os resultados da avaliação de reputação do usuário para decidir como lidar com conteúdo sobre o qual não tem certeza. Dependendo do caso de uso, talvez usuários confiáveis tenham mais flexibilidade no que podem publicar. E assim por diante…




Como no exemplo anterior do gerenciador de processos, o registro de moderação serve como um histórico da execução do fluxo de trabalho, incluindo os resultados de cada etapa e as decisões geradas pela IA. Este registro pode ser usado para auditoria, transparência e melhoria do processo de moderação ao longo do tempo.




Ao aproveitar a IA no ContentModerator, a aplicação de mídia social pode adaptar dinamicamente o fluxo de trabalho de moderação com base nas características do conteúdo e lidar com cenários complexos de moderação de forma inteligente. O componente de IA pode tomar decisões informadas, otimizar o fluxo de trabalho e garantir uma experiência comunitária segura e saudável.




Vamos explorar mais dois exemplos que demonstram o agendamento preditivo de tarefas e o tratamento e recuperação de exceções no contexto de orquestração inteligente de fluxo de trabalho.





Agendamento Preditivo de Tarefas em um Sistema de Suporte ao Cliente


Em uma aplicação de suporte ao cliente construída com , gerenciar e priorizar tickets de suporte de forma eficiente é crucial para fornecer assistência oportuna aos clientes. O componente SupportTicketScheduler aproveita a IA para agendar e atribuir de forma preditiva tickets de suporte aos agentes disponíveis com base em vários fatores, como urgência do ticket, experiência do agente e carga de trabalho.



 1 class SupportTicketScheduler
 2   include Raix::ChatCompletion
 3   include Raix::FunctionDispatch
 4 
 5   SYSTEM_DIRECTIVE = "You are a support ticket scheduler,
 6     tasked with intelligently assigning tickets to available agents..."
 7 
 8   def initialize(ticket)
 9     @ticket = ticket
10     @transcript = [
11       { system: SYSTEM_DIRECTIVE },
12       { user: ticket.to_json }
13     ]
14   end
15 
16   def perform
17     complete(@transcript)
18   end
19 
20   def model
21     "openai/gpt-4"
22   end
23 
24   def functions
25     [
26       {
27         name: "analyze_ticket_urgency",
28         # ...
29       },
30       {
31         name: "list_available_agents",
32         description: "Includes expertise of available agents",
33         # ...
34       },
35       {
36         name: "predict_agent_workload",
37         description: "Uses historical data to predict upcoming workloads",
38         # ...
39       },
40       {
41         name: "assign_ticket_to_agent",
42         # ...
43       },
44       {
45         name: "reschedule_ticket",
46         # ...
47       }
48     ]
49   end
50 
51   # implementation of functions that can be called by the AI
52   # entirely at its discretion, depending on the needs of the order
53 
54   def analyze_ticket_urgency
55     result = TicketUrgencyAnalyzer.perform(@ticket)
56     continue_with(result)
57   end
58 
59   def list_available_agents
60     result = ListAvailableAgents.perform
61     continue_with(result)
62   end
63 
64   def predict_agent_workload
65     result = AgentWorkloadPredictor.perform
66     continue_with(result)
67   end
68 
69   def assign_ticket_to_agent
70     TicketAssigner.perform(@ticket, @transcript)
71   end
72 
73   def delay_assignment(until)
74     until = DateTimeStandardizer.process(until)
75     SupportTicketScheduler.delay(@ticket, @transcript, until)
76   end
77 
78   private
79 
80   def continue_with(result)
81     @transcript << { function: result }
82     complete(@transcript)
83   end
84 end





Neste exemplo, o SupportTicketScheduler é inicializado com um objeto de ticket de suporte e mantém um registro de agendamento. O componente de IA analisa os detalhes do ticket e realiza o agendamento preditivo da atribuição do ticket com base em fatores como urgência do ticket, expertise do agente e carga de trabalho prevista do agente.




As funções disponíveis para a IA invocar incluem analyze_ticket_urgency, list_available_agents, predict_agent_workload e assign_ticket_to_agent. Cada função delega a tarefa para um componente analisador ou preditor correspondente e adiciona o resultado ao registro de agendamento. A IA também tem a opção de atrasar a atribuição usando a função delay_assignment.




O componente de IA examina o registro de agendamento e toma decisões informadas sobre a atribuição de tickets. Ele considera a urgência do ticket, a expertise dos agentes disponíveis e a carga de trabalho prevista de cada agente para determinar o agente mais adequado para lidar com o ticket.




Ao aproveitar o agendamento preditivo de tarefas, a aplicação de suporte ao cliente pode otimizar a atribuição de tickets, reduzir os tempos de resposta e melhorar a satisfação geral do cliente. O gerenciamento proativo e eficiente dos tickets de suporte garante que os tickets certos sejam atribuídos aos agentes certos no momento certo.





Tratamento de Exceções e Recuperação em um Pipeline de Processamento de Dados


O tratamento de exceções e a recuperação de falhas são essenciais para garantir a integridade dos dados e evitar a perda de dados. O componente DataProcessingOrchestrator utiliza IA para tratar exceções de forma inteligente e orquestrar o processo de recuperação em um pipeline de processamento de dados



  1 class DataProcessingOrchestrator
  2   include Raix::ChatCompletion
  3   include Raix::FunctionDispatch
  4 
  5   SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."
  6 
  7   def initialize(data_batch)
  8     @data_batch = data_batch
  9     @transcript = [
 10       { system: SYSTEM_DIRECTIVE },
 11       { user: data_batch.to_json }
 12     ]
 13   end
 14 
 15   def perform
 16     complete(@transcript)
 17   end
 18 
 19   def model
 20     "openai/gpt-4"
 21   end
 22 
 23   def functions
 24     [
 25       {
 26         name: "validate_data",
 27         # ...
 28       },
 29       {
 30         name: "process_data",
 31         # ...
 32       },
 33       {
 34         name: "request_fix",
 35         # ...
 36       },
 37       {
 38         name: "retry_processing",
 39         # ...
 40       },
 41       {
 42         name: "mark_data_as_failed",
 43         # ...
 44       },
 45       {
 46         name: "finished",
 47         # ...
 48       }
 49     ]
 50   end
 51 
 52   # implementation of functions that can be called by the AI
 53   # entirely at its discretion, depending on the needs of the order
 54 
 55   def validate_data
 56     result = DataValidator.perform(@data_batch)
 57     continue_with(result)
 58   rescue ValidationException => e
 59     handle_validation_exception(e)
 60   end
 61 
 62   def process_data
 63     result = DataProcessor.perform(@data_batch)
 64     continue_with(result)
 65   rescue ProcessingException => e
 66     handle_processing_exception(e)
 67   end
 68 
 69   def request_fix(description_of_fix)
 70     result = SmartDataFixer.new(description_of_fix, @data_batch)
 71     continue_with(result)
 72   end
 73 
 74   def retry_processing(timeout_in_seconds)
 75     wait(timeout_in_seconds)
 76     process_data
 77   end
 78 
 79   def mark_data_as_failed
 80     @data_batch.update!(status: 'failed', transcript: @transcript)
 81   end
 82 
 83   def finished
 84     @data_batch.update!(status: 'finished', transcript: @transcript)
 85   end
 86 
 87   private
 88 
 89   def continue_with(result)
 90     @transcript << { function: result }
 91     complete(@transcript)
 92   end
 93 
 94   def handle_validation_exception(exception)
 95     @transcript << { exception: exception.message }
 96     complete(@transcript)
 97   end
 98 
 99   def handle_processing_exception(exception)
100     @transcript << { exception: exception.message }
101     complete(@transcript)
102   end
103 end





Neste exemplo, o DataProcessingOrchestrator é inicializado com um objeto de lote de dados e mantém um registro de processamento. O componente de IA orquestra o pipeline de processamento de dados, lidando com exceções e se recuperando de falhas conforme necessário.




As funções disponíveis para a IA invocar incluem validate_data, process_data, request_fix, retry_processing e mark_data_as_failed. Cada função delega a tarefa para um componente de processamento de dados correspondente e adiciona o resultado ou detalhes da exceção ao registro de processamento.




Se uma exceção de validação ocorrer durante a etapa validate_data, a função handle_validation_exception adiciona os dados da exceção ao registro e devolve o controle para a IA. Da mesma forma, se uma exceção de processamento ocorrer durante a etapa process_data, a IA pode decidir sobre a estratégia de recuperação.




Dependendo da natureza da exceção encontrada, a IA pode, a seu critério, decidir chamar request_fix, que delega a um componente SmartDataFixer baseado em IA (veja o capítulo Dados Auto-Reparáveis). O corretor de dados recebe uma descrição em português simples de como deve modificar o @data_batch para que o processamento possa ser repetido. Talvez uma nova tentativa bem-sucedida envolveria remover registros do lote de dados que falharam na validação e/ou copiá-los para um pipeline de processamento diferente para revisão humana? As possibilidades são praticamente infinitas.




Ao incorporar o tratamento de exceções e recuperação baseados em IA, a aplicação de processamento de dados se torna mais resiliente e tolerante a falhas. O DataProcessingOrchestrator gerencia inteligentemente as exceções, minimiza a perda de dados e garante a execução suave do fluxo de trabalho de processamento de dados.






Monitoramento e Registro de Logs


O monitoramento e registro de logs fornecem visibilidade sobre o progresso, desempenho e saúde dos componentes do fluxo de trabalho baseado em IA, permitindo que os desenvolvedores acompanhem e analisem o comportamento do sistema. Implementar mecanismos eficazes de monitoramento e registro de logs é essencial para depuração, auditoria e melhoria contínua dos fluxos de trabalho inteligentes.




Monitorando o Progresso e Desempenho do Fluxo de Trabalho


Para garantir a execução suave dos fluxos de trabalho inteligentes, é importante monitorar o progresso e o desempenho de cada componente do fluxo de trabalho. Isso envolve o acompanhamento de métricas e eventos principais durante todo o ciclo de vida do fluxo de trabalho.




Alguns aspectos importantes para monitorar incluem:




1. Tempo de Execução do Fluxo de Trabalho: Medir o tempo necessário para cada componente do fluxo de trabalho completar sua tarefa. Isso ajuda a identificar gargalos de desempenho e otimizar a eficiência geral do fluxo de trabalho.




2. Utilização de Recursos: Monitorar a utilização dos recursos do sistema, como CPU, memória e armazenamento, por cada componente do fluxo de trabalho. Isso ajuda a garantir que o sistema esteja operando dentro de sua capacidade e possa lidar com a carga de trabalho de forma eficaz.




3. Taxas de Erro e Exceções: Acompanhar a ocorrência de erros e exceções dentro dos componentes do fluxo de trabalho. Isso ajuda a identificar possíveis problemas e permite o tratamento proativo de erros e recuperação.




4. Pontos de Decisão e Resultados: Monitorar os pontos de decisão dentro do fluxo de trabalho e os resultados das decisões baseadas em IA. Isso fornece insights sobre o comportamento e a eficácia dos componentes de IA.




Os dados capturados pelos processos de monitoramento podem ser exibidos em painéis ou usados como entradas para relatórios programados que informam os administradores do sistema sobre a saúde do sistema.
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Os dados de monitoramento podem ser alimentados a um processo de administrador de sistema baseado em IA para revisão e possível ação!







Registrando Eventos e Decisões Principais


O registro de logs é uma prática essencial que envolve capturar e armazenar informações relevantes sobre eventos principais, decisões e exceções que ocorrem durante a execução do fluxo de trabalho.




Alguns aspectos importantes para registrar incluem:




1. Iniciação e Conclusão do Fluxo de Trabalho: Registrar os horários de início e término de cada instância do fluxo de trabalho, junto com quaisquer metadados relevantes, como os dados de entrada e o contexto do usuário.




2. Execução de Componentes: Registrar os detalhes da execução de cada componente do fluxo de trabalho, incluindo os parâmetros de entrada, resultados de saída e quaisquer dados intermediários gerados.




3. Decisões e Raciocínio da IA: Registrar as decisões tomadas pelos componentes de IA, junto com o raciocínio subjacente ou pontuações de confiança. Isso fornece transparência e permite a auditoria de decisões baseadas em IA.




4. Exceções e Mensagens de Erro: Registrar quaisquer exceções ou mensagens de erro encontradas durante a execução do fluxo de trabalho, incluindo o rastreamento de pilha e informações contextuais relevantes.




O registro de logs pode ser implementado usando várias técnicas, como escrever em arquivos de log, armazenar logs em um banco de dados ou enviar logs para um serviço centralizado de registro. É importante escolher uma estrutura de registro que forneça flexibilidade, escalabilidade e fácil integração com a arquitetura da aplicação.




Aqui está um exemplo de como o registro de logs pode ser implementado em uma aplicação Ruby on Rails usando a classe ActiveSupport::Logger:



 1 class WorkflowLogger
 2   def self.log(message, severity = :info)
 3     @logger ||= ActiveSupport::Logger.new('workflow.log')
 4     @logger.formatter ||= proc do |severity, datetime, progname, msg|
 5       "#{datetime} [#{severity}] #{msg}\n"
 6     end
 7     @logger.send(severity, message)
 8   end
 9 end
10 
11 # Usage example
12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")
13 WorkflowLogger.log("Payment processing completed successfully")
14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)





Ao posicionar estrategicamente declarações de logging por todos os componentes do fluxo de trabalho e pontos de decisão da IA, os desenvolvedores podem capturar informações valiosas para depuração, auditoria e análise.





Benefícios do Monitoramento e Logging


A implementação de monitoramento e logging na orquestração inteligente de fluxos de trabalho oferece diversos benefícios:




1. Depuração e Solução de Problemas: Logs detalhados e dados de monitoramento ajudam os desenvolvedores a identificar e diagnosticar problemas rapidamente. Eles fornecem insights sobre o fluxo de execução do workflow, interações entre componentes e quaisquer erros ou exceções encontrados.




2. Otimização de Performance: O monitoramento de métricas de performance permite que os desenvolvedores identifiquem gargalos e otimizem os componentes do fluxo de trabalho para maior eficiência. Ao analisar tempos de execução, utilização de recursos e outras métricas, os desenvolvedores podem tomar decisões informadas para melhorar o desempenho geral do sistema.




3. Auditoria e Conformidade: O registro de eventos e decisões importantes fornece uma trilha de auditoria para conformidade regulatória e responsabilização. Isso permite que as organizações rastreiem e verifiquem as ações tomadas pelos componentes de IA e garantam a aderência às regras de negócio e requisitos legais.




4. Melhoria Contínua: Os dados de monitoramento e logging servem como insumos valiosos para a melhoria contínua dos fluxos de trabalho inteligentes. Ao analisar dados históricos, identificar padrões e medir a eficácia das decisões da IA, os desenvolvedores podem refinar e aprimorar iterativamente a lógica de orquestração do fluxo de trabalho.





Considerações e Melhores Práticas


Ao implementar monitoramento e logging na orquestração inteligente de fluxos de trabalho, considere as seguintes melhores práticas:




1. Definir Métricas Claras de Monitoramento: Identifique as métricas e eventos principais que precisam ser monitorados com base nos requisitos específicos do fluxo de trabalho. Concentre-se em métricas que forneçam insights significativos sobre o desempenho, saúde e comportamento do sistema.




2. Implementar Logging Granular: Garanta que as declarações de logging sejam posicionadas em pontos apropriados dentro dos componentes do fluxo de trabalho e pontos de decisão da IA. Capture informações contextuais relevantes, como parâmetros de entrada, resultados de saída e quaisquer dados intermediários gerados.




3. Usar Logging Estruturado: Adote um formato de logging estruturado para facilitar a análise e interpretação dos dados de log. O logging estruturado permite melhor capacidade de busca, filtragem e agregação das entradas de log.




4. Gerenciar Retenção e Rotação de Logs: Implemente políticas de retenção e rotação de logs para gerenciar o armazenamento e ciclo de vida dos arquivos de log. Determine o período de retenção apropriado com base em requisitos legais, restrições de armazenamento e necessidades de análise. Se possível, transfira o logging para um serviço de terceiros como o Papertrail.




5. Proteger Informações Sensíveis: Seja cauteloso ao registrar informações sensíveis, como informações pessoalmente identificáveis (IPI) ou dados comerciais confidenciais. Implemente medidas de segurança apropriadas, como mascaramento de dados ou criptografia, para proteger informações sensíveis nos arquivos de log.




6. Integrar com Ferramentas de Monitoramento e Alertas: Aproveite ferramentas de monitoramento e alertas para centralizar a coleta, análise e visualização de dados de monitoramento e logging. Essas ferramentas podem fornecer insights em tempo real, gerar alertas com base em limites predefinidos e facilitar a detecção e resolução proativa de problemas. Minha ferramenta favorita entre estas é o Datadog.




Ao implementar mecanismos abrangentes de monitoramento e logging, os desenvolvedores podem obter insights valiosos sobre o comportamento e desempenho dos fluxos de trabalho inteligentes. Esses insights permitem a depuração eficaz, otimização e melhoria contínua dos sistemas de orquestração de fluxos de trabalho baseados em IA.






Considerações de Escalabilidade e Performance


Escalabilidade e performance são aspectos críticos a serem considerados ao projetar e implementar sistemas de orquestração inteligente de fluxos de trabalho. À medida que o volume de fluxos de trabalho concorrentes e a complexidade dos componentes baseados em IA aumentam, torna-se essencial garantir que o sistema possa lidar com a carga de trabalho de forma eficiente e escalar perfeitamente para atender às demandas crescentes.




Lidando com Altos Volumes de Fluxos de Trabalho Concorrentes


Sistemas de orquestração inteligente de fluxos de trabalho frequentemente precisam lidar com um grande número de fluxos de trabalho concorrentes. Para garantir a escalabilidade, considere as seguintes estratégias:




1. Processamento Assíncrono: Implemente mecanismos de processamento assíncrono para desacoplar a execução dos componentes do fluxo de trabalho. Isso permite que o sistema lide com múltiplos fluxos de trabalho simultaneamente sem bloqueio ou espera pela conclusão de cada componente. O processamento assíncrono pode ser alcançado usando filas de mensagens, arquiteturas orientadas a eventos ou frameworks de processamento de jobs em segundo plano como o Sidekiq.




2. Arquitetura Distribuída: Projete a arquitetura do sistema para usar componentes serverless (como AWS Lambda) ou simplesmente distribua a carga de trabalho entre múltiplos nós ou servidores junto com seu servidor de aplicação principal. Isso permite a escalabilidade horizontal, onde nós adicionais podem ser incluídos para lidar com volumes aumentados de fluxos de trabalho.




3. Execução Paralela: Identifique oportunidades para execução paralela dentro dos fluxos de trabalho. Alguns componentes do fluxo de trabalho podem ser independentes uns dos outros e podem ser executados concorrentemente. Ao aproveitar técnicas de processamento paralelo, como multithreading ou filas de tarefas distribuídas, o sistema pode otimizar a utilização de recursos e reduzir o tempo total de execução do fluxo de trabalho.





Otimizando o Desempenho de Componentes Baseados em IA


Componentes baseados em IA, como modelos de aprendizado de máquina ou mecanismos de processamento de linguagem natural, podem ser computacionalmente intensivos e impactar o desempenho geral do sistema de orquestração de fluxo de trabalho. Para otimizar o desempenho dos componentes de IA, considere as seguintes técnicas:




1. Cache: Se seu processamento de IA é puramente generativo e não envolve consultas de informações em tempo real ou integrações externas para gerar suas conclusões de chat, então você pode investigar mecanismos de cache para armazenar e reutilizar os resultados de operações frequentemente acessadas ou computacionalmente caras.




2. Otimização de Modelo: Otimize continuamente a forma como você usa os modelos de IA nos componentes do fluxo de trabalho. Isso pode envolver técnicas como Destilação de Prompt ou pode ser simplesmente uma questão de testar novos modelos conforme eles se tornam disponíveis.




3. Processamento em Lote: Se você está trabalhando com modelos classe GPT-4, você pode ser capaz de aproveitar técnicas de processamento em lote para processar múltiplos pontos de dados ou requisições em um único lote, em vez de processá-los individualmente. Ao processar dados em lotes, o sistema pode otimizar a utilização de recursos e reduzir a sobrecarga de requisições repetidas ao modelo.





Monitoramento e Análise de Desempenho


Para identificar gargalos de desempenho e otimizar a escalabilidade do sistema de orquestração de fluxo de trabalho inteligente, é crucial implementar mecanismos de monitoramento e análise. Considere as seguintes abordagens:




1. Métricas de Desempenho: Defina e acompanhe métricas-chave de desempenho, como tempo de resposta, taxa de transferência, utilização de recursos e latência. Essas métricas fornecem insights sobre o desempenho do sistema e ajudam a identificar áreas para otimização. O agregador de modelos de IA popular OpenRouter inclui métricas de Host1 e Velocidade2 em cada resposta da API, tornando trivial o acompanhamento dessas métricas-chave.




2. Ferramentas de Análise: Utilize ferramentas de análise para avaliar o desempenho de componentes individuais do fluxo de trabalho e operações de IA. Ferramentas de análise podem ajudar a identificar pontos críticos de desempenho, caminhos de código ineficientes ou operações que consomem muitos recursos. Ferramentas populares de análise incluem New Relic, Scout, ou analisadores integrados fornecidos pela linguagem de programação ou framework.




3. Teste de Carga: Realize testes de carga para avaliar o desempenho do sistema sob diferentes níveis de cargas de trabalho concorrentes. O teste de carga ajuda a identificar os limites de escalabilidade do sistema, detectar degradação de desempenho e garantir que o sistema possa lidar com o tráfego esperado sem comprometer o desempenho.




4. Monitoramento Contínuo: Implemente mecanismos de monitoramento contínuo e alertas para detectar proativamente problemas e gargalos de desempenho. Configure painéis de monitoramento e alertas para acompanhar indicadores-chave de desempenho (KPIs) e receber notificações quando limites predefinidos forem ultrapassados. Isso permite identificação e resolução rápida de problemas de desempenho.





Estratégias de Escalonamento


Para lidar com cargas de trabalho crescentes e garantir a escalabilidade do sistema de orquestração de fluxo de trabalho inteligente, considere as seguintes estratégias de escalonamento:




1. Escalonamento Vertical: O escalonamento vertical envolve aumentar os recursos (por exemplo, CPU, memória) de nós ou servidores individuais para lidar com cargas de trabalho maiores. Essa abordagem é adequada quando o sistema requer mais poder de processamento ou memória para lidar com fluxos de trabalho complexos ou operações de IA.




2. Escalonamento Horizontal: O escalonamento horizontal envolve adicionar mais nós ou servidores ao sistema para distribuir a carga de trabalho. Essa abordagem é eficaz quando o sistema precisa lidar com um grande número de fluxos de trabalho concorrentes ou quando a carga de trabalho pode ser facilmente distribuída entre múltiplos nós. O escalonamento horizontal requer uma arquitetura distribuída e mecanismos de balanceamento de carga para garantir distribuição uniforme do tráfego.




3. Autoescalonamento: Implemente mecanismos de autoescalonamento para ajustar automaticamente o número de nós ou recursos com base na demanda da carga de trabalho. O autoescalonamento permite que o sistema escale dinamicamente para cima ou para baixo dependendo do tráfego recebido, garantindo utilização ótima de recursos e eficiência de custos. Plataformas em nuvem como Amazon Web Services (AWS) ou Google Cloud Platform (GCP) fornecem capacidades de autoescalonamento que podem ser aproveitadas para sistemas de orquestração de fluxo de trabalho inteligente.





Técnicas de Otimização de Desempenho


Além das estratégias de escalonamento, considere as seguintes técnicas de otimização de desempenho para melhorar a eficiência do sistema de orquestração de fluxo de trabalho inteligente:




1. Armazenamento e Recuperação Eficiente de Dados: Otimize os mecanismos de armazenamento e recuperação de dados usados pelos componentes do fluxo de trabalho. Use indexação eficiente de banco de dados, técnicas de otimização de consultas e cache de dados para minimizar a latência e melhorar o desempenho de operações intensivas em dados.




2. E/S Assíncrona: Utilize operações de E/S assíncronas para evitar bloqueios e melhorar a capacidade de resposta do sistema. A E/S assíncrona permite que o sistema processe múltiplas requisições simultaneamente sem esperar pela conclusão das operações de E/S, maximizando assim a utilização dos recursos.




3. Serialização e Desserialização Eficientes: Otimize os processos de serialização e desserialização utilizados para troca de dados entre componentes do fluxo de trabalho. Use formatos de serialização eficientes, como Protocol Buffers ou MessagePack, para reduzir a sobrecarga da serialização de dados e melhorar o desempenho da comunicação entre componentes.



	[image: An icon of a key]	
Para aplicações baseadas em Ruby, considere usar Universal ID. O Universal ID aproveita tanto o MessagePack quanto o Brotli (uma combinação criada para velocidade e compressão de dados de primeira linha). Quando combinadas, essas bibliotecas são até 30% mais rápidas e mantêm taxas de compressão entre 2-5% em comparação com o Protocol Buffers.






4. Compressão e Codificação: Aplique técnicas de compressão e codificação para reduzir o tamanho dos dados transferidos entre componentes do fluxo de trabalho. Algoritmos de compressão, como gzip ou Brotli, podem reduzir significativamente o uso da largura de banda de rede e melhorar o desempenho geral do sistema.




Ao considerar aspectos de escalabilidade e desempenho durante o projeto e implementação de sistemas de orquestração de fluxos de trabalho inteligentes, você pode garantir que seu sistema seja capaz de lidar com grandes volumes de fluxos de trabalho concorrentes, otimizar o desempenho dos componentes baseados em IA e escalar perfeitamente para atender às demandas crescentes. O monitoramento contínuo, a criação de perfis de desempenho e os esforços de otimização são essenciais para manter o desempenho e a capacidade de resposta do sistema à medida que a carga de trabalho e a complexidade aumentam ao longo do tempo.






Testes e Validação de Fluxos de Trabalho


Testes e validação são aspectos críticos do desenvolvimento e manutenção de sistemas de orquestração de fluxos de trabalho inteligentes. Dada a natureza complexa dos fluxos de trabalho baseados em IA, é essencial garantir que cada componente funcione conforme esperado, que o fluxo de trabalho geral se comporte corretamente e que as decisões da IA sejam precisas e confiáveis. Nesta seção, exploraremos várias técnicas e considerações para testar e validar fluxos de trabalho inteligentes.




Teste Unitário de Componentes do Fluxo de Trabalho


O teste unitário envolve testar componentes individuais do fluxo de trabalho isoladamente para verificar sua correção e robustez. Ao realizar testes unitários em componentes de fluxo de trabalho baseados em IA, considere o seguinte:




1. Validação de Entrada: Teste a capacidade do componente de lidar com diferentes tipos de entradas, incluindo dados válidos e inválidos. Verifique se o componente trata adequadamente casos extremos e fornece mensagens de erro ou exceções apropriadas.




2. Verificação de Saída: Certifique-se de que o componente produza a saída esperada para um determinado conjunto de entradas. Compare a saída real com os resultados esperados para garantir a correção.




3. Tratamento de Erros: Teste os mecanismos de tratamento de erros do componente simulando vários cenários de erro, como entrada inválida, indisponibilidade de recursos ou exceções inesperadas. Verifique se o componente captura e trata os erros adequadamente.




4. Condições de Fronteira: Teste o comportamento do componente sob condições de fronteira, como entrada vazia, tamanho máximo de entrada ou valores extremos. Garanta que o componente trate essas condições adequadamente sem falhar ou produzir resultados incorretos.




Aqui está um exemplo de um teste unitário para um componente de fluxo de trabalho em Ruby usando o framework de testes RSpec:



 1 RSpec.describe OrderValidator do
 2   describe '#validate' do
 3     context 'when order is valid' do
 4       let(:order) { build(:order) }
 5 
 6       it 'returns true' do
 7         expect(subject.validate(order)).to be true
 8       end
 9     end
10 
11     context 'when order is invalid' do
12       let(:order) { build(:order, total_amount: -100) }
13 
14       it 'returns false' do
15         expect(subject.validate(order)).to be false
16       end
17     end
18   end
19 end





Neste exemplo, o componente OrderValidator é testado usando dois casos de teste: um para um pedido válido e outro para um pedido inválido. Os casos de teste verificam se o método validate retorna o valor booleano esperado com base na validade do pedido.





Testando Interações de Workflow na Integração


O teste de integração concentra-se em verificar as interações e o fluxo de dados entre diferentes componentes do workflow. Ele garante que os componentes trabalhem juntos perfeitamente e produzam os resultados esperados. Ao realizar testes de integração em workflows inteligentes, considere o seguinte:




1. Interação entre Componentes: Teste a comunicação e a troca de dados entre os componentes do workflow. Verifique se a saída de um componente é corretamente passada como entrada para o próximo componente no workflow.




2. Consistência de Dados: Garanta que os dados permaneçam consistentes e precisos enquanto fluem pelo workflow. Verifique se as transformações de dados, cálculos e agregações são realizados corretamente.




3. Propagação de Exceções: Teste como as exceções e erros são propagados e tratados entre os componentes do workflow. Verifique se as exceções são capturadas, registradas e tratadas adequadamente para evitar a interrupção do workflow.




4. Comportamento Assíncrono: Se o workflow envolver componentes assíncronos ou execução paralela, teste os mecanismos de coordenação e sincronização. Garanta que o workflow se comporte corretamente em cenários concorrentes e assíncronos.




Aqui está um exemplo de um teste de integração para um workflow em Ruby usando o framework de testes RSpec:



 1 RSpec.describe OrderProcessingWorkflow do
 2 
 3   let(:order) { build(:order) }
 4 
 5   it 'processes the order successfully' do
 6     expect(OrderValidator).to receive(:validate).and_return(true)
 7     expect(InventoryManager).to receive(:check_availability).and_return(true)
 8     expect(PaymentProcessor).to receive(:process_payment).and_return(true)
 9     expect(ShippingService).to receive(:schedule_shipping).and_return(true)
10 
11     workflow = OrderProcessingWorkflow.new(order)
12     result = workflow.process
13 
14     expect(result).to be true
15     expect(order.status).to eq('processed')
16   end
17 
18 end





Neste exemplo, o OrderProcessingWorkflow é testado verificando as interações entre diferentes componentes do fluxo de trabalho. O caso de teste estabelece expectativas para o comportamento de cada componente e garante que o fluxo de trabalho processe o pedido com sucesso, atualizando o status do pedido adequadamente.





Testando Pontos de Decisão de IA


Testar pontos de decisão de IA é crucial para garantir a precisão e confiabilidade dos fluxos de trabalho baseados em IA. Ao testar pontos de decisão de IA, considere o seguinte:




1. Precisão da Decisão: Verifique se o componente de IA toma decisões precisas com base nos dados de entrada e no modelo treinado. Compare as decisões da IA com os resultados esperados ou dados de referência.




2. Casos Extremos: Teste o comportamento do componente de IA em casos extremos e cenários incomuns. Verifique se o componente de IA lida com esses casos de forma adequada e toma decisões razoáveis.




3. Viés e Equidade: Avalie o componente de IA quanto a possíveis vieses e garanta que ele tome decisões justas e imparciais. Teste o componente com dados de entrada diversos e analise os resultados em busca de padrões discriminatórios.




4. Explicabilidade: Se o componente de IA fornece explicações ou raciocínios para suas decisões, verifique a correção e clareza das explicações. Garanta que as explicações estejam alinhadas com o processo de tomada de decisão subjacente.




Aqui está um exemplo de teste de um ponto de decisão de IA em Ruby usando o framework de teste RSpec:



 1 RSpec.describe FraudDetector do
 2   describe '#detect_fraud' do
 3     context 'when transaction is fraudulent' do
 4       let(:tx) do
 5         build(:transaction, amount: 10_000, location: 'High-Risk Country')
 6       end
 7 
 8       it 'returns true' do
 9         expect(subject.detect_fraud(tx)).to be true
10       end
11     end
12 
13     context 'when transaction is legitimate' do
14       let(:tx) do
15         build(:transaction, amount: 100, location: 'Low-Risk Country')
16       end
17 
18       it 'returns false' do
19         expect(subject.detect_fraud(tx)).to be false
20       end
21     end
22   end
23 end





Neste exemplo, o componente de IA FraudDetector é testado com dois casos de teste: um para uma transação fraudulenta e outro para uma transação legítima. Os casos de teste verificam se o método detect_fraud retorna o valor booleano esperado com base nas características da transação.





Teste Ponta a Ponta


O teste ponta a ponta envolve testar todo o fluxo de trabalho do início ao fim, simulando cenários e interações do usuário do mundo real. Ele garante que o fluxo de trabalho se comporte corretamente e produza os resultados desejados. Ao realizar testes ponta a ponta para fluxos de trabalho inteligentes, considere o seguinte:




1. Cenários de Usuário: Identifique cenários comuns de usuário e teste o comportamento do fluxo de trabalho nesses cenários. Verifique se o fluxo de trabalho processa corretamente as entradas do usuário, toma decisões apropriadas e produz as saídas esperadas.




2. Validação de Dados: Garanta que o fluxo de trabalho valide e sanitize as entradas do usuário para prevenir inconsistências de dados ou vulnerabilidades de segurança. Teste o fluxo de trabalho com vários tipos de dados de entrada, incluindo dados válidos e inválidos.




3. Recuperação de Erros: Teste a capacidade do fluxo de trabalho de se recuperar de erros e exceções. Simule cenários de erro e verifique se o fluxo de trabalho os trata adequadamente, registra os erros e toma as ações apropriadas de recuperação.




4. Desempenho e Escalabilidade: Avalie o desempenho e a escalabilidade do fluxo de trabalho sob diferentes condições de carga. Teste o fluxo de trabalho com um grande volume de requisições simultâneas e meça os tempos de resposta, utilização de recursos e estabilidade geral do sistema.




Aqui está um exemplo de um teste ponta a ponta para um fluxo de trabalho em Ruby usando o framework de teste RSpec e a biblioteca Capybara para simular interações do usuário:



 1 RSpec.describe 'Order Processing Workflow' do
 2   scenario 'User places an order successfully' do
 3     visit '/orders/new'
 4     fill_in 'Product', with: 'Sample Product'
 5     fill_in 'Quantity', with: '2'
 6     fill_in 'Shipping Address', with: '123 Main St'
 7     click_button 'Place Order'
 8 
 9     expect(page).to have_content('Order Placed Successfully')
10     expect(Order.count).to eq(1)
11     expect(Order.last.status).to eq('processed')
12   end
13 end





Neste exemplo, o teste end-to-end simula um usuário realizando um pedido através da interface web. Ele preenche os campos obrigatórios do formulário, envia o pedido e verifica se o pedido é processado com sucesso, exibindo a mensagem de confirmação apropriada e atualizando o status do pedido no banco de dados.





Integração e Implantação Contínua


Para garantir a confiabilidade e manutenibilidade dos fluxos de trabalho inteligentes, recomenda-se integrar testes e validação ao pipeline de integração e implantação contínua (CI/CD). Isso permite a execução automatizada de testes e validação das alterações no fluxo de trabalho antes que sejam implantadas em produção. Considere as seguintes práticas:




1. Execução Automatizada de Testes: Configure o pipeline de CI/CD para executar automaticamente a suíte de testes sempre que houver alterações no código-base do fluxo de trabalho. Isso garante que quaisquer regressões ou falhas sejam detectadas no início do processo de desenvolvimento.




2. Monitoramento da Cobertura de Testes: Meça e monitore a cobertura de testes dos componentes do fluxo de trabalho e pontos de decisão da IA. Busque uma alta cobertura de testes para garantir que os caminhos e cenários críticos sejam completamente testados.




3. Feedback Contínuo: Integre resultados de testes e métricas de qualidade de código ao fluxo de trabalho de desenvolvimento. Forneça feedback contínuo aos desenvolvedores sobre o status dos testes, qualidade do código e quaisquer problemas detectados durante o processo de CI/CD.




4. Ambientes de Homologação: Implante o fluxo de trabalho em ambientes de homologação que espelhem de perto o ambiente de produção. Execute testes e validações adicionais no ambiente de homologação para identificar quaisquer problemas relacionados à infraestrutura, configuração ou integração de dados.




5. Mecanismos de Rollback: Implemente mecanismos de rollback para casos de falhas na implantação ou problemas críticos detectados em produção. Garanta que o fluxo de trabalho possa ser rapidamente revertido para uma versão estável anterior para minimizar o tempo de inatividade e o impacto nos usuários.









Ao incorporar testes e validação durante todo o ciclo de vida de desenvolvimento dos fluxos de trabalho inteligentes, as organizações podem garantir a confiabilidade, precisão e manutenibilidade de seus sistemas baseados em IA. Testes e validação regulares ajudam a identificar bugs, prevenir regressões e construir confiança no comportamento e nos resultados do fluxo de trabalho.









Parte 2: Os Padrões
Esse conteúdo não está disponível na amostra do livro. O livro pode ser comprado na Leanpub em http://leanpub.com/patterns-of-application-development-using-ai-pt-BR.









	Host é o tempo que levou para receber o primeiro byte da geração transmitida do host do modelo, também conhecido como “tempo até o primeiro byte.”↩︎


	Velocidade é calculada como o número de tokens de conclusão dividido pelo tempo total de geração. Para requisições não transmitidas, a latência é considerada parte do tempo de geração.↩︎
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Costello: Naturally.
Abbott: Now you've got it.
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Abbott: Naturally.
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Costello: | throw the ball to Naturally.
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