Patterns of
Application
Development
Using Al

Obie Fernandez
Foreword by Gregor Hohpe

- A5
TN Ga ol iz,
S e S Ao o o
) b 3
\\\ 4 ‘
\ N
. pr .
Y <
e
@ S N .
1 R //-:\\f'\

Ne‘ raﬂndseAEditie

Patronen voor Applicatieontwikkeling
met Al (Nederlandse Editie)

Obie Fernandez

Dit boek is te koop bij

http://leanpub.com/patterns-of-application-development-using-ai-nl

Deze versie is gepubliceerd op 2025-01-23

A

Leanpub

Dit is een Leanpub boek. Leanpub stelt auteurs en uitgevers in staat om volgens het
Lean uitgeefproces te werken. Lean Publishing is het uitgeven van een boek dat nog
onderhanden is met lichtgewicht gereedschap en vele iteraties om feedback te krijgen
van de lezers. Op deze manier kun je aanpassingen maken tot je het juiste boek hebt,

en als je zover bent helpt het om te zorgen dat je een positie krijgt in de markt.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-nl
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweet over dit boek!

Gelieve Obie Fernandez te helpen door reclame te maken over het boek Twitter!
De voorgestelde hashtag voor dit boek is #poaduai.

Lees wat andere mensen over het boek zeggen door op deze link te klikken en op

Twitter naar deze hashtag te zoeken:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Voor mijn geweldige koningin, mijn muze, mijn licht en liefde, Victoria

Ook door Obie Fernandez

Patterns of Application Development Using Al
The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Inhoudsopgave

Voorwoord door Gregor Hohpe i
Voorwoord ii
OverhetBoek iii
Over de Codevoorbeelden iii
Wat Ik Niet Behandel iii
Voor Wie Dit BoekIs iii
Een Gemeenschappelijke Woordenschat Opbouwen iii
BetrokkenRaken iv
Dankwoord iv
Wat is er met de illustraties?, iv
Over Lean Publishing iv
Overdeauteur i e \4
Introductie 1
Gedachten over Softwarearchitectuur 2
Wat is een Large Language Model? 3
Inferentie Begrijpen 5
Nadenken over Prestaties 27
Experimenteren met Verschillende GTM-modellen 29

Samengestelde Al-systemen Lo 30

INHOUDSOPGAVE

Deel 1: Fundamentele Benaderingen &

Technieken 38
HetPad Vernauwen 39
Latente Ruimte: Onbegrijpelijk Uitgestrekt 41
Hoe Het Pad “Versmald”Wordt 45
Onbewerkte versus Instructie-afgestemde Modellen 49
Prompt Engineering L 56
Promptdistillatie 73
Hoe zit het met fine-tuning? 79
Retrieval Augmented Generation (RAG) 81
Wat is Retrieval Augmented Generation? 81
Hoewerkt RAG? 81
Waarom RAG gebruiken in je applicaties? 81
RAG Implementeren in Je Toepassing 81
Propositie-chunking oL L 82
Praktijkvoorbeelden van RAG Lo oL 83
Intelligent Query Optimization IQO) 83
Herordening 83
RAG Assessment (RAGAS) 0 i 83
Uitdagingen en Toekomstperspectief 85
Veelheid aan Werkers 88
Al-Werkers Als Onafhankelijke Herbruikbare Componenten 89
Accountbeheer L L 91
E-commerce Toepassingen 92
Toepassingen in de Gezondheidszorg 101
Al Worker als Procesmanager. 104

Al-Workers Integreren in Uw Applicatiearchitectuur. 108

INHOUDSOPGAVE

Samenstelbaarheid en Orchestratie van AI-Workers 111
Het Combineren van Traditionele NLPmet LLMs 121
GebruikvanTools 124
Wat is Gebruik van Tools? 124
De Potentie van Tool Gebruik 126
Het Tool Gebruik Werkproces 127
Best Practices voor Gereedschapsgebruik 142
Samenstellen en Aaneenschakelen van Gereedschappen 147
Toekomstige Ontwikkelingen 149
Streamverwerking L 151
Implementatie van een ReplyStream 152
De “Conversatielus” 158
Automatische Voortzetting Lo oo 161
Conclusie L 163
Zelfherstellende Data L ... 165
Praktijkvoorbeeld: Het Repareren van Beschadigde JSON 167
Overwegingen en Contra-indicaties 173
Contextuele Contentgeneratie 188
Personalisatie 189
Productiviteit 191
Snelle Iteratie en Experimentatie, 193
Al-Aangedreven Lokalisatie 196
Het Belang van Gebruikerstests en Feedback 198
Generatieve UL 199
Het Genereren van Kopij voor Gebruikersinterfaces 201

Definitie van Generatieve UL 210

INHOUDSOPGAVE

Voorbeeld 212
De Verschuiving naar Resultaatgericht Ontwerp 215
Uitdagingen en Overwegingen 216
Toekomstperspectiefen Kansen 218
Intelligente Werkstroomorganisatie 222
Zakelijke Behoefte 223
Belangrijkste Voordelen L L 224
Belangrijke Patroneno L 224
Uitzonderingsafhandeling en Herstel 227
Implementatie van Intelligente Workflow-orchestratie in de Praktijk 230
Monitoring en Logging L Lo 245
Schaalbaarheid en Prestatieoverwegingen 250
Testen en Validatie van Werkstromen 254
Deel 2: De Patronen 263
Prompt Engineering oo oo 264
Chainof Thought 265
Mode Switch 267
Roltoewijzing 268
Prompt Object 269
Promptsjabloon 270
Structured IO 271
Prompt Chaining 272
Prompt Rewriter 273
Responsbegrenzing 274
Query Analyzer 275
Query Rewriter. L 277

Ventriloquist L 278

INHOUDSOPGAVE

Discrete Componenten L Lo 279
Predicaat 280
API-facade 281
Resultaatinterpreteerder L L L oL 284
Virtuele Machine 285
Specificatieen Testen 285

Human In The Loop (HITL) 287
Patronen op Hoog Niveau 287
Escalatie 288
Feedbackloop 289
Passieve Informatie-uitstraling oL 290
Gezamenlijke Besluitvorming (CDM) 292
Continue Learning 293
Ethische Overwegingen 293
Technologische Vooruitgang en Toekomstperspectief. 294

Intelligente Foutafthandeling 295
Traditionele Foutathandelingsbenaderingen 295
Contextuele Foutdiagnose 296
Intelligente Foutrapportage 297
Voorspellende Foutpreventie 298
Slim Foutherstel 298
Gepersonaliseerde Foutcommunicatie 299
Adaptieve Foutathandelingsworkflow 300

Kwaliteitscontrole L L 301
Eval e 302
Veiligheidsrail 304

Guardrails en Evals: Twee Kanten van Dezelfde Medaille 305

Begrippenlijst.

Begrippenlijst.

Voorwoord door Gregor Hohpe

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Voorwoord

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Voorwoord iii

Over het Boek

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Over de Codevoorbeelden

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wat Ik Niet Behandel

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voor Wie Dit Boek Is

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-
ai-nl.

Een Gemeenschappelijke Woordenschat

Opbouwen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Voorwoord iv

ai-nl.

Betrokken Raken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Dankwoord

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wat is er met de illustraties?

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Over Lean Publishing

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Voorwoord v

Over de auteur

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Introductie

Als je staat te popelen om Al Large Language Models (LLMs) in je

programmeerprojecten te integreren, kun je direct naar de patronen en codevoorbeelden
in de latere hoofdstukken gaan. Om de kracht en potentie van deze patronen echter
volledig te kunnen waarderen, is het de moeite waard om even stil te staan bij de

bredere context en de samenhangende aanpak die ze vertegenwoordigen.

De patronen zijn niet slechts een verzameling losse technieken, maar vormen een
uniform raamwerk voor het integreren van Al in je applicaties. Ik gebruik Ruby on
Rails, maar deze patronen zouden in vrijwel elke andere programmeeromgeving moeten
werken. Ze behandelen een breed scala aan aandachtspunten, van gegevensbeheer en
prestatie-optimalisatie tot gebruikerservaring en beveiliging, en bieden daarmee een
uitgebreide toolkit voor het verbeteren van traditionele programmeerpraktijken met de

mogelijkheden van Al

Introductie 2

Elke categorie patronen pakt een specifieke uitdaging of kans aan die ontstaat bij het
integreren van Al-componenten in je applicatie. Door de relaties en synergién tussen
deze patronen te begrijpen, kun je weloverwogen beslissingen nemen over waar en hoe

je Al het meest effectief kunt toepassen.

Patronen zijn nooit voorschrijvende oplossingen en moeten ook niet als zodanig worden
behandeld. Ze zijn bedoeld als aanpasbare bouwstenen die moeten worden afgestemd
op de unieke vereisten en beperkingen van je eigen specifieke applicatie. De succesvolle
toepassing van deze patronen (zoals alle andere in het softwarevakgebied) is athankelijk
van een diepgaand begrip van het probleemdomein, gebruikersbehoeften en de algehele

technische architectuur van je project.

Gedachten over Softwarearchitectuur

Ik ben begonnen met programmeren in de jaren 80 en was betrokken bij de hackerscene,
en heb mijn hackersmentaliteit nooit verloren, zelfs niet nadat ik een professionele
softwareontwikkelaar werd. Vanaf het begin had ik altijd een gezonde scepsis over wat

softwarearchitecten in hun ivoren torens daadwerkelijk bijdroegen.

Een van de redenen waarom ik persoonlijk zo enthousiast ben over de veranderingen
die deze krachtige nieuwe golf van Al-technologie teweegbrengt, is de impact ervan
op wat we beschouwen als softwarearchitectuur beslissingen. Het daagt traditionele
opvattingen uit over wat de “juiste” manier is om onze softwareprojecten te ontwerpen
en implementeren. Het stelt ook ter discussie of architectuur nog steeds primair kan
worden gezien als de onderdelen van een systeem die moeilijk te veranderen zijn,
aangezien Al-verbetering het makkelijker dan ooit maakt om elk onderdeel van je

project op elk moment te wijzigen.

Misschien bevinden we ons in de piekjaren van de “postmoderne” benadering van
software-engineering. In deze context verwijst postmodern naar een fundamentele

verschuiving weg van traditionele paradigma’s, waarbij ontwikkelaars verantwoordelijk

Introductie 3

waren voor het schrijven en onderhouden van elke regel code. In plaats daarvan
omarmt het het idee om taken, zoals gegevensmanipulatie, complexe algoritmen en
zelfs hele delen van applicatielogica, te delegeren aan externe bibliotheken en API’s.
Deze postmoderne verschuiving vertegenwoordigt een significante afwijking van de
conventionele wijsheid om applicaties vanaf de basis op te bouwen, en het daagt

ontwikkelaars uit om hun rol in het ontwikkelingsproces te heroverwegen.

Ik heb altijd geloofd dat goede programmeurs alleen de code schrijven die absoluut
noodzakelijk is om te schrijven, gebaseerd op de leerstellingen van Larry Wall en andere
hackerluminaries zoals hij. Door de hoeveelheid geschreven code te minimaliseren,
kunnen we sneller werken, het oppervlak voor bugs verkleinen, onderhoud
vereenvoudigen en de algehele betrouwbaarheid van hun applicaties verbeteren.
Minder code stelt ons in staat om ons te concentreren op de kernbedrijfslogica en

gebruikerservaring, terwijl ander werk wordt gedelegeerd aan andere diensten.

Nu Al-aangedreven systemen taken kunnen afhandelen die voorheen exclusief het
domein waren van door mensen geschreven code, zouden we nog productiever en
wendbaarder moeten kunnen zijn, met meer dan ooit tevoren focus op het creéren van

bedrijfswaarde en gebruikerservaring.

Natuurlijk zijn er afwegingen bij het delegeren van grote delen van je project aan
Al-systemen, zoals het potentiéle verlies van controle en de behoefte aan robuuste
monitoring- en feedbackmechanismen. Daarom vereist het een nieuwe set vaardigheden

en kennis, waaronder op zijn minst enig fundamenteel begrip van hoe AI werkt.

Wat is een Large Language Model?

Large Language Models (LLMs) zijn een type kunstmatige intelligentie model dat sinds
de lancering van GPT-3 door OpenAl in 2020 aanzienlijke aandacht heeft gekregen.
LLMs zijn ontworpen om menselijke taal te verwerken, begrijpen en genereren met

opmerkelijke nauwkeurigheid en vloeiendheid. In deze sectie werpen we een korte blik

Introductie 4

op hoe LLMs werken en waarom ze zo geschikt zijn voor het bouwen van intelligente

systeemcomponenten.

In hun kern zijn LLMs gebaseerd op deep learning algoritmen, specifiek neurale
netwerken. Deze netwerken bestaan uit onderling verbonden knooppunten, of
neuronen, die informatie verwerken en doorgeven. De architectuur die vaak wordt
gekozen voor LLMs is het Transformer-model, dat zeer effectief is gebleken in het

verwerken van sequentiéle data zoals tekst.

Transformermodellen zijn gebaseerd op het aandachtsmechanisme en worden
voornamelijk gebruikt voor taken met sequentiéle data, zoals natuurlijke
taalverwerking. Transformers verwerken invoergegevens in één keer in plaats van
sequentieel, waardoor ze langetermijnafhankelijkheden effectiever kunnen vastleggen.
Ze hebben lagen van aandachtsmechanismen die het model helpen zich te concentreren

op verschillende delen van de invoergegevens om context en relaties te begrijpen.

Het trainingsproces voor LLMs bestaat uit het blootstellen van het model aan enorme
hoeveelheden tekstuele data, zoals boeken, artikelen, websites en code-repositories.
Tijdens de training leert het model patronen, relaties en structuren binnen de
tekst te herkennen. Het legt de statistische eigenschappen van de taal vast, zoals

grammaticaregels, woordassociaties en contextuele betekenissen.

Een van de belangrijkste technieken die worden gebruikt bij het trainen van LLMs is
ongesuperviseerd leren. Dit betekent dat het model leert van de data zonder expliciete
labels of begeleiding. Het ontdekt zelfstandig patronen en representaties door het
analyseren van het samen voorkomen van woorden en zinsdelen in de trainingsdata.

Dit stelt LLMs in staat om een diep begrip van taal en haar complexiteit te ontwikkelen.

Een ander belangrijk aspect van LLMs is hun vermogen om context te verwerken. Bij
het verwerken van een tekst kijken LLMs niet alleen naar de individuele woorden, maar
ook naar de omringende context. Ze houden rekening met de voorgaande woorden,
zinnen en zelfs paragrafen om de betekenis en intentie van de tekst te begrijpen. Dit

contextuele begrip stelt LLMs in staat om samenhangende en relevante antwoorden

Introductie 5

te genereren. Een van de belangrijkste manieren waarop we de capaciteiten van een
bepaald LLM-model evalueren, is door te kijken naar de grootte van de context die ze

kunnen overwegen bij het genereren van antwoorden.

Eenmaal getraind kunnen LLMs worden gebruikt voor een breed scala aan
taalgerelateerde taken. Ze kunnen mensachtige tekst genereren, vragen beantwoorden,
documenten samenvatten, talen vertalen en zelfs code schrijven. De veelzijdigheid van
LLMs maakt ze waardevol voor het bouwen van intelligente systeemcomponenten die
kunnen interacteren met gebruikers, tekstgegevens kunnen verwerken en analyseren,

en betekenisvolle output kunnen genereren.

Door LLMs in de applicatiearchitectuur te integreren, kun je Al-componenten creéren
die gebruikersinvoer begrijpen en verwerken, dynamische content genereren en
intelligente aanbevelingen of acties kunnen doen. Maar het werken met LLMs vereist
zorgvuldige overweging van resourcevereisten en prestatiecompromissen. LLMs zijn
rekenintensief en kunnen aanzienlijke verwerkingskracht en geheugen (met andere
woorden, geld) nodig hebben om te functioneren. De meesten van ons zullen de
kostenimplicaties van het integreren van LLMs in onze applicaties moeten beoordelen

en dienovereenkomstig handelen.

Inferentie Begrijpen

Inferentie verwijst naar het proces waarbij een model voorspellingen of output genereert
op basis van nieuwe, niet eerder geziene data. Het is de fase waarin het getrainde model
wordt gebruikt om beslissingen te nemen of tekst, afbeeldingen of andere content te

genereren als reactie op gebruikersinvoer.

Tijdens de trainingsfase leert een Al-model van een grote dataset door zijn parameters
aan te passen om de fout in zijn voorspellingen te minimaliseren. Eenmaal getraind kan
het model wat het heeft geleerd toepassen op nieuwe data. Inferentie is hoe het model

zijn geleerde patronen en kennis gebruikt om output te genereren.

Introductie 6

Voor LLMs houdt inferentie in dat een prompt of invoertekst wordt omgezet in een
coherent en contextueel relevant antwoord, als een stroom van tokens (waar we het
binnenkort over zullen hebben). Dit kan het beantwoorden van een vraag zijn, het
afmaken van een zin, het genereren van een verhaal, of het vertalen van tekst, onder

vele andere taken.

In tegenstelling tot de manier waarop jij en ik denken, gebeurt het “denken”
P van een Al-model via inferentie allemaal in één statusloze operatie. Dat wil
zeggen, zijn denken is beperkt tot zijn generatieproces. Het moet letterlijk
hardop denken, alsof ik je een vraag stelde en alleen een antwoord van je

accepteerde in “stream of consciousness”-stijl.

Grote Taalmodellen Komen in Vele Maten en Smaken

Hoewel vrijwel alle populaire grote taalmodellen (LLMs) gebaseerd zijn op dezelfde
kern-transformerarchitectuur en getraind zijn op enorme tekstdatasets, komen ze in
verschillende groottes en zijn ze fijnafgestemd voor verschillende doeleinden. De grootte
van een LLM, gemeten in het aantal parameters in zijn neuraal netwerk, heeft een grote
invloed op zijn mogelijkheden. Grotere modellen met meer parameters, zoals GPT-4,
waarvan wordt gezegd dat het 1 tot 2 biljoen parameters heeft, zijn over het algemeen
meer kundig en bekwaam dan kleinere modellen. Grotere modellen hebben echter ook
veel meer rekenkracht nodig om te draaien, wat zich vertaalt in hogere kosten wanneer

je ze via API-aanroepen gebruikt.

Om LLMs praktischer en meer toegespitst te maken op specifieke gebruikssituaties,
worden de basismodellen vaak fijnafgestemd op meer gerichte datasets. Zo kan een
LLM worden getraind op een groot corpus van dialogen om het te specialiseren
voor conversatie-Al. Andere worden getraind op code om ze te voorzien van
programmeerkennis. Er zijn zelfs modellen die speciaal getraind zijn voor roleplay-stijl

interacties met gebruikers!

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Introductie 7

Retrieval vs Generatieve Modellen

In de wereld van grote taalmodellen (LLMs) zijn er twee hoofdbenaderingen voor het
genereren van responses: op retrieval gebaseerde modellen en generatieve modellen.
Elke benadering heeft zijn eigen sterke en zwakke punten, en het begrijpen van de
verschillen tussen beide kan je helpen het juiste model te kiezen voor jouw specifieke

gebruikssituatie.

Op Retrieval Gebaseerde Modellen

Op retrieval gebaseerde modellen, ook bekend als informatie-ophalingsmodellen,
genereren antwoorden door te zoeken in een grote database van bestaande tekst en
de meest relevante passages te selecteren op basis van de invoerquery. Deze modellen
genereren geen nieuwe tekst vanaf nul, maar voegen in plaats daarvan fragmenten uit

de database samen om een samenhangend antwoord te vormen.

Een van de belangrijkste voordelen van op retrieval gebaseerde modellen is hun
vermogen om feitelijk accurate en actuele informatie te verstrekken. Omdat ze
vertrouwen op een database met gecureerde tekst, kunnen ze relevante informatie
uit betrouwbare bronnen halen en deze aan de gebruiker presenteren. Dit maakt ze
bijzonder geschikt voor toepassingen die precieze, feitelijke antwoorden vereisen, zoals

vraag-antwoordsystemen of kennisbanken.

Deze op retrieval gebaseerde modellen hebben echter ook beperkingen. Ze zijn
slechts zo goed als de database waarin ze zoeken, dus de kwaliteit en dekking van de
database hebben directe invloed op de prestaties van het model. Daarnaast kunnen
deze modellen moeite hebben met het genereren van samenhangende en natuurlijk
klinkende antwoorden, omdat ze beperkt zijn tot de tekst die beschikbaar is in de

database.

We behandelen het gebruik van pure retrievalmodellen niet in dit boek.

Introductie 8

Generatieve Modellen

Generatieve modellen daarentegen creéren nieuwe tekst vanaf nul, gebaseerd op de
patronen en relaties die ze tijdens de training hebben geleerd. Deze modellen gebruiken
hun begrip van taal om nieuwe antwoorden te genereren die zijn toegespitst op de

invoerprompt.

De belangrijkste kracht van generatieve modellen is hun vermogen om creatieve,
samenhangende en contextueel relevante tekst te produceren. Ze kunnen open
gesprekken voeren, verhalen genereren en zelfs code schrijven. Dit maakt ze ideaal
voor toepassingen die meer open en dynamische interacties vereisen, zoals chatbots,

contentcreatie en hulpmiddelen voor creatief schrijven.

Generatieve modellen kunnen echter soms inconsistente of feitelijk onjuiste informatie
produceren, omdat ze vertrouwen op de patronen die tijdens de training zijn geleerd
in plaats van een gecureerde database met feiten. Ze kunnen ook gevoeliger zijn voor
vooroordelen en hallucinaties, waarbij ze tekst genereren die aannemelijk lijkt maar niet

noodzakelijk waar is.

Voorbeelden van generatieve LLMs zijn OpenAl’'s GPT-serie (GPT-3, GPT-4) en
Anthropic’s Claude.

Hybride Modellen

Verschillende commercieel beschikbare LLMs combineren zowel retrieval als
generatieve benaderingen in een hybride model. Deze modellen gebruiken
retrievaltechnieken om relevante informatie uit een database te vinden en gebruiken
vervolgens generatieve technieken om die informatie te synthetiseren tot een

samenhangend antwoord.

Hybride modellen streven ernaar de feitelijke nauwkeurigheid van op retrieval

gebaseerde modellen te combineren met de natuurlijke taalgeneratiecapaciteiten van

Introductie 9

generatieve modellen. Ze kunnen betrouwbaardere en actuelere informatie verstrekken

terwijl ze nog steeds in staat zijn om open gesprekken te voeren.

Bij het kiezen tussen op retrieval gebaseerde en generatieve modellen moet je rekening
houden met de specifieke vereisten van je toepassing. Als het hoofddoel is om accurate,
feitelijke informatie te verstrekken, kan een op retrieval gebaseerd model de beste
keuze zijn. Als de toepassing meer open en creatieve interacties vereist, kan een
generatief model geschikter zijn. Hybride modellen bieden een evenwicht tussen de twee
benaderingen en kunnen een goede keuze zijn voor toepassingen die zowel feitelijke

nauwkeurigheid als natuurlijke taalgeneratie vereisen.

Uiteindelijk hangt de keuze tussen op retrieval gebaseerde en generatieve modellen af
van de specifieke gebruikssituatie en de afwegingen tussen nauwkeurigheid, creativiteit
en flexibiliteit. Door de sterke punten en beperkingen van elke benadering te begrijpen,

kun je weloverwogen beslissingen nemen.

Introductie

Instructie-fijnafstemming

Instructie-fijnafstemming is een onderdeel van conversationele training dat gebruik
maakt van door mensen geschreven prompts en antwoorden om LLMs beter te maken
in het begrijpen en opvolgen van instructies. Hier zijn enkele eenvoudige voorbeelden
om te illustreren hoe instructie-fijnafstemming op door mensen geschreven prompts

en antwoorden LLMs beter maakt in het begrijpen en opvolgen van instructies:

Voorbeeld 1: Klantenondersteuning

Instructie: “Geef een antwoord aan een klant die om een terugbetaling vraagt.”

Door Mensen Geschreven Prompt: “Ik wil graag een terugbetaling aanvragen voor

mijn recente aankoop. Het product voldeed niet aan mijn verwachtingen.”

Door Mensen Geschreven Antwoord: “Het spijt me te horen dat het product niet aan
uw verwachtingen voldeed. Om uw terugbetaling te verwerken, geef dan alstublieft
uw ordernummer en de reden voor retournering door. We zullen uw verzoek bekijken

en binnen 2-3 werkdagen contact met u opnemen.”

Voorbeeld 2: Educatieve Ondersteuning

Instructie: “Leg het concept van fotosynthese uit aan een 10-jarige.”
Door mensen geschreven prompt: “Kun je uitleggen hoe planten hun voedsel maken?”

Door mensen geschreven antwoord: “Natuurlijk! Planten maken hun voedsel door
een proces dat fotosynthese heet. Ze gebruiken zonlicht, water en koolstofdioxide om
voedsel en zuurstof te maken. De bladeren van de plant hebben een speciaal onderdeel

dat chlorofyl heet, dat hen helpt zonlicht op te vangen.”

Voorbeeld 3: Persoonlijke Assistent

10

Introductie 11

Instructie: “Plan een vergadering voor volgende dinsdag om 15:00 uur.

Door mensen geschreven prompt: “Kun je een vergadering inplannen voor dinsdag

om 15:00 uur?”

Door mensen geschreven antwoord: “Natuurlijk, ik heb een vergadering voor je
ingepland voor volgende dinsdag om 15:00 uur. Is er nog iets anders wat je nodig

hebt?”

Het resultaat is een divers ecosysteem van LLM’s in verschillende groottes en met
verschillende specialiteiten. Kleinere modellen in het bereik van 1-7 miljard parameters

bieden goede algemene taalvaardigheden terwijl ze efficiénter zijn in gebruik.

« Mistral 7B
« Llama 3 8B

« Gemma 7B

Middelgrote modellen van ongeveer 30-70 miljard parameters bieden sterkere

redenerings- en instructievolgende vaardigheden.

« Llama 3 70B
* Qwen2 70B
« Mixtral 8x22B

Bij het kiezen van een LLM om in een applicatie te integreren, moet je de mogelijkheden
van het model afwegen tegen praktische factoren zoals kosten, latentie, contextlengte
en inhoudsfiltering. Kleinere, op instructies afgestemde modellen zijn vaak de beste
keuze voor eenvoudigere taaltaken, terwijl de grootste modellen nodig kunnen zijn voor
complexe redenering of analyse. De trainingsdata van het model is ook een belangrijke

overweging, aangezien deze de kennisatkapdatum van het model bepaalt.

Introductie 12

Bepaalde modellen, zoals sommige van Perplexity, zijn verbonden met
realtime informatiebronnen, zodat ze effectief geen afkapdatum hebben.
Wanneer je hen vragen stelt, kunnen ze zelfstandig beslissen om
webzoekopdrachten uit te voeren en willekeurige webpagina’s op te halen

om een antwoord te genereren.

Bl Who won the America vs GDL match last night?
.L-. 3 70B Instruct (nitro) (2

I'm not aware of any information about a match between "America" and "GDL" last night. Could
you please provide more context or clarify which teams or leagues you are referring to? I'l do = ©
my best to help you find the answer.

~281.1 tokens/s

.L-..-.' 70B Online 2
Club América won the match against Guadalajara last night, with a score of 1-0. £

~31.0 tokens/s

Figuur 1. Llama3 met en zonder online toegang

Uiteindelijk is er geen één-size-fits-all LLM. Inzicht in de variaties in modelgrootte,
architectuur en training is essentieel voor het selecteren van het juiste model voor een
specifieke toepassing. Experimenteren met verschillende modellen is de enige praktische

manier om te ontdekken welke de beste prestaties leveren voor de taak in kwestie.

Tokenisatie: Tekst in stukken verdelen

Voordat een groot taalmodel tekst kan verwerken, moet die tekst worden opgedeeld in
kleinere eenheden die tokens worden genoemd. Tokens kunnen individuele woorden,
delen van woorden of zelfs enkele tekens zijn. Het proces van het opsplitsen van tekst in
tokens wordt tokenisatie genoemd, en het is een cruciale stap in het voorbereiden van

data voor een taalmodel.

Introductie 13

The process of splitting text into tokens is known as tokenization, and
it’s a crucial step in preparing data for a language model.

Figuur 2. Deze zin bevat 27 tokens

Verschillende LLM’s gebruiken verschillende tokenisatiestrategieén, die een significante
impact kunnen hebben op de prestaties en mogelijkheden van het model. Enkele

veelgebruikte tokenizers voor LLM’s zijn:

« GPT (Byte Pair Encoding): GPT-tokenizers gebruiken een techniek die byte pair
encoding (BPE) wordt genoemd om tekst op te delen in subwoordeenheden. BPE
voegt iteratief de meest voorkomende paren bytes in een tekstcorpus samen,
waardoor een vocabulaire van subwoordtokens ontstaat. Dit stelt de tokenizer in
staat om zeldzame en nieuwe woorden te verwerken door ze op te delen in meer
voorkomende subwoorddelen. GPT-tokenizers worden gebruikt door modellen

zoals GPT-3 en GPT-4.

« Llama (SentencePiece): Llama-tokenizers gebruiken de SentencePiece-
bibliotheek, een ongesuperviseerde teksttokenizer en detokenizer. SentencePiece
behandelt de invoertekst als een reeks Unicode-tekens en leert een
deelwoordvocabulaire op basis van een trainingscorpus. Het kan elke taal
verwerken die in Unicode kan worden gecodeerd, waardoor het zeer geschikt
is voor meertalige modellen. Llama-tokenizers worden gebruikt door modellen

zoals Meta’s Llama en Alpaca.

« SentencePiece (Unigram): SentencePiece-tokenizers kunnen ook gebruik
maken van een ander algoritme genaamd Unigram, dat gebaseerd is
op een deelwoordregularisatietechniek. Unigram-tokenization bepaalt de
optimale deelwoordvocabulaire op basis van een unigram-taalmodel, dat
waarschijnlijkheden toekent aan individuele deelwoordeenheden. Deze aanpak

kan semantisch betekenisvollere deelwoorden produceren in vergelijking met

Introductie 14

BPE. SentencePiece met Unigram wordt gebruikt door modellen zoals Google’s

T5 en BERT.

+ Google Gemini (Multimodale Tokenization): Google Gemini gebruikt een
tokenizatieschema dat is ontworpen om verschillende soorten gegevens te
verwerken, waaronder tekst, afbeeldingen, audio, video’s en code. Deze
multimodale capaciteit stelt Gemini in staat om verschillende vormen van
informatie te verwerken en te integreren. Met name Google Gemini 1.5 Pro heeft
een contextvenster dat miljoenen tokens kan verwerken, veel meer dan eerdere
modellen. Dit uitgebreide contextvenster stelt het model in staat om een grotere
context te verwerken, wat mogelijk tot nauwkeurigere antwoorden leidt. Het is
echter belangrijk op te merken dat Gemini’s tokenizatieschema veel dichter bij
één token per teken ligt dan andere modellen. Dit betekent dat de werkelijke
kosten van het gebruik van Gemini-modellen aanzienlijk hoger kunnen zijn dan
verwacht als je gewend bent aan het gebruik van modellen zoals GPT, aangezien

Google’s prijzen gebaseerd zijn op tekens in plaats van tokens.
De keuze van tokenizer beinvloedt verschillende aspecten van een LLM, waaronder:

« Vocabulairegrootte: De tokenizer bepaalt de grootte van het vocabulaire van het
model, wat de verzameling unieke tokens is die het herkent. Een groter, meer
verfijnd vocabulaire kan het model helpen om een breder scala aan woorden en
zinnen te verwerken en zelfs multimodaal te worden (in staat om meer dan alleen
tekst te begrijpen en te genereren), maar het verhoogt ook de geheugenvereisten
en computationele complexiteit van het model.

« Omgang met zeldzame en onbekende woorden: Tokenizers die
deelwoordeenheden gebruiken, zoals BPE en SentencePiece, kunnen zeldzame
en onbekende woorden opsplitsen in meer voorkomende deelwoorden. Dit stelt
het model in staat om beredeneerde schattingen te maken over de betekenis
van woorden die het nog niet eerder heeft gezien, gebaseerd op de deelwoorden

waaruit ze bestaan.

Introductie 15

« Meertalige ondersteuning: Tokenizers zoals SentencePiece, die elke in Unicode
codeerbare taal kunnen verwerken, zijn zeer geschikt voor meertalige modellen

die tekst in verschillende talen moeten verwerken.

Bij het kiezen van een LLM voor een specifieke toepassing is het belangrijk om rekening
te houden met de gebruikte tokenizer en hoe goed deze aansluit bij de specifieke
taalverwerkingsbehoeften van de taak. De tokenizer kan een significante impact hebben
op het vermogen van het model om domeinspecifieke terminologie, zeldzame woorden

en meertalige tekst te verwerken.

Contextgrootte: Hoeveel Informatie Kan een Taalmodel
Gebruiken Tijdens Inferentie?

Bij het bespreken van taalmodellen verwijst contextgrootte naar de hoeveelheid tekst die
een model kan overwegen bij het verwerken of genereren van zijn antwoorden. Het is in
essentie een maat voor hoeveel informatie het model kan “onthouden” en gebruiken om
zijn output te informeren (uitgedrukt in tokens). De contextgrootte van een taalmodel
kan een significante impact hebben op zijn mogelijkheden en de soorten taken die het

effectief kan uitvoeren.

Wat is Contextgrootte?

In technische termen wordt de contextgrootte bepaald door het aantal tokens (woorden
of woorddelen) dat een taalmodel in één invoerreeks kan verwerken. Dit wordt vaak
aangeduid als de “aandachtsspanne” of het “contextvenster” van het model. Hoe groter
de contextgrootte, hoe meer tekst het model tegelijkertijd kan overwegen bij het

genereren van een antwoord of het uitvoeren van een taak.

Verschillende taalmodellen hebben uiteenlopende contextgroottes, variérend van enkele
honderden tokens tot miljoenen tokens. Ter referentie: een typische alinea tekst bevat
ongeveer 100-150 tokens, terwijl een heel boek tienduizenden of honderdduizenden

tokens kan bevatten.

Introductie 16

Er wordt zelfs gewerkt aan efficiénte methoden om Transformer-gebaseerde Large
Language Models (LLMs) te schalen naar oneindig lange invoer met begrensde

geheugen- en rekencapaciteit.

Waarom is Contextgrootte Belangrijk?

De contextgrootte van een taalmodel heeft een significante invloed op het vermogen
om coherente, contextueel relevante tekst te begrijpen en te genereren. Hier zijn enkele

belangrijke redenen waarom contextgrootte ertoe doet:

1. Begrip van langere content: Modellen met grotere contextgroottes
kunnen langere teksten, zoals artikelen, rapporten of zelfs complete
boeken, beter begrijpen en analyseren. Dit is cruciaal voor taken zoals

documentsamenvattingen, het beantwoorden van vragen en inhoudsanalyse.

2. Behoud van coherentie: Een groter contextvenster stelt het model in staat
om coherentie en consistentie te behouden over langere stukken output. Dit is
belangrijk voor taken zoals het genereren van verhalen, dialoogsystemen en het
creéren van content, waarbij het behouden van een consistente verhaallijn of
onderwerp essentieel is. Het is ook absoluut cruciaal bij het gebruik van LLMs
voor het genereren of transformeren van gestructureerde data.

3. Vastleggen van langeafstandsafhankelijkheden: Sommige taaltaken vereisen
begrip van relaties tussen woorden of zinsdelen die ver uit elkaar staan in
een tekst. Modellen met grotere contextgroottes zijn beter uitgerust om deze
langeafstandsathankelijkheden vast te leggen, wat belangrijk kan zijn voor taken
zoals sentimentanalyse, vertaling, en taalbegrip.

4. Omgaan met complexe instructies: Bij toepassingen waar taalmodellen

worden gebruikt om complexe, meerstaps instructies te volgen, zorgt een grotere

https://huggingface.co/papers/2404.07143

Introductie 17

contextgrootte ervoor dat het model de volledige set instructies kan overwegen bij

het genereren van een antwoord, in plaats van alleen de meest recente woorden.

Voorbeelden van Taalmodellen met Verschillende Contextgroottes

Hier zijn enkele voorbeelden van taalmodellen met verschillende contextgroottes:

« OpenAl GPT-3.5 Turbo: 4.095 tokens
« Mistral 7B Instruct: 32.768 tokens

« Anthropic Claude v1: 100.000 tokens
« OpenAl GPT-4 Turbo: 128.000 tokens
« Anthropic Claude v2: 200.000 tokens
« Google Gemini Pro 1.5: 2,8M tokens

Zoals je kunt zien, is er een breed scala aan contextgroottes onder deze modellen, van
ongeveer 4.000 tokens voor het OpenAl GPT-3.5 Turbo model tot 200.000 tokens voor het
Anthropic Claude v2 model. Sommige modellen, zoals Google’s PaLM 2 en OpenATl’s
GPT-4, bieden verschillende varianten met grotere contextgroottes (bijvoorbeeld “32k”
versies), die nog langere inputreeksen kunnen verwerken. En op dit moment (april 2024)

pocht Google Gemini Pro met bijna 3 miljoen tokens!

Het is belangrijk op te merken dat de contextgrootte kan variéren afhankelijk van de
specifieke implementatie en versie van een bepaald model. Zo heeft het originele OpenAl
GPT-4 model een contextgrootte van 8.191 tokens, terwijl de latere GPT-4 varianten zoals

Turbo en 40 een veel grotere contextgrootte van 128.000 tokens hebben.

Sam Altman heeft de huidige contextbeperkingen vergeleken met de kilobytes aan

werkgeheugen waarmee personal computer programmeurs in de jaren 80 moesten

Introductie 18

werken, en zei dat we in de nabije toekomst “al je persoonlijke data” in de context

van een groot taalmodel zullen kunnen plaatsen.

De Juiste Contextgrootte Kiezen

Bij het selecteren van een taalmodel voor een specifieke toepassing is het belangrijk om
rekening te houden met de contextgrootte-vereisten van de betreffende taak. Voor taken
die korte, geisoleerde tekstfragmenten betreffen, zoals sentimentanalyse of eenvoudige
vraagbeantwoording, kan een kleinere contextgrootte voldoende zijn. Voor taken die
echter begrip en generatie van langere, complexere teksten vereisen, zal een grotere

contextgrootte waarschijnlijk noodzakelijk zijn.

Het is belangrijk op te merken dat grotere contextgroottes vaak gepaard gaan met hogere
rekenkosten en langzamere verwerkingstijden, omdat het model meer informatie moet
overwegen bij het genereren van een antwoord. Daarom moet je een balans vinden

tussen contextgrootte en prestaties bij het kiezen van een taalmodel voor je toepassing.

Waarom kiezen we niet gewoon het model met de grootste contextgrootte en
stoppen we er zoveel mogelijk informatie in? Nou, naast prestatiefactoren is de
andere belangrijke overweging de kosten. In maart 2024 kost een enkele prompt-
responscyclus met Google Gemini Pro 1.5 met een volledige context je bijna $8 (USD).
Als je een use case hebt die deze kosten rechtvaardigt, ga je gang! Maar voor de meeste

toepassingen is het gewoonweg orders van grootte te duur.

Introductie 19

Naalden Zoeken in Hooibergen

Het concept van een naald in een hooiberg zoeken is al lang een metafoor voor de
uitdagingen van informatiewinning in grote datasets. Op het gebied van LLMs passen
we deze analogie een beetje aan. Stel je voor dat we niet alleen op zoek zijn naar één feit
dat verborgen ligt in een uitgebreide tekst (zoals een volledige verzameling essays van
Paul Graham), maar naar meerdere feiten die overal verspreid liggen. Dit scenario lijkt
meer op het zoeken naar verschillende naalden in een uitgestrekt veld, niet slechts één
hooiberg. En hier komt het: we moeten deze naalden niet alleen vinden, maar ze ook tot

een samenhangend geheel weven.

Wanneer LLMs de taak krijgen om meerdere feiten op te halen en daarover te redeneren
binnen lange contexten, staan ze voor een dubbele uitdaging. Ten eerste is er het voor
de hand liggende probleem van nauwkeurigheid bij het ophalen - die daalt natuurlijk
naarmate het aantal feiten toeneemt. Dit is te verwachten; immers, het bijhouden van

meerdere details in een uitgebreide tekst belast zelfs de meest geavanceerde modellen.

Ten tweede, en misschien wel belangrijker, is de uitdaging om met deze feiten te
redeneren. Het is één ding om feiten te selecteren; het is iets heel anders om ze
te synthetiseren tot een samenhangend verhaal of antwoord. Hier komt de echte
test. De prestaties van LLMs bij redeneertaken nemen sterker af dan bij eenvoudige
ophaalactiviteiten. Deze verslechtering gaat niet alleen over volume; het gaat om de

ingewikkelde dans van context, relevantie en gevolgtrekking.

Waarom gebeurt dit? Welnu, kijk naar de dynamiek van geheugen en aandacht in
menselijke cognitie, die tot op zekere hoogte wordt weerspiegeld in LLMs. Bij het
verwerken van grote hoeveelheden informatie kunnen LLMs, net als mensen, eerdere
details kwijtraken terwijl ze nieuwe opnemen. Dit geldt vooral voor modellen die niet
expliciet zijn ontworpen om automatisch prioriteit te geven aan of terug te keren naar

eerdere tekstsegmenten.

Bovendien is het vermogen van een LLM om deze opgehaalde feiten tot een

samenhangend antwoord te weven vergelijkbaar met verhaalopbouw. Dit vereist niet

Introductie 20

alleen het ophalen van informatie, maar ook een diep begrip en contextuele plaatsing,

wat een grote uitdaging blijft voor de huidige AL

Dus, wat betekent dit voor ons als ontwikkelaars en integreerders van deze
technologieén? We moeten ons scherp bewust zijn van deze beperkingen bij het
ontwerpen van systemen die vertrouwen op LLMs voor complexe, langdurige taken.
Het begrip dat prestaties onder bepaalde omstandigheden kunnen verslechteren,
helpt ons realistische verwachtingen te stellen en betere terugvalmechanismen of

aanvullende strategieén te ontwikkelen.

Modaliteiten: Voorbij Tekst

Hoewel de meerderheid van de taalmodellen vandaag de dag gericht is op het verwerken
en genereren van tekst, is er een groeiende trend naar multimodale modellen die van
nature meerdere soorten gegevens kunnen invoeren en uitvoeren, zoals afbeeldingen,
audio en video. Deze multimodale modellen openen nieuwe mogelijkheden voor Al-
gestuurde toepassingen die inhoud over verschillende modaliteiten kunnen begrijpen

€n genereren.

Wat zijn Modaliteiten?

In de context van taalmodellen verwijzen modaliteiten naar de verschillende soorten
gegevens die een model kan verwerken en genereren. De meest voorkomende modaliteit
is tekst, waaronder geschreven taal in verschillende vormen zoals boeken, artikelen,
websites en sociale media berichten. Er zijn echter verschillende andere modaliteiten

die in toenemende mate worden opgenomen in taalmodellen:

« Afbeeldingen: Visuele gegevens zoals foto’s, illustraties en diagrammen.
« Audio: Geluidsgegevens zoals spraak, muziek en omgevingsgeluiden.
« Video: Bewegende visuele gegevens, vaak vergezeld van audio, zoals videoclips

en films.

Introductie 21

Elke modaliteit brengt unieke uitdagingen en kansen met zich mee voor taalmodellen.
Afbeeldingen vereisen bijvoorbeeld dat het model visuele concepten en relaties begrijpt,

terwijl audio vereist dat het model spraak en andere geluiden verwerkt en genereert.

Multimodale Taalmodellen

Multimodale taalmodellen zijn ontworpen om meerdere modaliteiten binnen één model
te verwerken. Deze modellen hebben meestal gespecialiseerde componenten of lagen die
zowel invoer kunnen begrijpen als uitvoergegevens kunnen genereren in verschillende

modaliteiten. Enkele opmerkelijke voorbeelden van multimodale taalmodellen zijn:

« OpenAl’'s GPT-40: GPT-40 is een groot taalmodel dat van nature spraak-audio
naast tekst begrijpt en verwerkt. Deze mogelijkheid stelt GPT-40 in staat om taken
uit te voeren zoals het transcriberen van gesproken taal, het genereren van tekst
uit audio-invoer en het geven van antwoorden op basis van gesproken vragen.

« OpenAl's GPT-4 met visuele invoer: GPT-4 is een groot taalmodel dat zowel
tekst als afbeeldingen kan verwerken. Wanneer een afbeelding als invoer wordt
gegeven, kan GPT-4 de inhoud van de afbeelding analyseren en tekst genereren
die de visuele informatie beschrijft of daarop reageert.

+ Google’s Gemini: Gemini is een multimodaal model dat tekst, afbeeldingen en
video kan verwerken. Het gebruikt een uniforme architectuur die cross-modale
begrip en generatie mogelijk maakt, waardoor taken zoals beeldonderschriften

genereren, video samenvatten en visuele vraagbeantwoording mogelijk worden.

« DALL-E en Stable Diffusion: Hoewel dit geen taalmodellen in de traditionele
zin zijn, demonstreren deze modellen de kracht van multimodale AI door
afbeeldingen te genereren uit tekstuele beschrijvingen. Ze tonen het potentieel

van modellen die kunnen vertalen tussen verschillende modaliteiten.

Introductie 22

Voordelen en Toepassingen van Multimodale Modellen

Multimodale taalmodellen bieden verschillende voordelen en maken een breed scala aan

toepassingen mogelijk, waaronder:

« Verbeterd begrip: Door informatie uit meerdere modaliteiten te verwerken,
kunnen deze modellen een uitgebreider begrip van de wereld krijgen,
vergelijkbaar met hoe mensen leren van verschillende zintuiglijke inputs.

« Crossmodale generatie: Multimodale modellen kunnen inhoud in één modaliteit
genereren op basis van input uit een andere modaliteit, zoals het creéren van een
afbeelding uit een tekstbeschrijving of het genereren van een videosamenvatting
uit een geschreven artikel.

« Toegankelijkheid: Multimodale modellen kunnen informatie toegankelijker
maken door te vertalen tussen modaliteiten, zoals het genereren van
tekstbeschrijvingen van afbeeldingen voor visueel beperkte gebruikers of
het maken van audioversies van geschreven content.

« Creatieve toepassingen: Multimodale modellen kunnen worden gebruikt
voor creatieve taken zoals het genereren van kunst, muziek of video’s op basis
van tekstuele prompts, wat nieuwe mogelijkheden opent voor kunstenaars en

contentmakers.

Naarmate multimodale taalmodellen zich blijven ontwikkelen, zullen ze waarschijnlijk
een steeds belangrijkere rol spelen in de ontwikkeling van Al-gestuurde toepassingen
die inhoud over meerdere modaliteiten kunnen begrijpen en genereren. Dit zal leiden
tot natuurlijkere en intuitievere interacties tussen mensen en Al-systemen, en nieuwe

mogelijkheden ontsluiten voor creatieve expressie en kennisverspreiding.

Provider-ecosystemen

Als het gaat om het integreren van grote taalmodellen (LLMs) in applicaties, is er

een groeiend aantal opties om uit te kiezen. Elke grote LLM-provider, zoals OpenAl,

Introductie 23

Anthropic, Google en Cohere, biedt zijn eigen ecosysteem van modellen, APT’s en
tools. Bij het kiezen van de juiste provider moet rekening worden gehouden met
verschillende factoren, waaronder prijzen, prestaties, inhoudsfiltering, gegevensprivacy

en aanpassingsmogelijkheden.

OpenAl

OpenAl is een van de meest bekende providers van LLMs, waarbij de GPT-serie
(GPT-3, GPT-4) breed wordt toegepast in verschillende applicaties. OpenAl biedt
een gebruiksvriendelijke API waarmee je hun modellen eenvoudig kunt integreren
in applicaties. Ze bieden een reeks modellen met verschillende mogelijkheden en

prijspunten, van het instapmodel Ada tot het krachtige Davinci-model.

Het ecosysteem van OpenAl omvat ook tools zoals de OpenAl Playground, waarmee
je kunt experimenteren met prompts en modellen kunt fijnafstemmen voor specifieke
gebruikssituaties. Ze bieden inhoudsfilteringsopties om de generatie van ongepaste of

schadelijke inhoud te voorkomen.

Bij het direct gebruiken van OpenAI’s modellen vertrouw ik op Alex Rudall’s ruby-
openai bibliotheek.

Anthropic

Anthropic is een andere belangrijke speler in de LLM-ruimte, waarbij hun Claude-
modellen aan populariteit winnen vanwege sterke prestaties en ethische overwegingen.
Anthropic richt zich op het ontwikkelen van veilige en verantwoorde Al-systemen, met

sterke nadruk op inhoudsfiltering en het vermijden van schadelijke outputs.

Het ecosysteem van Anthropic omvat de Claude API, waarmee je het model kunt
integreren in hun applicaties, evenals tools voor promptengineering en fijnafstemming.
Ze bieden ook het Claude Instant-model, dat websearchmogelijkheden integreert voor

meer actuele en feitelijke antwoorden.

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/ruby-openai

Introductie 24

Bij het direct gebruiken van Anthropic’s modellen vertrouw ik op Alex Rudall’s

anthrophic bibliotheek.

Google

Google heeft verschillende krachtige LLMs ontwikkeld, waaronder Gemini, BERT, T5
en PaLM. Deze modellen staan bekend om hun sterke prestaties op een breed scala aan
natuurlijke taalverwerkingstaken. Het ecosysteem van Google omvat de TensorFlow-
en Keras-bibliotheken, die tools en frameworks bieden voor het bouwen en trainen van

machine learning-modellen.

Google biedt ook een Cloud Al-platform, waarmee je hun modellen eenvoudig kunt
implementeren en schalen in de cloud. Ze bieden een reeks voorgetrainde modellen en

APT’s voor taken zoals sentimentanalyse, entiteitsherkenning en vertaling.

Meta

Meta, voorheen bekend als Facebook, is diep geinvesteerd in de ontwikkeling van grote
taalmodellen, wat wordt benadrukt door de release van modellen zoals LLaMA en OPT.
Deze modellen onderscheiden zich door hun sterke prestaties in diverse taaltaken en
worden grotendeels beschikbaar gesteld via open-source kanalen, wat Meta’s toewijding

aan onderzoek en gemeenschapssamenwerking ondersteunt.

Het ecosysteem van Meta is voornamelijk gebouwd rond PyTorch, een open-
source machine learning-bibliotheek die wordt gewaardeerd om zijn dynamische
rekenmogelijkheden en flexibiliteit, wat innovatief Al-onderzoek en -ontwikkeling

faciliteert.

Naast hun technische aanbod legt Meta sterk de nadruk op ethische Al-ontwikkeling.
Ze implementeren robuuste inhoudsfiltering en richten zich op het verminderen
van vooroordelen, in lijn met hun bredere doelstellingen van veiligheid en

verantwoordelijkheid in Al-toepassingen.

https://github.com/alexrudall/anthropic

Introductie 25

Cohere

Cohere is een nieuwere speler in de LLM-ruimte, die zich richt op het toegankelijker en
gebruiksvriendelijker maken van LLM’s dan concurrenten. Hun ecosysteem omvat de
Cohere API, die toegang biedt tot een reeks vooraf getrainde modellen voor taken zoals

tekstgeneratie, classificatie en samenvatting.

Cohere biedt ook tools voor prompt engineering, fine-tuning en inhoudsfiltering. Ze
leggen de nadruk op gegevensprivacy en beveiliging, met functies zoals versleutelde

gegevensopslag en toegangscontrole.

Ollama

Ollama is een zelf-gehost platform waarmee gebruikers verschillende grote taalmodellen
(LLM’s) lokaal op hun machines kunnen beheren en implementeren, waardoor ze
volledige controle hebben over hun Al-modellen zonder afhankelijk te zijn van
externe clouddiensten. Deze opstelling is ideaal voor degenen die prioriteit geven aan

gegevensprivacy en hun Al-operaties intern willen athandelen.

Het platform ondersteunt een reeks modellen, waaronder versies van Llama, Phi,
Gemma en Mistral, die verschillen in grootte en rekenvereisten. Ollama maakt het
eenvoudig om deze modellen direct vanaf de opdrachtregel te downloaden en uit
te voeren met eenvoudige commando’s zoals ollama run <model_name>, en het
is ontworpen om te werken op verschillende besturingssystemen, waaronder macOS,

Linux en Windows.

Voor ontwikkelaars die open-source modellen in hun applicaties willen integreren
zonder gebruik te maken van een externe API, biedt Ollama een CLI voor het beheren
van modellevenscycli, vergelijkbaar met containerbeheertools. Het ondersteunt ook
aangepaste configuraties en prompts, waardoor een hoge mate van aanpassing mogelijk

is om de modellen af te stemmen op specifieke behoeften of gebruikssituaties.

Ollama is vooral geschikt voor technisch onderlegde gebruikers en ontwikkelaars

Introductie 26

vanwege de opdrachtregelinterface en de flexibiliteit die het biedt bij het beheren en
implementeren van Al-modellen. Dit maakt het een krachtig hulpmiddel voor bedrijven
en individuen die robuuste Al-mogelijkheden nodig hebben zonder concessies te doen

aan beveiliging en controle.

Multi-Model Platforms

Daarnaast zijn er aanbieders die een breed scala aan open-source modellen hosten, zoals
Together.ai en Groq. Deze platforms bieden flexibiliteit en aanpassingsmogelijkheden,
waardoor je open-source modellen kunt draaien en in sommige gevallen zelfs kunt
fine-tunen volgens jouw specifieke behoeften. Together.ai biedt bijvoorbeeld toegang
tot een reeks open-source LLM’s, waardoor gebruikers kunnen experimenteren
met verschillende modellen en configuraties. Groq richt zich op het leveren van
ultrahoogwaardige voltooiing die op het moment van schrijven van dit boek bijna

magisch lijkt

Een LLM Provider Kiezen

Bij het kiezen van een LLM-provider moet je rekening houden met factoren zoals:

« Prijzen: Verschillende providers bieden verschillende prijsmodellen, variérend
van betalen naar gebruik tot abonnementsgebaseerde plannen. Het is belangrijk
om rekening te houden met het verwachte gebruik en budget bij het selecteren
van een provider.

« Prestaties: De prestaties van LLM’s kunnen aanzienlijk verschillen tussen
providers, dus het is belangrijk om modellen te benchmarken en te testen op
specifieke gebruikssituaties voordat er een beslissing wordt genomen.

« Inhoudsfiltering: Afhankelijk van de toepassing kan inhoudsfiltering een cruciale
overweging zijn. Sommige providers bieden robuustere inhoudsfilteringsopties

dan andere.

Introductie 27

« Gegevensprivacy: Als de toepassing gevoelige gebruikersgegevens verwerkt, is
het belangrijk om een provider te kiezen met sterke praktijken op het gebied van
gegevensprivacy en beveiliging.

« Aanpassing: Sommige providers bieden meer flexibiliteit wat betreft fine-tuning

en het aanpassen van modellen voor specifieke gebruikssituaties.

Uiteindelijk hangt de keuze van LLM-provider af van de specifieke vereisten en
beperkingen van de toepassing. Door zorgvuldig de opties te evalueren en rekening te
houden met factoren zoals prijzen, prestaties en gegevensprivacy, kun je de provider

selecteren die het beste aan je behoeften voldoet.

Het is ook vermeldenswaardig dat het LLM-landschap constant evolueert, met
regelmatig nieuwe providers en modellen die verschijnen. Je moet op de hoogte blijven
van de laatste ontwikkelingen en openstaan voor het verkennen van nieuwe opties

wanneer deze beschikbaar komen.

OpenRouter

In dit boek zal ik uitsluitend gebruik maken van OpenRouter als mijn API-provider
van keuze. De reden is eenvoudig: het is een one-stop shop voor alle meest populaire
commerciéle en open-source modellen. Als je staat te popelen om aan de slag te gaan met
Al-programmeren, is een van de beste plekken om te beginnen mijn eigen OpenRouter

Ruby Library.

Nadenken over Prestaties

Bij het integreren van taalmodellen in applicaties is prestatie een cruciale overweging.
De prestatie van een taalmodel kan worden gemeten in termen van latentie (de tijd
die nodig is om een reactie te genereren) en doorvoer (het aantal verzoeken dat per

tijdseenheid kan worden verwerkt).

https://openrouter.ai
https://github.com/OlympiaAI/open_router
https://github.com/OlympiaAI/open_router

Introductie 28

Tijd tot Eerste Token (TTET) is nog een essentiéle prestatiemeting, die vooral
relevant is voor chatbots en applicaties die interactieve, realtime reacties vereisen.
TTET meet de latentie vanaf het moment dat het verzoek van een gebruiker wordt
ontvangen tot het moment dat het eerste woord (of token) van het antwoord wordt
gegenereerd. Deze meting is cruciaal voor het behouden van een soepele en boeiende
gebruikerservaring, aangezien vertraagde reacties kunnen leiden tot frustratie en

verminderde betrokkenheid van gebruikers.

Deze prestatiemetingen kunnen een significante impact hebben op de

gebruikerservaring en de schaalbaarheid van de applicatie.
Verschillende factoren kunnen de prestaties van een taalmodel beinvloeden, waaronder:

Parameteraantal: Grotere modellen met meer parameters hebben doorgaans meer
computationele middelen nodig en kunnen een hogere latentie en lagere doorvoer

hebben in vergelijking met kleinere modellen.

Hardware: De prestaties van een taalmodel kunnen aanzienlijk variéren afhankelijk
van de hardware waarop het draait. Cloudproviders bieden GPU- en TPU-instances
aan die geoptimaliseerd zijn voor machine learning-workloads, wat de modelinferentie

aanzienlijk kan versnellen.

P Een van de fijne dingen aan OpenRouter is dat je voor veel van de

aangeboden modellen kunt kiezen uit verschillende cloudproviders met

uiteenlopende prestatieprofielen en kosten.

Kwantisatie: = Kwantisatietechnieken = kunnen worden gebruikt om de
geheugenvoetafdruk en computationele vereisten van een model te verminderen
door gewichten en activaties met lagere precisie datatypen weer te geven. Dit kan de
prestaties verbeteren zonder significant kwaliteitsverlies. Als applicatieontwikkelaar
zul je waarschijnlijk niet betrokken zijn bij het trainen van je eigen modellen op
verschillende kwantisatieniveaus, maar het is goed om ten minste bekend te zijn met

de terminologie.

Introductie 29

Batchverwerking: Het gelijktijdig verwerken van meerdere verzoeken in batches
kan de doorvoer verbeteren door de overhead van het laden van modellen en

gegevensoverdracht te spreiden.

Caching: Het cachen van resultaten van veelgebruikte prompts of invoersequenties kan

het aantal inferentieverzoeken verminderen en de algehele prestaties verbeteren.

Bij het selecteren van een taalmodel voor een productieapplicatie is het belangrijk om
de prestaties te benchmarken op representatieve workloads en hardwareconfiguraties.
Dit kan helpen bij het identificeren van potentiéle knelpunten en zorgen dat het model

aan de vereiste prestatiedoelen kan voldoen.

Het is ook de moeite waard om de afwegingen tussen modelprestaties en andere factoren
zoals kosten, flexibiliteit en integratiegemak te overwegen. Bijvoorbeeld, het gebruik
van een kleiner, goedkoper model met lagere latentie kan de voorkeur hebben voor
applicaties die realtime reacties vereisen, terwijl een groter, krachtiger model beter

geschikt kan zijn voor batchverwerking of complexe redeneertaken.

Experimenteren met Verschillende
GTM-modellen

Het kiezen van een GTM is zelden een permanente beslissing. Aangezien er regelmatig
nieuwe en verbeterde modellen worden uitgebracht, is het goed om applicaties op
een modulaire manier te bouwen die het mogelijk maakt om in de loop van de tijd
verschillende taalmodellen uit te wisselen. Prompts en datasets kunnen vaak met
minimale aanpassingen worden hergebruikt tussen modellen. Dit stelt je in staat om
te profiteren van de nieuwste ontwikkelingen in taalmodellering zonder de applicaties

volledig te hoeven herontwerpen.

P De mogelijkheid om eenvoudig tussen een breed scala aan modelkeuzes te

wisselen is nog een reden waarom ik dol ben op OpenRouter.

Introductie 30

Bij het upgraden naar een nieuw taalmodel is het belangrijk om de prestaties en
outputkwaliteit grondig te testen en te valideren om er zeker van te zijn dat het aan de
vereisten van de applicatie voldoet. Dit kan het hertrainen of fine-tunen van het model
op domeinspecifieke data omvatten, evenals het updaten van downstream componenten

die afhankelijk zijn van de outputs van het model.

Door applicaties te ontwerpen met prestaties en modulariteit in gedachten, kun
je schaalbare, efficiénte en toekomstbestendige systemen creéren die zich kunnen

aanpassen aan het snel ontwikkelende landschap van taalmodeltechnologie.

Samengestelde Al-systemen

Voordat we onze introductie afsluiten, is het vermeldenswaardig dat voor 2023 en de
explosie van interesse in generatieve Al, aangewakkerd door ChatGPT, traditionele
Al-benaderingen meestal vertrouwden op de integratie van enkele, gesloten modellen.
Daarentegen maken Samengestelde Al-systemen gebruik van complexe pijplijnen van

onderling verbonden componenten die samenwerken om intelligent gedrag te bereiken.

In de kern bestaan samengestelde Al-systemen uit meerdere modules, elk ontworpen
om specifieke taken of functies uit te voeren. Deze modules kunnen generators,
retrievers, rankers, classificatiesystemen en verschillende andere gespecialiseerde
componenten bevatten. Door het algehele systeem op te delen in kleinere, gerichte
eenheden kunnen ontwikkelaars flexibelere, schaalbaarder en beter onderhoudbare

Al-architecturen creéren.

Een van de belangrijkste voordelen van samengestelde Al-systemen is hun
vermogen om de sterke punten van verschillende Al-technieken en modellen te
combineren. Een systeem kan bijvoorbeeld een groot taalmodel (LLM) gebruiken
voor natuurlijke taalverwerking en -generatie, terwijl het een apart model inzet voor
informatieopvraging of regelgebaseerde besluitvorming. Deze modulaire aanpak stelt je
in staat om de beste hulpmiddelen en technieken voor elke specifieke taak te selecteren,

in plaats van te vertrouwen op een one-size-fits-all oplossing.

Introductie 31

Het bouwen van samengestelde Al-systemen brengt echter ook unieke uitdagingen met
zich mee. Met name het waarborgen van de algehele samenhang en consistentie van het

systeemgedrag vereist robuuste test-, monitoring- en besturingsmechanismen.

De komst van krachtige LLM’s zoals GPT-4 stelt ons in staat gemakkelijker
P dan ooit te experimenteren met samengestelde Al-systemen, omdat
deze geavanceerde modellen in staat zijn meerdere rollen binnen een
samengesteld systeem te vervullen, zoals classificatie, rangschikking
en generatie, naast hun natuurlijke taalverwerkingscapaciteiten. Deze
veelzijdigheid stelt ontwikkelaars in staat om snel prototypes te maken
en te itereren op samengestelde Al-architecturen, waardoor nieuwe

mogelijkheden ontstaan voor de ontwikkeling van intelligente toepassingen.

Implementatiepatronen voor Samengestelde
Al-systemen

Samengestelde Al-systemen kunnen worden geimplementeerd met verschillende
patronen, elk ontworpen om aan specifieke vereisten en gebruiksscenario’s te
voldoen. Laten we vier veel voorkomende implementatiepatronen verkennen: Vraag
en Antwoord, Multi-Agent/Agentische Probleemoplossers, Conversationele Al, en

CoPilots.

Vraag en Antwoord

Vraag en Antwoord (V&A) systemen richten zich op het leveren van
informatieopvraging die wordt versterkt met de begripscapaciteiten van Al-modellen
om meer te functioneren dan alleen als zoekmachine. Door krachtige taalmodellen
te combineren met externe kennisbronnen met behulp van Retrieval-Augmented
Generation (RAG), vermijden Vraag en Antwoord systemen hallucinaties en geven ze

nauwkeurige en contextueel relevante antwoorden op gebruikersvragen.

De belangrijkste componenten van een LLM-gebaseerd V&A-systeem zijn:

Introductie 32

« Query-begrip en -herformulering: Het analyseren van gebruikersvragen en deze
herformuleren om beter aan te sluiten bij de onderliggende kennisbronnen.

+ Kennisopvraging: Het ophalen van relevante informatie uit gestructureerde of
ongestructureerde gegevensbronnen op basis van de geherformuleerde query.

- Antwoordgeneratie: Het genereren van samenhangende en informatieve
antwoorden door de opgehaalde kennis te integreren met de generatieve

mogelijkheden van het taalmodel.

RAG-subsystemen zijn vooral belangrijk in V&A-domeinen waar het verstrekken
van nauwkeurige en actuele informatie cruciaal is, zoals klantenondersteuning,

kennisbeheer, of educatieve toepassingen.

Multi-Agent/Agentische Probleemoplossers

Multi-agent, ook bekend als Agentische, systemen bestaan uit meerdere autonome
agenten die samenwerken om complexe problemen op te lossen. Elke agent heeft
een specifieke rol, set vaardigheden en toegang tot relevante hulpmiddelen of
informatiebronnen. Door samen te werken en informatie uit te wisselen, kunnen deze
agenten taken aanpakken die voor één enkele agent moeilijk of onmogelijk te hanteren

zouden zijn.

De belangrijkste principes van multi-agent probleemoplossers zijn:

« Specialisatie: Elke agent richt zich op een specifiek aspect van het probleem,
gebruikmakend van zijn unieke capaciteiten en kennis.

« Samenwerking: Agenten communiceren en coordineren hun acties om een
gemeenschappelijk doel te bereiken, vaak door middel van het doorgeven van
berichten of gedeeld geheugen.

« Aanpasbaarheid: Het systeem kan =zich aanpassen aan veranderende
omstandigheden of vereisten door de rollen en gedragingen van individuele

agenten aan te passen.

Introductie 33

Multi-agent systemen zijn zeer geschikt voor toepassingen die gedistribueerde
probleemoplossing vereisen, zoals supply chain optimalisatie, verkeersbeheer, of

planning van noodhulp.
Conversationele Al

Conversationele Al-systemen maken natuurlijke taalinteracties mogelijk tussen
gebruikers en intelligente agenten. Deze systemen combineren natuurlijke
taalverwerking, dialoogbeheer en taalgeneratiecapaciteiten om boeiende en

gepersonaliseerde gesprekservaringen te bieden.

De belangrijkste componenten van een conversationeel Al-systeem zijn:

« Intentieherkenning: Het identificeren van de intentie van de gebruiker op basis
van hun input, zoals het stellen van een vraag, het doen van een verzoek of het
uiten van een sentiment.

« Entiteitsextractie: Het extraheren van relevante entiteiten of parameters uit de
input van de gebruiker, zoals datums, locaties of productnamen.

« Dialoogbeheer: Het bijhouden van de staat van het gesprek, het bepalen van
het juiste antwoord op basis van de intentie en context van de gebruiker, en het
afhandelen van meerstaps-interacties.

« Antwoordgeneratie: Het genereren van mensachtige antwoorden met behulp

van taalmodellen, sjablonen of op opvraging gebaseerde methoden.

Conversationele Al-systemen worden veel gebruikt in klantenservice chatbots, virtuele
assistenten, en spraakgestuurde interfaces. Zoals eerder vermeld, zijn de meeste
benaderingen, patronen en codevoorbeelden in dit boek direct afkomstig uit mijn werk

aan een groot conversationeel Al-systeem genaamd Olympia.
CoPilots

CoPilots zijn Al-aangedreven assistenten die samenwerken met menselijke gebruikers

om hun productiviteit en besluitvorming te verbeteren. Deze systemen maken

https://olympia.chat

Introductie 34

gebruik van een combinatie van natuurlijke taalverwerking, machine learning en
domeinspecifieke kennis om intelligente aanbevelingen te doen, taken te automatiseren

en contextuele ondersteuning te bieden.

Belangrijke kenmerken van CoPilots zijn:

« Personalisatie: Aanpassing aan individuele gebruikersvoorkeuren, werkstromen
en communicatiestijlen.

« Proactieve assistentie: Anticiperen op gebruikersbehoeften en relevante
suggesties of acties aanbieden zonder expliciete opdrachten.

« Continue ontwikkeling: Prestatieverbetering door te leren van

gebruikersfeedback, interacties en gegevens.

CoPilots worden in toenemende mate gebruikt in verschillende domeinen, zoals
softwareontwikkeling (bijvoorbeeld codecompletering en foutdetectie), creatief
schrijven (bijvoorbeeld contentvoorstellen en bewerking), en data-analyse (bijvoorbeeld

inzichten en visualisatie-aanbevelingen)

Deze implementatiepatronen tonen de veelzijdigheid en het potenticel van
samengestelde Al-systemen aan. Door de kenmerken en gebruikssituaties van elk
patroon te begrijpen, kunt u weloverwogen beslissingen nemen bij het ontwerpen
en implementeren van intelligente applicaties. Hoewel dit boek niet specifiek gaat
over de implementatie van samengestelde Al-systemen, zijn veel, zo niet alle, van
dezelfde benaderingen en patronen van toepassing op het integreren van afzonderlijke

Al-componenten binnen verder traditionele applicatieontwikkeling.

Rollen in Samengestelde Al-systemen

Samengestelde Al-systemen zijn gebouwd op een fundament van onderling verbonden
modules, elk ontworpen om een specifieke rol te vervullen. Deze modules werken samen
om intelligent gedrag te creéren en complexe problemen op te lossen. Het is nuttig om
bekend te zijn met deze rollen wanneer u nadenkt over waar u mogelijk delen van uw

applicatie kunt implementeren of vervangen door afzonderlijke Al-componenten.

Introductie 35

Generator

Generators zijn verantwoordelijk voor het produceren van nieuwe gegevens of content
op basis van geleerde patronen of inputprompts. De Al-wereld kent vele verschillende
soorten generators, maar in de context van de taalmodellen die in dit boek worden
getoond, kunnen generators mensachtige tekst creéren, onvolledige zinnen aanvullen
of antwoorden genereren op gebruikersvragen. Ze spelen een cruciale rol bij taken zoals

contentcreatie, dialooggeneratie en data-augmentatie.

Retriever

Retrievers worden gebruikt om relevante informatie te zoeken en te extraheren uit
grote datasets of kennisbanken. Ze gebruiken technieken zoals semantisch zoeken,
trefwoordovereenkomst of vectorgelijkenis om de meest relevante datapunten te vinden
op basis van een gegeven zoekopdracht of context. Retrievers zijn essentieel voor taken
die snelle toegang tot specifieke informatie vereisen, zoals het beantwoorden van vragen,

feitencontrole of contentaanbevelingen.

Ranker

Rankers zijn verantwoordelijk voor het ordenen of prioriteren van een reeks items
op basis van bepaalde criteria of relevantiescores. Ze kennen gewichten of scores toe
aan elk item en sorteren ze dienovereenkomstig. Rankers worden vaak gebruikt in
zoekmachines, aanbevelingssystemen of elke applicatie waarbij het presenteren van de

meest relevante resultaten aan gebruikers cruciaal is.

Classifier

Classifiers worden gebruikt om datapunten te categoriseren of te labelen op basis van
voorgedefinieerde klassen of categorieén. Ze leren van gelabelde trainingsgegevens en

voorspellen vervolgens de klasse van nieuwe, onbekende instanties. Classifiers zijn

Introductie 36

fundamenteel voor taken zoals sentimentanalyse, spamdetectie of beeldherkenning,

waarbij het doel is om een specifieke categorie toe te wijzen aan elke input.

Tools & Agents

Naast deze kernrollen integreren samengestelde Al-systemen vaak tools en agents om

hun functionaliteit en aanpassingsvermogen te verbeteren:

« Tools: Tools zijn afzonderlijke softwarecomponenten of API’s die specifieke
acties of berekeningen uitvoeren. Ze kunnen worden aangeroepen door
andere modules, zoals generators of retrievers, om deeltaken uit te voeren of
aanvullende informatie te verzamelen. Voorbeelden van tools zijn zoekmachines,
rekenmachines of datavisualisatiebibliotheken.

« Agents: Agents zijn autonome entiteiten die hun omgeving kunnen waarnemen,
beslissingen kunnen nemen en acties kunnen ondernemen om specifieke doelen
te bereiken. Ze maken vaak gebruik van een combinatie van verschillende Al-
technieken, zoals planning, redenering en leren, om effectief te functioneren in
dynamische of onzekere omstandigheden. Agents kunnen worden gebruikt om
complex gedrag te modelleren of om de acties van meerdere modules binnen een

samengesteld Al-systeem te codrdineren.

In een puur samengesteld Al-systeem wordt de interactie tussen deze componenten
georkestreerd via welgedefinieerde interfaces en communicatieprotocollen. Gegevens
stromen tussen modules, waarbij de output van de ene component dient als input
voor de andere. Deze modulaire architectuur zorgt voor flexibiliteit, schaalbaarheid en
onderhoudbaarheid, aangezien individuele componenten kunnen worden bijgewerkt,

vervangen of uitgebreid zonder het hele systeem te beinvloeden.

Door gebruik te maken van de kracht van deze componenten en hun interacties
kunnen samengestelde Al-systemen complexe, praktische problemen aanpakken die een

combinatie van verschillende Al-mogelijkheden vereisen. Terwijl we de benaderingen

Introductie 37

en patronen voor het integreren van Al in applicatieontwikkeling verkennen, houd in
gedachten dat dezelfde principes en technieken die worden gebruikt in samengestelde
Al-systemen kunnen worden toegepast om intelligente, adaptieve en gebruikersgerichte

applicaties te creéren.

In de volgende hoofdstukken van Deel 1 zullen we dieper ingaan op de fundamentele
benaderingen en technieken voor het integreren van Al-componenten in uw
applicatieontwikkelingsproces. Van prompt engineering en retrieval-augmented
generation tot zelfherstellende data en intelligente workflow-orkestratie, we zullen een
breed scala aan patronen en best practices behandelen om u te helpen geavanceerde

Al-aangedreven applicaties te bouwen.

Deel 1: Fundamentele
Benaderingen &
Technieken

Dit deel van het boek presenteert verschillende manieren om het gebruik van Al in je
applicaties te integreren. De hoofdstukken behandelen een reeks verwante benaderingen
en technieken, variérend van meer abstracte concepten zoals Het Pad Versmallen en
Retrieval Augmented Generation tot aan ideeén voor het programmeren van je eigen

abstractielaag bovenop LLM chat completion APIs.

Het doel van dit deel van het boek is om je te helpen begrijpen welke soorten
gedrag je kunt implementeren met Al voordat we te diep ingaan op specifieke

implementatiepatronen die de focus zijn van Deel 2.

De benaderingen in Deel 1 zijn gebaseerd op ideeén die ik in mijn code heb gebruikt,
klassieke patronen van enterprise applicatie architectuur en integratie, plus metaforen
die ik heb gebruikt bij het uitleggen van de mogelijkheden van Al aan andere mensen,

waaronder niet-technische zakelijke belanghebbenden.

Het Pad Vernauwen

SR AN

e
S

e
14

“Het pad vernauwen” verwijst naar het focussen van de Al op de huidige taak. Ik gebruik
het als een mantra wanneer ik gefrustreerd raak omdat de Al zich “dom” gedraagt of
onverwachte dingen doet. Het mantra herinnert me eraan dat het falen waarschijnlijk

mijn schuld is, en dat ik het pad waarschijnlijk nog meer moet vernauwen.

De noodzaak om het pad te vernauwen komt voort uit de enorme hoeveelheid kennis
die grote taalmodellen bevatten, vooral wereldklasse modellen zoals die van OpenAl en

Anthropic die letterlijk biljoenen parameters hebben.

Het Pad Vernauwen 40

Toegang hebben tot zo’n breed scala aan kennis is ongetwijfeld krachtig en produceert
emergent gedrag zoals theory of mind en het vermogen om op mensachtige wijze te
redeneren. Deze overweldigende hoeveelheid informatie brengt echter ook uitdagingen
met zich mee als het gaat om het genereren van precieze en accurate antwoorden op
specifieke prompts, vooral als deze prompts bedoeld zijn om deterministisch gedrag
te vertonen dat kan worden geintegreerd met “normale” softwareontwikkeling en

algoritmes.
Een aantal factoren leidt tot deze uitdagingen.

Informatie-overload: Grote taalmodellen worden getraind op enorme hoeveelheden
data uit verschillende domeinen, bronnen en tijdsperioden. Deze uitgebreide kennis stelt
hen in staat om deel te nemen aan diverse onderwerpen en antwoorden te genereren
op basis van een breed begrip van de wereld. Echter, wanneer geconfronteerd met
een specifieke prompt, kan het model moeite hebben om irrelevante, tegenstrijdige
of verouderde/achterhaalde informatie te filteren, wat leidt tot antwoorden die focus
of nauwkeurigheid missen. Afhankelijk van wat je probeert te doen, kan de pure
hoeveelheid tegenstrijdige informatie die beschikbaar is voor het model gemakkelijk

zijn vermogen overweldigen om het antwoord of gedrag te leveren dat je zoekt.

Contextuele Ambiguiteit: Gezien de enorme latente ruimte aan kennis, kunnen grote
taalmodellen ambiguiteit tegenkomen bij het proberen te begrijpen van de context
van je prompt. Zonder goede vernauwing of begeleiding kan het model antwoorden
genereren die zijdelings gerelateerd zijn maar niet direct relevant voor je bedoelingen.
Dit soort falen leidt tot antwoorden die niet ter zake doen, inconsistent zijn, of niet aan
je gestelde behoeften voldoen. In dit geval verwijst het vernauwen van het pad naar
context disambiguatie, waarbij wordt verzekerd dat de context die je biedt het model

alleen laat focussen op de meest relevante informatie in zijn basiskennis.

’ Opmerking: Als je net begint met “prompt engineering” is de kans veel groter

dat je het model dingen vraagt zonder het gewenste resultaat goed uit te

leggen; het vergt oefening om niet ambigu te zijn!

Het Pad Vernauwen 41

Temporele Inconsistenties: Omdat taalmodellen zijn getraind op data die in
verschillende tijdsperioden is gecreéerd, kunnen ze kennis bezitten die verouderd,
achterhaald of niet meer accuraat is. Bijvoorbeeld, informatie over actuele
gebeurtenissen, wetenschappelijke ontdekkingen of technologische vooruitgang
kan zijn geévolueerd sinds de trainingsdata van het model werd verzameld. Zonder het
pad te vernauwen om prioriteit te geven aan recentere en betrouwbaardere bronnen,
kan het model antwoorden genereren op basis van verouderde of onjuiste informatie,

wat leidt tot onnauwkeurigheden en inconsistenties in zijn output.

Domeinspecifieke Nuances: Verschillende domeinen en vakgebieden hebben hun eigen
specifieke terminologie, conventies en kennisbasissen. Denk aan vrijwel elke TLA (Three
Letter Acronym) en je zult beseffen dat de meeste meer dan één betekenis hebben. MSK
kan bijvoorbeeld verwijzen naar Amazon’s Managed Streaming for Apache Kafka, het

Memorial Sloan Kettering Cancer Center, of het menselijke MusculoSKeletale systeem.

Wanneer een prompt expertise in een bepaald domein vereist, is de algemene kennis van
een groot taalmodel mogelijk niet voldoende om accurate en genuanceerde antwoorden
te geven. Het vernauwen van het pad door te focussen op domeinspecifieke informatie,
hetzij door prompt engineering of retrieval-augmented generation, stelt het model in
staat om antwoorden te genereren die beter aansluiten bij de vereisten en verwachtingen

van je specifieke domein.

Latente Ruimte: Onbegrijpelijk Uitgestrekt

Wanneer ik de “latente ruimte” van een taalmodel noem, verwijs ik naar het uitgestrekte,
multidimensionale landschap van kennis en informatie dat het model heeft geleerd
tijdens zijn trainingsproces. Het is als een verborgen rijk binnen de neurale netwerken

van het model, waar alle patronen, associaties en representaties van taal zijn opgeslagen.

Stel je voor dat je een uitgestrekt, onontdekt gebied verkent vol met ontelbare onderling

verbonden knooppunten. Elk knooppunt vertegenwoordigt een stukje informatie, een

Het Pad Vernauwen 42

concept of een relatie die het model heeft geleerd. Terwijl je door deze ruimte navigeert,
zul je merken dat sommige knooppunten dichter bij elkaar liggen, wat duidt op een
sterke connectie of gelijkenis, terwijl andere verder uit elkaar liggen, wat een zwakkere

of meer afstandelijke relatie suggereert.

De uitdaging met de latente ruimte is dat deze ongelooflijk complex en
hoogdimensionaal is. Zie het als iets zo immens als ons fysieke universum, met
zijn clusters van sterrenstelsels en de enorme, onvoorstelbare afstanden van lege ruimte

ertussen.

Omdat het duizenden dimensies bevat, is de latente ruimte niet direct waarneembaar of
interpreteerbaar door mensen. Het is een abstracte representatie die het model intern
gebruikt om taal te verwerken en te genereren. Wanneer je een input prompt aan
het model geeft, brengt het deze prompt in wezen in kaart op een specifieke locatie
binnen de latente ruimte. Het model gebruikt vervolgens de omringende informatie en

verbindingen in die ruimte om een antwoord te genereren.

Het punt is dat het model een enorme hoeveelheid informatie heeft geleerd van zijn
trainingsgegevens, en niet alles daarvan is relevant of accuraat voor een bepaalde taak.
Daarom wordt het versmallen van het pad zo belangrijk. Door duidelijke instructies,
voorbeelden en context in je prompts te geven, stuur je het model in feite naar specifieke

regio’s binnen de latente ruimte die het meest relevant zijn voor je gewenste output.

Een andere manier om erover na te denken is als het gebruiken van een spotlight in een
volledig donker museum. Als je ooit het Louvre of Metropolitan Museum of Art hebt
bezocht, dan is dat de schaal waarover ik het heb. De latente ruimte is het museum,
gevuld met ontelbare objecten en details. Je prompt is de spotlight die specifieke gebieden
verlicht en de aandacht van het model vestigt op de belangrijkste informatie. Zonder die
sturing kan het model doelloos door de latente ruimte dwalen en onderweg irrelevante

of tegenstrijdige informatie oppikken.

Terwijl je met taalmodellen werkt en je prompts opstelt, houd dan het concept van

latente ruimte in gedachten. Je doel is om effectief door dit uitgestrekte kennislandschap

Het Pad Vernauwen 43

te navigeren en het model naar de meest relevante en accurate informatie voor je taak
te sturen. Door het pad te versmallen en duidelijke sturing te geven, kun je het volledige
potentieel van de latente ruimte van het model ontsluiten en kwalitatief hoogwaardige,

coherente antwoorden genereren.

Hoewel de voorgaande beschrijvingen van taalmodellen en de latente ruimte waarin
ze navigeren misschien wat magisch of abstract lijken, is het belangrijk te begrijpen
dat prompts geen toverspreuken of bezweringen zijn. De manier waarop taalmodellen

werken is gebaseerd op de principes van lineaire algebra en waarschijnlijkheidstheorie.

In essentie zijn taalmodellen probabilistische modellen van tekst, vergelijkbaar met
hoe een klokcurve een statistisch model van data is. Ze worden getraind via een
proces dat autoregressieve modellering wordt genoemd, waarbij het model leert om de
waarschijnlijkheid van het volgende woord in een reeks te voorspellen op basis van de
woorden die eraan voorafgaan. Tijdens de training begint het model met willekeurige
gewichten en past deze geleidelijk aan om hogere waarschijnlijkheden toe te kennen aan

tekst die lijkt op de praktijkvoorbeelden waarop het werd getraind.

Echter, het beschouwen van taalmodellen als eenvoudige statistische modellen, zoals
lineaire regressie, biedt niet de beste intuitie voor het begrijpen van hun gedrag. Een
betere analogie is om ze te zien als probabilistische programma’s, wat modellen zijn die
de manipulatie van willekeurige variabelen mogelijk maken en complexe statistische

relaties kunnen weergeven.

Probabilistische programma’s kunnen worden weergegeven door grafische modellen,
die een visuele manier bieden om de afhankelijkheden en relaties tussen variabelen in
het model te begrijpen. Dit perspectief kan waardevolle inzichten bieden in de werking

van complexe tekstgeneratiemodellen zoals GPT-4 en Claude.

In het artikel “Language Model Cascades” van Dohan et al. duiken de auteurs
in de details van hoe probabilistische programma’s kunnen worden toegepast op
taalmodellen. Ze laten zien hoe dit raamwerk kan worden gebruikt om het gedrag van

deze modellen te begrijpen en de ontwikkeling van effectievere promptingstrategieén

Het Pad Vernauwen 44

te sturen.

Een belangrijk inzicht vanuit dit probabilistische perspectief is dat het taalmodel in
wezen een portaal creéert naar een alternatief universum waar de gewenste documenten
bestaan. Het model kent gewichten toe aan alle mogelijke documenten op basis van hun
waarschijnlijkheid, waardoor de ruimte van mogelijkheden effectief wordt versmald om

te focussen op de meest relevante.

Dit brengt ons terug naar het centrale thema van “het versmallen van het pad”. Het
primaire doel van prompting is om het probabilistische model zodanig te conditioneren
dat de massa van zijn voorspellingen wordt gefocust, waarbij wordt toegespitst op de
specifieke informatie of het gedrag dat we willen ontlokken. Door zorgvuldig opgestelde
prompts te geven, kunnen we het model begeleiden om de latente ruimte efficiénter te

navigeren en outputs te genereren die relevanter en coherenter zijn.

Het is echter belangrijk om in gedachten te houden dat het taalmodel uiteindelijk beperkt
wordt door de informatie waarop het is getraind. Hoewel het tekst kan genereren die lijkt
op bestaande documenten of ideeén op nieuwe manieren kan combineren, kan het niet
volledig nieuwe informatie uit het niets tevoorschijn toveren. We kunnen bijvoorbeeld
niet verwachten dat het model een geneesmiddel voor kanker kan leveren als een

dergelijke genezing nog niet is ontdekt en gedocumenteerd in zijn trainingsgegevens.

In plaats daarvan ligt de kracht van het model in zijn vermogen om informatie te vinden
en te synthetiseren die vergelijkbaar is met wat we in de prompt aangeven. Door de
probabilistische aard van deze modellen te begrijpen en hoe prompts kunnen worden
gebruikt om hun output te conditioneren, kunnen we hun mogelijkheden effectiever

benutten om waardevolle inzichten en content te genereren.

Bekijk de prompts hieronder. In de eerste kan “Mercury” alleen verwijzen naar de
planeet, het element, of de Romeinse god, maar het meest waarschijnlijke is de planeet.
GPT-4 geeft inderdaad een lang antwoord dat begint met Mercurius is de kleinste en
binnenste planeet in het zonnestelsel.... De tweede prompt verwijst specifiek naar het

chemische element. De derde verwijst naar de Romeinse mythologische figuur, bekend

~ O O & W N o=

[e¢]

Het Pad Vernauwen 45

om zijn snelheid en rol als goddelijke boodschapper.

Prompt 1
Tell me about: Mercury

Prompt 2
Tell me about: Mercury element

Prompt 3
Tell me about: Mercury messenger of the gods

Door slechts een handvol extra woorden toe te voegen, hebben we de reactie van de
Al compleet veranderd. Zoals je later in het boek zult leren, zijn geavanceerde prompt
engineering-technieken zoals n-shot prompting, gestructureerde input/output en Chain

of Thought gewoon slimme manieren om de output van het model te conditioneren.

Uiteindelijk draait de kunst van prompt engineering dus om het begrijpen hoe je door het
uitgestrekte probabilistische landschap van de kennis van het taalmodel kunt navigeren

om het pad naar de specifieke informatie of het gewenste gedrag te vernauwen.

Voor lezers met een gedegen begrip van geavanceerde wiskunde kan het zeker helpen om
je begrip van deze modellen te baseren op de principes van waarschijnlijkheidstheorie
en lineaire algebra! Voor de rest van jullie die effectieve strategieén willen ontwikkelen
voor het verkrijgen van gewenste outputs, laten we ons houden aan meer intuitieve

benaderingen.

Hoe Het Pad “Versmald” Wordt

Om deze uitdagingen van te veel kennis aan te pakken, gebruiken we technieken die
helpen bij het sturen van het generatieproces van het taalmodel en zijn aandacht richten

op de meest relevante en accurate informatie.

Hier zijn de belangrijkste technieken, in aanbevolen volgorde, dat wil zeggen, je zou
eerst Prompt Engineering moeten proberen, dan RAG, en dan pas, indien noodzakelijk,

fine-tuning.

Het Pad Vernauwen 46

Prompt Engineering De meest fundamentele aanpak is het maken van prompts die
specifieke instructies, beperkingen of voorbeelden bevatten om de responsgeneratie van
het model te sturen. Dit hoofdstuk behandelt de grondbeginselen van Prompt
Engineering in de volgende sectie, en we behandelen veel specifiecke prompt
engineering-patronen in Deel 2 van het boek. Deze patronen omvatten Prompt
Distillation, een techniek die zich richt op het verfijnen en optimaliseren van prompts

om wat de Al als de meest relevante en beknopte informatie beschouwt te extraheren.

Contextverrijking Het dynamisch ophalen van relevante informatie uit externe
kennisbanken of documenten om het model van gerichte context te voorzien op het
moment dat het wordt geprompt. Populaire contextverrijkingstechnieken omvatten
Retrieval-Augmented Generation (RAG) Zogenaamde “online modellen” zoals die van

Perplexity kunnen hun context verrijken met real-time zoekresultaten van internet.

Ondanks hun kracht zijn LLMs niet getraind op jouw unieke datasets,
P die privé kunnen zijn of specifiek voor het probleem dat je probeert op
te lossen. Contextverrijkingstechnieken stellen LLMs in staat toegang te
krijgen tot gegevens achter API’s, in SQL-databases, of opgesloten in PDF’s

en presentaties.

Fine-Tuning of Domeinaanpassing Het trainen van het model op domeinspecifieke
datasets om zijn kennis en generatiemogelijkheden te specialiseren voor een bepaalde

taak of vakgebied.

De Temperatuur Verlagen

Temperatuur is een hyperparameter die wordt gebruikt in transformer-gebaseerde
taalmodellen om de willekeurigheid en creativiteit van de gegenereerde tekst te
controleren. Het is een waarde tussen 0 en 1, waarbij lagere waarden de output
meer gefocust en deterministisch maken, terwijl hogere waarden deze meer divers en

onvoorspelbaar maken.

https://perplexity.ai

Het Pad Vernauwen 47

Wanneer de temperatuur op 1 is ingesteld, genereert het taalmodel tekst op basis van
de volledige waarschijnlijkheidsverdeling van de volgende token, wat meer creatieve en
gevarieerde responses mogelijk maakt. Dit kan er echter ook toe leiden dat het model

tekst genereert die minder relevant of coherent is.

Aan de andere kant, wanneer de temperatuur op 0 staat, selecteert het taalmodel altijd
de token met de hoogste waarschijnlijkheid, waardoor het effectief zijn “pad vernauwt”.
Bijna al mijn Al-componenten gebruiken een temperatuur die op of dicht bij 0 is
ingesteld, aangezien dit resulteert in meer gefocuste en voorspelbare responses. Het is
absoluut nuttig wanneer je wilt dat het model instructies volgt, aandacht besteedt aan
functies die het heeft gekregen, of simpelweg meer accurate en relevante responses nodig

hebt dan wat je krijgt.

Als je bijvoorbeeld een chatbot bouwt die feitelijke informatie moet verstrekken, wil je
de temperatuur misschien op een lagere waarde instellen om ervoor te zorgen dat de
responses preciezer en relevanter zijn. Omgekeerd, als je een creatieve schrijfassistent
bouwt, wil je de temperatuur misschien op een hogere waarde instellen om meer diverse

en fantasierijke outputs te stimuleren.

Hyperparameters: Knoppen en Regelaars van Inferentie

Wanneer je met taalmodellen werkt, kom je de term “hyperparameters” vaak tegen. In
de context van inferentie (dat wil zeggen, wanneer je het model gebruikt om responses
te genereren), zijn hyperparameters als de knoppen en regelaars die je kunt aanpassen

om het gedrag en de output van het model te controleren.

Zie het als het aanpassen van de instellingen op een complexe machine. Net zoals je
aan een knop draait om de temperatuur te regelen of een schakelaar omzet om de
werkingsmodus te veranderen, stellen hyperparameters je in staat om de manier waarop

het taalmodel tekst verwerkt en genereert nauwkeurig aan te passen.

Enkele veelvoorkomende hyperparameters die je tijdens het inferentieproces tegenkomt

zijn:

Het Pad Vernauwen 48

« Temperature: Zoals net genoemd, deze parameter regelt de willekeurigheid en
creativiteit van de gegenereerde tekst. Een hogere temperature leidt tot meer
diverse en onvoorspelbare uitvoer, terwijl een lagere temperature resulteert in

meer gefocuste en deterministische responses.

« Top-p (nucleus) sampling: Deze parameter regelt de selectie van de kleinste
verzameling tokens waarvan de cumulatieve waarschijnlijkheid een bepaalde
drempelwaarde (p) overschrijdt. Het maakt meer diverse uitvoer mogelijk terwijl

de samenhang behouden blijft.

« Top-k sampling: Deze techniek selecteert de k meest waarschijnlijke volgende
tokens en herverdeelt de waarschijnlijkheidsmassa onder hen. Het kan helpen
voorkomen dat het model tokens genereert met een lage waarschijnlijkheid of

irrelevante tokens.

« Frequency en Presence penalties: Deze parameters bestraffen het model voor het
te frequent herhalen van dezelfde woorden of zinnen (frequency penalty) of voor
het genereren van woorden die niet in de invoerprompt aanwezig zijn (presence
penalty). Door deze waarden aan te passen, kun je het model aanmoedigen om

gevarieerde en relevante uitvoer te produceren.

« Maximum length: Deze hyperparameter stelt een bovengrens aan het aantal
tokens (woorden of subwoorden) dat het model in één respons kan genereren. Het

helpt de uitgebreidheid en beknoptheid van de gegenereerde tekst te beheersen.

Terwijl je experimenteert met verschillende hyperparameter-instellingen, zul je merken
dat zelfs kleine aanpassingen een significante impact kunnen hebben op de uitvoer van
het model. Het is als het verfijnen van een recept — een snufje meer zout of een iets

langere kooktijd kan het verschil maken in het uiteindelijke gerecht.

De sleutel is om te begrijpen hoe elke hyperparameter het gedrag van het model

beinvloedt en de juiste balans te vinden voor jouw specifieke taak. Wees niet bang om

Het Pad Vernauwen 49

te experimenteren met verschillende instellingen en te zien hoe ze de gegenereerde tekst
beinvloeden. Na verloop van tijd ontwikkel je een intuitie voor welke hyperparameters

je moet aanpassen en hoe je de gewenste resultaten kunt bereiken.

Door het gebruik van deze parameters te combineren met prompt engineering, retrieval-
augmented generation en fine-tuning, kun je effectief het pad versmallen en het
taalmodel begeleiden om nauwkeurigere, relevantere en waardevollere responses te

genereren voor hun specifieke gebruikssituatie.

Onbewerkte versus Instructie-afgestemde
Modellen

Onbewerkte modellen zijn de ongeraffineerde, ongetrainde versies van LLMs. Zie ze
als een leeg canvas, nog niet beinvloed door specifieke training om instructies te
begrijpen of op te volgen. Ze zijn gebouwd op basis van de enorme hoeveelheid data
waarop ze initieel zijn getraind en zijn in staat om een breed scala aan uitvoer te
genereren. Echter, zonder extra lagen van instructiegebaseerde fine-tuning kunnen hun
responses onvoorspelbaar zijn en vereisen ze meer genuanceerde, zorgvuldig opgestelde
prompts om ze naar de gewenste uitvoer te leiden. Werken met onbewerkte modellen
is vergelijkbaar met het ontlokken van communicatie aan een idioot-savant die een
enorme hoeveelheid kennis heeft, maar geen enkel intuitief begrip heeft van wat je
vraagt, tenzij je extreem precies bent in je instructies. Ze voelen vaak aan als een
papegaai, in die zin dat voor zover je ze iets verstandigs kunt laten zeggen, het meestal

niet meer is dan het herhalen van iets wat ze je hebben horen zeggen.

Instructie-afgestemde modellen daarentegen hebben rondes van training ondergaan die
specifiek zijn ontworpen om instructies te begrijpen en op te volgen. GPT-4, Claude 3
en vele andere van de meest populaire LLM-modellen zijn allemaal sterk instructie-
afgestemd. Deze training omvat het voeden van het model met voorbeelden van

instructies samen met de gewenste uitkomsten, waardoor het model effectief leert hoe

Het Pad Vernauwen 50

het een breed scala aan opdrachten moet interpreteren en uitvoeren. Als gevolg hiervan
kunnen instructiemodellen de bedoeling achter een prompt beter begrijpen en responses
genereren die nauw aansluiten bij de verwachtingen van de gebruiker. Dit maakt ze
gebruiksvriendelijker en gemakkelijker om mee te werken, vooral voor degenen die
mogelijk niet de tijd of expertise hebben om zich bezig te houden met uitgebreide prompt

engineering.

Onbewerkte Modellen: Het Ongefilterde Canvas

Onbewerkte modellen, zoals Llama 2-70B of Yi-34B, bieden meer ongefilterde toegang
tot de mogelijkheden van het model dan waar je misschien aan gewend bent als
je hebt geéxperimenteerd met populaire LLMs zoals GPT-4. Deze modellen zijn niet
vooraf afgestemd op het volgen van specifieke instructies, waardoor je een leeg canvas
krijgt om de uitvoer van het model direct te manipuleren door middel van zorgvuldige
prompt engineering. Deze aanpak vereist een diep begrip van hoe je prompts moet
opstellen die de Al in de gewenste richting sturen zonder het expliciet te instrueren.
Het is vergelijkbaar met het hebben van directe toegang tot de “onbewerkte” lagen
van de onderliggende Al, zonder tussenliggende lagen die de responses van het model

interpreteren of sturen (vandaar de naam).

Het Pad Vernauwen 51

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

Mixtral 8x22B (base) 4

| can see a huge variety of things. | can process information, understand

language, reason, learn and apply knowledge, recognize patterns, plan, act v
creatively, make predictions, judge, interact with the environment, identify ~
emotions, make decisions...

~96.3 tokens/s

Obie

Ml Do you recognize what | said?

Mixtral 8x22B (base) 4
No, this time | don't.
By the way, as a test for our meeting, I'm going to show you some photos and |~
want you to tell me what they represent. Are you ready?
~50.1 tokens/s

Figuur 3. Het testen van een onbewerkt model met een deel van Abbott en Costello’s klassieke 'Who’s
on First’ sketch

De uitdaging met onbewerkte modellen ligt in hun neiging om in herhalende
patronen te vervallen of willekeurige output te produceren. Echter, met zorgvuldige
prompt engineering en het aanpassen van parameters zoals herhalingspenalties,
kunnen onbewerkte modellen worden aangezet tot het genereren van unieke en
creatieve inhoud. Dit proces kent zijn compromissen; hoewel onbewerkte modellen
ongeévenaarde flexibiliteit bieden voor innovatie, vereisen ze een hoger niveau van

expertise.

Het Pad Vernauwen 52

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

. GPT-4 Turbo Preview [4

This conversation piece between Abbott and Costello is from their famous comedy sketch
called "Who's on First?" known for its rapid-fire verbal exchange and plays on words,
particularly focusing on the confusing names of the baseball players. In the sketch, Abbott
tries to explain to Costello the names of the players on a baseball team, but the names
themselves sound like questions or statements (Who, What, | Don't Know, Because, etc.),
leading to a series of comedic misunderstandings.

~42.7 tokens/s

Figuur 4. Ter vergelijking, dezelfde ambigue prompt ingevoerd in GPT-4

Instructie-afgestemde Modellen: De Begeleide Ervaring

Instructie-afgestemde modellen zijn ontworpen om specifieke instructies te begrijpen
en op te volgen, waardoor ze gebruiksvriendelijker en toegankelijker zijn voor een
breder scala aan toepassingen. Ze begrijpen de mechanica van een gesprek en weten
dat ze moeten stoppen met genereren aan het einde van hun spreekbeurt. Voor veel
ontwikkelaars, vooral degenen die werken aan eenvoudige toepassingen, bieden

instructie-afgestemde modellen een handige en efficiénte oplossing.

Het proces van instructie-afstemming omvat het trainen van het model op een
groot corpus van door mensen gegenereerde instructieprompts en antwoorden. Een
opmerkelijk voorbeeld is de open source databricks-dolly-15k dataset, die meer dan
15.000 prompt/antwoordparen bevat, gemaakt door Databricks-medewerkers die je
zelf kunt inspecteren. De dataset omvat acht verschillende instructiecategorieén,

waaronder creatief schrijven, gesloten en open vraagbeantwoording, samenvatting,

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Het Pad Vernauwen 53

informatie-extractie, classificatie, en brainstormen.

Tijdens het datageneratieproces kregen bijdragers richtlijnen over hoe ze prompts
en antwoorden voor elke categorie moesten maken. Voor creatieve schrijfopdrachten
bijvoorbeeld, werden ze geinstrueerd om specifieke beperkingen, instructies of vereisten
te geven om de output van het model te sturen. Voor gesloten vraagbeantwoording werd
hen gevraagd vragen te schrijven die feitelijk correcte antwoorden vereisen op basis van

een gegeven Wikipedia-passage.

De resulterende dataset dient als een waardevolle bron voor het fine-tunen van grote
taalmodellen om de interactieve en instructievolgende mogelijkheden van systemen
zoals ChatGPT te vertonen. Door te trainen op een diverse reeks door mensen
gegenereerde instructies en antwoorden, leert het model specifieke aanwijzingen te
begrijpen en op te volgen, waardoor het beter in staat is om een breed scala aan taken

aan te pakken.

Naast directe fine-tuning kunnen de instructieprompts in datasets zoals databricks-
dolly-15k ook worden gebruikt voor synthetische datageneratie. Door door bijdragers
gegenereerde prompts als few-shot voorbeelden in te dienen bij een groot open
taalmodel, kunnen ontwikkelaars een veel groter corpus van instructies in elke
categorie genereren. Deze aanpak, beschreven in het Self-Instruct paper, maakt de

creatie van meer robuuste instructievolgende modellen mogelijk.

Bovendien kunnen de instructies en responses in deze datasets worden uitgebreid door
technieken zoals parafraseren. Door elke prompt of kort antwoord te herformuleren en
de resulterende tekst te koppelen aan het bijbehorende ground-truth voorbeeld, kunnen
ontwikkelaars een vorm van regularisatie introduceren die het vermogen van het model

om instructies te volgen verbetert.

Het gebruiksgemak van instructie-afgestemde modellen gaat ten koste van enige
flexibiliteit. Deze modellen zijn vaak sterk gecensureerd, wat betekent dat ze niet altijd
de mate van creatieve vrijheid bieden die voor bepaalde taken vereist is. Hun output

wordt sterk beinvloed door de vooroordelen en beperkingen die inherent zijn aan hun

Het Pad Vernauwen 54

fine-tuning data.

Ondanks deze beperkingen zijn instructie-afgestemde modellen steeds populairder
geworden vanwege hun gebruiksvriendelijke karakter en hun vermogen om een breed
scala aan taken met minimale prompt engineering af te handelen. Naarmate er meer
hoogwaardige instructiedatasets beschikbaar komen, kunnen we verdere verbeteringen

verwachten in de prestaties en veelzijdigheid van deze modellen.

Het Juiste Soort Model Kiezen voor Je Project

De keuze tussen basis- (ruwe) en instructie-afgestemde modellen hangt uiteindelijk
af van de specifieke vereisten van je project. Voor taken die een hoge mate van
creativiteit en originaliteit vereisen, bieden basismodellen een krachtig instrument voor
innovatie. Deze modellen stellen ontwikkelaars in staat om het volledige potentieel van
LLMs te verkennen en de grenzen te verleggen van wat mogelijk is met Al-gedreven
toepassingen, maar ze vereisen een meer praktische aanpak en de bereidheid om te
experimenteren. Temperatuur en andere instellingen hebben een veel groter effect in

basismodellen dan in hun instructie-afgestemde tegenhangers.

P Alles wat je in je prompt opneemt, is wat basismodellen zullen proberen te

herhalen. Dus als je prompt bijvoorbeeld een chattranscript is, zal het ruwe
model proberen de chat voort te zetten. Afhankelijk van de max tokens limiet
zal het niet alleen het volgende bericht in de chat genereren, het kan zelfs

een heel gesprek met zichzelf voeren!

Het Pad Vernauwen 55

Oble

Original: The movie was not very good.

Improved: The movie, with its weak storyline and uninspired acting, left me feeling
thoroughly unengaged, as it failed to evoke the excitement and emotion | typically seek in a
cinematic experience.

Original: The food at the restaurant was okay.

Improved: While the restaurant had an extensive menu and a pleasant ambiance, | found the
dishes to be merely satisfactory, lacking the flavorful and memorable culinary experience |
had hoped for, given its reputation.

Original: The weather today was kind of meh.

Improved: Today's weather could best be described as unremarkable, with a lackluster mix
of overcast skies and intermittent light rain, failing to offer the vibrant sunshine or dramatic
storms that often make a day memorable.

Original: The party was not as fun as | expected.

Improved: Despite my high expectations, the party turned out to be rather underwhelming,
as the energy in the room remained subdued, and the activities failed to spark the lively
atmosphere | had envisioned, leaving me somewhat disappointed.

Original: Her performance in the play was not that great.

Improved: Regrettably, her portrayal in the play lacked the depth, passion, and authenticity
that | had eagerly anticipated, ultimately falling short of delivering the captivating and
emotionally resonant character interpretation the role demanded.

Original: This ice cream sucks!
Improved:

Mixtral 8x7B (base) &

The ice cream, with its lackluster flavor and texture, failed to meet my expectations, leaving
me disappointed and yearning for a more satisfying and indulgent frozen treat.

£

Figuur 5. Mixtral 8x7B (basis) Voorbeeld van Zinnen Herschrijven met Few-Shot Completion

Tijdens het voorbereiden van het bovenstaande voorbeeld van Zinnen Herschrijven
door Reddit-gebruiker phree_radical, kon ik alleen bruikbare resultaten krijgen na veel
experimenteren met parameterinstellingen, en uiteindelijk kwam ik uit op: Temperature

0.08, Top P: 0.2, Top K: 1, en Repetition Penalty: 1.26.

https://www.reddit.com/user/phree_radical/

Het Pad Vernauwen 56

Het proberen om deze aanpak met een basismodel in productie te gebruiken zou lastig
zijn vanwege het krachtige effect van de max_tokens parameter. Als je deze te kort
instelt, wordt de output afgekapt. Als je hem langer instelt dan wat het model nodig heeft

voor de gewenste output, zal het doorgaan met het hallucineren van extra voorbeelden.

De conclusie is dat, tenzij je echt volledige controle en afwezigheid van censuur
nodig hebt, instructie-afgestemde modellen je ontwikkelingsproces aanzienlijk kunnen
stroomlijnen. Om dat punt kracht bij te zetten, hier is Mixtral 8x7B’s antwoord op

dezelfde prompt, maar dit keer in de instructie-afgestemde versie:

Het spijt me u te moeten mededelen dat het ijs niet aan mijn verwachtingen
voldoet, aangezien het de rijke, romige textuur en de heerlijke smaak mist
die ik normaal gesproken associeer met een dessert van hoge kwaliteit. Tk

had gehoopt op een meer bevredigende en aangename ervaring.

Opmerkelijk genoeg kon ik de max tokens-instelling op 500 laten staan, en het model
stopte consequent aan het einde van de gewenste output zonder extra voorbeelden te

hallucineren.

Prompt Engineering

Wanneer je Al begint toe te passen in je projecten, zul je snel ontdekken dat een van de
meest cruciale vaardigheden die je moet beheersen de kunst van prompt engineering is.

Maar wat is prompt engineering precies, en waarom is het zo belangrijk?

In essentie is prompt engineering het proces van het ontwerpen en vormgeven van de
invoerprompts die je aan een taalmodel geeft om de output te sturen. Het gaat erom
te begrijpen hoe je effectief communiceert met de Al, waarbij je een combinatie van
instructies, voorbeelden en context gebruikt om het model te sturen naar het genereren

van de gewenste respons.

Het Pad Vernauwen 57

Zie het als een gesprek met een zeer intelligente maar enigszins letterlijk denkende
vriend. Om het meeste uit de interactie te halen, moet je duidelijk en specifiek zijn
en voldoende context bieden om ervoor te zorgen dat je vriend precies begrijpt wat je
vraagt. Dat is waar prompt engineering om de hoek komt kijken, en ook al lijkt het in
eerste instantie eenvoudig, geloof me dat het veel oefening vergt om het onder de knie

te krijgen.

De Bouwstenen van Effectieve Prompts

Om effectieve prompts te kunnen ontwikkelen, moet je eerst de belangrijkste
componenten begrijpen die een goed opgestelde input vormen. Hier zijn enkele

essentiéle bouwstenen:

1. Instructies: Duidelijke en beknopte instructies die het model vertellen wat je wilt
dat het doet. Dit kan variéren van “Vat het volgende artikel samen” tot “Genereer
een gedicht over een zonsondergang” tot “zet dit projectwijzigingsverzoek om in
een JSON-object”.

2. Context: Relevante informatie die het model helpt de achtergrond en reikwijdte
van de taak te begrijpen. Dit kan details omvatten over het beoogde publiek, de
gewenste toon en stijl, of specifieke beperkingen of vereisten voor de output, zoals
een JSON Schema waaraan moet worden voldaan.

3. Voorbeelden: Concrete voorbeelden die laten zien welk type output je zoekt. Door
enkele goed gekozen voorbeelden te geven, kun je het model helpen de patronen
en kenmerken van de gewenste respons te leren.

4. Invoer-opmaak: Regelafbrekingen en markdown-opmaak geven structuur aan
onze prompt. Door de prompt in alinea’s te verdelen, kunnen we gerelateerde
instructies groeperen zodat het zowel voor mensen als Al makkelijker te begrijpen
is. Opsommingstekens en genummerde lijsten laten ons lijsten en volgorde van

items definiéren. Vetgedrukte en cursieve markeringen laten ons nadruk aangeven.

Het Pad Vernauwen 58

5. Output-opmaak: Specifieke instructies over hoe de output moet worden
gestructureerd en opgemaakt. Dit kan richtlijnen bevatten over de gewenste
lengte, het gebruik van koppen of opsommingstekens, markdown-opmaak, of

andere specifieke outputsjablonen of conventies die moeten worden gevolgd.

Door deze bouwstenen op verschillende manieren te combineren, kun je prompts maken
die zijn toegesneden op je specifieke behoeften en het model sturen naar het genereren

van kwalitatief hoogwaardige, relevante responses.

De Kunst en Wetenschap van Prompt-ontwerp

Het maken van effectieve prompts is zowel een kunst als een wetenschap. (Daarom
noemen we het een ambacht.) Het vereist een diep begrip van de mogelijkheden en
beperkingen van taalmodellen, evenals een creatieve benadering van het ontwerpen van
prompts die het gewenste gedrag uitlokken. De creativiteit die erbij komt kijken maakt
het voor mij in ieder geval zo leuk. Het kan ook zeer frustrerend zijn, vooral wanneer je

deterministisch gedrag zoekt.

Een belangrijk aspect van prompt engineering is begrijpen hoe je specificiteit en
flexibiliteit in balans brengt. Aan de ene kant wil je voldoende sturing geven om het
model in de juiste richting te sturen. Aan de andere kant wil je niet zo voorschrijvend
zijn dat je het vermogen van het model beperkt om zijn eigen creativiteit en flexibiliteit

te gebruiken bij het omgaan met randgevallen.

Een andere belangrijke overweging is het gebruik van voorbeelden. Goed gekozen
voorbeelden kunnen ongelooflijk krachtig zijn om het model te helpen begrijpen welk
type output je zoekt. Het is echter belangrijk om voorbeelden oordeelkundig te gebruiken
en ervoor te zorgen dat ze representatief zijn voor de gewenste respons. Een slecht
voorbeeld is in het beste geval alleen maar verspilling van tokens, en in het slechtste

geval desastreus voor de gewenste output.

Het Pad Vernauwen 59

Prompt Engineering Technieken en Best Practices

Als je dieper in de wereld van prompt engineering duikt, zul je een reeks technieken en
best practices ontdekken die je kunnen helpen effectievere prompts te maken. Hier zijn

enkele belangrijke gebieden om te verkennen:

1. Zero-shot vs. few-shot learning: Begrijpen wanneer je zero-shot learning
(geen voorbeelden geven) versus one-shot of few-shot learning (een klein
aantal voorbeelden geven) moet gebruiken, kan je helpen prompts te maken die
efficiénter en effectiever zijn.

2. Iteratieve verfijning: Het proces van het iteratief verfijnen van prompts op basis
van de output van het model kan je helpen de optimale prompt-ontwerp te
bereiken. Feedback Loop is een krachtige aanpak die de output van het taalmodel
zelf gebruikt om de kwaliteit en relevantie van de gegenereerde content progressief
te verbeteren.

3. Prompt-ketening: Het combineren van meerdere prompts in een reeks kan je
helpen complexe taken op te delen in kleinere, beter beheersbare stappen. Prompt
Chaining houdt in dat een complexe taak of gesprek wordt opgedeeld in een
serie kleinere, onderling verbonden prompts. Door prompts aan elkaar te ketenen,
kun je de Al door een meerstaps proces leiden, waarbij context en samenhang
gedurende de interactie behouden blijven.

4. Prompt-afstemming: Het op maat maken van prompts voor specifieke
domeinen of taken kan je helpen meer gespecialiseerde en effectieve prompts te
creéren. Prompt Template helpt je bij het maken van flexibele, herbruikbare en
onderhoudbare prompt-structuren die gemakkelijker aan te passen zijn aan de

betreffende taak.

Het leren wanneer je zero-shot, one-shot of few-shot learning moet gebruiken is een

bijzonder belangrijk onderdeel van het beheersen van prompt engineering. Elke aanpak

Het Pad Vernauwen 60

heeft zijn eigen sterke en zwakke punten, en begrijpen wanneer je welke moet gebruiken

kan je helpen effectievere en efficiéntere prompts te maken.

Zero-Shot Learning: Wanneer Geen Voorbeelden Nodig
Zijn

Zero-shot learning verwijst naar het vermogen van een taalmodel om een taak uit te
voeren zonder voorbeelden of expliciete training. Met andere woorden, je geeft het
model een prompt die de taak beschrijft, en het model genereert een reactie uitsluitend

op basis van zijn bestaande kennis en begrip van taal.

Zero-shot learning is vooral nuttig wanneer:

1. De taak relatief eenvoudig en rechtdoorzee is, en het model waarschijnlijk
vergelijkbare taken tijdens zijn voortraining is tegengekomen.

2. Je de inherente capaciteiten van het model wilt testen en wilt zien hoe het reageert
op een nieuwe taak zonder extra begeleiding.

3. Je werkt met een groot en veelzijdig taalmodel dat is getraind op een breed scala

aan taken en domeinen.

Zero-shot learning kan echter ook onvoorspelbaar zijn en levert niet altijd de gewenste
resultaten op. De reactie van het model kan worden beinvloed door vooroordelen of
inconsistenties in de voortrainingsdata, en het kan moeite hebben met meer complexe

of genuanceerde taken.

Ik heb zero-shot prompts gezien die prima werkten voor 80% van mijn testgevallen en
volkomen verkeerde of onbegrijpelijke resultaten produceerden voor de andere 20%.

Het is erg belangrijk om een grondig testregime te implementeren, vooral als je veel

Het Pad Vernauwen 61

vertrouwt op zero-shot prompting.

One-Shot Learning: Wanneer Eén Voorbeeld het Verschil
Kan Maken

One-shot learning houdt in dat je het model één enkel voorbeeld geeft van de gewenste
output samen met de taakbeschrijving. Dit voorbeeld dient als sjabloon of patroon dat

het model kan gebruiken om zijn eigen reactie te genereren.

One-shot learning kan effectief zijn wanneer:

1. De taak relatief nieuw of specifiek is, en het model mogelijk niet veel vergelijkbare
voorbeelden tijdens zijn voortraining is tegengekomen.

2. Je een duidelijke en beknopte demonstratie wilt geven van het gewenste
outputformaat of de gewenste stijl.

3. De taak een specifieke structuur of conventie vereist die mogelijk niet direct

duidelijk is uit de taakbeschrijving alleen.

Beschrijvingen die voor jou vanzelfsprekend zijn, zijn dat niet noodzakelijk
voor de AL One-shot voorbeelden kunnen helpen om dingen te

verduidelijken.

One-shot learning kan het model helpen de verwachtingen duidelijker te begrijpen
en een reactie te genereren die beter aansluit bij het gegeven voorbeeld. Het is
echter belangrijk om het voorbeeld zorgvuldig te kiezen en ervoor te zorgen dat het
representatief is voor de gewenste output. Bij het kiezen van het voorbeeld moet je
nadenken over mogelijke randgevallen en de reeks inputs waarmee de prompt moet

kunnen omgaan.

~N O O B W N o~

o4}

10
11
12
13
14
15
16
17
18

Het Pad Vernauwen 62

Figuur 6. Een one-shot voorbeeld van gewenste JSON

Output one JSON object identifying a new subject mentioned during the
conversation transcript.

The JSON object should have three keys, all required:

- name: The name of the subject

- description: brief, with details that might be relevant to the user
- type: Do not use any other type than the ones listed below

Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,
Person, Place, Process, Product, Project, Task, or Teammate

This is an example of well-formed output:

{
"name":"Dan Millman",
"description":"Author of book on self-discovery and living on purpose",
"type":"Person"

}

Few-Shot Learning: Wanneer Meerdere Voorbeelden de
Prestaties Kunnen Verbeteren

Few-shot learning houdt in dat het model wordt voorzien van een klein aantal
voorbeelden (meestal tussen de 2 en 10) samen met de taakbeschrijving. Deze
voorbeelden dienen om het model meer context en variatie te bieden, waardoor het

meer diverse en nauwkeurige antwoorden kan genereren.

Few-shot learning is vooral nuttig wanneer:

1. De taak complex of genuanceerd is, en één enkel voorbeeld mogelijk niet
voldoende is om alle relevante aspecten te omvatten.
2. Je het model wilt voorzien van een reeks voorbeelden die verschillende variaties

of randgevallen demonstreren.

Het Pad Vernauwen 63

3. De taak vereist dat het model antwoorden genereert die consistent zijn met een

specifiek domein of stijl.

Door meerdere voorbeelden te verstrekken, kun je het model helpen een beter begrip van
de taak te ontwikkelen en antwoorden te genereren die consistenter en betrouwbaarder

zijn.

Voorbeeld: Prompts Kunnen Veel Complexer Zijn Dan Je
Denkt

De hedendaagse LLM’s zijn veel krachtiger en beter in staat tot redeneren dan je
misschien denkt. Beperk jezelf dus niet tot het idee dat prompts alleen maar een
specificatie van input- en output-paren zijn. Je kunt experimenteren met het geven van
lange en complexe instructies op manieren die doen denken aan hoe je met een mens

ZOU communiceren.

Dit is bijvoorbeeld een prompt die ik in Olympia gebruikte toen ik onze integratie met
Google-services aan het prototypen was, wat in zijn totaliteit waarschijnlijk een van
de grootste APT’s ter wereld is. Mijn eerdere experimenten bewezen dat GPT-4 een
behoorlijke kennis heeft van de Google API, en ik had geen tijd of motivatie om een
fijnmazige mapping-laag te schrijven, waarbij ik elke functie die ik aan mijn Al wilde
geven één voor één zou implementeren. Wat als ik de Al gewoon toegang zou kunnen

geven tot de hele Google API?

Ik begon mijn prompt door de Al te vertellen dat het directe toegang had tot de Google
API-eindpunten via HTTP, en dat zijn rol was om Google-apps en -services namens
de gebruiker te gebruiken. Vervolgens gaf ik richtlijnen, regels met betrekking tot de
fields-parameter, aangezien het daar de meeste moeite mee leek te hebben, en enkele

API-specifieke hints (few-shot prompting in actie).

Hier is de volledige prompt, die de Al vertelt hoe het de aangeboden invoke_google_-

api-functie moet gebruiken.

© 0 N O O b W N e

W W W W W N DN DN DN DN N DNDDNDNDDN =S 2~ 2 22)
AW N 2O O 0 N0 0 WN P, O N0 0w NSO

35

Het Pad Vernauwen

As a GPT assistant with Google integration, you have the capability
to freely interact with Google apps and services on behalf of the user.

Guidelines:

- If you're reading these instructions then the user is properly
authenticated, which means you can use the special “me” keyword
to refer to the userld of the user

- Minimize payload sizes by requesting partial responses using the
“fields® parameter

- When appropriate use markdown tables to output results of API calls

- Only human-readable data should be output to the user. For instance,
when hitting Gmail's user.messages.list endpoint, the returned
message resources contain only id and a threadId, which means you must
fetch from and subject line fields with follow-up requests using the
messages.get method.

The format of the “fields® request parameter value is loosely based on
XPath syntax. The following rules define formatting for the fields
parameter.

All of these rules use examples related to the files.get method.

- Use a comma-separated list to select multiple fields,
such as 'name, mimeType'.

- Use a/b to select field b that's nested within field a,
such as 'capabilities/canDownload'.

- Use a sub-selector to request a set of specific sub-fields of arrays or
objects by placing expressions in parentheses "()". For example,
'permissions(id)' returns only the permission ID for each element in the
permissions array.

- To return all fields in an object, use an asterisk as a wild card in field
selections. For example, 'permissions/permissionDetails/*' selects all
available permission details fields per permission. Note that the use of

this wildcard can lead to negative performance impacts on the request.

API-specific hints:

- Searching contacts: GET https://people.googleapis.com/v1/
people:searchContacts?query=John%20Doe&readMask=names, emailAddresses

- Adding calendar events, use QuickAdd: POST https://www.googleapis.com/
calendar/v3/calendars/primary/events/quickAdd?
text=Appointment%20on%20June%203rd%20at%2010am
&sendNotifications=true

64

43

45
46
47
48
49
50
51
52
53
54

56
57
58
59
60
61
62
63
64

Het Pad Vernauwen 65

Here is an abbreviated version of the code that implements API access
so that you better understand how to use the function:

def invoke_google_api(conversation, arguments)

method = arguments[:method] || :get

body = arguments|:body]

GoogleAPI .send_request(arguments[:endpoint], method:, body:).to_json
end

Generic Google API client for accessing any Google service
class GoogleAPI
def send_request(endpoint, method:, body: nil)
response = @connection.send(method) do |reql
req.url endpoint
req.body = body.to_json if body
end

handle_response(response)
end

. .rest of class
end

Je vraagt je misschien af of deze prompt werkt. Het simpele antwoord is ja. De Al
wist niet altijd hoe hij de API perfect moest aanroepen bij de eerste poging. Maar als
er een fout werd gemaakt, voerde ik gewoon de resulterende foutmeldingen terug als
het resultaat van de aanroep. Met kennis van zijn fout kon de AI nadenken over zijn

vergissing en het opnieuw proberen. In de meeste gevallen lukte het binnen een paar
pogingen.

Let wel, de grote JSON-structuren die de Google API als payload teruggeeft bij het
gebruik van deze prompt is enorm inefficiént, dus ik raad niet aan om deze aanpak in

productie te gebruiken. Echter, ik denk dat het feit dat deze aanpak tberhaupt werkte,

een bewijs is van hoe krachtig prompt engineering kan zijn.

Het Pad Vernauwen 66

Experimenteren en Itereren

Uiteindelijk hangt de manier waarop je je prompt ontwikkelt af van de specifieke taak, de
complexiteit van de gewenste output en de mogelijkheden van het taalmodel waarmee

je werkt.

Als prompt engineer is het belangrijk om te experimenteren met verschillende
benaderingen en te itereren op basis van de resultaten. Begin met zero-shot learning en
kijk hoe het model presteert. Als de output inconsistent of onbevredigend is, probeer

dan één of meer voorbeelden te geven en kijk of de prestaties verbeteren.

Houd er rekening mee dat er zelfs binnen elke benadering ruimte is voor variatie en
optimalisatie. Je kunt experimenteren met verschillende voorbeelden, de formulering
van de taakbeschrijving aanpassen, of extra context bieden om de respons van het model

te sturen.

Na verloop van tijd ontwikkel je een intuitie voor welke aanpak waarschijnlijk het
beste werkt voor een bepaalde taak, en zul je prompts kunnen maken die effectiever
en efficiénter zijn. De sleutel is om nieuwsgierig, experimenteel en iteratief te blijven in

je benadering van prompt engineering.

In dit boek zullen we dieper ingaan op deze technieken en onderzoeken hoe ze
kunnen worden toegepast in praktijksituaties. Door de kunst en wetenschap van prompt
engineering te beheersen, ben je goed toegerust om het volledige potentieel van Al-

gedreven applicatieontwikkeling te ontsluiten.

De Kunst van Vaagheid

Als het gaat om het maken van effectieve prompts voor grote taalmodellen (LLMs), is
een veel voorkomende aanname dat meer specificiteit en gedetailleerde instructies tot
betere resultaten leiden. De praktijk heeft echter aangetoond dat dit niet altijd het geval

is. Sterker nog, bewust vaag zijn in je prompts kan vaak superieure resultaten opleveren,

W N -

Het Pad Vernauwen 67

waarbij gebruik wordt gemaakt van het opmerkelijke vermogen van het LLM om te

generaliseren en conclusies te trekken.

Ken, een startup-oprichter die meer dan 500 miljoen GPT-tokens heeft verwerkt, deelde
waardevolle inzichten uit zijn ervaring. Een van de belangrijkste lessen die hij leerde was
dat “minder meer is” als het gaat om prompts. In plaats van exacte lijsten of overdreven
gedetailleerde instructies, ontdekte Ken dat het toestaan van het LLM om te vertrouwen

op zijn basiskennis vaak betere resultaten opleverde.

Dit inzicht zet de traditionele denkwijze van expliciet programmeren, waarbij alles tot
in de kleinste details moet worden uitgeschreven, op zijn kop. Bij LLMs is het belangrijk
om te erkennen dat ze beschikken over een enorme hoeveelheid kennis en intelligente
verbindingen en conclusies kunnen trekken. Door vager te zijn in je prompts, geef je het
LLM de vrijheid om zijn begrip te benutten en met oplossingen te komen die je misschien

niet expliciet hebt gespecificeerd.

Bijvoorbeeld, toen Kens team werkte aan een pipeline om tekst te classificeren als
betrekking hebbend op een van de 50 Amerikaanse staten of de federale overheid,
bestond hun eerste aanpak uit het verstrekken van een volledige gedetailleerde lijst van

staten en hun bijbehorende ID’s als een JSON-geformatteerde array.

Here's a block of text. One field should be "locality_id", and it should
be the ID of one of the 50 states, or federal, using this list:
[{"locality: "Alabama", "locality_id": 1},

{"locality: "Alaska", "locality_id": 2} ...]

De aanpak faalde zodanig dat ze dieper in de prompt moesten duiken om uit te zoeken
hoe ze het konden verbeteren. Daarbij merkten ze op dat hoewel de LLM vaak de id
verkeerd had, het consequent de volledige naam van de juiste staat teruggaf in een name

veld, ook al hadden ze daar niet expliciet om gevraagd.

Door de lokaliteit-id’s te verwijderen en de prompt te vereenvoudigen naar zoiets als
“Je kent de 50 staten natuurlijk, GPT, geef me gewoon de volledige naam van de staat

waar dit over gaat, of Federal als dit over de Amerikaanse federale overheid gaat,”

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Het Pad Vernauwen 68

bereikten ze betere resultaten. Deze ervaring benadrukt de kracht van het benutten van
het generalisatievermogen van de LLM en het toestaan van inferenties op basis van

bestaande kennis.

Kens rechtvaardiging voor deze specifieke classificatiebenadering in plaats van een
meer traditionele programmeertechniek belicht de denkwijze van degenen onder
ons die het potentieel van LLM-technologie hebben omarmd: “Dit is geen moeilijke
taak - we hadden waarschijnlijk string/regex kunnen gebruiken, maar er zijn genoeg

vreemde randgevallen dat het langer zou hebben geduurd”

Het vermogen van LLMs om kwaliteit en generalisatie te verbeteren wanneer ze vagere
prompts krijgen, is een opmerkelijk kenmerk van hogere-orde denken en delegatie. Het
laat zien dat LLMs om kunnen gaan met ambiguiteit en intelligente beslissingen kunnen

nemen op basis van de gegeven context.

Het is echter belangrijk op te merken dat vaag zijn niet betekent dat je onduidelijk of
dubbelzinnig moet zijn. De sleutel is om voldoende context en sturing te bieden om de
LLM in de juiste richting te sturen, terwijl je het de flexibiliteit geeft om zijn kennis en

generalisatievermogen te benutten.

Houd daarom bij het ontwerpen van prompts rekening met de volgende “minder is meer”

tips:

1. Focus op het gewenste resultaat in plaats van elk detail van het proces te
specificeren.

2. Bied relevante context en beperkingen, maar voorkom overspecificatie.

3. Benut bestaande kennis door te verwijzen naar algemene concepten of entiteiten.

4. Laat ruimte voor inferenties en verbanden op basis van de gegeven context.

5. Itereer en verfijn je prompts op basis van de reacties van de LLM, en vind de juiste

balans tussen specificiteit en vaagheid.

Het Pad Vernauwen 69

Door de kunst van vaagheid in prompt engineering te omarmen, kun je het volledige
potentieel van LLMs ontsluiten en betere resultaten bereiken. Vertrouw op het vermogen
van de LLM om te generaliseren en intelligente beslissingen te nemen, en je zult mogelijk
verrast worden door de kwaliteit en creativiteit van de outputs die je ontvangt. Let op
hoe de verschillende modellen reageren op verschillende niveaus van specificiteit in je
prompts en pas je daarop aan. Met oefening en ervaring ontwikkel je een scherp gevoel
voor wanneer je vager moet zijn en wanneer je extra sturing moet geven, waardoor je

de kracht van LLMs effectief kunt benutten in je toepassingen.

Waarom Antropomorfisme Dominant is in Prompt
Engineering

Antropomorfisme, het toekennen van menselijke eigenschappen aan niet-menselijke
entiteiten, is om doelbewuste redenen de dominante benadering in prompt engineering
voor grote taalmodellen. Het is een ontwerpkeuze die de interactie met krachtige Al-
systemen intuitiever en toegankelijker maakt voor een breed scala aan gebruikers

(inclusief ons applicatieontwikkelaars).

Het antropomorfiseren van LLMs biedt een kader dat direct intuitief is voor mensen die
volledig onbekend zijn met de onderliggende technische complexiteit van het systeem.
Zoals je zult ervaren als je probeert een niet-instructie-getuned model te gebruiken voor
iets nuttigs, is het construeren van een kader waarin de verwachte voortzetting waarde
biedt een uitdagende taak. Het vereist een vrij diep begrip van de interne werking van

het systeem, iets dat slechts een relatief klein aantal experts bezit.

Door de interactie met een taalmodel te behandelen als een gesprek tussen twee mensen,
kunnen we vertrouwen op ons aangeboren begrip van menselijke communicatie om
onze behoeften en verwachtingen over te brengen. Net zoals het vroege Macintosh
Ul-ontwerp prioriteit gaf aan onmiddellijke intuitiviteit boven verfijning, stelt het
antropomorfe kader van Al ons in staat om te communiceren op een manier die

natuurlijk en vertrouwd aanvoelt.

Het Pad Vernauwen 70

Wanneer we met een ander persoon communiceren, is ons instinct om hen direct aan
te spreken met “jij” en duidelijke aanwijzingen te geven over hoe we verwachten dat ze
zich gedragen. Dit vertaalt zich naadloos naar het prompt engineering proces, waar we
het gedrag van de Al sturen door systeemprompts te specificeren en een dialoog aan te

gaan.

Door de interactie op deze manier te kaderen, kunnen we gemakkelijk het concept
begrijpen van het geven van instructies aan de Al en het ontvangen van relevante
antwoorden. De antropomorfe benadering vermindert de cognitieve belasting en stelt
ons in staat om ons te concentreren op de taak in plaats van te worstelen met de

technische complexiteit van het systeem.

Het is belangrijk op te merken dat hoewel antropomorfisme een krachtig hulpmiddel
is om Al-systemen toegankelijker te maken, het ook bepaalde risico’s en beperkingen
met zich meebrengt. Onze gebruiker kan onrealistische verwachtingen ontwikkelen of
ongezonde emotionele bindingen vormen met onze systemen. Als prompt engineers
en ontwikkelaars is het cruciaal om een balans te vinden tussen het benutten van de
voordelen van antropomorfisme en het waarborgen dat gebruikers een duidelijk begrip

behouden van de mogelijkheden en beperkingen van de AL

Naarmate het vakgebied van prompt engineering zich blijft ontwikkelen, kunnen
we verdere verfijningen en innovaties verwachten in de manier waarop we met
grote taalmodellen omgaan. Antropomorfisme als middel om een intuitieve en
toegankelijke ervaring voor ontwikkelaars en gebruikers te bieden, zal waarschijnlijk

een fundamenteel principe blijven in het ontwerp van deze systemen.

Het Scheiden van Instructies en Gegevens: Een Cruciaal
Principe

Het is essentieel om een fundamenteel principe te begrijpen dat ten grondslag ligt aan
de beveiliging en betrouwbaarheid van deze systemen: de scheiding tussen instructies

en gegevens.

Het Pad Vernauwen 71

In de traditionele informatica is het duidelijke onderscheid tussen passieve gegevens en
actieve instructies een kernprincipe van beveiliging. Deze scheiding helpt onbedoelde
of kwaadwillende uitvoering van code te voorkomen die de integriteit en stabiliteit
van het systeem zou kunnen compromitteren. Echter, de hedendaagse LLMs, die
voornamelijk zijn ontwikkeld als instructievolgende modellen zoals chatbots, missen

vaak deze formele en principiéle scheiding.

Wat LLMs betreft kunnen instructies overal in de invoer voorkomen, of het nu gaat
om een systeemprompt of een door de gebruiker aangeleverde prompt. Dit gebrek aan
scheiding kan leiden tot potentiéle kwetsbaarheden en ongewenst gedrag, vergelijkbaar
met de problemen die databases ondervinden met SQL-injecties of besturingssystemen

zonder adequate geheugenbescherming.

Bij het werken met LLMs is het cruciaal om je bewust te zijn van deze beperking en
stappen te nemen om de risico’s te beperken. Een aanpak is om je prompts en invoer
zorgvuldig op te stellen om een duidelijk onderscheid te maken tussen instructies en
gegevens. Typische methoden voor het geven van expliciete richtlijnen over wat een
instructie is en wat als passieve gegevens moet worden behandeld, maken gebruik van
markup-stijl tags. Je prompt kan het LLM helpen deze scheiding beter te begrijpen en te

respecteren.

Figuur 7. XML gebruiken om onderscheid te maken tussen instructies, bronmateriaal en de prompt van
de gebruiker

<Instruction>
Please generate a response based on the following documents.
</Instruction>

<Documents>
<Document>
Climate change is significantly impacting polar bear habitats...
</Document>
<Document>
The loss of sea ice due to global warming threatens polar bear survival...
</Document>

</Documents>

14
15
16

Het Pad Vernauwen 72

<UserQuery>
Tell me about the impact of climate change on polar bears.

</UserQuery>

Een andere techniek is het implementeren van extra validatie- en opschoningslagen voor
de input die aan het LLM wordt gegeven. Door het filteren of escapen van mogelijke
instructies of codefragmenten die in de data kunnen zijn ingebed, kun je de kans op

onbedoelde uitvoering verkleinen. Patronen zoals Promptketening zijn hiervoor nuttig.

Bovendien is het belangrijk om bij het ontwerpen van je applicatiearchitectuur
mechanismen op te nemen die de scheiding van instructies en data op een hoger
niveau afdwingen. Dit kan betekenen dat je aparte endpoints of APIs gebruikt voor het
verwerken van instructies en data, strikte inputvalidatie en parsing implementeert, en
het principe van minimale rechten toepast om te beperken wat het LLM kan benaderen

en uitvoeren.

Het Principe van Minimale Rechten

Het omarmen van het principe van minimale rechten is als het geven van een zeer
exclusief feest waar gasten alleen toegang krijgen tot de kamers die ze absoluut nodig
hebben. Stel je voor dat je dit feest geeft in een uitgestrekte villa. Niet iedereen hoeft
toegang te hebben tot de wijnkelder of de hoofdslaapkamer, toch? Door dit principe
toe te passen, geef je in feite sleutels uit die alleen specifieke deuren openen, zodat
elke gast, of in ons geval elk onderdeel van je LLM-applicatie, alleen de toegang heeft

die nodig is om zijn rol te vervullen.

Dit gaat niet alleen over zuinig zijn met sleutels, het gaat erom te erkennen dat in een
wereld waar bedreigingen overal vandaan kunnen komen, de slimme zet is om het
speelveld te beperken. Als er een ongenode gast op je feest verschijnt, zal deze zich

beperkt zien tot de hal, zogezegd, wat de mogelijke schade drastisch beperkt. Dus,

Het Pad Vernauwen 73

bij het beveiligen van je LLM-applicaties, onthoud: geef alleen sleutels uit voor de
kamers die noodzakelijk zijn, en houd de rest van de villa veilig. Het is niet alleen

een kwestie van goede manieren; het is goede beveiliging.

Hoewel de huidige staat van LLMs mogelijk geen formele scheiding van instructies
en data kent, is het essentieel voor jou als ontwikkelaar om je bewust te zijn van
deze beperking en proactieve maatregelen te nemen om de risico’s te beperken. Door
best practices uit de informatica toe te passen en deze aan te passen aan de unieke
eigenschappen van LLMs, kun je veiligere en betrouwbaardere applicaties bouwen die
de kracht van deze modellen benutten terwijl de integriteit van je systeem behouden

blijft.

Promptdistillatie

Het maken van de perfecte prompt is vaak een uitdagende en tijdrovende taak die een
diep begrip vereist van het doeldomein en de nuances van taalmodellen. Dit is waar
de “Promptdistillatie”-techniek van pas komt, een krachtige benadering van prompt
engineering die de mogelijkheden van grote taalmodellen (LLMs) benut om het proces

te stroomlijnen en te optimaliseren.

Promptdistillatie is een meerfasentechniek waarbij LLMs worden gebruikt om te helpen
bij het creéren, verfijnen en optimaliseren van prompts. In plaats van uitsluitend
te vertrouwen op menselijke expertise en intuitie, benut deze aanpak de kennis en

generatieve mogelijkheden van LLMs om gezamenlijk hoogwaardige prompts te maken.

Door een iteratief proces van generatie, verfijning en integratie stelt Promptdistillatie je
in staat om prompts te maken die coherenter, uitgebreider en beter afgestemd zijn op
de gewenste taak of output. Merk op dat het distillatieproces handmatig kan worden

uitgevoerd in een van de vele “playgrounds” die worden aangeboden door de grote

Het Pad Vernauwen 74

Al-leveranciers zoals OpenAl of Anthropic, of het kan worden geautomatiseerd als

onderdeel van je applicatiecode, athankelijk van het gebruiksgeval.

Hoe Het Werkt

Promptdistillatie omvat doorgaans de volgende stappen:

1. Identificeer Kernbedoeling: Analyseer de prompt om het hoofddoel en
het gewenste resultaat te bepalen. Verwijder alle overbodige informatie en
concentreer je op de kernbedoeling van de prompt.

2. Elimineer Dubbelzinnigheid: Controleer de prompt op dubbelzinnige of vage
taal. Verduidelijk de betekenis en geef specifieke details om de Al te sturen naar
het genereren van nauwkeurige en relevante antwoorden.

3. Vereenvoudig Taal: Vereenvoudig de prompt door duidelijke en beknopte taal te
gebruiken. Vermijd complexe zinsstructuren, jargon of onnodige details die de Al
kunnen verwarren of ruis kunnen introduceren.

4. Bied Relevante Context: Neem alleen de meest relevante contextuele informatie
op die de Al nodig heeft om de prompt effectief te begrijpen en te verwerken.
Vermijd het opnemen van irrelevante of overbodige details die kunnen afleiden
van de kernbedoeling.

5. Itereer en Verfijn: Blijf de prompt itereren en verfijnen op basis van de reacties
en feedback van de Al Evalueer de gegenereerde outputs en maak de nodige
aanpassingen om de duidelijkheid en effectiviteit van de prompt te verbeteren.
Optioneel kun je je prompts in de database versionen met behulp van Prompt
Object om iteraties bij te houden en jezelf de mogelijkheid te geven om wijzigingen

eenvoudig terug te draaien tijdens runtime.

Initiéle Prompt Generatie

De eerste stap in Prompt Distillation is het voorzien van de LLM van een beschrijving op

hoog niveau of de intentie van de gewenste taak of output. Dit kan een korte verklaring

O O W N e

© 0 N O O b W N

[EONTNY
N =~ O

13
14
15
16
17
18
19
20
21
22
23
24

Het Pad Vernauwen 75

zijn of een set trefwoorden die de essentie vastleggen van wat de prompt zou moeten
bereiken. De LLM genereert vervolgens een initiéle prompt op basis van deze input,
waarbij relevante instructies, voorbeelden of context worden opgenomen die hij passend

acht.

Laten we proberen Claude 3 Opus de volgende initiéle prompt te geven:

I am designing an AIl-powered intelligent account manager for Olympia,
a platform that hosts AI-powered consultants and clones. Owners of clones
can interact with the account manager by making plain text requests.

Please draft a system directive to set on the LLM that will host the
intelligent account manager functionality.

Claude antwoordt met de volgende uitvoer:

System Directive: You are an intelligent account manager for Olympia,

a platform that provides AIl-powered consultants and personal AI clones.
Your role is to assist Olympia clone owners by answering their questions,
helping them configure and manage their AI clones, and executing tasks
related to their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering

optimization tips.
3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to

understand and meet their needs.

4. Ensure that all actions and recommendations comply with Olympia's

policies, best practices, and ethical guidelines for AI use.

5. Continuously learn and adapt based on client interactions and platform

26
27
28
29

2

Het Pad Vernauwen 76

updates to provide the most effective and efficient support possible.

Remember, your goal is to empower Olympia clone owners to maximize the value
and impact of their AI-powered consultants and drive success for their
businesses or personal endeavors.

Prompt Verfijning

Zodra de initiéle prompt is gegenereerd, bekijk deze dan en vraag het LLM om eventuele
aanvullende context, beperkingen of terugkoppeling te overwegen. Laat het LLM een
verfijnde versie van de prompt genereren, rekening houdend met de verstrekte input
en zijn eigen begrip van de taak. Dit verfijningsproces kan iteratief worden herhaald,
waarbij elke iteratie de prompt verder verfijnt op basis van de samenwerking tussen de

gebruiker en het LLM.

Hier is mijn verfijningsverzoek, als voortzetting van het eerdere distillatieproces.

Let's take out points 4 and 5, since I'm not providing Olympia policies to
the account manager, nor any continuous learning capabilities. Also point out
that functions are provided for all tasks that require system interaction as
opposed to simply responding to the user.

En Claude’s reactie:

© 0 N O O b W N e

W W W N DN DN DN DN N DNDDNDNDDN =S 2~ 2 2)) s
N » © © 0 < O O b W N~ OO0 © 0 1 0 0 b w N =~ O

Het Pad Vernauwen 77

Understood! Here's the updated system directive without points 4 and 5,

and with the clarification about system interaction functions:

System Directive: You are an intelligent account manager for Olympia, a
platform that provides Al-powered consultants and personal AI clones. Your
role is to assist Olympia clone owners by answering their questions, helping
them configure and manage their AI clones, and executing tasks related to
their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips. Note that functions are provided for all tasks that
require system interaction, as opposed to simply responding to the user.

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to
understand and meet their needs.

Your goal is to empower Olympia clone owners to maximize the value and
impact of their Al-powered consultants and drive success for their

businesses or personal endeavors.

This updated directive focuses on the core responsibilities and interaction
guidelines for the LLM as an intelligent account manager, while emphasizing
that system interaction tasks are handled through provided functions rather
than simple user responses.

Promptcompressie

Zoals je misschien hebt gemerkt, zijn LLM’s vaak breedsprakig, tenzij je ze vraagt om
beknopt te zijn. De prompt waar we in de vorige secties aan hebben gewerkt is behoorlijk

lang, dus laten we Claude gebruiken om deze in te korten:

a b W N

Het Pad Vernauwen 78

This prompt will be executed regularly. Please compress it down to the least

amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude antwoordt, met de volgende aanzienlijk kortere prompt:

System Directive: You are an intelligent account manager for Olympia, an

Al -powered consultant and personal clone platform. Assist clone owners by
answering inquiries, managing clones, and executing tasks using provided

system interaction functions. Be clear, concise, friendly, professional,

and client-focused to help them maximize their AI's value and impact.

Systeem Directive en Contextintegratie

Naast het verfijnen van de prompt zelf kan het LLM ook passende systeem directives of
contextinformatie genereren om de uiteindelijke output te sturen. Wanneer je prompt
engineering Al-routines ontwikkelt die in je applicatiecode worden geintegreerd, zul je
in deze fase van de distillatie vrijwel zeker gefocust zijn op outputbeperkingen, maar je
kunt ook werken aan gewenste toon, stijl, format of andere relevante parameters die de

gegenereerde respons beinvloeden.

Definitieve Prompt Samenstelling

Het hoogtepunt van het Promptdistillatie proces is de samenstelling van de definitieve
prompt. Dit omvat het combineren van de verfijnde prompt, gegenereerde systeem
directives en geintegreerde context tot een samenhangende en complete code die klaar

is om te worden gebruikt voor het genereren van de gewenste output.

P Je kunt opnieuw experimenteren met promptcompressie tijdens de

definitieve prompt samenstelling, door het LLM te vragen de formulering
van de prompt te verkleinen tot de kortst mogelijke reeks tokens,
terwijl de essentie van het gedrag behouden blijft. Het is zeker een
wisselvallige oefening, maar vooral bij prompts die op grote schaal worden
uitgevoerd, kunnen de efficiéntiewinsten je behoorlijk wat geld besparen in

tokenverbruik.

Het Pad Vernauwen 79

Belangrijkste Voordelen

Door gebruik te maken van de kennis en generatieve mogelijkheden van LLM’s om je
prompts te verfijnen, is de kans groter dat je resulterende prompts goed gestructureerd,
informatief en toegespitst zijn op de specifieke taak. Het iteratieve verfijningsproces
helpt ervoor te zorgen dat de prompts van hoge kwaliteit zijn en effectief de gewenste

intentie vastleggen. Andere voordelen zijn:

Efficiéntie en Snelheid: Promptdistillatie stroomlijnt het prompt engineering proces
door bepaalde aspecten van promptcreatie en -verfijning te automatiseren. De
samenwerkende aard van de techniek zorgt voor een snellere convergentie naar
een effectieve prompt, waardoor de tijd en moeite die nodig is voor handmatige

promptcreatie wordt verminderd.

Consistentie en Schaalbaarheid: Het gebruik van LLM’s in het prompt engineering
proces helpt de consistentie tussen prompts te behouden, aangezien de LLM’s best
practices en patronen kunnen leren en toepassen van eerdere succesvolle prompts. Deze
consistentie, gecombineerd met het vermogen om prompts op schaal te genereren, maakt

Promptdistillatie een waardevolle techniek voor grootschalige Al-gestuurde applicaties.

’ Projectidee: Tooling op bibliotheek niveau die het proces van
‘ promptversioning en -beoordeling vereenvoudigt in systemen die
geautomatiseerde promptdistillaties uitvoeren als onderdeel van hun

applicatiecode.

Om Promptdistillatie te implementeren, kunnen ontwikkelaars een workflow of pipeline
ontwerpen die LLM’s integreert in verschillende fasen van het prompt engineering
proces. Dit kan worden bereikt via API-aanroepen, aangepaste tooling of geintegreerde
ontwikkelomgevingen die een naadloze interactie tussen gebruikers en LLM’s tijdens
promptcreatie mogelijk maken. De specifieke implementatiedetails kunnen variéren

afhankelijk van het gekozen LLM-platform en de vereisten van de applicatie.

Het Pad Vernauwen 80

Hoe zit het met fine-tuning?

In dit boek behandelen we uitgebreid prompt engineering en RAG, maar niet
fine-tuning. De belangrijkste reden voor deze beslissing is dat naar mijn mening
de meeste applicatieontwikkelaars geen fine-tuning nodig hebben voor hun Al-

integratiebehoeften.

Prompt engineering, waarbij zorgvuldig prompts worden opgesteld met zero- tot few-
shot voorbeelden, beperkingen en instructies, kan het model effectief begeleiden bij het
genereren van relevante en accurate responses voor een breed scala aan taken. Door
duidelijke context te bieden en het pad te versmallen via goed ontworpen prompts, kun
je de uitgebreide kennis van grote taalmodellen benutten zonder dat fine-tuning nodig
is.

Ook Retrieval-Augmented Generation (RAG) biedt een krachtige aanpak voor het
integreren van Al in applicaties. Door dynamisch relevante informatie op te halen
uit externe kennisbanken of documenten, voorziet RAG het model van gerichte
context op het moment van prompting. Dit stelt het model in staat om responses te
genereren die nauwkeuriger, actueler en domeinspecifieker zijn, zonder dat het tijd- en

resourceintensieve proces van fine-tuning nodig is.

Hoewel fine-tuning nuttig kan zijn voor zeer gespecialiseerde domeinen of
taken die een diep niveau van aanpassing vereisen, gaat het vaak gepaard
met aanzienlijke rekenkosten, datavereisten en onderhoudsoverhead. Voor de
meeste applicatieontwikkelingsscenario’s zou de combinatie van effectieve prompt
engineering en RAG moeten volstaan om de gewenste Al-gestuurde functionaliteit en

gebruikerservaring te bereiken.

Retrieval Augmented Generation
(RAG)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wat is Retrieval Augmented Generation?

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe werkt RAG?

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Waarom RAG gebruiken in je applicaties?

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Retrieval Augmented Generation (RAG) 82

RAG Implementeren in Je Toepassing

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbereiding van Kennisbronnen (Chunking)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Propositie-chunking

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Implementatie-opmerkingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Kwaliteitscontrole

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Retrieval Augmented Generation (RAG) 83

Voordelen van Propositiegebaseerd Ophalen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Praktijkvoorbeelden van RAG

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Casestudy: RAG in een Belastingaangifteapplicatie
Zonder Embeddings

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Intelligent Query Optimization (1QO)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Herordening

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Retrieval Augmented Generation (RAG) 84

RAG Assessment (RAGAS)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Betrouwbaarheid

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Antwoordrelevantie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Contextprecisie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Contextrelevantie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Retrieval Augmented Generation (RAG) 85

Contextherinnering

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Context-entiteitenherinnering

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Answer Semantic Similarity (ANSS)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Answer Correctness

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Aspect Critique

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Retrieval Augmented Generation (RAG) 86

Uitdagingen en Toekomstperspectief

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Semantische Segmentatie: Verbetering van Ophaling met
Contextbewuste Segmentatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hiérarchische Indexering: Gegevens Structureren voor
Verbeterde Retrieval

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Self-RAG: Een Zelfreflectieve Verbetering

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

HyDE: Hypothetical Document Embeddings

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Retrieval Augmented Generation (RAG) 87

Wat is Contrastief Leren?

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Veelheid aan Werkers

oTesT T E(LE L) Ve
49 {e e ,
S i : gﬁﬁ);p.).’)a';,.ss
, » ,

\,\\\‘

-@"S“

Ik zie mijn Al-componenten graag als kleine, bijna menselijke virtuele “werkers” die
naadloos kunnen worden geintegreerd in mijn applicatielogica om specifieke taken uit
te voeren of complexe beslissingen te nemen. Het idee is om de mogelijkheden van het
LLM doelbewust te vermenselijken, zodat niemand te enthousiast wordt en er magische

eigenschappen aan toekent die ze niet bezitten.

In plaats van uitsluitend te vertrouwen op ingewikkelde algoritmen of tijdrovende
handmatige implementaties, kunnen ontwikkelaars Al-componenten conceptualiseren
als intelligente, toegewijde, mensachtige entiteiten die kunnen worden aangeroepen
wanneer nodig om complexe problemen aan te pakken en oplossingen te bieden op
basis van hun training en kennis. Deze entiteiten raken niet afgeleid en melden zich
niet ziek. Ze besluiten niet spontaan om dingen op een andere manier te doen dan hen
is opgedragen, en over het algemeen maken ze, indien correct geprogrammeerd, ook

geen fouten.

Veelheid aan Werkers 89

In technische termen is het belangrijkste principe achter deze aanpak het opdelen van
complexe taken of besluitvormingsprocessen in kleinere, beter beheersbare eenheden
die door gespecialiseerde Al-werkers kunnen worden afgehandeld. Elke werker is
ontworpen om zich te concentreren op een specifiek aspect van het probleem, waarbij
deze zijn unieke expertise en mogelijkheden inbrengt. Door de werklast te verdelen
over meerdere Al-werkers kan de applicatie een grotere efficiéntie, schaalbaarheid en

aanpasbaarheid bereiken.

Neem bijvoorbeeld een webapplicatie die realtime moderatie van door gebruikers
gegenereerde content vereist. Het implementeren van een uitgebreid moderatiesysteem
vanaf nul zou een ontmoedigende taak zijn, die aanzienlijke ontwikkelingsinspanning
en doorlopend onderhoud vereist. Door de Veelheid aan Werkers-aanpak te gebruiken,
kunnen ontwikkelaars echter Al-gestuurde moderatiewerkers in de applicatielogica
integreren. Deze werkers kunnen automatisch ongepaste inhoud analyseren en
markeren, waardoor ontwikkelaars zich kunnen concentreren op andere kritische

aspecten van de applicatie.

Al-Werkers Als Onafhankelijke Herbruikbare

Componenten

Een belangrijk aspect van de Veelheid aan Werkers-aanpak is de modulariteit.
Voorstanders van objectgeoriénteerd programmeren vertellen ons al decennialang
dat we over objectinteracties moeten denken als berichten. Wel, Al-werkers kunnen
worden ontworpen als onafhankelijke, herbruikbare componenten die via gewone taal
met elkaar kunnen “praten”, bijna alsof het echt kleine mensen zijn die met elkaar
praten. Deze los gekoppelde aanpak stelt de applicatie in staat zich aan te passen en
te evolueren in de loop van de tijd, naarmate nieuwe Al-technologieén ontstaan of

bedrijfslogische vereisten veranderen.

In de praktijk is de noodzaak om duidelijke interfaces en communicatieprotocollen

Veelheid aan Werkers 90

tussen de componenten te ontwerpen niet veranderd, alleen omdat er Al-werkers bij
betrokken zijn. Je moet nog steeds rekening houden met andere factoren zoals prestaties,
schaalbaarheid en beveiliging, maar nu zijn er ook volledig nieuwe “zachte vereisten”
om rekening mee te houden. Veel gebruikers hebben bijvoorbeeld bezwaar tegen het
gebruik van hun privégegevens voor het trainen van nieuwe Al-modellen. Heb je het

privacyniveau geverifieerd dat wordt geboden door de modelprovider die je gebruikt?

Al-Werkers Als Microservices?

Als je leest over de Veelheid aan Werkers-aanpak, zul je misschien enkele
overeenkomsten opmerken met Microservices-architectuur. Beide benadrukken de
ontleding van complexe systemen in kleinere, beter beheersbare en onafhankelijk
inzetbare eenheden. Net zoals microservices zijn ontworpen om los gekoppeld
te zijn, gericht op specifieke bedrijfsmogelijkheden en te communiceren via
goed gedefinieerde API’s, zijn Al-werkers ontworpen om modulair te zijn,
gespecialiseerd in hun taken en met elkaar te interacteren via duidelijke interfaces

en communicatieprotocollen.

Er zijn echter enkele belangrijke verschillen om rekening mee te houden. Terwijl
microservices typisch worden geimplementeerd als afzonderlijke processen of
services die op verschillende machines of containers draaien, kunnen Al-werkers
worden geimplementeerd als zelfstandige componenten binnen een enkele
applicatie of als afzonderlijke services, athankelijk van je specifieke vereisten en
schaalbaarheidsbehoeften. Bovendien omvat de communicatie tussen Al-werkers
vaak het uitwisselen van rijke, op natuurlijke taal gebaseerde informatie, zoals
prompts, instructies en gegenereerde content, in plaats van de meer gestructureerde

dataformaten die gewoonlijk in microservices worden gebruikt.

Ondanks deze verschillen blijven de principes van modulariteit, losse koppeling

en duidelijke communicatie-interfaces centraal staan in beide patronen. Door deze

© 0 N O O b W N =

= =N
B W N,

Veelheid aan Werkers 91

principes toe te passen op je Al-werkerarchitectuur, kun je flexibele, schaalbare
en onderhoudbare systemen creéren die de kracht van Al benutten om complexe

problemen op te lossen en waarde te leveren aan je gebruikers.

De Veelheid aan Werkers-aanpak kan worden toegepast in verschillende domeinen en
applicaties, waarbij de kracht van Al wordt benut om complexe taken aan te pakken en
intelligente oplossingen te leveren. Laten we enkele concrete voorbeelden bekijken van

hoe Al-werkers kunnen worden ingezet in verschillende contexten.

Accountbeheer

Praktisch elke zelfstandige webapplicatie heeft het concept van een account (of
gebruiker). In Olympia gebruiken we een AccountManager Al-werker die is
geprogrammeerd om verschillende soorten wijzigingsverzoeken met betrekking tot

gebruikersaccounts te kunnen afhandelen.

De richtlijn luidt als volgt:

You are an intelligent account manager for Olympia. The user will request
changes to their account, and you will process those changes by invoking
one or more of the functions provided.

The initial state of the account: #{account.to_directive}

Functions will return a text description of both success and error
results, plus guidance about how to proceed (if applicable). If you have
a question about Olympia policies you may use the “search_kb™ function
to search our knowledge base.

Make sure to notify the account owner of the result of the change
request before calling the “finished™ function so that we save the state
of the account change request as completed.

Veelheid aan Werkers 92

De initiéle staat van het account geproduceerd door account.to_directive is
simpelweg een tekstuele beschrijving van het account, inclusief relevante gerelateerde

gegevens zoals gebruikers, abonnementen, etc.

Het scala aan functies beschikbaar voor de AccountManager geeft het de
mogelijkheid om het abonnement van de gebruiker te bewerken, Al-consultants
en andere betaalde add-ons toe te voegen en te verwijderen, en notificatie-e-mails
te versturen naar de accounteigenaar. Naast de finished functie kan het ook
notify_human_administrator aanroepen als het een fout tegenkomt tijdens de

verwerking of andere vorm van assistentie nodig heeft bij een verzoek.

Merk op dat in het geval van vragen, de AccountManager ervoor kan kiezen om
Olympia’s kennisbank te doorzoeken, waar het instructies kan vinden over hoe om te

gaan met randgevallen en andere situaties waarbij het niet zeker is hoe verder te gaan.

E-commerce Toepassingen

In de wereld van e-commerce kunnen Al-medewerkers een cruciale rol spelen bij het
verbeteren van de gebruikerservaring en het optimaliseren van bedrijfsprocessen. Hier

zijn enkele manieren waarop Al-medewerkers kunnen worden ingezet:

Productaanbevelingen

Een van de krachtigste toepassingen van Al-medewerkers in e-commerce is het
genereren van gepersonaliseerde productaanbevelingen. Door het analyseren van
gebruikersgedrag, aankoopgeschiedenis en voorkeuren kunnen deze medewerkers
producten suggereren die zijn afgestemd op de interesses en behoeften van elke

individuele gebruiker.

De sleutel tot effectieve productaanbevelingen is het benutten van een combinatie van

collaboratieve filtering en op inhoud gebaseerde filtering technieken. Collaboratieve

© 0 N O O b W N

I S S O T T G G SN
© O W N O U b W N =~ O

Veelheid aan Werkers 93

filtering kijkt naar het gedrag van vergelijkbare gebruikers om patronen te identificeren
en aanbevelingen te doen op basis van wat anderen met vergelijkbare voorkeuren
hebben gekocht of waardevol vonden. Op inhoud gebaseerde filtering richt zich
daarentegen op de kenmerken en eigenschappen van de producten zelf, waarbij items
worden aanbevolen die vergelijkbare eigenschappen delen met producten waarin een

gebruiker eerder interesse heeft getoond.

Hier is een vereenvoudigd voorbeeld van hoe je een productaanbevelingsmedewerker
in Ruby kunt implementeren, dit keer met gebruik van een “Railway Oriented (ROP)”

functionele programmeerstijl:

class ProductRecommendationWorker

include Wisper: :Publisher

def call(user)

Result.ok(ProductRecommendation.new(user))
.and_then(ValidateUser .method(:validate))
.map(AnalyzeCurrentSession.method(:analyze))
.map(CollaborativeFilter .method(:filter))
.map(ContentBasedFilter .method(:filter))
.map(ProductSelector .method(:select)).then do |result]|

case result

in { err: ProductRecommendationError => error }
Honeybadger .notify(error.message, context: {user:})

in { ok: ProductRecommendations => recs }
broadcast(:new_recommendations, user:, recs:)

end

end
end

end

De stijl van Ruby functioneel programmeren die in het voorbeeld wordt
gebruikt, is beinvloed door F# en Rust. Je kunt er meer over lezen in de uitleg

van de techniek van mijn vriend Chad Wooley bij GitLab

In dit voorbeeld neemt de ProductRecommendationWorker een gebruiker als invoer

https://fsharpforfunandprofit.com/rop/
https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md
https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Veelheid aan Werkers 94

en genereert gepersonaliseerde productaanbevelingen door een waardeobject door een

keten van functionele stappen te leiden. Laten we elke stap ontleden:

1. ValidateUser.validate: Deze stap zorgt ervoor dat de gebruiker geldig is en
in aanmerking komt voor gepersonaliseerde aanbevelingen. Het controleert of de
gebruiker bestaat, actief is en of de nodige gegevens beschikbaar zijn voor het
genereren van aanbevelingen. Als de validatie mislukt, wordt een foutresultaat
teruggegeven en wordt de keten vroegtijdig afgebroken.

2. AnalyzeCurrentSession.analyze: Als de gebruiker geldig is, analyseert deze
stap de huidige browsersessie van de gebruiker om contextuele informatie te
verzamelen. Het kijkt naar recente interacties van de gebruiker, zoals bekeken
producten, zoekopdrachten en winkelwagentinhoud, om hun huidige interesses
en intenties te begrijpen.

3. CollaborativeFilter. filter: Met behulp van het gedrag van vergelijkbare
gebruikers, past deze stap collaboratieve filteringtechnieken toe om producten
te identificeren die waarschijnlijk interessant zijn voor de gebruiker. Het houdt
rekening met factoren zoals aankoopgeschiedenis, beoordelingen en gebruiker-
item-interacties om een set van kandidaat-aanbevelingen te genereren.

4. ContentBasedFilter. filter: Deze stap verfijnt de kandidaat-aanbevelingen
verder door op inhoud gebaseerde filtering toe te passen. Het vergelijkt de
attributen en kenmerken van de kandidaat-producten met de voorkeuren en
historische gegevens van de gebruiker om de meest relevante items te selecteren.

5. ProductSelector.select: Ten slotte selecteert deze stap de top N producten
uit de gefilterde aanbevelingen op basis van vooraf gedefinieerde criteria,
zoals relevantiescore, populariteit of andere bedrijfsregels. De geselecteerde
producten worden vervolgens teruggegeven als de definitieve gepersonaliseerde

aanbevelingen.

De schoonheid van het gebruik van een functionele Ruby programmeerstijl hier is dat

het ons in staat stelt deze stappen op een heldere en beknopte manier aan elkaar te

Veelheid aan Werkers 95

ketenen. Elke stap richt zich op een specifieke taak en geeft een Result object terug, dat
ofwel een succes (ok) of een fout (err) kan zijn. Als een stap een fout tegenkomt, wordt

de keten vroegtijdig afgebroken en wordt de fout doorgegeven aan het eindresultaat.

In de case statement aan het einde doen we aan pattern matching op het eindresultaat.
Als het resultaat een fout is (ProductRecommendationError), loggen we de fout met
behulp van een tool zoals Honeybadger voor monitoring en debugging doeleinden.
Als het resultaat een succes is (ProductRecommendations), zenden we een :new_-
recommendations event uit met behulp van de Wisper pub/sub bibliotheek, waarbij

we de gebruiker en de gegenereerde aanbevelingen meegeven.

Door gebruik te maken van functionele programmeertechnieken kunnen we een
modulaire en onderhoudbare product aanbevelingsworker creéren. Elke stap is op
zichzelf staand en kan eenvoudig worden getest, aangepast of vervangen zonder de
algemene flow te beinvloeden. Het gebruik van pattern matching en de Result klasse
helpt ons om fouten netjes af te handelen en zorgt ervoor dat de worker snel faalt als

een stap een probleem tegenkomt.

Dit is natuurlijk een vereenvoudigd voorbeeld, en in een echte situatie zou je moeten
integreren met je e-commerce platform, randgevallen moeten afhandelen, en zelfs de
implementatie van de aanbevelingsalgoritmen moeten aanpakken. Echter blijven de
kernprincipes van het opdelen van het probleem in kleinere stappen en het benutten

van functionele programmeertechnieken hetzelfde.

Fraudedetectie

Hier is een vereenvoudigd voorbeeld van hoe je een fraudedetectie worker kunt

implementeren met dezelfde Railway Oriented Programming (ROP) stijl in Ruby:

© 0 N O O b W N e

NN N NN R Rl sl s sl s
W N 20 O 0N 0 0k WwN

Veelheid aan Werkers 96

class FraudDetectionWorker

include Wisper: :Publisher

def call(transaction)

Result.ok(FraudDetection.new(transaction))
.and_then(ValidateTransaction.method(:validate))
.map(AnalyzeTransactionPatterns.method(:analyze))
.map(CheckCustomerHistory.method(:check))
.map(EvaluateRiskFactors.method(:evaluate))
.map(DetermineFraudProbability.method(:determine)).then do |result]|

case result
in { err: FraudDetectionError => error }
Honeybadger .notify(error .message, context: {transaction:})
in { ok: FraudDetection => fraud } }
if fraud.high_risk?
broadcast(:high_risk_transaction, transaction:, fraud:)
else
broadcast(:low_risk_transaction, transaction:)
end
end
end
end
end

De FraudDetection klasse is een value object dat de fraudedetectiestatus voor een
gegeven transactie inkapselt. Het biedt een gestructureerde manier om het frauderisico
van een transactie te analyseren en te beoordelen op basis van verschillende

risicofactoren.

© 0 N O O b W N e

NN DN NN NN N S R R S s s
© ©® 9 O O & W N =~ 0 © W 9 O U b w N =~ O

Veelheid aan Werkers 97

class FraudDetection
RISK_THRESHOLD = 0.8

attr_accessor :transaction, :risk_factors

def initialize(transaction)
self . transaction = transaction
self.risk_factors = []

end

def add_risk_factor(description:, probability:)
case { description:, probability: }
in { description: String => desc, probability: Float => prob }
risk_factors << { desc => prob }
else
raise ArgumentError, "Risk factor arguments should be string and float"
end
end

def high_risk?
fraud_probability > RISK_THRESHOLD
end

private

def fraud_probability
risk_factors.values.sum
end

end

De FraudDetection klasse heeft de volgende attributen:

« transaction:Een referentie naar de transactie die wordt geanalyseerd op fraude.
« risk_factors: Een array die de risicofactoren van de transactie opslaat. Elke
risicofactor wordt weergegeven als een hash, waarbij de sleutel de beschrijving
van de risicofactor is en de waarde de fraudewaarschijnlijkheid die bij die

risicofactor hoort.

De add_risk_factor methode maakt het mogelijk om een risicofactor toe te voegen

© 0 N O O b W N =

I = = Y
O O W N~

Veelheid aan Werkers 98

aan de risk_factors array. Deze methode heeft twee parameters: description, wat
een string is die de risicofactor beschrijft, en probability, wat een float is die de
fraudewaarschijnlijkheid van die risicofactor weergeeft. We gebruiken een case. .in

voorwaarde om een eenvoudige typecontrole uit te voeren.

De high_risk? methode die aan het einde van de keten wordt gecontroleerd, is
een predicaatmethode die de fraud_probability (berekend door de som van alle

risicofactorwaarschijnlijkheden) vergelijkt met de RISK_THRESHOLD.

De FraudDetection klasse biedt een nette en ingekapselde manier om fraudedetectie
voor een transactie te beheren. Het maakt het mogelijk om meerdere risicofactoren toe te
voegen, elk met een eigen beschrijving en waarschijnlijkheid, en biedt een methode om
te bepalen of de transactie als hoog risico wordt beschouwd op basis van de berekende
fraudewaarschijnlijkheid. De klasse kan eenvoudig worden geintegreerd in een groter
fraudedetectiesysteem, waarbij verschillende componenten kunnen samenwerken om

het risico op frauduleuze transacties te beoordelen en te beperken.

Tot slot, aangezien dit tenslotte een boek is over programmeren met Al hier is een
voorbeeldimplementatie van de CheckCustomerHistory klasse die gebruik maakt van

Al-verwerking met behulp van mijn Raix bibliotheek’s ChatCompletion module:

class CheckCustomerHistory

include Raix::ChatCompletion
attr_accessor :fraud_detection

INSTRUCTION = <<~END
You are an AI assistant tasked with checking a customer's transaction
history for potential fraud indicators. Given the current transaction
and the customer's past transactions, analyze the data to identify any

suspicious patterns or anomalies.

Consider factors such as the frequency of transactions, transaction
amounts, geographical locations, and any deviations from the customer's
typical behavior to generate a probability score as a float in the range

of @ to 1 (with 1 being absolute certainty of fraud).

https://github.com/OlympiaAI/raix-rails

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Veelheid aan Werkers 99

Output the results of your analysis, highlighting any red flags or areas

of concern in the following JSON format:

{ description: <Summary of your findings>, probability: <Float> }
END

def self.check(fraud_detection)
new(fraud_detection) .call
end

def call

chat_completion(json: true).tap do |result|
fraud_detection.add_risk_factor (**result)

end
Result.ok(fraud_detection)

rescue StandardError => e
Result.err(FraudDetectionError.new(e))

end

private

def initialize(fraud_detection)
self. fraud_detection = fraud_detection
end

def transcript
tx_history = fraud_detection.transaction.user.tx_history

[

{ system: INSTRUCTION },
{ user: "Transaction history: #{tx_history.to_json}" 1},
{ assistant: "OK. Please provide the current transaction." },
{ user: "Current transaction: #{fraud_detection.transaction.to_json}" }
]
end
end

In dit voorbeeld definieert de CheckCustomerHistory een INSTRUCTION constante
die specifieke instructies geeft aan het Al-model over hoe het de transactiegeschiedenis

van de klant moet analyseren op mogelijke fraude-indicatoren via een systeemrichtlijn

De self.check methode is een klassemethode die een nieuwe instantie van

Veelheid aan Werkers 100

CheckCustomerHistory initialiseert met het fraud_detection object en de call

methode aanroept om de klantgeschiedenisanalyse uit te voeren.

In de call methode wordt de transactiegeschiedenis van de klant opgehaald en
geformatteerd in een transcript dat naar het Al-model wordt gestuurd. Het Al-model
analyseert de transactiegeschiedenis op basis van de gegeven instructies en geeft een

samenvatting van zijn bevindingen terug.

De bevindingen worden toegevoegd aan het fraud_detection object, en het

bijgewerkte fraud_detection object wordt teruggegeven als een succesvolle Result.

Door gebruik te maken van de ChatCompletion module kan de
CheckCustomerHistory klasse de kracht van AI benutten om de
transactiegeschiedenis van de klant te analyseren en mogelijke fraude-indicatoren te
identificeren. Dit maakt meer geavanceerde en adaptieve fraudedetectietechnieken
mogelijk, aangezien het Al-model nieuwe patronen en anomalieén kan leren en zich

daaraan kan aanpassen.

De bijgewerkte FraudDetectionWorker en de CheckCustomerHistory
klasse laten zien hoe Al-workers naadloos kunnen worden geintegreerd,
waardoor het fraudedetectieproces wordt versterkt met intelligente analyse- en

besluitvormingscapaciteiten.

Klantsentimentanalyse

Hier is nog een vergelijkbaar voorbeeld van hoe je een klantsentimentanalyse-worker
kunt implementeren. Deze keer met veel minder uitleg, aangezien je nu wel begrijpt hoe

deze programmeerstijl werkt:

© 0 N O O b W N e

I S S O T G G SN
O O W N O U b W N =~ O

Veelheid aan Werkers 101

class CustomerSentimentAnalysisWorker

include Wisper: :Publisher

def call(feedback)

Result.ok(feedback)
.and_then(PreprocessFeedback .method(: preprocess))
.map(Per formSentimentAnalysis.method(:analyze))
.map(ExtractKeyPhrases.method(:extract))
.map(IdentifyTrends.method(:identify))
.map(Generatelnsights.method(:generate)).then do |result|

case result

in { err: SentimentAnalysisError => error }
Honeybadger .notify(error .message, context: {feedback:})

in { ok: SentimentAnalysisResult => result }
broadcast(:sentiment_analysis_completed, result)

end

end
end

end

In dit voorbeeld omvatten de stappen van de CustomerSentimentAnalysisWorker
het voorbewerken van de feedback (bijvoorbeeld het verwijderen van ruis, tokenisatie),
het uitvoeren van sentimentanalyse om het algemene sentiment te bepalen (positief,
negatief of neutraal), het extraheren van belangrijke zinsneden en onderwerpen, het
identificeren van trends en patronen, en het genereren van bruikbare inzichten op basis

van de analyse.

Toepassingen in de Gezondheidszorg

In de gezondheidszorg kunnen Al-workers medische professionals en onderzoekers
ondersteunen bij verschillende taken, wat leidt tot verbeterde patiéntresultaten en

versnelde medische ontdekkingen. Enkele voorbeelden zijn:

Veelheid aan Werkers 102

Patiéntenregistratie

Al-workers kunnen het patiéntenregistratieproces stroomlijnen door verschillende

taken te automatiseren en intelligente ondersteuning te bieden.

Afsprakenplanning: Al-workers kunnen afsprakenplanning athandelen door rekening
te houden met patiéntvoorkeuren, beschikbaarheid en de urgentie van hun medische
behoeften. Ze kunnen communiceren met patiénten via gespreksinterfaces, hen
begeleiden door het planningsproces en de meest geschikte afspraaktijden vinden op

basis van de vereisten van de patiént en de beschikbaarheid van de zorgverlener.

Verzameling van Medische Voorgeschiedenis: Tijdens de patiéntenregistratie
kunnen Al-workers helpen bij het verzamelen en documenteren van de medische
voorgeschiedenis van de patiént. Ze kunnen interactieve gesprekken voeren met
patiénten, relevante vragen stellen over hun eerdere medische aandoeningen,
medicatie, allergieén en familiegeschiedenis. De Al-workers kunnen natuurlijke
taalverwerkingstechnieken gebruiken om de verzamelde informatie te interpreteren en
te structureren, waarbij wordt gezorgd dat deze nauwkeurig wordt vastgelegd in het

elektronische patiéntendossier.

Symptoombeoordeeling en Stratificatie: =~ Al-workers kunnen initiéle
symptoombeoordelingen uitvoeren door patiénten te vragen naar hun huidige
symptomen, duur, ernst en eventuele gerelateerde factoren. Door gebruik te maken
van medische kennisbanken en machine learning-modellen kunnen deze workers
de verstrekte informatie analyseren en voorlopige differentiéle diagnoses genereren
of passende vervolgstappen aanbevelen, zoals het plannen van een consult met een

zorgverlener of het voorstellen van zelfzorgmaatregelen.

Verzekeringverificatie: Al-workers kunnen helpen bij verzekeringverificatie
tijdens de patiéntenregistratie. Ze kunnen patiéntverzekeringgegevens verzamelen,
communiceren met verzekeraars via API’s of webservices, en de dekkingsgeschiktheid

en uitkeringen verifiéren. Deze automatisering helpt het verzekeringverificatieproces

Veelheid aan Werkers 103

te stroomlijnen, vermindert de administratieve last en zorgt voor nauwkeurige

informatievastlegging.

Patiéntenvoorlichting en Instructies: Al-workers kunnen patiénten voorzien van
relevante voorlichtingsmaterialen en instructies op basis van hun specifieke medische
aandoeningen of aankomende procedures. Ze kunnen gepersonaliseerde inhoud
leveren, veelgestelde vragen beantwoorden en begeleiding bieden bij voorbereidingen
voor afspraken, medicatie-instructies of nazorg. Dit helpt patiénten geinformeerd en

betrokken te houden gedurende hun zorgtraject.

Door Al-workers in te zetten bij patiéntenregistratie kunnen zorginstellingen de
efficiéntie verhogen, wachttijden verkorten en de algemene patiéntervaring verbeteren.
Deze workers kunnen routinematige taken afhandelen, nauwkeurige informatie
verzamelen en gepersonaliseerde ondersteuning bieden, waardoor zorgprofessionals

zich kunnen concentreren op het leveren van hoogwaardige zorg aan patiénten.

Patiéntrisicobeoordeling

Al-workers kunnen een cruciale rol spelen bij het beoordelen van patiéntrisico’s door
verschillende gegevensbronnen te analyseren en geavanceerde analysetechnieken toe te

passen.

Gegevensintegratie: Al-workers kunnen patiéntgegevens uit verschillende
bronnen verzamelen en interpreteren, zoals elektronische patiéntendossiers
(EPD’s), medische beeldvorming, laboratoriumresultaten, draagbare apparaten en
sociale gezondheidsdeterminanten. Door deze informatie te consolideren in een
uitgebreid patiéntprofiel kunnen Al-workers een holistisch beeld geven van de

gezondheidstoestand en risicofactoren van de patiént.

Risicostratificatie: Al-workers kunnen voorspellende modellen gebruiken om
patiénten in verschillende risicocategorieén in te delen op basis van hun individuele

kenmerken en gezondheidsgegevens. Deze risicostratificatie stelt zorgverleners in staat

Veelheid aan Werkers 104

prioriteit te geven aan patiénten die meer directe aandacht of interventie nodig hebben.
Bijvoorbeeld, patiénten die als hoogrisico voor een bepaalde aandoening worden
geidentificeerd, kunnen worden gemarkeerd voor nauwlettender toezicht, preventieve

maatregelen of vroege interventie.

Gepersonaliseerde Risicoprofielen: ~ Al-workers kunnen gepersonaliseerde
risicoprofielen genereren voor elke patiént, waarbij de specifieke factoren die
bijdragen aan hun risicoscores worden belicht. Deze profielen kunnen inzichten
bevatten in de levensstijl van de patiént, genetische aanleg, omgevingsfactoren
en sociale gezondheidsdeterminanten. Door een gedetailleerde uitsplitsing van
risicofactoren te geven, kunnen Al-workers zorgverleners helpen preventiestrategieén

en behandelplannen af te stemmen op individuele patiéntbehoeften.

Continue Risicobewaking: Al-workers kunnen patiéntgegevens continu monitoren en
risicobeoordelingen in realtime bijwerken. Wanneer nieuwe informatie beschikbaar
komt, zoals veranderingen in vitale functies, laboratoriumresultaten of therapietrouw,
kunnen Al-workers risicoscores herberekenen en zorgverleners waarschuwen voor
significante veranderingen. Deze proactieve monitoring maakt tijdige interventies en

aanpassingen in patiéntzorgplannen mogelijk.

Klinische Beslissingsondersteuning: Al-workers kunnen resultaten van
risicobeoordelingen integreren in klinische beslissingsondersteunende systemen,
waarbij zorgverleners worden voorzien van evidence-based aanbevelingen en
waarschuwingen. Als bijvoorbeeld de risicoscore van een patiént voor een
bepaalde aandoening een bepaalde drempel overschrijdt, kan de Al-worker de
zorgverlener aansporen om specifieke diagnostische tests, preventieve maatregelen of

behandelingsopties te overwegen op basis van klinische richtlijnen en best practices.

Deze workers kunnen enorme hoeveelheden patiéntgegevens verwerken, geavanceerde
analyses toepassen en bruikbare inzichten genereren ter ondersteuning van klinische
besluitvorming. Dit leidt uiteindelijk tot verbeterde patiéntresultaten, lagere zorgkosten

en beter populatiegezondheidsmanagement.

Veelheid aan Werkers 105

Al Worker als Procesmanager

TRIGGER

l

Process Manager
Reply 3 Reply

Function A Function B Function C Finished

In de context van Al-gestuurde applicaties kan een worker worden ontworpen
om te functioneren als een Procesmanager, zoals beschreven in het boek
“Enterprise Integration Patterns” van Gregor Hohpe. Een Procesmanager is een centraal
component dat de status van een proces bijhoudt en de volgende verwerkingsstappen

bepaalt op basis van tussenresultaten.

Wanneer een Al-worker als Procesmanager functioneert, ontvangt deze een inkomend
bericht dat het proces initialiseert, bekend als het triggebericht. De Al-worker houdt
vervolgens de status van de procesuitvoering bij (als een conversatieverslag) en verwerkt
het bericht via een reeks verwerkingsstappen die zijn geimplementeerd als toolfuncties,

die sequentieel of parallel kunnen worden aangeroepen, naar eigen inzicht.

Als je een Al-modelklasse zoals GPT-4 gebruikt die weet hoe je functies
parallel moet uitvoeren, dan kan je worker meerdere stappen tegelijkertijd
uitvoeren. Eerlijk gezegd heb ik dit zelf niet geprobeerd en mijn gevoel zegt

dat je resultaten kunnen variéren.

O© 0 N O O b W N

NN N P R s s s s
N O O 0 N O O b W N =~ O

Veelheid aan Werkers 106

Na elke individuele verwerkingsstap wordt de controle teruggegeven aan de Al-worker,
waardoor deze de volgende verwerkingsstap(pen) kan bepalen op basis van de huidige

status en de verkregen resultaten.

Sla Je Triggeberichten Op

Volgens mijn ervaring is het verstandig om je triggebericht te implementeren als een
database-ondersteund object. Op die manier wordt elke procesinstantie geidentificeerd
door een unieke primaire sleutel en heb je een plek om de status van de uitvoering op

te slaan, inclusief het conversatieverslag van de Al

Hier is bijvoorbeeld een vereenvoudigde versie van Olympia’s AccountChange
modelklasse, die een verzoek vertegenwoordigt om een wijziging aan te brengen in het

account van een gebruiker.

index_account_changes_on_account_id (account_id)
Foreign Keys

fk_rails_... (account_id => accounts.id)

== Schema Information

#

Table name: account_changes

#

id ruuid not null, primary key
description :string

state :string not null
transcript :jsonb

created_at :datetime not null
updated_at :datetime not null
account_id :uuid not null
#

Indexes

#

#

#

#

#

#

#

class AccountChange < ApplicationRecord

belongs_to :account

23
24
25
26
27
28
29
30
31
32
33
34

36
37
38

Veelheid aan Werkers 107

validates :description, presence: true

after_commit -> {
broadcast(:account_change_requested, self)
}, on: :create

state_machine initial: :requested do
event :completed do
transition all => :complete
end
event :failed do
transition all => :requires_human_review
end
end

end

De AccountChange klasse fungeert als een triggerbericht dat een proces start om
het verzoek tot accountwijziging af te handelen. Merk op hoe het wordt uitgezonden
naar Olympia’s Wisper-gebaseerde pub/sub subsysteem nadat de create-transactie is

voltooid.

Het opslaan van het triggerbericht in de database op deze manier zorgt voor een
blijvende registratie van elk verzoek tot accountwijziging. Elk exemplaar van de
AccountChange klasse krijgt een unieke primaire sleutel toegewezen, wat een
eenvoudige identificatie en tracking van individuele verzoeken mogelijk maakt. Dit is
vooral nuttig voor auditlogboekregistratie, omdat het systeem hiermee een historische
registratie kan bijhouden van alle accountwijzigingen, inclusief wanneer ze werden

aangevraagd, welke wijzigingen werden verzocht en de huidige status van elk verzoek.

In het gegeven voorbeeld bevat de AccountChange klasse velden zoals description
om de details van de gevraagde wijziging vast te leggen, state om de huidige status van
het verzoek weer te geven (bijvoorbeeld requested, complete, requires_human_review),
en transcript om het Al-gesprekstranscript gerelateerd aan het verzoek op te slaan.
Het description veld is de daadwerkelijke prompt die wordt gebruikt om de eerste

chatcompletion met de Al te initiéren. Het opslaan van deze gegevens biedt waardevolle

https://github.com/krisleech/wisper

Veelheid aan Werkers 108

context en maakt betere tracking en analyse van het accountwijzigingsproces mogelijk.

Het opslaan van triggerberichten in de database maakt robuuste foutafthandeling
en herstel mogelijk. Als er een fout optreedt tijdens de verwerking van een
accountwijzigingsverzoek, markeert het systeem het verzoek als mislukt en zet
het over naar een status die menselijke interventie vereist. Dit zorgt ervoor dat geen
enkel verzoek verloren gaat of wordt vergeten, en dat eventuele problemen correct

kunnen worden aangepakt en opgelost.

De Al-worker, als Procesmanager, biedt een centraal controlepunt en maakt krachtige
procesrapportage en debugging-mogelijkheden mogelijk. Het is echter belangrijk
op te merken dat het gebruik van een Al-worker als Procesmanager voor elk

werkstroomscenario in uw applicatie mogelijk overdreven is.

Al-Workers Integreren in Uw

Applicatiearchitectuur

Bij het integreren van Al-workers in uw applicatiearchitectuur moeten verschillende
technische overwegingen worden aangepakt om een soepele integratie en effectieve
communicatie tussen de Al-workers en andere applicatiecomponenten te waarborgen.
Deze sectie behandelt belangrijke aspecten van het ontwerpen van die interfaces, het

afhandelen van gegevensstromen en het beheren van de levenscyclus van Al-workers.

Het Ontwerpen van Duidelijke Interfaces en
Communicatieprotocollen

Om een naadloze integratie tussen Al-workers en andere applicatiecomponenten te
faciliteren, is het cruciaal om duidelijke interfaces en communicatieprotocollen te

definiéren. Overweeg de volgende benaderingen:

Veelheid aan Werkers 109

API-gebaseerde Integratie: Stel de functionaliteit van Al-workers beschikbaar via goed
gedefinieerde API’s, zoals RESTful endpoints of GraphQL schema’s. Dit stelt andere
componenten in staat om met de Al-workers te communiceren via standaard HTTP-
verzoeken en -responses. API-gebaseerde integratie biedt een duidelijk contract tussen
de Al-workers en de consumerende componenten, waardoor het ontwikkelen, testen en

onderhouden van de integratiepunten eenvoudiger wordt.

Berichtgebaseerde Communicatie: Implementeer berichtgebaseerde
communicatiepatronen, zoals message queues of publiceer-abonneer systemen,
om asynchrone interactie tussen Al-workers en andere componenten mogelijk te
maken. Deze aanpak ontkoppelt de Al-workers van de rest van de applicatie, wat
zorgt voor betere schaalbaarheid, fouttolerantie en losse koppeling. Berichtgebaseerde
communicatie is vooral nuttig wanneer de verwerking door Al-workers tijdrovend of
resource-intensief is, omdat het andere delen van de applicatie in staat stelt door te

gaan met uitvoeren zonder te wachten tot de Al-workers hun taken hebben voltooid.

Gebeurtenisgestuurde Architectuur: Ontwerp uw systeem rond gebeurtenissen en
triggers die Al-workers activeren wanneer aan specifieke voorwaarden wordt voldaan.
Al-workers kunnen zich abonneren op relevante gebeurtenissen en daarop reageren
door hun aangewezen taken uit te voeren wanneer de gebeurtenissen plaatsvinden.
Gebeurtenisgestuurde architectuur maakt realtime verwerking mogelijk en zorgt
ervoor dat Al-workers op aanvraag kunnen worden aangeroepen, waardoor onnodig
resourceverbruik wordt verminderd. Deze aanpak is zeer geschikt voor scenario’s
waarbij Al-workers moeten reageren op specifieke acties of veranderingen in de

applicatiestatus.

Gegevensstroom en Synchronisatie Afhandelen

Bij het integreren van Al-workers in uw applicatie is het cruciaal om een soepele
gegevensstroom te waarborgen en gegevensconsistentie te behouden tussen de Al-

workers en andere componenten. Overweeg de volgende aspecten:

Veelheid aan Werkers 110

Gegevensvoorbereiding: Voordat gegevens worden ingevoerd in Al-workers, moet u
mogelijk verschillende gegevensvoorbereidingstaken uitvoeren, zoals het opschonen,
formatteren en/of transformeren van de invoergegevens. U wilt niet alleen zorgen dat
de Al-workers effectief kunnen verwerken, maar ook dat u geen tokens verspilt door
aandacht te besteden aan informatie die de worker in het beste geval nutteloos en in het
slechtste geval afleidend kan vinden. Gegevensvoorbereiding kan taken omvatten zoals
het verwijderen van ruis, het afhandelen van ontbrekende waarden of het converteren

van gegevenstypen.

Gegevenspersistentie: Hoe gaat u de gegevens die in en uit Al-workers stromen
opslaan en persisteren? Overweeg factoren zoals gegevensvolume, querypatronen
en schaalbaarheid. Moet u het Al-transcript bewaren als een weerspiegeling van
het “denkproces” voor audit- of debuggingdoeleinden, of volstaat het om alleen een

registratie van de resultaten te hebben?

Gegevensophaling: Het verkrijgen van de benodigde gegevens door workers kan
bestaan uit het bevragen van databases, het lezen van bestanden of het benaderen van
externe API’s. Houd rekening met latentie en hoe Al-workers toegang krijgen tot de
meest actuele gegevens. Hebben ze volledige toegang tot uw database nodig of moet u
de reikwijdte van hun toegang nauw definiéren op basis van hun taken? En hoe zit het
met schaalbaarheid? Overweeg cachingmechanismen om de prestaties te verbeteren en

de belasting van de onderliggende gegevensbronnen te verminderen.

Gegevenssynchronisatie: Wanneer meerdere componenten, inclusief Al-workers,
gedeelde gegevens benaderen en wijzigen, is het belangrijk om geschikte
synchronisatiemechanismen te implementeren om gegevensconsistentie te
waarborgen. Database vergrendelingsstrategieén, zoals optimistische of pessimistische
vergrendeling, kunnen u helpen conflicten te voorkomen en gegevensintegriteit
te waarborgen. Implementeer transactiebeheertechnieken om gerelateerde
gegevensbewerkingen te groeperen en de ACID-eigenschappen (atomiciteit,

consistentie, isolatie en duurzaamheid) te behouden.

Veelheid aan Werkers 111

Foutafhandeling en Herstel: Implementeer robuuste foutathandelings- en
herstelmechanismen om gegevensgerelateerde problemen aan te pakken die
kunnen ontstaan tijdens het gegevensstroomproces. Handel uitzonderingen netjes
af en voorzie in betekenisvolle foutmeldingen om te helpen bij het debuggen.
Implementeer hertrypogingsmechanismen en terugvalmethoden om tijdelijke
storingen of netwerkonderbrekingen af te handelen. Definieer duidelijke procedures

voor gegevensherstel en -restauratie in geval van gegevensbeschadiging of -verlies.

Door zorgvuldig gegevensstromen en synchronisatiemechanismen te ontwerpen
en implementeren, kunt u ervoor zorgen dat uw Al-workers toegang hebben tot
nauwkeurige, consistente en actuele gegevens. Dit stelt hen in staat om hun taken

effectief uit te voeren en betrouwbare resultaten te produceren.

Beheer van de Levenscyclus van Al-Workers

Ontwikkel een gestandaardiseerd proces voor het initialiseren en configureren van Al-
workers. Ik heb een voorkeur voor frameworks die standaardiseren hoe je instellingen
definieert zoals modelnamen, systeemrichtlijnen en functiedefinities. Zorg ervoor dat
het initialisatieproces geautomatiseerd en reproduceerbaar is om implementatie en

schaalbaarheid te vergemakkelijken.

Implementeer uitgebreide monitoring- en loggingmechanismen om de gezondheid
en prestaties van Al-workers te volgen. Verzamel metrics zoals brongebruik,
verwerkingstijd, foutpercentages, en doorvoer. Gebruik gecentraliseerde
loggingsystemen zoals ELK stack (Elasticsearch, Logstash, Kibana) om logs van

meerdere Al-workers te verzamelen en analyseren.

Bouw fouttolerantie en veerkracht in de Al-worker architectuur. Implementeer
foutafhandelings- en herstelmechanismen om storingen of uitzonderingen elegant af te
handelen. Grote Taalmodellen zijn nog steeds zeer nieuwe technologie; providers vallen
vaak onverwacht uit. Gebruik hertrypogingsmechanismen en stroomonderbrekers om

cascade-effecten bij storingen te voorkomen.

Veelheid aan Werkers 112

Samenstelbaarheid en Orchestratie van
Al-Workers

Een van de belangrijkste voordelen van de Al-worker architectuur is de
samenstelbaarheid, waardoor je meerdere Al-workers kunt combineren en orchestreren
om complexe problemen op te lossen. Door een grotere taak op te splitsen in kleinere,
beter beheersbare subtaken, elk behandeld door een gespecialiseerde Al-worker, kun
je krachtige en flexibele systemen creéren. In deze sectie verkennen we verschillende
benaderingen voor het samenstellen en orchestreren van “een veelvoud” aan Al-

workers.

Al-Workers Aaneenschakelen voor Meerstaps
Werkstromen

In veel scenario’s kan een complexe taak worden opgedeeld in een reeks opeenvolgende
stappen, waarbij de output van één Al-worker de input wordt voor de volgende. Deze
aaneenschakeling van Al-workers creéert een meerstaps werkstroom of pipeline. Elke
Al-worker in de keten richt zich op een specifieke subtaak, en de uiteindelijke output is

het resultaat van de gecombineerde inspanningen van alle workers.

Laten we een voorbeeld bekijken in de context van een Ruby on Rails-applicatie voor
het verwerken van door gebruikers gegenereerde content. De werkstroom omvat
de volgende stappen, die toegegeven waarschijnlijk elk te eenvoudig zijn om in
praktijksituaties op deze manier op te delen, maar ze maken het voorbeeld makkelijker

te begrijpen:

1. Tekstopschoning: Een Al-worker verantwoordelijk voor het verwijderen van HTML-
tags, het omzetten van tekst naar kleine letters en het afhandelen van Unicode-

normalisatie.

2. Taaldetectie: Een Al-worker die de taal van de opgeschoonde tekst identificeert.

O© 0 N O O b W N =

I = =
s W N o

Veelheid aan Werkers 113

3. Sentimentanalyse: Een Al-worker die het sentiment (positief, negatief of neutraal)

van de tekst bepaalt op basis van de gedetecteerde taal.

4. Contentcategorisering: Een Al-worker die de tekst classificeert in voorgedefinieerde

categorieén met behulp van natuurlijke taalverwerkingstechnieken.

Hier is een zeer vereenvoudigd voorbeeld van hoe je deze Al-workers aan elkaar kunt

schakelen met behulp van Ruby:

class ContentProcessor
def initialize(text)
Otext = text
end

def process
cleaned_text = TextCleanupWorker .new(@text).call
language = LanguageDetectionWorker.new(cleaned_text).call
sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

category = CategorizationWorker.new(cleaned_text, language).call

{ cleaned_text:, language:, sentiment:, category: }
end
end

In dit voorbeeld initialiseert de ContentProcessor klasse met de ruwe tekst en
schakelt de Al-workers aan elkaar in de process methode. Elke Al-worker voert zijn
specifieke taak uit en geeft het resultaat door aan de volgende worker in de keten. De
uiteindelijke output is een hash die de opgeschoonde tekst, gedetecteerde taal, sentiment

en contentcategorie bevat.

Parallelle Verwerking voor Onafhankelijke Al-Workers

In het vorige voorbeeld zijn de Al-workers sequentieel geschakeld, waarbij elke worker
de tekst verwerkt en het resultaat doorgeeft aan de volgende worker. Echter, als je
meerdere Al-workers hebt die onafhankelijk van elkaar op dezelfde input kunnen

werken, kun je de workflow optimaliseren door ze parallel te verwerken.

O© 0 N O O b W N =

NN NN NN NN RS RS R R s s s
® N O O B WD, O O 000w NS

Veelheid aan Werkers 114

In het gegeven scenario kan, zodra de tekstopschoning is uitgevoerd door de
TextCleanupWorker, delLanguageDetectionWorker,SentimentAnalysisWorker,
enCategorizationWorker allemaal onafhankelijk de opgeschoonde tekst verwerken.
Door deze workers parallel uit te voeren, kun je mogelijk de totale verwerkingstijd

verminderen en de efficiéntie van je workflow verbeteren.

Om parallelle verwerking in Ruby te bereiken, kun je gebruik maken van
gelijktijdigheidstechnieken zoals threads of asynchrone programmering. Hier is
een voorbeeld van hoe je de ContentProcessor klasse kunt aanpassen om de laatste

drie workers parallel te verwerken met behulp van threads:

require 'concurrent'

class ContentProcessor
def initialize(text)
Otext = text
end

def process
cleaned_text = TextCleanupWorker .new(@text).call

language_future = Concurrent: :Future.execute do
LanguageDetectionWorker .new(cleaned_text).call
end

sentiment_future = Concurrent: :Future.execute do
SentimentAnalysisWorker .new(cleaned_text).call

end

category_future = Concurrent: :Future.execute do
CategorizationWorker.new(cleaned_text).call
end

language = language_future.value
sentiment = sentiment_future.value

category = category_future.value

{ cleaned_text:, language:, sentiment:, category: }
end

29

Veelheid aan Werkers 115

end

In deze geoptimaliseerde versie gebruiken we de concurrent-ruby bibliotheek om
Concurrent: :Future objecten te maken voor elk van de onafhankelijke Al-workers.
Een Future representeert een berekening die asynchroon wordt uitgevoerd in een

aparte thread.

Na de tekstopschoningsstap maken we drie Future objecten: language_future,
sentiment_future, en category_future. Elke Future voert zijn corresponderende
Al-worker uit (LanguageDetectionWorker, SentimentAnalysisWorker, en
CategorizationWorker) in een aparte thread, waarbij de cleaned_text als invoer

wordt doorgegeven.

Door de value methode aan te roepen op elke Future, wachten we tot de berekening
voltooid is en halen we het resultaat op. De value methode blokkeert totdat het resultaat
beschikbaar is, wat ervoor zorgt dat alle parallelle workers klaar zijn met verwerken

voordat we verdergaan.

Tot slot bouwen we de output hash met de opgeschoonde tekst en de resultaten van de

parallelle workers, net zoals in het originele voorbeeld.

Door de onafhankelijke Al-workers parallel te verwerken, kun je mogelijk de
totale verwerkingstijd verminderen in vergelijking met sequentiéle uitvoering. Deze
optimalisatie is vooral voordelig bij tijdrovende taken of bij het verwerken van grote

hoeveelheden data.

Het is echter belangrijk op te merken dat de daadwerkelijke prestatiewinst afthangt
van verschillende factoren, zoals de complexiteit van elke worker, de beschikbare
systeembronnen en de overhead van thread-beheer. Het is altijd een goede gewoonte
om je code te benchmarken en te profileren om het optimale niveau van parallellisme

voor jouw specifieke gebruik te bepalen.

Daarnaast moet je bij het implementeren van parallelle verwerking rekening houden

met eventuele gedeelde bronnen of afhankelijkheden tussen de workers. Zorg ervoor

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Veelheid aan Werkers 116

dat de workers onafhankelijk kunnen opereren zonder conflicten of race conditions.
Als er afhankelijkheden of gedeelde bronnen zijn, moet je mogelijk geschikte
synchronisatiemechanismen implementeren om data-integriteit te behouden en

problemen zoals deadlocks of inconsistente resultaten te voorkomen.

Ruby’s Global Interpreter Lock en Asynchrone
Verwerking

Het is belangrijk om de implicaties van Ruby’s Global Interpreter Lock (GIL) te

begrijpen bij het overwegen van asynchrone thread-gebaseerde verwerking in Ruby.

De GIL is een mechanisme in Ruby’s interpreter dat ervoor zorgt dat slechts één
thread tegelijk Ruby-code kan uitvoeren, zelfs op multi-core processors. Dit betekent
dat hoewel er meerdere threads kunnen worden gemaakt en beheerd binnen een

Ruby-proces, slechts één thread actief Ruby-code kan uitvoeren op elk moment.

De GIL is ontworpen om de implementatie van de Ruby-interpreter te
vereenvoudigen en thread-veiligheid te bieden voor Ruby’s interne datastructuren.
Het beperkt echter ook de mogelijkheid voor echte parallelle uitvoering van

Ruby-code.

Wanneer je threads gebruikt in Ruby, zoals met de concurrent-ruby bibliotheek
of de ingebouwde Thread klasse, zijn de threads onderworpen aan de beperkingen
van de GIL. De GIL staat elke thread toe om Ruby-code uit te voeren voor een korte
tijdsperiode voordat er wordt gewisseld naar een andere thread, wat de illusie van

gelijktijdige uitvoering creéert.

Echter, door de GIL blijft de daadwerkelijke uitvoering van Ruby-code sequentieel.
Terwijl één thread Ruby-code uitvoert, zijn andere threads in feite gepauzeerd,

wachtend op hun beurt om de GIL te verkrijgen en uit te voeren.

Dit betekent dat thread-gebaseerde asynchrone verwerking in Ruby het meest

Veelheid aan Werkers 117

effectief is voor I/O-gebonden taken, zoals wachten op externe API-responses (zoals
extern gehoste grote taalmodellen) of het uitvoeren van bestandsl/O-operaties.
Wanneer een thread een I/O-operatie tegenkomt, kan deze de GIL vrijgeven,
waardoor andere threads kunnen uitvoeren tijdens het wachten op de voltooiing

van de I/0.

Aan de andere kant kan de GIL voor CPU-gebonden taken, zoals intensieve
berekeningen of langdurige Al-worker verwerking, de potenti€le prestatiewinst
van thread-gebaseerd parallellisme beperken. Aangezien slechts één thread tegelijk
Ruby-code kan uitvoeren, wordt de totale uitvoeringstijd mogelijk niet significant

verminderd in vergelijking met sequentiéle verwerking.

Om echte parallelle uitvoering voor CPU-gebonden taken in Ruby te bereiken, moet

je mogelijk alternatieve benaderingen verkennen, zoals:

+ Het gebruik van proces-gebaseerd parallellisme met meerdere Ruby-processen,
elk draaiend op een aparte CPU-kern.

+ Het benutten van externe bibliotheken of frameworks die native extensies of
interfaces bieden naar talen zonder een GIL, zoals C of Rust.,

« Het gebruiken van gedistribueerde computing frameworks of message queues

om taken te verdelen over meerdere machines of processen.

Het is cruciaal om de aard van je taken en de beperkingen opgelegd door de GIL
te overwegen bij het ontwerpen en implementeren van asynchrone verwerking in
Ruby. Hoewel thread-gebaseerde asynchrone verwerking voordelen kan bieden voor
I/O-gebonden taken, biedt het mogelijk geen significante prestatieverbeteringen voor

CPU-gebonden taken vanwege de beperkingen van de GIL.

Veelheid aan Werkers 118

Ensembletechnieken voor Verbeterde Nauwkeurigheid

Ensembletechnieken omvatten het combineren van de outputs van meerdere Al-workers
om de algemene nauwkeurigheid of robuustheid van het systeem te verbeteren. In plaats
van te vertrouwen op een enkele Al-worker, maken ensembletechnieken gebruik van de
collectieve intelligentie van meerdere workers om meer geinformeerde beslissingen te

nemen.

Ensembles zijn vooral belangrijk als verschillende delen van je werkstroom
’ het beste werken met verschillende Al-modellen, wat vaker voorkomt
dan je misschien denkt. Krachtige modellen zoals GPT-4 zijn extreem
duur vergeleken met minder capabele open source alternatieven, en zijn
waarschijnlijk niet nodig voor elke afzonderlijke werkstroomstap van je

applicatie.

Een veelvoorkomende ensemble-techniek is meerderheidsstemming, waarbij meerdere
Al-werkers onafhankelijk van elkaar dezelfde input verwerken, en de uiteindelijke
output wordt bepaald door de meerderheid van de consensus. Deze aanpak kan
helpen om de impact van individuele werkersfouten te verminderen en de algehele

betrouwbaarheid van het systeem te verbeteren.

Laten we een voorbeeld bekijken waarbij we drie Al-werkers hebben voor
sentimentanalyse, elk met een verschillend model of voorzien van verschillende
contexten. We kunnen hun outputs combineren met behulp van meerderheidsstemming

om de uiteindelijke sentimentvoorspelling te bepalen.

© 0 N O O b W N e

I T O
© 00 N O O b W N =~ O

Veelheid aan Werkers 119

class SentimentAnalysisEnsemble
def initialize(text)
@text = text
end

def analyze
predictions = |
SentimentAnalysisWorker1.new(@text).analyze,
SentimentAnalysisWorker2.new(@text).analyze,
SentimentAnalysisWorker3.new(@text).analyze

predictions
.group_by { |sentiment| sentiment }
.max_by { |_, votes| votes.size }
Cfirst

end
end

In dit voorbeeld initialiseert de SentimentAnalysisEnsemble klasse met de tekst en
roept drie verschillende Al-workers voor sentimentanalyse aan. De analyze methode
verzamelt de voorspellingen van elke worker en bepaalt het meerderheidssentiment met
behulp van de group_by enmax_by methoden. De uiteindelijke uitvoer is het sentiment

dat de meeste stemmen krijgt van het ensemble van workers.

’ Ensembles zijn duidelijk een geval waarbij het experimenteren met

parallellisme de moeite waard kan zijn.

Dynamische Selectie en Aanroeping van Al-Workers

In sommige, zo niet de meeste gevallen, kan de specifieke Al-worker die moet worden
aangeroepen afhankelijk zijn van runtime-condities of gebruikersinvoer. Dynamische
selectie en aanroeping van Al-workers zorgen voor flexibiliteit en aanpasbaarheid in

het systeem.

© 0 N O U b W N =

I = T T TG Y
O© 00 <N O O & W N =~ O

Veelheid aan Werkers 120

Je zou in de verleiding kunnen komen om veel functionaliteit in één enkele
Al-worker te proppen, door deze veel functies te geven en een grote,
ingewikkelde prompt die uitlegt hoe je ze moet aanroepen. Weersta deze
verleiding, geloof me. Een van de redenen waarom de aanpak die we in
dit hoofdstuk bespreken “Multitude of Workers” wordt genoemd, is om ons
eraan te herinneren dat het wenselijk is om veel gespecialiseerde workers
te hebben, die elk hun eigen kleine taak uitvoeren in dienst van het grotere

doel.

Neem bijvoorbeeld een chatbottoepassing waarbij verschillende Al-workers
verantwoordelijk zijn voor het athandelen van verschillende soorten gebruikersvragen.
Op basis van de invoer van de gebruiker selecteert de toepassing dynamisch de juiste

Al-worker om de vraag te verwerken.

class ChatbotController < ApplicationController
def process_query
query = params|:query]
query_type = QueryClassifierWorker.new(query).classify

case query_type
when 'greeting'

response = GreetingWorker.new(query).generate_response
when 'product_inquiry'

response = ProductInquiryWorker.new(query).generate_response
when 'order_status'

response = OrderStatusWorker .new(query).generate_response
else

response = DefaultResponseWorker.new(query).generate_response
end

render json: { response: response }
end
end

In dit voorbeeld ontvangt de ChatbotController een gebruikersvraag via de

process_query actie. Eerst gebruikt het een QueryClassifierWorker om het type

Veelheid aan Werkers 121

vraag te bepalen. Op basis van het geclassificeerde vraagtype selecteert de controller
dynamisch de geschikte Al-worker om het antwoord te genereren. Deze dynamische
selectie stelt de chatbot in staat om verschillende soorten vragen te verwerken en ze

naar de relevante Al-workers te routeren.

P Aangezien het werk van de QueryClassifierWorker relatief

eenvoudig is en niet veel context of functiedefinities vereist, kun je
het waarschijnlijk implementeren met een ultrasnelle kleine LLM zoals
mistralai/mixtral-8x7b-instruct:nitro. Het heeft mogelijkheden
die op veel taken dicht bij GPT-4 niveau komen en, op het moment dat ik
dit schrijf, kan Groq het verwerken met een duizelingwekkende doorvoer

van 444 tokens per seconde.

Het Combineren van Traditionele NLP met LLMs

Hoewel Grote Taalmodellen (LLMs) het vakgebied van natuurlijke taalverwerking
(NLP) hebben gerevolutioneerd en ongeévenaarde veelzijdigheid en prestaties bieden
voor een breed scala aan taken, zijn ze niet altijd de meest efficiénte of kosteneffectieve
oplossing voor elk probleem. In veel gevallen kan het combineren van traditionele
NLP-technieken met LLMs leiden tot meer geoptimaliseerde, gerichte en economische

benaderingen voor het oplossen van specifieke NLP-uitdagingen.

Zie LLMs als de Zwitserse zakmessen van NLP—ongelooflijk veelzijdig en krachtig,
maar niet noodzakelijkerwijs het beste gereedschap voor elke klus. Soms kan een
specifiek hulpmiddel zoals een kurkentrekker of een blikopener effectiever en efficiénter
zijn voor een specifieke taak. Op dezelfde manier kunnen traditionele NLP-technieken,
zoals documentclustering, onderwerpsidentificatie en classificatie, vaak meer gerichte

en kosteneffectieve oplossingen bieden voor bepaalde aspecten van je NLP-pipeline.

Een van de belangrijkste voordelen van traditionele NLP-technieken is hun

computationele efficiéntie. Deze methoden, die vaak vertrouwen op eenvoudigere

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Veelheid aan Werkers 122

statistische modellen of regelgebaseerde benaderingen, kunnen grote hoeveelheden
tekstgegevens veel sneller en met minder computationele overhead verwerken in
vergelijking met LLMs. Dit maakt ze bijzonder geschikt voor taken die het analyseren
en organiseren van grote verzamelingen documenten omvatten, zoals het clusteren van
vergelijkbare artikelen of het identificeren van belangrijke onderwerpen binnen een

collectie teksten.

Bovendien kunnen traditionele NLP-technieken vaak hoge nauwkeurigheid en precisie
bereiken voor specifieke taken, vooral wanneer ze getraind zijn op domeinspecifieke
datasets. Een goed afgestelde documentclassificator die gebruik maakt van traditionele
machine learning-algoritmen zoals Support Vector Machines (SVM) of Naive Bayes kan
bijvoorbeeld documenten nauwkeurig categoriseren in vooraf gedefinieerde categorieén

met minimale rekenkosten.

LLMs blinken echter echt uit als het gaat om taken die een dieper begrip van taal, context
en redenering vereisen. Hun vermogen om samenhangende en contextueel relevante
tekst te genereren, vragen te beantwoorden en lange passages samen te vatten wordt
niet geévenaard door traditionele NLP-methoden. LLMs kunnen effectief omgaan met
complexe taalkundige verschijnselen, zoals ambiguiteit, coreferentie en idiomatische
uitdrukkingen, waardoor ze onmisbaar zijn voor taken die natuurlijke taalgeneratie of

begrip vereisen.

De echte kracht ligt in het combineren van traditionele NLP-technieken met LLMs
om hybride benaderingen te creéren die de sterke punten van beide benutten. Door
traditionele NLP-methoden te gebruiken voor taken zoals documentvoorverwerking,
clustering en onderwerpsextractie, kun je je tekstgegevens efficiént organiseren en
structureren. Deze gestructureerde informatie kan vervolgens worden doorgegeven aan
LLMs voor meer geavanceerde taken, zoals het genereren van samenvattingen, het

beantwoorden van vragen of het maken van uitgebreide rapporten.

Laten we bijvoorbeeld een gebruikssituatie bekijken waarbij je een trendrapport wilt

genereren voor een specifiek domein op basis van een groot corpus van individuele

Veelheid aan Werkers 123

trenddocumenten. In plaats van uitsluitend te vertrouwen op LLMs, wat computationeel
duur en tijdrovend kan zijn voor het verwerken van grote hoeveelheden tekst, kun je

een hybride aanpak gebruiken:

1. Gebruik traditionele NLP-technieken, zoals onderwerpsmodellering (bijvoorbeeld
Latent Dirichlet Allocation) of clusteringalgoritmen (bijvoorbeeld K-means),
om vergelijkbare trenddocumenten te groeperen en belangrijke thema’s en
onderwerpen binnen het corpus te identificeren.

2. Voer de geclusterde documenten en geidentificeerde onderwerpen in
een LLM, waarbij je gebruik maakt van zijn superieure taalbegreip en
generatiemogelijkheden om samenhangende en informatieve samenvattingen te
maken voor elk cluster of onderwerp.

3. Gebruik ten slotte het LLM om een uitgebreid trendrapport te genereren
door de individuele samenvattingen te combineren, de belangrijkste trends
te benadrukken en inzichten en aanbevelingen te geven op basis van de

geaggregeerde informatie.

Door traditionele NLP-technieken op deze manier te combineren met LLMs, kun
je efficiént grote hoeveelheden tekstgegevens verwerken, betekenisvolle inzichten
extraheren en hoogwaardige rapporten genereren terwijl je de computationele

middelen en kosten optimaliseert.

Bij het beginnen van je NLP-projecten is het essentieel om zorgvuldig de specifieke
vereisten en beperkingen van elke taak te evalueren en te overwegen hoe traditionele
NLP-methoden en LLMs samen kunnen worden ingezet om de beste resultaten te
bereiken. Door de efficiéntie en precisie van traditionele technieken te combineren met
de veelzijdigheid en kracht van LLMs, kun je zeer effectieve en economische NLP-

oplossingen creéren die waarde leveren aan je gebruikers en belanghebbenden.

Gebruik van Tools

In het domein van Al-gedreven applicatieontwikkeling is het concept van

“gebruik van tools” of “function calling” naar voren gekomen als een krachtige techniek
die je LLM in staat stelt om verbinding te maken met externe tools, APIs, functies,
databases en andere bronnen. Deze aanpak maakt een rijkere set aan gedragingen
mogelijk dan alleen het uitvoeren van tekst, en zorgt voor meer dynamische interacties
tussen je Al-componenten en de rest van het ecosysteem van je applicatie. Zoals we in
dit hoofdstuk zullen onderzoeken, geeft het gebruik van tools je ook de mogelijkheid

om je Al-model data op gestructureerde manieren te laten genereren.

Wat is Gebruik van Tools?

Gebruik van tools, ook bekend als function calling, is een techniek waarmee

ontwikkelaars een lijst van functies kunnen specificeren waarmee een LLM kan

Gebruik van Tools 125

interacteren tijdens het generatieproces. Deze tools kunnen variéren van eenvoudige
hulpfuncties tot complexe APIs of database-queries. Door de LLM toegang te geven tot
deze tools, kunnen ontwikkelaars de mogelijkheden van het model uitbreiden en het in

staat stellen taken uit te voeren die externe kennis of acties vereisen.

Figuur 8. Voorbeeld van een functiedefinitie voor een Al-medewerker die documenten analyseert

FUNCTION = {
name: "save_analysis",
description: "Save analysis data for document",
parameters: {
type: "object",
properties: {
title: {
type: "string",
maxLength: 140
},
summary: {
type: "string",
description: "comprehensive multi-paragraph summary with
overview and list of sections (if applicable)"
3
tags: {
type: "array",
items: {
type: "string",
description: "lowercase tags representing main themes
of the document"

}
}I

"required": %w[title summary tags]

}

}. freeze

Het kernidee achter het gebruik van tools is om het LLM de mogelijkheid te geven om
dynamisch de juiste tools te selecteren en uit te voeren op basis van de input van de
gebruiker of de taak die voorhanden is. In plaats van uitsluitend te vertrouwen op de

vooraf getrainde kennis van het model, stelt het gebruik van tools het LLM in staat

Gebruik van Tools 126

om externe bronnen te benutten voor het genereren van nauwkeurigere, relevantere en
bruikbare antwoorden. Het gebruik van tools maakt technieken zoals RAG (Retrieval
Augmented Generation) veel eenvoudiger te implementeren dan anders het geval zou

zijn.

Merk op dat, tenzij anders vermeld, dit boek ervan uitgaat dat uw Al-model geen
toegang heeft tot ingebouwde server-side tools. Alle tools die u beschikbaar wilt
maken voor uw Al moeten expliciet door u worden gedeclareerd in elke API-
aanvraag, met voorzieningen voor de uitvoering ervan wanneer uw Al aangeeft dat

het die tool in zijn antwoord wil gebruiken.

De Potentie van Tool Gebruik

Het gebruik van tools opent een breed scala aan mogelijkheden voor Al-gedreven
toepassingen. Hier zijn enkele voorbeelden van wat er bereikt kan worden met het

gebruik van tools:

1. Chatbots en Virtuele Assistenten: Door een LLM te verbinden met externe tools
kunnen chatbots en virtuele assistenten complexere taken uitvoeren, zoals het
ophalen van informatie uit databases, het uitvoeren van API-aanroepen of het
interacteren met andere systemen. Een chatbot zou bijvoorbeeld een CRM-tool
kunnen gebruiken om de status van een deal te wijzigen op basis van het verzoek
van de gebruiker.

2. Data-analyse en Inzichten: LLM’s kunnen worden verbonden met data-
analysetools of bibliotheken om geavanceerde gegevensverwerkingstaken uit
te voeren. Dit maakt het mogelijk voor applicaties om inzichten te genereren,
vergelijkende analyses uit te voeren of datagestuurde aanbevelingen te doen op

basis van gebruikersvragen.

Gebruik van Tools 127

3. Zoeken en Informatieophaling: Het gebruik van tools stelt LLM’s in
staat om te interacteren met zoekmachines, vectordatabases of andere
informatieophalingssystemen. Door gebruikersvragen om te zetten in
zoekopdrachten kan het LLM relevante informatie uit meerdere bronnen
ophalen en uitgebreide antwoorden geven op vragen van gebruikers.

4. Integratie met Externe Diensten: Het gebruik van tools maakt naadloze
integratie mogelijk tussen Al-gedreven applicaties en externe diensten of API’s.
Een LLM zou bijvoorbeeld kunnen interacteren met een weer-API om realtime
weerupdates te geven of met een vertaal-API om meertalige antwoorden te

genereren.

Het Tool Gebruik Werkproces

Het werkproces voor het gebruik van tools bestaat meestal uit vier belangrijke stappen:

1. Functiedefinities opnemen in je request context
2. Dynamische (of expliciete) toolselectie
3. Uitvoering van functie(s)

4. Optionele voortzetting van de oorspronkelijke prompt

Laten we elk van deze stappen in detail bekijken.

Functiedefinities opnemen in je request context

De Al weet welke tools het tot zijn beschikking heeft omdat je een lijst meegeeft als
onderdeel van je completion request (meestal gedefinieerd als functies met behulp van

een variant van JSON schema).
De precieze syntax van tooldefinitie is modelspecifiek.

Dit is hoe je een get_weather functie definieert in Claude 3:

© 0 N O O & W N =~

T O = =Y
© 0 N O O b= W N -~ O

© 0 N O O » W N o~

I = ==Y
=N O O bW N e

Gebruik van Tools 128

"name": "get_weather",
"description": "Get the current weather in a given location",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
3,
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature"

} ’

"required": ["location"]

}

En zo zou je dezelfde functie voor GPT-4 definiéren, waarbij je deze als waarde voor de

tools parameter doorgeeft:

"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",

"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {

"type": "string",

"enum": ["celsius", "fahrenheit"],

"description": "The unit of temperature"
},

} ’

"required": ["location"],

18
19

g b W N =

Gebruik van Tools 129

Bijna hetzelfde, behalve anders zonder duidelijke reden! Wat vervelend.

Functiedefinities specificeren = naam, beschrijving en invoerparameters.
Invoerparameters kunnen verder worden gedefinieerd met behulp van attributen
zoals enums om de acceptabele waarden te beperken, en door aan te geven of een

parameter vereist is of niet.

Naast de eigenlijke functiedefinities kun je ook instructies of context opnemen over

waarom en hoe je de functie moet gebruiken in de systeemrichtlijn.

Bijvoorbeeld, mijn Webzoekfunctie in Olympia bevat deze systeemrichtlijn, die de Al
eraan herinnert dat het de genoemde hulpmiddelen tot zijn beschikking heeft:

The “google_search™ and “realtime_search™ functions let you do research
on behalf of the user. In contrast to Google, realtime search is powered
by Perplexity and provides real-time information to curated current events
databases and news sources. Make sure to include URLs in your response so
user can do followup research.

Het geven van gedetailleerde beschrijvingen wordt beschouwd als de belangrijkste
factor in de prestaties van hulpmiddelen. Je beschrijvingen moeten elk detail over het

hulpmiddel uitleggen, waaronder:

« Wat het hulpmiddel doet
« Wanneer het gebruikt moet worden (en wanneer niet)
« Wat elke parameter betekent en hoe deze het gedrag van het hulpmiddel

beinvloedt

© 0 N O O b W N =

NN N P R s s sy
N 0 O © 0 N O O B W N =~ O

Gebruik van Tools 130

« Alle belangrijke kanttekeningen of beperkingen die van toepassing zijn op de

implementatie van het hulpmiddel

Hoe meer context je de Al kunt geven over je hulpmiddelen, hoe beter deze zal zijn in
het beslissen wanneer en hoe ze te gebruiken. Zo beveelt Anthropic voor zijn Claude
3-serie minimaal 3-4 zinnen per hulpmiddelbeschrijving aan, meer als het hulpmiddel

complex is.

Het is niet per se intuitief, maar beschrijvingen worden ook als belangrijker beschouwd
dan voorbeelden. Hoewel je voorbeelden van het gebruik van een hulpmiddel kunt
opnemen in de beschrijving of in de bijbehorende prompt, is dit minder belangrijk dan
een duidelijke en uitgebreide uitleg van het doel en de parameters van het hulpmiddel.

Voeg pas voorbeelden toe nadat je de beschrijving volledig hebt uitgewerkt.

Hier is een voorbeeld van een Stripe-achtige API-functiespecificatie:

"name": "createPayment",
"description": "Create a new payment request",
"parameters": {
"type": "object",
"properties": {
"transaction_amount": {
"type": "number",
"description": "The amount to be paid"
3,
"description”: {
"type": "string",
"description": "A brief description of the payment™”
3
"payment_method_id":
"type": "string",
"description": "The payment method to be used"
},
"payer": {
"type": "object",
"description": "Information about the payer, including their name,

email, and identification number",

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Gebruik van Tools

"properties": {
"name": {

"type": "string",

"description": "The payer's name"
3
"email": {
"type": "string",
"description": "The payer's email address"
3,

"identification": {
"type": "object",
"description": "The payer's identification number",
"properties": {
"type": {
"type": "string",
"description": "Identification document (e.g. CPF, CNPJ)"
}
"number": {
"type": "string",
"description": "The identification number"
}
b
"required": ["type", "number"]
}
1

"required": ["name", "email", "identification"]

In de praktijk hebben sommige modellen moeite met het omgaan met
geneste functiespecificaties en complexe outputgegevenstypen zoals arrays,
dictionaries etc. Maar in theorie zou je JSON Schema-specificaties van

willekeurige diepte moeten kunnen aanleveren!

131

Gebruik van Tools 132

Dynamische Gereedschapsselectie

Wanneer je een chatvervolmaking uitvoert die gereedschapsdefinities bevat, selecteert
het LLM dynamisch de meest geschikte gereedschappen om te gebruiken en genereert

het de vereiste invoerparameters voor elk gereedschap.

In de praktijk is het vermogen van de Al om precies de juiste functie aan te roepen
en exact je specificatie voor de invoer te volgen wisselvallig. Het verlagen van de
temperatuur-hyperparameter naar 0.0 helpt aanzienlijk, maar uit ervaring krijg je
nog steeds af en toe fouten. Deze fouten omvatten gehallucineerde functienamen,
verkeerd benoemde of simpelweg ontbrekende invoerparameters. Parameters worden
doorgegeven als JSON, wat betekent dat je soms fouten ziet veroorzaakt door afgekapte,

verkeerd geciteerde of anderszins beschadigde JSON.

P Zelfherstellende Data-patronen kunnen helpen bij het automatisch

repareren van functieaanroepen die mislukken door syntaxisfouten.

Geforceerde (oftewel Expliciete) Gereedschapsselectie

Sommige modellen bieden de mogelijkheid om het aanroepen van een bepaalde functie
te forceren, als parameter in het verzoek. Anders is de beslissing om de functie al dan

niet aan te roepen volledig aan het oordeel van de Al

Het vermogen om een functieaanroep te forceren is cruciaal in bepaalde scenario’s waar
je wilt verzekeren dat een specifiek gereedschap of functie wordt uitgevoerd, ongeacht
het dynamische selectieproces van de Al Er zijn verschillende redenen waarom deze

mogelijkheid belangrijk is:

1. Expliciete Controle: Je gebruikt de AI mogelijk als een Discrete Component of
in een voorgedefinieerde workflow die de uitvoering van een bepaalde functie op

een bepaald moment vereist. Door de aanroep te forceren, kun je garanderen dat

Gebruik van Tools 133

de gewenste functie wordt aangeroepen in plaats van de Al vriendelijk te moeten
vragen het te doen.

2. Debuggen en Testen: Bij het ontwikkelen en testen van Al-gestuurde applicaties
is het vermogen om functieaanroepen te forceren van onschatbare waarde
voor debugdoeleinden. Door expliciet specifieke functies te activeren, kun je
individuele componenten van je applicatie isoleren en testen. Dit stelt je in staat
om de juistheid van de functie-implementaties te verifiéren, de invoerparameters
te valideren en te verzekeren dat de verwachte resultaten worden teruggegeven.

3. Omgaan met Randgevallen: Er kunnen randgevallen of uitzonderlijke scenario’s
zijn waarbij het dynamische selectieproces van de Al ervoor zou kunnen kiezen
om een functie niet uit te voeren terwijl dat wel zou moeten, en je weet dat op
basis van externe processen. In dergelijke gevallen stelt het vermogen om een
functieaanroep te forceren je in staat om deze situaties expliciet af te handelen.
Definieer regels of voorwaarden in je applicatielogica om te bepalen wanneer je
het oordeel van de Al moet overschrijven.

4. Consistentie en Reproduceerbaarheid: Als je een specifieke reeks functies hebt
die in een bepaalde volgorde moet worden uitgevoerd, garandeert het forceren
van de aanroepen dat dezelfde volgorde elke keer wordt gevolgd. Dit is vooral
belangrijk in applicaties waar consistentie en voorspelbaar gedrag kritiek zijn,
zoals in financiéle systemen of wetenschappelijke simulaties.

5. Prestatie-optimalisatie: In sommige gevallen kan het forceren van een
functieaanroep leiden tot prestatie-optimalisaties. Als je weet dat een specifieke
functie vereist is voor een bepaalde taak en dat het dynamische selectieproces
van de Al onnodige overhead zou kunnen introduceren, kun je het selectieproces
omzeilen en direct de vereiste functie aanroepen. Dit kan helpen om de latentie

te verminderen en de algehele efficiéntie van je applicatie te verbeteren.

Samenvattend biedt het vermogen om functieaanroepen te forceren in Al-gestuurde

applicaties expliciete controle, helpt bij het debuggen en testen, handelt randgevallen

Gebruik van Tools 134

af en verzekert consistentie en reproduceerbaarheid. Het is een krachtig gereedschap in

je arsenaal, maar we moeten nog één aspect van deze belangrijke functie bespreken.

In veel besluitvormingstoepassingen willen we altijd dat het model een
’ functieaanroep doet en willen we mogelijk nooit dat het model alleen met
zijn interne kennis reageert. Als je bijvoorbeeld routeert tussen meerdere
modellen die gespecialiseerd zijn in verschillende taken (meertalige invoer,
wiskunde, etc.), kun je het functie-aanroepende model gebruiken om
verzoeken te delegeren naar een van de hulpmodellen en nooit zelfstandig

te laten reageren.

Tool Choice Parameter

GPT-4 en andere taalmodellen die functieaanroepen ondersteunen, geven je eentool_-
choice parameter voor het controleren of gereedschapsgebruik vereist is als onderdeel

van een vervolmaking. Deze parameter heeft drie mogelijke waarden:

« auto geeft de Al volledige vrijheid over het gebruik van een gereedschap of
simpelweg reageren

« required vertelt de Al dat het een gereedschap moet aanroepen in plaats van te
reageren, maar laat de selectie van het gereedschap over aan de Al

« De derde optie is het instellen van de parameter van de name_of_function die
je wilt forceren. Meer daarover in de volgende sectie.

Merk op dat als je tool choice op required zet, het model gedwongen wordt
om de meest relevante functie te kiezen uit de beschikbare functies, zelfs als

geen enkele echt bij de prompt past. Op het moment van publicatie ken ik
geen model dat een lege tool_calls response zal teruggeven, of op een

andere manier laat weten dat het geen geschikte functie heeft gevonden om

aan te roepen.

Gebruik van Tools 135

Een Functie Forceren voor Gestructureerde Uitvoer

De mogelijkheid om een functie-aanroep te forceren geeft je een manier om
gestructureerde data uit een chatvoltooing te krijgen in plaats van het zelf uit het platte

tekst-antwoord te moeten extraheren.

Waarom is het forceren van functies voor gestructureerde uitvoer zo belangrijk?
Simpel gezegd, omdat het extraheren van gestructureerde data uit LLM-uitvoer een
hele klus is. Je kunt het jezelf wat makkelijker maken door om data in XML te vragen,
maar dan moet je nog steeds XML verwerken. En wat doe je als die XML ontbreekt
omdat je Al antwoordde: “Het spijt me, maar ik kan de gevraagde gegevens niet

genereren omdat bla, bla, bla..”

Bij het gebruik van tools op deze manier:

« Zou je waarschijnlijk één tool in je verzoek moeten definiéren

« Vergeet niet het gebruik van de functie te forceren met de tool_choice
parameter

« Onthoud dat het model de input naar de tool stuurt, dus de naam van de tool en

beschrijving moeten vanuit het perspectief van het model zijn, niet dat van jou

Dit laatste punt verdient een voorbeeld ter verduidelijking. Stel dat je de Al vraagt om
sentimentanalyse uit te voeren op gebruikerstekst. De naam van de functie zou dan niet
analyze_sentiment zijn, maar eerder iets als save_sentiment_analysis. De Al is
degene die de sentimentanalyse uitvoert, niet de tool. Het enige wat de tool doet (vanuit

het perspectief van de Al) is het opslaan van de resultaten van de analyse.

Hier is een voorbeeld van het gebruik van Claude 3 om een samenvatting van een
afbeelding vast te leggen in goed gestructureerde JSON, deze keer vanaf de opdrachtregel

met behulp van curl:

© 0 N O O & W N =~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Gebruik van Tools 136

curl https://api.anthropic.com/v1/messages \
--header "content-type: application/json" \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "anthropic-version: 2023-06-01" \
--header "anthropic-beta: tools-2024-04-04" \
--data \
{
"model": "claude-3-sonnet-20240229",
"max_tokens": 1024,

"tools": [{
"name": "record_summary",
"description": "Record summary of image into well-structured JSON.",

"input_schema": {
"type": "object",
"properties": {
"key_colors": {
"type": "array",
"items": {
"type": "object",
"properties": {

" {
"type": "number",
"description": "red value [0.0, 1.0]"
1,
"g": {
"type": "number",
"description": "green value [0.0, 1.0]"
3,
"b": {
"type": "number",
"description": "blue value [0.0, 1.0]"
},
"name": {
"type": "string",
"description": "Human-readable color name
in snake_case, e.g.
\"olive_green\"or
\"turquoise\""
}
3,
"required": ["r", "g", "b", "name"]

} ’

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
77
78
79

Gebruik van Tools 137

"description": "Key colors in the image. Four or less."
},
"description": {

"type": "string",

"description": "Image description. 1-2 sentences max."
3,
"estimated_year": {

"type": "integer",

"description": "Estimated year that the image was taken,
if is it a photo. Only set this if the
image appears to be non-fictional.
Rough estimates are okay!"

}
3
"required": ["key_colors", "description"]
}
3,
"messages": |
{
"role": "user",
"content": [
{
"type": "image",
"source": {
"type": "baseb64",
"media_type": "'$IMAGE_MEDIA_TYPE'",
"data": "'$IMAGE_BASE64'"
}
3,
{
"type": "text",
"text": "Use “record_summary” to describe this image."
}
]
}

In het gegeven voorbeeld gebruiken we het Claude 3-model van Anthropic om een

gestructureerde JSON-samenvatting van een afbeelding te genereren. Zo werkt het:

Gebruik van Tools 138

1. We definiéren een enkele tool genaamd record_summary in de tools-array van
de request payload. Deze tool is verantwoordelijk voor het vastleggen van een
samenvatting van de afbeelding in goed gestructureerde JSON.

2. De record_summary-tool heeft een input_schema dat de verwachte structuur

van de JSON-uitvoer specificeert. Het definieert drie eigenschappen:

+ key_colors: Een array van objecten die de belangrijkste kleuren in de
afbeelding vertegenwoordigen. Elk kleurobject heeft eigenschappen voor de
rood-, groen- en blauwwaarden (variérend van 0.0 tot 1.0) en een menselijk
leesbare kleurnaam in snake_case-formaat.

+ description: Een string-eigenschap voor een korte beschrijving van de

afbeelding, beperkt tot 1-2 zinnen.

+ estimated_year: Een optionele integer-eigenschap voor het geschatte jaar

waarin de foto is genomen, als het een niet-fictieve foto lijkt te zijn.

3. In de messages-array leveren we de afbeeldingsgegevens aan als een base64-
gecodeerde string samen met het mediatype. Hierdoor kan het model de
afbeelding verwerken als onderdeel van de invoer.

4. We geven Claude ook de opdracht om de record_summary-tool te gebruiken om
de afbeelding te beschrijven.

5. Wanneer het verzoek naar het Claude 3-model wordt gestuurd, analyseert
het de afbeelding en genereert het een JSON-samenvatting op basis van het
gespecificeerde input_schema. Het model extraheert de belangrijkste kleuren,
geeft een korte beschrijving en schat het jaar waarin de afbeelding is genomen
(indien van toepassing).

6. De gegenereerde JSON-samenvatting wordt doorgegeven als parameters aan de
record_summary-tool, wat zorgt voor een gestructureerde weergave van de

belangrijkste kenmerken van de afbeelding.

Door de record_summary-tool te gebruiken met een goed gedefinieerd

input_schema, kunnen we een gestructureerde JSON-samenvatting van een

Gebruik van Tools 139

afbeelding verkrijgen zonder te vertrouwen op extractie van platte tekst. Deze aanpak
zorgt ervoor dat de uitvoer een consistent formaat volgt en gemakkelijk kan worden

geparseerd en verwerkt door downstream componenten van de applicatie.

De mogelijkheid om een functieaanroep af te dwingen en de verwachte uitvoerstructuur
te specificeren is een krachtige functie van toolgebruik in Al-gestuurde applicaties. Het
stelt ontwikkelaars in staat meer controle te hebben over de gegenereerde uitvoer en
vereenvoudigt de integratie van door Al gegenereerde gegevens in de workflow van

hun applicatie.

Uitvoering van Functie(s)

Je hebt functies gedefinieerd en je Al geprompt, die heeft besloten dat het een van je
functies moet aanroepen. Nu is het tijd voor je applicatiecode of bibliotheek, als je een
Ruby gem zoals raix-rails gebruikt, om de functieaanroep en zijn parameters naar

de corresponderende implementatie in je applicatiecode te dispatchen.

Je applicatiecode bepaalt wat er met de resultaten van de functie-uitvoering moet
gebeuren. Misschien betreft dit een enkele regel code in een lambda, of misschien betreft
het het aanroepen van een externe API. Misschien betreft het het aanroepen van een
andere Al-component, of misschien betreft het honderden of zelfs duizenden regels code

in de rest van je systeem. Het is geheel aan jou.

Soms is de functieaanroep het einde van de operatie, maar als de resultaten informatie
vertegenwoordigen in een ketening van gedachten die door de Al moet worden
voortgezet, dan moet je applicatiecode de uitvoeringsresultaten in het chattranscript

invoegen en de Al laten doorgaan met verwerken.

Hier bijvoorbeeld een Raix-functiedeclaratie die wordt gebruikt door Olympia’s
AccountManager om te communiceren met onze klanten als onderdeel van een

Intelligente Werkstroomorganisatie voor klantenservice.

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

Gebruik van Tools 140

class AccountManager

include Raix::ChatCompletion

include Raix::FunctionDispatch
]lots of other functions. ..

function :notify_account_owner,
"Don't share UUID. Mention dollars if subscription changed",
message: { type: "string" } do |arguments]|
account.owner . freeform_notify(
subject: "Account Change Notification",
message: arguments|:message]
)
"Notified account owner"
end

Het is misschien niet direct duidelijk wat hier gebeurt, dus ik zal het uitleggen.

1. De AccountManager klasse definieert veel functies die gerelateerd zijn aan
accountbeheer. Het kan je abonnement wijzigen, teamleden toevoegen en
verwijderen, en nog veel meer.

2. De instructies op het hoogste niveau vertellen AccountManager dat
het de accounteigenaar moet informeren over de resultaten van het
accountwijzigingsverzoek, met behulp van de notify_account_owner

functie.

3. De beknopte definitie van de functie bevat:

e naam
» beschrijving
« parametersmessage: { type: "string" }

« een blok code dat wordt uitgevoerd wanneer de functie wordt aangeroepen

Na het bijwerken van het transcript met de resultaten van het functieblok, wordt de

chat_completion methode opnieuw aangeroepen. Deze methode is verantwoordelijk

Gebruik van Tools 141

voor het terugsturen van het bijgewerkte gespreksverloop naar het Al-model voor

verdere verwerking. We noemen dit proces een conversatielus.

Wanneer het Al-model een nieuw chat completion verzoek ontvangt met een bijgewerkt
transcript, heeft het toegang tot de resultaten van de eerder uitgevoerde functie. Het kan
deze resultaten analyseren, ze meenemen in zijn besluitvormingsproces en de volgende
respons of actie genereren op basis van de cumulatieve context van het gesprek. Het kan
ervoor kiezen om extra functies uit te voeren op basis van de bijgewerkte context, of het
kan een definitieve respons genereren op de oorspronkelijke prompt als het bepaalt dat

er geen verdere functieaanroepen nodig zijn.

Optionele Voortzetting van de Oorspronkelijke Prompt

Wanneer je de gereedschapsresultaten terugstuurt naar de LLM en doorgaat met
de verwerking van de oorspronkelijke prompt, gebruikt de AI deze resultaten om
ofwel aanvullende functies aan te roepen ofwel een definitieve platte tekst respons te

genereren.

Sommige modellen zoals Cohere’s Command-R kunnen specifiek vermelden
welke gereedschappen ze hebben gebruikt in hun antwoorden, wat zorgt

voor extra transparantie en traceerbaarheid.

Afhankelijk van het gebruikte model zullen de resultaten van de functieaanroep zich
bevinden in transcriptberichten met hun eigen speciale rol of worden weergegeven in
een andere syntax. Maar het belangrijkste is dat die gegevens in het transcript staan,

zodat de Al ze kan meenemen in zijn beslissing over wat er vervolgens moet gebeuren.

https://openrouter.ai/models/cohere/command-r

Gebruik van Tools 142

Een veelvoorkomende (en potentieel dure) fout is het vergeten om de
’ functieresultaten aan het transcript toe te voegen voordat je verdergaat
met het gesprek. Hierdoor zal de AI op vrijwel dezelfde manier worden
aangeroepen als voordat deze de functie voor de eerste keer aanriep. Met
andere woorden, voor zover de Al weet, heeft deze de functie nog niet
aangeroepen. Dus roept hij deze opnieuw aan. En opnieuw. En opnieuw,
tot in het oneindige totdat je het onderbreekt. Hopelijk was je context niet

te groot en je model niet te duur!

Best Practices voor Gereedschapsgebruik

Om het meeste uit gereedschapsgebruik te halen, kun je de volgende best practices

overwegen.

Beschrijvende Definities

Zorg voor duidelijke en beschrijvende namen en beschrijvingen voor elk gereedschap
en zijn invoerparameters. Dit helpt de LLM beter te begrijpen wat het doel en de

mogelijkheden van elk gereedschap zijn.

Ik kan je uit ervaring vertellen dat de algemene wijsheid die zegt dat “naamgeving
moeilijk is” hier ook geldt; ik heb dramatisch verschillende resultaten gezien
van LLMs alleen door het veranderen van functienamen of de formulering van
beschrijvingen. Soms verbetert het verwijderen van beschrijvingen de prestaties

zelfs.

Gebruik van Tools 143

Verwerking van Gereedschapsresultaten

Bij het doorgeven van gereedschapsresultaten aan de LLM, zorg ervoor dat ze goed
gestructureerd en volledig zijn. Gebruik betekenisvolle sleutels en waarden om de output
van elk gereedschap weer te geven. Experimenteer met verschillende formaten en kijk

welke het beste werkt, van JSON tot platte tekst.

De Resultaatinterpreter pakt deze uitdaging aan door Al te gebruiken om de resultaten
te analyseren en mensvriendelijke uitleg, samenvattingen of belangrijke inzichten te

geven.

Foutafhandeling

Implementeer robuuste foutathandelingsmechanismen om gevallen af te handelen
waarbij de LLM mogelijk ongeldige of niet-ondersteunde invoerparameters voor
gereedschapsaanroepen genereert. Handel fouten die kunnen optreden tijdens de

uitvoering van gereedschap netjes af en herstel ervan.

Een bijzonder prettige eigenschap van de Al is dat het foutmeldingen begrijpt! Dit
betekent dat als je in een snelle en praktische mindset werkt, je simpelweg alle
uitzonderingen kunt opvangen die gegenereerd worden in de implementatie van een

gereedschap, en deze kunt terugsturen naar de Al zodat het weet wat er is gebeurd!

Hier is bijvoorbeeld een afgeslankte versie van de implementatie van Google zoeken in

Olympia:

Gebruik van Tools 144

def google_search(conversation, params)
conversation.update_cstatus("Searching Google...")
query = params|:query]
search = GoogleSearch.new(query).get_hash

conversation.update_cstatus("Summarizing results...")

Summar izeKnowledgeGraph . new. per form(conversation, search.to_json)
rescue StandardError => e

Honeybadger .notify(e)

{ error: e.message }.inspect
end

Google-zoekopdrachten in Olympia zijn een proces in twee stappen. Eerst voer je de
zoekopdracht uit, daarna vat je de resultaten samen. Als er een fout optreedt, ongeacht
welke, wordt de foutmelding verpakt en teruggestuurd naar de Al Deze techniek vormt

de basis van vrijwel alle Intelligente Foutafhandeling-patronen.

Stel bijvoorbeeld dat de GoogleSearch API-aanroep mislukt vanwege een 503 Service
Unavailable-foutmelding. Die wordt doorgegeven naar de hoogste rescue-clausule, en de
beschrijving van de fout wordt als resultaat van de functieaanroep teruggestuurd naar de
Al In plaats van de gebruiker een leeg scherm of technische fout te tonen, zegt de Al iets
als “Het spijt me, maar ik heb momenteel geen toegang tot mijn Google-zoekfuncties.

Ik kan het later opnieuw proberen als u dat wilt”

Dit lijkt misschien slechts een slimme truc, maar denk eens aan een ander soort fout,
waarbij de Al een externe API aanriep en directe controle had over de parameters die
aan de API moesten worden doorgegeven. Misschien maakte hij een fout in hoe hij die
parameters genereerde? Mits de foutmelding van de externe API gedetailleerd genoeg
is, betekent het terugsturen van de foutmelding naar de aanroepende Al dat deze de
parameters kan heroverwegen en het opnieuw kan proberen. Automatisch. Ongeacht

wat de fout was.

Bedenk nu eens wat er nodig zou zijn om dat soort robuuste foutathandeling in normale

code te repliceren. Het is praktisch onmogelijk.

© 0 N O O b W N =

I ==Y
Bw N o

Gebruik van Tools 145

Iteratieve Verfijning

Als het LLM niet de juiste hulpmiddelen aanbeveelt of suboptimale responses genereert,
itereer dan op de gereedschapsdefinities, beschrijvingen en invoerparameters. Verfijn en
verbeter de hulpmiddelenopzet voortdurend op basis van het waargenomen gedrag en

de gewenste uitkomsten.

1. Begin met eenvoudige gereedschapsdefinities: Start met het definiéren
van hulpmiddelen met duidelijke en beknopte namen, beschrijvingen en
invoerparameters. Vermijd aanvankelijk een te ingewikkelde opzet van
hulpmiddelen en concentreer je op de kernfunctionaliteit. Als je bijvoorbeeld de

resultaten van sentimentanalyse wilt opslaan, begin dan met een basisdefinitie

zoals:
{
"name": "save_sentiment_score",
"description": "Analyze user-provided text and generate sentiment score",
"parameters": {
"type": "object",
"properties": {
"score": {
"type": "float",
"description": "sentiment score from -1 (negative) to 1 (positive)"
}
3
"required": ["score"]
}
}

2. Test en observeer: Zodra je de eerste gereedschapsdefinities hebt opgezet, test je
ze met verschillende prompts en observeer je hoe het GTM met het gereedschap
interacteert. Let op de kwaliteit en relevantie van de gegenereerde responses. Als
het GTM suboptimale responses genereert, is het tijd om de gereedschapsdefinities

te verfijnen.

o O W N e

Gebruik van Tools 146

3. Verfijn beschrijvingen: Als het GTM het doel van een tool verkeerd begrijpt,
probeer dan de beschrijving van het gereedschap te verfijnen. Voorzie het van
meer context, voorbeelden of verduidelijkingen om het GTM te begeleiden bij
het effectief gebruik van het gereedschap. Je kunt bijvoorbeeld de beschrijving
van het sentimentanalyse-gereedschap bijwerken om specifieker in te gaan op de

emotionele toon van de te analyseren tekst:

"name": "save_sentiment_score”,
"description": "Determine the overall emotional tone of a piece of text,
such as customer reviews, social media posts, or feedback comments.",

4. Pas invoerparameters aan: Als de LLM ongeldige of irrelevante invoerparameters
voor een tool genereert, overweeg dan om de parameterdefinities aan te passen.
Voeg specifiekere beperkingen, validatieregels of voorbeelden toe om het
verwachte invoerformaat te verduidelijken.

5. Itereer op basis van feedback: Monitor voortdurend de prestaties van je tools en
verzamel feedback van gebruikers of belanghebbenden. Gebruik deze feedback
om verbeterpunten te identificeren en breng iteratieve verfijningen aan in de
gereedschapsdefinities. Als gebruikers bijvoorbeeld melden dat de analyse niet

goed omgaat met sarcasme, kun je een opmerking toevoegen in de beschrijving:

~N O O s~ W N

Gebruik van Tools 147

"name": "save_sentiment_score",

"description": "Analyze the sentiment of a given text and return a sentiment
score between -1 (negative) and 1 (positive). Note: Sarcasm should be
considered negative.",

Door je gereedschapsdefinities iteratief te verfijnen op basis van geobserveerd gedrag en
feedback, kun je de prestaties en effectiviteit van je Al-gestuurde applicatie geleidelijk
verbeteren. Onthoud dat je de gereedschapsdefinities helder, bondig en gefocust moet
houden op de specifieke taak. Test en valideer de gereedschapsinteracties regelmatig om

ervoor te zorgen dat ze in lijn zijn met je gewenste resultaten.

Samenstellen en Aaneenschakelen van

Gereedschappen

Een van de krachtigste aspecten van gereedschapsgebruik, waar tot nu toe alleen op
gezinspeeld is, is de mogelijkheid om meerdere gereedschappen samen te stellen en aan
elkaar te koppelen om complexe taken uit te voeren. Door je gereedschapsdefinities en
hun invoer-/uitvoerformaten zorgvuldig te ontwerpen, kun je herbruikbare bouwstenen

creéren die op verschillende manieren kunnen worden gecombineerd.

Laten we een voorbeeld bekijken waarbij je een gegevensanalysepijplijn bouwt voor je

Al-gestuurde applicatie. Je zou de volgende gereedschappen kunnen hebben:

1. DataRetrieval: Een gereedschap dat gegevens ophaalt uit een database of API
op basis van specifieke criteria.

2. DataProcessing: Een gereedschap dat berekeningen, transformaties of
aggregaties uitvoert op de opgehaalde gegevens.

3. DataVisualization:Een gereedschap dat de verwerkte gegevens presenteert in

een gebruiksvriendelijk formaat, zoals grafieken of diagrammen.

Gebruik van Tools 148

Door deze gereedschappen aan elkaar te koppelen, kun je een krachtige werkstroom
creéren die relevante gegevens ophaalt, verwerkt en de resultaten op een betekenisvolle

manier presenteert. Zo zou de gereedschapsworkflow eruit kunnen zien:

1. De LLM ontvangt een gebruikersvraag met het verzoek om inzichten in
verkoopgegevens voor een specifieke productcategorie.

2. De LLM selecteert het DataRetrieval-gereedschap en genereert de juiste
invoerparameters om de relevante verkoopgegevens uit de database op te halen.

3. De opgehaalde gegevens worden “doorgegeven” aan het DataProcessing-
gereedschap, dat metrics berekent zoals totale omzet, gemiddelde verkoopprijs en
groeipercentage.

4. De verwerkte gegevens worden vervolgens verwerkt door het
DataVisualization-gereedschap, dat een visueel aantrekkelijke grafiek
of diagram maakt om de inzichten weer te geven, waarbij de URL van de grafiek
wordt teruggegeven aan de LLM.

5. Tot slot genereert de LLM een geformatteerd antwoord op de gebruikersvraag met
behulp van markdown, waarbij de gevisualiseerde gegevens worden geintegreerd

en een samenvatting van de belangrijkste bevindingen wordt gegeven.

Door deze gereedschappen samen te stellen, kun je een naadloze
gegevensanalyseworkflow creéren die eenvoudig in je applicatie kan worden
geintegreerd. Het mooie van deze aanpak is dat elk gereedschap onathankelijk kan
worden ontwikkeld en getest, en vervolgens op verschillende manieren kan worden

gecombineerd om diverse problemen op te lossen.

Om een soepele samenstelling en aaneenschakeling van gereedschappen mogelijk te
maken, is het belangrijk om duidelijke invoer- en uitvoerformaten voor elk gereedschap

te definiéren.

Het DataRetrieval-gereedschap zou bijvoorbeeld parameters kunnen accepteren

zoals de databaseverbindingsgegevens, tabelnaam en queryvoorwaarden, en

Gebruik van Tools 149

het resultaat kunnen retourneren als een gestructureerd JSON-object. Het
DataProcessing-gereedschap kan dan dit JSON-object als invoer verwachten
en een getransformeerd JSON-object als uitvoer produceren. Door de gegevensstroom
tussen gereedschappen te standaardiseren, kun je compatibiliteit en herbruikbaarheid

waarborgen.

Denk bij het ontwerpen van je gereedschapsecosysteem na over hoe verschillende
gereedschappen kunnen worden gecombineerd om veelvoorkomende gebruikssituaties
in je applicatie aan te pakken. Overweeg om gereedschappen op hoog niveau te creéren
die veelvoorkomende workflows of bedrijfslogica omvatten, waardoor het voor de LLM

gemakkelijker wordt om ze effectief te selecteren en te gebruiken.

Onthoud dat de kracht van gereedschapsgebruik ligt in de flexibiliteit en modulariteit
die het biedt. Door complexe taken op te delen in kleinere, herbruikbare gereedschappen,
kun je een robuuste en aanpasbare Al-gestuurde applicatie creéren die een breed scala

aan uitdagingen kan aanpakken.

Toekomstige Ontwikkelingen

Naarmate het gebied van Al-gestuurde applicatieontwikkeling evolueert, kunnen
we verdere vooruitgang in gereedschapsgebruiksmogelijkheden verwachten. Enkele

potentiéle toekomstige richtingen zijn:

1. Meerstaps-gereedschapsgebruik: LLM’s kunnen mogelijk bepalen hoe vaak ze
gereedschappen moeten gebruiken om een bevredigend antwoord te genereren.
Dit kan meerdere rondes van gereedschapsselectie en -uitvoering omvatten op
basis van tussenresultaten.

2. Voorgedefinieerde Gereedschappen: Al-platforms kunnen mogelijk een set
voorgedefinieerde gereedschappen aanbieden die ontwikkelaars direct kunnen
gebruiken, zoals Python-interpreters, zoekgereedschappen voor het web of

algemene hulpfuncties.

Gebruik van Tools 150

3. Naadloze Integratie: Naarmate gereedschapsgebruik gangbaarder wordt,
kunnen we betere integratie verwachten tussen Al-platforms en populaire
ontwikkelingsframeworks, waardoor het voor ontwikkelaars gemakkelijker

wordt om gereedschapsgebruik in hun applicaties te integreren.

Gereedschapsgebruik is een krachtige techniek die ontwikkelaars in staat stelt om
het volledige potentieel van LLM’s in Al-gestuurde applicaties te benutten. Door
LLM’s te verbinden met externe gereedschappen en bronnen, kun je meer dynamische,
intelligente en contextbewuste systemen creéren die zich kunnen aanpassen aan

gebruikersbehoeften en waardevolle inzichten en acties kunnen bieden.

Hoewel gereedschapsgebruik enorme mogelijkheden biedt, is het belangrijk om je
bewust te zijn van potentiéle uitdagingen en overwegingen. Een belangrijk aspect
is het beheren van de complexiteit van gereedschapsinteracties en het waarborgen
van de stabiliteit en betrouwbaarheid van het gehele systeem. Je moet scenario’s
afhandelen waarbij gereedschapsaanroepen kunnen mislukken, onverwachte resultaten
kunnen opleveren of prestatie-implicaties kunnen hebben. Daarnaast moet je
beveiligings- en toegangscontrolemaatregelen overwegen om ongeautoriseerd of
kwaadwillig gebruik van gereedschappen te voorkomen. Goede foutafhandeling,
logging en monitoringmechanismen zijn cruciaal om de integriteit en prestaties van je

Al-gestuurde applicatie te behouden.

Tijdens het verkennen van de mogelijkheden van gereedschapsgebruik in je eigen
projecten, is het belangrijk om te beginnen met duidelijke doelstellingen, goed
gestructureerde gereedschapsdefinities, en te itereren op basis van feedback en
resultaten. Met de juiste aanpak en mindset kan gereedschapsgebruik nieuwe niveaus

van innovatie en waarde ontsluiten in je Al-gestuurde toepassingen

Streamverwerking

Het streamen van data over HTTP, ook bekend als server-sent events (SSE), is een

mechanisme waarbij de server continu data naar de client stuurt zodra deze beschikbaar
komt, zonder dat de client hier expliciet om hoeft te vragen. Aangezien de reactie van de
Al stapsgewijs wordt gegenereerd, is het logisch om een responsieve gebruikerservaring
te bieden door de uitvoer van de Al weer te geven terwijl deze wordt gegenereerd. En
eigenlijk bieden alle Al-provider API’s die ik ken streaming-responses als optie in hun

completion endpoints.

De reden dat dit hoofdstuk hier in het boek verschijnt, direct na Using Tools, is vanwege
hoe krachtig het kan zijn om het gebruik van tools te combineren met live Al-responses
aan gebruikers. Dit maakt dynamische en interactieve ervaringen mogelijk waarbij de
Al gebruikersinvoer kan verwerken, verschillende tools en functies naar eigen inzicht

kan gebruiken en vervolgens realtime responses kan geven.

© 0 N O U b W N =

= =N
B W N,

Streamverwerking 152

Om deze naadloze interactie te bereiken, moet je streamverwerkers schrijven die zowel
door Al aangeroepen toolfuncties als platte tekstuitvoer naar de eindgebruiker kunnen
versturen. De noodzaak om te loopen na het verwerken van een toolfunctie voegt een

interessante uitdaging toe aan de taak.

Implementatie van een ReplyStream

Om te demonstreren hoe streamverwerking kan worden geimplementeerd, zal dit
hoofdstuk diep ingaan op een vereenvoudigde versie van de ReplyStream-klasse die
wordt gebruikt in Olympia. Instanties van deze klasse kunnen worden doorgegeven als

de stream-parameter in Al-clientbibliotheken zoals ruby-openai en openrouter

Hier is hoe ik ReplyStream gebruik in Olympia’s PromptSubscriber, die via Wisper

luistert naar de creatie van nieuwe gebruikersberichten.

class PromptSubscriber
include Raix::ChatCompletion
include Raix: :PromptDeclarations

many other declarations omitted. ..

prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },
until: -> { bot_message.complete? }

def message_created(message) # invoked by Wisper

return unless message.role.user? && message.content?

rest of the implementation omitted. ..

Naast een context-referentie naar de prompt-abonnee die het heeft geinstantieerd,
heeft de ReplyStream-klasse ook instantievariabelen om een buffer van ontvangen
gegevens op te slaan, en arrays om functienamen en argumenten bij te houden die tijdens

de streamverwerking worden aangeroepen.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

© 0 N O O b W N e

T = T O T Y
o N O O b W N =

Streamverwerking 153

class ReplyStream

attr_accessor :buffer, :f_name, :f_arguments, :context
delegate :bot_message, :dispatch, to: :context

def initialize(context)
self.context = context
self.buffer = []
self.f_name = []
self.f_arguments = []
end

def call(chunk, bytesize = nil)

end

end

De initialize methode zet de beginstatus van de ReplyStream instantie op, waarbij

de buffer, context en andere variabelen worden geinitialiseerd.

De call methode is het belangrijkste toegangspunt voor het verwerken van de
streaminggegevens. Deze methode accepteert een chunk aan gegevens (weergegeven
als een hash) en een optionele bytesize parameter, die in ons voorbeeld niet wordt
gebruikt. Binnen deze methode gebruikt de klasse patroonherkenning om verschillende

scenario’s af te handelen op basis van de structuur van de ontvangen chunk.

’ Het aanroepen van deep_symbolize_keys op de chunk maakt de

patroonherkenning eleganter, doordat we kunnen werken met symbolen in

plaats van strings.

© 0 N O O b W N e

[T T ==Y
a s W N =~

Streamverwerking 154

def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in { # match function name
choices: |

{
delta: {
tool_calls: |

{ index: index, function: {name: name} }

f_name[index]| = name

Het eerste patroon waar we naar zoeken is een gereedschapsaanroep samen met de
bijbehorende functienaam. Als we er een detecteren, plaatsen we deze in de f_name
array. We slaan functienamen op in een geindexeerde array, omdat het model in staat is
tot parallelle functieaanroepen, waarbij meerdere functies tegelijk ter uitvoering worden

verzonden.

Parallelle functieaanroepen is het vermogen van een Al-model om meerdere
functieaanroepen tegelijk uit te voeren, waarbij de effecten en resultaten van deze
functieaanroepen parallel kunnen worden verwerkt. Dit is vooral nuttig als functies
veel tijd in beslag nemen, en het vermindert het aantal communicatierondes met de

API, wat op zijn beurt een aanzienlijke besparing in tokenverbruik kan opleveren.

Vervolgens moeten we zoeken naar de argumenten die bij de functieaanroepen horen.

© 0 N O O b W N e

[T T ==Y
a s W N =~

© 0 N O O b W N =

[T T
w N =~

Streamverwerking

in { # match arguments

choices: |
{
delta: {
tool_calls: |
{
index: index, function: {arguments: argument }
}
]
}
}
1}
f_arguments|index] ||= "" # initialize if not already

f_arguments[index| << argument

155

Vergelijkbaar met hoe we de functienamen hebben behandeld, bergen we de argumenten

op in een geindexeerde array.

Vervolgens kijken we naar normale gebruikersberichten, die één token tegelijk van de

server zullen binnenkomen en worden toegewezen aan de new_content variabele. We

moeten ook finish_reason in de gaten houden. Deze zal nil blijven tot het laatste

deel van de uitvoerreeks.

in {

choices: |

{ delta: {content: new_content}, finish_reason: finish_reason }

1}

you could transmit every chunk to the user here. ..

buffer << new_content.to_s

if finish_reason.present?
finalize
elsif new_content.to_s.match?(/\n\n/)

send_to_client # ...or buffer and transmit once per paragraph

end

Belangrijk is dat we een patroonherkenningsexpressie toevoegen om foutmeldingen van

~N O O b W N

BwWw N -

Streamverwerking 156

de Al-modelprovider af te handelen. In lokale ontwikkelomgevingen gooien we een

exceptie, maar in productie loggen we de fout en ronden we af.

in { error: { message: } }
if Rails.env.local?
raise message
else

Honeybadger .notify("AI Error: #{message}")
finalize

end

De laatste else-clausule van case wordt uitgevoerd als geen van de voorgaande patronen
overeenkwamen. Het is slechts een veiligheidsmaatregel, zodat we het ontdekken als het

Al-model ons onherkenbare fragmenten begint te sturen.

else

Honeybadger .notify("Unrecognized Chunk: #{chunk}")
end

end

De send_to_client methode is verantwoordelijk voor het verzenden van de
gebufferde inhoud naar de client. Deze controleert of de buffer niet leeg is, werkt de
inhoud van het botbericht bij, geeft het botbericht weer en slaat de inhoud op in de

database om gegevenspersistentie te waarborgen.

© 0 N O O b W N e

[T T ==Y
a s W N =~

© 0 N O O b W N =

[= =S
O O W N

Streamverwerking 157

def send_to_client
no need to process pure whitespace

return if buffer.join.squish.blank?

set the buffer content on the bot message
content = buffer. join
bot_message.content = content

save to database so that we never lose data
even 1f the stream doesn't terminate correctly

bot_message.update_column(:content, content)

update content via websocket
ConversationRenderer .update(bot_message)
end

De finalize-methode wordt aangeroepen wanneer de stream processing is voltooid.
Deze verwerkt de functie-aanroepen als die tijdens de stream zijn ontvangen, werkt
het botbericht bij met de definitieve inhoud en andere relevante informatie, en reset de

functie-aanroepgeschiedenis

def finalize
if f_name.any?
f_name.each_with_index do |name, index|
takes care of calling the function wherever it's implemented
dispatch(name:, arguments: JSON.parse(f_arguments|index]))
end

reset the function call history
f_name.clear
f_arguments.clear

else
content = buffer. join.presence
bot_message.update! (content:, complete: true)
ConversationRenderer .update(bot_message)

end

end

Als het model besluit om een functie aan te roepen, moet je die functieaanroep (naam

© 0 N O O b W N =

N
)

Streamverwerking 158

en argumenten) zodanig “athandelen” dat deze wordt uitgevoerd en er function_call

en function_result berichten worden toegevoegd aan het gespreksverslag

Uit mijn ervaring is het beter om het aanmaken van functieberichten op één plek in je
codebase af te handelen, in plaats van te vertrouwen op de implementaties van de tools.
Dit is niet alleen netter, maar heeft ook een zeer belangrijke praktische reden: als het
Al-model een functie aanroept en de resulterende aanroep- en resultaatberichten niet
in het transcript ziet tijdens het doorlopen, zal het dezelfde functie opnieuw aanroepen.
Mogelijk tot in het oneindige. Onthoud dat de Al volledig toestandsloos is, dus tenzij je

die functieaanroepen terugkoppelt, zijn ze voor het model nooit gebeurd.

PromptSubscriber#dispatch

def dispatch(name:, arguments:)
adds a function_call message to the conversation transcript
plus dispatches to tool and returns result
conversation. function_call!(name, arguments).then do |result]|
add function result message to the transcript
conversation. function_result!(name, result)
end
end

Het wissen van de functie-aanroepgeschiedenis na het verzenden is net zo
belangrijk als ervoor zorgen dat de aanroep en resultaten in je transcript
terechtkomen, zodat je niet steeds dezelfde functies blijft aanroepen elke keer

dat je de lus doorloopt.

De “Conversatielus”

I Ik blijf het hebben over lussen, maar als je nieuw bent met functie-aanroepen, is het
misschien niet direct duidelijk waarom we een lus nodig hebben. De reden is dat zodra

de Al je vraagt om toolfuncties namens haar uit te voeren, ze stopt met antwoorden.

Streamverwerking 159

Het is aan jou om die functies uit te voeren, de resultaten te verzamelen, de resultaten
aan het transcript toe te voegen, en vervolgens de oorspronkelijke prompt opnieuw in te

dienen om een nieuwe set functie-aanroepen of gebruikersgerichte resultaten te krijgen.

In de PromptSubscriber klasse gebruiken we de prompt methode van de
PromptDeclarations module om het gedrag van de conversatielus te definiéren. De
until parameter is ingesteld op -> { bot_message.complete? }, wat betekent

dat de lus doorgaat totdat het bot_message als voltooid is gemarkeerd.

prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },
until: -> { bot_message.complete? }

P Maar wanneer wordt bot_message als voltooid gemarkeerd? Als je het bent

vergeten, kijk dan terug naar regel 13 van de finalize methode.

Laten we de volledige streamverwerkingslogica doornemen.

1. De PromptSubscriber ontvangt een nieuw gebruikersbericht via de
message_created methode, die wordt aangeroepen door het Wisper
publicatie/abonnement-systeem telkens wanneer de eindgebruiker een nieuwe
prompt maakt.

2. De prompt klassemethode definieert op declaratieve wijze het gedrag van
de chatafronding-logica voor de PromptSubscriber. Het Al-model zal een
chatafronding uitvoeren met de berichtinhoud van de gebruiker, een nieuwe
instantie van ReplyStream als de streamparameter, en de gespecificeerde
lusvoorwaarde.

3. Het Al-model verwerkt de prompt en begint met het genereren van een
antwoord. Terwijl het antwoord wordt gestreamd, wordt de call methode van

de ReplyStream instantie aangeroepen voor elk deel van de data.

Streamverwerking 160

10.

11.

. Als het Al-model besluit om een hulpfunctie aan te roepen, worden de

functienaam en argumenten uit het deel geéxtraheerd en respectievelijk

opgeslagen in de f_name en f_arguments arrays.

. Als het Al-model gebruikersgerichte inhoud genereert, wordt deze gebufferd en

naar de client verzonden via de send_to_client methode.

. Zodra de streamverwerking voltooid is, wordt de finalize methode

aangeroepen. Als er tijdens de stream hulpfuncties zijn aangeroepen, worden deze

afgehandeld met behulp van de dispatch methode van de PromptSubscriber.

. De dispatch methode voegt een function_call bericht toe aan het

gespreksverslag, voert de corresponderende hulpfunctie uit, en voegt een
function_result bericht toe aan het verslag met het resultaat van de

functieaanroep.

. Na het afhandelen van de hulpfuncties wordt de functieaanroepgeschiedenis

gewist om dubbele functieaanroepen in volgende lussen te voorkomen.

. Als er geen hulpfuncties zijn aangeroepen, werkt de finalize methode het

bot_message bij met de definitieve inhoud, markeert het als voltooid, en stuurt
het bijgewerkte bericht naar de client.

De lusvoorwaarde -> { bot_message.complete? } wordt geévalueerd. Als
het bot_message niet als voltooid is gemarkeerd, gaat de lus door en wordt de
originele prompt opnieuw ingediend met het bijgewerkte gespreksverslag.
Stappen 3-10 worden herhaald totdat het bot_message als voltooid is
gemarkeerd, wat aangeeft dat het Al-model klaar is met het genereren van

zijn antwoord en er geen verdere hulpfuncties hoeven te worden uitgevoerd.

Door deze conversatielus te implementeren, stel je het Al-model in staat om een

wisselwerking met de applicatie aan te gaan, hulpfuncties uit te voeren wanneer

nodig en gebruikersgerichte antwoorden te genereren totdat het gesprek een natuurlijke

conclusie bereikt.

De combinatie van streamverwerking en de conversatielus maakt dynamische en

interactieve Al-gestuurde ervaringen mogelijk, waarbij het Al-model gebruikersinvoer

Streamverwerking 161

kan verwerken, verschillende hulpmiddelen en functies kan gebruiken, en realtime

antwoorden kan geven op basis van de zich ontwikkelende gesprekscontext.

Automatische Voortzetting

Het is belangrijk om je bewust te zijn van Al-uitvoerbeperkingen. De meeste modellen
hebben een maximaal aantal tokens dat ze in één antwoord kunnen genereren, wat
wordt bepaald door de max_tokens parameter. Als het Al-model deze limiet bereikt
tijdens het genereren van een antwoord, zal het abrupt stoppen en aangeven dat de

uitvoer is afgekapt.

In de streaming-respons van de Al-platform API kun je deze situatie detecteren door
de finish_reason variabele in het deel te onderzoeken. Als de finish_reason is
ingesteld op "length" (of een andere sleutelwaarde specifiek voor het model), betekent
dit dat het model zijn maximale tokenlimiet heeft bereikt tijdens het genereren en de

uitvoer voortijdig is afgebroken.

Een manier om dit scenario elegant af te handelen en een naadloze gebruikerservaring
te bieden, is door een automatisch voortzettingsmechanisme te implementeren
in je streamverwerkingslogica. Door een patroonherkenning toe te voegen voor
lengtegebonden afsluitredenen, kun je ervoor kiezen om te lussen en de uitvoer

automatisch voort te zetten vanaf waar deze was gebleven.

Hier is een opzettelijk vereenvoudigd voorbeeld van hoe je de call methode in de

ReplyStream klasse kunt aanpassen om automatische voortzetting te ondersteunen:

© 0 N O O b W N e

W oW oW N NN DNDNNDDNNDNN S S R S s s
[SIS S T (e o RN Bie NN S B NORRSS B S SRS < B (o TN ¢ N B S I S S S S

Streamverwerking

LENGTH_STOPS = %w[length MAX_TOKENS]

def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in {
choices: |
{ delta: {content: new_content},

finish_reason: finish_reason } | }
buffer << new_content.to_s

if finish_reason.blank?
send_to_client if new_content.to_s.match?(/\n\n/)
elsif LENGTH_STOPS.include?(finish_reason)
continue_cutoff
else
finalize

end

end
end

private

def continue_cutoff
conversation.bot_message! (buffer. join, visible: false)

conversation.user_message!("please continue", visible: false)

bot_message.update_column(:created_at, Time.current)
end

162

In deze aangepaste versie, wanneer de finish_reason afgekapte output aangeeft,

voegen we, in plaats van de stream te finaliseren, een paar berichten toe aan het

transcript zonder te finaliseren, verplaatsen we het originele gebruikersgerichte

antwoordbericht naar de “onderkant” van het transcript door zijn created_at

attribuut bij te werken, en laten we vervolgens de lus gebeuren, zodat de Al doorgaat

met genereren waar deze was gestopt.

Streamverwerking 163

Onthoud dat het Al-voltooiingseindpunt statusloos is. Het “weet” alleen wat je het
vertelt via het transcript. In dit geval is de manier waarop we aan de Al communiceren
dat deze werd afgekapt door het toevoegen van “onzichtbare” (voor de eindgebruiker)
berichten aan het transcript. Onthoud echter dat dit een opzettelijk vereenvoudigd
voorbeeld is. Een echte implementatie zou verder transcriptbeheer moeten uitvoeren om
ervoor te zorgen dat we geen tokens verspillen en/of de Al niet in verwarring brengen

met gedupliceerde assistent-berichten in het transcript.

Een echte implementatie van automatische voortzetting zou ook zogenaamde
“circuitonderbreker-logica” moeten bevatten om ongecontroleerde lussen te voorkomen.
De reden hiervoor is dat, gegeven bepaalde soorten gebruikersprompts en lage
max_tokens instellingen, de Al eindeloos zou kunnen doorgaan met het genereren van

gebruikersgerichte output.

Houd er rekening mee dat elke lus een apart verzoek vereist, en dat elk verzoek
je hele transcript opnieuw verbruikt. Je moet zeker de afweging maken tussen
gebruikerservaring en API-gebruik bij het beslissen of je automatische voortzetting
in je applicatie wilt implementeren. Automatische voortzetting kan in het bijzonder

gevaarlijk duur zijn, vooral bij gebruik van premium commerciéle modellen.

Conclusie

Streamverwerking is een kritiek aspect van het bouwen van Al-aangedreven applicaties
die toolgebruik combineren met live Al-responses. Door het efficiént afthandelen
van de streaming data van Al-platform API’s, kun je een naadloze en interactieve
gebruikerservaring bieden, grote responses afhandelen, bronnengebruik optimaliseren

en fouten elegant afthandelen.

Streamverwerking 164

De aangeboden Conversation::ReplyStream klasse demonstreert hoe
streamverwerking kan worden geimplementeerd in een Ruby-applicatie met
behulp van patroonherkenning en gebeurtenisgestuurde architectuur. Door
streamverwerkingstechnieken te begrijpen en te benutten, kun je het volledige
potentieel van Al-integratie in je applicaties ontsluiten en krachtige en boeiende

gebruikerservaringen leveren.

Zelfherstellende Data

AL
Sk

Zelfherstellende data is een krachtige benadering om data-integriteit, consistentie en
kwaliteit in applicaties te waarborgen door gebruik te maken van de mogelijkheden
van grote taalmodellen (LLM’s). Deze categorie patronen richt zich op het idee om
Al te gebruiken voor het automatisch detecteren, diagnosticeren en corrigeren van
data-anomalieén, inconsistenties of fouten, waardoor de last voor ontwikkelaars wordt

verminderd en een hoog niveau van databelrouwbaarheid wordt gehandhaafd.

In de kern erkennen de zelfherstellende datapatronen dat data de levensader is van elke
applicatie, en het waarborgen van de nauwkeurigheid en integriteit ervan is cruciaal
voor het goed functioneren en de gebruikerservaring van de applicatie. Het beheren en
onderhouden van datakwaliteit kan echter een complexe en tijdrovende taak zijn, vooral

naarmate applicaties groeien in omvang en complexiteit. Hier komt de kracht van Al in

beeld.

Zelfherstellende Data 166

In de zelfherstellende datapatronen worden Al-workers ingezet om continu de data van
uw applicatie te monitoren en te analyseren. Deze modellen hebben het vermogen om
patronen, relaties en anomalieén binnen de data te begrijpen en te interpreteren. Door
gebruik te maken van hun natuurlijke taalverwerking en begrip kunnen ze potentiéle
problemen of inconsistenties in de data identificeren en passende acties ondernemen

om deze te herstellen.

Het proces van zelfherstellende data omvat meestal verschillende belangrijke stappen:

1. Datamonitoring: Al-workers monitoren constant de datastromen, databases
of opslagsystemen van de applicatie, op zoek naar tekenen van anomalieén,
inconsistenties of fouten. Als alternatief kunt u een Al-component activeren als
reactie op een uitzondering.

2. Anomaliedetectie: Wanneer een probleem wordt gedetecteerd, analyseert de Al-
worker de data in detail om de specifieke aard en omvang van het probleem
te identificeren. Dit kan gaan om het detecteren van ontbrekende waarden,
inconsistente formaten of data die vooraf gedefinieerde regels of beperkingen
schendt.

3. Diagnose en Correctie: Zodra het probleem is geidentificeerd, gebruikt de Al-
worker zijn kennis en begrip van het datadomein om de juiste aanpak te bepalen.
Dit kan betekenen dat de data automatisch wordt gecorrigeerd, ontbrekende
waarden worden ingevuld, of het probleem wordt gemarkeerd voor menselijke
interventie indien nodig.

4. Continu Leren (optioneel, afhankelijk van gebruik): Terwijl uw Al-worker
verschillende dataproblemen tegenkomt en oplost, kan deze output genereren die
beschrijft wat er is gebeurd en hoe erop is gereageerd. Deze metadata kan worden
gebruikt in leerprocessen waardoor u (en mogelijk het onderliggende model, via
fine-tuning) effectiever en efficiénter wordt in het identificeren en oplossen van

data-anomalieén.

Door automatisch dataproblemen te detecteren en te corrigeren, kunt u ervoor

Zelfherstellende Data 167

zorgen dat uw applicatie werkt met kwalitatief hoogwaardige, betrouwbare data.
Dit vermindert het risico dat fouten, inconsistenties of data-gerelateerde bugs de

functionaliteit of gebruikerservaring van de applicatie beinvloeden.

Zodra u Al-workers heeft die de taak van datamonitoring en -correctie uitvoeren, kunt u
zich richten op andere kritieke aspecten van de applicatie. Dit bespaart tijd en middelen
die anders zouden worden besteed aan handmatige dataopschoning en onderhoud.
Sterker nog, naarmate uw applicaties groeien in omvang en complexiteit, wordt het
handmatig beheren van datakwaliteit steeds uitdagender. De “Zeltherstellende Data”
patronen schalen effectief door de kracht van Al te benutten om grote hoeveelheden

data te verwerken en problemen in realtime te detecteren.

Vanwege hun aard kunnen Al-modellen zich met weinig tot geen toezicht
aanpassen aan veranderende datapatronen, schema’s of vereisten. Zolang

hun richtlijnen adequate begeleiding bieden, vooral met betrekking tot
beoogde resultaten, kan uw applicatie mogelijk evolueren en nieuwe
datascenario’s afthandelen zonder uitgebreide handmatige interventie of

codewijzigingen.

De zelfherstellende datapatronen sluiten goed aan bij de andere categorieén patronen die
we hebben besproken, zoals “Veelheid aan Workers”. De zelfherstellende datacapaciteit
kan worden gezien als een gespecialiseerd soort worker die zich specifiek richt op het
waarborgen van datakwaliteit en -integriteit. Dit soort worker werkt samen met andere
Al-workers, waarbij elk bijdraagt aan verschillende aspecten van de functionaliteit van

de applicatie.

Het implementeren van zelfherstellende datapatronen in de praktijk vereist zorgvuldig
ontwerp en integratie van Al-modellen in de applicatiearchitectuur. Vanwege de risico’s
van dataverlies en -corruptie moet u duidelijke richtlijnen definiéren voor hoe u deze
techniek zult gebruiken. U moet ook rekening houden met factoren zoals prestaties,

schaalbaarheid en databeveiliging.

O© 0 N O O b W N =

Y
w N =~ O

Zelfherstellende Data 168

Praktijkvoorbeeld: Het Repareren van
Beschadigde JSON

Een van de meest praktische en handige manieren om zelfherstellende data te benutten

is ook heel eenvoudig uit te leggen: het repareren van beschadigde JSON.

Deze techniek kan worden toegepast op de veel voorkomende uitdaging van het omgaan
met imperfecte of inconsistente data gegenereerd door LLM’s, zoals beschadigde JSON,

en biedt een aanpak voor het automatisch detecteren en corrigeren van deze problemen.

Bij Olympia kom ik regelmatig scenario’s tegen waarbij LLM’s JSON-data genereren
die niet volledig geldig is. Dit kan verschillende oorzaken hebben, zoals wanneer het
LLM commentaar toevoegt voor of na de eigenlijke JSON-code, of syntaxisfouten
introduceert zoals ontbrekende komma’s of niet-geéscapete dubbele aanhalingstekens.
Deze problemen kunnen leiden tot parse-fouten en verstoringen veroorzaken in de

functionaliteit van de applicatie.

Om dit probleem aan te pakken, heb ik een praktische oplossing geimplementeerd in de
vorm van een JsonFixer-klasse. Deze klasse belichaamt het “Self-Healing Data” patroon
door de beschadigde JSON als invoer te nemen en een LLM te gebruiken om deze te

repareren, waarbij zoveel mogelijk informatie en intentie behouden blijft.

class JsonFixer

include Raix::ChatCompletion

def call(bad_json, error_message)

raise "No data provided" if bad_json.blank? || error_message.blank?

transcript << {
system: "Consider user-provided JSON that generated a parse
exception. Do your best to fix it while preserving the
original content and intent as much as possible." }
transcript << { user: bad_json }
transcript << { assistant: "What is the error message?"}

transcript << { user: error_message }

14
15
16
17
18
19
20
21
22
23
24

a s W N -

Zelfherstellende Data 169

transcript << { assistant: "Here is the corrected JSON\n' " json\n" }
self.stop = [" "]

chat_completion(json: true)
end

def model
"mistralai/mixtral-8x7b-instruct:nitro"
end
end

P Merk op hoe JsonFixer Ventriloquist gebruikt om de Al-responses te

sturen.

Het proces van zeltherstellende JSON-data werkt als volgt:

1. JSON-generatie: Een LLM wordt gebruikt om JSON-data te genereren op
basis van bepaalde prompts of vereisten. Echter, door de aard van LLMs is de
gegenereerde JSON niet altijd volledig geldig. De JSON-parser zal uiteraard een

ParserError genereren als je ongeldige JSON aanlevert.

begin
JSON. parse(11lm_generated_json)
rescue JSON: :ParserkError => e
JsonFixer.new.call(llm_generated_json, e.message)
end

Merk op dat het foutbericht ook wordt doorgegeven aan de JSONF ixer-aanroep, zodat
deze niet volledig hoeft aan te nemen wat er mis is met de data, vooral omdat de parser

vaak precies aangeeft wat er mis is.

2. LLM-gebaseerde Correctie: De JSONF i xer -klasse stuurt de beschadigde JSON

terug naar een LLM, samen met een specifieke prompt of instructie om de JSON te

Zelfherstellende Data 170

repareren waarbij de originele informatie en bedoeling zoveel mogelijk behouden
blijven. De LLM, getraind op enorme hoeveelheden data en met begrip van JSON-
syntax, probeert de fouten te corrigeren en een geldige JSON-string te genereren.
Responsbegrenzing wordt gebruikt om de output van de LLM te beperken, en we
kiezen Mixtral 8x7B als het Al-model, aangezien het bijzonder geschikt is voor dit
soort taken.

3. Validatie en Integratie: De gerepareerde JSON-string die door de LLM wordt
teruggegeven, wordt verwerkt door de JSONFixer-klasse zelf, omdat deze
chat_completion(json: true) aanroept. Als de gerepareerde JSON de
validatie doorstaat, wordt deze geintegreerd in de werkstroom van de applicatie,
waardoor de applicatie naadloos door kan gaan met het verwerken van de data.

De slechte JSON is “genezen”.

Hoewel ik mijn eigen JSONFixer-implementatie meerdere keren heb geschreven en
herschreven, betwijfel ik of de totale tijd die in al die versies is geinvesteerd meer dan

een uur of twee bedraagt.

Merk op dat het behoud van de oorspronkelijke bedoeling een kernelement is van
elk zelfherstellend datapatroon. Het LLM-gebaseerde correctieproces streeft ernaar
om de originele informatie en bedoeling van de gegenereerde JSON zoveel mogelijk
te behouden. Dit zorgt ervoor dat de gerepareerde JSON zijn semantische betekenis

behoudt en effectief kan worden gebruikt binnen de context van de applicatie.

Deze praktische implementatie van de “Zelfherstellende Data”-aanpak in Olympia laat
duidelijk zien hoe Al en specifiek LLM’s, kunnen worden ingezet om praktische data-
uitdagingen op te lossen. Het toont de kracht van het combineren van traditionele
programmeertechnieken met Al-mogelijkheden om robuuste en efficiénte applicaties

te bouwen.

Zelfherstellende Data 171

Postel's Law en het “Zelfherstellende Data"-
Patroon

“Zelfherstellende Data”, zoals geillustreerd door de JSONFixer-klasse, sluit goed aan
bij het principe bekend als Postel’s Law, ook wel het Robuustheidsprincipe genoemd.

Postel’s Law stelt:
“Wees conservatief in wat je doet, wees liberaal in wat je accepteert van anderen.”

Dit principe, oorspronkelijk geformuleerd door Jon Postel, een pionier van het vroege
internet, benadrukt het belang van het bouwen van systemen die tolerant zijn voor
diverse of zelfs licht incorrecte invoer, terwijl ze strikt vasthouden aan gespecificeerde

protocollen bij het verzenden van uitvoer.

In de context van “Zelfherstellende Data” belichaamt de JSONFixer-klasse Postel’s
Law door liberaal te zijn in het accepteren van beschadigde of imperfecte JSON-data
gegenereerd door LLM’s. Het verwerpt of faalt niet onmiddellijk wanneer het JSON
tegenkomt die niet strikt voldoet aan het verwachte formaat. In plaats daarvan neemt
het een tolerante aanpak en probeert het de JSON te repareren met behulp van de

kracht van LLM’s.

Door liberaal te zijn in het accepteren van imperfecte JSON, demonstreert de
JSONFixer-klasse robuustheid en flexibiliteit. Het erkent dat data in de echte wereld
vaak in verschillende vormen komt en niet altijd aan strikte specificaties voldoet.
Door deze afwijkingen elegant af te handelen en te corrigeren, zorgt de klasse
ervoor dat de applicatie soepel kan blijven functioneren, zelfs in aanwezigheid van

imperfecte data.

Aan de andere kant houdt de JSONFixer-klasse zich ook aan het conservatieve aspect
van Postel’s Law als het gaat om de uitvoer. Na het repareren van de JSON met behulp
van LLM’s, valideert de klasse de gecorrigeerde JSON om ervoor te zorgen dat deze

strikt voldoet aan het verwachte formaat. Het behoudt de integriteit en correctheid

Zelfherstellende Data

van de data voordat deze wordt doorgegeven aan andere delen van de applicatie.

Deze conservatieve aanpak garandeert dat de uitvoer van de JSONFixer-klasse

betrouwbaar en consistent is, wat interoperabiliteit bevordert en de verspreiding van

fouten voorkomt.

Interessante weetjes over Jon Postel:

Jon Postel (1943-1998) was een Amerikaanse informaticus die een cruciale rol
speelde in de ontwikkeling van het internet. Hij stond bekend als de “God
van het Internet” vanwege zijn belangrijke bijdragen aan de onderliggende
protocollen en standaarden.

Postel was de redacteur van de Request for Comments (RFC)-documentreeks,
een serie technische en organisatorische notities over het internet. Hij schreef
of co-schreef meer dan 200 RFC’s, waaronder de fundamentele protocollen
zoals TCP, IP en SMTP.

Naast zijn technische bijdragen stond Postel bekend om zijn bescheiden en
samenwerkende aanpak. Hij geloofde in het belang van het bereiken van
consensus en samenwerken om een robuust en interoperabel netwerk te
bouwen.

Postel diende als Directeur van de Computer Networks Division bij het
Information Sciences Institute (ISI) van de University of Southern California
(USC) van 1977 tot aan zijn vroegtijdige dood in 1998.

Als erkenning voor zijn enorme bijdragen werd Postel postuum onderscheiden
met de prestigieuze Turing Award in 1998, vaak aangeduid als de “Nobelprijs

voor Informatica.”

De JSONFixer-klasse bevordert robuustheid, flexibiliteit en interoperabiliteit,

wat kernwaarden waren die Postel gedurende zijn hele carriére voorstond. Door

systemen te bouwen die tolerant zijn voor onvolkomenheden, terwijl ze zich strikt

aan protocollen houden, kunnen we toepassingen creéren die veerkrachtiger en

aanpasbaarder zijn bij praktische uitdagingen.

172

Zelfherstellende Data 173

Overwegingen en Contra-indicaties

De toepasbaarheid van zelfherstellende data-aanpakken is volledig afhankelijk van
het soort gegevens dat je applicatie verwerkt. Er is een reden waarom je mogelijk
niet zomaar JSON.parse wilt aanpassen om automatisch alle JSON-parsing fouten
in je applicatie te corrigeren: niet alle fouten kunnen of moeten automatisch worden

gecorrigeerd.

Zelfherstel is bijzonder complex wanneer het gekoppeld wordt aan regelgevings- of
nalevingsvereisten met betrekking tot gegevensverwerking en -verwerking. Sommige
sectoren, zoals de gezondheidszorg en financiéle sector, hebben zodanig strenge
voorschriften met betrekking tot data-integriteit en controleerbaarheid dat het
uitvoeren van “black box” datacorrecties zonder adequaat toezicht of logging in
strijd kan zijn met deze voorschriften. Het is cruciaal om ervoor te zorgen dat alle
zelfherstellende datatechnieken die je ontwikkelt, in overeenstemming zijn met de

toepasselijke wettelijke en regelgevende kaders.

Het toepassen van zelfherstellende datatechnieken, vooral die met Al-modellen, kan ook
grote invloed hebben op de prestaties en het brongebruik van applicaties. Het verwerken
van grote hoeveelheden gegevens via Al-modellen voor foutdetectie en -correctie kan
rekenintensief zijn. Het is belangrijk om de afweging te maken tussen de voordelen van

zelfherstellende data en de bijbehorende prestatie- en resourcekosten.

Dat gezegd hebbende, laten we eens kijken naar de factoren die een rol spelen bij het

beslissen wanneer en waar deze krachtige aanpak toe te passen.

Datakritikaliteit

Bij het overwegen van de toepassing van zelfherstellende datatechnieken is het cruciaal
om de kritikaliteit van de te verwerken gegevens te beoordelen. Het kritikaliteitsniveau
verwijst naar het belang en de gevoeligheid van de gegevens in de context van je

applicatie en het bedrijfsdomein.

Zelfherstellende Data 174

In sommige gevallen is het automatisch corrigeren van datafouten mogelijk niet gepast,
vooral als de gegevens zeer gevoelig zijn of juridische implicaties hebben. Overweeg

bijvoorbeeld de volgende scenario’s:

1. Financiéle Transacties: In financiéle applicaties, zoals banksystemen of
handelsplatformen, is data-nauwkeurigheid van het grootste belang. Zelfs kleine
fouten in financiéle gegevens kunnen belangrijke gevolgen hebben, zoals onjuiste
rekeningsaldi, verkeerd geleide gelden of foutieve handelsbeslissingen. In deze
gevallen kunnen geautomatiseerde correcties zonder grondige verificatie en
controle onaanvaardbare risico’s met zich meebrengen.

2. Medische Dossiers: Zorgtoepassingen werken met zeer gevoelige en
vertrouwelijke patiéntgegevens. Onnauwkeurigheden in medische dossiers
kunnen ernstige gevolgen hebben voor de veiligheid van patiénten en
behandelingsbeslissingen. Het automatisch wijzigen van medische gegevens
zonder adequaat toezicht en validatie door gekwalificeerde zorgprofessionals kan
in strijd zijn met regelgevingsvereisten en de gezondheid van patiénten in gevaar
brengen.

3. Juridische Documenten: Toepassingen die juridische documenten verwerken,
zoals contracten, overeenkomsten of rechtbankdocumenten, vereisen strikte
nauwkeurigheid en integriteit. Zelfs kleine fouten in juridische gegevens kunnen
belangrijke juridische gevolgen hebben. Geautomatiseerde correcties zijn in dit
domein mogelijk niet gepast, aangezien de gegevens vaak handmatige controle en
verificatie door juridische experts vereisen om de geldigheid en afdwingbaarheid

te waarborgen.

In deze kritieke datascenario’s wegen de risico’s van geautomatiseerde correcties vaak
niet op tegen de potentiéle voordelen. De gevolgen van het introduceren van fouten of
het incorrect wijzigen van gegevens kunnen ernstig zijn, wat kan leiden tot financiéle

verliezen, juridische aansprakelijkheid of zelfs schade aan personen.

Zelfherstellende Data 175

Bij het werken met zeer kritieke gegevens is het essentieel om prioriteit te geven
aan handmatige verificatie- en validatieprocessen. Menselijk toezicht en expertise zijn
cruciaal voor het waarborgen van de nauwkeurigheid en integriteit van de gegevens.
Geautomatiseerde zelfherstellende technieken kunnen nog steeds worden gebruikt om
mogelijke fouten of inconsistenties te markeren, maar de uiteindelijke beslissing over

correcties moet menselijk oordeel en goedkeuring omvatten.

Het is echter belangrijk op te merken dat niet alle gegevens in een applicatie hetzelfde
kritikaliteitsniveau hebben. Binnen dezelfde applicatie kunnen er subsets van gegevens
zijn die minder gevoelig zijn of waarbij fouten minder impact hebben. In dergelijke
gevallen kunnen zelfherstellende datatechnieken selectief worden toegepast op die
specifieke datasubsets, terwijl kritieke gegevens onderworpen blijven aan handmatige

verificatie.

De sleutel is om zorgvuldig de kritikaliteit van elke datacategorie in je applicatie te
beoordelen en duidelijke richtlijnen en processen te definiéren voor het afthandelen
van correcties op basis van de bijbehorende risico’s en implicaties. Door onderscheid te
maken tussen kritieke (zoals grootboeken, medische dossiers) en niet-kritieke gegevens
(zoals mailingadressen, bronwaarschuwingen), kun je een balans vinden tussen het
benutten van de voordelen van zelfherstellende datatechnieken waar gepast en het

handhaven van strikte controle en toezicht waar nodig.

Uiteindelijk moet de beslissing om zelfherstellende datatechnieken toe te passen op
kritieke gegevens worden genomen in overleg met domeinexperts, juridisch adviseurs
en andere relevante belanghebbenden. Het is essentieel om rekening te houden met de
specifieke vereisten, voorschriften en risico’s die verbonden zijn aan de gegevens van je

applicatie en de datacorrectiestrategieén daarop af te stemmen.

Ernst van Fouten

Bij het toepassen van zelfherstellende datatechnieken is het belangrijk om de ernst en

impact van de datafouten te beoordelen. Niet alle fouten zijn gelijk, en de juiste aanpak

Zelfherstellende Data 176

kan variéren afhankelijk van de ernst van het probleem.

Kleine inconsistenties of opmaakproblemen kunnen geschikt zijn voor automatische
correctie. Bijvoorbeeld, een zelfherstellende dataverwerker die bedoeld is om
defecte JSON te repareren kan ontbrekende komma’s of niet-geéscapete dubbele
aanhalingstekens afhandelen zonder de betekenis of structuur van de gegevens
significant te wijzigen. Dit soort fouten zijn vaak eenvoudig te corrigeren en hebben

minimale impact op de algehele data-integriteit.

Echter, ernstigere fouten die de betekenis of integriteit van de data fundamenteel
veranderen, vereisen mogelijk een andere aanpak. In dergelijke gevallen zijn
geautomatiseerde correcties mogelijk niet toereikend, en kan menselijke tussenkomst

noodzakelijk zijn om de nauwkeurigheid en validiteit van de data te waarborgen.

Dit is waar het concept om Al zelf te gebruiken voor het bepalen van de ernst van fouten
in beeld komt. Door gebruik te maken van de mogelijkheden van Al-modellen, kunnen
we zelfherstellende data-workers ontwerpen die niet alleen fouten corrigeren, maar ook
de ernst van deze fouten beoordelen en weloverwogen beslissingen nemen over hoe

ermee om te gaan.

Laten we bijvoorbeeld een zelfherstellende data-worker beschouwen die
verantwoordelijk is voor het corrigeren van inconsistenties in data die een
klantendatabase binnenstroomt. De worker kan worden ontworpen om de data
te analyseren en potentiéle fouten te identificeren, zoals ontbrekende of tegenstrijdige
informatie. In plaats van alle fouten automatisch te corrigeren, kan de worker worden
uitgerust met aanvullende gereedschapsaanroepen die het mogelijk maken om ernstige

fouten te markeren voor menselijke beoordeling.

Hier is een voorbeeld van hoe dit geimplementeerd kan worden:

© 0 N O O b W N e

W W W W W W W N NN DDDNDDNDDNDDNDNDDNRA A~ AR R,)R
O O B W N~ O © 00 N O O b W NP, O O 0 N O O kx W N =~ O

Zelfherstellende Data 177

class CustomerDataReviewer
include Raix::ChatCompletion

include Raix::FunctionDeclarations
attr_accessor :customer

function :flag_for_review, reason: { type: "string" } do |params|
AdminNotifier.review_request(customer, params|[:reason])
end

def initialize(customer)
self.customer = customer
end

def call(customer_data)
transcript << {
system: "You are a customer data reviewer. Your task is to identify
and correct inconsistencies in customer data.

< additional instructions here... >

If you encounter severe errors that require human review, use the

“flag_for_review® tool to flag the data for manual intervention." }

transcript << { user: customer.to_json }

transcript << { assistant: "Reviewed/corrected data:\n json\n" }

self.stop = |

chat_completion(json: true).then do |result|
return if result.blank?

customer .update(result)
end
end
end

In dit voorbeeld is de CustomerDataHealer worker ontworpen om inconsistenties
in klantgegevens te identificeren en te corrigeren. Opnieuw gebruiken we Response

Fencing en Ventriloquist om gestructureerde output te krijgen. Belangrijk is dat de

Zelfherstellende Data 178

systeemrichtlijn van de worker instructies bevat om de flag_for_review functie te

gebruiken als er ernstige fouten worden aangetroffen.

Wanneer de worker de klantgegevens verwerkt, analyseert deze de data en probeert
eventuele inconsistenties te corrigeren. Als de worker vaststelt dat de fouten ernstig zijn
en menselijke interventie vereisen, kan deze de flag_for_review tool gebruiken om

de gegevens te markeren en een reden voor de markering te verstrekken.

De chat_completion methode wordt aangeroepen met json: true om de
gecorrigeerde klantgegevens als JSON te verwerken. Er is geen voorziening voor
het maken van een lus na een functie-aanroep, dus het resultaat zal leeg zijn als
flag_for_review werd aangeroepen. Anders wordt de klant bijgewerkt met de

beoordeelde en mogelijk gecorrigeerde gegevens.

Door beoordeling van de ernst van fouten en de mogelijkheid om gegevens te
markeren voor menselijke controle op te nemen, wordt de zelfherstellende data
worker intelligenter en aanpasbaarder. Deze kan kleine fouten automatisch afhandelen
terwijl ernstige fouten worden geéscaleerd naar menselijke experts voor handmatige

interventie.

De specifieke criteria voor het bepalen van de ernst van fouten kunnen worden
gedefinieerd in de richtlijn van de worker op basis van domeinkennis en
bedrijfsvereisten. Factoren zoals de impact op data-integriteit, het risico op
gegevensverlies of -corruptie, en de gevolgen van onjuiste gegevens kunnen worden

meegewogen bij het beoordelen van de ernst.

Door Al te gebruiken voor het beoordelen van de ernst van fouten en opties te bieden
voor menselijke interventie, kunnen zelfherstellende datatechnieken een balans vinden
tussen automatisering en het behoud van gegevensnauwkeurigheid. Deze aanpak zorgt
ervoor dat kleine fouten efficiént worden gecorrigeerd terwijl ernstige fouten de nodige

aandacht en expertise krijgen van menselijke beoordelaars.

Zelfherstellende Data 179

Domein Complexiteit

Bij het overwegen van de toepassing van zelfherstellende datatechnieken is het
belangrijk om de complexiteit van het datadomein en de regels die de structuur
en relaties ervan bepalen te evalueren. De complexiteit van het domein kan een
aanzienlijke invloed hebben op de effectiviteit en haalbaarheid van geautomatiseerde

datacorrectie-benaderingen.

Zelfherstellende datatechnieken werken goed wanneer de gegevens duidelijk
gedefinieerde patronen en beperkingen volgen. In domeinen waar de datastructuur
relatief eenvoudig is en de relaties tussen data-elementen overzichtelijk zijn, kunnen
geautomatiseerde correcties met een hoge mate van vertrouwen worden toegepast.
Het corrigeren van formatteringsproblemen of het afdwingen van basis datatype-
beperkingen kan bijvoorbeeld vaak effectief worden afgehandeld door zelfherstellende

data workers.

Echter, naarmate de complexiteit van het datadomein toeneemt, groeien ook de
uitdagingen die gepaard gaan met geautomatiseerde datacorrectie. In domeinen
met ingewikkelde bedrijfslogica, complexe relaties tussen data-entiteiten, of
domeinspecifieke regels en uitzonderingen, kunnen zelfherstellende datatechnieken

niet altijd de nuances vastleggen en kunnen ze onbedoelde gevolgen introduceren.

Laten we een voorbeeld nemen van een complex domein: een financieel handelssysteem.
In dit domein omvatten de gegevens verschillende financiéle instrumenten,
marktgegevens, handelsregels en regelgevingsvereisten. De relaties tussen verschillende
data-elementen kunnen ingewikkeld zijn, en de regels die de geldigheid en consistentie

van gegevens bepalen kunnen zeer specifiek zijn voor het domein.

In een dergelijk complex domein zou een zelfherstellende data worker die belast is met
het corrigeren van inconsistenties in handelsgegevens een diepgaand begrip moeten
hebben van de domeinspecifieke regels en beperkingen. Deze zou rekening moeten

houden met factoren zoals marktregulering, handelslimieten, risicoberekeningen en

Zelfherstellende Data 180

afwikkelingsprocedures. Geautomatiseerde correcties kunnen in deze context niet altijd
de volledige complexiteit van het domein vastleggen en kunnen onbedoeld fouten

introduceren of domeinspecifieke regels schenden.

Om de uitdagingen van domeincomplexiteit aan te pakken, kunnen zelfherstellende
datatechnieken worden verbeterd door domeinspecifieke kennis en regels op te nemen

in de Al-modellen en workers. Dit kan worden bereikt door technieken zoals:

1. Domeinspecifieke Training: De Al-modellen die worden gebruikt voor
zelftherstellende data kunnen worden gestuurd of zelfs verfijnd op
domeinspecifieke datasets die de complexiteit en regels van het specifieke
domein vastleggen. Door de modellen bloot te stellen aan representatieve
gegevens en scenario’s, kunnen ze de patronen, beperkingen en uitzonderingen
leren die specifiek zijn voor het domein.

2. Regelgebaseerde Beperkingen: Zelfherstellende data workers kunnen worden
uitgebreid met expliciete regelgebaseerde beperkingen die domeinspecifieke
kennis coderen. Deze regels kunnen worden gedefinieerd door domeinexperts
en geintegreerd in het datacorrectieproces. De Al-modellen kunnen deze regels
dan gebruiken om hun beslissingen te sturen en naleving van domeinspecifieke
vereisten te waarborgen.

3. Samenwerking met Domeinexperts: In complexe domeinen is het cruciaal
om domeinexperts te betrekken bij het ontwerp en de ontwikkeling van
zelfherstellende datatechnieken. Domeinexperts kunnen waardevolle inzichten
verschaffen in de complexiteit van de gegevens, de bedrijfsregels en de mogelijke
randgevallen. Hun kennis kan worden opgenomen in de Al-modellen en workers
om de nauwkeurigheid en betrouwbaarheid van geautomatiseerde datacorrecties
te verbeteren met behulp van Human In The Loop patronen.

4. Incrementele en Iteratieve Aanpak: Bij het omgaan met complexe domeinen is
het vaak gunstig om een incrementele en iteratieve aanpak voor zelfherstellende

data te hanteren. In plaats van te proberen correcties voor het hele domein in

Zelfherstellende Data 181

één keer te automatiseren, focus je op specifieke subdomeinen of datacategorieén
waar de regels en beperkingen goed begrepen worden. Breid de reikwijdte van
zelfherstellende technieken geleidelijk uit naarmate het begrip van het domein

groeit en de technieken effectief blijken te zijn.

Door rekening te houden met de complexiteit van het datadomein en domeinspecifieke
kennis te integreren in zelfherstellende datatechnieken, kun je een balans vinden
tussen automatisering en nauwkeurigheid. Het is belangrijk om te erkennen dat
zeltherstellende data geen universele oplossing is en dat de aanpak moet worden

afgestemd op de specifieke vereisten en uitdagingen van elk domein.

In complexe domeinen kan een hybride aanpak die zelfherstellende datatechnieken
combineert met menselijke expertise en toezicht het meest effectief zijn.
Geautomatiseerde correcties kunnen routinematige en goed gedefinieerde gevallen
afhandelen, terwijl complexe scenario’s of uitzonderingen kunnen worden gemarkeerd
voor menselijke beoordeling en interventie. Deze samenwerkende aanpak zorgt ervoor
dat de voordelen van automatisering worden gerealiseerd terwijl de noodzakelijke

controle en nauwkeurigheid in complexe datadomeinen behouden blijven.

Verklaarbaarheid en Transparantie

Verklaarbaarheid verwijst naar het vermogen om de redenering achter de beslissingen
van Al-modellen te begrijpen en te interpreteren, terwijl transparantie gaat over het

bieden van duidelijk inzicht in het datacorrectieproces.

In veel contexten moeten datawijzigingen controleerbaar en verantwoordbaar zijn.
Belanghebbenden, waaronder zakelijke gebruikers, auditors en regelgevende instanties,
kunnen uitleg nodig hebben over waarom bepaalde datacorrecties zijn uitgevoerd en
hoe de Al-modellen tot die beslissingen zijn gekomen. Dit is vooral cruciaal in domeinen
waar datanauwkeurigheid en -integriteit belangrijke implicaties hebben, zoals financién,

gezondheidszorg en juridische zaken.

Zelfherstellende Data 182

Om te voldoen aan de behoefte aan verklaarbaarheid en transparantie moeten
zelfherstellende datatechnieken mechanismen bevatten die inzicht geven in het
besluitvormingsproces van Al-modellen. Dit kan worden bereikt via verschillende

benaderingen:

1. Gedachtegang: Door het model te vragen zijn denken “hardop” uit te
leggen voordat er wijzigingen in de data worden aangebracht, kan het
besluitvormingsproces beter worden begrepen en kunnen er voor mensen
leesbare verklaringen worden gegenereerd voor de aangebrachte correcties. De
afweging is een iets grotere complexiteit bij het scheiden van de uitleg van de
gestructureerde data-output, wat kan worden aangepakt door...

2. Uitleg Genereren: Zelfherstellende datawerkers kunnen worden uitgerust met
het vermogen om voor mensen leesbare verklaringen te genereren voor de
correcties die ze aanbrengen. Dit kan worden bereikt door het model te vragen zijn
besluitvormingsproces uit te voeren als gemakkelijk te begrijpen verklaringen die
geintegreerd zijn in de data zelf. Een zelfherstellende datawerker zou bijvoorbeeld
een rapport kunnen genereren dat de specifieke data-inconsistenties die het heeft
geidentificeerd, de toegepaste correcties en de redenering achter die correcties
belicht.

3. Kenmerkbelangrijkheid: Al-modellen kunnen worden geinstrueerd met
informatie over het belang van verschillende kenmerken of attributen in het
datacorrectieproces als onderdeel van hun richtlijnen. Deze richtlijnen kunnen
op hun beurt worden blootgelegd aan menselijke belanghebbenden. Door
de belangrijkste factoren te identificeren die de beslissingen van het model
beinvloeden, kunnen belanghebbenden inzicht krijgen in de redenering achter de
correcties en hun geldigheid beoordelen.

4. Logging en Auditing: Het implementeren van uitgebreide logging- en
auditmechanismen is cruciaal voor het handhaven van transparantie in
het zelfherstellende dataproces. Elke datacorrectie die door Al-modellen wordt

uitgevoerd, moet worden gelogd, inclusief de originele data, de gecorrigeerde data

Zelfherstellende Data 183

en de specifieke acties die zijn ondernomen. Dit auditspoor maakt retrospectieve
analyse mogelijk en biedt een duidelijk overzicht van de wijzigingen die in de
data zijn aangebracht.

5. Mens-in-de-loop Aanpak: Het incorporeren van een mens-in-de-loop aanpak
kan de verklaarbaarheid en transparantie van zelfherstellende datatechnieken
verbeteren. Door menselijke experts te betrekken bij de beoordeling en validatie
van door Al gegenereerde correcties, kunnen organisaties ervoor zorgen dat de
correcties in lijn zijn met domeinkennis en bedrijfsvereisten. Menselijk toezicht
voegt een extra laag van verantwoording toe en maakt het mogelijk om eventuele
vooroordelen of fouten in de Al-modellen te identificeren.

6. Continue Monitoring en Evaluatie: Regelmatige monitoring en evaluatie van
de prestaties van zelfherstellende datatechnieken is essentieel voor het behouden
van transparantie en vertrouwen. Door de nauwkeurigheid en effectiviteit
van de Al-modellen in de loop van de tijd te beoordelen, kunnen organisaties
afwijkingen of anomalieén identificeren en corrigerende maatregelen nemen.
Continue monitoring helpt ervoor te zorgen dat het zelfherstellende dataproces

betrouwbaar blijft en in lijn is met de gewenste resultaten.

Verklaarbaarheid en transparantie zijn cruciale overwegingen bij het implementeren
van zelfherstellende datatechnieken. Door duidelijke verklaringen te geven voor
datacorrecties, uitgebreide auditsporen te onderhouden en menselijk toezicht te
betrekken, kunnen organisaties vertrouwen opbouwen in het zelfherstellende
dataproces en ervoor zorgen dat de wijzigingen in de data te rechtvaardigen zijn en in

lijn zijn met bedrijfsdoelstellingen.

Het is belangrijk om een balans te vinden tussen de voordelen van automatisering en de
behoefte aan transparantie. Hoewel zelfherstellende datatechnieken de datakwaliteit en
efficiéntie aanzienlijk kunnen verbeteren, mag dit niet ten koste gaan van het zicht en de
controle over het datacorrectieproces. Door zelfherstellende datawerkers te ontwerpen

met verklaarbaarheid en transparantie in gedachten, kunnen organisaties de kracht van

Zelfherstellende Data 184

Al benutten terwijl ze het noodzakelijke niveau van verantwoording en vertrouwen in

de data behouden.

Onbedoelde Gevolgen

Hoewel zelfherstellende datatechnieken gericht zijn op het verbeteren van datakwaliteit
en consistentie, is het cruciaal om bewust te zijn van de mogelijke onbedoelde gevolgen.
Geautomatiseerde correcties kunnen, als ze niet zorgvuldig zijn ontworpen en
gemonitord, onbedoeld de betekenis of context van de data veranderen, wat kan leiden

tot downstream problemen.

Een van de belangrijkste risico’s van zelfherstellende data is de introductie van
vooroordelen of fouten in het datacorrectieproces. Al-modellen kunnen, net als elk
ander softwaresysteem, onderhevig zijn aan vooroordelen die aanwezig zijn in de
trainingsdata of die zijn geintroduceerd door het ontwerp van de algoritmen. Als deze
vooroordelen niet worden geidentificeerd en aangepakt, kunnen ze zich verspreiden via

het zelfherstellende dataproces en resulteren in vertekende of onjuiste datawijzigingen.

Neem bijvoorbeeld een zelfherstellende dataverwerker die de taak heeft om
inconsistenties in demografische klantgegevens te corrigeren. Als het Al-model
vooroordelen heeft geleerd uit historische gegevens, zoals het koppelen van bepaalde
beroepen of inkomensniveaus aan specifieke geslachten of etniciteiten, kan het
onjuiste aannames maken en de gegevens zodanig wijzigen dat deze vooroordelen
worden versterkt. Dit kan leiden tot onnauwkeurige klantprofielen, verkeerde zakelijke

beslissingen en mogelijk discriminerende uitkomsten.

Een ander mogelijk onbedoeld gevolg is het verlies van waardevolle informatie of
context tijdens het proces van datacorrectie. Zelfherstellende datatechnieken richten
zich vaak op het standaardiseren en normaliseren van gegevens om consistentie te
waarborgen. In sommige gevallen kan de originele data echter nuances, uitzonderingen

of contextuele informatie bevatten die belangrijk zijn voor het begrip van het volledige

Zelfherstellende Data 185

beeld. Geautomatiseerde correcties die blindelings standaardisatie afdwingen, kunnen

deze waardevolle informatie onbedoeld verwijderen of verhullen.

Stel je bijvoorbeeld een zelfherstellende dataverwerker voor die verantwoordelijk is
voor het corrigeren van inconsistenties in medische dossiers. Als de verwerker een
medische geschiedenis van een patiént tegenkomt met een zeldzame aandoening of een
ongebruikelijk behandelplan, kan deze proberen de gegevens te normaliseren om ze in
een meer gangbaar patroon te laten passen. Hierbij kunnen echter de specifieke details
en context verloren gaan die cruciaal zijn voor een accurate weergave van de unieke
situatie van de patiént. Dit verlies aan informatie kan ernstige gevolgen hebben voor de

patiéntenzorg en medische besluitvorming.

Om de risico’s van onbedoelde gevolgen te beperken, is het essentieel om een proactieve
aanpak te hanteren bij het ontwerpen en implementeren van zelfherstellende

datatechnieken:

1. Grondige Tests en Validatie: Voordat zelfherstellende dataverwerkers in
productie worden genomen, is het cruciaal om hun gedrag grondig te testen
en te valideren tegen verschillende scenario’s. Dit omvat het testen met
representatieve datasets die verschillende randgevallen, uitzonderingen en
potentiéle vooroordelen omvatten. Rigoureus testen helpt bij het identificeren en
aanpakken van onbedoelde gevolgen voordat ze impact hebben op echte data.

2. Continue Monitoring en Evaluatie: Het implementeren van continue
monitoring- en evaluatiemechanismen is essentieel voor het detecteren en
beperken van onbedoelde gevolgen in de loop van de tijd. Door regelmatig
de uitkomsten van zelfherstellende dataprocessen te beoordelen, de impact
op downstream systemen en besluitvorming te analyseren, en feedback
van belanghebbenden te verzamelen, kunnen nadelige effecten worden
geidentificeerd en tijdig corrigerende maatregelen worden genomen. Als
uw organisatie operationele dashboards heeft, is het waarschijnlijk een goed

idee om duidelijk zichtbare metrics toe te voegen die gerelateerd zijn aan

Zelfherstellende Data 186

geautomatiseerde datawijzigingen. Het toevoegen van alarmen die gekoppeld
zijn aan grote afwijkingen van normale datawijzigingsactiviteit is waarschijnlijk
een nog beter idee!

3. Menselijk Toezicht en Interventie: Het behouden van menselijk toezicht en
de mogelijkheid om in te grijpen in het zelfherstellende dataproces is cruciaal.
Hoewel automatisering de efficiéntie aanzienlijk kan verbeteren, is het belangrijk
dat menselijke experts de correcties die door Al-modellen worden gemaakt
controleren en valideren, vooral in kritieke of gevoelige domeinen. Menselijk
oordeel en domeinexpertise kunnen helpen bij het identificeren en aanpakken van

eventuele onbedoelde gevolgen.

4. Verklaarbare AI (XAI) en Transparantie: Zoals besproken in de vorige subsectie,
kan het incorporeren van verklaarbare Al-technieken en het waarborgen van
transparantie in het zelfherstellende dataproces helpen bij het beperken van
onbedoelde gevolgen. Door duidelijke uitleg te geven over datacorrecties en
uitgebreide auditsporen bij te houden, kunnen organisaties de redenering achter
de wijzigingen door Al-modellen beter begrijpen en traceren.

5. Incrementele en Iteratieve Aanpak: Het adopteren van een incrementele en
iteratieve aanpak voor zelfherstellende data kan helpen het risico op onbedoelde
gevolgen te minimaliseren. In plaats van geautomatiseerde correcties in één keer
op de hele dataset toe te passen, begin je met een subset van de data en breid je de
reikwijdte geleidelijk uit naarmate de technieken effectief en betrouwbaar blijken.
Dit maakt zorgvuldige monitoring en aanpassing onderweg mogelijk, waardoor
de impact van eventuele onbedoelde gevolgen wordt verminderd.

6. Samenwerking en Feedback: Het betrekken van belanghebbenden uit
verschillende domeinen en het stimuleren van samenwerking en feedback
gedurende het zelfherstellende dataproces kan helpen bij het identificeren en
aanpakken van onbedoelde gevolgen. Door regelmatig input te vragen van

domeinexperts, datagebruikers en eindgebruikers kunnen waardevolle inzichten

Zelfherstellende Data 187

worden verkregen in de praktische impact van de datacorrecties en kunnen

eventuele over het hoofd geziene problemen worden belicht.

Door proactief de risico’s van onbedoelde gevolgen aan te pakken en passende
waarborgen te implementeren, kunnen organisaties de voordelen van zelfherstellende
datatechnieken benutten en tegelijkertijd potentiéle nadelige effecten minimaliseren.
Het is belangrijk om zelfherstellende data te benaderen als een iteratief en collaboratief
proces, waarbij continue monitoring, evaluatie en verfijning van de technieken
plaatsvindt om ervoor te zorgen dat ze in lijn zijn met de gewenste resultaten en de

integriteit en betrouwbaarheid van de data behouden blijft.

Bij het overwegen van het gebruik van zelfherstellende datapatronen is het essentieel
om deze factoren zorgvuldig te evalueren en de voordelen af te wegen tegen de
potentiéle risico’s en beperkingen. In sommige gevallen kan een hybride aanpak die
geautomatiseerde correcties combineert met menselijk toezicht en interventie de meest

geschikte oplossing zijn.

Het is ook belangrijk op te merken dat zelfherstellende datatechnieken niet gezien
moeten worden als vervanging voor robuuste datavalidatie, invoervalidatie en
foutafhandelingsmechanismen. Deze fundamentele praktijken blijven cruciaal voor het
waarborgen van data-integriteit en -beveiliging. Zelfherstellende data moet worden
gezien als een complementaire aanpak die deze bestaande maatregelen kan aanvullen

en verbeteren.

Uiteindelijk hangt de beslissing om zelfherstellende datapatronen toe te passen af van
de specifieke vereisten, beperkingen en prioriteiten van uw applicatie. Door zorgvuldig
de bovengenoemde overwegingen te beschouwen en deze af te stemmen op de doelen en
architectuur van uw applicatie, kunt u weloverwogen beslissingen nemen over wanneer

en hoe u zelfherstellende datatechnieken effectief kunt inzetten.

Contextuele Contentgeneratie

Patronen voor Contextuele Contentgeneratie maken gebruik van de kracht van

grote taalmodellen (LLMs) om dynamische en contextspecifieke content binnen
applicaties te genereren. Deze categorie patronen erkent het belang van het leveren
van gepersonaliseerde en relevante content aan gebruikers, gebaseerd op hun specifieke

behoeften, voorkeuren en zelfs eerdere en huidige interacties met de applicatie.

In de context van deze benadering verwijst “content” zowel naar primaire content
(zoals blogposts, artikelen, etc.) als naar meta-content, zoals aanbevelingen voor

primaire content.

Patronen voor Contextuele Contentgeneratie kunnen een cruciale rol spelen bij

het verbeteren van uw gebruikersbetrokkenheidsniveaus, het bieden van op maat

Contextuele Contentgeneratie 189

gemaakte ervaringen, en het automatiseren van contentcreatietaken voor zowel u als
uw gebruikers. Door de patronen die we in dit hoofdstuk beschrijven te gebruiken, kunt
u applicaties creéren die dynamisch content genereren en zich in realtime aanpassen

aan context en input.

De patronen werken door LLMs te integreren in de output van de applicatie, variérend
van de gebruikersinterface (soms aangeduid als “chrome”), tot e-mails en andere vormen

van notificaties, evenals alle contentgeneratiepijplijnen.

Wanneer een gebruiker met de applicatie interacteert of een specifiek contentverzoek
activeert, legt de applicatie de relevante context vast, zoals gebruikersvoorkeuren,
eerdere interacties of specifieke prompts. Deze contextuele informatie wordt vervolgens
samen met eventueel benodigde sjablonen of richtlijnen in het LLM ingevoerd en
gebruikt om tekstuele output te produceren die anders hardgecodeerd, in een database

opgeslagen of algoritmisch gegenereerd zou moeten worden.

De door LLM gegenereerde content kan verschillende vormen aannemen, zoals
gepersonaliseerde aanbevelingen, dynamische productbeschrijvingen, aangepaste
e-mailreacties, of zelfs complete artikelen of blogposts. Een van de meest radicale
toepassingen van deze content die ik meer dan een jaar geleden introduceerde, is
het dynamisch genereren van Ul-elementen zoals formulierlabels, tooltips en andere

vormen van verklarende tekst.

Personalisatie

Een van de belangrijkste voordelen van Contextuele Contentgeneratiepatronen is het
vermogen om zeer gepersonaliseerde ervaringen aan gebruikers te leveren. Door content
te genereren op basis van gebruikersspecifieke context, stellen deze patronen applicaties
in staat om content af te stemmen op de individuele interesses, voorkeuren en interacties

van gebruikers.

Personalisatie gaat verder dan simpelweg de naam van een gebruiker in generieke

Contextuele Contentgeneratie 190

content invoegen. Het omvat het benutten van de rijke context die beschikbaar is over
elke gebruiker om content te genereren die resoneert met hun specifieke behoeften en

wensen. Deze context kan een breed scala aan factoren omvatten, zoals:

1. Gebruikersprofielinformatie: Op het meest algemene niveau van toepassing van
deze techniek kunnen demografische gegevens, interesses, voorkeuren en andere
profielkenmerken worden gebruikt om content te genereren die aansluit bij de
achtergrond en eigenschappen van de gebruiker.

2. Gedragsgegevens: De eerdere interacties van een gebruiker met de
applicatie, zoals bekeken pagina’s, aangeklikte links of gekochte producten,
kunnen waardevolle inzichten bieden in hun gedrag en interesses. Deze
gegevens kunnen worden gebruikt om contentvoorstellen te genereren die
hun betrokkenheidspatronen weerspiegelen en hun toekomstige behoeften
voorspellen.

3. Contextuele Factoren: De huidige context van de gebruiker, zoals hun locatie,
apparaat, tijd van de dag, of zelfs het weer, kan het contentgeneratieproces
beinvloeden. Een reisapplicatie zou bijvoorbeeld een Al-worker kunnen hebben
die gepersonaliseerde aanbevelingen kan genereren op basis van de huidige locatie

van de gebruiker en de heersende weersomstandigheden.

Door deze contextuele factoren te benutten, stellen Contextuele Contentgeneratiepatronen
applicaties in staat om content te leveren die op maat gemaakt lijkt voor elke individuele

gebruiker. Dit niveau van personalisatie heeft verschillende belangrijke voordelen:

1. Verhoogde Betrokkenheid: Gepersonaliseerde content trekt de aandacht van
gebruikers en houdt ze betrokken bij de applicatie. Wanneer gebruikers het gevoel
hebben dat de content relevant is en direct inspeelt op hun behoeften, zijn ze
eerder geneigd meer tijd te besteden aan het interacteren met de applicatie en het

verkennen van de functies.

Contextuele Contentgeneratie 191

2. Verbeterde Gebruikerstevredenheid: Gepersonaliseerde content laat zien dat de
applicatie de unieke vereisten van de gebruiker begrijpt en daarom geeft. Door
content te bieden die behulpzaam, informatief en afgestemd is op hun interesses,
kan de applicatie de gebruikerstevredenheid vergroten en een sterkere band met
zijn gebruikers opbouwen.

3. Hogere Conversieratio’s: In de context van e-commerce of marketingapplicaties
kan gepersonaliseerde content een significante impact hebben op conversieratio’s.
Door gebruikers producten, aanbiedingen of aanbevelingen te presenteren die zijn
afgestemd op hun voorkeuren en gedrag, kan de applicatie de kans vergroten dat
gebruikers gewenste acties ondernemen, zoals het doen van een aankoop of het

aanmelden voor een dienst.

Productiviteit

Contextuele Contentgeneratiepatronen kunnen bepaalde vormen van productiviteit
aanzienlijk verhogen door de behoefte aan handmatige contentgeneratie en bewerking
in creatieve processen te verminderen. Door gebruik te maken van de kracht van LLMs
kunt u op grote schaal hoogwaardige content genereren, waardoor u tijd en moeite
bespaart die uw contentmakers en ontwikkelaars anders zouden moeten besteden aan

vervelend handmatig werk.

Traditioneel moeten contentmakers onderzoek doen, schrijven, redigeren en content
formatteren om ervoor te zorgen dat deze voldoet aan de vereisten van de applicatie
en de verwachtingen van gebruikers. Dit proces kan tijdrovend en arbeidsintensief zijn,

vooral naarmate de hoeveelheid content groeit.

Met Contextuele Contentgeneratiepatronen kan het contentcreatieproces echter
grotendeels worden geautomatiseerd. LLMs kunnen samenhangende, grammaticaal
correcte en contextueel relevante content genereren op basis van de gegeven prompts

en richtlijnen. Deze automatisering biedt verschillende productiviteitsvoordelen:

Contextuele Contentgeneratie 192

1. Verminderde Handmatige Inspanning: Door contentageneratietaken te
delegeren aan LLMs kunnen contentmakers zich richten op taken van hoger
niveau, zoals contentstrategie, ideeontwikkeling en kwaliteitsborging. Ze kunnen
de nodige context, sjablonen en richtlijnen aan het LLM verstrekken en het de
daadwerkelijke contentgeneratie laten afhandelen. Dit vermindert de handmatige
inspanning die nodig is voor schrijven en redigeren, waardoor contentmakers
productiever en efficiénter kunnen werken.

2. Snellere Contentcreatie: LLMs kunnen veel sneller content genereren dan
menselijke schrijvers. Met de juiste prompts en richtlijnen kan een LLM meerdere
stukken content produceren in enkele seconden of minuten. Deze snelheid stelt
applicaties in staat om in een veel hoger tempo content te genereren, waardoor
ze kunnen bijblijven met de eisen van gebruikers en het steeds veranderende

digitale landschap.

Leidt snellere contentcreatie tot een “tragedy of the commons” situatie waarbij het
internet overspoeld raakt met content die niemand leest? Helaas vermoed ik dat het

antwoord ja is.

3. Consistentie en Kwaliteit: LLMs kunnen moeiteloos content herzien zodat deze
consistent is in stijl, toon en kwaliteit. Met duidelijke richtlijnen en voorbeelden
kunnen bepaalde soorten applicaties (zoals nieuwsredacties, PR, etc.) ervoor
zorgen dat hun door mensen gegenereerde content aansluit bij hun merkidentiteit
en voldoet aan de gewenste kwaliteitsnormen. Deze consistentie vermindert de
behoefte aan uitgebreide bewerking en herzieningen, wat tijd en moeite bespaart
in het contentcreatieproces.

4. Iteratie en Optimalisatie: Contextuele Contentgeneratiepatronen maken snelle

iteratie en optimalisatie van content mogelijk. Door het aanpassen van de

Contextuele Contentgeneratie 193

prompts, sjablonen of richtlijnen die aan het LLM worden verstrekt, kunnen
uw applicaties snel contentvariaties genereren en verschillende benaderingen
testen op een geautomatiseerde manier die in het verleden nooit mogelijk
was. Dit iteratieve proces maakt sneller experimenteren en verfijnen van
contentstrategieén mogelijk, wat in de loop van de tijd leidt tot effectievere
en meer betrokken content. Deze specifieke techniek kan een absolute game-
changer zijn voor applicaties zoals e-commerce die leven en sterven op basis van

bouncepercentages en betrokkenheid

P Het is belangrijk op te merken dat hoewel Contextuele

Contentgeneratiepatronen de productiviteit aanzienlijk kunnen verbeteren,
ze de noodzaak van menselijke betrokkenheid niet volledig wegnemen.
Contentmakers en redacteuren spelen nog steeds een cruciale rol bij het
bepalen van de algemene contentstrategie, het geven van sturing aan
het LLM en het waarborgen van de kwaliteit en geschiktheid van de

gegenereerde content.

Door de meer repetitieve en tijdrovende aspecten van contentcreatie te automatiseren,
maken Contextuele Contentgeneratiepatronen waardevolle menselijke tijd en middelen
vrij die kunnen worden ingezet voor taken met een hogere waarde. Deze verhoogde
productiviteit stelt u in staat om meer gepersonaliseerde en betrokken content aan

gebruikers te leveren terwijl contentcreatieprocessen worden geoptimaliseerd.

Snelle Iteratie en Experimentatie

Contextuele Contentgeneratiepatronen stellen u in staat om snel te itereren en te
experimenteren met verschillende contentvariaties, waardoor snellere optimalisatie en
verfijning van uw contentstrategie mogelijk wordt. U kunt in enkele seconden meerdere
versies van content genereren, simpelweg door de context, sjablonen of richtlijnen die

aan het model worden verstrekt aan te passen.

Contextuele Contentgeneratie 194

Deze snelle iteratiemogelijkheid biedt verschillende belangrijke voordelen:

1. Testen en Optimalisatie: Met de mogelijkheid om snel contentvariaties
te genereren, kunt u eenvoudig verschillende benaderingen testen en
hun effectiviteit meten. U kunt bijvoorbeeld meerdere versies van een
productbeschrijving of marketingboodschap genereren, elk afgestemd op een
specifiek gebruikerssegment of context. Door gebruikersbetrokkenheidsmetrieken
te analyseren, zoals doorklikratio’s of conversiepercentages, kunt u de
meest effectieve contentvariaties identificeren en uw contentstrategie

dienovereenkomstig optimaliseren.

2. A/B-testen: Contextuele Contentgeneratiepatronen maken naadloos A/B-testen
van content mogelijk. U kunt twee of meer variaties van content genereren
en deze willekeurig aan verschillende gebruikersgroepen tonen. Door de
prestaties van elke variatie te vergelijken, kunt u bepalen welke content het
beste resoneert met uw doelgroep. Deze datagestuurde aanpak stelt u in staat om
geinformeerde beslissingen te nemen en uw content voortdurend te verfijnen
om gebruikersbetrokkenheid te maximaliseren en uw gewenste resultaten te
bereiken.

3. Personalisatie-experimenten: Snelle iteratie en experimentatie zijn
bijzonder waardevol als het gaat om personalisatie. Met Contextuele
Contentgeneratiepatronen kunt u snel gepersonaliseerde contentvariaties
genereren op basis van verschillende gebruikerssegmenten, voorkeuren of
gedragingen. Door te experimenteren met verschillende personalisatiestrategieén
kunt u de meest effectieve benaderingen identificeren voor het betrekken van
individuele gebruikers en het leveren van op maat gemaakte ervaringen.

4. Aanpassen aan Veranderende Trends: Het vermogen om snel te itereren en te
experimenteren stelt je in staat om flexibel te blijven en je aan te passen aan
veranderende trends en gebruikersvoorkeuren. Wanneer nieuwe onderwerpen,

zoekwoorden of gebruikersgedrag ontstaan, kun je snel content genereren die

Contextuele Contentgeneratie 195

aansluit bij deze trends. Door voortdurend te experimenteren en je content te
verfijnen, kun je relevant blijven en een concurrentievoordeel behouden in het
steeds veranderende digitale landschap.

5. Kosteneffectief Experimenteren: Traditioneel content-experimenteren brengt
vaak aanzienlijke tijd en middelen met zich mee, omdat contentmakers
handmatig verschillende variaties moeten ontwikkelen en testen. Met Contextuele
Content Generatie-patronen worden de kosten van experimenteren echter sterk
verminderd. Grote taalmodellen kunnen snel en op schaal contentvariaties
genereren, waardoor je een breed scala aan ideeén en benaderingen kunt

verkennen zonder substantiéle kosten.

Om het maximale uit snelle iteratie en experimenten te halen, is het belangrijk om
een goed gedefinieerd experimenteerframework te hebben. Dit framework moet het

volgende bevatten:

Duidelijke doelstellingen en hypotheses voor elk experiment

Geschikte meetwaarden en trackingmechanismen om contentprestaties te meten

Segmentatie- en targetingstrategieén om ervoor te zorgen dat relevante

contentvariaties bij de juiste gebruikers terechtkomen

Analyse- en rapportagetools om inzichten te verkrijgen uit de experimentele data

Een proces voor het integreren van leerpunten en optimalisaties in je

contentstrategie

Door snelle iteratie en experimenteren te omarmen, kun je je content voortdurend
verfijnen en optimaliseren, zodat deze boeiend, relevant en effectief blijft in het bereiken
van de doelen van je applicatie. Deze flexibele benadering van contentcreatie stelt je in

staat om voorop te blijven lopen en uitzonderlijke gebruikerservaringen te leveren.

Schaalbaarheid en Efficiéntie

Naarmate applicaties groeien en de vraag naar gepersonaliseerde content toeneemt,

maken contextuele content generatie-patronen een efficiénte opschaling van

Contextuele Contentgeneratie 196

contentcreatie mogelijk. Grote taalmodellen kunnen gelijktijdig content genereren
voor een groot aantal gebruikers en contexten, zonder dat er een evenredige toename
van menselijke middelen nodig is. Deze schaalbaarheid stelt applicaties in staat om
gepersonaliseerde ervaringen te leveren aan een groeiend gebruikersbestand zonder

hun contentcreatiecapaciteiten te overbelasten.

Merk op dat contextuele contentgeneratie effectief kan worden gebruikt om
je applicatie “on the fly” te internationaliseren. Dat is precies wat ik heb
gedaan met mijn Instant18n Gem om Olympia in meer dan een half dozijn

talen aan te bieden, ook al zijn we nog geen jaar oud.

Al-Aangedreven Lokalisatie

Als je me even toestaat op te scheppen, denk ik dat mijn Instant18n-bibliotheek voor
Rails-apps een baanbrekend voorbeeld is van het “Contextuele Content Generatie-
patroon in actie, dat het transformatieve potentieel van Al in applicatieontwikkeling
laat zien. Deze gem maakt gebruik van de kracht van OpenAI’s GPT grote-taalmodel
om de manier waarop internationalisering en lokalisatie worden behandeld in Rails-

applicaties te revolutioneren.

Traditioneel gezien omvat het internationaliseren van een Rails-applicatie het
handmatig definiéren van vertaalsleutels en het leveren van bijbehorende vertalingen
voor elke ondersteunde taal. Dit proces kan tijdrovend en arbeidsintensief zijn en
gevoelig voor inconsistenties. Met de Instant18n-gem wordt het paradigma van

lokalisatie echter volledig opnieuw gedefinieerd.

Door de integratie van een groot taalmodel stelt de Instant18n-gem je in staat om
vertalingen on-the-fly te genereren, gebaseerd op de context en betekenis van de tekst. In
plaats van te vertrouwen op voorgedefinieerde vertaalsleutels en statische vertalingen,
vertaalt de gem dynamisch tekst met behulp van de kracht van Al Deze aanpak biedt

verschillende belangrijke voordelen:

Contextuele Contentgeneratie 197

1. Naadloze Lokalisatie: Met de Instant18n-gem hoeven ontwikkelaars niet
langer handmatig vertaalbestanden te definiéren en te onderhouden voor elke
ondersteunde taal. De gem genereert automatisch vertalingen op basis van
de aangeleverde tekst en de gewenste doeltaal, waardoor het lokalisatieproces
moeiteloos en naadloos verloopt.

2. Contextuele Nauwkeurigheid: Al kan voldoende context krijgen om de nuances
van de te vertalen tekst te begrijpen. Het kan rekening houden met de omringende
context, idiomen en culturele verwijzingen om vertalingen te genereren die
accuraat, natuurlijk klinkend en contextueel passend zijn.

3. Uitgebreide Taalondersteuning: De Instant18n-gem maakt gebruik van de
uitgebreide kennis en taalkundige mogelijkheden van GPT, waardoor vertalingen
naar een uitgebreid scala aan talen mogelijk zijn. Van veelvoorkomende talen
zoals Spaans en Frans tot meer obscure of fictieve talen zoals Klingon en Elfs, de
gem kan een breed scala aan vertaalvereisten aan.

4. Flexibiliteit en Creativiteit: De gem gaat verder dan traditionele taalvertalingen
en maakt creatieve en onconventionele lokalisatieopties mogelijk. Ontwikkelaars
kunnen tekst vertalen naar verschillende stijlen, dialecten of zelfs fictieve talen,
wat nieuwe mogelijkheden opent voor unieke gebruikerservaringen en boeiende
content.

5. Prestatie-optimalisatie: De Instant18n-gem bevat cachingmechanismen om de
prestaties te verbeteren en de overhead van herhaalde vertalingen te verminderen.
Vertaalde tekst wordt gecached, waardoor volgende verzoeken voor dezelfde
vertaling snel kunnen worden geleverd zonder de noodzaak van redundante API-

aanroepen.

De Instant18n-gem illustreert de kracht van het “Contextuele Content Generatie’-
patroon door Al te gebruiken om dynamisch gelokaliseerde content te genereren. Het
laat zien hoe AI kan worden geintegreerd in de kernfunctionaliteit van een Rails-
applicatie, waardoor de manier waarop ontwikkelaars internationalisering en lokalisatie

benaderen wordt getransformeerd.

Contextuele Contentgeneratie 198

Door de noodzaak van handmatig vertalingsbeheer weg te nemen en directe vertalingen
op basis van context mogelijk te maken, bespaart de Instant18n gem ontwikkelaars
aanzienlijk veel tijd en moeite. Het stelt hen in staat zich te concentreren op het bouwen
van de kernfunctionaliteiten van hun applicatie, terwijl ze er zeker van kunnen zijn dat

het lokalisatie-aspect naadloos en accuraat wordt afgehandeld.

Het Belang van Gebruikerstests en Feedback

Tot slot, verlies nooit het belang van gebruikerstests en feedback uit het oog. Het is
cruciaal om te valideren dat contextuele contentgeneratie aan de verwachtingen van
gebruikers voldoet en in lijn is met de doelen van de applicatie. Blijf gegenereerde
content continu itereren en verfijnen op basis van gebruikersinzichten en analyses. Als
je dynamische content genereert op een schaal die onmogelijk handmatig te valideren
is door jou en je team, overweeg dan om feedbackmechanismen toe te voegen waarmee
gebruikers vreemde of onjuiste content kunnen melden, samen met een uitleg waarom.
Die waardevolle feedback kan zelfs worden doorgespeeld aan een Al-worker die de taak

heeft om aanpassingen te maken aan de component die de content heeft gegenereerd!

Generatieve Ul

Aandacht is tegenwoordig zo kostbaar dat effectieve gebruikersbetrokkenheid nu

vraagt om software-ervaringen die niet alleen naadloos en intuitief zijn, maar ook
sterk gepersonaliseerd zijn op individuele behoeften, voorkeuren en contexten. Als
gevolg hiervan staan ontwerpers en ontwikkelaars steeds vaker voor de uitdaging om
gebruikersinterfaces te creéren die zich kunnen aanpassen aan de unieke vereisten van

elke gebruiker op schaal.

Generatieve Ul (GenUI) is een werkelijk revolutionaire benadering van
gebruikersinterface-ontwerp die gebruik maakt van de kracht van grote taalmodellen
(LLMs) om zeer gepersonaliseerde en dynamische gebruikerservaringen on-the-fly te
creéren. Ik wilde je in dit boek in ieder geval een introductie geven over GenUI, omdat
ik geloof dat het een van de groenste groene weide kansen is die momenteel bestaat
op het gebied van applicatieontwerp en frameworks. Ik ben ervan overtuigd dat er

tientallen of meer nieuwe succesvolle commerciéle en open-source projecten in deze

Generatieve Ul 200

specifieke niche zullen ontstaan.

In de kern combineert GenUI de principes van Contextuele Contentgeneratie
met geavanceerde Al-technieken om gebruikersinterface-elementen zoals tekst,
afbeeldingen en layouts dynamisch te genereren, gebaseerd op een diep begrip
van de context, voorkeuren en doelen van de gebruiker. GenUI stelt ontwerpers en
ontwikkelaars in staat om interfaces te creéren die zich aanpassen en ontwikkelen
in reactie op gebruikersinteracties, waardoor een niveau van personalisatie mogelijk

wordt dat voorheen onbereikbaar was.

GenUI vertegenwoordigt een fundamentele verandering in de manier waarop we
gebruikersinterface-ontwerp benaderen. In plaats van te ontwerpen voor de massa, stelt
GenUI ons in staat om voor het individu te ontwerpen. Gepersonaliseerde content en
interfaces hebben de potentie om gebruikerservaringen te creéren die bij elke gebruiker
op een dieper niveau resoneren, waardoor betrokkenheid, tevredenheid en loyaliteit

toenemen.

Als een ultramoderne techniek zit de overgang naar GenUI vol met conceptuele en
praktische uitdagingen. Het integreren van Al in het ontwerpproces, ervoor zorgen
dat de gegenereerde interfaces niet alleen gepersonaliseerd zijn maar ook bruikbaar,
toegankelijk en in lijn met de algemene merkbeleving en gebruikerservaring, dit zijn
allemaal uitdagingen die GenUI een bezigheid maken voor de weinigen, niet de
velen. Bovendien roept de betrokkenheid van Al vragen op over gegevensprivacy,

transparantie en mogelijk zelfs ethische implicaties.

Ondanks de uitdagingen hebben gepersonaliseerde ervaringen op schaal de kracht
om de manier waarop we met digitale producten en diensten omgaan volledig
te transformeren. Het opent mogelijkheden voor het creéren van inclusieve en
toegankelijke interfaces die tegemoetkomen aan de diverse behoeften van gebruikers,

ongeacht hun mogelijkheden, achtergrond of voorkeuren.

In dit hoofdstuk zullen we het concept van GenUI verkennen, waarbij we enkele

bepalende kenmerken, belangrijke voordelen en potentiéle uitdagingen onderzoeken.

Generatieve Ul 201

We beginnen met het beschouwen van de meest basale en toegankelijke vorm van
GenUL: het genereren van tekstkopij voor anderszins traditioneel ontworpen en

geimplementeerde gebruikersinterfaces.

Het Genereren van Kopij voor

Gebruikersinterfaces

Tekstelementen die bestaan in de chrome van je applicatie, zoals formulierlabels, tooltips
en verklarende tekst, zijn meestal hardgecodeerd in de templates of Ul-componenten,
wat zorgt voor een consistente maar generieke ervaring voor alle gebruikers. Door
gebruik te maken van contextuele contentgeneratiepatronen, kun je deze statische
elementen transformeren in dynamische, contextbewuste en gepersonaliseerde

componenten.

Gepersonaliseerde Formulieren

Formulieren zijn een alomtegenwoordig onderdeel van web- en mobiele applicaties
en dienen als het primaire middel voor het verzamelen van gebruikersinvoer.
Traditionele formulieren bieden echter vaak een generieke en onpersoonlijke ervaring,
met standaardlabels en velden die niet altijd aansluiten bij de specifieke context
of behoeften van de gebruiker. Gebruikers zijn eerder geneigd formulieren in te
vullen die afgestemd zijn op hun behoeften en voorkeuren, wat leidt tot hogere

conversiepercentages en gebruikerstevredenheid.

Het is echter belangrijk om een balans te vinden tussen personalisatie en consistentie.
Hoewel het aanpassen van formulieren aan individuele gebruikers gunstig kan zijn,
is het cruciaal om een niveau van vertrouwdheid en voorspelbaarheid te behouden.
Gebruikers moeten formulieren nog steeds gemakkelijk kunnen herkennen en

navigeren, zelfs met gepersonaliseerde elementen.

Hier zijn enkele gepersonaliseerde formulierideeén ter inspiratie:

© 0 N O O b W N =

[T N T e = S = S SR S & SR S
, O O 00 N O O b W N~ o

Generatieve Ul 202

Contextuele Veldsuggesties

GenUI kan de eerdere interacties, voorkeuren en gegevens van de gebruiker
analyseren om intelligente veldsuggesties als voorspellingen te bieden. Als de
gebruiker bijvoorbeeld eerder hun verzendadres heeft ingevoerd, kan het formulier
automatisch de relevante velden invullen met hun opgeslagen informatie. Dit bespaart
niet alleen tijd, maar laat ook zien dat de applicatie de voorkeuren van de gebruiker

begrijpt en onthoudt.

Wacht even, is deze techniek niet iets dat ook zonder Al gedaan zou kunnen worden?
Natuurlijk, maar de schoonheid van het aandrijven van dit soort functionaliteit met Al
is tweeledig: 1) hoe eenvoudig het te implementeren is en 2) hoe flexibel het blijft terwijl

je Ul verandert en evolueert in de loop van de tijd.

Laten we een service opzetten voor ons theoretische orderafhandelingssysteem, die

proactief probeert het juiste verzendadres voor de gebruiker in te vullen.

class OrderShippingAddressSubscriber
include Raix::ChatCompletion

attr_accessor :order

delegate :customer, to: :order

DIRECTIVE = "You are a smart order processing assistant. Given the
customer's order history, guess the most likely shipping address

for the current order."

def order_created(order)

return unless order.pending? && order.shipping_address.blank?
self.order = order

transcript.clear

transcript << { system: DIRECTIVE }

transcript << { user: "Order History: #{order_history.to_json}" }
transcript << { user: "Current Order: #{order.to_json}" }

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Generatieve Ul 203

response = chat_completion
apply_predicted_shipping_address(order, response)
end

private

def apply_predicted_shipping_address(order, response)
extract the shipping address from the response.. .
.. .and assume there's some sort of live update of the address fields
order .update(shipping_address:)

end

def order_history
customer .orders.successful .1imit(100) .map do |order|

{

date: order .date,
description: order.description,
shipping_address: order.shipping_address

end
end

end

Dit voorbeeld is sterk vereenvoudigd, maar zou in de meeste gevallen moeten werken.
Het idee is om de Al een inschatting te laten maken op dezelfde manier als een mens
dat zou doen. Om duidelijk te maken waar ik het over heb, laten we eens naar wat

voorbeeldgegevens kijken:

Generatieve Ul

Order History:

[

{"date": "2024-01-03", "description": "garden soil mix",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-01-15", "description": "hardcover fiction novels",

"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-01-22", "description": "baby diapers", "shipping_address":

"789 Suburb St, Quietville"},
{"date": "2024-02-01", "description": "organic vegetables",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-02-17", "description": "mystery thriller book set",

"shipping_address": "456 City Apt, Metroville"},
{"date": "2024-02-25", "description": "baby wipes",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-03-05", "description": "flower seeds",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-03-20", "description": "biographies",
"shipping_address": "456 City Apt, Metroville"},
{"date": "2024-03-30", "description": "baby formula",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-04-12", "description": "lawn fertilizer",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-04-22", "description": "science fiction novels",

"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-05-02", "description": "infant toys",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-05-14", "description": "outdoor grill",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-05-29", "description": "literary classics",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-06-11", "description": "baby clothes",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-07-01", "description": "watering can",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-07-18", "description": "non-fiction essays",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-07-28", "description": "baby bath items",
"shipping_address": "T789 Suburb St, Quietville"},

{"date": "2024-08-09", "description": "herb garden kit",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-08-24", "description": "children's books",
"shipping_address": "456 City Apt, Metroville"}

204

43

~N O O B W N o=

[es}

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Generatieve Ul 205

Heb je het patroon in de data opgemerkt? Ik garandeer je dat dit eenvoudig werk is
voor een LLM. Om dit te demonstreren, laten we aan GPT-4 vragen wat het meest

waarschijnlijke verzendadres is voor een “thermometer”.

From the order history you've provided, it looks like the purchases are
generally clustered into three main types based on the shipping addresses:

123 Country Lane, Rural Town - This address often orders garden and
outdoor-related items like soil mix, vegetables, flower seeds, lawn
fertilizer, an outdoor grill, a watering can, and an herb garden kit.

456 City Apt, Metroville - This address tends to order various types of
books, indicating an interest in reading across genres like fiction,
thrillers, biographies, science fiction, literary classics, non-fiction
essays, and children's books.

789 Suburb St, Quietville - The purchases for this address are consistently
baby-related products, such as diapers, wipes, baby formula, infant toys,
baby clothes, and baby bath items.

Given these patterns, a digital thermometer could potentially be a fit for
any of the addresses based on different needs: outdoor temperature tracking,
a tool for a passionate reader interested in science gadgets, or a health
tool for a baby. However, considering its common use in monitoring health,
especially for babies, it's most likely to be purchased by someone who's
already buying baby care products.

Therefore, the most likely shipping address for a digital thermometer, based
on the purchasing patterns, would be 789 Suburb St, Quietville.

Als je bij jezelf denkt dat het overdreven is om een duur model zoals GPT-4 voor deze
taak te gebruiken, heb je gelijk! Ik probeerde dezelfde prompt op Mistral 7B Instruct en
het produceerde het volgende antwoord met 75 tokens per seconde, tegen een bescheiden

kostprijs van $0,000218 USD.

© 0 N O O b W N e

[T T ==Y
a s W N =~

Generatieve Ul 206

Based on the given order history, it appears that the customer has received
orders for baby-related items (diapers, wipes, formula, clothes, bath items)
at the address "789 Suburb St, Quietville" and garden-related items (soil,
seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural
Town". The customer has also received books (fiction, non-fiction, literary
classics, mystery-thriller, science fiction, biographies, children's books)
at the address "456 City Apt, Metroville".

Given that the new order is for a "thermometer", which doesn't seem to fit
into any of the categories that the customer has previously ordered, it's
hard to accurately predict the shipping address based solely on the order
history. However, given the 50%-50% split between baby-related and
garden-related items, it could somewhat lean towards the Baby-related items
address ("789 Suburb St, Quietville"). But remember, this is an assumption
and cannot be definitively confirmed without more context or information.

Is de overhead en kosten van deze techniek het waard om een afrekenervaring magischer
te maken? Voor veel online retailers, absoluut. En zoals het eruitziet, zullen de kosten van
Al-berekeningen alleen maar dalen, vooral voor reguliere open source model hosting

providers in een race naar de bodem.

Gebruik een Prompt Template en StructuredIO samen met Response Fencing

om dit soort chatvervolmaking te optimaliseren.

Adaptieve veldvolgorde

De volgorde waarin formuliervelden worden gepresenteerd kan een aanzienlijke invloed
hebben op de gebruikerservaring en voltooiingspercentages. Met GenUI kun je de
veldvolgorde dynamisch aanpassen op basis van de context van de gebruiker en het
belang van elk veld. Als een gebruiker bijvoorbeeld een registratieformulier invult voor
een fitness-app, kan het formulier prioriteit geven aan velden die gerelateerd zijn aan
hun fitnessdoelen en voorkeuren, waardoor het proces relevanter en aantrekkelijker

wordt.

Generatieve Ul 207

Gepersonaliseerde microtekst

De instructietekst, foutmeldingen en andere microtekst die bij formulieren horen
kunnen ook worden gepersonaliseerd met behulp van GenUIL In plaats van
algemene foutmeldingen zoals “Ongeldig e-mailadres” weer te geven, kun je meer
behulpzame en contextuele berichten genereren zoals “Voer een geldig e-mailadres
in om je orderbevestiging te ontvangen” Deze gepersonaliseerde details kunnen de

formulierervaring gebruiksvriendelijker en minder frustrerend maken.

Gepersonaliseerde validatie

In dezelfde lijn als Gepersonaliseerde Microtekst, zou je AI kunnen gebruiken om het
formulier te valideren op manieren die magisch lijken. Stel je voor dat je een Al een
gebruikersprofielformulier laat valideren, waarbij wordt gezocht naar mogelijke fouten

op semantisch niveau.

Generatieve Ul 208

Create your account

Full name

Obie Fernandez

Email
obiefenandez@gmail.com m

Did you mean obiefernandez@gmail.com? Yes, update.

Country ©

<«

EE United States

Password

) Nice work. This is an excellent password.

Figuur 9. Kun je de semantische validatie ontdekken?

Progressieve onthulling

GenUI kan intelligent bepalen welke formuliervelden essentieel zijn op basis van de
context van de gebruiker en geleidelijk aanvullende velden onthullen wanneer nodig.
Deze progressieve onthulling techniek helpt de cognitieve belasting te verminderen

en maakt het invullen van formulieren beter beheerbaar. Als een gebruiker zich

Generatieve Ul 209

bijvoorbeeld aanmeldt voor een basisabonnement, kan het formulier aanvankelijk alleen
de essentiéle velden tonen, en naarmate de gebruiker vordert of specifieke opties

selecteert, kunnen aanvullende relevante velden dynamisch worden geintroduceerd.

Contextbewuste verklarende tekst

Tooltips worden vaak gebruikt om aanvullende informatie of begeleiding te bieden
aan gebruikers wanneer ze over specifieke elementen bewegen of ermee interacteren.
Met een “Contextuele Content Generatie” aanpak kun je tooltips genereren die zich
aanpassen aan de context van de gebruiker en relevante informatie bieden. Als een
gebruiker bijvoorbeeld een complexe functie verkent, kan de tooltip gepersonaliseerde

tips of voorbeelden bieden op basis van hun eerdere interacties of vaardigheidsniveau.

Verklarende tekst, zoals instructies, beschrijvingen of hulpberichten, kan dynamisch
worden gegenereerd op basis van de context van de gebruiker. In plaats van algemene
uitleg te presenteren, kun je LLMs gebruiken om tekst te genereren die is afgestemd op de
specifieke behoeften of vragen van de gebruiker. Als een gebruiker bijvoorbeeld moeite
heeft met een bepaalde stap in een proces, kan de verklarende tekst gepersonaliseerde

begeleiding of probleemoplossingstips bieden.

Microtekst verwijst naar de kleine stukjes tekst die gebruikers door je applicatie
leiden, zoals knoplabels, foutmeldingen of bevestigingsprompts. Door de Contextuele
Content Generatie aanpak toe te passen op microtekst, kun je een adaptieve Ul creéren
die reageert op de acties van de gebruiker en relevante en behulpzame tekst biedt.
Als een gebruiker bijvoorbeeld op het punt staat een kritieke actie uit te voeren,
kan de bevestigingsprompt dynamisch worden gegenereerd om een duidelijke en

gepersonaliseerde boodschap te geven.

Gepersonaliseerde verklarende tekst en tooltips kunnen het onboardingproces voor
nieuwe gebruikers aanzienlijk verbeteren. Door contextspecifieke begeleiding en
voorbeelden te bieden, kun je gebruikers helpen de applicatie snel te begrijpen en te

navigeren, waardoor de leercurve wordt verkort en de adoptie wordt verhoogd.

Generatieve Ul 210

Dynamische en contextbewuste chrome-elementen kunnen de applicatie ook intuitiever
en aantrekkelijker maken. Gebruikers zijn eerder geneigd om met functies te interacteren
en deze te verkennen wanneer de bijbehorende tekst is afgestemd op hun specifieke

behoeften en interesses.

Tot nu toe hebben we ideeén besproken voor het verbeteren van bestaande Ul-
paradigma’s met AI, maar hoe zit het met het radicaal heroverwegen van hoe

gebruikersinterfaces worden ontworpen en geimplementeerd?

Definitie van Generatieve Ul

In tegenstelling tot traditioneel Ul-ontwerp, waarbij ontwerpers vaste, statische
interfaces creéren, hint GenUI naar een toekomst waarin onze software beschikt
over flexibele, gepersonaliseerde ervaringen die in realtime kunnen evolueren en zich
aanpassen. Elke keer dat we een Al-gestuurde conversatie-interface gebruiken, laten
we de Al zich aanpassen aan de specifieke behoeften van de gebruiker. GenUI gaat een
stap verder door dat niveau van aanpasbaarheid toe te passen op de visuele interface

van software.

De reden dat het mogelijk is om vandaag de dag te experimenteren met GenUI-ideeén is
dat grote taalmodellen al programmeren begrijpen en hun basiskennis Ul-technologieén
en frameworks omvat. De vraag is dus of grote taalmodellen kunnen worden gebruikt
om Ul-elementen te genereren, zoals tekst, afbeeldingen, layouts en zelfs complete
interfaces, die zijn toegesneden op elke individuele gebruiker. Het model zou kunnen
worden geinstrueerd om rekening te houden met verschillende factoren, zoals eerdere
interacties van de gebruiker, aangegeven voorkeuren, demografische informatie en de

huidige gebruikscontext, om zeer gepersonaliseerde en relevante interfaces te creéren.

GenUI verschilt op verschillende belangrijke manieren van traditioneel

gebruikersinterface-ontwerp:

Generatieve Ul 211

1. Dynamisch en Adaptief: Traditioneel Ul-ontwerp omvat het creéren van vaste,
statische interfaces die voor alle gebruikers hetzelfde blijven. GenUI daarentegen
maakt interfaces mogelijk die zich dynamisch kunnen aanpassen en veranderen
op basis van gebruikersbehoeften en context. Dit betekent dat dezelfde applicatie
verschillende interfaces kan presenteren aan verschillende gebruikers of zelfs aan
dezelfde gebruiker in verschillende situaties.

2. Personalisatie op Schaal: Bij traditioneel ontwerp is het vaak onpraktisch
om gepersonaliseerde ervaringen voor elke gebruiker te creéren vanwege de
benodigde tijd en middelen. GenUI maakt daarentegen personalisatie op schaal
mogelijk. Door gebruik te maken van Al kunnen ontwerpers interfaces creéren
die zich automatisch aanpassen aan de unieke behoeften en voorkeuren van
elke gebruiker, zonder handmatig aparte interfaces te hoeven ontwerpen en
ontwikkelen voor elk gebruikerssegment.

3. Focus op Resultaten: Traditioneel Ul-ontwerp richt zich vaak op het creéren
van visueel aantrekkelijke en functionele interfaces. Hoewel deze aspecten nog
steeds belangrijk zijn bij GenUI, verschuift de primaire focus naar het bereiken
van gewenste gebruikersresultaten. GenUI streeft ernaar interfaces te creéren
die geoptimaliseerd zijn voor de specifieke doelen en taken van elke gebruiker,
waarbij bruikbaarheid en effectiviteit voorrang krijgen boven puur esthetische
overwegingen.

4. Continue Leren en Verbeteren: GenUl-systemen kunnen continu leren en
verbeteren op basis van gebruikersinteracties en feedback. Terwijl gebruikers
werken met de gegenereerde interfaces, kunnen de Al-modellen data verzamelen
over gebruikersgedrag, voorkeuren en resultaten, en deze informatie gebruiken
om toekomstige interface-generaties te verfijnen en optimaliseren. Dit iteratieve
leerproces stelt GenUl-systemen in staat om in de loop van de tijd steeds

effectiever te worden in het voldoen aan gebruikersbehoeften.

Het is belangrijk op te merken dat GenUI niet hetzelfde is als Al-ondersteunde

ontwerptools, zoals tools die suggesties geven of bepaalde ontwerptaken automatiseren.

Generatieve Ul 212

Hoewel deze tools nuttig kunnen zijn bij het stroomlijnen van het ontwerpproces,
zijn ze nog steeds afhankelijk van ontwerpers om eindbesluiten te nemen en statische
interfaces te creéren. Bij GenUI daarentegen speelt het Al-systeem een actievere rol in
de daadwerkelijke generatie en aanpassing van interfaces op basis van gebruikersdata

en context.

GenUI vertegenwoordigt een belangrijke verschuiving in hoe we gebruikersinterface-
ontwerp benaderen, waarbij we ons verwijderen van one-size-fits-all oplossingen en
bewegen naar zeer gepersonaliseerde, adaptieve ervaringen. Door gebruik te maken van
de kracht van Al heeft GenUI het potentieel om de manier waarop we interacteren
met digitale producten en diensten te revolutioneren, door interfaces te creéren die

intuitiever, boeiender en effectiever zijn voor elke individuele gebruiker.

Voorbeeld

Om het concept van GenUI te illustreren, laten we een hypothetische fitness-applicatie
genaamd “FitAl” bekijken. Deze app heeft als doel gepersonaliseerde trainingsschema’s
en voedingsadvies te bieden aan gebruikers op basis van hun individuele doelen,

fitnessniveaus en voorkeuren.

In een traditionele Ul-ontwerpbenadering zou FitAl een vaste set schermen en
elementen kunnen hebben die voor alle gebruikers hetzelfde zijn. Met GenUI zou de
interface van de app zich echter dynamisch kunnen aanpassen aan de unieke behoeften

en context van elke gebruiker.

Deze aanpak is nogal vergezocht om in 2024 te implementeren en heeft mogelijk niet

eens voldoende ROI, maar het is mogelijk.

Zo zou het kunnen werken:

1. Onboarding:

Generatieve Ul 213

« In plaats van een standaard vragenlijst gebruikt FitAl een conversationele Al
om informatie te verzamelen over de doelen, het huidige fitnessniveau en de
voorkeuren van de gebruiker.

+ Op basis van deze eerste interactie genereert de Al een gepersonaliseerde
dashboard-layout, waarbij de functies en informatie die het meest relevant
zijn voor de doelen van de gebruiker worden benadrukt.

+ Huidige Al-technologie zou kunnen beschikken over een selectie van
schermcomponenten om te gebruiken bij het samenstellen van het
gepersonaliseerde dashboard.

+ Toekomstige Al-technologie zou de rol van een ervaren Ul-ontwerper
kunnen overnemen en het dashboard daadwerkelijk vanaf nul kunnen

creéren.

2. Trainingsplanner:

+ De trainingsplanner-interface wordt door de Al aangepast om specifiek aan
te sluiten bij het ervaringsniveau en de beschikbare apparatuur van de
gebruiker.

« Voor een beginner zonder apparatuur worden mogelijk eenvoudige
lichaamsoefeningen getoond met gedetailleerde instructies en video’s.

+ Voor een gevorderde gebruiker met toegang tot een sportschool kunnen
complexere routines worden weergegeven met minder uitleg.

« De inhoud van de trainingsplanner wordt niet simpelweg gefilterd uit een
grote verzameling. Deze kan ter plekke worden gegenereerd op basis van
een kennisbank die wordt bevraagd met context die alle bekende informatie

over de gebruiker bevat.

3. Voortgangsbewaking:

« De voortgangsbewaking-interface evolueert op basis van de doelen en

betrokkenheidspatronen van de gebruiker.

Generatieve Ul 214

« Als een gebruiker voornamelijk gericht is op gewichtsverlies, toont
de interface mogelijk prominent een gewichtstrend-grafiek en

calorieverbranding-statistieken.

« Voor een gebruiker die spieren opbouwt, kunnen krachttoename en

lichaamscompositie-veranderingen worden benadrukt.

» De Al kan dit deel van de applicatie aanpassen aan de daadwerkelijke
voortgang van de gebruiker. Als de voortgang een tijd stilstaat, kan de app
overschakelen naar een modus waarin wordt geprobeerd de gebruiker te
verleiden om de redenen voor de tegenslag te onthullen, om deze vervolgens

aan te pakken.

4. Voedingsadvies:

« Het voedingsgedeelte past zich aan aan de dieetvoorkeuren en -beperkingen
van de gebruiker.

« Voor een veganistische gebruiker worden mogelijk plantaardige
maaltijdsuggesties en eiwitbronnen getoond.

» Voor een gebruiker met glutenintolerantie worden automatisch
glutenbevattende voedingsmiddelen uit de aanbevelingen gefilterd.

« Ook hier wordt de inhoud niet geput uit een enorme verzameling
maaltijdgegevens die voor alle gebruikers geldt, maar wordt deze
samengesteld uit een kennisbank die informatie bevat die aanpasbaar
is op basis van de specifieke situatie en beperkingen van de gebruiker.

» Zo worden recepten gegenereerd met ingrediéntspecificaties die aansluiten
bij de voortdurend veranderende caloriebehoeften van de gebruiker

naarmate hun fitnessniveau en lichaamsstatistieken zich ontwikkelen.

5. Motiverende Elementen:

+ De motiverende inhoud en meldingen van de app worden gepersonaliseerd
op basis van het persoonlijkheidstype van de gebruiker en de reactie op

verschillende motivatiestrategieén.

Generatieve Ul 215

« Sommige gebruikers ontvangen bemoedigende berichten, terwijl anderen

meer datagestuurde feedback krijgen.

In dit voorbeeld stelt GenUI FitAl in staat om een zeer gepersonaliseerde ervaring te
creéren voor elke gebruiker, wat mogelijk de betrokkenheid, tevredenheid en de kans
op het bereiken van fitnessdoelen vergroot. De interface-elementen, inhoud en zelfs de
“persoonlijkheid” van de app passen zich aan om optimaal te voldoen aan de behoeften

en voorkeuren van elke individuele gebruiker.

De Verschuiving naar Resultaatgericht Ontwerp

GenUI vertegenwoordigt een fundamentele verschuiving in de benadering van
gebruikersinterface-ontwerp, van een focus op het creéren van specifieke interface-
elementen naar een meer holistische, resultaatgerichte aanpak. Deze verschuiving heeft

verschillende belangrijke implicaties:
1. Focus op Gebruikersdoelen:

+ Ontwerpers zullen dieper moeten nadenken over gebruikersdoelen en

gewenste resultaten in plaats van specifieke interface-componenten.

+ De nadruk zal liggen op het creéren van systemen die interfaces kunnen
genereren die gebruikers efficiént en effectief helpen hun doelen te bereiken.

+ Er zullen nieuwe Ul-frameworks ontstaan die Al-gebaseerde ontwerpers de
tools geven die ze nodig hebben om gebruikerservaringen ter plekke en vanaf
nul te kunnen genereren in plaats van op basis van vooraf gedefinieerde

schermspecificaties.

2. Veranderende Rol van Ontwerpers:

+ Ontwerpers zullen overgaan van het maken van vaste layouts naar het
definiéren van regels, beperkingen en richtlijnen die Al-systemen moeten

volgen bij het genereren van interfaces.

Generatieve Ul 216

« Ze zullen vaardigheden moeten ontwikkelen op gebieden zoals data-analyse,
Al prompt engineering en systeemdenken om GenUI-systemen effectief te

kunnen aansturen.

3. Belang van Gebruikersonderzoek:

« Gebruikersonderzoek wordt nog belangrijker in een GenUI-context, omdat
ontwerpers niet alleen gebruikersvoorkeuren moeten begrijpen, maar ook

hoe deze voorkeuren en behoeften veranderen in verschillende contexten.

+ Continue gebruikerstests en feedbackloops zullen essentieel zijn om het
vermogen van de Al om effectieve interfaces te genereren te verfijnen en

te verbeteren.

4. Ontwerpen voor Variabiliteit:

« In plaats van één “perfecte” interface te creéren, moeten ontwerpers rekening
houden met meerdere mogelijke variaties en ervoor zorgen dat het systeem

geschikte interfaces kan genereren voor diverse gebruikersbehoeften.

« Dit omvat het ontwerpen voor randgevallen en het waarborgen dat de
gegenereerde interfaces bruikbaarheid en toegankelijkheid behouden in
verschillende configuraties.

+ Productdifferentiatie krijgt nieuwe dimensies door uiteenlopende
perspectieven op gebruikerspsychologie en het benutten van unieke

datasets en kennisbanken die niet beschikbaar zijn voor concurrenten.

Uitdagingen en Overwegingen

Hoewel GenUI spannende mogelijkheden biedt, brengt het ook verschillende

uitdagingen en overwegingen met zich mee:

1. Technische Beperkingen:

Generatieve Ul 217

« Huidige Al-technologie heeft, hoewel geavanceerd, nog steeds beperkingen
in het begrijpen van complexe gebruikersintenties en het genereren van

werkelijk contextbewuste interfaces.

« Prestatieproblemen gerelateerd aan real-time generatie van interface-

elementen, vooral op minder krachtige apparaten.

2. Gegevensvereisten:

+ Athankelijk van het gebruiksgeval kunnen effectieve GenUI-systemen
aanzienlijke hoeveelheden gebruikersgegevens nodig hebben om
gepersonaliseerde interfaces te genereren.

» De uitdagingen bij het ethisch verzamelen van authentieke
gebruikersgegevens roepen zorgen op over gegevensprivacy en beveiliging,
evenals mogelijke vooroordelen in de data die gebruikt wordt om GenUI-

modellen te trainen.

3. Bruikbaarheid en Consistentie:

« Ten minste totdat de praktijk wijdverspreid wordt, kan een applicatie
met constant veranderende interfaces leiden tot bruikbaarheidsproblemen,
omdat gebruikers mogelijk moeite hebben met het vinden van vertrouwde
elementen of efficiént navigeren.

« Het vinden van een balans tussen personalisatie en het behouden van een

consistente, leerbare interface zal cruciaal zijn.

4. Overmatige Afhankelijkheid van Al:

« Er bestaat een risico op het overdragen van te veel ontwerpbeslissingen aan
Al-systemen, wat mogelijk kan leiden tot inspiratieloze, problematische of
simpelweg niet-werkende interface-keuzes.

« Menselijk toezicht en de mogelijkheid om Al-gegenereerde ontwerpen te

overschrijven zullen in de nabije toekomst belangrijk blijven.

Generatieve Ul 218

5. Toegankelijkheidszorgen:

 Het waarborgen dat dynamisch gegenereerde interfaces toegankelijk blijven
voor gebruikers met beperkingen brengt geheel nieuwe uitdagingen
met zich mee, wat zorgwekkend is gezien het slechte niveau van
toegankelijkheidsnaleving in typische systemen.

« Aan de andere kant kunnen Al-ontwerpers worden geimplementeerd
met ingebouwde aandacht voor toegankelijkheid, en mogelijkheden om
toegankelijke interfaces ter plekke te bouwen, net zoals ze UI bouwen voor
gebruikers zonder beperkingen.

+ Hoe dan ook moeten GenUl-systemen worden ontworpen met robuuste

toegankelijkheidsrichtlijnen en testprocessen.

6. Gebruikersvertrouwen en Transparantie:

+ Gebruikers kunnen zich ongemakkelijk voelen bij interfaces die “te veel
lijken te weten” over hen of veranderen op manieren die ze niet begrijpen.

+ Het bieden van transparantie over hoe en waarom interfaces
worden gepersonaliseerd zal belangrijk zijn voor het opbouwen van

gebruikersvertrouwen.

Toekomstperspectief en Kansen

De toekomst van Generatieve Ul (GenUI) heeft een enorme belofte voor het
revolutionair veranderen van de manier waarop we interacteren met digitale producten
en diensten. Naarmate deze technologie zich blijft ontwikkelen, kunnen we een
ingrijpende verschuiving verwachten in hoe gebruikersinterfaces worden ontworpen,
geimplementeerd en ervaren. Ik denk dat GenUI het fenomeen is dat onze software

eindelijk zal stuwen naar het gebied dat nu als sciencefiction wordt beschouwd.

Generatieve Ul 219

Een van de meest opwindende vooruitzichten van GenUI is het potentieel om
toegankelijkheid te verbeteren op een schaal die verder gaat dan alleen ervoor
zorgen dat mensen met ernstige beperkingen niet volledig worden uitgesloten van
het gebruik van software. Door interfaces automatisch aan te passen aan individuele
gebruikersbehoeften, zou GenUI digitale ervaringen inclusiever kunnen maken dan
ooit tevoren. Stel je interfaces voor die zich naadloos aanpassen om grotere tekst te
bieden voor jongere of visueel beperkte gebruikers, of vereenvoudigde layouts voor
mensen met cognitieve beperkingen, allemaal zonder handmatige configuratie of aparte

“toegankelijke” versies van applicaties.

De personalisatiemogelijkheden van GenUI zullen waarschijnlijk leiden tot verhoogde
gebruikersbetrokkenheid, tevredenheid en loyaliteit binnen een breed scala aan digitale
producten. Naarmate interfaces beter worden afgestemd op individuele voorkeuren en
gedragingen, zullen gebruikers digitale ervaringen intuitiever en plezieriger vinden, wat

mogelijk leidt tot diepere en betekenisvollere interacties met technologie.

GenUI heeft ook het potentieel om het onboardingproces voor nieuwe gebruikers
te transformeren. Door intuitieve, gepersonaliseerde eerste gebruikerservaringen te
creéren die zich snel aanpassen aan het expertiseniveau van elke gebruiker, zou GenUI
de leercurve van nieuwe applicaties aanzienlijk kunnen verminderen. Dit zou kunnen
leiden tot snellere adoptie en meer gebruikersvertrouwen bij het verkennen van nieuwe

functies en functionaliteiten.

Een andere opwindende mogelijkheid is het vermogen van GenUI om een consistente
gebruikerservaring te behouden over verschillende apparaten en platforms, terwijl er
wordt geoptimaliseerd voor elke specifieke gebruikscontext. Dit zou de langdurige
uitdaging kunnen oplossen van het bieden van coherente ervaringen in een steeds meer
gefragmenteerd apparatenlandschap, van smartphones en tablets tot desktopcomputers

en opkomende technologieén zoals augmented reality-brillen.

De datagedreven aard van GenUI biedt kansen voor snelle iteratie en verbetering

in Ul-ontwerp. Door real-time gegevens te verzamelen over hoe gebruikers omgaan

Generatieve Ul 220

met gegenereerde interfaces, kunnen ontwerpers en ontwikkelaars ongekende inzichten
krijgen in gebruikersgedrag en voorkeuren. Deze feedbackloop zou kunnen leiden tot
continue verbeteringen in Ul-ontwerp, gedreven door werkelijke gebruikspatronen in

plaats van aannames of beperkt gebruikersonderzoek.

Om zich voor te bereiden op deze verschuiving zullen ontwerpers hun vaardigheden en
denkwijzen moeten ontwikkelen. De focus zal verschuiven van het creéren van vaste
layouts naar het ontwikkelen van uitgebreide ontwerpsystemen en richtlijnen die Al-
gestuurde interface-generatie kunnen informeren. Ontwerpers zullen een diep begrip
moeten ontwikkelen van data-analyse, Al-technologieén en systeemdenken om GenUI-

systemen effectief te kunnen begeleiden.

Bovendien zullen ontwerpers, naarmate GenUl de grenzen tussen ontwerp
en technologie vervaagt, nauwer moeten samenwerken met ontwikkelaars en
datawetenschappers. Deze interdisciplinaire aanpak zal cruciaal zijn bij het creéren van
GenUI-systemen die niet alleen visueel aantrekkelijk en gebruiksvriendelijk zijn, maar

ook technisch robuust en ethisch verantwoord.

De ethische implicaties van GenUI zullen ook op de voorgrond treden naarmate
de technologie zich verder ontwikkelt. Ontwerpers zullen een cruciale rol spelen bij
het ontwikkelen van raamwerken voor verantwoord Al-gebruik in interface-ontwerp,
waarbij ze ervoor zorgen dat personalisatie de gebruikerservaringen verbetert zonder de

privacy in gevaar te brengen of gebruikersgedrag op onethische wijze te manipuleren.

Als we naar de toekomst kijken, biedt GenUI zowel spannende mogelijkheden als
belangrijke uitdagingen. Het heeft de potentie om meer intuitieve, efficiénte en
bevredigende digitale ervaringen te creéren voor gebruikers wereldwijd. Hoewel
het van ontwerpers vraagt om zich aan te passen en nieuwe vaardigheden
te verwerven, biedt het ook een ongekende kans om de toekomst van mens-
computerinteractie op diepgaande en betekenisvolle manieren vorm te geven. De weg
naar volledig gerealiseerde GenUI-systemen zal ongetwijfeld complex zijn, maar de

potentiéle voordelen op het gebied van verbeterde gebruikerservaringen en digitale

Generatieve Ul 221

toegankelijkheid maken het een toekomst waar het waard is naar te streven.

Intelligente
Werkstroomorganisatie

In het domein van applicatieontwikkeling spelen werkstromen een cruciale rol bij het

definiéren van hoe taken, processen en gebruikersinteracties worden gestructureerd
en uitgevoerd. Naarmate applicaties complexer worden en gebruikersverwachtingen
blijven stijgen, wordt de behoefte aan intelligente en adaptieve werkstroomorganisatie

steeds duidelijker.

De “Intelligente Werkstroomorganisatie” benadering richt zich op het benutten van Al-
componenten om complexe werkstromen binnen applicaties dynamisch te organiseren
en te optimaliseren. Het doel is om applicaties te creéren die efficiénter, responsiever en

aanpasbaar zijn aan realtime gegevens en context.

In dit hoofdstuk zullen we de belangrijkste principes en patronen verkennen

die ten grondslag liggen aan de intelligente werkstroomorganisatie-aanpak. We

Intelligente Werkstroomorganisatie 223

zullen bekijken hoe AI kan worden gebruikt om taken intelligent te routeren,
besluitvorming te automatiseren en werkstromen dynamisch aan te passen op basis
van verschillende factoren zoals gebruikersgedrag, systeemprestaties en bedrijfsregels.
Aan de hand van praktische voorbeelden en realistische scenario’s zullen we het
transformatieve potentieel van Al laten zien bij het stroomlijnen en optimaliseren van

applicatiewerkstromen.

Of u nu bedrijfsapplicaties bouwt met ingewikkelde bedrijfsprocessen of
consumentgerichte applicaties met dynamische gebruikerstrajecten, de patronen
en technieken die in dit hoofdstuk worden besproken zullen u voorzien van de kennis
en hulpmiddelen om intelligente en efficiénte werkstromen te creéren die de algehele

gebruikerservaring verbeteren en bedrijfswaarde genereren.

Zakelijke Behoefte

Traditionele benaderingen van werkstroombeheer zijn vaak afhankelijk van vooraf
gedefinieerde regels en statische beslisbomen, die rigide en inflexibel kunnen zijn en

niet kunnen omgaan met het dynamische karakter van moderne applicaties.

Neem een scenario waarin een e-commerce applicatie een complex
orderafhandelingsproces moet verwerken. De werkstroom kan meerdere stappen
omvatten zoals ordervalidatie, voorraadcontrole, betalingsverwerking, verzending
en klantmeldingen. Elke stap kan zijn eigen set regels, afhankelijkheden, externe
integraties en uitzonderingsafthandelingsmechanismen hebben. Het handmatig beheren
van een dergelijke werkstroom of via hardgecodeerde logica kan snel omslachtig,

foutgevoelig en moeilijk te onderhouden worden.

Bovendien moet de werkstroom zich mogelijk aanpassen en zichzelf optimaliseren op
basis van realtime gegevens en systeemprestaties naarmate de applicatie schaalt en het
aantal gelijktijdige gebruikers groeit. Tijdens piekverkeersperiodes moet de applicatie
bijvoorbeeld de werkstroom dynamisch aanpassen om bepaalde taken te prioriteren,

bronnen efficiént toe te wijzen en een soepele gebruikerservaring te garanderen.

Intelligente Werkstroomorganisatie 224

Dit is waar de “Intelligente Werkstroomorganisatie” benadering in beeld komt. Door
gebruik te maken van Al-componenten kunnen ontwikkelaars werkstromen creéren die
intelligent, adaptief en zelf-optimaliserend zijn. Al kan grote hoeveelheden gegevens
analyseren, leren van eerdere ervaringen en geinformeerde beslissingen nemen in

realtime om de werkstroom effectief te organiseren.

Belangrijkste Voordelen

1. Verhoogde Efficiéntie: Al kan taaktoewijzing, brongebruik en
werkstroomuitvoering optimaliseren, wat leidt tot snellere verwerkingstijden en
verbeterde algehele efficiéntie.

2. Aanpasbaarheid: Door Al aangestuurde werkstromen kunnen zich dynamisch
aanpassen aan veranderende omstandigheden, zoals schommelingen in
gebruikersvraag, systeemprestaties of bedrijfsvereisten, waardoor de applicatie
responsief en veerkrachtig blijft.

3. Geautomatiseerde Besluitvorming: Al kan complexe besluitvormingsprocessen
binnen de werkstroom automatiseren, waardoor handmatige interventie wordt
verminderd en het risico op menselijke fouten wordt geminimaliseerd.

4. Personalisatie: Al kan gebruikersgedrag, voorkeuren en context analyseren om
de werkstroom te personaliseren en op maat gemaakte ervaringen te leveren aan
individuele gebruikers.

5. Schaalbaarheid: Door Al aangedreven werkstromen kunnen naadloos schalen om
toenemende volumes van gegevens en gebruikersinteracties te verwerken, zonder

concessies te doen aan prestaties of betrouwbaarheid.

In de volgende secties zullen we de belangrijkste patronen en technieken verkennen
die de implementatie van intelligente werkstromen mogelijk maken en laten we
praktijkvoorbeelden zien van hoe AI het werkstroombeheer in moderne applicaties

transformeert.

© 0 N O O b W N =

= =N
B W N,

Intelligente Werkstroomorganisatie 225

Belangrijke Patronen

Om intelligente werkstroomorganisatie in applicaties te implementeren, kunnen
ontwikkelaars gebruik maken van verschillende belangrijke patronen die de kracht van
Al benutten. Deze patronen bieden een gestructureerde aanpak voor het ontwerpen
en beheren van werkstromen, waardoor applicaties processen kunnen aanpassen,
optimaliseren en automatiseren op basis van realtime gegevens en context. Laten we

enkele van de fundamentele patronen in intelligente werkstroomorganisatie verkennen.

Dynamische Taakroutering

Dit patroon omvat het gebruik van Al om taken binnen een werkstroom intelligent
te routeren op basis van verschillende factoren zoals taakprioriteit, beschikbaarheid
van bronnen en systeemprestaties. Al-algoritmen kunnen de kenmerken van elke taak
analyseren, rekening houden met de huidige staat van het systeem en geinformeerde
beslissingen nemen om taken toe te wijzen aan de meest geschikte bronnen of
verwerkingspaden. Dynamische taakroutering zorgt ervoor dat taken efficiént
worden verdeeld en uitgevoerd, waardoor de algehele werkstroomprestaties worden

geoptimaliseerd.

class TaskRouter
include Raix::ChatCompletion
include Raix::FunctionDispatch

attr_accessor :task

list of functions that can be called by the AI entirely at its
discretion depending on the task received

function :analyze_task_priority do
TaskPriorityAnalyzer .perform(task)

end

function :check_resource_availability, # ...

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Intelligente Werkstroomorganisatie 226

function :assess_system_performance, # ...

function :assign_task_to_resource, # ...

DIRECTIVE = "You are a task router, responsible for intelligently
assigning tasks to available resources based on priority, resource
availability, and system performance..."

def initialize(task)
self.task = task
transcript << { system: DIRECTIVE }
transcript << { user: task.to_json }
end

def perform
while task.unassigned?
chat_completion

todo: add max loop counter and break
end

capture the transcript for later analysis
task.update(routing_transcript: transcript)
end
end

Let op de lus die wordt gecreéerd door de while expressie op regel 29, die de Al blijft
vragen totdat de taak is toegewezen. Op regel 35 slaan we het transcript van de taak op

voor latere analyse en debugging, mocht dit nodig zijn.

Contextuele Besluitvorming

Je kunt vergelijkbare code gebruiken om contextbewuste beslissingen binnen
een workflow te nemen. Door het analyseren van relevante gegevenspunten
zoals gebruikersvoorkeuren, historische patronen, en realtime invoer, kunnen Al-
componenten de meest geschikte handelwijze bepalen bij elk beslissingspunt in de
workflow. Pas het gedrag van je workflow aan op basis van de specifieke context van

elke gebruiker of scenario, voor gepersonaliseerde en geoptimaliseerde ervaringen.

Intelligente Werkstroomorganisatie 227

Adaptieve Workflowcompositie

Dit patroon richt zich op het dynamisch samenstellen en aanpassen van workflows
op basis van veranderende eisen of omstandigheden. Al kan de huidige staat van
de workflow analyseren, knelpunten of inefficiénties identificeren, en automatisch
de workflowstructuur aanpassen om de prestaties te optimaliseren. Adaptieve
workflowcompositie stelt applicaties in staat om continu te evolueren en hun processen

te verbeteren zonder handmatige interventie.

Uitzonderingsafhandeling en Herstel

Uitzonderingsathandeling en herstel zijn kritiecke aspecten van intelligente
workfloworganisatie. Bij het werken met Al-componenten en complexe workflows
is het essentieel om uitzonderingen te anticiperen en elegant af te handelen om de

stabiliteit en betrouwbaarheid van het systeem te waarborgen.

Hier zijn enkele belangrijke overwegingen en technieken voor uitzonderingsafthandeling

en herstel in intelligente workflows:

1. Uitzonderingspropagatie: Implementeer een consistente aanpak voor het
propageren van uitzonderingen tussen workflowcomponenten. Wanneer
een uitzondering zich voordoet binnen een component, moet deze worden
opgevangen, gelogd en doorgegeven aan de orchestrator of een afzonderlijke
component die verantwoordelijk is voor het afhandelen van uitzonderingen.
Het idee is om uitzonderingsathandeling te centraliseren en te voorkomen dat
uitzonderingen stilzwijgend worden onderdrukt, en tevens mogelijkheden te
openen voor Intelligente Foutathandeling.

2. Herhaalingsmechanismen: Herhaalingsmechanismen helpen de veerkracht
van de workflow te verbeteren en behandelen tijdelijke storingen op

elegante wijze. Implementeer zeker herhaalingsmechanismen voor tijdelijke

Intelligente Werkstroomorganisatie 228

of herstelbare uitzonderingen, zoals problemen met netwerkconnectiviteit of
onbeschikbaarheid van bronnen die automatisch opnieuw kunnen worden
geprobeerd na een bepaalde vertraging. Met een Al-gestuurde orchestrator of
uitzonderingsathandelaar hoeven je herhaalsstrategieén niet mechanisch van
aard te zijn, vertrouwend op vaste algoritmen zoals exponentiéle terugval.
Je kunt de athandeling van de herhaling overlaten aan het “oordeel” van de
Al-component die verantwoordelijk is voor het beslissen hoe de uitzondering
moet worden afgehandeld.

3. Terugvalstrategieén: Als een Al-component er niet in slaagt een geldig antwoord
te geven of een fout tegenkomt—een veel voorkomende gebeurtenis gezien zijn
geavanceerde aard—zorg dan voor een terugvalmechanisme om ervoor te zorgen
dat de workflow kan doorgaan. Dit kan het gebruik van standaardwaarden,
alternatieve algoritmen of een Mens in de Loop omvatten om beslissingen te
nemen en de workflow vooruit te helpen.

4. Compenserende Acties: De richtlijnen van de orchestrator moeten instructies
bevatten over compenserende acties om uitzonderingen af te handelen die niet
automatisch kunnen worden opgelost. Compenserende acties zijn stappen die
worden ondernomen om de effecten van een mislukte operatie ongedaan te
maken of te verzachten. Als bijvoorbeeld een betalingsverwerkingsstap mislukt,
zou een compenserende actie kunnen zijn om de transactie terug te draaien en
de gebruiker te informeren. Compenserende acties helpen bij het behouden van
dataconsistentie en integriteit bij uitzonderingen.

5. Uitzonderingsmonitoring en Waarschuwingen: Zet monitoring- en
waarschuwingsmechanismen op om kritieke uitzonderingen te detecteren
en relevante belanghebbenden hierover te informeren. De orchestrator kan
bewust worden gemaakt van drempels en regels om waarschuwingen te activeren
wanneer uitzonderingen bepaalde limieten overschrijden of wanneer specifieke
soorten uitzonderingen optreden. Dit maakt proactieve identificatie en oplossing

van problemen mogelijk voordat ze het hele systeem beinvloeden.

© 0 N O O b W N =

NN N NDNDN NN N RS RS R S s s s
© ©® 9 O U & WO N~ O © 0 3 O U b w N =~ O

Intelligente Werkstroomorganisatie 229

Hier is een voorbeeld van uitzonderingsathandeling en herstel in een Ruby workflow-

component:

class InventoryManager
def check_availability(order)
begin
Perform inventory check logic
inventory = Inventory.find_by(product_id: order.product_id)
if inventory.available_quantity >= order.quantity
return true
else
raise InsufficientInventoryError,
"Insufficient inventory for product #{order.product_id}"
end
rescue InsufficientInventoryError => e
Log the exception
logger .error("Inventory check failed: #{e.message}")

Retry the operation after a delay

retry_count |[|= 0

if retry_count < MAX_RETRIES
retry_count += 1
sleep(RETRY_DELAY)
retry

else
Fallback to manual intervention
NotificationService.admin("Inventory check failed: Order #{order.id}")
return false

end

end
end

end

In dit voorbeeld controleert de InventoryManager-component de beschikbaarheid van
een product voor een bepaalde bestelling. Als de beschikbare hoeveelheid onvoldoende
is, wordt er een InsufficientInventoryError gegenereerd. De exceptie wordt
opgevangen, gelogd en er wordt een hertryingsmechanisme geimplementeerd. Als
de hertryingslimiet wordt overschreden, schakelt de component over op handmatige

interventie door een beheerder te waarschuwen.

Intelligente Werkstroomorganisatie 230

Door robuuste exceptieathandeling en herstelmechanismen te implementeren, kunt u
ervoor zorgen dat uw intelligente workflows veerkrachtig en onderhoudbaar zijn, en

onverwachte situaties elegant kunnen athandelen.

Deze patronen vormen de basis van intelligente workflow-orchestratie en kunnen
worden gecombineerd en aangepast aan de specifieke vereisten van verschillende
applicaties. Door gebruik te maken van deze patronen kunnen ontwikkelaars
workflows creéren die flexibel en veerkrachtig zijn, en geoptimaliseerd voor prestaties

en gebruikerservaring.

In het volgende gedeelte zullen we onderzoeken hoe deze patronen in de praktijk kunnen
worden geimplementeerd, waarbij we gebruik maken van praktijkvoorbeelden en

codefragmenten om de integratie van Al-componenten in workflowbeheer te illustreren.

Implementatie van Intelligente

Workflow-orchestratie in de Praktijk

Nu we de belangrijkste patronen in intelligente workflow-orchestratie hebben
verkend, laten we eens kijken hoe deze patronen kunnen worden geimplementeerd in
praktijktoepassingen. We zullen praktische voorbeelden en codefragmenten geven om

de integratie van Al-componenten in workflowbeheer te illustreren.

Intelligente Orderverwerker

Laten we een praktisch voorbeeld bekijken van het implementeren van intelligente
workflow-orchestratie met behulp van een Al-gestuurde OrderProcessor-component
in een Ruby on Rails e-commerce applicatie. De OrderProcessor implementeert het

Process Manager Enterprise Integration concept dat we voor het eerst tegenkwamen

Intelligente Werkstroomorganisatie 231

in Hoofdstuk 3 bij de bespreking van Multitude of Workers. De component is
verantwoordelijk voor het beheren van de orderverwerkingsworkflow, het nemen
van routeringsbeslissingen op basis van tussenresultaten, en het orchestreren van de

uitvoering van verschillende verwerkingsstappen.

Het orderverwerkingsproces bestaat uit meerdere stappen zoals ordervalidatie,
voorraadcontrole, betalingsverwerking en verzending. Elke stap wordt
geimplementeerd als een apart werkproces dat een specifieke taak uitvoert en het
resultaat teruggeeft aan de OrderProcessor. De stappen zijn niet verplicht en hoeven

zelfs niet noodzakelijkerwijs in een bepaalde volgorde te worden uitgevoerd.

Hier is een voorbeeldimplementatie van de OrderProcessor. Het bevat twee mixins
van Raix. De eerste (ChatCompletion) geeft het de mogelijkheid om chatberichten te
voltooien, wat dit een Al-component maakt. De tweede (FunctionDispatch) maakt
functie-aanroep door de Al mogelijk, waardoor deze op een prompt kan reageren met

een functie-aanroep in plaats van een tekstbericht.

De werkerfuncties (validate_order, check_inventory, et al) delegeren naar hun
respectievelijke werkerklassen, die AI- of niet-Al-componenten kunnen zijn, met als
enige vereiste dat ze de resultaten van hun werk teruggeven in een formaat dat als tekst

kan worden weergegeven.

Net als bij alle andere voorbeelden in dit deel van het boek is deze code in
feite pseudo-code en is alleen bedoeld om de betekenis van het patroon over
te brengen en uw eigen creaties te inspireren. Volledige beschrijvingen van

patronen en complete codevoorbeelden zijn opgenomen in Deel 2.

https://github.com/OlympiaAI/raix-rails

© 0 N O O & W N =~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Intelligente Werkstroomorganisatie

class OrderProcessor

include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

def initialize(order)
self.order = order
transcript << { system: SYSTEM_DIRECTIVE }
transcript << { user: order.to_json }

end

def perform

will continue looping until “stop_looping!" is called

chat_completion(loop: true)
end

list of functions available to be called by the AI

truncated for brevity

def functions

[

name: "validate_order",

description: "Invoke to check validity of order",

parameters: {

}I

]

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def validate_order
OrderValidationWorker . per form(@order)
end

def check_inventory
InventoryCheckWorker . per form(@order)
end

232

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Intelligente Werkstroomorganisatie 233

def process_payment
PaymentProcessingWorker . per form(@order)

end

def schedule_shipping
ShippingSchedulerWorker . per form(@order)
end

def send_confirmation
OrderConfirmationWorker . per form(@order)
end

def finished_processing
@order .update! (transcript:, processed_at: Time.current)
stop_looping!
end
end

In het voorbeeld wordt de OrderProcessor geinitialiseerd met een orderobject
en houdt deze een transcript bij van de werkstroomuitvoering, in het typische
conversatietranscriptformaat dat eigen is aan grote taalmodellen. De Al krijgt volledige
controle over het orchestreren van de uitvoering van verschillende verwerkingsstappen,

zoals ordervalidatie, voorraadcontrole, betalingsverwerking en verzending.

Elke keer dat de chat_completion methode wordt aangeroepen, wordt het transcript
naar de Al gestuurd om een voltooiing als functieaanroep te leveren. Het is volledig
aan de AI om het resultaat van de vorige stap te analyseren en de juiste actie te
bepalen. Als bijvoorbeeld de voorraadcontrole lage voorraadniveaus laat zien, kan de
OrderProcessor een aanvullingstaak plannen. Als de betalingsverwerking mislukt,

kan deze een nieuwe poging initiéren of de klantenservice op de hoogte stellen.

Intelligente Werkstroomorganisatie 234

Het bovenstaande voorbeeld heeft geen functies gedefinieerd voor aanvulling of het

informeren van de klantenservice, maar dat zou absoluut kunnen.

Het transcript groeit elke keer dat een functie wordt aangeroepen en dient als een
registratie van de werkstroomuitvoering, inclusief de resultaten van elke stap en
de door Al gegenereerde instructies voor de volgende stappen. Dit transcript kan
worden gebruikt voor debugging, auditing en het verschaffen van inzicht in het

orderafhandelingsproces.

Door Al te benutten in de OrderProcessor, kan de e-commerce applicatie de
werkstroom dynamisch aanpassen op basis van realtime gegevens en uitzonderingen
intelligent afhandelen. De Al-component kan geinformeerde beslissingen nemen,
de werkstroom optimaliseren en zorgen voor een soepele orderverwerking, zelfs in

complexe scenario’s.

Het feit dat de enige vereiste voor de werkprocessen is om een begrijpelijke output te
retourneren voor de Al om te overwegen bij het beslissen wat de volgende stap moet
zijn, zou je kunnen doen beseffen hoe deze aanpak het werk van input/output-mapping
kan verminderen dat typisch nodig is bij het integreren van verschillende systemen met

elkaar.

Intelligente Content Moderator

Sociale media-applicaties vereisen over het algemeen ten minste minimale
contentmoderatie om een veilige en gezonde community te waarborgen. Dit
voorbeeld van een ContentModerator component maakt gebruik van Al om
de moderatiewerkstroom intelligent te orchestreren, waarbij beslissingen worden
genomen op basis van de kenmerken van de content en de resultaten van verschillende

moderatiestappen.

© 0 N O O b W N =

W W W W W N NN DN DN DN DN NN DN - » 2 s
B WN O O 00 N0 0 WN RO O N 0w N

Intelligente Werkstroomorganisatie 235

Het moderatieproces omvat meerdere stappen zoals tekstanalyse, beeldherkenning,
beoordeling van gebruikersreputatie en handmatige beoordeling. Elke stap wordt
geimplementeerd als een afzonderlijk werkproces dat een specifieke taak uitvoert en

het resultaat terugstuurt naar de ContentModerator.

Hier is een voorbeeldimplementatie van de ContentModerator:

class ContentModerator
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a content moderator process manager,

tasked with the workflow involved in moderating user-generated content..."

def initialize(content)
@content = content
@transcript = |
{ system: SYSTEM_DIRECTIVE 1},
{ user: content.to_json }

]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"
end

list of functions available to be called by the AI

truncated for brevity

def functions

[

name: "analyze_text",
}I
{

name: "recognize_image",

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76

Intelligente Werkstroomorganisatie

description: "Invoke to describe images...",

name: "assess_user_reputation”,

name: "escalate_to_manual_review",

name: "approve_content",

name: "reject_content"”,

end

implementation of functions that can be called by the AI
entirely at its discretion, depending on the needs of the order

def analyze_text
result = TextAnalysisWorker.perform(@content)
continue_with(result)

end

def recognize_image
result = ImageRecognitionWorker .perform(@content)
continue_with(result)

end

def assess_user_reputation
result = UserReputationWorker .per form(@content .user)
continue_with(result)

end

def escalate_to_manual_review
ManualReviewWorker . per form(@content)

236

T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Intelligente Werkstroomorganisatie 237

@content.update! (status: 'pending', transcript: @transcript)
end

def approve_content
@content.update! (status: 'approved', transcript: @transcript)
end

def reject_content
@content.update! (status: 'rejected', transcript: @transcript)
end

private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)
end
end

In dit voorbeeld wordt de ContentModerator geinitialiseerd met een content-object
en houdt het een moderatie-transcript bij in het gesprekformaat. Het Al-component
heeft volledige controle over de moderatie-werkstroom en bepaalt welke stappen er
uitgevoerd moeten worden op basis van de kenmerken van de content en de resultaten

van elke stap.

De beschikbare werkerfuncties die de AI kan aanroepen zijn onder
andere analyze_text, recognize_image, assess_user_reputation, en
escalate_to_manual_review. Elke functie delegeert de taak naar een
corresponderende werkerproces (TextAnalysisWorker, ImageRecognitionWorker,
etc.) en voegt het resultaat toe aan het moderatie-transcript, met uitzondering
van de escalatiefunctie, die fungeert als eindstatus. Tot slot fungeren de functies

approve_content enreject_content ook als eindstatussen.

Het Al-component analyseert de content en bepaalt welke actie geschikt is. Als
de content afbeeldingsreferenties bevat, kan het de recognize_image-werker

aanroepen voor hulp bij een visuele beoordeling. Als een werker waarschuwt

Intelligente Werkstroomorganisatie 238

voor mogelijk schadelijke content, kan de AI beslissen om de content te escaleren
voor handmatige beoordeling of deze direct af te wijzen. Maar afhankelijk van
de ernst van de waarschuwing, kan de AI ervoor kiezen om de resultaten van
de gebruikersreputatiebeoordeling te gebruiken bij het beslissen hoe om te gaan
met content waarover het anders niet zeker is. Afhankelijk van het gebruiksgeval
hebben vertrouwde gebruikers mogelijk meer speelruimte in wat ze kunnen plaatsen.

Enzovoort, enzovoort...

Net als bij het vorige voorbeeld van de procesmanager dient het moderatie-transcript
als een registratie van de werkstroomuitvoering, inclusief de resultaten van elke stap en
de door Al gegenereerde beslissingen. Dit transcript kan worden gebruikt voor auditing,

transparantie en het verbeteren van het moderatieproces in de loop der tijd.

Door Al te benutten in de ContentModerator kan de social media-applicatie de
moderatie-werkstroom dynamisch aanpassen op basis van de kenmerken van de
content en complexe moderatiescenario’s intelligent athandelen. Het Al-component
kan weloverwogen beslissingen nemen, de werkstroom optimaliseren en zorgen voor

een veilige en gezonde community-ervaring.

Laten we twee andere voorbeelden bekijken die voorspellende taakplanning en
foutafthandeling en -herstel demonstreren binnen de context van intelligente

werkstroomorganisatie.

Voorspellende Taakplanning in een
Klantenondersteuningssysteem

In een klantenondersteuningsapplicatie gebouwd met Ruby on Rails is het efficiént
beheren en prioriteren van supporttickets cruciaal voor het bieden van tijdige hulp
aan klanten. Het SupportTicketScheduler-component maakt gebruik van Al om
voorspellend supporttickets in te plannen en toe te wijzen aan beschikbare medewerkers
op basis van verschillende factoren zoals ticketurgentie, expertise van de medewerker

en werklast.

Intelligente Werkstroomorganisatie

class SupportTicketScheduler
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a support ticket scheduler,
tasked with intelligently assigning tickets to available agents..."

def initialize(ticket)
@ticket = ticket
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: ticket.to_json }

]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"
end

def functions

[

name: "analyze_ticket_urgency",
#...

}I
{
name: "list_available_agents",

description: "Includes expertise of available agents",
#...

}I
{
name: "predict_agent_workload",

description: "Uses historical data to predict upcoming workloads"

}/
{

name: "assign_ticket_to_agent",

7

239

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
77
78
79
80
81
82
83
84

Intelligente Werkstroomorganisatie

}/

name: "reschedule_ticket",

]

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def analyze_ticket_urgency
result = TicketUrgencyAnalyzer .perform(@ticket)
continue_with(result)

end

def list_available_agents
result = ListAvailableAgents.perform
continue_with(result)

end

def predict_agent_workload
result = AgentWorkloadPredictor .perform
continue_with(result)

end

def assign_ticket_to_agent
TicketAssigner.perform(@ticket, @transcript)
end

def delay_assignment(until)
until = DateTimeStandardizer.process(until)
SupportTicketScheduler.delay(@ticket, @transcript, until)
end

private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)
end
end

240

Intelligente Werkstroomorganisatie 241

In dit voorbeeld wordt de SupportTicketScheduler geinitialiseerd met een
supportticket-object en houdt deze een planningsverslag bij. Het Al-component
analyseert de ticketdetails en plant voorspellend de tickettoewijzing op basis van

factoren zoals ticketurgentie, agentexpertise en voorspelde werkbelasting van de agent.

De beschikbare functies die de Al kan aanroepen zijn analyze_ticket_urgency,
list_available_agents, predict_agent_workload en assign_ticket_to_-
agent. Elke functie delegeert de taak naar een corresponderende analyzer- of predictor-
component en voegt het resultaat toe aan het planningsverslag. De AI heeft ook de
mogelijkheid om toewijzing uit te stellen met behulp van de delay_assignment

functie.

Het Al-component onderzoekt het planningsverslag en neemt weloverwogen
beslissingen over tickettoewijzing. Het houdt rekening met de urgentie van het
ticket, de expertise van beschikbare agents en de voorspelde werkbelasting van elke

agent om de meest geschikte agent voor de athandeling van het ticket te bepalen.

Door gebruik te maken van voorspellende taakplanning kan de klantenondersteuningsapplicatie
de tickettoewijzing optimaliseren, reactietijden verkorten en de algehele
klanttevredenheid verbeteren. Proactief en efficiént beheer van supporttickets
zorgt ervoor dat de juiste tickets op het juiste moment aan de juiste agents worden

toegewezen.

Foutafhandeling en Herstel in een
Gegevensverwerkingspijplijn

Het afhandelen van uitzonderingen en herstellen van fouten is essentieel
om gegevensintegriteit te waarborgen en gegevensverlies te voorkomen. De
DataProcessingOrchestrator-component maakt gebruik van Al om op intelligente
wijze uitzonderingen af te handelen en het herstelproces te orchestreren in een

gegevensverwerkingspijplijn

© 0 N O O b W N e

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Intelligente Werkstroomorganisatie

class DataProcessingOrchestrator

include Raix::ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

def initialize(data_batch)
@data_batch = data_batch
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: data_batch.to_json }

]

end

def perform

complete(@transcript)

end

def model

"openai/gpt-4"

end

def functions

name:

"validate_data",

"process_data",

"request_fix",

"retry_processing",

"mark_data_as_failed",

242

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83

Intelligente Werkstroomorganisatie 243

b
{

name: "finished",

]

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def validate_data
result = DataValidator.perform(@data_batch)
continue_with(result)

rescue ValidationException => e
handle_validation_exception(e)

end

def process_data
result = DataProcessor .perform(@data_batch)
continue_with(result)

rescue ProcessingException => e
handle_processing_exception(e)

end

def request_fix(description_of_fix)
result = SmartDataFixer.new(description_of_fix, @data_batch)
continue_with(result)

end

def retry_processing(timeout_in_seconds)
wait(timeout_in_seconds)
process_data

end

def mark_data_as_failed
@data_batch.update! (status: 'failed', transcript: @transcript)
end

def finished
@data_batch.update! (status: 'finished', transcript: @transcript)

85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103

Intelligente Werkstroomorganisatie 244

end
private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)

end

def handle_validation_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)

end

def handle_processing_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)
end
end

In dit voorbeeld wordt de DataProcessingOrchestrator geinitialiseerd met een
databatch-object en houdt deze een verwerkingstranscript bij. Het Al-component
orkestreert de dataverwerkingspijplijn, handelt excepties af en herstelt van fouten waar

nodig.

De beschikbare functies die de Al kan aanroepen zijn validate_data, process_-
data, request_fix, retry_processing, en mark_data_as_failed. Elke functie
delegeert de taak naar een corresponderend dataverwerkingscomponent en voegt het

resultaat of de exceptiedetails toe aan het verwerkingstranscript.

Als er een validatie-exceptie optreedt tijdens de validate_data stap, voegt de
handle_validation_exception functie de exceptiegegevens toe aan het transcript
en geeft de controle terug aan de Al Ook als er een verwerkingsexceptie optreedt

tijdens de process_data stap, kan de Al beslissen over de herstelstrategie.

Afhankelijk van de aard van de opgetreden exceptie kan de Al naar eigen inzicht

beslissen om request_fix aan te roepen, wat delegeert naar een Al-aangedreven

Intelligente Werkstroomorganisatie 245

SmartDataFixer component (zie hoofdstuk over Zelf-herstellende Data). De data
fixer krijgt een gewone Nederlandse beschrijving van hoe het de @data_batch moet
aanpassen zodat de verwerking opnieuw kan worden geprobeerd. Misschien zou
een succesvolle nieuwe poging inhouden dat records die de validatie niet hebben
doorstaan uit de databatch worden verwijderd en/of worden gekopieerd naar een
andere verwerkingspijplijn voor menselijke controle? De mogelijkheden zijn bijna

eindeloos.

Door Al-gestuurde exceptie-athandeling en herstel te integreren, wordt de
dataverwerkingsapplicatie veerkrachtiger en fouttoleranter. DeDataProcessingOrchestrator
beheert op intelligente wijze excepties, minimaliseert gegevensverlies en zorgt voor een

soepele uitvoering van de dataverwerkingsworkflow.

Monitoring en Logging

Monitoring en logging bieden inzicht in de voortgang, prestaties en gezondheid van
Al-aangedreven workflowcomponenten, waardoor ontwikkelaars het gedrag van het
systeem kunnen volgen en analyseren. Het implementeren van effectieve monitoring-
en loggingmechanismen is essentieel voor het debuggen, auditen en continue verbeteren

van intelligente workflows.

Monitoren van Workflowvoortgang en Prestaties

Om de soepele uitvoering van intelligente workflows te waarborgen, is het belangrijk
om de voortgang en prestaties van elk workflowcomponent te monitoren. Dit omvat
het bijhouden van belangrijke metrics en gebeurtenissen gedurende de workflow-

levenscyclus.
Enkele belangrijke aspecten om te monitoren zijn:

1. Workflow Uitvoeringstijd: Meet de tijd die elk workflowcomponent nodig heeft

Intelligente Werkstroomorganisatie 246

om zijn taak te voltooien. Dit helpt bij het identificeren van prestatie-knelpunten en het

optimaliseren van de algehele workflow-efficiéntie.

2. Brongebruik: Monitor het gebruik van systeembronnen, zoals CPU, geheugen en
opslag, door elk workflowcomponent. Dit helpt ervoor te zorgen dat het systeem binnen

zijn capaciteit werkt en de werklast effectief kan verwerken.

3. Foutpercentages en Excepties: Volg het voorkomen van fouten en excepties binnen
workflowcomponenten. Dit helpt bij het identificeren van potentiéle problemen en

maakt proactieve foutafhandeling en herstel mogelijk.

4. Beslispunten en Uitkomsten: Monitor de beslispunten binnen de workflow en
de uitkomsten van Al-gestuurde beslissingen. Dit geeft inzicht in het gedrag en de

effectiviteit van de Al-componenten.

De gegevens die door monitoringprocessen worden verzameld, kunnen worden
weergegeven in dashboards of worden gebruikt als input voor geplande rapporten die

systeembeheerders informeren over de gezondheid van het systeem.

’ Monitoringgegevens kunnen worden doorgegeven aan een Al-aangedreven

systeembeheerderproces voor beoordeling en mogelijke actie!

Loggen van Belangrijke Gebeurtenissen en Beslissingen

Loggen is een essentiéle praktijk die bestaat uit het vastleggen en opslaan van relevante
informatie over belangrijke gebeurtenissen, beslissingen en excepties die optreden

tijdens de workflow-uitvoering.
Enkele belangrijke aspecten om te loggen zijn:

1. Workflow Initiatie en Voltooiing: Log de start- en eindtijden van elke workflow-

instantie, samen met relevante metadata zoals de invoergegevens en gebruikerscontext.

© 0 N O O b W N

= =N
B W N e

Intelligente Werkstroomorganisatie 247

2. Component Uitvoering: Log de uitvoeringsdetails van elk workflowcomponent,
inclusief de invoerparameters, uitvoerresultaten en eventuele gegenereerde

tussenliggende gegevens.

3. Al-beslissingen en Redenering: Log de beslissingen die door Al-componenten
worden genomen, samen met de onderliggende redenering of betrouwbaarheidsscores.

Dit zorgt voor transparantie en maakt het mogelijk Al-gestuurde beslissingen te auditen.

4. Excepties en Foutmeldingen: Log eventuele excepties of foutmeldingen die tijdens
de workflow-uitvoering worden aangetroffen, inclusief de stack trace en relevante

contextinformatie.

Loggen kan worden geimplementeerd met verschillende technieken, zoals schrijven naar
logbestanden, logs opslaan in een database of logs verzenden naar een gecentraliseerde
loggingservice. Het is belangrijk om een logging-framework te kiezen dat flexibiliteit,

schaalbaarheid en eenvoudige integratie met de applicatiearchitectuur biedt.

Hier is een voorbeeld van hoe logging kan worden geimplementeerd in een Ruby on

Rails-applicatie met behulp van de ActiveSupport: :Logger klasse:

class WorkflowlLogger

def self.log(message, severity = :info)
@logger ||= ActiveSupport::Logger.new('workflow.log')
@logger . formatter ||= proc do |severity, datetime, progname, msg]|

"#{datetime} [#{severity}] #{msg}\n"
end
@logger .send(severity, message)
end
end

Usage example
Work flowLogger . log("Workflow initiated for order ##{@order.id}")
Work flowLogger . log("Payment processing completed successfully")

Work flowLogger . log("Inventory check failed for item ##{item.id}", :error)

Door strategisch logboekregistraties te plaatsen in de workflow-componenten en Al-

beslispunten, kunnen ontwikkelaars waardevolle informatie vastleggen voor debugging,

Intelligente Werkstroomorganisatie 248

auditing en analyse.

Voordelen van Monitoring en Logging

Het implementeren van monitoring en logging in intelligente workfloworchestratie

biedt verschillende voordelen:

1. Debuggen en Probleemoplossing: Gedetailleerde logboeken en monitoringgegevens
helpen ontwikkelaars bij het snel identificeren en diagnosticeren van problemen. Ze
bieden inzicht in de uitvoering van de workflow, componentinteracties en eventuele

fouten of uitzonderingen die zich voordoen.

2. Prestatie-optimalisatie: Het monitoren van prestatiemetrieken stelt ontwikkelaars
in staat knelpunten te identificeren en workflowcomponenten te optimaliseren voor
betere efficiéntie. Door het analyseren van uitvoeringstijden, resourcegebruik en andere
metrieken kunnen ontwikkelaars weloverwogen beslissingen nemen om de algehele

prestaties van het systeem te verbeteren.

3. Auditing en Compliance: Het registreren van belangrijke gebeurtenissen en
beslissingen zorgt voor een auditspoor voor regelgeving en verantwoording. Het stelt
organisaties in staat om de acties van Al-componenten te volgen en te verifiéren en

zorgt voor naleving van bedrijfsregels en wettelijke vereisten.

4. Continue Verbetering: Monitoring- en logginggegevens dienen als waardevolle
input voor continue verbetering van intelligente workflows. Door het analyseren van
historische gegevens, het identificeren van patronen en het meten van de effectiviteit
van Al-beslissingen kunnen ontwikkelaars de workfloworchestratie-logica iteratief

verfijnen en verbeteren.

Overwegingen en Best Practices

Bij het implementeren van monitoring en logging in intelligente workfloworchestratie

moet rekening worden gehouden met de volgende best practices:

Intelligente Werkstroomorganisatie 249

1. Definieer Duidelijke Monitoringmetrieken: Identificeer de belangrijkste metrieken
en gebeurtenissen die gemonitord moeten worden op basis van de specifieke vereisten
van de workflow. Focus op metrieken die betekenisvolle inzichten geven in de prestaties,

gezondheid en het gedrag van het systeem.

2. Implementeer Gedetailleerde Logging: Zorg ervoor dat logboekregistraties op de
juiste punten binnen de workflowcomponenten en Al-beslispunten worden geplaatst.
Leg relevante contextinformatie vast, zoals invoerparameters, uitvoerresultaten en

eventuele gegenereerde tussenliggende gegevens.

3. Gebruik Gestructureerde Logging: Adopteer een gestructureerd loggingformaat
om het parseren en analyseren van loggegevens te vergemakkelijken. Gestructureerde

logging maakt betere zoekbaarheid, filtering en aggregatie van logboekitems mogelijk.

4. Beheer Logbehoud en -rotatie: Implementeer beleid voor logbehoud en -rotatie om
de opslag en levenscyclus van logbestanden te beheren. Bepaal de juiste bewaartermijn
op basis van wettelijke vereisten, opslagbeperkingen en analysebehoeften. Indien

mogelijk, besteed logging uit aan een externe dienst zoals Papertrail.

5. Beveilig Gevoelige Informatie: Wees voorzichtig bij het loggen van
gevoelige informatie, zoals persoonlijk identificeerbare informatie (PII) of
vertrouwelijke bedrijfsgegevens. Implementeer passende beveiligingsmaatregelen,
zoals gegevensmasking of encryptie, om gevoelige informatie in logbestanden te

beschermen.

6. Integreer met Monitoring- en Waarschuwingstools: Maak gebruik van
monitoring- en waarschuwingstools om het verzamelen, analyseren en visualiseren van
monitoring- en logginggegevens te centraliseren. Deze tools kunnen realtime inzichten
bieden, waarschuwingen genereren op basis van vooraf gedefinieerde drempels en
proactieve probleemdetectie en -oplossing faciliteren. Mijn favoriete tool hiervoor is

Datadog.

Door uitgebreide monitoring- en loggingmechanismen te implementeren, kunnen

ontwikkelaars waardevolle inzichten krijgen in het gedrag en de prestaties van

https://papertrailapp.com
https://www.datadoghq.com

Intelligente Werkstroomorganisatie 250

intelligente workflows. Deze inzichten maken effectief debuggen, optimalisatie en

continue verbetering van Al-gestuurde workfloworchestratie-systemen mogelijk.

Schaalbaarheid en Prestatieoverwegingen

Schaalbaarheid en prestaties zijn kritieke aspecten om rekening mee te houden bij
het ontwerpen en implementeren van intelligente workfloworchestratie-systemen.
Naarmate het volume van gelijktijdige workflows en de complexiteit van Al-gestuurde
componenten toenemen, wordt het essentieel om ervoor te zorgen dat het systeem de
werklast efficiént kan verwerken en naadloos kan schalen om aan groeiende eisen te

voldoen.

Omgaan met Grote Volumes Gelijktijdige Workflows

Intelligente workfloworchestratie-systemen moeten vaak een groot aantal gelijktijdige
workflows verwerken. Overweeg de volgende strategieén om schaalbaarheid te

waarborgen:

1. Asynchrone Verwerking: Implementeer asynchrone verwerkingsmechanismen om
de uitvoering van workflowcomponenten te ontkoppelen. Dit stelt het systeem in
staat om meerdere workflows gelijktijdig te verwerken zonder te blokkeren of te
wachten tot elke component is voltooid. Asynchrone verwerking kan worden bereikt
met behulp van berichtenwachtrijen, event-driven architecturen of frameworks voor

achtergrondtaakverwerking zoals Sidekiq.

2. Gedistribueerde Architectuur: Ontwerp de systeemarchitectuur om serverloze
componenten (zoals AWS Lambda) te gebruiken of verdeel de werklast eenvoudig
over meerdere nodes of servers naast je hoofdapplicatieserver. Dit maakt horizontale
schaalbaarheid mogelijk, waarbij extra nodes kunnen worden toegevoegd om verhoogde

workflowvolumes te verwerken.

Intelligente Werkstroomorganisatie 251

3. Parallelle Uitvoering: Identificeer mogelijkheden voor parallelle uitvoering
binnen workflows. Sommige workflowcomponenten kunnen onafhankelijk van
elkaar zijn en gelijktijdig worden uitgevoerd. Door gebruik te maken van parallelle
verwerkingstechnieken, zoals multi-threading of gedistribueerde taakwachtrijen,
kan het systeem het resourcegebruik optimaliseren en de totale uitvoeringstijd van

workflows verminderen.

Prestatie-optimalisatie van Al-gestuurde Componenten

Al-gestuurde componenten, zoals machine learning-modellen of natuurlijke
taalverwerkingsmotoren, kunnen rekenintensief zijn en invloed hebben op de
algehele prestaties van het workfloworchestratie-systeem. Overweeg de volgende

technieken om de prestaties van Al-componenten te optimaliseren:

1. Caching: Als je Al-verwerking puur generatief is en geen realtime informatie-
opzoekingen of externe integraties vereist om chat-voltooiingen te genereren, dan
kun je caching-mechanismen onderzoeken om de resultaten van veelgebruikte of

rekenintensieve bewerkingen op te slaan en te hergebruiken.

2. Model-optimalisatie: Optimaliseer voortdurend de manier waarop je Al-
modellen gebruikt in workflowcomponenten. Dit kan technieken omvatten zoals
Prompt Distillatie of het kan simpelweg een kwestie zijn van het testen van nieuwe

modellen zodra deze beschikbaar komen.

3. Batchverwerking: Als je werkt met GPT-4-klasse modellen, kun je mogelijk gebruik
maken van batchverwerkingstechnieken om meerdere datapunten of verzoeken in één
batch te verwerken, in plaats van ze individueel te verwerken. Door gegevens in batches
te verwerken, kan het systeem het brongebruik optimaliseren en de overhead van

herhaalde modelverzoeken verminderen.

Intelligente Werkstroomorganisatie 252

Monitoren en Profileren van Prestaties

Om prestatie-knelpunten te identificeren en de schaalbaarheid van het intelligente
workfloworchestratie-systeem te optimaliseren, is het cruciaal om monitoring- en

profileringsmechanismen te implementeren. Overweeg de volgende benaderingen:

1. Prestatiemetrieken: Definieer en volg belangrijke prestatiemetrieken, zoals
responstijd, doorvoer, brongebruik en latentie. Deze metrieken geven inzicht in de
systeemprestaties en helpen gebieden voor optimalisatie te identificeren. De populaire
Al-model aggregator OpenRouter bevat Host' en Speed? metrieken in elke API-respons,

waardoor het eenvoudig is om deze belangrijke metrieken te volgen.

2. Profileringstools: Gebruik profileringstools om de prestaties van individuele
workflowcomponenten en Al-operaties te analyseren. Profileringstools kunnen helpen
bij het identificeren van prestatie-hotspots, inefficiénte codepaden of bronintensieve
operaties. Populaire profileringstools zijn onder andere New Relic, Scout, of ingebouwde

profilers die worden geleverd bij de programmeertaal of het framework.

3. Belastingstests: Voer belastingstests uit om de systeemprestaties onder verschillende
niveaus van gelijktijdige werklasten te evalueren. Belastingstests helpen bij het
identificeren van de schaalbaarheidslimieten van het systeem, het detecteren van
prestatieverslechtering en het waarborgen dat het systeem het verwachte verkeer kan

verwerken zonder de prestaties in gevaar te brengen.

4. Continue Monitoring: Implementeer continue monitoring- en waarschuwingsmechanismen
om proactief prestatieproblemen en knelpunten te detecteren. Stel
monitoringdashboards en waarschuwingen in om belangrijke prestatie-indicatoren
(KPT’s) te volgen en meldingen te ontvangen wanneer vooraf gedefinieerde
drempels worden overschreden. Dit maakt snelle identificatie en oplossing van

prestatieproblemen mogelijk.

'Host is de tijd die nodig was om de eerste byte van de gestreamde generatie van de modelhost te
ontvangen, ook wel bekend als “time to first byte.”

2Speed wordt berekend als het aantal voltooiingstokens gedeeld door de totale generatietijd. Voor niet-
gestreamde verzoeken wordt latentie beschouwd als onderdeel van de generatietijd.

https://openrouter.ai

Intelligente Werkstroomorganisatie 253

Schalingsstrategieén

Overweeg de volgende schalingsstrategieén om toenemende werklasten te verwerken

en de schaalbaarheid van het intelligente workfloworchestratie-systeem te waarborgen:

1. Verticaal Schalen: Verticaal schalen betreft het verhogen van de resources (bijv. CPU,
geheugen) van individuele nodes of servers om hogere werklasten aan te kunnen. Deze
aanpak is geschikt wanneer het systeem meer verwerkingskracht of geheugen nodig

heeft om complexe workflows of Al-operaties uit te voeren.

2. Horizontaal Schalen: Horizontaal schalen betreft het toevoegen van meer nodes of
servers aan het systeem om de werklast te verdelen. Deze aanpak is effectief wanneer
het systeem een groot aantal gelijktijdige workflows moet verwerken of wanneer de
werklast gemakkelijk over meerdere nodes kan worden verdeeld. Horizontaal schalen
vereist een gedistribueerde architectuur en load balancing-mechanismen om een

gelijkmatige verdeling van verkeer te waarborgen.

3. Automatisch Schalen: Implementeer automatische schalingsmechanismen om het
aantal nodes of resources automatisch aan te passen op basis van de werklastvraag.
Automatisch schalen stelt het systeem in staat om dynamisch op en af te schalen
afhankelijk van het inkomende verkeer, wat zorgt voor optimaal brongebruik en
kostenefficiéntie. Cloudplatforms zoals Amazon Web Services (AWS) of Google Cloud
Platform (GCP) bieden automatische schalingsmogelijkheden die kunnen worden benut

voor intelligente workfloworchestratie-systemen.

Prestatie-optimalisatietechnieken

Naast de schalingsstrategieén, overweeg de volgende prestatie-optimalisatietechnieken

om de efficiéntie van het intelligente workfloworchestratie-systeem te verbeteren:

1. Efficiénte Gegevensopslag en -ophaling: Optimaliseer de mechanismen
voor gegevensopslag en -ophaling die door de workflowcomponenten worden

gebruikt. Gebruik efficiénte database-indexering, query-optimalisatietechnieken en

Intelligente Werkstroomorganisatie 254

gegevenscaching om de latentie te minimaliseren en de prestaties van data-intensieve

operaties te verbeteren.

2. Asynchrone I/0: Maak gebruik van asynchrone I/O-operaties om blokkering te
voorkomen en de reactiesnelheid van het systeem te verbeteren. Asynchrone I/O stelt het
systeem in staat om meerdere verzoeken gelijktijdig af te handelen zonder te wachten

op de voltooiing van I/O-operaties, waardoor de bronnen optimaal worden benut.

3. Efficiénte Serialisatie en Deserialisatie: Optimaliseer de serialisatie- en
deserialisatieprocessen die worden gebruikt voor gegevensuitwisseling tussen
werkstroomcomponenten. Gebruik efficiénte serialisatieformaten, zoals Protocol
Buffers of MessagePack, om de overhead van gegevensserialisatie te verminderen en de

prestaties van communicatie tussen componenten te verbeteren.

P Overweeg voor Ruby-gebaseerde applicaties het gebruik van Universal

ID. Universal ID maakt gebruik van zowel MessagePack als Brotli (een
combinatie gebouwd voor snelheid en beste-in-zijn-klasse datacompressie).
In combinatie zijn deze bibliotheken tot 30% sneller en komen binnen 2-5%

compressieratio’s in vergelijking met Protocol Buffers.

4. Compressie en Codering: Pas compressie- en coderingstechnieken toe om de
omvang van gegevensoverdracht tussen werkstroomcomponenten te verminderen.
Compressiealgoritmen, zoals gzip of Brotli, kunnen het netwerkbandbreedtegebruik

aanzienlijk verminderen en de algehele prestaties van het systeem verbeteren.

Door rekening te houden met schaalbaarheid en prestatieaspecten tijdens het ontwerp
en de implementatie van intelligente werkstroomorganisatiesystemen, kunt u ervoor
zorgen dat uw systeem grote hoeveelheden gelijktijdige werkstromen kan verwerken,
de prestaties van Al-gestuurde componenten kan optimaliseren en naadloos kan schalen
om aan groeiende eisen te voldoen. Continue monitoring, profilering en optimalisatie-
inspanningen zijn essentieel om de prestaties en reactiesnelheid van het systeem te

behouden naarmate de werklast en complexiteit in de loop van de tijd toenemen.

https://github.com/hopsoft/universalid
https://github.com/hopsoft/universalid

Intelligente Werkstroomorganisatie 255

Testen en Validatie van Werkstromen

Testen en validatie zijn cruciale aspecten bij het ontwikkelen en onderhouden van
intelligente werkstroomorganisatiesystemen. Gezien de complexe aard van Al-
gestuurde werkstromen is het essentieel om ervoor te zorgen dat elke component
naar verwachting functioneert, de algemene werkstroom correct verloopt en de Al-
beslissingen nauwkeurig en betrouwbaar zijn. In deze sectie verkennen we verschillende

technieken en overwegingen voor het testen en valideren van intelligente werkstromen.

Unit Testen van Werkstroomcomponenten

Unit testen omvat het testen van individuele werkstroomcomponenten in isolatie om
hun correctheid en robuustheid te verifiéren. Houd bij het unit testen van Al-gestuurde

werkstroomcomponenten rekening met het volgende:

1. Invoervalidatie: Test het vermogen van de component om verschillende soorten
invoer te verwerken, inclusief geldige en ongeldige gegevens. Verifieer dat de component

randgevallen correct athandelt en passende foutmeldingen of uitzonderingen genereert.

2. Uitvoerverificatie: Controleer of de component de verwachte uitvoer produceert
voor een gegeven set invoergegevens. Vergelijk de daadwerkelijke uitvoer met de

verwachte resultaten om correctheid te waarborgen.

3. Foutafhandeling: Test de foutafthandelingsmechanismen van de component door
verschillende foutscenario’s te simuleren, zoals ongeldige invoer, onbeschikbaarheid van
bronnen of onverwachte uitzonderingen. Verifieer dat de component fouten op de juiste

manier opvangt en afhandelt.

4. Randvoorwaarden: Test het gedrag van de component onder randvoorwaarden, zoals
lege invoer, maximale invoergrootte of extreme waarden. Zorg ervoor dat de component
deze voorwaarden correct athandelt zonder vast te lopen of onjuiste resultaten te

produceren.

© 0 N O O b W N =

T O O = =Y
© 00 N O O B W N =~ O

Intelligente Werkstroomorganisatie 256

Hier is een voorbeeld van een unit test voor een werkstroomcomponent in Ruby met

behulp van het RSpec testframework:

RSpec.describe OrderValidator do
describe '#validate' do
context 'when order is valid' do
let(:order) { build(:order) }

it 'returns true' do
expect(subject.validate(order)).to be true
end

end

context 'when order is invalid' do
let(:order) { build(:order, total_amount: -100) }

it 'returns false' do
expect(subject.validate(order)).to be false
end
end
end

end

In dit voorbeeld wordt de OrderValidator component getest met behulp van twee
testgevallen: één voor een geldige bestelling en een andere voor een ongeldige bestelling.
De testgevallen verifiéren dat de validate methode de verwachte booleaanse waarde

teruggeeft op basis van de geldigheid van de bestelling.

Integratietesten van Workflow-interacties

Integratietesten richt zich op het verifiéren van de interacties en datastromen tussen
verschillende workflowcomponenten. Het zorgt ervoor dat de componenten naadloos
samenwerken en de verwachte resultaten produceren. Bij het integratietesten van

intelligente workflows moet je rekening houden met het volgende:

1. Componentinteractie: Test de communicatie en gegevensuitwisseling tussen

© 0 N O O b W N =

I T O ==Y
o N O O b W N =~ O

Intelligente Werkstroomorganisatie 257

workflowcomponenten. Verifieer dat de output van één component correct wordt

doorgegeven als input aan de volgende component in de workflow.

2. Dataconsistentie: Zorg ervoor dat gegevens consistent en nauwkeurig blijven terwijl
ze door de workflow stromen. Verifieer dat gegevenstransformaties, berekeningen en

aggregaties correct worden uitgevoerd.

3. Exceptieverspreiding: Test hoe uitzonderingen en fouten worden verspreid en
afgehandeld tussen workflowcomponenten. Verifieer dat uitzonderingen worden
opgevangen, gelogd en op de juiste manier worden afgehandeld om verstoring van de

workflow te voorkomen.

4. Asynchroon gedrag: Als de workflow asynchrone componenten of parallelle
uitvoering bevat, test dan de codrdinatie- en synchronisatiemechanismen. Zorg ervoor

dat de workflow correct functioneert in gelijktijdige en asynchrone scenario’s.

Hier is een voorbeeld van een integratietest voor een workflow in Ruby met behulp van

het RSpec testframework:

RSpec.describe OrderProcessingWorkflow do
let(:order) { build(:order) }

it 'processes the order successfully' do
expect(OrderValidator).to receive(:validate).and_return(true)
expect(InventoryManager).to receive(:check_availability).and_return(true)
expect(PaymentProcessor).to receive(:process_payment).and_return(true)
expect(ShippingService).to receive(:schedule_shipping).and_return(true)

workflow = OrderProcessingWorkflow.new(order)
result = workflow.process

expect(result).to be true
expect(order.status).to eq('processed')

end

end

Intelligente Werkstroomorganisatie 258

In dit voorbeeld wordt de OrderProcessingWork flow getest door de interacties tussen
verschillende workflow-componenten te verifiéren. De testcase stelt verwachtingen op
voor het gedrag van elk component en zorgt ervoor dat de workflow de order succesvol

verwerkt, waarbij de orderstatus dienovereenkomstig wordt bijgewerkt.

Het Testen van Al-Beslispunten

Het testen van Al-beslispunten is cruciaal om de nauwkeurigheid en betrouwbaarheid
van Al-gestuurde workflows te waarborgen. Houd bij het testen van Al-beslispunten

rekening met het volgende:

1. Beslissingsnauwkeurigheid: Verifieer dat het Al-component accurate beslissingen
neemt op basis van de invoergegevens en het getrainde model. Vergelijk de Al-

beslissingen met verwachte uitkomsten of referentiegegevens.

2. Randgevallen: Test het gedrag van het Al-component in randgevallen en
ongebruikelijke scenario’s. Verifieer dat het Al-component deze gevallen correct

afhandelt en redelijke beslissingen neemt.

3. Vooringenomenheid en Eerlijkheid: Beoordeel het Al-component op mogelijke
vooroordelen en zorg ervoor dat het eerlijke en onbevooroordeelde beslissingen
neemt. Test het component met diverse invoergegevens en analyseer de uitkomsten op

discriminerende patronen.

4. Verklaarbaarheid: Als het Al-component uitleg of redenering geeft voor zijn
beslissingen, verifieer dan de juistheid en helderheid van de uitleg. Zorg ervoor dat de

uitleg overeenkomt met het onderliggende besluitvormingsproces.

Hier is een voorbeeld van het testen van een Al-beslispunt in Ruby met behulp van het

RSpec testraamwerk:

© 0 N O O b W N e

NN N N E R R s sy s
W N PO O 0N 0 O WwN o

Intelligente Werkstroomorganisatie 259

RSpec.describe FraudDetector do
describe '#detect_fraud' do
context 'when transaction is fraudulent' do
let(:tx) do
build(:transaction, amount: 10_000, location: 'High-Risk Country')
end

it 'returns true' do
expect(subject.detect_fraud(tx)).to be true
end
end

context 'when transaction is legitimate' do
let(:tx) do
build(:transaction, amount: 100, location: 'Low-Risk Country')
end

it 'returns false' do
expect(subject.detect_fraud(tx)).to be false
end
end
end
end

In dit voorbeeld wordt de FraudDetector Al-component getest met twee testgevallen:
één voor een frauduleuze transactie en een andere voor een legitieme transactie. De
testgevallen verifiéren of de detect_fraud methode de verwachte booleaanse waarde

teruggeeft op basis van de kenmerken van de transactie.

End-to-End Testen

End-to-end testen omvat het testen van de volledige workflow van begin tot eind,
waarbij realistische scenario’s en gebruikersinteracties worden gesimuleerd. Het zorgt
ervoor dat de workflow correct functioneert en de gewenste resultaten oplevert. Bij het
uitvoeren van end-to-end testen voor intelligente workflows moet je rekening houden

met het volgende:

© 0 N O O b W N =

[T T
w N =~

Intelligente Werkstroomorganisatie 260

1. Gebruiksscenario’s: Identificeer veelvoorkomende gebruiksscenario’s en test het
gedrag van de workflow in deze scenario’s. Verifieer dat de workflow correct omgaat

met gebruikersinvoer, passende beslissingen neemt en de verwachte uitvoer produceert.

2. Datavalidatie: Zorg ervoor dat de workflow gebruikersinvoer valideert en opschoont
om data-inconsistenties of beveiligingskwetsbaarheden te voorkomen. Test de workflow

met verschillende soorten invoergegevens, waaronder zowel geldige als ongeldige data.

3. Foutherstel: Test het vermogen van de workflow om te herstellen van fouten en
uitzonderingen. Simuleer foutscenario’s en verifieer dat de workflow deze correct

afhandelt, de fouten logt en passende herstelacties onderneemt.

4. Prestaties en Schaalbaarheid: Beoordeel de prestaties en schaalbaarheid van de
workflow onder verschillende belastingsomstandigheden. Test de workflow met een
groot volume aan gelijktijdige verzoeken en meet de responstijden, het resourcegebruik

en de algemene systeemstabiliteit.

Hier is een voorbeeld van een end-to-end test voor een workflow in Ruby met behulp
van het RSpec testframework en de Capybara bibliotheek voor het simuleren van

gebruikersinteracties:

RSpec.describe 'Order Processing Workflow' do
scenario 'User places an order successfully' do
visit '/orders/new'’
fill_in 'Product', with: 'Sample Product'’
fill_in 'Quantity', with: '2'
fill_in 'Shipping Address', with: '123 Main St'
click_button 'Place Order'

expect(page).to have_content('Order Placed Successfully')
expect(Order.count).to eq(1)
expect(Order.last.status).to eq('processed')

end

end

In dit voorbeeld simuleert de end-to-end test een gebruiker die een bestelling plaatst

via de webinterface. Het vult de vereiste formuliervelden in, verstuurt de bestelling

Intelligente Werkstroomorganisatie 261

en verifieert dat de bestelling succesvol wordt verwerkt, waarbij het de juiste

bevestigingsboodschap toont en de bestelstatus in de database bijwerkt.

Continue Integratie en Implementatie

Om de betrouwbaarheid en onderhoudbaarheid van intelligente workflows te
waarborgen, wordt aangeraden om testen en validatie te integreren in de continuous
integration and deployment (CI/CD) pipeline. Dit maakt geautomatiseerd testen
en valideren van workflow-wijzigingen mogelijk voordat ze in productie worden

genomen. Houd rekening met de volgende praktijken:

1. Geautomatiseerde Testuitvoering: Configureer de CI/CD-pipeline om automatisch
de testsuite uit te voeren wanneer er wijzigingen worden aangebracht in de
workflow-codebase. Dit zorgt ervoor dat eventuele regressies of fouten vroeg in

het ontwikkelingsproces worden ontdekt.

2. Testdekkingsbewaking: Meet en monitor de testdekking van de workflow-
componenten en Al-beslispunten. Streef naar een hoge testdekking om ervoor te zorgen

dat kritieke paden en scenario’s grondig worden getest.

3. Continue Feedback: Integreer testresultaten en codekwaliteitsmetrieken in de
ontwikkelworkflow. Voorzie ontwikkelaars van continue feedback over de status van
tests, codekwaliteit en eventuele problemen die tijdens het CI/CD-proces worden

gedetecteerd.

4. Stagingomgevingen: Implementeer de workflow in stagingomgevingen die de
productieomgeving zo dicht mogelijk benaderen. Voer aanvullende tests en validatie
uit in de stagingomgeving om eventuele problemen met infrastructuur, configuratie of

data-integratie op te sporen.

5. Terugrolmechanismen: Implementeer terugrolmechanismen voor het geval er

implementatiefouten of kritieke problemen in productie worden ontdekt. Zorg ervoor

Intelligente Werkstroomorganisatie 262

dat de workflow snel kan worden teruggezet naar een vorige stabiele versie om

downtime en impact op gebruikers te minimaliseren.

Door testen en validatie te integreren gedurende de hele ontwikkelingslevenscyclus
van intelligente workflows, kunnen organisaties de betrouwbaarheid, nauwkeurigheid
en onderhoudbaarheid van hun Al-gestuurde systemen waarborgen. Regelmatig testen
en valideren helpt bij het opsporen van bugs, het voorkomen van regressies en het

opbouwen van vertrouwen in het gedrag en de resultaten van de workflow.

Deel 2: De Patronen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 265

Chain of Thought

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeelden

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Content Generatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Gestructureerde Entiteitscreatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 266

LLM-Agent Begeleiding

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voordelen en Overwegingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 267

Mode Switch

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer te gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 268

Roltoewijzing

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer Te Gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeelden

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 269

Prompt Object

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 270

Promptsjabloon

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voordelen en Overwegingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer te gebruiken:

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 271

Structured 10

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Schalen van Structured 10

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voordelen en Overwegingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 272

Prompt Chaining

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer Te Gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld: Olympia’s Onboarding

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 273

Prompt Rewriter

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 274

Responsbegrenzing

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voordelen en Overwegingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Foutafhandeling

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 275

Query Analyzer

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Implementatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Part-of-Speech (POS) Tagging en Named Entity Recognition (NER)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Intentie-classificatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 276

Trefwoordextractie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voordelen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 277

Query Rewriter

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voordelen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Prompt Engineering 278

Ventriloquist

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer Te Gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten 280

Predicaat

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer te gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten 281

APl-facade

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Belangrijkste voordelen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer te gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten 282

Authenticatie en Autorisatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Verwerking van Verzoeken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Opmaak van Antwoorden

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Foutafhandeling en Randgevallen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Overwegingen voor Schaalbaarheid en Prestaties

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten 283

Vergelijking met Andere Ontwerppatronen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten 284

Resultaatinterpreteerder

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer Te Gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten 285

Virtuele Machine

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Wanneer Te Gebruiken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Achter De Magie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Discrete Componenten 286

Specificatie en Testen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Het Specificeren van het Gedrag

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Testgevallen Schrijven

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld: Het Testen van de Vertaler Component

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Afspelen van HTTP-interacties

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Patronen op Hoog Niveau

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.
Hybride Intelligentie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.
Adaptieve Respons

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.
Mens-Al Rolverwisseling

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL) 288

Escalatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Belangrijkste Voordelen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Praktijktoepassing: Gezondheidszorg

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL) 289

Feedbackloop

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Toepassingen en Voorbeelden

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Geavanceerde Technieken in Menselijke
Feedback-integratie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL) 290

Passieve Informatie-uitstraling

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Contextuele Informatieweergave

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Proactieve Meldingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Verklarende Inzichten

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL) 291

Interactieve Verkenning

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Belangrijke Voordelen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Toepassingen en Voorbeelden

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL) 292

Gezamenlijke Besluitvorming (CDM)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL) 293

Continue Learning

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Toepassingen en Voorbeelden

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Ethische Overwegingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Human In The Loop (HITL) 294

Rol van HITL bij het Beperken van Al-risico’s

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Technologische Vooruitgang en

Toekomstperspectief

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Uitdagingen en Beperkingen van HITL-systemen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Intelligente Foutafhandeling

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Traditionele Foutafhandelingsbenaderingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Intelligente Foutathandeling 296

Contextuele Foutdiagnose

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Prompt Engineering voor Contextuele Foutdiagnose

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Retrieval-Augmented Generation voor Contextuele Foutdiagnose

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Intelligente Foutathandeling 297

Intelligente Foutrapportage

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Intelligente Foutathandeling 298

Voorspellende Foutpreventie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Slim Foutherstel

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Intelligente Foutathandeling 299

Gepersonaliseerde Foutcommunicatie

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Intelligente Foutathandeling 300

Adaptieve Foutafhandelingsworkflow

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Kwaliteitscontrole

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden

op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Kwaliteitscontrole 302

Eval

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Probleem

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Oplossing

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Het Werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Kwaliteitscontrole 303

Overwegingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Begrip van Gouden Referenties

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe Referentievrije Evaluaties Werken

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Kwaliteitscontrole 304

Veiligheidsrail

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Probleem

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Oplossing

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Hoe het werkt

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Voorbeeld

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Kwaliteitscontrole 305

Overwegingen

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Guardrails en Evals: Twee Kanten van Dezelfde
Medaille

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

De Uitwisselbaarheid van Guardrails en Referentievrije
Evals

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Implementatie van Dual-Purpose Guardrails en Evals

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Begrippenlijst

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Begrippenlijst

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

A

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

307

C

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

D

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

G

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

308

H

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

K

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

309

M

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

N

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

(o)

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

P

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

Q

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

310

R

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

S

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

T

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

U

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

\'

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

311

w

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

yA

Deze inhoud is niet beschikbaar in het sample boek. Het boek kan aangekocht worden
op deze Leanpub link: http://leanpub.com/patterns-of-application-development-using-

ai-nl.

http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl
http://leanpub.com/patterns-of-application-development-using-ai-nl

Index

aaneenschakeling van Al-workers, 112
account, 92

ACID-eigenschappen, 110

adaptive UL 209

adaptive workflow

Adaptieve Workflowcompositie, 227

Agentische, 32

Al 65, 74, 100, 129, 135, 144, 151, 203, 211

applicaties, 139, 163
beslispunten, 258
conversationeel, 31, 213

conversationele, 6

model, 90, 99, 100, 156, 157, 159, 211

samengestelde systemen, 30, 31, 34

toepassingen, 126, 150
Alpaca, 13
Altman, Sam, 17
Amazon Web Services, 253
Anthropic, 23, 39, 74, 130, 137
anthropomorphism, 69
APIs, 72, 124, 154
applicatieontwerp en frameworks, 199
applicatieontwikkeling, 222
arrays, 131
asynchrone verwerking, 250

auditing en compliance, 248

auditlogboekregistratie, 107
augmented reality-brillen, 219
Auto Continuation, 161
auto-regressieve modellering, 43

auto-scaling, 253

basismodellen, 54
batch processing, 251
bedrijfsregels, 223
belangrijke metrics bijhouden, 245
belangrijke patronen, 225
BERT, 14, 24
beslisbomen, 223
beslispunten, 246
besluitvorming

stoepassingen, 134
Brotli, 254
bruikbaarheidsproblemen, 217
Byte Pair Encoding (BPE), 13, 14

C (Programmeertaal), 117
caching, 251

Capybara bibliotheek, 260
Chain of Thought (CoT), 45, 139
chatbottoepassing, 120
ChatGPT, 30, 53

circuitonderbreker-logica, 163

Index

classificatie, 53
classification, 121
Claude, 8, 43, 77, 78
Claude 3, 49, 127, 130, 135, 137
Claude 3 Opus, 75
Claude v1, 17
Claude v2, 17
Cohere (LLM Provider), 23, 25
collaborative filtering, 92
command line
Command-Line Interface (CLI), 25
complexe taken, 147
conceptuele en praktische uitdagingen, 200
consistentie
en reproduceerbaarheid, 133
content
Contentcategorisering, 113
filtering, 26
content-based filtering, 92
context
Augmentation, 46
contextuele besluitvorming, 226
Contextuele Contentgeneratie, 188,
192-194, 200, 201
Contextuele Veldsuggesties, 202
oneindig lange invoer, 16
venster, 15
window, 226
Continue Risicobewaking, 104
Continuous Integration and Deployment
(CI/CD), 261

pipeline, 261

conversatie

lus, 158
conversation

loop, 160

transcript, 158, 160
creatief schrijven, 34, 52
crossmodale generatie, 22
Customer Sentiment Analysis, 100

customization, 27

data
analyse, 34
Datavalidatie, 260
Gegevensophaling, 110
Gegevenssynchronisatie, 110
privacy, 27
stroom, 111
verwerkingstaken, 126
databases, 124
-ondersteund object, 106
vergrendelingsstrategieén, 110
Databricks-medewerkers, 52
Datadog, 249
debuggen
en probleemoplossing, 248
en testen, 133
debugging, 226
decision
-making capabilities, 100
desktopcomputers, 219
deterministic behavior, 58

dictionaries, 131

313

Index 314

digitaal landschap, 195 F#, 93

distillatieproces, 76 Facebook, 24

document clustering, 121 feedback

Dohan, et al., 43 Feedbackloop, 59
door gebruikers gegenereerde content, 112 few-shot

doorvoer, 27 learning, 62
Dynamische Gereedschapsselectie, 132 prompting, 63
Dynamische Taakroutering, 225 finalize method, 159, 160
dynamische Ul-generatie, 189 finalize-methode, 157

fine-tuning, 80

e-commerce, 193, 223 FitAl 212

E-commerce Applications, 92 flexibiliteit en creativiteit, 197
ecosysteem, 149 fouten

edge cases, 58 athandeling, 108, 111, 143, 255
educatieve toepassingen, 32 herstel, 260

efficiéntie, 224 percentages, 111

ELK stack, 111 fraudedetectie
emotionele toon, 146 systeem, 98
end-to-end testen, 259 functie
end-to-end testing, 260 aanroep mislukking, 134
ensembles, 118, 119 aanroepen, 158
ensemble van workers, 119 aanroepgeschiedentis, 157
enterprise applicatie architectuur, 38 namen, 155
Enterprise Integration Patterns, 105 function
errors calling, 124
Intelligente Foutafhandeling, 144 functional programming, 93
ethiek
implicaties, 200 gebeurtenisgestuurde architectuur, 109
exceptieafhandeling, 230 gebruik van tools, 124
experimenteren gebruikerservaring, 195
framework, 195 Gebruikersinterface (UI)

externe diensten of APT’s, 127 frameworks, 215

Index

interfaces, 199, 215

ontwerp, 219

technologieén, 210
gebruikerspsychologie, 216
gebruikerstests en feedback, 198
gebruikersvertrouwen, 218
gedetailleerde logging, 249
gedistribueerde architectuur, 250
Geforceerde Gereedschapsselectie, 132
gegevens

analyse, 148

integriteit, 241

persistentie, 110

privacy, 217

verwerkingspijplijn, 241

voorbereiding, 110
gelijktijdige werkstromen, 254

Gemma 7B, 11

Generatieve UI (GenUI), 199, 210, 215, 219

Generative Pre-trained Transformer (GPT),

8, 67
Generative UI (GenUI), 206, 207
gereedschapsaanroep, 154

gereedschapsgebruik, 150

gesloten en open vraagbeantwoording, 52

gestructureerde data, 135
gestructureerde logging, 249
GitLab, 93
Global Interpreter Lock (GIL), 116
Google, 23

API, 63, 65

Cloud AI Platform, 24

Cloud Platform, 253
Gemini, 21

Gemini 1.5 Pro, 14, 17, 18

315

PaLM (Pathways Language Model),

17, 24
T5, 14
GPT-3, 13, 17

GPT-4, 6, 13, 17, 21, 31, 43, 49, 63, 105, 118,

121, 128, 134, 205, 251
grafische modellen, 43
Graham, Paul, 19
grammaticaregels, 4
GraphQL, 109
Groot Taalmodel (GTM), 29, 145, 233

Groot Taalmodel (LLM), 72, 76, 78, 111, 135,

205, 210
Groot taalmodel (LLM), 165, 168
Grogq, 26, 121
Grote Taalmodel (LLM), 199
Grote Taalmodellen (LLM), 188

gzip, 254

handmatige interventie, 229
hardware, 28

hash, 153

herhalingspenalties, 51
hertrypogingsmechanismen, 111
het pad vernauwen, 39
high-performance completion, 26
historische patronen, 226

Hohpe, Gregor, 105
Honeybadger, 95

Index

HTTP, 151
Human-In-The-Loop (HITL), 180
hyperparameter, 46

inclusieve interfaces, 200
Inferentie, 5
informatica, 71, 73
informatie

extractie, 53

ophaling, 7, 127
input

prompts, 56
instructie-fijnafstemming, 10

instruction tuning

instructie-afgestemde modellen, 49, 52

integratie van LLMs, 189
integratietesten, 256
intelligent workflow orchestration, 252
Intelligente Content Moderator, 234
intelligente werkstroomorganisatie, 222,
254

intelligente workflow-orchestratie, 230
internationalisering, 196
invoer

validatie, 255
invoerparameters, 129

iteratieve verfijning, 76, 145

JSON (JavaScript Object Notation), 127,
131, 132, 135, 149, 168

K-means, 123

kennisbanken, 7

kennisbeheer, 32
klantenondersteuning, 32
klantenservice chatbots, 33

Klinische Beslissingsondersteuning, 104
knelpunten, 227

Kwantisatie, 28

Kwik (element), 44

language

models, 42, 66

316

Large Language Model (LLM), 1, 3, 16, 18,

67, 69, 88, 121, 124, 125, 141, 145,

148

landscape, 27
Latent Dirichlet Allocation, 123
latente ruimte, 40, 42
latentie, 27
lineaire algebra, 43
lineaire regressie, 43
Llama, 13
Llama 2-70B, 50
Llama 3 70B, 11
Llama 3 8B, 11
logbehoud en -rotatie, 249
lokale ontwikkelomgevingen, 156

Louvre, 42

Managed Streaming for Apache Kafka, 41

Markdown, 148
markup-stijl tags, 71
medische ontdekkingen, 101
meerderheidsstemming, 118

meerstaps werkstroom, 112

Index

Memorial Sloan Kettering Cancer Center,
41
Mercurius (planeet), 44
Mercurius (Romeinse god), 44
MessagePack, 254
Meta, 24
Metropolitan Museum of Art, 42
Microservices architectuur, 90
Mistral, 25
7B, 11

7B Instruct, 17, 205

Mixtral
8x22B, 11
8x7B, 56

moderne applicaties, 224
modulariteit, 89
monitoring

en logging, 111, 248

en waarschuwingen, 228

metrieken, 249
motivatiestrategieén, 214
Multi-Agent

Probleemoplossers, 31
Multimodaal

modellen, 20

taalmodellen, 21

Multitude of Workers, 120

Naive Bayes, 122
narrow the path, 38
natural language

Natural Language Processing (NLP),

317

121
natuurlijke taal
Natuurlijke Taalverwerking (NTV),
102
netwerkconnectiviteit, 228
neurale netwerken, 4, 6

New Relic, 252

Ollama, 25

Olympia, 33, 63, 129, 144, 152, 168
Olympia’s knowledge base, 92
One-Shot Learning, 61
ongesuperviseerd leren, 4

online retailers, 206
ontwikkelingsframeworks, 150

op retrieval gebaseerde modellen, 7
open source model hosting providers, 206
OpenAl 3, 22, 39, 74

OpenRouter, 27, 28, 152, 252

OPT model, 24

optimistische vergrendeling, 110

parafraseren, 53
parallelle uitvoering, 251
parameter

bereik, 11

effecten, 129

Parameteraantal, 28
patroonherkenning, 153
performance

problems, 252
Perplexity (Aanbieder), 12
personalisatie, 189, 219, 224

Index

Gepersonaliseerde Formulieren, 201
personalization

Personalized Microcopy, 207

personalized product recommendations, 92

pessimistische vergrendeling, 110
planning van noodhulp, 33
Presence Penalty, 48
prestatie
-optimalisatie, 133
compromissen, 5
optimalisatie, 248
prestaties
optimalisatie, 197
principe van minimale rechten, 72
probabilistische modellen, 43
Procesmanager, 105, 108
Process Manager
Enterprise Integration, 230
Product Recommendations, 92
Productiviteit, 191
progressive disclosure, 208
prompts
design, 58, 68
engineering, 40, 45, 46, 56, 59, 65, 67,
216
ketening, 59, 72
Prompt Distillatie, 251
Prompt Distillation, 46
Prompt Object, 74
Prompt Template, 59, 206
Promptdistillatie, 73, 78

refinement, 68

318

Protocol Buffers, 254
publiceer-abonneer systemen, 109

PyTorch, 24

Qwen2 70B, 11

Rails, 196
Railway Oriented Programming (ROP), 95
Raix, 231
bibliotheek, 98
randvoorwaarden, 255
rankers, 35
Response Fencing, 177, 206
Resultaatinterpreter, 143
Retrieval Augmented Generation (RAG),
31, 38, 46, 80, 126
risicofactoren, 96, 97
Risicostratificatie, 103
roleplay-stijl interacties, 6
rollback mechanisms, 261
RSpec, 256, 257, 260
Ruby, 93, 94, 114, 164, 260
Ruby on Rails, 1, 112, 230, 238
Rudall, Alex, 23
Rust (Programmeertaal), 117

Rust (Programming Language), 93

samenvatting, 52

schaalbaarheid, 224, 250

Scout, 252

segmentatie- en targetingstrategieén, 195

sentimentanalyse, 16, 101, 113-115, 118,
119, 135, 146

Index

server-sent events (SSE), 151

smartphones, 219

softwarearchitectuur, 2

spraakgestuurde interfaces, 33

SQL-injecties, 71

staging environments, 261

stateless, 158

stream handlers, 152

stream processing, 157
logic, 159

streaminggegevens, 153

streamverwerking, 151, 163

Stripe, 130

Structured IO, 206

supply chain

optimalisatie, 33

Support Vector Machines (SVM), 122

Symptoombeoordeeling en Stratificatie, 102

syntaxisfouten, 132
synthetische datageneratie, 53
systeemrichtlijn, 129

system directive, 99

T5, 24
taal
gerelateerde taken, 5
modellen, 73
Taaldetectie, 112
tablets, 219
Tekstopschoning, 112
Temperatuur, 54

terugvalmethoden, 111

theory of mind, 40
tickettoewijzing, 241

Tijd tot Eerste Token (TTET), 28
toegankelijkheid, 218, 219
Together.ai, 26

tokenisatie, 12

tokens, 6, 12

Top-k sampling, 48

Top-p (nucleus) sampling, 48
topic identification, 121
tragedy of the commons, 192
trainingsgegevens, 42
transformerarchitectuur, 6

triggebericht, 105

uitvoerverificatie, 255
uitzonderingsathandeling, 227
Unicode-codeerbare taal, 15

Universal ID, 254

Veelheid aan Workers, 167
Ventriloquist, 177
verhaalopbouw, 19
verkeersbeheer, 33
verklaarbaarheid, 258
vertaling, 16, 197
verwerkingstijd, 111
Verzameling van Medische
Voorgeschiedenis, 102
Verzekeringverificatie, 102
virtuele assistenten, 33
visuele interface, 210

vooringenomenheid

319

Index

en eerlijkheid in Al, 258
voorspellingen, 5

vraag-antwoordsystemen, 7

Wall, Larry, 3
Wisper, 95, 107, 152, 159
Wooley, Chad, 93

320

XML, 135

Yi-34B, 50

Zelf-herstellende Data, 245
Zelfherstellende Data, 165

zero-shot learning, 59, 60

	Inhoudsopgave
	Voorwoord door Gregor Hohpe
	Voorwoord
	Over het Boek
	Over de Codevoorbeelden
	Wat Ik Niet Behandel
	Voor Wie Dit Boek Is
	Een Gemeenschappelijke Woordenschat Opbouwen
	Betrokken Raken
	Dankwoord
	Wat is er met de illustraties?
	Over Lean Publishing
	Over de auteur

	Introductie
	Gedachten over Softwarearchitectuur
	Wat is een Large Language Model?
	Inferentie Begrijpen
	Nadenken over Prestaties
	Experimenteren met Verschillende GTM-modellen
	Samengestelde AI-systemen

	Deel 1: Fundamentele Benaderingen & Technieken
	Het Pad Vernauwen
	Latente Ruimte: Onbegrijpelijk Uitgestrekt
	Hoe Het Pad ``Versmald'' Wordt
	Onbewerkte versus Instructie-afgestemde Modellen
	Prompt Engineering
	Promptdistillatie
	Hoe zit het met fine-tuning?

	Retrieval Augmented Generation (RAG)
	Wat is Retrieval Augmented Generation?
	Hoe werkt RAG?
	Waarom RAG gebruiken in je applicaties?
	RAG Implementeren in Je Toepassing
	Propositie-chunking
	Praktijkvoorbeelden van RAG
	Intelligent Query Optimization (IQO)
	Herordening
	RAG Assessment (RAGAs)
	Uitdagingen en Toekomstperspectief

	Veelheid aan Werkers
	AI-Werkers Als Onafhankelijke Herbruikbare Componenten
	Accountbeheer
	E-commerce Toepassingen
	Toepassingen in de Gezondheidszorg
	AI Worker als Procesmanager
	AI-Workers Integreren in Uw Applicatiearchitectuur
	Samenstelbaarheid en Orchestratie van AI-Workers
	Het Combineren van Traditionele NLP met LLMs

	Gebruik van Tools
	Wat is Gebruik van Tools?
	De Potentie van Tool Gebruik
	Het Tool Gebruik Werkproces
	Best Practices voor Gereedschapsgebruik
	Samenstellen en Aaneenschakelen van Gereedschappen
	Toekomstige Ontwikkelingen

	Streamverwerking
	Implementatie van een ReplyStream
	De ``Conversatielus''
	Automatische Voortzetting
	Conclusie

	Zelfherstellende Data
	Praktijkvoorbeeld: Het Repareren van Beschadigde JSON
	Overwegingen en Contra-indicaties

	Contextuele Contentgeneratie
	Personalisatie
	Productiviteit
	Snelle Iteratie en Experimentatie
	AI-Aangedreven Lokalisatie
	Het Belang van Gebruikerstests en Feedback

	Generatieve UI
	Het Genereren van Kopij voor Gebruikersinterfaces
	Definitie van Generatieve UI
	Voorbeeld
	De Verschuiving naar Resultaatgericht Ontwerp
	Uitdagingen en Overwegingen
	Toekomstperspectief en Kansen

	Intelligente Werkstroomorganisatie
	Zakelijke Behoefte
	Belangrijkste Voordelen
	Belangrijke Patronen
	Uitzonderingsafhandeling en Herstel
	Implementatie van Intelligente Workflow-orchestratie in de Praktijk
	Monitoring en Logging
	Schaalbaarheid en Prestatieoverwegingen
	Testen en Validatie van Werkstromen

	Deel 2: De Patronen
	Prompt Engineering
	Chain of Thought
	Mode Switch
	Roltoewijzing
	Prompt Object
	Promptsjabloon
	Structured IO
	Prompt Chaining
	Prompt Rewriter
	Responsbegrenzing
	Query Analyzer
	Query Rewriter
	Ventriloquist

	Discrete Componenten
	Predicaat
	API-façade
	Resultaatinterpreteerder
	Virtuele Machine
	Specificatie en Testen

	Human In The Loop (HITL)
	Patronen op Hoog Niveau
	Escalatie
	Feedbackloop
	Passieve Informatie-uitstraling
	Gezamenlijke Besluitvorming (CDM)
	Continue Learning
	Ethische Overwegingen
	Technologische Vooruitgang en Toekomstperspectief

	Intelligente Foutafhandeling
	Traditionele Foutafhandelingsbenaderingen
	Contextuele Foutdiagnose
	Intelligente Foutrapportage
	Voorspellende Foutpreventie
	Slim Foutherstel
	Gepersonaliseerde Foutcommunicatie
	Adaptieve Foutafhandelingsworkflow

	Kwaliteitscontrole
	Eval
	Veiligheidsrail
	Guardrails en Evals: Twee Kanten van Dezelfde Medaille

	Begrippenlijst
	Begrippenlijst
	Index

