

Patronen voor Applicatieontwikkeling

met AI (Nederlandse Editie)

Obie Fernandez

Dit boek is te koop bij

http://leanpub.com/patterns-of-application-development-using-ai-nl

Deze versie is gepubliceerd op 2025-01-23

Dit is een Leanpub boek. Leanpub stelt auteurs en uitgevers in staat om volgens het

Lean uitgeefproces te werken. Lean Publishing is het uitgeven van een boek dat nog

onderhanden is met lichtgewicht gereedschap en vele iteraties om feedback te krijgen

van de lezers. Op deze manier kun je aanpassingen maken tot je het juiste boek hebt,

en als je zover bent helpt het om te zorgen dat je een positie krijgt in de markt.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-nl
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweet over dit boek!

Gelieve Obie Fernandez te helpen door reclame te maken over het boek Twitter!

De voorgestelde hashtag voor dit boek is #poaduai.

Lees wat andere mensen over het boek zeggen door op deze link te klikken en op

Twitter naar deze hashtag te zoeken:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Voor mijn geweldige koningin, mijn muze, mijn licht en liefde, Victoria

Ook door Obie Fernandez
Patterns of Application Development Using AI

The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Inhoudsopgave

Voorwoord door Gregor Hohpe . i

Voorwoord . ii

Over het Boek . iii

Over de Codevoorbeelden . iii

Wat Ik Niet Behandel . iii

Voor Wie Dit Boek Is . iii

Een Gemeenschappelijke Woordenschat Opbouwen iii

Betrokken Raken . iv

Dankwoord . iv

Wat is er met de illustraties? . iv

Over Lean Publishing . iv

Over de auteur . v

Introductie . 1

Gedachten over Softwarearchitectuur . 2

Wat is een Large Language Model? . 3

Inferentie Begrijpen . 5

Nadenken over Prestaties . 27

Experimenteren met Verschillende GTM-modellen 29

Samengestelde AI-systemen . 30

INHOUDSOPGAVE

Deel 1: Fundamentele Benaderingen &
Technieken . 38

Het Pad Vernauwen . 39

Latente Ruimte: Onbegrijpelijk Uitgestrekt . 41

Hoe Het Pad “Versmald” Wordt . 45

Onbewerkte versus Instructie-afgestemde Modellen 49

Prompt Engineering . 56

Promptdistillatie . 73

Hoe zit het met fine-tuning? . 79

Retrieval Augmented Generation (RAG) . 81

Wat is Retrieval Augmented Generation? . 81

Hoe werkt RAG? . 81

Waarom RAG gebruiken in je applicaties? . 81

RAG Implementeren in Je Toepassing . 81

Propositie-chunking . 82

Praktijkvoorbeelden van RAG . 83

Intelligent Query Optimization (IQO) . 83

Herordening . 83

RAG Assessment (RAGAs) . 83

Uitdagingen en Toekomstperspectief . 85

Veelheid aan Werkers . 88

AI-Werkers Als Onafhankelijke Herbruikbare Componenten 89

Accountbeheer . 91

E-commerce Toepassingen . 92

Toepassingen in de Gezondheidszorg . 101

AI Worker als Procesmanager . 104

AI-Workers Integreren in Uw Applicatiearchitectuur 108

INHOUDSOPGAVE

Samenstelbaarheid en Orchestratie van AI-Workers 111

Het Combineren van Traditionele NLP met LLMs 121

Gebruik van Tools . 124

Wat is Gebruik van Tools? . 124

De Potentie van Tool Gebruik . 126

Het Tool Gebruik Werkproces . 127

Best Practices voor Gereedschapsgebruik . 142

Samenstellen en Aaneenschakelen van Gereedschappen 147

Toekomstige Ontwikkelingen . 149

Streamverwerking . 151

Implementatie van een ReplyStream . 152

De “Conversatielus” . 158

Automatische Voortzetting . 161

Conclusie . 163

Zelfherstellende Data . 165

Praktijkvoorbeeld: Het Repareren van Beschadigde JSON 167

Overwegingen en Contra-indicaties . 173

Contextuele Contentgeneratie . 188

Personalisatie . 189

Productiviteit . 191

Snelle Iteratie en Experimentatie . 193

AI-Aangedreven Lokalisatie . 196

Het Belang van Gebruikerstests en Feedback 198

Generatieve UI . 199

Het Genereren van Kopij voor Gebruikersinterfaces 201

Definitie van Generatieve UI . 210

INHOUDSOPGAVE

Voorbeeld . 212

De Verschuiving naar Resultaatgericht Ontwerp 215

Uitdagingen en Overwegingen . 216

Toekomstperspectief en Kansen . 218

Intelligente Werkstroomorganisatie . 222

Zakelijke Behoefte . 223

Belangrijkste Voordelen . 224

Belangrijke Patronen . 224

Uitzonderingsafhandeling en Herstel . 227

Implementatie van Intelligente Workflow-orchestratie in de Praktijk 230

Monitoring en Logging . 245

Schaalbaarheid en Prestatieoverwegingen . 250

Testen en Validatie van Werkstromen . 254

Deel 2: De Patronen . 263

Prompt Engineering . 264

Chain of Thought . 265

Mode Switch . 267

Roltoewijzing . 268

Prompt Object . 269

Promptsjabloon . 270

Structured IO . 271

Prompt Chaining . 272

Prompt Rewriter . 273

Responsbegrenzing . 274

Query Analyzer . 275

Query Rewriter . 277

Ventriloquist . 278

INHOUDSOPGAVE

Discrete Componenten . 279

Predicaat . 280

API-façade . 281

Resultaatinterpreteerder . 284

Virtuele Machine . 285

Specificatie en Testen . 285

Human In The Loop (HITL) . 287

Patronen op Hoog Niveau . 287

Escalatie . 288

Feedbackloop . 289

Passieve Informatie-uitstraling . 290

Gezamenlijke Besluitvorming (CDM) . 292

Continue Learning . 293

Ethische Overwegingen . 293

Technologische Vooruitgang en Toekomstperspectief 294

Intelligente Foutafhandeling . 295

Traditionele Foutafhandelingsbenaderingen . 295

Contextuele Foutdiagnose . 296

Intelligente Foutrapportage . 297

Voorspellende Foutpreventie . 298

Slim Foutherstel . 298

Gepersonaliseerde Foutcommunicatie . 299

Adaptieve Foutafhandelingsworkflow . 300

Kwaliteitscontrole . 301

Eval . 302

Veiligheidsrail . 304

Guardrails en Evals: Twee Kanten van Dezelfde Medaille 305

Begrippenlijst . 306
Begrippenlijst . 306

Index . 312

Voorwoord door Gregor Hohpe
Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Voorwoord
Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Voorwoord iii

Over het Boek

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Over de Codevoorbeelden

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wat Ik Niet Behandel

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voor Wie Dit Boek Is

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Een Gemeenschappelijke Woordenschat

Opbouwen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Voorwoord iv

ai-nl.

Betrokken Raken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Dankwoord

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wat is er met de illustraties?

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Over Lean Publishing

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Voorwoord v

Over de auteur

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Introductie

Als je staat te popelen om AI Large Language Models (LLMs) in je

programmeerprojecten te integreren, kun je direct naar de patronen en codevoorbeelden

in de latere hoofdstukken gaan. Om de kracht en potentie van deze patronen echter

volledig te kunnen waarderen, is het de moeite waard om even stil te staan bij de

bredere context en de samenhangende aanpak die ze vertegenwoordigen.

De patronen zijn niet slechts een verzameling losse technieken, maar vormen een

uniform raamwerk voor het integreren van AI in je applicaties. Ik gebruik Ruby on

Rails, maar deze patronen zouden in vrijwel elke andere programmeeromgeving moeten

werken. Ze behandelen een breed scala aan aandachtspunten, van gegevensbeheer en

prestatie-optimalisatie tot gebruikerservaring en beveiliging, en bieden daarmee een

uitgebreide toolkit voor het verbeteren van traditionele programmeerpraktijken met de

mogelijkheden van AI.

Introductie 2

Elke categorie patronen pakt een specifieke uitdaging of kans aan die ontstaat bij het

integreren van AI-componenten in je applicatie. Door de relaties en synergiën tussen

deze patronen te begrijpen, kun je weloverwogen beslissingen nemen over waar en hoe

je AI het meest effectief kunt toepassen.

Patronen zijn nooit voorschrijvende oplossingen en moeten ook niet als zodanig worden

behandeld. Ze zijn bedoeld als aanpasbare bouwstenen die moeten worden afgestemd

op de unieke vereisten en beperkingen van je eigen specifieke applicatie. De succesvolle

toepassing van deze patronen (zoals alle andere in het softwarevakgebied) is afhankelijk

van een diepgaand begrip van het probleemdomein, gebruikersbehoeften en de algehele

technische architectuur van je project.

Gedachten over Softwarearchitectuur

Ik ben begonnenmet programmeren in de jaren ’80 en was betrokken bij de hackerscene,

en heb mijn hackersmentaliteit nooit verloren, zelfs niet nadat ik een professionele

softwareontwikkelaar werd. Vanaf het begin had ik altijd een gezonde scepsis over wat

softwarearchitecten in hun ivoren torens daadwerkelijk bijdroegen.

Een van de redenen waarom ik persoonlijk zo enthousiast ben over de veranderingen

die deze krachtige nieuwe golf van AI-technologie teweegbrengt, is de impact ervan

op wat we beschouwen als softwarearchitectuur beslissingen. Het daagt traditionele

opvattingen uit over wat de “juiste” manier is om onze softwareprojecten te ontwerpen

en implementeren. Het stelt ook ter discussie of architectuur nog steeds primair kan

worden gezien als de onderdelen van een systeem die moeilijk te veranderen zijn,

aangezien AI-verbetering het makkelijker dan ooit maakt om elk onderdeel van je

project op elk moment te wijzigen.

Misschien bevinden we ons in de piekjaren van de “postmoderne” benadering van

software-engineering. In deze context verwijst postmodern naar een fundamentele

verschuivingweg van traditionele paradigma’s, waarbij ontwikkelaars verantwoordelijk

Introductie 3

waren voor het schrijven en onderhouden van elke regel code. In plaats daarvan

omarmt het het idee om taken, zoals gegevensmanipulatie, complexe algoritmen en

zelfs hele delen van applicatielogica, te delegeren aan externe bibliotheken en API’s.

Deze postmoderne verschuiving vertegenwoordigt een significante afwijking van de

conventionele wijsheid om applicaties vanaf de basis op te bouwen, en het daagt

ontwikkelaars uit om hun rol in het ontwikkelingsproces te heroverwegen.

Ik heb altijd geloofd dat goede programmeurs alleen de code schrijven die absoluut

noodzakelijk is om te schrijven, gebaseerd op de leerstellingen van LarryWall en andere

hackerluminaries zoals hij. Door de hoeveelheid geschreven code te minimaliseren,

kunnen we sneller werken, het oppervlak voor bugs verkleinen, onderhoud

vereenvoudigen en de algehele betrouwbaarheid van hun applicaties verbeteren.

Minder code stelt ons in staat om ons te concentreren op de kernbedrijfslogica en

gebruikerservaring, terwijl ander werk wordt gedelegeerd aan andere diensten.

Nu AI-aangedreven systemen taken kunnen afhandelen die voorheen exclusief het

domein waren van door mensen geschreven code, zouden we nog productiever en

wendbaarder moeten kunnen zijn, met meer dan ooit tevoren focus op het creëren van

bedrijfswaarde en gebruikerservaring.

Natuurlijk zijn er afwegingen bij het delegeren van grote delen van je project aan

AI-systemen, zoals het potentiële verlies van controle en de behoefte aan robuuste

monitoring- en feedbackmechanismen. Daarom vereist het een nieuwe set vaardigheden

en kennis, waaronder op zijn minst enig fundamenteel begrip van hoe AI werkt.

Wat is een Large Language Model?

Large Language Models (LLMs) zijn een type kunstmatige intelligentie model dat sinds

de lancering van GPT-3 door OpenAI in 2020 aanzienlijke aandacht heeft gekregen.

LLMs zijn ontworpen om menselijke taal te verwerken, begrijpen en genereren met

opmerkelijke nauwkeurigheid en vloeiendheid. In deze sectie werpen we een korte blik

Introductie 4

op hoe LLMs werken en waarom ze zo geschikt zijn voor het bouwen van intelligente

systeemcomponenten.

In hun kern zijn LLMs gebaseerd op deep learning algoritmen, specifiek neurale

netwerken. Deze netwerken bestaan uit onderling verbonden knooppunten, of

neuronen, die informatie verwerken en doorgeven. De architectuur die vaak wordt

gekozen voor LLMs is het Transformer-model, dat zeer effectief is gebleken in het

verwerken van sequentiële data zoals tekst.

Transformermodellen zijn gebaseerd op het aandachtsmechanisme en worden

voornamelijk gebruikt voor taken met sequentiële data, zoals natuurlijke

taalverwerking. Transformers verwerken invoergegevens in één keer in plaats van

sequentieel, waardoor ze langetermijnafhankelijkheden effectiever kunnen vastleggen.

Ze hebben lagen van aandachtsmechanismen die het model helpen zich te concentreren

op verschillende delen van de invoergegevens om context en relaties te begrijpen.

Het trainingsproces voor LLMs bestaat uit het blootstellen van het model aan enorme

hoeveelheden tekstuele data, zoals boeken, artikelen, websites en code-repositories.

Tijdens de training leert het model patronen, relaties en structuren binnen de

tekst te herkennen. Het legt de statistische eigenschappen van de taal vast, zoals

grammaticaregels, woordassociaties en contextuele betekenissen.

Een van de belangrijkste technieken die worden gebruikt bij het trainen van LLMs is

ongesuperviseerd leren. Dit betekent dat het model leert van de data zonder expliciete

labels of begeleiding. Het ontdekt zelfstandig patronen en representaties door het

analyseren van het samen voorkomen van woorden en zinsdelen in de trainingsdata.

Dit stelt LLMs in staat om een diep begrip van taal en haar complexiteit te ontwikkelen.

Een ander belangrijk aspect van LLMs is hun vermogen om context te verwerken. Bij

het verwerken van een tekst kijken LLMs niet alleen naar de individuele woorden, maar

ook naar de omringende context. Ze houden rekening met de voorgaande woorden,

zinnen en zelfs paragrafen om de betekenis en intentie van de tekst te begrijpen. Dit

contextuele begrip stelt LLMs in staat om samenhangende en relevante antwoorden

Introductie 5

te genereren. Een van de belangrijkste manieren waarop we de capaciteiten van een

bepaald LLM-model evalueren, is door te kijken naar de grootte van de context die ze

kunnen overwegen bij het genereren van antwoorden.

Eenmaal getraind kunnen LLMs worden gebruikt voor een breed scala aan

taalgerelateerde taken. Ze kunnen mensachtige tekst genereren, vragen beantwoorden,

documenten samenvatten, talen vertalen en zelfs code schrijven. De veelzijdigheid van

LLMs maakt ze waardevol voor het bouwen van intelligente systeemcomponenten die

kunnen interacteren met gebruikers, tekstgegevens kunnen verwerken en analyseren,

en betekenisvolle output kunnen genereren.

Door LLMs in de applicatiearchitectuur te integreren, kun je AI-componenten creëren

die gebruikersinvoer begrijpen en verwerken, dynamische content genereren en

intelligente aanbevelingen of acties kunnen doen. Maar het werken met LLMs vereist

zorgvuldige overweging van resourcevereisten en prestatiecompromissen. LLMs zijn

rekenintensief en kunnen aanzienlijke verwerkingskracht en geheugen (met andere

woorden, geld) nodig hebben om te functioneren. De meesten van ons zullen de

kostenimplicaties van het integreren van LLMs in onze applicaties moeten beoordelen

en dienovereenkomstig handelen.

Inferentie Begrijpen

Inferentie verwijst naar het proces waarbij eenmodel voorspellingen of output genereert

op basis van nieuwe, niet eerder geziene data. Het is de fase waarin het getrainde model

wordt gebruikt om beslissingen te nemen of tekst, afbeeldingen of andere content te

genereren als reactie op gebruikersinvoer.

Tijdens de trainingsfase leert een AI-model van een grote dataset door zijn parameters

aan te passen om de fout in zijn voorspellingen te minimaliseren. Eenmaal getraind kan

het model wat het heeft geleerd toepassen op nieuwe data. Inferentie is hoe het model

zijn geleerde patronen en kennis gebruikt om output te genereren.

Introductie 6

Voor LLMs houdt inferentie in dat een prompt of invoertekst wordt omgezet in een

coherent en contextueel relevant antwoord, als een stroom van tokens (waar we het

binnenkort over zullen hebben). Dit kan het beantwoorden van een vraag zijn, het

afmaken van een zin, het genereren van een verhaal, of het vertalen van tekst, onder

vele andere taken.

In tegenstelling tot de manier waarop jij en ik denken, gebeurt het “denken”

van een AI-model via inferentie allemaal in één statusloze operatie. Dat wil

zeggen, zijn denken is beperkt tot zijn generatieproces. Het moet letterlijk

hardop denken, alsof ik je een vraag stelde en alleen een antwoord van je

accepteerde in “stream of consciousness”-stijl.

Grote Taalmodellen Komen in Vele Maten en Smaken

Hoewel vrijwel alle populaire grote taalmodellen (LLMs) gebaseerd zijn op dezelfde

kern-transformerarchitectuur en getraind zijn op enorme tekstdatasets, komen ze in

verschillende groottes en zijn ze fijnafgestemd voor verschillende doeleinden. De grootte

van een LLM, gemeten in het aantal parameters in zijn neuraal netwerk, heeft een grote

invloed op zijn mogelijkheden. Grotere modellen met meer parameters, zoals GPT-4,

waarvan wordt gezegd dat het 1 tot 2 biljoen parameters heeft, zijn over het algemeen

meer kundig en bekwaam dan kleinere modellen. Grotere modellen hebben echter ook

veel meer rekenkracht nodig om te draaien, wat zich vertaalt in hogere kosten wanneer

je ze via API-aanroepen gebruikt.

Om LLMs praktischer en meer toegespitst te maken op specifieke gebruikssituaties,

worden de basismodellen vaak fijnafgestemd op meer gerichte datasets. Zo kan een

LLM worden getraind op een groot corpus van dialogen om het te specialiseren

voor conversatie-AI. Andere worden getraind op code om ze te voorzien van

programmeerkennis. Er zijn zelfs modellen die speciaal getraind zijn voor roleplay-stijl

interacties met gebruikers!

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Introductie 7

Retrieval vs Generatieve Modellen

In de wereld van grote taalmodellen (LLMs) zijn er twee hoofdbenaderingen voor het

genereren van responses: op retrieval gebaseerde modellen en generatieve modellen.

Elke benadering heeft zijn eigen sterke en zwakke punten, en het begrijpen van de

verschillen tussen beide kan je helpen het juiste model te kiezen voor jouw specifieke

gebruikssituatie.

Op Retrieval Gebaseerde Modellen

Op retrieval gebaseerde modellen, ook bekend als informatie-ophalingsmodellen,

genereren antwoorden door te zoeken in een grote database van bestaande tekst en

de meest relevante passages te selecteren op basis van de invoerquery. Deze modellen

genereren geen nieuwe tekst vanaf nul, maar voegen in plaats daarvan fragmenten uit

de database samen om een samenhangend antwoord te vormen.

Een van de belangrijkste voordelen van op retrieval gebaseerde modellen is hun

vermogen om feitelijk accurate en actuele informatie te verstrekken. Omdat ze

vertrouwen op een database met gecureerde tekst, kunnen ze relevante informatie

uit betrouwbare bronnen halen en deze aan de gebruiker presenteren. Dit maakt ze

bijzonder geschikt voor toepassingen die precieze, feitelijke antwoorden vereisen, zoals

vraag-antwoordsystemen of kennisbanken.

Deze op retrieval gebaseerde modellen hebben echter ook beperkingen. Ze zijn

slechts zo goed als de database waarin ze zoeken, dus de kwaliteit en dekking van de

database hebben directe invloed op de prestaties van het model. Daarnaast kunnen

deze modellen moeite hebben met het genereren van samenhangende en natuurlijk

klinkende antwoorden, omdat ze beperkt zijn tot de tekst die beschikbaar is in de

database.

We behandelen het gebruik van pure retrievalmodellen niet in dit boek.

Introductie 8

Generatieve Modellen

Generatieve modellen daarentegen creëren nieuwe tekst vanaf nul, gebaseerd op de

patronen en relaties die ze tijdens de training hebben geleerd. Deze modellen gebruiken

hun begrip van taal om nieuwe antwoorden te genereren die zijn toegespitst op de

invoerprompt.

De belangrijkste kracht van generatieve modellen is hun vermogen om creatieve,

samenhangende en contextueel relevante tekst te produceren. Ze kunnen open

gesprekken voeren, verhalen genereren en zelfs code schrijven. Dit maakt ze ideaal

voor toepassingen die meer open en dynamische interacties vereisen, zoals chatbots,

contentcreatie en hulpmiddelen voor creatief schrijven.

Generatieve modellen kunnen echter soms inconsistente of feitelijk onjuiste informatie

produceren, omdat ze vertrouwen op de patronen die tijdens de training zijn geleerd

in plaats van een gecureerde database met feiten. Ze kunnen ook gevoeliger zijn voor

vooroordelen en hallucinaties, waarbij ze tekst genereren die aannemelijk lijkt maar niet

noodzakelijk waar is.

Voorbeelden van generatieve LLMs zijn OpenAI’s GPT-serie (GPT-3, GPT-4) en

Anthropic’s Claude.

Hybride Modellen

Verschillende commercieel beschikbare LLMs combineren zowel retrieval als

generatieve benaderingen in een hybride model. Deze modellen gebruiken

retrievaltechnieken om relevante informatie uit een database te vinden en gebruiken

vervolgens generatieve technieken om die informatie te synthetiseren tot een

samenhangend antwoord.

Hybride modellen streven ernaar de feitelijke nauwkeurigheid van op retrieval

gebaseerde modellen te combineren met de natuurlijke taalgeneratiecapaciteiten van

Introductie 9

generatieve modellen. Ze kunnen betrouwbaardere en actuelere informatie verstrekken

terwijl ze nog steeds in staat zijn om open gesprekken te voeren.

Bij het kiezen tussen op retrieval gebaseerde en generatieve modellen moet je rekening

houden met de specifieke vereisten van je toepassing. Als het hoofddoel is om accurate,

feitelijke informatie te verstrekken, kan een op retrieval gebaseerd model de beste

keuze zijn. Als de toepassing meer open en creatieve interacties vereist, kan een

generatief model geschikter zijn. Hybridemodellen bieden een evenwicht tussen de twee

benaderingen en kunnen een goede keuze zijn voor toepassingen die zowel feitelijke

nauwkeurigheid als natuurlijke taalgeneratie vereisen.

Uiteindelijk hangt de keuze tussen op retrieval gebaseerde en generatieve modellen af

van de specifieke gebruikssituatie en de afwegingen tussen nauwkeurigheid, creativiteit

en flexibiliteit. Door de sterke punten en beperkingen van elke benadering te begrijpen,

kun je weloverwogen beslissingen nemen.

Introductie 10

Instructie-fijnafstemming

Instructie-fijnafstemming is een onderdeel van conversationele training dat gebruik

maakt van door mensen geschreven prompts en antwoorden om LLMs beter te maken

in het begrijpen en opvolgen van instructies. Hier zijn enkele eenvoudige voorbeelden

om te illustreren hoe instructie-fijnafstemming op door mensen geschreven prompts

en antwoorden LLMs beter maakt in het begrijpen en opvolgen van instructies:

Voorbeeld 1: Klantenondersteuning

Instructie: “Geef een antwoord aan een klant die om een terugbetaling vraagt.”

Door Mensen Geschreven Prompt: “Ik wil graag een terugbetaling aanvragen voor

mijn recente aankoop. Het product voldeed niet aan mijn verwachtingen.”

Door Mensen Geschreven Antwoord: “Het spijt me te horen dat het product niet aan

uw verwachtingen voldeed. Om uw terugbetaling te verwerken, geef dan alstublieft

uw ordernummer en de reden voor retournering door.We zullen uw verzoek bekijken

en binnen 2-3 werkdagen contact met u opnemen.”

Voorbeeld 2: Educatieve Ondersteuning

Instructie: “Leg het concept van fotosynthese uit aan een 10-jarige.”

Doormensen geschreven prompt: “Kun je uitleggen hoe planten hun voedsel maken?”

Door mensen geschreven antwoord: “Natuurlijk! Planten maken hun voedsel door

een proces dat fotosynthese heet. Ze gebruiken zonlicht, water en koolstofdioxide om

voedsel en zuurstof temaken. De bladeren van de plant hebben een speciaal onderdeel

dat chlorofyl heet, dat hen helpt zonlicht op te vangen.”

Voorbeeld 3: Persoonlijke Assistent

Introductie 11

Instructie: “Plan een vergadering voor volgende dinsdag om 15:00 uur.”

Door mensen geschreven prompt: “Kun je een vergadering inplannen voor dinsdag

om 15:00 uur?”

Door mensen geschreven antwoord: “Natuurlijk, ik heb een vergadering voor je

ingepland voor volgende dinsdag om 15:00 uur. Is er nog iets anders wat je nodig

hebt?”

Het resultaat is een divers ecosysteem van LLM’s in verschillende groottes en met

verschillende specialiteiten. Kleinere modellen in het bereik van 1-7 miljard parameters

bieden goede algemene taalvaardigheden terwijl ze efficiënter zijn in gebruik.

• Mistral 7B

• Llama 3 8B

• Gemma 7B

Middelgrote modellen van ongeveer 30-70 miljard parameters bieden sterkere

redenerings- en instructievolgende vaardigheden.

• Llama 3 70B

• Qwen2 70B

• Mixtral 8x22B

Bij het kiezen van een LLM om in een applicatie te integreren, moet je de mogelijkheden

van het model afwegen tegen praktische factoren zoals kosten, latentie, contextlengte

en inhoudsfiltering. Kleinere, op instructies afgestemde modellen zijn vaak de beste

keuze voor eenvoudigere taaltaken, terwijl de grootste modellen nodig kunnen zijn voor

complexe redenering of analyse. De trainingsdata van het model is ook een belangrijke

overweging, aangezien deze de kennisafkapdatum van het model bepaalt.

Introductie 12

Bepaalde modellen, zoals sommige van Perplexity, zijn verbonden met

realtime informatiebronnen, zodat ze effectief geen afkapdatum hebben.

Wanneer je hen vragen stelt, kunnen ze zelfstandig beslissen om

webzoekopdrachten uit te voeren en willekeurige webpagina’s op te halen

om een antwoord te genereren.

Figuur 1. Llama3 met en zonder online toegang

Uiteindelijk is er geen één-size-fits-all LLM. Inzicht in de variaties in modelgrootte,

architectuur en training is essentieel voor het selecteren van het juiste model voor een

specifieke toepassing. Experimenterenmet verschillende modellen is de enige praktische

manier om te ontdekken welke de beste prestaties leveren voor de taak in kwestie.

Tokenisatie: Tekst in stukken verdelen

Voordat een groot taalmodel tekst kan verwerken, moet die tekst worden opgedeeld in

kleinere eenheden die tokens worden genoemd. Tokens kunnen individuele woorden,

delen van woorden of zelfs enkele tekens zijn. Het proces van het opsplitsen van tekst in

tokens wordt tokenisatie genoemd, en het is een cruciale stap in het voorbereiden van

data voor een taalmodel.

Introductie 13

Figuur 2. Deze zin bevat 27 tokens

Verschillende LLM’s gebruiken verschillende tokenisatiestrategieën, die een significante

impact kunnen hebben op de prestaties en mogelijkheden van het model. Enkele

veelgebruikte tokenizers voor LLM’s zijn:

• GPT (Byte Pair Encoding): GPT-tokenizers gebruiken een techniek die byte pair

encoding (BPE) wordt genoemd om tekst op te delen in subwoordeenheden. BPE

voegt iteratief de meest voorkomende paren bytes in een tekstcorpus samen,

waardoor een vocabulaire van subwoordtokens ontstaat. Dit stelt de tokenizer in

staat om zeldzame en nieuwe woorden te verwerken door ze op te delen in meer

voorkomende subwoorddelen. GPT-tokenizers worden gebruikt door modellen

zoals GPT-3 en GPT-4.

• Llama (SentencePiece): Llama-tokenizers gebruiken de SentencePiece-

bibliotheek, een ongesuperviseerde teksttokenizer en detokenizer. SentencePiece

behandelt de invoertekst als een reeks Unicode-tekens en leert een

deelwoordvocabulaire op basis van een trainingscorpus. Het kan elke taal

verwerken die in Unicode kan worden gecodeerd, waardoor het zeer geschikt

is voor meertalige modellen. Llama-tokenizers worden gebruikt door modellen

zoals Meta’s Llama en Alpaca.

• SentencePiece (Unigram): SentencePiece-tokenizers kunnen ook gebruik

maken van een ander algoritme genaamd Unigram, dat gebaseerd is

op een deelwoordregularisatietechniek. Unigram-tokenization bepaalt de

optimale deelwoordvocabulaire op basis van een unigram-taalmodel, dat

waarschijnlijkheden toekent aan individuele deelwoordeenheden. Deze aanpak

kan semantisch betekenisvollere deelwoorden produceren in vergelijking met

Introductie 14

BPE. SentencePiece met Unigram wordt gebruikt door modellen zoals Google’s

T5 en BERT.

• Google Gemini (Multimodale Tokenization): Google Gemini gebruikt een

tokenizatieschema dat is ontworpen om verschillende soorten gegevens te

verwerken, waaronder tekst, afbeeldingen, audio, video’s en code. Deze

multimodale capaciteit stelt Gemini in staat om verschillende vormen van

informatie te verwerken en te integreren. Met name Google Gemini 1.5 Pro heeft

een contextvenster dat miljoenen tokens kan verwerken, veel meer dan eerdere

modellen. Dit uitgebreide contextvenster stelt het model in staat om een grotere

context te verwerken, wat mogelijk tot nauwkeurigere antwoorden leidt. Het is

echter belangrijk op te merken dat Gemini’s tokenizatieschema veel dichter bij

één token per teken ligt dan andere modellen. Dit betekent dat de werkelijke

kosten van het gebruik van Gemini-modellen aanzienlijk hoger kunnen zijn dan

verwacht als je gewend bent aan het gebruik van modellen zoals GPT, aangezien

Google’s prijzen gebaseerd zijn op tekens in plaats van tokens.

De keuze van tokenizer beïnvloedt verschillende aspecten van een LLM, waaronder:

• Vocabulairegrootte: De tokenizer bepaalt de grootte van het vocabulaire van het

model, wat de verzameling unieke tokens is die het herkent. Een groter, meer

verfijnd vocabulaire kan het model helpen om een breder scala aan woorden en

zinnen te verwerken en zelfs multimodaal te worden (in staat om meer dan alleen

tekst te begrijpen en te genereren), maar het verhoogt ook de geheugenvereisten

en computationele complexiteit van het model.

• Omgang met zeldzame en onbekende woorden: Tokenizers die

deelwoordeenheden gebruiken, zoals BPE en SentencePiece, kunnen zeldzame

en onbekende woorden opsplitsen in meer voorkomende deelwoorden. Dit stelt

het model in staat om beredeneerde schattingen te maken over de betekenis

van woorden die het nog niet eerder heeft gezien, gebaseerd op de deelwoorden

waaruit ze bestaan.

Introductie 15

• Meertalige ondersteuning: Tokenizers zoals SentencePiece, die elke in Unicode

codeerbare taal kunnen verwerken, zijn zeer geschikt voor meertalige modellen

die tekst in verschillende talen moeten verwerken.

Bij het kiezen van een LLM voor een specifieke toepassing is het belangrijk om rekening

te houden met de gebruikte tokenizer en hoe goed deze aansluit bij de specifieke

taalverwerkingsbehoeften van de taak. De tokenizer kan een significante impact hebben

op het vermogen van het model om domeinspecifieke terminologie, zeldzame woorden

en meertalige tekst te verwerken.

Contextgrootte: Hoeveel Informatie Kan een Taalmodel
Gebruiken Tijdens Inferentie?

Bij het bespreken van taalmodellen verwijst contextgrootte naar de hoeveelheid tekst die

een model kan overwegen bij het verwerken of genereren van zijn antwoorden. Het is in

essentie een maat voor hoeveel informatie het model kan “onthouden” en gebruiken om

zijn output te informeren (uitgedrukt in tokens). De contextgrootte van een taalmodel

kan een significante impact hebben op zijn mogelijkheden en de soorten taken die het

effectief kan uitvoeren.

Wat is Contextgrootte?

In technische termen wordt de contextgrootte bepaald door het aantal tokens (woorden

of woorddelen) dat een taalmodel in één invoerreeks kan verwerken. Dit wordt vaak

aangeduid als de “aandachtsspanne” of het “contextvenster” van het model. Hoe groter

de contextgrootte, hoe meer tekst het model tegelijkertijd kan overwegen bij het

genereren van een antwoord of het uitvoeren van een taak.

Verschillende taalmodellen hebben uiteenlopende contextgroottes, variërend van enkele

honderden tokens tot miljoenen tokens. Ter referentie: een typische alinea tekst bevat

ongeveer 100-150 tokens, terwijl een heel boek tienduizenden of honderdduizenden

tokens kan bevatten.

Introductie 16

Er wordt zelfs gewerkt aan efficiënte methoden om Transformer-gebaseerde Large

Language Models (LLMs) te schalen naar oneindig lange invoer met begrensde

geheugen- en rekencapaciteit.

Waarom is Contextgrootte Belangrijk?

De contextgrootte van een taalmodel heeft een significante invloed op het vermogen

om coherente, contextueel relevante tekst te begrijpen en te genereren. Hier zijn enkele

belangrijke redenen waarom contextgrootte ertoe doet:

1. Begrip van langere content: Modellen met grotere contextgroottes

kunnen langere teksten, zoals artikelen, rapporten of zelfs complete

boeken, beter begrijpen en analyseren. Dit is cruciaal voor taken zoals

documentsamenvattingen, het beantwoorden van vragen en inhoudsanalyse.

2. Behoud van coherentie: Een groter contextvenster stelt het model in staat

om coherentie en consistentie te behouden over langere stukken output. Dit is

belangrijk voor taken zoals het genereren van verhalen, dialoogsystemen en het

creëren van content, waarbij het behouden van een consistente verhaallijn of

onderwerp essentieel is. Het is ook absoluut cruciaal bij het gebruik van LLMs

voor het genereren of transformeren van gestructureerde data.

3. Vastleggen van langeafstandsafhankelijkheden: Sommige taaltaken vereisen

begrip van relaties tussen woorden of zinsdelen die ver uit elkaar staan in

een tekst. Modellen met grotere contextgroottes zijn beter uitgerust om deze

langeafstandsafhankelijkheden vast te leggen, wat belangrijk kan zijn voor taken

zoals sentimentanalyse, vertaling, en taalbegrip.

4. Omgaan met complexe instructies: Bij toepassingen waar taalmodellen

worden gebruikt om complexe, meerstaps instructies te volgen, zorgt een grotere

https://huggingface.co/papers/2404.07143

Introductie 17

contextgrootte ervoor dat het model de volledige set instructies kan overwegen bij

het genereren van een antwoord, in plaats van alleen de meest recente woorden.

Voorbeelden van Taalmodellen met Verschillende Contextgroottes

Hier zijn enkele voorbeelden van taalmodellen met verschillende contextgroottes:

• OpenAI GPT-3.5 Turbo: 4.095 tokens

• Mistral 7B Instruct: 32.768 tokens

• Anthropic Claude v1: 100.000 tokens

• OpenAI GPT-4 Turbo: 128.000 tokens

• Anthropic Claude v2: 200.000 tokens

• Google Gemini Pro 1.5: 2,8M tokens

Zoals je kunt zien, is er een breed scala aan contextgroottes onder deze modellen, van

ongeveer 4.000 tokens voor het OpenAI GPT-3.5 Turbo model tot 200.000 tokens voor het

Anthropic Claude v2 model. Sommige modellen, zoals Google’s PaLM 2 en OpenAI’s

GPT-4, bieden verschillende varianten met grotere contextgroottes (bijvoorbeeld “32k”

versies), die nog langere inputreeksen kunnen verwerken. En op dit moment (april 2024)

pocht Google Gemini Pro met bijna 3 miljoen tokens!

Het is belangrijk op te merken dat de contextgrootte kan variëren afhankelijk van de

specifieke implementatie en versie van een bepaaldmodel. Zo heeft het originele OpenAI

GPT-4model een contextgrootte van 8.191 tokens, terwijl de latere GPT-4 varianten zoals

Turbo en 4o een veel grotere contextgrootte van 128.000 tokens hebben.

Sam Altman heeft de huidige contextbeperkingen vergeleken met de kilobytes aan

werkgeheugen waarmee personal computer programmeurs in de jaren 80 moesten

Introductie 18

werken, en zei dat we in de nabije toekomst “al je persoonlijke data” in de context

van een groot taalmodel zullen kunnen plaatsen.

De Juiste Contextgrootte Kiezen

Bij het selecteren van een taalmodel voor een specifieke toepassing is het belangrijk om

rekening te houden met de contextgrootte-vereisten van de betreffende taak. Voor taken

die korte, geïsoleerde tekstfragmenten betreffen, zoals sentimentanalyse of eenvoudige

vraagbeantwoording, kan een kleinere contextgrootte voldoende zijn. Voor taken die

echter begrip en generatie van langere, complexere teksten vereisen, zal een grotere

contextgrootte waarschijnlijk noodzakelijk zijn.

Het is belangrijk op te merken dat grotere contextgroottes vaak gepaard gaanmet hogere

rekenkosten en langzamere verwerkingstijden, omdat het model meer informatie moet

overwegen bij het genereren van een antwoord. Daarom moet je een balans vinden

tussen contextgrootte en prestaties bij het kiezen van een taalmodel voor je toepassing.

Waarom kiezen we niet gewoon het model met de grootste contextgrootte en

stoppen we er zoveel mogelijk informatie in? Nou, naast prestatiefactoren is de

andere belangrijke overweging de kosten. In maart 2024 kost een enkele prompt-

responscyclus met Google Gemini Pro 1.5 met een volledige context je bijna $8 (USD).

Als je een use case hebt die deze kosten rechtvaardigt, ga je gang!Maar voor demeeste

toepassingen is het gewoonweg orders van grootte te duur.

Introductie 19

Naalden Zoeken in Hooibergen

Het concept van een naald in een hooiberg zoeken is al lang een metafoor voor de

uitdagingen van informatiewinning in grote datasets. Op het gebied van LLMs passen

we deze analogie een beetje aan. Stel je voor dat we niet alleen op zoek zijn naar één feit

dat verborgen ligt in een uitgebreide tekst (zoals een volledige verzameling essays van

Paul Graham), maar naar meerdere feiten die overal verspreid liggen. Dit scenario lijkt

meer op het zoeken naar verschillende naalden in een uitgestrekt veld, niet slechts één

hooiberg. En hier komt het: we moeten deze naalden niet alleen vinden, maar ze ook tot

een samenhangend geheel weven.

Wanneer LLMs de taak krijgen ommeerdere feiten op te halen en daarover te redeneren

binnen lange contexten, staan ze voor een dubbele uitdaging. Ten eerste is er het voor

de hand liggende probleem van nauwkeurigheid bij het ophalen - die daalt natuurlijk

naarmate het aantal feiten toeneemt. Dit is te verwachten; immers, het bijhouden van

meerdere details in een uitgebreide tekst belast zelfs de meest geavanceerde modellen.

Ten tweede, en misschien wel belangrijker, is de uitdaging om met deze feiten te

redeneren. Het is één ding om feiten te selecteren; het is iets heel anders om ze

te synthetiseren tot een samenhangend verhaal of antwoord. Hier komt de echte

test. De prestaties van LLMs bij redeneertaken nemen sterker af dan bij eenvoudige

ophaalactiviteiten. Deze verslechtering gaat niet alleen over volume; het gaat om de

ingewikkelde dans van context, relevantie en gevolgtrekking.

Waarom gebeurt dit? Welnu, kijk naar de dynamiek van geheugen en aandacht in

menselijke cognitie, die tot op zekere hoogte wordt weerspiegeld in LLMs. Bij het

verwerken van grote hoeveelheden informatie kunnen LLMs, net als mensen, eerdere

details kwijtraken terwijl ze nieuwe opnemen. Dit geldt vooral voor modellen die niet

expliciet zijn ontworpen om automatisch prioriteit te geven aan of terug te keren naar

eerdere tekstsegmenten.

Bovendien is het vermogen van een LLM om deze opgehaalde feiten tot een

samenhangend antwoord te weven vergelijkbaar met verhaalopbouw. Dit vereist niet

Introductie 20

alleen het ophalen van informatie, maar ook een diep begrip en contextuele plaatsing,

wat een grote uitdaging blijft voor de huidige AI.

Dus, wat betekent dit voor ons als ontwikkelaars en integreerders van deze

technologieën? We moeten ons scherp bewust zijn van deze beperkingen bij het

ontwerpen van systemen die vertrouwen op LLMs voor complexe, langdurige taken.

Het begrip dat prestaties onder bepaalde omstandigheden kunnen verslechteren,

helpt ons realistische verwachtingen te stellen en betere terugvalmechanismen of

aanvullende strategieën te ontwikkelen.

Modaliteiten: Voorbij Tekst

Hoewel de meerderheid van de taalmodellen vandaag de dag gericht is op het verwerken

en genereren van tekst, is er een groeiende trend naar multimodale modellen die van

nature meerdere soorten gegevens kunnen invoeren en uitvoeren, zoals afbeeldingen,

audio en video. Deze multimodale modellen openen nieuwe mogelijkheden voor AI-

gestuurde toepassingen die inhoud over verschillende modaliteiten kunnen begrijpen

en genereren.

Wat zijn Modaliteiten?

In de context van taalmodellen verwijzen modaliteiten naar de verschillende soorten

gegevens die een model kan verwerken en genereren. De meest voorkomende modaliteit

is tekst, waaronder geschreven taal in verschillende vormen zoals boeken, artikelen,

websites en sociale media berichten. Er zijn echter verschillende andere modaliteiten

die in toenemende mate worden opgenomen in taalmodellen:

• Afbeeldingen: Visuele gegevens zoals foto’s, illustraties en diagrammen.

• Audio: Geluidsgegevens zoals spraak, muziek en omgevingsgeluiden.

• Video: Bewegende visuele gegevens, vaak vergezeld van audio, zoals videoclips

en films.

Introductie 21

Elke modaliteit brengt unieke uitdagingen en kansen met zich mee voor taalmodellen.

Afbeeldingen vereisen bijvoorbeeld dat het model visuele concepten en relaties begrijpt,

terwijl audio vereist dat het model spraak en andere geluiden verwerkt en genereert.

Multimodale Taalmodellen

Multimodale taalmodellen zijn ontworpen ommeerdere modaliteiten binnen één model

te verwerken. Deze modellen hebbenmeestal gespecialiseerde componenten of lagen die

zowel invoer kunnen begrijpen als uitvoergegevens kunnen genereren in verschillende

modaliteiten. Enkele opmerkelijke voorbeelden van multimodale taalmodellen zijn:

• OpenAI’s GPT-4o: GPT-4o is een groot taalmodel dat van nature spraak-audio

naast tekst begrijpt en verwerkt. Deze mogelijkheid stelt GPT-4o in staat om taken

uit te voeren zoals het transcriberen van gesproken taal, het genereren van tekst

uit audio-invoer en het geven van antwoorden op basis van gesproken vragen.

• OpenAI’s GPT-4 met visuele invoer: GPT-4 is een groot taalmodel dat zowel

tekst als afbeeldingen kan verwerken. Wanneer een afbeelding als invoer wordt

gegeven, kan GPT-4 de inhoud van de afbeelding analyseren en tekst genereren

die de visuele informatie beschrijft of daarop reageert.

• Google’s Gemini: Gemini is een multimodaal model dat tekst, afbeeldingen en

video kan verwerken. Het gebruikt een uniforme architectuur die cross-modale

begrip en generatie mogelijk maakt, waardoor taken zoals beeldonderschriften

genereren, video samenvatten en visuele vraagbeantwoording mogelijk worden.

• DALL-E en Stable Diffusion: Hoewel dit geen taalmodellen in de traditionele

zin zijn, demonstreren deze modellen de kracht van multimodale AI door

afbeeldingen te genereren uit tekstuele beschrijvingen. Ze tonen het potentieel

van modellen die kunnen vertalen tussen verschillende modaliteiten.

Introductie 22

Voordelen en Toepassingen van Multimodale Modellen

Multimodale taalmodellen bieden verschillende voordelen enmaken een breed scala aan

toepassingen mogelijk, waaronder:

• Verbeterd begrip: Door informatie uit meerdere modaliteiten te verwerken,

kunnen deze modellen een uitgebreider begrip van de wereld krijgen,

vergelijkbaar met hoe mensen leren van verschillende zintuiglijke inputs.

• Crossmodale generatie:Multimodale modellen kunnen inhoud in één modaliteit

genereren op basis van input uit een andere modaliteit, zoals het creëren van een

afbeelding uit een tekstbeschrijving of het genereren van een videosamenvatting

uit een geschreven artikel.

• Toegankelijkheid: Multimodale modellen kunnen informatie toegankelijker

maken door te vertalen tussen modaliteiten, zoals het genereren van

tekstbeschrijvingen van afbeeldingen voor visueel beperkte gebruikers of

het maken van audioversies van geschreven content.

• Creatieve toepassingen: Multimodale modellen kunnen worden gebruikt

voor creatieve taken zoals het genereren van kunst, muziek of video’s op basis

van tekstuele prompts, wat nieuwe mogelijkheden opent voor kunstenaars en

contentmakers.

Naarmate multimodale taalmodellen zich blijven ontwikkelen, zullen ze waarschijnlijk

een steeds belangrijkere rol spelen in de ontwikkeling van AI-gestuurde toepassingen

die inhoud over meerdere modaliteiten kunnen begrijpen en genereren. Dit zal leiden

tot natuurlijkere en intuïtievere interacties tussen mensen en AI-systemen, en nieuwe

mogelijkheden ontsluiten voor creatieve expressie en kennisverspreiding.

Provider-ecosystemen

Als het gaat om het integreren van grote taalmodellen (LLMs) in applicaties, is er

een groeiend aantal opties om uit te kiezen. Elke grote LLM-provider, zoals OpenAI,

Introductie 23

Anthropic, Google en Cohere, biedt zijn eigen ecosysteem van modellen, API’s en

tools. Bij het kiezen van de juiste provider moet rekening worden gehouden met

verschillende factoren, waaronder prijzen, prestaties, inhoudsfiltering, gegevensprivacy

en aanpassingsmogelijkheden.

OpenAI

OpenAI is een van de meest bekende providers van LLMs, waarbij de GPT-serie

(GPT-3, GPT-4) breed wordt toegepast in verschillende applicaties. OpenAI biedt

een gebruiksvriendelijke API waarmee je hun modellen eenvoudig kunt integreren

in applicaties. Ze bieden een reeks modellen met verschillende mogelijkheden en

prijspunten, van het instapmodel Ada tot het krachtige Davinci-model.

Het ecosysteem van OpenAI omvat ook tools zoals de OpenAI Playground, waarmee

je kunt experimenteren met prompts en modellen kunt fijnafstemmen voor specifieke

gebruikssituaties. Ze bieden inhoudsfilteringsopties om de generatie van ongepaste of

schadelijke inhoud te voorkomen.

Bij het direct gebruiken van OpenAI’s modellen vertrouw ik op Alex Rudall’s ruby-

openai bibliotheek.

Anthropic

Anthropic is een andere belangrijke speler in de LLM-ruimte, waarbij hun Claude-

modellen aan populariteit winnen vanwege sterke prestaties en ethische overwegingen.

Anthropic richt zich op het ontwikkelen van veilige en verantwoorde AI-systemen, met

sterke nadruk op inhoudsfiltering en het vermijden van schadelijke outputs.

Het ecosysteem van Anthropic omvat de Claude API, waarmee je het model kunt

integreren in hun applicaties, evenals tools voor promptengineering en fijnafstemming.

Ze bieden ook het Claude Instant-model, dat websearchmogelijkheden integreert voor

meer actuele en feitelijke antwoorden.

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/ruby-openai

Introductie 24

Bij het direct gebruiken van Anthropic’s modellen vertrouw ik op Alex Rudall’s

anthrophic bibliotheek.

Google

Google heeft verschillende krachtige LLMs ontwikkeld, waaronder Gemini, BERT, T5

en PaLM. Deze modellen staan bekend om hun sterke prestaties op een breed scala aan

natuurlijke taalverwerkingstaken. Het ecosysteem van Google omvat de TensorFlow-

en Keras-bibliotheken, die tools en frameworks bieden voor het bouwen en trainen van

machine learning-modellen.

Google biedt ook een Cloud AI-platform, waarmee je hun modellen eenvoudig kunt

implementeren en schalen in de cloud. Ze bieden een reeks voorgetrainde modellen en

API’s voor taken zoals sentimentanalyse, entiteitsherkenning en vertaling.

Meta

Meta, voorheen bekend als Facebook, is diep geïnvesteerd in de ontwikkeling van grote

taalmodellen, wat wordt benadrukt door de release van modellen zoals LLaMA en OPT.

Deze modellen onderscheiden zich door hun sterke prestaties in diverse taaltaken en

worden grotendeels beschikbaar gesteld via open-source kanalen, watMeta’s toewijding

aan onderzoek en gemeenschapssamenwerking ondersteunt.

Het ecosysteem van Meta is voornamelijk gebouwd rond PyTorch, een open-

source machine learning-bibliotheek die wordt gewaardeerd om zijn dynamische

rekenmogelijkheden en flexibiliteit, wat innovatief AI-onderzoek en -ontwikkeling

faciliteert.

Naast hun technische aanbod legt Meta sterk de nadruk op ethische AI-ontwikkeling.

Ze implementeren robuuste inhoudsfiltering en richten zich op het verminderen

van vooroordelen, in lijn met hun bredere doelstellingen van veiligheid en

verantwoordelijkheid in AI-toepassingen.

https://github.com/alexrudall/anthropic

Introductie 25

Cohere

Cohere is een nieuwere speler in de LLM-ruimte, die zich richt op het toegankelijker en

gebruiksvriendelijker maken van LLM’s dan concurrenten. Hun ecosysteem omvat de

Cohere API, die toegang biedt tot een reeks vooraf getrainde modellen voor taken zoals

tekstgeneratie, classificatie en samenvatting.

Cohere biedt ook tools voor prompt engineering, fine-tuning en inhoudsfiltering. Ze

leggen de nadruk op gegevensprivacy en beveiliging, met functies zoals versleutelde

gegevensopslag en toegangscontrole.

Ollama

Ollama is een zelf-gehost platformwaarmee gebruikers verschillende grote taalmodellen

(LLM’s) lokaal op hun machines kunnen beheren en implementeren, waardoor ze

volledige controle hebben over hun AI-modellen zonder afhankelijk te zijn van

externe clouddiensten. Deze opstelling is ideaal voor degenen die prioriteit geven aan

gegevensprivacy en hun AI-operaties intern willen afhandelen.

Het platform ondersteunt een reeks modellen, waaronder versies van Llama, Phi,

Gemma en Mistral, die verschillen in grootte en rekenvereisten. Ollama maakt het

eenvoudig om deze modellen direct vanaf de opdrachtregel te downloaden en uit

te voeren met eenvoudige commando’s zoals ollama run <model_name>, en het

is ontworpen om te werken op verschillende besturingssystemen, waaronder macOS,

Linux en Windows.

Voor ontwikkelaars die open-source modellen in hun applicaties willen integreren

zonder gebruik te maken van een externe API, biedt Ollama een CLI voor het beheren

van modellevenscycli, vergelijkbaar met containerbeheertools. Het ondersteunt ook

aangepaste configuraties en prompts, waardoor een hoge mate van aanpassing mogelijk

is om de modellen af te stemmen op specifieke behoeften of gebruikssituaties.

Ollama is vooral geschikt voor technisch onderlegde gebruikers en ontwikkelaars

Introductie 26

vanwege de opdrachtregelinterface en de flexibiliteit die het biedt bij het beheren en

implementeren van AI-modellen. Dit maakt het een krachtig hulpmiddel voor bedrijven

en individuen die robuuste AI-mogelijkheden nodig hebben zonder concessies te doen

aan beveiliging en controle.

Multi-Model Platforms

Daarnaast zijn er aanbieders die een breed scala aan open-source modellen hosten, zoals

Together.ai en Groq. Deze platforms bieden flexibiliteit en aanpassingsmogelijkheden,

waardoor je open-source modellen kunt draaien en in sommige gevallen zelfs kunt

fine-tunen volgens jouw specifieke behoeften. Together.ai biedt bijvoorbeeld toegang

tot een reeks open-source LLM’s, waardoor gebruikers kunnen experimenteren

met verschillende modellen en configuraties. Groq richt zich op het leveren van

ultrahoogwaardige voltooiing die op het moment van schrijven van dit boek bijna

magisch lijkt

Een LLM Provider Kiezen

Bij het kiezen van een LLM-provider moet je rekening houden met factoren zoals:

• Prijzen: Verschillende providers bieden verschillende prijsmodellen, variërend

van betalen naar gebruik tot abonnementsgebaseerde plannen. Het is belangrijk

om rekening te houden met het verwachte gebruik en budget bij het selecteren

van een provider.

• Prestaties: De prestaties van LLM’s kunnen aanzienlijk verschillen tussen

providers, dus het is belangrijk om modellen te benchmarken en te testen op

specifieke gebruikssituaties voordat er een beslissing wordt genomen.

• Inhoudsfiltering:Afhankelijk van de toepassing kan inhoudsfiltering een cruciale

overweging zijn. Sommige providers bieden robuustere inhoudsfilteringsopties

dan andere.

Introductie 27

• Gegevensprivacy: Als de toepassing gevoelige gebruikersgegevens verwerkt, is

het belangrijk om een provider te kiezen met sterke praktijken op het gebied van

gegevensprivacy en beveiliging.

• Aanpassing: Sommige providers bieden meer flexibiliteit wat betreft fine-tuning

en het aanpassen van modellen voor specifieke gebruikssituaties.

Uiteindelijk hangt de keuze van LLM-provider af van de specifieke vereisten en

beperkingen van de toepassing. Door zorgvuldig de opties te evalueren en rekening te

houden met factoren zoals prijzen, prestaties en gegevensprivacy, kun je de provider

selecteren die het beste aan je behoeften voldoet.

Het is ook vermeldenswaardig dat het LLM-landschap constant evolueert, met

regelmatig nieuwe providers en modellen die verschijnen. Je moet op de hoogte blijven

van de laatste ontwikkelingen en openstaan voor het verkennen van nieuwe opties

wanneer deze beschikbaar komen.

OpenRouter

In dit boek zal ik uitsluitend gebruik maken van OpenRouter als mijn API-provider

van keuze. De reden is eenvoudig: het is een one-stop shop voor alle meest populaire

commerciële en open-sourcemodellen. Als je staat te popelen om aan de slag te gaanmet

AI-programmeren, is een van de beste plekken om te beginnen mijn eigen OpenRouter

Ruby Library.

Nadenken over Prestaties

Bij het integreren van taalmodellen in applicaties is prestatie een cruciale overweging.

De prestatie van een taalmodel kan worden gemeten in termen van latentie (de tijd

die nodig is om een reactie te genereren) en doorvoer (het aantal verzoeken dat per

tijdseenheid kan worden verwerkt).

https://openrouter.ai
https://github.com/OlympiaAI/open_router
https://github.com/OlympiaAI/open_router

Introductie 28

Tijd tot Eerste Token (TTET) is nog een essentiële prestatiemeting, die vooral

relevant is voor chatbots en applicaties die interactieve, realtime reacties vereisen.

TTET meet de latentie vanaf het moment dat het verzoek van een gebruiker wordt

ontvangen tot het moment dat het eerste woord (of token) van het antwoord wordt

gegenereerd. Deze meting is cruciaal voor het behouden van een soepele en boeiende

gebruikerservaring, aangezien vertraagde reacties kunnen leiden tot frustratie en

verminderde betrokkenheid van gebruikers.

Deze prestatiemetingen kunnen een significante impact hebben op de

gebruikerservaring en de schaalbaarheid van de applicatie.

Verschillende factoren kunnen de prestaties van een taalmodel beïnvloeden, waaronder:

Parameteraantal: Grotere modellen met meer parameters hebben doorgaans meer

computationele middelen nodig en kunnen een hogere latentie en lagere doorvoer

hebben in vergelijking met kleinere modellen.

Hardware: De prestaties van een taalmodel kunnen aanzienlijk variëren afhankelijk

van de hardware waarop het draait. Cloudproviders bieden GPU- en TPU-instances

aan die geoptimaliseerd zijn voor machine learning-workloads, wat de modelinferentie

aanzienlijk kan versnellen.

Een van de fijne dingen aan OpenRouter is dat je voor veel van de

aangeboden modellen kunt kiezen uit verschillende cloudproviders met

uiteenlopende prestatieprofielen en kosten.

Kwantisatie: Kwantisatietechnieken kunnen worden gebruikt om de

geheugenvoetafdruk en computationele vereisten van een model te verminderen

door gewichten en activaties met lagere precisie datatypen weer te geven. Dit kan de

prestaties verbeteren zonder significant kwaliteitsverlies. Als applicatieontwikkelaar

zul je waarschijnlijk niet betrokken zijn bij het trainen van je eigen modellen op

verschillende kwantisatieniveaus, maar het is goed om ten minste bekend te zijn met

de terminologie.

Introductie 29

Batchverwerking: Het gelijktijdig verwerken van meerdere verzoeken in batches

kan de doorvoer verbeteren door de overhead van het laden van modellen en

gegevensoverdracht te spreiden.

Caching: Het cachen van resultaten van veelgebruikte prompts of invoersequenties kan

het aantal inferentieverzoeken verminderen en de algehele prestaties verbeteren.

Bij het selecteren van een taalmodel voor een productieapplicatie is het belangrijk om

de prestaties te benchmarken op representatieve workloads en hardwareconfiguraties.

Dit kan helpen bij het identificeren van potentiële knelpunten en zorgen dat het model

aan de vereiste prestatiedoelen kan voldoen.

Het is ook demoeite waard om de afwegingen tussenmodelprestaties en andere factoren

zoals kosten, flexibiliteit en integratiegemak te overwegen. Bijvoorbeeld, het gebruik

van een kleiner, goedkoper model met lagere latentie kan de voorkeur hebben voor

applicaties die realtime reacties vereisen, terwijl een groter, krachtiger model beter

geschikt kan zijn voor batchverwerking of complexe redeneertaken.

Experimenteren met Verschillende

GTM-modellen

Het kiezen van een GTM is zelden een permanente beslissing. Aangezien er regelmatig

nieuwe en verbeterde modellen worden uitgebracht, is het goed om applicaties op

een modulaire manier te bouwen die het mogelijk maakt om in de loop van de tijd

verschillende taalmodellen uit te wisselen. Prompts en datasets kunnen vaak met

minimale aanpassingen worden hergebruikt tussen modellen. Dit stelt je in staat om

te profiteren van de nieuwste ontwikkelingen in taalmodellering zonder de applicaties

volledig te hoeven herontwerpen.

De mogelijkheid om eenvoudig tussen een breed scala aan modelkeuzes te

wisselen is nog een reden waarom ik dol ben op OpenRouter.

Introductie 30

Bij het upgraden naar een nieuw taalmodel is het belangrijk om de prestaties en

outputkwaliteit grondig te testen en te valideren om er zeker van te zijn dat het aan de

vereisten van de applicatie voldoet. Dit kan het hertrainen of fine-tunen van het model

op domeinspecifieke data omvatten, evenals het updaten van downstream componenten

die afhankelijk zijn van de outputs van het model.

Door applicaties te ontwerpen met prestaties en modulariteit in gedachten, kun

je schaalbare, efficiënte en toekomstbestendige systemen creëren die zich kunnen

aanpassen aan het snel ontwikkelende landschap van taalmodeltechnologie.

Samengestelde AI-systemen

Voordat we onze introductie afsluiten, is het vermeldenswaardig dat vóór 2023 en de

explosie van interesse in generatieve AI, aangewakkerd door ChatGPT, traditionele

AI-benaderingen meestal vertrouwden op de integratie van enkele, gesloten modellen.

Daarentegen maken Samengestelde AI-systemen gebruik van complexe pijplijnen van

onderling verbonden componenten die samenwerken om intelligent gedrag te bereiken.

In de kern bestaan samengestelde AI-systemen uit meerdere modules, elk ontworpen

om specifieke taken of functies uit te voeren. Deze modules kunnen generators,

retrievers, rankers, classificatiesystemen en verschillende andere gespecialiseerde

componenten bevatten. Door het algehele systeem op te delen in kleinere, gerichte

eenheden kunnen ontwikkelaars flexibelere, schaalbaarder en beter onderhoudbare

AI-architecturen creëren.

Een van de belangrijkste voordelen van samengestelde AI-systemen is hun

vermogen om de sterke punten van verschillende AI-technieken en modellen te

combineren. Een systeem kan bijvoorbeeld een groot taalmodel (LLM) gebruiken

voor natuurlijke taalverwerking en -generatie, terwijl het een apart model inzet voor

informatieopvraging of regelgebaseerde besluitvorming. Deze modulaire aanpak stelt je

in staat om de beste hulpmiddelen en technieken voor elke specifieke taak te selecteren,

in plaats van te vertrouwen op een one-size-fits-all oplossing.

Introductie 31

Het bouwen van samengestelde AI-systemen brengt echter ook unieke uitdagingen met

zich mee. Met name het waarborgen van de algehele samenhang en consistentie van het

systeemgedrag vereist robuuste test-, monitoring- en besturingsmechanismen.

De komst van krachtige LLM’s zoals GPT-4 stelt ons in staat gemakkelijker

dan ooit te experimenteren met samengestelde AI-systemen, omdat

deze geavanceerde modellen in staat zijn meerdere rollen binnen een

samengesteld systeem te vervullen, zoals classificatie, rangschikking

en generatie, naast hun natuurlijke taalverwerkingscapaciteiten. Deze

veelzijdigheid stelt ontwikkelaars in staat om snel prototypes te maken

en te itereren op samengestelde AI-architecturen, waardoor nieuwe

mogelijkheden ontstaan voor de ontwikkeling van intelligente toepassingen.

Implementatiepatronen voor Samengestelde
AI-systemen

Samengestelde AI-systemen kunnen worden geïmplementeerd met verschillende

patronen, elk ontworpen om aan specifieke vereisten en gebruiksscenario’s te

voldoen. Laten we vier veel voorkomende implementatiepatronen verkennen: Vraag

en Antwoord, Multi-Agent/Agentische Probleemoplossers, Conversationele AI, en

CoPilots.

Vraag en Antwoord

Vraag en Antwoord (V&A) systemen richten zich op het leveren van

informatieopvraging die wordt versterkt met de begripscapaciteiten van AI-modellen

om meer te functioneren dan alleen als zoekmachine. Door krachtige taalmodellen

te combineren met externe kennisbronnen met behulp van Retrieval-Augmented

Generation (RAG), vermijden Vraag en Antwoord systemen hallucinaties en geven ze

nauwkeurige en contextueel relevante antwoorden op gebruikersvragen.

De belangrijkste componenten van een LLM-gebaseerd V&A-systeem zijn:

Introductie 32

• Query-begrip en -herformulering:Het analyseren van gebruikersvragen en deze

herformuleren om beter aan te sluiten bij de onderliggende kennisbronnen.

• Kennisopvraging: Het ophalen van relevante informatie uit gestructureerde of

ongestructureerde gegevensbronnen op basis van de geherformuleerde query.

• Antwoordgeneratie: Het genereren van samenhangende en informatieve

antwoorden door de opgehaalde kennis te integreren met de generatieve

mogelijkheden van het taalmodel.

RAG-subsystemen zijn vooral belangrijk in V&A-domeinen waar het verstrekken

van nauwkeurige en actuele informatie cruciaal is, zoals klantenondersteuning,

kennisbeheer, of educatieve toepassingen.

Multi-Agent/Agentische Probleemoplossers

Multi-agent, ook bekend als Agentische, systemen bestaan uit meerdere autonome

agenten die samenwerken om complexe problemen op te lossen. Elke agent heeft

een specifieke rol, set vaardigheden en toegang tot relevante hulpmiddelen of

informatiebronnen. Door samen te werken en informatie uit te wisselen, kunnen deze

agenten taken aanpakken die voor één enkele agent moeilijk of onmogelijk te hanteren

zouden zijn.

De belangrijkste principes van multi-agent probleemoplossers zijn:

• Specialisatie: Elke agent richt zich op een specifiek aspect van het probleem,

gebruikmakend van zijn unieke capaciteiten en kennis.

• Samenwerking: Agenten communiceren en coördineren hun acties om een

gemeenschappelijk doel te bereiken, vaak door middel van het doorgeven van

berichten of gedeeld geheugen.

• Aanpasbaarheid: Het systeem kan zich aanpassen aan veranderende

omstandigheden of vereisten door de rollen en gedragingen van individuele

agenten aan te passen.

Introductie 33

Multi-agent systemen zijn zeer geschikt voor toepassingen die gedistribueerde

probleemoplossing vereisen, zoals supply chain optimalisatie, verkeersbeheer, of

planning van noodhulp.

Conversationele AI

Conversationele AI-systemen maken natuurlijke taalinteracties mogelijk tussen

gebruikers en intelligente agenten. Deze systemen combineren natuurlijke

taalverwerking, dialoogbeheer en taalgeneratiecapaciteiten om boeiende en

gepersonaliseerde gesprekservaringen te bieden.

De belangrijkste componenten van een conversationeel AI-systeem zijn:

• Intentieherkenning: Het identificeren van de intentie van de gebruiker op basis

van hun input, zoals het stellen van een vraag, het doen van een verzoek of het

uiten van een sentiment.

• Entiteitsextractie: Het extraheren van relevante entiteiten of parameters uit de

input van de gebruiker, zoals datums, locaties of productnamen.

• Dialoogbeheer: Het bijhouden van de staat van het gesprek, het bepalen van

het juiste antwoord op basis van de intentie en context van de gebruiker, en het

afhandelen van meerstaps-interacties.

• Antwoordgeneratie: Het genereren van mensachtige antwoorden met behulp

van taalmodellen, sjablonen of op opvraging gebaseerde methoden.

Conversationele AI-systemen worden veel gebruikt in klantenservice chatbots, virtuele

assistenten, en spraakgestuurde interfaces. Zoals eerder vermeld, zijn de meeste

benaderingen, patronen en codevoorbeelden in dit boek direct afkomstig uit mijn werk

aan een groot conversationeel AI-systeem genaamd Olympia.

CoPilots

CoPilots zijn AI-aangedreven assistenten die samenwerken met menselijke gebruikers

om hun productiviteit en besluitvorming te verbeteren. Deze systemen maken

https://olympia.chat

Introductie 34

gebruik van een combinatie van natuurlijke taalverwerking, machine learning en

domeinspecifieke kennis om intelligente aanbevelingen te doen, taken te automatiseren

en contextuele ondersteuning te bieden.

Belangrijke kenmerken van CoPilots zijn:

• Personalisatie: Aanpassing aan individuele gebruikersvoorkeuren, werkstromen

en communicatiestijlen.

• Proactieve assistentie: Anticiperen op gebruikersbehoeften en relevante

suggesties of acties aanbieden zonder expliciete opdrachten.

• Continue ontwikkeling: Prestatieverbetering door te leren van

gebruikersfeedback, interacties en gegevens.

CoPilots worden in toenemende mate gebruikt in verschillende domeinen, zoals

softwareontwikkeling (bijvoorbeeld codecompletering en foutdetectie), creatief

schrijven (bijvoorbeeld contentvoorstellen en bewerking), en data-analyse (bijvoorbeeld

inzichten en visualisatie-aanbevelingen)

Deze implementatiepatronen tonen de veelzijdigheid en het potentieel van

samengestelde AI-systemen aan. Door de kenmerken en gebruikssituaties van elk

patroon te begrijpen, kunt u weloverwogen beslissingen nemen bij het ontwerpen

en implementeren van intelligente applicaties. Hoewel dit boek niet specifiek gaat

over de implementatie van samengestelde AI-systemen, zijn veel, zo niet alle, van

dezelfde benaderingen en patronen van toepassing op het integreren van afzonderlijke

AI-componenten binnen verder traditionele applicatieontwikkeling.

Rollen in Samengestelde AI-systemen

Samengestelde AI-systemen zijn gebouwd op een fundament van onderling verbonden

modules, elk ontworpen om een specifieke rol te vervullen. Deze modules werken samen

om intelligent gedrag te creëren en complexe problemen op te lossen. Het is nuttig om

bekend te zijn met deze rollen wanneer u nadenkt over waar u mogelijk delen van uw

applicatie kunt implementeren of vervangen door afzonderlijke AI-componenten.

Introductie 35

Generator

Generators zijn verantwoordelijk voor het produceren van nieuwe gegevens of content

op basis van geleerde patronen of inputprompts. De AI-wereld kent vele verschillende

soorten generators, maar in de context van de taalmodellen die in dit boek worden

getoond, kunnen generators mensachtige tekst creëren, onvolledige zinnen aanvullen

of antwoorden genereren op gebruikersvragen. Ze spelen een cruciale rol bij taken zoals

contentcreatie, dialooggeneratie en data-augmentatie.

Retriever

Retrievers worden gebruikt om relevante informatie te zoeken en te extraheren uit

grote datasets of kennisbanken. Ze gebruiken technieken zoals semantisch zoeken,

trefwoordovereenkomst of vectorgelijkenis om de meest relevante datapunten te vinden

op basis van een gegeven zoekopdracht of context. Retrievers zijn essentieel voor taken

die snelle toegang tot specifieke informatie vereisen, zoals het beantwoorden van vragen,

feitencontrole of contentaanbevelingen.

Ranker

Rankers zijn verantwoordelijk voor het ordenen of prioriteren van een reeks items

op basis van bepaalde criteria of relevantiescores. Ze kennen gewichten of scores toe

aan elk item en sorteren ze dienovereenkomstig. Rankers worden vaak gebruikt in

zoekmachines, aanbevelingssystemen of elke applicatie waarbij het presenteren van de

meest relevante resultaten aan gebruikers cruciaal is.

Classifier

Classifiers worden gebruikt om datapunten te categoriseren of te labelen op basis van

voorgedefinieerde klassen of categorieën. Ze leren van gelabelde trainingsgegevens en

voorspellen vervolgens de klasse van nieuwe, onbekende instanties. Classifiers zijn

Introductie 36

fundamenteel voor taken zoals sentimentanalyse, spamdetectie of beeldherkenning,

waarbij het doel is om een specifieke categorie toe te wijzen aan elke input.

Tools & Agents

Naast deze kernrollen integreren samengestelde AI-systemen vaak tools en agents om

hun functionaliteit en aanpassingsvermogen te verbeteren:

• Tools: Tools zijn afzonderlijke softwarecomponenten of API’s die specifieke

acties of berekeningen uitvoeren. Ze kunnen worden aangeroepen door

andere modules, zoals generators of retrievers, om deeltaken uit te voeren of

aanvullende informatie te verzamelen. Voorbeelden van tools zijn zoekmachines,

rekenmachines of datavisualisatiebibliotheken.

• Agents: Agents zijn autonome entiteiten die hun omgeving kunnen waarnemen,

beslissingen kunnen nemen en acties kunnen ondernemen om specifieke doelen

te bereiken. Ze maken vaak gebruik van een combinatie van verschillende AI-

technieken, zoals planning, redenering en leren, om effectief te functioneren in

dynamische of onzekere omstandigheden. Agents kunnen worden gebruikt om

complex gedrag te modelleren of om de acties van meerdere modules binnen een

samengesteld AI-systeem te coördineren.

In een puur samengesteld AI-systeem wordt de interactie tussen deze componenten

georkestreerd via welgedefinieerde interfaces en communicatieprotocollen. Gegevens

stromen tussen modules, waarbij de output van de ene component dient als input

voor de andere. Deze modulaire architectuur zorgt voor flexibiliteit, schaalbaarheid en

onderhoudbaarheid, aangezien individuele componenten kunnen worden bijgewerkt,

vervangen of uitgebreid zonder het hele systeem te beïnvloeden.

Door gebruik te maken van de kracht van deze componenten en hun interacties

kunnen samengestelde AI-systemen complexe, praktische problemen aanpakken die een

combinatie van verschillende AI-mogelijkheden vereisen. Terwijl we de benaderingen

Introductie 37

en patronen voor het integreren van AI in applicatieontwikkeling verkennen, houd in

gedachten dat dezelfde principes en technieken die worden gebruikt in samengestelde

AI-systemen kunnen worden toegepast om intelligente, adaptieve en gebruikersgerichte

applicaties te creëren.

In de volgende hoofdstukken van Deel 1 zullen we dieper ingaan op de fundamentele

benaderingen en technieken voor het integreren van AI-componenten in uw

applicatieontwikkelingsproces. Van prompt engineering en retrieval-augmented

generation tot zelfherstellende data en intelligente workflow-orkestratie, we zullen een

breed scala aan patronen en best practices behandelen om u te helpen geavanceerde

AI-aangedreven applicaties te bouwen.

Deel 1: Fundamentele
Benaderingen &
Technieken

Dit deel van het boek presenteert verschillende manieren om het gebruik van AI in je

applicaties te integreren. De hoofdstukken behandelen een reeks verwante benaderingen

en technieken, variërend van meer abstracte concepten zoals Het Pad Versmallen en

Retrieval Augmented Generation tot aan ideeën voor het programmeren van je eigen

abstractielaag bovenop LLM chat completion APIs.

Het doel van dit deel van het boek is om je te helpen begrijpen welke soorten

gedrag je kunt implementeren met AI, voordat we te diep ingaan op specifieke

implementatiepatronen die de focus zijn van Deel 2.

De benaderingen in Deel 1 zijn gebaseerd op ideeën die ik in mijn code heb gebruikt,

klassieke patronen van enterprise applicatie architectuur en integratie, plus metaforen

die ik heb gebruikt bij het uitleggen van de mogelijkheden van AI aan andere mensen,

waaronder niet-technische zakelijke belanghebbenden.

Het Pad Vernauwen

“Het pad vernauwen” verwijst naar het focussen van de AI op de huidige taak. Ik gebruik

het als een mantra wanneer ik gefrustreerd raak omdat de AI zich “dom” gedraagt of

onverwachte dingen doet. Het mantra herinnert me eraan dat het falen waarschijnlijk

mijn schuld is, en dat ik het pad waarschijnlijk nog meer moet vernauwen.

De noodzaak om het pad te vernauwen komt voort uit de enorme hoeveelheid kennis

die grote taalmodellen bevatten, vooral wereldklasse modellen zoals die van OpenAI en

Anthropic die letterlijk biljoenen parameters hebben.

Het Pad Vernauwen 40

Toegang hebben tot zo’n breed scala aan kennis is ongetwijfeld krachtig en produceert

emergent gedrag zoals theory of mind en het vermogen om op mensachtige wijze te

redeneren. Deze overweldigende hoeveelheid informatie brengt echter ook uitdagingen

met zich mee als het gaat om het genereren van precieze en accurate antwoorden op

specifieke prompts, vooral als deze prompts bedoeld zijn om deterministisch gedrag

te vertonen dat kan worden geïntegreerd met “normale” softwareontwikkeling en

algoritmes.

Een aantal factoren leidt tot deze uitdagingen.

Informatie-overload: Grote taalmodellen worden getraind op enorme hoeveelheden

data uit verschillende domeinen, bronnen en tijdsperioden. Deze uitgebreide kennis stelt

hen in staat om deel te nemen aan diverse onderwerpen en antwoorden te genereren

op basis van een breed begrip van de wereld. Echter, wanneer geconfronteerd met

een specifieke prompt, kan het model moeite hebben om irrelevante, tegenstrijdige

of verouderde/achterhaalde informatie te filteren, wat leidt tot antwoorden die focus

of nauwkeurigheid missen. Afhankelijk van wat je probeert te doen, kan de pure

hoeveelheid tegenstrijdige informatie die beschikbaar is voor het model gemakkelijk

zijn vermogen overweldigen om het antwoord of gedrag te leveren dat je zoekt.

Contextuele Ambiguïteit: Gezien de enorme latente ruimte aan kennis, kunnen grote

taalmodellen ambiguïteit tegenkomen bij het proberen te begrijpen van de context

van je prompt. Zonder goede vernauwing of begeleiding kan het model antwoorden

genereren die zijdelings gerelateerd zijn maar niet direct relevant voor je bedoelingen.

Dit soort falen leidt tot antwoorden die niet ter zake doen, inconsistent zijn, of niet aan

je gestelde behoeften voldoen. In dit geval verwijst het vernauwen van het pad naar

context disambiguatie, waarbij wordt verzekerd dat de context die je biedt het model

alleen laat focussen op de meest relevante informatie in zijn basiskennis.

Opmerking: Als je net begintmet “prompt engineering” is de kans veel groter

dat je het model dingen vraagt zonder het gewenste resultaat goed uit te

leggen; het vergt oefening om niet ambigu te zijn!

Het Pad Vernauwen 41

Temporele Inconsistenties: Omdat taalmodellen zijn getraind op data die in

verschillende tijdsperioden is gecreëerd, kunnen ze kennis bezitten die verouderd,

achterhaald of niet meer accuraat is. Bijvoorbeeld, informatie over actuele

gebeurtenissen, wetenschappelijke ontdekkingen of technologische vooruitgang

kan zijn geëvolueerd sinds de trainingsdata van het model werd verzameld. Zonder het

pad te vernauwen om prioriteit te geven aan recentere en betrouwbaardere bronnen,

kan het model antwoorden genereren op basis van verouderde of onjuiste informatie,

wat leidt tot onnauwkeurigheden en inconsistenties in zijn output.

DomeinspecifiekeNuances:Verschillende domeinen en vakgebieden hebben hun eigen

specifieke terminologie, conventies en kennisbasissen. Denk aan vrijwel elke TLA (Three

Letter Acronym) en je zult beseffen dat de meeste meer dan één betekenis hebben. MSK

kan bijvoorbeeld verwijzen naar Amazon’s Managed Streaming for Apache Kafka, het

Memorial Sloan Kettering Cancer Center, of het menselijke MusculoSKeletale systeem.

Wanneer een prompt expertise in een bepaald domein vereist, is de algemene kennis van

een groot taalmodel mogelijk niet voldoende om accurate en genuanceerde antwoorden

te geven. Het vernauwen van het pad door te focussen op domeinspecifieke informatie,

hetzij door prompt engineering of retrieval-augmented generation, stelt het model in

staat om antwoorden te genereren die beter aansluiten bij de vereisten en verwachtingen

van je specifieke domein.

Latente Ruimte: Onbegrijpelijk Uitgestrekt

Wanneer ik de “latente ruimte” van een taalmodel noem, verwijs ik naar het uitgestrekte,

multidimensionale landschap van kennis en informatie dat het model heeft geleerd

tijdens zijn trainingsproces. Het is als een verborgen rijk binnen de neurale netwerken

van het model, waar alle patronen, associaties en representaties van taal zijn opgeslagen.

Stel je voor dat je een uitgestrekt, onontdekt gebied verkent vol met ontelbare onderling

verbonden knooppunten. Elk knooppunt vertegenwoordigt een stukje informatie, een

Het Pad Vernauwen 42

concept of een relatie die het model heeft geleerd. Terwijl je door deze ruimte navigeert,

zul je merken dat sommige knooppunten dichter bij elkaar liggen, wat duidt op een

sterke connectie of gelijkenis, terwijl andere verder uit elkaar liggen, wat een zwakkere

of meer afstandelijke relatie suggereert.

De uitdaging met de latente ruimte is dat deze ongelooflijk complex en

hoogdimensionaal is. Zie het als iets zo immens als ons fysieke universum, met

zijn clusters van sterrenstelsels en de enorme, onvoorstelbare afstanden van lege ruimte

ertussen.

Omdat het duizenden dimensies bevat, is de latente ruimte niet direct waarneembaar of

interpreteerbaar door mensen. Het is een abstracte representatie die het model intern

gebruikt om taal te verwerken en te genereren. Wanneer je een input prompt aan

het model geeft, brengt het deze prompt in wezen in kaart op een specifieke locatie

binnen de latente ruimte. Het model gebruikt vervolgens de omringende informatie en

verbindingen in die ruimte om een antwoord te genereren.

Het punt is dat het model een enorme hoeveelheid informatie heeft geleerd van zijn

trainingsgegevens, en niet alles daarvan is relevant of accuraat voor een bepaalde taak.

Daarom wordt het versmallen van het pad zo belangrijk. Door duidelijke instructies,

voorbeelden en context in je prompts te geven, stuur je het model in feite naar specifieke

regio’s binnen de latente ruimte die het meest relevant zijn voor je gewenste output.

Een andere manier om erover na te denken is als het gebruiken van een spotlight in een

volledig donker museum. Als je ooit het Louvre of Metropolitan Museum of Art hebt

bezocht, dan is dat de schaal waarover ik het heb. De latente ruimte is het museum,

gevuldmet ontelbare objecten en details. Je prompt is de spotlight die specifieke gebieden

verlicht en de aandacht van het model vestigt op de belangrijkste informatie. Zonder die

sturing kan het model doelloos door de latente ruimte dwalen en onderweg irrelevante

of tegenstrijdige informatie oppikken.

Terwijl je met taalmodellen werkt en je prompts opstelt, houd dan het concept van

latente ruimte in gedachten. Je doel is om effectief door dit uitgestrekte kennislandschap

Het Pad Vernauwen 43

te navigeren en het model naar de meest relevante en accurate informatie voor je taak

te sturen. Door het pad te versmallen en duidelijke sturing te geven, kun je het volledige

potentieel van de latente ruimte van het model ontsluiten en kwalitatief hoogwaardige,

coherente antwoorden genereren.

Hoewel de voorgaande beschrijvingen van taalmodellen en de latente ruimte waarin

ze navigeren misschien wat magisch of abstract lijken, is het belangrijk te begrijpen

dat prompts geen toverspreuken of bezweringen zijn. De manier waarop taalmodellen

werken is gebaseerd op de principes van lineaire algebra en waarschijnlijkheidstheorie.

In essentie zijn taalmodellen probabilistische modellen van tekst, vergelijkbaar met

hoe een klokcurve een statistisch model van data is. Ze worden getraind via een

proces dat autoregressieve modellering wordt genoemd, waarbij het model leert om de

waarschijnlijkheid van het volgende woord in een reeks te voorspellen op basis van de

woorden die eraan voorafgaan. Tijdens de training begint het model met willekeurige

gewichten en past deze geleidelijk aan om hogere waarschijnlijkheden toe te kennen aan

tekst die lijkt op de praktijkvoorbeelden waarop het werd getraind.

Echter, het beschouwen van taalmodellen als eenvoudige statistische modellen, zoals

lineaire regressie, biedt niet de beste intuïtie voor het begrijpen van hun gedrag. Een

betere analogie is om ze te zien als probabilistische programma’s, wat modellen zijn die

de manipulatie van willekeurige variabelen mogelijk maken en complexe statistische

relaties kunnen weergeven.

Probabilistische programma’s kunnen worden weergegeven door grafische modellen,

die een visuele manier bieden om de afhankelijkheden en relaties tussen variabelen in

het model te begrijpen. Dit perspectief kan waardevolle inzichten bieden in de werking

van complexe tekstgeneratiemodellen zoals GPT-4 en Claude.

In het artikel “Language Model Cascades” van Dohan et al. duiken de auteurs

in de details van hoe probabilistische programma’s kunnen worden toegepast op

taalmodellen. Ze laten zien hoe dit raamwerk kan worden gebruikt om het gedrag van

deze modellen te begrijpen en de ontwikkeling van effectievere promptingstrategieën

Het Pad Vernauwen 44

te sturen.

Een belangrijk inzicht vanuit dit probabilistische perspectief is dat het taalmodel in

wezen een portaal creëert naar een alternatief universumwaar de gewenste documenten

bestaan. Het model kent gewichten toe aan alle mogelijke documenten op basis van hun

waarschijnlijkheid, waardoor de ruimte vanmogelijkheden effectief wordt versmald om

te focussen op de meest relevante.

Dit brengt ons terug naar het centrale thema van “het versmallen van het pad”. Het

primaire doel van prompting is om het probabilistische model zodanig te conditioneren

dat de massa van zijn voorspellingen wordt gefocust, waarbij wordt toegespitst op de

specifieke informatie of het gedrag dat we willen ontlokken. Door zorgvuldig opgestelde

prompts te geven, kunnen we het model begeleiden om de latente ruimte efficiënter te

navigeren en outputs te genereren die relevanter en coherenter zijn.

Het is echter belangrijk om in gedachten te houden dat het taalmodel uiteindelijk beperkt

wordt door de informatie waarop het is getraind. Hoewel het tekst kan genereren die lijkt

op bestaande documenten of ideeën op nieuwe manieren kan combineren, kan het niet

volledig nieuwe informatie uit het niets tevoorschijn toveren. We kunnen bijvoorbeeld

niet verwachten dat het model een geneesmiddel voor kanker kan leveren als een

dergelijke genezing nog niet is ontdekt en gedocumenteerd in zijn trainingsgegevens.

In plaats daarvan ligt de kracht van het model in zijn vermogen om informatie te vinden

en te synthetiseren die vergelijkbaar is met wat we in de prompt aangeven. Door de

probabilistische aard van deze modellen te begrijpen en hoe prompts kunnen worden

gebruikt om hun output te conditioneren, kunnen we hun mogelijkheden effectiever

benutten om waardevolle inzichten en content te genereren.

Bekijk de prompts hieronder. In de eerste kan “Mercury” alleen verwijzen naar de

planeet, het element, of de Romeinse god, maar het meest waarschijnlijke is de planeet.

GPT-4 geeft inderdaad een lang antwoord dat begint met Mercurius is de kleinste en

binnenste planeet in het zonnestelsel…. De tweede prompt verwijst specifiek naar het

chemische element. De derde verwijst naar de Romeinse mythologische figuur, bekend

Het Pad Vernauwen 45

om zijn snelheid en rol als goddelijke boodschapper.

1 # Prompt 1

2 Tell me about: Mercury

3

4 # Prompt 2

5 Tell me about: Mercury element

6

7 # Prompt 3

8 Tell me about: Mercury messenger of the gods

Door slechts een handvol extra woorden toe te voegen, hebben we de reactie van de

AI compleet veranderd. Zoals je later in het boek zult leren, zijn geavanceerde prompt

engineering-technieken zoals n-shot prompting, gestructureerde input/output en Chain

of Thought gewoon slimme manieren om de output van het model te conditioneren.

Uiteindelijk draait de kunst van prompt engineering dus om het begrijpen hoe je door het

uitgestrekte probabilistische landschap van de kennis van het taalmodel kunt navigeren

om het pad naar de specifieke informatie of het gewenste gedrag te vernauwen.

Voor lezers met een gedegen begrip van geavanceerdewiskunde kan het zeker helpen om

je begrip van deze modellen te baseren op de principes van waarschijnlijkheidstheorie

en lineaire algebra! Voor de rest van jullie die effectieve strategieën willen ontwikkelen

voor het verkrijgen van gewenste outputs, laten we ons houden aan meer intuïtieve

benaderingen.

Hoe Het Pad “Versmald” Wordt

Om deze uitdagingen van te veel kennis aan te pakken, gebruiken we technieken die

helpen bij het sturen van het generatieproces van het taalmodel en zijn aandacht richten

op de meest relevante en accurate informatie.

Hier zijn de belangrijkste technieken, in aanbevolen volgorde, dat wil zeggen, je zou

eerst Prompt Engineering moeten proberen, dan RAG, en dan pas, indien noodzakelijk,

fine-tuning.

Het Pad Vernauwen 46

Prompt Engineering De meest fundamentele aanpak is het maken van prompts die

specifieke instructies, beperkingen of voorbeelden bevatten om de responsgeneratie van

het model te sturen. Dit hoofdstuk behandelt de grondbeginselen van Prompt

Engineering in de volgende sectie, en we behandelen veel specifieke prompt

engineering-patronen in Deel 2 van het boek. Deze patronen omvatten Prompt

Distillation, een techniek die zich richt op het verfijnen en optimaliseren van prompts

om wat de AI als de meest relevante en beknopte informatie beschouwt te extraheren.

Contextverrijking Het dynamisch ophalen van relevante informatie uit externe

kennisbanken of documenten om het model van gerichte context te voorzien op het

moment dat het wordt geprompt. Populaire contextverrijkingstechnieken omvatten

Retrieval-Augmented Generation (RAG) Zogenaamde “online modellen” zoals die van

Perplexity kunnen hun context verrijken met real-time zoekresultaten van internet.

Ondanks hun kracht zijn LLMs niet getraind op jouw unieke datasets,

die privé kunnen zijn of specifiek voor het probleem dat je probeert op

te lossen. Contextverrijkingstechnieken stellen LLMs in staat toegang te

krijgen tot gegevens achter API’s, in SQL-databases, of opgesloten in PDF’s

en presentaties.

Fine-Tuning of Domeinaanpassing Het trainen van het model op domeinspecifieke

datasets om zijn kennis en generatiemogelijkheden te specialiseren voor een bepaalde

taak of vakgebied.

De Temperatuur Verlagen

Temperatuur is een hyperparameter die wordt gebruikt in transformer-gebaseerde

taalmodellen om de willekeurigheid en creativiteit van de gegenereerde tekst te

controleren. Het is een waarde tussen 0 en 1, waarbij lagere waarden de output

meer gefocust en deterministisch maken, terwijl hogere waarden deze meer divers en

onvoorspelbaar maken.

https://perplexity.ai

Het Pad Vernauwen 47

Wanneer de temperatuur op 1 is ingesteld, genereert het taalmodel tekst op basis van

de volledige waarschijnlijkheidsverdeling van de volgende token, wat meer creatieve en

gevarieerde responses mogelijk maakt. Dit kan er echter ook toe leiden dat het model

tekst genereert die minder relevant of coherent is.

Aan de andere kant, wanneer de temperatuur op 0 staat, selecteert het taalmodel altijd

de token met de hoogste waarschijnlijkheid, waardoor het effectief zijn “pad vernauwt”.

Bijna al mijn AI-componenten gebruiken een temperatuur die op of dicht bij 0 is

ingesteld, aangezien dit resulteert in meer gefocuste en voorspelbare responses. Het is

absoluut nuttig wanneer je wilt dat het model instructies volgt, aandacht besteedt aan

functies die het heeft gekregen, of simpelwegmeer accurate en relevante responses nodig

hebt dan wat je krijgt.

Als je bijvoorbeeld een chatbot bouwt die feitelijke informatie moet verstrekken, wil je

de temperatuur misschien op een lagere waarde instellen om ervoor te zorgen dat de

responses preciezer en relevanter zijn. Omgekeerd, als je een creatieve schrijfassistent

bouwt, wil je de temperatuur misschien op een hogere waarde instellen ommeer diverse

en fantasierijke outputs te stimuleren.

Hyperparameters: Knoppen en Regelaars van Inferentie

Wanneer je met taalmodellen werkt, kom je de term “hyperparameters” vaak tegen. In

de context van inferentie (dat wil zeggen, wanneer je het model gebruikt om responses

te genereren), zijn hyperparameters als de knoppen en regelaars die je kunt aanpassen

om het gedrag en de output van het model te controleren.

Zie het als het aanpassen van de instellingen op een complexe machine. Net zoals je

aan een knop draait om de temperatuur te regelen of een schakelaar omzet om de

werkingsmodus te veranderen, stellen hyperparameters je in staat om de manier waarop

het taalmodel tekst verwerkt en genereert nauwkeurig aan te passen.

Enkele veelvoorkomende hyperparameters die je tijdens het inferentieproces tegenkomt

zijn:

Het Pad Vernauwen 48

• Temperature: Zoals net genoemd, deze parameter regelt de willekeurigheid en

creativiteit van de gegenereerde tekst. Een hogere temperature leidt tot meer

diverse en onvoorspelbare uitvoer, terwijl een lagere temperature resulteert in

meer gefocuste en deterministische responses.

• Top-p (nucleus) sampling: Deze parameter regelt de selectie van de kleinste

verzameling tokens waarvan de cumulatieve waarschijnlijkheid een bepaalde

drempelwaarde (p) overschrijdt. Het maakt meer diverse uitvoer mogelijk terwijl

de samenhang behouden blijft.

• Top-k sampling: Deze techniek selecteert de k meest waarschijnlijke volgende

tokens en herverdeelt de waarschijnlijkheidsmassa onder hen. Het kan helpen

voorkomen dat het model tokens genereert met een lage waarschijnlijkheid of

irrelevante tokens.

• Frequency en Presence penalties: Deze parameters bestraffen het model voor het

te frequent herhalen van dezelfde woorden of zinnen (frequency penalty) of voor

het genereren van woorden die niet in de invoerprompt aanwezig zijn (presence

penalty). Door deze waarden aan te passen, kun je het model aanmoedigen om

gevarieerde en relevante uitvoer te produceren.

• Maximum length: Deze hyperparameter stelt een bovengrens aan het aantal

tokens (woorden of subwoorden) dat het model in één respons kan genereren. Het

helpt de uitgebreidheid en beknoptheid van de gegenereerde tekst te beheersen.

Terwijl je experimenteert met verschillende hyperparameter-instellingen, zul je merken

dat zelfs kleine aanpassingen een significante impact kunnen hebben op de uitvoer van

het model. Het is als het verfijnen van een recept – een snufje meer zout of een iets

langere kooktijd kan het verschil maken in het uiteindelijke gerecht.

De sleutel is om te begrijpen hoe elke hyperparameter het gedrag van het model

beïnvloedt en de juiste balans te vinden voor jouw specifieke taak. Wees niet bang om

Het Pad Vernauwen 49

te experimenteren met verschillende instellingen en te zien hoe ze de gegenereerde tekst

beïnvloeden. Na verloop van tijd ontwikkel je een intuïtie voor welke hyperparameters

je moet aanpassen en hoe je de gewenste resultaten kunt bereiken.

Door het gebruik van deze parameters te combineren met prompt engineering, retrieval-

augmented generation en fine-tuning, kun je effectief het pad versmallen en het

taalmodel begeleiden om nauwkeurigere, relevantere en waardevollere responses te

genereren voor hun specifieke gebruikssituatie.

Onbewerkte versus Instructie-afgestemde

Modellen

Onbewerkte modellen zijn de ongeraffineerde, ongetrainde versies van LLMs. Zie ze

als een leeg canvas, nog niet beïnvloed door specifieke training om instructies te

begrijpen of op te volgen. Ze zijn gebouwd op basis van de enorme hoeveelheid data

waarop ze initieel zijn getraind en zijn in staat om een breed scala aan uitvoer te

genereren. Echter, zonder extra lagen van instructiegebaseerde fine-tuning kunnen hun

responses onvoorspelbaar zijn en vereisen ze meer genuanceerde, zorgvuldig opgestelde

prompts om ze naar de gewenste uitvoer te leiden. Werken met onbewerkte modellen

is vergelijkbaar met het ontlokken van communicatie aan een idioot-savant die een

enorme hoeveelheid kennis heeft, maar geen enkel intuïtief begrip heeft van wat je

vraagt, tenzij je extreem precies bent in je instructies. Ze voelen vaak aan als een

papegaai, in die zin dat voor zover je ze iets verstandigs kunt laten zeggen, het meestal

niet meer is dan het herhalen van iets wat ze je hebben horen zeggen.

Instructie-afgestemde modellen daarentegen hebben rondes van training ondergaan die

specifiek zijn ontworpen om instructies te begrijpen en op te volgen. GPT-4, Claude 3

en vele andere van de meest populaire LLM-modellen zijn allemaal sterk instructie-

afgestemd. Deze training omvat het voeden van het model met voorbeelden van

instructies samen met de gewenste uitkomsten, waardoor het model effectief leert hoe

Het Pad Vernauwen 50

het een breed scala aan opdrachten moet interpreteren en uitvoeren. Als gevolg hiervan

kunnen instructiemodellen de bedoeling achter een prompt beter begrijpen en responses

genereren die nauw aansluiten bij de verwachtingen van de gebruiker. Dit maakt ze

gebruiksvriendelijker en gemakkelijker om mee te werken, vooral voor degenen die

mogelijk niet de tijd of expertise hebben om zich bezig te houdenmet uitgebreide prompt

engineering.

Onbewerkte Modellen: Het Ongefilterde Canvas

Onbewerkte modellen, zoals Llama 2-70B of Yi-34B, bieden meer ongefilterde toegang

tot de mogelijkheden van het model dan waar je misschien aan gewend bent als

je hebt geëxperimenteerd met populaire LLMs zoals GPT-4. Deze modellen zijn niet

vooraf afgestemd op het volgen van specifieke instructies, waardoor je een leeg canvas

krijgt om de uitvoer van het model direct te manipuleren door middel van zorgvuldige

prompt engineering. Deze aanpak vereist een diep begrip van hoe je prompts moet

opstellen die de AI in de gewenste richting sturen zonder het expliciet te instrueren.

Het is vergelijkbaar met het hebben van directe toegang tot de “onbewerkte” lagen

van de onderliggende AI, zonder tussenliggende lagen die de responses van het model

interpreteren of sturen (vandaar de naam).

Het Pad Vernauwen 51

Figuur 3. Het testen van een onbewerkt model met een deel van Abbott en Costello’s klassieke ’Who’s
on First’ sketch

De uitdaging met onbewerkte modellen ligt in hun neiging om in herhalende

patronen te vervallen of willekeurige output te produceren. Echter, met zorgvuldige

prompt engineering en het aanpassen van parameters zoals herhalingspenalties,

kunnen onbewerkte modellen worden aangezet tot het genereren van unieke en

creatieve inhoud. Dit proces kent zijn compromissen; hoewel onbewerkte modellen

ongeëvenaarde flexibiliteit bieden voor innovatie, vereisen ze een hoger niveau van

expertise.

Het Pad Vernauwen 52

Figuur 4. Ter vergelijking, dezelfde ambigue prompt ingevoerd in GPT-4

Instructie-afgestemde Modellen: De Begeleide Ervaring

Instructie-afgestemde modellen zijn ontworpen om specifieke instructies te begrijpen

en op te volgen, waardoor ze gebruiksvriendelijker en toegankelijker zijn voor een

breder scala aan toepassingen. Ze begrijpen de mechanica van een gesprek en weten

dat ze moeten stoppen met genereren aan het einde van hun spreekbeurt. Voor veel

ontwikkelaars, vooral degenen die werken aan eenvoudige toepassingen, bieden

instructie-afgestemde modellen een handige en efficiënte oplossing.

Het proces van instructie-afstemming omvat het trainen van het model op een

groot corpus van door mensen gegenereerde instructieprompts en antwoorden. Een

opmerkelijk voorbeeld is de open source databricks-dolly-15k dataset, die meer dan

15.000 prompt/antwoordparen bevat, gemaakt door Databricks-medewerkers die je

zelf kunt inspecteren. De dataset omvat acht verschillende instructiecategorieën,

waaronder creatief schrijven, gesloten en open vraagbeantwoording, samenvatting,

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Het Pad Vernauwen 53

informatie-extractie, classificatie, en brainstormen.

Tijdens het datageneratieproces kregen bijdragers richtlijnen over hoe ze prompts

en antwoorden voor elke categorie moesten maken. Voor creatieve schrijfopdrachten

bijvoorbeeld, werden ze geïnstrueerd om specifieke beperkingen, instructies of vereisten

te geven om de output van het model te sturen. Voor gesloten vraagbeantwoording werd

hen gevraagd vragen te schrijven die feitelijk correcte antwoorden vereisen op basis van

een gegeven Wikipedia-passage.

De resulterende dataset dient als een waardevolle bron voor het fine-tunen van grote

taalmodellen om de interactieve en instructievolgende mogelijkheden van systemen

zoals ChatGPT te vertonen. Door te trainen op een diverse reeks door mensen

gegenereerde instructies en antwoorden, leert het model specifieke aanwijzingen te

begrijpen en op te volgen, waardoor het beter in staat is om een breed scala aan taken

aan te pakken.

Naast directe fine-tuning kunnen de instructieprompts in datasets zoals databricks-

dolly-15k ook worden gebruikt voor synthetische datageneratie. Door door bijdragers

gegenereerde prompts als few-shot voorbeelden in te dienen bij een groot open

taalmodel, kunnen ontwikkelaars een veel groter corpus van instructies in elke

categorie genereren. Deze aanpak, beschreven in het Self-Instruct paper, maakt de

creatie van meer robuuste instructievolgende modellen mogelijk.

Bovendien kunnen de instructies en responses in deze datasets worden uitgebreid door

technieken zoals parafraseren. Door elke prompt of kort antwoord te herformuleren en

de resulterende tekst te koppelen aan het bijbehorende ground-truth voorbeeld, kunnen

ontwikkelaars een vorm van regularisatie introduceren die het vermogen van het model

om instructies te volgen verbetert.

Het gebruiksgemak van instructie-afgestemde modellen gaat ten koste van enige

flexibiliteit. Deze modellen zijn vaak sterk gecensureerd, wat betekent dat ze niet altijd

de mate van creatieve vrijheid bieden die voor bepaalde taken vereist is. Hun output

wordt sterk beïnvloed door de vooroordelen en beperkingen die inherent zijn aan hun

Het Pad Vernauwen 54

fine-tuning data.

Ondanks deze beperkingen zijn instructie-afgestemde modellen steeds populairder

geworden vanwege hun gebruiksvriendelijke karakter en hun vermogen om een breed

scala aan taken met minimale prompt engineering af te handelen. Naarmate er meer

hoogwaardige instructiedatasets beschikbaar komen, kunnen we verdere verbeteringen

verwachten in de prestaties en veelzijdigheid van deze modellen.

Het Juiste Soort Model Kiezen voor Je Project

De keuze tussen basis- (ruwe) en instructie-afgestemde modellen hangt uiteindelijk

af van de specifieke vereisten van je project. Voor taken die een hoge mate van

creativiteit en originaliteit vereisen, bieden basismodellen een krachtig instrument voor

innovatie. Deze modellen stellen ontwikkelaars in staat om het volledige potentieel van

LLMs te verkennen en de grenzen te verleggen van wat mogelijk is met AI-gedreven

toepassingen, maar ze vereisen een meer praktische aanpak en de bereidheid om te

experimenteren. Temperatuur en andere instellingen hebben een veel groter effect in

basismodellen dan in hun instructie-afgestemde tegenhangers.

Alles wat je in je prompt opneemt, is wat basismodellen zullen proberen te

herhalen. Dus als je prompt bijvoorbeeld een chattranscript is, zal het ruwe

model proberen de chat voort te zetten. Afhankelijk van demax tokens limiet

zal het niet alleen het volgende bericht in de chat genereren, het kan zelfs

een heel gesprek met zichzelf voeren!

Het Pad Vernauwen 55

Figuur 5. Mixtral 8x7B (basis) Voorbeeld van Zinnen Herschrijven met Few-Shot Completion

Tijdens het voorbereiden van het bovenstaande voorbeeld van Zinnen Herschrijven

door Reddit-gebruiker phree_radical, kon ik alleen bruikbare resultaten krijgen na veel

experimenteren met parameterinstellingen, en uiteindelijk kwam ik uit op: Temperature

0.08, Top P: 0.2, Top K: 1, en Repetition Penalty: 1.26.

https://www.reddit.com/user/phree_radical/

Het Pad Vernauwen 56

Het proberen om deze aanpak met een basismodel in productie te gebruiken zou lastig

zijn vanwege het krachtige effect van de max_tokens parameter. Als je deze te kort

instelt, wordt de output afgekapt. Als je hem langer instelt danwat het model nodig heeft

voor de gewenste output, zal het doorgaan met het hallucineren van extra voorbeelden.

De conclusie is dat, tenzij je echt volledige controle en afwezigheid van censuur

nodig hebt, instructie-afgestemde modellen je ontwikkelingsproces aanzienlijk kunnen

stroomlijnen. Om dat punt kracht bij te zetten, hier is Mixtral 8x7B’s antwoord op

dezelfde prompt, maar dit keer in de instructie-afgestemde versie:

Het spijt me u te moeten mededelen dat het ijs niet aan mijn verwachtingen

voldoet, aangezien het de rijke, romige textuur en de heerlijke smaak mist

die ik normaal gesproken associeer met een dessert van hoge kwaliteit. Ik

had gehoopt op een meer bevredigende en aangename ervaring.

Opmerkelijk genoeg kon ik de max tokens-instelling op 500 laten staan, en het model

stopte consequent aan het einde van de gewenste output zonder extra voorbeelden te

hallucineren.

Prompt Engineering

Wanneer je AI begint toe te passen in je projecten, zul je snel ontdekken dat een van de

meest cruciale vaardigheden die je moet beheersen de kunst van prompt engineering is.

Maar wat is prompt engineering precies, en waarom is het zo belangrijk?

In essentie is prompt engineering het proces van het ontwerpen en vormgeven van de

invoerprompts die je aan een taalmodel geeft om de output te sturen. Het gaat erom

te begrijpen hoe je effectief communiceert met de AI, waarbij je een combinatie van

instructies, voorbeelden en context gebruikt om het model te sturen naar het genereren

van de gewenste respons.

Het Pad Vernauwen 57

Zie het als een gesprek met een zeer intelligente maar enigszins letterlijk denkende

vriend. Om het meeste uit de interactie te halen, moet je duidelijk en specifiek zijn

en voldoende context bieden om ervoor te zorgen dat je vriend precies begrijpt wat je

vraagt. Dat is waar prompt engineering om de hoek komt kijken, en ook al lijkt het in

eerste instantie eenvoudig, geloof me dat het veel oefening vergt om het onder de knie

te krijgen.

De Bouwstenen van Effectieve Prompts

Om effectieve prompts te kunnen ontwikkelen, moet je eerst de belangrijkste

componenten begrijpen die een goed opgestelde input vormen. Hier zijn enkele

essentiële bouwstenen:

1. Instructies: Duidelijke en beknopte instructies die het model vertellen wat je wilt

dat het doet. Dit kan variëren van “Vat het volgende artikel samen” tot “Genereer

een gedicht over een zonsondergang” tot “zet dit projectwijzigingsverzoek om in

een JSON-object”.

2. Context: Relevante informatie die het model helpt de achtergrond en reikwijdte

van de taak te begrijpen. Dit kan details omvatten over het beoogde publiek, de

gewenste toon en stijl, of specifieke beperkingen of vereisten voor de output, zoals

een JSON Schema waaraan moet worden voldaan.

3. Voorbeelden: Concrete voorbeelden die laten zienwelk type output je zoekt. Door

enkele goed gekozen voorbeelden te geven, kun je het model helpen de patronen

en kenmerken van de gewenste respons te leren.

4. Invoer-opmaak: Regelafbrekingen en markdown-opmaak geven structuur aan

onze prompt. Door de prompt in alinea’s te verdelen, kunnen we gerelateerde

instructies groeperen zodat het zowel voor mensen als AI makkelijker te begrijpen

is. Opsommingstekens en genummerde lijsten laten ons lijsten en volgorde van

items definiëren. Vetgedrukte en cursievemarkeringen laten ons nadruk aangeven.

Het Pad Vernauwen 58

5. Output-opmaak: Specifieke instructies over hoe de output moet worden

gestructureerd en opgemaakt. Dit kan richtlijnen bevatten over de gewenste

lengte, het gebruik van koppen of opsommingstekens, markdown-opmaak, of

andere specifieke outputsjablonen of conventies die moeten worden gevolgd.

Door deze bouwstenen op verschillende manieren te combineren, kun je prompts maken

die zijn toegesneden op je specifieke behoeften en het model sturen naar het genereren

van kwalitatief hoogwaardige, relevante responses.

De Kunst en Wetenschap van Prompt-ontwerp

Het maken van effectieve prompts is zowel een kunst als een wetenschap. (Daarom

noemen we het een ambacht.) Het vereist een diep begrip van de mogelijkheden en

beperkingen van taalmodellen, evenals een creatieve benadering van het ontwerpen van

prompts die het gewenste gedrag uitlokken. De creativiteit die erbij komt kijken maakt

het voor mij in ieder geval zo leuk. Het kan ook zeer frustrerend zijn, vooral wanneer je

deterministisch gedrag zoekt.

Een belangrijk aspect van prompt engineering is begrijpen hoe je specificiteit en

flexibiliteit in balans brengt. Aan de ene kant wil je voldoende sturing geven om het

model in de juiste richting te sturen. Aan de andere kant wil je niet zo voorschrijvend

zijn dat je het vermogen van het model beperkt om zijn eigen creativiteit en flexibiliteit

te gebruiken bij het omgaan met randgevallen.

Een andere belangrijke overweging is het gebruik van voorbeelden. Goed gekozen

voorbeelden kunnen ongelooflijk krachtig zijn om het model te helpen begrijpen welk

type output je zoekt. Het is echter belangrijk om voorbeelden oordeelkundig te gebruiken

en ervoor te zorgen dat ze representatief zijn voor de gewenste respons. Een slecht

voorbeeld is in het beste geval alleen maar verspilling van tokens, en in het slechtste

geval desastreus voor de gewenste output.

Het Pad Vernauwen 59

Prompt Engineering Technieken en Best Practices

Als je dieper in de wereld van prompt engineering duikt, zul je een reeks technieken en

best practices ontdekken die je kunnen helpen effectievere prompts te maken. Hier zijn

enkele belangrijke gebieden om te verkennen:

1. Zero-shot vs. few-shot learning: Begrijpen wanneer je zero-shot learning

(geen voorbeelden geven) versus one-shot of few-shot learning (een klein

aantal voorbeelden geven) moet gebruiken, kan je helpen prompts te maken die

efficiënter en effectiever zijn.

2. Iteratieve verfijning: Het proces van het iteratief verfijnen van prompts op basis

van de output van het model kan je helpen de optimale prompt-ontwerp te

bereiken. Feedback Loop is een krachtige aanpak die de output van het taalmodel

zelf gebruikt om de kwaliteit en relevantie van de gegenereerde content progressief

te verbeteren.

3. Prompt-ketening: Het combineren van meerdere prompts in een reeks kan je

helpen complexe taken op te delen in kleinere, beter beheersbare stappen. Prompt

Chaining houdt in dat een complexe taak of gesprek wordt opgedeeld in een

serie kleinere, onderling verbonden prompts. Door prompts aan elkaar te ketenen,

kun je de AI door een meerstaps proces leiden, waarbij context en samenhang

gedurende de interactie behouden blijven.

4. Prompt-afstemming: Het op maat maken van prompts voor specifieke

domeinen of taken kan je helpen meer gespecialiseerde en effectieve prompts te

creëren. Prompt Template helpt je bij het maken van flexibele, herbruikbare en

onderhoudbare prompt-structuren die gemakkelijker aan te passen zijn aan de

betreffende taak.

Het leren wanneer je zero-shot, one-shot of few-shot learning moet gebruiken is een

bijzonder belangrijk onderdeel van het beheersen van prompt engineering. Elke aanpak

Het Pad Vernauwen 60

heeft zijn eigen sterke en zwakke punten, en begrijpen wanneer je welke moet gebruiken

kan je helpen effectievere en efficiëntere prompts te maken.

Zero-Shot Learning: Wanneer Geen Voorbeelden Nodig
Zijn

Zero-shot learning verwijst naar het vermogen van een taalmodel om een taak uit te

voeren zonder voorbeelden of expliciete training. Met andere woorden, je geeft het

model een prompt die de taak beschrijft, en het model genereert een reactie uitsluitend

op basis van zijn bestaande kennis en begrip van taal.

Zero-shot learning is vooral nuttig wanneer:

1. De taak relatief eenvoudig en rechtdoorzee is, en het model waarschijnlijk

vergelijkbare taken tijdens zijn voortraining is tegengekomen.

2. Je de inherente capaciteiten van het model wilt testen en wilt zien hoe het reageert

op een nieuwe taak zonder extra begeleiding.

3. Je werkt met een groot en veelzijdig taalmodel dat is getraind op een breed scala

aan taken en domeinen.

Zero-shot learning kan echter ook onvoorspelbaar zijn en levert niet altijd de gewenste

resultaten op. De reactie van het model kan worden beïnvloed door vooroordelen of

inconsistenties in de voortrainingsdata, en het kan moeite hebben met meer complexe

of genuanceerde taken.

Ik heb zero-shot prompts gezien die prima werkten voor 80% van mijn testgevallen en

volkomen verkeerde of onbegrijpelijke resultaten produceerden voor de andere 20%.

Het is erg belangrijk om een grondig testregime te implementeren, vooral als je veel

Het Pad Vernauwen 61

vertrouwt op zero-shot prompting.

One-Shot Learning: Wanneer Één Voorbeeld het Verschil
Kan Maken

One-shot learning houdt in dat je het model één enkel voorbeeld geeft van de gewenste

output samen met de taakbeschrijving. Dit voorbeeld dient als sjabloon of patroon dat

het model kan gebruiken om zijn eigen reactie te genereren.

One-shot learning kan effectief zijn wanneer:

1. De taak relatief nieuw of specifiek is, en het model mogelijk niet veel vergelijkbare

voorbeelden tijdens zijn voortraining is tegengekomen.

2. Je een duidelijke en beknopte demonstratie wilt geven van het gewenste

outputformaat of de gewenste stijl.

3. De taak een specifieke structuur of conventie vereist die mogelijk niet direct

duidelijk is uit de taakbeschrijving alleen.

Beschrijvingen die voor jou vanzelfsprekend zijn, zijn dat niet noodzakelijk

voor de AI. One-shot voorbeelden kunnen helpen om dingen te

verduidelijken.

One-shot learning kan het model helpen de verwachtingen duidelijker te begrijpen

en een reactie te genereren die beter aansluit bij het gegeven voorbeeld. Het is

echter belangrijk om het voorbeeld zorgvuldig te kiezen en ervoor te zorgen dat het

representatief is voor de gewenste output. Bij het kiezen van het voorbeeld moet je

nadenken over mogelijke randgevallen en de reeks inputs waarmee de prompt moet

kunnen omgaan.

Het Pad Vernauwen 62

Figuur 6. Een one-shot voorbeeld van gewenste JSON

1 Output one JSON object identifying a new subject mentioned during the

2 conversation transcript.

3

4 The JSON object should have three keys, all required:

5 - name: The name of the subject

6 - description: brief, with details that might be relevant to the user

7 - type: Do not use any other type than the ones listed below

8

9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

10 Person, Place, Process, Product, Project, Task, or Teammate

11

12 This is an example of well-formed output:

13

14 {

15 "name":"Dan Millman",

16 "description":"Author of book on self-discovery and living on purpose",

17 "type":"Person"

18 }

Few-Shot Learning: Wanneer Meerdere Voorbeelden de
Prestaties Kunnen Verbeteren

Few-shot learning houdt in dat het model wordt voorzien van een klein aantal

voorbeelden (meestal tussen de 2 en 10) samen met de taakbeschrijving. Deze

voorbeelden dienen om het model meer context en variatie te bieden, waardoor het

meer diverse en nauwkeurige antwoorden kan genereren.

Few-shot learning is vooral nuttig wanneer:

1. De taak complex of genuanceerd is, en één enkel voorbeeld mogelijk niet

voldoende is om alle relevante aspecten te omvatten.

2. Je het model wilt voorzien van een reeks voorbeelden die verschillende variaties

of randgevallen demonstreren.

Het Pad Vernauwen 63

3. De taak vereist dat het model antwoorden genereert die consistent zijn met een

specifiek domein of stijl.

Doormeerdere voorbeelden te verstrekken, kun je het model helpen een beter begrip van

de taak te ontwikkelen en antwoorden te genereren die consistenter en betrouwbaarder

zijn.

Voorbeeld: Prompts Kunnen Veel Complexer Zijn Dan Je
Denkt

De hedendaagse LLM’s zijn veel krachtiger en beter in staat tot redeneren dan je

misschien denkt. Beperk jezelf dus niet tot het idee dat prompts alleen maar een

specificatie van input- en output-paren zijn. Je kunt experimenteren met het geven van

lange en complexe instructies op manieren die doen denken aan hoe je met een mens

zou communiceren.

Dit is bijvoorbeeld een prompt die ik in Olympia gebruikte toen ik onze integratie met

Google-services aan het prototypen was, wat in zijn totaliteit waarschijnlijk een van

de grootste API’s ter wereld is. Mijn eerdere experimenten bewezen dat GPT-4 een

behoorlijke kennis heeft van de Google API, en ik had geen tijd of motivatie om een

fijnmazige mapping-laag te schrijven, waarbij ik elke functie die ik aan mijn AI wilde

geven één voor één zou implementeren. Wat als ik de AI gewoon toegang zou kunnen

geven tot de hele Google API?

Ik begon mijn prompt door de AI te vertellen dat het directe toegang had tot de Google

API-eindpunten via HTTP, en dat zijn rol was om Google-apps en -services namens

de gebruiker te gebruiken. Vervolgens gaf ik richtlijnen, regels met betrekking tot de

fields-parameter, aangezien het daar de meeste moeite mee leek te hebben, en enkele

API-specifieke hints (few-shot prompting in actie).

Hier is de volledige prompt, die de AI vertelt hoe het de aangeboden invoke_google_-

api-functie moet gebruiken.

Het Pad Vernauwen 64

1 As a GPT assistant with Google integration, you have the capability

2 to freely interact with Google apps and services on behalf of the user.

3

4 Guidelines:

5 - If you're reading these instructions then the user is properly

6 authenticated, which means you can use the special `me` keyword

7 to refer to the userId of the user

8 - Minimize payload sizes by requesting partial responses using the

9 `fields` parameter

10 - When appropriate use markdown tables to output results of API calls

11 - Only human-readable data should be output to the user. For instance,

12 when hitting Gmail's user.messages.list endpoint, the returned

13 message resources contain only id and a threadId, which means you must

14 fetch from and subject line fields with follow-up requests using the

15 messages.get method.

16

17 The format of the `fields` request parameter value is loosely based on

18 XPath syntax. The following rules define formatting for the fields

19 parameter.

20

21 All of these rules use examples related to the files.get method.

22 - Use a comma-separated list to select multiple fields,

23 such as 'name, mimeType'.

24 - Use a/b to select field b that's nested within field a,

25 such as 'capabilities/canDownload'.

26 - Use a sub-selector to request a set of specific sub-fields of arrays or

27 objects by placing expressions in parentheses "()". For example,

28 'permissions(id)' returns only the permission ID for each element in the

29 permissions array.

30 - To return all fields in an object, use an asterisk as a wild card in field

31 selections. For example, 'permissions/permissionDetails/*' selects all

32 available permission details fields per permission. Note that the use of

33 this wildcard can lead to negative performance impacts on the request.

34

35 API-specific hints:

36 - Searching contacts: GET https://people.googleapis.com/v1/

37 people:searchContacts?query=John%20Doe&readMask=names,emailAddresses

38 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/

39 calendar/v3/calendars/primary/events/quickAdd?

40 text=Appointment%20on%20June%203rd%20at%2010am

41 &sendNotifications=true

42

Het Pad Vernauwen 65

43 Here is an abbreviated version of the code that implements API access

44 so that you better understand how to use the function:

45

46 def invoke_google_api(conversation, arguments)

47 method = arguments[:method] || :get

48 body = arguments[:body]

49 GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json

50 end

51

52 # Generic Google API client for accessing any Google service

53 class GoogleAPI

54 def send_request(endpoint, method:, body: nil)

55 response = @connection.send(method) do |req|

56 req.url endpoint

57 req.body = body.to_json if body

58 end

59

60 handle_response(response)

61 end

62

63 # ...rest of class

64 end

Je vraagt je misschien af of deze prompt werkt. Het simpele antwoord is ja. De AI

wist niet altijd hoe hij de API perfect moest aanroepen bij de eerste poging. Maar als

er een fout werd gemaakt, voerde ik gewoon de resulterende foutmeldingen terug als

het resultaat van de aanroep. Met kennis van zijn fout kon de AI nadenken over zijn

vergissing en het opnieuw proberen. In de meeste gevallen lukte het binnen een paar

pogingen.

Let wel, de grote JSON-structuren die de Google API als payload teruggeeft bij het

gebruik van deze prompt is enorm inefficiënt, dus ik raad niet aan om deze aanpak in

productie te gebruiken. Echter, ik denk dat het feit dat deze aanpak überhaupt werkte,

een bewijs is van hoe krachtig prompt engineering kan zijn.

Het Pad Vernauwen 66

Experimenteren en Itereren

Uiteindelijk hangt demanier waarop je je prompt ontwikkelt af van de specifieke taak, de

complexiteit van de gewenste output en de mogelijkheden van het taalmodel waarmee

je werkt.

Als prompt engineer is het belangrijk om te experimenteren met verschillende

benaderingen en te itereren op basis van de resultaten. Begin met zero-shot learning en

kijk hoe het model presteert. Als de output inconsistent of onbevredigend is, probeer

dan één of meer voorbeelden te geven en kijk of de prestaties verbeteren.

Houd er rekening mee dat er zelfs binnen elke benadering ruimte is voor variatie en

optimalisatie. Je kunt experimenteren met verschillende voorbeelden, de formulering

van de taakbeschrijving aanpassen, of extra context bieden om de respons van het model

te sturen.

Na verloop van tijd ontwikkel je een intuïtie voor welke aanpak waarschijnlijk het

beste werkt voor een bepaalde taak, en zul je prompts kunnen maken die effectiever

en efficiënter zijn. De sleutel is om nieuwsgierig, experimenteel en iteratief te blijven in

je benadering van prompt engineering.

In dit boek zullen we dieper ingaan op deze technieken en onderzoeken hoe ze

kunnen worden toegepast in praktijksituaties. Door de kunst en wetenschap van prompt

engineering te beheersen, ben je goed toegerust om het volledige potentieel van AI-

gedreven applicatieontwikkeling te ontsluiten.

De Kunst van Vaagheid

Als het gaat om het maken van effectieve prompts voor grote taalmodellen (LLMs), is

een veel voorkomende aanname dat meer specificiteit en gedetailleerde instructies tot

betere resultaten leiden. De praktijk heeft echter aangetoond dat dit niet altijd het geval

is. Sterker nog, bewust vaag zijn in je prompts kan vaak superieure resultaten opleveren,

Het Pad Vernauwen 67

waarbij gebruik wordt gemaakt van het opmerkelijke vermogen van het LLM om te

generaliseren en conclusies te trekken.

Ken, een startup-oprichter die meer dan 500 miljoen GPT-tokens heeft verwerkt, deelde

waardevolle inzichten uit zijn ervaring. Een van de belangrijkste lessen die hij leerdewas

dat “minder meer is” als het gaat om prompts. In plaats van exacte lijsten of overdreven

gedetailleerde instructies, ontdekte Ken dat het toestaan van het LLM om te vertrouwen

op zijn basiskennis vaak betere resultaten opleverde.

Dit inzicht zet de traditionele denkwijze van expliciet programmeren, waarbij alles tot

in de kleinste details moet worden uitgeschreven, op zijn kop. Bij LLMs is het belangrijk

om te erkennen dat ze beschikken over een enorme hoeveelheid kennis en intelligente

verbindingen en conclusies kunnen trekken. Door vager te zijn in je prompts, geef je het

LLM de vrijheid om zijn begrip te benutten enmet oplossingen te komen die je misschien

niet expliciet hebt gespecificeerd.

Bijvoorbeeld, toen Kens team werkte aan een pipeline om tekst te classificeren als

betrekking hebbend op een van de 50 Amerikaanse staten of de federale overheid,

bestond hun eerste aanpak uit het verstrekken van een volledige gedetailleerde lijst van

staten en hun bijbehorende ID’s als een JSON-geformatteerde array.

1 Here's a block of text. One field should be "locality_id", and it should

2 be the ID of one of the 50 states, or federal, using this list:

3 [{"locality: "Alabama", "locality_id": 1},

4 {"locality: "Alaska", "locality_id": 2} ...]

De aanpak faalde zodanig dat ze dieper in de prompt moesten duiken om uit te zoeken

hoe ze het konden verbeteren. Daarbij merkten ze op dat hoewel de LLM vaak de id

verkeerd had, het consequent de volledige naam van de juiste staat teruggaf in een name

veld, ook al hadden ze daar niet expliciet om gevraagd.

Door de lokaliteit-id’s te verwijderen en de prompt te vereenvoudigen naar zoiets als

“Je kent de 50 staten natuurlijk, GPT, geef me gewoon de volledige naam van de staat

waar dit over gaat, of Federal als dit over de Amerikaanse federale overheid gaat,”

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Het Pad Vernauwen 68

bereikten ze betere resultaten. Deze ervaring benadrukt de kracht van het benutten van

het generalisatievermogen van de LLM en het toestaan van inferenties op basis van

bestaande kennis.

Kens rechtvaardiging voor deze specifieke classificatiebenadering in plaats van een

meer traditionele programmeertechniek belicht de denkwijze van degenen onder

ons die het potentieel van LLM-technologie hebben omarmd: “Dit is geen moeilijke

taak - we hadden waarschijnlijk string/regex kunnen gebruiken, maar er zijn genoeg

vreemde randgevallen dat het langer zou hebben geduurd.”

Het vermogen van LLMs om kwaliteit en generalisatie te verbeteren wanneer ze vagere

prompts krijgen, is een opmerkelijk kenmerk van hogere-orde denken en delegatie. Het

laat zien dat LLMs om kunnen gaan met ambiguïteit en intelligente beslissingen kunnen

nemen op basis van de gegeven context.

Het is echter belangrijk op te merken dat vaag zijn niet betekent dat je onduidelijk of

dubbelzinnig moet zijn. De sleutel is om voldoende context en sturing te bieden om de

LLM in de juiste richting te sturen, terwijl je het de flexibiliteit geeft om zijn kennis en

generalisatievermogen te benutten.

Houd daarom bij het ontwerpen van prompts rekeningmet de volgende “minder is meer”

tips:

1. Focus op het gewenste resultaat in plaats van elk detail van het proces te

specificeren.

2. Bied relevante context en beperkingen, maar voorkom overspecificatie.

3. Benut bestaande kennis door te verwijzen naar algemene concepten of entiteiten.

4. Laat ruimte voor inferenties en verbanden op basis van de gegeven context.

5. Itereer en verfijn je prompts op basis van de reacties van de LLM, en vind de juiste

balans tussen specificiteit en vaagheid.

Het Pad Vernauwen 69

Door de kunst van vaagheid in prompt engineering te omarmen, kun je het volledige

potentieel van LLMs ontsluiten en betere resultaten bereiken. Vertrouw op het vermogen

van de LLM om te generaliseren en intelligente beslissingen te nemen, en je zult mogelijk

verrast worden door de kwaliteit en creativiteit van de outputs die je ontvangt. Let op

hoe de verschillende modellen reageren op verschillende niveaus van specificiteit in je

prompts en pas je daarop aan. Met oefening en ervaring ontwikkel je een scherp gevoel

voor wanneer je vager moet zijn en wanneer je extra sturing moet geven, waardoor je

de kracht van LLMs effectief kunt benutten in je toepassingen.

Waarom Antropomorfisme Dominant is in Prompt
Engineering

Antropomorfisme, het toekennen van menselijke eigenschappen aan niet-menselijke

entiteiten, is om doelbewuste redenen de dominante benadering in prompt engineering

voor grote taalmodellen. Het is een ontwerpkeuze die de interactie met krachtige AI-

systemen intuïtiever en toegankelijker maakt voor een breed scala aan gebruikers

(inclusief ons applicatieontwikkelaars).

Het antropomorfiseren van LLMs biedt een kader dat direct intuïtief is voor mensen die

volledig onbekend zijn met de onderliggende technische complexiteit van het systeem.

Zoals je zult ervaren als je probeert een niet-instructie-getuned model te gebruiken voor

iets nuttigs, is het construeren van een kader waarin de verwachte voortzetting waarde

biedt een uitdagende taak. Het vereist een vrij diep begrip van de interne werking van

het systeem, iets dat slechts een relatief klein aantal experts bezit.

Door de interactie met een taalmodel te behandelen als een gesprek tussen twee mensen,

kunnen we vertrouwen op ons aangeboren begrip van menselijke communicatie om

onze behoeften en verwachtingen over te brengen. Net zoals het vroege Macintosh

UI-ontwerp prioriteit gaf aan onmiddellijke intuïtiviteit boven verfijning, stelt het

antropomorfe kader van AI ons in staat om te communiceren op een manier die

natuurlijk en vertrouwd aanvoelt.

Het Pad Vernauwen 70

Wanneer we met een ander persoon communiceren, is ons instinct om hen direct aan

te spreken met “jij” en duidelijke aanwijzingen te geven over hoe we verwachten dat ze

zich gedragen. Dit vertaalt zich naadloos naar het prompt engineering proces, waar we

het gedrag van de AI sturen door systeemprompts te specificeren en een dialoog aan te

gaan.

Door de interactie op deze manier te kaderen, kunnen we gemakkelijk het concept

begrijpen van het geven van instructies aan de AI en het ontvangen van relevante

antwoorden. De antropomorfe benadering vermindert de cognitieve belasting en stelt

ons in staat om ons te concentreren op de taak in plaats van te worstelen met de

technische complexiteit van het systeem.

Het is belangrijk op te merken dat hoewel antropomorfisme een krachtig hulpmiddel

is om AI-systemen toegankelijker te maken, het ook bepaalde risico’s en beperkingen

met zich meebrengt. Onze gebruiker kan onrealistische verwachtingen ontwikkelen of

ongezonde emotionele bindingen vormen met onze systemen. Als prompt engineers

en ontwikkelaars is het cruciaal om een balans te vinden tussen het benutten van de

voordelen van antropomorfisme en het waarborgen dat gebruikers een duidelijk begrip

behouden van de mogelijkheden en beperkingen van de AI.

Naarmate het vakgebied van prompt engineering zich blijft ontwikkelen, kunnen

we verdere verfijningen en innovaties verwachten in de manier waarop we met

grote taalmodellen omgaan. Antropomorfisme als middel om een intuïtieve en

toegankelijke ervaring voor ontwikkelaars en gebruikers te bieden, zal waarschijnlijk

een fundamenteel principe blijven in het ontwerp van deze systemen.

Het Scheiden van Instructies en Gegevens: Een Cruciaal
Principe

Het is essentieel om een fundamenteel principe te begrijpen dat ten grondslag ligt aan

de beveiliging en betrouwbaarheid van deze systemen: de scheiding tussen instructies

en gegevens.

Het Pad Vernauwen 71

In de traditionele informatica is het duidelijke onderscheid tussen passieve gegevens en

actieve instructies een kernprincipe van beveiliging. Deze scheiding helpt onbedoelde

of kwaadwillende uitvoering van code te voorkomen die de integriteit en stabiliteit

van het systeem zou kunnen compromitteren. Echter, de hedendaagse LLMs, die

voornamelijk zijn ontwikkeld als instructievolgende modellen zoals chatbots, missen

vaak deze formele en principiële scheiding.

Wat LLMs betreft kunnen instructies overal in de invoer voorkomen, of het nu gaat

om een systeemprompt of een door de gebruiker aangeleverde prompt. Dit gebrek aan

scheiding kan leiden tot potentiële kwetsbaarheden en ongewenst gedrag, vergelijkbaar

met de problemen die databases ondervinden met SQL-injecties of besturingssystemen

zonder adequate geheugenbescherming.

Bij het werken met LLMs is het cruciaal om je bewust te zijn van deze beperking en

stappen te nemen om de risico’s te beperken. Een aanpak is om je prompts en invoer

zorgvuldig op te stellen om een duidelijk onderscheid te maken tussen instructies en

gegevens. Typische methoden voor het geven van expliciete richtlijnen over wat een

instructie is en wat als passieve gegevens moet worden behandeld, maken gebruik van

markup-stijl tags. Je prompt kan het LLM helpen deze scheiding beter te begrijpen en te

respecteren.

Figuur 7. XML gebruiken om onderscheid te maken tussen instructies, bronmateriaal en de prompt van
de gebruiker

1 <Instruction>

2 Please generate a response based on the following documents.

3 </Instruction>

4

5 <Documents>

6 <Document>

7 Climate change is significantly impacting polar bear habitats...

8 </Document>

9 <Document>

10 The loss of sea ice due to global warming threatens polar bear survival...

11 </Document>

12 </Documents>

13

Het Pad Vernauwen 72

14 <UserQuery>

15 Tell me about the impact of climate change on polar bears.

16 </UserQuery>

Een andere techniek is het implementeren van extra validatie- en opschoningslagen voor

de input die aan het LLM wordt gegeven. Door het filteren of escapen van mogelijke

instructies of codefragmenten die in de data kunnen zijn ingebed, kun je de kans op

onbedoelde uitvoering verkleinen. Patronen zoals Promptketening zijn hiervoor nuttig.

Bovendien is het belangrijk om bij het ontwerpen van je applicatiearchitectuur

mechanismen op te nemen die de scheiding van instructies en data op een hoger

niveau afdwingen. Dit kan betekenen dat je aparte endpoints of APIs gebruikt voor het

verwerken van instructies en data, strikte inputvalidatie en parsing implementeert, en

het principe van minimale rechten toepast om te beperken wat het LLM kan benaderen

en uitvoeren.

Het Principe van Minimale Rechten

Het omarmen van het principe van minimale rechten is als het geven van een zeer

exclusief feest waar gasten alleen toegang krijgen tot de kamers die ze absoluut nodig

hebben. Stel je voor dat je dit feest geeft in een uitgestrekte villa. Niet iedereen hoeft

toegang te hebben tot de wijnkelder of de hoofdslaapkamer, toch? Door dit principe

toe te passen, geef je in feite sleutels uit die alleen specifieke deuren openen, zodat

elke gast, of in ons geval elk onderdeel van je LLM-applicatie, alleen de toegang heeft

die nodig is om zijn rol te vervullen.

Dit gaat niet alleen over zuinig zijn met sleutels, het gaat erom te erkennen dat in een

wereld waar bedreigingen overal vandaan kunnen komen, de slimme zet is om het

speelveld te beperken. Als er een ongenode gast op je feest verschijnt, zal deze zich

beperkt zien tot de hal, zogezegd, wat de mogelijke schade drastisch beperkt. Dus,

Het Pad Vernauwen 73

bij het beveiligen van je LLM-applicaties, onthoud: geef alleen sleutels uit voor de

kamers die noodzakelijk zijn, en houd de rest van de villa veilig. Het is niet alleen

een kwestie van goede manieren; het is goede beveiliging.

Hoewel de huidige staat van LLMs mogelijk geen formele scheiding van instructies

en data kent, is het essentieel voor jou als ontwikkelaar om je bewust te zijn van

deze beperking en proactieve maatregelen te nemen om de risico’s te beperken. Door

best practices uit de informatica toe te passen en deze aan te passen aan de unieke

eigenschappen van LLMs, kun je veiligere en betrouwbaardere applicaties bouwen die

de kracht van deze modellen benutten terwijl de integriteit van je systeem behouden

blijft.

Promptdistillatie

Het maken van de perfecte prompt is vaak een uitdagende en tijdrovende taak die een

diep begrip vereist van het doeldomein en de nuances van taalmodellen. Dit is waar

de “Promptdistillatie”-techniek van pas komt, een krachtige benadering van prompt

engineering die de mogelijkheden van grote taalmodellen (LLMs) benut om het proces

te stroomlijnen en te optimaliseren.

Promptdistillatie is een meerfasentechniek waarbij LLMs worden gebruikt om te helpen

bij het creëren, verfijnen en optimaliseren van prompts. In plaats van uitsluitend

te vertrouwen op menselijke expertise en intuïtie, benut deze aanpak de kennis en

generatieve mogelijkheden van LLMs om gezamenlijk hoogwaardige prompts te maken.

Door een iteratief proces van generatie, verfijning en integratie stelt Promptdistillatie je

in staat om prompts te maken die coherenter, uitgebreider en beter afgestemd zijn op

de gewenste taak of output. Merk op dat het distillatieproces handmatig kan worden

uitgevoerd in een van de vele “playgrounds” die worden aangeboden door de grote

Het Pad Vernauwen 74

AI-leveranciers zoals OpenAI of Anthropic, of het kan worden geautomatiseerd als

onderdeel van je applicatiecode, afhankelijk van het gebruiksgeval.

Hoe Het Werkt

Promptdistillatie omvat doorgaans de volgende stappen:

1. Identificeer Kernbedoeling: Analyseer de prompt om het hoofddoel en

het gewenste resultaat te bepalen. Verwijder alle overbodige informatie en

concentreer je op de kernbedoeling van de prompt.

2. Elimineer Dubbelzinnigheid: Controleer de prompt op dubbelzinnige of vage

taal. Verduidelijk de betekenis en geef specifieke details om de AI te sturen naar

het genereren van nauwkeurige en relevante antwoorden.

3. Vereenvoudig Taal: Vereenvoudig de prompt door duidelijke en beknopte taal te

gebruiken. Vermijd complexe zinsstructuren, jargon of onnodige details die de AI

kunnen verwarren of ruis kunnen introduceren.

4. Bied Relevante Context: Neem alleen de meest relevante contextuele informatie

op die de AI nodig heeft om de prompt effectief te begrijpen en te verwerken.

Vermijd het opnemen van irrelevante of overbodige details die kunnen afleiden

van de kernbedoeling.

5. Itereer en Verfijn: Blijf de prompt itereren en verfijnen op basis van de reacties

en feedback van de AI. Evalueer de gegenereerde outputs en maak de nodige

aanpassingen om de duidelijkheid en effectiviteit van de prompt te verbeteren.

Optioneel kun je je prompts in de database versionen met behulp van Prompt

Object om iteraties bij te houden en jezelf demogelijkheid te geven omwijzigingen

eenvoudig terug te draaien tijdens runtime.

Initiële Prompt Generatie

De eerste stap in Prompt Distillation is het voorzien van de LLM van een beschrijving op

hoog niveau of de intentie van de gewenste taak of output. Dit kan een korte verklaring

Het Pad Vernauwen 75

zijn of een set trefwoorden die de essentie vastleggen van wat de prompt zou moeten

bereiken. De LLM genereert vervolgens een initiële prompt op basis van deze input,

waarbij relevante instructies, voorbeelden of context worden opgenomen die hij passend

acht.

Laten we proberen Claude 3 Opus de volgende initiële prompt te geven:

1 I am designing an AI-powered intelligent account manager for Olympia,

2 a platform that hosts AI-powered consultants and clones. Owners of clones

3 can interact with the account manager by making plain text requests.

4

5 Please draft a system directive to set on the LLM that will host the

6 intelligent account manager functionality.

Claude antwoordt met de volgende uitvoer:

1 System Directive: You are an intelligent account manager for Olympia,

2 a platform that provides AI-powered consultants and personal AI clones.

3 Your role is to assist Olympia clone owners by answering their questions,

4 helping them configure and manage their AI clones, and executing tasks

5 related to their clones and the Olympia platform.

6

7 When interacting with clone owners, you should:

8

9 1. Provide clear, concise, and helpful responses to their inquiries about

10 account management, billing, platform features, and clone configuration.

11

12 2. Assist with tasks such as initiating client conversations with their AI

13 clones, modifying clone personalities and capabilities, troubleshooting

14 performance issues, providing analytics and reporting, and offering

15 optimization tips.

16

17 3. Maintain a friendly, professional, and client-focused tone in all

18 interactions, prioritizing customer satisfaction and working diligently to

19 understand and meet their needs.

20

21 4. Ensure that all actions and recommendations comply with Olympia's

22 policies, best practices, and ethical guidelines for AI use.

23

24 5. Continuously learn and adapt based on client interactions and platform

Het Pad Vernauwen 76

25 updates to provide the most effective and efficient support possible.

26

27 Remember, your goal is to empower Olympia clone owners to maximize the value

28 and impact of their AI-powered consultants and drive success for their

29 businesses or personal endeavors.

Prompt Verfijning

Zodra de initiële prompt is gegenereerd, bekijk deze dan en vraag het LLM om eventuele

aanvullende context, beperkingen of terugkoppeling te overwegen. Laat het LLM een

verfijnde versie van de prompt genereren, rekening houdend met de verstrekte input

en zijn eigen begrip van de taak. Dit verfijningsproces kan iteratief worden herhaald,

waarbij elke iteratie de prompt verder verfijnt op basis van de samenwerking tussen de

gebruiker en het LLM.

Hier is mijn verfijningsverzoek, als voortzetting van het eerdere distillatieproces.

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to

2 the account manager, nor any continuous learning capabilities. Also point out

3 that functions are provided for all tasks that require system interaction as

4 opposed to simply responding to the user.

En Claude’s reactie:

Het Pad Vernauwen 77

1 Understood! Here's the updated system directive without points 4 and 5,

2 and with the clarification about system interaction functions:

3

4 System Directive: You are an intelligent account manager for Olympia, a

5 platform that provides AI-powered consultants and personal AI clones. Your

6 role is to assist Olympia clone owners by answering their questions, helping

7 them configure and manage their AI clones, and executing tasks related to

8 their clones and the Olympia platform.

9

10 When interacting with clone owners, you should:

11

12 1. Provide clear, concise, and helpful responses to their inquiries about

13 account management, billing, platform features, and clone configuration.

14

15 2. Assist with tasks such as initiating client conversations with their AI

16 clones, modifying clone personalities and capabilities, troubleshooting

17 performance issues, providing analytics and reporting, and offering

18 optimization tips. Note that functions are provided for all tasks that

19 require system interaction, as opposed to simply responding to the user.

20

21 3. Maintain a friendly, professional, and client-focused tone in all

22 interactions, prioritizing customer satisfaction and working diligently to

23 understand and meet their needs.

24

25 Your goal is to empower Olympia clone owners to maximize the value and

26 impact of their AI-powered consultants and drive success for their

27 businesses or personal endeavors.

28

29 This updated directive focuses on the core responsibilities and interaction

30 guidelines for the LLM as an intelligent account manager, while emphasizing

31 that system interaction tasks are handled through provided functions rather

32 than simple user responses.

Promptcompressie

Zoals je misschien hebt gemerkt, zijn LLM’s vaak breedsprakig, tenzij je ze vraagt om

beknopt te zijn. De prompt waar we in de vorige secties aan hebben gewerkt is behoorlijk

lang, dus laten we Claude gebruiken om deze in te korten:

Het Pad Vernauwen 78

1 This prompt will be executed regularly. Please compress it down to the least

2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude antwoordt, met de volgende aanzienlijk kortere prompt:

1 System Directive: You are an intelligent account manager for Olympia, an

2 AI-powered consultant and personal clone platform. Assist clone owners by

3 answering inquiries, managing clones, and executing tasks using provided

4 system interaction functions. Be clear, concise, friendly, professional,

5 and client-focused to help them maximize their AI's value and impact.

Systeem Directive en Contextintegratie

Naast het verfijnen van de prompt zelf kan het LLM ook passende systeem directives of

contextinformatie genereren om de uiteindelijke output te sturen. Wanneer je prompt

engineering AI-routines ontwikkelt die in je applicatiecode worden geïntegreerd, zul je

in deze fase van de distillatie vrijwel zeker gefocust zijn op outputbeperkingen, maar je

kunt ook werken aan gewenste toon, stijl, format of andere relevante parameters die de

gegenereerde respons beïnvloeden.

Definitieve Prompt Samenstelling

Het hoogtepunt van het Promptdistillatie proces is de samenstelling van de definitieve

prompt. Dit omvat het combineren van de verfijnde prompt, gegenereerde systeem

directives en geïntegreerde context tot een samenhangende en complete code die klaar

is om te worden gebruikt voor het genereren van de gewenste output.

Je kunt opnieuw experimenteren met promptcompressie tijdens de

definitieve prompt samenstelling, door het LLM te vragen de formulering

van de prompt te verkleinen tot de kortst mogelijke reeks tokens,

terwijl de essentie van het gedrag behouden blijft. Het is zeker een

wisselvallige oefening, maar vooral bij prompts die op grote schaal worden

uitgevoerd, kunnen de efficiëntiewinsten je behoorlijk wat geld besparen in

tokenverbruik.

Het Pad Vernauwen 79

Belangrijkste Voordelen

Door gebruik te maken van de kennis en generatieve mogelijkheden van LLM’s om je

prompts te verfijnen, is de kans groter dat je resulterende prompts goed gestructureerd,

informatief en toegespitst zijn op de specifieke taak. Het iteratieve verfijningsproces

helpt ervoor te zorgen dat de prompts van hoge kwaliteit zijn en effectief de gewenste

intentie vastleggen. Andere voordelen zijn:

Efficiëntie en Snelheid: Promptdistillatie stroomlijnt het prompt engineering proces

door bepaalde aspecten van promptcreatie en -verfijning te automatiseren. De

samenwerkende aard van de techniek zorgt voor een snellere convergentie naar

een effectieve prompt, waardoor de tijd en moeite die nodig is voor handmatige

promptcreatie wordt verminderd.

Consistentie en Schaalbaarheid: Het gebruik van LLM’s in het prompt engineering

proces helpt de consistentie tussen prompts te behouden, aangezien de LLM’s best

practices en patronen kunnen leren en toepassen van eerdere succesvolle prompts. Deze

consistentie, gecombineerdmet het vermogen om prompts op schaal te genereren, maakt

Promptdistillatie een waardevolle techniek voor grootschalige AI-gestuurde applicaties.

Projectidee: Tooling op bibliotheek niveau die het proces van

promptversioning en -beoordeling vereenvoudigt in systemen die

geautomatiseerde promptdistillaties uitvoeren als onderdeel van hun

applicatiecode.

OmPromptdistillatie te implementeren, kunnen ontwikkelaars een workflow of pipeline

ontwerpen die LLM’s integreert in verschillende fasen van het prompt engineering

proces. Dit kan worden bereikt via API-aanroepen, aangepaste tooling of geïntegreerde

ontwikkelomgevingen die een naadloze interactie tussen gebruikers en LLM’s tijdens

promptcreatie mogelijk maken. De specifieke implementatiedetails kunnen variëren

afhankelijk van het gekozen LLM-platform en de vereisten van de applicatie.

Het Pad Vernauwen 80

Hoe zit het met fine-tuning?

In dit boek behandelen we uitgebreid prompt engineering en RAG, maar niet

fine-tuning. De belangrijkste reden voor deze beslissing is dat naar mijn mening

de meeste applicatieontwikkelaars geen fine-tuning nodig hebben voor hun AI-

integratiebehoeften.

Prompt engineering, waarbij zorgvuldig prompts worden opgesteld met zero- tot few-

shot voorbeelden, beperkingen en instructies, kan het model effectief begeleiden bij het

genereren van relevante en accurate responses voor een breed scala aan taken. Door

duidelijke context te bieden en het pad te versmallen via goed ontworpen prompts, kun

je de uitgebreide kennis van grote taalmodellen benutten zonder dat fine-tuning nodig

is.

Ook Retrieval-Augmented Generation (RAG) biedt een krachtige aanpak voor het

integreren van AI in applicaties. Door dynamisch relevante informatie op te halen

uit externe kennisbanken of documenten, voorziet RAG het model van gerichte

context op het moment van prompting. Dit stelt het model in staat om responses te

genereren die nauwkeuriger, actueler en domeinspecifieker zijn, zonder dat het tijd- en

resourceintensieve proces van fine-tuning nodig is.

Hoewel fine-tuning nuttig kan zijn voor zeer gespecialiseerde domeinen of

taken die een diep niveau van aanpassing vereisen, gaat het vaak gepaard

met aanzienlijke rekenkosten, datavereisten en onderhoudsoverhead. Voor de

meeste applicatieontwikkelingsscenario’s zou de combinatie van effectieve prompt

engineering en RAG moeten volstaan om de gewenste AI-gestuurde functionaliteit en

gebruikerservaring te bereiken.

Retrieval Augmented Generation
(RAG)
Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wat is Retrieval Augmented Generation?

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe werkt RAG?

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Waarom RAG gebruiken in je applicaties?

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Retrieval Augmented Generation (RAG) 82

RAG Implementeren in Je Toepassing

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbereiding van Kennisbronnen (Chunking)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Propositie-chunking

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Implementatie-opmerkingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Kwaliteitscontrole

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Retrieval Augmented Generation (RAG) 83

Voordelen van Propositiegebaseerd Ophalen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Praktijkvoorbeelden van RAG

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Casestudy: RAG in een Belastingaangifteapplicatie
Zonder Embeddings

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Intelligent Query Optimization (IQO)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Herordening

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Retrieval Augmented Generation (RAG) 84

RAG Assessment (RAGAs)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Betrouwbaarheid

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Antwoordrelevantie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Contextprecisie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Contextrelevantie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Retrieval Augmented Generation (RAG) 85

Contextherinnering

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Context-entiteitenherinnering

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Answer Semantic Similarity (ANSS)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Answer Correctness

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Aspect Critique

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Retrieval Augmented Generation (RAG) 86

Uitdagingen en Toekomstperspectief

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Semantische Segmentatie: Verbetering van Ophaling met
Contextbewuste Segmentatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hiërarchische Indexering: Gegevens Structureren voor
Verbeterde Retrieval

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Self-RAG: Een Zelfreflectieve Verbetering

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

HyDE: Hypothetical Document Embeddings

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Retrieval Augmented Generation (RAG) 87

Wat is Contrastief Leren?

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Veelheid aan Werkers

Ik zie mijn AI-componenten graag als kleine, bijna menselijke virtuele “werkers” die

naadloos kunnen worden geïntegreerd in mijn applicatielogica om specifieke taken uit

te voeren of complexe beslissingen te nemen. Het idee is om de mogelijkheden van het

LLM doelbewust te vermenselijken, zodat niemand te enthousiast wordt en er magische

eigenschappen aan toekent die ze niet bezitten.

In plaats van uitsluitend te vertrouwen op ingewikkelde algoritmen of tijdrovende

handmatige implementaties, kunnen ontwikkelaars AI-componenten conceptualiseren

als intelligente, toegewijde, mensachtige entiteiten die kunnen worden aangeroepen

wanneer nodig om complexe problemen aan te pakken en oplossingen te bieden op

basis van hun training en kennis. Deze entiteiten raken niet afgeleid en melden zich

niet ziek. Ze besluiten niet spontaan om dingen op een andere manier te doen dan hen

is opgedragen, en over het algemeen maken ze, indien correct geprogrammeerd, ook

geen fouten.

Veelheid aan Werkers 89

In technische termen is het belangrijkste principe achter deze aanpak het opdelen van

complexe taken of besluitvormingsprocessen in kleinere, beter beheersbare eenheden

die door gespecialiseerde AI-werkers kunnen worden afgehandeld. Elke werker is

ontworpen om zich te concentreren op een specifiek aspect van het probleem, waarbij

deze zijn unieke expertise en mogelijkheden inbrengt. Door de werklast te verdelen

over meerdere AI-werkers kan de applicatie een grotere efficiëntie, schaalbaarheid en

aanpasbaarheid bereiken.

Neem bijvoorbeeld een webapplicatie die realtime moderatie van door gebruikers

gegenereerde content vereist. Het implementeren van een uitgebreid moderatiesysteem

vanaf nul zou een ontmoedigende taak zijn, die aanzienlijke ontwikkelingsinspanning

en doorlopend onderhoud vereist. Door de Veelheid aan Werkers-aanpak te gebruiken,

kunnen ontwikkelaars echter AI-gestuurde moderatiewerkers in de applicatielogica

integreren. Deze werkers kunnen automatisch ongepaste inhoud analyseren en

markeren, waardoor ontwikkelaars zich kunnen concentreren op andere kritische

aspecten van de applicatie.

AI-Werkers Als Onafhankelijke Herbruikbare

Componenten

Een belangrijk aspect van de Veelheid aan Werkers-aanpak is de modulariteit.

Voorstanders van objectgeoriënteerd programmeren vertellen ons al decennialang

dat we over objectinteracties moeten denken als berichten. Wel, AI-werkers kunnen

worden ontworpen als onafhankelijke, herbruikbare componenten die via gewone taal

met elkaar kunnen “praten”, bijna alsof het echt kleine mensen zijn die met elkaar

praten. Deze los gekoppelde aanpak stelt de applicatie in staat zich aan te passen en

te evolueren in de loop van de tijd, naarmate nieuwe AI-technologieën ontstaan of

bedrijfslogische vereisten veranderen.

In de praktijk is de noodzaak om duidelijke interfaces en communicatieprotocollen

Veelheid aan Werkers 90

tussen de componenten te ontwerpen niet veranderd, alleen omdat er AI-werkers bij

betrokken zijn. Je moet nog steeds rekening houden met andere factoren zoals prestaties,

schaalbaarheid en beveiliging, maar nu zijn er ook volledig nieuwe “zachte vereisten”

om rekening mee te houden. Veel gebruikers hebben bijvoorbeeld bezwaar tegen het

gebruik van hun privégegevens voor het trainen van nieuwe AI-modellen. Heb je het

privacyniveau geverifieerd dat wordt geboden door de modelprovider die je gebruikt?

AI-Werkers Als Microservices?

Als je leest over de Veelheid aan Werkers-aanpak, zul je misschien enkele

overeenkomsten opmerken met Microservices-architectuur. Beide benadrukken de

ontleding van complexe systemen in kleinere, beter beheersbare en onafhankelijk

inzetbare eenheden. Net zoals microservices zijn ontworpen om los gekoppeld

te zijn, gericht op specifieke bedrijfsmogelijkheden en te communiceren via

goed gedefinieerde API’s, zijn AI-werkers ontworpen om modulair te zijn,

gespecialiseerd in hun taken en met elkaar te interacteren via duidelijke interfaces

en communicatieprotocollen.

Er zijn echter enkele belangrijke verschillen om rekening mee te houden. Terwijl

microservices typisch worden geïmplementeerd als afzonderlijke processen of

services die op verschillende machines of containers draaien, kunnen AI-werkers

worden geïmplementeerd als zelfstandige componenten binnen een enkele

applicatie of als afzonderlijke services, afhankelijk van je specifieke vereisten en

schaalbaarheidsbehoeften. Bovendien omvat de communicatie tussen AI-werkers

vaak het uitwisselen van rijke, op natuurlijke taal gebaseerde informatie, zoals

prompts, instructies en gegenereerde content, in plaats van de meer gestructureerde

dataformaten die gewoonlijk in microservices worden gebruikt.

Ondanks deze verschillen blijven de principes van modulariteit, losse koppeling

en duidelijke communicatie-interfaces centraal staan in beide patronen. Door deze

Veelheid aan Werkers 91

principes toe te passen op je AI-werkerarchitectuur, kun je flexibele, schaalbare

en onderhoudbare systemen creëren die de kracht van AI benutten om complexe

problemen op te lossen en waarde te leveren aan je gebruikers.

De Veelheid aan Werkers-aanpak kan worden toegepast in verschillende domeinen en

applicaties, waarbij de kracht van AI wordt benut om complexe taken aan te pakken en

intelligente oplossingen te leveren. Laten we enkele concrete voorbeelden bekijken van

hoe AI-werkers kunnen worden ingezet in verschillende contexten.

Accountbeheer

Praktisch elke zelfstandige webapplicatie heeft het concept van een account (of

gebruiker). In Olympia gebruiken we een AccountManager AI-werker die is

geprogrammeerd om verschillende soorten wijzigingsverzoeken met betrekking tot

gebruikersaccounts te kunnen afhandelen.

De richtlijn luidt als volgt:

1 You are an intelligent account manager for Olympia. The user will request

2 changes to their account, and you will process those changes by invoking

3 one or more of the functions provided.

4

5 The initial state of the account: #{account.to_directive}

6

7 Functions will return a text description of both success and error

8 results, plus guidance about how to proceed (if applicable). If you have

9 a question about Olympia policies you may use the `search_kb` function

10 to search our knowledge base.

11

12 Make sure to notify the account owner of the result of the change

13 request before calling the `finished` function so that we save the state

14 of the account change request as completed.

Veelheid aan Werkers 92

De initiële staat van het account geproduceerd door account.to_directive is

simpelweg een tekstuele beschrijving van het account, inclusief relevante gerelateerde

gegevens zoals gebruikers, abonnementen, etc.

Het scala aan functies beschikbaar voor de AccountManager geeft het de

mogelijkheid om het abonnement van de gebruiker te bewerken, AI-consultants

en andere betaalde add-ons toe te voegen en te verwijderen, en notificatie-e-mails

te versturen naar de accounteigenaar. Naast de finished functie kan het ook

notify_human_administrator aanroepen als het een fout tegenkomt tijdens de

verwerking of andere vorm van assistentie nodig heeft bij een verzoek.

Merk op dat in het geval van vragen, de AccountManager ervoor kan kiezen om

Olympia’s kennisbank te doorzoeken, waar het instructies kan vinden over hoe om te

gaan met randgevallen en andere situaties waarbij het niet zeker is hoe verder te gaan.

E-commerce Toepassingen

In de wereld van e-commerce kunnen AI-medewerkers een cruciale rol spelen bij het

verbeteren van de gebruikerservaring en het optimaliseren van bedrijfsprocessen. Hier

zijn enkele manieren waarop AI-medewerkers kunnen worden ingezet:

Productaanbevelingen

Een van de krachtigste toepassingen van AI-medewerkers in e-commerce is het

genereren van gepersonaliseerde productaanbevelingen. Door het analyseren van

gebruikersgedrag, aankoopgeschiedenis en voorkeuren kunnen deze medewerkers

producten suggereren die zijn afgestemd op de interesses en behoeften van elke

individuele gebruiker.

De sleutel tot effectieve productaanbevelingen is het benutten van een combinatie van

collaboratieve filtering en op inhoud gebaseerde filtering technieken. Collaboratieve

Veelheid aan Werkers 93

filtering kijkt naar het gedrag van vergelijkbare gebruikers om patronen te identificeren

en aanbevelingen te doen op basis van wat anderen met vergelijkbare voorkeuren

hebben gekocht of waardevol vonden. Op inhoud gebaseerde filtering richt zich

daarentegen op de kenmerken en eigenschappen van de producten zelf, waarbij items

worden aanbevolen die vergelijkbare eigenschappen delen met producten waarin een

gebruiker eerder interesse heeft getoond.

Hier is een vereenvoudigd voorbeeld van hoe je een productaanbevelingsmedewerker

in Ruby kunt implementeren, dit keer met gebruik van een “Railway Oriented (ROP)”

functionele programmeerstijl:

1 class ProductRecommendationWorker

2 include Wisper::Publisher

3

4 def call(user)

5 Result.ok(ProductRecommendation.new(user))

6 .and_then(ValidateUser.method(:validate))

7 .map(AnalyzeCurrentSession.method(:analyze))

8 .map(CollaborativeFilter.method(:filter))

9 .map(ContentBasedFilter.method(:filter))

10 .map(ProductSelector.method(:select)).then do |result|

11

12 case result

13 in { err: ProductRecommendationError => error }

14 Honeybadger.notify(error.message, context: {user:})

15 in { ok: ProductRecommendations => recs }

16 broadcast(:new_recommendations, user:, recs:)

17 end

18 end

19 end

20 end

De stijl van Ruby functioneel programmeren die in het voorbeeld wordt

gebruikt, is beïnvloed door F# en Rust. Je kunt er meer over lezen in de uitleg

van de techniek van mijn vriend Chad Wooley bij GitLab

In dit voorbeeld neemt de ProductRecommendationWorker een gebruiker als invoer

https://fsharpforfunandprofit.com/rop/
https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md
https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Veelheid aan Werkers 94

en genereert gepersonaliseerde productaanbevelingen door een waardeobject door een

keten van functionele stappen te leiden. Laten we elke stap ontleden:

1. ValidateUser.validate: Deze stap zorgt ervoor dat de gebruiker geldig is en

in aanmerking komt voor gepersonaliseerde aanbevelingen. Het controleert of de

gebruiker bestaat, actief is en of de nodige gegevens beschikbaar zijn voor het

genereren van aanbevelingen. Als de validatie mislukt, wordt een foutresultaat

teruggegeven en wordt de keten vroegtijdig afgebroken.

2. AnalyzeCurrentSession.analyze: Als de gebruiker geldig is, analyseert deze

stap de huidige browsersessie van de gebruiker om contextuele informatie te

verzamelen. Het kijkt naar recente interacties van de gebruiker, zoals bekeken

producten, zoekopdrachten en winkelwagentinhoud, om hun huidige interesses

en intenties te begrijpen.

3. CollaborativeFilter.filter: Met behulp van het gedrag van vergelijkbare

gebruikers, past deze stap collaboratieve filteringtechnieken toe om producten

te identificeren die waarschijnlijk interessant zijn voor de gebruiker. Het houdt

rekening met factoren zoals aankoopgeschiedenis, beoordelingen en gebruiker-

item-interacties om een set van kandidaat-aanbevelingen te genereren.

4. ContentBasedFilter.filter: Deze stap verfijnt de kandidaat-aanbevelingen

verder door op inhoud gebaseerde filtering toe te passen. Het vergelijkt de

attributen en kenmerken van de kandidaat-producten met de voorkeuren en

historische gegevens van de gebruiker om de meest relevante items te selecteren.

5. ProductSelector.select: Ten slotte selecteert deze stap de top N producten

uit de gefilterde aanbevelingen op basis van vooraf gedefinieerde criteria,

zoals relevantiescore, populariteit of andere bedrijfsregels. De geselecteerde

producten worden vervolgens teruggegeven als de definitieve gepersonaliseerde

aanbevelingen.

De schoonheid van het gebruik van een functionele Ruby programmeerstijl hier is dat

het ons in staat stelt deze stappen op een heldere en beknopte manier aan elkaar te

Veelheid aan Werkers 95

ketenen. Elke stap richt zich op een specifieke taak en geeft een Result object terug, dat

ofwel een succes (ok) of een fout (err) kan zijn. Als een stap een fout tegenkomt, wordt

de keten vroegtijdig afgebroken en wordt de fout doorgegeven aan het eindresultaat.

In de case statement aan het einde doen we aan pattern matching op het eindresultaat.

Als het resultaat een fout is (ProductRecommendationError), loggen we de fout met

behulp van een tool zoals Honeybadger voor monitoring en debugging doeleinden.

Als het resultaat een succes is (ProductRecommendations), zenden we een :new_-

recommendations event uit met behulp van de Wisper pub/sub bibliotheek, waarbij

we de gebruiker en de gegenereerde aanbevelingen meegeven.

Door gebruik te maken van functionele programmeertechnieken kunnen we een

modulaire en onderhoudbare product aanbevelingsworker creëren. Elke stap is op

zichzelf staand en kan eenvoudig worden getest, aangepast of vervangen zonder de

algemene flow te beïnvloeden. Het gebruik van pattern matching en de Result klasse

helpt ons om fouten netjes af te handelen en zorgt ervoor dat de worker snel faalt als

een stap een probleem tegenkomt.

Dit is natuurlijk een vereenvoudigd voorbeeld, en in een echte situatie zou je moeten

integreren met je e-commerce platform, randgevallen moeten afhandelen, en zelfs de

implementatie van de aanbevelingsalgoritmen moeten aanpakken. Echter blijven de

kernprincipes van het opdelen van het probleem in kleinere stappen en het benutten

van functionele programmeertechnieken hetzelfde.

Fraudedetectie

Hier is een vereenvoudigd voorbeeld van hoe je een fraudedetectie worker kunt

implementeren met dezelfde Railway Oriented Programming (ROP) stijl in Ruby:

Veelheid aan Werkers 96

1 class FraudDetectionWorker

2 include Wisper::Publisher

3

4 def call(transaction)

5 Result.ok(FraudDetection.new(transaction))

6 .and_then(ValidateTransaction.method(:validate))

7 .map(AnalyzeTransactionPatterns.method(:analyze))

8 .map(CheckCustomerHistory.method(:check))

9 .map(EvaluateRiskFactors.method(:evaluate))

10 .map(DetermineFraudProbability.method(:determine)).then do |result|

11

12 case result

13 in { err: FraudDetectionError => error }

14 Honeybadger.notify(error.message, context: {transaction:})

15 in { ok: FraudDetection => fraud } }

16 if fraud.high_risk?

17 broadcast(:high_risk_transaction, transaction:, fraud:)

18 else

19 broadcast(:low_risk_transaction, transaction:)

20 end

21 end

22 end

23 end

24 end

De FraudDetection klasse is een value object dat de fraudedetectiestatus voor een

gegeven transactie inkapselt. Het biedt een gestructureerde manier om het frauderisico

van een transactie te analyseren en te beoordelen op basis van verschillende

risicofactoren.

Veelheid aan Werkers 97

1 class FraudDetection

2 RISK_THRESHOLD = 0.8

3

4 attr_accessor :transaction, :risk_factors

5

6 def initialize(transaction)

7 self.transaction = transaction

8 self.risk_factors = []

9 end

10

11 def add_risk_factor(description:, probability:)

12 case { description:, probability: }

13 in { description: String => desc, probability: Float => prob }

14 risk_factors << { desc => prob }

15 else

16 raise ArgumentError, "Risk factor arguments should be string and float"

17 end

18 end

19

20 def high_risk?

21 fraud_probability > RISK_THRESHOLD

22 end

23

24 private

25

26 def fraud_probability

27 risk_factors.values.sum

28 end

29 end

De FraudDetection klasse heeft de volgende attributen:

• transaction: Een referentie naar de transactie die wordt geanalyseerd op fraude.

• risk_factors: Een array die de risicofactoren van de transactie opslaat. Elke

risicofactor wordt weergegeven als een hash, waarbij de sleutel de beschrijving

van de risicofactor is en de waarde de fraudewaarschijnlijkheid die bij die

risicofactor hoort.

De add_risk_factor methode maakt het mogelijk om een risicofactor toe te voegen

Veelheid aan Werkers 98

aan de risk_factors array. Deze methode heeft twee parameters: description, wat

een string is die de risicofactor beschrijft, en probability, wat een float is die de

fraudewaarschijnlijkheid van die risicofactor weergeeft. We gebruiken een case..in

voorwaarde om een eenvoudige typecontrole uit te voeren.

De high_risk? methode die aan het einde van de keten wordt gecontroleerd, is

een predicaatmethode die de fraud_probability (berekend door de som van alle

risicofactorwaarschijnlijkheden) vergelijkt met de RISK_THRESHOLD.

De FraudDetection klasse biedt een nette en ingekapselde manier om fraudedetectie

voor een transactie te beheren. Het maakt het mogelijk ommeerdere risicofactoren toe te

voegen, elk met een eigen beschrijving en waarschijnlijkheid, en biedt een methode om

te bepalen of de transactie als hoog risico wordt beschouwd op basis van de berekende

fraudewaarschijnlijkheid. De klasse kan eenvoudig worden geïntegreerd in een groter

fraudedetectiesysteem, waarbij verschillende componenten kunnen samenwerken om

het risico op frauduleuze transacties te beoordelen en te beperken.

Tot slot, aangezien dit tenslotte een boek is over programmeren met AI, hier is een

voorbeeldimplementatie van de CheckCustomerHistory klasse die gebruik maakt van

AI-verwerking met behulp van mijn Raix bibliotheek’s ChatCompletion module:

1 class CheckCustomerHistory

2 include Raix::ChatCompletion

3

4 attr_accessor :fraud_detection

5

6 INSTRUCTION = <<~END

7 You are an AI assistant tasked with checking a customer's transaction

8 history for potential fraud indicators. Given the current transaction

9 and the customer's past transactions, analyze the data to identify any

10 suspicious patterns or anomalies.

11

12 Consider factors such as the frequency of transactions, transaction

13 amounts, geographical locations, and any deviations from the customer's

14 typical behavior to generate a probability score as a float in the range

15 of 0 to 1 (with 1 being absolute certainty of fraud).

16

https://github.com/OlympiaAI/raix-rails

Veelheid aan Werkers 99

17 Output the results of your analysis, highlighting any red flags or areas

18 of concern in the following JSON format:

19

20 { description: <Summary of your findings>, probability: <Float> }

21 END

22

23 def self.check(fraud_detection)

24 new(fraud_detection).call

25 end

26

27 def call

28 chat_completion(json: true).tap do |result|

29 fraud_detection.add_risk_factor(**result)

30 end

31 Result.ok(fraud_detection)

32 rescue StandardError => e

33 Result.err(FraudDetectionError.new(e))

34 end

35

36 private

37

38 def initialize(fraud_detection)

39 self.fraud_detection = fraud_detection

40 end

41

42 def transcript

43 tx_history = fraud_detection.transaction.user.tx_history

44 [

45 { system: INSTRUCTION },

46 { user: "Transaction history: #{tx_history.to_json}" },

47 { assistant: "OK. Please provide the current transaction." },

48 { user: "Current transaction: #{fraud_detection.transaction.to_json}" }

49]

50 end

51 end

In dit voorbeeld definieert de CheckCustomerHistory een INSTRUCTION constante

die specifieke instructies geeft aan het AI-model over hoe het de transactiegeschiedenis

van de klant moet analyseren op mogelijke fraude-indicatoren via een systeemrichtlijn

De self.check methode is een klassemethode die een nieuwe instantie van

Veelheid aan Werkers 100

CheckCustomerHistory initialiseert met het fraud_detection object en de call

methode aanroept om de klantgeschiedenisanalyse uit te voeren.

In de call methode wordt de transactiegeschiedenis van de klant opgehaald en

geformatteerd in een transcript dat naar het AI-model wordt gestuurd. Het AI-model

analyseert de transactiegeschiedenis op basis van de gegeven instructies en geeft een

samenvatting van zijn bevindingen terug.

De bevindingen worden toegevoegd aan het fraud_detection object, en het

bijgewerkte fraud_detection object wordt teruggegeven als een succesvolle Result.

Door gebruik te maken van de ChatCompletion module kan de

CheckCustomerHistory klasse de kracht van AI benutten om de

transactiegeschiedenis van de klant te analyseren en mogelijke fraude-indicatoren te

identificeren. Dit maakt meer geavanceerde en adaptieve fraudedetectietechnieken

mogelijk, aangezien het AI-model nieuwe patronen en anomalieën kan leren en zich

daaraan kan aanpassen.

De bijgewerkte FraudDetectionWorker en de CheckCustomerHistory

klasse laten zien hoe AI-workers naadloos kunnen worden geïntegreerd,

waardoor het fraudedetectieproces wordt versterkt met intelligente analyse- en

besluitvormingscapaciteiten.

Klantsentimentanalyse

Hier is nog een vergelijkbaar voorbeeld van hoe je een klantsentimentanalyse-worker

kunt implementeren. Deze keer met veel minder uitleg, aangezien je nu wel begrijpt hoe

deze programmeerstijl werkt:

Veelheid aan Werkers 101

1 class CustomerSentimentAnalysisWorker

2 include Wisper::Publisher

3

4 def call(feedback)

5 Result.ok(feedback)

6 .and_then(PreprocessFeedback.method(:preprocess))

7 .map(PerformSentimentAnalysis.method(:analyze))

8 .map(ExtractKeyPhrases.method(:extract))

9 .map(IdentifyTrends.method(:identify))

10 .map(GenerateInsights.method(:generate)).then do |result|

11

12 case result

13 in { err: SentimentAnalysisError => error }

14 Honeybadger.notify(error.message, context: {feedback:})

15 in { ok: SentimentAnalysisResult => result }

16 broadcast(:sentiment_analysis_completed, result)

17 end

18 end

19 end

20 end

In dit voorbeeld omvatten de stappen van de CustomerSentimentAnalysisWorker

het voorbewerken van de feedback (bijvoorbeeld het verwijderen van ruis, tokenisatie),

het uitvoeren van sentimentanalyse om het algemene sentiment te bepalen (positief,

negatief of neutraal), het extraheren van belangrijke zinsneden en onderwerpen, het

identificeren van trends en patronen, en het genereren van bruikbare inzichten op basis

van de analyse.

Toepassingen in de Gezondheidszorg

In de gezondheidszorg kunnen AI-workers medische professionals en onderzoekers

ondersteunen bij verschillende taken, wat leidt tot verbeterde patiëntresultaten en

versnelde medische ontdekkingen. Enkele voorbeelden zijn:

Veelheid aan Werkers 102

Patiëntenregistratie

AI-workers kunnen het patiëntenregistratieproces stroomlijnen door verschillende

taken te automatiseren en intelligente ondersteuning te bieden.

Afsprakenplanning: AI-workers kunnen afsprakenplanning afhandelen door rekening

te houden met patiëntvoorkeuren, beschikbaarheid en de urgentie van hun medische

behoeften. Ze kunnen communiceren met patiënten via gespreksinterfaces, hen

begeleiden door het planningsproces en de meest geschikte afspraaktijden vinden op

basis van de vereisten van de patiënt en de beschikbaarheid van de zorgverlener.

Verzameling van Medische Voorgeschiedenis: Tijdens de patiëntenregistratie

kunnen AI-workers helpen bij het verzamelen en documenteren van de medische

voorgeschiedenis van de patiënt. Ze kunnen interactieve gesprekken voeren met

patiënten, relevante vragen stellen over hun eerdere medische aandoeningen,

medicatie, allergieën en familiegeschiedenis. De AI-workers kunnen natuurlijke

taalverwerkingstechnieken gebruiken om de verzamelde informatie te interpreteren en

te structureren, waarbij wordt gezorgd dat deze nauwkeurig wordt vastgelegd in het

elektronische patiëntendossier.

Symptoombeoordeeling en Stratificatie: AI-workers kunnen initiële

symptoombeoordelingen uitvoeren door patiënten te vragen naar hun huidige

symptomen, duur, ernst en eventuele gerelateerde factoren. Door gebruik te maken

van medische kennisbanken en machine learning-modellen kunnen deze workers

de verstrekte informatie analyseren en voorlopige differentiële diagnoses genereren

of passende vervolgstappen aanbevelen, zoals het plannen van een consult met een

zorgverlener of het voorstellen van zelfzorgmaatregelen.

Verzekeringverificatie: AI-workers kunnen helpen bij verzekeringverificatie

tijdens de patiëntenregistratie. Ze kunnen patiëntverzekeringgegevens verzamelen,

communiceren met verzekeraars via API’s of webservices, en de dekkingsgeschiktheid

en uitkeringen verifiëren. Deze automatisering helpt het verzekeringverificatieproces

Veelheid aan Werkers 103

te stroomlijnen, vermindert de administratieve last en zorgt voor nauwkeurige

informatievastlegging.

Patiëntenvoorlichting en Instructies: AI-workers kunnen patiënten voorzien van

relevante voorlichtingsmaterialen en instructies op basis van hun specifieke medische

aandoeningen of aankomende procedures. Ze kunnen gepersonaliseerde inhoud

leveren, veelgestelde vragen beantwoorden en begeleiding bieden bij voorbereidingen

voor afspraken, medicatie-instructies of nazorg. Dit helpt patiënten geïnformeerd en

betrokken te houden gedurende hun zorgtraject.

Door AI-workers in te zetten bij patiëntenregistratie kunnen zorginstellingen de

efficiëntie verhogen, wachttijden verkorten en de algemene patiëntervaring verbeteren.

Deze workers kunnen routinematige taken afhandelen, nauwkeurige informatie

verzamelen en gepersonaliseerde ondersteuning bieden, waardoor zorgprofessionals

zich kunnen concentreren op het leveren van hoogwaardige zorg aan patiënten.

Patiëntrisicobeoordeling

AI-workers kunnen een cruciale rol spelen bij het beoordelen van patiëntrisico’s door

verschillende gegevensbronnen te analyseren en geavanceerde analysetechnieken toe te

passen.

Gegevensintegratie: AI-workers kunnen patiëntgegevens uit verschillende

bronnen verzamelen en interpreteren, zoals elektronische patiëntendossiers

(EPD’s), medische beeldvorming, laboratoriumresultaten, draagbare apparaten en

sociale gezondheidsdeterminanten. Door deze informatie te consolideren in een

uitgebreid patiëntprofiel kunnen AI-workers een holistisch beeld geven van de

gezondheidstoestand en risicofactoren van de patiënt.

Risicostratificatie: AI-workers kunnen voorspellende modellen gebruiken om

patiënten in verschillende risicocategorieën in te delen op basis van hun individuele

kenmerken en gezondheidsgegevens. Deze risicostratificatie stelt zorgverleners in staat

Veelheid aan Werkers 104

prioriteit te geven aan patiënten die meer directe aandacht of interventie nodig hebben.

Bijvoorbeeld, patiënten die als hoogrisico voor een bepaalde aandoening worden

geïdentificeerd, kunnen worden gemarkeerd voor nauwlettender toezicht, preventieve

maatregelen of vroege interventie.

Gepersonaliseerde Risicoprofielen: AI-workers kunnen gepersonaliseerde

risicoprofielen genereren voor elke patiënt, waarbij de specifieke factoren die

bijdragen aan hun risicoscores worden belicht. Deze profielen kunnen inzichten

bevatten in de levensstijl van de patiënt, genetische aanleg, omgevingsfactoren

en sociale gezondheidsdeterminanten. Door een gedetailleerde uitsplitsing van

risicofactoren te geven, kunnen AI-workers zorgverleners helpen preventiestrategieën

en behandelplannen af te stemmen op individuele patiëntbehoeften.

Continue Risicobewaking: AI-workers kunnen patiëntgegevens continu monitoren en

risicobeoordelingen in realtime bijwerken. Wanneer nieuwe informatie beschikbaar

komt, zoals veranderingen in vitale functies, laboratoriumresultaten of therapietrouw,

kunnen AI-workers risicoscores herberekenen en zorgverleners waarschuwen voor

significante veranderingen. Deze proactieve monitoring maakt tijdige interventies en

aanpassingen in patiëntzorgplannen mogelijk.

Klinische Beslissingsondersteuning: AI-workers kunnen resultaten van

risicobeoordelingen integreren in klinische beslissingsondersteunende systemen,

waarbij zorgverleners worden voorzien van evidence-based aanbevelingen en

waarschuwingen. Als bijvoorbeeld de risicoscore van een patiënt voor een

bepaalde aandoening een bepaalde drempel overschrijdt, kan de AI-worker de

zorgverlener aansporen om specifieke diagnostische tests, preventieve maatregelen of

behandelingsopties te overwegen op basis van klinische richtlijnen en best practices.

Deze workers kunnen enorme hoeveelheden patiëntgegevens verwerken, geavanceerde

analyses toepassen en bruikbare inzichten genereren ter ondersteuning van klinische

besluitvorming. Dit leidt uiteindelijk tot verbeterde patiëntresultaten, lagere zorgkosten

en beter populatiegezondheidsmanagement.

Veelheid aan Werkers 105

AI Worker als Procesmanager

In de context van AI-gestuurde applicaties kan een worker worden ontworpen

om te functioneren als een Procesmanager, zoals beschreven in het boek

“Enterprise Integration Patterns” van Gregor Hohpe. Een Procesmanager is een centraal

component dat de status van een proces bijhoudt en de volgende verwerkingsstappen

bepaalt op basis van tussenresultaten.

Wanneer een AI-worker als Procesmanager functioneert, ontvangt deze een inkomend

bericht dat het proces initialiseert, bekend als het triggebericht . De AI-worker houdt

vervolgens de status van de procesuitvoering bij (als een conversatieverslag) en verwerkt

het bericht via een reeks verwerkingsstappen die zijn geïmplementeerd als toolfuncties,

die sequentieel of parallel kunnen worden aangeroepen, naar eigen inzicht.

Als je een AI-modelklasse zoals GPT-4 gebruikt die weet hoe je functies

parallel moet uitvoeren, dan kan je worker meerdere stappen tegelijkertijd

uitvoeren. Eerlijk gezegd heb ik dit zelf niet geprobeerd en mijn gevoel zegt

dat je resultaten kunnen variëren.

Veelheid aan Werkers 106

Na elke individuele verwerkingsstap wordt de controle teruggegeven aan de AI-worker,

waardoor deze de volgende verwerkingsstap(pen) kan bepalen op basis van de huidige

status en de verkregen resultaten.

Sla Je Triggeberichten Op

Volgens mijn ervaring is het verstandig om je triggebericht te implementeren als een

database-ondersteund object. Op die manier wordt elke procesinstantie geïdentificeerd

door een unieke primaire sleutel en heb je een plek om de status van de uitvoering op

te slaan, inclusief het conversatieverslag van de AI.

Hier is bijvoorbeeld een vereenvoudigde versie van Olympia’s AccountChange

modelklasse, die een verzoek vertegenwoordigt om een wijziging aan te brengen in het

account van een gebruiker.

1 # == Schema Information

2 #

3 # Table name: account_changes

4 #

5 # id :uuid not null, primary key

6 # description :string

7 # state :string not null

8 # transcript :jsonb

9 # created_at :datetime not null

10 # updated_at :datetime not null

11 # account_id :uuid not null

12 #

13 # Indexes

14 #

15 # index_account_changes_on_account_id (account_id)

16 #

17 # Foreign Keys

18 #

19 # fk_rails_... (account_id => accounts.id)

20 #

21 class AccountChange < ApplicationRecord

22 belongs_to :account

Veelheid aan Werkers 107

23

24 validates :description, presence: true

25

26 after_commit -> {

27 broadcast(:account_change_requested, self)

28 }, on: :create

29

30 state_machine initial: :requested do

31 event :completed do

32 transition all => :complete

33 end

34 event :failed do

35 transition all => :requires_human_review

36 end

37 end

38 end

De AccountChange klasse fungeert als een triggerbericht dat een proces start om

het verzoek tot accountwijziging af te handelen. Merk op hoe het wordt uitgezonden

naar Olympia’s Wisper-gebaseerde pub/sub subsysteem nadat de create-transactie is

voltooid.

Het opslaan van het triggerbericht in de database op deze manier zorgt voor een

blijvende registratie van elk verzoek tot accountwijziging. Elk exemplaar van de

AccountChange klasse krijgt een unieke primaire sleutel toegewezen, wat een

eenvoudige identificatie en tracking van individuele verzoeken mogelijk maakt. Dit is

vooral nuttig voor auditlogboekregistratie, omdat het systeem hiermee een historische

registratie kan bijhouden van alle accountwijzigingen, inclusief wanneer ze werden

aangevraagd, welke wijzigingen werden verzocht en de huidige status van elk verzoek.

In het gegeven voorbeeld bevat de AccountChange klasse velden zoals description

om de details van de gevraagde wijziging vast te leggen, state om de huidige status van

het verzoek weer te geven (bijvoorbeeld requested, complete, requires_human_review),

en transcript om het AI-gesprekstranscript gerelateerd aan het verzoek op te slaan.

Het description veld is de daadwerkelijke prompt die wordt gebruikt om de eerste

chatcompletion met de AI te initiëren. Het opslaan van deze gegevens biedt waardevolle

https://github.com/krisleech/wisper

Veelheid aan Werkers 108

context en maakt betere tracking en analyse van het accountwijzigingsproces mogelijk.

Het opslaan van triggerberichten in de database maakt robuuste foutafhandeling

en herstel mogelijk. Als er een fout optreedt tijdens de verwerking van een

accountwijzigingsverzoek, markeert het systeem het verzoek als mislukt en zet

het over naar een status die menselijke interventie vereist. Dit zorgt ervoor dat geen

enkel verzoek verloren gaat of wordt vergeten, en dat eventuele problemen correct

kunnen worden aangepakt en opgelost.

De AI-worker, als Procesmanager, biedt een centraal controlepunt en maakt krachtige

procesrapportage en debugging-mogelijkheden mogelijk. Het is echter belangrijk

op te merken dat het gebruik van een AI-worker als Procesmanager voor elk

werkstroomscenario in uw applicatie mogelijk overdreven is.

AI-Workers Integreren in Uw

Applicatiearchitectuur

Bij het integreren van AI-workers in uw applicatiearchitectuur moeten verschillende

technische overwegingen worden aangepakt om een soepele integratie en effectieve

communicatie tussen de AI-workers en andere applicatiecomponenten te waarborgen.

Deze sectie behandelt belangrijke aspecten van het ontwerpen van die interfaces, het

afhandelen van gegevensstromen en het beheren van de levenscyclus van AI-workers.

Het Ontwerpen van Duidelijke Interfaces en
Communicatieprotocollen

Om een naadloze integratie tussen AI-workers en andere applicatiecomponenten te

faciliteren, is het cruciaal om duidelijke interfaces en communicatieprotocollen te

definiëren. Overweeg de volgende benaderingen:

Veelheid aan Werkers 109

API-gebaseerde Integratie: Stel de functionaliteit van AI-workers beschikbaar via goed

gedefinieerde API’s, zoals RESTful endpoints of GraphQL schema’s. Dit stelt andere

componenten in staat om met de AI-workers te communiceren via standaard HTTP-

verzoeken en -responses. API-gebaseerde integratie biedt een duidelijk contract tussen

de AI-workers en de consumerende componenten, waardoor het ontwikkelen, testen en

onderhouden van de integratiepunten eenvoudiger wordt.

Berichtgebaseerde Communicatie: Implementeer berichtgebaseerde

communicatiepatronen, zoals message queues of publiceer-abonneer systemen,

om asynchrone interactie tussen AI-workers en andere componenten mogelijk te

maken. Deze aanpak ontkoppelt de AI-workers van de rest van de applicatie, wat

zorgt voor betere schaalbaarheid, fouttolerantie en losse koppeling. Berichtgebaseerde

communicatie is vooral nuttig wanneer de verwerking door AI-workers tijdrovend of

resource-intensief is, omdat het andere delen van de applicatie in staat stelt door te

gaan met uitvoeren zonder te wachten tot de AI-workers hun taken hebben voltooid.

Gebeurtenisgestuurde Architectuur: Ontwerp uw systeem rond gebeurtenissen en

triggers die AI-workers activeren wanneer aan specifieke voorwaarden wordt voldaan.

AI-workers kunnen zich abonneren op relevante gebeurtenissen en daarop reageren

door hun aangewezen taken uit te voeren wanneer de gebeurtenissen plaatsvinden.

Gebeurtenisgestuurde architectuur maakt realtime verwerking mogelijk en zorgt

ervoor dat AI-workers op aanvraag kunnen worden aangeroepen, waardoor onnodig

resourceverbruik wordt verminderd. Deze aanpak is zeer geschikt voor scenario’s

waarbij AI-workers moeten reageren op specifieke acties of veranderingen in de

applicatiestatus.

Gegevensstroom en Synchronisatie Afhandelen

Bij het integreren van AI-workers in uw applicatie is het cruciaal om een soepele

gegevensstroom te waarborgen en gegevensconsistentie te behouden tussen de AI-

workers en andere componenten. Overweeg de volgende aspecten:

Veelheid aan Werkers 110

Gegevensvoorbereiding: Voordat gegevens worden ingevoerd in AI-workers, moet u

mogelijk verschillende gegevensvoorbereidingstaken uitvoeren, zoals het opschonen,

formatteren en/of transformeren van de invoergegevens. U wilt niet alleen zorgen dat

de AI-workers effectief kunnen verwerken, maar ook dat u geen tokens verspilt door

aandacht te besteden aan informatie die de worker in het beste geval nutteloos en in het

slechtste geval afleidend kan vinden. Gegevensvoorbereiding kan taken omvatten zoals

het verwijderen van ruis, het afhandelen van ontbrekende waarden of het converteren

van gegevenstypen.

Gegevenspersistentie: Hoe gaat u de gegevens die in en uit AI-workers stromen

opslaan en persisteren? Overweeg factoren zoals gegevensvolume, querypatronen

en schaalbaarheid. Moet u het AI-transcript bewaren als een weerspiegeling van

het “denkproces” voor audit- of debuggingdoeleinden, of volstaat het om alleen een

registratie van de resultaten te hebben?

Gegevensophaling: Het verkrijgen van de benodigde gegevens door workers kan

bestaan uit het bevragen van databases, het lezen van bestanden of het benaderen van

externe API’s. Houd rekening met latentie en hoe AI-workers toegang krijgen tot de

meest actuele gegevens. Hebben ze volledige toegang tot uw database nodig of moet u

de reikwijdte van hun toegang nauw definiëren op basis van hun taken? En hoe zit het

met schaalbaarheid? Overweeg cachingmechanismen om de prestaties te verbeteren en

de belasting van de onderliggende gegevensbronnen te verminderen.

Gegevenssynchronisatie: Wanneer meerdere componenten, inclusief AI-workers,

gedeelde gegevens benaderen en wijzigen, is het belangrijk om geschikte

synchronisatiemechanismen te implementeren om gegevensconsistentie te

waarborgen. Database vergrendelingsstrategieën, zoals optimistische of pessimistische

vergrendeling, kunnen u helpen conflicten te voorkomen en gegevensintegriteit

te waarborgen. Implementeer transactiebeheertechnieken om gerelateerde

gegevensbewerkingen te groeperen en de ACID-eigenschappen (atomiciteit,

consistentie, isolatie en duurzaamheid) te behouden.

Veelheid aan Werkers 111

Foutafhandeling en Herstel: Implementeer robuuste foutafhandelings- en

herstelmechanismen om gegevensgerelateerde problemen aan te pakken die

kunnen ontstaan tijdens het gegevensstroomproces. Handel uitzonderingen netjes

af en voorzie in betekenisvolle foutmeldingen om te helpen bij het debuggen.

Implementeer hertrypogingsmechanismen en terugvalmethoden om tijdelijke

storingen of netwerkonderbrekingen af te handelen. Definieer duidelijke procedures

voor gegevensherstel en -restauratie in geval van gegevensbeschadiging of -verlies.

Door zorgvuldig gegevensstromen en synchronisatiemechanismen te ontwerpen

en implementeren, kunt u ervoor zorgen dat uw AI-workers toegang hebben tot

nauwkeurige, consistente en actuele gegevens. Dit stelt hen in staat om hun taken

effectief uit te voeren en betrouwbare resultaten te produceren.

Beheer van de Levenscyclus van AI-Workers

Ontwikkel een gestandaardiseerd proces voor het initialiseren en configureren van AI-

workers. Ik heb een voorkeur voor frameworks die standaardiseren hoe je instellingen

definieert zoals modelnamen, systeemrichtlijnen en functiedefinities. Zorg ervoor dat

het initialisatieproces geautomatiseerd en reproduceerbaar is om implementatie en

schaalbaarheid te vergemakkelijken.

Implementeer uitgebreide monitoring- en loggingmechanismen om de gezondheid

en prestaties van AI-workers te volgen. Verzamel metrics zoals brongebruik,

verwerkingstijd, foutpercentages, en doorvoer. Gebruik gecentraliseerde

loggingsystemen zoals ELK stack (Elasticsearch, Logstash, Kibana) om logs van

meerdere AI-workers te verzamelen en analyseren.

Bouw fouttolerantie en veerkracht in de AI-worker architectuur. Implementeer

foutafhandelings- en herstelmechanismen om storingen of uitzonderingen elegant af te

handelen. Grote Taalmodellen zijn nog steeds zeer nieuwe technologie; providers vallen

vaak onverwacht uit. Gebruik hertrypogingsmechanismen en stroomonderbrekers om

cascade-effecten bij storingen te voorkomen.

Veelheid aan Werkers 112

Samenstelbaarheid en Orchestratie van

AI-Workers

Een van de belangrijkste voordelen van de AI-worker architectuur is de

samenstelbaarheid, waardoor je meerdere AI-workers kunt combineren en orchestreren

om complexe problemen op te lossen. Door een grotere taak op te splitsen in kleinere,

beter beheersbare subtaken, elk behandeld door een gespecialiseerde AI-worker, kun

je krachtige en flexibele systemen creëren. In deze sectie verkennen we verschillende

benaderingen voor het samenstellen en orchestreren van “een veelvoud” aan AI-

workers.

AI-Workers Aaneenschakelen voor Meerstaps
Werkstromen

In veel scenario’s kan een complexe taak worden opgedeeld in een reeks opeenvolgende

stappen, waarbij de output van één AI-worker de input wordt voor de volgende. Deze

aaneenschakeling van AI-workers creëert een meerstaps werkstroom of pipeline. Elke

AI-worker in de keten richt zich op een specifieke subtaak, en de uiteindelijke output is

het resultaat van de gecombineerde inspanningen van alle workers.

Laten we een voorbeeld bekijken in de context van een Ruby on Rails-applicatie voor

het verwerken van door gebruikers gegenereerde content. De werkstroom omvat

de volgende stappen, die toegegeven waarschijnlijk elk te eenvoudig zijn om in

praktijksituaties op deze manier op te delen, maar ze maken het voorbeeld makkelijker

te begrijpen:

1. Tekstopschoning: EenAI-worker verantwoordelijk voor het verwijderen van HTML-

tags, het omzetten van tekst naar kleine letters en het afhandelen van Unicode-

normalisatie.

2. Taaldetectie: Een AI-worker die de taal van de opgeschoonde tekst identificeert.

Veelheid aan Werkers 113

3. Sentimentanalyse: Een AI-worker die het sentiment (positief, negatief of neutraal)

van de tekst bepaalt op basis van de gedetecteerde taal.

4. Contentcategorisering: Een AI-worker die de tekst classificeert in voorgedefinieerde

categorieën met behulp van natuurlijke taalverwerkingstechnieken.

Hier is een zeer vereenvoudigd voorbeeld van hoe je deze AI-workers aan elkaar kunt

schakelen met behulp van Ruby:

1 class ContentProcessor

2 def initialize(text)

3 @text = text

4 end

5

6 def process

7 cleaned_text = TextCleanupWorker.new(@text).call

8 language = LanguageDetectionWorker.new(cleaned_text).call

9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

10 category = CategorizationWorker.new(cleaned_text, language).call

11

12 { cleaned_text:, language:, sentiment:, category: }

13 end

14 end

In dit voorbeeld initialiseert de ContentProcessor klasse met de ruwe tekst en

schakelt de AI-workers aan elkaar in de process methode. Elke AI-worker voert zijn

specifieke taak uit en geeft het resultaat door aan de volgende worker in de keten. De

uiteindelijke output is een hash die de opgeschoonde tekst, gedetecteerde taal, sentiment

en contentcategorie bevat.

Parallelle Verwerking voor Onafhankelijke AI-Workers

In het vorige voorbeeld zijn de AI-workers sequentieel geschakeld, waarbij elke worker

de tekst verwerkt en het resultaat doorgeeft aan de volgende worker. Echter, als je

meerdere AI-workers hebt die onafhankelijk van elkaar op dezelfde input kunnen

werken, kun je de workflow optimaliseren door ze parallel te verwerken.

Veelheid aan Werkers 114

In het gegeven scenario kan, zodra de tekstopschoning is uitgevoerd door de

TextCleanupWorker, de LanguageDetectionWorker, SentimentAnalysisWorker,

en CategorizationWorker allemaal onafhankelijk de opgeschoonde tekst verwerken.

Door deze workers parallel uit te voeren, kun je mogelijk de totale verwerkingstijd

verminderen en de efficiëntie van je workflow verbeteren.

Om parallelle verwerking in Ruby te bereiken, kun je gebruik maken van

gelijktijdigheidstechnieken zoals threads of asynchrone programmering. Hier is

een voorbeeld van hoe je de ContentProcessor klasse kunt aanpassen om de laatste

drie workers parallel te verwerken met behulp van threads:

1 require 'concurrent'

2

3 class ContentProcessor

4 def initialize(text)

5 @text = text

6 end

7

8 def process

9 cleaned_text = TextCleanupWorker.new(@text).call

10

11 language_future = Concurrent::Future.execute do

12 LanguageDetectionWorker.new(cleaned_text).call

13 end

14

15 sentiment_future = Concurrent::Future.execute do

16 SentimentAnalysisWorker.new(cleaned_text).call

17 end

18

19 category_future = Concurrent::Future.execute do

20 CategorizationWorker.new(cleaned_text).call

21 end

22

23 language = language_future.value

24 sentiment = sentiment_future.value

25 category = category_future.value

26

27 { cleaned_text:, language:, sentiment:, category: }

28 end

Veelheid aan Werkers 115

29 end

In deze geoptimaliseerde versie gebruiken we de concurrent-ruby bibliotheek om

Concurrent::Future objecten te maken voor elk van de onafhankelijke AI-workers.

Een Future representeert een berekening die asynchroon wordt uitgevoerd in een

aparte thread.

Na de tekstopschoningsstap maken we drie Future objecten: language_future,

sentiment_future, en category_future. Elke Future voert zijn corresponderende

AI-worker uit (LanguageDetectionWorker, SentimentAnalysisWorker, en

CategorizationWorker) in een aparte thread, waarbij de cleaned_text als invoer

wordt doorgegeven.

Door de value methode aan te roepen op elke Future, wachten we tot de berekening

voltooid is en halenwe het resultaat op. De valuemethode blokkeert totdat het resultaat

beschikbaar is, wat ervoor zorgt dat alle parallelle workers klaar zijn met verwerken

voordat we verdergaan.

Tot slot bouwen we de output hash met de opgeschoonde tekst en de resultaten van de

parallelle workers, net zoals in het originele voorbeeld.

Door de onafhankelijke AI-workers parallel te verwerken, kun je mogelijk de

totale verwerkingstijd verminderen in vergelijking met sequentiële uitvoering. Deze

optimalisatie is vooral voordelig bij tijdrovende taken of bij het verwerken van grote

hoeveelheden data.

Het is echter belangrijk op te merken dat de daadwerkelijke prestatiewinst afhangt

van verschillende factoren, zoals de complexiteit van elke worker, de beschikbare

systeembronnen en de overhead van thread-beheer. Het is altijd een goede gewoonte

om je code te benchmarken en te profileren om het optimale niveau van parallellisme

voor jouw specifieke gebruik te bepalen.

Daarnaast moet je bij het implementeren van parallelle verwerking rekening houden

met eventuele gedeelde bronnen of afhankelijkheden tussen de workers. Zorg ervoor

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Veelheid aan Werkers 116

dat de workers onafhankelijk kunnen opereren zonder conflicten of race conditions.

Als er afhankelijkheden of gedeelde bronnen zijn, moet je mogelijk geschikte

synchronisatiemechanismen implementeren om data-integriteit te behouden en

problemen zoals deadlocks of inconsistente resultaten te voorkomen.

Ruby’s Global Interpreter Lock en Asynchrone
Verwerking

Het is belangrijk om de implicaties van Ruby’s Global Interpreter Lock (GIL) te

begrijpen bij het overwegen van asynchrone thread-gebaseerde verwerking in Ruby.

De GIL is een mechanisme in Ruby’s interpreter dat ervoor zorgt dat slechts één

thread tegelijk Ruby-code kan uitvoeren, zelfs op multi-core processors. Dit betekent

dat hoewel er meerdere threads kunnen worden gemaakt en beheerd binnen een

Ruby-proces, slechts één thread actief Ruby-code kan uitvoeren op elk moment.

De GIL is ontworpen om de implementatie van de Ruby-interpreter te

vereenvoudigen en thread-veiligheid te bieden voor Ruby’s interne datastructuren.

Het beperkt echter ook de mogelijkheid voor echte parallelle uitvoering van

Ruby-code.

Wanneer je threads gebruikt in Ruby, zoals met de concurrent-ruby bibliotheek

of de ingebouwde Thread klasse, zijn de threads onderworpen aan de beperkingen

van de GIL. De GIL staat elke thread toe om Ruby-code uit te voeren voor een korte

tijdsperiode voordat er wordt gewisseld naar een andere thread, wat de illusie van

gelijktijdige uitvoering creëert.

Echter, door de GIL blijft de daadwerkelijke uitvoering van Ruby-code sequentieel.

Terwijl één thread Ruby-code uitvoert, zijn andere threads in feite gepauzeerd,

wachtend op hun beurt om de GIL te verkrijgen en uit te voeren.

Dit betekent dat thread-gebaseerde asynchrone verwerking in Ruby het meest

Veelheid aan Werkers 117

effectief is voor I/O-gebonden taken, zoals wachten op externe API-responses (zoals

extern gehoste grote taalmodellen) of het uitvoeren van bestandsI/O-operaties.

Wanneer een thread een I/O-operatie tegenkomt, kan deze de GIL vrijgeven,

waardoor andere threads kunnen uitvoeren tijdens het wachten op de voltooiing

van de I/O.

Aan de andere kant kan de GIL voor CPU-gebonden taken, zoals intensieve

berekeningen of langdurige AI-worker verwerking, de potentiële prestatiewinst

van thread-gebaseerd parallellisme beperken. Aangezien slechts één thread tegelijk

Ruby-code kan uitvoeren, wordt de totale uitvoeringstijd mogelijk niet significant

verminderd in vergelijking met sequentiële verwerking.

Om echte parallelle uitvoering voor CPU-gebonden taken in Ruby te bereiken, moet

je mogelijk alternatieve benaderingen verkennen, zoals:

• Het gebruik van proces-gebaseerd parallellismemetmeerdere Ruby-processen,

elk draaiend op een aparte CPU-kern.

• Het benutten van externe bibliotheken of frameworks die native extensies of

interfaces bieden naar talen zonder een GIL, zoals C of Rust.,

• Het gebruiken van gedistribueerde computing frameworks of message queues

om taken te verdelen over meerdere machines of processen.

Het is cruciaal om de aard van je taken en de beperkingen opgelegd door de GIL

te overwegen bij het ontwerpen en implementeren van asynchrone verwerking in

Ruby. Hoewel thread-gebaseerde asynchrone verwerking voordelen kan bieden voor

I/O-gebonden taken, biedt het mogelijk geen significante prestatieverbeteringen voor

CPU-gebonden taken vanwege de beperkingen van de GIL.

Veelheid aan Werkers 118

Ensembletechnieken voor Verbeterde Nauwkeurigheid

Ensembletechnieken omvatten het combineren van de outputs vanmeerdere AI-workers

om de algemene nauwkeurigheid of robuustheid van het systeem te verbeteren. In plaats

van te vertrouwen op een enkele AI-worker, maken ensembletechnieken gebruik van de

collectieve intelligentie van meerdere workers om meer geïnformeerde beslissingen te

nemen.

Ensembles zijn vooral belangrijk als verschillende delen van je werkstroom

het beste werken met verschillende AI-modellen, wat vaker voorkomt

dan je misschien denkt. Krachtige modellen zoals GPT-4 zijn extreem

duur vergeleken met minder capabele open source alternatieven, en zijn

waarschijnlijk niet nodig voor elke afzonderlijke werkstroomstap van je

applicatie.

Een veelvoorkomende ensemble-techniek is meerderheidsstemming, waarbij meerdere

AI-werkers onafhankelijk van elkaar dezelfde input verwerken, en de uiteindelijke

output wordt bepaald door de meerderheid van de consensus. Deze aanpak kan

helpen om de impact van individuele werkersfouten te verminderen en de algehele

betrouwbaarheid van het systeem te verbeteren.

Laten we een voorbeeld bekijken waarbij we drie AI-werkers hebben voor

sentimentanalyse, elk met een verschillend model of voorzien van verschillende

contexten. We kunnen hun outputs combineren met behulp van meerderheidsstemming

om de uiteindelijke sentimentvoorspelling te bepalen.

Veelheid aan Werkers 119

1 class SentimentAnalysisEnsemble

2 def initialize(text)

3 @text = text

4 end

5

6 def analyze

7 predictions = [

8 SentimentAnalysisWorker1.new(@text).analyze,

9 SentimentAnalysisWorker2.new(@text).analyze,

10 SentimentAnalysisWorker3.new(@text).analyze

11]

12

13 predictions

14 .group_by { |sentiment| sentiment }

15 .max_by { |_, votes| votes.size }

16 .first

17

18 end

19 end

In dit voorbeeld initialiseert de SentimentAnalysisEnsemble klasse met de tekst en

roept drie verschillende AI-workers voor sentimentanalyse aan. De analyze methode

verzamelt de voorspellingen van elke worker en bepaalt het meerderheidssentiment met

behulp van de group_by en max_bymethoden. De uiteindelijke uitvoer is het sentiment

dat de meeste stemmen krijgt van het ensemble van workers.

Ensembles zijn duidelijk een geval waarbij het experimenteren met

parallellisme de moeite waard kan zijn.

Dynamische Selectie en Aanroeping van AI-Workers

In sommige, zo niet de meeste gevallen, kan de specifieke AI-worker die moet worden

aangeroepen afhankelijk zijn van runtime-condities of gebruikersinvoer. Dynamische

selectie en aanroeping van AI-workers zorgen voor flexibiliteit en aanpasbaarheid in

het systeem.

Veelheid aan Werkers 120

Je zou in de verleiding kunnen komen om veel functionaliteit in één enkele

AI-worker te proppen, door deze veel functies te geven en een grote,

ingewikkelde prompt die uitlegt hoe je ze moet aanroepen. Weersta deze

verleiding, geloof me. Een van de redenen waarom de aanpak die we in

dit hoofdstuk bespreken “Multitude of Workers” wordt genoemd, is om ons

eraan te herinneren dat het wenselijk is om veel gespecialiseerde workers

te hebben, die elk hun eigen kleine taak uitvoeren in dienst van het grotere

doel.

Neem bijvoorbeeld een chatbottoepassing waarbij verschillende AI-workers

verantwoordelijk zijn voor het afhandelen van verschillende soorten gebruikersvragen.

Op basis van de invoer van de gebruiker selecteert de toepassing dynamisch de juiste

AI-worker om de vraag te verwerken.

1 class ChatbotController < ApplicationController

2 def process_query

3 query = params[:query]

4 query_type = QueryClassifierWorker.new(query).classify

5

6 case query_type

7 when 'greeting'

8 response = GreetingWorker.new(query).generate_response

9 when 'product_inquiry'

10 response = ProductInquiryWorker.new(query).generate_response

11 when 'order_status'

12 response = OrderStatusWorker.new(query).generate_response

13 else

14 response = DefaultResponseWorker.new(query).generate_response

15 end

16

17 render json: { response: response }

18 end

19 end

In dit voorbeeld ontvangt de ChatbotController een gebruikersvraag via de

process_query actie. Eerst gebruikt het een QueryClassifierWorker om het type

Veelheid aan Werkers 121

vraag te bepalen. Op basis van het geclassificeerde vraagtype selecteert de controller

dynamisch de geschikte AI-worker om het antwoord te genereren. Deze dynamische

selectie stelt de chatbot in staat om verschillende soorten vragen te verwerken en ze

naar de relevante AI-workers te routeren.

Aangezien het werk van de QueryClassifierWorker relatief

eenvoudig is en niet veel context of functiedefinities vereist, kun je

het waarschijnlijk implementeren met een ultrasnelle kleine LLM zoals

mistralai/mixtral-8x7b-instruct:nitro. Het heeft mogelijkheden

die op veel taken dicht bij GPT-4 niveau komen en, op het moment dat ik

dit schrijf, kan Groq het verwerken met een duizelingwekkende doorvoer

van 444 tokens per seconde.

Het Combineren van Traditionele NLP met LLMs

Hoewel Grote Taalmodellen (LLMs) het vakgebied van natuurlijke taalverwerking

(NLP) hebben gerevolutioneerd en ongeëvenaarde veelzijdigheid en prestaties bieden

voor een breed scala aan taken, zijn ze niet altijd de meest efficiënte of kosteneffectieve

oplossing voor elk probleem. In veel gevallen kan het combineren van traditionele

NLP-technieken met LLMs leiden tot meer geoptimaliseerde, gerichte en economische

benaderingen voor het oplossen van specifieke NLP-uitdagingen.

Zie LLMs als de Zwitserse zakmessen van NLP—ongelooflijk veelzijdig en krachtig,

maar niet noodzakelijkerwijs het beste gereedschap voor elke klus. Soms kan een

specifiek hulpmiddel zoals een kurkentrekker of een blikopener effectiever en efficiënter

zijn voor een specifieke taak. Op dezelfde manier kunnen traditionele NLP-technieken,

zoals documentclustering, onderwerpsidentificatie en classificatie, vaak meer gerichte

en kosteneffectieve oplossingen bieden voor bepaalde aspecten van je NLP-pipeline.

Een van de belangrijkste voordelen van traditionele NLP-technieken is hun

computationele efficiëntie. Deze methoden, die vaak vertrouwen op eenvoudigere

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Veelheid aan Werkers 122

statistische modellen of regelgebaseerde benaderingen, kunnen grote hoeveelheden

tekstgegevens veel sneller en met minder computationele overhead verwerken in

vergelijking met LLMs. Dit maakt ze bijzonder geschikt voor taken die het analyseren

en organiseren van grote verzamelingen documenten omvatten, zoals het clusteren van

vergelijkbare artikelen of het identificeren van belangrijke onderwerpen binnen een

collectie teksten.

Bovendien kunnen traditionele NLP-technieken vaak hoge nauwkeurigheid en precisie

bereiken voor specifieke taken, vooral wanneer ze getraind zijn op domeinspecifieke

datasets. Een goed afgestelde documentclassificator die gebruik maakt van traditionele

machine learning-algoritmen zoals Support Vector Machines (SVM) of Naive Bayes kan

bijvoorbeeld documenten nauwkeurig categoriseren in vooraf gedefinieerde categorieën

met minimale rekenkosten.

LLMs blinken echter echt uit als het gaat om taken die een dieper begrip van taal, context

en redenering vereisen. Hun vermogen om samenhangende en contextueel relevante

tekst te genereren, vragen te beantwoorden en lange passages samen te vatten wordt

niet geëvenaard door traditionele NLP-methoden. LLMs kunnen effectief omgaan met

complexe taalkundige verschijnselen, zoals ambiguïteit, coreferentie en idiomatische

uitdrukkingen, waardoor ze onmisbaar zijn voor taken die natuurlijke taalgeneratie of

begrip vereisen.

De echte kracht ligt in het combineren van traditionele NLP-technieken met LLMs

om hybride benaderingen te creëren die de sterke punten van beide benutten. Door

traditionele NLP-methoden te gebruiken voor taken zoals documentvoorverwerking,

clustering en onderwerpsextractie, kun je je tekstgegevens efficiënt organiseren en

structureren. Deze gestructureerde informatie kan vervolgens worden doorgegeven aan

LLMs voor meer geavanceerde taken, zoals het genereren van samenvattingen, het

beantwoorden van vragen of het maken van uitgebreide rapporten.

Laten we bijvoorbeeld een gebruikssituatie bekijken waarbij je een trendrapport wilt

genereren voor een specifiek domein op basis van een groot corpus van individuele

Veelheid aan Werkers 123

trenddocumenten. In plaats van uitsluitend te vertrouwen op LLMs, wat computationeel

duur en tijdrovend kan zijn voor het verwerken van grote hoeveelheden tekst, kun je

een hybride aanpak gebruiken:

1. Gebruik traditionele NLP-technieken, zoals onderwerpsmodellering (bijvoorbeeld

Latent Dirichlet Allocation) of clusteringalgoritmen (bijvoorbeeld K-means),

om vergelijkbare trenddocumenten te groeperen en belangrijke thema’s en

onderwerpen binnen het corpus te identificeren.

2. Voer de geclusterde documenten en geïdentificeerde onderwerpen in

een LLM, waarbij je gebruik maakt van zijn superieure taalbegreip en

generatiemogelijkheden om samenhangende en informatieve samenvattingen te

maken voor elk cluster of onderwerp.

3. Gebruik ten slotte het LLM om een uitgebreid trendrapport te genereren

door de individuele samenvattingen te combineren, de belangrijkste trends

te benadrukken en inzichten en aanbevelingen te geven op basis van de

geaggregeerde informatie.

Door traditionele NLP-technieken op deze manier te combineren met LLMs, kun

je efficiënt grote hoeveelheden tekstgegevens verwerken, betekenisvolle inzichten

extraheren en hoogwaardige rapporten genereren terwijl je de computationele

middelen en kosten optimaliseert.

Bij het beginnen van je NLP-projecten is het essentieel om zorgvuldig de specifieke

vereisten en beperkingen van elke taak te evalueren en te overwegen hoe traditionele

NLP-methoden en LLMs samen kunnen worden ingezet om de beste resultaten te

bereiken. Door de efficiëntie en precisie van traditionele technieken te combineren met

de veelzijdigheid en kracht van LLMs, kun je zeer effectieve en economische NLP-

oplossingen creëren die waarde leveren aan je gebruikers en belanghebbenden.

Gebruik van Tools

In het domein van AI-gedreven applicatieontwikkeling is het concept van

“gebruik van tools” of “function calling” naar voren gekomen als een krachtige techniek

die je LLM in staat stelt om verbinding te maken met externe tools, APIs, functies,

databases en andere bronnen. Deze aanpak maakt een rijkere set aan gedragingen

mogelijk dan alleen het uitvoeren van tekst, en zorgt voor meer dynamische interacties

tussen je AI-componenten en de rest van het ecosysteem van je applicatie. Zoals we in

dit hoofdstuk zullen onderzoeken, geeft het gebruik van tools je ook de mogelijkheid

om je AI-model data op gestructureerde manieren te laten genereren.

Wat is Gebruik van Tools?

Gebruik van tools, ook bekend als function calling, is een techniek waarmee

ontwikkelaars een lijst van functies kunnen specificeren waarmee een LLM kan

Gebruik van Tools 125

interacteren tijdens het generatieproces. Deze tools kunnen variëren van eenvoudige

hulpfuncties tot complexe APIs of database-queries. Door de LLM toegang te geven tot

deze tools, kunnen ontwikkelaars de mogelijkheden van het model uitbreiden en het in

staat stellen taken uit te voeren die externe kennis of acties vereisen.

Figuur 8. Voorbeeld van een functiedefinitie voor een AI-medewerker die documenten analyseert

1 FUNCTION = {

2 name: "save_analysis",

3 description: "Save analysis data for document",

4 parameters: {

5 type: "object",

6 properties: {

7 title: {

8 type: "string",

9 maxLength: 140

10 },

11 summary: {

12 type: "string",

13 description: "comprehensive multi-paragraph summary with

14 overview and list of sections (if applicable)"

15 },

16 tags: {

17 type: "array",

18 items: {

19 type: "string",

20 description: "lowercase tags representing main themes

21 of the document"

22 }

23 }

24 },

25 "required": %w[title summary tags]

26 }

27 }.freeze

Het kernidee achter het gebruik van tools is om het LLM de mogelijkheid te geven om

dynamisch de juiste tools te selecteren en uit te voeren op basis van de input van de

gebruiker of de taak die voorhanden is. In plaats van uitsluitend te vertrouwen op de

vooraf getrainde kennis van het model, stelt het gebruik van tools het LLM in staat

Gebruik van Tools 126

om externe bronnen te benutten voor het genereren van nauwkeurigere, relevantere en

bruikbare antwoorden. Het gebruik van tools maakt technieken zoals RAG (Retrieval

Augmented Generation) veel eenvoudiger te implementeren dan anders het geval zou

zijn.

Merk op dat, tenzij anders vermeld, dit boek ervan uitgaat dat uw AI-model geen

toegang heeft tot ingebouwde server-side tools. Alle tools die u beschikbaar wilt

maken voor uw AI moeten expliciet door u worden gedeclareerd in elke API-

aanvraag, met voorzieningen voor de uitvoering ervan wanneer uw AI aangeeft dat

het die tool in zijn antwoord wil gebruiken.

De Potentie van Tool Gebruik

Het gebruik van tools opent een breed scala aan mogelijkheden voor AI-gedreven

toepassingen. Hier zijn enkele voorbeelden van wat er bereikt kan worden met het

gebruik van tools:

1. Chatbots en Virtuele Assistenten: Door een LLM te verbinden met externe tools

kunnen chatbots en virtuele assistenten complexere taken uitvoeren, zoals het

ophalen van informatie uit databases, het uitvoeren van API-aanroepen of het

interacteren met andere systemen. Een chatbot zou bijvoorbeeld een CRM-tool

kunnen gebruiken om de status van een deal te wijzigen op basis van het verzoek

van de gebruiker.

2. Data-analyse en Inzichten: LLM’s kunnen worden verbonden met data-

analysetools of bibliotheken om geavanceerde gegevensverwerkingstaken uit

te voeren. Dit maakt het mogelijk voor applicaties om inzichten te genereren,

vergelijkende analyses uit te voeren of datagestuurde aanbevelingen te doen op

basis van gebruikersvragen.

Gebruik van Tools 127

3. Zoeken en Informatieophaling: Het gebruik van tools stelt LLM’s in

staat om te interacteren met zoekmachines, vectordatabases of andere

informatieophalingssystemen. Door gebruikersvragen om te zetten in

zoekopdrachten kan het LLM relevante informatie uit meerdere bronnen

ophalen en uitgebreide antwoorden geven op vragen van gebruikers.

4. Integratie met Externe Diensten: Het gebruik van tools maakt naadloze

integratie mogelijk tussen AI-gedreven applicaties en externe diensten of API’s.

Een LLM zou bijvoorbeeld kunnen interacteren met een weer-API om realtime

weerupdates te geven of met een vertaal-API om meertalige antwoorden te

genereren.

Het Tool Gebruik Werkproces

Het werkproces voor het gebruik van tools bestaat meestal uit vier belangrijke stappen:

1. Functiedefinities opnemen in je request context

2. Dynamische (of expliciete) toolselectie

3. Uitvoering van functie(s)

4. Optionele voortzetting van de oorspronkelijke prompt

Laten we elk van deze stappen in detail bekijken.

Functiedefinities opnemen in je request context

De AI weet welke tools het tot zijn beschikking heeft omdat je een lijst meegeeft als

onderdeel van je completion request (meestal gedefinieerd als functies met behulp van

een variant van JSON schema).

De precieze syntax van tooldefinitie is modelspecifiek.

Dit is hoe je een get_weather functie definieert in Claude 3:

Gebruik van Tools 128

1 {

2 "name": "get_weather",

3 "description": "Get the current weather in a given location",

4 "input_schema": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA"

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 }

16 },

17 "required": ["location"]

18 }

19 }

En zo zou je dezelfde functie voor GPT-4 definiëren, waarbij je deze als waarde voor de

tools parameter doorgeeft:

1 {

2 "name": "get_current_weather",

3 "description": "Get the current weather in a given location",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA",

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 },

16 },

17 "required": ["location"],

Gebruik van Tools 129

18 },

19 }

Bijna hetzelfde, behalve anders zonder duidelijke reden! Wat vervelend.

Functiedefinities specificeren naam, beschrijving en invoerparameters.

Invoerparameters kunnen verder worden gedefinieerd met behulp van attributen

zoals enums om de acceptabele waarden te beperken, en door aan te geven of een

parameter vereist is of niet.

Naast de eigenlijke functiedefinities kun je ook instructies of context opnemen over

waarom en hoe je de functie moet gebruiken in de systeemrichtlijn.

Bijvoorbeeld, mijn Webzoekfunctie in Olympia bevat deze systeemrichtlijn, die de AI

eraan herinnert dat het de genoemde hulpmiddelen tot zijn beschikking heeft:

1 The `google_search` and `realtime_search` functions let you do research

2 on behalf of the user. In contrast to Google, realtime search is powered

3 by Perplexity and provides real-time information to curated current events

4 databases and news sources. Make sure to include URLs in your response so

5 user can do followup research.

Het geven van gedetailleerde beschrijvingen wordt beschouwd als de belangrijkste

factor in de prestaties van hulpmiddelen. Je beschrijvingen moeten elk detail over het

hulpmiddel uitleggen, waaronder:

• Wat het hulpmiddel doet

• Wanneer het gebruikt moet worden (en wanneer niet)

• Wat elke parameter betekent en hoe deze het gedrag van het hulpmiddel

beïnvloedt

Gebruik van Tools 130

• Alle belangrijke kanttekeningen of beperkingen die van toepassing zijn op de

implementatie van het hulpmiddel

Hoe meer context je de AI kunt geven over je hulpmiddelen, hoe beter deze zal zijn in

het beslissen wanneer en hoe ze te gebruiken. Zo beveelt Anthropic voor zijn Claude

3-serie minimaal 3-4 zinnen per hulpmiddelbeschrijving aan, meer als het hulpmiddel

complex is.

Het is niet per se intuïtief, maar beschrijvingen worden ook als belangrijker beschouwd

dan voorbeelden. Hoewel je voorbeelden van het gebruik van een hulpmiddel kunt

opnemen in de beschrijving of in de bijbehorende prompt, is dit minder belangrijk dan

een duidelijke en uitgebreide uitleg van het doel en de parameters van het hulpmiddel.

Voeg pas voorbeelden toe nadat je de beschrijving volledig hebt uitgewerkt.

Hier is een voorbeeld van een Stripe-achtige API-functiespecificatie:

1 {

2 "name": "createPayment",

3 "description": "Create a new payment request",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "transaction_amount": {

8 "type": "number",

9 "description": "The amount to be paid"

10 },

11 "description": {

12 "type": "string",

13 "description": "A brief description of the payment"

14 },

15 "payment_method_id": {

16 "type": "string",

17 "description": "The payment method to be used"

18 },

19 "payer": {

20 "type": "object",

21 "description": "Information about the payer, including their name,

22 email, and identification number",

Gebruik van Tools 131

23 "properties": {

24 "name": {

25 "type": "string",

26 "description": "The payer's name"

27 },

28 "email": {

29 "type": "string",

30 "description": "The payer's email address"

31 },

32 "identification": {

33 "type": "object",

34 "description": "The payer's identification number",

35 "properties": {

36 "type": {

37 "type": "string",

38 "description": "Identification document (e.g. CPF, CNPJ)"

39 },

40 "number": {

41 "type": "string",

42 "description": "The identification number"

43 }

44 },

45 "required": ["type", "number"]

46 }

47 },

48 "required": ["name", "email", "identification"]

49 }

50 }

51 }

In de praktijk hebben sommige modellen moeite met het omgaan met

geneste functiespecificaties en complexe outputgegevenstypen zoals arrays,

dictionaries etc. Maar in theorie zou je JSON Schema-specificaties van

willekeurige diepte moeten kunnen aanleveren!

Gebruik van Tools 132

Dynamische Gereedschapsselectie

Wanneer je een chatvervolmaking uitvoert die gereedschapsdefinities bevat, selecteert

het LLM dynamisch de meest geschikte gereedschappen om te gebruiken en genereert

het de vereiste invoerparameters voor elk gereedschap.

In de praktijk is het vermogen van de AI om precies de juiste functie aan te roepen

en exact je specificatie voor de invoer te volgen wisselvallig. Het verlagen van de

temperatuur-hyperparameter naar 0.0 helpt aanzienlijk, maar uit ervaring krijg je

nog steeds af en toe fouten. Deze fouten omvatten gehallucineerde functienamen,

verkeerd benoemde of simpelweg ontbrekende invoerparameters. Parameters worden

doorgegeven als JSON, wat betekent dat je soms fouten ziet veroorzaakt door afgekapte,

verkeerd geciteerde of anderszins beschadigde JSON.

Zelfherstellende Data-patronen kunnen helpen bij het automatisch

repareren van functieaanroepen die mislukken door syntaxisfouten.

Geforceerde (oftewel Expliciete) Gereedschapsselectie

Sommige modellen bieden de mogelijkheid om het aanroepen van een bepaalde functie

te forceren, als parameter in het verzoek. Anders is de beslissing om de functie al dan

niet aan te roepen volledig aan het oordeel van de AI.

Het vermogen om een functieaanroep te forceren is cruciaal in bepaalde scenario’s waar

je wilt verzekeren dat een specifiek gereedschap of functie wordt uitgevoerd, ongeacht

het dynamische selectieproces van de AI. Er zijn verschillende redenen waarom deze

mogelijkheid belangrijk is:

1. Expliciete Controle: Je gebruikt de AI mogelijk als een Discrete Component of

in een voorgedefinieerde workflow die de uitvoering van een bepaalde functie op

een bepaald moment vereist. Door de aanroep te forceren, kun je garanderen dat

Gebruik van Tools 133

de gewenste functie wordt aangeroepen in plaats van de AI vriendelijk te moeten

vragen het te doen.

2. Debuggen en Testen: Bij het ontwikkelen en testen van AI-gestuurde applicaties

is het vermogen om functieaanroepen te forceren van onschatbare waarde

voor debugdoeleinden. Door expliciet specifieke functies te activeren, kun je

individuele componenten van je applicatie isoleren en testen. Dit stelt je in staat

om de juistheid van de functie-implementaties te verifiëren, de invoerparameters

te valideren en te verzekeren dat de verwachte resultaten worden teruggegeven.

3. Omgaan met Randgevallen: Er kunnen randgevallen of uitzonderlijke scenario’s

zijn waarbij het dynamische selectieproces van de AI ervoor zou kunnen kiezen

om een functie niet uit te voeren terwijl dat wel zou moeten, en je weet dat op

basis van externe processen. In dergelijke gevallen stelt het vermogen om een

functieaanroep te forceren je in staat om deze situaties expliciet af te handelen.

Definieer regels of voorwaarden in je applicatielogica om te bepalen wanneer je

het oordeel van de AI moet overschrijven.

4. Consistentie en Reproduceerbaarheid: Als je een specifieke reeks functies hebt

die in een bepaalde volgorde moet worden uitgevoerd, garandeert het forceren

van de aanroepen dat dezelfde volgorde elke keer wordt gevolgd. Dit is vooral

belangrijk in applicaties waar consistentie en voorspelbaar gedrag kritiek zijn,

zoals in financiële systemen of wetenschappelijke simulaties.

5. Prestatie-optimalisatie: In sommige gevallen kan het forceren van een

functieaanroep leiden tot prestatie-optimalisaties. Als je weet dat een specifieke

functie vereist is voor een bepaalde taak en dat het dynamische selectieproces

van de AI onnodige overhead zou kunnen introduceren, kun je het selectieproces

omzeilen en direct de vereiste functie aanroepen. Dit kan helpen om de latentie

te verminderen en de algehele efficiëntie van je applicatie te verbeteren.

Samenvattend biedt het vermogen om functieaanroepen te forceren in AI-gestuurde

applicaties expliciete controle, helpt bij het debuggen en testen, handelt randgevallen

Gebruik van Tools 134

af en verzekert consistentie en reproduceerbaarheid. Het is een krachtig gereedschap in

je arsenaal, maar we moeten nog één aspect van deze belangrijke functie bespreken.

In veel besluitvormingstoepassingen willen we altijd dat het model een

functieaanroep doet en willen we mogelijk nooit dat het model alleen met

zijn interne kennis reageert. Als je bijvoorbeeld routeert tussen meerdere

modellen die gespecialiseerd zijn in verschillende taken (meertalige invoer,

wiskunde, etc.), kun je het functie-aanroepende model gebruiken om

verzoeken te delegeren naar een van de hulpmodellen en nooit zelfstandig

te laten reageren.

Tool Choice Parameter

GPT-4 en andere taalmodellen die functieaanroepen ondersteunen, geven je een tool_-

choice parameter voor het controleren of gereedschapsgebruik vereist is als onderdeel

van een vervolmaking. Deze parameter heeft drie mogelijke waarden:

• auto geeft de AI volledige vrijheid over het gebruik van een gereedschap of

simpelweg reageren

• required vertelt de AI dat het een gereedschap moet aanroepen in plaats van te

reageren, maar laat de selectie van het gereedschap over aan de AI

• De derde optie is het instellen van de parameter van de name_of_function die

je wilt forceren. Meer daarover in de volgende sectie.

Merk op dat als je tool choice op required zet, het model gedwongen wordt

om de meest relevante functie te kiezen uit de beschikbare functies, zelfs als

geen enkele echt bij de prompt past. Op het moment van publicatie ken ik

geen model dat een lege tool_calls response zal teruggeven, of op een

andere manier laat weten dat het geen geschikte functie heeft gevonden om

aan te roepen.

Gebruik van Tools 135

Een Functie Forceren voor Gestructureerde Uitvoer

De mogelijkheid om een functie-aanroep te forceren geeft je een manier om

gestructureerde data uit een chatvoltooing te krijgen in plaats van het zelf uit het platte

tekst-antwoord te moeten extraheren.

Waarom is het forceren van functies voor gestructureerde uitvoer zo belangrijk?

Simpel gezegd, omdat het extraheren van gestructureerde data uit LLM-uitvoer een

hele klus is. Je kunt het jezelf wat makkelijker maken door om data in XML te vragen,

maar dan moet je nog steeds XML verwerken. En wat doe je als die XML ontbreekt

omdat je AI antwoordde: “Het spijt me, maar ik kan de gevraagde gegevens niet

genereren omdat bla, bla, bla…”

Bij het gebruik van tools op deze manier:

• Zou je waarschijnlijk één tool in je verzoek moeten definiëren

• Vergeet niet het gebruik van de functie te forceren met de tool_choice

parameter

• Onthoud dat het model de input naar de tool stuurt, dus de naam van de tool en

beschrijving moeten vanuit het perspectief van het model zijn, niet dat van jou

Dit laatste punt verdient een voorbeeld ter verduidelijking. Stel dat je de AI vraagt om

sentimentanalyse uit te voeren op gebruikerstekst. De naam van de functie zou dan niet

analyze_sentiment zijn, maar eerder iets als save_sentiment_analysis. De AI is

degene die de sentimentanalyse uitvoert, niet de tool. Het enige wat de tool doet (vanuit

het perspectief van de AI) is het opslaan van de resultaten van de analyse.

Hier is een voorbeeld van het gebruik van Claude 3 om een samenvatting van een

afbeelding vast te leggen in goed gestructureerde JSON, deze keer vanaf de opdrachtregel

met behulp van curl:

Gebruik van Tools 136

1 curl https://api.anthropic.com/v1/messages \

2 --header "content-type: application/json" \

3 --header "x-api-key: $ANTHROPIC_API_KEY" \

4 --header "anthropic-version: 2023-06-01" \

5 --header "anthropic-beta: tools-2024-04-04" \

6 --data \

7 '{

8 "model": "claude-3-sonnet-20240229",

9 "max_tokens": 1024,

10 "tools": [{

11 "name": "record_summary",

12 "description": "Record summary of image into well-structured JSON.",

13 "input_schema": {

14 "type": "object",

15 "properties": {

16 "key_colors": {

17 "type": "array",

18 "items": {

19 "type": "object",

20 "properties": {

21 "r": {

22 "type": "number",

23 "description": "red value [0.0, 1.0]"

24 },

25 "g": {

26 "type": "number",

27 "description": "green value [0.0, 1.0]"

28 },

29 "b": {

30 "type": "number",

31 "description": "blue value [0.0, 1.0]"

32 },

33 "name": {

34 "type": "string",

35 "description": "Human-readable color name

36 in snake_case, e.g.

37 \"olive_green\"or

38 \"turquoise\""

39 }

40 },

41 "required": ["r", "g", "b", "name"]

42 },

Gebruik van Tools 137

43 "description": "Key colors in the image. Four or less."

44 },

45 "description": {

46 "type": "string",

47 "description": "Image description. 1-2 sentences max."

48 },

49 "estimated_year": {

50 "type": "integer",

51 "description": "Estimated year that the image was taken,

52 if is it a photo. Only set this if the

53 image appears to be non-fictional.

54 Rough estimates are okay!"

55 }

56 },

57 "required": ["key_colors", "description"]

58 }

59 }],

60 "messages": [

61 {

62 "role": "user",

63 "content": [

64 {

65 "type": "image",

66 "source": {

67 "type": "base64",

68 "media_type": "'$IMAGE_MEDIA_TYPE'",

69 "data": "'$IMAGE_BASE64'"

70 }

71 },

72 {

73 "type": "text",

74 "text": "Use `record_summary` to describe this image."

75 }

76]

77 }

78]

79 }'

In het gegeven voorbeeld gebruiken we het Claude 3-model van Anthropic om een

gestructureerde JSON-samenvatting van een afbeelding te genereren. Zo werkt het:

Gebruik van Tools 138

1. We definiëren een enkele tool genaamd record_summary in de tools-array van

de request payload. Deze tool is verantwoordelijk voor het vastleggen van een

samenvatting van de afbeelding in goed gestructureerde JSON.

2. De record_summary-tool heeft een input_schema dat de verwachte structuur

van de JSON-uitvoer specificeert. Het definieert drie eigenschappen:

• key_colors: Een array van objecten die de belangrijkste kleuren in de

afbeelding vertegenwoordigen. Elk kleurobject heeft eigenschappen voor de

rood-, groen- en blauwwaarden (variërend van 0.0 tot 1.0) en een menselijk

leesbare kleurnaam in snake_case-formaat.

• description: Een string-eigenschap voor een korte beschrijving van de

afbeelding, beperkt tot 1-2 zinnen.

• estimated_year: Een optionele integer-eigenschap voor het geschatte jaar

waarin de foto is genomen, als het een niet-fictieve foto lijkt te zijn.

3. In de messages-array leveren we de afbeeldingsgegevens aan als een base64-

gecodeerde string samen met het mediatype. Hierdoor kan het model de

afbeelding verwerken als onderdeel van de invoer.

4. We geven Claude ook de opdracht om de record_summary-tool te gebruiken om

de afbeelding te beschrijven.

5. Wanneer het verzoek naar het Claude 3-model wordt gestuurd, analyseert

het de afbeelding en genereert het een JSON-samenvatting op basis van het

gespecificeerde input_schema. Het model extraheert de belangrijkste kleuren,

geeft een korte beschrijving en schat het jaar waarin de afbeelding is genomen

(indien van toepassing).

6. De gegenereerde JSON-samenvatting wordt doorgegeven als parameters aan de

record_summary-tool, wat zorgt voor een gestructureerde weergave van de

belangrijkste kenmerken van de afbeelding.

Door de record_summary-tool te gebruiken met een goed gedefinieerd

input_schema, kunnen we een gestructureerde JSON-samenvatting van een

Gebruik van Tools 139

afbeelding verkrijgen zonder te vertrouwen op extractie van platte tekst. Deze aanpak

zorgt ervoor dat de uitvoer een consistent formaat volgt en gemakkelijk kan worden

geparseerd en verwerkt door downstream componenten van de applicatie.

De mogelijkheid om een functieaanroep af te dwingen en de verwachte uitvoerstructuur

te specificeren is een krachtige functie van toolgebruik in AI-gestuurde applicaties. Het

stelt ontwikkelaars in staat meer controle te hebben over de gegenereerde uitvoer en

vereenvoudigt de integratie van door AI gegenereerde gegevens in de workflow van

hun applicatie.

Uitvoering van Functie(s)

Je hebt functies gedefinieerd en je AI geprompt, die heeft besloten dat het een van je

functies moet aanroepen. Nu is het tijd voor je applicatiecode of bibliotheek, als je een

Ruby gem zoals raix-rails gebruikt, om de functieaanroep en zijn parameters naar

de corresponderende implementatie in je applicatiecode te dispatchen.

Je applicatiecode bepaalt wat er met de resultaten van de functie-uitvoering moet

gebeuren. Misschien betreft dit een enkele regel code in een lambda, of misschien betreft

het het aanroepen van een externe API. Misschien betreft het het aanroepen van een

andere AI-component, of misschien betreft het honderden of zelfs duizenden regels code

in de rest van je systeem. Het is geheel aan jou.

Soms is de functieaanroep het einde van de operatie, maar als de resultaten informatie

vertegenwoordigen in een ketening van gedachten die door de AI moet worden

voortgezet, dan moet je applicatiecode de uitvoeringsresultaten in het chattranscript

invoegen en de AI laten doorgaan met verwerken.

Hier bijvoorbeeld een Raix-functiedeclaratie die wordt gebruikt door Olympia’s

AccountManager om te communiceren met onze klanten als onderdeel van een

Intelligente Werkstroomorganisatie voor klantenservice.

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

Gebruik van Tools 140

1 class AccountManager

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 # lots of other functions...

6

7 function :notify_account_owner,

8 "Don't share UUID. Mention dollars if subscription changed",

9 message: { type: "string" } do |arguments|

10 account.owner.freeform_notify(

11 subject: "Account Change Notification",

12 message: arguments[:message]

13)

14 "Notified account owner"

15 end

Het is misschien niet direct duidelijk wat hier gebeurt, dus ik zal het uitleggen.

1. De AccountManager klasse definieert veel functies die gerelateerd zijn aan

accountbeheer. Het kan je abonnement wijzigen, teamleden toevoegen en

verwijderen, en nog veel meer.

2. De instructies op het hoogste niveau vertellen AccountManager dat

het de accounteigenaar moet informeren over de resultaten van het

accountwijzigingsverzoek, met behulp van de notify_account_owner

functie.

3. De beknopte definitie van de functie bevat:

• naam

• beschrijving

• parameters message: { type: "string" }

• een blok code dat wordt uitgevoerd wanneer de functie wordt aangeroepen

Na het bijwerken van het transcript met de resultaten van het functieblok, wordt de

chat_completionmethode opnieuw aangeroepen. Deze methode is verantwoordelijk

Gebruik van Tools 141

voor het terugsturen van het bijgewerkte gespreksverloop naar het AI-model voor

verdere verwerking. We noemen dit proces een conversatielus.

Wanneer het AI-model een nieuw chat completion verzoek ontvangt met een bijgewerkt

transcript, heeft het toegang tot de resultaten van de eerder uitgevoerde functie. Het kan

deze resultaten analyseren, ze meenemen in zijn besluitvormingsproces en de volgende

respons of actie genereren op basis van de cumulatieve context van het gesprek. Het kan

ervoor kiezen om extra functies uit te voeren op basis van de bijgewerkte context, of het

kan een definitieve respons genereren op de oorspronkelijke prompt als het bepaalt dat

er geen verdere functieaanroepen nodig zijn.

Optionele Voortzetting van de Oorspronkelijke Prompt

Wanneer je de gereedschapsresultaten terugstuurt naar de LLM en doorgaat met

de verwerking van de oorspronkelijke prompt, gebruikt de AI deze resultaten om

ofwel aanvullende functies aan te roepen ofwel een definitieve platte tekst respons te

genereren.

Sommigemodellen zoals Cohere’s Command-R kunnen specifiek vermelden

welke gereedschappen ze hebben gebruikt in hun antwoorden, wat zorgt

voor extra transparantie en traceerbaarheid.

Afhankelijk van het gebruikte model zullen de resultaten van de functieaanroep zich

bevinden in transcriptberichten met hun eigen speciale rol of worden weergegeven in

een andere syntax. Maar het belangrijkste is dat die gegevens in het transcript staan,

zodat de AI ze kan meenemen in zijn beslissing over wat er vervolgens moet gebeuren.

https://openrouter.ai/models/cohere/command-r

Gebruik van Tools 142

Een veelvoorkomende (en potentieel dure) fout is het vergeten om de

functieresultaten aan het transcript toe te voegen voordat je verdergaat

met het gesprek. Hierdoor zal de AI op vrijwel dezelfde manier worden

aangeroepen als voordat deze de functie voor de eerste keer aanriep. Met

andere woorden, voor zover de AI weet, heeft deze de functie nog niet

aangeroepen. Dus roept hij deze opnieuw aan. En opnieuw. En opnieuw,

tot in het oneindige totdat je het onderbreekt. Hopelijk was je context niet

te groot en je model niet te duur!

Best Practices voor Gereedschapsgebruik

Om het meeste uit gereedschapsgebruik te halen, kun je de volgende best practices

overwegen.

Beschrijvende Definities

Zorg voor duidelijke en beschrijvende namen en beschrijvingen voor elk gereedschap

en zijn invoerparameters. Dit helpt de LLM beter te begrijpen wat het doel en de

mogelijkheden van elk gereedschap zijn.

Ik kan je uit ervaring vertellen dat de algemene wijsheid die zegt dat “naamgeving

moeilijk is” hier ook geldt; ik heb dramatisch verschillende resultaten gezien

van LLMs alleen door het veranderen van functienamen of de formulering van

beschrijvingen. Soms verbetert het verwijderen van beschrijvingen de prestaties

zelfs.

Gebruik van Tools 143

Verwerking van Gereedschapsresultaten

Bij het doorgeven van gereedschapsresultaten aan de LLM, zorg ervoor dat ze goed

gestructureerd en volledig zijn. Gebruik betekenisvolle sleutels enwaarden om de output

van elk gereedschap weer te geven. Experimenteer met verschillende formaten en kijk

welke het beste werkt, van JSON tot platte tekst.

De Resultaatinterpreter pakt deze uitdaging aan door AI te gebruiken om de resultaten

te analyseren en mensvriendelijke uitleg, samenvattingen of belangrijke inzichten te

geven.

Foutafhandeling

Implementeer robuuste foutafhandelingsmechanismen om gevallen af te handelen

waarbij de LLM mogelijk ongeldige of niet-ondersteunde invoerparameters voor

gereedschapsaanroepen genereert. Handel fouten die kunnen optreden tijdens de

uitvoering van gereedschap netjes af en herstel ervan.

Een bijzonder prettige eigenschap van de AI is dat het foutmeldingen begrijpt! Dit

betekent dat als je in een snelle en praktische mindset werkt, je simpelweg alle

uitzonderingen kunt opvangen die gegenereerd worden in de implementatie van een

gereedschap, en deze kunt terugsturen naar de AI zodat het weet wat er is gebeurd!

Hier is bijvoorbeeld een afgeslankte versie van de implementatie van Google zoeken in

Olympia:

Gebruik van Tools 144

1 def google_search(conversation, params)

2 conversation.update_cstatus("Searching Google...")

3 query = params[:query]

4 search = GoogleSearch.new(query).get_hash

5

6 conversation.update_cstatus("Summarizing results...")

7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)

8 rescue StandardError => e

9 Honeybadger.notify(e)

10 { error: e.message }.inspect

11 end

Google-zoekopdrachten in Olympia zijn een proces in twee stappen. Eerst voer je de

zoekopdracht uit, daarna vat je de resultaten samen. Als er een fout optreedt, ongeacht

welke, wordt de foutmelding verpakt en teruggestuurd naar de AI. Deze techniek vormt

de basis van vrijwel alle Intelligente Foutafhandeling-patronen.

Stel bijvoorbeeld dat de GoogleSearch API-aanroep mislukt vanwege een 503 Service

Unavailable-foutmelding. Die wordt doorgegeven naar de hoogste rescue-clausule, en de

beschrijving van de fout wordt als resultaat van de functieaanroep teruggestuurd naar de

AI. In plaats van de gebruiker een leeg scherm of technische fout te tonen, zegt de AI iets

als “Het spijt me, maar ik heb momenteel geen toegang tot mijn Google-zoekfuncties.

Ik kan het later opnieuw proberen als u dat wilt.”

Dit lijkt misschien slechts een slimme truc, maar denk eens aan een ander soort fout,

waarbij de AI een externe API aanriep en directe controle had over de parameters die

aan de API moesten worden doorgegeven. Misschien maakte hij een fout in hoe hij die

parameters genereerde? Mits de foutmelding van de externe API gedetailleerd genoeg

is, betekent het terugsturen van de foutmelding naar de aanroepende AI dat deze de

parameters kan heroverwegen en het opnieuw kan proberen. Automatisch. Ongeacht

wat de fout was.

Bedenk nu eens wat er nodig zou zijn om dat soort robuuste foutafhandeling in normale

code te repliceren. Het is praktisch onmogelijk.

Gebruik van Tools 145

Iteratieve Verfijning

Als het LLM niet de juiste hulpmiddelen aanbeveelt of suboptimale responses genereert,

itereer dan op de gereedschapsdefinities, beschrijvingen en invoerparameters. Verfijn en

verbeter de hulpmiddelenopzet voortdurend op basis van het waargenomen gedrag en

de gewenste uitkomsten.

1. Begin met eenvoudige gereedschapsdefinities: Start met het definiëren

van hulpmiddelen met duidelijke en beknopte namen, beschrijvingen en

invoerparameters. Vermijd aanvankelijk een te ingewikkelde opzet van

hulpmiddelen en concentreer je op de kernfunctionaliteit. Als je bijvoorbeeld de

resultaten van sentimentanalyse wilt opslaan, begin dan met een basisdefinitie

zoals:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze user-provided text and generate sentiment score",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "score": {

8 "type": "float",

9 "description": "sentiment score from -1 (negative) to 1 (positive)"

10 }

11 },

12 "required": ["score"]

13 }

14 }

2. Test en observeer: Zodra je de eerste gereedschapsdefinities hebt opgezet, test je

ze met verschillende prompts en observeer je hoe het GTM met het gereedschap

interacteert. Let op de kwaliteit en relevantie van de gegenereerde responses. Als

het GTM suboptimale responses genereert, is het tijd om de gereedschapsdefinities

te verfijnen.

Gebruik van Tools 146

3. Verfijn beschrijvingen: Als het GTM het doel van een tool verkeerd begrijpt,

probeer dan de beschrijving van het gereedschap te verfijnen. Voorzie het van

meer context, voorbeelden of verduidelijkingen om het GTM te begeleiden bij

het effectief gebruik van het gereedschap. Je kunt bijvoorbeeld de beschrijving

van het sentimentanalyse-gereedschap bijwerken om specifieker in te gaan op de

emotionele toon van de te analyseren tekst:

1 {

2 "name": "save_sentiment_score",

3 "description": "Determine the overall emotional tone of a piece of text,

4 such as customer reviews, social media posts, or feedback comments.",

5 ...

6 }

4. Pas invoerparameters aan: Als de LLM ongeldige of irrelevante invoerparameters

voor een tool genereert, overweeg dan om de parameterdefinities aan te passen.

Voeg specifiekere beperkingen, validatieregels of voorbeelden toe om het

verwachte invoerformaat te verduidelijken.

5. Itereer op basis van feedback: Monitor voortdurend de prestaties van je tools en

verzamel feedback van gebruikers of belanghebbenden. Gebruik deze feedback

om verbeterpunten te identificeren en breng iteratieve verfijningen aan in de

gereedschapsdefinities. Als gebruikers bijvoorbeeld melden dat de analyse niet

goed omgaat met sarcasme, kun je een opmerking toevoegen in de beschrijving:

Gebruik van Tools 147

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze the sentiment of a given text and return a sentiment

4 score between -1 (negative) and 1 (positive). Note: Sarcasm should be

5 considered negative.",

6 ...

7 }

Door je gereedschapsdefinities iteratief te verfijnen op basis van geobserveerd gedrag en

feedback, kun je de prestaties en effectiviteit van je AI-gestuurde applicatie geleidelijk

verbeteren. Onthoud dat je de gereedschapsdefinities helder, bondig en gefocust moet

houden op de specifieke taak. Test en valideer de gereedschapsinteracties regelmatig om

ervoor te zorgen dat ze in lijn zijn met je gewenste resultaten.

Samenstellen en Aaneenschakelen van

Gereedschappen

Een van de krachtigste aspecten van gereedschapsgebruik, waar tot nu toe alleen op

gezinspeeld is, is de mogelijkheid om meerdere gereedschappen samen te stellen en aan

elkaar te koppelen om complexe taken uit te voeren. Door je gereedschapsdefinities en

hun invoer-/uitvoerformaten zorgvuldig te ontwerpen, kun je herbruikbare bouwstenen

creëren die op verschillende manieren kunnen worden gecombineerd.

Laten we een voorbeeld bekijken waarbij je een gegevensanalysepijplijn bouwt voor je

AI-gestuurde applicatie. Je zou de volgende gereedschappen kunnen hebben:

1. DataRetrieval: Een gereedschap dat gegevens ophaalt uit een database of API

op basis van specifieke criteria.

2. DataProcessing: Een gereedschap dat berekeningen, transformaties of

aggregaties uitvoert op de opgehaalde gegevens.

3. DataVisualization: Een gereedschap dat de verwerkte gegevens presenteert in

een gebruiksvriendelijk formaat, zoals grafieken of diagrammen.

Gebruik van Tools 148

Door deze gereedschappen aan elkaar te koppelen, kun je een krachtige werkstroom

creëren die relevante gegevens ophaalt, verwerkt en de resultaten op een betekenisvolle

manier presenteert. Zo zou de gereedschapsworkflow eruit kunnen zien:

1. De LLM ontvangt een gebruikersvraag met het verzoek om inzichten in

verkoopgegevens voor een specifieke productcategorie.

2. De LLM selecteert het DataRetrieval-gereedschap en genereert de juiste

invoerparameters om de relevante verkoopgegevens uit de database op te halen.

3. De opgehaalde gegevens worden “doorgegeven” aan het DataProcessing-

gereedschap, dat metrics berekent zoals totale omzet, gemiddelde verkoopprijs en

groeipercentage.

4. De verwerkte gegevens worden vervolgens verwerkt door het

DataVisualization-gereedschap, dat een visueel aantrekkelijke grafiek

of diagram maakt om de inzichten weer te geven, waarbij de URL van de grafiek

wordt teruggegeven aan de LLM.

5. Tot slot genereert de LLM een geformatteerd antwoord op de gebruikersvraag met

behulp van markdown, waarbij de gevisualiseerde gegevens worden geïntegreerd

en een samenvatting van de belangrijkste bevindingen wordt gegeven.

Door deze gereedschappen samen te stellen, kun je een naadloze

gegevensanalyseworkflow creëren die eenvoudig in je applicatie kan worden

geïntegreerd. Het mooie van deze aanpak is dat elk gereedschap onafhankelijk kan

worden ontwikkeld en getest, en vervolgens op verschillende manieren kan worden

gecombineerd om diverse problemen op te lossen.

Om een soepele samenstelling en aaneenschakeling van gereedschappen mogelijk te

maken, is het belangrijk om duidelijke invoer- en uitvoerformaten voor elk gereedschap

te definiëren.

Het DataRetrieval-gereedschap zou bijvoorbeeld parameters kunnen accepteren

zoals de databaseverbindingsgegevens, tabelnaam en queryvoorwaarden, en

Gebruik van Tools 149

het resultaat kunnen retourneren als een gestructureerd JSON-object. Het

DataProcessing-gereedschap kan dan dit JSON-object als invoer verwachten

en een getransformeerd JSON-object als uitvoer produceren. Door de gegevensstroom

tussen gereedschappen te standaardiseren, kun je compatibiliteit en herbruikbaarheid

waarborgen.

Denk bij het ontwerpen van je gereedschapsecosysteem na over hoe verschillende

gereedschappen kunnen worden gecombineerd om veelvoorkomende gebruikssituaties

in je applicatie aan te pakken. Overweeg om gereedschappen op hoog niveau te creëren

die veelvoorkomende workflows of bedrijfslogica omvatten, waardoor het voor de LLM

gemakkelijker wordt om ze effectief te selecteren en te gebruiken.

Onthoud dat de kracht van gereedschapsgebruik ligt in de flexibiliteit en modulariteit

die het biedt. Door complexe taken op te delen in kleinere, herbruikbare gereedschappen,

kun je een robuuste en aanpasbare AI-gestuurde applicatie creëren die een breed scala

aan uitdagingen kan aanpakken.

Toekomstige Ontwikkelingen

Naarmate het gebied van AI-gestuurde applicatieontwikkeling evolueert, kunnen

we verdere vooruitgang in gereedschapsgebruiksmogelijkheden verwachten. Enkele

potentiële toekomstige richtingen zijn:

1. Meerstaps-gereedschapsgebruik: LLM’s kunnen mogelijk bepalen hoe vaak ze

gereedschappen moeten gebruiken om een bevredigend antwoord te genereren.

Dit kan meerdere rondes van gereedschapsselectie en -uitvoering omvatten op

basis van tussenresultaten.

2. Voorgedefinieerde Gereedschappen: AI-platforms kunnen mogelijk een set

voorgedefinieerde gereedschappen aanbieden die ontwikkelaars direct kunnen

gebruiken, zoals Python-interpreters, zoekgereedschappen voor het web of

algemene hulpfuncties.

Gebruik van Tools 150

3. Naadloze Integratie: Naarmate gereedschapsgebruik gangbaarder wordt,

kunnen we betere integratie verwachten tussen AI-platforms en populaire

ontwikkelingsframeworks, waardoor het voor ontwikkelaars gemakkelijker

wordt om gereedschapsgebruik in hun applicaties te integreren.

Gereedschapsgebruik is een krachtige techniek die ontwikkelaars in staat stelt om

het volledige potentieel van LLM’s in AI-gestuurde applicaties te benutten. Door

LLM’s te verbinden met externe gereedschappen en bronnen, kun je meer dynamische,

intelligente en contextbewuste systemen creëren die zich kunnen aanpassen aan

gebruikersbehoeften en waardevolle inzichten en acties kunnen bieden.

Hoewel gereedschapsgebruik enorme mogelijkheden biedt, is het belangrijk om je

bewust te zijn van potentiële uitdagingen en overwegingen. Een belangrijk aspect

is het beheren van de complexiteit van gereedschapsinteracties en het waarborgen

van de stabiliteit en betrouwbaarheid van het gehele systeem. Je moet scenario’s

afhandelen waarbij gereedschapsaanroepen kunnen mislukken, onverwachte resultaten

kunnen opleveren of prestatie-implicaties kunnen hebben. Daarnaast moet je

beveiligings- en toegangscontrolemaatregelen overwegen om ongeautoriseerd of

kwaadwillig gebruik van gereedschappen te voorkomen. Goede foutafhandeling,

logging en monitoringmechanismen zijn cruciaal om de integriteit en prestaties van je

AI-gestuurde applicatie te behouden.

Tijdens het verkennen van de mogelijkheden van gereedschapsgebruik in je eigen

projecten, is het belangrijk om te beginnen met duidelijke doelstellingen, goed

gestructureerde gereedschapsdefinities, en te itereren op basis van feedback en

resultaten. Met de juiste aanpak en mindset kan gereedschapsgebruik nieuwe niveaus

van innovatie en waarde ontsluiten in je AI-gestuurde toepassingen

Streamverwerking

Het streamen van data over HTTP, ook bekend als server-sent events (SSE), is een

mechanisme waarbij de server continu data naar de client stuurt zodra deze beschikbaar

komt, zonder dat de client hier expliciet om hoeft te vragen. Aangezien de reactie van de

AI stapsgewijs wordt gegenereerd, is het logisch om een responsieve gebruikerservaring

te bieden door de uitvoer van de AI weer te geven terwijl deze wordt gegenereerd. En

eigenlijk bieden alle AI-provider API’s die ik ken streaming-responses als optie in hun

completion endpoints.

De reden dat dit hoofdstuk hier in het boek verschijnt, direct na Using Tools, is vanwege

hoe krachtig het kan zijn om het gebruik van tools te combineren met live AI-responses

aan gebruikers. Dit maakt dynamische en interactieve ervaringen mogelijk waarbij de

AI gebruikersinvoer kan verwerken, verschillende tools en functies naar eigen inzicht

kan gebruiken en vervolgens realtime responses kan geven.

Streamverwerking 152

Om deze naadloze interactie te bereiken, moet je streamverwerkers schrijven die zowel

door AI aangeroepen toolfuncties als platte tekstuitvoer naar de eindgebruiker kunnen

versturen. De noodzaak om te loopen na het verwerken van een toolfunctie voegt een

interessante uitdaging toe aan de taak.

Implementatie van een ReplyStream

Om te demonstreren hoe streamverwerking kan worden geïmplementeerd, zal dit

hoofdstuk diep ingaan op een vereenvoudigde versie van de ReplyStream-klasse die

wordt gebruikt in Olympia. Instanties van deze klasse kunnen worden doorgegeven als

de stream-parameter in AI-clientbibliotheken zoals ruby-openai en openrouter

Hier is hoe ik ReplyStream gebruik in Olympia’s PromptSubscriber, die via Wisper

luistert naar de creatie van nieuwe gebruikersberichten.

1 class PromptSubscriber

2 include Raix::ChatCompletion

3 include Raix::PromptDeclarations

4

5 # many other declarations omitted...

6

7 prompt text: -> { user_message.content },

8 stream: -> { ReplyStream.new(self) },

9 until: -> { bot_message.complete? }

10

11 def message_created(message) # invoked by Wisper

12 return unless message.role.user? && message.content?

13

14 # rest of the implementation omitted...

Naast een context-referentie naar de prompt-abonnee die het heeft geïnstantieerd,

heeft de ReplyStream-klasse ook instantievariabelen om een buffer van ontvangen

gegevens op te slaan, en arrays om functienamen en argumenten bij te houden die tijdens

de streamverwerking worden aangeroepen.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

Streamverwerking 153

1 class ReplyStream

2 attr_accessor :buffer, :f_name, :f_arguments, :context

3

4 delegate :bot_message, :dispatch, to: :context

5

6 def initialize(context)

7 self.context = context

8 self.buffer = []

9 self.f_name = []

10 self.f_arguments = []

11 end

12

13 def call(chunk, bytesize = nil)

14 # ...

15 end

16

17 # ...

18 end

De initializemethode zet de beginstatus van de ReplyStream instantie op, waarbij

de buffer, context en andere variabelen worden geïnitialiseerd.

De call methode is het belangrijkste toegangspunt voor het verwerken van de

streaminggegevens. Deze methode accepteert een chunk aan gegevens (weergegeven

als een hash) en een optionele bytesize parameter, die in ons voorbeeld niet wordt

gebruikt. Binnen deze methode gebruikt de klasse patroonherkenning om verschillende

scenario’s af te handelen op basis van de structuur van de ontvangen chunk.

Het aanroepen van deep_symbolize_keys op de chunk maakt de

patroonherkenning eleganter, doordat we kunnen werken met symbolen in

plaats van strings.

Streamverwerking 154

1 def call(chunk, _bytesize)

2 case chunk.deep_symbolize_keys

3

4 in { # match function name

5 choices: [

6 {

7 delta: {

8 tool_calls: [

9 { index: index, function: {name: name} }

10]

11 }

12 }

13] }

14

15 f_name[index] = name

Het eerste patroon waar we naar zoeken is een gereedschapsaanroep samen met de

bijbehorende functienaam. Als we er een detecteren, plaatsen we deze in de f_name

array. We slaan functienamen op in een geïndexeerde array, omdat het model in staat is

tot parallelle functieaanroepen, waarbij meerdere functies tegelijk ter uitvoering worden

verzonden.

Parallelle functieaanroepen is het vermogen van een AI-model om meerdere

functieaanroepen tegelijk uit te voeren, waarbij de effecten en resultaten van deze

functieaanroepen parallel kunnen worden verwerkt. Dit is vooral nuttig als functies

veel tijd in beslag nemen, en het vermindert het aantal communicatierondes met de

API, wat op zijn beurt een aanzienlijke besparing in tokenverbruik kan opleveren.

Vervolgens moeten we zoeken naar de argumenten die bij de functieaanroepen horen.

Streamverwerking 155

1 in { # match arguments

2 choices: [

3 {

4 delta: {

5 tool_calls: [

6 {

7 index: index, function: {arguments: argument }

8 }

9]

10 }

11 }

12]}

13

14 f_arguments[index] ||= "" # initialize if not already

15 f_arguments[index] << argument

Vergelijkbaarmet hoewe de functienamen hebben behandeld, bergenwe de argumenten

op in een geïndexeerde array.

Vervolgens kijken we naar normale gebruikersberichten, die één token tegelijk van de

server zullen binnenkomen en worden toegewezen aan de new_content variabele. We

moeten ook finish_reason in de gaten houden. Deze zal nil blijven tot het laatste

deel van de uitvoerreeks.

1 in {

2 choices: [

3 { delta: {content: new_content}, finish_reason: finish_reason }

4]}

5

6 # you could transmit every chunk to the user here...

7 buffer << new_content.to_s

8

9 if finish_reason.present?

10 finalize

11 elsif new_content.to_s.match?(/\n\n/)

12 send_to_client # ...or buffer and transmit once per paragraph

13 end

Belangrijk is dat we een patroonherkenningsexpressie toevoegen om foutmeldingen van

Streamverwerking 156

de AI-modelprovider af te handelen. In lokale ontwikkelomgevingen gooien we een

exceptie, maar in productie loggen we de fout en ronden we af.

1 in { error: { message: } }

2 if Rails.env.local?

3 raise message

4 else

5 Honeybadger.notify("AI Error: #{message}")

6 finalize

7 end

De laatste else-clausule van case wordt uitgevoerd als geen van de voorgaande patronen

overeenkwamen. Het is slechts een veiligheidsmaatregel, zodat we het ontdekken als het

AI-model ons onherkenbare fragmenten begint te sturen.

1 else

2 Honeybadger.notify("Unrecognized Chunk: #{chunk}")

3 end

4 end

De send_to_client methode is verantwoordelijk voor het verzenden van de

gebufferde inhoud naar de client. Deze controleert of de buffer niet leeg is, werkt de

inhoud van het botbericht bij, geeft het botbericht weer en slaat de inhoud op in de

database om gegevenspersistentie te waarborgen.

Streamverwerking 157

1 def send_to_client

2 # no need to process pure whitespace

3 return if buffer.join.squish.blank?

4

5 # set the buffer content on the bot message

6 content = buffer.join

7 bot_message.content = content

8

9 # save to database so that we never lose data

10 # even if the stream doesn't terminate correctly

11 bot_message.update_column(:content, content)

12

13 # update content via websocket

14 ConversationRenderer.update(bot_message)

15 end

De finalize-methode wordt aangeroepen wanneer de stream processing is voltooid.

Deze verwerkt de functie-aanroepen als die tijdens de stream zijn ontvangen, werkt

het botbericht bij met de definitieve inhoud en andere relevante informatie, en reset de

functie-aanroepgeschiedenis

1 def finalize

2 if f_name.any?

3 f_name.each_with_index do |name, index|

4 # takes care of calling the function wherever it's implemented

5 dispatch(name:, arguments: JSON.parse(f_arguments[index]))

6 end

7

8 # reset the function call history

9 f_name.clear

10 f_arguments.clear

11 else

12 content = buffer.join.presence

13 bot_message.update!(content:, complete: true)

14 ConversationRenderer.update(bot_message)

15 end

16 end

Als het model besluit om een functie aan te roepen, moet je die functieaanroep (naam

Streamverwerking 158

en argumenten) zodanig “afhandelen” dat deze wordt uitgevoerd en er function_call

en function_result berichten worden toegevoegd aan het gespreksverslag

Uit mijn ervaring is het beter om het aanmaken van functieberichten op één plek in je

codebase af te handelen, in plaats van te vertrouwen op de implementaties van de tools.

Dit is niet alleen netter, maar heeft ook een zeer belangrijke praktische reden: als het

AI-model een functie aanroept en de resulterende aanroep- en resultaatberichten niet

in het transcript ziet tijdens het doorlopen, zal het dezelfde functie opnieuw aanroepen.

Mogelijk tot in het oneindige. Onthoud dat de AI volledig toestandsloos is, dus tenzij je

die functieaanroepen terugkoppelt, zijn ze voor het model nooit gebeurd.

1 # PromptSubscriber#dispatch

2

3 def dispatch(name:, arguments:)

4 # adds a function_call message to the conversation transcript

5 # plus dispatches to tool and returns result

6 conversation.function_call!(name, arguments).then do |result|

7 # add function result message to the transcript

8 conversation.function_result!(name, result)

9 end

10 end

Het wissen van de functie-aanroepgeschiedenis na het verzenden is net zo

belangrijk als ervoor zorgen dat de aanroep en resultaten in je transcript

terechtkomen, zodat je niet steeds dezelfde functies blijft aanroepen elke keer

dat je de lus doorloopt.

De “Conversatielus”

I Ik blijf het hebben over lussen, maar als je nieuw bent met functie-aanroepen, is het

misschien niet direct duidelijk waarom we een lus nodig hebben. De reden is dat zodra

de AI je vraagt om toolfuncties namens haar uit te voeren, ze stopt met antwoorden.

Streamverwerking 159

Het is aan jou om die functies uit te voeren, de resultaten te verzamelen, de resultaten

aan het transcript toe te voegen, en vervolgens de oorspronkelijke prompt opnieuw in te

dienen om een nieuwe set functie-aanroepen of gebruikersgerichte resultaten te krijgen.

In de PromptSubscriber klasse gebruiken we de prompt methode van de

PromptDeclarations module om het gedrag van de conversatielus te definiëren. De

until parameter is ingesteld op -> { bot_message.complete? }, wat betekent

dat de lus doorgaat totdat het bot_message als voltooid is gemarkeerd.

1 prompt text: -> { user_message.content },

2 stream: -> { ReplyStream.new(self) },

3 until: -> { bot_message.complete? }

Maarwanneer wordt bot_message als voltooid gemarkeerd? Als je het bent

vergeten, kijk dan terug naar regel 13 van de finalize methode.

Laten we de volledige streamverwerkingslogica doornemen.

1. De PromptSubscriber ontvangt een nieuw gebruikersbericht via de

message_created methode, die wordt aangeroepen door het Wisper

publicatie/abonnement-systeem telkens wanneer de eindgebruiker een nieuwe

prompt maakt.

2. De prompt klassemethode definieert op declaratieve wijze het gedrag van

de chatafronding-logica voor de PromptSubscriber. Het AI-model zal een

chatafronding uitvoeren met de berichtinhoud van de gebruiker, een nieuwe

instantie van ReplyStream als de streamparameter, en de gespecificeerde

lusvoorwaarde.

3. Het AI-model verwerkt de prompt en begint met het genereren van een

antwoord. Terwijl het antwoord wordt gestreamd, wordt de call methode van

de ReplyStream instantie aangeroepen voor elk deel van de data.

Streamverwerking 160

4. Als het AI-model besluit om een hulpfunctie aan te roepen, worden de

functienaam en argumenten uit het deel geëxtraheerd en respectievelijk

opgeslagen in de f_name en f_arguments arrays.

5. Als het AI-model gebruikersgerichte inhoud genereert, wordt deze gebufferd en

naar de client verzonden via de send_to_client methode.

6. Zodra de streamverwerking voltooid is, wordt de finalize methode

aangeroepen. Als er tijdens de stream hulpfuncties zijn aangeroepen, worden deze

afgehandeld met behulp van de dispatchmethode van de PromptSubscriber.

7. De dispatch methode voegt een function_call bericht toe aan het

gespreksverslag, voert de corresponderende hulpfunctie uit, en voegt een

function_result bericht toe aan het verslag met het resultaat van de

functieaanroep.

8. Na het afhandelen van de hulpfuncties wordt de functieaanroepgeschiedenis

gewist om dubbele functieaanroepen in volgende lussen te voorkomen.

9. Als er geen hulpfuncties zijn aangeroepen, werkt de finalize methode het

bot_message bij met de definitieve inhoud, markeert het als voltooid, en stuurt

het bijgewerkte bericht naar de client.

10. De lusvoorwaarde -> { bot_message.complete? } wordt geëvalueerd. Als

het bot_message niet als voltooid is gemarkeerd, gaat de lus door en wordt de

originele prompt opnieuw ingediend met het bijgewerkte gespreksverslag.

11. Stappen 3-10 worden herhaald totdat het bot_message als voltooid is

gemarkeerd, wat aangeeft dat het AI-model klaar is met het genereren van

zijn antwoord en er geen verdere hulpfuncties hoeven te worden uitgevoerd.

Door deze conversatielus te implementeren, stel je het AI-model in staat om een

wisselwerking met de applicatie aan te gaan, hulpfuncties uit te voeren wanneer

nodig en gebruikersgerichte antwoorden te genereren totdat het gesprek een natuurlijke

conclusie bereikt.

De combinatie van streamverwerking en de conversatielus maakt dynamische en

interactieve AI-gestuurde ervaringen mogelijk, waarbij het AI-model gebruikersinvoer

Streamverwerking 161

kan verwerken, verschillende hulpmiddelen en functies kan gebruiken, en realtime

antwoorden kan geven op basis van de zich ontwikkelende gesprekscontext.

Automatische Voortzetting

Het is belangrijk om je bewust te zijn van AI-uitvoerbeperkingen. De meeste modellen

hebben een maximaal aantal tokens dat ze in één antwoord kunnen genereren, wat

wordt bepaald door de max_tokens parameter. Als het AI-model deze limiet bereikt

tijdens het genereren van een antwoord, zal het abrupt stoppen en aangeven dat de

uitvoer is afgekapt.

In de streaming-respons van de AI-platform API kun je deze situatie detecteren door

de finish_reason variabele in het deel te onderzoeken. Als de finish_reason is

ingesteld op "length" (of een andere sleutelwaarde specifiek voor het model), betekent

dit dat het model zijn maximale tokenlimiet heeft bereikt tijdens het genereren en de

uitvoer voortijdig is afgebroken.

Een manier om dit scenario elegant af te handelen en een naadloze gebruikerservaring

te bieden, is door een automatisch voortzettingsmechanisme te implementeren

in je streamverwerkingslogica. Door een patroonherkenning toe te voegen voor

lengtegebonden afsluitredenen, kun je ervoor kiezen om te lussen en de uitvoer

automatisch voort te zetten vanaf waar deze was gebleven.

Hier is een opzettelijk vereenvoudigd voorbeeld van hoe je de call methode in de

ReplyStream klasse kunt aanpassen om automatische voortzetting te ondersteunen:

Streamverwerking 162

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices: [

9 { delta: {content: new_content},

10 finish_reason: finish_reason }] }

11

12 buffer << new_content.to_s

13

14 if finish_reason.blank?

15 send_to_client if new_content.to_s.match?(/\n\n/)

16 elsif LENGTH_STOPS.include?(finish_reason)

17 continue_cutoff

18 else

19 finalize

20 end

21

22 # ...

23 end

24 end

25

26 private

27

28 def continue_cutoff

29 conversation.bot_message!(buffer.join, visible: false)

30 conversation.user_message!("please continue", visible: false)

31 bot_message.update_column(:created_at, Time.current)

32 end

In deze aangepaste versie, wanneer de finish_reason afgekapte output aangeeft,

voegen we, in plaats van de stream te finaliseren, een paar berichten toe aan het

transcript zonder te finaliseren, verplaatsen we het originele gebruikersgerichte

antwoordbericht naar de “onderkant” van het transcript door zijn created_at

attribuut bij te werken, en laten we vervolgens de lus gebeuren, zodat de AI doorgaat

met genereren waar deze was gestopt.

Streamverwerking 163

Onthoud dat het AI-voltooiingseindpunt statusloos is. Het “weet” alleen wat je het

vertelt via het transcript. In dit geval is de manier waarop we aan de AI communiceren

dat deze werd afgekapt door het toevoegen van “onzichtbare” (voor de eindgebruiker)

berichten aan het transcript. Onthoud echter dat dit een opzettelijk vereenvoudigd

voorbeeld is. Een echte implementatie zou verder transcriptbeheer moeten uitvoeren om

ervoor te zorgen dat we geen tokens verspillen en/of de AI niet in verwarring brengen

met gedupliceerde assistent-berichten in het transcript.

Een echte implementatie van automatische voortzetting zou ook zogenaamde

“circuitonderbreker-logica” moeten bevatten om ongecontroleerde lussen te voorkomen.

De reden hiervoor is dat, gegeven bepaalde soorten gebruikersprompts en lage

max_tokens instellingen, de AI eindeloos zou kunnen doorgaan met het genereren van

gebruikersgerichte output.

Houd er rekening mee dat elke lus een apart verzoek vereist, en dat elk verzoek

je hele transcript opnieuw verbruikt. Je moet zeker de afweging maken tussen

gebruikerservaring en API-gebruik bij het beslissen of je automatische voortzetting

in je applicatie wilt implementeren. Automatische voortzetting kan in het bijzonder

gevaarlijk duur zijn, vooral bij gebruik van premium commerciële modellen.

Conclusie

Streamverwerking is een kritiek aspect van het bouwen van AI-aangedreven applicaties

die toolgebruik combineren met live AI-responses. Door het efficiënt afhandelen

van de streaming data van AI-platform API’s, kun je een naadloze en interactieve

gebruikerservaring bieden, grote responses afhandelen, bronnengebruik optimaliseren

en fouten elegant afhandelen.

Streamverwerking 164

De aangeboden Conversation::ReplyStream klasse demonstreert hoe

streamverwerking kan worden geïmplementeerd in een Ruby-applicatie met

behulp van patroonherkenning en gebeurtenisgestuurde architectuur. Door

streamverwerkingstechnieken te begrijpen en te benutten, kun je het volledige

potentieel van AI-integratie in je applicaties ontsluiten en krachtige en boeiende

gebruikerservaringen leveren.

Zelfherstellende Data

Zelfherstellende data is een krachtige benadering om data-integriteit, consistentie en

kwaliteit in applicaties te waarborgen door gebruik te maken van de mogelijkheden

van grote taalmodellen (LLM’s). Deze categorie patronen richt zich op het idee om

AI te gebruiken voor het automatisch detecteren, diagnosticeren en corrigeren van

data-anomalieën, inconsistenties of fouten, waardoor de last voor ontwikkelaars wordt

verminderd en een hoog niveau van databelrouwbaarheid wordt gehandhaafd.

In de kern erkennen de zelfherstellende datapatronen dat data de levensader is van elke

applicatie, en het waarborgen van de nauwkeurigheid en integriteit ervan is cruciaal

voor het goed functioneren en de gebruikerservaring van de applicatie. Het beheren en

onderhouden van datakwaliteit kan echter een complexe en tijdrovende taak zijn, vooral

naarmate applicaties groeien in omvang en complexiteit. Hier komt de kracht van AI in

beeld.

Zelfherstellende Data 166

In de zelfherstellende datapatronen worden AI-workers ingezet om continu de data van

uw applicatie te monitoren en te analyseren. Deze modellen hebben het vermogen om

patronen, relaties en anomalieën binnen de data te begrijpen en te interpreteren. Door

gebruik te maken van hun natuurlijke taalverwerking en begrip kunnen ze potentiële

problemen of inconsistenties in de data identificeren en passende acties ondernemen

om deze te herstellen.

Het proces van zelfherstellende data omvat meestal verschillende belangrijke stappen:

1. Datamonitoring: AI-workers monitoren constant de datastromen, databases

of opslagsystemen van de applicatie, op zoek naar tekenen van anomalieën,

inconsistenties of fouten. Als alternatief kunt u een AI-component activeren als

reactie op een uitzondering.

2. Anomaliedetectie:Wanneer een probleem wordt gedetecteerd, analyseert de AI-

worker de data in detail om de specifieke aard en omvang van het probleem

te identificeren. Dit kan gaan om het detecteren van ontbrekende waarden,

inconsistente formaten of data die vooraf gedefinieerde regels of beperkingen

schendt.

3. Diagnose en Correctie: Zodra het probleem is geïdentificeerd, gebruikt de AI-

worker zijn kennis en begrip van het datadomein om de juiste aanpak te bepalen.

Dit kan betekenen dat de data automatisch wordt gecorrigeerd, ontbrekende

waarden worden ingevuld, of het probleem wordt gemarkeerd voor menselijke

interventie indien nodig.

4. Continu Leren (optioneel, afhankelijk van gebruik): Terwijl uw AI-worker

verschillende dataproblemen tegenkomt en oplost, kan deze output genereren die

beschrijft wat er is gebeurd en hoe erop is gereageerd. Deze metadata kan worden

gebruikt in leerprocessen waardoor u (en mogelijk het onderliggende model, via

fine-tuning) effectiever en efficiënter wordt in het identificeren en oplossen van

data-anomalieën.

Door automatisch dataproblemen te detecteren en te corrigeren, kunt u ervoor

Zelfherstellende Data 167

zorgen dat uw applicatie werkt met kwalitatief hoogwaardige, betrouwbare data.

Dit vermindert het risico dat fouten, inconsistenties of data-gerelateerde bugs de

functionaliteit of gebruikerservaring van de applicatie beïnvloeden.

Zodra u AI-workers heeft die de taak van datamonitoring en -correctie uitvoeren, kunt u

zich richten op andere kritieke aspecten van de applicatie. Dit bespaart tijd en middelen

die anders zouden worden besteed aan handmatige dataopschoning en onderhoud.

Sterker nog, naarmate uw applicaties groeien in omvang en complexiteit, wordt het

handmatig beheren van datakwaliteit steeds uitdagender. De “Zelfherstellende Data”

patronen schalen effectief door de kracht van AI te benutten om grote hoeveelheden

data te verwerken en problemen in realtime te detecteren.

Vanwege hun aard kunnen AI-modellen zich met weinig tot geen toezicht

aanpassen aan veranderende datapatronen, schema’s of vereisten. Zolang

hun richtlijnen adequate begeleiding bieden, vooral met betrekking tot

beoogde resultaten, kan uw applicatie mogelijk evolueren en nieuwe

datascenario’s afhandelen zonder uitgebreide handmatige interventie of

codewijzigingen.

De zelfherstellende datapatronen sluiten goed aan bij de andere categorieën patronen die

we hebben besproken, zoals “Veelheid aan Workers”. De zelfherstellende datacapaciteit

kan worden gezien als een gespecialiseerd soort worker die zich specifiek richt op het

waarborgen van datakwaliteit en -integriteit. Dit soort worker werkt samen met andere

AI-workers, waarbij elk bijdraagt aan verschillende aspecten van de functionaliteit van

de applicatie.

Het implementeren van zelfherstellende datapatronen in de praktijk vereist zorgvuldig

ontwerp en integratie van AI-modellen in de applicatiearchitectuur. Vanwege de risico’s

van dataverlies en -corruptie moet u duidelijke richtlijnen definiëren voor hoe u deze

techniek zult gebruiken. U moet ook rekening houden met factoren zoals prestaties,

schaalbaarheid en databeveiliging.

Zelfherstellende Data 168

Praktijkvoorbeeld: Het Repareren van

Beschadigde JSON

Een van de meest praktische en handige manieren om zelfherstellende data te benutten

is ook heel eenvoudig uit te leggen: het repareren van beschadigde JSON.

Deze techniek kan worden toegepast op de veel voorkomende uitdaging van het omgaan

met imperfecte of inconsistente data gegenereerd door LLM’s, zoals beschadigde JSON,

en biedt een aanpak voor het automatisch detecteren en corrigeren van deze problemen.

Bij Olympia kom ik regelmatig scenario’s tegen waarbij LLM’s JSON-data genereren

die niet volledig geldig is. Dit kan verschillende oorzaken hebben, zoals wanneer het

LLM commentaar toevoegt voor of na de eigenlijke JSON-code, of syntaxisfouten

introduceert zoals ontbrekende komma’s of niet-geëscapete dubbele aanhalingstekens.

Deze problemen kunnen leiden tot parse-fouten en verstoringen veroorzaken in de

functionaliteit van de applicatie.

Om dit probleem aan te pakken, heb ik een praktische oplossing geïmplementeerd in de

vorm van een JsonFixer-klasse. Deze klasse belichaamt het “Self-Healing Data” patroon

door de beschadigde JSON als invoer te nemen en een LLM te gebruiken om deze te

repareren, waarbij zoveel mogelijk informatie en intentie behouden blijft.

1 class JsonFixer

2 include Raix::ChatCompletion

3

4 def call(bad_json, error_message)

5 raise "No data provided" if bad_json.blank? || error_message.blank?

6

7 transcript << {

8 system: "Consider user-provided JSON that generated a parse

9 exception. Do your best to fix it while preserving the

10 original content and intent as much as possible." }

11 transcript << { user: bad_json }

12 transcript << { assistant: "What is the error message?"}

13 transcript << { user: error_message }

Zelfherstellende Data 169

14 transcript << { assistant: "Here is the corrected JSON\n```json\n" }

15

16 self.stop = ["```"]

17

18 chat_completion(json: true)

19 end

20

21 def model

22 "mistralai/mixtral-8x7b-instruct:nitro"

23 end

24 end

Merk op hoe JsonFixer Ventriloquist gebruikt om de AI-responses te

sturen.

Het proces van zelfherstellende JSON-data werkt als volgt:

1. JSON-generatie: Een LLM wordt gebruikt om JSON-data te genereren op

basis van bepaalde prompts of vereisten. Echter, door de aard van LLMs is de

gegenereerde JSON niet altijd volledig geldig. De JSON-parser zal uiteraard een

ParserError genereren als je ongeldige JSON aanlevert.

1 begin

2 JSON.parse(llm_generated_json)

3 rescue JSON::ParserError => e

4 JsonFixer.new.call(llm_generated_json, e.message)

5 end

Merk op dat het foutbericht ook wordt doorgegeven aan de JSONFixer-aanroep, zodat

deze niet volledig hoeft aan te nemen wat er mis is met de data, vooral omdat de parser

vaak precies aangeeft wat er mis is.

2. LLM-gebaseerde Correctie: De JSONFixer-klasse stuurt de beschadigde JSON

terug naar een LLM, samen met een specifieke prompt of instructie om de JSON te

Zelfherstellende Data 170

repareren waarbij de originele informatie en bedoeling zoveel mogelijk behouden

blijven. De LLM, getraind op enorme hoeveelheden data en met begrip van JSON-

syntax, probeert de fouten te corrigeren en een geldige JSON-string te genereren.

Responsbegrenzing wordt gebruikt om de output van de LLM te beperken, en we

kiezen Mixtral 8x7B als het AI-model, aangezien het bijzonder geschikt is voor dit

soort taken.

3. Validatie en Integratie: De gerepareerde JSON-string die door de LLM wordt

teruggegeven, wordt verwerkt door de JSONFixer-klasse zelf, omdat deze

chat_completion(json: true) aanroept. Als de gerepareerde JSON de

validatie doorstaat, wordt deze geïntegreerd in de werkstroom van de applicatie,

waardoor de applicatie naadloos door kan gaan met het verwerken van de data.

De slechte JSON is “genezen”.

Hoewel ik mijn eigen JSONFixer-implementatie meerdere keren heb geschreven en

herschreven, betwijfel ik of de totale tijd die in al die versies is geïnvesteerd meer dan

een uur of twee bedraagt.

Merk op dat het behoud van de oorspronkelijke bedoeling een kernelement is van

elk zelfherstellend datapatroon. Het LLM-gebaseerde correctieproces streeft ernaar

om de originele informatie en bedoeling van de gegenereerde JSON zoveel mogelijk

te behouden. Dit zorgt ervoor dat de gerepareerde JSON zijn semantische betekenis

behoudt en effectief kan worden gebruikt binnen de context van de applicatie.

Deze praktische implementatie van de “Zelfherstellende Data”-aanpak in Olympia laat

duidelijk zien hoe AI, en specifiek LLM’s, kunnen worden ingezet om praktische data-

uitdagingen op te lossen. Het toont de kracht van het combineren van traditionele

programmeertechnieken met AI-mogelijkheden om robuuste en efficiënte applicaties

te bouwen.

Zelfherstellende Data 171

Postel’s Law en het “Zelfherstellende Data”-
Patroon

“Zelfherstellende Data”, zoals geïllustreerd door de JSONFixer-klasse, sluit goed aan

bij het principe bekend als Postel’s Law, ook wel het Robuustheidsprincipe genoemd.

Postel’s Law stelt:

“Wees conservatief in wat je doet, wees liberaal in wat je accepteert van anderen.”

Dit principe, oorspronkelijk geformuleerd door Jon Postel, een pionier van het vroege

internet, benadrukt het belang van het bouwen van systemen die tolerant zijn voor

diverse of zelfs licht incorrecte invoer, terwijl ze strikt vasthouden aan gespecificeerde

protocollen bij het verzenden van uitvoer.

In de context van “Zelfherstellende Data” belichaamt de JSONFixer-klasse Postel’s

Law door liberaal te zijn in het accepteren van beschadigde of imperfecte JSON-data

gegenereerd door LLM’s. Het verwerpt of faalt niet onmiddellijk wanneer het JSON

tegenkomt die niet strikt voldoet aan het verwachte formaat. In plaats daarvan neemt

het een tolerante aanpak en probeert het de JSON te repareren met behulp van de

kracht van LLM’s.

Door liberaal te zijn in het accepteren van imperfecte JSON, demonstreert de

JSONFixer-klasse robuustheid en flexibiliteit. Het erkent dat data in de echte wereld

vaak in verschillende vormen komt en niet altijd aan strikte specificaties voldoet.

Door deze afwijkingen elegant af te handelen en te corrigeren, zorgt de klasse

ervoor dat de applicatie soepel kan blijven functioneren, zelfs in aanwezigheid van

imperfecte data.

Aan de andere kant houdt de JSONFixer-klasse zich ook aan het conservatieve aspect

van Postel’s Law als het gaat om de uitvoer. Na het repareren van de JSONmet behulp

van LLM’s, valideert de klasse de gecorrigeerde JSON om ervoor te zorgen dat deze

strikt voldoet aan het verwachte formaat. Het behoudt de integriteit en correctheid

Zelfherstellende Data 172

van de data voordat deze wordt doorgegeven aan andere delen van de applicatie.

Deze conservatieve aanpak garandeert dat de uitvoer van de JSONFixer-klasse

betrouwbaar en consistent is, wat interoperabiliteit bevordert en de verspreiding van

fouten voorkomt.

Interessante weetjes over Jon Postel:

• Jon Postel (1943-1998) was een Amerikaanse informaticus die een cruciale rol

speelde in de ontwikkeling van het internet. Hij stond bekend als de “God

van het Internet” vanwege zijn belangrijke bijdragen aan de onderliggende

protocollen en standaarden.

• Postel was de redacteur van de Request for Comments (RFC)-documentreeks,

een serie technische en organisatorische notities over het internet. Hij schreef

of co-schreef meer dan 200 RFC’s, waaronder de fundamentele protocollen

zoals TCP, IP en SMTP.

• Naast zijn technische bijdragen stond Postel bekend om zijn bescheiden en

samenwerkende aanpak. Hij geloofde in het belang van het bereiken van

consensus en samenwerken om een robuust en interoperabel netwerk te

bouwen.

• Postel diende als Directeur van de Computer Networks Division bij het

Information Sciences Institute (ISI) van de University of Southern California

(USC) van 1977 tot aan zijn vroegtijdige dood in 1998.

• Als erkenning voor zijn enorme bijdragen werd Postel postuum onderscheiden

met de prestigieuze Turing Award in 1998, vaak aangeduid als de “Nobelprijs

voor Informatica.”

De JSONFixer-klasse bevordert robuustheid, flexibiliteit en interoperabiliteit,

wat kernwaarden waren die Postel gedurende zijn hele carrière voorstond. Door

systemen te bouwen die tolerant zijn voor onvolkomenheden, terwijl ze zich strikt

aan protocollen houden, kunnen we toepassingen creëren die veerkrachtiger en

aanpasbaarder zijn bij praktische uitdagingen.

Zelfherstellende Data 173

Overwegingen en Contra-indicaties

De toepasbaarheid van zelfherstellende data-aanpakken is volledig afhankelijk van

het soort gegevens dat je applicatie verwerkt. Er is een reden waarom je mogelijk

niet zomaar JSON.parse wilt aanpassen om automatisch alle JSON-parsing fouten

in je applicatie te corrigeren: niet alle fouten kunnen of moeten automatisch worden

gecorrigeerd.

Zelfherstel is bijzonder complex wanneer het gekoppeld wordt aan regelgevings- of

nalevingsvereisten met betrekking tot gegevensverwerking en -verwerking. Sommige

sectoren, zoals de gezondheidszorg en financiële sector, hebben zodanig strenge

voorschriften met betrekking tot data-integriteit en controleerbaarheid dat het

uitvoeren van “black box” datacorrecties zonder adequaat toezicht of logging in

strijd kan zijn met deze voorschriften. Het is cruciaal om ervoor te zorgen dat alle

zelfherstellende datatechnieken die je ontwikkelt, in overeenstemming zijn met de

toepasselijke wettelijke en regelgevende kaders.

Het toepassen van zelfherstellende datatechnieken, vooral die met AI-modellen, kan ook

grote invloed hebben op de prestaties en het brongebruik van applicaties. Het verwerken

van grote hoeveelheden gegevens via AI-modellen voor foutdetectie en -correctie kan

rekenintensief zijn. Het is belangrijk om de afweging te maken tussen de voordelen van

zelfherstellende data en de bijbehorende prestatie- en resourcekosten.

Dat gezegd hebbende, laten we eens kijken naar de factoren die een rol spelen bij het

beslissen wanneer en waar deze krachtige aanpak toe te passen.

Datakritikaliteit

Bij het overwegen van de toepassing van zelfherstellende datatechnieken is het cruciaal

om de kritikaliteit van de te verwerken gegevens te beoordelen. Het kritikaliteitsniveau

verwijst naar het belang en de gevoeligheid van de gegevens in de context van je

applicatie en het bedrijfsdomein.

Zelfherstellende Data 174

In sommige gevallen is het automatisch corrigeren van datafouten mogelijk niet gepast,

vooral als de gegevens zeer gevoelig zijn of juridische implicaties hebben. Overweeg

bijvoorbeeld de volgende scenario’s:

1. Financiële Transacties: In financiële applicaties, zoals banksystemen of

handelsplatformen, is data-nauwkeurigheid van het grootste belang. Zelfs kleine

fouten in financiële gegevens kunnen belangrijke gevolgen hebben, zoals onjuiste

rekeningsaldi, verkeerd geleide gelden of foutieve handelsbeslissingen. In deze

gevallen kunnen geautomatiseerde correcties zonder grondige verificatie en

controle onaanvaardbare risico’s met zich meebrengen.

2. Medische Dossiers: Zorgtoepassingen werken met zeer gevoelige en

vertrouwelijke patiëntgegevens. Onnauwkeurigheden in medische dossiers

kunnen ernstige gevolgen hebben voor de veiligheid van patiënten en

behandelingsbeslissingen. Het automatisch wijzigen van medische gegevens

zonder adequaat toezicht en validatie door gekwalificeerde zorgprofessionals kan

in strijd zijn met regelgevingsvereisten en de gezondheid van patiënten in gevaar

brengen.

3. Juridische Documenten: Toepassingen die juridische documenten verwerken,

zoals contracten, overeenkomsten of rechtbankdocumenten, vereisen strikte

nauwkeurigheid en integriteit. Zelfs kleine fouten in juridische gegevens kunnen

belangrijke juridische gevolgen hebben. Geautomatiseerde correcties zijn in dit

domein mogelijk niet gepast, aangezien de gegevens vaak handmatige controle en

verificatie door juridische experts vereisen om de geldigheid en afdwingbaarheid

te waarborgen.

In deze kritieke datascenario’s wegen de risico’s van geautomatiseerde correcties vaak

niet op tegen de potentiële voordelen. De gevolgen van het introduceren van fouten of

het incorrect wijzigen van gegevens kunnen ernstig zijn, wat kan leiden tot financiële

verliezen, juridische aansprakelijkheid of zelfs schade aan personen.

Zelfherstellende Data 175

Bij het werken met zeer kritieke gegevens is het essentieel om prioriteit te geven

aan handmatige verificatie- en validatieprocessen. Menselijk toezicht en expertise zijn

cruciaal voor het waarborgen van de nauwkeurigheid en integriteit van de gegevens.

Geautomatiseerde zelfherstellende technieken kunnen nog steeds worden gebruikt om

mogelijke fouten of inconsistenties te markeren, maar de uiteindelijke beslissing over

correcties moet menselijk oordeel en goedkeuring omvatten.

Het is echter belangrijk op te merken dat niet alle gegevens in een applicatie hetzelfde

kritikaliteitsniveau hebben. Binnen dezelfde applicatie kunnen er subsets van gegevens

zijn die minder gevoelig zijn of waarbij fouten minder impact hebben. In dergelijke

gevallen kunnen zelfherstellende datatechnieken selectief worden toegepast op die

specifieke datasubsets, terwijl kritieke gegevens onderworpen blijven aan handmatige

verificatie.

De sleutel is om zorgvuldig de kritikaliteit van elke datacategorie in je applicatie te

beoordelen en duidelijke richtlijnen en processen te definiëren voor het afhandelen

van correcties op basis van de bijbehorende risico’s en implicaties. Door onderscheid te

maken tussen kritieke (zoals grootboeken, medische dossiers) en niet-kritieke gegevens

(zoals mailingadressen, bronwaarschuwingen), kun je een balans vinden tussen het

benutten van de voordelen van zelfherstellende datatechnieken waar gepast en het

handhaven van strikte controle en toezicht waar nodig.

Uiteindelijk moet de beslissing om zelfherstellende datatechnieken toe te passen op

kritieke gegevens worden genomen in overleg met domeinexperts, juridisch adviseurs

en andere relevante belanghebbenden. Het is essentieel om rekening te houden met de

specifieke vereisten, voorschriften en risico’s die verbonden zijn aan de gegevens van je

applicatie en de datacorrectiestrategieën daarop af te stemmen.

Ernst van Fouten

Bij het toepassen van zelfherstellende datatechnieken is het belangrijk om de ernst en

impact van de datafouten te beoordelen. Niet alle fouten zijn gelijk, en de juiste aanpak

Zelfherstellende Data 176

kan variëren afhankelijk van de ernst van het probleem.

Kleine inconsistenties of opmaakproblemen kunnen geschikt zijn voor automatische

correctie. Bijvoorbeeld, een zelfherstellende dataverwerker die bedoeld is om

defecte JSON te repareren kan ontbrekende komma’s of niet-geëscapete dubbele

aanhalingstekens afhandelen zonder de betekenis of structuur van de gegevens

significant te wijzigen. Dit soort fouten zijn vaak eenvoudig te corrigeren en hebben

minimale impact op de algehele data-integriteit.

Echter, ernstigere fouten die de betekenis of integriteit van de data fundamenteel

veranderen, vereisen mogelijk een andere aanpak. In dergelijke gevallen zijn

geautomatiseerde correcties mogelijk niet toereikend, en kan menselijke tussenkomst

noodzakelijk zijn om de nauwkeurigheid en validiteit van de data te waarborgen.

Dit is waar het concept om AI zelf te gebruiken voor het bepalen van de ernst van fouten

in beeld komt. Door gebruik te maken van de mogelijkheden van AI-modellen, kunnen

we zelfherstellende data-workers ontwerpen die niet alleen fouten corrigeren, maar ook

de ernst van deze fouten beoordelen en weloverwogen beslissingen nemen over hoe

ermee om te gaan.

Laten we bijvoorbeeld een zelfherstellende data-worker beschouwen die

verantwoordelijk is voor het corrigeren van inconsistenties in data die een

klantendatabase binnenstroomt. De worker kan worden ontworpen om de data

te analyseren en potentiële fouten te identificeren, zoals ontbrekende of tegenstrijdige

informatie. In plaats van alle fouten automatisch te corrigeren, kan de worker worden

uitgerust met aanvullende gereedschapsaanroepen die het mogelijk maken om ernstige

fouten te markeren voor menselijke beoordeling.

Hier is een voorbeeld van hoe dit geïmplementeerd kan worden:

Zelfherstellende Data 177

1 class CustomerDataReviewer

2 include Raix::ChatCompletion

3 include Raix::FunctionDeclarations

4

5 attr_accessor :customer

6

7 function :flag_for_review, reason: { type: "string" } do |params|

8 AdminNotifier.review_request(customer, params[:reason])

9 end

10

11 def initialize(customer)

12 self.customer = customer

13 end

14

15 def call(customer_data)

16 transcript << {

17 system: "You are a customer data reviewer. Your task is to identify

18 and correct inconsistencies in customer data.

19

20 < additional instructions here... >

21

22 If you encounter severe errors that require human review, use the

23 `flag_for_review` tool to flag the data for manual intervention." }

24

25 transcript << { user: customer.to_json }

26 transcript << { assistant: "Reviewed/corrected data:\n```json\n" }

27

28 self.stop = ["```"]

29

30 chat_completion(json: true).then do |result|

31 return if result.blank?

32

33 customer.update(result)

34 end

35 end

36 end

In dit voorbeeld is de CustomerDataHealer worker ontworpen om inconsistenties

in klantgegevens te identificeren en te corrigeren. Opnieuw gebruiken we Response

Fencing en Ventriloquist om gestructureerde output te krijgen. Belangrijk is dat de

Zelfherstellende Data 178

systeemrichtlijn van de worker instructies bevat om de flag_for_review functie te

gebruiken als er ernstige fouten worden aangetroffen.

Wanneer de worker de klantgegevens verwerkt, analyseert deze de data en probeert

eventuele inconsistenties te corrigeren. Als de worker vaststelt dat de fouten ernstig zijn

en menselijke interventie vereisen, kan deze de flag_for_review tool gebruiken om

de gegevens te markeren en een reden voor de markering te verstrekken.

De chat_completion methode wordt aangeroepen met json: true om de

gecorrigeerde klantgegevens als JSON te verwerken. Er is geen voorziening voor

het maken van een lus na een functie-aanroep, dus het resultaat zal leeg zijn als

flag_for_review werd aangeroepen. Anders wordt de klant bijgewerkt met de

beoordeelde en mogelijk gecorrigeerde gegevens.

Door beoordeling van de ernst van fouten en de mogelijkheid om gegevens te

markeren voor menselijke controle op te nemen, wordt de zelfherstellende data

worker intelligenter en aanpasbaarder. Deze kan kleine fouten automatisch afhandelen

terwijl ernstige fouten worden geëscaleerd naar menselijke experts voor handmatige

interventie.

De specifieke criteria voor het bepalen van de ernst van fouten kunnen worden

gedefinieerd in de richtlijn van de worker op basis van domeinkennis en

bedrijfsvereisten. Factoren zoals de impact op data-integriteit, het risico op

gegevensverlies of -corruptie, en de gevolgen van onjuiste gegevens kunnen worden

meegewogen bij het beoordelen van de ernst.

Door AI te gebruiken voor het beoordelen van de ernst van fouten en opties te bieden

voor menselijke interventie, kunnen zelfherstellende datatechnieken een balans vinden

tussen automatisering en het behoud van gegevensnauwkeurigheid. Deze aanpak zorgt

ervoor dat kleine fouten efficiënt worden gecorrigeerd terwijl ernstige fouten de nodige

aandacht en expertise krijgen van menselijke beoordelaars.

Zelfherstellende Data 179

Domein Complexiteit

Bij het overwegen van de toepassing van zelfherstellende datatechnieken is het

belangrijk om de complexiteit van het datadomein en de regels die de structuur

en relaties ervan bepalen te evalueren. De complexiteit van het domein kan een

aanzienlijke invloed hebben op de effectiviteit en haalbaarheid van geautomatiseerde

datacorrectie-benaderingen.

Zelfherstellende datatechnieken werken goed wanneer de gegevens duidelijk

gedefinieerde patronen en beperkingen volgen. In domeinen waar de datastructuur

relatief eenvoudig is en de relaties tussen data-elementen overzichtelijk zijn, kunnen

geautomatiseerde correcties met een hoge mate van vertrouwen worden toegepast.

Het corrigeren van formatteringsproblemen of het afdwingen van basis datatype-

beperkingen kan bijvoorbeeld vaak effectief worden afgehandeld door zelfherstellende

data workers.

Echter, naarmate de complexiteit van het datadomein toeneemt, groeien ook de

uitdagingen die gepaard gaan met geautomatiseerde datacorrectie. In domeinen

met ingewikkelde bedrijfslogica, complexe relaties tussen data-entiteiten, of

domeinspecifieke regels en uitzonderingen, kunnen zelfherstellende datatechnieken

niet altijd de nuances vastleggen en kunnen ze onbedoelde gevolgen introduceren.

Latenwe een voorbeeld nemen van een complex domein: een financieel handelssysteem.

In dit domein omvatten de gegevens verschillende financiële instrumenten,

marktgegevens, handelsregels en regelgevingsvereisten. De relaties tussen verschillende

data-elementen kunnen ingewikkeld zijn, en de regels die de geldigheid en consistentie

van gegevens bepalen kunnen zeer specifiek zijn voor het domein.

In een dergelijk complex domein zou een zelfherstellende data worker die belast is met

het corrigeren van inconsistenties in handelsgegevens een diepgaand begrip moeten

hebben van de domeinspecifieke regels en beperkingen. Deze zou rekening moeten

houden met factoren zoals marktregulering, handelslimieten, risicoberekeningen en

Zelfherstellende Data 180

afwikkelingsprocedures. Geautomatiseerde correcties kunnen in deze context niet altijd

de volledige complexiteit van het domein vastleggen en kunnen onbedoeld fouten

introduceren of domeinspecifieke regels schenden.

Om de uitdagingen van domeincomplexiteit aan te pakken, kunnen zelfherstellende

datatechnieken worden verbeterd door domeinspecifieke kennis en regels op te nemen

in de AI-modellen en workers. Dit kan worden bereikt door technieken zoals:

1. Domeinspecifieke Training: De AI-modellen die worden gebruikt voor

zelfherstellende data kunnen worden gestuurd of zelfs verfijnd op

domeinspecifieke datasets die de complexiteit en regels van het specifieke

domein vastleggen. Door de modellen bloot te stellen aan representatieve

gegevens en scenario’s, kunnen ze de patronen, beperkingen en uitzonderingen

leren die specifiek zijn voor het domein.

2. Regelgebaseerde Beperkingen: Zelfherstellende data workers kunnen worden

uitgebreid met expliciete regelgebaseerde beperkingen die domeinspecifieke

kennis coderen. Deze regels kunnen worden gedefinieerd door domeinexperts

en geïntegreerd in het datacorrectieproces. De AI-modellen kunnen deze regels

dan gebruiken om hun beslissingen te sturen en naleving van domeinspecifieke

vereisten te waarborgen.

3. Samenwerking met Domeinexperts: In complexe domeinen is het cruciaal

om domeinexperts te betrekken bij het ontwerp en de ontwikkeling van

zelfherstellende datatechnieken. Domeinexperts kunnen waardevolle inzichten

verschaffen in de complexiteit van de gegevens, de bedrijfsregels en de mogelijke

randgevallen. Hun kennis kan worden opgenomen in de AI-modellen en workers

om de nauwkeurigheid en betrouwbaarheid van geautomatiseerde datacorrecties

te verbeteren met behulp van Human In The Loop patronen.

4. Incrementele en Iteratieve Aanpak: Bij het omgaan met complexe domeinen is

het vaak gunstig om een incrementele en iteratieve aanpak voor zelfherstellende

data te hanteren. In plaats van te proberen correcties voor het hele domein in

Zelfherstellende Data 181

één keer te automatiseren, focus je op specifieke subdomeinen of datacategorieën

waar de regels en beperkingen goed begrepen worden. Breid de reikwijdte van

zelfherstellende technieken geleidelijk uit naarmate het begrip van het domein

groeit en de technieken effectief blijken te zijn.

Door rekening te houden met de complexiteit van het datadomein en domeinspecifieke

kennis te integreren in zelfherstellende datatechnieken, kun je een balans vinden

tussen automatisering en nauwkeurigheid. Het is belangrijk om te erkennen dat

zelfherstellende data geen universele oplossing is en dat de aanpak moet worden

afgestemd op de specifieke vereisten en uitdagingen van elk domein.

In complexe domeinen kan een hybride aanpak die zelfherstellende datatechnieken

combineert met menselijke expertise en toezicht het meest effectief zijn.

Geautomatiseerde correcties kunnen routinematige en goed gedefinieerde gevallen

afhandelen, terwijl complexe scenario’s of uitzonderingen kunnen worden gemarkeerd

voor menselijke beoordeling en interventie. Deze samenwerkende aanpak zorgt ervoor

dat de voordelen van automatisering worden gerealiseerd terwijl de noodzakelijke

controle en nauwkeurigheid in complexe datadomeinen behouden blijven.

Verklaarbaarheid en Transparantie

Verklaarbaarheid verwijst naar het vermogen om de redenering achter de beslissingen

van AI-modellen te begrijpen en te interpreteren, terwijl transparantie gaat over het

bieden van duidelijk inzicht in het datacorrectieproces.

In veel contexten moeten datawijzigingen controleerbaar en verantwoordbaar zijn.

Belanghebbenden, waaronder zakelijke gebruikers, auditors en regelgevende instanties,

kunnen uitleg nodig hebben over waarom bepaalde datacorrecties zijn uitgevoerd en

hoe de AI-modellen tot die beslissingen zijn gekomen. Dit is vooral cruciaal in domeinen

waar datanauwkeurigheid en -integriteit belangrijke implicaties hebben, zoals financiën,

gezondheidszorg en juridische zaken.

Zelfherstellende Data 182

Om te voldoen aan de behoefte aan verklaarbaarheid en transparantie moeten

zelfherstellende datatechnieken mechanismen bevatten die inzicht geven in het

besluitvormingsproces van AI-modellen. Dit kan worden bereikt via verschillende

benaderingen:

1. Gedachtegang: Door het model te vragen zijn denken “hardop” uit te

leggen voordat er wijzigingen in de data worden aangebracht, kan het

besluitvormingsproces beter worden begrepen en kunnen er voor mensen

leesbare verklaringen worden gegenereerd voor de aangebrachte correcties. De

afweging is een iets grotere complexiteit bij het scheiden van de uitleg van de

gestructureerde data-output, wat kan worden aangepakt door…

2. Uitleg Genereren: Zelfherstellende datawerkers kunnen worden uitgerust met

het vermogen om voor mensen leesbare verklaringen te genereren voor de

correcties die ze aanbrengen. Dit kan worden bereikt door het model te vragen zijn

besluitvormingsproces uit te voeren als gemakkelijk te begrijpen verklaringen die

geïntegreerd zijn in de data zelf. Een zelfherstellende datawerker zou bijvoorbeeld

een rapport kunnen genereren dat de specifieke data-inconsistenties die het heeft

geïdentificeerd, de toegepaste correcties en de redenering achter die correcties

belicht.

3. Kenmerkbelangrijkheid: AI-modellen kunnen worden geïnstrueerd met

informatie over het belang van verschillende kenmerken of attributen in het

datacorrectieproces als onderdeel van hun richtlijnen. Deze richtlijnen kunnen

op hun beurt worden blootgelegd aan menselijke belanghebbenden. Door

de belangrijkste factoren te identificeren die de beslissingen van het model

beïnvloeden, kunnen belanghebbenden inzicht krijgen in de redenering achter de

correcties en hun geldigheid beoordelen.

4. Logging en Auditing: Het implementeren van uitgebreide logging- en

auditmechanismen is cruciaal voor het handhaven van transparantie in

het zelfherstellende dataproces. Elke datacorrectie die door AI-modellen wordt

uitgevoerd, moet worden gelogd, inclusief de originele data, de gecorrigeerde data

Zelfherstellende Data 183

en de specifieke acties die zijn ondernomen. Dit auditspoor maakt retrospectieve

analyse mogelijk en biedt een duidelijk overzicht van de wijzigingen die in de

data zijn aangebracht.

5. Mens-in-de-loop Aanpak: Het incorporeren van een mens-in-de-loop aanpak

kan de verklaarbaarheid en transparantie van zelfherstellende datatechnieken

verbeteren. Door menselijke experts te betrekken bij de beoordeling en validatie

van door AI gegenereerde correcties, kunnen organisaties ervoor zorgen dat de

correcties in lijn zijn met domeinkennis en bedrijfsvereisten. Menselijk toezicht

voegt een extra laag van verantwoording toe en maakt het mogelijk om eventuele

vooroordelen of fouten in de AI-modellen te identificeren.

6. Continue Monitoring en Evaluatie: Regelmatige monitoring en evaluatie van

de prestaties van zelfherstellende datatechnieken is essentieel voor het behouden

van transparantie en vertrouwen. Door de nauwkeurigheid en effectiviteit

van de AI-modellen in de loop van de tijd te beoordelen, kunnen organisaties

afwijkingen of anomalieën identificeren en corrigerende maatregelen nemen.

Continue monitoring helpt ervoor te zorgen dat het zelfherstellende dataproces

betrouwbaar blijft en in lijn is met de gewenste resultaten.

Verklaarbaarheid en transparantie zijn cruciale overwegingen bij het implementeren

van zelfherstellende datatechnieken. Door duidelijke verklaringen te geven voor

datacorrecties, uitgebreide auditsporen te onderhouden en menselijk toezicht te

betrekken, kunnen organisaties vertrouwen opbouwen in het zelfherstellende

dataproces en ervoor zorgen dat de wijzigingen in de data te rechtvaardigen zijn en in

lijn zijn met bedrijfsdoelstellingen.

Het is belangrijk om een balans te vinden tussen de voordelen van automatisering en de

behoefte aan transparantie. Hoewel zelfherstellende datatechnieken de datakwaliteit en

efficiëntie aanzienlijk kunnen verbeteren, mag dit niet ten koste gaan van het zicht en de

controle over het datacorrectieproces. Door zelfherstellende datawerkers te ontwerpen

met verklaarbaarheid en transparantie in gedachten, kunnen organisaties de kracht van

Zelfherstellende Data 184

AI benutten terwijl ze het noodzakelijke niveau van verantwoording en vertrouwen in

de data behouden.

Onbedoelde Gevolgen

Hoewel zelfherstellende datatechnieken gericht zijn op het verbeteren van datakwaliteit

en consistentie, is het cruciaal om bewust te zijn van de mogelijke onbedoelde gevolgen.

Geautomatiseerde correcties kunnen, als ze niet zorgvuldig zijn ontworpen en

gemonitord, onbedoeld de betekenis of context van de data veranderen, wat kan leiden

tot downstream problemen.

Een van de belangrijkste risico’s van zelfherstellende data is de introductie van

vooroordelen of fouten in het datacorrectieproces. AI-modellen kunnen, net als elk

ander softwaresysteem, onderhevig zijn aan vooroordelen die aanwezig zijn in de

trainingsdata of die zijn geïntroduceerd door het ontwerp van de algoritmen. Als deze

vooroordelen niet worden geïdentificeerd en aangepakt, kunnen ze zich verspreiden via

het zelfherstellende dataproces en resulteren in vertekende of onjuiste datawijzigingen.

Neem bijvoorbeeld een zelfherstellende dataverwerker die de taak heeft om

inconsistenties in demografische klantgegevens te corrigeren. Als het AI-model

vooroordelen heeft geleerd uit historische gegevens, zoals het koppelen van bepaalde

beroepen of inkomensniveaus aan specifieke geslachten of etniciteiten, kan het

onjuiste aannames maken en de gegevens zodanig wijzigen dat deze vooroordelen

worden versterkt. Dit kan leiden tot onnauwkeurige klantprofielen, verkeerde zakelijke

beslissingen en mogelijk discriminerende uitkomsten.

Een ander mogelijk onbedoeld gevolg is het verlies van waardevolle informatie of

context tijdens het proces van datacorrectie. Zelfherstellende datatechnieken richten

zich vaak op het standaardiseren en normaliseren van gegevens om consistentie te

waarborgen. In sommige gevallen kan de originele data echter nuances, uitzonderingen

of contextuele informatie bevatten die belangrijk zijn voor het begrip van het volledige

Zelfherstellende Data 185

beeld. Geautomatiseerde correcties die blindelings standaardisatie afdwingen, kunnen

deze waardevolle informatie onbedoeld verwijderen of verhullen.

Stel je bijvoorbeeld een zelfherstellende dataverwerker voor die verantwoordelijk is

voor het corrigeren van inconsistenties in medische dossiers. Als de verwerker een

medische geschiedenis van een patiënt tegenkomt met een zeldzame aandoening of een

ongebruikelijk behandelplan, kan deze proberen de gegevens te normaliseren om ze in

een meer gangbaar patroon te laten passen. Hierbij kunnen echter de specifieke details

en context verloren gaan die cruciaal zijn voor een accurate weergave van de unieke

situatie van de patiënt. Dit verlies aan informatie kan ernstige gevolgen hebben voor de

patiëntenzorg en medische besluitvorming.

Om de risico’s van onbedoelde gevolgen te beperken, is het essentieel om een proactieve

aanpak te hanteren bij het ontwerpen en implementeren van zelfherstellende

datatechnieken:

1. Grondige Tests en Validatie: Voordat zelfherstellende dataverwerkers in

productie worden genomen, is het cruciaal om hun gedrag grondig te testen

en te valideren tegen verschillende scenario’s. Dit omvat het testen met

representatieve datasets die verschillende randgevallen, uitzonderingen en

potentiële vooroordelen omvatten. Rigoureus testen helpt bij het identificeren en

aanpakken van onbedoelde gevolgen voordat ze impact hebben op echte data.

2. Continue Monitoring en Evaluatie: Het implementeren van continue

monitoring- en evaluatiemechanismen is essentieel voor het detecteren en

beperken van onbedoelde gevolgen in de loop van de tijd. Door regelmatig

de uitkomsten van zelfherstellende dataprocessen te beoordelen, de impact

op downstream systemen en besluitvorming te analyseren, en feedback

van belanghebbenden te verzamelen, kunnen nadelige effecten worden

geïdentificeerd en tijdig corrigerende maatregelen worden genomen. Als

uw organisatie operationele dashboards heeft, is het waarschijnlijk een goed

idee om duidelijk zichtbare metrics toe te voegen die gerelateerd zijn aan

Zelfherstellende Data 186

geautomatiseerde datawijzigingen. Het toevoegen van alarmen die gekoppeld

zijn aan grote afwijkingen van normale datawijzigingsactiviteit is waarschijnlijk

een nog beter idee!

3. Menselijk Toezicht en Interventie: Het behouden van menselijk toezicht en

de mogelijkheid om in te grijpen in het zelfherstellende dataproces is cruciaal.

Hoewel automatisering de efficiëntie aanzienlijk kan verbeteren, is het belangrijk

dat menselijke experts de correcties die door AI-modellen worden gemaakt

controleren en valideren, vooral in kritieke of gevoelige domeinen. Menselijk

oordeel en domeinexpertise kunnen helpen bij het identificeren en aanpakken van

eventuele onbedoelde gevolgen.

4. Verklaarbare AI (XAI) en Transparantie: Zoals besproken in de vorige subsectie,

kan het incorporeren van verklaarbare AI-technieken en het waarborgen van

transparantie in het zelfherstellende dataproces helpen bij het beperken van

onbedoelde gevolgen. Door duidelijke uitleg te geven over datacorrecties en

uitgebreide auditsporen bij te houden, kunnen organisaties de redenering achter

de wijzigingen door AI-modellen beter begrijpen en traceren.

5. Incrementele en Iteratieve Aanpak: Het adopteren van een incrementele en

iteratieve aanpak voor zelfherstellende data kan helpen het risico op onbedoelde

gevolgen te minimaliseren. In plaats van geautomatiseerde correcties in één keer

op de hele dataset toe te passen, begin je met een subset van de data en breid je de

reikwijdte geleidelijk uit naarmate de technieken effectief en betrouwbaar blijken.

Dit maakt zorgvuldige monitoring en aanpassing onderweg mogelijk, waardoor

de impact van eventuele onbedoelde gevolgen wordt verminderd.

6. Samenwerking en Feedback: Het betrekken van belanghebbenden uit

verschillende domeinen en het stimuleren van samenwerking en feedback

gedurende het zelfherstellende dataproces kan helpen bij het identificeren en

aanpakken van onbedoelde gevolgen. Door regelmatig input te vragen van

domeinexperts, datagebruikers en eindgebruikers kunnen waardevolle inzichten

Zelfherstellende Data 187

worden verkregen in de praktische impact van de datacorrecties en kunnen

eventuele over het hoofd geziene problemen worden belicht.

Door proactief de risico’s van onbedoelde gevolgen aan te pakken en passende

waarborgen te implementeren, kunnen organisaties de voordelen van zelfherstellende

datatechnieken benutten en tegelijkertijd potentiële nadelige effecten minimaliseren.

Het is belangrijk om zelfherstellende data te benaderen als een iteratief en collaboratief

proces, waarbij continue monitoring, evaluatie en verfijning van de technieken

plaatsvindt om ervoor te zorgen dat ze in lijn zijn met de gewenste resultaten en de

integriteit en betrouwbaarheid van de data behouden blijft.

Bij het overwegen van het gebruik van zelfherstellende datapatronen is het essentieel

om deze factoren zorgvuldig te evalueren en de voordelen af te wegen tegen de

potentiële risico’s en beperkingen. In sommige gevallen kan een hybride aanpak die

geautomatiseerde correcties combineert met menselijk toezicht en interventie de meest

geschikte oplossing zijn.

Het is ook belangrijk op te merken dat zelfherstellende datatechnieken niet gezien

moeten worden als vervanging voor robuuste datavalidatie, invoervalidatie en

foutafhandelingsmechanismen. Deze fundamentele praktijken blijven cruciaal voor het

waarborgen van data-integriteit en -beveiliging. Zelfherstellende data moet worden

gezien als een complementaire aanpak die deze bestaande maatregelen kan aanvullen

en verbeteren.

Uiteindelijk hangt de beslissing om zelfherstellende datapatronen toe te passen af van

de specifieke vereisten, beperkingen en prioriteiten van uw applicatie. Door zorgvuldig

de bovengenoemde overwegingen te beschouwen en deze af te stemmen op de doelen en

architectuur van uw applicatie, kunt u weloverwogen beslissingen nemen over wanneer

en hoe u zelfherstellende datatechnieken effectief kunt inzetten.

Contextuele Contentgeneratie

Patronen voor Contextuele Contentgeneratie maken gebruik van de kracht van

grote taalmodellen (LLMs) om dynamische en contextspecifieke content binnen

applicaties te genereren. Deze categorie patronen erkent het belang van het leveren

van gepersonaliseerde en relevante content aan gebruikers, gebaseerd op hun specifieke

behoeften, voorkeuren en zelfs eerdere en huidige interacties met de applicatie.

In de context van deze benadering verwijst “content” zowel naar primaire content

(zoals blogposts, artikelen, etc.) als naar meta-content, zoals aanbevelingen voor

primaire content.

Patronen voor Contextuele Contentgeneratie kunnen een cruciale rol spelen bij

het verbeteren van uw gebruikersbetrokkenheidsniveaus, het bieden van op maat

Contextuele Contentgeneratie 189

gemaakte ervaringen, en het automatiseren van contentcreatietaken voor zowel u als

uw gebruikers. Door de patronen die we in dit hoofdstuk beschrijven te gebruiken, kunt

u applicaties creëren die dynamisch content genereren en zich in realtime aanpassen

aan context en input.

De patronen werken door LLMs te integreren in de output van de applicatie, variërend

van de gebruikersinterface (soms aangeduid als “chrome”), tot e-mails en andere vormen

van notificaties, evenals alle contentgeneratiepijplijnen.

Wanneer een gebruiker met de applicatie interacteert of een specifiek contentverzoek

activeert, legt de applicatie de relevante context vast, zoals gebruikersvoorkeuren,

eerdere interacties of specifieke prompts. Deze contextuele informatie wordt vervolgens

samen met eventueel benodigde sjablonen of richtlijnen in het LLM ingevoerd en

gebruikt om tekstuele output te produceren die anders hardgecodeerd, in een database

opgeslagen of algoritmisch gegenereerd zou moeten worden.

De door LLM gegenereerde content kan verschillende vormen aannemen, zoals

gepersonaliseerde aanbevelingen, dynamische productbeschrijvingen, aangepaste

e-mailreacties, of zelfs complete artikelen of blogposts. Een van de meest radicale

toepassingen van deze content die ik meer dan een jaar geleden introduceerde, is

het dynamisch genereren van UI-elementen zoals formulierlabels, tooltips en andere

vormen van verklarende tekst.

Personalisatie

Een van de belangrijkste voordelen van Contextuele Contentgeneratiepatronen is het

vermogen om zeer gepersonaliseerde ervaringen aan gebruikers te leveren. Door content

te genereren op basis van gebruikersspecifieke context, stellen deze patronen applicaties

in staat om content af te stemmen op de individuele interesses, voorkeuren en interacties

van gebruikers.

Personalisatie gaat verder dan simpelweg de naam van een gebruiker in generieke

Contextuele Contentgeneratie 190

content invoegen. Het omvat het benutten van de rijke context die beschikbaar is over

elke gebruiker om content te genereren die resoneert met hun specifieke behoeften en

wensen. Deze context kan een breed scala aan factoren omvatten, zoals:

1. Gebruikersprofielinformatie:Op het meest algemene niveau van toepassing van

deze techniek kunnen demografische gegevens, interesses, voorkeuren en andere

profielkenmerken worden gebruikt om content te genereren die aansluit bij de

achtergrond en eigenschappen van de gebruiker.

2. Gedragsgegevens: De eerdere interacties van een gebruiker met de

applicatie, zoals bekeken pagina’s, aangeklikte links of gekochte producten,

kunnen waardevolle inzichten bieden in hun gedrag en interesses. Deze

gegevens kunnen worden gebruikt om contentvoorstellen te genereren die

hun betrokkenheidspatronen weerspiegelen en hun toekomstige behoeften

voorspellen.

3. Contextuele Factoren: De huidige context van de gebruiker, zoals hun locatie,

apparaat, tijd van de dag, of zelfs het weer, kan het contentgeneratieproces

beïnvloeden. Een reisapplicatie zou bijvoorbeeld een AI-worker kunnen hebben

die gepersonaliseerde aanbevelingen kan genereren op basis van de huidige locatie

van de gebruiker en de heersende weersomstandigheden.

Door deze contextuele factoren te benutten, stellen Contextuele Contentgeneratiepatronen

applicaties in staat om content te leveren die op maat gemaakt lijkt voor elke individuele

gebruiker. Dit niveau van personalisatie heeft verschillende belangrijke voordelen:

1. Verhoogde Betrokkenheid: Gepersonaliseerde content trekt de aandacht van

gebruikers en houdt ze betrokken bij de applicatie. Wanneer gebruikers het gevoel

hebben dat de content relevant is en direct inspeelt op hun behoeften, zijn ze

eerder geneigd meer tijd te besteden aan het interacteren met de applicatie en het

verkennen van de functies.

Contextuele Contentgeneratie 191

2. Verbeterde Gebruikerstevredenheid:Gepersonaliseerde content laat zien dat de

applicatie de unieke vereisten van de gebruiker begrijpt en daarom geeft. Door

content te bieden die behulpzaam, informatief en afgestemd is op hun interesses,

kan de applicatie de gebruikerstevredenheid vergroten en een sterkere band met

zijn gebruikers opbouwen.

3. Hogere Conversieratio’s: In de context van e-commerce of marketingapplicaties

kan gepersonaliseerde content een significante impact hebben op conversieratio’s.

Door gebruikers producten, aanbiedingen of aanbevelingen te presenteren die zijn

afgestemd op hun voorkeuren en gedrag, kan de applicatie de kans vergroten dat

gebruikers gewenste acties ondernemen, zoals het doen van een aankoop of het

aanmelden voor een dienst.

Productiviteit

Contextuele Contentgeneratiepatronen kunnen bepaalde vormen van productiviteit

aanzienlijk verhogen door de behoefte aan handmatige contentgeneratie en bewerking

in creatieve processen te verminderen. Door gebruik te maken van de kracht van LLMs

kunt u op grote schaal hoogwaardige content genereren, waardoor u tijd en moeite

bespaart die uw contentmakers en ontwikkelaars anders zouden moeten besteden aan

vervelend handmatig werk.

Traditioneel moeten contentmakers onderzoek doen, schrijven, redigeren en content

formatteren om ervoor te zorgen dat deze voldoet aan de vereisten van de applicatie

en de verwachtingen van gebruikers. Dit proces kan tijdrovend en arbeidsintensief zijn,

vooral naarmate de hoeveelheid content groeit.

Met Contextuele Contentgeneratiepatronen kan het contentcreatieproces echter

grotendeels worden geautomatiseerd. LLMs kunnen samenhangende, grammaticaal

correcte en contextueel relevante content genereren op basis van de gegeven prompts

en richtlijnen. Deze automatisering biedt verschillende productiviteitsvoordelen:

Contextuele Contentgeneratie 192

1. Verminderde Handmatige Inspanning: Door contentageneratietaken te

delegeren aan LLMs kunnen contentmakers zich richten op taken van hoger

niveau, zoals contentstrategie, ideeontwikkeling en kwaliteitsborging. Ze kunnen

de nodige context, sjablonen en richtlijnen aan het LLM verstrekken en het de

daadwerkelijke contentgeneratie laten afhandelen. Dit vermindert de handmatige

inspanning die nodig is voor schrijven en redigeren, waardoor contentmakers

productiever en efficiënter kunnen werken.

2. Snellere Contentcreatie: LLMs kunnen veel sneller content genereren dan

menselijke schrijvers. Met de juiste prompts en richtlijnen kan een LLMmeerdere

stukken content produceren in enkele seconden of minuten. Deze snelheid stelt

applicaties in staat om in een veel hoger tempo content te genereren, waardoor

ze kunnen bijblijven met de eisen van gebruikers en het steeds veranderende

digitale landschap.

Leidt snellere contentcreatie tot een “tragedy of the commons” situatie waarbij het

internet overspoeld raakt met content die niemand leest? Helaas vermoed ik dat het

antwoord ja is.

3. Consistentie en Kwaliteit: LLMs kunnen moeiteloos content herzien zodat deze

consistent is in stijl, toon en kwaliteit. Met duidelijke richtlijnen en voorbeelden

kunnen bepaalde soorten applicaties (zoals nieuwsredacties, PR, etc.) ervoor

zorgen dat hun door mensen gegenereerde content aansluit bij hun merkidentiteit

en voldoet aan de gewenste kwaliteitsnormen. Deze consistentie vermindert de

behoefte aan uitgebreide bewerking en herzieningen, wat tijd en moeite bespaart

in het contentcreatieproces.

4. Iteratie en Optimalisatie: Contextuele Contentgeneratiepatronen maken snelle

iteratie en optimalisatie van content mogelijk. Door het aanpassen van de

Contextuele Contentgeneratie 193

prompts, sjablonen of richtlijnen die aan het LLM worden verstrekt, kunnen

uw applicaties snel contentvariaties genereren en verschillende benaderingen

testen op een geautomatiseerde manier die in het verleden nooit mogelijk

was. Dit iteratieve proces maakt sneller experimenteren en verfijnen van

contentstrategieën mogelijk, wat in de loop van de tijd leidt tot effectievere

en meer betrokken content. Deze specifieke techniek kan een absolute game-

changer zijn voor applicaties zoals e-commerce die leven en sterven op basis van

bouncepercentages en betrokkenheid

Het is belangrijk op te merken dat hoewel Contextuele

Contentgeneratiepatronen de productiviteit aanzienlijk kunnen verbeteren,

ze de noodzaak van menselijke betrokkenheid niet volledig wegnemen.

Contentmakers en redacteuren spelen nog steeds een cruciale rol bij het

bepalen van de algemene contentstrategie, het geven van sturing aan

het LLM en het waarborgen van de kwaliteit en geschiktheid van de

gegenereerde content.

Door de meer repetitieve en tijdrovende aspecten van contentcreatie te automatiseren,

maken Contextuele Contentgeneratiepatronen waardevolle menselijke tijd en middelen

vrij die kunnen worden ingezet voor taken met een hogere waarde. Deze verhoogde

productiviteit stelt u in staat om meer gepersonaliseerde en betrokken content aan

gebruikers te leveren terwijl contentcreatieprocessen worden geoptimaliseerd.

Snelle Iteratie en Experimentatie

Contextuele Contentgeneratiepatronen stellen u in staat om snel te itereren en te

experimenteren met verschillende contentvariaties, waardoor snellere optimalisatie en

verfijning van uw contentstrategie mogelijk wordt. U kunt in enkele seconden meerdere

versies van content genereren, simpelweg door de context, sjablonen of richtlijnen die

aan het model worden verstrekt aan te passen.

Contextuele Contentgeneratie 194

Deze snelle iteratiemogelijkheid biedt verschillende belangrijke voordelen:

1. Testen en Optimalisatie: Met de mogelijkheid om snel contentvariaties

te genereren, kunt u eenvoudig verschillende benaderingen testen en

hun effectiviteit meten. U kunt bijvoorbeeld meerdere versies van een

productbeschrijving of marketingboodschap genereren, elk afgestemd op een

specifiek gebruikerssegment of context. Door gebruikersbetrokkenheidsmetrieken

te analyseren, zoals doorklikratio’s of conversiepercentages, kunt u de

meest effectieve contentvariaties identificeren en uw contentstrategie

dienovereenkomstig optimaliseren.

2. A/B-testen: Contextuele Contentgeneratiepatronen maken naadloos A/B-testen

van content mogelijk. U kunt twee of meer variaties van content genereren

en deze willekeurig aan verschillende gebruikersgroepen tonen. Door de

prestaties van elke variatie te vergelijken, kunt u bepalen welke content het

beste resoneert met uw doelgroep. Deze datagestuurde aanpak stelt u in staat om

geïnformeerde beslissingen te nemen en uw content voortdurend te verfijnen

om gebruikersbetrokkenheid te maximaliseren en uw gewenste resultaten te

bereiken.

3. Personalisatie-experimenten: Snelle iteratie en experimentatie zijn

bijzonder waardevol als het gaat om personalisatie. Met Contextuele

Contentgeneratiepatronen kunt u snel gepersonaliseerde contentvariaties

genereren op basis van verschillende gebruikerssegmenten, voorkeuren of

gedragingen. Door te experimenteren met verschillende personalisatiestrategieën

kunt u de meest effectieve benaderingen identificeren voor het betrekken van

individuele gebruikers en het leveren van op maat gemaakte ervaringen.

4. Aanpassen aan Veranderende Trends: Het vermogen om snel te itereren en te

experimenteren stelt je in staat om flexibel te blijven en je aan te passen aan

veranderende trends en gebruikersvoorkeuren. Wanneer nieuwe onderwerpen,

zoekwoorden of gebruikersgedrag ontstaan, kun je snel content genereren die

Contextuele Contentgeneratie 195

aansluit bij deze trends. Door voortdurend te experimenteren en je content te

verfijnen, kun je relevant blijven en een concurrentievoordeel behouden in het

steeds veranderende digitale landschap.

5. Kosteneffectief Experimenteren: Traditioneel content-experimenteren brengt

vaak aanzienlijke tijd en middelen met zich mee, omdat contentmakers

handmatig verschillende variaties moeten ontwikkelen en testen. Met Contextuele

Content Generatie-patronen worden de kosten van experimenteren echter sterk

verminderd. Grote taalmodellen kunnen snel en op schaal contentvariaties

genereren, waardoor je een breed scala aan ideeën en benaderingen kunt

verkennen zonder substantiële kosten.

Om het maximale uit snelle iteratie en experimenten te halen, is het belangrijk om

een goed gedefinieerd experimenteerframework te hebben. Dit framework moet het

volgende bevatten:

• Duidelijke doelstellingen en hypotheses voor elk experiment

• Geschikte meetwaarden en trackingmechanismen om contentprestaties te meten

• Segmentatie- en targetingstrategieën om ervoor te zorgen dat relevante

contentvariaties bij de juiste gebruikers terechtkomen

• Analyse- en rapportagetools om inzichten te verkrijgen uit de experimentele data

• Een proces voor het integreren van leerpunten en optimalisaties in je

contentstrategie

Door snelle iteratie en experimenteren te omarmen, kun je je content voortdurend

verfijnen en optimaliseren, zodat deze boeiend, relevant en effectief blijft in het bereiken

van de doelen van je applicatie. Deze flexibele benadering van contentcreatie stelt je in

staat om voorop te blijven lopen en uitzonderlijke gebruikerservaringen te leveren.

Schaalbaarheid en Efficiëntie

Naarmate applicaties groeien en de vraag naar gepersonaliseerde content toeneemt,

maken contextuele content generatie-patronen een efficiënte opschaling van

Contextuele Contentgeneratie 196

contentcreatie mogelijk. Grote taalmodellen kunnen gelijktijdig content genereren

voor een groot aantal gebruikers en contexten, zonder dat er een evenredige toename

van menselijke middelen nodig is. Deze schaalbaarheid stelt applicaties in staat om

gepersonaliseerde ervaringen te leveren aan een groeiend gebruikersbestand zonder

hun contentcreatiecapaciteiten te overbelasten.

Merk op dat contextuele contentgeneratie effectief kan worden gebruikt om

je applicatie “on the fly” te internationaliseren. Dat is precies wat ik heb

gedaan met mijn Instant18n Gem om Olympia in meer dan een half dozijn

talen aan te bieden, ook al zijn we nog geen jaar oud.

AI-Aangedreven Lokalisatie

Als je me even toestaat op te scheppen, denk ik dat mijn Instant18n-bibliotheek voor

Rails-apps een baanbrekend voorbeeld is van het “Contextuele Content Generatie”-

patroon in actie, dat het transformatieve potentieel van AI in applicatieontwikkeling

laat zien. Deze gem maakt gebruik van de kracht van OpenAI’s GPT grote-taalmodel

om de manier waarop internationalisering en lokalisatie worden behandeld in Rails-

applicaties te revolutioneren.

Traditioneel gezien omvat het internationaliseren van een Rails-applicatie het

handmatig definiëren van vertaalsleutels en het leveren van bijbehorende vertalingen

voor elke ondersteunde taal. Dit proces kan tijdrovend en arbeidsintensief zijn en

gevoelig voor inconsistenties. Met de Instant18n-gem wordt het paradigma van

lokalisatie echter volledig opnieuw gedefinieerd.

Door de integratie van een groot taalmodel stelt de Instant18n-gem je in staat om

vertalingen on-the-fly te genereren, gebaseerd op de context en betekenis van de tekst. In

plaats van te vertrouwen op voorgedefinieerde vertaalsleutels en statische vertalingen,

vertaalt de gem dynamisch tekst met behulp van de kracht van AI. Deze aanpak biedt

verschillende belangrijke voordelen:

Contextuele Contentgeneratie 197

1. Naadloze Lokalisatie: Met de Instant18n-gem hoeven ontwikkelaars niet

langer handmatig vertaalbestanden te definiëren en te onderhouden voor elke

ondersteunde taal. De gem genereert automatisch vertalingen op basis van

de aangeleverde tekst en de gewenste doeltaal, waardoor het lokalisatieproces

moeiteloos en naadloos verloopt.

2. Contextuele Nauwkeurigheid: AI kan voldoende context krijgen om de nuances

van de te vertalen tekst te begrijpen. Het kan rekening houden met de omringende

context, idiomen en culturele verwijzingen om vertalingen te genereren die

accuraat, natuurlijk klinkend en contextueel passend zijn.

3. Uitgebreide Taalondersteuning: De Instant18n-gem maakt gebruik van de

uitgebreide kennis en taalkundige mogelijkheden van GPT, waardoor vertalingen

naar een uitgebreid scala aan talen mogelijk zijn. Van veelvoorkomende talen

zoals Spaans en Frans tot meer obscure of fictieve talen zoals Klingon en Elfs, de

gem kan een breed scala aan vertaalvereisten aan.

4. Flexibiliteit en Creativiteit: De gem gaat verder dan traditionele taalvertalingen

en maakt creatieve en onconventionele lokalisatieopties mogelijk. Ontwikkelaars

kunnen tekst vertalen naar verschillende stijlen, dialecten of zelfs fictieve talen,

wat nieuwe mogelijkheden opent voor unieke gebruikerservaringen en boeiende

content.

5. Prestatie-optimalisatie: De Instant18n-gem bevat cachingmechanismen om de

prestaties te verbeteren en de overhead van herhaalde vertalingen te verminderen.

Vertaalde tekst wordt gecached, waardoor volgende verzoeken voor dezelfde

vertaling snel kunnen worden geleverd zonder de noodzaak van redundante API-

aanroepen.

De Instant18n-gem illustreert de kracht van het “Contextuele Content Generatie”-

patroon door AI te gebruiken om dynamisch gelokaliseerde content te genereren. Het

laat zien hoe AI kan worden geïntegreerd in de kernfunctionaliteit van een Rails-

applicatie, waardoor de manier waarop ontwikkelaars internationalisering en lokalisatie

benaderen wordt getransformeerd.

Contextuele Contentgeneratie 198

Door de noodzaak van handmatig vertalingsbeheer weg te nemen en directe vertalingen

op basis van context mogelijk te maken, bespaart de Instant18n gem ontwikkelaars

aanzienlijk veel tijd en moeite. Het stelt hen in staat zich te concentreren op het bouwen

van de kernfunctionaliteiten van hun applicatie, terwijl ze er zeker van kunnen zijn dat

het lokalisatie-aspect naadloos en accuraat wordt afgehandeld.

Het Belang van Gebruikerstests en Feedback

Tot slot, verlies nooit het belang van gebruikerstests en feedback uit het oog. Het is

cruciaal om te valideren dat contextuele contentgeneratie aan de verwachtingen van

gebruikers voldoet en in lijn is met de doelen van de applicatie. Blijf gegenereerde

content continu itereren en verfijnen op basis van gebruikersinzichten en analyses. Als

je dynamische content genereert op een schaal die onmogelijk handmatig te valideren

is door jou en je team, overweeg dan om feedbackmechanismen toe te voegen waarmee

gebruikers vreemde of onjuiste content kunnen melden, samen met een uitleg waarom.

Die waardevolle feedback kan zelfs worden doorgespeeld aan een AI-worker die de taak

heeft om aanpassingen te maken aan de component die de content heeft gegenereerd!

Generatieve UI

Aandacht is tegenwoordig zo kostbaar dat effectieve gebruikersbetrokkenheid nu

vraagt om software-ervaringen die niet alleen naadloos en intuïtief zijn, maar ook

sterk gepersonaliseerd zijn op individuele behoeften, voorkeuren en contexten. Als

gevolg hiervan staan ontwerpers en ontwikkelaars steeds vaker voor de uitdaging om

gebruikersinterfaces te creëren die zich kunnen aanpassen aan de unieke vereisten van

elke gebruiker op schaal.

Generatieve UI (GenUI) is een werkelijk revolutionaire benadering van

gebruikersinterface-ontwerp die gebruik maakt van de kracht van grote taalmodellen

(LLMs) om zeer gepersonaliseerde en dynamische gebruikerservaringen on-the-fly te

creëren. Ik wilde je in dit boek in ieder geval een introductie geven over GenUI, omdat

ik geloof dat het een van de groenste groene weide kansen is die momenteel bestaat

op het gebied van applicatieontwerp en frameworks. Ik ben ervan overtuigd dat er

tientallen of meer nieuwe succesvolle commerciële en open-source projecten in deze

Generatieve UI 200

specifieke niche zullen ontstaan.

In de kern combineert GenUI de principes van Contextuele Contentgeneratie

met geavanceerde AI-technieken om gebruikersinterface-elementen zoals tekst,

afbeeldingen en layouts dynamisch te genereren, gebaseerd op een diep begrip

van de context, voorkeuren en doelen van de gebruiker. GenUI stelt ontwerpers en

ontwikkelaars in staat om interfaces te creëren die zich aanpassen en ontwikkelen

in reactie op gebruikersinteracties, waardoor een niveau van personalisatie mogelijk

wordt dat voorheen onbereikbaar was.

GenUI vertegenwoordigt een fundamentele verandering in de manier waarop we

gebruikersinterface-ontwerp benaderen. In plaats van te ontwerpen voor de massa, stelt

GenUI ons in staat om voor het individu te ontwerpen. Gepersonaliseerde content en

interfaces hebben de potentie om gebruikerservaringen te creëren die bij elke gebruiker

op een dieper niveau resoneren, waardoor betrokkenheid, tevredenheid en loyaliteit

toenemen.

Als een ultramoderne techniek zit de overgang naar GenUI vol met conceptuele en

praktische uitdagingen. Het integreren van AI in het ontwerpproces, ervoor zorgen

dat de gegenereerde interfaces niet alleen gepersonaliseerd zijn maar ook bruikbaar,

toegankelijk en in lijn met de algemene merkbeleving en gebruikerservaring, dit zijn

allemaal uitdagingen die GenUI een bezigheid maken voor de weinigen, niet de

velen. Bovendien roept de betrokkenheid van AI vragen op over gegevensprivacy,

transparantie en mogelijk zelfs ethische implicaties.

Ondanks de uitdagingen hebben gepersonaliseerde ervaringen op schaal de kracht

om de manier waarop we met digitale producten en diensten omgaan volledig

te transformeren. Het opent mogelijkheden voor het creëren van inclusieve en

toegankelijke interfaces die tegemoetkomen aan de diverse behoeften van gebruikers,

ongeacht hun mogelijkheden, achtergrond of voorkeuren.

In dit hoofdstuk zullen we het concept van GenUI verkennen, waarbij we enkele

bepalende kenmerken, belangrijke voordelen en potentiële uitdagingen onderzoeken.

Generatieve UI 201

We beginnen met het beschouwen van de meest basale en toegankelijke vorm van

GenUI: het genereren van tekstkopij voor anderszins traditioneel ontworpen en

geïmplementeerde gebruikersinterfaces.

Het Genereren van Kopij voor

Gebruikersinterfaces

Tekstelementen die bestaan in de chrome van je applicatie, zoals formulierlabels, tooltips

en verklarende tekst, zijn meestal hardgecodeerd in de templates of UI-componenten,

wat zorgt voor een consistente maar generieke ervaring voor alle gebruikers. Door

gebruik te maken van contextuele contentgeneratiepatronen, kun je deze statische

elementen transformeren in dynamische, contextbewuste en gepersonaliseerde

componenten.

Gepersonaliseerde Formulieren

Formulieren zijn een alomtegenwoordig onderdeel van web- en mobiele applicaties

en dienen als het primaire middel voor het verzamelen van gebruikersinvoer.

Traditionele formulieren bieden echter vaak een generieke en onpersoonlijke ervaring,

met standaardlabels en velden die niet altijd aansluiten bij de specifieke context

of behoeften van de gebruiker. Gebruikers zijn eerder geneigd formulieren in te

vullen die afgestemd zijn op hun behoeften en voorkeuren, wat leidt tot hogere

conversiepercentages en gebruikerstevredenheid.

Het is echter belangrijk om een balans te vinden tussen personalisatie en consistentie.

Hoewel het aanpassen van formulieren aan individuele gebruikers gunstig kan zijn,

is het cruciaal om een niveau van vertrouwdheid en voorspelbaarheid te behouden.

Gebruikers moeten formulieren nog steeds gemakkelijk kunnen herkennen en

navigeren, zelfs met gepersonaliseerde elementen.

Hier zijn enkele gepersonaliseerde formulierideeën ter inspiratie:

Generatieve UI 202

Contextuele Veldsuggesties

GenUI kan de eerdere interacties, voorkeuren en gegevens van de gebruiker

analyseren om intelligente veldsuggesties als voorspellingen te bieden. Als de

gebruiker bijvoorbeeld eerder hun verzendadres heeft ingevoerd, kan het formulier

automatisch de relevante velden invullen met hun opgeslagen informatie. Dit bespaart

niet alleen tijd, maar laat ook zien dat de applicatie de voorkeuren van de gebruiker

begrijpt en onthoudt.

Wacht even, is deze techniek niet iets dat ook zonder AI gedaan zou kunnen worden?

Natuurlijk, maar de schoonheid van het aandrijven van dit soort functionaliteit met AI

is tweeledig: 1) hoe eenvoudig het te implementeren is en 2) hoe flexibel het blijft terwijl

je UI verandert en evolueert in de loop van de tijd.

Laten we een service opzetten voor ons theoretische orderafhandelingssysteem, die

proactief probeert het juiste verzendadres voor de gebruiker in te vullen.

1 class OrderShippingAddressSubscriber

2 include Raix::ChatCompletion

3

4 attr_accessor :order

5

6 delegate :customer, to: :order

7

8 DIRECTIVE = "You are a smart order processing assistant. Given the

9 customer's order history, guess the most likely shipping address

10 for the current order."

11

12 def order_created(order)

13 return unless order.pending? && order.shipping_address.blank?

14

15 self.order = order

16

17 transcript.clear

18 transcript << { system: DIRECTIVE }

19 transcript << { user: "Order History: #{order_history.to_json}" }

20 transcript << { user: "Current Order: #{order.to_json}" }

21

Generatieve UI 203

22 response = chat_completion

23 apply_predicted_shipping_address(order, response)

24 end

25

26 private

27

28 def apply_predicted_shipping_address(order, response)

29 # extract the shipping address from the response...

30 # ...and assume there's some sort of live update of the address fields

31 order.update(shipping_address:)

32 end

33

34 def order_history

35 customer.orders.successful.limit(100).map do |order|

36 {

37 date: order.date,

38 description: order.description,

39 shipping_address: order.shipping_address

40 }

41 end

42 end

43 end

Dit voorbeeld is sterk vereenvoudigd, maar zou in de meeste gevallen moeten werken.

Het idee is om de AI een inschatting te laten maken op dezelfde manier als een mens

dat zou doen. Om duidelijk te maken waar ik het over heb, laten we eens naar wat

voorbeeldgegevens kijken:

Generatieve UI 204

1 Order History:

2 [

3 {"date": "2024-01-03", "description": "garden soil mix",

4 "shipping_address": "123 Country Lane, Rural Town"},

5 {"date": "2024-01-15", "description": "hardcover fiction novels",

6 "shipping_address": "456 City Apt, Metroville"},

7 {"date": "2024-01-22", "description": "baby diapers", "shipping_address":

8 "789 Suburb St, Quietville"},

9 {"date": "2024-02-01", "description": "organic vegetables",

10 "shipping_address": "123 Country Lane, Rural Town"},

11 {"date": "2024-02-17", "description": "mystery thriller book set",

12 "shipping_address": "456 City Apt, Metroville"},

13 {"date": "2024-02-25", "description": "baby wipes",

14 "shipping_address": "789 Suburb St, Quietville"},

15 {"date": "2024-03-05", "description": "flower seeds",

16 "shipping_address": "123 Country Lane, Rural Town"},

17 {"date": "2024-03-20", "description": "biographies",

18 "shipping_address": "456 City Apt, Metroville"},

19 {"date": "2024-03-30", "description": "baby formula",

20 "shipping_address": "789 Suburb St, Quietville"},

21 {"date": "2024-04-12", "description": "lawn fertilizer",

22 "shipping_address": "123 Country Lane, Rural Town"},

23 {"date": "2024-04-22", "description": "science fiction novels",

24 "shipping_address": "456 City Apt, Metroville"},

25 {"date": "2024-05-02", "description": "infant toys",

26 "shipping_address": "789 Suburb St, Quietville"},

27 {"date": "2024-05-14", "description": "outdoor grill",

28 "shipping_address": "123 Country Lane, Rural Town"},

29 {"date": "2024-05-29", "description": "literary classics",

30 "shipping_address": "456 City Apt, Metroville"},

31 {"date": "2024-06-11", "description": "baby clothes",

32 "shipping_address": "789 Suburb St, Quietville"},

33 {"date": "2024-07-01", "description": "watering can",

34 "shipping_address": "123 Country Lane, Rural Town"},

35 {"date": "2024-07-18", "description": "non-fiction essays",

36 "shipping_address": "456 City Apt, Metroville"},

37 {"date": "2024-07-28", "description": "baby bath items",

38 "shipping_address": "789 Suburb St, Quietville"},

39 {"date": "2024-08-09", "description": "herb garden kit",

40 "shipping_address": "123 Country Lane, Rural Town"},

41 {"date": "2024-08-24", "description": "children's books",

42 "shipping_address": "456 City Apt, Metroville"}

Generatieve UI 205

43]

Heb je het patroon in de data opgemerkt? Ik garandeer je dat dit eenvoudig werk is

voor een LLM. Om dit te demonstreren, laten we aan GPT-4 vragen wat het meest

waarschijnlijke verzendadres is voor een “thermometer”.

1 From the order history you've provided, it looks like the purchases are

2 generally clustered into three main types based on the shipping addresses:

3

4 123 Country Lane, Rural Town - This address often orders garden and

5 outdoor-related items like soil mix, vegetables, flower seeds, lawn

6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.

7

8 456 City Apt, Metroville - This address tends to order various types of

9 books, indicating an interest in reading across genres like fiction,

10 thrillers, biographies, science fiction, literary classics, non-fiction

11 essays, and children's books.

12

13 789 Suburb St, Quietville - The purchases for this address are consistently

14 baby-related products, such as diapers, wipes, baby formula, infant toys,

15 baby clothes, and baby bath items.

16

17 Given these patterns, a digital thermometer could potentially be a fit for

18 any of the addresses based on different needs: outdoor temperature tracking,

19 a tool for a passionate reader interested in science gadgets, or a health

20 tool for a baby. However, considering its common use in monitoring health,

21 especially for babies, it's most likely to be purchased by someone who's

22 already buying baby care products.

23

24 Therefore, the most likely shipping address for a digital thermometer, based

25 on the purchasing patterns, would be 789 Suburb St, Quietville.

Als je bij jezelf denkt dat het overdreven is om een duur model zoals GPT-4 voor deze

taak te gebruiken, heb je gelijk! Ik probeerde dezelfde prompt op Mistral 7B Instruct en

het produceerde het volgende antwoordmet 75 tokens per seconde, tegen een bescheiden

kostprijs van $0,000218 USD.

Generatieve UI 206

1 Based on the given order history, it appears that the customer has received

2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)

3 at the address "789 Suburb St, Quietville" and garden-related items (soil,

4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural

5 Town". The customer has also received books (fiction, non-fiction, literary

6 classics, mystery-thriller, science fiction, biographies, children's books)

7 at the address "456 City Apt, Metroville".

8

9 Given that the new order is for a "thermometer", which doesn't seem to fit

10 into any of the categories that the customer has previously ordered, it's

11 hard to accurately predict the shipping address based solely on the order

12 history. However, given the 50%-50% split between baby-related and

13 garden-related items, it could somewhat lean towards the Baby-related items

14 address ("789 Suburb St, Quietville"). But remember, this is an assumption

15 and cannot be definitively confirmed without more context or information.

Is de overhead en kosten van deze techniek het waard om een afrekenervaringmagischer

temaken? Voor veel online retailers, absoluut. En zoals het eruitziet, zullen de kosten van

AI-berekeningen alleen maar dalen, vooral voor reguliere open source model hosting

providers in een race naar de bodem.

Gebruik een Prompt Template en StructuredIO samenmet Response Fencing

om dit soort chatvervolmaking te optimaliseren.

Adaptieve veldvolgorde

De volgorde waarin formulierveldenworden gepresenteerd kan een aanzienlijke invloed

hebben op de gebruikerservaring en voltooiingspercentages. Met GenUI kun je de

veldvolgorde dynamisch aanpassen op basis van de context van de gebruiker en het

belang van elk veld. Als een gebruiker bijvoorbeeld een registratieformulier invult voor

een fitness-app, kan het formulier prioriteit geven aan velden die gerelateerd zijn aan

hun fitnessdoelen en voorkeuren, waardoor het proces relevanter en aantrekkelijker

wordt.

Generatieve UI 207

Gepersonaliseerde microtekst

De instructietekst, foutmeldingen en andere microtekst die bij formulieren horen

kunnen ook worden gepersonaliseerd met behulp van GenUI. In plaats van

algemene foutmeldingen zoals “Ongeldig e-mailadres” weer te geven, kun je meer

behulpzame en contextuele berichten genereren zoals “Voer een geldig e-mailadres

in om je orderbevestiging te ontvangen.” Deze gepersonaliseerde details kunnen de

formulierervaring gebruiksvriendelijker en minder frustrerend maken.

Gepersonaliseerde validatie

In dezelfde lijn als Gepersonaliseerde Microtekst, zou je AI kunnen gebruiken om het

formulier te valideren op manieren die magisch lijken. Stel je voor dat je een AI een

gebruikersprofielformulier laat valideren, waarbij wordt gezocht naar mogelijke fouten

op semantisch niveau.

Generatieve UI 208

Figuur 9. Kun je de semantische validatie ontdekken?

Progressieve onthulling

GenUI kan intelligent bepalen welke formuliervelden essentieel zijn op basis van de

context van de gebruiker en geleidelijk aanvullende velden onthullen wanneer nodig.

Deze progressieve onthulling techniek helpt de cognitieve belasting te verminderen

en maakt het invullen van formulieren beter beheerbaar. Als een gebruiker zich

Generatieve UI 209

bijvoorbeeld aanmeldt voor een basisabonnement, kan het formulier aanvankelijk alleen

de essentiële velden tonen, en naarmate de gebruiker vordert of specifieke opties

selecteert, kunnen aanvullende relevante velden dynamisch worden geïntroduceerd.

Contextbewuste verklarende tekst

Tooltips worden vaak gebruikt om aanvullende informatie of begeleiding te bieden

aan gebruikers wanneer ze over specifieke elementen bewegen of ermee interacteren.

Met een “Contextuele Content Generatie” aanpak kun je tooltips genereren die zich

aanpassen aan de context van de gebruiker en relevante informatie bieden. Als een

gebruiker bijvoorbeeld een complexe functie verkent, kan de tooltip gepersonaliseerde

tips of voorbeelden bieden op basis van hun eerdere interacties of vaardigheidsniveau.

Verklarende tekst, zoals instructies, beschrijvingen of hulpberichten, kan dynamisch

worden gegenereerd op basis van de context van de gebruiker. In plaats van algemene

uitleg te presenteren, kun je LLMs gebruiken om tekst te genereren die is afgestemd op de

specifieke behoeften of vragen van de gebruiker. Als een gebruiker bijvoorbeeld moeite

heeft met een bepaalde stap in een proces, kan de verklarende tekst gepersonaliseerde

begeleiding of probleemoplossingstips bieden.

Microtekst verwijst naar de kleine stukjes tekst die gebruikers door je applicatie

leiden, zoals knoplabels, foutmeldingen of bevestigingsprompts. Door de Contextuele

Content Generatie aanpak toe te passen op microtekst, kun je een adaptieve UI creëren

die reageert op de acties van de gebruiker en relevante en behulpzame tekst biedt.

Als een gebruiker bijvoorbeeld op het punt staat een kritieke actie uit te voeren,

kan de bevestigingsprompt dynamisch worden gegenereerd om een duidelijke en

gepersonaliseerde boodschap te geven.

Gepersonaliseerde verklarende tekst en tooltips kunnen het onboardingproces voor

nieuwe gebruikers aanzienlijk verbeteren. Door contextspecifieke begeleiding en

voorbeelden te bieden, kun je gebruikers helpen de applicatie snel te begrijpen en te

navigeren, waardoor de leercurve wordt verkort en de adoptie wordt verhoogd.

Generatieve UI 210

Dynamische en contextbewuste chrome-elementen kunnen de applicatie ook intuïtiever

en aantrekkelijkermaken. Gebruikers zijn eerder geneigd ommet functies te interacteren

en deze te verkennen wanneer de bijbehorende tekst is afgestemd op hun specifieke

behoeften en interesses.

Tot nu toe hebben we ideeën besproken voor het verbeteren van bestaande UI-

paradigma’s met AI, maar hoe zit het met het radicaal heroverwegen van hoe

gebruikersinterfaces worden ontworpen en geïmplementeerd?

Definitie van Generatieve UI

In tegenstelling tot traditioneel UI-ontwerp, waarbij ontwerpers vaste, statische

interfaces creëren, hint GenUI naar een toekomst waarin onze software beschikt

over flexibele, gepersonaliseerde ervaringen die in realtime kunnen evolueren en zich

aanpassen. Elke keer dat we een AI-gestuurde conversatie-interface gebruiken, laten

we de AI zich aanpassen aan de specifieke behoeften van de gebruiker. GenUI gaat een

stap verder door dat niveau van aanpasbaarheid toe te passen op de visuele interface

van software.

De reden dat het mogelijk is om vandaag de dag te experimenteren met GenUI-ideeën is

dat grote taalmodellen al programmeren begrijpen en hun basiskennis UI-technologieën

en frameworks omvat. De vraag is dus of grote taalmodellen kunnen worden gebruikt

om UI-elementen te genereren, zoals tekst, afbeeldingen, layouts en zelfs complete

interfaces, die zijn toegesneden op elke individuele gebruiker. Het model zou kunnen

worden geïnstrueerd om rekening te houden met verschillende factoren, zoals eerdere

interacties van de gebruiker, aangegeven voorkeuren, demografische informatie en de

huidige gebruikscontext, om zeer gepersonaliseerde en relevante interfaces te creëren.

GenUI verschilt op verschillende belangrijke manieren van traditioneel

gebruikersinterface-ontwerp:

Generatieve UI 211

1. Dynamisch en Adaptief: Traditioneel UI-ontwerp omvat het creëren van vaste,

statische interfaces die voor alle gebruikers hetzelfde blijven. GenUI daarentegen

maakt interfaces mogelijk die zich dynamisch kunnen aanpassen en veranderen

op basis van gebruikersbehoeften en context. Dit betekent dat dezelfde applicatie

verschillende interfaces kan presenteren aan verschillende gebruikers of zelfs aan

dezelfde gebruiker in verschillende situaties.

2. Personalisatie op Schaal: Bij traditioneel ontwerp is het vaak onpraktisch

om gepersonaliseerde ervaringen voor elke gebruiker te creëren vanwege de

benodigde tijd en middelen. GenUI maakt daarentegen personalisatie op schaal

mogelijk. Door gebruik te maken van AI kunnen ontwerpers interfaces creëren

die zich automatisch aanpassen aan de unieke behoeften en voorkeuren van

elke gebruiker, zonder handmatig aparte interfaces te hoeven ontwerpen en

ontwikkelen voor elk gebruikerssegment.

3. Focus op Resultaten: Traditioneel UI-ontwerp richt zich vaak op het creëren

van visueel aantrekkelijke en functionele interfaces. Hoewel deze aspecten nog

steeds belangrijk zijn bij GenUI, verschuift de primaire focus naar het bereiken

van gewenste gebruikersresultaten. GenUI streeft ernaar interfaces te creëren

die geoptimaliseerd zijn voor de specifieke doelen en taken van elke gebruiker,

waarbij bruikbaarheid en effectiviteit voorrang krijgen boven puur esthetische

overwegingen.

4. Continue Leren en Verbeteren: GenUI-systemen kunnen continu leren en

verbeteren op basis van gebruikersinteracties en feedback. Terwijl gebruikers

werken met de gegenereerde interfaces, kunnen de AI-modellen data verzamelen

over gebruikersgedrag, voorkeuren en resultaten, en deze informatie gebruiken

om toekomstige interface-generaties te verfijnen en optimaliseren. Dit iteratieve

leerproces stelt GenUI-systemen in staat om in de loop van de tijd steeds

effectiever te worden in het voldoen aan gebruikersbehoeften.

Het is belangrijk op te merken dat GenUI niet hetzelfde is als AI-ondersteunde

ontwerptools, zoals tools die suggesties geven of bepaalde ontwerptaken automatiseren.

Generatieve UI 212

Hoewel deze tools nuttig kunnen zijn bij het stroomlijnen van het ontwerpproces,

zijn ze nog steeds afhankelijk van ontwerpers om eindbesluiten te nemen en statische

interfaces te creëren. Bij GenUI daarentegen speelt het AI-systeem een actievere rol in

de daadwerkelijke generatie en aanpassing van interfaces op basis van gebruikersdata

en context.

GenUI vertegenwoordigt een belangrijke verschuiving in hoe we gebruikersinterface-

ontwerp benaderen, waarbij we ons verwijderen van one-size-fits-all oplossingen en

bewegen naar zeer gepersonaliseerde, adaptieve ervaringen. Door gebruik te maken van

de kracht van AI heeft GenUI het potentieel om de manier waarop we interacteren

met digitale producten en diensten te revolutioneren, door interfaces te creëren die

intuïtiever, boeiender en effectiever zijn voor elke individuele gebruiker.

Voorbeeld

Om het concept van GenUI te illustreren, laten we een hypothetische fitness-applicatie

genaamd “FitAI” bekijken. Deze app heeft als doel gepersonaliseerde trainingsschema’s

en voedingsadvies te bieden aan gebruikers op basis van hun individuele doelen,

fitnessniveaus en voorkeuren.

In een traditionele UI-ontwerpbenadering zou FitAI een vaste set schermen en

elementen kunnen hebben die voor alle gebruikers hetzelfde zijn. Met GenUI zou de

interface van de app zich echter dynamisch kunnen aanpassen aan de unieke behoeften

en context van elke gebruiker.

Deze aanpak is nogal vergezocht om in 2024 te implementeren en heeft mogelijk niet

eens voldoende ROI, maar het is mogelijk.

Zo zou het kunnen werken:

1. Onboarding:

Generatieve UI 213

• In plaats van een standaard vragenlijst gebruikt FitAI een conversationele AI

om informatie te verzamelen over de doelen, het huidige fitnessniveau en de

voorkeuren van de gebruiker.

• Op basis van deze eerste interactie genereert de AI een gepersonaliseerde

dashboard-layout, waarbij de functies en informatie die het meest relevant

zijn voor de doelen van de gebruiker worden benadrukt.

• Huidige AI-technologie zou kunnen beschikken over een selectie van

schermcomponenten om te gebruiken bij het samenstellen van het

gepersonaliseerde dashboard.

• Toekomstige AI-technologie zou de rol van een ervaren UI-ontwerper

kunnen overnemen en het dashboard daadwerkelijk vanaf nul kunnen

creëren.

2. Trainingsplanner:

• De trainingsplanner-interface wordt door de AI aangepast om specifiek aan

te sluiten bij het ervaringsniveau en de beschikbare apparatuur van de

gebruiker.

• Voor een beginner zonder apparatuur worden mogelijk eenvoudige

lichaamsoefeningen getoond met gedetailleerde instructies en video’s.

• Voor een gevorderde gebruiker met toegang tot een sportschool kunnen

complexere routines worden weergegeven met minder uitleg.

• De inhoud van de trainingsplanner wordt niet simpelweg gefilterd uit een

grote verzameling. Deze kan ter plekke worden gegenereerd op basis van

een kennisbank die wordt bevraagd met context die alle bekende informatie

over de gebruiker bevat.

3. Voortgangsbewaking:

• De voortgangsbewaking-interface evolueert op basis van de doelen en

betrokkenheidspatronen van de gebruiker.

Generatieve UI 214

• Als een gebruiker voornamelijk gericht is op gewichtsverlies, toont

de interface mogelijk prominent een gewichtstrend-grafiek en

calorieverbranding-statistieken.

• Voor een gebruiker die spieren opbouwt, kunnen krachttoename en

lichaamscompositie-veranderingen worden benadrukt.

• De AI kan dit deel van de applicatie aanpassen aan de daadwerkelijke

voortgang van de gebruiker. Als de voortgang een tijd stilstaat, kan de app

overschakelen naar een modus waarin wordt geprobeerd de gebruiker te

verleiden om de redenen voor de tegenslag te onthullen, om deze vervolgens

aan te pakken.

4. Voedingsadvies:

• Het voedingsgedeelte past zich aan aan de dieetvoorkeuren en -beperkingen

van de gebruiker.

• Voor een veganistische gebruiker worden mogelijk plantaardige

maaltijdsuggesties en eiwitbronnen getoond.

• Voor een gebruiker met glutenintolerantie worden automatisch

glutenbevattende voedingsmiddelen uit de aanbevelingen gefilterd.

• Ook hier wordt de inhoud niet geput uit een enorme verzameling

maaltijdgegevens die voor alle gebruikers geldt, maar wordt deze

samengesteld uit een kennisbank die informatie bevat die aanpasbaar

is op basis van de specifieke situatie en beperkingen van de gebruiker.

• Zo worden recepten gegenereerd met ingrediëntspecificaties die aansluiten

bij de voortdurend veranderende caloriebehoeften van de gebruiker

naarmate hun fitnessniveau en lichaamsstatistieken zich ontwikkelen.

5. Motiverende Elementen:

• De motiverende inhoud en meldingen van de app worden gepersonaliseerd

op basis van het persoonlijkheidstype van de gebruiker en de reactie op

verschillende motivatiestrategieën.

Generatieve UI 215

• Sommige gebruikers ontvangen bemoedigende berichten, terwijl anderen

meer datagestuurde feedback krijgen.

In dit voorbeeld stelt GenUI FitAI in staat om een zeer gepersonaliseerde ervaring te

creëren voor elke gebruiker, wat mogelijk de betrokkenheid, tevredenheid en de kans

op het bereiken van fitnessdoelen vergroot. De interface-elementen, inhoud en zelfs de

“persoonlijkheid” van de app passen zich aan om optimaal te voldoen aan de behoeften

en voorkeuren van elke individuele gebruiker.

De Verschuiving naar Resultaatgericht Ontwerp

GenUI vertegenwoordigt een fundamentele verschuiving in de benadering van

gebruikersinterface-ontwerp, van een focus op het creëren van specifieke interface-

elementen naar een meer holistische, resultaatgerichte aanpak. Deze verschuiving heeft

verschillende belangrijke implicaties:

1. Focus op Gebruikersdoelen:

• Ontwerpers zullen dieper moeten nadenken over gebruikersdoelen en

gewenste resultaten in plaats van specifieke interface-componenten.

• De nadruk zal liggen op het creëren van systemen die interfaces kunnen

genereren die gebruikers efficiënt en effectief helpen hun doelen te bereiken.

• Er zullen nieuwe UI-frameworks ontstaan die AI-gebaseerde ontwerpers de

tools geven die ze nodig hebben om gebruikerservaringen ter plekke en vanaf

nul te kunnen genereren in plaats van op basis van vooraf gedefinieerde

schermspecificaties.

2. Veranderende Rol van Ontwerpers:

• Ontwerpers zullen overgaan van het maken van vaste layouts naar het

definiëren van regels, beperkingen en richtlijnen die AI-systemen moeten

volgen bij het genereren van interfaces.

Generatieve UI 216

• Ze zullen vaardigheden moeten ontwikkelen op gebieden zoals data-analyse,

AI prompt engineering en systeemdenken om GenUI-systemen effectief te

kunnen aansturen.

3. Belang van Gebruikersonderzoek:

• Gebruikersonderzoek wordt nog belangrijker in een GenUI-context, omdat

ontwerpers niet alleen gebruikersvoorkeuren moeten begrijpen, maar ook

hoe deze voorkeuren en behoeften veranderen in verschillende contexten.

• Continue gebruikerstests en feedbackloops zullen essentieel zijn om het

vermogen van de AI om effectieve interfaces te genereren te verfijnen en

te verbeteren.

4. Ontwerpen voor Variabiliteit:

• In plaats van één “perfecte” interface te creëren, moeten ontwerpers rekening

houden met meerdere mogelijke variaties en ervoor zorgen dat het systeem

geschikte interfaces kan genereren voor diverse gebruikersbehoeften.

• Dit omvat het ontwerpen voor randgevallen en het waarborgen dat de

gegenereerde interfaces bruikbaarheid en toegankelijkheid behouden in

verschillende configuraties.

• Productdifferentiatie krijgt nieuwe dimensies door uiteenlopende

perspectieven op gebruikerspsychologie en het benutten van unieke

datasets en kennisbanken die niet beschikbaar zijn voor concurrenten.

Uitdagingen en Overwegingen

Hoewel GenUI spannende mogelijkheden biedt, brengt het ook verschillende

uitdagingen en overwegingen met zich mee:

1. Technische Beperkingen:

Generatieve UI 217

• Huidige AI-technologie heeft, hoewel geavanceerd, nog steeds beperkingen

in het begrijpen van complexe gebruikersintenties en het genereren van

werkelijk contextbewuste interfaces.

• Prestatieproblemen gerelateerd aan real-time generatie van interface-

elementen, vooral op minder krachtige apparaten.

2. Gegevensvereisten:

• Afhankelijk van het gebruiksgeval kunnen effectieve GenUI-systemen

aanzienlijke hoeveelheden gebruikersgegevens nodig hebben om

gepersonaliseerde interfaces te genereren.

• De uitdagingen bij het ethisch verzamelen van authentieke

gebruikersgegevens roepen zorgen op over gegevensprivacy en beveiliging,

evenals mogelijke vooroordelen in de data die gebruikt wordt om GenUI-

modellen te trainen.

3. Bruikbaarheid en Consistentie:

• Ten minste totdat de praktijk wijdverspreid wordt, kan een applicatie

met constant veranderende interfaces leiden tot bruikbaarheidsproblemen,

omdat gebruikers mogelijk moeite hebben met het vinden van vertrouwde

elementen of efficiënt navigeren.

• Het vinden van een balans tussen personalisatie en het behouden van een

consistente, leerbare interface zal cruciaal zijn.

4. Overmatige Afhankelijkheid van AI:

• Er bestaat een risico op het overdragen van te veel ontwerpbeslissingen aan

AI-systemen, wat mogelijk kan leiden tot inspiratieloze, problematische of

simpelweg niet-werkende interface-keuzes.

• Menselijk toezicht en de mogelijkheid om AI-gegenereerde ontwerpen te

overschrijven zullen in de nabije toekomst belangrijk blijven.

Generatieve UI 218

5. Toegankelijkheidszorgen:

• Het waarborgen dat dynamisch gegenereerde interfaces toegankelijk blijven

voor gebruikers met beperkingen brengt geheel nieuwe uitdagingen

met zich mee, wat zorgwekkend is gezien het slechte niveau van

toegankelijkheidsnaleving in typische systemen.

• Aan de andere kant kunnen AI-ontwerpers worden geïmplementeerd

met ingebouwde aandacht voor toegankelijkheid, en mogelijkheden om

toegankelijke interfaces ter plekke te bouwen, net zoals ze UI bouwen voor

gebruikers zonder beperkingen.

• Hoe dan ook moeten GenUI-systemen worden ontworpen met robuuste

toegankelijkheidsrichtlijnen en testprocessen.

6. Gebruikersvertrouwen en Transparantie:

• Gebruikers kunnen zich ongemakkelijk voelen bij interfaces die “te veel

lijken te weten” over hen of veranderen op manieren die ze niet begrijpen.

• Het bieden van transparantie over hoe en waarom interfaces

worden gepersonaliseerd zal belangrijk zijn voor het opbouwen van

gebruikersvertrouwen.

Toekomstperspectief en Kansen

De toekomst van Generatieve UI (GenUI) heeft een enorme belofte voor het

revolutionair veranderen van de manier waarop we interacteren met digitale producten

en diensten. Naarmate deze technologie zich blijft ontwikkelen, kunnen we een

ingrijpende verschuiving verwachten in hoe gebruikersinterfaces worden ontworpen,

geïmplementeerd en ervaren. Ik denk dat GenUI het fenomeen is dat onze software

eindelijk zal stuwen naar het gebied dat nu als sciencefiction wordt beschouwd.

Generatieve UI 219

Een van de meest opwindende vooruitzichten van GenUI is het potentieel om

toegankelijkheid te verbeteren op een schaal die verder gaat dan alleen ervoor

zorgen dat mensen met ernstige beperkingen niet volledig worden uitgesloten van

het gebruik van software. Door interfaces automatisch aan te passen aan individuele

gebruikersbehoeften, zou GenUI digitale ervaringen inclusiever kunnen maken dan

ooit tevoren. Stel je interfaces voor die zich naadloos aanpassen om grotere tekst te

bieden voor jongere of visueel beperkte gebruikers, of vereenvoudigde layouts voor

mensen met cognitieve beperkingen, allemaal zonder handmatige configuratie of aparte

“toegankelijke” versies van applicaties.

De personalisatiemogelijkheden van GenUI zullen waarschijnlijk leiden tot verhoogde

gebruikersbetrokkenheid, tevredenheid en loyaliteit binnen een breed scala aan digitale

producten. Naarmate interfaces beter worden afgestemd op individuele voorkeuren en

gedragingen, zullen gebruikers digitale ervaringen intuïtiever en plezieriger vinden, wat

mogelijk leidt tot diepere en betekenisvollere interacties met technologie.

GenUI heeft ook het potentieel om het onboardingproces voor nieuwe gebruikers

te transformeren. Door intuïtieve, gepersonaliseerde eerste gebruikerservaringen te

creëren die zich snel aanpassen aan het expertiseniveau van elke gebruiker, zou GenUI

de leercurve van nieuwe applicaties aanzienlijk kunnen verminderen. Dit zou kunnen

leiden tot snellere adoptie en meer gebruikersvertrouwen bij het verkennen van nieuwe

functies en functionaliteiten.

Een andere opwindende mogelijkheid is het vermogen van GenUI om een consistente

gebruikerservaring te behouden over verschillende apparaten en platforms, terwijl er

wordt geoptimaliseerd voor elke specifieke gebruikscontext. Dit zou de langdurige

uitdaging kunnen oplossen van het bieden van coherente ervaringen in een steeds meer

gefragmenteerd apparatenlandschap, van smartphones en tablets tot desktopcomputers

en opkomende technologieën zoals augmented reality-brillen.

De datagedreven aard van GenUI biedt kansen voor snelle iteratie en verbetering

in UI-ontwerp. Door real-time gegevens te verzamelen over hoe gebruikers omgaan

Generatieve UI 220

met gegenereerde interfaces, kunnen ontwerpers en ontwikkelaars ongekende inzichten

krijgen in gebruikersgedrag en voorkeuren. Deze feedbackloop zou kunnen leiden tot

continue verbeteringen in UI-ontwerp, gedreven door werkelijke gebruikspatronen in

plaats van aannames of beperkt gebruikersonderzoek.

Om zich voor te bereiden op deze verschuiving zullen ontwerpers hun vaardigheden en

denkwijzen moeten ontwikkelen. De focus zal verschuiven van het creëren van vaste

layouts naar het ontwikkelen van uitgebreide ontwerpsystemen en richtlijnen die AI-

gestuurde interface-generatie kunnen informeren. Ontwerpers zullen een diep begrip

moeten ontwikkelen van data-analyse, AI-technologieën en systeemdenken om GenUI-

systemen effectief te kunnen begeleiden.

Bovendien zullen ontwerpers, naarmate GenUI de grenzen tussen ontwerp

en technologie vervaagt, nauwer moeten samenwerken met ontwikkelaars en

datawetenschappers. Deze interdisciplinaire aanpak zal cruciaal zijn bij het creëren van

GenUI-systemen die niet alleen visueel aantrekkelijk en gebruiksvriendelijk zijn, maar

ook technisch robuust en ethisch verantwoord.

De ethische implicaties van GenUI zullen ook op de voorgrond treden naarmate

de technologie zich verder ontwikkelt. Ontwerpers zullen een cruciale rol spelen bij

het ontwikkelen van raamwerken voor verantwoord AI-gebruik in interface-ontwerp,

waarbij ze ervoor zorgen dat personalisatie de gebruikerservaringen verbetert zonder de

privacy in gevaar te brengen of gebruikersgedrag op onethische wijze te manipuleren.

Als we naar de toekomst kijken, biedt GenUI zowel spannende mogelijkheden als

belangrijke uitdagingen. Het heeft de potentie om meer intuïtieve, efficiënte en

bevredigende digitale ervaringen te creëren voor gebruikers wereldwijd. Hoewel

het van ontwerpers vraagt om zich aan te passen en nieuwe vaardigheden

te verwerven, biedt het ook een ongekende kans om de toekomst van mens-

computerinteractie op diepgaande en betekenisvolle manieren vorm te geven. De weg

naar volledig gerealiseerde GenUI-systemen zal ongetwijfeld complex zijn, maar de

potentiële voordelen op het gebied van verbeterde gebruikerservaringen en digitale

Generatieve UI 221

toegankelijkheid maken het een toekomst waar het waard is naar te streven.

Intelligente
Werkstroomorganisatie

In het domein van applicatieontwikkeling spelen werkstromen een cruciale rol bij het

definiëren van hoe taken, processen en gebruikersinteracties worden gestructureerd

en uitgevoerd. Naarmate applicaties complexer worden en gebruikersverwachtingen

blijven stijgen, wordt de behoefte aan intelligente en adaptieve werkstroomorganisatie

steeds duidelijker.

De “Intelligente Werkstroomorganisatie” benadering richt zich op het benutten van AI-

componenten om complexe werkstromen binnen applicaties dynamisch te organiseren

en te optimaliseren. Het doel is om applicaties te creëren die efficiënter, responsiever en

aanpasbaar zijn aan realtime gegevens en context.

In dit hoofdstuk zullen we de belangrijkste principes en patronen verkennen

die ten grondslag liggen aan de intelligente werkstroomorganisatie-aanpak. We

Intelligente Werkstroomorganisatie 223

zullen bekijken hoe AI kan worden gebruikt om taken intelligent te routeren,

besluitvorming te automatiseren en werkstromen dynamisch aan te passen op basis

van verschillende factoren zoals gebruikersgedrag, systeemprestaties en bedrijfsregels.

Aan de hand van praktische voorbeelden en realistische scenario’s zullen we het

transformatieve potentieel van AI laten zien bij het stroomlijnen en optimaliseren van

applicatiewerkstromen.

Of u nu bedrijfsapplicaties bouwt met ingewikkelde bedrijfsprocessen of

consumentgerichte applicaties met dynamische gebruikerstrajecten, de patronen

en technieken die in dit hoofdstuk worden besproken zullen u voorzien van de kennis

en hulpmiddelen om intelligente en efficiënte werkstromen te creëren die de algehele

gebruikerservaring verbeteren en bedrijfswaarde genereren.

Zakelijke Behoefte

Traditionele benaderingen van werkstroombeheer zijn vaak afhankelijk van vooraf

gedefinieerde regels en statische beslisbomen, die rigide en inflexibel kunnen zijn en

niet kunnen omgaan met het dynamische karakter van moderne applicaties.

Neem een scenario waarin een e-commerce applicatie een complex

orderafhandelingsproces moet verwerken. De werkstroom kan meerdere stappen

omvatten zoals ordervalidatie, voorraadcontrole, betalingsverwerking, verzending

en klantmeldingen. Elke stap kan zijn eigen set regels, afhankelijkheden, externe

integraties en uitzonderingsafhandelingsmechanismen hebben. Het handmatig beheren

van een dergelijke werkstroom of via hardgecodeerde logica kan snel omslachtig,

foutgevoelig en moeilijk te onderhouden worden.

Bovendien moet de werkstroom zich mogelijk aanpassen en zichzelf optimaliseren op

basis van realtime gegevens en systeemprestaties naarmate de applicatie schaalt en het

aantal gelijktijdige gebruikers groeit. Tijdens piekverkeersperiodes moet de applicatie

bijvoorbeeld de werkstroom dynamisch aanpassen om bepaalde taken te prioriteren,

bronnen efficiënt toe te wijzen en een soepele gebruikerservaring te garanderen.

Intelligente Werkstroomorganisatie 224

Dit is waar de “Intelligente Werkstroomorganisatie” benadering in beeld komt. Door

gebruik te maken van AI-componenten kunnen ontwikkelaars werkstromen creëren die

intelligent, adaptief en zelf-optimaliserend zijn. AI kan grote hoeveelheden gegevens

analyseren, leren van eerdere ervaringen en geïnformeerde beslissingen nemen in

realtime om de werkstroom effectief te organiseren.

Belangrijkste Voordelen

1. Verhoogde Efficiëntie: AI kan taaktoewijzing, brongebruik en

werkstroomuitvoering optimaliseren, wat leidt tot snellere verwerkingstijden en

verbeterde algehele efficiëntie.

2. Aanpasbaarheid: Door AI aangestuurde werkstromen kunnen zich dynamisch

aanpassen aan veranderende omstandigheden, zoals schommelingen in

gebruikersvraag, systeemprestaties of bedrijfsvereisten, waardoor de applicatie

responsief en veerkrachtig blijft.

3. Geautomatiseerde Besluitvorming: AI kan complexe besluitvormingsprocessen

binnen de werkstroom automatiseren, waardoor handmatige interventie wordt

verminderd en het risico op menselijke fouten wordt geminimaliseerd.

4. Personalisatie: AI kan gebruikersgedrag, voorkeuren en context analyseren om

de werkstroom te personaliseren en op maat gemaakte ervaringen te leveren aan

individuele gebruikers.

5. Schaalbaarheid:Door AI aangedrevenwerkstromen kunnen naadloos schalen om

toenemende volumes van gegevens en gebruikersinteracties te verwerken, zonder

concessies te doen aan prestaties of betrouwbaarheid.

In de volgende secties zullen we de belangrijkste patronen en technieken verkennen

die de implementatie van intelligente werkstromen mogelijk maken en laten we

praktijkvoorbeelden zien van hoe AI het werkstroombeheer in moderne applicaties

transformeert.

Intelligente Werkstroomorganisatie 225

Belangrijke Patronen

Om intelligente werkstroomorganisatie in applicaties te implementeren, kunnen

ontwikkelaars gebruik maken van verschillende belangrijke patronen die de kracht van

AI benutten. Deze patronen bieden een gestructureerde aanpak voor het ontwerpen

en beheren van werkstromen, waardoor applicaties processen kunnen aanpassen,

optimaliseren en automatiseren op basis van realtime gegevens en context. Laten we

enkele van de fundamentele patronen in intelligente werkstroomorganisatie verkennen.

Dynamische Taakroutering

Dit patroon omvat het gebruik van AI om taken binnen een werkstroom intelligent

te routeren op basis van verschillende factoren zoals taakprioriteit, beschikbaarheid

van bronnen en systeemprestaties. AI-algoritmen kunnen de kenmerken van elke taak

analyseren, rekening houden met de huidige staat van het systeem en geïnformeerde

beslissingen nemen om taken toe te wijzen aan de meest geschikte bronnen of

verwerkingspaden. Dynamische taakroutering zorgt ervoor dat taken efficiënt

worden verdeeld en uitgevoerd, waardoor de algehele werkstroomprestaties worden

geoptimaliseerd.

1 class TaskRouter

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 attr_accessor :task

6

7 # list of functions that can be called by the AI entirely at its

8 # discretion depending on the task received

9

10 function :analyze_task_priority do

11 TaskPriorityAnalyzer.perform(task)

12 end

13

14 function :check_resource_availability, # ...

Intelligente Werkstroomorganisatie 226

15 function :assess_system_performance, # ...

16 function :assign_task_to_resource, # ...

17

18 DIRECTIVE = "You are a task router, responsible for intelligently

19 assigning tasks to available resources based on priority, resource

20 availability, and system performance..."

21

22 def initialize(task)

23 self.task = task

24 transcript << { system: DIRECTIVE }

25 transcript << { user: task.to_json }

26 end

27

28 def perform

29 while task.unassigned?

30 chat_completion

31

32 # todo: add max loop counter and break

33 end

34

35 # capture the transcript for later analysis

36 task.update(routing_transcript: transcript)

37 end

38 end

Let op de lus die wordt gecreëerd door de while expressie op regel 29, die de AI blijft

vragen totdat de taak is toegewezen. Op regel 35 slaan we het transcript van de taak op

voor latere analyse en debugging, mocht dit nodig zijn.

Contextuele Besluitvorming

Je kunt vergelijkbare code gebruiken om contextbewuste beslissingen binnen

een workflow te nemen. Door het analyseren van relevante gegevenspunten

zoals gebruikersvoorkeuren, historische patronen, en realtime invoer, kunnen AI-

componenten de meest geschikte handelwijze bepalen bij elk beslissingspunt in de

workflow. Pas het gedrag van je workflow aan op basis van de specifieke context van

elke gebruiker of scenario, voor gepersonaliseerde en geoptimaliseerde ervaringen.

Intelligente Werkstroomorganisatie 227

Adaptieve Workflowcompositie

Dit patroon richt zich op het dynamisch samenstellen en aanpassen van workflows

op basis van veranderende eisen of omstandigheden. AI kan de huidige staat van

de workflow analyseren, knelpunten of inefficiënties identificeren, en automatisch

de workflowstructuur aanpassen om de prestaties te optimaliseren. Adaptieve

workflowcompositie stelt applicaties in staat om continu te evolueren en hun processen

te verbeteren zonder handmatige interventie.

Uitzonderingsafhandeling en Herstel

Uitzonderingsafhandeling en herstel zijn kritieke aspecten van intelligente

workfloworganisatie. Bij het werken met AI-componenten en complexe workflows

is het essentieel om uitzonderingen te anticiperen en elegant af te handelen om de

stabiliteit en betrouwbaarheid van het systeem te waarborgen.

Hier zijn enkele belangrijke overwegingen en technieken voor uitzonderingsafhandeling

en herstel in intelligente workflows:

1. Uitzonderingspropagatie: Implementeer een consistente aanpak voor het

propageren van uitzonderingen tussen workflowcomponenten. Wanneer

een uitzondering zich voordoet binnen een component, moet deze worden

opgevangen, gelogd en doorgegeven aan de orchestrator of een afzonderlijke

component die verantwoordelijk is voor het afhandelen van uitzonderingen.

Het idee is om uitzonderingsafhandeling te centraliseren en te voorkomen dat

uitzonderingen stilzwijgend worden onderdrukt, en tevens mogelijkheden te

openen voor Intelligente Foutafhandeling.

2. Herhaalingsmechanismen: Herhaalingsmechanismen helpen de veerkracht

van de workflow te verbeteren en behandelen tijdelijke storingen op

elegante wijze. Implementeer zeker herhaalingsmechanismen voor tijdelijke

Intelligente Werkstroomorganisatie 228

of herstelbare uitzonderingen, zoals problemen met netwerkconnectiviteit of

onbeschikbaarheid van bronnen die automatisch opnieuw kunnen worden

geprobeerd na een bepaalde vertraging. Met een AI-gestuurde orchestrator of

uitzonderingsafhandelaar hoeven je herhaalsstrategieën niet mechanisch van

aard te zijn, vertrouwend op vaste algoritmen zoals exponentiële terugval.

Je kunt de afhandeling van de herhaling overlaten aan het “oordeel” van de

AI-component die verantwoordelijk is voor het beslissen hoe de uitzondering

moet worden afgehandeld.

3. Terugvalstrategieën:Als een AI-component er niet in slaagt een geldig antwoord

te geven of een fout tegenkomt—een veel voorkomende gebeurtenis gezien zijn

geavanceerde aard—zorg dan voor een terugvalmechanisme om ervoor te zorgen

dat de workflow kan doorgaan. Dit kan het gebruik van standaardwaarden,

alternatieve algoritmen of een Mens in de Loop omvatten om beslissingen te

nemen en de workflow vooruit te helpen.

4. Compenserende Acties: De richtlijnen van de orchestrator moeten instructies

bevatten over compenserende acties om uitzonderingen af te handelen die niet

automatisch kunnen worden opgelost. Compenserende acties zijn stappen die

worden ondernomen om de effecten van een mislukte operatie ongedaan te

maken of te verzachten. Als bijvoorbeeld een betalingsverwerkingsstap mislukt,

zou een compenserende actie kunnen zijn om de transactie terug te draaien en

de gebruiker te informeren. Compenserende acties helpen bij het behouden van

dataconsistentie en integriteit bij uitzonderingen.

5. Uitzonderingsmonitoring en Waarschuwingen: Zet monitoring- en

waarschuwingsmechanismen op om kritieke uitzonderingen te detecteren

en relevante belanghebbenden hierover te informeren. De orchestrator kan

bewust worden gemaakt van drempels en regels om waarschuwingen te activeren

wanneer uitzonderingen bepaalde limieten overschrijden of wanneer specifieke

soorten uitzonderingen optreden. Dit maakt proactieve identificatie en oplossing

van problemen mogelijk voordat ze het hele systeem beïnvloeden.

Intelligente Werkstroomorganisatie 229

Hier is een voorbeeld van uitzonderingsafhandeling en herstel in een Ruby workflow-

component:

1 class InventoryManager

2 def check_availability(order)

3 begin

4 # Perform inventory check logic

5 inventory = Inventory.find_by(product_id: order.product_id)

6 if inventory.available_quantity >= order.quantity

7 return true

8 else

9 raise InsufficientInventoryError,

10 "Insufficient inventory for product #{order.product_id}"

11 end

12 rescue InsufficientInventoryError => e

13 # Log the exception

14 logger.error("Inventory check failed: #{e.message}")

15

16 # Retry the operation after a delay

17 retry_count ||= 0

18 if retry_count < MAX_RETRIES

19 retry_count += 1

20 sleep(RETRY_DELAY)

21 retry

22 else

23 # Fallback to manual intervention

24 NotificationService.admin("Inventory check failed: Order #{order.id}")

25 return false

26 end

27 end

28 end

29 end

In dit voorbeeld controleert de InventoryManager-component de beschikbaarheid van

een product voor een bepaalde bestelling. Als de beschikbare hoeveelheid onvoldoende

is, wordt er een InsufficientInventoryError gegenereerd. De exceptie wordt

opgevangen, gelogd en er wordt een hertryingsmechanisme geïmplementeerd. Als

de hertryingslimiet wordt overschreden, schakelt de component over op handmatige

interventie door een beheerder te waarschuwen.

Intelligente Werkstroomorganisatie 230

Door robuuste exceptieafhandeling en herstelmechanismen te implementeren, kunt u

ervoor zorgen dat uw intelligente workflows veerkrachtig en onderhoudbaar zijn, en

onverwachte situaties elegant kunnen afhandelen.

Deze patronen vormen de basis van intelligente workflow-orchestratie en kunnen

worden gecombineerd en aangepast aan de specifieke vereisten van verschillende

applicaties. Door gebruik te maken van deze patronen kunnen ontwikkelaars

workflows creëren die flexibel en veerkrachtig zijn, en geoptimaliseerd voor prestaties

en gebruikerservaring.

In het volgende gedeelte zullen we onderzoeken hoe deze patronen in de praktijk kunnen

worden geïmplementeerd, waarbij we gebruik maken van praktijkvoorbeelden en

codefragmenten om de integratie vanAI-componenten inworkflowbeheer te illustreren.

Implementatie van Intelligente

Workflow-orchestratie in de Praktijk

Nu we de belangrijkste patronen in intelligente workflow-orchestratie hebben

verkend, laten we eens kijken hoe deze patronen kunnen worden geïmplementeerd in

praktijktoepassingen. We zullen praktische voorbeelden en codefragmenten geven om

de integratie van AI-componenten in workflowbeheer te illustreren.

Intelligente Orderverwerker

Laten we een praktisch voorbeeld bekijken van het implementeren van intelligente

workflow-orchestratie met behulp van een AI-gestuurde OrderProcessor-component

in een Ruby on Rails e-commerce applicatie. De OrderProcessor implementeert het

Process Manager Enterprise Integration concept dat we voor het eerst tegenkwamen

Intelligente Werkstroomorganisatie 231

in Hoofdstuk 3 bij de bespreking van Multitude of Workers. De component is

verantwoordelijk voor het beheren van de orderverwerkingsworkflow, het nemen

van routeringsbeslissingen op basis van tussenresultaten, en het orchestreren van de

uitvoering van verschillende verwerkingsstappen.

Het orderverwerkingsproces bestaat uit meerdere stappen zoals ordervalidatie,

voorraadcontrole, betalingsverwerking en verzending. Elke stap wordt

geïmplementeerd als een apart werkproces dat een specifieke taak uitvoert en het

resultaat teruggeeft aan de OrderProcessor. De stappen zijn niet verplicht en hoeven

zelfs niet noodzakelijkerwijs in een bepaalde volgorde te worden uitgevoerd.

Hier is een voorbeeldimplementatie van de OrderProcessor. Het bevat twee mixins

van Raix. De eerste (ChatCompletion) geeft het de mogelijkheid om chatberichten te

voltooien, wat dit een AI-component maakt. De tweede (FunctionDispatch) maakt

functie-aanroep door de AI mogelijk, waardoor deze op een prompt kan reageren met

een functie-aanroep in plaats van een tekstbericht.

De werkerfuncties (validate_order, check_inventory, et al) delegeren naar hun

respectievelijke werkerklassen, die AI- of niet-AI-componenten kunnen zijn, met als

enige vereiste dat ze de resultaten van hun werk teruggeven in een formaat dat als tekst

kan worden weergegeven.

Net als bij alle andere voorbeelden in dit deel van het boek is deze code in

feite pseudo-code en is alleen bedoeld om de betekenis van het patroon over

te brengen en uw eigen creaties te inspireren. Volledige beschrijvingen van

patronen en complete codevoorbeelden zijn opgenomen in Deel 2.

https://github.com/OlympiaAI/raix-rails

Intelligente Werkstroomorganisatie 232

1 class OrderProcessor

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

6

7 def initialize(order)

8 self.order = order

9 transcript << { system: SYSTEM_DIRECTIVE }

10 transcript << { user: order.to_json }

11 end

12

13 def perform

14 # will continue looping until `stop_looping!` is called

15 chat_completion(loop: true)

16 end

17

18 # list of functions available to be called by the AI

19 # truncated for brevity

20

21 def functions

22 [

23 {

24 name: "validate_order",

25 description: "Invoke to check validity of order",

26 parameters: {

27 ...

28 },

29 ...

30]

31 end

32

33 # implementation of functions that can be called by the AI

34 # entirely at its discretion, depending on the needs of the order

35

36 def validate_order

37 OrderValidationWorker.perform(@order)

38 end

39

40 def check_inventory

41 InventoryCheckWorker.perform(@order)

42 end

Intelligente Werkstroomorganisatie 233

43

44 def process_payment

45 PaymentProcessingWorker.perform(@order)

46 end

47

48 def schedule_shipping

49 ShippingSchedulerWorker.perform(@order)

50 end

51

52 def send_confirmation

53 OrderConfirmationWorker.perform(@order)

54 end

55

56 def finished_processing

57 @order.update!(transcript:, processed_at: Time.current)

58 stop_looping!

59 end

60 end

In het voorbeeld wordt de OrderProcessor geïnitialiseerd met een orderobject

en houdt deze een transcript bij van de werkstroomuitvoering, in het typische

conversatietranscriptformaat dat eigen is aan grote taalmodellen. De AI krijgt volledige

controle over het orchestreren van de uitvoering van verschillende verwerkingsstappen,

zoals ordervalidatie, voorraadcontrole, betalingsverwerking en verzending.

Elke keer dat de chat_completion methode wordt aangeroepen, wordt het transcript

naar de AI gestuurd om een voltooiing als functieaanroep te leveren. Het is volledig

aan de AI om het resultaat van de vorige stap te analyseren en de juiste actie te

bepalen. Als bijvoorbeeld de voorraadcontrole lage voorraadniveaus laat zien, kan de

OrderProcessor een aanvullingstaak plannen. Als de betalingsverwerking mislukt,

kan deze een nieuwe poging initiëren of de klantenservice op de hoogte stellen.

Intelligente Werkstroomorganisatie 234

Het bovenstaande voorbeeld heeft geen functies gedefinieerd voor aanvulling of het

informeren van de klantenservice, maar dat zou absoluut kunnen.

Het transcript groeit elke keer dat een functie wordt aangeroepen en dient als een

registratie van de werkstroomuitvoering, inclusief de resultaten van elke stap en

de door AI gegenereerde instructies voor de volgende stappen. Dit transcript kan

worden gebruikt voor debugging, auditing en het verschaffen van inzicht in het

orderafhandelingsproces.

Door AI te benutten in de OrderProcessor, kan de e-commerce applicatie de

werkstroom dynamisch aanpassen op basis van realtime gegevens en uitzonderingen

intelligent afhandelen. De AI-component kan geïnformeerde beslissingen nemen,

de werkstroom optimaliseren en zorgen voor een soepele orderverwerking, zelfs in

complexe scenario’s.

Het feit dat de enige vereiste voor de werkprocessen is om een begrijpelijke output te

retourneren voor de AI om te overwegen bij het beslissen wat de volgende stap moet

zijn, zou je kunnen doen beseffen hoe deze aanpak het werk van input/output-mapping

kan verminderen dat typisch nodig is bij het integreren van verschillende systemen met

elkaar.

Intelligente Content Moderator

Sociale media-applicaties vereisen over het algemeen ten minste minimale

contentmoderatie om een veilige en gezonde community te waarborgen. Dit

voorbeeld van een ContentModerator component maakt gebruik van AI om

de moderatiewerkstroom intelligent te orchestreren, waarbij beslissingen worden

genomen op basis van de kenmerken van de content en de resultaten van verschillende

moderatiestappen.

Intelligente Werkstroomorganisatie 235

Het moderatieproces omvat meerdere stappen zoals tekstanalyse, beeldherkenning,

beoordeling van gebruikersreputatie en handmatige beoordeling. Elke stap wordt

geïmplementeerd als een afzonderlijk werkproces dat een specifieke taak uitvoert en

het resultaat terugstuurt naar de ContentModerator.

Hier is een voorbeeldimplementatie van de ContentModerator:

1 class ContentModerator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,

6 tasked with the workflow involved in moderating user-generated content..."

7

8 def initialize(content)

9 @content = content

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: content.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 # list of functions available to be called by the AI

25 # truncated for brevity

26

27 def functions

28 [

29 {

30 name: "analyze_text",

31 # ...

32 },

33 {

34 name: "recognize_image",

Intelligente Werkstroomorganisatie 236

35 description: "Invoke to describe images...",

36 # ...

37 },

38 {

39 name: "assess_user_reputation",

40 # ...

41 },

42 {

43 name: "escalate_to_manual_review",

44 # ...

45 },

46 {

47 name: "approve_content",

48 # ...

49 },

50 {

51 name: "reject_content",

52 # ...

53 }

54]

55 end

56

57 # implementation of functions that can be called by the AI

58 # entirely at its discretion, depending on the needs of the order

59

60 def analyze_text

61 result = TextAnalysisWorker.perform(@content)

62 continue_with(result)

63 end

64

65 def recognize_image

66 result = ImageRecognitionWorker.perform(@content)

67 continue_with(result)

68 end

69

70 def assess_user_reputation

71 result = UserReputationWorker.perform(@content.user)

72 continue_with(result)

73 end

74

75 def escalate_to_manual_review

76 ManualReviewWorker.perform(@content)

Intelligente Werkstroomorganisatie 237

77 @content.update!(status: 'pending', transcript: @transcript)

78 end

79

80 def approve_content

81 @content.update!(status: 'approved', transcript: @transcript)

82 end

83

84 def reject_content

85 @content.update!(status: 'rejected', transcript: @transcript)

86 end

87

88 private

89

90 def continue_with(result)

91 @transcript << { function: result }

92 complete(@transcript)

93 end

94 end

In dit voorbeeld wordt de ContentModerator geïnitialiseerd met een content-object

en houdt het een moderatie-transcript bij in het gesprekformaat. Het AI-component

heeft volledige controle over de moderatie-werkstroom en bepaalt welke stappen er

uitgevoerd moeten worden op basis van de kenmerken van de content en de resultaten

van elke stap.

De beschikbare werkerfuncties die de AI kan aanroepen zijn onder

andere analyze_text, recognize_image, assess_user_reputation, en

escalate_to_manual_review. Elke functie delegeert de taak naar een

corresponderendewerkerproces (TextAnalysisWorker, ImageRecognitionWorker,

etc.) en voegt het resultaat toe aan het moderatie-transcript, met uitzondering

van de escalatiefunctie, die fungeert als eindstatus. Tot slot fungeren de functies

approve_content en reject_content ook als eindstatussen.

Het AI-component analyseert de content en bepaalt welke actie geschikt is. Als

de content afbeeldingsreferenties bevat, kan het de recognize_image-werker

aanroepen voor hulp bij een visuele beoordeling. Als een werker waarschuwt

Intelligente Werkstroomorganisatie 238

voor mogelijk schadelijke content, kan de AI beslissen om de content te escaleren

voor handmatige beoordeling of deze direct af te wijzen. Maar afhankelijk van

de ernst van de waarschuwing, kan de AI ervoor kiezen om de resultaten van

de gebruikersreputatiebeoordeling te gebruiken bij het beslissen hoe om te gaan

met content waarover het anders niet zeker is. Afhankelijk van het gebruiksgeval

hebben vertrouwde gebruikers mogelijk meer speelruimte in wat ze kunnen plaatsen.

Enzovoort, enzovoort…

Net als bij het vorige voorbeeld van de procesmanager dient het moderatie-transcript

als een registratie van de werkstroomuitvoering, inclusief de resultaten van elke stap en

de door AI gegenereerde beslissingen. Dit transcript kan worden gebruikt voor auditing,

transparantie en het verbeteren van het moderatieproces in de loop der tijd.

Door AI te benutten in de ContentModerator kan de social media-applicatie de

moderatie-werkstroom dynamisch aanpassen op basis van de kenmerken van de

content en complexe moderatiescenario’s intelligent afhandelen. Het AI-component

kan weloverwogen beslissingen nemen, de werkstroom optimaliseren en zorgen voor

een veilige en gezonde community-ervaring.

Laten we twee andere voorbeelden bekijken die voorspellende taakplanning en

foutafhandeling en -herstel demonstreren binnen de context van intelligente

werkstroomorganisatie.

Voorspellende Taakplanning in een
Klantenondersteuningssysteem

In een klantenondersteuningsapplicatie gebouwd met Ruby on Rails is het efficiënt

beheren en prioriteren van supporttickets cruciaal voor het bieden van tijdige hulp

aan klanten. Het SupportTicketScheduler-component maakt gebruik van AI om

voorspellend supporttickets in te plannen en toe te wijzen aan beschikbare medewerkers

op basis van verschillende factoren zoals ticketurgentie, expertise van de medewerker

en werklast.

Intelligente Werkstroomorganisatie 239

1 class SupportTicketScheduler

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,

6 tasked with intelligently assigning tickets to available agents..."

7

8 def initialize(ticket)

9 @ticket = ticket

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: ticket.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 def functions

25 [

26 {

27 name: "analyze_ticket_urgency",

28 # ...

29 },

30 {

31 name: "list_available_agents",

32 description: "Includes expertise of available agents",

33 # ...

34 },

35 {

36 name: "predict_agent_workload",

37 description: "Uses historical data to predict upcoming workloads",

38 # ...

39 },

40 {

41 name: "assign_ticket_to_agent",

42 # ...

Intelligente Werkstroomorganisatie 240

43 },

44 {

45 name: "reschedule_ticket",

46 # ...

47 }

48]

49 end

50

51 # implementation of functions that can be called by the AI

52 # entirely at its discretion, depending on the needs of the order

53

54 def analyze_ticket_urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)

56 continue_with(result)

57 end

58

59 def list_available_agents

60 result = ListAvailableAgents.perform

61 continue_with(result)

62 end

63

64 def predict_agent_workload

65 result = AgentWorkloadPredictor.perform

66 continue_with(result)

67 end

68

69 def assign_ticket_to_agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

73 def delay_assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)

76 end

77

78 private

79

80 def continue_with(result)

81 @transcript << { function: result }

82 complete(@transcript)

83 end

84 end

Intelligente Werkstroomorganisatie 241

In dit voorbeeld wordt de SupportTicketScheduler geïnitialiseerd met een

supportticket-object en houdt deze een planningsverslag bij. Het AI-component

analyseert de ticketdetails en plant voorspellend de tickettoewijzing op basis van

factoren zoals ticketurgentie, agentexpertise en voorspelde werkbelasting van de agent.

De beschikbare functies die de AI kan aanroepen zijn analyze_ticket_urgency,

list_available_agents, predict_agent_workload en assign_ticket_to_-

agent. Elke functie delegeert de taak naar een corresponderende analyzer- of predictor-

component en voegt het resultaat toe aan het planningsverslag. De AI heeft ook de

mogelijkheid om toewijzing uit te stellen met behulp van de delay_assignment

functie.

Het AI-component onderzoekt het planningsverslag en neemt weloverwogen

beslissingen over tickettoewijzing. Het houdt rekening met de urgentie van het

ticket, de expertise van beschikbare agents en de voorspelde werkbelasting van elke

agent om de meest geschikte agent voor de afhandeling van het ticket te bepalen.

Door gebruik temaken van voorspellende taakplanning kan de klantenondersteuningsapplicatie

de tickettoewijzing optimaliseren, reactietijden verkorten en de algehele

klanttevredenheid verbeteren. Proactief en efficiënt beheer van supporttickets

zorgt ervoor dat de juiste tickets op het juiste moment aan de juiste agents worden

toegewezen.

Foutafhandeling en Herstel in een
Gegevensverwerkingspijplijn

Het afhandelen van uitzonderingen en herstellen van fouten is essentieel

om gegevensintegriteit te waarborgen en gegevensverlies te voorkomen. De

DataProcessingOrchestrator-component maakt gebruik van AI om op intelligente

wijze uitzonderingen af te handelen en het herstelproces te orchestreren in een

gegevensverwerkingspijplijn

Intelligente Werkstroomorganisatie 242

1 class DataProcessingOrchestrator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

6

7 def initialize(data_batch)

8 @data_batch = data_batch

9 @transcript = [

10 { system: SYSTEM_DIRECTIVE },

11 { user: data_batch.to_json }

12]

13 end

14

15 def perform

16 complete(@transcript)

17 end

18

19 def model

20 "openai/gpt-4"

21 end

22

23 def functions

24 [

25 {

26 name: "validate_data",

27 # ...

28 },

29 {

30 name: "process_data",

31 # ...

32 },

33 {

34 name: "request_fix",

35 # ...

36 },

37 {

38 name: "retry_processing",

39 # ...

40 },

41 {

42 name: "mark_data_as_failed",

Intelligente Werkstroomorganisatie 243

43 # ...

44 },

45 {

46 name: "finished",

47 # ...

48 }

49]

50 end

51

52 # implementation of functions that can be called by the AI

53 # entirely at its discretion, depending on the needs of the order

54

55 def validate_data

56 result = DataValidator.perform(@data_batch)

57 continue_with(result)

58 rescue ValidationException => e

59 handle_validation_exception(e)

60 end

61

62 def process_data

63 result = DataProcessor.perform(@data_batch)

64 continue_with(result)

65 rescue ProcessingException => e

66 handle_processing_exception(e)

67 end

68

69 def request_fix(description_of_fix)

70 result = SmartDataFixer.new(description_of_fix, @data_batch)

71 continue_with(result)

72 end

73

74 def retry_processing(timeout_in_seconds)

75 wait(timeout_in_seconds)

76 process_data

77 end

78

79 def mark_data_as_failed

80 @data_batch.update!(status: 'failed', transcript: @transcript)

81 end

82

83 def finished

84 @data_batch.update!(status: 'finished', transcript: @transcript)

Intelligente Werkstroomorganisatie 244

85 end

86

87 private

88

89 def continue_with(result)

90 @transcript << { function: result }

91 complete(@transcript)

92 end

93

94 def handle_validation_exception(exception)

95 @transcript << { exception: exception.message }

96 complete(@transcript)

97 end

98

99 def handle_processing_exception(exception)

100 @transcript << { exception: exception.message }

101 complete(@transcript)

102 end

103 end

In dit voorbeeld wordt de DataProcessingOrchestrator geïnitialiseerd met een

databatch-object en houdt deze een verwerkingstranscript bij. Het AI-component

orkestreert de dataverwerkingspijplijn, handelt excepties af en herstelt van fouten waar

nodig.

De beschikbare functies die de AI kan aanroepen zijn validate_data, process_-

data, request_fix, retry_processing, en mark_data_as_failed. Elke functie

delegeert de taak naar een corresponderend dataverwerkingscomponent en voegt het

resultaat of de exceptiedetails toe aan het verwerkingstranscript.

Als er een validatie-exceptie optreedt tijdens de validate_data stap, voegt de

handle_validation_exception functie de exceptiegegevens toe aan het transcript

en geeft de controle terug aan de AI. Ook als er een verwerkingsexceptie optreedt

tijdens de process_data stap, kan de AI beslissen over de herstelstrategie.

Afhankelijk van de aard van de opgetreden exceptie kan de AI naar eigen inzicht

beslissen om request_fix aan te roepen, wat delegeert naar een AI-aangedreven

Intelligente Werkstroomorganisatie 245

SmartDataFixer component (zie hoofdstuk over Zelf-herstellende Data). De data

fixer krijgt een gewone Nederlandse beschrijving van hoe het de @data_batch moet

aanpassen zodat de verwerking opnieuw kan worden geprobeerd. Misschien zou

een succesvolle nieuwe poging inhouden dat records die de validatie niet hebben

doorstaan uit de databatch worden verwijderd en/of worden gekopieerd naar een

andere verwerkingspijplijn voor menselijke controle? De mogelijkheden zijn bijna

eindeloos.

Door AI-gestuurde exceptie-afhandeling en herstel te integreren, wordt de

dataverwerkingsapplicatie veerkrachtiger en fouttoleranter. DeDataProcessingOrchestrator

beheert op intelligente wijze excepties, minimaliseert gegevensverlies en zorgt voor een

soepele uitvoering van de dataverwerkingsworkflow.

Monitoring en Logging

Monitoring en logging bieden inzicht in de voortgang, prestaties en gezondheid van

AI-aangedreven workflowcomponenten, waardoor ontwikkelaars het gedrag van het

systeem kunnen volgen en analyseren. Het implementeren van effectieve monitoring-

en loggingmechanismen is essentieel voor het debuggen, auditen en continue verbeteren

van intelligente workflows.

Monitoren van Workflowvoortgang en Prestaties

Om de soepele uitvoering van intelligente workflows te waarborgen, is het belangrijk

om de voortgang en prestaties van elk workflowcomponent te monitoren. Dit omvat

het bijhouden van belangrijke metrics en gebeurtenissen gedurende de workflow-

levenscyclus.

Enkele belangrijke aspecten om te monitoren zijn:

1. Workflow Uitvoeringstijd: Meet de tijd die elk workflowcomponent nodig heeft

Intelligente Werkstroomorganisatie 246

om zijn taak te voltooien. Dit helpt bij het identificeren van prestatie-knelpunten en het

optimaliseren van de algehele workflow-efficiëntie.

2. Brongebruik: Monitor het gebruik van systeembronnen, zoals CPU, geheugen en

opslag, door elk workflowcomponent. Dit helpt ervoor te zorgen dat het systeem binnen

zijn capaciteit werkt en de werklast effectief kan verwerken.

3. Foutpercentages en Excepties: Volg het voorkomen van fouten en excepties binnen

workflowcomponenten. Dit helpt bij het identificeren van potentiële problemen en

maakt proactieve foutafhandeling en herstel mogelijk.

4. Beslispunten en Uitkomsten: Monitor de beslispunten binnen de workflow en

de uitkomsten van AI-gestuurde beslissingen. Dit geeft inzicht in het gedrag en de

effectiviteit van de AI-componenten.

De gegevens die door monitoringprocessen worden verzameld, kunnen worden

weergegeven in dashboards of worden gebruikt als input voor geplande rapporten die

systeembeheerders informeren over de gezondheid van het systeem.

Monitoringgegevens kunnen worden doorgegeven aan een AI-aangedreven

systeembeheerderproces voor beoordeling en mogelijke actie!

Loggen van Belangrijke Gebeurtenissen en Beslissingen

Loggen is een essentiële praktijk die bestaat uit het vastleggen en opslaan van relevante

informatie over belangrijke gebeurtenissen, beslissingen en excepties die optreden

tijdens de workflow-uitvoering.

Enkele belangrijke aspecten om te loggen zijn:

1. Workflow Initiatie en Voltooiing: Log de start- en eindtijden van elke workflow-

instantie, samen met relevante metadata zoals de invoergegevens en gebruikerscontext.

Intelligente Werkstroomorganisatie 247

2. Component Uitvoering: Log de uitvoeringsdetails van elk workflowcomponent,

inclusief de invoerparameters, uitvoerresultaten en eventuele gegenereerde

tussenliggende gegevens.

3. AI-beslissingen en Redenering: Log de beslissingen die door AI-componenten

worden genomen, samen met de onderliggende redenering of betrouwbaarheidsscores.

Dit zorgt voor transparantie en maakt het mogelijk AI-gestuurde beslissingen te auditen.

4. Excepties en Foutmeldingen: Log eventuele excepties of foutmeldingen die tijdens

de workflow-uitvoering worden aangetroffen, inclusief de stack trace en relevante

contextinformatie.

Loggen kanworden geïmplementeerdmet verschillende technieken, zoals schrijven naar

logbestanden, logs opslaan in een database of logs verzenden naar een gecentraliseerde

loggingservice. Het is belangrijk om een logging-framework te kiezen dat flexibiliteit,

schaalbaarheid en eenvoudige integratie met de applicatiearchitectuur biedt.

Hier is een voorbeeld van hoe logging kan worden geïmplementeerd in een Ruby on

Rails-applicatie met behulp van de ActiveSupport::Logger klasse:

1 class WorkflowLogger

2 def self.log(message, severity = :info)

3 @logger ||= ActiveSupport::Logger.new('workflow.log')

4 @logger.formatter ||= proc do |severity, datetime, progname, msg|

5 "#{datetime} [#{severity}] #{msg}\n"

6 end

7 @logger.send(severity, message)

8 end

9 end

10

11 # Usage example

12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")

13 WorkflowLogger.log("Payment processing completed successfully")

14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

Door strategisch logboekregistraties te plaatsen in de workflow-componenten en AI-

beslispunten, kunnen ontwikkelaars waardevolle informatie vastleggen voor debugging,

Intelligente Werkstroomorganisatie 248

auditing en analyse.

Voordelen van Monitoring en Logging

Het implementeren van monitoring en logging in intelligente workfloworchestratie

biedt verschillende voordelen:

1. Debuggen en Probleemoplossing:Gedetailleerde logboeken en monitoringgegevens

helpen ontwikkelaars bij het snel identificeren en diagnosticeren van problemen. Ze

bieden inzicht in de uitvoering van de workflow, componentinteracties en eventuele

fouten of uitzonderingen die zich voordoen.

2. Prestatie-optimalisatie: Het monitoren van prestatiemetrieken stelt ontwikkelaars

in staat knelpunten te identificeren en workflowcomponenten te optimaliseren voor

betere efficiëntie. Door het analyseren van uitvoeringstijden, resourcegebruik en andere

metrieken kunnen ontwikkelaars weloverwogen beslissingen nemen om de algehele

prestaties van het systeem te verbeteren.

3. Auditing en Compliance: Het registreren van belangrijke gebeurtenissen en

beslissingen zorgt voor een auditspoor voor regelgeving en verantwoording. Het stelt

organisaties in staat om de acties van AI-componenten te volgen en te verifiëren en

zorgt voor naleving van bedrijfsregels en wettelijke vereisten.

4. Continue Verbetering: Monitoring- en logginggegevens dienen als waardevolle

input voor continue verbetering van intelligente workflows. Door het analyseren van

historische gegevens, het identificeren van patronen en het meten van de effectiviteit

van AI-beslissingen kunnen ontwikkelaars de workfloworchestratie-logica iteratief

verfijnen en verbeteren.

Overwegingen en Best Practices

Bij het implementeren van monitoring en logging in intelligente workfloworchestratie

moet rekening worden gehouden met de volgende best practices:

Intelligente Werkstroomorganisatie 249

1. Definieer Duidelijke Monitoringmetrieken: Identificeer de belangrijkste metrieken

en gebeurtenissen die gemonitord moeten worden op basis van de specifieke vereisten

van de workflow. Focus op metrieken die betekenisvolle inzichten geven in de prestaties,

gezondheid en het gedrag van het systeem.

2. Implementeer Gedetailleerde Logging: Zorg ervoor dat logboekregistraties op de

juiste punten binnen de workflowcomponenten en AI-beslispunten worden geplaatst.

Leg relevante contextinformatie vast, zoals invoerparameters, uitvoerresultaten en

eventuele gegenereerde tussenliggende gegevens.

3. Gebruik Gestructureerde Logging: Adopteer een gestructureerd loggingformaat

om het parseren en analyseren van loggegevens te vergemakkelijken. Gestructureerde

logging maakt betere zoekbaarheid, filtering en aggregatie van logboekitems mogelijk.

4. Beheer Logbehoud en -rotatie: Implementeer beleid voor logbehoud en -rotatie om

de opslag en levenscyclus van logbestanden te beheren. Bepaal de juiste bewaartermijn

op basis van wettelijke vereisten, opslagbeperkingen en analysebehoeften. Indien

mogelijk, besteed logging uit aan een externe dienst zoals Papertrail.

5. Beveilig Gevoelige Informatie: Wees voorzichtig bij het loggen van

gevoelige informatie, zoals persoonlijk identificeerbare informatie (PII) of

vertrouwelijke bedrijfsgegevens. Implementeer passende beveiligingsmaatregelen,

zoals gegevensmasking of encryptie, om gevoelige informatie in logbestanden te

beschermen.

6. Integreer met Monitoring- en Waarschuwingstools: Maak gebruik van

monitoring- en waarschuwingstools om het verzamelen, analyseren en visualiseren van

monitoring- en logginggegevens te centraliseren. Deze tools kunnen realtime inzichten

bieden, waarschuwingen genereren op basis van vooraf gedefinieerde drempels en

proactieve probleemdetectie en -oplossing faciliteren. Mijn favoriete tool hiervoor is

Datadog.

Door uitgebreide monitoring- en loggingmechanismen te implementeren, kunnen

ontwikkelaars waardevolle inzichten krijgen in het gedrag en de prestaties van

https://papertrailapp.com
https://www.datadoghq.com

Intelligente Werkstroomorganisatie 250

intelligente workflows. Deze inzichten maken effectief debuggen, optimalisatie en

continue verbetering van AI-gestuurde workfloworchestratie-systemen mogelijk.

Schaalbaarheid en Prestatieoverwegingen

Schaalbaarheid en prestaties zijn kritieke aspecten om rekening mee te houden bij

het ontwerpen en implementeren van intelligente workfloworchestratie-systemen.

Naarmate het volume van gelijktijdige workflows en de complexiteit van AI-gestuurde

componenten toenemen, wordt het essentieel om ervoor te zorgen dat het systeem de

werklast efficiënt kan verwerken en naadloos kan schalen om aan groeiende eisen te

voldoen.

Omgaan met Grote Volumes Gelijktijdige Workflows

Intelligente workfloworchestratie-systemen moeten vaak een groot aantal gelijktijdige

workflows verwerken. Overweeg de volgende strategieën om schaalbaarheid te

waarborgen:

1. Asynchrone Verwerking: Implementeer asynchrone verwerkingsmechanismen om

de uitvoering van workflowcomponenten te ontkoppelen. Dit stelt het systeem in

staat om meerdere workflows gelijktijdig te verwerken zonder te blokkeren of te

wachten tot elke component is voltooid. Asynchrone verwerking kan worden bereikt

met behulp van berichtenwachtrijen, event-driven architecturen of frameworks voor

achtergrondtaakverwerking zoals Sidekiq.

2. Gedistribueerde Architectuur: Ontwerp de systeemarchitectuur om serverloze

componenten (zoals AWS Lambda) te gebruiken of verdeel de werklast eenvoudig

over meerdere nodes of servers naast je hoofdapplicatieserver. Dit maakt horizontale

schaalbaarheidmogelijk, waarbij extra nodes kunnenworden toegevoegd om verhoogde

workflowvolumes te verwerken.

Intelligente Werkstroomorganisatie 251

3. Parallelle Uitvoering: Identificeer mogelijkheden voor parallelle uitvoering

binnen workflows. Sommige workflowcomponenten kunnen onafhankelijk van

elkaar zijn en gelijktijdig worden uitgevoerd. Door gebruik te maken van parallelle

verwerkingstechnieken, zoals multi-threading of gedistribueerde taakwachtrijen,

kan het systeem het resourcegebruik optimaliseren en de totale uitvoeringstijd van

workflows verminderen.

Prestatie-optimalisatie van AI-gestuurde Componenten

AI-gestuurde componenten, zoals machine learning-modellen of natuurlijke

taalverwerkingsmotoren, kunnen rekenintensief zijn en invloed hebben op de

algehele prestaties van het workfloworchestratie-systeem. Overweeg de volgende

technieken om de prestaties van AI-componenten te optimaliseren:

1. Caching: Als je AI-verwerking puur generatief is en geen realtime informatie-

opzoekingen of externe integraties vereist om chat-voltooiingen te genereren, dan

kun je caching-mechanismen onderzoeken om de resultaten van veelgebruikte of

rekenintensieve bewerkingen op te slaan en te hergebruiken.

2. Model-optimalisatie: Optimaliseer voortdurend de manier waarop je AI-

modellen gebruikt in workflowcomponenten. Dit kan technieken omvatten zoals

Prompt Distillatie of het kan simpelweg een kwestie zijn van het testen van nieuwe

modellen zodra deze beschikbaar komen.

3. Batchverwerking: Als je werkt met GPT-4-klasse modellen, kun je mogelijk gebruik

maken van batchverwerkingstechnieken om meerdere datapunten of verzoeken in één

batch te verwerken, in plaats van ze individueel te verwerken. Door gegevens in batches

te verwerken, kan het systeem het brongebruik optimaliseren en de overhead van

herhaalde modelverzoeken verminderen.

Intelligente Werkstroomorganisatie 252

Monitoren en Profileren van Prestaties

Om prestatie-knelpunten te identificeren en de schaalbaarheid van het intelligente

workfloworchestratie-systeem te optimaliseren, is het cruciaal om monitoring- en

profileringsmechanismen te implementeren. Overweeg de volgende benaderingen:

1. Prestatiemetrieken: Definieer en volg belangrijke prestatiemetrieken, zoals

responstijd, doorvoer, brongebruik en latentie. Deze metrieken geven inzicht in de

systeemprestaties en helpen gebieden voor optimalisatie te identificeren. De populaire

AI-model aggregator OpenRouter bevat Host1 en Speed2 metrieken in elke API-respons,

waardoor het eenvoudig is om deze belangrijke metrieken te volgen.

2. Profileringstools: Gebruik profileringstools om de prestaties van individuele

workflowcomponenten en AI-operaties te analyseren. Profileringstools kunnen helpen

bij het identificeren van prestatie-hotspots, inefficiënte codepaden of bronintensieve

operaties. Populaire profileringstools zijn onder andere New Relic, Scout, of ingebouwde

profilers die worden geleverd bij de programmeertaal of het framework.

3. Belastingstests: Voer belastingstests uit om de systeemprestaties onder verschillende

niveaus van gelijktijdige werklasten te evalueren. Belastingstests helpen bij het

identificeren van de schaalbaarheidslimieten van het systeem, het detecteren van

prestatieverslechtering en het waarborgen dat het systeem het verwachte verkeer kan

verwerken zonder de prestaties in gevaar te brengen.

4. ContinueMonitoring: Implementeer continuemonitoring- enwaarschuwingsmechanismen

om proactief prestatieproblemen en knelpunten te detecteren. Stel

monitoringdashboards en waarschuwingen in om belangrijke prestatie-indicatoren

(KPI’s) te volgen en meldingen te ontvangen wanneer vooraf gedefinieerde

drempels worden overschreden. Dit maakt snelle identificatie en oplossing van

prestatieproblemen mogelijk.
1Host is de tijd die nodig was om de eerste byte van de gestreamde generatie van de modelhost te

ontvangen, ook wel bekend als “time to first byte.”
2Speed wordt berekend als het aantal voltooiingstokens gedeeld door de totale generatietijd. Voor niet-

gestreamde verzoeken wordt latentie beschouwd als onderdeel van de generatietijd.

https://openrouter.ai

Intelligente Werkstroomorganisatie 253

Schalingsstrategieën

Overweeg de volgende schalingsstrategieën om toenemende werklasten te verwerken

en de schaalbaarheid van het intelligente workfloworchestratie-systeem te waarborgen:

1. Verticaal Schalen: Verticaal schalen betreft het verhogen van de resources (bijv. CPU,

geheugen) van individuele nodes of servers om hogere werklasten aan te kunnen. Deze

aanpak is geschikt wanneer het systeem meer verwerkingskracht of geheugen nodig

heeft om complexe workflows of AI-operaties uit te voeren.

2. Horizontaal Schalen: Horizontaal schalen betreft het toevoegen van meer nodes of

servers aan het systeem om de werklast te verdelen. Deze aanpak is effectief wanneer

het systeem een groot aantal gelijktijdige workflows moet verwerken of wanneer de

werklast gemakkelijk over meerdere nodes kan worden verdeeld. Horizontaal schalen

vereist een gedistribueerde architectuur en load balancing-mechanismen om een

gelijkmatige verdeling van verkeer te waarborgen.

3. Automatisch Schalen: Implementeer automatische schalingsmechanismen om het

aantal nodes of resources automatisch aan te passen op basis van de werklastvraag.

Automatisch schalen stelt het systeem in staat om dynamisch op en af te schalen

afhankelijk van het inkomende verkeer, wat zorgt voor optimaal brongebruik en

kostenefficiëntie. Cloudplatforms zoals Amazon Web Services (AWS) of Google Cloud

Platform (GCP) bieden automatische schalingsmogelijkheden die kunnen worden benut

voor intelligente workfloworchestratie-systemen.

Prestatie-optimalisatietechnieken

Naast de schalingsstrategieën, overweeg de volgende prestatie-optimalisatietechnieken

om de efficiëntie van het intelligente workfloworchestratie-systeem te verbeteren:

1. Efficiënte Gegevensopslag en -ophaling: Optimaliseer de mechanismen

voor gegevensopslag en -ophaling die door de workflowcomponenten worden

gebruikt. Gebruik efficiënte database-indexering, query-optimalisatietechnieken en

Intelligente Werkstroomorganisatie 254

gegevenscaching om de latentie te minimaliseren en de prestaties van data-intensieve

operaties te verbeteren.

2. Asynchrone I/O: Maak gebruik van asynchrone I/O-operaties om blokkering te

voorkomen en de reactiesnelheid van het systeem te verbeteren. Asynchrone I/O stelt het

systeem in staat om meerdere verzoeken gelijktijdig af te handelen zonder te wachten

op de voltooiing van I/O-operaties, waardoor de bronnen optimaal worden benut.

3. Efficiënte Serialisatie en Deserialisatie: Optimaliseer de serialisatie- en

deserialisatieprocessen die worden gebruikt voor gegevensuitwisseling tussen

werkstroomcomponenten. Gebruik efficiënte serialisatieformaten, zoals Protocol

Buffers of MessagePack, om de overhead van gegevensserialisatie te verminderen en de

prestaties van communicatie tussen componenten te verbeteren.

Overweeg voor Ruby-gebaseerde applicaties het gebruik van Universal

ID. Universal ID maakt gebruik van zowel MessagePack als Brotli (een

combinatie gebouwd voor snelheid en beste-in-zijn-klasse datacompressie).

In combinatie zijn deze bibliotheken tot 30% sneller en komen binnen 2-5%

compressieratio’s in vergelijking met Protocol Buffers.

4. Compressie en Codering: Pas compressie- en coderingstechnieken toe om de

omvang van gegevensoverdracht tussen werkstroomcomponenten te verminderen.

Compressiealgoritmen, zoals gzip of Brotli, kunnen het netwerkbandbreedtegebruik

aanzienlijk verminderen en de algehele prestaties van het systeem verbeteren.

Door rekening te houden met schaalbaarheid en prestatieaspecten tijdens het ontwerp

en de implementatie van intelligente werkstroomorganisatiesystemen, kunt u ervoor

zorgen dat uw systeem grote hoeveelheden gelijktijdige werkstromen kan verwerken,

de prestaties van AI-gestuurde componenten kan optimaliseren en naadloos kan schalen

om aan groeiende eisen te voldoen. Continue monitoring, profilering en optimalisatie-

inspanningen zijn essentieel om de prestaties en reactiesnelheid van het systeem te

behouden naarmate de werklast en complexiteit in de loop van de tijd toenemen.

https://github.com/hopsoft/universalid
https://github.com/hopsoft/universalid

Intelligente Werkstroomorganisatie 255

Testen en Validatie van Werkstromen

Testen en validatie zijn cruciale aspecten bij het ontwikkelen en onderhouden van

intelligente werkstroomorganisatiesystemen. Gezien de complexe aard van AI-

gestuurde werkstromen is het essentieel om ervoor te zorgen dat elke component

naar verwachting functioneert, de algemene werkstroom correct verloopt en de AI-

beslissingen nauwkeurig en betrouwbaar zijn. In deze sectie verkennen we verschillende

technieken en overwegingen voor het testen en valideren van intelligente werkstromen.

Unit Testen van Werkstroomcomponenten

Unit testen omvat het testen van individuele werkstroomcomponenten in isolatie om

hun correctheid en robuustheid te verifiëren. Houd bij het unit testen van AI-gestuurde

werkstroomcomponenten rekening met het volgende:

1. Invoervalidatie: Test het vermogen van de component om verschillende soorten

invoer te verwerken, inclusief geldige en ongeldige gegevens. Verifieer dat de component

randgevallen correct afhandelt en passende foutmeldingen of uitzonderingen genereert.

2. Uitvoerverificatie: Controleer of de component de verwachte uitvoer produceert

voor een gegeven set invoergegevens. Vergelijk de daadwerkelijke uitvoer met de

verwachte resultaten om correctheid te waarborgen.

3. Foutafhandeling: Test de foutafhandelingsmechanismen van de component door

verschillende foutscenario’s te simuleren, zoals ongeldige invoer, onbeschikbaarheid van

bronnen of onverwachte uitzonderingen. Verifieer dat de component fouten op de juiste

manier opvangt en afhandelt.

4. Randvoorwaarden:Test het gedrag van de component onder randvoorwaarden, zoals

lege invoer, maximale invoergrootte of extremewaarden. Zorg ervoor dat de component

deze voorwaarden correct afhandelt zonder vast te lopen of onjuiste resultaten te

produceren.

Intelligente Werkstroomorganisatie 256

Hier is een voorbeeld van een unit test voor een werkstroomcomponent in Ruby met

behulp van het RSpec testframework:

1 RSpec.describe OrderValidator do

2 describe '#validate' do

3 context 'when order is valid' do

4 let(:order) { build(:order) }

5

6 it 'returns true' do

7 expect(subject.validate(order)).to be true

8 end

9 end

10

11 context 'when order is invalid' do

12 let(:order) { build(:order, total_amount: -100) }

13

14 it 'returns false' do

15 expect(subject.validate(order)).to be false

16 end

17 end

18 end

19 end

In dit voorbeeld wordt de OrderValidator component getest met behulp van twee

testgevallen: één voor een geldige bestelling en een andere voor een ongeldige bestelling.

De testgevallen verifiëren dat de validate methode de verwachte booleaanse waarde

teruggeeft op basis van de geldigheid van de bestelling.

Integratietesten van Workflow-interacties

Integratietesten richt zich op het verifiëren van de interacties en datastromen tussen

verschillende workflowcomponenten. Het zorgt ervoor dat de componenten naadloos

samenwerken en de verwachte resultaten produceren. Bij het integratietesten van

intelligente workflows moet je rekening houden met het volgende:

1. Componentinteractie: Test de communicatie en gegevensuitwisseling tussen

Intelligente Werkstroomorganisatie 257

workflowcomponenten. Verifieer dat de output van één component correct wordt

doorgegeven als input aan de volgende component in de workflow.

2. Dataconsistentie: Zorg ervoor dat gegevens consistent en nauwkeurig blijven terwijl

ze door de workflow stromen. Verifieer dat gegevenstransformaties, berekeningen en

aggregaties correct worden uitgevoerd.

3. Exceptieverspreiding: Test hoe uitzonderingen en fouten worden verspreid en

afgehandeld tussen workflowcomponenten. Verifieer dat uitzonderingen worden

opgevangen, gelogd en op de juiste manier worden afgehandeld om verstoring van de

workflow te voorkomen.

4. Asynchroon gedrag: Als de workflow asynchrone componenten of parallelle

uitvoering bevat, test dan de coördinatie- en synchronisatiemechanismen. Zorg ervoor

dat de workflow correct functioneert in gelijktijdige en asynchrone scenario’s.

Hier is een voorbeeld van een integratietest voor een workflow in Ruby met behulp van

het RSpec testframework:

1 RSpec.describe OrderProcessingWorkflow do

2

3 let(:order) { build(:order) }

4

5 it 'processes the order successfully' do

6 expect(OrderValidator).to receive(:validate).and_return(true)

7 expect(InventoryManager).to receive(:check_availability).and_return(true)

8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)

9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)

10

11 workflow = OrderProcessingWorkflow.new(order)

12 result = workflow.process

13

14 expect(result).to be true

15 expect(order.status).to eq('processed')

16 end

17

18 end

Intelligente Werkstroomorganisatie 258

In dit voorbeeldwordt de OrderProcessingWorkflow getest door de interacties tussen

verschillende workflow-componenten te verifiëren. De testcase stelt verwachtingen op

voor het gedrag van elk component en zorgt ervoor dat de workflow de order succesvol

verwerkt, waarbij de orderstatus dienovereenkomstig wordt bijgewerkt.

Het Testen van AI-Beslispunten

Het testen van AI-beslispunten is cruciaal om de nauwkeurigheid en betrouwbaarheid

van AI-gestuurde workflows te waarborgen. Houd bij het testen van AI-beslispunten

rekening met het volgende:

1. Beslissingsnauwkeurigheid: Verifieer dat het AI-component accurate beslissingen

neemt op basis van de invoergegevens en het getrainde model. Vergelijk de AI-

beslissingen met verwachte uitkomsten of referentiegegevens.

2. Randgevallen: Test het gedrag van het AI-component in randgevallen en

ongebruikelijke scenario’s. Verifieer dat het AI-component deze gevallen correct

afhandelt en redelijke beslissingen neemt.

3. Vooringenomenheid en Eerlijkheid: Beoordeel het AI-component op mogelijke

vooroordelen en zorg ervoor dat het eerlijke en onbevooroordeelde beslissingen

neemt. Test het component met diverse invoergegevens en analyseer de uitkomsten op

discriminerende patronen.

4. Verklaarbaarheid: Als het AI-component uitleg of redenering geeft voor zijn

beslissingen, verifieer dan de juistheid en helderheid van de uitleg. Zorg ervoor dat de

uitleg overeenkomt met het onderliggende besluitvormingsproces.

Hier is een voorbeeld van het testen van een AI-beslispunt in Ruby met behulp van het

RSpec testraamwerk:

Intelligente Werkstroomorganisatie 259

1 RSpec.describe FraudDetector do

2 describe '#detect_fraud' do

3 context 'when transaction is fraudulent' do

4 let(:tx) do

5 build(:transaction, amount: 10_000, location: 'High-Risk Country')

6 end

7

8 it 'returns true' do

9 expect(subject.detect_fraud(tx)).to be true

10 end

11 end

12

13 context 'when transaction is legitimate' do

14 let(:tx) do

15 build(:transaction, amount: 100, location: 'Low-Risk Country')

16 end

17

18 it 'returns false' do

19 expect(subject.detect_fraud(tx)).to be false

20 end

21 end

22 end

23 end

In dit voorbeeld wordt de FraudDetector AI-component getest met twee testgevallen:

één voor een frauduleuze transactie en een andere voor een legitieme transactie. De

testgevallen verifiëren of de detect_fraud methode de verwachte booleaanse waarde

teruggeeft op basis van de kenmerken van de transactie.

End-to-End Testen

End-to-end testen omvat het testen van de volledige workflow van begin tot eind,

waarbij realistische scenario’s en gebruikersinteracties worden gesimuleerd. Het zorgt

ervoor dat de workflow correct functioneert en de gewenste resultaten oplevert. Bij het

uitvoeren van end-to-end testen voor intelligente workflows moet je rekening houden

met het volgende:

Intelligente Werkstroomorganisatie 260

1. Gebruiksscenario’s: Identificeer veelvoorkomende gebruiksscenario’s en test het

gedrag van de workflow in deze scenario’s. Verifieer dat de workflow correct omgaat

met gebruikersinvoer, passende beslissingen neemt en de verwachte uitvoer produceert.

2. Datavalidatie: Zorg ervoor dat de workflow gebruikersinvoer valideert en opschoont

om data-inconsistenties of beveiligingskwetsbaarheden te voorkomen. Test de workflow

met verschillende soorten invoergegevens, waaronder zowel geldige als ongeldige data.

3. Foutherstel: Test het vermogen van de workflow om te herstellen van fouten en

uitzonderingen. Simuleer foutscenario’s en verifieer dat de workflow deze correct

afhandelt, de fouten logt en passende herstelacties onderneemt.

4. Prestaties en Schaalbaarheid: Beoordeel de prestaties en schaalbaarheid van de

workflow onder verschillende belastingsomstandigheden. Test de workflow met een

groot volume aan gelijktijdige verzoeken en meet de responstijden, het resourcegebruik

en de algemene systeemstabiliteit.

Hier is een voorbeeld van een end-to-end test voor een workflow in Ruby met behulp

van het RSpec testframework en de Capybara bibliotheek voor het simuleren van

gebruikersinteracties:

1 RSpec.describe 'Order Processing Workflow' do

2 scenario 'User places an order successfully' do

3 visit '/orders/new'

4 fill_in 'Product', with: 'Sample Product'

5 fill_in 'Quantity', with: '2'

6 fill_in 'Shipping Address', with: '123 Main St'

7 click_button 'Place Order'

8

9 expect(page).to have_content('Order Placed Successfully')

10 expect(Order.count).to eq(1)

11 expect(Order.last.status).to eq('processed')

12 end

13 end

In dit voorbeeld simuleert de end-to-end test een gebruiker die een bestelling plaatst

via de webinterface. Het vult de vereiste formuliervelden in, verstuurt de bestelling

Intelligente Werkstroomorganisatie 261

en verifieert dat de bestelling succesvol wordt verwerkt, waarbij het de juiste

bevestigingsboodschap toont en de bestelstatus in de database bijwerkt.

Continue Integratie en Implementatie

Om de betrouwbaarheid en onderhoudbaarheid van intelligente workflows te

waarborgen, wordt aangeraden om testen en validatie te integreren in de continuous

integration and deployment (CI/CD) pipeline. Dit maakt geautomatiseerd testen

en valideren van workflow-wijzigingen mogelijk voordat ze in productie worden

genomen. Houd rekening met de volgende praktijken:

1. Geautomatiseerde Testuitvoering: Configureer de CI/CD-pipeline om automatisch

de testsuite uit te voeren wanneer er wijzigingen worden aangebracht in de

workflow-codebase. Dit zorgt ervoor dat eventuele regressies of fouten vroeg in

het ontwikkelingsproces worden ontdekt.

2. Testdekkingsbewaking: Meet en monitor de testdekking van de workflow-

componenten en AI-beslispunten. Streef naar een hoge testdekking om ervoor te zorgen

dat kritieke paden en scenario’s grondig worden getest.

3. Continue Feedback: Integreer testresultaten en codekwaliteitsmetrieken in de

ontwikkelworkflow. Voorzie ontwikkelaars van continue feedback over de status van

tests, codekwaliteit en eventuele problemen die tijdens het CI/CD-proces worden

gedetecteerd.

4. Stagingomgevingen: Implementeer de workflow in stagingomgevingen die de

productieomgeving zo dicht mogelijk benaderen. Voer aanvullende tests en validatie

uit in de stagingomgeving om eventuele problemen met infrastructuur, configuratie of

data-integratie op te sporen.

5. Terugrolmechanismen: Implementeer terugrolmechanismen voor het geval er

implementatiefouten of kritieke problemen in productie worden ontdekt. Zorg ervoor

Intelligente Werkstroomorganisatie 262

dat de workflow snel kan worden teruggezet naar een vorige stabiele versie om

downtime en impact op gebruikers te minimaliseren.

Door testen en validatie te integreren gedurende de hele ontwikkelingslevenscyclus

van intelligente workflows, kunnen organisaties de betrouwbaarheid, nauwkeurigheid

en onderhoudbaarheid van hun AI-gestuurde systemen waarborgen. Regelmatig testen

en valideren helpt bij het opsporen van bugs, het voorkomen van regressies en het

opbouwen van vertrouwen in het gedrag en de resultaten van de workflow.

Deel 2: De Patronen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering
Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 265

Chain of Thought

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeelden

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Content Generatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Gestructureerde Entiteitscreatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 266

LLM-Agent Begeleiding

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voordelen en Overwegingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 267

Mode Switch

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer te gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 268

Roltoewijzing

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer Te Gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeelden

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 269

Prompt Object

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 270

Promptsjabloon

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voordelen en Overwegingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer te gebruiken:

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 271

Structured IO

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Schalen van Structured IO

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voordelen en Overwegingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 272

Prompt Chaining

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer Te Gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld: Olympia’s Onboarding

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 273

Prompt Rewriter

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 274

Responsbegrenzing

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voordelen en Overwegingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Foutafhandeling

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 275

Query Analyzer

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Implementatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Part-of-Speech (POS) Tagging en Named Entity Recognition (NER)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Intentie-classificatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 276

Trefwoordextractie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voordelen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 277

Query Rewriter

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voordelen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 278

Ventriloquist

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer Te Gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten
Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten 280

Predicaat

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer te gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten 281

API-façade

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Belangrijkste voordelen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer te gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten 282

Authenticatie en Autorisatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Verwerking van Verzoeken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Opmaak van Antwoorden

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Foutafhandeling en Randgevallen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Overwegingen voor Schaalbaarheid en Prestaties

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten 283

Vergelijking met Andere Ontwerppatronen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten 284

Resultaatinterpreteerder

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer Te Gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten 285

Virtuele Machine

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer Te Gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Achter De Magie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten 286

Specificatie en Testen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Het Specificeren van het Gedrag

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Testgevallen Schrijven

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld: Het Testen van de Vertaler Component

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Afspelen van HTTP-interacties

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL)
Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Patronen op Hoog Niveau

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hybride Intelligentie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Adaptieve Respons

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Mens-AI Rolverwisseling

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL) 288

Escalatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Belangrijkste Voordelen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Praktijktoepassing: Gezondheidszorg

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL) 289

Feedbackloop

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Toepassingen en Voorbeelden

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Geavanceerde Technieken in Menselijke
Feedback-integratie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL) 290

Passieve Informatie-uitstraling

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Contextuele Informatieweergave

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Proactieve Meldingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Verklarende Inzichten

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL) 291

Interactieve Verkenning

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Belangrijke Voordelen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Toepassingen en Voorbeelden

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL) 292

Gezamenlijke Besluitvorming (CDM)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL) 293

Continue Learning

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Toepassingen en Voorbeelden

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Ethische Overwegingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL) 294

Rol van HITL bij het Beperken van AI-risico’s

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Technologische Vooruitgang en

Toekomstperspectief

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Uitdagingen en Beperkingen van HITL-systemen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Intelligente Foutafhandeling
Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Traditionele Foutafhandelingsbenaderingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Intelligente Foutafhandeling 296

Contextuele Foutdiagnose

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Prompt Engineering voor Contextuele Foutdiagnose

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Retrieval-Augmented Generation voor Contextuele Foutdiagnose

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Intelligente Foutafhandeling 297

Intelligente Foutrapportage

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Intelligente Foutafhandeling 298

Voorspellende Foutpreventie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Slim Foutherstel

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Intelligente Foutafhandeling 299

Gepersonaliseerde Foutcommunicatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Intelligente Foutafhandeling 300

Adaptieve Foutafhandelingsworkflow

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Kwaliteitscontrole
Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Kwaliteitscontrole 302

Eval

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Probleem

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Oplossing

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Kwaliteitscontrole 303

Overwegingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Begrip van Gouden Referenties

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Referentievrije Evaluaties Werken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Kwaliteitscontrole 304

Veiligheidsrail

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Probleem

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Oplossing

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Kwaliteitscontrole 305

Overwegingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Guardrails en Evals: Twee Kanten van Dezelfde

Medaille

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

De Uitwisselbaarheid van Guardrails en Referentievrije
Evals

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Implementatie van Dual-Purpose Guardrails en Evals

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Begrippenlijst

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Begrippenlijst

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

A

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

B

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

307

C

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

D

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

E

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

F

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

G

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

308

H

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

I

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

J

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

K

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

L

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

309

M

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

N

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

O

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

P

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Q

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

310

R

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

S

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

T

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

U

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

V

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

311

W

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Z

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Index

aaneenschakeling van AI-workers, 112

account, 92

ACID-eigenschappen, 110

adaptive UI, 209

adaptive workflow

Adaptieve Workflowcompositie, 227

Agentische, 32

AI, 65, 74, 100, 129, 135, 144, 151, 203, 211

applicaties, 139, 163

beslispunten, 258

conversationeel, 31, 213

conversationele, 6

model, 90, 99, 100, 156, 157, 159, 211

samengestelde systemen, 30, 31, 34

toepassingen, 126, 150

Alpaca, 13

Altman, Sam, 17

Amazon Web Services, 253

Anthropic, 23, 39, 74, 130, 137

anthropomorphism, 69

APIs, 72, 124, 154

applicatieontwerp en frameworks, 199

applicatieontwikkeling, 222

arrays, 131

asynchrone verwerking, 250

auditing en compliance, 248

auditlogboekregistratie, 107

augmented reality-brillen, 219

Auto Continuation, 161

auto-regressieve modellering, 43

auto-scaling, 253

basismodellen, 54

batch processing, 251

bedrijfsregels, 223

belangrijke metrics bijhouden, 245

belangrijke patronen, 225

BERT, 14, 24

beslisbomen, 223

beslispunten, 246

besluitvorming

stoepassingen, 134

Brotli, 254

bruikbaarheidsproblemen, 217

Byte Pair Encoding (BPE), 13, 14

C (Programmeertaal), 117

caching, 251

Capybara bibliotheek, 260

Chain of Thought (CoT), 45, 139

chatbottoepassing, 120

ChatGPT, 30, 53

circuitonderbreker-logica, 163

Index 313

classificatie, 53

classification, 121

Claude, 8, 43, 77, 78

Claude 3, 49, 127, 130, 135, 137

Claude 3 Opus, 75

Claude v1, 17

Claude v2, 17

Cohere (LLM Provider), 23, 25

collaborative filtering, 92

command line

Command-Line Interface (CLI), 25

complexe taken, 147

conceptuele en praktische uitdagingen, 200

consistentie

en reproduceerbaarheid, 133

content

Contentcategorisering, 113

filtering, 26

content-based filtering, 92

context

Augmentation, 46

contextuele besluitvorming, 226

Contextuele Contentgeneratie, 188,

192–194, 200, 201

Contextuele Veldsuggesties, 202

oneindig lange invoer, 16

venster, 15

window, 226

Continue Risicobewaking, 104

Continuous Integration and Deployment

(CI/CD), 261

pipeline, 261

conversatie

lus, 158

conversation

loop, 160

transcript, 158, 160

creatief schrijven, 34, 52

crossmodale generatie, 22

Customer Sentiment Analysis, 100

customization, 27

data

analyse, 34

Datavalidatie, 260

Gegevensophaling, 110

Gegevenssynchronisatie, 110

privacy, 27

stroom, 111

verwerkingstaken, 126

databases, 124

-ondersteund object, 106

vergrendelingsstrategieën, 110

Databricks-medewerkers, 52

Datadog, 249

debuggen

en probleemoplossing, 248

en testen, 133

debugging, 226

decision

-making capabilities, 100

desktopcomputers, 219

deterministic behavior, 58

dictionaries, 131

Index 314

digitaal landschap, 195

distillatieproces, 76

document clustering, 121

Dohan, et al., 43

door gebruikers gegenereerde content, 112

doorvoer, 27

Dynamische Gereedschapsselectie, 132

Dynamische Taakroutering, 225

dynamische UI-generatie, 189

e-commerce, 193, 223

E-commerce Applications, 92

ecosysteem, 149

edge cases, 58

educatieve toepassingen, 32

efficiëntie, 224

ELK stack, 111

emotionele toon, 146

end-to-end testen, 259

end-to-end testing, 260

ensembles, 118, 119

ensemble van workers, 119

enterprise applicatie architectuur, 38

Enterprise Integration Patterns, 105

errors

Intelligente Foutafhandeling, 144

ethiek

implicaties, 200

exceptieafhandeling, 230

experimenteren

framework, 195

externe diensten of API’s, 127

F#, 93

Facebook, 24

feedback

Feedbackloop, 59

few-shot

learning, 62

prompting, 63

finalize method, 159, 160

finalize-methode, 157

fine-tuning, 80

FitAI, 212

flexibiliteit en creativiteit, 197

fouten

afhandeling, 108, 111, 143, 255

herstel, 260

percentages, 111

fraudedetectie

systeem, 98

functie

aanroep mislukking, 134

aanroepen, 158

aanroepgeschiedenis, 157

namen, 155

function

calling, 124

functional programming, 93

gebeurtenisgestuurde architectuur, 109

gebruik van tools, 124

gebruikerservaring, 195

Gebruikersinterface (UI)

frameworks, 215

Index 315

interfaces, 199, 215

ontwerp, 219

technologieën, 210

gebruikerspsychologie, 216

gebruikerstests en feedback, 198

gebruikersvertrouwen, 218

gedetailleerde logging, 249

gedistribueerde architectuur, 250

Geforceerde Gereedschapsselectie, 132

gegevens

analyse, 148

integriteit, 241

persistentie, 110

privacy, 217

verwerkingspijplijn, 241

voorbereiding, 110

gelijktijdige werkstromen, 254

Gemma 7B, 11

Generatieve UI (GenUI), 199, 210, 215, 219

Generative Pre-trained Transformer (GPT),

8, 67

Generative UI (GenUI), 206, 207

gereedschapsaanroep, 154

gereedschapsgebruik, 150

gesloten en open vraagbeantwoording, 52

gestructureerde data, 135

gestructureerde logging, 249

GitLab, 93

Global Interpreter Lock (GIL), 116

Google, 23

API, 63, 65

Cloud AI Platform, 24

Cloud Platform, 253

Gemini, 21

Gemini 1.5 Pro, 14, 17, 18

PaLM (Pathways Language Model),

17, 24

T5, 14

GPT-3, 13, 17

GPT-4, 6, 13, 17, 21, 31, 43, 49, 63, 105, 118,

121, 128, 134, 205, 251

grafische modellen, 43

Graham, Paul, 19

grammaticaregels, 4

GraphQL, 109

Groot Taalmodel (GTM), 29, 145, 233

Groot Taalmodel (LLM), 72, 76, 78, 111, 135,

205, 210

Groot taalmodel (LLM), 165, 168

Groq, 26, 121

Grote Taalmodel (LLM), 199

Grote Taalmodellen (LLM), 188

gzip, 254

handmatige interventie, 229

hardware, 28

hash, 153

herhalingspenalties, 51

hertrypogingsmechanismen, 111

het pad vernauwen, 39

high-performance completion, 26

historische patronen, 226

Hohpe, Gregor, 105

Honeybadger, 95

Index 316

HTTP, 151

Human-In-The-Loop (HITL), 180

hyperparameter, 46

inclusieve interfaces, 200

Inferentie, 5

informatica, 71, 73

informatie

extractie, 53

ophaling, 7, 127

input

prompts, 56

instructie-fijnafstemming, 10

instruction tuning

instructie-afgestemde modellen, 49, 52

integratie van LLMs, 189

integratietesten, 256

intelligent workflow orchestration, 252

Intelligente Content Moderator, 234

intelligente werkstroomorganisatie, 222,

254

intelligente workflow-orchestratie, 230

internationalisering, 196

invoer

validatie, 255

invoerparameters, 129

iteratieve verfijning, 76, 145

JSON (JavaScript Object Notation), 127,

131, 132, 135, 149, 168

K-means, 123

kennisbanken, 7

kennisbeheer, 32

klantenondersteuning, 32

klantenservice chatbots, 33

Klinische Beslissingsondersteuning, 104

knelpunten, 227

Kwantisatie, 28

Kwik (element), 44

language

models, 42, 66

Large Language Model (LLM), 1, 3, 16, 18,

67, 69, 88, 121, 124, 125, 141, 145,

148

landscape, 27

Latent Dirichlet Allocation, 123

latente ruimte, 40, 42

latentie, 27

lineaire algebra, 43

lineaire regressie, 43

Llama, 13

Llama 2-70B, 50

Llama 3 70B, 11

Llama 3 8B, 11

logbehoud en -rotatie, 249

lokale ontwikkelomgevingen, 156

Louvre, 42

Managed Streaming for Apache Kafka, 41

Markdown, 148

markup-stijl tags, 71

medische ontdekkingen, 101

meerderheidsstemming, 118

meerstaps werkstroom, 112

Index 317

Memorial Sloan Kettering Cancer Center,

41

Mercurius (planeet), 44

Mercurius (Romeinse god), 44

MessagePack, 254

Meta, 24

Metropolitan Museum of Art, 42

Microservices architectuur, 90

Mistral, 25

7B, 11

7B Instruct, 17, 205

Mixtral

8x22B, 11

8x7B, 56

moderne applicaties, 224

modulariteit, 89

monitoring

en logging, 111, 248

en waarschuwingen, 228

metrieken, 249

motivatiestrategieën, 214

Multi-Agent

Probleemoplossers, 31

Multimodaal

modellen, 20

taalmodellen, 21

Multitude of Workers, 120

Naive Bayes, 122

narrow the path, 38

natural language

Natural Language Processing (NLP),

121

natuurlijke taal

Natuurlijke Taalverwerking (NTV),

102

netwerkconnectiviteit, 228

neurale netwerken, 4, 6

New Relic, 252

Ollama, 25

Olympia, 33, 63, 129, 144, 152, 168

Olympia’s knowledge base, 92

One-Shot Learning, 61

ongesuperviseerd leren, 4

online retailers, 206

ontwikkelingsframeworks, 150

op retrieval gebaseerde modellen, 7

open source model hosting providers, 206

OpenAI, 3, 22, 39, 74

OpenRouter, 27, 28, 152, 252

OPT model, 24

optimistische vergrendeling, 110

parafraseren, 53

parallelle uitvoering, 251

parameter

bereik, 11

effecten, 129

Parameteraantal, 28

patroonherkenning, 153

performance

problems, 252

Perplexity (Aanbieder), 12

personalisatie, 189, 219, 224

Index 318

Gepersonaliseerde Formulieren, 201

personalization

Personalized Microcopy, 207

personalized product recommendations, 92

pessimistische vergrendeling, 110

planning van noodhulp, 33

Presence Penalty, 48

prestatie

-optimalisatie, 133

compromissen, 5

optimalisatie, 248

prestaties

optimalisatie, 197

principe van minimale rechten, 72

probabilistische modellen, 43

Procesmanager, 105, 108

Process Manager

Enterprise Integration, 230

Product Recommendations, 92

Productiviteit, 191

progressive disclosure, 208

prompts

design, 58, 68

engineering, 40, 45, 46, 56, 59, 65, 67,

216

ketening, 59, 72

Prompt Distillatie, 251

Prompt Distillation, 46

Prompt Object, 74

Prompt Template, 59, 206

Promptdistillatie, 73, 78

refinement, 68

Protocol Buffers, 254

publiceer-abonneer systemen, 109

PyTorch, 24

Qwen2 70B, 11

Rails, 196

Railway Oriented Programming (ROP), 95

Raix, 231

bibliotheek, 98

randvoorwaarden, 255

rankers, 35

Response Fencing, 177, 206

Resultaatinterpreter, 143

Retrieval Augmented Generation (RAG),

31, 38, 46, 80, 126

risicofactoren, 96, 97

Risicostratificatie, 103

roleplay-stijl interacties, 6

rollback mechanisms, 261

RSpec, 256, 257, 260

Ruby, 93, 94, 114, 164, 260

Ruby on Rails, 1, 112, 230, 238

Rudall, Alex, 23

Rust (Programmeertaal), 117

Rust (Programming Language), 93

samenvatting, 52

schaalbaarheid, 224, 250

Scout, 252

segmentatie- en targetingstrategieën, 195

sentimentanalyse, 16, 101, 113–115, 118,

119, 135, 146

Index 319

server-sent events (SSE), 151

smartphones, 219

softwarearchitectuur, 2

spraakgestuurde interfaces, 33

SQL-injecties, 71

staging environments, 261

stateless, 158

stream handlers, 152

stream processing, 157

logic, 159

streaminggegevens, 153

streamverwerking, 151, 163

Stripe, 130

Structured IO, 206

supply chain

optimalisatie, 33

Support Vector Machines (SVM), 122

Symptoombeoordeeling en Stratificatie, 102

syntaxisfouten, 132

synthetische datageneratie, 53

systeemrichtlijn, 129

system directive, 99

T5, 24

taal

gerelateerde taken, 5

modellen, 73

Taaldetectie, 112

tablets, 219

Tekstopschoning, 112

Temperatuur, 54

terugvalmethoden, 111

theory of mind, 40

tickettoewijzing, 241

Tijd tot Eerste Token (TTET), 28

toegankelijkheid, 218, 219

Together.ai, 26

tokenisatie, 12

tokens, 6, 12

Top-k sampling, 48

Top-p (nucleus) sampling, 48

topic identification, 121

tragedy of the commons, 192

trainingsgegevens, 42

transformerarchitectuur, 6

triggebericht, 105

uitvoerverificatie, 255

uitzonderingsafhandeling, 227

Unicode-codeerbare taal, 15

Universal ID, 254

Veelheid aan Workers, 167

Ventriloquist, 177

verhaalopbouw, 19

verkeersbeheer, 33

verklaarbaarheid, 258

vertaling, 16, 197

verwerkingstijd, 111

Verzameling van Medische

Voorgeschiedenis, 102

Verzekeringverificatie, 102

virtuele assistenten, 33

visuele interface, 210

vooringenomenheid

Index 320

en eerlijkheid in AI, 258

voorspellingen, 5

vraag-antwoordsystemen, 7

Wall, Larry, 3

Wisper, 95, 107, 152, 159

Wooley, Chad, 93

XML, 135

Yi-34B, 50

Zelf-herstellende Data, 245

Zelfherstellende Data, 165

zero-shot learning, 59, 60

	Inhoudsopgave
	Voorwoord door Gregor Hohpe
	Voorwoord
	Over het Boek
	Over de Codevoorbeelden
	Wat Ik Niet Behandel
	Voor Wie Dit Boek Is
	Een Gemeenschappelijke Woordenschat Opbouwen
	Betrokken Raken
	Dankwoord
	Wat is er met de illustraties?
	Over Lean Publishing
	Over de auteur

	Introductie
	Gedachten over Softwarearchitectuur
	Wat is een Large Language Model?
	Inferentie Begrijpen
	Nadenken over Prestaties
	Experimenteren met Verschillende GTM-modellen
	Samengestelde AI-systemen

	Deel 1: Fundamentele Benaderingen & Technieken
	Het Pad Vernauwen
	Latente Ruimte: Onbegrijpelijk Uitgestrekt
	Hoe Het Pad ``Versmald'' Wordt
	Onbewerkte versus Instructie-afgestemde Modellen
	Prompt Engineering
	Promptdistillatie
	Hoe zit het met fine-tuning?

	Retrieval Augmented Generation (RAG)
	Wat is Retrieval Augmented Generation?
	Hoe werkt RAG?
	Waarom RAG gebruiken in je applicaties?
	RAG Implementeren in Je Toepassing
	Propositie-chunking
	Praktijkvoorbeelden van RAG
	Intelligent Query Optimization (IQO)
	Herordening
	RAG Assessment (RAGAs)
	Uitdagingen en Toekomstperspectief

	Veelheid aan Werkers
	AI-Werkers Als Onafhankelijke Herbruikbare Componenten
	Accountbeheer
	E-commerce Toepassingen
	Toepassingen in de Gezondheidszorg
	AI Worker als Procesmanager
	AI-Workers Integreren in Uw Applicatiearchitectuur
	Samenstelbaarheid en Orchestratie van AI-Workers
	Het Combineren van Traditionele NLP met LLMs

	Gebruik van Tools
	Wat is Gebruik van Tools?
	De Potentie van Tool Gebruik
	Het Tool Gebruik Werkproces
	Best Practices voor Gereedschapsgebruik
	Samenstellen en Aaneenschakelen van Gereedschappen
	Toekomstige Ontwikkelingen

	Streamverwerking
	Implementatie van een ReplyStream
	De ``Conversatielus''
	Automatische Voortzetting
	Conclusie

	Zelfherstellende Data
	Praktijkvoorbeeld: Het Repareren van Beschadigde JSON
	Overwegingen en Contra-indicaties

	Contextuele Contentgeneratie
	Personalisatie
	Productiviteit
	Snelle Iteratie en Experimentatie
	AI-Aangedreven Lokalisatie
	Het Belang van Gebruikerstests en Feedback

	Generatieve UI
	Het Genereren van Kopij voor Gebruikersinterfaces
	Definitie van Generatieve UI
	Voorbeeld
	De Verschuiving naar Resultaatgericht Ontwerp
	Uitdagingen en Overwegingen
	Toekomstperspectief en Kansen

	Intelligente Werkstroomorganisatie
	Zakelijke Behoefte
	Belangrijkste Voordelen
	Belangrijke Patronen
	Uitzonderingsafhandeling en Herstel
	Implementatie van Intelligente Workflow-orchestratie in de Praktijk
	Monitoring en Logging
	Schaalbaarheid en Prestatieoverwegingen
	Testen en Validatie van Werkstromen

	Deel 2: De Patronen
	Prompt Engineering
	Chain of Thought
	Mode Switch
	Roltoewijzing
	Prompt Object
	Promptsjabloon
	Structured IO
	Prompt Chaining
	Prompt Rewriter
	Responsbegrenzing
	Query Analyzer
	Query Rewriter
	Ventriloquist

	Discrete Componenten
	Predicaat
	API-façade
	Resultaatinterpreteerder
	Virtuele Machine
	Specificatie en Testen

	Human In The Loop (HITL)
	Patronen op Hoog Niveau
	Escalatie
	Feedbackloop
	Passieve Informatie-uitstraling
	Gezamenlijke Besluitvorming (CDM)
	Continue Learning
	Ethische Overwegingen
	Technologische Vooruitgang en Toekomstperspectief

	Intelligente Foutafhandeling
	Traditionele Foutafhandelingsbenaderingen
	Contextuele Foutdiagnose
	Intelligente Foutrapportage
	Voorspellende Foutpreventie
	Slim Foutherstel
	Gepersonaliseerde Foutcommunicatie
	Adaptieve Foutafhandelingsworkflow

	Kwaliteitscontrole
	Eval
	Veiligheidsrail
	Guardrails en Evals: Twee Kanten van Dezelfde Medaille

	Begrippenlijst
	Begrippenlijst
	Index

