

ਏ.ਆਈ. ਦੀ ਵਰਤੋਂ ਨਾਲ ਐਪਲੀਕੇਸ਼ਨ ਵਿਕਾਸ ਦੇ ਨਮੂਨੇ

(ਪੰਜਾਬੀ ਸੰਸਕਰਣ)

Obie Fernandez

ਇਹ ਕਿਤਾਬ
http://leanpub.com/patterns-of-application-development-using-ai-pa ’ਤੇ
ਉਪਲਬਧ ਹੈ।

ਇਹ ਸੰਸਕਰਣ 2025-01-23 ਨੂੰ ਪ੍ਰਕਾਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਸੀ।

ਇਹ ਇੱਕ Leanpub ਕਿਤਾਬ ਹੈ। Leanpub ਲੇਖਕਾਂ ਅਤੇ ਪ੍ਰਕਾਸ਼ਕਾਂ ਨੂੰ Lean Publishing
ਪ੍ਰਕਿਰਿਆ ਦੁਆਰਾ ਸਮਰੱਥ ਬਣਾਉਂਦਾ ਹੈ। Lean Publishing ਦਾ ਮਤਲਬ ਹੈ ਕਿ ਸਾਦੇ ਸੰਦਾਂ ਅਤੇ
ਵਾਰ-ਵਾਰ ਮੁੜਾਅ ਰਾਹੀਂ ਪਾਠਕਾਂ ਦੀ ਸੁਝਾਅ ਪ੍ਰਾਪਤ ਕਰਨਾ, ਉਸ ਨੂੰ ਬਦਲਣਾ ਜਿਸ ਨਾਲ ਤੁਹਾਨੂੰ ਸਹੀ ਕਿਤਾਬ
ਮਿਲੇ ਅਤੇ ਜਦੋਂ ਇਹ ਮਿਲ ਜਾਵੇ, ਤਾਂ ਪਾਠਕਾਂ ਦੀ ਰੁਚੀ ਵਧਾਉਣੀ।

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-pa
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

ਇਸ ਕਿਤਾਬ ਨੂੰ ਟਵੀਟ ਕਰੋ!

ਕਿਰਪਾ ਕਰਕੇ Obie Fernandez ਦੀ ਮਦਦ ਕਰੋ ਅਤੇ ਇਸ ਕਿਤਾਬ ਬਾਰੇ Twitter ਤੇ ਸ਼ਬਦ ਫੈਲਾਓ!

ਇਸ ਕਿਤਾਬ ਲਈ ਸੁਝਾਇਆ ਗਿਆ ਹੈਸ਼ਟੈਗ #poaduai ਹੈ.

ਇਸ ਲਿੰਕ ’ਤੇ ਕਲਿੱਕ ਕਰਕੇ ਜਾਣੋ ਕਿ ਹੋਰ ਲੋਕ ਇਸ ਕਿਤਾਬ ਬਾਰੇ ਕੀ ਕਹਿ ਰਹੇ ਹਨ, ਇਸ ਹੈਸ਼ਟੈਗ ਲਈ
ਟਵਿੱਟਰ ਤੇ ਖੋਜ ਕਰਨ ਲਈ:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

ਮੇਰੀ ਦਲੇਰ ਰਾਣੀ, ਮੇਰੀ ਪ੍ਰੇਰਣਾ, ਮੇਰੀ ਰੌਸ਼ਨੀ ਤੇ ਮੇਰਾ ਪਿਆਰ, Victoria ਨੂੰ

Also By Obie Fernandez
Patterns of Application Development Using AI
The Rails 8 Way
The Rails 7 Way
XML The Rails Way
Serverless
El Libro Principiante de Node
The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Contents

ਗਰੇਗਰ ਹੋਪ ਦੁਆਰਾ ਮੁੱਖਬੰਧ . i

ਮੁੱਖਬੰਦ . ii
ਕਿਤਾਬ ਬਾਰੇ . iii
ਕੋਡ ਉਦਾਹਰਣਾਂ ਬਾਰੇ . iii
ਮੈਂ ਕੀ ਕਵਰ ਨਹੀਂ ਕਰਦਾ . iii
ਇਹ ਕਿਤਾਬ ਕਿਸ ਲਈ ਹੈ . iii
ਇੱਕ ਸਾਂਝੀ ਸ਼ਬਦਾਵਲੀ ਦਾ ਨਿਰਮਾਣ . iii
ਸ਼ਾਮਲ ਹੋਣਾ . iii
ਧੰਨਵਾਦ . iv
ਚਿੱਤਰਾਂ ਬਾਰੇ ਕੀ ਹੈ? . iv
ਲੀਨ ਪਬਲਿਸ਼ਿੰਗ ਬਾਰੇ . iv
ਲੇਖਕ ਬਾਰੇ . v

ਜਾਣ-ਪਛਾਣ . 1
ਸਾਫਟਵੇਅਰ ਆਰਕੀਟੈਕਚਰ ਬਾਰੇ ਵਿਚਾਰ . 2
ਵੱਡਾ ਭਾਸ਼ਾ ਮਾਡਲ ਕੀ ਹੈ? . 3
ਅਨੁਮਾਨ ਨੂੰ ਸਮਝਣਾ . 5
ਪ੍ਰਦਰਸ਼ਨ ਬਾਰੇ ਸੋਚਣਾ . 25
ਵੱਖ-ਵੱਖ ਐੱਲਐੱਲਐੱਮ ਮਾਡਲਾਂ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਨਾ 26
ਮਿਸ਼ਰਿਤ ਏ.ਆਈ. ਸਿਸਟਮ . 27

CONTENTS

ਭਾਗ 1: ਮੁੱਢਲੇ ਪਹੁੰਚ ਅਤੇ ਤਕਨੀਕਾਂ 35
ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ . 36

ਲੇਟੈਂਟ ਸਪੇਸ: ਅਕਲਪਨੀ ਤੌਰ ’ਤੇ ਵਿਸ਼ਾਲ . 38
ਰਸਤਾ ਕਿਵੇਂ “ਸੀਮਤ” ਹੁੰਦਾ ਹੈ . 42
ਰਾਅ ਬਨਾਮ ਇੰਸਟਰਕਟ-ਟਿਊਨਡ ਮਾਡਲ . 45
ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ . 51
ਪ੍ਰੌਮਪਟ ਡਿਸਟੀਲੇਸ਼ਨ . 66
ਫਾਈਨ-ਟਿਊਨਿੰਗ ਬਾਰੇ ਕੀ? . 73

ਰਿਟ੍ਰੀਵਲ ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ (RAG) . 74
ਰਿਟ੍ਰੀਵਲ ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ ਕੀ ਹੈ? . 74
RAG ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ? . 74
ਆਪਣੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ RAG ਦੀ ਵਰਤੋਂ ਕਿਉਂ ਕਰੀਏ? 74
ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ RAG ਨੂੰ ਲਾਗੂ ਕਰਨਾ . 74
ਪ੍ਰਸਤਾਵ ਖੰਡੀਕਰਨ . 75
ਰੈਗ ਦੀਆਂ ਅਸਲ-ਦੁਨੀਆ ਦੀਆਂ ਉਦਾਹਰਣਾਂ . 75
ਬੁੱਧੀਮਾਨ ਕੁਐਰੀ ਔਪਟੀਮਾਈਜ਼ੇਸ਼ਨ (IQO) . 76
ਮੁੜ-ਦਰਜਾਬੰਦੀ . 76
RAG ਮੁਲਾਂਕਣ (RAGAs) . 76
ਚੁਣੌਤੀਆਂ ਅਤੇ ਭਵਿੱਖ ਦਾ ਦ੍ਰਿਸ਼ਟੀਕੋਣ . 78

ਕਾਮਿਆਂ ਦੀ ਭੀੜ . 80
ਸੁਤੰਤਰ ਮੁੜ-ਵਰਤੋਂਯੋਗ ਕੰਪੋਨੈਂਟਸ ਵਜੋਂ ਏ.ਆਈ. ਕਾਮੇ 81
ਅਕਾਊਂਟ ਪ੍ਰਬੰਧਨ . 83
ਈ-ਕਾਮਰਸ ਐਪਲੀਕੇਸ਼ਨਾਂ . 84
ਸਿਹਤ ਸੰਭਾਲ ਐਪਲੀਕੇਸ਼ਨਾਂ . 92
AI ਵਰਕਰ ਇੱਕ ਪ੍ਰੋਸੈਸ ਮੈਨੇਜਰ ਵਜੋਂ . 95
ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਆਰਕੀਟੈਕਚਰ ਵਿੱਚ AI ਵਰਕਰਾਂ ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰਨਾ 99
AI ਵਰਕਰਾਂ ਦੀ ਰਚਨਾਤਮਕਤਾ ਅਤੇ ਤਾਲਮੇਲ . 102

CONTENTS

ਪਰੰਪਰਾਗਤ NLP ਨੂੰ LLMs ਨਾਲ ਜੋੜਨਾ . 110

ਟੂਲ ਵਰਤੋਂ . 114
ਟੂਲ ਵਰਤੋਂ ਕੀ ਹੈ? . 114
ਟੂਲ ਵਰਤੋਂ ਦੀ ਸੰਭਾਵਨਾ . 116
ਟੂਲ ਵਰਤੋਂ ਵਰਕਫਲੋ . 117
ਟੂਲ ਦੀ ਵਰਤੋਂ ਲਈ ਸਰਵੋਤਮ ਅਭਿਆਸ . 131
ਟੂਲਜ਼ ਦੀ ਰਚਨਾ ਅਤੇ ਲੜੀਬੱਧਤਾ . 135
ਭਵਿੱਖ ਦੀਆਂ ਦਿਸ਼ਾਵਾਂ . 137

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ . 139
ReplyStream ਨੂੰ ਲਾਗੂ ਕਰਨਾ . 140
“ਗੱਲਬਾਤ ਲੂਪ” . 146
ਆਟੋ ਕੰਟੀਨਿਊਏਸ਼ਨ . 148
ਸਿੱਟਾ . 150

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ . 152
ਵਿਵਹਾਰਕ ਕੇਸ ਸਟੱਡੀ: ਖਰਾਬ JSON ਨੂੰ ਠੀਕ ਕਰਨਾ 154
ਵਿਚਾਰ ਅਤੇ ਵਿਰੋਧੀ ਸੰਕੇਤ . 159

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ . 173
ਨਿੱਜੀਕਰਨ . 174
ਉਤਪਾਦਕਤਾ . 175
ਤੇਜ਼ ਦੁਹਰਾਓ ਅਤੇ ਪ੍ਰਯੋਗ . 178
AI ਸੰਚਾਲਿਤ ਸਥਾਨੀਕਰਨ . 180
ਯੂਜ਼ਰ ਟੈਸਟਿੰਗ ਅਤੇ ਫੀਡਬੈਕ ਦੀ ਮਹੱਤਤਾ . 182

ਜਨਰੇਟਿਵ ਯੂਆਈ . 183
ਯੂਜ਼ਰ ਇੰਟਰਫੇਸਾਂ ਲਈ ਕਾਪੀ ਤਿਆਰ ਕਰਨਾ . 184
ਜਨਰੇਟਿਵ ਯੂਆਈ ਦੀ ਪਰਿਭਾਸ਼ਾ . 193
ਉਦਾਹਰਨ . 194

CONTENTS

ਨਤੀਜਾ-ਕੇਂਦਰਿਤ ਡਿਜ਼ਾਈਨ ਵੱਲ ਤਬਦੀਲੀ . 197
ਚੁਣੌਤੀਆਂ ਅਤੇ ਵਿਚਾਰ . 198
ਭਵਿੱਖ ਦਾ ਨਜ਼ਰੀਆ ਅਤੇ ਮੌਕੇ . 200

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ . 203
ਵਪਾਰਕ ਲੋੜ . 204
ਮੁੱਖ ਲਾਭ . 204
ਮੁੱਖ ਪੈਟਰਨ . 205
ਅਪਵਾਦ ਸੰਭਾਲ ਅਤੇ ਰਿਕਵਰੀ . 207
ਅਮਲੀ ਤੌਰ ’ਤੇ ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਆਯੋਜਨ ਨੂੰ ਲਾਗੂ ਕਰਨਾ 210
ਨਿਗਰਾਨੀ ਅਤੇ ਲੌਗਿੰਗ . 224
ਸਕੇਲੇਬਿਲਟੀ ਅਤੇ ਪ੍ਰਦਰਸ਼ਨ ਵਿਚਾਰ . 229
ਕਾਰਜ-ਪ੍ਰਵਾਹਾਂ ਦੀ ਟੈਸਟਿੰਗ ਅਤੇ ਪ੍ਰਮਾਣੀਕਰਨ . 233

ਭਾਗ 2: ਪੈਟਰਨ .241

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ . 242
ਵਿਚਾਰਾਂ ਦੀ ਲੜੀ . 243
ਮੋਡ ਸਵਿੱਚ . 245
ਭੂਮਿਕਾ ਨਿਰਧਾਰਨ . 246
ਪ੍ਰੌਮਪਟ ਔਬਜੈਕਟ . 247
Prompt Template . 248
ਸੰਰਚਿਤ ਇਨਪੁੱਟ-ਆਊਟਪੁੱਟ . 249
ਪ੍ਰੌਮਪਟ ਚੇਨਿੰਗ . 250
ਪ੍ਰੌਮਪਟ ਰੀਰਾਈਟਰ . 251
ਰਿਸਪਾਂਸ ਫੈਂਸਿੰਗ . 252
ਕਵੇਰੀ ਐਨਾਲਾਈਜ਼ਰ . 253
ਕੁਐਰੀ ਰੀਰਾਈਟਰ . 255
Ventriloquist . 256

CONTENTS

ਵੱਖਰੇ ਭਾਗ . 257
ਪ੍ਰੈਡੀਕੇਟ . 258
ਏ.ਪੀ.ਆਈ. ਫਸਾਡ . 259
ਨਤੀਜਾ ਵਿਆਖਿਆਕਾਰ . 261
ਵਰਚੁਅਲ ਮਸ਼ੀਨ . 262
ਸਪੈਸੀਫਿਕੇਸ਼ਨ ਅਤੇ ਟੈਸਟਿੰਗ . 262

ਮਨੁੱਖੀ-ਸ਼ਮੂਲੀਅਤ ਪ੍ਰਣਾਲੀ (HITL) . 264
ਉੱਚ-ਪੱਧਰੀ ਪੈਟਰਨ . 264
ਵਧਾਅ . 265
ਫੀਡਬੈਕ ਲੂਪ . 266
ਨਿਸ਼ਕਰਿਆ ਜਾਣਕਾਰੀ ਵਿਕੀਰਨ . 267
ਸਹਿਯੋਗੀ ਫੈਸਲਾ ਲੈਣਾ (CDM) . 269
ਲਗਾਤਾਰ ਸਿੱਖਣਾ . 270
ਨੈਤਿਕ ਵਿਚਾਰ . 270
ਤਕਨੀਕੀ ਤਰੱਕੀ ਅਤੇ ਭਵਿੱਖ ਦਾ ਦ੍ਰਿਸ਼ਟੀਕੋਣ . 270

ਬੁੱਧੀਮਾਨ ਗਲਤੀ ਸੰਭਾਲ . 272
ਰਵਾਇਤੀ ਗਲਤੀ ਸੰਭਾਲ ਪਹੁੰਚਾਂ . 272
ਸੰਦਰਭਿਕ ਗਲਤੀ ਨਿਦਾਨ . 273
ਬੁੱਧੀਮਾਨ ਗਲਤੀ ਰਿਪੋਰਟਿੰਗ . 274
ਭਵਿੱਖ-ਸੂਚਕ ਗਲਤੀ ਰੋਕਥਾਮ . 275
ਸਮਾਰਟ ਗਲਤੀ ਰਿਕਵਰੀ . 275
ਨਿੱਜੀ ਗਲਤੀ ਸੰਚਾਰ . 276
ਅਨੁਕੂਲ ਗਲਤੀ ਨਿਪਟਾਰਾ ਵਰਕਫਲੋ . 277

ਗੁਣਵੱਤਾ ਨਿਯੰਤਰਣ . 278
ਈਵੈਲ . 279
ਸੁਰੱਖਿਆ ਉਪਾਅ . 281
ਸੁਰੱਖਿਆ ਰੇਲਾਂ ਅਤੇ ਮੁਲਾਂਕਣ: ਇੱਕੋ ਸਿੱਕੇ ਦੇ ਦੋ ਪਾਸੇ . 281

ਸ਼ਬਦਾਵਲੀ .283
ਸ਼ਬਦਾਵਲੀ . 283

Index . 288

ਗਰੇਗਰ ਹੋਪ ਦੁਆਰਾ ਮੁੱਖਬੰਧ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa

ਮੁੱਖਬੰਦ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa

ਮੁੱਖਬੰਦ iii

ਕਿਤਾਬ ਬਾਰੇ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਕੋਡ ਉਦਾਹਰਣਾਂ ਬਾਰੇ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਮੈਂ ਕੀ ਕਵਰ ਨਹੀਂ ਕਰਦਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਤਾਬ ਕਿਸ ਲਈ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇੱਕ ਸਾਂਝੀ ਸ਼ਬਦਾਵਲੀ ਦਾ ਨਿਰਮਾਣ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਮੁੱਖਬੰਦ iv

ਸ਼ਾਮਲ ਹੋਣਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਧੰਨਵਾਦ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਚਿੱਤਰਾਂ ਬਾਰੇ ਕੀ ਹੈ?

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਲੀਨ ਪਬਲਿਸ਼ਿੰਗ ਬਾਰੇ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਮੁੱਖਬੰਦ v

ਲੇਖਕ ਬਾਰੇ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa

ਜਾਣ-ਪਛਾਣ

ਜੇ ਤੁਸੀਂ ਆਪਣੇ ਪ੍ਰੋਗਰਾਮਿੰਗ ਪ੍ਰੋਜੈਕਟਾਂ ਵਿੱਚ AI ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ (LLMs) ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰਨ ਲਈ
ਉਤਸੁਕ ਹੋ, ਤਾਂ ਬੇਝਿਜਕ ਬਾਅਦ ਵਾਲੇ ਅਧਿਆਵਾਂ ਵਿੱਚ ਪੇਸ਼ ਕੀਤੇ ਪੈਟਰਨਾਂ ਅਤੇ ਕੋਡ ਉਦਾਹਰਣਾਂ ਵਿੱਚ ਡੁੱਬ
ਜਾਓ। ਹਾਲਾਂਕਿ, ਇਨ੍ਹਾਂ ਪੈਟਰਨਾਂ ਦੀ ਸ਼ਕਤੀ ਅਤੇ ਸੰਭਾਵਨਾ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਸਮਝਣ ਲਈ, ਵਿਆਪਕ ਸੰਦਰਭ
ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਪ੍ਰਤੀਨਿਧਤਾ ਕਰਦੇ ਏਕੀਕ੍ਰਿਤ ਪਹੁੰਚ ਨੂੰ ਸਮਝਣ ਲਈ ਕੁਝ ਸਮਾਂ ਲੈਣਾ ਲਾਭਦਾਇਕ ਹੈ।

ਇਹ ਪੈਟਰਨ ਸਿਰਫ਼ ਵੱਖ-ਵੱਖ ਤਕਨੀਕਾਂ ਦਾ ਸੰਗ੍ਰਹਿ ਨਹੀਂ ਹਨ, ਬਲਕਿ ਤੁਹਾਡੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ AI
ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰਨ ਲਈ ਇੱਕ ਏਕੀਕ੍ਰਿਤ ਫਰੇਮਵਰਕ ਹਨ। ਮੈਂ Ruby on Rails ਦੀ ਵਰਤੋਂ ਕਰਦਾ ਹਾਂ,
ਪਰ ਇਹ ਪੈਟਰਨ ਲਗਭਗ ਕਿਸੇ ਵੀ ਹੋਰ ਪ੍ਰੋਗਰਾਮਿੰਗ ਵਾਤਾਵਰਣ ਵਿੱਚ ਕੰਮ ਕਰਨੇ ਚਾਹੀਦੇ ਹਨ। ਇਹ ਡਾਟਾ
ਪ੍ਰਬੰਧਨ ਅਤੇ ਕਾਰਗੁਜ਼ਾਰੀ ਅਨੁਕੂਲਨ ਤੋਂ ਲੈ ਕੇ ਯੂਜ਼ਰ ਅਨੁਭਵ ਅਤੇ ਸੁਰੱਖਿਆ ਤੱਕ, ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ ਚਿੰਤਾਵਾਂ
ਨੂੰ ਸੰਬੋਧਿਤ ਕਰਦੇ ਹਨ, ਜੋ AI ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ਨਾਲ ਪਰੰਪਰਾਗਤ ਪ੍ਰੋਗਰਾਮਿੰਗ ਅਭਿਆਸਾਂ ਨੂੰ ਵਧਾਉਣ ਲਈ
ਇੱਕ ਵਿਆਪਕ ਟੂਲਕਿੱਟ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ।

ਪੈਟਰਨਾਂ ਦੀ ਹਰ ਸ਼੍ਰੇਣੀ ਇੱਕ ਖਾਸ ਚੁਣੌਤੀ ਜਾਂ ਮੌਕੇ ਨੂੰ ਨਜਿੱਠਦੀ ਹੈ ਜੋ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ AI ਕੰਪੋਨੈਂਟਾਂ
ਨੂੰ ਸ਼ਾਮਲ ਕਰਨ ਵੇਲੇ ਪੈਦਾ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਪੈਟਰਨਾਂ ਵਿਚਕਾਰ ਸੰਬੰਧਾਂ ਅਤੇ ਤਾਲਮੇਲ ਨੂੰ ਸਮਝ ਕੇ, ਤੁਸੀਂ AI ਨੂੰ

ਜਾਣ-ਪਛਾਣ 2

ਸਭ ਤੋਂ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਕਿੱਥੇ ਅਤੇ ਕਿਵੇਂ ਲਾਗੂ ਕਰਨਾ ਹੈ, ਬਾਰੇ ਸੂਚਿਤ ਫੈਸਲੇ ਲੈ ਸਕਦੇ ਹੋ।

ਪੈਟਰਨ ਕਦੇ ਵੀ ਨਿਰਧਾਰਤ ਹੱਲ ਨਹੀਂ ਹੁੰਦੇ ਅਤੇ ਇਨ੍ਹਾਂ ਨੂੰ ਅਜਿਹਾ ਨਹੀਂ ਮੰਨਿਆ ਜਾਣਾ ਚਾਹੀਦਾ। ਇਹ ਅਨੁਕੂਲ
ਬਣਾਉਣ ਯੋਗ ਬਿਲਡਿੰਗ ਬਲਾਕ ਹਨ ਜੋ ਤੁਹਾਡੀ ਆਪਣੀ ਵਿਲੱਖਣ ਐਪਲੀਕੇਸ਼ਨ ਦੀਆਂ ਵਿਲੱਖਣ ਲੋੜਾਂ ਅਤੇ
ਸੀਮਾਵਾਂ ਦੇ ਅਨੁਸਾਰ ਢਾਲੇ ਜਾਣੇ ਚਾਹੀਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਪੈਟਰਨਾਂ ਦੀ ਸਫਲ ਵਰਤੋਂ (ਸਾਫਟਵੇਅਰ ਖੇਤਰ ਵਿੱਚ ਕਿਸੇ
ਹੋਰ ਵਾਂਗ) ਸਮੱਸਿਆ ਖੇਤਰ, ਯੂਜ਼ਰ ਲੋੜਾਂ, ਅਤੇ ਤੁਹਾਡੇ ਪ੍ਰੋਜੈਕਟ ਦੀ ਸਮੁੱਚੀ ਤਕਨੀਕੀ ਆਰਕੀਟੈਕਚਰ ਦੀ ਡੂੰਘੀ
ਸਮਝ ’ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।

ਸਾਫਟਵੇਅਰ ਆਰਕੀਟੈਕਚਰ ਬਾਰੇ ਵਿਚਾਰ

ਮੈਂ 1980 ਦੇ ਦਹਾਕੇ ਵਿੱਚ ਪ੍ਰੋਗਰਾਮਿੰਗ ਸ਼ੁਰੂ ਕੀਤੀ ਅਤੇ ਹੈਕਰ ਸੀਨ ਵਿੱਚ ਸ਼ਾਮਲ ਸੀ, ਅਤੇ ਪੇਸ਼ੇਵਰ ਸਾਫਟਵੇਅਰ
ਡਿਵੈਲਪਰ ਬਣਨ ਤੋਂ ਬਾਅਦ ਵੀ ਮੈਂ ਕਦੇ ਆਪਣੀ ਹੈਕਰ ਮਾਨਸਿਕਤਾ ਨਹੀਂ ਗੁਆਈ। ਸ਼ੁਰੂ ਤੋਂ ਹੀ, ਮੇਰੇ ਕੋਲ ਹਮੇਸ਼ਾ
ਇਸ ਬਾਰੇ ਇੱਕ ਸਿਹਤਮੰਦ ਸ਼ੱਕ ਸੀ ਕਿ ਆਪਣੇ ਹਾਥੀ ਦੰਦ ਦੇ ਬੁਰਜਾਂ ਵਿੱਚ ਬੈਠੇ ਸਾਫਟਵੇਅਰਆਰਕੀਟੈਕਟ ਅਸਲ
ਵਿੱਚ ਕੀ ਯੋਗਦਾਨ ਪਾਉਂਦੇ ਸਨ।

ਕਾਰਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਜਿਸ ਕਰਕੇ ਮੈਂ ਨਿੱਜੀ ਤੌਰ ’ਤੇ AI ਤਕਨਾਲੋਜੀ ਦੀ ਇਸ ਸ਼ਕਤੀਸ਼ਾਲੀ ਨਵੀਂ ਲਹਿਰ ਦੁਆਰਾ
ਲਿਆਂਦੇ ਗਏ ਬਦਲਾਵਾਂ ਬਾਰੇ ਬਹੁਤ ਉਤਸ਼ਾਹਿਤ ਹਾਂ, ਉਹ ਹੈ ਇਸਦਾ ਸਾਫਟਵੇਅਰ ਆਰਕੀਟੈਕਚਰ ਦੇ ਫੈਸਲਿਆਂ
’ਤੇ ਪ੍ਰਭਾਵ। ਇਹ ਇਸ ਗੱਲ ਦੀਆਂ ਪਰੰਪਰਾਗਤ ਧਾਰਨਾਵਾਂ ਨੂੰ ਚੁਣੌਤੀ ਦਿੰਦਾ ਹੈ ਕਿ ਸਾਡੇ ਸਾਫਟਵੇਅਰ ਪ੍ਰੋਜੈਕਟਾਂ
ਨੂੰ ਡਿਜ਼ਾਈਨ ਅਤੇ ਲਾਗੂ ਕਰਨ ਦਾ “ਸਹੀ” ਤਰੀਕਾ ਕੀ ਹੈ। ਇਹ ਇਸ ਗੱਲ ਨੂੰ ਵੀ ਚੁਣੌਤੀ ਦਿੰਦਾ ਹੈ ਕਿ ਕੀ
ਆਰਕੀਟੈਕਚਰ ਨੂੰ ਹਾਲੇ ਵੀ ਮੁੱਖ ਤੌਰ ’ਤੇ ਸਿਸਟਮ ਦੇ ਉਹਨਾਂ ਹਿੱਸਿਆਂ ਵਜੋਂ ਸੋਚਿਆ ਜਾ ਸਕਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਨੂੰ
ਬਦਲਣਾ ਮੁਸ਼ਕਲ ਹੈ, ਕਿਉਂਕਿ AI ਵਾਧਾ ਤੁਹਾਡੇ ਪ੍ਰੋਜੈਕਟ ਦੇ ਕਿਸੇ ਵੀ ਹਿੱਸੇ ਨੂੰ, ਕਿਸੇ ਵੀ ਸਮੇਂ ਬਦਲਣਾ ਪਹਿਲਾਂ
ਨਾਲੋਂ ਵੀ ਆਸਾਨ ਬਣਾ ਰਿਹਾ ਹੈ।

ਸ਼ਾਇਦ ਅਸੀਂ ਸਾਫਟਵੇਅਰ ਇੰਜੀਨੀਅਰਿੰਗ ਦੇ “ਉੱਤਰ-ਆਧੁਨਿਕ” ਪਹੁੰਚ ਦੇ ਸਿਖਰਲੇ ਸਾਲਾਂ ਵਿੱਚ ਦਾਖਲ ਹੋ ਰਹੇ
ਹਾਂ। ਇਸ ਸੰਦਰਭ ਵਿੱਚ, ਉੱਤਰ-ਆਧੁਨਿਕ ਪਰੰਪਰਾਗਤ ਪੈਰਾਡਾਈਮਾਂ ਤੋਂ ਇੱਕ ਮੌਲਿਕ ਬਦਲਾਅ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ,
ਜਿੱਥੇ ਡਿਵੈਲਪਰ ਹਰ ਕੋਡ ਲਾਈਨ ਨੂੰ ਲਿਖਣ ਅਤੇ ਬਣਾਈ ਰੱਖਣ ਲਈਜ਼ਿੰਮੇਵਾਰ ਸਨ।ਇਸ ਦੀ ਬਜਾਏ, ਇਹ ਡੇਟਾ
ਮੈਨੀਪੁਲੇਸ਼ਨ, ਜਟਿਲ ਐਲਗੋਰਿਦਮ, ਅਤੇ ਐਪਲੀਕੇਸ਼ਨ ਲੌਜਿਕ ਦੇ ਪੂਰੇ ਹਿੱਸਿਆਂ ਨੂੰ ਤੀਜੀ-ਧਿਰ ਲਾਇਬ੍ਰੇਰੀਆਂ
ਅਤੇ ਬਾਹਰੀ ਏਪੀਆਈਜ਼ ਨੂੰ ਸੌਂਪਣ ਦੇ ਵਿਚਾਰ ਨੂੰ ਅਪਣਾਉਂਦਾ ਹੈ। ਇਹ ਉੱਤਰ-ਆਧੁਨਿਕ ਬਦਲਾਅਐਪਲੀਕੇਸ਼ਨਾਂ
ਨੂੰ ਮੁੱਢ ਤੋਂ ਬਣਾਉਣ ਦੀ ਰਵਾਇਤੀ ਸੋਚ ਤੋਂ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਵਿਚਲਨ ਦਰਸਾਉਂਦਾ ਹੈ, ਅਤੇ ਇਹ ਡਿਵੈਲਪਰਾਂ ਨੂੰ
ਵਿਕਾਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਆਪਣੀ ਭੂਮਿਕਾ ਬਾਰੇ ਮੁੜ ਵਿਚਾਰ ਕਰਨ ਲਈ ਚੁਣੌਤੀ ਦਿੰਦਾ ਹੈ।

ਜਾਣ-ਪਛਾਣ 3

ਮੈਂ ਹਮੇਸ਼ਾ ਵਿਸ਼ਵਾਸ ਕੀਤਾ ਹੈ ਕਿ ਚੰਗੇ ਪ੍ਰੋਗਰਾਮਰ ਸਿਰਫ਼ ਉਹੀ ਕੋਡ ਲਿਖਦੇ ਹਨ ਜੋ ਬਿਲਕੁਲ ਜ਼ਰੂਰੀ ਹੈ, ਜੋ ਲੈਰੀ
ਵਾਲ ਅਤੇ ਉਨ੍ਹਾਂ ਵਰਗੇ ਹੋਰ ਹੈਕਰ ਦਿੱਗਜਾਂ ਦੀਆਂ ਸਿੱਖਿਆਵਾਂ ’ਤੇ ਆਧਾਰਿਤ ਹੈ। ਲਿਖੇ ਜਾਣ ਵਾਲੇ ਕੋਡ ਦੀ
ਮਾਤਰਾ ਨੂੰ ਘੱਟ ਕਰਕੇ, ਅਸੀਂ ਤੇਜ਼ੀ ਨਾਲ ਅੱਗੇ ਵੱਧ ਸਕਦੇ ਹਾਂ, ਬੱਗਾਂ ਲਈ ਸਤਹ ਖੇਤਰ ਨੂੰ ਘਟਾ ਸਕਦੇ ਹਾਂ, ਰੱਖ-
ਰਖਾਅ ਨੂੰ ਸਰਲ ਬਣਾ ਸਕਦੇ ਹਾਂ, ਅਤੇ ਆਪਣੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਦੀ ਸਮੁੱਚੀ ਭਰੋਸੇਯੋਗਤਾ ਨੂੰ ਸੁਧਾਰ ਸਕਦੇ ਹਾਂ।
ਘੱਟ ਕੋਡ ਸਾਨੂੰ ਮੁੱਖ ਵਪਾਰਕ ਤਰਕ ਅਤੇ ਯੂਜ਼ਰ ਅਨੁਭਵ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਜਦੋਂ
ਕਿ ਹੋਰ ਕੰਮ ਨੂੰ ਹੋਰ ਸੇਵਾਵਾਂ ਨੂੰ ਸੌਂਪਦਾ ਹੈ।

ਹੁਣ ਜਦੋਂ AI-ਸੰਚਾਲਿਤ ਸਿਸਟਮ ਉਹਨਾਂ ਕਾਰਜਾਂ ਨੂੰ ਸੰਭਾਲ ਸਕਦੇ ਹਨ ਜੋ ਪਹਿਲਾਂ ਮਨੁੱਖੀ-ਲਿਖਤ ਕੋਡ ਦਾ ਵਿਸ਼ੇਸ਼
ਖੇਤਰ ਸਨ, ਸਾਨੂੰ ਹੋਰ ਵੀ ਵੱਧ ਉਤਪਾਦਕ ਅਤੇ ਚੁਸਤ ਹੋਣ ਦੇ ਯੋਗ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਵਪਾਰਕ ਮੁੱਲ ਅਤੇ ਯੂਜ਼ਰ
ਅਨੁਭਵ ਬਣਾਉਣ ’ਤੇ ਪਹਿਲਾਂ ਨਾਲੋਂ ਵੱਧ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।

ਬੇਸ਼ੱਕ ਆਪਣੇ ਪ੍ਰੋਜੈਕਟ ਦੇ ਵੱਡੇ ਹਿੱਸਿਆਂ ਨੂੰ AI ਸਿਸਟਮਾਂ ਨੂੰ ਸੌਂਪਣ ਦੇ ਨੁਕਸਾਨ ਵੀ ਹਨ, ਜਿਵੇਂ ਕਿ ਨਿਯੰਤਰਣ ਦਾ
ਸੰਭਾਵੀ ਨੁਕਸਾਨ, ਅਤੇ ਮਜ਼ਬੂਤ ਨਿਗਰਾਨੀ ਅਤੇ ਫੀਡਬੈਕ ਵਿਧੀਆਂ ਦੀ ਲੋੜ। ਇਸ ਲਈ ਇਸ ਨੂੰ ਹੁਨਰਾਂ ਅਤੇ
ਗਿਆਨ ਦੇ ਇੱਕ ਨਵੇਂ ਸੈੱਟ ਦੀ ਲੋੜ ਹੈ, ਜਿਸ ਵਿੱਚ AI ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ ਇਸ ਬਾਰੇ ਘੱਟੋ-ਘੱਟ ਕੁਝ ਬੁਨਿਆਦੀ
ਸਮਝ ਸ਼ਾਮਲ ਹੈ।

ਵੱਡਾ ਭਾਸ਼ਾ ਮਾਡਲ ਕੀ ਹੈ?

ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ (LLMs) ਆਰਟੀਫੀਸ਼ੀਅਲ ਇੰਟੈਲੀਜੈਂਸ ਮਾਡਲ ਦੀ ਇੱਕ ਕਿਸਮ ਹਨ ਜਿਨ੍ਹਾਂ ਨੇ ਹਾਲ ਦੇ
ਸਾਲਾਂ ਵਿੱਚ ਕਾਫ਼ੀ ਧਿਆਨ ਖਿੱਚਿਆ ਹੈ, 2020 ਵਿੱਚ OpenAI ਦੁਆਰਾ GPT-3 ਦੀ ਲਾਂਚ ਤੋਂ ਬਾਅਦ।
LLMs ਨੂੰ ਮਨੁੱਖੀ ਭਾਸ਼ਾ ਨੂੰ ਸ਼ਾਨਦਾਰ ਸ਼ੁੱਧਤਾ ਅਤੇ ਪ੍ਰਵਾਹ ਨਾਲ ਪ੍ਰੋਸੈਸ ਕਰਨ, ਸਮਝਣ ਅਤੇ ਤਿਆਰ ਕਰਨ
ਲਈ ਡਿਜ਼ਾਈਨ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਸ ਭਾਗ ਵਿੱਚ, ਅਸੀਂ LLMs ਕਿਵੇਂ ਕੰਮ ਕਰਦੇ ਹਨ ਅਤੇ ਬੁੱਧੀਮਾਨ ਸਿਸਟਮ
ਕੰਪੋਨੈਂਟਸ ਬਣਾਉਣ ਲਈ ਉਹ ਕਿਉਂ ਢੁਕਵੇਂ ਹਨ, ’ਤੇ ਇੱਕ ਸੰਖੇਪ ਨਜ਼ਰ ਮਾਰਾਂਗੇ।

ਆਪਣੇ ਮੂਲ ਵਿੱਚ, LLMs ਡੀਪ ਲਰਨਿੰਗ ਐਲਗੋਰਿਦਮ ’ਤੇ ਆਧਾਰਿਤ ਹਨ, ਖਾਸ ਤੌਰ ’ਤੇ ਤੰਤੂ ਨੈੱਟਵਰਕ। ਇਹ
ਨੈੱਟਵਰਕਆਪਸ ਵਿੱਚ ਜੁੜੇ ਹੋਏ ਨੋਡਸ, ਜਾਂ ਨਿਊਰੌਨਸ ਦੇ ਬਣੇ ਹੁੰਦੇ ਹਨ, ਜੋ ਜਾਣਕਾਰੀ ਨੂੰ ਪ੍ਰੋਸੈਸ ਅਤੇ ਪ੍ਰਸਾਰਿਤ
ਕਰਦੇ ਹਨ। LLMs ਲਈ ਚੋਣ ਦਾ ਢਾਂਚਾ ਅਕਸਰ ਟ੍ਰਾਂਸਫਾਰਮਰ ਮਾਡਲ ਹੁੰਦਾ ਹੈ, ਜੋ ਟੈਕਸਟ ਵਰਗੇ ਕ੍ਰਮਿਕ
ਡੇਟਾ ਨੂੰ ਸੰਭਾਲਣ ਵਿੱਚ ਬਹੁਤ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਸਾਬਤ ਹੋਇਆ ਹੈ।

ਟ੍ਰਾਂਸਫਾਰਮਰ ਮਾਡਲ ਧਿਆਨ ਮੈਕੇਨਿਜ਼ਮ ’ਤੇ ਆਧਾਰਿਤ ਹਨ ਅਤੇ ਮੁੱਖ ਤੌਰ ’ਤੇ ਲੜੀਬੱਧ ਡਾਟਾ ਨਾਲ ਸੰਬੰਧਿਤ
ਕੰਮਾਂ ਲਈ ਵਰਤੇ ਜਾਂਦੇ ਹਨ, ਜਿਵੇਂ ਕਿ ਕੁਦਰਤੀ ਭਾਸ਼ਾ ਪ੍ਰੋਸੈਸਿੰਗ। ਟ੍ਰਾਂਸਫਾਰਮਰ ਇਨਪੁੱਟ ਡਾਟਾ ਨੂੰ ਲੜੀਬੱਧ

ਜਾਣ-ਪਛਾਣ 4

ਤਰੀਕੇ ਦੀ ਬਜਾਏ ਇੱਕੋ ਵਾਰ ਪ੍ਰੋਸੈਸ ਕਰਦੇ ਹਨ, ਜੋ ਉਹਨਾਂ ਨੂੰ ਲੰਬੀ-ਦੂਰੀ ਦੇ ਸੰਬੰਧਾਂ ਨੂੰ ਵਧੇਰੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ
ਨਾਲ ਸਮਝਣ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦਾ ਹੈ। ਉਹਨਾਂ ਵਿੱਚ ਧਿਆਨ ਮੈਕੇਨਿਜ਼ਮ ਦੀਆਂ ਪਰਤਾਂ ਹੁੰਦੀਆਂ ਹਨ ਜੋ ਮਾਡਲ
ਨੂੰ ਸੰਦਰਭ ਅਤੇ ਸੰਬੰਧਾਂ ਨੂੰ ਸਮਝਣ ਲਈ ਇਨਪੁੱਟ ਡਾਟਾ ਦੇ ਵੱਖ-ਵੱਖ ਹਿੱਸਿਆਂ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਨ ਵਿੱਚ
ਮਦਦ ਕਰਦੀਆਂ ਹਨ।

ਐੱਲਐੱਲਐੱਮ ਲਈ ਸਿਖਲਾਈ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਮਾਡਲ ਨੂੰ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਲਿਖਤੀ ਡਾਟਾ ਦਾ ਸਾਹਮਣਾ
ਕਰਨਾ ਸ਼ਾਮਲ ਹੁੰਦਾ ਹੈ, ਜਿਵੇਂ ਕਿ ਕਿਤਾਬਾਂ, ਲੇਖ, ਵੈੱਬਸਾਈਟਾਂ, ਅਤੇ ਕੋਡ ਰਿਪੋਜ਼ਟਰੀਆਂ। ਸਿਖਲਾਈ ਦੌਰਾਨ,
ਮਾਡਲ ਲਿਖਤ ਵਿੱਚ ਪੈਟਰਨ, ਸੰਬੰਧ, ਅਤੇ ਢਾਂਚੇ ਨੂੰ ਪਛਾਣਨਾ ਸਿੱਖਦਾ ਹੈ। ਇਹ ਭਾਸ਼ਾ ਦੇ ਅੰਕੜਾ-ਵਿਧੀ ਗੁਣਾਂ ਨੂੰ
ਕੈਪਚਰ ਕਰਦਾ ਹੈ, ਜਿਵੇਂ ਕਿ ਵਿਆਕਰਣ ਦੇ ਨਿਯਮ, ਸ਼ਬਦ ਸੰਬੰਧ, ਅਤੇ ਸੰਦਰਭਕ ਅਰਥ।

ਐੱਲਐੱਲਐੱਮ ਦੀ ਸਿਖਲਾਈ ਵਿੱਚ ਵਰਤੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਮੁੱਖ ਤਕਨੀਕਾਂ ਵਿੱਚੋਂ ਇੱਕ ਅਣਸੁਪਰਵਾਈਜ਼ਡ
ਲਰਨਿੰਗ ਹੈ। ਇਸਦਾ ਮਤਲਬ ਹੈ ਕਿ ਮਾਡਲ ਸਪੱਸ਼ਟ ਲੇਬਲਿੰਗ ਜਾਂ ਮਾਰਗਦਰਸ਼ਨ ਤੋਂ ਬਿਨਾਂ ਡਾਟਾ ਤੋਂ ਸਿੱਖਦਾ
ਹੈ। ਇਹ ਸਿਖਲਾਈ ਡਾਟਾ ਵਿੱਚ ਸ਼ਬਦਾਂ ਅਤੇ ਵਾਕਾਂਸ਼ਾਂ ਦੀ ਸਹਿ-ਮੌਜੂਦਗੀ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਕੇ ਆਪਣੇ ਆਪ
ਪੈਟਰਨ ਅਤੇ ਪ੍ਰਤੀਨਿਧਤਾ ਖੋਜਦਾ ਹੈ। ਇਹ ਐੱਲਐੱਲਐੱਮ ਨੂੰ ਭਾਸ਼ਾ ਅਤੇ ਇਸਦੀਆਂ ਬਾਰੀਕੀਆਂ ਦੀ ਡੂੰਘੀ
ਸਮਝ ਵਿਕਸਿਤ ਕਰਨ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦਾ ਹੈ।

ਐੱਲਐੱਲਐੱਮ ਦਾ ਇੱਕ ਹੋਰ ਮਹੱਤਵਪੂਰਨ ਪਹਿਲੂ ਸੰਦਰਭ ਨੂੰ ਸੰਭਾਲਣ ਦੀ ਉਨ੍ਹਾਂ ਦੀ ਯੋਗਤਾ ਹੈ। ਲਿਖਤ ਦੇ ਟੁਕੜੇ
ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰਦੇ ਸਮੇਂ, ਐੱਲਐੱਲਐੱਮ ਨਾ ਸਿਰਫ਼ ਵਿਅਕਤੀਗਤ ਸ਼ਬਦਾਂ ਨੂੰ, ਬਲਕਿ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਸੰਦਰਭ ਨੂੰ
ਵੀ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹਨ। ਉਹ ਲਿਖਤ ਦੇ ਅਰਥ ਅਤੇ ਇਰਾਦੇ ਨੂੰ ਸਮਝਣ ਲਈ ਪਿਛਲੇ ਸ਼ਬਦਾਂ, ਵਾਕਾਂ, ਅਤੇ
ਇੱਥੋਂ ਤੱਕ ਕਿ ਪੈਰ੍ਹਿਆਂ ਨੂੰ ਵੀ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹਨ। ਇਹ ਸੰਦਰਭਕ ਸਮਝ ਐੱਲਐੱਲਐੱਮ ਨੂੰ ਸੁਸੰਗਤ ਅਤੇ
ਢੁਕਵੇਂ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਦੇ ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ। ਕਿਸੇ ਦਿੱਤੇ ਗਏ ਐੱਲਐੱਲਐੱਮ ਮਾਡਲ ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ਦਾ
ਮੁਲਾਂਕਣ ਕਰਨ ਦੇ ਮੁੱਖ ਤਰੀਕਿਆਂ ਵਿੱਚੋਂ ਇੱਕ ਉਹਨਾਂ ਦੇ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਲਈ ਵਿਚਾਰ ਕਰ ਸਕਣ ਵਾਲੇ
ਸੰਦਰਭ ਦੇ ਆਕਾਰ ’ਤੇ ਵਿਚਾਰ ਕਰਨਾ ਹੈ।

ਸਿਖਲਾਈ ਤੋਂ ਬਾਅਦ, ਐੱਲਐੱਲਐੱਮ ਨੂੰ ਭਾਸ਼ਾ ਨਾਲ ਸੰਬੰਧਿਤ ਕਈ ਕੰਮਾਂ ਲਈ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਉਹ
ਮਨੁੱਖੀ-ਵਰਗੀ ਲਿਖਤ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹਨ, ਸਵਾਲਾਂ ਦੇ ਜਵਾਬ ਦੇ ਸਕਦੇ ਹਨ, ਦਸਤਾਵੇਜ਼ਾਂ ਦਾ ਸਾਰ ਕੱਢ ਸਕਦੇ
ਹਨ, ਭਾਸ਼ਾਵਾਂ ਦਾ ਅਨੁਵਾਦ ਕਰ ਸਕਦੇ ਹਨ, ਅਤੇ ਇੱਥੋਂ ਤੱਕ ਕਿ ਕੋਡ ਵੀ ਲਿਖ ਸਕਦੇ ਹਨ। ਐੱਲਐੱਲਐੱਮ ਦੀ
ਬਹੁਮੁਖਤਾ ਉਹਨਾਂ ਨੂੰ ਬੁੱਧੀਮਾਨ ਸਿਸਟਮ ਕੰਪੋਨੈਂਟਸ ਬਣਾਉਣ ਲਈ ਮੁੱਲਵਾਨ ਬਣਾਉਂਦੀ ਹੈ ਜੋ ਉਪਭੋਗਤਾਵਾਂ ਨਾਲ
ਗੱਲਬਾਤ ਕਰ ਸਕਦੇ ਹਨ, ਲਿਖਤ ਡਾਟਾ ਨੂੰ ਪ੍ਰੋਸੈਸ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰ ਸਕਦੇ ਹਨ, ਅਤੇ ਅਰਥਪੂਰਨਆਉਟਪੁੱਟ
ਤਿਆਰ ਕਰ ਸਕਦੇ ਹਨ।

ਐਪਲੀਕੇਸ਼ਨ ਆਰਕੀਟੈਕਚਰ ਵਿੱਚ ਐੱਲਐੱਲਐੱਮ ਨੂੰ ਸ਼ਾਮਲ ਕਰਕੇ, ਤੁਸੀਂ ਅਜਿਹੇ ਏਆਈ ਕੰਪੋਨੈਂਟਸ ਬਣਾ ਸਕਦੇ
ਹੋ ਜੋ ਉਪਭੋਗਤਾ ਇਨਪੁੱਟ ਨੂੰ ਸਮਝ ਅਤੇ ਪ੍ਰੋਸੈਸ ਕਰ ਸਕਦੇ ਹਨ, ਡਾਇਨਾਮਿਕ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰ ਸਕਦੇ

ਜਾਣ-ਪਛਾਣ 5

ਹਨ, ਅਤੇ ਬੁੱਧੀਮਾਨ ਸਿਫਾਰਸ਼ਾਂ ਜਾਂ ਕਾਰਵਾਈਆਂ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦੇ ਹਨ। ਪਰ ਐੱਲਐੱਲਐੱਮ ਨਾਲ ਕੰਮ ਕਰਨ
ਲਈ ਸਰੋਤਾਂ ਦੀਆਂ ਲੋੜਾਂ ਅਤੇ ਕਾਰਗੁਜ਼ਾਰੀ ਦੇ ਸਮਝੌਤਿਆਂ ’ਤੇ ਧਿਆਨਪੂਰਵਕ ਵਿਚਾਰ ਕਰਨ ਦੀ ਲੋੜ ਹੈ।
ਐੱਲਐੱਲਐੱਮ ਕੰਪਿਊਟੇਸ਼ਨਲ ਤੌਰ ’ਤੇ ਗਹਿਨ ਹੁੰਦੇ ਹਨ ਅਤੇ ਚੱਲਣ ਲਈ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰੋਸੈਸਿੰਗ ਪਾਵਰ ਅਤੇ
ਮੈਮੋਰੀ (ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਪੈਸੇ) ਦੀ ਲੋੜ ਹੋ ਸਕਦੀ ਹੈ। ਸਾਡੇ ਵਿੱਚੋਂ ਜ਼ਿਆਦਾਤਰ ਨੂੰ ਸਾਡੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ
ਐੱਲਐੱਲਐੱਮ ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰਨ ਦੇ ਲਾਗਤ ਪ੍ਰਭਾਵਾਂ ਦਾ ਮੁਲਾਂਕਣ ਕਰਨ ਅਤੇ ਉਸ ਅਨੁਸਾਰ ਕਾਰਵਾਈ ਕਰਨ
ਦੀ ਲੋੜ ਹੋਵੇਗੀ।

ਅਨੁਮਾਨ ਨੂੰ ਸਮਝਣਾ

ਅਨੁਮਾਨ ਉਹ ਪ੍ਰਕਿਰਿਆ ਹੈ ਜਿਸ ਦੁਆਰਾ ਇੱਕ ਮਾਡਲ ਨਵੇਂ, ਅਣਦੇਖੇ ਡਾਟਾ ਦੇ ਆਧਾਰ ’ਤੇ ਭਵਿੱਖਬਾਣੀਆਂ ਜਾਂ
ਨਤੀਜੇ ਤਿਆਰ ਕਰਦਾ ਹੈ। ਇਹ ਉਹ ਪੜਾਅ ਹੈ ਜਿੱਥੇ ਸਿਖਲਾਈ ਪ੍ਰਾਪਤ ਮਾਡਲ ਨੂੰ ਉਪਭੋਗਤਾ ਦੇ ਇਨਪੁੱਟ ਦੇ
ਜਵਾਬ ਵਿੱਚ ਫੈਸਲੇ ਲੈਣ ਜਾਂ ਟੈਕਸਟ, ਚਿੱਤਰ, ਜਾਂ ਹੋਰ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰਨ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।

ਸਿਖਲਾਈ ਦੇ ਪੜਾਅ ਦੌਰਾਨ, ਇੱਕ AI ਮਾਡਲ ਆਪਣੀਆਂ ਭਵਿੱਖਬਾਣੀਆਂ ਵਿੱਚ ਗਲਤੀ ਨੂੰ ਘੱਟ ਕਰਨ ਲਈ
ਆਪਣੇ ਮਾਪਦੰਡਾਂ ਨੂੰ ਵਿਵਸਥਿਤ ਕਰਕੇ ਇੱਕ ਵੱਡੇ ਡਾਟਾ-ਸਮੂਹ ਤੋਂ ਸਿੱਖਦਾ ਹੈ। ਇੱਕ ਵਾਰ ਸਿਖਲਾਈ ਪ੍ਰਾਪਤ
ਕਰਨ ਤੋਂ ਬਾਅਦ, ਮਾਡਲ ਨਵੇਂ ਡਾਟਾ ’ਤੇ ਆਪਣੀ ਸਿੱਖੀ ਹੋਈ ਜਾਣਕਾਰੀ ਨੂੰ ਲਾਗੂ ਕਰ ਸਕਦਾ ਹੈ। ਅਨੁਮਾਨ ਉਹ
ਤਰੀਕਾ ਹੈ ਜਿਸ ਨਾਲ ਮਾਡਲ ਆਪਣੇ ਸਿੱਖੇ ਹੋਏ ਪੈਟਰਨ ਅਤੇ ਗਿਆਨ ਨੂੰ ਨਤੀਜੇ ਤਿਆਰ ਕਰਨ ਲਈ ਵਰਤਦਾ
ਹੈ।

LLMs ਲਈ, ਅਨੁਮਾਨ ਵਿੱਚ ਇੱਕ ਪ੍ਰੌਮਪਟ ਜਾਂ ਇਨਪੁੱਟ ਟੈਕਸਟ ਲੈਣਾ ਅਤੇ ਟੋਕਨਾਂ ਦੀ ਧਾਰਾ ਦੇ ਰੂਪ ਵਿੱਚ ਇੱਕ
ਸੁਸੰਗਤ ਅਤੇ ਪ੍ਰਸੰਗਿਕ ਜਵਾਬ ਤਿਆਰ ਕਰਨਾ ਸ਼ਾਮਲ ਹੈ (ਜਿਸ ਬਾਰੇ ਅਸੀਂ ਜਲਦੀ ਹੀ ਗੱਲ ਕਰਾਂਗੇ)। ਇਹ
ਕਈ ਹੋਰ ਕੰਮਾਂ ਦੇ ਨਾਲ-ਨਾਲ ਇੱਕ ਸਵਾਲ ਦਾ ਜਵਾਬ ਦੇਣਾ, ਇੱਕ ਵਾਕ ਨੂੰ ਪੂਰਾ ਕਰਨਾ, ਇੱਕ ਕਹਾਣੀ ਤਿਆਰ
ਕਰਨਾ, ਜਾਂ ਟੈਕਸਟ ਦਾ ਅਨੁਵਾਦ ਕਰਨਾ ਹੋ ਸਕਦਾ ਹੈ।

ਤੁਹਾਡੇ ਅਤੇ ਮੇਰੇ ਸੋਚਣ ਦੇ ਤਰੀਕੇ ਦੇ ਉਲਟ, ਇੱਕ AI ਮਾਡਲ ਦੀ ਅਨੁਮਾਨ ਰਾਹੀਂ “ਸੋਚ” ਇੱਕ
ਸਥਿਤੀ-ਰਹਿਤ ਕਾਰਜ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਭਾਵ, ਇਸਦੀ ਸੋਚ ਇਸਦੀ ਉਤਪਾਦਨ ਪ੍ਰਕਿਰਿਆ ਤੱਕ
ਸੀਮਿਤ ਹੈ। ਇਸਨੂੰ ਸੱਚਮੁੱਚ ਉੱਚੀ ਆਵਾਜ਼ ਵਿੱਚ ਸੋਚਣਾ ਪੈਂਦਾ ਹੈ, ਜਿਵੇਂ ਕਿ ਮੈਂ ਤੁਹਾਨੂੰ ਇੱਕ ਸਵਾਲ
ਪੁੱਛਿਆ ਹੋਵੇ ਅਤੇ ਤੁਹਾਡੇ ਤੋਂ ਸਿਰਫ “ਚੇਤਨਾ ਦੀ ਧਾਰਾ” ਸ਼ੈਲੀ ਵਿੱਚ ਜਵਾਬ ਸਵੀਕਾਰ ਕੀਤਾ ਹੋਵੇ।

ਜਾਣ-ਪਛਾਣ 6

ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ ਕਈਆਕਾਰਾਂ ਅਤੇ ਕਿਸਮਾਂ ਵਿੱਚ ਆਉਂਦੇ ਹਨ

ਹਾਲਾਂਕਿ ਲਗਭਗ ਸਾਰੇ ਪ੍ਰਸਿੱਧ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ (LLMs) ਇੱਕੋ ਮੂਲ ਟ੍ਰਾਂਸਫਾਰਮਰ ਆਰਕੀਟੈਕਚਰ ’ਤੇ
ਆਧਾਰਿਤ ਹਨ ਅਤੇ ਵੱਡੇ ਟੈਕਸਟ ਡਾਟਾ-ਸਮੂਹਾਂ ’ਤੇ ਸਿਖਲਾਈ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਉਹ ਵੱਖ-ਵੱਖ ਆਕਾਰਾਂ
ਵਿੱਚ ਆਉਂਦੇ ਹਨ ਅਤੇ ਵੱਖ-ਵੱਖ ਉਦੇਸ਼ਾਂ ਲਈ ਸੂਖਮ-ਸਮਾਯੋਜਿਤ ਕੀਤੇ ਜਾਂਦੇ ਹਨ। ਇੱਕ LLM ਦਾ ਆਕਾਰ, ਜੋ
ਇਸਦੇ ਤੰਤ੍ਰਿਕਾ ਨੈੱਟਵਰਕ ਵਿੱਚ ਮਾਪਦੰਡਾਂ ਦੀ ਸੰਖਿਆ ਦੁਆਰਾ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ, ਇਸਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ’ਤੇ
ਵੱਡਾ ਪ੍ਰਭਾਵ ਪਾਉਂਦਾ ਹੈ। ਵੱਧ ਮਾਪਦੰਡਾਂ ਵਾਲੇ ਵੱਡੇ ਮਾਡਲ, ਜਿਵੇਂ ਕਿ GPT-4, ਜਿਸ ਵਿੱਚ 1 ਤੋਂ 2 ਟ੍ਰਿਲੀਅਨ
ਮਾਪਦੰਡ ਹੋਣ ਦੀ ਅਫਵਾਹ ਹੈ, ਆਮ ਤੌਰ ’ਤੇ ਛੋਟੇ ਮਾਡਲਾਂ ਨਾਲੋਂ ਵਧੇਰੇ ਗਿਆਨਵਾਨ ਅਤੇ ਸਮਰੱਥ ਹੁੰਦੇ ਹਨ।
ਹਾਲਾਂਕਿ, ਵੱਡੇ ਮਾਡਲਾਂ ਨੂੰ ਚਲਾਉਣ ਲਈ ਬਹੁਤ ਜ਼ਿਆਦਾ ਕੰਪਿਊਟਿੰਗ ਸ਼ਕਤੀ ਦੀ ਵੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਜੋ ਕਿ API
ਕਾਲਾਂ ਰਾਹੀਂ ਉਹਨਾਂ ਦੀ ਵਰਤੋਂ ਕਰਨ ਵੇਲੇ ਵੱਧ ਖਰਚੇ ਵਿੱਚ ਤਬਦੀਲ ਹੁੰਦੀ ਹੈ।

LLMs ਨੂੰ ਵਧੇਰੇ ਵਿਵਹਾਰਕ ਅਤੇ ਵਿਸ਼ੇਸ਼ ਵਰਤੋਂ ਦੇ ਮਾਮਲਿਆਂ ਲਈ ਅਨੁਕੂਲ ਬਣਾਉਣ ਲਈ, ਬੇਸ ਮਾਡਲਾਂ
ਨੂੰ ਅਕਸਰ ਵਧੇਰੇ ਲਕਸ਼ਿਤ ਡਾਟਾ-ਸਮੂਹਾਂ ’ਤੇ ਸੂਖਮ-ਸਮਾਯੋਜਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਨ ਲਈ, ਇੱਕ LLM
ਨੂੰ ਸੰਵਾਦੀ AI ਲਈ ਵਿਸ਼ੇਸ਼ ਬਣਾਉਣ ਲਈ ਸੰਵਾਦ ਦੇ ਇੱਕ ਵੱਡੇ ਸੰਗ੍ਰਹਿ ’ਤੇ ਸਿਖਲਾਈ ਦਿੱਤੀ ਜਾ ਸਕਦੀ ਹੈ।
ਹੋਰਾਂ ਨੂੰ ਕੋਡ ’ਤੇ ਸਿਖਲਾਈ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਜੋ ਉਹਨਾਂ ਨੂੰ ਪ੍ਰੋਗਰਾਮਿੰਗ ਦਾ ਗਿਆਨ ਦਿੱਤਾ ਜਾ ਸਕੇ। ਇੱਥੋਂ ਤੱਕ
ਕਿ ਕੁਝ ਮਾਡਲ ਹਨ ਜੋ ਉਪਭੋਗਤਾਵਾਂ ਨਾਲ ਰੋਲ-ਪਲੇਅ-ਸ਼ੈਲੀ ਦੀਆਂ ਗੱਲਬਾਤਾਂ ਲਈ ਵਿਸ਼ੇਸ਼ ਤੌਰ ’ਤੇ ਸਿਖਲਾਈ
ਪ੍ਰਾਪਤ ਹਨ!

ਪੁਨਰ-ਪ੍ਰਾਪਤੀ ਬਨਾਮ ਉਤਪਾਦਕ ਮਾਡਲ

ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ (LLMs) ਦੀ ਦੁਨੀਆ ਵਿੱਚ, ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਦੇ ਦੋ ਮੁੱਖ ਤਰੀਕੇ ਹਨ: ਪੁਨਰ-ਪ੍ਰਾਪਤੀ-
ਆਧਾਰਿਤ ਮਾਡਲ ਅਤੇ ਉਤਪਾਦਕ ਮਾਡਲ। ਹਰ ਤਰੀਕੇ ਦੀਆਂ ਆਪਣੀਆਂ ਤਾਕਤਾਂ ਅਤੇ ਕਮਜ਼ੋਰੀਆਂ ਹਨ, ਅਤੇ
ਇਹਨਾਂ ਵਿੱਚ ਅੰਤਰ ਨੂੰ ਸਮਝਣ ਨਾਲ ਤੁਹਾਨੂੰ ਆਪਣੀ ਖਾਸ ਵਰਤੋਂ ਲਈ ਸਹੀ ਮਾਡਲ ਚੁਣਨ ਵਿੱਚ ਮਦਦ ਮਿਲ
ਸਕਦੀ ਹੈ।

ਪੁਨਰ-ਪ੍ਰਾਪਤੀ-ਆਧਾਰਿਤ ਮਾਡਲ

ਪੁਨਰ-ਪ੍ਰਾਪਤੀ-ਆਧਾਰਿਤ ਮਾਡਲ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਜਾਣਕਾਰੀ ਪੁਨਰ-ਪ੍ਰਾਪਤੀ ਮਾਡਲ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਪਹਿਲਾਂ
ਤੋਂ ਮੌਜੂਦ ਟੈਕਸਟ ਦੇ ਵੱਡੇ ਡਾਟਾਬੇਸ ਵਿੱਚੋਂ ਖੋਜ ਕਰਕੇ ਅਤੇ ਇਨਪੁਟ ਕੀਤੇ ਸਵਾਲ ਦੇ ਆਧਾਰ ’ਤੇ ਸਭ ਤੋਂ ਢੁਕਵੇਂ
ਹਿੱਸਿਆਂ ਦੀ ਚੋਣ ਕਰਕੇ ਜਵਾਬ ਤਿਆਰ ਕਰਦੇ ਹਨ। ਇਹ ਮਾਡਲ ਨਵਾਂ ਟੈਕਸਟ ਸ਼ੁਰੂ ਤੋਂ ਨਹੀਂ ਬਣਾਉਂਦੇ, ਸਗੋਂ ਇੱਕ
ਸੁਸੰਗਤ ਜਵਾਬ ਬਣਾਉਣ ਲਈ ਡਾਟਾਬੇਸ ਵਿੱਚੋਂ ਹਿੱਸਿਆਂ ਨੂੰ ਜੋੜਦੇ ਹਨ।

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

ਜਾਣ-ਪਛਾਣ 7

ਪੁਨਰ-ਪ੍ਰਾਪਤੀ-ਆਧਾਰਿਤ ਮਾਡਲਾਂ ਦਾ ਇੱਕ ਮੁੱਖ ਫਾਇਦਾ ਤੱਥਾਤਮਕ ਤੌਰ ’ਤੇ ਸਹੀ ਅਤੇ ਨਵੀਨਤਮ ਜਾਣਕਾਰੀ
ਪ੍ਰਦਾਨ ਕਰਨ ਦੀ ਉਨ੍ਹਾਂ ਦੀ ਯੋਗਤਾ ਹੈ। ਕਿਉਂਕਿ ਇਹ ਸੰਭਾਲੇ ਹੋਏ ਟੈਕਸਟ ਦੇ ਡਾਟਾਬੇਸ ’ਤੇ ਨਿਰਭਰ ਕਰਦੇ
ਹਨ, ਇਹ ਭਰੋਸੇਯੋਗ ਸਰੋਤਾਂ ਤੋਂ ਢੁਕਵੀਂ ਜਾਣਕਾਰੀ ਲੈ ਕੇ ਇਸਨੂੰ ਵਰਤੋਂਕਾਰ ਨੂੰ ਪੇਸ਼ ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਉਨ੍ਹਾਂ
ਐਪਲੀਕੇਸ਼ਨਾਂ ਲਈ ਬਹੁਤ ਢੁਕਵੇਂ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਟੀਕ, ਤੱਥਾਤਮਕ ਜਵਾਬਾਂ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਜਿਵੇਂ ਕਿ ਸਵਾਲ-
ਜਵਾਬ ਪ੍ਰਣਾਲੀਆਂ ਜਾਂ ਗਿਆਨ ਭੰਡਾਰ।

ਹਾਲਾਂਕਿ, ਪੁਨਰ-ਪ੍ਰਾਪਤੀ-ਆਧਾਰਿਤ ਮਾਡਲਾਂ ਦੀਆਂ ਕੁਝ ਸੀਮਾਵਾਂ ਹਨ। ਇਹ ਸਿਰਫ ਉਨੇ ਹੀ ਵਧੀਆ ਹੁੰਦੇ ਹਨ
ਜਿੰਨਾ ਉਹ ਡਾਟਾਬੇਸ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਉਹ ਖੋਜ ਕਰ ਰਹੇ ਹਨ, ਇਸ ਲਈ ਡਾਟਾਬੇਸ ਦੀ ਗੁਣਵੱਤਾ ਅਤੇ ਕਵਰੇਜ
ਮਾਡਲ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਨੂੰ ਸਿੱਧਾ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀ ਹੈ। ਇਸ ਤੋਂ ਇਲਾਵਾ, ਇਹ ਮਾਡਲ ਸੁਸੰਗਤ ਅਤੇ ਕੁਦਰਤੀ
ਲੱਗਣ ਵਾਲੇ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਵਿੱਚ ਸੰਘਰਸ਼ ਕਰ ਸਕਦੇ ਹਨ, ਕਿਉਂਕਿ ਉਹ ਡਾਟਾਬੇਸ ਵਿੱਚ ਉਪਲਬਧ ਟੈਕਸਟ
ਤੱਕ ਸੀਮਿਤ ਹੁੰਦੇ ਹਨ।

ਅਸੀਂ ਇਸ ਕਿਤਾਬ ਵਿੱਚ ਸ਼ੁੱਧ ਪੁਨਰ-ਪ੍ਰਾਪਤੀ ਮਾਡਲਾਂ ਦੀ ਵਰਤੋਂ ਨੂੰ ਕਵਰ ਨਹੀਂ ਕਰਦੇ।

ਉਤਪਾਦਕ ਮਾਡਲ

ਦੂਜੇ ਪਾਸੇ, ਉਤਪਾਦਕ ਮਾਡਲ ਸਿਖਲਾਈ ਦੌਰਾਨ ਸਿੱਖੇ ਪੈਟਰਨਾਂ ਅਤੇ ਸੰਬੰਧਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਸ਼ੁਰੂ ਤੋਂ ਨਵਾਂ ਟੈਕਸਟ
ਬਣਾਉਂਦੇ ਹਨ। ਇਹ ਮਾਡਲ ਇਨਪੁਟ ਪ੍ਰੌਮਪਟ ਦੇ ਅਨੁਸਾਰ ਨਵੇਂ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਲਈ ਭਾਸ਼ਾ ਦੀ ਆਪਣੀ
ਸਮਝ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ।

ਉਤਪਾਦਕ ਮਾਡਲਾਂ ਦੀ ਮੁੱਖ ਤਾਕਤ ਰਚਨਾਤਮਕ, ਸੁਸੰਗਤ, ਅਤੇ ਸੰਦਰਭ ਅਨੁਸਾਰ ਢੁਕਵਾਂ ਟੈਕਸਟ ਤਿਆਰ ਕਰਨ
ਦੀ ਉਨ੍ਹਾਂ ਦੀ ਯੋਗਤਾ ਹੈ। ਇਹ ਖੁੱਲ੍ਹੀਆਂ ਗੱਲਬਾਤਾਂ ਵਿੱਚ ਹਿੱਸਾ ਲੈ ਸਕਦੇ ਹਨ, ਕਹਾਣੀਆਂ ਲਿਖ ਸਕਦੇ ਹਨ,
ਅਤੇ ਇੱਥੋਂ ਤੱਕ ਕਿ ਕੋਡ ਵੀ ਲਿਖ ਸਕਦੇ ਹਨ। ਇਹ ਉਨ੍ਹਾਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਲਈ ਆਦਰਸ਼ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਵਧੇਰੇ
ਖੁੱਲ੍ਹੀਆਂ ਅਤੇ ਗਤੀਸ਼ੀਲ ਅੰਤਰਕਿਰਿਆਵਾਂ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਜਿਵੇਂ ਕਿ ਚੈਟਬੋਟ, ਸਮੱਗਰੀ ਨਿਰਮਾਣ, ਅਤੇ
ਰਚਨਾਤਮਕ ਲੇਖਣ ਸਹਾਇਕ।

ਹਾਲਾਂਕਿ, ਉਤਪਾਦਕ ਮਾਡਲ ਕਈ ਵਾਰ ਅਸੰਗਤ ਜਾਂ ਤੱਥਾਤਮਕ ਤੌਰ ’ਤੇ ਗਲਤ ਜਾਣਕਾਰੀ ਪੈਦਾ ਕਰ ਸਕਦੇ ਹਨ,
ਕਿਉਂਕਿ ਉਹ ਤੱਥਾਂ ਦੇ ਸੰਭਾਲੇ ਹੋਏ ਡਾਟਾਬੇਸ ਦੀ ਬਜਾਏ ਸਿਖਲਾਈ ਦੌਰਾਨ ਸਿੱਖੇ ਪੈਟਰਨਾਂ ’ਤੇ ਨਿਰਭਰ ਕਰਦੇ
ਹਨ। ਉਹ ਪੱਖਪਾਤਾਂ ਅਤੇ ਭਰਮਾਂ ਦੇ ਵੀ ਵਧੇਰੇ ਅਧੀਨ ਹੋ ਸਕਦੇ ਹਨ, ਜੋ ਅਜਿਹਾ ਟੈਕਸਟ ਤਿਆਰ ਕਰਦੇ ਹਨ ਜੋ
ਵਿਸ਼ਵਾਸਯੋਗ ਲੱਗਦਾ ਹੈ ਪਰ ਜ਼ਰੂਰੀ ਨਹੀਂ ਕਿ ਸੱਚ ਹੋਵੇ।

ਜਨਰੇਟਿਵ ਐੱਲਐੱਲਐੱਮ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਵਿੱਚ OpenAI ਦੀ GPT ਸੀਰੀਜ਼ (GPT-3, GPT-4) ਅਤੇ
Anthropic ਦਾ Claude ਸ਼ਾਮਲ ਹਨ।

ਜਾਣ-ਪਛਾਣ 8

ਹਾਈਬ੍ਰਿਡ ਮਾਡਲ

ਕਈ ਵਪਾਰਕ ਤੌਰ ’ਤੇ ਉਪਲਬਧ ਐੱਲਐੱਲਐੱਮ ਇੱਕ ਹਾਈਬ੍ਰਿਡ ਮਾਡਲ ਵਿੱਚ ਰਿਟਰੀਵਲ ਅਤੇ ਜਨਰੇਟਿਵ ਦੋਵੇਂ
ਪਹੁੰਚਾਂ ਨੂੰ ਜੋੜਦੇ ਹਨ। ਇਹ ਮਾਡਲ ਡਾਟਾਬੇਸ ਤੋਂ ਢੁਕਵੀਂ ਜਾਣਕਾਰੀ ਲੱਭਣ ਲਈ ਰਿਟਰੀਵਲ ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ
ਕਰਦੇ ਹਨ ਅਤੇ ਫਿਰ ਉਸ ਜਾਣਕਾਰੀ ਨੂੰ ਇੱਕ ਸੰਗਤ ਜਵਾਬ ਵਿੱਚ ਸੰਸਲੇਸ਼ਿਤ ਕਰਨ ਲਈ ਜਨਰੇਟਿਵ ਤਕਨੀਕਾਂ
ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ।

ਹਾਈਬ੍ਰਿਡ ਮਾਡਲ ਰਿਟਰੀਵਲ-ਆਧਾਰਿਤ ਮਾਡਲਾਂ ਦੀ ਤੱਥਾਤਮਕ ਸ਼ੁੱਧਤਾ ਨੂੰ ਜਨਰੇਟਿਵ ਮਾਡਲਾਂ ਦੀਆਂ ਕੁਦਰਤੀ
ਭਾਸ਼ਾ ਜਨਰੇਸ਼ਨ ਸਮਰੱਥਾਵਾਂ ਨਾਲ ਜੋੜਨ ਦਾ ਟੀਚਾ ਰੱਖਦੇ ਹਨ। ਉਹ ਵਧੇਰੇ ਭਰੋਸੇਯੋਗ ਅਤੇ ਅੱਪ-ਟੂ-ਡੇਟ ਜਾਣਕਾਰੀ
ਪ੍ਰਦਾਨ ਕਰ ਸਕਦੇ ਹਨ ਜਦੋਂ ਕਿ ਖੁੱਲ੍ਹੀਆਂ ਗੱਲਬਾਤਾਂ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਣ ਦੀ ਯੋਗਤਾ ਵੀ ਬਣਾਈ ਰੱਖਦੇ ਹਨ।

ਰਿਟਰੀਵਲ-ਆਧਾਰਿਤਅਤੇ ਜਨਰੇਟਿਵ ਮਾਡਲਾਂ ਵਿੱਚੋਂ ਚੋਣ ਕਰਦੇ ਸਮੇਂ, ਤੁਹਾਨੂੰ ਆਪਣੀ ਐਪਲੀਕੇਸ਼ਨ ਦੀਆਂ ਵਿਸ਼ੇਸ਼
ਲੋੜਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ। ਜੇਕਰ ਮੁੱਖ ਟੀਚਾ ਸਹੀ, ਤੱਥਾਤਮਕ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰਨਾ ਹੈ, ਤਾਂ
ਰਿਟਰੀਵਲ-ਆਧਾਰਿਤ ਮਾਡਲ ਸਭ ਤੋਂ ਵਧੀਆ ਚੋਣ ਹੋ ਸਕਦਾ ਹੈ। ਜੇਕਰ ਐਪਲੀਕੇਸ਼ਨ ਨੂੰ ਵਧੇਰੇ ਖੁੱਲ੍ਹੀਆਂ ਅਤੇ
ਰਚਨਾਤਮਕ ਗੱਲਬਾਤਾਂ ਦੀ ਲੋੜ ਹੈ, ਤਾਂ ਜਨਰੇਟਿਵ ਮਾਡਲ ਵਧੇਰੇ ਢੁਕਵਾਂ ਹੋ ਸਕਦਾ ਹੈ। ਹਾਈਬ੍ਰਿਡ ਮਾਡਲ ਦੋਵਾਂ
ਪਹੁੰਚਾਂ ਵਿਚਕਾਰ ਸੰਤੁਲਨ ਪੇਸ਼ ਕਰਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਲਈ ਚੰਗੀ ਚੋਣ ਹੋ ਸਕਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ
ਤੱਥਾਤਮਕ ਸ਼ੁੱਧਤਾ ਅਤੇ ਕੁਦਰਤੀ ਭਾਸ਼ਾ ਜਨਰੇਸ਼ਨ ਦੋਵਾਂ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।

ਅੰਤ ਵਿੱਚ, ਰਿਟਰੀਵਲ-ਆਧਾਰਿਤ ਅਤੇ ਜਨਰੇਟਿਵ ਮਾਡਲਾਂ ਵਿਚਕਾਰ ਚੋਣ ਵਿਸ਼ੇਸ਼ ਵਰਤੋਂ ਦੇ ਕੇਸ ਅਤੇ ਸ਼ੁੱਧਤਾ,
ਰਚਨਾਤਮਕਤਾ, ਅਤੇ ਲਚਕਤਾ ਵਿਚਕਾਰ ਸਮਝੌਤਿਆਂ ’ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਹਰੇਕ ਪਹੁੰਚ ਦੀਆਂ ਤਾਕਤਾਂ ਅਤੇ
ਸੀਮਾਵਾਂ ਨੂੰ ਸਮਝ ਕੇ, ਤੁਸੀਂ ਸੂਚਿਤ ਫੈਸਲੇ ਲੈ ਸਕਦੇ ਹੋ।

ਜਾਣ-ਪਛਾਣ 9

ਹਿਦਾਇਤ ਟਿਊਨਿੰਗ

ਹਿਦਾਇਤ ਟਿਊਨਿੰਗ ਗੱਲਬਾਤ ਸਿਖਲਾਈ ਦਾ ਇੱਕ ਉਪ-ਸਮੂਹ ਹੈ ਜੋ ਐੱਲਐੱਲਐੱਮ ਨੂੰ ਹਿਦਾਇਤਾਂ ਨੂੰ ਸਮਝਣ
ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਪਾਲਣਾ ਕਰਨ ਵਿੱਚ ਬਿਹਤਰ ਬਣਾਉਣ ਲਈ ਮਨੁੱਖ-ਲਿਖੇ ਪ੍ਰੌਂਪਟਸ ਅਤੇ ਜਵਾਬਾਂ ਦੀ ਵਰਤੋਂ
ਕਰਦਾ ਹੈ। ਇੱਥੇ ਕੁਝ ਸਧਾਰਨ ਉਦਾਹਰਨਾਂ ਹਨ ਜੋ ਦਰਸਾਉਂਦੀਆਂ ਹਨ ਕਿ ਮਨੁੱਖ-ਲਿਖੇ ਪ੍ਰੌਂਪਟਸ ਅਤੇ ਜਵਾਬਾਂ
’ਤੇ ਹਿਦਾਇਤ ਟਿਊਨਿੰਗ ਐੱਲਐੱਲਐੱਮ ਨੂੰ ਹਿਦਾਇਤਾਂ ਨੂੰ ਸਮਝਣ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਪਾਲਣਾ ਕਰਨ ਵਿੱਚ ਕਿਵੇਂ
ਬਿਹਤਰ ਬਣਾਉਂਦੀ ਹੈ:

ਉਦਾਹਰਨ 1: ਗਾਹਕ ਸਹਾਇਤਾ

ਹਿਦਾਇਤ: “ਰਿਫੰਡ ਲਈ ਪੁੱਛ ਰਹੇ ਗਾਹਕ ਨੂੰ ਜਵਾਬ ਦਿਓ।”

ਮਨੁੱਖ-ਲਿਖਿਆ ਪ੍ਰੌਂਪਟ: “ਮੈਂ ਆਪਣੀ ਹਾਲ ਹੀ ਦੀ ਖਰੀਦ ਲਈ ਰਿਫੰਡ ਦੀ ਬੇਨਤੀ ਕਰਨਾ ਚਾਹੁੰਦਾ/ਚਾਹੁੰਦੀ
ਹਾਂ। ਉਤਪਾਦ ਮੇਰੀਆਂ ਉਮੀਦਾਂ ’ਤੇ ਖਰਾ ਨਹੀਂ ਉਤਰਿਆ।”

ਮਨੁੱਖ-ਲਿਖਿਆਜਵਾਬ: “ਮੈਨੂੰ ਸੁਣ ਕੇ ਦੁੱਖ ਹੋਇਆਕਿ ਉਤਪਾਦ ਤੁਹਾਡੀਆਂ ਉਮੀਦਾਂ ’ਤੇ ਖਰਾ ਨਹੀਂ ਉਤਰਿਆ।
ਤੁਹਾਡੇ ਰਿਫੰਡ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰਨ ਲਈ, ਕਿਰਪਾ ਕਰਕੇ ਆਪਣਾਆਰਡਰ ਨੰਬਰ ਅਤੇ ਵਾਪਸੀ ਦਾ ਕਾਰਨ ਪ੍ਰਦਾਨ
ਕਰੋ। ਅਸੀਂ ਤੁਹਾਡੀ ਬੇਨਤੀ ਦੀ ਸਮੀਖਿਆ ਕਰਾਂਗੇ ਅਤੇ 2-3 ਕਾਰੋਬਾਰੀ ਦਿਨਾਂ ਦੇ ਅੰਦਰ ਤੁਹਾਡੇ ਨਾਲ ਸੰਪਰਕ
ਕਰਾਂਗੇ।”

ਉਦਾਹਰਨ 2: ਵਿਦਿਅਕ ਸਹਾਇਤਾ

ਹਿਦਾਇਤ: “ਪ੍ਰਕਾਸ਼-ਸੰਸ਼ਲੇਸ਼ਣ ਦੀ ਧਾਰਨਾ ਨੂੰ 10 ਸਾਲ ਦੇ ਬੱਚੇ ਨੂੰ ਸਮਝਾਓ।”

ਮਨੁੱਖ-ਲਿਖਿਆ ਪ੍ਰੌਂਪਟ: “ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਪੌਦੇ ਆਪਣਾ ਭੋਜਨ ਕਿਵੇਂ ਬਣਾਉਂਦੇ ਹਨ?”

ਮਨੁੱਖ-ਲਿਖਿਆ ਜਵਾਬ: “ਜ਼ਰੂਰ! ਪੌਦੇ ਪ੍ਰਕਾਸ਼-ਸੰਸਲੇਸ਼ਣ ਨਾਮਕ ਪ੍ਰਕਿਰਿਆ ਰਾਹੀਂ ਆਪਣਾ ਭੋਜਨ ਬਣਾਉਂਦੇ
ਹਨ। ਉਹ ਸੂਰਜ ਦੀ ਰੋਸ਼ਨੀ, ਪਾਣੀ, ਅਤੇ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦੀ ਵਰਤੋਂ ਭੋਜਨ ਅਤੇ ਆਕਸੀਜਨ
ਬਣਾਉਣ ਲਈ ਕਰਦੇ ਹਨ। ਪੌਦੇ ਦੇ ਪੱਤਿਆਂ ਵਿੱਚ ਕਲੋਰੋਫਿਲ ਨਾਮ ਦਾ ਇੱਕ ਖਾਸ ਹਿੱਸਾ ਹੁੰਦਾ ਹੈ ਜੋ ਉਨ੍ਹਾਂ ਨੂੰ
ਸੂਰਜ ਦੀ ਰੋਸ਼ਨੀ ਨੂੰ ਫੜਨ ਵਿੱਚ ਮਦਦ ਕਰਦਾ ਹੈ।”

ਉਦਾਹਰਣ 3: ਨਿੱਜੀ ਸਹਾਇਕ

ਜਾਣ-ਪਛਾਣ 10

ਹਦਾਇਤ: “ਅਗਲੇ ਮੰਗਲਵਾਰ ਦੁਪਹਿਰ 3 ਵਜੇ ਲਈ ਇੱਕ ਮੀਟਿੰਗ ਨਿਰਧਾਰਿਤ ਕਰੋ।”

ਮਨੁੱਖ-ਲਿਖਿਆ ਪ੍ਰੌਂਪਟ: “ਕੀ ਤੁਸੀਂ ਮੰਗਲਵਾਰ ਦੁਪਹਿਰ 3 ਵਜੇ ਲਈ ਇੱਕ ਮੀਟਿੰਗ ਨਿਰਧਾਰਿਤ ਕਰ ਸਕਦੇ
ਹੋ?”

ਮਨੁੱਖ-ਲਿਖਿਆ ਜਵਾਬ: “ਜ਼ਰੂਰ, ਮੈਂ ਤੁਹਾਡੇ ਲਈ ਅਗਲੇ ਮੰਗਲਵਾਰ ਦੁਪਹਿਰ 3 ਵਜੇ ਇੱਕ ਮੀਟਿੰਗ
ਨਿਰਧਾਰਿਤ ਕਰ ਦਿੱਤੀ ਹੈ। ਕੀ ਤੁਹਾਨੂੰ ਕੁਝ ਹੋਰ ਚਾਹੀਦਾ ਹੈ?”

ਨਤੀਜੇ ਵਜੋਂ ਵੱਖ-ਵੱਖ ਆਕਾਰਾਂ ਅਤੇ ਵੱਖ-ਵੱਖ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਵਾਲੇ LLMs ਦਾ ਇੱਕ ਵਿਭਿੰਨ ਈਕੋਸਿਸਟਮ ਬਣਦਾ
ਹੈ। 1-7 ਬਿਲੀਅਨ ਪੈਰਾਮੀਟਰ ਰੇਂਜ ਵਾਲੇ ਛੋਟੇ ਮਾਡਲ ਵਧੀਆਆਮ ਭਾਸ਼ਾ ਸਮਰੱਥਾਵਾਂ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ ਜਦੋਂ
ਕਿ ਚਲਾਉਣ ਵਿੱਚ ਵਧੇਰੇ ਕੁਸ਼ਲ ਹੁੰਦੇ ਹਨ।

• Mistral 7B
• Llama 3 8B
• Gemma 7B

30-70 ਬਿਲੀਅਨ ਪੈਰਾਮੀਟਰ ਦੇ ਦਰਮਿਆਨੇ ਆਕਾਰ ਦੇ ਮਾਡਲ ਮਜ਼ਬੂਤ ਤਰਕ ਅਤੇ ਹਦਾਇਤਾਂ ਦੀ ਪਾਲਣਾ
ਕਰਨ ਦੀਆਂ ਯੋਗਤਾਵਾਂ ਪੇਸ਼ ਕਰਦੇ ਹਨ।

• Llama 3 70B
• Qwen2 70B
• Mixtral 8x22B

ਕਿਸੇ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਸ਼ਾਮਲ ਕਰਨ ਲਈ LLM ਦੀ ਚੋਣ ਕਰਦੇ ਸਮੇਂ, ਤੁਹਾਨੂੰ ਮਾਡਲ ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ
ਨੂੰ ਲਾਗਤ, ਦੇਰੀ, ਸੰਦਰਭ ਲੰਬਾਈ, ਅਤੇ ਸਮੱਗਰੀ ਫਿਲਟਰਿੰਗ ਵਰਗੇ ਵਿਹਾਰਕ ਕਾਰਕਾਂ ਨਾਲ ਸੰਤੁਲਿਤ ਕਰਨਾ
ਚਾਹੀਦਾ ਹੈ। ਛੋਟੇ, ਹਦਾਇਤ-ਟਿਊਨ ਕੀਤੇ ਮਾਡਲ ਅਕਸਰ ਸਧਾਰਨ ਭਾਸ਼ਾ ਕਾਰਜਾਂ ਲਈ ਸਭ ਤੋਂ ਵਧੀਆ ਚੋਣ ਹੁੰਦੇ
ਹਨ, ਜਦੋਂ ਕਿ ਜਟਿਲ ਤਰਕ ਜਾਂ ਵਿਸ਼ਲੇਸ਼ਣ ਲਈ ਸਭ ਤੋਂ ਵੱਡੇ ਮਾਡਲਾਂ ਦੀ ਲੋੜ ਹੋ ਸਕਦੀ ਹੈ। ਮਾਡਲ ਦਾ ਸਿਖਲਾਈ
ਡੇਟਾ ਵੀ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਵਿਚਾਰ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਮਾਡਲ ਦੀ ਗਿਆਨ ਕੱਟ-ਆਫ਼ ਤਾਰੀਖ ਨਿਰਧਾਰਿਤ ਕਰਦਾ
ਹੈ।

ਜਾਣ-ਪਛਾਣ 11

Perplexity ਵਰਗੇ ਕੁਝ ਮਾਡਲ ਰੀਅਲਟਾਈਮ ਜਾਣਕਾਰੀ ਸਰੋਤਾਂ ਨਾਲ ਜੁੜੇ ਹੋਏ ਹਨ, ਇਸ
ਲਈ ਉਨ੍ਹਾਂ ਦੀ ਅਸਲ ਵਿੱਚ ਕੋਈ ਕੱਟ-ਆਫ਼ ਤਾਰੀਖ ਨਹੀਂ ਹੈ। ਜਦੋਂ ਤੁਸੀਂ ਉਨ੍ਹਾਂ ਨੂੰ ਸਵਾਲ ਪੁੱਛਦੇ
ਹੋ, ਤਾਂ ਉਹ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਲਈ ਸੁਤੰਤਰ ਤੌਰ ’ਤੇ ਵੈੱਬ ਖੋਜਾਂ ਕਰਨ ਅਤੇ ਮਨਮਰਜ਼ੀ ਦੇ ਵੈੱਬ
ਪੰਨਿਆਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਫੈਸਲਾ ਕਰ ਸਕਦੇ ਹਨ।

ਚਿੱਤਰ 1. Llama3 ਆਨਲਾਈਨ ਪਹੁੰਚ ਦੇ ਨਾਲ ਅਤੇ ਬਿਨਾਂ

ਅੰਤ ਵਿੱਚ, ਕੋਈ ਵੀ ਇੱਕ-ਸਾਈਜ਼-ਫਿੱਟਸ-ਆਲ LLM ਨਹੀਂ ਹੈ। ਕਿਸੇ ਵੀ ਦਿੱਤੇ ਕੇਸ ਲਈ ਸਹੀ ਮਾਡਲ ਦੀ
ਚੋਣ ਕਰਨ ਲਈ ਮਾਡਲ ਦੇ ਆਕਾਰ, ਆਰਕੀਟੈਕਚਰ, ਅਤੇ ਸਿਖਲਾਈ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਤਬਦੀਲੀਆਂ ਨੂੰ ਸਮਝਣਾ
ਮਹੱਤਵਪੂਰਨ ਹੈ। ਵੱਖ-ਵੱਖ ਮਾਡਲਾਂ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਨਾ ਹੀ ਇਹ ਦੱਸਣ ਦਾ ਇੱਕੋ-ਇੱਕ ਵਿਹਾਰਕ ਤਰੀਕਾ ਹੈ ਕਿ
ਕਿਹੜੇ ਮਾਡਲ ਦਿੱਤੇ ਕੰਮ ਲਈ ਸਭ ਤੋਂ ਵਧੀਆ ਪ੍ਰਦਰਸ਼ਨ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ।

ਟੋਕਨਾਈਜ਼ੇਸ਼ਨ: ਟੈਕਸਟ ਨੂੰ ਟੁਕੜਿਆਂ ਵਿੱਚ ਤੋੜਨਾ

ਇੱਕ ਵੱਡਾ ਭਾਸ਼ਾ ਮਾਡਲ ਟੈਕਸਟ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ, ਉਸ ਟੈਕਸਟ ਨੂੰ ਟੋਕਨ ਕਹੇ ਜਾਣ ਵਾਲੇ ਛੋਟੇ ਹਿੱਸਿਆਂ
ਵਿੱਚ ਵੰਡਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਟੋਕਨ ਵਿਅਕਤੀਗਤ ਸ਼ਬਦ, ਸ਼ਬਦਾਂ ਦੇ ਹਿੱਸੇ, ਜਾਂ ਇੱਥੋਂ ਤੱਕ ਕਿ ਇਕੱਲੇ ਅੱਖਰ
ਵੀ ਹੋ ਸਕਦੇ ਹਨ। ਟੈਕਸਟ ਨੂੰ ਟੋਕਨਾਂ ਵਿੱਚ ਵੰਡਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਟੋਕਨਾਈਜ਼ੇਸ਼ਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਇਹ
ਭਾਸ਼ਾ ਮਾਡਲ ਲਈ ਡੇਟਾ ਤਿਆਰ ਕਰਨ ਵਿੱਚ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਕਦਮ ਹੈ।

ਜਾਣ-ਪਛਾਣ 12

ਚਿੱਤਰ 2. ਇਸ ਵਾਕ ਵਿੱਚ 27 ਟੋਕਨ ਹਨ

ਵੱਖ-ਵੱਖ LLMs ਵੱਖ-ਵੱਖ ਟੋਕਨਾਈਜ਼ੇਸ਼ਨ ਰਣਨੀਤੀਆਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ, ਜੋ ਮਾਡਲ ਦੇ ਪ੍ਰਦਰਸ਼ਨ ਅਤੇ
ਸਮਰੱਥਾਵਾਂ ’ਤੇ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਭਾਵ ਪਾ ਸਕਦੀਆਂ ਹਨ। LLMs ਦੁਆਰਾ ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਕੁਝ ਆਮ
ਟੋਕਨਾਈਜ਼ਰ ਹਨ:

• GPT (ਬਾਈਟ ਪੇਅਰ ਇਨਕੋਡਿੰਗ): GPT ਟੋਕਨਾਈਜ਼ਰ ਬਾਈਟ ਪੇਅਰ ਇਨਕੋਡਿੰਗ (BPE) ਨਾਮਕ
ਤਕਨੀਕ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ ਜੋ ਟੈਕਸਟ ਨੂੰ ਸਬ-ਵਰਡ ਯੂਨਿਟਾਂ ਵਿੱਚ ਤੋੜਦੀ ਹੈ। BPE ਟੈਕਸਟ ਕੋਰਪਸ
ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਵਾਰ ਆਉਣ ਵਾਲੇ ਬਾਈਟ ਜੋੜਿਆਂ ਨੂੰ ਲਗਾਤਾਰ ਮਿਲਾਉਂਦੀ ਹੈ, ਜੋ ਸਬ-ਵਰਡ ਟੋਕਨਾਂ
ਦੀ ਸ਼ਬਦਾਵਲੀ ਬਣਾਉਂਦੀ ਹੈ। ਇਹ ਟੋਕਨਾਈਜ਼ਰ ਨੂੰ ਦੁਰਲੱਭ ਅਤੇ ਨਵੇਂ ਸ਼ਬਦਾਂ ਨੂੰ ਵਧੇਰੇ ਆਮ ਸਬ-ਵਰਡ
ਟੁਕੜਿਆਂ ਵਿੱਚ ਤੋੜ ਕੇ ਸੰਭਾਲਣ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ। GPT ਟੋਕਨਾਈਜ਼ਰ GPT-3 ਅਤੇ GPT-4
ਵਰਗੇ ਮਾਡਲਾਂ ਦੁਆਰਾ ਵਰਤੇ ਜਾਂਦੇ ਹਨ।

• Llama (SentencePiece): Llama ਟੋਕਨਾਈਜ਼ਰ SentencePiece ਲਾਇਬ੍ਰੇਰੀ ਦੀ
ਵਰਤੋਂ ਕਰਦੇ ਹਨ, ਜੋ ਇੱਕ ਬਿਨਾਂ ਨਿਗਰਾਨੀ ਵਾਲਾ ਟੈਕਸਟ ਟੋਕਨਾਈਜ਼ਰ ਅਤੇ ਡੀਟੋਕਨਾਈਜ਼ਰ ਹੈ।
SentencePiece ਇਨਪੁੱਟ ਟੈਕਸਟ ਨੂੰ ਯੂਨੀਕੋਡ ਅੱਖਰਾਂ ਦੀ ਲੜੀ ਵਜੋਂ ਮੰਨਦਾ ਹੈ ਅਤੇ ਟ੍ਰੇਨਿੰਗ
ਕੋਰਪਸ ਦੇ ਆਧਾਰ ’ਤੇ ਸਬ-ਵਰਡ ਸ਼ਬਦਾਵਲੀ ਸਿੱਖਦਾ ਹੈ। ਇਹ ਕਿਸੇ ਵੀ ਭਾਸ਼ਾ ਨੂੰ ਸੰਭਾਲ ਸਕਦਾ ਹੈ ਜੋ
ਯੂਨੀਕੋਡ ਵਿੱਚ ਇਨਕੋਡ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ, ਜੋ ਇਸਨੂੰ ਬਹੁ-ਭਾਸ਼ਾਈ ਮਾਡਲਾਂ ਲਈ ਢੁਕਵਾਂ ਬਣਾਉਂਦੀ ਹੈ।
Llama ਟੋਕਨਾਈਜ਼ਰ Meta ਦੇ Llama ਅਤੇ Alpaca ਵਰਗੇ ਮਾਡਲਾਂ ਦੁਆਰਾ ਵਰਤੇ ਜਾਂਦੇ ਹਨ।

• ਸੈਨਟੈਂਸਪੀਸ (ਯੂਨੀਗ੍ਰਾਮ): ਸੈਨਟੈਂਸਪੀਸ ਟੋਕਨਾਈਜ਼ਰ ਯੂਨੀਗ੍ਰਾਮ ਨਾਮਕਇੱਕ ਵੱਖਰਾ ਐਲਗੋਰਿਦਮ
ਵੀ ਵਰਤ ਸਕਦੇ ਹਨ, ਜੋ ਉਪ-ਸ਼ਬਦ ਨਿਯਮਿਤੀਕਰਨ ਤਕਨੀਕ ’ਤੇ ਆਧਾਰਿਤ ਹੈ। ਯੂਨੀਗ੍ਰਾਮ
ਟੋਕਨਾਈਜ਼ੇਸ਼ਨ ਇੱਕ ਯੂਨੀਗ੍ਰਾਮ ਭਾਸ਼ਾ ਮਾਡਲ ਦੇ ਆਧਾਰ ’ਤੇ ਸਭ ਤੋਂ ਵਧੀਆ ਉਪ-ਸ਼ਬਦ ਸ਼ਬਦਾਵਲੀ
ਨਿਰਧਾਰਤ ਕਰਦਾ ਹੈ, ਜੋ ਵਿਅਕਤੀਗਤ ਉਪ-ਸ਼ਬਦ ਇਕਾਈਆਂ ਨੂੰ ਸੰਭਾਵਨਾਵਾਂ ਨਿਰਧਾਰਤ ਕਰਦਾ ਹੈ।
ਇਹ ਪਹੁੰਚ BPE ਦੇ ਮੁਕਾਬਲੇ ਵਧੇਰੇ ਅਰਥਪੂਰਨ ਉਪ-ਸ਼ਬਦ ਪੈਦਾ ਕਰ ਸਕਦੀ ਹੈ। ਯੂਨੀਗ੍ਰਾਮ ਵਾਲਾ
ਸੈਨਟੈਂਸਪੀਸ Google ਦੇ T5 ਅਤੇ BERT ਵਰਗੇ ਮਾਡਲਾਂ ਦੁਆਰਾ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।

ਜਾਣ-ਪਛਾਣ 13

• Google Gemini (ਬਹੁ-ਮਾਧਿਅਮੀ ਟੋਕਨਾਈਜ਼ੇਸ਼ਨ): Google Gemini ਇੱਕ ਅਜਿਹੀ
ਟੋਕਨਾਈਜ਼ੇਸ਼ਨ ਸਕੀਮ ਵਰਤਦਾ ਹੈ ਜੋ ਟੈਕਸਟ, ਚਿੱਤਰ, ਆਡੀਓ, ਵੀਡੀਓ, ਅਤੇ ਕੋਡ ਸਮੇਤ ਵੱਖ-ਵੱਖ
ਡਾਟਾ ਕਿਸਮਾਂ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਤਿਆਰ ਕੀਤੀ ਗਈ ਹੈ। ਇਹ ਬਹੁ-ਮਾਧਿਅਮੀ ਸਮਰੱਥਾ Gemini ਨੂੰ
ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਦੀ ਜਾਣਕਾਰੀ ਨੂੰ ਪ੍ਰੋਸੈਸ ਅਤੇ ਏਕੀਕ੍ਰਿਤ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ। ਖਾਸ ਤੌਰ
’ਤੇ, Google Gemini 1.5 Pro ਵਿੱਚ ਇੱਕ ਸੰਦਰਭ ਵਿੰਡੋ ਹੈ ਜੋ ਲੱਖਾਂ ਟੋਕਨਾਂ ਨੂੰ ਸੰਭਾਲ ਸਕਦੀ ਹੈ,
ਜੋ ਪਿਛਲੇ ਮਾਡਲਾਂ ਨਾਲੋਂ ਬਹੁਤ ਵੱਡੀ ਹੈ। ਇਹ ਵਿਸ਼ਾਲ ਸੰਦਰਭ ਵਿੰਡੋ ਮਾਡਲ ਨੂੰ ਵੱਡੇ ਸੰਦਰਭ ਨੂੰ ਪ੍ਰੋਸੈਸ
ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ, ਜੋ ਸੰਭਾਵਤ ਤੌਰ ’ਤੇ ਵਧੇਰੇ ਸਟੀਕ ਜਵਾਬਾਂ ਵੱਲ ਲੈ ਜਾਂਦੀ ਹੈ। ਹਾਲਾਂਕਿ, ਇਹ
ਨੋਟ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ Gemini ਦੀ ਟੋਕਨਾਈਜ਼ੇਸ਼ਨ ਸਕੀਮ ਹੋਰ ਮਾਡਲਾਂ ਦੇ ਮੁਕਾਬਲੇ ਪ੍ਰਤੀ
ਅੱਖਰ ਇੱਕ ਟੋਕਨ ਦੇ ਬਹੁਤ ਨੇੜੇ ਹੈ। ਇਸਦਾ ਮਤਲਬ ਹੈ ਕਿ ਜੇਕਰ ਤੁਸੀਂ GPT ਵਰਗੇ ਮਾਡਲਾਂ ਦੀ ਵਰਤੋਂ
ਦੇ ਆਦੀ ਹੋ, ਤਾਂ Gemini ਮਾਡਲਾਂ ਦੀ ਵਰਤੋਂ ਦੀ ਅਸਲ ਲਾਗਤ ਉਮੀਦ ਨਾਲੋਂ ਕਾਫ਼ੀ ਜ਼ਿਆਦਾ ਹੋ ਸਕਦੀ
ਹੈ, ਕਿਉਂਕਿ Google ਦੀ ਕੀਮਤ ਟੋਕਨਾਂ ਦੀ ਬਜਾਏ ਅੱਖਰਾਂ ’ਤੇ ਆਧਾਰਿਤ ਹੈ।

ਟੋਕਨਾਈਜ਼ਰ ਦੀ ਚੋਣ LLM ਦੇ ਕਈ ਪਹਿਲੂਆਂ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ:

• ਸ਼ਬਦਾਵਲੀ ਦਾ ਆਕਾਰ: ਟੋਕਨਾਈਜ਼ਰ ਮਾਡਲ ਦੀ ਸ਼ਬਦਾਵਲੀ ਦਾ ਆਕਾਰ ਨਿਰਧਾਰਤ ਕਰਦਾ ਹੈ, ਜੋ
ਇਸ ਦੁਆਰਾ ਪਛਾਣੇ ਜਾਣ ਵਾਲੇ ਵਿਲੱਖਣ ਟੋਕਨਾਂ ਦਾ ਸੈੱਟ ਹੈ। ਇੱਕ ਵੱਡੀ, ਵਧੇਰੇ ਸੂਖਮ ਸ਼ਬਦਾਵਲੀ
ਮਾਡਲ ਨੂੰ ਵਿਆਪਕ ਸ਼ਬਦਾਂ ਅਤੇ ਵਾਕਾਂਸ਼ਾਂ ਨੂੰ ਸੰਭਾਲਣ ਅਤੇ ਇੱਥੋਂ ਤੱਕ ਕਿ ਬਹੁ-ਮਾਧਿਅਮੀ (ਟੈਕਸਟ ਤੋਂ
ਇਲਾਵਾ ਹੋਰ ਚੀਜ਼ਾਂ ਨੂੰ ਸਮਝਣ ਅਤੇ ਤਿਆਰ ਕਰਨ ਦੇ ਯੋਗ) ਬਣਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੀ ਹੈ, ਪਰ ਇਹ
ਮਾਡਲ ਦੀਆਂ ਮੈਮੋਰੀ ਲੋੜਾਂ ਅਤੇ ਕੰਪਿਊਟੇਸ਼ਨਲ ਜਟਿਲਤਾ ਨੂੰ ਵੀ ਵਧਾਉਂਦੀ ਹੈ।

• ਦੁਰਲੱਭ ਅਤੇ ਅਣਜਾਣ ਸ਼ਬਦਾਂ ਨੂੰ ਸੰਭਾਲਣਾ: BPE ਅਤੇ ਸੈਨਟੈਂਸਪੀਸ ਵਰਗੇ ਉਪ-ਸ਼ਬਦ ਇਕਾਈਆਂ
ਦੀ ਵਰਤੋਂ ਕਰਨ ਵਾਲੇ ਟੋਕਨਾਈਜ਼ਰ ਦੁਰਲੱਭ ਅਤੇ ਅਣਜਾਣ ਸ਼ਬਦਾਂ ਨੂੰ ਵਧੇਰੇ ਆਮ ਉਪ-ਸ਼ਬਦ ਟੁਕੜਿਆਂ
ਵਿੱਚ ਤੋੜ ਸਕਦੇ ਹਨ। ਇਹ ਮਾਡਲ ਨੂੰ ਉਹਨਾਂ ਸ਼ਬਦਾਂ ਦੇ ਅਰਥ ਬਾਰੇ ਸਿੱਖਿਅਤ ਅੰਦਾਜ਼ੇ ਲਗਾਉਣ ਦੀ
ਆਗਿਆ ਦਿੰਦਾ ਹੈ ਜੋ ਇਸਨੇ ਪਹਿਲਾਂ ਨਹੀਂ ਦੇਖੇ, ਉਹਨਾਂ ਵਿੱਚ ਮੌਜੂਦ ਉਪ-ਸ਼ਬਦਾਂ ਦੇ ਆਧਾਰ ’ਤੇ।

• ਬਹੁਭਾਸ਼ਾਈ ਸਹਾਇਤਾ: ਸੈਨਟੈਂਸਪੀਸ ਵਰਗੇ ਟੋਕਨਾਈਜ਼ਰ, ਜੋ ਕਿਸੇ ਵੀ ਯੂਨੀਕੋਡ-ਏਨਕੋਡੇਬਲ ਭਾਸ਼ਾ
ਨੂੰ ਸੰਭਾਲ ਸਕਦੇ ਹਨ, ਬਹੁਭਾਸ਼ਾਈ ਮਾਡਲਾਂ ਲਈ ਢੁਕਵੇਂ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਕਈ ਭਾਸ਼ਾਵਾਂ ਵਿੱਚ ਟੈਕਸਟ ਨੂੰ
ਪ੍ਰੋਸੈਸ ਕਰਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।

ਕਿਸੇ ਖਾਸ ਐਪਲੀਕੇਸ਼ਨ ਲਈ ਐੱਲਐੱਲਐੱਮ ਦੀ ਚੋਣ ਕਰਦੇ ਸਮੇਂ, ਇਹ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਇਸ ਦੁਆਰਾ ਵਰਤੇ
ਜਾਣ ਵਾਲੇ ਟੋਕਨਾਈਜ਼ਰ ’ਤੇ ਵਿਚਾਰ ਕੀਤਾ ਜਾਵੇ ਅਤੇ ਇਹ ਕਿੰਨੀ ਚੰਗੀ ਤਰ੍ਹਾਂ ਕਾਰਜ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ ਭਾਸ਼ਾ
ਪ੍ਰੋਸੈਸਿੰਗ ਲੋੜਾਂ ਨਾਲ ਮੇਲ ਖਾਂਦਾ ਹੈ। ਟੋਕਨਾਈਜ਼ਰ ਮਾਡਲ ਦੀ ਡੋਮੇਨ-ਵਿਸ਼ੇਸ਼ ਸ਼ਬਦਾਵਲੀ, ਦੁਰਲੱਭ ਸ਼ਬਦਾਂ, ਅਤੇ
ਬਹੁ-ਭਾਸ਼ਾਈ ਟੈਕਸਟ ਨੂੰ ਸੰਭਾਲਣ ਦੀ ਯੋਗਤਾ ’ਤੇ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਭਾਵ ਪਾ ਸਕਦਾ ਹੈ।

ਜਾਣ-ਪਛਾਣ 14

ਸੰਦਰਭ ਆਕਾਰ: ਭਾਸ਼ਾ ਮਾਡਲ ਅਨੁਮਾਨ ਦੌਰਾਨ ਕਿੰਨੀ ਜਾਣਕਾਰੀ ਵਰਤ ਸਕਦਾ ਹੈ?

ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਦੀ ਚਰਚਾ ਕਰਦੇ ਸਮੇਂ, ਸੰਦਰਭ ਆਕਾਰ ਉਸ ਟੈਕਸਟ ਦੀ ਮਾਤਰਾ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ ਜੋ ਇੱਕ ਮਾਡਲ
ਆਪਣੇ ਜਵਾਬਾਂ ਦੀ ਪ੍ਰੋਸੈਸਿੰਗ ਜਾਂ ਜਨਰੇਸ਼ਨ ਦੌਰਾਨ ਵਿਚਾਰ ਕਰ ਸਕਦਾ ਹੈ। ਇਹ ਅਸਲ ਵਿੱਚ ਇਸ ਗੱਲ ਦਾ
ਮਾਪ ਹੈ ਕਿ ਮਾਡਲ ਕਿੰਨੀ ਜਾਣਕਾਰੀ ਨੂੰ “ਯਾਦ” ਰੱਖ ਸਕਦਾ ਹੈ ਅਤੇ ਆਪਣੇ ਆਉਟਪੁੱਟ ਨੂੰ ਸੂਚਿਤ ਕਰਨ ਲਈ
ਵਰਤ ਸਕਦਾ ਹੈ (ਟੋਕਨਾਂ ਵਿੱਚ ਪ੍ਰਗਟ ਕੀਤਾ ਗਿਆ)। ਭਾਸ਼ਾ ਮਾਡਲ ਦਾ ਸੰਦਰਭ ਆਕਾਰ ਇਸਦੀਆਂ ਸਮਰੱਥਾਵਾਂ
ਅਤੇ ਇਹ ਜਿਹੜੇ ਕੰਮ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਕਰ ਸਕਦਾ ਹੈ, ਉਨ੍ਹਾਂ ’ਤੇ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਭਾਵ ਪਾ ਸਕਦਾ ਹੈ।

ਸੰਦਰਭ ਆਕਾਰ ਕੀ ਹੈ?

ਤਕਨੀਕੀ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਸੰਦਰਭ ਆਕਾਰ ਉਨ੍ਹਾਂ ਟੋਕਨਾਂ (ਸ਼ਬਦਾਂ ਜਾਂ ਸ਼ਬਦ ਭਾਗਾਂ) ਦੀ ਸੰਖਿਆ ਦੁਆਰਾ
ਨਿਰਧਾਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜੋ ਇੱਕ ਭਾਸ਼ਾ ਮਾਡਲ ਇੱਕ ਇਕੱਲੀ ਇਨਪੁੱਟ ਲੜੀ ਵਿੱਚ ਪ੍ਰੋਸੈੱਸ ਕਰ ਸਕਦਾ ਹੈ।
ਇਸਨੂੰ ਅਕਸਰ ਮਾਡਲ ਦੀ “ਧਿਆਨ ਸੀਮਾ” ਜਾਂ “ਸੰਦਰਭ ਵਿੰਡੋ” ਵਜੋਂ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਸੰਦਰਭਆਕਾਰ ਜਿੰਨਾ
ਵੱਡਾ ਹੋਵੇਗਾ, ਮਾਡਲ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਜਾਂ ਕੋਈ ਕੰਮ ਕਰਨ ਵੇਲੇ ਓਨਾ ਹੀ ਵੱਧ ਟੈਕਸਟ ’ਤੇ ਵਿਚਾਰ ਕਰ ਸਕਦਾ
ਹੈ।

ਵੱਖ-ਵੱਖ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਦੇ ਵੱਖ-ਵੱਖ ਸੰਦਰਭ ਆਕਾਰ ਹੁੰਦੇ ਹਨ, ਜੋ ਕੁਝ ਸੌ ਟੋਕਨਾਂ ਤੋਂ ਲੈ ਕੇ ਲੱਖਾਂ ਟੋਕਨਾਂ ਤੱਕ ਹੋ
ਸਕਦੇ ਹਨ। ਹਵਾਲੇ ਲਈ, ਟੈਕਸਟ ਦੇ ਇੱਕ ਆਮ ਪੈਰੇ ਵਿੱਚ ਲਗਭਗ 100-150 ਟੋਕਨ ਹੋ ਸਕਦੇ ਹਨ, ਜਦੋਂ ਕਿ
ਇੱਕ ਪੂਰੀ ਕਿਤਾਬ ਵਿੱਚ ਦਸ ਜਾਂ ਸੈਂਕੜੇ ਹਜ਼ਾਰ ਟੋਕਨ ਹੋ ਸਕਦੇ ਹਨ।

ਟ੍ਰਾਂਸਫਾਰਮਰ-ਆਧਾਰਿਤ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ (ਐੱਲਐੱਲਐੱਮ) ਨੂੰ ਸੀਮਿਤ ਮੈਮੋਰੀ ਅਤੇ ਕੰਪਿਊਟੇਸ਼ਨ ਨਾਲ
ਅਸੀਮਿਤ ਲੰਬੀਆਂ ਇਨਪੁੱਟਾਂ ਤੱਕ ਸਕੇਲ ਕਰਨ ਦੇ ਕੁਸ਼ਲ ਤਰੀਕਿਆਂ ’ਤੇ ਵੀ ਕੰਮ ਕੀਤਾ ਜਾ ਰਿਹਾ ਹੈ।

ਸੰਦਰਭ ਆਕਾਰ ਮਹੱਤਵਪੂਰਨ ਕਿਉਂ ਹੈ?

ਭਾਸ਼ਾ ਮਾਡਲ ਦਾ ਸੰਦਰਭ ਆਕਾਰ ਸਮਝਣ ਅਤੇ ਸੰਦਰਭ-ਅਨੁਸਾਰ ਢੁਕਵਾਂ, ਸੰਗਤ ਟੈਕਸਟ ਤਿਆਰ ਕਰਨ ਦੀ
ਇਸਦੀ ਯੋਗਤਾ ’ਤੇ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਭਾਵ ਪਾਉਂਦਾ ਹੈ। ਇੱਥੇ ਕੁਝ ਮੁੱਖ ਕਾਰਨ ਹਨ ਕਿ ਸੰਦਰਭ ਆਕਾਰ ਕਿਉਂ
ਮਹੱਤਵਪੂਰਨ ਹੈ:

https://huggingface.co/papers/2404.07143

ਜਾਣ-ਪਛਾਣ 15

1. ਲੰਬੀ-ਫਾਰਮ ਸਮੱਗਰੀ ਨੂੰ ਸਮਝਣਾ: ਵੱਡੇ ਸੰਦਰਭ ਆਕਾਰ ਵਾਲੇ ਮਾਡਲ ਲੰਬੇ ਟੈਕਸਟਾਂ, ਜਿਵੇਂ ਕਿ ਲੇਖਾਂ,
ਰਿਪੋਰਟਾਂ, ਜਾਂ ਇੱਥੋਂ ਤੱਕ ਕਿ ਪੂਰੀਆਂ ਕਿਤਾਬਾਂ ਨੂੰ ਬਿਹਤਰ ਢੰਗ ਨਾਲ ਸਮਝਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰ ਸਕਦੇ ਹਨ।
ਇਹ ਦਸਤਾਵੇਜ਼ ਸੰਖੇਪੀਕਰਨ, ਸਵਾਲ-ਜਵਾਬ, ਅਤੇ ਸਮੱਗਰੀ ਵਿਸ਼ਲੇਸ਼ਣ ਵਰਗੇ ਕੰਮਾਂ ਲਈ ਮਹੱਤਵਪੂਰਨ
ਹੈ।

2. ਸੰਗਤਤਾ ਬਣਾਈ ਰੱਖਣਾ: ਇੱਕ ਵੱਡੀ ਸੰਦਰਭ ਵਿੰਡੋ ਮਾਡਲ ਨੂੰ ਲੰਬੇ ਆਉਟਪੁੱਟ ਵਿੱਚ ਸੰਗਤਤਾ ਅਤੇ
ਇਕਸਾਰਤਾ ਬਣਾਈ ਰੱਖਣ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦੀ ਹੈ। ਇਹ ਕਹਾਣੀ ਜਨਰੇਸ਼ਨ, ਸੰਵਾਦ ਸਿਸਟਮ, ਅਤੇ
ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਵਰਗੇ ਕੰਮਾਂ ਲਈ ਮਹੱਤਵਪੂਰਨ ਹੈ, ਜਿੱਥੇ ਇੱਕ ਸਥਿਰ ਕਥਾ ਜਾਂ ਵਿਸ਼ੇ ਨੂੰ ਬਣਾਈ
ਰੱਖਣਾ ਜ਼ਰੂਰੀ ਹੈ। ਇਹ ਢਾਂਚਾਗਤ ਡੇਟਾ ਨੂੰ ਤਿਆਰ ਕਰਨ ਜਾਂ ਬਦਲਣ ਲਈ ਐੱਲਐੱਲਐੱਮ ਦੀ ਵਰਤੋਂ
ਕਰਨ ਵੇਲੇ ਵੀ ਬਿਲਕੁਲ ਜ਼ਰੂਰੀ ਹੈ।

3. ਲੰਬੀ-ਦੂਰੀ ਦੀਆਂ ਨਿਰਭਰਤਾਵਾਂ ਨੂੰ ਕੈਪਚਰ ਕਰਨਾ: ਕੁਝ ਭਾਸ਼ਾ ਕਾਰਜਾਂ ਲਈ ਟੈਕਸਟ ਵਿੱਚ ਦੂਰ-ਦੂਰ
ਮੌਜੂਦ ਸ਼ਬਦਾਂ ਜਾਂ ਵਾਕਾਂਸ਼ਾਂ ਵਿਚਕਾਰ ਸਬੰਧਾਂ ਨੂੰ ਸਮਝਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਵੱਡੇ ਸੰਦਰਭ ਆਕਾਰ ਵਾਲੇ
ਮਾਡਲ ਇਹਨਾਂ ਲੰਬੀ-ਦੂਰੀ ਦੀਆਂ ਨਿਰਭਰਤਾਵਾਂ ਨੂੰ ਕੈਪਚਰ ਕਰਨ ਲਈ ਬਿਹਤਰ ਤਰੀਕੇ ਨਾਲ ਤਿਆਰ
ਹੁੰਦੇ ਹਨ, ਜੋ ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ, ਅਨੁਵਾਦ, ਅਤੇ ਭਾਸ਼ਾ ਸਮਝ ਵਰਗੇ ਕਾਰਜਾਂ ਲਈ ਮਹੱਤਵਪੂਰਨ ਹੋ ਸਕਦੇ
ਹਨ।

4. ਗੁੰਝਲਦਾਰ ਹਦਾਇਤਾਂ ਨੂੰ ਸੰਭਾਲਣਾ: ਉਹਨਾਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਜਿੱਥੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਦੀ ਵਰਤੋਂ
ਗੁੰਝਲਦਾਰ, ਬਹੁ-ਪੜਾਵੀ ਹਦਾਇਤਾਂ ਦੀ ਪਾਲਣਾ ਕਰਨ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਵੱਡਾ ਸੰਦਰਭ ਆਕਾਰ
ਮਾਡਲ ਨੂੰ ਜਵਾਬ ਤਿਆਰ ਕਰਦੇ ਸਮੇਂ ਸਿਰਫ਼ ਹਾਲ ਹੀ ਦੇ ਕੁਝ ਸ਼ਬਦਾਂ ਦੀ ਬਜਾਏ ਹਦਾਇਤਾਂ ਦੇ ਪੂਰੇ ਸੈੱਟ
’ਤੇ ਵਿਚਾਰ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ।

ਵੱਖ-ਵੱਖ ਸੰਦਰਭ ਆਕਾਰਾਂ ਵਾਲੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ

ਇੱਥੇ ਵੱਖ-ਵੱਖ ਸੰਦਰਭ ਆਕਾਰਾਂ ਵਾਲੇ ਕੁਝ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ:

• OpenAI GPT-3.5 Turbo: 4,095 ਟੋਕਨ
• Mistral 7B Instruct: 32,768 ਟੋਕਨ
• Anthropic Claude v1: 100,000 ਟੋਕਨ
• OpenAI GPT-4 Turbo: 128,000 ਟੋਕਨ
• Anthropic Claude v2: 200,000 ਟੋਕਨ

ਜਾਣ-ਪਛਾਣ 16

• Google Gemini Pro 1.5: 2.8M ਟੋਕਨ

ਜਿਵੇਂ ਕਿ ਤੁਸੀਂ ਦੇਖ ਸਕਦੇ ਹੋ, ਇਹਨਾਂ ਮਾਡਲਾਂ ਵਿੱਚ ਸੰਦਰਭ ਆਕਾਰਾਂ ਦੀ ਵਿਆਪਕ ਸ਼੍ਰੇਣੀ ਹੈ, OpenAI
GPT-3.5 Turbo ਮਾਡਲ ਲਈ ਲਗਭਗ 4,000 ਟੋਕਨਾਂ ਤੋਂ ਲੈ ਕੇ Anthropic Claude v2 ਮਾਡਲ
ਲਈ 200,000 ਟੋਕਨ ਤੱਕ। ਕੁਝ ਮਾਡਲ, ਜਿਵੇਂ ਕਿ Google ਦਾ PaLM 2 ਅਤੇ OpenAI ਦਾ GPT-
4, ਵੱਡੇ ਸੰਦਰਭ ਆਕਾਰਾਂ ਵਾਲੇ ਵੱਖ-ਵੱਖ ਰੂਪਾਂਤਰ ਪੇਸ਼ ਕਰਦੇ ਹਨ (ਜਿਵੇਂ ਕਿ “32k” ਵਰਜਨ), ਜੋ ਹੋਰ ਵੀ
ਲੰਬੀਆਂ ਇਨਪੁੱਟ ਲੜੀਆਂ ਨੂੰ ਸੰਭਾਲ ਸਕਦੇ ਹਨ। ਅਤੇ ਇਸ ਸਮੇਂ (ਅਪ੍ਰੈਲ 2024) Google Gemini
Pro ਲਗਭਗ 3 ਮਿਲੀਅਨ ਟੋਕਨਾਂ ਦਾ ਦਾਅਵਾ ਕਰ ਰਿਹਾ ਹੈ!

ਇਹ ਨੋਟ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਸੰਦਰਭ ਆਕਾਰ ਕਿਸੇ ਖਾਸ ਮਾਡਲ ਦੇ ਵਿਸ਼ੇਸ਼ ਲਾਗੂਕਰਨ ਅਤੇ ਵਰਜਨ
’ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ ਵੱਖ-ਵੱਖ ਹੋ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਲਈ, ਮੂਲ OpenAI GPT-4 ਮਾਡਲ ਦਾ ਸੰਦਰਭ
ਆਕਾਰ 8,191 ਟੋਕਨ ਹੈ, ਜਦੋਂ ਕਿ ਬਾਅਦ ਦੇ GPT-4 ਰੂਪਾਂਤਰ ਜਿਵੇਂ ਕਿ Turbo ਅਤੇ 4o ਦਾ ਬਹੁਤ ਵੱਡਾ
ਸੰਦਰਭ ਆਕਾਰ 128,000 ਟੋਕਨ ਹੈ।

Sam Altman ਨੇ ਮੌਜੂਦਾ ਸੰਦਰਭ ਸੀਮਾਵਾਂ ਦੀ ਤੁਲਨਾ 80 ਦੇ ਦਹਾਕੇ ਵਿੱਚ ਨਿੱਜੀ ਕੰਪਿਊਟਰ ਪ੍ਰੋਗਰਾਮਰਾਂ
ਨੂੰ ਨਜਿੱਠਣ ਵਾਲੀ ਕਿਲੋਬਾਈਟਸ ਕਾਰਜਸ਼ੀਲ ਮੈਮੋਰੀ ਨਾਲ ਕੀਤੀ ਹੈ, ਅਤੇ ਕਿਹਾ ਹੈ ਕਿ ਨੇੜਲੇ ਭਵਿੱਖ ਵਿੱਚ
ਅਸੀਂ “ਆਪਣਾ ਸਾਰਾ ਨਿੱਜੀ ਡਾਟਾ” ਇੱਕ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਫਿੱਟ ਕਰ ਸਕਾਂਗੇ।

ਸਹੀ ਸੰਦਰਭ ਆਕਾਰ ਦੀ ਚੋਣ ਕਰਨਾ

ਕਿਸੇ ਖਾਸ ਐਪਲੀਕੇਸ਼ਨ ਲਈ ਭਾਸ਼ਾ ਮਾਡਲ ਦੀ ਚੋਣ ਕਰਦੇ ਸਮੇਂ, ਕਾਰਜ ਦੀਆਂ ਸੰਦਰਭਆਕਾਰ ਲੋੜਾਂ ’ਤੇ ਵਿਚਾਰ
ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਛੋਟੇ, ਵੱਖਰੇ ਟੈਕਸਟ ਦੇ ਟੁਕੜਿਆਂ ਨਾਲ ਜੁੜੇ ਕੰਮਾਂ ਲਈ, ਜਿਵੇਂ ਕਿ ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ ਜਾਂ
ਸਧਾਰਨ ਸਵਾਲ-ਜਵਾਬ, ਇੱਕ ਛੋਟਾ ਸੰਦਰਭ ਆਕਾਰ ਕਾਫ਼ੀ ਹੋ ਸਕਦਾ ਹੈ। ਹਾਲਾਂਕਿ, ਲੰਬੇ, ਵਧੇਰੇ ਜਟਿਲ ਟੈਕਸਟਾਂ
ਨੂੰ ਸਮਝਣ ਅਤੇ ਤਿਆਰ ਕਰਨ ਦੀ ਲੋੜ ਵਾਲੇ ਕੰਮਾਂ ਲਈ, ਵੱਡੇ ਸੰਦਰਭ ਆਕਾਰ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ।

ਇਹ ਨੋਟ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਵੱਡੇ ਸੰਦਰਭਆਕਾਰ ਅਕਸਰ ਵਧੇ ਹੋਏ ਕੰਪਿਊਟੇਸ਼ਨਲ ਖਰਚਿਆਂ ਅਤੇ ਹੌਲੀ
ਪ੍ਰੋਸੈਸਿੰਗ ਸਮੇਂ ਨਾਲ ਆਉਂਦੇ ਹਨ, ਕਿਉਂਕਿ ਮਾਡਲ ਨੂੰ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਵੇਲੇ ਵਧੇਰੇ ਜਾਣਕਾਰੀ ’ਤੇ ਵਿਚਾਰ
ਕਰਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ,ਆਪਣੀ ਐਪਲੀਕੇਸ਼ਨ ਲਈ ਭਾਸ਼ਾ ਮਾਡਲ ਚੁਣਦੇ ਸਮੇਂ ਤੁਹਾਨੂੰ ਸੰਦਰਭਆਕਾਰ
ਅਤੇ ਪ੍ਰਦਰਸ਼ਨ ਵਿਚਕਾਰ ਸੰਤੁਲਨ ਬਣਾਉਣਾ ਚਾਹੀਦਾ ਹੈ।

ਜਾਣ-ਪਛਾਣ 17

ਸਭ ਤੋਂ ਵੱਡੇ ਸੰਦਰਭ ਆਕਾਰ ਵਾਲੇ ਮਾਡਲ ਨੂੰ ਚੁਣ ਕੇ ਇਸ ਵਿੱਚ ਜਿੰਨੀ ਸੰਭਵ ਹੋ ਸਕੇ ਜਾਣਕਾਰੀ ਕਿਉਂ ਨਾ ਭਰੀ
ਜਾਵੇ? ਖੈਰ, ਪ੍ਰਦਰਸ਼ਨ ਕਾਰਕਾਂ ਤੋਂ ਇਲਾਵਾ ਦੂਜਾ ਮੁੱਖ ਵਿਚਾਰ ਲਾਗਤ ਹੈ। ਮਾਰਚ 2024 ਵਿੱਚ Google
Gemini Pro 1.5 ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਪੂਰੇ ਸੰਦਰਭ ਨਾਲ ਇੱਕ ਇਕੱਲਾ ਪ੍ਰੌਂਪਟ-ਜਵਾਬ ਚੱਕਰ ਤੁਹਾਨੂੰ
ਲਗਭਗ $8 (USD) ਦਾ ਪਵੇਗਾ। ਜੇਕਰ ਤੁਹਾਡੇ ਕੋਲ ਕੋਈ ਅਜਿਹਾ ਕੇਸ ਹੈ ਜੋ ਇਸ ਖਰਚੇ ਨੂੰ ਜਾਇਜ਼
ਠਹਿਰਾਉਂਦਾ ਹੈ, ਤਾਂ ਬਹੁਤ ਵਧੀਆ! ਪਰ ਜ਼ਿਆਦਾਤਰ ਐਪਲੀਕੇਸ਼ਨਾਂ ਲਈ, ਇਹ ਕਈਗੁਣਾ ਜ਼ਿਆਦਾ ਮਹਿੰਗਾ
ਹੈ।

ਘਾਹ ਦੇ ਢੇਰ ਵਿੱਚੋਂ ਸੂਈਆਂ ਲੱਭਣਾ

ਘਾਹ ਦੇ ਢੇਰ ਵਿੱਚੋਂ ਸੂਈ ਲੱਭਣ ਦੀ ਧਾਰਨਾ ਲੰਬੇ ਸਮੇਂ ਤੋਂ ਵੱਡੇ ਡੇਟਾਸੈੱਟਾਂ ਵਿੱਚ ਪੁਨਰਪ੍ਰਾਪਤੀ ਦੀਆਂ ਚੁਣੌਤੀਆਂ
ਲਈ ਇੱਕ ਰੂਪਕ ਰਹੀ ਹੈ। LLMs ਦੇ ਖੇਤਰ ਵਿੱਚ, ਅਸੀਂ ਇਸ ਉਪਮਾ ਨੂੰ ਥੋੜ੍ਹਾ ਜਿਹਾ ਬਦਲਦੇ ਹਾਂ। ਕਲਪਨਾ
ਕਰੋ ਕਿ ਅਸੀਂ ਸਿਰਫ਼ ਵਿਸ਼ਾਲ ਟੈਕਸਟ (ਜਿਵੇਂ ਕਿ Paul Graham ਦੇ ਲੇਖਾਂ ਦਾ ਪੂਰਾ ਸੰਗ੍ਰਹਿ) ਵਿੱਚ ਦੱਬੇ ਇੱਕ
ਤੱਥ ਦੀ ਭਾਲ ਨਹੀਂ ਕਰ ਰਹੇ, ਬਲਕਿ ਪੂਰੇ ਟੈਕਸਟ ਵਿੱਚ ਖਿੰਡੇ ਹੋਏ ਕਈ ਤੱਥਾਂ ਦੀ ਭਾਲ ਕਰ ਰਹੇ ਹਾਂ। ਇਹ ਸਥਿਤੀ
ਇੱਕ ਘਾਹ ਦੇ ਢੇਰ ਦੀ ਬਜਾਏ ਇੱਕ ਫੈਲੇ ਹੋਏ ਖੇਤ ਵਿੱਚ ਕਈ ਸੂਈਆਂ ਲੱਭਣ ਵਰਗੀ ਹੈ। ਇੱਥੇ ਮੁੱਖ ਗੱਲ ਇਹ ਹੈ:
ਸਾਨੂੰ ਨਾ ਸਿਰਫ਼ ਇਹਨਾਂ ਸੂਈਆਂ ਨੂੰ ਲੱਭਣਾ ਹੈ, ਬਲਕਿ ਉਹਨਾਂ ਨੂੰ ਇੱਕ ਸੁਸੰਗਤ ਧਾਗੇ ਵਿੱਚ ਵੀ ਪਰੋਣਾ ਹੈ।

ਜਦੋਂ ਲੰਬੇ ਸੰਦਰਭਾਂ ਵਿੱਚ ਦਰਜ ਕਈ ਤੱਥਾਂ ਨੂੰ ਪੁਨਰਪ੍ਰਾਪਤ ਕਰਨ ਅਤੇ ਉਨ੍ਹਾਂ ਬਾਰੇ ਤਰਕ ਕਰਨ ਦਾ ਕੰਮ ਦਿੱਤਾ
ਜਾਂਦਾ ਹੈ, ਤਾਂ LLMs ਨੂੰ ਦੋਹਰੀ ਚੁਣੌਤੀ ਦਾ ਸਾਹਮਣਾ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਪਹਿਲਾਂ, ਪੁਨਰਪ੍ਰਾਪਤੀ ਸ਼ੁੱਧਤਾ ਦਾ ਸਿੱਧਾ
ਮੁੱਦਾ ਹੈ - ਇਹ ਤੱਥਾਂ ਦੀ ਸੰਖਿਆ ਵਧਣ ਨਾਲ ਕੁਦਰਤੀ ਤੌਰ ’ਤੇ ਘੱਟ ਜਾਂਦੀ ਹੈ। ਇਹ ਉਮੀਦ ਕੀਤੀ ਜਾਂਦੀ ਹੈ;
ਆਖਿਰਕਾਰ, ਫੈਲੇ ਹੋਏ ਟੈਕਸਟ ਵਿੱਚ ਕਈ ਵੇਰਵਿਆਂ ਦਾ ਧਿਆਨ ਰੱਖਣਾ ਸਭ ਤੋਂ ਉੱਨਤ ਮਾਡਲਾਂ ਨੂੰ ਵੀ ਪ੍ਰਭਾਵਿਤ
ਕਰਦਾ ਹੈ।

ਦੂਜਾ, ਅਤੇ ਸ਼ਾਇਦ ਵਧੇਰੇ ਮਹੱਤਵਪੂਰਨ, ਇਨ੍ਹਾਂ ਤੱਥਾਂ ਨਾਲ ਤਰਕ ਕਰਨ ਦੀ ਚੁਣੌਤੀ ਹੈ। ਤੱਥਾਂ ਨੂੰ ਚੁਣਨਾ ਇੱਕ
ਗੱਲ ਹੈ; ਉਨ੍ਹਾਂ ਨੂੰ ਇੱਕ ਸੁਸੰਗਤ ਕਹਾਣੀ ਜਾਂ ਜਵਾਬ ਵਿੱਚ ਸੰਸਲੇਸ਼ਣ ਕਰਨਾ ਬਿਲਕੁਲ ਵੱਖਰੀ ਗੱਲ ਹੈ। ਇੱਥੇ
ਅਸਲ ਪਰੀਖਿਆ ਆਉਂਦੀ ਹੈ। ਤਰਕ ਕਾਰਜਾਂ ਵਿੱਚ LLMs ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਸਧਾਰਨ ਪੁਨਰ-ਪ੍ਰਾਪਤੀ ਕਾਰਜਾਂ
ਨਾਲੋਂ ਵਧੇਰੇ ਘੱਟਦੀ ਹੈ। ਇਹ ਗਿਰਾਵਟ ਸਿਰਫ਼ ਮਾਤਰਾ ਬਾਰੇ ਨਹੀਂ ਹੈ; ਇਹ ਸੰਦਰਭ, ਪ੍ਰਸੰਗਿਕਤਾ, ਅਤੇ ਅਨੁਮਾਨ
ਦਾ ਜਟਿਲ ਨਾਚ ਹੈ।

ਅਜਿਹਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ? ਮਨੁੱਖੀ ਬੋਧ ਵਿੱਚ ਯਾਦਦਾਸ਼ਤ ਅਤੇ ਧਿਆਨ ਦੀ ਗਤੀਸ਼ੀਲਤਾ ’ਤੇ ਵਿਚਾਰ ਕਰੋ, ਜੋ ਕੁਝ
ਹੱਦ ਤੱਕ LLMs ਵਿੱਚ ਪ੍ਰਤੀਬਿੰਬਿਤ ਹੁੰਦੀ ਹੈ। ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਜਾਣਕਾਰੀ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰਦੇ ਸਮੇਂ, LLMs,

ਜਾਣ-ਪਛਾਣ 18

ਮਨੁੱਖਾਂ ਵਾਂਗ, ਨਵੀਂ ਜਾਣਕਾਰੀ ਨੂੰ ਗ੍ਰਹਿਣ ਕਰਦੇ ਹੋਏ ਪਹਿਲਾਂ ਦੇ ਵੇਰਵਿਆਂ ਨੂੰ ਭੁੱਲ ਸਕਦੇ ਹਨ। ਇਹ ਖਾਸ ਤੌਰ
’ਤੇ ਉਨ੍ਹਾਂ ਮਾਡਲਾਂ ਵਿੱਚ ਸੱਚ ਹੈ ਜੋ ਸਵੈਚਲਿਤ ਤੌਰ ’ਤੇ ਟੈਕਸਟ ਦੇ ਪਹਿਲੇ ਹਿੱਸਿਆਂ ਨੂੰ ਤਰਜੀਹ ਦੇਣ ਜਾਂ ਦੁਬਾਰਾ
ਦੇਖਣ ਲਈ ਵਿਸ਼ੇਸ਼ ਤੌਰ ’ਤੇ ਡਿਜ਼ਾਈਨ ਨਹੀਂ ਕੀਤੇ ਗਏ ਹਨ।

ਇਸ ਤੋਂ ਇਲਾਵਾ, ਇੱਕ LLM ਦੀ ਇਨ੍ਹਾਂ ਪ੍ਰਾਪਤ ਕੀਤੇ ਤੱਥਾਂ ਨੂੰ ਇੱਕ ਸੁਸੰਗਤ ਜਵਾਬ ਵਿੱਚ ਬੁਣਨ ਦੀ ਯੋਗਤਾ
ਕਹਾਣੀ ਨਿਰਮਾਣ ਵਰਗੀ ਹੈ। ਇਸ ਲਈ ਸਿਰਫ਼ ਜਾਣਕਾਰੀ ਦੀ ਪੁਨਰ-ਪ੍ਰਾਪਤੀ ਹੀ ਨਹੀਂ, ਬਲਕਿ ਡੂੰਘੀ ਸਮਝ
ਅਤੇ ਸੰਦਰਭਕ ਸਥਾਪਨਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਜੋ ਮੌਜੂਦਾ AI ਲਈ ਇੱਕ ਵੱਡੀ ਚੁਣੌਤੀ ਬਣੀ ਹੋਈ ਹੈ।

ਤਾਂ, ਇਸਦਾ ਸਾਡੇ ਲਈ ਇਨ੍ਹਾਂ ਤਕਨਾਲੋਜੀਆਂ ਦੇ ਡਿਵੈਲਪਰਾਂ ਅਤੇ ਏਕੀਕਰਣਕਰਤਾਵਾਂ ਵਜੋਂ ਕੀ ਮਤਲਬ ਹੈ?
ਸਾਨੂੰ ਉਨ੍ਹਾਂ ਸਿਸਟਮਾਂ ਨੂੰ ਡਿਜ਼ਾਈਨ ਕਰਦੇ ਸਮੇਂ ਇਨ੍ਹਾਂ ਸੀਮਾਵਾਂ ਤੋਂ ਬਹੁਤ ਜਾਗਰੂਕ ਹੋਣ ਦੀ ਲੋੜ ਹੈ ਜੋ ਜਟਿਲ,
ਲੰਬੇ-ਰੂਪ ਦੇ ਕਾਰਜਾਂ ਨੂੰ ਸੰਭਾਲਣ ਲਈ LLMs ’ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ। ਇਹ ਸਮਝਣਾ ਕਿ ਕੁਝ ਹਾਲਾਤਾਂ ਵਿੱਚ
ਕਾਰਗੁਜ਼ਾਰੀ ਘੱਟ ਸਕਦੀ ਹੈ, ਸਾਨੂੰ ਯਥਾਰਥਵਾਦੀ ਉਮੀਦਾਂ ਸਥਾਪਿਤ ਕਰਨ ਅਤੇ ਬੇਹਤਰ ਬੈਕਅੱਪ ਵਿਧੀਆਂ ਜਾਂ
ਪੂਰਕ ਰਣਨੀਤੀਆਂ ਨੂੰ ਤਿਆਰ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰਦਾ ਹੈ।

ਮੋਡੈਲਿਟੀਆਂ: ਟੈਕਸਟ ਤੋਂ ਪਰੇ

ਜਦੋਂ ਕਿ ਅੱਜ ਦੇ ਜ਼ਿਆਦਾਤਰ ਭਾਸ਼ਾ ਮਾਡਲ ਟੈਕਸਟ ਦੀ ਪ੍ਰੋਸੈਸਿੰਗਅਤੇ ਜਨਰੇਸ਼ਨ ’ਤੇ ਕੇਂਦਰਿਤ ਹਨ, ਬਹੁ-ਮਾਧਿਅਮ
ਮਾਡਲਾਂ ਵੱਲ ਇੱਕ ਵਧਦਾ ਰੁਝਾਨ ਹੈ ਜੋ ਕੁਦਰਤੀ ਤੌਰ ’ਤੇ ਕਈ ਕਿਸਮਾਂ ਦੇ ਡੇਟਾ, ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ, ਆਡੀਓ, ਅਤੇ
ਵੀਡੀਓ ਨੂੰ ਇਨਪੁੱਟ ਅਤੇ ਆਉਟਪੁੱਟ ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਬਹੁ-ਮਾਧਿਅਮ ਮਾਡਲ AI-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ
ਲਈ ਨਵੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਖੋਲ੍ਹਦੇ ਹਨ ਜੋ ਵੱਖ-ਵੱਖ ਮੋਡੈਲਿਟੀਆਂ ਵਿੱਚ ਸਮੱਗਰੀ ਨੂੰ ਸਮਝ ਅਤੇ ਤਿਆਰ ਕਰ
ਸਕਦੇ ਹਨ।

ਮੋਡੈਲਿਟੀਆਂ ਕੀ ਹਨ?

ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਦੇ ਸੰਦਰਭ ਵਿੱਚ, ਮੋਡੈਲਿਟੀਆਂ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਦੇ ਡੇਟਾ ਨੂੰ ਦਰਸਾਉਂਦੀਆਂ ਹਨ ਜੋ ਇੱਕ
ਮਾਡਲ ਪ੍ਰੋਸੈਸ ਅਤੇ ਤਿਆਰ ਕਰ ਸਕਦਾ ਹੈ। ਸਭ ਤੋਂ ਆਮ ਮੋਡੈਲਿਟੀ ਟੈਕਸਟ ਹੈ, ਜਿਸ ਵਿੱਚ ਕਿਤਾਬਾਂ, ਲੇਖ,
ਵੈੱਬਸਾਈਟਾਂ, ਅਤੇ ਸੋਸ਼ਲ ਮੀਡੀਆ ਪੋਸਟਾਂ ਵਰਗੇ ਵੱਖ-ਵੱਖ ਰੂਪਾਂ ਵਿੱਚ ਲਿਖਤੀ ਭਾਸ਼ਾ ਸ਼ਾਮਲ ਹੈ। ਹਾਲਾਂਕਿ, ਕਈ
ਹੋਰ ਮੋਡੈਲਿਟੀਆਂ ਹਨ ਜੋ ਵਧਦੇ ਤੌਰ ’ਤੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਵਿੱਚ ਸ਼ਾਮਲ ਕੀਤੀਆਂ ਜਾ ਰਹੀਆਂ ਹਨ:

• ਚਿੱਤਰ: ਦ੍ਰਿਸ਼ਟੀਗਤ ਡੇਟਾ ਜਿਵੇਂ ਫੋਟੋਆਂ, ਚਿੱਤਰ, ਅਤੇ ਡਾਇਗਰਾਮ।
• ਆਡੀਓ: ਧੁਨੀ ਡੇਟਾ ਜਿਵੇਂ ਭਾਸ਼ਣ, ਸੰਗੀਤ, ਅਤੇ ਵਾਤਾਵਰਣਕ ਧੁਨੀਆਂ।

ਜਾਣ-ਪਛਾਣ 19

• ਵੀਡੀਓ: ਚੱਲਦਾ ਦ੍ਰਿਸ਼ਟੀਗਤ ਡੇਟਾ, ਅਕਸਰ ਆਡੀਓ ਨਾਲ, ਜਿਵੇਂ ਵੀਡੀਓ ਕਲਿੱਪਾਂ ਅਤੇ ਫਿਲਮਾਂ।

ਹਰ ਮਾਧਿਅਮ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਲਈ ਵੱਖਰੀਆਂ ਚੁਣੌਤੀਆਂ ਅਤੇ ਮੌਕੇ ਪੇਸ਼ ਕਰਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ, ਚਿੱਤਰਾਂ ਲਈ
ਮਾਡਲ ਨੂੰ ਦ੍ਰਿਸ਼ਟੀਗਤ ਧਾਰਨਾਵਾਂ ਅਤੇ ਸੰਬੰਧਾਂ ਨੂੰ ਸਮਝਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਜਦੋਂ ਕਿ ਆਡੀਓ ਲਈ ਮਾਡਲ ਨੂੰ
ਭਾਸ਼ਣ ਅਤੇ ਹੋਰ ਧੁਨੀਆਂ ਨੂੰ ਪ੍ਰੋਸੈਸ ਅਤੇ ਤਿਆਰ ਕਰਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।

ਬਹੁ-ਮਾਧਿਅਮੀ ਭਾਸ਼ਾ ਮਾਡਲ

ਬਹੁ-ਮਾਧਿਅਮੀ ਭਾਸ਼ਾ ਮਾਡਲ ਇੱਕ ਸਿੰਗਲ ਮਾਡਲ ਵਿੱਚ ਕਈ ਮਾਧਿਅਮਾਂ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਤਿਆਰ ਕੀਤੇ ਗਏ
ਹਨ। ਇਹਨਾਂ ਮਾਡਲਾਂ ਵਿੱਚ ਆਮ ਤੌਰ ’ਤੇ ਵਿਸ਼ੇਸ਼ ਭਾਗ ਜਾਂ ਪਰਤਾਂ ਹੁੰਦੀਆਂ ਹਨ ਜੋ ਵੱਖ-ਵੱਖ ਮਾਧਿਅਮਾਂ ਵਿੱਚ
ਇਨਪੁੱਟ ਨੂੰ ਸਮਝ ਅਤੇ ਆਉਟਪੁੱਟ ਡਾਟਾ ਤਿਆਰ ਕਰ ਸਕਦੀਆਂ ਹਨ। ਬਹੁ-ਮਾਧਿਅਮੀ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਦੇ ਕੁਝ
ਪ੍ਰਮੁੱਖ ਉਦਾਹਰਣਾਂ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ:

• OpenAI ਦਾ GPT-4o: GPT-4o ਇੱਕ ਵੱਡਾ ਭਾਸ਼ਾ ਮਾਡਲ ਹੈ ਜੋ ਟੈਕਸਟ ਦੇ ਨਾਲ-ਨਾਲ ਭਾਸ਼ਣ
ਆਡੀਓ ਨੂੰ ਕੁਦਰਤੀ ਤੌਰ ’ਤੇ ਸਮਝਦਾ ਅਤੇ ਪ੍ਰੋਸੈਸ ਕਰਦਾ ਹੈ। ਇਹ ਸਮਰੱਥਾ GPT-4o ਨੂੰ ਬੋਲੀ ਗਈ
ਭਾਸ਼ਾ ਨੂੰ ਟ੍ਰਾਂਸਕ੍ਰਾਈਬ ਕਰਨ, ਆਡੀਓ ਇਨਪੁੱਟ ਤੋਂ ਟੈਕਸਟ ਤਿਆਰ ਕਰਨ, ਅਤੇ ਬੋਲੇ ਗਏ ਸਵਾਲਾਂ ਦੇ
ਆਧਾਰ ’ਤੇ ਜਵਾਬ ਦੇਣ ਵਰਗੇ ਕੰਮ ਕਰਨ ਦੀ ਯੋਗਤਾ ਦਿੰਦੀ ਹੈ।

• OpenAI ਦਾ GPT-4 ਦ੍ਰਿਸ਼ਟੀਗਤਇਨਪੁੱਟ ਨਾਲ: GPT-4ਇੱਕ ਵੱਡਾ ਭਾਸ਼ਾ ਮਾਡਲ ਹੈ ਜੋ ਟੈਕਸਟ
ਅਤੇ ਚਿੱਤਰਾਂ ਦੋਵਾਂ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰ ਸਕਦਾ ਹੈ। ਜਦੋਂ ਇੱਕ ਚਿੱਤਰ ਇਨਪੁੱਟ ਵਜੋਂ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ, GPT-4
ਚਿੱਤਰ ਦੀ ਸਮੱਗਰੀ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰ ਸਕਦਾ ਹੈ ਅਤੇ ਦ੍ਰਿਸ਼ਟੀਗਤ ਜਾਣਕਾਰੀ ਦਾ ਵਰਣਨ ਕਰਦਾ ਜਾਂ
ਉਸ ਦਾ ਜਵਾਬ ਦਿੰਦਾ ਟੈਕਸਟ ਤਿਆਰ ਕਰ ਸਕਦਾ ਹੈ।

• Google ਦਾGemini: Geminiਇੱਕ ਬਹੁ-ਮਾਧਿਅਮੀ ਮਾਡਲ ਹੈ ਜੋ ਟੈਕਸਟ, ਚਿੱਤਰ, ਅਤੇ ਵੀਡੀਓ
ਨੂੰ ਸੰਭਾਲ ਸਕਦਾ ਹੈ। ਇਹ ਇੱਕ ਏਕੀਕ੍ਰਿਤ ਆਰਕੀਟੈਕਚਰ ਦੀ ਵਰਤੋਂ ਕਰਦਾ ਹੈ ਜੋ ਕਰਾਸ-ਮਾਧਿਅਮ
ਸਮਝ ਅਤੇ ਉਤਪਾਦਨ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਚਿੱਤਰ ਵਰਣਨ, ਵੀਡੀਓ ਸੰਖੇਪੀਕਰਨ, ਅਤੇ
ਦ੍ਰਿਸ਼ਟੀਗਤ ਸਵਾਲ-ਜਵਾਬ ਵਰਗੇ ਕੰਮ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ।

• DALL-E ਅਤੇ Stable Diffusion: ਭਾਵੇਂ ਇਹ ਪਰੰਪਰਾਗਤ ਅਰਥਾਂ ਵਿੱਚ ਭਾਸ਼ਾ ਮਾਡਲ ਨਹੀਂ
ਹਨ, ਇਹ ਮਾਡਲ ਟੈਕਸਟ ਵੇਰਵਿਆਂ ਤੋਂ ਚਿੱਤਰ ਤਿਆਰ ਕਰਕੇ ਬਹੁ-ਮਾਧਿਅਮੀ AI ਦੀ ਸ਼ਕਤੀ ਨੂੰ ਦਰਸਾਉਂਦੇ
ਹਨ।ਇਹ ਵੱਖ-ਵੱਖ ਮਾਧਿਅਮਾਂ ਵਿਚਕਾਰ ਅਨੁਵਾਦ ਕਰ ਸਕਣ ਵਾਲੇ ਮਾਡਲਾਂ ਦੀ ਸੰਭਾਵਨਾ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ
ਕਰਦੇ ਹਨ।

ਜਾਣ-ਪਛਾਣ 20

ਬਹੁ-ਮਾਧਿਅਮੀ ਮਾਡਲਾਂ ਦੇ ਲਾਭ ਅਤੇ ਐਪਲੀਕੇਸ਼ਨਾਂ

ਬਹੁ-ਮਾਧਿਅਮੀ ਭਾਸ਼ਾ ਮਾਡਲ ਕਈ ਲਾਭ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ ਅਤੇ ਵਿਆਪਕ ਐਪਲੀਕੇਸ਼ਨਾਂ ਨੂੰ ਸੰਭਵ ਬਣਾਉਂਦੇ
ਹਨ, ਜਿਸ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ:

• ਵਧੀ ਹੋਈ ਸਮਝ: ਕਈ ਮਾਧਿਅਮਾਂ ਤੋਂ ਜਾਣਕਾਰੀ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰਕੇ, ਇਹ ਮਾਡਲ ਦੁਨੀਆ ਦੀ ਵਧੇਰੇ
ਵਿਆਪਕ ਸਮਝ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਨ, ਜਿਵੇਂ ਕਿ ਮਨੁੱਖ ਵੱਖ-ਵੱਖ ਸੰਵੇਦੀ ਇਨਪੁੱਟ ਤੋਂ ਸਿੱਖਦੇ ਹਨ।

• ਕਰਾਸ-ਮਾਧਿਅਮ ਉਤਪਾਦਨ: ਬਹੁ-ਮਾਧਿਅਮੀ ਮਾਡਲ ਇੱਕ ਮਾਧਿਅਮ ਤੋਂ ਇਨਪੁੱਟ ਦੇ ਆਧਾਰ ’ਤੇ ਦੂਜੇ
ਮਾਧਿਅਮ ਵਿੱਚ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹਨ, ਜਿਵੇਂ ਕਿ ਟੈਕਸਟ ਵੇਰਵੇ ਤੋਂ ਚਿੱਤਰ ਬਣਾਉਣਾ ਜਾਂ ਲਿਖਤੀ
ਲੇਖ ਤੋਂ ਵੀਡੀਓ ਸੰਖੇਪ ਤਿਆਰ ਕਰਨਾ।

• ਪਹੁੰਚਯੋਗਤਾ: ਬਹੁ-ਮਾਧਿਅਮੀ ਮਾਡਲ ਮਾਧਿਅਮਾਂ ਵਿਚਕਾਰ ਅਨੁਵਾਦ ਕਰਕੇ ਜਾਣਕਾਰੀ ਨੂੰ ਵਧੇਰੇ
ਪਹੁੰਚਯੋਗ ਬਣਾ ਸਕਦੇ ਹਨ, ਜਿਵੇਂ ਕਿ ਦ੍ਰਿਸ਼ਟੀਹੀਣ ਉਪਭੋਗਤਾਵਾਂ ਲਈ ਚਿੱਤਰਾਂ ਦੇ ਟੈਕਸਟ ਵੇਰਵੇ ਤਿਆਰ
ਕਰਨਾ ਜਾਂ ਲਿਖਤੀ ਸਮੱਗਰੀ ਦੇ ਆਡੀਓ ਵਰਜਨ ਬਣਾਉਣਾ।

• ਰਚਨਾਤਮਕ ਐਪਲੀਕੇਸ਼ਨਾਂ: ਬਹੁ-ਮਾਧਿਅਮ ਮਾਡਲਾਂ ਨੂੰ ਕਲਾ, ਸੰਗੀਤ, ਜਾਂ ਵੀਡੀਓ ਬਣਾਉਣ ਵਰਗੇ
ਰਚਨਾਤਮਕ ਕੰਮਾਂ ਲਈ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਜੋ ਕਿ ਟੈਕਸਟ ਪ੍ਰੌਮਪਟਸ ’ਤੇ ਆਧਾਰਿਤ ਹਨ, ਜੋ
ਕਲਾਕਾਰਾਂ ਅਤੇ ਸਮੱਗਰੀ ਨਿਰਮਾਤਾਵਾਂ ਲਈ ਨਵੇਂ ਮੌਕੇ ਖੋਲ੍ਹਦੇ ਹਨ।

ਜਿਵੇਂ-ਜਿਵੇਂ ਬਹੁ-ਮਾਧਿਅਮ ਭਾਸ਼ਾ ਮਾਡਲ ਅੱਗੇ ਵਧਦੇ ਹਨ, ਇਹ ਸੰਭਾਵਤ ਤੌਰ ’ਤੇ AI-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਦੇ
ਵਿਕਾਸ ਵਿੱਚ ਵਧੇਰੇ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾਉਣਗੇ ਜੋ ਕਈ ਮਾਧਿਅਮਾਂ ਵਿੱਚ ਸਮੱਗਰੀ ਨੂੰ ਸਮਝ ਅਤੇ ਤਿਆਰ
ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਮਨੁੱਖਾਂ ਅਤੇ AI ਸਿਸਟਮਾਂ ਵਿਚਕਾਰ ਵਧੇਰੇ ਕੁਦਰਤੀ ਅਤੇ ਸਹਿਜ ਗੱਲਬਾਤ ਨੂੰ ਸਮਰੱਥ
ਬਣਾਏਗਾ, ਨਾਲ ਹੀ ਰਚਨਾਤਮਕ ਪ੍ਰਗਟਾਵੇ ਅਤੇ ਗਿਆਨ ਪ੍ਰਸਾਰ ਲਈ ਨਵੇਂ ਮੌਕੇ ਖੋਲ੍ਹੇਗਾ।

ਪ੍ਰਦਾਤਾ ਈਕੋਸਿਸਟਮ

ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ (LLMs) ਨੂੰ ਸ਼ਾਮਲ ਕਰਨ ਦੀ ਗੱਲ ਆਉਂਦੀ ਹੈ, ਤਾਂ ਤੁਹਾਡੇ ਕੋਲ ਚੁਣਨ
ਲਈ ਵਿਕਲਪਾਂ ਦੀ ਵਧਦੀ ਰੇਂਜ ਹੈ। ਹਰ ਪ੍ਰਮੁੱਖ LLM ਪ੍ਰਦਾਤਾ, ਜਿਵੇਂ ਕਿ OpenAI, Anthropic,
Google, ਅਤੇ Cohere,ਆਪਣੇ ਮਾਡਲਾਂ, APIs, ਅਤੇ ਟੂਲਾਂ ਦਾ ਈਕੋਸਿਸਟਮ ਪੇਸ਼ ਕਰਦਾ ਹੈ। ਸਹੀ ਪ੍ਰਦਾਤਾ
ਚੁਣਨ ਵਿੱਚ ਕਈ ਕਾਰਕਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰਨਾ ਸ਼ਾਮਲ ਹੈ, ਜਿਸ ਵਿੱਚ ਕੀਮਤ, ਪ੍ਰਦਰਸ਼ਨ, ਸਮੱਗਰੀ ਫਿਲਟਰਿੰਗ,
ਡੇਟਾ ਗੋਪਨੀਯਤਾ, ਅਤੇ ਕਸਟਮਾਈਜ਼ੇਸ਼ਨ ਵਿਕਲਪ ਸ਼ਾਮਲ ਹਨ।

ਜਾਣ-ਪਛਾਣ 21

OpenAI

OpenAI LLMs ਦੇ ਸਭ ਤੋਂ ਜਾਣੇ-ਪਛਾਣੇ ਪ੍ਰਦਾਤਾਵਾਂ ਵਿੱਚੋਂ ਇੱਕ ਹੈ, ਜਿਸਦੀ GPT ਸੀਰੀਜ਼ (GPT-3,
GPT-4) ਵੱਖ-ਵੱਖ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਵਿਆਪਕ ਤੌਰ ’ਤੇ ਵਰਤੀ ਜਾਂਦੀ ਹੈ। OpenAI ਇੱਕ ਵਰਤੋਂਕਾਰ-
ਅਨੁਕੂਲ API ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ ਜੋ ਤੁਹਾਨੂੰ ਆਸਾਨੀ ਨਾਲ ਉਹਨਾਂ ਦੇ ਮਾਡਲਾਂ ਨੂੰ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਏਕੀਕ੍ਰਿਤ
ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ। ਉਹ ਐਂਟਰੀ-ਲੈਵਲ Ada ਮਾਡਲ ਤੋਂ ਲੈ ਕੇ ਸ਼ਕਤੀਸ਼ਾਲੀ Davinci ਮਾਡਲ ਤੱਕ,
ਵੱਖ-ਵੱਖ ਸਮਰੱਥਾਵਾਂ ਅਤੇ ਕੀਮਤ ਬਿੰਦੂਆਂ ਵਾਲੇ ਮਾਡਲਾਂ ਦੀ ਇੱਕ ਰੇਂਜ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ।

OpenAI ਦੇ ਈਕੋਸਿਸਟਮ ਵਿੱਚ OpenAI Playground ਵਰਗੇ ਟੂਲ ਵੀ ਸ਼ਾਮਲ ਹਨ, ਜੋ ਤੁਹਾਨੂੰ
ਪ੍ਰੌਮਪਟਸ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਨ ਅਤੇ ਖਾਸ ਵਰਤੋਂ ਦੇ ਮਾਮਲਿਆਂ ਲਈ ਮਾਡਲਾਂ ਨੂੰ ਫਾਈਨ-ਟਿਊਨ ਕਰਨ ਦੀ
ਆਗਿਆਦਿੰਦੇ ਹਨ। ਉਹਅਣਉਚਿਤ ਜਾਂ ਨੁਕਸਾਨਦੇਹ ਸਮੱਗਰੀ ਦੀ ਉਤਪਤੀ ਨੂੰ ਰੋਕਣ ਵਿੱਚ ਮਦਦ ਲਈਸਮੱਗਰੀ
ਫਿਲਟਰਿੰਗ ਵਿਕਲਪ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ।

OpenAI ਦੇ ਮਾਡਲਾਂ ਨੂੰ ਸਿੱਧੇ ਵਰਤਣ ਲਈ, ਮੈਂ Alex Rudall ਦੀ ruby-openai ਲਾਇਬ੍ਰੇਰੀ ’ਤੇ
ਨਿਰਭਰ ਕਰਦਾ ਹਾਂ।

Anthropic

Anthropic LLM ਖੇਤਰ ਵਿੱਚ ਇੱਕ ਹੋਰ ਪ੍ਰਮੁੱਖ ਖਿਡਾਰੀ ਹੈ, ਜਿਸਦੇ Claude ਮਾਡਲ ਮਜ਼ਬੂਤ ਪ੍ਰਦਰਸ਼ਨ
ਅਤੇ ਨੈਤਿਕ ਵਿਚਾਰਾਂ ਲਈ ਹਰਮਨਪਿਆਰੇ ਹੋ ਰਹੇ ਹਨ। Anthropic ਸੁਰੱਖਿਅਤ ਅਤੇ ਜ਼ਿੰਮੇਵਾਰ AI ਸਿਸਟਮਾਂ
ਦੇ ਵਿਕਾਸ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਦਾ ਹੈ, ਸਮੱਗਰੀ ਫਿਲਟਰਿੰਗ ਅਤੇ ਨੁਕਸਾਨਦੇਹ ਆਉਟਪੁੱਟ ਤੋਂ ਬਚਣ ’ਤੇ ਜ਼ੋਰ
ਦਿੰਦਾ ਹੈ।

Anthropic ਦੇ ਈਕੋਸਿਸਟਮ ਵਿੱਚ Claude API ਸ਼ਾਮਲ ਹੈ, ਜੋ ਤੁਹਾਨੂੰ ਮਾਡਲ ਨੂੰ ਆਪਣੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ
ਵਿੱਚ ਏਕੀਕ੍ਰਿਤ ਕਰਨ ਦੀਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਨਾਲ ਹੀ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਅਤੇ ਫਾਈਨ-ਟਿਊਨਿੰਗ ਲਈ
ਟੂਲ ਵੀ। ਉਹ Claude Instant ਮਾਡਲ ਵੀ ਪੇਸ਼ ਕਰਦੇ ਹਨ, ਜੋ ਵਧੇਰੇ ਅਪ-ਟੂ-ਡੇਟ ਅਤੇ ਤੱਥਾਤਮਕ ਜਵਾਬਾਂ
ਲਈ ਵੈੱਬ ਖੋਜ ਸਮਰੱਥਾਵਾਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਦਾ ਹੈ।

Anthropic ਦੇ ਮਾਡਲਾਂ ਨੂੰ ਸਿੱਧੇ ਵਰਤਦੇ ਸਮੇਂ, ਮੈਂ Alex Rudall ਦੀ anthrophic ਲਾਇਬ੍ਰੇਰੀ ’ਤੇ
ਨਿਰਭਰ ਕਰਦਾ ਹਾਂ।

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/anthropic

ਜਾਣ-ਪਛਾਣ 22

Google

Google ਨੇ ਕਈ ਸ਼ਕਤੀਸ਼ਾਲੀ LLMs ਵਿਕਸਿਤ ਕੀਤੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ Gemini, BERT, T5, ਅਤੇ
PaLMਸ਼ਾਮਲ ਹਨ।ਇਹ ਮਾਡਲ ਕੁਦਰਤੀ ਭਾਸ਼ਾ ਪ੍ਰੋਸੈਸਿੰਗ ਦੇ ਵੱਖ-ਵੱਖ ਕੰਮਾਂ ’ਤੇ ਆਪਣੀ ਮਜ਼ਬੂਤ ਕਾਰਗੁਜ਼ਾਰੀ
ਲਈ ਜਾਣੇ ਜਾਂਦੇ ਹਨ। Google ਦੇ ਈਕੋਸਿਸਟਮ ਵਿੱਚ TensorFlowਅਤੇ Keras ਲਾਇਬ੍ਰੇਰੀਆਂ ਸ਼ਾਮਲ
ਹਨ, ਜੋ ਮਸ਼ੀਨੀ ਸਿੱਖਿਆ ਮਾਡਲਾਂ ਨੂੰ ਬਣਾਉਣ ਅਤੇ ਸਿਖਲਾਈ ਦੇਣ ਲਈ ਟੂਲਜ਼ ਅਤੇ ਫਰੇਮਵਰਕ ਪ੍ਰਦਾਨ
ਕਰਦੀਆਂ ਹਨ।

Google ਇੱਕ Cloud AI Platform ਵੀ ਪੇਸ਼ ਕਰਦਾ ਹੈ, ਜੋ ਤੁਹਾਨੂੰ ਕਲਾਉਡ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੇ ਮਾਡਲਾਂ ਨੂੰ
ਆਸਾਨੀ ਨਾਲ ਤੈਨਾਤ ਅਤੇ ਸਕੇਲ ਕਰਨ ਦੀ ਸਹੂਲਤ ਦਿੰਦਾ ਹੈ। ਉਹ ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ, ਇਕਾਈ ਪਛਾਣ, ਅਤੇ
ਅਨੁਵਾਦ ਵਰਗੇ ਕੰਮਾਂ ਲਈ ਪਹਿਲਾਂ-ਸਿਖਲਾਈ ਪ੍ਰਾਪਤ ਮਾਡਲਾਂ ਅਤੇ APIs ਦੀ ਇੱਕ ਲੜੀ ਪ੍ਰਦਾਨ ਕਰਦੇ
ਹਨ।

Meta

Meta, ਜੋ ਪਹਿਲਾਂ Facebook ਦੇ ਨਾਮ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਸੀ, ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਦੇ ਵਿਕਾਸ ਵਿੱਚ ਡੂੰਘਾਈ
ਨਾਲ ਨਿਵੇਸ਼ ਕਰ ਰਿਹਾ ਹੈ, ਜਿਸ ਨੂੰ LLaMA ਅਤੇ OPT ਵਰਗੇ ਮਾਡਲਾਂ ਦੀ ਰਿਲੀਜ਼ ਨਾਲ ਉਜਾਗਰ ਕੀਤਾ
ਗਿਆ ਹੈ। ਇਹ ਮਾਡਲ ਵੱਖ-ਵੱਖ ਭਾਸ਼ਾਈ ਕੰਮਾਂ ਵਿੱਚ ਆਪਣੀ ਮਜ਼ਬੂਤ ਕਾਰਗੁਜ਼ਾਰੀ ਲਈ ਉੱਭਰਦੇ ਹਨ ਅਤੇ ਮੁੱਖ
ਤੌਰ ’ਤੇ ਓਪਨ-ਸੋਰਸ ਚੈਨਲਾਂ ਰਾਹੀਂ ਉਪਲਬਧ ਕਰਵਾਏ ਜਾਂਦੇ ਹਨ, ਜੋ ਖੋਜ ਅਤੇ ਕਮਿਊਨਿਟੀ ਸਹਿਯੋਗ ਪ੍ਰਤੀ
Meta ਦੀ ਵਚਨਬੱਧਤਾ ਦੀ ਸਹਾਇਤਾ ਕਰਦੇ ਹਨ।

Meta ਦਾ ਈਕੋਸਿਸਟਮ ਮੁੱਖ ਤੌਰ ’ਤੇ PyTorch ਦੇ ਆਲੇ-ਦੁਆਲੇ ਬਣਿਆ ਹੈ, ਜੋ ਇੱਕ ਓਪਨ-ਸੋਰਸ ਮਸ਼ੀਨੀ
ਸਿੱਖਿਆਲਾਇਬ੍ਰੇਰੀ ਹੈ ਜੋ ਆਪਣੀਆਂ ਡਾਇਨਾਮਿਕ ਕੰਪਿਊਟੇਸ਼ਨਲ ਸਮਰੱਥਾਵਾਂ ਅਤੇ ਲਚਕਤਾ ਲਈ ਪਸੰਦ ਕੀਤੀ
ਜਾਂਦੀ ਹੈ, ਜੋ ਨਵੀਨਤਾਕਾਰੀ AI ਖੋਜ ਅਤੇ ਵਿਕਾਸ ਨੂੰ ਸੌਖਾ ਬਣਾਉਂਦੀ ਹੈ।

ਆਪਣੀਆਂ ਤਕਨੀਕੀ ਪੇਸ਼ਕਸ਼ਾਂ ਤੋਂ ਇਲਾਵਾ, Meta ਨੈਤਿਕ AI ਵਿਕਾਸ ’ਤੇ ਜ਼ੋਰ ਦਿੰਦਾ ਹੈ। ਉਹ ਮਜ਼ਬੂਤ ਸਮੱਗਰੀ
ਫਿਲਟਰਿੰਗ ਲਾਗੂ ਕਰਦੇ ਹਨ ਅਤੇ ਪੱਖਪਾਤਾਂ ਨੂੰ ਘਟਾਉਣ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਦੇ ਹਨ, ਜੋ AI ਐਪਲੀਕੇਸ਼ਨਾਂ
ਵਿੱਚ ਸੁਰੱਖਿਆ ਅਤੇ ਜ਼ਿੰਮੇਵਾਰੀ ਦੇ ਉਨ੍ਹਾਂ ਦੇ ਵਿਆਪਕ ਟੀਚਿਆਂ ਨਾਲ ਮੇਲ ਖਾਂਦਾ ਹੈ।

Cohere

Cohere LLM ਖੇਤਰ ਵਿੱਚ ਇੱਕ ਨਵਾਂ ਪ੍ਰਵੇਸ਼ ਕਰਨ ਵਾਲਾ ਹੈ, ਜੋ ਪ੍ਰਤੀਯੋਗੀਆਂ ਦੇ ਮੁਕਾਬਲੇ LLMs ਨੂੰ
ਵਧੇਰੇ ਪਹੁੰਚਯੋਗ ਅਤੇ ਵਰਤਣ ਵਿੱਚਆਸਾਨ ਬਣਾਉਣ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰ ਰਿਹਾ ਹੈ। ਉਨ੍ਹਾਂ ਦੇ ਈਕੋਸਿਸਟਮ

ਜਾਣ-ਪਛਾਣ 23

ਵਿੱਚ Cohere API ਸ਼ਾਮਲ ਹੈ, ਜੋ ਟੈਕਸਟ ਜਨਰੇਸ਼ਨ, ਵਰਗੀਕਰਨ, ਅਤੇ ਸੰਖੇਪ ਵਰਗੇ ਕੰਮਾਂ ਲਈ ਪਹਿਲਾਂ-
ਸਿਖਲਾਈ ਪ੍ਰਾਪਤ ਮਾਡਲਾਂ ਦੀ ਇੱਕ ਲੜੀ ਤੱਕ ਪਹੁੰਚ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ।

Cohere ਪ੍ਰੌਮਪਟਇੰਜੀਨੀਅਰਿੰਗ, ਫਾਈਨ-ਟਿਊਨਿੰਗ, ਅਤੇ ਸਮੱਗਰੀ ਫਿਲਟਰਿੰਗ ਲਈਟੂਲਜ਼ ਵੀ ਪੇਸ਼ ਕਰਦਾ
ਹੈ। ਉਹ ਐਨਕ੍ਰਿਪਟਡ ਡਾਟਾ ਸਟੋਰੇਜ ਅਤੇ ਐਕਸੈਸ ਕੰਟਰੋਲ ਵਰਗੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਨਾਲ ਡਾਟਾ ਗੋਪਨੀਯਤਾ
ਅਤੇ ਸੁਰੱਖਿਆ ’ਤੇ ਜ਼ੋਰ ਦਿੰਦੇ ਹਨ।

Ollama

Ollama ਇੱਕ ਸਵੈ-ਹੋਸਟਡ ਪਲੇਟਫਾਰਮ ਹੈ ਜੋ ਉਪਭੋਗਤਾਵਾਂ ਨੂੰ ਆਪਣੀਆਂ ਮਸ਼ੀਨਾਂ ’ਤੇ ਸਥਾਨਕ ਤੌਰ ’ਤੇ
ਵੱਖ-ਵੱਖ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ (LLMs) ਦਾ ਪ੍ਰਬੰਧਨ ਅਤੇ ਤੈਨਾਤੀ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਜੋ ਉਨ੍ਹਾਂ
ਨੂੰ ਬਾਹਰੀ ਕਲਾਉਡ ਸੇਵਾਵਾਂ ’ਤੇ ਨਿਰਭਰ ਕੀਤੇ ਬਿਨਾਂ ਆਪਣੇ AI ਮਾਡਲਾਂ ’ਤੇ ਪੂਰਾ ਨਿਯੰਤਰਣ ਦਿੰਦਾ ਹੈ। ਇਹ
ਸੈੱਟਅੱਪ ਉਨ੍ਹਾਂ ਲੋਕਾਂ ਲਈ ਆਦਰਸ਼ ਹੈ ਜੋ ਡਾਟਾ ਗੋਪਨੀਯਤਾ ਨੂੰ ਤਰਜੀਹ ਦਿੰਦੇ ਹਨ ਅਤੇ ਆਪਣੇ AI ਓਪਰੇਸ਼ਨਾਂ
ਨੂੰ ਇਨ-ਹਾਊਸ ਸੰਭਾਲਣਾ ਚਾਹੁੰਦੇ ਹਨ।

ਪਲੇਟਫਾਰਮ ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਮਾਡਲਾਂ ਦਾ ਸਮਰਥਨ ਕਰਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ Llama, Phi, Gemma, ਅਤੇ
Mistral ਦੇ ਵੱਖ-ਵੱਖ ਵਰਜਨ ਸ਼ਾਮਲ ਹਨ, ਜੋ ਆਕਾਰ ਅਤੇ ਕੰਪਿਊਟੇਸ਼ਨਲ ਲੋੜਾਂ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਹੁੰਦੇ ਹਨ।
Ollama ਇਹਨਾਂ ਮਾਡਲਾਂ ਨੂੰ ollama run <model_name> ਵਰਗੇ ਸਧਾਰਨ ਕਮਾਂਡਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ
ਕਮਾਂਡ ਲਾਈਨ ਤੋਂ ਸਿੱਧਾ ਡਾਊਨਲੋਡ ਅਤੇ ਚਲਾਉਣਾ ਆਸਾਨ ਬਣਾਉਂਦਾ ਹੈ, ਅਤੇ ਇਹ macOS, Linux, ਅਤੇ
Windows ਸਮੇਤ ਵੱਖ-ਵੱਖ ਓਪਰੇਟਿੰਗ ਸਿਸਟਮਾਂ ’ਤੇ ਕੰਮ ਕਰਨ ਲਈ ਤਿਆਰ ਕੀਤਾ ਗਿਆ ਹੈ।

ਡਿਵੈਲਪਰਾਂ ਲਈ ਜੋ ਰਿਮੋਟ API ਦੀ ਵਰਤੋਂ ਕੀਤੇ ਬਿਨਾਂ ਆਪਣੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਓਪਨ-ਸੋਰਸ ਮਾਡਲਾਂ ਨੂੰ
ਏਕੀਕ੍ਰਿਤ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਨ, Ollama ਕੰਟੇਨਰ ਪ੍ਰਬੰਧਨ ਟੂਲਾਂ ਵਾਂਗ ਮਾਡਲ ਲਾਈਫਸਾਈਕਲ ਦੇ ਪ੍ਰਬੰਧਨ
ਲਈ CLI ਪੇਸ਼ ਕਰਦਾ ਹੈ। ਇਹ ਕਸਟਮ ਕੌਨਫਿਗਰੇਸ਼ਨਾਂ ਅਤੇ ਪ੍ਰੌਂਪਟਸ ਦਾ ਵੀ ਸਮਰਥਨ ਕਰਦਾ ਹੈ, ਜੋ ਖਾਸ
ਲੋੜਾਂ ਜਾਂ ਵਰਤੋਂ ਦੇ ਕੇਸਾਂ ਲਈ ਮਾਡਲਾਂ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਉਣ ਲਈ ਉੱਚ ਪੱਧਰ ਦੀ ਕਸਟਮਾਈਜ਼ੇਸ਼ਨ ਦੀ ਆਗਿਆ
ਦਿੰਦਾ ਹੈ।

Ollama ਖਾਸ ਤੌਰ ’ਤੇ ਤਕਨੀਕੀ-ਜਾਣਕਾਰ ਯੂਜ਼ਰਾਂ ਅਤੇ ਡਿਵੈਲਪਰਾਂ ਲਈ ਢੁਕਵਾਂ ਹੈ ਕਿਉਂਕਿ ਇਸਦਾ ਕਮਾਂਡ-
ਲਾਈਨ ਇੰਟਰਫੇਸ ਅਤੇ AI ਮਾਡਲਾਂ ਦੇ ਪ੍ਰਬੰਧਨ ਅਤੇ ਡਿਪਲੌਇਮੈਂਟ ਵਿੱਚ ਲਚਕਤਾ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। ਇਹ
ਇਸਨੂੰ ਉਹਨਾਂ ਕਾਰੋਬਾਰਾਂ ਅਤੇ ਵਿਅਕਤੀਆਂ ਲਈਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਟੂਲ ਬਣਾਉਂਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਨੂੰ ਸੁਰੱਖਿਆ ਅਤੇ
ਨਿਯੰਤਰਣ ਨਾਲ ਸਮਝੌਤਾ ਕੀਤੇ ਬਿਨਾਂ ਮਜ਼ਬੂਤ AI ਸਮਰੱਥਾਵਾਂ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।

ਜਾਣ-ਪਛਾਣ 24

ਬਹੁ-ਮਾਡਲ ਪਲੇਟਫਾਰਮ

ਇਸ ਤੋਂ ਇਲਾਵਾ, ਕੁਝ ਪ੍ਰਦਾਤਾ ਹਨ ਜੋ ਵੱਖ-ਵੱਖ ਓਪਨ-ਸੋਰਸ ਮਾਡਲਾਂ ਦੀ ਹੋਸਟਿੰਗ ਕਰਦੇ ਹਨ, ਜਿਵੇਂ ਕਿ
Together.ai ਅਤੇ Groq।ਇਹ ਪਲੇਟਫਾਰਮ ਲਚਕਤਾ ਅਤੇ ਕਸਟਮਾਈਜ਼ੇਸ਼ਨ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ, ਜੋ ਤੁਹਾਨੂੰ
ਆਪਣੀਆਂ ਖਾਸ ਲੋੜਾਂ ਦੇ ਅਨੁਸਾਰ ਓਪਨ-ਸੋਰਸ ਮਾਡਲਾਂ ਨੂੰ ਚਲਾਉਣਅਤੇ, ਕੁਝ ਮਾਮਲਿਆਂ ਵਿੱਚ, ਫਾਈਨ-ਟਿਊਨ
ਵੀ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਲਈ, Together.ai ਓਪਨ-ਸੋਰਸ LLMs ਦੀ ਇੱਕ ਰੇਂਜ ਤੱਕ
ਪਹੁੰਚ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ, ਜੋ ਯੂਜ਼ਰਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਮਾਡਲਾਂ ਅਤੇ ਕੌਨਫਿਗਰੇਸ਼ਨਾਂ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਨ ਦੇ ਯੋਗ
ਬਣਾਉਂਦਾ ਹੈ। Groq ਅਲਟਰਾ ਹਾਈ-ਪਰਫਾਰਮੈਂਸ ਕੰਪਲੀਸ਼ਨ ਪ੍ਰਦਾਨ ਕਰਨ ’ਤੇ ਕੇਂਦਰਿਤ ਹੈ ਜੋ ਇਸ ਕਿਤਾਬ
ਦੇ ਲਿਖਣ ਦੇ ਸਮੇਂ ਲਗਭਗ ਜਾਦੂਈ ਲੱਗਦਾ ਹੈ

LLM ਪ੍ਰਦਾਤਾ ਦੀ ਚੋਣ ਕਰਨਾ

LLM ਪ੍ਰਦਾਤਾ ਦੀ ਚੋਣ ਕਰਦੇ ਸਮੇਂ, ਤੁਹਾਨੂੰ ਇਹਨਾਂ ਕਾਰਕਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ:

• ਕੀਮਤ: ਵੱਖ-ਵੱਖ ਪ੍ਰਦਾਤਾ ਵੱਖ-ਵੱਖ ਕੀਮਤ ਮਾਡਲ ਪੇਸ਼ ਕਰਦੇ ਹਨ, ਜੋ ਪੇ-ਪਰ-ਯੂਜ਼ ਤੋਂ ਲੈ ਕੇ
ਸਬਸਕ੍ਰਿਪਸ਼ਨ-ਆਧਾਰਿਤ ਯੋਜਨਾਵਾਂ ਤੱਕ ਹੁੰਦੇ ਹਨ। ਪ੍ਰਦਾਤਾ ਦੀ ਚੋਣ ਕਰਦੇ ਸਮੇਂ ਅਨੁਮਾਨਿਤ ਵਰਤੋਂ
ਅਤੇ ਬਜਟ ’ਤੇ ਵਿਚਾਰ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ।

• ਪ੍ਰਦਰਸ਼ਨ: LLMs ਦਾ ਪ੍ਰਦਰਸ਼ਨ ਪ੍ਰਦਾਤਾਵਾਂ ਵਿਚਕਾਰ ਕਾਫ਼ੀ ਵੱਖਰਾ ਹੋ ਸਕਦਾ ਹੈ, ਇਸ ਲਈ
ਫੈਸਲਾ ਲੈਣ ਤੋਂ ਪਹਿਲਾਂ ਖਾਸ ਵਰਤੋਂ ਦੇ ਕੇਸਾਂ ’ਤੇ ਮਾਡਲਾਂ ਦਾ ਬੈਂਚਮਾਰਕ ਅਤੇ ਟੈਸਟ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ
ਹੈ।

• ਸਮੱਗਰੀ ਫਿਲਟਰਿੰਗ: ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਆਧਾਰ ’ਤੇ, ਸਮੱਗਰੀ ਫਿਲਟਰਿੰਗ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਵਿਚਾਰ
ਹੋ ਸਕਦਾ ਹੈ। ਕੁਝ ਪ੍ਰਦਾਤਾ ਦੂਜਿਆਂ ਨਾਲੋਂ ਵਧੇਰੇ ਮਜ਼ਬੂਤ ਸਮੱਗਰੀ ਫਿਲਟਰਿੰਗ ਵਿਕਲਪ ਪੇਸ਼ ਕਰਦੇ ਹਨ।

• ਡਾਟਾ ਗੋਪਨੀਯਤਾ: ਜੇਕਰ ਐਪਲੀਕੇਸ਼ਨ ਸੰਵੇਦਨਸ਼ੀਲ ਯੂਜ਼ਰ ਡਾਟਾ ਨੂੰ ਸੰਭਾਲਦੀ ਹੈ, ਤਾਂ ਮਜ਼ਬੂਤ ਡਾਟਾ
ਗੋਪਨੀਯਤਾ ਅਤੇ ਸੁਰੱਖਿਆ ਅਭਿਆਸਾਂ ਵਾਲੇ ਪ੍ਰਦਾਤਾ ਦੀ ਚੋਣ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ।

• ਅਨੁਕੂਲਤਾ: ਕੁਝ ਪ੍ਰਦਾਤਾ ਖਾਸ ਵਰਤੋਂ ਦੇ ਕੇਸਾਂ ਲਈ ਮਾਡਲਾਂ ਨੂੰ ਫਾਈਨ-ਟਿਊਨ ਅਤੇ ਅਨੁਕੂਲ ਬਣਾਉਣ
ਦੇ ਮਾਮਲੇ ਵਿੱਚ ਵਧੇਰੇ ਲਚਕਤਾ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ।

ਅੰਤ ਵਿੱਚ, ਐੱਲਐੱਲਐੱਮ ਪ੍ਰਦਾਤਾ ਦੀ ਚੋਣ ਐਪਲੀਕੇਸ਼ਨ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ ਲੋੜਾਂ ਅਤੇ ਸੀਮਾਵਾਂ ’ਤੇ ਨਿਰਭਰ ਕਰਦੀ
ਹੈ। ਵਿਕਲਪਾਂ ਦਾ ਧਿਆਨ ਨਾਲ ਮੁਲਾਂਕਣ ਕਰਕੇ ਅਤੇ ਕੀਮਤ, ਪ੍ਰਦਰਸ਼ਨ, ਅਤੇ ਡੇਟਾ ਗੋਪਨੀਯਤਾ ਵਰਗੇ ਕਾਰਕਾਂ

ਜਾਣ-ਪਛਾਣ 25

’ਤੇ ਵਿਚਾਰ ਕਰਕੇ, ਤੁਸੀਂ ਉਹ ਪ੍ਰਦਾਤਾ ਚੁਣ ਸਕਦੇ ਹੋ ਜੋ ਤੁਹਾਡੀਆਂ ਲੋੜਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵਧੀਆ ਢੰਗ ਨਾਲ ਪੂਰਾ
ਕਰਦਾ ਹੈ।

ਇਹ ਨੋਟ ਕਰਨਾ ਵੀ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਐੱਲਐੱਲਐੱਮ ਦਾ ਖੇਤਰ ਲਗਾਤਾਰ ਵਿਕਸਿਤ ਹੋ ਰਿਹਾ ਹੈ, ਜਿੱਥੇ ਨਵੇਂ
ਪ੍ਰਦਾਤਾ ਅਤੇ ਮਾਡਲ ਨਿਯਮਿਤ ਤੌਰ ’ਤੇ ਸਾਹਮਣੇ ਆ ਰਹੇ ਹਨ। ਤੁਹਾਨੂੰ ਨਵੀਨਤਮ ਵਿਕਾਸ ਤੋਂ ਜਾਣੂ ਰਹਿਣਾ
ਚਾਹੀਦਾ ਹੈ ਅਤੇ ਨਵੇਂ ਵਿਕਲਪਾਂ ਦੀ ਪੜਚੋਲ ਕਰਨ ਲਈ ਖੁੱਲ੍ਹੇ ਰਹਿਣਾ ਚਾਹੀਦਾ ਹੈ ਜਦੋਂ ਉਹ ਉਪਲਬਧ ਹੋਣ।

OpenRouter

ਇਸਕਿਤਾਬ ਵਿੱਚ ਮੈਂ ਪੂਰੀ ਤਰ੍ਹਾਂ OpenRouter ’ਤੇਆਪਣੇ ਪਸੰਦੀਦਾ API ਪ੍ਰਦਾਤਾ ਵਜੋਂ ਨਿਰਭਰ ਕਰਾਂਗਾ।
ਕਾਰਨ ਸਧਾਰਨ ਹੈ: ਇਹ ਸਾਰੇ ਸਭ ਤੋਂ ਪ੍ਰਸਿੱਧ ਵਪਾਰਕ ਅਤੇ ਓਪਨ-ਸੋਰਸ ਮਾਡਲਾਂ ਲਈ ਇੱਕ ਵਨ-ਸਟਾਪ ਸ਼ਾਪ
ਹੈ। ਜੇਕਰ ਤੁਸੀਂ ਕੁਝ AI ਕੋਡਿੰਗ ਨਾਲ ਆਪਣੇ ਹੱਥ ਗੰਦੇ ਕਰਨ ਲਈ ਉਤਸੁਕ ਹੋ, ਤਾਂ ਸ਼ੁਰੂ ਕਰਨ ਲਈ ਸਭ ਤੋਂ
ਵਧੀਆ ਥਾਵਾਂ ਵਿੱਚੋਂ ਇੱਕ ਮੇਰੀ OpenRouter Ruby Library ਹੈ।

ਪ੍ਰਦਰਸ਼ਨ ਬਾਰੇ ਸੋਚਣਾ

ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਦੇ ਸਮੇਂ, ਪ੍ਰਦਰਸ਼ਨ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਵਿਚਾਰ ਹੈ। ਭਾਸ਼ਾ
ਮਾਡਲ ਦੇ ਪ੍ਰਦਰਸ਼ਨ ਨੂੰ ਇਸਦੀ ਦੇਰੀ (ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਵਿੱਚ ਲੱਗਣ ਵਾਲਾ ਸਮਾਂ) ਅਤੇ ਥਰੂਪੁੱਟ (ਪ੍ਰਤੀ
ਸਮਾਂ ਇਕਾਈ ਵਿੱਚ ਸੰਭਾਲੇ ਜਾ ਸਕਣ ਵਾਲੀਆਂ ਬੇਨਤੀਆਂ ਦੀ ਸੰਖਿਆ) ਦੇ ਰੂਪ ਵਿੱਚ ਮਾਪਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਪਹਿਲੇ ਟੋਕਨ ਤੱਕ ਦਾ ਸਮਾਂ (TTFT) ਇੱਕ ਹੋਰ ਜ਼ਰੂਰੀ ਪ੍ਰਦਰਸ਼ਨ ਮੈਟ੍ਰਿਕ ਹੈ, ਜੋ ਖਾਸ ਤੌਰ ’ਤੇ ਚੈਟਬੋਟਾਂ ਅਤੇ
ਇੰਟਰਐਕਟਿਵ, ਰੀਅਲ-ਟਾਈਮ ਜਵਾਬਾਂ ਦੀ ਲੋੜ ਵਾਲੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਲਈ ਢੁਕਵਾਂ ਹੈ। TTFT ਉਪਭੋਗਤਾ
ਦੀ ਬੇਨਤੀ ਪ੍ਰਾਪਤ ਹੋਣ ਦੇ ਪਲ ਤੋਂ ਜਵਾਬ ਦੇ ਪਹਿਲੇ ਸ਼ਬਦ (ਜਾਂ ਟੋਕਨ) ਦੇ ਤਿਆਰ ਹੋਣ ਤੱਕ ਦੀ ਦੇਰੀ ਨੂੰ ਮਾਪਦਾ
ਹੈ। ਇਹ ਮੈਟ੍ਰਿਕ ਇੱਕ ਨਿਰਵਿਘਨ ਅਤੇ ਆਕਰਸ਼ਕ ਉਪਭੋਗਤਾ ਅਨੁਭਵ ਨੂੰ ਬਣਾਈ ਰੱਖਣ ਲਈ ਮਹੱਤਵਪੂਰਨ
ਹੈ, ਕਿਉਂਕਿ ਦੇਰੀ ਵਾਲੇ ਜਵਾਬ ਉਪਭੋਗਤਾ ਦੀ ਨਿਰਾਸ਼ਾ ਅਤੇ ਅਸੰਲਗਨਤਾ ਦਾ ਕਾਰਨ ਬਣ ਸਕਦੇ ਹਨ।

ਇਹ ਪ੍ਰਦਰਸ਼ਨ ਮੈਟ੍ਰਿਕਸ ਉਪਭੋਗਤਾ ਅਨੁਭਵ ਅਤੇ ਐਪਲੀਕੇਸ਼ਨ ਦੀ ਸਕੇਲੇਬਿਲਟੀ ’ਤੇ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਭਾਵ
ਪਾ ਸਕਦੇ ਹਨ।

ਕਈ ਕਾਰਕ ਹਨ ਜੋ ਭਾਸ਼ਾ ਮਾਡਲ ਦੇ ਪ੍ਰਦਰਸ਼ਨ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰ ਸਕਦੇ ਹਨ, ਜਿਸ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ:

https://openrouter.ai
https://github.com/OlympiaAI/open_router

ਜਾਣ-ਪਛਾਣ 26

ਪੈਰਾਮੀਟਰ ਗਿਣਤੀ: ਵੱਧ ਪੈਰਾਮੀਟਰਾਂ ਵਾਲੇ ਵੱਡੇ ਮਾਡਲਾਂ ਨੂੰ ਆਮ ਤੌਰ ’ਤੇ ਵੱਧ ਕੰਪਿਊਟੇਸ਼ਨਲ ਸਰੋਤਾਂ ਦੀ ਲੋੜ
ਹੁੰਦੀ ਹੈ ਅਤੇ ਛੋਟੇ ਮਾਡਲਾਂ ਦੇ ਮੁਕਾਬਲੇ ਵੱਧ ਦੇਰੀ ਅਤੇ ਘੱਟ ਥਰੂਪੁੱਟ ਹੋ ਸਕਦੀ ਹੈ।

ਹਾਰਡਵੇਅਰ: ਭਾਸ਼ਾ ਮਾਡਲ ਦਾ ਪ੍ਰਦਰਸ਼ਨ ਇਸ ਨੂੰ ਚਲਾਉਣ ਵਾਲੇ ਹਾਰਡਵੇਅਰ ਦੇ ਆਧਾਰ ’ਤੇ ਕਾਫ਼ੀ ਵੱਖਰਾ ਹੋ
ਸਕਦਾ ਹੈ। ਕਲਾਉਡ ਪ੍ਰਦਾਤਾ ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਵਰਕਲੋਡ ਲਈ ਅਨੁਕੂਲਿਤ GPU ਅਤੇ TPU ਇੰਸਟੈਂਸ ਪੇਸ਼
ਕਰਦੇ ਹਨ, ਜੋ ਮਾਡਲ ਇਨਫਰੈਂਸ ਨੂੰ ਕਾਫ਼ੀ ਤੇਜ਼ ਕਰ ਸਕਦੇ ਹਨ।

OpenRouter ਦੀਆਂ ਵਧੀਆਗੱਲਾਂ ਵਿੱਚੋਂ ਇੱਕ ਇਹ ਹੈ ਕਿ ਇਸ ਦੁਆਰਾ ਪੇਸ਼ ਕੀਤੇ ਜਾਣ ਵਾਲੇ
ਬਹੁਤ ਸਾਰੇ ਮਾਡਲਾਂ ਲਈ, ਤੁਹਾਨੂੰ ਵੱਖ-ਵੱਖ ਪ੍ਰਦਰਸ਼ਨ ਪ੍ਰੋਫਾਈਲ ਅਤੇ ਕੀਮਤਾਂ ਵਾਲੇ ਕਲਾਉਡ
ਪ੍ਰਦਾਤਾਵਾਂ ਦੀ ਚੋਣ ਮਿਲਦੀ ਹੈ।

ਕੁਆਂਟੀਕਰਨ: ਕੁਆਂਟੀਕਰਨ ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ ਘੱਟ-ਸ਼ੁੱਧਤਾ ਵਾਲੇ ਡੇਟਾ ਪ੍ਰਕਾਰਾਂ ਨਾਲ ਭਾਰ ਅਤੇ ਸਰਗਰਮੀਆਂ
ਨੂੰ ਦਰਸਾ ਕੇ ਮਾਡਲ ਦੀ ਮੈਮੋਰੀ ਫੁੱਟਪ੍ਰਿੰਟ ਅਤੇ ਕੰਪਿਊਟੇਸ਼ਨਲ ਲੋੜਾਂ ਨੂੰ ਘਟਾਉਣ ਲਈ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਇਹ
ਗੁਣਵੱਤਾ ਨੂੰ ਮਹੱਤਵਪੂਰਨ ਤੌਰ ’ਤੇ ਘਟਾਏ ਬਿਨਾਂ ਪ੍ਰਦਰਸ਼ਨ ਨੂੰ ਬਿਹਤਰ ਬਣਾ ਸਕਦਾ ਹੈ। ਇੱਕ ਐਪਲੀਕੇਸ਼ਨ
ਡਿਵੈਲਪਰ ਵਜੋਂ, ਤੁਸੀਂ ਸ਼ਾਇਦ ਵੱਖ-ਵੱਖ ਕੁਆਂਟੀਕਰਨ ਪੱਧਰਾਂ ’ਤੇ ਆਪਣੇ ਖੁਦ ਦੇ ਮਾਡਲਾਂ ਦੀ ਸਿਖਲਾਈ ਵਿੱਚ
ਸ਼ਾਮਲ ਨਹੀਂ ਹੋਵੋਗੇ, ਪਰ ਸ਼ਬਦਾਵਲੀ ਨਾਲ ਜਾਣੂ ਹੋਣਾ ਚੰਗਾ ਹੈ।

ਬੈਚਿੰਗ: ਬੈਚਾਂ ਵਿੱਚ ਇੱਕੋ ਸਮੇਂ ਕਈ ਬੇਨਤੀਆਂ ਦੀ ਪ੍ਰਕਿਰਿਆ ਕਰਨ ਨਾਲ ਮਾਡਲ ਲੋਡਿੰਗ ਅਤੇ ਡੇਟਾ ਟ੍ਰਾਂਸਫਰ
ਦੇ ਓਵਰਹੈੱਡ ਨੂੰ ਘਟਾ ਕੇ ਥਰੂਪੁੱਟ ਨੂੰ ਬਿਹਤਰ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਕੈਸ਼ਿੰਗ: ਅਕਸਰ ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਪ੍ਰੌਂਪਟਸ ਜਾਂ ਇਨਪੁੱਟ ਸੀਕੁਐਂਸਾਂ ਦੇ ਨਤੀਜਿਆਂ ਦੀ ਕੈਸ਼ਿੰਗ ਅਨੁਮਾਨ
ਬੇਨਤੀਆਂ ਦੀ ਗਿਣਤੀ ਨੂੰ ਘਟਾ ਸਕਦੀ ਹੈ ਅਤੇ ਸਮੁੱਚੇ ਪ੍ਰਦਰਸ਼ਨ ਨੂੰ ਬਿਹਤਰ ਬਣਾ ਸਕਦੀ ਹੈ।

ਪ੍ਰੋਡਕਸ਼ਨ ਐਪਲੀਕੇਸ਼ਨ ਲਈ ਭਾਸ਼ਾ ਮਾਡਲ ਦੀ ਚੋਣ ਕਰਦੇ ਸਮੇਂ, ਪ੍ਰਤੀਨਿਧੀ ਵਰਕਲੋਡ ਅਤੇ ਹਾਰਡਵੇਅਰ
ਕੌਨਫਿਗਰੇਸ਼ਨਾਂ ’ਤੇ ਇਸਦੇ ਪ੍ਰਦਰਸ਼ਨ ਦਾ ਬੈਂਚਮਾਰਕ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਇਹ ਸੰਭਾਵੀ ਬੋਤਲਨੈੱਕਾਂ ਦੀ
ਪਛਾਣ ਕਰਨ ਅਤੇ ਇਹ ਯਕੀਨੀ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ ਕਿ ਮਾਡਲ ਲੋੜੀਂਦੇ ਪ੍ਰਦਰਸ਼ਨ ਟੀਚਿਆਂ ਨੂੰ
ਪੂਰਾ ਕਰ ਸਕਦਾ ਹੈ।

ਮਾਡਲ ਪ੍ਰਦਰਸ਼ਨ ਅਤੇ ਹੋਰ ਕਾਰਕਾਂ ਜਿਵੇਂ ਕਿ ਕੀਮਤ, ਲਚਕਤਾ, ਅਤੇ ਏਕੀਕਰਨ ਦੀ ਸੌਖ ਵਿਚਕਾਰ ਟ੍ਰੇਡ-ਔਫ
’ਤੇ ਵਿਚਾਰ ਕਰਨਾ ਵੀ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਉਦਾਹਰਨ ਲਈ, ਘੱਟ ਦੇਰੀ ਵਾਲੇ ਛੋਟੇ, ਘੱਟ ਖਰਚੇ ਵਾਲੇ ਮਾਡਲ ਦੀ
ਵਰਤੋਂ ਉਨ੍ਹਾਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਲਈ ਬਿਹਤਰ ਹੋ ਸਕਦੀ ਹੈ ਜਿਨ੍ਹਾਂ ਨੂੰ ਰੀਅਲ-ਟਾਈਮ ਜਵਾਬਾਂ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਜਦੋਂ
ਕਿ ਵੱਡਾ, ਵਧੇਰੇ ਸ਼ਕਤੀਸ਼ਾਲੀ ਮਾਡਲ ਬੈਚ ਪ੍ਰੋਸੈਸਿੰਗ ਜਾਂ ਗੁੰਝਲਦਾਰ ਤਰਕ ਕਾਰਜਾਂ ਲਈ ਵਧੇਰੇ ਢੁਕਵਾਂ ਹੋ ਸਕਦਾ
ਹੈ।

ਜਾਣ-ਪਛਾਣ 27

ਵੱਖ-ਵੱਖ ਐੱਲਐੱਲਐੱਮ ਮਾਡਲਾਂ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਨਾ

ਐੱਲਐੱਲਐੱਮ ਦੀ ਚੋਣ ਕਰਨਾ ਸ਼ਾਇਦ ਹੀ ਕਦੇ ਇੱਕ ਸਥਾਈ ਫੈਸਲਾ ਹੁੰਦਾ ਹੈ। ਜਿਵੇਂ ਕਿ ਨਵੇਂ ਅਤੇ ਬਿਹਤਰ ਮਾਡਲ
ਨਿਯਮਿਤ ਤੌਰ ’ਤੇ ਜਾਰੀ ਕੀਤੇ ਜਾਂਦੇ ਹਨ, ਇੱਕ ਮੋਡੂਲਰ ਤਰੀਕੇ ਨਾਲ ਐਪਲੀਕੇਸ਼ਨਾਂ ਬਣਾਉਣਾ ਚੰਗਾ ਹੈ ਜੋ ਸਮੇਂ ਦੇ
ਨਾਲ ਵੱਖ-ਵੱਖ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਨੂੰ ਸਵੈਪ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ। ਪ੍ਰੌਂਪਟਸ ਅਤੇ ਡੇਟਾਸੈੱਟ ਅਕਸਰ ਮਾਮੂਲੀ
ਤਬਦੀਲੀਆਂ ਨਾਲ ਮਾਡਲਾਂ ਵਿੱਚ ਮੁੜ ਵਰਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਇਹ ਤੁਹਾਨੂੰ ਆਪਣੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਨੂੰ ਪੂਰੀ
ਤਰ੍ਹਾਂ ਮੁੜ ਡਿਜ਼ਾਈਨ ਕੀਤੇ ਬਿਨਾਂ ਭਾਸ਼ਾ ਮਾਡਲਿੰਗ ਵਿੱਚ ਨਵੀਨਤਮ ਤਰੱਕੀ ਦਾ ਫਾਇਦਾ ਲੈਣ ਦੀ ਆਗਿਆ
ਦਿੰਦਾ ਹੈ।

ਵੱਖ-ਵੱਖ ਮਾਡਲ ਚੋਣਾਂ ਵਿਚਕਾਰ ਆਸਾਨੀ ਨਾਲ ਸਵੈਪ ਕਰਨ ਦੀ ਯੋਗਤਾ ਇੱਕ ਹੋਰ ਕਾਰਨ ਹੈ ਕਿ
ਮੈਂ OpenRouter ਨੂੰ ਪਸੰਦ ਕਰਦਾ/ਕਰਦੀ ਹਾਂ।

ਨਵੇਂ ਭਾਸ਼ਾ ਮਾਡਲ ’ਤੇ ਅੱਪਗ੍ਰੇਡ ਕਰਦੇ ਸਮੇਂ, ਇਹ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ ਇਸਦੇ ਪ੍ਰਦਰਸ਼ਨ ਅਤੇ ਆਉਟਪੁੱਟ
ਗੁਣਵੱਤਾ ਦੀ ਪੂਰੀ ਤਰ੍ਹਾਂ ਜਾਂਚ ਅਤੇ ਪ੍ਰਮਾਣਿਕਤਾ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਇਹ ਐਪਲੀਕੇਸ਼ਨ ਦੀਆਂ ਲੋੜਾਂ ਨੂੰ
ਪੂਰਾ ਕਰਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਡੋਮੇਨ-ਵਿਸ਼ੇਸ਼ ਡੇਟਾ ’ਤੇ ਮਾਡਲ ਨੂੰ ਮੁੜ ਸਿਖਲਾਈ ਜਾਂ ਫਾਈਨ-ਟਿਊਨਿੰਗ ਕਰਨਾ, ਅਤੇ
ਨਾਲ ਹੀ ਕਿਸੇ ਵੀ ਡਾਊਨਸਟ੍ਰੀਮ ਕੰਪੋਨੈਂਟਸ ਨੂੰ ਅੱਪਡੇਟ ਕਰਨਾ ਸ਼ਾਮਲ ਹੋ ਸਕਦਾ ਹੈ ਜੋ ਮਾਡਲ ਦੇ ਆਉਟਪੁੱਟ ’ਤੇ
ਨਿਰਭਰ ਕਰਦੇ ਹਨ।

ਪ੍ਰਦਰਸ਼ਨ ਅਤੇ ਮੋਡੂਲੈਰਿਟੀ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹੋਏ ਐਪਲੀਕੇਸ਼ਨਾਂ ਨੂੰ ਡਿਜ਼ਾਈਨ ਕਰਕੇ, ਤੁਸੀਂ ਸਕੇਲੇਬਲ,
ਕੁਸ਼ਲ, ਅਤੇ ਭਵਿੱਖ-ਪਰੂਫ ਸਿਸਟਮ ਬਣਾ ਸਕਦੇ ਹੋ ਜੋ ਭਾਸ਼ਾ ਮਾਡਲਿੰਗ ਤਕਨਾਲੋਜੀ ਦੇ ਤੇਜ਼ੀ ਨਾਲ ਵਿਕਸਤ ਹੋ ਰਹੇ
ਖੇਤਰ ਨਾਲ ਅਨੁਕੂਲ ਹੋ ਸਕਦੇ ਹਨ।

ਮਿਸ਼ਰਿਤ ਏ.ਆਈ. ਸਿਸਟਮ

ਆਪਣੀ ਜਾਣ-ਪਛਾਣ ਨੂੰ ਖਤਮ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ, ਇਹ ਦੱਸਣਾ ਜ਼ਰੂਰੀ ਹੈ ਕਿ 2023 ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ChatGPT
ਦੁਆਰਾ ਜਨਰੇਟਿਵ ਏ.ਆਈ. ਵਿੱਚ ਦਿਲਚਸਪੀ ਦੇ ਵਿਸਫੋਟ ਤੋਂ ਪਹਿਲਾਂ, ਰਵਾਇਤੀ ਏ.ਆਈ. ਪਹੁੰਚਾਂ ਆਮ ਤੌਰ
’ਤੇ ਇਕੱਲੇ, ਬੰਦ ਮਾਡਲਾਂ ਦੇ ਏਕੀਕਰਨ ’ਤੇ ਨਿਰਭਰ ਕਰਦੀਆਂ ਸਨ। ਇਸਦੇ ਉਲਟ, ਮਿਸ਼ਰਿਤ ਏ.ਆਈ. ਸਿਸਟਮ
ਬੁੱਧੀਮਾਨ ਵਿਵਹਾਰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਇੱਕ ਦੂਜੇ ਨਾਲ ਕੰਮ ਕਰਨ ਵਾਲੇ ਆਪਸ ਵਿੱਚ ਜੁੜੇ ਹਿੱਸਿਆਂ ਦੀਆਂ
ਗੁੰਝਲਦਾਰ ਪਾਈਪਲਾਈਨਾਂ ਦਾ ਲਾਭ ਲੈਂਦੇ ਹਨ।

ਜਾਣ-ਪਛਾਣ 28

ਆਪਣੇ ਮੂਲ ਵਿੱਚ, ਮਿਸ਼ਰਿਤ ਏ.ਆਈ. ਸਿਸਟਮ ਕਈ ਮੋਡੀਊਲਾਂ ਤੋਂ ਬਣੇ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚੋਂ ਹਰੇਕ
ਖਾਸ ਕੰਮ ਜਾਂ ਕਾਰਜ ਕਰਨ ਲਈ ਤਿਆਰ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਹਨਾਂ ਮੋਡੀਊਲਾਂ ਵਿੱਚ ਜਨਰੇਟਰ, ਰਿਟਰੀਵਰ,
ਰੈਂਕਰ, ਕਲਾਸੀਫਾਇਰ, ਅਤੇ ਹੋਰ ਵੱਖ-ਵੱਖ ਵਿਸ਼ੇਸ਼ ਘਟਕ ਸ਼ਾਮਲ ਹੋ ਸਕਦੇ ਹਨ। ਸਮੁੱਚੇ ਸਿਸਟਮ ਨੂੰ ਛੋਟੀਆਂ,
ਕੇਂਦਰਿਤ ਇਕਾਈਆਂ ਵਿੱਚ ਵੰਡ ਕੇ, ਡਿਵੈਲਪਰ ਵਧੇਰੇ ਲਚਕਦਾਰ, ਸਕੇਲੇਬਲ, ਅਤੇ ਰੱਖ-ਰਖਾਅ ਯੋਗ ਏ.ਆਈ.
ਆਰਕੀਟੈਕਚਰ ਬਣਾ ਸਕਦੇ ਹਨ।

ਮਿਸ਼ਰਿਤ ਏ.ਆਈ. ਸਿਸਟਮਾਂ ਦਾ ਇੱਕ ਮੁੱਖ ਫਾਇਦਾ ਵੱਖ-ਵੱਖ ਏ.ਆਈ. ਤਕਨੀਕਾਂ ਅਤੇ ਮਾਡਲਾਂ ਦੀਆਂ ਤਾਕਤਾਂ
ਨੂੰ ਜੋੜਨ ਦੀ ਉਨ੍ਹਾਂ ਦੀ ਯੋਗਤਾ ਹੈ। ਉਦਾਹਰਨ ਲਈ, ਇੱਕ ਸਿਸਟਮ ਕੁਦਰਤੀ ਭਾਸ਼ਾ ਦੀ ਸਮਝ ਅਤੇ ਉਤਪਾਦਨ
ਲਈ ਇੱਕ ਵੱਡਾ ਭਾਸ਼ਾ ਮਾਡਲ (LLM) ਵਰਤ ਸਕਦਾ ਹੈ, ਜਦੋਂ ਕਿ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤੀ ਜਾਂ ਨਿਯਮ-ਆਧਾਰਿਤ
ਫੈਸਲਾ ਲੈਣ ਲਈਇੱਕ ਵੱਖਰਾ ਮਾਡਲ ਵਰਤਦਾ ਹੈ। ਇਹ ਮੋਡੀਊਲਰ ਪਹੁੰਚ ਤੁਹਾਨੂੰ ਇੱਕ-ਆਕਾਰ-ਸਭ-ਲਈ-ਫਿੱਟ
ਹੱਲ ’ਤੇ ਨਿਰਭਰ ਕਰਨ ਦੀ ਬਜਾਏ ਹਰ ਖਾਸ ਕੰਮ ਲਈ ਸਭ ਤੋਂ ਵਧੀਆ ਟੂਲ ਅਤੇ ਤਕਨੀਕਾਂ ਦੀ ਚੋਣ ਕਰਨ ਦੀ
ਆਗਿਆ ਦਿੰਦੀ ਹੈ।

ਹਾਲਾਂਕਿ, ਮਿਸ਼ਰਿਤ ਏ.ਆਈ. ਸਿਸਟਮ ਬਣਾਉਣਾ ਵੀ ਵਿਲੱਖਣ ਚੁਣੌਤੀਆਂ ਪੇਸ਼ ਕਰਦਾ ਹੈ। ਖਾਸ ਤੌਰ ’ਤੇ, ਸਿਸਟਮ
ਦੇ ਵਿਵਹਾਰ ਦੀ ਸਮੁੱਚੀ ਸੰਗਤਤਾ ਅਤੇ ਇਕਸਾਰਤਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ ਮਜ਼ਬੂਤ ਟੈਸਟਿੰਗ, ਨਿਗਰਾਨੀ,
ਅਤੇ ਪ੍ਰਸ਼ਾਸਨ ਵਿਧੀਆਂ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।

GPT-4 ਵਰਗੇ ਸ਼ਕਤੀਸ਼ਾਲੀ LLMs ਦੇ ਆਉਣ ਨਾਲ ਸਾਨੂੰ ਪਹਿਲਾਂ ਨਾਲੋਂ ਕਿਤੇ ਵੱਧ ਆਸਾਨੀ
ਨਾਲ ਮਿਸ਼ਰਿਤ ਏ.ਆਈ. ਸਿਸਟਮਾਂ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਨ ਦੀ ਆਗਿਆ ਮਿਲਦੀ ਹੈ, ਕਿਉਂਕਿ
ਇਹ ਉੱਨਤ ਮਾਡਲ ਆਪਣੀਆਂ ਕੁਦਰਤੀ ਭਾਸ਼ਾ ਸਮਝ ਸਮਰੱਥਾਵਾਂ ਦੇ ਨਾਲ-ਨਾਲ ਇੱਕ ਮਿਸ਼ਰਿਤ
ਸਿਸਟਮ ਦੇ ਅੰਦਰ ਕਈ ਭੂਮਿਕਾਵਾਂ ਨੂੰ ਸੰਭਾਲਣ ਦੇ ਯੋਗ ਹਨ, ਜਿਵੇਂ ਕਿ ਵਰਗੀਕਰਨ, ਰੈਂਕਿੰਗ, ਅਤੇ
ਉਤਪਾਦਨ। ਇਹ ਬਹੁਮੁਖਤਾ ਡਿਵੈਲਪਰਾਂ ਨੂੰ ਮਿਸ਼ਰਿਤ ਏ.ਆਈ. ਆਰਕੀਟੈਕਚਰ ’ਤੇ ਤੇਜ਼ੀ ਨਾਲ
ਪ੍ਰੋਟੋਟਾਈਪ ਅਤੇ ਇਟਰੇਟ ਕਰਨ ਦੇ ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ, ਜੋ ਬੁੱਧੀਮਾਨ ਐਪਲੀਕੇਸ਼ਨ ਵਿਕਾਸ ਲਈ
ਨਵੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਖੋਲ੍ਹਦੀ ਹੈ।

ਮਿਸ਼ਰਿਤ ਏ.ਆਈ. ਸਿਸਟਮਾਂ ਲਈ ਡਿਪਲਾਏਮੈਂਟ ਪੈਟਰਨ

ਮਿਸ਼ਰਿਤ ਏ.ਆਈ. ਸਿਸਟਮਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਪੈਟਰਨਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਡਿਪਲੌਏ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ
ਵਿੱਚੋਂ ਹਰੇਕ ਖਾਸ ਲੋੜਾਂ ਅਤੇ ਵਰਤੋਂ ਦੇ ਕੇਸਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਤਿਆਰ ਕੀਤਾ ਗਿਆ ਹੈ। ਆਓ ਚਾਰ ਆਮ
ਡਿਪਲਾਏਮੈਂਟ ਪੈਟਰਨਾਂ ਦੀ ਪੜਚੋਲ ਕਰੀਏ: ਸਵਾਲ ਅਤੇ ਜਵਾਬ, ਬਹੁ-ਏਜੰਟ/ਏਜੰਟਿਕ ਸਮੱਸਿਆ ਹੱਲ ਕਰਤਾ,
ਸੰਵਾਦੀ ਏ.ਆਈ., ਅਤੇ ਸਹਿ-ਪਾਇਲਟ।

ਜਾਣ-ਪਛਾਣ 29

ਸਵਾਲ ਅਤੇ ਜਵਾਬ

ਸਵਾਲ ਅਤੇ ਜਵਾਬ (Q&A) ਸਿਸਟਮ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤੀ ’ਤੇ ਕੇਂਦਰਿਤ ਹੁੰਦੇ ਹਨ ਜੋ ਏ.ਆਈ. ਮਾਡਲਾਂ ਦੀਆਂ
ਸਮਝ ਸਮਰੱਥਾਵਾਂ ਨਾਲ ਵਧਾਏ ਗਏ ਹਨ ਤਾਂ ਜੋ ਇਹ ਸਿਰਫ਼ ਇੱਕ ਖੋਜ ਇੰਜਣ ਤੋਂ ਵੱਧ ਕੇ ਕੰਮ ਕਰ ਸਕਣ। ਪੁਨਰ-
ਪ੍ਰਾਪਤੀ-ਵਧਿਤ ਉਤਪਾਦਨ (RAG) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਸ਼ਕਤੀਸ਼ਾਲੀ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਨੂੰ ਬਾਹਰੀ ਗਿਆਨ ਸਰੋਤਾਂ
ਨਾਲ ਜੋੜ ਕੇ, ਸਵਾਲ ਅਤੇ ਜਵਾਬ ਸਿਸਟਮ ਕਲਪਨਾਵਾਂ ਤੋਂ ਬਚਦੇ ਹਨ ਅਤੇ ਉਪਭੋਗਤਾ ਦੇ ਸਵਾਲਾਂ ਦੇ ਸਹੀ ਅਤੇ
ਪ੍ਰਸੰਗਿਕ ਜਵਾਬ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ।

LLM-ਅਧਾਰਿਤ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ ਪ੍ਰਣਾਲੀ ਦੇ ਮੁੱਖ ਹਿੱਸੇ ਹਨ:

• ਪੁੱਛਗਿੱਛ ਸਮਝਣਾ ਅਤੇ ਮੁੜ-ਨਿਰਮਾਣ: ਵਰਤੋਂਕਾਰ ਦੀਆਂ ਪੁੱਛਗਿੱਛਾਂ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨਾ ਅਤੇ ਉਨ੍ਹਾਂ
ਨੂੰ ਅੰਦਰੂਨੀ ਗਿਆਨ ਸਰੋਤਾਂ ਨਾਲ ਬਿਹਤਰ ਮੇਲ ਲਈ ਮੁੜ-ਨਿਰਮਾਣ ਕਰਨਾ।

• ਗਿਆਨ ਪ੍ਰਾਪਤੀ: ਮੁੜ-ਨਿਰਮਿਤ ਪੁੱਛਗਿੱਛ ਦੇ ਆਧਾਰ ’ਤੇ ਢਾਂਚਾਗਤ ਜਾਂ ਗੈਰ-ਢਾਂਚਾਗਤ ਡਾਟਾ ਸਰੋਤਾਂ
ਤੋਂ ਢੁਕਵੀਂ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰਨਾ।

• ਜਵਾਬ ਤਿਆਰ ਕਰਨਾ: ਪ੍ਰਾਪਤ ਕੀਤੇ ਗਿਆਨ ਨੂੰ ਭਾਸ਼ਾ ਮਾਡਲ ਦੀਆਂ ਉਤਪਾਦਕ ਸਮਰੱਥਾਵਾਂ ਨਾਲ
ਜੋੜ ਕੇ ਸੁਸੰਗਤ ਅਤੇ ਜਾਣਕਾਰੀ ਭਰਪੂਰ ਜਵਾਬ ਤਿਆਰ ਕਰਨਾ।

RAG ਉਪ-ਪ੍ਰਣਾਲੀਆਂ ਖਾਸ ਤੌਰ ’ਤੇ ਉਨ੍ਹਾਂ ਪ੍ਰਸ਼ਨ-ਉੱਤਰ ਖੇਤਰਾਂ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਹਨ ਜਿੱਥੇ ਸਹੀ ਅਤੇ
ਨਵੀਨਤਮ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ, ਜਿਵੇਂ ਕਿ ਗਾਹਕ ਸਹਾਇਤਾ, ਗਿਆਨ ਪ੍ਰਬੰਧਨ, ਜਾਂ ਵਿੱਦਿਅਕ
ਐਪਲੀਕੇਸ਼ਨਾਂ

ਬਹੁ-ਏਜੰਟ/ਏਜੰਟਿਕ ਸਮੱਸਿਆ ਹੱਲ ਕਰਨ ਵਾਲੇ

ਬਹੁ-ਏਜੰਟ, ਜਿਸਨੂੰ ਏਜੰਟਿਕ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਪ੍ਰਣਾਲੀਆਂ ਵਿੱਚ ਕਈ ਸੁਤੰਤਰ ਏਜੰਟ ਗੁੰਝਲਦਾਰ ਸਮੱਸਿਆਵਾਂ
ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਇਕੱਠੇ ਕੰਮ ਕਰਦੇ ਹਨ। ਹਰ ਏਜੰਟ ਦੀ ਇੱਕ ਖਾਸ ਭੂਮਿਕਾ, ਹੁਨਰਾਂ ਦਾ ਸੈੱਟ, ਅਤੇ ਢੁਕਵੇਂ
ਸਾਧਨਾਂ ਜਾਂ ਜਾਣਕਾਰੀ ਸਰੋਤਾਂ ਤੱਕ ਪਹੁੰਚ ਹੁੰਦੀ ਹੈ। ਸਹਿਯੋਗ ਕਰਕੇ ਅਤੇ ਜਾਣਕਾਰੀ ਦਾ ਆਦਾਨ-ਪ੍ਰਦਾਨ ਕਰਕੇ,
ਇਹ ਏਜੰਟ ਅਜਿਹੇ ਕੰਮਾਂ ਨੂੰ ਨਿਪਟਾ ਸਕਦੇ ਹਨ ਜੋ ਇਕੱਲੇ ਏਜੰਟ ਲਈ ਮੁਸ਼ਕਲ ਜਾਂ ਅਸੰਭਵ ਹੋਣਗੇ।

ਬਹੁ-ਏਜੰਟ ਸਮੱਸਿਆ ਹੱਲ ਕਰਨ ਵਾਲਿਆਂ ਦੇ ਮੁੱਖ ਸਿਧਾਂਤ ਹਨ:

• ਵਿਸ਼ੇਸ਼ੀਕਰਨ: ਹਰ ਏਜੰਟ ਸਮੱਸਿਆ ਦੇ ਇੱਕ ਖਾਸ ਪਹਿਲੂ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਦਾ ਹੈ, ਆਪਣੀਆਂ
ਵਿਲੱਖਣ ਸਮਰੱਥਾਵਾਂ ਅਤੇ ਗਿਆਨ ਦਾ ਲਾਭ ਲੈਂਦਾ ਹੈ।

ਜਾਣ-ਪਛਾਣ 30

• ਸਹਿਯੋਗ: ਏਜੰਟ ਇੱਕ ਸਾਂਝੇ ਟੀਚੇ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਸੰਚਾਰ ਕਰਦੇ ਹਨ ਅਤੇ ਆਪਣੀਆਂ
ਕਾਰਵਾਈਆਂ ਦਾ ਤਾਲਮੇਲ ਕਰਦੇ ਹਨ, ਅਕਸਰ ਸੁਨੇਹਾ ਭੇਜਣ ਜਾਂ ਸਾਂਝੀ ਮੈਮੋਰੀ ਰਾਹੀਂ।

• ਅਨੁਕੂਲਤਾ: ਪ੍ਰਣਾਲੀ ਵਿਅਕਤੀਗਤ ਏਜੰਟਾਂ ਦੀਆਂ ਭੂਮਿਕਾਵਾਂ ਅਤੇ ਵਿਵਹਾਰਾਂ ਨੂੰ ਵਿਵਸਥਿਤ ਕਰਕੇ
ਬਦਲਦੀਆਂ ਸਥਿਤੀਆਂ ਜਾਂ ਲੋੜਾਂ ਦੇ ਅਨੁਕੂਲ ਹੋ ਸਕਦੀ ਹੈ।

ਬਹੁ-ਏਜੰਟ ਪ੍ਰਣਾਲੀਆਂ ਉਨ੍ਹਾਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਲਈ ਢੁਕਵੀਆਂ ਹਨ ਜਿੱਥੇ ਵੰਡੀ ਹੋਈ ਸਮੱਸਿਆ ਹੱਲ ਕਰਨ ਦੀ
ਲੋੜ ਹੁੰਦੀ ਹੈ, ਜਿਵੇਂ ਕਿ ਸਪਲਾਈ ਚੇਨ ਆਪਟੀਮਾਈਜ਼ੇਸ਼ਨ, ਟ੍ਰੈਫਿਕ ਪ੍ਰਬੰਧਨ, ਜਾਂ ਐਮਰਜੈਂਸੀ ਪ੍ਰਤੀਕਿਰਿਆ
ਯੋਜਨਾਬੰਦੀ

ਵਾਰਤਾਲਾਪੀ AI

ਵਾਰਤਾਲਾਪੀ AI ਪ੍ਰਣਾਲੀਆਂ ਵਰਤੋਂਕਾਰਾਂ ਅਤੇ ਬੁੱਧੀਮਾਨ ਏਜੰਟਾਂ ਵਿਚਕਾਰ ਕੁਦਰਤੀ ਭਾਸ਼ਾ ਗੱਲਬਾਤ ਨੂੰ ਸਮਰੱਥ
ਬਣਾਉਂਦੀਆਂ ਹਨ। ਇਹ ਪ੍ਰਣਾਲੀਆਂ ਦਿਲਚਸਪ ਅਤੇ ਵਿਅਕਤੀਗਤ ਗੱਲਬਾਤ ਦੇ ਤਜਰਬੇ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ
ਕੁਦਰਤੀ ਭਾਸ਼ਾ ਸਮਝ, ਵਾਰਤਾਲਾਪ ਪ੍ਰਬੰਧਨ, ਅਤੇ ਭਾਸ਼ਾ ਉਤਪਾਦਨ ਸਮਰੱਥਾਵਾਂ ਨੂੰ ਜੋੜਦੀਆਂ ਹਨ।

ਵਾਰਤਾਲਾਪੀ AI ਪ੍ਰਣਾਲੀ ਦੇ ਮੁੱਖ ਹਿੱਸੇ ਹਨ:

• ਇਰਾਦਾ ਪਛਾਣ: ਵਰਤੋਂਕਾਰ ਦੇ ਇਨਪੁਟ ਦੇ ਆਧਾਰ ’ਤੇ ਉਨ੍ਹਾਂ ਦੇ ਇਰਾਦੇ ਦੀ ਪਛਾਣ ਕਰਨਾ, ਜਿਵੇਂ ਕਿ
ਸਵਾਲ ਪੁੱਛਣਾ, ਬੇਨਤੀ ਕਰਨਾ, ਜਾਂ ਭਾਵਨਾ ਪ੍ਰਗਟ ਕਰਨਾ।

• ਇਕਾਈ ਕੱਢਣਾ: ਵਰਤੋਂਕਾਰ ਦੇ ਇਨਪੁਟ ਤੋਂ ਢੁਕਵੀਆਂ ਇਕਾਈਆਂ ਜਾਂ ਪੈਰਾਮੀਟਰਾਂ ਨੂੰ ਕੱਢਣਾ, ਜਿਵੇਂ ਕਿ
ਤਾਰੀਖਾਂ, ਸਥਾਨ, ਜਾਂ ਉਤਪਾਦ ਨਾਮ।

• ਵਾਰਤਾਲਾਪ ਪ੍ਰਬੰਧਨ: ਗੱਲਬਾਤ ਦੀ ਸਥਿਤੀ ਨੂੰ ਬਣਾਈ ਰੱਖਣਾ, ਵਰਤੋਂਕਾਰ ਦੇ ਇਰਾਦੇ ਅਤੇ ਸੰਦਰਭ ਦੇ
ਆਧਾਰ ’ਤੇ ਢੁਕਵਾਂ ਜਵਾਬ ਨਿਰਧਾਰਿਤ ਕਰਨਾ, ਅਤੇ ਬਹੁ-ਵਾਰੀ ਗੱਲਬਾਤ ਨੂੰ ਸੰਭਾਲਣਾ।

• ਜਵਾਬ ਤਿਆਰੀ: ਭਾਸ਼ਾ ਮਾਡਲਾਂ, ਟੈਂਪਲੇਟਾਂ, ਜਾਂ ਰਿਟਰੀਵਲ-ਅਧਾਰਿਤ ਵਿਧੀਆਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮਨੁੱਖੀ-
ਵਰਗੇ ਜਵਾਬ ਤਿਆਰ ਕਰਨਾ।

ਗੱਲਬਾਤ ਵਾਲੇ AI ਸਿਸਟਮ ਆਮ ਤੌਰ ’ਤੇ ਗਾਹਕ ਸੇਵਾ ਚੈਟਬੋਟਾਂ, ਵਰਚੁਅਲ ਸਹਾਇਕਾਂ, ਅਤੇ ਆਵਾਜ਼-
ਨਿਯੰਤਰਿਤ ਇੰਟਰਫੇਸਾਂ ਵਿੱਚ ਵਰਤੇ ਜਾਂਦੇ ਹਨ। ਜਿਵੇਂ ਕਿ ਪਹਿਲਾਂ ਦੱਸਿਆ ਗਿਆ ਹੈ, ਇਸ ਕਿਤਾਬ ਵਿੱਚ
ਜ਼ਿਆਦਾਤਰ ਪਹੁੰਚਾਂ, ਪੈਟਰਨ, ਅਤੇ ਕੋਡ ਉਦਾਹਰਣਾਂ ਸਿੱਧੇ ਤੌਰ ’ਤੇ Olympia ਨਾਮਕ ਇੱਕ ਵੱਡੇ ਗੱਲਬਾਤ
AI ਸਿਸਟਮ ’ਤੇ ਮੇਰੇ ਕੰਮ ਤੋਂ ਲਈਆਂ ਗਈਆਂ ਹਨ।

https://olympia.chat

ਜਾਣ-ਪਛਾਣ 31

CoPilots

CoPilots ਉਹ AI-ਸੰਚਾਲਿਤ ਸਹਾਇਕ ਹਨ ਜੋ ਮਨੁੱਖੀ ਵਰਤੋਂਕਾਰਾਂ ਦੇ ਨਾਲ ਕੰਮ ਕਰਦੇ ਹੋਏ ਉਨ੍ਹਾਂ ਦੀ
ਉਤਪਾਦਕਤਾ ਅਤੇ ਫੈਸਲਾ ਲੈਣ ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ਨੂੰ ਵਧਾਉਂਦੇ ਹਨ। ਇਹ ਸਿਸਟਮ ਬੁੱਧੀਮਾਨ ਸਿਫਾਰਸ਼ਾਂ ਪ੍ਰਦਾਨ
ਕਰਨ, ਕਾਰਜਾਂ ਨੂੰ ਸਵੈਚਾਲਿਤ ਕਰਨ, ਅਤੇ ਸੰਦਰਭਕ ਸਹਾਇਤਾ ਪੇਸ਼ ਕਰਨ ਲਈ ਕੁਦਰਤੀ ਭਾਸ਼ਾ ਪ੍ਰੋਸੈਸਿੰਗ,
ਮਸ਼ੀਨ ਲਰਨਿੰਗ, ਅਤੇ ਖੇਤਰ-ਵਿਸ਼ੇਸ਼ ਗਿਆਨ ਦੇ ਸੁਮੇਲ ਦਾ ਲਾਭ ਲੈਂਦੇ ਹਨ।

CoPilots ਦੀਆਂ ਮੁੱਖ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ:

• ਨਿੱਜੀਕਰਨ: ਵਿਅਕਤੀਗਤ ਵਰਤੋਂਕਾਰ ਤਰਜੀਹਾਂ, ਕਾਰਜ-ਪ੍ਰਵਾਹਾਂ, ਅਤੇ ਸੰਚਾਰ ਸ਼ੈਲੀਆਂ ਦੇ ਅਨੁਕੂਲ
ਹੋਣਾ।

• ਸਰਗਰਮ ਸਹਾਇਤਾ: ਵਰਤੋਂਕਾਰ ਦੀਆਂ ਲੋੜਾਂ ਦਾ ਅਨੁਮਾਨ ਲਗਾਉਣਾ ਅਤੇ ਸਪੱਸ਼ਟ ਸੰਕੇਤਾਂ ਤੋਂ ਬਿਨਾਂ
ਢੁਕਵੀਆਂ ਸੁਝਾਅ ਜਾਂ ਕਾਰਵਾਈਆਂ ਦੀ ਪੇਸ਼ਕਸ਼ ਕਰਨਾ।

• ਨਿਰੰਤਰ ਸਿੱਖਣਾ: ਵਰਤੋਂਕਾਰ ਫੀਡਬੈਕ, ਇੰਟਰੈਕਸ਼ਨ, ਅਤੇ ਡਾਟਾ ਤੋਂ ਸਿੱਖ ਕੇ ਸਮੇਂ ਦੇ ਨਾਲ ਪ੍ਰਦਰਸ਼ਨ
ਵਿੱਚ ਸੁਧਾਰ ਕਰਨਾ।

CoPilots ਵੱਖ-ਵੱਖ ਖੇਤਰਾਂ ਵਿੱਚ ਵਧਦੇ ਹੋਏ ਵਰਤੇ ਜਾ ਰਹੇ ਹਨ, ਜਿਵੇਂ ਕਿ ਸਾਫਟਵੇਅਰ ਵਿਕਾਸ (ਉਦਾਹਰਨ
ਲਈ, ਕੋਡ ਪੂਰਤੀ ਅਤੇ ਬੱਗ ਖੋਜ), ਰਚਨਾਤਮਕ ਲੇਖਣ (ਉਦਾਹਰਨ ਲਈ, ਸਮੱਗਰੀ ਸੁਝਾਅ ਅਤੇ ਸੰਪਾਦਨ), ਅਤੇ
ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ (ਉਦਾਹਰਨ ਲਈ, ਅੰਤਰਦ੍ਰਿਸ਼ਟੀਆਂ ਅਤੇ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨ ਸਿਫਾਰਸ਼ਾਂ)

ਇਹ ਤੈਨਾਤੀ ਪੈਟਰਨ ਮਿਸ਼ਰਿਤ AI ਸਿਸਟਮਾਂ ਦੀ ਬਹੁਮੁਖਤਾ ਅਤੇ ਸੰਭਾਵਨਾ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ। ਹਰ ਪੈਟਰਨ
ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਅਤੇ ਵਰਤੋਂ ਦੇ ਮਾਮਲਿਆਂ ਨੂੰ ਸਮਝ ਕੇ, ਤੁਸੀਂ ਬੁੱਧੀਮਾਨ ਐਪਲੀਕੇਸ਼ਨਾਂ ਨੂੰ ਡਿਜ਼ਾਈਨ ਅਤੇ
ਲਾਗੂ ਕਰਦੇ ਸਮੇਂ ਸੂਚਿਤ ਫੈਸਲੇ ਲੈ ਸਕਦੇ ਹੋ। ਭਾਵੇਂ ਇਹ ਕਿਤਾਬ ਖਾਸ ਤੌਰ ’ਤੇ ਮਿਸ਼ਰਿਤ AI ਸਿਸਟਮਾਂ ਦੀ
ਲਾਗੂਕਰਨ ਬਾਰੇ ਨਹੀਂ ਹੈ, ਪਰ ਬਹੁਤ ਸਾਰੀਆਂ ਜੇ ਸਾਰੀਆਂ ਨਹੀਂ ਤਾਂ ਉਹੀ ਪਹੁੰਚਾਂ ਅਤੇ ਪੈਟਰਨ ਹੋਰ ਰਵਾਇਤੀ
ਐਪਲੀਕੇਸ਼ਨ ਵਿਕਾਸ ਦੇ ਅੰਦਰ ਵੱਖਰੇ AI ਭਾਗਾਂ ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰਨ ’ਤੇ ਲਾਗੂ ਹੁੰਦੇ ਹਨ।

ਮਿਸ਼ਰਿਤ AI ਸਿਸਟਮਾਂ ਵਿੱਚ ਭੂਮਿਕਾਵਾਂ

ਮਿਸ਼ਰਿਤ AI ਸਿਸਟਮ ਆਪਸ ਵਿੱਚ ਜੁੜੇ ਮੋਡਿਊਲਾਂ ਦੀ ਨੀਂਹ ’ਤੇ ਬਣੇ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚੋਂ ਹਰੇਕ ਇੱਕ ਵਿਸ਼ੇਸ਼
ਭੂਮਿਕਾ ਨਿਭਾਉਣ ਲਈਡਿਜ਼ਾਈਨ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਹ ਮੋਡਿਊਲ ਬੁੱਧੀਮਾਨ ਵਿਵਹਾਰ ਬਣਾਉਣਅਤੇ ਗੁੰਝਲਦਾਰ
ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈਇਕੱਠੇ ਕੰਮ ਕਰਦੇ ਹਨ। ਇਸ ਬਾਰੇ ਸੋਚਣ ਵੇਲੇ ਇਨ੍ਹਾਂ ਭੂਮਿਕਾਵਾਂ ਤੋਂ ਜਾਣੂ ਹੋਣਾ
ਲਾਭਦਾਇਕ ਹੈ ਕਿ ਤੁਸੀਂ ਆਪਣੀ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਹਿੱਸਿਆਂ ਨੂੰ ਵੱਖਰੇ AI ਭਾਗਾਂ ਨਾਲ ਲਾਗੂ ਜਾਂ ਬਦਲ ਸਕਦੇ ਹੋ।

ਜਾਣ-ਪਛਾਣ 32

ਜਨਰੇਟਰ

ਜਨਰੇਟਰ ਸਿੱਖੇ ਹੋਏ ਪੈਟਰਨਾਂ ਜਾਂ ਇਨਪੁੱਟ ਸੰਕੇਤਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਨਵਾਂ ਡਾਟਾ ਜਾਂ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰਨ ਲਈ
ਜ਼ਿੰਮੇਵਾਰ ਹੁੰਦੇ ਹਨ। AI ਦੁਨੀਆ ਵਿੱਚ ਕਈ ਵੱਖ-ਵੱਖ ਕਿਸਮ ਦੇ ਜਨਰੇਟਰ ਹਨ, ਪਰ ਇਸ ਕਿਤਾਬ ਵਿੱਚ ਦਿਖਾਏ
ਗਏ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਦੇ ਸੰਦਰਭ ਵਿੱਚ, ਜਨਰੇਟਰ ਮਨੁੱਖੀ-ਵਰਗਾ ਟੈਕਸਟ ਬਣਾ ਸਕਦੇ ਹਨ, ਅਧੂਰੇ ਵਾਕਾਂ ਨੂੰ ਪੂਰਾ
ਕਰ ਸਕਦੇ ਹਨ, ਜਾਂ ਵਰਤੋਂਕਾਰ ਦੇ ਸਵਾਲਾਂ ਦੇ ਜਵਾਬ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹਨ। ਉਹ ਸਮੱਗਰੀ ਨਿਰਮਾਣ, ਸੰਵਾਦ
ਤਿਆਰੀ, ਅਤੇ ਡਾਟਾ ਵਾਧੇ ਵਰਗੇ ਕਾਰਜਾਂ ਵਿੱਚ ਅਹਿਮ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੇ ਹਨ।

ਰਿਟਰੀਵਰ

ਰਿਟਰੀਵਰ ਵੱਡੇ ਡੇਟਾਸੇਟਾਂ ਜਾਂ ਗਿਆਨਅਧਾਰਾਂ ਵਿੱਚੋਂ ਢੁਕਵੀਂ ਜਾਣਕਾਰੀ ਦੀ ਖੋਜ ਅਤੇ ਕੱਢਣ ਲਈਵਰਤੇ ਜਾਂਦੇ ਹਨ।
ਉਹ ਦਿੱਤੇ ਗਏ ਸਵਾਲ ਜਾਂ ਸੰਦਰਭ ਦੇ ਆਧਾਰ ’ਤੇ ਸਭ ਤੋਂ ਢੁਕਵੇਂ ਡੇਟਾ ਪੁਆਇੰਟ ਲੱਭਣ ਲਈ ਸ਼ਬਦਾਰਥਕ ਖੋਜ,
ਕੀਵਰਡ ਮੈਚਿੰਗ, ਜਾਂ ਵੈਕਟਰ ਸਮਾਨਤਾ ਵਰਗੀਆਂ ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ। ਰਿਟਰੀਵਰ ਉਹਨਾਂ ਕਾਰਜਾਂ
ਲਈ ਜ਼ਰੂਰੀ ਹਨ ਜਿੱਥੇ ਖਾਸ ਜਾਣਕਾਰੀ ਤੱਕ ਤੇਜ਼ ਪਹੁੰਚ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਜਿਵੇਂ ਕਿ ਸਵਾਲਾਂ ਦੇ ਜਵਾਬ, ਤੱਥਾਂ ਦੀ
ਜਾਂਚ, ਜਾਂ ਸਮੱਗਰੀ ਦੀ ਸਿਫਾਰਸ਼।

ਰੈਂਕਰ

ਰੈਂਕਰ ਕੁਝ ਮਾਪਦੰਡਾਂ ਜਾਂ ਪ੍ਰਸੰਗਿਕਤਾ ਸਕੋਰਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਆਈਟਮਾਂ ਦੇ ਸੈੱਟ ਨੂੰ ਕ੍ਰਮਬੱਧ ਜਾਂ ਪ੍ਰਾਥਮਿਕਤਾ
ਦੇਣ ਲਈ ਜ਼ਿੰਮੇਵਾਰ ਹੁੰਦੇ ਹਨ। ਉਹ ਹਰੇਕ ਆਈਟਮ ਨੂੰ ਭਾਰ ਜਾਂ ਸਕੋਰ ਨਿਰਧਾਰਤ ਕਰਦੇ ਹਨ ਅਤੇ ਫਿਰ ਉਹਨਾਂ
ਨੂੰ ਉਸ ਅਨੁਸਾਰ ਕ੍ਰਮਬੱਧ ਕਰਦੇ ਹਨ। ਰੈਂਕਰ ਆਮ ਤੌਰ ’ਤੇ ਖੋਜ ਇੰਜਣਾਂ, ਸਿਫਾਰਸ਼ ਸਿਸਟਮਾਂ, ਜਾਂ ਕਿਸੇ ਵੀ
ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਵਰਤੇ ਜਾਂਦੇ ਹਨ ਜਿੱਥੇ ਉਪਭੋਗਤਾਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਢੁਕਵੇਂ ਨਤੀਜੇ ਪੇਸ਼ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੁੰਦਾ
ਹੈ।

ਵਰਗੀਕਰਣਕਰਤਾ

ਵਰਗੀਕਰਣਕਰਤਾ ਪਹਿਲਾਂ ਤੋਂ ਨਿਰਧਾਰਤ ਸ਼੍ਰੇਣੀਆਂ ਜਾਂ ਵਰਗਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਡੇਟਾ ਪੁਆਇੰਟਾਂ ਨੂੰ ਵਰਗੀਕ੍ਰਿਤ
ਜਾਂ ਲੇਬਲ ਕਰਨ ਲਈ ਵਰਤੇ ਜਾਂਦੇ ਹਨ। ਉਹ ਲੇਬਲ ਕੀਤੇ ਸਿਖਲਾਈ ਡੇਟਾ ਤੋਂ ਸਿੱਖਦੇ ਹਨ ਅਤੇ ਫਿਰ ਨਵੇਂ, ਅਣਦੇਖੇ
ਉਦਾਹਰਣਾਂ ਦੀ ਸ਼੍ਰੇਣੀ ਦੀ ਭਵਿੱਖਬਾਣੀ ਕਰਦੇ ਹਨ। ਵਰਗੀਕਰਣਕਰਤਾ ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ, ਸਪੈਮ ਖੋਜ, ਜਾਂ ਚਿੱਤਰ
ਪਛਾਣ ਵਰਗੇ ਕਾਰਜਾਂ ਲਈ ਮੁੱਢਲੇ ਹਨ, ਜਿੱਥੇ ਟੀਚਾ ਹਰੇਕ ਇਨਪੁੱਟ ਨੂੰ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਸ਼੍ਰੇਣੀ ਨਿਰਧਾਰਤ ਕਰਨਾ ਹੈ।

ਜਾਣ-ਪਛਾਣ 33

ਟੂਲਜ਼ ਅਤੇ ਏਜੰਟ

ਇਹਨਾਂ ਮੁੱਖ ਭੂਮਿਕਾਵਾਂ ਤੋਂ ਇਲਾਵਾ, ਮਿਸ਼ਰਿਤ ਏਆਈਸਿਸਟਮਅਕਸਰਆਪਣੀ ਕਾਰਜਸ਼ੀਲਤਾ ਅਤੇ ਅਨੁਕੂਲਤਾ
ਨੂੰ ਵਧਾਉਣ ਲਈ ਟੂਲਜ਼ ਅਤੇ ਏਜੰਟਾਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਦੇ ਹਨ:

• ਟੂਲਜ਼: ਟੂਲਜ਼ ਵਿਸ਼ੇਸ਼ ਕਾਰਵਾਈਆਂ ਜਾਂ ਗਣਨਾਵਾਂ ਕਰਨ ਵਾਲੇ ਵੱਖਰੇ ਸਾਫਟਵੇਅਰ ਭਾਗ ਜਾਂ ਏਪੀਆਈਜ਼
ਹੁੰਦੇ ਹਨ।ਇਹਨਾਂ ਨੂੰ ਹੋਰ ਮੋਡੀਊਲਾਂ ਦੁਆਰਾ, ਜਿਵੇਂ ਕਿ ਜਨਰੇਟਰ ਜਾਂ ਰਿਟਰੀਵਰ, ਉਪ-ਕਾਰਜਾਂ ਨੂੰ ਪੂਰਾ ਕਰਨ
ਜਾਂ ਵਾਧੂ ਜਾਣਕਾਰੀ ਇਕੱਠੀ ਕਰਨ ਲਈ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਟੂਲਜ਼ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚ ਵੈੱਬ
ਖੋਜ ਇੰਜਣ, ਕੈਲਕੁਲੇਟਰ, ਜਾਂ ਡੇਟਾ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨ ਲਾਇਬ੍ਰੇਰੀਆਂ ਸ਼ਾਮਲ ਹਨ।

• ਏਜੰਟ: ਏਜੰਟ ਸਵੈ-ਚਲਿਤ ਇਕਾਈਆਂ ਹਨ ਜੋ ਆਪਣੇ ਵਾਤਾਵਰਣ ਨੂੰ ਸਮਝ ਸਕਦੀਆਂ ਹਨ, ਫੈਸਲੇ
ਲੈ ਸਕਦੀਆਂ ਹਨ, ਅਤੇ ਵਿਸ਼ੇਸ਼ ਟੀਚਿਆਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕਾਰਵਾਈਆਂ ਕਰ ਸਕਦੀਆਂ ਹਨ।
ਉਹ ਅਕਸਰ ਗਤੀਸ਼ੀਲ ਜਾਂ ਅਨਿਸ਼ਚਿਤ ਸਥਿਤੀਆਂ ਵਿੱਚ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਕੰਮ ਕਰਨ ਲਈ
ਯੋਜਨਾਬੰਦੀ, ਤਰਕ, ਅਤੇ ਸਿੱਖਣ ਵਰਗੀਆਂ ਵੱਖ-ਵੱਖ ਏਆਈ ਤਕਨੀਕਾਂ ਦੇ ਸੁਮੇਲ ’ਤੇ ਨਿਰਭਰ ਕਰਦੇ
ਹਨ। ਏਜੰਟਾਂ ਦੀ ਵਰਤੋਂ ਗੁੰਝਲਦਾਰ ਵਿਵਹਾਰਾਂ ਨੂੰ ਮਾਡਲ ਕਰਨ ਜਾਂ ਮਿਸ਼ਰਿਤ ਏਆਈ ਸਿਸਟਮ ਦੇ ਅੰਦਰ
ਕਈ ਮੋਡੀਊਲਾਂ ਦੀਆਂ ਕਾਰਵਾਈਆਂ ਦਾ ਤਾਲਮੇਲ ਕਰਨ ਲਈ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

ਇੱਕ ਸ਼ੁੱਧ ਮਿਸ਼ਰਿਤ ਏਆਈ ਸਿਸਟਮ ਵਿੱਚ, ਇਹਨਾਂ ਭਾਗਾਂ ਵਿਚਕਾਰ ਗੱਲਬਾਤ ਚੰਗੀ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ
ਇੰਟਰਫੇਸਾਂ ਅਤੇ ਸੰਚਾਰ ਪ੍ਰੋਟੋਕੋਲਾਂ ਰਾਹੀਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਡੇਟਾ ਮੋਡੀਊਲਾਂ ਵਿਚਕਾਰ ਵਹਿੰਦਾ ਹੈ, ਜਿੱਥੇ ਇੱਕ ਭਾਗ
ਦਾ ਆਉਟਪੁੱਟ ਦੂਜੇ ਲਈਇਨਪੁੱਟ ਵਜੋਂ ਕੰਮ ਕਰਦਾ ਹੈ। ਇਹ ਮੋਡੀਊਲਰਆਰਕੀਟੈਕਚਰ ਲਚਕਤਾ, ਸਕੇਲੇਬਿਲਟੀ,
ਅਤੇ ਰੱਖ-ਰਖਾਅ ਦੀ ਸਹੂਲਤ ਦਿੰਦਾ ਹੈ, ਕਿਉਂਕਿ ਵਿਅਕਤੀਗਤ ਭਾਗਾਂ ਨੂੰ ਪੂਰੇ ਸਿਸਟਮ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕੀਤੇ ਬਿਨਾਂ
ਅੱਪਡੇਟ, ਬਦਲਿਆ, ਜਾਂ ਵਿਸਤਾਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਇਹਨਾਂ ਭਾਗਾਂ ਅਤੇ ਉਹਨਾਂ ਦੀ ਅੰਤਰਕਿਰਿਆ ਦੀ ਸ਼ਕਤੀ ਦਾ ਲਾਭ ਉਠਾ ਕੇ, ਮਿਸ਼ਰਿਤ ਏਆਈ ਸਿਸਟਮ
ਗੁੰਝਲਦਾਰ, ਅਸਲ-ਸੰਸਾਰ ਦੀਆਂ ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਹੱਲ ਕਰ ਸਕਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਲਈ ਵੱਖ-ਵੱਖ ਏਆਈ
ਸਮਰੱਥਾਵਾਂ ਦੇ ਸੁਮੇਲ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਜਿਵੇਂ ਅਸੀਂ ਐਪਲੀਕੇਸ਼ਨ ਵਿਕਾਸ ਵਿੱਚ ਏਆਈ ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰਨ
ਲਈ ਪਹੁੰਚਾਂ ਅਤੇ ਪੈਟਰਨਾਂ ਦੀ ਪੜਚੋਲ ਕਰਦੇ ਹਾਂ, ਇਹ ਯਾਦ ਰੱਖੋ ਕਿ ਮਿਸ਼ਰਿਤ ਏਆਈ ਸਿਸਟਮਾਂ ਵਿੱਚ ਵਰਤੇ
ਜਾਂਦੇ ਉਹੀ ਸਿਧਾਂਤ ਅਤੇ ਤਕਨੀਕਾਂ ਬੁੱਧੀਮਾਨ, ਅਨੁਕੂਲ, ਅਤੇ ਉਪਭੋਗਤਾ-ਕੇਂਦਰਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਬਣਾਉਣ ਲਈ
ਵਰਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ।

ਜਾਣ-ਪਛਾਣ 34

ਭਾਗ 1 ਦੇ ਅਗਲੇ ਅਧਿਆਵਾਂ ਵਿੱਚ, ਅਸੀਂ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਵਿਕਾਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਏ.ਆਈ.
ਕੰਪੋਨੈਂਟਸ ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰਨ ਲਈ ਮੁੱਢਲੇ ਪਹੁੰਚਾਂ ਅਤੇ ਤਕਨੀਕਾਂ ਵਿੱਚ ਡੂੰਘਾਈ ਨਾਲ ਜਾਵਾਂਗੇ। ਪ੍ਰੌਮਪਟ
ਇੰਜੀਨੀਅਰਿੰਗ ਅਤੇ ਰਿਟਰੀਵਲ-ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ ਤੋਂ ਲੈ ਕੇ ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ ਅਤੇ ਬੁੱਧੀਮਾਨ
ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ ਤੱਕ, ਅਸੀਂ ਤੁਹਾਨੂੰ ਅਤਿ-ਆਧੁਨਿਕ ਏ.ਆਈ.-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਬਣਾਉਣ ਵਿੱਚ
ਮਦਦ ਕਰਨ ਲਈ ਵੱਖ-ਵੱਖ ਪੈਟਰਨਾਂ ਅਤੇ ਸਰਵੋਤਮ ਅਭਿਆਸਾਂ ਨੂੰ ਕਵਰ ਕਰਾਂਗੇ।

ਭਾਗ 1: ਮੁੱਢਲੇ ਪਹੁੰਚ ਅਤੇ ਤਕਨੀਕਾਂ

ਕਿਤਾਬ ਦਾ ਇਹ ਭਾਗ ਤੁਹਾਡੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ AI ਦੀ ਵਰਤੋਂ ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰਨ ਦੇ ਵੱਖ-ਵੱਖ ਤਰੀਕਿਆਂ
ਨੂੰ ਪੇਸ਼ ਕਰਦਾ ਹੈ। ਇਹ ਅਧਿਆਇ ਸੰਬੰਧਿਤ ਪਹੁੰਚਾਂ ਅਤੇ ਤਕਨੀਕਾਂ ਦੀ ਇੱਕ ਲੜੀ ਨੂੰ ਕਵਰ ਕਰਦੇ ਹਨ, ਜੋ ਰਾਹ ਨੂੰ
ਸੀਮਤ ਕਰਨਾ ਅਤੇ ਰਿਟ੍ਰੀਵਲ ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ ਵਰਗੇ ਉੱਚ-ਪੱਧਰੀ ਸੰਕਲਪਾਂ ਤੋਂ ਲੈ ਕੇ LLM ਚੈਟ ਕੰਪਲੀਸ਼ਨ
APIs ਉੱਤੇ ਆਪਣੀ ਐਬਸਟ੍ਰੈਕਸ਼ਨ ਲੇਅਰ ਨੂੰ ਪ੍ਰੋਗਰਾਮ ਕਰਨ ਦੇ ਵਿਚਾਰਾਂ ਤੱਕ ਫੈਲੇ ਹੋਏ ਹਨ।

ਕਿਤਾਬ ਦੇ ਇਸ ਭਾਗ ਦਾ ਉਦੇਸ਼ ਭਾਗ 2 ਦੇ ਕੇਂਦਰ ਬਿੰਦੂ ਵਾਲੇ ਵਿਸ਼ੇਸ਼ ਲਾਗੂਕਰਨ ਪੈਟਰਨਾਂ ਵਿੱਚ ਬਹੁਤ ਡੂੰਘੇ ਜਾਣ
ਤੋਂ ਪਹਿਲਾਂ, ਤੁਹਾਨੂੰ AI ਨਾਲ ਲਾਗੂ ਕੀਤੇ ਜਾ ਸਕਣ ਵਾਲੇ ਵਿਵਹਾਰਾਂ ਦੀਆਂ ਕਿਸਮਾਂ ਨੂੰ ਸਮਝਣ ਵਿੱਚ ਮਦਦ ਕਰਨਾ
ਹੈ।

ਭਾਗ 1 ਵਿੱਚ ਦੱਸੀਆਂ ਪਹੁੰਚਾਂ ਉਨ੍ਹਾਂ ਵਿਚਾਰਾਂ ’ਤੇ ਆਧਾਰਿਤ ਹਨ ਜੋ ਮੈਂ ਆਪਣੇ ਕੋਡ ਵਿੱਚ ਵਰਤੇ ਹਨ,
ਐਂਟਰਪ੍ਰਾਈਜ਼ ਐਪਲੀਕੇਸ਼ਨ ਆਰਕੀਟੈਕਚਰ ਅਤੇ ਏਕੀਕਰਨ ਦੇ ਕਲਾਸਿਕ ਪੈਟਰਨ, ਅਤੇ ਨਾਲ ਹੀ ਉਹ ਰੂਪਕ
ਜੋ ਮੈਂ ਹੋਰ ਲੋਕਾਂ ਨੂੰ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਗੈਰ-ਤਕਨੀਕੀ ਵਪਾਰਕ ਹਿੱਸੇਦਾਰ ਵੀ ਸ਼ਾਮਲ ਹਨ, ਨੂੰ AI ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ
ਸਮਝਾਉਣ ਵੇਲੇ ਵਰਤੇ ਹਨ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ

“ਰਾਹ ਨੂੰ ਤੰਗ ਕਰਨਾ” ਦਾ ਮਤਲਬ ਹੈ AI ਨੂੰ ਦਿੱਤੇ ਗਏ ਕਾਰਜ ’ਤੇ ਕੇਂਦਰਿਤ ਕਰਨਾ। ਮੈਂ ਇਸ ਨੂੰ ਇੱਕ ਮੰਤਰ ਵਜੋਂ
ਵਰਤਦਾ ਹਾਂ ਜਦੋਂ ਵੀ ਮੈਨੂੰ AI ਦੇ “ਮੂਰਖ” ਜਾਂ ਅਣਚਾਹੇ ਤਰੀਕੇ ਨਾਲ ਕੰਮ ਕਰਨ ਤੇ ਨਿਰਾਸ਼ਾ ਹੁੰਦੀ ਹੈ। ਇਹ ਮੰਤਰ
ਮੈਨੂੰ ਯਾਦ ਦਿਵਾਉਂਦਾ ਹੈ ਕਿ ਅਸਫਲਤਾ ਸ਼ਾਇਦ ਮੇਰੀ ਗਲਤੀ ਹੈ, ਅਤੇ ਮੈਨੂੰ ਸ਼ਾਇਦ ਹੋਰ ਰਾਹ ਨੂੰ ਤੰਗ ਕਰਨ ਦੀ
ਲੋੜ ਹੈ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰਨ ਦੀ ਲੋੜ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਵਿੱਚ ਮੌਜੂਦ ਵਿਸ਼ਾਲ ਗਿਆਨ ਤੋਂ ਪੈਦਾ ਹੁੰਦੀ ਹੈ, ਖਾਸ ਕਰਕੇ
OpenAI ਅਤੇ Anthropic ਵਰਗੇ ਵਿਸ਼ਵ-ਪੱਧਰੀ ਮਾਡਲਾਂ ਵਿੱਚ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਸ਼ਾਬਦਿਕ ਤੌਰ ’ਤੇ ਖਰਬਾਂ
ਪੈਰਾਮੀਟਰ ਹਨ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 37

ਇੰਨੇ ਵਿਸ਼ਾਲ ਗਿਆਨ ਤੱਕ ਪਹੁੰਚ ਹੋਣਾ ਨਿਸ਼ਚਿਤ ਤੌਰ ’ਤੇ ਸ਼ਕਤੀਸ਼ਾਲੀ ਹੈ ਅਤੇ ਮਨ ਦਾ ਸਿਧਾਂਤ ਅਤੇ ਮਨੁੱਖੀ
ਤਰੀਕਿਆਂ ਨਾਲ ਤਰਕ ਕਰਨ ਦੀ ਯੋਗਤਾ ਵਰਗੇ ਉੱਭਰਦੇ ਵਿਵਹਾਰ ਨੂੰ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਹਾਲਾਂਕਿ, ਜਾਣਕਾਰੀ ਦੀ
ਇਹ ਧਰਤੀ-ਹਿਲਾਊ ਮਾਤਰਾ ਵਿਸ਼ੇਸ਼ ਪ੍ਰੌਂਪਟਸ ਲਈ ਸਟੀਕ ਅਤੇ ਸਹੀ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਵਿੱਚ ਚੁਣੌਤੀਆਂ ਵੀ
ਪੇਸ਼ ਕਰਦੀ ਹੈ, ਖਾਸ ਕਰਕੇ ਜੇ ਉਹ ਪ੍ਰੌਂਪਟਸ ਨਿਰਧਾਰਤ ਵਿਵਹਾਰ ਦਿਖਾਉਣ ਲਈ ਹਨ ਜੋ “ਸਧਾਰਨ” ਸੌਫਟਵੇਅਰ
ਵਿਕਾਸ ਅਤੇ ਐਲਗੋਰਿਦਮ ਨਾਲ ਏਕੀਕ੍ਰਿਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ।

ਕਈ ਕਾਰਕ ਇਨ੍ਹਾਂ ਚੁਣੌਤੀਆਂ ਵੱਲ ਲੈ ਜਾਂਦੇ ਹਨ।

ਜਾਣਕਾਰੀ ਦੀ ਓਵਰਲੋਡ: ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਖੇਤਰਾਂ, ਸਰੋਤਾਂ, ਅਤੇ ਸਮੇਂ ਦੀਆਂ ਮਿਆਦਾਂ ਨੂੰ ਕਵਰ
ਕਰਦੇ ਵਿਸ਼ਾਲ ਡੇਟਾ ’ਤੇ ਸਿਖਲਾਈ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ। ਇਹ ਵਿਆਪਕ ਗਿਆਨ ਉਨ੍ਹਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਵਿਸ਼ਿਆਂ ਵਿੱਚ
ਸ਼ਾਮਲ ਹੋਣ ਅਤੇ ਦੁਨੀਆ ਦੀ ਵਿਆਪਕ ਸਮਝ ਦੇ ਆਧਾਰ ’ਤੇ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦਾ ਹੈ।
ਹਾਲਾਂਕਿ, ਇੱਕ ਵਿਸ਼ੇਸ਼ ਪ੍ਰੌਂਪਟ ਦਾ ਸਾਹਮਣਾ ਕਰਨ ’ਤੇ, ਮਾਡਲ ਨੂੰ ਅਪ੍ਰਸੰਗਿਕ, ਵਿਰੋਧੀ, ਜਾਂ ਪੁਰਾਣੀ/ਅਪ੍ਰਚਲਿਤ
ਜਾਣਕਾਰੀ ਨੂੰ ਛਾਂਟਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਹੋ ਸਕਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਫੋਕਸ ਜਾਂ ਸਟੀਕਤਾ ਦੀ ਕਮੀ ਵਾਲੇ ਜਵਾਬ ਮਿਲਦੇ
ਹਨ। ਤੁਸੀਂ ਕੀ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰ ਰਹੇ ਹੋ, ਇਸ ’ਤੇ ਨਿਰਭਰ ਕਰਦਿਆਂ, ਮਾਡਲ ਲਈ ਉਪਲਬਧ ਵਿਰੋਧੀ
ਜਾਣਕਾਰੀ ਦੀ ਸਿਰਫ਼ ਮਾਤਰਾ ਹੀ ਉਸ ਜਵਾਬ ਜਾਂ ਵਿਵਹਾਰ ਨੂੰ ਪ੍ਰਦਾਨ ਕਰਨ ਦੀ ਇਸਦੀ ਯੋਗਤਾ ਨੂੰ ਆਸਾਨੀ
ਨਾਲ ਓਵਰਵਹੇਲਮ ਕਰ ਸਕਦੀ ਹੈ ਜੋ ਤੁਸੀਂ ਚਾਹੁੰਦੇ ਹੋ।

ਸੰਦਰਭ ਦੀ ਅਸਪੱਸ਼ਟਤਾ: ਗਿਆਨ ਦੇ ਵਿਸ਼ਾਲ ਛਿਪੇ ਹੋਏ ਸਪੇਸ ਨੂੰ ਦੇਖਦੇ ਹੋਏ, ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਨੂੰ ਤੁਹਾਡੇ
ਪ੍ਰੌਂਪਟ ਦੇ ਸੰਦਰਭ ਨੂੰ ਸਮਝਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਸਮੇਂ ਅਸਪੱਸ਼ਟਤਾ ਦਾ ਸਾਹਮਣਾ ਕਰਨਾ ਪੈ ਸਕਦਾ ਹੈ। ਉਚਿਤ
ਤੰਗ ਕਰਨ ਜਾਂ ਮਾਰਗਦਰਸ਼ਨ ਤੋਂ ਬਿਨਾਂ, ਮਾਡਲ ਅਜਿਹੇ ਜਵਾਬ ਤਿਆਰ ਕਰ ਸਕਦਾ ਹੈ ਜੋ ਸਤਹੀ ਤੌਰ ’ਤੇ ਸੰਬੰਧਿਤ
ਹਨ ਪਰ ਤੁਹਾਡੇ ਇਰਾਦਿਆਂ ਲਈ ਸਿੱਧੇ ਤੌਰ ’ਤੇ ਪ੍ਰਸੰਗਿਕ ਨਹੀਂ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਅਸਫਲਤਾ ਵਿਸ਼ੇ ਤੋਂ ਹਟ
ਕੇ, ਅਸੰਗਤ, ਜਾਂ ਤੁਹਾਡੀਆਂ ਦੱਸੀਆਂ ਲੋੜਾਂ ਨੂੰ ਪੂਰਾ ਕਰਨ ਵਿੱਚ ਅਸਫਲ ਜਵਾਬਾਂ ਵੱਲ ਲੈ ਜਾਂਦੀ ਹੈ। ਇਸ ਮਾਮਲੇ
ਵਿੱਚ, ਰਾਹ ਨੂੰ ਤੰਗ ਕਰਨ ਦਾ ਮਤਲਬ ਹੈ ਸੰਦਰਭ ਦੀ ਸਪੱਸ਼ਟਤਾ, ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਕਿ ਤੁਹਾਡੇ ਦੁਆਰਾ
ਪ੍ਰਦਾਨ ਕੀਤਾ ਸੰਦਰਭ ਮਾਡਲ ਨੂੰ ਸਿਰਫ਼ ਇਸਦੇ ਬੇਸ ਗਿਆਨ ਵਿੱਚ ਸਭ ਤੋਂ ਪ੍ਰਸੰਗਿਕ ਜਾਣਕਾਰੀ ’ਤੇ ਧਿਆਨ
ਕੇਂਦਰਿਤ ਕਰਨ ਦਾ ਕਾਰਨ ਬਣਦਾ ਹੈ।

ਨੋਟ: ਜਦੋਂ ਤੁਸੀਂ “ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ” ਨਾਲ ਸ਼ੁਰੂਆਤ ਕਰ ਰਹੇ ਹੋ, ਤਾਂ ਤੁਹਾਡੇ ਵੱਲੋਂ ਮਾਡਲ
ਨੂੰ ਲੋੜੀਂਦੇ ਨਤੀਜੇ ਦੀ ਸਹੀ ਵਿਆਖਿਆ ਕੀਤੇ ਬਿਨਾਂ ਕੰਮ ਕਰਨ ਲਈ ਕਹਿਣ ਦੀ ਸੰਭਾਵਨਾ ਵੱਧ
ਹੁੰਦੀ ਹੈ; ਅਸਪੱਸ਼ਟ ਨਾ ਹੋਣ ਲਈ ਅਭਿਆਸ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ!

ਸਮੇਂ ਸਬੰਧੀ ਅਸੰਗਤੀਆਂ: ਕਿਉਂਕਿ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਸਮੇਂ ਦੌਰਾਨ ਬਣਾਏਗਏ ਡੇਟਾ ’ਤੇ ਸਿਖਲਾਈਦਿੱਤੀ
ਜਾਂਦੀ ਹੈ, ਉਨ੍ਹਾਂ ਕੋਲ ਅਜਿਹੀ ਜਾਣਕਾਰੀ ਹੋ ਸਕਦੀ ਹੈ ਜੋ ਪੁਰਾਣੀ, ਬਦਲੀ ਹੋਈ, ਜਾਂ ਹੁਣ ਸਹੀ ਨਹੀਂ ਹੈ। ਉਦਾਹਰਣ

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 38

ਲਈ, ਮੌਜੂਦਾ ਘਟਨਾਵਾਂ, ਵਿਗਿਆਨਕ ਖੋਜਾਂ, ਜਾਂ ਤਕਨੀਕੀ ਵਿਕਾਸ ਬਾਰੇ ਜਾਣਕਾਰੀ ਮਾਡਲ ਦੇ ਸਿਖਲਾਈ ਡੇਟਾ
ਦੇ ਇਕੱਠਾ ਕੀਤੇ ਜਾਣ ਤੋਂ ਬਾਅਦ ਬਦਲ ਗਈ ਹੋ ਸਕਦੀ ਹੈ। ਵਧੇਰੇ ਤਾਜ਼ਾ ਅਤੇ ਭਰੋਸੇਯੋਗ ਸਰੋਤਾਂ ਨੂੰ ਪ੍ਰਾਥਮਿਕਤਾ
ਦੇਣ ਲਈ ਰਸਤੇ ਨੂੰ ਸੀਮਿਤ ਕੀਤੇ ਬਿਨਾਂ, ਮਾਡਲ ਪੁਰਾਣੀ ਜਾਂ ਗਲਤ ਜਾਣਕਾਰੀ ਦੇ ਆਧਾਰ ’ਤੇ ਜਵਾਬ ਤਿਆਰ ਕਰ
ਸਕਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਇਸਦੇ ਆਉਟਪੁੱਟ ਵਿੱਚ ਅਸ਼ੁੱਧੀਆਂ ਅਤੇ ਅਸੰਗਤੀਆਂ ਪੈਦਾ ਹੋ ਸਕਦੀਆਂ ਹਨ।

ਖੇਤਰ-ਵਿਸ਼ੇਸ਼ ਬਾਰੀਕੀਆਂ: ਵੱਖ-ਵੱਖ ਖੇਤਰਾਂ ਅਤੇ ਵਿਸ਼ਿਆਂ ਦੀ ਆਪਣੀ ਵਿਸ਼ੇਸ਼ ਸ਼ਬਦਾਵਲੀ, ਰਵਾਇਤਾਂ, ਅਤੇ
ਗਿਆਨ ਅਧਾਰ ਹੁੰਦੇ ਹਨ। ਕਿਸੇ ਵੀ TLA (ਤਿੰਨ ਅੱਖਰੀ ਸੰਖੇਪ) ਬਾਰੇ ਸੋਚੋ ਅਤੇ ਤੁਹਾਨੂੰ ਅਹਿਸਾਸ ਹੋਵੇਗਾ ਕਿ
ਉਨ੍ਹਾਂ ਵਿੱਚੋਂ ਜ਼ਿਆਦਾਤਰ ਦੇ ਇੱਕ ਤੋਂ ਵੱਧ ਅਰਥ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ, MSK ਐਮਾਜ਼ੋਨ ਦੇ ਮੈਨੇਜਡ ਸਟ੍ਰੀਮਿੰਗ
ਫਾਰ ਅਪਾਚੇ ਕਾਫ਼ਕਾ, ਮੈਮੋਰੀਅਲ ਸਲੋਨ ਕੈਟਰਿੰਗ ਕੈਂਸਰ ਸੈਂਟਰ, ਜਾਂ ਮਨੁੱਖੀ ਮਸਕੁਲੋਸਕੈਲੇਟਲ ਸਿਸਟਮ ਨੂੰ ਦਰਸਾ
ਸਕਦਾ ਹੈ।

ਜਦੋਂ ਕਿਸੇ ਪ੍ਰੌਮਪਟ ਲਈ ਕਿਸੇ ਖਾਸ ਖੇਤਰ ਵਿੱਚ ਮੁਹਾਰਤ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਇੱਕ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ ਦਾ
ਆਮ ਗਿਆਨ ਸਹੀ ਅਤੇ ਬਾਰੀਕ ਜਵਾਬ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਕਾਫ਼ੀ ਨਹੀਂ ਹੋ ਸਕਦਾ। ਖੇਤਰ-ਵਿਸ਼ੇਸ਼ ਜਾਣਕਾਰੀ
’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਕੇ ਰਸਤੇ ਨੂੰ ਸੀਮਿਤ ਕਰਨਾ, ਭਾਵੇਂ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਰਾਹੀਂ ਜਾਂ ਪੁਨਰ-ਪ੍ਰਾਪਤੀ-
ਵਧਿਤ ਉਤਪਾਦਨ ਰਾਹੀਂ, ਮਾਡਲ ਨੂੰ ਅਜਿਹੇ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦਾ ਹੈ ਜੋ ਤੁਹਾਡੇ ਵਿਸ਼ੇਸ਼ ਖੇਤਰ
ਦੀਆਂ ਲੋੜਾਂ ਅਤੇ ਉਮੀਦਾਂ ਦੇ ਵਧੇਰੇ ਅਨੁਕੂਲ ਹਨ।

ਲੇਟੈਂਟ ਸਪੇਸ: ਅਕਲਪਨੀ ਤੌਰ ’ਤੇ ਵਿਸ਼ਾਲ

ਜਦੋਂ ਮੈਂ ਭਾਸ਼ਾ ਮਾਡਲ ਦੇ “ਲੇਟੈਂਟ ਸਪੇਸ” ਦਾ ਜ਼ਿਕਰ ਕਰਦਾ ਹਾਂ, ਤਾਂ ਮੈਂ ਗਿਆਨ ਅਤੇ ਜਾਣਕਾਰੀ ਦੇ ਵਿਸ਼ਾਲ, ਬਹੁ-
ਆਯਾਮੀ ਖੇਤਰ ਦਾ ਹਵਾਲਾ ਦੇ ਰਿਹਾ ਹਾਂ ਜੋ ਮਾਡਲ ਨੇ ਆਪਣੀ ਸਿਖਲਾਈ ਪ੍ਰਕਿਰਿਆ ਦੌਰਾਨ ਸਿੱਖਿਆ ਹੈ। ਇਹ
ਮਾਡਲ ਦੇ ਨਿਊਰਲ ਨੈੱਟਵਰਕਸ ਦੇ ਅੰਦਰ ਇੱਕ ਛੁਪਿਆ ਹੋਇਆ ਰਾਜ ਵਰਗਾ ਹੈ, ਜਿੱਥੇ ਭਾਸ਼ਾ ਦੇ ਸਾਰੇ ਪੈਟਰਨ,
ਸੰਬੰਧ, ਅਤੇ ਪ੍ਰਤੀਨਿਧਤਾਵਾਂ ਸਟੋਰ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।

ਕਲਪਨਾ ਕਰੋ ਕਿ ਤੁਸੀਂ ਇੱਕ ਵਿਸ਼ਾਲ, ਅਣਖੋਜੇ ਖੇਤਰ ਦੀ ਖੋਜ ਕਰ ਰਹੇ ਹੋ ਜੋ ਅਣਗਿਣਤ ਆਪਸ ਵਿੱਚ ਜੁੜੇ ਨੋਡਸ
ਨਾਲ ਭਰਿਆ ਹੋਇਆ ਹੈ। ਹਰ ਨੋਡ ਇੱਕ ਜਾਣਕਾਰੀ ਦਾ ਟੁਕੜਾ, ਇੱਕ ਧਾਰਨਾ, ਜਾਂ ਇੱਕ ਸੰਬੰਧ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ
ਜੋ ਮਾਡਲ ਨੇ ਸਿੱਖਿਆ ਹੈ। ਜਿਵੇਂ ਤੁਸੀਂ ਇਸ ਸਪੇਸ ਵਿੱਚ ਨੈਵੀਗੇਟ ਕਰਦੇ ਹੋ, ਤੁਹਾਨੂੰ ਪਤਾ ਲੱਗੇਗਾ ਕਿ ਕੁਝ ਨੋਡਸ
ਇੱਕ ਦੂਜੇ ਦੇ ਨੇੜੇ ਹਨ, ਜੋ ਇੱਕ ਮਜ਼ਬੂਤ ਕਨੈਕਸ਼ਨ ਜਾਂ ਸਮਾਨਤਾ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ, ਜਦੋਂ ਕਿ ਦੂਸਰੇ ਇੱਕ ਦੂਜੇ ਤੋਂ
ਦੂਰ ਹਨ, ਜੋ ਇੱਕ ਕਮਜ਼ੋਰ ਜਾਂ ਵਧੇਰੇ ਦੂਰ ਦਾ ਸੰਬੰਧ ਦਰਸਾਉਂਦੇ ਹਨ।

ਲੇਟੈਂਟ ਸਪੇਸ ਨਾਲ ਚੁਣੌਤੀ ਇਹ ਹੈ ਕਿ ਇਹ ਬੇਹੱਦ ਗੁੰਝਲਦਾਰ ਅਤੇ ਉੱਚ-ਆਯਾਮੀ ਹੈ। ਇਸਨੂੰ ਸਾਡੇ ਭੌਤਿਕ

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 39

ਬ੍ਰਹਿਮੰਡ ਜਿੰਨਾ ਵਿਸ਼ਾਲ ਸਮਝੋ, ਜਿਸ ਵਿੱਚ ਗਲੈਕਸੀਆਂ ਦੇ ਸਮੂਹ ਅਤੇ ਉਨ੍ਹਾਂ ਵਿਚਕਾਰ ਖਾਲੀ ਸਪੇਸ ਦੀਆਂ
ਅਕਲਪਨੀ ਦੂਰੀਆਂ ਹਨ।

ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਹਜ਼ਾਰਾਂ ਆਯਾਮ ਹਨ, ਲੇਟੈਂਟ ਸਪੇਸ ਮਨੁੱਖਾਂ ਦੁਆਰਾ ਸਿੱਧੇ ਤੌਰ ’ਤੇ ਦੇਖਿਆ ਜਾਂ ਸਮਝਿਆ
ਨਹੀਂ ਜਾ ਸਕਦਾ। ਇਹ ਇੱਕ ਸਾਰ ਪ੍ਰਤੀਨਿਧਤਾ ਹੈ ਜੋ ਮਾਡਲ ਭਾਸ਼ਾ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰਨ ਅਤੇ ਤਿਆਰ ਕਰਨ ਲਈ
ਅੰਦਰੂਨੀ ਤੌਰ ’ਤੇ ਵਰਤਦਾ ਹੈ। ਜਦੋਂ ਤੁਸੀਂ ਮਾਡਲ ਨੂੰ ਇੱਕ ਇਨਪੁੱਟ ਪ੍ਰੌਮਪਟ ਦਿੰਦੇ ਹੋ, ਇਹ ਅਸਲ ਵਿੱਚ ਉਸ
ਪ੍ਰੌਮਪਟ ਨੂੰ ਲੇਟੈਂਟ ਸਪੇਸ ਦੇ ਅੰਦਰ ਇੱਕ ਖਾਸ ਸਥਾਨ ’ਤੇ ਮੈਪ ਕਰਦਾ ਹੈ। ਫਿਰ ਮਾਡਲ ਜਵਾਬ ਤਿਆਰ ਕਰਨ
ਲਈ ਉਸ ਸਥਾਨ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਦੀ ਜਾਣਕਾਰੀ ਅਤੇ ਕਨੈਕਸ਼ਨਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦਾ ਹੈ।

ਗੱਲ ਇਹ ਹੈ ਕਿ ਮਾਡਲ ਨੇ ਆਪਣੇ ਸਿਖਲਾਈ ਡਾਟਾ ਤੋਂ ਬਹੁਤ ਜ਼ਿਆਦਾ ਜਾਣਕਾਰੀ ਸਿੱਖੀ ਹੈ, ਅਤੇ ਇਹ ਸਾਰੀ ਕਿਸੇ
ਦਿੱਤੇ ਕੰਮ ਲਈ ਢੁਕਵੀਂ ਜਾਂ ਸਹੀ ਨਹੀਂ ਹੈ। ਇਸੇ ਲਈ ਰਸਤੇ ਨੂੰ ਸੰਕੁਚਿਤ ਕਰਨਾ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਹੋ ਜਾਂਦਾ ਹੈ।
ਆਪਣੇ ਪ੍ਰੌਮਪਟਸ ਵਿੱਚ ਸਪੱਸ਼ਟ ਨਿਰਦੇਸ਼, ਉਦਾਹਰਣਾਂ, ਅਤੇ ਸੰਦਰਭ ਪ੍ਰਦਾਨ ਕਰਕੇ, ਤੁਸੀਂ ਅਸਲ ਵਿੱਚ ਮਾਡਲ
ਨੂੰ ਲੇਟੈਂਟ ਸਪੇਸ ਦੇ ਖਾਸ ਖੇਤਰਾਂ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਨ ਲਈ ਮਾਰਗਦਰਸ਼ਨ ਕਰ ਰਹੇ ਹੋ ਜੋ ਤੁਹਾਡੇ ਇੱਛਤ
ਆਉਟਪੁੱਟ ਲਈ ਸਭ ਤੋਂ ਢੁਕਵੇਂ ਹਨ।

ਇਸ ਬਾਰੇ ਸੋਚਣ ਦਾ ਇੱਕ ਵੱਖਰਾ ਤਰੀਕਾ ਪੂਰੀ ਤਰ੍ਹਾਂ ਹਨੇਰੇ ਅਜਾਇਬ ਘਰ ਵਿੱਚ ਸਪੌਟਲਾਈਟ ਦੀ ਵਰਤੋਂ ਕਰਨ
ਵਾਂਗ ਹੈ। ਜੇ ਤੁਸੀਂ ਕਦੇ Louvre ਜਾਂ Metropolitan Museum of Art ਗਏ ਹੋ, ਤਾਂ ਇਹ ਉਸ ਤਰ੍ਹਾਂ
ਦਾ ਪੈਮਾਨਾ ਹੈ ਜਿਸ ਬਾਰੇ ਮੈਂ ਗੱਲ ਕਰ ਰਿਹਾ ਹਾਂ। ਲੇਟੈਂਟ ਸਪੇਸ ਅਜਾਇਬ ਘਰ ਹੈ, ਜੋ ਅਣਗਿਣਤ ਵਸਤੂਆਂ ਅਤੇ
ਵੇਰਵਿਆਂ ਨਾਲ ਭਰਿਆ ਹੋਇਆ ਹੈ। ਤੁਹਾਡਾ ਪ੍ਰੌਮਪਟ ਸਪੌਟਲਾਈਟ ਹੈ, ਜੋ ਖਾਸ ਖੇਤਰਾਂ ਨੂੰ ਰੌਸ਼ਨ ਕਰਦਾ ਹੈ ਅਤੇ
ਮਾਡਲ ਦਾ ਧਿਆਨ ਸਭ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਜਾਣਕਾਰੀ ਵੱਲ ਖਿੱਚਦਾ ਹੈ। ਉਸ ਮਾਰਗਦਰਸ਼ਨ ਤੋਂ ਬਿਨਾਂ, ਮਾਡਲ ਲੇਟੈਂਟ
ਸਪੇਸ ਵਿੱਚ ਬੇਮਕਸਦ ਭਟਕ ਸਕਦਾ ਹੈ, ਰਾਹ ਵਿੱਚ ਅਢੁਕਵੀਂ ਜਾਂ ਵਿਰੋਧੀ ਜਾਣਕਾਰੀ ਇਕੱਠੀ ਕਰਦਾ ਹੋਇਆ।

ਜਿਵੇਂ ਤੁਸੀਂ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਨਾਲ ਕੰਮ ਕਰਦੇ ਹੋ ਅਤੇ ਆਪਣੇ ਪ੍ਰੌਮਪਟਸ ਤਿਆਰ ਕਰਦੇ ਹੋ, ਲੇਟੈਂਟ ਸਪੇਸ ਦੀ ਧਾਰਨਾ
ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖੋ। ਤੁਹਾਡਾ ਟੀਚਾ ਇਸ ਵਿਸ਼ਾਲ ਗਿਆਨ ਭੂਗੋਲ ਨੂੰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਨੈਵੀਗੇਟ ਕਰਨਾ
ਹੈ, ਮਾਡਲ ਨੂੰ ਤੁਹਾਡੇ ਕੰਮ ਲਈ ਸਭ ਤੋਂ ਢੁਕਵੀਂ ਅਤੇ ਸਹੀ ਜਾਣਕਾਰੀ ਵੱਲ ਨਿਰਦੇਸ਼ਿਤ ਕਰਨਾ ਹੈ। ਰਸਤੇ ਨੂੰ ਸੰਕੁਚਿਤ
ਕਰਕੇ ਅਤੇ ਸਪੱਸ਼ਟ ਮਾਰਗਦਰਸ਼ਨ ਪ੍ਰਦਾਨ ਕਰਕੇ, ਤੁਸੀਂ ਮਾਡਲ ਦੇ ਲੇਟੈਂਟ ਸਪੇਸ ਦੀ ਪੂਰੀ ਸਮਰੱਥਾ ਨੂੰ ਅਨਲੌਕ
ਕਰ ਸਕਦੇ ਹੋ ਅਤੇ ਉੱਚ-ਗੁਣਵੱਤਾ, ਸੁਸੰਗਤ ਜਵਾਬ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹੋ।

ਭਾਵੇਂ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਅਤੇ ਉਹਨਾਂ ਦੇ ਨੈਵੀਗੇਟ ਕਰਨ ਵਾਲੇ ਲੇਟੈਂਟ ਸਪੇਸ ਦੇ ਪਿਛਲੇ ਵਰਣਨ ਥੋੜ੍ਹੇ ਜਾਦੂਈ ਜਾਂ ਸਾਰ
ਜਾਪ ਸਕਦੇ ਹਨ, ਇਹ ਸਮਝਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਪ੍ਰੌਮਪਟਸ ਜਾਦੂ ਜਾਂ ਮੰਤਰ ਨਹੀਂ ਹਨ। ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਦੇ ਕੰਮ
ਕਰਨ ਦਾ ਤਰੀਕਾ ਰੇਖਿਕ ਬੀਜਗਣਿਤ ਅਤੇ ਸੰਭਾਵਨਾ ਸਿਧਾਂਤ ਦੇ ਸਿਧਾਂਤਾਂ ’ਤੇ ਆਧਾਰਿਤ ਹੈ।

ਆਪਣੇ ਮੂਲ ਰੂਪ ਵਿੱਚ, ਭਾਸ਼ਾ ਮਾਡਲ ਟੈਕਸਟ ਦੇ ਸੰਭਾਵੀ ਮਾਡਲ ਹਨ, ਬਿਲਕੁਲ ਉਸੇ ਤਰ੍ਹਾਂ ਜਿਵੇਂ ਬੈੱਲ ਕਰਵ ਡਾਟਾ

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 40

ਦਾ ਅੰਕੜਾ ਮਾਡਲ ਹੈ। ਇਹਨਾਂ ਨੂੰ ਸਵੈ-ਪ੍ਰਤੀਗਾਮੀ ਮਾਡਲਿੰਗ ਕਹੀ ਜਾਂਦੀ ਪ੍ਰਕਿਰਿਆ ਰਾਹੀਂ ਸਿਖਲਾਈ ਦਿੱਤੀ
ਜਾਂਦੀ ਹੈ, ਜਿੱਥੇ ਮਾਡਲ ਪਿਛਲੇ ਸ਼ਬਦਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਲੜੀ ਵਿੱਚ ਅਗਲੇ ਸ਼ਬਦ ਦੀ ਸੰਭਾਵਨਾ ਦੀ ਭਵਿੱਖਬਾਣੀ
ਕਰਨਾ ਸਿੱਖਦਾ ਹੈ। ਸਿਖਲਾਈ ਦੌਰਾਨ, ਮਾਡਲ ਬੇਤਰਤੀਬੇ ਭਾਰਾਂ ਨਾਲ ਸ਼ੁਰੂ ਹੁੰਦਾ ਹੈ ਅਤੇ ਹੌਲੀ-ਹੌਲੀ ਉਹਨਾਂ ਨੂੰ
ਅਜਿਹੇ ਟੈਕਸਟ ਨੂੰ ਉੱਚ ਸੰਭਾਵਨਾਵਾਂ ਦੇਣ ਲਈ ਵਿਵਸਥਿਤ ਕਰਦਾ ਹੈ ਜੋ ਉਹਨਾਂ ਅਸਲ-ਸੰਸਾਰ ਦੇ ਨਮੂਨਿਆਂ ਨਾਲ
ਮਿਲਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ’ਤੇ ਇਸਨੂੰ ਸਿਖਲਾਈ ਦਿੱਤੀ ਗਈ ਸੀ।

ਹਾਲਾਂਕਿ, ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਨੂੰ ਸਧਾਰਨ ਅੰਕੜਾ ਮਾਡਲਾਂ ਵਾਂਗ ਸੋਚਣਾ, ਜਿਵੇਂ ਕਿ ਰੇਖਿਕ ਪ੍ਰਤੀਗਮਨ, ਉਨ੍ਹਾਂ ਦੇ
ਵਿਵਹਾਰ ਨੂੰ ਸਮਝਣ ਲਈ ਸਭ ਤੋਂ ਵਧੀਆ ਸਮਝ ਨਹੀਂ ਦਿੰਦਾ। ਇੱਕ ਵਧੇਰੇ ਢੁਕਵੀਂ ਤੁਲਨਾ ਇਹ ਹੈ ਕਿ ਉਨ੍ਹਾਂ
ਨੂੰ ਸੰਭਾਵੀ ਪ੍ਰੋਗਰਾਮਾਂ ਵਜੋਂ ਸੋਚਿਆ ਜਾਵੇ, ਜੋ ਅਜਿਹੇ ਮਾਡਲ ਹਨ ਜੋ ਬੇਤਰਤੀਬੇ ਵੇਰੀਏਬਲਾਂ ਦੀ ਹੇਰਫੇਰ ਦੀ
ਇਜਾਜ਼ਤ ਦਿੰਦੇ ਹਨ ਅਤੇ ਗੁੰਝਲਦਾਰ ਅੰਕੜਾ ਸਬੰਧਾਂ ਨੂੰ ਦਰਸਾ ਸਕਦੇ ਹਨ।

ਸੰਭਾਵੀ ਪ੍ਰੋਗਰਾਮਾਂ ਨੂੰ ਗ੍ਰਾਫਿਕਲ ਮਾਡਲਾਂ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਜੋ ਮਾਡਲ ਵਿੱਚ ਵੇਰੀਏਬਲਾਂ
ਵਿਚਕਾਰ ਨਿਰਭਰਤਾਵਾਂ ਅਤੇ ਸਬੰਧਾਂ ਨੂੰ ਸਮਝਣ ਦਾ ਇੱਕ ਦ੍ਰਿਸ਼ਟੀਗਤ ਤਰੀਕਾ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਇਹ
ਨਜ਼ਰੀਆ GPT-4 ਅਤੇ Claude ਵਰਗੇ ਗੁੰਝਲਦਾਰ ਟੈਕਸਟ ਜਨਰੇਸ਼ਨ ਮਾਡਲਾਂ ਦੀ ਕਾਰਜਪ੍ਰਣਾਲੀ ਬਾਰੇ
ਮੁੱਲਵਾਨ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ।

ਡੋਹਨ ਅਤੇ ਹੋਰਾਂ ਦੁਆਰਾ “ਲੈਂਗੂਏਜ ਮਾਡਲ ਕੈਸਕੇਡਜ਼” ਪੇਪਰ ਵਿੱਚ, ਲੇਖਕ ਇਸ ਗੱਲ ਦੇ ਵੇਰਵਿਆਂ ਵਿੱਚ ਜਾਂਦੇ
ਹਨ ਕਿ ਸੰਭਾਵੀ ਪ੍ਰੋਗਰਾਮਾਂ ਨੂੰ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ’ਤੇ ਕਿਵੇਂ ਲਾਗੂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਉਹ ਦਿਖਾਉਂਦੇ ਹਨ ਕਿ ਇਸ
ਫਰੇਮਵਰਕ ਨੂੰ ਇਨ੍ਹਾਂ ਮਾਡਲਾਂ ਦੇ ਵਿਵਹਾਰ ਨੂੰ ਸਮਝਣ ਅਤੇ ਵਧੇਰੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਪ੍ਰੌਂਪਟਿੰਗ ਰਣਨੀਤੀਆਂ ਦੇ
ਵਿਕਾਸ ਨੂੰ ਨਿਰਦੇਸ਼ਿਤ ਕਰਨ ਲਈ ਕਿਵੇਂ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਇਸ ਸੰਭਾਵੀ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਤੋਂ ਇੱਕ ਮੁੱਖ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਇਹ ਹੈ ਕਿ ਭਾਸ਼ਾ ਮਾਡਲ ਅਸਲ ਵਿੱਚ ਇੱਕ ਵਿਕਲਪਿਕ
ਬ੍ਰਹਿਮੰਡ ਵੱਲ ਇੱਕ ਪੋਰਟਲ ਬਣਾਉਂਦਾ ਹੈ ਜਿੱਥੇ ਲੋੜੀਂਦੇ ਦਸਤਾਵੇਜ਼ ਮੌਜੂਦ ਹਨ। ਮਾਡਲ ਸਾਰੇ ਸੰਭਵ ਦਸਤਾਵੇਜ਼ਾਂ
ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਸੰਭਾਵਨਾ ਦੇ ਆਧਾਰ ’ਤੇ ਭਾਰ ਨਿਰਧਾਰਤ ਕਰਦਾ ਹੈ, ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਸਭ ਤੋਂ ਢੁਕਵੇਂ ਲੋਕਾਂ
’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਨ ਲਈ ਸੰਭਾਵਨਾਵਾਂ ਦੀ ਸਪੇਸ ਨੂੰ ਸੀਮਤ ਕਰਦਾ ਹੈ।

ਇਹ ਸਾਨੂੰ “ਰਾਹ ਨੂੰ ਤੰਗ ਕਰਨ” ਦੇ ਕੇਂਦਰੀ ਵਿਸ਼ੇ ਵੱਲ ਵਾਪਸ ਲਿਆਉਂਦਾ ਹੈ। ਪ੍ਰੌਂਪਟਿੰਗ ਦਾ ਮੁੱਖ ਉਦੇਸ਼ ਸੰਭਾਵੀ
ਮਾਡਲ ਨੂੰ ਅਜਿਹੇ ਢੰਗ ਨਾਲ ਸ਼ਰਤਬੱਧ ਕਰਨਾ ਹੈ ਜੋ ਇਸਦੀਆਂ ਭਵਿੱਖਬਾਣੀਆਂ ਦੇ ਪੁੰਜ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ
ਕਰਦਾ ਹੈ, ਉਸ ਖਾਸ ਜਾਣਕਾਰੀ ਜਾਂ ਵਿਵਹਾਰ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਦਾ ਹੈ ਜੋ ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਾਂ।
ਧਿਆਨ ਨਾਲ ਤਿਆਰ ਕੀਤੇ ਪ੍ਰੌਂਪਟ ਪ੍ਰਦਾਨ ਕਰਕੇ, ਅਸੀਂ ਮਾਡਲ ਨੂੰ ਗੁਪਤ ਸਪੇਸ ਵਿੱਚ ਵਧੇਰੇ ਕੁਸ਼ਲਤਾ ਨਾਲ
ਨੈਵੀਗੇਟ ਕਰਨ ਅਤੇ ਵਧੇਰੇ ਢੁਕਵੇਂ ਅਤੇ ਸੁਸੰਗਤ ਆਉਟਪੁੱਟ ਤਿਆਰ ਕਰਨ ਲਈ ਗਾਈਡ ਕਰ ਸਕਦੇ ਹਾਂ।

ਹਾਲਾਂਕਿ, ਇਹ ਧਿਆਨਵਿੱਚ ਰੱਖਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਭਾਸ਼ਾ ਮਾਡਲਆਖਰਕਾਰ ਉਸ ਜਾਣਕਾਰੀ ਦੁਆਰਾ ਸੀਮਿਤ

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 41

ਹੈ ਜਿਸ ’ਤੇ ਇਸਨੂੰ ਸਿਖਲਾਈ ਦਿੱਤੀ ਗਈ ਸੀ। ਭਾਵੇਂ ਇਹ ਮੌਜੂਦਾ ਦਸਤਾਵੇਜ਼ਾਂ ਦੇ ਸਮਾਨ ਟੈਕਸਟ ਤਿਆਰ ਕਰ
ਸਕਦਾ ਹੈ ਜਾਂ ਵਿਚਾਰਾਂ ਨੂੰ ਨਵੇਂ ਤਰੀਕਿਆਂ ਨਾਲ ਜੋੜ ਸਕਦਾ ਹੈ, ਇਹ ਪੂਰੀ ਤਰ੍ਹਾਂ ਨਵੀਂ ਜਾਣਕਾਰੀ ਨੂੰ ਸ਼ੁਰੂ ਤੋਂ ਨਹੀਂ
ਬਣਾ ਸਕਦਾ। ਉਦਾਹਰਨ ਲਈ, ਅਸੀਂ ਮਾਡਲ ਤੋਂ ਕੈਂਸਰ ਦਾ ਇਲਾਜ ਪ੍ਰਦਾਨ ਕਰਨ ਦੀ ਉਮੀਦ ਨਹੀਂ ਕਰ ਸਕਦੇ
ਜੇਕਰ ਅਜਿਹਾ ਇਲਾਜ ਖੋਜਿਆ ਅਤੇ ਇਸਦੇ ਸਿਖਲਾਈ ਡੇਟਾ ਵਿੱਚ ਦਸਤਾਵੇਜ਼ੀ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ।

ਇਸ ਦੀ ਬਜਾਏ, ਮਾਡਲ ਦੀ ਤਾਕਤ ਉਸ ਜਾਣਕਾਰੀ ਨੂੰ ਲੱਭਣ ਅਤੇ ਸੰਸਲੇਸ਼ਣ ਕਰਨ ਦੀ ਇਸਦੀ ਯੋਗਤਾ ਵਿੱਚ
ਹੈ ਜੋ ਉਸ ਨਾਲ ਮਿਲਦੀ-ਜੁਲਦੀ ਹੈ ਜਿਸ ਨਾਲ ਅਸੀਂ ਇਸਨੂੰ ਪ੍ਰੇਰਿਤ ਕਰਦੇ ਹਾਂ। ਇਨ੍ਹਾਂ ਮਾਡਲਾਂ ਦੀ ਸੰਭਾਵੀ
ਪ੍ਰਕਿਰਤੀ ਨੂੰ ਸਮਝ ਕੇ ਅਤੇ ਪ੍ਰੌਂਪਟਸ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਆਉਟਪੁੱਟ ਨੂੰ ਸ਼ਰਤਬੱਧ ਕਰਨ ਲਈ ਕਿਵੇਂ ਵਰਤਿਆ ਜਾ
ਸਕਦਾ ਹੈ, ਅਸੀਂ ਮੁੱਲਵਾਨ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਅਤੇ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰਨ ਲਈ ਉਨ੍ਹਾਂ ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ਦਾ
ਵਧੇਰੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਲਾਭ ਲੈ ਸਕਦੇ ਹਾਂ।

ਹੇਠਾਂ ਦਿੱਤੇ ਪ੍ਰੌਂਪਟਸ ’ਤੇ ਵਿਚਾਰ ਕਰੋ। ਪਹਿਲੇ ਵਿੱਚ, “ਮਰਕਰੀ” ਇਕੱਲਾ ਗ੍ਰਹਿ, ਤੱਤ, ਜਾਂ ਰੋਮਨ ਦੇਵਤਾ ਨੂੰ ਦਰਸਾ
ਸਕਦਾ ਹੈ, ਪਰ ਸਭ ਤੋਂ ਵੱਧ ਸੰਭਾਵਨਾ ਗ੍ਰਹਿ ਦੀ ਹੈ। ਦਰਅਸਲ, GPT-4 ਇੱਕ ਲੰਬਾ ਜਵਾਬ ਦਿੰਦਾ ਹੈ ਜੋ ਮਰਕਰੀ
ਸੂਰਜੀ ਮੰਡਲ ਵਿੱਚ ਸਭ ਤੋਂ ਛੋਟਾ ਅਤੇ ਸਭ ਤੋਂ ਅੰਦਰੂਨੀ ਗ੍ਰਹਿ ਹੈ… ਨਾਲ ਸ਼ੁਰੂ ਹੁੰਦਾ ਹੈ। ਦੂਜਾ ਪ੍ਰੌਂਪਟ ਖਾਸ ਤੌਰ
’ਤੇ ਰਸਾਇਣਕ ਤੱਤ ਦਾ ਹਵਾਲਾ ਦਿੰਦਾ ਹੈ। ਤੀਜਾ ਰੋਮਨ ਮਿਥਿਹਾਸਕ ਆਕ੍ਰਿਤੀ ਦਾ ਹਵਾਲਾ ਦਿੰਦਾ ਹੈ, ਜੋ ਆਪਣੀ
ਗਤੀ ਅਤੇ ਦੈਵੀ ਸੰਦੇਸ਼ਵਾਹਕ ਵਜੋਂ ਭੂਮਿਕਾ ਲਈ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ।

1 # Prompt 1

2 Tell me about: Mercury

3

4 # Prompt 2

5 Tell me about: Mercury element

6

7 # Prompt 3

8 Tell me about: Mercury messenger of the gods

ਸਿਰਫ ਕੁਝ ਵਾਧੂ ਸ਼ਬਦ ਜੋੜ ਕੇ, ਅਸੀਂ AI ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਬਦਲ ਦਿੱਤਾ ਹੈ। ਜਿਵੇਂ ਕਿ ਤੁਸੀਂ
ਕਿਤਾਬ ਵਿੱਚ ਬਾਅਦ ਵਿੱਚ ਸਿੱਖੋਗੇ, ਵਿਸ਼ੇਸ਼ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਤਕਨੀਕਾਂ ਜਿਵੇਂ n-shot ਪ੍ਰੌਮਪਟਿੰਗ,
ਸੰਰਚਿਤ ਇਨਪੁੱਟ/ਆਉਟਪੁੱਟ, ਅਤੇ ਵਿਚਾਰਾਂ ਦੀ ਲੜੀ ਮਾਡਲ ਦੇ ਆਉਟਪੁੱਟ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਦੇ ਚਲਾਕ
ਤਰੀਕੇ ਹੀ ਹਨ।

ਇਸ ਲਈ ਅੰਤ ਵਿੱਚ, ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਦੀ ਕਲਾ ਭਾਸ਼ਾ ਮੌਡਲ ਦੇ ਗਿਆਨ ਦੇ ਵਿਸ਼ਾਲ ਸੰਭਾਵੀ ਖੇਤਰ
ਵਿੱਚ ਨੈਵੀਗੇਟ ਕਰਨ ਦੀ ਸਮਝ ਬਾਰੇ ਹੈ, ਤਾਂ ਜੋ ਅਸੀਂ ਜਿਸ ਖਾਸ ਜਾਣਕਾਰੀ ਜਾਂ ਵਿਵਹਾਰ ਦੀ ਭਾਲ ਕਰ ਰਹੇ ਹਾਂ,
ਉਸ ਤੱਕ ਦਾ ਰਸਤਾ ਸੀਮਤ ਕਰ ਸਕੀਏ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 42

ਉਨ੍ਹਾਂ ਪਾਠਕਾਂ ਲਈ ਜਿਨ੍ਹਾਂ ਦੀ ਉੱਚ ਗਣਿਤ ਵਿੱਚ ਮਜ਼ਬੂਤ ਪਕੜ ਹੈ, ਇਨ੍ਹਾਂ ਮੌਡਲਾਂ ਦੀ ਆਪਣੀ ਸਮਝ ਨੂੰ
ਸੰਭਾਵਨਾ ਸਿਧਾਂਤ ਅਤੇ ਲੀਨੀਅਰ ਐਲਜਬਰਾ ਦੇ ਸਿਧਾਂਤਾਂ ਵਿੱਚ ਆਧਾਰਿਤ ਕਰਨਾ ਨਿਸ਼ਚਿਤ ਤੌਰ ’ਤੇ ਤੁਹਾਡੀ
ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ! ਤੁਹਾਡੇ ਵਿੱਚੋਂ ਬਾਕੀ ਲੋਕਾਂ ਲਈ ਜੋ ਲੋੜੀਂਦੇ ਆਉਟਪੁੱਟ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਪ੍ਰਭਾਵਸ਼ਾਲੀ
ਰਣਨੀਤੀਆਂ ਵਿਕਸਿਤ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਨ, ਆਓ ਵਧੇਰੇ ਸਹਿਜ ਪਹੁੰਚਾਂ ’ਤੇ ਟਿਕੇ ਰਹੀਏ।

ਰਸਤਾ ਕਿਵੇਂ “ਸੀਮਤ” ਹੁੰਦਾ ਹੈ

ਬਹੁਤ ਜ਼ਿਆਦਾ ਗਿਆਨ ਦੀਆਂ ਇਨ੍ਹਾਂ ਚੁਣੌਤੀਆਂ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਅਸੀਂ ਅਜਿਹੀਆਂ ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ
ਕਰਦੇ ਹਾਂ ਜੋ ਭਾਸ਼ਾ ਮੌਡਲ ਦੀ ਉਤਪਾਦਨ ਪ੍ਰਕਿਰਿਆਦੀਅਗਵਾਈਕਰਨਅਤੇਇਸਦਾ ਧਿਆਨਸਭਤੋਂ ਪ੍ਰਸੰਗਿਕ
ਅਤੇ ਸਹੀ ਜਾਣਕਾਰੀ ’ਤੇ ਕੇਂਦਰਿਤ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰਦੀਆਂ ਹਨ।

ਇੱਥੇ ਸਿਫਾਰਸ਼ੀ ਕ੍ਰਮ ਵਿੱਚ ਸਭ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਤਕਨੀਕਾਂ ਹਨ, ਯਾਨੀ, ਤੁਹਾਨੂੰ ਪਹਿਲਾਂ ਪ੍ਰੌਮਪਟਇੰਜੀਨੀਅਰਿੰਗ
ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ, ਫਿਰ RAG, ਅਤੇ ਫਿਰ ਅੰਤ ਵਿੱਚ, ਜੇ ਤੁਹਾਨੂੰ ਜ਼ਰੂਰੀ ਹੋਵੇ, ਫਾਈਨ ਟਿਊਨਿੰਗ।

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਸਭ ਤੋਂ ਮੁੱਢਲੀ ਪਹੁੰਚ ਮਾਡਲ ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਉਤਪਾਦਨ ਦੀ ਅਗਵਾਈ ਲਈ
ਖਾਸ ਹਿਦਾਇਤਾਂ, ਸੀਮਾਵਾਂ, ਜਾਂ ਉਦਾਹਰਣਾਂ ਸ਼ਾਮਲ ਕਰਨ ਵਾਲੇ ਪ੍ਰੌਮਪਟਾਂ ਨੂੰ ਤਿਆਰ ਕਰਨਾ ਹੈ। ਇਹ ਅਧਿਆਇ
ਅਗਲੇ ਭਾਗ ਵਿੱਚ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਦੇ ਮੂਲ ਸਿਧਾਂਤਾਂ ਨੂੰ ਕਵਰ ਕਰਦਾ ਹੈ, ਅਤੇ ਅਸੀਂ ਕਿਤਾਬ ਦੇ ਭਾਗ
2 ਵਿੱਚ ਕਈ ਖਾਸ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਪੈਟਰਨਾਂ ਨੂੰ ਕਵਰ ਕਰਦੇ ਹਾਂ। ਉਹਨਾਂ ਪੈਟਰਨਾਂ ਵਿੱਚ ਪ੍ਰੌਮਪਟ
ਨਿਤਾਰਨਾ ਸ਼ਾਮਲ ਹੈ, ਜੋ ਇੱਕ ਤਕਨੀਕ ਹੈ ਜੋ AI ਦੁਆਰਾ ਸਭ ਤੋਂ ਢੁਕਵੀਂ ਅਤੇ ਸੰਖੇਪ ਜਾਣਕਾਰੀ ਨੂੰ ਕੱਢਣ ਲਈ
ਪ੍ਰੌਮਪਟਾਂ ਨੂੰ ਸੁਧਾਰਨ ਅਤੇ ਅਨੁਕੂਲ ਬਣਾਉਣ ’ਤੇ ਕੇਂਦਰਿਤ ਹੈ।

ਸੰਦਰਭ ਵਾਧਾ। ਬਾਹਰੀ ਗਿਆਨ ਅਧਾਰਾਂ ਜਾਂ ਦਸਤਾਵੇਜ਼ਾਂ ਤੋਂ ਪ੍ਰਸੰਗਿਕ ਜਾਣਕਾਰੀ ਨੂੰ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ
ਪ੍ਰਾਪਤ ਕਰਨਾ ਤਾਂ ਜੋ ਮਾਡਲ ਨੂੰ ਪ੍ਰੌਮਪਟ ਕੀਤੇ ਜਾਣ ਦੇ ਸਮੇਂ ਕੇਂਦਰਿਤ ਸੰਦਰਭ ਪ੍ਰਦਾਨ ਕੀਤਾ ਜਾ ਸਕੇ।
ਪ੍ਰਸਿੱਧ ਸੰਦਰਭ ਵਾਧਾ ਤਕਨੀਕਾਂ ਵਿੱਚ ਪੁਨਰ-ਪ੍ਰਾਪਤੀ-ਵਧਾਇਆ ਉਤਪਾਦਨ (RAG) ਸ਼ਾਮਲ ਹੈ। ਤਥਾਕਥਿਤ
“ਔਨਲਾਈਨ ਮੌਡਲ” ਜਿਵੇਂ ਕਿ Perplexity ਦੁਆਰਾ ਪ੍ਰਦਾਨ ਕੀਤੇ ਗਏ ਮੌਡਲ ਰੀਅਲ-ਟਾਈਮ ਇੰਟਰਨੈੱਟ
ਖੋਜ ਨਤੀਜਿਆਂ ਨਾਲ ਆਪਣੇ ਸੰਦਰਭ ਨੂੰ ਵਧਾਉਣ ਦੇ ਯੋਗ ਹਨ।

ਉਨ੍ਹਾਂ ਦੀ ਸ਼ਕਤੀ ਦੇ ਬਾਵਜੂਦ, LLMs ਤੁਹਾਡੇ ਵਿਲੱਖਣ ਡੇਟਾਸੇਟਾਂ ’ਤੇ ਸਿਖਲਾਈ ਨਹੀਂ ਪਾਉਂਦੇ,
ਜੋ ਨਿੱਜੀ ਹੋ ਸਕਦੇ ਹਨ ਜਾਂ ਉਸ ਸਮੱਸਿਆ ਲਈ ਵਿਸ਼ੇਸ਼ ਹੋ ਸਕਦੇ ਹਨ ਜਿਸਨੂੰ ਤੁਸੀਂ ਹੱਲ ਕਰਨ ਦੀ
ਕੋਸ਼ਿਸ਼ ਕਰ ਰਹੇ ਹੋ। ਸੰਦਰਭ ਵਾਧਾ ਤਕਨੀਕਾਂ ਤੁਹਾਨੂੰ LLMs ਨੂੰ APIs, SQL ਡੇਟਾਬੇਸਾਂ, ਜਾਂ
PDFs ਅਤੇ ਸਲਾਈਡ ਡੈੱਕਾਂ ਵਿੱਚ ਫਸੇ ਡੇਟਾ ਤੱਕ ਪਹੁੰਚ ਦੇਣ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦੀਆਂ ਹਨ।

https://perplexity.ai

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 43

ਬਰੀਕ ਟਿਊਨਿੰਗ ਜਾਂ ਖੇਤਰ ਅਨੁਕੂਲਤਾ ਮਾਡਲ ਨੂੰ ਖੇਤਰ-ਵਿਸ਼ੇਸ਼ ਡੇਟਾਸੇਟਾਂ ’ਤੇ ਸਿਖਲਾਈ ਦੇਣਾ ਤਾਂ ਜੋ ਕਿਸੇ
ਵਿਸ਼ੇਸ਼ ਕਾਰਜ ਜਾਂ ਖੇਤਰ ਲਈ ਇਸਦੇ ਗਿਆਨ ਅਤੇ ਉਤਪਾਦਨ ਸਮਰੱਥਾਵਾਂ ਨੂੰ ਵਿਸ਼ੇਸ਼ ਬਣਾਇਆ ਜਾ ਸਕੇ।

ਤਾਪਮਾਨ ਨੂੰ ਘੱਟ ਕਰਨਾ

ਤਾਪਮਾਨ ਇੱਕ ਹਾਈਪਰਪੈਰਾਮੀਟਰ ਹੈ ਜੋ ਟ੍ਰਾਂਸਫਾਰਮਰ-ਆਧਾਰਿਤ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ਜੋ
ਉਤਪੰਨ ਕੀਤੇ ਟੈਕਸਟ ਦੀ ਬੇਤਰਤੀਬੀ ਅਤੇ ਰਚਨਾਤਮਕਤਾ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਦਾ ਹੈ। ਇਹ 0 ਅਤੇ 1 ਦੇ ਵਿਚਕਾਰ
ਇੱਕ ਮੁੱਲ ਹੈ, ਜਿੱਥੇ ਘੱਟ ਮੁੱਲ ਆਉਟਪੁੱਟ ਨੂੰ ਵਧੇਰੇ ਕੇਂਦਰਿਤ ਅਤੇ ਨਿਸ਼ਚਿਤ ਬਣਾਉਂਦੇ ਹਨ, ਜਦੋਂ ਕਿ ਉੱਚ ਮੁੱਲ
ਇਸਨੂੰ ਵਧੇਰੇ ਵਿਭਿੰਨ ਅਤੇ ਅਣਕਿਆਸੇ ਬਣਾਉਂਦੇ ਹਨ।

ਜਦੋਂ ਤਾਪਮਾਨ 1 ’ਤੇ ਸੈੱਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਭਾਸ਼ਾ ਮਾਡਲ ਅਗਲੇ ਟੋਕਨ ਦੀ ਪੂਰੀ ਸੰਭਾਵਨਾ ਵੰਡ ਦੇ ਆਧਾਰ ’ਤੇ
ਟੈਕਸਟ ਤਿਆਰ ਕਰਦਾ ਹੈ, ਜੋ ਵਧੇਰੇ ਰਚਨਾਤਮਕ ਅਤੇ ਵੱਖ-ਵੱਖ ਜਵਾਬਾਂ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦਾ ਹੈ। ਹਾਲਾਂਕਿ, ਇਸ
ਨਾਲ ਮਾਡਲ ਅਜਿਹਾ ਟੈਕਸਟ ਵੀ ਤਿਆਰ ਕਰ ਸਕਦਾ ਹੈ ਜੋ ਘੱਟ ਪ੍ਰਸੰਗਿਕ ਜਾਂ ਸੁਸੰਗਤ ਹੋਵੇ।

ਦੂਜੇ ਪਾਸੇ, ਜਦੋਂ ਤਾਪਮਾਨ 0 ’ਤੇ ਸੈੱਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਭਾਸ਼ਾ ਮਾਡਲ ਹਮੇਸ਼ਾ ਸਭ ਤੋਂ ਵੱਧ ਸੰਭਾਵਨਾ ਵਾਲੇ ਟੋਕਨ
ਦੀ ਚੋਣ ਕਰਦਾ ਹੈ, ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ “ਆਪਣੇ ਰਸਤੇ ਨੂੰ ਸੰਕੁਚਿਤ ਕਰਦਾ ਹੈ।” ਮੇਰੇ ਲਗਭਗ ਸਾਰੇ AI
ਕੰਪੋਨੈਂਟ 0 ’ਤੇ ਜਾਂ ਇਸ ਦੇ ਨੇੜੇ ਸੈੱਟ ਕੀਤੇ ਤਾਪਮਾਨ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ, ਕਿਉਂਕਿ ਇਸ ਨਾਲ ਵਧੇਰੇ ਕੇਂਦਰਿਤ
ਅਤੇ ਅਨੁਮਾਨਯੋਗ ਜਵਾਬ ਮਿਲਦੇ ਹਨ। ਇਹ ਬਿਲਕੁਲ ਉਦੋਂ ਲਾਭਦਾਇਕ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਤੁਸੀਂ ਚਾਹੁੰਦੇ ਹੋ ਕਿ ਮਾਡਲ
ਹਦਾਇਤਾਂ ਦੀ ਪਾਲਣਾ ਕਰੇ, ਉਹਨਾਂ ਫੰਕਸ਼ਨਾਂ ਵੱਲ ਧਿਆਨ ਦੇਵੇ ਜੋ ਇਸਨੂੰ ਪ੍ਰਦਾਨ ਕੀਤੇ ਗਏ ਹਨ, ਜਾਂ ਬਸ ਤੁਹਾਨੂੰ
ਉਸ ਨਾਲੋਂ ਵਧੇਰੇ ਸਹੀ ਅਤੇ ਪ੍ਰਸੰਗਿਕ ਜਵਾਬਾਂ ਦੀ ਲੋੜ ਹੋਵੇ ਜੋ ਤੁਸੀਂ ਪ੍ਰਾਪਤ ਕਰ ਰਹੇ ਹੋ।

ਉਦਾਹਰਨ ਲਈ, ਜੇਕਰ ਤੁਸੀਂ ਇੱਕ ਚੈਟਬੋਟ ਬਣਾ ਰਹੇ ਹੋ ਜਿਸਨੂੰ ਤੱਥਾਤਮਕ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰਨ ਦੀ ਲੋੜ
ਹੈ, ਤਾਂ ਤੁਸੀਂ ਜਵਾਬਾਂ ਨੂੰ ਵਧੇਰੇ ਸਟੀਕ ਅਤੇ ਵਿਸ਼ੇ ਨਾਲ ਸਬੰਧਿਤ ਬਣਾਉਣ ਲਈ ਤਾਪਮਾਨ ਨੂੰ ਘੱਟ ਮੁੱਲ ’ਤੇ ਸੈੱਟ
ਕਰਨਾ ਚਾਹ ਸਕਦੇ ਹੋ। ਇਸਦੇ ਉਲਟ, ਜੇਕਰ ਤੁਸੀਂ ਇੱਕ ਰਚਨਾਤਮਕ ਲੇਖਣ ਸਹਾਇਕ ਬਣਾ ਰਹੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਵਧੇਰੇ
ਵਿਭਿੰਨ ਅਤੇ ਕਲਪਨਾਸ਼ੀਲ ਆਉਟਪੁੱਟ ਨੂੰ ਉਤਸ਼ਾਹਿਤ ਕਰਨ ਲਈ ਤਾਪਮਾਨ ਨੂੰ ਉੱਚ ਮੁੱਲ ’ਤੇ ਸੈੱਟ ਕਰਨਾ ਚਾਹ
ਸਕਦੇ ਹੋ।

ਹਾਈਪਰਪੈਰਾਮੀਟਰ: ਅਨੁਮਾਨ ਦੇ ਨੌਬ ਅਤੇ ਡਾਇਲ

ਜਦੋਂ ਤੁਸੀਂ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਨਾਲ ਕੰਮ ਕਰ ਰਹੇ ਹੁੰਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ “ਹਾਈਪਰਪੈਰਾਮੀਟਰ” ਸ਼ਬਦ ਨੂੰ ਅਕਸਰ ਦੇਖੋਗੇ।
ਅਨੁਮਾਨ ਦੇ ਸੰਦਰਭ ਵਿੱਚ (ਭਾਵ, ਜਦੋਂ ਤੁਸੀਂ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਲਈ ਮਾਡਲ ਦੀ ਵਰਤੋਂ ਕਰ ਰਹੇ ਹੁੰਦੇ ਹੋ),

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 44

ਹਾਈਪਰਪੈਰਾਮੀਟਰ ਉਹਨਾਂ ਨੌਬਾਂ ਅਤੇ ਡਾਇਲਾਂ ਵਾਂਗ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਤੁਸੀਂ ਮਾਡਲ ਦੇ ਵਿਵਹਾਰ ਅਤੇ
ਆਉਟਪੁੱਟ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਲਈ ਐਡਜਸਟ ਕਰ ਸਕਦੇ ਹੋ।

ਇਸ ਨੂੰ ਇੱਕ ਗੁੰਝਲਦਾਰ ਮਸ਼ੀਨ ’ਤੇ ਸੈਟਿੰਗਾਂ ਨੂੰ ਐਡਜਸਟ ਕਰਨ ਵਾਂਗ ਸੋਚੋ। ਜਿਵੇਂ ਤੁਸੀਂ ਤਾਪਮਾਨ ਨੂੰ ਨਿਯੰਤਰਿਤ
ਕਰਨ ਲਈ ਇੱਕ ਨੌਬ ਘੁਮਾ ਸਕਦੇ ਹੋ ਜਾਂ ਕਾਰਜ ਦੀ ਮੋਡ ਨੂੰ ਬਦਲਣ ਲਈ ਇੱਕ ਸਵਿੱਚ ਨੂੰ ਫਲਿੱਪ ਕਰ ਸਕਦੇ
ਹੋ, ਹਾਈਪਰਪੈਰਾਮੀਟਰ ਤੁਹਾਨੂੰ ਭਾਸ਼ਾ ਮਾਡਲ ਦੁਆਰਾ ਟੈਕਸਟ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰਨ ਅਤੇ ਤਿਆਰ ਕਰਨ ਦੇ ਤਰੀਕੇ ਨੂੰ
ਬਰੀਕੀ ਨਾਲ ਐਡਜਸਟ ਕਰਨ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦੇ ਹਨ।

ਇਨਫਰੈਂਸ ਦੌਰਾਨ ਤੁਸੀਂ ਜਿਹੜੇ ਆਮ ਹਾਈਪਰਪੈਰਾਮੀਟਰ ਦੇਖੋਗੇ ਉਹ ਹਨ:

• ਤਾਪਮਾਨ: ਜਿਵੇਂ ਕਿ ਹੁਣੇ ਦੱਸਿਆ ਗਿਆ ਹੈ, ਇਹ ਪੈਰਾਮੀਟਰ ਤਿਆਰ ਕੀਤੇ ਗਏ ਟੈਕਸਟ ਦੀ ਰੈਂਡਮਨੈੱਸ
ਅਤੇ ਰਚਨਾਤਮਕਤਾ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਦਾ ਹੈ। ਉੱਚ ਤਾਪਮਾਨ ਵੱਧ ਵਿਭਿੰਨ ਅਤੇ ਅਣਕਿਆਸੇ ਆਉਟਪੁੱਟ
ਵੱਲ ਲੈ ਜਾਂਦਾ ਹੈ, ਜਦਕਿ ਘੱਟ ਤਾਪਮਾਨ ਵਧੇਰੇ ਕੇਂਦਰਿਤ ਅਤੇ ਨਿਸ਼ਚਿਤ ਜਵਾਬਾਂ ਵਿੱਚ ਨਤੀਜਾ ਕੱਢਦਾ ਹੈ।

• ਟੌਪ-ਪੀ (ਨਿਊਕਲੀਅਸ) ਸੈਂਪਲਿੰਗ: ਇਹ ਪੈਰਾਮੀਟਰ ਟੋਕਨਾਂ ਦੇ ਸਭ ਤੋਂ ਛੋਟੇ ਸੈੱਟ ਦੀ ਚੋਣ ਨੂੰ ਨਿਯੰਤਰਿਤ
ਕਰਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਦੀ ਸੰਚਿਤ ਸੰਭਾਵਨਾ ਇੱਕ ਨਿਸ਼ਚਿਤ ਸੀਮਾ (p) ਤੋਂ ਵੱਧ ਜਾਂਦੀ ਹੈ। ਇਹ ਸੁਸੰਗਤੀ
ਬਣਾਈ ਰੱਖਦੇ ਹੋਏ ਵਧੇਰੇ ਵਿਭਿੰਨ ਆਉਟਪੁੱਟ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ।

• ਟੌਪ-ਕੇ ਸੈਂਪਲਿੰਗ: ਇਹ ਤਕਨੀਕ k ਸਭ ਤੋਂ ਸੰਭਾਵੀ ਅਗਲੇ ਟੋਕਨਾਂ ਦੀ ਚੋਣ ਕਰਦੀ ਹੈ ਅਤੇ ਉਨ੍ਹਾਂ ਵਿੱਚ
ਸੰਭਾਵਨਾ ਮਾਸ ਨੂੰ ਮੁੜ ਵੰਡਦੀ ਹੈ। ਇਹ ਮਾਡਲ ਨੂੰ ਘੱਟ-ਸੰਭਾਵਨਾ ਜਾਂ ਅਪ੍ਰਸੰਗਿਕ ਟੋਕਨ ਤਿਆਰ ਕਰਨ
ਤੋਂ ਰੋਕਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੀ ਹੈ।

• ਆਵਰਤੀ ਅਤੇ ਮੌਜੂਦਗੀ ਪੈਨਲਟੀਆਂ: ਇਹ ਪੈਰਾਮੀਟਰ ਮਾਡਲ ਨੂੰ ਇੱਕੋ ਸ਼ਬਦਾਂ ਜਾਂ ਵਾਕਾਂਸ਼ਾਂ ਨੂੰ ਬਹੁਤ
ਵਾਰ ਦੁਹਰਾਉਣ (ਆਵਰਤੀ ਪੈਨਲਟੀ) ਜਾਂ ਇਨਪੁੱਟ ਪ੍ਰੌਮਪਟ ਵਿੱਚ ਮੌਜੂਦ ਨਾ ਹੋਣ ਵਾਲੇ ਸ਼ਬਦਾਂ ਨੂੰ ਤਿਆਰ
ਕਰਨ (ਮੌਜੂਦਗੀ ਪੈਨਲਟੀ) ਲਈ ਦੰਡਿਤ ਕਰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਮੁੱਲਾਂ ਨੂੰ ਅਨੁਕੂਲ ਕਰਕੇ, ਤੁਸੀਂ ਮਾਡਲ ਨੂੰ
ਵਧੇਰੇ ਵਿਭਿੰਨ ਅਤੇ ਪ੍ਰਸੰਗਿਕ ਆਉਟਪੁੱਟ ਤਿਆਰ ਕਰਨ ਲਈ ਉਤਸ਼ਾਹਿਤ ਕਰ ਸਕਦੇ ਹੋ।

• ਵੱਧ ਤੋਂ ਵੱਧ ਲੰਬਾਈ: ਇਹ ਹਾਈਪਰਪੈਰਾਮੀਟਰ ਇੱਕ ਸਿੰਗਲ ਜਵਾਬ ਵਿੱਚ ਮਾਡਲ ਦੁਆਰਾ ਤਿਆਰ ਕੀਤੇ
ਜਾ ਸਕਣ ਵਾਲੇ ਟੋਕਨਾਂ (ਸ਼ਬਦਾਂ ਜਾਂ ਉਪ-ਸ਼ਬਦਾਂ) ਦੀ ਉੱਪਰੀ ਸੀਮਾ ਨਿਰਧਾਰਿਤ ਕਰਦਾ ਹੈ। ਇਹ ਤਿਆਰ
ਕੀਤੇ ਗਏ ਟੈਕਸਟ ਦੀ ਵਰਬੋਸਿਟੀ ਅਤੇ ਸੰਖੇਪਤਾ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰਦਾ ਹੈ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 45

ਜਿਵੇਂ ਤੁਸੀਂ ਵੱਖ-ਵੱਖ ਹਾਈਪਰਪੈਰਾਮੀਟਰ ਸੈਟਿੰਗਾਂ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹੋ, ਤੁਸੀਂ ਦੇਖੋਗੇ ਕਿ ਛੋਟੀਆਂ ਤਬਦੀਲੀਆਂ
ਵੀ ਮਾਡਲ ਦੇ ਆਉਟਪੁੱਟ ’ਤੇ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਭਾਵ ਪਾ ਸਕਦੀਆਂ ਹਨ। ਇਹ ਕਿਸੇ ਪਕਵਾਨ ਨੂੰ ਫਾਈਨ-ਟਿਊਨ
ਕਰਨ ਵਰਗਾ ਹੈ - ਥੋੜ੍ਹਾ ਜਿਹਾ ਵੱਧ ਲੂਣ ਜਾਂ ਥੋੜ੍ਹਾ ਜਿਹਾ ਲੰਬਾ ਪਕਾਉਣ ਦਾ ਸਮਾਂ ਅੰਤਿਮ ਪਕਵਾਨ ਵਿੱਚ ਸਾਰਾ
ਫਰਕ ਪਾ ਸਕਦਾ ਹੈ।

ਮੁੱਖ ਗੱਲ ਇਹ ਹੈ ਕਿ ਹਰ ਹਾਈਪਰਪੈਰਾਮੀਟਰ ਮਾਡਲ ਦੇ ਵਿਵਹਾਰ ਨੂੰ ਕਿਵੇਂ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ ਅਤੇ ਆਪਣੇ
ਵਿਸ਼ੇਸ਼ ਕਾਰਜ ਲਈ ਸਹੀ ਸੰਤੁਲਨ ਲੱਭਣਾ ਹੈ। ਵੱਖ-ਵੱਖ ਸੈਟਿੰਗਾਂ ਨਾਲ ਖੇਡਣ ਤੋਂ ਨਾ ਡਰੋ ਅਤੇ ਦੇਖੋ ਕਿ ਉਹ ਤਿਆਰ
ਕੀਤੇ ਟੈਕਸਟ ਨੂੰ ਕਿਵੇਂ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀਆਂ ਹਨ। ਸਮੇਂ ਦੇ ਨਾਲ, ਤੁਸੀਂ ਇਹ ਸਮਝ ਵਿਕਸਿਤ ਕਰ ਲਵੋਗੇ ਕਿ ਕਿਹੜੇ
ਹਾਈਪਰਪੈਰਾਮੀਟਰ ਨੂੰ ਐਡਜਸਟ ਕਰਨਾ ਹੈ ਅਤੇ ਲੋੜੀਂਦੇ ਨਤੀਜੇ ਕਿਵੇਂ ਪ੍ਰਾਪਤ ਕਰਨੇ ਹਨ।

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ, ਰਿਟਰੀਵਲ-ਔਗਮੈਂਟਿਡ ਜਨਰੇਸ਼ਨ, ਅਤੇ ਫਾਈਨ-ਟਿਊਨਿੰਗ ਦੇ ਨਾਲ ਇਨ੍ਹਾਂ
ਪੈਰਾਮੀਟਰਾਂ ਦੀ ਵਰਤੋਂ ਨੂੰ ਜੋੜ ਕੇ, ਤੁਸੀਂ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਰਸਤੇ ਨੂੰ ਸੰਕੁਚਿਤ ਕਰ ਸਕਦੇ ਹੋ ਅਤੇ ਭਾਸ਼ਾ
ਮਾਡਲ ਨੂੰ ਆਪਣੇ ਵਿਸ਼ੇਸ਼ ਕੇਸ ਲਈ ਵਧੇਰੇ ਸਟੀਕ, ਪ੍ਰਸੰਗਿਕ, ਅਤੇ ਮੁੱਲਵਾਨ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਲਈ
ਗਾਈਡ ਕਰ ਸਕਦੇ ਹੋ।

ਰਾਅ ਬਨਾਮ ਇੰਸਟਰਕਟ-ਟਿਊਨਡ ਮਾਡਲ

ਕੱਚੇ ਮਾਡਲ ਐੱਲਐੱਲਐੱਮਜ਼ ਦੇ ਅਣਸੋਧੇ, ਅਣਸਿਖੇ ਰੂਪ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ ਇੱਕ ਕੋਰੇ ਕੈਨਵਸ ਵਾਂਗ ਸਮਝੋ, ਜੋ ਅਜੇ
ਹਦਾਇਤਾਂ ਨੂੰ ਸਮਝਣ ਜਾਂ ਪਾਲਣ ਕਰਨ ਲਈ ਵਿਸ਼ੇਸ਼ ਸਿਖਲਾਈ ਤੋਂ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਹੋਇਆ। ਇਹ ਉਸ ਵਿਸ਼ਾਲ
ਡੇਟਾ ’ਤੇ ਬਣੇ ਹੁੰਦੇ ਹਨ ਜਿਸ ’ਤੇ ਉਹ ਸ਼ੁਰੂ ਵਿੱਚ ਸਿਖਲਾਈ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ, ਅਤੇ ਵੱਖ-ਵੱਖ ਕਿਸਮ ਦੇ ਆਉਟਪੁੱਟ
ਤਿਆਰ ਕਰਨ ਦੇ ਯੋਗ ਹੁੰਦੇ ਹਨ। ਹਾਲਾਂਕਿ, ਹਦਾਇਤ-ਆਧਾਰਿਤ ਬਰੀਕ ਸਿਖਲਾਈ ਦੀਆਂ ਵਾਧੂ ਪਰਤਾਂ ਤੋਂ ਬਿਨਾਂ,
ਉਨ੍ਹਾਂ ਦੇ ਜਵਾਬ ਅਣਕਿਆਸੇ ਹੋ ਸਕਦੇ ਹਨ ਅਤੇ ਲੋੜੀਂਦੇ ਆਉਟਪੁੱਟ ਵੱਲ ਉਨ੍ਹਾਂ ਦੀ ਅਗਵਾਈ ਕਰਨ ਲਈ
ਵਧੇਰੇ ਬਰੀਕ, ਧਿਆਨ ਨਾਲ ਤਿਆਰ ਕੀਤੇ ਪ੍ਰੌਮਪਟਸ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਕੱਚੇ ਮਾਡਲਾਂ ਨਾਲ ਕੰਮ ਕਰਨਾ ਇੱਕ
ਅਜਿਹੇ ਪ੍ਰਤਿਭਾਸ਼ਾਲੀ-ਮੂਰਖ ਤੋਂ ਗੱਲਬਾਤ ਕਢਵਾਉਣ ਵਰਗਾ ਹੈ ਜਿਸ ਕੋਲ ਵਿਸ਼ਾਲ ਗਿਆਨ ਤਾਂ ਹੈ ਪਰ ਤੁਸੀਂ ਕੀ
ਪੁੱਛ ਰਹੇ ਹੋ, ਇਸ ਬਾਰੇ ਕੋਈ ਅੰਤਰਝਾਤ ਨਹੀਂ ਹੈ ਜਦੋਂ ਤੱਕ ਤੁਸੀਂ ਆਪਣੀਆਂ ਹਦਾਇਤਾਂ ਵਿੱਚ ਬਹੁਤ ਸਟੀਕ ਨਹੀਂ
ਹੁੰਦੇ। ਉਹ ਅਕਸਰ ਇੱਕ ਤੋਤੇ ਵਾਂਗ ਲੱਗਦੇ ਹਨ, ਕਿ ਜਿਸ ਹੱਦ ਤੱਕ ਤੁਸੀਂ ਉਨ੍ਹਾਂ ਤੋਂ ਕੁਝ ਸਮਝਣਯੋਗ ਕਹਾਉਂਦੇ ਹੋ,
ਉਹ ਜ਼ਿਆਦਾਤਰ ਸਿਰਫ਼ ਉਹੀ ਦੁਹਰਾ ਰਹੇ ਹੁੰਦੇ ਹਨ ਜੋ ਉਨ੍ਹਾਂ ਨੇ ਤੁਹਾਨੂੰ ਕਹਿੰਦੇ ਸੁਣਿਆ ਹੈ।

ਦੂਜੇ ਪਾਸੇ, ਹਦਾਇਤ-ਸਿਖਲਾਈ ਮਾਡਲਾਂ ਨੇ ਹਦਾਇਤਾਂ ਨੂੰ ਸਮਝਣਅਤੇ ਪਾਲਣ ਕਰਨ ਲਈਵਿਸ਼ੇਸ਼ ਤੌਰ ’ਤੇ ਤਿਆਰ
ਕੀਤੀ ਸਿਖਲਾਈ ਦੇ ਗੇੜ ਪੂਰੇ ਕੀਤੇ ਹੁੰਦੇ ਹਨ। GPT-4, Claude 3 ਅਤੇ ਹੋਰ ਬਹੁਤ ਸਾਰੇ ਸਭ ਤੋਂ ਪ੍ਰਸਿੱਧ
ਐੱਲਐੱਲਐੱਮ ਮਾਡਲ ਸਾਰੇ ਗਹਿਰਾਈ ਨਾਲ ਹਦਾਇਤ-ਸਿਖਲਾਈ ਪ੍ਰਾਪਤ ਹਨ। ਇਸ ਸਿਖਲਾਈ ਵਿੱਚ ਮਾਡਲ ਨੂੰ

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 46

ਲੋੜੀਂਦੇ ਨਤੀਜਿਆਂ ਦੇ ਨਾਲ ਹਦਾਇਤਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਦੇਣਾ ਸ਼ਾਮਲ ਹੈ, ਜੋ ਅਸਲ ਵਿੱਚ ਮਾਡਲ ਨੂੰ ਕਮਾਂਡਾਂ ਦੀ
ਵਿਆਪਕ ਸ਼੍ਰੇਣੀ ਦੀ ਵਿਆਖਿਆਅਤੇ ਕਾਰਜਾਂਵੀ ਕਰਨਾ ਸਿਖਾਉਂਦਾ ਹੈ। ਨਤੀਜੇ ਵਜੋਂ, ਹਦਾਇਤ ਮਾਡਲ ਪ੍ਰੌਮਪਟ
ਦੇ ਪਿੱਛੇ ਦੇ ਇਰਾਦੇ ਨੂੰ ਵਧੇਰੇ ਆਸਾਨੀ ਨਾਲ ਸਮਝ ਸਕਦੇ ਹਨ ਅਤੇ ਅਜਿਹੇ ਜਵਾਬ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹਨ ਜੋ
ਵਰਤੋਂਕਾਰ ਦੀਆਂ ਉਮੀਦਾਂ ਦੇ ਨੇੜੇ ਹੁੰਦੇ ਹਨ। ਇਹ ਉਨ੍ਹਾਂ ਨੂੰ ਵਧੇਰੇ ਵਰਤੋਂਕਾਰ-ਅਨੁਕੂਲ ਅਤੇ ਕੰਮ ਕਰਨ ਵਿੱਚ
ਆਸਾਨ ਬਣਾਉਂਦਾ ਹੈ, ਖਾਸ ਕਰਕੇ ਉਨ੍ਹਾਂ ਲੋਕਾਂ ਲਈ ਜਿਨ੍ਹਾਂ ਕੋਲ ਵਿਆਪਕ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਵਿੱਚ
ਰੁੱਝਣ ਲਈ ਸਮਾਂ ਜਾਂ ਮੁਹਾਰਤ ਨਹੀਂ ਹੋ ਸਕਦੀ।

ਕੱਚੇ ਮਾਡਲ: ਅਣਫ਼ਿਲਟਰਡ ਕੈਨਵਸ

ਕੱਚੇ ਮਾਡਲ, ਜਿਵੇਂ ਕਿ Llama 2-70B ਜਾਂ Yi-34B, ਮਾਡਲ ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ਤੱਕ ਵਧੇਰੇ ਅਣਫ਼ਿਲਟਰਡ
ਪਹੁੰਚ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ ਜੋ ਤੁਸੀਂ GPT-4 ਵਰਗੇ ਪ੍ਰਸਿੱਧ ਐੱਲਐੱਲਐੱਮਜ਼ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹੋਏ ਵੇਖੇ
ਹੋਣਗੇ। ਇਹ ਮਾਡਲ ਵਿਸ਼ੇਸ਼ ਹਦਾਇਤਾਂ ਦੀ ਪਾਲਣਾ ਕਰਨ ਲਈ ਪਹਿਲਾਂ ਤੋਂ ਸਿਖਲਾਈ ਪ੍ਰਾਪਤ ਨਹੀਂ ਹੁੰਦੇ, ਤੁਹਾਨੂੰ
ਇੱਕ ਕੋਰਾ ਕੈਨਵਸ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ ਜਿੱਥੇ ਤੁਸੀਂ ਧਿਆਨ ਨਾਲ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਰਾਹੀਂ ਮਾਡਲ ਦੇ
ਆਉਟਪੁੱਟ ਨੂੰ ਸਿੱਧਾ ਨਿਯੰਤਰਿਤ ਕਰ ਸਕਦੇ ਹੋ। ਇਸ ਪਹੁੰਚ ਲਈ ਇਹ ਡੂੰਘੀ ਸਮਝ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ਕਿ ਅਜਿਹੇ
ਪ੍ਰੌਮਪਟ ਕਿਵੇਂ ਬਣਾਏ ਜਾਣ ਜੋ ਏਆਈ ਨੂੰ ਸਪੱਸ਼ਟ ਹਦਾਇਤਾਂ ਦਿੱਤੇ ਬਿਨਾਂ ਲੋੜੀਂਦੀ ਦਿਸ਼ਾ ਵੱਲ ਅਗਵਾਈ ਕਰਨ।
ਇਹ ਅੰਤਰਨਿਹਿਤ ਏਆਈ ਦੀਆਂ “ਕੱਚੀਆਂ” ਪਰਤਾਂ ਤੱਕ ਸਿੱਧੀ ਪਹੁੰਚ ਰੱਖਣ ਵਰਗਾ ਹੈ, ਬਿਨਾਂ ਕਿਸੇ ਵਿਚੋਲੀਆਂ
ਪਰਤਾਂ ਦੇ ਜੋ ਮਾਡਲ ਦੇ ਜਵਾਬਾਂ ਦੀ ਵਿਆਖਿਆ ਜਾਂ ਅਗਵਾਈ ਕਰਦੀਆਂ ਹੋਣ (ਇਸੇ ਲਈ ਇਸ ਨੂੰ ਇਹ ਨਾਮ
ਦਿੱਤਾ ਗਿਆ ਹੈ)।

![](misc/raw-chat.jpg “Abbott ਅਤੇ Costello ਦੇ ਕਲਾਸਿਕ “Who’s on First” ਸਕੈਚ ਦੇ
ਹਿੱਸੇ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇੱਕ ਕੱਚੇ ਮਾਡਲ ਦੀ ਟੈਸਟਿੰਗ”)

ਕੱਚੇ ਮਾਡਲਾਂ ਨਾਲ ਚੁਣੌਤੀ ਇਹ ਹੈ ਕਿ ਉਹ ਦੁਹਰਾਉਣ ਵਾਲੇ ਪੈਟਰਨਾਂ ਵਿੱਚ ਫਸ ਜਾਂਦੇ ਹਨ ਜਾਂ ਬੇਤਰਤੀਬੇ
ਆਉਟਪੁੱਟ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਹਾਲਾਂਕਿ, ਸਾਵਧਾਨੀਪੂਰਵਕ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਅਤੇ ਦੁਹਰਾਓ ਜੁਰਮਾਨੇ
ਵਰਗੇ ਪੈਰਾਮੀਟਰਾਂ ਦੇ ਸਮਾਯੋਜਨ ਨਾਲ, ਕੱਚੇ ਮਾਡਲਾਂ ਨੂੰ ਵਿਲੱਖਣ ਅਤੇ ਰਚਨਾਤਮਕ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰਨ
ਲਈ ਪ੍ਰੇਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਪ੍ਰਕਿਰਿਆ ਸਮਝੌਤਿਆਂ ਤੋਂ ਬਿਨਾਂ ਨਹੀਂ ਹੈ; ਜਦੋਂ ਕਿ ਕੱਚੇ ਮਾਡਲ
ਨਵੀਨਤਾ ਲਈ ਬੇਮਿਸਾਲ ਲਚਕਤਾ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ, ਉਹ ਉੱਚ ਪੱਧਰ ਦੀ ਮੁਹਾਰਤ ਦੀ ਮੰਗ ਕਰਦੇ ਹਨ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 47

ਚਿੱਤਰ 3. ਤੁਲਨਾ ਦੇ ਉਦੇਸ਼ਾਂ ਲਈ, ਇੱਥੇ GPT-4 ਨੂੰ ਦਿੱਤਾ ਗਿਆ ਉਹੀ ਅਸਪਸ਼ਟ ਪ੍ਰੌਮਪਟ ਹੈ

ਇੰਸਟ੍ਰਕਟ-ਟਿਊਨਡ ਮਾਡਲ: ਨਿਰਦੇਸ਼ਿਤ ਤਜਰਬਾ

ਇੰਸਟ੍ਰਕਟ-ਟਿਊਨਡ ਮਾਡਲ ਖਾਸ ਹਦਾਇਤਾਂ ਨੂੰ ਸਮਝਣ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਪਾਲਣਾ ਕਰਨ ਲਈ ਡਿਜ਼ਾਈਨ ਕੀਤੇ
ਗਏ ਹਨ, ਜੋ ਉਨ੍ਹਾਂ ਨੂੰ ਵਧੇਰੇ ਵਰਤੋਂਕਾਰ-ਅਨੁਕੂਲ ਅਤੇ ਵਿਆਪਕ ਐਪਲੀਕੇਸ਼ਨਾਂ ਲਈ ਪਹੁੰਚਯੋਗ ਬਣਾਉਂਦੇ ਹਨ।
ਉਹ ਇੱਕ ਗੱਲਬਾਤ ਦੀ ਮਕੈਨਿਕਸ ਨੂੰ ਸਮਝਦੇ ਹਨ ਅਤੇ ਇਹ ਵੀ ਕਿ ਉਨ੍ਹਾਂ ਨੂੰ ਆਪਣੀ ਗੱਲ ਕਰਨ ਦੀ ਵਾਰੀ
ਦੇ ਅੰਤ ’ਤੇ ਜਨਰੇਟ ਕਰਨਾ ਬੰਦ ਕਰ ਦੇਣਾ ਚਾਹੀਦਾ ਹੈ। ਬਹੁਤ ਸਾਰੇ ਡਿਵੈਲਪਰਾਂ ਲਈ, ਖਾਸ ਕਰਕੇ ਜੋ ਸਧਾਰਨ
ਐਪਲੀਕੇਸ਼ਨਾਂ ’ਤੇ ਕੰਮ ਕਰ ਰਹੇ ਹਨ, ਇੰਸਟ੍ਰਕਟ-ਟਿਊਨਡ ਮਾਡਲਇੱਕ ਸੁਵਿਧਾਜਨਕ ਅਤੇ ਕੁਸ਼ਲ ਹੱਲ ਪੇਸ਼ ਕਰਦੇ
ਹਨ।

ਇੰਸਟ੍ਰਕਟ-ਟਿਊਨਿੰਗ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਮਨੁੱਖ-ਜਨਰੇਟ ਕੀਤੇ ਨਿਰਦੇਸ਼ ਪ੍ਰੌਮਪਟਸ ਅਤੇ ਜਵਾਬਾਂ ਦੇ ਇੱਕ ਵੱਡੇ
ਸੰਗ੍ਰਹਿ ’ਤੇ ਮਾਡਲ ਨੂੰ ਸਿਖਲਾਈ ਦੇਣਾ ਸ਼ਾਮਲ ਹੈ। ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਉਦਾਹਰਣ ਓਪਨ ਸੋਰਸ databricks-
dolly-15k dataset ਹੈ, ਜਿਸ ਵਿੱਚ Databricks ਕਰਮਚਾਰੀਆਂ ਦੁਆਰਾ ਬਣਾਏ ਗਏ 15,000 ਤੋਂ
ਵੱਧ ਪ੍ਰੌਮਪਟ/ਜਵਾਬ ਜੋੜੇ ਸ਼ਾਮਲ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਤੁਸੀਂ ਖੁਦ ਜਾਂਚ ਸਕਦੇ ਹੋ। ਡੇਟਾਸੈੱਟ ਅੱਠ ਵੱਖ-ਵੱਖ ਨਿਰਦੇਸ਼
ਸ਼੍ਰੇਣੀਆਂ ਨੂੰ ਕਵਰ ਕਰਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਰਚਨਾਤਮਕ ਲੇਖਣ, ਬੰਦ ਅਤੇ ਖੁੱਲ੍ਹੇ ਸਵਾਲਾਂ ਦੇ ਜਵਾਬ, ਸੰਖੇਪੀਕਰਨ,
ਜਾਣਕਾਰੀ ਕੱਢਣਾ, ਵਰਗੀਕਰਨ, ਅਤੇ ਵਿਚਾਰ-ਵਟਾਂਦਰਾ ਸ਼ਾਮਲ ਹਨ।

https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/datasets/databricks/databricks-dolly-15k

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 48

ਡੇਟਾ ਜਨਰੇਸ਼ਨ ਪ੍ਰਕਿਰਿਆ ਦੌਰਾਨ, ਯੋਗਦਾਨ ਪਾਉਣ ਵਾਲਿਆਂ ਨੂੰ ਹਰ ਸ਼੍ਰੇਣੀ ਲਈ ਪ੍ਰੌਮਪਟਸ ਅਤੇ ਜਵਾਬ
ਬਣਾਉਣ ਬਾਰੇ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ ਦਿੱਤੇ ਗਏ ਸਨ। ਉਦਾਹਰਣ ਲਈ, ਰਚਨਾਤਮਕ ਲੇਖਣ ਕਾਰਜਾਂ ਲਈ, ਉਨ੍ਹਾਂ ਨੂੰ
ਮਾਡਲ ਦੇ ਆਉਟਪੁੱਟ ਨੂੰ ਨਿਰਦੇਸ਼ਿਤ ਕਰਨ ਲਈ ਖਾਸ ਸੀਮਾਵਾਂ, ਹਦਾਇਤਾਂ, ਜਾਂ ਲੋੜਾਂ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਕਿਹਾ
ਗਿਆ ਸੀ। ਬੰਦ ਸਵਾਲਾਂ ਦੇ ਜਵਾਬਾਂ ਲਈ, ਉਨ੍ਹਾਂ ਨੂੰ ਦਿੱਤੇ ਗਏ ਵਿਕੀਪੀਡੀਆ ਪੈਰ੍ਹੇ ਦੇ ਆਧਾਰ ’ਤੇ ਤੱਥਾਤਮਕ
ਤੌਰ ’ਤੇ ਸਹੀ ਜਵਾਬਾਂ ਦੀ ਲੋੜ ਵਾਲੇ ਸਵਾਲ ਲਿਖਣ ਲਈ ਕਿਹਾ ਗਿਆ ਸੀ।

ਨਤੀਜੇ ਵਜੋਂ ਡੇਟਾਸੈੱਟ ChatGPT ਵਰਗੀਆਂ ਪ੍ਰਣਾਲੀਆਂ ਦੀਆਂ ਇੰਟਰਐਕਟਿਵ ਅਤੇ ਨਿਰਦੇਸ਼-ਪਾਲਣਾ
ਸਮਰੱਥਾਵਾਂ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਵੱਡੀਆਂ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਨੂੰ ਫਾਈਨ-ਟਿਊਨ ਕਰਨ ਲਈ ਇੱਕ ਮੁੱਲਵਾਨ ਸਰੋਤ
ਵਜੋਂ ਕੰਮ ਕਰਦਾ ਹੈ। ਮਨੁੱਖ-ਜਨਰੇਟ ਕੀਤੇ ਨਿਰਦੇਸ਼ਾਂ ਅਤੇ ਜਵਾਬਾਂ ਦੀ ਵਿਭਿੰਨ ਸ਼੍ਰੇਣੀ ’ਤੇ ਸਿਖਲਾਈ ਦੁਆਰਾ,
ਮਾਡਲ ਖਾਸ ਨਿਰਦੇਸ਼ਾਂ ਨੂੰ ਸਮਝਣਾ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਪਾਲਣਾ ਕਰਨਾ ਸਿੱਖਦਾ ਹੈ, ਜੋ ਇਸ ਨੂੰ ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਕਾਰਜਾਂ
ਨੂੰ ਸੰਭਾਲਣ ਵਿੱਚ ਵਧੇਰੇ ਕੁਸ਼ਲ ਬਣਾਉਂਦਾ ਹੈ।

ਸਿੱਧੀ ਫਾਈਨ-ਟਿਊਨਿੰਗ ਤੋਂ ਇਲਾਵਾ, databricks-dolly-15k ਵਰਗੇ ਡੇਟਾਸੈੱਟਾਂ ਵਿੱਚ ਨਿਰਦੇਸ਼ ਪ੍ਰੌਮਪਟਸ
ਨੂੰ ਸਿੰਥੈਟਿਕ ਡੇਟਾ ਜਨਰੇਸ਼ਨ ਲਈ ਵੀ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇੱਕ ਵੱਡੇ ਓਪਨ ਲੈਂਗੂਏਜ ਮਾਡਲ ਨੂੰ ਯੋਗਦਾਨ-
ਜਨਰੇਟ ਕੀਤੇ ਪ੍ਰੌਮਪਟਸ ਨੂੰ ਫਿਊ-ਸ਼ੌਟ ਉਦਾਹਰਣਾਂ ਵਜੋਂ ਸਬਮਿਟ ਕਰਕੇ, ਡਿਵੈਲਪਰ ਹਰ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਨਿਰਦੇਸ਼ਾਂ
ਦਾ ਬਹੁਤ ਵੱਡਾ ਸੰਗ੍ਰਹਿ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਪਹੁੰਚ, ਜੋ ਸੈਲਫ-ਇੰਸਟ੍ਰਕਟ ਪੇਪਰ ਵਿੱਚ ਦੱਸੀ ਗਈ ਹੈ,
ਵਧੇਰੇ ਮਜ਼ਬੂਤ ਨਿਰਦੇਸ਼-ਪਾਲਣਾ ਮਾਡਲਾਂ ਦੀ ਸਿਰਜਣਾ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ।

ਇਸ ਤੋਂ ਇਲਾਵਾ, ਇਨ੍ਹਾਂ ਡੇਟਾਸੈੱਟਾਂ ਵਿੱਚ ਨਿਰਦੇਸ਼ਾਂ ਅਤੇ ਜਵਾਬਾਂ ਨੂੰ ਪੈਰਾਫਰੇਜ਼ਿੰਗ ਵਰਗੀਆਂ ਤਕਨੀਕਾਂ ਦੁਆਰਾ
ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਹਰੇਕ ਪ੍ਰੌਮਪਟ ਜਾਂ ਛੋਟੇ ਜਵਾਬ ਨੂੰ ਦੁਬਾਰਾ ਬਿਆਨ ਕਰਕੇ ਅਤੇ ਨਤੀਜੇ ਵਜੋਂ ਟੈਕਸਟ ਨੂੰ
ਸੰਬੰਧਿਤ ਗਰਾਊਂਡ-ਟਰੁੱਥ ਨਮੂਨੇ ਨਾਲ ਜੋੜ ਕੇ, ਡਿਵੈਲਪਰ ਇੱਕ ਕਿਸਮ ਦਾ ਨਿਯਮਤੀਕਰਨ ਪੇਸ਼ ਕਰ ਸਕਦੇ ਹਨ ਜੋ
ਮਾਡਲ ਦੀ ਨਿਰਦੇਸ਼ਾਂ ਦੀ ਪਾਲਣਾ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਨੂੰ ਵਧਾਉਂਦਾ ਹੈ।

ਇੰਸਟ੍ਰਕਟ-ਟਿਊਨਡ ਮਾਡਲਾਂ ਦੁਆਰਾ ਪ੍ਰਦਾਨ ਕੀਤੀ ਵਰਤੋਂ ਦੀ ਸੌਖ ਕੁਝ ਲਚਕਤਾ ਦੀ ਕੀਮਤ ’ਤੇ ਆਉਂਦੀ ਹੈ।
ਇਹ ਮਾਡਲ ਅਕਸਰ ਬਹੁਤ ਜ਼ਿਆਦਾ ਸੈਂਸਰ ਕੀਤੇ ਹੁੰਦੇ ਹਨ, ਜਿਸਦਾ ਮਤਲਬ ਹੈ ਕਿ ਉਹ ਹਮੇਸ਼ਾ ਕੁਝ ਖਾਸ ਕੰਮਾਂ
ਲਈਲੋੜੀਂਦੀ ਰਚਨਾਤਮਕਆਜ਼ਾਦੀ ਪ੍ਰਦਾਨ ਨਹੀਂ ਕਰ ਸਕਦੇ। ਉਨ੍ਹਾਂ ਦੇ ਆਉਟਪੁੱਟ ਉਨ੍ਹਾਂ ਦੇ ਫਾਈਨ-ਟਿਊਨਿੰਗ
ਡੇਟਾ ਵਿੱਚ ਮੌਜੂਦ ਪੱਖਪਾਤਾਂ ਅਤੇ ਸੀਮਾਵਾਂ ਤੋਂ ਬਹੁਤ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੇ ਹਨ।

ਇਨ੍ਹਾਂ ਸੀਮਾਵਾਂ ਦੇ ਬਾਵਜੂਦ, ਇੰਸਟ੍ਰਕਟ-ਟਿਊਨਡ ਮਾਡਲ ਆਪਣੀ ਵਰਤੋਂਕਾਰ-ਅਨੁਕੂਲ ਪ੍ਰਕਿਰਤੀ ਅਤੇ ਘੱਟ
ਤੋਂ ਘੱਟ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਨਾਲ ਵਿਆਪਕ ਕੰਮਾਂ ਨੂੰ ਸੰਭਾਲਣ ਦੀ ਯੋਗਤਾ ਕਾਰਨ ਵਧੇਰੇ ਲੋਕਪ੍ਰਿਯ ਹੋ ਗਏ
ਹਨ। ਜਿਵੇਂ-ਜਿਵੇਂ ਹੋਰ ਉੱਚ-ਗੁਣਵੱਤਾ ਵਾਲੇ ਨਿਰਦੇਸ਼ ਡੇਟਾਸੇਟ ਉਪਲਬਧ ਹੋ ਰਹੇ ਹਨ, ਅਸੀਂ ਇਨ੍ਹਾਂ ਮਾਡਲਾਂ ਦੀ
ਕਾਰਗੁਜ਼ਾਰੀ ਅਤੇ ਬਹੁਮੁਖਤਾ ਵਿੱਚ ਹੋਰ ਸੁਧਾਰ ਦੇਖਣ ਦੀ ਉਮੀਦ ਕਰ ਸਕਦੇ ਹਾਂ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 49

ਆਪਣੇ ਪ੍ਰੋਜੈਕਟ ਲਈ ਸਹੀ ਕਿਸਮ ਦਾ ਮਾਡਲ ਚੁਣਨਾ

ਬੇਸ (ਰਾਅ) ਅਤੇ ਇੰਸਟ੍ਰਕਟ-ਟਿਊਨਡ ਮਾਡਲਾਂ ਵਿਚਕਾਰ ਫੈਸਲਾ ਆਖਰਕਾਰ ਤੁਹਾਡੇ ਪ੍ਰੋਜੈਕਟ ਦੀਆਂ ਵਿਸ਼ੇਸ਼
ਲੋੜਾਂ ’ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਉਨ੍ਹਾਂ ਕੰਮਾਂ ਲਈ ਜੋ ਉੱਚ ਪੱਧਰ ਦੀ ਰਚਨਾਤਮਕਤਾ ਅਤੇ ਮੌਲਿਕਤਾ ਦੀ ਮੰਗ
ਕਰਦੇ ਹਨ, ਬੇਸ ਮਾਡਲ ਨਵੀਨਤਾ ਲਈ ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਟੂਲ ਪੇਸ਼ ਕਰਦੇ ਹਨ। ਇਹ ਮਾਡਲ ਡਿਵੈਲਪਰਾਂ ਨੂੰ
ਐੱਲਐੱਲਐੱਮਜ਼ ਦੀ ਪੂਰੀ ਸਮਰੱਥਾ ਦੀ ਪੜਚੋਲ ਕਰਨ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦੇ ਹਨ, ਏਆਈ-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ
ਰਾਹੀਂ ਕੀ ਹਾਸਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਦੀਆਂ ਸੀਮਾਵਾਂ ਨੂੰ ਧੱਕਦੇ ਹੋਏ, ਪਰ ਉਨ੍ਹਾਂ ਨੂੰ ਵਧੇਰੇ ਹੱਥੀਂ ਪਹੁੰਚ ਅਤੇ
ਪ੍ਰਯੋਗ ਕਰਨ ਦੀ ਇੱਛਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਤਾਪਮਾਨ ਅਤੇ ਹੋਰ ਸੈਟਿੰਗਾਂ ਦਾ ਬੇਸ ਮਾਡਲਾਂ ’ਤੇ ਉਨ੍ਹਾਂ ਦੇ ਇੰਸਟ੍ਰਕਟ
ਸਮਕਾਲੀਆਂ ਨਾਲੋਂ ਬਹੁਤ ਵੱਡਾ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ।

ਤੁਸੀਂ ਜੋ ਵੀ ਆਪਣੇ ਪ੍ਰੌਮਪਟ ਵਿੱਚ ਸ਼ਾਮਲ ਕਰਦੇ ਹੋ, ਬੇਸ ਮਾਡਲ ਉਸਨੂੰ ਦੁਹਰਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼
ਕਰਨਗੇ। ਇਸ ਲਈਜੇਕਰ ਉਦਾਹਰਣ ਵਜੋਂ ਤੁਹਾਡਾ ਪ੍ਰੌਮਪਟਇੱਕ ਚੈਟ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਹੈ, ਤਾਂ ਰਾਅ
ਮਾਡਲ ਚੈਟ ਨੂੰ ਜਾਰੀ ਰੱਖਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੇਗਾ। ਵੱਧ ਤੋਂ ਵੱਧ ਟੋਕਨ ਸੀਮਾ ’ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ,
ਇਹ ਸਿਰਫ਼ ਚੈਟ ਵਿੱਚ ਅਗਲਾ ਸੁਨੇਹਾ ਹੀ ਨਹੀਂ ਤਿਆਰ ਕਰੇਗਾ, ਇਹ ਆਪਣੇ ਆਪ ਨਾਲ ਪੂਰੀ
ਗੱਲਬਾਤ ਕਰ ਸਕਦਾ ਹੈ!

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 50

ਚਿੱਤਰ 4. Mixtral 8x7B (ਬੇਸ) ਵਾਕ ਮੁੜ-ਲਿਖਣ ਦਾ ਫਿਊ-ਸ਼ੌਟ ਪੂਰਤੀ ਦਾ ਉਦਾਹਰਣ

Reddit ਯੂਜ਼ਰ phree_radical ਦੁਆਰਾ ਉੱਪਰ ਦਿੱਤੇ ਵਾਕ ਰੀਰਾਈਟਿੰਗ ਦੀ ਉਦਾਹਰਣ ਤਿਆਰ ਕਰਦੇ
ਸਮੇਂ, ਮੈਂ ਪੈਰਾਮੀਟਰ ਸੈਟਿੰਗਾਂ ਨਾਲ ਬਹੁਤ ਪ੍ਰਯੋਗ ਕਰਨ ਤੋਂ ਬਾਅਦ ਹੀ ਵਰਤਣਯੋਗ ਨਤੀਜੇ ਪ੍ਰਾਪਤ ਕਰ ਸਕਿਆ,
ਅੰਤ ਵਿੱਚ ਇਹਨਾਂ ਸੈਟਿੰਗਾਂ ’ਤੇ ਸਥਿਰ ਹੋਇਆ: Temperature 0.08, Top P: 0.2, Top K: 1, ਅਤੇ
Repetition Penalty: 1.26।

https://www.reddit.com/user/phree_radical/

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 51

ਪ੍ਰੋਡਕਸ਼ਨ ਵਿੱਚ ਬੇਸ ਮੌਡਲ ਨਾਲ ਇਸ ਪਹੁੰਚ ਦੀ ਵਰਤੋਂ ਕਰਨਾ max_tokens ਪੈਰਾਮੀਟਰ ਦੇ ਸ਼ਕਤੀਸ਼ਾਲੀ
ਪ੍ਰਭਾਵ ਕਾਰਨ ਮੁਸ਼ਕਲ ਹੋਵੇਗਾ। ਇਸਨੂੰ ਬਹੁਤ ਛੋਟਾ ਸੈੱਟ ਕਰੋ ਤਾਂ ਆਉਟਪੁੱਟ ਕੱਟਿਆ ਜਾਂਦਾ ਹੈ। ਇਸਨੂੰ ਲੋੜੀਂਦੇ
ਆਉਟਪੁੱਟ ਲਈ ਮੌਡਲ ਦੀ ਜ਼ਰੂਰਤ ਤੋਂ ਵੱਧ ਲੰਬਾ ਸੈੱਟ ਕਰੋ, ਅਤੇ ਇਹ ਵਾਧੂ ਉਦਾਹਰਣਾਂ ਦਾ ਭਰਮ ਪੈਦਾ ਕਰਨਾ
ਜਾਰੀ ਰੱਖੇਗਾ।

ਅੰਤਿਮ ਨਤੀਜਾ ਇਹ ਹੈ ਕਿ ਜਦੋਂ ਤੱਕ ਤੁਹਾਨੂੰ ਸੱਚਮੁੱਚ ਪੂਰੇ ਨਿਯੰਤਰਣ ਅਤੇ ਸੈਂਸਰਸ਼ਿਪ ਦੀ ਕਮੀ ਦੀ ਲੋੜ ਨਹੀਂ ਹੈ,
ਇੰਸਟਰਕਟ-ਟਿਊਨਡ ਮੌਡਲ ਤੁਹਾਡੀ ਵਿਕਾਸ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਕਾਫ਼ੀ ਸਰਲ ਬਣਾ ਸਕਦੇ ਹਨ। ਇਸ ਗੱਲ ਨੂੰ ਸਪੱਸ਼ਟ
ਕਰਨ ਲਈ, ਇੱਥੇ Mixtral 8x7B ਦਾ ਉਸੇ ਪ੍ਰੌਮਪਟ ਲਈ ਜਵਾਬ ਹੈ, ਪਰ ਇਸ ਵਾਰ ਇਸਦੇ ਇੰਸਟਰਕਟ-
ਟਿਊਨਡ ਵਰਜਨ ਵਿੱਚ:

ਮੈਨੂੰ ਇਹ ਦੱਸਣ ’ਚ ਅਫ਼ਸੋਸ ਹੈ ਕਿ ਆਈਸ ਕਰੀਮ ਮੇਰੀਆਂ ਉਮੀਦਾਂ ’ਤੇ ਖਰੀ ਨਹੀਂ ਉਤਰਦੀ,
ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਉਹ ਭਰਪੂਰ, ਕਰੀਮੀ ਬਣਤਰ ਅਤੇ ਸੁਆਦਲਾ ਜ਼ਾਇਕਾ ਨਹੀਂ ਹੈ ਜੋ ਮੈਂ ਆਮ
ਤੌਰ ’ਤੇ ਉੱਚ-ਗੁਣਵੱਤਾ ਵਾਲੀ ਮਿੱਠੀ ਚੀਜ਼ ਨਾਲ ਜੋੜਦਾ ਹਾਂ। ਮੈਂ ਇੱਕ ਵਧੇਰੇ ਸੰਤੁਸ਼ਟੀਜਨਕ ਅਤੇ
ਆਨੰਦਦਾਇਕ ਅਨੁਭਵ ਦੀ ਉਮੀਦ ਕਰ ਰਿਹਾ ਸੀ।

ਖਾਸ ਤੌਰ ’ਤੇ, ਮੈਂ max tokens ਸੈਟਿੰਗ ਨੂੰ 500 ’ਤੇ ਛੱਡ ਸਕਿਆ, ਅਤੇ ਮੌਡਲ ਵਾਧੂ ਉਦਾਹਰਣਾਂ ਦਾ ਭਰਮ
ਪੈਦਾ ਕੀਤੇ ਬਿਨਾਂ ਲੋੜੀਂਦੇ ਆਉਟਪੁੱਟ ਦੇ ਅੰਤ ’ਤੇ ਭਰੋਸੇਯੋਗ ਢੰਗ ਨਾਲ ਰੁਕ ਗਿਆ।

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ

ਜਿਵੇਂ ਤੁਸੀਂ ਆਪਣੇ ਪ੍ਰੋਜੈਕਟਾਂ ਵਿੱਚ AI ਦੀ ਵਰਤੋਂ ਕਰਨਾ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋ, ਤੁਸੀਂ ਜਲਦੀ ਹੀ ਖੋਜ ਲਵੋਗੇ ਕਿ ਤੁਹਾਨੂੰ
ਮਹਾਰਤ ਹਾਸਲ ਕਰਨ ਲਈ ਸਭ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਹੁਨਰਾਂ ਵਿੱਚੋਂ ਇੱਕ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਦੀ ਕਲਾ ਹੈ। ਪਰ
ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਅਸਲ ਵਿੱਚ ਕੀ ਹੈ, ਅਤੇ ਇਹ ਇੰਨੀ ਮਹੱਤਵਪੂਰਨ ਕਿਉਂ ਹੈ?

ਇਸਦੇ ਮੂਲ ਵਿੱਚ, ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਭਾਸ਼ਾ ਮੌਡਲ ਨੂੰ ਪ੍ਰਦਾਨ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਇਨਪੁੱਟ ਪ੍ਰੌਮਪਟਸ ਨੂੰ
ਡਿਜ਼ਾਈਨ ਕਰਨ ਅਤੇ ਤਿਆਰ ਕਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਹੈ ਤਾਂ ਜੋ ਇਸਦੇ ਆਉਟਪੁੱਟ ਨੂੰ ਨਿਰਦੇਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕੇ।
ਇਹ AI ਨਾਲ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਸੰਚਾਰ ਕਰਨ ਦੀ ਸਮਝ ਬਾਰੇ ਹੈ, ਲੋੜੀਂਦੇ ਜਵਾਬ ਨੂੰ ਤਿਆਰ ਕਰਨ ਲਈ
ਮੌਡਲ ਨੂੰ ਨਿਰਦੇਸ਼ਾਂ, ਉਦਾਹਰਣਾਂ, ਅਤੇ ਸੰਦਰਭ ਦੇ ਸੁਮੇਲ ਦੀ ਵਰਤੋਂ ਕਰਨਾ।

ਇਸ ਨੂੰ ਇੱਕ ਬਹੁਤ ਬੁੱਧੀਮਾਨ ਪਰ ਕੁਝ ਸ਼ਾਬਦਿਕ ਸੋਚ ਵਾਲੇ ਦੋਸਤ ਨਾਲ ਗੱਲਬਾਤ ਕਰਨ ਵਾਂਗ ਸੋਚੋ। ਗੱਲਬਾਤ
ਤੋਂ ਵੱਧ ਤੋਂ ਵੱਧ ਲਾਭ ਲੈਣ ਲਈ, ਤੁਹਾਨੂੰ ਸਪੱਸ਼ਟ, ਵਿਸ਼ੇਸ਼, ਅਤੇ ਕਾਫ਼ੀ ਸੰਦਰਭ ਪ੍ਰਦਾਨ ਕਰਨ ਦੀ ਲੋੜ ਹੈ ਤਾਂ ਜੋ

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 52

ਯਕੀਨੀ ਬਣਾਇਆ ਜਾ ਸਕੇ ਕਿ ਤੁਹਾਡਾ ਦੋਸਤ ਠੀਕ ਸਮਝ ਰਿਹਾ ਹੈ ਕਿ ਤੁਸੀਂ ਕੀ ਪੁੱਛ ਰਹੇ ਹੋ। ਇੱਥੇ ਪ੍ਰੌਮਪਟ
ਇੰਜੀਨੀਅਰਿੰਗ ਆਉਂਦੀ ਹੈ, ਅਤੇ ਭਾਵੇਂ ਇਹ ਸ਼ੁਰੂ ਵਿੱਚ ਆਸਾਨ ਲੱਗੇ, ਮੇਰਾ ਯਕੀਨ ਮੰਨੋ ਕਿ ਇਸ ਵਿੱਚ ਮਹਾਰਤ
ਹਾਸਲ ਕਰਨ ਲਈ ਬਹੁਤ ਅਭਿਆਸ ਦੀ ਲੋੜ ਹੈ।

ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਪ੍ਰੌਮਪਟਸ ਦੇ ਬੁਨਿਆਦੀ ਤੱਤ

ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਪ੍ਰੌਮਪਟਸ ਦੀ ਇੰਜੀਨੀਅਰਿੰਗ ਸ਼ੁਰੂ ਕਰਨ ਲਈ, ਪਹਿਲਾਂ ਤੁਹਾਨੂੰ ਉਨ੍ਹਾਂ ਮੁੱਖ ਹਿੱਸਿਆਂ ਨੂੰ ਸਮਝਣ
ਦੀ ਲੋੜ ਹੈ ਜੋ ਇੱਕ ਚੰਗੀ ਤਰ੍ਹਾਂ ਤਿਆਰ ਕੀਤੇ ਇਨਪੁੱਟ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ। ਇੱਥੇ ਕੁਝ ਜ਼ਰੂਰੀ ਬੁਨਿਆਦੀ
ਤੱਤ ਹਨ:

1. ਹਦਾਇਤਾ:ਂ ਸਪੱਸ਼ਟ ਅਤੇ ਸੰਖੇਪ ਹਦਾਇਤਾਂ ਜੋ ਮਾਡਲ ਨੂੰ ਦੱਸਦੀਆਂ ਹਨ ਕਿ ਤੁਸੀਂ ਕੀ ਚਾਹੁੰਦੇ ਹੋ। ਇਹ ਕੁਝ
ਵੀ ਹੋ ਸਕਦਾ ਹੈ, “ਹੇਠ ਲਿਖੇ ਲੇਖ ਦਾ ਸਾਰ ਦੱਸੋ” ਤੋਂ ਲੈ ਕੇ “ਸੂਰਜ ਡੁੱਬਣ ਬਾਰੇ ਇੱਕ ਕਵਿਤਾ ਲਿਖੋ” ਤੱਕ
ਜਾਂ “ਇਸ ਪ੍ਰੋਜੈਕਟ ਬਦਲਾਅ ਬੇਨਤੀ ਨੂੰ JSON ਆਬਜੈਕਟ ਵਿੱਚ ਬਦਲੋ”।

2. ਸੰਦਰਭ: ਢੁਕਵੀਂ ਜਾਣਕਾਰੀ ਜੋ ਮਾਡਲ ਨੂੰ ਕਾਰਜ ਦੀ ਪਿੱਠਭੂਮੀ ਅਤੇ ਦਾਇਰੇ ਨੂੰ ਸਮਝਣ ਵਿੱਚ ਮਦਦ ਕਰਦੀ
ਹੈ। ਇਸ ਵਿੱਚ ਲਕਸ਼ਿਤ ਦਰਸ਼ਕਾਂ, ਲੋੜੀਂਦੇ ਲਹਿਜ਼ੇ ਅਤੇ ਸ਼ੈਲੀ, ਜਾਂ ਆਉਟਪੁੱਟ ਲਈ ਕੋਈ ਵਿਸ਼ੇਸ਼ ਸੀਮਾਵਾਂ
ਜਾਂ ਲੋੜਾਂ ਬਾਰੇ ਵੇਰਵੇ ਸ਼ਾਮਲ ਹੋ ਸਕਦੇ ਹਨ, ਜਿਵੇਂ ਕਿ ਪਾਲਣਾ ਕਰਨ ਲਈ JSON ਸਕੀਮਾ।

3. ਉਦਾਹਰਣਾ:ਂ ਠੋਸ ਉਦਾਹਰਣਾਂ ਜੋ ਦਰਸਾਉਂਦੀਆਂ ਹਨ ਕਿ ਤੁਸੀਂ ਕਿਸ ਤਰ੍ਹਾਂ ਦੇ ਆਉਟਪੁੱਟ ਦੀ ਤਲਾਸ਼ ਕਰ
ਰਹੇ ਹੋ। ਕੁਝ ਚੰਗੀ ਤਰ੍ਹਾਂ ਚੁਣੀਆਂ ਉਦਾਹਰਣਾਂ ਪ੍ਰਦਾਨ ਕਰਕੇ, ਤੁਸੀਂ ਮਾਡਲ ਨੂੰ ਲੋੜੀਂਦੇ ਜਵਾਬ ਦੇ ਪੈਟਰਨ
ਅਤੇ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਸਿੱਖਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੇ ਹੋ।

4. ਇਨਪੁੱਟ ਫਾਰਮੈਟਿੰਗ: ਲਾਈਨ ਬ੍ਰੇਕਸ ਅਤੇ ਮਾਰਕਡਾਊਨ ਫਾਰਮੈਟਿੰਗ ਸਾਡੇ ਪ੍ਰੌਮਪਟ ਨੂੰ ਢਾਂਚਾ ਦਿੰਦੇ
ਹਨ। ਪ੍ਰੌਮਪਟ ਨੂੰ ਪੈਰਾਗ੍ਰਾਫਾਂ ਵਿੱਚ ਵੰਡਣਾ ਸਾਨੂੰ ਸੰਬੰਧਿਤ ਹਦਾਇਤਾਂ ਨੂੰ ਇਕੱਠਾ ਕਰਨ ਦਿੰਦਾ ਹੈ, ਤਾਂ ਜੋ
ਮਨੁੱਖਾਂ ਅਤੇ AI ਦੋਵਾਂ ਲਈ ਇਸਨੂੰ ਸਮਝਣਾ ਆਸਾਨ ਹੋਵੇ। ਬੁਲੇਟ ਅਤੇ ਨੰਬਰ ਵਾਲੀਆਂ ਸੂਚੀਆਂ ਸਾਨੂੰ
ਆਈਟਮਾਂ ਦੀ ਸੂਚੀ ਅਤੇ ਕ੍ਰਮ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਦਿੰਦੀਆਂ ਹਨ। ਬੋਲਡ ਅਤੇ ਇਟੈਲਿਕ ਮਾਰਕਰ ਸਾਨੂੰ
ਜ਼ੋਰ ਦੇਣ ਲਈ ਵਰਤੇ ਜਾਂਦੇ ਹਨ।

5. ਆਉਟਪੁੱਟ ਫਾਰਮੈਟਿੰਗ: ਆਉਟਪੁੱਟ ਦੀ ਬਣਤਰ ਅਤੇ ਫਾਰਮੈਟਿੰਗ ਬਾਰੇ ਵਿਸ਼ੇਸ਼ ਹਦਾਇਤਾਂ। ਇਨ੍ਹਾਂ
ਵਿੱਚ ਲੋੜੀਂਦੀ ਲੰਬਾਈ, ਹੈਡਿੰਗਜ਼ ਜਾਂ ਬੁਲੇਟ ਪੁਆਇੰਟਾਂ ਦੀ ਵਰਤੋਂ, ਮਾਰਕਡਾਊਨ ਫਾਰਮੈਟਿੰਗ, ਜਾਂ ਕੋਈ ਹੋਰ
ਵਿਸ਼ੇਸ਼ ਆਉਟਪੁੱਟ ਟੈਂਪਲੇਟ ਜਾਂ ਮਿਆਰ ਸ਼ਾਮਲ ਹੋ ਸਕਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀ ਪਾਲਣਾ ਕੀਤੀ ਜਾਣੀ ਚਾਹੀਦੀ
ਹੈ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 53

ਇਨ੍ਹਾਂ ਬੁਨਿਆਦੀ ਤੱਤਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਤਰੀਕਿਆਂ ਨਾਲ ਜੋੜ ਕੇ, ਤੁਸੀਂ ਅਜਿਹੇ ਪ੍ਰੌਮਪਟਸ ਬਣਾ ਸਕਦੇ ਹੋ ਜੋ
ਤੁਹਾਡੀਆਂ ਵਿਸ਼ੇਸ਼ ਲੋੜਾਂ ਦੇ ਅਨੁਕੂਲ ਹੋਣ ਅਤੇ ਮਾਡਲ ਨੂੰ ਉੱਚ-ਗੁਣਵੱਤਾ, ਢੁਕਵੇਂ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਵੱਲ
ਸੇਧਿਤ ਕਰਨ।

ਪ੍ਰੌਮਪਟ ਡਿਜ਼ਾਈਨ ਦੀ ਕਲਾ ਅਤੇ ਵਿਗਿਆਨ

ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਪ੍ਰੌਮਪਟਸ ਦੀ ਰਚਨਾ ਕਰਨਾ ਇੱਕ ਕਲਾ ਅਤੇ ਵਿਗਿਆਨ ਦੋਵੇਂ ਹੈ। (ਇਸੇ ਲਈ ਅਸੀਂ ਇਸਨੂੰ
ਕਰਾਫਟ ਕਹਿੰਦੇ ਹਾਂ।) ਇਸ ਲਈ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ਅਤੇ ਸੀਮਾਵਾਂ ਦੀ ਡੂੰਘੀ ਸਮਝ ਦੇ ਨਾਲ-ਨਾਲ
ਲੋੜੀਂਦੇ ਵਿਵਹਾਰ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਪ੍ਰੌਮਪਟਸ ਨੂੰ ਡਿਜ਼ਾਈਨ ਕਰਨ ਦਾ ਰਚਨਾਤਮਕ ਨਜ਼ਰੀਆ ਚਾਹੀਦਾ ਹੈ।
ਇਸ ਵਿੱਚ ਸ਼ਾਮਲ ਰਚਨਾਤਮਕਤਾ ਹੀ ਇਸ ਨੂੰ ਮੇਰੇ ਲਈ ਇੰਨਾ ਮਜ਼ੇਦਾਰ ਬਣਾਉਂਦੀ ਹੈ। ਇਹ ਬਹੁਤ ਨਿਰਾਸ਼ਾਜਨਕ
ਵੀ ਹੋ ਸਕਦਾ ਹੈ, ਖਾਸ ਕਰਕੇ ਜਦੋਂ ਤੁਸੀਂ ਨਿਰਧਾਰਤ ਵਿਵਹਾਰ ਦੀ ਭਾਲ ਕਰ ਰਹੇ ਹੋਵੋ।

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਦਾ ਇੱਕ ਮੁੱਖ ਪਹਿਲੂ ਵਿਸ਼ੇਸ਼ਤਾ ਅਤੇ ਲਚਕਤਾ ਵਿਚਕਾਰ ਸੰਤੁਲਨ ਨੂੰ ਸਮਝਣਾ ਹੈ। ਇੱਕ
ਪਾਸੇ, ਤੁਸੀਂ ਮਾਡਲ ਨੂੰ ਸਹੀ ਦਿਸ਼ਾ ਵੱਲ ਸੇਧ ਦੇਣ ਲਈ ਕਾਫ਼ੀ ਮਾਰਗਦਰਸ਼ਨ ਪ੍ਰਦਾਨ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ। ਦੂਜੇ ਪਾਸੇ,
ਤੁਸੀਂ ਇੰਨੇ ਨਿਯਮਬੱਧ ਨਹੀਂ ਹੋਣਾ ਚਾਹੁੰਦੇ ਕਿ ਤੁਸੀਂ ਸੀਮਾ ਮਾਮਲਿਆਂ ਨਾਲ ਨਜਿੱਠਣ ਲਈ ਮਾਡਲ ਦੀ ਆਪਣੀ
ਰਚਨਾਤਮਕਤਾ ਅਤੇ ਲਚਕਤਾ ਦੀ ਵਰਤੋਂ ਕਰਨ ਦੀ ਯੋਗਤਾ ਨੂੰ ਸੀਮਤ ਕਰ ਦਿਓ।

ਇੱਕ ਹੋਰ ਮਹੱਤਵਪੂਰਨ ਵਿਚਾਰ ਉਦਾਹਰਣਾਂ ਦੀ ਵਰਤੋਂ ਹੈ। ਚੰਗੀ ਤਰ੍ਹਾਂ ਚੁਣੀਆਂ ਗਈਆਂ ਉਦਾਹਰਣਾਂ ਮਾਡਲ
ਨੂੰ ਤੁਹਾਡੇ ਲੋੜੀਂਦੇ ਆਉਟਪੁੱਟ ਦੀ ਕਿਸਮ ਨੂੰ ਸਮਝਣ ਵਿੱਚ ਬਹੁਤ ਮਦਦਗਾਰ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਹਾਲਾਂਕਿ, ਇਹ
ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਉਦਾਹਰਣਾਂ ਦੀ ਸਮਝਦਾਰੀ ਨਾਲ ਵਰਤੋਂ ਕੀਤੀ ਜਾਵੇ ਅਤੇ ਇਹ ਯਕੀਨੀ ਬਣਾਇਆ ਜਾਵੇ ਕਿ
ਉਹ ਲੋੜੀਂਦੇ ਜਵਾਬ ਦੀ ਨੁਮਾਇੰਦਗੀ ਕਰਦੀਆਂ ਹਨ। ਇੱਕ ਮਾੜੀ ਉਦਾਹਰਣ ਸਭ ਤੋਂ ਵਧੀਆ ਸਥਿਤੀ ਵਿੱਚ ਟੋਕਨਾਂ
ਦੀ ਬਰਬਾਦੀ ਹੈ, ਅਤੇ ਸਭ ਤੋਂ ਮਾੜੀ ਸਥਿਤੀ ਵਿੱਚ ਲੋੜੀਂਦੇ ਆਉਟਪੁੱਟ ਲਈ ਤਬਾਹਕੁਨ ਹੈ।

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਤਕਨੀਕਾਂ ਅਤੇ ਸਰਵੋਤਮ ਅਭਿਆਸ

ਜਿਵੇਂ ਤੁਸੀਂ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਦੀ ਦੁਨੀਆ ਵਿੱਚ ਡੂੰਘੇ ਉਤਰਦੇ ਹੋ, ਤੁਸੀਂ ਕਈ ਤਕਨੀਕਾਂ ਅਤੇ ਸਰਵੋਤਮ
ਅਭਿਆਸਾਂ ਦੀ ਖੋਜ ਕਰੋਗੇ ਜੋ ਤੁਹਾਨੂੰ ਵਧੇਰੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਪ੍ਰੌਮਪਟਸ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੇ ਹਨ।
ਇੱਥੇ ਕੁਝ ਮੁੱਖ ਖੇਤਰ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀ ਪੜਚੋਲ ਕਰਨੀ ਹੈ:

1. ਜ਼ੀਰੋ-ਸ਼ੌਟ ਬਨਾਮ ਫਿਊ-ਸ਼ੌਟ ਲਰਨਿੰਗ: ਜ਼ੀਰੋ-ਸ਼ੌਟ ਲਰਨਿੰਗ (ਕੋਈ ਉਦਾਹਰਣ ਨਾ ਦੇਣਾ) ਬਨਾਮ ਵਨ-
ਸ਼ੌਟ ਜਾਂ ਫਿਊ-ਸ਼ੌਟ ਲਰਨਿੰਗ (ਥੋੜ੍ਹੀਆਂ ਉਦਾਹਰਣਾਂ ਦੇਣਾ) ਦੀ ਵਰਤੋਂ ਕਦੋਂ ਕਰਨੀ ਹੈ, ਇਹ ਸਮਝਣਾ ਤੁਹਾਨੂੰ
ਵਧੇਰੇ ਕੁਸ਼ਲ ਅਤੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਪ੍ਰੌਮਪਟਸ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 54

2. ਦੁਹਰਾਉਣ ਵਾਲਾ ਸੁਧਾਰ: ਮਾਡਲ ਦੇ ਆਉਟਪੁੱਟ ਦੇ ਆਧਾਰ ’ਤੇ ਪ੍ਰੌਮਪਟਸ ਨੂੰ ਲਗਾਤਾਰ ਸੁਧਾਰਨ ਦੀ
ਪ੍ਰਕਿਰਿਆ ਤੁਹਾਨੂੰ ਸਭ ਤੋਂ ਵਧੀਆ ਪ੍ਰੌਮਪਟ ਡਿਜ਼ਾਈਨ ’ਤੇ ਪਹੁੰਚਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੀ ਹੈ। ਫੀਡਬੈਕ
ਲੂਪ ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਪਹੁੰਚ ਹੈ ਜੋ ਤਿਆਰ ਕੀਤੀ ਸਮੱਗਰੀ ਦੀ ਗੁਣਵੱਤਾ ਅਤੇ ਪ੍ਰਸੰਗਿਕਤਾ ਨੂੰ ਲਗਾਤਾਰ
ਸੁਧਾਰਨ ਲਈ ਭਾਸ਼ਾ ਮਾਡਲ ਦੇ ਆਪਣੇ ਆਉਟਪੁੱਟ ਦਾ ਲਾਭ ਲੈਂਦੀ ਹੈ।

3. ਪ੍ਰੌਮਪਟ ਚੇਨਿੰਗ: ਗੁੰਝਲਦਾਰ ਕੰਮਾਂ ਨੂੰ ਛੋਟੇ, ਵਧੇਰੇ ਪ੍ਰਬੰਧਨਯੋਗ ਕਦਮਾਂ ਵਿੱਚ ਵੰਡਣ ਲਈ ਕਈ
ਪ੍ਰੌਮਪਟਸ ਨੂੰ ਲੜੀ ਵਿੱਚ ਜੋੜਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪ੍ਰੌਮਪਟ ਚੇਨਿੰਗ ਵਿੱਚ ਗੁੰਝਲਦਾਰ ਕੰਮ ਜਾਂ ਗੱਲਬਾਤ ਨੂੰ
ਛੋਟੇ, ਆਪਸ ਵਿੱਚ ਜੁੜੇ ਪ੍ਰੌਮਪਟਸ ਦੀ ਲੜੀ ਵਿੱਚ ਵੰਡਣਾ ਸ਼ਾਮਲ ਹੈ। ਪ੍ਰੌਮਪਟਸ ਨੂੰ ਇਕੱਠੇ ਜੋੜ ਕੇ, ਤੁਸੀਂ
AI ਨੂੰ ਬਹੁ-ਪੜਾਵੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚੋਂ ਅਗਵਾਈ ਕਰ ਸਕਦੇ ਹੋ, ਗੱਲਬਾਤ ਦੌਰਾਨ ਸੰਦਰਭ ਅਤੇ ਸੰਗਤੀ
ਨੂੰ ਬਣਾਈ ਰੱਖਦੇ ਹੋਏ।

4. ਪ੍ਰੌਮਪਟ ਟਿਊਨਿੰਗ: ਵਿਸ਼ੇਸ਼ ਖੇਤਰਾਂ ਜਾਂ ਕੰਮਾਂ ਲਈ ਪ੍ਰੌਮਪਟਸ ਨੂੰ ਵਿਸ਼ੇਸ਼ ਤੌਰ ’ਤੇ ਢਾਲਣਾ ਤੁਹਾਨੂੰ ਵਧੇਰੇ
ਵਿਸ਼ੇਸ਼ ਅਤੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਪ੍ਰੌਮਪਟਸ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ। ਪ੍ਰੌਮਪਟ ਟੈਂਪਲੇਟ ਤੁਹਾਨੂੰ
ਲਚਕਦਾਰ, ਮੁੜ-ਵਰਤੋਂਯੋਗ, ਅਤੇ ਰੱਖ-ਰਖਾਵ ਯੋਗ ਪ੍ਰੌਮਪਟ ਢਾਂਚੇ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰਦਾ ਹੈ ਜੋ
ਦਿੱਤੇ ਕੰਮ ਲਈ ਵਧੇਰੇ ਅਨੁਕੂਲ ਹਨ।

ਜ਼ੀਰੋ-ਸ਼ੌਟ, ਵਨ-ਸ਼ੌਟ, ਜਾਂ ਫਿਊ-ਸ਼ੌਟ ਲਰਨਿੰਗ ਦੀ ਵਰਤੋਂ ਕਦੋਂ ਕਰਨੀ ਹੈ, ਇਹ ਸਿੱਖਣਾ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਨੂੰ
ਮਾਸਟਰ ਕਰਨ ਦਾ ਖ਼ਾਸ ਤੌਰ ’ਤੇ ਮਹੱਤਵਪੂਰਨ ਹਿੱਸਾ ਹੈ। ਹਰ ਪਹੁੰਚ ਦੀਆਂ ਆਪਣੀਆਂ ਤਾਕਤਾਂ ਅਤੇ ਕਮਜ਼ੋਰੀਆਂ
ਹਨ, ਅਤੇ ਹਰ ਇੱਕ ਦੀ ਵਰਤੋਂ ਕਦੋਂ ਕਰਨੀ ਹੈ ਇਹ ਸਮਝਣ ਨਾਲ ਤੁਹਾਨੂੰ ਵਧੇਰੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਅਤੇ ਕੁਸ਼ਲ
ਪ੍ਰੌਮਪਟਸ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਮਿਲ ਸਕਦੀ ਹੈ।

ਜ਼ੀਰੋ-ਸ਼ੌਟ ਲਰਨਿੰਗ: ਜਦੋਂ ਕਿਸੇ ਉਦਾਹਰਣ ਦੀ ਲੋੜ ਨਹੀਂ ਹੁੰਦੀ

ਜ਼ੀਰੋ-ਸ਼ਾਟ ਲਰਨਿੰਗ ਭਾਸ਼ਾ ਮਾਡਲ ਦੀ ਉਸ ਯੋਗਤਾ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ ਜਿਸ ਵਿੱਚ ਬਿਨਾਂ ਕਿਸੇ ਉਦਾਹਰਣ ਜਾਂ ਸਪੱਸ਼ਟ
ਸਿਖਲਾਈ ਦੇ ਕੋਈ ਕੰਮ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਤੁਸੀਂ ਮਾਡਲ ਨੂੰ ਇੱਕ ਪ੍ਰੌਮਪਟ ਦਿੰਦੇ ਹੋ ਜੋ ਕੰਮ
ਦਾ ਵਰਣਨ ਕਰਦਾ ਹੈ, ਅਤੇ ਮਾਡਲ ਸਿਰਫ਼ ਆਪਣੇ ਪਹਿਲਾਂ ਤੋਂ ਮੌਜੂਦ ਗਿਆਨ ਅਤੇ ਭਾਸ਼ਾ ਦੀ ਸਮਝ ਦੇ ਆਧਾਰ
’ਤੇ ਜਵਾਬ ਤਿਆਰ ਕਰਦਾ ਹੈ।

ਜ਼ੀਰੋ-ਸ਼ਾਟ ਲਰਨਿੰਗ ਖ਼ਾਸ ਤੌਰ ’ਤੇ ਉਦੋਂ ਲਾਭਦਾਇਕ ਹੁੰਦੀ ਹੈ ਜਦੋਂ:

1. ਕੰਮ ਤੁਲਨਾਤਮਕ ਤੌਰ ’ਤੇ ਸਰਲ ਅਤੇ ਸਿੱਧਾ ਹੋਵੇ, ਅਤੇ ਮਾਡਲ ਨੇ ਆਪਣੀ ਪੂਰਵ-ਸਿਖਲਾਈ ਦੌਰਾਨ ਇਸ
ਤਰ੍ਹਾਂ ਦੇ ਕੰਮਾਂ ਦਾ ਸਾਹਮਣਾ ਕੀਤਾ ਹੋਵੇ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 55

2. ਤੁਸੀਂ ਮਾਡਲ ਦੀਆਂ ਅੰਤਰਨਿਹਿਤ ਸਮਰੱਥਾਵਾਂ ਦੀ ਜਾਂਚ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ ਅਤੇ ਦੇਖਣਾ ਚਾਹੁੰਦੇ ਹੋ ਕਿ ਇਹ
ਬਿਨਾਂ ਕਿਸੇ ਵਾਧੂ ਮਾਰਗਦਰਸ਼ਨ ਦੇ ਨਵੇਂ ਕੰਮ ’ਤੇ ਕਿਵੇਂ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਦਾ ਹੈ।

3. ਤੁਸੀਂ ਇੱਕ ਵੱਡੇ ਅਤੇ ਵਿਭਿੰਨ ਭਾਸ਼ਾ ਮਾਡਲ ਨਾਲ ਕੰਮ ਕਰ ਰਹੇ ਹੋ ਜੋ ਕੰਮਾਂ ਅਤੇ ਖੇਤਰਾਂ ਦੀ ਵਿਆਪਕ ਸ਼੍ਰੇਣੀ
’ਤੇ ਸਿਖਲਾਈ ਪ੍ਰਾਪਤ ਕਰ ਚੁੱਕਾ ਹੈ।

ਹਾਲਾਂਕਿ, ਜ਼ੀਰੋ-ਸ਼ਾਟ ਲਰਨਿੰਗ ਅਣਕਿਆਸੀ ਵੀ ਹੋ ਸਕਦੀ ਹੈ ਅਤੇ ਹਮੇਸ਼ਾ ਲੋੜੀਂਦੇ ਨਤੀਜੇ ਨਹੀਂ ਦੇ ਸਕਦੀ। ਮਾਡਲ
ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਇਸਦੇ ਪੂਰਵ-ਸਿਖਲਾਈ ਡੇਟਾ ਵਿੱਚ ਪੱਖਪਾਤ ਜਾਂ ਅਸੰਗਤੀਆਂ ਤੋਂ ਪ੍ਰਭਾਵਿਤ ਹੋ ਸਕਦੀ ਹੈ,
ਅਤੇ ਇਹ ਵਧੇਰੇ ਗੁੰਝਲਦਾਰ ਜਾਂ ਬਰੀਕ ਕੰਮਾਂ ਨਾਲ ਸੰਘਰਸ਼ ਕਰ ਸਕਦਾ ਹੈ।

ਮੈਂ ਜ਼ੀਰੋ-ਸ਼ਾਟ ਪ੍ਰੌਮਪਟ ਦੇਖੇ ਹਨ ਜੋ ਮੇਰੇ 80% ਟੈਸਟ ਕੇਸਾਂ ਲਈ ਠੀਕ ਕੰਮ ਕਰਦੇ ਹਨ ਅਤੇ ਬਾਕੀ 20%
ਲਈ ਬਹੁਤ ਗਲਤ ਜਾਂ ਅਸਮਝ ਨਤੀਜੇ ਦਿੰਦੇ ਹਨ। ਇੱਕ ਵਿਆਪਕ ਟੈਸਟਿੰਗ ਪ੍ਰਣਾਲੀ ਨੂੰ ਲਾਗੂ ਕਰਨਾ ਬਹੁਤ
ਮਹੱਤਵਪੂਰਨ ਹੈ, ਖਾਸ ਕਰਕੇ ਜੇ ਤੁਸੀਂ ਜ਼ੀਰੋ-ਸ਼ਾਟ ਪ੍ਰੌਮਪਟਿੰਗ ’ਤੇ ਬਹੁਤ ਭਰੋਸਾ ਕਰ ਰਹੇ ਹੋ।

ਵਨ-ਸ਼ਾਟ ਲਰਨਿੰਗ: ਜਦੋਂ ਇੱਕ ਉਦਾਹਰਣ ਫ਼ਰਕ ਲਿਆ ਸਕਦੀ ਹੈ

ਵਨ-ਸ਼ਾਟ ਲਰਨਿੰਗ ਵਿੱਚ ਕੰਮ ਦੇ ਵੇਰਵੇ ਦੇ ਨਾਲ ਲੋੜੀਂਦੇ ਆਉਟਪੁੱਟ ਦੀ ਇੱਕ ਉਦਾਹਰਣ ਮਾਡਲ ਨੂੰ ਪ੍ਰਦਾਨ ਕਰਨਾ
ਸ਼ਾਮਲ ਹੈ। ਇਹ ਉਦਾਹਰਣ ਇੱਕ ਟੈਂਪਲੇਟ ਜਾਂ ਪੈਟਰਨ ਵਜੋਂ ਕੰਮ ਕਰਦੀ ਹੈ ਜਿਸ ਨੂੰ ਮਾਡਲਆਪਣਾ ਜਵਾਬ ਤਿਆਰ
ਕਰਨ ਲਈ ਵਰਤ ਸਕਦਾ ਹੈ।

ਵਨ-ਸ਼ਾਟ ਲਰਨਿੰਗ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਹੋ ਸਕਦੀ ਹੈ ਜਦੋਂ:

1. ਕੰਮ ਤੁਲਨਾਤਮਕ ਤੌਰ ’ਤੇ ਨਵਾਂ ਜਾਂ ਵਿਸ਼ੇਸ਼ ਹੈ, ਅਤੇ ਮਾਡਲ ਨੇ ਆਪਣੀ ਪੂਰਵ-ਸਿਖਲਾਈ ਦੌਰਾਨ ਬਹੁਤ
ਸਾਰੀਆਂ ਸਮਾਨ ਉਦਾਹਰਣਾਂ ਦਾ ਸਾਹਮਣਾ ਨਹੀਂ ਕੀਤਾ ਹੋ ਸਕਦਾ।

2. ਤੁਸੀਂ ਲੋੜੀਂਦੇ ਆਉਟਪੁੱਟ ਫਾਰਮੈਟ ਜਾਂ ਸ਼ੈਲੀ ਦਾ ਸਪੱਸ਼ਟ ਅਤੇ ਸੰਖੇਪ ਪ੍ਰਦਰਸ਼ਨ ਪ੍ਰਦਾਨ ਕਰਨਾ ਚਾਹੁੰਦੇ
ਹੋ।

3. ਕੰਮ ਲਈਇੱਕ ਵਿਸ਼ੇਸ਼ ਢਾਂਚੇ ਜਾਂ ਰੀਤੀ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ਜੋ ਸਿਰਫ਼ ਕੰਮ ਦੇ ਵੇਰਵੇ ਤੋਂ ਸਪੱਸ਼ਟ ਨਹੀਂ ਹੋ ਸਕਦੀ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 56

ਜੋ ਵੇਰਵੇ ਤੁਹਾਡੇ ਲਈ ਸਪੱਸ਼ਟ ਹਨ, ਉਹ ਜ਼ਰੂਰੀ ਨਹੀਂ ਕਿ AI ਲਈ ਵੀ ਸਪੱਸ਼ਟ ਹੋਣ। ਵਨ-ਸ਼ਾਟ
ਉਦਾਹਰਣਾਂ ਚੀਜ਼ਾਂ ਨੂੰ ਸਪੱਸ਼ਟ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੀਆਂ ਹਨ।

ਵਨ-ਸ਼ਾਟ ਲਰਨਿੰਗ ਮਾਡਲ ਨੂੰ ਉਮੀਦਾਂ ਨੂੰ ਵਧੇਰੇ ਸਪੱਸ਼ਟ ਤੌਰ ’ਤੇ ਸਮਝਣ ਅਤੇ ਦਿੱਤੀ ਗਈ ਉਦਾਹਰਣ ਦੇ ਨਾਲ
ਵਧੇਰੇ ਨੇੜਿਓਂ ਮੇਲ ਖਾਂਦਾ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੀ ਹੈ। ਹਾਲਾਂਕਿ, ਉਦਾਹਰਣ ਨੂੰ ਧਿਆਨ
ਨਾਲ ਚੁਣਨਾ ਅਤੇ ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਇਹ ਲੋੜੀਂਦੇ ਆਉਟਪੁੱਟ ਦੀ ਪ੍ਰਤੀਨਿਧਤਾ ਕਰਦੀ
ਹੈ। ਉਦਾਹਰਣ ਚੁਣਦੇ ਸਮੇਂ, ਆਪਣੇ ਆਪ ਨੂੰ ਸੰਭਾਵੀ ਐਜ ਕੇਸਾਂ ਅਤੇ ਇਨਪੁੱਟ ਦੀ ਰੇਂਜ ਬਾਰੇ ਪੁੱਛੋ ਜੋ ਪ੍ਰੌਮਪਟ ਨੂੰ
ਸੰਭਾਲਣੀ ਪਵੇਗੀ।

ਚਿੱਤਰ 5. JSON ਦੀ ਇੱਕ ਵਾਰੀ ਦੀ ਲੋੜੀਂਦੀ ਉਦਾਹਰਨ

1 Output one JSON object identifying a new subject mentioned during the

2 conversation transcript.

3

4 The JSON object should have three keys, all required:

5 - name: The name of the subject

6 - description: brief, with details that might be relevant to the user

7 - type: Do not use any other type than the ones listed below

8

9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

10 Person, Place, Process, Product, Project, Task, or Teammate

11

12 This is an example of well-formed output:

13

14 {

15 "name":"Dan Millman",

16 "description":"Author of book on self-discovery and living on purpose",

17 "type":"Person"

18 }

ਫਿਊ-ਸ਼ਾਟ ਲਰਨਿੰਗ: ਜਦੋਂ ਕਈ ਉਦਾਹਰਣਾਂ ਪ੍ਰਦਰਸ਼ਨ ਨੂੰ ਬਿਹਤਰ ਬਣਾ ਸਕਦੀਆਂ
ਹਨ

ਫਿਊ-ਸ਼ਾਟ ਲਰਨਿੰਗ ਵਿੱਚ ਮਾਡਲ ਨੂੰ ਕੰਮ ਦੇ ਵੇਰਵੇ ਦੇ ਨਾਲ ਥੋੜ੍ਹੀਆਂ ਉਦਾਹਰਣਾਂ (ਆਮ ਤੌਰ ’ਤੇ 2 ਤੋਂ 10 ਦੇ
ਵਿਚਕਾਰ) ਪ੍ਰਦਾਨ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇਹ ਉਦਾਹਰਣਾਂ ਮਾਡਲ ਨੂੰ ਵਧੇਰੇ ਸੰਦਰਭ ਅਤੇ ਵੱਖਰਤਾ ਪ੍ਰਦਾਨ

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 57

ਕਰਨ ਲਈਕੰਮ ਕਰਦੀਆਂ ਹਨ, ਜੋ ਇਸਨੂੰ ਵਧੇਰੇ ਵਿਭਿੰਨ ਅਤੇ ਸਟੀਕ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰਦੀਆਂ
ਹਨ।

ਫਿਊ-ਸ਼ਾਟ ਲਰਨਿੰਗ ਖਾਸ ਤੌਰ ’ਤੇ ਉਦੋਂ ਲਾਭਦਾਇਕ ਹੁੰਦੀ ਹੈ ਜਦੋਂ:

1. ਕੰਮ ਗੁੰਝਲਦਾਰ ਜਾਂ ਬਰੀਕ ਹੋਵੇ, ਅਤੇ ਇੱਕ ਉਦਾਹਰਣ ਸਾਰੇ ਸੰਬੰਧਿਤ ਪਹਿਲੂਆਂ ਨੂੰ ਸਮਝਣ ਲਈ ਕਾਫ਼ੀ
ਨਾ ਹੋਵੇ।

2. ਤੁਸੀਂ ਮਾਡਲ ਨੂੰ ਵੱਖ-ਵੱਖ ਵੇਰੀਏਸ਼ਨਾਂ ਜਾਂ ਐਜ ਕੇਸਾਂ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੀਆਂ ਉਦਾਹਰਣਾਂ ਦੀ ਰੇਂਜ ਪ੍ਰਦਾਨ
ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ।

3. ਕੰਮ ਲਈ ਮਾਡਲ ਨੂੰ ਕਿਸੇ ਖਾਸ ਖੇਤਰ ਜਾਂ ਸ਼ੈਲੀ ਦੇ ਅਨੁਸਾਰ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਦੀ ਲੋੜ ਹੋਵੇ।

ਕਈ ਉਦਾਹਰਣਾਂ ਪ੍ਰਦਾਨ ਕਰਕੇ, ਤੁਸੀਂ ਮਾਡਲ ਨੂੰ ਕੰਮ ਦੀ ਵਧੇਰੇ ਮਜ਼ਬੂਤ ਸਮਝ ਵਿਕਸਿਤ ਕਰਨ ਅਤੇ ਵਧੇਰੇ
ਸਥਿਰ ਅਤੇ ਭਰੋਸੇਯੋਗ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੇ ਹੋ।

ਉਦਾਹਰਣ: ਪ੍ਰੌਮਪਟਸ ਤੁਹਾਡੀ ਕਲਪਨਾ ਤੋਂ ਕਿਤੇ ਵੱਧ ਗੁੰਝਲਦਾਰ ਹੋ ਸਕਦੇ ਹਨ

ਅੱਜ ਦੇ ਐੱਲ.ਐੱਲ.ਐੱਮ. ਤੁਹਾਡੀ ਕਲਪਨਾ ਤੋਂ ਕਿਤੇ ਵੱਧ ਸ਼ਕਤੀਸ਼ਾਲੀ ਅਤੇ ਤਰਕ ਕਰਨ ਦੇ ਯੋਗ ਹਨ। ਇਸ ਲਈ
ਆਪਣੇ ਆਪ ਨੂੰ ਪ੍ਰੌਮਪਟਸ ਨੂੰ ਸਿਰਫ਼ ਇਨਪੁਟ ਅਤੇ ਆਉਟਪੁੱਟ ਜੋੜਿਆਂ ਦੇ ਵੇਰਵੇ ਤੱਕ ਸੀਮਤ ਨਾ ਕਰੋ। ਤੁਸੀਂ
ਲੰਬੀਆਂ ਅਤੇ ਗੁੰਝਲਦਾਰ ਹਦਾਇਤਾਂ ਦੇਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰ ਸਕਦੇ ਹੋ, ਜਿਵੇਂ ਤੁਸੀਂ ਕਿਸੇ ਇਨਸਾਨ ਨਾਲ ਗੱਲਬਾਤ
ਕਰਦੇ ਹੋ।

ਉਦਾਹਰਣ ਵਜੋਂ, ਇਹ ਉਹ ਪ੍ਰੌਮਪਟ ਹੈ ਜੋ ਮੈਂ Olympia ਵਿੱਚ ਵਰਤਿਆ ਸੀ ਜਦੋਂ ਮੈਂ Google ਸੇਵਾਵਾਂ ਨਾਲ
ਸਾਡੇ ਏਕੀਕਰਣ ਦਾ ਪ੍ਰੋਟੋਟਾਈਪ ਬਣਾ ਰਿਹਾ ਸੀ, ਜੋ ਕੁੱਲ ਮਿਲਾ ਕੇ ਸ਼ਾਇਦ ਦੁਨੀਆ ਦੇ ਸਭ ਤੋਂ ਵੱਡੇ API ਵਿੱਚੋਂ
ਇੱਕ ਹੈ। ਮੇਰੇ ਪਹਿਲੇ ਪ੍ਰਯੋਗਾਂ ਨੇ ਸਾਬਤ ਕੀਤਾ ਕਿ GPT-4 ਕੋਲ Google API ਦੀ ਚੰਗੀ ਜਾਣਕਾਰੀ ਹੈ, ਅਤੇ
ਮੇਰੇ ਕੋਲ ਇੱਕ-ਇੱਕ ਕਰਕੇ ਹਰ ਫੰਕਸ਼ਨ ਨੂੰ ਲਾਗੂ ਕਰਨ ਲਈ ਬਰੀਕ ਮੈਪਿੰਗ ਲੇਅਰ ਲਿਖਣ ਦਾ ਸਮਾਂ ਜਾਂ ਪ੍ਰੇਰਣਾ
ਨਹੀਂ ਸੀ। ਕੀ ਹੋਵੇ ਜੇ ਮੈਂ AI ਨੂੰ ਸਿੱਧਾ Google API ਦੀ ਪਹੁੰਚ ਦੇ ਦੇਵਾਂ?

ਮੈਂ ਆਪਣਾ ਪ੍ਰੌਮਪਟ AI ਨੂੰ ਇਹ ਦੱਸ ਕੇ ਸ਼ੁਰੂ ਕੀਤਾ ਕਿ ਇਸ ਕੋਲHTTP ਰਾਹੀਂ Google API ਐਂਡਪੁਆਇੰਟਸ
ਤੱਕ ਸਿੱਧੀ ਪਹੁੰਚ ਹੈ, ਅਤੇ ਇਸਦੀ ਭੂਮਿਕਾ ਯੂਜ਼ਰ ਦੀ ਤਰਫ਼ੋਂ Google ਐਪਸ ਅਤੇ ਸੇਵਾਵਾਂ ਦੀ ਵਰਤੋਂ ਕਰਨਾ ਹੈ।
ਫਿਰ ਮੈਂ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼, fields ਪੈਰਾਮੀਟਰ ਨਾਲ ਸੰਬੰਧਿਤ ਨਿਯਮ ਪ੍ਰਦਾਨ ਕੀਤੇ, ਕਿਉਂਕਿ ਇਸ ਨੂੰ ਉਸ ਨਾਲ
ਸਭ ਤੋਂ ਵੱਧ ਮੁਸ਼ਕਲ ਆ ਰਹੀ ਸੀ, ਅਤੇ ਕੁਝ API-ਵਿਸ਼ੇਸ਼ ਸੁਝਾਅ (ਫਿਊ-ਸ਼ਾਟ ਪ੍ਰੌਮਪਟਿੰਗ, ਕਾਰਵਾਈ ਵਿੱਚ)।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 58

ਇੱਥੇ ਪੂਰਾ ਪ੍ਰੌਮਪਟ ਹੈ, ਜੋ AI ਨੂੰ ਦੱਸਦਾ ਹੈ ਕਿ ਪ੍ਰਦਾਨ ਕੀਤੇ invoke_google_api ਫੰਕਸ਼ਨ ਦੀ ਵਰਤੋਂ
ਕਿਵੇਂ ਕਰਨੀ ਹੈ।

1 As a GPT assistant with Google integration, you have the capability

2 to freely interact with Google apps and services on behalf of the user.

3

4 Guidelines:

5 - If you're reading these instructions then the user is properly

6 authenticated, which means you can use the special `me` keyword

7 to refer to the userId of the user

8 - Minimize payload sizes by requesting partial responses using the

9 `fields` parameter

10 - When appropriate use markdown tables to output results of API calls

11 - Only human-readable data should be output to the user. For instance,

12 when hitting Gmail's user.messages.list endpoint, the returned

13 message resources contain only id and a threadId, which means you must

14 fetch from and subject line fields with follow-up requests using the

15 messages.get method.

16

17 The format of the `fields` request parameter value is loosely based on

18 XPath syntax. The following rules define formatting for the fields

19 parameter.

20

21 All of these rules use examples related to the files.get method.

22 - Use a comma-separated list to select multiple fields,

23 such as 'name, mimeType'.

24 - Use a/b to select field b that's nested within field a,

25 such as 'capabilities/canDownload'.

26 - Use a sub-selector to request a set of specific sub-fields of arrays or

27 objects by placing expressions in parentheses "()". For example,

28 'permissions(id)' returns only the permission ID for each element in the

29 permissions array.

30 - To return all fields in an object, use an asterisk as a wild card in field

31 selections. For example, 'permissions/permissionDetails/*' selects all

32 available permission details fields per permission. Note that the use of

33 this wildcard can lead to negative performance impacts on the request.

34

35 API-specific hints:

36 - Searching contacts: GET https://people.googleapis.com/v1/

37 people:searchContacts?query=John%20Doe&readMask=names,emailAddresses

38 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 59

39 calendar/v3/calendars/primary/events/quickAdd?

40 text=Appointment%20on%20June%203rd%20at%2010am

41 &sendNotifications=true

42

43 Here is an abbreviated version of the code that implements API access

44 so that you better understand how to use the function:

45

46 def invoke_google_api(conversation, arguments)

47 method = arguments[:method] || :get

48 body = arguments[:body]

49 GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json

50 end

51

52 # Generic Google API client for accessing any Google service

53 class GoogleAPI

54 def send_request(endpoint, method:, body: nil)

55 response = @connection.send(method) do |req|

56 req.url endpoint

57 req.body = body.to_json if body

58 end

59

60 handle_response(response)

61 end

62

63 # ...rest of class

64 end

ਤੁਸੀਂ ਸੋਚ ਰਹੇ ਹੋਵੋਗੇ ਕਿ ਕੀ ਇਹ ਪ੍ਰੌਮਪਟ ਕੰਮ ਕਰਦਾ ਹੈ। ਸਧਾਰਨ ਜਵਾਬ ਹੈ ਹਾਂ। ਏ.ਆਈ. ਨੂੰ ਪਹਿਲੀ ਕੋਸ਼ਿਸ਼
ਵਿੱਚ API ਨੂੰ ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਕਾਲ ਕਰਨਾ ਨਹੀਂ ਆਉਂਦਾ ਸੀ। ਹਾਲਾਂਕਿ, ਜੇ ਇਸ ਨੇ ਕੋਈ ਗਲਤੀ ਕੀਤੀ ਤਾਂ ਮੈਂ
ਬਸ ਨਤੀਜੇ ਵਜੋਂ ਆਉਣ ਵਾਲੇ ਗਲਤੀ ਸੁਨੇਹੇ ਨੂੰ ਵਾਪਸ ਫੀਡ ਕਰ ਦਿੰਦਾ ਸੀ। ਆਪਣੀ ਗਲਤੀ ਦਾ ਪਤਾ ਲੱਗਣ
’ਤੇ, ਏ.ਆਈ. ਆਪਣੀ ਗਲਤੀ ਬਾਰੇ ਸੋਚ ਸਕਦੀ ਸੀ ਅਤੇ ਦੁਬਾਰਾ ਕੋਸ਼ਿਸ਼ ਕਰ ਸਕਦੀ ਸੀ। ਜ਼ਿਆਦਾਤਰ ਵਾਰ,
ਇਹ ਕੁਝ ਕੋਸ਼ਿਸ਼ਾਂ ਵਿੱਚ ਸਹੀ ਹੋ ਜਾਂਦੀ ਸੀ।

ਯਾਦ ਰੱਖੋ, ਇਸ ਪ੍ਰੌਮਪਟ ਨੂੰ ਵਰਤਦੇ ਹੋਏ Google API ਦੁਆਰਾ ਵਾਪਸ ਕੀਤੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਵੱਡੀਆਂ
JSON ਸੰਰਚਨਾਵਾਂ ਬਹੁਤ ਅਕੁਸ਼ਲ ਹਨ, ਇਸ ਲਈ ਮੈਂ ਪ੍ਰੋਡਕਸ਼ਨ ਵਿੱਚ ਇਸ ਪਹੁੰਚ ਦੀ ਵਰਤੋਂ ਕਰਨ ਦੀ
ਸਿਫਾਰਸ਼ ਨਹੀਂ ਕਰ ਰਿਹਾ ਹਾਂ। ਹਾਲਾਂਕਿ, ਮੈਨੂੰ ਲਗਦਾ ਹੈ ਕਿ ਇਹ ਤੱਥ ਕਿ ਇਹ ਪਹੁੰਚ ਬਿਲਕੁਲ ਵੀ ਕੰਮ ਕੀਤਾ,
ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਕਿੰਨੀ ਸ਼ਕਤੀਸ਼ਾਲੀ ਹੋ ਸਕਦੀ ਹੈ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 60

ਪ੍ਰਯੋਗ ਅਤੇ ਦੁਹਰਾਓ

ਆਖਰਕਾਰ, ਤੁਸੀਂ ਆਪਣੇ ਪ੍ਰੌਮਪਟ ਨੂੰ ਕਿਵੇਂ ਇੰਜੀਨੀਅਰ ਕਰਦੇ ਹੋ ਇਹ ਵਿਸ਼ੇਸ਼ ਕਾਰਜ, ਲੋੜੀਂਦੇ ਆਉਟਪੁੱਟ ਦੀ
ਗੁੰਝਲਤਾ, ਅਤੇ ਤੁਹਾਡੇ ਵੱਲੋਂ ਵਰਤੇ ਜਾ ਰਹੇ ਭਾਸ਼ਾ ਮਾਡਲ ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ’ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।

ਇੱਕ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰ ਵਜੋਂ, ਵੱਖ-ਵੱਖ ਪਹੁੰਚਾਂ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਨਾ ਅਤੇ ਨਤੀਜਿਆਂ ਦੇ ਆਧਾਰ ’ਤੇ
ਦੁਹਰਾਉਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਜ਼ੀਰੋ-ਸ਼ੌਟ ਲਰਨਿੰਗ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ ਅਤੇ ਦੇਖੋ ਕਿ ਮਾਡਲ ਕਿਵੇਂ ਪ੍ਰਦਰਸ਼ਨ ਕਰਦਾ
ਹੈ। ਜੇਕਰ ਆਉਟਪੁੱਟ ਅਸਥਿਰ ਜਾਂ ਅਸੰਤੋਸ਼ਜਨਕ ਹੈ, ਤਾਂ ਇੱਕ ਜਾਂ ਵਧੇਰੇ ਉਦਾਹਰਣਾਂ ਪ੍ਰਦਾਨ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼
ਕਰੋ ਅਤੇ ਦੇਖੋ ਕਿ ਕੀ ਪ੍ਰਦਰਸ਼ਨ ਵਿੱਚ ਸੁਧਾਰ ਹੁੰਦਾ ਹੈ।

ਯਾਦ ਰੱਖੋ ਕਿ ਹਰ ਪਹੁੰਚ ਦੇ ਅੰਦਰ ਵੀ, ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਅਤੇ ਅਨੁਕੂਲਤਾ ਲਈ ਗੁੰਜਾਇਸ਼ ਹੈ। ਤੁਸੀਂ ਵੱਖ-ਵੱਖ
ਉਦਾਹਰਣਾਂ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰ ਸਕਦੇ ਹੋ, ਕਾਰਜ ਵੇਰਵੇ ਦੀ ਸ਼ਬਦਾਵਲੀ ਨੂੰ ਵਿਵਸਥਿਤ ਕਰ ਸਕਦੇ ਹੋ, ਜਾਂ ਮਾਡਲ
ਦੇ ਜਵਾਬ ਨੂੰ ਨਿਰਦੇਸ਼ਿਤ ਕਰਨ ਵਿੱਚ ਮਦਦ ਲਈ ਵਾਧੂ ਸੰਦਰਭ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦੇ ਹੋ।

ਸਮੇਂ ਦੇ ਨਾਲ, ਤੁਸੀਂ ਇਹ ਸਮਝ ਵਿਕਸਿਤ ਕਰੋਗੇ ਕਿ ਕਿਸੇ ਦਿੱਤੇ ਕਾਰਜ ਲਈ ਕਿਹੜੀ ਪਹੁੰਚ ਸਭ ਤੋਂ ਵਧੀਆ ਕੰਮ
ਕਰ ਸਕਦੀ ਹੈ, ਅਤੇ ਤੁਸੀਂ ਅਜਿਹੇ ਪ੍ਰੌਮਪਟ ਬਣਾਉਣ ਦੇ ਯੋਗ ਹੋਵੋਗੇ ਜੋ ਵਧੇਰੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਅਤੇ ਕੁਸ਼ਲ ਹੋਣ।
ਮੁੱਖ ਗੱਲ ਇਹ ਹੈ ਕਿ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਪ੍ਰਤੀ ਆਪਣੇ ਪਹੁੰਚ ਵਿੱਚ ਜਿਗਿਆਸੂ, ਪ੍ਰਯੋਗਾਤਮਕ ਅਤੇ
ਦੁਹਰਾਉਣ ਵਾਲੇ ਬਣੇ ਰਹੋ।

ਇਸ ਕਿਤਾਬ ਵਿੱਚ, ਅਸੀਂ ਇਨ੍ਹਾਂ ਤਕਨੀਕਾਂ ਵਿੱਚ ਡੂੰਘਾਈ ਨਾਲ ਜਾਵਾਂਗੇ ਅਤੇ ਦੇਖਾਂਗੇ ਕਿ ਇਨ੍ਹਾਂ ਨੂੰ ਅਸਲ-
ਸੰਸਾਰ ਦੇ ਸਥਿਤੀਆਂ ਵਿੱਚ ਕਿਵੇਂ ਲਾਗੂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਦੀ ਕਲਾ ਅਤੇ ਵਿਗਿਆਨ
’ਤੇ ਮੁਹਾਰਤ ਹਾਸਲ ਕਰਕੇ, ਤੁਸੀਂ ਏ.ਆਈ.-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨ ਵਿਕਾਸ ਦੀ ਪੂਰੀ ਸੰਭਾਵਨਾ ਨੂੰ ਅਨਲੌਕ ਕਰਨ
ਲਈ ਚੰਗੀ ਤਰ੍ਹਾਂ ਲੈਸ ਹੋਵੋਗੇ।

ਅਸਪੱਸ਼ਟਤਾ ਦੀ ਕਲਾ

ਜਦੋਂ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ (LLMs) ਲਈ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਪ੍ਰੌਮਪਟਸ ਬਣਾਉਣ ਦੀ ਗੱਲ ਆਉਂਦੀ ਹੈ, ਤਾਂ ਇੱਕ
ਆਮ ਧਾਰਨਾ ਇਹ ਹੈ ਕਿ ਵਧੇਰੇ ਵਿਸ਼ੇਸ਼ਤਾ ਅਤੇ ਵਿਸਤ੍ਰਿਤ ਹਦਾਇਤਾਂ ਬਿਹਤਰ ਨਤੀਜਿਆਂ ਵੱਲ ਲੈ ਜਾਂਦੀਆਂ
ਹਨ। ਹਾਲਾਂਕਿ, ਵਿਵਹਾਰਕ ਤਜਰਬੇ ਨੇ ਦਿਖਾਇਆ ਹੈ ਕਿ ਇਹ ਹਮੇਸ਼ਾ ਅਜਿਹਾ ਨਹੀਂ ਹੁੰਦਾ। ਅਸਲ ਵਿੱਚ, ਆਪਣੇ
ਪ੍ਰੌਮਪਟਸ ਵਿੱਚ ਜਾਣ ਬੁੱਝ ਕੇ ਅਸਪੱਸ਼ਟ ਹੋਣਾ ਅਕਸਰ ਬਿਹਤਰ ਨਤੀਜੇ ਦੇ ਸਕਦਾ ਹੈ, ਜੋ LLM ਦੀ ਆਮੀਕਰਨ
ਕਰਨ ਅਤੇ ਅਨੁਮਾਨ ਲਗਾਉਣ ਦੀ ਸ਼ਾਨਦਾਰ ਯੋਗਤਾ ਦਾ ਲਾਭ ਲੈਂਦਾ ਹੈ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 61

Ken, ਇੱਕ ਸਟਾਰਟਅੱਪ ਸੰਸਥਾਪਕ ਜਿਸਨੇ 500 ਮਿਲੀਅਨ ਜੀਪੀਟੀ ਟੋਕਨਾਂ ਦੀ ਪ੍ਰੋਸੈਸਿੰਗ ਕੀਤੀ ਹੈ, ਨੇ ਆਪਣੇ
ਤਜਰਬੇ ਤੋਂ ਕੀਮਤੀ ਸਿੱਖਿਆਵਾਂ ਸਾਂਝੀਆਂ ਕੀਤੀਆਂ। ਉਸ ਨੇ ਸਿੱਖੇ ਮੁੱਖ ਸਬਕਾਂ ਵਿੱਚੋਂ ਇੱਕ ਇਹ ਸੀ ਕਿ ਪ੍ਰੌਮਪਟਸ
ਦੇ ਮਾਮਲੇ ਵਿੱਚ “ਘੱਟ ਹੀ ਵੱਧ ਹੈ”। ਬਿਲਕੁਲ ਸਹੀ ਸੂਚੀਆਂ ਜਾਂ ਬਹੁਤ ਵਿਸਥਾਰਿਤ ਹਦਾਇਤਾਂ ਦੀ ਬਜਾਏ, Ken
ਨੇ ਪਾਇਆ ਕਿ ਐੱਲਐੱਲਐੱਮ ਨੂੰ ਆਪਣੇ ਮੂਲ ਗਿਆਨ ’ਤੇ ਨਿਰਭਰ ਕਰਨ ਦੇਣ ਨਾਲ ਅਕਸਰ ਬਿਹਤਰ ਨਤੀਜੇ
ਮਿਲਦੇ ਹਨ।

ਇਹਅਹਿਸਾਸ ਪਰੰਪਰਾਗਤ ਕੋਡਿੰਗ ਦੀ ਸੋਚ ਨੂੰ ਉਲਟਾ ਦਿੰਦਾ ਹੈ, ਜਿੱਥੇ ਹਰ ਚੀਜ਼ ਨੂੰ ਬਹੁਤ ਬਾਰੀਕੀ ਨਾਲ ਸਮਝਾਉਣ
ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਐੱਲਐੱਲਐੱਮ ਦੇ ਨਾਲ, ਇਹ ਸਮਝਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਉਹਨਾਂ ਕੋਲ ਵਿਸ਼ਾਲ ਗਿਆਨ ਹੈ
ਅਤੇ ਉਹ ਬੁੱਧੀਮਾਨ ਕਨੈਕਸ਼ਨ ਅਤੇ ਅਨੁਮਾਨ ਲਗਾ ਸਕਦੇ ਹਨ। ਆਪਣੇ ਪ੍ਰੌਮਪਟਸ ਵਿੱਚ ਵਧੇਰੇ ਅਸਪਸ਼ਟ ਹੋਣ
ਨਾਲ, ਤੁਸੀਂ ਐੱਲਐੱਲਐੱਮ ਨੂੰ ਆਪਣੀ ਸਮਝ ਦਾ ਲਾਭ ਲੈਣ ਅਤੇ ਅਜਿਹੇ ਹੱਲ ਲੱਭਣ ਦੀ ਆਜ਼ਾਦੀ ਦਿੰਦੇ ਹੋ ਜੋ ਤੁਸੀਂ
ਸਪੱਸ਼ਟ ਤੌਰ ’ਤੇ ਨਿਰਧਾਰਤ ਨਹੀਂ ਕੀਤੇ ਹੋ ਸਕਦੇ।

ਉਦਾਹਰਣ ਵਜੋਂ, ਜਦੋਂ Ken ਦੀ ਟੀਮ 50 ਅਮਰੀਕੀ ਰਾਜਾਂ ਜਾਂ ਫੈਡਰਲ ਸਰਕਾਰ ਨਾਲ ਸਬੰਧਿਤ ਟੈਕਸਟ ਨੂੰ
ਵਰਗੀਕ੍ਰਿਤ ਕਰਨ ਲਈ ਇੱਕ ਪਾਈਪਲਾਈਨ ’ਤੇ ਕੰਮ ਕਰ ਰਹੀ ਸੀ, ਉਨ੍ਹਾਂ ਦੇ ਸ਼ੁਰੂਆਤੀ ਪਹੁੰਚ ਵਿੱਚ JSON-
ਫਾਰਮੈਟਡ ਐਰੇ ਦੇ ਰੂਪ ਵਿੱਚ ਰਾਜਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਸੰਬੰਧਿਤਆਈਡੀਜ਼ ਦੀ ਪੂਰੀ ਵਿਸਤ੍ਰਿਤ ਸੂਚੀ ਪ੍ਰਦਾਨ ਕਰਨਾ
ਸ਼ਾਮਲ ਸੀ।

1 Here's a block of text. One field should be "locality_id", and it should

2 be the ID of one of the 50 states, or federal, using this list:

3 [{"locality: "Alabama", "locality_id": 1},

4 {"locality: "Alaska", "locality_id": 2} ...]

ਇਹ ਤਰੀਕਾ ਇੰਨਾ ਅਸਫਲ ਹੋਇਆ ਕਿ ਉਨ੍ਹਾਂ ਨੂੰ ਪ੍ਰੌਮਪਟ ਵਿੱਚ ਡੂੰਘਾਈ ਨਾਲ ਜਾ ਕੇ ਇਸ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ
ਦਾ ਤਰੀਕਾ ਲੱਭਣਾ ਪਿਆ। ਅਜਿਹਾ ਕਰਦਿਆਂ ਉਨ੍ਹਾਂ ਨੇ ਦੇਖਿਆ ਕਿ ਭਾਵੇਂ LLM ਅਕਸਰ id ਗਲਤ ਪ੍ਰਾਪਤ
ਕਰ ਲੈਂਦਾ ਸੀ, ਪਰ ਇਹ ਲਗਾਤਾਰ ਸਹੀ ਰਾਜ ਦਾ ਪੂਰਾ ਨਾਮ name ਫੀਲਡ ਵਿੱਚ ਵਾਪਸ ਕਰ ਰਿਹਾ ਸੀ, ਭਾਵੇਂ
ਉਨ੍ਹਾਂ ਨੇ ਇਸ ਬਾਰੇ ਸਪੱਸ਼ਟ ਤੌਰ ’ਤੇ ਨਹੀਂ ਪੁੱਛਿਆ ਸੀ।

ਸਥਾਨਕ ids ਨੂੰ ਹਟਾ ਕੇ ਅਤੇ ਪ੍ਰੌਮਪਟ ਨੂੰ ਸਰਲ ਬਣਾ ਕੇ ਕੁਝ ਇਸ ਤਰ੍ਹਾਂ, “ਤੁਸੀਂ ਸਪੱਸ਼ਟ ਤੌਰ ’ਤੇ 50 ਰਾਜਾਂ ਨੂੰ
ਜਾਣਦੇ ਹੋ, GPT, ਇਸ ਲਈ ਮੈਨੂੰ ਸਿਰਫ਼ ਉਸ ਰਾਜ ਦਾ ਪੂਰਾ ਨਾਮ ਦੱਸੋ ਜਿਸ ਨਾਲ ਇਹ ਸਬੰਧਤ ਹੈ, ਜਾਂ ਫੈਡਰਲ
ਜੇਕਰਇਹਅਮਰੀਕੀ ਸਰਕਾਰ ਨਾਲ ਸਬੰਧਤ ਹੈ,” ਉਨ੍ਹਾਂ ਨੇ ਬਿਹਤਰ ਨਤੀਜੇ ਪ੍ਰਾਪਤ ਕੀਤੇ। ਇਹ ਤਜਰਬਾ LLM
ਦੀਆਂ ਆਮੀਕਰਨ ਸਮਰੱਥਾਵਾਂ ਦੀ ਵਰਤੋਂ ਕਰਨ ਅਤੇ ਇਸਦੇ ਮੌਜੂਦਾ ਗਿਆਨ ਦੇ ਆਧਾਰ ’ਤੇ ਅਨੁਮਾਨ ਲਗਾਉਣ
ਦੀ ਸ਼ਕਤੀ ਨੂੰ ਉਜਾਗਰ ਕਰਦਾ ਹੈ।

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 62

ਇਸ ਖਾਸ ਵਰਗੀਕਰਨ ਪਹੁੰਚ ਲਈ Ken ਦਾ ਔਚਿੱਤ, ਇੱਕ ਵਧੇਰੇ ਰਵਾਇਤੀ ਪ੍ਰੋਗਰਾਮਿੰਗ ਤਕਨੀਕ ਦੇ
ਮੁਕਾਬਲੇ, ਉਨ੍ਹਾਂ ਲੋਕਾਂ ਦੀ ਮਾਨਸਿਕਤਾ ਨੂੰ ਪ੍ਰਗਟ ਕਰਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਨੇ LLM ਤਕਨਾਲੋਜੀ ਦੀ ਸੰਭਾਵਨਾ ਨੂੰ
ਸਵੀਕਾਰ ਕੀਤਾ ਹੈ: “ਇਹ ਕੋਈ ਔਖਾ ਕੰਮ ਨਹੀਂ ਹੈ - ਅਸੀਂ ਸ਼ਾਇਦ ਸਟ੍ਰਿੰਗ/ਰੇਜੈਕਸ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ
ਸੀ, ਪਰ ਇੰਨੇ ਵਿਸ਼ੇਸ਼ ਮਾਮਲੇ ਹਨ ਕਿ ਇਸ ਵਿੱਚ ਵਧੇਰੇ ਸਮਾਂ ਲੱਗ ਜਾਣਾ ਸੀ।”

LLMs ਦੀ ਵਧੇਰੇ ਅਸਪਸ਼ਟ ਪ੍ਰੌਮਪਟਸ ਨਾਲ ਗੁਣਵੱਤਾ ਅਤੇ ਆਮੀਕਰਨ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਦੀ ਯੋਗਤਾ ਉੱਚ-
ਕ੍ਰਮ ਸੋਚ ਅਤੇ ਪ੍ਰਤੀਨਿਧਤਾ ਦੀ ਇੱਕ ਵਿਲੱਖਣ ਵਿਸ਼ੇਸ਼ਤਾ ਹੈ। ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ LLMs ਅਨਿਸ਼ਚਿਤਤਾ
ਨੂੰ ਸੰਭਾਲ ਸਕਦੇ ਹਨ ਅਤੇ ਦਿੱਤੇ ਗਏ ਸੰਦਰਭ ਦੇ ਆਧਾਰ ’ਤੇ ਬੁੱਧੀਮਾਨ ਫੈਸਲੇ ਲੈ ਸਕਦੇ ਹਨ।

ਹਾਲਾਂਕਿ, ਇਹ ਨੋਟ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਅਸਪਸ਼ਟ ਹੋਣ ਦਾ ਮਤਲਬ ਅਸਪਸ਼ਟ ਜਾਂ ਦੁਵਿਧਾਜਨਕ ਹੋਣਾ ਨਹੀਂ
ਹੈ। ਮੁੱਖ ਗੱਲ ਇਹ ਹੈ ਕਿ LLM ਨੂੰ ਸਹੀ ਦਿਸ਼ਾ ਵੱਲ ਨਿਰਦੇਸ਼ਿਤ ਕਰਨ ਲਈ ਕਾਫ਼ੀ ਸੰਦਰਭ ਅਤੇ ਮਾਰਗਦਰਸ਼ਨ
ਪ੍ਰਦਾਨ ਕੀਤਾ ਜਾਵੇ, ਜਦੋਂ ਕਿ ਇਸ ਨੂੰ ਆਪਣੇ ਗਿਆਨਅਤੇ ਆਮੀਕਰਨ ਸਮਰੱਥਾਵਾਂ ਦੀ ਵਰਤੋਂ ਕਰਨ ਦੀ ਲਚਕਤਾ
ਦਿੱਤੀ ਜਾਵੇ।

ਇਸ ਲਈ, ਪ੍ਰੌਮਪਟਸ ਤਿਆਰ ਕਰਦੇ ਸਮੇਂ, ਹੇਠ ਲਿਖੇ “ਘੱਟ ਵਧੇਰੇ ਹੈ” ਸੁਝਾਵਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ:

1. ਪ੍ਰਕਿਰਿਆ ਦੇ ਹਰ ਵੇਰਵੇ ਨੂੰ ਨਿਰਧਾਰਤ ਕਰਨ ਦੀ ਬਜਾਏ ਲੋੜੀਂਦੇ ਨਤੀਜੇ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰੋ।
2. ਪ੍ਰਸੰਗਿਕ ਸੰਦਰਭ ਅਤੇ ਸੀਮਾਵਾਂ ਪ੍ਰਦਾਨ ਕਰੋ, ਪਰ ਵਧੇਰੇ ਨਿਰਧਾਰਨ ਤੋਂ ਬਚੋ।
3. ਆਮ ਧਾਰਨਾਵਾਂ ਜਾਂ ਇਕਾਈਆਂ ਦਾ ਹਵਾਲਾ ਦੇ ਕੇ ਮੌਜੂਦਾ ਗਿਆਨ ਦਾ ਲਾਭ ਉਠਾਓ।
4. ਦਿੱਤੇ ਗਏ ਸੰਦਰਭ ਦੇ ਆਧਾਰ ’ਤੇ ਅਨੁਮਾਨਾਂ ਅਤੇ ਕਨੈਕਸ਼ਨਾਂ ਲਈ ਜਗ੍ਹਾ ਛੱਡੋ।
5. LLM ਦੇ ਜਵਾਬਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਆਪਣੇ ਪ੍ਰੌਮਪਟਸ ਨੂੰ ਦੁਹਰਾਓ ਅਤੇ ਸੁਧਾਰੋ, ਨਿਰਧਾਰਤਾ ਅਤੇ

ਅਸਪਸ਼ਟਤਾ ਵਿਚਕਾਰ ਸਹੀ ਸੰਤੁਲਨ ਲੱਭੋ।

ਪ੍ਰੌਮਪਟਇੰਜੀਨੀਅਰਿੰਗ ਵਿੱਚ ਅਸਪਸ਼ਟਤਾ ਦੀ ਕਲਾ ਨੂੰ ਅਪਣਾ ਕੇ, ਤੁਸੀਂ LLMs ਦੀ ਪੂਰੀ ਸੰਭਾਵਨਾ ਨੂੰ ਅਨਲੌਕ
ਕਰ ਸਕਦੇ ਹੋ ਅਤੇ ਬਿਹਤਰ ਨਤੀਜੇ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹੋ। LLM ਦੀ ਆਮੀਕਰਨ ਅਤੇ ਬੁੱਧੀਮਾਨ ਫੈਸਲੇ ਲੈਣ
ਦੀ ਯੋਗਤਾ ’ਤੇ ਭਰੋਸਾ ਕਰੋ, ਅਤੇ ਤੁਸੀਂ ਪ੍ਰਾਪਤ ਕੀਤੇ ਆਉਟਪੁੱਟ ਦੀ ਗੁਣਵੱਤਾ ਅਤੇ ਰਚਨਾਤਮਕਤਾ ਤੋਂ ਹੈਰਾਨ ਹੋ
ਸਕਦੇ ਹੋ। ਇਸ ਗੱਲ ਵੱਲ ਧਿਆਨ ਦਿਓ ਕਿ ਵੱਖ-ਵੱਖ ਮਾਡਲ ਤੁਹਾਡੇ ਪ੍ਰੌਮਪਟਸ ਵਿੱਚ ਵਿਸ਼ੇਸ਼ਤਾ ਦੇ ਵੱਖ-ਵੱਖ
ਪੱਧਰਾਂ ਪ੍ਰਤੀ ਕਿਵੇਂ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਦੇ ਹਨ ਅਤੇ ਉਸ ਅਨੁਸਾਰ ਸਮਾਯੋਜਨ ਕਰੋ। ਅਭਿਆਸ ਅਤੇ ਅਨੁਭਵ
ਨਾਲ, ਤੁਸੀਂ ਇਹ ਤੀਖਣ ਸਮਝ ਵਿਕਸਿਤ ਕਰੋਗੇ ਕਿ ਕਦੋਂ ਵਧੇਰੇ ਅਸਪਸ਼ਟ ਹੋਣਾ ਹੈ ਅਤੇ ਕਦੋਂ ਵਾਧੂ ਮਾਰਗਦਰਸ਼ਨ

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 63

ਪ੍ਰਦਾਨ ਕਰਨਾ ਹੈ, ਜੋ ਤੁਹਾਨੂੰ ਆਪਣੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ LLMs ਦੀ ਸ਼ਕਤੀ ਨੂੰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ
ਵਰਤਣ ਦੇ ਯੋਗ ਬਣਾਉਂਦਾ ਹੈ।

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਵਿੱਚ ਮਨੁੱਖੀਕਰਨ ਦਾ ਪ੍ਰਭਾਵ ਕਿਉਂ ਹੈ

ਮਨੁੱਖੀਕਰਨ, ਗੈਰ-ਮਨੁੱਖੀ ਚੀਜ਼ਾਂ ਨੂੰ ਮਨੁੱਖੀ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੇਣ ਦੀ ਪ੍ਰਕਿਰਿਆ, ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਲਈ ਪ੍ਰੌਮਪਟ
ਇੰਜੀਨੀਅਰਿੰਗ ਵਿੱਚ ਜਾਣਬੁੱਝ ਕੇ ਪ੍ਰਮੁੱਖ ਪਹੁੰਚ ਹੈ। ਇਹ ਇੱਕ ਡਿਜ਼ਾਈਨ ਚੋਣ ਹੈ ਜੋ ਸ਼ਕਤੀਸ਼ਾਲੀ ਏਆਈ
ਸਿਸਟਮਾਂ ਨਾਲ ਗੱਲਬਾਤ ਨੂੰ ਵੱਡੀ ਗਿਣਤੀ ਵਿੱਚ ਯੂਜ਼ਰਾਂ (ਸਮੇਤ ਸਾਡੇ ਐਪਲੀਕੇਸ਼ਨ ਡਿਵੈਲਪਰਾਂ) ਲਈ ਵਧੇਰੇ
ਸਹਿਜ ਅਤੇ ਪਹੁੰਚਯੋਗ ਬਣਾਉਂਦੀ ਹੈ।

ਐਲਐਲਐਮਜ਼ ਨੂੰ ਮਨੁੱਖੀ ਰੂਪ ਦੇਣਾ ਇੱਕ ਅਜਿਹਾ ਢਾਂਚਾ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ ਜੋ ਉਨ੍ਹਾਂ ਲੋਕਾਂ ਲਈ ਤੁਰੰਤ
ਸਮਝਣਯੋਗ ਹੈ ਜੋ ਸਿਸਟਮ ਦੀਆਂ ਅੰਦਰੂਨੀ ਤਕਨੀਕੀ ਗੁੰਝਲਾਂ ਤੋਂ ਬਿਲਕੁਲ ਅਣਜਾਣ ਹਨ। ਜਿਵੇਂ ਕਿ ਤੁਸੀਂ
ਅਨੁਭਵ ਕਰੋਗੇ ਜੇ ਤੁਸੀਂ ਕਿਸੇ ਗੈਰ-ਨਿਰਦੇਸ਼ਿਤ ਮਾਡਲ ਨੂੰ ਕੁਝ ਲਾਭਦਾਇਕ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋਗੇ, ਅਜਿਹਾ
ਢਾਂਚਾ ਬਣਾਉਣਾ ਜਿੱਥੇ ਉਮੀਦ ਕੀਤੀ ਨਿਰੰਤਰਤਾ ਮੁੱਲ ਪ੍ਰਦਾਨ ਕਰੇ, ਇੱਕ ਚੁਣੌਤੀਪੂਰਨ ਕੰਮ ਹੈ। ਇਸ ਲਈਸਿਸਟਮ
ਦੀ ਅੰਦਰੂਨੀ ਕਾਰਜਪ੍ਰਣਾਲੀ ਦੀ ਡੂੰਘੀ ਸਮਝ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਜੋ ਕਿ ਮਾਹਰਾਂ ਦੀ ਇੱਕ ਛੋਟੀ ਜਿਹੀ ਗਿਣਤੀ ਕੋਲ
ਹੀ ਹੈ।

ਭਾਸ਼ਾ ਮਾਡਲ ਨਾਲ ਗੱਲਬਾਤ ਨੂੰ ਦੋ ਵਿਅਕਤੀਆਂ ਵਿਚਕਾਰ ਗੱਲਬਾਤ ਵਜੋਂ ਮੰਨ ਕੇ, ਅਸੀਂ ਆਪਣੀਆਂ ਲੋੜਾਂ ਅਤੇ
ਉਮੀਦਾਂ ਨੂੰ ਦੱਸਣ ਲਈ ਮਨੁੱਖੀ ਸੰਚਾਰ ਦੀ ਆਪਣੀ ਸਹਿਜ ਸਮਝ ’ਤੇ ਭਰੋਸਾ ਕਰ ਸਕਦੇ ਹਾਂ। ਜਿਵੇਂ ਕਿ ਸ਼ੁਰੂਆਤੀ
Macintosh UI ਡਿਜ਼ਾਈਨ ਨੇ ਗੁੰਝਲਤਾ ਨਾਲੋਂ ਤੁਰੰਤ ਸਮਝਣਯੋਗਤਾ ਨੂੰ ਤਰਜੀਹ ਦਿੱਤੀ, ਏਆਈ ਦਾ ਮਨੁੱਖੀ
ਢਾਂਚਾ ਸਾਨੂੰ ਅਜਿਹੇ ਢੰਗ ਨਾਲ ਜੁੜਨ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦਾ ਹੈ ਜੋ ਕੁਦਰਤੀ ਅਤੇ ਜਾਣੂ ਲੱਗਦਾ ਹੈ।

ਜਦੋਂ ਅਸੀਂ ਕਿਸੇ ਹੋਰ ਵਿਅਕਤੀ ਨਾਲ ਗੱਲਬਾਤ ਕਰਦੇ ਹਾਂ, ਸਾਡੀ ਸਹਿਜ ਪ੍ਰਵਿਰਤੀ “ਤੁਸੀਂ” ਦੀ ਵਰਤੋਂ ਕਰਕੇ
ਉਨ੍ਹਾਂ ਨੂੰ ਸਿੱਧੇ ਸੰਬੋਧਿਤ ਕਰਨ ਦੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਹ ਸਪਸ਼ਟ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ ਦੇਣ ਦੀ ਹੁੰਦੀ ਹੈ ਕਿ ਅਸੀਂ ਉਨ੍ਹਾਂ ਤੋਂ
ਕਿਸ ਤਰ੍ਹਾਂ ਦੇ ਵਿਵਹਾਰ ਦੀ ਉਮੀਦ ਕਰਦੇ ਹਾਂ। ਇਹ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਨਿਰਵਿਘਨ
ਤਰੀਕੇ ਨਾਲ ਅਨੁਵਾਦ ਹੁੰਦਾ ਹੈ, ਜਿੱਥੇ ਅਸੀਂ ਸਿਸਟਮ ਪ੍ਰੌਮਪਟਸ ਨੂੰ ਨਿਰਧਾਰਤ ਕਰਕੇ ਅਤੇ ਆਪਸੀ ਸੰਵਾਦ ਵਿੱਚ
ਸ਼ਾਮਲ ਹੋ ਕੇ ਏਆਈ ਦੇ ਵਿਵਹਾਰ ਨੂੰ ਨਿਰਦੇਸ਼ਿਤ ਕਰਦੇ ਹਾਂ।

ਗੱਲਬਾਤ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਢਾਂਚਾਗਤ ਕਰਕੇ, ਅਸੀਂ ਏਆਈ ਨੂੰ ਨਿਰਦੇਸ਼ ਦੇਣ ਅਤੇ ਬਦਲੇ ਵਿੱਚ ਢੁਕਵੇਂ ਜਵਾਬ
ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਧਾਰਨਾ ਨੂੰ ਆਸਾਨੀ ਨਾਲ ਸਮਝ ਸਕਦੇ ਹਾਂ। ਮਨੁੱਖੀ ਪਹੁੰਚ ਬੌਧਿਕ ਬੋਝ ਨੂੰ ਘਟਾਉਂਦੀ ਹੈ ਅਤੇ
ਸਾਨੂੰ ਸਿਸਟਮ ਦੀਆਂ ਤਕਨੀਕੀ ਗੁੰਝਲਾਂ ਨਾਲ ਜੂਝਣ ਦੀ ਬਜਾਏ ਕੰਮ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਨ ਦੀ ਇਜਾਜ਼ਤ
ਦਿੰਦੀ ਹੈ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 64

ਇਹ ਨੋਟ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਭਾਵੇਂ ਮਨੁੱਖੀਕਰਨ ਏਆਈ ਸਿਸਟਮਾਂ ਨੂੰ ਵਧੇਰੇ ਪਹੁੰਚਯੋਗ ਬਣਾਉਣ ਲਈ
ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਸਾਧਨ ਹੈ, ਪਰ ਇਸ ਦੇ ਨਾਲ ਕੁਝ ਜੋਖਮ ਅਤੇ ਸੀਮਾਵਾਂ ਵੀ ਆਉਂਦੀਆਂ ਹਨ। ਸਾਡੇ ਯੂਜ਼ਰ
ਗੈਰ-ਯਥਾਰਥਕ ਉਮੀਦਾਂ ਵਿਕਸਿਤ ਕਰ ਸਕਦੇ ਹਨ ਜਾਂ ਸਾਡੇ ਸਿਸਟਮਾਂ ਨਾਲ ਅਣਸਿਹਤਮੰਦ ਭਾਵਨਾਤਮਕ ਲਗਾਵ
ਬਣਾ ਸਕਦੇ ਹਨ। ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਾਂ ਅਤੇ ਡਿਵੈਲਪਰਾਂ ਵਜੋਂ, ਮਨੁੱਖੀਕਰਨ ਦੇ ਲਾਭਾਂ ਦਾ ਲਾਹਾ ਲੈਣ ਅਤੇ
ਯੂਜ਼ਰਾਂ ਨੂੰ ਏਆਈ ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ਅਤੇ ਸੀਮਾਵਾਂ ਦੀ ਸਪਸ਼ਟ ਸਮਝ ਬਣਾਈ ਰੱਖਣ ਵਿੱਚ ਸੰਤੁਲਨ ਬਣਾਉਣਾ
ਮਹੱਤਵਪੂਰਨ ਹੈ।

ਜਿਵੇਂ-ਜਿਵੇਂ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਦਾ ਖੇਤਰ ਵਿਕਸਿਤ ਹੁੰਦਾ ਜਾ ਰਿਹਾ ਹੈ, ਅਸੀਂ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਨਾਲ
ਗੱਲਬਾਤ ਕਰਨ ਦੇ ਤਰੀਕੇ ਵਿੱਚ ਹੋਰ ਸੁਧਾਰ ਅਤੇ ਨਵੀਨਤਾਵਾਂ ਦੇਖ ਸਕਦੇ ਹਾਂ। ਹਾਲਾਂਕਿ, ਸੰਭਾਵਤ ਤੌਰ ’ਤੇ
ਮਨੁੱਖੀਕਰਨ ਇੱਕ ਸਹਿਜ ਅਤੇ ਪਹੁੰਚਯੋਗ ਡਿਵੈਲਪਰ ਅਤੇ ਯੂਜ਼ਰ ਅਨੁਭਵ ਪ੍ਰਦਾਨ ਕਰਨ ਦੇ ਸਾਧਨ ਵਜੋਂ ਇਨ੍ਹਾਂ
ਸਿਸਟਮਾਂ ਦੇ ਡਿਜ਼ਾਈਨ ਵਿੱਚ ਇੱਕ ਮੁੱਢਲਾ ਸਿਧਾਂਤ ਬਣਿਆ ਰਹੇਗਾ।

ਹਦਾਇਤਾਂ ਨੂੰ ਡਾਟਾ ਤੋਂ ਵੱਖ ਕਰਨਾ: ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਸਿਧਾਂਤ

ਇਹ ਸਮਝਣਾ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਇੱਕ ਮੌਲਿਕ ਸਿਧਾਂਤ ਜੋ ਇਨ੍ਹਾਂ ਸਿਸਟਮਾਂ ਦੀ ਸੁਰੱਖਿਆਅਤੇ ਭਰੋਸੇਯੋਗਤਾ ਨੂੰ ਆਧਾਰ
ਦਿੰਦਾ ਹੈ: ਹਦਾਇਤਾਂ ਨੂੰ ਡਾਟਾ ਤੋਂ ਵੱਖ ਕਰਨਾ।

ਪਰੰਪਰਾਗਤ ਕੰਪਿਊਟਰ ਵਿਗਿਆਨ ਵਿੱਚ, ਨਿਸ਼ਕਰਿਆ ਡਾਟਾ ਅਤੇ ਸਕਰਿਆ ਹਦਾਇਤਾਂ ਵਿਚਕਾਰ ਸਪੱਸ਼ਟ ਅੰਤਰ
ਇੱਕ ਮੁੱਖ ਸੁਰੱਖਿਆ ਸਿਧਾਂਤ ਹੈ। ਇਹ ਵੱਖਰੇਵਾਂ ਕੋਡ ਦੀ ਅਣਚਾਹੀ ਜਾਂ ਦੁਰਭਾਵਨਾਪੂਰਨ ਐਗਜ਼ੀਕਿਊਸ਼ਨ ਨੂੰ ਰੋਕਣ
ਵਿੱਚ ਮਦਦ ਕਰਦਾ ਹੈ ਜੋ ਸਿਸਟਮ ਦੀ ਅਖੰਡਤਾ ਅਤੇ ਸਥਿਰਤਾ ਨੂੰ ਖ਼ਤਰੇ ਵਿੱਚ ਪਾ ਸਕਦਾ ਹੈ। ਹਾਲਾਂਕਿ, ਅੱਜ ਦੇ
LLMs, ਜੋ ਮੁੱਖ ਤੌਰ ’ਤੇ ਚੈਟਬੋਟਾਂ ਵਾਂਗ ਹਦਾਇਤਾਂ ਦੀ ਪਾਲਣਾ ਕਰਨ ਵਾਲੇ ਮਾਡਲਾਂ ਵਜੋਂ ਵਿਕਸਿਤ ਕੀਤੇ ਗਏ
ਹਨ, ਵਿੱਚ ਅਕਸਰ ਇਹ ਰਸਮੀ ਅਤੇ ਸਿਧਾਂਤਕ ਵੱਖਰੇਵਾਂ ਨਹੀਂ ਹੁੰਦਾ।

LLMs ਦੇ ਸੰਬੰਧ ਵਿੱਚ, ਹਦਾਇਤਾਂ ਇਨਪੁੱਟ ਵਿੱਚ ਕਿਤੇ ਵੀ ਦਿਖਾਈ ਦੇ ਸਕਦੀਆਂ ਹਨ, ਭਾਵੇਂ ਇਹ ਸਿਸਟਮ
ਪ੍ਰੌਮਪਟ ਹੋਵੇ ਜਾਂ ਯੂਜ਼ਰ-ਪ੍ਰਦਾਨ ਕੀਤਾ ਪ੍ਰੌਮਪਟ। ਇਸ ਵੱਖਰੇਵੇਂ ਦੀ ਕਮੀ ਸੰਭਾਵੀ ਕਮਜ਼ੋਰੀਆਂ ਅਤੇ ਅਣਚਾਹੇ
ਵਿਵਹਾਰ ਵੱਲ ਲੈ ਜਾ ਸਕਦੀ ਹੈ, ਜੋ SQL ਇੰਜੈਕਸ਼ਨਾਂ ਵਾਲੇ ਡੇਟਾਬੇਸਾਂ ਜਾਂ ਉਚਿਤ ਮੈਮੋਰੀ ਸੁਰੱਖਿਆ ਤੋਂ ਬਿਨਾਂ
ਓਪਰੇਟਿੰਗ ਸਿਸਟਮਾਂ ਦੁਆਰਾ ਸਾਹਮਣਾ ਕੀਤੀਆਂ ਸਮੱਸਿਆਵਾਂ ਵਰਗੀਆਂ ਹਨ।

LLMs ਨਾਲ ਕੰਮ ਕਰਦੇ ਸਮੇਂ, ਇਸ ਸੀਮਾ ਤੋਂ ਜਾਣੂ ਹੋਣਾ ਅਤੇ ਜੋਖਮਾਂ ਨੂੰ ਘੱਟ ਕਰਨ ਲਈ ਕਦਮ ਚੁੱਕਣਾ
ਮਹੱਤਵਪੂਰਨ ਹੈ। ਇੱਕ ਪਹੁੰਚ ਹੈ ਆਪਣੇ ਪ੍ਰੌਮਪਟਸ ਅਤੇ ਇਨਪੁੱਟਸ ਨੂੰ ਧਿਆਨ ਨਾਲ ਤਿਆਰ ਕਰਨਾ ਤਾਂ ਜੋ
ਹਦਾਇਤਾਂ ਅਤੇ ਡਾਟਾ ਵਿਚਕਾਰ ਸਪੱਸ਼ਟ ਅੰਤਰ ਕੀਤਾ ਜਾ ਸਕੇ। ਇਸ ਬਾਰੇ ਸਪੱਸ਼ਟ ਮਾਰਗਦਰਸ਼ਨ ਪ੍ਰਦਾਨ ਕਰਨ
ਦੀਆਂ ਆਮ ਵਿਧੀਆਂ ਕਿ ਕੀ ਹਦਾਇਤ ਹੈ ਅਤੇ ਕਿਸ ਨੂੰ ਨਿਸ਼ਕਰਿਆ ਡਾਟਾ ਵਜੋਂ ਮੰਨਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ, ਵਿੱਚ

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 65

ਮਾਰਕਅੱਪ-ਸ਼ੈਲੀ ਟੈਗਿੰਗ ਸ਼ਾਮਲ ਹੈ। ਤੁਹਾਡਾ ਪ੍ਰੌਮਪਟ LLM ਨੂੰ ਇਸ ਵੱਖਰੇਵੇਂ ਨੂੰ ਬਿਹਤਰ ਢੰਗ ਨਾਲ ਸਮਝਣ
ਅਤੇ ਸਤਿਕਾਰ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ।

ਚਿੱਤਰ 6. ਹਦਾਇਤਾਂ, ਸਰੋਤ ਸਮੱਗਰੀ, ਅਤੇ ਯੂਜ਼ਰ ਦੇ ਪ੍ਰੌਮਪਟ ਵਿੱਚ ਅੰਤਰ ਕਰਨ ਲਈ XML ਦੀ ਵਰਤੋਂ

1 <Instruction>

2 Please generate a response based on the following documents.

3 </Instruction>

4

5 <Documents>

6 <Document>

7 Climate change is significantly impacting polar bear habitats...

8 </Document>

9 <Document>

10 The loss of sea ice due to global warming threatens polar bear survival...

11 </Document>

12 </Documents>

13

14 <UserQuery>

15 Tell me about the impact of climate change on polar bears.

16 </UserQuery>

ਇੱਕ ਹੋਰ ਤਕਨੀਕ LLMਨੂੰ ਪ੍ਰਦਾਨ ਕੀਤੇ ਇਨਪੁੱਟਾਂ ’ਤੇ ਵਾਧੂ ਪ੍ਰਮਾਣੀਕਰਨਅਤੇ ਸੈਨੀਟਾਈਜ਼ੇਸ਼ਨ ਦੀਆਂ ਪਰਤਾਂ
ਨੂੰ ਲਾਗੂ ਕਰਨਾ ਹੈ। ਡਾਟਾ ਵਿੱਚ ਸੰਭਾਵਿਤ ਨਿਰਦੇਸ਼ਾਂ ਜਾਂ ਕੋਡ ਸਨਿੱਪਟਾਂ ਨੂੰ ਫਿਲਟਰ ਕਰਕੇ ਜਾਂ ਐਸਕੇਪ ਕਰਕੇ, ਤੁਸੀਂ
ਅਣਚਾਹੀ ਐਗਜ਼ੀਕਿਊਸ਼ਨ ਦੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਨੂੰ ਘਟਾ ਸਕਦੇ ਹੋ। ਇਸ ਉਦੇਸ਼ ਲਈ ਪ੍ਰੌਮਪਟ ਚੇਨਿੰਗ ਵਰਗੇ
ਪੈਟਰਨ ਲਾਭਦਾਇਕ ਹਨ।

ਇਸ ਤੋਂ ਇਲਾਵਾ, ਜਦੋਂ ਤੁਸੀਂ ਆਪਣੀ ਐਪਲੀਕੇਸ਼ਨ ਆਰਕੀਟੈਕਚਰ ਡਿਜ਼ਾਈਨ ਕਰਦੇ ਹੋ, ਤਾਂ ਉੱਚ ਪੱਧਰ ’ਤੇ
ਨਿਰਦੇਸ਼ਾਂ ਅਤੇ ਡਾਟਾ ਦੇ ਵੱਖਰੇਵੇਂ ਨੂੰ ਲਾਗੂ ਕਰਨ ਲਈ ਵਿਧੀਆਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਨ ਬਾਰੇ ਵਿਚਾਰ ਕਰੋ। ਇਸ
ਵਿੱਚ ਨਿਰਦੇਸ਼ਾਂ ਅਤੇ ਡਾਟਾ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਵੱਖਰੇ ਐਂਡਪੁਆਇੰਟਸ ਜਾਂ APIs ਦੀ ਵਰਤੋਂ, ਸਖ਼ਤ ਇਨਪੁੱਟ
ਪ੍ਰਮਾਣੀਕਰਨ ਅਤੇ ਪਾਰਸਿੰਗ ਨੂੰ ਲਾਗੂ ਕਰਨਾ, ਅਤੇ ਘੱਟੋ-ਘੱਟ ਵਿਸ਼ੇਸ਼-ਅਧਿਕਾਰ ਦੇ ਸਿਧਾਂਤ ਨੂੰ ਲਾਗੂ ਕਰਨਾ
ਸ਼ਾਮਲ ਹੋ ਸਕਦਾ ਹੈ, ਜੋ LLM ਦੀ ਪਹੁੰਚ ਅਤੇ ਐਗਜ਼ੀਕਿਊਸ਼ਨ ਦੇ ਦਾਇਰੇ ਨੂੰ ਸੀਮਤ ਕਰਦਾ ਹੈ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 66

ਘੱਟੋ-ਘੱਟ ਵਿਸ਼ੇਸ਼-ਅਧਿਕਾਰ ਦਾ ਸਿਧਾਂਤ

ਘੱਟੋ-ਘੱਟ ਵਿਸ਼ੇਸ਼-ਅਧਿਕਾਰ ਦੇ ਸਿਧਾਂਤ ਨੂੰ ਅਪਣਾਉਣਾ ਇੱਕ ਅਜਿਹੀ ਵਿਸ਼ੇਸ਼ ਪਾਰਟੀ ਕਰਨ ਵਰਗਾ ਹੈ ਜਿੱਥੇ
ਮਹਿਮਾਨਾਂ ਨੂੰ ਸਿਰਫ਼ ਉਨ੍ਹਾਂ ਕਮਰਿਆਂ ਤੱਕ ਪਹੁੰਚ ਮਿਲਦੀ ਹੈ ਜਿੱਥੇ ਉਨ੍ਹਾਂ ਦਾ ਹੋਣਾ ਬਿਲਕੁਲ ਜ਼ਰੂਰੀ ਹੈ।
ਕਲਪਨਾ ਕਰੋ ਕਿ ਤੁਸੀਂ ਇਹ ਪਾਰਟੀ ਇੱਕ ਵਿਸ਼ਾਲ ਹਵੇਲੀ ਵਿੱਚ ਕਰ ਰਹੇ ਹੋ। ਹਰ ਕਿਸੇ ਨੂੰ ਵਾਈਨ ਸੈਲਰ ਜਾਂ
ਮਾਸਟਰ ਬੈੱਡਰੂਮ ਵਿੱਚ ਘੁੰਮਣ ਦੀ ਲੋੜ ਨਹੀਂ ਹੈ, ਹੈ ਨਾ? ਇਸ ਸਿਧਾਂਤ ਨੂੰ ਲਾਗੂ ਕਰਕੇ, ਤੁਸੀਂ ਅਸਲ ਵਿੱਚ
ਅਜਿਹੀਆਂ ਚਾਬੀਆਂ ਵੰਡ ਰਹੇ ਹੋ ਜੋ ਸਿਰਫ਼ ਖਾਸ ਦਰਵਾਜ਼ੇ ਖੋਲ੍ਹਦੀਆਂ ਹਨ, ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦੇ ਹੋਏ
ਕਿ ਹਰ ਮਹਿਮਾਨ, ਜਾਂ ਸਾਡੇ ਮਾਮਲੇ ਵਿੱਚ, ਤੁਹਾਡੀ LLM ਐਪਲੀਕੇਸ਼ਨ ਦਾ ਹਰ ਭਾਗ, ਕੋਲ ਸਿਰਫ਼ ਆਪਣੀ
ਭੂਮਿਕਾ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ ਜ਼ਰੂਰੀ ਪਹੁੰਚ ਹੈ।

ਇਹ ਸਿਰਫ਼ ਚਾਬੀਆਂ ਨਾਲ ਕੰਜੂਸੀ ਕਰਨ ਬਾਰੇ ਨਹੀਂ ਹੈ, ਇਹਇਸਗੱਲ ਨੂੰ ਸਵੀਕਾਰ ਕਰਨ ਬਾਰੇ ਹੈ ਕਿ ਅਜਿਹੀ
ਦੁਨੀਆ ਵਿੱਚ ਜਿੱਥੇ ਖ਼ਤਰੇ ਕਿਤੋਂ ਵੀ ਆ ਸਕਦੇ ਹਨ, ਸਮਝਦਾਰੀ ਇਸ ਵਿੱਚ ਹੈ ਕਿ ਖੇਡ ਦੇ ਮੈਦਾਨ ਨੂੰ ਸੀਮਤ
ਕੀਤਾ ਜਾਵੇ। ਜੇ ਕੋਈ ਬਿਨਾਂ ਸੱਦੇ ਤੁਹਾਡੀ ਪਾਰਟੀ ਵਿੱਚ ਆ ਵੀ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਉਹ ਆਪਣੇ ਆਪ ਨੂੰ ਫੋਯਰ ਤੱਕ
ਸੀਮਤ ਪਾਵੇਗਾ, ਇਸ ਤਰ੍ਹਾਂ ਉਹ ਜਿਹੜੀ ਸ਼ਰਾਰਤ ਕਰ ਸਕਦਾ ਹੈ ਉਹ ਬਹੁਤ ਘੱਟ ਹੋਵੇਗੀ। ਇਸ ਲਈ, ਜਦੋਂ
ਆਪਣੀਆਂ LLM ਐਪਲੀਕੇਸ਼ਨਾਂ ਨੂੰ ਸੁਰੱਖਿਅਤ ਕਰ ਰਹੇ ਹੋ, ਯਾਦ ਰੱਖੋ: ਸਿਰਫ਼ ਉਨ੍ਹਾਂ ਕਮਰਿਆਂ ਦੀਆਂ
ਚਾਬੀਆਂ ਵੰਡੋ ਜੋ ਜ਼ਰੂਰੀ ਹਨ, ਅਤੇ ਬਾਕੀ ਹਵੇਲੀ ਨੂੰ ਸੁਰੱਖਿਅਤ ਰੱਖੋ। ਇਹ ਸਿਰਫ਼ ਚੰਗੇ ਵਿਹਾਰ ਦੀ ਗੱਲ ਨਹੀਂ
ਹੈ; ਇਹ ਚੰਗੀ ਸੁਰੱਖਿਆ ਹੈ।

ਭਾਵੇਂ LLMs ਦੀ ਮੌਜੂਦਾ ਸਥਿਤੀ ਵਿੱਚ ਨਿਰਦੇਸ਼ਾਂ ਅਤੇ ਡਾਟਾ ਦਾ ਰਸਮੀ ਵੱਖਰੇਵਾਂ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਇੱਕ ਡਿਵੈਲਪਰ
ਦੇ ਤੌਰ ’ਤੇ ਤੁਹਾਡੇ ਲਈ ਇਸ ਸੀਮਾ ਬਾਰੇ ਸੁਚੇਤ ਰਹਿਣਾ ਅਤੇ ਜੋਖਮਾਂ ਨੂੰ ਘਟਾਉਣ ਲਈ ਸਰਗਰਮ ਕਦਮ ਚੁੱਕਣਾ
ਜ਼ਰੂਰੀ ਹੈ। ਰਵਾਇਤੀ ਕੰਪਿਊਟਰ ਵਿਗਿਆਨ ਤੋਂ ਸਰਵੋਤਮ ਅਭਿਆਸਾਂ ਨੂੰ ਲਾਗੂ ਕਰਕੇ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ LLMs
ਦੀਆਂ ਵਿਲੱਖਣ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੇ ਅਨੁਕੂਲ ਬਣਾ ਕੇ, ਤੁਸੀਂ ਵਧੇਰੇ ਸੁਰੱਖਿਅਤ ਅਤੇ ਭਰੋਸੇਯੋਗ ਐਪਲੀਕੇਸ਼ਨਾਂ ਬਣਾ
ਸਕਦੇ ਹੋ ਜੋ ਤੁਹਾਡੇ ਸਿਸਟਮ ਦੀ ਅਖੰਡਤਾ ਨੂੰ ਬਣਾਈ ਰੱਖਦੇ ਹੋਏ ਇਨ੍ਹਾਂ ਮਾਡਲਾਂ ਦੀ ਸ਼ਕਤੀ ਦਾ ਲਾਭ ਲੈਂਦੀਆਂ
ਹਨ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 67

ਪ੍ਰੌਮਪਟ ਡਿਸਟੀਲੇਸ਼ਨ

ਸਹੀ ਪ੍ਰੌਮਪਟ ਬਣਾਉਣਾ ਅਕਸਰ ਇੱਕ ਚੁਣੌਤੀਪੂਰਨ ਅਤੇ ਸਮਾਂ ਲੈਣ ਵਾਲਾ ਕੰਮ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਲਈ ਟਾਰਗੇਟ
ਡੋਮੇਨ ਅਤੇ ਭਾਸ਼ਾ ਮੌਡਲਾਂ ਦੀਆਂ ਬਾਰੀਕੀਆਂ ਦੀ ਡੂੰਘੀ ਸਮਝ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਇੱਥੇ “ਪ੍ਰੌਮਪਟ ਡਿਸਟੀਲੇਸ਼ਨ”
ਤਕਨੀਕ ਕੰਮ ਆਉਂਦੀ ਹੈ, ਜੋ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਲਈ ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਪਹੁੰਚ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ ਜੋ
ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਸਟ੍ਰੀਮਲਾਈਨ ਅਤੇ ਅਨੁਕੂਲ ਬਣਾਉਣ ਲਈ ਵੱਡੇ ਭਾਸ਼ਾ ਮੌਡਲਾਂ (LLMs) ਦੀਆਂ ਕਾਬਲੀਅਤਾਂ
ਦਾ ਲਾਭ ਲੈਂਦੀ ਹੈ।

ਪ੍ਰੌਮਪਟ ਡਿਸਟੀਲੇਸ਼ਨ ਇੱਕ ਬਹੁ-ਪੜਾਅ ਵਾਲੀ ਤਕਨੀਕ ਹੈ ਜਿਸ ਵਿੱਚ ਪ੍ਰੌਮਪਟਸ ਦੀ ਰਚਨਾ, ਸੁਧਾਰ, ਅਤੇ
ਅਨੁਕੂਲਨ ਵਿੱਚ ਸਹਾਇਤਾ ਲਈ LLMs ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਸਿਰਫ਼ ਮਨੁੱਖੀ ਮੁਹਾਰਤ ਅਤੇ ਅੰਤਰਝਾਤ
’ਤੇ ਨਿਰਭਰ ਕਰਨ ਦੀ ਬਜਾਏ, ਇਹ ਪਹੁੰਚ ਉੱਚ-ਗੁਣਵੱਤਾ ਵਾਲੇ ਪ੍ਰੌਮਪਟਸ ਨੂੰ ਸਹਿਯੋਗੀ ਤਰੀਕੇ ਨਾਲ ਤਿਆਰ
ਕਰਨ ਲਈ LLMs ਦੇ ਗਿਆਨ ਅਤੇ ਜਨਰੇਟਿਵ ਸਮਰੱਥਾਵਾਂ ਦਾ ਲਾਭ ਲੈਂਦੀ ਹੈ।

ਜਨਰੇਸ਼ਨ, ਸੁਧਾਰ, ਅਤੇ ਏਕੀਕਰਣ ਦੀ ਇੱਕ ਦੁਹਰਾਈ ਵਾਲੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋ ਕੇ, ਪ੍ਰੌਮਪਟ
ਡਿਸਟੀਲੇਸ਼ਨ ਤੁਹਾਨੂੰ ਅਜਿਹੇ ਪ੍ਰੌਮਪਟਸ ਬਣਾਉਣ ਦੇ ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ ਜੋ ਵਧੇਰੇ ਸੰਗਤ, ਵਿਆਪਕ, ਅਤੇ
ਲੋੜੀਂਦੇ ਕਾਰਜ ਜਾਂ ਆਉਟਪੁੱਟ ਦੇ ਅਨੁਕੂਲ ਹੋਣ। ਧਿਆਨ ਦਿਓ ਕਿ ਡਿਸਟੀਲੇਸ਼ਨ ਪ੍ਰਕਿਰਿਆ ਨੂੰ OpenAI
ਜਾਂ Anthropic ਵਰਗੀਆਂ ਵੱਡੀਆਂ AI ਕੰਪਨੀਆਂ ਦੁਆਰਾ ਪ੍ਰਦਾਨ ਕੀਤੇ ਗਏ ਕਈ “ਪਲੇਅਗਰਾਊਂਡਾਂ”
ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਵਿੱਚ ਮੈਨੂਅਲ ਤੌਰ ’ਤੇ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਾਂ ਵਰਤੋਂ ਦੇ ਕੇਸ ਦੇ ਆਧਾਰ ’ਤੇ ਤੁਹਾਡੇ ਐਪਲੀਕੇਸ਼ਨ
ਕੋਡ ਦੇ ਹਿੱਸੇ ਵਜੋਂ ਸਵੈਚਾਲਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਪ੍ਰੌਮਪਟ ਡਿਸਟੀਲੇਸ਼ਨ ਵਿੱਚ ਆਮ ਤੌਰ ’ਤੇ ਹੇਠ ਲਿਖੇ ਕਦਮ ਸ਼ਾਮਲ ਹੁੰਦੇ ਹਨ:

1. ਮੁੱਖ ਇਰਾਦਾ ਪਛਾਣੋ: ਪ੍ਰੌਮਪਟ ਦੇ ਮੁੱਖ ਉਦੇਸ਼ ਅਤੇ ਲੋੜੀਂਦੇ ਨਤੀਜੇ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨ ਲਈ ਇਸਦਾ
ਵਿਸ਼ਲੇਸ਼ਣ ਕਰੋ। ਕਿਸੇ ਵੀ ਬਾਹਰੀ ਜਾਣਕਾਰੀ ਨੂੰ ਹਟਾ ਦਿਓ ਅਤੇ ਪ੍ਰੌਮਪਟ ਦੇ ਮੁੱਖ ਇਰਾਦੇ ’ਤੇ ਧਿਆਨ
ਕੇਂਦਰਿਤ ਕਰੋ।

2. ਅਸਪੱਸ਼ਟਤਾ ਨੂੰ ਖਤਮ ਕਰੋ: ਕਿਸੇ ਵੀ ਅਸਪੱਸ਼ਟ ਜਾਂ ਗੁੰਝਲਦਾਰ ਭਾਸ਼ਾ ਲਈ ਪ੍ਰੌਮਪਟ ਦੀ ਸਮੀਖਿਆ
ਕਰੋ। ਅਰਥ ਨੂੰ ਸਪੱਸ਼ਟ ਕਰੋ ਅਤੇ ਸਹੀ ਅਤੇ ਢੁਕਵੇਂ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਲਈ AI ਦੀ ਅਗਵਾਈ ਕਰਨ
ਵਾਸਤੇ ਵਿਸ਼ੇਸ਼ ਵੇਰਵੇ ਪ੍ਰਦਾਨ ਕਰੋ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 68

3. ਭਾਸ਼ਾ ਨੂੰ ਸਰਲ ਬਣਾਓ: ਸਪੱਸ਼ਟ ਅਤੇ ਸੰਖੇਪ ਭਾਸ਼ਾ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਪ੍ਰੌਮਪਟ ਨੂੰ ਸਰਲ ਬਣਾਓ।
ਗੁੰਝਲਦਾਰ ਵਾਕ ਢਾਂਚੇ, ਤਕਨੀਕੀ ਸ਼ਬਦਾਵਲੀ, ਜਾਂ ਗੈਰ-ਜ਼ਰੂਰੀ ਵੇਰਵਿਆਂ ਤੋਂ ਬਚੋ ਜੋ AI ਨੂੰ ਉਲਝਾ ਸਕਦੇ
ਹਨ ਜਾਂ ਸ਼ੋਰ ਪੈਦਾ ਕਰ ਸਕਦੇ ਹਨ।

4. ਢੁਕਵਾਂ ਸੰਦਰਭ ਪ੍ਰਦਾਨ ਕਰੋ: AI ਦੁਆਰਾ ਪ੍ਰੌਮਪਟ ਨੂੰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਸਮਝਣ ਅਤੇ ਪ੍ਰੋਸੈਸ
ਕਰਨ ਲਈ ਲੋੜੀਂਦੀ ਸਭ ਤੋਂ ਢੁਕਵੀਂ ਸੰਦਰਭਿਕ ਜਾਣਕਾਰੀ ਹੀ ਸ਼ਾਮਲ ਕਰੋ। ਅਜਿਹੇ ਅਪ੍ਰਸੰਗਿਕ ਜਾਂ
ਦੁਹਰਾਏ ਵੇਰਵਿਆਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਨ ਤੋਂ ਬਚੋ ਜੋ ਮੁੱਖ ਇਰਾਦੇ ਤੋਂ ਧਿਆਨ ਭਟਕਾ ਸਕਦੇ ਹਨ।

5. ਦੁਹਰਾਓ ਅਤੇ ਸੁਧਾਰੋ: AI ਦੇ ਜਵਾਬਾਂ ਅਤੇ ਫੀਡਬੈਕ ਦੇ ਆਧਾਰ ’ਤੇ ਲਗਾਤਾਰ ਪ੍ਰੌਮਪਟ ਨੂੰ ਦੁਹਰਾਓ ਅਤੇ
ਸੁਧਾਰੋ। ਤਿਆਰ ਕੀਤੇ ਆਉਟਪੁੱਟ ਦਾ ਮੁਲਾਂਕਣ ਕਰੋ ਅਤੇ ਪ੍ਰੌਮਪਟ ਦੀ ਸਪੱਸ਼ਟਤਾ ਅਤੇ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ
ਨੂੰ ਸੁਧਾਰਨ ਲਈ ਜ਼ਰੂਰੀ ਤਬਦੀਲੀਆਂ ਕਰੋ। ਵਿਕਲਪਿਕ ਤੌਰ ’ਤੇ ਪ੍ਰੌਮਪਟ ਔਬਜੈਕਟ ਦੀ ਵਰਤੋਂ ਕਰਦੇ
ਹੋਏ ਡਾਟਾਬੇਸ ਵਿੱਚ ਆਪਣੇ ਪ੍ਰੌਮਪਟਸ ਦਾ ਵਰਜਨ ਰੱਖੋ ਤਾਂ ਜੋ ਦੁਹਰਾਵਾਂ ਦਾ ਹਿਸਾਬ ਰੱਖਿਆ ਜਾ ਸਕੇ
ਅਤੇ ਰਨਟਾਈਮ ’ਤੇ ਤਬਦੀਲੀਆਂ ਨੂੰ ਆਸਾਨੀ ਨਾਲ ਵਾਪਸ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਮਿਲ ਸਕੇ।

ਮੁੱਢਲਾ ਪ੍ਰੌਂਪਟ ਤਿਆਰ ਕਰਨਾ

ਪ੍ਰੌਂਪਟ ਡਿਸਟੀਲੇਸ਼ਨ ਵਿੱਚ ਪਹਿਲਾ ਕਦਮ ਐੱਲਐੱਲਐੱਮ ਨੂੰ ਲੋੜੀਂਦੇ ਕਾਰਜ ਜਾਂ ਆਉਟਪੁੱਟ ਦਾ ਉੱਚ-ਪੱਧਰੀ ਵੇਰਵਾ
ਜਾਂ ਮਕਸਦ ਪ੍ਰਦਾਨ ਕਰਨਾ ਹੈ। ਇਹ ਇੱਕ ਸੰਖੇਪ ਬਿਆਨ ਜਾਂ ਮੁੱਖ ਸ਼ਬਦਾਂ ਦਾ ਸੈੱਟ ਹੋ ਸਕਦਾ ਹੈ ਜੋ ਪ੍ਰੌਂਪਟ ਦੇ
ਮਕਸਦ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਫਿਰ ਐੱਲਐੱਲਐੱਮ ਇਸਇਨਪੁੱਟ ਦੇ ਆਧਾਰ ’ਤੇ ਇੱਕ ਮੁੱਢਲਾ ਪ੍ਰੌਂਪਟ ਤਿਆਰ ਕਰਦਾ
ਹੈ, ਜਿਸ ਵਿੱਚ ਢੁਕਵੀਆਂ ਹਦਾਇਤਾਂ, ਉਦਾਹਰਣਾਂ, ਜਾਂ ਸੰਦਰਭ ਸ਼ਾਮਲ ਹੁੰਦੇ ਹਨ ਜੋ ਇਹ ਢੁਕਵੇਂ ਸਮਝਦਾ ਹੈ।

ਆਓ Claude 3 Opus ਨੂੰ ਹੇਠ ਲਿਖਿਆ ਮੁੱਢਲਾ ਪ੍ਰੌਂਪਟ ਦੇ ਕੇ ਦੇਖੀਏ:

1 I am designing an AI-powered intelligent account manager for Olympia,

2 a platform that hosts AI-powered consultants and clones. Owners of clones

3 can interact with the account manager by making plain text requests.

4

5 Please draft a system directive to set on the LLM that will host the

6 intelligent account manager functionality.

Claude ਹੇਠ ਲਿਖੇ ਆਉਟਪੁੱਟ ਨਾਲ ਜਵਾਬ ਦਿੰਦਾ ਹੈ:

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 69

1 System Directive: You are an intelligent account manager for Olympia,

2 a platform that provides AI-powered consultants and personal AI clones.

3 Your role is to assist Olympia clone owners by answering their questions,

4 helping them configure and manage their AI clones, and executing tasks

5 related to their clones and the Olympia platform.

6

7 When interacting with clone owners, you should:

8

9 1. Provide clear, concise, and helpful responses to their inquiries about

10 account management, billing, platform features, and clone configuration.

11

12 2. Assist with tasks such as initiating client conversations with their AI

13 clones, modifying clone personalities and capabilities, troubleshooting

14 performance issues, providing analytics and reporting, and offering

15 optimization tips.

16

17 3. Maintain a friendly, professional, and client-focused tone in all

18 interactions, prioritizing customer satisfaction and working diligently to

19 understand and meet their needs.

20

21 4. Ensure that all actions and recommendations comply with Olympia's

22 policies, best practices, and ethical guidelines for AI use.

23

24 5. Continuously learn and adapt based on client interactions and platform

25 updates to provide the most effective and efficient support possible.

26

27 Remember, your goal is to empower Olympia clone owners to maximize the value

28 and impact of their AI-powered consultants and drive success for their

29 businesses or personal endeavors.

ਪ੍ਰੌਮਪਟ ਸੁਧਾਰ

ਜਦੋਂ ਮੁੱਢਲਾ ਪ੍ਰੌਮਪਟ ਤਿਆਰ ਹੋ ਜਾਂਦਾ ਹੈ, ਇਸਦੀ ਸਮੀਖਿਆ ਕਰੋ ਅਤੇ ਫਿਰ LLM ਨੂੰ ਕਿਸੇ ਵੀ ਵਾਧੂ ਸੰਦਰਭ,
ਸੀਮਾਵਾਂ, ਜਾਂ ਫੀਡਬੈਕ ’ਤੇ ਵਿਚਾਰ ਕਰਨ ਲਈ ਕਹੋ। LLM ਨੂੰ ਪ੍ਰਦਾਨ ਕੀਤੀ ਗਈ ਜਾਣਕਾਰੀ ਅਤੇ ਕਾਰਜ ਦੀ
ਆਪਣੀ ਸਮਝ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹੋਏ ਪ੍ਰੌਮਪਟ ਦਾ ਸੁਧਰਿਆ ਹੋਇਆ ਸੰਸਕਰਣ ਤਿਆਰ ਕਰਨ ਦਿਓ। ਇਹ
ਸੁਧਾਰ ਪ੍ਰਕਿਰਿਆ ਦੁਹਰਾਈ ਜਾ ਸਕਦੀ ਹੈ, ਜਿੱਥੇ ਹਰ ਦੁਹਰਾਓ ਵਰਤੋਂਕਾਰ ਅਤੇ LLM ਵਿਚਕਾਰ ਸਹਿਯੋਗ ਦੇ
ਆਧਾਰ ’ਤੇ ਪ੍ਰੌਮਪਟ ਨੂੰ ਹੋਰ ਸੁਧਾਰਦਾ ਹੈ।

ਇੱਥੇ ਮੇਰੀ ਸੁਧਾਰ ਬੇਨਤੀ ਹੈ, ਜੋ ਪਿਛਲੀ ਨਿਤਾਰਨ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਜਾਰੀ ਰੱਖਦੀ ਹੈ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 70

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to

2 the account manager, nor any continuous learning capabilities. Also point out

3 that functions are provided for all tasks that require system interaction as

4 opposed to simply responding to the user.

ਅਤੇ Claude ਦਾ ਜਵਾਬ:

1 Understood! Here's the updated system directive without points 4 and 5,

2 and with the clarification about system interaction functions:

3

4 System Directive: You are an intelligent account manager for Olympia, a

5 platform that provides AI-powered consultants and personal AI clones. Your

6 role is to assist Olympia clone owners by answering their questions, helping

7 them configure and manage their AI clones, and executing tasks related to

8 their clones and the Olympia platform.

9

10 When interacting with clone owners, you should:

11

12 1. Provide clear, concise, and helpful responses to their inquiries about

13 account management, billing, platform features, and clone configuration.

14

15 2. Assist with tasks such as initiating client conversations with their AI

16 clones, modifying clone personalities and capabilities, troubleshooting

17 performance issues, providing analytics and reporting, and offering

18 optimization tips. Note that functions are provided for all tasks that

19 require system interaction, as opposed to simply responding to the user.

20

21 3. Maintain a friendly, professional, and client-focused tone in all

22 interactions, prioritizing customer satisfaction and working diligently to

23 understand and meet their needs.

24

25 Your goal is to empower Olympia clone owners to maximize the value and

26 impact of their AI-powered consultants and drive success for their

27 businesses or personal endeavors.

28

29 This updated directive focuses on the core responsibilities and interaction

30 guidelines for the LLM as an intelligent account manager, while emphasizing

31 that system interaction tasks are handled through provided functions rather

32 than simple user responses.

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 71

ਪ੍ਰੌਮਪਟ ਕੰਪਰੈਸ਼ਨ

ਜਿਵੇਂ ਤੁਸੀਂ ਵੇਖਿਆ ਹੋਵੇਗਾ, ਐੱਲਐੱਲਐੱਮ ਜ਼ਿਆਦਾ ਸ਼ਬਦਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ, ਜਦੋਂ ਤੱਕ ਤੁਸੀਂ ਉਹਨਾਂ ਨੂੰ ਸੰਖੇਪ
ਰਹਿਣ ਲਈ ਨਹੀਂ ਕਹਿੰਦੇ। ਪਿਛਲੇ ਭਾਗਾਂ ਵਿੱਚ ਅਸੀਂ ਜਿਸ ਪ੍ਰੌਮਪਟ ’ਤੇ ਕੰਮ ਕਰ ਰਹੇ ਸੀ ਉਹ ਕਾਫ਼ੀ ਲੰਬਾ ਹੈ,
ਇਸ ਲਈਆਓ Claude ਤੋਂ ਇਸਨੂੰ ਛੋਟਾ ਕਰਵਾਈਏ:

1 This prompt will be executed regularly. Please compress it down to the least

2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude ਹੇਠ ਲਿਖੇ ਬਹੁਤ ਜ਼ਿਆਦਾ ਛੋਟੇ ਪ੍ਰੌਮਪਟ ਨਾਲ ਜਵਾਬ ਦਿੰਦਾ ਹੈ:

1 System Directive: You are an intelligent account manager for Olympia, an

2 AI-powered consultant and personal clone platform. Assist clone owners by

3 answering inquiries, managing clones, and executing tasks using provided

4 system interaction functions. Be clear, concise, friendly, professional,

5 and client-focused to help them maximize their AI's value and impact.

ਸਿਸਟਮ ਨਿਰਦੇਸ਼ ਅਤੇ ਸੰਦਰਭ ਏਕੀਕਰਨ

ਪ੍ਰੌਮਪਟ ਨੂੰ ਸੁਧਾਰਨ ਦੇ ਨਾਲ-ਨਾਲ, ਐੱਲਐੱਲਐੱਮ ਅੰਤਿਮ ਆਉਟਪੁੱਟ ਦੀ ਅਗਵਾਈ ਲਈ ਢੁਕਵੇਂ ਸਿਸਟਮ
ਨਿਰਦੇਸ਼ ਜਾਂ ਸੰਦਰਭ ਜਾਣਕਾਰੀ ਵੀ ਤਿਆਰ ਕਰ ਸਕਦਾ ਹੈ। ਜਦੋਂ ਤੁਸੀਂ ਆਪਣੇ ਐਪਲੀਕੇਸ਼ਨ ਕੋਡ ਵਿੱਚ ਏਕੀਕ੍ਰਿਤ
ਹੋਣ ਵਾਲੀਆਂ ਏਆਈ ਰੁਟੀਨਾਂ ਲਈ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਕਰ ਰਹੇ ਹੋ, ਤੁਸੀਂ ਨਿਸ਼ਚਿਤ ਤੌਰ ’ਤੇ ਨਿਖਾਰ ਦੇ
ਇਸ ਪੜਾਅ ’ਤੇ ਆਉਟਪੁੱਟ ਸੀਮਾਵਾਂ ’ਤੇ ਕੇਂਦਰਿਤ ਹੋਵੋਗੇ, ਪਰ ਤੁਸੀਂ ਲੋੜੀਂਦੇ ਲਹਿਜ਼ੇ, ਸ਼ੈਲੀ, ਫਾਰਮੈਟ, ਜਾਂ ਕਿਸੇ
ਹੋਰ ਸੰਬੰਧਿਤ ਮਾਪਦੰਡਾਂ ’ਤੇ ਵੀ ਕੰਮ ਕਰ ਸਕਦੇ ਹੋ ਜੋ ਤਿਆਰ ਕੀਤੇ ਜਵਾਬ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ।

ਅੰਤਿਮ ਪ੍ਰੌਮਪਟ ਅਸੈਂਬਲੀ

ਪ੍ਰੌਮਪਟ ਨਿਖਾਰ ਪ੍ਰਕਿਰਿਆ ਦਾ ਸਿਖਰ ਅੰਤਿਮ ਪ੍ਰੌਮਪਟ ਦੀ ਅਸੈਂਬਲੀ ਹੈ। ਇਸ ਵਿੱਚ ਸੁਧਾਰੇ ਗਏ ਪ੍ਰੌਮਪਟ,
ਤਿਆਰ ਕੀਤੇ ਸਿਸਟਮ ਨਿਰਦੇਸ਼ਾਂ, ਅਤੇ ਏਕੀਕ੍ਰਿਤ ਸੰਦਰਭ ਨੂੰ ਇੱਕ ਸੰਗਠਿਤ ਅਤੇ ਵਿਆਪਕ ਕੋਡ ਵਿੱਚ ਜੋੜਨਾ
ਸ਼ਾਮਲ ਹੈ ਜੋ ਲੋੜੀਂਦੇ ਆਉਟਪੁੱਟ ਨੂੰ ਤਿਆਰ ਕਰਨ ਲਈ ਵਰਤਣ ਲਈ ਤਿਆਰ ਹੈ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 72

ਤੁਸੀਂ ਅੰਤਿਮ ਪ੍ਰੌਮਪਟ ਅਸੈਂਬਲੀ ਪੜਾਅ ’ਤੇ ਪ੍ਰੌਮਪਟ ਕੰਪਰੈਸ਼ਨ ਨਾਲ ਦੁਬਾਰਾ ਪ੍ਰਯੋਗ ਕਰ ਸਕਦੇ
ਹੋ, ਐੱਲਐੱਲਐੱਮ ਨੂੰ ਪ੍ਰੌਮਪਟ ਦੇ ਸ਼ਬਦਾਂ ਨੂੰ ਸੰਭਵ ਤੌਰ ’ਤੇ ਸਭ ਤੋਂ ਛੋਟੀ ਟੋਕਨ ਲੜੀ ਵਿੱਚ ਸੁੰਗੇੜਨ
ਲਈ ਕਹਿ ਕੇ, ਜਦੋਂ ਕਿ ਇਸਦੇ ਵਿਵਹਾਰ ਦਾ ਤੱਤ ਬਰਕਰਾਰ ਰੱਖਿਆ ਜਾਵੇ। ਇਹ ਯਕੀਨੀ ਤੌਰ ’ਤੇ
ਹਿੱਟ ਜਾਂ ਮਿਸ ਅਭਿਆਸ ਹੈ, ਪਰ ਖਾਸ ਕਰਕੇ ਵੱਡੇ ਪੱਧਰ ’ਤੇ ਚੱਲਣ ਵਾਲੇ ਪ੍ਰੌਮਪਟਸ ਦੇ ਮਾਮਲੇ
ਵਿੱਚ, ਕੁਸ਼ਲਤਾ ਦੇ ਲਾਭ ਤੁਹਾਨੂੰ ਟੋਕਨ ਖਪਤ ਵਿੱਚ ਕਾਫ਼ੀ ਪੈਸੇ ਬਚਾ ਸਕਦੇ ਹਨ।

ਮੁੱਖ ਲਾਭ

ਤੁਹਾਡੇ ਪ੍ਰੌਮਪਟਸ ਨੂੰ ਸੁਧਾਰਨ ਲਈਐੱਲਐੱਲਐੱਮਜ਼ ਦੇ ਗਿਆਨਅਤੇ ਜਨਰੇਟਿਵ ਸਮਰੱਥਾਵਾਂ ਦਾ ਲਾਭ ਲੈਣ ਨਾਲ,
ਤੁਹਾਡੇ ਨਤੀਜੇ ਵਜੋਂ ਪ੍ਰੌਮਪਟਸ ਦੇ ਚੰਗੀ ਤਰ੍ਹਾਂ ਢਾਂਚਾਗਤ, ਜਾਣਕਾਰੀਭਰਪੂਰ, ਅਤੇ ਖਾਸ ਕੰਮ ਲਈ ਢੁਕਵੇਂ ਹੋਣ
ਦੀ ਸੰਭਾਵਨਾ ਵੱਧ ਹੁੰਦੀ ਹੈ। ਲਗਾਤਾਰ ਸੁਧਾਰ ਦੀ ਪ੍ਰਕਿਰਿਆ ਇਹ ਯਕੀਨੀ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰਦੀ ਹੈ ਕਿ
ਪ੍ਰੌਮਪਟਸ ਉੱਚ ਗੁਣਵੱਤਾ ਵਾਲੇ ਹਨ ਅਤੇ ਲੋੜੀਂਦੇ ਇਰਾਦੇ ਨੂੰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਕੈਪਚਰ ਕਰਦੇ ਹਨ। ਹੋਰ
ਲਾਭਾਂ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ:

ਕੁਸ਼ਲਤਾ ਅਤੇ ਗਤੀ: ਪ੍ਰੌਮਪਟ ਨਿਖਾਰ ਪ੍ਰੌਮਪਟ ਬਣਾਉਣ ਅਤੇ ਸੁਧਾਰ ਦੇ ਕੁਝ ਪਹਿਲੂਆਂ ਨੂੰ ਸਵੈਚਾਲਿਤ
ਕਰਕੇ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਸਰਲ ਬਣਾਉਂਦਾ ਹੈ। ਤਕਨੀਕ ਦੀ ਸਹਿਯੋਗੀ ਪ੍ਰਕਿਰਤੀ ਇੱਕ
ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਪ੍ਰੌਮਪਟ ਵੱਲ ਤੇਜ਼ੀ ਨਾਲ ਪਹੁੰਚਣ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦੀ ਹੈ, ਜੋ ਮੈਨੂਅਲ ਪ੍ਰੌਮਪਟ ਬਣਾਉਣ ਲਈ
ਲੋੜੀਂਦੇ ਸਮੇਂ ਅਤੇ ਮਿਹਨਤ ਨੂੰ ਘਟਾਉਂਦੀ ਹੈ।

ਇਕਸਾਰਤਾ ਅਤੇ ਸਕੇਲੇਬਿਲਟੀ: ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਐੱਲਐੱਲਐੱਮਜ਼ ਦੀ ਵਰਤੋਂ
ਪ੍ਰੌਮਪਟਸ ਵਿੱਚ ਇਕਸਾਰਤਾ ਬਣਾਈ ਰੱਖਣ ਵਿੱਚ ਮਦਦ ਕਰਦੀ ਹੈ, ਕਿਉਂਕਿ ਐੱਲਐੱਲਐੱਮਜ਼ ਪਿਛਲੇ ਸਫਲ
ਪ੍ਰੌਮਪਟਸ ਤੋਂ ਸਰਵੋਤਮ ਅਭਿਆਸਾਂ ਅਤੇ ਪੈਟਰਨਾਂ ਨੂੰ ਸਿੱਖ ਅਤੇ ਲਾਗੂ ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਇਕਸਾਰਤਾ, ਵੱਡੇ
ਪੱਧਰ ’ਤੇ ਪ੍ਰੌਮਪਟਸ ਤਿਆਰ ਕਰਨ ਦੀ ਯੋਗਤਾ ਦੇ ਨਾਲ ਮਿਲ ਕੇ, ਪ੍ਰੌਮਪਟ ਨਿਖਾਰ ਨੂੰ ਵੱਡੇ ਪੱਧਰ ’ਤੇ ਏਆਈ-
ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਲਈ ਇੱਕ ਮੁੱਲਵਾਨ ਤਕਨੀਕ ਬਣਾਉਂਦੀ ਹੈ।

ਪ੍ਰੋਜੈਕਟ ਆਈਡੀਆ: ਲਾਇਬ੍ਰੇਰੀ ਪੱਧਰ ’ਤੇ ਟੂਲਿੰਗ ਜੋ ਉਹਨਾਂ ਸਿਸਟਮਾਂ ਵਿੱਚ ਪ੍ਰੌਮਪਟ
ਵਰਜਨਿੰਗ ਅਤੇ ਗਰੇਡਿੰਗ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਸਰਲ ਬਣਾਉਂਦੀ ਹੈ ਜੋ ਆਪਣੇ ਐਪਲੀਕੇਸ਼ਨ ਕੋਡ ਦੇ
ਹਿੱਸੇ ਵਜੋਂ ਸਵੈਚਾਲਿਤ ਪ੍ਰੌਮਪਟ ਨਿਖਾਰ ਕਰਦੇ ਹਨ।

ਪ੍ਰੌਮਪਟ ਨਿਖਾਰ ਨੂੰ ਲਾਗੂ ਕਰਨ ਲਈ, ਡਿਵੈਲਪਰ ਇੱਕ ਵਰਕਫਲੋ ਜਾਂ ਪਾਈਪਲਾਈਨ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹਨ
ਜੋ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਪ੍ਰਕਿਰਿਆ ਦੇ ਵੱਖ-ਵੱਖ ਪੜਾਵਾਂ ’ਤੇ ਐੱਲਐੱਲਐੱਮਜ਼ ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰਦੀ ਹੈ।

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ 73

ਇਹ ਏਪੀਆਈ ਕਾਲਾਂ, ਕਸਟਮ ਟੂਲਿੰਗ, ਜਾਂ ਏਕੀਕ੍ਰਿਤ ਡਿਵੈਲਪਮੈਂਟ ਵਾਤਾਵਰਣਾਂ ਰਾਹੀਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ
ਸਕਦਾ ਹੈ ਜੋ ਪ੍ਰੌਮਪਟ ਬਣਾਉਣ ਦੌਰਾਨ ਉਪਭੋਗਤਾਵਾਂ ਅਤੇ ਐੱਲਐੱਲਐੱਮਜ਼ ਵਿਚਕਾਰ ਨਿਰਵਿਘਨ ਇੰਟਰੈਕਸ਼ਨ
ਦੀ ਸਹੂਲਤ ਦਿੰਦੇ ਹਨ। ਖਾਸ ਲਾਗੂਕਰਨ ਵੇਰਵੇ ਚੁਣੇ ਗਏ ਐੱਲਐੱਲਐੱਮ ਪਲੇਟਫਾਰਮ ਅਤੇ ਐਪਲੀਕੇਸ਼ਨ ਦੀਆਂ
ਲੋੜਾਂ ’ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ ਵੱਖ-ਵੱਖ ਹੋ ਸਕਦੇ ਹਨ।

ਫਾਈਨ-ਟਿਊਨਿੰਗ ਬਾਰੇ ਕੀ?

ਇਸ ਕਿਤਾਬ ਵਿੱਚ, ਅਸੀਂ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਅਤੇ ਆਰ.ਏ.ਜੀ. ਨੂੰ ਵਿਸਥਾਰ ਨਾਲ ਕਵਰ ਕਰਦੇ ਹਾਂ, ਪਰ
ਫਾਈਨ-ਟਿਊਨਿੰਗ ਨੂੰ ਨਹੀਂ। ਇਸ ਫੈਸਲੇ ਦਾ ਮੁੱਖ ਕਾਰਨ ਇਹ ਹੈ ਕਿ, ਮੇਰੀ ਰਾਏ ਵਿੱਚ, ਜ਼ਿਆਦਾਤਰ ਐਪਲੀਕੇਸ਼ਨ
ਡਿਵੈਲਪਰਾਂ ਨੂੰ ਆਪਣੀਆਂ ਏ.ਆਈ. ਏਕੀਕਰਣ ਲੋੜਾਂ ਲਈ ਫਾਈਨ-ਟਿਊਨਿੰਗ ਦੀ ਲੋੜ ਨਹੀਂ ਹੈ।

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ, ਜਿਸ ਵਿੱਚ ਜ਼ੀਰੋ ਤੋਂ ਫਿਊ-ਸ਼ੌਟ ਉਦਾਹਰਣਾਂ, ਸੀਮਾਵਾਂ, ਅਤੇ ਨਿਰਦੇਸ਼ਾਂ ਨਾਲ ਧਿਆਨ
ਨਾਲ ਪ੍ਰੌਮਪਟਸ ਤਿਆਰ ਕਰਨਾ ਸ਼ਾਮਲ ਹੈ, ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਕੰਮਾਂ ਲਈ ਢੁਕਵੇਂ ਅਤੇ ਸਹੀ ਜਵਾਬ ਤਿਆਰ ਕਰਨ
ਲਈ ਮਾਡਲ ਨੂੰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਨਿਰਦੇਸ਼ਿਤ ਕਰ ਸਕਦੀ ਹੈ। ਸਪੱਸ਼ਟ ਸੰਦਰਭ ਪ੍ਰਦਾਨ ਕਰਕੇ ਅਤੇ ਚੰਗੀ
ਤਰ੍ਹਾਂ ਡਿਜ਼ਾਈਨ ਕੀਤੇ ਪ੍ਰੌਮਪਟਸ ਰਾਹੀਂ ਰਸਤੇ ਨੂੰ ਸੀਮਤ ਕਰਕੇ, ਤੁਸੀਂ ਫਾਈਨ-ਟਿਊਨਿੰਗ ਦੀ ਲੋੜ ਤੋਂ ਬਿਨਾਂ ਵੱਡੇ
ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਦੇ ਵਿਸ਼ਾਲ ਗਿਆਨ ਦਾ ਲਾਭ ਲੈ ਸਕਦੇ ਹੋ।

ਇਸੇ ਤਰ੍ਹਾਂ, ਰਿਟਰੀਵਲ-ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ (ਆਰ.ਏ.ਜੀ.) ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਏ.ਆਈ. ਨੂੰ ਏਕੀਕ੍ਰਿਤ
ਕਰਨ ਲਈ ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਪਹੁੰਚ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। ਬਾਹਰੀ ਗਿਆਨ ਭੰਡਾਰਾਂ ਜਾਂ ਦਸਤਾਵੇਜ਼ਾਂ ਤੋਂ ਢੁਕਵੀਂ
ਜਾਣਕਾਰੀ ਨੂੰ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਪ੍ਰਾਪਤ ਕਰਕੇ, ਆਰ.ਏ.ਜੀ. ਪ੍ਰੌਮਪਟਿੰਗ ਦੇ ਸਮੇਂ ਮਾਡਲ ਨੂੰ ਕੇਂਦਰਿਤ ਸੰਦਰਭ
ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। ਇਹ ਮਾਡਲ ਨੂੰ ਵਧੇਰੇ ਸਟੀਕ, ਅੱਪ-ਟੂ-ਡੇਟ, ਅਤੇ ਡੋਮੇਨ-ਵਿਸ਼ੇਸ਼ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਦੀ
ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਫਾਈਨ-ਟਿਊਨਿੰਗ ਦੀ ਸਮਾਂ ਅਤੇ ਸਰੋਤ-ਗਹਿਨ ਪ੍ਰਕਿਰਿਆ ਦੀ ਲੋੜ ਤੋਂ ਬਿਨਾਂ।

ਹਾਲਾਂਕਿ ਫਾਈਨ-ਟਿਊਨਿੰਗ ਬਹੁਤ ਵਿਸ਼ੇਸ਼ ਡੋਮੇਨਾਂ ਜਾਂ ਕਾਰਜਾਂ ਲਈ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦੀ ਹੈ ਜਿਨ੍ਹਾਂ ਨੂੰ ਡੂੰਘੇ
ਪੱਧਰ ਦੇ ਕਸਟਮਾਈਜ਼ੇਸ਼ਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਇਹ ਅਕਸਰ ਮਹੱਤਵਪੂਰਨ ਕੰਪਿਊਟੇਸ਼ਨਲ ਲਾਗਤਾਂ, ਡੇਟਾ ਲੋੜਾਂ, ਅਤੇ
ਰੱਖ-ਰਖਾਅ ਓਵਰਹੈੱਡ ਨਾਲ ਆਉਂਦੀ ਹੈ। ਜ਼ਿਆਦਾਤਰ ਐਪਲੀਕੇਸ਼ਨ ਵਿਕਾਸ ਸਥਿਤੀਆਂ ਲਈ, ਪ੍ਰਭਾਵਸ਼ਾਲੀ
ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ ਅਤੇ ਆਰ.ਏ.ਜੀ. ਦਾ ਸੁਮੇਲ ਲੋੜੀਂਦੀ ਏ.ਆਈ.-ਸੰਚਾਲਿਤ ਕਾਰਜਸ਼ੀਲਤਾ ਅਤੇ ਯੂਜ਼ਰ
ਅਨੁਭਵ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕਾਫ਼ੀ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।

ਰਿਟ੍ਰੀਵਲ ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ (RAG)

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਰਿਟ੍ਰੀਵਲ ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ ਕੀ ਹੈ?

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

RAG ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ?

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਆਪਣੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ RAG ਦੀ ਵਰਤੋਂ ਕਿਉਂ ਕਰੀਏ?

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ RAG ਨੂੰ ਲਾਗੂ ਕਰਨਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਰਿਟ੍ਰੀਵਲ ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ (RAG) 75

ਗਿਆਨ ਸਰੋਤਾਂ ਦੀ ਤਿਆਰੀ (ਟੁਕੜਿਆਂ ਵਿੱਚ ਵੰਡਣਾ)

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਪ੍ਰਸਤਾਵ ਖੰਡੀਕਰਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਲਾਗੂਕਰਨ ਨੋਟਸ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਗੁਣਵੱਤਾ ਜਾਂਚ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਪ੍ਰਸਤਾਵ-ਆਧਾਰਿਤ ਪੁਨਰਪ੍ਰਾਪਤੀ ਦੇ ਲਾਭ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਰੈਗ ਦੀਆਂ ਅਸਲ-ਦੁਨੀਆ ਦੀਆਂ ਉਦਾਹਰਣਾਂ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਰਿਟ੍ਰੀਵਲ ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ (RAG) 76

ਕੇਸ ਸਟੱਡੀ: ਐਂਬੈਡਿੰਗਜ਼ ਤੋਂ ਬਿਨਾਂ ਟੈਕਸ ਤਿਆਰੀ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਰੈਗ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਬੁੱਧੀਮਾਨ ਕੁਐਰੀ ਔਪਟੀਮਾਈਜ਼ੇਸ਼ਨ (IQO)

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਮੁੜ-ਦਰਜਾਬੰਦੀ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

RAG ਮੁਲਾਂਕਣ (RAGAs)

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਵਫ਼ਾਦਾਰੀ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਜਵਾਬ ਦੀ ਪ੍ਰਸੰਗਿਕਤਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਰਿਟ੍ਰੀਵਲ ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ (RAG) 77

ਸੰਦਰਭ ਸ਼ੁੱਧਤਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸੰਦਰਭ ਪ੍ਰਸੰਗਿਕਤਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸੰਦਰਭ ਯਾਦਦਾਸ਼ਤ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸੰਦਰਭ ਇਕਾਈਆਂ ਯਾਦਦਾਸ਼ਤ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਜਵਾਬ ਸ਼ਬਦਾਰਥ ਸਮਾਨਤਾ (ANSS)

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਜਵਾਬ ਦੀ ਸ਼ੁੱਧਤਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਰਿਟ੍ਰੀਵਲ ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ (RAG) 78

ਪਹਿਲੂ ਸਮੀਖਿਆ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਚੁਣੌਤੀਆਂ ਅਤੇ ਭਵਿੱਖ ਦਾ ਦ੍ਰਿਸ਼ਟੀਕੋਣ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸਿਮੈਂਟਿਕ ਚੰਕਿੰਗ: ਸੰਦਰਭ-ਜਾਗਰੂਕ ਵਿਭਾਜਨ ਨਾਲ ਪੁਨਰਪ੍ਰਾਪਤੀ ਨੂੰ ਵਧਾਉਣਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਪਦਾਨੁਕ੍ਰਮਿਕ ਇੰਡੈਕਸਿੰਗ: ਬਿਹਤਰ ਪੁਨਰਪ੍ਰਾਪਤੀ ਲਈ ਡੇਟਾ ਦੀ ਸੰਰਚਨਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

Self-RAG: ਇੱਕ ਸਵੈ-ਪ੍ਰਤੀਬਿੰਬਿਤ ਵਾਧਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

HyDE: ਕਲਪਿਤ ਦਸਤਾਵੇਜ਼ ਸਮਾਈਆਂ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਰਿਟ੍ਰੀਵਲ ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ (RAG) 79

ਵਿਰੋਧਾਤਮਕ ਸਿੱਖਿਆ ਕੀ ਹੈ?

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa

ਕਾਮਿਆਂ ਦੀ ਭੀੜ

ਮੈਨੂੰ ਆਪਣੇ ਏ.ਆਈ. ਕੰਪੋਨੈਂਟਸ ਨੂੰ ਛੋਟੇ, ਲਗਭਗ-ਮਨੁੱਖੀ ਵਰਚੁਅਲ “ਕਾਮਿਆਂ” ਵਜੋਂ ਸੋਚਣਾ ਪਸੰਦ ਹੈ ਜੋ
ਖਾਸ ਕੰਮਾਂ ਨੂੰ ਕਰਨ ਜਾਂ ਗੁੰਝਲਦਾਰ ਫੈਸਲੇ ਲੈਣ ਲਈ ਮੇਰੇ ਐਪਲੀਕੇਸ਼ਨ ਲੌਜਿਕ ਵਿੱਚ ਨਿਰਵਿਘਨ ਤਰੀਕੇ ਨਾਲ
ਏਕੀਕ੍ਰਿਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਵਿਚਾਰ ਇਹ ਹੈ ਕਿ ਐੱਲ.ਐੱਲ.ਐੱਮ. ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ਨੂੰ ਜਾਣਬੁੱਝ ਕੇ ਮਨੁੱਖੀ
ਰੂਪ ਦਿੱਤਾ ਜਾਵੇ, ਤਾਂ ਜੋ ਕੋਈ ਵੀ ਬਹੁਤ ਜ਼ਿਆਦਾ ਉਤੇਜਿਤ ਨਾ ਹੋਵੇ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਜਾਦੂਈ ਗੁਣ ਨਾ ਦੇਵੇ ਜੋ ਉਹਨਾਂ
ਕੋਲ ਨਹੀਂ ਹਨ।

ਕੇਵਲ ਗੁੰਝਲਦਾਰ ਐਲਗੋਰਿਦਮ ਜਾਂ ਸਮਾਂ-ਖਪਤ ਕਰਨ ਵਾਲੇ ਮੈਨੂਅਲ ਕਾਰਜਾਂ ’ਤੇ ਨਿਰਭਰ ਕਰਨ ਦੀ ਬਜਾਏ,
ਡਿਵੈਲਪਰ ਏ.ਆਈ. ਕੰਪੋਨੈਂਟਸ ਨੂੰ ਬੁੱਧੀਮਾਨ, ਸਮਰਪਿਤ, ਮਨੁੱਖ-ਵਰਗੀਆਂ ਇਕਾਈਆਂ ਵਜੋਂ ਸੋਚ ਸਕਦੇ ਹਨ
ਜਿਨ੍ਹਾਂ ਨੂੰ ਲੋੜ ਪੈਣ ’ਤੇ ਗੁੰਝਲਦਾਰ ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਅਤੇ ਆਪਣੀ ਟ੍ਰੇਨਿੰਗ ਅਤੇ ਗਿਆਨ ਦੇ ਆਧਾਰ
’ਤੇ ਹੱਲ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਬੁਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਇਕਾਈਆਂ ਨਾ ਤਾਂ ਧਿਆਨ ਭਟਕਾਉਂਦੀਆਂ ਹਨ,
ਅਤੇ ਨਾ ਹੀ ਬਿਮਾਰ ਹੋਣ ਦਾ ਬਹਾਨਾ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਉਹ ਅਚਾਨਕ ਚੀਜ਼ਾਂ ਨੂੰ ਵੱਖਰੇ ਤਰੀਕਿਆਂ ਨਾਲ ਕਰਨ
ਦਾ ਫੈਸਲਾ ਨਹੀਂ ਕਰਦੀਆਂ ਜਿਵੇਂ ਉਹਨਾਂ ਨੂੰ ਕਰਨ ਲਈ ਨਿਰਦੇਸ਼ ਦਿੱਤੇ ਗਏ ਹਨ, ਅਤੇ ਆਮ ਤੌਰ ’ਤੇ, ਜੇਕਰ ਸਹੀ
ਢੰਗ ਨਾਲ ਪ੍ਰੋਗਰਾਮ ਕੀਤਾ ਗਿਆ ਹੈ, ਤਾਂ ਉਹ ਗਲਤੀਆਂ ਵੀ ਨਹੀਂ ਕਰਦੀਆਂ।

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 81

ਤਕਨੀਕੀ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਇਸ ਪਹੁੰਚ ਦਾ ਮੁੱਖ ਸਿਧਾਂਤ ਗੁੰਝਲਦਾਰ ਕੰਮਾਂ ਜਾਂ ਫੈਸਲਾ ਲੈਣ ਦੀਆਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਨੂੰ
ਛੋਟੀਆਂ, ਵਧੇਰੇ ਪ੍ਰਬੰਧਨਯੋਗ ਇਕਾਈਆਂ ਵਿੱਚ ਵੰਡਣਾ ਹੈ ਜੋ ਵਿਸ਼ੇਸ਼ ਏ.ਆਈ. ਕਾਮਿਆਂ ਦੁਆਰਾ ਨਿਪਟਾਈਆਂ
ਜਾ ਸਕਦੀਆਂ ਹਨ। ਹਰ ਕਾਮਾ ਸਮੱਸਿਆ ਦੇ ਇੱਕ ਖਾਸ ਪਹਿਲੂ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਨ ਲਈ ਤਿਆਰ ਕੀਤਾ
ਗਿਆ ਹੈ, ਜੋ ਆਪਣੀ ਵਿਲੱਖਣ ਮੁਹਾਰਤ ਅਤੇ ਸਮਰੱਥਾਵਾਂ ਨੂੰ ਸਾਹਮਣੇ ਲਿਆਉਂਦਾ ਹੈ। ਕਈ ਏ.ਆਈ. ਕਾਮਿਆਂ
ਵਿੱਚ ਕੰਮ ਦਾ ਭਾਰ ਵੰਡ ਕੇ, ਐਪਲੀਕੇਸ਼ਨ ਵਧੇਰੇ ਕੁਸ਼ਲਤਾ, ਸਕੇਲੇਬਿਲਟੀ, ਅਤੇ ਅਨੁਕੂਲਤਾ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੀ
ਹੈ।

ਉਦਾਹਰਣ ਵਜੋਂ, ਇੱਕ ਵੈੱਬ ਐਪਲੀਕੇਸ਼ਨ ’ਤੇ ਵਿਚਾਰ ਕਰੋ ਜਿਸ ਨੂੰ ਯੂਜ਼ਰ-ਜਨਰੇਟਡ ਕੰਟੈਂਟ ਦੀ ਰੀਅਲ-ਟਾਈਮ
ਮੌਡਰੇਸ਼ਨ ਦੀ ਲੋੜ ਹੈ। ਸ਼ੁਰੂ ਤੋਂ ਇੱਕ ਵਿਆਪਕ ਮੌਡਰੇਸ਼ਨ ਸਿਸਟਮ ਨੂੰ ਲਾਗੂ ਕਰਨਾ ਇੱਕ ਚੁਣੌਤੀਪੂਰਨ ਕੰਮ ਹੋਵੇਗਾ,
ਜਿਸ ਲਈ ਮਹੱਤਵਪੂਰਨ ਵਿਕਾਸ ਯਤਨਾਂ ਅਤੇ ਨਿਰੰਤਰ ਰੱਖ-ਰਖਾਵ ਦੀ ਲੋੜ ਹੋਵੇਗੀ। ਹਾਲਾਂਕਿ, ਕਾਮਿਆਂ ਦੀ
ਭੀੜ ਪਹੁੰਚ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ, ਡਿਵੈਲਪਰ ਐਪਲੀਕੇਸ਼ਨ ਲੌਜਿਕ ਵਿੱਚ ਏ.ਆਈ.-ਪਾਵਰਡ ਮੌਡਰੇਸ਼ਨ ਕਾਮਿਆਂ
ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਕਾਮੇ ਸਵੈਚਾਲਿਤ ਤੌਰ ’ਤੇ ਅਣਉਚਿਤ ਸਮੱਗਰੀ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਅਤੇ ਫਲੈਗ
ਕਰ ਸਕਦੇ ਹਨ, ਜਿਸ ਨਾਲ ਡਿਵੈਲਪਰਾਂ ਨੂੰ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਹੋਰ ਮਹੱਤਵਪੂਰਨ ਪਹਿਲੂਆਂ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ
ਕਰਨ ਦੀ ਆਜ਼ਾਦੀ ਮਿਲਦੀ ਹੈ।

ਸੁਤੰਤਰ ਮੁੜ-ਵਰਤੋਂਯੋਗ ਕੰਪੋਨੈਂਟਸ ਵਜੋਂ ਏ.ਆਈ. ਕਾਮੇ

ਕਾਮਿਆਂ ਦੀ ਭੀੜ ਪਹੁੰਚ ਦਾ ਇੱਕ ਮੁੱਖ ਪਹਿਲੂ ਇਸਦੀ ਮੋਡੀਊਲੈਰਿਟੀ ਹੈ। ਔਬਜੈਕਟ-ਓਰੀਐਂਟਡ ਪ੍ਰੋਗਰਾਮਿੰਗ ਦੇ
ਸਮਰਥਕ ਸਾਨੂੰ ਦਹਾਕਿਆਂ ਤੋਂ ਦੱਸ ਰਹੇ ਹਨ ਕਿ ਔਬਜੈਕਟ ਇੰਟਰੈਕਸ਼ਨਾਂ ਬਾਰੇ ਸੁਨੇਹਿਆਂ ਵਜੋਂ ਸੋਚੋ। ਖੈਰ, ਏ.ਆਈ.
ਕਾਮਿਆਂ ਨੂੰ ਸੁਤੰਤਰ, ਮੁੜ-ਵਰਤੋਂਯੋਗ ਕੰਪੋਨੈਂਟਸ ਵਜੋਂ ਤਿਆਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜੋ ਸਧਾਰਨ ਭਾਸ਼ਾ ਦੇ ਸੁਨੇਹਿਆਂ
ਰਾਹੀਂ “ਇੱਕ ਦੂਜੇ ਨਾਲ ਗੱਲ ਕਰ” ਸਕਦੇ ਹਨ, ਲਗਭਗ ਜਿਵੇਂ ਉਹ ਅਸਲ ਵਿੱਚ ਛੋਟੇ ਮਨੁੱਖ ਹੋਣ ਜੋ ਇੱਕ ਦੂਜੇ ਨਾਲ
ਗੱਲ ਕਰ ਰਹੇ ਹਨ। ਇਹ ਢਿੱਲੀ-ਜੁੜੀ ਪਹੁੰਚ ਐਪਲੀਕੇਸ਼ਨ ਨੂੰ ਸਮੇਂ ਦੇ ਨਾਲ ਅਨੁਕੂਲ ਹੋਣ ਅਤੇ ਵਿਕਸਤ ਹੋਣ ਦੀ
ਇਜਾਜ਼ਤ ਦਿੰਦੀ ਹੈ, ਜਿਵੇਂ-ਜਿਵੇਂ ਨਵੀਆਂ ਏ.ਆਈ. ਤਕਨਾਲੋਜੀਆਂ ਸਾਹਮਣੇ ਆਉਂਦੀਆਂ ਹਨ ਜਾਂ ਵਪਾਰਕ ਲੌਜਿਕ
ਦੀਆਂ ਲੋੜਾਂ ਬਦਲਦੀਆਂ ਹਨ।

ਅਮਲੀ ਤੌਰ ’ਤੇ, ਕੰਪੋਨੈਂਟਸ ਵਿਚਕਾਰ ਸਪਸ਼ਟ ਇੰਟਰਫੇਸ ਅਤੇ ਸੰਚਾਰ ਪ੍ਰੋਟੋਕੋਲ ਡਿਜ਼ਾਈਨ ਕਰਨ ਦੀ ਲੋੜ ਨਹੀਂ
ਬਦਲੀ ਹੈ, ਭਾਵੇਂ ਏ.ਆਈ. ਵਰਕਰ ਸ਼ਾਮਲ ਹਨ। ਤੁਹਾਨੂੰ ਹਾਲੇ ਵੀ ਪਰਫਾਰਮੈਂਸ, ਸਕੇਲੇਬਿਲਟੀ, ਅਤੇ ਸੁਰੱਖਿਆ
ਵਰਗੇ ਹੋਰ ਕਾਰਕਾਂ ’ਤੇ ਵੀ ਵਿਚਾਰ ਕਰਨਾ ਪਵੇਗਾ, ਪਰ ਹੁਣ ਨਵੀਆਂ “ਨਰਮ ਲੋੜਾਂ” ’ਤੇ ਵੀ ਵਿਚਾਰ ਕਰਨਾ ਹੈ।
ਉਦਾਹਰਨ ਲਈ, ਬਹੁਤ ਸਾਰੇ ਯੂਜ਼ਰ ਆਪਣੇ ਨਿੱਜੀ ਡੇਟਾ ਨੂੰ ਨਵੇਂ ਏ.ਆਈ. ਮਾਡਲਾਂ ਨੂੰ ਸਿਖਲਾਈ ਦੇਣ ਲਈ
ਵਰਤੇ ਜਾਣ ਦਾ ਵਿਰੋਧ ਕਰਦੇ ਹਨ। ਕੀ ਤੁਸੀਂ ਆਪਣੇ ਵਰਤੇ ਜਾ ਰਹੇ ਮਾਡਲ ਪ੍ਰਦਾਤਾ ਦੁਆਰਾ ਪ੍ਰਦਾਨ ਕੀਤੀ ਗਈ

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 82

ਗੋਪਨੀਯਤਾ ਦੇ ਪੱਧਰ ਦੀ ਪੁਸ਼ਟੀ ਕੀਤੀ ਹੈ?

ਕੀ ਏ.ਆਈ. ਵਰਕਰ ਮਾਈਕਰੋਸਰਵਿਸਿਜ਼ ਵਾਂਗ ਹਨ?

ਜਦੋਂ ਤੁਸੀਂ ਵਰਕਰਾਂ ਦੀ ਬਹੁਤਾਤ ਪਹੁੰਚ ਬਾਰੇ ਪੜ੍ਹਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਮਾਈਕਰੋਸਰਵਿਸਿਜ਼ ਆਰਕੀਟੈਕਚਰ ਨਾਲ
ਕੁਝ ਸਮਾਨਤਾਵਾਂ ਦੇਖ ਸਕਦੇ ਹੋ। ਦੋਵੇਂ ਗੁੰਝਲਦਾਰ ਸਿਸਟਮਾਂ ਨੂੰ ਛੋਟੇ, ਵਧੇਰੇ ਪ੍ਰਬੰਧਨਯੋਗ, ਅਤੇ ਸੁਤੰਤਰ ਰੂਪ
ਵਿੱਚ ਤੈਨਾਤ ਕਰਨ ਯੋਗ ਇਕਾਈਆਂ ਵਿੱਚ ਵੰਡਣ ’ਤੇ ਜ਼ੋਰ ਦਿੰਦੇ ਹਨ। ਜਿਵੇਂ ਕਿ ਮਾਈਕਰੋਸਰਵਿਸਿਜ਼ ਨੂੰ ਢਿੱਲੇ
ਤੌਰ ’ਤੇ ਜੁੜੇ ਹੋਏ, ਵਿਸ਼ੇਸ਼ ਵਪਾਰਕ ਸਮਰੱਥਾਵਾਂ ’ਤੇ ਕੇਂਦ੍ਰਿਤ, ਅਤੇ ਚੰਗੀ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ APIs ਰਾਹੀਂ
ਸੰਚਾਰ ਕਰਨ ਲਈ ਡਿਜ਼ਾਈਨ ਕੀਤਾ ਗਿਆ ਹੈ, ਏ.ਆਈ. ਵਰਕਰਾਂ ਨੂੰ ਮੋਡੀਊਲਰ, ਆਪਣੇ ਕੰਮਾਂ ਵਿੱਚ ਮਾਹਿਰ,
ਅਤੇ ਸਪੱਸ਼ਟ ਇੰਟਰਫੇਸ ਅਤੇ ਸੰਚਾਰ ਪ੍ਰੋਟੋਕੋਲ ਰਾਹੀਂ ਇੱਕ ਦੂਜੇ ਨਾਲ ਅੰਤਰਕਿਰਿਆ ਕਰਨ ਲਈ ਡਿਜ਼ਾਈਨ
ਕੀਤਾ ਗਿਆ ਹੈ।

ਹਾਲਾਂਕਿ, ਕੁਝ ਮੁੱਖ ਅੰਤਰ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ। ਜਿੱਥੇ ਮਾਈਕਰੋਸਰਵਿਸਿਜ਼ ਨੂੰ
ਆਮ ਤੌਰ ’ਤੇ ਵੱਖ-ਵੱਖ ਮਸ਼ੀਨਾਂ ਜਾਂ ਕੰਟੇਨਰਾਂ ’ਤੇ ਚੱਲ ਰਹੀਆਂ ਵੱਖਰੀਆਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਜਾਂ ਸੇਵਾਵਾਂ ਵਜੋਂ
ਲਾਗੂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਏ.ਆਈ. ਵਰਕਰਾਂ ਨੂੰ ਤੁਹਾਡੀਆਂ ਵਿਸ਼ੇਸ਼ ਲੋੜਾਂ ਅਤੇ ਸਕੇਲੇਬਿਲਟੀ ਦੀਆਂ ਜ਼ਰੂਰਤਾਂ ’ਤੇ
ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ, ਇੱਕ ਸਿੰਗਲ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਅੰਦਰ ਸਟੈਂਡਅਲੋਨ ਕੰਪੋਨੈਂਟਸ ਜਾਂ ਵੱਖਰੀਆਂ ਸੇਵਾਵਾਂ ਵਜੋਂ
ਲਾਗੂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਤੋਂ ਇਲਾਵਾ, ਏ.ਆਈ. ਵਰਕਰਾਂ ਵਿਚਕਾਰ ਸੰਚਾਰ ਵਿੱਚ ਅਕਸਰ ਪ੍ਰੌਂਪਟਸ,
ਨਿਰਦੇਸ਼, ਅਤੇ ਜਨਰੇਟ ਕੀਤੀ ਸਮੱਗਰੀ ਵਰਗੀ ਅਮੀਰ, ਕੁਦਰਤੀ ਭਾਸ਼ਾ-ਆਧਾਰਿਤ ਜਾਣਕਾਰੀ ਦਾ ਆਦਾਨ-
ਪ੍ਰਦਾਨ ਸ਼ਾਮਲ ਹੁੰਦਾ ਹੈ, ਨਾ ਕਿ ਮਾਈਕਰੋਸਰਵਿਸਿਜ਼ ਵਿੱਚ ਆਮ ਤੌਰ ’ਤੇ ਵਰਤੇ ਜਾਂਦੇ ਵਧੇਰੇ ਸੰਰਚਿਤ ਡੇਟਾ
ਫਾਰਮੈਟ।

ਇਨ੍ਹਾਂ ਅੰਤਰਾਂ ਦੇ ਬਾਵਜੂਦ, ਮੋਡੁਲੈਰਿਟੀ, ਢਿੱਲੇ ਕਪਲਿੰਗ, ਅਤੇ ਸਪੱਸ਼ਟ ਸੰਚਾਰ ਇੰਟਰਫੇਸ ਦੇ ਸਿਧਾਂਤ ਦੋਵਾਂ
ਪੈਟਰਨਾਂ ਲਈ ਕੇਂਦਰੀ ਬਣੇ ਰਹਿੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਸਿਧਾਂਤਾਂ ਨੂੰ ਆਪਣੀ ਏ.ਆਈ. ਵਰਕਰ ਆਰਕੀਟੈਕਚਰ ’ਤੇ
ਲਾਗੂ ਕਰਕੇ, ਤੁਸੀਂ ਲਚਕਦਾਰ, ਸਕੇਲੇਬਲ, ਅਤੇ ਰੱਖ-ਰਖਾਵ ਯੋਗ ਸਿਸਟਮ ਬਣਾ ਸਕਦੇ ਹੋ ਜੋ ਗੁੰਝਲਦਾਰ
ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਅਤੇ ਆਪਣੇ ਯੂਜ਼ਰਾਂ ਨੂੰ ਮੁੱਲ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਏ.ਆਈ. ਦੀ ਸ਼ਕਤੀ ਦਾ ਲਾਭ
ਲੈਂਦੇ ਹਨ।

ਵਰਕਰਾਂ ਦੀ ਬਹੁਤਾਤ ਪਹੁੰਚ ਨੂੰ ਵੱਖ-ਵੱਖ ਡੋਮੇਨਾਂ ਅਤੇ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਲਾਗੂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਗੁੰਝਲਦਾਰ
ਕੰਮਾਂ ਨੂੰ ਨਿਪਟਾਉਣ ਅਤੇ ਬੁੱਧੀਮਾਨ ਹੱਲ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਏ.ਆਈ. ਦੀ ਸ਼ਕਤੀ ਦਾ ਲਾਭ ਲੈਂਦੇ ਹੋਏ। ਆਓ

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 83

ਵੱਖ-ਵੱਖ ਸੰਦਰਭਾਂ ਵਿੱਚ ਏ.ਆਈ. ਵਰਕਰਾਂ ਦੀ ਵਰਤੋਂ ਦੇ ਕੁਝ ਠੋਸ ਉਦਾਹਰਨਾਂ ਦੀ ਪੜਚੋਲ ਕਰੀਏ।

ਅਕਾਊਂਟ ਪ੍ਰਬੰਧਨ

ਲਗਭਗ ਹਰ ਸਟੈਂਡਅਲੋਨ ਵੈੱਬ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਅਕਾਊਂਟ (ਜਾਂ ਯੂਜ਼ਰ) ਦੀ ਧਾਰਨਾ ਹੁੰਦੀ ਹੈ। Olympia
ਵਿੱਚ, ਅਸੀਂ ਇੱਕ AccountManager ਏ.ਆਈ. ਵਰਕਰ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ ਜੋ ਯੂਜ਼ਰ ਅਕਾਊਂਟਾਂ ਨਾਲ
ਸੰਬੰਧਿਤ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਦੀਆਂ ਤਬਦੀਲੀ ਬੇਨਤੀਆਂ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਪ੍ਰੋਗਰਾਮ ਕੀਤਾ ਗਿਆ ਹੈ।

ਇਸਦਾ ਨਿਰਦੇਸ਼ ਇਸ ਤਰ੍ਹਾਂ ਪੜ੍ਹਦਾ ਹੈ:

1 You are an intelligent account manager for Olympia. The user will request

2 changes to their account, and you will process those changes by invoking

3 one or more of the functions provided.

4

5 The initial state of the account: #{account.to_directive}

6

7 Functions will return a text description of both success and error

8 results, plus guidance about how to proceed (if applicable). If you have

9 a question about Olympia policies you may use the `search_kb` function

10 to search our knowledge base.

11

12 Make sure to notify the account owner of the result of the change

13 request before calling the `finished` function so that we save the state

14 of the account change request as completed.

account.to_directive ਦੁਆਰਾ ਤਿਆਰ ਕੀਤੀ ਗਈ ਖਾਤੇ ਦੀ ਸ਼ੁਰੂਆਤੀ ਸਥਿਤੀ ਸਿਰਫ਼ ਖਾਤੇ ਦਾ
ਟੈਕਸਟ ਵੇਰਵਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਉਪਯੋਗਕਰਤਾਵਾਂ, ਸਬਸਕ੍ਰਿਪਸ਼ਨਾਂ ਆਦਿ ਵਰਗੇ ਸੰਬੰਧਿਤ ਡੇਟਾ ਸ਼ਾਮਲ ਹਨ।

AccountManager ਲਈ ਉਪਲਬਧ ਫੰਕਸ਼ਨਾਂ ਦੀ ਰੇਂਜ ਇਸਨੂੰ ਉਪਯੋਗਕਰਤਾ ਦੀ ਸਬਸਕ੍ਰਿਪਸ਼ਨ ਨੂੰ
ਸੰਪਾਦਿਤ ਕਰਨ, ਏਆਈ ਸਲਾਹਕਾਰ ਅਤੇ ਹੋਰ ਕਿਸਮਾਂ ਦੇ ਭੁਗਤਾਨ ਐਡ-ਔਨ ਜੋੜਨ ਅਤੇ ਹਟਾਉਣ, ਅਤੇ
ਖਾਤਾ ਮਾਲਕ ਨੂੰ ਸੂਚਨਾ ਈਮੇਲਾਂ ਭੇਜਣ ਦੀ ਯੋਗਤਾ ਦਿੰਦੀ ਹੈ। finished ਫੰਕਸ਼ਨ ਦੇ ਇਲਾਵਾ, ਇਹ
notify_human_administrator ਵੀ ਕਰ ਸਕਦਾ ਹੈ ਜੇਕਰਇਹਆਪਣੀ ਪ੍ਰੋਸੈਸਿੰਗ ਦੌਰਾਨ ਕਿਸੇ ਤਰੁੱਟੀ
ਦਾ ਸਾਹਮਣਾ ਕਰਦਾ ਹੈ ਜਾਂ ਕਿਸੇ ਬੇਨਤੀ ਨਾਲ ਕਿਸੇ ਹੋਰ ਕਿਸਮ ਦੀ ਸਹਾਇਤਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 84

ਧਿਆਨ ਦਿਓ ਕਿ ਸਵਾਲਾਂ ਦੀ ਸਥਿਤੀ ਵਿੱਚ, AccountManagerOlympia ਦੇ ਗਿਆਨ ਅਧਾਰ ਵਿੱਚ ਖੋਜ
ਕਰ ਸਕਦਾ ਹੈ, ਜਿੱਥੇ ਇਹ ਸੀਮਾ ਮਾਮਲਿਆਂ ਨੂੰ ਸੰਭਾਲਣ ਅਤੇ ਕਿਸੇ ਹੋਰ ਸਥਿਤੀ ਜਿਸ ਵਿੱਚ ਇਹ ਅੱਗੇ ਵਧਣ
ਬਾਰੇ ਅਨਿਸ਼ਚਿਤ ਹੈ, ਬਾਰੇ ਨਿਰਦੇਸ਼ ਲੱਭ ਸਕਦਾ ਹੈ।

ਈ-ਕਾਮਰਸ ਐਪਲੀਕੇਸ਼ਨਾਂ

ਈ-ਕਾਮਰਸ ਦੇ ਖੇਤਰ ਵਿੱਚ, ਏਆਈ ਵਰਕਰ ਉਪਯੋਗਕਰਤਾ ਅਨੁਭਵ ਨੂੰ ਵਧਾਉਣ ਅਤੇ ਵਪਾਰਕ ਕਾਰਜਾਂ ਨੂੰ
ਅਨੁਕੂਲ ਬਣਾਉਣ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾ ਸਕਦੇ ਹਨ। ਇੱਥੇ ਕੁਝ ਤਰੀਕੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨਾਲ ਏਆਈ
ਵਰਕਰਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ:

ਉਤਪਾਦ ਸਿਫਾਰਸ਼ਾਂ

ਈ-ਕਾਮਰਸ ਵਿੱਚ ਏਆਈ ਵਰਕਰਾਂ ਦੀਆਂ ਸਭ ਤੋਂ ਸ਼ਕਤੀਸ਼ਾਲੀ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਨਿੱਜੀਕਰਣ ਕੀਤੀਆਂ
ਉਤਪਾਦ ਸਿਫਾਰਸ਼ਾਂ ਤਿਆਰ ਕਰਨਾ ਹੈ। ਉਪਯੋਗਕਰਤਾ ਦੇ ਵਿਵਹਾਰ, ਖਰੀਦ ਇਤਿਹਾਸ, ਅਤੇ ਤਰਜੀਹਾਂ ਦਾ
ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਕੇ, ਇਹ ਵਰਕਰ ਹਰੇਕ ਵਿਅਕਤੀਗਤ ਉਪਯੋਗਕਰਤਾ ਦੀਆਂ ਰੁਚੀਆਂ ਅਤੇ ਲੋੜਾਂ ਦੇ ਅਨੁਸਾਰ
ਉਤਪਾਦਾਂ ਦੀ ਸਿਫਾਰਸ਼ ਕਰ ਸਕਦੇ ਹਨ।

ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਉਤਪਾਦ ਸਿਫਾਰਸ਼ਾਂ ਦੀ ਕੁੰਜੀ ਸਹਿਯੋਗੀ ਫਿਲਟਰਿੰਗ ਅਤੇ ਸਮੱਗਰੀ-ਆਧਾਰਿਤ ਫਿਲਟਰਿੰਗ
ਤਕਨੀਕਾਂ ਦੇ ਸੁਮੇਲ ਦਾ ਲਾਭ ਉਠਾਉਣਾ ਹੈ। ਸਹਿਯੋਗੀ ਫਿਲਟਰਿੰਗ ਸਮਾਨ ਉਪਯੋਗਕਰਤਾਵਾਂ ਦੇ ਵਿਵਹਾਰ ਨੂੰ
ਦੇਖਦੀ ਹੈ ਤਾਂ ਜੋ ਪੈਟਰਨਾਂ ਦੀ ਪਛਾਣ ਕੀਤੀ ਜਾ ਸਕੇ ਅਤੇ ਉਸ ਦੇ ਆਧਾਰ ’ਤੇ ਸਿਫਾਰਸ਼ਾਂ ਕੀਤੀਆਂ ਜਾ ਸਕਣ ਜੋ
ਸਮਾਨ ਪਸੰਦ ਵਾਲੇ ਹੋਰਾਂ ਨੇ ਖਰੀਦਿਆ ਜਾਂ ਪਸੰਦ ਕੀਤਾ ਹੈ। ਦੂਜੇ ਪਾਸੇ, ਸਮੱਗਰੀ-ਆਧਾਰਿਤ ਫਿਲਟਰਿੰਗ ਉਤਪਾਦਾਂ
ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਅਤੇ ਗੁਣਾਂ ’ਤੇ ਕੇਂਦਰਿਤ ਹੁੰਦੀ ਹੈ, ਉਨ੍ਹਾਂ ਆਈਟਮਾਂ ਦੀ ਸਿਫਾਰਸ਼ ਕਰਦੀ ਹੈ ਜੋ ਉਨ੍ਹਾਂ ਵਸਤੂਆਂ
ਨਾਲ ਸਮਾਨ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਸਾਂਝੀਆਂ ਕਰਦੀਆਂ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਉਪਯੋਗਕਰਤਾ ਨੇ ਪਹਿਲਾਂ ਦਿਲਚਸਪੀ ਦਿਖਾਈ
ਹੈ।

ਇੱਥੇ Ruby ਵਿੱਚ ਇੱਕ ਉਤਪਾਦ ਸਿਫਾਰਸ਼ ਵਰਕਰ ਨੂੰ ਲਾਗੂ ਕਰਨ ਦਾ ਇੱਕ ਸਰਲ ਉਦਾਹਰਣ ਹੈ, ਇਸ ਵਾਰ
“Railway Oriented (ROP)” ਫੰਕਸ਼ਨਲ ਪ੍ਰੋਗਰਾਮਿੰਗ ਸ਼ੈਲੀ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ:

https://fsharpforfunandprofit.com/rop/

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 85

1 class ProductRecommendationWorker

2 include Wisper::Publisher

3

4 def call(user)

5 Result.ok(ProductRecommendation.new(user))

6 .and_then(ValidateUser.method(:validate))

7 .map(AnalyzeCurrentSession.method(:analyze))

8 .map(CollaborativeFilter.method(:filter))

9 .map(ContentBasedFilter.method(:filter))

10 .map(ProductSelector.method(:select)).then do |result|

11

12 case result

13 in { err: ProductRecommendationError => error }

14 Honeybadger.notify(error.message, context: {user:})

15 in { ok: ProductRecommendations => recs }

16 broadcast(:new_recommendations, user:, recs:)

17 end

18 end

19 end

20 end

Rubyਦੀ ਫੰਕਸ਼ਨਲ ਪ੍ਰੋਗਰਾਮਿੰਗ ਦੀ ਸ਼ੈਲੀ ਜੋ ਉਦਾਹਰਣ ਵਿੱਚ ਵਰਤੀ ਗਈਹੈ, F#ਅਤੇ Rust
ਤੋਂ ਪ੍ਰਭਾਵਿਤ ਹੈ। ਤੁਸੀਂ ਇਸ ਤਕਨੀਕ ਬਾਰੇ ਮੇਰੇ ਦੋਸਤ Chad Wooley ਦੀ GitLab ’ਤੇ
ਵਿਆਖਿਆ ਵਿੱਚ ਹੋਰ ਪੜ੍ਹ ਸਕਦੇ ਹੋ।

ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ, ProductRecommendationWorker ਇੱਕ ਯੂਜ਼ਰ ਨੂੰ ਇਨਪੁੱਟ ਵਜੋਂ ਲੈਂਦਾ ਹੈ ਅਤੇ
ਫੰਕਸ਼ਨਲ ਸਟੈਪਸ ਦੀ ਲੜੀ ਵਿੱਚ ਇੱਕ ਵੈਲਯੂ ਔਬਜੈਕਟ ਪਾਸ ਕਰਕੇ ਵਿਅਕਤੀਗਤ ਉਤਪਾਦ ਸਿਫਾਰਸ਼ਾਂ ਤਿਆਰ
ਕਰਦਾ ਹੈ। ਆਓ ਹਰ ਸਟੈਪ ਨੂੰ ਸਮਝੀਏ:

1. ValidateUser.validate: ਇਹ ਸਟੈਪ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ ਕਿ ਯੂਜ਼ਰ ਵੈਧ ਹੈ ਅਤੇ
ਵਿਅਕਤੀਗਤ ਸਿਫਾਰਸ਼ਾਂ ਲਈ ਯੋਗ ਹੈ। ਇਹ ਚੈੱਕ ਕਰਦਾ ਹੈ ਕਿ ਯੂਜ਼ਰ ਮੌਜੂਦ ਹੈ, ਐਕਟਿਵ ਹੈ, ਅਤੇ
ਸਿਫਾਰਸ਼ਾਂ ਤਿਆਰ ਕਰਨ ਲਈ ਜ਼ਰੂਰੀ ਡਾਟਾ ਉਪਲਬਧ ਹੈ। ਜੇ ਵੈਲੀਡੇਸ਼ਨ ਫੇਲ੍ਹ ਹੋ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਇੱਕ
ਗਲਤੀ ਦਾ ਨਤੀਜਾ ਵਾਪਸ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਲੜੀ ਸ਼ੌਰਟ-ਸਰਕਟ ਹੋ ਜਾਂਦੀ ਹੈ।

2. AnalyzeCurrentSession.analyze: ਜੇ ਯੂਜ਼ਰ ਵੈਧ ਹੈ, ਤਾਂ ਇਹ ਸਟੈਪ ਪ੍ਰਸੰਗਿਕ ਜਾਣਕਾਰੀ
ਇਕੱਠੀ ਕਰਨ ਲਈ ਯੂਜ਼ਰ ਦੇ ਮੌਜੂਦਾ ਬਰਾਊਜ਼ਿੰਗ ਸੈਸ਼ਨ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਦਾ ਹੈ। ਇਹ ਯੂਜ਼ਰ ਦੀਆਂ

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 86

ਹਾਲੀਆ ਗਤੀਵਿਧੀਆਂ, ਜਿਵੇਂ ਦੇਖੇ ਗਏ ਉਤਪਾਦ, ਖੋਜ ਕੁਐਰੀਆਂ, ਅਤੇ ਕਾਰਟ ਦੀ ਸਮੱਗਰੀ ਨੂੰ ਦੇਖਦਾ
ਹੈ, ਤਾਂ ਜੋ ਉਨ੍ਹਾਂ ਦੀਆਂ ਮੌਜੂਦਾ ਰੁਚੀਆਂ ਅਤੇ ਇਰਾਦੇ ਨੂੰ ਸਮਝਿਆ ਜਾ ਸਕੇ।

3. CollaborativeFilter.filter: ਸਮਾਨ ਯੂਜ਼ਰਾਂ ਦੇ ਵਿਵਹਾਰ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ, ਇਹ
ਸਟੈਪ ਸਹਿਯੋਗੀ ਫਿਲਟਰਿੰਗ ਤਕਨੀਕਾਂ ਲਾਗੂ ਕਰਦਾ ਹੈ ਤਾਂ ਜੋ ਉਨ੍ਹਾਂ ਉਤਪਾਦਾਂ ਦੀ ਪਛਾਣ ਕੀਤੀ ਜਾ ਸਕੇ
ਜੋ ਯੂਜ਼ਰ ਲਈ ਦਿਲਚਸਪੀ ਵਾਲੇ ਹੋ ਸਕਦੇ ਹਨ। ਇਹ ਖਰੀਦ ਇਤਿਹਾਸ, ਰੇਟਿੰਗਾਂ, ਅਤੇ ਯੂਜ਼ਰ-ਆਈਟਮ
ਇੰਟਰੈਕਸ਼ਨਾਂ ਵਰਗੇ ਕਾਰਕਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰਦਾ ਹੈ ਤਾਂ ਜੋ ਸੰਭਾਵੀ ਸਿਫਾਰਸ਼ਾਂ ਦਾ ਸੈੱਟ ਤਿਆਰ ਕੀਤਾ ਜਾ
ਸਕੇ।

4. ContentBasedFilter.filter: ਇਹ ਸਟੈਪ ਸਮੱਗਰੀ-ਆਧਾਰਿਤ ਫਿਲਟਰਿੰਗ ਲਾਗੂ ਕਰਕੇ
ਸੰਭਾਵੀ ਸਿਫਾਰਸ਼ਾਂ ਨੂੰ ਹੋਰ ਸੁਧਾਰਦਾ ਹੈ। ਇਹ ਸਭ ਤੋਂ ਢੁਕਵੀਆਂ ਆਈਟਮਾਂ ਦੀ ਚੋਣ ਕਰਨ ਲਈ ਸੰਭਾਵੀ
ਉਤਪਾਦਾਂ ਦੇ ਗੁਣਾਂ ਅਤੇ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੀ ਯੂਜ਼ਰ ਦੀਆਂ ਤਰਜੀਹਾਂ ਅਤੇ ਇਤਿਹਾਸਕ ਡਾਟਾ ਨਾਲ ਤੁਲਨਾ
ਕਰਦਾ ਹੈ।

5. ProductSelector.select: ਅੰਤ ਵਿੱਚ, ਇਹ ਸਟੈਪ ਪਹਿਲਾਂ ਤੋਂ ਨਿਰਧਾਰਿਤ ਮਾਪਦੰਡਾਂ, ਜਿਵੇਂ
ਪ੍ਰਸੰਗਿਕਤਾ ਸਕੋਰ, ਲੋਕਪ੍ਰਿਯਤਾ, ਜਾਂ ਹੋਰ ਵਪਾਰਕ ਨਿਯਮਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਫਿਲਟਰ ਕੀਤੀਆਂ ਸਿਫਾਰਸ਼ਾਂ
ਵਿੱਚੋਂ ਸਿਖਰਲੇ N ਉਤਪਾਦਾਂ ਦੀ ਚੋਣ ਕਰਦਾ ਹੈ। ਚੁਣੇ ਗਏ ਉਤਪਾਦ ਫਿਰ ਅੰਤਿਮ ਵਿਅਕਤੀਗਤ ਸਿਫਾਰਸ਼ਾਂ
ਵਜੋਂ ਵਾਪਸ ਕੀਤੇ ਜਾਂਦੇ ਹਨ।

ਇੱਥੇ Ruby ਦੀ ਫੰਕਸ਼ਨਲ ਪ੍ਰੋਗਰਾਮਿੰਗ ਸ਼ੈਲੀ ਦੀ ਵਰਤੋਂ ਦੀ ਖੂਬਸੂਰਤੀ ਇਹ ਹੈ ਕਿ ਇਹ ਸਾਨੂੰ ਇਨ੍ਹਾਂ ਸਟੈਪਸ
ਨੂੰ ਸਪਸ਼ਟ ਅਤੇ ਸੰਖੇਪ ਤਰੀਕੇ ਨਾਲ ਇੱਕ ਲੜੀ ਵਿੱਚ ਜੋੜਨ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ। ਹਰ ਸਟੈਪ ਇੱਕ ਖਾਸ ਕੰਮ
’ਤੇ ਕੇਂਦਰਿਤ ਹੈ ਅਤੇ ਇੱਕ Result ਔਬਜੈਕਟ ਵਾਪਸ ਕਰਦਾ ਹੈ, ਜੋ ਜਾਂ ਤਾਂ ਸਫਲ (ok) ਜਾਂ ਗਲਤੀ (err) ਹੋ
ਸਕਦਾ ਹੈ। ਜੇ ਕਿਸੇ ਵੀ ਸਟੈਪ ਵਿੱਚ ਗਲਤੀ ਆਉਂਦੀ ਹੈ, ਤਾਂ ਲੜੀ ਸ਼ੌਰਟ-ਸਰਕਟ ਹੋ ਜਾਂਦੀ ਹੈ, ਅਤੇ ਗਲਤੀ ਅੰਤਿਮ
ਨਤੀਜੇ ਤੱਕ ਪਹੁੰਚ ਜਾਂਦੀ ਹੈ।

case ਸਟੇਟਮੈਂਟ ਦੇ ਅੰਤ ਵਿੱਚ, ਅਸੀਂ ਅੰਤਿਮ ਨਤੀਜੇ ਤੇ ਪੈਟਰਨ ਮੈਚਿੰਗ ਕਰਦੇ ਹਾਂ। ਜੇਕਰ ਨਤੀਜਾ ਇੱਕ
ਗਲਤੀ ਹੈ (ProductRecommendationError), ਅਸੀਂ Honeybadger ਵਰਗੇ ਟੂਲ ਦੀ ਵਰਤੋਂ
ਕਰਕੇ ਨਿਗਰਾਨੀ ਅਤੇ ਡੀਬੱਗਿੰਗ ਦੇ ਉਦੇਸ਼ਾਂ ਲਈ ਗਲਤੀ ਨੂੰ ਲੌਗ ਕਰਦੇ ਹਾਂ। ਜੇਕਰ ਨਤੀਜਾ ਸਫਲ ਹੈ
(ProductRecommendations), ਅਸੀਂ Wisper ਪਬ/ਸਬ ਲਾਇਬ੍ਰੇਰੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ :new_-
recommendations ਈਵੈਂਤ ਦਾ ਪ੍ਰਸਾਰਣ ਕਰਦੇ ਹਾਂ, ਜਿਸ ਵਿੱਚ ਯੂਜ਼ਰ ਅਤੇ ਤਿਆਰ ਕੀਤੀਆਂ ਸਿਫਾਰਸ਼ਾਂ
ਨੂੰ ਅੱਗੇ ਭੇਜਦੇ ਹਾਂ।

ਫੰਕਸ਼ਨਲ ਪ੍ਰੋਗਰਾਮਿੰਗ ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ, ਅਸੀਂ ਇੱਕ ਮੌਡੀਊਲਰ ਅਤੇ ਰੱਖ-ਰਖਾਵ ਯੋਗ ਉਤਪਾਦ
ਸਿਫਾਰਸ਼ ਵਰਕਰ ਬਣਾ ਸਕਦੇ ਹਾਂ। ਹਰ ਕਦਮ ਸਵੈ-ਨਿਰਭਰ ਹੈ ਅਤੇ ਇਸਦੀ ਆਸਾਨੀ ਨਾਲ ਜਾਂਚ, ਸੋਧ, ਜਾਂ ਸਮੁੱਚੇ

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 87

ਪ੍ਰਵਾਹ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕੀਤੇ ਬਿਨਾਂ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪੈਟਰਨ ਮੈਚਿੰਗ ਅਤੇ Result ਕਲਾਸ ਦੀ ਵਰਤੋਂ
ਸਾਨੂੰ ਗਲਤੀਆਂ ਨੂੰ ਸੁਚੱਜੇ ਢੰਗ ਨਾਲ ਸੰਭਾਲਣ ਵਿੱਚ ਮਦਦ ਕਰਦੀ ਹੈ ਅਤੇ ਯਕੀਨੀ ਬਣਾਉਂਦੀ ਹੈ ਕਿ ਜੇਕਰ ਕਿਸੇ
ਵੀ ਕਦਮ ਵਿੱਚ ਕੋਈ ਸਮੱਸਿਆ ਆਉਂਦੀ ਹੈ ਤਾਂ ਵਰਕਰ ਤੁਰੰਤ ਅਸਫਲ ਹੋ ਜਾਂਦਾ ਹੈ।

ਬੇਸ਼ੱਕ, ਇਹ ਇੱਕ ਸਰਲੀਕ੍ਰਿਤ ਉਦਾਹਰਣ ਹੈ, ਅਤੇ ਅਸਲ ਦੁਨੀਆਂ ਦੇ ਸਥਿਤੀ ਵਿੱਚ, ਤੁਹਾਨੂੰ ਆਪਣੇ ਈ-ਕਾਮਰਸ
ਪਲੇਟਫਾਰਮ ਨਾਲ ਏਕੀਕਰਣ ਕਰਨ, ਸੀਮਾ ਮਾਮਲਿਆਂ ਨੂੰ ਸੰਭਾਲਣ, ਅਤੇ ਇੱਥੋਂ ਤੱਕ ਕਿ ਸਿਫਾਰਸ਼ ਐਲਗੋਰਿਦਮ
ਦੇ ਕਾਰਜਾਂਵਯਨ ਵਿੱਚ ਵੀ ਜਾਣ ਦੀ ਲੋੜ ਹੋਵੇਗੀ। ਹਾਲਾਂਕਿ, ਸਮੱਸਿਆ ਨੂੰ ਛੋਟੇ ਕਦਮਾਂ ਵਿੱਚ ਵੰਡਣ ਅਤੇ ਫੰਕਸ਼ਨਲ
ਪ੍ਰੋਗਰਾਮਿੰਗ ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ ਕਰਨ ਦੇ ਮੂਲ ਸਿਧਾਂਤ ਉਹੀ ਰਹਿੰਦੇ ਹਨ।

ਧੋਖਾਧੜੀ ਦੀ ਪਛਾਣ

ਇੱਥੇ ਇੱਕ ਸਰਲੀਕ੍ਰਿਤ ਉਦਾਹਰਣ ਹੈ ਕਿ ਤੁਸੀਂ Ruby ਵਿੱਚ ਉਸੇ Railway Oriented Program-
ming (ROP) ਸ਼ੈਲੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਧੋਖਾਧੜੀ ਦੀ ਪਛਾਣ ਵਰਕਰ ਨੂੰ ਕਿਵੇਂ ਲਾਗੂ ਕਰ ਸਕਦੇ ਹੋ:

1 class FraudDetectionWorker

2 include Wisper::Publisher

3

4 def call(transaction)

5 Result.ok(FraudDetection.new(transaction))

6 .and_then(ValidateTransaction.method(:validate))

7 .map(AnalyzeTransactionPatterns.method(:analyze))

8 .map(CheckCustomerHistory.method(:check))

9 .map(EvaluateRiskFactors.method(:evaluate))

10 .map(DetermineFraudProbability.method(:determine)).then do |result|

11

12 case result

13 in { err: FraudDetectionError => error }

14 Honeybadger.notify(error.message, context: {transaction:})

15 in { ok: FraudDetection => fraud } }

16 if fraud.high_risk?

17 broadcast(:high_risk_transaction, transaction:, fraud:)

18 else

19 broadcast(:low_risk_transaction, transaction:)

20 end

21 end

22 end

23 end

24 end

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 88

FraudDetection ਕਲਾਸ ਇੱਕ ਮੁੱਲ ਆਬਜੈਕਟ ਹੈ ਜੋ ਕਿਸੇ ਦਿੱਤੇ ਲੈਣ-ਦੇਣ ਲਈ ਧੋਖਾਧੜੀ ਖੋਜ ਦੀ ਸਥਿਤੀ
ਨੂੰ ਸਮੇਟਦੀ ਹੈ। ਇਹ ਵੱਖ-ਵੱਖ ਜੋਖਮ ਕਾਰਕਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਲੈਣ-ਦੇਣ ਨਾਲ ਜੁੜੀ ਧੋਖਾਧੜੀ ਦੇ ਜੋਖਮ ਦਾ
ਵਿਸ਼ਲੇਸ਼ਣ ਅਤੇ ਮੁਲਾਂਕਣ ਕਰਨ ਦਾ ਇੱਕ ਢਾਂਚਾਗਤ ਤਰੀਕਾ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ।

1 class FraudDetection

2 RISK_THRESHOLD = 0.8

3

4 attr_accessor :transaction, :risk_factors

5

6 def initialize(transaction)

7 self.transaction = transaction

8 self.risk_factors = []

9 end

10

11 def add_risk_factor(description:, probability:)

12 case { description:, probability: }

13 in { description: String => desc, probability: Float => prob }

14 risk_factors << { desc => prob }

15 else

16 raise ArgumentError, "Risk factor arguments should be string and float"

17 end

18 end

19

20 def high_risk?

21 fraud_probability > RISK_THRESHOLD

22 end

23

24 private

25

26 def fraud_probability

27 risk_factors.values.sum

28 end

29 end

FraudDetection ਕਲਾਸ ਵਿੱਚ ਹੇਠ ਲਿਖੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਹਨ:

• transaction: ਧੋਖਾਧੜੀ ਲਈ ਵਿਸ਼ਲੇਸ਼ਣ ਕੀਤੇ ਜਾ ਰਹੇ ਲੈਣ-ਦੇਣ ਦਾ ਹਵਾਲਾ।
• risk_factors: ਇੱਕ ਐਰੇ ਜੋ ਲੈਣ-ਦੇਣ ਨਾਲ ਜੁੜੇ ਜੋਖਮ ਕਾਰਕਾਂ ਨੂੰ ਸਟੋਰ ਕਰਦਾ ਹੈ। ਹਰ ਜੋਖਮ
ਕਾਰਕ ਨੂੰ ਇੱਕ ਹੈਸ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਜਿੱਥੇ ਕੁੰਜੀ ਜੋਖਮ ਕਾਰਕ ਦਾ ਵੇਰਵਾ ਹੈ, ਅਤੇ ਮੁੱਲ

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 89

ਉਸ ਜੋਖਮ ਕਾਰਕ ਨਾਲ ਜੁੜੀ ਧੋਖਾਧੜੀ ਦੀ ਸੰਭਾਵਨਾ ਹੈ।

add_risk_factor ਮੈਥਡ risk_factors ਐਰੇ ਵਿੱਚ ਇੱਕ ਜੋਖਮ ਕਾਰਕ ਜੋੜਨ ਦੀ ਆਗਿਆ ਦਿੰਦਾ
ਹੈ। ਇਹ ਦੋ ਪੈਰਾਮੀਟਰ ਲੈਂਦਾ ਹੈ: description, ਜੋ ਜੋਖਮ ਕਾਰਕ ਦਾ ਵਰਣਨ ਕਰਨ ਵਾਲੀ ਸਟ੍ਰਿੰਗ ਹੈ, ਅਤੇ
probability, ਜੋ ਉਸ ਜੋਖਮ ਕਾਰਕ ਨਾਲ ਜੁੜੀ ਧੋਖਾਧੜੀ ਦੀ ਸੰਭਾਵਨਾ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲਾ ਫਲੋਟ ਹੈ।
ਅਸੀਂ ਸਧਾਰਨ ਕਿਸਮ ਦੀ ਜਾਂਚ ਲਈ case..in ਕੰਡੀਸ਼ਨਲ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ।

high_risk? ਮੈਥਡ ਜੋ ਚੇਨ ਦੇ ਅੰਤ ’ਤੇ ਚੈੱਕ ਕੀਤਾ ਜਾਵੇਗਾ, ਇੱਕ ਪ੍ਰੈਡੀਕੇਟ ਮੈਥਡ ਹੈ ਜੋ fraud_-
probability (ਸਾਰੇ ਜੋਖਮ ਕਾਰਕਾਂ ਦੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਨੂੰ ਜੋੜ ਕੇ ਗਣਨਾ ਕੀਤੀ ਗਈ) ਦੀ RISK_-
THRESHOLD ਨਾਲ ਤੁਲਨਾ ਕਰਦਾ ਹੈ।

FraudDetection ਕਲਾਸ ਲੈਣ-ਦੇਣ ਲਈ ਧੋਖਾਧੜੀ ਦੀ ਪਛਾਣ ਦਾ ਪ੍ਰਬੰਧਨ ਕਰਨ ਦਾ ਇੱਕ ਸਾਫ਼ ਅਤੇ
ਇਨਕੈਪਸੂਲੇਟਡ ਤਰੀਕਾ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ। ਇਹ ਕਈ ਜੋਖਮ ਕਾਰਕ ਜੋੜਨ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ, ਹਰ ਇੱਕ ਦੇ
ਆਪਣੇ ਵੇਰਵੇ ਅਤੇ ਸੰਭਾਵਨਾ ਦੇ ਨਾਲ, ਅਤੇ ਗਣਨਾ ਕੀਤੀ ਧੋਖਾਧੜੀ ਦੀ ਸੰਭਾਵਨਾ ਦੇ ਆਧਾਰ ’ਤੇ ਇਹ ਨਿਰਧਾਰਤ
ਕਰਨ ਲਈਇੱਕ ਵਿਧੀ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ ਕਿ ਕੀ ਲੈਣ-ਦੇਣ ਨੂੰ ਉੱਚ-ਜੋਖਮ ਵਾਲਾ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਕਲਾਸ
ਨੂੰ ਆਸਾਨੀ ਨਾਲ ਇੱਕ ਵੱਡੀ ਧੋਖਾਧੜੀ ਪਛਾਣ ਪ੍ਰਣਾਲੀ ਵਿੱਚ ਏਕੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਿੱਥੇ ਵੱਖ-ਵੱਖ
ਭਾਗ ਧੋਖਾਧੜੀ ਵਾਲੇ ਲੈਣ-ਦੇਣ ਦੇ ਜੋਖਮ ਦਾ ਮੁਲਾਂਕਣ ਅਤੇ ਘਟਾਉਣ ਲਈ ਸਹਿਯੋਗ ਕਰ ਸਕਦੇ ਹਨ।

ਅੰਤ ਵਿੱਚ, ਕਿਉਂਕਿ ਇਹਆਖਿਰਕਾਰ AI ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਪ੍ਰੋਗਰਾਮਿੰਗ ਬਾਰੇ ਇੱਕ ਕਿਤਾਬ ਹੈ, ਇੱਥੇ ਮੇਰੀ Raix
ਲਾਇਬ੍ਰੇਰੀ ਦੇ ChatCompletion ਮੋਡਿਊਲ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ CheckCustomerHistory ਕਲਾਸ
ਦੀ ਇੱਕ ਉਦਾਹਰਨ ਕਾਰਜਾਨਵੀਨ ਹੈ:

1 class CheckCustomerHistory

2 include Raix::ChatCompletion

3

4 attr_accessor :fraud_detection

5

6 INSTRUCTION = <<~END

7 You are an AI assistant tasked with checking a customer's transaction

8 history for potential fraud indicators. Given the current transaction

9 and the customer's past transactions, analyze the data to identify any

10 suspicious patterns or anomalies.

11

12 Consider factors such as the frequency of transactions, transaction

13 amounts, geographical locations, and any deviations from the customer's

14 typical behavior to generate a probability score as a float in the range

https://github.com/OlympiaAI/raix-rails

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 90

15 of 0 to 1 (with 1 being absolute certainty of fraud).

16

17 Output the results of your analysis, highlighting any red flags or areas

18 of concern in the following JSON format:

19

20 { description: <Summary of your findings>, probability: <Float> }

21 END

22

23 def self.check(fraud_detection)

24 new(fraud_detection).call

25 end

26

27 def call

28 chat_completion(json: true).tap do |result|

29 fraud_detection.add_risk_factor(**result)

30 end

31 Result.ok(fraud_detection)

32 rescue StandardError => e

33 Result.err(FraudDetectionError.new(e))

34 end

35

36 private

37

38 def initialize(fraud_detection)

39 self.fraud_detection = fraud_detection

40 end

41

42 def transcript

43 tx_history = fraud_detection.transaction.user.tx_history

44 [

45 { system: INSTRUCTION },

46 { user: "Transaction history: #{tx_history.to_json}" },

47 { assistant: "OK. Please provide the current transaction." },

48 { user: "Current transaction: #{fraud_detection.transaction.to_json}" }

49]

50 end

51 end

ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ, CheckCustomerHistory ਇੱਕ INSTRUCTION ਸਥਿਰ ਅੰਕ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ
ਕਰਦਾ ਹੈ ਜੋ ਏ.ਆਈ. ਮਾਡਲ ਨੂੰ ਸਿਸਟਮ ਨਿਰਦੇਸ਼ ਰਾਹੀਂ ਧੋਖਾਧੜੀ ਦੇ ਸੰਕੇਤਾਂ ਲਈ ਗਾਹਕ ਦੇ ਲੈਣ-ਦੇਣ ਦੇ
ਇਤਿਹਾਸ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਲਈ ਵਿਸ਼ੇਸ਼ ਨਿਰਦੇਸ਼ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ।

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 91

self.check ਵਿਧੀ ਇੱਕ ਕਲਾਸ ਵਿਧੀ ਹੈ ਜੋ fraud_detection ਵਸਤੂ ਨਾਲ CheckCustomer-

History ਦੀ ਇੱਕ ਨਵੀਂ ਉਦਾਹਰਣ ਨੂੰ ਸ਼ੁਰੂ ਕਰਦੀ ਹੈ ਅਤੇ ਗਾਹਕ ਇਤਿਹਾਸ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਲਈ call

ਵਿਧੀ ਨੂੰ ਬੁਲਾਉਂਦੀ ਹੈ।

call ਵਿਧੀ ਦੇ ਅੰਦਰ, ਗਾਹਕ ਦੇ ਲੈਣ-ਦੇਣ ਦਾ ਇਤਿਹਾਸ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇੱਕ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਵਿੱਚ
ਫਾਰਮੈਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜੋ ਏ.ਆਈ. ਮਾਡਲ ਨੂੰ ਪਾਸ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਏ.ਆਈ. ਮਾਡਲ ਦਿੱਤੇ ਗਏ ਨਿਰਦੇਸ਼ਾਂ ਦੇ
ਆਧਾਰ ’ਤੇ ਲੈਣ-ਦੇਣ ਦੇ ਇਤਿਹਾਸ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਦਾ ਹੈ ਅਤੇ ਆਪਣੇ ਨਤੀਜਿਆਂ ਦਾ ਸਾਰ ਵਾਪਸ ਕਰਦਾ ਹੈ।

ਨਤੀਜੇ fraud_detectionਵਸਤੂ ਵਿੱਚ ਜੋੜੇ ਜਾਂਦੇ ਹਨ, ਅਤੇ ਅੱਪਡੇਟ ਕੀਤੀ fraud_detectionਵਸਤੂ
ਇੱਕ ਸਫਲ Result ਵਜੋਂ ਵਾਪਸ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ChatCompletion ਮੋਡਿਊਲ ਦੀ ਵਰਤੋਂ ਕਰਕੇ, CheckCustomerHistory ਕਲਾਸ ਏ.ਆਈ. ਦੀ
ਸ਼ਕਤੀ ਦੀ ਵਰਤੋਂ ਗਾਹਕ ਦੇ ਲੈਣ-ਦੇਣ ਦੇ ਇਤਿਹਾਸ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਅਤੇ ਸੰਭਾਵੀ ਧੋਖਾਧੜੀ ਦੇ ਸੰਕੇਤਾਂ
ਦੀ ਪਛਾਣ ਕਰਨ ਲਈ ਕਰ ਸਕਦੀ ਹੈ। ਇਹ ਵਧੇਰੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਅਤੇ ਅਨੁਕੂਲ ਧੋਖਾਧੜੀ ਦੀ ਪਛਾਣ ਤਕਨੀਕਾਂ
ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਕਿਉਂਕਿ ਏ.ਆਈ. ਮਾਡਲ ਨਵੇਂ ਪੈਟਰਨਾਂ ਅਤੇ ਅਸਧਾਰਨਤਾਵਾਂ ਤੋਂ ਸਿੱਖ ਅਤੇ ਅਨੁਕੂਲ ਹੋ
ਸਕਦਾ ਹੈ।

ਅੱਪਡੇਟ ਕੀਤਾ FraudDetectionWorker ਅਤੇ CheckCustomerHistory ਕਲਾਸ ਦਿਖਾਉਂਦੇ ਹਨ
ਕਿ ਏ.ਆਈ. ਵਰਕਰਾਂ ਨੂੰ ਕਿਵੇਂ ਨਿਰਵਿਘਨ ਏਕੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਬੁੱਧੀਮਾਨ ਵਿਸ਼ਲੇਸ਼ਣ ਅਤੇ ਫ਼ੈਸਲਾ
ਲੈਣ ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ਨਾਲ ਧੋਖਾਧੜੀ ਦੀ ਪਛਾਣ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਵਧਾਉਂਦੇ ਹੋਏ।

ਗਾਹਕ ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ

ਇੱਥੇ ਇੱਕ ਹੋਰ ਇਸੇ ਤਰ੍ਹਾਂ ਦੀ ਉਦਾਹਰਣ ਹੈ ਕਿ ਤੁਸੀਂ ਗਾਹਕ ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ ਵਰਕਰ ਨੂੰ ਕਿਵੇਂ ਲਾਗੂ ਕਰ
ਸਕਦੇ ਹੋ। ਇਸ ਵਾਰ ਬਹੁਤ ਘੱਟ ਵਿਆਖਿਆ, ਕਿਉਂਕਿ ਤੁਹਾਨੂੰ ਇਸ ਪ੍ਰੋਗਰਾਮਿੰਗ ਸ਼ੈਲੀ ਦੇ ਕੰਮ ਕਰਨ ਦਾ ਢੰਗ
ਸਮਝ ਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ:

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 92

1 class CustomerSentimentAnalysisWorker

2 include Wisper::Publisher

3

4 def call(feedback)

5 Result.ok(feedback)

6 .and_then(PreprocessFeedback.method(:preprocess))

7 .map(PerformSentimentAnalysis.method(:analyze))

8 .map(ExtractKeyPhrases.method(:extract))

9 .map(IdentifyTrends.method(:identify))

10 .map(GenerateInsights.method(:generate)).then do |result|

11

12 case result

13 in { err: SentimentAnalysisError => error }

14 Honeybadger.notify(error.message, context: {feedback:})

15 in { ok: SentimentAnalysisResult => result }

16 broadcast(:sentiment_analysis_completed, result)

17 end

18 end

19 end

20 end

ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ, CustomerSentimentAnalysisWorker ਦੇ ਕਦਮਾਂ ਵਿੱਚ ਫੀਡਬੈਕ ਦੀ ਪ੍ਰੀ-
ਪ੍ਰੋਸੈਸਿੰਗ (ਜਿਵੇਂ ਕਿ ਸ਼ੋਰ ਹਟਾਉਣਾ, ਟੋਕਨਾਈਜ਼ੇਸ਼ਨ), ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨਾ (ਸਕਾਰਾਤਮਕ, ਨਕਾਰਾਤਮਕ,
ਜਾਂ ਨਿਰਪੱਖ ਭਾਵਨਾ ਨਿਰਧਾਰਤ ਕਰਨ ਲਈ), ਮੁੱਖ ਵਾਕਾਂਸ਼ਾਂ ਅਤੇ ਵਿਸ਼ਿਆਂ ਦੀ ਪਛਾਣ, ਰੁਝਾਨਾਂ ਅਤੇ ਪੈਟਰਨਾਂ ਦੀ
ਪਛਾਣ, ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਆਧਾਰ ’ਤੇ ਕਾਰਵਾਈਯੋਗ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਤਿਆਰ ਕਰਨਾ ਸ਼ਾਮਲ ਹੈ।

ਸਿਹਤ ਸੰਭਾਲ ਐਪਲੀਕੇਸ਼ਨਾਂ

ਸਿਹਤ ਸੰਭਾਲ ਖੇਤਰ ਵਿੱਚ, AI ਵਰਕਰ ਮੈਡੀਕਲ ਪੇਸ਼ੇਵਰਾਂ ਅਤੇ ਖੋਜਕਰਤਾਵਾਂ ਦੀ ਵੱਖ-ਵੱਖ ਕਾਰਜਾਂ ਵਿੱਚ ਸਹਾਇਤਾ
ਕਰ ਸਕਦੇ ਹਨ, ਜਿਸ ਨਾਲ ਮਰੀਜ਼ਾਂ ਦੇ ਨਤੀਜਿਆਂ ਵਿੱਚ ਸੁਧਾਰ ਅਤੇ ਮੈਡੀਕਲ ਖੋਜਾਂ ਵਿੱਚ ਤੇਜ਼ੀ ਆਉਂਦੀ ਹੈ। ਕੁਝ
ਉਦਾਹਰਣਾਂ ਹਨ:

ਮਰੀਜ਼ ਦਾਖਲਾ

AI ਵਰਕਰ ਵੱਖ-ਵੱਖ ਕਾਰਜਾਂ ਨੂੰ ਸਵੈਚਾਲਿਤ ਕਰਕੇ ਅਤੇ ਬੁੱਧੀਮਾਨ ਸਹਾਇਤਾ ਪ੍ਰਦਾਨ ਕਰਕੇ ਮਰੀਜ਼ ਦਾਖਲਾ
ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਸੁਚਾਰੂ ਬਣਾ ਸਕਦੇ ਹਨ।

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 93

ਅਪੌਇੰਟਮੈਂਟ ਸ਼ੈਡਿਊਲਿੰਗ: AI ਵਰਕਰ ਮਰੀਜ਼ਾਂ ਦੀਆਂ ਤਰਜੀਹਾਂ, ਉਪਲਬਧਤਾ, ਅਤੇ ਉਨ੍ਹਾਂ ਦੀਆਂ ਮੈਡੀਕਲ
ਲੋੜਾਂ ਦੀ ਤਤਕਾਲੀਨਤਾ ਨੂੰ ਸਮਝ ਕੇ ਅਪੌਇੰਟਮੈਂਟ ਸ਼ੈਡਿਊਲਿੰਗ ਨੂੰ ਸੰਭਾਲ ਸਕਦੇ ਹਨ। ਉਹ ਗੱਲਬਾਤ ਇੰਟਰਫੇਸਾਂ
ਰਾਹੀਂ ਮਰੀਜ਼ਾਂ ਨਾਲ ਸੰਪਰਕ ਕਰ ਸਕਦੇ ਹਨ, ਉਨ੍ਹਾਂ ਨੂੰ ਸ਼ੈਡਿਊਲਿੰਗ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਮਾਰਗਦਰਸ਼ਨ ਕਰ ਸਕਦੇ
ਹਨ ਅਤੇ ਮਰੀਜ਼ ਦੀਆਂ ਲੋੜਾਂ ਅਤੇ ਸਿਹਤ ਸੰਭਾਲ ਪ੍ਰਦਾਤਾ ਦੀ ਉਪਲਬਧਤਾ ਦੇ ਆਧਾਰ ’ਤੇ ਸਭ ਤੋਂ ਢੁਕਵੇਂ
ਅਪੌਇੰਟਮੈਂਟ ਸਲੌਟ ਲੱਭ ਸਕਦੇ ਹਨ।

ਮੈਡੀਕਲ ਇਤਿਹਾਸ ਇਕੱਤਰੀਕਰਨ: ਮਰੀਜ਼ ਦਾਖਲੇ ਦੌਰਾਨ, AI ਵਰਕਰ ਮਰੀਜ਼ ਦੇ ਮੈਡੀਕਲ ਇਤਿਹਾਸ ਨੂੰ
ਇਕੱਤਰ ਕਰਨ ਅਤੇ ਦਸਤਾਵੇਜ਼ੀਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦੇ ਹਨ। ਉਹ ਮਰੀਜ਼ਾਂ ਨਾਲ ਇੰਟਰਐਕਟਿਵ ਸੰਵਾਦ
ਵਿੱਚ ਸ਼ਾਮਲ ਹੋ ਸਕਦੇ ਹਨ, ਉਨ੍ਹਾਂ ਦੀਆਂ ਪਿਛਲੀਆਂ ਮੈਡੀਕਲ ਸਥਿਤੀਆਂ, ਦਵਾਈਆਂ, ਐਲਰਜੀਆਂ, ਅਤੇ
ਪਰਿਵਾਰਕ ਇਤਿਹਾਸ ਬਾਰੇ ਢੁਕਵੇਂ ਸਵਾਲ ਪੁੱਛ ਸਕਦੇ ਹਨ। AI ਵਰਕਰ ਕੁਦਰਤੀ ਭਾਸ਼ਾ ਪ੍ਰੋਸੈਸਿੰਗ ਤਕਨੀਕਾਂ ਦੀ
ਵਰਤੋਂ ਕਰਕੇ ਇਕੱਤਰ ਕੀਤੀ ਜਾਣਕਾਰੀ ਦੀ ਵਿਆਖਿਆ ਅਤੇ ਸੰਰਚਨਾ ਕਰ ਸਕਦੇ ਹਨ, ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦੇ
ਹੋਏ ਕਿ ਇਹ ਮਰੀਜ਼ ਦੇ ਇਲੈਕਟ੍ਰਾਨਿਕ ਸਿਹਤ ਰਿਕਾਰਡ ਵਿੱਚ ਸਹੀ ਢੰਗ ਨਾਲ ਦਰਜ ਕੀਤੀ ਗਈ ਹੈ।

ਲੱਛਣ ਮੁਲਾਂਕਣ ਅਤੇ ਵਰਗੀਕਰਨ: AI ਵਰਕਰ ਮਰੀਜ਼ਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਮੌਜੂਦਾ ਲੱਛਣਾਂ, ਮਿਆਦ, ਗੰਭੀਰਤਾ, ਅਤੇ
ਕਿਸੇ ਵੀ ਸੰਬੰਧਿਤ ਕਾਰਕਾਂ ਬਾਰੇ ਪੁੱਛ ਕੇ ਸ਼ੁਰੂਆਤੀ ਲੱਛਣ ਮੁਲਾਂਕਣ ਕਰ ਸਕਦੇ ਹਨ। ਮੈਡੀਕਲ ਗਿਆਨ ਅਧਾਰਾਂ
ਅਤੇ ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਮਾਡਲਾਂ ਦਾ ਲਾਭ ਲੈ ਕੇ, ਇਹ ਵਰਕਰ ਪ੍ਰਦਾਨ ਕੀਤੀ ਜਾਣਕਾਰੀ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰ ਸਕਦੇ
ਹਨ ਅਤੇ ਮੁੱਢਲੇ ਵਿਭੇਦਕ ਨਿਦਾਨ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹਨ ਜਾਂ ਢੁਕਵੇਂ ਅਗਲੇ ਕਦਮਾਂ ਦੀ ਸਿਫਾਰਸ਼ ਕਰ ਸਕਦੇ
ਹਨ, ਜਿਵੇਂ ਕਿ ਸਿਹਤ ਸੰਭਾਲ ਪ੍ਰਦਾਤਾ ਨਾਲ ਸਲਾਹ-ਮਸ਼ਵਰਾ ਕਰਨ ਦਾ ਸ਼ੈਡਿਊਲ ਬਣਾਉਣਾ ਜਾਂ ਸਵੈ-ਦੇਖਭਾਲ ਦੇ
ਉਪਾਵਾਂ ਦੀ ਸਿਫਾਰਸ਼ ਕਰਨਾ।

ਬੀਮਾ ਤਸਦੀਕ: AI ਵਰਕਰ ਮਰੀਜ਼ ਦਾਖਲੇ ਦੌਰਾਨ ਬੀਮਾ ਤਸਦੀਕ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦੇ ਹਨ। ਉਹ ਮਰੀਜ਼
ਦੇ ਬੀਮਾ ਵੇਰਵੇ ਇਕੱਠੇ ਕਰ ਸਕਦੇ ਹਨ, APIs ਜਾਂ ਵੈੱਬ ਸੇਵਾਵਾਂ ਰਾਹੀਂ ਬੀਮਾ ਪ੍ਰਦਾਤਾਵਾਂ ਨਾਲ ਸੰਚਾਰ ਕਰ ਸਕਦੇ
ਹਨ, ਅਤੇ ਕਵਰੇਜ ਯੋਗਤਾ ਅਤੇ ਲਾਭਾਂ ਦੀ ਪੁਸ਼ਟੀ ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਆਟੋਮੇਸ਼ਨ ਬੀਮਾ ਤਸਦੀਕ ਪ੍ਰਕਿਰਿਆ
ਨੂੰ ਸੁਚਾਰੂ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰਦੀ ਹੈ, ਪ੍ਰਸ਼ਾਸਨਿਕ ਬੋਝ ਨੂੰ ਘਟਾਉਂਦੀ ਹੈ ਅਤੇ ਸਹੀ ਜਾਣਕਾਰੀ ਕੈਪਚਰ ਕਰਨਾ
ਯਕੀਨੀ ਬਣਾਉਂਦੀ ਹੈ।

ਮਰੀਜ਼ ਸਿੱਖਿਆਅਤੇ ਹਿਦਾਇਤਾਂ: AI ਵਰਕਰ ਮਰੀਜ਼ਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ ਮੈਡੀਕਲ ਸਥਿਤੀਆਂ ਜਾਂ ਆਉਣ
ਵਾਲੀਆਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਢੁਕਵੀਂ ਵਿਦਿਅਕ ਸਮੱਗਰੀ ਅਤੇ ਹਿਦਾਇਤਾਂ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦੇ ਹਨ।
ਉਹ ਨਿੱਜੀ ਸਮੱਗਰੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦੇ ਹਨ, ਆਮ ਸਵਾਲਾਂ ਦੇ ਜਵਾਬ ਦੇ ਸਕਦੇ ਹਨ, ਅਤੇ ਅਪੌਇੰਟਮੈਂਟ ਤੋਂ
ਪਹਿਲਾਂ ਦੀਆਂ ਤਿਆਰੀਆਂ, ਦਵਾਈ ਦੀਆਂ ਹਿਦਾਇਤਾਂ, ਜਾਂ ਇਲਾਜ ਤੋਂ ਬਾਅਦ ਦੀ ਦੇਖਭਾਲ ਬਾਰੇ ਮਾਰਗਦਰਸ਼ਨ
ਪ੍ਰਦਾਨ ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਮਰੀਜ਼ਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਸਿਹਤ ਸੰਭਾਲ ਯਾਤਰਾ ਦੌਰਾਨ ਜਾਣਕਾਰ ਅਤੇ ਸ਼ਾਮਲ ਰੱਖਣ
ਵਿੱਚ ਮਦਦ ਕਰਦਾ ਹੈ।

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 94

ਮਰੀਜ਼ ਦਾਖਲੇ ਵਿੱਚ AI ਵਰਕਰਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ, ਸਿਹਤ ਸੰਭਾਲ ਸੰਸਥਾਵਾਂ ਕੁਸ਼ਲਤਾ ਵਧਾ ਸਕਦੀਆਂ ਹਨ,
ਉਡੀਕ ਸਮੇਂ ਨੂੰ ਘਟਾ ਸਕਦੀਆਂ ਹਨ, ਅਤੇ ਸਮੁੱਚੇ ਮਰੀਜ਼ ਅਨੁਭਵ ਨੂੰ ਬਿਹਤਰ ਬਣਾ ਸਕਦੀਆਂ ਹਨ। ਇਹ ਵਰਕਰ
ਨਿਯਮਤ ਕਾਰਜਾਂ ਨੂੰ ਸੰਭਾਲ ਸਕਦੇ ਹਨ, ਸਹੀ ਜਾਣਕਾਰੀ ਇਕੱਠੀ ਕਰ ਸਕਦੇ ਹਨ, ਅਤੇ ਵਿਅਕਤੀਗਤ ਸਹਾਇਤਾ
ਪ੍ਰਦਾਨ ਕਰ ਸਕਦੇ ਹਨ, ਜੋ ਸਿਹਤ ਸੰਭਾਲ ਪੇਸ਼ੇਵਰਾਂ ਨੂੰ ਮਰੀਜ਼ਾਂ ਨੂੰ ਉੱਚ-ਗੁਣਵੱਤਾ ਵਾਲੀ ਦੇਖਭਾਲ ਪ੍ਰਦਾਨ ਕਰਨ
’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦੇ ਹਨ।

ਮਰੀਜ਼ ਜੋਖਮ ਮੁਲਾਂਕਣ

AI ਵਰਕਰ ਵੱਖ-ਵੱਖ ਡਾਟਾ ਸਰੋਤਾਂ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਕੇ ਅਤੇ ਉੱਨਤ ਵਿਸ਼ਲੇਸ਼ਣ ਤਕਨੀਕਾਂ ਲਾਗੂ ਕਰਕੇ ਮਰੀਜ਼
ਜੋਖਮ ਦੇ ਮੁਲਾਂਕਣ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾ ਸਕਦੇ ਹਨ।

ਡਾਟਾ ਏਕੀਕਰਨ: AI ਵਰਕਰ ਕਈ ਸਰੋਤਾਂ ਤੋਂ ਮਰੀਜ਼ ਡਾਟਾ ਇਕੱਠਾ ਕਰ ਸਕਦੇ ਹਨ ਅਤੇ ਇਸਨੂੰ ਸਮਝ ਸਕਦੇ
ਹਨ, ਜਿਵੇਂ ਕਿ ਇਲੈਕਟ੍ਰਾਨਿਕ ਸਿਹਤ ਰਿਕਾਰਡ (EHRs), ਮੈਡੀਕਲ ਇਮੇਜਿੰਗ, ਲੈਬ ਨਤੀਜੇ, ਪਹਿਨਣਯੋਗ
ਉਪਕਰਣ, ਅਤੇ ਸਿਹਤ ਦੇ ਸਮਾਜਿਕ ਨਿਰਧਾਰਕ। ਇਸ ਜਾਣਕਾਰੀ ਨੂੰ ਇੱਕ ਵਿਆਪਕ ਮਰੀਜ਼ ਪ੍ਰੋਫਾਈਲ ਵਿੱਚ
ਏਕੀਕ੍ਰਿਤ ਕਰਕੇ, AI ਵਰਕਰ ਮਰੀਜ਼ ਦੀ ਸਿਹਤ ਸਥਿਤੀ ਅਤੇ ਜੋਖਮ ਕਾਰਕਾਂ ਦਾ ਸਮੁੱਚਾ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਪ੍ਰਦਾਨ
ਕਰ ਸਕਦੇ ਹਨ।

ਜੋਖਮ ਵਰਗੀਕਰਨ: AI ਵਰਕਰ ਮਰੀਜ਼ਾਂ ਦੇ ਵਿਅਕਤੀਗਤ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਅਤੇ ਸਿਹਤ ਡਾਟਾ ਦੇ ਆਧਾਰ ’ਤੇ ਉਨ੍ਹਾਂ
ਨੂੰ ਵੱਖ-ਵੱਖ ਜੋਖਮ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕਰਨ ਲਈ ਭਵਿੱਖ-ਸੂਚਕ ਮਾਡਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹਨ।
ਇਹ ਜੋਖਮ ਵਰਗੀਕਰਨ ਸਿਹਤ ਸੰਭਾਲ ਪ੍ਰਦਾਤਾਵਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਮਰੀਜ਼ਾਂ ਨੂੰ ਪ੍ਰਾਥਮਿਕਤਾ ਦੇਣ ਦੇ ਯੋਗ ਬਣਾਉਂਦਾ
ਹੈ ਜਿਨ੍ਹਾਂ ਨੂੰ ਵਧੇਰੇ ਤੁਰੰਤ ਧਿਆਨ ਜਾਂ ਦਖਲਅੰਦਾਜ਼ੀ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਨ ਲਈ, ਕਿਸੇ ਖਾਸ ਸਥਿਤੀ
ਲਈ ਉੱਚ-ਜੋਖਮ ਵਾਲੇ ਪਛਾਣੇ ਗਏ ਮਰੀਜ਼ਾਂ ਨੂੰ ਨੇੜਿਓਂ ਨਿਗਰਾਨੀ, ਰੋਕਥਾਮ ਉਪਾਵਾਂ, ਜਾਂ ਜਲਦੀ ਦਖਲਅੰਦਾਜ਼ੀ
ਲਈ ਫਲੈਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਵਿਅਕਤੀਗਤ ਜੋਖਮ ਪ੍ਰੋਫਾਈਲ: AI ਵਰਕਰ ਹਰੇਕ ਮਰੀਜ਼ ਲਈ ਵਿਅਕਤੀਗਤ ਜੋਖਮ ਪ੍ਰੋਫਾਈਲ ਤਿਆਰ
ਕਰ ਸਕਦੇ ਹਨ, ਜੋ ਉਨ੍ਹਾਂ ਦੇ ਜੋਖਮ ਸਕੋਰਾਂ ਵਿੱਚ ਯੋਗਦਾਨ ਪਾਉਣ ਵਾਲੇ ਵਿਸ਼ੇਸ਼ ਕਾਰਕਾਂ ਨੂੰ ਉਜਾਗਰ ਕਰਦੇ
ਹਨ। ਇਨ੍ਹਾਂ ਪ੍ਰੋਫਾਈਲਾਂ ਵਿੱਚ ਮਰੀਜ਼ ਦੀ ਜੀਵਨਸ਼ੈਲੀ, ਜੈਨੇਟਿਕ ਝੁਕਾਅ, ਵਾਤਾਵਰਣ ਕਾਰਕ, ਅਤੇ ਸਿਹਤ ਦੇ
ਸਮਾਜਿਕ ਨਿਰਧਾਰਕਾਂ ਬਾਰੇ ਅੰਤਰਝਾਤ ਸ਼ਾਮਲ ਹੋ ਸਕਦੀ ਹੈ। ਜੋਖਮ ਕਾਰਕਾਂ ਦਾ ਵਿਸਤ੍ਰਿਤ ਵੇਰਵਾ ਪ੍ਰਦਾਨ ਕਰਕੇ,
AI ਵਰਕਰ ਸਿਹਤ ਸੰਭਾਲ ਪ੍ਰਦਾਤਾਵਾਂ ਨੂੰ ਵਿਅਕਤੀਗਤ ਮਰੀਜ਼ ਦੀਆਂ ਲੋੜਾਂ ਅਨੁਸਾਰ ਰੋਕਥਾਮ ਰਣਨੀਤੀਆਂ
ਅਤੇ ਇਲਾਜ ਯੋਜਨਾਵਾਂ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੇ ਹਨ।

ਲਗਾਤਾਰ ਜੋਖਮ ਨਿਗਰਾਨੀ: AI ਵਰਕਰ ਲਗਾਤਾਰ ਮਰੀਜ਼ ਡਾਟਾ ਦੀ ਨਿਗਰਾਨੀ ਕਰ ਸਕਦੇ ਹਨ ਅਤੇ ਅਸਲ-

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 95

ਸਮੇਂ ਵਿੱਚ ਜੋਖਮ ਮੁਲਾਂਕਣ ਨੂੰ ਅੱਪਡੇਟ ਕਰ ਸਕਦੇ ਹਨ। ਜਿਵੇਂ ਹੀ ਨਵੀਂ ਜਾਣਕਾਰੀ ਉਪਲਬਧ ਹੁੰਦੀ ਹੈ, ਜਿਵੇਂ ਕਿ
ਜੀਵਨ ਸੰਕੇਤਾਂ, ਲੈਬ ਨਤੀਜਿਆਂ, ਜਾਂ ਦਵਾਈ ਦੀ ਪਾਲਣਾ ਵਿੱਚ ਤਬਦੀਲੀਆਂ, AI ਵਰਕਰ ਜੋਖਮ ਸਕੋਰਾਂ ਦੀ
ਮੁੜ-ਗਣਨਾ ਕਰ ਸਕਦੇ ਹਨ ਅਤੇ ਕਿਸੇ ਵੀ ਮਹੱਤਵਪੂਰਨ ਤਬਦੀਲੀਆਂ ਬਾਰੇ ਸਿਹਤ ਸੰਭਾਲ ਪ੍ਰਦਾਤਾਵਾਂ ਨੂੰ ਸੁਚੇਤ
ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਸਰਗਰਮ ਨਿਗਰਾਨੀ ਸਮੇਂ ਸਿਰ ਦਖਲਅੰਦਾਜ਼ੀ ਅਤੇ ਮਰੀਜ਼ ਦੇਖਭਾਲ ਯੋਜਨਾਵਾਂ ਵਿੱਚ
ਸਮਾਯੋਜਨ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ।

ਕਲੀਨਿਕਲ ਫ਼ੈਸਲਾ ਸਹਾਇਤਾ: AI ਵਰਕਰ ਜੋਖਮ ਮੁਲਾਂਕਣ ਦੇ ਨਤੀਜਿਆਂ ਨੂੰ ਕਲੀਨਿਕਲ ਫ਼ੈਸਲਾ ਸਹਾਇਤਾ
ਪ੍ਰਣਾਲੀਆਂ ਵਿੱਚ ਏਕੀਕ੍ਰਿਤ ਕਰ ਸਕਦੇ ਹਨ, ਜੋ ਸਿਹਤ ਸੰਭਾਲ ਪ੍ਰਦਾਤਾਵਾਂ ਨੂੰ ਸਬੂਤ-ਆਧਾਰਿਤ ਸਿਫ਼ਾਰਸ਼ਾਂ
ਅਤੇ ਚੇਤਾਵਨੀਆਂ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਉਦਾਹਰਨ ਲਈ, ਜੇਕਰ ਕਿਸੇ ਖਾਸ ਸਥਿਤੀ ਲਈ ਮਰੀਜ਼ ਦਾ ਜੋਖਮ ਸਕੋਰ
ਇੱਕ ਨਿਸ਼ਚਿਤ ਸੀਮਾ ਤੋਂ ਵੱਧ ਜਾਂਦਾ ਹੈ, ਤਾਂ AI ਵਰਕਰ ਕਲੀਨਿਕਲ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ਾਂ ਅਤੇ ਸਰਵੋਤਮ ਅਭਿਆਸਾਂ
ਦੇ ਆਧਾਰ ’ਤੇ ਸਿਹਤ ਸੰਭਾਲ ਪ੍ਰਦਾਤਾ ਨੂੰ ਵਿਸ਼ੇਸ਼ ਜਾਂਚ ਟੈਸਟਾਂ, ਰੋਕਥਾਮ ਉਪਾਵਾਂ, ਜਾਂ ਇਲਾਜ ਵਿਕਲਪਾਂ ’ਤੇ
ਵਿਚਾਰ ਕਰਨ ਲਈ ਪ੍ਰੇਰਿਤ ਕਰ ਸਕਦਾ ਹੈ।

ਇਹ ਵਰਕਰ ਮਰੀਜ਼ ਦੇ ਵਿਸ਼ਾਲ ਡਾਟਾ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰ ਸਕਦੇ ਹਨ, ਉੱਨਤ ਵਿਸ਼ਲੇਸ਼ਣ ਲਾਗੂ ਕਰ ਸਕਦੇ ਹਨ, ਅਤੇ
ਕਲੀਨਿਕਲ ਫ਼ੈਸਲਾ-ਲੈਣ ਦੀ ਸਹਾਇਤਾ ਲਈ ਕਾਰਵਾਈਯੋਗ ਅੰਤਰਝਾਤ ਪੈਦਾ ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਅੰਤਮ ਤੌਰ
’ਤੇ ਮਰੀਜ਼ ਦੇ ਨਤੀਜਿਆਂ ਵਿੱਚ ਸੁਧਾਰ, ਸਿਹਤ ਸੰਭਾਲ ਲਾਗਤਾਂ ਵਿੱਚ ਕਮੀ, ਅਤੇ ਵਧੀ ਹੋਈ ਆਬਾਦੀ ਸਿਹਤ
ਪ੍ਰਬੰਧਨ ਵੱਲ ਲੈ ਜਾਂਦਾ ਹੈ।

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 96

AI ਵਰਕਰ ਇੱਕ ਪ੍ਰੋਸੈਸ ਮੈਨੇਜਰ ਵਜੋਂ

AI-ਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਦੇ ਸੰਦਰਭ ਵਿੱਚ, ਇੱਕ ਵਰਕਰ ਨੂੰ ਪ੍ਰੋਸੈਸ ਮੈਨੇਜਰ ਵਜੋਂ ਕੰਮ ਕਰਨ ਲਈ ਡਿਜ਼ਾਈਨ
ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਵੇਂ ਕਿ Gregor Hohpe ਦੀ “ਐਂਟਰਪ੍ਰਾਈਜ਼ ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਪੈਟਰਨ” ਕਿਤਾਬ ਵਿੱਚ
ਦੱਸਿਆ ਗਿਆ ਹੈ। ਇੱਕ ਪ੍ਰੋਸੈਸ ਮੈਨੇਜਰ ਇੱਕ ਕੇਂਦਰੀ ਭਾਗ ਹੈ ਜੋ ਪ੍ਰਕਿਰਿਆ ਦੀ ਸਥਿਤੀ ਨੂੰ ਬਣਾਈ ਰੱਖਦਾ ਹੈ
ਅਤੇ ਵਿਚਕਾਰਲੇ ਨਤੀਜਿਆਂ ਦੇ ਆਧਾਰ ’ਤੇ ਅਗਲੇ ਪ੍ਰੋਸੈਸਿੰਗ ਕਦਮਾਂ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਦਾ ਹੈ।

ਜਦੋਂ ਇੱਕ AI ਵਰਕਰ ਪ੍ਰੋਸੈਸ ਮੈਨੇਜਰ ਵਜੋਂ ਕੰਮ ਕਰਦਾ ਹੈ, ਇਹ ਇੱਕ ਇਨਕਮਿੰਗ ਸੁਨੇਹਾ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ
ਜੋ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਸ਼ੁਰੂ ਕਰਦਾ ਹੈ, ਜਿਸਨੂੰ ਟ੍ਰਿੱਗਰ ਸੁਨੇਹਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। AI ਵਰਕਰ ਫਿਰ ਪ੍ਰਕਿਰਿਆ ਦੀ
ਕਾਰਜਕੁਸ਼ਲਤਾ ਦੀ ਸਥਿਤੀ (ਗੱਲਬਾਤ ਦੀ ਲਿਖਤ ਵਜੋਂ) ਨੂੰ ਬਣਾਈ ਰੱਖਦਾ ਹੈ ਅਤੇ ਟੂਲ ਫੰਕਸ਼ਨਾਂ ਵਜੋਂ ਲਾਗੂ ਕੀਤੇ
ਪ੍ਰੋਸੈਸਿੰਗ ਕਦਮਾਂ ਦੀ ਲੜੀ ਰਾਹੀਂ ਸੁਨੇਹੇ ਨੂੰ ਸੰਭਾਲਦਾ ਹੈ, ਜੋ ਕ੍ਰਮਵਾਰ ਜਾਂ ਸਮਾਨਾਂਤਰ ਹੋ ਸਕਦੇ ਹਨ, ਅਤੇ ਇਸਦੀ
ਮਰਜ਼ੀ ਨਾਲ ਬੁਲਾਏ ਜਾ ਸਕਦੇ ਹਨ।

ਜੇਕਰ ਤੁਸੀਂ GPT-4 ਵਰਗੇ AI ਮਾਡਲ ਦੀ ਸ਼੍ਰੇਣੀ ਦੀ ਵਰਤੋਂ ਕਰ ਰਹੇ ਹੋ ਜੋ ਸਮਾਨਾਂਤਰ ਫੰਕਸ਼ਨਾਂ ਨੂੰ
ਚਲਾਉਣਾ ਜਾਣਦਾ ਹੈ ਤਾਂ ਤੁਹਾਡਾ ਵਰਕਰ ਇੱਕੋ ਸਮੇਂ ਕਈ ਕਦਮ ਚਲਾ ਸਕਦਾ ਹੈ। ਮੰਨਣਾ ਹੋਵੇਗਾ, ਮੈਂ
ਖੁਦ ਇਹ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਨਹੀਂ ਕੀਤੀ ਅਤੇ ਮੇਰਾ ਅੰਦਾਜ਼ਾ ਕਹਿੰਦਾ ਹੈ ਕਿ ਤੁਹਾਡੇ ਨਤੀਜੇ ਵੱਖ-ਵੱਖ
ਹੋ ਸਕਦੇ ਹਨ।

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 97

ਹਰ ਵਿਅਕਤੀਗਤ ਪ੍ਰੋਸੈਸਿੰਗ ਕਦਮ ਤੋਂ ਬਾਅਦ, ਕੰਟਰੋਲ AI ਵਰਕਰ ਨੂੰ ਵਾਪਸ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਇਸਨੂੰ
ਮੌਜੂਦਾ ਸਥਿਤੀ ਅਤੇ ਪ੍ਰਾਪਤ ਨਤੀਜਿਆਂ ਦੇ ਆਧਾਰ ’ਤੇ ਅਗਲੇ ਪ੍ਰੋਸੈਸਿੰਗ ਕਦਮ(ਮਾਂ) ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨ ਦੀ
ਇਜਾਜ਼ਤ ਦਿੰਦਾ ਹੈ।

ਆਪਣੇ ਟ੍ਰਿੱਗਰ ਸੁਨੇਹਿਆਂ ਨੂੰ ਸਟੋਰ ਕਰੋ

ਮੇਰੇ ਤਜਰਬੇ ਵਿੱਚ, ਆਪਣੇ ਟ੍ਰਿੱਗਰ ਸੁਨੇਹੇ ਨੂੰ ਡਾਟਾਬੇਸ-ਅਧਾਰਿਤ ਔਬਜੈਕਟ ਵਜੋਂ ਲਾਗੂ ਕਰਨਾ ਸਮਝਦਾਰੀ ਹੈ।
ਇਸ ਤਰ੍ਹਾਂ ਹਰੇਕ ਪ੍ਰਕਿਰਿਆਇੰਸਟੈਂਸ ਇੱਕ ਵਿਲੱਖਣ ਪ੍ਰਾਇਮਰੀ ਕੀ ਦੁਆਰਾ ਪਛਾਣਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਤੁਹਾਨੂੰ
AI ਦੀ ਗੱਲਬਾਤ ਦੀ ਲਿਖਤ ਸਮੇਤ, ਕਾਰਜਕੁਸ਼ਲਤਾ ਨਾਲ ਜੁੜੀ ਸਥਿਤੀ ਨੂੰ ਸਟੋਰ ਕਰਨ ਲਈਇੱਕ ਥਾਂ ਦਿੰਦਾ ਹੈ।

ਉਦਾਹਰਣ ਲਈ, ਇੱਥੇ Olympia ਦੇ AccountChange ਮਾਡਲ ਕਲਾਸ ਦਾ ਇੱਕ ਸਰਲ ਰੂਪ ਹੈ, ਜੋ ਇੱਕ
ਯੂਜ਼ਰ ਦੇ ਖਾਤੇ ਵਿੱਚ ਬਦਲਾਵ ਕਰਨ ਦੀ ਬੇਨਤੀ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।

1 # == Schema Information

2 #

3 # Table name: account_changes

4 #

5 # id :uuid not null, primary key

6 # description :string

7 # state :string not null

8 # transcript :jsonb

9 # created_at :datetime not null

10 # updated_at :datetime not null

11 # account_id :uuid not null

12 #

13 # Indexes

14 #

15 # index_account_changes_on_account_id (account_id)

16 #

17 # Foreign Keys

18 #

19 # fk_rails_... (account_id => accounts.id)

20 #

21 class AccountChange < ApplicationRecord

22 belongs_to :account

23

24 validates :description, presence: true

25

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 98

26 after_commit -> {

27 broadcast(:account_change_requested, self)

28 }, on: :create

29

30 state_machine initial: :requested do

31 event :completed do

32 transition all => :complete

33 end

34 event :failed do

35 transition all => :requires_human_review

36 end

37 end

38 end

AccountChange ਕਲਾਸ ਇੱਕ ਟ੍ਰਿਗਰ ਸੁਨੇਹੇ ਵਜੋਂ ਕੰਮ ਕਰਦੀ ਹੈ ਜੋ ਖਾਤਾ ਬਦਲਣ ਦੀ ਬੇਨਤੀ ਨੂੰ ਸੰਭਾਲਣ
ਲਈ ਇੱਕ ਪ੍ਰਕਿਰਿਆ ਸ਼ੁਰੂ ਕਰਦੀ ਹੈ। ਵੇਖੋ ਕਿ ਇਹ ਕਿਵੇਂ Olympia ਦੇ Wisper-ਆਧਾਰਿਤ ਪਬ/ਸਬ
ਸਬਸਿਸਟਮ ਤੇ ਪ੍ਰਸਾਰਿਤ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਬਣਾਉਣ ਦੀ ਟ੍ਰਾਂਜੈਕਸ਼ਨ ਪੂਰੀ ਹੋ ਜਾਂਦੀ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਡਾਟਾਬੇਸ ਵਿੱਚ ਟ੍ਰਿਗਰ ਸੁਨੇਹੇ ਨੂੰ ਸਟੋਰ ਕਰਨਾ ਹਰ ਖਾਤਾ ਬਦਲਣ ਦੀ ਬੇਨਤੀ ਦਾ ਸਥਾਈ ਰਿਕਾਰਡ
ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। AccountChange ਕਲਾਸ ਦੀ ਹਰ ਇੰਸਟੈਂਸ ਨੂੰ ਇੱਕ ਵਿਲੱਖਣ ਪ੍ਰਾਇਮਰੀ ਕੀ ਨਿਰਧਾਰਤ
ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਜੋ ਵਿਅਕਤੀਗਤ ਬੇਨਤੀਆਂ ਦੀ ਆਸਾਨ ਪਛਾਣ ਅਤੇ ਟਰੈਕਿੰਗ ਦੀ ਸਹੂਲਤ ਦਿੰਦੀ ਹੈ। ਇਹ
ਖਾਸ ਤੌਰ ’ਤੇ ਆਡਿਟ ਲੌਗਿੰਗ ਦੇ ਉਦੇਸ਼ਾਂ ਲਈ ਉਪਯੋਗੀ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਸਿਸਟਮ ਨੂੰ ਸਾਰੇ ਖਾਤਾ ਬਦਲਾਵਾਂ ਦਾ
ਇਤਿਹਾਸਕ ਰਿਕਾਰਡ ਬਣਾਈ ਰੱਖਣ ਦੇ ਯੋਗ ਬਣਾਉਂਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਇਹ ਵੀ ਸ਼ਾਮਲ ਹੈ ਕਿ ਉਹ ਕਦੋਂ ਬੇਨਤੀ
ਕੀਤੀ ਗਈ, ਕਿਹੜੇ ਬਦਲਾਵ ਦੀ ਬੇਨਤੀ ਕੀਤੀ ਗਈ, ਅਤੇ ਹਰ ਬੇਨਤੀ ਦੀ ਮੌਜੂਦਾ ਸਥਿਤੀ।

ਦਿੱਤੇ ਗਏ ਉਦਾਹਰਣ ਵਿੱਚ, AccountChange ਕਲਾਸ ਵਿੱਚ description ਵਰਗੇ ਫੀਲਡ ਸ਼ਾਮਲ ਹਨ ਜੋ
ਬੇਨਤੀ ਕੀਤੇ ਬਦਲਾਵ ਦੇ ਵੇਰਵਿਆਂ ਨੂੰ ਕੈਪਚਰ ਕਰਦੇ ਹਨ, state ਬੇਨਤੀ ਦੀ ਮੌਜੂਦਾ ਸਥਿਤੀ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ
(ਜਿਵੇਂ ਕਿ ਬੇਨਤੀ ਕੀਤੀ, ਪੂਰੀ ਹੋਈ, ਮਨੁੱਖੀ ਸਮੀਖਿਆ ਦੀ ਲੋੜ ਹੈ), ਅਤੇ transcript ਬੇਨਤੀ ਨਾਲ ਸੰਬੰਧਿਤ
AI ਦੀ ਗੱਲਬਾਤ ਦੀ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਨੂੰ ਸਟੋਰ ਕਰਦਾ ਹੈ। description ਫੀਲਡ ਅਸਲ ਪ੍ਰੌਂਪਟ ਹੈ ਜੋ AI ਨਾਲ
ਪਹਿਲੀ ਚੈਟ ਪੂਰਤੀ ਸ਼ੁਰੂ ਕਰਨ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਡੇਟਾ ਨੂੰ ਸਟੋਰ ਕਰਨਾ ਮੁੱਲਵਾਨ ਸੰਦਰਭ ਪ੍ਰਦਾਨ
ਕਰਦਾ ਹੈ ਅਤੇ ਖਾਤਾ ਬਦਲਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਦੀ ਬਿਹਤਰ ਟਰੈਕਿੰਗ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ।

ਡਾਟਾਬੇਸ ਵਿੱਚ ਟ੍ਰਿਗਰ ਸੁਨੇਹਿਆਂ ਨੂੰ ਸਟੋਰ ਕਰਨਾ ਮਜ਼ਬੂਤ ਗਲਤੀ ਪ੍ਰਬੰਧਨਅਤੇ ਰਿਕਵਰੀ ਨੂੰ ਸਮਰੱਥ ਬਣਾਉਂਦਾ
ਹੈ। ਜੇਕਰ ਖਾਤਾ ਬਦਲਣ ਦੀ ਬੇਨਤੀ ਦੀ ਪ੍ਰਕਿਰਿਆ ਦੌਰਾਨ ਕੋਈ ਗਲਤੀ ਆਉਂਦੀ ਹੈ, ਤਾਂ ਸਿਸਟਮ ਬੇਨਤੀ ਨੂੰ
ਅਸਫਲ ਦੇ ਤੌਰ ’ਤੇ ਚਿੰਨ੍ਹਿਤ ਕਰਦਾ ਹੈ ਅਤੇ ਇਸਨੂੰ ਇੱਕ ਅਜਿਹੀ ਸਥਿਤੀ ਵਿੱਚ ਬਦਲ ਦਿੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਮਨੁੱਖੀ

https://github.com/krisleech/wisper

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 99

ਦਖਲ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ ਕਿ ਕੋਈ ਬੇਨਤੀ ਗੁਆਚੀ ਜਾਂ ਭੁੱਲੀ ਨਾ ਜਾਵੇ, ਅਤੇ ਕਿਸੇ ਵੀ
ਸਮੱਸਿਆ ਨੂੰ ਢੁਕਵੇਂ ਢੰਗ ਨਾਲ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕੇ।

AI ਵਰਕਰ, ਪ੍ਰੋਸੈਸ ਮੈਨੇਜਰ ਵਜੋਂ, ਨਿਯੰਤਰਣ ਦਾ ਇੱਕ ਕੇਂਦਰੀ ਬਿੰਦੂ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ ਅਤੇ ਸ਼ਕਤੀਸ਼ਾਲੀ
ਪ੍ਰਕਿਰਿਆ ਰਿਪੋਰਟਿੰਗ ਅਤੇ ਡੀਬੱਗਿੰਗ ਸਮਰੱਥਾਵਾਂ ਨੂੰ ਸਮਰੱਥ ਬਣਾਉਂਦਾ ਹੈ। ਹਾਲਾਂਕਿ, ਇਹ ਨੋਟ ਕਰਨਾ
ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਹਰ ਵਰਕਫਲੋ ਸਥਿਤੀ ਲਈ ਪ੍ਰੋਸੈਸ ਮੈਨੇਜਰ ਵਜੋਂ AI ਵਰਕਰ
ਦੀ ਵਰਤੋਂ ਕਰਨਾ ਜ਼ਰੂਰਤ ਤੋਂ ਵੱਧ ਹੋ ਸਕਦਾ ਹੈ।

ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਆਰਕੀਟੈਕਚਰ ਵਿੱਚ AI ਵਰਕਰਾਂ ਨੂੰ ਏਕੀਕ੍ਰਿਤ

ਕਰਨਾ

ਜਦੋਂ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਆਰਕੀਟੈਕਚਰ ਵਿੱਚ AI ਵਰਕਰਾਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਦੇ ਹੋ, ਤਾਂ AI ਵਰਕਰਾਂ ਅਤੇ ਹੋਰ
ਐਪਲੀਕੇਸ਼ਨ ਕੰਪੋਨੈਂਟਾਂ ਵਿਚਕਾਰ ਨਿਰਵਿਘਨ ਏਕੀਕਰਣ ਅਤੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਸੰਚਾਰ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ
ਕਈ ਤਕਨੀਕੀ ਵਿਚਾਰਾਂ ਨੂੰ ਸੰਬੋਧਿਤ ਕਰਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਇਹ ਭਾਗ ਇੰਟਰਫੇਸਾਂ ਨੂੰ ਡਿਜ਼ਾਈਨ ਕਰਨ, ਡੇਟਾ
ਪ੍ਰਵਾਹ ਨੂੰ ਸੰਭਾਲਣ, ਅਤੇ AI ਵਰਕਰਾਂ ਦੇ ਜੀਵਨ-ਚੱਕਰ ਦੇ ਪ੍ਰਬੰਧਨ ਦੇ ਮੁੱਖ ਪਹਿਲੂਆਂ ’ਤੇ ਵਿਚਾਰ ਕਰਦਾ ਹੈ।

ਸਪੱਸ਼ਟ ਇੰਟਰਫੇਸ ਅਤੇ ਸੰਚਾਰ ਪ੍ਰੋਟੋਕੋਲ ਡਿਜ਼ਾਈਨ ਕਰਨਾ

AI ਵਰਕਰਾਂ ਅਤੇ ਹੋਰ ਐਪਲੀਕੇਸ਼ਨ ਕੰਪੋਨੈਂਟਾਂ ਵਿਚਕਾਰ ਨਿਰਵਿਘਨ ਏਕੀਕਰਣ ਦੀ ਸਹੂਲਤ ਲਈ, ਸਪੱਸ਼ਟ
ਇੰਟਰਫੇਸ ਅਤੇ ਸੰਚਾਰ ਪ੍ਰੋਟੋਕੋਲ ਨਿਰਧਾਰਤ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਹੇਠ ਲਿਖੇ ਪਹੁੰਚਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ:

ਏ.ਪੀ.ਆਈ.-ਆਧਾਰਿਤ ਏਕੀਕਰਨ: ਏ.ਆਈ. ਵਰਕਰਾਂ ਦੀ ਕਾਰਜਸ਼ੀਲਤਾ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ
ਏ.ਪੀ.ਆਈ. ਰਾਹੀਂ ਪੇਸ਼ ਕਰੋ, ਜਿਵੇਂ ਕਿ ਰੈਸਟਫੁੱਲ ਐਂਡਪੁਆਇੰਟਸ ਜਾਂ GraphQL ਸਕੀਮਾ।ਇਹ ਹੋਰ ਕੰਪੋਨੈਂਟਸ
ਨੂੰ ਮਿਆਰੀ HTTP ਬੇਨਤੀਆਂ ਅਤੇ ਜਵਾਬਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਏ.ਆਈ. ਵਰਕਰਾਂ ਨਾਲ ਅੰਤਰਕਿਰਿਆ ਕਰਨ ਦੀ
ਆਗਿਆ ਦਿੰਦਾ ਹੈ। ਏ.ਪੀ.ਆਈ.-ਆਧਾਰਿਤ ਏਕੀਕਰਨ ਏ.ਆਈ. ਵਰਕਰਾਂ ਅਤੇ ਵਰਤੋਂ ਕਰਨ ਵਾਲੇ ਕੰਪੋਨੈਂਟਸ
ਵਿਚਕਾਰ ਇੱਕ ਸਪੱਸ਼ਟ ਇਕਰਾਰਨਾਮਾ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ, ਜੋ ਏਕੀਕਰਨ ਬਿੰਦੂਆਂ ਨੂੰ ਵਿਕਸਿਤ ਕਰਨ, ਟੈਸਟ ਕਰਨ
ਅਤੇ ਬਣਾਈ ਰੱਖਣ ਨੂੰ ਸੌਖਾ ਬਣਾਉਂਦਾ ਹੈ।

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 100

ਸੁਨੇਹਾ-ਆਧਾਰਿਤ ਸੰਚਾਰ: ਸੁਨੇਹਾ-ਆਧਾਰਿਤ ਸੰਚਾਰ ਪੈਟਰਨ ਲਾਗੂ ਕਰੋ, ਜਿਵੇਂ ਕਿ ਸੁਨੇਹਾ ਕਤਾਰਾਂ ਜਾਂ ਪ੍ਰਕਾਸ਼ਿਤ-
ਗਾਹਕੀ ਪ੍ਰਣਾਲੀਆਂ, ਜੋ ਏ.ਆਈ. ਵਰਕਰਾਂ ਅਤੇ ਹੋਰ ਕੰਪੋਨੈਂਟਸ ਵਿਚਕਾਰ ਅਸਿੰਕਰੋਨਸ ਅੰਤਰਕਿਰਿਆ ਨੂੰ
ਸਮਰੱਥ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਇਹ ਪਹੁੰਚ ਏ.ਆਈ. ਵਰਕਰਾਂ ਨੂੰ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਬਾਕੀ ਹਿੱਸਿਆਂ ਤੋਂ ਵੱਖ ਕਰਦੀ ਹੈ,
ਜੋ ਬਿਹਤਰ ਸਕੇਲੇਬਿਲਟੀ, ਗਲਤੀ ਸਹਿਣਸ਼ੀਲਤਾ, ਅਤੇ ਢਿੱਲੀ ਜੁੜਤ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ। ਸੁਨੇਹਾ-ਆਧਾਰਿਤ
ਸੰਚਾਰ ਖਾਸ ਤੌਰ ’ਤੇ ਉਦੋਂ ਲਾਭਦਾਇਕ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਏ.ਆਈ. ਵਰਕਰਾਂ ਦੁਆਰਾ ਕੀਤੀ ਜਾਂਦੀ ਪ੍ਰੋਸੈਸਿੰਗ ਸਮਾਂ-
ਖਪਤ ਵਾਲੀ ਜਾਂ ਸਰੋਤ-ਗਹਿਣ ਹੁੰਦੀ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਹੋਰ ਹਿੱਸਿਆਂ ਨੂੰ ਏ.ਆਈ. ਵਰਕਰਾਂ ਦੇ
ਆਪਣੇ ਕੰਮ ਪੂਰੇ ਕਰਨ ਦੀ ਉਡੀਕ ਕੀਤੇ ਬਿਨਾਂ ਚੱਲਦੇ ਰਹਿਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ।

ਘਟਨਾ-ਚਾਲਿਤ ਆਰਕੀਟੈਕਚਰ: ਆਪਣੇ ਸਿਸਟਮ ਨੂੰ ਘਟਨਾਵਾਂ ਅਤੇ ਟਰਿੱਗਰਾਂ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਡਿਜ਼ਾਈਨ
ਕਰੋ ਜੋ ਖਾਸ ਹਾਲਾਤਾਂ ਦੇ ਪੂਰੇ ਹੋਣ ’ਤੇ ਏ.ਆਈ. ਵਰਕਰਾਂ ਨੂੰ ਸਰਗਰਮ ਕਰਦੇ ਹਨ। ਏ.ਆਈ. ਵਰਕਰ ਸੰਬੰਧਿਤ
ਘਟਨਾਵਾਂ ਦੀ ਗਾਹਕੀ ਲੈ ਸਕਦੇ ਹਨ ਅਤੇ ਉਸ ਅਨੁਸਾਰ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰ ਸਕਦੇ ਹਨ, ਘਟਨਾਵਾਂ ਦੇ ਵਾਪਰਨ ’ਤੇ
ਆਪਣੇ ਨਿਰਧਾਰਿਤ ਕੰਮ ਕਰ ਸਕਦੇ ਹਨ। ਘਟਨਾ-ਚਾਲਿਤਆਰਕੀਟੈਕਚਰ ਰੀਅਲ-ਟਾਈਮ ਪ੍ਰੋਸੈਸਿੰਗ ਨੂੰ ਸਮਰੱਥ
ਬਣਾਉਂਦਾ ਹੈ ਅਤੇ ਏ.ਆਈ. ਵਰਕਰਾਂ ਨੂੰ ਲੋੜ ਪੈਣ ’ਤੇ ਬੁਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਜੋ ਗੈਰ-ਜ਼ਰੂਰੀ ਸਰੋਤ ਖਪਤ ਨੂੰ
ਘਟਾਉਂਦਾ ਹੈ। ਇਹ ਪਹੁੰਚ ਉਨ੍ਹਾਂ ਸਥਿਤੀਆਂ ਲਈ ਢੁਕਵੀਂ ਹੈ ਜਿੱਥੇ ਏ.ਆਈ. ਵਰਕਰਾਂ ਨੂੰ ਖਾਸ ਕਾਰਵਾਈਆਂ ਜਾਂ
ਐਪਲੀਕੇਸ਼ਨ ਸਥਿਤੀ ਵਿੱਚ ਤਬਦੀਲੀਆਂ ਦਾ ਜਵਾਬ ਦੇਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।

ਡਾਟਾ ਪ੍ਰਵਾਹ ਅਤੇ ਸਿੰਕ੍ਰੋਨਾਈਜ਼ੇਸ਼ਨ ਨੂੰ ਸੰਭਾਲਣਾ

ਜਦੋਂ ਏ.ਆਈ. ਵਰਕਰਾਂ ਨੂੰ ਆਪਣੀ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਏਕੀਕ੍ਰਿਤ ਕਰ ਰਹੇ ਹੋ, ਤਾਂ ਸੁਚਾਰੂ ਡਾਟਾ ਪ੍ਰਵਾਹ ਨੂੰ
ਯਕੀਨੀ ਬਣਾਉਣਾ ਅਤੇ ਏ.ਆਈ. ਵਰਕਰਾਂ ਅਤੇ ਹੋਰ ਕੰਪੋਨੈਂਟਸ ਵਿਚਕਾਰ ਡਾਟਾ ਇਕਸਾਰਤਾ ਬਣਾਈ ਰੱਖਣਾ
ਮਹੱਤਵਪੂਰਨ ਹੈ। ਹੇਠ ਲਿਖੇ ਪਹਿਲੂਆਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ:

ਡਾਟਾ ਤਿਆਰੀ: ਏ.ਆਈ. ਵਰਕਰਾਂ ਵਿੱਚ ਡਾਟਾ ਫੀਡ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ, ਤੁਹਾਨੂੰ ਵੱਖ-ਵੱਖ ਡਾਟਾ ਤਿਆਰੀ ਕਾਰਜ
ਕਰਨ ਦੀ ਲੋੜ ਹੋ ਸਕਦੀ ਹੈ, ਜਿਵੇਂ ਕਿ ਇਨਪੁਟ ਡਾਟਾ ਦੀ ਸਫਾਈ, ਫਾਰਮੈਟਿੰਗ, ਅਤੇ/ਜਾਂ ਰੂਪਾਂਤਰਣ। ਤੁਸੀਂ ਨਾ
ਸਿਰਫ ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਚਾਹੁੰਦੇ ਹੋ ਕਿ ਏ.ਆਈ. ਵਰਕਰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਪ੍ਰੋਸੈਸ ਕਰ ਸਕਣ,
ਬਲਕਿ ਤੁਸੀਂ ਇਹ ਵੀ ਯਕੀਨੀ ਬਣਾਉਣਾ ਚਾਹੁੰਦੇ ਹੋ ਕਿ ਤੁਸੀਂ ਅਜਿਹੀ ਜਾਣਕਾਰੀ ’ਤੇ ਧਿਆਨ ਦੇਣ ਲਈ ਟੋਕਨ
ਬਰਬਾਦ ਨਹੀਂ ਕਰ ਰਹੇ ਹੋ ਜੋ ਵਰਕਰ ਸਭ ਤੋਂ ਵਧੀਆ ਸਥਿਤੀ ਵਿੱਚ ਬੇਕਾਰ ਅਤੇ ਸਭ ਤੋਂ ਮਾੜੀ ਸਥਿਤੀ ਵਿੱਚ
ਭਟਕਾਉਣ ਵਾਲੀ ਸਮਝ ਸਕਦਾ ਹੈ। ਡਾਟਾ ਤਿਆਰੀ ਵਿੱਚ ਸ਼ੋਰ ਹਟਾਉਣਾ, ਗੁੰਮ ਮੁੱਲਾਂ ਨੂੰ ਸੰਭਾਲਣਾ, ਜਾਂ ਡਾਟਾ
ਕਿਸਮਾਂ ਨੂੰ ਬਦਲਣਾ ਸ਼ਾਮਲ ਹੋ ਸਕਦਾ ਹੈ।

ਡਾਟਾ ਸਥਿਰਤਾ: ਤੁਸੀਂ ਏ.ਆਈ. ਵਰਕਰਾਂ ਵਿੱਚ ਆਉਣ ਅਤੇ ਜਾਣ ਵਾਲੇ ਡਾਟਾ ਨੂੰ ਕਿਵੇਂ ਸਟੋਰ ਅਤੇ ਸਥਾਈ
ਕਰੋਗੇ? ਡਾਟਾ ਦੀ ਮਾਤਰਾ, ਕੁਆਰੀ ਪੈਟਰਨ, ਅਤੇ ਸਕੇਲੇਬਿਲਟੀ ਵਰਗੇ ਕਾਰਕਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ। ਕੀ ਤੁਹਾਨੂੰ

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 101

ਆਡਿਟ ਜਾਂ ਡੀਬੱਗਿੰਗ ਦੇ ਉਦੇਸ਼ਾਂ ਲਈ ਏ.ਆਈ. ਦੇ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਨੂੰ ਇਸਦੀ “ਸੋਚ ਪ੍ਰਕਿਰਿਆ” ਦੇ ਪ੍ਰਤੀਬਿੰਬ
ਵਜੋਂ ਸਥਾਈ ਕਰਨ ਦੀ ਲੋੜ ਹੈ, ਜਾਂ ਕੀ ਸਿਰਫ਼ ਨਤੀਜਿਆਂ ਦਾ ਰਿਕਾਰਡ ਰੱਖਣਾ ਕਾਫ਼ੀ ਹੈ?

ਡਾਟਾ ਪ੍ਰਾਪਤੀ: ਵਰਕਰਾਂ ਨੂੰ ਲੋੜੀਂਦਾ ਡਾਟਾ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਡਾਟਾਬੇਸਾਂ ਤੋਂ ਕਿਊਰੀ, ਫਾਈਲਾਂ ਤੋਂ ਪੜ੍ਹਨਾ,
ਜਾਂ ਬਾਹਰੀ ਏਪੀਆਈ ਤੱਕ ਪਹੁੰਚ ਕਰਨੀ ਸ਼ਾਮਲ ਹੋ ਸਕਦੀ ਹੈ। ਲੇਟੈਂਸੀ ਅਤੇ ਏਆਈ ਵਰਕਰਾਂ ਦੀ ਸਭ ਤੋਂ ਤਾਜ਼ਾ
ਡਾਟਾ ਤੱਕ ਪਹੁੰਚ ਬਾਰੇ ਵਿਚਾਰ ਕਰਨਾ ਯਕੀਨੀ ਬਣਾਓ। ਕੀ ਉਹਨਾਂ ਨੂੰ ਤੁਹਾਡੇ ਡਾਟਾਬੇਸ ਤੱਕ ਪੂਰੀ ਪਹੁੰਚ ਦੀ ਲੋੜ
ਹੈ ਜਾਂ ਤੁਹਾਨੂੰ ਉਹਨਾਂ ਦੀ ਪਹੁੰਚ ਦਾ ਦਾਇਰਾ ਉਹਨਾਂ ਦੇ ਕੰਮ ਦੇ ਅਨੁਸਾਰ ਸੀਮਤ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ? ਸਕੇਲਿੰਗ
ਬਾਰੇ ਕੀ? ਕਾਰਗੁਜ਼ਾਰੀ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਅਤੇ ਅੰਡਰਲਾਈੰਗ ਡਾਟਾ ਸਰੋਤਾਂ ’ਤੇ ਲੋਡ ਘਟਾਉਣ ਲਈ ਕੈਚਿੰਗ
ਵਿਧੀਆਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ।

ਡਾਟਾ ਸਿੰਕਰੋਨਾਈਜ਼ੇਸ਼ਨ: ਜਦੋਂ ਕਈ ਕੰਪੋਨੈਂਟਸ, ਏਆਈ ਵਰਕਰਾਂ ਸਮੇਤ, ਸਾਂਝੇ ਡਾਟਾ ਤੱਕ ਪਹੁੰਚ ਕਰਦੇ ਅਤੇ
ਸੋਧ ਕਰਦੇ ਹਨ, ਤਾਂ ਡਾਟਾ ਸਥਿਰਤਾ ਬਣਾਈ ਰੱਖਣ ਲਈ ਢੁਕਵੇਂ ਸਿੰਕਰੋਨਾਈਜ਼ੇਸ਼ਨ ਮੈਕੇਨਿਜ਼ਮ ਲਾਗੂ ਕਰਨਾ
ਮਹੱਤਵਪੂਰਨ ਹੈ। ਡਾਟਾਬੇਸ ਲੌਕਿੰਗ ਰਣਨੀਤੀਆਂ, ਜਿਵੇਂ ਕਿ ਆਸ਼ਾਵਾਦੀ ਜਾਂ ਨਿਰਾਸ਼ਾਵਾਦੀ ਲੌਕਿੰਗ, ਟਕਰਾਵਾਂ
ਨੂੰ ਰੋਕਣ ਅਤੇ ਡਾਟਾ ਅਖੰਡਤਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਵਿੱਚ ਤੁਹਾਡੀ ਮਦਦ ਕਰ ਸਕਦੀਆਂ ਹਨ। ਸਬੰਧਿਤ ਡਾਟਾ
ਓਪਰੇਸ਼ਨਾਂ ਨੂੰ ਗਰੁੱਪ ਕਰਨ ਅਤੇ ਐਟੌਮਿਸਿਟੀ, ਕਨਸਿਸਟੈਂਸੀ, ਆਈਸੋਲੇਸ਼ਨ, ਅਤੇ ਡਿਊਰੇਬਿਲਿਟੀ (ACID)
ਗੁਣਾਂ ਨੂੰ ਬਣਾਈ ਰੱਖਣ ਲਈ ਟ੍ਰਾਂਜੈਕਸ਼ਨ ਪ੍ਰਬੰਧਨ ਤਕਨੀਕਾਂ ਨੂੰ ਲਾਗੂ ਕਰੋ।

ਗਲਤੀ ਸੰਭਾਲ ਅਤੇ ਰਿਕਵਰੀ: ਡਾਟਾ ਫਲੋ ਪ੍ਰਕਿਰਿਆ ਦੌਰਾਨ ਪੈਦਾ ਹੋ ਸਕਣ ਵਾਲੇ ਡਾਟਾ-ਸਬੰਧਿਤ ਮੁੱਦਿਆਂ
ਨਾਲ ਨਜਿੱਠਣ ਲਈ ਮਜ਼ਬੂਤ ਗਲਤੀ ਸੰਭਾਲ ਅਤੇ ਰਿਕਵਰੀ ਮੈਕੇਨਿਜ਼ਮ ਲਾਗੂ ਕਰੋ। ਡੀਬੱਗਿੰਗ ਵਿੱਚ ਸਹਾਇਤਾ
ਲਈ ਅਪਵਾਦਾਂ ਨੂੰ ਸੁਚੱਜੇ ਢੰਗ ਨਾਲ ਸੰਭਾਲੋ ਅਤੇ ਅਰਥਪੂਰਨ ਗਲਤੀ ਸੁਨੇਹੇ ਪ੍ਰਦਾਨ ਕਰੋ। ਅਸਥਾਈ
ਅਸਫਲਤਾਵਾਂ ਜਾਂ ਨੈੱਟਵਰਕ ਵਿਘਨਾਂ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਮੁੜ-ਕੋਸ਼ਿਸ਼ ਮੈਕੇਨਿਜ਼ਮ ਅਤੇ ਫਾਲਬੈਕ ਰਣਨੀਤੀਆਂ ਲਾਗੂ
ਕਰੋ। ਡਾਟਾ ਖਰਾਬੀ ਜਾਂ ਨੁਕਸਾਨ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਡਾਟਾ ਰਿਕਵਰੀ ਅਤੇ ਬਹਾਲੀ ਲਈ ਸਪੱਸ਼ਟ ਪ੍ਰਕਿਰਿਆਵਾਂ
ਨਿਰਧਾਰਤ ਕਰੋ।

ਡਾਟਾ ਫਲੋ ਅਤੇ ਸਿੰਕਰੋਨਾਈਜ਼ੇਸ਼ਨ ਮੈਕੇਨਿਜ਼ਮ ਨੂੰ ਧਿਆਨ ਨਾਲ ਡਿਜ਼ਾਈਨ ਅਤੇ ਲਾਗੂ ਕਰਕੇ, ਤੁਸੀਂ ਯਕੀਨੀ ਬਣਾ
ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੇ ਏਆਈ ਵਰਕਰਾਂ ਕੋਲ ਸਹੀ, ਸਥਿਰ, ਅਤੇ ਅੱਪ-ਟੂ-ਡੇਟ ਡਾਟਾ ਤੱਕ ਪਹੁੰਚ ਹੈ। ਇਹ ਉਹਨਾਂ ਨੂੰ
ਆਪਣੇ ਕਾਰਜ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਕਰਨ ਅਤੇ ਭਰੋਸੇਯੋਗ ਨਤੀਜੇ ਪੈਦਾ ਕਰਨ ਦੇ ਯੋਗ ਬਣਾਉਂਦਾ ਹੈ।

ਏਆਈ ਵਰਕਰਾਂ ਦੇ ਜੀਵਨ-ਚੱਕਰ ਦਾ ਪ੍ਰਬੰਧਨ

ਏਆਈਵਰਕਰਾਂ ਨੂੰ ਸ਼ੁਰੂ ਕਰਨ ਅਤੇ ਕੌਨਫਿਗਰ ਕਰਨ ਲਈਇੱਕ ਮਿਆਰੀ ਪ੍ਰਕਿਰਿਆ ਵਿਕਸਿਤ ਕਰੋ। ਮੈਂ ਅਜਿਹੇ
ਫਰੇਮਵਰਕਾਂ ਦੇ ਪੱਖ ਵਿੱਚ ਹਾਂ ਜੋ ਮਾਡਲ ਨਾਮ, ਸਿਸਟਮ ਨਿਰਦੇਸ਼, ਅਤੇ ਫੰਕਸ਼ਨ ਪਰਿਭਾਸ਼ਾਵਾਂ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 102

ਦੇ ਤਰੀਕੇ ਨੂੰ ਮਿਆਰੀ ਬਣਾਉਂਦੇ ਹਨ। ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਸ਼ੁਰੂਆਤੀ ਪ੍ਰਕਿਰਿਆ ਸਵੈਚਾਲਿਤ ਅਤੇ ਦੁਹਰਾਉਣਯੋਗ
ਹੈ ਤਾਂ ਜੋ ਡਿਪਲਾਏਮੈਂਟ ਅਤੇ ਸਕੇਲਿੰਗ ਨੂੰ ਸੌਖਾ ਬਣਾਇਆ ਜਾ ਸਕੇ।

ਏਆਈਵਰਕਰਾਂ ਦੀ ਸਿਹਤਅਤੇ ਕਾਰਗੁਜ਼ਾਰੀ ਦੀ ਨਿਗਰਾਨੀ ਲਈਵਿਆਪਕ ਨਿਗਰਾਨੀ ਅਤੇ ਲੌਗਿੰਗ ਮੈਕੇਨਿਜ਼ਮ
ਲਾਗੂ ਕਰੋ। ਸਰੋਤ ਵਰਤੋਂ, ਪ੍ਰੋਸੈਸਿੰਗ ਸਮਾਂ, ਗਲਤੀ ਦਰਾਂ, ਅਤੇ ਥਰੂਪੁੱਟ ਵਰਗੇ ਮੈਟ੍ਰਿਕਸ ਇਕੱਠੇ ਕਰੋ। ਕਈ
ਏਆਈ ਵਰਕਰਾਂ ਤੋਂ ਲੌਗਸ ਨੂੰ ਇਕੱਠਾ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਲਈ ELK ਸਟੈਕ (Elasticsearch,
Logstash, Kibana) ਵਰਗੀਆਂ ਕੇਂਦਰੀਕ੍ਰਿਤ ਲੌਗਿੰਗ ਪ੍ਰਣਾਲੀਆਂ ਦੀ ਵਰਤੋਂ ਕਰੋ।

AI ਵਰਕਰਆਰਕੀਟੈਕਚਰ ਵਿੱਚ ਗਲਤੀ ਸਹਿਣਸ਼ੀਲਤਾ ਅਤੇ ਲਚਕਤਾ ਨੂੰ ਸ਼ਾਮਲ ਕਰੋ। ਗਲਤੀਆਂ ਜਾਂ ਅਪਵਾਦਾਂ
ਨੂੰ ਸੁਚੱਜੇ ਢੰਗ ਨਾਲ ਸੰਭਾਲਣ ਲਈ ਗਲਤੀ ਪ੍ਰਬੰਧਨ ਅਤੇ ਰਿਕਵਰੀ ਵਿਧੀਆਂ ਨੂੰ ਲਾਗੂ ਕਰੋ। Large
Language Models ਅਜੇ ਵੀ ਅਤਿ-ਆਧੁਨਿਕ ਤਕਨਾਲੋਜੀ ਹਨ; ਪ੍ਰਦਾਤਾ ਅਕਸਰ ਅਣਜਾਣੇ ਸਮਿਆਂ
’ਤੇ ਡਾਊਨ ਹੋ ਜਾਂਦੇ ਹਨ। ਲੜੀਬੱਧ ਅਸਫਲਤਾਵਾਂ ਨੂੰ ਰੋਕਣ ਲਈ ਮੁੜ-ਕੋਸ਼ਿਸ਼ ਵਿਧੀਆਂ ਅਤੇ ਸਰਕਟ ਬਰੇਕਰਾਂ ਦੀ
ਵਰਤੋਂ ਕਰੋ।

AI ਵਰਕਰਾਂ ਦੀ ਰਚਨਾਤਮਕਤਾ ਅਤੇ ਤਾਲਮੇਲ

AI ਵਰਕਰਆਰਕੀਟੈਕਚਰ ਦਾ ਇੱਕ ਮੁੱਖ ਫਾਇਦਾ ਇਸਦੀ ਰਚਨਾਤਮਕਤਾ ਹੈ, ਜੋ ਤੁਹਾਨੂੰ ਗੁੰਝਲਦਾਰ ਸਮੱਸਿਆਵਾਂ
ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਕਈ AI ਵਰਕਰਾਂ ਨੂੰ ਜੋੜਨ ਅਤੇ ਤਾਲਮੇਲ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ। ਇੱਕ ਵੱਡੇ ਕਾਰਜ
ਨੂੰ ਛੋਟੇ, ਵਧੇਰੇ ਪ੍ਰਬੰਧਨਯੋਗ ਉਪ-ਕਾਰਜਾਂ ਵਿੱਚ ਵੰਡ ਕੇ, ਜਿਨ੍ਹਾਂ ਵਿੱਚੋਂ ਹਰੇਕ ਨੂੰ ਇੱਕ ਵਿਸ਼ੇਸ਼ AI ਵਰਕਰ ਦੁਆਰਾ
ਨਿਯੰਤਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤੁਸੀਂ ਸ਼ਕਤੀਸ਼ਾਲੀ ਅਤੇ ਲਚਕਦਾਰ ਸਿਸਟਮ ਬਣਾ ਸਕਦੇ ਹੋ। ਇਸ ਭਾਗ ਵਿੱਚ, ਅਸੀਂ
“ਬਹੁਤ ਸਾਰੇ” AI ਵਰਕਰਾਂ ਦੀ ਰਚਨਾ ਅਤੇ ਤਾਲਮੇਲ ਲਈ ਵੱਖ-ਵੱਖ ਪਹੁੰਚਾਂ ਦੀ ਪੜਚੋਲ ਕਰਾਂਗੇ।

ਬਹੁ-ਪੜਾਵੀ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਲਈ AI ਵਰਕਰਾਂ ਦੀ ਲੜੀਬੱਧਤਾ

ਕਈ ਸਥਿਤੀਆਂ ਵਿੱਚ, ਇੱਕ ਗੁੰਝਲਦਾਰ ਕਾਰਜ ਨੂੰ ਕ੍ਰਮਵਾਰ ਪੜਾਵਾਂ ਦੀ ਲੜੀ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ,
ਜਿੱਥੇ ਇੱਕ AI ਵਰਕਰ ਦਾ ਆਉਟਪੁੱਟ ਅਗਲੇ ਲਈ ਇਨਪੁੱਟ ਬਣ ਜਾਂਦਾ ਹੈ। AI ਵਰਕਰਾਂ ਦੀ ਇਹ ਲੜੀਬੱਧਤਾ
ਇੱਕ ਬਹੁ-ਪੜਾਵੀ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਜਾਂ ਪਾਈਪਲਾਈਨ ਬਣਾਉਂਦੀ ਹੈ। ਲੜੀ ਵਿੱਚ ਹਰੇਕ AI ਵਰਕਰ ਇੱਕ ਵਿਸ਼ੇਸ਼
ਉਪ-ਕਾਰਜ ’ਤੇ ਕੇਂਦਰਿਤ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਅੰਤਿਮ ਆਉਟਪੁੱਟ ਸਾਰੇ ਵਰਕਰਾਂ ਦੇ ਸੰਯੁਕਤ ਯਤਨਾਂ ਦਾ ਨਤੀਜਾ ਹੁੰਦਾ ਹੈ।

ਆਓ Ruby on Rails ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਇੱਕ ਉਦਾਹਰਣ ’ਤੇ ਵਿਚਾਰ ਕਰੀਏ ਜੋ ਉਪਭੋਗਤਾ-
ਨਿਰਮਿਤ ਸਮੱਗਰੀ ਦੀ ਪ੍ਰਕਿਰਿਆ ਲਈ ਹੈ। ਕਾਰਜ-ਪ੍ਰਵਾਹ ਵਿੱਚ ਹੇਠ ਲਿਖੇ ਪੜਾਅ ਸ਼ਾਮਲ ਹਨ, ਜੋ ਮੰਨਣਯੋਗ

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 103

ਤੌਰ ’ਤੇ ਸ਼ਾਇਦ ਅਸਲ ਜੀਵਨ ਦੀਆਂ ਵਰਤੋਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਵੰਡਣ ਲਈ ਬਹੁਤ ਸਰਲ ਹਨ, ਪਰ
ਉਹ ਉਦਾਹਰਣ ਨੂੰ ਸਮਝਣ ਵਿੱਚ ਸੌਖਾ ਬਣਾਉਂਦੇ ਹਨ:

1. ਟੈਕਸਟ ਸਫਾਈ: ਇੱਕ AI ਵਰਕਰ ਜੋ HTML ਟੈਗਾਂ ਨੂੰ ਹਟਾਉਣ, ਟੈਕਸਟ ਨੂੰ ਲੋਅਰਕੇਸ ਵਿੱਚ ਬਦਲਣ,
ਅਤੇ Unicode ਸਧਾਰਨੀਕਰਨ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਜ਼ਿੰਮੇਵਾਰ ਹੈ।

2. ਭਾਸ਼ਾ ਪਛਾਣ: ਇੱਕ AI ਵਰਕਰ ਜੋ ਸਾਫ਼ ਕੀਤੇ ਟੈਕਸਟ ਦੀ ਭਾਸ਼ਾ ਦੀ ਪਛਾਣ ਕਰਦਾ ਹੈ।

3. ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ: ਇੱਕ AI ਵਰਕਰ ਜੋ ਪਛਾਣੀ ਗਈ ਭਾਸ਼ਾ ਦੇ ਆਧਾਰ ’ਤੇ ਟੈਕਸਟ ਦੀ ਭਾਵਨਾ
(ਸਕਾਰਾਤਮਕ, ਨਕਾਰਾਤਮਕ, ਜਾਂ ਤਟਸਥ) ਨਿਰਧਾਰਿਤ ਕਰਦਾ ਹੈ।

4. ਸਮੱਗਰੀ ਵਰਗੀਕਰਨ: ਇੱਕ AI ਵਰਕਰ ਜੋ ਨੈਚੁਰਲ ਲੈਂਗੂਏਜ ਪ੍ਰੋਸੈਸਿੰਗ ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਟੈਕਸਟ
ਨੂੰ ਪਹਿਲਾਂ ਤੋਂ ਪਰਿਭਾਸ਼ਿਤ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕਰਦਾ ਹੈ।

ਇੱਥੇ Ruby ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਇਨ੍ਹਾਂ AI ਵਰਕਰਾਂ ਨੂੰ ਇਕੱਠੇ ਜੋੜਨ ਦਾ ਇੱਕ ਬਹੁਤ ਸਰਲੀਕ੍ਰਿਤ ਉਦਾਹਰਣ
ਹੈ:

1 class ContentProcessor

2 def initialize(text)

3 @text = text

4 end

5

6 def process

7 cleaned_text = TextCleanupWorker.new(@text).call

8 language = LanguageDetectionWorker.new(cleaned_text).call

9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

10 category = CategorizationWorker.new(cleaned_text, language).call

11

12 { cleaned_text:, language:, sentiment:, category: }

13 end

14 end

ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ, ContentProcessor ਕਲਾਸ ਕੱਚੇ ਟੈਕਸਟ ਨਾਲ ਸ਼ੁਰੂ ਹੁੰਦੀ ਹੈ ਅਤੇ process ਮੈਥਡ
ਵਿੱਚ AI ਵਰਕਰਾਂ ਨੂੰ ਇੱਕ ਲੜੀ ਵਿੱਚ ਜੋੜਦੀ ਹੈ। ਹਰ AI ਵਰਕਰ ਆਪਣਾ ਖਾਸ ਕੰਮ ਕਰਦਾ ਹੈ ਅਤੇ ਨਤੀਜੇ ਨੂੰ
ਲੜੀ ਵਿੱਚ ਅਗਲੇ ਵਰਕਰ ਨੂੰ ਪਾਸ ਕਰਦਾ ਹੈ। ਅੰਤਿਮ ਆਉਟਪੁੱਟ ਇੱਕ ਹੈਸ਼ ਹੈ ਜਿਸ ਵਿੱਚ ਸਾਫ਼ ਕੀਤਾ ਟੈਕਸਟ,
ਪਛਾਣੀ ਗਈ ਭਾਸ਼ਾ, ਭਾਵਨਾ, ਅਤੇ ਸਮੱਗਰੀ ਸ਼੍ਰੇਣੀ ਸ਼ਾਮਲ ਹੈ।

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 104

ਸੁਤੰਤਰ AI ਵਰਕਰਾਂ ਲਈ ਸਮਾਨੰਤਰ ਪ੍ਰੋਸੈਸਿੰਗ

ਪਿਛਲੀ ਉਦਾਹਰਣ ਵਿੱਚ, AI ਵਰਕਰ ਕ੍ਰਮਵਾਰ ਤਰੀਕੇ ਨਾਲ ਜੁੜੇ ਹੋਏ ਹਨ, ਜਿੱਥੇ ਹਰ ਵਰਕਰ ਟੈਕਸਟ ਨੂੰ ਪ੍ਰੋਸੈਸ
ਕਰਦਾ ਹੈ ਅਤੇ ਨਤੀਜੇ ਨੂੰ ਅਗਲੇ ਵਰਕਰ ਨੂੰ ਪਾਸ ਕਰਦਾ ਹੈ। ਹਾਲਾਂਕਿ, ਜੇ ਤੁਹਾਡੇ ਕੋਲ ਕਈ AI ਵਰਕਰ ਹਨ
ਜੋ ਇੱਕੋ ਇਨਪੁੱਟ ’ਤੇ ਸੁਤੰਤਰ ਤੌਰ ’ਤੇ ਕੰਮ ਕਰ ਸਕਦੇ ਹਨ, ਤਾਂ ਤੁਸੀਂ ਉਹਨਾਂ ਨੂੰ ਸਮਾਨੰਤਰ ਵਿੱਚ ਪ੍ਰੋਸੈਸ ਕਰਕੇ
ਕਾਰਜ-ਪ੍ਰਵਾਹ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾ ਸਕਦੇ ਹੋ।

ਦਿੱਤੀ ਗਈ ਸਥਿਤੀ ਵਿੱਚ, ਜਦੋਂ TextCleanupWorker ਦੁਆਰਾ ਟੈਕਸਟ ਦੀ ਸਫਾਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਤਾਂ
LanguageDetectionWorker, SentimentAnalysisWorker, ਅਤੇ Categorization-
Workerਸਾਰੇ ਸਾਫ਼ ਕੀਤੇ ਟੈਕਸਟ ’ਤੇ ਸੁਤੰਤਰ ਤੌਰ ’ਤੇ ਪ੍ਰਕਿਰਿਆਕਰ ਸਕਦੇ ਹਨ।ਇਹਨਾਂ ਵਰਕਰਾਂ ਨੂੰ ਸਮਾਨੰਤਰ
ਵਿੱਚ ਚਲਾ ਕੇ, ਤੁਸੀਂ ਸੰਭਾਵਤ ਤੌਰ ’ਤੇ ਸਮੁੱਚੀ ਪ੍ਰੋਸੈਸਿੰਗ ਦਾ ਸਮਾਂ ਘਟਾ ਸਕਦੇ ਹੋ ਅਤੇ ਆਪਣੇ ਕਾਰਜ-ਪ੍ਰਵਾਹ
ਦੀ ਕੁਸ਼ਲਤਾ ਨੂੰ ਵਧਾ ਸਕਦੇ ਹੋ।

Ruby ਵਿੱਚ ਸਮਾਨੰਤਰ ਪ੍ਰੋਸੈਸਿੰਗ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ, ਤੁਸੀਂ ਥ੍ਰੈਡਾਂ ਜਾਂ ਅਸਿੰਕ੍ਰੋਨਸ ਪ੍ਰੋਗਰਾਮਿੰਗ ਵਰਗੀਆਂ
ਸਮਵਰਤੀ ਤਕਨੀਕਾਂ ਦਾ ਲਾਭ ਲੈ ਸਕਦੇ ਹੋ। ਇੱਥੇ ਇੱਕ ਉਦਾਹਰਣ ਹੈ ਕਿ ਤੁਸੀਂ ਥ੍ਰੈਡਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਆਖਰੀ
ਤਿੰਨ ਵਰਕਰਾਂ ਨੂੰ ਸਮਾਨੰਤਰ ਵਿੱਚ ਪ੍ਰੋਸੈਸ ਕਰਨ ਲਈ ContentProcessor ਕਲਾਸ ਨੂੰ ਕਿਵੇਂ ਸੰਸ਼ੋਧਿਤ ਕਰ
ਸਕਦੇ ਹੋ:

1 require 'concurrent'

2

3 class ContentProcessor

4 def initialize(text)

5 @text = text

6 end

7

8 def process

9 cleaned_text = TextCleanupWorker.new(@text).call

10

11 language_future = Concurrent::Future.execute do

12 LanguageDetectionWorker.new(cleaned_text).call

13 end

14

15 sentiment_future = Concurrent::Future.execute do

16 SentimentAnalysisWorker.new(cleaned_text).call

17 end

18

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 105

19 category_future = Concurrent::Future.execute do

20 CategorizationWorker.new(cleaned_text).call

21 end

22

23 language = language_future.value

24 sentiment = sentiment_future.value

25 category = category_future.value

26

27 { cleaned_text:, language:, sentiment:, category: }

28 end

29 end

ਇਸ ਔਪਟੀਮਾਈਜ਼ਡ ਵਰਜਨ ਵਿੱਚ, ਅਸੀਂ ਹਰੇਕ ਸੁਤੰਤਰ AI ਵਰਕਰਾਂ ਲਈ Concurrent::Future

ਆਬਜੈਕਟਸ ਬਣਾਉਣ ਲਈ concurrent-ruby ਲਾਇਬ੍ਰੇਰੀ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ। ਇੱਕ Future ਉਸ
ਕੰਪਿਊਟੇਸ਼ਨ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ ਜੋ ਇੱਕ ਵੱਖਰੇ ਥਰੈੱਡ ਵਿੱਚ ਅਸਿੰਕਰੋਨਸ ਤਰੀਕੇ ਨਾਲ ਕੀਤੀ ਜਾਵੇਗੀ।

ਟੈਕਸਟ ਕਲੀਨਅੱਪ ਸਟੈੱਪ ਤੋਂ ਬਾਅਦ, ਅਸੀਂ ਤਿੰਨ Future ਆਬਜੈਕਟਸ ਬਣਾਉਂਦੇ ਹਾਂ: language_-

future, sentiment_future, ਅਤੇ category_future। ਹਰੇਕ Future ਆਪਣੇ ਸੰਬੰਧਿਤ
AI ਵਰਕਰ (LanguageDetectionWorker, SentimentAnalysisWorker, ਅਤੇ Catego-
rizationWorker) ਨੂੰ ਇੱਕ ਵੱਖਰੇ ਥਰੈੱਡ ਵਿੱਚ ਚਲਾਉਂਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ cleaned_textਇਨਪੁੱਟ ਵਜੋਂ
ਪਾਸ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਹਰੇਕ Future ’ਤੇ value ਮੈਥਡ ਨੂੰ ਕਾਲ ਕਰਕੇ, ਅਸੀਂ ਕੰਪਿਊਟੇਸ਼ਨ ਦੇ ਪੂਰਾ ਹੋਣ ਦੀ ਉਡੀਕ ਕਰਦੇ ਹਾਂ ਅਤੇ
ਨਤੀਜਾ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ। value ਮੈਥਡ ਉਦੋਂ ਤੱਕ ਬਲਾਕ ਕਰਦਾ ਹੈ ਜਦੋਂ ਤੱਕ ਨਤੀਜਾ ਉਪਲਬਧ ਨਹੀਂ ਹੁੰਦਾ,
ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ ਕਿ ਅੱਗੇ ਵਧਣ ਤੋਂ ਪਹਿਲਾਂ ਸਾਰੇ ਸਮਾਨੰਤਰ ਵਰਕਰਾਂ ਨੇ ਪ੍ਰੋਸੈਸਿੰਗ ਪੂਰੀ ਕਰ ਲਈ ਹੈ।

ਅੰਤ ਵਿੱਚ, ਅਸੀਂ ਮੂਲ ਉਦਾਹਰਣ ਵਾਂਗ ਹੀ ਸਾਫ਼ ਕੀਤੇ ਟੈਕਸਟ ਅਤੇ ਸਮਾਨੰਤਰ ਵਰਕਰਾਂ ਤੋਂ ਨਤੀਜਿਆਂ ਨਾਲ
ਆਉਟਪੁੱਟ ਹੈਸ਼ ਬਣਾਉਂਦੇ ਹਾਂ।

ਸੁਤੰਤਰ AI ਵਰਕਰਾਂ ਨੂੰ ਸਮਾਨੰਤਰ ਵਿੱਚ ਪ੍ਰੋਸੈਸ ਕਰਕੇ, ਤੁਸੀਂ ਕ੍ਰਮਵਾਰ ਚਲਾਉਣ ਦੇ ਮੁਕਾਬਲੇ ਸਮੁੱਚੇ ਪ੍ਰੋਸੈਸਿੰਗ
ਸਮੇਂ ਨੂੰ ਘਟਾ ਸਕਦੇ ਹੋ। ਇਹ ਔਪਟੀਮਾਈਜ਼ੇਸ਼ਨ ਖਾਸ ਤੌਰ ’ਤੇ ਸਮਾਂ-ਖਪਤ ਵਾਲੇ ਕੰਮਾਂ ਨਾਲ ਨਜਿੱਠਣ ਜਾਂ ਵੱਡੀ
ਮਾਤਰਾ ਵਿੱਚ ਡੇਟਾ ਦੀ ਪ੍ਰੋਸੈਸਿੰਗ ਕਰਨ ਵੇਲੇ ਲਾਭਦਾਇਕ ਹੈ।

ਹਾਲਾਂਕਿ, ਇਹ ਨੋਟ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਅਸਲ ਪ੍ਰਦਰਸ਼ਨ ਲਾਭ ਕਈ ਕਾਰਕਾਂ ’ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ,
ਜਿਵੇਂ ਕਿ ਹਰੇਕ ਵਰਕਰ ਦੀ ਜਟਿਲਤਾ, ਉਪਲਬਧ ਸਿਸਟਮ ਸਰੋਤ, ਅਤੇ ਥਰੈੱਡ ਪ੍ਰਬੰਧਨ ਦਾ ਓਵਰਹੈੱਡ। ਆਪਣੇ

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 106

ਖਾਸ ਕੇਸ ਲਈ ਸਮਾਨੰਤਰਤਾ ਦਾ ਸਭ ਤੋਂ ਵਧੀਆ ਪੱਧਰ ਨਿਰਧਾਰਤ ਕਰਨ ਲਈਆਪਣੇ ਕੋਡ ਦਾ ਬੈਂਚਮਾਰਕ ਅਤੇ
ਪ੍ਰੋਫਾਈਲ ਕਰਨਾ ਹਮੇਸ਼ਾ ਇੱਕ ਚੰਗੀ ਪ੍ਰੈਕਟਿਸ ਹੈ।

ਇਸ ਤੋਂ ਇਲਾਵਾ, ਸਮਾਨੰਤਰ ਪ੍ਰੋਸੈਸਿੰਗ ਨੂੰ ਲਾਗੂ ਕਰਦੇ ਸਮੇਂ, ਵਰਕਰਾਂ ਵਿਚਕਾਰ ਕਿਸੇ ਵੀ ਸਾਂਝੇ ਸਰੋਤਾਂ ਜਾਂ
ਨਿਰਭਰਤਾਵਾਂ ਦਾ ਧਿਆਨ ਰੱਖੋ। ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਵਰਕਰ ਟਕਰਾਅ ਜਾਂ ਰੇਸ ਕੰਡੀਸ਼ਨਜ਼ ਤੋਂ ਬਿਨਾਂ ਸੁਤੰਤਰ ਰੂਪ
ਵਿੱਚ ਕੰਮ ਕਰ ਸਕਦੇ ਹਨ। ਜੇਕਰ ਨਿਰਭਰਤਾਵਾਂ ਜਾਂ ਸਾਂਝੇ ਸਰੋਤ ਹਨ, ਤਾਂ ਤੁਹਾਨੂੰ ਡੇਟਾ ਅਖੰਡਤਾ ਬਣਾਈ ਰੱਖਣ ਅਤੇ
ਡੈੱਡਲੌਕਸ ਜਾਂ ਅਸੰਗਤ ਨਤੀਜਿਆਂ ਵਰਗੀਆਂ ਸਮੱਸਿਆਵਾਂ ਤੋਂ ਬਚਣ ਲਈ ਢੁਕਵੇਂ ਸਿੰਕ੍ਰੋਨਾਈਜ਼ੇਸ਼ਨ ਮਕੈਨਿਜ਼ਮ
ਲਾਗੂ ਕਰਨ ਦੀ ਲੋੜ ਹੋ ਸਕਦੀ ਹੈ।

Ruby ਦਾ ਗਲੋਬਲ ਇੰਟਰਪ੍ਰੇਟਰ ਲੌਕ ਅਤੇ ਅਸਿੰਕਰੋਨਸ ਪ੍ਰੋਸੈਸਿੰਗ

Ruby ਵਿੱਚ ਥਰੈੱਡ-ਅਧਾਰਿਤ ਅਸਿੰਕਰੋਨਸ ਪ੍ਰੋਸੈਸਿੰਗ ’ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਸਮੇਂ Ruby ਦੇ ਗਲੋਬਲ
ਇੰਟਰਪ੍ਰੇਟਰ ਲੌਕ (GIL) ਦੇ ਪ੍ਰਭਾਵਾਂ ਨੂੰ ਸਮਝਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ।

GIL Ruby ਦੇ ਇੰਟਰਪ੍ਰੇਟਰ ਵਿੱਚ ਇੱਕ ਮਕੈਨਿਜ਼ਮ ਹੈ ਜੋ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ ਕਿ ਮਲਟੀ-ਕੋਰ ਪ੍ਰੋਸੈਸਰਾਂ
’ਤੇ ਵੀ ਇੱਕ ਸਮੇਂ ’ਤੇ ਸਿਰਫ਼ ਇੱਕ ਥਰੈੱਡ Ruby ਕੋਡ ਚਲਾ ਸਕਦਾ ਹੈ। ਇਸਦਾ ਮਤਲਬ ਹੈ ਕਿ ਭਾਵੇਂ ਇੱਕ
Ruby ਪ੍ਰੋਸੈੱਸ ਦੇ ਅੰਦਰ ਕਈ ਥਰੈੱਡ ਬਣਾਏ ਅਤੇ ਪ੍ਰਬੰਧਿਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ, ਕਿਸੇ ਵੀ ਸਮੇਂ ਸਿਰਫ਼ ਇੱਕ
ਥਰੈੱਡ ਹੀ ਸਰਗਰਮੀ ਨਾਲ Ruby ਕੋਡ ਚਲਾ ਸਕਦਾ ਹੈ।

GIL ਨੂੰ Ruby ਇੰਟਰਪ੍ਰੇਟਰ ਦੀ ਲਾਗੂਕਰਨ ਨੂੰ ਸਰਲ ਬਣਾਉਣ ਅਤੇ Ruby ਦੇ ਅੰਦਰੂਨੀ ਡੇਟਾ ਢਾਂਚਿਆਂ
ਲਈ ਥਰੈੱਡ ਸੁਰੱਖਿਆ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਡਿਜ਼ਾਈਨ ਕੀਤਾ ਗਿਆ ਹੈ। ਹਾਲਾਂਕਿ, ਇਹ Ruby ਕੋਡ ਦੇ ਸੱਚੇ
ਸਮਾਨੰਤਰ ਕਾਰਜਕ੍ਰਮ ਦੀ ਸੰਭਾਵਨਾ ਨੂੰ ਵੀ ਸੀਮਿਤ ਕਰਦਾ ਹੈ।

ਜਦੋਂ ਤੁਸੀਂ Ruby ਵਿੱਚ ਥਰੈੱਡਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋ, ਜਿਵੇਂ ਕਿ concurrent-ruby ਲਾਇਬ੍ਰੇਰੀ ਜਾਂ
ਬਿਲਟ-ਇਨ Thread ਕਲਾਸ ਨਾਲ, ਥਰੈੱਡਾਂ GIL ਦੀਆਂ ਸੀਮਾਵਾਂ ਦੇ ਅਧੀਨ ਹੁੰਦੀਆਂ ਹਨ। GIL ਹਰੇਕ
ਥਰੈੱਡ ਨੂੰ ਥੋੜ੍ਹੇ ਸਮੇਂ ਲਈ Ruby ਕੋਡ ਚਲਾਉਣ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦਾ ਹੈ ਅਤੇ ਫਿਰ ਦੂਜੇ ਥਰੈੱਡ ’ਤੇ ਸਵਿੱਚ
ਕਰਦਾ ਹੈ, ਜੋ ਸਮਵਰਤੀ ਕਾਰਜਕ੍ਰਮ ਦਾ ਭਰਮ ਪੈਦਾ ਕਰਦਾ ਹੈ।

ਹਾਲਾਂਕਿ, GIL ਕਾਰਨ, Ruby ਕੋਡ ਦਾ ਅਸਲ ਕਾਰਜਕ੍ਰਮ ਕ੍ਰਮਵਾਰ ਹੀ ਰਹਿੰਦਾ ਹੈ। ਜਦੋਂ ਇੱਕ ਥਰੈੱਡ
Ruby ਕੋਡ ਚਲਾ ਰਿਹਾ ਹੁੰਦਾ ਹੈ, ਦੂਜੇ ਥਰੈੱਡ ਅਸਲ ਵਿੱਚ ਰੁਕੇ ਹੁੰਦੇ ਹਨ, GIL ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਅਤੇ
ਕਾਰਜਕ੍ਰਮ ਚਲਾਉਣ ਦੀ ਆਪਣੀ ਵਾਰੀ ਦੀ ਉਡੀਕ ਕਰਦੇ ਹਨ।

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 107

ਇਸਦਾ ਮਤਲਬ ਹੈ ਕਿ Ruby ਵਿੱਚ ਥਰੈੱਡ-ਆਧਾਰਿਤ ਅਸਿੰਕ੍ਰੋਨਸ ਪ੍ਰੋਸੈਸਿੰਗ I/O-ਬਾਊਂਡ ਕਾਰਜਾਂ ਲਈ
ਸਭ ਤੋਂ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਹੈ, ਜਿਵੇਂ ਕਿ ਬਾਹਰੀ API ਜਵਾਬਾਂ ਦੀ ਉਡੀਕ ਕਰਨਾ (ਜਿਵੇਂ ਕਿ ਤੀਜੀ-ਧਿਰ ਦੁਆਰਾ
ਹੋਸਟ ਕੀਤੇ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ) ਜਾਂ ਫਾਈਲ I/O ਓਪਰੇਸ਼ਨ ਕਰਨਾ। ਜਦੋਂ ਕੋਈ ਥਰੈੱਡ I/O ਓਪਰੇਸ਼ਨ ਨਾਲ
ਟਕਰਾਉਂਦਾ ਹੈ, ਇਹ GIL ਨੂੰ ਛੱਡ ਸਕਦਾ ਹੈ, ਜੋ I/O ਦੇ ਪੂਰਾ ਹੋਣ ਦੀ ਉਡੀਕ ਕਰਦੇ ਹੋਏ ਦੂਜੇ ਥਰੈੱਡਾਂ ਨੂੰ ਚੱਲਣ
ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦਾ ਹੈ।

ਦੂਜੇ ਪਾਸੇ, CPU-ਬਾਊਂਡ ਕਾਰਜਾਂ ਲਈ, ਜਿਵੇਂ ਕਿ ਗਹਿਰੀ ਗਣਨਾ ਜਾਂ ਲੰਬੇ-ਸਮੇਂ ਦੀ AI ਵਰਕਰ ਪ੍ਰੋਸੈਸਿੰਗ,
GIL ਥਰੈੱਡ-ਆਧਾਰਿਤ ਸਮਾਨੰਤਰਤਾ ਦੇ ਸੰਭਾਵੀ ਪ੍ਰਦਰਸ਼ਨ ਲਾਭਾਂ ਨੂੰ ਸੀਮਿਤ ਕਰ ਸਕਦਾ ਹੈ। ਕਿਉਂਕਿ ਇੱਕ
ਸਮੇਂ ’ਤੇ ਸਿਰਫ਼ ਇੱਕ ਥਰੈੱਡ Ruby ਕੋਡ ਚਲਾ ਸਕਦਾ ਹੈ, ਸਮੁੱਚਾ ਕਾਰਜਕ੍ਰਮ ਸਮਾਂ ਕ੍ਰਮਵਾਰ ਪ੍ਰੋਸੈਸਿੰਗ ਦੇ
ਮੁਕਾਬਲੇ ਮਹੱਤਵਪੂਰਨ ਤੌਰ ’ਤੇ ਘੱਟ ਨਹੀਂ ਹੋ ਸਕਦਾ।

Ruby ਵਿੱਚ CPU-ਬਾਊਂਡ ਕਾਰਜਾਂ ਲਈ ਸੱਚੀ ਸਮਾਨੰਤਰ ਕਾਰਜਕ੍ਰਮ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ, ਤੁਹਾਨੂੰ
ਵਿਕਲਪਿਕ ਪਹੁੰਚਾਂ ਦੀ ਪੜਚੋਲ ਕਰਨ ਦੀ ਲੋੜ ਹੋ ਸਕਦੀ ਹੈ, ਜਿਵੇਂ ਕਿ:

• ਵੱਖ-ਵੱਖ CPU ਕੋਰ ’ਤੇ ਚੱਲ ਰਹੀਆਂ ਕਈ Ruby ਪ੍ਰਕਿਰਿਆਵਾਂ ਨਾਲ ਪ੍ਰਕਿਰਿਆ-ਆਧਾਰਿਤ
ਸਮਾਨੰਤਰਤਾ ਦੀ ਵਰਤੋਂ ਕਰਨਾ।

• ਬਾਹਰੀ ਲਾਇਬ੍ਰੇਰੀਆਂ ਜਾਂ ਫਰੇਮਵਰਕਾਂ ਦਾ ਲਾਭ ਲੈਣਾ ਜੋ ਨੇਟਿਵ ਐਕਸਟੈਨਸ਼ਨਾਂ ਜਾਂ GIL ਤੋਂ ਬਿਨਾਂ
ਭਾਸ਼ਾਵਾਂ ਲਈ ਇੰਟਰਫੇਸ ਪ੍ਰਦਾਨ ਕਰਦੀਆਂ ਹਨ, ਜਿਵੇਂ ਕਿ C ਜਾਂ Rust।,

• ਕਈ ਮਸ਼ੀਨਾਂ ਜਾਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਵਿੱਚ ਕਾਰਜਾਂ ਨੂੰ ਵੰਡਣ ਲਈ ਵੰਡੀ ਹੋਈ ਕੰਪਿਊਟਿੰਗ ਫਰੇਮਵਰਕਾਂ
ਜਾਂ ਸੁਨੇਹਾ ਕਤਾਰਾਂ ਦੀ ਵਰਤੋਂ ਕਰਨਾ।

Ruby ਵਿੱਚ ਅਸਿੰਕ੍ਰੋਨਸ ਪ੍ਰੋਸੈਸਿੰਗ ਨੂੰ ਡਿਜ਼ਾਈਨ ਅਤੇ ਲਾਗੂ ਕਰਦੇ ਸਮੇਂ ਆਪਣੇ ਕਾਰਜਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ
ਅਤੇ GIL ਦੁਆਰਾ ਲਗਾਈਆਂ ਸੀਮਾਵਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰਨਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੈ। ਜਦੋਂ ਕਿ ਥਰੈੱਡ-ਆਧਾਰਿਤ
ਅਸਿੰਕ੍ਰੋਨਸ ਪ੍ਰੋਸੈਸਿੰਗ I/O-ਬਾਊਂਡ ਕਾਰਜਾਂ ਲਈ ਲਾਭ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦੀ ਹੈ, GIL ਦੀਆਂ ਸੀਮਾਵਾਂ
ਕਾਰਨ ਇਹ CPU-ਬਾਊਂਡ ਕਾਰਜਾਂ ਲਈ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਦਰਸ਼ਨ ਸੁਧਾਰ ਪ੍ਰਦਾਨ ਨਹੀਂ ਕਰ ਸਕਦੀ।

ਬਿਹਤਰ ਸ਼ੁੱਧਤਾ ਲਈ ਐਨਸੈਂਬਲ ਤਕਨੀਕਾਂ

ਐਨਸੈਂਬਲ ਤਕਨੀਕਾਂ ਵਿੱਚ ਸਿਸਟਮ ਦੀ ਸਮੁੱਚੀ ਸ਼ੁੱਧਤਾ ਜਾਂ ਮਜ਼ਬੂਤੀ ਨੂੰ ਸੁਧਾਰਨ ਲਈ ਕਈ AI ਵਰਕਰਾਂ ਦੇ
ਆਉਟਪੁੱਟ ਨੂੰ ਜੋੜਨਾ ਸ਼ਾਮਲ ਹੈ। ਇੱਕ ਇਕੱਲੇ AI ਵਰਕਰ ’ਤੇ ਭਰੋਸਾ ਕਰਨ ਦੀ ਬਜਾਏ, ਐਨਸੈਂਬਲ ਤਕਨੀਕਾਂ

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 108

ਵਧੇਰੇ ਜਾਣਕਾਰੀ ਭਰਪੂਰ ਫੈਸਲੇ ਲੈਣ ਲਈ ਕਈ ਵਰਕਰਾਂ ਦੀ ਸਮੂਹਿਕ ਬੁੱਧੀ ਦਾ ਲਾਭ ਲੈਂਦੀਆਂ ਹਨ।

ਐਨਸੈਂਬਲ ਖਾਸ ਤੌਰ ’ਤੇ ਮਹੱਤਵਪੂਰਨ ਹੁੰਦੇ ਹਨ ਜੇਕਰ ਤੁਹਾਡੇ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਦੇ ਵੱਖ-ਵੱਖ ਹਿੱਸੇ
ਵੱਖ-ਵੱਖ ਏ.ਆਈ. ਮਾਡਲਾਂ ਨਾਲ ਬਿਹਤਰ ਕੰਮ ਕਰਦੇ ਹਨ, ਜੋ ਕਿ ਤੁਹਾਡੇ ਸੋਚਣ ਨਾਲੋਂ ਵੱਧ ਆਮ
ਹੈ। GPT-4 ਵਰਗੇ ਸ਼ਕਤੀਸ਼ਾਲੀ ਮਾਡਲ ਘੱਟ ਸਮਰੱਥਾ ਵਾਲੇ ਓਪਨ ਸੋਰਸ ਵਿਕਲਪਾਂ ਦੇ ਮੁਕਾਬਲੇ
ਬਹੁਤ ਮਹਿੰਗੇ ਹਨ, ਅਤੇ ਸ਼ਾਇਦ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਹਰ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਕਦਮ ਲਈ ਜ਼ਰੂਰੀ
ਨਹੀਂ ਹਨ।

ਇੱਕ ਆਮ ਐਨਸੈਂਬਲ ਤਕਨੀਕ ਬਹੁਮਤ ਵੋਟਿੰਗ ਹੈ, ਜਿੱਥੇ ਕਈ ਏ.ਆਈ. ਵਰਕਰ ਸੁਤੰਤਰ ਤੌਰ ’ਤੇ ਇੱਕੋ ਇਨਪੁੱਟ
ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰਦੇ ਹਨ, ਅਤੇ ਅੰਤਿਮ ਆਉਟਪੁੱਟ ਬਹੁਮਤ ਸਹਿਮਤੀ ਦੁਆਰਾ ਨਿਰਧਾਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ
ਪਹੁੰਚ ਵਿਅਕਤੀਗਤ ਵਰਕਰ ਗਲਤੀਆਂ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਘਟਾਉਣ ਅਤੇ ਸਿਸਟਮ ਦੀ ਸਮੁੱਚੀ ਭਰੋਸੇਯੋਗਤਾ ਨੂੰ
ਬਿਹਤਰ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੀ ਹੈ।

ਆਓ ਇੱਕ ਉਦਾਹਰਣ ’ਤੇ ਵਿਚਾਰ ਕਰੀਏ ਜਿੱਥੇ ਸਾਡੇ ਕੋਲ ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ ਲਈ ਤਿੰਨ ਏ.ਆਈ. ਵਰਕਰ ਹਨ,
ਹਰੇਕ ਵੱਖਰੇ ਮਾਡਲ ਦੀ ਵਰਤੋਂ ਕਰਦਾ ਹੈ ਜਾਂ ਵੱਖਰੇ ਸੰਦਰਭਾਂ ਨਾਲ ਪ੍ਰਦਾਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਅਸੀਂ ਅੰਤਿਮ ਭਾਵਨਾ
ਭਵਿੱਖਬਾਣੀ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨ ਲਈ ਬਹੁਮਤ ਵੋਟਿੰਗ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਉਹਨਾਂ ਦੇ ਆਉਟਪੁੱਟ ਨੂੰ ਜੋੜ ਸਕਦੇ ਹਾਂ।

1 class SentimentAnalysisEnsemble

2 def initialize(text)

3 @text = text

4 end

5

6 def analyze

7 predictions = [

8 SentimentAnalysisWorker1.new(@text).analyze,

9 SentimentAnalysisWorker2.new(@text).analyze,

10 SentimentAnalysisWorker3.new(@text).analyze

11]

12

13 predictions

14 .group_by { |sentiment| sentiment }

15 .max_by { |_, votes| votes.size }

16 .first

17

18 end

19 end

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 109

ਇਸ ਉਦਾਹਰਨ ਵਿੱਚ, SentimentAnalysisEnsemble ਕਲਾਸ ਟੈਕਸਟ ਨਾਲ ਸ਼ੁਰੂ ਹੁੰਦੀ ਹੈ ਅਤੇ
ਤਿੰਨ ਵੱਖ-ਵੱਖ ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ ਏ.ਆਈ. ਵਰਕਰਾਂ ਨੂੰ ਬੁਲਾਉਂਦੀ ਹੈ। analyze ਮੈਥਡ ਹਰ ਵਰਕਰ ਤੋਂ
ਭਵਿੱਖਬਾਣੀਆਂ ਇਕੱਠੀਆਂ ਕਰਦੀ ਹੈ ਅਤੇ group_byਅਤੇ max_by ਮੈਥਡਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਬਹੁਮਤ ਭਾਵਨਾ
ਨਿਰਧਾਰਤ ਕਰਦੀ ਹੈ। ਅੰਤਿਮ ਆਉਟਪੁੱਟ ਉਹ ਭਾਵਨਾ ਹੈ ਜੋ ਵਰਕਰਾਂ ਦੇ ਸਮੂਹ ਤੋਂ ਸਭ ਤੋਂ ਵੱਧ ਵੋਟਾਂ ਪ੍ਰਾਪਤ
ਕਰਦੀ ਹੈ

ਸਮੂਹ ਸਪੱਸ਼ਟ ਤੌਰ ’ਤੇ ਅਜਿਹਾ ਕੇਸ ਹਨ ਜਿੱਥੇ ਸਮਾਨੰਤਰਤਾ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਨਾ ਤੁਹਾਡੇ ਸਮੇਂ ਦੇ
ਯੋਗ ਹੋ ਸਕਦਾ ਹੈ।

ਏ.ਆਈ. ਵਰਕਰਾਂ ਦੀ ਗਤੀਸ਼ੀਲ ਚੋਣ ਅਤੇ ਬੁਲਾਹਟ

ਕੁਝ ਜੇ ਨਾ ਜ਼ਿਆਦਾਤਰ ਮਾਮਲਿਆਂ ਵਿੱਚ, ਬੁਲਾਏ ਜਾਣ ਵਾਲੇ ਖਾਸ ਏ.ਆਈ. ਵਰਕਰ ਰਨਟਾਈਮ ਹਾਲਾਤਾਂ ਜਾਂ
ਯੂਜ਼ਰ ਇਨਪੁੱਟ ’ਤੇ ਨਿਰਭਰ ਕਰ ਸਕਦੇ ਹਨ। ਏ.ਆਈ. ਵਰਕਰਾਂ ਦੀ ਗਤੀਸ਼ੀਲ ਚੋਣ ਅਤੇ ਬੁਲਾਹਟ ਸਿਸਟਮ
ਵਿੱਚ ਲਚਕਤਾ ਅਤੇ ਅਨੁਕੂਲਤਾ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦੀ ਹੈ।

ਤੁਸੀਂ ਆਪਣੇ ਆਪ ਨੂੰ ਇੱਕ ਏ.ਆਈ. ਵਰਕਰ ਵਿੱਚ ਬਹੁਤ ਸਾਰੀ ਕਾਰਜਸ਼ੀਲਤਾ ਫਿੱਟ ਕਰਨ ਦੀ
ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹੋਏ ਪਾ ਸਕਦੇ ਹੋ, ਇਸ ਨੂੰ ਕਈ ਫੰਕਸ਼ਨ ਅਤੇ ਇੱਕ ਵੱਡਾ ਗੁੰਝਲਦਾਰ ਪ੍ਰੌਮਪਟ ਦੇ ਕੇ
ਜੋ ਇਹਨਾਂ ਨੂੰ ਕਿਵੇਂ ਬੁਲਾਉਣਾ ਹੈ ਦੱਸਦਾ ਹੈ। ਇਸ ਲਲਚਾਵੇ ਦਾ ਵਿਰੋਧ ਕਰੋ, ਮੇਰਾ ਯਕੀਨ ਕਰੋ। ਇਸ
ਅਧਿਆਇ ਵਿੱਚ ਜਿਸ ਪਹੁੰਚ ਬਾਰੇ ਅਸੀਂ ਚਰਚਾ ਕਰ ਰਹੇ ਹਾਂ ਉਸਨੂੰ “ਕਰਮਚਾਰੀਆਂ ਦੀ ਬਹੁਤਾਤ”
ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਇਹ ਸਾਨੂੰ ਯਾਦ ਕਰਵਾਉਣ ਲਈ ਕਿ ਬਹੁਤ ਸਾਰੇ ਵਿਸ਼ੇਸ਼ ਵਰਕਰ ਹੋਣਾ ਵਾਂਛਨੀਯ
ਹੈ, ਹਰ ਇੱਕ ਵੱਡੇ ਉਦੇਸ਼ ਦੀ ਸੇਵਾ ਵਿੱਚ ਆਪਣਾ ਛੋਟਾ ਕੰਮ ਕਰ ਰਿਹਾ ਹੈ।

ਉਦਾਹਰਨ ਲਈ, ਇੱਕ ਚੈਟਬੌਟ ਐਪਲੀਕੇਸ਼ਨ ’ਤੇ ਵਿਚਾਰ ਕਰੋ ਜਿੱਥੇ ਵੱਖ-ਵੱਖ ਏ.ਆਈ. ਵਰਕਰ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ
ਦੇ ਯੂਜ਼ਰ ਸਵਾਲਾਂ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਜ਼ਿੰਮੇਵਾਰ ਹਨ। ਯੂਜ਼ਰ ਦੇ ਇਨਪੁੱਟ ਦੇ ਆਧਾਰ ’ਤੇ, ਐਪਲੀਕੇਸ਼ਨ ਗਤੀਸ਼ੀਲ
ਤੌਰ ’ਤੇ ਸਵਾਲ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰਨ ਲਈ ਢੁਕਵੇਂ ਏ.ਆਈ. ਵਰਕਰ ਦੀ ਚੋਣ ਕਰਦੀ ਹੈ।

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 110

1 class ChatbotController < ApplicationController

2 def process_query

3 query = params[:query]

4 query_type = QueryClassifierWorker.new(query).classify

5

6 case query_type

7 when 'greeting'

8 response = GreetingWorker.new(query).generate_response

9 when 'product_inquiry'

10 response = ProductInquiryWorker.new(query).generate_response

11 when 'order_status'

12 response = OrderStatusWorker.new(query).generate_response

13 else

14 response = DefaultResponseWorker.new(query).generate_response

15 end

16

17 render json: { response: response }

18 end

19 end

ਇਸਉਦਾਹਰਣ ਵਿੱਚ, ChatbotControllerਯੂਜ਼ਰ ਦੀ ਪੁੱਛਗਿੱਛ ਨੂੰ process_queryਐਕਸ਼ਨ ਰਾਹੀਂ
ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ। ਇਹ ਪਹਿਲਾਂ QueryClassifierWorker ਦੀ ਵਰਤੋਂ ਪੁੱਛਗਿੱਛ ਦੀ ਕਿਸਮ ਨਿਰਧਾਰਿਤ
ਕਰਨ ਲਈ ਕਰਦਾ ਹੈ। ਵਰਗੀਕ੍ਰਿਤ ਪੁੱਛਗਿੱਛ ਦੀ ਕਿਸਮ ਦੇ ਆਧਾਰ ’ਤੇ, ਕੰਟਰੋਲਰ ਗਤੀਸ਼ੀਲ ਤੌਰ ’ਤੇ ਢੁਕਵੇਂ
AI ਵਰਕਰ ਨੂੰ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਲਈ ਚੁਣਦਾ ਹੈ। ਇਹ ਗਤੀਸ਼ੀਲ ਚੋਣ ਚੈਟਬੌਟ ਨੂੰ ਵੱਖ-ਵੱਖ ਕਿਸਮ ਦੀਆਂ
ਪੁੱਛਗਿੱਛਾਂ ਨੂੰ ਸੰਭਾਲਣ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਢੁਕਵੇਂ AI ਵਰਕਰਾਂ ਵੱਲ ਭੇਜਣ ਦੀ ਸਮਰੱਥਾ ਦਿੰਦੀ ਹੈ।

ਕਿਉਂਕਿ QueryClassifierWorkerਦਾ ਕੰਮ ਤੁਲਨਾਤਮਕ ਤੌਰ ’ਤੇ ਸਧਾਰਨ ਹੈ ਅਤੇ ਇਸਨੂੰ
ਬਹੁਤ ਜ਼ਿਆਦਾ ਸੰਦਰਭ ਜਾਂ ਫੰਕਸ਼ਨ ਪਰਿਭਾਸ਼ਾਵਾਂ ਦੀ ਲੋੜ ਨਹੀਂ ਹੈ, ਤੁਸੀਂ ਸ਼ਾਇਦਇਸਨੂੰ ਅਲਟਰਾ-
ਫਾਸਟ ਛੋਟੇ LLM ਜਿਵੇਂ ਕਿ mistralai/mixtral-8x7b-instruct:nitro ਦੀ
ਵਰਤੋਂ ਕਰਕੇ ਲਾਗੂ ਕਰ ਸਕਦੇ ਹੋ। ਇਸ ਵਿੱਚ ਕਈ ਕਾਰਜਾਂ ’ਤੇ GPT-4 ਪੱਧਰ ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ
ਹਨ ਅਤੇ ਜਦੋਂ ਮੈਂ ਇਹ ਲਿਖ ਰਿਹਾ ਹਾਂ, Groq ਇਸਨੂੰ 444 ਟੋਕਨ/ਸਕਿੰਟ ਦੀ ਤੇਜ਼ ਗਤੀ ਨਾਲ
ਪੇਸ਼ ਕਰ ਸਕਦਾ ਹੈ।

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 111

ਪਰੰਪਰਾਗਤ NLP ਨੂੰ LLMs ਨਾਲ ਜੋੜਨਾ

ਭਾਵੇਂ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ (LLMs) ਨੇ ਕੁਦਰਤੀ ਭਾਸ਼ਾ ਪ੍ਰੋਸੈਸਿੰਗ (NLP) ਦੇ ਖੇਤਰ ਵਿੱਚ ਕ੍ਰਾਂਤੀ ਲਿਆਂਦੀ ਹੈ,
ਜੋ ਕਿ ਵੱਖ-ਵੱਖ ਕਾਰਜਾਂ ਲਈ ਬੇਮਿਸਾਲ ਬਹੁਮੁੱਖਤਾ ਅਤੇ ਪ੍ਰਦਰਸ਼ਨ ਪੇਸ਼ ਕਰਦੇ ਹਨ, ਪਰ ਇਹ ਹਰ ਸਮੱਸਿਆ
ਲਈ ਸਭ ਤੋਂ ਕੁਸ਼ਲ ਜਾਂ ਲਾਗਤ-ਪ੍ਰਭਾਵੀ ਹੱਲ ਨਹੀਂ ਹਨ। ਕਈ ਮਾਮਲਿਆਂ ਵਿੱਚ, ਪਰੰਪਰਾਗਤ NLP ਤਕਨੀਕਾਂ
ਨੂੰ LLMs ਨਾਲ ਜੋੜਨ ਨਾਲ ਵਿਸ਼ੇਸ਼ NLP ਚੁਣੌਤੀਆਂ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਵਧੇਰੇ ਅਨੁਕੂਲਿਤ, ਲਕਸ਼ਿਤ, ਅਤੇ
ਕਿਫਾਇਤੀ ਪਹੁੰਚਾਂ ਪ੍ਰਾਪਤ ਹੋ ਸਕਦੀਆਂ ਹਨ।

LLMs ਨੂੰ NLP ਦੇ ਸਵਿਸ ਆਰਮੀ ਚਾਕੂ ਵਜੋਂ ਸੋਚੋ - ਬੇਹੱਦ ਬਹੁਮੁੱਖੀ ਅਤੇ ਸ਼ਕਤੀਸ਼ਾਲੀ, ਪਰ ਜ਼ਰੂਰੀ ਨਹੀਂ
ਕਿ ਹਰ ਕੰਮ ਲਈ ਸਭ ਤੋਂ ਵਧੀਆ ਟੂਲ ਹੋਵੇ। ਕਈ ਵਾਰ, ਵਾਈਨ ਦੀ ਬੋਤਲ ਖੋਲ੍ਹਣ ਵਾਲਾ ਜਾਂ ਡੱਬਾ ਖੋਲ੍ਹਣ
ਵਾਲਾ ਵਰਗਾ ਸਮਰਪਿਤ ਟੂਲ ਕਿਸੇ ਖਾਸ ਕੰਮ ਲਈ ਵਧੇਰੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਅਤੇ ਕੁਸ਼ਲ ਹੋ ਸਕਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ,
ਪਰੰਪਰਾਗਤ NLP ਤਕਨੀਕਾਂ, ਜਿਵੇਂ ਕਿ ਦਸਤਾਵੇਜ਼ ਕਲੱਸਟਰਿੰਗ, ਵਿਸ਼ਾ ਪਛਾਣ, ਅਤੇ ਵਰਗੀਕਰਨ, ਅਕਸਰ
ਤੁਹਾਡੀ NLP ਪਾਈਪਲਾਈਨ ਦੇ ਕੁਝ ਪਹਿਲੂਆਂ ਲਈ ਵਧੇਰੇ ਲਕਸ਼ਿਤ ਅਤੇ ਲਾਗਤ-ਪ੍ਰਭਾਵੀ ਹੱਲ ਪ੍ਰਦਾਨ ਕਰ
ਸਕਦੀਆਂ ਹਨ।

ਪਰੰਪਰਾਗਤ NLP ਤਕਨੀਕਾਂ ਦਾ ਇੱਕ ਮੁੱਖ ਫਾਇਦਾ ਉਨ੍ਹਾਂ ਦੀ ਕੰਪਿਊਟੇਸ਼ਨਲ ਕੁਸ਼ਲਤਾ ਹੈ। ਇਹ ਵਿਧੀਆਂ, ਜੋ
ਅਕਸਰ ਸਧਾਰਨ ਅੰਕੜਾ ਮਾਡਲਾਂ ਜਾਂ ਨਿਯਮ-ਆਧਾਰਿਤ ਪਹੁੰਚਾਂ ’ਤੇ ਨਿਰਭਰ ਕਰਦੀਆਂ ਹਨ, LLMs ਦੇ ਮੁਕਾਬਲੇ
ਘੱਟ ਕੰਪਿਊਟੇਸ਼ਨਲ ਓਵਰਹੈੱਡ ਨਾਲ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਟੈਕਸਟ ਡੇਟਾ ਨੂੰ ਬਹੁਤ ਤੇਜ਼ੀ ਨਾਲ ਪ੍ਰੋਸੈੱਸ ਕਰ ਸਕਦੀਆਂ
ਹਨ। ਇਹ ਉਨ੍ਹਾਂ ਨੂੰ ਖਾਸ ਤੌਰ ’ਤੇ ਦਸਤਾਵੇਜ਼ਾਂ ਦੇ ਵੱਡੇ ਸੰਗ੍ਰਹਿ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਅਤੇ ਸੰਗਠਨ ਕਰਨ ਵਾਲੇ ਕਾਰਜਾਂ
ਲਈ ਢੁਕਵਾਂ ਬਣਾਉਂਦਾ ਹੈ, ਜਿਵੇਂ ਕਿ ਸਮਾਨ ਲੇਖਾਂ ਨੂੰ ਕਲੱਸਟਰ ਕਰਨਾ ਜਾਂ ਟੈਕਸਟ ਦੇ ਸੰਗ੍ਰਹਿ ਵਿੱਚ ਮੁੱਖ ਵਿਸ਼ਿਆਂ
ਦੀ ਪਛਾਣ ਕਰਨਾ।

ਇਸ ਤੋਂ ਇਲਾਵਾ, ਪਰੰਪਰਾਗਤ ਐੱਨ.ਐੱਲ.ਪੀ. ਤਕਨੀਕਾਂ ਅਕਸਰ ਖਾਸ ਕਾਰਜਾਂ ਲਈ ਉੱਚ ਸ਼ੁੱਧਤਾ ਅਤੇ ਸਟੀਕਤਾ
ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੀਆਂ ਹਨ, ਖਾਸ ਕਰਕੇ ਜਦੋਂ ਖੇਤਰ-ਵਿਸ਼ੇਸ਼ ਡੇਟਾਸੈੱਟਾਂ ’ਤੇ ਸਿਖਲਾਈ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ। ਉਦਾਹਰਨ
ਲਈ, Support Vector Machines (SVM) ਜਾਂ Naive Bayes ਵਰਗੇ ਪਰੰਪਰਾਗਤ ਮਸ਼ੀਨ
ਲਰਨਿੰਗ ਐਲਗੋਰਿਦਮਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇੱਕ ਚੰਗੀ ਤਰ੍ਹਾਂ ਟਿਊਨ ਕੀਤਾ ਦਸਤਾਵੇਜ਼ ਵਰਗੀਕਰਣ ਘੱਟੋ-ਘੱਟ
ਕੰਪਿਊਟੇਸ਼ਨਲ ਲਾਗਤ ਨਾਲ ਦਸਤਾਵੇਜ਼ਾਂ ਨੂੰ ਪਹਿਲਾਂ ਤੋਂ ਨਿਰਧਾਰਤ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਸਹੀ ਢੰਗ ਨਾਲ ਵਰਗੀਕ੍ਰਿਤ
ਕਰ ਸਕਦਾ ਹੈ।

ਹਾਲਾਂਕਿ, ਐੱਲ.ਐੱਲ.ਐੱਮ. ਉਹਨਾਂ ਕਾਰਜਾਂ ਵਿੱਚ ਸੱਚਮੁੱਚ ਚਮਕਦੇ ਹਨ ਜਿੱਥੇ ਭਾਸ਼ਾ, ਸੰਦਰਭ, ਅਤੇ ਤਰਕ ਦੀ ਡੂੰਘੀ
ਸਮਝ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਸੁਸੰਗਤ ਅਤੇ ਸੰਦਰਭਕ ਤੌਰ ’ਤੇ ਢੁਕਵਾਂ ਟੈਕਸਟ ਤਿਆਰ ਕਰਨ, ਸਵਾਲਾਂ ਦੇ ਜਵਾਬ ਦੇਣ,

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 112

ਅਤੇ ਲੰਬੇ ਪੈਰ੍ਹਿਆਂ ਨੂੰ ਸੰਖੇਪ ਕਰਨ ਦੀ ਉਨ੍ਹਾਂ ਦੀ ਯੋਗਤਾ ਪਰੰਪਰਾਗਤ ਐੱਨ.ਐੱਲ.ਪੀ. ਵਿਧੀਆਂ ਦੁਆਰਾ ਬੇਜੋੜ
ਹੈ। ਐੱਲ.ਐੱਲ.ਐੱਮ. ਗੁੰਝਲਦਾਰ ਭਾਸ਼ਾਈ ਵਰਤਾਰਿਆਂ, ਜਿਵੇਂ ਕਿ ਅਸਪੱਸ਼ਟਤਾ, ਸਹਿ-ਹਵਾਲਾ, ਅਤੇ ਮੁਹਾਵਰੇਦਾਰ
ਅਭਿਵਿਅਕਤੀਆਂ ਨੂੰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਸੰਭਾਲ ਸਕਦੇ ਹਨ, ਜੋ ਉਨ੍ਹਾਂ ਨੂੰ ਕੁਦਰਤੀ ਭਾਸ਼ਾ ਉਤਪਾਦਨ ਜਾਂ
ਸਮਝ ਦੀ ਲੋੜ ਵਾਲੇ ਕਾਰਜਾਂ ਲਈ ਅਮੁੱਲ ਬਣਾਉਂਦੇ ਹਨ।

ਅਸਲ ਤਾਕਤ ਦੋਵਾਂ ਦੀਆਂ ਤਾਕਤਾਂ ਦਾ ਲਾਭ ਲੈਣ ਲਈ ਪਰੰਪਰਾਗਤ ਐੱਨ.ਐੱਲ.ਪੀ. ਤਕਨੀਕਾਂ ਨੂੰ ਐੱਲ.ਐੱਲ.ਐੱਮ.
ਨਾਲ ਜੋੜ ਕੇ ਹਾਈਬ੍ਰਿਡ ਪਹੁੰਚਾਂ ਬਣਾਉਣ ਵਿੱਚ ਹੈ। ਦਸਤਾਵੇਜ਼ ਪ੍ਰੀਪ੍ਰੋਸੈਸਿੰਗ, ਕਲੱਸਟਰਿੰਗ, ਅਤੇ ਵਿਸ਼ਾ ਕੱਢਣ
ਵਰਗੇ ਕਾਰਜਾਂ ਲਈਪਰੰਪਰਾਗਤਐੱਨ.ਐੱਲ.ਪੀ. ਵਿਧੀਆਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ, ਤੁਸੀਂ ਆਪਣੇ ਟੈਕਸਟ ਡੇਟਾ ਨੂੰ ਕੁਸ਼ਲਤਾ
ਨਾਲ ਸੰਗਠਿਤ ਅਤੇ ਢਾਂਚਾਗਤ ਕਰ ਸਕਦੇ ਹੋ। ਇਹ ਢਾਂਚਾਗਤ ਜਾਣਕਾਰੀ ਫਿਰ ਸੰਖੇਪ ਤਿਆਰ ਕਰਨ, ਸਵਾਲਾਂ ਦੇ
ਜਵਾਬ ਦੇਣ, ਜਾਂ ਵਿਆਪਕ ਰਿਪੋਰਟਾਂ ਬਣਾਉਣ ਵਰਗੇ ਵਧੇਰੇ ਉੱਨਤ ਕਾਰਜਾਂ ਲਈ ਐੱਲ.ਐੱਲ.ਐੱਮ. ਵਿੱਚ ਪਾਈ ਜਾ
ਸਕਦੀ ਹੈ।

ਉਦਾਹਰਨ ਲਈ, ਆਓ ਇੱਕ ਅਜਿਹੀ ਵਰਤੋਂ ਦੀ ਉਦਾਹਰਨ ’ਤੇ ਵਿਚਾਰ ਕਰੀਏ ਜਿੱਥੇ ਤੁਸੀਂ ਵਿਅਕਤੀਗਤ ਰੁਝਾਨ
ਦਸਤਾਵੇਜ਼ਾਂ ਦੇ ਇੱਕ ਵੱਡੇ ਸੰਗ੍ਰਹਿ ਦੇ ਆਧਾਰ ’ਤੇ ਕਿਸੇ ਖਾਸ ਖੇਤਰ ਲਈ ਰੁਝਾਨ ਰਿਪੋਰਟ ਤਿਆਰ ਕਰਨਾ ਚਾਹੁੰਦੇ
ਹੋ। ਸਿਰਫ਼ ਐੱਲ.ਐੱਲ.ਐੱਮ. ’ਤੇ ਨਿਰਭਰ ਕਰਨ ਦੀ ਬਜਾਏ, ਜੋ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਟੈਕਸਟ ਦੀ ਪ੍ਰੋਸੈਸਿੰਗ ਲਈ
ਕੰਪਿਊਟੇਸ਼ਨਲ ਤੌਰ ’ਤੇ ਮਹਿੰਗਾ ਅਤੇ ਸਮਾਂ ਲੈਣ ਵਾਲਾ ਹੋ ਸਕਦਾ ਹੈ, ਤੁਸੀਂ ਇੱਕ ਹਾਈਬ੍ਰਿਡ ਪਹੁੰਚ ਦੀ ਵਰਤੋਂ ਕਰ
ਸਕਦੇ ਹੋ:

1. ਵਿਸ਼ਾ ਮਾਡਲਿੰਗ (ਜਿਵੇਂ ਕਿ Latent Dirichlet Allocation) ਜਾਂ ਕਲੱਸਟਰਿੰਗ ਐਲਗੋਰਿਦਮ
(ਜਿਵੇਂ ਕਿ K-means) ਵਰਗੀਆਂ ਪਰੰਪਰਾਗਤ ਐੱਨ.ਐੱਲ.ਪੀ. ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ ਕਰੋ, ਤਾਂ ਜੋ ਸਮਾਨ
ਰੁਝਾਨ ਦਸਤਾਵੇਜ਼ਾਂ ਨੂੰ ਇਕੱਠਾ ਕੀਤਾ ਜਾ ਸਕੇ ਅਤੇ ਸੰਗ੍ਰਹਿ ਵਿੱਚ ਮੁੱਖ ਥੀਮਾਂ ਅਤੇ ਵਿਸ਼ਿਆਂ ਦੀ ਪਛਾਣ
ਕੀਤੀ ਜਾ ਸਕੇ।

2. ਕਲੱਸਟਰ ਕੀਤੇ ਦਸਤਾਵੇਜ਼ਾਂ ਅਤੇ ਪਛਾਣੇ ਗਏ ਵਿਸ਼ਿਆਂ ਨੂੰ ਐੱਲ.ਐੱਲ.ਐੱਮ. ਵਿੱਚ ਫੀਡ ਕਰੋ, ਹਰੇਕ
ਕਲੱਸਟਰ ਜਾਂ ਵਿਸ਼ੇ ਲਈ ਸੁਸੰਗਤ ਅਤੇ ਜਾਣਕਾਰੀ ਭਰਪੂਰ ਸੰਖੇਪ ਬਣਾਉਣ ਲਈ ਇਸਦੀ ਬਿਹਤਰ ਭਾਸ਼ਾ
ਸਮਝ ਅਤੇ ਉਤਪਾਦਨ ਸਮਰੱਥਾਵਾਂ ਦਾ ਲਾਭ ਲੈਂਦੇ ਹੋਏ।

3. ਅੰਤ ਵਿੱਚ, ਵਿਅਕਤੀਗਤ ਸੰਖੇਪਾਂ ਨੂੰ ਜੋੜ ਕੇ, ਸਭ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਰੁਝਾਨਾਂ ਨੂੰ ਉਜਾਗਰ ਕਰਦੇ ਹੋਏ, ਅਤੇ
ਇਕੱਤਰ ਕੀਤੀ ਜਾਣਕਾਰੀ ਦੇ ਆਧਾਰ ’ਤੇ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀਆਂ ਅਤੇ ਸਿਫਾਰਸ਼ਾਂ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹੋਏ ਇੱਕ
ਵਿਆਪਕ ਰੁਝਾਨ ਰਿਪੋਰਟ ਤਿਆਰ ਕਰਨ ਲਈ ਐੱਲ.ਐੱਲ.ਐੱਮ. ਦੀ ਵਰਤੋਂ ਕਰੋ।

ਇਸ ਤਰ੍ਹਾਂ ਪਰੰਪਰਾਗਤ ਐੱਨ.ਐੱਲ.ਪੀ. ਤਕਨੀਕਾਂ ਨੂੰ ਐੱਲ.ਐੱਲ.ਐੱਮ. ਨਾਲ ਜੋੜ ਕੇ, ਤੁਸੀਂ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ
ਟੈਕਸਟ ਡੇਟਾ ਨੂੰ ਕੁਸ਼ਲਤਾ ਨਾਲ ਪ੍ਰੋਸੈਸ ਕਰ ਸਕਦੇ ਹੋ, ਅਰਥਪੂਰਨ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀਆਂ ਕੱਢ ਸਕਦੇ ਹੋ, ਅਤੇ

ਕਾਮਿਆਂ ਦੀ ਭੀੜ 113

ਕੰਪਿਊਟੇਸ਼ਨਲ ਸਰੋਤਾਂ ਅਤੇ ਲਾਗਤਾਂ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਉਂਦੇ ਹੋਏ ਉੱਚ-ਗੁਣਵੱਤਾ ਵਾਲੀਆਂ ਰਿਪੋਰਟਾਂ ਤਿਆਰ ਕਰ
ਸਕਦੇ ਹੋ।

ਜਿਵੇਂ ਤੁਸੀਂ ਆਪਣੇ ਐੱਨ.ਐੱਲ.ਪੀ. ਪ੍ਰੋਜੈਕਟਾਂ ’ਤੇ ਕੰਮ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋ, ਇਹ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਹਰ ਕਾਰਜ ਦੀਆਂ ਵਿਸ਼ੇਸ਼
ਲੋੜਾਂ ਅਤੇ ਸੀਮਾਵਾਂ ਦਾ ਧਿਆਨ ਨਾਲ ਮੁਲਾਂਕਣ ਕੀਤਾ ਜਾਵੇ ਅਤੇ ਇਹ ਵਿਚਾਰਿਆ ਜਾਵੇ ਕਿ ਸਭ ਤੋਂ ਵਧੀਆ
ਨਤੀਜੇ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਰਵਾਇਤੀ ਐੱਨ.ਐੱਲ.ਪੀ. ਵਿਧੀਆਂ ਅਤੇ ਐੱਲ.ਐੱਲ.ਐੱਮ. ਨੂੰ ਇਕੱਠੇ ਕਿਵੇਂ ਵਰਤਿਆ
ਜਾ ਸਕਦਾ ਹੈ। ਰਵਾਇਤੀ ਤਕਨੀਕਾਂ ਦੀ ਕੁਸ਼ਲਤਾ ਅਤੇ ਸ਼ੁੱਧਤਾ ਨੂੰ ਐੱਲ.ਐੱਲ.ਐੱਮ. ਦੀ ਬਹੁਮੁੱਖਤਾ ਅਤੇ ਸ਼ਕਤੀ
ਨਾਲ ਜੋੜ ਕੇ, ਤੁਸੀਂ ਅਜਿਹੇ ਬੇਹੱਦ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਅਤੇ ਕਿਫਾਇਤੀ ਐੱਨ.ਐੱਲ.ਪੀ. ਹੱਲ ਬਣਾ ਸਕਦੇ ਹੋ ਜੋ ਤੁਹਾਡੇ
ਉਪਭੋਗਤਾਵਾਂ ਅਤੇ ਹਿੱਸੇਦਾਰਾਂ ਨੂੰ ਮੁੱਲ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ।

ਟੂਲ ਵਰਤੋਂ

ਏਆਈ-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨ ਵਿਕਾਸ ਦੇ ਖੇਤਰ ਵਿੱਚ, “ਟੂਲ ਵਰਤੋਂ” ਜਾਂ “ਫੰਕਸ਼ਨ ਕਾਲਿੰਗ” ਦੀ ਧਾਰਨਾ ਇੱਕ
ਸ਼ਕਤੀਸ਼ਾਲੀ ਤਕਨੀਕ ਵਜੋਂ ਉਭਰੀ ਹੈ ਜੋ ਤੁਹਾਡੇ LLM ਨੂੰ ਬਾਹਰੀ ਟੂਲਜ਼, APIs, ਫੰਕਸ਼ਨਜ਼, ਡਾਟਾਬੇਸਾਂ, ਅਤੇ
ਹੋਰ ਸਰੋਤਾਂ ਨਾਲ ਜੋੜਨ ਦੀ ਸਮਰੱਥਾ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ। ਇਹ ਪਹੁੰਚ ਸਿਰਫ਼ ਟੈਕਸਟ ਆਉਟਪੁੱਟ ਕਰਨ ਨਾਲੋਂ
ਵਧੇਰੇ ਵਿਵਹਾਰਾਂ ਦੀ ਇੱਕ ਵਿਸ਼ਾਲ ਸ਼੍ਰੇਣੀ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ, ਅਤੇ ਤੁਹਾਡੇ ਏਆਈ ਕੰਪੋਨੈਂਟਸ ਅਤੇ ਤੁਹਾਡੀ
ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਪਾਰਿਸਥਿਤੀ ਤੰਤਰ ਦੇ ਬਾਕੀ ਹਿੱਸਿਆਂ ਵਿਚਕਾਰ ਵਧੇਰੇ ਗਤੀਸ਼ੀਲ ਅੰਤਰਕਿਰਿਆਵਾਂ ਨੂੰ ਸੰਭਵ
ਬਣਾਉਂਦੀ ਹੈ। ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਵੇਖਾਂਗੇ, ਟੂਲ ਵਰਤੋਂ ਤੁਹਾਨੂੰ ਆਪਣੇ ਏਆਈ ਮਾਡਲ ਨੂੰ
ਸੰਰਚਿਤ ਤਰੀਕਿਆਂ ਨਾਲ ਡੇਟਾ ਤਿਆਰ ਕਰਨ ਦਾ ਵਿਕਲਪ ਵੀ ਦਿੰਦੀ ਹੈ।

ਟੂਲ ਵਰਤੋਂ ਕੀ ਹੈ?

ਟੂਲ ਵਰਤੋਂ, ਜਿਸਨੂੰ ਫੰਕਸ਼ਨ ਕਾਲਿੰਗ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਇੱਕ ਤਕਨੀਕ ਹੈ ਜੋ ਡਿਵੈਲਪਰਾਂ ਨੂੰ ਫੰਕਸ਼ਨਾਂ ਦੀ ਸੂਚੀ
ਨਿਰਧਾਰਤ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ ਜਿਨ੍ਹਾਂ ਨਾਲ LLM ਜਨਰੇਸ਼ਨ ਪ੍ਰਕਿਰਿਆ ਦੌਰਾਨ ਅੰਤਰਕਿਰਿਆ ਕਰ

ਟੂਲ ਵਰਤੋਂ 115

ਸਕਦਾ ਹੈ। ਇਹ ਟੂਲਜ਼ ਸਧਾਰਨ ਯੂਟਿਲਿਟੀ ਫੰਕਸ਼ਨਾਂ ਤੋਂ ਲੈ ਕੇ ਗੁੰਝਲਦਾਰ APIs ਜਾਂ ਡਾਟਾਬੇਸ ਕੁਐਰੀਆਂ ਤੱਕ
ਹੋ ਸਕਦੇ ਹਨ। LLM ਨੂੰ ਇਨ੍ਹਾਂ ਟੂਲਜ਼ ਤੱਕ ਪਹੁੰਚ ਪ੍ਰਦਾਨ ਕਰਕੇ, ਡਿਵੈਲਪਰ ਮਾਡਲ ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ਨੂੰ
ਵਧਾ ਸਕਦੇ ਹਨ ਅਤੇ ਇਸਨੂੰ ਅਜਿਹੇ ਕਾਰਜ ਕਰਨ ਦੇ ਯੋਗ ਬਣਾ ਸਕਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਲਈ ਬਾਹਰੀ ਗਿਆਨ ਜਾਂ
ਕਾਰਵਾਈਆਂ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।

ਚਿੱਤਰ 7. ਦਸਤਾਵੇਜ਼ਾਂ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਵਾਲੇ ਏਆਈ ਵਰਕਰ ਲਈ ਫੰਕਸ਼ਨ ਪਰਿਭਾਸ਼ਾ ਦੀ ਉਦਾਹਰਣ

1 FUNCTION = {

2 name: "save_analysis",

3 description: "Save analysis data for document",

4 parameters: {

5 type: "object",

6 properties: {

7 title: {

8 type: "string",

9 maxLength: 140

10 },

11 summary: {

12 type: "string",

13 description: "comprehensive multi-paragraph summary with

14 overview and list of sections (if applicable)"

15 },

16 tags: {

17 type: "array",

18 items: {

19 type: "string",

20 description: "lowercase tags representing main themes

21 of the document"

22 }

23 }

24 },

25 "required": %w[title summary tags]

26 }

27 }.freeze

ਟੂਲ ਦੀ ਵਰਤੋਂ ਦੇ ਪਿੱਛੇ ਮੁੱਖ ਵਿਚਾਰ ਐੱਲ.ਐੱਲ.ਐੱਮ. ਨੂੰ ਉਪਭੋਗਤਾ ਦੇ ਇਨਪੁੱਟ ਜਾਂ ਕਾਰਜ ਦੇ ਆਧਾਰ ’ਤੇ ਢੁਕਵੇਂ
ਟੂਲਾਂ ਦੀ ਚੋਣ ਅਤੇ ਕਾਰਜਾਂਵਿਤ ਕਰਨ ਦੀ ਯੋਗਤਾ ਦੇਣਾ ਹੈ। ਮਾਡਲ ਦੇ ਪਹਿਲਾਂ ਤੋਂ ਸਿਖਲਾਈ ਪ੍ਰਾਪਤ ਗਿਆਨ
’ਤੇ ਨਿਰਭਰ ਕਰਨ ਦੀ ਬਜਾਏ, ਟੂਲ ਦੀ ਵਰਤੋਂ ਐੱਲ.ਐੱਲ.ਐੱਮ. ਨੂੰ ਵਧੇਰੇ ਸਟੀਕ, ਢੁਕਵੇਂ, ਅਤੇ ਕਾਰਜਸ਼ੀਲ ਜਵਾਬ

ਟੂਲ ਵਰਤੋਂ 116

ਤਿਆਰ ਕਰਨ ਲਈ ਬਾਹਰੀ ਸਰੋਤਾਂ ਦਾ ਲਾਭ ਲੈਣ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ। ਟੂਲ ਦੀ ਵਰਤੋਂ ਆਰ.ਏ.ਜੀ. (ਪੁਨਰ-
ਪ੍ਰਾਪਤੀ ਵਧਾਇਆ ਉਤਪਾਦਨ) ਵਰਗੀਆਂ ਤਕਨੀਕਾਂ ਨੂੰ ਲਾਗੂ ਕਰਨਾ ਬਹੁਤ ਸੌਖਾ ਬਣਾ ਦਿੰਦੀ ਹੈ।

ਧਿਆਨ ਦਿਓ ਕਿ ਜਦੋਂ ਤੱਕ ਹੋਰ ਨਹੀਂ ਦੱਸਿਆ ਜਾਂਦਾ, ਇਹ ਕਿਤਾਬ ਮੰਨਦੀ ਹੈ ਕਿ ਤੁਹਾਡੇ ਏ.ਆਈ. ਮਾਡਲ
ਕੋਲ ਕਿਸੇ ਵੀ ਬਿਲਟ-ਇਨ ਸਰਵਰ-ਸਾਈਡ ਟੂਲ ਤੱਕ ਪਹੁੰਚ ਨਹੀਂ ਹੈ। ਕੋਈ ਵੀ ਟੂਲ ਜੋ ਤੁਸੀਂ ਆਪਣੇ ਏ.ਆਈ.
ਲਈ ਉਪਲਬਧ ਕਰਵਾਉਣਾ ਚਾਹੁੰਦੇ ਹੋ, ਉਸਨੂੰ ਹਰੇਕ ਏ.ਪੀ.ਆਈ. ਬੇਨਤੀ ਵਿੱਚ ਤੁਹਾਡੇ ਦੁਆਰਾ ਸਪਸ਼ਟ ਤੌਰ
’ਤੇ ਘੋਸ਼ਿਤ ਕੀਤਾ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ, ਜੇਕਰ ਅਤੇ ਜਦੋਂ ਤੁਹਾਡਾ ਏ.ਆਈ. ਤੁਹਾਨੂੰ ਦੱਸਦਾ ਹੈ ਕਿ ਉਹ ਆਪਣੇ
ਜਵਾਬ ਵਿੱਚ ਉਸ ਟੂਲ ਦੀ ਵਰਤੋਂ ਕਰਨਾ ਚਾਹੇਗਾ।

ਟੂਲ ਵਰਤੋਂ ਦੀ ਸੰਭਾਵਨਾ

ਟੂਲ ਦੀ ਵਰਤੋਂ ਏ.ਆਈ.-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਲਈ ਵਿਆਪਕ ਸੰਭਾਵਨਾਵਾਂ ਖੋਲ੍ਹਦੀ ਹੈ। ਇੱਥੇ ਕੁਝ
ਉਦਾਹਰਣਾਂ ਹਨ ਜੋ ਟੂਲ ਵਰਤੋਂ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ:

1. ਚੈਟਬੋਟ ਅਤੇ ਵਰਚੁਅਲ ਸਹਾਇਕ: ਐੱਲ.ਐੱਲ.ਐੱਮ. ਨੂੰ ਬਾਹਰੀ ਟੂਲਾਂ ਨਾਲ ਜੋੜ ਕੇ, ਚੈਟਬੋਟ ਅਤੇ
ਵਰਚੁਅਲ ਸਹਾਇਕ ਵਧੇਰੇ ਗੁੰਝਲਦਾਰ ਕੰਮ ਕਰ ਸਕਦੇ ਹਨ, ਜਿਵੇਂ ਕਿ ਡਾਟਾਬੇਸਾਂ ਤੋਂ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ
ਕਰਨਾ, ਏ.ਪੀ.ਆਈ. ਕਾਲਾਂ ਚਲਾਉਣਾ, ਜਾਂ ਹੋਰ ਸਿਸਟਮਾਂ ਨਾਲ ਅੰਤਰਕਿਰਿਆ ਕਰਨਾ। ਉਦਾਹਰਣ ਲਈ,
ਇੱਕ ਚੈਟਬੋਟ ਉਪਭੋਗਤਾ ਦੀ ਬੇਨਤੀ ਦੇ ਆਧਾਰ ’ਤੇ ਸੀ.ਆਰ.ਐੱਮ. ਟੂਲ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕਿਸੇ ਡੀਲ ਦੀ
ਸਥਿਤੀ ਬਦਲ ਸਕਦਾ ਹੈ।

2. ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ ਅਤੇ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ: ਐੱਲ.ਐੱਲ.ਐੱਮ. ਨੂੰ ਉੱਨਤ ਡਾਟਾ ਪ੍ਰੋਸੈਸਿੰਗ ਕਾਰਜ ਕਰਨ
ਲਈ ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ ਟੂਲਾਂ ਜਾਂ ਲਾਇਬ੍ਰੇਰੀਆਂ ਨਾਲ ਜੋੜਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਐਪਲੀਕੇਸ਼ਨਾਂ ਨੂੰ
ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਤਿਆਰ ਕਰਨ, ਤੁਲਨਾਤਮਕ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ, ਜਾਂ ਉਪਭੋਗਤਾ ਪੁੱਛਗਿੱਛਾਂ ਦੇ ਆਧਾਰ ’ਤੇ
ਡਾਟਾ-ਆਧਾਰਿਤ ਸਿਫਾਰਸ਼ਾਂ ਪ੍ਰਦਾਨ ਕਰਨ ਦੇ ਯੋਗ ਬਣਾਉਂਦਾ ਹੈ।

3. ਖੋਜ ਅਤੇ ਜਾਣਕਾਰੀ ਪੁਨਰ-ਪ੍ਰਾਪਤੀ: ਟੂਲ ਦੀ ਵਰਤੋਂ ਐੱਲ.ਐੱਲ.ਐੱਮ. ਨੂੰ ਖੋਜ ਇੰਜਣਾਂ, ਵੈਕਟਰ
ਡਾਟਾਬੇਸਾਂ, ਜਾਂ ਹੋਰ ਜਾਣਕਾਰੀ ਪੁਨਰ-ਪ੍ਰਾਪਤੀ ਸਿਸਟਮਾਂ ਨਾਲ ਅੰਤਰਕਿਰਿਆ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦੀ
ਹੈ। ਉਪਭੋਗਤਾ ਪੁੱਛਗਿੱਛਾਂ ਨੂੰ ਖੋਜ ਪੁੱਛਗਿੱਛਾਂ ਵਿੱਚ ਬਦਲ ਕੇ, ਐੱਲ.ਐੱਲ.ਐੱਮ. ਕਈ ਸਰੋਤਾਂ ਤੋਂ ਢੁਕਵੀਂ

ਟੂਲ ਵਰਤੋਂ 117

ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦਾ ਹੈ ਅਤੇ ਉਪਭੋਗਤਾ ਦੇ ਸਵਾਲਾਂ ਦੇ ਵਿਆਪਕ ਜਵਾਬ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ
ਹੈ।

4. ਬਾਹਰੀ ਸੇਵਾਵਾਂ ਨਾਲ ਏਕੀਕਰਨ: ਟੂਲ ਦੀ ਵਰਤੋਂ ਏ.ਆਈ.-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਅਤੇ ਬਾਹਰੀ
ਸੇਵਾਵਾਂ ਜਾਂ ਏ.ਪੀ.ਆਈ. ਵਿਚਕਾਰ ਨਿਰਵਿਘਨ ਏਕੀਕਰਨ ਨੂੰ ਸਮਰੱਥ ਬਣਾਉਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਲਈ,
ਇੱਕ ਐੱਲ.ਐੱਲ.ਐੱਮ. ਰੀਅਲ-ਟਾਈਮ ਮੌਸਮ ਅੱਪਡੇਟ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਮੌਸਮ ਏ.ਪੀ.ਆਈ. ਨਾਲ
ਜਾਂ ਬਹੁ-ਭਾਸ਼ਾਈ ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਲਈ ਅਨੁਵਾਦ ਏ.ਪੀ.ਆਈ. ਨਾਲ ਅੰਤਰਕਿਰਿਆ ਕਰ ਸਕਦਾ
ਹੈ।

ਟੂਲ ਵਰਤੋਂ ਵਰਕਫਲੋ

ਟੂਲ ਵਰਤੋਂ ਵਰਕਫਲੋ ਵਿੱਚ ਆਮ ਤੌਰ ’ਤੇ ਚਾਰ ਮੁੱਖ ਕਦਮ ਸ਼ਾਮਲ ਹੁੰਦੇ ਹਨ:

1. ਆਪਣੇ ਬੇਨਤੀ ਸੰਦਰਭ ਵਿੱਚ ਫੰਕਸ਼ਨ ਪਰਿਭਾਸ਼ਾਵਾਂ ਸ਼ਾਮਲ ਕਰੋ
2. ਡਾਇਨਾਮਿਕ (ਜਾਂ ਸਪੱਸ਼ਟ) ਟੂਲ ਚੋਣ
3. ਫੰਕਸ਼ਨ(ਨਾਂ) ਦਾ ਕ੍ਰਿਆਨਵਯਨ
4. ਮੂਲ ਪ੍ਰੌਮਪਟ ਦੀ ਵਿਕਲਪਿਕ ਨਿਰੰਤਰਤਾ

ਆਓ ਇਨ੍ਹਾਂ ਕਦਮਾਂ ਦੀ ਵਿਸਥਾਰ ਨਾਲ ਸਮੀਖਿਆ ਕਰੀਏ।

ਆਪਣੇ ਬੇਨਤੀ ਸੰਦਰਭ ਵਿੱਚ ਫੰਕਸ਼ਨ ਪਰਿਭਾਸ਼ਾਵਾਂ ਸ਼ਾਮਲ ਕਰੋ

AI ਨੂੰ ਪਤਾ ਹੁੰਦਾ ਹੈ ਕਿ ਇਸ ਕੋਲ ਕਿਹੜੇ ਟੂਲ ਉਪਲਬਧ ਹਨ ਕਿਉਂਕਿ ਤੁਸੀਂ ਇਸਨੂੰ ਆਪਣੀ ਪੂਰਤੀ ਬੇਨਤੀ ਦੇ
ਹਿੱਸੇ ਵਜੋਂ ਇੱਕ ਸੂਚੀ ਦਿੰਦੇ ਹੋ (ਆਮ ਤੌਰ ’ਤੇ JSON ਸਕੀਮਾ ਦੇ ਇੱਕ ਰੂਪ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਫੰਕਸ਼ਨਾਂ ਵਜੋਂ
ਪਰਿਭਾਸ਼ਿਤ)।

ਟੂਲ ਪਰਿਭਾਸ਼ਾ ਦਾ ਸਹੀ ਸਿੰਟੈਕਸ ਮਾਡਲ-ਵਿਸ਼ੇਸ਼ ਹੁੰਦਾ ਹੈ।

Claude 3 ਵਿੱਚ get_weather ਫੰਕਸ਼ਨ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ:

ਟੂਲ ਵਰਤੋਂ 118

1 {

2 "name": "get_weather",

3 "description": "Get the current weather in a given location",

4 "input_schema": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA"

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 }

16 },

17 "required": ["location"]

18 }

19 }

ਅਤੇ ਇਸੇ ਤਰ੍ਹਾਂ ਤੁਸੀਂ GPT-4 ਲਈ ਉਹੀ ਫੰਕਸ਼ਨ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋਗੇ, ਇਸਨੂੰ tools ਪੈਰਾਮੀਟਰ ਦੇ ਮੁੱਲ
ਵਜੋਂ ਪਾਸ ਕਰਦੇ ਹੋਏ:

1 {

2 "name": "get_current_weather",

3 "description": "Get the current weather in a given location",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA",

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 },

16 },

17 "required": ["location"],

ਟੂਲ ਵਰਤੋਂ 119

18 },

19 }

ਲਗਭਗ ਇੱਕੋ ਜਿਹਾ, ਪਰ ਬਿਨਾਂ ਕਿਸੇ ਸਪੱਸ਼ਟ ਕਾਰਨ ਦੇ ਵੱਖਰਾ! ਕਿੰਨਾ ਪਰੇਸ਼ਾਨ ਕਰਨ ਵਾਲਾ ਹੈ।

ਫੰਕਸ਼ਨ ਪਰਿਭਾਸ਼ਾਵਾਂ ਨਾਮ, ਵੇਰਵਾ, ਅਤੇ ਇਨਪੁੱਟ ਪੈਰਾਮੀਟਰ ਨਿਰਧਾਰਤ ਕਰਦੀਆਂ ਹਨ। ਇਨਪੁੱਟ ਪੈਰਾਮੀਟਰਾਂ
ਨੂੰ ਈਨਮਜ਼ ਵਰਗੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੋਰ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜੋ ਸਵੀਕਾਰਯੋਗ ਮੁੱਲਾਂ
ਨੂੰ ਸੀਮਤ ਕਰਦੀਆਂ ਹਨ, ਅਤੇ ਇਹ ਨਿਰਧਾਰਤ ਕਰਦੀਆਂ ਹਨ ਕਿ ਕੀ ਕੋਈ ਪੈਰਾਮੀਟਰ ਲੋੜੀਂਦਾ ਹੈ ਜਾਂ ਨਹੀਂ।

ਅਸਲ ਫੰਕਸ਼ਨ ਪਰਿਭਾਸ਼ਾਵਾਂ ਤੋਂ ਇਲਾਵਾ, ਤੁਸੀਂ ਸਿਸਟਮ ਨਿਰਦੇਸ਼ ਵਿੱਚ ਫੰਕਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਿਉਂ ਅਤੇ ਕਿਵੇਂ ਕਰਨੀ
ਹੈ, ਬਾਰੇ ਹਦਾਇਤਾਂ ਜਾਂ ਸੰਦਰਭ ਵੀ ਸ਼ਾਮਲ ਕਰ ਸਕਦੇ ਹੋ।

ਉਦਾਹਰਨ ਲਈ, Olympia ਵਿੱਚ ਮੇਰਾ ਵੈੱਬ ਖੋਜ ਟੂਲ ਇਹ ਸਿਸਟਮ ਨਿਰਦੇਸ਼ ਸ਼ਾਮਲ ਕਰਦਾ ਹੈ, ਜੋ ਏਆਈ
ਨੂੰ ਯਾਦ ਕਰਵਾਉਂਦਾ ਹੈ ਕਿ ਇਸ ਕੋਲ ਦੱਸੇ ਗਏ ਟੂਲ ਉਪਲਬਧ ਹਨ:

1 The `google_search` and `realtime_search` functions let you do research

2 on behalf of the user. In contrast to Google, realtime search is powered

3 by Perplexity and provides real-time information to curated current events

4 databases and news sources. Make sure to include URLs in your response so

5 user can do followup research.

ਵਿਸਤਾਰਪੂਰਵਕ ਵੇਰਵੇ ਪ੍ਰਦਾਨ ਕਰਨਾ ਟੂਲ ਪ੍ਰਦਰਸ਼ਨ ਵਿੱਚ ਸਭ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਕਾਰਕ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ।
ਤੁਹਾਡੇ ਵੇਰਵਿਆਂ ਵਿੱਚ ਟੂਲ ਬਾਰੇ ਹਰ ਜਾਣਕਾਰੀ ਸ਼ਾਮਲ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ:

• ਟੂਲ ਕੀ ਕਰਦਾ ਹੈ
• ਇਸ ਦੀ ਵਰਤੋਂ ਕਦੋਂ ਕੀਤੀ ਜਾਣੀ ਚਾਹੀਦੀ ਹੈ (ਅਤੇ ਕਦੋਂ ਨਹੀਂ)
• ਹਰ ਪੈਰਾਮੀਟਰ ਦਾ ਕੀ ਮਤਲਬ ਹੈ ਅਤੇ ਇਹ ਟੂਲ ਦੇ ਵਿਵਹਾਰ ਨੂੰ ਕਿਵੇਂ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ
• ਕੋਈ ਵੀ ਮਹੱਤਵਪੂਰਨ ਸਾਵਧਾਨੀਆਂ ਜਾਂ ਸੀਮਾਵਾਂ ਜੋ ਟੂਲ ਦੇ ਲਾਗੂਕਰਨ ’ਤੇ ਲਾਗੂ ਹੁੰਦੀਆਂ ਹਨ

ਜਿੰਨਾ ਵੱਧ ਸੰਦਰਭ ਤੁਸੀਂ AI ਨੂੰ ਆਪਣੇ ਟੂਲਾਂ ਬਾਰੇ ਦੇ ਸਕਦੇ ਹੋ, ਓਨਾ ਹੀ ਬਿਹਤਰ ਇਹ ਇਹਨਾਂ ਦੀ ਵਰਤੋਂ ਕਦੋਂ
ਅਤੇ ਕਿਵੇਂ ਕਰਨੀ ਹੈ, ਇਸ ਬਾਰੇ ਫੈਸਲਾ ਲੈਣ ਵਿੱਚ ਹੋਵੇਗਾ। ਉਦਾਹਰਣ ਵਜੋਂ, Anthropic ਆਪਣੀ Claude

ਟੂਲ ਵਰਤੋਂ 120

3 ਸੀਰੀਜ਼ ਲਈ ਹਰ ਟੂਲ ਵੇਰਵੇ ਲਈ ਘੱਟੋ-ਘੱਟ 3-4 ਵਾਕਾਂ ਦੀ ਸਿਫਾਰਿਸ਼ ਕਰਦਾ ਹੈ, ਜੇ ਟੂਲ ਗੁੰਝਲਦਾਰ ਹੈ ਤਾਂ
ਹੋਰ ਵੀ ਜ਼ਿਆਦਾ।

ਇਹ ਜ਼ਰੂਰੀ ਤੌਰ ’ਤੇ ਸਹਿਜ ਨਹੀਂ ਹੈ, ਪਰ ਵੇਰਵਿਆਂ ਨੂੰ ਉਦਾਹਰਣਾਂ ਨਾਲੋਂ ਵੀ ਵੱਧ ਮਹੱਤਵਪੂਰਨ ਮੰਨਿਆ ਜਾਂਦਾ
ਹੈ। ਭਾਵੇਂ ਤੁਸੀਂ ਟੂਲ ਦੀ ਵਰਤੋਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਨੂੰ ਇਸਦੇ ਵੇਰਵੇ ਵਿੱਚ ਜਾਂ ਨਾਲ ਦਿੱਤੇ ਪ੍ਰੌਮਪਟ ਵਿੱਚ ਸ਼ਾਮਲ
ਕਰ ਸਕਦੇ ਹੋ, ਇਹ ਟੂਲ ਦੇ ਉਦੇਸ਼ ਅਤੇ ਪੈਰਾਮੀਟਰਾਂ ਦੀ ਸਪਸ਼ਟ ਅਤੇ ਵਿਆਪਕ ਵਿਆਖਿਆ ਹੋਣ ਨਾਲੋਂ ਘੱਟ
ਮਹੱਤਵਪੂਰਨ ਹੈ। ਵੇਰਵੇ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਵਿਕਸਿਤ ਕਰਨ ਤੋਂ ਬਾਅਦ ਹੀ ਉਦਾਹਰਣਾਂ ਜੋੜੋ।

ਇੱਥੇ Stripe-ਵਰਗੇ API ਫੰਕਸ਼ਨ ਸਪੈਸੀਫਿਕੇਸ਼ਨ ਦੀ ਇੱਕ ਉਦਾਹਰਣ ਹੈ:

1 {

2 "name": "createPayment",

3 "description": "Create a new payment request",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "transaction_amount": {

8 "type": "number",

9 "description": "The amount to be paid"

10 },

11 "description": {

12 "type": "string",

13 "description": "A brief description of the payment"

14 },

15 "payment_method_id": {

16 "type": "string",

17 "description": "The payment method to be used"

18 },

19 "payer": {

20 "type": "object",

21 "description": "Information about the payer, including their name,

22 email, and identification number",

23 "properties": {

24 "name": {

25 "type": "string",

26 "description": "The payer's name"

27 },

28 "email": {

29 "type": "string",

30 "description": "The payer's email address"

ਟੂਲ ਵਰਤੋਂ 121

31 },

32 "identification": {

33 "type": "object",

34 "description": "The payer's identification number",

35 "properties": {

36 "type": {

37 "type": "string",

38 "description": "Identification document (e.g. CPF, CNPJ)"

39 },

40 "number": {

41 "type": "string",

42 "description": "The identification number"

43 }

44 },

45 "required": ["type", "number"]

46 }

47 },

48 "required": ["name", "email", "identification"]

49 }

50 }

51 }

ਅਮਲੀ ਤੌਰ ’ਤੇ, ਕੁਝ ਮਾਡਲਾਂ ਨੂੰ ਨੈਸਟਡ ਫੰਕਸ਼ਨ ਸਪੈਸੀਫਿਕੇਸ਼ਨਾਂ ਅਤੇ ਐਰੇ, ਡਿਕਸ਼ਨਰੀਆਂ
ਆਦਿ ਵਰਗੇ ਗੁੰਝਲਦਾਰ ਆਉਟਪੁੱਟ ਡਾਟਾ ਟਾਈਪਾਂ ਨਾਲ ਨਜਿੱਠਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਆਉਂਦੀ ਹੈ।
ਪਰ ਸਿਧਾਂਤਕ ਤੌਰ ’ਤੇ, ਤੁਸੀਂ ਕਿਸੇ ਵੀ ਡੂੰਘਾਈ ਦੀਆਂ JSON ਸਕੀਮਾ ਸਪੈਸੀਫਿਕੇਸ਼ਨਾਂ ਪ੍ਰਦਾਨ
ਕਰ ਸਕਦੇ ਹੋ!

ਗਤੀਸ਼ੀਲ ਟੂਲ ਚੋਣ

ਜਦੋਂ ਤੁਸੀਂ ਟੂਲ ਪਰਿਭਾਸ਼ਾਵਾਂ ਸਮੇਤ ਇੱਕ ਚੈਟ ਪੂਰਨਤਾ ਨੂੰ ਲਾਗੂ ਕਰਦੇ ਹੋ, ਤਾਂ LLM ਗਤੀਸ਼ੀਲ ਤੌਰ ’ਤੇ ਵਰਤਣ
ਲਈ ਸਭ ਤੋਂ ਢੁਕਵੇਂ ਟੂਲ(ਸ) ਦੀ ਚੋਣ ਕਰਦਾ ਹੈ ਅਤੇ ਹਰੇਕ ਟੂਲ ਲਈ ਲੋੜੀਂਦੇ ਇਨਪੁੱਟ ਪੈਰਾਮੀਟਰ ਤਿਆਰ ਕਰਦਾ
ਹੈ।

ਅਮਲੀ ਤੌਰ ’ਤੇ, AI ਦੀ ਬਿਲਕੁਲ ਸਹੀ ਫੰਕਸ਼ਨ ਨੂੰ ਕਾਲ ਕਰਨ ਦੀ ਸਮਰੱਥਾ, ਅਤੇ ਬਿਲਕੁਲ ਤੁਹਾਡੀ ਇਨਪੁੱਟਸ ਦੀ
ਸਪੈਸੀਫਿਕੇਸ਼ਨ ਦੀ ਪਾਲਣਾ ਕਰਨਾ ਹਿੱਟ ਜਾਂ ਮਿਸ ਹੁੰਦਾ ਹੈ। ਟੈਂਪਰੇਚਰ ਹਾਈਪਰਪੈਰਾਮੀਟਰ ਨੂੰ 0.0 ਤੱਕ ਘਟਾਉਣ

ਟੂਲ ਵਰਤੋਂ 122

ਨਾਲ ਬਹੁਤ ਮਦਦ ਮਿਲਦੀ ਹੈ, ਪਰ ਮੇਰੇ ਤਜਰਬੇ ਵਿੱਚ ਤੁਹਾਨੂੰ ਫਿਰ ਵੀ ਕਦੇ-ਕਦੇ ਗਲਤੀਆਂ ਮਿਲਣਗੀਆਂ। ਇਹਨਾਂ
ਅਸਫਲਤਾਵਾਂ ਵਿੱਚ ਕਲਪਿਤ ਫੰਕਸ਼ਨ ਨਾਮ, ਗਲਤ ਨਾਮ ਵਾਲੇ ਜਾਂ ਬਸ ਗੁੰਮ ਇਨਪੁੱਟ ਪੈਰਾਮੀਟਰ ਸ਼ਾਮਲ ਹਨ।
ਪੈਰਾਮੀਟਰ JSON ਦੇ ਰੂਪ ਵਿੱਚ ਪਾਸ ਕੀਤੇ ਜਾਂਦੇ ਹਨ, ਜਿਸਦਾ ਮਤਲਬ ਹੈ ਕਿ ਕਈ ਵਾਰ ਤੁਸੀਂ ਕੱਟੇ ਹੋਏ, ਗਲਤ
ਕੋਟ ਕੀਤੇ, ਜਾਂ ਹੋਰ ਤਰੀਕਿਆਂ ਨਾਲ ਟੁੱਟੇ JSON ਕਾਰਨ ਗਲਤੀਆਂ ਦੇਖੋਗੇ।

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ ਪੈਟਰਨ ਸਿੰਟੈਕਸ ਗਲਤੀਆਂ ਕਾਰਨ ਟੁੱਟੇ ਫੰਕਸ਼ਨ ਕਾਲਾਂ ਨੂੰ ਆਪਣੇ ਆਪ
ਠੀਕ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੇ ਹਨ।

ਜ਼ਬਰਦਸਤੀ (ਜਾਂ ਸਪੱਸ਼ਟ) ਟੂਲ ਚੋਣ

ਕੁਝ ਮਾਡਲ ਤੁਹਾਨੂੰ ਬੇਨਤੀ ਵਿੱਚ ਇੱਕ ਪੈਰਾਮੀਟਰ ਵਜੋਂ ਕਿਸੇ ਖਾਸ ਫੰਕਸ਼ਨ ਨੂੰ ਕਾਲ ਕਰਨ ਲਈ ਮਜਬੂਰ ਕਰਨ ਦਾ
ਵਿਕਲਪ ਦਿੰਦੇ ਹਨ। ਨਹੀਂ ਤਾਂ, ਫੰਕਸ਼ਨ ਨੂੰ ਕਾਲ ਕਰਨਾ ਜਾਂ ਨਹੀਂ ਕਰਨਾ ਪੂਰੀ ਤਰ੍ਹਾਂ AI ਦੇ ਵਿਵੇਕ ’ਤੇ ਨਿਰਭਰ
ਕਰਦਾ ਹੈ।

ਫੰਕਸ਼ਨ ਕਾਲ ਨੂੰ ਜ਼ਬਰਦਸਤੀ ਕਰਨ ਦੀ ਯੋਗਤਾ ਕੁਝ ਖਾਸ ਸਥਿਤੀਆਂ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਹੁੰਦੀ ਹੈ ਜਿੱਥੇ ਤੁਸੀਂ
ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਚਾਹੁੰਦੇ ਹੋ ਕਿ ਇੱਕ ਖਾਸ ਟੂਲ ਜਾਂ ਫੰਕਸ਼ਨ ਨੂੰ ਲਾਗੂ ਕੀਤਾ ਜਾਵੇ, AI ਦੀ ਗਤੀਸ਼ੀਲ ਚੋਣ
ਪ੍ਰਕਿਰਿਆ ਦੀ ਪਰਵਾਹ ਕੀਤੇ ਬਿਨਾਂ। ਇਸ ਸਮਰੱਥਾ ਦੇ ਮਹੱਤਵਪੂਰਨ ਹੋਣ ਦੇ ਕਈ ਕਾਰਨ ਹਨ:

1. ਸਪੱਸ਼ਟ ਨਿਯੰਤਰਣ: ਤੁਸੀਂ AI ਨੂੰ ਇੱਕ ਵੱਖਰੇ ਕੰਪੋਨੈਂਟ ਵਜੋਂ ਜਾਂ ਇੱਕ ਪਹਿਲਾਂ ਤੋਂ ਨਿਰਧਾਰਿਤ ਵਰਕਫਲੋ
ਵਿੱਚ ਵਰਤ ਰਹੇ ਹੋ ਸਕਦੇ ਹੋ ਜਿਸ ਵਿੱਚ ਕਿਸੇ ਖਾਸ ਸਮੇਂ ’ਤੇ ਇੱਕ ਖਾਸ ਫੰਕਸ਼ਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਕਾਲ ਨੂੰ
ਜ਼ਬਰਦਸਤੀ ਕਰਕੇ, ਤੁਸੀਂ ਯਕੀਨੀ ਬਣਾ ਸਕਦੇ ਹੋ ਕਿ AI ਨੂੰ ਇਹ ਕਰਨ ਲਈ ਨਿਮਰਤਾ ਨਾਲ ਪੁੱਛਣ ਦੀ
ਬਜਾਏ ਲੋੜੀਂਦਾ ਫੰਕਸ਼ਨ ਕਾਲ ਕੀਤਾ ਜਾਵੇ।

2. ਡੀਬੱਗਿੰਗ ਅਤੇ ਟੈਸਟਿੰਗ: AI-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਨੂੰ ਵਿਕਸਿਤ ਅਤੇ ਟੈਸਟ ਕਰਨ ਵੇਲੇ, ਫੰਕਸ਼ਨ
ਕਾਲਾਂ ਨੂੰ ਜ਼ਬਰਦਸਤੀ ਕਰਨ ਦੀ ਯੋਗਤਾ ਡੀਬੱਗਿੰਗ ਦੇ ਉਦੇਸ਼ਾਂ ਲਈ ਬੇਮੁੱਲ ਹੈ। ਖਾਸ ਫੰਕਸ਼ਨਾਂ ਨੂੰ ਸਪੱਸ਼ਟ
ਤੌਰ ’ਤੇ ਟਰਿੱਗਰ ਕਰਕੇ, ਤੁਸੀਂ ਆਪਣੀ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਵੱਖ-ਵੱਖ ਹਿੱਸਿਆਂ ਨੂੰ ਵੱਖ ਕਰ ਸਕਦੇ ਹੋ ਅਤੇ ਟੈਸਟ
ਕਰ ਸਕਦੇ ਹੋ। ਇਹ ਤੁਹਾਨੂੰ ਫੰਕਸ਼ਨ ਇੰਪਲੀਮੈਂਟੇਸ਼ਨਾਂ ਦੀ ਸਹੀਤਾ ਦੀ ਜਾਂਚ ਕਰਨ, ਇਨਪੁੱਟ ਪੈਰਾਮੀਟਰਾਂ
ਨੂੰ ਵੈਲੀਡੇਟ ਕਰਨ, ਅਤੇ ਇਹ ਯਕੀਨੀ ਬਣਾਉਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ ਕਿ ਉਮੀਦ ਕੀਤੇ ਨਤੀਜੇ ਵਾਪਸ
ਕੀਤੇ ਜਾ ਰਹੇ ਹਨ।

ਟੂਲ ਵਰਤੋਂ 123

3. ਸੀਮਾ ਕੇਸਾਂ ਨੂੰ ਸੰਭਾਲਣਾ: ਅਜਿਹੇ ਸੀਮਾ ਕੇਸ ਜਾਂ ਅਸਧਾਰਨ ਸਥਿਤੀਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ ਜਿੱਥੇ AI ਦੀ
ਗਤੀਸ਼ੀਲ ਚੋਣ ਪ੍ਰਕਿਰਿਆ ਕਿਸੇ ਫੰਕਸ਼ਨ ਨੂੰ ਚਲਾਉਣ ਦੀ ਚੋਣ ਨਹੀਂ ਕਰ ਸਕਦੀ ਜਿਸ ਨੂੰ ਇਹ ਕਰਨਾ
ਚਾਹੀਦਾ ਹੈ, ਅਤੇ ਤੁਸੀਂ ਇਹ ਬਾਹਰੀ ਪ੍ਰਕਿਰਿਆਵਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਜਾਣਦੇ ਹੋ। ਅਜਿਹੀਆਂ ਸਥਿਤੀਆਂ
ਵਿੱਚ, ਫੰਕਸ਼ਨ ਕਾਲ ਨੂੰ ਜ਼ਬਰਦਸਤੀ ਕਰਨ ਦੀ ਯੋਗਤਾ ਤੁਹਾਨੂੰ ਇਨ੍ਹਾਂ ਸਥਿਤੀਆਂ ਨੂੰ ਸਪਸ਼ਟ ਤੌਰ ’ਤੇ
ਸੰਭਾਲਣ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ। ਆਪਣੀ ਐਪਲੀਕੇਸ਼ਨ ਲੌਜਿਕ ਵਿੱਚ ਨਿਯਮ ਜਾਂ ਸ਼ਰਤਾਂ ਨਿਰਧਾਰਤ ਕਰੋ
ਜੋ ਇਹ ਨਿਰਧਾਰਤ ਕਰਨ ਲਈ ਕਿ AI ਦੇ ਵਿਵੇਕ ਨੂੰ ਕਦੋਂ ਓਵਰਰਾਈਡ ਕਰਨਾ ਹੈ।

4. ਇਕਸਾਰਤਾ ਅਤੇ ਦੁਹਰਾਉਣਯੋਗਤਾ: ਜੇਕਰ ਤੁਹਾਡੇ ਕੋਲ ਫੰਕਸ਼ਨਾਂ ਦਾ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਕ੍ਰਮ ਹੈ ਜਿਸਨੂੰ ਇੱਕ
ਖਾਸ ਕ੍ਰਮ ਵਿੱਚ ਚਲਾਉਣ ਦੀ ਲੋੜ ਹੈ, ਤਾਂ ਕਾਲਾਂ ਨੂੰ ਜ਼ਬਰਦਸਤੀ ਕਰਨ ਨਾਲ ਇਹ ਗਾਰੰਟੀ ਹੁੰਦੀ ਹੈ ਕਿ ਹਰ
ਵਾਰ ਉਹੀ ਕ੍ਰਮ ਦੀ ਪਾਲਣਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਹ ਖਾਸ ਤੌਰ ’ਤੇ ਉਨ੍ਹਾਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ
ਹੈ ਜਿੱਥੇ ਇਕਸਾਰਤਾ ਅਤੇ ਭਵਿੱਖਬਾਣੀਯੋਗ ਵਿਵਹਾਰ ਮਹੱਤਵਪੂਰਨ ਹਨ, ਜਿਵੇਂ ਕਿ ਵਿੱਤੀ ਪ੍ਰਣਾਲੀਆਂ ਜਾਂ
ਵਿਗਿਆਨਕ ਸਿਮੂਲੇਸ਼ਨਾਂ ਵਿੱਚ।

5. ਕਾਰਗੁਜ਼ਾਰੀ ਅਨੁਕੂਲਤਾ: ਕੁਝ ਮਾਮਲਿਆਂ ਵਿੱਚ, ਫੰਕਸ਼ਨ ਕਾਲ ਨੂੰ ਜ਼ਬਰਦਸਤੀ ਕਰਨ ਨਾਲ ਕਾਰਗੁਜ਼ਾਰੀ
ਅਨੁਕੂਲਤਾ ਹੋ ਸਕਦੀ ਹੈ। ਜੇਕਰ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਕੰਮ ਲਈ ਇੱਕ ਖਾਸ ਫੰਕਸ਼ਨ ਦੀ ਲੋੜ
ਹੈ ਅਤੇ AI ਦੀ ਗਤੀਸ਼ੀਲ ਚੋਣ ਪ੍ਰਕਿਰਿਆ ਗੈਰ-ਜ਼ਰੂਰੀ ਓਵਰਹੈੱਡ ਪੇਸ਼ ਕਰ ਸਕਦੀ ਹੈ, ਤਾਂ ਤੁਸੀਂ ਚੋਣ
ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਬਾਈਪਾਸ ਕਰ ਸਕਦੇ ਹੋ ਅਤੇ ਲੋੜੀਂਦੇ ਫੰਕਸ਼ਨ ਨੂੰ ਸਿੱਧਾ ਬੁਲਾ ਸਕਦੇ ਹੋ। ਇਹ ਲੇਟੈਂਸੀ ਨੂੰ
ਘਟਾਉਣ ਅਤੇ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਦੀ ਸਮੁੱਚੀ ਕੁਸ਼ਲਤਾ ਨੂੰ ਸੁਧਾਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ।

ਸੰਖੇਪ ਵਿੱਚ, AI-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਫੰਕਸ਼ਨ ਕਾਲਾਂ ਨੂੰ ਜ਼ਬਰਦਸਤੀ ਕਰਨ ਦੀ ਯੋਗਤਾ ਸਪਸ਼ਟ
ਨਿਯੰਤਰਣ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ, ਡੀਬੱਗਿੰਗ ਅਤੇ ਟੈਸਟਿੰਗ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦੀ ਹੈ, ਸੀਮਾ ਕੇਸਾਂ ਨੂੰ ਸੰਭਾਲਦੀ ਹੈ,
ਇਕਸਾਰਤਾ ਅਤੇ ਦੁਹਰਾਉਣਯੋਗਤਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਂਦੀ ਹੈ। ਇਹ ਤੁਹਾਡੇ ਸ਼ਸਤਰਾਗਾਰ ਵਿੱਚ ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ
ਟੂਲ ਹੈ, ਪਰ ਸਾਨੂੰ ਇਸ ਮਹੱਤਵਪੂਰਨ ਵਿਸ਼ੇਸ਼ਤਾ ਦੇ ਇੱਕ ਹੋਰ ਪਹਿਲੂ ਬਾਰੇ ਵਿਚਾਰ ਕਰਨ ਦੀ ਲੋੜ ਹੈ।

ਬਹੁਤ ਸਾਰੇ ਫੈਸਲਾ-ਲੈਣ ਦੇ ਮਾਮਲਿਆਂ ਵਿੱਚ, ਅਸੀਂ ਹਮੇਸ਼ਾ ਚਾਹੁੰਦੇ ਹਾਂ ਕਿ ਮਾਡਲ ਇੱਕ ਫੰਕਸ਼ਨ
ਕਾਲ ਕਰੇ ਅਤੇ ਸ਼ਾਇਦ ਕਦੇ ਵੀ ਨਹੀਂ ਚਾਹੁੰਦੇ ਕਿ ਮਾਡਲ ਸਿਰਫ਼ ਆਪਣੇ ਅੰਦਰੂਨੀ ਗਿਆਨ ਨਾਲ
ਜਵਾਬ ਦੇਵੇ। ਉਦਾਹਰਣ ਲਈ, ਜੇਕਰ ਤੁਸੀਂ ਵੱਖ-ਵੱਖ ਕੰਮਾਂ ਵਿੱਚ ਮਾਹਿਰ ਕਈ ਮਾਡਲਾਂ ਵਿਚਕਾਰ
ਰੂਟਿੰਗ ਕਰ ਰਹੇ ਹੋ (ਬਹੁਭਾਸ਼ੀ ਇਨਪੁਟ, ਗਣਿਤ, ਆਦਿ), ਤਾਂ ਤੁਸੀਂ ਬੇਨਤੀਆਂ ਨੂੰ ਸਹਾਇਕ ਮਾਡਲਾਂ
ਵਿੱਚੋਂ ਇੱਕ ਨੂੰ ਸੌਂਪਣ ਲਈ ਫੰਕਸ਼ਨ-ਕਾਲਿੰਗ ਮਾਡਲ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹੋ ਅਤੇ ਕਦੇ ਵੀ ਸੁਤੰਤਰ
ਤੌਰ ’ਤੇ ਜਵਾਬ ਨਹੀਂ ਦੇ ਸਕਦੇ।

ਟੂਲ ਵਰਤੋਂ 124

ਟੂਲ ਚੋਣ ਪੈਰਾਮੀਟਰ

GPT-4 ਅਤੇ ਹੋਰ ਭਾਸ਼ਾ ਮਾਡਲ ਜੋ ਫੰਕਸ਼ਨ ਕਾਲਿੰਗ ਦਾ ਸਮਰਥਨ ਕਰਦੇ ਹਨ, ਤੁਹਾਨੂੰ ਪੂਰਤੀ ਦੇ ਹਿੱਸੇ ਵਜੋਂ ਟੂਲ
ਦੀ ਵਰਤੋਂ ਦੀ ਲੋੜ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਲਈ tool_choice ਪੈਰਾਮੀਟਰ ਦਿੰਦੇ ਹਨ। ਇਸ ਪੈਰਾਮੀਟਰ ਦੇ ਤਿੰਨ
ਸੰਭਵ ਮੁੱਲ ਹਨ:

• auto AI ਨੂੰ ਕਿਸੇ ਟੂਲ ਦੀ ਵਰਤੋਂ ਕਰਨ ਜਾਂ ਸਿੱਧਾ ਜਵਾਬ ਦੇਣ ਦਾ ਪੂਰਾ ਵਿਵੇਕ ਦਿੰਦਾ ਹੈ
• required AI ਨੂੰ ਦੱਸਦਾ ਹੈ ਕਿ ਇਸਨੂੰ ਜਵਾਬ ਦੇਣ ਦੀ ਬਜਾਏ ਇੱਕ ਟੂਲ ਨੂੰ ਲਾਜ਼ਮੀ ਤੌਰ ’ਤੇ ਕਾਲ
ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ, ਪਰ ਟੂਲ ਦੀ ਚੋਣ AI ’ਤੇ ਛੱਡ ਦਿੰਦਾ ਹੈ।

• ਤੀਜਾ ਵਿਕਲਪ ਉਸ name_of_function ਦਾ ਪੈਰਾਮੀਟਰ ਸੈੱਟ ਕਰਨਾ ਹੈ ਜਿਸਨੂੰ ਤੁਸੀਂ ਜ਼ਬਰਦਸਤੀ
ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ। ਅਗਲੇ ਸੈਕਸ਼ਨ ਵਿੱਚ ਇਸ ਬਾਰੇ ਹੋਰ ਜਾਣਕਾਰੀ ਦਿੱਤੀ ਗਈ ਹੈ।

ਧਿਆਨਦਿਓ ਕਿ ਜੇਕਰ ਤੁਸੀਂ tool choice ਨੂੰ required ਤੇ ਸੈੱਟ ਕਰਦੇ ਹੋ, ਤਾਂ ਮਾਡਲ ਨੂੰ ਦਿੱਤੇ
ਗਏ ਫੰਕਸ਼ਨਾਂ ਵਿੱਚੋਂ ਸਭ ਤੋਂ ਢੁਕਵਾਂ ਫੰਕਸ਼ਨ ਚੁਣਨਾ ਪਵੇਗਾ, ਭਾਵੇਂ ਕੋਈ ਵੀ ਪ੍ਰੌਮਪਟ ਲਈ ਸਹੀ
ਨਾ ਹੋਵੇ। ਪ੍ਰਕਾਸ਼ਨ ਦੇ ਸਮੇਂ, ਮੈਨੂੰ ਕਿਸੇ ਅਜਿਹੇ ਮਾਡਲ ਬਾਰੇ ਨਹੀਂ ਪਤਾ ਜੋ ਖਾਲੀ tool_calls
ਜਵਾਬ ਦੇਵੇਗਾ, ਜਾਂ ਤੁਹਾਨੂੰ ਕਿਸੇ ਹੋਰ ਤਰੀਕੇ ਨਾਲ ਦੱਸੇਗਾ ਕਿ ਇਸਨੂੰ ਕੋਈ ਢੁਕਵਾਂ ਫੰਕਸ਼ਨ ਕਾਲ
ਕਰਨ ਲਈ ਨਹੀਂ ਮਿਲਿਆ।

ਢਾਂਚਾਗਤ ਆਉਟਪੁੱਟ ਲਈ ਫੰਕਸ਼ਨ ਨੂੰ ਮਜਬੂਰ ਕਰਨਾ

ਫੰਕਸ਼ਨ ਕਾਲ ਨੂੰ ਮਜਬੂਰ ਕਰਨ ਦੀ ਯੋਗਤਾ ਤੁਹਾਨੂੰ ਚੈਟ ਕੰਪਲੀਸ਼ਨ ਤੋਂ ਢਾਂਚਾਗਤ ਡਾਟਾ ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਤਰੀਕਾ
ਦਿੰਦੀ ਹੈ, ਬਜਾਏ ਇਸ ਦੇ ਕਿ ਤੁਹਾਨੂੰ ਇਸਨੂੰ ਪਲੇਨਟੈਕਸਟ ਜਵਾਬ ਵਿੱਚੋਂ ਖੁਦ ਕੱਢਣਾ ਪਵੇ।

ਢਾਂਚਾਗਤ ਆਉਟਪੁੱਟ ਲਈ ਫੰਕਸ਼ਨਾਂ ਨੂੰ ਮਜਬੂਰ ਕਰਨਾ ਇੰਨਾ ਮਹੱਤਵਪੂਰਨ ਕਿਉਂ ਹੈ? ਸਧਾਰਨ ਸ਼ਬਦਾਂ ਵਿੱਚ,
ਕਿਉਂਕਿ LLM ਦੇ ਆਉਟਪੁੱਟ ਤੋਂ ਢਾਂਚਾਗਤ ਡਾਟਾ ਕੱਢਣਾ ਬਹੁਤ ਮੁਸ਼ਕਲ ਹੈ। ਤੁਸੀਂ XML ਵਿੱਚ ਡਾਟਾ ਮੰਗ
ਕੇ ਆਪਣੀ ਜ਼ਿੰਦਗੀ ਥੋੜ੍ਹੀ ਆਸਾਨ ਬਣਾ ਸਕਦੇ ਹੋ, ਪਰ ਫਿਰ ਤੁਹਾਨੂੰ XML ਨੂੰ ਪਾਰਸ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਅਤੇ

ਟੂਲ ਵਰਤੋਂ 125

ਜਦੋਂ ਉਹ XML ਗਾਇਬ ਹੋਵੇ ਕਿਉਂਕਿ ਤੁਹਾਡੀ AI ਨੇ ਜਵਾਬ ਦਿੱਤਾ: “ਮੈਂ ਮਾਫ਼ੀ ਚਾਹੁੰਦਾ/ਦੀ ਹਾਂ, ਪਰ ਮੈਂ ਤੁਹਾਡੀ
ਬੇਨਤੀ ਕੀਤੀ ਡਾਟਾ ਤਿਆਰ ਨਹੀਂ ਕਰ ਸਕਦਾ/ਦੀ ਕਿਉਂਕਿ ਬਲਾ, ਬਲਾ, ਬਲਾ…” ਤਾਂ ਤੁਸੀਂ ਕੀ ਕਰਦੇ ਹੋ?

ਜਦੋਂ ਇਸ ਤਰ੍ਹਾਂ ਟੂਲਸ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋ:

• ਤੁਹਾਨੂੰ ਸ਼ਾਇਦ ਆਪਣੀ ਬੇਨਤੀ ਵਿੱਚ ਇੱਕ ਟੂਲ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ
• ਯਾਦ ਰੱਖੋ ਕਿ tool_choice ਪੈਰਾਮੀਟਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਸਦੇ ਫੰਕਸ਼ਨ ਦੀ ਵਰਤੋਂ ਨੂੰ ਮਜਬੂਰ ਕਰੋ।
• ਯਾਦ ਰੱਖੋ ਕਿ ਮਾਡਲ ਟੂਲ ਨੂੰ ਇਨਪੁੱਟ ਪਾਸ ਕਰੇਗਾ, ਇਸ ਲਈ ਟੂਲ ਦਾ ਨਾਮ ਅਤੇ ਵੇਰਵਾ ਤੁਹਾਡੇ ਨਜ਼ਰੀਏ
ਤੋਂ ਨਹੀਂ, ਬਲਕਿ ਮਾਡਲ ਦੇ ਨਜ਼ਰੀਏ ਤੋਂ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।

ਇਸ ਆਖਰੀ ਨੁਕਤੇ ਨੂੰ ਸਪੱਸ਼ਟਤਾ ਲਈ ਇੱਕ ਉਦਾਹਰਨ ਦੀ ਲੋੜ ਹੈ। ਮੰਨ ਲਓ ਕਿ ਤੁਸੀਂ AI ਨੂੰ ਯੂਜ਼ਰ ਟੈਕਸਟ
ਦਾ ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਲਈ ਕਹਿ ਰਹੇ ਹੋ। ਫੰਕਸ਼ਨ ਦਾ ਨਾਮ analyze_sentiment ਨਹੀਂ ਹੋਵੇਗਾ,
ਬਲਕਿ ਇਹ save_sentiment_analysis ਵਰਗਾ ਕੁਝ ਹੋਵੇਗਾ। ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ AI ਕਰ ਰਹੀ ਹੈ,
ਟੂਲ ਨਹੀਂ। ਟੂਲ ਸਿਰਫ਼ (AI ਦੇ ਨਜ਼ਰੀਏ ਤੋਂ) ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਨਤੀਜਿਆਂ ਨੂੰ ਸੇਵ ਕਰ ਰਿਹਾ ਹੈ।

ਇੱਥੇ Claude 3 ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇੱਕ ਚਿੱਤਰ ਦੇ ਸਾਰ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਢਾਂਚਾਗਤ JSON ਵਿੱਚ ਰਿਕਾਰਡ ਕਰਨ
ਦੀ ਉਦਾਹਰਨ ਹੈ, ਇਸ ਵਾਰ ਕਮਾਂਡ ਲਾਈਨ ਤੇ curl ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ:

1 curl https://api.anthropic.com/v1/messages \

2 --header "content-type: application/json" \

3 --header "x-api-key: $ANTHROPIC_API_KEY" \

4 --header "anthropic-version: 2023-06-01" \

5 --header "anthropic-beta: tools-2024-04-04" \

6 --data \

7 '{

8 "model": "claude-3-sonnet-20240229",

9 "max_tokens": 1024,

10 "tools": [{

11 "name": "record_summary",

12 "description": "Record summary of image into well-structured JSON.",

13 "input_schema": {

14 "type": "object",

15 "properties": {

16 "key_colors": {

ਟੂਲ ਵਰਤੋਂ 126

17 "type": "array",

18 "items": {

19 "type": "object",

20 "properties": {

21 "r": {

22 "type": "number",

23 "description": "red value [0.0, 1.0]"

24 },

25 "g": {

26 "type": "number",

27 "description": "green value [0.0, 1.0]"

28 },

29 "b": {

30 "type": "number",

31 "description": "blue value [0.0, 1.0]"

32 },

33 "name": {

34 "type": "string",

35 "description": "Human-readable color name

36 in snake_case, e.g.

37 \"olive_green\"or

38 \"turquoise\""

39 }

40 },

41 "required": ["r", "g", "b", "name"]

42 },

43 "description": "Key colors in the image. Four or less."

44 },

45 "description": {

46 "type": "string",

47 "description": "Image description. 1-2 sentences max."

48 },

49 "estimated_year": {

50 "type": "integer",

51 "description": "Estimated year that the image was taken,

52 if is it a photo. Only set this if the

53 image appears to be non-fictional.

54 Rough estimates are okay!"

55 }

56 },

57 "required": ["key_colors", "description"]

58 }

ਟੂਲ ਵਰਤੋਂ 127

59 }],

60 "messages": [

61 {

62 "role": "user",

63 "content": [

64 {

65 "type": "image",

66 "source": {

67 "type": "base64",

68 "media_type": "'$IMAGE_MEDIA_TYPE'",

69 "data": "'$IMAGE_BASE64'"

70 }

71 },

72 {

73 "type": "text",

74 "text": "Use `record_summary` to describe this image."

75 }

76]

77 }

78]

79 }'

ਦਿੱਤੀ ਗਈ ਉਦਾਹਰਣ ਵਿੱਚ, ਅਸੀਂ Anthropic ਦੇ Claude 3 ਮਾਡਲ ਦੀ ਵਰਤੋਂ ਇੱਕ ਚਿੱਤਰ ਦਾ ਢਾਂਚਾਗਤ
JSON ਸਾਰ ਤਿਆਰ ਕਰਨ ਲਈ ਕਰ ਰਹੇ ਹਾਂ। ਇਹ ਇਸ ਤਰ੍ਹਾਂ ਕੰਮ ਕਰਦਾ ਹੈ:

1. ਅਸੀਂ ਬੇਨਤੀ ਪੇਲੋਡ ਦੇ tools ਐਰੇ ਵਿੱਚ record_summary ਨਾਂ ਦਾ ਇੱਕ ਟੂਲ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ
ਹਾਂ। ਇਹ ਟੂਲ ਚਿੱਤਰ ਦੇ ਸਾਰ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਢਾਂਚਾਗਤ JSON ਵਿੱਚ ਰਿਕਾਰਡ ਕਰਨ ਲਈ ਜ਼ਿੰਮੇਵਾਰ
ਹੈ।

2. record_summary ਟੂਲ ਵਿੱਚ ਇੱਕ input_schema ਹੈ ਜੋ JSON ਆਉਟਪੁੱਟ ਦੀ ਉਮੀਦਿਤ
ਬਣਤਰ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਹ ਤਿੰਨ ਗੁਣਾਂ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦਾ ਹੈ:

• key_colors: ਚਿੱਤਰ ਵਿੱਚ ਮੁੱਖ ਰੰਗਾਂ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੀਆਂ ਵਸਤੂਆਂ ਦੀ ਐਰੇ। ਹਰ ਰੰਗ
ਦੀ ਵਸਤੂ ਵਿੱਚ ਲਾਲ, ਹਰਾ, ਅਤੇ ਨੀਲਾ ਮੁੱਲ (0.0 ਤੋਂ 1.0 ਤੱਕ) ਅਤੇ snake_case ਫਾਰਮੈਟ
ਵਿੱਚ ਮਨੁੱਖੀ-ਪੜ੍ਹਨਯੋਗ ਰੰਗ ਦਾ ਨਾਮ ਹੁੰਦਾ ਹੈ।

• description: ਚਿੱਤਰ ਦੇ ਸੰਖੇਪ ਵੇਰਵੇ ਲਈ ਇੱਕ ਸਟ੍ਰਿੰਗ ਗੁਣ, ਜੋ 1-2 ਵਾਕਾਂ ਤੱਕ ਸੀਮਿਤ
ਹੈ।

ਟੂਲ ਵਰਤੋਂ 128

• estimated_year: ਇੱਕ ਵਿਕਲਪਿਕ ਪੂਰਨ ਅੰਕ ਗੁਣ, ਜੇਕਰ ਇਹ ਗ਼ੈਰ-ਕਾਲਪਨਿਕ ਫੋਟੋ
ਜਾਪਦੀ ਹੈ ਤਾਂ ਇਸ ਦੇ ਖਿੱਚੇ ਜਾਣ ਦਾ ਅੰਦਾਜ਼ਨ ਸਾਲ।

3. messages ਐਰੇ ਵਿੱਚ, ਅਸੀਂ ਚਿੱਤਰ ਡੇਟਾ ਨੂੰ base64-ਇਨਕੋਡਿਡ ਸਟ੍ਰਿੰਗ ਦੇ ਰੂਪ ਵਿੱਚ ਮੀਡੀਆ
ਕਿਸਮ ਦੇ ਨਾਲ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਾਂ। ਇਹ ਮਾਡਲ ਨੂੰ ਇਨਪੁੱਟ ਦੇ ਹਿੱਸੇ ਵਜੋਂ ਚਿੱਤਰ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰਨ ਦੀ
ਆਗਿਆ ਦਿੰਦਾ ਹੈ।

4. ਅਸੀਂ Claude ਨੂੰ ਚਿੱਤਰ ਦਾ ਵਰਣਨ ਕਰਨ ਲਈ record_summary ਟੂਲ ਦੀ ਵਰਤੋਂ ਕਰਨ ਲਈ
ਵੀ ਪ੍ਰੇਰਿਤ ਕਰਦੇ ਹਾਂ।

5. ਜਦੋਂ ਬੇਨਤੀ Claude 3 ਮਾਡਲ ਨੂੰ ਭੇਜੀ ਜਾਂਦੀ ਹੈ, ਇਹ ਚਿੱਤਰ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਦਾ ਹੈ ਅਤੇ ਦੱਸੇ ਗਏ
input_schema ਦੇ ਆਧਾਰ ’ਤੇ ਇੱਕ JSON ਸਾਰ ਤਿਆਰ ਕਰਦਾ ਹੈ। ਮਾਡਲ ਮੁੱਖ ਰੰਗਾਂ ਨੂੰ ਕੱਢਦਾ
ਹੈ, ਸੰਖੇਪ ਵੇਰਵਾ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ, ਅਤੇ ਚਿੱਤਰ ਦੇ ਖਿੱਚੇ ਜਾਣ ਦੇ ਸਾਲ ਦਾ ਅੰਦਾਜ਼ਾ ਲਗਾਉਂਦਾ ਹੈ (ਜੇ
ਲਾਗੂ ਹੋਵੇ)।

6. ਤਿਆਰ ਕੀਤਾ JSON ਸਾਰ record_summary ਟੂਲ ਨੂੰ ਪੈਰਾਮੀਟਰਾਂ ਵਜੋਂ ਪਾਸ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ
ਚਿੱਤਰ ਦੀਆਂ ਮੁੱਖ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੀ ਇੱਕ ਢਾਂਚਾਗਤ ਪ੍ਰਤੀਨਿਧਤਾ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ।

ਚੰਗੀ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ input_schema ਨਾਲ record_summary ਟੂਲ ਦੀ ਵਰਤੋਂ ਕਰਕੇ, ਅਸੀਂ ਸਧਾਰਨ
ਟੈਕਸਟ ਕੱਢਣ ’ਤੇ ਨਿਰਭਰ ਕੀਤੇ ਬਿਨਾਂ ਇੱਕ ਚਿੱਤਰ ਦਾ ਢਾਂਚਾਗਤ JSON ਸਾਰ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਇਹ
ਪਹੁੰਚ ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦੀ ਹੈ ਕਿ ਆਉਟਪੁੱਟ ਇੱਕ ਸਥਿਰ ਫਾਰਮੈਟ ਦੀ ਪਾਲਣਾ ਕਰਦਾ ਹੈ ਅਤੇ ਐਪਲੀਕੇਸ਼ਨ
ਦੇ ਡਾਊਨਸਟ੍ਰੀਮ ਭਾਗਾਂ ਦੁਆਰਾ ਆਸਾਨੀ ਨਾਲ ਪਾਰਸ ਅਤੇ ਪ੍ਰੋਸੈਸ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

AI-ਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਟੂਲ ਦੀ ਵਰਤੋਂ ਵਿੱਚ ਫੰਕਸ਼ਨ ਕਾਲ ਨੂੰ ਮਜਬੂਰ ਕਰਨ ਅਤੇ ਉਮੀਦਿਤ ਆਉਟਪੁੱਟ
ਢਾਂਚੇ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨ ਦੀ ਯੋਗਤਾ ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਵਿਸ਼ੇਸ਼ਤਾ ਹੈ। ਇਹ ਡਿਵੈਲਪਰਾਂ ਨੂੰ ਤਿਆਰ ਕੀਤੇ
ਆਉਟਪੁੱਟ ’ਤੇ ਵਧੇਰੇ ਨਿਯੰਤਰਣ ਰੱਖਣ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਵਰਕਫਲੋ ਵਿੱਚ AI-ਤਿਆਰ ਕੀਤੇ ਡੇਟਾ
ਦੇ ਏਕੀਕਰਣ ਨੂੰ ਸਰਲ ਬਣਾਉਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ।

ਫੰਕਸ਼ਨ(ਨਾਂ) ਦੀ ਕਾਰਜਸ਼ੀਲਤਾ

ਤੁਸੀਂ ਫੰਕਸ਼ਨ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤੇ ਹਨ, ਅਤੇ ਆਪਣੇ AI ਨੂੰ ਪ੍ਰੇਰਿਤ ਕੀਤਾ ਹੈ, ਜਿਸਨੇ ਫੈਸਲਾ ਕੀਤਾ ਕਿ ਇਸਨੂੰ
ਤੁਹਾਡੇ ਫੰਕਸ਼ਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਨੂੰ ਕਾਲ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ। ਹੁਣ ਤੁਹਾਡੇ ਐਪਲੀਕੇਸ਼ਨ ਕੋਡ ਜਾਂ ਲਾਇਬ੍ਰੇਰੀ ਦਾ ਸਮਾਂ
ਹੈ, ਜੇਕਰ ਤੁਸੀਂ raix-rails ਵਰਗੀ ਰੂਬੀ ਜੈਮ ਦੀ ਵਰਤੋਂ ਕਰ ਰਹੇ ਹੋ, ਫੰਕਸ਼ਨ ਕਾਲ ਅਤੇ ਇਸਦੇ ਪੈਰਾਮੀਟਰਾਂ
ਨੂੰ ਤੁਹਾਡੇ ਐਪਲੀਕੇਸ਼ਨ ਕੋਡ ਵਿੱਚ ਸੰਬੰਧਿਤ ਕਾਰਜਾਂਵਿਧੀ ਵਿੱਚ ਭੇਜਣ ਲਈ।

https://github.com/OlympiaAI/raix-rails

ਟੂਲ ਵਰਤੋਂ 129

ਤੁਹਾਡਾ ਐਪਲੀਕੇਸ਼ਨ ਕੋਡ ਫੈਸਲਾ ਕਰਦਾ ਹੈ ਕਿ ਫੰਕਸ਼ਨ ਦੇ ਨਤੀਜਿਆਂ ਨਾਲ ਕੀ ਕਰਨਾ ਹੈ। ਸ਼ਾਇਦ ਕੀ ਕਰਨਾ
ਹੈ ਇਹ ਲੈਂਬਡਾ ਵਿੱਚ ਇੱਕ ਲਾਈਨ ਕੋਡ ਨੂੰ ਸ਼ਾਮਲ ਕਰਦਾ ਹੈ, ਜਾਂ ਸ਼ਾਇਦ ਇਹ ਬਾਹਰੀ ਏ.ਪੀ.ਆਈ. ਨੂੰ ਕਾਲ
ਕਰਨ ਨੂੰ ਸ਼ਾਮਲ ਕਰਦਾ ਹੈ। ਸ਼ਾਇਦ ਇਹ ਕਿਸੇ ਹੋਰ AI ਕੰਪੋਨੈਂਟ ਨੂੰ ਕਾਲ ਕਰਨ ਨੂੰ ਸ਼ਾਮਲ ਕਰਦਾ ਹੈ, ਜਾਂ ਸ਼ਾਇਦ
ਇਹ ਤੁਹਾਡੇ ਸਿਸਟਮ ਦੇ ਬਾਕੀ ਹਿੱਸੇ ਵਿੱਚ ਸੈਂਕੜੇ ਜਾਂ ਹਜ਼ਾਰਾਂ ਲਾਈਨਾਂ ਕੋਡ ਨੂੰ ਸ਼ਾਮਲ ਕਰਦਾ ਹੈ। ਇਹ ਪੂਰੀ ਤਰ੍ਹਾਂ
ਤੁਹਾਡੇ ’ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।

ਕਈ ਵਾਰ ਫੰਕਸ਼ਨ ਕਾਲ ਕਾਰਜ ਦਾ ਅੰਤ ਹੁੰਦਾ ਹੈ, ਪਰ ਜੇਕਰ ਨਤੀਜੇ ਵਿਚਾਰਾਂ ਦੀ ਲੜੀ ਵਿੱਚ ਜਾਣਕਾਰੀ ਦਰਸਾਉਂਦੇ
ਹਨ ਜੋ AI ਦੁਆਰਾ ਜਾਰੀ ਰੱਖੀ ਜਾਣੀ ਹੈ, ਤਾਂ ਤੁਹਾਡੇ ਐਪਲੀਕੇਸ਼ਨ ਕੋਡ ਨੂੰ ਕਾਰਜਕਾਰੀ ਨਤੀਜਿਆਂ ਨੂੰ ਚੈਟ
ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਵਿੱਚ ਪਾਉਣ ਅਤੇ AI ਨੂੰ ਪ੍ਰੋਸੈਸਿੰਗ ਜਾਰੀ ਰੱਖਣ ਦੇਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।

ਉਦਾਹਰਣ ਲਈ, ਇੱਥੇ ਇੱਕ Raix ਫੰਕਸ਼ਨ ਘੋਸ਼ਣਾ ਹੈ ਜੋ Olympia ਦੇ AccountManager ਦੁਆਰਾ
ਗਾਹਕ ਸੇਵਾ ਲਈ ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ ਦੇ ਹਿੱਸੇ ਵਜੋਂ ਸਾਡੇ ਗਾਹਕਾਂ ਨਾਲ ਸੰਚਾਰ ਕਰਨ ਲਈ
ਵਰਤੀ ਜਾਂਦੀ ਹੈ।

1 class AccountManager

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 # lots of other functions...

6

7 function :notify_account_owner,

8 "Don't share UUID. Mention dollars if subscription changed",

9 message: { type: "string" } do |arguments|

10 account.owner.freeform_notify(

11 subject: "Account Change Notification",

12 message: arguments[:message]

13)

14 "Notified account owner"

15 end

ਇਹ ਤੁਰੰਤ ਸਪੱਸ਼ਟ ਨਹੀਂ ਹੋ ਸਕਦਾ ਕਿ ਇੱਥੇ ਕੀ ਹੋ ਰਿਹਾ ਹੈ, ਇਸ ਲਈ ਮੈਂ ਇਸਨੂੰ ਵਿਸਥਾਰ ਨਾਲ ਸਮਝਾਵਾਂਗਾ।

1. AccountManager ਕਲਾਸ ਖਾਤਾ ਪ੍ਰਬੰਧਨ ਨਾਲ ਸਬੰਧਤ ਕਈ ਫੰਕਸ਼ਨਾਂ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੀ ਹੈ।
ਇਹ ਤੁਹਾਡੀ ਯੋਜਨਾ ਨੂੰ ਬਦਲ ਸਕਦੀ ਹੈ, ਟੀਮ ਮੈਂਬਰਾਂ ਨੂੰ ਜੋੜ ਅਤੇ ਹਟਾ ਸਕਦੀ ਹੈ, ਅਤੇ ਹੋਰ ਬਹੁਤ ਕੁਝ
ਕਰ ਸਕਦੀ ਹੈ।

https://github.com/OlympiaAI/raix-rails

ਟੂਲ ਵਰਤੋਂ 130

2. ਇਸਦੇ ਉੱਪਰਲੇ-ਪੱਧਰ ਦੇ ਨਿਰਦੇਸ਼ AccountManager ਨੂੰ ਦੱਸਦੇ ਹਨ ਕਿ ਇਸਨੂੰ notify_ac-
count_owner ਫੰਕਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਖਾਤਾ ਬਦਲਣ ਦੀ ਬੇਨਤੀ ਦੇ ਨਤੀਜਿਆਂ ਬਾਰੇ ਖਾਤਾ
ਮਾਲਕ ਨੂੰ ਸੂਚਿਤ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।

3. ਫੰਕਸ਼ਨ ਦੀ ਸੰਖੇਪ ਪਰਿਭਾਸ਼ਾ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ:

• ਨਾਮ
• ਵੇਰਵਾ
• ਪੈਰਾਮੀਟਰ message: { type: "string" }

• ਫੰਕਸ਼ਨ ਨੂੰ ਕਾਲ ਕਰਨ ’ਤੇ ਚਲਾਉਣ ਲਈ ਇੱਕ ਬਲਾਕ

ਫੰਕਸ਼ਨ ਬਲਾਕ ਦੇ ਨਤੀਜਿਆਂ ਨਾਲ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਨੂੰ ਅਪਡੇਟ ਕਰਨ ਤੋਂ ਬਾਅਦ, chat_completion ਮੈਥਡ
ਨੂੰ ਦੁਬਾਰਾ ਕਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਮੈਥਡ ਅੱਗੇ ਦੀ ਪ੍ਰੋਸੈਸਿੰਗ ਲਈ AI ਮਾਡਲ ਨੂੰ ਅਪਡੇਟ ਕੀਤੀ ਗੱਲਬਾਤ
ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਭੇਜਣ ਲਈ ਜ਼ਿੰਮੇਵਾਰ ਹੈ। ਅਸੀਂ ਇਸ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਗੱਲਬਾਤ ਲੂਪ ਕਹਿੰਦੇ ਹਾਂ।

ਜਦੋਂ AI ਮਾਡਲ ਨੂੰ ਅਪਡੇਟ ਕੀਤੀ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਨਾਲ ਇੱਕ ਨਵੀਂ ਚੈਟ ਪੂਰਤੀ ਬੇਨਤੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ, ਇਸਨੂੰ
ਪਹਿਲਾਂ ਚਲਾਏ ਗਏ ਫੰਕਸ਼ਨ ਦੇ ਨਤੀਜਿਆਂ ਤੱਕ ਪਹੁੰਚ ਹੁੰਦੀ ਹੈ। ਇਹ ਇਨ੍ਹਾਂ ਨਤੀਜਿਆਂ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰ
ਸਕਦਾ ਹੈ, ਉਨ੍ਹਾਂ ਨੂੰ ਆਪਣੀ ਫੈਸਲਾ ਲੈਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਸ਼ਾਮਲ ਕਰ ਸਕਦਾ ਹੈ, ਅਤੇ ਗੱਲਬਾਤ ਦੇ ਸੰਚਿਤ
ਸੰਦਰਭ ਦੇ ਆਧਾਰ ’ਤੇ ਅਗਲਾ ਜਵਾਬ ਜਾਂ ਕਾਰਵਾਈ ਤਿਆਰ ਕਰ ਸਕਦਾ ਹੈ। ਇਹ ਅਪਡੇਟ ਕੀਤੇ ਸੰਦਰਭ ਦੇ
ਆਧਾਰ ’ਤੇ ਵਾਧੂ ਫੰਕਸ਼ਨਾਂ ਨੂੰ ਚਲਾਉਣ ਦੀ ਚੋਣ ਕਰ ਸਕਦਾ ਹੈ, ਜਾਂ ਜੇਕਰ ਇਹ ਨਿਰਧਾਰਤ ਕਰਦਾ ਹੈ ਕਿ ਕੋਈ ਹੋਰ
ਫੰਕਸ਼ਨ ਕਾਲ ਜ਼ਰੂਰੀ ਨਹੀਂ ਹਨ ਤਾਂ ਇਹ ਮੂਲ ਪ੍ਰੌਮਪਟ ਦਾ ਅੰਤਿਮ ਜਵਾਬ ਤਿਆਰ ਕਰ ਸਕਦਾ ਹੈ।

ਮੂਲ ਪ੍ਰੌਮਪਟ ਦੀ ਵਿਕਲਪਿਕ ਨਿਰੰਤਰਤਾ

ਜਦੋਂ ਤੁਸੀਂ ਟੂਲ ਦੇ ਨਤੀਜੇ LLM ਨੂੰ ਵਾਪਸ ਭੇਜਦੇ ਹੋ ਅਤੇ ਮੂਲ ਪ੍ਰੌਮਪਟ ਦੀ ਪ੍ਰੋਸੈਸਿੰਗ ਜਾਰੀ ਰੱਖਦੇ ਹੋ, AI
ਉਨ੍ਹਾਂ ਨਤੀਜਿਆਂ ਦੀ ਵਰਤੋਂ ਵਾਧੂ ਫੰਕਸ਼ਨਾਂ ਨੂੰ ਕਾਲ ਕਰਨ ਜਾਂ ਅੰਤਿਮ ਸਧਾਰਨ ਟੈਕਸਟ ਜਵਾਬ ਤਿਆਰ ਕਰਨ
ਲਈ ਕਰਦਾ ਹੈ।

Cohere ਦੇ Command-R ਵਰਗੇ ਕੁਝ ਮਾਡਲ ਆਪਣੇ ਜਵਾਬਾਂ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੁਆਰਾ ਵਰਤੇ
ਗਏ ਵਿਸ਼ੇਸ਼ ਟੂਲਾਂ ਦਾ ਹਵਾਲਾ ਦੇ ਸਕਦੇ ਹਨ, ਜੋ ਵਾਧੂ ਪਾਰਦਰਸ਼ਤਾ ਅਤੇ ਪਤਾ ਲਗਾਉਣ ਦੀ ਯੋਗਤਾ
ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ।

https://openrouter.ai/models/cohere/command-r

ਟੂਲ ਵਰਤੋਂ 131

ਵਰਤੇ ਜਾ ਰਹੇ ਮਾਡਲ ’ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ, ਫੰਕਸ਼ਨ ਕਾਲ ਦੇ ਨਤੀਜੇ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਸੁਨੇਹਿਆਂ ਵਿੱਚ ਆਪਣੀ
ਖਾਸ ਭੂਮਿਕਾ ਨਾਲ ਰਹਿਣਗੇ ਜਾਂ ਕਿਸੇ ਹੋਰ ਸਿੰਟੈਕਸ ਵਿੱਚ ਝਲਕਣਗੇ। ਪਰ ਮਹੱਤਵਪੂਰਨ ਹਿੱਸਾ ਇਹ ਹੈ ਕਿ ਉਹ
ਡੇਟਾ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਵਿੱਚ ਹੋਵੇ, ਤਾਂ ਜੋ AI ਅੱਗੇ ਕੀ ਕਰਨਾ ਹੈ ਇਸ ਬਾਰੇ ਫੈਸਲਾ ਲੈਣ ਵੇਲੇ ਇਸ ’ਤੇ ਵਿਚਾਰ ਕਰ
ਸਕੇ।

ਇੱਕ ਆਮ (ਅਤੇ ਸੰਭਾਵੀ ਤੌਰ ’ਤੇ ਮਹਿੰਗੀ) ਗਲਤੀ ਦੀ ਸਥਿਤੀ ਹੈ ਚੈਟ ਨੂੰ ਜਾਰੀ ਰੱਖਣ ਤੋਂ ਪਹਿਲਾਂ
ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਵਿੱਚ ਫੰਕਸ਼ਨ ਦੇ ਨਤੀਜੇ ਜੋੜਨਾ ਭੁੱਲ ਜਾਣਾ। ਨਤੀਜੇ ਵਜੋਂ, AI ਨੂੰ ਲਗਭਗ ਉਸੇ
ਤਰ੍ਹਾਂ ਪ੍ਰੌਮਪਟ ਕੀਤਾ ਜਾਵੇਗਾ ਜਿਵੇਂ ਇਹ ਪਹਿਲੀ ਵਾਰ ਫੰਕਸ਼ਨ ਨੂੰ ਕਾਲ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਸੀ।
ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, AI ਦੇ ਨਜ਼ਰੀਏ ਤੋਂ, ਇਸ ਨੇ ਅਜੇ ਫੰਕਸ਼ਨ ਨੂੰ ਕਾਲ ਨਹੀਂ ਕੀਤਾ ਹੈ। ਇਸ ਲਈ
ਇਹ ਇਸਨੂੰ ਦੁਬਾਰਾ ਕਾਲ ਕਰਦਾ ਹੈ। ਅਤੇ ਦੁਬਾਰਾ। ਅਤੇ ਦੁਬਾਰਾ, ਜਦੋਂ ਤੱਕ ਤੁਸੀਂ ਇਸਨੂੰ ਰੋਕਦੇ
ਨਹੀਂ। ਉਮੀਦ ਹੈ ਕਿ ਤੁਹਾਡਾ ਸੰਦਰਭ ਬਹੁਤ ਵੱਡਾ ਨਹੀਂ ਸੀ, ਅਤੇ ਤੁਹਾਡਾ ਮਾਡਲ ਬਹੁਤ ਮਹਿੰਗਾ
ਨਹੀਂ ਸੀ!

ਟੂਲ ਦੀ ਵਰਤੋਂ ਲਈ ਸਰਵੋਤਮ ਅਭਿਆਸ

ਟੂਲ ਦੀ ਵਰਤੋਂ ਤੋਂ ਵੱਧ ਤੋਂ ਵੱਧ ਲਾਭ ਲੈਣ ਲਈ, ਹੇਠ ਲਿਖੇ ਸਰਵੋਤਮ ਅਭਿਆਸਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ।

ਵਰਣਨਾਤਮਕ ਪਰਿਭਾਸ਼ਾਵਾਂ

ਹਰੇਕ ਟੂਲ ਅਤੇ ਇਸਦੇ ਇਨਪੁੱਟ ਪੈਰਾਮੀਟਰਾਂ ਲਈ ਸਪੱਸ਼ਟ ਅਤੇ ਵਰਣਨਾਤਮਕ ਨਾਮ ਅਤੇ ਵੇਰਵੇ ਪ੍ਰਦਾਨ ਕਰੋ।
ਇਹ LLM ਨੂੰ ਹਰੇਕ ਟੂਲ ਦੇ ਉਦੇਸ਼ ਅਤੇ ਸਮਰੱਥਾਵਾਂ ਨੂੰ ਬਿਹਤਰ ਢੰਗ ਨਾਲ ਸਮਝਣ ਵਿੱਚ ਮਦਦ ਕਰਦਾ ਹੈ।

ਮੈਂ ਤਜਰਬੇ ਤੋਂ ਤੁਹਾਨੂੰ ਦੱਸ ਸਕਦਾ ਹਾਂ ਕਿ ਆਮ ਸਿਆਣਪ ਜੋ ਕਹਿੰਦੀ ਹੈ ਕਿ “ਨਾਮਕਰਨ ਮੁਸ਼ਕਲ ਹੈ” ਇੱਥੇ ਲਾਗੂ
ਹੁੰਦੀ ਹੈ; ਮੈਂ ਸਿਰਫ਼ ਫੰਕਸ਼ਨਾਂ ਦੇ ਨਾਮ ਜਾਂ ਵੇਰਵਿਆਂ ਦੀ ਸ਼ਬਦਾਵਲੀ ਬਦਲ ਕੇ LLMs ਤੋਂ ਬਹੁਤ ਵੱਖਰੇ ਨਤੀਜੇ
ਦੇਖੇ ਹਨ। ਕਈ ਵਾਰ ਵੇਰਵਿਆਂ ਨੂੰ ਹਟਾਉਣ ਨਾਲ ਪ੍ਰਦਰਸ਼ਨ ਸੁਧਰਦਾ ਹੈ।

ਟੂਲ ਵਰਤੋਂ 132

ਟੂਲ ਨਤੀਜਿਆਂ ਦੀ ਪ੍ਰੋਸੈਸਿੰਗ

ਜਦੋਂ ਟੂਲ ਦੇ ਨਤੀਜਿਆਂ ਨੂੰ LLM ਨੂੰ ਵਾਪਸ ਭੇਜਿਆ ਜਾਂਦਾ ਹੈ, ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਉਹ ਚੰਗੀ ਤਰ੍ਹਾਂ ਢਾਂਚਾਗਤ
ਅਤੇ ਵਿਆਪਕ ਹਨ। ਹਰੇਕ ਟੂਲ ਦੇ ਆਉਟਪੁੱਟ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਅਰਥਪੂਰਨ ਕੀਜ਼ ਅਤੇ ਵੈਲਿਊਜ਼ ਦੀ ਵਰਤੋਂ
ਕਰੋ। ਵੱਖ-ਵੱਖ ਫਾਰਮੈਟਾਂ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰੋ ਅਤੇ ਦੇਖੋ ਕਿ ਕਿਹੜਾ ਸਭ ਤੋਂ ਵਧੀਆ ਕੰਮ ਕਰਦਾ ਹੈ, JSON ਤੋਂ ਲੈ
ਕੇ ਸਧਾਰਨ-ਟੈਕਸਟ ਤੱਕ।

ਨਤੀਜਾ ਵਿਆਖਿਆਕਾਰ ਇਸ ਚੁਣੌਤੀ ਨੂੰ AI ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਨਤੀਜਿਆਂ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਅਤੇ ਮਨੁੱਖ-
ਅਨੁਕੂਲ ਵਿਆਖਿਆਵਾਂ, ਸੰਖੇਪ, ਜਾਂ ਮੁੱਖ ਸਿੱਟੇ ਪ੍ਰਦਾਨ ਕਰਕੇ ਹੱਲ ਕਰਦਾ ਹੈ।

ਗਲਤੀ ਸੰਭਾਲ

ਮਜ਼ਬੂਤ ਗਲਤੀ ਸੰਭਾਲ ਵਿਧੀਆਂ ਲਾਗੂ ਕਰੋ ਜੋ ਉਨ੍ਹਾਂ ਮਾਮਲਿਆਂ ਨੂੰ ਸੰਭਾਲ ਸਕਣ ਜਿੱਥੇ LLM ਟੂਲ ਕਾਲਾਂ ਲਈ
ਅਵੈਧ ਜਾਂ ਅਸਮਰਥਿਤ ਇਨਪੁੱਟ ਪੈਰਾਮੀਟਰ ਤਿਆਰ ਕਰ ਸਕਦਾ ਹੈ। ਟੂਲ ਚਲਾਉਣ ਦੌਰਾਨ ਹੋਣ ਵਾਲੀਆਂ ਕਿਸੇ
ਵੀ ਗਲਤੀਆਂ ਨੂੰ ਸੁਚੱਜੇ ਢੰਗ ਨਾਲ ਸੰਭਾਲੋ ਅਤੇ ਉਨ੍ਹਾਂ ਤੋਂ ਬਾਹਰ ਨਿਕਲੋ।

AI ਦੀ ਇੱਕ ਬਹੁਤ ਹੀ ਵਧੀਆ ਗੁਣਵੱਤਾ ਇਹ ਹੈ ਕਿ ਇਹ ਗਲਤੀ ਸੁਨੇਹਿਆਂ ਨੂੰ ਸਮਝਦੀ ਹੈ! ਜਿਸਦਾ ਮਤਲਬ
ਹੈ ਕਿ ਜੇ ਤੁਸੀਂ ਛੇਤੀ ਅਤੇ ਗੰਦੇ ਮਾਨਸਿਕਤਾ ਨਾਲ ਕੰਮ ਕਰ ਰਹੇ ਹੋ, ਤੁਸੀਂ ਬਸ ਟੂਲ ਦੀ ਲਾਗੂ ਕਰਨ ਵਿੱਚ ਪੈਦਾ
ਹੋਈਆਂ ਕਿਸੇ ਵੀ ਐਕਸੈਪਸ਼ਨ ਨੂੰ ਫੜ ਸਕਦੇ ਹੋ, ਅਤੇ ਇਸਨੂੰ AI ਨੂੰ ਵਾਪਸ ਭੇਜ ਸਕਦੇ ਹੋ ਤਾਂ ਜੋ ਇਹ ਜਾਣ ਸਕੇ
ਕਿ ਕੀ ਹੋਇਆ!

ਉਦਾਹਰਣ ਲਈ, ਇੱਥੇ Olympia ਵਿੱਚ google ਖੋਜ ਦੀ ਲਾਗੂ ਕਰਨ ਦਾ ਇੱਕ ਛੋਟਾ ਕੀਤਾ ਸੰਸਕਰਣ ਹੈ:

ਟੂਲ ਵਰਤੋਂ 133

1 def google_search(conversation, params)

2 conversation.update_cstatus("Searching Google...")

3 query = params[:query]

4 search = GoogleSearch.new(query).get_hash

5

6 conversation.update_cstatus("Summarizing results...")

7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)

8 rescue StandardError => e

9 Honeybadger.notify(e)

10 { error: e.message }.inspect

11 end

ਓਲੰਪੀਆ ਵਿੱਚ ਗੂਗਲ ਖੋਜਾਂ ਦੋ-ਪੜਾਵੀ ਪ੍ਰਕਿਰਿਆ ਹਨ। ਪਹਿਲਾਂ ਤੁਸੀਂ ਖੋਜ ਕਰਦੇ ਹੋ, ਫਿਰ ਨਤੀਜਿਆਂ ਦਾ ਸਾਰ
ਕੱਢਦੇ ਹੋ। ਜੇ ਕੋਈ ਅਸਫਲਤਾ ਆਉਂਦੀ ਹੈ, ਭਾਵੇਂ ਉਹ ਕੁਝ ਵੀ ਹੋਵੇ, ਗਲਤੀ ਦਾ ਸੁਨੇਹਾ ਪੈਕ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ
ਏ.ਆਈ. ਨੂੰ ਵਾਪਸ ਭੇਜ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਤਕਨੀਕ ਲਗਭਗ ਸਾਰੇ ਬੁੱਧੀਮਾਨ ਗਲਤੀ ਪ੍ਰਬੰਧਨ ਪੈਟਰਨਾਂ ਦਾ
ਆਧਾਰ ਹੈ।

ਉਦਾਹਰਨ ਲਈ, ਮੰਨ ਲਓ ਕਿ GoogleSearch ਏ.ਪੀ.ਆਈ. ਕਾਲ 503 ਸਰਵਿਸ ਅਣਉਪਲਬਧ ਗਲਤੀ
ਕਾਰਨ ਅਸਫਲ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਹ ਉੱਪਰਲੇ-ਪੱਧਰ ਦੇ ਰੈਸਕਿਊ ਤੱਕ ਪਹੁੰਚਦੀ ਹੈ, ਅਤੇ ਗਲਤੀ ਦਾ ਵੇਰਵਾ ਫੰਕਸ਼ਨ
ਕਾਲ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਏ.ਆਈ. ਨੂੰ ਵਾਪਸ ਭੇਜ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਵਰਤੋਂਕਾਰ ਨੂੰ ਖਾਲੀ ਸਕ੍ਰੀਨ ਜਾਂ ਤਕਨੀਕੀ ਗਲਤੀ
ਦੇਣ ਦੀ ਬਜਾਏ, ਏ.ਆਈ. ਕੁਝ ਅਜਿਹਾ ਕਹਿੰਦੀ ਹੈ “ਮੈਨੂੰ ਮਾਫ਼ ਕਰਨਾ, ਪਰ ਮੈਂ ਇਸ ਸਮੇਂ ਆਪਣੀਆਂ ਗੂਗਲ ਖੋਜ
ਸਮਰੱਥਾਵਾਂ ਤੱਕ ਪਹੁੰਚ ਨਹੀਂ ਕਰ ਸਕਦੀ। ਜੇ ਤੁਸੀਂ ਚਾਹੋ ਤਾਂ ਮੈਂ ਬਾਅਦ ਵਿੱਚ ਦੁਬਾਰਾ ਕੋਸ਼ਿਸ਼ ਕਰ ਸਕਦੀ ਹਾਂ।”

ਇਹ ਸਿਰਫ਼ ਇੱਕ ਚਲਾਕ ਚਾਲ ਜਾਪ ਸਕਦੀ ਹੈ, ਪਰ ਇੱਕ ਵੱਖਰੀ ਕਿਸਮ ਦੀ ਗਲਤੀ ’ਤੇ ਵਿਚਾਰ ਕਰੋ, ਜਿੱਥੇ
ਏ.ਆਈ. ਬਾਹਰੀ ਏ.ਪੀ.ਆਈ. ਨੂੰ ਕਾਲ ਕਰ ਰਹੀ ਸੀ ਅਤੇ ਏ.ਪੀ.ਆਈ. ਨੂੰ ਭੇਜੇ ਜਾਣ ਵਾਲੇ ਮਾਪਦੰਡਾਂ ’ਤੇ ਸਿੱਧਾ
ਨਿਯੰਤਰਣ ਸੀ। ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਇਸਨੇ ਉਹਨਾਂ ਮਾਪਦੰਡਾਂ ਨੂੰ ਤਿਆਰ ਕਰਨ ਦੇ ਤਰੀਕੇ ਵਿੱਚ ਕੋਈ ਗਲਤੀ ਕੀਤੀ
ਹੋਵੇ? ਬਸ਼ਰਤੇ ਕਿ ਬਾਹਰੀ ਏ.ਪੀ.ਆਈ. ਤੋਂ ਗਲਤੀ ਦਾ ਸੁਨੇਹਾ ਕਾਫ਼ੀ ਵਿਸਥਾਰਪੂਰਵਕ ਹੋਵੇ, ਗਲਤੀ ਦਾ ਸੁਨੇਹਾ
ਕਾਲ ਕਰਨ ਵਾਲੀ ਏ.ਆਈ. ਨੂੰ ਵਾਪਸ ਭੇਜਣ ਦਾ ਮਤਲਬ ਹੈ ਕਿ ਇਹ ਉਹਨਾਂ ਮਾਪਦੰਡਾਂ ’ਤੇ ਮੁੜ ਵਿਚਾਰ ਕਰ
ਸਕਦੀ ਹੈ ਅਤੇ ਦੁਬਾਰਾ ਕੋਸ਼ਿਸ਼ ਕਰ ਸਕਦੀ ਹੈ। ਆਪਣੇ ਆਪ। ਭਾਵੇਂ ਗਲਤੀ ਕੋਈ ਵੀ ਹੋਵੇ।

ਹੁਣ ਸੋਚੋ ਕਿ ਆਮ ਕੋਡ ਵਿੱਚ ਉਸ ਕਿਸਮ ਦੇ ਮਜ਼ਬੂਤ ਗਲਤੀ ਪ੍ਰਬੰਧਨ ਨੂੰ ਦੁਹਰਾਉਣ ਲਈ ਕੀ ਲੋੜੀਂਦਾ ਹੋਵੇਗਾ।
ਇਹ ਲਗਭਗ ਅਸੰਭਵ ਹੈ।

ਟੂਲ ਵਰਤੋਂ 134

ਲਗਾਤਾਰ ਸੁਧਾਰ

ਜੇਕਰ ਐਲ.ਐਲ.ਐਮ. ਢੁਕਵੇਂ ਟੂਲਜ਼ ਦੀ ਸਿਫਾਰਸ਼ ਨਹੀਂ ਕਰ ਰਿਹਾ ਜਾਂ ਘੱਟ-ਵਧੀਆ ਜਵਾਬ ਤਿਆਰ ਕਰ ਰਿਹਾ ਹੈ,
ਤਾਂ ਟੂਲ ਪਰਿਭਾਸ਼ਾਵਾਂ, ਵੇਰਵਿਆਂ, ਅਤੇ ਇਨਪੁੱਟ ਮਾਪਦੰਡਾਂ ’ਤੇ ਕੰਮ ਕਰਦੇ ਰਹੋ। ਦੇਖੇ ਗਏ ਵਿਵਹਾਰ ਅਤੇ ਲੋੜੀਂਦੇ
ਨਤੀਜਿਆਂ ਦੇ ਆਧਾਰ ’ਤੇ ਟੂਲ ਸੈੱਟਅੱਪ ਨੂੰ ਲਗਾਤਾਰ ਸੁਧਾਰੋ ਅਤੇ ਬਿਹਤਰ ਬਣਾਓ।

1. ਸਧਾਰਨ ਟੂਲ ਪਰਿਭਾਸ਼ਾਵਾਂ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ: ਸਪੱਸ਼ਟ ਅਤੇ ਸੰਖੇਪ ਨਾਮਾਂ, ਵੇਰਵਿਆਂ, ਅਤੇ ਇਨਪੁੱਟ ਮਾਪਦੰਡਾਂ
ਨਾਲ ਟੂਲਜ਼ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਕੇ ਸ਼ੁਰੂ ਕਰੋ। ਸ਼ੁਰੂ ਵਿੱਚ ਟੂਲ ਸੈੱਟਅੱਪ ਨੂੰ ਗੁੰਝਲਦਾਰ ਬਣਾਉਣ ਤੋਂ ਬਚੋ ਅਤੇ
ਮੁੱਖ ਕਾਰਜਸ਼ੀਲਤਾ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰੋ। ਉਦਾਹਰਨ ਲਈ, ਜੇਕਰ ਤੁਸੀਂ ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ
ਨਤੀਜਿਆਂ ਨੂੰ ਸੇਵ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ, ਤਾਂ ਇੱਕ ਮੁੱਢਲੀ ਪਰਿਭਾਸ਼ਾ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ ਜਿਵੇਂ:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze user-provided text and generate sentiment score",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "score": {

8 "type": "float",

9 "description": "sentiment score from -1 (negative) to 1 (positive)"

10 }

11 },

12 "required": ["score"]

13 }

14 }

2. ਟੈਸਟ ਅਤੇ ਨਿਰੀਖਣ ਕਰੋ: ਜਦੋਂ ਤੁਹਾਡੇ ਕੋਲ ਸ਼ੁਰੂਆਤੀ ਟੂਲ ਪਰਿਭਾਸ਼ਾਵਾਂ ਤਿਆਰ ਹੋਣ, ਵੱਖ-ਵੱਖ
ਪ੍ਰੌਮਪਟਸ ਨਾਲ ਉਨ੍ਹਾਂ ਦੀ ਜਾਂਚ ਕਰੋ ਅਤੇ ਦੇਖੋ ਕਿ LLM ਟੂਲ ਨਾਲ ਕਿਵੇਂ ਅੰਤਰਕਿਰਿਆ ਕਰਦਾ ਹੈ।
ਉਤਪੰਨ ਕੀਤੇ ਜਵਾਬਾਂ ਦੀ ਗੁਣਵੱਤਾ ਅਤੇ ਢੁਕਵੇਂਪਣ ਵੱਲ ਧਿਆਨ ਦਿਓ। ਜੇ LLM ਘੱਟ-ਵਧੀਆ ਜਵਾਬ
ਤਿਆਰ ਕਰ ਰਿਹਾ ਹੈ, ਤਾਂ ਟੂਲ ਪਰਿਭਾਸ਼ਾਵਾਂ ਨੂੰ ਸੁਧਾਰਨ ਦਾ ਸਮਾਂ ਆ ਗਿਆ ਹੈ।

3. ਵੇਰਵਿਆਂ ਨੂੰ ਸੁਧਾਰੋ: ਜੇ LLM ਕਿਸੇ ਟੂਲ ਦੇ ਉਦੇਸ਼ ਨੂੰ ਗਲਤ ਸਮਝ ਰਿਹਾ ਹੈ, ਤਾਂ ਟੂਲ ਦੇ ਵੇਰਵੇ ਨੂੰ
ਸੁਧਾਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ। LLM ਨੂੰ ਟੂਲ ਦੀ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਵਰਤੋਂ ਵਿੱਚ ਮਾਰਗਦਰਸ਼ਨ ਕਰਨ ਲਈ ਵਧੇਰੇ
ਸੰਦਰਭ, ਉਦਾਹਰਣਾਂ, ਜਾਂ ਸਪੱਸ਼ਟੀਕਰਨ ਪ੍ਰਦਾਨ ਕਰੋ। ਉਦਾਹਰਣ ਲਈ, ਤੁਸੀਂ ਭਾਵਨਾਤਮਕ ਵਿਸ਼ਲੇਸ਼ਣ

ਟੂਲ ਵਰਤੋਂ 135

ਟੂਲ ਦੇ ਵੇਰਵੇ ਨੂੰ ਵਿਸ਼ਲੇਸ਼ਣ ਕੀਤੇ ਜਾ ਰਹੇ ਟੈਕਸਟ ਦੀ ਭਾਵਨਾਤਮਕ ਸੁਰ ਨੂੰ ਵਧੇਰੇ ਖਾਸ ਤੌਰ ’ਤੇ ਸੰਬੋਧਿਤ
ਕਰਨ ਲਈ ਅੱਪਡੇਟ ਕਰ ਸਕਦੇ ਹੋ:

1 {

2 "name": "save_sentiment_score",

3 "description": "Determine the overall emotional tone of a piece of text,

4 such as customer reviews, social media posts, or feedback comments.",

5 ...

6 }

4. ਇਨਪੁੱਟ ਪੈਰਾਮੀਟਰ ਵਿਵਸਥਿਤ ਕਰੋ: ਜੇਕਰ ਐੱਲਐੱਲਐੱਮ ਕਿਸੇ ਟੂਲ ਲਈ ਅਯੋਗ ਜਾਂ ਅਪ੍ਰਸੰਗਿਕ
ਇਨਪੁੱਟ ਪੈਰਾਮੀਟਰ ਤਿਆਰ ਕਰ ਰਿਹਾ ਹੈ, ਤਾਂ ਪੈਰਾਮੀਟਰ ਪਰਿਭਾਸ਼ਾਵਾਂ ਨੂੰ ਵਿਵਸਥਿਤ ਕਰਨ ’ਤੇ ਵਿਚਾਰ
ਕਰੋ। ਅਪੇਖਿਤ ਇਨਪੁੱਟ ਫਾਰਮੈਟ ਨੂੰ ਸਪੱਸ਼ਟ ਕਰਨ ਲਈ ਵਧੇਰੇ ਵਿਸ਼ੇਸ਼ ਸੀਮਾਵਾਂ, ਪ੍ਰਮਾਣੀਕਰਨ ਨਿਯਮ,
ਜਾਂ ਉਦਾਹਰਣਾਂ ਸ਼ਾਮਲ ਕਰੋ।

5. ਫੀਡਬੈਕ ਦੇ ਆਧਾਰ ’ਤੇ ਸੁਧਾਰ ਕਰੋ: ਆਪਣੇ ਟੂਲਜ਼ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ’ਤੇ ਲਗਾਤਾਰ ਨਜ਼ਰ ਰੱਖੋ ਅਤੇ
ਉਪਭੋਗਤਾਵਾਂ ਜਾਂ ਹਿੱਸੇਦਾਰਾਂ ਤੋਂ ਫੀਡਬੈਕ ਇਕੱਠਾ ਕਰੋ। ਇਸ ਫੀਡਬੈਕ ਦੀ ਵਰਤੋਂ ਸੁਧਾਰ ਦੇ ਖੇਤਰਾਂ ਦੀ
ਪਛਾਣ ਕਰਨ ਅਤੇ ਟੂਲ ਪਰਿਭਾਸ਼ਾਵਾਂ ਵਿੱਚ ਲਗਾਤਾਰ ਸੁਧਾਰ ਕਰਨ ਲਈ ਕਰੋ। ਉਦਾਹਰਣ ਲਈ, ਜੇਕਰ
ਉਪਭੋਗਤਾ ਰਿਪੋਰਟ ਕਰਦੇ ਹਨ ਕਿ ਵਿਸ਼ਲੇਸ਼ਣ ਵਿਅੰਗ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਨਹੀਂ ਸੰਭਾਲ ਰਿਹਾ ਹੈ, ਤਾਂ ਤੁਸੀਂ
ਵੇਰਵੇ ਵਿੱਚ ਇੱਕ ਨੋਟ ਜੋੜ ਸਕਦੇ ਹੋ:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze the sentiment of a given text and return a sentiment

4 score between -1 (negative) and 1 (positive). Note: Sarcasm should be

5 considered negative.",

6 ...

7 }

ਆਪਣੀਆਂ ਟੂਲ ਪਰਿਭਾਸ਼ਾਵਾਂ ਨੂੰ ਦੇਖੇ ਗਏ ਵਿਵਹਾਰ ਅਤੇ ਫੀਡਬੈਕ ਦੇ ਆਧਾਰ ’ਤੇ ਲਗਾਤਾਰ ਸੁਧਾਰ ਕਰਕੇ, ਤੁਸੀਂ
ਆਪਣੀ AI-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਅਤੇ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਨੂੰ ਹੌਲੀ-ਹੌਲੀ ਬਿਹਤਰ ਬਣਾ ਸਕਦੇ
ਹੋ। ਟੂਲ ਪਰਿਭਾਸ਼ਾਵਾਂ ਨੂੰ ਸਪੱਸ਼ਟ, ਸੰਖੇਪ, ਅਤੇ ਖਾਸ ਕੰਮ ’ਤੇ ਕੇਂਦਰਿਤ ਰੱਖਣਾ ਯਾਦ ਰੱਖੋ। ਨਿਯਮਿਤ ਤੌਰ ’ਤੇ ਟੂਲ
ਇੰਟਰੈਕਸ਼ਨਾਂ ਦੀ ਜਾਂਚ ਅਤੇ ਪੁਸ਼ਟੀ ਕਰੋ ਤਾਂ ਜੋ ਇਹ ਯਕੀਨੀ ਬਣਾਇਆਜਾ ਸਕੇ ਕਿ ਉਹ ਤੁਹਾਡੇ ਇੱਛਤ ਨਤੀਜਿਆਂ
ਨਾਲ ਮੇਲ ਖਾਂਦੇ ਹਨ।

ਟੂਲ ਵਰਤੋਂ 136

ਟੂਲਜ਼ ਦੀ ਰਚਨਾ ਅਤੇ ਲੜੀਬੱਧਤਾ

ਟੂਲ ਵਰਤੋਂ ਦਾ ਸਭ ਤੋਂ ਸ਼ਕਤੀਸ਼ਾਲੀ ਪਹਿਲੂ, ਜਿਸ ਬਾਰੇ ਹੁਣ ਤੱਕ ਸਿਰਫ਼ ਸੰਕੇਤ ਕੀਤਾ ਗਿਆ ਹੈ, ਉਹ ਹੈ ਗੁੰਝਲਦਾਰ
ਕੰਮਾਂ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ ਕਈ ਟੂਲਾਂ ਨੂੰ ਇਕੱਠੇ ਜੋੜਨ ਅਤੇ ਲੜੀਬੱਧ ਕਰਨ ਦੀ ਯੋਗਤਾ। ਆਪਣੀਆਂ ਟੂਲ
ਪਰਿਭਾਸ਼ਾਵਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਇਨਪੁੱਟ/ਆਉਟਪੁੱਟ ਫਾਰਮੈਟਾਂ ਨੂੰ ਧਿਆਨ ਨਾਲ ਡਿਜ਼ਾਈਨ ਕਰਕੇ, ਤੁਸੀਂ ਮੁੜ-ਵਰਤੋਂ
ਯੋਗ ਬਿਲਡਿੰਗ ਬਲਾਕ ਬਣਾ ਸਕਦੇ ਹੋ ਜੋ ਵੱਖ-ਵੱਖ ਤਰੀਕਿਆਂ ਨਾਲ ਜੋੜੇ ਜਾ ਸਕਦੇ ਹਨ।

ਆਓ ਇੱਕ ਉਦਾਹਰਣ ’ਤੇ ਵਿਚਾਰ ਕਰੀਏ ਜਿੱਥੇ ਤੁਸੀਂ ਆਪਣੀ AI-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨ ਲਈ ਇੱਕ ਡਾਟਾ
ਵਿਸ਼ਲੇਸ਼ਣ ਪਾਈਪਲਾਈਨ ਬਣਾ ਰਹੇ ਹੋ। ਤੁਹਾਡੇ ਕੋਲ ਹੇਠ ਲਿਖੇ ਟੂਲ ਹੋ ਸਕਦੇ ਹਨ:

1. DataRetrieval: ਇੱਕ ਟੂਲ ਜੋ ਨਿਰਧਾਰਤ ਮਾਪਦੰਡਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਡਾਟਾਬੇਸ ਜਾਂ API ਤੋਂ ਡਾਟਾ
ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ।

2. DataProcessing: ਇੱਕ ਟੂਲ ਜੋ ਪ੍ਰਾਪਤ ਕੀਤੇ ਡਾਟਾ ’ਤੇ ਗਣਨਾਵਾਂ, ਰੂਪਾਂਤਰਣ, ਜਾਂ ਇਕੱਤਰੀਕਰਨ
ਕਰਦਾ ਹੈ।

3. DataVisualization: ਇੱਕ ਟੂਲ ਜੋ ਪ੍ਰੋਸੈਸ ਕੀਤੇ ਡਾਟਾ ਨੂੰ ਵਰਤੋਂਕਾਰ-ਅਨੁਕੂਲ ਫਾਰਮੈਟ ਵਿੱਚ ਪੇਸ਼
ਕਰਦਾ ਹੈ, ਜਿਵੇਂ ਕਿ ਚਾਰਟ ਜਾਂ ਗਰਾਫ।

ਇਨ੍ਹਾਂ ਟੂਲਾਂ ਨੂੰ ਇੱਕ ਲੜੀ ਵਿੱਚ ਜੋੜ ਕੇ, ਤੁਸੀਂ ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਬਣਾ ਸਕਦੇ ਹੋ ਜੋ ਪ੍ਰਸੰਗਿਕ
ਡਾਟਾ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ, ਇਸ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰਦਾ ਹੈ, ਅਤੇ ਨਤੀਜਿਆਂ ਨੂੰ ਅਰਥਪੂਰਨ ਢੰਗ ਨਾਲ ਪੇਸ਼ ਕਰਦਾ ਹੈ।
ਇੱਥੇ ਟੂਲ ਵਰਤੋਂ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਕਿਵੇਂ ਦਿਖਾਈ ਦੇ ਸਕਦਾ ਹੈ:

1. LLM ਇੱਕ ਖਾਸ ਉਤਪਾਦ ਸ਼੍ਰੇਣੀ ਲਈ ਵਿਕਰੀ ਡਾਟਾ ’ਤੇ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਦੀ ਮੰਗ ਕਰਦੇ ਵਰਤੋਂਕਾਰ ਦੇ
ਸਵਾਲ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ।

2. LLM DataRetrieval ਟੂਲ ਦੀ ਚੋਣ ਕਰਦਾ ਹੈ ਅਤੇ ਡਾਟਾਬੇਸ ਤੋਂ ਪ੍ਰਸੰਗਿਕ ਵਿਕਰੀ ਡਾਟਾ ਪ੍ਰਾਪਤ
ਕਰਨ ਲਈ ਢੁਕਵੇਂ ਇਨਪੁੱਟ ਪੈਰਾਮੀਟਰ ਤਿਆਰ ਕਰਦਾ ਹੈ।

3. ਪ੍ਰਾਪਤ ਕੀਤਾ ਡਾਟਾ DataProcessing ਟੂਲ ਨੂੰ “ਪਾਸ” ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਕੁੱਲ ਮਾਲੀਆ, ਔਸਤ
ਵਿਕਰੀ ਕੀਮਤ, ਅਤੇ ਵਿਕਾਸ ਦਰ ਵਰਗੇ ਮੈਟ੍ਰਿਕਸ ਦੀ ਗਣਨਾ ਕਰਦਾ ਹੈ।

4. ਫਿਰ ਪ੍ਰੋਸੈਸ ਕੀਤਾ ਡਾਟਾ DataVisualization ਟੂਲ ਦੁਆਰਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ
ਅੰਤਰਦ੍ਰਿਸ਼ਟੀਆਂ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਇੱਕ ਆਕਰਸ਼ਕ ਚਾਰਟ ਜਾਂ ਗਰਾਫ ਬਣਾਉਂਦਾ ਹੈ, ਅਤੇ ਚਾਰਟ
ਦਾ URL LLM ਨੂੰ ਵਾਪਸ ਭੇਜਦਾ ਹੈ।

ਟੂਲ ਵਰਤੋਂ 137

5. ਅੰਤ ਵਿੱਚ, LLM ਮਾਰਕਡਾਊਨ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਵਰਤੋਂਕਾਰ ਦੇ ਸਵਾਲ ਦਾ ਇੱਕ ਫਾਰਮੈਟਡ ਜਵਾਬ
ਤਿਆਰ ਕਰਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਵਿਜ਼ੂਅਲਾਈਜ਼ ਕੀਤਾ ਡਾਟਾ ਅਤੇ ਮੁੱਖ ਨਤੀਜਿਆਂ ਦਾ ਸਾਰ ਸ਼ਾਮਲ ਹੁੰਦਾ ਹੈ।

ਇਨ੍ਹਾਂ ਟੂਲਾਂ ਨੂੰ ਇਕੱਠੇ ਜੋੜ ਕੇ, ਤੁਸੀਂ ਇੱਕ ਨਿਰਵਿਘਨ ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਬਣਾ ਸਕਦੇ ਹੋ ਜੋ
ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਆਸਾਨੀ ਨਾਲ ਏਕੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਪਹੁੰਚ ਦੀ ਖੂਬਸੂਰਤੀ ਇਹ ਹੈ
ਕਿ ਹਰੇਕ ਟੂਲ ਨੂੰ ਸੁਤੰਤਰ ਤੌਰ ’ਤੇ ਵਿਕਸਿਤ ਅਤੇ ਟੈਸਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਅਤੇ ਫਿਰ ਵੱਖ-ਵੱਖ ਸਮੱਸਿਆਵਾਂ ਨੂੰ
ਹੱਲ ਕਰਨ ਲਈ ਵੱਖ-ਵੱਖ ਤਰੀਕਿਆਂ ਨਾਲ ਜੋੜਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਟੂਲਜ਼ ਦੀ ਸੁਚਾਰੂ ਕੰਪੋਜ਼ੀਸ਼ਨ ਅਤੇ ਚੇਨਿੰਗ ਨੂੰ ਸਮਰੱਥ ਬਣਾਉਣ ਲਈ, ਹਰ ਟੂਲ ਲਈ ਸਪੱਸ਼ਟ ਇਨਪੁੱਟ ਅਤੇ
ਆਉਟਪੁੱਟ ਫਾਰਮੈਟਸ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ।

ਉਦਾਹਰਣ ਵਜੋਂ, DataRetrieval ਟੂਲ ਡੇਟਾਬੇਸ ਕਨੈਕਸ਼ਨ ਵੇਰਵੇ, ਟੇਬਲ ਨਾਮ, ਅਤੇ ਕਵੇਰੀ ਸ਼ਰਤਾਂ ਵਰਗੇ
ਪੈਰਾਮੀਟਰ ਸਵੀਕਾਰ ਕਰ ਸਕਦਾ ਹੈ, ਅਤੇ ਨਤੀਜੇ ਨੂੰ ਇੱਕ ਸੰਰਚਿਤ JSONਆਬਜੈਕਟ ਵਜੋਂ ਵਾਪਸ ਕਰ ਸਕਦਾ ਹੈ।
DataProcessing ਟੂਲ ਫਿਰ ਇਸ JSON ਆਬਜੈਕਟ ਨੂੰ ਇਨਪੁੱਟ ਵਜੋਂ ਲੈ ਸਕਦਾ ਹੈ ਅਤੇ ਇੱਕ ਬਦਲਿਆ
ਹੋਇਆ JSONਆਬਜੈਕਟ ਆਉਟਪੁੱਟ ਵਜੋਂ ਤਿਆਰ ਕਰ ਸਕਦਾ ਹੈ। ਟੂਲਜ਼ ਵਿਚਕਾਰ ਡਾਟਾ ਪ੍ਰਵਾਹ ਨੂੰ ਮਿਆਰੀ
ਬਣਾ ਕੇ, ਤੁਸੀਂ ਅਨੁਕੂਲਤਾ ਅਤੇ ਮੁੜ-ਵਰਤੋਂ ਨੂੰ ਯਕੀਨੀ ਬਣਾ ਸਕਦੇ ਹੋ।

ਜਦੋਂ ਤੁਸੀਂ ਆਪਣੇ ਟੂਲ ਈਕੋਸਿਸਟਮ ਦੀ ਡਿਜ਼ਾਈਨ ਕਰਦੇ ਹੋ, ਇਸ ਬਾਰੇ ਸੋਚੋ ਕਿ ਵੱਖ-ਵੱਖ ਟੂਲਜ਼ ਨੂੰ ਤੁਹਾਡੀ
ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਆਮ ਵਰਤੋਂ ਦੇ ਕੇਸਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਕਿਵੇਂ ਜੋੜਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਉੱਚ-ਪੱਧਰੀ ਟੂਲਜ਼
ਬਣਾਉਣ ਬਾਰੇ ਵਿਚਾਰ ਕਰੋ ਜੋ ਆਮ ਵਰਕਫਲੋਜ਼ ਜਾਂ ਬਿਜ਼ਨਸ ਲੌਜਿਕ ਨੂੰ ਸ਼ਾਮਲ ਕਰਦੇ ਹਨ, ਜਿਸ ਨਾਲ LLM
ਲਈ ਉਨ੍ਹਾਂ ਨੂੰ ਚੁਣਨਾ ਅਤੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਵਰਤਣਾ ਆਸਾਨ ਹੋ ਜਾਂਦਾ ਹੈ।

ਯਾਦ ਰੱਖੋ, ਟੂਲ ਵਰਤੋਂ ਦੀ ਸ਼ਕਤੀ ਇਸ ਦੀ ਲਚਕਤਾ ਅਤੇ ਮੋਡੁਲਰਤਾ ਵਿੱਚ ਹੈ। ਗੁੰਝਲਦਾਰ ਕਾਰਜਾਂ ਨੂੰ ਛੋਟੇ, ਮੁੜ-
ਵਰਤੋਂ ਯੋਗ ਟੂਲਜ਼ ਵਿੱਚ ਵੰਡ ਕੇ, ਤੁਸੀਂ ਇੱਕ ਮਜ਼ਬੂਤ ਅਤੇ ਅਨੁਕੂਲ AI-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨ ਬਣਾ ਸਕਦੇ ਹੋ
ਜੋ ਵੱਖ-ਵੱਖ ਚੁਣੌਤੀਆਂ ਦਾ ਸਾਹਮਣਾ ਕਰ ਸਕਦੀ ਹੈ।

ਭਵਿੱਖ ਦੀਆਂ ਦਿਸ਼ਾਵਾਂ

ਜਿਵੇਂ-ਜਿਵੇਂ AI-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨ ਵਿਕਾਸ ਦਾ ਖੇਤਰ ਵਿਕਸਤ ਹੁੰਦਾ ਹੈ, ਅਸੀਂ ਟੂਲ ਵਰਤੋਂ ਸਮਰੱਥਾਵਾਂ ਵਿੱਚ
ਹੋਰ ਤਰੱਕੀ ਦੀ ਉਮੀਦ ਕਰ ਸਕਦੇ ਹਾਂ। ਕੁਝ ਸੰਭਾਵਿਤ ਭਵਿੱਖ ਦੀਆਂ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ:

ਟੂਲ ਵਰਤੋਂ 138

1. ਮਲਟੀ-ਹੌਪ ਟੂਲ ਵਰਤੋਂ: LLMs ਇਹ ਫੈਸਲਾ ਕਰਨ ਦੇ ਯੋਗ ਹੋ ਸਕਦੇ ਹਨ ਕਿ ਉਨ੍ਹਾਂ ਨੂੰ ਸੰਤੋਸ਼ਜਨਕ
ਜਵਾਬ ਤਿਆਰ ਕਰਨ ਲਈ ਕਿੰਨੀ ਵਾਰ ਟੂਲਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਨ ਦੀ ਲੋੜ ਹੈ। ਇਸ ਵਿੱਚ ਵਿਚਕਾਰਲੇ
ਨਤੀਜਿਆਂ ਦੇ ਆਧਾਰ ’ਤੇ ਟੂਲ ਚੋਣ ਅਤੇ ਕਾਰਜਾਂਵਿਤੀ ਦੇ ਕਈ ਗੇੜ ਸ਼ਾਮਲ ਹੋ ਸਕਦੇ ਹਨ।

2. ਪਹਿਲਾਂ-ਪਰਿਭਾਸ਼ਿਤ ਟੂਲਜ਼: AI ਪਲੇਟਫਾਰਮ ਪਹਿਲਾਂ-ਪਰਿਭਾਸ਼ਿਤ ਟੂਲਜ਼ ਦਾ ਸੈੱਟ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦੇ
ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਡਿਵੈਲਪਰਆਉਟ-ਆਫ-ਦ-ਬਾਕਸ ਵਰਤ ਸਕਦੇ ਹਨ, ਜਿਵੇਂ ਕਿ Python ਇੰਟਰਪ੍ਰੇਟਰ,
ਵੈੱਬ ਖੋਜ ਟੂਲਜ਼, ਜਾਂ ਆਮ ਯੂਟਿਲਿਟੀ ਫੰਕਸ਼ਨ।

3. ਨਿਰਵਿਘਨ ਏਕੀਕਰਣ: ਜਿਵੇਂ-ਜਿਵੇਂ ਟੂਲ ਵਰਤੋਂ ਵਧੇਰੇ ਪ੍ਰਚਲਿਤ ਹੁੰਦੀ ਹੈ, ਅਸੀਂ AI ਪਲੇਟਫਾਰਮਾਂ ਅਤੇ
ਪ੍ਰਸਿੱਧ ਵਿਕਾਸ ਫਰੇਮਵਰਕਾਂ ਵਿਚਕਾਰ ਬਿਹਤਰ ਏਕੀਕਰਣ ਦੀ ਉਮੀਦ ਕਰ ਸਕਦੇ ਹਾਂ, ਜੋ ਡਿਵੈਲਪਰਾਂ
ਲਈ ਆਪਣੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਟੂਲ ਵਰਤੋਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਨਾ ਆਸਾਨ ਬਣਾਉਂਦਾ ਹੈ।

ਟੂਲ ਵਰਤੋਂ ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਤਕਨੀਕ ਹੈ ਜੋ ਡਿਵੈਲਪਰਾਂ ਨੂੰ AI-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ LLMs ਦੀ ਪੂਰੀ
ਸਮਰੱਥਾ ਦਾ ਲਾਭ ਲੈਣ ਦੇ ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ। LLMs ਨੂੰ ਬਾਹਰੀ ਟੂਲਜ਼ ਅਤੇ ਸਰੋਤਾਂ ਨਾਲ ਜੋੜ ਕੇ, ਤੁਸੀਂ ਵਧੇਰੇ
ਗਤੀਸ਼ੀਲ, ਬੁੱਧੀਮਾਨ, ਅਤੇ ਸੰਦਰਭ-ਜਾਗਰੂਕ ਸਿਸਟਮ ਬਣਾ ਸਕਦੇ ਹੋ ਜੋ ਉਪਭੋਗਤਾ ਦੀਆਂ ਲੋੜਾਂ ਦੇ ਅਨੁਕੂਲ ਹੋ
ਸਕਦੇ ਹਨ ਅਤੇ ਮੁੱਲਵਾਨ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਅਤੇ ਕਾਰਵਾਈਆਂ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦੇ ਹਨ।

ਭਾਵੇਂ ਟੂਲ ਵਰਤੋਂ ਵਿਸ਼ਾਲ ਸੰਭਾਵਨਾਵਾਂ ਪੇਸ਼ ਕਰਦੀ ਹੈ, ਪਰ ਸੰਭਾਵੀ ਚੁਣੌਤੀਆਂ ਅਤੇ ਵਿਚਾਰਾਂ ਤੋਂ ਜਾਣੂ ਹੋਣਾ
ਮਹੱਤਵਪੂਰਨ ਹੈ। ਇੱਕ ਮੁੱਖ ਪਹਿਲੂ ਟੂਲ ਇੰਟਰੈਕਸ਼ਨਾਂ ਦੀ ਗੁੰਝਲਤਾ ਦਾ ਪ੍ਰਬੰਧਨ ਕਰਨਾ ਅਤੇ ਸਮੁੱਚੇ ਸਿਸਟਮ
ਦੀ ਸਥਿਰਤਾ ਅਤੇ ਵਿਸ਼ਵਾਸਯੋਗਤਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣਾ ਹੈ। ਤੁਹਾਨੂੰ ਉਨ੍ਹਾਂ ਸਥਿਤੀਆਂ ਨੂੰ ਸੰਭਾਲਣਾ ਪਵੇਗਾ
ਜਿੱਥੇ ਟੂਲ ਕਾਲਾਂ ਅਸਫਲ ਹੋ ਸਕਦੀਆਂ ਹਨ, ਅਣਚਿਤਵੇ ਨਤੀਜੇ ਵਾਪਸ ਕਰ ਸਕਦੀਆਂ ਹਨ, ਜਾਂ ਪ੍ਰਦਰਸ਼ਨ ’ਤੇ
ਪ੍ਰਭਾਵ ਪਾ ਸਕਦੀਆਂ ਹਨ। ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਹਾਨੂੰ ਟੂਲਜ਼ ਦੀ ਅਣਅਧਿਕਾਰਤ ਜਾਂ ਦੁਰਭਾਵਨਾਪੂਰਨ ਵਰਤੋਂ
ਨੂੰ ਰੋਕਣ ਲਈ ਸੁਰੱਖਿਆ ਅਤੇ ਪਹੁੰਚ ਨਿਯੰਤਰਣ ਉਪਾਵਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ। ਤੁਹਾਡੀ AI-ਸੰਚਾਲਿਤ
ਐਪਲੀਕੇਸ਼ਨ ਦੀ ਅਖੰਡਤਾ ਅਤੇ ਪ੍ਰਦਰਸ਼ਨ ਨੂੰ ਬਣਾਈ ਰੱਖਣ ਲਈ ਉਚਿਤ ਗਲਤੀ ਸੰਭਾਲ, ਲੌਗਿੰਗ, ਅਤੇ
ਨਿਗਰਾਨੀ ਵਿਧੀਆਂ ਮਹੱਤਵਪੂਰਨ ਹਨ।

ਜਿਵੇਂ ਤੁਸੀਂ ਆਪਣੇ ਪ੍ਰੋਜੈਕਟਾਂ ਵਿੱਚ ਸੰਦ ਦੀ ਵਰਤੋਂ ਦੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਦੀ ਖੋਜ ਕਰਦੇ ਹੋ, ਯਾਦ ਰੱਖੋ ਕਿ ਸਪੱਸ਼ਟ
ਉਦੇਸ਼ਾਂ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ, ਚੰਗੀ ਤਰ੍ਹਾਂ ਢਾਂਚਾਗਤ ਸੰਦ ਪਰਿਭਾਸ਼ਾਵਾਂ ਤਿਆਰ ਕਰੋ, ਅਤੇ ਫੀਡਬੈਕ ਅਤੇ ਨਤੀਜਿਆਂ ਦੇ
ਆਧਾਰ ’ਤੇ ਸੁਧਾਰ ਕਰਦੇ ਰਹੋ। ਸਹੀ ਪਹੁੰਚ ਅਤੇ ਮਾਨਸਿਕਤਾ ਨਾਲ, ਸੰਦ ਦੀ ਵਰਤੋਂ ਤੁਹਾਡੀਆਂ ਏ.ਆਈ.-ਸੰਚਾਲਿਤ
ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਨਵੀਨਤਾ ਅਤੇ ਮੁੱਲ ਦੇ ਨਵੇਂ ਪੱਧਰਾਂ ਨੂੰ ਖੋਲ੍ਹ ਸਕਦੀ ਹੈ

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ

HTTP ਉੱਤੇ ਸਟ੍ਰੀਮਿੰਗ ਡਾਟਾ, ਜਿਸਨੂੰ ਸਰਵਰ-ਭੇਜੀਆਂ ਘਟਨਾਵਾਂ (SSE) ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਇੱਕ ਅਜਿਹਾ
ਤਰੀਕਾ ਹੈ ਜਿੱਥੇ ਸਰਵਰ ਲਗਾਤਾਰ ਕਲਾਇੰਟ ਨੂੰ ਡਾਟਾ ਭੇਜਦਾ ਹੈ ਜਿਵੇਂ ਹੀ ਇਹ ਉਪਲਬਧ ਹੁੰਦਾ ਹੈ, ਬਿਨਾਂ ਕਲਾਇੰਟ
ਦੁਆਰਾ ਸਪੱਸ਼ਟ ਤੌਰ ’ਤੇ ਬੇਨਤੀ ਕੀਤੇ। ਜਿਵੇਂ-ਜਿਵੇਂ AI ਦਾ ਜਵਾਬ ਕ੍ਰਮਵਾਰ ਤਿਆਰ ਹੁੰਦਾ ਹੈ, AI ਦੇ ਆਉਟਪੁੱਟ
ਨੂੰ ਤਿਆਰ ਹੁੰਦੇ ਹੀ ਦਿਖਾ ਕੇ ਇੱਕ ਪ੍ਰਤੀਕਿਰਿਆਸ਼ੀਲ ਯੂਜ਼ਰ ਅਨੁਭਵ ਪ੍ਰਦਾਨ ਕਰਨਾ ਸਮਝਦਾਰੀ ਵਾਲੀ ਗੱਲ
ਹੈ। ਅਤੇ ਅਸਲ ਵਿੱਚ ਮੈਨੂੰ ਜਾਣਕਾਰੀ ਵਾਲੇ ਸਾਰੇ AI ਪ੍ਰਦਾਤਾ APIs ਆਪਣੇ ਪੂਰਤੀ ਐਂਡਪੁਆਇੰਟਸ ਵਿੱਚ ਇੱਕ
ਵਿਕਲਪ ਦੇ ਤੌਰ ’ਤੇ ਸਟ੍ਰੀਮਿੰਗ ਜਵਾਬ ਪੇਸ਼ ਕਰਦੇ ਹਨ।

ਇਸ ਕਿਤਾਬ ਵਿੱਚ ਇਹ ਅਧਿਆਇ ਟੂਲਜ਼ ਦੀ ਵਰਤੋਂ ਤੋਂ ਤੁਰੰਤ ਬਾਅਦ ਇੱਥੇ ਆਉਣ ਦਾ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਯੂਜ਼ਰਾਂ
ਨੂੰ ਲਾਈਵ AI ਜਵਾਬਾਂ ਨਾਲ ਟੂਲਜ਼ ਦੀ ਵਰਤੋਂ ਨੂੰ ਜੋੜਨਾ ਕਿੰਨਾ ਸ਼ਕਤੀਸ਼ਾਲੀ ਹੋ ਸਕਦਾ ਹੈ। ਅਜਿਹਾ ਕਰਨ ਨਾਲ
ਗਤੀਸ਼ੀਲ ਅਤੇ ਇੰਟਰਐਕਟਿਵ ਅਨੁਭਵਾਂ ਦੀ ਆਗਿਆ ਮਿਲਦੀ ਹੈ ਜਿੱਥੇ AI ਯੂਜ਼ਰ ਇਨਪੁੱਟ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰ
ਸਕਦਾ ਹੈ, ਆਪਣੀ ਮਰਜ਼ੀ ਨਾਲ ਵੱਖ-ਵੱਖ ਟੂਲਜ਼ ਅਤੇ ਫੰਕਸ਼ਨਾਂ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦਾ ਹੈ, ਅਤੇ ਫਿਰ ਰੀਅਲ-ਟਾਈਮ
ਜਵਾਬ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ।

ਇਸ ਨਿਰਵਿਘਨ ਇੰਟਰੈਕਸ਼ਨ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ, ਤੁਹਾਨੂੰ ਸਟ੍ਰੀਮ ਹੈਂਡਲਰ ਲਿਖਣੇ ਪੈਣਗੇ ਜੋ AI-ਚਲਾਏ

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ 140

ਟੂਲ ਫੰਕਸ਼ਨ ਕਾਲਾਂ ਦੇ ਨਾਲ-ਨਾਲ ਸਧਾਰਨ ਟੈਕਸਟ ਆਉਟਪੁੱਟ ਨੂੰ ਅੰਤਿਮ ਯੂਜ਼ਰ ਨੂੰ ਭੇਜ ਸਕਣ। ਟੂਲ ਫੰਕਸ਼ਨ ਨੂੰ
ਪ੍ਰੋਸੈਸ ਕਰਨ ਤੋਂ ਬਾਅਦ ਲੂਪ ਕਰਨ ਦੀ ਜ਼ਰੂਰਤ ਕੰਮ ਵਿੱਚ ਇੱਕ ਦਿਲਚਸਪ ਚੁਣੌਤੀ ਜੋੜਦੀ ਹੈ।

ReplyStream ਨੂੰ ਲਾਗੂ ਕਰਨਾ

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ ਨੂੰ ਕਿਵੇਂ ਲਾਗੂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਇਹ ਦਿਖਾਉਣ ਲਈ, ਇਹ ਅਧਿਆਇ Olympia
ਵਿੱਚ ਵਰਤੀ ਜਾਂਦੀ ReplyStream ਕਲਾਸ ਦੇ ਇੱਕ ਸਰਲ ਸੰਸਕਰਣ ਵਿੱਚ ਡੂੰਘਾ ਉਤਰੇਗਾ। ਇਸ ਕਲਾਸ ਦੇ
ਇੰਸਟੈਂਸ ruby-openai ਅਤੇ openrouter ਵਰਗੀਆਂ AI ਕਲਾਇੰਟ ਲਾਇਬ੍ਰੇਰੀਆਂ ਵਿੱਚ stream

ਪੈਰਾਮੀਟਰ ਵਜੋਂ ਪਾਸ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ।

ਇੱਥੇ ਦੱਸਿਆ ਗਿਆ ਹੈ ਕਿ ਮੈਂ Olympia ਦੇ PromptSubscriber ਵਿੱਚ ReplyStream ਦੀ ਵਰਤੋਂ
ਕਿਵੇਂ ਕਰਦਾ ਹਾਂ, ਜੋ Wisper ਰਾਹੀਂ ਨਵੇਂ ਯੂਜ਼ਰ ਸੁਨੇਹਿਆਂ ਦੀ ਸਿਰਜਣਾ ਲਈ ਸੁਣਦਾ ਹੈ।

1 class PromptSubscriber

2 include Raix::ChatCompletion

3 include Raix::PromptDeclarations

4

5 # many other declarations omitted...

6

7 prompt text: -> { user_message.content },

8 stream: -> { ReplyStream.new(self) },

9 until: -> { bot_message.complete? }

10

11 def message_created(message) # invoked by Wisper

12 return unless message.role.user? && message.content?

13

14 # rest of the implementation omitted...

context ਰੈਫਰੈਂਸ ਤੋਂ ਇਲਾਵਾ ਜੋ ਪ੍ਰੌਂਪਟ ਸਬਸਕ੍ਰਾਈਬਰ ਦੁਆਰਾ ਬਣਾਇਆ ਗਿਆ ਹੈ, ReplyStream
ਕਲਾਸ ਵਿੱਚ ਪ੍ਰਾਪਤ ਡਾਟਾ ਦਾ ਬਫਰ ਸਟੋਰ ਕਰਨ ਲਈ ਇੰਸਟੈਂਸ ਵੇਰੀਏਬਲ, ਅਤੇ ਸਟਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ ਦੌਰਾਨ
ਫੰਕਸ਼ਨ ਨਾਂਵਾਂ ਅਤੇ ਆਰਗੂਮੈਂਟਸ ਦਾ ਟਰੈਕ ਰੱਖਣ ਲਈ ਐਰੇ ਵੀ ਹਨ।

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ 141

1 class ReplyStream

2 attr_accessor :buffer, :f_name, :f_arguments, :context

3

4 delegate :bot_message, :dispatch, to: :context

5

6 def initialize(context)

7 self.context = context

8 self.buffer = []

9 self.f_name = []

10 self.f_arguments = []

11 end

12

13 def call(chunk, bytesize = nil)

14 # ...

15 end

16

17 # ...

18 end

initialize ਵਿਧੀ ReplyStream ਇੰਸਟੈਂਸ ਦੀ ਸ਼ੁਰੂਆਤੀ ਸਥਿਤੀ ਨੂੰ ਸਥਾਪਿਤ ਕਰਦੀ ਹੈ, ਬਫਰ,
ਸੰਦਰਭ, ਅਤੇ ਹੋਰ ਵੇਰੀਏਬਲਾਂ ਨੂੰ ਸ਼ੁਰੂ ਕਰਦੀ ਹੈ।

call ਵਿਧੀ ਸਟ੍ਰੀਮਿੰਗ ਡਾਟਾ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰਨ ਲਈ ਮੁੱਖ ਐਂਟਰੀ ਪੁਆਇੰਟ ਹੈ। ਇਹ ਡਾਟਾ ਦੇ chunk (ਜੋ
ਇੱਕ ਹੈਸ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆਗਿਆ ਹੈ) ਅਤੇ ਇੱਕ ਵਿਕਲਪਿਕ bytesize ਪੈਰਾਮੀਟਰ ਲੈਂਦੀ ਹੈ, ਜੋ ਸਾਡੀ
ਉਦਾਹਰਣ ਵਿੱਚ ਵਰਤਿਆ ਨਹੀਂ ਗਿਆ। ਇਸ ਵਿਧੀ ਦੇ ਅੰਦਰ, ਕਲਾਸ ਪ੍ਰਾਪਤ ਕੀਤੇ ਚੰਕ ਦੀ ਬਣਤਰ ਦੇ ਆਧਾਰ
’ਤੇ ਵੱਖ-ਵੱਖ ਸਥਿਤੀਆਂ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਪੈਟਰਨ ਮੈਚਿੰਗ ਦੀ ਵਰਤੋਂ ਕਰਦੀ ਹੈ।

ਚੰਕ ’ਤੇ deep_symbolize_keys ਨੂੰ ਕਾਲ ਕਰਨਾ ਪੈਟਰਨ ਮੈਚਿੰਗ ਨੂੰ ਵਧੇਰੇ ਸੁੰਦਰ ਬਣਾਉਣ
ਵਿੱਚ ਮਦਦ ਕਰਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਸਾਨੂੰ ਸਟ੍ਰਿੰਗਾਂ ਦੀ ਬਜਾਏ ਸਿੰਬਲਾਂ ’ਤੇ ਕੰਮ ਕਰਨ ਦਿੰਦਾ ਹੈ।

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ 142

1 def call(chunk, _bytesize)

2 case chunk.deep_symbolize_keys

3

4 in { # match function name

5 choices: [

6 {

7 delta: {

8 tool_calls: [

9 { index: index, function: {name: name} }

10]

11 }

12 }

13] }

14

15 f_name[index] = name

ਪਹਿਲਾ ਪੈਟਰਨ ਜਿਸਨੂੰ ਅਸੀਂ ਮੈਚ ਕਰ ਰਹੇ ਹਾਂ ਉਹ ਹੈ ਇੱਕ ਟੂਲ ਕਾਲ ਅਤੇ ਇਸਦੇ ਨਾਲ ਜੁੜਿਆ ਫੰਕਸ਼ਨ ਨਾਮ।
ਜੇ ਅਸੀਂ ਇਸਨੂੰ ਖੋਜਦੇ ਹਾਂ, ਤਾਂ ਅਸੀਂ ਇਸਨੂੰ f_name ਐਰੇ ਵਿੱਚ ਸਟੋਰ ਕਰ ਦਿੰਦੇ ਹਾਂ। ਅਸੀਂ ਫੰਕਸ਼ਨ ਨਾਮਾਂ ਨੂੰ
ਇੱਕ ਇੰਡੈਕਸਡ ਐਰੇ ਵਿੱਚ ਸਟੋਰ ਕਰਦੇ ਹਾਂ, ਕਿਉਂਕਿ ਮਾਡਲ ਸਮਾਨਾਂਤਰ ਫੰਕਸ਼ਨ ਕਾਲਿੰਗ ਕਰਨ ਦੇ ਯੋਗ ਹੈ, ਜੋ
ਇੱਕੋ ਸਮੇਂ ’ਤੇ ਕਈ ਫੰਕਸ਼ਨਾਂ ਨੂੰ ਚਲਾਉਣ ਲਈ ਭੇਜ ਸਕਦਾ ਹੈ।

ਸਮਾਨਾਂਤਰ ਫੰਕਸ਼ਨ ਕਾਲਿੰਗ ਇੱਕ AI ਮਾਡਲ ਦੀ ਉਹ ਯੋਗਤਾ ਹੈ ਜੋ ਕਈ ਫੰਕਸ਼ਨ ਕਾਲਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰ ਸਕਦੀ
ਹੈ, ਜਿਸ ਨਾਲ ਇਹਨਾਂ ਫੰਕਸ਼ਨ ਕਾਲਾਂ ਦੇ ਪ੍ਰਭਾਵ ਅਤੇ ਨਤੀਜੇ ਸਮਾਨਾਂਤਰ ਰੂਪ ਵਿੱਚ ਹੱਲ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ।
ਇਹ ਖਾਸ ਤੌਰ ’ਤੇ ਉਦੋਂ ਲਾਭਦਾਇਕ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਫੰਕਸ਼ਨਾਂ ਨੂੰ ਲੰਬਾ ਸਮਾਂ ਲੱਗਦਾ ਹੈ, ਅਤੇ ਇਹ API ਨਾਲ
ਰਾਊਂਡ ਟ੍ਰਿਪਸ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ, ਜੋ ਬਦਲੇ ਵਿੱਚ ਟੋਕਨ ਖਰਚ ਦੀ ਮਹੱਤਵਪੂਰਨ ਮਾਤਰਾ ਨੂੰ ਬਚਾ ਸਕਦਾ ਹੈ।

ਅਗਲਾ ਸਾਨੂੰ ਫੰਕਸ਼ਨ ਕਾਲਾਂ ਦੇ ਅਨੁਸਾਰੀ ਆਰਗੂਮੈਂਟਸ ਲਈ ਮੈਚ ਕਰਨਾ ਪਵੇਗਾ।

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ 143

1 in { # match arguments

2 choices: [

3 {

4 delta: {

5 tool_calls: [

6 {

7 index: index, function: {arguments: argument }

8 }

9]

10 }

11 }

12]}

13

14 f_arguments[index] ||= "" # initialize if not already

15 f_arguments[index] << argument

ਜਿਵੇਂ ਅਸੀਂ ਫੰਕਸ਼ਨ ਨਾਵਾਂ ਨੂੰ ਸੰਭਾਲਿਆ ਸੀ, ਅਸੀਂ ਆਰਗੂਮੈਂਟਸ ਨੂੰ ਇੱਕ ਇੰਡੈਕਸਡ ਐਰੇ ਵਿੱਚ ਸਟੋਰ ਕਰਦੇ ਹਾਂ।

ਅੱਗੇ, ਅਸੀਂ ਆਮ ਯੂਜ਼ਰ-ਫੇਸਿੰਗ ਸੁਨੇਹਿਆਂ ਦੀ ਭਾਲ ਕਰਦੇ ਹਾਂ, ਜੋ ਸਰਵਰ ਤੋਂ ਇੱਕ ਟੋਕਨ ਦੇ ਹਿਸਾਬ ਨਾਲ
ਆਉਣਗੇ ਅਤੇ new_content ਵੇਰੀਏਬਲ ਨੂੰ ਅਸਾਈਨ ਕੀਤੇ ਜਾਣਗੇ। ਸਾਨੂੰ finish_reason ’ਤੇ ਵੀ
ਨਜ਼ਰ ਰੱਖਣੀ ਪਵੇਗੀ। ਇਹ ਆਉਟਪੁੱਟ ਸੀਕੁਐਂਸ ਦੇ ਆਖਰੀ ਹਿੱਸੇ ਤੱਕ nil ਰਹੇਗਾ।

1 in {

2 choices: [

3 { delta: {content: new_content}, finish_reason: finish_reason }

4]}

5

6 # you could transmit every chunk to the user here...

7 buffer << new_content.to_s

8

9 if finish_reason.present?

10 finalize

11 elsif new_content.to_s.match?(/\n\n/)

12 send_to_client # ...or buffer and transmit once per paragraph

13 end

ਮਹੱਤਵਪੂਰਨ ਤੌਰ ’ਤੇ, ਅਸੀਂ ਏ.ਆਈ. ਮਾਡਲ ਪ੍ਰਦਾਤਾ ਦੁਆਰਾ ਭੇਜੇ ਗਏ ਗਲਤੀ ਸੁਨੇਹਿਆਂ ਨੂੰ ਸੰਭਾਲਣ ਲਈ
ਇੱਕ ਪੈਟਰਨ ਮੈਚ ਐਕਸਪ੍ਰੈਸ਼ਨ ਜੋੜਦੇ ਹਾਂ। ਸਥਾਨਕ ਵਿਕਾਸ ਵਾਤਾਵਰਣਾਂ ਵਿੱਚ, ਅਸੀਂ ਇੱਕ ਅਪਵਾਦ ਉਠਾਉਂਦੇ
ਹਾਂ, ਪਰ ਪ੍ਰੋਡਕਸ਼ਨ ਵਿੱਚ, ਅਸੀਂ ਗਲਤੀ ਨੂੰ ਲੌਗ ਕਰਦੇ ਹਾਂ ਅਤੇ ਅੰਤਮ ਕਰਦੇ ਹਾਂ।

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ 144

1 in { error: { message: } }

2 if Rails.env.local?

3 raise message

4 else

5 Honeybadger.notify("AI Error: #{message}")

6 finalize

7 end

ਕੇਸ ਦਾ ਆਖਰੀ ਹੋਰ ਕਲਾਜ਼ ਉਦੋਂ ਚੱਲੇਗਾ ਜਦੋਂ ਪਿਛਲੇ ਕੋਈ ਵੀ ਪੈਟਰਨ ਮੇਲ ਨਹੀਂ ਖਾਂਦੇ। ਇਹ ਸਿਰਫ਼ ਇੱਕ
ਸੁਰੱਖਿਆ ਉਪਾਅ ਹੈ ਤਾਂ ਜੋ ਜੇਕਰ ਏ.ਆਈ. ਮਾਡਲ ਸਾਨੂੰ ਅਣਪਛਾਤੇ ਟੁਕੜੇ ਭੇਜਣਾ ਸ਼ੁਰੂ ਕਰ ਦੇਵੇ ਤਾਂ ਸਾਨੂੰ ਇਸ
ਬਾਰੇ ਪਤਾ ਲੱਗ ਜਾਵੇ।

1 else

2 Honeybadger.notify("Unrecognized Chunk: #{chunk}")

3 end

4 end

send_to_client ਮੈਥਡ ਬਫ਼ਰਡ ਸਮੱਗਰੀ ਨੂੰ ਕਲਾਇੰਟ ਨੂੰ ਭੇਜਣ ਲਈ ਜ਼ਿੰਮੇਵਾਰ ਹੈ। ਇਹ ਜਾਂਚ ਕਰਦਾ ਹੈ
ਕਿ ਬਫ਼ਰ ਖਾਲੀ ਨਹੀਂ ਹੈ, ਬੋਟ ਸੁਨੇਹੇ ਦੀ ਸਮੱਗਰੀ ਨੂੰ ਅੱਪਡੇਟ ਕਰਦਾ ਹੈ, ਬੋਟ ਸੁਨੇਹੇ ਨੂੰ ਰੈਂਡਰ ਕਰਦਾ ਹੈ, ਅਤੇ ਡਾਟਾ
ਸਥਿਰਤਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ ਸਮੱਗਰੀ ਨੂੰ ਡਾਟਾਬੇਸ ਵਿੱਚ ਸੰਭਾਲਦਾ ਹੈ।

1 def send_to_client

2 # no need to process pure whitespace

3 return if buffer.join.squish.blank?

4

5 # set the buffer content on the bot message

6 content = buffer.join

7 bot_message.content = content

8

9 # save to database so that we never lose data

10 # even if the stream doesn't terminate correctly

11 bot_message.update_column(:content, content)

12

13 # update content via websocket

14 ConversationRenderer.update(bot_message)

15 end

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ 145

finalize ਮੈਥਡ ਨੂੰ ਉਦੋਂ ਬੁਲਾਇਆ ਜਾਂਦਾ ਹੈ ਜਦੋਂ ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ ਪੂਰੀ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਹ ਫੰਕਸ਼ਨ ਕਾਲਜ਼
ਨੂੰ ਡਿਸਪੈਚ ਕਰਦਾ ਹੈ ਜੇਕਰ ਸਟ੍ਰੀਮ ਦੌਰਾਨ ਕੋਈ ਪ੍ਰਾਪਤ ਹੋਏ ਸਨ, ਬੋਟ ਸੁਨੇਹੇ ਨੂੰ ਅੰਤਿਮ ਸਮੱਗਰੀ ਅਤੇ ਹੋਰ
ਸੰਬੰਧਿਤ ਜਾਣਕਾਰੀ ਨਾਲ ਅੱਪਡੇਟ ਕਰਦਾ ਹੈ, ਅਤੇ ਫੰਕਸ਼ਨ ਕਾਲ ਇਤਿਹਾਸ ਨੂੰ ਰੀਸੈੱਟ ਕਰਦਾ ਹੈ।

1 def finalize

2 if f_name.any?

3 f_name.each_with_index do |name, index|

4 # takes care of calling the function wherever it's implemented

5 dispatch(name:, arguments: JSON.parse(f_arguments[index]))

6 end

7

8 # reset the function call history

9 f_name.clear

10 f_arguments.clear

11 else

12 content = buffer.join.presence

13 bot_message.update!(content:, complete: true)

14 ConversationRenderer.update(bot_message)

15 end

16 end

ਜੇਕਰ ਮਾਡਲ ਕੋਈ ਫੰਕਸ਼ਨ ਕਾਲ ਕਰਨ ਦਾ ਫੈਸਲਾ ਕਰਦਾ ਹੈ, ਤਾਂ ਤੁਹਾਨੂੰ ਉਸ ਫੰਕਸ਼ਨ ਕਾਲ (ਨਾਮ ਅਤੇ
ਆਰਗੂਮੈਂਟਸ) ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ “ਡਿਸਪੈਚ” ਕਰਨ ਦੀ ਲੋੜ ਹੈ ਕਿ ਇਹ ਚੱਲ ਜਾਵੇ ਅਤੇ function_call
ਅਤੇ function_result ਸੁਨੇਹੇ ਗੱਲਬਾਤ ਦੀ ਲਿਖਤ ਵਿੱਚ ਜੋੜੇ ਜਾਣ।

ਮੇਰੇ ਤਜਰਬੇ ਵਿੱਚ, ਟੂਲ ਇੰਪਲੀਮੈਂਟੇਸ਼ਨਾਂ ’ਤੇ ਭਰੋਸਾ ਕਰਨ ਦੀ ਬਜਾਏ ਆਪਣੇ ਕੋਡਬੇਸ ਵਿੱਚ ਇੱਕ ਥਾਂ ’ਤੇ ਫੰਕਸ਼ਨ
ਸੁਨੇਹਿਆਂ ਦੀ ਰਚਨਾ ਨੂੰ ਸੰਭਾਲਣਾ ਬਿਹਤਰ ਹੈ। ਇਹ ਸਾਫ਼ ਸੁਥਰਾ ਹੈ, ਪਰ ਇੱਕ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਵਿਹਾਰਕ
ਕਾਰਨ ਵੀ ਹੈ: ਜੇਕਰ ਏਆਈ ਮਾਡਲ ਕੋਈ ਫੰਕਸ਼ਨ ਕਾਲ ਕਰਦਾ ਹੈ, ਅਤੇ ਜਦੋਂ ਤੁਸੀਂ ਲੂਪ ਕਰਦੇ ਹੋ ਤਾਂ ਲਿਖਤ ਵਿੱਚ
ਨਤੀਜੇ ਵਾਲੇ ਕਾਲ ਅਤੇ ਨਤੀਜੇ ਦੇ ਸੁਨੇਹੇ ਨਹੀਂ ਦੇਖਦਾ, ਇਹ ਉਸੇ ਫੰਕਸ਼ਨ ਨੂੰ ਦੁਬਾਰਾ ਕਾਲ ਕਰੇਗਾ। ਸੰਭਾਵੀ ਤੌਰ
’ਤੇ ਹਮੇਸ਼ਾ ਲਈ। ਯਾਦ ਰੱਖੋ ਕਿ ਏਆਈ ਪੂਰੀ ਤਰ੍ਹਾਂ ਸਟੇਟਲੈੱਸ ਹੈ, ਇਸ ਲਈ ਜਦੋਂ ਤੱਕ ਤੁਸੀਂ ਉਹਨਾਂ ਫੰਕਸ਼ਨ
ਕਾਲਾਂ ਨੂੰ ਵਾਪਸ ਇਸ ਨੂੰ ਨਹੀਂ ਦਿਖਾਉਂਦੇ, ਉਹ ਹੋਈਆਂ ਹੀ ਨਹੀਂ।

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ 146

1 # PromptSubscriber#dispatch

2

3 def dispatch(name:, arguments:)

4 # adds a function_call message to the conversation transcript

5 # plus dispatches to tool and returns result

6 conversation.function_call!(name, arguments).then do |result|

7 # add function result message to the transcript

8 conversation.function_result!(name, result)

9 end

10 end

ਫੰਕਸ਼ਨ ਕਾਲ ਹਿਸਟਰੀ ਨੂੰ ਡਿਸਪੈਚ ਕਰਨ ਤੋਂ ਬਾਅਦ ਸਾਫ਼ ਕਰਨਾ ਓਨਾ ਹੀ ਮਹੱਤਵਪੂਰਨ ਹੈ ਜਿੰਨਾ
ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਕਿ ਕਾਲ ਅਤੇ ਨਤੀਜੇ ਤੁਹਾਡੇ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਣ, ਤਾਂ ਜੋ ਤੁਸੀਂ
ਹਰ ਵਾਰ ਲੂਪ ਕਰਨ ’ਤੇ ਉਹੀ ਫੰਕਸ਼ਨ ਵਾਰ-ਵਾਰ ਨਾ ਕਾਲ ਕਰਦੇ ਰਹੋ।

“ਗੱਲਬਾਤ ਲੂਪ”

ਮੈਂ ਲੂਪਿੰਗ ਦਾ ਜ਼ਿਕਰ ਕਰਦਾ ਰਹਿੰਦਾ ਹਾਂ, ਪਰ ਜੇ ਤੁਸੀਂ ਫੰਕਸ਼ਨ ਕਾਲਿੰਗ ਵਿੱਚ ਨਵੇਂ ਹੋ, ਤਾਂ ਇਹ ਸਪੱਸ਼ਟ ਨਹੀਂ
ਹੋ ਸਕਦਾ ਕਿ ਸਾਨੂੰ ਲੂਪ ਦੀ ਲੋੜ ਕਿਉਂ ਹੈ। ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਜਦੋਂ AI ਤੁਹਾਨੂੰ ਆਪਣੀ ਤਰਫ਼ੋਂ ਟੂਲ ਫੰਕਸ਼ਨਾਂ ਨੂੰ
ਚਲਾਉਣ ਲਈ “ਪੁੱਛਦੀ” ਹੈ, ਤਾਂ ਇਹ ਜਵਾਬ ਦੇਣਾ ਬੰਦ ਕਰ ਦੇਵੇਗੀ। ਇਹ ਤੁਹਾਡੀ ਜ਼ਿੰਮੇਵਾਰੀ ਹੈ ਕਿ ਤੁਸੀਂ ਉਹਨਾਂ
ਫੰਕਸ਼ਨਾਂ ਨੂੰ ਚਲਾਓ, ਨਤੀਜੇ ਇਕੱਠੇ ਕਰੋ, ਨਤੀਜਿਆਂ ਨੂੰ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਵਿੱਚ ਜੋੜੋ, ਅਤੇ ਫਿਰ ਨਵੇਂ ਫੰਕਸ਼ਨ ਕਾਲਾਂ
ਜਾਂ ਯੂਜ਼ਰ-ਫੇਸਿੰਗ ਨਤੀਜੇ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਮੂਲ ਪ੍ਰੌਮਪਟ ਨੂੰ ਦੁਬਾਰਾ ਸਬਮਿਟ ਕਰੋ।

PromptSubscriber ਕਲਾਸ ਵਿੱਚ, ਅਸੀਂ PromptDeclarations ਮੌਡਿਊਲ ਤੋਂ prompt ਮੈਥਡ
ਦੀ ਵਰਤੋਂ ਗੱਲਬਾਤ ਲੂਪ ਦੇ ਵਿਵਹਾਰ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਲਈ ਕਰਦੇ ਹਾਂ। until ਪੈਰਾਮੀਟਰ ਨੂੰ -> {

bot_message.complete? } ’ਤੇ ਸੈੱਟ ਕੀਤਾ ਗਿਆ ਹੈ, ਜਿਸਦਾ ਮਤਲਬ ਹੈ ਕਿ ਲੂਪ ਉਦੋਂ ਤੱਕ ਜਾਰੀ
ਰਹੇਗਾ ਜਦੋਂ ਤੱਕ bot_message ਨੂੰ ਪੂਰਾ ਹੋਇਆ ਮਾਰਕ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ।

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ 147

1 prompt text: -> { user_message.content },

2 stream: -> { ReplyStream.new(self) },

3 until: -> { bot_message.complete? }

ਪਰ bot_message ਨੂੰ ਪੂਰਾ ਕਦੋਂ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ? ਜੇ ਤੁਸੀਂ ਭੁੱਲ ਗਏ ਹੋ, ਤਾਂ finalize
ਮੈਥਡ ਦੀ ਲਾਈਨ 13 ਵੱਲ ਮੁੜ ਕੇ ਦੇਖੋ।

ਆਓ ਪੂਰੀ ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ ਲੌਜਿਕ ਦੀ ਸਮੀਖਿਆ ਕਰੀਏ।

1. PromptSubscriber ਨੂੰ message_created ਮੈਥਡ ਰਾਹੀਂ ਇੱਕ ਨਵਾਂ ਯੂਜ਼ਰ ਮੈਸੇਜ ਪ੍ਰਾਪਤ
ਹੁੰਦਾ ਹੈ, ਜੋ ਕਿ Wisper pub/sub ਸਿਸਟਮ ਦੁਆਰਾ ਹਰ ਵਾਰ ਚਲਾਇਆ ਜਾਂਦਾ ਹੈ ਜਦੋਂ ਅੰਤਿਮ
ਯੂਜ਼ਰ ਇੱਕ ਨਵਾਂ ਪ੍ਰੌਮਪਟ ਬਣਾਉਂਦਾ ਹੈ।

2. prompt ਕਲਾਸ ਮੈਥਡ PromptSubscriber ਲਈ ਚੈਟ ਕੰਪਲੀਸ਼ਨ ਲੌਜਿਕ ਦੇ ਵਿਵਹਾਰ ਨੂੰ ਘੋਸ਼ਿਤ
ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਏ.ਆਈ. ਮਾਡਲ ਯੂਜ਼ਰ ਦੇ ਮੈਸੇਜ ਕੰਟੈਂਟ ਨਾਲ ਇੱਕ ਚੈਟ ਕੰਪਲੀਸ਼ਨ
ਕਰੇਗਾ, ReplyStream ਦੀ ਇੱਕ ਨਵੀਂ ਇੰਸਟੈਂਸ ਨੂੰ ਸਟ੍ਰੀਮ ਪੈਰਾਮੀਟਰ ਵਜੋਂ, ਅਤੇ ਨਿਰਧਾਰਿਤ ਲੂਪ
ਸ਼ਰਤ ਨਾਲ।

3. ਏ.ਆਈ. ਮਾਡਲ ਪ੍ਰੌਮਪਟ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰਦਾ ਹੈ ਅਤੇ ਜਵਾਬ ਤਿਆਰ ਕਰਨਾ ਸ਼ੁਰੂ ਕਰਦਾ ਹੈ। ਜਿਵੇਂ-ਜਿਵੇਂ
ਜਵਾਬ ਸਟ੍ਰੀਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ReplyStream ਇੰਸਟੈਂਸ ਦਾ call ਮੈਥਡ ਹਰੇਕ ਡੇਟਾ ਚੰਕ ਲਈ
ਚਲਾਇਆ ਜਾਂਦਾ ਹੈ।

4. ਜੇ ਏ.ਆਈ. ਮਾਡਲ ਕਿਸੇ ਟੂਲ ਫੰਕਸ਼ਨ ਨੂੰ ਕਾਲ ਕਰਨ ਦਾ ਫੈਸਲਾ ਕਰਦਾ ਹੈ, ਤਾਂ ਫੰਕਸ਼ਨ ਨਾਮ ਅਤੇ
ਆਰਗੂਮੈਂਟਸ ਨੂੰ ਚੰਕ ਵਿੱਚੋਂ ਕੱਢ ਕੇ ਕ੍ਰਮਵਾਰ f_name ਅਤੇ f_arguments ਐਰੇ ਵਿੱਚ ਸਟੋਰ ਕੀਤਾ
ਜਾਂਦਾ ਹੈ।

5. ਜੇ ਏ.ਆਈ. ਮਾਡਲ ਯੂਜ਼ਰ-ਫੇਸਿੰਗ ਕੰਟੈਂਟ ਤਿਆਰ ਕਰਦਾ ਹੈ, ਤਾਂ ਇਸਨੂੰ ਬਫ਼ਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ
send_to_client ਮੈਥਡ ਰਾਹੀਂ ਕਲਾਇੰਟ ਨੂੰ ਭੇਜਿਆ ਜਾਂਦਾ ਹੈ।

6. ਜਦੋਂ ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ ਪੂਰੀ ਹੋ ਜਾਂਦੀ ਹੈ, finalize ਮੈਥਡ ਨੂੰ ਕਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਜੇ ਸਟ੍ਰੀਮ ਦੌਰਾਨ
ਕੋਈ ਟੂਲ ਫੰਕਸ਼ਨ ਕਾਲ ਕੀਤੇ ਗਏ ਸਨ, ਤਾਂ ਉਹਨਾਂ ਨੂੰ PromptSubscriber ਦੇ dispatch ਮੈਥਡ
ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਡਿਸਪੈਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

7. dispatch ਮੈਥਡ ਗੱਲਬਾਤ ਦੀ ਲਿਖਤ ਵਿੱਚ ਇੱਕ function_call ਮੈਸੇਜ ਜੋੜਦਾ ਹੈ, ਸੰਬੰਧਿਤ
ਟੂਲ ਫੰਕਸ਼ਨ ਨੂੰ ਚਲਾਉਂਦਾ ਹੈ, ਅਤੇ ਫੰਕਸ਼ਨ ਕਾਲ ਦੇ ਨਤੀਜੇ ਨਾਲ ਲਿਖਤ ਵਿੱਚ ਇੱਕ function_-

result ਮੈਸੇਜ ਜੋੜਦਾ ਹੈ।

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ 148

8. ਟੂਲ ਫੰਕਸ਼ਨਾਂ ਨੂੰ ਡਿਸਪੈਚ ਕਰਨ ਤੋਂ ਬਾਅਦ, ਬਾਅਦ ਦੇ ਲੂਪਾਂ ਵਿੱਚ ਡੁਪਲੀਕੇਟ ਫੰਕਸ਼ਨ ਕਾਲਾਂ ਨੂੰ ਰੋਕਣ
ਲਈ ਫੰਕਸ਼ਨ ਕਾਲ ਹਿਸਟਰੀ ਨੂੰ ਸਾਫ਼ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

9. ਜੇ ਕੋਈ ਟੂਲ ਫੰਕਸ਼ਨ ਨਹੀਂ ਚਲਾਏ ਗਏ ਸਨ, ਤਾਂ finalize ਮੈਥਡ bot_message ਨੂੰ ਅੰਤਿਮ ਕੰਟੈਂਟ
ਨਾਲ ਅੱਪਡੇਟ ਕਰਦਾ ਹੈ, ਇਸਨੂੰ ਪੂਰਾ ਹੋਇਆ ਮਾਰਕ ਕਰਦਾ ਹੈ, ਅਤੇ ਅੱਪਡੇਟ ਕੀਤਾ ਮੈਸੇਜ ਕਲਾਇੰਟ ਨੂੰ
ਭੇਜਦਾ ਹੈ।

10. ਲੂਪ ਸ਼ਰਤ -> { bot_message.complete? } ਦਾ ਮੁਲਾਂਕਣ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਜੇ bot_-
message ਨੂੰ ਪੂਰਾ ਹੋਇਆ ਮਾਰਕ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ, ਤਾਂ ਲੂਪ ਜਾਰੀ ਰਹਿੰਦਾ ਹੈ, ਅਤੇ ਮੂਲ ਪ੍ਰੌਮਪਟ
ਨੂੰ ਅੱਪਡੇਟ ਕੀਤੀ ਗੱਲਬਾਤ ਦੀ ਲਿਖਤ ਨਾਲ ਦੁਬਾਰਾ ਸਬਮਿਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

11. ਕਦਮ 3-10 ਨੂੰ ਉਦੋਂ ਤੱਕ ਦੁਹਰਾਇਆ ਜਾਂਦਾ ਹੈ ਜਦੋਂ ਤੱਕ bot_message ਨੂੰ ਮੁਕੰਮਲ ਵਜੋਂ ਚਿੰਨ੍ਹਿਤ
ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ, ਜੋ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ AI ਮਾਡਲ ਨੇ ਆਪਣਾ ਜਵਾਬ ਤਿਆਰ ਕਰ ਲਿਆ ਹੈ ਅਤੇ ਹੋਰ
ਟੂਲ ਫੰਕਸ਼ਨਾਂ ਨੂੰ ਚਲਾਉਣ ਦੀ ਲੋੜ ਨਹੀਂ ਹੈ।

ਇਸ ਗੱਲਬਾਤ ਲੂਪ ਨੂੰ ਲਾਗੂ ਕਰਕੇ, ਤੁਸੀਂ AI ਮਾਡਲ ਨੂੰ ਐਪਲੀਕੇਸ਼ਨ ਨਾਲ ਦੋ-ਤਰਫ਼ਾ ਗੱਲਬਾਤ ਵਿੱਚ ਸ਼ਾਮਲ
ਹੋਣ ਦੇ ਯੋਗ ਬਣਾਉਂਦੇ ਹੋ, ਜਿੱਥੇ ਲੋੜ ਅਨੁਸਾਰ ਟੂਲ ਫੰਕਸ਼ਨਾਂ ਨੂੰ ਚਲਾਇਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਗੱਲਬਾਤ ਦੇ ਕੁਦਰਤੀ
ਸਿੱਟੇ ਤੱਕ ਪਹੁੰਚਣ ਤੱਕ ਯੂਜ਼ਰ-ਫੇਸਿੰਗ ਜਵਾਬ ਤਿਆਰ ਕੀਤੇ ਜਾਂਦੇ ਹਨ।

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ ਅਤੇ ਗੱਲਬਾਤ ਲੂਪ ਦਾ ਮੇਲ ਗਤੀਸ਼ੀਲ ਅਤੇ ਇੰਟਰਐਕਟਿਵ AI-ਸੰਚਾਲਿਤ ਤਜਰਬਿਆਂ ਦੀ
ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਜਿੱਥੇ AI ਮਾਡਲ ਯੂਜ਼ਰ ਇਨਪੁੱਟ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰ ਸਕਦਾ ਹੈ, ਵੱਖ-ਵੱਖ ਟੂਲਜ਼ ਅਤੇ ਫੰਕਸ਼ਨਾਂ ਦੀ
ਵਰਤੋਂ ਕਰ ਸਕਦਾ ਹੈ, ਅਤੇ ਵਿਕਸਤ ਹੋ ਰਹੇ ਗੱਲਬਾਤ ਦੇ ਸੰਦਰਭ ਦੇ ਆਧਾਰ ’ਤੇ ਰੀਅਲ-ਟਾਈਮ ਜਵਾਬ ਪ੍ਰਦਾਨ
ਕਰ ਸਕਦਾ ਹੈ।

ਆਟੋ ਕੰਟੀਨਿਊਏਸ਼ਨ

ਇਹ AI ਆਉਟਪੁੱਟ ਦੀਆਂ ਸੀਮਾਵਾਂ ਬਾਰੇ ਜਾਣਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਜ਼ਿਆਦਾਤਰ ਮਾਡਲਾਂ ਕੋਲ ਇੱਕ ਸਿੰਗਲ
ਜਵਾਬ ਵਿੱਚ ਵੱਧ ਤੋਂ ਵੱਧ ਟੋਕਨਾਂ ਦੀ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ, ਜੋ max_tokens ਪੈਰਾਮੀਟਰ ਦੁਆਰਾ ਨਿਰਧਾਰਤ ਕੀਤੀ
ਜਾਂਦੀ ਹੈ। ਜੇਕਰ AI ਮਾਡਲ ਜਵਾਬ ਤਿਆਰ ਕਰਦੇ ਸਮੇਂ ਇਸ ਸੀਮਾ ਤੱਕ ਪਹੁੰਚ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਇਹ ਅਚਾਨਕ ਰੁਕ
ਜਾਵੇਗਾ ਅਤੇ ਦਰਸਾਏਗਾ ਕਿ ਆਉਟਪੁੱਟ ਕੱਟਿਆ ਗਿਆ ਸੀ।

AI ਪਲੇਟਫਾਰਮ API ਤੋਂ ਸਟ੍ਰੀਮਿੰਗ ਜਵਾਬ ਵਿੱਚ, ਤੁਸੀਂ ਚੰਕ ਵਿੱਚ finish_reason ਵੇਰੀਏਬਲ ਦੀ ਜਾਂਚ
ਕਰਕੇ ਇਸ ਸਥਿਤੀ ਦਾ ਪਤਾ ਲਗਾ ਸਕਦੇ ਹੋ। ਜੇਕਰ finish_reason ਨੂੰ "length" ’ਤੇ ਸੈੱਟ ਕੀਤਾ ਗਿਆ

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ 149

ਹੈ (ਜਾਂ ਮਾਡਲ ਲਈ ਕੋਈ ਹੋਰ ਖਾਸ ਕੀ ਵੈਲਯੂ), ਇਸਦਾ ਮਤਲਬ ਹੈ ਕਿ ਮਾਡਲ ਜਨਰੇਸ਼ਨ ਦੌਰਾਨ ਆਪਣੀ ਵੱਧ
ਤੋਂ ਵੱਧ ਟੋਕਨ ਸੀਮਾ ਤੱਕ ਪਹੁੰਚ ਗਿਆ ਹੈ ਅਤੇ ਆਉਟਪੁੱਟ ਛੋਟਾ ਕਰ ਦਿੱਤਾ ਗਿਆ ਹੈ।

ਇਸ ਸਥਿਤੀ ਨੂੰ ਸੁਚਾਰੂ ਢੰਗ ਨਾਲ ਸੰਭਾਲਣ ਅਤੇ ਇੱਕ ਨਿਰਵਿਘਨ ਯੂਜ਼ਰ ਤਜਰਬਾ ਪ੍ਰਦਾਨ ਕਰਨ ਦਾ ਇੱਕ
ਤਰੀਕਾ ਹੈ ਆਪਣੀ ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ ਲੌਜਿਕ ਵਿੱਚ ਇੱਕ ਆਟੋ-ਕੰਟੀਨਿਊਏਸ਼ਨ ਮੈਕੇਨਿਜ਼ਮ ਨੂੰ ਲਾਗੂ ਕਰਨਾ।
ਲੰਬਾਈ-ਸੰਬੰਧਿਤ ਸਮਾਪਤੀ ਕਾਰਨਾਂ ਲਈ ਇੱਕ ਪੈਟਰਨ ਮੈਚ ਜੋੜ ਕੇ, ਤੁਸੀਂ ਲੂਪ ਕਰਨ ਅਤੇ ਜਿੱਥੇ ਇਹ ਛੱਡਿਆ
ਸੀ ਉੱਥੋਂ ਆਉਟਪੁੱਟ ਨੂੰ ਆਟੋਮੈਟਿਕ ਰੂਪ ਵਿੱਚ ਜਾਰੀ ਰੱਖਣ ਦੀ ਚੋਣ ਕਰ ਸਕਦੇ ਹੋ।

ਇੱਥੇ ReplyStream ਕਲਾਸ ਵਿੱਚ call ਮੈਥਡ ਨੂੰ ਆਟੋ ਕੰਟੀਨਿਊਏਸ਼ਨ ਦਾ ਸਮਰਥਨ ਕਰਨ ਲਈ ਕਿਵੇਂ
ਸੰਸ਼ੋਧਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਇਸਦਾ ਇੱਕ ਜਾਣਬੁੱਝ ਕੇ ਸਰਲ ਉਦਾਹਰਣ ਹੈ:

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices: [

9 { delta: {content: new_content},

10 finish_reason: finish_reason }] }

11

12 buffer << new_content.to_s

13

14 if finish_reason.blank?

15 send_to_client if new_content.to_s.match?(/\n\n/)

16 elsif LENGTH_STOPS.include?(finish_reason)

17 continue_cutoff

18 else

19 finalize

20 end

21

22 # ...

23 end

24 end

25

26 private

27

28 def continue_cutoff

29 conversation.bot_message!(buffer.join, visible: false)

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ 150

30 conversation.user_message!("please continue", visible: false)

31 bot_message.update_column(:created_at, Time.current)

32 end

ਇਸ ਸੋਧੇ ਹੋਏ ਵਰਜਨ ਵਿੱਚ, ਜਦੋਂ finish_reason ਕੱਟੇ ਹੋਏ ਆਉਟਪੁੱਟ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ, ਸਟ੍ਰੀਮ ਨੂੰ
ਅੰਤਿਮ ਕਰਨ ਦੀ ਬਜਾਏ, ਅਸੀਂ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਵਿੱਚ ਸੁਨੇਹਿਆਂ ਦੀ ਇੱਕ ਜੋੜੀ ਨੂੰ ਅੰਤਿਮ ਕੀਤੇ ਬਿਨਾਂ ਜੋੜਦੇ ਹਾਂ,
ਮੂਲ ਯੂਜ਼ਰ-ਫੇਸਿੰਗ ਜਵਾਬੀ ਸੁਨੇਹੇ ਨੂੰ ਇਸਦੀ created_at ਵਿਸ਼ੇਸ਼ਤਾ ਨੂੰ ਅਪਡੇਟ ਕਰਕੇ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਦੇ
“ਹੇਠਾਂ” ਭੇਜਦੇ ਹਾਂ, ਅਤੇ ਫਿਰ ਲੂਪ ਨੂੰ ਚੱਲਣ ਦਿੰਦੇ ਹਾਂ, ਤਾਂ ਜੋ ਏ.ਆਈ. ਜਿੱਥੇ ਛੱਡਿਆ ਸੀ ਉੱਥੋਂ ਜਾਰੀ ਰੱਖ ਸਕੇ।

ਯਾਦ ਰੱਖੋ ਕਿ ਏ.ਆਈ. ਕੰਪਲੀਸ਼ਨ ਐਂਡਪੁਆਇੰਟ ਸਟੇਟਲੈੱਸ ਹੈ। ਇਹ ਸਿਰਫ਼ ਉਹੀ “ਜਾਣਦਾ” ਹੈ ਜੋ ਤੁਸੀਂ ਇਸਨੂੰ
ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਰਾਹੀਂ ਦੱਸਦੇ ਹੋ। ਇਸ ਮਾਮਲੇ ਵਿੱਚ, ਜਿਸ ਤਰੀਕੇ ਨਾਲ ਅਸੀਂ ਏ.ਆਈ. ਨੂੰ ਦੱਸਦੇ ਹਾਂ ਕਿ ਇਹ
ਕੱਟਿਆ ਗਿਆ ਸੀ, ਉਹ ਹੈ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਵਿੱਚ “ਅਦਿੱਖ” (ਅੰਤਿਮ ਯੂਜ਼ਰ ਲਈ) ਸੁਨੇਹੇ ਜੋੜ ਕੇ। ਪਰ ਯਾਦ ਰੱਖੋ,
ਕਿ ਇਹ ਜਾਣਬੁੱਝ ਕੇ ਸਰਲ ਬਣਾਇਆ ਗਿਆ ਉਦਾਹਰਣ ਹੈ। ਇੱਕ ਅਸਲ ਲਾਗੂਕਰਨ ਨੂੰ ਹੋਰ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ
ਪ੍ਰਬੰਧਨ ਕਰਨ ਦੀ ਲੋੜ ਹੋਵੇਗੀ ਇਹ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ ਕਿ ਅਸੀਂ ਟੋਕਨ ਬਰਬਾਦ ਨਾ ਕਰੀਏ ਅਤੇ/ਜਾਂ
ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਵਿੱਚ ਦੁਹਰਾਏ ਗਏ ਸਹਾਇਕ ਸੁਨੇਹਿਆਂ ਨਾਲ ਏ.ਆਈ. ਨੂੰ ਭਰਮਿਤ ਨਾ ਕਰੀਏ।

ਆਟੋ-ਕੰਟੀਨਿਊਏਸ਼ਨ ਦਾ ਇੱਕ ਅਸਲ ਲਾਗੂਕਰਨ ਵਿੱਚ ਤਥਾਕਥਿਤ “ਸਰਕਟ ਬਰੇਕਰ ਲੌਜਿਕ” ਵੀ ਹੋਣਾ ਚਾਹੀਦਾ
ਹੈ ਜੋ ਬੇਕਾਬੂ ਲੂਪਿੰਗ ਨੂੰ ਰੋਕਣ ਲਈ ਹੈ। ਇਸਦਾ ਕਾਰਨ ਇਹ ਹੈ ਕਿ, ਕੁਝ ਖਾਸ ਕਿਸਮ ਦੇ ਯੂਜ਼ਰ ਪ੍ਰੌਮਪਟਸ ਅਤੇ
ਘੱਟ max_tokens ਸੈਟਿੰਗਾਂ ਦੇ ਨਾਲ, ਏ.ਆਈ. ਯੂਜ਼ਰ-ਫੇਸਿੰਗ ਆਉਟਪੁੱਟ ਨੂੰ ਲਗਾਤਾਰ ਲੂਪ ਕਰ ਸਕਦਾ ਹੈ।

ਧਿਆਨ ਰੱਖੋ ਕਿ ਹਰ ਲੂਪ ਨੂੰ ਇੱਕ ਵੱਖਰੀ ਬੇਨਤੀ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਹਰ ਬੇਨਤੀ ਤੁਹਾਡੀ ਪੂਰੀ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ
ਨੂੰ ਦੁਬਾਰਾ ਵਰਤਦੀ ਹੈ। ਤੁਹਾਨੂੰ ਆਪਣੀ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਆਟੋ ਕੰਟੀਨਿਊਏਸ਼ਨ ਨੂੰ ਲਾਗੂ ਕਰਨ ਦਾ ਫੈਸਲਾ
ਕਰਦੇ ਸਮੇਂ ਯੂਜ਼ਰ ਅਨੁਭਵਅਤੇ ਏ.ਪੀ.ਆਈ. ਵਰਤੋਂ ਵਿਚਕਾਰ ਟ੍ਰੇਡ-ਆਫ਼ਸ ’ਤੇ ਜ਼ਰੂਰ ਵਿਚਾਰ ਕਰਨਾ ਚਾਹੀਦਾ
ਹੈ। ਆਟੋ-ਕੰਟੀਨਿਊਏਸ਼ਨ ਖਾਸ ਤੌਰ ’ਤੇ ਖ਼ਤਰਨਾਕ ਢੰਗ ਨਾਲ ਮਹਿੰਗਾ ਹੋ ਸਕਦਾ ਹੈ, ਖਾਸਕਰ ਜਦੋਂ ਪ੍ਰੀਮੀਅਮ
ਵਪਾਰਕ ਮਾਡਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ।

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ 151

ਸਿੱਟਾ

ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ ਏ.ਆਈ.-ਸੰਚਾਲਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਦੇ ਨਿਰਮਾਣ ਦਾ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਪਹਿਲੂ ਹੈ ਜੋ ਟੂਲ
ਵਰਤੋਂ ਨੂੰ ਲਾਈਵ ਏ.ਆਈ. ਜਵਾਬਾਂ ਨਾਲ ਜੋੜਦਾ ਹੈ। ਏ.ਆਈ. ਪਲੇਟਫਾਰਮ ਏ.ਪੀ.ਆਈ.ਜ਼ ਤੋਂ ਸਟ੍ਰੀਮਿੰਗ
ਡੇਟਾ ਨੂੰ ਕੁਸ਼ਲਤਾ ਨਾਲ ਸੰਭਾਲ ਕੇ, ਤੁਸੀਂ ਇੱਕ ਨਿਰਵਿਘਨ ਅਤੇ ਇੰਟਰਐਕਟਿਵ ਯੂਜ਼ਰ ਅਨੁਭਵ ਪ੍ਰਦਾਨ ਕਰ
ਸਕਦੇ ਹੋ, ਵੱਡੇ ਜਵਾਬਾਂ ਨੂੰ ਸੰਭਾਲ ਸਕਦੇ ਹੋ, ਸਰੋਤਾਂ ਦੀ ਵਰਤੋਂ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾ ਸਕਦੇ ਹੋ, ਅਤੇ ਗਲਤੀਆਂ ਨੂੰ ਸੁਚੱਜੇ
ਢੰਗ ਨਾਲ ਸੰਭਾਲ ਸਕਦੇ ਹੋ।

ਪ੍ਰਦਾਨ ਕੀਤੀ Conversation::ReplyStream ਕਲਾਸ ਦਰਸਾਉਂਦੀ ਹੈ ਕਿ ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ ਨੂੰ
Ruby ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਪੈਟਰਨ ਮੈਚਿੰਗ ਅਤੇ ਈਵੈਂਟ-ਆਧਾਰਿਤ ਆਰਕੀਟੈਕਚਰ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ
ਕਿਵੇਂ ਲਾਗੂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ ਤਕਨੀਕਾਂ ਨੂੰ ਸਮਝ ਕੇ ਅਤੇ ਉਨ੍ਹਾਂ ਦਾ ਲਾਭ ਉਠਾ ਕੇ,
ਤੁਸੀਂ ਆਪਣੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਏ.ਆਈ. ਏਕੀਕਰਣ ਦੀ ਪੂਰੀ ਸਮਰੱਥਾ ਨੂੰ ਅਨਲੌਕ ਕਰ ਸਕਦੇ ਹੋ ਅਤੇ
ਸ਼ਕਤੀਸ਼ਾਲੀ ਅਤੇ ਰੁਝੇਵੇਂ ਵਾਲੇ ਯੂਜ਼ਰ ਅਨੁਭਵ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦੇ ਹੋ।

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਡਾਟਾ ਦੀ ਅਖੰਡਤਾ, ਇਕਸਾਰਤਾ, ਅਤੇ ਗੁਣਵੱਤਾ ਨੂੰ ਯਕੀਨੀ
ਬਣਾਉਣ ਲਈ ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਪਹੁੰਚ ਹੈ, ਜੋ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ (ਐੱਲ.ਐੱਲ.ਐੱਮ.) ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ਦਾ
ਲਾਭ ਲੈਂਦੀ ਹੈ। ਪੈਟਰਨਾਂ ਦੀ ਇਹ ਸ਼੍ਰੇਣੀ ਏ.ਆਈ. ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਡਾਟਾ ਅਸਧਾਰਨਤਾਵਾਂ, ਅਸੰਗਤੀਆਂ, ਜਾਂ
ਗਲਤੀਆਂ ਨੂੰ ਆਪਣੇ ਆਪ ਪਤਾ ਲਗਾਉਣ, ਨਿਦਾਨ ਕਰਨ, ਅਤੇ ਸੁਧਾਰਨ ਦੇ ਵਿਚਾਰ ’ਤੇ ਕੇਂਦਰਿਤ ਹੈ, ਜਿਸ ਨਾਲ
ਡਿਵੈਲਪਰਾਂ ’ਤੇ ਬੋਝ ਘੱਟ ਜਾਂਦਾ ਹੈ ਅਤੇ ਡਾਟਾ ਦੀ ਵਿਸ਼ਵਾਸਯੋਗਤਾ ਦਾ ਉੱਚ ਪੱਧਰ ਬਣਿਆ ਰਹਿੰਦਾ ਹੈ।

ਆਪਣੇ ਮੂਲ ਰੂਪ ਵਿੱਚ, ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ ਪੈਟਰਨ ਇਹ ਪਛਾਣਦੇ ਹਨ ਕਿ ਡਾਟਾ ਕਿਸੇ ਵੀ ਐਪਲੀਕੇਸ਼ਨ
ਦੀ ਜਾਨ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਸਦੀ ਸ਼ੁੱਧਤਾ ਅਤੇ ਅਖੰਡਤਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣਾ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਸਹੀ ਕੰਮਕਾਜ ਅਤੇ
ਯੂਜ਼ਰ ਅਨੁਭਵ ਲਈ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਹਾਲਾਂਕਿ, ਡਾਟਾ ਗੁਣਵੱਤਾ ਦਾ ਪ੍ਰਬੰਧਨ ਅਤੇ ਰੱਖ-ਰਖਾਅ ਇੱਕ ਜਟਿਲ
ਅਤੇ ਸਮਾਂ ਲੈਣ ਵਾਲਾ ਕੰਮ ਹੋ ਸਕਦਾ ਹੈ, ਖਾਸ ਕਰਕੇ ਜਦੋਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਆਕਾਰ ਅਤੇ ਜਟਿਲਤਾ ਵਿੱਚ ਵਧਦੀਆਂ
ਹਨ। ਇੱਥੇ ਏ.ਆਈ. ਦੀ ਸ਼ਕਤੀ ਕੰਮ ਆਉਂਦੀ ਹੈ।

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ ਪੈਟਰਨਾਂ ਵਿੱਚ, ਏ.ਆਈ. ਵਰਕਰਾਂ ਨੂੰ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਡਾਟਾ ਦੀ ਲਗਾਤਾਰ
ਨਿਗਰਾਨੀ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਲਈ ਨਿਯੁਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਮਾਡਲ ਡਾਟਾ ਦੇ ਅੰਦਰ ਪੈਟਰਨ, ਸਬੰਧ, ਅਤੇ

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 153

ਅਸਧਾਰਨਤਾਵਾਂ ਨੂੰ ਸਮਝਣ ਅਤੇ ਵਿਆਖਿਆ ਕਰਨ ਦੀ ਯੋਗਤਾ ਰੱਖਦੇ ਹਨ। ਉਹਨਾਂ ਦੀਆਂ ਕੁਦਰਤੀ ਭਾਸ਼ਾ
ਪ੍ਰੋਸੈਸਿੰਗ ਅਤੇ ਸਮਝ ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ਦਾ ਲਾਭ ਲੈ ਕੇ, ਉਹ ਡਾਟਾ ਵਿੱਚ ਸੰਭਾਵੀ ਸਮੱਸਿਆਵਾਂ ਜਾਂ ਅਸੰਗਤੀਆਂ
ਦੀ ਪਛਾਣ ਕਰ ਸਕਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਠੀਕ ਕਰਨ ਲਈ ਢੁਕਵੀਆਂ ਕਾਰਵਾਈਆਂ ਕਰ ਸਕਦੇ ਹਨ।

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਆਮ ਤੌਰ ’ਤੇ ਕਈ ਮੁੱਖ ਕਦਮ ਸ਼ਾਮਲ ਹੁੰਦੇ ਹਨ:

1. ਡਾਟਾ ਨਿਗਰਾਨੀ: ਏ.ਆਈ. ਵਰਕਰ ਲਗਾਤਾਰ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਡਾਟਾ ਸਟ੍ਰੀਮਾਂ, ਡਾਟਾਬੇਸਾਂ, ਜਾਂ ਸਟੋਰੇਜ
ਸਿਸਟਮਾਂ ’ਤੇ ਨਜ਼ਰ ਰੱਖਦੇ ਹਨ, ਕਿਸੇ ਵੀ ਅਸਧਾਰਨਤਾਵਾਂ, ਅਸੰਗਤੀਆਂ, ਜਾਂ ਗਲਤੀਆਂ ਦੇ ਸੰਕੇਤਾਂ ਦੀ
ਭਾਲ ਕਰਦੇ ਹਨ। ਵਿਕਲਪਕ ਤੌਰ ’ਤੇ, ਤੁਸੀਂ ਕਿਸੇ ਅਪਵਾਦ ਦੀ ਪ੍ਰਤੀਕਿਰਿਆ ਵਿੱਚ ਏ.ਆਈ. ਕੰਪੋਨੈਂਟ
ਨੂੰ ਸਕਿਰਿਆ ਕਰ ਸਕਦੇ ਹੋ।

2. ਅਸਧਾਰਨਤਾ ਦੀ ਪਛਾਣ: ਜਦੋਂ ਕੋਈ ਸਮੱਸਿਆ ਦਾ ਪਤਾ ਲੱਗਦਾ ਹੈ, ਏ.ਆਈ. ਵਰਕਰ ਸਮੱਸਿਆ ਦੀ
ਵਿਸ਼ੇਸ਼ ਪ੍ਰਕਿਰਤੀ ਅਤੇ ਦਾਇਰੇ ਦੀ ਪਛਾਣ ਕਰਨ ਲਈ ਡਾਟਾ ਦਾ ਵਿਸਥਾਰ ਨਾਲ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਦਾ ਹੈ।
ਇਸ ਵਿੱਚ ਗੁੰਮ ਮੁੱਲਾਂ, ਅਸੰਗਤ ਫਾਰਮੈਟਾਂ, ਜਾਂ ਪਹਿਲਾਂ ਤੋਂ ਨਿਰਧਾਰਤ ਨਿਯਮਾਂ ਜਾਂ ਪਾਬੰਦੀਆਂ ਦੀ ਉਲੰਘਣਾ
ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਦਾ ਪਤਾ ਲਗਾਉਣਾ ਸ਼ਾਮਲ ਹੋ ਸਕਦਾ ਹੈ।

3. ਨਿਦਾਨ ਅਤੇ ਸੁਧਾਰ: ਇੱਕ ਵਾਰ ਸਮੱਸਿਆ ਦੀ ਪਛਾਣ ਹੋ ਜਾਣ ’ਤੇ, ਏ.ਆਈ. ਵਰਕਰ ਢੁਕਵੀਂ ਕਾਰਵਾਈ
ਨਿਰਧਾਰਤ ਕਰਨ ਲਈ ਡਾਟਾ ਡੋਮੇਨ ਦੇ ਆਪਣੇ ਗਿਆਨ ਅਤੇ ਸਮਝ ਦੀ ਵਰਤੋਂ ਕਰਦਾ ਹੈ। ਇਸ ਵਿੱਚ
ਆਪਣੇ ਆਪ ਡਾਟਾ ਨੂੰ ਠੀਕ ਕਰਨਾ, ਗੁੰਮ ਮੁੱਲਾਂ ਨੂੰ ਭਰਨਾ, ਜਾਂ ਜੇ ਜ਼ਰੂਰੀ ਹੋਵੇ ਤਾਂ ਮਨੁੱਖੀ ਦਖਲਅੰਦਾਜ਼ੀ
ਲਈ ਸਮੱਸਿਆ ਨੂੰ ਫਲੈਗ ਕਰਨਾ ਸ਼ਾਮਲ ਹੋ ਸਕਦਾ ਹੈ।

4. ਨਿਰੰਤਰ ਸਿੱਖਣ (ਵਿਕਲਪਕ, ਵਰਤੋਂ ਕੇਸ ’ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ): ਜਿਵੇਂ-ਜਿਵੇਂ ਤੁਹਾਡਾ ਏ.ਆਈ. ਵਰਕਰ
ਵੱਖ-ਵੱਖ ਡਾਟਾ ਸਮੱਸਿਆਵਾਂ ਦਾ ਸਾਹਮਣਾ ਕਰਦਾ ਹੈ ਅਤੇ ਹੱਲ ਕਰਦਾ ਹੈ, ਇਹ ਇਸ ਬਾਰੇ ਦੱਸਦਾ ਹੈ ਕਿ
ਕੀ ਹੋਇਆ ਅਤੇ ਇਸ ਨੇ ਕਿਵੇਂ ਜਵਾਬ ਦਿੱਤਾ। ਇਹ ਮੈਟਾਡਾਟਾ ਸਿੱਖਣ ਦੀਆਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਵਿੱਚ ਫੀਡ
ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜੋ ਤੁਹਾਨੂੰ (ਅਤੇ ਸ਼ਾਇਦ ਅੰਡਰਲਾਈੰਗ ਮਾਡਲ ਨੂੰ, ਫਾਈਨ-ਟਿਊਨਿੰਗ ਰਾਹੀਂ) ਡਾਟਾ
ਅਸਧਾਰਨਤਾਵਾਂ ਦੀ ਪਛਾਣ ਕਰਨ ਅਤੇ ਹੱਲ ਕਰਨ ਵਿੱਚ ਸਮੇਂ ਦੇ ਨਾਲ ਵਧੇਰੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਅਤੇ ਕੁਸ਼ਲ
ਬਣਾਉਂਦਾ ਹੈ।

ਸਵੈਚਲਿਤ ਤੌਰ ’ਤੇ ਡਾਟਾ ਸਮੱਸਿਆਵਾਂ ਦੀ ਪਛਾਣ ਅਤੇ ਸੁਧਾਰ ਕਰਕੇ, ਤੁਸੀਂ ਯਕੀਨੀ ਬਣਾ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੀ
ਐਪਲੀਕੇਸ਼ਨ ਉੱਚ-ਗੁਣਵੱਤਾ, ਭਰੋਸੇਯੋਗ ਡਾਟਾ ’ਤੇ ਕੰਮ ਕਰਦੀ ਹੈ। ਇਹ ਐਪਲੀਕੇਸ਼ਨ ਦੀ ਕਾਰਜਸ਼ੀਲਤਾ ਜਾਂ
ਯੂਜ਼ਰ ਅਨੁਭਵ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਵਾਲੀਆਂ ਗਲਤੀਆਂ, ਅਸੰਗਤੀਆਂ, ਜਾਂ ਡਾਟਾ-ਸੰਬੰਧਿਤ ਬੱਗਾਂ ਦੇ ਜੋਖਮ ਨੂੰ
ਘਟਾਉਂਦਾ ਹੈ।

ਜਦੋਂ ਤੁਹਾਡੇ ਕੋਲ ਡਾਟਾ ਨਿਗਰਾਨੀ ਅਤੇ ਸੁਧਾਰ ਦੇ ਕੰਮ ਨੂੰ ਸੰਭਾਲਣ ਲਈAI ਵਰਕਰ ਹੁੰਦੇ ਹਨ, ਤਾਂ ਤੁਸੀਂ ਆਪਣੀਆਂ
ਕੋਸ਼ਿਸ਼ਾਂ ਨੂੰ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਹੋਰ ਮਹੱਤਵਪੂਰਨ ਪਹਿਲੂਆਂ ’ਤੇ ਕੇਂਦਰਿਤ ਕਰ ਸਕਦੇ ਹੋ। ਇਹ ਉਸ ਸਮੇਂ ਅਤੇ ਸਰੋਤਾਂ

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 154

ਨੂੰ ਬਚਾਉਂਦਾ ਹੈ ਜੋ ਹੋਰ ਤਰ੍ਹਾਂ ਮੈਨੂਅਲ ਡਾਟਾ ਸਫਾਈ ਅਤੇ ਰੱਖ-ਰਖਾਅ ’ਤੇ ਖਰਚ ਹੋਣੇ ਸਨ। ਅਸਲ ਵਿੱਚ, ਜਿਵੇਂ-
ਜਿਵੇਂ ਤੁਹਾਡੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਆਕਾਰ ਅਤੇ ਗੁੰਝਲਤਾ ਵਿੱਚ ਵਧਦੀਆਂ ਹਨ, ਮੈਨੂਅਲ ਤੌਰ ’ਤੇ ਡਾਟਾ ਗੁਣਵੱਤਾ
ਦਾ ਪ੍ਰਬੰਧਨ ਕਰਨਾ ਵਧੇਰੇ ਚੁਣੌਤੀਪੂਰਨ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ। “ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲਾ ਡਾਟਾ” ਪੈਟਰਨ AI ਦੀ ਸ਼ਕਤੀ
ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਡਾਟਾ ਨੂੰ ਸੰਭਾਲਣ ਅਤੇ ਰੀਅਲ-ਟਾਈਮ ਵਿੱਚ ਸਮੱਸਿਆਵਾਂ ਦਾ ਪਤਾ ਲਗਾਉਣ
ਲਈ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਸਕੇਲ ਕਰਦਾ ਹੈ।

ਆਪਣੀ ਪ੍ਰਕਿਰਤੀ ਦੇ ਕਾਰਨ, AI ਮਾਡਲ ਬਿਨਾਂ ਕਿਸੇ ਨਿਗਰਾਨੀ ਜਾਂ ਬਹੁਤ ਘੱਟ ਨਿਗਰਾਨੀ ਦੇ
ਸਮੇਂ ਦੇ ਨਾਲ ਬਦਲਦੇ ਡਾਟਾ ਪੈਟਰਨਾਂ, ਸਕੀਮਾਂ, ਜਾਂ ਲੋੜਾਂ ਦੇ ਅਨੁਕੂਲ ਹੋ ਸਕਦੇ ਹਨ। ਜਿੰਨਾ ਚਿਰ
ਉਹਨਾਂ ਦੇ ਨਿਰਦੇਸ਼ ਢੁਕਵੀਂ ਅਗਵਾਈ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ, ਖਾਸ ਕਰਕੇ ਇੱਛਿਤ ਨਤੀਜਿਆਂ ਦੇ
ਸੰਬੰਧ ਵਿੱਚ, ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਵਿਆਪਕ ਮੈਨੂਅਲ ਦਖਲਅੰਦਾਜ਼ੀ ਜਾਂ ਕੋਡ ਤਬਦੀਲੀਆਂ ਦੀ
ਲੋੜ ਤੋਂ ਬਿਨਾਂ ਵਿਕਸਿਤ ਹੋ ਸਕਦੀ ਹੈ ਅਤੇ ਨਵੇਂ ਡਾਟਾ ਸਨਾਰੀਓ ਨੂੰ ਸੰਭਾਲ ਸਕਦੀ ਹੈ।

ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਪੈਟਰਨ ਹੋਰ ਸ਼੍ਰੇਣੀਆਂ ਦੇ ਪੈਟਰਨਾਂ ਨਾਲ ਚੰਗੀ ਤਰ੍ਹਾਂ ਮੇਲ ਖਾਂਦੇ ਹਨ, ਜਿਵੇਂ ਕਿ
“ਵਰਕਰਾਂ ਦੀ ਬਹੁਤਾਤ”। ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਦੀ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਕਿਸਮ ਦੇ ਵਰਕਰ ਵਜੋਂ ਵੇਖਿਆ
ਜਾ ਸਕਦਾ ਹੈ ਜੋ ਖਾਸ ਤੌਰ ’ਤੇ ਡਾਟਾ ਗੁਣਵੱਤਾ ਅਤੇ ਅਖੰਡਤਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਦਾ
ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਵਰਕਰ ਹੋਰ AI ਵਰਕਰਾਂ ਦੇ ਨਾਲ ਕੰਮ ਕਰਦਾ ਹੈ, ਹਰ ਇੱਕ ਐਪਲੀਕੇਸ਼ਨ ਦੀ ਕਾਰਜਸ਼ੀਲਤਾ
ਦੇ ਵੱਖ-ਵੱਖ ਪਹਿਲੂਆਂ ਵਿੱਚ ਯੋਗਦਾਨ ਪਾਉਂਦਾ ਹੈ।

ਅਮਲ ਵਿੱਚ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਪੈਟਰਨਾਂ ਨੂੰ ਲਾਗੂ ਕਰਨ ਲਈ ਐਪਲੀਕੇਸ਼ਨ ਆਰਕੀਟੈਕਚਰ ਵਿੱਚ AI
ਮਾਡਲਾਂ ਦੇ ਧਿਆਨਪੂਰਵਕ ਡਿਜ਼ਾਈਨ ਅਤੇ ਏਕੀਕਰਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਡਾਟਾ ਦੇ ਨੁਕਸਾਨ ਅਤੇ ਖਰਾਬੀ ਦੇ ਜੋਖਮਾਂ
ਕਾਰਨ, ਤੁਹਾਨੂੰ ਸਪਸ਼ਟ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ ਨਿਰਧਾਰਤ ਕਰਨੇ ਚਾਹੀਦੇ ਹਨ ਕਿ ਤੁਸੀਂ ਇਸ ਤਕਨੀਕ ਦੀ ਵਰਤੋਂ ਕਿਵੇਂ
ਕਰੋਗੇ। ਤੁਹਾਨੂੰ ਪ੍ਰਦਰਸ਼ਨ, ਸਕੇਲੇਬਿਲਟੀ, ਅਤੇ ਡਾਟਾ ਸੁਰੱਖਿਆ ਵਰਗੇ ਕਾਰਕਾਂ ’ਤੇ ਵੀ ਵਿਚਾਰ ਕਰਨਾ ਚਾਹੀਦਾ
ਹੈ।

ਵਿਵਹਾਰਕ ਕੇਸ ਸਟੱਡੀ: ਖਰਾਬ JSON ਨੂੰ ਠੀਕ ਕਰਨਾ

ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਦਾ ਲਾਭ ਲੈਣ ਦੇ ਸਭ ਤੋਂ ਵਿਵਹਾਰਕ ਅਤੇ ਸੁਵਿਧਾਜਨਕ ਤਰੀਕਿਆਂ ਵਿੱਚੋਂ ਇੱਕ
ਸਮਝਾਉਣ ਲਈ ਵੀ ਬਹੁਤ ਸਰਲ ਹੈ: ਖਰਾਬ JSON ਨੂੰ ਠੀਕ ਕਰਨਾ।

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 155

ਇਹ ਤਕਨੀਕ LLMs ਦੁਆਰਾ ਤਿਆਰ ਕੀਤੇ ਗਏ ਅਧੂਰੇ ਜਾਂ ਅਸੰਗਤ ਡਾਟਾ, ਜਿਵੇਂ ਕਿ ਖਰਾਬ JSON, ਨਾਲ
ਨਜਿੱਠਣ ਦੀ ਆਮ ਚੁਣੌਤੀ ’ਤੇ ਲਾਗੂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ, ਅਤੇ ਇਹਨਾਂ ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਸਵੈਚਲਿਤ ਤੌਰ ’ਤੇ
ਪਛਾਣਨ ਅਤੇ ਠੀਕ ਕਰਨ ਲਈ ਇੱਕ ਪਹੁੰਚ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ।

Olympia ਵਿਖੇ ਮੈਂ ਨਿਯਮਿਤ ਤੌਰ ’ਤੇ ਅਜਿਹੀਆਂ ਸਥਿਤੀਆਂ ਦਾ ਸਾਹਮਣਾ ਕਰਦਾ ਹਾਂ ਜਿੱਥੇ LLMs ਅਜਿਹਾ
JSON ਡਾਟਾ ਤਿਆਰ ਕਰਦੇ ਹਨ ਜੋ ਪੂਰੀ ਤਰ੍ਹਾਂ ਵੈਧ ਨਹੀਂ ਹੁੰਦਾ। ਇਹ ਵੱਖ-ਵੱਖ ਕਾਰਨਾਂ ਕਰਕੇ ਹੋ ਸਕਦਾ ਹੈ,
ਜਿਵੇਂ ਕਿ LLM ਦੁਆਰਾ ਅਸਲ JSON ਕੋਡ ਤੋਂ ਪਹਿਲਾਂ ਜਾਂ ਬਾਅਦ ਵਿੱਚ ਟਿੱਪਣੀਆਂ ਜੋੜਨਾ, ਜਾਂ ਗੁੰਮ ਕਾਮਿਆਂ
ਜਾਂ ਅਣ-ਐਸਕੇਪਡ ਡਬਲ ਕੋਟਸ ਵਰਗੀਆਂ ਸਿੰਟੈਕਸ ਗਲਤੀਆਂ ਪੇਸ਼ ਕਰਨਾ। ਇਹ ਸਮੱਸਿਆਵਾਂ ਪਾਰਸਿੰਗ
ਗਲਤੀਆਂ ਦਾ ਕਾਰਨ ਬਣ ਸਕਦੀਆਂ ਹਨ ਅਤੇ ਐਪਲੀਕੇਸ਼ਨ ਦੀ ਕਾਰਜਸ਼ੀਲਤਾ ਵਿੱਚ ਵਿਘਨ ਪਾ ਸਕਦੀਆਂ
ਹਨ।

ਇਸ ਸਮੱਸਿਆ ਦੇ ਹੱਲ ਲਈ, ਮੈਂ JsonFixer ਕਲਾਸ ਦੇ ਰੂਪ ਵਿੱਚ ਇੱਕ ਵਿਵਹਾਰਕ ਹੱਲ ਲਾਗੂ ਕੀਤਾ ਹੈ। ਇਹ
ਕਲਾਸ “ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲਾ ਡਾਟਾ” pattern ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ, ਜੋ ਟੁੱਟੇ ਹੋਏ JSON ਨੂੰ ਇਨਪੁੱਟ ਵਜੋਂ ਲੈਂਦੀ
ਹੈ ਅਤੇ LLM ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਸਨੂੰ ਠੀਕ ਕਰਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਜਿੰਨੀ ਵੱਧ ਤੋਂ ਵੱਧ ਜਾਣਕਾਰੀ ਅਤੇ ਇਰਾਦੇ ਨੂੰ
ਸੰਭਵ ਹੋ ਸਕੇ ਬਰਕਰਾਰ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ।

1 class JsonFixer

2 include Raix::ChatCompletion

3

4 def call(bad_json, error_message)

5 raise "No data provided" if bad_json.blank? || error_message.blank?

6

7 transcript << {

8 system: "Consider user-provided JSON that generated a parse

9 exception. Do your best to fix it while preserving the

10 original content and intent as much as possible." }

11 transcript << { user: bad_json }

12 transcript << { assistant: "What is the error message?"}

13 transcript << { user: error_message }

14 transcript << { assistant: "Here is the corrected JSON\n```json\n" }

15

16 self.stop = ["```"]

17

18 chat_completion(json: true)

19 end

20

21 def model

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 156

22 "mistralai/mixtral-8x7b-instruct:nitro"

23 end

24 end

ਧਿਆਨ ਦਿਓ ਕਿ JsonFixer Ventriloquist ਦੀ ਵਰਤੋਂ ਏ.ਆਈ. ਦੇ ਜਵਾਬਾਂ ਨੂੰ
ਨਿਰਦੇਸ਼ਿਤ ਕਰਨ ਲਈ ਕਰਦਾ ਹੈ।

JSON ਡਾਟਾ ਦੀ ਸਵੈ-ਠੀਕ ਕਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਇਸ ਤਰ੍ਹਾਂ ਕੰਮ ਕਰਦੀ ਹੈ:

1. JSON ਜਨਰੇਸ਼ਨ: ਕੁਝ ਪ੍ਰੌਮਪਟਸ ਜਾਂ ਲੋੜਾਂ ਦੇ ਆਧਾਰ ’ਤੇ JSON ਡਾਟਾ ਤਿਆਰ ਕਰਨ ਲਈ LLM
ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਹਾਲਾਂਕਿ, LLMs ਦੀ ਪ੍ਰਕਿਰਤੀ ਕਾਰਨ, ਤਿਆਰ ਕੀਤਾ JSON ਹਮੇਸ਼ਾ
ਪੂਰੀ ਤਰ੍ਹਾਂ ਵੈਧ ਨਹੀਂ ਹੋ ਸਕਦਾ। ਜੇਕਰ ਤੁਸੀਂ ਅਵੈਧ JSON ਦਿੰਦੇ ਹੋ ਤਾਂ JSON ਪਾਰਸਰ ਬੇਸ਼ੱਕ
ParserError ਉਠਾਏਗਾ।

1 begin

2 JSON.parse(llm_generated_json)

3 rescue JSON::ParserError => e

4 JsonFixer.new.call(llm_generated_json, e.message)

5 end

ਧਿਆਨ ਰੱਖੋ ਕਿ ਐਕਸੈਪਸ਼ਨ ਸੁਨੇਹਾ ਵੀ JSONFixer ਕਾਲ ਨੂੰ ਪਾਸ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਜੋ ਇਸਨੂੰ ਡਾਟਾ ਨਾਲ
ਕੀ ਗਲਤ ਹੈ ਬਾਰੇ ਪੂਰੀ ਤਰ੍ਹਾਂ ਅੰਦਾਜ਼ਾ ਨਾ ਲਗਾਉਣਾ ਪਵੇ, ਖਾਸ ਕਰਕੇ ਜਦੋਂ ਪਾਰਸਰ ਅਕਸਰ ਤੁਹਾਨੂੰ ਬਿਲਕੁਲ
ਦੱਸ ਦਿੰਦਾ ਹੈ ਕਿ ਕੀ ਗਲਤ ਹੈ।

2. ਐੱਲਐੱਲਐੱਮ-ਆਧਾਰਿਤ ਸੁਧਾਰ: JSONFixer ਕਲਾਸ ਟੁੱਟੇ ਹੋਏ JSON ਨੂੰ ਐੱਲਐੱਲਐੱਮ ਨੂੰ ਭੇਜਦੀ
ਹੈ, ਨਾਲ ਹੀ JSON ਨੂੰ ਠੀਕ ਕਰਨ ਲਈ ਇੱਕ ਖਾਸ ਪ੍ਰੌਮਪਟ ਜਾਂ ਨਿਰਦੇਸ਼ ਦਿੰਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਮੂਲ
ਜਾਣਕਾਰੀ ਅਤੇ ਇਰਾਦੇ ਨੂੰ ਜਿੰਨਾ ਸੰਭਵ ਹੋ ਸਕੇ ਬਰਕਰਾਰ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ। ਐੱਲਐੱਲਐੱਮ, ਜੋ ਵੱਡੀ
ਮਾਤਰਾ ਵਿੱਚ ਡਾਟਾ ’ਤੇ ਸਿਖਲਾਈ ਪ੍ਰਾਪਤ ਹੈ ਅਤੇ JSON ਸਿੰਟੈਕਸ ਨੂੰ ਸਮਝਦਾ ਹੈ, ਗਲਤੀਆਂ ਨੂੰ
ਠੀਕ ਕਰਨ ਅਤੇ ਇੱਕ ਵੈਧ JSON ਸਤਰ ਬਣਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦਾ ਹੈ। ਜਵਾਬ ਸੀਮਾਬੰਦੀ ਦੀ ਵਰਤੋਂ
ਐੱਲਐੱਲਐੱਮ ਦੇ ਆਉਟਪੁੱਟ ਨੂੰ ਸੀਮਤ ਕਰਨ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਅਤੇ ਅਸੀਂ Mixtral 8x7B ਨੂੰ
AI ਮਾਡਲ ਵਜੋਂ ਚੁਣਦੇ ਹਾਂ, ਕਿਉਂਕਿ ਇਹ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਕੰਮ ਲਈ ਖਾਸ ਤੌਰ ’ਤੇ ਚੰਗਾ ਹੈ।

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 157

3. ਪ੍ਰਮਾਣੀਕਰਨ ਅਤੇ ਏਕੀਕਰਨ: ਐੱਲਐੱਲਐੱਮ ਦੁਆਰਾ ਵਾਪਸ ਕੀਤੀ ਗਈ ਠੀਕ ਕੀਤੀ JSON ਸਤਰ
ਨੂੰ JSONFixer ਕਲਾਸ ਦੁਆਰਾ ਖੁਦ ਪਾਰਸ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਸਨੇ chat_comple-
tion(json: true) ਨੂੰ ਕਾਲ ਕੀਤਾ। ਜੇਕਰ ਠੀਕ ਕੀਤਾ JSON ਪ੍ਰਮਾਣੀਕਰਨ ਪਾਸ ਕਰ ਲੈਂਦਾ ਹੈ,
ਤਾਂ ਇਸਨੂੰ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਵਰਕਫਲੋ ਵਿੱਚ ਏਕੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਐਪਲੀਕੇਸ਼ਨ ਨੂੰ ਨਿਰਵਿਘਨ
ਢੰਗ ਨਾਲ ਡਾਟਾ ਦੀ ਪ੍ਰੋਸੈਸਿੰਗ ਜਾਰੀ ਰੱਖਣ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦਾ ਹੈ। ਖਰਾਬ JSON “ਠੀਕ” ਹੋ ਗਿਆ
ਹੈ।

ਭਾਵੇਂ ਮੈਂ ਆਪਣੀ JSONFixer ਇੰਪਲੀਮੈਂਟੇਸ਼ਨ ਨੂੰ ਕਈ ਵਾਰ ਲਿਖਿਆ ਅਤੇ ਦੁਬਾਰਾ ਲਿਖਿਆ ਹੈ, ਮੈਨੂੰ ਸ਼ੱਕ ਹੈ
ਕਿ ਉਨ੍ਹਾਂ ਸਾਰੇ ਵਰਜਨਾਂ ਵਿੱਚ ਲਗਾਇਆ ਕੁੱਲ ਸਮਾਂ ਇੱਕ ਜਾਂ ਦੋ ਘੰਟਿਆਂ ਤੋਂ ਵੱਧ ਹੈ।

ਧਿਆਨ ਰੱਖੋ ਕਿ ਇਰਾਦੇ ਦੀ ਸੁਰੱਖਿਆ ਕਿਸੇ ਵੀ ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ ਪੈਟਰਨ ਦਾ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਤੱਤ
ਹੈ। ਐੱਲਐੱਲਐੱਮ-ਆਧਾਰਿਤ ਸੁਧਾਰ ਪ੍ਰਕਿਰਿਆ ਦਾ ਉਦੇਸ਼ ਜਿੰਨਾ ਸੰਭਵ ਹੋ ਸਕੇ ਉਤਪੰਨ ਕੀਤੇ JSON ਦੀ ਮੂਲ
ਜਾਣਕਾਰੀ ਅਤੇ ਇਰਾਦੇ ਨੂੰ ਬਰਕਰਾਰ ਰੱਖਣਾ ਹੈ। ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ ਕਿ ਠੀਕ ਕੀਤਾ JSON ਆਪਣਾ
ਸ਼ਬਦੀ ਅਰਥ ਬਰਕਰਾਰ ਰੱਖਦਾ ਹੈ ਅਤੇ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਵਰਤਿਆ ਜਾ
ਸਕਦਾ ਹੈ।

Olympia ਵਿੱਚ “ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ” ਪਹੁੰਚ ਦੀ ਇਹ ਵਿਵਹਾਰਕ ਇੰਪਲੀਮੈਂਟੇਸ਼ਨ ਸਪੱਸ਼ਟ ਤੌਰ ’ਤੇ
ਦਰਸਾਉਂਦੀ ਹੈ ਕਿ AI, ਖਾਸ ਕਰਕੇ ਐੱਲਐੱਲਐੱਮ, ਨੂੰ ਅਸਲ ਦੁਨੀਆਂ ਦੀਆਂ ਡਾਟਾ ਚੁਣੌਤੀਆਂ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ
ਕਿਵੇਂ ਵਰਤਿਆਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਮਜ਼ਬੂਤ ਅਤੇ ਕੁਸ਼ਲ ਐਪਲੀਕੇਸ਼ਨਾਂ ਬਣਾਉਣ ਲਈਪਰੰਪਰਾਗਤ ਪ੍ਰੋਗਰਾਮਿੰਗ
ਤਕਨੀਕਾਂ ਨੂੰ AI ਸਮਰੱਥਾਵਾਂ ਨਾਲ ਜੋੜਨ ਦੀ ਸ਼ਕਤੀ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ।

ਪੋਸਟਲ ਦਾ ਨਿਯਮ ਅਤੇ “ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ” ਪੈਟਰਨ

“ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ,” ਜਿਵੇਂ ਕਿ JSONFixer ਕਲਾਸ ਦੁਆਰਾ ਦਰਸਾਇਆ ਗਿਆ ਹੈ, ਪੋਸਟਲ ਦੇ
ਨਿਯਮ ਨਾਲ ਚੰਗੀ ਤਰ੍ਹਾਂ ਮੇਲ ਖਾਂਦਾ ਹੈ, ਜਿਸਨੂੰ ਮਜ਼ਬੂਤੀ ਦਾ ਸਿਧਾਂਤ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਪੋਸਟਲ ਦਾ ਨਿਯਮ
ਕਹਿੰਦਾ ਹੈ:

“ਜੋ ਤੁਸੀਂ ਕਰਦੇ ਹੋ ਉਸ ਵਿੱਚ ਰੂੜ੍ਹੀਵਾਦੀ ਬਣੋ, ਦੂਜਿਆਂ ਤੋਂ ਜੋ ਸਵੀਕਾਰ ਕਰਦੇ ਹੋ ਉਸ ਵਿੱਚ ਉਦਾਰ ਬਣੋ।”

ਇਹ ਸਿਧਾਂਤ, ਜੋ ਮੂਲ ਰੂਪ ਵਿੱਚ ਸ਼ੁਰੂਆਤੀ ਇੰਟਰਨੈੱਟ ਦੇ ਪਾਇਨੀਅਰ ਜੌਨ ਪੋਸਟਲ ਦੁਆਰਾ ਦੱਸਿਆ ਗਿਆ

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 158

ਸੀ, ਅਜਿਹੀਆਂ ਪ੍ਰਣਾਲੀਆਂ ਬਣਾਉਣ ਦੇ ਮਹੱਤਵ ’ਤੇ ਜ਼ੋਰ ਦਿੰਦਾ ਹੈ ਜੋ ਆਉਟਪੁੱਟ ਭੇਜਣ ਸਮੇਂ ਨਿਰਧਾਰਤ
ਪ੍ਰੋਟੋਕੋਲਾਂ ਦੀ ਸਖ਼ਤ ਪਾਲਣਾ ਬਣਾਈ ਰੱਖਦੇ ਹੋਏ ਵੱਖ-ਵੱਖ ਜਾਂ ਥੋੜ੍ਹੇ ਗਲਤ ਇਨਪੁੱਟਾਂ ਨੂੰ ਸਹਿਣ ਕਰਨ ਦੇ
ਯੋਗ ਹਨ।

“ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ” ਦੇ ਸੰਦਰਭ ਵਿੱਚ, JSONFixer ਕਲਾਸ ਪੋਸਟੇਲ ਦੇ ਨਿਯਮ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ,
ਜੋ LLMs ਦੁਆਰਾ ਤਿਆਰ ਕੀਤੇ ਟੁੱਟੇ ਜਾਂ ਅਧੂਰੇ JSON ਡਾਟਾ ਨੂੰ ਸਵੀਕਾਰ ਕਰਨ ਵਿੱਚ ਉਦਾਰ ਹੈ। ਇਹ
ਉਦੋਂ ਤੁਰੰਤ ਅਸਵੀਕਾਰ ਜਾਂ ਅਸਫਲ ਨਹੀਂ ਹੁੰਦੀ ਜਦੋਂ ਅਜਿਹੇ JSON ਦਾ ਸਾਹਮਣਾ ਕਰਦੀ ਹੈ ਜੋ ਸਖ਼ਤੀ ਨਾਲ
ਉਮੀਦ ਕੀਤੇ ਫਾਰਮੈਟ ਦੀ ਪਾਲਣਾ ਨਹੀਂ ਕਰਦਾ। ਇਸ ਦੀ ਬਜਾਏ, ਇਹ LLMs ਦੀ ਸ਼ਕਤੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ
JSON ਨੂੰ ਠੀਕ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੀ ਹੈ।

ਅਧੂਰੇ JSON ਨੂੰ ਸਵੀਕਾਰ ਕਰਨ ਵਿੱਚ ਉਦਾਰ ਹੋਣ ਦੁਆਰਾ, JSONFixer ਕਲਾਸ ਮਜ਼ਬੂਤੀ ਅਤੇ ਲਚਕਤਾ
ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਇਹ ਮੰਨਦੀ ਹੈ ਕਿ ਅਸਲ ਦੁਨੀਆ ਵਿੱਚ ਡਾਟਾ ਅਕਸਰ ਵੱਖ-ਵੱਖ ਰੂਪਾਂ ਵਿੱਚ ਆਉਂਦਾ ਹੈ
ਅਤੇ ਹਮੇਸ਼ਾ ਸਖ਼ਤ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੇ ਅਨੁਕੂਲ ਨਹੀਂ ਹੋ ਸਕਦਾ। ਇਹਨਾਂ ਵਿਚਲਨਾਂ ਨੂੰ ਸੁਚੱਜੇ ਢੰਗ ਨਾਲ ਸੰਭਾਲ
ਕੇ ਅਤੇ ਸੁਧਾਰ ਕੇ, ਕਲਾਸ ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦੀ ਹੈ ਕਿ ਐਪਲੀਕੇਸ਼ਨ ਅਧੂਰੇ ਡਾਟਾ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਵੀ
ਨਿਰਵਿਘਨ ਕੰਮ ਕਰਦੀ ਰਹੇ।

ਦੂਜੇ ਪਾਸੇ, JSONFixer ਕਲਾਸ ਆਉਟਪੁੱਟ ਦੇ ਮਾਮਲੇ ਵਿੱਚ ਪੋਸਟੇਲ ਦੇ ਨਿਯਮ ਦੇ ਰੂੜ੍ਹੀਵਾਦੀ ਪਹਿਲੂ
ਦੀ ਵੀ ਪਾਲਣਾ ਕਰਦੀ ਹੈ। LLMs ਦੀ ਵਰਤੋਂ ਕਰਕੇ JSON ਨੂੰ ਠੀਕ ਕਰਨ ਤੋਂ ਬਾਅਦ, ਕਲਾਸ ਸੁਧਾਰੇ
ਗਏ JSON ਦੀ ਪੁਸ਼ਟੀ ਕਰਦੀ ਹੈ ਤਾਂ ਜੋ ਇਹ ਯਕੀਨੀ ਬਣਾਇਆ ਜਾ ਸਕੇ ਕਿ ਇਹ ਸਖ਼ਤੀ ਨਾਲ ਉਮੀਦ
ਕੀਤੇ ਫਾਰਮੈਟ ਦੇ ਅਨੁਕੂਲ ਹੈ। ਇਹ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਹੋਰ ਹਿੱਸਿਆਂ ਨੂੰ ਭੇਜਣ ਤੋਂ ਪਹਿਲਾਂ ਡਾਟਾ ਦੀ ਅਖੰਡਤਾ
ਅਤੇ ਸ਼ੁੱਧਤਾ ਨੂੰ ਬਣਾਈ ਰੱਖਦੀ ਹੈ। ਇਹ ਰੂੜ੍ਹੀਵਾਦੀ ਪਹੁੰਚ ਗਾਰੰਟੀ ਦਿੰਦੀ ਹੈ ਕਿ JSONFixer ਕਲਾਸ
ਦਾ ਆਉਟਪੁੱਟ ਭਰੋਸੇਯੋਗ ਅਤੇ ਇਕਸਾਰ ਹੈ, ਜੋ ਅੰਤਰ-ਸੰਚਾਲਨ ਯੋਗਤਾ ਨੂੰ ਵਧਾਉਂਦਾ ਹੈ ਅਤੇ ਗਲਤੀਆਂ ਦੇ
ਫੈਲਣ ਨੂੰ ਰੋਕਦਾ ਹੈ।

ਜੌਨ ਪੋਸਟੇਲ ਬਾਰੇ ਦਿਲਚਸਪ ਤੱਥ:

• ਜੌਨ ਪੋਸਟੇਲ (1943-1998) ਇੱਕ ਅਮਰੀਕੀ ਕੰਪਿਊਟਰ ਵਿਗਿਆਨੀ ਸਨ ਜਿਨ੍ਹਾਂ ਨੇ ਇੰਟਰਨੈੱਟ ਦੇ
ਵਿਕਾਸ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾਈ। ਉਹਨਾਂ ਨੂੰ ਬੁਨਿਆਦੀ ਪ੍ਰੋਟੋਕੋਲ ਅਤੇ ਮਿਆਰਾਂ ਵਿੱਚ
ਉਹਨਾਂ ਦੇ ਮਹੱਤਵਪੂਰਨ ਯੋਗਦਾਨ ਲਈ “ਇੰਟਰਨੈੱਟ ਦੇ ਭਗਵਾਨ” ਵਜੋਂ ਜਾਣਿਆ ਜਾਂਦਾ ਸੀ।

• ਪੋਸਟੇਲ Request for Comments (RFC) ਦਸਤਾਵੇਜ਼ ਲੜੀ ਦੇ ਸੰਪਾਦਕ ਸਨ, ਜੋ ਇੰਟਰਨੈੱਟ
ਬਾਰੇ ਤਕਨੀਕੀ ਅਤੇ ਸੰਗਠਨਾਤਮਕ ਨੋਟਾਂ ਦੀ ਇੱਕ ਲੜੀ ਹੈ। ਉਹਨਾਂ ਨੇ TCP, IP, ਅਤੇ SMTP
ਵਰਗੇ ਬੁਨਿਆਦੀ ਪ੍ਰੋਟੋਕੋਲਾਂ ਸਮੇਤ 200 ਤੋਂ ਵੱਧ RFCs ਦੀ ਰਚਨਾ ਜਾਂ ਸਹਿ-ਰਚਨਾ ਕੀਤੀ।

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 159

• ਆਪਣੇ ਤਕਨੀਕੀ ਯੋਗਦਾਨਾਂ ਤੋਂ ਇਲਾਵਾ, ਪੋਸਟੇਲ ਆਪਣੇ ਨਿਮਰ ਅਤੇ ਸਹਿਯੋਗੀ ਪਹੁੰਚ ਲਈ ਜਾਣੇ
ਜਾਂਦੇ ਸਨ। ਉਹ ਸਹਿਮਤੀ ਪ੍ਰਾਪਤ ਕਰਨ ਅਤੇ ਇੱਕ ਮਜ਼ਬੂਤ ਅਤੇ ਅੰਤਰ-ਸੰਚਾਲਨਯੋਗ ਨੈੱਟਵਰਕ
ਬਣਾਉਣ ਲਈ ਇਕੱਠੇ ਕੰਮ ਕਰਨ ਦੀ ਮਹੱਤਤਾ ਵਿੱਚ ਵਿਸ਼ਵਾਸ ਰੱਖਦੇ ਸਨ।

• ਪੋਸਟੇਲ ਨੇ 1977 ਤੋਂ ਆਪਣੀ ਅਕਾਲ ਮੌਤ 1998 ਤੱਕ University of Southern
California (USC) ਦੇ Information Sciences Institute (ISI) ਵਿੱਚ ਕੰਪਿਊਟਰ
ਨੈੱਟਵਰਕਸ ਡਿਵੀਜ਼ਨ ਦੇ ਡਾਇਰੈਕਟਰ ਵਜੋਂ ਸੇਵਾ ਕੀਤੀ।

• ਉਹਨਾਂ ਦੇ ਵਿਸ਼ਾਲ ਯੋਗਦਾਨਾਂ ਦੀ ਮਾਨਤਾ ਵਿੱਚ, ਪੋਸਟੇਲ ਨੂੰ 1998 ਵਿੱਚ ਮਰਣ ਉਪਰੰਤ ਪ੍ਰਤਿਸ਼ਠਿਤ
ਟਿਊਰਿੰਗ ਪੁਰਸਕਾਰ ਨਾਲ ਸਨਮਾਨਿਤ ਕੀਤਾ ਗਿਆ, ਜਿਸਨੂੰ ਅਕਸਰ “ਕੰਪਿਊਟਿੰਗ ਦਾ ਨੋਬਲ
ਪੁਰਸਕਾਰ” ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

JSONFixer ਕਲਾਸ ਮਜ਼ਬੂਤੀ, ਲਚਕਤਾ, ਅਤੇ ਅੰਤਰ-ਸੰਚਾਲਨ ਯੋਗਤਾ ਨੂੰ ਵਧਾਵਾ ਦਿੰਦੀ ਹੈ, ਜੋ ਉਹ
ਮੁੱਖ ਕਦਰਾਂ-ਕੀਮਤਾਂ ਸਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਪੋਸਟੇਲ ਨੇ ਆਪਣੇ ਪੂਰੇ ਕੈਰੀਅਰ ਦੌਰਾਨ ਕਾਇਮ ਰੱਖਿਆ। ਅਜਿਹੀਆਂ
ਪ੍ਰਣਾਲੀਆਂ ਬਣਾ ਕੇ ਜੋ ਅਪੂਰਨਤਾਵਾਂ ਪ੍ਰਤੀ ਸਹਿਣਸ਼ੀਲ ਹਨ ਜਦੋਂ ਕਿ ਪ੍ਰੋਟੋਕੋਲਾਂ ਦੀ ਸਖ਼ਤ ਪਾਲਣਾ ਕਰਦੀਆਂ
ਹਨ, ਅਸੀਂ ਅਜਿਹੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਬਣਾ ਸਕਦੇ ਹਾਂ ਜੋ ਅਸਲ ਦੁਨੀਆ ਦੀਆਂ ਚੁਣੌਤੀਆਂ ਦਾ ਸਾਹਮਣਾ ਕਰਨ
ਵਿੱਚ ਵਧੇਰੇ ਲਚਕਦਾਰ ਅਤੇ ਅਨੁਕੂਲ ਹਨ।

ਵਿਚਾਰ ਅਤੇ ਵਿਰੋਧੀ ਸੰਕੇਤ

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡੇਟਾ ਪਹੁੰਚਾਂ ਦੀ ਲਾਗੂ ਕਰਨ ਯੋਗਤਾ ਪੂਰੀ ਤਰ੍ਹਾਂ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਦੁਆਰਾ ਸੰਭਾਲੇ ਜਾਣ
ਵਾਲੇ ਡੇਟਾ ਦੀ ਕਿਸਮ ’ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਇੱਕ ਕਾਰਨ ਹੈ ਕਿ ਤੁਸੀਂ ਆਪਣੀ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਸਾਰੀਆਂ
JSON ਪਾਰਸਿੰਗ ਗਲਤੀਆਂ ਨੂੰ ਆਪਣੇ ਆਪ ਠੀਕ ਕਰਨ ਲਈ JSON.parse ਨੂੰ ਸਿੱਧਾ monkeypatch
ਨਹੀਂ ਕਰਨਾ ਚਾਹੋਗੇ: ਸਾਰੀਆਂ ਗਲਤੀਆਂ ਨੂੰ ਆਪਣੇ ਆਪ ਠੀਕ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਜਾਂ ਕਰਨਾ ਨਹੀਂ ਚਾਹੀਦਾ।

ਸਵੈ-ਠੀਕ ਹੋਣਾ ਖਾਸ ਤੌਰ ’ਤੇ ਜੋਖਮ ਭਰਿਆ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਇਹ ਡੇਟਾ ਹੈਂਡਲਿੰਗ ਅਤੇ ਪ੍ਰੋਸੈਸਿੰਗ ਨਾਲ ਸੰਬੰਧਿਤ
ਨਿਯਾਮਕ ਜਾਂ ਪਾਲਣਾ ਜ਼ਰੂਰਤਾਂ ਨਾਲ ਜੁੜਿਆ ਹੁੰਦਾ ਹੈ। ਕੁਝ ਉਦਯੋਗਾਂ, ਜਿਵੇਂ ਕਿ ਸਿਹਤ ਸੰਭਾਲ ਅਤੇ ਵਿੱਤ ਵਿੱਚ,
ਡੇਟਾ ਸੰਪੂਰਨਤਾ ਅਤੇ ਲੇਖਾ-ਜੋਖਾ ਬਾਰੇ ਇੰਨੇ ਸਖਤ ਨਿਯਮ ਹਨ ਕਿ ਉਚਿਤ ਨਿਗਰਾਨੀ ਜਾਂ ਲੌਗਿੰਗ ਤੋਂ ਬਿਨਾਂ ਕਿਸੇ
ਵੀ ਤਰ੍ਹਾਂ ਦੀ “ਕਾਲਾ ਬਕਸਾ” ਡੇਟਾ ਸੁਧਾਰ ਕਰਨਾ ਇਹਨਾਂ ਨਿਯਮਾਂ ਦੀ ਉਲੰਘਣਾ ਕਰ ਸਕਦਾ ਹੈ। ਇਹ ਯਕੀਨੀ
ਬਣਾਉਣਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਤੁਹਾਡੇ ਦੁਆਰਾ ਵਿਕਸਿਤ ਕੀਤੀਆਂ ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੀਆਂ ਡੇਟਾ ਤਕਨੀਕਾਂ ਲਾਗੂ
ਕਾਨੂੰਨੀ ਅਤੇ ਨਿਯਾਮਕ ਢਾਂਚਿਆਂ ਦੇ ਅਨੁਕੂਲ ਹੋਣ।

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 160

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡੇਟਾ ਤਕਨੀਕਾਂ ਨੂੰ ਲਾਗੂ ਕਰਨਾ, ਖਾਸ ਕਰਕੇ ਏ.ਆਈ. ਮਾਡਲਾਂ ਨਾਲ ਸੰਬੰਧਿਤ, ਐਪਲੀਕੇਸ਼ਨ
ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਅਤੇ ਸਰੋਤ ਵਰਤੋਂ ’ਤੇ ਵੀ ਵੱਡਾ ਪ੍ਰਭਾਵ ਪਾ ਸਕਦਾ ਹੈ। ਗਲਤੀ ਦੀ ਪਛਾਣ ਅਤੇ ਸੁਧਾਰ ਲਈ
ਏ.ਆਈ. ਮਾਡਲਾਂ ਰਾਹੀਂ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਡੇਟਾ ਦੀ ਪ੍ਰੋਸੈਸਿੰਗ ਕੰਪਿਊਟਰ ਸਰੋਤਾਂ ਦੀ ਗਹਿਨ ਵਰਤੋਂ ਕਰ ਸਕਦੀ
ਹੈ। ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡੇਟਾ ਦੇ ਫਾਇਦਿਆਂ ਅਤੇ ਸੰਬੰਧਿਤ ਕਾਰਗੁਜ਼ਾਰੀ ਅਤੇ ਸਰੋਤ ਲਾਗਤਾਂ ਵਿਚਕਾਰ ਸੰਤੁਲਨ
ਦਾ ਮੁਲਾਂਕਣ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ।

ਇਹ ਕਹਿ ਕੇ, ਆਓ ਇਸ ਸ਼ਕਤੀਸ਼ਾਲੀ ਪਹੁੰਚ ਨੂੰ ਕਦੋਂ ਅਤੇ ਕਿੱਥੇ ਲਾਗੂ ਕਰਨਾ ਹੈ, ਇਸ ਬਾਰੇ ਫੈਸਲਾ ਕਰਨ ਵਿੱਚ
ਸ਼ਾਮਲ ਕਾਰਕਾਂ ਵਿੱਚ ਡੂੰਘਾਈ ਨਾਲ ਜਾਈਏ।

ਡੇਟਾ ਮਹੱਤਤਾ

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡੇਟਾ ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ ’ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਸਮੇਂ, ਪ੍ਰੋਸੈਸ ਕੀਤੇ ਜਾ ਰਹੇ ਡੇਟਾ ਦੀ ਮਹੱਤਤਾ
ਦਾ ਮੁਲਾਂਕਣ ਕਰਨਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੈ। ਮਹੱਤਤਾ ਦਾ ਪੱਧਰ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਅਤੇ ਇਸਦੇ ਵਪਾਰਕ ਖੇਤਰ ਦੇ
ਸੰਦਰਭ ਵਿੱਚ ਡੇਟਾ ਦੀ ਮਹੱਤਤਾ ਅਤੇ ਸੰਵੇਦਨਸ਼ੀਲਤਾ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।

ਕੁਝ ਮਾਮਲਿਆਂ ਵਿੱਚ, ਡੇਟਾ ਗਲਤੀਆਂ ਨੂੰ ਆਪਣੇ ਆਪ ਠੀਕ ਕਰਨਾ ਢੁਕਵਾਂ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਖਾਸ ਕਰਕੇ ਜੇਕਰ
ਡੇਟਾ ਬਹੁਤ ਸੰਵੇਦਨਸ਼ੀਲ ਹੈ ਜਾਂ ਇਸਦੇ ਕਾਨੂੰਨੀ ਪ੍ਰਭਾਵ ਹਨ। ਉਦਾਹਰਣ ਲਈ, ਹੇਠ ਲਿਖੀਆਂ ਸਥਿਤੀਆਂ ’ਤੇ
ਵਿਚਾਰ ਕਰੋ:

1. ਵਿੱਤੀ ਲੈਣ-ਦੇਣ: ਵਿੱਤੀ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ, ਜਿਵੇਂ ਕਿ ਬੈਂਕਿੰਗ ਸਿਸਟਮ ਜਾਂ ਟ੍ਰੇਡਿੰਗ ਪਲੇਟਫਾਰਮ, ਡੇਟਾ
ਦੀ ਸ਼ੁੱਧਤਾ ਸਭ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਵਿੱਤੀ ਡੇਟਾ ਵਿੱਚ ਛੋਟੀਆਂ ਗਲਤੀਆਂ ਵੀ ਮਹੱਤਵਪੂਰਨ ਨਤੀਜੇ
ਦੇ ਸਕਦੀਆਂ ਹਨ, ਜਿਵੇਂ ਕਿ ਗਲਤ ਖਾਤਾ ਬਕਾਇਆ, ਗਲਤ ਦਿਸ਼ਾ ਵਿੱਚ ਭੇਜੇ ਗਏ ਫੰਡ, ਜਾਂ ਗਲਤ
ਟ੍ਰੇਡਿੰਗ ਫੈਸਲੇ। ਇਹਨਾਂ ਮਾਮਲਿਆਂ ਵਿੱਚ, ਪੂਰੀ ਜਾਂਚ ਅਤੇ ਲੇਖਾ-ਜੋਖਾ ਤੋਂ ਬਿਨਾਂ ਆਟੋਮੈਟਿਕ ਸੁਧਾਰ
ਅਸਵੀਕਾਰਯੋਗ ਜੋਖਮਾਂ ਨੂੰ ਪੇਸ਼ ਕਰ ਸਕਦੇ ਹਨ।

2. ਮੈਡੀਕਲ ਰਿਕਾਰਡ: ਸਿਹਤ ਸੰਭਾਲ ਐਪਲੀਕੇਸ਼ਨਾਂ ਬਹੁਤ ਸੰਵੇਦਨਸ਼ੀਲ ਅਤੇ ਗੁਪਤ ਮਰੀਜ਼ ਡੇਟਾ ਨਾਲ
ਨਜਿੱਠਦੀਆਂ ਹਨ। ਮੈਡੀਕਲ ਰਿਕਾਰਡਾਂ ਵਿੱਚ ਅਸ਼ੁੱਧੀਆਂ ਮਰੀਜ਼ ਦੀ ਸੁਰੱਖਿਆ ਅਤੇ ਇਲਾਜ ਦੇ ਫੈਸਲਿਆਂ
’ਤੇ ਗੰਭੀਰ ਪ੍ਰਭਾਵ ਪਾ ਸਕਦੀਆਂ ਹਨ। ਯੋਗ ਸਿਹਤ ਸੰਭਾਲ ਪੇਸ਼ੇਵਰਾਂ ਦੁਆਰਾ ਉਚਿਤ ਨਿਗਰਾਨੀ ਅਤੇ
ਪ੍ਰਮਾਣੀਕਰਨ ਤੋਂ ਬਿਨਾਂ ਮੈਡੀਕਲ ਡੇਟਾ ਨੂੰ ਆਪਣੇ ਆਪ ਸੋਧਣਾ ਨਿਯਾਮਕ ਜ਼ਰੂਰਤਾਂ ਦੀ ਉਲੰਘਣਾ ਕਰ
ਸਕਦਾ ਹੈ ਅਤੇ ਮਰੀਜ਼ ਦੀ ਭਲਾਈ ਨੂੰ ਜੋਖਮ ਵਿੱਚ ਪਾ ਸਕਦਾ ਹੈ।

3. ਕਾਨੂੰਨੀ ਦਸਤਾਵੇਜ਼: ਕਾਨੂੰਨੀ ਦਸਤਾਵੇਜ਼ਾਂ, ਜਿਵੇਂ ਕਿ ਇਕਰਾਰਨਾਮੇ, ਸਮਝੌਤੇ, ਜਾਂ ਅਦਾਲਤੀ ਫਾਈਲਿੰਗ
ਨੂੰ ਸੰਭਾਲਣ ਵਾਲੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਨੂੰ ਸਖ਼ਤ ਸ਼ੁੱਧਤਾ ਅਤੇ ਅਖੰਡਤਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਕਾਨੂੰਨੀ ਡੇਟਾ ਵਿੱਚ

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 161

ਛੋਟੀਆਂ ਗਲਤੀਆਂ ਵੀ ਮਹੱਤਵਪੂਰਨ ਕਾਨੂੰਨੀ ਨਤੀਜੇ ਦੇ ਸਕਦੀਆਂ ਹਨ। ਇਸ ਖੇਤਰ ਵਿੱਚ ਆਟੋਮੈਟਿਡ
ਸੁਧਾਰ ਢੁਕਵੇਂ ਨਹੀਂ ਹੋ ਸਕਦੇ, ਕਿਉਂਕਿ ਡੇਟਾ ਨੂੰ ਅਕਸਰ ਇਸਦੀ ਵੈਧਤਾ ਅਤੇ ਲਾਗੂ ਕਰਨ ਯੋਗਤਾ ਨੂੰ
ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ ਕਾਨੂੰਨੀ ਮਾਹਿਰਾਂ ਦੁਆਰਾ ਮੈਨੂਅਲ ਸਮੀਖਿਆ ਅਤੇ ਪ੍ਰਮਾਣੀਕਰਨ ਦੀ ਲੋੜ ਹੁੰਦੀ
ਹੈ।

ਇਹਨਾਂ ਮਹੱਤਵਪੂਰਨ ਡਾਟਾ ਸਥਿਤੀਆਂ ਵਿੱਚ, ਸਵੈਚਾਲਿਤ ਸੁਧਾਰਾਂ ਨਾਲ ਜੁੜੇ ਜੋਖਮ ਅਕਸਰ ਸੰਭਾਵੀ ਲਾਭਾਂ ਤੋਂ
ਵੱਧ ਹੁੰਦੇ ਹਨ। ਗਲਤੀਆਂ ਦੀ ਸ਼ੁਰੂਆਤ ਜਾਂ ਡਾਟਾ ਨੂੰ ਗਲਤ ਢੰਗ ਨਾਲ ਸੋਧਣ ਦੇ ਨਤੀਜੇ ਗੰਭੀਰ ਹੋ ਸਕਦੇ ਹਨ,
ਜਿਸ ਨਾਲ ਵਿੱਤੀ ਨੁਕਸਾਨ, ਕਾਨੂੰਨੀ ਜ਼ਿੰਮੇਵਾਰੀਆਂ, ਜਾਂ ਇੱਥੋਂ ਤੱਕ ਕਿ ਵਿਅਕਤੀਆਂ ਨੂੰ ਨੁਕਸਾਨ ਹੋ ਸਕਦਾ ਹੈ।

ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਡਾਟਾ ਨਾਲ ਨਜਿੱਠਦੇ ਸਮੇਂ, ਮੈਨੂਅਲ ਤਸਦੀਕ ਅਤੇ ਪ੍ਰਮਾਣੀਕਰਨ ਪ੍ਰਕਿਰਿਆਵਾਂ ਨੂੰ ਤਰਜੀਹ
ਦੇਣਾ ਜ਼ਰੂਰੀ ਹੈ। ਡਾਟਾ ਦੀ ਸ਼ੁੱਧਤਾ ਅਤੇ ਅਖੰਡਤਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਵਿੱਚ ਮਨੁੱਖੀ ਨਿਗਰਾਨੀ ਅਤੇ ਮੁਹਾਰਤ
ਮਹੱਤਵਪੂਰਨ ਹੈ। ਸੰਭਾਵੀ ਗਲਤੀਆਂ ਜਾਂ ਅਸੰਗਤੀਆਂ ਨੂੰ ਚਿੰਨ੍ਹਿਤ ਕਰਨ ਲਈ ਸਵੈਚਾਲਿਤ ਸਵੈ-ਠੀਕ ਕਰਨ
ਵਾਲੀਆਂ ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ, ਪਰ ਸੁਧਾਰਾਂ ਬਾਰੇ ਅੰਤਿਮ ਫੈਸਲੇ ਵਿੱਚ ਮਨੁੱਖੀ ਫੈਸਲੇ ਅਤੇ
ਮਨਜ਼ੂਰੀ ਸ਼ਾਮਲ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ।

ਹਾਲਾਂਕਿ, ਇਹ ਨੋਟ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਕਿਸੇ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਸਾਰਾ ਡਾਟਾ ਇੱਕੋ ਜਿਹੀ ਮਹੱਤਤਾ ਦਾ ਨਹੀਂ
ਹੋ ਸਕਦਾ। ਇੱਕੋ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਅੰਦਰ, ਡਾਟਾ ਦੇ ਅਜਿਹੇ ਉਪ-ਸਮੂਹ ਹੋ ਸਕਦੇ ਹਨ ਜੋ ਘੱਟ ਸੰਵੇਦਨਸ਼ੀਲ ਹਨ ਜਾਂ
ਗਲਤੀਆਂ ਹੋਣ ’ਤੇ ਘੱਟ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ। ਅਜਿਹੇ ਮਾਮਲਿਆਂ ਵਿੱਚ, ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ
ਨੂੰ ਚੁਣਵੇਂ ਤੌਰ ’ਤੇ ਉਹਨਾਂ ਵਿਸ਼ੇਸ਼ ਡਾਟਾ ਉਪ-ਸਮੂਹਾਂ ’ਤੇ ਲਾਗੂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਦੋਂ ਕਿ ਮਹੱਤਵਪੂਰਨ ਡਾਟਾ
ਮੈਨੂਅਲ ਤਸਦੀਕ ਦੇ ਅਧੀਨ ਰਹਿੰਦਾ ਹੈ।

ਮੁੱਖ ਗੱਲ ਇਹ ਹੈ ਕਿ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਹਰੇਕ ਡਾਟਾ ਸ਼੍ਰੇਣੀ ਦੀ ਮਹੱਤਤਾ ਦਾ ਧਿਆਨ ਨਾਲ ਮੁਲਾਂਕਣ
ਕੀਤਾ ਜਾਵੇ ਅਤੇ ਸੰਬੰਧਿਤ ਜੋਖਮਾਂ ਅਤੇ ਪ੍ਰਭਾਵਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਸੁਧਾਰਾਂ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਸਪਸ਼ਟ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼
ਅਤੇ ਪ੍ਰਕਿਰਿਆਵਾਂ ਨਿਰਧਾਰਤ ਕੀਤੀਆਂ ਜਾਣ। ਮਹੱਤਵਪੂਰਨ (ਯਾਨੀ ਲੇਖਾ-ਬਹੀਆਂ, ਮੈਡੀਕਲ ਰਿਕਾਰਡ) ਅਤੇ
ਗੈਰ-ਮਹੱਤਵਪੂਰਨ ਡਾਟਾ (ਯਾਨੀ ਡਾਕ ਪਤੇ, ਸਰੋਤ ਚੇਤਾਵਨੀਆਂ) ਵਿੱਚ ਅੰਤਰ ਕਰਕੇ, ਤੁਸੀਂ ਢੁਕਵੇਂ ਸਥਾਨਾਂ ’ਤੇ
ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ ਦੇ ਲਾਭਾਂ ਦਾ ਫਾਇਦਾ ਲੈਣ ਅਤੇ ਜਿੱਥੇ ਜ਼ਰੂਰੀ ਹੋਵੇ ਸਖ਼ਤ ਨਿਯੰਤਰਣ
ਅਤੇ ਨਿਗਰਾਨੀ ਬਣਾਈ ਰੱਖਣ ਵਿੱਚ ਸੰਤੁਲਨ ਬਣਾ ਸਕਦੇ ਹੋ।

ਅੰਤ ਵਿੱਚ, ਮਹੱਤਵਪੂਰਨ ਡਾਟਾ ’ਤੇ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ ਨੂੰ ਲਾਗੂ ਕਰਨ ਦਾ ਫੈਸਲਾ ਖੇਤਰ
ਦੇ ਮਾਹਿਰਾਂ, ਕਾਨੂੰਨੀ ਸਲਾਹਕਾਰਾਂ, ਅਤੇ ਹੋਰ ਸੰਬੰਧਿਤ ਹਿੱਸੇਦਾਰਾਂ ਨਾਲ ਸਲਾਹ-ਮਸ਼ਵਰੇ ਨਾਲ ਲਿਆ ਜਾਣਾ ਚਾਹੀਦਾ
ਹੈ। ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਡਾਟਾ ਨਾਲ ਜੁੜੀਆਂ ਵਿਸ਼ੇਸ਼ ਲੋੜਾਂ, ਨਿਯਮਾਂ, ਅਤੇ ਜੋਖਮਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰਨਾ ਅਤੇ
ਡਾਟਾ ਸੁਧਾਰ ਰਣਨੀਤੀਆਂ ਨੂੰ ਉਸ ਅਨੁਸਾਰ ਅਨੁਕੂਲ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ।

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 162

ਗਲਤੀ ਦੀ ਗੰਭੀਰਤਾ

ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ ਨੂੰ ਲਾਗੂ ਕਰਦੇ ਸਮੇਂ, ਡਾਟਾ ਗਲਤੀਆਂ ਦੀ ਗੰਭੀਰਤਾ ਅਤੇ ਪ੍ਰਭਾਵ ਦਾ
ਮੁਲਾਂਕਣ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਸਾਰੀਆਂ ਗਲਤੀਆਂ ਬਰਾਬਰ ਨਹੀਂ ਹੁੰਦੀਆਂ, ਅਤੇ ਢੁਕਵੀਂ ਕਾਰਵਾਈ ਮੁੱਦੇ ਦੀ
ਗੰਭੀਰਤਾ ’ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ ਵੱਖ-ਵੱਖ ਹੋ ਸਕਦੀ ਹੈ।

ਮਾਮੂਲੀ ਅਸੰਗਤੀਆਂ ਜਾਂ ਫਾਰਮੈਟਿੰਗ ਮੁੱਦੇ ਸਵੈਚਾਲਿਤ ਸੁਧਾਰ ਲਈ ਢੁਕਵੇਂ ਹੋ ਸਕਦੇ ਹਨ। ਉਦਾਹਰਨ ਲਈ, ਟੁੱਟੇ
ਹੋਏ JSON ਨੂੰ ਠੀਕ ਕਰਨ ਲਈ ਨਿਯੁਕਤ ਕੀਤਾ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲਾ ਡਾਟਾ ਵਰਕਰ ਗੁੰਮ ਕਾਮਿਆਂ ਜਾਂ ਅਣ-
ਐਸਕੇਪਡ ਡਬਲ ਕੋਟਸ ਨੂੰ ਡਾਟਾ ਦੇ ਅਰਥ ਜਾਂ ਢਾਂਚੇ ਨੂੰ ਮਹੱਤਵਪੂਰਨ ਤੌਰ ’ਤੇ ਬਦਲੇ ਬਿਨਾਂ ਸੰਭਾਲ ਸਕਦਾ ਹੈ। ਇਸ
ਕਿਸਮ ਦੀਆਂ ਗਲਤੀਆਂ ਨੂੰ ਅਕਸਰ ਸਿੱਧਾ ਠੀਕ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਸਮੁੱਚੀ ਡਾਟਾ ਅਖੰਡਤਾ ’ਤੇ ਘੱਟੋ-ਘੱਟ
ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ।

ਹਾਲਾਂਕਿ, ਵਧੇਰੇ ਗੰਭੀਰ ਗਲਤੀਆਂ ਜੋ ਮੂਲ ਰੂਪ ਵਿੱਚ ਡਾਟਾ ਦੇ ਅਰਥ ਜਾਂ ਅਖੰਡਤਾ ਨੂੰ ਬਦਲਦੀਆਂ ਹਨ, ਉਹਨਾਂ
ਲਈ ਵੱਖਰੇ ਪਹੁੰਚ ਦੀ ਲੋੜ ਹੋ ਸਕਦੀ ਹੈ। ਅਜਿਹੇ ਮਾਮਲਿਆਂ ਵਿੱਚ, ਸਵੈਚਾਲਿਤ ਸੁਧਾਰ ਕਾਫ਼ੀ ਨਹੀਂ ਹੋ ਸਕਦੇ, ਅਤੇ
ਡਾਟਾ ਦੀ ਸ਼ੁੱਧਤਾ ਅਤੇ ਵੈਧਤਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ ਮਨੁੱਖੀ ਦਖਲਅੰਦਾਜ਼ੀ ਦੀ ਲੋੜ ਹੋ ਸਕਦੀ ਹੈ।

ਇੱਥੇ ਗਲਤੀ ਦੀ ਗੰਭੀਰਤਾ ਨਿਰਧਾਰਿਤ ਕਰਨ ਲਈ ਏ.ਆਈ. ਦੀ ਵਰਤੋਂ ਦੀ ਧਾਰਨਾ ਸਾਹਮਣੇ ਆਉਂਦੀ ਹੈ।
ਏ.ਆਈ. ਮਾਡਲਾਂ ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ਦਾ ਲਾਭ ਲੈਂਦੇ ਹੋਏ, ਅਸੀਂ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਵਰਕਰ ਤਿਆਰ ਕਰ
ਸਕਦੇ ਹਾਂ ਜੋ ਨਾ ਸਿਰਫ਼ ਗਲਤੀਆਂ ਨੂੰ ਠੀਕ ਕਰਦੇ ਹਨ, ਬਲਕਿ ਉਨ੍ਹਾਂ ਗਲਤੀਆਂ ਦੀ ਗੰਭੀਰਤਾ ਦਾ ਮੁਲਾਂਕਣ ਵੀ
ਕਰਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਸੰਭਾਲਣ ਦੇ ਤਰੀਕੇ ਬਾਰੇ ਸੂਝਵਾਨ ਫ਼ੈਸਲੇ ਲੈਂਦੇ ਹਨ।

ਉਦਾਹਰਣ ਵਜੋਂ, ਆਓ ਇੱਕ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਵਰਕਰ ’ਤੇ ਵਿਚਾਰ ਕਰੀਏ ਜੋ ਗਾਹਕ ਡਾਟਾਬੇਸ ਵਿੱਚ
ਆ ਰਹੇ ਡਾਟਾ ਵਿੱਚ ਅਸੰਗਤੀਆਂ ਨੂੰ ਠੀਕ ਕਰਨ ਲਈ ਜ਼ਿੰਮੇਵਾਰ ਹੈ। ਵਰਕਰ ਨੂੰ ਡਾਟਾ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਅਤੇ
ਸੰਭਾਵੀ ਗਲਤੀਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਲਈ ਤਿਆਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਵੇਂ ਕਿ ਗੁੰਮ ਜਾਂ ਵਿਰੋਧੀ ਜਾਣਕਾਰੀ।
ਹਾਲਾਂਕਿ, ਸਾਰੀਆਂ ਗਲਤੀਆਂ ਨੂੰ ਆਪਣੇ ਆਪ ਠੀਕ ਕਰਨ ਦੀ ਬਜਾਏ, ਵਰਕਰ ਨੂੰ ਵਾਧੂ ਟੂਲ ਕਾਲਾਂ ਨਾਲ ਲੈਸ
ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜੋ ਇਸਨੂੰ ਮਨੁੱਖੀ ਸਮੀਖਿਆ ਲਈਗੰਭੀਰ ਗਲਤੀਆਂ ਨੂੰ ਫਲੈਗ ਕਰਨ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦੀਆਂ
ਹਨ।

ਇੱਥੇ ਇੱਕ ਉਦਾਹਰਣ ਹੈ ਕਿ ਇਸਨੂੰ ਕਿਵੇਂ ਲਾਗੂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ:

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 163

1 class CustomerDataReviewer

2 include Raix::ChatCompletion

3 include Raix::FunctionDeclarations

4

5 attr_accessor :customer

6

7 function :flag_for_review, reason: { type: "string" } do |params|

8 AdminNotifier.review_request(customer, params[:reason])

9 end

10

11 def initialize(customer)

12 self.customer = customer

13 end

14

15 def call(customer_data)

16 transcript << {

17 system: "You are a customer data reviewer. Your task is to identify

18 and correct inconsistencies in customer data.

19

20 < additional instructions here... >

21

22 If you encounter severe errors that require human review, use the

23 `flag_for_review` tool to flag the data for manual intervention." }

24

25 transcript << { user: customer.to_json }

26 transcript << { assistant: "Reviewed/corrected data:\n```json\n" }

27

28 self.stop = ["```"]

29

30 chat_completion(json: true).then do |result|

31 return if result.blank?

32

33 customer.update(result)

34 end

35 end

36 end

ਇਸਉਦਾਹਰਣ ਵਿੱਚ, CustomerDataHealer ਵਰਕਰ ਨੂੰ ਗਾਹਕ ਡਾਟਾ ਵਿੱਚ ਅਸੰਗਤੀਆਂ ਦੀ ਪਛਾਣ ਅਤੇ
ਸੁਧਾਰ ਕਰਨ ਲਈ ਤਿਆਰ ਕੀਤਾ ਗਿਆ ਹੈ। ਇੱਕ ਵਾਰ ਫਿਰ, ਅਸੀਂ ਢਾਂਚਾਗਤ ਆਉਟਪੁੱਟ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ
Response Fencing ਅਤੇ Ventriloquist ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ। ਖਾਸ ਤੌਰ ’ਤੇ, ਵਰਕਰ ਦੇ ਸਿਸਟਮ

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 164

ਨਿਰਦੇਸ਼ਾਂ ਵਿੱਚ ਗੰਭੀਰ ਗਲਤੀਆਂ ਮਿਲਣ ’ਤੇ flag_for_review ਫੰਕਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਨ ਦੀਆਂ ਹਦਾਇਤਾਂ
ਸ਼ਾਮਲ ਹਨ।

ਜਦੋਂ ਵਰਕਰ ਗਾਹਕ ਡਾਟਾ ਨੂੰ ਪ੍ਰੋਸੈਸ ਕਰਦਾ ਹੈ, ਇਹ ਡਾਟਾ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਦਾ ਹੈ ਅਤੇ ਕਿਸੇ ਵੀ ਅਸੰਗਤੀਆਂ
ਨੂੰ ਠੀਕ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦਾ ਹੈ। ਜੇਕਰ ਵਰਕਰ ਨਿਰਧਾਰਤ ਕਰਦਾ ਹੈ ਕਿ ਗਲਤੀਆਂ ਗੰਭੀਰ ਹਨ ਅਤੇ ਮਨੁੱਖੀ
ਦਖਲ ਦੀ ਲੋੜ ਹੈ, ਤਾਂ ਇਹ ਡਾਟਾ ਨੂੰ ਫਲੈਗ ਕਰਨ ਅਤੇ ਫਲੈਗਿੰਗ ਦਾ ਕਾਰਨ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ flag_-

for_review ਟੂਲ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦਾ ਹੈ।

chat_completion ਮੈਥਡ ਨੂੰ json: true ਨਾਲ ਕਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਜੋ ਸੁਧਾਰੇ ਗਏ ਗਾਹਕ ਡਾਟਾ
ਨੂੰ JSON ਵਜੋਂ ਪਾਰਸ ਕੀਤਾ ਜਾ ਸਕੇ। ਫੰਕਸ਼ਨ ਕਾਲ ਤੋਂ ਬਾਅਦ ਲੂਪਿੰਗ ਲਈ ਕੋਈ ਪ੍ਰਬੰਧ ਨਹੀਂ ਹੈ, ਇਸ
ਲਈ ਜੇਕਰ flag_for_review ਨੂੰ ਬੁਲਾਇਆ ਗਿਆ ਸੀ ਤਾਂ ਨਤੀਜਾ ਖਾਲੀ ਹੋਵੇਗਾ। ਨਹੀਂ ਤਾਂ, ਗਾਹਕ ਨੂੰ
ਸਮੀਖਿਆ ਕੀਤੇ ਅਤੇ ਸੰਭਾਵਿਤ ਤੌਰ ’ਤੇ ਸੁਧਾਰੇ ਗਏ ਡਾਟਾ ਨਾਲ ਅੱਪਡੇਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਗਲਤੀ ਦੀ ਗੰਭੀਰਤਾ ਦੇ ਮੁਲਾਂਕਣ ਅਤੇ ਮਨੁੱਖੀ ਸਮੀਖਿਆ ਲਈ ਡਾਟਾ ਨੂੰ ਫਲੈਗ ਕਰਨ ਦੇ ਵਿਕਲਪ ਨੂੰ ਸ਼ਾਮਲ
ਕਰਕੇ, ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲਾ ਡਾਟਾ ਵਰਕਰ ਵਧੇਰੇ ਬੁੱਧੀਮਾਨ ਅਤੇ ਅਨੁਕੂਲ ਬਣ ਜਾਂਦਾ ਹੈ। ਇਹ ਛੋਟੀਆਂ
ਗਲਤੀਆਂ ਨੂੰ ਆਪਣੇ ਆਪ ਸੰਭਾਲ ਸਕਦਾ ਹੈ ਜਦੋਂ ਕਿ ਗੰਭੀਰ ਗਲਤੀਆਂ ਨੂੰ ਮੈਨੂਅਲ ਦਖਲ ਲਈ ਮਨੁੱਖੀ ਮਾਹਰਾਂ
ਕੋਲ ਭੇਜਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਗਲਤੀ ਦੀ ਗੰਭੀਰਤਾ ਨਿਰਧਾਰਤ ਕਰਨ ਲਈ ਵਿਸ਼ੇਸ਼ ਮਾਪਦੰਡ ਡੋਮੇਨ ਗਿਆਨ ਅਤੇ ਵਪਾਰਕ ਲੋੜਾਂ ਦੇ ਆਧਾਰ ’ਤੇ
ਵਰਕਰ ਦੇ ਨਿਰਦੇਸ਼ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਗੰਭੀਰਤਾ ਦਾ ਮੁਲਾਂਕਣ ਕਰਦੇ ਸਮੇਂ ਡਾਟਾ ਸੰਪੂਰਨਤਾ
’ਤੇ ਪ੍ਰਭਾਵ, ਡਾਟਾ ਦੇ ਨੁਕਸਾਨ ਜਾਂ ਖਰਾਬੀ ਦੀ ਸੰਭਾਵਨਾ, ਅਤੇ ਗਲਤ ਡਾਟਾ ਦੇ ਨਤੀਜਿਆਂ ਵਰਗੇ ਕਾਰਕਾਂ ’ਤੇ
ਵਿਚਾਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਗਲਤੀ ਦੀ ਗੰਭੀਰਤਾ ਦਾ ਮੁਲਾਂਕਣ ਕਰਨ ਲਈ AI ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਤੇ ਮਨੁੱਖੀ ਦਖਲ ਲਈ ਵਿਕਲਪ ਪ੍ਰਦਾਨ
ਕਰਕੇ, ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ ਸਵੈਚਾਲਨ ਅਤੇ ਡਾਟਾ ਸ਼ੁੱਧਤਾ ਬਣਾਈ ਰੱਖਣ ਵਿਚਕਾਰ ਸੰਤੁਲਨ
ਬਣਾ ਸਕਦੀਆਂ ਹਨ। ਇਹ ਪਹੁੰਚ ਯਕੀਨੀ ਬਣਾਉਂਦੀ ਹੈ ਕਿ ਛੋਟੀਆਂ ਗਲਤੀਆਂ ਨੂੰ ਕੁਸ਼ਲਤਾ ਨਾਲ ਠੀਕ ਕੀਤਾ
ਜਾਂਦਾ ਹੈ ਜਦੋਂ ਕਿ ਗੰਭੀਰ ਗਲਤੀਆਂ ਨੂੰ ਮਨੁੱਖੀ ਸਮੀਖਿਅਕਾਂ ਤੋਂ ਜ਼ਰੂਰੀ ਧਿਆਨ ਅਤੇ ਮੁਹਾਰਤ ਮਿਲਦੀ ਹੈ।

ਖੇਤਰ ਦੀ ਜਟਿਲਤਾ

ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ ’ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਸਮੇਂ, ਡਾਟਾ ਖੇਤਰ ਦੀ ਜਟਿਲਤਾ ਅਤੇ
ਇਸਦੇ ਢਾਂਚੇ ਅਤੇ ਸੰਬੰਧਾਂ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਵਾਲੇ ਨਿਯਮਾਂ ਦਾ ਮੁਲਾਂਕਣ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਖੇਤਰ ਦੀ

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 165

ਜਟਿਲਤਾ ਸਵੈਚਲਿਤ ਡਾਟਾ ਸੁਧਾਰ ਪਹੁੰਚਾਂ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਅਤੇ ਵਿਵਹਾਰਕਤਾ ’ਤੇ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਭਾਵ ਪਾ
ਸਕਦੀ ਹੈ।

ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ ਉਦੋਂ ਚੰਗੀ ਤਰ੍ਹਾਂ ਕੰਮ ਕਰਦੀਆਂ ਹਨ ਜਦੋਂ ਡਾਟਾ ਚੰਗੀ ਤਰ੍ਹਾਂ
ਪਰਿਭਾਸ਼ਿਤ ਪੈਟਰਨਾਂ ਅਤੇ ਪਾਬੰਦੀਆਂ ਦੀ ਪਾਲਣਾ ਕਰਦਾ ਹੈ। ਉਹਨਾਂ ਖੇਤਰਾਂ ਵਿੱਚ ਜਿੱਥੇ ਡਾਟਾ ਢਾਂਚਾ ਤੁਲਨਾਤਮਕ
ਤੌਰ ’ਤੇ ਸਧਾਰਨ ਹੈ ਅਤੇ ਡਾਟਾ ਤੱਤਾਂ ਵਿਚਕਾਰ ਸੰਬੰਧ ਸਿੱਧੇ ਹਨ, ਸਵੈਚਲਿਤ ਸੁਧਾਰ ਉੱਚ ਵਿਸ਼ਵਾਸ ਨਾਲ ਲਾਗੂ
ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਉਦਾਹਰਣ ਲਈ, ਫਾਰਮੈਟਿੰਗ ਮੁੱਦਿਆਂ ਨੂੰ ਠੀਕ ਕਰਨਾ ਜਾਂ ਬੁਨਿਆਦੀ ਡਾਟਾ ਕਿਸਮ ਦੀਆਂ
ਪਾਬੰਦੀਆਂ ਨੂੰ ਲਾਗੂ ਕਰਨਾ ਅਕਸਰ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਵਰਕਰਾਂ ਦੁਆਰਾ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ
ਸੰਭਾਲਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਹਾਲਾਂਕਿ, ਜਿਵੇਂ-ਜਿਵੇਂ ਡਾਟਾ ਖੇਤਰ ਦੀ ਜਟਿਲਤਾ ਵਧਦੀ ਹੈ, ਸਵੈਚਲਿਤ ਡਾਟਾ ਸੁਧਾਰ ਨਾਲ ਜੁੜੀਆਂ ਚੁਣੌਤੀਆਂ
ਵੀ ਵਧਦੀਆਂ ਹਨ। ਜਟਿਲ ਵਪਾਰਕ ਤਰਕ, ਡਾਟਾ ਇਕਾਈਆਂ ਵਿਚਕਾਰ ਗੁੰਝਲਦਾਰ ਸਬੰਧਾਂ, ਜਾਂ ਖੇਤਰ-ਵਿਸ਼ੇਸ਼
ਨਿਯਮਾਂ ਅਤੇ ਅਪਵਾਦਾਂ ਵਾਲੇ ਖੇਤਰਾਂ ਵਿੱਚ, ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ ਹਮੇਸ਼ਾ ਬਾਰੀਕੀਆਂ ਨੂੰ
ਨਹੀਂ ਸਮਝ ਸਕਦੀਆਂ ਅਤੇ ਅਣਚਾਹੇ ਨਤੀਜੇ ਪੈਦਾ ਕਰ ਸਕਦੀਆਂ ਹਨ।

ਆਓ ਇੱਕ ਜਟਿਲ ਖੇਤਰ ਦੀ ਉਦਾਹਰਣ ਲਈਏ: ਇੱਕ ਵਿੱਤੀ ਵਪਾਰ ਪ੍ਰਣਾਲੀ। ਇਸ ਖੇਤਰ ਵਿੱਚ, ਡਾਟਾ ਵਿੱਚ
ਵੱਖ-ਵੱਖ ਵਿੱਤੀ ਸਾਧਨ, ਮਾਰਕੀਟ ਡਾਟਾ, ਵਪਾਰਕ ਨਿਯਮ, ਅਤੇ ਨਿਯਾਮਕ ਲੋੜਾਂ ਸ਼ਾਮਲ ਹੁੰਦੀਆਂ ਹਨ। ਵੱਖ-ਵੱਖ
ਡਾਟਾ ਤੱਤਾਂ ਵਿਚਕਾਰ ਸਬੰਧ ਗੁੰਝਲਦਾਰ ਹੋ ਸਕਦੇ ਹਨ, ਅਤੇ ਡਾਟਾ ਦੀ ਵੈਧਤਾ ਅਤੇ ਸਥਿਰਤਾ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ
ਵਾਲੇ ਨਿਯਮ ਖੇਤਰ-ਵਿਸ਼ੇਸ਼ ਹੋ ਸਕਦੇ ਹਨ।

ਅਜਿਹੇ ਜਟਿਲ ਖੇਤਰ ਵਿੱਚ, ਵਪਾਰ ਡਾਟਾ ਵਿੱਚ ਅਸੰਗਤੀਆਂ ਨੂੰ ਠੀਕ ਕਰਨ ਲਈ ਨਿਯੁਕਤ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ
ਡਾਟਾ ਵਰਕਰ ਨੂੰ ਖੇਤਰ-ਵਿਸ਼ੇਸ਼ ਨਿਯਮਾਂ ਅਤੇ ਸੀਮਾਵਾਂ ਦੀ ਗਹਿਰੀ ਸਮਝ ਦੀ ਲੋੜ ਹੋਵੇਗੀ। ਇਸ ਨੂੰ ਮਾਰਕੀਟ
ਨਿਯਮਾਂ, ਵਪਾਰਕ ਸੀਮਾਵਾਂ, ਜੋਖਮ ਗਣਨਾਵਾਂ, ਅਤੇ ਨਿਪਟਾਰਾ ਪ੍ਰਕਿਰਿਆਵਾਂ ਵਰਗੇ ਕਾਰਕਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰਨਾ
ਹੋਵੇਗਾ। ਇਸ ਸੰਦਰਭ ਵਿੱਚ ਸਵੈਚਲਿਤ ਸੁਧਾਰ ਹਮੇਸ਼ਾ ਖੇਤਰ ਦੀ ਪੂਰੀ ਜਟਿਲਤਾ ਨੂੰ ਨਹੀਂ ਸਮਝ ਸਕਦੇ ਅਤੇ
ਅਚਾਨਕ ਗਲਤੀਆਂ ਜਾਂ ਖੇਤਰ-ਵਿਸ਼ੇਸ਼ ਨਿਯਮਾਂ ਦੀ ਉਲੰਘਣਾ ਕਰ ਸਕਦੇ ਹਨ।

ਖੇਤਰ ਦੀ ਜਟਿਲਤਾ ਦੀਆਂ ਚੁਣੌਤੀਆਂ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ ਨੂੰ ਏ.ਆਈ.
ਮਾਡਲਾਂ ਅਤੇ ਵਰਕਰਾਂ ਵਿੱਚ ਖੇਤਰ-ਵਿਸ਼ੇਸ਼ ਗਿਆਨ ਅਤੇ ਨਿਯਮਾਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਕੇ ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ
ਹੇਠ ਲਿਖੀਆਂ ਤਕਨੀਕਾਂ ਰਾਹੀਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ:

1. ਖੇਤਰ-ਵਿਸ਼ੇਸ਼ ਸਿਖਲਾਈ: ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਲਈ ਵਰਤੇ ਜਾਂਦੇ ਏ.ਆਈ. ਮਾਡਲਾਂ ਨੂੰ ਖੇਤਰ-
ਵਿਸ਼ੇਸ਼ ਡਾਟਾਸੈੱਟਾਂ ’ਤੇ ਨਿਰਦੇਸ਼ਿਤ ਜਾਂ ਫਾਈਨ-ਟਿਊਨ ਵੀ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜੋ ਵਿਸ਼ੇਸ਼ ਖੇਤਰ ਦੀਆਂ

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 166

ਬਾਰੀਕੀਆਂ ਅਤੇ ਨਿਯਮਾਂ ਨੂੰ ਸਮਝਦੇ ਹਨ। ਮਾਡਲਾਂ ਨੂੰ ਪ੍ਰਤੀਨਿਧੀ ਡਾਟਾ ਅਤੇ ਸਥਿਤੀਆਂ ਦੇ ਸੰਪਰਕ
ਵਿੱਚ ਲਿਆ ਕੇ, ਉਹ ਖੇਤਰ-ਵਿਸ਼ੇਸ਼ ਪੈਟਰਨ, ਸੀਮਾਵਾਂ, ਅਤੇ ਅਪਵਾਦਾਂ ਨੂੰ ਸਿੱਖ ਸਕਦੇ ਹਨ।

2. ਨਿਯਮ-ਆਧਾਰਿਤ ਸੀਮਾਵਾਂ: ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਵਰਕਰਾਂ ਨੂੰ ਸਪੱਸ਼ਟ ਨਿਯਮ-ਆਧਾਰਿਤ
ਸੀਮਾਵਾਂ ਨਾਲ ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਜੋ ਖੇਤਰ-ਵਿਸ਼ੇਸ਼ ਗਿਆਨ ਨੂੰ ਕੋਡ ਕਰਦੀਆਂ ਹਨ। ਇਹ ਨਿਯਮ
ਖੇਤਰ ਦੇ ਮਾਹਰਾਂ ਦੁਆਰਾ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ ਅਤੇ ਡਾਟਾ ਸੁਧਾਰ ਪ੍ਰਕਿਰਿਆਵਿੱਚ ਏਕੀਕ੍ਰਿਤ
ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਏ.ਆਈ. ਮਾਡਲ ਫਿਰ ਇਹਨਾਂ ਨਿਯਮਾਂ ਦੀ ਵਰਤੋਂ ਆਪਣੇ ਫੈਸਲਿਆਂ ਨੂੰ ਨਿਰਦੇਸ਼ਿਤ
ਕਰਨ ਅਤੇ ਖੇਤਰ-ਵਿਸ਼ੇਸ਼ ਲੋੜਾਂ ਦੀ ਪਾਲਣਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ ਕਰ ਸਕਦੇ ਹਨ।

3. ਖੇਤਰ ਮਾਹਰਾਂ ਨਾਲ ਸਹਿਯੋਗ: ਜਟਿਲ ਖੇਤਰਾਂ ਵਿੱਚ, ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ ਦੀ
ਡਿਜ਼ਾਈਨ ਅਤੇ ਵਿਕਾਸ ਵਿੱਚ ਖੇਤਰ ਮਾਹਰਾਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਖੇਤਰ ਮਾਹਰ ਡਾਟਾ
ਦੀਆਂ ਬਾਰੀਕੀਆਂ, ਵਪਾਰਕ ਨਿਯਮਾਂ, ਅਤੇ ਸੰਭਾਵੀ ਸੀਮਾ ਮਾਮਲਿਆਂ ਬਾਰੇ ਮੁੱਲਵਾਨ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ
ਕਰ ਸਕਦੇ ਹਨ। ਉਹਨਾਂ ਦੇ ਗਿਆਨ ਨੂੰ ਮਨੁੱਖੀ-ਸੰਚਾਲਿਤ ਪ੍ਰਕਿਰਿਆ ਪੈਟਰਨਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਏ.ਆਈ.
ਮਾਡਲਾਂ ਅਤੇ ਵਰਕਰਾਂ ਵਿੱਚ ਸ਼ਾਮਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਤਾਂ ਜੋ ਸਵੈਚਲਿਤ ਡਾਟਾ ਸੁਧਾਰਾਂ ਦੀ ਸ਼ੁੱਧਤਾ ਅਤੇ
ਭਰੋਸੇਯੋਗਤਾ ਨੂੰ ਵਧਾਇਆ ਜਾ ਸਕੇ।

4. ਕ੍ਰਮਵਾਰ ਅਤੇ ਦੁਹਰਾਉਣ ਵਾਲਾ ਪਹੁੰਚ: ਜਟਿਲ ਖੇਤਰਾਂ ਨਾਲ ਨਜਿੱਠਦੇ ਸਮੇਂ, ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ
ਡਾਟਾ ਲਈ ਕ੍ਰਮਵਾਰ ਅਤੇ ਦੁਹਰਾਉਣ ਵਾਲਾ ਪਹੁੰਚ ਅਪਣਾਉਣਾ ਅਕਸਰ ਲਾਭਦਾਇਕ ਹੁੰਦਾ ਹੈ। ਪੂਰੇ
ਖੇਤਰ ਲਈ ਇੱਕੋ ਵਾਰ ਸੁਧਾਰਾਂ ਨੂੰ ਸਵੈਚਲਿਤ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਨ ਦੀ ਬਜਾਏ, ਵਿਸ਼ੇਸ਼ ਉਪ-ਖੇਤਰਾਂ ਜਾਂ
ਡਾਟਾ ਸ਼੍ਰੇਣੀਆਂ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰੋ ਜਿੱਥੇ ਨਿਯਮ ਅਤੇ ਸੀਮਾਵਾਂ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਮਝੀਆਂ ਜਾਂਦੀਆਂ
ਹਨ। ਜਿਵੇਂ-ਜਿਵੇਂ ਖੇਤਰ ਦੀ ਸਮਝ ਵਧਦੀ ਹੈ ਅਤੇ ਤਕਨੀਕਾਂ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਸਾਬਤ ਹੁੰਦੀਆਂ ਹਨ, ਹੌਲੀ-ਹੌਲੀ
ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਤਕਨੀਕਾਂ ਦੇ ਦਾਇਰੇ ਨੂੰ ਵਧਾਓ।

ਡਾਟਾ ਖੇਤਰ ਦੀ ਜਟਿਲਤਾ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹੋਏ ਅਤੇ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ ਵਿੱਚ
ਖੇਤਰ-ਵਿਸ਼ੇਸ਼ ਗਿਆਨ ਨੂੰ ਸ਼ਾਮਲ ਕਰਕੇ, ਤੁਸੀਂ ਸਵੈਚਾਲਨ ਅਤੇ ਸ਼ੁੱਧਤਾ ਵਿਚਕਾਰ ਸੰਤੁਲਨ ਬਣਾ ਸਕਦੇ ਹੋ। ਇਹ
ਸਮਝਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲਾ ਡਾਟਾ ਇੱਕ ਸਰਬ-ਅਨੁਕੂਲ ਹੱਲ ਨਹੀਂ ਹੈ ਅਤੇ ਇਸ ਪਹੁੰਚ ਨੂੰ
ਹਰ ਖੇਤਰ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ ਲੋੜਾਂ ਅਤੇ ਚੁਣੌਤੀਆਂ ਦੇ ਅਨੁਸਾਰ ਢਾਲਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ।

ਜਟਿਲ ਖੇਤਰਾਂ ਵਿੱਚ, ਇੱਕ ਮਿਸ਼ਰਿਤ ਪਹੁੰਚ ਜੋ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ ਨੂੰ ਮਨੁੱਖੀ ਮੁਹਾਰਤ ਅਤੇ
ਨਿਗਰਾਨੀ ਨਾਲ ਜੋੜਦੀ ਹੈ, ਸਭ ਤੋਂ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਹੋ ਸਕਦੀ ਹੈ। ਸਵੈਚਲਿਤ ਸੁਧਾਰ ਨਿਯਮਿਤ ਅਤੇ ਚੰਗੀ ਤਰ੍ਹਾਂ
ਪਰਿਭਾਸ਼ਿਤ ਮਾਮਲਿਆਂ ਨੂੰ ਸੰਭਾਲ ਸਕਦੇ ਹਨ, ਜਦੋਂ ਕਿ ਜਟਿਲ ਸਥਿਤੀਆਂ ਜਾਂ ਅਪਵਾਦਾਂ ਨੂੰ ਮਨੁੱਖੀ ਸਮੀਖਿਆ
ਅਤੇ ਦਖਲਅੰਦਾਜ਼ੀ ਲਈ ਚਿੰਨ੍ਹਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਸਹਿਯੋਗੀ ਪਹੁੰਚ ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦੀ ਹੈ ਕਿ
ਜਟਿਲ ਡਾਟਾ ਖੇਤਰਾਂ ਵਿੱਚ ਜ਼ਰੂਰੀ ਨਿਯੰਤਰਣ ਅਤੇ ਸ਼ੁੱਧਤਾ ਨੂੰ ਬਣਾਈ ਰੱਖਦੇ ਹੋਏ ਸਵੈਚਾਲਨ ਦੇ ਲਾਭ ਪ੍ਰਾਪਤ

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 167

ਕੀਤੇ ਜਾਂਦੇ ਹਨ।

ਵਿਆਖਿਆਯੋਗਤਾ ਅਤੇ ਪਾਰਦਰਸ਼ਤਾ

ਵਿਆਖਿਆਯੋਗਤਾ ਏ.ਆਈ. ਮਾਡਲਾਂ ਦੁਆਰਾ ਲਏ ਗਏ ਫੈਸਲਿਆਂ ਦੇ ਪਿੱਛੇ ਦੇ ਤਰਕ ਨੂੰ ਸਮਝਣ ਅਤੇ
ਵਿਆਖਿਆ ਕਰਨ ਦੀ ਯੋਗਤਾ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ, ਜਦੋਂ ਕਿ ਪਾਰਦਰਸ਼ਤਾ ਵਿੱਚ ਡਾਟਾ ਸੁਧਾਰ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ
ਸਪੱਸ਼ਟ ਦਿ੍ਰਸ਼ਟੀ ਪ੍ਰਦਾਨ ਕਰਨਾ ਸ਼ਾਮਲ ਹੈ।

ਕਈ ਸੰਦਰਭਾਂ ਵਿੱਚ, ਡਾਟਾ ਸੰਸ਼ੋਧਨਾਂ ਦੀ ਲੇਖਾ-ਪ੍ਰੀਖਿਆ ਅਤੇ ਔਚਿੱਤ ਹੋਣਾ ਜ਼ਰੂਰੀ ਹੈ। ਹਿੱਸੇਦਾਰ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ
ਵਪਾਰਕ ਉਪਭੋਗਤਾ, ਲੇਖਾ ਪ੍ਰੀਖਕ, ਅਤੇ ਨਿਯਾਮਕ ਸੰਸਥਾਵਾਂ ਸ਼ਾਮਲ ਹਨ, ਨੂੰ ਇਹ ਵਿਆਖਿਆਵਾਂ ਦੀ ਲੋੜ ਹੋ
ਸਕਦੀ ਹੈ ਕਿ ਕੁਝ ਖਾਸ ਡਾਟਾ ਸੁਧਾਰ ਕਿਉਂ ਕੀਤੇ ਗਏ ਅਤੇ ਏ.ਆਈ. ਮਾਡਲ ਉਨ੍ਹਾਂ ਫੈਸਲਿਆਂ ’ਤੇ ਕਿਵੇਂ ਪਹੁੰਚੇ।
ਇਹ ਖਾਸ ਤੌਰ ’ਤੇ ਉਨ੍ਹਾਂ ਖੇਤਰਾਂ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਹੈ ਜਿੱਥੇ ਡਾਟਾ ਸ਼ੁੱਧਤਾ ਅਤੇ ਸੰਪੂਰਨਤਾ ਦੇ ਮਹੱਤਵਪੂਰਨ
ਪ੍ਰਭਾਵ ਹੁੰਦੇ ਹਨ, ਜਿਵੇਂ ਕਿ ਵਿੱਤ, ਸਿਹਤ ਸੰਭਾਲ, ਅਤੇ ਕਾਨੂੰਨੀ ਮਾਮਲੇ।

ਵਿਆਖਿਆਯੋਗਤਾ ਅਤੇ ਪਾਰਦਰਸ਼ਤਾ ਦੀ ਲੋੜ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ
ਵਿੱਚ ਅਜਿਹੇ ਤੰਤਰ ਸ਼ਾਮਲ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ ਜੋ ਏ.ਆਈ. ਮਾਡਲਾਂ ਦੀ ਫੈਸਲਾ ਲੈਣ ਦੀ ਪ੍ਰਕਿਰਿਆਬਾਰੇ ਜਾਣਕਾਰੀ
ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਇਹ ਵੱਖ-ਵੱਖ ਪਹੁੰਚਾਂ ਰਾਹੀਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ:

1. ਵਿਚਾਰਾਂ ਦੀ ਲੜੀ: ਡਾਟਾ ਵਿੱਚ ਤਬਦੀਲੀਆਂ ਲਾਗੂ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਮਾਡਲ ਨੂੰ ਆਪਣੀ ਸੋਚ ਨੂੰ “ਉੱਚੀ
ਆਵਾਜ਼ ਵਿੱਚ” ਸਮਝਾਉਣ ਲਈ ਕਹਿਣਾ ਫੈਸਲਾ ਲੈਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਸਮਝਣ ਵਿੱਚ ਆਸਾਨੀ ਕਰ
ਸਕਦਾ ਹੈ ਅਤੇ ਕੀਤੇ ਗਏ ਸੁਧਾਰਾਂ ਲਈ ਮਨੁੱਖੀ-ਪੜ੍ਹਨਯੋਗ ਵਿਆਖਿਆਵਾਂ ਤਿਆਰ ਕਰ ਸਕਦਾ ਹੈ।
ਇਸਦਾ ਨੁਕਸਾਨ ਵਿਆਖਿਆ ਨੂੰ ਸੰਰਚਿਤ ਡਾਟਾ ਆਉਟਪੁੱਟ ਤੋਂ ਵੱਖ ਕਰਨ ਵਿੱਚ ਥੋੜ੍ਹੀ ਜਿਹੀ ਵਧੇਰੇ
ਜਟਿਲਤਾ ਹੈ, ਜਿਸ ਨੂੰ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ…

2. ਵਿਆਖਿਆਨਿਰਮਾਣ: ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਵਰਕਰਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੁਆਰਾ ਕੀਤੇ ਗਏ ਸੁਧਾਰਾਂ ਲਈ
ਮਨੁੱਖੀ-ਪੜ੍ਹਨਯੋਗ ਵਿਆਖਿਆਵਾਂ ਤਿਆਰ ਕਰਨ ਦੀ ਯੋਗਤਾ ਨਾਲ ਲੈਸ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ
ਮਾਡਲ ਨੂੰ ਆਪਣੀ ਫੈਸਲਾ ਲੈਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਡਾਟਾ ਵਿੱਚ ਹੀ ਏਕੀਕ੍ਰਿਤ ਆਸਾਨੀ ਨਾਲ ਸਮਝਣ
ਯੋਗ ਵਿਆਖਿਆਵਾਂ ਵਜੋਂ ਆਉਟਪੁੱਟ ਕਰਨ ਲਈ ਕਹਿ ਕੇ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਲਈ,
ਇੱਕ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲਾ ਡਾਟਾ ਵਰਕਰਇੱਕ ਰਿਪੋਰਟ ਤਿਆਰ ਕਰ ਸਕਦਾ ਹੈ ਜੋ ਉਸ ਦੁਆਰਾ ਪਛਾਣੀਆਂ
ਗਈਆਂ ਵਿਸ਼ੇਸ਼ ਡਾਟਾ ਅਸੰਗਤੀਆਂ, ਲਾਗੂ ਕੀਤੇ ਗਏ ਸੁਧਾਰਾਂ, ਅਤੇ ਉਨ੍ਹਾਂ ਸੁਧਾਰਾਂ ਦੇ ਪਿੱਛੇ ਦੇ ਤਰਕ ਨੂੰ
ਉਜਾਗਰ ਕਰਦੀ ਹੈ।

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 168

3. ਵਿਸ਼ੇਸ਼ਤਾ ਮਹੱਤਤਾ: ਏ.ਆਈ. ਮਾਡਲਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਨਿਰਦੇਸ਼ਾਂ ਦੇ ਹਿੱਸੇ ਵਜੋਂ ਡਾਟਾ ਸੁਧਾਰ ਪ੍ਰਕਿਰਿਆ
ਵਿੱਚ ਵੱਖ-ਵੱਖ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਜਾਂ ਗੁਣਾਂ ਦੀ ਮਹੱਤਤਾ ਬਾਰੇ ਜਾਣਕਾਰੀ ਨਾਲ ਨਿਰਦੇਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ
ਹੈ। ਇਹ ਨਿਰਦੇਸ਼, ਬਦਲੇ ਵਿੱਚ, ਮਨੁੱਖੀ ਹਿੱਸੇਦਾਰਾਂ ਨੂੰ ਦਿਖਾਏ ਜਾ ਸਕਦੇ ਹਨ। ਮਾਡਲ ਦੇ ਫੈਸਲਿਆਂ ਨੂੰ
ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਵਾਲੇ ਮੁੱਖ ਕਾਰਕਾਂ ਦੀ ਪਛਾਣ ਕਰਕੇ, ਹਿੱਸੇਦਾਰ ਸੁਧਾਰਾਂ ਦੇ ਪਿੱਛੇ ਦੇ ਤਰਕ ਬਾਰੇ ਜਾਣਕਾਰੀ
ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਵੈਧਤਾ ਦਾ ਮੁਲਾਂਕਣ ਕਰ ਸਕਦੇ ਹਨ।

4. ਲੌਗਿੰਗ ਅਤੇ ਲੇਖਾ-ਜੋਖਾ: ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਪਾਰਦਰਸ਼ਤਾ ਬਣਾਈ ਰੱਖਣ
ਲਈ ਵਿਆਪਕ ਲੌਗਿੰਗ ਅਤੇ ਲੇਖਾ-ਜੋਖਾ ਵਿਧੀਆਂ ਨੂੰ ਲਾਗੂ ਕਰਨਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੈ। ਏਆਈ ਮਾਡਲਾਂ
ਦੁਆਰਾ ਕੀਤੀ ਗਈ ਹਰ ਡਾਟਾ ਸੁਧਾਰ ਨੂੰ ਲੌਗ ਕੀਤਾ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਮੂਲ ਡਾਟਾ, ਸੁਧਾਰਿਆ
ਗਿਆ ਡਾਟਾ, ਅਤੇ ਕੀਤੀਆਂ ਗਈਆਂ ਵਿਸ਼ੇਸ਼ ਕਾਰਵਾਈਆਂ ਸ਼ਾਮਲ ਹਨ। ਇਹ ਲੇਖਾ-ਪੜਤਾਲ ਰਿਕਾਰਡ
ਪਿਛਲੇਰੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ ਅਤੇ ਡਾਟਾ ਵਿੱਚ ਕੀਤੀਆਂ ਗਈਆਂ ਤਬਦੀਲੀਆਂ ਦਾ ਸਪਸ਼ਟ
ਰਿਕਾਰਡ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ।

5. ਮਨੁੱਖੀ-ਸ਼ਮੂਲੀਅਤ ਪਹੁੰਚ: ਮਨੁੱਖੀ-ਸ਼ਮੂਲੀਅਤ ਪਹੁੰਚ ਨੂੰ ਸ਼ਾਮਲ ਕਰਨਾ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ
ਤਕਨੀਕਾਂ ਦੀ ਵਿਆਖਿਆਯੋਗਤਾ ਅਤੇ ਪਾਰਦਰਸ਼ਤਾ ਨੂੰ ਵਧਾ ਸਕਦਾ ਹੈ। ਏਆਈ-ਜਨਰੇਟਡ ਸੁਧਾਰਾਂ ਦੀ
ਸਮੀਖਿਆ ਅਤੇ ਪ੍ਰਮਾਣਿਕਤਾ ਵਿੱਚ ਮਾਹਰਾਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਕੇ, ਸੰਸਥਾਵਾਂ ਇਹ ਯਕੀਨੀ ਬਣਾ ਸਕਦੀਆਂ
ਹਨ ਕਿ ਸੁਧਾਰ ਡੋਮੇਨ ਗਿਆਨ ਅਤੇ ਵਪਾਰਕ ਲੋੜਾਂ ਦੇ ਅਨੁਕੂਲ ਹਨ। ਮਨੁੱਖੀ ਨਿਗਰਾਨੀ ਜਵਾਬਦੇਹੀ ਦੀ
ਇੱਕ ਵਾਧੂ ਪਰਤ ਜੋੜਦੀ ਹੈ ਅਤੇ ਏਆਈ ਮਾਡਲਾਂ ਵਿੱਚ ਕਿਸੇ ਵੀ ਸੰਭਾਵੀ ਪੱਖਪਾਤ ਜਾਂ ਗਲਤੀਆਂ ਦੀ
ਪਛਾਣ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ।

6. ਨਿਰੰਤਰ ਨਿਗਰਾਨੀ ਅਤੇ ਮੁਲਾਂਕਣ: ਪਾਰਦਰਸ਼ਤਾ ਅਤੇ ਵਿਸ਼ਵਾਸ ਬਣਾਈ ਰੱਖਣ ਲਈ ਸਵੈ-ਠੀਕ ਕਰਨ
ਵਾਲੇ ਡਾਟਾ ਤਕਨੀਕਾਂ ਦੇ ਪ੍ਰਦਰਸ਼ਨ ਦੀ ਨਿਯਮਿਤ ਨਿਗਰਾਨੀ ਅਤੇ ਮੁਲਾਂਕਣ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ। ਸਮੇਂ ਦੇ
ਨਾਲ ਏਆਈ ਮਾਡਲਾਂ ਦੀ ਸ਼ੁੱਧਤਾ ਅਤੇ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਦਾ ਮੁਲਾਂਕਣ ਕਰਕੇ, ਸੰਸਥਾਵਾਂ ਕਿਸੇ ਵੀ ਵਿਚਲਨ
ਜਾਂ ਅਸਧਾਰਨਤਾਵਾਂ ਦੀ ਪਛਾਣ ਕਰ ਸਕਦੀਆਂ ਹਨ ਅਤੇ ਸੁਧਾਰਾਤਮਕ ਕਾਰਵਾਈਆਂ ਕਰ ਸਕਦੀਆਂ
ਹਨ। ਨਿਰੰਤਰ ਨਿਗਰਾਨੀ ਇਹ ਯਕੀਨੀ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰਦੀ ਹੈ ਕਿ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀ ਡਾਟਾ
ਪ੍ਰਕਿਰਿਆ ਭਰੋਸੇਯੋਗ ਰਹੇ ਅਤੇ ਇੱਛਤ ਨਤੀਜਿਆਂ ਦੇ ਅਨੁਕੂਲ ਹੋਵੇ।

ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਤਕਨੀਕਾਂ ਨੂੰ ਲਾਗੂ ਕਰਦੇ ਸਮੇਂ ਵਿਆਖਿਆਯੋਗਤਾ ਅਤੇ ਪਾਰਦਰਸ਼ਤਾ ਮਹੱਤਵਪੂਰਨ
ਵਿਚਾਰ ਹਨ। ਡਾਟਾ ਸੁਧਾਰਾਂ ਲਈ ਸਪੱਸ਼ਟ ਵਿਆਖਿਆਵਾਂ ਪ੍ਰਦਾਨ ਕਰਕੇ, ਵਿਆਪਕ ਲੇਖਾ-ਪੜਤਾਲ ਰਿਕਾਰਡ
ਬਣਾਈ ਰੱਖ ਕੇ, ਅਤੇ ਮਨੁੱਖੀ ਨਿਗਰਾਨੀ ਨੂੰ ਸ਼ਾਮਲ ਕਰਕੇ, ਸੰਸਥਾਵਾਂ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀ ਡਾਟਾ ਪ੍ਰਕਿਰਿਆ
ਵਿੱਚ ਵਿਸ਼ਵਾਸ ਬਣਾ ਸਕਦੀਆਂ ਹਨ ਅਤੇ ਇਹ ਯਕੀਨੀ ਬਣਾ ਸਕਦੀਆਂ ਹਨ ਕਿ ਡਾਟਾ ਵਿੱਚ ਕੀਤੀਆਂ ਗਈਆਂ
ਤਬਦੀਲੀਆਂ ਜਾਇਜ਼ ਹਨ ਅਤੇ ਵਪਾਰਕ ਉਦੇਸ਼ਾਂ ਦੇ ਅਨੁਕੂਲ ਹਨ।

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 169

ਸਵੈਚਾਲਨ ਦੇ ਲਾਭਾਂ ਅਤੇ ਪਾਰਦਰਸ਼ਤਾ ਦੀ ਲੋੜ ਵਿਚਕਾਰ ਸੰਤੁਲਨ ਬਣਾਉਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਜਦੋਂ ਕਿ ਸਵੈ-
ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਤਕਨੀਕਾਂ ਡਾਟਾ ਦੀ ਗੁਣਵੱਤਾ ਅਤੇ ਕੁਸ਼ਲਤਾ ਨੂੰ ਕਾਫ਼ੀ ਸੁਧਾਰ ਸਕਦੀਆਂ ਹਨ, ਇਹ
ਡਾਟਾ ਸੁਧਾਰ ਪ੍ਰਕਿਰਿਆ ’ਤੇ ਦ੍ਰਿਸ਼ਟੀ ਅਤੇ ਨਿਯੰਤਰਣ ਗੁਆਉਣ ਦੀ ਕੀਮਤ ’ਤੇ ਨਹੀਂ ਹੋਣੀਆਂ ਚਾਹੀਦੀਆਂ।
ਵਿਆਖਿਆਯੋਗਤਾ ਅਤੇ ਪਾਰਦਰਸ਼ਤਾ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹੋਏ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਵਰਕਰਾਂ ਨੂੰ
ਡਿਜ਼ਾਈਨ ਕਰਕੇ, ਸੰਸਥਾਵਾਂ ਏਆਈਦੀ ਸ਼ਕਤੀ ਦਾ ਲਾਭ ਲੈ ਸਕਦੀਆਂ ਹਨ ਜਦੋਂ ਕਿ ਡਾਟਾ ਵਿੱਚ ਜ਼ਰੂਰੀ ਜਵਾਬਦੇਹੀ
ਅਤੇ ਵਿਸ਼ਵਾਸ ਦਾ ਪੱਧਰ ਬਣਾਈ ਰੱਖ ਸਕਦੀਆਂ ਹਨ।

ਅਣਚਾਹੇ ਨਤੀਜੇ

ਜਦੋਂ ਕਿ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਤਕਨੀਕਾਂ ਦਾ ਉਦੇਸ਼ ਡਾਟਾ ਦੀ ਗੁਣਵੱਤਾ ਅਤੇ ਸਥਿਰਤਾ ਨੂੰ ਸੁਧਾਰਨਾ ਹੈ,
ਅਣਚਾਹੇ ਨਤੀਜਿਆਂ ਦੀ ਸੰਭਾਵਨਾ ਬਾਰੇ ਜਾਗਰੂਕ ਹੋਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਸਵੈਚਲਿਤ ਸੁਧਾਰ, ਜੇਕਰ ਧਿਆਨ
ਨਾਲ ਡਿਜ਼ਾਈਨ ਅਤੇ ਨਿਗਰਾਨੀ ਨਹੀਂ ਕੀਤੀ ਜਾਂਦੀ, ਅਣਜਾਣੇ ਵਿੱਚ ਡਾਟਾ ਦੇ ਅਰਥ ਜਾਂ ਸੰਦਰਭ ਨੂੰ ਬਦਲ ਸਕਦੇ
ਹਨ, ਜਿਸ ਨਾਲ ਅੱਗੇ ਦੀਆਂ ਸਮੱਸਿਆਵਾਂ ਪੈਦਾ ਹੋ ਸਕਦੀਆਂ ਹਨ।

ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਦੇ ਮੁੱਖ ਜੋਖਮਾਂ ਵਿੱਚੋਂ ਇੱਕ ਡਾਟਾ ਸੁਧਾਰ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਪੱਖਪਾਤ ਜਾਂ ਗਲਤੀਆਂ
ਦਾ ਸ਼ਾਮਲ ਹੋਣਾ ਹੈ। ਏਆਈ ਮਾਡਲ, ਕਿਸੇ ਵੀ ਹੋਰ ਸਾਫਟਵੇਅਰ ਸਿਸਟਮ ਵਾਂਗ, ਸਿਖਲਾਈ ਡਾਟਾ ਵਿੱਚ ਮੌਜੂਦ
ਪੱਖਪਾਤਾਂ ਜਾਂ ਐਲਗੋਰਿਦਮ ਦੇ ਡਿਜ਼ਾਈਨ ਰਾਹੀਂ ਪੇਸ਼ ਕੀਤੇ ਗਏ ਪੱਖਪਾਤਾਂ ਦੇ ਅਧੀਨ ਹੋ ਸਕਦੇ ਹਨ। ਜੇਕਰ ਇਹਨਾਂ
ਪੱਖਪਾਤਾਂ ਦੀ ਪਛਾਣ ਅਤੇ ਘਟਾਇਆ ਨਹੀਂ ਜਾਂਦਾ, ਤਾਂ ਉਹ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀ ਡਾਟਾ ਪ੍ਰਕਿਰਿਆ ਰਾਹੀਂ ਫੈਲ
ਸਕਦੇ ਹਨ ਅਤੇ ਝੁਕੇ ਹੋਏ ਜਾਂ ਗਲਤ ਡਾਟਾ ਸੋਧਾਂ ਦਾ ਕਾਰਨ ਬਣ ਸਕਦੇ ਹਨ।

ਉਦਾਹਰਣ ਦੇ ਤੌਰ ’ਤੇ, ਇੱਕ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਵਰਕਰ ’ਤੇ ਵਿਚਾਰ ਕਰੋ ਜਿਸਨੂੰ ਗਾਹਕ ਜਨਸੰਖਿਅਕ
ਡਾਟਾ ਵਿੱਚ ਅਸੰਗਤੀਆਂ ਨੂੰ ਠੀਕ ਕਰਨ ਦਾ ਕੰਮ ਸੌਂਪਿਆ ਗਿਆ ਹੈ। ਜੇਕਰ AI ਮਾਡਲ ਨੇ ਇਤਿਹਾਸਕ ਡਾਟਾ
ਤੋਂ ਪੱਖਪਾਤ ਸਿੱਖਿਆ ਹੈ, ਜਿਵੇਂ ਕਿ ਕੁਝ ਪੇਸ਼ਿਆਂ ਜਾਂ ਆਮਦਨ ਦੇ ਪੱਧਰਾਂ ਨੂੰ ਵਿਸ਼ੇਸ਼ ਲਿੰਗਾਂ ਜਾਂ ਨਸਲਾਂ ਨਾਲ
ਜੋੜਨਾ, ਤਾਂ ਇਹ ਗਲਤ ਧਾਰਨਾਵਾਂ ਬਣਾ ਸਕਦਾ ਹੈ ਅਤੇ ਡਾਟਾ ਨੂੰ ਅਜਿਹੇ ਢੰਗ ਨਾਲ ਸੋਧ ਸਕਦਾ ਹੈ ਜੋ ਇਹਨਾਂ
ਪੱਖਪਾਤਾਂ ਨੂੰ ਮਜ਼ਬੂਤ ਕਰਦਾ ਹੈ। ਇਹ ਗਲਤ ਗਾਹਕ ਪ੍ਰੋਫਾਈਲਾਂ, ਗੁਮਰਾਹਕੁੰਨ ਵਪਾਰਕ ਫੈਸਲਿਆਂ, ਅਤੇ ਸੰਭਾਵੀ
ਭੇਦਭਾਵਪੂਰਨ ਨਤੀਜਿਆਂ ਵੱਲ ਲੈ ਜਾ ਸਕਦਾ ਹੈ।

ਇੱਕ ਹੋਰ ਸੰਭਾਵੀ ਅਣਚਾਹਿਆ ਨਤੀਜਾ ਡਾਟਾ ਸੁਧਾਰ ਪ੍ਰਕਿਰਿਆ ਦੌਰਾਨ ਕੀਮਤੀ ਜਾਣਕਾਰੀ ਜਾਂ ਸੰਦਰਭ ਦਾ
ਨੁਕਸਾਨ ਹੈ। ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ ਅਕਸਰ ਸਥਿਰਤਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ ਡਾਟਾ
ਨੂੰ ਮਿਆਰੀ ਅਤੇ ਆਮ ਬਣਾਉਣ ’ਤੇ ਕੇਂਦਰਿਤ ਹੁੰਦੀਆਂ ਹਨ। ਹਾਲਾਂਕਿ, ਕੁਝ ਮਾਮਲਿਆਂ ਵਿੱਚ, ਮੂਲ ਡਾਟਾ ਵਿੱਚ
ਬਾਰੀਕੀਆਂ, ਅਪਵਾਦ, ਜਾਂ ਸੰਦਰਭਕ ਜਾਣਕਾਰੀ ਹੋ ਸਕਦੀ ਹੈ ਜੋ ਪੂਰੀ ਤਸਵੀਰ ਨੂੰ ਸਮਝਣ ਲਈ ਮਹੱਤਵਪੂਰਨ

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 170

ਹੈ। ਅੰਨ੍ਹੇਵਾਹ ਮਿਆਰੀਕਰਨ ਨੂੰ ਲਾਗੂ ਕਰਨ ਵਾਲੇ ਸਵੈਚਾਲਿਤ ਸੁਧਾਰ ਅਣਜਾਣੇ ਵਿੱਚ ਇਸ ਕੀਮਤੀ ਜਾਣਕਾਰੀ
ਨੂੰ ਹਟਾ ਜਾਂ ਧੁੰਦਲਾ ਕਰ ਸਕਦੇ ਹਨ।

ਉਦਾਹਰਣ ਲਈ, ਇੱਕ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਵਰਕਰ ਦੀ ਕਲਪਨਾ ਕਰੋ ਜੋ ਮੈਡੀਕਲ ਰਿਕਾਰਡਾਂ ਵਿੱਚ
ਅਸੰਗਤੀਆਂ ਨੂੰ ਠੀਕ ਕਰਨ ਲਈ ਜ਼ਿੰਮੇਵਾਰ ਹੈ। ਜੇਕਰ ਵਰਕਰ ਨੂੰ ਕਿਸੇ ਦੁਰਲੱਭ ਸਥਿਤੀ ਜਾਂ ਅਸਧਾਰਨ ਇਲਾਜ
ਯੋਜਨਾ ਵਾਲੇ ਮਰੀਜ਼ ਦੇ ਮੈਡੀਕਲ ਇਤਿਹਾਸ ਦਾ ਸਾਹਮਣਾ ਕਰਨਾ ਪੈਂਦਾ ਹੈ, ਤਾਂ ਇਹ ਡਾਟਾ ਨੂੰ ਇੱਕ ਵਧੇਰੇ ਆਮ
ਪੈਟਰਨ ਵਿੱਚ ਫਿੱਟ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰ ਸਕਦਾ ਹੈ। ਹਾਲਾਂਕਿ, ਅਜਿਹਾ ਕਰਦਿਆਂ, ਇਹ ਉਹਨਾਂ ਵਿਸ਼ੇਸ਼ ਵੇਰਵਿਆਂ
ਅਤੇ ਸੰਦਰਭ ਨੂੰ ਗੁਆ ਸਕਦਾ ਹੈ ਜੋ ਮਰੀਜ਼ ਦੀ ਵਿਲੱਖਣ ਸਥਿਤੀ ਨੂੰ ਸਹੀ ਢੰਗ ਨਾਲ ਦਰਸਾਉਣ ਲਈ ਮਹੱਤਵਪੂਰਨ
ਹਨ। ਜਾਣਕਾਰੀ ਦਾ ਇਹ ਨੁਕਸਾਨ ਮਰੀਜ਼ ਦੀ ਦੇਖਭਾਲ ਅਤੇ ਮੈਡੀਕਲ ਫੈਸਲਾ ਲੈਣ ਲਈ ਗੰਭੀਰ ਪ੍ਰਭਾਵ ਪਾ
ਸਕਦਾ ਹੈ।

ਅਣਚਾਹੇ ਨਤੀਜਿਆਂ ਦੇ ਜੋਖਮਾਂ ਨੂੰ ਘੱਟ ਕਰਨ ਲਈ, ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਤਕਨੀਕਾਂ ਨੂੰ ਡਿਜ਼ਾਈਨ
ਅਤੇ ਲਾਗੂ ਕਰਦੇ ਸਮੇਂ ਸਰਗਰਮ ਪਹੁੰਚ ਅਪਣਾਉਣਾ ਜ਼ਰੂਰੀ ਹੈ:

1. ਵਿਆਪਕ ਟੈਸਟਿੰਗ ਅਤੇ ਪ੍ਰਮਾਣੀਕਰਨ: ਉਤਪਾਦਨ ਵਿੱਚ ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੇ ਡਾਟਾ ਵਰਕਰਾਂ ਨੂੰ
ਤੈਨਾਤ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ, ਵੱਖ-ਵੱਖ ਸਥਿਤੀਆਂ ਦੇ ਵਿਰੁੱਧ ਉਨ੍ਹਾਂ ਦੇ ਵਿਵਹਾਰ ਦੀ ਵਿਆਪਕ ਜਾਂਚ ਅਤੇ
ਪ੍ਰਮਾਣਿਕਤਾ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ। ਇਸ ਵਿੱਚ ਪ੍ਰਤੀਨਿਧੀ ਡੇਟਾਸੇਟਾਂ ਨਾਲ ਟੈਸਟਿੰਗ ਸ਼ਾਮਲ ਹੈ ਜੋ ਵੱਖ-ਵੱਖ
ਐਜ ਕੇਸਾਂ, ਅਪਵਾਦਾਂ, ਅਤੇ ਸੰਭਾਵੀ ਪੱਖਪਾਤਾਂ ਨੂੰ ਕਵਰ ਕਰਦੇ ਹਨ। ਸਖ਼ਤ ਟੈਸਟਿੰਗ ਅਸਲ ਡਾਟਾ ’ਤੇ
ਪ੍ਰਭਾਵ ਪਾਉਣ ਤੋਂ ਪਹਿਲਾਂ ਕਿਸੇ ਵੀ ਅਣਚਾਹੇ ਨਤੀਜਿਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਹੱਲ ਕਰਨ
ਵਿੱਚ ਮਦਦ ਕਰਦੀ ਹੈ।

2. ਲਗਾਤਾਰ ਨਿਗਰਾਨੀ ਅਤੇ ਮੁਲਾਂਕਣ: ਸਮੇਂ ਦੇ ਨਾਲ ਅਣਚਾਹੇ ਨਤੀਜਿਆਂ ਦਾ ਪਤਾ ਲਗਾਉਣ ਅਤੇ ਉਨ੍ਹਾਂ
ਨੂੰ ਘੱਟ ਕਰਨ ਲਈ ਲਗਾਤਾਰ ਨਿਗਰਾਨੀ ਅਤੇ ਮੁਲਾਂਕਣ ਵਿਧੀਆਂ ਨੂੰ ਲਾਗੂ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ। ਸਵੈ-ਠੀਕ
ਕਰਨ ਵਾਲੀਆਂ ਡਾਟਾ ਪ੍ਰਕਿਰਿਆਵਾਂ ਦੇ ਨਤੀਜਿਆਂ ਦੀ ਨਿਯਮਿਤ ਸਮੀਖਿਆ ਕਰਨਾ, ਡਾਊਨਸਟ੍ਰੀਮ
ਸਿਸਟਮਾਂ ਅਤੇ ਫੈਸਲਾ ਲੈਣ ’ਤੇ ਪ੍ਰਭਾਵ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨਾ, ਅਤੇ ਹਿੱਸੇਦਾਰਾਂ ਤੋਂ ਫੀਡਬੈਕ ਇਕੱਠਾ ਕਰਨਾ
ਕਿਸੇ ਵੀ ਮਾੜੇ ਪ੍ਰਭਾਵਾਂ ਦੀ ਪਛਾਣ ਕਰਨ ਅਤੇ ਸਮੇਂ ਸਿਰ ਸੁਧਾਰਾਤਮਕ ਕਾਰਵਾਈਆਂ ਨੂੰ ਉਤਸ਼ਾਹਿਤ ਕਰਨ
ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ। ਜੇਕਰ ਤੁਹਾਡੀ ਸੰਸਥਾ ਕੋਲ ਓਪਰੇਸ਼ਨਲ ਡੈਸ਼ਬੋਰਡ ਹਨ, ਤਾਂ ਸਵੈਚਾਲਿਤ ਡਾਟਾ
ਤਬਦੀਲੀਆਂ ਨਾਲ ਸਬੰਧਤ ਸਪੱਸ਼ਟ ਤੌਰ ’ਤੇ ਦਿਖਾਈ ਦੇਣ ਵਾਲੇ ਮੈਟ੍ਰਿਕਸ ਜੋੜਨਾ ਸ਼ਾਇਦ ਇੱਕ ਚੰਗਾ
ਵਿਚਾਰ ਹੈ। ਸਧਾਰਨ ਡਾਟਾ ਤਬਦੀਲੀ ਗਤੀਵਿਧੀ ਤੋਂ ਵੱਡੇ ਵਿਚਲਨਾਂ ਨਾਲ ਜੁੜੇ ਅਲਾਰਮ ਜੋੜਨਾ ਸ਼ਾਇਦ
ਇੱਕ ਹੋਰ ਵੀ ਬਿਹਤਰ ਵਿਚਾਰ ਹੈ!

3. ਮਨੁੱਖੀ ਨਿਗਰਾਨੀ ਅਤੇ ਦਖਲਅੰਦਾਜ਼ੀ: ਸਵੈ-ਠੀਕ ਕਰਨ ਵਾਲੀ ਡਾਟਾ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਮਨੁੱਖੀ
ਨਿਗਰਾਨੀ ਅਤੇ ਦਖਲਅੰਦਾਜ਼ੀ ਦੀ ਯੋਗਤਾ ਨੂੰ ਬਣਾਈ ਰੱਖਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਭਾਵੇਂ ਸਵੈਚਾਲਨ ਕੁਸ਼ਲਤਾ

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 171

ਨੂੰ ਬਹੁਤ ਸੁਧਾਰ ਸਕਦਾ ਹੈ, ਪਰ ਇਹ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਮਨੁੱਖੀ ਮਾਹਰ AI ਮਾਡਲਾਂ ਦੁਆਰਾ ਕੀਤੇ ਗਏ
ਸੁਧਾਰਾਂ ਦੀ ਸਮੀਖਿਆ ਅਤੇ ਪ੍ਰਮਾਣਿਕਤਾ ਕਰਨ, ਖਾਸ ਕਰਕੇ ਮਹੱਤਵਪੂਰਨ ਜਾਂ ਸੰਵੇਦਨਸ਼ੀਲ ਖੇਤਰਾਂ
ਵਿੱਚ। ਮਨੁੱਖੀ ਫੈਸਲਾ ਅਤੇ ਡੋਮੇਨ ਮੁਹਾਰਤ ਕਿਸੇ ਵੀ ਅਣਚਾਹੇ ਨਤੀਜਿਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਅਤੇ ਹੱਲ
ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੇ ਹਨ ਜੋ ਪੈਦਾ ਹੋ ਸਕਦੇ ਹਨ।

4. ਵਿਆਖਿਆਯੋਗ ਏ.ਆਈ. (ਐਕਸ.ਏ.ਆਈ.) ਅਤੇ ਪਾਰਦਰਸ਼ਤਾ: ਜਿਵੇਂ ਕਿ ਪਿਛਲੇ ਉਪ-ਭਾਗ
ਵਿੱਚ ਚਰਚਾ ਕੀਤੀ ਗਈ ਹੈ, ਵਿਆਖਿਆਯੋਗ ਏ.ਆਈ. ਤਕਨੀਕਾਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਨਾ ਅਤੇ ਸਵੈ-ਠੀਕ ਹੋਣ
ਵਾਲੇ ਡਾਟਾ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਪਾਰਦਰਸ਼ਤਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣਾ ਅਣਚਾਹੇ ਨਤੀਜਿਆਂ ਨੂੰ ਘੱਟ ਕਰਨ
ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ। ਡਾਟਾ ਸੁਧਾਰਾਂ ਲਈ ਸਪੱਸ਼ਟ ਵਿਆਖਿਆਵਾਂ ਪ੍ਰਦਾਨ ਕਰਕੇ ਅਤੇ ਵਿਆਪਕ
ਲੇਖਾ-ਪੜਤਾਲ ਰਿਕਾਰਡ ਬਣਾਈ ਰੱਖ ਕੇ, ਸੰਸਥਾਵਾਂ ਏ.ਆਈ. ਮਾਡਲਾਂ ਦੁਆਰਾ ਕੀਤੇ ਗਏ ਬਦਲਾਵਾਂ ਦੇ
ਪਿੱਛੇ ਦੇ ਤਰਕ ਨੂੰ ਬਿਹਤਰ ਢੰਗ ਨਾਲ ਸਮਝ ਅਤੇ ਟਰੇਸ ਕਰ ਸਕਦੀਆਂ ਹਨ।

5. ਕ੍ਰਮਵਾਰ ਅਤੇ ਦੁਹਰਾਉਣ ਵਾਲਾ ਪਹੁੰਚ: ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ ਲਈ ਕ੍ਰਮਵਾਰ ਅਤੇ ਦੁਹਰਾਉਣ
ਵਾਲੇ ਪਹੁੰਚ ਨੂੰ ਅਪਣਾਉਣ ਨਾਲ ਅਣਚਾਹੇ ਨਤੀਜਿਆਂ ਦੇ ਜੋਖਮ ਨੂੰ ਘੱਟ ਕਰਨ ਵਿੱਚ ਮਦਦ ਮਿਲ ਸਕਦੀ
ਹੈ। ਪੂਰੇ ਡਾਟਾਸੇਟ ’ਤੇ ਇੱਕੋ ਵਾਰ ਸਵੈਚਲਿਤ ਸੁਧਾਰ ਲਾਗੂ ਕਰਨ ਦੀ ਬਜਾਏ, ਡਾਟਾ ਦੇ ਇੱਕ ਉਪ-ਸਮੂਹ
ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ ਅਤੇ ਜਿਵੇਂ-ਜਿਵੇਂ ਤਕਨੀਕਾਂ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਅਤੇ ਭਰੋਸੇਯੋਗ ਸਾਬਤ ਹੁੰਦੀਆਂ ਹਨ, ਹੌਲੀ-ਹੌਲੀ
ਦਾਇਰੇ ਨੂੰ ਵਧਾਓ। ਇਹ ਰਾਹ ਵਿੱਚ ਧਿਆਨ ਨਾਲ ਨਿਗਰਾਨੀ ਅਤੇ ਵਿਵਸਥਾ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦਾ ਹੈ, ਜੋ
ਕਿਸੇ ਵੀ ਅਣਚਾਹੇ ਨਤੀਜਿਆਂ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ।

6. ਸਹਿਯੋਗਅਤੇ ਫੀਡਬੈਕ: ਵੱਖ-ਵੱਖ ਖੇਤਰਾਂ ਦੇ ਹਿੱਸੇਦਾਰਾਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਨਾ ਅਤੇ ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ
ਪ੍ਰਕਿਰਿਆ ਦੌਰਾਨ ਸਹਿਯੋਗ ਅਤੇ ਫੀਡਬੈਕ ਨੂੰ ਉਤਸ਼ਾਹਿਤ ਕਰਨਾ ਅਣਚਾਹੇ ਨਤੀਜਿਆਂ ਦੀ ਪਛਾਣ ਅਤੇ
ਹੱਲ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ। ਖੇਤਰ ਦੇ ਮਾਹਿਰਾਂ, ਡਾਟਾ ਉਪਭੋਗਤਾਵਾਂ, ਅਤੇ ਅੰਤਿਮ ਵਰਤੋਂਕਾਰਾਂ ਤੋਂ
ਨਿਯਮਿਤ ਤੌਰ ’ਤੇ ਇਨਪੁੱਟ ਲੈਣਾ ਡਾਟਾ ਸੁਧਾਰਾਂ ਦੇ ਅਸਲ-ਸੰਸਾਰ ਪ੍ਰਭਾਵ ਬਾਰੇ ਮੁੱਲਵਾਨ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ
ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ ਅਤੇ ਕਿਸੇ ਵੀ ਮੁੱਦਿਆਂ ਨੂੰ ਉਜਾਗਰ ਕਰ ਸਕਦਾ ਹੈ ਜੋ ਅਣਦੇਖੇ ਰਹਿ ਗਏ ਹੋ ਸਕਦੇ
ਹਨ।

ਅਣਚਾਹੇ ਨਤੀਜਿਆਂ ਦੇ ਜੋਖਮ ਨੂੰ ਸਰਗਰਮੀ ਨਾਲ ਹੱਲ ਕਰਕੇ ਅਤੇ ਢੁਕਵੇਂ ਸੁਰੱਖਿਆਉਪਾਅਲਾਗੂ ਕਰਕੇ, ਸੰਸਥਾਵਾਂ
ਸੰਭਾਵੀ ਮਾੜੇ ਪ੍ਰਭਾਵਾਂ ਨੂੰ ਘੱਟ ਕਰਦੇ ਹੋਏ ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ ਤਕਨੀਕਾਂ ਦੇ ਲਾਭਾਂ ਦਾ ਫਾਇਦਾ ਉਠਾ
ਸਕਦੀਆਂ ਹਨ। ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ ਨੂੰ ਇੱਕ ਦੁਹਰਾਉਣ ਵਾਲੀ ਅਤੇ ਸਹਿਯੋਗੀ ਪ੍ਰਕਿਰਿਆ ਵਜੋਂ ਲੈਣਾ
ਮਹੱਤਵਪੂਰਨ ਹੈ, ਜੋ ਲਗਾਤਾਰ ਨਿਗਰਾਨੀ, ਮੁਲਾਂਕਣ, ਅਤੇ ਤਕਨੀਕਾਂ ਨੂੰ ਸੁਧਾਰਦੀ ਹੈ ਤਾਂ ਜੋ ਇਹਯਕੀਨੀ ਬਣਾਇਆ
ਜਾ ਸਕੇ ਕਿ ਉਹ ਲੋੜੀਂਦੇ ਨਤੀਜਿਆਂ ਨਾਲ ਮੇਲ ਖਾਂਦੇ ਹਨ ਅਤੇ ਡਾਟਾ ਦੀ ਅਖੰਡਤਾ ਅਤੇ ਵਿਸ਼ਵਾਸਯੋਗਤਾ ਨੂੰ ਬਣਾਈ

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ 172

ਰੱਖਦੇ ਹਨ।

ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ ਪੈਟਰਨਾਂ ਦੀ ਵਰਤੋਂ ’ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਸਮੇਂ, ਇਨ੍ਹਾਂ ਕਾਰਕਾਂ ਦਾ ਧਿਆਨ ਨਾਲ ਮੁਲਾਂਕਣ
ਕਰਨਾ ਅਤੇ ਸੰਭਾਵੀ ਜੋਖਮਾਂ ਅਤੇ ਸੀਮਾਵਾਂ ਦੇ ਵਿਰੁੱਧ ਲਾਭਾਂ ਨੂੰ ਤੋਲਣਾ ਜ਼ਰੂਰੀ ਹੈ। ਕੁਝ ਮਾਮਲਿਆਂ ਵਿੱਚ, ਇੱਕ
ਹਾਈਬ੍ਰਿਡ ਪਹੁੰਚ ਜੋ ਮਨੁੱਖੀ ਨਿਗਰਾਨੀ ਅਤੇ ਦਖਲਅੰਦਾਜ਼ੀ ਨਾਲ ਸਵੈਚਲਿਤ ਸੁਧਾਰਾਂ ਨੂੰ ਜੋੜਦੀ ਹੈ, ਸਭ ਤੋਂ ਢੁਕਵਾਂ
ਹੱਲ ਹੋ ਸਕਦਾ ਹੈ।

ਇਹ ਨੋਟ ਕਰਨਾ ਵੀ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ ਤਕਨੀਕਾਂ ਨੂੰ ਮਜ਼ਬੂਤ ਡਾਟਾ ਪ੍ਰਮਾਣੀਕਰਨ,
ਇਨਪੁੱਟ ਸੈਨੀਟਾਈਜ਼ੇਸ਼ਨ, ਅਤੇ ਗਲਤੀ ਨਿਯੰਤਰਣ ਵਿਧੀਆਂ ਦੇ ਬਦਲ ਵਜੋਂ ਨਹੀਂ ਦੇਖਿਆ ਜਾਣਾ ਚਾਹੀਦਾ। ਇਹ
ਬੁਨਿਆਦੀ ਅਭਿਆਸ ਡਾਟਾ ਦੀ ਅਖੰਡਤਾ ਅਤੇ ਸੁਰੱਖਿਆ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ ਮਹੱਤਵਪੂਰਨ ਰਹਿੰਦੇ ਹਨ।
ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ ਨੂੰ ਇੱਕ ਪੂਰਕ ਪਹੁੰਚ ਵਜੋਂ ਦੇਖਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ ਜੋ ਇਨ੍ਹਾਂ ਮੌਜੂਦਾ ਉਪਾਵਾਂ ਨੂੰ ਵਧਾ
ਅਤੇ ਬਿਹਤਰ ਬਣਾ ਸਕਦਾ ਹੈ।

ਅੰਤ ਵਿੱਚ, ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ ਡਾਟਾ ਪੈਟਰਨਾਂ ਦੀ ਵਰਤੋਂ ਕਰਨ ਦਾ ਫੈਸਲਾ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਦੀਆਂ ਵਿਸ਼ੇਸ਼
ਲੋੜਾਂ, ਸੀਮਾਵਾਂ, ਅਤੇ ਤਰਜੀਹਾਂ ’ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਉੱਪਰ ਦੱਸੇ ਗਏ ਵਿਚਾਰਾਂ ’ਤੇ ਧਿਆਨ ਨਾਲ ਵਿਚਾਰ ਕਰਕੇ
ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਟੀਚਿਆਂ ਅਤੇ ਆਰਕੀਟੈਕਚਰ ਨਾਲ ਜੋੜ ਕੇ, ਤੁਸੀਂ ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲੇ
ਡਾਟਾ ਤਕਨੀਕਾਂ ਨੂੰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਕਦੋਂ ਅਤੇ ਕਿਵੇਂ ਵਰਤਣਾ ਹੈ, ਬਾਰੇ ਸੂਚਿਤ ਫੈਸਲੇ ਲੈ ਸਕਦੇ ਹੋ।

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪੈਟਰਨ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ (LLMs) ਦੀ ਸ਼ਕਤੀ ਦਾ ਲਾਭ ਲੈਂਦੇ ਹਨ ਤਾਂ ਜੋ
ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਗਤੀਸ਼ੀਲ ਅਤੇ ਪ੍ਰਸੰਗ-ਵਿਸ਼ੇਸ਼ ਸਮੱਗਰੀ ਤਿਆਰ ਕੀਤੀ ਜਾ ਸਕੇ। ਪੈਟਰਨਾਂ ਦੀ ਇਹ ਸ਼੍ਰੇਣੀ
ਉਪਭੋਗਤਾਵਾਂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ ਲੋੜਾਂ, ਤਰਜੀਹਾਂ, ਅਤੇ ਇੱਥੋਂ ਤੱਕ ਕਿ ਐਪਲੀਕੇਸ਼ਨ ਨਾਲ ਉਨ੍ਹਾਂ ਦੀਆਂ ਪਿਛਲੀਆਂ
ਅਤੇ ਮੌਜੂਦਾ ਅੰਤਰਕਿਰਿਆਵਾਂ ਦੇਆਧਾਰ ’ਤੇ ਨਿੱਜੀ ਅਤੇ ਢੁਕਵੀਂ ਸਮੱਗਰੀ ਪ੍ਰਦਾਨ ਕਰਨਦੀ ਮਹੱਤਤਾ ਨੂੰ ਪਛਾਣਦੀ
ਹੈ।

ਇਸ ਪਹੁੰਚ ਦੇ ਸੰਦਰਭ ਵਿੱਚ, “ਸਮੱਗਰੀ” ਮੁੱਖ ਸਮੱਗਰੀ (ਜਿਵੇਂ ਬਲੌਗ ਪੋਸਟਾਂ, ਲੇਖ, ਆਦਿ) ਅਤੇ ਮੈਟਾ-
ਸਮੱਗਰੀ, ਜਿਵੇਂ ਕਿ ਮੁੱਖ ਸਮੱਗਰੀ ਲਈ ਸਿਫਾਰਸ਼ਾਂ, ਦੋਵਾਂ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ।

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪੈਟਰਨ ਤੁਹਾਡੇ ਯੂਜ਼ਰ ਜੁੜਾਅ ਪੱਧਰਾਂ ਨੂੰ ਵਧਾਉਣ, ਵਿਅਕਤੀਗਤ ਤਜਰਬੇ ਪ੍ਰਦਾਨ
ਕਰਨ, ਅਤੇ ਤੁਹਾਡੇ ਅਤੇ ਤੁਹਾਡੇ ਯੂਜ਼ਰਾਂ ਲਈ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਕਾਰਜਾਂ ਨੂੰ ਸਵੈਚਾਲਿਤ ਕਰਨ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ 174

ਭੂਮਿਕਾ ਨਿਭਾ ਸਕਦੇ ਹਨ। ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਜਿਹੜੇ ਪੈਟਰਨਾਂ ਦਾ ਵਰਣਨ ਕਰਦੇ ਹਾਂ, ਉਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ
ਕਰਕੇ, ਤੁਸੀਂ ਅਜਿਹੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਬਣਾ ਸਕਦੇ ਹੋ ਜੋ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰਦੀਆਂ ਹਨ,
ਅਸਲ ਸਮੇਂ ਵਿੱਚ ਪ੍ਰਸੰਗ ਅਤੇ ਇਨਪੁੱਟ ਦੇ ਅਨੁਕੂਲ ਹੁੰਦੀਆਂ ਹਨ।

ਇਹ ਪੈਟਰਨ LLMs ਨੂੰ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਆਉਟਪੁੱਟ ਵਿੱਚ ਏਕੀਕ੍ਰਿਤ ਕਰਕੇ ਕੰਮ ਕਰਦੇ ਹਨ, ਜੋ ਯੂਜ਼ਰ ਇੰਟਰਫੇਸ
(ਕਈ ਵਾਰ “ਕ੍ਰੋਮ” ਵਜੋਂ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ) ਤੋਂ ਲੈ ਕੇ ਈਮੇਲਾਂ ਅਤੇ ਸੂਚਨਾਵਾਂ ਦੇ ਹੋਰ ਰੂਪਾਂ, ਅਤੇ ਕਿਸੇ ਵੀ ਸਮੱਗਰੀ
ਨਿਰਮਾਣ ਪਾਈਪਲਾਈਨਾਂ ਤੱਕ ਫੈਲੇ ਹੋਏ ਹਨ।

ਜਦੋਂ ਕੋਈ ਯੂਜ਼ਰ ਐਪਲੀਕੇਸ਼ਨ ਨਾਲਅੰਤਰਕਿਰਿਆ ਕਰਦਾ ਹੈ ਜਾਂ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਸਮੱਗਰੀ ਬੇਨਤੀ ਨੂੰ ਟ੍ਰਿਗਰ ਕਰਦਾ
ਹੈ, ਐਪਲੀਕੇਸ਼ਨ ਢੁਕਵੇਂ ਪ੍ਰਸੰਗ ਨੂੰ ਕੈਪਚਰ ਕਰਦੀ ਹੈ, ਜਿਵੇਂ ਕਿ ਯੂਜ਼ਰ ਤਰਜੀਹਾਂ, ਪਿਛਲੀਆਂ ਅੰਤਰਕਿਰਿਆਵਾਂ,
ਜਾਂ ਵਿਸ਼ੇਸ਼ ਪ੍ਰੌਂਪਟ। ਇਹ ਪ੍ਰਸੰਗਿਕ ਜਾਣਕਾਰੀ ਫਿਰ LLM ਵਿੱਚ ਭੇਜੀ ਜਾਂਦੀ ਹੈ, ਕਿਸੇ ਵੀ ਜ਼ਰੂਰੀ ਟੈਂਪਲੇਟ
ਜਾਂ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ਾਂ ਦੇ ਨਾਲ ਅਤੇ ਟੈਕਸਟ ਆਉਟਪੁੱਟ ਤਿਆਰ ਕਰਨ ਲਈ ਵਰਤੀ ਜਾਂਦੀ ਹੈ ਜੋ ਨਹੀਂ ਤਾਂ ਜਾਂ ਤਾਂ
ਹਾਰਡਕੋਡ ਕੀਤੀ ਜਾਣੀ ਹੁੰਦੀ, ਡੇਟਾਬੇਸ ਵਿੱਚ ਸਟੋਰ ਕੀਤੀ ਜਾਣੀ ਹੁੰਦੀ, ਜਾਂ ਐਲਗੋਰਿਦਮਿਕ ਢੰਗ ਨਾਲ ਤਿਆਰ
ਕੀਤੀ ਜਾਣੀ ਹੁੰਦੀ।

LLM ਦੁਆਰਾ ਤਿਆਰ ਕੀਤੀ ਸਮੱਗਰੀ ਵੱਖ-ਵੱਖ ਰੂਪ ਲੈ ਸਕਦੀ ਹੈ, ਜਿਵੇਂ ਕਿ ਨਿੱਜੀ ਸਿਫਾਰਸ਼ਾਂ, ਗਤੀਸ਼ੀਲ
ਉਤਪਾਦ ਵੇਰਵੇ, ਵਿਅਕਤੀਗਤ ਈਮੇਲ ਜਵਾਬ, ਜਾਂ ਇੱਥੋਂ ਤੱਕ ਕਿ ਪੂਰੇ ਲੇਖ ਜਾਂ ਬਲੌਗ ਪੋਸਟਾਂ। ਇਸ ਸਮੱਗਰੀ
ਦੀਆਂ ਸਭ ਤੋਂ ਮੌਲਿਕ ਵਰਤੋਂਆਂ ਵਿੱਚੋਂ ਇੱਕ ਜੋ ਮੈਂ ਇੱਕ ਸਾਲ ਤੋਂ ਵੱਧ ਸਮਾਂ ਪਹਿਲਾਂ ਸ਼ੁਰੂ ਕੀਤੀ ਸੀ, ਉਹ ਹੈ UI
ਐਲੀਮੈਂਟਸ ਜਿਵੇਂ ਫਾਰਮ ਲੇਬਲ, ਟੂਲਟਿਪਸ, ਅਤੇ ਹੋਰ ਕਿਸਮਾਂ ਦੇ ਵਿਆਖਿਆਤਮਕ ਟੈਕਸਟ ਨੂੰ ਗਤੀਸ਼ੀਲ ਢੰਗ
ਨਾਲ ਤਿਆਰ ਕਰਨਾ।

ਨਿੱਜੀਕਰਨ

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪੈਟਰਨਾਂ ਦੇ ਮੁੱਖ ਲਾਭਾਂ ਵਿੱਚੋਂ ਇੱਕ ਯੂਜ਼ਰਾਂ ਨੂੰ ਬਹੁਤ ਜ਼ਿਆਦਾ ਨਿੱਜੀ ਤਜਰਬੇ ਪ੍ਰਦਾਨ
ਕਰਨ ਦੀ ਯੋਗਤਾ ਹੈ। ਯੂਜ਼ਰ-ਵਿਸ਼ੇਸ਼ ਪ੍ਰਸੰਗ ਦੇ ਆਧਾਰ ’ਤੇ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰਕੇ, ਇਹ ਪੈਟਰਨ ਐਪਲੀਕੇਸ਼ਨਾਂ
ਨੂੰ ਵਿਅਕਤੀਗਤ ਯੂਜ਼ਰਾਂ ਦੀਆਂ ਰੁਚੀਆਂ, ਤਰਜੀਹਾਂ, ਅਤੇ ਅੰਤਰਕਿਰਿਆਵਾਂ ਦੇ ਅਨੁਸਾਰ ਸਮੱਗਰੀ ਨੂੰ ਢਾਲਣ ਦੇ
ਯੋਗ ਬਣਾਉਂਦੇ ਹਨ।

ਨਿੱਜੀਕਰਨ ਸਿਰਫ਼ ਆਮ ਸਮੱਗਰੀ ਵਿੱਚ ਯੂਜ਼ਰ ਦਾ ਨਾਮ ਪਾਉਣ ਤੋਂ ਕਿਤੇ ਵੱਧ ਹੈ। ਇਸ ਵਿੱਚ ਹਰ ਯੂਜ਼ਰ ਬਾਰੇ
ਉਪਲਬਧ ਵਿਸਤ੍ਰਿਤ ਸੰਦਰਭ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਜਿਹੀ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰਨਾ ਸ਼ਾਮਲ ਹੈ ਜੋ ਉਨ੍ਹਾਂ ਦੀਆਂ
ਵਿਸ਼ੇਸ਼ ਲੋੜਾਂ ਅਤੇ ਇੱਛਾਵਾਂ ਨਾਲ ਮੇਲ ਖਾਂਦੀ ਹੋਵੇ। ਇਸ ਸੰਦਰਭ ਵਿੱਚ ਕਈ ਕਾਰਕਾਂ ਨੂੰ ਸ਼ਾਮਲ ਕੀਤਾ ਜਾ ਸਕਦਾ
ਹੈ, ਜਿਵੇਂ ਕਿ:

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ 175

1. ਯੂਜ਼ਰ ਪ੍ਰੋਫਾਈਲ ਜਾਣਕਾਰੀ: ਇਸ ਤਕਨੀਕ ਨੂੰ ਲਾਗੂ ਕਰਨ ਦੇ ਸਭ ਤੋਂ ਆਮ ਪੱਧਰ ’ਤੇ, ਜਨਸੰਖਿਅਕ
ਡਾਟਾ, ਰੁਚੀਆਂ, ਤਰਜੀਹਾਂ, ਅਤੇ ਹੋਰ ਪ੍ਰੋਫਾਈਲ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੀ ਵਰਤੋਂ ਯੂਜ਼ਰ ਦੀ ਪਿੱਠਭੂਮੀ ਅਤੇ
ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੇ ਅਨੁਕੂਲ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰਨ ਲਈ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

2. ਵਿਵਹਾਰਕ ਡਾਟਾ: ਐਪਲੀਕੇਸ਼ਨ ਨਾਲ ਯੂਜ਼ਰ ਦੀਆਂ ਪਿਛਲੀਆਂ ਅੰਤਰਕਿਰਿਆਵਾਂ, ਜਿਵੇਂ ਕਿ ਦੇਖੇ ਗਏ
ਪੰਨੇ, ਕਲਿੱਕ ਕੀਤੇ ਲਿੰਕ, ਜਾਂ ਖਰੀਦੇ ਗਏ ਉਤਪਾਦ, ਉਨ੍ਹਾਂ ਦੇ ਵਿਵਹਾਰ ਅਤੇ ਰੁਚੀਆਂ ਬਾਰੇ ਮੁੱਲਵਾਨ
ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦੇ ਹਨ। ਇਸ ਡਾਟਾ ਦੀ ਵਰਤੋਂ ਉਨ੍ਹਾਂ ਦੇ ਰੁਝੇਵੇਂ ਦੇ ਪੈਟਰਨਾਂ ਨੂੰ ਦਰਸਾਉਣ ਅਤੇ
ਉਨ੍ਹਾਂ ਦੀਆਂ ਭਵਿੱਖੀ ਲੋੜਾਂ ਦੀ ਭਵਿੱਖਬਾਣੀ ਕਰਨ ਵਾਲੀ ਸਮੱਗਰੀ ਦੇ ਸੁਝਾਅ ਤਿਆਰ ਕਰਨ ਲਈ ਕੀਤੀ
ਜਾ ਸਕਦੀ ਹੈ।

3. ਸੰਦਰਭਿਕ ਕਾਰਕ: ਯੂਜ਼ਰ ਦਾ ਮੌਜੂਦਾ ਸੰਦਰਭ, ਜਿਵੇਂ ਕਿ ਉਨ੍ਹਾਂ ਦੀ ਲੋਕੇਸ਼ਨ, ਡਿਵਾਈਸ, ਦਿਨ ਦਾ ਸਮਾਂ,
ਜਾਂ ਮੌਸਮ ਵੀ, ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰ ਸਕਦੇ ਹਨ। ਉਦਾਹਰਨ ਲਈ, ਇੱਕ
ਯਾਤਰਾ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਇੱਕ AI ਵਰਕਰ ਹੋ ਸਕਦਾ ਹੈ ਜੋ ਯੂਜ਼ਰ ਦੀ ਮੌਜੂਦਾ ਲੋਕੇਸ਼ਨ ਅਤੇ ਮੌਜੂਦਾ
ਮੌਸਮ ਦੀਆਂ ਸਥਿਤੀਆਂ ਦੇ ਆਧਾਰ ’ਤੇ ਨਿੱਜੀ ਸਿਫਾਰਸ਼ਾਂ ਤਿਆਰ ਕਰਨ ਦੇ ਯੋਗ ਹੈ।

ਇਨ੍ਹਾਂ ਸੰਦਰਭਿਕ ਕਾਰਕਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ, ਸੰਦਰਭਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪੈਟਰਨ ਐਪਲੀਕੇਸ਼ਨਾਂ ਨੂੰ ਹਰ
ਵਿਅਕਤੀਗਤ ਯੂਜ਼ਰ ਲਈ ਵਿਸ਼ੇਸ਼ ਤੌਰ ’ਤੇ ਤਿਆਰ ਕੀਤੀ ਗਈ ਸਮੱਗਰੀ ਪ੍ਰਦਾਨ ਕਰਨ ਦੇ ਯੋਗ ਬਣਾਉਂਦੇ ਹਨ।
ਨਿੱਜੀਕਰਨ ਦੇ ਇਸ ਪੱਧਰ ਦੇ ਕਈ ਮਹੱਤਵਪੂਰਨ ਲਾਭ ਹਨ:

1. ਵਧਿਆ ਰੁਝੇਵਾਂ: ਨਿੱਜੀਕ੍ਰਿਤ ਸਮੱਗਰੀ ਯੂਜ਼ਰਾਂ ਦਾ ਧਿਆਨ ਖਿੱਚਦੀ ਹੈ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਐਪਲੀਕੇਸ਼ਨ ਨਾਲ
ਜੁੜੇ ਰੱਖਦੀ ਹੈ। ਜਦੋਂ ਯੂਜ਼ਰਾਂ ਨੂੰ ਲੱਗਦਾ ਹੈ ਕਿ ਸਮੱਗਰੀ ਪ੍ਰਾਸੰਗਿਕ ਹੈ ਅਤੇ ਸਿੱਧੇ ਤੌਰ ’ਤੇ ਉਨ੍ਹਾਂ ਦੀਆਂ
ਲੋੜਾਂ ਦੀ ਗੱਲ ਕਰਦੀ ਹੈ, ਤਾਂ ਉਹ ਐਪਲੀਕੇਸ਼ਨ ਨਾਲ ਅੰਤਰਕਿਰਿਆ ਕਰਨ ਅਤੇ ਇਸਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ
ਦੀ ਪੜਚੋਲ ਕਰਨ ’ਤੇ ਵਧੇਰੇ ਸਮਾਂ ਬਿਤਾਉਣ ਦੀ ਸੰਭਾਵਨਾ ਰੱਖਦੇ ਹਨ।

2. ਬਿਹਤਰ ਯੂਜ਼ਰ ਸੰਤੁਸ਼ਟੀ: ਨਿੱਜੀਕ੍ਰਿਤ ਸਮੱਗਰੀ ਦਰਸਾਉਂਦੀ ਹੈ ਕਿ ਐਪਲੀਕੇਸ਼ਨ ਯੂਜ਼ਰ ਦੀਆਂ ਵਿਲੱਖਣ
ਲੋੜਾਂ ਨੂੰ ਸਮਝਦੀ ਹੈ ਅਤੇ ਉਨ੍ਹਾਂ ਦਾ ਖਿਆਲ ਰੱਖਦੀ ਹੈ। ਸਹਾਇਕ, ਜਾਣਕਾਰੀ ਭਰਪੂਰ, ਅਤੇ ਉਨ੍ਹਾਂ
ਦੀਆਂ ਰੁਚੀਆਂ ਦੇ ਅਨੁਕੂਲ ਸਮੱਗਰੀ ਪ੍ਰਦਾਨ ਕਰਕੇ, ਐਪਲੀਕੇਸ਼ਨ ਯੂਜ਼ਰ ਸੰਤੁਸ਼ਟੀ ਨੂੰ ਵਧਾ ਸਕਦੀ ਹੈ
ਅਤੇ ਆਪਣੇ ਯੂਜ਼ਰਾਂ ਨਾਲ ਮਜ਼ਬੂਤ ਸੰਬੰਧ ਬਣਾ ਸਕਦੀ ਹੈ।

3. ਉੱਚ ਤਬਦੀਲੀ ਦਰਾਂ: ਈ-ਕਾਮਰਸ ਜਾਂ ਮਾਰਕੀਟਿੰਗ ਐਪਲੀਕੇਸ਼ਨਾਂ ਦੇ ਸੰਦਰਭ ਵਿੱਚ, ਨਿੱਜੀਕ੍ਰਿਤ
ਸਮੱਗਰੀ ਤਬਦੀਲੀ ਦਰਾਂ ’ਤੇ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਭਾਵ ਪਾ ਸਕਦੀ ਹੈ। ਯੂਜ਼ਰਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀਆਂ ਤਰਜੀਹਾਂ
ਅਤੇ ਵਿਵਹਾਰ ਦੇ ਅਨੁਕੂਲ ਉਤਪਾਦ, ਆਫਰ, ਜਾਂ ਸਿਫਾਰਸ਼ਾਂ ਪੇਸ਼ ਕਰਕੇ, ਐਪਲੀਕੇਸ਼ਨ ਯੂਜ਼ਰਾਂ ਦੇ ਇੱਛਤ
ਕਾਰਵਾਈਆਂ ਕਰਨ, ਜਿਵੇਂ ਕਿ ਖਰੀਦਦਾਰੀ ਕਰਨ ਜਾਂ ਕਿਸੇ ਸੇਵਾ ਲਈ ਸਾਈਨ ਅੱਪ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ
ਨੂੰ ਵਧਾ ਸਕਦੀ ਹੈ।

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ 176

ਉਤਪਾਦਕਤਾ

ਸੰਦਰਭਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪੈਟਰਨ ਰਚਨਾਤਮਕ ਪ੍ਰਕਿਰਿਆਵਾਂ ਵਿੱਚ ਮੈਨੂਅਲ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਅਤੇ
ਸੰਪਾਦਨ ਦੀ ਲੋੜ ਨੂੰ ਘਟਾ ਕੇ ਕੁਝ ਕਿਸਮਾਂ ਦੀ ਉਤਪਾਦਕਤਾ ਨੂੰ ਕਾਫ਼ੀ ਵਧਾ ਸਕਦੇ ਹਨ। LLMs ਦੀ ਸ਼ਕਤੀ
ਦੀ ਵਰਤੋਂ ਕਰਕੇ, ਤੁਸੀਂ ਵੱਡੇ ਪੱਧਰ ’ਤੇ ਉੱਚ-ਗੁਣਵੱਤਾ ਵਾਲੀ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹੋ, ਜੋ ਤੁਹਾਡੇ ਸਮੱਗਰੀ
ਨਿਰਮਾਤਾਵਾਂ ਅਤੇ ਡਿਵੈਲਪਰਾਂ ਨੂੰ ਉਬਾਊ ਮੈਨੂਅਲ ਕੰਮ ਕਰਨ ’ਤੇ ਖਰਚ ਕਰਨਾ ਪੈਣ ਵਾਲਾ ਸਮਾਂ ਅਤੇ ਮਿਹਨਤ
ਬਚਾਉਂਦੀ ਹੈ।

ਰਵਾਇਤੀ ਤੌਰ ’ਤੇ, ਸਮੱਗਰੀ ਨਿਰਮਾਤਾਵਾਂ ਨੂੰ ਖੋਜ, ਲਿਖਣ, ਸੰਪਾਦਨ ਅਤੇ ਸਮੱਗਰੀ ਨੂੰ ਫਾਰਮੈਟ ਕਰਨ ਦੀ ਲੋੜ
ਹੁੰਦੀ ਹੈ ਤਾਂ ਜੋ ਇਹ ਐਪਲੀਕੇਸ਼ਨ ਦੀਆਂ ਜ਼ਰੂਰਤਾਂ ਅਤੇ ਉਪਭੋਗਤਾ ਦੀਆਂ ਉਮੀਦਾਂ ਨੂੰ ਪੂਰਾ ਕਰ ਸਕੇ। ਇਹ
ਪ੍ਰਕਿਰਿਆ ਸਮਾਂ ਲੈਣ ਵਾਲੀ ਅਤੇ ਸਰੋਤ-ਗਹਿਣ ਹੋ ਸਕਦੀ ਹੈ, ਖਾਸ ਕਰਕੇ ਜਦੋਂ ਸਮੱਗਰੀ ਦੀ ਮਾਤਰਾ ਵਧਦੀ ਹੈ।

ਹਾਲਾਂਕਿ, ਸੰਦਰਭਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪੈਟਰਨਾਂ ਨਾਲ, ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਕਾਫ਼ੀ ਹੱਦ ਤੱਕ
ਸਵੈਚਾਲਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ ਦਿੱਤੇ ਗਏ ਪ੍ਰੇਰਕ ਨਿਰਦੇਸ਼ਾਂ ਅਤੇ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ਾਂ ਦੇ ਆਧਾਰ
’ਤੇ ਸੁਸੰਗਤ, ਵਿਆਕਰਣਕ ਤੌਰ ’ਤੇ ਸਹੀ, ਅਤੇ ਸੰਦਰਭਿਕ ਤੌਰ ’ਤੇ ਢੁਕਵੀਂ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹਨ।
ਇਹ ਸਵੈਚਾਲਨ ਕਈ ਉਤਪਾਦਕਤਾ ਲਾਭ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ:

1. ਮੈਨੂਅਲ ਮਿਹਨਤ ਵਿੱਚ ਕਮੀ: ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਦੇ ਕੰਮਾਂ ਨੂੰ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਨੂੰ ਸੌਂਪ ਕੇ, ਸਮੱਗਰੀ
ਨਿਰਮਾਤਾ ਸਮੱਗਰੀ ਰਣਨੀਤੀ, ਵਿਚਾਰ ਨਿਰਮਾਣ, ਅਤੇ ਗੁਣਵੱਤਾ ਭਰੋਸੇ ਵਰਗੇ ਉੱਚ-ਪੱਧਰੀ ਕੰਮਾਂ ’ਤੇ
ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰ ਸਕਦੇ ਹਨ। ਉਹ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ ਨੂੰ ਜ਼ਰੂਰੀ ਸੰਦਰਭ, ਖਾਕੇ, ਅਤੇ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼
ਪ੍ਰਦਾਨ ਕਰ ਸਕਦੇ ਹਨ ਅਤੇ ਇਸ ਨੂੰ ਅਸਲ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਨੂੰ ਸੰਭਾਲਣ ਦੇ ਸਕਦੇ ਹਨ। ਇਹ ਲਿਖਣ
ਅਤੇ ਸੰਪਾਦਨ ਲਈ ਲੋੜੀਂਦੀ ਮੈਨੂਅਲ ਮਿਹਨਤ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਸਮੱਗਰੀ ਨਿਰਮਾਤਾ ਵਧੇਰੇ
ਉਤਪਾਦਕ ਅਤੇ ਕੁਸ਼ਲ ਹੋ ਸਕਦੇ ਹਨ।

2. ਤੇਜ਼ ਸਮੱਗਰੀ ਨਿਰਮਾਣ: ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ ਮਨੁੱਖੀ ਲੇਖਕਾਂ ਨਾਲੋਂ ਬਹੁਤ ਤੇਜ਼ੀ ਨਾਲ ਸਮੱਗਰੀ ਤਿਆਰ
ਕਰ ਸਕਦੇ ਹਨ। ਸਹੀ ਪ੍ਰੇਰਕ ਨਿਰਦੇਸ਼ਾਂ ਅਤੇ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ਾਂ ਨਾਲ, ਇੱਕ ਵੱਡਾ ਭਾਸ਼ਾ ਮਾਡਲ ਸਕਿੰਟਾਂ ਜਾਂ
ਮਿੰਟਾਂ ਵਿੱਚ ਕਈ ਸਮੱਗਰੀ ਦੇ ਟੁਕੜੇ ਤਿਆਰ ਕਰ ਸਕਦਾ ਹੈ। ਇਹ ਗਤੀ ਐਪਲੀਕੇਸ਼ਨਾਂ ਨੂੰ ਬਹੁਤ ਤੇਜ਼ੀ
ਨਾਲ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰਨ ਦੇ ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ, ਜੋ ਉਪਭੋਗਤਾਵਾਂ ਦੀਆਂ ਮੰਗਾਂ ਅਤੇ ਲਗਾਤਾਰ ਬਦਲ
ਰਹੇ ਡਿਜੀਟਲ ਪਰਿਦ੍ਰਿਸ਼ ਨਾਲ ਤਾਲਮੇਲ ਬਣਾਈ ਰੱਖਦੀ ਹੈ।

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ 177

ਕੀ ਤੇਜ਼ ਸਮੱਗਰੀ ਨਿਰਮਾਣ “ਸਾਂਝੇ ਸਰੋਤਾਂ ਦੀ ਤ੍ਰਾਸਦੀ” ਵਾਲੀ ਸਥਿਤੀ ਵੱਲ ਲੈ ਜਾ ਰਿਹਾ ਹੈ ਜਿੱਥੇ ਇੰਟਰਨੈੱਟ
ਅਜਿਹੀ ਸਮੱਗਰੀ ਨਾਲ ਭਰ ਰਿਹਾ ਹੈ ਜਿਸਨੂੰ ਕੋਈ ਨਹੀਂ ਪੜ੍ਹਦਾ। ਦੁੱਖ ਦੀ ਗੱਲ ਹੈ, ਮੈਨੂੰ ਲੱਗਦਾ ਹੈ ਕਿ ਜਵਾਬ
ਹਾਂ ਹੈ।

3. ਇਕਸਾਰਤਾ ਅਤੇ ਗੁਣਵੱਤਾ: ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ ਆਸਾਨੀ ਨਾਲ ਸਮੱਗਰੀ ਨੂੰ ਸੋਧ ਸਕਦੇ ਹਨ ਤਾਂ ਜੋ ਇਹ
ਸ਼ੈਲੀ, ਲਹਿਜ਼ੇ, ਅਤੇ ਗੁਣਵੱਤਾ ਵਿੱਚ ਇਕਸਾਰ ਹੋਵੇ। ਸਪੱਸ਼ਟ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ ਅਤੇ ਉਦਾਹਰਣਾਂ ਦਿੱਤੇ ਜਾਣ
’ਤੇ, ਕੁਝ ਕਿਸਮ ਦੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ (ਜਿਵੇਂ ਨਿਊਜ਼ਰੂਮ, ਪੀਆਰ, ਆਦਿ) ਇਹ ਯਕੀਨੀ ਬਣਾ ਸਕਦੀਆਂ
ਹਨ ਕਿ ਉਨ੍ਹਾਂ ਦੀ ਮਨੁੱਖ-ਨਿਰਮਿਤ ਸਮੱਗਰੀ ਉਨ੍ਹਾਂ ਦੀ ਬ੍ਰਾਂਡ ਆਵਾਜ਼ ਨਾਲ ਮੇਲ ਖਾਂਦੀ ਹੈ ਅਤੇ ਲੋੜੀਂਦੇ
ਗੁਣਵੱਤਾ ਮਿਆਰਾਂ ਨੂੰ ਪੂਰਾ ਕਰਦੀ ਹੈ। ਇਹ ਇਕਸਾਰਤਾ ਵਿਆਪਕ ਸੰਪਾਦਨ ਅਤੇ ਸੋਧਾਂ ਦੀ ਲੋੜ ਨੂੰ
ਘਟਾਉਂਦੀ ਹੈ, ਜੋ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਸਮਾਂ ਅਤੇ ਮਿਹਨਤ ਬਚਾਉਂਦੀ ਹੈ।

4. ਦੁਹਰਾਓ ਅਤੇ ਅਨੁਕੂਲਤਾ: ਸੰਦਰਭਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪੈਟਰਨ ਸਮੱਗਰੀ ਦੇ ਤੇਜ਼ ਦੁਹਰਾਓ ਅਤੇ
ਅਨੁਕੂਲਤਾ ਨੂੰ ਸਮਰੱਥ ਬਣਾਉਂਦੇ ਹਨ। ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ ਨੂੰ ਦਿੱਤੇ ਗਏ ਪ੍ਰੇਰਕ ਨਿਰਦੇਸ਼ਾਂ, ਖਾਕਿਆਂ,
ਜਾਂ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ਾਂ ਨੂੰ ਵਿਵਸਥਿਤ ਕਰਕੇ, ਤੁਹਾਡੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਤੇਜ਼ੀ ਨਾਲ ਸਮੱਗਰੀ ਦੇ ਵੱਖ-ਵੱਖ
ਰੂਪ ਤਿਆਰ ਕਰ ਸਕਦੀਆਂ ਹਨ ਅਤੇ ਵੱਖ-ਵੱਖ ਪਹੁੰਚਾਂ ਦੀ ਜਾਂਚ ਇੱਕ ਸਵੈਚਾਲਿਤ ਤਰੀਕੇ ਨਾਲ ਕਰ
ਸਕਦੀਆਂ ਹਨ ਜੋ ਅਤੀਤ ਵਿੱਚ ਕਦੇ ਸੰਭਵ ਨਹੀਂ ਸੀ। ਇਹ ਦੁਹਰਾਉਣ ਵਾਲੀ ਪ੍ਰਕਿਰਿਆ ਤੇਜ਼ ਪ੍ਰਯੋਗ
ਅਤੇ ਸਮੱਗਰੀ ਰਣਨੀਤੀਆਂ ਦੇ ਸੁਧਾਰ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ, ਜੋ ਸਮੇਂ ਦੇ ਨਾਲ ਵਧੇਰੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਅਤੇ
ਆਕਰਸ਼ਕ ਸਮੱਗਰੀ ਵੱਲ ਲੈ ਜਾਂਦੀ ਹੈ। ਇਹ ਖਾਸ ਤਕਨੀਕ ਈ-ਕਾਮਰਸ ਵਰਗੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਲਈ
ਇੱਕ ਪੂਰੀ ਖੇਡ-ਬਦਲਣ ਵਾਲੀ ਹੋ ਸਕਦੀ ਹੈ ਜੋ ਵਾਪਸੀ ਦਰਾਂ ਅਤੇ ਰੁਝੇਵੇਂ ਦੇ ਆਧਾਰ ’ਤੇ ਜੀਉਂਦੀਆਂ ਅਤੇ
ਮਰਦੀਆਂ ਹਨ

ਇਹ ਨੋਟ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਭਾਵੇਂ ਸੰਦਰਭਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪੈਟਰਨ ਉਤਪਾਦਕਤਾ ਨੂੰ
ਬਹੁਤ ਵਧਾ ਸਕਦੇ ਹਨ, ਪਰ ਇਹ ਮਨੁੱਖੀ ਸ਼ਮੂਲੀਅਤ ਦੀ ਲੋੜ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਖਤਮ ਨਹੀਂ ਕਰਦੇ।
ਸਮੱਗਰੀ ਨਿਰਮਾਤਾ ਅਤੇ ਸੰਪਾਦਕ ਸਮੁੱਚੀ ਸਮੱਗਰੀ ਰਣਨੀਤੀ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ, LLM ਨੂੰ
ਮਾਰਗਦਰਸ਼ਨ ਪ੍ਰਦਾਨ ਕਰਨ, ਅਤੇ ਤਿਆਰ ਕੀਤੀ ਸਮੱਗਰੀ ਦੀ ਗੁਣਵੱਤਾ ਅਤੇ ਉਚਿਤਤਾ ਨੂੰ
ਯਕੀਨੀ ਬਣਾਉਣ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੇ ਹਨ।

ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਦੇ ਵਧੇਰੇ ਦੁਹਰਾਉਣ ਵਾਲੇ ਅਤੇ ਸਮਾਂ ਲੈਣ ਵਾਲੇ ਪਹਿਲੂਆਂ ਨੂੰ ਸਵੈਚਾਲਿਤ ਕਰਕੇ, ਸੰਦਰਭਿਕ
ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪੈਟਰਨ ਕੀਮਤੀ ਮਨੁੱਖੀ ਸਮਾਂ ਅਤੇ ਸਰੋਤਾਂ ਨੂੰ ਮੁਕਤ ਕਰਦੇ ਹਨ ਜੋ ਉੱਚ-ਮੁੱਲ ਵਾਲੇ ਕੰਮਾਂ ਵੱਲ

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ 178

ਮੁੜ ਨਿਰਦੇਸ਼ਿਤ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਇਹ ਵਧੀ ਹੋਈ ਉਤਪਾਦਕਤਾ ਤੁਹਾਨੂੰ ਵਰਤੋਂਕਾਰਾਂ ਨੂੰ ਵਧੇਰੇ ਨਿੱਜੀ ਅਤੇ
ਆਕਰਸ਼ਕ ਸਮੱਗਰੀ ਪ੍ਰਦਾਨ ਕਰਨ ਦੇ ਨਾਲ-ਨਾਲ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਉਣ ਦੇ
ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ।

ਤੇਜ਼ ਦੁਹਰਾਓ ਅਤੇ ਪ੍ਰਯੋਗ

ਸੰਦਰਭਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪੈਟਰਨ ਤੁਹਾਨੂੰ ਵੱਖ-ਵੱਖ ਸਮੱਗਰੀ ਵੇਰੀਏਸ਼ਨਾਂ ਨਾਲ ਤੇਜ਼ੀ ਨਾਲ ਦੁਹਰਾਉਣ ਅਤੇ
ਪ੍ਰਯੋਗ ਕਰਨ ਦੇ ਯੋਗ ਬਣਾਉਂਦੇ ਹਨ, ਜੋ ਤੁਹਾਡੀ ਸਮੱਗਰੀ ਰਣਨੀਤੀ ਦੇ ਤੇਜ਼ ਅਨੁਕੂਲਨ ਅਤੇ ਸੁਧਾਰ ਦੀਆਗਿਆ
ਦਿੰਦੇ ਹਨ। ਤੁਸੀਂ ਸਿਰਫ਼ ਮਾਡਲ ਨੂੰ ਪ੍ਰਦਾਨ ਕੀਤੇ ਸੰਦਰਭ, ਟੈਂਪਲੇਟ, ਜਾਂ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ਾਂ ਨੂੰ ਵਿਵਸਥਿਤ ਕਰਕੇ
ਕੁਝ ਸਕਿੰਟਾਂ ਵਿੱਚ ਸਮੱਗਰੀ ਦੇ ਕਈ ਸੰਸਕਰਣ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹੋ।

ਇਹ ਤੇਜ਼ ਦੁਹਰਾਓ ਸਮਰੱਥਾ ਕਈ ਮੁੱਖ ਲਾਭ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ:

1. ਟੈਸਟਿੰਗ ਅਤੇ ਅਨੁਕੂਲਨ: ਸਮੱਗਰੀ ਵੇਰੀਏਸ਼ਨਾਂ ਨੂੰ ਤੇਜ਼ੀ ਨਾਲ ਤਿਆਰ ਕਰਨ ਦੀ ਯੋਗਤਾ ਨਾਲ, ਤੁਸੀਂ
ਆਸਾਨੀ ਨਾਲ ਵੱਖ-ਵੱਖ ਪਹੁੰਚਾਂ ਦੀ ਜਾਂਚ ਕਰ ਸਕਦੇ ਹੋ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਨੂੰ ਮਾਪ ਸਕਦੇ
ਹੋ। ਉਦਾਹਰਣ ਲਈ, ਤੁਸੀਂ ਇੱਕ ਉਤਪਾਦ ਵੇਰਵੇ ਜਾਂ ਮਾਰਕੀਟਿੰਗ ਸੰਦੇਸ਼ ਦੇ ਕਈ ਸੰਸਕਰਣ ਤਿਆਰ ਕਰ
ਸਕਦੇ ਹੋ, ਹਰ ਇੱਕ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਵਰਤੋਂਕਾਰ ਸੈਗਮੈਂਟ ਜਾਂ ਸੰਦਰਭ ਲਈ ਅਨੁਕੂਲ ਕੀਤਾ ਗਿਆ। ਵਰਤੋਂਕਾਰ
ਸ਼ਮੂਲੀਅਤ ਮੈਟ੍ਰਿਕਸ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਕੇ, ਜਿਵੇਂ ਕਿ ਕਲਿੱਕ-ਥਰੂ ਦਰਾਂ ਜਾਂ ਰੂਪਾਂਤਰਣ ਦਰਾਂ, ਤੁਸੀਂ ਸਭ ਤੋਂ
ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਸਮੱਗਰੀ ਵੇਰੀਏਸ਼ਨਾਂ ਦੀ ਪਛਾਣ ਕਰ ਸਕਦੇ ਹੋ ਅਤੇ ਆਪਣੀ ਸਮੱਗਰੀ ਰਣਨੀਤੀ ਨੂੰ ਉਸ
ਅਨੁਸਾਰ ਅਨੁਕੂਲ ਬਣਾ ਸਕਦੇ ਹੋ।

2. ਏ/ਬੀ ਟੈਸਟਿੰਗ: ਸੰਦਰਭਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪੈਟਰਨ ਸਮੱਗਰੀ ਦੀ ਨਿਰਵਿਘਨ ਏ/ਬੀ ਟੈਸਟਿੰਗ ਨੂੰ
ਸਮਰੱਥ ਬਣਾਉਂਦੇ ਹਨ। ਤੁਸੀਂ ਸਮੱਗਰੀ ਦੇ ਦੋ ਜਾਂ ਵਧੇਰੇ ਵੇਰੀਏਸ਼ਨ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹੋ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ
ਵੱਖ-ਵੱਖ ਵਰਤੋਂਕਾਰ ਸਮੂਹਾਂ ਨੂੰ ਬੇਤਰਤੀਬੇ ਢੰਗ ਨਾਲ ਪੇਸ਼ ਕਰ ਸਕਦੇ ਹੋ। ਹਰ ਵੇਰੀਏਸ਼ਨ ਦੇ ਪ੍ਰਦਰਸ਼ਨ
ਦੀ ਤੁਲਨਾ ਕਰਕੇ, ਤੁਸੀਂ ਨਿਰਧਾਰਿਤ ਕਰ ਸਕਦੇ ਹੋ ਕਿ ਕਿਹੜੀ ਸਮੱਗਰੀ ਤੁਹਾਡੇ ਟੀਚਾ ਦਰਸ਼ਕਾਂ ਨਾਲ ਸਭ
ਤੋਂ ਵਧੀਆ ਢੰਗ ਨਾਲ ਜੁੜਦੀ ਹੈ। ਇਹ ਡਾਟਾ-ਆਧਾਰਿਤ ਪਹੁੰਚ ਤੁਹਾਨੂੰ ਸੂਚਿਤ ਫੈਸਲੇ ਲੈਣ ਅਤੇ ਵਰਤੋਂਕਾਰ
ਸ਼ਮੂਲੀਅਤ ਨੂੰ ਵੱਧ ਤੋਂ ਵੱਧ ਕਰਨ ਅਤੇ ਆਪਣੇ ਇੱਛਿਤ ਨਤੀਜਿਆਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਆਪਣੀ
ਸਮੱਗਰੀ ਨੂੰ ਲਗਾਤਾਰ ਸੁਧਾਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ।

3. ਨਿੱਜੀਕਰਨ ਪ੍ਰਯੋਗ: ਤੇਜ਼ ਦੁਹਰਾਓ ਅਤੇ ਪ੍ਰਯੋਗ ਨਿੱਜੀਕਰਨ ਦੇ ਮਾਮਲੇ ਵਿੱਚ ਖਾਸ ਤੌਰ ’ਤੇ ਮੁੱਲਵਾਨ
ਹਨ। ਸੰਦਰਭਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪੈਟਰਨ ਨਾਲ, ਤੁਸੀਂ ਵੱਖ-ਵੱਖ ਵਰਤੋਂਕਾਰ ਸੈਗਮੈਂਟਾਂ, ਤਰਜੀਹਾਂ, ਜਾਂ

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ 179

ਵਿਵਹਾਰਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਤੇਜ਼ੀ ਨਾਲ ਨਿੱਜੀ ਸਮੱਗਰੀ ਵੇਰੀਏਸ਼ਨਾਂ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹੋ। ਵੱਖ-ਵੱਖ
ਨਿੱਜੀਕਰਨ ਰਣਨੀਤੀਆਂ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਕੇ, ਤੁਸੀਂ ਵਿਅਕਤੀਗਤ ਵਰਤੋਂਕਾਰਾਂ ਨੂੰ ਸ਼ਾਮਲ ਕਰਨ ਅਤੇ
ਅਨੁਕੂਲਿਤ ਤਜਰਬੇ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਸਭ ਤੋਂ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਪਹੁੰਚਾਂ ਦੀ ਪਛਾਣ ਕਰ ਸਕਦੇ ਹੋ।

4. ਬਦਲਦੇ ਰੁਝਾਨਾਂ ਨਾਲ ਅਨੁਕੂਲ ਹੋਣਾ: ਤੇਜ਼ੀ ਨਾਲ ਦੁਹਰਾਉਣ ਅਤੇ ਪ੍ਰਯੋਗ ਕਰਨ ਦੀ ਯੋਗਤਾ ਤੁਹਾਨੂੰ
ਚੁਸਤ ਰਹਿਣ ਅਤੇ ਬਦਲਦੇ ਰੁਝਾਨਾਂ ਅਤੇ ਵਰਤੋਂਕਾਰ ਤਰਜੀਹਾਂ ਨਾਲ ਅਨੁਕੂਲ ਹੋਣ ਦੇ ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ।
ਜਦੋਂ ਨਵੇਂ ਵਿਸ਼ੇ, ਕੀਵਰਡ, ਜਾਂ ਵਰਤੋਂਕਾਰ ਵਿਵਹਾਰ ਉੱਭਰਦੇ ਹਨ, ਤੁਸੀਂ ਤੇਜ਼ੀ ਨਾਲ ਇਨ੍ਹਾਂ ਰੁਝਾਨਾਂ ਨਾਲ
ਮੇਲ ਖਾਂਦੀ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹੋ। ਲਗਾਤਾਰ ਪ੍ਰਯੋਗ ਕਰਕੇ ਅਤੇ ਆਪਣੀ ਸਮੱਗਰੀ ਨੂੰ ਸੁਧਾਰ
ਕੇ, ਤੁਸੀਂ ਲਗਾਤਾਰ ਵਿਕਸਤ ਹੋ ਰਹੇ ਡਿਜੀਟਲ ਖੇਤਰ ਵਿੱਚ ਪ੍ਰਸੰਗਿਕ ਰਹਿ ਸਕਦੇ ਹੋ ਅਤੇ ਮੁਕਾਬਲੇ ਵਿੱਚ
ਬੜ੍ਹਤ ਬਣਾਈ ਰੱਖ ਸਕਦੇ ਹੋ।

5. ਲਾਗਤ-ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਪ੍ਰਯੋਗ: ਰਵਾਇਤੀ ਸਮੱਗਰੀ ਪ੍ਰਯੋਗ ਵਿੱਚ ਆਮ ਤੌਰ ’ਤੇ ਕਾਫ਼ੀ ਸਮਾਂ ਅਤੇ
ਸਰੋਤ ਲੱਗਦੇ ਹਨ, ਕਿਉਂਕਿ ਸਮੱਗਰੀ ਨਿਰਮਾਤਾਵਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਰੂਪਾਂ ਨੂੰ ਮੈਨੂਅਲ ਤੌਰ ’ਤੇ ਵਿਕਸਿਤ ਅਤੇ
ਟੈਸਟ ਕਰਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਹਾਲਾਂਕਿ, ਸੰਦਰਭੀ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪੈਟਰਨਾਂ ਨਾਲ, ਪ੍ਰਯੋਗ ਦੀ ਲਾਗਤ
ਬਹੁਤ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ। LLMs ਤੇਜ਼ੀ ਨਾਲ ਅਤੇ ਵੱਡੇ ਪੱਧਰ ’ਤੇ ਸਮੱਗਰੀ ਦੇ ਵੱਖ-ਵੱਖ ਰੂਪ ਤਿਆਰ ਕਰ
ਸਕਦੇ ਹਨ, ਜੋ ਤੁਹਾਨੂੰ ਬਿਨਾਂ ਕਿਸੇ ਵੱਡੀ ਲਾਗਤ ਦੇ ਵਿਚਾਰਾਂ ਅਤੇ ਪਹੁੰਚਾਂ ਦੀ ਵਿਆਪਕ ਸ਼੍ਰੇਣੀ ਦੀ ਖੋਜ
ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦੇ ਹਨ।

ਤੇਜ਼ ਦੁਹਰਾਓ ਅਤੇ ਪ੍ਰਯੋਗਾਂ ਦਾ ਵੱਧ ਤੋਂ ਵੱਧ ਲਾਭ ਲੈਣ ਲਈ, ਇੱਕ ਚੰਗੀ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ ਪ੍ਰਯੋਗਾਤਮਕ
ਢਾਂਚਾ ਹੋਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਇਸ ਢਾਂਚੇ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ:

• ਹਰ ਪ੍ਰਯੋਗ ਲਈ ਸਪੱਸ਼ਟ ਉਦੇਸ਼ ਅਤੇ ਪਰਿਕਲਪਨਾਵਾਂ
• ਸਮੱਗਰੀ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਨੂੰ ਮਾਪਣ ਲਈ ਢੁਕਵੇਂ ਮੈਟ੍ਰਿਕਸ ਅਤੇ ਟਰੈਕਿੰਗ ਵਿਧੀਆਂ
• ਸਹੀ ਯੂਜ਼ਰਾਂ ਨੂੰ ਢੁਕਵੇਂ ਸਮੱਗਰੀ ਦੇ ਰੂਪ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਵਰਗੀਕਰਨ ਅਤੇ ਟਾਰਗੇਟਿੰਗ ਰਣਨੀਤੀਆਂ
• ਪ੍ਰਯੋਗਾਤਮਕ ਡੇਟਾ ਤੋਂ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਵਿਸ਼ਲੇਸ਼ਣ ਅਤੇ ਰਿਪੋਰਟਿੰਗ ਟੂਲ
• ਤੁਹਾਡੀ ਸਮੱਗਰੀ ਰਣਨੀਤੀ ਵਿੱਚ ਸਿੱਖਣ ਅਤੇ ਅਨੁਕੂਲਤਾ ਨੂੰ ਸ਼ਾਮਲ ਕਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ

ਤੇਜ਼ ਦੁਹਰਾਓ ਅਤੇ ਪ੍ਰਯੋਗਾਂ ਨੂੰ ਅਪਣਾ ਕੇ, ਤੁਸੀਂ ਲਗਾਤਾਰਆਪਣੀ ਸਮੱਗਰੀ ਨੂੰ ਸੁਧਾਰ ਅਤੇ ਅਨੁਕੂਲ ਬਣਾ ਸਕਦੇ
ਹੋ, ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦੇ ਹੋਏ ਕਿ ਇਹ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਟੀਚਿਆਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਵਿੱਚ ਰੁਚੀਕਰ,
ਪ੍ਰਸੰਗਿਕ ਅਤੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਰਹੇ। ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਲਈ ਇਹ ਚੁਸਤ ਪਹੁੰਚ ਤੁਹਾਨੂੰ ਅੱਗੇ ਰਹਿਣ ਅਤੇ
ਸ਼ਾਨਦਾਰ ਯੂਜ਼ਰ ਅਨੁਭਵ ਪ੍ਰਦਾਨ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ।

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ 180

ਸਕੇਲੇਬਿਲਟੀ ਅਤੇ ਕੁਸ਼ਲਤਾ

ਜਿਵੇਂ-ਜਿਵੇਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਧਦੀਆਂ ਹਨ ਅਤੇ ਵਿਅਕਤੀਗਤ ਸਮੱਗਰੀ ਦੀ ਮੰਗ ਵਧਦੀ ਹੈ, ਸੰਦਰਭੀ ਸਮੱਗਰੀ
ਨਿਰਮਾਣ ਪੈਟਰਨ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਦੇ ਕੁਸ਼ਲ ਸਕੇਲਿੰਗ ਨੂੰ ਸਮਰੱਥ ਬਣਾਉਂਦੇ ਹਨ। LLMs ਮਨੁੱਖੀ ਸਰੋਤਾਂ ਵਿੱਚ
ਅਨੁਪਾਤਕ ਵਾਧੇ ਦੀ ਲੋੜ ਤੋਂ ਬਿਨਾਂ, ਇੱਕੋ ਸਮੇਂ ਵੱਡੀ ਗਿਣਤੀ ਵਿੱਚ ਯੂਜ਼ਰਾਂ ਅਤੇ ਸੰਦਰਭਾਂ ਲਈ ਸਮੱਗਰੀ ਤਿਆਰ
ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਸਕੇਲੇਬਿਲਟੀ ਐਪਲੀਕੇਸ਼ਨਾਂ ਨੂੰ ਆਪਣੀਆਂ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਸਮਰੱਥਾਵਾਂ ’ਤੇ ਦਬਾਅ
ਪਾਏ ਬਿਨਾਂ ਵਧਦੇ ਯੂਜ਼ਰ ਆਧਾਰ ਨੂੰ ਵਿਅਕਤੀਗਤ ਅਨੁਭਵ ਪ੍ਰਦਾਨ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ।

ਧਿਆਨ ਦਿਓ ਕਿ ਸੰਦਰਭੀ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਦੀ ਵਰਤੋਂ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਨੂੰ “ਤੁਰੰਤ”
ਅੰਤਰਰਾਸ਼ਟਰੀਕਰਨ ਕਰਨ ਲਈ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਅਸਲ ਵਿੱਚ,
ਇਹ ਬਿਲਕੁਲ ਉਹੀ ਹੈ ਜੋ ਮੈਂ ਆਪਣੇ Instant18n Gem ਦੀ ਵਰਤੋਂ ਕਰਕੇ Olympia ਨੂੰ
ਅੱਧੀ ਦਰਜਨ ਤੋਂ ਵੱਧ ਭਾਸ਼ਾਵਾਂ ਵਿੱਚ ਪੇਸ਼ ਕਰਨ ਲਈ ਕੀਤਾ, ਭਾਵੇਂ ਕਿ ਅਸੀਂ ਇੱਕ ਸਾਲ ਤੋਂ ਵੀ ਘੱਟ
ਪੁਰਾਣੇ ਹਾਂ।

AI ਸੰਚਾਲਿਤ ਸਥਾਨੀਕਰਨ

ਜੇਕਰ ਤੁਸੀਂ ਮੈਨੂੰ ਇੱਕ ਪਲ ਲਈ ਫ਼ਖ਼ਰ ਕਰਨ ਦੀ ਇਜਾਜ਼ਤ ਦਿਓ, ਤਾਂ ਮੈਨੂੰ ਲਗਦਾ ਹੈ ਕਿ Rails ਐਪਸ ਲਈ
ਮੇਰੀ Instant18n ਲਾਇਬ੍ਰੇਰੀ “ਸੰਦਰਭੀ ਸਮੱਗਰੀ ਨਿਰਮਾਣ” ਪੈਟਰਨ ਦੀ ਇੱਕ ਕ੍ਰਾਂਤੀਕਾਰੀ ਉਦਾਹਰਣ ਹੈ,
ਜੋ ਐਪਲੀਕੇਸ਼ਨ ਵਿਕਾਸ ਵਿੱਚ AI ਦੀ ਰੂਪਾਂਤਰਕ ਸੰਭਾਵਨਾ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਇਹ gem OpenAI ਦੇ GPT
ਲਾਰਜ-ਲੈਂਗੂਏਜ ਮਾਡਲ ਦੀ ਸ਼ਕਤੀ ਦਾ ਲਾਭ ਲੈਂਦਾ ਹੈ ਤਾਂ ਜੋ Rails ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਅੰਤਰਰਾਸ਼ਟਰੀਕਰਨ
ਅਤੇ ਸਥਾਨੀਕਰਨ ਨੂੰ ਸੰਭਾਲਣ ਦੇ ਤਰੀਕੇ ਨੂੰ ਕ੍ਰਾਂਤੀਕਾਰੀ ਬਣਾਇਆ ਜਾ ਸਕੇ।

ਰਵਾਇਤੀ ਤੌਰ ’ਤੇ, Rails ਐਪਲੀਕੇਸ਼ਨ ਦਾ ਅੰਤਰਰਾਸ਼ਟਰੀਕਰਨ ਕਰਨ ਵਿੱਚ ਅਨੁਵਾਦ ਕੁੰਜੀਆਂ ਨੂੰ ਮੈਨੂਅਲ
ਤੌਰ ’ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨਾ ਅਤੇ ਹਰੇਕ ਸਮਰਥਿਤ ਭਾਸ਼ਾ ਲਈ ਸੰਬੰਧਿਤ ਅਨੁਵਾਦ ਪ੍ਰਦਾਨ ਕਰਨਾ ਸ਼ਾਮਲ ਹੁੰਦਾ
ਹੈ। ਇਹ ਪ੍ਰਕਿਰਿਆ ਸਮਾਂ ਲੈਣ ਵਾਲੀ, ਸਰੋਤ-ਗਹਿਣ, ਅਤੇ ਅਸੰਗਤਤਾਵਾਂ ਦੇ ਅਧੀਨ ਹੋ ਸਕਦੀ ਹੈ। ਹਾਲਾਂਕਿ,
Instant18n gem ਨਾਲ, ਸਥਾਨੀਕਰਨ ਦਾ ਪੈਰਾਡਾਈਮ ਪੂਰੀ ਤਰ੍ਹਾਂ ਮੁੜ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।

ਇੱਕ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰਕੇ, Instant18n ਜੈਮ ਤੁਹਾਨੂੰ ਟੈਕਸਟ ਦੇ ਸੰਦਰਭ ਅਤੇ ਅਰਥ ਦੇ
ਆਧਾਰ ’ਤੇ ਤੁਰੰਤ ਅਨੁਵਾਦ ਤਿਆਰ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਦਿੰਦਾ ਹੈ। ਪਹਿਲਾਂ ਤੋਂ ਪਰਿਭਾਸ਼ਿਤ ਅਨੁਵਾਦ ਕੁੰਜੀਆਂ ਅਤੇ

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ 181

ਸਥਿਰ ਅਨੁਵਾਦਾਂ ’ਤੇ ਨਿਰਭਰ ਕਰਨ ਦੀ ਬਜਾਏ, ਜੈਮ AI ਦੀ ਸ਼ਕਤੀ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ
ਟੈਕਸਟ ਦਾ ਅਨੁਵਾਦ ਕਰਦਾ ਹੈ। ਇਸ ਪਹੁੰਚ ਦੇ ਕਈ ਮੁੱਖ ਫਾਇਦੇ ਹਨ:

1. ਨਿਰਵਿਘਨ ਸਥਾਨੀਕਰਨ: Instant18n ਜੈਮ ਨਾਲ, ਡਿਵੈਲਪਰਾਂ ਨੂੰ ਹਰ ਸਮਰਥਿਤ ਭਾਸ਼ਾ ਲਈ
ਅਨੁਵਾਦ ਫਾਈਲਾਂ ਨੂੰ ਦਸਤੀ ਤੌਰ ’ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਅਤੇ ਬਣਾਈ ਰੱਖਣ ਦੀ ਲੋੜ ਨਹੀਂ ਹੈ। ਜੈਮ ਦਿੱਤੇ
ਗਏ ਟੈਕਸਟ ਅਤੇ ਇੱਛਿਤ ਟੀਚਾ ਭਾਸ਼ਾ ਦੇ ਆਧਾਰ ’ਤੇ ਆਪਣੇ ਆਪ ਅਨੁਵਾਦ ਤਿਆਰ ਕਰਦਾ ਹੈ, ਜੋ
ਸਥਾਨੀਕਰਨ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਬਿਨਾਂ ਕਿਸੇ ਮੁਸ਼ਕਲ ਅਤੇ ਨਿਰਵਿਘਨ ਬਣਾਉਂਦਾ ਹੈ।

2. ਸੰਦਰਭਿਕ ਸ਼ੁੱਧਤਾ: AI ਨੂੰ ਅਨੁਵਾਦ ਕੀਤੇ ਜਾ ਰਹੇ ਟੈਕਸਟ ਦੀਆਂ ਬਾਰੀਕੀਆਂ ਨੂੰ ਸਮਝਣ ਲਈ ਕਾਫ਼ੀ
ਸੰਦਰਭ ਦਿੱਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਸੰਦਰਭ, ਮੁਹਾਵਰੇ, ਅਤੇ ਸੱਭਿਆਚਾਰਕ ਹਵਾਲਿਆਂ
ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖ ਕੇ ਅਜਿਹੇ ਅਨੁਵਾਦ ਤਿਆਰ ਕਰ ਸਕਦਾ ਹੈ ਜੋ ਸਹੀ, ਕੁਦਰਤੀ ਲੱਗਣ ਵਾਲੇ ਅਤੇ
ਸੰਦਰਭਿਕ ਤੌਰ ’ਤੇ ਢੁਕਵੇਂ ਹੋਣ।

3. ਵਿਆਪਕਭਾਸ਼ਾ ਸਹਾਇਤਾ: Instant18n ਜੈਮ GPT ਦੇ ਵਿਸ਼ਾਲ ਗਿਆਨਅਤੇ ਭਾਸ਼ਾਈ ਸਮਰੱਥਾਵਾਂ
ਦਾ ਲਾਭ ਲੈਂਦਾ ਹੈ, ਜੋ ਭਾਸ਼ਾਵਾਂ ਦੀ ਵਿਆਪਕ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਅਨੁਵਾਦ ਨੂੰ ਸਮਰੱਥ ਬਣਾਉਂਦਾ ਹੈ। ਸਪੈਨਿਸ਼
ਅਤੇ ਫਰੈਂਚ ਵਰਗੀਆਂ ਆਮ ਭਾਸ਼ਾਵਾਂ ਤੋਂ ਲੈ ਕੇ ਕਲਿੰਗਨ ਅਤੇ ਐਲਵਿਸ਼ ਵਰਗੀਆਂ ਵਧੇਰੇ ਅਸਪਸ਼ਟ ਜਾਂ
ਕਾਲਪਨਿਕ ਭਾਸ਼ਾਵਾਂ ਤੱਕ, ਜੈਮ ਅਨੁਵਾਦ ਦੀਆਂ ਵਿਭਿੰਨ ਲੋੜਾਂ ਨੂੰ ਸੰਭਾਲ ਸਕਦਾ ਹੈ।

4. ਲਚਕਤਾ ਅਤੇ ਰਚਨਾਤਮਕਤਾ: ਜੈਮ ਪਰੰਪਰਾਗਤ ਭਾਸ਼ਾ ਅਨੁਵਾਦਾਂ ਤੋਂ ਅੱਗੇ ਜਾਂਦਾ ਹੈ ਅਤੇ ਰਚਨਾਤਮਕ
ਅਤੇ ਗੈਰ-ਪਰੰਪਰਾਗਤ ਸਥਾਨੀਕਰਨ ਵਿਕਲਪਾਂ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ। ਡਿਵੈਲਪਰ ਵੱਖ-ਵੱਖ ਸ਼ੈਲੀਆਂ,
ਬੋਲੀਆਂ, ਜਾਂ ਕਾਲਪਨਿਕ ਭਾਸ਼ਾਵਾਂ ਵਿੱਚ ਵੀ ਟੈਕਸਟ ਦਾ ਅਨੁਵਾਦ ਕਰ ਸਕਦੇ ਹਨ, ਜੋ ਵਿਲੱਖਣ ਯੂਜ਼ਰ
ਅਨੁਭਵਾਂ ਅਤੇ ਦਿਲਚਸਪ ਸਮੱਗਰੀ ਲਈ ਨਵੇਂ ਮੌਕੇ ਖੋਲ੍ਹਦਾ ਹੈ।

5. ਪ੍ਰਦਰਸ਼ਨ ਅਨੁਕੂਲਨ: Instant18n ਜੈਮ ਪ੍ਰਦਰਸ਼ਨ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਅਤੇ ਦੁਹਰਾਏ ਅਨੁਵਾਦਾਂ
ਦੇ ਓਵਰਹੈੱਡ ਨੂੰ ਘਟਾਉਣ ਲਈ ਕੈਸ਼ਿੰਗ ਮੈਕੇਨਿਜ਼ਮ ਨੂੰ ਸ਼ਾਮਲ ਕਰਦਾ ਹੈ। ਅਨੁਵਾਦ ਕੀਤਾ ਟੈਕਸਟ ਕੈਸ਼
ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਉਸੇ ਅਨੁਵਾਦ ਲਈ ਬਾਅਦ ਦੀਆਂ ਬੇਨਤੀਆਂ ਨੂੰ ਵਾਧੂ API ਕਾਲਾਂ ਦੀ ਲੋੜ ਤੋਂ ਬਿਨਾਂ
ਤੇਜ਼ੀ ਨਾਲ ਸੇਵਾ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ।

Instant18n ਜੈਮ AI ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਸਥਾਨੀਕ਼ਿਤ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰਨ ਲਈ
“ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ” ਪੈਟਰਨ ਦੀ ਸ਼ਕਤੀ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਹ ਦਿਖਾਉਂਦਾ ਹੈ ਕਿ ਕਿਵੇਂ AI ਨੂੰ
ਇੱਕ ਰੇਲਜ਼ ਐਪਲੀਕੇਸ਼ਨ ਦੀ ਮੁੱਖ ਕਾਰਜਸ਼ੀਲਤਾ ਵਿੱਚ ਏਕੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜੋ ਡਿਵੈਲਪਰਾਂ ਦੁਆਰਾ
ਅੰਤਰਰਾਸ਼ਟਰੀਕਰਨ ਅਤੇ ਸਥਾਨੀਕਰਨ ਨੂੰ ਅਪਣਾਉਣ ਦੇ ਤਰੀਕੇ ਨੂੰ ਬਦਲ ਰਿਹਾ ਹੈ।

ਦਸਤੀ ਅਨੁਵਾਦ ਪ੍ਰਬੰਧਨ ਦੀ ਲੋੜ ਨੂੰ ਖਤਮ ਕਰਕੇ ਅਤੇ ਸੰਦਰਭ ਦੇ ਆਧਾਰ ’ਤੇ ਤੁਰੰਤ ਅਨੁਵਾਦ ਨੂੰ ਸਮਰੱਥ ਬਣਾ
ਕੇ, Instant18n ਜੈਮ ਡਿਵੈਲਪਰਾਂ ਦਾ ਮਹੱਤਵਪੂਰਨ ਸਮਾਂ ਅਤੇ ਯਤਨ ਬਚਾਉਂਦਾ ਹੈ। ਇਹ ਉਹਨਾਂ ਨੂੰ ਆਪਣੀ

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ 182

ਐਪਲੀਕੇਸ਼ਨ ਦੀਆਂ ਮੁੱਖ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੇ ਨਿਰਮਾਣ ’ਤੇ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਜਦੋਂ ਕਿ
ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ ਕਿ ਸਥਾਨੀਕਰਨ ਪਹਿਲੂ ਨਿਰਵਿਘਨ ਅਤੇ ਸਹੀ ਢੰਗ ਨਾਲ ਸੰਭਾਲਿਆ ਜਾਵੇ।

ਯੂਜ਼ਰ ਟੈਸਟਿੰਗ ਅਤੇ ਫੀਡਬੈਕ ਦੀ ਮਹੱਤਤਾ

ਅੰਤ ਵਿੱਚ, ਯੂਜ਼ਰ ਟੈਸਟਿੰਗ ਅਤੇ ਫੀਡਬੈਕ ਦੀ ਮਹੱਤਤਾ ਨੂੰ ਹਮੇਸ਼ਾ ਧਿਆਨ ਵਿੱਚ ਰੱਖੋ। ਇਹ ਪੁਸ਼ਟੀ ਕਰਨਾ
ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਯੂਜ਼ਰ ਦੀਆਂ ਉਮੀਦਾਂ ਨੂੰ ਪੂਰਾ ਕਰਦਾ ਹੈ ਅਤੇ ਐਪਲੀਕੇਸ਼ਨ ਦੇ
ਟੀਚਿਆਂ ਦੇ ਅਨੁਕੂਲ ਹੈ। ਯੂਜ਼ਰ ਦੀ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਆਧਾਰ ’ਤੇ ਤਿਆਰ ਕੀਤੀ ਸਮੱਗਰੀ ਨੂੰ
ਲਗਾਤਾਰ ਦੁਹਰਾਓਅਤੇ ਸੁਧਾਰੋ। ਜੇਕਰ ਤੁਸੀਂ ਵੱਡੇ ਪੱਧਰ ’ਤੇ ਗਤੀਸ਼ੀਲ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰ ਰਹੇ ਹੋ ਜਿਸ ਨੂੰ ਤੁਹਾਡੇ
ਅਤੇ ਤੁਹਾਡੀ ਟੀਮ ਦੁਆਰਾ ਦਸਤੀ ਤੌਰ ’ਤੇ ਪ੍ਰਮਾਣਿਤ ਕਰਨਾ ਅਸੰਭਵ ਹੋਵੇਗਾ, ਤਾਂ ਅਜਿਹੇ ਫੀਡਬੈਕ ਮੈਕੇਨਿਜ਼ਮ
ਸ਼ਾਮਲ ਕਰਨ ’ਤੇ ਵਿਚਾਰ ਕਰੋ ਜੋ ਯੂਜ਼ਰਾਂ ਨੂੰ ਅਜੀਬ ਜਾਂ ਗਲਤ ਸਮੱਗਰੀ ਦੀ ਰਿਪੋਰਟ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦੇ
ਹਨ, ਇਸ ਦੇ ਨਾਲ ਇਹ ਵੀ ਦੱਸਣ ਕਿ ਕਿਉਂ। ਉਹ ਕੀਮਤੀ ਫੀਡਬੈਕ ਇੱਕ AI ਵਰਕਰ ਨੂੰ ਵੀ ਦਿੱਤਾ ਜਾ ਸਕਦਾ ਹੈ
ਜੋ ਸਮੱਗਰੀ ਤਿਆਰ ਕਰਨ ਵਾਲੇ ਕੰਪੋਨੈਂਟ ਵਿੱਚ ਸਮਾਯੋਜਨ ਕਰਨ ਦਾ ਕੰਮ ਕਰਦਾ ਹੈ!

ਜਨਰੇਟਿਵ ਯੂਆਈ

ਅੱਜਕੱਲ੍ਹ ਧਿਆਨ ਇੰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਯੂਜ਼ਰ ਸ਼ਮੂਲੀਅਤ ਲਈ ਹੁਣ ਅਜਿਹੇ ਸਾਫਟਵੇਅਰ
ਅਨੁਭਵਾਂ ਦੀ ਲੋੜ ਹੈ ਜੋ ਨਾ ਸਿਰਫ ਸਰਲ ਅਤੇ ਸਹਿਜ ਹੋਣ, ਬਲਕਿ ਵਿਅਕਤੀਗਤ ਲੋੜਾਂ, ਤਰਜੀਹਾਂ ਅਤੇ ਸੰਦਰਭਾਂ
ਦੇ ਅਨੁਸਾਰ ਵੀ ਵਿਸ਼ੇਸ਼ ਤੌਰ ’ਤੇ ਨਿੱਜੀ ਹੋਣ। ਨਤੀਜੇ ਵਜੋਂ, ਡਿਜ਼ਾਈਨਰ ਅਤੇ ਡਿਵੈਲਪਰ ਅਜਿਹੇ ਯੂਜ਼ਰ ਇੰਟਰਫੇਸ!
ਬਣਾਉਣ ਦੀ ਚੁਣੌਤੀ ਦਾ ਸਾਹਮਣਾ ਕਰ ਰਹੇ ਹਨ ਜੋ ਵੱਡੇ ਪੱਧਰ ’ਤੇ ਹਰ ਯੂਜ਼ਰ ਦੀਆਂ ਵਿਲੱਖਣ ਲੋੜਾਂ ਦੇ ਅਨੁਕੂਲ ਹੋ
ਸਕਣ।

ਜਨਰੇਟਿਵ ਯੂਆਈ (ਜੈਨਯੂਆਈ) ਯੂਜ਼ਰ ਇੰਟਰਫੇਸ ਡਿਜ਼ਾਈਨ! ਦਾ ਇੱਕ ਸੱਚਮੁੱਚ ਕ੍ਰਾਂਤੀਕਾਰੀ ਪਹੁੰਚ ਹੈ ਜੋ
ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ (ਐੱਲਐੱਲਐੱਮ) ਦੀ ਸ਼ਕਤੀ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਤੁਰੰਤ ਨਿੱਜੀ ਅਤੇ ਗਤੀਸ਼ੀਲ ਯੂਜ਼ਰ ਅਨੁਭਵ
ਬਣਾਉਂਦਾ ਹੈ। ਮੈਂ ਇਸ ਕਿਤਾਬ ਵਿੱਚ ਜੈਨਯੂਆਈਬਾਰੇ ਘੱਟੋ-ਘੱਟ ਇੱਕ ਮੁੱਢਲੀ ਜਾਣਕਾਰੀ ਦੇਣਾ ਯਕੀਨੀ ਬਣਾਉਣਾ
ਚਾਹੁੰਦਾ ਸੀ, ਕਿਉਂਕਿ ਮੇਰਾ ਮੰਨਣਾ ਹੈ ਕਿ ਇਹ ਐਪਲੀਕੇਸ਼ਨ ਡਿਜ਼ਾਈਨ ਅਤੇ ਫਰੇਮਵਰਕਸ ਦੇ ਖੇਤਰ ਵਿੱਚ ਮੌਜੂਦ
ਸਭ ਤੋਂ ਨਵੇਂ ਮੌਕਿਆਂ ਵਿੱਚੋਂ ਇੱਕ ਹੈ। ਮੈਨੂੰ ਯਕੀਨ ਹੈ ਕਿ ਇਸ ਵਿਸ਼ੇਸ਼ ਖੇਤਰ ਵਿੱਚ ਦਰਜਨਾਂ ਜਾਂ ਇਸ ਤੋਂ ਵੱਧ ਨਵੇਂ
ਸਫਲ ਵਪਾਰਕ ਅਤੇ ਓਪਨ-ਸੋਰਸ ਪ੍ਰੋਜੈਕਟ ਸਾਹਮਣੇ ਆਉਣਗੇ।

ਆਪਣੇ ਮੂਲ ਰੂਪ ਵਿੱਚ, ਜੈਨਯੂਆਈ ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਦੇ ਸਿਧਾਂਤਾਂ ਨੂੰ ਉੱਨਤ ਏਆਈਤਕਨੀਕਾਂ ਨਾਲ

ਜਨਰੇਟਿਵ ਯੂਆਈ 184

ਜੋੜਦਾ ਹੈ ਤਾਂ ਜੋ ਯੂਜ਼ਰ ਦੇ ਸੰਦਰਭ, ਤਰਜੀਹਾਂ ਅਤੇ ਟੀਚਿਆਂ ਦੀ ਡੂੰਘੀ ਸਮਝ ਦੇ ਆਧਾਰ ’ਤੇ ਯੂਜ਼ਰ ਇੰਟਰਫੇਸ
ਤੱਤਾਂ, ਜਿਵੇਂ ਕਿ ਟੈਕਸਟ, ਚਿੱਤਰ ਅਤੇ ਲੇਆਉਟ, ਨੂੰ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਤਿਆਰ ਕੀਤਾ ਜਾ ਸਕੇ। ਜੈਨਯੂਆਈ
ਡਿਜ਼ਾਈਨਰਾਂ ਅਤੇ ਡਿਵੈਲਪਰਾਂ ਨੂੰ ਅਜਿਹੇ ਇੰਟਰਫੇਸ ਬਣਾਉਣ ਦੇ ਯੋਗ ਬਣਾਉਂਦਾ ਹੈ ਜੋ ਯੂਜ਼ਰ ਦੀਆਂ ਕਿਰਿਆਵਾਂ
ਦੇ ਜਵਾਬ ਵਿੱਚ ਅਨੁਕੂਲ ਹੁੰਦੇ ਹਨ ਅਤੇ ਵਿਕਸਤ ਹੁੰਦੇ ਹਨ, ਜੋ ਨਿੱਜੀਕਰਨ ਦਾ ਇੱਕ ਅਜਿਹਾ ਪੱਧਰ ਪ੍ਰਦਾਨ ਕਰਦੇ
ਹਨ ਜੋ ਪਹਿਲਾਂ ਪ੍ਰਾਪਤ ਨਹੀਂ ਸੀ।

ਜੈਨਯੂਆਈ ਯੂਜ਼ਰ ਇੰਟਰਫੇਸ ਡਿਜ਼ਾਈਨ ਦੇ ਸਾਡੇ ਪਹੁੰਚ ਵਿੱਚ ਇੱਕ ਮੌਲਿਕ ਬਦਲਾਅ ਦਰਸਾਉਂਦਾ ਹੈ। ਸਮੂਹਾਂ
ਲਈ ਡਿਜ਼ਾਈਨ ਕਰਨ ਦੀ ਬਜਾਏ, ਜੈਨਯੂਆਈ ਸਾਨੂੰ ਵਿਅਕਤੀ ਲਈ ਡਿਜ਼ਾਈਨ ਕਰਨ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦਾ ਹੈ।
ਨਿੱਜੀ ਸਮੱਗਰੀ ਅਤੇ ਇੰਟਰਫੇਸਾਂ ਵਿੱਚ ਅਜਿਹੇ ਯੂਜ਼ਰ ਅਨੁਭਵ ਬਣਾਉਣ ਦੀ ਸਮਰੱਥਾ ਹੈ ਜੋ ਹਰ ਯੂਜ਼ਰ ਨਾਲ ਡੂੰਘੇ
ਪੱਧਰ ’ਤੇ ਜੁੜਦੇ ਹਨ, ਜੋ ਸ਼ਮੂਲੀਅਤ, ਸੰਤੁਸ਼ਟੀ ਅਤੇ ਵਫ਼ਾਦਾਰੀ ਨੂੰ ਵਧਾਉਂਦੇ ਹਨ।

ਇੱਕ ਅਤਿ-ਆਧੁਨਿਕ ਤਕਨੀਕ ਦੇ ਤੌਰ ’ਤੇ, ਜੈਨਯੂਆਈ ਵੱਲ ਤਬਦੀਲੀ ਸੰਕਲਪਕ ਅਤੇ ਵਿਵਹਾਰਕ ਚੁਣੌਤੀਆਂ
ਨਾਲ ਭਰੀ ਹੋਈ ਹੈ। ਡਿਜ਼ਾਈਨ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਏਆਈ ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰਨਾ, ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਕਿ
ਤਿਆਰ ਕੀਤੇ ਇੰਟਰਫੇਸ ਨਾ ਸਿਰਫ ਨਿੱਜੀ ਹੋਣ ਬਲਕਿ ਵਰਤਣਯੋਗ, ਪਹੁੰਚਯੋਗ ਅਤੇ ਸਮੁੱਚੇ ਬ੍ਰਾਂਡ ਅਤੇ ਯੂਜ਼ਰ
ਅਨੁਭਵ ਦੇ ਅਨੁਕੂਲ ਵੀ ਹੋਣ, ਇਹ ਸਾਰੀਆਂ ਅਜਿਹੀਆਂ ਚੁਣੌਤੀਆਂ ਹਨ ਜੋ ਜੈਨਯੂਆਈ ਨੂੰ ਬਹੁਤਿਆਂ ਲਈ ਨਹੀਂ,
ਸਗੋਂ ਕੁਝ ਲਈ ਇੱਕ ਖੋਜ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਇਸ ਤੋਂ ਇਲਾਵਾ, ਏਆਈ ਦੀ ਸ਼ਮੂਲੀਅਤ ਡੇਟਾ ਗੋਪਨੀਯਤਾ,
ਪਾਰਦਰਸ਼ਤਾ, ਅਤੇ ਸ਼ਾਇਦ ਨੈਤਿਕ ਪ੍ਰਭਾਵਾਂ ਬਾਰੇ ਸਵਾਲ ਖੜ੍ਹੇ ਕਰਦੀ ਹੈ।

ਚੁਣੌਤੀਆਂ ਦੇ ਬਾਵਜੂਦ, ਵੱਡੇ ਪੱਧਰ ’ਤੇ ਨਿੱਜੀ ਅਨੁਭਵ ਡਿਜੀਟਲਉਤਪਾਦਾਂ ਅਤੇ ਸੇਵਾਵਾਂ ਨਾਲ ਸਾਡੀ ਅੰਤਰਕਿਰਿਆ
ਦੇ ਤਰੀਕੇ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਬਦਲਣ ਦੀ ਸ਼ਕਤੀ ਰੱਖਦੇ ਹਨ। ਇਹ ਸਮਾਵੇਸ਼ੀ ਅਤੇ ਪਹੁੰਚਯੋਗ ਇੰਟਰਫੇਸ ਬਣਾਉਣ
ਦੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਖੋਲ੍ਹਦਾ ਹੈ ਜੋ ਉਪਭੋਗਤਾਵਾਂ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਲੋੜਾਂ ਨੂੰ ਪੂਰਾ ਕਰਦੇ ਹਨ, ਭਾਵੇਂ ਉਨ੍ਹਾਂ ਦੀਆਂ
ਯੋਗਤਾਵਾਂ, ਪਿਛੋਕੜ, ਜਾਂ ਤਰਜੀਹਾਂ ਕੁਝ ਵੀ ਹੋਣ।

ਇਸ ਅਧਿਆਇ ਵਿੱਚ, ਅਸੀਂ GenUI ਦੀ ਧਾਰਨਾ ਦੀ ਪੜਚੋਲ ਕਰਾਂਗੇ, ਕੁਝ ਪ੍ਰਮੁੱਖ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ, ਮੁੱਖ ਲਾਭ,
ਅਤੇ ਸੰਭਾਵੀ ਚੁਣੌਤੀਆਂ ਦੀ ਜਾਂਚ ਕਰਾਂਗੇ। ਅਸੀਂ GenUI ਦੇ ਸਭ ਤੋਂ ਬੁਨਿਆਦੀ ਅਤੇ ਪਹੁੰਚਯੋਗ ਰੂਪ ’ਤੇ ਵਿਚਾਰ
ਕਰਕੇ ਸ਼ੁਰੂ ਕਰਦੇ ਹਾਂ: ਰਵਾਇਤੀ ਤੌਰ ’ਤੇ ਡਿਜ਼ਾਈਨ ਕੀਤੇ ਅਤੇ ਲਾਗੂ ਕੀਤੇ ਯੂਜ਼ਰ ਇੰਟਰਫੇਸਾਂ ਲਈ ਟੈਕਸਟ ਕਾਪੀ
ਤਿਆਰ ਕਰਨਾ।

ਯੂਜ਼ਰ ਇੰਟਰਫੇਸਾਂ ਲਈ ਕਾਪੀ ਤਿਆਰ ਕਰਨਾ

ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਦੇ ਕਰੋਮ ਵਿੱਚ ਮੌਜੂਦ ਟੈਕਸਟ ਐਲੀਮੈਂਟਸ, ਜਿਵੇਂ ਫਾਰਮ ਲੇਬਲ, ਟੂਲਟਿੱਪਸ, ਅਤੇ
ਵਿਆਖਿਆਤਮਕ ਟੈਕਸਟ, ਆਮ ਤੌਰ ’ਤੇ ਟੈਂਪਲੇਟਸ ਜਾਂ UI ਕੰਪੋਨੈਂਟਸ ਵਿੱਚ ਹਾਰਡਕੋਡ ਕੀਤੇ ਜਾਂਦੇ ਹਨ, ਜੋ ਸਾਰੇ

ਜਨਰੇਟਿਵ ਯੂਆਈ 185

ਉਪਭੋਗਤਾਵਾਂ ਲਈਇੱਕ ਸਥਿਰ ਪਰਆਮਅਨੁਭਵ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਸੰਦਰਭਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪੈਟਰਨਾਂ
ਦੀ ਵਰਤੋਂ ਕਰਕੇ, ਤੁਸੀਂ ਇਨ੍ਹਾਂ ਸਥਿਰ ਐਲੀਮੈਂਟਸ ਨੂੰ ਗਤੀਸ਼ੀਲ, ਸੰਦਰਭ-ਜਾਗਰੂਕ, ਅਤੇ ਨਿੱਜੀ ਕੰਪੋਨੈਂਟਸ ਵਿੱਚ
ਬਦਲ ਸਕਦੇ ਹੋ।

ਨਿੱਜੀ ਫਾਰਮ

ਫਾਰਮ ਵੈੱਬ ਅਤੇ ਮੋਬਾਈਲ ਐਪਲੀਕੇਸ਼ਨਾਂ ਦਾ ਇੱਕ ਸਰਵਵਿਆਪੀ ਹਿੱਸਾ ਹਨ, ਜੋ ਉਪਭੋਗਤਾ ਇਨਪੁਟ ਇਕੱਠਾ
ਕਰਨ ਦਾ ਮੁੱਖ ਸਾਧਨ ਹਨ। ਹਾਲਾਂਕਿ, ਰਵਾਇਤੀ ਫਾਰਮ ਅਕਸਰ ਇੱਕ ਆਮ ਅਤੇ ਨਿਰਵਿਅਕਤੀਗਤ ਅਨੁਭਵ
ਪੇਸ਼ ਕਰਦੇ ਹਨ, ਜਿਸ ਵਿੱਚ ਮਿਆਰੀ ਲੇਬਲ ਅਤੇ ਖੇਤਰ ਹੁੰਦੇ ਹਨ ਜੋ ਹਮੇਸ਼ਾ ਉਪਭੋਗਤਾ ਦੇ ਵਿਸ਼ੇਸ਼ ਸੰਦਰਭ ਜਾਂ ਲੋੜਾਂ
ਨਾਲ ਮੇਲ ਨਹੀਂ ਖਾਂਦੇ। ਉਪਭੋਗਤਾ ਉਨ੍ਹਾਂ ਫਾਰਮਾਂ ਨੂੰ ਪੂਰਾ ਕਰਨ ਦੀ ਵਧੇਰੇ ਸੰਭਾਵਨਾ ਰੱਖਦੇ ਹਨ ਜੋ ਉਨ੍ਹਾਂ ਦੀਆਂ
ਲੋੜਾਂ ਅਤੇ ਤਰਜੀਹਾਂ ਦੇ ਅਨੁਕੂਲ ਮਹਿਸੂਸ ਹੁੰਦੇ ਹਨ, ਜਿਸ ਨਾਲ ਉੱਚ ਰੂਪਾਂਤਰਣ ਦਰਾਂ ਅਤੇ ਉਪਭੋਗਤਾ ਸੰਤੁਸ਼ਟੀ
ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ।

ਹਾਲਾਂਕਿ, ਨਿੱਜੀਕਰਨ ਅਤੇ ਸਥਿਰਤਾ ਵਿਚਕਾਰ ਸੰਤੁਲਨ ਬਣਾਉਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਜਦੋਂ ਕਿ ਵਿਅਕਤੀਗਤ
ਉਪਭੋਗਤਾਵਾਂ ਲਈ ਫਾਰਮਾਂ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਉਣਾ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ, ਜਾਣੂਪਣ ਅਤੇ ਅਨੁਮਾਨਯੋਗਤਾ ਦਾ
ਪੱਧਰ ਬਣਾਈ ਰੱਖਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਉਪਭੋਗਤਾਵਾਂ ਨੂੰ ਨਿੱਜੀ ਐਲੀਮੈਂਟਸ ਦੇ ਨਾਲ ਵੀ ਫਾਰਮਾਂ ਨੂੰ ਆਸਾਨੀ ਨਾਲ
ਪਛਾਣਨ ਅਤੇ ਨੈਵੀਗੇਟ ਕਰਨ ਦੇ ਯੋਗ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।

ਇੱਥੇ ਪ੍ਰੇਰਣਾ ਲਈ ਕੁਝ ਨਿੱਜੀ ਫਾਰਮ ਵਿਚਾਰ ਹਨ:

ਸੰਦਰਭਿਕ ਖੇਤਰ ਸੁਝਾਅ

GenUI ਭਵਿੱਖਬਾਣੀਆਂ ਵਜੋਂ ਬੁੱਧੀਮਾਨ ਖੇਤਰ ਸੁਝਾਅ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਉਪਭੋਗਤਾ ਦੀਆਂ ਪਿਛਲੀਆਂ
ਅੰਤਰਕਿਰਿਆਵਾਂ, ਤਰਜੀਹਾਂ, ਅਤੇ ਡੇਟਾ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਲਈ, ਜੇਕਰ ਉਪਭੋਗਤਾ ਨੇ
ਪਹਿਲਾਂ ਆਪਣਾ ਸ਼ਿਪਿੰਗ ਪਤਾ ਦਰਜ ਕੀਤਾ ਹੈ, ਤਾਂ ਫਾਰਮ ਉਨ੍ਹਾਂ ਦੀ ਸੁਰੱਖਿਅਤ ਕੀਤੀ ਜਾਣਕਾਰੀ ਨਾਲ ਸੰਬੰਧਿਤ
ਖੇਤਰਾਂ ਨੂੰ ਆਪਣੇ ਆਪ ਭਰ ਸਕਦਾ ਹੈ। ਇਹ ਨਾ ਸਿਰਫ਼ ਸਮਾਂ ਬਚਾਉਂਦਾ ਹੈ, ਬਲਕਿ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ
ਐਪਲੀਕੇਸ਼ਨ ਉਪਭੋਗਤਾ ਦੀਆਂ ਤਰਜੀਹਾਂ ਨੂੰ ਸਮਝਦੀ ਅਤੇ ਯਾਦ ਰੱਖਦੀ ਹੈ।

ਇੱਕ ਮਿੰਟ ਰੁਕੋ, ਕੀ ਇਹ ਤਕਨੀਕ AI ਦੀ ਵਰਤੋਂ ਕੀਤੇ ਬਿਨਾਂ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕਦੀ? ਬੇਸ਼ੱਕ, ਪਰ AI ਨਾਲ
ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਕਾਰਜਸ਼ੀਲਤਾ ਨੂੰ ਚਲਾਉਣ ਦੀ ਖੂਬਸੂਰਤੀ ਦੋ-ਗੁਣੀ ਹੈ: 1) ਇਸਨੂੰ ਲਾਗੂ ਕਰਨਾ ਕਿੰਨਾ ਆਸਾਨ
ਹੋ ਸਕਦਾ ਹੈ ਅਤੇ 2) ਤੁਹਾਡੇ UI ਦੇ ਬਦਲਣ ਅਤੇ ਵਿਕਸਿਤ ਹੋਣ ਦੇ ਨਾਲ ਇਹ ਕਿੰਨਾ ਲਚਕਦਾਰ ਹੋ ਸਕਦਾ ਹੈ।

ਜਨਰੇਟਿਵ ਯੂਆਈ 186

ਆਓ ਆਪਣੇ ਸੋਚੇ ਹੋਏ ਆਰਡਰ ਹੈਂਡਲਿੰਗ ਸਿਸਟਮ ਲਈ ਇੱਕ ਸੇਵਾ ਬਣਾਈਏ, ਜੋ ਯੂਜ਼ਰ ਲਈ ਸਹੀ ਸ਼ਿਪਿੰਗ
ਐਡਰੈੱਸ ਨੂੰ ਪਹਿਲਾਂ ਤੋਂ ਹੀ ਭਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੀ ਹੈ।

1 class OrderShippingAddressSubscriber

2 include Raix::ChatCompletion

3

4 attr_accessor :order

5

6 delegate :customer, to: :order

7

8 DIRECTIVE = "You are a smart order processing assistant. Given the

9 customer's order history, guess the most likely shipping address

10 for the current order."

11

12 def order_created(order)

13 return unless order.pending? && order.shipping_address.blank?

14

15 self.order = order

16

17 transcript.clear

18 transcript << { system: DIRECTIVE }

19 transcript << { user: "Order History: #{order_history.to_json}" }

20 transcript << { user: "Current Order: #{order.to_json}" }

21

22 response = chat_completion

23 apply_predicted_shipping_address(order, response)

24 end

25

26 private

27

28 def apply_predicted_shipping_address(order, response)

29 # extract the shipping address from the response...

30 # ...and assume there's some sort of live update of the address fields

31 order.update(shipping_address:)

32 end

33

34 def order_history

35 customer.orders.successful.limit(100).map do |order|

36 {

37 date: order.date,

38 description: order.description,

ਜਨਰੇਟਿਵ ਯੂਆਈ 187

39 shipping_address: order.shipping_address

40 }

41 end

42 end

43 end

ਇਹ ਉਦਾਹਰਨ ਬਹੁਤ ਸਰਲ ਕੀਤੀ ਹੋਈ ਹੈ, ਪਰ ਜ਼ਿਆਦਾਤਰ ਮਾਮਲਿਆਂ ਲਈ ਕੰਮ ਕਰੇਗੀ। ਵਿਚਾਰ ਇਹ ਹੈ ਕਿ
ਏ.ਆਈ. ਨੂੰ ਉਸੇ ਤਰ੍ਹਾਂ ਅੰਦਾਜ਼ਾ ਲਗਾਉਣ ਦਿੱਤਾ ਜਾਵੇ ਜਿਵੇਂ ਇੱਕ ਮਨੁੱਖ ਲਗਾਉਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਸਪੱਸ਼ਟ ਕਰਨ
ਲਈ ਕਿ ਮੈਂ ਕੀ ਕਹਿ ਰਿਹਾ ਹਾਂ, ਆਓ ਕੁਝ ਨਮੂਨਾ ਡਾਟਾ ’ਤੇ ਵਿਚਾਰ ਕਰੀਏ:

1 Order History:

2 [

3 {"date": "2024-01-03", "description": "garden soil mix",

4 "shipping_address": "123 Country Lane, Rural Town"},

5 {"date": "2024-01-15", "description": "hardcover fiction novels",

6 "shipping_address": "456 City Apt, Metroville"},

7 {"date": "2024-01-22", "description": "baby diapers", "shipping_address":

8 "789 Suburb St, Quietville"},

9 {"date": "2024-02-01", "description": "organic vegetables",

10 "shipping_address": "123 Country Lane, Rural Town"},

11 {"date": "2024-02-17", "description": "mystery thriller book set",

12 "shipping_address": "456 City Apt, Metroville"},

13 {"date": "2024-02-25", "description": "baby wipes",

14 "shipping_address": "789 Suburb St, Quietville"},

15 {"date": "2024-03-05", "description": "flower seeds",

16 "shipping_address": "123 Country Lane, Rural Town"},

17 {"date": "2024-03-20", "description": "biographies",

18 "shipping_address": "456 City Apt, Metroville"},

19 {"date": "2024-03-30", "description": "baby formula",

20 "shipping_address": "789 Suburb St, Quietville"},

21 {"date": "2024-04-12", "description": "lawn fertilizer",

22 "shipping_address": "123 Country Lane, Rural Town"},

23 {"date": "2024-04-22", "description": "science fiction novels",

24 "shipping_address": "456 City Apt, Metroville"},

25 {"date": "2024-05-02", "description": "infant toys",

26 "shipping_address": "789 Suburb St, Quietville"},

27 {"date": "2024-05-14", "description": "outdoor grill",

28 "shipping_address": "123 Country Lane, Rural Town"},

29 {"date": "2024-05-29", "description": "literary classics",

30 "shipping_address": "456 City Apt, Metroville"},

ਜਨਰੇਟਿਵ ਯੂਆਈ 188

31 {"date": "2024-06-11", "description": "baby clothes",

32 "shipping_address": "789 Suburb St, Quietville"},

33 {"date": "2024-07-01", "description": "watering can",

34 "shipping_address": "123 Country Lane, Rural Town"},

35 {"date": "2024-07-18", "description": "non-fiction essays",

36 "shipping_address": "456 City Apt, Metroville"},

37 {"date": "2024-07-28", "description": "baby bath items",

38 "shipping_address": "789 Suburb St, Quietville"},

39 {"date": "2024-08-09", "description": "herb garden kit",

40 "shipping_address": "123 Country Lane, Rural Town"},

41 {"date": "2024-08-24", "description": "children's books",

42 "shipping_address": "456 City Apt, Metroville"}

43]

ਕੀ ਤੁਸੀਂ ਡਾਟਾ ਵਿੱਚ ਪੈਟਰਨ ਵੇਖਿਆ? ਮੈਂ ਤੁਹਾਨੂੰ ਗਰੰਟੀ ਦਿੰਦਾ ਹਾਂ ਕਿ ਇਹ ਐੱਲਐੱਲਐੱਮ ਲਈ ਬਹੁਤ ਸੌਖਾ ਕੰਮ
ਹੈ। ਇਸ ਨੂੰ ਦਿਖਾਉਣ ਲਈ, ਆਓ ਜੀਪੀਟੀ-4 ਤੋਂ ਪੁੱਛੀਏ ਕਿ “ਥਰਮਾਮੀਟਰ” ਲਈ ਸਭ ਤੋਂ ਸੰਭਾਵਿਤ ਸ਼ਿਪਿੰਗ
ਐਡਰੈੱਸ ਕੀ ਹੈ।

1 From the order history you've provided, it looks like the purchases are

2 generally clustered into three main types based on the shipping addresses:

3

4 123 Country Lane, Rural Town - This address often orders garden and

5 outdoor-related items like soil mix, vegetables, flower seeds, lawn

6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.

7

8 456 City Apt, Metroville - This address tends to order various types of

9 books, indicating an interest in reading across genres like fiction,

10 thrillers, biographies, science fiction, literary classics, non-fiction

11 essays, and children's books.

12

13 789 Suburb St, Quietville - The purchases for this address are consistently

14 baby-related products, such as diapers, wipes, baby formula, infant toys,

15 baby clothes, and baby bath items.

16

17 Given these patterns, a digital thermometer could potentially be a fit for

18 any of the addresses based on different needs: outdoor temperature tracking,

19 a tool for a passionate reader interested in science gadgets, or a health

20 tool for a baby. However, considering its common use in monitoring health,

21 especially for babies, it's most likely to be purchased by someone who's

22 already buying baby care products.

ਜਨਰੇਟਿਵ ਯੂਆਈ 189

23

24 Therefore, the most likely shipping address for a digital thermometer, based

25 on the purchasing patterns, would be 789 Suburb St, Quietville.

ਜੇ ਤੁਸੀਂ ਇਹ ਸੋਚ ਰਹੇ ਹੋ ਕਿ ਇਸ ਕੰਮ ਲਈ GPT-4 ਵਰਗੇ ਮਹਿੰਗੇ ਮਾਡਲ ਦੀ ਵਰਤੋਂ ਕਰਨਾ ਲੋੜ ਤੋਂ ਵੱਧ ਹੈ,
ਤਾਂ ਤੁਸੀਂ ਸਹੀ ਹੋ! ਮੈਂ ਇਹੀ ਪ੍ਰੌਮਪਟ Mistral 7B Instruct ’ਤੇ ਵਰਤਿਆ ਅਤੇ ਇਸ ਨੇ 75 ਟੋਕਨ ਪ੍ਰਤੀ
ਸਕਿੰਟ ਦੀ ਰਫ਼ਤਾਰ ਨਾਲ, ਅਤੇ ਸਿਰਫ਼ $0.000218 USD ਦੀ ਬਹੁਤ ਘੱਟ ਕੀਮਤ ’ਤੇ ਹੇਠ ਲਿਖਿਆ ਜਵਾਬ
ਦਿੱਤਾ।

1 Based on the given order history, it appears that the customer has received

2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)

3 at the address "789 Suburb St, Quietville" and garden-related items (soil,

4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural

5 Town". The customer has also received books (fiction, non-fiction, literary

6 classics, mystery-thriller, science fiction, biographies, children's books)

7 at the address "456 City Apt, Metroville".

8

9 Given that the new order is for a "thermometer", which doesn't seem to fit

10 into any of the categories that the customer has previously ordered, it's

11 hard to accurately predict the shipping address based solely on the order

12 history. However, given the 50%-50% split between baby-related and

13 garden-related items, it could somewhat lean towards the Baby-related items

14 address ("789 Suburb St, Quietville"). But remember, this is an assumption

15 and cannot be definitively confirmed without more context or information.

ਕੀ ਇਕ ਖਰੀਦਦਾਰੀ ਅਨੁਭਵ ਨੂੰ ਵਧੇਰੇ ਜਾਦੂਈ ਬਣਾਉਣ ਲਈ ਇਸ ਤਕਨੀਕ ਦੀ ਓਵਰਹੈੱਡ ਅਤੇ ਲਾਗਤ ਦਾ
ਮੁੱਲ ਹੈ? ਕਈਆਨਲਾਈਨ ਰਿਟੇਲਰਾਂ ਲਈ, ਬਿਲਕੁਲ। ਅਤੇ ਇਸ ਤੋਂ ਜਾਪਦਾ ਹੈ ਕਿ AI ਕੰਪਿਊਟਿੰਗ ਦੀ ਲਾਗਤ
ਘੱਟਦੀ ਹੀ ਜਾਵੇਗੀ, ਖਾਸ ਕਰਕੇ ਓਪਨ ਸੋਰਸ ਮਾਡਲ ਹੋਸਟਿੰਗ ਪ੍ਰਦਾਤਾਵਾਂ ਲਈ ਜੋ ਸਭ ਤੋਂ ਘੱਟ ਕੀਮਤ ਦੀ ਦੌੜ
ਵਿੱਚ ਹਨ।

ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਚੈਟ ਕੰਪਲੀਸ਼ਨ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਉਣ ਲਈ Prompt Template ਅਤੇ
StructuredIO ਦੇ ਨਾਲ Response Fencing ਦੀ ਵਰਤੋਂ ਕਰੋ।

ਜਨਰੇਟਿਵ ਯੂਆਈ 190

ਅਨੁਕੂਲੀ ਫੀਲਡ ਕ੍ਰਮ

ਫਾਰਮ ਫੀਲਡਾਂ ਨੂੰ ਪੇਸ਼ ਕਰਨ ਦਾ ਕ੍ਰਮ ਯੂਜ਼ਰ ਦੇ ਅਨੁਭਵ ਅਤੇ ਪੂਰਤੀ ਦਰਾਂ ’ਤੇ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਭਾਵ ਪਾ
ਸਕਦਾ ਹੈ। GenUI ਨਾਲ, ਤੁਸੀਂ ਯੂਜ਼ਰ ਦੇ ਸੰਦਰਭ ਅਤੇ ਹਰ ਫੀਲਡ ਦੀ ਮਹੱਤਤਾ ਦੇ ਆਧਾਰ ’ਤੇ ਫੀਲਡ ਕ੍ਰਮ
ਨੂੰ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਅਨੁਕੂਲ ਬਣਾ ਸਕਦੇ ਹੋ। ਉਦਾਹਰਣ ਲਈ, ਜੇਕਰ ਯੂਜ਼ਰ ਇੱਕ ਫਿਟਨੈੱਸ ਐਪ ਲਈ
ਰਜਿਸਟ੍ਰੇਸ਼ਨ ਫਾਰਮ ਭਰ ਰਿਹਾ ਹੈ, ਤਾਂ ਫਾਰਮ ਉਨ੍ਹਾਂ ਦੇ ਫਿਟਨੈੱਸ ਟੀਚਿਆਂ ਅਤੇ ਤਰਜੀਹਾਂ ਨਾਲ ਸੰਬੰਧਿਤ ਫੀਲਡਾਂ
ਨੂੰ ਤਰਜੀਹ ਦੇ ਸਕਦਾ ਹੈ, ਜੋ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਵਧੇਰੇ ਪ੍ਰਸੰਗਿਕ ਅਤੇ ਦਿਲਚਸਪ ਬਣਾਉਂਦਾ ਹੈ।

ਨਿੱਜੀ ਮਾਈਕਰੋਕਾਪੀ

GenUI ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਫਾਰਮਾਂ ਨਾਲ ਜੁੜੇ ਨਿਰਦੇਸ਼ਾਤਮਕ ਟੈਕਸਟ, ਗਲਤੀ ਸੁਨੇਹੇ, ਅਤੇ ਹੋਰ ਮਾਈਕਰੋਕਾਪੀ
ਨੂੰ ਵੀ ਨਿੱਜੀ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। “ਗਲਤ ਈਮੇਲ ਪਤਾ” ਵਰਗੇ ਆਮ ਗਲਤੀ ਸੁਨੇਹਿਆਂ ਦੀ ਬਜਾਏ, ਤੁਸੀਂ
ਵਧੇਰੇ ਮਦਦਗਾਰ ਅਤੇ ਸੰਦਰਭਿਤ ਸੁਨੇਹੇ ਜਿਵੇਂ “ਕਿਰਪਾ ਕਰਕੇ ਆਪਣੀਆਰਡਰ ਪੁਸ਼ਟੀ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈਇੱਕ
ਵੈਧ ਈਮੇਲ ਪਤਾ ਦਰਜ ਕਰੋ” ਜਿਹੇ ਸੁਨੇਹੇ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹੋ। ਇਹ ਨਿੱਜੀ ਛੋਹਾਂ ਫਾਰਮ ਅਨੁਭਵ ਨੂੰ ਵਧੇਰੇ
ਯੂਜ਼ਰ-ਅਨੁਕੂਲ ਅਤੇ ਘੱਟ ਨਿਰਾਸ਼ਾਜਨਕ ਬਣਾ ਸਕਦੀਆਂ ਹਨ।

ਨਿੱਜੀ ਪੁਸ਼ਟੀਕਰਨ

ਨਿੱਜੀ ਮਾਈਕਰੋਕਾਪੀ ਦੀਆਂ ਲਾਈਨਾਂ ਦੇ ਨਾਲ, ਤੁਸੀਂ ਫਾਰਮ ਨੂੰ ਅਜਿਹੇ ਤਰੀਕਿਆਂ ਨਾਲ ਪ੍ਰਮਾਣਿਤ ਕਰਨ ਲਈ
AI ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹੋ ਜੋ ਜਾਦੂਈ ਜਾਪਦੇ ਹਨ। ਕਲਪਨਾ ਕਰੋ ਕਿ ਇੱਕ AI ਨੂੰ ਯੂਜ਼ਰ ਪ੍ਰੋਫਾਈਲ ਫਾਰਮ ਦੀ
ਪੁਸ਼ਟੀ ਕਰਨ ਦੀ ਇਜਾਜ਼ਤ ਦਿੱਤੀ ਜਾਵੇ, ਜੋ ਅਰਥ-ਪੂਰਨ ਪੱਧਰ ’ਤੇ ਸੰਭਾਵੀ ਗਲਤੀਆਂ ਦੀ ਜਾਂਚ ਕਰ ਰਹੀ ਹੋਵੇ।

ਜਨਰੇਟਿਵ ਯੂਆਈ 191

ਚਿੱਤਰ 8. ਕੀ ਤੁਸੀਂ ਹੋ ਰਹੇ ਅਰਥ-ਪੂਰਨ ਪੁਸ਼ਟੀਕਰਨ ਨੂੰ ਦੇਖ ਸਕਦੇ ਹੋ?

ਕ੍ਰਮਿਕ ਪ੍ਰਗਟਾਵਾ

GenUI ਯੂਜ਼ਰ ਦੇ ਸੰਦਰਭ ਦੇ ਆਧਾਰ ’ਤੇ ਬੁੱਧੀਮਾਨੀ ਨਾਲ ਇਹ ਨਿਰਧਾਰਤ ਕਰ ਸਕਦਾ ਹੈ ਕਿ ਕਿਹੜੇ ਫਾਰਮ
ਫੀਲਡ ਜ਼ਰੂਰੀ ਹਨ ਅਤੇ ਲੋੜ ਅਨੁਸਾਰ ਹੌਲੀ-ਹੌਲੀ ਵਾਧੂ ਫੀਲਡਾਂ ਨੂੰ ਪ੍ਰਗਟ ਕਰ ਸਕਦਾ ਹੈ। ਇਹ ਕ੍ਰਮਿਕ
ਪ੍ਰਗਟਾਵਾ ਤਕਨੀਕ ਬੋਧਾਤਮਕ ਭਾਰ ਨੂੰ ਘਟਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰਦੀ ਹੈ ਅਤੇ ਫਾਰਮ ਭਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ
ਵਧੇਰੇ ਪ੍ਰਬੰਧਨਯੋਗ ਬਣਾਉਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਲਈ, ਜੇ ਕੋਈ ਯੂਜ਼ਰ ਬੇਸਿਕ ਸਬਸਕ੍ਰਿਪਸ਼ਨ ਲਈ ਸਾਈਨ ਅੱਪ

ਜਨਰੇਟਿਵ ਯੂਆਈ 192

ਕਰ ਰਿਹਾ ਹੈ, ਤਾਂ ਫਾਰਮ ਸ਼ੁਰੂ ਵਿੱਚ ਸਿਰਫ਼ ਜ਼ਰੂਰੀ ਫੀਲਡਾਂ ਨੂੰ ਪੇਸ਼ ਕਰ ਸਕਦਾ ਹੈ, ਅਤੇ ਜਿਵੇਂ-ਜਿਵੇਂ ਯੂਜ਼ਰ ਅੱਗੇ
ਵਧਦਾ ਹੈ ਜਾਂ ਵਿਸ਼ੇਸ਼ ਵਿਕਲਪਾਂ ਦੀ ਚੋਣ ਕਰਦਾ ਹੈ, ਵਾਧੂ ਸੰਬੰਧਿਤ ਫੀਲਡਾਂ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਪੇਸ਼ ਕੀਤੀਆਂ
ਜਾ ਸਕਦੀਆਂ ਹਨ।

ਸੰਦਰਭ-ਜਾਗਰੂਕ ਵਿਆਖਿਆਤਮਕ ਟੈਕਸਟ

ਟੂਲਟਿੱਪਸ ਦਾ ਅਕਸਰਇਸਤੇਮਾਲਯੂਜ਼ਰਾਂ ਨੂੰ ਵਾਧੂ ਜਾਣਕਾਰੀ ਜਾਂ ਮਾਰਗਦਰਸ਼ਨ ਪ੍ਰਦਾਨ ਕਰਨਲਈਕੀਤਾ ਜਾਂਦਾ
ਹੈ ਜਦੋਂ ਉਹ ਵਿਸ਼ੇਸ਼ ਤੱਤਾਂ ’ਤੇ ਹੋਵਰ ਕਰਦੇ ਹਨ ਜਾਂ ਉਨ੍ਹਾਂ ਨਾਲ ਅੰਤਰਕਿਰਿਆ ਕਰਦੇ ਹਨ। “ਸੰਦਰਭੀ ਸਮੱਗਰੀ
ਨਿਰਮਾਣ” ਪਹੁੰਚ ਨਾਲ, ਤੁਸੀਂ ਅਜਿਹੇ ਟੂਲਟਿੱਪਸ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹੋ ਜੋ ਯੂਜ਼ਰ ਦੇ ਸੰਦਰਭ ਅਨੁਸਾਰ ਢਲਦੇ ਹਨ
ਅਤੇ ਢੁਕਵੀਂ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਉਦਾਹਰਣ ਲਈ, ਜੇ ਕੋਈ ਯੂਜ਼ਰ ਕਿਸੇ ਗੁੰਝਲਦਾਰ ਵਿਸ਼ੇਸ਼ਤਾ ਦੀ
ਪੜਚੋਲ ਕਰ ਰਿਹਾ ਹੈ, ਤਾਂ ਟੂਲਟਿੱਪ ਉਨ੍ਹਾਂ ਦੀਆਂ ਪਿਛਲੀਆਂ ਅੰਤਰਕਿਰਿਆਵਾਂ ਜਾਂ ਹੁਨਰ ਪੱਧਰ ਦੇ ਆਧਾਰ ’ਤੇ
ਨਿੱਜੀ ਸੁਝਾਅ ਜਾਂ ਉਦਾਹਰਣਾਂ ਪੇਸ਼ ਕਰ ਸਕਦਾ ਹੈ।

ਵਿਆਖਿਆਤਮਕ ਟੈਕਸਟ, ਜਿਵੇਂ ਕਿ ਹਦਾਇਤਾਂ, ਵੇਰਵੇ, ਜਾਂ ਮਦਦ ਸੰਦੇਸ਼, ਯੂਜ਼ਰ ਦੇ ਸੰਦਰਭ ਦੇ ਆਧਾਰ ’ਤੇ
ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਤਿਆਰ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਆਮ ਵਿਆਖਿਆਵਾਂ ਪੇਸ਼ ਕਰਨ ਦੀ ਬਜਾਏ, ਤੁਸੀਂ LLMs
ਦੀ ਵਰਤੋਂ ਯੂਜ਼ਰ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ ਲੋੜਾਂ ਜਾਂ ਸਵਾਲਾਂ ਦੇ ਅਨੁਕੂਲ ਟੈਕਸਟ ਤਿਆਰਕਰਨਲਈਕਰਸਕਦੇ ਹੋ। ਉਦਾਹਰਣ
ਲਈ, ਜੇ ਕੋਈ ਯੂਜ਼ਰ ਕਿਸੇ ਪ੍ਰਕਿਰਿਆ ਦੇ ਕਿਸੇ ਖਾਸ ਕਦਮ ਨਾਲ ਜੂਝ ਰਿਹਾ ਹੈ, ਤਾਂ ਵਿਆਖਿਆਤਮਕ ਟੈਕਸਟ
ਨਿੱਜੀ ਮਾਰਗਦਰਸ਼ਨ ਜਾਂ ਸਮੱਸਿਆ ਨਿਵਾਰਣ ਸੁਝਾਅ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ।

ਮਾਈਕਰੋਕਾਪੀ ਛੋਟੇ ਟੈਕਸਟ ਦੇ ਟੁਕੜਿਆਂ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ ਜੋ ਯੂਜ਼ਰਾਂ ਨੂੰ ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ਮਾਰਗਦਰਸ਼ਨ
ਕਰਦੇ ਹਨ, ਜਿਵੇਂ ਕਿ ਬਟਨ ਲੇਬਲ, ਗਲਤੀ ਸੰਦੇਸ਼, ਜਾਂ ਪੁਸ਼ਟੀਕਰਨ ਪ੍ਰੌਂਪਟ। ਮਾਈਕਰੋਕਾਪੀ ’ਤੇ ਸੰਦਰਭੀ
ਸਮੱਗਰੀ ਨਿਰਮਾਣ ਪਹੁੰਚ ਨੂੰ ਲਾਗੂ ਕਰਕੇ, ਤੁਸੀਂ ਇੱਕ ਅਨੁਕੂਲੀ ਯੂਜ਼ਰ ਇੰਟਰਫੇਸ ਬਣਾ ਸਕਦੇ ਹੋ ਜੋ ਯੂਜ਼ਰ ਦੀਆਂ
ਕਾਰਵਾਈਆਂ ਦਾ ਜਵਾਬ ਦਿੰਦਾ ਹੈ ਅਤੇ ਢੁਕਵਾਂ ਅਤੇ ਮਦਦਗਾਰ ਟੈਕਸਟ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। ਉਦਾਹਰਣ ਲਈ, ਜੇ
ਕੋਈ ਯੂਜ਼ਰ ਕੋਈ ਮਹੱਤਵਪੂਰਨ ਕਾਰਵਾਈ ਕਰਨ ਵਾਲਾ ਹੈ, ਤਾਂ ਪੁਸ਼ਟੀਕਰਨ ਪ੍ਰੌਂਪਟ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਤਿਆਰ
ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਤਾਂ ਜੋ ਇੱਕ ਸਪੱਸ਼ਟ ਅਤੇ ਨਿੱਜੀ ਸੰਦੇਸ਼ ਪ੍ਰਦਾਨ ਕੀਤਾ ਜਾ ਸਕੇ।

ਨਿੱਜੀ ਵਿਆਖਿਆਤਮਕ ਟੈਕਸਟ ਅਤੇ ਟੂਲਟਿੱਪਸ ਨਵੇਂ ਯੂਜ਼ਰਾਂ ਲਈ ਔਨਬੋਰਡਿੰਗ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਬਹੁਤ ਵਧਾ
ਸਕਦੇ ਹਨ। ਸੰਦਰਭ-ਵਿਸ਼ੇਸ਼ ਮਾਰਗਦਰਸ਼ਨ ਅਤੇ ਉਦਾਹਰਣਾਂ ਪ੍ਰਦਾਨ ਕਰਕੇ, ਤੁਸੀਂ ਯੂਜ਼ਰਾਂ ਨੂੰ ਐਪਲੀਕੇਸ਼ਨ ਨੂੰ
ਜਲਦੀ ਸਮਝਣ ਅਤੇ ਨੈਵੀਗੇਟ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੇ ਹੋ, ਜੋ ਸਿੱਖਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ ਅਤੇ
ਅਪਣਾਉਣ ਨੂੰ ਵਧਾਉਂਦਾ ਹੈ।

ਗਤੀਸ਼ੀਲ ਅਤੇ ਸੰਦਰਭ-ਜਾਗਰੂਕ ਕਰੋਮ ਐਲੀਮੈਂਟਸ ਐਪਲੀਕੇਸ਼ਨ ਨੂੰ ਵਧੇਰੇ ਸਹਿਜ ਅਤੇ ਦਿਲਚਸਪ ਬਣਾ ਸਕਦੇ

ਜਨਰੇਟਿਵ ਯੂਆਈ 193

ਹਨ। ਯੂਜ਼ਰ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਨਾਲ ਅੰਤਰਕਿਰਿਆ ਕਰਨ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਪੜਚੋਲ ਕਰਨ ਦੀ ਵਧੇਰੇ ਸੰਭਾਵਨਾ ਰੱਖਦੇ
ਹਨ ਜਦੋਂ ਨਾਲ ਦਾ ਟੈਕਸਟ ਉਨ੍ਹਾਂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ ਲੋੜਾਂ ਅਤੇ ਰੁਚੀਆਂ ਦੇ ਅਨੁਕੂਲ ਹੁੰਦਾ ਹੈ।

ਹੁਣ ਤੱਕ ਅਸੀਂ AI ਨਾਲ ਮੌਜੂਦਾ UI ਪੈਰਾਡਾਈਮਜ਼ ਨੂੰ ਵਧਾਉਣ ਦੇ ਵਿਚਾਰਾਂ ਨੂੰ ਕਵਰ ਕੀਤਾ ਹੈ, ਪਰ ਯੂਜ਼ਰ
ਇੰਟਰਫੇਸਾਂ ਨੂੰ ਇੱਕ ਵਧੇਰੇ ਮੌਲਿਕ ਢੰਗ ਨਾਲ ਡਿਜ਼ਾਈਨ ਅਤੇ ਲਾਗੂ ਕਰਨ ਦੇ ਤਰੀਕੇ ਬਾਰੇ ਮੁੜ ਵਿਚਾਰ ਕਰਨ ਬਾਰੇ
ਕੀ?

ਜਨਰੇਟਿਵ ਯੂਆਈ ਦੀ ਪਰਿਭਾਸ਼ਾ

ਪਰੰਪਰਾਗਤਯੂਆਈਡਿਜ਼ਾਈਨਦੇ ਉਲਟ, ਜਿੱਥੇ ਡਿਜ਼ਾਈਨਰ ਸਥਿਰ, ਸਥਾਈਇੰਟਰਫੇਸ ਬਣਾਉਂਦੇ ਹਨ, GenUI
ਅਜਿਹੇ ਭਵਿੱਖ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ ਜਿੱਥੇ ਸਾਡੇ ਸਾਫਟਵੇਅਰ ਵਿੱਚ ਲਚਕਦਾਰ, ਨਿੱਜੀ ਤਜਰਬੇ ਹੋਣਗੇ ਜੋ ਅਸਲ
ਸਮੇਂ ਵਿੱਚ ਵਿਕਸਿਤ ਅਤੇ ਅਨੁਕੂਲ ਹੋ ਸਕਦੇ ਹਨ। ਹਰ ਵਾਰ ਜਦੋਂ ਅਸੀਂ AI-ਸੰਚਾਲਿਤ ਗੱਲਬਾਤ ਇੰਟਰਫੇਸ ਦੀ
ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ, ਅਸੀਂ AI ਨੂੰ ਯੂਜ਼ਰ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ ਲੋੜਾਂ ਦੇ ਅਨੁਕੂਲ ਹੋਣ ਦਿੰਦੇ ਹਾਂ। GenUI ਇਸ ਅਨੁਕੂਲਤਾ
ਦੇ ਪੱਧਰ ਨੂੰ ਸਾਫਟਵੇਅਰ ਦੇ ਦ੍ਰਿਸ਼ਟੀ ਇੰਟਰਫੇਸ ’ਤੇ ਲਾਗੂ ਕਰਕੇ ਇੱਕ ਕਦਮ ਅੱਗੇ ਲੈ ਜਾਂਦਾ ਹੈ।

ਅੱਜ GenUI ਵਿਚਾਰਾਂ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਨਾ ਸੰਭਵ ਹੈ ਕਿਉਂਕਿ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ ਪਹਿਲਾਂ ਹੀ ਪ੍ਰੋਗਰਾਮਿੰਗ ਨੂੰ
ਸਮਝਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਮੂਲ ਗਿਆਨ ਵਿੱਚ UI ਤਕਨਾਲੋਜੀਆਂ ਅਤੇ ਫਰੇਮਵਰਕ ਸ਼ਾਮਲ ਹਨ। ਸਵਾਲ ਇਹ
ਹੈ ਕਿ ਕੀ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਦੀ ਵਰਤੋਂ UI ਐਲੀਮੈਂਟਸ, ਜਿਵੇਂ ਕਿ ਟੈਕਸਟ, ਚਿੱਤਰ, ਲੇਆਉਟ, ਅਤੇ ਇੱਥੋਂ ਤੱਕ ਕਿ
ਪੂਰੇ ਇੰਟਰਫੇਸ ਬਣਾਉਣ ਲਈ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ, ਜੋ ਹਰ ਵਿਅਕਤੀਗਤ ਯੂਜ਼ਰ ਲਈ ਅਨੁਕੂਲ ਹੋਵੇ। ਮਾਡਲ ਨੂੰ
ਵੱਖ-ਵੱਖ ਕਾਰਕਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਣ ਲਈ ਨਿਰਦੇਸ਼ ਦਿੱਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਵੇਂ ਕਿ ਯੂਜ਼ਰ ਦੀਆਂ ਪਿਛਲੀਆਂ
ਕਿਰਿਆਵਾਂ, ਦੱਸੀਆਂ ਗਈਆਂ ਤਰਜੀਹਾਂ, ਜਨਸੰਖਿਅਕ ਜਾਣਕਾਰੀ, ਅਤੇ ਵਰਤੋਂ ਦਾ ਮੌਜੂਦਾ ਸੰਦਰਭ, ਤਾਂ ਜੋ ਬੇਹੱਦ
ਨਿੱਜੀ ਅਤੇ ਢੁਕਵੇਂ ਇੰਟਰਫੇਸ ਬਣਾਏ ਜਾ ਸਕਣ।

GenUI ਪਰੰਪਰਾਗਤ ਯੂਜ਼ਰ ਇੰਟਰਫੇਸ ਡਿਜ਼ਾਈਨ ਤੋਂ ਕਈ ਮੁੱਖ ਤਰੀਕਿਆਂ ਨਾਲ ਵੱਖਰਾ ਹੈ:

1. ਗਤੀਸ਼ੀਲ ਅਤੇ ਅਨੁਕੂਲ: ਪਰੰਪਰਾਗਤ UI ਡਿਜ਼ਾਈਨ ਵਿੱਚ ਸਥਿਰ, ਸਥਾਈ ਇੰਟਰਫੇਸ ਬਣਾਉਣਾ
ਸ਼ਾਮਲ ਹੈ ਜੋ ਸਾਰੇ ਯੂਜ਼ਰਾਂ ਲਈ ਇੱਕੋ ਜਿਹੇ ਰਹਿੰਦੇ ਹਨ। ਇਸਦੇ ਉਲਟ, GenUI ਅਜਿਹੇ ਇੰਟਰਫੇਸ ਨੂੰ
ਸਮਰੱਥ ਬਣਾਉਂਦਾ ਹੈ ਜੋ ਯੂਜ਼ਰ ਦੀਆਂ ਲੋੜਾਂ ਅਤੇ ਸੰਦਰਭ ਦੇ ਆਧਾਰ ’ਤੇ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਅਨੁਕੂਲ
ਅਤੇ ਬਦਲ ਸਕਦੇ ਹਨ। ਇਸਦਾ ਮਤਲਬ ਹੈ ਕਿ ਇੱਕੋ ਐਪਲੀਕੇਸ਼ਨ ਵੱਖ-ਵੱਖ ਯੂਜ਼ਰਾਂ ਨੂੰ ਜਾਂ ਇੱਥੋਂ ਤੱਕ ਕਿ
ਇੱਕੋ ਯੂਜ਼ਰ ਨੂੰ ਵੱਖ-ਵੱਖ ਸਥਿਤੀਆਂ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਇੰਟਰਫੇਸ ਪੇਸ਼ ਕਰ ਸਕਦੀ ਹੈ।

ਜਨਰੇਟਿਵ ਯੂਆਈ 194

2. ਵੱਡੇ ਪੱਧਰ ’ਤੇ ਨਿੱਜੀਕਰਨ: ਪਰੰਪਰਾਗਤ ਡਿਜ਼ਾਈਨ ਨਾਲ, ਹਰ ਯੂਜ਼ਰ ਲਈ ਨਿੱਜੀ ਤਜਰਬੇ ਬਣਾਉਣਾ
ਅਕਸਰ ਅਵਿਹਾਰਕ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਇਸ ਲਈ ਲੋੜੀਂਦੇ ਸਮੇਂ ਅਤੇ ਸਰੋਤਾਂ ਕਰਕੇ। ਦੂਜੇ ਪਾਸੇ, GenUI
ਵੱਡੇ ਪੱਧਰ ’ਤੇ ਨਿੱਜੀਕਰਨ ਦੀਆਗਿਆ ਦਿੰਦਾ ਹੈ। AI ਦਾ ਲਾਭ ਲੈਂਦੇ ਹੋਏ, ਡਿਜ਼ਾਈਨਰ ਅਜਿਹੇ ਇੰਟਰਫੇਸ
ਬਣਾ ਸਕਦੇ ਹਨ ਜੋ ਹਰ ਯੂਜ਼ਰ ਦੀਆਂ ਵਿਲੱਖਣ ਲੋੜਾਂ ਅਤੇ ਤਰਜੀਹਾਂ ਦੇ ਅਨੁਕੂਲ ਆਪਣੇ ਆਪ ਢਲ ਜਾਂਦੇ
ਹਨ, ਹਰ ਯੂਜ਼ਰ ਸੈਗਮੈਂਟ ਲਈ ਵੱਖਰੇ ਇੰਟਰਫੇਸ ਨੂੰ ਮੈਨੂਅਲ ਤੌਰ ’ਤੇ ਡਿਜ਼ਾਈਨ ਅਤੇ ਵਿਕਸਿਤ ਕੀਤੇ
ਬਿਨਾਂ।

3. ਨਤੀਜਿਆਂ ’ਤੇ ਫੋਕਸ: ਪਰੰਪਰਾਗਤ UI ਡਿਜ਼ਾਈਨ ਅਕਸਰ ਦਿੱਖ ਪੱਖੋਂ ਆਕਰਸ਼ਕ ਅਤੇ ਕਾਰਜਸ਼ੀਲ
ਇੰਟਰਫੇਸ ਬਣਾਉਣ ’ਤੇ ਕੇਂਦਰਿਤ ਹੁੰਦਾ ਹੈ। ਹਾਲਾਂਕਿ ਇਹ ਪਹਿਲੂ GenUI ਵਿੱਚ ਵੀ ਮਹੱਤਵਪੂਰਨ ਹਨ,
ਮੁੱਖ ਫੋਕਸ ਲੋੜੀਂਦੇ ਯੂਜ਼ਰ ਨਤੀਜਿਆਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਵੱਲ ਬਦਲ ਜਾਂਦਾ ਹੈ। GenUI ਦਾ ਉਦੇਸ਼
ਅਜਿਹੇ ਇੰਟਰਫੇਸ ਬਣਾਉਣਾ ਹੈ ਜੋ ਹਰ ਯੂਜ਼ਰ ਦੇ ਵਿਸ਼ੇਸ਼ ਟੀਚਿਆਂ ਅਤੇ ਕਾਰਜਾਂ ਲਈ ਅਨੁਕੂਲ ਹੋਣ,
ਸਿਰਫ਼ ਸੁਹਜਾਤਮਕ ਵਿਚਾਰਾਂ ਦੀ ਬਜਾਏ ਵਰਤੋਂ-ਯੋਗਤਾ ਅਤੇ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਨੂੰ ਤਰਜੀਹ ਦਿੰਦੇ ਹੋਏ।

4. ਲਗਾਤਾਰ ਸਿੱਖਣਾ ਅਤੇ ਸੁਧਾਰ: GenUI ਸਿਸਟਮ ਯੂਜ਼ਰ ਕਿਰਿਆਵਾਂ ਅਤੇ ਫੀਡਬੈਕ ਦੇ ਆਧਾਰ ’ਤੇ
ਲਗਾਤਾਰ ਸਿੱਖ ਅਤੇ ਸੁਧਰ ਸਕਦੇ ਹਨ। ਜਿਵੇਂ-ਜਿਵੇਂ ਯੂਜ਼ਰ ਜਨਰੇਟ ਕੀਤੇ ਇੰਟਰਫੇਸ ਨਾਲ ਜੁੜਦੇ ਹਨ, AI
ਮਾਡਲ ਯੂਜ਼ਰ ਵਿਵਹਾਰ, ਤਰਜੀਹਾਂ, ਅਤੇ ਨਤੀਜਿਆਂ ਬਾਰੇ ਡੇਟਾ ਇਕੱਠਾ ਕਰ ਸਕਦੇ ਹਨ, ਇਸ ਜਾਣਕਾਰੀ
ਦੀ ਵਰਤੋਂ ਭਵਿੱਖ ਦੇ ਇੰਟਰਫੇਸ ਜਨਰੇਸ਼ਨ ਨੂੰ ਸੁਧਾਰਨ ਅਤੇ ਅਨੁਕੂਲ ਬਣਾਉਣ ਲਈ ਕਰਦੇ ਹਨ। ਇਹ
ਦੁਹਰਾਈ ਵਾਲੀ ਸਿੱਖਣ ਪ੍ਰਕਿਰਿਆ GenUI ਸਿਸਟਮਾਂ ਨੂੰ ਸਮੇਂ ਦੇ ਨਾਲ ਯੂਜ਼ਰ ਦੀਆਂ ਲੋੜਾਂ ਨੂੰ ਪੂਰਾ
ਕਰਨ ਵਿੱਚ ਵਧੇਰੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਬਣਨ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ।

ਇਹ ਨੋਟ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਜੈਨਯੂਆਈ, ਏਆਈ-ਸਹਾਇਤਾ ਪ੍ਰਾਪਤ ਡਿਜ਼ਾਈਨ ਟੂਲਜ਼ ਤੋਂ ਵੱਖਰਾ ਹੈ,
ਜਿਵੇਂ ਕਿ ਉਹ ਜੋ ਸੁਝਾਅ ਦਿੰਦੇ ਹਨ ਜਾਂ ਕੁਝ ਡਿਜ਼ਾਈਨ ਕਾਰਜਾਂ ਨੂੰ ਸਵੈਚਲਿਤ ਕਰਦੇ ਹਨ। ਭਾਵੇਂ ਇਹ ਟੂਲ ਡਿਜ਼ਾਈਨ
ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਸੁਚਾਰੂ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦਗਾਰ ਹੋ ਸਕਦੇ ਹਨ, ਪਰ ਉਹ ਫਿਰ ਵੀ ਅੰਤਿਮ ਫੈਸਲੇ ਲੈਣ ਅਤੇ ਸਥਿਰ
ਇੰਟਰਫੇਸ ਬਣਾਉਣ ਲਈ ਡਿਜ਼ਾਈਨਰਾਂ ’ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ। ਦੂਜੇ ਪਾਸੇ, ਜੈਨਯੂਆਈ ਵਿੱਚ ਏਆਈ ਸਿਸਟਮ
ਯੂਜ਼ਰ ਡੇਟਾ ਅਤੇ ਸੰਦਰਭ ਦੇ ਆਧਾਰ ’ਤੇ ਇੰਟਰਫੇਸ ਦੀ ਅਸਲ ਉਤਪਤੀ ਅਤੇ ਅਨੁਕੂਲਤਾ ਵਿੱਚ ਵਧੇਰੇ ਸਰਗਰਮ
ਭੂਮਿਕਾ ਨਿਭਾਉਂਦਾ ਹੈ।

ਜੈਨਯੂਆਈ ਯੂਜ਼ਰ ਇੰਟਰਫੇਸ ਡਿਜ਼ਾਈਨ ਦੇ ਪਹੁੰਚ ਵਿੱਚ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਬਦਲਾਅ ਦਰਸਾਉਂਦਾ ਹੈ, ਜੋ ਇੱਕ-
ਆਕਾਰ-ਸਭ-ਲਈ-ਫਿੱਟ ਹੱਲਾਂ ਤੋਂ ਹਟ ਕੇ ਬਹੁਤ ਜ਼ਿਆਦਾ ਨਿੱਜੀਕਰਨ ਕੀਤੇ, ਅਨੁਕੂਲ ਤਜਰਬਿਆਂ ਵੱਲ ਜਾ ਰਿਹਾ
ਹੈ। ਏਆਈ ਦੀ ਸ਼ਕਤੀ ਦਾ ਲਾਭ ਲੈਂਦੇ ਹੋਏ, ਜੈਨਯੂਆਈ ਕੋਲ ਡਿਜੀਟਲ ਉਤਪਾਦਾਂ ਅਤੇ ਸੇਵਾਵਾਂ ਨਾਲ ਸਾਡੀ
ਅੰਤਰਕਿਰਿਆ ਦੇ ਤਰੀਕੇ ਨੂੰ ਕ੍ਰਾਂਤੀਕਾਰੀ ਬਣਾਉਣ ਦੀ ਸੰਭਾਵਨਾ ਹੈ, ਜੋ ਹਰ ਵਿਅਕਤੀਗਤ ਯੂਜ਼ਰ ਲਈ ਵਧੇਰੇ
ਸਹਿਜ, ਦਿਲਚਸਪ ਅਤੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਇੰਟਰਫੇਸ ਬਣਾਉਂਦਾ ਹੈ।

ਜਨਰੇਟਿਵ ਯੂਆਈ 195

ਉਦਾਹਰਨ

ਜੈਨਯੂਆਈ ਦੀ ਧਾਰਨਾ ਨੂੰ ਦਰਸਾਉਣ ਲਈ, ਆਓ “FitAI” ਨਾਂ ਦੀ ਇੱਕ ਕਲਪਿਤ ਫਿਟਨੈੱਸ ਐਪਲੀਕੇਸ਼ਨ ’ਤੇ
ਵਿਚਾਰ ਕਰੀਏ। ਇਹ ਐਪ ਯੂਜ਼ਰਾਂ ਦੇ ਵਿਅਕਤੀਗਤ ਟੀਚਿਆਂ, ਫਿਟਨੈੱਸ ਪੱਧਰਾਂ, ਅਤੇ ਤਰਜੀਹਾਂ ਦੇ ਆਧਾਰ ’ਤੇ
ਨਿੱਜੀ ਵਰਕਆਉਟ ਯੋਜਨਾਵਾਂ ਅਤੇ ਪੋਸ਼ਣ ਸਲਾਹ ਪ੍ਰਦਾਨ ਕਰਨ ਦਾ ਟੀਚਾ ਰੱਖਦੀ ਹੈ।

ਇੱਕ ਪਰੰਪਰਾਗਤ ਯੂਆਈ ਡਿਜ਼ਾਈਨ ਪਹੁੰਚ ਵਿੱਚ, FitAI ਕੋਲ ਸਕਰੀਨਾਂ ਅਤੇ ਤੱਤਾਂ ਦਾ ਇੱਕ ਨਿਸ਼ਚਿਤ ਸੈੱਟ
ਹੋ ਸਕਦਾ ਹੈ ਜੋ ਸਾਰੇ ਯੂਜ਼ਰਾਂ ਲਈ ਇੱਕੋ ਜਿਹਾ ਹੈ। ਹਾਲਾਂਕਿ, ਜੈਨਯੂਆਈ ਨਾਲ, ਐਪ ਦਾ ਇੰਟਰਫੇਸ ਹਰ ਯੂਜ਼ਰ
ਦੀਆਂ ਵਿਲੱਖਣ ਜ਼ਰੂਰਤਾਂ ਅਤੇ ਸੰਦਰਭ ਦੇ ਅਨੁਸਾਰ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਅਨੁਕੂਲ ਹੋ ਸਕਦਾ ਹੈ।

ਇਹ ਪਹੁੰਚ 2024 ਵਿੱਚ ਲਾਗੂ ਕਰਨ ਲਈ ਥੋੜ੍ਹੀ ਜਿਹੀ ਕਲਪਨਾ ਦੀ ਲੋੜ ਹੈ ਅਤੇ ਸ਼ਾਇਦ ਇਸਦਾ ਢੁਕਵਾਂ
ਨਿਵੇਸ਼ ’ਤੇ ਵਾਪਸੀ ਵੀ ਨਾ ਹੋਵੇ, ਪਰ ਇਹ ਸੰਭਵ ਹੈ।

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰ ਸਕਦਾ ਹੈ:

1. ਸ਼ੁਰੂਆਤੀ ਪ੍ਰਕਿਰਿਆ:

• ਇੱਕ ਮਿਆਰੀ ਪ੍ਰਸ਼ਨਾਵਲੀ ਦੀ ਬਜਾਏ, FitAI ਯੂਜ਼ਰ ਦੇ ਟੀਚਿਆਂ, ਮੌਜੂਦਾ ਫਿਟਨੈੱਸ ਪੱਧਰ, ਅਤੇ
ਤਰਜੀਹਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ ਇਕੱਠੀ ਕਰਨ ਲਈ ਗੱਲਬਾਤ ਵਾਲੀ ਏਆਈ ਦੀ ਵਰਤੋਂ ਕਰਦਾ ਹੈ।

• ਇਸ ਮੁੱਢਲੀ ਅੰਤਰਕਿਰਿਆ ਦੇ ਆਧਾਰ ’ਤੇ, ਏਆਈ ਇੱਕ ਨਿੱਜੀ ਡੈਸ਼ਬੋਰਡ ਲੇਆਉਟ ਤਿਆਰ
ਕਰਦੀ ਹੈ, ਜੋ ਯੂਜ਼ਰ ਦੇ ਟੀਚਿਆਂ ਨਾਲ ਸਭ ਤੋਂ ਵੱਧ ਸੰਬੰਧਿਤ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਅਤੇ ਜਾਣਕਾਰੀ ਨੂੰ
ਉਜਾਗਰ ਕਰਦੀ ਹੈ।

• ਮੌਜੂਦਾ ਏਆਈਤਕਨਾਲੋਜੀ ਕੋਲ ਨਿੱਜੀ ਡੈਸ਼ਬੋਰਡ ਬਣਾਉਣ ਲਈ ਵਰਤਣ ਲਈਸਕਰੀਨ ਕੰਪੋਨੈਂਟਸ
ਦੀ ਇੱਕ ਚੋਣ ਹੋ ਸਕਦੀ ਹੈ।

• ਭਵਿੱਖ ਦੀ ਏਆਈ ਤਕਨਾਲੋਜੀ ਇੱਕ ਤਜਰਬੇਕਾਰ ਯੂਆਈ ਡਿਜ਼ਾਈਨਰ ਦੀ ਭੂਮਿਕਾ ਨਿਭਾ ਸਕਦੀ
ਹੈ ਅਤੇ ਅਸਲ ਵਿੱਚ ਡੈਸ਼ਬੋਰਡ ਨੂੰ ਸ਼ੁਰੂ ਤੋਂ ਬਣਾ ਸਕਦੀ ਹੈ।

2. ਵਰਕਆਉਟ ਪਲੈਨਰ:

• ਏਆਈ ਦੁਆਰਾ ਵਰਕਆਉਟ ਪਲੈਨਰ ਇੰਟਰਫੇਸ ਨੂੰ ਯੂਜ਼ਰ ਦੇ ਤਜਰਬੇ ਦੇ ਪੱਧਰ ਅਤੇ ਉਪਲਬਧ
ਉਪਕਰਣਾਂ ਦੇ ਅਨੁਸਾਰ ਅਨੁਕੂਲ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ।

ਜਨਰੇਟਿਵ ਯੂਆਈ 196

• ਬਿਨਾਂ ਕਿਸੇ ਉਪਕਰਣ ਵਾਲੇ ਸ਼ੁਰੂਆਤੀ ਯੂਜ਼ਰ ਲਈ, ਇਹ ਵਿਸਤ੍ਰਿਤ ਹਿਦਾਇਤਾਂ ਅਤੇ ਵੀਡੀਓ
ਨਾਲ ਸਧਾਰਨ ਬਾਡੀਵੇਟ ਕਸਰਤਾਂ ਦਿਖਾ ਸਕਦਾ ਹੈ।

• ਜਿਮ ਤੱਕ ਪਹੁੰਚ ਵਾਲੇ ਉੱਨਤ ਯੂਜ਼ਰ ਲਈ, ਇਹ ਘੱਟ ਵਿਆਖਿਆਤਮਕ ਸਮੱਗਰੀ ਨਾਲ ਵਧੇਰੇ
ਗੁੰਝਲਦਾਰ ਰੁਟੀਨ ਦਿਖਾ ਸਕਦਾ ਹੈ।

• ਵਰਕਆਉਟ ਪਲੈਨਰ ਦੀ ਸਮੱਗਰੀ ਸਿਰਫ਼ ਇੱਕ ਵੱਡੇ ਸੁਪਰਸੈੱਟ ਤੋਂ ਫਿਲਟਰ ਨਹੀਂ ਕੀਤੀ ਜਾਂਦੀ।
ਇਹ ਤੁਰੰਤ ਇੱਕ ਗਿਆਨ ਅਧਾਰ ਤੋਂ ਤਿਆਰ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ਜਿਸ ਨੂੰ ਯੂਜ਼ਰ ਬਾਰੇ ਜਾਣੀ ਜਾਂਦੀ
ਹਰ ਜਾਣਕਾਰੀ ਸਮੇਤ ਸੰਦਰਭ ਨਾਲ ਕੁਏਰੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

3. ਤਰੱਕੀ ਦੀ ਨਿਗਰਾਨੀ:

• ਤਰੱਕੀ ਦੀ ਨਿਗਰਾਨੀ ਇੰਟਰਫੇਸ ਯੂਜ਼ਰ ਦੇ ਟੀਚਿਆਂ ਅਤੇ ਰੁਝਾਨ ਪੈਟਰਨਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਵਿਕਸਿਤ
ਹੁੰਦਾ ਹੈ।

• ਜੇ ਕੋਈ ਯੂਜ਼ਰ ਮੁੱਖ ਤੌਰ ’ਤੇ ਭਾਰ ਘਟਾਉਣ ’ਤੇ ਕੇਂਦਰਿਤ ਹੈ, ਤਾਂ ਇੰਟਰਫੇਸ ਭਾਰ ਦੇ ਰੁਝਾਨ ਗ੍ਰਾਫ਼
ਅਤੇ ਕੈਲੋਰੀ ਬਰਨ ਅੰਕੜਿਆਂ ਨੂੰ ਪ੍ਰਮੁੱਖਤਾ ਨਾਲ ਦਿਖਾ ਸਕਦਾ ਹੈ।

• ਮਾਸਪੇਸ਼ੀਆਂ ਬਣਾ ਰਹੇ ਯੂਜ਼ਰ ਲਈ, ਇਹ ਤਾਕਤ ਵਿੱਚ ਵਾਧੇ ਅਤੇ ਸਰੀਰ ਦੀ ਬਣਤਰ ਵਿੱਚ
ਤਬਦੀਲੀਆਂ ਨੂੰ ਉਜਾਗਰ ਕਰ ਸਕਦਾ ਹੈ।

• ਏਆਈਐਪਲੀਕੇਸ਼ਨ ਦੇ ਇਸ ਹਿੱਸੇ ਨੂੰ ਯੂਜ਼ਰ ਦੀ ਅਸਲ ਤਰੱਕੀ ਦੇ ਅਨੁਸਾਰ ਅਨੁਕੂਲ ਬਣਾ ਸਕਦੀ
ਹੈ। ਜੇ ਤਰੱਕੀ ਕੁਝ ਸਮੇਂ ਲਈ ਰੁਕ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਐਪ ਅਜਿਹੀ ਮੋਡ ਵਿੱਚ ਬਦਲ ਸਕਦੀ ਹੈ ਜਿੱਥੇ ਇਹ
ਯੂਜ਼ਰ ਨੂੰ ਰੁਕਾਵਟ ਦੇ ਕਾਰਨਾਂ ਨੂੰ ਦੱਸਣ ਲਈ ਪ੍ਰੇਰਿਤ ਕਰਦੀ ਹੈ, ਤਾਂ ਜੋ ਉਨ੍ਹਾਂ ਨੂੰ ਘੱਟ ਕੀਤਾ ਜਾ
ਸਕੇ।

4. ਪੋਸ਼ਣ ਸਲਾਹ:

• ਪੋਸ਼ਣ ਭਾਗ ਯੂਜ਼ਰ ਦੀਆਂ ਖੁਰਾਕੀ ਤਰਜੀਹਾਂ ਅਤੇ ਪਾਬੰਦੀਆਂ ਦੇ ਅਨੁਸਾਰ ਢਲਦਾ ਹੈ।
• ਇੱਕ ਸ਼ਾਕਾਹਾਰੀ ਯੂਜ਼ਰ ਲਈ, ਇਹ ਪਲਾਂਟ-ਬੇਸਡ ਖਾਣੇ ਦੇ ਸੁਝਾਅ ਅਤੇ ਪ੍ਰੋਟੀਨ ਸਰੋਤ ਦਿਖਾ
ਸਕਦਾ ਹੈ।

• ਗਲੂਟੇਨ ਅਸਹਿਣਸ਼ੀਲਤਾ ਵਾਲੇ ਯੂਜ਼ਰ ਲਈ, ਇਹ ਸਿਫ਼ਾਰਸ਼ਾਂ ਵਿੱਚੋਂ ਗਲੂਟੇਨ-ਯੁਕਤ ਭੋਜਨ ਨੂੰ
ਆਪਣੇ ਆਪ ਫਿਲਟਰ ਕਰ ਦੇਵੇਗਾ।

• ਫਿਰ ਵੀ, ਸਮੱਗਰੀ ਸਾਰੇ ਯੂਜ਼ਰਾਂ ’ਤੇ ਲਾਗੂ ਹੋਣ ਵਾਲੇ ਭੋਜਨ ਡੇਟਾ ਦੇ ਵਿਸ਼ਾਲ ਸੁਪਰਸੈੱਟ ਤੋਂ ਨਹੀਂ ਲਈ
ਜਾਂਦੀ, ਸਗੋਂ ਇੱਕ ਗਿਆਨ ਅਧਾਰ ਤੋਂ ਸੰਸਲੇਸ਼ਿਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਜੋ ਯੂਜ਼ਰ ਦੀ ਵਿਸ਼ੇਸ਼ ਸਥਿਤੀ ਅਤੇ
ਪਾਬੰਦੀਆਂ ਦੇ ਆਧਾਰ ’ਤੇ ਅਨੁਕੂਲ ਜਾਣਕਾਰੀ ਰੱਖਦੀ ਹੈ।

ਜਨਰੇਟਿਵ ਯੂਆਈ 197

• ਉਦਾਹਰਨ ਲਈ, ਪਕਵਾਨਾਂ ਨੂੰ ਸਮੱਗਰੀ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਨਾਲ ਤਿਆਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜੋ ਯੂਜ਼ਰ
ਦੀ ਫਿਟਨੈੱਸ ਪੱਧਰ ਅਤੇ ਸਰੀਰਕ ਅੰਕੜਿਆਂ ਦੇ ਵਿਕਾਸ ਦੇ ਨਾਲ ਲਗਾਤਾਰ ਬਦਲਦੀਆਂ ਕੈਲੋਰੀ
ਦੀਆਂ ਜ਼ਰੂਰਤਾਂ ਨਾਲ ਮੇਲ ਖਾਂਦੀਆਂ ਹਨ।

5. ਪ੍ਰੇਰਕ ਤੱਤ:

• ਐਪ ਦੀ ਪ੍ਰੇਰਕ ਸਮੱਗਰੀ ਅਤੇ ਸੂਚਨਾਵਾਂ ਯੂਜ਼ਰ ਦੀ ਸ਼ਖਸੀਅਤ ਦੀ ਕਿਸਮ ਅਤੇ ਵੱਖ-ਵੱਖ ਪ੍ਰੇਰਕ
ਰਣਨੀਤੀਆਂ ਪ੍ਰਤੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਆਧਾਰ ’ਤੇ ਨਿੱਜੀ ਬਣਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ।

• ਕੁਝ ਯੂਜ਼ਰਾਂ ਨੂੰ ਉਤਸ਼ਾਹਜਨਕ ਸੁਨੇਹੇ ਮਿਲ ਸਕਦੇ ਹਨ, ਜਦੋਂ ਕਿ ਦੂਜਿਆਂ ਨੂੰ ਵਧੇਰੇ ਡੇਟਾ-ਆਧਾਰਿਤ
ਫੀਡਬੈਕ ਮਿਲਦੀ ਹੈ।

ਇਸ ਉਦਾਹਰਨ ਵਿੱਚ, ਜੈਨਯੂਆਈ ਫਿੱਟਏਆਈ ਨੂੰ ਹਰ ਯੂਜ਼ਰ ਲਈ ਇੱਕ ਬੇਹੱਦ ਨਿੱਜੀ ਤਜਰਬਾ ਬਣਾਉਣ ਦੇ
ਯੋਗ ਬਣਾਉਂਦਾ ਹੈ, ਜੋ ਸੰਭਾਵਤ ਤੌਰ ’ਤੇ ਰੁਝੇਵੇਂ, ਸੰਤੁਸ਼ਟੀ, ਅਤੇ ਫਿਟਨੈੱਸ ਟੀਚਿਆਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ
ਨੂੰ ਵਧਾਉਂਦਾ ਹੈ। ਇੰਟਰਫੇਸ ਤੱਤ, ਸਮੱਗਰੀ, ਅਤੇ ਇੱਥੋਂ ਤੱਕ ਕਿ ਐਪ ਦੀ “ਸ਼ਖਸੀਅਤ” ਹਰੇਕ ਵਿਅਕਤੀਗਤ ਯੂਜ਼ਰ
ਦੀਆਂ ਜ਼ਰੂਰਤਾਂ ਅਤੇ ਤਰਜੀਹਾਂ ਦੀ ਸਭ ਤੋਂ ਵਧੀਆ ਸੇਵਾ ਕਰਨ ਲਈ ਅਨੁਕੂਲ ਬਣਦੇ ਹਨ।

ਨਤੀਜਾ-ਕੇਂਦਰਿਤ ਡਿਜ਼ਾਈਨ ਵੱਲ ਤਬਦੀਲੀ

ਜੈਨਯੂਆਈਯੂਜ਼ਰ ਇੰਟਰਫੇਸ ਡਿਜ਼ਾਈਨ! ਦੇ ਪਹੁੰਚ ਵਿੱਚ ਇੱਕ ਬੁਨਿਆਦੀ ਤਬਦੀਲੀ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ, ਜੋ ਵਿਸ਼ੇਸ਼
ਇੰਟਰਫੇਸ ਤੱਤਾਂ ਨੂੰ ਬਣਾਉਣ ਤੋਂ ਇੱਕ ਵਧੇਰੇ ਸਮੁੱਚੇ, ਨਤੀਜਾ-ਕੇਂਦਰਿਤ ਪਹੁੰਚ ਵੱਲ ਜਾ ਰਿਹਾ ਹੈ। ਇਸ ਤਬਦੀਲੀ ਦੇ
ਕਈ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਭਾਵ ਹਨ:

1. ਯੂਜ਼ਰ ਟੀਚਿਆਂ ’ਤੇ ਧਿਆਨ:

• ਡਿਜ਼ਾਈਨਰਾਂ ਨੂੰ ਵਿਸ਼ੇਸ਼ ਇੰਟਰਫੇਸ ਭਾਗਾਂ ਦੀ ਬਜਾਏ ਯੂਜ਼ਰ ਦੇ ਟੀਚਿਆਂ ਅਤੇ ਇੱਛਿਤ ਨਤੀਜਿਆਂ
ਬਾਰੇ ਵਧੇਰੇ ਡੂੰਘਾਈ ਨਾਲ ਸੋਚਣ ਦੀ ਲੋੜ ਹੋਵੇਗੀ।

• ਜ਼ੋਰ ਅਜਿਹੀਆਂ ਪ੍ਰਣਾਲੀਆਂ ਬਣਾਉਣ ’ਤੇ ਹੋਵੇਗਾ ਜੋ ਯੂਜ਼ਰਾਂ ਨੂੰ ਆਪਣੇ ਉਦੇਸ਼ਾਂ ਨੂੰ ਕੁਸ਼ਲਤਾ ਅਤੇ
ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਪ੍ਰਾਪਤ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰਨ ਵਾਲੇ ਇੰਟਰਫੇਸ ਤਿਆਰ ਕਰ ਸਕਣ।

• ਨਵੇਂ ਯੂਆਈਫਰੇਮਵਰਕ ਉਭਰਨਗੇ ਜੋ ਏਆਈ-ਆਧਾਰਿਤ ਡਿਜ਼ਾਈਨਰਾਂ ਨੂੰ ਪਹਿਲਾਂ ਤੋਂ ਨਿਰਧਾਰਿਤ
ਸਕ੍ਰੀਨ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੀ ਬਜਾਏ ਫੌਰੀ ਤੌਰ ’ਤੇ ਅਤੇ ਸ਼ੁਰੂ ਤੋਂ ਯੂਜ਼ਰ ਤਜਰਬਿਆਂ ਨੂੰ ਤਿਆਰ ਕਰਨ
ਲਈ ਲੋੜੀਂਦੇ ਟੂਲ ਪ੍ਰਦਾਨ ਕਰਨਗੇ।

ਜਨਰੇਟਿਵ ਯੂਆਈ 198

2. ਡਿਜ਼ਾਈਨਰਾਂ ਦੀ ਬਦਲਦੀ ਭੂਮਿਕਾ:

• ਡਿਜ਼ਾਈਨਰਸਥਿਰ ਲੇਆਉਟਬਣਾਉਣ ਤੋਂ ਨਿਯਮ, ਸੀਮਾਵਾਂ, ਅਤੇ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ ਨਿਰਧਾਰਤ ਕਰਨ
ਵੱਲ ਤਬਦੀਲ ਹੋਣਗੇ ਜਿਨ੍ਹਾਂ ਦੀ ਏਆਈ ਸਿਸਟਮ ਇੰਟਰਫੇਸ ਬਣਾਉਣ ਵੇਲੇ ਪਾਲਣਾ ਕਰੇਗਾ।

• ਉਨ੍ਹਾਂ ਨੂੰ ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ, ਏਆਈ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ, ਅਤੇ ਸਿਸਟਮ ਸੋਚ ਵਰਗੇ ਖੇਤਰਾਂ
ਵਿੱਚ ਹੁਨਰ ਵਿਕਸਿਤ ਕਰਨ ਦੀ ਲੋੜ ਹੋਵੇਗੀ ਤਾਂ ਜੋ GenUI ਸਿਸਟਮਾਂ ਨੂੰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ
ਨਾਲ ਮਾਰਗਦਰਸ਼ਨ ਕੀਤਾ ਜਾ ਸਕੇ।

3. ਯੂਜ਼ਰ ਖੋਜ ਦੀ ਮਹੱਤਤਾ:

• GenUI ਸੰਦਰਭ ਵਿੱਚ ਯੂਜ਼ਰ ਖੋਜ ਹੋਰ ਵੀ ਮਹੱਤਵਪੂਰਨ ਹੋ ਜਾਂਦੀ ਹੈ, ਕਿਉਂਕਿ ਡਿਜ਼ਾਈਨਰਾਂ ਨੂੰ ਨਾ
ਸਿਰਫ਼ ਯੂਜ਼ਰ ਪਸੰਦਾਂ ਨੂੰ, ਬਲਕਿ ਇਹ ਵੀ ਸਮਝਣ ਦੀ ਲੋੜ ਹੈ ਕਿ ਵੱਖ-ਵੱਖ ਸੰਦਰਭਾਂ ਵਿੱਚ ਇਹ
ਪਸੰਦਾਂ ਅਤੇ ਲੋੜਾਂ ਕਿਵੇਂ ਬਦਲਦੀਆਂ ਹਨ।

• ਨਿਰੰਤਰਯੂਜ਼ਰ ਟੈਸਟਿੰਗਅਤੇ ਫੀਡਬੈਕ ਲੂਪ ਪ੍ਰਭਾਵਸ਼ਾਲੀਇੰਟਰਫੇਸ ਤਿਆਰਕਰਨਲਈਏਆਈ
ਦੀ ਯੋਗਤਾ ਨੂੰ ਸੁਧਾਰਨ ਅਤੇ ਬਿਹਤਰ ਬਣਾਉਣ ਲਈ ਜ਼ਰੂਰੀ ਹੋਣਗੇ।

4. ਪਰਿਵਰਤਨਸ਼ੀਲਤਾ ਲਈ ਡਿਜ਼ਾਈਨ:

• ਇੱਕ “ਸੰਪੂਰਨ” ਇੰਟਰਫੇਸ ਬਣਾਉਣ ਦੀ ਬਜਾਏ, ਡਿਜ਼ਾਈਨਰਾਂ ਨੂੰ ਕਈ ਸੰਭਾਵੀ ਵਿਭਿੰਨਤਾਵਾਂ ’ਤੇ
ਵਿਚਾਰ ਕਰਨ ਦੀ ਲੋੜ ਹੋਵੇਗੀ ਅਤੇ ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਹੋਵੇਗਾ ਕਿ ਸਿਸਟਮ ਵੱਖ-ਵੱਖ ਯੂਜ਼ਰ
ਲੋੜਾਂ ਲਈ ਢੁਕਵੇਂ ਇੰਟਰਫੇਸ ਤਿਆਰ ਕਰ ਸਕੇ।

• ਇਸ ਵਿੱਚ ਸੀਮਾ ਮਾਮਲਿਆਂ ਲਈ ਡਿਜ਼ਾਈਨ ਕਰਨਾ ਅਤੇ ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਸ਼ਾਮਲ ਹੈ ਕਿ
ਤਿਆਰ ਕੀਤੇ ਇੰਟਰਫੇਸ ਵੱਖ-ਵੱਖ ਕੌਨਫਿਗਰੇਸ਼ਨਾਂ ਵਿੱਚ ਵਰਤੋਂਯੋਗਤਾ ਅਤੇ ਪਹੁੰਚਯੋਗਤਾ ਬਣਾਈ
ਰੱਖਣ।

• ਉਤਪਾਦ ਵਿਭੇਦੀਕਰਨ ਯੂਜ਼ਰ ਮਨੋਵਿਗਿਆਨ ਬਾਰੇ ਵੱਖ-ਵੱਖ ਦ੍ਰਿਸ਼ਟੀਕੋਣਾਂ ਅਤੇ ਵਿਲੱਖਣ ਡਾਟਾ
ਸੈੱਟਾਂ ਅਤੇ ਗਿਆਨ ਅਧਾਰਾਂ ਦੀ ਵਰਤੋਂ ਨਾਲ ਨਵੇਂ ਆਯਾਮ ਲੈਂਦਾ ਹੈ ਜੋ ਪ੍ਰਤੀਯੋਗੀਆਂ ਲਈ
ਉਪਲਬਧ ਨਹੀਂ ਹਨ।

ਚੁਣੌਤੀਆਂ ਅਤੇ ਵਿਚਾਰ

ਜਦੋਂ ਕਿ GenUI ਰੋਮਾਂਚਕ ਸੰਭਾਵਨਾਵਾਂ ਪੇਸ਼ ਕਰਦਾ ਹੈ, ਇਹ ਕਈ ਚੁਣੌਤੀਆਂ ਅਤੇ ਵਿਚਾਰਾਂ ਨੂੰ ਵੀ ਪੇਸ਼ ਕਰਦਾ ਹੈ:

ਜਨਰੇਟਿਵ ਯੂਆਈ 199

1. ਤਕਨੀਕੀ ਸੀਮਾਵਾਂ:

• ਮੌਜੂਦਾ ਏਆਈ ਤਕਨਾਲੋਜੀ, ਭਾਵੇਂ ਉੱਨਤ ਹੈ, ਫਿਰ ਵੀ ਗੁੰਝਲਦਾਰ ਯੂਜ਼ਰ ਇਰਾਦਿਆਂ ਨੂੰ ਸਮਝਣ
ਅਤੇ ਅਸਲ ਸੰਦਰਭ-ਜਾਗਰੂਕ ਇੰਟਰਫੇਸ ਤਿਆਰ ਕਰਨ ਵਿੱਚ ਸੀਮਾਵਾਂ ਹਨ।

• ਇੰਟਰਫੇਸ ਐਲੀਮੈਂਟਸ ਦੀ ਰੀਅਲ-ਟਾਈਮ ਜਨਰੇਸ਼ਨ ਨਾਲ ਜੁੜੀਆਂ ਪਰਫਾਰਮੈਂਸ ਸਮੱਸਿਆਵਾਂ,
ਖ਼ਾਸ ਕਰਕੇ ਘੱਟ ਸ਼ਕਤੀਸ਼ਾਲੀ ਡਿਵਾਈਸਾਂ ’ਤੇ।

2. ਡਾਟਾ ਲੋੜਾਂ:

• ਵਰਤੋਂ ਦੇ ਮਾਮਲੇ ’ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ, ਪ੍ਰਭਾਵਸ਼ਾਲੀ GenUI ਸਿਸਟਮਾਂ ਨੂੰ ਨਿੱਜੀ ਇੰਟਰਫੇਸ
ਤਿਆਰ ਕਰਨ ਲਈ ਯੂਜ਼ਰ ਡਾਟਾ ਦੀ ਕਾਫ਼ੀ ਮਾਤਰਾ ਦੀ ਲੋੜ ਹੋ ਸਕਦੀ ਹੈ।

• ਪ੍ਰਮਾਣਿਕ ਯੂਜ਼ਰ ਡਾਟਾ ਨੂੰ ਨੈਤਿਕ ਤੌਰ ’ਤੇ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀਆਂ ਚੁਣੌਤੀਆਂ ਡਾਟਾ ਪਰਦੇਦਾਰੀ ਅਤੇ
ਸੁਰੱਖਿਆ ਬਾਰੇ ਚਿੰਤਾਵਾਂ ਪੈਦਾ ਕਰਦੀਆਂ ਹਨ, ਨਾਲ ਹੀ GenUI ਮਾਡਲਾਂ ਨੂੰ ਸਿਖਲਾਈ ਦੇਣ ਲਈ
ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਡਾਟਾ ਵਿੱਚ ਸੰਭਾਵੀ ਪੱਖਪਾਤ।

3. ਵਰਤੋਂਯੋਗਤਾ ਅਤੇ ਇਕਸਾਰਤਾ:

• ਘੱਟੋ-ਘੱਟ ਜਦੋਂ ਤੱਕ ਇਹਅਭਿਆਸਵਿਆਪਕ ਨਹੀਂ ਹੋ ਜਾਂਦਾ, ਲਗਾਤਾਰ ਬਦਲਦੇ ਇੰਟਰਫੇਸਾਂ ਵਾਲੀ
ਐਪਲੀਕੇਸ਼ਨ ਵਰਤੋਂਯੋਗਤਾ ਸਮੱਸਿਆਵਾਂ ਦਾ ਕਾਰਨ ਬਣ ਸਕਦੀ ਹੈ, ਕਿਉਂਕਿ ਯੂਜ਼ਰਾਂ ਨੂੰ ਜਾਣੇ-ਪਛਾਣੇ
ਐਲੀਮੈਂਟਸ ਲੱਭਣ ਜਾਂ ਕੁਸ਼ਲਤਾ ਨਾਲ ਨੈਵੀਗੇਟ ਕਰਨ ਵਿੱਚ ਮੁਸ਼ਕਲ ਹੋ ਸਕਦੀ ਹੈ।

• ਨਿੱਜੀਕਰਨ ਅਤੇ ਇੱਕ ਸਥਿਰ, ਸਿੱਖਣਯੋਗ ਇੰਟਰਫੇਸ ਬਣਾਈ ਰੱਖਣ ਵਿਚਕਾਰ ਸੰਤੁਲਨ ਬਣਾਉਣਾ
ਮਹੱਤਵਪੂਰਨ ਹੋਵੇਗਾ।

4. ਏਆਈ ’ਤੇ ਜ਼ਿਆਦਾ ਨਿਰਭਰਤਾ:

• ਏਆਈਸਿਸਟਮਾਂ ਨੂੰ ਡਿਜ਼ਾਈਨ ਫੈਸਲੇ ਜ਼ਿਆਦਾ ਸੌਂਪਣ ਦਾ ਜੋਖਮ ਹੈ, ਜੋ ਸੰਭਾਵੀ ਤੌਰ ’ਤੇ ਬੇਪ੍ਰੇਰਣਾ,
ਸਮੱਸਿਆਤਮਕ, ਜਾਂ ਬਸ ਟੁੱਟੇ ਹੋਏ ਇੰਟਰਫੇਸ ਵਿਕਲਪਾਂ ਵੱਲ ਲੈ ਜਾ ਸਕਦਾ ਹੈ।

• ਮਨੁੱਖੀ ਨਿਗਰਾਨੀ ਅਤੇ ਏਆਈ-ਜਨਰੇਟਡ ਡਿਜ਼ਾਈਨਾਂ ਨੂੰ ਓਵਰਰਾਈਡ ਕਰਨ ਦੀ ਯੋਗਤਾ
ਨਜ਼ਦੀਕੀ ਭਵਿੱਖ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਰਹੇਗੀ।

5. ਪਹੁੰਚਯੋਗਤਾ ਸੰਬੰਧੀ ਚਿੰਤਾਵਾਂ:

ਜਨਰੇਟਿਵ ਯੂਆਈ 200

• ਗਤੀਸ਼ੀਲ ਤੌਰ ’ਤੇ ਤਿਆਰ ਕੀਤੇ ਇੰਟਰਫੇਸਾਂ ਨੂੰ ਅਪਾਹਜ ਯੂਜ਼ਰਾਂ ਲਈ ਪਹੁੰਚਯੋਗ ਬਣਾਈ ਰੱਖਣਾ
ਬਿਲਕੁਲ ਨਵੀਆਂ ਚੁਣੌਤੀਆਂ ਪੇਸ਼ ਕਰਦਾ ਹੈ, ਜੋ ਕਿ ਚਿੰਤਾਜਨਕ ਹੈ ਕਿਉਂਕਿ ਆਮ ਸਿਸਟਮਾਂ ਵਿੱਚ
ਪਹੁੰਚਯੋਗਤਾ ਦੀ ਪਾਲਣਾ ਦਾ ਪੱਧਰ ਘੱਟ ਹੈ।

• ਦੂਜੇ ਪਾਸੇ, AI ਡਿਜ਼ਾਈਨਰਾਂ ਨੂੰ ਅੰਦਰੂਨੀ ਪਹੁੰਚਯੋਗਤਾ ਦੀ ਚਿੰਤਾ ਨਾਲ ਲਾਗੂ ਕੀਤਾ ਜਾ ਸਕਦਾ
ਹੈ, ਅਤੇ ਗੈਰ-ਅਪਾਹਜ ਯੂਜ਼ਰਾਂ ਲਈ UI ਬਣਾਉਣ ਵਾਂਗ ਹੀ ਤੁਰੰਤ ਪਹੁੰਚਯੋਗ ਇੰਟਰਫੇਸ ਬਣਾਉਣ
ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ।

• ਕਿਸੇ ਵੀ ਤਰ੍ਹਾਂ, GenUI ਸਿਸਟਮਾਂ ਨੂੰ ਮਜ਼ਬੂਤ ਪਹੁੰਚਯੋਗਤਾ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ਾਂ ਅਤੇ ਟੈਸਟਿੰਗ
ਪ੍ਰਕਿਰਿਆਵਾਂ ਨਾਲ ਡਿਜ਼ਾਈਨ ਕੀਤਾ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ।

6. ਯੂਜ਼ਰ ਭਰੋਸਾ ਅਤੇ ਪਾਰਦਰਸ਼ਤਾ:

• ਯੂਜ਼ਰ ਅਜਿਹੇ ਇੰਟਰਫੇਸਾਂ ਨਾਲ ਬੇਆਰਾਮ ਮਹਿਸੂਸ ਕਰ ਸਕਦੇ ਹਨ ਜੋ ਉਨ੍ਹਾਂ ਬਾਰੇ “ਬਹੁਤ ਜ਼ਿਆਦਾ
ਜਾਣਦੇ” ਜਾਪਦੇ ਹਨ ਜਾਂ ਅਜਿਹੇ ਤਰੀਕਿਆਂ ਨਾਲ ਬਦਲਦੇ ਹਨ ਜੋ ਉਹ ਨਹੀਂ ਸਮਝਦੇ।

• ਯੂਜ਼ਰ ਦਾ ਭਰੋਸਾ ਬਣਾਉਣ ਲਈਇਹ ਦੱਸਣਾ ਮਹੱਤਵਪੂਰਨ ਹੋਵੇਗਾ ਕਿ ਇੰਟਰਫੇਸ ਕਿਵੇਂ ਅਤੇ ਕਿਉਂ
ਨਿੱਜੀ ਬਣਾਏ ਜਾਂਦੇ ਹਨ।

ਭਵਿੱਖ ਦਾ ਨਜ਼ਰੀਆ ਅਤੇ ਮੌਕੇ

ਜਨਰੇਟਿਵ UI (GenUI) ਦਾ ਭਵਿੱਖ ਡਿਜੀਟਲ ਉਤਪਾਦਾਂ ਅਤੇ ਸੇਵਾਵਾਂ ਨਾਲ ਸਾਡੀ ਅੰਤਰਕਿਰਿਆ ਦੇ ਤਰੀਕੇ
ਨੂੰ ਕ੍ਰਾਂਤੀਕਾਰੀ ਬਣਾਉਣ ਲਈ ਵਿਸ਼ਾਲ ਵਾਅਦਾ ਰੱਖਦਾ ਹੈ। ਜਿਵੇਂ-ਜਿਵੇਂ ਇਹ ਤਕਨਾਲੋਜੀ ਵਿਕਸਿਤ ਹੁੰਦੀ ਜਾਂਦੀ
ਹੈ, ਅਸੀਂ ਯੂਜ਼ਰ ਇੰਟਰਫੇਸਾਂ ਦੇ ਡਿਜ਼ਾਈਨ, ਲਾਗੂਕਰਨ, ਅਤੇ ਅਨੁਭਵ ਵਿੱਚ ਇੱਕ ਭੂਚਾਲੀ ਬਦਲਾਅ ਦੀ ਉਮੀਦ
ਕਰ ਸਕਦੇ ਹਾਂ। ਮੈਂ ਸੋਚਦਾ ਹਾਂ ਕਿ GenUI ਉਹ ਵਰਤਾਰਾ ਹੈ ਜੋ ਆਖਰਕਾਰ ਸਾਡੇ ਸਾਫਟਵੇਅਰ ਨੂੰ ਉਸ ਖੇਤਰ ਵਿੱਚ
ਧੱਕ ਦੇਵੇਗਾ ਜੋ ਹੁਣ ਵਿਗਿਆਨ-ਕਲਪਨਾ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ।

GenUI ਦੀਆਂ ਸਭ ਤੋਂ ਰੋਮਾਂਚਕ ਸੰਭਾਵਨਾਵਾਂ ਵਿੱਚੋਂ ਇੱਕ ਇਸਦੀ ਪਹੁੰਚਯੋਗਤਾ ਨੂੰ ਇੱਕ ਵਿਸ਼ਾਲ ਪੱਧਰ ’ਤੇ
ਵਧਾਉਣ ਦੀ ਸਮਰੱਥਾ ਹੈ ਜੋ ਸਿਰਫ਼ ਇਹ ਯਕੀਨੀ ਬਣਾਉਣ ਤੋਂ ਅੱਗੇ ਜਾਂਦੀ ਹੈ ਕਿ ਗੰਭੀਰ ਅਪਾਹਜਤਾ ਵਾਲੇ ਲੋਕਾਂ
ਨੂੰ ਤੁਹਾਡੇ ਸਾਫਟਵੇਅਰ ਦੀ ਵਰਤੋਂ ਤੋਂ ਪੂਰੀ ਤਰ੍ਹਾਂ ਬਾਹਰ ਨਾ ਰੱਖਿਆ ਜਾਵੇ। ਇੰਟਰਫੇਸਾਂ ਨੂੰ ਵਿਅਕਤੀਗਤ ਯੂਜ਼ਰ
ਦੀਆਂ ਲੋੜਾਂ ਅਨੁਸਾਰ ਆਪਣੇ ਆਪ ਢਾਲ ਕੇ, GenUI ਡਿਜੀਟਲ ਅਨੁਭਵਾਂ ਨੂੰ ਪਹਿਲਾਂ ਨਾਲੋਂ ਵੀ ਵੱਧ ਸਮਾਵੇਸ਼ੀ
ਬਣਾ ਸਕਦਾ ਹੈ। ਅਜਿਹੇ ਇੰਟਰਫੇਸਾਂ ਦੀ ਕਲਪਨਾ ਕਰੋ ਜੋ ਛੋਟੇ ਜਾਂ ਨਜ਼ਰ ਦੀ ਕਮਜ਼ੋਰੀ ਵਾਲੇ ਯੂਜ਼ਰਾਂ ਲਈ ਵੱਡਾ
ਟੈਕਸਟ ਜਾਂ ਬੌਧਿਕ ਅਪਾਹਜਤਾ ਵਾਲੇ ਲੋਕਾਂ ਲਈ ਸਰਲ ਲੇਆਉਟ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਨਿਰਵਿਘਨ ਢੰਗ ਨਾਲ

ਜਨਰੇਟਿਵ ਯੂਆਈ 201

ਅਨੁਕੂਲ ਹੋ ਜਾਂਦੇ ਹਨ, ਇਹ ਸਭ ਮੈਨੂਅਲ ਕੌਂਫਿਗਰੇਸ਼ਨ ਜਾਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਦੇ ਵੱਖਰੇ “ਪਹੁੰਚਯੋਗ” ਵਰਜਨਾਂ ਦੀ
ਲੋੜ ਤੋਂ ਬਿਨਾਂ।

ਨਿੱਜੀਕਰਨ ਦੀਆਂ ਸਮਰੱਥਾਵਾਂ ਡਿਜੀਟਲ ਉਤਪਾਦਾਂ ਦੀ ਵਿਸ਼ਾਲ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਵਧੀ ਹੋਈ ਯੂਜ਼ਰ ਸ਼ਮੂਲੀਅਤ,
ਸੰਤੁਸ਼ਟੀ, ਅਤੇ ਵਫ਼ਾਦਾਰੀ ਨੂੰ ਚਲਾਉਣ ਦੀ ਸੰਭਾਵਨਾ ਹੈ। ਜਿਵੇਂ-ਜਿਵੇਂ ਇੰਟਰਫੇਸ ਵਿਅਕਤੀਗਤ ਤਰਜੀਹਾਂ ਅਤੇ
ਵਿਵਹਾਰਾਂ ਦੇ ਅਨੁਕੂਲ ਹੁੰਦੇ ਜਾਂਦੇ ਹਨ, ਯੂਜ਼ਰ ਡਿਜੀਟਲ ਅਨੁਭਵਾਂ ਨੂੰ ਵਧੇਰੇ ਸਹਿਜ ਅਤੇ ਮਨੋਰੰਜਕ ਪਾਉਣਗੇ, ਜੋ
ਸੰਭਾਵਤ ਤੌਰ ’ਤੇ ਤਕਨਾਲੋਜੀ ਨਾਲ ਡੂੰਘੇ ਅਤੇ ਵਧੇਰੇ ਅਰਥਪੂਰਨ ਅੰਤਰਕਿਰਿਆਵਾਂ ਵੱਲ ਲੈ ਜਾਵੇਗਾ।

GenUI ਵਿੱਚ ਨਵੇਂ ਯੂਜ਼ਰਾਂ ਲਈ ਆਨਬੋਰਡਿੰਗ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਬਦਲਣ ਦੀ ਸਮਰੱਥਾ ਵੀ ਹੈ। ਸਹਿਜ, ਨਿੱਜੀ
ਪਹਿਲੇ-ਵਾਰ ਯੂਜ਼ਰ ਅਨੁਭਵ ਬਣਾ ਕੇ ਜੋ ਹਰੇਕ ਯੂਜ਼ਰ ਦੀ ਮੁਹਾਰਤ ਦੇ ਪੱਧਰ ਦੇ ਅਨੁਸਾਰ ਤੇਜ਼ੀ ਨਾਲ ਢਲ ਜਾਂਦੇ
ਹਨ, GenUI ਨਵੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਨਾਲ ਜੁੜੀ ਸਿੱਖਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਕਾਫ਼ੀ ਘਟਾ ਸਕਦਾ ਹੈ। ਇਹ
ਤੇਜ਼ ਅਪਣਾਉਣ ਦੀ ਦਰ ਅਤੇ ਨਵੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਅਤੇ ਕਾਰਜਸ਼ੀਲਤਾਵਾਂ ਦੀ ਖੋਜ ਕਰਨ ਵਿੱਚ ਵਧੇ ਹੋਏ ਯੂਜ਼ਰ
ਆਤਮਵਿਸ਼ਵਾਸ ਵੱਲ ਲੈ ਜਾ ਸਕਦਾ ਹੈ।

ਇੱਕ ਹੋਰ ਰੋਮਾਂਚਕ ਸੰਭਾਵਨਾ GenUI ਦੀ ਵੱਖ-ਵੱਖ ਡਿਵਾਈਸਾਂ ਅਤੇ ਪਲੇਟਫਾਰਮਾਂ ’ਤੇ ਇੱਕ ਸਥਿਰ ਯੂਜ਼ਰ
ਅਨੁਭਵ ਨੂੰ ਬਣਾਈ ਰੱਖਣ ਦੀ ਯੋਗਤਾ ਹੈ, ਜਦੋਂ ਕਿ ਹਰ ਖਾਸ ਵਰਤੋਂ ਦੇ ਸੰਦਰਭ ਲਈ ਇਸਨੂੰ ਅਨੁਕੂਲ ਬਣਾਇਆ
ਜਾਂਦਾ ਹੈ। ਇਹ ਸਮਾਰਟਫੋਨਾਂ ਅਤੇ ਟੈਬਲੇਟਾਂ ਤੋਂ ਲੈ ਕੇ ਡੈਸਕਟੌਪ ਕੰਪਿਊਟਰਾਂ ਅਤੇ ਵਧਾਈ ਹੋਈ ਅਸਲੀਅਤ ਐਨਕਾਂ
ਵਰਗੀਆਂ ਉੱਭਰ ਰਹੀਆਂ ਤਕਨਾਲੋਜੀਆਂ ਤੱਕ, ਵੱਧ ਰਹੇ ਵੰਡੇ ਹੋਏ ਡਿਵਾਈਸ ਲੈਂਡਸਕੇਪ ਵਿੱਚ ਸੁਸੰਗਤ ਅਨੁਭਵ
ਪ੍ਰਦਾਨ ਕਰਨ ਦੀ ਲੰਬੇ ਸਮੇਂ ਤੋਂ ਚੱਲੀ ਆ ਰਹੀ ਚੁਣੌਤੀ ਨੂੰ ਹੱਲ ਕਰ ਸਕਦਾ ਹੈ।

GenUI ਦੀ ਡਾਟਾ-ਸੰਚਾਲਿਤ ਪ੍ਰਕਿਰਤੀ UI ਡਿਜ਼ਾਈਨ ਵਿੱਚ ਤੇਜ਼ ਦੁਹਰਾਓ ਅਤੇ ਸੁਧਾਰ ਲਈ ਮੌਕੇ ਖੋਲ੍ਹਦੀ
ਹੈ। ਇਸ ਬਾਰੇ ਅਸਲ-ਸਮੇਂ ਦਾ ਡਾਟਾ ਇਕੱਠਾ ਕਰਕੇ ਕਿ ਯੂਜ਼ਰ ਜਨਰੇਟ ਕੀਤੇ ਇੰਟਰਫੇਸਾਂ ਨਾਲ ਕਿਵੇਂ ਇੰਟਰੈਕਟ
ਕਰਦੇ ਹਨ, ਡਿਜ਼ਾਈਨਰ ਅਤੇ ਡਿਵੈਲਪਰ ਯੂਜ਼ਰ ਵਿਵਹਾਰ ਅਤੇ ਤਰਜੀਹਾਂ ਬਾਰੇ ਬੇਮਿਸਾਲ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਪ੍ਰਾਪਤ
ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਫੀਡਬੈਕ ਲੂਪ UI ਡਿਜ਼ਾਈਨ ਵਿੱਚ ਲਗਾਤਾਰ ਸੁਧਾਰ ਲਿਆ ਸਕਦਾ ਹੈ, ਜੋ ਧਾਰਨਾਵਾਂ ਜਾਂ
ਸੀਮਿਤ ਯੂਜ਼ਰ ਟੈਸਟਿੰਗ ਦੀ ਬਜਾਏ ਅਸਲ ਵਰਤੋਂ ਦੇ ਪੈਟਰਨਾਂ ਦੁਆਰਾ ਸੰਚਾਲਿਤ ਹੈ।

ਇਸ ਬਦਲਾਅ ਲਈ ਤਿਆਰੀ ਕਰਨ ਵਾਸਤੇ, ਡਿਜ਼ਾਈਨਰਾਂ ਨੂੰ ਆਪਣੇ ਹੁਨਰ ਸੈੱਟ ਅਤੇ ਮਾਨਸਿਕਤਾ ਨੂੰ ਵਿਕਸਿਤ
ਕਰਨ ਦੀ ਲੋੜ ਹੋਵੇਗੀ। ਧਿਆਨ ਸਥਿਰ ਲੇਆਉਟ ਬਣਾਉਣ ਤੋਂ ਵਿਆਪਕ ਡਿਜ਼ਾਈਨ ਸਿਸਟਮ ਅਤੇ ਦਿਸ਼ਾ-
ਨਿਰਦੇਸ਼ ਵਿਕਸਿਤ ਕਰਨ ਵੱਲ ਬਦਲ ਜਾਵੇਗਾ ਜੋ AI-ਸੰਚਾਲਿਤ ਇੰਟਰਫੇਸ ਜਨਰੇਸ਼ਨ ਨੂੰ ਸੂਚਿਤ ਕਰ ਸਕਦੇ ਹਨ।
ਡਿਜ਼ਾਈਨਰਾਂ ਨੂੰ GenUI ਸਿਸਟਮਾਂ ਨੂੰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਮਾਰਗਦਰਸ਼ਨ ਕਰਨ ਲਈ ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ,
AI ਤਕਨਾਲੋਜੀਆਂ, ਅਤੇ ਸਿਸਟਮ ਸੋਚ ਦੀ ਡੂੰਘੀ ਸਮਝ ਵਿਕਸਿਤ ਕਰਨ ਦੀ ਲੋੜ ਹੋਵੇਗੀ।

ਇਸ ਤੋਂ ਇਲਾਵਾ, ਜਿਵੇਂ-ਜਿਵੇਂ GenUI ਡਿਜ਼ਾਈਨ ਅਤੇ ਤਕਨਾਲੋਜੀ ਵਿਚਕਾਰ ਦੀਆਂ ਲਾਈਨਾਂ ਨੂੰ ਧੁੰਦਲਾ

ਜਨਰੇਟਿਵ ਯੂਆਈ 202

ਕਰਦਾ ਹੈ, ਡਿਜ਼ਾਈਨਰਾਂ ਨੂੰ ਡਿਵੈਲਪਰਾਂ ਅਤੇ ਡਾਟਾ ਵਿਗਿਆਨੀਆਂ ਨਾਲ ਵਧੇਰੇ ਨੇੜਿਓਂ ਸਹਿਯੋਗ ਕਰਨ ਦੀ ਲੋੜ
ਹੋਵੇਗੀ। ਇਹ ਅੰਤਰ-ਅਨੁਸ਼ਾਸਨੀ ਪਹੁੰਚ GenUI ਸਿਸਟਮ ਬਣਾਉਣ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਹੋਵੇਗੀ ਜੋ ਨਾ ਸਿਰਫ਼
ਦ੍ਰਿਸ਼ਟੀਗਤ ਤੌਰ ’ਤੇ ਆਕਰਸ਼ਕ ਅਤੇ ਯੂਜ਼ਰ-ਅਨੁਕੂਲ ਹਨ, ਬਲਕਿ ਤਕਨੀਕੀ ਤੌਰ ’ਤੇ ਮਜ਼ਬੂਤ ਅਤੇ ਨੈਤਿਕ ਤੌਰ
’ਤੇ ਸਹੀ ਵੀ ਹਨ।

ਜਿਵੇਂ-ਜਿਵੇਂ ਤਕਨਾਲੋਜੀ ਪਰਿਪੱਕ ਹੁੰਦੀ ਹੈ, GenUI ਦੇ ਨੈਤਿਕ ਪ੍ਰਭਾਵ ਵੀ ਸਾਹਮਣੇ ਆਉਣਗੇ। ਡਿਜ਼ਾਈਨਰ
ਇੰਟਰਫੇਸ ਡਿਜ਼ਾਈਨ ਵਿੱਚ ਜ਼ਿੰਮੇਵਾਰ AI ਵਰਤੋਂ ਲਈ ਫਰੇਮਵਰਕ ਵਿਕਸਿਤ ਕਰਨ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ
ਨਿਭਾਉਣਗੇ, ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦੇ ਹੋਏ ਕਿ ਨਿੱਜੀਕਰਨ ਯੂਜ਼ਰ ਅਨੁਭਵਾਂ ਨੂੰ ਵਧਾਉਂਦਾ ਹੈ, ਪਰ ਗੋਪਨੀਯਤਾ ਨੂੰ
ਖ਼ਤਰੇ ਵਿੱਚ ਪਾਏ ਬਿਨਾਂ ਜਾਂ ਅਨੈਤਿਕ ਤਰੀਕਿਆਂ ਨਾਲ ਯੂਜ਼ਰ ਵਿਵਹਾਰ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕੀਤੇ ਬਿਨਾਂ।

ਜਿਵੇਂ ਅਸੀਂ ਭਵਿੱਖ ਵੱਲ ਦੇਖਦੇ ਹਾਂ, GenUI ਰੋਮਾਂਚਕ ਮੌਕੇ ਅਤੇ ਮਹੱਤਵਪੂਰਨ ਚੁਣੌਤੀਆਂ ਦੋਵੇਂ ਪੇਸ਼ ਕਰਦਾ ਹੈ।
ਇਸ ਵਿੱਚ ਦੁਨੀਆ ਭਰ ਦੇ ਯੂਜ਼ਰਾਂ ਲਈ ਵਧੇਰੇ ਸਹਿਜ, ਕੁਸ਼ਲ, ਅਤੇ ਸੰਤੁਸ਼ਟੀਜਨਕ ਡਿਜੀਟਲ ਅਨੁਭਵ ਬਣਾਉਣ
ਦੀ ਸਮਰੱਥਾ ਹੈ। ਭਾਵੇਂ ਇਸ ਲਈ ਡਿਜ਼ਾਈਨਰਾਂ ਨੂੰ ਅਨੁਕੂਲ ਹੋਣ ਅਤੇ ਨਵੇਂ ਹੁਨਰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਲੋੜ ਹੋਵੇਗੀ,
ਇਹ ਡੂੰਘੇ ਅਤੇ ਅਰਥਪੂਰਨ ਤਰੀਕਿਆਂ ਨਾਲ ਮਨੁੱਖ-ਕੰਪਿਊਟਰ ਇੰਟਰੈਕਸ਼ਨ ਦੇ ਭਵਿੱਖ ਨੂੰ ਆਕਾਰ ਦੇਣ ਦਾ ਇੱਕ
ਬੇਮਿਸਾਲ ਮੌਕਾ ਵੀ ਪੇਸ਼ ਕਰਦਾ ਹੈ। ਪੂਰੀ ਤਰ੍ਹਾਂ ਵਿਕਸਿਤ GenUI ਸਿਸਟਮਾਂ ਵੱਲ ਦੀ ਯਾਤਰਾ ਨਿਸ਼ਚਿਤ ਤੌਰ
’ਤੇ ਗੁੰਝਲਦਾਰ ਹੋਵੇਗੀ, ਪਰ ਬਿਹਤਰ ਯੂਜ਼ਰ ਅਨੁਭਵਾਂ ਅਤੇ ਡਿਜੀਟਲ ਪਹੁੰਚਯੋਗਤਾ ਦੇ ਰੂਪ ਵਿੱਚ ਸੰਭਾਵੀ ਇਨਾਮ
ਇਸਨੂੰ ਇੱਕ ਅਜਿਹਾ ਭਵਿੱਖ ਬਣਾਉਂਦੇ ਹਨ ਜਿਸ ਲਈ ਯਤਨ ਕਰਨ ਦੀ ਕੀਮਤ ਹੈ।

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ

“ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ” ਪਹੁੰਚ ਐਪਲੀਕੇਸ਼ਨਾਂ ਦੇ ਅੰਦਰ ਜਟਿਲ ਵਰਕਫਲੋ ਨੂੰ ਗਤੀਸ਼ੀਲ ਢੰਗ
ਨਾਲ ਔਰਕੈਸਟ੍ਰੇਟ ਅਤੇ ਅਨੁਕੂਲ ਕਰਨ ਲਈ ਏ.ਆਈ. ਕੰਪੋਨੈਂਟਸ ਦੀ ਵਰਤੋਂ ’ਤੇ ਕੇਂਦਰਿਤ ਹੈ। ਇਸਦਾ ਉਦੇਸ਼
ਅਜਿਹੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਬਣਾਉਣਾ ਹੈ ਜੋ ਵਧੇਰੇ ਕੁਸ਼ਲ, ਪ੍ਰਤੀਕਿਰਿਆਸ਼ੀਲ, ਅਤੇ ਰੀਅਲ-ਟਾਈਮ ਡੇਟਾ ਅਤੇ
ਸੰਦਰਭ ਦੇ ਅਨੁਕੂਲ ਹੋਣ।

ਇਸ ਅਧਿਆਇ ਵਿੱਚ, ਅਸੀਂ ਉਨ੍ਹਾਂ ਮੁੱਖ ਸਿਧਾਂਤਾਂ ਅਤੇ ਪੈਟਰਨਾਂ ਦੀ ਪੜਚੋਲ ਕਰਾਂਗੇ ਜੋ ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ
ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ ਪਹੁੰਚ ਦਾ ਆਧਾਰ ਹਨ। ਅਸੀਂ ਵਿਚਾਰ ਕਰਾਂਗੇ ਕਿ ਏ.ਆਈ. ਨੂੰ ਕਾਰਜਾਂ ਨੂੰ ਬੁੱਧੀਮਾਨੀ ਨਾਲ ਰੂਟ
ਕਰਨ, ਫੈਸਲਾ ਲੈਣ ਨੂੰ ਸਵੈਚਾਲਿਤ ਕਰਨ, ਅਤੇ ਯੂਜ਼ਰ ਵਿਵਹਾਰ, ਸਿਸਟਮ ਪ੍ਰਦਰਸ਼ਨ, ਅਤੇ ਵਪਾਰਕ ਨਿਯਮਾਂ
ਵਰਗੇ ਵੱਖ-ਵੱਖ ਕਾਰਕਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਵਰਕਫਲੋ ਨੂੰ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਅਨੁਕੂਲ ਕਰਨ ਲਈ ਕਿਵੇਂ ਵਰਤਿਆ
ਜਾ ਸਕਦਾ ਹੈ। ਵਿਵਹਾਰਕ ਉਦਾਹਰਣਾਂ ਅਤੇ ਅਸਲ-ਸੰਸਾਰ ਦੇ ਸਥਿਤੀਆਂ ਰਾਹੀਂ, ਅਸੀਂ ਐਪਲੀਕੇਸ਼ਨ ਵਰਕਫਲੋ ਨੂੰ
ਸਟ੍ਰੀਮਲਾਈਨ ਅਤੇ ਅਨੁਕੂਲ ਕਰਨ ਵਿੱਚ ਏ.ਆਈ. ਦੀ ਪਰਿਵਰਤਨਕਾਰੀ ਸੰਭਾਵਨਾ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਾਂਗੇ।

ਭਾਵੇਂ ਤੁਸੀਂ ਜਟਿਲ ਵਪਾਰਕ ਪ੍ਰਕਿਰਿਆਵਾਂ ਵਾਲੀਆਂ ਐਂਟਰਪ੍ਰਾਈਜ਼ ਐਪਲੀਕੇਸ਼ਨਾਂ ਜਾਂ ਗਤੀਸ਼ੀਲ ਯੂਜ਼ਰ
ਯਾਤਰਾਵਾਂ ਵਾਲੀਆਂ ਉਪਭੋਗਤਾ-ਕੇਂਦਰਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਬਣਾ ਰਹੇ ਹੋ, ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਚਰਚਾ ਕੀਤੇ ਗਏ

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 204

ਪੈਟਰਨ ਅਤੇ ਤਕਨੀਕਾਂ ਤੁਹਾਨੂੰ ਬੁੱਧੀਮਾਨ ਅਤੇ ਕੁਸ਼ਲ ਵਰਕਫਲੋ ਬਣਾਉਣ ਲਈ ਗਿਆਨ ਅਤੇ ਟੂਲਸ ਨਾਲ ਲੈਸ
ਕਰਨਗੀਆਂ ਜੋ ਸਮੁੱਚੇ ਯੂਜ਼ਰ ਅਨੁਭਵ ਨੂੰ ਵਧਾਉਂਦੀਆਂ ਹਨ ਅਤੇ ਵਪਾਰਕ ਮੁੱਲ ਨੂੰ ਵਧਾਉਂਦੀਆਂ ਹਨ।

ਵਪਾਰਕ ਲੋੜ

ਵਰਕਫਲੋ ਪ੍ਰਬੰਧਨ ਦੇ ਪਰੰਪਰਾਗਤ ਤਰੀਕੇ ਅਕਸਰ ਪਹਿਲਾਂ ਤੋਂ ਨਿਰਧਾਰਿਤ ਨਿਯਮਾਂ ਅਤੇ ਸਥਿਰ ਫੈਸਲਾ ਰੁੱਖਾਂ
’ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ, ਜੋ ਕਠੋਰ, ਅਲਚਕਦਾਰ, ਅਤੇ ਆਧੁਨਿਕ ਐਪਲੀਕੇਸ਼ਨਾਂ ਦੀ ਗਤੀਸ਼ੀਲ ਪ੍ਰਕਿਰਤੀ ਨਾਲ
ਨਜਿੱਠਣ ਵਿੱਚ ਅਸਮਰੱਥ ਹੋ ਸਕਦੇ ਹਨ।

ਇੱਕ ਅਜਿਹੀ ਸਥਿਤੀ ’ਤੇ ਵਿਚਾਰ ਕਰੋ ਜਿੱਥੇ ਇੱਕ ਈ-ਕਾਮਰਸ ਐਪਲੀਕੇਸ਼ਨ ਨੂੰ ਇੱਕ ਜਟਿਲ ਆਰਡਰ ਪੂਰਤੀ
ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਸੰਭਾਲਣ ਦੀ ਲੋੜ ਹੈ। ਵਰਕਫਲੋ ਵਿੱਚ ਆਰਡਰ ਪ੍ਰਮਾਣੀਕਰਨ, ਇਨਵੈਂਟਰੀ ਚੈੱਕ, ਭੁਗਤਾਨ
ਪ੍ਰੋਸੈਸਿੰਗ, ਸ਼ਿਪਿੰਗ, ਅਤੇ ਗਾਹਕ ਸੂਚਨਾਵਾਂ ਵਰਗੇ ਕਈ ਕਦਮ ਸ਼ਾਮਲ ਹੋ ਸਕਦੇ ਹਨ। ਹਰੇਕ ਕਦਮ ਦੇ ਆਪਣੇ
ਨਿਯਮ, ਨਿਰਭਰਤਾਵਾਂ, ਬਾਹਰੀ ਏਕੀਕਰਣ, ਅਤੇ ਅਪਵਾਦ ਸੰਭਾਲ ਵਿਧੀਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਅਜਿਹੇ ਵਰਕਫਲੋ
ਨੂੰ ਮੈਨੂਅਲ ਤੌਰ ’ਤੇ ਜਾਂ ਹਾਰਡਕੋਡਡ ਲੌਜਿਕ ਰਾਹੀਂ ਪ੍ਰਬੰਧਿਤ ਕਰਨਾ ਜਲਦੀ ਹੀ ਬੋਝਲ, ਗਲਤੀਆਂ-ਭਰਪੂਰ, ਅਤੇ
ਰੱਖ-ਰਖਾਅ ਵਿੱਚ ਮੁਸ਼ਕਲ ਹੋ ਸਕਦਾ ਹੈ।

ਇਸ ਤੋਂ ਇਲਾਵਾ, ਜਿਵੇਂ-ਜਿਵੇਂ ਐਪਲੀਕੇਸ਼ਨ ਦਾ ਪੱਧਰ ਵੱਧਦਾ ਹੈ ਅਤੇ ਇੱਕੋ ਸਮੇਂ ’ਤੇ ਵਰਤੋਂਕਾਰਾਂ ਦੀ ਗਿਣਤੀ ਵੱਧਦੀ
ਹੈ, ਵਰਕਫਲੋ ਨੂੰ ਰੀਅਲ-ਟਾਈਮ ਡੇਟਾ ਅਤੇ ਸਿਸਟਮ ਪ੍ਰਦਰਸ਼ਨ ਦੇ ਆਧਾਰ ’ਤੇ ਆਪਣੇ ਆਪ ਨੂੰ ਅਨੁਕੂਲ ਅਤੇ
ਆਪਟੀਮਾਈਜ਼ ਕਰਨ ਦੀ ਲੋੜ ਹੋ ਸਕਦੀ ਹੈ। ਉਦਾਹਰਨ ਲਈ, ਵੱਧ ਟ੍ਰੈਫਿਕ ਦੇ ਸਮੇਂ ਦੌਰਾਨ, ਐਪਲੀਕੇਸ਼ਨ ਨੂੰ ਕੁਝ
ਕਾਰਜਾਂ ਨੂੰ ਤਰਜੀਹ ਦੇਣ, ਸਰੋਤਾਂ ਨੂੰ ਕੁਸ਼ਲਤਾ ਨਾਲ ਵੰਡਣ, ਅਤੇ ਵਰਤੋਂਕਾਰ ਦੇ ਤਜਰਬੇ ਨੂੰ ਸੁਚਾਰੂ ਬਣਾਉਣ ਲਈ
ਵਰਕਫਲੋ ਨੂੰ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਅਨੁਕੂਲ ਕਰਨ ਦੀ ਲੋੜ ਹੋ ਸਕਦੀ ਹੈ।

ਇੱਥੇ “ਇੰਟੈਲੀਜੈਂਟ ਵਰਕਫਲੋ ਆਰਕੈਸਟ੍ਰੇਸ਼ਨ” ਪਹੁੰਚ ਕੰਮ ਵਿੱਚ ਆਉਂਦੀ ਹੈ। AI ਕੰਪੋਨੈਂਟਸ ਦੀ ਵਰਤੋਂ ਕਰਕੇ,
ਡਿਵੈਲਪਰ ਅਜਿਹੇ ਵਰਕਫਲੋ ਬਣਾ ਸਕਦੇ ਹਨ ਜੋ ਬੁੱਧੀਮਾਨ, ਅਨੁਕੂਲ, ਅਤੇ ਸਵੈ-ਆਪਟੀਮਾਈਜਿੰਗ ਹਨ। AI
ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਡੇਟਾ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰ ਸਕਦਾ ਹੈ, ਪਿਛਲੇ ਤਜਰਬਿਆਂ ਤੋਂ ਸਿੱਖ ਸਕਦਾ ਹੈ, ਅਤੇ ਵਰਕਫਲੋ ਨੂੰ
ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਚਲਾਉਣ ਲਈ ਰੀਅਲ-ਟਾਈਮ ਵਿੱਚ ਸੂਝਵਾਨ ਫੈਸਲੇ ਲੈ ਸਕਦਾ ਹੈ।

ਮੁੱਖ ਲਾਭ

1. ਵਧੀ ਹੋਈ ਕੁਸ਼ਲਤਾ: AI ਕਾਰਜ ਵੰਡ, ਸਰੋਤ ਵਰਤੋਂ, ਅਤੇ ਵਰਕਫਲੋ ਕਾਰਜਾਂਵਿਧੀ ਨੂੰ ਆਪਟੀਮਾਈਜ਼ ਕਰ
ਸਕਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਤੇਜ਼ ਪ੍ਰੋਸੈਸਿੰਗ ਸਮਾਂ ਅਤੇ ਸਮੁੱਚੀ ਕੁਸ਼ਲਤਾ ਵਿੱਚ ਸੁਧਾਰ ਹੁੰਦਾ ਹੈ।

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 205

2. ਅਨੁਕੂਲਤਾ: AI-ਸੰਚਾਲਿਤ ਵਰਕਫਲੋ ਬਦਲਦੀਆਂ ਸਥਿਤੀਆਂ ਦੇ ਅਨੁਸਾਰ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਢਲ
ਸਕਦੇ ਹਨ, ਜਿਵੇਂ ਕਿ ਵਰਤੋਂਕਾਰ ਮੰਗ ਵਿੱਚ ਉਤਾਰ-ਚੜ੍ਹਾਅ, ਸਿਸਟਮ ਪ੍ਰਦਰਸ਼ਨ, ਜਾਂ ਵਪਾਰਕ ਲੋੜਾਂ,
ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦੇ ਹੋਏ ਕਿ ਐਪਲੀਕੇਸ਼ਨ ਪ੍ਰਤੀਕਿਰਿਆਸ਼ੀਲ ਅਤੇ ਲਚਕਦਾਰ ਰਹੇ।

3. ਸਵੈਚਾਲਿਤ ਫੈਸਲਾ-ਲੈਣਾ: AI ਵਰਕਫਲੋ ਵਿੱਚ ਗੁੰਝਲਦਾਰ ਫੈਸਲਾ-ਲੈਣ ਦੀਆਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਨੂੰ
ਸਵੈਚਾਲਿਤ ਕਰ ਸਕਦਾ ਹੈ, ਜੋ ਮੈਨੂਅਲ ਦਖਲਅੰਦਾਜ਼ੀ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ ਅਤੇ ਮਨੁੱਖੀ ਗਲਤੀਆਂ ਦੇ ਜੋਖਮ
ਨੂੰ ਘੱਟ ਕਰਦਾ ਹੈ।

4. ਨਿੱਜੀਕਰਨ: AI ਵਰਤੋਂਕਾਰ ਵਿਵਹਾਰ, ਤਰਜੀਹਾਂ, ਅਤੇ ਸੰਦਰਭ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਕੇ ਵਰਕਫਲੋ ਨੂੰ ਨਿੱਜੀ
ਬਣਾ ਸਕਦਾ ਹੈ ਅਤੇ ਵਿਅਕਤੀਗਤ ਵਰਤੋਂਕਾਰਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਅਨੁਕੂਲ ਤਜਰਬੇ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ।

5. ਸਕੇਲੇਬਿਲਟੀ: AI-ਸੰਚਾਲਿਤ ਵਰਕਫਲੋ ਪ੍ਰਦਰਸ਼ਨ ਜਾਂ ਵਿਸ਼ਵਾਸਯੋਗਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕੀਤੇ ਬਿਨਾਂ,
ਵੱਧਦੇ ਡੇਟਾ ਅਤੇ ਵਰਤੋਂਕਾਰ ਇੰਟਰੈਕਸ਼ਨਾਂ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਨਿਰਵਿਘਨ ਢੰਗ ਨਾਲ ਸਕੇਲ ਕਰ ਸਕਦੇ
ਹਨ।

ਅਗਲੇ ਭਾਗਾਂ ਵਿੱਚ, ਅਸੀਂ ਉਨ੍ਹਾਂ ਮੁੱਖ ਪੈਟਰਨਾਂ ਅਤੇ ਤਕਨੀਕਾਂ ਦੀ ਪੜਚੋਲ ਕਰਾਂਗੇ ਜੋ ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਦੀ
ਲਾਗੂਕਰਨ ਨੂੰ ਸਮਰੱਥ ਬਣਾਉਂਦੇ ਹਨ ਅਤੇ ਅਸਲ-ਸੰਸਾਰ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਦਿਖਾਵਾਂਗੇ ਕਿ ਕਿਵੇਂ AI ਆਧੁਨਿਕ
ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਵਰਕਫਲੋ ਪ੍ਰਬੰਧਨ ਨੂੰ ਬਦਲ ਰਿਹਾ ਹੈ।

ਮੁੱਖ ਪੈਟਰਨ

ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਆਰਕੈਸਟ੍ਰੇਸ਼ਨ ਨੂੰ ਲਾਗੂ ਕਰਨ ਲਈ, ਡਿਵੈਲਪਰ ਕਈ ਮੁੱਖ ਪੈਟਰਨਾਂ
ਦਾ ਲਾਭ ਉਠਾ ਸਕਦੇ ਹਨ ਜੋ AI ਦੀ ਸ਼ਕਤੀ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਨ। ਇਹ ਪੈਟਰਨ ਵਰਕਫਲੋ ਨੂੰ ਡਿਜ਼ਾਈਨ ਅਤੇ
ਪ੍ਰਬੰਧਿਤ ਕਰਨ ਲਈ ਇੱਕ ਸੰਰਚਿਤ ਪਹੁੰਚ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ, ਜੋ ਐਪਲੀਕੇਸ਼ਨਾਂ ਨੂੰ ਰੀਅਲ-ਟਾਈਮ ਡੇਟਾ ਅਤੇ
ਸੰਦਰਭ ਦੇ ਆਧਾਰ ’ਤੇ ਅਨੁਕੂਲ, ਆਪਟੀਮਾਈਜ਼, ਅਤੇ ਸਵੈਚਾਲਿਤ ਪ੍ਰਕਿਰਿਆਵਾਂ ਨੂੰ ਸਮਰੱਥ ਬਣਾਉਂਦੇ ਹਨ।
ਆਓ ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਆਰਕੈਸਟ੍ਰੇਸ਼ਨ ਵਿੱਚ ਕੁਝ ਬੁਨਿਆਦੀ ਪੈਟਰਨਾਂ ਦੀ ਪੜਚੋਲ ਕਰੀਏ।

ਡਾਇਨਾਮਿਕ ਟਾਸਕ ਰੂਟਿੰਗ

ਇਹ ਪੈਟਰਨ AI ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਵੱਖ-ਵੱਖ ਕਾਰਕਾਂ ਜਿਵੇਂ ਕਾਰਜ ਦੀ ਤਰਜੀਹ, ਸਰੋਤਾਂ ਦੀ ਉਪਲਬਧਤਾ, ਅਤੇ
ਸਿਸਟਮ ਪ੍ਰਦਰਸ਼ਨ ਦੇ ਆਧਾਰ ’ਤੇ ਵਰਕਫਲੋ ਵਿੱਚ ਕਾਰਜਾਂ ਨੂੰ ਬੁੱਧੀਮਾਨੀ ਨਾਲ ਰੂਟ ਕਰਨ ਨਾਲ ਸਬੰਧਿਤ ਹੈ।
AI ਐਲਗੋਰਿਦਮ ਹਰੇਕ ਕਾਰਜ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰ ਸਕਦੇ ਹਨ, ਸਿਸਟਮ ਦੀ ਮੌਜੂਦਾ ਸਥਿਤੀ

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 206

’ਤੇ ਵਿਚਾਰ ਕਰ ਸਕਦੇ ਹਨ, ਅਤੇ ਕਾਰਜਾਂ ਨੂੰ ਸਭ ਤੋਂ ਢੁਕਵੇਂ ਸਰੋਤਾਂ ਜਾਂ ਪ੍ਰੋਸੈਸਿੰਗ ਰਸਤਿਆਂ ’ਤੇ ਨਿਰਧਾਰਿਤ ਕਰਨ
ਲਈ ਸੂਝਵਾਨ ਫੈਸਲੇ ਲੈ ਸਕਦੇ ਹਨ। ਡਾਇਨਾਮਿਕ ਟਾਸਕ ਰੂਟਿੰਗ ਯਕੀਨੀ ਬਣਾਉਂਦੀ ਹੈ ਕਿ ਕਾਰਜ ਕੁਸ਼ਲਤਾ ਨਾਲ
ਵੰਡੇ ਅਤੇ ਕਾਰਜਾਂਵਿਤ ਕੀਤੇ ਜਾਂਦੇ ਹਨ, ਜੋ ਸਮੁੱਚੇ ਵਰਕਫਲੋ ਪ੍ਰਦਰਸ਼ਨ ਨੂੰ ਆਪਟੀਮਾਈਜ਼ ਕਰਦੀ ਹੈ।

1 class TaskRouter

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 attr_accessor :task

6

7 # list of functions that can be called by the AI entirely at its

8 # discretion depending on the task received

9

10 function :analyze_task_priority do

11 TaskPriorityAnalyzer.perform(task)

12 end

13

14 function :check_resource_availability, # ...

15 function :assess_system_performance, # ...

16 function :assign_task_to_resource, # ...

17

18 DIRECTIVE = "You are a task router, responsible for intelligently

19 assigning tasks to available resources based on priority, resource

20 availability, and system performance..."

21

22 def initialize(task)

23 self.task = task

24 transcript << { system: DIRECTIVE }

25 transcript << { user: task.to_json }

26 end

27

28 def perform

29 while task.unassigned?

30 chat_completion

31

32 # todo: add max loop counter and break

33 end

34

35 # capture the transcript for later analysis

36 task.update(routing_transcript: transcript)

37 end

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 207

38 end

ਲਾਈਨ 29 ’ਤੇ while ਐਕਸਪ੍ਰੈਸ਼ਨ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਲੂਪ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖੋ, ਜੋ ਕਿ ਕੰਮ ਨਿਰਧਾਰਿਤ
ਹੋਣ ਤੱਕ AI ਨੂੰ ਪ੍ਰੌਂਪਟ ਕਰਦਾ ਰਹਿੰਦਾ ਹੈ। ਲਾਈਨ 35 ’ਤੇ, ਅਸੀਂ ਬਾਅਦ ਵਿੱਚ ਵਿਸ਼ਲੇਸ਼ਣ ਅਤੇ ਡੀਬੱਗਿੰਗ
ਲਈ ਕੰਮ ਦੀ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਨੂੰ ਸੰਭਾਲਦੇ ਹਾਂ, ਜੇਕਰ ਇਹ ਜ਼ਰੂਰੀ ਹੋਵੇ।

ਸੰਦਰਭਿਕ ਫੈਸਲਾ ਲੈਣਾ

ਤੁਸੀਂ ਵਰਕਫਲੋ ਵਿੱਚ ਸੰਦਰਭ-ਜਾਗਰੂਕ ਫੈਸਲੇ ਲੈਣ ਲਈ ਬਹੁਤ ਮਿਲਦਾ-ਜੁਲਦਾ ਕੋਡ ਵਰਤ ਸਕਦੇ ਹੋ। ਵਰਤੋਂਕਾਰ
ਤਰਜੀਹਾਂ, ਇਤਿਹਾਸਕ ਪੈਟਰਨ, ਅਤੇ ਰੀਅਲ-ਟਾਈਮ ਇਨਪੁੱਟ ਵਰਗੇ ਢੁਕਵੇਂ ਡਾਟਾ ਪੁਆਇੰਟਾਂ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ
ਕਰਕੇ, AI ਕੰਪੋਨੈਂਟ ਵਰਕਫਲੋ ਵਿੱਚ ਹਰੇਕ ਫੈਸਲੇ ਦੇ ਬਿੰਦੂ ’ਤੇ ਸਭ ਤੋਂ ਢੁਕਵੀਂ ਕਾਰਵਾਈ ਨਿਰਧਾਰਿਤ ਕਰ ਸਕਦੇ
ਹਨ। ਹਰ ਵਰਤੋਂਕਾਰ ਜਾਂ ਸਥਿਤੀ ਦੇ ਵਿਸ਼ੇਸ਼ ਸੰਦਰਭ ਦੇ ਆਧਾਰ ’ਤੇ ਆਪਣੇ ਵਰਕਫਲੋ ਦੇ ਵਿਵਹਾਰ ਨੂੰ ਅਨੁਕੂਲ
ਬਣਾਓ, ਨਿੱਜੀ ਅਤੇ ਅਨੁਕੂਲਿਤ ਤਜਰਬੇ ਪ੍ਰਦਾਨ ਕਰੋ।

ਅਨੁਕੂਲੀ ਵਰਕਫਲੋ ਰਚਨਾ

ਇਹ ਪੈਟਰਨ ਬਦਲਦੀਆਂ ਲੋੜਾਂ ਜਾਂ ਹਾਲਾਤਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਵਰਕਫਲੋ ਨੂੰ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਰਚਣ ਅਤੇ
ਵਿਵਸਥਿਤ ਕਰਨ ’ਤੇ ਕੇਂਦਰਿਤ ਹੈ। AI ਵਰਕਫਲੋ ਦੀ ਮੌਜੂਦਾ ਸਥਿਤੀ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰ ਸਕਦਾ ਹੈ, ਰੁਕਾਵਟਾਂ ਜਾਂ
ਅਕੁਸ਼ਲਤਾਵਾਂ ਦੀ ਪਛਾਣ ਕਰ ਸਕਦਾ ਹੈ, ਅਤੇ ਕਾਰਗੁਜ਼ਾਰੀ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਉਣ ਲਈ ਵਰਕਫਲੋ ਢਾਂਚੇ ਨੂੰ ਆਪਣੇ
ਆਪ ਸੰਸ਼ੋਧਿਤ ਕਰ ਸਕਦਾ ਹੈ। ਅਨੁਕੂਲੀ ਵਰਕਫਲੋ ਰਚਨਾ ਐਪਲੀਕੇਸ਼ਨਾਂ ਨੂੰ ਮੈਨੂਅਲ ਦਖਲ ਦੀ ਲੋੜ ਤੋਂ ਬਿਨਾਂ
ਲਗਾਤਾਰ ਵਿਕਸਿਤ ਹੋਣ ਅਤੇ ਆਪਣੀਆਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦੀ ਹੈ।

ਅਪਵਾਦ ਸੰਭਾਲ ਅਤੇ ਰਿਕਵਰੀ

ਅਪਵਾਦ ਸੰਭਾਲ ਅਤੇ ਰਿਕਵਰੀ ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਆਰਕੈਸਟ੍ਰੇਸ਼ਨ ਦੇ ਮਹੱਤਵਪੂਰਨ ਪਹਿਲੂ ਹਨ। AI ਕੰਪੋਨੈਂਟਾਂ
ਅਤੇ ਗੁੰਝਲਦਾਰ ਵਰਕਫਲੋ ਨਾਲ ਕੰਮ ਕਰਦੇ ਸਮੇਂ, ਸਿਸਟਮ ਦੀ ਸਥਿਰਤਾ ਅਤੇ ਵਿਸ਼ਵਾਸਯੋਗਤਾ ਨੂੰ ਯਕੀਨੀ
ਬਣਾਉਣ ਲਈ ਅਪਵਾਦਾਂ ਦੀ ਅਗਾਊਂ ਕਲਪਨਾ ਕਰਨਾ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਸੁਚੱਜੇ ਢੰਗ ਨਾਲ ਸੰਭਾਲਣਾ ਜ਼ਰੂਰੀ ਹੈ।

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਵਿੱਚ ਅਪਵਾਦ ਸੰਭਾਲ ਅਤੇ ਰਿਕਵਰੀ ਲਈ ਕੁਝ ਮੁੱਖ ਵਿਚਾਰ ਅਤੇ ਤਕਨੀਕਾਂ ਹਨ:

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 208

1. ਅਪਵਾਦ ਪ੍ਰਸਾਰ: ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟਾਂ ਵਿੱਚ ਅਪਵਾਦਾਂ ਦੇ ਪ੍ਰਸਾਰ ਲਈਇੱਕ ਸਥਿਰ ਪਹੁੰਚ ਲਾਗੂ ਕਰੋ।
ਜਦੋਂ ਕਿਸੇ ਕੰਪੋਨੈਂਟ ਵਿੱਚ ਕੋਈ ਅਪਵਾਦ ਵਾਪਰਦਾ ਹੈ, ਇਸਨੂੰ ਫੜਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ, ਲੌਗ ਕੀਤਾ
ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ, ਅਤੇ ਆਰਕੈਸਟ੍ਰੇਟਰ ਜਾਂ ਅਪਵਾਦਾਂ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਜ਼ਿੰਮੇਵਾਰ ਵੱਖਰੇ ਕੰਪੋਨੈਂਟ ਤੱਕ
ਪ੍ਰਸਾਰਿਤ ਕੀਤਾ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਵਿਚਾਰਇਹ ਹੈ ਕਿ ਅਪਵਾਦ ਸੰਭਾਲ ਨੂੰ ਕੇਂਦਰੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਵੇ ਅਤੇ
ਅਪਵਾਦਾਂ ਨੂੰ ਚੁੱਪ-ਚਾਪ ਨਿਗਲਣ ਤੋਂ ਰੋਕਿਆ ਜਾਵੇ, ਨਾਲ ਹੀ ਬੁੱਧੀਮਾਨ ਗਲਤੀ ਸੰਭਾਲ ਲਈ ਸੰਭਾਵਨਾਵਾਂ
ਖੋਲ੍ਹੀਆਂ ਜਾਣ।

2. ਮੁੜ-ਕੋਸ਼ਿਸ਼ ਵਿਧੀਆਂ: ਮੁੜ-ਕੋਸ਼ਿਸ਼ ਵਿਧੀਆਂ ਵਰਕਫਲੋ ਦੀ ਲਚਕਤਾ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਅਤੇ
ਅਸਥਾਈ ਅਸਫਲਤਾਵਾਂ ਨੂੰ ਸੁਚੱਜੇ ਢੰਗ ਨਾਲ ਸੰਭਾਲਣ ਵਿੱਚ ਮਦਦ ਕਰਦੀਆਂ ਹਨ। ਅਸਥਾਈ ਜਾਂ
ਰਿਕਵਰ ਕਰਨ ਯੋਗ ਅਪਵਾਦਾਂ ਲਈ ਮੁੜ-ਕੋਸ਼ਿਸ਼ ਵਿਧੀਆਂ ਨੂੰ ਜ਼ਰੂਰ ਲਾਗੂ ਕਰੋ, ਜਿਵੇਂ ਕਿ ਨੈੱਟਵਰਕ
ਕਨੈਕਟੀਵਿਟੀ ਜਾਂ ਸਰੋਤ ਦੀ ਅਣਉਪਲਬਧਤਾ ਜਿਸ ਨੂੰ ਨਿਰਧਾਰਿਤ ਦੇਰੀ ਤੋਂ ਬਾਅਦ ਆਪਣੇ ਆਪ ਮੁੜ
ਕੋਸ਼ਿਸ਼ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। AI-ਸੰਚਾਲਿਤ ਆਰਕੈਸਟ੍ਰੇਟਰ ਜਾਂ ਅਪਵਾਦ ਹੈਂਡਲਰ ਹੋਣ ਦਾ ਮਤਲਬ ਹੈ
ਕਿ ਤੁਹਾਡੀਆਂ ਮੁੜ-ਕੋਸ਼ਿਸ਼ ਰਣਨੀਤੀਆਂ ਨੂੰ ਮਸ਼ੀਨੀ ਰੂਪ ਵਿੱਚ ਹੋਣ ਦੀ ਲੋੜ ਨਹੀਂ ਹੈ, ਜੋ ਐਕਸਪੋਨੈਂਸ਼ਲ
ਫਾਲਬੈਕ ਵਰਗੇ ਨਿਸ਼ਚਿਤ ਐਲਗੋਰਿਦਮ ’ਤੇ ਨਿਰਭਰ ਕਰਦੀਆਂ ਹਨ। ਤੁਸੀਂ ਅਪਵਾਦ ਨੂੰ ਕਿਵੇਂ ਸੰਭਾਲਣਾ
ਹੈ, ਇਸ ਬਾਰੇ ਫੈਸਲਾ ਲੈਣ ਲਈ ਜ਼ਿੰਮੇਵਾਰ AI ਕੰਪੋਨੈਂਟ ਦੇ “ਵਿਵੇਕ” ’ਤੇ ਮੁੜ-ਕੋਸ਼ਿਸ਼ ਦੀ ਸੰਭਾਲ ਛੱਡ
ਸਕਦੇ ਹੋ।

3. ਫਾਲਬੈਕ ਰਣਨੀਤੀਆਂ: ਜੇਕਰ ਕੋਈ AI ਕੰਪੋਨੈਂਟ ਵੈਧ ਜਵਾਬ ਦੇਣ ਵਿੱਚ ਅਸਫਲ ਰਹਿੰਦਾ ਹੈ ਜਾਂ ਕਿਸੇ
ਗਲਤੀ ਦਾ ਸਾਹਮਣਾ ਕਰਦਾ ਹੈ—ਜੋ ਕਿ ਇਸਦੀ ਨਵੀਨਤਮ ਪ੍ਰਕਿਰਤੀ ਨੂੰ ਦੇਖਦੇ ਹੋਏ ਆਮ ਘਟਨਾ ਹੈ—
ਤਾਂ ਵਰਕਫਲੋ ਨੂੰ ਜਾਰੀ ਰੱਖਣ ਲਈਇੱਕ ਫਾਲਬੈਕ ਵਿਧੀ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਇਸ ਵਿੱਚ ਡਿਫਾਲਟ ਮੁੱਲਾਂ ਦੀ
ਵਰਤੋਂ, ਵਿਕਲਪਿਕ ਐਲਗੋਰਿਦਮ, ਜਾਂ ਫੈਸਲੇ ਲੈਣ ਅਤੇ ਵਰਕਫਲੋ ਨੂੰ ਅੱਗੇ ਵਧਾਉਣ ਲਈ ਮਨੁੱਖੀ-ਇਨ-
ਦ-ਲੂਪ ਦੀ ਵਰਤੋਂ ਸ਼ਾਮਲ ਹੋ ਸਕਦੀ ਹੈ।

4. ਮੁਆਵਜ਼ਾ ਕਾਰਵਾਈਆਂ: ਆਰਕੈਸਟ੍ਰੇਟਰ ਦੇ ਨਿਰਦੇਸ਼ਾਂ ਵਿੱਚ ਉਹਨਾਂ ਅਪਵਾਦਾਂ ਨੂੰ ਸੰਭਾਲਣ ਲਈ
ਮੁਆਵਜ਼ਾ ਕਾਰਵਾਈਆਂ ਬਾਰੇ ਹਦਾਇਤਾਂ ਸ਼ਾਮਲ ਹੋਣੀਆਂ ਚਾਹੀਦੀਆਂ ਹਨ ਜੋ ਆਟੋਮੈਟਿਕ ਤੌਰ ’ਤੇ ਹੱਲ
ਨਹੀਂ ਕੀਤੇ ਜਾ ਸਕਦੇ। ਮੁਆਵਜ਼ਾ ਕਾਰਵਾਈਆਂ ਉਹ ਕਦਮ ਹਨ ਜੋ ਅਸਫਲ ਓਪਰੇਸ਼ਨ ਦੇ ਪ੍ਰਭਾਵਾਂ ਨੂੰ ਰੱਦ
ਕਰਨ ਜਾਂ ਘੱਟ ਕਰਨ ਲਈ ਚੁੱਕੇ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਨ ਲਈ, ਜੇਕਰ ਭੁਗਤਾਨ ਪ੍ਰੋਸੈਸਿੰਗ ਸਟੈੱਪ ਅਸਫਲ
ਹੋ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਮੁਆਵਜ਼ਾ ਕਾਰਵਾਈ ਲੈਣ-ਦੇਣ ਨੂੰ ਰੋਲਬੈਕ ਕਰਨਾ ਅਤੇ ਯੂਜ਼ਰ ਨੂੰ ਸੂਚਿਤ ਕਰਨਾ ਹੋ ਸਕਦੀ
ਹੈ। ਮੁਆਵਜ਼ਾ ਕਾਰਵਾਈਆਂ ਅਪਵਾਦਾਂ ਦੇ ਮੌਜੂਦਗੀ ਵਿੱਚ ਡੇਟਾ ਸਥਿਰਤਾ ਅਤੇ ਅਖੰਡਤਾ ਨੂੰ ਬਣਾਈ ਰੱਖਣ
ਵਿੱਚ ਮਦਦ ਕਰਦੀਆਂ ਹਨ।

5. ਅਪਵਾਦ ਨਿਗਰਾਨੀ ਅਤੇ ਚੇਤਾਵਨੀ: ਮਹੱਤਵਪੂਰਨ ਅਪਵਾਦਾਂ ਬਾਰੇ ਪਤਾ ਲਗਾਉਣ ਅਤੇ ਸੰਬੰਧਿਤ
ਹਿੱਸੇਦਾਰਾਂ ਨੂੰ ਸੂਚਿਤ ਕਰਨ ਲਈ ਨਿਗਰਾਨੀ ਅਤੇ ਚੇਤਾਵਨੀ ਵਿਧੀਆਂ ਸਥਾਪਤ ਕਰੋ। ਆਰਕੈਸਟ੍ਰੇਟਰ ਨੂੰ

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 209

ਸੀਮਾਵਾਂ ਅਤੇ ਨਿਯਮਾਂ ਤੋਂ ਜਾਣੂ ਕਰਵਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਤਾਂ ਜੋ ਜਦੋਂ ਅਪਵਾਦ ਕੁਝ ਸੀਮਾਵਾਂ ਤੋਂ ਵੱਧ
ਜਾਂਦੇ ਹਨ ਜਾਂ ਜਦੋਂ ਖਾਸ ਕਿਸਮ ਦੇ ਅਪਵਾਦ ਵਾਪਰਦੇ ਹਨ ਤਾਂ ਚੇਤਾਵਨੀਆਂ ਟਰਿੱਗਰ ਹੋ ਜਾਣ। ਇਹ
ਸਮੱਸਿਆਵਾਂ ਦੀ ਪੂਰੀ ਪ੍ਰਣਾਲੀ ’ਤੇ ਪ੍ਰਭਾਵ ਪਾਉਣ ਤੋਂ ਪਹਿਲਾਂ ਉਨ੍ਹਾਂ ਦੀ ਸਕਿਰਿਆ ਪਛਾਣ ਅਤੇ ਹੱਲ
ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ।

ਇੱਥੇ Ruby ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟ ਵਿੱਚ ਅਪਵਾਦ ਪ੍ਰਬੰਧਨ ਅਤੇ ਰਿਕਵਰੀ ਦੀ ਇੱਕ ਉਦਾਹਰਨ ਹੈ:

1 class InventoryManager

2 def check_availability(order)

3 begin

4 # Perform inventory check logic

5 inventory = Inventory.find_by(product_id: order.product_id)

6 if inventory.available_quantity >= order.quantity

7 return true

8 else

9 raise InsufficientInventoryError,

10 "Insufficient inventory for product #{order.product_id}"

11 end

12 rescue InsufficientInventoryError => e

13 # Log the exception

14 logger.error("Inventory check failed: #{e.message}")

15

16 # Retry the operation after a delay

17 retry_count ||= 0

18 if retry_count < MAX_RETRIES

19 retry_count += 1

20 sleep(RETRY_DELAY)

21 retry

22 else

23 # Fallback to manual intervention

24 NotificationService.admin("Inventory check failed: Order #{order.id}")

25 return false

26 end

27 end

28 end

29 end

ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ, InventoryManager ਕੰਪੋਨੈਂਟ ਕਿਸੇ ਦਿੱਤੇ ਆਰਡਰ ਲਈ ਉਤਪਾਦ ਦੀ ਉਪਲਬਧਤਾ
ਦੀ ਜਾਂਚ ਕਰਦਾ ਹੈ। ਜੇਕਰ ਉਪਲਬਧ ਮਾਤਰਾ ਨਾਕਾਫ਼ੀ ਹੈ, ਤਾਂ ਇਹ InsufficientInventoryError

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 210

ਉਠਾਉਂਦਾ ਹੈ। ਅਪਵਾਦ ਨੂੰ ਫੜਿਆ ਜਾਂਦਾ ਹੈ, ਲੌਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਇੱਕ ਮੁੜ-ਕੋਸ਼ਿਸ਼ ਪ੍ਰਣਾਲੀ ਲਾਗੂ
ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਜੇਕਰ ਮੁੜ-ਕੋਸ਼ਿਸ਼ ਦੀ ਸੀਮਾ ਪਾਰ ਹੋ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਕੰਪੋਨੈਂਟ ਐਡਮਿਨ ਨੂੰ ਸੂਚਿਤ ਕਰਕੇ ਮੈਨੂਅਲ
ਦਖਲਅੰਦਾਜ਼ੀ ’ਤੇ ਵਾਪਸ ਆ ਜਾਂਦਾ ਹੈ।

ਮਜ਼ਬੂਤ ਅਪਵਾਦ ਪ੍ਰਬੰਧਨ ਅਤੇ ਰਿਕਵਰੀ ਮਕੈਨਿਜ਼ਮ ਨੂੰ ਲਾਗੂ ਕਰਕੇ, ਤੁਸੀਂ ਯਕੀਨੀ ਬਣਾ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੇ
ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਲਚਕਦਾਰ, ਰੱਖ-ਰਖਾਵ ਯੋਗ, ਅਤੇ ਅਣਚਾਹੀਆਂ ਸਥਿਤੀਆਂ ਨੂੰ ਸੁਚੱਜੇ ਢੰਗ ਨਾਲ
ਸੰਭਾਲਣ ਦੇ ਯੋਗ ਹਨ।

ਇਹ ਪੈਟਰਨ ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਆਯੋਜਨ ਦੀ ਨੀਂਹ ਬਣਾਉਂਦੇ ਹਨ ਅਤੇ ਵੱਖ-ਵੱਖ ਐਪਲੀਕੇਸ਼ਨਾਂ ਦੀਆਂ
ਵਿਸ਼ੇਸ਼ ਲੋੜਾਂ ਦੇ ਅਨੁਕੂਲ ਜੋੜੇ ਅਤੇ ਅਨੁਕੂਲ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਪੈਟਰਨਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ, ਡਿਵੈਲਪਰ
ਅਜਿਹੇ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਬਣਾ ਸਕਦੇ ਹਨ ਜੋ ਲਚਕਦਾਰ, ਮਜ਼ਬੂਤ ਅਤੇ ਪ੍ਰਦਰਸ਼ਨ ਅਤੇ ਯੂਜ਼ਰ ਅਨੁਭਵ ਲਈ
ਅਨੁਕੂਲ ਹਨ।

ਅਗਲੇ ਭਾਗ ਵਿੱਚ, ਅਸੀਂ ਦੇਖਾਂਗੇ ਕਿ ਇਹ ਪੈਟਰਨ ਅਮਲੀ ਤੌਰ ’ਤੇ ਕਿਵੇਂ ਲਾਗੂ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ, ਅਸਲ-ਸੰਸਾਰ
ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਅਤੇ ਕੋਡ ਸਨਿੱਪਟਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਪ੍ਰਬੰਧਨ ਵਿੱਚ AI ਕੰਪੋਨੈਂਟਾਂ ਦੇ ਏਕੀਕਰਣ
ਨੂੰ ਦਰਸਾਉਣ ਲਈ।

ਅਮਲੀ ਤੌਰ ’ਤੇ ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਆਯੋਜਨ ਨੂੰ ਲਾਗੂ ਕਰਨਾ

ਹੁਣ ਜਦੋਂ ਅਸੀਂ ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹਆਯੋਜਨ ਵਿੱਚ ਮੁੱਖ ਪੈਟਰਨਾਂ ਦੀ ਪੜਚੋਲ ਕਰ ਲਈ ਹੈ, ਆਓ ਦੇਖੀਏ ਕਿ
ਇਹ ਪੈਟਰਨ ਅਸਲ-ਸੰਸਾਰ ਦੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ ਕਿਵੇਂ ਲਾਗੂ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਅਸੀਂ ਕਾਰਜ-ਪ੍ਰਵਾਹ
ਪ੍ਰਬੰਧਨ ਵਿੱਚ AI ਕੰਪੋਨੈਂਟਾਂ ਦੇ ਏਕੀਕਰਣ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਅਮਲੀ ਉਦਾਹਰਣਾਂ ਅਤੇ ਕੋਡ ਸਨਿੱਪਟ ਪ੍ਰਦਾਨ
ਕਰਾਂਗੇ।

ਬੁੱਧੀਮਾਨ ਆਰਡਰ ਪ੍ਰੋਸੈਸਰ

ਆਓ Ruby on Rails ਈ-ਕਾਮਰਸ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ AI-ਸੰਚਾਲਿਤ OrderProcessor ਕੰਪੋਨੈਂਟ ਦੀ
ਵਰਤੋਂ ਕਰਕੇ ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਆਯੋਜਨ ਨੂੰ ਲਾਗੂ ਕਰਨ ਦੀ ਇੱਕ ਅਮਲੀ ਉਦਾਹਰਣ ਵਿੱਚ ਡੂੰਘਾਈ ਨਾਲ

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 211

ਜਾਈਏ। OrderProcessor ਪ੍ਰੋਸੈਸ ਮੈਨੇਜਰ ਐਂਟਰਪ੍ਰਾਈਜ਼ ਏਕੀਕਰਣ ਦੀ ਧਾਰਨਾ ਨੂੰ ਸਾਕਾਰ ਕਰਦਾ ਹੈ
ਜਿਸ ਨਾਲ ਅਸੀਂ ਪਹਿਲੀ ਵਾਰ ਅਧਿਆਇ 3 ਵਿੱਚ ਵਰਕਰਾਂ ਦੀ ਬਹੁਤਾਤ ਬਾਰੇ ਚਰਚਾ ਕਰਦੇ ਸਮੇਂ ਮਿਲੇ ਸੀ। ਇਹ
ਕੰਪੋਨੈਂਟ ਆਰਡਰ ਪੂਰਤੀ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਦੇ ਪ੍ਰਬੰਧਨ, ਵਿਚਕਾਰਲੇ ਨਤੀਜਿਆਂ ਦੇ ਆਧਾਰ ’ਤੇ ਰੂਟਿੰਗ ਫੈਸਲੇ ਲੈਣ,
ਅਤੇ ਵੱਖ-ਵੱਖ ਪ੍ਰੋਸੈਸਿੰਗ ਕਦਮਾਂ ਦੇ ਨਿਸ਼ਪਾਦਨ ਦੇ ਆਯੋਜਨ ਲਈ ਜ਼ਿੰਮੇਵਾਰ ਹੋਵੇਗਾ।

ਆਰਡਰ ਪੂਰਤੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਕਈ ਕਦਮ ਸ਼ਾਮਲ ਹਨ ਜਿਵੇਂ ਕਿ ਆਰਡਰ ਪ੍ਰਮਾਣੀਕਰਨ, ਇਨਵੈਂਟਰੀ ਜਾਂਚ,
ਭੁਗਤਾਨ ਪ੍ਰੋਸੈਸਿੰਗ, ਅਤੇ ਸ਼ਿਪਿੰਗ। ਹਰ ਕਦਮ ਇੱਕ ਵੱਖਰੀ ਵਰਕਰ ਪ੍ਰਕਿਰਿਆ ਵਜੋਂ ਲਾਗੂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜੋ
ਇੱਕ ਵਿਸ਼ੇਸ਼ ਕਾਰਜ ਕਰਦੀ ਹੈ ਅਤੇ ਨਤੀਜਾ OrderProcessor ਨੂੰ ਵਾਪਸ ਕਰਦੀ ਹੈ। ਕਦਮ ਲਾਜ਼ਮੀ ਨਹੀਂ
ਹਨ, ਅਤੇ ਜ਼ਰੂਰੀ ਨਹੀਂ ਕਿ ਇੱਕ ਸਟੀਕ ਕ੍ਰਮ ਵਿੱਚ ਕੀਤੇ ਜਾਣ।

ਇੱਥੇ OrderProcessor ਦੀ ਇੱਕ ਉਦਾਹਰਣ ਲਾਗੂਕਰਨ ਹੈ। ਇਹ Raix ਤੋਂ ਦੋ ਮਿਕਸਿਨ ਨੂੰ ਵਿਸ਼ੇਸ਼ਤਾ
ਦਿੰਦਾ ਹੈ। ਪਹਿਲਾ (ChatCompletion) ਇਸਨੂੰ ਚੈਟ ਪੂਰਨਤਾ ਕਰਨ ਦੀ ਯੋਗਤਾ ਦਿੰਦਾ ਹੈ, ਜੋ ਇਸਨੂੰ ਇੱਕ
AI ਕੰਪੋਨੈਂਟ ਬਣਾਉਂਦਾ ਹੈ। ਦੂਜਾ (FunctionDispatch) AI ਦੁਆਰਾ ਫੰਕਸ਼ਨ ਕਾਲਿੰਗ ਨੂੰ ਸਮਰੱਥ ਬਣਾਉਂਦਾ
ਹੈ, ਜੋ ਇਸਨੂੰ ਟੈਕਸਟ ਸੰਦੇਸ਼ ਦੀ ਬਜਾਏ ਫੰਕਸ਼ਨ ਇਨਵੋਕੇਸ਼ਨ ਨਾਲ ਪ੍ਰੌਂਪਟ ਦਾ ਜਵਾਬ ਦੇਣ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦਾ
ਹੈ।

ਵਰਕਰ ਫੰਕਸ਼ਨ (validate_order, check_inventory, ਆਦਿ) ਆਪਣੇ ਸਬੰਧਤ ਵਰਕਰ ਕਲਾਸਾਂ
ਨੂੰ ਕੰਮ ਸੌਂਪਦੇ ਹਨ, ਜੋ ਏ.ਆਈ. ਜਾਂ ਗੈਰ-ਏ.ਆਈ. ਕੰਪੋਨੈਂਟਸ ਹੋ ਸਕਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਲਈ ਸਿਰਫ਼ ਇਹ ਲੋੜ ਹੈ
ਕਿ ਉਹ ਆਪਣੇ ਕੰਮ ਦੇ ਨਤੀਜੇ ਅਜਿਹੇ ਫਾਰਮੈਟ ਵਿੱਚ ਵਾਪਸ ਕਰਨ ਜੋ ਸਟ੍ਰਿੰਗ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਏ ਜਾ ਸਕਣ।

ਕਿਤਾਬ ਦੇ ਇਸ ਭਾਗ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਸਾਰੇ ਹੋਰ ਉਦਾਹਰਣਾਂ ਵਾਂਗ, ਇਹ ਕੋਡ ਅਸਲ ਵਿੱਚ ਸੂਡੋ-ਕੋਡ
ਹੈ ਅਤੇ ਸਿਰਫ਼ ਪੈਟਰਨ ਦਾ ਮਤਲਬ ਦੱਸਣ ਅਤੇ ਤੁਹਾਡੀਆਂ ਆਪਣੀਆਂ ਰਚਨਾਵਾਂ ਨੂੰ ਪ੍ਰੇਰਿਤ ਕਰਨ
ਲਈ ਹੈ। ਪੈਟਰਨਾਂ ਦੇ ਪੂਰੇ ਵੇਰਵੇ ਅਤੇ ਸੰਪੂਰਨ ਕੋਡ ਉਦਾਹਰਣਾਂ ਭਾਗ 2 ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ।

https://github.com/OlympiaAI/raix-rails

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 212

1 class OrderProcessor

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

6

7 def initialize(order)

8 self.order = order

9 transcript << { system: SYSTEM_DIRECTIVE }

10 transcript << { user: order.to_json }

11 end

12

13 def perform

14 # will continue looping until `stop_looping!` is called

15 chat_completion(loop: true)

16 end

17

18 # list of functions available to be called by the AI

19 # truncated for brevity

20

21 def functions

22 [

23 {

24 name: "validate_order",

25 description: "Invoke to check validity of order",

26 parameters: {

27 ...

28 },

29 ...

30]

31 end

32

33 # implementation of functions that can be called by the AI

34 # entirely at its discretion, depending on the needs of the order

35

36 def validate_order

37 OrderValidationWorker.perform(@order)

38 end

39

40 def check_inventory

41 InventoryCheckWorker.perform(@order)

42 end

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 213

43

44 def process_payment

45 PaymentProcessingWorker.perform(@order)

46 end

47

48 def schedule_shipping

49 ShippingSchedulerWorker.perform(@order)

50 end

51

52 def send_confirmation

53 OrderConfirmationWorker.perform(@order)

54 end

55

56 def finished_processing

57 @order.update!(transcript:, processed_at: Time.current)

58 stop_looping!

59 end

60 end

ਉਦਾਹਰਣ ਵਿੱਚ, ਆਰਡਰ ਪ੍ਰੋਸੈਸਰ ਨੂੰ ਇੱਕ ਆਰਡਰ ਔਬਜੈਕਟ ਨਾਲ ਸ਼ੁਰੂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਕਾਰਜ-ਪ੍ਰਵਾਹ
ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਦਾ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਬਣਾਈ ਰੱਖਦਾ ਹੈ, ਜੋ ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲਾਂ ਦੇ ਮੂਲ ਗੱਲਬਾਤ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ
ਫਾਰਮੈਟ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਏਆਈ ਨੂੰ ਵੱਖ-ਵੱਖ ਪ੍ਰੋਸੈਸਿੰਗ ਕਦਮਾਂ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਲਈ
ਪੂਰਾ ਨਿਯੰਤਰਣ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ, ਜਿਵੇਂ ਕਿ ਆਰਡਰ ਪ੍ਰਮਾਣੀਕਰਨ, ਇਨਵੈਂਟਰੀ ਜਾਂਚ, ਭੁਗਤਾਨ ਪ੍ਰੋਸੈਸਿੰਗ, ਅਤੇ
ਸ਼ਿਪਿੰਗ।

ਹਰ ਵਾਰ ਜਦੋਂ chat_completion ਮੈਥਡ ਨੂੰ ਕਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਨੂੰ ਏਆਈਨੂੰ ਇੱਕ ਫੰਕਸ਼ਨ
ਕਾਲ ਵਜੋਂ ਪੂਰਤੀ ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਭੇਜਿਆ ਜਾਂਦਾ ਹੈ। ਇਹ ਪੂਰੀ ਤਰ੍ਹਾਂ ਏਆਈ ’ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਕਿ
ਉਹ ਪਿਛਲੇ ਕਦਮ ਦੇ ਨਤੀਜੇ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰੇ ਅਤੇ ਉਚਿਤ ਕਾਰਵਾਈ ਕਰਨ ਦਾ ਫੈਸਲਾ ਕਰੇ। ਉਦਾਹਰਣ ਲਈ,
ਜੇਕਰ ਇਨਵੈਂਟਰੀ ਜਾਂਚ ਘੱਟ ਸਟਾਕ ਪੱਧਰਾਂ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ, ਤਾਂ OrderProcessor ਇੱਕ ਰੀਪਲੇਨਿਸ਼ਮੈਂਟ
ਟਾਸਕ ਨੂੰ ਸ਼ੈਡਿਊਲ ਕਰ ਸਕਦਾ ਹੈ। ਜੇਕਰ ਭੁਗਤਾਨ ਪ੍ਰੋਸੈਸਿੰਗ ਅਸਫਲ ਹੋ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਇਹ ਮੁੜ ਕੋਸ਼ਿਸ਼ ਕਰ
ਸਕਦਾ ਹੈ ਜਾਂ ਗਾਹਕ ਸਹਾਇਤਾ ਨੂੰ ਸੂਚਿਤ ਕਰ ਸਕਦਾ ਹੈ।

ਉੱਪਰ ਦਿੱਤੀ ਉਦਾਹਰਣ ਵਿੱਚ ਰੀਪਲੇਨਿਸ਼ਮੈਂਟ ਜਾਂ ਗਾਹਕ ਸਹਾਇਤਾ ਨੂੰ ਸੂਚਿਤ ਕਰਨ ਲਈਫੰਕਸ਼ਨ ਪਰਿਭਾਸ਼ਿਤ

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 214

ਨਹੀਂ ਹਨ, ਪਰ ਬਿਲਕੁਲ ਹੋ ਸਕਦੇ ਹਨ।

ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਹਰ ਵਾਰ ਵੱਧਦੀ ਹੈ ਜਦੋਂ ਇੱਕ ਫੰਕਸ਼ਨ ਨੂੰ ਕਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ
ਦੇ ਰਿਕਾਰਡ ਵਜੋਂ ਕੰਮ ਕਰਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਹਰ ਕਦਮ ਦੇ ਨਤੀਜੇ ਅਤੇ ਅਗਲੇ ਕਦਮਾਂ ਲਈ ਏਆਈ-ਜਨਰੇਟਡ
ਨਿਰਦੇਸ਼ ਸ਼ਾਮਲ ਹਨ। ਇਸ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਦੀ ਵਰਤੋਂ ਡੀਬੱਗਿੰਗ, ਆਡਿਟਿੰਗ, ਅਤੇ ਆਰਡਰ ਪੂਰਤੀ ਪ੍ਰਕਿਰਿਆ
ਵਿੱਚ ਦਿਖਾਈ ਦੇਣ ਲਈ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

OrderProcessor ਵਿੱਚ ਏਆਈ ਦੀ ਵਰਤੋਂ ਕਰਕੇ, ਈ-ਕਾਮਰਸ ਐਪਲੀਕੇਸ਼ਨ ਰੀਅਲ-ਟਾਈਮ ਡੇਟਾ ਦੇ
ਆਧਾਰ ’ਤੇ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਨੂੰ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਅਨੁਕੂਲ ਕਰ ਸਕਦੀ ਹੈ ਅਤੇ ਬੁੱਧੀਮਾਨੀ ਨਾਲ ਅਪਵਾਦਾਂ
ਨੂੰ ਸੰਭਾਲ ਸਕਦੀ ਹੈ। ਏਆਈ ਕੰਪੋਨੈਂਟ ਸੂਚਿਤ ਫੈਸਲੇ ਲੈ ਸਕਦਾ ਹੈ, ਕਾਰਜ-ਪ੍ਰਵਾਹ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾ ਸਕਦਾ ਹੈ,
ਅਤੇ ਗੁੰਝਲਦਾਰ ਸਥਿਤੀਆਂ ਵਿੱਚ ਵੀ ਨਿਰਵਿਘਨ ਆਰਡਰ ਪ੍ਰੋਸੈਸਿੰਗ ਯਕੀਨੀ ਬਣਾ ਸਕਦਾ ਹੈ।

ਇਹ ਤੱਥ ਕਿ ਵਰਕਰ ਪ੍ਰੋਸੈਸਾਂ ’ਤੇ ਸਿਰਫ਼ ਇੱਕੋ ਲੋੜ ਹੈ ਕਿ ਉਹ ਏਆਈ ਲਈ ਕੁਝ ਸਮਝਣਯੋਗ ਆਉਟਪੁੱਟ
ਵਾਪਸ ਕਰਨ ਜਦੋਂ ਅਗਲਾ ਕੀ ਕਰਨਾ ਹੈ ਇਸਦਾ ਫੈਸਲਾ ਕਰ ਰਹੇ ਹੋਣ, ਤੁਹਾਨੂੰ ਇਹ ਸਮਝ ਆਉਣ ਲੱਗ ਸਕਦੀ
ਹੈ ਕਿ ਇਹ ਪਹੁੰਚ ਕਿਵੇਂ ਵੱਖ-ਵੱਖ ਸਿਸਟਮਾਂ ਨੂੰ ਇੱਕ ਦੂਜੇ ਨਾਲ ਏਕੀਕ੍ਰਿਤ ਕਰਨ ਵੇਲੇ ਆਮ ਤੌਰ ’ਤੇ ਸ਼ਾਮਲ
ਇਨਪੁੱਟ/ਆਉਟਪੁੱਟ ਮੈਪਿੰਗ ਕੰਮ ਨੂੰ ਘਟਾ ਸਕਦੀ ਹੈ।

ਬੁੱਧੀਮਾਨ ਕੰਟੈਂਟ ਮੌਡਰੇਟਰ

ਸੋਸ਼ਲ ਮੀਡੀਆਐਪਲੀਕੇਸ਼ਨਾਂ ਨੂੰ ਆਮਤੌਰ ’ਤੇ ਇੱਕ ਸੁਰੱਖਿਅਤਅਤੇ ਸਿਹਤਮੰਦ ਕਮਿਊਨਿਟੀ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ
ਲਈ ਘੱਟੋ-ਘੱਟ ਕੰਟੈਂਟ ਮੌਡਰੇਸ਼ਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਇਹ ਉਦਾਹਰਣ ContentModerator ਕੰਪੋਨੈਂਟ ਏਆਈ
ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਬੁੱਧੀਮਾਨੀ ਨਾਲ ਮੌਡਰੇਸ਼ਨ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਦਾ ਹੈ, ਕੰਟੈਂਟ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ
ਅਤੇ ਵੱਖ-ਵੱਖ ਮੌਡਰੇਸ਼ਨ ਕਦਮਾਂ ਦੇ ਨਤੀਜਿਆਂ ਦੇ ਆਧਾਰ ’ਤੇ ਫੈਸਲੇ ਲੈਂਦਾ ਹੈ।

ਮੌਡਰੇਸ਼ਨ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਕਈ ਕਦਮ ਸ਼ਾਮਲ ਹਨ ਜਿਵੇਂ ਕਿ ਟੈਕਸਟ ਵਿਸ਼ਲੇਸ਼ਣ, ਚਿੱਤਰ ਪਛਾਣ, ਯੂਜ਼ਰ
ਪ੍ਰਤਿਸ਼ਠਾ ਮੁਲਾਂਕਣ, ਅਤੇ ਮੈਨੂਅਲ ਸਮੀਖਿਆ। ਹਰੇਕ ਕਦਮ ਨੂੰ ਇੱਕ ਵੱਖਰੇ ਵਰਕਰ ਪ੍ਰੋਸੈੱਸ ਵਜੋਂ ਲਾਗੂ ਕੀਤਾ
ਜਾਂਦਾ ਹੈ ਜੋ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਕੰਮ ਕਰਦਾ ਹੈ ਅਤੇ ਨਤੀਜਾ ContentModerator ਨੂੰ ਵਾਪਸ ਕਰਦਾ ਹੈ।

ਇੱਥੇ ContentModerator ਦੀ ਇੱਕ ਉਦਾਹਰਣ ਲਾਗੂਕਰਨ ਹੈ:

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 215

1 class ContentModerator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,

6 tasked with the workflow involved in moderating user-generated content..."

7

8 def initialize(content)

9 @content = content

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: content.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 # list of functions available to be called by the AI

25 # truncated for brevity

26

27 def functions

28 [

29 {

30 name: "analyze_text",

31 # ...

32 },

33 {

34 name: "recognize_image",

35 description: "Invoke to describe images...",

36 # ...

37 },

38 {

39 name: "assess_user_reputation",

40 # ...

41 },

42 {

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 216

43 name: "escalate_to_manual_review",

44 # ...

45 },

46 {

47 name: "approve_content",

48 # ...

49 },

50 {

51 name: "reject_content",

52 # ...

53 }

54]

55 end

56

57 # implementation of functions that can be called by the AI

58 # entirely at its discretion, depending on the needs of the order

59

60 def analyze_text

61 result = TextAnalysisWorker.perform(@content)

62 continue_with(result)

63 end

64

65 def recognize_image

66 result = ImageRecognitionWorker.perform(@content)

67 continue_with(result)

68 end

69

70 def assess_user_reputation

71 result = UserReputationWorker.perform(@content.user)

72 continue_with(result)

73 end

74

75 def escalate_to_manual_review

76 ManualReviewWorker.perform(@content)

77 @content.update!(status: 'pending', transcript: @transcript)

78 end

79

80 def approve_content

81 @content.update!(status: 'approved', transcript: @transcript)

82 end

83

84 def reject_content

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 217

85 @content.update!(status: 'rejected', transcript: @transcript)

86 end

87

88 private

89

90 def continue_with(result)

91 @transcript << { function: result }

92 complete(@transcript)

93 end

94 end

ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ, ContentModerator ਨੂੰ ਇੱਕ ਸਮੱਗਰੀ ਔਬਜੈਕਟ ਨਾਲ ਸ਼ੁਰੂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ
ਗੱਲਬਾਤ ਫਾਰਮੈਟ ਵਿੱਚ ਇੱਕ ਨਿਗਰਾਨੀ ਲਿਖਤੀ ਰਿਕਾਰਡ ਬਣਾਈ ਰੱਖਦਾ ਹੈ। AI ਕੰਪੋਨੈਂਟ ਕੋਲ ਨਿਗਰਾਨੀ
ਕਾਰਜ-ਪ੍ਰਵਾਹ ’ਤੇ ਪੂਰਾ ਨਿਯੰਤਰਣ ਹੁੰਦਾ ਹੈ, ਜੋ ਸਮੱਗਰੀ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਅਤੇ ਹਰ ਕਦਮ ਦੇ ਨਤੀਜਿਆਂ ਦੇ
ਆਧਾਰ ’ਤੇ ਕਿਹੜੇ ਕਦਮ ਚੁੱਕਣੇ ਹਨ, ਇਹ ਫੈਸਲਾ ਕਰਦਾ ਹੈ।

AI ਦੁਆਰਾ ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਉਪਲਬਧ ਕਾਰਜਕਰਤਾ ਫੰਕਸ਼ਨਾਂ ਵਿੱਚ analyze_text, recognize_im-
age, assess_user_reputation, ਅਤੇ escalate_to_manual_review ਸ਼ਾਮਲ ਹਨ। ਹਰੇਕ
ਫੰਕਸ਼ਨ ਕਾਰਜ ਨੂੰ ਸੰਬੰਧਿਤ ਕਾਰਜਕਰਤਾ ਪ੍ਰਕਿਰਿਆ (TextAnalysisWorker, ImageRecogni-
tionWorker, ਆਦਿ) ਨੂੰ ਸੌਂਪਦਾ ਹੈ ਅਤੇ ਨਤੀਜੇ ਨੂੰ ਨਿਗਰਾਨੀ ਲਿਖਤੀ ਰਿਕਾਰਡ ਵਿੱਚ ਜੋੜਦਾ ਹੈ, ਐਸਕਲੇਸ਼ਨ
ਫੰਕਸ਼ਨ ਨੂੰ ਛੱਡ ਕੇ, ਜੋ ਇੱਕ ਅੰਤਿਮ ਸਥਿਤੀ ਵਜੋਂ ਕੰਮ ਕਰਦਾ ਹੈ। ਅੰਤ ਵਿੱਚ, approve_content ਅਤੇ
reject_content ਫੰਕਸ਼ਨ ਵੀ ਅੰਤਿਮ ਸਥਿਤੀਆਂ ਵਜੋਂ ਕੰਮ ਕਰਦੇ ਹਨ।

AI ਕੰਪੋਨੈਂਟ ਸਮੱਗਰੀ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਦਾ ਹੈ ਅਤੇ ਢੁਕਵੀਂ ਕਾਰਵਾਈ ਕਰਨ ਦਾ ਫੈਸਲਾ ਕਰਦਾ ਹੈ। ਜੇਕਰ ਸਮੱਗਰੀ
ਵਿੱਚ ਚਿੱਤਰ ਹਵਾਲੇ ਸ਼ਾਮਲ ਹਨ, ਤਾਂ ਇਹ ਵਿਜ਼ੂਅਲ ਸਮੀਖਿਆ ਲਈ recognize_image ਕਾਰਜਕਰਤਾ ਨੂੰ
ਕਾਲ ਕਰ ਸਕਦਾ ਹੈ। ਜੇਕਰ ਕੋਈ ਕਾਰਜਕਰਤਾ ਸੰਭਾਵੀ ਨੁਕਸਾਨਦੇਹ ਸਮੱਗਰੀ ਬਾਰੇ ਚੇਤਾਵਨੀ ਦਿੰਦਾ ਹੈ, ਤਾਂ AI
ਸਮੱਗਰੀ ਨੂੰ ਮੈਨੂਅਲ ਸਮੀਖਿਆ ਲਈ ਭੇਜਣ ਜਾਂ ਸਿੱਧਾ ਰੱਦ ਕਰਨ ਦਾ ਫੈਸਲਾ ਕਰ ਸਕਦਾ ਹੈ। ਪਰ ਚੇਤਾਵਨੀ ਦੀ
ਗੰਭੀਰਤਾ ’ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ, AI ਉਸ ਸਮੱਗਰੀ ਨਾਲ ਕਿਵੇਂ ਨਜਿੱਠਣਾ ਹੈ ਜਿਸ ਬਾਰੇ ਇਹ ਹੋਰ ਯਕੀਨੀ ਨਹੀਂ
ਹੈ, ਇਸ ਬਾਰੇ ਫੈਸਲਾ ਲੈਣ ਲਈ ਯੂਜ਼ਰ ਪ੍ਰਤਿਸ਼ਠਾ ਮੁਲਾਂਕਣ ਦੇ ਨਤੀਜਿਆਂ ਦੀ ਵਰਤੋਂ ਕਰਨ ਦੀ ਚੋਣ ਕਰ ਸਕਦਾ
ਹੈ। ਵਰਤੋਂ ਦੇ ਕੇਸ ’ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ, ਸ਼ਾਇਦ ਭਰੋਸੇਯੋਗ ਯੂਜ਼ਰਾਂ ਨੂੰ ਉਹਨਾਂ ਦੀ ਪੋਸਟ ਕਰਨ ਦੀ ਸਮਰੱਥਾ
ਵਿੱਚ ਵਧੇਰੇ ਛੋਟ ਮਿਲਦੀ ਹੈ। ਅਤੇ ਇਸੇ ਤਰ੍ਹਾਂ ਹੋਰ…

ਪਿਛਲੀ ਪ੍ਰਕਿਰਿਆ ਪ੍ਰਬੰਧਕ ਉਦਾਹਰਣ ਵਾਂਗ, ਨਿਗਰਾਨੀ ਲਿਖਤੀ ਰਿਕਾਰਡ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ
ਦਾ ਰਿਕਾਰਡ ਹੈ, ਜਿਸ ਵਿੱਚ ਹਰ ਕਦਮ ਦੇ ਨਤੀਜੇ ਅਤੇ AI-ਜਨਰੇਟ ਕੀਤੇ ਫੈਸਲੇ ਸ਼ਾਮਲ ਹਨ।ਇਹਲਿਖਤੀ ਰਿਕਾਰਡ

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 218

ਆਡਿਟਿੰਗ, ਪਾਰਦਰਸ਼ਤਾ, ਅਤੇ ਸਮੇਂ ਦੇ ਨਾਲ ਨਿਗਰਾਨੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਲਈ ਵਰਤਿਆ ਜਾ
ਸਕਦਾ ਹੈ।

ContentModerator ਵਿੱਚ AI ਦੀ ਵਰਤੋਂ ਕਰਕੇ, ਸੋਸ਼ਲ ਮੀਡੀਆ ਐਪਲੀਕੇਸ਼ਨ ਸਮੱਗਰੀ ਦੀਆਂ
ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਨਿਗਰਾਨੀ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਨੂੰ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਅਨੁਕੂਲ ਕਰ ਸਕਦੀ ਹੈ ਅਤੇ
ਜਟਿਲ ਨਿਗਰਾਨੀ ਸਥਿਤੀਆਂ ਨਾਲ ਬੁੱਧੀਮਾਨੀ ਨਾਲ ਨਜਿੱਠ ਸਕਦੀ ਹੈ। AI ਕੰਪੋਨੈਂਟ ਸੂਚਿਤ ਫੈਸਲੇ ਲੈ ਸਕਦਾ
ਹੈ, ਕਾਰਜ-ਪ੍ਰਵਾਹ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾ ਸਕਦਾ ਹੈ, ਅਤੇ ਇੱਕ ਸੁਰੱਖਿਅਤ ਅਤੇ ਸਿਹਤਮੰਦ ਕਮਿਊਨਿਟੀ ਅਨੁਭਵ ਨੂੰ
ਯਕੀਨੀ ਬਣਾ ਸਕਦਾ ਹੈ।

ਆਓ ਦੋ ਹੋਰ ਉਦਾਹਰਣਾਂ ਦੀ ਪੜਚੋਲ ਕਰੀਏ ਜੋ ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਆਰਕੈਸਟ੍ਰੇਸ਼ਨ ਦੇ ਸੰਦਰਭ ਵਿੱਚ
ਭਵਿੱਖ-ਸੂਚਕ ਕਾਰਜ ਸ਼ੈਡਿਊਲਿੰਗ ਅਤੇ ਅਪਵਾਦ ਹੈਂਡਲਿੰਗ ਅਤੇ ਰਿਕਵਰੀ ਨੂੰ ਦਰਸਾਉਂਦੀਆਂ ਹਨ।

ਗਾਹਕ ਸਹਾਇਤਾ ਸਿਸਟਮ ਵਿੱਚ ਭਵਿੱਖ-ਸੂਚਕ ਕਾਰਜ ਸ਼ੈਡਿਊਲਿੰਗ

Ruby on Rails ਨਾਲ ਬਣਾਈ ਗਈ ਗਾਹਕ ਸਹਾਇਤਾ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ, ਗਾਹਕਾਂ ਨੂੰ ਸਮੇਂ ਸਿਰ ਸਹਾਇਤਾ
ਪ੍ਰਦਾਨ ਕਰਨ ਲਈ ਸਹਾਇਤਾ ਟਿਕਟਾਂ ਦਾ ਕੁਸ਼ਲਤਾ ਨਾਲ ਪ੍ਰਬੰਧਨ ਅਤੇ ਤਰਜੀਹੀਕਰਨ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ
ਹੈ। SupportTicketScheduler ਕੰਪੋਨੈਂਟ ਟਿਕਟ ਦੀ ਤਤਕਾਲਤਾ, ਏਜੰਟ ਦੀ ਮੁਹਾਰਤ, ਅਤੇ ਕੰਮ ਦੇ ਬੋਝ
ਵਰਗੇ ਵੱਖ-ਵੱਖ ਕਾਰਕਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਸਹਾਇਤਾ ਟਿਕਟਾਂ ਨੂੰ ਭਵਿੱਖ-ਸੂਚਕ ਢੰਗ ਨਾਲ ਸ਼ੈਡਿਊਲ ਅਤੇ ਉਪਲਬਧ
ਏਜੰਟਾਂ ਨੂੰ ਅਸਾਈਨ ਕਰਨ ਲਈ AI ਦੀ ਵਰਤੋਂ ਕਰਦਾ ਹੈ।

1 class SupportTicketScheduler

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,

6 tasked with intelligently assigning tickets to available agents..."

7

8 def initialize(ticket)

9 @ticket = ticket

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: ticket.to_json }

13]

14 end

15

16 def perform

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 219

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 def functions

25 [

26 {

27 name: "analyze_ticket_urgency",

28 # ...

29 },

30 {

31 name: "list_available_agents",

32 description: "Includes expertise of available agents",

33 # ...

34 },

35 {

36 name: "predict_agent_workload",

37 description: "Uses historical data to predict upcoming workloads",

38 # ...

39 },

40 {

41 name: "assign_ticket_to_agent",

42 # ...

43 },

44 {

45 name: "reschedule_ticket",

46 # ...

47 }

48]

49 end

50

51 # implementation of functions that can be called by the AI

52 # entirely at its discretion, depending on the needs of the order

53

54 def analyze_ticket_urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)

56 continue_with(result)

57 end

58

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 220

59 def list_available_agents

60 result = ListAvailableAgents.perform

61 continue_with(result)

62 end

63

64 def predict_agent_workload

65 result = AgentWorkloadPredictor.perform

66 continue_with(result)

67 end

68

69 def assign_ticket_to_agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

73 def delay_assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)

76 end

77

78 private

79

80 def continue_with(result)

81 @transcript << { function: result }

82 complete(@transcript)

83 end

84 end

ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ, SupportTicketScheduler ਨੂੰ ਇੱਕ ਸਹਾਇਤਾ ਟਿਕਟ ਆਬਜੈਕਟ ਨਾਲ ਸ਼ੁਰੂ
ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇੱਕ ਸ਼ੈਡਿਊਲਿੰਗ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਬਣਾਈ ਰੱਖਦਾ ਹੈ। AI ਭਾਗ ਟਿਕਟ ਦੇ ਵੇਰਵਿਆਂ ਦਾ
ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਦਾ ਹੈ ਅਤੇ ਟਿਕਟ ਦੀ ਤਾਕੀਦ, ਏਜੰਟ ਮੁਹਾਰਤ, ਅਤੇ ਅਨੁਮਾਨਿਤ ਏਜੰਟ ਕੰਮ ਦੇ ਭਾਰ ਵਰਗੇ
ਕਾਰਕਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਟਿਕਟ ਨਿਰਧਾਰਨ ਦੀ ਭਵਿੱਖਬਾਣੀ ਕਰਦਾ ਹੈ।

AI ਦੁਆਰਾ ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਉਪਲਬਧਫੰਕਸ਼ਨਾਂ ਵਿੱਚ analyze_ticket_urgency, list_avail-
able_agents, predict_agent_workload, ਅਤੇ assign_ticket_to_agent ਸ਼ਾਮਲ
ਹਨ। ਹਰੇਕ ਫੰਕਸ਼ਨ ਕੰਮ ਨੂੰ ਸੰਬੰਧਿਤ ਵਿਸ਼ਲੇਸ਼ਕ ਜਾਂ ਭਵਿੱਖਬਾਣੀ ਕਰਨ ਵਾਲੇ ਭਾਗ ਨੂੰ ਸੌਂਪਦਾ ਹੈ ਅਤੇ ਨਤੀਜੇ
ਨੂੰ ਸ਼ੈਡਿਊਲਿੰਗ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਵਿੱਚ ਜੋੜਦਾ ਹੈ। AI ਕੋਲ delay_assignment ਫੰਕਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ
ਨਿਰਧਾਰਨ ਨੂੰ ਦੇਰੀ ਕਰਨ ਦਾ ਵਿਕਲਪ ਵੀ ਹੈ।

AI ਭਾਗ ਸ਼ੈਡਿਊਲਿੰਗ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਦੀ ਜਾਂਚ ਕਰਦਾ ਹੈ ਅਤੇ ਟਿਕਟ ਨਿਰਧਾਰਨ ’ਤੇ ਜਾਣਕਾਰੀ ਭਰਪੂਰ ਫੈਸਲੇ

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 221

ਲੈਂਦਾ ਹੈ। ਇਹ ਟਿਕਟ ਦੀ ਤਾਕੀਦ, ਉਪਲਬਧ ਏਜੰਟਾਂ ਦੀ ਮੁਹਾਰਤ, ਅਤੇ ਹਰੇਕ ਏਜੰਟ ਦੇ ਅਨੁਮਾਨਿਤ ਕੰਮ ਦੇ ਭਾਰ
ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦਾ ਹੈ ਤਾਂ ਜੋ ਟਿਕਟ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਸਭ ਤੋਂ ਢੁਕਵੇਂ ਏਜੰਟ ਦਾ ਨਿਰਧਾਰਨ ਕੀਤਾ ਜਾ ਸਕੇ।

ਭਵਿੱਖਬਾਣੀ ਕਰਨ ਵਾਲੀ ਕਾਰਜ ਸ਼ੈਡਿਊਲਿੰਗ ਦੀ ਵਰਤੋਂ ਕਰਕੇ, ਗਾਹਕ ਸਹਾਇਤਾ ਐਪਲੀਕੇਸ਼ਨ ਟਿਕਟ ਨਿਰਧਾਰਨ
ਨੂੰ ਅਨੁਕੂਲ ਬਣਾ ਸਕਦੀ ਹੈ, ਜਵਾਬ ਦੇਣ ਦੇ ਸਮੇਂ ਨੂੰ ਘਟਾ ਸਕਦੀ ਹੈ, ਅਤੇ ਸਮੁੱਚੀ ਗਾਹਕ ਸੰਤੁਸ਼ਟੀ ਨੂੰ ਵਧਾ ਸਕਦੀ
ਹੈ। ਸਹਾਇਤਾ ਟਿਕਟਾਂ ਦਾ ਸਰਗਰਮ ਅਤੇ ਕੁਸ਼ਲ ਪ੍ਰਬੰਧਨ ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ ਕਿ ਸਹੀ ਟਿਕਟਾਂ ਸਹੀ
ਏਜੰਟਾਂ ਨੂੰ ਸਹੀ ਸਮੇਂ ’ਤੇ ਸੌਂਪੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।

ਡਾਟਾ ਪ੍ਰੋਸੈਸਿੰਗ ਪਾਈਪਲਾਈਨ ਵਿੱਚ ਐਕਸੈਪਸ਼ਨ ਹੈਂਡਲਿੰਗ ਅਤੇ ਰਿਕਵਰੀ

ਐਕਸੈਪਸ਼ਨਾਂ ਨੂੰ ਸੰਭਾਲਣਾ ਅਤੇ ਅਸਫਲਤਾਵਾਂ ਤੋਂ ਰਿਕਵਰ ਕਰਨਾ ਡਾਟਾ ਅਖੰਡਤਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਅਤੇ ਡਾਟਾ
ਦੇ ਨੁਕਸਾਨ ਨੂੰ ਰੋਕਣ ਲਈ ਜ਼ਰੂਰੀ ਹੈ।। DataProcessingOrchestrator ਭਾਗ AI ਦੀ ਵਰਤੋਂ ਕਰਦਾ ਹੈ
ਤਾਂ ਜੋ ਡਾਟਾ ਪ੍ਰੋਸੈਸਿੰਗ ਪਾਈਪਲਾਈਨ ਵਿੱਚ ਬੁੱਧੀਮਾਨੀ ਨਾਲ ਐਕਸੈਪਸ਼ਨਾਂ ਨੂੰ ਸੰਭਾਲਿਆ ਜਾ ਸਕੇ ਅਤੇ ਰਿਕਵਰੀ
ਪ੍ਰਕਿਰਿਆ ਦਾ ਪ੍ਰਬੰਧਨ ਕੀਤਾ ਜਾ ਸਕੇ

1 class DataProcessingOrchestrator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

6

7 def initialize(data_batch)

8 @data_batch = data_batch

9 @transcript = [

10 { system: SYSTEM_DIRECTIVE },

11 { user: data_batch.to_json }

12]

13 end

14

15 def perform

16 complete(@transcript)

17 end

18

19 def model

20 "openai/gpt-4"

21 end

22

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 222

23 def functions

24 [

25 {

26 name: "validate_data",

27 # ...

28 },

29 {

30 name: "process_data",

31 # ...

32 },

33 {

34 name: "request_fix",

35 # ...

36 },

37 {

38 name: "retry_processing",

39 # ...

40 },

41 {

42 name: "mark_data_as_failed",

43 # ...

44 },

45 {

46 name: "finished",

47 # ...

48 }

49]

50 end

51

52 # implementation of functions that can be called by the AI

53 # entirely at its discretion, depending on the needs of the order

54

55 def validate_data

56 result = DataValidator.perform(@data_batch)

57 continue_with(result)

58 rescue ValidationException => e

59 handle_validation_exception(e)

60 end

61

62 def process_data

63 result = DataProcessor.perform(@data_batch)

64 continue_with(result)

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 223

65 rescue ProcessingException => e

66 handle_processing_exception(e)

67 end

68

69 def request_fix(description_of_fix)

70 result = SmartDataFixer.new(description_of_fix, @data_batch)

71 continue_with(result)

72 end

73

74 def retry_processing(timeout_in_seconds)

75 wait(timeout_in_seconds)

76 process_data

77 end

78

79 def mark_data_as_failed

80 @data_batch.update!(status: 'failed', transcript: @transcript)

81 end

82

83 def finished

84 @data_batch.update!(status: 'finished', transcript: @transcript)

85 end

86

87 private

88

89 def continue_with(result)

90 @transcript << { function: result }

91 complete(@transcript)

92 end

93

94 def handle_validation_exception(exception)

95 @transcript << { exception: exception.message }

96 complete(@transcript)

97 end

98

99 def handle_processing_exception(exception)

100 @transcript << { exception: exception.message }

101 complete(@transcript)

102 end

103 end

ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ, DataProcessingOrchestrator ਨੂੰ ਡਾਟਾ ਬੈਚ ਆਬਜੈਕਟ ਨਾਲ ਸ਼ੁਰੂ ਕੀਤਾ

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 224

ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਹ ਪ੍ਰੋਸੈਸਿੰਗ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਨੂੰ ਬਣਾਈ ਰੱਖਦਾ ਹੈ। AI ਕੰਪੋਨੈਂਟ ਡਾਟਾ ਪ੍ਰੋਸੈਸਿੰਗ ਪਾਈਪਲਾਈਨ
ਦਾ ਪ੍ਰਬੰਧਨ ਕਰਦਾ ਹੈ, ਐਕਸੈਪਸ਼ਨਾਂ ਨੂੰ ਸੰਭਾਲਦਾ ਹੈ ਅਤੇ ਲੋੜ ਅਨੁਸਾਰ ਅਸਫਲਤਾਵਾਂ ਤੋਂ ਰਿਕਵਰ ਕਰਦਾ ਹੈ।

AI ਦੁਆਰਾ ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਉਪਲਬਧ ਫੰਕਸ਼ਨਾਂ ਵਿੱਚ validate_data, process_data, re-
quest_fix, retry_processing, ਅਤੇ mark_data_as_failed ਸ਼ਾਮਲ ਹਨ। ਹਰ ਫੰਕਸ਼ਨ
ਕਾਰਜ ਨੂੰ ਸੰਬੰਧਿਤ ਡਾਟਾ ਪ੍ਰੋਸੈਸਿੰਗ ਕੰਪੋਨੈਂਟ ਨੂੰ ਸੌਂਪਦਾ ਹੈ ਅਤੇ ਨਤੀਜੇ ਜਾਂ ਐਕਸੈਪਸ਼ਨ ਵੇਰਵਿਆਂ ਨੂੰ ਪ੍ਰੋਸੈਸਿੰਗ
ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਵਿੱਚ ਜੋੜਦਾ ਹੈ।

ਜੇਕਰ validate_data ਸਟੈੱਪ ਦੌਰਾਨ ਵੈਲੀਡੇਸ਼ਨ ਐਕਸੈਪਸ਼ਨ ਆਉਂਦੀ ਹੈ, ਤਾਂ handle_valida-
tion_exception ਫੰਕਸ਼ਨ ਐਕਸੈਪਸ਼ਨ ਡਾਟਾ ਨੂੰ ਟ੍ਰਾਂਸਕ੍ਰਿਪਟ ਵਿੱਚ ਜੋੜਦਾ ਹੈ ਅਤੇ ਕੰਟਰੋਲ AI ਨੂੰ ਵਾਪਸ
ਕਰ ਦਿੰਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ, ਜੇਕਰ process_data ਸਟੈੱਪ ਦੌਰਾਨ ਪ੍ਰੋਸੈਸਿੰਗ ਐਕਸੈਪਸ਼ਨ ਆਉਂਦੀ ਹੈ, ਤਾਂ
AI ਰਿਕਵਰੀ ਰਣਨੀਤੀ ਦਾ ਫੈਸਲਾ ਕਰ ਸਕਦੀ ਹੈ।

ਐਕਸੈਪਸ਼ਨ ਦੀ ਪ੍ਰਕਿਰਤੀ ਦੇ ਆਧਾਰ ’ਤੇ, AIਆਪਣੇ ਵਿਵੇਕ ਨਾਲ request_fix ਨੂੰ ਕਾਲ ਕਰਨ ਦਾ ਫੈਸਲਾ
ਕਰ ਸਕਦੀ ਹੈ, ਜੋ AI-ਸੰਚਾਲਿਤ SmartDataFixer ਕੰਪੋਨੈਂਟ ਨੂੰ ਡੈਲੀਗੇਟ ਕਰਦੀ ਹੈ (ਸੈਲਫ ਹੀਲਿੰਗ ਡਾਟਾ
ਚੈਪਟਰ ਦੇਖੋ)। ਡਾਟਾ ਫਿਕਸਰ ਨੂੰ ਸਧਾਰਨ ਅੰਗਰੇਜ਼ੀ ਵਿੱਚ ਵੇਰਵਾ ਮਿਲਦਾ ਹੈ ਕਿ ਇਹ @data_batch ਨੂੰ
ਕਿਵੇਂ ਸੋਧ ਸਕਦਾ ਹੈ ਤਾਂ ਜੋ ਪ੍ਰੋਸੈਸਿੰਗ ਨੂੰ ਦੁਬਾਰਾ ਕੋਸ਼ਿਸ਼ ਕੀਤੀ ਜਾ ਸਕੇ। ਸ਼ਾਇਦ ਇੱਕ ਸਫਲ ਮੁੜ-ਕੋਸ਼ਿਸ਼ ਵਿੱਚ
ਡਾਟਾ ਬੈਚ ਤੋਂ ਉਹ ਰਿਕਾਰਡ ਹਟਾਉਣਾ ਸ਼ਾਮਲ ਹੋਵੇਗਾ ਜੋ ਵੈਲੀਡੇਸ਼ਨ ਵਿੱਚ ਅਸਫਲ ਹੋ ਗਏ ਹਨ ਅਤੇ/ਜਾਂ ਉਨ੍ਹਾਂ
ਨੂੰ ਮਨੁੱਖੀ ਸਮੀਖਿਆ ਲਈ ਵੱਖਰੀ ਪ੍ਰੋਸੈਸਿੰਗ ਪਾਈਪਲਾਈਨ ’ਤੇ ਕਾਪੀ ਕਰਨਾ? ਸੰਭਾਵਨਾਵਾਂ ਲਗਭਗ ਅਨੰਤ
ਹਨ।

AI-ਸੰਚਾਲਿਤ ਐਕਸੈਪਸ਼ਨ ਹੈਂਡਲਿੰਗ ਅਤੇ ਰਿਕਵਰੀ ਨੂੰ ਸ਼ਾਮਲ ਕਰਕੇ, ਡਾਟਾ ਪ੍ਰੋਸੈਸਿੰਗ ਐਪਲੀਕੇਸ਼ਨ ਵਧੇਰੇ
ਲਚਕਦਾਰ ਅਤੇ ਗਲਤੀ-ਸਹਿਣਸ਼ੀਲ ਬਣ ਜਾਂਦੀ ਹੈ। DataProcessingOrchestrator ਬੁੱਧੀਮਾਨੀ ਨਾਲ
ਐਕਸੈਪਸ਼ਨਾਂ ਦਾ ਪ੍ਰਬੰਧਨ ਕਰਦਾ ਹੈ, ਡਾਟਾ ਦੇ ਨੁਕਸਾਨ ਨੂੰ ਘੱਟ ਕਰਦਾ ਹੈ, ਅਤੇ ਡਾਟਾ ਪ੍ਰੋਸੈਸਿੰਗ ਵਰਕਫਲੋ ਦੇ
ਸੁਚਾਰੂ ਕਾਰਜਾਂਵੀ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ।

ਨਿਗਰਾਨੀ ਅਤੇ ਲੌਗਿੰਗ

ਨਿਗਰਾਨੀ ਅਤੇ ਲੌਗਿੰਗ AI-ਸੰਚਾਲਿਤ ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟਾਂ ਦੀ ਪ੍ਰਗਤੀ, ਕਾਰਗੁਜ਼ਾਰੀ, ਅਤੇ ਸਿਹਤ ਦੀ ਦ੍ਰਿਸ਼ਟੀ
ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ, ਜੋ ਡਿਵੈਲਪਰਾਂ ਨੂੰ ਸਿਸਟਮ ਦੇ ਵਿਵਹਾਰ ਨੂੰ ਟਰੈਕ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਦੇ ਯੋਗ ਬਣਾਉਂਦੇ
ਹਨ। ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਨਿਗਰਾਨੀ ਅਤੇ ਲੌਗਿੰਗ ਵਿਧੀਆਂ ਨੂੰ ਲਾਗੂ ਕਰਨਾ ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋਜ਼ ਦੀ ਡੀਬੱਗਿੰਗ,
ਆਡਿਟਿੰਗ, ਅਤੇ ਨਿਰੰਤਰ ਸੁਧਾਰ ਲਈ ਜ਼ਰੂਰੀ ਹੈ।

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 225

ਵਰਕਫਲੋ ਪ੍ਰਗਤੀ ਅਤੇ ਕਾਰਗੁਜ਼ਾਰੀ ਦੀ ਨਿਗਰਾਨੀ

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋਜ਼ ਦੇ ਸੁਚਾਰੂ ਕਾਰਜਾਂਵੀ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ, ਹਰ ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟ ਦੀ ਪ੍ਰਗਤੀ ਅਤੇ
ਕਾਰਗੁਜ਼ਾਰੀ ਦੀ ਨਿਗਰਾਨੀ ਕਰਨਾ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਇਸ ਵਿੱਚ ਵਰਕਫਲੋ ਜੀਵਨ-ਚੱਕਰ ਦੌਰਾਨ ਮੁੱਖ ਮੈਟ੍ਰਿਕਸ
ਅਤੇ ਘਟਨਾਵਾਂ ਦੀ ਟਰੈਕਿੰਗ ਸ਼ਾਮਲ ਹੈ।

ਨਿਗਰਾਨੀ ਕਰਨ ਲਈ ਕੁਝ ਮਹੱਤਵਪੂਰਨ ਪਹਿਲੂ ਹਨ:

1. ਵਰਕਫਲੋ ਕਾਰਜਾਂਵੀ ਸਮਾਂ: ਹਰ ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟ ਦੁਆਰਾ ਆਪਣਾ ਕਾਰਜ ਪੂਰਾ ਕਰਨ ਵਿੱਚ ਲੱਗੇ ਸਮੇਂ ਦੀ
ਮਾਪ ਕਰੋ। ਇਹ ਕਾਰਗੁਜ਼ਾਰੀ ਦੀਆਂ ਰੁਕਾਵਟਾਂ ਦੀ ਪਛਾਣ ਕਰਨ ਅਤੇ ਸਮੁੱਚੀ ਵਰਕਫਲੋ ਕੁਸ਼ਲਤਾ ਨੂੰ ਅਨੁਕੂਲ
ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰਦਾ ਹੈ।

2. ਸਰੋਤ ਵਰਤੋਂ: ਹਰ ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟ ਦੁਆਰਾ ਸਿਸਟਮ ਸਰੋਤਾਂ, ਜਿਵੇਂ ਕਿ CPU, ਮੈਮੋਰੀ, ਅਤੇ ਸਟੋਰੇਜ ਦੀ
ਵਰਤੋਂ ਦੀ ਨਿਗਰਾਨੀ ਕਰੋ। ਇਹ ਯਕੀਨੀ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰਦਾ ਹੈ ਕਿ ਸਿਸਟਮਆਪਣੀ ਸਮਰੱਥਾ ਦੇ ਅੰਦਰ
ਕੰਮ ਕਰ ਰਿਹਾ ਹੈ ਅਤੇ ਵਰਕਲੋਡ ਨੂੰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਸੰਭਾਲ ਸਕਦਾ ਹੈ।

3. ਗਲਤੀ ਦਰਾਂ ਅਤੇ ਅਪਵਾਦ: ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟਸ ਵਿੱਚ ਗਲਤੀਆਂ ਅਤੇ ਅਪਵਾਦਾਂ ਦੀ ਵਾਪਰਨ ਦੀ
ਨਿਗਰਾਨੀ ਕਰੋ। ਇਹ ਸੰਭਾਵੀ ਸਮੱਸਿਆਵਾਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰਦਾ ਹੈ ਅਤੇ ਸਰਗਰਮ ਗਲਤੀ
ਨਿਪਟਾਰੇ ਅਤੇ ਰਿਕਵਰੀ ਨੂੰ ਸਮਰੱਥ ਬਣਾਉਂਦਾ ਹੈ।

4. ਫੈਸਲੇ ਦੇ ਬਿੰਦੂ ਅਤੇ ਨਤੀਜੇ: ਵਰਕਫਲੋ ਵਿੱਚ ਫੈਸਲੇ ਦੇ ਬਿੰਦੂਆਂ ਅਤੇ AI-ਸੰਚਾਲਿਤ ਫੈਸਲਿਆਂ ਦੇ ਨਤੀਜਿਆਂ
ਦੀ ਨਿਗਰਾਨੀ ਕਰੋ। ਇਹ AI ਕੰਪੋਨੈਂਟਸ ਦੇ ਵਿਵਹਾਰ ਅਤੇ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ।

ਨਿਗਰਾਨੀ ਪ੍ਰਕਿਰਿਆਵਾਂ ਦੁਆਰਾ ਇਕੱਤਰ ਕੀਤਾ ਡਾਟਾ ਡੈਸ਼ਬੋਰਡਾਂ ਵਿੱਚ ਦਿਖਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਜਾਂ ਨਿਯਤ
ਰਿਪੋਰਟਾਂ ਲਈ ਇਨਪੁੱਟ ਵਜੋਂ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ ਜੋ ਸਿਸਟਮ ਐਡਮਿਨਿਸਟ੍ਰੇਟਰਾਂ ਨੂੰ ਸਿਸਟਮ ਦੀ ਸਿਹਤ
ਬਾਰੇ ਜਾਣੂ ਕਰਵਾਉਂਦੀਆਂ ਹਨ।

ਨਿਗਰਾਨੀ ਡਾਟਾ ਨੂੰ ਸਮੀਖਿਆ ਅਤੇ ਸੰਭਾਵੀ ਕਾਰਵਾਈ ਲਈ AI-ਸੰਚਾਲਿਤ ਸਿਸਟਮ
ਐਡਮਿਨਿਸਟ੍ਰੇਟਰ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਭੇਜਿਆ ਜਾ ਸਕਦਾ ਹੈ!

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 226

ਮਹੱਤਵਪੂਰਨ ਘਟਨਾਵਾਂ ਅਤੇ ਫੈਸਲਿਆਂ ਦੀ ਲੌਗਿੰਗ

ਲੌਗਿੰਗ ਇੱਕ ਜ਼ਰੂਰੀ ਅਭਿਆਸ ਹੈ ਜਿਸ ਵਿੱਚ ਵਰਕਫਲੋ ਦੀ ਕਾਰਵਾਈ ਦੌਰਾਨ ਵਾਪਰਨ ਵਾਲੀਆਂ ਮਹੱਤਵਪੂਰਨ
ਘਟਨਾਵਾਂ, ਫੈਸਲਿਆਂ, ਅਤੇ ਅਪਵਾਦਾਂ ਬਾਰੇ ਢੁਕਵੀਂ ਜਾਣਕਾਰੀ ਨੂੰ ਕੈਪਚਰ ਕਰਨਾ ਅਤੇ ਸਟੋਰ ਕਰਨਾ ਸ਼ਾਮਲ ਹੈ।

ਲੌਗ ਕਰਨ ਲਈ ਕੁਝ ਮਹੱਤਵਪੂਰਨ ਪਹਿਲੂ ਹਨ:

1. ਵਰਕਫਲੋ ਦੀ ਸ਼ੁਰੂਆਤ ਅਤੇ ਸਮਾਪਤੀ: ਹਰੇਕ ਵਰਕਫਲੋ ਇੰਸਟੈਂਸ ਦੇ ਸ਼ੁਰੂ ਅਤੇ ਅੰਤ ਦੇ ਸਮੇਂ ਨੂੰ ਲੌਗ ਕਰੋ,
ਨਾਲ ਹੀ ਕੋਈ ਵੀ ਢੁਕਵਾਂ ਮੈਟਾਡਾਟਾ ਜਿਵੇਂ ਕਿ ਇਨਪੁੱਟ ਡਾਟਾ ਅਤੇ ਯੂਜ਼ਰ ਕੰਟੈਕਸਟ।

2. ਕੰਪੋਨੈਂਟ ਐਗਜ਼ੀਕਿਊਸ਼ਨ: ਹਰੇਕ ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟ ਦੇ ਐਗਜ਼ੀਕਿਊਸ਼ਨ ਵੇਰਵਿਆਂ ਨੂੰ ਲੌਗ ਕਰੋ, ਜਿਸ ਵਿੱਚ
ਇਨਪੁੱਟ ਪੈਰਾਮੀਟਰ, ਆਉਟਪੁੱਟ ਨਤੀਜੇ, ਅਤੇ ਕੋਈ ਵੀ ਵਿਚਕਾਰਲਾ ਡਾਟਾ ਜੋ ਤਿਆਰ ਕੀਤਾ ਗਿਆ ਹੈ, ਸ਼ਾਮਲ
ਹੈ।

3. AI ਫੈਸਲੇ ਅਤੇ ਤਰਕ: AI ਕੰਪੋਨੈਂਟਸ ਦੁਆਰਾ ਲਏ ਗਏ ਫੈਸਲਿਆਂ ਨੂੰ ਲੌਗ ਕਰੋ, ਨਾਲ ਹੀ ਅੰਦਰੂਨੀ ਤਰਕ
ਜਾਂ ਭਰੋਸੇਯੋਗਤਾ ਸਕੋਰ। ਇਹ ਪਾਰਦਰਸ਼ਤਾ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ ਅਤੇ AI-ਸੰਚਾਲਿਤ ਫੈਸਲਿਆਂ ਦੀ ਆਡਿਟਿੰਗ ਨੂੰ
ਸਮਰੱਥ ਬਣਾਉਂਦਾ ਹੈ।

4. ਅਪਵਾਦ ਅਤੇ ਗਲਤੀ ਸੁਨੇਹੇ: ਵਰਕਫਲੋ ਐਗਜ਼ੀਕਿਊਸ਼ਨ ਦੌਰਾਨ ਆਉਣ ਵਾਲੇ ਕਿਸੇ ਵੀ ਅਪਵਾਦ ਜਾਂ
ਗਲਤੀ ਸੁਨੇਹਿਆਂ ਨੂੰ ਲੌਗ ਕਰੋ, ਜਿਸ ਵਿੱਚ ਸਟੈਕ ਟਰੇਸ ਅਤੇ ਢੁਕਵੀਂ ਕੰਟੈਕਸਟ ਜਾਣਕਾਰੀ ਸ਼ਾਮਲ ਹੈ।

ਲੌਗਿੰਗ ਨੂੰ ਵੱਖ-ਵੱਖ ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ ਨਾਲ ਲਾਗੂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਵੇਂ ਕਿ ਲੌਗ ਫਾਈਲਾਂ ਵਿੱਚ ਲਿਖਣਾ,
ਲੌਗਾਂ ਨੂੰ ਡਾਟਾਬੇਸ ਵਿੱਚ ਸਟੋਰ ਕਰਨਾ, ਜਾਂ ਲੌਗਾਂ ਨੂੰ ਕੇਂਦਰੀਕ੍ਰਿਤ ਲੌਗਿੰਗ ਸੇਵਾ ਵਿੱਚ ਭੇਜਣਾ।ਇਹ ਮਹੱਤਵਪੂਰਨ ਹੈ
ਕਿ ਅਜਿਹਾ ਲੌਗਿੰਗ ਫਰੇਮਵਰਕ ਚੁਣਿਆ ਜਾਵੇ ਜੋ ਲਚਕਤਾ, ਸਕੇਲੇਬਿਲਟੀ, ਅਤੇ ਐਪਲੀਕੇਸ਼ਨ ਦੀਆਰਕੀਟੈਕਚਰ
ਨਾਲ ਆਸਾਨ ਏਕੀਕਰਣ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੋਵੇ।

ਇੱਥੇ ਇੱਕ ਉਦਾਹਰਣ ਹੈ ਕਿ Ruby on Rails ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ ActiveSupport::Logger ਕਲਾਸ
ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਲੌਗਿੰਗ ਕਿਵੇਂ ਲਾਗੂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ:

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 227

1 class WorkflowLogger

2 def self.log(message, severity = :info)

3 @logger ||= ActiveSupport::Logger.new('workflow.log')

4 @logger.formatter ||= proc do |severity, datetime, progname, msg|

5 "#{datetime} [#{severity}] #{msg}\n"

6 end

7 @logger.send(severity, message)

8 end

9 end

10

11 # Usage example

12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")

13 WorkflowLogger.log("Payment processing completed successfully")

14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

ਕਾਰਜ-ਪ੍ਰਵਾਹ ਭਾਗਾਂ ਅਤੇ AI ਫ਼ੈਸਲੇ ਦੇ ਬਿੰਦੂਆਂ ਵਿੱਚ ਰਣਨੀਤਕ ਤੌਰ ’ਤੇ ਲੌਗਿੰਗ ਸਟੇਟਮੈਂਟਾਂ ਨੂੰ ਰੱਖ ਕੇ,
ਡਿਵੈਲਪਰ ਡੀਬੱਗਿੰਗ, ਲੇਖਾ-ਪੜਤਾਲ, ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਲਈ ਮਹੱਤਵਪੂਰਨ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਨ।

ਨਿਗਰਾਨੀ ਅਤੇ ਲੌਗਿੰਗ ਦੇ ਲਾਭ

ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਆਰਕੈਸਟ੍ਰੇਸ਼ਨ ਵਿੱਚ ਨਿਗਰਾਨੀ ਅਤੇ ਲੌਗਿੰਗ ਨੂੰ ਲਾਗੂ ਕਰਨ ਦੇ ਕਈ ਲਾਭ ਹਨ:

1. ਡੀਬੱਗਿੰਗ ਅਤੇ ਸਮੱਸਿਆ ਨਿਵਾਰਣ: ਵਿਸਤ੍ਰਿਤ ਲੌਗ ਅਤੇ ਨਿਗਰਾਨੀ ਡਾਟਾ ਡਿਵੈਲਪਰਾਂ ਨੂੰ ਜਲਦੀ
ਸਮੱਸਿਆਵਾਂ ਦੀ ਪਛਾਣ ਅਤੇ ਨਿਦਾਨ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰਦੇ ਹਨ। ਇਹ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਦੇ ਕਾਰਜਾਂ, ਭਾਗਾਂ ਦੀ
ਅੰਤਰਕਿਰਿਆ, ਅਤੇ ਕਿਸੇ ਵੀ ਗਲਤੀਆਂ ਜਾਂ ਅਪਵਾਦਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ।

2. ਕਾਰਗੁਜ਼ਾਰੀ ਅਨੁਕੂਲਨ: ਕਾਰਗੁਜ਼ਾਰੀ ਮੈਟ੍ਰਿਕਸ ਦੀ ਨਿਗਰਾਨੀ ਡਿਵੈਲਪਰਾਂ ਨੂੰ ਰੁਕਾਵਟਾਂ ਦੀ ਪਛਾਣ ਕਰਨ
ਅਤੇ ਬਿਹਤਰ ਕੁਸ਼ਲਤਾ ਲਈ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਭਾਗਾਂ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਉਣ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦੀ ਹੈ। ਕਾਰਜ ਸਮੇਂ,
ਸਰੋਤ ਵਰਤੋਂ, ਅਤੇ ਹੋਰ ਮੈਟ੍ਰਿਕਸ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਕੇ, ਡਿਵੈਲਪਰ ਸਿਸਟਮ ਦੀ ਸਮੁੱਚੀ ਕਾਰਗੁਜ਼ਾਰੀ ਨੂੰ ਸੁਧਾਰਨ
ਲਈ ਸੂਚਿਤ ਫੈਸਲੇ ਲੈ ਸਕਦੇ ਹਨ।

3. ਲੇਖਾ-ਪੜਤਾਲ ਅਤੇ ਪਾਲਣਾ: ਮੁੱਖ ਘਟਨਾਵਾਂ ਅਤੇ ਫੈਸਲਿਆਂ ਦੀ ਲੌਗਿੰਗ ਨਿਯਾਮਕ ਪਾਲਣਾ ਅਤੇ
ਜਵਾਬਦੇਹੀ ਲਈ ਲੇਖਾ-ਪੜਤਾਲ ਰਿਕਾਰਡ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ। ਇਹ ਸੰਗਠਨਾਂ ਨੂੰ AI ਭਾਗਾਂ ਦੁਆਰਾ ਕੀਤੀਆਂ
ਗਈਆਂ ਕਾਰਵਾਈਆਂ ਦੀ ਟ੍ਰੈਕਿੰਗ ਅਤੇ ਪੜਤਾਲ ਕਰਨਅਤੇ ਵਪਾਰਕ ਨਿਯਮਾਂ ਅਤੇ ਕਾਨੂੰਨੀ ਜ਼ਰੂਰਤਾਂ ਦੀ ਪਾਲਣਾ
ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਦੇ ਯੋਗ ਬਣਾਉਂਦਾ ਹੈ।

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 228

4. ਨਿਰੰਤਰ ਸੁਧਾਰ: ਨਿਗਰਾਨੀ ਅਤੇ ਲੌਗਿੰਗ ਡਾਟਾ ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹਾਂ ਦੇ ਨਿਰੰਤਰ ਸੁਧਾਰ ਲਈ
ਮਹੱਤਵਪੂਰਨ ਇਨਪੁੱਟ ਵਜੋਂ ਕੰਮ ਕਰਦੇ ਹਨ। ਇਤਿਹਾਸਕ ਡਾਟਾ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਕੇ, ਪੈਟਰਨਾਂ ਦੀ ਪਛਾਣ
ਕਰਕੇ, ਅਤੇ AI ਫੈਸਲਿਆਂ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਨੂੰ ਮਾਪ ਕੇ, ਡਿਵੈਲਪਰ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਆਰਕੈਸਟ੍ਰੇਸ਼ਨ ਤਰਕ
ਨੂੰ ਲਗਾਤਾਰ ਸੁਧਾਰ ਅਤੇ ਵਧਾ ਸਕਦੇ ਹਨ।

ਵਿਚਾਰ ਅਤੇ ਸਰਵੋਤਮ ਅਭਿਆਸ

ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਆਰਕੈਸਟ੍ਰੇਸ਼ਨ ਵਿੱਚ ਨਿਗਰਾਨੀ ਅਤੇ ਲੌਗਿੰਗ ਨੂੰ ਲਾਗੂ ਕਰਦੇ ਸਮੇਂ, ਹੇਠ ਲਿਖੇ
ਸਰਵੋਤਮ ਅਭਿਆਸਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ:

1. ਸਪਸ਼ਟ ਨਿਗਰਾਨੀ ਮੈਟ੍ਰਿਕਸ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋ: ਕਾਰਜ-ਪ੍ਰਵਾਹ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ ਜ਼ਰੂਰਤਾਂ ਦੇ ਆਧਾਰ ’ਤੇ
ਨਿਗਰਾਨੀ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਮੁੱਖ ਮੈਟ੍ਰਿਕਸ ਅਤੇ ਘਟਨਾਵਾਂ ਦੀ ਪਛਾਣ ਕਰੋ। ਉਹਨਾਂ ਮੈਟ੍ਰਿਕਸ ’ਤੇ ਧਿਆਨ
ਕੇਂਦਰਿਤ ਕਰੋ ਜੋ ਸਿਸਟਮ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ, ਸਿਹਤ, ਅਤੇ ਵਿਵਹਾਰ ਬਾਰੇ ਅਰਥਪੂਰਨ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰਦੇ
ਹਨ।

2. ਵਿਸਤ੍ਰਿਤ ਲੌਗਿੰਗ ਲਾਗੂ ਕਰੋ: ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਲੌਗਿੰਗ ਸਟੇਟਮੈਂਟਾਂ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਭਾਗਾਂ ਅਤੇ AI
ਫੈਸਲੇ ਦੇ ਬਿੰਦੂਆਂ ਵਿੱਚ ਢੁਕਵੇਂ ਸਥਾਨਾਂ ’ਤੇ ਰੱਖੀਆਂ ਗਈਆਂ ਹਨ। ਇਨਪੁੱਟ ਪੈਰਾਮੀਟਰ, ਆਉਟਪੁੱਟ ਨਤੀਜੇ, ਅਤੇ
ਕੋਈ ਵੀ ਵਿਚਕਾਰਲਾ ਡਾਟਾ ਜੋ ਤਿਆਰ ਕੀਤਾ ਗਿਆ ਹੈ, ਵਰਗੀ ਪ੍ਰਸੰਗਿਕ ਜਾਣਕਾਰੀ ਨੂੰ ਕੈਪਚਰ ਕਰੋ।

3. ਸੰਰਚਿਤ ਲੌਗਿੰਗ ਦੀ ਵਰਤੋਂ ਕਰੋ: ਲੌਗ ਡਾਟਾ ਦੀ ਆਸਾਨ ਪਾਰਸਿੰਗ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੀ ਸਹੂਲਤ ਲਈਇੱਕ
ਸੰਰਚਿਤ ਲੌਗਿੰਗ ਫਾਰਮੈਟ ਨੂੰ ਅਪਣਾਓ। ਸੰਰਚਿਤ ਲੌਗਿੰਗ ਲੌਗ ਐਂਟਰੀਆਂ ਦੀ ਬਿਹਤਰ ਖੋਜ, ਫਿਲਟਰਿੰਗ, ਅਤੇ
ਏਕੀਕਰਣ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦੀ ਹੈ।

4. ਲੌਗ ਰੀਟੈਂਸ਼ਨ ਅਤੇ ਰੋਟੇਸ਼ਨ ਦਾ ਪ੍ਰਬੰਧਨ ਕਰੋ: ਲੌਗ ਫਾਈਲਾਂ ਦੇ ਸਟੋਰੇਜ ਅਤੇ ਜੀਵਨ-ਚੱਕਰ ਦਾ
ਪ੍ਰਬੰਧਨ ਕਰਨ ਲਈ ਲੌਗ ਰੀਟੈਂਸ਼ਨ ਅਤੇ ਰੋਟੇਸ਼ਨ ਨੀਤੀਆਂ ਲਾਗੂ ਕਰੋ। ਕਾਨੂੰਨੀ ਜ਼ਰੂਰਤਾਂ, ਸਟੋਰੇਜ ਸੀਮਾਵਾਂ, ਅਤੇ
ਵਿਸ਼ਲੇਸ਼ਣ ਦੀਆਂ ਜ਼ਰੂਰਤਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਢੁਕਵੀਂ ਰੀਟੈਂਸ਼ਨ ਮਿਆਦ ਨਿਰਧਾਰਤ ਕਰੋ। ਜੇ ਸੰਭਵ ਹੋਵੇ, ਲੌਗਿੰਗ ਨੂੰ
Papertrail ਵਰਗੀ ਤੀਜੀ-ਧਿਰ ਸੇਵਾ ’ਤੇ ਭੇਜੋ।

5. ਸੰਵੇਦਨਸ਼ੀਲ ਜਾਣਕਾਰੀ ਨੂੰ ਸੁਰੱਖਿਅਤ ਕਰੋ: ਨਿੱਜੀ ਪਛਾਣਯੋਗ ਜਾਣਕਾਰੀ (ਪੀਆਈਆਈ) ਜਾਂ ਗੁਪਤ
ਵਪਾਰਕ ਡਾਟਾ ਵਰਗੀ ਸੰਵੇਦਨਸ਼ੀਲ ਜਾਣਕਾਰੀ ਨੂੰ ਲੌਗ ਕਰਦੇ ਸਮੇਂ ਸਾਵਧਾਨ ਰਹੋ। ਲੌਗ ਫਾਈਲਾਂ ਵਿੱਚ
ਸੰਵੇਦਨਸ਼ੀਲ ਜਾਣਕਾਰੀ ਦੀ ਸੁਰੱਖਿਆ ਲਈ ਡਾਟਾ ਮਾਸਕਿੰਗ ਜਾਂ ਐਨਕ੍ਰਿਪਸ਼ਨ ਵਰਗੇ ਢੁਕਵੇਂ ਸੁਰੱਖਿਆ ਉਪਾਅ
ਲਾਗੂ ਕਰੋ।

https://papertrailapp.com

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 229

6. ਨਿਗਰਾਨੀ ਅਤੇ ਚੇਤਾਵਨੀ ਟੂਲਜ਼ ਨਾਲ ਏਕੀਕਰਨ ਕਰੋ: ਨਿਗਰਾਨੀ ਅਤੇ ਲੌਗਿੰਗ ਡਾਟਾ ਦੇ ਇਕੱਤਰੀਕਰਨ,
ਵਿਸ਼ਲੇਸ਼ਣ, ਅਤੇ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨ ਨੂੰ ਕੇਂਦਰੀਕ੍ਰਿਤ ਕਰਨ ਲਈ ਨਿਗਰਾਨੀ ਅਤੇ ਚੇਤਾਵਨੀ ਟੂਲਜ਼ ਦਾ ਲਾਭ
ਉਠਾਓ। ਇਹ ਟੂਲਜ਼ ਰੀਅਲ-ਟਾਈਮ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦੇ ਹਨ, ਪਹਿਲਾਂ-ਨਿਰਧਾਰਤ ਸੀਮਾਵਾਂ ਦੇ
ਆਧਾਰ ’ਤੇ ਚੇਤਾਵਨੀਆਂ ਤਿਆਰ ਕਰ ਸਕਦੇ ਹਨ, ਅਤੇ ਸਰਗਰਮ ਸਮੱਸਿਆ ਦੀ ਪਛਾਣ ਅਤੇ ਹੱਲ ਨੂੰ ਸੌਖਾ ਬਣਾ
ਸਕਦੇ ਹਨ। ਇਹਨਾਂ ਟੂਲਜ਼ ਵਿੱਚੋਂ ਮੇਰਾ ਪਸੰਦੀਦਾ Datadog ਹੈ।

ਵਿਆਪਕ ਨਿਗਰਾਨੀ ਅਤੇ ਲੌਗਿੰਗ ਵਿਧੀਆਂ ਨੂੰ ਲਾਗੂ ਕਰਕੇ, ਡਿਵੈਲਪਰ ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋਜ਼ ਦੇ ਵਿਵਹਾਰ ਅਤੇ
ਪ੍ਰਦਰਸ਼ਨ ਬਾਰੇ ਮੁੱਲਵਾਨ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀਆਂ AI-ਸੰਚਾਲਿਤ ਵਰਕਫਲੋ
ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ ਸਿਸਟਮਾਂ ਦੀ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਡੀਬੱਗਿੰਗ, ਆਪਟੀਮਾਈਜ਼ੇਸ਼ਨ, ਅਤੇ ਲਗਾਤਾਰ ਸੁਧਾਰ ਨੂੰ ਸਮਰੱਥ
ਬਣਾਉਂਦੀਆਂ ਹਨ।

ਸਕੇਲੇਬਿਲਟੀ ਅਤੇ ਪ੍ਰਦਰਸ਼ਨ ਵਿਚਾਰ

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ ਸਿਸਟਮਾਂ ਦੀ ਡਿਜ਼ਾਈਨਿੰਗ ਅਤੇ ਲਾਗੂਕਰਨ ਵੇਲੇ ਸਕੇਲੇਬਿਲਟੀ ਅਤੇ
ਪ੍ਰਦਰਸ਼ਨ ਮਹੱਤਵਪੂਰਨ ਪਹਿਲੂ ਹਨ। ਜਿਵੇਂ-ਜਿਵੇਂ ਸਮਕਾਲੀ ਵਰਕਫਲੋਜ਼ ਦੀ ਮਾਤਰਾ ਅਤੇ AI-ਸੰਚਾਲਿਤ
ਕੰਪੋਨੈਂਟਸ ਦੀ ਜਟਿਲਤਾ ਵਧਦੀ ਹੈ, ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਜ਼ਰੂਰੀ ਹੋ ਜਾਂਦਾ ਹੈ ਕਿ ਸਿਸਟਮ ਕੁਸ਼ਲਤਾ ਨਾਲ
ਵਰਕਲੋਡ ਨੂੰ ਸੰਭਾਲ ਸਕੇ ਅਤੇ ਵਧਦੀਆਂ ਮੰਗਾਂ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ ਨਿਰਵਿਘਨ ਢੰਗ ਨਾਲ ਸਕੇਲ ਕਰ ਸਕੇ।

ਸਮਕਾਲੀ ਵਰਕਫਲੋਜ਼ ਦੀ ਉੱਚ ਮਾਤਰਾ ਨੂੰ ਸੰਭਾਲਣਾ

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ ਸਿਸਟਮਾਂ ਨੂੰ ਅਕਸਰ ਸਮਕਾਲੀ ਵਰਕਫਲੋਜ਼ ਦੀ ਵੱਡੀ ਸੰਖਿਆ ਨੂੰ ਸੰਭਾਲਣ
ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਸਕੇਲੇਬਿਲਟੀ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ, ਹੇਠ ਲਿਖੀਆਂ ਰਣਨੀਤੀਆਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ:

1. ਅਸਿੰਕ੍ਰੋਨਸ ਪ੍ਰੋਸੈਸਿੰਗ: ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟਸ ਦੀ ਐਗਜ਼ੀਕਿਊਸ਼ਨ ਨੂੰ ਵੱਖ ਕਰਨ ਲਈ ਅਸਿੰਕ੍ਰੋਨਸ
ਪ੍ਰੋਸੈਸਿੰਗ ਵਿਧੀਆਂ ਨੂੰ ਲਾਗੂ ਕਰੋ। ਇਹ ਸਿਸਟਮ ਨੂੰ ਹਰ ਕੰਪੋਨੈਂਟ ਦੇ ਪੂਰਾ ਹੋਣ ਦੀ ਉਡੀਕ ਕੀਤੇ ਬਿਨਾਂ ਜਾਂ ਬਲਾਕ
ਕੀਤੇ ਬਿਨਾਂ ਕਈ ਵਰਕਫਲੋਜ਼ ਨੂੰ ਸਮਕਾਲੀ ਤੌਰ ’ਤੇ ਸੰਭਾਲਣ ਦੀ ਇਜਾਜ਼ਤ ਦਿੰਦਾ ਹੈ। ਅਸਿੰਕ੍ਰੋਨਸ ਪ੍ਰੋਸੈਸਿੰਗ
ਮੈਸੇਜ ਕਿਊਜ਼, ਈਵੈਂਟ-ਡਰਾਈਵਨ ਆਰਕੀਟੈਕਚਰ, ਜਾਂ Sidekiq ਵਰਗੇ ਬੈਕਗਰਾਊਂਡ ਜੌਬ ਪ੍ਰੋਸੈਸਿੰਗ
ਫਰੇਮਵਰਕਸ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

2. ਵੰਡੀ ਹੋਈਆਰਕੀਟੈਕਚਰ: ਸਿਸਟਮਆਰਕੀਟੈਕਚਰ ਨੂੰ ਸਰਵਰਲੈੱਸ ਕੰਪੋਨੈਂਟਸ (ਜਿਵੇਂ AWS Lambda)
ਦੀ ਵਰਤੋਂ ਕਰਨ ਲਈ ਜਾਂ ਬਸ ਤੁਹਾਡੇ ਮੁੱਖ ਐਪਲੀਕੇਸ਼ਨ ਸਰਵਰ ਦੇ ਨਾਲ ਕਈ ਨੋਡਸ ਜਾਂ ਸਰਵਰਾਂ ਵਿੱਚ ਵਰਕਲੋਡ

https://www.datadoghq.com

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 230

ਨੂੰ ਵੰਡਣ ਲਈ ਡਿਜ਼ਾਈਨ ਕਰੋ। ਇਹ ਹੋਰੀਜ਼ੌਂਟਲ ਸਕੇਲੇਬਿਲਟੀ ਨੂੰ ਸਮਰੱਥ ਬਣਾਉਂਦਾ ਹੈ, ਜਿੱਥੇ ਵਧੇ ਹੋਏ ਵਰਕਫਲੋ
ਵਾਲੀਊਮ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਵਾਧੂ ਨੋਡਸ ਜੋੜੇ ਜਾ ਸਕਦੇ ਹਨ।

3. ਸਮਾਨੰਤਰ ਐਗਜ਼ੀਕਿਊਸ਼ਨ: ਵਰਕਫਲੋਜ਼ ਦੇ ਅੰਦਰ ਸਮਾਨੰਤਰ ਐਗਜ਼ੀਕਿਊਸ਼ਨ ਦੇ ਮੌਕਿਆਂ ਦੀ ਪਛਾਣ
ਕਰੋ। ਕੁਝ ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟਸ ਇੱਕ ਦੂਜੇ ਤੋਂ ਸੁਤੰਤਰ ਹੋ ਸਕਦੇ ਹਨ ਅਤੇ ਸਮਕਾਲੀ ਤੌਰ ’ਤੇ ਚਲਾਏ ਜਾ ਸਕਦੇ
ਹਨ। ਮਲਟੀ-ਥਰੈਡਿੰਗ ਜਾਂ ਵੰਡੀਆਂ ਹੋਈਆਂ ਟਾਸਕ ਕਿਊਜ਼ ਵਰਗੀਆਂ ਸਮਾਨੰਤਰ ਪ੍ਰੋਸੈਸਿੰਗ ਤਕਨੀਕਾਂ ਦੀ ਵਰਤੋਂ
ਕਰਕੇ, ਸਿਸਟਮ ਸਰੋਤਾਂ ਦੀ ਵਰਤੋਂ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾ ਸਕਦਾ ਹੈ ਅਤੇ ਸਮੁੱਚੇ ਵਰਕਫਲੋ ਐਗਜ਼ੀਕਿਊਸ਼ਨ ਸਮੇਂ ਨੂੰ
ਘਟਾ ਸਕਦਾ ਹੈ।

AI-ਸੰਚਾਲਿਤ ਕੰਪੋਨੈਂਟਸ ਦੇ ਪ੍ਰਦਰਸ਼ਨ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਉਣਾ

ਏਆਈ-ਸੰਚਾਲਿਤ ਕੰਪੋਨੈਂਟਸ, ਜਿਵੇਂ ਕਿ ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਮਾਡਲ ਜਾਂ ਨੈਚੁਰਲ ਲੈਂਗੂਏਜ ਪ੍ਰੋਸੈਸਿੰਗ ਇੰਜਣ,
ਕੰਪਿਊਟੇਸ਼ਨਲ ਤੌਰ ’ਤੇ ਗੰਭੀਰ ਹੋ ਸਕਦੇ ਹਨ ਅਤੇ ਵਰਕਫਲੋ ਆਰਕੈਸਟ੍ਰੇਸ਼ਨ ਸਿਸਟਮ ਦੇ ਸਮੁੱਚੇ ਪ੍ਰਦਰਸ਼ਨ
ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰ ਸਕਦੇ ਹਨ। ਏਆਈ ਕੰਪੋਨੈਂਟਸ ਦੇ ਪ੍ਰਦਰਸ਼ਨ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਉਣ ਲਈ, ਹੇਠ ਲਿਖੀਆਂ
ਤਕਨੀਕਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ:

1. ਕੈਸ਼ਿੰਗ: ਜੇਕਰ ਤੁਹਾਡੀ ਏਆਈ ਪ੍ਰੋਸੈਸਿੰਗ ਪੂਰੀ ਤਰ੍ਹਾਂ ਜਨਰੇਟਿਵ ਹੈ ਅਤੇ ਇਸ ਵਿੱਚ ਰੀਅਲਟਾਈਮ
ਜਾਣਕਾਰੀ ਲੱਭਣ ਜਾਂ ਚੈਟ ਕੰਪਲੀਸ਼ਨਜ਼ ਨੂੰ ਜਨਰੇਟ ਕਰਨ ਲਈ ਬਾਹਰੀ ਏਕੀਕਰਣ ਸ਼ਾਮਲ ਨਹੀਂ ਹਨ, ਤਾਂ ਤੁਸੀਂ
ਅਕਸਰ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਜਾਂ ਕੰਪਿਊਟੇਸ਼ਨਲ ਤੌਰ ’ਤੇ ਮਹਿੰਗੀਆਂ ਕਾਰਵਾਈਆਂ ਦੇ ਨਤੀਜਿਆਂ ਨੂੰ ਸਟੋਰ ਕਰਨ
ਅਤੇ ਮੁੜ ਵਰਤਣ ਲਈ ਕੈਸ਼ਿੰਗ ਮੈਕੇਨਿਜ਼ਮ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹੋ।

2. ਮਾਡਲ ਅਨੁਕੂਲਣ: ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟਸ ਵਿੱਚ ਏਆਈ ਮਾਡਲਾਂ ਦੀ ਵਰਤੋਂ ਨੂੰ ਲਗਾਤਾਰ ਅਨੁਕੂਲ ਬਣਾਓ।
ਇਸ ਵਿੱਚ ਪ੍ਰੌਮਪਟ ਡਿਸਟੀਲੇਸ਼ਨ ਵਰਗੀਆਂ ਤਕਨੀਕਾਂ ਸ਼ਾਮਲ ਹੋ ਸਕਦੀਆਂ ਹਨ ਜਾਂ ਇਹ ਸਿਰਫ਼ ਨਵੇਂ ਮਾਡਲਾਂ
ਦੀ ਜਾਂਚ ਕਰਨ ਦਾ ਮਾਮਲਾ ਹੋ ਸਕਦਾ ਹੈ ਜਦੋਂ ਉਹ ਉਪਲਬਧ ਹੁੰਦੇ ਹਨ।

3. ਬੈਚ ਪ੍ਰੋਸੈਸਿੰਗ: ਜੇਕਰ ਤੁਸੀਂ GPT-4 ਕਲਾਸ ਮਾਡਲਾਂ ਨਾਲ ਕੰਮ ਕਰ ਰਹੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਕਈ ਡਾਟਾ ਪੁਆਇੰਟਸ
ਜਾਂ ਬੇਨਤੀਆਂ ਨੂੰ ਵਿਅਕਤੀਗਤ ਤੌਰ ’ਤੇ ਪ੍ਰੋਸੈਸ ਕਰਨ ਦੀ ਬਜਾਏ ਇੱਕ ਬੈਚ ਵਿੱਚ ਪ੍ਰੋਸੈਸ ਕਰਨ ਲਈ ਬੈਚ
ਪ੍ਰੋਸੈਸਿੰਗ ਤਕਨੀਕਾਂ ਦਾ ਲਾਭ ਲੈ ਸਕਦੇ ਹੋ। ਡਾਟਾ ਨੂੰ ਬੈਚਾਂ ਵਿੱਚ ਪ੍ਰੋਸੈਸ ਕਰਕੇ, ਸਿਸਟਮ ਸਰੋਤਾਂ ਦੀ ਵਰਤੋਂ ਨੂੰ
ਅਨੁਕੂਲ ਬਣਾ ਸਕਦਾ ਹੈ ਅਤੇ ਦੁਹਰਾਏ ਮਾਡਲ ਬੇਨਤੀਆਂ ਦੇ ਓਵਰਹੈੱਡ ਨੂੰ ਘਟਾ ਸਕਦਾ ਹੈ।

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 231

ਨਿਗਰਾਨੀ ਅਤੇ ਪ੍ਰੋਫਾਈਲਿੰਗ ਪ੍ਰਦਰਸ਼ਨ

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋਆਰਕੈਸਟ੍ਰੇਸ਼ਨ ਸਿਸਟਮ ਦੇ ਪ੍ਰਦਰਸ਼ਨ ਦੇ ਬੋਤਲਨੈੱਕਸ ਦੀ ਪਛਾਣ ਕਰਨਅਤੇ ਸਕੇਲੇਬਿਲਟੀ
ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਉਣ ਲਈ, ਨਿਗਰਾਨੀ ਅਤੇ ਪ੍ਰੋਫਾਈਲਿੰਗ ਮੈਕੇਨਿਜ਼ਮ ਲਾਗੂ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ। ਹੇਠ ਲਿਖੇ ਪਹੁੰਚਾਂ
’ਤੇ ਵਿਚਾਰ ਕਰੋ:

1. ਪ੍ਰਦਰਸ਼ਨ ਮੈਟ੍ਰਿਕਸ: ਮੁੱਖ ਪ੍ਰਦਰਸ਼ਨ ਮੈਟ੍ਰਿਕਸ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਅਤੇ ਟਰੈਕ ਕਰੋ, ਜਿਵੇਂ ਕਿ ਜਵਾਬ ਸਮਾਂ,
ਥਰੂਪੁੱਟ, ਸਰੋਤ ਵਰਤੋਂ, ਅਤੇ ਲੇਟੈਂਸੀ। ਇਹ ਮੈਟ੍ਰਿਕਸ ਸਿਸਟਮ ਦੇ ਪ੍ਰਦਰਸ਼ਨ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ
ਅਤੇ ਅਨੁਕੂਲਣ ਲਈ ਖੇਤਰਾਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰਦੇ ਹਨ। ਪ੍ਰਸਿੱਧ ਏਆਈ ਮਾਡਲ ਐਗਰੀਗੇਟਰ
OpenRouter ਹਰੇਕ API ਜਵਾਬ ਵਿੱਚ ਹੋਸਟ1 ਅਤੇ ਸਪੀਡ2 ਮੈਟ੍ਰਿਕਸ ਸ਼ਾਮਲ ਕਰਦਾ ਹੈ, ਜੋ ਇਨ੍ਹਾਂ ਮੁੱਖ
ਮੈਟ੍ਰਿਕਸ ਨੂੰ ਟਰੈਕ ਕਰਨਾ ਬਹੁਤ ਸੌਖਾ ਬਣਾਉਂਦਾ ਹੈ।

2. ਪ੍ਰੋਫਾਈਲਿੰਗ ਟੂਲਜ਼: ਵਿਅਕਤੀਗਤ ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟਸ ਅਤੇ ਏਆਈ ਕਾਰਵਾਈਆਂ ਦੇ ਪ੍ਰਦਰਸ਼ਨ ਦਾ
ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਲਈ ਪ੍ਰੋਫਾਈਲਿੰਗ ਟੂਲਜ਼ ਦੀ ਵਰਤੋਂ ਕਰੋ। ਪ੍ਰੋਫਾਈਲਿੰਗ ਟੂਲਜ਼ ਪ੍ਰਦਰਸ਼ਨ ਹੌਟਸਪੌਟਸ,
ਅਕੁਸ਼ਲ ਕੋਡ ਪਾਥਸ, ਜਾਂ ਸਰੋਤ-ਗਹਿਨ ਕਾਰਵਾਈਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੇ ਹਨ। ਪ੍ਰਸਿੱਧ
ਪ੍ਰੋਫਾਈਲਿੰਗ ਟੂਲਜ਼ ਵਿੱਚ New Relic, Scout, ਜਾਂ ਪ੍ਰੋਗਰਾਮਿੰਗ ਭਾਸ਼ਾ ਜਾਂ ਫਰੇਮਵਰਕ ਦੁਆਰਾ ਪ੍ਰਦਾਨ
ਕੀਤੇ ਬਿਲਟ-ਇਨ ਪ੍ਰੋਫਾਈਲਰ ਸ਼ਾਮਲ ਹਨ।

3. ਲੋਡ ਟੈਸਟਿੰਗ: ਵੱਖ-ਵੱਖ ਪੱਧਰਾਂ ਦੇ ਸਮਕਾਲੀ ਵਰਕਲੋਡ ਅਧੀਨ ਸਿਸਟਮ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਦਾ ਮੁਲਾਂਕਣ ਕਰਨ
ਲਈ ਲੋਡ ਟੈਸਟਿੰਗ ਕਰੋ। ਲੋਡ ਟੈਸਟਿੰਗ ਸਿਸਟਮ ਦੀਆਂ ਸਕੇਲੇਬਿਲਟੀ ਸੀਮਾਵਾਂ ਦੀ ਪਛਾਣ ਕਰਨ, ਕਾਰਗੁਜ਼ਾਰੀ
ਵਿੱਚ ਕਮੀ ਦਾ ਪਤਾ ਲਗਾਉਣ, ਅਤੇ ਇਹ ਯਕੀਨੀ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰਦੀ ਹੈ ਕਿ ਸਿਸਟਮ ਕਾਰਗੁਜ਼ਾਰੀ ਨੂੰ
ਪ੍ਰਭਾਵਿਤ ਕੀਤੇ ਬਿਨਾਂ ਉਮੀਦ ਕੀਤੀ ਟ੍ਰੈਫਿਕ ਨੂੰ ਸੰਭਾਲ ਸਕਦਾ ਹੈ।

4. ਲਗਾਤਾਰ ਨਿਗਰਾਨੀ: ਕਾਰਗੁਜ਼ਾਰੀ ਦੀਆਂ ਸਮੱਸਿਆਵਾਂ ਅਤੇ ਬੋਤਲਨੈੱਕਾਂ ਦਾ ਸਰਗਰਮੀ ਨਾਲ ਪਤਾ
ਲਗਾਉਣ ਲਈ ਲਗਾਤਾਰ ਨਿਗਰਾਨੀ ਅਤੇ ਚੇਤਾਵਨੀ ਵਿਧੀਆਂ ਨੂੰ ਲਾਗੂ ਕਰੋ। ਮੁੱਖ ਕਾਰਗੁਜ਼ਾਰੀ ਸੂਚਕਾਂ (KPIs)
ਦੀ ਨਿਗਰਾਨੀ ਕਰਨ ਅਤੇ ਪਹਿਲਾਂ-ਨਿਰਧਾਰਤ ਸੀਮਾਵਾਂ ਦੀ ਉਲੰਘਣਾ ਹੋਣ ’ਤੇ ਸੂਚਨਾਵਾਂ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ
ਨਿਗਰਾਨੀ ਡੈਸ਼ਬੋਰਡ ਅਤੇ ਚੇਤਾਵਨੀਆਂ ਸਥਾਪਿਤ ਕਰੋ। ਇਹ ਕਾਰਗੁਜ਼ਾਰੀ ਸਮੱਸਿਆਵਾਂ ਦੀ ਤੁਰੰਤ ਪਛਾਣ ਅਤੇ
ਹੱਲ ਨੂੰ ਸਮਰੱਥ ਬਣਾਉਂਦਾ ਹੈ।

1ਹੋਸਟ ਉਹ ਸਮਾਂ ਹੈ ਜੋ ਮਾਡਲ ਹੋਸਟ ਤੋਂ ਸਟ੍ਰੀਮ ਕੀਤੀ ਜਨਰੇਸ਼ਨ ਦਾ ਪਹਿਲਾ ਬਾਈਟ ਪ੍ਰਾਪਤ ਕਰਨ ਵਿੱਚ ਲੱਗਿਆ, ਯਾਨੀ “ਪਹਿਲੇ
ਬਾਈਟ ਤੱਕ ਦਾ ਸਮਾਂ।”

2ਸਪੀਡ ਦੀ ਗਣਨਾ ਕੰਪਲੀਸ਼ਨ ਟੋਕਨਾਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਕੁੱਲ ਜਨਰੇਸ਼ਨ ਸਮੇਂ ਨਾਲ ਭਾਗ ਕਰਕੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਨਾਨ-ਸਟ੍ਰੀਮਡ ਬੇਨਤੀਆਂ
ਲਈ ਲੇਟੈਂਸੀ ਨੂੰ ਜਨਰੇਸ਼ਨ ਸਮੇਂ ਦਾ ਹਿੱਸਾ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ।

https://openrouter.ai

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 232

ਸਕੇਲਿੰਗ ਰਣਨੀਤੀਆਂ

ਵਧਦੇ ਵਰਕਲੋਡ ਨੂੰ ਸੰਭਾਲਣ ਅਤੇ ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ ਸਿਸਟਮ ਦੀ ਸਕੇਲੇਬਿਲਟੀ ਨੂੰ ਯਕੀਨੀ
ਬਣਾਉਣ ਲਈ, ਹੇਠ ਲਿਖੀਆਂ ਸਕੇਲਿੰਗ ਰਣਨੀਤੀਆਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ:

1. ਵਰਟੀਕਲ ਸਕੇਲਿੰਗ: ਵਰਟੀਕਲ ਸਕੇਲਿੰਗ ਵਿੱਚ ਵੱਧ ਵਰਕਲੋਡ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਵਿਅਕਤੀਗਤ ਨੋਡਾਂ ਜਾਂ
ਸਰਵਰਾਂ ਦੇ ਸਰੋਤਾਂ (ਜਿਵੇਂ CPU, ਮੈਮੋਰੀ) ਨੂੰ ਵਧਾਉਣਾ ਸ਼ਾਮਲ ਹੈ। ਇਹ ਪਹੁੰਚ ਉਦੋਂ ਢੁਕਵੀਂ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਸਿਸਟਮ
ਨੂੰ ਗੁੰਝਲਦਾਰ ਵਰਕਫਲੋ ਜਾਂ AI ਓਪਰੇਸ਼ਨਾਂ ਨੂੰ ਸੰਭਾਲਣ ਲਈ ਵਧੇਰੇ ਪ੍ਰੋਸੈਸਿੰਗ ਪਾਵਰ ਜਾਂ ਮੈਮੋਰੀ ਦੀ ਲੋੜ ਹੁੰਦੀ
ਹੈ।

2. ਹੋਰੀਜ਼ੌਨਟਲ ਸਕੇਲਿੰਗ: ਹੋਰੀਜ਼ੌਨਟਲ ਸਕੇਲਿੰਗ ਵਿੱਚ ਵਰਕਲੋਡ ਨੂੰ ਵੰਡਣ ਲਈ ਸਿਸਟਮ ਵਿੱਚ ਹੋਰ ਨੋਡਾਂ ਜਾਂ
ਸਰਵਰਾਂ ਨੂੰ ਜੋੜਨਾ ਸ਼ਾਮਲ ਹੈ। ਇਹ ਪਹੁੰਚ ਉਦੋਂ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਸਿਸਟਮ ਨੂੰ ਬਹੁਤ ਸਾਰੇ ਸਮਕਾਲੀ
ਵਰਕਫਲੋ ਨੂੰ ਸੰਭਾਲਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ਜਾਂ ਜਦੋਂ ਵਰਕਲੋਡ ਨੂੰ ਆਸਾਨੀ ਨਾਲ ਕਈਨੋਡਾਂ ਵਿੱਚ ਵੰਡਿਆਜਾ ਸਕਦਾ ਹੈ।
ਹੋਰੀਜ਼ੌਨਟਲ ਸਕੇਲਿੰਗ ਲਈ ਟ੍ਰੈਫਿਕ ਦੀ ਸਮਾਨ ਵੰਡ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈਇੱਕ ਵੰਡੀ ਹੋਈ ਆਰਕੀਟੈਕਚਰ
ਅਤੇ ਲੋਡ ਬੈਲੇਂਸਿੰਗ ਵਿਧੀਆਂ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।

3. ਆਟੋ-ਸਕੇਲਿੰਗ: ਵਰਕਲੋਡ ਦੀ ਮੰਗ ਦੇ ਆਧਾਰ ’ਤੇ ਨੋਡਾਂ ਜਾਂ ਸਰੋਤਾਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਆਪਣੇ ਆਪ ਵਿਵਸਥਿਤ
ਕਰਨ ਲਈ ਆਟੋ-ਸਕੇਲਿੰਗ ਵਿਧੀਆਂ ਨੂੰ ਲਾਗੂ ਕਰੋ। ਆਟੋ-ਸਕੇਲਿੰਗ ਸਿਸਟਮ ਨੂੰ ਆਉਣ ਵਾਲੀ ਟ੍ਰੈਫਿਕ ਦੇ
ਆਧਾਰ ’ਤੇ ਗਤੀਸ਼ੀਲ ਢੰਗ ਨਾਲ ਵੱਧਣ ਜਾਂ ਘਟਣ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ, ਜੋ ਸਰੋਤਾਂ ਦੀ ਇਸ਼ਟਤਮ ਵਰਤੋਂ ਅਤੇ
ਲਾਗਤ-ਕੁਸ਼ਲਤਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਂਦੀ ਹੈ। AmazonWeb Services (AWS) ਜਾਂ Google Cloud
Platform (GCP) ਵਰਗੇ ਕਲਾਉਡ ਪਲੇਟਫਾਰਮ ਆਟੋ-ਸਕੇਲਿੰਗ ਸਮਰੱਥਾਵਾਂ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ
ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ ਸਿਸਟਮਾਂ ਲਈ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਕਾਰਗੁਜ਼ਾਰੀ ਅਨੁਕੂਲਨ ਤਕਨੀਕਾਂ

ਸਕੇਲਿੰਗ ਰਣਨੀਤੀਆਂ ਦੇ ਨਾਲ-ਨਾਲ, ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ ਸਿਸਟਮ ਦੀ ਕੁਸ਼ਲਤਾ ਨੂੰ ਵਧਾਉਣ
ਲਈ ਹੇਠ ਲਿਖੀਆਂ ਕਾਰਗੁਜ਼ਾਰੀ ਅਨੁਕੂਲਨ ਤਕਨੀਕਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ:

1. ਕੁਸ਼ਲ ਡਾਟਾ ਸਟੋਰੇਜ ਅਤੇ ਪੁਨਰਪ੍ਰਾਪਤੀ: ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟਾਂ ਦੁਆਰਾ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਡਾਟਾ ਸਟੋਰੇਜ
ਅਤੇ ਪੁਨਰਪ੍ਰਾਪਤੀ ਵਿਧੀਆਂ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਓ। ਡਾਟਾ-ਗਹਿਨ ਓਪਰੇਸ਼ਨਾਂ ਦੀ ਦੇਰੀ ਨੂੰ ਘੱਟ ਕਰਨ ਅਤੇ
ਕਾਰਗੁਜ਼ਾਰੀ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਲਈ ਕੁਸ਼ਲ ਡਾਟਾਬੇਸ ਇੰਡੈਕਸਿੰਗ, ਕਵੇਰੀ ਅਨੁਕੂਲਨ ਤਕਨੀਕਾਂ, ਅਤੇ ਡਾਟਾ
ਕੈਸ਼ਿੰਗ ਦੀ ਵਰਤੋਂ ਕਰੋ।

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 233

2. ਅਸਿੰਕ੍ਰੋਨਸ I/O: ਬਲਾਕਿੰਗ ਨੂੰ ਰੋਕਣ ਅਤੇ ਸਿਸਟਮ ਦੀ ਪ੍ਰਤਿਕਿਰਿਆਸ਼ੀਲਤਾ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਲਈ
ਅਸਿੰਕ੍ਰੋਨਸ I/O ਓਪਰੇਸ਼ਨਾਂ ਦੀ ਵਰਤੋਂ ਕਰੋ। ਅਸਿੰਕ੍ਰੋਨਸ I/O ਸਿਸਟਮ ਨੂੰ I/O ਓਪਰੇਸ਼ਨਾਂ ਦੇ ਪੂਰਾ ਹੋਣ ਦੀ
ਉਡੀਕ ਕੀਤੇ ਬਿਨਾਂ ਕਈ ਬੇਨਤੀਆਂ ਨੂੰ ਸਮਕਾਲੀ ਤੌਰ ’ਤੇ ਸੰਭਾਲਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਇਸ ਤਰ੍ਹਾਂ ਸਰੋਤਾਂ
ਦੀ ਵਰਤੋਂ ਨੂੰ ਵੱਧ ਤੋਂ ਵੱਧ ਕਰਦਾ ਹੈ।

3. ਕੁਸ਼ਲ ਲੜੀਬੱਧਤਾ ਅਤੇ ਵਿ-ਲੜੀਬੱਧਤਾ: ਕਾਰਜ-ਪ੍ਰਵਾਹ ਭਾਗਾਂ ਵਿਚਕਾਰ ਡਾਟਾ ਵਟਾਂਦਰੇ ਲਈ ਵਰਤੀਆਂ
ਜਾਂਦੀਆਂ ਲੜੀਬੱਧਤਾ ਅਤੇ ਵਿ-ਲੜੀਬੱਧਤਾ ਪ੍ਰਕਿਰਿਆਵਾਂ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਓ। ਕੁਸ਼ਲ ਲੜੀਬੱਧਤਾ ਫਾਰਮੈਟਾਂ
ਦੀ ਵਰਤੋਂ ਕਰੋ, ਜਿਵੇਂ ਕਿ Protocol Buffers ਜਾਂ MessagePack, ਡਾਟਾ ਲੜੀਬੱਧਤਾ ਦੇ ਓਵਰਹੈੱਡ ਨੂੰ
ਘਟਾਉਣ ਅਤੇ ਅੰਤਰ-ਭਾਗ ਸੰਚਾਰ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਲਈ।

Ruby-ਆਧਾਰਿਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਲਈ, Universal ID ਦੀ ਵਰਤੋਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ।
Universal ID MessagePack ਅਤੇ Brotli ਦੋਵਾਂ ਦਾ ਲਾਭ ਲੈਂਦਾ ਹੈ (ਇੱਕ ਕੰਬੋ ਜੋ
ਗਤੀ ਅਤੇ ਸਰਵੋਤਮ-ਸ਼੍ਰੇਣੀ ਡਾਟਾ ਸੰਕੁਚਨ ਲਈ ਬਣਾਇਆਗਿਆ ਹੈ)। ਜਦੋਂ ਇਕੱਠੇ ਕੀਤਾ ਜਾਂਦਾ
ਹੈ, ਇਹ ਲਾਇਬ੍ਰੇਰੀਆਂ Protocol Buffers ਦੇ ਮੁਕਾਬਲੇ 30% ਤੱਕ ਤੇਜ਼ ਹਨ ਅਤੇ 2-5%
ਸੰਕੁਚਨ ਦਰਾਂ ਦੇ ਅੰਦਰ ਹਨ।

4. ਸੰਕੁਚਨ ਅਤੇ ਇਨਕੋਡਿੰਗ: ਕਾਰਜ-ਪ੍ਰਵਾਹ ਭਾਗਾਂ ਵਿਚਕਾਰ ਟ੍ਰਾਂਸਫਰ ਕੀਤੇ ਡਾਟਾ ਦੇ ਆਕਾਰ ਨੂੰ ਘਟਾਉਣ
ਲਈ ਸੰਕੁਚਨ ਅਤੇ ਇਨਕੋਡਿੰਗ ਤਕਨੀਕਾਂ ਲਾਗੂ ਕਰੋ। ਸੰਕੁਚਨ ਐਲਗੋਰਿਦਮ, ਜਿਵੇਂ ਕਿ gzip ਜਾਂ Brotli,
ਨੈੱਟਵਰਕ ਬੈਂਡਵਿਡਥ ਦੀ ਵਰਤੋਂ ਨੂੰ ਕਾਫ਼ੀ ਘਟਾ ਸਕਦੇ ਹਨ ਅਤੇ ਸਿਸਟਮ ਦੀ ਸਮੁੱਚੀ ਕਾਰਗੁਜ਼ਾਰੀ ਨੂੰ ਬਿਹਤਰ ਬਣਾ
ਸਕਦੇ ਹਨ।

ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਆਰਕੈਸਟ੍ਰੇਸ਼ਨ ਸਿਸਟਮਾਂ ਦੇ ਡਿਜ਼ਾਈਨ ਅਤੇ ਕਾਰਜਾਂਵਿਤ ਦੌਰਾਨ ਸਕੇਲੇਬਿਲਟੀ ਅਤੇ
ਕਾਰਗੁਜ਼ਾਰੀ ਪਹਿਲੂਆਂ ’ਤੇ ਵਿਚਾਰ ਕਰਕੇ, ਤੁਸੀਂ ਯਕੀਨੀ ਬਣਾ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡਾ ਸਿਸਟਮ ਸਮਕਾਲੀ ਕਾਰਜ-
ਪ੍ਰਵਾਹਾਂ ਦੀ ਉੱਚ ਮਾਤਰਾ ਨੂੰ ਸੰਭਾਲ ਸਕਦਾ ਹੈ, AI-ਸੰਚਾਲਿਤ ਭਾਗਾਂ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾ ਸਕਦਾ ਹੈ,
ਅਤੇ ਵਧਦੀਆਂ ਮੰਗਾਂ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ ਨਿਰਵਿਘਨ ਢੰਗ ਨਾਲ ਸਕੇਲ ਕਰ ਸਕਦਾ ਹੈ। ਲਗਾਤਾਰ ਨਿਗਰਾਨੀ,
ਪ੍ਰੋਫਾਈਲਿੰਗ, ਅਤੇ ਅਨੁਕੂਲਨ ਯਤਨ ਸਿਸਟਮ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਅਤੇ ਪ੍ਰਤਿਕਿਰਿਆਸ਼ੀਲਤਾ ਨੂੰ ਬਣਾਈ ਰੱਖਣ
ਲਈ ਜ਼ਰੂਰੀ ਹਨ ਜਿਵੇਂ-ਜਿਵੇਂ ਕੰਮ ਦਾ ਭਾਰ ਅਤੇ ਗੁੰਝਲਤਾ ਸਮੇਂ ਦੇ ਨਾਲ ਵਧਦੀ ਹੈ।

https://github.com/hopsoft/universalid

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 234

ਕਾਰਜ-ਪ੍ਰਵਾਹਾਂ ਦੀ ਟੈਸਟਿੰਗ ਅਤੇ ਪ੍ਰਮਾਣੀਕਰਨ

ਟੈਸਟਿੰਗ ਅਤੇ ਪ੍ਰਮਾਣੀਕਰਨ ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਆਰਕੈਸਟ੍ਰੇਸ਼ਨ ਸਿਸਟਮਾਂ ਦੇ ਵਿਕਾਸ ਅਤੇ ਰੱਖ-ਰਖਾਅ
ਦੇ ਮਹੱਤਵਪੂਰਨ ਪਹਿਲੂ ਹਨ। AI-ਸੰਚਾਲਿਤ ਕਾਰਜ-ਪ੍ਰਵਾਹਾਂ ਦੀ ਗੁੰਝਲ ਪ੍ਰਕਿਰਤੀ ਨੂੰ ਦੇਖਦੇ ਹੋਏ, ਇਹ ਯਕੀਨੀ
ਬਣਾਉਣਾ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਹਰ ਭਾਗ ਉਮੀਦ ਮੁਤਾਬਕ ਕੰਮ ਕਰਦਾ ਹੈ, ਸਮੁੱਚਾ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਸਹੀ ਢੰਗ ਨਾਲ ਵਿਵਹਾਰ
ਕਰਦਾ ਹੈ, ਅਤੇ AI ਫੈਸਲੇ ਸਹੀ ਅਤੇ ਭਰੋਸੇਯੋਗ ਹਨ। ਇਸ ਭਾਗ ਵਿੱਚ, ਅਸੀਂ ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹਾਂ ਦੀ
ਟੈਸਟਿੰਗ ਅਤੇ ਪ੍ਰਮਾਣੀਕਰਨ ਲਈ ਵੱਖ-ਵੱਖ ਤਕਨੀਕਾਂ ਅਤੇ ਵਿਚਾਰਾਂ ਦੀ ਪੜਚੋਲ ਕਰਾਂਗੇ।

ਕਾਰਜ-ਪ੍ਰਵਾਹ ਭਾਗਾਂ ਦੀ ਇਕਾਈ ਟੈਸਟਿੰਗ

ਇਕਾਈ ਟੈਸਟਿੰਗ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੀ ਸ਼ੁੱਧਤਾ ਅਤੇ ਮਜ਼ਬੂਤੀ ਦੀ ਜਾਂਚ ਕਰਨ ਲਈ ਵੱਖਰੇ ਤੌਰ ’ਤੇ ਵਿਅਕਤੀਗਤ
ਕਾਰਜ-ਪ੍ਰਵਾਹ ਭਾਗਾਂ ਦੀ ਟੈਸਟਿੰਗ ਸ਼ਾਮਲ ਹੈ। AI-ਸੰਚਾਲਿਤ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਭਾਗਾਂ ਦੀ ਇਕਾਈ ਟੈਸਟਿੰਗ
ਕਰਦੇ ਸਮੇਂ, ਹੇਠ ਲਿਖਿਆਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ:

1. ਇਨਪੁੱਟ ਪ੍ਰਮਾਣੀਕਰਨ: ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਦੇ ਇਨਪੁੱਟ, ਸਮੇਤ ਵੈਧ ਅਤੇ ਅਵੈਧ ਡਾਟਾ ਨੂੰ ਸੰਭਾਲਣ ਦੀ ਭਾਗ
ਦੀ ਯੋਗਤਾ ਦੀ ਜਾਂਚ ਕਰੋ। ਪੁਸ਼ਟੀ ਕਰੋ ਕਿ ਭਾਗ ਸੀਮਾ ਮਾਮਲਿਆਂ ਨੂੰ ਸੁਚੱਜੇ ਢੰਗ ਨਾਲ ਸੰਭਾਲਦਾ ਹੈ ਅਤੇ ਢੁਕਵੇਂ
ਗਲਤੀ ਸੰਦੇਸ਼ ਜਾਂ ਅਪਵਾਦ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ।

2. ਆਊਟਪੁੱਟ ਤਸਦੀਕ: ਪੁਸ਼ਟੀ ਕਰੋ ਕਿ ਭਾਗ ਦਿੱਤੇ ਇਨਪੁੱਟ ਸੈੱਟ ਲਈ ਉਮੀਦ ਕੀਤੇ ਆਊਟਪੁੱਟ ਪੈਦਾ ਕਰਦਾ
ਹੈ। ਸ਼ੁੱਧਤਾ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ ਅਸਲ ਆਊਟਪੁੱਟ ਦੀ ਉਮੀਦ ਕੀਤੇ ਨਤੀਜਿਆਂ ਨਾਲ ਤੁਲਨਾ ਕਰੋ।

3. ਗਲਤੀ ਸੰਭਾਲ: ਵੱਖ-ਵੱਖ ਗਲਤੀ ਦੀਆਂ ਸਥਿਤੀਆਂ ਦੀ ਨਕਲ ਕਰਕੇ ਕੰਪੋਨੈਂਟ ਦੇ ਗਲਤੀ ਸੰਭਾਲ ਤੰਤਰਾਂ
ਦੀ ਜਾਂਚ ਕਰੋ, ਜਿਵੇਂ ਕਿ ਅਵੈਧ ਇਨਪੁੱਟ, ਸਰੋਤ ਦੀ ਅਣਉਪਲਬਧਤਾ, ਜਾਂ ਅਣਚਾਹੇ ਅਪਵਾਦ। ਪੁਸ਼ਟੀ ਕਰੋ ਕਿ
ਕੰਪੋਨੈਂਟ ਗਲਤੀਆਂ ਨੂੰ ਢੁਕਵੇਂ ਢੰਗ ਨਾਲ ਫੜਦਾ ਅਤੇ ਸੰਭਾਲਦਾ ਹੈ।

4. ਸੀਮਾ ਸਥਿਤੀਆਂ: ਸੀਮਾ ਸਥਿਤੀਆਂ ਦੇ ਅਧੀਨ ਕੰਪੋਨੈਂਟ ਦੇ ਵਿਵਹਾਰ ਦੀ ਜਾਂਚ ਕਰੋ, ਜਿਵੇਂ ਕਿ ਖਾਲੀ ਇਨਪੁੱਟ,
ਵੱਧ ਤੋਂ ਵੱਧ ਇਨਪੁੱਟ ਆਕਾਰ, ਜਾਂ ਅਤਿਅੰਤ ਮੁੱਲ। ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਕੰਪੋਨੈਂਤ ਇਨ੍ਹਾਂ ਸਥਿਤੀਆਂ ਨੂੰ ਕ੍ਰੈਸ਼ ਹੋਏ
ਬਿਨਾਂ ਜਾਂ ਗਲਤ ਨਤੀਜੇ ਪੈਦਾ ਕੀਤੇ ਬਿਨਾਂ ਸੁਚੱਜੇ ਢੰਗ ਨਾਲ ਸੰਭਾਲਦਾ ਹੈ।

ਇੱਥੇ Ruby ਵਿੱਚ RSpec ਟੈਸਟਿੰਗ ਫਰੇਮਵਰਕ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਇੱਕ ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟ ਲਈ ਯੂਨਿਟ
ਟੈਸਟ ਦੀ ਉਦਾਹਰਣ ਹੈ:

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 235

1 RSpec.describe OrderValidator do

2 describe '#validate' do

3 context 'when order is valid' do

4 let(:order) { build(:order) }

5

6 it 'returns true' do

7 expect(subject.validate(order)).to be true

8 end

9 end

10

11 context 'when order is invalid' do

12 let(:order) { build(:order, total_amount: -100) }

13

14 it 'returns false' do

15 expect(subject.validate(order)).to be false

16 end

17 end

18 end

19 end

ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ, OrderValidator ਭਾਗ ਦੀ ਜਾਂਚ ਦੋ ਟੈਸਟ ਕੇਸਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ:
ਇੱਕ ਵੈਧ ਆਰਡਰ ਲਈ ਅਤੇ ਦੂਜਾ ਅਵੈਧ ਆਰਡਰ ਲਈ। ਟੈਸਟ ਕੇਸ ਇਹ ਪੁਸ਼ਟੀ ਕਰਦੇ ਹਨ ਕਿ validate
ਮੈਥਡ ਆਰਡਰ ਦੀ ਵੈਧਤਾ ਦੇ ਆਧਾਰ ’ਤੇ ਉਮੀਦ ਕੀਤਾ ਬੂਲੀਅਨ ਮੁੱਲ ਵਾਪਸ ਕਰਦਾ ਹੈ।

ਏਕੀਕਰਣ ਟੈਸਟਿੰਗ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਅੰਤਰਕਿਰਿਆਵਾਂ

ਏਕੀਕਰਣ ਟੈਸਟਿੰਗ ਵੱਖ-ਵੱਖ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਭਾਗਾਂ ਵਿਚਕਾਰ ਅੰਤਰਕਿਰਿਆਵਾਂ ਅਤੇ ਡਾਟਾ ਪ੍ਰਵਾਹ ਦੀ ਜਾਂਚ
’ਤੇ ਕੇਂਦਰਿਤ ਹੈ। ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦੀ ਹੈ ਕਿ ਭਾਗਇਕੱਠੇ ਨਿਰਵਿਘਨ ਕੰਮ ਕਰਦੇ ਹਨ ਅਤੇ ਉਮੀਦ ਕੀਤੇ ਨਤੀਜੇ
ਪੈਦਾ ਕਰਦੇ ਹਨ। ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹਾਂ ਦੀ ਏਕੀਕਰਣ ਟੈਸਟਿੰਗ ਕਰਦੇ ਸਮੇਂ, ਹੇਠ ਲਿਖੀਆਂ ਗੱਲਾਂ ’ਤੇ ਵਿਚਾਰ
ਕਰੋ:

1. ਭਾਗ ਅੰਤਰਕਿਰਿਆ: ਕਾਰਜ-ਪ੍ਰਵਾਹ ਭਾਗਾਂ ਵਿਚਕਾਰ ਸੰਚਾਰ ਅਤੇ ਡਾਟਾ ਵਟਾਂਦਰੇ ਦੀ ਜਾਂਚ ਕਰੋ। ਪੁਸ਼ਟੀ
ਕਰੋ ਕਿ ਇੱਕ ਭਾਗ ਦਾ ਆਉਟਪੁੱਟ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਵਿੱਚ ਅਗਲੇ ਭਾਗ ਲਈ ਇਨਪੁੱਟ ਵਜੋਂ ਸਹੀ ਢੰਗ ਨਾਲ ਪਾਸ
ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

2. ਡਾਟਾ ਸਥਿਰਤਾ: ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਵਿੱਚੋਂ ਲੰਘਦੇ ਹੋਏ ਡਾਟਾ ਸਥਿਰ ਅਤੇ ਸਹੀ ਰਹਿੰਦਾ ਹੈ।
ਪੁਸ਼ਟੀ ਕਰੋ ਕਿ ਡਾਟਾ ਰੂਪਾਂਤਰਣ, ਗਣਨਾਵਾਂ, ਅਤੇ ਸੰਗ੍ਰਹਿ ਸਹੀ ਢੰਗ ਨਾਲ ਕੀਤੇ ਜਾਂਦੇ ਹਨ।

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 236

3. ਅਪਵਾਦ ਪ੍ਰਸਾਰ: ਜਾਂਚ ਕਰੋ ਕਿ ਅਪਵਾਦ ਅਤੇ ਗਲਤੀਆਂ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਭਾਗਾਂ ਵਿੱਚ ਕਿਵੇਂ ਫੈਲਦੀਆਂ
ਅਤੇ ਸੰਭਾਲੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਪੁਸ਼ਟੀ ਕਰੋ ਕਿ ਅਪਵਾਦਾਂ ਨੂੰ ਫੜਿਆ ਜਾਂਦਾ ਹੈ, ਲੌਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਅਤੇ
ਕਾਰਜ-ਪ੍ਰਵਾਹ ਵਿੱਚ ਵਿਘਨ ਨੂੰ ਰੋਕਣ ਲਈ ਢੁਕਵੇਂ ਢੰਗ ਨਾਲ ਨਜਿੱਠਿਆ ਜਾਂਦਾ ਹੈ।

4. ਅਸਿੰਕਰੋਨਸ ਵਿਵਹਾਰ: ਜੇਕਰ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਵਿੱਚ ਅਸਿੰਕਰੋਨਸ ਭਾਗ ਜਾਂ ਸਮਾਨਾਂਤਰ ਕਾਰਜ ਸ਼ਾਮਲ ਹਨ,
ਤਾਂ ਤਾਲਮੇਲ ਅਤੇ ਸਿੰਕਰੋਨਾਈਜ਼ੇਸ਼ਨ ਵਿਧੀਆਂ ਦੀ ਜਾਂਚ ਕਰੋ। ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਸਮਕਾਲੀ ਅਤੇ
ਅਸਿੰਕਰੋਨਸ ਸਥਿਤੀਆਂ ਵਿੱਚ ਸਹੀ ਢੰਗ ਨਾਲ ਕੰਮ ਕਰਦਾ ਹੈ।

ਇੱਥੇ Ruby ਵਿੱਚ RSpec ਟੈਸਟਿੰਗ ਫਰੇਮਵਰਕ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਇੱਕ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਲਈ ਏਕੀਕਰਣ
ਟੈਸਟ ਦੀ ਉਦਾਹਰਣ ਹੈ:

1 RSpec.describe OrderProcessingWorkflow do

2

3 let(:order) { build(:order) }

4

5 it 'processes the order successfully' do

6 expect(OrderValidator).to receive(:validate).and_return(true)

7 expect(InventoryManager).to receive(:check_availability).and_return(true)

8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)

9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)

10

11 workflow = OrderProcessingWorkflow.new(order)

12 result = workflow.process

13

14 expect(result).to be true

15 expect(order.status).to eq('processed')

16 end

17

18 end

ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ, OrderProcessingWorkflow ਦੀ ਜਾਂਚ ਵੱਖ-ਵੱਖ ਵਰਕਫਲੋ ਭਾਗਾਂ ਵਿਚਕਾਰ
ਅੰਤਰਕਿਰਿਆਵਾਂ ਦੀ ਪੁਸ਼ਟੀ ਕਰਕੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਟੈਸਟ ਕੇਸ ਹਰੇਕ ਭਾਗ ਦੇ ਵਿਵਹਾਰ ਲਈ ਉਮੀਦਾਂ ਨਿਰਧਾਰਤ
ਕਰਦਾ ਹੈ ਅਤੇ ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ ਕਿ ਵਰਕਫਲੋ ਆਰਡਰ ਨੂੰ ਸਫਲਤਾਪੂਰਵਕ ਪ੍ਰੋਸੈਸ ਕਰਦਾ ਹੈ, ਅਤੇ
ਆਰਡਰ ਦੀ ਸਥਿਤੀ ਨੂੰ ਉਸ ਅਨੁਸਾਰ ਅੱਪਡੇਟ ਕਰਦਾ ਹੈ।

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 237

ਏ.ਆਈ. ਫੈਸਲਾ ਬਿੰਦੂਆਂ ਦੀ ਜਾਂਚ

ਏ.ਆਈ. ਫੈਸਲਾ ਬਿੰਦੂਆਂ ਦੀ ਜਾਂਚ ਕਰਨਾ ਏ.ਆਈ.-ਸੰਚਾਲਿਤ ਵਰਕਫਲੋਜ਼ ਦੀ ਸ਼ੁੱਧਤਾ ਅਤੇ ਭਰੋਸੇਯੋਗਤਾ ਨੂੰ
ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਏ.ਆਈ. ਫੈਸਲਾ ਬਿੰਦੂਆਂ ਦੀ ਜਾਂਚ ਕਰਦੇ ਸਮੇਂ, ਹੇਠ ਲਿਖੀਆਂ ਗੱਲਾਂ
’ਤੇ ਵਿਚਾਰ ਕਰੋ:

1. ਫੈਸਲੇ ਦੀ ਸ਼ੁੱਧਤਾ: ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਏ.ਆਈ. ਭਾਗ ਇਨਪੁੱਟ ਡੇਟਾ ਅਤੇ ਸਿਖਲਾਈ ਪ੍ਰਾਪਤ ਮਾਡਲ ਦੇ
ਆਧਾਰ ’ਤੇ ਸਹੀ ਫੈਸਲੇ ਲੈਂਦਾ ਹੈ। ਏ.ਆਈ. ਦੇ ਫੈਸਲਿਆਂ ਦੀ ਉਮੀਦ ਕੀਤੇ ਨਤੀਜਿਆਂ ਜਾਂ ਗਰਾਊਂਡ ਟਰੁੱਥ ਡੇਟਾ
ਨਾਲ ਤੁਲਨਾ ਕਰੋ।

2. ਸੀਮਾ ਕੇਸ: ਸੀਮਾ ਕੇਸਾਂ ਅਤੇ ਅਸਧਾਰਨ ਸਥਿਤੀਆਂ ਵਿੱਚ ਏ.ਆਈ. ਭਾਗ ਦੇ ਵਿਵਹਾਰ ਦੀ ਜਾਂਚ ਕਰੋ।
ਪੁਸ਼ਟੀ ਕਰੋ ਕਿ ਏ.ਆਈ. ਭਾਗ ਇਹਨਾਂ ਕੇਸਾਂ ਨੂੰ ਸੁਚੱਜੇ ਢੰਗ ਨਾਲ ਸੰਭਾਲਦਾ ਹੈ ਅਤੇ ਉਚਿਤ ਫੈਸਲੇ ਲੈਂਦਾ ਹੈ।

3. ਪੱਖਪਾਤ ਅਤੇ ਨਿਰਪੱਖਤਾ: ਏ.ਆਈ. ਭਾਗ ਦੀ ਸੰਭਾਵੀ ਪੱਖਪਾਤਾਂ ਲਈ ਜਾਂਚ ਕਰੋ ਅਤੇ ਯਕੀਨੀ ਬਣਾਓ ਕਿ
ਇਹ ਨਿਰਪੱਖ ਅਤੇ ਬਿਨਾਂ ਪੱਖਪਾਤ ਵਾਲੇ ਫੈਸਲੇ ਲੈਂਦਾ ਹੈ। ਵੱਖ-ਵੱਖ ਇਨਪੁੱਟ ਡੇਟਾ ਨਾਲ ਭਾਗ ਦੀ ਜਾਂਚ ਕਰੋ ਅਤੇ
ਕਿਸੇ ਵੀ ਭੇਦਭਾਵ ਵਾਲੇ ਪੈਟਰਨ ਲਈ ਨਤੀਜਿਆਂ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰੋ।

4. ਵਿਆਖਿਆਯੋਗਤਾ: ਜੇਕਰ ਏ.ਆਈ. ਭਾਗ ਆਪਣੇ ਫੈਸਲਿਆਂ ਲਈ ਵਿਆਖਿਆਵਾਂ ਜਾਂ ਤਰਕ ਪ੍ਰਦਾਨ
ਕਰਦਾ ਹੈ, ਤਾਂ ਵਿਆਖਿਆਵਾਂ ਦੀ ਸ਼ੁੱਧਤਾ ਅਤੇ ਸਪੱਸ਼ਟਤਾ ਦੀ ਪੁਸ਼ਟੀ ਕਰੋ। ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਵਿਆਖਿਆਵਾਂ
ਅੰਦਰੂਨੀ ਫੈਸਲਾ-ਲੈਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨਾਲ ਮੇਲ ਖਾਂਦੀਆਂ ਹਨ।

ਇੱਥੇ Ruby ਵਿੱਚ RSpec ਟੈਸਟਿੰਗ ਫਰੇਮਵਰਕ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਏ.ਆਈ. ਫੈਸਲਾ ਬਿੰਦੂ ਦੀ ਜਾਂਚ ਦਾ
ਇੱਕ ਉਦਾਹਰਣ ਹੈ:

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 238

1 RSpec.describe FraudDetector do

2 describe '#detect_fraud' do

3 context 'when transaction is fraudulent' do

4 let(:tx) do

5 build(:transaction, amount: 10_000, location: 'High-Risk Country')

6 end

7

8 it 'returns true' do

9 expect(subject.detect_fraud(tx)).to be true

10 end

11 end

12

13 context 'when transaction is legitimate' do

14 let(:tx) do

15 build(:transaction, amount: 100, location: 'Low-Risk Country')

16 end

17

18 it 'returns false' do

19 expect(subject.detect_fraud(tx)).to be false

20 end

21 end

22 end

23 end

ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ, FraudDetector AI ਕੰਪੋਨੈਂਟ ਨੂੰ ਦੋ ਟੈਸਟ ਕੇਸਾਂ ਨਾਲ ਟੈਸਟ ਕੀਤਾ ਗਿਆ ਹੈ:
ਇੱਕ ਧੋਖਾਧੜੀ ਵਾਲੇ ਲੈਣ-ਦੇਣ ਲਈ ਅਤੇ ਦੂਜਾ ਵੈਧ ਲੈਣ-ਦੇਣ ਲਈ। ਟੈਸਟ ਕੇਸ ਇਹ ਪੁਸ਼ਟੀ ਕਰਦੇ ਹਨ ਕਿ
detect_fraud ਮੈਥਡ ਲੈਣ-ਦੇਣ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੇ ਆਧਾਰ ’ਤੇ ਉਮੀਦ ਕੀਤੇ ਬੂਲੀਅਨ ਮੁੱਲ ਨੂੰ ਵਾਪਸ
ਕਰਦਾ ਹੈ।

ਐਂਡ-ਟੂ-ਐਂਡ ਟੈਸਟਿੰਗ

ਐਂਡ-ਟੂ-ਐਂਡ ਟੈਸਟਿੰਗ ਵਿੱਚ ਸ਼ੁਰੂ ਤੋਂ ਅੰਤ ਤੱਕ ਪੂਰੇ ਵਰਕਫਲੋ ਦੀ ਜਾਂਚ ਕਰਨਾ ਸ਼ਾਮਲ ਹੈ, ਜੋ ਅਸਲ-ਦੁਨੀਆ ਦੇ
ਸਨੇਰੀਓ ਅਤੇ ਯੂਜ਼ਰ ਇੰਟਰੈਕਸ਼ਨਾਂ ਦੀ ਨਕਲ ਕਰਦਾ ਹੈ। ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ ਕਿ ਵਰਕਫਲੋ ਸਹੀ ਢੰਗ ਨਾਲ
ਕੰਮ ਕਰਦਾ ਹੈ ਅਤੇ ਲੋੜੀਂਦੇ ਨਤੀਜੇ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਲਈ ਐਂਡ-ਟੂ-ਐਂਡ ਟੈਸਟਿੰਗ ਕਰਦੇ ਸਮੇਂ,
ਹੇਠ ਲਿਖੀਆਂ ਗੱਲਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ:

1. ਯੂਜ਼ਰ ਸਨੇਰੀਓ: ਆਮ ਯੂਜ਼ਰ ਸਨੇਰੀਓ ਦੀ ਪਛਾਣ ਕਰੋ ਅਤੇ ਇਹਨਾਂ ਸਨੇਰੀਓ ਤਹਿਤ ਵਰਕਫਲੋ ਦੇ ਵਿਵਹਾਰ

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 239

ਦੀ ਜਾਂਚ ਕਰੋ। ਪੁਸ਼ਟੀ ਕਰੋ ਕਿ ਵਰਕਫਲੋ ਯੂਜ਼ਰ ਇਨਪੁੱਟ ਨੂੰ ਸਹੀ ਢੰਗ ਨਾਲ ਸੰਭਾਲਦਾ ਹੈ, ਢੁਕਵੇਂ ਫੈਸਲੇ ਲੈਂਦਾ ਹੈ,
ਅਤੇ ਉਮੀਦ ਕੀਤੇ ਆਉਟਪੁੱਟ ਪੈਦਾ ਕਰਦਾ ਹੈ।

2. ਡਾਟਾ ਵੈਲੀਡੇਸ਼ਨ: ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਵਰਕਫਲੋ ਡਾਟਾ ਅਸੰਗਤੀਆਂ ਜਾਂ ਸੁਰੱਖਿਆ ਕਮਜ਼ੋਰੀਆਂ ਨੂੰ ਰੋਕਣ
ਲਈ ਯੂਜ਼ਰ ਇਨਪੁੱਟ ਦੀ ਪੁਸ਼ਟੀ ਅਤੇ ਸਫਾਈ ਕਰਦਾ ਹੈ। ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਦੇ ਇਨਪੁੱਟ ਡਾਟਾ ਨਾਲ ਵਰਕਫਲੋ ਦੀ
ਜਾਂਚ ਕਰੋ, ਜਿਸ ਵਿੱਚ ਵੈਧ ਅਤੇ ਅਵੈਧ ਡਾਟਾ ਸ਼ਾਮਲ ਹੈ।

3. ਗਲਤੀ ਰਿਕਵਰੀ: ਵਰਕਫਲੋ ਦੀ ਗਲਤੀਆਂ ਅਤੇ ਅਪਵਾਦਾਂ ਤੋਂ ਰਿਕਵਰ ਹੋਣ ਦੀ ਯੋਗਤਾ ਦੀ ਜਾਂਚ ਕਰੋ।
ਗਲਤੀ ਦੇ ਸਨੇਰੀਓ ਦੀ ਨਕਲ ਕਰੋ ਅਤੇ ਪੁਸ਼ਟੀ ਕਰੋ ਕਿ ਵਰਕਫਲੋ ਉਹਨਾਂ ਨੂੰ ਸੁਚੱਜੇ ਢੰਗ ਨਾਲ ਸੰਭਾਲਦਾ ਹੈ,
ਗਲਤੀਆਂ ਨੂੰ ਲੌਗ ਕਰਦਾ ਹੈ, ਅਤੇ ਢੁਕਵੀਆਂ ਰਿਕਵਰੀ ਕਾਰਵਾਈਆਂ ਕਰਦਾ ਹੈ।

4. ਕਾਰਗੁਜ਼ਾਰੀ ਅਤੇ ਸਕੇਲੇਬਿਲਟੀ: ਵੱਖ-ਵੱਖ ਲੋਡ ਸਥਿਤੀਆਂ ਤਹਿਤ ਵਰਕਫਲੋ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਅਤੇ
ਸਕੇਲੇਬਿਲਟੀ ਦਾ ਮੁਲਾਂਕਣ ਕਰੋ। ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਇਕੋ ਸਮੇਂ ’ਤੇ ਬੇਨਤੀਆਂ ਨਾਲ ਵਰਕਫਲੋ ਦੀ ਜਾਂਚ ਕਰੋ
ਅਤੇ ਜਵਾਬ ਸਮੇਂ, ਸਰੋਤ ਵਰਤੋਂ, ਅਤੇ ਸਮੁੱਚੀ ਸਿਸਟਮ ਸਥਿਰਤਾ ਨੂੰ ਮਾਪੋ।

ਇੱਥੇ Ruby ਵਿੱਚ RSpec ਟੈਸਟਿੰਗ ਫਰੇਮਵਰਕ ਅਤੇ ਯੂਜ਼ਰ ਇੰਟਰੈਕਸ਼ਨਾਂ ਦੀ ਨਕਲ ਲਈ Capybara
ਲਾਇਬ੍ਰੇਰੀ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਇੱਕ ਵਰਕਫਲੋ ਲਈ ਐਂਡ-ਟੂ-ਐਂਡ ਟੈਸਟ ਦੀ ਉਦਾਹਰਣ ਹੈ:

1 RSpec.describe 'Order Processing Workflow' do

2 scenario 'User places an order successfully' do

3 visit '/orders/new'

4 fill_in 'Product', with: 'Sample Product'

5 fill_in 'Quantity', with: '2'

6 fill_in 'Shipping Address', with: '123 Main St'

7 click_button 'Place Order'

8

9 expect(page).to have_content('Order Placed Successfully')

10 expect(Order.count).to eq(1)

11 expect(Order.last.status).to eq('processed')

12 end

13 end

ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ, ਐਂਡ-ਟੂ-ਐਂਡ ਟੈਸਟ ਵੈੱਬ ਇੰਟਰਫੇਸ ਰਾਹੀਂ ਇੱਕ ਯੂਜ਼ਰ ਦੁਆਰਾ ਆਰਡਰ ਪਲੇਸ ਕਰਨ ਦੀ
ਨਕਲ ਕਰਦਾ ਹੈ। ਇਹ ਲੋੜੀਂਦੇ ਫਾਰਮ ਫੀਲਡਾਂ ਨੂੰ ਭਰਦਾ ਹੈ, ਆਰਡਰ ਸਬਮਿਟ ਕਰਦਾ ਹੈ, ਅਤੇ ਇਹ ਯਕੀਨੀ
ਬਣਾਉਂਦਾ ਹੈ ਕਿ ਆਰਡਰ ਸਫਲਤਾਪੂਰਵਕ ਪ੍ਰੋਸੈਸ ਹੋ ਗਿਆ ਹੈ, ਢੁਕਵਾਂ ਪੁਸ਼ਟੀਕਰਨ ਸੁਨੇਹਾ ਦਿਖਾ ਰਿਹਾ ਹੈ ਅਤੇ
ਡੇਟਾਬੇਸ ਵਿੱਚ ਆਰਡਰ ਦੀ ਸਥਿਤੀ ਅੱਪਡੇਟ ਕਰ ਰਿਹਾ ਹੈ।

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ 240

ਨਿਰੰਤਰ ਏਕੀਕਰਨ ਅਤੇ ਤੈਨਾਤੀ

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋਜ਼ ਦੀ ਭਰੋਸੇਯੋਗਤਾ ਅਤੇ ਰੱਖ-ਰਖਾਅ ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ, ਨਿਰੰਤਰ ਏਕੀਕਰਨ ਅਤੇ
ਤੈਨਾਤੀ (CI/CD) ਪਾਈਪਲਾਈਨ ਵਿੱਚ ਟੈਸਟਿੰਗ ਅਤੇ ਵੈਲੀਡੇਸ਼ਨ ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰਨ ਦੀ ਸਿਫਾਰਸ਼ ਕੀਤੀ
ਜਾਂਦੀ ਹੈ। ਇਹ ਪ੍ਰੋਡਕਸ਼ਨ ’ਤੇ ਤੈਨਾਤ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਵਰਕਫਲੋ ਤਬਦੀਲੀਆਂ ਦੀ ਸਵੈਚਲਿਤ ਟੈਸਟਿੰਗ ਅਤੇ
ਵੈਲੀਡੇਸ਼ਨ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ। ਹੇਠ ਲਿਖੀਆਂ ਪ੍ਰਥਾਵਾਂ ’ਤੇ ਵਿਚਾਰ ਕਰੋ:

1. ਸਵੈਚਲਿਤ ਟੈਸਟ ਐਗਜ਼ੀਕਿਊਸ਼ਨ: CI/CD ਪਾਈਪਲਾਈਨ ਨੂੰ ਕੌਨਫਿਗਰ ਕਰੋ ਤਾਂ ਜੋ ਜਦੋਂ ਵੀ ਵਰਕਫਲੋ
ਕੋਡਬੇਸ ਵਿੱਚ ਤਬਦੀਲੀਆਂ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਤਾਂ ਟੈਸਟ ਸੂਟ ਆਪਣੇ ਆਪ ਚੱਲ ਜਾਵੇ। ਇਹ ਯਕੀਨੀ
ਬਣਾਉਂਦਾ ਹੈ ਕਿ ਕੋਈ ਵੀ ਰਿਗਰੈਸ਼ਨ ਜਾਂ ਅਸਫਲਤਾ ਵਿਕਾਸ ਪ੍ਰਕਿਰਿਆ ਦੇ ਸ਼ੁਰੂਆਤੀ ਪੜਾਅ ’ਤੇ ਹੀ ਪਤਾ ਲੱਗ
ਜਾਵੇ।

2. ਟੈਸਟ ਕਵਰੇਜ ਮਾਨੀਟਰਿੰਗ: ਵਰਕਫਲੋ ਕੰਪੋਨੈਂਟਸ ਅਤੇ AI ਡਿਸੀਜ਼ਨ ਪੁਆਇੰਟਸ ਦੀ ਟੈਸਟ ਕਵਰੇਜ ਨੂੰ ਮਾਪੋ
ਅਤੇ ਮਾਨੀਟਰ ਕਰੋ। ਇਹ ਯਕੀਨੀ ਬਣਾਉਣ ਲਈ ਉੱਚ ਟੈਸਟ ਕਵਰੇਜ ਦਾ ਟੀਚਾ ਰੱਖੋ ਕਿ ਮਹੱਤਵਪੂਰਨ ਮਾਰਗਾਂ
ਅਤੇ ਸਥਿਤੀਆਂ ਦੀ ਚੰਗੀ ਤਰ੍ਹਾਂ ਜਾਂਚ ਕੀਤੀ ਜਾਵੇ।

3. ਨਿਰੰਤਰ ਫੀਡਬੈਕ: ਵਿਕਾਸ ਵਰਕਫਲੋ ਵਿੱਚ ਟੈਸਟ ਨਤੀਜਿਆਂ ਅਤੇ ਕੋਡ ਕੁਆਲਿਟੀ ਮੈਟ੍ਰਿਕਸ ਨੂੰ ਏਕੀਕ੍ਰਿਤ
ਕਰੋ। ਡਿਵੈਲਪਰਾਂ ਨੂੰ ਟੈਸਟਾਂ ਦੀ ਸਥਿਤੀ, ਕੋਡ ਕੁਆਲਿਟੀ, ਅਤੇ CI/CD ਪ੍ਰਕਿਰਿਆ ਦੌਰਾਨ ਪਤਾ ਲੱਗੀਆਂ ਕਿਸੇ
ਵੀ ਸਮੱਸਿਆਵਾਂ ਬਾਰੇ ਨਿਰੰਤਰ ਫੀਡਬੈਕ ਪ੍ਰਦਾਨ ਕਰੋ।

4. ਸਟੇਜਿੰਗ ਵਾਤਾਵਰਣ: ਵਰਕਫਲੋ ਨੂੰ ਸਟੇਜਿੰਗ ਵਾਤਾਵਰਣਾਂ ਵਿੱਚ ਤੈਨਾਤ ਕਰੋ ਜੋ ਪ੍ਰੋਡਕਸ਼ਨ ਵਾਤਾਵਰਣ ਦੇ
ਬਹੁਤ ਨੇੜੇ ਹੋਣ। ਇੰਫਰਾਸਟ੍ਰਕਚਰ, ਕੌਨਫਿਗਰੇਸ਼ਨ, ਜਾਂ ਡੇਟਾ ਏਕੀਕਰਨ ਨਾਲ ਸਬੰਧਤ ਕਿਸੇ ਵੀ ਸਮੱਸਿਆ ਨੂੰ
ਫੜਨ ਲਈ ਸਟੇਜਿੰਗ ਵਾਤਾਵਰਣ ਵਿੱਚ ਵਾਧੂ ਟੈਸਟਿੰਗ ਅਤੇ ਵੈਲੀਡੇਸ਼ਨ ਕਰੋ।

5. ਰੋਲਬੈਕ ਮਕੈਨਿਜ਼ਮ: ਤੈਨਾਤੀ ਅਸਫਲਤਾਵਾਂ ਜਾਂ ਪ੍ਰੋਡਕਸ਼ਨ ਵਿੱਚ ਪਤਾ ਲੱਗੀਆਂ ਗੰਭੀਰ ਸਮੱਸਿਆਵਾਂ ਦੀ
ਸਥਿਤੀ ਵਿੱਚ ਰੋਲਬੈਕ ਮਕੈਨਿਜ਼ਮ ਲਾਗੂ ਕਰੋ। ਇਹ ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਡਾਊਨਟਾਈਮ ਅਤੇ ਯੂਜ਼ਰਾਂ ’ਤੇ ਪ੍ਰਭਾਵ
ਨੂੰ ਘੱਟ ਕਰਨ ਲਈ ਵਰਕਫਲੋ ਨੂੰ ਤੇਜ਼ੀ ਨਾਲ ਪਿਛਲੇ ਸਥਿਰ ਵਰਜਨ ’ਤੇ ਵਾਪਸ ਕੀਤਾ ਜਾ ਸਕੇ।

ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋਜ਼ ਦੇ ਵਿਕਾਸ ਜੀਵਨ-ਚੱਕਰ ਵਿੱਚ ਟੈਸਟਿੰਗ ਅਤੇ ਵੈਲੀਡੇਸ਼ਨ ਨੂੰ ਸ਼ਾਮਲ ਕਰਕੇ, ਸੰਸਥਾਵਾਂ
ਆਪਣੇ AI-ਪਾਵਰਡ ਸਿਸਟਮਾਂ ਦੀ ਭਰੋਸੇਯੋਗਤਾ, ਸ਼ੁੱਧਤਾ, ਅਤੇ ਰੱਖ-ਰਖਾਅ ਨੂੰ ਯਕੀਨੀ ਬਣਾ ਸਕਦੀਆਂ ਹਨ।
ਨਿਯਮਿਤ ਟੈਸਟਿੰਗ ਅਤੇ ਵੈਲੀਡੇਸ਼ਨ ਬੱਗਾਂ ਨੂੰ ਫੜਨ, ਰਿਗਰੈਸ਼ਨਾਂ ਨੂੰ ਰੋਕਣ, ਅਤੇ ਵਰਕਫਲੋ ਦੇ ਵਿਵਹਾਰ ਅਤੇ
ਨਤੀਜਿਆਂ ਵਿੱਚ ਭਰੋਸਾ ਬਣਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰਦੀ ਹੈ।

ਭਾਗ 2: ਪੈਟਰਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ 243

ਵਿਚਾਰਾਂ ਦੀ ਲੜੀ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦੀ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਣਾਂ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸਮੱਗਰੀ ਨਿਰਮਾਣ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਢਾਂਚਾਗਤ ਇਕਾਈ ਨਿਰਮਾਣ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

LLM ਏਜੰਟ ਮਾਰਗਦਰਸ਼ਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ 244

ਲਾਭ ਅਤੇ ਵਿਚਾਰ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ 245

ਮੋਡ ਸਵਿੱਚ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਸਦੀ ਵਰਤੋਂ ਕਦੋਂ ਕਰੀਏ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ 246

ਭੂਮਿਕਾ ਨਿਰਧਾਰਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਸਨੂੰ ਕਦੋਂ ਵਰਤਣਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਨਾਂ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ 247

ਪ੍ਰੌਮਪਟ ਔਬਜੈਕਟ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ 248

Prompt Template

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਲਾਭ ਅਤੇ ਵਿਚਾਰ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਸਨੂੰ ਕਦੋਂ ਵਰਤਣਾ ਹੈ:

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ 249

ਸੰਰਚਿਤ ਇਨਪੁੱਟ-ਆਊਟਪੁੱਟ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸੰਰਚਿਤ IO ਨੂੰ ਵਧਾਉਣਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਲਾਭ ਅਤੇ ਵਿਚਾਰ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ 250

ਪ੍ਰੌਮਪਟ ਚੇਨਿੰਗ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਸਨੂੰ ਕਦੋਂ ਵਰਤਣਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਣ: Olympia ਦੀ ਔਨਬੋਰਡਿੰਗ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ 251

ਪ੍ਰੌਮਪਟ ਰੀਰਾਈਟਰ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਣ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ 252

ਰਿਸਪਾਂਸ ਫੈਂਸਿੰਗ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਲਾਭ ਅਤੇ ਵਿਚਾਰ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਗਲਤੀ ਸੰਭਾਲ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ 253

ਕਵੇਰੀ ਐਨਾਲਾਈਜ਼ਰ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਲਾਗੂਕਰਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਭਾਸ਼ਣ-ਦੇ-ਭਾਗ (POS) ਟੈਗਿੰਗ ਅਤੇ ਨਾਮਿਤ ਇਕਾਈ ਪਛਾਣ (NER)

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਰਾਦਾ ਵਰਗੀਕਰਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਮੁੱਖ-ਸ਼ਬਦ ਕੱਢਣਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ 254

ਲਾਭ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ 255

ਕੁਐਰੀ ਰੀਰਾਈਟਰ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਲਾਭ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ 256

Ventriloquist

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਕਦੋਂ ਵਰਤਣਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਣ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਵੱਖਰੇ ਭਾਗ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa

ਵੱਖਰੇ ਭਾਗ 258

ਪ੍ਰੈਡੀਕੇਟ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਸ ਨੂੰ ਕਦੋਂ ਵਰਤਣਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਵੱਖਰੇ ਭਾਗ 259

ਏ.ਪੀ.ਆਈ. ਫਸਾਡ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਮੁੱਖ ਲਾਭ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਕਦੋਂ ਵਰਤੀਏ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਪ੍ਰਮਾਣੀਕਰਨ ਅਤੇ ਅਧਿਕਾਰ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਵੱਖਰੇ ਭਾਗ 260

ਬੇਨਤੀ ਪ੍ਰਬੰਧਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਜਵਾਬ ਫਾਰਮੈਟਿੰਗ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਗਲਤੀ ਪ੍ਰਬੰਧਨ ਅਤੇ ਸੀਮਾ ਕੇਸ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸਕੇਲੇਬਿਲਟੀ ਅਤੇ ਪ੍ਰਦਰਸ਼ਨ ਵਿਚਾਰ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਹੋਰ ਡਿਜ਼ਾਈਨ ਪੈਟਰਨਾਂ ਨਾਲ ਤੁਲਨਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਵੱਖਰੇ ਭਾਗ 261

ਨਤੀਜਾ ਵਿਆਖਿਆਕਾਰ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਸਦੀ ਵਰਤੋਂ ਕਦੋਂ ਕਰਨੀ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਣ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਵੱਖਰੇ ਭਾਗ 262

ਵਰਚੁਅਲ ਮਸ਼ੀਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਸਨੂੰ ਕਦੋਂ ਵਰਤਣਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਣ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਜਾਦੂ ਦੇ ਪਿੱਛੇ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸਪੈਸੀਫਿਕੇਸ਼ਨ ਅਤੇ ਟੈਸਟਿੰਗ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਵੱਖਰੇ ਭਾਗ 263

ਵਿਵਹਾਰ ਦੀ ਸਪੈਸੀਫਿਕੇਸ਼ਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਟੈਸਟ ਕੇਸ ਲਿਖਣਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਨ: ਅਨੁਵਾਦਕ ਕੰਪੋਨੈਂਟ ਦੀ ਟੈਸਟਿੰਗ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

HTTP ਇੰਟਰੈਕਸ਼ਨਾਂ ਦਾ ਰੀਪਲੇਅ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਮਨੁੱਖੀ-ਸ਼ਮੂਲੀਅਤ ਪ੍ਰਣਾਲੀ (HITL)

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉੱਚ-ਪੱਧਰੀ ਪੈਟਰਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਹਾਈਬ੍ਰਿਡ ਬੁੱਧੀ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਅਨੁਕੂਲੀ ਪ੍ਰਤੀਕਿਰਿਆ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਮਨੁੱਖ-ਏਆਈ ਭੂਮਿਕਾ ਬਦਲੀ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਮਨੁੱਖੀ-ਸ਼ਮੂਲੀਅਤ ਪ੍ਰਣਾਲੀ (HITL) 265

ਵਧਾਅ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਮੁੱਖ ਲਾਭ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਅਸਲ-ਦੁਨੀਆ ਦੀ ਵਰਤੋਂ: ਸਿਹਤ ਸੰਭਾਲ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਮਨੁੱਖੀ-ਸ਼ਮੂਲੀਅਤ ਪ੍ਰਣਾਲੀ (HITL) 266

ਫੀਡਬੈਕ ਲੂਪ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਐਪਲੀਕੇਸ਼ਨਾਂ ਅਤੇ ਉਦਾਹਰਣਾਂ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਮਨੁੱਖੀ ਫੀਡਬੈਕ ਏਕੀਕਰਣ ਵਿੱਚ ਉੱਨਤ ਤਕਨੀਕਾਂ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਮਨੁੱਖੀ-ਸ਼ਮੂਲੀਅਤ ਪ੍ਰਣਾਲੀ (HITL) 267

ਨਿਸ਼ਕਰਿਆ ਜਾਣਕਾਰੀ ਵਿਕੀਰਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸੰਦਰਭਿਕ ਜਾਣਕਾਰੀ ਪ੍ਰਦਰਸ਼ਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਪ੍ਰੋਐਕਟਿਵ ਸੂਚਨਾਵਾਂ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਵਿਆਖਿਆਤਮਕ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀਆਂ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇੰਟਰੈਕਟਿਵ ਖੋਜ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਮਨੁੱਖੀ-ਸ਼ਮੂਲੀਅਤ ਪ੍ਰਣਾਲੀ (HITL) 268

ਮੁੱਖ ਲਾਭ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਐਪਲੀਕੇਸ਼ਨਾਂ ਅਤੇ ਉਦਾਹਰਨਾਂ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਮਨੁੱਖੀ-ਸ਼ਮੂਲੀਅਤ ਪ੍ਰਣਾਲੀ (HITL) 269

ਸਹਿਯੋਗੀ ਫੈਸਲਾ ਲੈਣਾ (CDM)

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਣ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਮਨੁੱਖੀ-ਸ਼ਮੂਲੀਅਤ ਪ੍ਰਣਾਲੀ (HITL) 270

ਲਗਾਤਾਰ ਸਿੱਖਣਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਐਪਲੀਕੇਸ਼ਨਾਂ ਅਤੇ ਉਦਾਹਰਣਾਂ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਣ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਨੈਤਿਕ ਵਿਚਾਰ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

AI ਜੋਖਮਾਂ ਨੂੰ ਘਟਾਉਣ ਵਿੱਚ HITL ਦੀ ਭੂਮਿਕਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਮਨੁੱਖੀ-ਸ਼ਮੂਲੀਅਤ ਪ੍ਰਣਾਲੀ (HITL) 271

ਤਕਨੀਕੀ ਤਰੱਕੀ ਅਤੇ ਭਵਿੱਖ ਦਾ ਦ੍ਰਿਸ਼ਟੀਕੋਣ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਐੱਚਆਈਟੀਐੱਲ (HITL) ਸਿਸਟਮਾਂ ਦੀਆਂ ਚੁਣੌਤੀਆਂ ਅਤੇ ਸੀਮਾਵਾਂ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਬੁੱਧੀਮਾਨ ਗਲਤੀ ਸੰਭਾਲ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਰਵਾਇਤੀ ਗਲਤੀ ਸੰਭਾਲ ਪਹੁੰਚਾਂ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਬੁੱਧੀਮਾਨ ਗਲਤੀ ਸੰਭਾਲ 273

ਸੰਦਰਭਿਕ ਗਲਤੀ ਨਿਦਾਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸੰਦਰਭਿਕ ਤਰੁੱਟੀ ਨਿਦਾਨ ਲਈ ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸੰਦਰਭਿਤ ਗਲਤੀ ਜਾਂਚ ਲਈ ਪੁਨਰ-ਪ੍ਰਾਪਤੀ-ਵਧਿਤ ਉਤਪਾਦਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਬੁੱਧੀਮਾਨ ਗਲਤੀ ਸੰਭਾਲ 274

ਬੁੱਧੀਮਾਨ ਗਲਤੀ ਰਿਪੋਰਟਿੰਗ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa

ਬੁੱਧੀਮਾਨ ਗਲਤੀ ਸੰਭਾਲ 275

ਭਵਿੱਖ-ਸੂਚਕ ਗਲਤੀ ਰੋਕਥਾਮ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸਮਾਰਟ ਗਲਤੀ ਰਿਕਵਰੀ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਬੁੱਧੀਮਾਨ ਗਲਤੀ ਸੰਭਾਲ 276

ਨਿੱਜੀ ਗਲਤੀ ਸੰਚਾਰ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਬੁੱਧੀਮਾਨ ਗਲਤੀ ਸੰਭਾਲ 277

ਅਨੁਕੂਲ ਗਲਤੀ ਨਿਪਟਾਰਾ ਵਰਕਫਲੋ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਗੁਣਵੱਤਾ ਨਿਯੰਤਰਣ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa

ਗੁਣਵੱਤਾ ਨਿਯੰਤਰਣ 279

ਈਵੈਲ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸਮੱਸਿਆ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਹੱਲ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਵਿਚਾਰ-ਵਟਾਂਦਰਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਗੁਣਵੱਤਾ ਨਿਯੰਤਰਣ 280

ਸੁਨਹਿਰੀ ਹਵਾਲਿਆਂ ਨੂੰ ਸਮਝਣਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਰੈਫਰੈਂਸ-ਫ੍ਰੀ ਮੁਲਾਂਕਣ ਕਿਵੇਂ ਕੰਮ ਕਰਦੇ ਹਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਗੁਣਵੱਤਾ ਨਿਯੰਤਰਣ 281

ਸੁਰੱਖਿਆ ਉਪਾਅ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸਮੱਸਿਆ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਹੱਲ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਇਹ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਉਦਾਹਰਨ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਵਿਚਾਰ-ਵਟਾਂਦਰੇ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਗੁਣਵੱਤਾ ਨਿਯੰਤਰਣ 282

ਸੁਰੱਖਿਆ ਰੇਲਾਂ ਅਤੇ ਮੁਲਾਂਕਣ: ਇੱਕੋ ਸਿੱਕੇ ਦੇ ਦੋ ਪਾਸੇ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸੁਰੱਖਿਆ ਰੇਲਾਂ ਅਤੇ ਹਵਾਲਾ-ਮੁਕਤ ਮੁਲਾਂਕਣਾਂ ਦੀ ਅੰਤਰ-ਬਦਲੀ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਦੋਹਰੇ-ਉਦੇਸ਼ ਵਾਲੇ ਸੁਰੱਖਿਆ ਰੇਲਿੰਗ ਅਤੇ ਮੁਲਾਂਕਣਾਂ ਨੂੰ ਲਾਗੂ ਕਰਨਾ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

ਸ਼ਬਦਾਵਲੀ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

ਸ਼ਬਦਾਵਲੀ

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

A

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

B

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

C

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

284

D

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

E

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

F

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

G

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

H

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

I

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

285

J

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

K

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

L

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

M

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

N

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

O

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

286

P

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

Q

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

R

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

S

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

T

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

U

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

287

V

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

W

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

Z

ਇਸ ਸਮੱਗਰੀ ਦੀ ਨਮੂਨਾ ਕਿਤਾਬ ਵਿਚ ਉਪਲਬਧਤਾ ਨਹੀਂ ਹੈ। ਇਹ ਕਿਤਾਬ Leanpub ਤੇ ਖਰੀਦੀ ਜਾ ਸਕਦੀ
ਹੈ http://leanpub.com/patterns-of-application-development-using-ai-pa.

http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa
http://leanpub.com/patterns-of-application-development-using-ai-pa

Index
ACID ਗੁਣ, 101
AI, 68, 91, 139, 194

applications, 128
compound systems, 27, 28
conversational, 28, 195
model, 90, 91
ਮਾਡਲ, 194
ਮਿਸ਼ਰਿਤ ਸਿਸਟਮ, 31
ਸੰਵਾਦੀ, 6

AI ਵਰਕਰਾਂ ਦੀ ਲੜੀਬੱਧਤਾ, 102
Alpaca, 12
Altman, Sam, 16
Amazon Web Services, 232
Anthropic, 20, 36, 67, 119, 127
APIs, 114
audit logging, 98

BERT, 12
Brotli, 233
Byte Pair Encoding (BPE), 13

C (ਪ੍ਰੋਗਰਾਮਿੰਗ ਭਾਸ਼ਾ), 107
Capybara ਲਾਇਬ੍ਰੇਰੀ, 239
ChatGPT, 27, 48
classification, 111
Claude, 7, 40, 71
Claude 3, 45, 117, 120, 125, 127

Claude 3 Opus, 68
Claude v1, 15
Claude v2, 15
Cohere (LLM Provider), 20
concurrent workflows, 233
Customer Sentiment Analysis, 91

Databricks ਕਰਮਚਾਰੀ, 47
Datadog, 229
decision

-making capabilities, 91
document clustering, 111

ELK ਸਟੈਕ, 102
errors

handling, 98

F#, 85
finalize ਮੈਥਡ, 147
FitAI, 195

Gemma 7B, 10
GitLab, 85
Google, 20

API, 57, 59
Cloud Platform, 232
Gemini, 19
Gemini 1.5 Pro, 13, 16, 17

Index 289

PaLM (Pathways Language
Model), 16

T5, 12
ਕਲਾਉਡ ਏਆਈ ਪਲੇਟਫਾਰਮ, 22
ਪਾਮ (ਪਾਥਵੇਜ਼ ਲੈਂਗਵੇਜ ਮਾਡਲ), 22

GPT-3, 12, 15
GPT-4, 6, 12, 15, 16, 19, 28, 40, 45, 57,

96, 108, 110, 118, 124, 189,
230

Graham, Paul, 17
Groq, 24, 110
gzip, 233

Hohpe, Gregor, 96
Honeybadger, 86
HTTP, 139

input
prompts, 51
validation, 234

intelligent workflow orchestration,
233

JSON (JavaScript Object Notation),
117, 121, 122, 125, 154

JSON (ਜਾਵਾਸਕ੍ਰਿਪਟ ਆਬਜੈਕਟ ਨੋਟੇਸ਼ਨ), 137

K-means, 112

Large Language Model (LLM), 111
Latent Dirichlet Allocation, 112
Llama, 12
Llama 2-70B, 46
Llama 3 70B, 10

Llama 3 8B, 10
LLMs ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰਨਾ, 174
Louvre, 39

MessagePack, 233
Metropolitan Museum of Art, 39
Mistral

7B, 10
7B Instruct, 15, 189

Mixtral
8x22B, 10
8x7B, 51

Multi-Agent
Problem Solvers, 28

Naive Bayes, 111
natural language

Natural Language Processing
(NLP), 111

New Relic, 231

Olympia, 30, 57, 119, 140, 155
Olympia ਦਾ ਗਿਆਨ ਅਧਾਰ, 84
OpenAI, 3, 20, 36, 67
OpenRouter, 25, 26, 140, 231
output verification, 234

Perplexity (ਪ੍ਰਦਾਤਾ), 11
Process Manager, 99
prompts

engineering, 51
Protocol Buffers, 233

Qwen2 70B, 10

Index 290

Rails, 180
Railway Oriented Programming

(ROP), 87
Raix, 211

ਲਾਇਬ੍ਰੇਰੀ, 89
Retrieval Augmented Generation

(RAG), 29
RSpec, 234, 236, 239
Ruby, 85, 86, 104, 151, 239
Ruby on Rails, 1, 102, 210, 218
Rudall, Alex, 21
Rust (Programming Language), 85
Rust (ਪ੍ਰੋਗਰਾਮਿੰਗ ਭਾਸ਼ਾ), 107

Scout, 231
Stripe, 120
Support Vector Machines (SVM), 111
system directive, 90

Together.ai, 24
topic identification, 111

Unicode-encodable language, 13
Universal ID, 233

Wall, Larry, 3
Wisper, 86, 98, 140, 147
Wooley, Chad, 85

XML, 124

Yi-34B, 46

ਅਣਸੁਪਰਵਾਈਜ਼ਡ ਲਰਨਿੰਗ, 4
ਅਨੁਕੂਲਤਾ, 24

ਅਨੁਕੂਲੀ ਯੂਜ਼ਰ ਇੰਟਰਫੇਸ, 192
ਅਨੁਕੂਲੀ ਵਰਕਫਲੋ

ਅਨੁਕੂਲੀ ਵਰਕਫਲੋ ਰਚਨਾ, 207
ਅਨੁਮਾਨ, 5
ਅਨੁਵਾਦ, 15, 181
ਅਪਵਾਦ ਪ੍ਰਬੰਧਨ, 210
ਅਪਵਾਦ ਸੰਭਾਲ, 208
ਅਸਿੰਕ੍ਰੋਨਸ ਪ੍ਰੋਸੈਸਿੰਗ, 229
ਅੰਤਰਰਾਸ਼ਟਰੀਕਰਨ, 180
ਆਟੋ ਕੰਟੀਨਿਊਏਸ਼ਨ, 148
ਆਟੋ-ਸਕੇਲਿੰਗ, 232
ਆਧੁਨਿਕ ਐਪਲੀਕੇਸ਼ਨਾਂ, 205
ਆਨਲਾਈਨ ਰਿਟੇਲਰ, 189
ਆਵਾਜ਼-ਨਿਯੰਤਰਿਤ ਇੰਟਰਫੇਸ, 30
ਆਸ਼ਾਵਾਦੀ ਲੌਕਿੰਗ, 101
ਇਕਸਾਰਤਾ

ਅਤੇ ਦੁਹਰਾਉਣਯੋਗਤਾ, 123
ਇਤਿਹਾਸਕ ਪੈਟਰਨ, 207
ਇਨਪੁੱਟ ਪੈਰਾਮੀਟਰ, 119
ਈ-ਕਾਮਰਸ, 177, 204
ਈ-ਕਾਮਰਸ ਐਪਲੀਕੇਸ਼ਨਾਂ, 84
ਈਕੋਸਿਸਟਮ, 137
ਉਤਪਾਦ ਸਿਫਾਰਸ਼ਾਂ, 84
ਉਤਪਾਦਕਤਾ, 176
ਉਪਭੋਗਤਾ-ਨਿਰਮਿਤ ਸਮੱਗਰੀ, 102
ਉੱਚ-ਪ੍ਰਦਰਸ਼ਨ ਕੰਪਲੀਸ਼ਨ, 24
ਏ.ਆਈ., 59, 125, 133, 187

ਐਪਲੀਕੇਸ਼ਨਾਂ, 116, 138, 151
ਫੈਸਲਾ ਬਿੰਦੂ, 237
ਮਾਡਲ, 81, 144, 147

ਏ.ਪੀ.ਆਈ., 65, 142
ਏਆਈ, 119

Index 291

ਮਾਡਲ, 145
ਏਕੀਕਰਣ ਟੈਸਟਿੰਗ, 235
ਏਜੰਟਿਕ, 29
ਐਂਟਰਪ੍ਰਾਈਜ਼ ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਪੈਟਰਨ, 96
ਐਂਟਰਪ੍ਰਾਈਜ਼ ਐਪਲੀਕੇਸ਼ਨ ਆਰਕੀਟੈਕਚਰ, 35
ਐਂਡ-ਟੂ-ਐਂਡ ਟੈਸਟਿੰਗ, 238, 239
ਐਨਸੈਂਬਲ, 108
ਐਪਲੀਕੇਸ਼ਨ ਡਿਜ਼ਾਈਨ ਅਤੇ ਫਰੇਮਵਰਕਸ, 183
ਐਮਰਜੈਂਸੀ ਪ੍ਰਤੀਕਿਰਿਆ ਯੋਜਨਾਬੰਦੀ, 30
ਐਰੇ, 121
ਐੱਸਕਿਊਐੱਲ ਇੰਜੈਕਸ਼ਨਾਂ, 64
ਓਪਨ ਸੋਰਸ ਮਾਡਲ ਹੋਸਟਿੰਗ ਪ੍ਰਦਾਤਾ, 189
ਓਪੀਟੀ ਮਾਡਲ, 22
ਓਲਾਮਾ, 23
ਓਲੰਪੀਆ, 133
ਕਮਾਂਡ ਲਾਈਨ

ਕਮਾਂਡ-ਲਾਈਨ ਇੰਟਰਫੇਸ (CLI), 23
ਕਰਮਚਾਰੀਆਂ ਦੀ ਬਹੁਤਾਤ, 109
ਕਰਾਸ-ਮਾਧਿਅਮ ਉਤਪਾਦਨ, 20
ਕਲੀਨਿਕਲ ਫ਼ੈਸਲਾ ਸਹਾਇਤਾ, 95
ਕਹਾਣੀ ਨਿਰਮਾਣ, 18
ਕਾਰਗੁਜ਼ਾਰੀ

ਅਨੁਕੂਲਤਾ, 123
ਅਨੁਕੂਲਨ, 227
ਸਮਝੌਤੇ, 5
ਸਮੱਸਿਆਵਾਂ, 231

ਕੁਆਂਟੀਕਰਨ, 26
ਕੁਦਰਤੀ ਭਾਸ਼ਾ

ਕੁਦਰਤੀ ਭਾਸ਼ਾ ਪ੍ਰੋਸੈਸਿੰਗ (NLP), 93
ਕੁਸ਼ਲਤਾ, 204
ਕੈਸ਼ਿੰਗ, 230
ਕੋਹੇਅਰ (LLM ਪ੍ਰਦਾਤਾ), 23

ਕ੍ਰਮਿਕ ਪ੍ਰਗਟਾਵਾ, 191
ਕੰਪਿਊਟਰ ਵਿਗਿਆਨ, 64, 66
ਖਾਤਾ, 83
ਗਤੀਸ਼ੀਲ UI ਨਿਰਮਾਣ, 174
ਗਤੀਸ਼ੀਲ ਟੂਲ ਚੋਣ, 121
ਗਲਤੀ ਸੰਭਾਲ, 234
ਗਲਤੀਆਂ

ਦਰਾਂ, 102
ਬੁੱਧੀਮਾਨ ਗਲਤੀ ਪ੍ਰਬੰਧਨ, 133
ਰਿਕਵਰੀ, 239
ਸੰਭਾਲ, 101, 132

ਗਲੋਬਲ ਇੰਟਰਪ੍ਰੇਟਰ ਲੌਕ (GIL), 106
ਗਾਹਕ ਸਹਾਇਤਾ, 29
ਗਾਹਕ ਸੇਵਾ ਚੈਟਬੋਟ, 30
ਗਿਆਨ ਪ੍ਰਬੰਧਨ, 29
ਗਿਆਨ ਭੰਡਾਰ, 7
ਗੁੰਝਲਦਾਰ ਕੰਮ, 136
ਗ੍ਰਾਫਕਿਊਐੱਲ, 99
ਗ੍ਰਾਫਿਕਲ ਮਾਡਲ, 40
ਗੱਲਬਾਤ

ਲਿਖਤ, 145, 148
ਲੂਪ, 146, 148

ਘਟਨਾ-ਚਾਲਿਤ ਆਰਕੀਟੈਕਚਰ, 100
ਘੱਟੋ-ਘੱਟ ਵਿਸ਼ੇਸ਼-ਅਧਿਕਾਰ ਦਾ ਸਿਧਾਂਤ, 65
ਚੈਟਬੌਟ ਐਪਲੀਕੇਸ਼ਨ, 109
ਛਿਪਿਆ ਹੋਇਆ ਸਪੇਸ, 37
ਜਨਰੇਟਿਵ UI (GenUI), 190, 200
ਜਨਰੇਟਿਵ ਪ੍ਰੀ-ਟਰੇਨਡ ਟ੍ਰਾਂਸਫਾਰਮਰ (GPT), 7
ਜਨਰੇਟਿਵ ਪ੍ਰੀ-ਟ੍ਰੇਨਡ ਟ੍ਰਾਂਸਫਾਰਮਰ (GPT), 61
ਜਨਰੇਟਿਵ ਯੂਆਈ (GenUI), 193
ਜਨਰੇਟਿਵ ਯੂਆਈ (ਜੈਨਯੂਆਈ), 183, 197
ਜ਼ਬਰਦਸਤੀ ਟੂਲ ਚੋਣ, 122

Index 292

ਜ਼ੀਰੋ-ਸ਼ਾਟ ਲਰਨਿੰਗ, 54
ਜ਼ੀਰੋ-ਸ਼ੌਟ ਲਰਨਿੰਗ, 53
ਜਾਣਕਾਰੀ

ਕੱਢਣਾ, 47
ਪੁਨਰ-ਪ੍ਰਾਪਤੀ, 6, 116

ਜੀਪੀਟੀ-4, 188
ਜੋਖਮ ਕਾਰਕ, 88, 89
ਜੋਖਮ ਵਰਗੀਕਰਨ, 94
ਟਿਕਟ ਨਿਰਧਾਰਨ, 221
ਟੀ5, 22
ਟੂਲ ਕਾਲ, 142
ਟੂਲ ਵਰਤੋਂ, 114
ਟੈਕਸਟ ਸਫਾਈ, 103
ਟੈਬਲੇਟ, 201
ਟੋਕਨ, 5, 11
ਟੋਕਨਾਈਜ਼ੇਸ਼ਨ, 11
ਟੌਪ-ਕੇ ਸੈਂਪਲਿੰਗ, 44
ਟੌਪ-ਪੀ (ਨਿਊਕਲੀਅਸ) ਸੈਂਪਲਿੰਗ, 44
ਟ੍ਰਾਂਸਫਾਰਮਰ ਆਰਕੀਟੈਕਚਰ, 6
ਟ੍ਰਿੱਗਰ ਸੁਨੇਹਾ, 96
ਟ੍ਰੈਫਿਕ ਪ੍ਰਬੰਧਨ, 30
ਡਾਇਨਾਮਿਕ ਟਾਸਕ ਰੂਟਿੰਗ, 206
ਡਾਟਾ

ਅਖੰਡਤਾ, 221
ਗੋਪਨੀਯਤਾ, 24
ਡਾਟਾ ਪ੍ਰਾਪਤੀ, 101
ਡਾਟਾ ਵੈਲੀਡੇਸ਼ਨ, 239
ਡਾਟਾ ਸਿੰਕਰੋਨਾਈਜ਼ੇਸ਼ਨ, 101
ਤਿਆਰੀ, 100
ਪਰਦੇਦਾਰੀ, 199
ਪ੍ਰੋਸੈਸਿੰਗ ਕਾਰਜ, 116
ਪ੍ਰੋਸੈਸਿੰਗ ਪਾਈਪਲਾਈਨ, 221

ਫਲੋ, 101
ਵਿਸ਼ਲੇਸ਼ਣ, 31, 137
ਸਥਿਰਤਾ, 100

ਡਾਟਾਬੇਸ, 114
-ਅਧਾਰਿਤ ਔਬਜੈਕਟ, 97
ਲੌਕਿੰਗ ਰਣਨੀਤੀਆਂ, 101

ਡਿਕਸ਼ਨਰੀਆਂ, 121
ਡਿਜੀਟਲ ਖੇਤਰ, 179
ਡੀਬੱਗਿੰਗ, 207

ਅਤੇ ਟੈਸਟਿੰਗ, 122
ਅਤੇ ਸਮੱਸਿਆ ਨਿਵਾਰਣ, 227

ਡੈਸਕਟੌਪ ਕੰਪਿਊਟਰ, 201
ਡੋਹਨ ਅਤੇ ਹੋਰ, 40
ਢਾਂਚਾਗਤ ਡਾਟਾ, 124
ਤਾਪਮਾਨ, 49
ਤੰਤੂ ਨੈੱਟਵਰਕ, 3
ਤੰਤ੍ਰਿਕਾ ਨੈੱਟਵਰਕ, 6
ਥਰੂਪੁੱਟ, 25
ਦੁਹਰਾਉਣ ਵਾਲੀ ਸੁਧਾਰ, 69
ਦੁਹਰਾਓ ਜੁਰਮਾਨੇ, 46
ਦੇਰੀ, 25
ਦ੍ਰਿਸ਼ਟੀ ਇੰਟਰਫੇਸ, 193
ਧੋਖਾਧੜੀ ਦੀ ਪਛਾਣ

ਸਿਸਟਮ, 89
ਨਤੀਜਾ ਵਿਆਖਿਆਕਾਰ, 132
ਨਿਗਰਾਨੀ

ਅਤੇ ਚੇਤਾਵਨੀ, 208
ਅਤੇ ਲੌਗਿੰਗ, 102, 227
ਮੈਟ੍ਰਿਕਸ, 228

ਨਿਤਾਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ, 69
ਨਿਰਦੇਸ਼ ਟਿਊਨਿੰਗ

ਇੰਸਟ੍ਰਕਟ-ਟਿਊਨਡ ਮਾਡਲ, 47

Index 293

ਨਿਰਧਾਰਤ ਵਿਵਹਾਰ, 53
ਨਿਰਾਸ਼ਾਵਾਦੀ ਲੌਕਿੰਗ, 101
ਨਿਰੰਤਰ ਏਕੀਕਰਨ ਅਤੇ ਤੈਨਾਤੀ (CI/CD), 240

ਪਾਈਪਲਾਈਨ, 240
ਨਿੱਜੀਕਰਣ ਕੀਤੀਆਂ ਉਤਪਾਦ ਸਿਫਾਰਸ਼ਾਂ, 84
ਨਿੱਜੀਕਰਨ, 174, 201, 205

ਨਿੱਜੀ ਫਾਰਮ, 185
ਨਿੱਜੀ ਮਾਈਕਰੋਕਾਪੀ, 190

ਨੈਤਿਕਤਾ
ਪ੍ਰਭਾਵ, 184

ਨੈੱਟਵਰਕ ਕਨੈਕਟੀਵਿਟੀ, 208
ਪਹਿਲੇ ਟੋਕਨ ਤੱਕ ਦਾ ਸਮਾਂ (TTFT), 25
ਪਹੁੰਚਯੋਗਤਾ, 200
ਪਾਈਟੌਰਚ, 22
ਪੁਨਰ-ਪ੍ਰਾਪਤੀ ਵਧਾਇਆ ਉਤਪਾਦਨ (RAG), 116
ਪੁਨਰ-ਪ੍ਰਾਪਤੀ-ਆਧਾਰਿਤ ਮਾਡਲ, 6
ਪੁਨਰ-ਪ੍ਰਾਪਤੀ-ਵਧਾਇਆ ਉਤਪਾਦਨ (RAG), 42
ਪੈਟਰਨ ਮੈਚਿੰਗ, 141
ਪੈਰਾਫਰੇਜ਼ਿੰਗ, 48
ਪੈਰਾਮੀਟਰ

ਪੈਰਾਮੀਟਰ ਗਿਣਤੀ, 26
ਪ੍ਰਭਾਵ, 119
ਰੇਂਜ, 10

ਪ੍ਰਕਾਸ਼ਿਤ-ਗਾਹਕੀ ਪ੍ਰਣਾਲੀਆਂ, 100
ਪ੍ਰਦਰਸ਼ਨ

ਅਨੁਕੂਲਨ, 181
ਪ੍ਰਯੋਗ

ਢਾਂਚਾ, 179
ਪ੍ਰਸੰਗ

ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ, 173, 183
ਪ੍ਰੇਰਕ ਰਣਨੀਤੀਆਂ, 197
ਪ੍ਰੋਸੈਸ ਮੈਨੇਜਰ, 96

ਐਂਟਰਪ੍ਰਾਈਜ਼ ਏਕੀਕਰਣ, 211
ਪ੍ਰੋਸੈਸਿੰਗ ਸਮਾਂ, 102
ਪ੍ਰੌਮਪਟ

ਚੇਨਿੰਗ, 65
ਪ੍ਰੌਮਪਟਸ

ਇੰਜੀਨੀਅਰਿੰਗ, 37, 41, 42, 54, 59, 61,
198

ਚੇਨਿੰਗ, 54
ਡਿਜ਼ਾਈਨ, 53, 62
ਪ੍ਰੌਮਪਟ ਔਬਜੈਕਟ, 68
ਪ੍ਰੌਮਪਟ ਟੈਂਪਲੇਟ, 54, 189
ਪ੍ਰੌਮਪਟ ਡਿਸਟੀਲੇਸ਼ਨ, 67, 230
ਪ੍ਰੌਮਪਟ ਨਿਖਾਰ, 71
ਪ੍ਰੌਮਪਟ ਨਿਤਾਰਨਾ, 42
ਸੁਧਾਰ, 62

ਪੱਖਪਾਤ
ਅਤੇ ਏ.ਆਈ. ਵਿੱਚ ਨਿਰਪੱਖਤਾ, 237

ਫਾਈਨ-ਟਿਊਨਿੰਗ, 73
ਫਾਈਨਲਾਈਜ਼ ਮੈਥਡ, 145
ਫਾਲਬੈਕ ਰਣਨੀਤੀਆਂ, 101
ਫਿਊ-ਸ਼ਾਟ

ਪ੍ਰੌਮਪਟਿੰਗ, 57
ਲਰਨਿੰਗ, 56

ਫੀਡਬੈਕ
ਫੀਡਬੈਕ ਲੂਪ, 54

ਫੇਸਬੁੱਕ, 22
ਫੈਸਲਾ

-ਲੈਣ ਦੇ ਮਾਮਲੇ, 123
ਰੁੱਖ, 204

ਫੈਸਲੇ
ਬਿੰਦੂ, 225

ਫੰਕਸ਼ਨ

Index 294

ਕਾਲ ਇਤਿਹਾਸ, 145
ਕਾਲਿੰਗ, 114, 146
ਨਾਂ, 143

ਫੰਕਸ਼ਨ ਕਾਲ ਅਸਫਲਤਾ, 124
ਫੰਕਸ਼ਨਲ ਪ੍ਰੋਗਰਾਮਿੰਗ, 84
ਬਰਟ, 22
ਬਹੁ-ਪੜਾਵੀ ਕਾਰਜ-ਪ੍ਰਵਾਹ, 102
ਬਹੁ-ਮਾਧਿਅਮ

ਮਾਡਲ, 18
ਬਹੁ-ਮਾਧਿਅਮੀ

ਭਾਸ਼ਾ ਮਾਡਲ, 19
ਬਹੁਮਤ ਵੋਟਿੰਗ, 108
ਬਾਈਟ ਪੇਅਰ ਇਨਕੋਡਿੰਗ (BPE), 12
ਬਾਹਰੀ ਸੇਵਾਵਾਂ ਜਾਂ ਏ.ਪੀ.ਆਈ., 117
ਬੀਮਾ ਤਸਦੀਕ, 93
ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਆਯੋਜਨ, 210
ਬੁੱਧੀਮਾਨ ਕੰਟੈਂਟ ਮੌਡਰੇਟਰ, 214
ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਆਰਕੈਸਟ੍ਰੇਸ਼ਨ, 231
ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ, 203
ਬੇਸ ਮਾਡਲ, 49
ਬੈਚ ਪ੍ਰੋਸੈਸਿੰਗ, 230
ਬੰਦ ਅਤੇ ਖੁੱਲ੍ਹੇ ਸਵਾਲਾਂ ਦੇ ਜਵਾਬ, 47
ਭਵਿੱਖਬਾਣੀਆਂ, 5
ਭਾਵਨਾ ਵਿਸ਼ਲੇਸ਼ਣ, 15, 92, 103–105, 108,

109, 125
ਭਾਵਨਾਤਮਕ ਵਿਸ਼ਲੇਸ਼ਣ, 135
ਭਾਵਨਾਤਮਕ ਸੁਰ, 135
ਭਾਸ਼ਾ

-ਸੰਬੰਧਿਤ ਕੰਮ, 4
ਭਾਸ਼ਾ ਪਛਾਣ, 103
ਮਾਡਲ, 39, 60
ਮੌਡਲ, 67

ਮਨ ਦਾ ਸਿਧਾਂਤ, 37
ਮਨੁੱਖੀ-ਸੰਚਾਲਿਤ ਪ੍ਰਕਿਰਿਆ (HITL), 166
ਮਨੁੱਖੀਕਰਨ, 63
ਮਰਕਰੀ (ਗ੍ਰਹਿ), 41
ਮਰਕਰੀ (ਤੱਤ), 41
ਮਰਕਰੀ (ਰੋਮਨ ਦੇਵਤਾ), 41
ਮਾਈਕਰੋਸਰਵਿਸਿਜ਼ ਆਰਕੀਟੈਕਚਰ, 82
ਮਾਰਕਅੱਪ-ਸ਼ੈਲੀ ਟੈਗਿੰਗ, 65
ਮਾਰਕਡਾਊਨ, 137
ਮਿਸਤਰਾਲ, 23
ਮੁੜ-ਕੋਸ਼ਿਸ਼ ਮੈਕੇਨਿਜ਼ਮ, 101
ਮੁੱਖ ਪੈਟਰਨ, 205
ਮੁੱਖ ਮੈਟ੍ਰਿਕਸ ਟਰੈਕਿੰਗ, 225
ਮੇਟਾ, 22
ਮੈਡੀਕਲ ਇਤਿਹਾਸ ਇਕੱਤਰੀਕਰਨ, 93
ਮੈਡੀਕਲ ਖੋਜਾਂ, 92
ਮੈਨੂਅਲ ਦਖਲਅੰਦਾਜ਼ੀ, 210
ਮੈਨੇਜਡ ਸਟ੍ਰੀਮਿੰਗ ਫਾਰ ਅਪਾਚੇ ਕਾਫ਼ਕਾ, 38
ਮੈਮੋਰੀਅਲ ਸਲੋਨ ਕੈਟਰਿੰਗ ਕੈਂਸਰ ਸੈਂਟਰ, 38
ਮੋਡੀਊਲੈਰਿਟੀ, 81
ਮੌਜੂਦਗੀ ਪੈਨਲਟੀ, 44
ਯੂਜ਼ਰ ਅਨੁਭਵ, 179
ਯੂਜ਼ਰ ਇੰਟਰਫੇਸ (UI)

ਡਿਜ਼ਾਈਨ, 201
ਤਕਨਾਲੋਜੀਆਂ, 193

ਯੂਜ਼ਰ ਇੰਟਰਫੇਸ (ਯੂਆਈ)
ਇੰਟਰਫੇਸ, 183, 197
ਫਰੇਮਵਰਕ, 197

ਯੂਜ਼ਰ ਟੈਸਟਿੰਗ ਅਤੇ ਫੀਡਬੈਕ, 182
ਯੂਜ਼ਰ ਭਰੋਸਾ, 200
ਯੂਜ਼ਰ ਮਨੋਵਿਗਿਆਨ, 198
ਰਚਨਾਤਮਕ ਲੇਖਣ, 31, 47

Index 295

ਰਾਹ ਨੂੰ ਤੰਗ ਕਰਨਾ, 36
ਰਾਹ ਨੂੰ ਸੀਮਤ ਕਰਨਾ, 35
ਰਿਟਰੀਵਲ ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ (ਆਰ.ਏ.ਜੀ.), 73
ਰਿਟ੍ਰੀਵਲ ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ (RAG), 35
ਰਿਸਪਾਂਸ ਫੈਂਸਿੰਗ, 163, 189
ਰੁਕਾਵਟਾਂ, 207
ਰੇਖਿਕ ਪ੍ਰਤੀਗਮਨ, 40
ਰੇਖਿਕ ਬੀਜਗਣਿਤ, 39
ਰੈਂਕਰ, 32
ਰੋਲ-ਪਲੇਅ-ਸ਼ੈਲੀ ਦੀਆਂ ਗੱਲਬਾਤਾਂ, 6
ਰੋਲਬੈਕ ਮਕੈਨਿਜ਼ਮ, 240
ਲਗਾਤਾਰ ਜੋਖਮ ਨਿਗਰਾਨੀ, 95
ਲਗਾਤਾਰ ਸੁਧਾਰ, 134
ਲਚਕਤਾ ਅਤੇ ਰਚਨਾਤਮਕਤਾ, 181
ਲਾਰਜ ਲੈਂਗਵੇਜ ਮਾਡਲ (LLM), 136
ਲਾਰਜ ਲੈਂਗੂਏਜ ਮਾਡਲ (LLM), 102
ਲੇਖਾ-ਪੜਤਾਲ ਅਤੇ ਪਾਲਣਾ, 227
ਲੇਟੈਂਟ ਸਪੇਸ, 39
ਲੌਗ ਰੀਟੈਂਸ਼ਨ ਅਤੇ ਰੋਟੇਸ਼ਨ, 228
ਲੱਛਣ ਮੁਲਾਂਕਣ ਅਤੇ ਵਰਗੀਕਰਨ, 93
ਵਧਾਈ ਹੋਈ ਅਸਲੀਅਤ ਐਨਕਾਂ, 201
ਵਨ-ਸ਼ਾਟ ਲਰਨਿੰਗ, 55
ਵਪਾਰਕ ਨਿਯਮ, 203
ਵਰਕਰਾਂ ਦੀ ਬਹੁਤਾਤ, 154
ਵਰਗੀਕਰਨ, 47
ਵਰਗੀਕਰਨ ਅਤੇ ਟਾਰਗੇਟਿੰਗ ਰਣਨੀਤੀਆਂ, 179
ਵਰਚੁਅਲ ਸਹਾਇਕ, 30
ਵਰਤੋਂਯੋਗਤਾ ਸਮੱਸਿਆਵਾਂ, 199
ਵਿਆਕਰਣ ਦੇ ਨਿਯਮ, 4
ਵਿਆਖਿਆਯੋਗਤਾ, 237
ਵਿਕਾਸ ਫਰੇਮਵਰਕ, 138
ਵਿਚਾਰਾਂ ਦੀ ਲੜੀ (CoT), 41, 129

ਵਿਸਤ੍ਰਿਤ ਲੌਗਿੰਗ, 228
ਵਿੱਦਿਅਕ ਐਪਲੀਕੇਸ਼ਨਾਂ, 29
ਵੈਂਟਰੀਲੋਕੁਇਸਟ, 163
ਵੰਡੀ ਹੋਈ ਆਰਕੀਟੈਕਚਰ, 230
ਵੱਡਾ ਭਾਸ਼ਾ ਮਾਡਲ (LLM), 3, 16, 61, 62, 65,

69, 114, 115, 124, 130, 134,
155, 193, 213

ਵੱਡਾ ਭਾਸ਼ਾ ਮਾਡਲ (ਐਲ.ਐਲ.ਐਮ.), 134
ਵੱਡਾ ਭਾਸ਼ਾ ਮਾਡਲ (ਐੱਲ.ਐੱਲ.ਐੱਮ.), 80, 152
ਵੱਡਾ ਭਾਸ਼ਾ ਮਾਡਲ (ਐੱਲਐੱਲਐੱਮ), 14, 27, 71,

188
ਖੇਤਰ, 25

ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ (LLM), 1, 173
ਵੱਡੇ ਭਾਸ਼ਾ ਮਾਡਲ (ਐੱਲਐੱਲਐੱਮ), 183
ਸਕੇਲੇਬਿਲਟੀ, 205, 229
ਸਟਰਕਚਰਡ IO, 189
ਸਟੇਜਿੰਗ ਵਾਤਾਵਰਣ, 240
ਸਟੇਟਲੈੱਸ, 145
ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ, 139, 145, 151

ਲੌਜਿਕ, 147
ਸਟ੍ਰੀਮ ਹੈਂਡਲਰ, 139
ਸਟ੍ਰੀਮਿੰਗ ਡਾਟਾ, 141
ਸਥਾਨਕ ਵਿਕਾਸ ਵਾਤਾਵਰਣ, 143
ਸਪਲਾਈ ਚੇਨ

ਆਪਟੀਮਾਈਜ਼ੇਸ਼ਨ, 30
ਸਮਾਨੰਤਰ ਐਗਜ਼ੀਕਿਊਸ਼ਨ, 230
ਸਮਾਰਟਫੋਨ, 201
ਸਮਾਵੇਸ਼ੀ ਇੰਟਰਫੇਸ, 184
ਸਮੂਹ, 109

ਵਰਕਰਾਂ ਦਾ ਸਮੂਹ, 109
ਸਮੱਗਰੀ

ਫਿਲਟਰਿੰਗ, 24

Index 296

ਸਮੱਗਰੀ ਵਰਗੀਕਰਨ, 103
ਸਮੱਗਰੀ-ਆਧਾਰਿਤ ਫਿਲਟਰਿੰਗ, 84
ਸਰਕਟ ਬਰੇਕਰ ਲੌਜਿਕ, 150
ਸਰਵਰ-ਭੇਜੀਆਂ ਘਟਨਾਵਾਂ (SSE), 139
ਸਵਾਲ-ਜਵਾਬ ਪ੍ਰਣਾਲੀਆਂ, 7
ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ, 152
ਸਵੈ-ਪ੍ਰਤੀਗਾਮੀ ਮਾਡਲਿੰਗ, 40
ਸਹਿਯੋਗੀ ਫਿਲਟਰਿੰਗ, 84
ਸਾਂਝੇ ਸਰੋਤਾਂ ਦੀ ਤ੍ਰਾਸਦੀ, 177
ਸਾਫਟਵੇਅਰ ਆਰਕੀਟੈਕਚਰ, 2
ਸਿਖਲਾਈ ਡਾਟਾ, 39
ਸਿਸਟਮ ਨਿਰਦੇਸ਼, 119
ਸਿੰਟੈਕਸ ਗਲਤੀਆਂ, 122
ਸਿੰਥੈਟਿਕ ਡੇਟਾ ਜਨਰੇਸ਼ਨ, 48
ਸੀਮਾ ਮਾਮਲੇ, 53
ਸੀਮਾ ਸਥਿਤੀਆਂ, 234
ਸੈਲਫ-ਹੀਲਿੰਗ ਡਾਟਾ, 224
ਸੰਕਲਪਕ ਅਤੇ ਵਿਵਹਾਰਕ ਚੁਣੌਤੀਆਂ, 184

ਸੰਖੇਪੀਕਰਨ, 47
ਸੰਦ ਦੀ ਵਰਤੋਂ, 138
ਸੰਦਰਭ

ਅਸੀਮਿਤ ਲੰਬੀਆਂ ਇਨਪੁੱਟਾਂ, 14
ਵਾਧਾ, 42
ਵਿੰਡੋ, 14, 207
ਸੰਦਰਭਿਕ ਖੇਤਰ ਸੁਝਾਅ, 185
ਸੰਦਰਭਿਕ ਫੈਸਲਾ ਲੈਣਾ, 207
ਸੰਦਰਭਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ, 177, 178,

185
ਸੰਭਾਵੀ ਮਾਡਲ, 39
ਸੰਰਚਿਤ ਲੌਗਿੰਗ, 228
ਹਦਾਇਤ ਸਿਖਲਾਈ

ਹਦਾਇਤ-ਸਿਖਲਾਈ ਮਾਡਲ, 45
ਹਾਈਪਰਪੈਰਾਮੀਟਰ, 43
ਹਾਰਡਵੇਅਰ, 26
ਹਿਦਾਇਤ ਟਿਊਨਿੰਗ, 9
ਹੈਸ਼, 141

	Table of Contents
	ਗਰੇਗਰ ਹੋਪ ਦੁਆਰਾ ਮੁੱਖਬੰਧ
	ਮੁੱਖਬੰਦ
	ਕਿਤਾਬ ਬਾਰੇ
	ਕੋਡ ਉਦਾਹਰਣਾਂ ਬਾਰੇ
	ਮੈਂ ਕੀ ਕਵਰ ਨਹੀਂ ਕਰਦਾ
	ਇਹ ਕਿਤਾਬ ਕਿਸ ਲਈ ਹੈ
	ਇੱਕ ਸਾਂਝੀ ਸ਼ਬਦਾਵਲੀ ਦਾ ਨਿਰਮਾਣ
	ਸ਼ਾਮਲ ਹੋਣਾ
	ਧੰਨਵਾਦ
	ਚਿੱਤਰਾਂ ਬਾਰੇ ਕੀ ਹੈ?
	ਲੀਨ ਪਬਲਿਸ਼ਿੰਗ ਬਾਰੇ
	ਲੇਖਕ ਬਾਰੇ

	ਜਾਣ-ਪਛਾਣ
	ਸਾਫਟਵੇਅਰ ਆਰਕੀਟੈਕਚਰ ਬਾਰੇ ਵਿਚਾਰ
	ਵੱਡਾ ਭਾਸ਼ਾ ਮਾਡਲ ਕੀ ਹੈ?
	ਅਨੁਮਾਨ ਨੂੰ ਸਮਝਣਾ
	ਪ੍ਰਦਰਸ਼ਨ ਬਾਰੇ ਸੋਚਣਾ
	ਵੱਖ-ਵੱਖ ਐੱਲਐੱਲਐੱਮ ਮਾਡਲਾਂ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਨਾ
	ਮਿਸ਼ਰਿਤ ਏ.ਆਈ. ਸਿਸਟਮ

	ਭਾਗ 1: ਮੁੱਢਲੇ ਪਹੁੰਚ ਅਤੇ ਤਕਨੀਕਾਂ
	ਰਾਹ ਨੂੰ ਤੰਗ ਕਰੋ
	ਲੇਟੈਂਟ ਸਪੇਸ: ਅਕਲਪਨੀ ਤੌਰ 'ਤੇ ਵਿਸ਼ਾਲ
	ਰਸਤਾ ਕਿਵੇਂ ``ਸੀਮਤ'' ਹੁੰਦਾ ਹੈ
	ਰਾਅ ਬਨਾਮ ਇੰਸਟਰਕਟ-ਟਿਊਨਡ ਮਾਡਲ
	ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ
	ਪ੍ਰੌਮਪਟ ਡਿਸਟੀਲੇਸ਼ਨ
	ਫਾਈਨ-ਟਿਊਨਿੰਗ ਬਾਰੇ ਕੀ?

	ਰਿਟ੍ਰੀਵਲ ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ (RAG)
	ਰਿਟ੍ਰੀਵਲ ਔਗਮੈਂਟਡ ਜਨਰੇਸ਼ਨ ਕੀ ਹੈ?
	RAG ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ?
	ਆਪਣੀਆਂ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ RAG ਦੀ ਵਰਤੋਂ ਕਿਉਂ ਕਰੀਏ?
	ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਵਿੱਚ RAG ਨੂੰ ਲਾਗੂ ਕਰਨਾ
	ਪ੍ਰਸਤਾਵ ਖੰਡੀਕਰਨ
	ਰੈਗ ਦੀਆਂ ਅਸਲ-ਦੁਨੀਆ ਦੀਆਂ ਉਦਾਹਰਣਾਂ
	ਬੁੱਧੀਮਾਨ ਕੁਐਰੀ ਔਪਟੀਮਾਈਜ਼ੇਸ਼ਨ (IQO)
	ਮੁੜ-ਦਰਜਾਬੰਦੀ
	RAG ਮੁਲਾਂਕਣ (RAGAs)
	ਚੁਣੌਤੀਆਂ ਅਤੇ ਭਵਿੱਖ ਦਾ ਦ੍ਰਿਸ਼ਟੀਕੋਣ

	ਕਾਮਿਆਂ ਦੀ ਭੀੜ
	ਸੁਤੰਤਰ ਮੁੜ-ਵਰਤੋਂਯੋਗ ਕੰਪੋਨੈਂਟਸ ਵਜੋਂ ਏ.ਆਈ. ਕਾਮੇ
	ਅਕਾਊਂਟ ਪ੍ਰਬੰਧਨ
	ਈ-ਕਾਮਰਸ ਐਪਲੀਕੇਸ਼ਨਾਂ
	ਸਿਹਤ ਸੰਭਾਲ ਐਪਲੀਕੇਸ਼ਨਾਂ
	AI ਵਰਕਰ ਇੱਕ ਪ੍ਰੋਸੈਸ ਮੈਨੇਜਰ ਵਜੋਂ
	ਤੁਹਾਡੀ ਐਪਲੀਕੇਸ਼ਨ ਆਰਕੀਟੈਕਚਰ ਵਿੱਚ AI ਵਰਕਰਾਂ ਨੂੰ ਏਕੀਕ੍ਰਿਤ ਕਰਨਾ
	AI ਵਰਕਰਾਂ ਦੀ ਰਚਨਾਤਮਕਤਾ ਅਤੇ ਤਾਲਮੇਲ
	ਪਰੰਪਰਾਗਤ NLP ਨੂੰ LLMs ਨਾਲ ਜੋੜਨਾ

	ਟੂਲ ਵਰਤੋਂ
	ਟੂਲ ਵਰਤੋਂ ਕੀ ਹੈ?
	ਟੂਲ ਵਰਤੋਂ ਦੀ ਸੰਭਾਵਨਾ
	ਟੂਲ ਵਰਤੋਂ ਵਰਕਫਲੋ
	ਟੂਲ ਦੀ ਵਰਤੋਂ ਲਈ ਸਰਵੋਤਮ ਅਭਿਆਸ
	ਟੂਲਜ਼ ਦੀ ਰਚਨਾ ਅਤੇ ਲੜੀਬੱਧਤਾ
	ਭਵਿੱਖ ਦੀਆਂ ਦਿਸ਼ਾਵਾਂ

	ਸਟ੍ਰੀਮ ਪ੍ਰੋਸੈਸਿੰਗ
	ReplyStream ਨੂੰ ਲਾਗੂ ਕਰਨਾ
	``ਗੱਲਬਾਤ ਲੂਪ''
	ਆਟੋ ਕੰਟੀਨਿਊਏਸ਼ਨ
	ਸਿੱਟਾ

	ਸਵੈ-ਠੀਕ ਹੋਣ ਵਾਲਾ ਡਾਟਾ
	ਵਿਵਹਾਰਕ ਕੇਸ ਸਟੱਡੀ: ਖਰਾਬ JSON ਨੂੰ ਠੀਕ ਕਰਨਾ
	ਵਿਚਾਰ ਅਤੇ ਵਿਰੋਧੀ ਸੰਕੇਤ

	ਪ੍ਰਸੰਗਿਕ ਸਮੱਗਰੀ ਨਿਰਮਾਣ
	ਨਿੱਜੀਕਰਨ
	ਉਤਪਾਦਕਤਾ
	ਤੇਜ਼ ਦੁਹਰਾਓ ਅਤੇ ਪ੍ਰਯੋਗ
	AI ਸੰਚਾਲਿਤ ਸਥਾਨੀਕਰਨ
	ਯੂਜ਼ਰ ਟੈਸਟਿੰਗ ਅਤੇ ਫੀਡਬੈਕ ਦੀ ਮਹੱਤਤਾ

	ਜਨਰੇਟਿਵ ਯੂਆਈ
	ਯੂਜ਼ਰ ਇੰਟਰਫੇਸਾਂ ਲਈ ਕਾਪੀ ਤਿਆਰ ਕਰਨਾ
	ਜਨਰੇਟਿਵ ਯੂਆਈ ਦੀ ਪਰਿਭਾਸ਼ਾ
	ਉਦਾਹਰਨ
	ਨਤੀਜਾ-ਕੇਂਦਰਿਤ ਡਿਜ਼ਾਈਨ ਵੱਲ ਤਬਦੀਲੀ
	ਚੁਣੌਤੀਆਂ ਅਤੇ ਵਿਚਾਰ
	ਭਵਿੱਖ ਦਾ ਨਜ਼ਰੀਆ ਅਤੇ ਮੌਕੇ

	ਬੁੱਧੀਮਾਨ ਵਰਕਫਲੋ ਔਰਕੈਸਟ੍ਰੇਸ਼ਨ
	ਵਪਾਰਕ ਲੋੜ
	ਮੁੱਖ ਲਾਭ
	ਮੁੱਖ ਪੈਟਰਨ
	ਅਪਵਾਦ ਸੰਭਾਲ ਅਤੇ ਰਿਕਵਰੀ
	ਅਮਲੀ ਤੌਰ 'ਤੇ ਬੁੱਧੀਮਾਨ ਕਾਰਜ-ਪ੍ਰਵਾਹ ਆਯੋਜਨ ਨੂੰ ਲਾਗੂ ਕਰਨਾ
	ਨਿਗਰਾਨੀ ਅਤੇ ਲੌਗਿੰਗ
	ਸਕੇਲੇਬਿਲਟੀ ਅਤੇ ਪ੍ਰਦਰਸ਼ਨ ਵਿਚਾਰ
	ਕਾਰਜ-ਪ੍ਰਵਾਹਾਂ ਦੀ ਟੈਸਟਿੰਗ ਅਤੇ ਪ੍ਰਮਾਣੀਕਰਨ

	ਭਾਗ 2: ਪੈਟਰਨ
	ਪ੍ਰੌਮਪਟ ਇੰਜੀਨੀਅਰਿੰਗ
	ਵਿਚਾਰਾਂ ਦੀ ਲੜੀ
	ਮੋਡ ਸਵਿੱਚ
	ਭੂਮਿਕਾ ਨਿਰਧਾਰਨ
	ਪ੍ਰੌਮਪਟ ਔਬਜੈਕਟ
	Prompt Template
	ਸੰਰਚਿਤ ਇਨਪੁੱਟ-ਆਊਟਪੁੱਟ
	ਪ੍ਰੌਮਪਟ ਚੇਨਿੰਗ
	ਪ੍ਰੌਮਪਟ ਰੀਰਾਈਟਰ
	ਰਿਸਪਾਂਸ ਫੈਂਸਿੰਗ
	ਕਵੇਰੀ ਐਨਾਲਾਈਜ਼ਰ
	ਕੁਐਰੀ ਰੀਰਾਈਟਰ
	Ventriloquist

	ਵੱਖਰੇ ਭਾਗ
	ਪ੍ਰੈਡੀਕੇਟ
	ਏ.ਪੀ.ਆਈ. ਫਸਾਡ
	ਨਤੀਜਾ ਵਿਆਖਿਆਕਾਰ
	ਵਰਚੁਅਲ ਮਸ਼ੀਨ
	ਸਪੈਸੀਫਿਕੇਸ਼ਨ ਅਤੇ ਟੈਸਟਿੰਗ

	ਮਨੁੱਖੀ-ਸ਼ਮੂਲੀਅਤ ਪ੍ਰਣਾਲੀ (HITL)
	ਉੱਚ-ਪੱਧਰੀ ਪੈਟਰਨ
	ਵਧਾਅ
	ਫੀਡਬੈਕ ਲੂਪ
	ਨਿਸ਼ਕਰਿਆ ਜਾਣਕਾਰੀ ਵਿਕੀਰਨ
	ਸਹਿਯੋਗੀ ਫੈਸਲਾ ਲੈਣਾ (CDM)
	ਲਗਾਤਾਰ ਸਿੱਖਣਾ
	ਨੈਤਿਕ ਵਿਚਾਰ
	ਤਕਨੀਕੀ ਤਰੱਕੀ ਅਤੇ ਭਵਿੱਖ ਦਾ ਦ੍ਰਿਸ਼ਟੀਕੋਣ

	ਬੁੱਧੀਮਾਨ ਗਲਤੀ ਸੰਭਾਲ
	ਰਵਾਇਤੀ ਗਲਤੀ ਸੰਭਾਲ ਪਹੁੰਚਾਂ
	ਸੰਦਰਭਿਕ ਗਲਤੀ ਨਿਦਾਨ
	ਬੁੱਧੀਮਾਨ ਗਲਤੀ ਰਿਪੋਰਟਿੰਗ
	ਭਵਿੱਖ-ਸੂਚਕ ਗਲਤੀ ਰੋਕਥਾਮ
	ਸਮਾਰਟ ਗਲਤੀ ਰਿਕਵਰੀ
	ਨਿੱਜੀ ਗਲਤੀ ਸੰਚਾਰ
	ਅਨੁਕੂਲ ਗਲਤੀ ਨਿਪਟਾਰਾ ਵਰਕਫਲੋ

	ਗੁਣਵੱਤਾ ਨਿਯੰਤਰਣ
	ਈਵੈਲ
	ਸੁਰੱਖਿਆ ਉਪਾਅ
	ਸੁਰੱਖਿਆ ਰੇਲਾਂ ਅਤੇ ਮੁਲਾਂਕਣ: ਇੱਕੋ ਸਿੱਕੇ ਦੇ ਦੋ ਪਾਸੇ

	ਸ਼ਬਦਾਵਲੀ
	ਸ਼ਬਦਾਵਲੀ
	Index

