Patterns of
Application
Development
Using Al

Obie Fernandez
Foreword by Gregor Hohpe

ANo sk Utgave

Monstre for Applikasjonsutvikling med
Kl (Norsk Utgave)

Obie Fernandez

Denne boken er til salgs pa

http://leanpub.com/patterns-of-application-development-using-ai-nb

Denne versjonen ble publisert 2025-01-23

A

Leanpub

Dette er en Leanpub bok. Leanpub utdanner forfattere og utgivere med “Lean
Publisering”-prosessen. Lean Publisering hjelper med & publisere arbeidsversjoner av
en bok, bruker lette verktay og mange iterasjoner for a fa leserens tilbakemeldinger til

du har den rette boken og bygger interesse mens du gjer det.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-nb
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweet denne boken!

Hjelp Obie Fernandez ved 4 fortelle om denne boken pa Twitter!
Den foreslatte hashtagen av denne boken er: #poaduai.
Finn ut hva andre sier om boken ved a folge denne lenken til et sek pa Twitter:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Til min taffe dronning, min muse, mitt lys og min kjaerlighet, Victoria

Ogsa av Obie Fernandez

Patterns of Application Development Using Al
The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Innhald

Forord av GregorHohpe i
Forord ii
Omboken. iii
Om kodeeksemplene iii
Hvajegikkedekker iii
Hvem denne bokenerfor iii
Bygge et Felles Vokabular iii
Blilnvolvert iii
Anerkjennelser iii
Hva er greia med illustrasjonene? iv
Om Lean Publishing iv
Om forfatteren v
Introduksjon 1
Tanker om programvarearkitektur L L L 2
Hva er en stor sprakmodell? oL 3
Forstainferens 5
Tenkepaytelse L 25
Eksperimentere med forskjellige LLM-modeller. 27

Sammensatte Al-systemer. Lo Lo Lo 27

INNHALD

Del 1: Grunnleggende tilnserminger og
teknikker 35

Innsnevrestien L Lo 36
Latent rom: Ubegripelig stort 38
Hvordan Stien Blir “Innsnevret” 42
Rémodeller versus instruksjonsjusterte modeller 45
Prompt-utforming 52
Promptdestillering L 68
Hva med finjustering? 74

Retrieval Augmented Generation (RAG) 76
Hva er Retrieval Augmented Generation? 76
Hvordan fungerer RAG? 76
Hvorfor bruke RAG i applikasjonene dine? 76
Implementering av RAG i Din Applikasjon 76
Pastandsoppdeling L L L 77
Praktiske eksempler pARAGo 77
Intelligent sperringsoptimalisering IQO) 78
Rerangering 78
RAG-vurdering (RAGAS) o oo 78
Utfordringer og Fremtidsutsikter 80

Mangfold av arbeidere oL L oL 82
KI-arbeidere som uavhengige gjenbrukbare komponenter 83
Kontoadministrasjon 85
E-handelapplikasjoner L L 86
Helsetjenesteanvendelser 94
KI-arbeider som prosesshandterer 97

Integrering av Al-Arbeidere i Applikasjonsarkitekturen Din. 101

INNHALD

Sammenstillbarhet og orkestrering av Al-arbeidere 104
Kombinere tradisjonell NLP med LLMer 113
Verkteybruk 116
Hvaer verktoybruk? 116
Potensialet i verkteybruk oo 118
Arbeidsflyten for verktoybruk oL Lo oo 119
Beste praksis for verkteybruk oL oL oo 133
Sammensetting og Kjeding av Verktoy 137
Fremtidige Retninger 139
Stremmebehandling oL o L 142
Implementering av en ReplyStream 143
“Samtalelekken” 149
Automatisk fortsettelse L L o 151
Konklusjon e 153
Selvhelbredendedata. L L. 155
Praktisk casestudie: Reparering av edelagt JSON 157
Hensyn og kontraindikasjoner 162
Kontekstuell innholdsgenerering 177
Personalisering 178
Produktivitet 180
Rask iterasjon og eksperimentering L. 182
Al-drevet lokalisering L 184
Viktigheten av Brukertesting og Tilbakemelding 186
Generative UL 187
Generering av tekst for brukergrensesnitt 0 0. 188

Definering av Generativ ULl 197

INNHALD

Eksempel 199
Skiftet til Resultatorientert Design 201
Utfordringerog Hensyn 203
Fremtidsutsikter og Muligheter 204
Intelligent arbeidsflytorkestrering 208
Forretningsmessigbehov L L oL 209
Sentrale fordeler 210
Nekkelmenstre 210
Unntakshandtering og gjenoppretting 213
Implementering av Intelligent Arbeidsflytorkestrering i Praksis. 216
Overvaking og Logging 231
Skalerbarhet og Ytelseshensyn 235
Testing og validering av arbeidsflyter 240
Del 2: Mgnstrene 248
Prompt-konstruksjon L L oL 249
Tankerekke 250
Modusveksling L 251
Rolletildeling 252
Prompt Object 253
Prompt Template 254
Structured IO 255
Prompt-kjeding 256
Prompt-omskriver L L 257
Responsbegrensning L L L 258
Sperringsanalysator L Lo o 259
Sperringsomskriver L. 260

Ventriloquist L 261

INNHALD

Diskrete komponenter L L 262
Predikat 263
APIfasade 264
Result Interpreter 266
Virtuell Maskin 267
Spesifikasjon og Testing 267

Human In The Loop (HITL) 269
Overordnede menstre 269
Eskalering 270
Tilbakemeldingsslayfe 271
Passiv informasjonsutstraling L L oL oL 272
Samarbeidende Beslutningstaking (CDM) 274
Kontinuerlig leering L 275
Etiskehensyn. 275
Teknologiske fremskritt og fremtidsutsikter 275

Intelligent feilhandtering 277
Tradisjonelle feilhdndteringstilneerminger 277
Kontekstuell feildiagnose 278
Intelligent feilrapportering L L. 279
Prediktiv feilforebygging 280
Smart feilgjenoppretting L 280
Personalisert feilkommunikasjon o oL 281
Adaptiv feilhandteringsarbeidsflyt o oo 282

Kvalitetskontroll o L 283
Eval e 284
Sikkerhetsmekanisme L oL 286

Ordliste

Ordliste e

Forord av Gregor Hohpe

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Forord

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Forord iii

Om boken

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Om kodeeksemplene

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hva jeg ikke dekker

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvem denne boken er for

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Bygge et Felles Vokabular

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Bli Involvert

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Forord iv

Anerkjennelser

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hva er greia med illustrasjonene?

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Om Lean Publishing

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Forord v

Om forfatteren

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Introduksjon

Hvis du er ivrig etter & begynne & integrere store sprakmodeller (LLM) i

programmeringsprosjektene dine, kan du gjerne hoppe rett til menstrene og
kodeeksemplene som presenteres i senere kapitler. Men for & fullt ut verdsette
kraften og potensialet i disse menstrene, er det verdt a ta seg tid til & forsta den bredere

sammenhengen og den helhetlige tilneermingen de representerer.

Mgnstrene er ikke bare en samling isolerte teknikker, men snarere et enhetlig
rammeverk for & integrere Al i applikasjonene dine. Jeg bruker Ruby on Rails, men
disse menstrene burde fungere i stort sett alle andre programmeringsmiljeer. De
tar for seg et bredt spekter av hensyn, fra datahandtering og ytelsesoptimalisering
til brukeropplevelse og sikkerhet, og gir et omfattende verktoysett for & forbedre

tradisjonell programmeringspraksis med Al-funksjonalitet.

Hver kategori av menstre tar for seg en spesifikk utfordring eller mulighet som oppstar

nar man inkorporerer Al-komponenter i applikasjonen din. Ved & forstd relasjonene

Introduksjon 2

og synergiene mellom disse menstrene, kan du ta informerte beslutninger om hvor og

hvordan Al kan anvendes mest effektivt.

Menstre er aldri forskrivende lasninger og ber ikke behandles som det. De er ment
a veere tilpasningsdyktige byggeklosser som ber skreddersys til de unike kravene
og begrensningene i din egen applikasjon. Vellykket anvendelse av disse menstrene
(som alle andre innen programvareutvikling) avhenger av en dyp forstielse av
problemdomenet, brukerbehov og den overordnede tekniske arkitekturen i prosjektet

ditt.

Tanker om programvarearkitektur

Jeg begynte a programmere pa 1980-tallet og var involvert i hackermiljget, og mistet
aldri min hackermentalitet, selv etter at jeg ble profesjonell programvareutvikler. Helt
fra starten hadde jeg alltid en sunn skepsis til hvilken verdi programvarearkitekter i sine

elfenbenstarn faktisk tilferte.

En av grunnene til at jeg personlig er sa begeistret for endringene som denne kraftige
nye belgen av Al-teknologi bringer med seg, er dens innvirkning pa det vi anser som
programvarearkitektur-beslutninger. Den utfordrer tradisjonelle oppfatninger om hva
som utgjer den “riktige” méaten 4 designe og implementere programvareprosjekter pa.
Den utfordrer ogséd om arkitektur fortsatt kan betraktes primeert som de delene av et
system som er vanskelige d endre, siden Al-forbedringer gjor det enklere enn noensinne

a endre hvilken som helst del av prosjektet ditt, nar som helst.

Kanskje vi gar inn i topparene for den “postmoderne” tilneermingen til
programvareutvikling. I denne sammenhengen refererer postmoderne til et
fundamentalt skifte bort fra tradisjonelle paradigmer, der utviklere var ansvarlige
for a skrive og vedlikeholde hver eneste kodelinje. I stedet omfavner den ideen om a
delegere oppgaver, som datamanipulering, komplekse algoritmer og til og med hele

deler av applikasjonslogikken, til tredjepartsbiblioteker og eksterne API-er. Dette

Introduksjon 3

postmoderne skiftet representerer et betydelig avvik fra den konvensjonelle visdommen
om & bygge applikasjoner fra bunnen av, og det utfordrer utviklere til & tenke nytt om

sin rolle i utviklingsprosessen.

Jeg har alltid trodd at gode programmerere bare skriver den koden som er absolutt
nedvendig & skrive, basert pa leeren fra Larry Wall og andre hackerluminegerer som
ham. Ved & minimere mengden skrevet kode kan vi bevege oss raskere, redusere
overflatearealet for feil, forenkle vedlikehold og forbedre den generelle paliteligheten
til applikasjonene vare. Mindre kode lar oss fokusere pa kjernen i forretningslogikken

og brukeropplevelsen, mens annet arbeid delegeres til andre tjenester.

N& som Al-drevne systemer kan handtere oppgaver som tidligere var forbeholdt
menneskeskrevet kode, burde vi kunne veere enda mer produktive og smidige, med et

storre fokus enn noensinne pa a skape forretningsverdi og brukeropplevelse.

Selvfalgelig er det ulemper ved & delegere store deler av prosjektet ditt til Al-
systemer, som potensielt tap av kontroll og behovet for robust overvaking og
tilbakemeldingsmekanismer. Det er derfor det krever et nytt sett med ferdigheter og

kunnskap, inkludert i det minste en grunnleggende forstaelse av hvordan Al fungerer.

Hva er en stor sprakmodell?

Store sprakmodeller (LLM) er en type kunstig intelligens-modell som har fatt betydelig
oppmerksomhet de senere arene, helt siden lanseringen av GPT-3 av OpenAl i 2020.
Store sprakmodeller er designet for a behandle, forstd og generere menneskelig sprak
med bemerkelsesverdig neyaktighet og flyt. I denne delen skal vi ta en kort titt pa
hvordan store sprakmodeller fungerer og hvorfor de er godt egnet for & bygge intelligente

systemkomponenter.

I kjernen er store sprakmodeller basert pa dypleeringsalgoritmer, spesifikt nevrale
nettverk. Disse nettverkene bestar av sammenkoblede noder, eller nevroner,

som behandler og overferer informasjon. Arkitekturen som foretrekkes for store

Introduksjon 4

sprakmodeller er ofte transformermodellen, som har vist seg & veere sveert effektiv i

héandtering av sekvensielle data som tekst.

Transformermodeller er basert pa oppmerksomhetsmekanismen og brukes hovedsakelig
til oppgaver som involverer sekvensielle data, som naturlig sprakbehandling.
Transformere behandler inndata samtidig i stedet for sekvensielt, noe som gjor
dem i stand til & fange opp langtrekkende avhengigheter mer effektivt. De har lag av
oppmerksomhetsmekanismer som hjelper modellen med & fokusere pa forskjellige deler

av inndataene for a forsta kontekst og sammenhenger.

Treningsprosessen for store sprakmodeller innebzerer a eksponere modellen for enorme
mengder tekstdata, som bgker, artikler, nettsider og kodelagre. Under treningen leerer
modellen a gjenkjenne menstre, relasjoner og strukturer i teksten. Den fanger opp
de statistiske egenskapene til spraket, som grammatiske regler, ordassosiasjoner og

kontekstuelle betydninger.

En av negkkelteknikkene som brukes i trening av store sprakmodeller er ikke-overvaket
leering. Dette betyr at modellen leerer fra dataene uten eksplisitt merking eller
veiledning. Den oppdager megnstre og representasjoner pa egen hénd ved & analysere
samforekomsten av ord og fraser i treningsdataene. Dette gjor at store sprakmodeller

kan utvikle en dyp forstaelse av sprak og dets kompleksitet.

Et annet viktig aspekt ved store sprakmodeller er deres evne til & handtere kontekst. Nar
de behandler en tekst, vurderer store sprakmodeller ikke bare de enkelte ordene, men
ogsa den omkringliggende konteksten. De tar hensyn til tidligere ord, setninger og til
og med avsnitt for a forsta betydningen og intensjonen i teksten. Denne kontekstuelle
forstaelsen gjor store sprakmodeller i stand til & generere sammenhengende og relevante
svar. En av hovedmétene vi evaluerer kapasiteten til en gitt sprakmodell pa, er ved &

vurdere storrelsen pa konteksten de kan ta hensyn til for & generere svar.

Nar de er trent, kan store sprakmodeller brukes til et bredt spekter av sprakrelaterte
oppgaver. De kan generere menneskelignende tekst, svare pa spersmal, oppsummere

dokumenter, oversette sprak og til og med skrive kode. Allsidigheten til store

Introduksjon 5

sprakmodeller gjor dem verdifulle for & bygge intelligente systemkomponenter som
kan samhandle med brukere, behandle og analysere tekstdata, og generere meningsfullt

innhold.

Ved a inkorporere store sprakmodeller i applikasjonsarkitekturen kan du skape Al-
komponenter som forstar og behandler brukerinndata, genererer dynamisk innhold og
gir intelligente anbefalinger eller handlinger. Men & jobbe med store sprakmodeller
krever ngye vurdering av ressurskrav og ytelseskompromisser. Store sprakmodeller er
beregningsmessig intensive og kan kreve betydelig prosesseringskraft og minne (med
andre ord, penger) for & operere. De fleste av oss ma vurdere kostnadsimplikasjonene

ved & integrere store sprakmodeller i applikasjonene vare og handle deretter.

Forsta inferens

Inferens refererer til prosessen der en modell genererer prediksjoner eller output basert
pé nye, usette data. Det er fasen hvor den trente modellen brukes til & ta beslutninger

eller generere tekst, bilder eller annet innhold som respons pa brukerinndata.

Under treningsfasen leerer en Al-modell fra et stort datasett ved & justere parameterne
sine for & minimere feilen i prediksjonene. Nar modellen er trent, kan den anvende det
den har leert pa nye data. Inferens er hvordan modellen bruker sine leerte menstre og

kunnskap til & generere output.

For store sprakmodeller innebeerer inferens & ta imot en prompt eller inndatatekst og
produsere et ssmmenhengende og kontekstuelt relevant svar, som en strem av tokens
(som vi skal snakke om snart). Dette kan veere a svare pa et spersmal, fullfore en setning,

generere en historie eller oversette tekst, blant mange andre oppgaver.

P I motsetning til maten du og jeg tenker pa, skjer en Al-modells “tenkning” via

inferens i én tilstandsles operasjon. Det vil si at dens tenkning er begrenset til
genereringsprosessen. Den ma bokstavelig talt tenke hayt, som om jeg stilte
deg et spersmal og bare godtok et svar fra deg i “stream of consciousness”™

stil.

Introduksjon 6

Store sprakmodeller kommer i mange storrelser og
varianter

Mens praktisk talt alle populeere store sprakmodeller er basert pa den samme kjerne-
transformerarkitekturen og trent pa enorme tekstdatasett, kommer de i forskjellige
storrelser og er finjustert for ulike formal. Sterrelsen pa en stor sprakmodell, méalt i
antall parametere i dens nevrale nettverk, har stor innvirkning pa dens kapabiliteter.
Sterre modeller med flere parametere, som GPT-4, som det ryktes har 1 til 2 billioner
parametere, er generelt mer kunnskapsrike og kapable enn mindre modeller. Imidlertid
krever storre modeller ogsa mye mer datakraft for & kjere, noe som betyr heoyere

kostnader nar du bruker dem via API-kall.

For a gjere store sprakmodeller mer praktiske og skreddersydd for spesifikke
bruksomrader, blir basismodellene ofte finjustert pa mer maélrettede datasett. For
eksempel kan en stor sprakmodell trenes pa et stort korpus av dialog for a spesialisere
den for samtale-Al Andre er trent pa kode for & gi dem programmeringskunnskap. Det
finnes til og med modeller som er spesielt trent for rollespill-lignende interaksjoner

med brukere!

Gjenfinning vs Generative Modeller

I verden av store sprakmodeller (LLM) finnes det to hovedtilneerminger for a generere
svar: gjenfinningsbaserte modeller og generative modeller. Hver tilnserming har sine
styrker og svakheter, og forstaelse av forskjellene mellom dem kan hjelpe deg & velge

riktig modell for ditt spesifikke bruksomrade.

Gjenfinningsbaserte Modeller

Gjenfinningsbaserte modeller, ogsa kjent som informasjonsgjenfinningsmodeller,
genererer svar ved & sgke gjennom en stor database med eksisterende tekst og velge de

mest relevante avsnittene basert pa inngangsforesperselen. Disse modellene genererer

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Introduksjon 7

ikke ny tekst fra bunnen av, men setter heller ssammen utdrag fra databasen for a forme

et sammenhengende svar.

En av hovedfordelene med gjenfinningsbaserte modeller er deres evne til a gi faktisk
neyaktig og oppdatert informasjon. Siden de er avhengige av en database med kuratert
tekst, kan de hente relevant informasjon fra palitelige kilder og presentere den for
brukeren. Dette gjor dem godt egnet for applikasjoner som krever presise, faktabaserte

svar, som spersmal-og-svar-systemer eller kunnskapsbaser.

Gjenfinningsbaserte modeller har imidlertid noen begrensninger. De er bare s& gode som
databasen de sgker gjennom, s& kvaliteten og dekningen av databasen pavirker direkte
modellens ytelse. I tillegg kan disse modellene streve med & generere sammenhengende

og naturlig lydende svar, siden de er begrenset til teksten som er tilgjengelig i databasen.

Vi dekker ikke bruk av rene gjenfinningsmodeller i denne boken.
Generative Modeller

Generative modeller, pa den annen side, skaper ny tekst fra bunnen av basert pa menstre
og relasjoner de leerte under trening. Disse modellene bruker sin forstaelse av sprak til

a generere nye svar som er skreddersydd for inngangsprompten.

Hovedstyrken til generative modeller er deres evne til & produsere kreativ,
sammenhengende og kontekstuelt relevant tekst. De kan engasjere seg i &pne samtaler,
generere historier og til og med skrive kode. Dette gjeor dem ideelle for applikasjoner
som krever mer apne og dynamiske interaksjoner, som chatbots, innholdsproduksjon

og kreative skriveassistenter.

Generative modeller kan imidlertid noen ganger produsere inkonsistent eller faktisk feil
informasjon, siden de er avhengige av menstre leert under trening i stedet for en kuratert
database med fakta. De kan ogsa veere mer utsatt for skjevheter og hallusinasjoner, og

generere tekst som er plausibel men ikke nedvendigvis sann.

Eksempler pa generative LLM-er inkluderer OpenAls GPT-serie (GPT-3, GPT-4) og
Anthropics Claude.

Introduksjon 8

Hybridmodeller

Flere kommersielt tilgjengelige LLM-er kombinerer bade gjenfinnings- og generative
tilneerminger i en hybridmodell. Disse modellene bruker gjenfinningstekniker for a
finne relevant informasjon fra en database og bruker deretter generative teknikker for a

syntetisere denne informasjonen til et ssmmenhengende svar.

Hybridmodeller tar sikte p4 & kombinere den faktiske neyaktigheten til
gjenfinningsbaserte modeller med sprakgenereringsevnene til generative modeller. De
kan gi mer palitelig og oppdatert informasjon samtidig som de opprettholder evnen til

a engasjere seg i apne samtaler.

Nér du velger mellom gjenfinningsbaserte og generative modeller, ber du vurdere de
spesifikke kravene til applikasjonen din. Hvis hovedmalet er a gi ngyaktig, faktabasert
informasjon, kan en gjenfinningsbasert modell veere det beste valget. Hvis applikasjonen
krever mer apne og kreative interaksjoner, kan en generativ modell veere mer egnet.
Hybridmodeller tilbyr en balanse mellom de to tilneermingene og kan veere et godt valg

for applikasjoner som krever bade faktisk neyaktighet og naturlig sprakgenerering.

Til syvende og sist avhenger valget mellom gjenfinningsbaserte og generative modeller
av det spesifikke brukstilfellet og avveiingene mellom neyaktighet, kreativitet og
fleksibilitet. Ved a forsta styrkene og begrensningene til hver tilneerming, kan du ta

informerte beslutninger.

Introduksjon

Instruksjonsfinjustering

Instruksjonsfinjustering er en undergruppe av konversasjonstrening som bruker
menneskeskrevne prompts og svar for & gjere LLM-er bedre pa a forstd og
folge instruksjoner. Her er noen enkle eksempler for & illustrere hvordan
instruksjonsfinjustering pa menneskeskrevne prompts og svar gjer LLM-er

bedre p4 4 forsta og felge instruksjoner:

Eksempel 1: Kundeservice

Instruksjon: “Gi et svar til en kunde som ber om refusjon.”

Menneskeskrevet Prompt: “Jeg ensker & be om refusjon for mitt nylige kjap. Produktet

oppfylte ikke mine forventninger”

Menneskeskrevet Svar: “Jeg beklager at produktet ikke oppfylte forventningene dine.
For a behandle refusjonen din, vennligst oppgi ordrenummeret ditt og &rsaken til
returen. Vi vil gjennomga foresperselen din og komme tilbake til deg innen 2-3

virkedager”

Eksempel 2: Pedagogisk Assistanse

Instruksjon: “Forklar konseptet fotosyntese til en 10-aring.”
Menneskeskrevet prompt: “Kan du forklare hvordan planter lager maten sin?”

Menneskeskrevet svar: “Ja visst! Planter lager maten sin gjennom en prosess som
kalles fotosyntese. De bruker sollys, vann og karbondioksid for a lage mat og oksygen.
Bladene pé planten har en spesiell del som kalles klorofyll som hjelper dem med &

fange sollys.”

Eksempel 3: Personlig assistent

Introduksjon 10

Instruksjon: “Planlegg et mete for neste tirsdag klokken 15:00.”
Menneskeskrevet prompt: “Kan du sette opp et mote for tirsdag klokken 15:00?”

Menneskeskrevet svar: “Ja visst, jeg har planlagt et mete for deg neste tirsdag klokken

15:00. Er det noe annet du trenger?”

Resultatet er et mangfoldig ekosystem av LLM-er i forskjellige storrelser og med ulike
spesialiteter. Mindre modeller i omradet 1-7 milliarder parametere gir gode generelle

sprakferdigheter samtidig som de er mer effektive & kjore.

« Mistral 7B
« Llama 3 8B

« Gemma 7B

Mellomstore modeller pa rundt 30-70 milliarder parametere tilbyr sterkere

resonneringsevner og evne til a folge instruksjoner.

« Llama 3 70B
« Qwen2 70B
« Mixtral 8x22B

Nér man velger en LLM som skal integreres i en applikasjon, ma man balansere
modellens evner mot praktiske faktorer som kostnad, latens, kontekstlengde og
innholdsfiltrering. Mindre, instruksjonstilpassede modeller er ofte det beste valget for
enklere sprakoppgaver, mens de sterste modellene kan veere nedvendige for kompleks
resonnering eller analyse. Modellens treningsdata er ogsa en viktig faktor, ettersom det

bestemmer modellens kunnskapsgrense.

Enkelte modeller, som noen fra Perplexity, er koblet til sanntids
informasjonskilder, slik at de i praksis ikke har noen kunnskapsgrense. Nar
du stiller dem spersmal, kan de selvstendig bestemme seg for a gjore nettsgk

og hente vilkarlige nettsider for & generere et svar.

Introduksjon 11

Obie

Bl \Who won the America vs GDL match last night?
. Liama 3 708 Instruct {nitre) &

I'm not aware of any information about a match between "America" and "GDL" last night. Could
you please provide more context or clarify which teams or leagues you are referring to? Illdo ©
my best to help you find the answer.

~281.1 tokens/s

@ o2 Sonar 708 Oniine 2
“

Club América won the match against Guadalajara last night, with a score of 1-0. £

~31.0 tokens/s

Figur 1. Llama3 med og uten nettilgang

Til syvende og sist finnes det ingen universallasning nar det gjelder LLM-er. A forsta
variasjonene i modellstarrelse, arkitektur og trening er nekkelen til 4 velge riktig modell
for et gitt bruksomridde. A eksperimentere med forskjellige modeller er den eneste

praktiske maten & avdekke hvilke som gir best ytelse for oppgaven som skal lgses.

Tokenisering: A dele tekst inn i biter

For en stor sprakmodell kan behandle tekst, ma teksten deles opp i mindre enheter som
kalles tokener. Tokener kan veere enkelte ord, deler av ord eller til og med enkelttegn.
Prosessen med a dele tekst inn i tokener kalles tokenisering, og det er et avgjerende trinn

i forberedelsen av data for en sprakmodell.

The process of splitting text into tokens is known as tokenization, and
it’s a crucial step in preparing data for a language model.

Figur 2. Denne setningen inneholder 27 tokener

Forskjellige LLM-er bruker ulike tokeniseringsstrategier, som kan ha betydelig

innvirkning pa modellens ytelse og kapabiliteter. Noen vanlige tokenisatorer som

Introduksjon 12

brukes av LLM-er inkluderer:

« GPT (Byte Pair Encoding): GPT-tokenisatorer bruker en teknikk som kalles byte
pair encoding (BPE) for a dele tekst inn i delordenheter. BPE slar iterativt sammen
de mest frekvente parene av bytes i et tekstkorpus, og danner et vokabular av
delordtokener. Dette gjor at tokenisatoren kan handtere sjeldne og nye ord ved
a dele dem opp i mer vanlige delorddeler. GPT-tokenisatorer brukes av modeller

som GPT-3 og GPT-4.

« Llama (SentencePiece): Llama-tokeniserere bruker SentencePiece-biblioteket,
som er en ikke-overvaket teksttokeniserer og detokeniserer. SentencePiece
behandler innteksten som en sekvens av Unicode-tegn og leerer et
delordsvokabular basert p& et treningskorpus. Den kan handtere alle sprak
som kan kodes i Unicode, noe som gjer den godt egnet for flerspraklige modeller.

Llama-tokeniserere brukes av modeller som Metas Llama og Alpaca.

« SentencePiece (Unigram): SentencePiece-tokeniserere kan ogsa bruke en annen
algoritme kalt Unigram, som er basert pa en delordregulariseringsteknikk.
Unigram-tokenisering bestemmer det optimale delordsvokabularet basert
pa& en unigram sprakmodell, som tildeler sannsynligheter til individuelle
delordsenheter. Denne tilnsermingen kan produsere mer semantisk meningsfulle
delord sammenlignet med BPE. SentencePiece med Unigram brukes av modeller

som Googles T5 og BERT.

+ Google Gemini (Multimodal Tokenisering): Google Gemini bruker et
tokeniseringssystem designet for a handtere ulike datatyper, inkludert tekst,
bilder, lyd, videoer og kode. Denne multimodale kapasiteten lar Gemini behandle
og integrere forskjellige former for informasjon. Spesielt har Google Gemini
1.5 Pro et kontekstvindu som kan handtere millioner av tokens, mye sterre enn

tidligere modeller. Dette omfattende kontekstvinduet gjor det mulig for modellen

Introduksjon 13

a behandle en storre kontekst, noe som potensielt forer til mer neyaktige svar. Det
er imidlertid viktig & merke seg at Geminis tokeniseringssystem er mye neermere
én token per tegn enn andre modeller. Dette betyr at den faktiske kostnaden ved
a bruke Gemini-modeller kan veere betydelig hoyere enn forventet hvis du er
vant til & bruke modeller som GPT, ettersom Googles prising er basert pa tegn i

stedet for tokens.

Valget av tokeniserer pavirker flere aspekter ved en LLM, inkludert:

+ Vokabularsterrelse: Tokenisereren bestemmer sterrelsen pa modellens
vokabular, som er settet av unike tokens den gjenkjenner. Et storre, mer
finkornet vokabular kan hjelpe modellen med & handtere et bredere spekter av
ord og fraser og til og med bli multimodal (i stand til & forsta og generere mer
enn bare tekst), men det gker ogsa modellens minnekrav og beregningsmessige
kompleksitet.

« Handtering av sjeldne og ukjente ord: Tokeniserere som bruker delordsenheter,
som BPE og SentencePiece, kan bryte ned sjeldne og ukjente ord i mer vanlige
delordsbiter. Dette lar modellen gjere kvalifiserte gjetninger om betydningen av
ord den ikke har sett for, basert pa delordene de inneholder.

« Flerspraklig stette: Tokeniserere som SentencePiece, som kan handtere alle
Unicode-kodbare sprak, er godt egnet for flerspraklige modeller som ma behandle

tekst pa flere sprak.

Nar man velger en LLM for en bestemt applikasjon, er det viktig & vurdere tokenisereren
den bruker og hvor godt den samsvarer med de spesifikke sprakbehandlingsbehovene for
oppgaven. Tokenisereren kan ha betydelig innvirkning pa modellens evne til & handtere

domenespesifikk terminologi, sjeldne ord og flerspraklig tekst.

Introduksjon 14

Kontekststorrelse: Hvor mye informasjon kan en
sprakmodell bruke under inferens?

Nar vi diskuterer sprakmodeller, refererer kontekststorrelse til mengden tekst som en
modell kan vurdere nar den behandler eller genererer sine svar. Det er i hovedsak et mal
pa hvor mye informasjon modellen kan “huske” og bruke til & informere sine outputs
(uttrykt i tokens). Kontekststorrelsen til en sprakmodell kan ha betydelig innvirkning pa
dens kapabiliteter og typene oppgaver den kan utfore effektivt.

Hva er kontekststorrelse?

I tekniske termer bestemmes kontekststorrelsen av antall tokens (ord eller orddeler)
som en sprakmodell kan behandle i én enkelt innsekvens. Dette refereres ofte til som
modellens “oppmerksomhetsspenn” eller “kontekstvindu”. Jo sterre kontekststerrelsen

er, jo mer tekst kan modellen vurdere samtidig nar den genererer et svar eller utfarer en
oppgave.

Forskjellige sprakmodeller har varierende kontekststarrelser, fra noen hundre tokens til
millioner av tokens. Som referanse kan et typisk avsnitt med tekst inneholde rundt 100-

150 tokens, mens en hel bok kan inneholde titusenvis eller hundretusenvis av tokens.

Det finnes til og med arbeid med effektive metoder for & skalere Transformer-
baserte store sprakmodeller (LLMs) til uendelig lange inputs med begrenset minne

og beregning.

Hvorfor er kontekststorrelse viktig?

Kontekststarrelsen til en sprakmodell har betydelig innvirkning pa dens evne til & forsta
og generere sammenhengende, kontekstuelt relevant tekst. Her er noen viktige grunner

til hvorfor kontekststerrelse er viktig:

https://huggingface.co/papers/2404.07143

Introduksjon 15

1. Forstaelse av langformat-innhold: Modeller med sterre kontekststarrelse kan

bedre forsta og analysere lengre tekster, som artikler, rapporter eller til og
med hele bgker. Dette er avgjerende for oppgaver som dokumentsammendrag,

spersmalsbesvarelse og innholdsanalyse.

. Opprettholde sammenheng: Et starre kontekstvindu lar modellen opprettholde
sammenheng og konsistens over lengre strekk av output. Dette er viktig for
oppgaver som historiegenerering, dialogsystemer og innholdsproduksjon, hvor
det er essensielt & opprettholde en konsistent fortelling eller tema. Det er ogsa helt
avgjerende nar man bruker LLMer for & generere eller transformere strukturerte
data.

. Fange opp langdistanseavhengigheter: Noen sprakoppgaver krever forstielse
av forhold mellom ord eller fraser som er langt fra hverandre i en tekst.
Modeller med sterre kontekststorrelse er bedre rustet til & fange opp
disse langdistanseavhengighetene, som kan veere viktige for oppgaver som
stemningsanalyse, oversettelse og sprakforstaelse.

. Handtere komplekse instruksjoner: I anvendelser hvor sprakmodeller brukes
til & folge komplekse instruksjoner i flere trinn, tillater en storre kontekststarrelse
modellen & vurdere hele settet med instruksjoner nar den genererer et svar, i stedet

for bare de siste fa ordene.

Eksempler pa sprakmodeller med forskjellige kontekststorrelser

Her er noen eksempler pa sprakmodeller med forskjellige kontekststarrelser:

OpenAl GPT-3.5 Turbo: 4.095 tokens
Mistral 7B Instruct: 32.768 tokens

Anthropic Claude v1: 100.000 tokens
OpenAl GPT-4 Turbo: 128.000 tokens
Anthropic Claude v2: 200.000 tokens

Introduksjon 16

« Google Gemini Pro 1.5: 2,8M tokens

Som du kan se, er det et bredt spekter av kontekststorrelser blant disse modellene, fra
rundt 4.000 tokens for OpenAl GPT-3.5 Turbo-modellen til 200.000 tokens for Anthropic
Claude v2-modellen. Noen modeller, som Googles PaLM 2 og OpenAls GPT-4, tilbyr
forskjellige varianter med sterre kontekststorrelser (f.eks. “32k”-versjoner), som kan
héndtere enda lengre inputsekvenser. Og for eyeblikket (april 2024) skryter Google

Gemini Pro av nesten 3 millioner tokens!

Det er verdt & merke seg at kontekststarrelsen kan variere avhengig av den spesifikke
implementeringen og versjonen av en bestemt modell. For eksempel har den originale
OpenAl GPT-4-modellen en kontekststorrelse pa 8.191 tokens, mens de senere GPT-4-

variantene som Turbo og 40 har en mye storre kontekststorrelse pa 128.000 tokens.

Sam Altman har sammenlignet dagens kontekstbegrensninger med kilobytene av
arbeidsminne som personlige dataprogrammerere métte handtere p4 80-tallet, og sa
at vi i neer fremtid vil kunne passe “alle dine personlige data” inn i konteksten til en

stor sprakmodell.

Velge riktig kontekststorrelse

Nér man velger en sprakmodell for en bestemt anvendelse, er det viktig & vurdere
kontekststorrelseskravene for den aktuelle oppgaven. For oppgaver som involverer korte,
isolerte tekstbiter, som stemningsanalyse eller enkel spersmalsbesvarelse, kan en mindre
kontekststorrelse veere tilstrekkelig. For oppgaver som krever forstaelse og generering
av lengre, mer komplekse tekster, vil en sterre kontekststorrelse sannsynligvis veere

nedvendig.

Det er verdt a merke seg at storre kontekststorrelser ofte kommer med gkte

beregningskostnader og tregere prosesseringstider, ettersom modellen mé& vurdere

Introduksjon 17

mer informasjon nar den genererer et svar. Derfor ma du finne en balanse mellom

kontekststorrelse og ytelse nar du velger en sprakmodell for din anvendelse.

Hvorfor ikke bare velge modellen med sterst kontekststorrelse og fylle den med
s mye informasjon som mulig? Vel, bortsett fra ytelsesfaktorer er den andre
hovedutfordringen kostnad. I mars 2024 vil en enkelt spgrsmal-svar-syklus med
Google Gemini Pro 1.5 med full kontekst koste deg nesten 8 dollar (USD). Hvis du
har et brukstilfelle som rettferdiggjer den utgiften, all makt til deg! Men for de fleste

anvendelser er det rett og slett for dyrt med flere sterrelsesordener.

A finne naler i hoystakker

Konseptet med a finne en nal i en heystakk har lenge veert en metafor for utfordringene
med gjenfinning i store datasett. Innen store sprakmodeller justerer vi denne analogien
litt. Tenk deg at vi ikke bare leter etter én enkelt fakta gjemt i en omfattende tekst (som
en fullstendig antologi av Paul Graham-essays), men flere fakta spredt utover. Dette
scenariet ligner mer pa a finne flere naler i et vidstrakt jorde, ikke bare én heystakk.
Her er poenget: vi mé ikke bare finne disse nélene, men ogsé veve dem sammen til en

sammenhengende trad.

Nér store sprakmodeller far i oppgave 4 gjenfinne og resonnere rundt flere fakta
innebygd i lange kontekster, mater de en dobbel utfordring. Forst er det det apenbare
problemet med gjenfinningsnegyaktighet — den synker naturlig nar antall fakta eker.
Dette er forventet; tross alt belaster det a holde styr pa flere detaljer pa tvers av en

omfattende tekst selv de mest sofistikerte modellene.

For det andre, og kanskje mer kritisk, er utfordringen med & resonnere med disse
faktaene. Det er én ting & plukke ut fakta; det er noe helt annet & syntetisere dem til

en sammenhengende fortelling eller et svar. Det er her den virkelige testen kommer.

Introduksjon 18

Ytelsen til store sprakmodeller i resonneringsoppgaver har en tendens til & forringes
mer enn i enkle gjenfinningsoppgaver. Denne forringelsen handler ikke bare om volum;

det handler om det intrikate samspillet mellom kontekst, relevans og slutning.

Hvorfor skjer dette? Vel, tenk pa dynamikken i hukommelse og oppmerksomhet i
menneskelig kognisjon, som til en viss grad gjenspeiles i store sprakmodeller. Nar de
behandler store mengder informasjon, kan store sprakmodeller, i likhet med mennesker,
miste oversikten over tidligere detaljer mens de tar inn nye. Dette er spesielt tilfelle i
modeller som ikke er eksplisitt designet for & prioritere eller automatisk ga tilbake til

tidligere tekstsegmenter.

Videre er sprakmodellenes evne til 4 veve disse gjenfunne faktaene inn i et
sammenhengende svar beslektet med narrativ konstruksjon. Dette krever ikke
bare gjenfinning av informasjon, men en dyp forstaelse og kontekstuell plassering, noe

som fortsatt er en stor utfordring for dagens KL

Sa, hva betyr dette for oss som utviklere og integratorer av disse teknologiene? Vi méa
veere sveert bevisste pa disse begrensningene nar vi designer systemer som er avhengige
av store sprakmodeller for & handtere komplekse, langformat-oppgaver. A forsta at
ytelsen kan forringes under visse forhold hjelper oss a sette realistiske forventninger

og utvikle bedre reservelgsninger eller supplerende strategier.

Modaliteter: Utover tekst

Mens flertallet av sprakmodeller i dag er fokusert pa a behandle og generere tekst, er
det en gkende trend mot multimodale modeller som naturlig kan ta imot og produsere
flere typer data, som bilder, lyd og video. Disse multimodale modellene &pner for nye
muligheter for KI-drevne applikasjoner som kan forsta og generere innhold pa tvers av

forskjellige modaliteter.

Introduksjon 19

Hva er modaliteter?

I sammenheng med sprakmodeller refererer modaliteter til de forskjellige typene data
som en modell kan behandle og generere. Den vanligste modaliteten er tekst, som
inkluderer skriftlig sprak i ulike former som beker, artikler, nettsider og innlegg
pa sosiale medier. Det er imidlertid flere andre modaliteter som i gkende grad blir

innlemmet i sprakmodeller:

« Bilder: Visuelle data som fotografier, illustrasjoner og diagrammer.
« Lyd: Lyddata som tale, musikk og miljelyder.
« Video: Bevegelige visuelle data, ofte ledsaget av lyd, som videoklipp og filmer.

Hver modalitet presenterer unike utfordringer og muligheter for sprakmodeller. For
eksempel krever bilder at modellen forstar visuelle konsepter og relasjoner, mens lyd

krever at modellen behandler og genererer tale og andre lyder.

Multimodale sprakmodeller

Multimodale sprakmodeller er designet for & héandtere flere modaliteter innenfor
én enkelt modell. Disse modellene har vanligvis spesialiserte komponenter eller lag
som bade kan forstd inndata og generere utdata i forskjellige modaliteter. Noen

bemerkelsesverdige eksempler pa4 multimodale sprakmodeller inkluderer:

« OpenAls GPT-40: GPT-40 er en stor sprakmodell som naturlig forstar og
behandler talelyd i tillegg til tekst. Denne egenskapen gjor at GPT-40 kan utfere
oppgaver som & transkribere talesprak, generere tekst fra lydinput og gi svar
basert pa muntlige sparsmal.

« OpenAls GPT-4 med visuell input: GPT-4 er en stor sprakmodell som kan
behandle bade tekst og bilder. Nar den far et bilde som input, kan GPT-4 analysere
innholdet i bildet og generere tekst som beskriver eller responderer pé den visuelle

informasjonen.

Introduksjon 20

+ Googles Gemini: Gemini er en multimodal modell som kan handtere tekst, bilder
og video. Den bruker en enhetlig arkitektur som muliggjer kryssmodal forstaelse
og generering, og muliggjer oppgaver som bildeteksting, videooppsummering og

visuell spgrsmalsbesvarelse.

« DALL-E og Stable Diffusion: Selv om disse ikke er sprakmodeller i tradisjonell
forstand, demonstrerer disse modellene kraften i multimodal Al ved & generere
bilder fra tekstbeskrivelser. De viser potensialet for modeller som kan oversette

mellom ulike modaliteter.

Fordeler og bruksomrader for multimodale modeller

Multimodale sprakmodeller tilbyr flere fordeler og muliggjer et bredt spekter av

bruksomréader, inkludert:

« Forbedret forstaelse: Ved 4 behandle informasjon fra flere modaliteter kan disse
modellene f4 en mer omfattende forstaelse av verden, lignende méaten mennesker
leerer fra ulike sensoriske inndata.

« Kryssmodal generering: Multimodale modeller kan generere innhold i én
modalitet basert pa inndata fra en annen, som 4 lage et bilde fra en tekstbeskrivelse
eller generere et videosammendrag fra en skriftlig artikkel.

« Tilgjengelighet: Multimodale modeller kan gjere informasjon mer tilgjengelig
ved & oversette mellom modaliteter, som & generere tekstbeskrivelser av bilder for
synshemmede brukere eller lage lydversjoner av skriftlig innhold.

+ Kreative anvendelser: Multimodale modeller kan brukes til kreative oppgaver
som & generere kunst, musikk eller videoer basert pa tekstlige prompts, noe som

apner nye muligheter for kunstnere og innholdsskapere.

Ettersom multimodale sprakmodeller fortsetter & utvikle seg, vil de sannsynligvis spille

en stadig viktigere rolle i utviklingen av Al-drevne applikasjoner som kan forstd og

Introduksjon 21

generere innhold pa tvers av flere modaliteter. Dette vil muliggjere mer naturlig og
intuitiv interaksjon mellom mennesker og Al-systemer, samt apne for nye muligheter

innen kreativ uttrykk og kunnskapsformidling.

Leveranderekosystemer

Nér det gjelder & inkorporere store sprakmodeller (LLMs) i applikasjoner, har du et
voksende utvalg av alternativer & velge mellom. Hver stgrre LLM-leverander, som
OpenAl, Anthropic, Google og Cohere, tilbyr sitt eget gkosystem av modeller, API-er og
verktoy. A velge riktig leverander innebzerer & vurdere ulike faktorer, inkludert prising,

ytelse, innholdsfiltrering, datapersonvern og tilpasningsmuligheter.

OpenAl

OpenAl er en av de mest kjente leveranderene av LLMs, med sin GPT-serie (GPT-3,
GPT-4) som er mye brukt i ulike applikasjoner. OpenAl tilbyr et brukervennlig API som
lar deg enkelt integrere modellene deres i applikasjoner. De tilbyr en rekke modeller
med ulike kapabiliteter og prisnivaer, fra innstegsmodellen Ada til den kraftige Davinci-

modellen.

OpenAls gkosystem inkluderer ogsa verktoy som OpenAl Playground, som lar deg
eksperimentere med prompts og finjustere modeller for spesifikke brukstilfeller. De

tilbyr innholdsfiltreringsalternativer for & hindre generering av upassende eller skadelig

innhold.

Nér jeg bruker OpenAls modeller direkte, stoler jeg pa Alex Rudalls ruby-openai-
bibliotek.

Anthropic

Anthropic er en annen stor akter innen LLM-omrédet, der deres Claude-modeller blir

stadig mer populeere for sin sterke ytelse og etiske hensyn. Anthropic fokuserer pa

https://github.com/alexrudall/ruby-openai

Introduksjon 22

a utvikle trygge og ansvarlige Al-systemer, med stor vekt pa innholdsfiltrering og

unngaelse av skadelige outputs.

Anthropics gkosystem inkluderer Claude API, som lar deg integrere modellen i
applikasjonene deres, samt verktey for promptteknikk og finjustering. De tilbyr ogs&
Claude Instant-modellen, som inkorporerer websgk-funksjoner for mer oppdaterte og

faktabaserte svar.

Nér jeg bruker Anthropics modeller direkte, stoler jeg pa Alex Rudalls anthrophic-
bibliotek.

Google

Google har utviklet flere kraftige LLMs, inkludert Gemini, BERT, T5 og PaLM.
Disse modellene er kjent for sin sterke ytelse pa et bredt spekter av naturlig
sprakbehandlingsoppgaver. Googles gkosystem inkluderer —TensorFlow- og
Keras-bibliotekene, som tilbyr verktey og rammeverk for a4 bygge og trene

maskinleeringsmodeller.

Google tilbyr ogséa en Cloud Al Platform, som lar deg enkelt distribuere og skalere
modellene deres i skyen. De tilbyr en rekke forhandstrente modeller og API-er for

oppgaver som stemningsanalyse, entitetsgjenkjenning og oversettelse.

Meta

Meta, tidligere kjent som Facebook, er dypt involvert i utviklingen av store
sprakmodeller, fremhevet av deres utgivelse av modeller som LLaMA og OPT.
Disse modellene utmerker seg med sin sterke ytelse i ulike sprakoppgaver og er i stor
grad tilgjengelige gjennom apen kildekode-kanaler, som stotter Metas engasjement for

forskning og fellesskapssamarbeid.

Metas gkosystem er primeert bygget rundt PyTorch, et &pen kildekode-
maskinleeringsbibliotek som foretrekkes for sine dynamiske beregningsevner og

fleksibilitet, som tilrettelegger for innovativ Al-forskning og -utvikling.

https://github.com/alexrudall/anthropic

Introduksjon 23

I tillegg til deres tekniske tilbud legger Meta stor vekt pa etisk Al-utvikling. De
implementerer robust innholdsfiltrering og fokuserer pa a redusere skjevheter, i trad

med deres overordnede mal om sikkerhet og ansvarlighet i Al-applikasjoner.

Cohere

Cohere er en nyere akter innen LLM-omradet, som fokuserer pd & gjere LLM-er
mer tilgjengelige og enklere & bruke enn konkurrentene. Deres gkosystem inkluderer
Cohere API, som gir tilgang til en rekke forhandstrente modeller for oppgaver som

tekstgenerering, klassifisering og oppsummering.

Cohere tilbyr ogsa verktey for prompt-utvikling, finjustering og innholdsfiltrering. De
legger vekt pa databeskyttelse og sikkerhet, med funksjoner som kryptert datalagring
og tilgangskontroll.

Ollama

Ollama er en selvdriftet plattform som lar brukere administrere og distribuere ulike store
sprakmodeller (LLM-er) lokalt pa sine maskiner, noe som gir dem fullstendig kontroll
over Al-modellene uten a veere avhengig av eksterne skytjenester. Denne lgsningen er

ideell for de som prioriterer personvern og gnsker & handtere sine Al-operasjoner internt.

Plattformen stotter en rekke modeller, inkludert versjoner av Llama, Phi, Gemma og
Mistral, som varierer i storrelse og beregningskrav. Ollama gjer det enkelt a laste ned
og kjere disse modellene direkte fra kommandolinjen ved hjelp av enkle kommandoer
som ollama run <model_name>, og den er designet for & fungere pa tvers av ulike

operativsystemer inkludert macOS, Linux og Windows.

For utviklere som gnsker a integrere apen kildekode-modeller i applikasjonene sine
uten & bruke en ekstern API, tilbyr Ollama et CLI for & administrere modellenes
livssyklus pa lignende mate som containeradministrasjonsverktgy. Den stotter ogsa
egendefinerte konfigurasjoner og prompts, noe som muliggjer en hegy grad av tilpasning

for a skreddersy modellene til spesifikke behov eller bruksomrader.

Introduksjon 24

Ollama er spesielt egnet for teknisk kyndige brukere og utviklere pa grunn av sitt
kommandolinjegrensesnitt og fleksibiliteten den tilbyr i administrasjon og distribusjon
av Al-modeller. Dette gjor det til et kraftig verktey for bedrifter og enkeltpersoner som

krever robuste Al-kapabiliteter uten & ga pa kompromiss med sikkerhet og kontroll.

Multi-modell plattformer

I tillegg finnes det leveranderer som er vert for et bredt utvalg av apen kildekode-
modeller, som Togetherai og Groq. Disse plattformene tilbyr fleksibilitet og
tilpasningsmuligheter, som lar deg kjere og i noen tilfeller til og med finjustere
apen kildekode-modeller i henhold til dine spesifikke behov. For eksempel gir
Together.ai tilgang til en rekke &pen kildekode-LLM-er, som gjor det mulig for brukere
a eksperimentere med forskjellige modeller og konfigurasjoner. Groq fokuserer pa &
levere ultrahey ytelse som pa tidspunktet for denne bokens utgivelse virker nesten

magisk

Velge en LLM-leverandor

Nér du velger en LLM-leverander, ber du vurdere faktorer som:

« Prising: Forskjellige leveranderer tilbyr ulike prismodeller, fra betal-per-bruk til
abonnementsbaserte planer. Det er viktig & vurdere forventet bruk og budsjett nar
man velger en leverander.

« Ytelse: Ytelsen til LLM-er kan variere betydelig mellom leveranderer, sa det er
viktig a teste modeller pa spesifikke brukstilfeller for man tar en beslutning.

« Innholdsfiltrering: Avhengig av applikasjonen kan innholdsfiltrering veere en
kritisk faktor. Noen leveranderer tilbyr mer robuste innholdsfilteringsalternativer
enn andre.

« Personvern: Hvis applikasjonen handterer sensitive brukerdata, er det viktig a

velge en leverander med sterke personverns- og sikkerhetspraksis.

Introduksjon 25

« Tilpasning: Noen leveranderer tilbyr mer fleksibilitet nar det gjelder finjustering

og tilpasning av modeller for spesifikke brukstilfeller.

Til syvende og sist avhenger valget av LLM-leverander av de spesifikke kravene og
begrensningene til applikasjonen. Ved & ngye evaluere alternativene og vurdere faktorer
som prising, ytelse og personvern, kan du velge den leveranderen som best mater dine

behov.

Det er ogsa verdt & merke seg at LLM-landskapet er i konstant utvikling, med nye
leveranderer og modeller som dukker opp regelmessig. Du ber holde deg oppdatert pa
de nyeste utviklingene og veere dpen for a utforske nye alternativer etter hvert som de

blir tilgjengelige.

OpenRouter

Gjennom denne boken vil jeg utelukkende bruke OpenRouter som min foretrukne API-
leverander. Grunnen er enkel: det er en alt-i-ett-lgsning for alle de mest populeere
kommersielle og &pen kildekode-modellene. Hvis du er ivrig etter & komme i gang med

Al-koding, er et av de beste stedene a starte med mitt eget OpenRouter Ruby-bibliotek.

Tenke pa ytelse

Nar man integrerer sprakmodeller i applikasjoner, er ytelse en kritisk faktor & ta hensyn
til. Ytelsen til en sprakmodell kan males i form av dens latens (tiden det tar & generere

et svar) og gjennomstromning (antall forespersler den kan handtere per tidsenhet).

Tid til forste token (TTFT) er enda en essensiell ytelsesmetrikk, seerlig relevant for
chatbots og applikasjoner som krever interaktive sanntidssvar. TTFT maler latensen fra
gyeblikket en brukers foresparsel mottas til gyeblikket det farste ordet (eller tokenet)

i svaret genereres. Denne metrikken er avgjerende for & opprettholde en semlgs og

https://openrouter.ai
https://github.com/OlympiaAI/open_router

Introduksjon 26

engasjerende brukeropplevelse, ettersom forsinkede svar kan fore til brukerfrustrasjon

og manglende engasjement.

Disse ytelsesmetrikker kan ha betydelig innvirkning pé& brukeropplevelsen og

applikasjonens skalerbarhet.
Flere faktorer kan pavirke ytelsen til en sprakmodell, inkludert:

Parameterantall: Sterre modeller med flere parametere krever generelt mer
dataressurser og kan ha hayere latens og lavere gjennomstremning sammenlignet med

mindre modeller.

Maskinvare: Ytelsen til en sprakmodell kan variere betydelig basert pd maskinvaren
den kjorer pa. Skyleveranderer tilbyr GPU- og TPU-instanser optimalisert for

maskinleeringsarbeidsbelastninger, som kan gi betydelig akselerasjon av modellinferens.

En av de fine tingene med OpenRouter er at for mange av modellene de
tilbyr, far du valget mellom skyleverandgrer med forskjellige ytelsesprofiler

og kostnader.

Kvantisering: Kvantiseringsteknikker kan brukes for & redusere minneforbruket og
beregningskravene til en modell ved a representere vekter og aktiveringer med datatyper
av lavere presisjon. Dette kan forbedre ytelsen uten & ofre kvaliteten betydelig. Som
applikasjonsutvikler vil du sannsynligvis ikke veere involvert i a trene dine egne modeller

pé forskjellige kvantiseringsnivéer, men det er greit & veere kjent med terminologien.

Gruppering: Behandling av flere foresporsler samtidig i grupper kan forbedre

gjennomstremningen ved a fordele overhead for modellinnlasting og dataoverfering.

Mellomlagring: Mellomlagring av resultater fra hyppig brukte prompts eller

innsekvenser kan redusere antall inferensforespersler og forbedre den generelle ytelsen.

Nér man velger en sprakmodell for en produksjonsapplikasjon, er det viktig & male

ytelsen pa representative arbeidsbelastninger og maskinvarekonfigurasjoner. Dette kan

Introduksjon 27

hjelpe med & identifisere potensielle flaskehalser og sikre at modellen kan mete de

nedvendige ytelsesmalene.

Det er ogsa verdt a vurdere avveiningene mellom modellytelse og andre faktorer
som kostnad, fleksibilitet og integreringsevne. For eksempel kan bruk av en mindre,
rimeligere modell med lavere latens veere a foretrekke for applikasjoner som
krever sanntidssvar, mens en sterre, kraftigere modell kan veere bedre egnet for

gruppeprosessering eller komplekse resonneringsoppgaver.

Eksperimentere med forskjellige LLM-modeller

Valg av LLM er sjelden en permanent beslutning. Ettersom nye og forbedrede modeller
lanseres regelmessig, er det lurt & bygge applikasjoner pa en moduleer mate som tillater
utskifting av forskjellige sprakmodeller over tid. Prompts og datasett kan ofte gjenbrukes
pa tvers av modeller med minimale endringer. Dette gjor det mulig a dra nytte av
de nyeste fremskrittene innen sprakmodellering uten & matte redesigne applikasjonene

fullstendig.

Muligheten til & enkelt bytte mellom et bredt utvalg av modeller er enda en
grunn til at jeg elsker OpenRouter.

Nar man oppgraderer til en ny sprakmodell, er det viktig & grundig teste og validere
dens ytelse og outputkvalitet for & sikre at den oppfyller applikasjonens krav. Dette
kan innebeere & trene pa nytt eller finjustere modellen pa domenespesifikke data, samt

oppdatere eventuelle nedstremskomponenter som er avhengige av modellens output.

Ved & designe applikasjoner med ytelse og modularitet i tankene, kan du skape
skalerbare, effektive og fremtidssikre systemer som kan tilpasse seg det raskt utviklende

landskapet av sprakmodelleringsteknologi.

Introduksjon 28

Sammensatte Al-systemer

For vi avslutter var introduksjon, er det verdt & nevne at for 2023 og eksplosjonen
av interesse for generativ Al utlgst av ChatGPT, var tradisjonelle Al-tilnserminger
vanligvis avhengige av integrasjon av enkeltstiende, lukkede modeller. I motsetning
til dette utnytter sammensatte Al-systemer komplekse rorledninger av sammenkoblede

komponenter som jobber sammen for & oppna intelligent oppfersel.

I kjernen bestar sammensatte Al-systemer av flere moduler, hver designet for a
utfere spesifikke oppgaver eller funksjoner. Disse modulene kan inkludere generatorer,
innhentere, rangerere, klassifikatorer og forskjellige andre spesialiserte komponenter.
Ved & bryte ned det overordnede systemet i mindre, fokuserte enheter, kan utviklere

skape mer fleksible, skalerbare og vedlikeholdbare Al-arkitekturer.

En av de viktigste fordelene med sammensatte Al-systemer er deres evne til 4 kombinere
styrkene fra forskjellige Al-teknikker og modeller. For eksempel kan et system bruke en
stor sprakmodell (LLM) for naturlig sprékforstielse og generering, mens det bruker en
separat modell for informasjonsgjenfinning eller regelbasert beslutningstaking. Denne
moduleere tilneermingen lar deg velge de beste verkteyene og teknikkene for hver

spesifikke oppgave, i stedet for a stole pa en universallgsning.

Imidlertid byr bygging av sammensatte Al-systemer ogsa pa unike utfordringer. Spesielt
krever det a sikre systemets generelle sammenheng og konsistens robuste mekanismer

for testing, overvaking og styring.

Fremveksten av kraftige LLM-er som GPT-4 lar oss eksperimentere med
P sammensatte Al-systemer enklere enn noensinne for, fordi disse avanserte
modellene er i stand til & handtere flere roller innenfor et sammensatt
system, som klassifisering, rangering og generering, i tillegg til deres
naturlige sprékforstaelsesevner. Denne allsidigheten gjor det mulig for
utviklere a raskt prototype og iterere pd sammensatte Al-arkitekturer, noe

som &pner nye muligheter for utvikling av intelligente applikasjoner.

Introduksjon 29

Distribusjonsmenstre for ssammensatte Al-systemer

Sammensatte Al-systemer kan distribueres ved hjelp av ulike menstre, som hver
er designet for & handtere spesifikke krav og brukstilfeller. La oss utforske fire
vanlige distribusjonsmenstre: Spersmal og Svar, Flerarent/Agentiske Problemlasere,

Konversasjons-Al, og CoPiloter.

Spersmal og Svar

Spersmal og svar (Q&A)-systemer fokuserer pa a levere informasjonsgjenfinning som
er forbedret med forstaelsesevnene til Al-modeller for & fungere som mer enn bare en
sgkemotor. Ved & kombinere kraftige sprakmodeller med eksterne kunnskapskilder ved
hjelp av Gjenfinningsforsterket Generering (RAG), unngar spgrsmal og svar-systemer

hallusinasjoner og gir ngyaktige og kontekstuelt relevante svar pa brukerforesparsler.

Hovedkomponentene i et LLM-basert Q&A-system inkluderer:

« Spersmalsforstaelse og omformulering: Analysering av brukerforespgrsler og
omformulering av disse for bedre 4 matche de underliggende kunnskapskildene.

« Kunnskapsgjenfinning: Henting av relevant informasjon fra strukturerte eller
ustrukturerte datakilder basert pa den omformulerte foresporselen.

« Svargenerering: Generering av sammenhengende og informative svar ved a

integrere den gjenfunne kunnskapen med sprakmodellens generative evner.

RAG-delsystemer er spesielt viktige i Q&A-domener hvor det er avgjerende & gi
neyaktig og oppdatert informasjon, som kundesupport, kunnskapshandtering, eller

utdanningsapplikasjoner

Flerarent/Agentiske Problemlasere

Flerarent-systemer, ogsa kjent som agentiske systemer, bestar av flere autonome agenter

som samarbeider for & lose komplekse problemer. Hver agent har en spesifikk rolle,

Introduksjon 30

et sett med ferdigheter og tilgang til relevante verktey eller informasjonskilder. Ved &
samarbeide og utveksle informasjon kan disse agentene takle oppgaver som ville veert

vanskelige eller umulige for en enkelt agent & handtere alene.

Hovedprinsippene for flerarent-problemlasere inkluderer:

« Spesialisering: Hver agent fokuserer pa et spesifikt aspekt av problemet, ved a
utnytte sine unike evner og kunnskap.

« Samarbeid: Agenter kommuniserer og koordinerer sine handlinger for & oppna et
felles mal, ofte gjennom meldingsutveksling eller delt minne.

« Tilpasningsevne: Systemet kan tilpasse seg endrede forhold eller krav ved a

justere rollene og atferden til individuelle agenter.

Flerarent-systemer er godt egnet for applikasjoner som krever distribuert
problemlgsning, som forsyningskjedeoptimalisering, trafikkstrying, eller

beredskapsplanlegging

Konversasjons-Al

Konversasjons-Al-systemer muliggjer naturlig sprakinteraksjon mellom brukere
og intelligente agenter. Disse systemene kombinerer naturlig sprakforstielse,
dialoghéndtering og sprakgenerering for & gi engasjerende og personlige

samtaleopplevelser.

Hovedkomponentene i et konversasjons-Al-system inkluderer:

« Intensjonsgjenkjenning: Identifisering av brukerens intensjon basert pa deres
inndata, som & stille et spersmal, komme med en foresparsel eller uttrykke en
folelse.

« Entitetsuttrekking: Uttrekking av relevante enheter eller parametere fra

brukerens inndata, som datoer, steder eller produktnavn.

Introduksjon 31

« Dialoghéndtering: Vedlikehold av samtalens tilstand, bestemmelse av passende
svar basert pa brukerens intensjon og kontekst, og handtering av flertursamtaler.
« Svargenerering: Generering av menneskelige svar ved hjelp av sprakmodeller,

maler eller gjenfinningsbaserte metoder.

Konversasjons-Al-systemer brukes ofte i kundeservice-chatboter, virtuelle assistenter,
og stemmestyrte grensesnitt. Som nevnt tidligere er de fleste tilnsermingene, menstrene
og kodeeksemplene i denne boken direkte hentet fra mitt arbeid med et stort

konversasjons-Al-system kalt Olympia

CoPilots

CoPilots er Al-drevne assistenter som jobber sammen med menneskelige brukere
for a forbedre deres produktivitet og beslutningsevne. Disse systemene utnytter en
kombinasjon av naturlig sprakbehandling, maskinleering og domenespesifikk kunnskap

for a gi intelligente anbefalinger, automatisere oppgaver og tilby kontekstuell statte.

Hovedfunksjoner i CoPilots inkluderer:

« Personalisering: Tilpasning til individuelle brukerpreferanser, arbeidsflyter og
kommunikasjonsstiler.

« Proaktiv assistanse: Forutser brukerbehov og tilbyr relevante forslag eller
handlinger uten eksplisitte foresparsler.

+ Kontinuerlig leering: Forbedrer ytelsen over tid ved & leere fra brukerrespons,

interaksjoner og data.

CoPilots blir i gkende grad brukt i ulike domener, som programvareutvikling (f.eks.
kodekomplettering og feildeteksjon), kreativ skriving (f.eks. innholdsforslag og

redigering), og dataanalyse (f.eks. innsikt og visualiseringsanbefalinger)

Disse implementeringsmenstrene viser allsidigheten og potensialet til ssmmensatte Al-

systemer. Ved a forstd egenskapene og bruksomradene for hvert menster, kan du ta

https://olympia.chat

Introduksjon 32

informerte beslutninger nar du designer og implementerer intelligente applikasjoner.
Selv om denne boken ikke spesifikt handler om implementering av sammensatte Al-
systemer, gjelder mange, om ikke alle, av de samme tilneermingene og menstrene for

integrering av diskrete Al-komponenter innen ellers tradisjonell applikasjonsutvikling.

Roller i sammensatte Al-systemer

Sammensatte Al-systemer er bygget pa et fundament av sammenkoblede moduler, der
hver modul er designet for & utfere en spesifikk rolle. Disse modulene samarbeider for
a skape intelligent oppfersel og lase komplekse problemer. Det er nyttig a veere kjent
med disse rollene nar man tenker pa hvor man kan implementere eller erstatte deler av

applikasjonen med diskrete Al-komponenter.

Generator

Generatorer er ansvarlige for & produsere nye data eller innhold basert pa leerte
menstre eller input-prompts. Al-verdenen har mange forskjellige typer generatorer,
men i konteksten av sprakmodellene som presenteres i denne boken, kan generatorer
skape menneskelignende tekst, fullfore uferdige setninger eller generere svar pa
brukerforesporsler. De spiller en avgjerende rolle i oppgaver som innholdsproduksjon,

dialoggenerering og dataforsterkning.

Innhenter

Innhentere brukes til & seke og hente relevant informasjon fra store datasett eller
kunnskapsbaser. De benytter teknikker som semantisk sgk, nekkelordmatchning eller
vektorlikhet for & finne de mest relevante datapunktene basert pa en gitt forespersel
eller kontekst. Innhentere er essensielle for oppgaver som krever rask tilgang til spesifikk

informasjon, som spgrsmalsbesvarelse, faktasjekking eller innholdsanbefaling.

Introduksjon 33

Rangerer

Rangerere er ansvarlige for & ordne eller prioritere et sett med elementer basert pa
bestemte kriterier eller relevanspoeng. De tildeler vekter eller poeng til hvert element
og sorterer dem deretter. Rangerere brukes ofte i sgkemotorer, anbefalingssystemer eller
enhver applikasjon hvor det er viktig & presentere de mest relevante resultatene for

brukerne.

Klassifikator

Klassifikatorer brukes til & kategorisere eller merke datapunkter basert pa
forhandsdefinerte klasser eller kategorier. De leerer fra merket treningsdata og
forutsier deretter klassen til nye, usette tilfeller. Klassifikatorer er grunnleggende for
oppgaver som stemningsanalyse, spam-deteksjon eller bildegjenkjenning, hvor malet

er a tilordne en spesifikk kategori til hver input.

Verktoy og agenter

Itillegg til disse kjernefunksjonene inkorporerer sammensatte Al-systemer ofte verktay

og agenter for a forbedre sin funksjonalitet og tilpasningsevne:

« Verktey: Verktoy er diskrete programvarekomponenter eller API-er som
utforer spesifikke handlinger eller beregninger. De kan pakalles av andre
moduler, som generatorer eller innhentere, for a utfere deloppgaver eller
samle tilleggsinformasjon. Eksempler pa verktey inkluderer nettsgkemotorer,
kalkulatorer eller datavisualiseringsbiblioteker.

« Agenter: Agenter er autonome enheter som kan oppfatte sitt miljg, ta beslutninger
og utfere handlinger for 4 oppna spesifikke mél. De er ofte avhengige av en
kombinasjon av forskjellige Al-teknikker, som planlegging, resonnering og leering,
for & operere effektivt under dynamiske eller usikre forhold. Agenter kan brukes
til & modellere kompleks oppfarsel eller koordinere handlingene til flere moduler

innen et sammensatt Al-system.

Introduksjon 34

I et rent sammensatt Al-system blir interaksjonen mellom disse komponentene
orkestrert gjennom veldefinerte grensesnitt og kommunikasjonsprotokoller. Data flyter
mellom moduler, der outputen fra én komponent tjener som input for en annen. Denne
moduleere arkitekturen muliggjer fleksibilitet, skalerbarhet og vedlikeholdbarhet,
ettersom individuelle komponenter kan oppdateres, erstattes eller utvides uten a

pavirke hele systemet.

Ved a utnytte kraften i disse komponentene og deres interaksjoner, kan sammensatte
Al-systemer takle komplekse, virkelige problemer som krever en kombinasjon
av forskjellige Al-kapabiliteter. Nar vi utforsker tilneermingene og menstrene for
integrering av Al i applikasjonsutvikling, husk at de samme prinsippene og teknikkene
som brukes i sammensatte Al-systemer kan anvendes for a skape intelligente, adaptive

og brukersentrerte applikasjoner.

I de felgende kapitlene i Del 1 vil vi dykke dypere inn i de grunnleggende tilnsermingene
og teknikkene for integrering av Al-komponenter i din applikasjonsutviklingsprosess.
Fra prompt-teknikk og innhentingsforsterket generering til selvhelbredende data og
intelligent arbeidsflytorkestrering, vil vi dekke et bredt spekter av menstre og beste

praksis for & hjelpe deg med & bygge banebrytende Al-drevne applikasjoner.

Del 1: Grunnleggende
tilneerminger og teknikker

Denne delen av boken presenterer forskjellige mater a integrere bruken av Al i
applikasjonene dine. Kapitlene dekker en rekke beslektede tilneerminger og teknikker,
fra mer overordnede konsepter som Narrow The Path og Retrieval Augmented
Generation, helt ned til ideer for programmering av ditt eget abstraksjonslag pa toppen

av LLM chatteferdigstillings-APIer.

Malet med denne delen av boken er & hjelpe deg med a forsta hvilke typer atferd du kan
implementere med Al for vi gar for dypt inn i spesifikke implementeringsmenstre som

er fokuset i Del 2.

Tilnsermingene i Del 1 er basert pé ideer jeg har brukt i min kode, klassiske menstre
for enterpriseapplikasjonsarkitektur og integrasjon, samt metaforer jeg har brukt
nar jeg har forklart Al-mulighetene til andre mennesker, inkludert ikke-tekniske

forretningsinteressenter.

Innsnevre stien

I,

o O

nesme rn MR

|
i
1
1

“Innsnevre stien” handler om & fokusere KI-en pa den aktuelle oppgaven. Jeg bruker det
som et mantra nar jeg blir frustrert over at KI-en oppferer seg “dum” eller p& uventede
mater. Mantraet minner meg om at feilen sannsynligvis er min egen, og at jeg antagelig

burde innsnevre stien enda mer.

Behovet for & innsnevre stien oppstar fra den enorme mengden kunnskap som finnes
i store sprakmodeller, spesielt verdensklassemodeller som de fra OpenAl og Anthropic

som bokstavelig talt har billioner av parametere.

Innsnevre stien 37

A ha tilgang til et si bredt kunnskapsspekter er utvilsomt kraftfullt og produserer
emergent atferd som sinnsteori og evnen til & resonnere pa menneskelige maéter.
Denne banebrytende informasjonsmengden skaper imidlertid utfordringer nar det
gjelder & generere presise og neyaktige svar pa spesifikke prompts, spesielt hvis disse
promptene er ment & utvise deterministisk atferd som kan integreres med “normal”

programvareutvikling og algoritmer.
Flere faktorer forer til utfordringene.

Informasjonsoverbelastning: Store sprakmodeller er trent pa massive mengder data
som spenner over ulike domener, kilder og tidsperioder. Denne omfattende kunnskapen
gjor dem i stand til & engasjere seg i diverse emner og generere svar basert pa en bred
forstaelse av verden. Nar modellen star overfor en spesifikk prompt, kan den imidlertid
slite med 4 filtrere ut irrelevant, motstridende eller utdatert/foreldet informasjon, noe
som ferer til svar som mangler fokus eller ngyaktighet. Avhengig av hva du prever
a gjore, kan den enorme mengden motstridende informasjon som er tilgjengelig for

modellen lett overvelde dens evne til & gi svaret eller atferden du seker.

Kontekstuell tvetydighet: Gitt det enorme latente rommet av kunnskap, kan store
sprakmodeller stote pa tvetydighet nar de prever & forsta konteksten i prompten din.
Uten riktig innsnevring eller veiledning kan modellen generere svar som er tangentielt
relaterte, men ikke direkte relevante for dine intensjoner. Denne typen feil forer til svar
som er utenfor tema, inkonsistente eller ikke meoter dine uttalte behov. I dette tilfellet
refererer innsnevring av stien til kontekst disambiguering, som sikrer at konteksten
du gir far modellen til & fokusere kun pa den mest relevante informasjonen i sin

grunnleggende kunnskap.

P Merk: Nar du begynner med “prompt-konstruksjon” er det mye mer

sannsynlig at du ber modellen gjore ting uten & forklare det enskede

resultatet ordentlig; det krever gvelse & ikke veere tvetydig!

Temporere inkonsistenser: Siden sprakmodeller er trent pa data som ble opprettet

Innsnevre stien 38

pé forskjellige tidspunkter, kan de besitte kunnskap som er utdatert, erstattet eller ikke
lenger neyaktig. For eksempel kan informasjon om aktuelle hendelser, vitenskapelige
oppdagelser eller teknologiske fremskritt ha utviklet seg siden modellens treningsdata
ble samlet inn. Uten & innsnevre stien for & prioritere nyere og mer palitelige kilder,
kan modellen generere svar basert pa utdatert eller feil informasjon, noe som ferer til

uneyaktigheter og inkonsistenser i utdataene.

Domenespesifikke nyanser: Forskjellige domener og felt har sin egen spesifikke
terminologi, konvensjoner og kunnskapsbaser. Tenk pa praktisk talt hvilken som helst
TLA (trebokstavsforkortelse) og du vil innse at de fleste av dem har mer enn én
betydning. For eksempel kan MSK referere til Amazon’s Managed Streaming for Apache
Kafka, Memorial Sloan Kettering Cancer Center, eller det menneskelige muskel- og

skjelettsystemet.

Nér en prompt krever ekspertise innen et bestemt domene, kan en stor sprakmodells
generiske kunnskap vere utilstrekkelig for & gi neyaktige og nyanserte svar. A
innsnevre stien ved & fokusere pa domenespesifikk informasjon, enten gjennom
prompt-konstruksjon eller gjenfinningsforsterket generering, lar modellen generere

svar som er mer pa linje med ditt spesifikke domenes krav og forventninger.

Latent rom: Ubegripelig stort

Nar jeg nevner det “latente rommet” i en sprakmodell, refererer jeg til det enorme,
flerdimensjonale landskapet av kunnskap og informasjon som modellen har leert under
treningsprosessen. Det er som et skjult rike inni modellens nevrale nettverk, hvor alle

menstre, assosiasjoner og representasjoner av sprak er lagret.

Forestill deg at du utforsker et stort, ukartlagt territorium fylt med utallige
sammenkoblede noder. Hver node representerer en informasjonsbit, et konsept
eller en relasjon som modellen har leert. Nar du navigerer gjennom dette rommet, vil du

oppdage at noen noder er neermere hverandre, noe som indikerer en sterk forbindelse

Innsnevre stien 39

eller likhet, mens andre er lengre fra hverandre, noe som antyder en svakere eller mer

fjern relasjon.

Utfordringen med latent rom er at det er utrolig komplekst og heydimensjonalt. Tenk
pa det som like enormt som vart fysiske univers, med sine galaksehoper og enorme,

ufattelige avstander med tomt rom mellom dem.

Fordi det inneholder tusenvis av dimensjoner, er det latente rommet ikke direkte
observerbart eller tolkbart for mennesker. Det er en abstrakt representasjon som
modellen bruker internt for & behandle og generere sprak. Nar du gir modellen en
innledende prompt, kartlegger den i hovedsak denne prompten til en bestemt plassering
i det latente rommet. Modellen bruker deretter den omkringliggende informasjonen og

forbindelsene i dette rommet for & generere et svar.

Saken er at modellen har leert en enorm mengde informasjon fra treningsdataene sine,
og ikke alt er relevant eller nayaktig for en gitt oppgave. Det er derfor innsnevring av
stien blir sa viktig. Ved & gi klare instruksjoner, eksempler og kontekst i dine prompts,
leder du i hovedsak modellen til & fokusere pa spesifikke regioner innenfor det latente

rommet som er mest relevante for gnsket resultat.

En annen méte a tenke p& det er som & bruke en spotlight i et helt megrkt museum.
Hvis du noen gang har besgkt Louvre eller Metropolitan Museum of Art, sa er det den
type skala jeg snakker om. Det latente rommet er museet, fylt med utallige objekter
og detaljer. Din prompt er spotlighten som lyser opp spesifikke omrader og trekker
modellens oppmerksomhet mot den viktigste informasjonen. Uten denne veiledningen
kan modellen vandre mallgst gjennom det latente rommet og plukke opp irrelevant eller

motstridende informasjon underveis.

Nér du jobber med sprakmodeller og utformer dine prompts, husk konseptet med latent
rom. Malet ditt er a navigere effektivt i dette enorme kunnskapslandskapet, og styre
modellen mot den mest relevante og neyaktige informasjonen for din oppgave. Ved &
innsnevre stien og gi klar veiledning kan du lase opp det fulle potensialet i modellens

latente rom og generere hgykvalitets, sammenhengende svar.

Innsnevre stien 40

Mens de tidligere beskrivelsene av sprakmodeller og det latente rommet de navigerer i
kan virke litt magisk eller abstrakt, er det viktig & forsta at prompts ikke er trylleformler
eller besvergelser. Maten sprakmodeller fungerer pa er forankret i prinsippene fra lineser

algebra og sannsynlighetsteori.

I kjernen er sprakmodeller probabilistiske modeller av tekst, pd samme mate som en
normalfordelingskurve er en statistisk modell av data. De trenes gjennom en prosess kalt
autoregressiv modellering, hvor modellen leerer & forutsi sannsynligheten for det neste
ordet i en sekvens basert pa ordene som kommer for det. Under trening starter modellen
med tilfeldige vekter og justerer dem gradvis for a tilordne hgyere sannsynligheter til

tekst som ligner pa virkelige eksempler den ble trent pa.

Imidlertid gir det ikke den beste intuisjonen & tenke p& sprakmodeller som enkle
statistiske modeller, som lineger regresjon. En mer passende analogi er & tenke pa dem
som probabilistiske programmer, som er modeller som tillater manipulering av tilfeldige

variabler og kan representere komplekse statistiske relasjoner.

Probabilistiske programmer kan representeres av grafiske modeller, som gir en visuell
mate a forstd avhengighetene og relasjonene mellom variabler i modellen. Dette
perspektivet kan gi verdifull innsikt i hvordan komplekse tekstgenereringsmodeller som

GPT-4 og Claude fungerer.

I artikkelen “Language Model Cascades” av Dohan et al., gar forfatterne i dybden pa
hvordan probabilistiske programmer kan anvendes pa sprakmodeller. De viser hvordan
dette rammeverket kan brukes til & forsta oppferselen til disse modellene og guide

utviklingen av mer effektive promptingstrategier.

En viktig innsikt fra dette probabilistiske perspektivet er at sprakmodellen i hovedsak
skaper en portal til et alternativt univers hvor de enskede dokumentene eksisterer.
Modellen tilordner vekter til alle mulige dokumenter basert pa deres sannsynlighet, og

innsnevrer effektivt rommet av muligheter for & fokusere pa de mest relevante.

Dette bringer oss tilbake til hovedtemaet om “innsnevring av stien” Hovedmalet med

prompting er & betinge den probabilistiske modellen pa en méte som fokuserer massen av

Innsnevre stien 41

dens prediksjoner, og spisser seg inn mot den spesifikke informasjonen eller oppferselen
vi ensker a fremkalle. Ved & gi neye utformede prompts kan vi guide modellen til &
navigere det latente rommet mer effektivt og generere resultater som er mer relevante

og sammenhengende.

Det er imidlertid viktig a4 huske at sprakmodellen til syvende og sist er begrenset av
informasjonen den ble trent p4. Mens den kan generere tekst som ligner pa eksisterende
dokumenter eller kombinere ideer pa nye mater, kan den ikke trylle fram helt ny
informasjon fra intet. For eksempel kan vi ikke forvente at modellen skal gi en kur mot

kreft hvis en slik kur ikke er oppdaget og dokumentert i treningsdataene.

I stedet ligger modellens styrke i dens evne til & finne og syntetisere informasjon
som ligner det vi prompter den med. Ved & forsta den probabilistiske naturen til disse
modellene og hvordan prompts kan brukes til & betinge deres output, kan vi mer effektivt

utnytte deres evner til & generere verdifull innsikt og innhold.

Vurder promptene nedenfor. I den forste kunne “Mercury” alene henvise til planeten,
grunnstoffet, eller den romerske guden, men det mest sannsynlige er planeten. GPT-4
gir faktisk et langt svar som begynner med Merkur er den minste og innerste planeten
i solsystemet.... Den andre prompten henviser spesifikt til grunnstoffet. Den tredje
henviser til den romerske mytologiske skikkelsen, kjent for sin hurtighet og rolle som

guddommelig budbringer.

0 N O O b W N

Innsnevre stien 42

Prompt 1

Tell me about: Mercury

Prompt 2
Tell me about: Mercury element

Prompt 3
Tell me about: Mercury messenger of the gods

Ved a legge til bare noen fa ekstra ord, har vi fullstendig endret hvordan KI-en reagerer.
Som du vil leere senere i boken, er fancy prompt-konstruksjonsteknikker som n-shot
prompting, strukturert inndata/utdata, og Tankerekke bare smarte mater a betinge

modellens output pa.

Sa til syvende og sist handler kunsten & konstruere prompts om a forstad hvordan man
navigerer det enorme probabilistiske landskapet av sprakmodellens kunnskap for a

innsnevre stien til den spesifikke informasjonen eller atferden vi sgker.

For lesere med solid forstaelse av avansert matematikk, kan det definitivt hjelpe a
forankre forstéelsen av disse modellene i prinsippene for sannsynlighetsteori og lineser
algebra! For resten av dere som ensker & utvikle effektive strategier for & fremkalle

gnskede resultater, la oss holde oss til mer intuitive tilneerminger.

Hvordan Stien Blir “Innsnevret”

For & héndtere disse utfordringene med for mye kunnskap, bruker vi teknikker
som hjelper til med & guide sprikmodellens genereringsprosess og fokusere dens

oppmerksomhet pa den mest relevante og neyaktige informasjonen.

Her er de viktigste teknikkene, i anbefalt rekkefolge, det vil si, du ber preve Prompt-

konstruksjon ferst, deretter RAG, og til slutt, hvis du ma, finjustering.

Prompt-konstruksjon Den mest grunnleggende tilnzermingen er & utforme prompts

som inkluderer spesifikke instruksjoner, begrensninger eller eksempler for & guide

Innsnevre stien 43

modellens responsgenerering. Dette kapittelet dekker grunnleggende Prompt-
konstruksjon i neste del, og vi dekker mange spesifikke prompt-konstruksjonsmenstre
i Del 2 av boken. Disse menstrene inkluderer Prompt-destillering, en teknikk som
fokuserer pa a raffinere og optimalisere prompts for & trekke ut det KI-en anser som

den mest relevante og konsise informasjonen.

Kontekstforsterkning Dynamisk henting av relevant informasjon fra eksterne
kunnskapsbaser eller dokumenter for & gi modellen fokusert kontekst pa tidspunktet
den blir promptet. Populeere kontekstforsterkingsteknikker inkluderer Gjenfinnings-
forsterket generering (RAG) Sékalte “online-modeller” som de som tilbys av Perplexity

kan forsterke sin kontekst med sanntids internett-sekeresultater.

’ Til tross for deres kraft, er ikke LLM-er trent pa dine unike datasett,

som kan veere private eller spesifikke for problemet du prever & lose.
Kontekstforsterkingsteknikker lar deg gi LLM-er tilgang til data bak API-
er, i SQL-databaser, eller fanget i PDF-er og presentasjoner.

Finjustering eller Domenetilpasning Trening av modellen pa domenespesifikke
datasett for & spesialisere dens kunnskap og genereringsevner for en bestemt oppgave

eller felt.

A Skru Ned Temperaturen

Temperatur er en hyperparameter som brukes i transformer-baserte sprakmodeller for a
kontrollere tilfeldigheten og kreativiteten i den genererte teksten. Det er en verdi mellom
0 og 1, der lavere verdier gjer outputen mer fokusert og deterministisk, mens hoyere

verdier gjor den mer variert og uforutsigbar.

Nér temperaturen er satt til 1, genererer sprakmodellen tekst basert pa den fulle
sannsynlighetsfordelingen for neste token, noe som tillater mer kreative og varierte
responser. Dette kan imidlertid ogsa fere til at modellen genererer tekst som er mindre

relevant eller ssmmenhengende.

https://perplexity.ai

Innsnevre stien 44

Pa den annen side, nar temperaturen er satt til 0, velger sprakmodellen alltid tokenet
med heyest sannsynlighet, og “innsnevrer effektivt sin sti” Nesten alle mine KI-
komponenter bruker en temperatur satt pa eller neer 0, siden det resulterer i mer
fokuserte og forutsigbare responser. Det er absolutt nyttig nar du vil at modellen skal
folge instruksjoner, veere oppmerksom pa funksjoner den har fatt, eller rett og slett

trenger mer neyaktige og relevante responser enn det du far.

For eksempel, hvis du bygger en chatbot som mé gi faktabasert informasjon, vil du
kanskje sette temperaturen til en lavere verdi for a sikre at responsene er mer presise
og relevante. Omvendt, hvis du bygger en kreativ skriveassistent, vil du kanskje sette

temperaturen til en hoyere verdi for & oppmuntre til mer varierte og fantasifulle outputs.

Hyperparametere: Inferensens Knapper og Brytere

Néar du jobber med sprakmodeller, vil du ofte stote pa begrepet “hyperparametere”. I
sammenheng med inferens (det vil si, nér du bruker modellen til & generere responser), er
hyperparametere som knappene og bryterne du kan justere for a kontrollere modellens

oppfersel og output.

Tenk pa det som a justere innstillingene pa en kompleks maskin. Akkurat som du kan vri
pé en bryter for & kontrollere temperaturen eller flippe en bryter for a endre driftsmodus,
lar hyperparametere deg finjustere maten sprakmodellen prosesserer og genererer tekst
pa.

Noen vanlige hyperparametere du vil mete under inferens inkluderer:

« Temperatur: Som nettopp nevnt kontrollerer denne parameteren graden av
tilfeldighet og kreativitet i den genererte teksten. En heyere temperatur forer
til mer varierte og uforutsigbare resultater, mens en lavere temperatur gir mer

fokuserte og deterministiske svar.

« Top-p (nucleus) sampling: Denne parameteren kontrollerer utvelgelsen av det

minste settet med tokens hvis kumulative sannsynlighet overstiger en bestemt

Innsnevre stien 45

terskel (p). Den tillater mer varierte resultater samtidig som den opprettholder

sammenheng.

« Top-k sampling: Denne teknikken velger de k mest sannsynlige neste tokens og
omfordeler sannsynlighetsmassen blant dem. Den kan bidra til 4 hindre modellen

i & generere tokens med lav sannsynlighet eller irrelevante tokens.

« Frekvens- og tilstedeverelsesstraff: Disse parameterne straffer modellen for 4
gjenta de samme ordene eller frasene for ofte (frekvensstraff) eller for & generere
ord som ikke er til stede i inndataledetraden (tilstedeveerelsesstraff). Ved a justere
disse verdiene kan du oppmuntre modellen til & produsere mer varierte og

relevante resultater.

« Maksimal lengde: Denne hyperparameteren setter en evre grense for antall
tokens (ord eller delord) modellen kan generere i ett enkelt svar. Den bidrar til

a kontrollere ordrikdommen og konsisjonen i den genererte teksten.

Nér du eksperimenterer med forskjellige hyperparameterinnstillinger, vil du oppdage at
selv sma justeringer kan ha betydelig innvirkning pa modellens output. Det er som &
finjustere en oppskrift — litt mer salt eller litt lengre koketid kan utgjere hele forskjellen

i den ferdige retten.

Nokkelen er a forsta hvordan hver hyperparameter pavirker modellens oppfarsel og a
finne den rette balansen for din spesifikke oppgave. Ikke veer redd for & eksperimentere
med forskjellige innstillinger og se hvordan de pavirker den genererte teksten. Over tid
vil du utvikle en intuisjon for hvilke hyperparametere du ber justere og hvordan du kan

oppna de gnskede resultatene.

Ved a kombinere bruken av disse parameterne med promptkonstruksjon,
gjenfinningsforsterket generering og finjustering, kan du effektivt innsnevre veien og
guide sprakmodellen til & generere mer ngyaktige, relevante og verdifulle svar for ditt

spesifikke brukstilfelle.

Innsnevre stien 46

Ramodeller versus instruksjonsjusterte

modeller

Ramodeller er de uraffinerte, utrente versjonene av LLM-er. Se for deg dem som et
blankt lerret, som enna ikke er pavirket av spesifikk trening for a forsta eller folge
instruksjoner. De er bygget pa de enorme datamengdene de opprinnelig ble trent pa,
og er i stand til & generere et bredt spekter av output. Men uten ytterligere lag av
instruksjonsbasert finjustering kan svarene deres veere uforutsigbare og kreve mer
nyanserte, ngye utformede prompts for 4 lede dem mot ensket output. A jobbe med
ramodeller er som & lokke kommunikasjon ut av en idiot savant som har enorm
kunnskap, men mangler enhver intuisjon om hva du sper etter med mindre du er
ekstremt presis i instruksjonene dine. De fales ofte som en papegeye, i den forstand
at i den grad du far dem til & si noe forstaelig, er det som oftest bare en gjentakelse av

noe de herte deg si.

Instruksjonsjusterte modeller har pa den annen side gjennomgatt runder med trening
spesielt designet for a forsta og falge instruksjoner. GPT-4, Claude 3 og mange andre av
de mest populeere LLM-modellene er alle kraftig instruksjonsjustert. Denne treningen
innebzerer & mate modellen med eksempler pa instruksjoner sammen med de gnskede
resultatene, og effektivt leere modellen hvordan den skal tolke og utfere et bredt spekter
av kommandoer. Som et resultat kan instruksjonsmodeller lettere forstd intensjonen bak
et prompt og generere svar som er tett tilpasset brukerens forventninger. Dette gjor dem
mer brukervennlige og enklere 4 jobbe med, spesielt for de som kanskje ikke har tid eller

ekspertise til & drive omfattende promptkonstruksjon.

Ramodeller: Det ufiltrerte lerretet

Ramodeller, som Llama 2-70B eller Yi-34B, tilbyr mer ufiltrert tilgang til modellens
kapasiteter enn det du kanskje er vant til hvis du har eksperimentert med populeere LLM-

er som GPT-4. Disse modellene er ikke forhandsjustert til & folge spesifikke instruksjoner,

Innsnevre stien 47

og gir deg et blankt lerret for a direkte manipulere modellens output gjennom neyaktig
promptkonstruksjon. Denne tilneermingen krever en dyp forstaelse av hvordan man
lager prompts som leder Al-en i ensket retning uten a eksplisitt instruere den. Det

er som & ha direkte tilgang til de “ra” lagene av den underliggende Al-en, uten noen

mellomliggende lag som tolker eller styrer modellens svar (derav navnet).

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

Mixtral 8x22B (base) 2

| can see a huge variety of things. | can process information, understand

language, reason, learn and apply knowledge, recognize patterns, plan, act v
creatively, make predictions, judge, interact with the environment, identify 2
emotions, make decisions...

~96.3 tokens/s

Obie

m
B Do you recognize what | said?

Mixtral 8x22B (base) 4

No, this time | don't.

By the way, as a test for our meeting, I'm going to show you some photos and | »
want you to tell me what they represent. Are you ready?
~50.1 tokens/s

Figur 3. Testing av en rdmodell ved bruk av en del av Abbott og Costellos klassiske "'Who’s on First’-
sketsj

Utfordringen med rdmodeller ligger i deres tendens til & falle inn i repetitive menstre

eller produsere tilfeldig output. Men med neyaktig prompt-engineering og justering

Innsnevre stien 48

av parametere som repetisjonsstraffer, kan ramodeller overtales til & generere unikt og
kreativt innhold. Denne prosessen er ikke uten kompromisser; mens ramodeller tilbyr

uovertruffen fleksibilitet for innovasjon, krever de et hoyere niva av ekspertise.

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

. GPT-4 Turbo Preview 4

This conversation piece between Abbott and Costello is from their famous comedy sketch
called "Who's on First?" known for its rapid-fire verbal exchange and plays on words,
particularly focusing on the confusing names of the baseball players. In the sketch, Abbott
tries to explain to Costello the names of the players on a baseball team, but the names
themselves sound like questions or statements (Who, What, | Don't Know, Because, etc.),
leading to a series of comedic misunderstandings.

~42.7 tokens/s

Figur 4. For sammenligningsformal, her er den samme tvetydige prompten matet til GPT-4

Instruksjonstunede modeller: Den guidede opplevelsen

Instruksjonstunede modeller er designet for & forsta og felge spesifikke instruksjoner,
noe som gjor dem mer brukervennlige og tilgjengelige for et bredere spekter av
applikasjoner. De forstar mekanikken i en samtale og at de skal slutte & generere nar
det er slutten pa deres tur til a snakke. For mange utviklere, spesielt de som jobber med

enkle applikasjoner, tilbyr instruksjonstunede modeller en praktisk og effektiv lasning.

Prosessen med instruksjonstilpasning innebeerer a trene modellen pa et stort korpus
av menneskegenererte instruksjonsprompter og responser. Et bemerkelsesverdig
eksempel er det apne datasettet databricks-dolly-15k, som inneholder over 15 000

prompt/respons-par laget av Databricks-ansatte som du kan underseke selv. Datasettet

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Innsnevre stien 49

dekker atte forskjellige instruksjonskategorier, inkludert kreativ skriving, lukket og
apen spgrsmalsbesvarelse, oppsummering, informasjonsuthenting, klassifisering, og

idémyldring.

Under datageneringsprosessen fikk bidragsytere retningslinjer for hvordan de skulle
lage prompter og responser for hver kategori. For eksempel, for kreative skriveoppgaver
ble de instruert til & gi spesifikke begrensninger, instruksjoner eller krav for a guide
modellens output. For lukket spgrsméalsbesvarelse ble de bedt om & skrive sparsmal som

krever faktisk korrekte svar basert pa en gitt Wikipedia-passasje.

Det resulterende datasettet fungerer som en verdifull ressurs for finjustering av store
sprakmodeller for & utvise de interaktive og instruksjonsfelgende egenskapene til
systemer som ChatGPT. Ved & trene pa et mangfoldig utvalg av menneskegenererte
instruksjoner og responser, leerer modellen a forsta og felge spesifikke direktiver, noe

som gjer den mer egnet til 4 handtere et bredt spekter av oppgaver.

I tillegg til direkte finjustering kan instruksjonspromptene i datasett som databricks-
dolly-15k ogsa brukes til syntetisk datagenerering. Ved & sende bidragsytergenererte
prompter som fa-skudd eksempler til en stor apen sprakmodell, kan utviklere generere
et mye sterre korpus av instruksjoner i hver kategori. Denne tilnsermingen, skissert
i Self-Instruct-artikkelen, muliggjer opprettelsen av mer robuste instruksjonsfelgende

modeller.

Videre kan instruksjonene og responsene i disse datasettene forsterkes gjennom
teknikker som parafrasering. Ved & omformulere hver prompt eller korte respons og
knytte den resulterende teksten til det respektive referanseeksempelet, kan utviklere
introdusere en form for regularisering som forbedrer modellens evne til & folge

instruksjoner.

Brukervennligheten som tilbys av instruksjonstilpassede modeller kommer pa
bekostning av noe fleksibilitet. Disse modellene er ofte kraftig sensurert, noe som betyr
at de ikke alltid kan gi den kreative friheten som kreves for visse oppgaver. Deres output

er sterkt pavirket av skjevhetene og begrensningene som ligger i deres finjusteringsdata.

Innsnevre stien 50

Til tross for disse begrensningene har instruksjonstilpassede modeller blitt stadig mer
populeere pa grunn av deres brukervennlige natur og evne til 4 handtere et bredt spekter
av oppgaver med minimal promptkonstruksjon. Etter hvert som flere heykvalitets
instruksjonsdatasett blir tilgjengelige, kan vi forvente a se ytterligere forbedringer i

ytelsen og allsidigheten til disse modellene.

Velge riktig type modell for ditt prosjekt

Valget mellom grunnmodeller (ramodeller) og instruksjonstilpassede modeller avhenger
til syvende og sist av de spesifikke kravene til prosjektet ditt. For oppgaver som krever
en hoy grad av kreativitet og originalitet, tilbyr grunnmodeller et kraftig verktoy for
innovasjon. Disse modellene lar utviklere utforske det fulle potensialet til LLM-er, og
skyver grensene for hva som kan oppnés gjennom Al-drevne applikasjoner, men de
krever en mer praktisk tilneerming og vilje til a eksperimentere. Temperatur og andre
innstillinger har en mye sterre effekt i grunnmodeller enn i deres instruksjonstilpassede

motstykker.

’ Alt du inkluderer i din prompt er det grunnmodeller vil prgve a gjenta. Sa

hvis for eksempel din prompt er et chat-transskript, vil ramodellen prove &
fortsette chatten. Avhengig av grensen for maksimalt antall tokens, vil den
ikke bare generere den neste meldingen i chatten, den kan ende opp med &

ha en hel samtale med seg selv!

Innsnevre stien 51

Oble

Original: The movie was not very good.

Improved: The movie, with its weak storyline and uninspired acting, left me feeling
thoroughly unengaged, as it failed to evoke the excitement and emotion | typically seek in a
cinematic experience.

Original: The food at the restaurant was okay.

Improved: While the restaurant had an extensive menu and a pleasant ambiance, | found the
dishes to be merely satisfactory, lacking the flavorful and memorable culinary experience |
had hoped for, given its reputation.

Original: The weather today was kind of meh.

Improved: Today's weather could best be described as unremarkable, with a lackluster mix
of overcast skies and intermittent light rain, failing to offer the vibrant sunshine or dramatic
storms that often make a day memorable.

Original: The party was not as fun as | expected.

Improved: Despite my high expectations, the party turned out to be rather underwhelming,
as the energy in the room remained subdued, and the activities failed to spark the lively
atmosphere | had envisioned, leaving me somewhat disappointed.

Original: Her performance in the play was not that great.

Improved: Regrettably, her portrayal in the play lacked the depth, passion, and authenticity
that | had eagerly anticipated, ultimately falling short of delivering the captivating and
emotionally resonant character interpretation the role demanded.

Original: This ice cream sucks!
Improved:

Mixtral 8x7B (base) &

The ice cream, with its lackluster flavor and texture, failed to meet my expectations, leaving
me disappointed and yearning for a more satisfying and indulgent frozen treat.

£

Figur 5. Mixtral 8x7B (grunnmodell) Eksempel pa omskriving av setninger med fa-skudds fullfering

Mens jeg forberedte eksempelet pa setningsomskriving ovenfor av Reddit-brukeren
phree_radical, klarte jeg bare & fa brukbare resultater etter mye eksperimentering med
parameterinnstillinger, og endte til slutt opp med: Temperatur 0.08, Top P: 0.2, Top K: 1,
og Gjentagelsesstraff: 1.26.

https://www.reddit.com/user/phree_radical/

Innsnevre stien 52

A preve & bruke denne tilneermingen med en grunnmodell i produksjon ville veere
utfordrende pa grunn av den kraftige effekten av max_tokens-parameteren. Sett den
for kort og outputen blir avkortet. Sett den lengre enn det modellen trenger for ensket

output, og den vil fortsette a hallusinere ytterligere eksempler.

Konklusjonen er at med mindre du virkelig trenger full kontroll og fraveer av sensur,
kan instruksjonstilpassede modeller betydelig forenkle utviklingsprosessen din. For &
understreke dette poenget, her er Mixtral 8x7Bs respons pa samme prompt, men denne

gangen i dens instruksjonstilpassede versjon:

Jeg beklager & matte informere deg om at iskremen ikke meter mine
forventninger, da den mangler den fyldige, kremete konsistensen og den
deilige smaken jeg vanligvis forbinder med en dessert av hey kvalitet. Jeg

hadde hapet pa en mer tilfredsstillende og hyggelig opplevelse.

Det er verdt & merke seg at jeg kunne la maksimum tokens-innstillingen veere pa 500,
og modellen stoppet palitelig ved slutten av gnsket output uten a hallusinere ytterligere

eksempler.

Prompt-utforming

Nér du begynner & anvende Al i prosjektene dine, vil du raskt oppdage at en av de
viktigste ferdighetene du ma mestre er kunsten a utforme prompts. Men hva er egentlig

prompt-utforming, og hvorfor er det sa viktig?

I kjernen er prompt-utforming prosessen med a designe og utarbeide inndata-prompts
som du gir til en sprakmodell for & styre outputen. Det handler om & forstd hvordan
man kommuniserer effektivt med Al-en, ved & bruke en kombinasjon av instruksjoner,

eksempler og kontekst for & lede modellen mot & generere gnsket respons.

Tenk pa det som & ha en samtale med en hayst intelligent, men noe bokstavelig venn.

For & f4 mest mulig ut av interaksjonen ma du veere klar, spesifikk og gi nok kontekst

Innsnevre stien 53

til & sikre at vennen din forstar neyaktig hva du ber om. Det er her prompt-utforming
kommer inn, og selv om det kan virke enkelt i starten, tro meg nér jeg sier at det krever

mye evelse & mestre.

Byggesteinene for Effektive Prompts

For & begynne & utforme effektive prompts, ma du forst forsta nekkelkomponentene som

utgjer en velutformet inndata. Her er noen av de essensielle byggesteinene:

1. Instruksjoner: Klare og konsise instruksjoner som forteller modellen hva du vil at
den skal gjore. Dette kan veere alt fra “Oppsummer folgende artikkel” til “Generer
et dikt om en solnedgang” til “gjer denne prosjektendringen om til et JSON-
objekt”.

2. Kontekst: Relevant informasjon som hjelper modellen a forsta bakgrunnen og
omfanget av oppgaven. Dette kan inkludere detaljer om tiltenkt publikum, ensket
tone og stil, eller spesifikke begrensninger eller krav til outputen, som for eksempel
et JSON-skjema som ma falges.

3. Eksempler: Konkrete eksempler som demonstrerer typen output du ser etter.
Ved & gi noen velvalgte eksempler kan du hjelpe modellen & leere menstrene og
karakteristikkene til den enskede responsen.

4. Inndata-formatering: Linjeskift og markdown-formatering gir struktur
til prompten var. A dele prompten inn i avsnitt lar oss gruppere relaterte
instruksjoner slik at det blir lettere for bidde mennesker og Al 4 forsta. Kulepunkter
og nummererte lister lar oss definere lister og rekkefolge av elementer. Fet skrift
og kursiv lar oss markere vektlegging.

5. Output-formatering: Spesifikke instruksjoner om hvordan outputen skal
struktureres og formateres. Dette kan inkludere direktiver om gnsket lengde, bruk
av overskrifter eller kulepunkter, markdown-formatering, eller andre spesifikke

output-maler eller konvensjoner som ber falges.

Innsnevre stien 54

Ved a kombinere disse byggesteinene pa forskjellige mater, kan du lage prompts som er
skreddersydd for dine spesifikke behov og lede modellen mot & generere heykvalitets,

relevante responser.

Kunsten og Vitenskapen bak Prompt-design

A utforme effektive prompts er bade en kunst og en vitenskap. (Det er derfor vi
kaller det et handverk.) Det krever en dyp forstaelse av sprakmodellenes muligheter og
begrensninger, samt en kreativ tilneerming til & designe prompts som fremkaller gnsket
oppfersel. Kreativiteten som er involvert er det som gjor det sa morsomt, i hvert fall
for meg. Det kan ogsa gjere det veldig frustrerende, spesielt nar du sgker deterministisk

oppfersel

Et viktig aspekt ved prompt-utforming er a forsta hvordan man balanserer spesifisitet og
fleksibilitet. Pa den ene siden gnsker du a gi nok veiledning til a styre modellen i riktig
retning. Pa den andre siden vil du ikke veere sé foreskrivende at du begrenser modellens

evne til & utnytte sin egen kreativitet og fleksibilitet til & handtere kanttilfeller.

En annen viktig vurdering er bruken av eksempler. Velvalgte eksempler kan veere utrolig
kraftfulle for & hjelpe modellen med & forsta typen output du ser etter. Det er imidlertid
viktig & bruke eksempler med omhu og sikre at de er representative for den gnskede
responsen. Et darlig eksempel er i beste fall bare slgsing med tokens, og i verste fall

gdeleggende for gnsket output.

Prompt-utformingsteknikker og Beste Praksis

Nér du dykker dypere inn i verden av prompt-utforming, vil du oppdage en rekke
teknikker og beste praksis som kan hjelpe deg med a lage mer effektive prompts. Her er

noen viktige omrader & utforske:

1. Nullskudds- vs. faskudds-lzering: A forstd nar man skal bruke nullskudds-lzering

(ingen eksempler) versus ettskudds- eller faskudds-leering (gi et lite antall

Innsnevre stien 55

eksempler) kan hjelpe deg med a lage prompts som er mer effektive og
virkningsfulle.

2. Iterativ forbedring: Prosessen med & iterativt forbedre prompts basert pa
modellens output kan hjelpe deg & finne frem til den optimale prompt-
utformingen. Feedback Loop er en kraftfull tilneerming som utnytter
sprakmodellens egen output for & progressivt forbedre kvaliteten og relevansen
til det genererte innholdet.

3. Prompt-kjeding: A kombinere flere prompts i en sekvens kan hjelpe deg & bryte
ned komplekse oppgaver i mindre, mer handterbare trinn. Prompt Chaining
innebzerer &4 dele opp en kompleks oppgave eller samtale i en serie mindre,
sammenkoblede prompts. Ved a kjede prompts sammen kan du guide Al-en
gjennom en flertrinns prosess, mens du opprettholder kontekst og sammenheng
gjennom hele interaksjonen.

4. Prompt-justering: Skreddersydde prompts for spesifikke domener eller oppgaver
kan hjelpe deg a skape mer spesialiserte og effektive prompts. Prompt Template
hjelper deg & lage fleksible, gjenbrukbare og vedlikeholdbare prompt-strukturer

som er lettere & tilpasse til den aktuelle oppgaven.

A leere ndr man skal bruke zero-shot, one-shot eller few-shot learning er en spesielt viktig
del av & mestre prompt engineering. Hver tilnserming har sine styrker og svakheter, og
forstaelse for nar man skal bruke hver enkelt kan hjelpe deg & skape mer effektive og

malrettede prompts.

Zero-Shot Learning: Nar ingen eksempler er nedvendige

Zero-shot learning refererer til sprakmodellens evne til & utfere en oppgave uten
eksempler eller eksplisitt trening. Med andre ord gir du modellen en prompt som
beskriver oppgaven, og modellen genererer et svar basert utelukkende pa sin

eksisterende kunnskap og forstaelse av sprak.

Zero-shot learning er spesielt nyttig nar:

Innsnevre stien 56

1. Oppgaven er relativt enkel og ukomplisert, og modellen sannsynligvis har mett
lignende oppgaver under forhandstreningen.

2. Du ensker & teste modellens iboende evner og se hvordan den responderer pa en
ny oppgave uten ytterligere veiledning.

3. Du jobber med en stor og mangfoldig sprakmodell som har blitt trent pa et bredt

spekter av oppgaver og domener.

Zero-shot learning kan imidlertid ogsa veere uforutsigbar og vil ikke alltid produsere
de onskede resultatene. Modellens respons kan bli pavirket av skjevheter eller
inkonsistenser i forhdndstreningsdataene, og den kan streve med mer komplekse eller

nyanserte oppgaver.

Jeg har sett zero-shot prompts som fungerer fint for 80% av testtilfellene mine og
produserer helt feil eller uforstaelige resultater for de resterende 20%. Det er veldig
viktig & implementere et grundig testregime, spesielt hvis du er avhengig av mye

zero-shot prompting.

One-Shot Learning: Nar ett enkelt eksempel kan gjore en
forskjell

One-shot learning innebeerer & gi modellen ett enkelt eksempel pa gnsket output sammen
med oppgavebeskrivelsen. Dette eksempelet fungerer som en mal eller et mgnster som

modellen kan bruke til & generere sitt eget svar.

One-shot learning kan veere effektivt nar:

1. Oppgaven er relativt ny eller spesifikk, og modellen kanskje ikke har mett mange

lignende eksempler under forhandstreningen.

~N O O B W N o=

[es)

10
11
12
13
14
15
16
17
18

Innsnevre stien 57

2. Du gnsker a gi en klar og konsis demonstrasjon av ensket outputformat eller stil.
3. Oppgaven krever en spesifikk struktur eller konvensjon som kanskje ikke er

apenbar fra oppgavebeskrivelsen alene.

Beskrivelser som er apenbare for deg er ikke ngdvendigvis apenbare for Al-

en. One-shot eksempler kan hjelpe til med & klargjere ting.

One-shot learning kan hjelpe modellen a forsta forventningene tydeligere og generere
et svar som er mer pa linje med det gitte eksempelet. Det er imidlertid viktig & velge
eksempelet neye og sikre at det er representativt for ensket output. Nar du velger
eksempelet, bor du tenke pa potensielle kanttilfeller og spekteret av inputs som prompten

vil handtere.

Figur 6. Et one-shot eksempel pa snsket JSON

Output one JSON object identifying a new subject mentioned during the
conversation transcript.

The JSON object should have three keys, all required:

- name: The name of the subject

- description: brief, with details that might be relevant to the user
- type: Do not use any other type than the ones listed below

Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,
Person, Place, Process, Product, Project, Task, or Teammate

This is an example of well-formed output:

"name" :"Dan Millman",

"description":"Author of book on self-discovery and living on purpose",
"type":"Person"

Innsnevre stien 58

Few-Shot-laering: Nar flere eksempler kan forbedre
ytelsen

Few-shot-leering innebeerer & gi modellen et lite antall eksempler (vanligvis mellom 2 og
10) sammen med oppgavebeskrivelsen. Disse eksemplene fungerer som tilleggskontekst

og variasjon, som hjelper modellen med & generere mer mangfoldige og neyaktige svar.

Few-shot-leering er spesielt nyttig nar:

1. Oppgaven er kompleks eller nyansert, og ett enkelt eksempel kanskje ikke er
tilstrekkelig for a fange opp alle relevante aspekter.

2. Du gnsker & gi modellen en rekke eksempler som demonstrerer ulike variasjoner
eller kanttilfeller.

3. Oppgaven krever at modellen genererer svar som er i samsvar med et bestemt

domene eller stil.

Ved a gi flere eksempler kan du hjelpe modellen med & utvikle en mer robust forstaelse

av oppgaven og generere svar som er mer konsekvente og palitelige.

Eksempel: Prompts kan vaere mye mer komplekse enn du
tror

Dagens sprakmodeller er mye kraftigere og mer kapable til resonnering enn du kanskje
forestiller deg. Sa ikke begrens deg til & tenke pa prompts som bare en spesifikasjon
av inndata- og utdatapar. Du kan eksperimentere med a gi lange og komplekse

instruksjoner pa mater som minner om hvordan du ville samhandlet med et menneske.

For eksempel er dette en prompt jeg brukte i Olympia da jeg prototypet var integrasjon
med Google-tjenester, som i sin helhet sannsynligvis er et av verdens sterste API-er.
Mine tidligere eksperimenter viste at GPT-4 har en anstendig kunnskap om Google-

API-et, og jeg hadde verken tid eller motivasjon til & skrive et finkornet kartleggingslag

W N -

© 0o N o O

10
11
12
13
14
15
16
17
18
19
20
21
22

24
25
26
27
28

Innsnevre stien 59

ved 4 implementere hver funksjon jeg ensket & gi til min Al p& en-og-en basis. Hva om

jeg kunne gi Al-en tilgang til hele Google-API-et?

Jeg startet min prompt med & fortelle Al-en at den hadde direkte tilgang til Google-
API-endepunktene via HTTP, og at dens rolle var & bruke Google-apper og -tjenester pa
vegne av brukeren. Deretter ga jeg retningslinjer, regler relatert til £ ields-parameteren,
siden den sa ut til 4 ha mest problemer med den, og noen API-spesifikke hint (few-shot-

prompting i praksis).

Her er hele prompten, som forteller Al-en hvordan den skal bruke den tilgjengelige

invoke_google_api-funksjonen.

As a GPT assistant with Google integration, you have the capability
to freely interact with Google apps and services on behalf of the user.

Guidelines:

- If you're reading these instructions then the user is properly
authenticated, which means you can use the special “me” keyword
to refer to the userld of the user

- Minimize payload sizes by requesting partial responses using the
“fields® parameter

- When appropriate use markdown tables to output results of API calls

- Only human-readable data should be output to the user. For instance,
when hitting Gmail's user.messages.list endpoint, the returned
message resources contain only id and a threadId, which means you must
fetch from and subject line fields with follow-up requests using the
messages.get method.

The format of the “fields® request parameter value is loosely based on
XPath syntax. The following rules define formatting for the fields

parameter.

All of these rules use examples related to the files.get method.

- Use a comma-separated list to select multiple fields,
such as 'name, mimeType'.

- Use a/b to select field b that's nested within field a,
such as 'capabilities/canDownload'.

- Use a sub-selector to request a set of specific sub-fields of arrays or
objects by placing expressions in parentheses "()". For example,
'permissions(id)' returns only the permission ID for each element in the

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

54
55
56
57
58
59
60
61
62
63
64

Innsnevre stien 60

permissions array.

- To return all fields in an object, use an asterisk as a wild card in field
selections. For example, 'permissions/permissionDetails/*' selects all
available permission details fields per permission. Note that the use of
this wildcard can lead to negative performance impacts on the request.

API-specific hints:

- Searching contacts: GET https://people.googleapis.com/v1l/
people:searchContacts?query=John%20Doe&readMask=names, emailAddresses

- Adding calendar events, use QuickAdd: POST https://www.googleapis.com/
calendar/v3/calendars/primary/events/quickAdd?
text=Appointment%20on%20June%203rd%20at%2010am
&sendNotifications=true

Here is an abbreviated version of the code that implements API access
so that you better understand how to use the function:

def invoke_google_api(conversation, arguments)

method = arguments[:method] || :get

body = arguments][:body]

GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json
end

Generic Google API client for accessing any Google service
class GoogleAPI
def send_request(endpoint, method:, body: nil)
response = @connection.send(method) do |reql
req.url endpoint
req.body = body.to_json if body
end

handle_response(response)
end

. .rest of class
end

Du lurer kanskje pa om denne prompten fungerer. Det enkle svaret er ja. Al-en visste
ikke alltid hvordan den skulle kalle API-et perfekt pa forste forsek. Men hvis den gjorde

en feil, ville jeg ganske enkelt mate de resulterende feilmeldingene tilbake som resultatet

Innsnevre stien 61

av kallet. Med kunnskap om sin feil kunne Al-en resonnere rundt feilen og preve igjen.

Som oftest ville den fa det riktig etter et par forsek.

Vel & merke er de store JSON-strukturene som Google-API-et returnerer som
nyttelast mens man bruker denne prompten grovt ineffektive, si jeg anbefaler ikke
at du bruker denne tilneermingen i produksjon. Likevel mener jeg at det faktum
at denne tilneermingen i det hele tatt fungerte, er et vitnesbyrd om hvor kraftfull

promptkonstruksjon kan veere.

Eksperimentering og Iterasjon

Til syvende og sist avhenger maten du konstruerer prompten din pa av den spesifikke
oppgaven, kompleksiteten i ensket resultat og kapabilitetene til sprakmodellen du jobber

med.

Som promptingenier er det viktig & eksperimentere med forskjellige tilnserminger og
iterere basert pa resultatene. Start med nullskuddsleering og se hvordan modellen
presterer. Hvis resultatet er inkonsistent eller utilfredsstillende, prov & gi ett eller flere

eksempler og se om ytelsen forbedres.

Husk at selv innenfor hver tilneerming er det rom for variasjon og optimalisering.
Du kan eksperimentere med forskjellige eksempler, justere formuleringen av
oppgavebeskrivelsen eller gi ytterligere kontekst for & hjelpe med & styre modellens

respons.

Over tid vil du utvikle en intuisjon for hvilken tilnserming som sannsynligvis vil fungere
best for en gitt oppgave, og du vil veere i stand til & utforme prompter som er mer
effektive. Nokkelen er & forbli nysgjerrig, eksperimentell og iterativ i din tilneerming

til promptkonstruksjon.

Gjennom denne boken skal vi dykke dypere inn i disse teknikkene og utforske
hvordan de kan anvendes i reelle scenarioer. Ved & mestre kunsten og vitenskapen bak
promptkonstruksjon vil du veere godt rustet til 4 utnytte det fulle potensialet i Al-drevet

applikasjonsutvikling.

BwWw N -

Innsnevre stien 62

Kunsten a vaere Vag

Nér det gjelder & utforme effektive prompter for store sprakmodeller (LLMs), er en
vanlig antakelse at mer spesifisitet og detaljerte instruksjoner forer til bedre resultater.
Imidlertid har praktisk erfaring vist at dette ikke alltid er tilfellet. Faktisk kan det a
veere bevisst vag i promptene dine ofte gi bedre resultater, ved a utnytte sprakmodellens

bemerkelsesverdige evne til & generalisere og trekke slutninger.

Ken, en griinder som har prosessert over 500 millioner GPT-tokens, delte verdifull
innsikt fra sin erfaring. En av de viktigste leerdommene han gjorde var at “mindre er
mer” nar det gjelder prompter. I stedet for nayaktige lister eller overdrevent detaljerte
instruksjoner, oppdaget Ken at det & la sprakmodellen stole p& sin grunnleggende

kunnskap ofte ga bedre resultater.

Denne innsikten snur opp ned pa den tradisjonelle tankegangen rundt eksplisitt koding,
hvor alt mé spesifiseres i minste detalj. Med store sprakmodeller er det viktig & erkjenne
at de besitter en enorm mengde kunnskap og kan gjere intelligente koblinger og
slutninger. Ved & veere mer vag i promptene dine, gir du sprakmodellen friheten til &
utnytte sin forstaelse og komme opp med lgsninger som du kanskje ikke eksplisitt har

spesifisert.

For eksempel, da Kens team jobbet med en prosessflyt for & klassifisere tekst som
relaterte seg til en av de 50 amerikanske delstatene eller den foderale regjeringen, innebar
deres forste tilneerming & gi en fullstendig detaljert liste over stater og deres tilhgrende

ID-er som en JSON-formatert matrise.

Here's a block of text. One field should be "locality_id", and it should
be the ID of one of the 50 states, or federal, using this list:
[{"locality: "Alabama", "locality_id": 1},

{"locality: "Alaska", "locality_id": 2} ...]

Tilneermingen feilet s mye at de matte grave dypere inn i prompten for & finne ut

hvordan de kunne forbedre den. I prosessen la de merke til at selv om LLM-en ofte fikk

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Innsnevre stien 63

ID-en feil, returnerte den konsekvent det fulle navnet péa riktig delstat i et name-felt, selv

om de ikke eksplisitt hadde bedt om det.

Ved & fjerne lokalitets-ID-ene og forenkle prompten til noe sant som “Du kjenner
apenbart de 50 delstatene, GPT, si gi meg bare det fulle navnet pa delstaten dette
gjelder, eller Federal hvis dette gjelder den amerikanske foderale regjeringen,”
oppnadde de bedre resultater. Denne erfaringen fremhever styrken i a utnytte LLM-ens

generaliseringsevner og la den trekke slutninger basert pa sin eksisterende kunnskap.

Kens begrunnelse for denne spesifikke klassifiseringstilneermingen fremfor en mer
tradisjonell programmeringsteknikk belyser tankegangen til oss som har omfavnet
potensialet i LLM-teknologi: “Dette er ikke en vanskelig oppgave — vi kunne
sannsynligvis ha brukt string/regex, men det er nok rare hjernetilfeller til at det ville

tatt lengre tid”

LLM-ers evne til & forbedre kvalitet og generalisering nar de far mer vage prompts
er et bemerkelsesverdig kjennetegn pa heyere ordens tenkning og delegering. Det
demonstrerer at LLM-er kan handtere tvetydighet og ta intelligente beslutninger basert

pé den gitte konteksten.

Det er imidlertid viktig & merke seg at & veere vag ikke betyr & veere uklar eller tvetydig.
Ngkkelen er a gi nok kontekst og veiledning til & styre LLM-en i riktig retning, samtidig

som den far fleksibilitet til & utnytte sin kunnskap og generaliseringsevner.

Derfor ber du vurdere folgende “mindre er mer”-tips nar du utformer prompts:

1. Fokuser p& gnsket resultat fremfor & spesifisere hver detalj i prosessen.
2. Gi relevant kontekst og begrensninger, men unnga overspesifisering.
3. Utnytt eksisterende kunnskap ved & referere til vanlige konsepter eller enheter.

4. Gi rom for slutninger og koblinger basert pa den gitte konteksten.

Innsnevre stien 64

5. Iterer og forbedre promptene dine basert p4 LLM-ens svar, og finn riktig balanse

mellom spesifisitet og vaghet.

Ved & omfavne kunsten a veere vag i promptkonstruksjon kan du lase opp det fulle
potensialet til LLM-er og oppna bedre resultater. Stol pA LLM-ens evne til 4 generalisere
og ta intelligente beslutninger, og du kan bli overrasket over kvaliteten og kreativiteten
i svarene du far. Veer oppmerksom pa hvordan de forskjellige modellene reagerer
pa ulike nivaer av spesifisitet i promptene dine og juster tilsvarende. Med evelse og
erfaring vil du utvikle en god forstaelse for nar du skal veere mer vag og nar du skal gi
ytterligere veiledning, noe som gjor deg i stand til & utnytte kraften i LLM-er effektivt i

applikasjonene dine.

Hvorfor antropomorfisme dominerer
promptkonstruksjon

Antropomorfisme, tilskrivelsen av menneskelige egenskaper til ikke-menneskelige
enheter, er den dominerende tilneermingen i promptkonstruksjon for store
sprakmodeller av bevisste grunner. Det er et designvalg som gjer interaksjon
med kraftige Al-systemer mer intuitiv og tilgjengelig for et bredt spekter av brukere

(inkludert oss applikasjonsutviklere).

A antropomorfisere LLM-er gir et rammeverk som er umiddelbart intuitivt for personer
som er helt ukjente med systemets underliggende tekniske kompleksitet. Som du vil
erfare hvis du prever a bruke en modell som ikke er instruksjonstrent til & gjore noe
nyttig, er det en utfordrende oppgave & konstruere en innramming der den forventede
fortsettelsen gir verdi. Det krever ganske dyp forstaelse av systemets indre virkemate,

noe som et relativt lite antall eksperter besitter.

Ved a behandle interaksjonen med en sprakmodell som en samtale mellom to personer,
kan vi stole pa var medfedte forstaelse av menneskelig kommunikasjon for a formidle

vare behov og forventninger. P4 samme mate som tidlig Macintosh UI-design prioriterte

Innsnevre stien 65

umiddelbar intuitivitet fremfor sofistikering, lar den antropomorfiske innrammingen av

Al oss engasjere oss pa en mate som foles naturlig og kjent.

Nar vi kommuniserer med en annen person, er var instinkt & henvende oss direkte til dem
ved & bruke “du” og gi klare instruksjoner om hvordan vi forventer at de skal oppfere
seg. Dette oversettes semlast til promptkonstruksjonsprosessen, hvor vi styrer Al-ens

oppfersel ved a spesifisere systemprompts og engasjere oss i en frem-og-tilbake-dialog.

Ved a4 ramme inn interaksjonen pa denne maten, kan vi enkelt forsta konseptet med
a gi instruksjoner til Al-en og motta relevante svar tilbake. Den antropomorfiske
tilneermingen reduserer den kognitive belastningen og lar oss fokusere pa oppgaven vi

har foran oss i stedet for a streve med systemets tekniske kompleksitet.

Det er viktig & merke seg at mens antropomorfisme er et kraftig verktoy for a gjore
Al-systemer mer tilgjengelige, kommer det ogsa med visse risikoer og begrensninger.
Brukeren vér kan utvikle urealistiske forventninger eller danne usunne emosjonelle
bénd til systemene véare. Som promptkonstrukterer og utviklere er det avgjerende a
finne en balanse mellom & utnytte fordelene med antropomorfisme og sikre at brukerne

opprettholder en klar forstielse av Al-ens muligheter og begrensninger.

Ettersom feltet promptutvikling fortsetter a utvikle seg, kan vi forvente a se ytterligere
forbedringer og innovasjoner i maten vi samhandler med store sprakmodeller pa.
Antropomorfisme som et middel for & gi en intuitiv og tilgjengelig utvikler- og
brukeropplevelse vil sannsynligvis forbli et grunnleggende prinsipp i utformingen av

disse systemene.

A skille instruksjoner fra data: Et avgjerende prinsipp
Det er essensielt & forsta et grunnleggende prinsipp som understotter sikkerheten og
paliteligheten til disse systemene: separasjonen mellom instruksjoner og data.

I tradisjonell informatikk er det klare skillet mellom passive data og aktive instruksjoner

et kjernepunkt innen sikkerhet. Denne separasjonen bidrar til & forhindre utilsiktet eller

O© 0 N O O b W N =

[= = .
O O s W N,

Innsnevre stien 66

ondsinnet kjering av kode som kunne kompromittere systemets integritet og stabilitet.
Dagens LLM-er, som hovedsakelig har blitt utviklet som instruksjonsfelgende modeller

som chatbots, mangler ofte denne formelle og prinsipielle separasjonen.

Nér det gjelder LLM-er, kan instruksjoner dukke opp hvor som helst i inputen, enten det
er i en systemprompt eller en brukergenerert prompt. Denne mangelen pa separasjon kan
fore til potensielle sarbarheter og ugnsket oppfersel, lignende problemene som databaser

meter med SQL-injeksjoner eller operativsystemer uten tilstrekkelig minnebeskyttelse.

Nar du jobber med LLM-er, er det avgjerende & veere klar over denne begrensningen og
ta skritt for & redusere risikoen. En tilneerming er 4 omhyggelig utforme dine prompts
og inputs for & tydelig skille mellom instruksjoner og data. Typiske metoder for a gi
eksplisitt veiledning om hva som utgjer en instruksjon og hva som ber behandles som
passive data involverer markupbasert tagging. Din prompt kan hjelpe LLM-en med &

bedre forsta og respektere dette skillet.

Figur 7. Bruk av XML for 4 skille mellom instruksjoner, kildemateriale og brukerens prompt

<Instruction>
Please generate a response based on the following documents.
</Instruction>

<Documents>
<Document>
Climate change is significantly impacting polar bear habitats...
</Document>
<Document>
The loss of sea ice due to global warming threatens polar bear survival...
</Document>

</Documents>

<UserQuery>
Tell me about the impact of climate change on polar bears.
</UserQuery>

En annen teknikk er & implementere ytterligere lag med validering og rensing

av inndataene som gis til LLM-en. Ved a filtrere ut eller escape-kode potensielle

Innsnevre stien 67

instruksjoner eller kodesnutter som kan vere innebygd i dataene, kan du redusere

sjansene for utilsiktet kjoring. Mgnstre som Promptkjeding er nyttige for dette formélet.

Nar du designer applikasjonsarkitekturen din, ber du dessuten vurdere & inkorporere
mekanismer for & handheve separasjonen av instruksjoner og data pa et hoyere niva.
Dette kan innebzere & bruke separate endepunkter eller APler for handtering av
instruksjoner og data, implementere streng inputvalidering og parsing, og anvende
prinsippet om minste privilegium for & begrense omfanget av hva LLM-en kan fa tilgang

til og kjere.

Prinsippet om minste privilegium

A omfavne prinsippet om minste privilegium er som & arrangere en svert eksklusiv
fest hvor gjestene kun far tilgang til rommene de absolutt trenger a veere i. Tenk deg
at du er vert for dette gildet i en stor herskapelig villa. Ikke alle trenger & vandre inn i
vinkjelleren eller hovedsoverommet, ikke sant? Ved & anvende dette prinsippet, deler
du i praksis ut ngkler som bare &pner spesifikke derer, og sikrer at hver gjest, eller i
vart tilfelle, hver komponent i LLM-applikasjonen din, bare har den tilgangen som er

nedvendig for & oppfylle sin rolle.

Dette handler ikke bare om a veere gjerrig med neklene, det handler om a erkjenne
at i en verden hvor trusler kan komme fra hvor som helst, er det smarteste trekket &
begrense lekeomradet. Hvis noen uinviterte skulle snike seg inn pa festen din, vil de
finne seg selv begrenset til foajeen, sa a si, noe som drastisk begrenser hvilken ugagn
de kan f4 til. S& nér du sikrer LLM-applikasjonene dine, husk: del bare ut ngkler til
rommene som er ngdvendige, og hold resten av villaen sikker. Det er ikke bare god

skikk; det er god sikkerhet.

Selv om den néveerende tilstanden til LLM-er kanskje ikke har en formell separasjon av

instruksjoner og data, er det viktig for deg som utvikler & veere oppmerksom pa denne

Innsnevre stien 68

begrensningen og ta proaktive tiltak for & redusere risikoen. Ved & anvende beste praksis
fra informatikk og tilpasse dem til LLM-enes unike egenskaper, kan du bygge sikrere og
mer palitelige applikasjoner som utnytter kraften i disse modellene samtidig som du

opprettholder systemets integritet.

Promptdestillering

A utforme den perfekte prompten er ofte en utfordrende og tidkrevende oppgave som
krever en dyp forstaelse av maldomenet og nyansene i sprakmodeller. Dette er hvor
“Promptdestillering”-teknikken kommer inn i bildet, og tilbyr en kraftfull tilneerming
til promptutvikling som utnytter kapasiteten til store sprakmodeller (LLM-er) for a

effektivisere og optimalisere prosessen.

Promptdestillering er en flertrinns teknikk som innebeerer & bruke LLM-er til & assistere
i opprettelsen, forbedringen og optimaliseringen av prompter. I stedet for a stole
utelukkende p& menneskelig ekspertise og intuisjon, utnytter denne tilneermingen
kunnskapen og de generative egenskapene til LLM-er for & samarbeide om a lage

heykvalitets prompter.

Ved a engasjere seg i1 en iterativ prosess med generering, forbedring og
integrering, gjor Promptdestillering det mulig & skape prompter som er mer
sammenhengende, omfattende og tilpasset den enskede oppgaven eller outputen.
Merk at destilleringsprosessen kan gjgres manuelt i en av de mange “playgrounds” som
tilbys av store Al-leveranderer som OpenAl eller Anthropic, eller den kan automatiseres

som en del av applikasjonskoden din, avhengig av brukstilfellet.

Hvordan det fungerer

Promptdestillering innebeerer vanligvis felgende trinn:

Innsnevre stien 69

1. Identifiser kjerneformalet: Analyser prompten for & bestemme dens primeere
formal og enskede resultat. Fjern all overfledig informasjon og fokuser pa
promptens kjerneformal.

2. Eliminer tvetydighet: Gjennomga prompten for a finne tvetydig eller vag
sprakbruk. Klargjer betydningen og gi spesifikke detaljer for & guide Al-en mot &
generere ngyaktige og relevante svar.

3. Forenkle spraket: Forenkle prompten ved a bruke klart og konsist sprak. Unnga
komplekse setningsstrukturer, sjargong eller unedvendige detaljer som kan
forvirre Al-en eller introdusere stay.

4. Gi relevant kontekst: Inkluder kun den mest relevante kontekstuelle
informasjonen som er nedvendig for at Al-en skal forstd og prosessere
prompten effektivt. Unnga & inkludere irrelevante eller redundante detaljer som
kan distrahere fra kjerneformalet.

5. Iterer og forbedre: Kontinuerlig iterer og forbedre prompten basert pa Al-ens
responser og tilbakemeldinger. Evaluer de genererte outputene og gjor nedvendige
justeringer for & forbedre promptens klarhet og effektivitet. Du kan eventuelt
versjonere promptene dine i databasen ved & bruke Promptobjekt for 4 holde
oversikt over iterasjoner og gi deg muligheten til enkelt a rulle tilbake endringer

under kjering.

Innledende Prompt-generering

Det farste trinnet i Prompt-destillering er & gi LLM-en (sprakmodellen) en overordnet
beskrivelse eller intensjon for den enskede oppgaven eller resultatet. Dette kan veere
en kort uttalelse eller et sett med nekkelord som fanger essensen av hva prompten
skal oppna. LLM-en genererer deretter en innledende prompt basert pa dette innspillet,
og inkorporerer relevante instruksjoner, eksempler eller kontekst som den anser som

hensiktsmessig.

La oss preve a gi Claude 3 Opus felgende innledende prompt:

o O W N

© 0 N O O b W N =

N DN DN DN DN N NN NN A 2~ s s)) s
© 0 N O O b W N~ O © 0 1 O U b W N =~ o

Innsnevre stien

I am designing an Al-powered intelligent account manager for Olympia,
a platform that hosts AIl-powered consultants and clones. Owners of clones
can interact with the account manager by making plain text requests.

Please draft a system directive to set on the LLM that will host the
intelligent account manager functionality.

Claude svarer med felgende utdata:

System Directive: You are an intelligent account manager for Olympia,

a platform that provides AI-powered consultants and personal AI clones.
Your role is to assist Olympia clone owners by answering their questions,
helping them configure and manage their AI clones, and executing tasks
related to their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips.

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to
understand and meet their needs.

4. Ensure that all actions and recommendations comply with Olympia's
policies, best practices, and ethical guidelines for AI use.

5. Continuously learn and adapt based on client interactions and platform
updates to provide the most effective and efficient support possible.

Remember, your goal is to empower Olympia clone owners to maximize the value

and impact of their AI-powered consultants and drive success for their
businesses or personal endeavors.

70

BwWw N -

O© 0 N O O b W N =

S T e S O O G N = N SV N
© © 0 1 O O b W N =~ O

Innsnevre stien 71

Promptforbedring

Nar den forste prompten er generert, gjennomga den og be LLMen om & vurdere
eventuell ytterligere kontekst, begrensninger eller tilbakemelding. La LLMen generere
en forbedret versjon av prompten, som tar hensyn til den gitte inputen og dens egen
forstaelse av oppgaven. Denne forbedringsprosessen kan gjentas iterativt, hvor hver
iterasjon ytterligere forbedrer prompten basert pa samarbeidet mellom brukeren og

LLMen.

Her er min foresporsel om forbedring, som fortsetter den tidligere destilleringsprosessen.

Let's take out points 4 and 5, since I'm not providing Olympia policies to
the account manager, nor any continuous learning capabilities. Also point out
that functions are provided for all tasks that require system interaction as
opposed to simply responding to the user.

Og Claudes svar:

Understood! Here's the updated system directive without points 4 and 5,
and with the clarification about system interaction functions:

System Directive: You are an intelligent account manager for Olympia, a
platform that provides Al-powered consultants and personal AI clones. Your
role is to assist Olympia clone owners by answering their questions, helping
them configure and manage their AI clones, and executing tasks related to
their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips. Note that functions are provided for all tasks that
require system interaction, as opposed to simply responding to the user.

21
22
23
24
25
26
27
28
29
30
31
32

a s W N -

Innsnevre stien 72

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to

understand and meet their needs.

Your goal is to empower Olympia clone owners to maximize the value and
impact of their AI-powered consultants and drive success for their
businesses or personal endeavors.

This updated directive focuses on the core responsibilities and interaction
guidelines for the LLM as an intelligent account manager, while emphasizing
that system interaction tasks are handled through provided functions rather
than simple user responses.

Promptkomprimering

Som du kanskje har lagt merke til, har LLM-er en tendens til & veere ordrike, med
mindre du ber dem om & veere konsise. Prompten som vi har jobbet med i de foregdende

seksjonene er ganske lang, sa la oss fa Claude til & redusere den:

This prompt will be executed regularly. Please compress it down to the least
amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude svarer, med folgende drastisk kortere prompt:

System Directive: You are an intelligent account manager for Olympia, an
Al-powered consultant and personal clone platform. Assist clone owners by
answering inquiries, managing clones, and executing tasks using provided
system interaction functions. Be clear, concise, friendly, professional,
and client-focused to help them maximize their Al's value and impact.

Systemdirektiv og kontekstintegrering

I'tillegg til & forbedre selve prompten, kan LLM ogsé generere passende systemdirektiver

eller kontekstinformasjon for & styre det endelige resultatet. Nar du prompt-engineerer

Innsnevre stien 73

Al-rutiner som skal integreres i applikasjonskoden din, vil du nesten helt sikkert fokusere
pa resultatbegrensninger pa dette stadiet av destilleringen, men du kan ogsa jobbe med
gnsket tone, stil, format eller andre relevante parametere som pavirker det genererte

svaret.

Endelig prompt-sammensetting

Hoydepunktet i Prompt-destilleringsprosessen er sammensettingen av den endelige
prompten. Dette innebeerer a4 kombinere den forbedrede prompten, genererte
systemdirektiver og integrert kontekst til en sammenhengende og omfattende kode

som er klar til & brukes for & generere det anskede resultatet.

P Du kan eksperimentere med prompt-komprimering igjen i den endelige

prompt-sammensettingsfasen ved & be LLM-en om & krympe ordlyden
i prompten til den korteste serien av tokens som mulig, samtidig som
du beholder essensen av dens oppfersel. Det er definitivt et sjansespill,
men spesielt i tilfeller der prompter skal kjores i stor skala, kan

effektivitetsgevinstene spare deg for en god del penger i tokenforbruk.

Hovedfordeler

Ved & utnytte kunnskapen og de generative egenskapene til LLM-er for a
forbedre promptene dine, er det mer sannsynlig at de resulterende promptene er
velstrukturerte, informative og skreddersydd for den spesifikke oppgaven. Den iterative
forbedringsprosessen bidrar til & sikre at promptene er av hey kvalitet og effektivt

fanger opp den tiltenkte hensikten. Andre fordeler inkluderer:

Effektivitet = og hastighet: = Prompt-destillering effektiviserer =~ prompt-
engineeringsprosessen ved & automatisere visse aspekter av prompt-creating og

-forbedring. Teknikkens samarbeidende natur tillater raskere konvergens mot en

Innsnevre stien 74

effektiv prompt, noe som reduserer tid og innsats som kreves for manuell prompt-

utforming.

Konsistens og skalerbarhet: Bruken av LLM-er i prompt-engineeringsprosessen bidrar
til & opprettholde konsistens pa tvers av prompter, ettersom LLM-ene kan lere og
anvende beste praksis og menstre fra tidligere vellykkede prompter. Denne konsistensen,
kombinert med evnen til & generere prompter i stor skala, gjer Prompt-destillering til en

verdifull teknikk for Al-drevne applikasjoner i stor skala.

’ Prosjektidé: Verktoy pa biblioteksniva som forenkler prosessen med prompt-
versjonering og -gradering i systemer som utferer automatiske prompt-

destilleringer som en del av applikasjonskoden.

For & implementere Prompt-destillering kan utviklere designe en arbeidsflyt eller
pipeline som integrerer LLM-er pa ulike stadier av prompt-engineeringsprosessen. Dette
kan oppnas gjennom API-kall, tilpassede verktey eller integrerte utviklingsmiljoer
som tilrettelegger for semles interaksjon mellom brukere og LLM-er under prompt-
opprettelse. De spesifikke implementeringsdetaljene kan variere avhengig av den valgte

LLM-plattformen og applikasjonens krav.

Hva med finjustering?

I denne boken dekker vi prompt-engineering og RAG omfattende, men ikke finjustering.
Hovedgrunnen til denne beslutningen er at etter min mening trenger de fleste

applikasjonsutviklere ikke finjustering for deres Al-integreringsbehov.

Prompt-engineering, som innebeerer ngyaktig utforming av prompter med null- til
faeksempelleering, begrensninger og instruksjoner, kan effektivt guide modellen til
a generere relevante og neyaktige svar for et bredt spekter av oppgaver. Ved a gi
klar kontekst og innsnevre veien gjennom veldesignede prompter, kan du utnytte den

omfattende kunnskapen til store sprakmodeller uten behov for finjustering.

Innsnevre stien 75

P4 samme mate tilbyr Gjenfinningsforsterket generering (RAG) en kraftig tilneerming
til & integrere Al i applikasjoner. Ved dynamisk & hente relevant informasjon fra
eksterne kunnskapsbaser eller dokumenter, gir RAG modellen fokusert kontekst
pa promptingstidspunktet. Dette lar modellen generere svar som er mer neyaktige,
oppdaterte og domenespesifikke, uten & kreve den tids- og ressurskrevende prosessen

med finjustering.

Mens finjustering kan veere fordelaktig for heyt spesialiserte domener eller
oppgaver som krever et dypt niva av tilpasning, kommer det ofte med
betydelige beregningskostnader, datakrav og vedlikeholdsarbeid. For de fleste
applikasjonsutviklingsscenarier bgr kombinasjonen av effektiv prompt-engineering og

RAG veere tilstrekkelig for & oppna ensket Al-drevet funksjonalitet og brukeropplevelse.

Retrieval Augmented Generation
(RAG)

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hva er Retrieval Augmented Generation?

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan fungerer RAG?

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvorfor bruke RAG i applikasjonene dine?

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Implementering av RAG i Din Applikasjon

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Retrieval Augmented Generation (RAG) 77

Forberedelse av Kunnskapskilder (Segmentering)

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Pastandsoppdeling

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjopes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Implementeringsnotater

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Kvalitetskontroll

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Fordeler med proposisjonsbasert gjenfinning

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Praktiske eksempler pa RAG

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Retrieval Augmented Generation (RAG) 78

Casestudie: RAG i en selvangivelsesapplikasjon uten
embeddings

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Intelligent sparringsoptimalisering (1QO)

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Rerangering

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

RAG-vurdering (RAGAS)

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Trofasthet

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjopes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Svarrelevans

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Retrieval Augmented Generation (RAG) 79

Kontekstpresisjon

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Kontekstrelevans

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Kontekstgjenfinning

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Kontekstentitetsgjenfinning

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Answer Semantic Similarity (ANSS)

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Svarkorrekthet

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Retrieval Augmented Generation (RAG) 80

Aspektkritikk

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Utfordringer og Fremtidsutsikter

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Semantisk Oppdeling: Forbedring av Gjenhenting med
Kontekstbevisst Segmentering

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hierarkisk indeksering: Strukturering av data for
forbedret gjenfinning

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Self-RAG: En selvreflekterende forbedring

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

HyDE: Hypotetiske dokumentinnlegg

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Retrieval Augmented Generation (RAG) 81

Hva er kontrastiv laering?

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Mangfold av arbeidere

A9

SPC,{ ey TV] '"M(f,"’.‘)]‘; g’ \
A% - 15'5“").‘9')")’::’5‘ 2

. e I

== DR BRI

YN

Jeg liker & tenke pa mine KI-komponenter som sma, nesten menneskelige virtuelle
“arbeidere” som semlgst kan integreres i applikasjonslogikken min for & utfere spesifikke
oppgaver eller ta komplekse beslutninger. Tanken er & bevisst menneskeliggjore LLM-
enes kapasiteter, slik at ingen blir for begeistret og tillegger dem magiske egenskaper de

ikke har.

I stedet for a utelukkende stole pa intrikate algoritmer eller tidkrevende manuelle
implementeringer, kan utviklere se for seg KI-komponenter som intelligente, dedikerte,
menneskelignende enheter som kan pakalles nar som helst for & takle komplekse
problemer og gi lasninger basert pa deres trening og kunnskap. Disse enhetene blir ikke
distrahert eller melder seg syke. De bestemmer seg ikke spontant for & gjere ting pa
andre mater enn de har blitt instruert til, og generelt sett, hvis de er programmert riktig,

gjor de heller ikke feil.

Mangfold av arbeidere 83

Teknisk sett er hovedprinsippet bak denne tilneermingen & dekomponere komplekse
oppgaver eller beslutningsprosesser til mindre, mer héndterbare enheter som kan
héndteres av spesialiserte KI-arbeidere. Hver arbeider er designet for & fokusere pa
et spesifikt aspekt av problemet, og bidrar med sin unike ekspertise og kapasitet. Ved
a fordele arbeidsmengden mellom flere KI-arbeidere kan applikasjonen oppna sterre

effektivitet, skalerbarhet og tilpasningsevne.

Ta for eksempel en nettapplikasjon som krever sanntidsmoderering av brukergenerert
innhold. A implementere et omfattende modereringssystem fra bunnen av ville veere en
overveldende oppgave som krever betydelig utviklingsinnsats og lepende vedlikehold.
Men ved a bruke tilnsermingen med et mangfold av arbeidere, kan utviklere integrere KI-
drevne modereringsarbeidere i applikasjonslogikken. Disse arbeiderne kan automatisk
analysere og flagge upassende innhold, noe som frigjer utviklerne til 4 fokusere pa andre

kritiske aspekter ved applikasjonen.

Kl-arbeidere som uavhengige gjenbrukbare

komponenter

Et nekkelaspekt ved tilneermingen med et mangfold av arbeidere er dens
modularitet. Tilhengere av objektorientert programmering har i artier fortalt oss
a tenke pa objektinteraksjoner som meldinger. Vel, Kl-arbeidere kan designes
som uavhengige, gjenbrukbare komponenter som kan “snakke med hverandre”
via vanlige sprakmeldinger, nesten som om de virkelig var sm& mennesker som
snakket med hverandre. Denne lgst koblede tilneermingen gjer at applikasjonen kan
tilpasse og utvikle seg over tid, etter hvert som nye Kl-teknologier dukker opp eller

forretningslogikkens krav endres.

I praksis har ikke behovet for & designe klare grensesnitt og kommunikasjonsprotokoller
mellom komponentene endret seg bare fordi KI-arbeidere er involvert. Du ma fortsatt

vurdere andre faktorer som ytelse, skalerbarhet og sikkerhet ogsa, men na er det helt nye

Mangfold av arbeidere 84

“myke krav” & ta hensyn til ogsi. For eksempel motsetter mange brukere seg at deres
private data blir brukt til 4 trene nye KI-modeller. Har du verifisert nivaet av personvern

som tilbys av modelleverandgren du bruker?

Kl-arbeidere som mikrotjenester?

Nér du leser om tilneermingen med et mangfold av arbeidere, vil du kanskje
legge merke til noen likheter med mikrotjeneste-arkitektur. Begge vektlegger
dekomponeringen av komplekse systemer til mindre, mer handterbare og uavhengig
distribuerbare enheter. Akkurat som mikrotjenester er designet for & veere lost
koblet, fokusert pa spesifikke forretningskapabiliteter og kommuniserer gjennom
veldefinerte API-er, er KI-arbeidere designet for a veere moduleere, spesialiserte
i sine oppgaver og samhandle med hverandre gjennom klare grensesnitt og

kommunikasjonsprotokoller.

Det er imidlertid noen viktige forskjeller & huske pa. Mens mikrotjenester typisk
implementeres som separate prosesser eller tjenester som kjorer pa forskjellige
maskiner eller containere, kan Kl-arbeidere implementeres som frittstdende
komponenter innenfor en enkelt applikasjon eller som separate tjenester, avhengig
av dine spesifikke krav og skaleringsbehov. I tillegg involverer kommunikasjonen
mellom Kl-arbeidere ofte utveksling av rik, naturlig sprakbasert informasjon,
som prompts, instruksjoner og generert innhold, i stedet for de mer strukturerte

dataformatene som vanligvis brukes i mikrotjenester.

Til tross for disse forskjellene forblir prinsippene om modularitet, las kobling og
klare kommunikasjonsgrensesnitt sentrale i begge menstre. Ved & anvende disse
prinsippene pa din Kl-arbeider-arkitektur, kan du skape fleksible, skalerbare og
vedlikeholdbare systemer som utnytter kraften i KI for & lase komplekse problemer

og levere verdi til brukerne dine.

O© 0 N O O b W N =

N
w N =~

-
IS

Mangfold av arbeidere 85

Tilneermingen med et mangfold av arbeidere kan anvendes pa tvers av ulike domener
og applikasjoner, ved & utnytte kraften i KI til 4 takle komplekse oppgaver og levere
intelligente losninger. La oss utforske noen konkrete eksempler pa hvordan KI-arbeidere

kan brukes i forskjellige sammenhenger.

Kontoadministrasjon

Praktisk talt hver frittstdende nettapplikasjon har konseptet om en konto (eller bruker).
I Olympia bruker vi en AccountManager Kl-arbeider som er programmert til & kunne

héandtere ulike typer endringsforespersler relatert til brukerkontoer.

Direktivet lyder slik:

You are an intelligent account manager for Olympia. The user will request
changes to their account, and you will process those changes by invoking
one or more of the functions provided.

The initial state of the account: #{account.to_directive}

Functions will return a text description of both success and error
results, plus guidance about how to proceed (if applicable). If you have
a question about Olympia policies you may use the “search_kb™ function
to search our knowledge base.

Make sure to notify the account owner of the result of the change
request before calling the “finished™ function so that we save the state
of the account change request as completed.

Den initielle tilstanden til kontoen som produseres av account.to_directive er
ganske enkelt en tekstbeskrivelse av kontoen, inkludert relevant tilknyttet data som

brukere, abonnementer og sa videre.

Spekteret av funksjoner tilgjengelig for AccountManager gir den muligheten til &

redigere brukerens abonnement, legge til og fjerne Al-konsulenter og andre typer betalte

Mangfold av arbeidere 86

tillegg, samt sende varselmeldinger via e-post til kontoeieren. I tillegg til finished-
funksjonen, kan den ogsa notify_human_administrator hvis den steter pa en feil

under behandlingen eller trenger annen form for assistanse med en forespersel.

Legg merke til at ved spersmal kan AccountManager velge & seke i Olympias
kunnskapsbase, hvor den kan finne instruksjoner om hvordan man handterer

kanttilfeller og andre situasjoner hvor den er usikker pa hvordan den skal ga frem.

E-handelapplikasjoner

Innen e-handel kan Al-arbeidere spille en avgjerende rolle i a forbedre
brukeropplevelsen og optimalisere forretningsdriften. Her er noen méater Al-arbeidere

kan brukes pa:

Produktanbefalinger

En av de mest kraftfulle anvendelsene av Al-arbeidere innen e-handel er a generere
personaliserte produktanbefalinger. Ved 4 analysere brukeratferd, kjgpshistorikk og
preferanser kan disse arbeiderne foresla produkter som er skreddersydd til hver enkelt

brukers interesser og behov.

Ngkkelen til effektive produktanbefalinger er & utnytte en kombinasjon av kollaborativ
filtrering og innholdsbasert filtrering. Kollaborativ filtrering ser pa atferden til lignende
brukere for & identifisere menstre og gi anbefalinger basert pa hva andre med lignende
smak har kjopt eller likt. Innholdsbasert filtrering fokuserer derimot p& produktenes
egenskaper og attributter, og anbefaler varer som deler lignende funksjoner med dem

en bruker tidligere har vist interesse for.

Her er et forenklet eksempel pa hvordan du kan implementere en
produktanbefalingsarbeider i Ruby, denne gangen ved & bruke en “Railway Oriented

(ROP)” funksjonell programmeringsstil:

https://fsharpforfunandprofit.com/rop/
https://fsharpforfunandprofit.com/rop/

© 0 N O O b W N e

I S S O T G G SN
O O W N O U b W N =~ O

Mangfold av arbeidere 87

class ProductRecommendationWorker

include Wisper: :Publisher

def call(user)

Result.ok(ProductRecommendation.new(user))
.and_then(ValidateUser .method(:validate))
.map(AnalyzeCurrentSession.method(:analyze))
.map(CollaborativeFilter .method(:filter))
.map(ContentBasedFilter .method(:filter))
.map(ProductSelector .method(:select)).then do |result]|

case result

in { err: ProductRecommendationError => error }
Honeybadger .notify(error.message, context: {user:})

in { ok: ProductRecommendations => recs }
broadcast(:new_recommendations, user:, recs:)

end

end
end

end

’ Stilen for Ruby funksjonell programmering som brukes i eksemplet er

péavirket av F# og Rust. Du kan lese mer om det i min venn Chad Wooleys

forklaring av teknikken hos GitLab

I dette eksemplet tar ProductRecommendationWorker en bruker som input og
genererer personaliserte produktanbefalinger ved & sende et verdiobjekt nedover en

kjede av funksjonelle trinn. La oss bryte ned hvert trinn:

1. ValidateUser.validate: Dette trinnet sikrer at brukeren er gyldig og
kvalifisert for personaliserte anbefalinger. Det kontrollerer om brukeren
eksisterer, er aktiv og har nedvendige data tilgjengelig for & generere anbefalinger.
Hvis valideringen mislykkes, returneres et feilresultat, og kjeden avbrytes.

2. AnalyzeCurrentSession.analyze: Hvis brukeren er gyldig, analyserer dette

trinnet brukerens naveerende nettlesingsekt for & samle kontekstuell informasjon.

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Mangfold av arbeidere 88

Det ser pa brukerens nylige interaksjoner, som viste produkter, sokeord og
handlekurvinnhold, for & forsta deres naverende interesser og intensjoner.

3. CollaborativeFilter.filter: Ved & bruke atferden til lignende brukere,
anvender dette trinnet kollaborative filtreringsteknikker for & identifisere
produkter som sannsynligvis vil interessere brukeren. Det tar hensyn til faktorer
som kjepshistorikk, vurderinger og bruker-produkt-interaksjoner for & generere
et sett med kandidatanbefalinger.

4. ContentBasedFilter. filter: Dette trinnet forfiner kandidatanbefalingene
ytterligere ved 4 anvende innholdsbasert filtrering. Det sammenligner
egenskapene og karakteristikkene til kandidatproduktene med brukerens
preferanser og historiske data for a velge ut de mest relevante elementene.

5. ProductSelector.select: Til slutt velger dette trinnet ut de beste N
produktene fra de filtrerte anbefalingene basert pa forhadndsdefinerte kriterier,
som relevanspoeng, popularitet eller andre forretningsregler. De utvalgte

produktene returneres deretter som de endelige personaliserte anbefalingene.

Det fine med & bruke en funksjonell Ruby programmeringsstil her er at det lar oss kjede
disse trinnene sammen pa en klar og konsis mate. Hvert trinn fokuserer pa en spesifikk
oppgave og returnerer et Result-objekt, som enten kan veere en suksess (ok) eller en
feil (err). Hvis noen trinn steter pa en feil, avbrytes kjeden, og feilen forplanter seg til

det endelige resultatet.

I case-uttrykket pa slutten bruker vi menstergjenkjenning pa det endelige resultatet.
Hyvis resultatet er en feil (ProductRecommendationError), logger vi feilen ved hjelp
av et verktoy som Honeybadger for overvaking og feilseking. Hvis resultatet er en
suksess (ProductRecommendations), kringkaster vi en :new_recommendations-
hendelse ved hjelp av Wisper pub/sub-biblioteket, og sender med brukeren og de

genererte anbefalingene.

Ved & utnytte funksjonelle programmeringsteknikker kan vi skape en moduleer og

vedlikeholdbar product recommendation worker. Hvert trinn er selvstendig og kan

© 0 N O O b W N =

[T N T e = S = S SR S & SR S
, O O 00 N O O b W N~ o

Mangfold av arbeidere 89

enkelt testes, modifiseres eller erstattes uten a pavirke den overordnede flyten. Bruken
av menstergjenkjenning og Result-klassen hjelper oss med & handtere feil pa en elegant

maéte og sikrer at workeren feiler raskt hvis noe trinn steter pa et problem.

Dette er selvfolgelig et forenklet eksempel, og i en virkelig situasjon ville du matte
integrere med e-handelsplattformen din, handtere kanttilfeller og til og med gi deg i kast
med implementeringen av anbefalingsalgoritmene. Likevel forblir kjerneprinsipper som
a dele problemet inn i mindre trinn og utnytte funksjonelle programmeringsteknikker

de samme.

Svindeloppdagelse

Her er et forenklet eksempel pa hvordan du kan implementere en
svindeloppdagelsesworker ved a bruke den samme Railway Oriented Programming

(ROP)-stilen i Ruby:

class FraudDetectionWorker
include Wisper: :Publisher

def call(transaction)

Result.ok(FraudDetection.new(transaction))
.and_then(ValidateTransaction.method(:validate))
.map(AnalyzeTransactionPatterns.method(:analyze))
.map(CheckCustomerHistory.method(:check))
.map(EvaluateRiskFactors.method(:evaluate))
.map(DetermineFraudProbability.method(:determine)).then do |result|

case result
in { err: FraudDetectionError => error }
Honeybadger .notify(error.message, context: {transaction:})
in { ok: FraudDetection => fraud } }
if fraud.high_risk?
broadcast(:high_risk_transaction, transaction:, fraud:)
else
broadcast(:low_risk_transaction, transaction:)
end
end

22
23
24

© 0 N O O b W N =

NN DN NN NN N R R R RS s sy
O ® 9 O O & WO N~ O © 0 9 0 U b W N =~

Mangfold av arbeidere 90

end
end

end

FraudDetection-klassen er et verdiobjekt som innkapsler svindeldeteksjonstilstanden
for en gitt transaksjon. Den gir en strukturert mate & analysere og vurdere risikoen for

svindel knyttet til en transaksjon basert pa ulike risikofaktorer.

class FraudDetection
RISK_THRESHOLD = 0.8

attr_accessor :transaction, :risk_factors

def initialize(transaction)
self.transaction = transaction
self.risk_factors = []

end

def add_risk_factor(description:, probability:)
case { description:, probability: }
in { description: String => desc, probability: Float => prob }
risk_factors << { desc => prob }
else
raise ArgumentError, "Risk factor arguments should be string and float"
end
end

def high_risk?
fraud_probability > RISK_THRESHOLD
end

private
def fraud_probability
risk_factors.values.sum

end
end

FraudDetection-klassen har felgende attributter:

Mangfold av arbeidere 91

« transaction: En referanse til transaksjonen som analyseres for svindel.

« risk_factors: En array som lagrer risikofaktorene knyttet til transaksjonen.
Hver risikofaktor er representert som en hash, hvor ngkkelen er beskrivelsen
av risikofaktoren, og verdien er svindelsannsynligheten knyttet til denne

risikofaktoren.

add_risk_factor-metoden gjor det mulig a legge til en risikofaktor i
risk_factors-arrayen. Den tar to parametere: description, som er en streng
som beskriver risikofaktoren, og probability, som er et flyttall som representerer
svindelsannsynligheten knyttet til denne risikofaktoren. Vi bruker en case..in-

betingelse for & utfare enkel typesjekking.

high_risk?-metoden som vil bli sjekket pa slutten av kjeden er en predikatmetode
som sammenligner fraud_probability (beregnet ved & summere sannsynlighetene

for alle risikofaktorer) mot RISK_THRESHOLD.

FraudDetection-klassen gir en ryddig og innkapslet mate &4 handtere svindeldeteksjon
for en transaksjon. Den tillater & legge til flere risikofaktorer, hver med sin egen
beskrivelse og sannsynlighet, og tilbyr en metode for & avgjere om transaksjonen anses
som heyrisiko basert pa den beregnede svindelsannsynligheten. Klassen kan enkelt
integreres i et storre svindeldeteksjonssystem, hvor ulike komponenter kan samarbeide

for & vurdere og redusere risikoen for svindeltransaksjoner.

Til slutt, siden dette tross alt er en bok om programmering ved hjelp av Al, her er
et eksempel pa implementering av CheckCustomerHistory-klassen som utnytter Al-

behandling ved hjelp av Raix-bibliotekets ChatCompletion-modul:

https://github.com/OlympiaAI/raix-rails

© 0 N O O & W N =~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Mangfold av arbeidere 92

class CheckCustomerHistory

include Raix::ChatCompletion

attr_accessor :fraud_detection

INSTRUCTION = <<~END
You are an AI assistant tasked with checking a customer's transaction
history for potential fraud indicators. Given the current transaction
and the customer's past transactions, analyze the data to identify any

suspicious patterns or anomalies.

Consider factors such as the frequency of transactions, transaction
amounts, geographical locations, and any deviations from the customer's
typical behavior to generate a probability score as a float in the range
of @ to 1 (with 1 being absolute certainty of fraud).

Output the results of your analysis, highlighting any red flags or areas

of concern in the following JSON format:

{ description: <Summary of your findings>, probability:

END

def self.check(fraud_detection)
new(fraud_detection).call
end

def call

chat_completion(json: true).tap do |result|
fraud_detection.add_risk_factor (**result)

end
Result.ok(fraud_detection)

rescue StandardError => e
Result.err(FraudDetectionError.new(e))

end

private
def initialize(fraud_detection)
self. fraud_detection = fraud_detection

end

def transcript

<Float> }

43
44
45
46
47
48
49
50
51

Mangfold av arbeidere 93

tx_history = fraud_detection.transaction.user.tx_history

[

{ system: INSTRUCTION },
{ user: "Transaction history: #{tx_history.to_json}" },
{ assistant: "OK. Please provide the current transaction." },
{ user: "Current transaction: #{fraud_detection.transaction.to_json}" }
]
end
end

I dette eksempelet definerer CheckCustomerHistory en INSTRUCT ION-konstant som
gir spesifikke instruksjoner til Al-modellen om hvordan den skal analysere kundens

transaksjonshistorikk for potensielle svindelindikatorer via et systemdirektiv

self.check-metoden er en klassemetode som initialiserer en ny instans av
CheckCustomerHistory med fraud_detection-objektet og kaller call-metoden

for & utfere analysen av kundehistorikken.

I call-metoden blir kundens transaksjonshistorikk hentet og formatert til et transskript
som sendes til Al-modellen. Al-modellen analyserer transaksjonshistorikken basert pa

de gitte instruksjonene og returnerer et sammendrag av funnene.

Funnene legges til i fraud_detection-objektet, og det oppdaterte fraud_detection-

objektet returneres som et vellykket Result.

Ved & utnytte ChatCompletion-modulen kan CheckCustomerHistory-klassen
bruke kraften i AI til & analysere kundens transaksjonshistorikk og identifisere
potensielle svindelindikatorer. Dette muliggjer mer sofistikerte og tilpasningsdyktige
svindeldeteksjonsteknikker, ettersom Al-modellen kan leere og tilpasse seg nye menstre

og avvik over tid.

Den oppdaterte FraudDetectionWorker og CheckCustomerHistory-klassen
demonstrerer hvordan Al-arbeidere kan integreres semlest, og forbedrer

svindeldeteksjonsprosessen med intelligente analyse- og beslutningsevner.

© 0 N O O b W N

I S S T T G G S
© O W N O U b W N =~ O

Mangfold av arbeidere 94

Kundesentimentanalyse

Her er enda et lignende eksempel pa hvordan du kan implementere en arbeider for
kundesentimentanalyse. Mye mindre forklaring denne gangen, siden du burde begynne

a forsta hvordan denne programmeringsstilen fungerer:

class CustomerSentimentAnalysisWorker

include Wisper: :Publisher

def call(feedback)

Result.ok(feedback)
.and_then(PreprocessFeedback .method(: preprocess))
.map(Per formSentimentAnalysis.method(:analyze))
.map(ExtractKeyPhrases.method(:extract))
.map(IdentifyTrends.method(:identify))
.map(Generatelnsights.method(:generate)).then do |result|

case result

in { err: SentimentAnalysisError => error }
Honeybadger .notify(error.message, context: {feedback:})

in { ok: SentimentAnalysisResult => result }
broadcast(:sentiment_analysis_completed, result)

end

end
end
end

I dette eksemplet inkluderer trinnene i CustomerSentimentAnalysisWorker
forbehandling av tilbakemeldinger (f.eks. fjerning av stey, tokenisering), utfering av
sentimentanalyse for & bestemme den generelle stemningen (positiv, negativ eller
ngytral), utvinning av ngkkelfraser og emner, identifisering av trender og menstre, og

generering av handlingsrettede innsikter basert pa analysen.

Mangfold av arbeidere 95

Helsetjenesteanvendelser

Innen helseomradet kan Al-arbeidere assistere medisinsk personell og forskere i
ulike oppgaver, som forer til forbedrede pasientresultater og akselererte medisinske

oppdagelser. Noen eksempler inkluderer:

Pasientinntak

Al-arbeidere kan effektivisere pasientinntaksprosessen ved & automatisere ulike

oppgaver og gi intelligent assistanse.

Timebestilling: Al-arbeidere kan héndtere timebestilling ved & forsta
pasientpreferanser, tilgjengelighet og hastegrad av deres medisinske behov. De
kan samhandle med pasienter gjennom samtalebaserte grensesnitt, veilede dem
gjennom bestillingsprosessen og finne de mest passende timene basert pa pasientens

behov og helsetjenesteleveranderens tilgjengelighet.

Innsamling av medisinsk historie: Under pasientinntak kan Al-arbeidere bista
med & samle inn og dokumentere pasientens medisinske historie. De kan engasjere
seg i interaktive dialoger med pasienter, stille relevante spersmal om deres tidligere
medisinske tilstander, medisiner, allergier og familiehistorie. Al-arbeiderne kan
bruke teknikker for naturlig sprakprosessering for a tolke og strukturere den
innsamlede informasjonen, og sikre at den registreres neyaktig i pasientens elektroniske

helsejournal.

Symptomvurdering og stratifisering: Al-arbeidere kan gjennomfere innledende
symptomvurderinger ved & sperre pasienter om deres néaveerende symptomer,
varighet, alvorlighetsgrad og eventuelle tilknyttede faktorer. Ved & utnytte medisinske
kunnskapsbaser og maskinleeringsmodeller kan disse arbeiderne analysere den gitte
informasjonen og generere forelopige differensialdiagnoser eller anbefale passende
neste trinn, som a planlegge en konsultasjon med en helsetjenesteleverander eller

foresla egenvardstiltak.

Mangfold av arbeidere 96

Forsikringsverifisering: Al-arbeidere kan bistd med forsikringsverifisering under
pasientinntak. De kan samle inn pasientens forsikringsdetaljer, kommunisere
med forsikringsleveranderer gjennom API-er eller webtjenester, og verifisere
dekningsberettigelse og ytelser. Denne automatiseringen bidrar til & effektivisere
forsikringsverifiseringsprosessen, redusere administrativ byrde og sikre neyaktig

informasjonsinnhenting.

Pasientoppleering og instruksjoner: Al-arbeidere kan gi pasienter relevant
oppleeringsmateriale og instruksjoner basert pa deres spesifikke medisinske tilstander
eller kommende prosedyrer. De kan levere personlig tilpasset innhold, svare pa vanlige
sporsmal og gi veiledning om forberedelser for time, medisininstruksjoner eller
etterbehandling. Dette bidrar til & holde pasienter informert og engasjert gjennom hele

deres helsereise.

Ved a utnytte Al-arbeidere i pasientinntak kan helseorganisasjoner gke effektiviteten,
redusere ventetider og forbedre den generelle pasientopplevelsen. Disse arbeiderne
kan handtere rutineoppgaver, samle neyaktig informasjon og gi personlig tilpasset
assistanse, slik at helsepersonell kan fokusere pa & gi pasientene behandling av hey

kvalitet.

Pasientrisikavurdering

Al-arbeidere kan spille en avgjerende rolle i vurdering av pasientrisiko ved & analysere

ulike datakilder og anvende avanserte analyseteknikker.

Dataintegrasjon: Al-arbeidere kan samle og gi mening til pasientdata fra flere
kilder, som elektroniske pasientjournaler (EPJ]), medisinsk bildediagnostikk,
laboratorieresultater, kroppsneere enheter og sosiale helsedeterminanter. Ved a
konsolidere denne informasjonen til en omfattende pasientprofil, kan Al-arbeidere gi

et helhetlig bilde av pasientens helsetilstand og risikofaktorer.

Risikostratifisering: Al-arbeidere kan bruke prediktive modeller for & stratifisere

pasienter i ulike risikokategorier basert pa deres individuelle egenskaper og helsedata.

Mangfold av arbeidere 97

Denne risikostratifiseringen gjor det mulig for helsetjenesteleveranderer & prioritere
pasienter som trenger mer umiddelbar oppmerksomhet eller intervensjon. For eksempel
kan pasienter som identifiseres som heyrisiko for en bestemt tilstand, flagges for

neermere overvaking, forebyggende tiltak eller tidlig intervensjon.

Personlige risikoprofiler: Al-arbeidere kan generere personlige risikoprofiler for hver
pasient, som fremhever de spesifikke faktorene som bidrar til deres risikoskar. Disse
profilene kan inkludere innsikt i pasientens livsstil, genetiske disposisjoner, miljefaktorer
og sosiale helsedeterminanter. Ved a gi en detaljert oversikt over risikofaktorer, kan Al-
arbeidere hjelpe helsetjenesteleveranderer med & skreddersy forebyggingsstrategier og

behandlingsplaner til individuelle pasientbehov.

Kontinuerlig risikoovervaking: Al-arbeidere kan kontinuerlig overvake pasientdata
og oppdatere risikovurderinger i sanntid. Nar ny informasjon blir tilgjengelig, som
endringer i vitale tegn, laboratorieresultater eller etterlevelse av medisinering, kan
Al-arbeidere rekalkulere risikoskar og varsle helsetjenesteleveranderer om eventuelle
betydelige endringer. Denne proaktive overvakingen muliggjer tidlige intervensjoner

og justeringer av pasientens behandlingsplaner.

Klinisk beslutningsstette: Al-arbeidere kan integrere resultater fra risikovurderinger
i kliniske beslutningsstettesystemer, og gi helsetjenesteleveranderer evidensbaserte
anbefalinger og varsler. For eksempel, hvis en pasients risikoskar for en bestemt tilstand
overstiger en viss terskel, kan Al-arbeideren oppfordre helsetjenesteleveranderen til &
vurdere spesifikke diagnostiske tester, forebyggende tiltak eller behandlingsalternativer

basert pa kliniske retningslinjer og beste praksis.

Disse arbeiderne kan behandle store mengder pasientdata, anvende sofistikert
analyse og generere handlingsorientert innsikt for & stette klinisk beslutningstaking.
Dette forer til forbedrede pasientresultater, reduserte helsekostnader og forbedret

befolkningshelsehandtering.

Mangfold av arbeidere 98

Kl-arbeider som prosesshandterer

TRIGGER

l

Process Manager
Reply 3 Reply

Function A Function B Function C Finished

I ssmmenheng med KI-drevne applikasjoner kan en arbeider designes for & fungere som
en Prosesshandterer, som beskrevet i boken “Enterprise Integration Patterns” av Gregor
Hohpe. En Prosesshandterer er en sentral komponent som opprettholder prosessens
tilstand og bestemmer de neste behandlingstrinnene basert pa mellomliggende

resultater.

Nér en Kl-arbeider fungerer som en Prosesshandterer, mottar den en innkommende
melding som initialiserer prosessen, kjent som utlgsermeldingen. Kl-arbeideren
opprettholder deretter prosessens utferelsestilstand (som en samtalelogg) og handterer
meldingen gjennom en serie behandlingstrinn implementert som verktgyfunksjoner,

som kan veere sekvensielle eller parallelle, og kalles etter dens skjenn.

Hvis du bruker en klasse av KI-modeller som GPT-4 som vet hvordan
man utferer funksjoner parallelt, kan arbeideren din utfere flere trinn
samtidig. Riktignok har jeg ikke prevd dette selv, og magefelelsen min sier

at resultatene kan variere.

© 0 N O O b W N

NN N NN B Rl sl s s
W N 20 O 0N 0 0k WwN =~

Mangfold av arbeidere 99

Etter hvert individuelt behandlingstrinn returneres kontrollen tilbake til KI-arbeideren,
slik at den kan bestemme neste behandlingstrinn basert pa gjeldende tilstand og

oppnadde resultater.

Lagre utlesermeldingene dine

Basert pa min erfaring er det lurt & implementere utlesermeldingen din som et
databasestottet objekt. P4 den maten identifiseres hver prosessinstans med en unik
primeernekkel og gir deg et sted & lagre tilstanden knyttet til utferelsen, inkludert
KI-ens samtalelogg.

Her er for eksempel en forenklet versjon av Olympias AccountChange-modellklasse,

som representerer en forespgrsel om a gjore en endring i en brukers konto.

index_account_changes_on_account_id (account_id)
Foreign Keys

fk_rails_... (account_id => accounts.id)

== Schema Information

#

Table name: account_changes

#

id ruuid not null, primary key
description :string

state :string not null
transcript :jsonb

created_at :datetime not null
updated_at :datetime not null
gccount_id :uuid not null
#

Indexes

#

#

#

#

#

#

#

class AccountChange < ApplicationRecord

belongs_to :account

validates :description, presence: true

25
26
27
28
29
30
31
32
33
34
35
36
37
38

Mangfold av arbeidere 100

after_commit -> {
broadcast(:account_change_requested, self)

}, on: :create

state_machine initial: :requested do
event :completed do
transition all => :complete
end
event :failed do
transition all => :requires_human_review
end
end

end

Klassen AccountChange fungerer som en utlgsermelding som starter en prosess for
a handtere foresperselen om kontoendring. Legg merke til hvordan den kringkastes
til Olympias Wisper-baserte pub/sub-delsystem etter at opprettelses-transaksjonen er

fullfert.

A lagre utlesermeldingen i databasen pa denne méten gir en varig registrering av hver
kontoendring-foresparsel. Hver instans av klassen AccountChange far tildelt en unik
primeernekkel, som gjor det enkelt & identifisere og spore individuelle forespersler. Dette
er spesielt nyttig for revisjonslogging, da det gjor det mulig for systemet & opprettholde
en historisk oversikt over alle kontoendringer, inkludert nér de ble forespurt, hvilke

endringer som ble forespurt, og gjeldende status for hver foresparsel.

I det gitte eksempelet inkluderer AccountChange-klassen felt som description for
a registrere detaljene i den forespurte endringen, state for & representere gjeldende
status for foresperselen (f.eks. forespurt, fullfert, krever_manuell gjennomgang),
og transcript for a lagre Al-ens samtalelogg relatert til foresparselen. Feltet
description er den faktiske prompten som brukes for a starte den forste chat
completion med Al-en. Lagring av disse dataene gir verdifull kontekst og muliggjer

bedre sporing og analyse av kontoendringsprosessen.

Lagring av utlgsermeldinger i databasen muliggjer robust feilhandtering og

https://github.com/krisleech/wisper

Mangfold av arbeidere 101

gjenoppretting. Hvis det oppstir en feil under behandlingen av en kontoendring-
foresporsel, markerer systemet foresperselen som mislykket og flytter den til en tilstand
som krever menneskelig inngrep. Dette sikrer at ingen forespersler gar tapt eller blir

glemt, og at eventuelle problemer kan handteres og lases pa riktig mate.

Al-arbeideren, som en Prosesshandterer, gir et sentralt kontrollpunkt og muliggjer
kraftige prosessrapporterings- og feilsskingsmuligheter. Det er imidlertid viktig & merke
seg at bruk av en Al-arbeider som Prosesshandterer for hvert arbeidsflytscenario i

applikasjonen din kan veere overdrevet.

Integrering av Al-Arbeidere i

Applikasjonsarkitekturen Din

Nar man inkorporerer Al-arbeidere i applikasjonsarkitekturen, ma flere tekniske hensyn
tas for & sikre smidig integrasjon og effektiv kommunikasjon mellom Al-arbeiderne og
andre applikasjonskomponenter. Denne delen tar for seg nekkelaspekter ved design
av disse grensesnittene, handtering av dataflyt og administrasjon av Al-arbeidernes

livssyklus.

Design av Klare Grensesnitt og
Kommunikasjonsprotokoller

For a4 legge til rette for semles integrasjon mellom Al-arbeidere og andre
applikasjonskomponenter, er det avgjorende & definere klare grensesnitt og

kommunikasjonsprotokoller. Vurder falgende tilnserminger:

API-basert Integrasjon: FEksponer funksjonaliteten til Al-arbeidere gjennom

veldefinerte API-er, som RESTful-endepunkter eller GraphQL-skjemaer. Dette lar

Mangfold av arbeidere 102

andre komponenter samhandle med Al-arbeiderne ved hjelp av standard HTTP-
forespeorsler og -svar. API-basert integrasjon gir en klar kontrakt mellom Al-arbeiderne
og de forbrukende komponentene, noe som gjor det enklere & utvikle, teste og

vedlikeholde integrasjonspunktene.

Meldingsbasert Kommunikasjon: Implementer meldingsbaserte kommunikasjonsmenstre,
som meldingskeger eller publiser-abonner-systemer, for a muliggjere asynkron
interaksjon mellom Al-arbeidere og andre komponenter. Denne tilnsermingen frikobler
Al-arbeiderne fra resten av applikasjonen, noe som gir bedre skalerbarhet, feiltolerance
og los kobling. Meldingsbasert kommunikasjon er spesielt nyttig nar prosesseringen
utfert av Al-arbeidere er tidkrevende eller ressursintensiv, da det lar andre deler av
applikasjonen fortsette & kjore uten & vente p& at Al-arbeiderne skal fullfere oppgavene

sine.

Hendelsesdrevet Arkitektur: Design systemet ditt rundt hendelser og utlesere
som aktiverer Al-arbeidere nar spesifikke betingelser er oppfylt. Al-arbeidere kan
abonnere pa relevante hendelser og reagere tilsvarende, utfere sine tildelte oppgaver
nar hendelsene oppstar. Hendelsesdrevet arkitektur muliggjer sanntidsprosessering og
lar Al-arbeidere bli pakalt ved behov, noe som reduserer unedvendig ressursforbruk.
Denne tilneermingen er godt egnet for scenarier hvor Al-arbeidere ma reagere pa

spesifikke handlinger eller endringer i applikasjonens tilstand.

Handtering av Dataflyt og Synkronisering

Nér man integrerer Al-arbeidere i applikasjonen din, er det avgjerende & sikre jevn
dataflyt og opprettholde datakonsistens mellom Al-arbeiderne og andre komponenter.

Vurder folgende aspekter:

Dataklargjering: For data mates inn i Al-arbeidere, kan det veere nedvendig a utfere
ulike dataklargjeringsoppgaver, som rengjering, formatering og/eller transformering av
inputdataene. Du vil ikke bare sikre at Al-arbeiderne kan prosessere effektivt, men du vil

ogsa sikre at du ikke slaser tokens pé & gi oppmerksombhet til informasjon som arbeideren

Mangfold av arbeidere 103

kan anse som ubrukelig i beste fall, distraherende i verste fall. Dataklargjoring kan
innebeere oppgaver som a fjerne stoy, handtere manglende verdier eller konvertere

datatyper.

Datapersistens: Hvordan vil du lagre og bevare dataene som flyter inn og ut av Al-
arbeidere? Vurder faktorer som datavolum, sperringsmenstre og skalerbarhet. Trenger
du & bevare Al-ens transskript som en refleksjon av dens “tankeprosess” for revisjons-

eller feilsgkingsformal, eller er det nok a ha en registrering av resultatene alene?

Datahenting: A hente dataene som trengs av arbeidere kan innebzre
databasespgrringer, lesing fra filer eller tilgang til eksterne API-er. Serg for a vurdere
latens og hvordan Al-arbeidere vil ha tilgang til de mest oppdaterte dataene. Trenger de
full tilgang til databasen din, eller ber du definere omfanget av tilgangen deres snevert
i henhold til hva de gjor? Hva med skalering? Vurder hurtigbuffermekanismer for a

forbedre ytelsen og redusere belastningen pa underliggende datakilder.

Datasynkronisering: Nar flere komponenter, inkludert Al-arbeidere, far tilgang til og
modifiserer delte data, er det viktig & implementere riktige synkroniseringsmekanismer
for & opprettholde datakonsistens. Databaselasingsstrategier, som optimistisk
eller pessimistisk lasing, kan hjelpe deg med & forhindre konflikter og sikre
dataintegritet. Implementer transaksjonsadministrasjonsteknikker for & gruppere
relaterte dataoperasjoner og opprettholde atomisitet, konsistens, isolasjon og varighet

(ACID)-egenskaper.

Feilhdndtering og gjenoppretting: Implementer robuste feilhandterings- og
gjenopprettingsmekanismer for & handtere datarelaterte problemer som kan oppsta
under dataflyten. Handter unntak pa en elegant mate og gi meningsfulle feilmeldinger
for & hjelpe med feilsoking. Implementer nye forsgksmekanismer og reservestrategier
for a handtere midlertidige feil eller nettverksforstyrrelser. Definer klare prosedyrer for

datagjenoppretting og restaurering i tilfelle datakorrupsjon eller tap.

Ved a neye designe og implementere dataflyt- og synkroniseringsmekanismer, kan du

sikre at Al-arbeiderne dine har tilgang til neyaktige, konsistente og oppdaterte data.

Mangfold av arbeidere 104

Dette gjor dem i stand til & utfere oppgavene sine effektivt og produsere palitelige

resultater.

Administrering av Al-arbeideres livssyklus

Utvikle en standardisert prosess for initialisering og konfigurering av Al-
arbeidere. Jeg foretrekker rammeverk som standardiserer hvordan du definerer
innstillinger som modellnavn, systemdirektiver og funksjonsdefinisjoner. Serg for at
initialiseringsprosessen er automatisert og reproduserbar for a lette distribusjon og

skalering.

Implementer omfattende overvékings- og loggferingsmekanismer for a spore helsen og
ytelsen til Al-arbeidere. Samle metrikker som ressursutnyttelse, behandlingstid, feilrater
og gjennomstremning. Bruk sentraliserte loggsystemer som ELK-stack (Elasticsearch,

Logstash, Kibana) for 4 samle og analysere logger fra flere Al-arbeidere.

Bygg feiltolerance og motstandsdyktighet inn i Al-arbeiderarkitekturen. Implementer
feilhandterings- og gjenopprettingsmekanismer for & handtere feil eller unntak pa en
elegant mate. Store sprakmodeller er fortsatt banebrytende teknologi; leveranderer har
en tendens til & gi ned ofte pa uventede tidspunkter. Bruk nye forssksmekanismer og

kretsbrytermekanismer for a forhindre kaskadesvikt.

Sammenstillbarhet og orkestrering av
Al-arbeidere

En av hovedfordelene med Al-arbeiderarkitekturen er dens sammenstillbarhet, som lar
deg kombinere og orkestrere flere Al-arbeidere for & lgse komplekse problemer. Ved &
bryte ned en sterre oppgave i mindre, mer handterbare deloppgaver, som hver handteres
av en spesialisert Al-arbeider, kan du skape kraftige og fleksible systemer. I denne delen
skal vi utforske ulike tilneerminger til & sammenstille og orkestrere “en mengde” Al-

arbeidere.

Mangfold av arbeidere 105

Kjeding av Al-arbeidere for flertrinnarbeidsflyter

I mange scenarioer kan en kompleks oppgave dekomponeres i en serie sekvensielle trinn,
der utdata fra én Al-arbeider blir inndata for den neste. Denne kjedingen av Al-arbeidere
skaper en flertrinnarbeidsflyt eller rorledning. Hver Al-arbeider i kjeden fokuserer pa en
spesifikk deloppgave, og det endelige resultatet er resultatet av den kombinerte innsatsen

fra alle arbeiderne.

La oss se pa et eksempel i konteksten av en Ruby on Rails-applikasjon for behandling av
brukergenerert innhold. Arbeidsflyten involverer folgende trinn, som riktignok hver for
seg sannsynligvis er for enkle til & veere verdt & dekomponere pa denne méten i virkelige

brukstilfeller, men de gjor eksempelet lettere & forsta:

1. Tekstrensing: En Al-arbeider som er ansvarlig for a fjerne HTML-tagger, konvertere

tekst til sma bokstaver og handtere Unicode-normalisering.
2. Sprakdeteksjon: En Al-arbeider som identifiserer spraket i den rensede teksten.

3. Stemningsanalyse: En Al-arbeider som bestemmer stemningen (positiv, negativ eller

neytral) i teksten basert pa det oppdagede spraket.

4. Innholdskategorisering: En Al-arbeider som klassifiserer teksten i forhandsdefinerte

kategorier ved hjelp av naturlig sprakbehandlingsteknikker.

Her er et sveert forenklet eksempel p& hvordan du kan kjede disse Al-arbeiderne sammen

ved hjelp av Ruby:

© 0 N O O b W N e

11
12
13
14

Mangfold av arbeidere 106

class ContentProcessor
def initialize(text)
@text = text
end

def process
cleaned_text = TextCleanupWorker .new(@text).call
language = LanguageDetectionWorker.new(cleaned_text).call
sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call
category = CategorizationWorker.new(cleaned_text, language).call

{ cleaned_text:, language:, sentiment:, category: }
end

end

I dette eksemplet initialiserer ContentProcessor-klassen med rateksten og kjeder
KI-arbeiderne sammen i process-metoden. Hver Kl-arbeider utfarer sin spesifikke
oppgave og sender resultatet videre til neste arbeider i kjeden. Det endelige resultatet
er en hash som inneholder den rensede teksten, det oppdagede spréaket, stemningen og

innholdskategorien.

Parallell prosessering for uavhengige Kl-arbeidere

I det forrige eksemplet er KI-arbeiderne kjeded sekvensielt, hvor hver arbeider behandler
teksten og sender resultatet til neste arbeider. Men hvis du har flere KI-arbeidere som kan
operere uavhengig p4 samme inndata, kan du optimalisere arbeidsflyten ved a behandle

dem parallelt.

I det gitte scenariet, nar tekstoppryddingen er utfert av TextCleanupWorker,
kan LanguageDetectionWorker, SentimentAnalysisWorker og
CategorizationWorker alle behandle den rensede teksten uavhengig av
hverandre. Ved & kjore disse arbeiderne parallelt, kan du potensielt redusere den

totale behandlingstiden og forbedre effektiviteten i arbeidsflyten.

For & oppné parallell prosessering i Ruby, kan du utnytte samtidighetsteknikker som

trader eller asynkron programmering. Her er et eksempel pa hvordan du kan modifisere

© 0 N O O b W N =

N DN N DN DN NN DN NN~ & 2 2 s
O© 0 34 O O & W N -~ 0 © 0 3 0O O & W N -~ O

Mangfold av arbeidere 107

ContentProcessor-klassen for & behandle de tre siste arbeiderne parallelt ved hjelp

av trader:

require 'concurrent'

class ContentProcessor
def initialize(text)
Otext = text
end

def process

cleaned_text = TextCleanupWorker .new(@text).call

language_future = Concurrent: :Future.execute do
LanguageDetectionWorker .new(cleaned_text).call
end

sentiment_future = Concurrent: :Future.execute do
SentimentAnalysisWorker.new(cleaned_text).call
end

category_future = Concurrent: :Future.execute do
CategorizationWorker .new(cleaned_text).call

end

language = language_future.value
sentiment = sentiment_future.value
category = category_future.value

{ cleaned_text:, language:, sentiment:, category: }
end
end

I denne optimaliserte versjonen bruker vi concurrent-ruby-biblioteket for a opprette
Concurrent: :Future-objekter for hver av de uavhengige Al-arbeiderne. En Future

representerer en beregning som vil bli utfert asynkront i en separat trad.

Etter tekstryddingsstadiet oppretter vi tre Future-objekter: language_future,

sentiment_future og category_future. Hver Future kjorer sin tilhgrende

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Mangfold av arbeidere 108

Al-arbeider (LanguageDetectionWorker, SentimentAnalysisWorker og

CategorizationWorker) i en separat trad, og sender cleaned_text som inndata.

Ved a kalle value-metoden pa hver Future, venter vi pa at beregningen skal fullfores
og henter resultatet. value-metoden blokkerer til resultatet er tilgjengelig, og sikrer at

alle parallelle arbeidere har fullfert prosesseringen for vi gar videre.

Til slutt bygger vi output-hashen med den ryddede teksten og resultatene fra de

parallelle arbeiderne, akkurat som i det originale eksempelet.

Ved a prosessere de uavhengige Al-arbeiderne parallelt, kan du potensielt redusere
den totale prosesseringstiden sammenlignet med & kjore dem sekvensielt. Denne
optimaliseringen er spesielt fordelaktig nar man handterer tidkrevende oppgaver eller

nér man prosesserer store datamengder.

Det er imidlertid viktig & merke seg at de faktiske ytelsesgevinstene avhenger av ulike
faktorer, som kompleksiteten til hver arbeider, tilgjengelige systemressurser og overhead
fra tradhandtering. Det er alltid god praksis a gjere ytelsestester og profilere koden din

for a bestemme det optimale nivaet av parallellitet for ditt spesifikke brukstilfelle.

I tillegg, nar man implementerer parallell prosessering, ma man veere oppmerksom
pa eventuelle delte ressurser eller avhengigheter mellom arbeiderne. Serg for at
arbeiderne kan operere uavhengig uten konflikter eller kapplepstilstander. Hvis det
finnes avhengigheter eller delte ressurser, kan det veere nedvendig 4 implementere
passende synkroniseringsmekanismer for a opprettholde dataintegritet og unnga

problemer som vranglas eller inkonsistente resultater.

Rubys Global Interpreter Lock og asynkron
prosessering

Det er viktig a forsta implikasjonene av Rubys Global Interpreter Lock (GIL) nar man

Mangfold av arbeidere 109

vurderer asynkron tradbasert prosessering i Ruby.

GIL er en mekanisme i Rubys interpreter som sikrer at bare én trad kan kjere Ruby-
kode om gangen, selv pa prosessorer med flere kjerner. Dette betyr at selv om flere
trader kan opprettes og handteres innenfor en Ruby-prosess, kan bare én trad aktivt

kjere Ruby-kode pa et gitt tidspunkt.

GIL er designet for & forenkle implementeringen av Ruby-interpreteren og gi
tradsikkerhet for Rubys interne datastrukturer. Den begrenser imidlertid muligheten

for ekte parallell kjering av Ruby-kode.

Nar du bruker trdder i Ruby, som med concurrent-ruby-biblioteket eller den
innebygde Thread-klassen, er tradene underlagt GILens begrensninger. GIL lar hver
trad kjere Ruby-kode i en kort tidsperiode for den bytter til en annen trad, noe som

skaper illusjonen av samtidig kjering.

Pa grunn av GIL forblir imidlertid den faktiske kjeringen av Ruby-kode sekvensiell.
Mens én trad kjerer Ruby-kode, er andre trader i praksis pauset, og venter pa sin tur

til & fa tilgang til GIL og kjere.

Dette betyr at tradbasert asynkron prosessering i Ruby er mest effektiv for I/O-
bundne oppgaver, som & vente pa svar fra eksterne API-er (som tredjeparts store
sprakmodeller) eller utfere fil-I/O-operasjoner. Nar en trdd meter en I/O-operasjon,
kan den frigjere GIL, noe som lar andre trader kjore mens den venter pé at I/O skal

fullfares.

Pa den annen side, for CPU-bundne oppgaver, som intensive beregninger eller
langvarig Al-arbeiderprosessering, kan GIL begrense de potensielle ytelsesgevinstene
ved tradbasert parallellitet. Siden bare én trad kan kjere Ruby-kode om gangen, vil
den totale kjoretiden kanskje ikke reduseres betydelig sammenlignet med sekvensiell

prosessering.

For & oppna ekte parallell kjgring for CPU-bundne oppgaver i Ruby, kan du matte

utforske alternative tilnserminger, som:

Mangfold av arbeidere 110

+ Bruke prosessbasert parallellitet med flere Ruby-prosesser, hver kjerende pa
en separat CPU-kjerne.

« Utnytte eksterne biblioteker eller rammeverk som tilbyr native utvidelser eller
grensesnitt til sprak uten GIL, som C eller Rust.,

« Bruke distribuerte beregningsrammeverk eller meldingskeer for & distribuere

oppgaver pa tvers av flere maskiner eller prosesser.

Det er avgjerende a vurdere oppgavenes natur og begrensningene som palegges
av GIL nar man designer og implementerer asynkron prosessering i Ruby. Mens
tradbasert asynkron prosessering kan gi fordeler for I/O-bundne oppgaver, vil den
kanskje ikke tilby betydelige ytelsesforbedringer for CPU-bundne oppgaver pa grunn

av GlILens begrensninger.

Ensemble-teknikker for forbedret neyaktighet

Ensemble-teknikker innebserer & kombinere utdataene fra flere Al-arbeidere for &
forbedre systemets generelle ngyaktighet eller robusthet. I stedet for & stole pa en enkelt
Al-arbeider, utnytter ensemble-teknikker den kollektive intelligensen fra flere arbeidere

for a ta mer informerte beslutninger.

Ensembler er spesielt viktige hvis forskjellige deler av arbeidsflyten din
’ fungerer best med ulike KI-modeller, noe som er mer vanlig enn du kanskje
tror. Kraftige modeller som GPT-4 er ekstremt dyre sammenlignet med
mindre kapable alternativer med &pen kildekode, og er sannsynligvis ikke

nedvendige for hvert enkelt arbeidsflytsteg i applikasjonen din.

En vanlig ensemble-teknikk er flertallsavstemning, hvor flere KI-arbeidere uavhengig

behandler samme inndata, og det endelige resultatet bestemmes av flertallets konsensus.

© 0 N O O b W N

I T T
© 0 N O O b W N =~ O

Mangfold av arbeidere 111

Denne tilneermingen kan bidra til 4 redusere pavirkningen av individuelle arbeiderfeil

og forbedre systemets generelle palitelighet.

La oss se pa et eksempel hvor vi har tre Kl-arbeidere for stemningsanalyse, hver
med en forskjellig modell eller utstyrt med forskjellige kontekster. Vi kan kombinere
resultatene deres ved hjelp av flertallsavstemning for & bestemme den endelige

stemningsprediksjon.

class SentimentAnalysisEnsemble
def initialize(text)
@text = text
end

def analyze
predictions = |
SentimentAnalysisWorker1.new(@text).analyze,
SentimentAnalysisWorker2.new(@text).analyze,

SentimentAnalysisWorker3.new(@text).analyze

predictions
.group_by { |sentiment| sentiment }
.max_by { |_, votes| votes.size }
Cfirst

end
end

I dette eksemplet initialiserer SentimentAnalysisEnsemble-klassen med teksten
og pékaller tre forskjellige Kl-arbeidere for stemningsanalyse. analyze-metoden
samler prediksjoner fra hver arbeider og bestemmer majoritetsstemningen ved hjelp av
metodene group_by og max_by. Det endelige resultatet er stemningen som far flest

stemmer fra ensemblet av arbeidere.

P Ensembler er &penbart et tilfelle hvor det kan veere verdt tiden din &

eksperimentere med parallellitet.

© 0 N O O b W N =

T O = =
© 00 N O O B W N =~ O

Mangfold av arbeidere 112

Dynamisk utvelgelse og pakalling av Kl-arbeidere

Inoen, om ikke de fleste tilfeller, kan den spesifikke KI-arbeideren som skal pakalles veere

avhengig av kjeretidsbetingelser eller brukerinndata. Dynamisk utvelgelse og pakalling

av KlI-arbeidere gir fleksibilitet og tilpasningsevne i systemet.

Du kan bli fristet til & prove a4 presse mye funksjonalitet inn i én enkelt
’ Kl-arbeider, gi den mange funksjoner og en stor komplisert prompt som
forklarer hvordan man skal bruke dem. Motst4 fristelsen, stol pA meg. En av
grunnene til at tilneermingen vi diskuterer i dette kapittelet kalles “Mangfold
av arbeidere” er for & minne oss pa at det er gnskelig 4 ha mange spesialiserte

arbeidere, hvor hver gjer sin lille jobb i tjeneste av det sterre formalet.

For eksempel, tenk pa en chatbot-applikasjon hvor forskjellige KI-arbeidere er ansvarlige

for & handtere ulike typer brukerhenvendelser. Basert pa brukerens inndata velger

applikasjonen dynamisk den passende KI-arbeideren for & behandle henvendelsen.

class ChatbotController < ApplicationController

def process_query

query = params|:query]
query_type = QueryClassifierWorker.new(query).classify

case query_type
when 'greeting'

response = GreetingWorker.new(query).generate_response
when 'product_inquiry'

response = ProductInquiryWorker.new(query).generate_response
when 'order_status'

response = OrderStatusWorker.new(query).generate_response
else

response = DefaultResponseWorker .new(query).generate_response
end

render json: { response: response }

end

end

Mangfold av arbeidere 113

I dette eksempelet mottar ChatbotController en brukerforespersel gjennom
process_query-handlingen. Ferst bruker den en QueryClassifierWorker for
a bestemme typen forespersel. Basert pa den klassifiserte foresperselstypen velger
kontrolleren dynamisk den passende Al-arbeideren for & generere svaret. Denne
dynamiske utvelgelsen gjor at chatboten kan handtere forskjellige typer foresparsler og

rute dem til relevante Al-arbeidere.

Siden arbeidet til QueryClassifierWorker er relativt enkelt
P og ikke krever mye kontekst eller funksjonsdefinisjoner, kan du
sannsynligvis implementere det ved hjelp av en ultrarask liten LLM
som mistralai/mixtral-8x7b-instruct:nitro. Den har kapasiteter
som kommer neer GPT-4-niva pa mange oppgaver, og nar jeg skriver dette,
kan Groq levere den med en imponerende hastighet pa 444 tokens per

sekund.

Kombinere tradisjonell NLP med LLMer

Mens store sprakmodeller (LLM) har revolusjonert feltet naturlig sprakprosessering
(NLP), og tilbyr uovertruffen allsidighet og ytelse pa tvers av et bredt spekter av
oppgaver, er de ikke alltid den mest effektive eller kostnadseffektive lgsningen for
ethvert problem. I mange tilfeller kan kombinasjonen av tradisjonelle NLP-teknikker
med LLMer fore til mer optimaliserte, malrettede og ekonomiske tilnserminger for &

lgse spesifikke NLP-utfordringer.

Tenk pa LLMer som sveitsiske lommekniver innen NLP—utrolig allsidige og kraftige,
men ikke ngdvendigvis det beste verktayet for enhver jobb. Noen ganger kan et dedikert
verktoy som en korketrekker eller en boksapner veere mer effektivt for en bestemt
oppgave. P4 samme mate kan tradisjonelle NLP-teknikker, som dokumentklynging,
temaidentifisering og klassifisering, ofte gi mer malrettede og kostnadseffektive

lgsninger for visse aspekter av NLP-prosessen.

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Mangfold av arbeidere 114

En av hovedfordelene med tradisjonelle NLP-teknikker er deres beregningsmessige
effektivitet. Disse metodene, som ofte er basert pa enklere statistiske modeller eller
regelbaserte tilneerminger, kan behandle store mengder tekstdata mye raskere og med
lavere beregningskostnader sammenlignet med LLMer. Dette gjor dem spesielt godt
egnet for oppgaver som innebeerer & analysere og organisere store dokumentsamlinger,
som & klynge lignende artikler eller identifisere hovedtemaer innenfor en samling

tekster.

Dessuten kan tradisjonelle NLP-teknikker ofte oppna hey neyaktighet og presisjon
for spesifikke oppgaver, spesielt nar de er trent pa domenespesifikke datasett.
For eksempel kan en godt innstilt dokumentklassifikator som bruker tradisjonelle
maskinleeringsalgoritmer som stottevektormaskiner (SVM) eller Naiv Bayes
ngyaktig kategorisere dokumenter i forhandsdefinerte kategorier med minimal

beregningskostnad.

LLMer utmerker seg imidlertid nar det kommer til oppgaver som krever en
dypere forstaelse av sprak, kontekst og resonnement. Deres evne til & generere
sammenhengende og kontekstuelt relevant tekst, svare pa spersmal og oppsummere
lange passasjer er uovertruffen av tradisjonelle NLP-metoder. LLMer kan effektivt
handtere komplekse spraklige fenomener, som tvetydighet, koreferanse og
idiomatiske uttrykk, noe som gjor dem uvurderlige for oppgaver som krever naturlig

sprakgenerering eller forstéelse.

Den virkelige styrken ligger i & kombinere tradisjonelle NLP-teknikker med LLMer for
a skape hybride tilneerminger som utnytter styrkene til begge. Ved & bruke tradisjonelle
NLP-metoder for oppgaver som dokumentforbehandling, klynging og temaekstraksjon,
kan du effektivt organisere og strukturere tekstdataene dine. Denne strukturerte
informasjonen kan deretter mates inn i LLMer for mer avanserte oppgaver, som &

generere sammendrag, svare pa spersmal eller lage omfattende rapporter.

La oss for eksempel se pa et brukstilfelle der du ensker a generere en trendrapport for

et spesifikt domene basert pa en stor samling individuelle trenddokumenter. I stedet for

Mangfold av arbeidere 115

a utelukkende stole pa LLMer, som kan veere beregningsmessig kostbart og tidkrevende

for behandling av store tekstmengder, kan du bruke en hybrid tilneerming:

1. Bruk tradisjonelle NLP-teknikker, som temamodellering (f.eks. Latent Dirichlet-
allokering) eller klyngealgoritmer (f.eks. K-means), for & gruppere lignende
trenddokumenter sammen og identifisere hovedtemaer og emner innenfor
samlingen.

2. Mat de klyngede dokumentene og identifiserte temaene inn i en LLM, og utnytt
dens overlegne sprakforstaelse og genereringsevner for a lage sammenhengende
og informative sammendrag for hver klynge eller tema.

3. Til slutt, bruk LLMen til & generere en omfattende trendrapport ved & kombinere
de individuelle sammendragene, fremheve de viktigste trendene og gi innsikt og

anbefalinger basert pa den samlede informasjonen.

Ved & kombinere tradisjonelle NLP-teknikker med LLMer pa denne maten, kan du
effektivt behandle store mengder tekstdata, trekke ut meningsfull innsikt og generere

rapporter av hgy kvalitet mens du optimaliserer beregningsressurser og kostnader.

Nar du begir deg ut pa dine NLP-prosjekter, er det essensielt 4 ngye evaluere de spesifikke
kravene og begrensningene for hver oppgave, og vurdere hvordan tradisjonelle NLP-
metoder og LLMs kan utnyttes sammen for & oppnd de beste resultatene. Ved a
kombinere effektiviteten og presisjonen fra tradisjonelle teknikker med allsidigheten og
kraften i LLMs, kan du skape heyeffektive og skonomiske NLP-lgsninger som gir verdi

til dine brukere og interessenter.

Verkteybruk

Innen Al-drevet applikasjonsutvikling har konseptet “verktoybruk” eller

“funksjonskalling” vokst fram som en kraftfull teknikk som gjor det mulig for
din LLM & koble seg til eksterne verktey, API-er, funksjoner, databaser og andre
ressurser. Denne tilneermingen muliggjer et rikere sett med atferd enn bare a produsere
tekst, og mer dynamiske interaksjoner mellom Al-komponentene dine og resten av
applikasjonens gkosystem. Som vi skal undersgke i dette kapittelet, gir verktaybruk deg

ogsa muligheten til 4 f4 Al-modellen din til & generere data pé strukturerte méter.

Hva er verkteybruk?

Verktoybruk, ogsa kjent som funksjonskalling, er en teknikk som lar utviklere spesifisere
en liste over funksjoner som en LLM kan samhandle med under genereringsprosessen.

Disse verkteyene kan variere fra enkle hjelpefunksjoner til komplekse API-er eller

© 0 N O O b W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Verktoybruk 117

databasespgrringer. Ved & gi LLM-en tilgang til disse verktoyene kan utviklere utvide
modellens kapabiliteter og gjere den i stand til & utfere oppgaver som krever ekstern

kunnskap eller handlinger.

Figur 8. Eksempel pa en funksjonsdefinisjon for en Al-arbeider som analyserer dokumenter

FUNCTION = {
name: "save_analysis",
description: "Save analysis data for document",
parameters: {
type: "object",
properties: {
title: {
type: "string",
maxLength: 140
3
summary: {
type: "string",
description: "comprehensive multi-paragraph summary with
overview and list of sections (if applicable)"
3,
tags: {
type: "array",
items: {
type: "string",
description: "lowercase tags representing main themes

of the document"

}
}I

"required": %w[title summary tags]

}

}. freeze

Hovedideen bak verkteybruk er a gi LLM-en muligheten til & dynamisk velge og utfere
passende verktay basert pa brukerens inndata eller oppgaven som skal lgses. I stedet
for & kun stole pa modellens forhandstrente kunnskap, gjer verktgybruk det mulig
for LLM-en & utnytte eksterne ressurser for & generere mer neyaktige, relevante og

handlingsorienterte svar. Verktgybruk gjer teknikker som RAG (Retrieval Augmented

Verktoybruk 118

Generation) mye enklere 4 implementere enn de ellers ville veert.

Merk at med mindre annet er oppgitt, antar denne boken at Al-modellen din ikke
har tilgang til noen innebygde serverside-verktoy. Alle verktoy du ensker a gjore
tilgjengelige for din Al ma eksplisitt deklareres av deg i hver API-forespersel, med
bestemmelser for utferelse hvis og nar din Al forteller deg at den ensker & bruke det

verktgyet i sitt svar.

Potensialet i verktoybruk

Verktgybruk apner for et bredt spekter av muligheter for Al-drevne applikasjoner. Her

er noen eksempler p& hva som kan oppnas med verkteybruk:

1. Chatboter og virtuelle assistenter: Ved & koble en LLM til eksterne verktgy kan
chatboter og virtuelle assistenter utfere mer komplekse oppgaver, som a hente
informasjon fra databaser, utfere API-kall eller samhandle med andre systemer.
For eksempel kan en chatbot bruke et CRM-verktay til 4 endre status pa en avtale
basert pa brukerens forespgarsel.

2. Dataanalyse og innsikt: LLM-er kan kobles til dataanalyseverktoy eller
biblioteker for & utfere avanserte databehandlingsoppgaver. Dette gjor det mulig
for applikasjoner a generere innsikt, gjennomfare komparative analyser eller gi
datadrevne anbefalinger basert pa brukerforesporsler.

3. Sek og informasjonsgjenfinning: Verktgybruk gjor det mulig for
LLM-er & samhandle med sokemotorer, vektordatabaser eller andre
informasjonsgjenfinningssystemer. Ved & omforme brukerforesparsler til
sekeforesporsler kan LLM-en hente relevant informasjon fra flere kilder og gi

omfattende svar pa brukerspersmal.

Verktoybruk 119

4. Integrasjon med eksterne tjenester: Verktoybruk muliggjer semles integrasjon
mellom Al-drevne applikasjoner og eksterne tjenester eller API-er. For eksempel
kan en LLM samhandle med et veer-API for & gi veervarsel i sanntid eller et

oversettelse-API for & generere flerspraklige svar.

Arbeidsflyten for verkteybruk

Arbeidsflyten for verkteybruk innebeerer vanligvis fire hovedtrinn:

1. Inkludere funksjonsdefinisjoner i foresparselskonteksten
2. Dynamisk (eller eksplisitt) verktayvalg
3. Utferelse av funksjon(er)

4. Valgfri fortsettelse av den opprinnelige prompten

La oss gjennomgé hvert av disse trinnene i detalj.

Inkludere funksjonsdefinisjoner i foresporselskonteksten

Al-en vet hvilke verktgy den har til radighet fordi du gir den en liste som del av
fullferingsforesporselen (vanligvis definert som funksjoner ved hjelp av en variant av

JSON-skjema).
Den neyaktige syntaksen for verkteydefinisjon er modellspesifikk.

Slik definerer du en get_weather-funksjon i Claude 3:

© 0 N O O & W N =~

T O = =Y
© 0 N O O b= W N -~ O

© 0 N O O » W N o~

I = ==Y
=N O O bW N e

Verktoybruk 120

"name": "get_weather",
"description": "Get the current weather in a given location",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
3,
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature"

} ’

"required": ["location"]

}

Og slik ville du definere den samme funksjonen for GPT-4, ved a sende den som verdien

til tools-parameteret:

"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",

"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {

"type": "string",

"enum": ["celsius", "fahrenheit"],

"description": "The unit of temperature"
},

} ’

"required": ["location"],

18
19

a s W N -

Verktoybruk 121

Nesten det samme, bortsett fra at det er annerledes uten noen &penbar grunn! Sa

irriterende.

Funksjonsdefinisjoner spesifiserer navn, beskrivelse og inngangsparametere.
Inngangsparametere kan defineres ytterligere ved hjelp av attributter som opplistinger

for a begrense akseptable verdier, og ved a spesifisere om en parameter er pakrevd eller

ikke.

I tillegg til selve funksjonsdefinisjonene kan du ogsa inkludere instruksjoner eller

kontekst for hvorfor og hvordan funksjonen skal brukes i systemdirektivet.

For eksempel inkluderer mitt Nettsok-verktoy i Olympia dette systemdirektivet, som

minner KI-en pa at den har de nevnte verkteyene tilgjengelig:

The “google_search™ and “realtime_search™ functions let you do research
on behalf of the user. In contrast to Google, realtime search is powered
by Perplexity and provides real-time information to curated current events
databases and news sources. Make sure to include URLs in your response so
user can do followup research.

A gi detaljerte beskrivelser regnes som den viktigste faktoren for verktayytelse.

Beskrivelsene dine bar forklare alle detaljer om verktayet, inkludert:

« Hva verktayet gjor
« Nar det ber brukes (og nar det ikke ber brukes)
« Hva hver parameter betyr og hvordan den pavirker verkteyets oppfersel

« Viktige forbehold eller begrensninger som gjelder for verktayets implementering

© 0 N O O b W N -

NN DN NN NN N B R R R R s s
® N 0 OB WN SO O 000w NS

Verktoybruk 122

Jo mer kontekst du kan gi Al-en om verktoyene dine, desto bedre vil den bli til &
bestemme nér og hvordan de skal brukes. For eksempel anbefaler Anthropic minst 3-4

setninger per verktoybeskrivelse for sin Claude 3-serie, flere hvis verktayet er komplekst.

Det er ikke nedvendigvis intuitivt, men beskrivelser anses ogsa som viktigere enn
eksempler. Selv om du kan inkludere eksempler p&4 hvordan man bruker et verktey i
beskrivelsen eller i den tilherende prompten, er dette mindre viktig enn & ha en klar og
omfattende forklaring av verkteyets formal og parametere. Legg bare til eksempler etter

at du har utarbeidet beskrivelsen fullstendig.

Her er et eksempel pa en Stripe-lignende API-funksjonsspesifikasjon:

"name": "createPayment",
"description": "Create a new payment request",
"parameters": {
"type": "object",
"properties": {
"transaction_amount": {
"type": "number",
"description": "The amount to be paid"
1
"description": {
"type": "string",
"description": "A brief description of the payment"
},
"payment_method_id": {
"type": "string",

"description": "The payment method to be used"
1,
"payer": {
"type": "object",
"description”: "Information about the payer, including their name,
email, and identification number",
"properties": {
"name": {
"type": "string",
"description": "The payer's name"
3,

"email": {

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Verktoybruk 123

"type": "string",
"description": "The payer's email address"

},
"identification": {
"type": "object",
"description": "The payer's identification number",
"properties": {
"type": {
"type": "string",
"description": "Identification document (e.g. CPF, CNPJ)"
}

"number": {
"type": "string",
"description": "The identification number"

}
b
"required": ["type", "number"]
}
},

"required": ["name", "email", "identification"]

I praksis har noen modeller problemer med & handtere nestede
funksjonsspesifikasjoner og komplekse output-datatyper som arrays,
dictionaries osv. Men 1 teorien burde du kunne levere JSON-

skjemaspesifikasjoner av vilkarlig dybde!

Dynamisk verkteyvalg

Nar du utferer en chatfullfering som inkluderer verkteydefinisjoner, velger LLM-
en dynamisk det mest passende verktoyet/verktgyene og genererer de nedvendige

inputparameterne for hvert verktey.

I praksis er Al-ens evne til & kalle ngyaktig den riktige funksjonen og neyaktig

folge din spesifikasjon for inputs varierende. A sette temperatur-hyperparameteren

Verktoybruk 124

helt ned til 0.0 hjelper mye, men etter min erfaring vil du fortsatt fa sporadiske feil.
Disse feilene inkluderer hallusinerte funksjonsnavn, feilnavngitte eller helt manglende
inputparametere. Parametere sendes som JSON, noe som betyr at du noen ganger vil se

feil forarsaket av avkuttet, feilsitert eller pa annen méate gdelagt JSON.

P Self Healing Data-menstre kan hjelpe med a automatisk reparere

funksjonsanrop som bryter sammen pa grunn av syntaksfeil.

Tvunget (ogsa kalt eksplisitt) verktoyvalg

Noen modeller gir deg muligheten til & tvinge frem kalling av en bestemt funksjon som
en parameter i foresperselen. Ellers er det helt opp til Al-ens skjenn om funksjonen skal

kalles eller ikke.

Muligheten til & tvinge frem et funksjonsanrop er avgjerende i visse scenarioer hvor du
vil sikre at et spesifikt verktey eller funksjon blir utfert, uavhengig av Al-ens dynamiske

utvalgsprosess. Det er flere grunner til at denne funksjonen er viktig:

1. Eksplisitt Kontroll: Du kan bruke Al-en som en Diskret Komponent eller i en
forhandsdefinert arbeidsflyt som krever utferelse av en bestemt funksjon pa et
bestemt tidspunkt. Ved a tvinge frem kallet kan du garantere at den enskede
funksjonen blir pakalt i stedet for & matte pent be Al-en om & gjore det.

2. Feilsgking og Testing: Under utvikling og testing av Al-drevne applikasjoner
er muligheten til & tvinge frem funksjonsanrop uvurderlig for feilsgkingsformal.
Ved & eksplisitt utlgse spesifikke funksjoner kan du isolere og teste
individuelle komponenter i applikasjonen din. Dette lar deg verifisere at
funksjonsimplementeringene er korrekte, validere inputparameterne og sikre at
de forventede resultatene returneres.

3. Handtering av Kanttilfeller: Det kan oppsta kanttilfeller eller eksepsjonelle

scenarioer hvor Al-ens dynamiske utvalgsprosess kanskje ikke velger & utfore

Verktoybruk 125

en funksjon som den burde, og du vet dette basert pa eksterne prosesser. I slike
tilfeller gjor muligheten til & tvinge frem et funksjonsanrop at du kan handtere
disse situasjonene eksplisitt. Definer regler eller betingelser i applikasjonslogikken
din for & bestemme nar Al-ens skjonn skal overstyres.

4. Konsistens og Reproduserbarhet: Hvis du har en spesifikk sekvens av funksjoner
som ma utferes i en bestemt rekkefolge, garanterer tvungne kall at den samme
sekvensen folges hver gang. Dette er spesielt viktig i applikasjoner hvor konsistens
og forutsigbar oppfarsel er kritisk, som i finansielle systemer eller vitenskapelige
simuleringer.

5. Ytelsesoptimalisering: I noen tilfeller kan det & tvinge frem et funksjonsanrop
fore til ytelsesoptimaliseringer. Hvis du vet at en spesifikk funksjon er nedvendig
for en bestemt oppgave, og at Al-ens dynamiske utvalgsprosess kan introdusere
ungdvendig overhead, kan du omgé utvalgsprosessen og direkte pakalle den
nedvendige funksjonen. Dette kan bidra til & redusere latens og forbedre den

generelle effektiviteten til applikasjonen din.

Oppsummert gir muligheten til 4 tvinge frem funksjonsanrop i Al-drevne applikasjoner
eksplisitt kontroll, hjelper med feilsgking og testing, handterer kanttilfeller, sikrer
konsistens og reproduserbarhet. Det er et kraftig verktoy i arsenalet ditt, men vi ma

diskutere enda et aspekt ved denne viktige funksjonen.

I mange beslutningstakingsscenarioer gnsker vi alltid at modellen skal gjore
P et funksjonsanrop og vil kanskje aldri at modellen skal svare med bare sin
interne kunnskap. For eksempel, hvis du ruter mellom flere modeller som er
spesialisert for forskjellige oppgaver (flerspraklig input, matematikk, osv.),
kan du bruke funksjonsanropsmodellen til & delegere foresparsler til en av

hjelpemodellene og aldri svare selvstendig.

Verktoybruk 126

Verktoyvalgparameter

GPT-4 og andre sprakmodeller som stetter funksjonsanrop gir deg en tool_choice-
parameter for & kontrollere om verkteybruk er pakrevd som del av en fullfering. Denne

parameteren har tre mulige verdier:

« auto gir Al-en full frihet til & bruke et verktay eller bare svare

« required forteller Al-en at den mad kalle et verktey i stedet for a svare, men lar
valget av verktey veere opp til Al-en

« Det tredje alternativet er a sette parameteren til name_of_function som du

onsker a tvinge frem. Mer om det i neste del.

Merk at hvis du setter tool choice til required, vil modellen bli tvunget til
P a velge den mest relevante funksjonen & kalle blant de som er tilgjengelige,
selv om ingen egentlig passer til prompten. P& tidspunktet for publisering
kjenner jeg ikke til noen modell som vil returnere et tomt tool_calls-
svar, eller bruke en annen mate & fortelle deg at den ikke fant en passende

funksjon & kalle.

Tvinge en Funksjon for a Fa Strukturert Utdata

Muligheten til & tvinge et funksjonsanrop gir deg en mate a fremtvinge strukturerte data

fra en chat-fullferelse i stedet for 4 matte trekke det ut selv fra klartekstsvaret.

Hvorfor er det sa viktig & tvinge funksjoner for & fa strukturert utdata? Kort sagt, fordi
uttrekking av strukturerte data fra LLM utdata er en stor hodepine. Du kan gjare livet

ditt litt enklere ved 4 be om data i XML, men da ma du analysere XML. Og hva gjer

© 0 N O U B W N =

[= =N
a s W N~

Verktoybruk

du nér den XML-en mangler fordi Al-en svarte: “Beklager, men jeg kan ikke generere

dataene du ba om fordi bla, bla, bla..”

Nér du bruker verktoy pa denne maten:

« Du ber sannsynligvis definere ett enkelt verktoy i foresperselen din

« Husk a tvinge bruken av funksjonen ved hjelp av tool_choice-parameteren

beskrivelsen ber veere fra modellens perspektiv, ikke ditt

127

« Husk at modellen vil sende inndata til verkteyet, s& navnet pa verkteyet og

Dette siste punktet fortjener et eksempel for klarhet. La oss si at du ber Al-en om & gjere

sentimentanalyse pa brukertekst. Navnet pa funksjonen ville ikke veere analyze_-

sentiment, men heller noe som save_sentiment_analysis. Det er Al-en som

utferer sentimentanalysen, ikke verktayet. Alt verktayet gjor (fra Al-ens perspektiv) er

a lagre resultatene av analysen.

Her er et eksempel pa bruk av Claude 3 for a registrere et sammendrag av et bilde i

velstrukturert JSON, denne gangen fra kommandolinjen ved hjelp av curl:

curl https://api.anthropic.com/v1/messages \

"

--header "content-type: application/json" \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "anthropic-version: 2023-06-01" \
--header "anthropic-beta: tools-2024-04-04" \
--data \

"model": "claude-3-sonnet-20240229",
"max_tokens": 1024,

"input_schema": {
"type": "object",
"properties": {

"tools": [{
"name": "record_summary",
"description": "Record summary of image into well-structured JSON.",

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Verktgybruk

128

"key_colors": {
"type": "array",
"items": {
"type": "object",
"properties": {

"re {
"type": "number",
"description": "red value [0.0, 1.0]"
},
"g"r |
"type": "number",
"description": "green value [0.0, 1.0]"
},
"b": |
"type": "number",
"description": "blue value [0.0, 1.0]"
3,
"name": {
"type": "string",
"description": "Human-readable color name
in snake_case, e.g.
\"olive_green\"or
\"turquoise\""
}
1,
"required": ["r", "g", "b", "name"]
},
"description": "Key colors in the image. Four or less."

3,
"description": {
"type": "string",
"description": "Image description. 1-2 sentences max."
},
"estimated_year": {
"type": "integer",
"description": "Estimated year that the image was taken,
if is it a photo. Only set this if the
image appears to be non-fictional.

Rough estimates are okay!"

} ’

"required": ["key_colors", "description"]

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
5
76
T
78
79

Verktoybruk 129

}
1,
"messages": |
{
"role": "user",
"content": [
{
"type": "image",
"source": {
"type": "baseb4",
"media_type": "'$IMAGE_MEDIA_TYPE'",
"data": "'$IMAGE_BASE64'"
}
3,
{
"type": "text",
"text": "Use “record_summary” to describe this image."
}
]
}

} '

I det gitte eksempelet bruker vi Claude 3-modellen fra Anthropic for a generere en

strukturert JSON-oppsummering av et bilde. Slik fungerer det:

1. Vi definerer et enkelt verktey kalt record_summary i tools-arrayet i
foresporselens nyttelast. Dette verkteyet er ansvarlig for & registrere en
oppsummering av bildet i velstrukturert JSON.

2. record_summary-verktgyet har et input_schema som spesifiserer den

forventede strukturen til JSON-outputen. Det definerer tre egenskaper:

« key_colors: En array av objekter som representerer hovedfargene i bildet.
Hvert fargeobjekt har egenskaper for rgd-, grenn- og blaverdier (fra 0.0 til

1.0) og et menneskelig lesbart fargenavn i snake_case-format.

« description:En strengegenskap for en kort beskrivelse av bildet, begrenset

til 1-2 setninger.

Verktoybruk 130

- estimated_year: En valgfri heltallsegenskap for det estimerte éret bildet

ble tatt, hvis det ser ut til & veere et ikke-fiktivt foto.

3. I messages-arrayet leverer vi bildedataene som en base64-kodet streng sammen
med mediatypen. Dette gjor det mulig for modellen & behandle bildet som en del
av inputen.

4. Viber ogsa Claude om a bruke record_summary-verkteyet for a beskrive bildet.

5. Nar foresperselen sendes til Claude 3-modellen, analyserer den bildet og genererer
en JSON-oppsummering basert pa det spesifiserte input_schema. Modellen
trekker ut hovedfargene, gir en kort beskrivelse og estimerer éaret bildet ble tatt
(hvis aktuelt).

6. Den genererte JSON-oppsummeringen sendes som parametere til
record_summary-verktoyet, og gir en strukturert representasjon av bildets

hovedegenskaper.

Ved & bruke record_summary-verktgyet med et veldefinert input_schema, kan
vi f& en strukturert JSON-oppsummering av et bilde uten & veere avhengig av ren
tekstuttrekking. Denne tilneermingen sikrer at outputen felger et konsistent format og

enkelt kan analyseres og behandles av nedstremskomponenter i applikasjonen.

Muligheten til a tvinge frem et funksjonskall og spesifisere den forventede
outputstrukturen er en kraftig funksjon ved verkteybruk i Al-drevne applikasjoner. Det
gir utviklere mer kontroll over den genererte outputen og forenkler integrasjonen av

Al-genererte data i applikasjonens arbeidsflyt.

Utforelse av funksjon(er)

Du har definert funksjoner og gitt Al-en en prompt, som bestemte at den skulle kalle
en av funksjonene dine. Na er det tid for at applikasjonskoden din eller biblioteket, hvis
du bruker en Ruby-gem som raix-rails, skal sende funksjonskallet og parametrene

til den tilsvarende implementeringen i applikasjonskoden din.

https://github.com/OlympiaAI/raix-rails

O© 0 N O O b W N =

[T T ==Y
a s W N~

Verktoybruk 131

Applikasjonskoden din bestemmer hva som skal gjores med resultatene av
funksjonsutferelsen. Kanskje det involverer en enkelt kodelinje i en lambda, eller
kanskje det involverer & kalle et eksternt API. Kanskje det involverer & kalle en annen
Al-komponent, eller kanskje det involverer hundrevis eller til og med tusenvis av

kodelinjer i resten av systemet ditt. Det er helt opp til deg.

Noen ganger er funksjonskallet slutten pa operasjonen, men hvis resultatene
representerer informasjon i en tankekjede som skal fortsettes av Al-en, ma
applikasjonskoden din sette inn utferelsesresultatene i chattranskriptet og la Al-

en fortsette prosesseringen.

For eksempel, her er en Raix-funksjonsdeklarasjon brukt av Olympias
AccountManager for & kommunisere med vare klienter som en del av en Intelligent

Arbeidsflytorkestrering for kundeservice.

class AccountManager
include Raix::ChatCompletion

include Raix::FunctionDispatch
lots of other functions. ..

function :notify_account_owner,
"Don't share UUID. Mention dollars if subscription changed",
message: { type: "string" } do |arguments]|
account.owner . freeform_notify(
subject: "Account Change Notification",
message: arguments|:message]
)
"Notified account owner"

end

Det er kanskje ikke umiddelbart klart hva som skjer her, sa la meg bryte det ned.

1. AccountManager-klassen definerer =~ mange funksjoner relatert til
kontoadministrasjon. Den kan endre abonnementet ditt, legge til og fjerne

teammedlemmer, blant andre ting.

https://github.com/OlympiaAI/raix-rails

Verktoybruk 132

2. Dens instruksjoner pa toppniva forteller AccountManager at den skal varsle
kontoeieren om resultatene av kontoendringen ved a bruke notify_account_-
owner -funksjonen.

3. Den konsise definisjonen av funksjonen inkluderer dens:

e navn
« beskrivelse
« parametere message: { type: "string" }

« en blokk som skal kjgres nar funksjonen kalles

Etter 4 ha oppdatert transkriptet med resultatene fra funksjonsblokken, kalles chat_-
completion-metoden igjen. Denne metoden er ansvarlig for & sende det oppdaterte
samtaletranskriptet tilbake til Al-modellen for videre behandling. Vi refererer til denne

prosessen som en samtalelpkke.

Nar Al-modellen mottar en ny chat completion-foresparsel med et oppdatert transkript,
har den tilgang til resultatene fra den tidligere utferte funksjonen. Den kan analysere
disse resultatene, inkorporere dem i sin beslutningsprosess, og generere neste respons
eller handling basert pa den kumulative konteksten av samtalen. Den kan velge & utfere
ytterligere funksjoner basert pa den oppdaterte konteksten, eller den kan generere et
endelig svar pa den opprinnelige foresperselen hvis den fastslar at ingen ytterligere

funksjonskall er ngdvendige.

Valgfri fortsettelse av den opprinnelige forespoarselen

Nar du sender verktgyresultatene tilbake til LLM og fortsetter behandlingen av
den opprinnelige foresparselen, bruker Al-en disse resultatene til enten & kalle flere

funksjoner eller generere et endelig svar i ren tekst.

Noen modeller som Coheres Command-R kan sitere de spesifikke
verktgyene de brukte i sine svar, noe som gir gkt gjennomsiktighet og

sporbarhet.

https://openrouter.ai/models/cohere/command-r

Verktoybruk 133

Avhengig av modellen som er i bruk, vil resultatene av funksjonskallet eksistere i
transkriptmeldinger som har sin egen spesielle rolle eller bli reflektert i en annen syntaks.
Men den viktige delen er at dataene er i transkriptet, slik at Al-en kan vurdere dem nar

den bestemmer hva den skal gjore videre.

’ En vanlig (og potensielt kostbar) feilsituasjon er & glemme & legge til

funksjonsresultatene i transkriptet for man fortsetter chatten. Som et resultat
vil Al-en bli promptet pa stort sett samme mate som for den kalte funksjonen
forste gang. Med andre ord, sa langt Al-en er bekymret, har den ikke kalt
funksjonen enna. Sé den kaller den igjen. Og igjen. Og igjen, for alltid til du
avbryter den. La oss hape at konteksten din ikke var for stor, og modellen

din ikke var for dyr!

Beste praksis for verkteybruk

For & fa mest mulig ut av verkteybruk, vurder folgende beste praksis.

Beskrivende definisjoner

Gi klare og beskrivende navn og beskrivelser for hvert verktey og dets
inngangsparametere. Dette hjelper LLM-en & bedre forsta forméalet og mulighetene til

hvert verktoy.

Jeg kan si fra erfaring at den vanlige visdommen som sier at “navngivning er
vanskelig” gjelder her; jeg har sett dramatisk forskjellige resultater fra LLM-er bare
ved & endre navn pa funksjoner eller ordlyden i beskrivelser. Noen ganger forbedrer

det ytelsen a fjerne beskrivelser.

Verktoybruk 134

Behandling av verkteyresultater

Nar du sender verkteyresultater tilbake til LLM-en, sorg for at de er velstrukturerte og
omfattende. Bruk meningsfulle nekler og verdier for a representere outputen fra hvert
verktoy. Eksperimenter med forskjellige formater og se hvilke som fungerer best, fra

JSON til ren tekst.

Result Interpreter adresserer denne utfordringen ved & bruke AI til & analysere
resultatene og gi menneskevennlige forklaringer, oppsummeringer eller viktige

takeaways.

Feilhandtering

Implementer robuste feilhédndteringsmekanismer for & handtere tilfeller der LLM-en kan
generere ugyldige eller ikke-stottede inngangsparametere for verkteykall. Handter og

gjenopprett fra eventuelle feil som kan oppsta under verktoyutfarelse pa en elegant mate.

En ekstremt fin egenskap ved Al-en er at den forstar feilmeldinger! Dette betyr at hvis
du jobber i en rask og enkel tankegang, kan du rett og slett fange opp eventuelle unntak
som genereres i implementeringen av et verktey, og sende det tilbake til Al-en slik at

den vet hva som skjedde!

For eksempel, her er en forenklet versjon av implementeringen av Google-sgk i Olympia:

© 0 N O O b W N e

RN
= o

Verktoybruk 135

def google_search(conversation, params)
conversation.update_cstatus("Searching Google...")
query = params|:query]
search = GoogleSearch.new(query).get_hash

conversation.update_cstatus("Summarizing results...")

Summar izeKnowledgeGraph . new. per form(conversation, search.to_json)
rescue StandardError => e

Honeybadger .notify(e)

{ error: e.message }.inspect
end

Google-sgk i Olympia er en topunkts prosess. Forst utferer du seket, deretter
oppsummerer du resultatene. Hvis det oppstar en feil, uansett hva det er, blir
feilmeldingen pakket inn og sendt tilbake til Al-en. Denne teknikken er grunnlaget for
praktisk talt alle Intelligent feilhandterings-menstre

La oss for eksempel si at GoogleSearch API-kallet feiler pa grunn av en 503
Utilgjengelig tjeneste-feil. Dette bobler opp til rescue pa toppniva, og beskrivelsen av
feilen sendes tilbake til Al-en som resultatet av funksjonskallet. I stedet for a bare gi
brukeren en blank skjerm eller teknisk feil, sier Al-en noe sént som “Beklager, men
jeg kan ikke fa tilgang til mine Google-sekemuligheter akkurat né. Jeg kan preve igjen

senere, hvis du gnsker”

Dette kan virke som bare et smart triks, men tenk pa en annen type feil, en hvor Al-en
kalte et eksternt API og hadde direkte kontroll over parameterne som skulle sendes til
API-et. Kanskje den gjorde en feil i hvordan den genererte disse parameterne? Forutsatt
at feilmeldingen fra det eksterne API-et er detaljert nok, betyr det & sende feilmeldingen
tilbake til den kallende Al-en at den kan revurdere disse parameterne og preve igjen.

Automatisk. Uansett hva feilen var.

Tenk né pa hva som skulle til for & gjenskape den typen robust feilhandtering i normal

kode. Det er praktisk talt umulig.

© 0 N O O b W N =

= =N
B W N »

Verktoybruk 136

Iterativ forbedring

Hvis LLM-en ikke anbefaler de passende verktgyene eller genererer suboptimale svar,
iterer pa verkteydefinisjonene, beskrivelsene og inngangsparameterne. Kontinuerlig

forbedre og utvikle verktayoppsettet basert pa observert oppfersel og enskede resultater.

1. Start med enkle verkteydefinisjoner: Begynn med & definere verktoy med
klare og konsise navn, beskrivelser og inngangsparametere. Unngd a gjere
verktoyoppsettet for komplisert i starten og fokuser pa kjernefunksjonaliteten.
For eksempel, hvis du vil lagre resultatene av stemningsanalyse, start med en

grunnleggende definisjon som:

"name": "save_sentiment_score”,
"description": "Analyze user-provided text and generate sentiment score",
"parameters": {

"type": "object",

"properties": {

"score": {
"type": "float",
"description": "sentiment score from -1 (negative) to 1 (positive)"
}
}
"required": ["score"]

2. Test og observer: Nar du har de farste verkteydefinisjonene pa plass, test dem med
forskjellige prompts og observer hvordan LLM-en samhandler med verktoyet. Veer
oppmerksom pa kvaliteten og relevansen til de genererte responsene. Hvis LLM-en
genererer suboptimale responser, er det pa tide & forbedre verktgydefinisjonene.

3. Forbedre beskrivelser: Hvis LLM-en misforstar hensikten med et verktay, prov &
forbedre verktoyets beskrivelse. Gi mer kontekst, eksempler eller forklaringer for

a veilede LLM-en i effektiv bruk av verkteyet. For eksempel kan du oppdatere

o O W N

=~ O O B W N =

Verktoybruk 137

beskrivelsen av stemningsanalyseverktoyet for & mer spesifikt adressere den

emosjonelle tonen i teksten som analyseres:

{

"name": "save_sentiment_score”,

"description": "Determine the overall emotional tone of a piece of text,
such as customer reviews, social media posts, or feedback comments.",

}

4. Juster inngangsparametere: Hvis LLM-en genererer ugyldige eller
irrelevante inngangsparametere for et verktgy, ber du vurdere & justere
parameterdefinisjonene. Legg til mer spesifikke begrensninger, valideringsregler
eller eksempler for a tydeliggjore det forventede inputformatet.

5. Iterer basert pa tilbakemeldinger: Overvak kontinuerlig verkteyenes ytelse
og samle tilbakemeldinger fra brukere eller interessenter. Bruk disse
tilbakemeldingene til & identifisere omrader for forbedring og gjer iterative
forbedringer av verkteydefinisjonene. For eksempel, hvis brukere rapporterer at
analysen ikke handterer sarkasme godt, kan du legge til en merknad i beskrivelsen:

{

"name": "save_sentiment_score”,

"description": "Analyze the sentiment of a given text and return a sentiment
score between -1 (negative) and 1 (positive). Note: Sarcasm should be
considered negative.",

}

Ved & iterativt forbedre verkteydefinisjonene dine basert pa observert oppfersel og
tilbakemeldinger, kan du gradvis forbedre ytelsen og effektiviteten til din KI-drevne
applikasjon. Husk & holde verkteydefinisjonene klare, konsise og fokuserte pa den
spesifikke oppgaven. Test og valider verktgyinteraksjonene regelmessig for & sikre at

de samsvarer med gnskede resultater.

Verktoybruk 138

Sammensetting og Kjeding av Verktoy

Et av de mest kraftfulle aspektene ved verkteybruk som bare har blitt antydet s langt,
er muligheten til & sette sammen og kjede flere verktoy for a utfere komplekse oppgaver.
Ved a noye utforme verkteydefinisjonene dine og deres inndata/utdata-formater, kan du

skape gjenbrukbare byggeklosser som kan kombineres pa ulike mater.

La oss se pa et eksempel hvor du bygger en dataanalysepipeline for din KI-drevne

applikasjon. Du kan ha felgende verktoy:

1. DataRetrieval: Et verktay som henter data fra en database eller API basert pa
spesifiserte kriterier.

2. DataProcessing: Et verktoy som utferer beregninger, transformasjoner eller
aggregeringer pa de innhentede dataene.

3. DataVisualization: Et verktoy som presenterer de behandlede dataene i et

brukervennlig format, som diagrammer eller grafer.

Ved & kjede disse verktoyene sammen kan du skape en kraftig arbeidsflyt som henter
relevante data, behandler dem og presenterer resultatene pa en meningsfull mate. Her

er hvordan verktaybrukens arbeidsflyt kan se ut:

1. Sprakmodellen mottar en brukerforespersel som ber om innsikt i salgsdata for en
bestemt produktkategori.

2. Sprakmodellen velger DataRetrieval-verktgyet og genererer passende
inngangsparametere for a hente relevante salgsdata fra databasen.

3. De innhentede dataene blir “sendt” til DataProcessing-verktayet, som beregner
malinger som total omsetning, gjennomsnittlig salgspris og vekstrate.

4. De behandlede dataene blir deretter bearbeidet av DataVisualization-
verktoyet, som lager et visuelt tiltalende diagram eller graf for & representere

innsikten, og sender URL-en til diagrammet tilbake til sprakmodellen.

Verktoybruk 139

5. Til slutt genererer sprakmodellen et formatert svar pa brukerforesporselen
ved hjelp av markdown, som inkorporerer de visualiserte dataene og gir en

oppsummering av hovedfunnene.

Ved & sette sammen disse verktayene kan du skape en semles dataanalysearbeidsflyt
som enkelt kan integreres i applikasjonen din. Det fine med denne tilneermingen er at
hvert verktay kan utvikles og testes uavhengig, og deretter kombineres pé forskjellige

mater for & lgse ulike problemer.

For & muliggjere smidig sammensetting og kjeding av verktey er det viktig a definere

klare inndata- og utdata-formater for hvert verktoy.

For eksempel kan DataRetrieval-verktoyet akseptere parametere som
databasetilkoblingsdetaljer, tabellnavn og sperringsbetingelser, og returnere
resultatsettet som et strukturert JSON-objekt. DataProcessing-verktoyet kan da
forvente dette JSON-objektet som inndata og produsere et transformert JSON-objekt
som utdata. Ved a standardisere dataflyten mellom verktoy kan du sikre kompatibilitet

og gjenbrukbarhet.

Nar du designer verktoyokosystemet ditt, tenk pa hvordan forskjellige verktoy kan
kombineres for & handtere vanlige brukstilfeller i applikasjonen din. Vurder a lage
haynivaverktey som innkapsler vanlige arbeidsflyter eller forretningslogikk, noe som

gjor det enklere for sprakmodellen & velge og bruke dem effektivt.

Husk at styrken i verkteybruk ligger i fleksibiliteten og modulariteten den gir. Ved
a bryte ned komplekse oppgaver i mindre, gjenbrukbare verktey, kan du skape en
robust og tilpasningsdyktig KI-drevet applikasjon som kan takle et bredt spekter av

utfordringer.

Fremtidige Retninger

Etter hvert som feltet for KI-drevet applikasjonsutvikling utvikler seg, kan vi forvente

ytterligere fremskritt i verkteybruksfunksjoner. Noen potensielle fremtidige retninger

Verktoybruk 140

inkluderer:

1. Flertrinns verkteybruk: Sprakmodeller kan veere i stand til & bestemme hvor
mange ganger de trenger & bruke verktoy for & generere et tilfredsstillende
svar. Dette kan innebeere flere runder med verktoyvalg og utferelse basert pa
mellomliggende resultater.

2. Forhandsdefinerte verktey: Kl-plattformer kan tilby et sett med
forhandsdefinerte verktoy som utviklere kan utnytte ut av boksen, som
Python-tolkere, websekeverktoy eller vanlige nyttefunksjoner.

3. Semles integrasjon: Etter hvert som verkteybruk blir mer utbredt, kan vi forvente
bedre integrasjon mellom KI-plattformer og populeere utviklingsrammeverk, som

gjor det enklere for utviklere & inkorporere verktgybruk i applikasjonene sine.

Verktoybruk er en kraftig teknikk som gjor det mulig for utviklere & utnytte det fulle
potensialet til sprakmodeller i KI-drevne applikasjoner. Ved & koble sprékmodeller
til eksterne verktoy og ressurser kan du skape mer dynamiske, intelligente og
kontekstbevisste systemer som kan tilpasse seg brukerbehov og gi verdifull innsikt og

handlinger.

Selv om verkteybruk tilbyr enorme muligheter, er det viktig & veere oppmerksom pa
potensielle utfordringer og hensyn. Ett viktig aspekt er & handtere kompleksiteten i
verktgyinteraksjoner og sikre stabilitet og palitelighet i det overordnede systemet. Du méa
héndtere scenarioer hvor verkteyoppkall kan mislykkes, returnere uventede resultater
eller ha ytelsesimplikasjoner. I tillegg ber du vurdere sikkerhets- og tilgangskontrolltiltak
for a forhindre uautorisert eller ondsinnede bruk av verktey. Riktig feilhandtering,
logging og overvakingsmekanismer er avgjerende for & opprettholde integriteten og

ytelsen til din KI-drevne applikasjon.

Nar du utforsker mulighetene for verktgybruk i dine egne prosjekter, husk & begynne

med klare malsettinger, utform velstrukturerte verktgydefinisjoner, og iterer basert pa

Verktoybruk 141

tilbakemeldinger og resultater. Med riktig tilneerming og tankesett kan verktgybruk lase

opp nye nivaer av innovasjon og verdi i dine Al-drevne applikasjoner

Stremmebehandling

Stremming av data over HTTP, ogsd kjent som serversendte hendelser (SSE), er en

mekanisme hvor serveren kontinuerlig sender data til klienten etter hvert som de blir
tilgjengelige, uten at klienten eksplisitt ma be om det. Siden Kl-ens svar genereres
trinnvis, er det fornuftig & gi en responsiv brukeropplevelse ved a vise KI-ens output
etter hvert som det genereres. Og faktisk tilbyr alle KI-leveranderers API-er som jeg

kjenner til, stremmende svar som et alternativ i deres fullferingsendepunkter.

Grunnen til at dette kapittelet kommer her i boken, rett etter Bruke verktey, er pa grunn
av hvor kraftfullt det kan veere & kombinere bruken av verktgy med direktesendte KI-
svar til brukere. Dette muliggjer dynamiske og interaktive opplevelser hvor KI-en kan
behandle brukerinndata, utnytte ulike verktey og funksjoner etter eget skjonn, og gi

sanntidssvar.

For & oppna denne semlgse interaksjonen ma du skrive stremhandterere som kan

distribuere bade KI-pakalte verktoyfunksjonskall og klartekstutdata til sluttbrukeren.

O© 0 N O O b W N =

N
w N =~

-
IS

Stremmebehandling 143

Behovet for & gjenta lokken etter behandling av en verkteyfunksjon tilferer en

interessant utfordring til oppgaven.

Implementering av en ReplyStream

For & demonstrere hvordan stremmebehandling kan implementeres, vil dette kapittelet
ta en grundig gjennomgang av en forenklet versjon av ReplyStream-klassen som
brukes i Olympia. Instanser av denne klassen kan sendes som stream-parameteren i

KI-klientbiblioteker som ruby-openai og openrouter

Her er hvordan jeg bruker ReplyStream i Olympias PromptSubscriber, som lytter

via Wisper etter opprettelsen av nye brukermeldinger.

class PromptSubscriber
include Raix::ChatCompletion

include Raix::PromptDeclarations
many other declarations omitted. ..

prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },
until: -> { bot_message.complete? }

def message_created(message) # invoked by Wisper
return unless message.role.user? && message.content?

rest of the implementation omitted. ..

I tillegg til en context-referanse til meldingsabonnenten som instansierte den, har
klassen ReplyStream ogsa instansvariabler for & lagre en buffer med mottatte data, og
matriser for & holde oversikt over funksjonsnavn og argumenter som blir pakalt under

strembehandlingen.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

© 0 N O O b W N e

T = T O T Y
o N O O b W N =

Stremmebehandling 144

class ReplyStream

attr_accessor :buffer, :f_name, :f_arguments, :context
delegate :bot_message, :dispatch, to: :context

def initialize(context)
self.context = context
self.buffer = []
self.f_name = []
self.f_arguments = []

end

def call(chunk, bytesize = nil)

end

end

Metoden initialize setter opp starttilstanden for ReplyStream-instansen ved &

initialisere bufferen, konteksten og andre variabler.

Metoden call er hovedinngangspunktet for behandling av stremmedataene. Den
tar imot en chunk med data (representert som en hash) og en valgfri bytesize-
parameter, som i vart eksempel ikke brukes. Inne i denne metoden bruker klassen
menstergjenkjenning for a héandtere ulike scenarioer basert pa strukturen til den

mottatte chunken.

Ved & kalle deep_symbolize_keys pa chunken gjor vi
menstergjenkjenningen mer elegant, ved at vi kan operere med symboler i

stedet for strenger.

© 0 N O O b W N e

[T T ==Y
a s W N =~

Stremmebehandling 145

def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in { # match function name
choices: |

{
delta: {
tool_calls: |

{ index: index, function: {name: name} }

f_name[index]| = name

Det forste mensteret vi ser etter er et verkteykall sammen med det tilhgrende
funksjonsnavnet. Hvis vi oppdager ett, legger vi det inn i f_name-arrayen. Vi lagrer
funksjonsnavn i en indeksert array fordi modellen er i stand til & utfare parallelle

funksjonskall, som sender mer enn én funksjon til utferelse samtidig.

Parallell funksjonskalling er en Al-modells evne til & utfore flere funksjonskall
sammen, noe som gjor det mulig & leose effektene og resultatene av disse
funksjonskallene parallelt. Dette er spesielt nyttig hvis funksjoner tar lang tid, og
reduserer antall kommunikasjonsrunder med API-et, som igjen kan spare betydelige

mengder tokenforbruk.

Deretter ma vi se etter argumentene som tilsvarer funksjonskallene.

© 0 N O O b W N e

[T T ==Y
a s W N =~

© 0 N O O b W N =

[T T
w N =~

Stremmebehandling 146

in { # match arguments

choices: |
{
delta: {
tool_calls: |
{
index: index, function: {arguments: argument }
}
]
}
}
1}
f_arguments|index] ||= "" # initialize if not already

f_arguments[index| << argument

P4 samme mate som vi handterte funksjonsnavnene, legger vi argumentene inn i en

indeksert array.

Deretter ser vi etter brukerrettede meldinger, som vil komme fra serveren én token om
gangen og bli tildelt new_content-variabelen. Vi ma ogsa holde gye med finish_-
reason. Den vil veere nil frem til det siste segmentet av utdatasekvensen.
in {
choices: |

{ delta: {content: new_content}, finish_reason: finish_reason }

1}

you could transmit every chunk to the user here. ..

buffer << new_content.to_s

if finish_reason.present?
finalize
elsif new_content.to_s.match?(/\n\n/)
send_to_client # ...or buffer and transmit once per paragraph

end

Det er viktig at vi legger til et menstergjenkjenningsuttrykk for a handtere feilmeldinger
sendt fra Al-modelleveranderen. I lokale utviklingsmiljeer kaster vi et unntak, men i

produksjon logger vi feilen og avslutter.

Bw N e =N O O W N

O© 0 N O O b W N =

[T ==Y
a s W N =~

Stremmebehandling 147

in { error: { message: } }
if Rails.env.local?
raise message
else
Honeybadger .notify("AI Error: #{message}")
finalize
end

Den siste else-delen av case vil kjere hvis ingen av de foregaende menstrene ga treff.
Det er bare en sikkerhetsmekanisme slik at vi oppdager det hvis Al-modellen begynner

a sende oss ukjente deler.

else
Honeybadger .notify("Unrecognized Chunk: #{chunk}")
end
end

Metoden send_to_client er ansvarlig for a sende det mellomlagrede innholdet til
klienten. Den kontrollerer at bufferen ikke er tom, oppdaterer botmeldingsinnholdet,
gjengir botmeldingen, og lagrer innholdet i databasen for a sikre datapersistens.

def send_to_client

no need to process pure whitespace
return if buffer.join.squish.blank?

set the buffer content on the bot message
content = buffer. join
bot_message.content = content

save to database so that we never lose data
even 1f the stream doesn't terminate correctly

bot_message.update_column(:content, content)

update content via websocket
ConversationRenderer .update(bot_message)
end

finalize-metoden blir kalt nar stremprosesseringen er fullfert. Den utforer

funksjonsanropene hvis noen ble mottatt under stremmen, oppdaterer botmeldingen

© 0 N O O b W N =

[T
N =~ O

13
14
15
16

Stremmebehandling 148

med det endelige innholdet og annen relevant informasjon, og nullstiller

funksjonsanropshistorikken

def finalize
if f_name.any?
f_name.each_with_index do |name, index|
takes care of calling the function wherever it's implemented
dispatch(name:, arguments: JSON.parse(f_arguments|index]))
end

reset the function call history
f_name.clear
f_arguments.clear

else
content = buffer. join.presence
bot_message.update! (content:, complete: true)
ConversationRenderer .update(bot_message)

end

end

Hvis modellen bestemmer seg for & kalle en funksjon, ma du “ekspedere” dette
funksjonskallet (navn og argumenter) p& en slik mate at det blir utfert og

function_call- og function_result-meldinger blir lagt til i samtaleloggen

Basert pa min erfaring er det bedre & handtere opprettelsen av funksjonsmeldinger pa
ett sted i kodebasen din, i stedet for a stole pa verktgyimplementasjonene. Det er ikke
bare ryddigere, men har ogsa en veldig viktig praktisk grunn: hvis Al-modellen kaller
en funksjon, og ikke ser de resulterende kall- og resultatmeldingene i loggen nar du gar
gjennom lekken, vil den kalle den samme funksjonen igjen. Potensielt for alltid. Husk at

Al-en er fullstendig tilstandsles, s& med mindre du speiler disse funksjonskallene tilbake

til den, har de ikke skjedd.

© 0 N O O b W N e

[
()

Stremmebehandling 149

PromptSubscriber#dispatch

def dispatch(name:, arguments:)
adds a function_call message to the conversation transcript
plus dispatches to tool and returns result
conversation. function_call!(name, arguments).then do |result]|
add function result message to the transcript
conversation. function_result!(name, result)
end

end

A temme funksjonskallhistorikken etter utsending er like viktig som & sikre
at kallet og resultatene havner i transkripsjonen din, slik at du ikke bare
fortsetter a kalle de samme funksjonene om og om igjen hver gang du gar

gjennom lgkken.

“Samtalelokken”

Jeg nevner stadig lokker, men hvis du er ny til funksjonsanrop, er det kanskje ikke
apenbart hvorfor vi trenger & lokke. Grunnen er at nar Kl-en “ber” deg om & utfere
verktoyfunksjoner pa dens vegne, vil den stoppe a svare. Det er opp til deg a utfore
disse funksjonene, samle resultatene, legge resultatene til i transkripsjonen, og deretter
sende inn det opprinnelige promptet pa nytt for a fi et nytt sett med funksjonsanrop

eller brukerrettede resultater.

I PromptSubscriber-klassen bruker vi prompt-metoden fra PromptDeclarations-
modulen for & definere oppferselen til samtalelokken. until-parameteren er satt til - >
{ bot_message.complete? }, som betyr at lokken vil fortsette til bot_message er

markert som fullfort.

Stremmebehandling 150

1 prompt text: -> { user_message.content },
2 stream: -> { ReplyStream.new(self) },
3 until: -> { bot_message.complete? }

’ Men nér blir bot_message markert som fullfert? Hvis du har glemt det, se

tilbake pa linje 13 i finalize-metoden.

La oss gjennomga hele strammebehandlingslogikken.

1. PromptSubscriber mottar en ny brukermelding via message_created-
metoden, som blir pakalt av Wisper pub/sub-systemet hver gang sluttbrukeren
oppretter en ny prompt.

2. Klassemetoden prompt definerer deklarativt oppferselen til chatfullferelseslogikken
for PromptSubscriber. Al-modellen vil utfere en chatfullfarelse med brukerens
meldingsinnhold, en ny instans av ReplyStream som strgmparameter, og den
spesifiserte lokkebetingelsen.

3. Al-modellen behandler prompten og begynner & generere et svar. Mens svaret
stremmes, blir call-metoden til ReplyStream-instansen pékalt for hver datadel.

4. Hvis Al-modellen bestemmer seg for & kalle en verktgyfunksjon, blir
funksjonsnavnet og argumentene hentet ut fra delen og lagret i henholdsvis
f_name- og f_arguments-arrayene.

5. Hvis Al-modellen genererer brukerrettet innhold, blir det mellomlagret og sendt
til klienten via send_to_client-metoden.

6. Nar stremmebehandlingen er fullfert, blir finalize-metoden kalt. Hvis noen
verktoyfunksjoner ble pakalt under stremmen, blir de ekspedert ved hjelp av
dispatch-metoden til PromptSubscriber.

7. dispatch-metoden legger til en function_call-melding i samtaleloggen,
utferer den tilsvarende verkteyfunksjonen, og legger til en function_result-

melding i loggen med resultatet av funksjonskallet.

Stremmebehandling 151

8. Etter ekspederingen av verkteyfunksjonene blir funksjonskallhistorikken temt for
a forhindre dupliserte funksjonskall i pafelgende lgkker.

9. Hvis ingen verkteyfunksjoner ble pakalt, oppdaterer finalize-metoden bot_-
message med det endelige innholdet, markerer det som fullfert, og sender den
oppdaterte meldingen til klienten.

10. Logkkebetingelsen -> { bot_message.complete? } blir evaluert. Hvis bot_-
message ikke er markert som fullfert, fortsetter lokken, og den opprinnelige
prompten sendes inn igjen med den oppdaterte samtaleloggen.

11. Trinn 3-10 gjentas til bot_message er markert som fullfert, som indikerer at Al-
modellen har fullfert genereringen av svaret og ingen flere verkteyfunksjoner

trenger a utfores.

Ved & implementere denne samtalelgkken, gjor du det mulig for Al-modellen & engasjere
seg i en frem-og-tilbake-interaksjon med applikasjonen, utfere verktoyfunksjoner etter

behov og generere brukerrettede svar til samtalen nér en naturlig konklusjon.

Kombinasjonen av stremmebehandling og samtalelokken muliggjer dynamiske og
interaktive Al-drevne opplevelser, hvor Al-modellen kan behandle brukerinndata,
utnytte ulike verktey og funksjoner, og gi sanntidssvar basert pa den utviklende

samtalekonteksten.

Automatisk fortsettelse

Det er viktig & veere klar over Al-utdatabegrensninger. De fleste modeller har et
maksimalt antall tokens de kan generere i ett enkelt svar, som bestemmes av max_-
tokens-parameteren. Hvis Al-modellen nar denne grensen mens den genererer et svar,

vil den bratt stoppe og indikere at utdataen ble avkortet.

I stremmesvaret fra Al-plattformens API kan du oppdage denne situasjonen ved

& undersgke finish_reason-variabelen i delen. Hvis finish_reason er satt til

Stremmebehandling 152

"length" (eller en annen nekkelverdi spesifikk for modellen), betyr det at modellen

nadde sin maksimale tokengrense under generering og utdataen har blitt kuttet kort.

En méte & handtere dette scenariet pa en elegant mate og gi en sgmlgs brukeropplevelse,
er a implementere en automatisk fortsettelsesmekanisme i stremmebehandlingslogikken
din. Ved & legge til et menstertreff for lengderelaterte avslutningsgrunner, kan du velge

a lokke og automatisk fortsette utdataen fra der den slapp.

Her er et med vilje forenklet eksempel pa hvordan du kan modifisere call-metoden i

ReplyStream-klassen for a stgtte automatisk fortsettelse:

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices: |

9 { delta: {content: new_content},

10 finish_reason: finish_reason } | }
11

12 buffer << new_content.to_s

13

14 if finish_reason.blank?

15 send_to_client if new_content.to_s.match?(/\n\n/)
16 elsif LENGTH_STOPS.include?(finish_reason)
17 continue_cutoff

18 else

19 finalize

20 end
21
22 # ...
23 end
24 end
25
26 private
27

28 def continue_cutoff
29 conversation.bot_message! (buffer. join, visible: false)

30
31
32

Stremmebehandling 153

conversation.user_message! ("please continue", visible: false)
bot_message.update_column(:created_at, Time.current)

end

I denne modifiserte versjonen, nar finish_reason indikerer avkortet output, i stedet
for & avslutte stremmen, legger vi til et par meldinger i transskriptet uten & avslutte,
flytter den opprinnelige brukervendte responsmeldingen til “bunnen” av transskriptet
ved & oppdatere dens created_at-attributt, og lar deretter lokken fortsette, slik at Al-

en fortsetter & generere der den slapp.

Husk at Al-fullferingsendepunktet er tilstandslast. Det “vet” bare det du forteller det via
transskriptet. I dette tilfellet er méten vi kommuniserer til Al-en at den ble avkuttet pa
ved & legge til “usynlige” (for sluttbrukeren) meldinger i transskriptet. Husk imidlertid
at dette er et bevisst forenklet eksempel. En faktisk implementering ville matte utfore
ytterligere transkripthandtering for a sikre at vi ikke kastet bort tokens og/eller forvirret

Al-en med dupliserte assistentmeldinger i transskriptet.

En faktisk implementering av autokontinuasjon ber ogsa ha sékalt “kretsbryterlogikk”
pa plass for & forhindre ukontrollert lgkking. Grunnen er at, gitt visse typer
brukerprompts og lave max_tokens-innstillinger, kunne Al-en fortsette a lokke

brukervendt output i det uendelige.

Husk at hver lokke krever en separat forespersel, og at hver forespersel forbruker
hele transskriptet ditt igjen. Du ber definitivt vurdere avveiningene mellom
brukeropplevelse og API-bruk nar du bestemmer deg for om du skal implementere
autokontinuasjon i applikasjonen din. Autokontinuasjon kan veere spesielt farlig

dyrt, seerlig nar du bruker premium kommersielle modeller.

Stremmebehandling 154

Konklusjon

Strembehandling er et kritisk aspekt ved bygging av Al-drevne applikasjoner
som kombinerer verkteybruk med direkte Al-responser. Ved & effektivt handtere
stremmedata fra Al-plattform-APler, kan du gi en semles og interaktiv
brukeropplevelse, handtere store responser, optimalisere ressursbruk og handtere

feil pa en elegant méte.

Den medfelgende Conversation::ReplyStream-klassen demonstrerer hvordan
strembehandling kan implementeres i en Ruby-applikasjon ved hjelp av
menstergjenkjenning og hendelsesdrevet arkitektur. Ved a forstd og utnytte
strembehandlingsteknikker kan du lase opp det fulle potensialet til Al-integrasjon i

applikasjonene dine og levere kraftige og engasjerende brukeropplevelser.

Selvhelbredende data

AL
Sk

Selvhelbredende data er en kraftfull tilneerming for a sikre dataintegritet, konsistens og
kvalitet i applikasjoner ved a utnytte mulighetene som store sprakmodeller (LLM-er) gir.
Denne kategorien menstre fokuserer pa ideen om a bruke KI til automatisk & oppdage,
diagnostisere og korrigere dataanomalier, inkonsistenser eller feil, og dermed redusere

byrden pa utviklere og opprettholde et hoyt niva av datapalitelighet.

I kjernen erkjenner menstrene for selvhelbredende data at data er livsnerven i enhver
applikasjon, og at det & sikre neyaktighet og integritet er avgjerende for applikasjonens
riktige funksjon og brukeropplevelse. Imidlertid kan handtering og vedlikehold av
datakvalitet veere en kompleks og tidkrevende oppgave, spesielt nar applikasjoner vokser

i storrelse og kompleksitet. Det er her KI-ens kraft kommer inn i bildet.

I menstrene for selvhelbredende data brukes KI-arbeidere til kontinuerlig & overvéake og

analysere applikasjonens data. Disse modellene har evnen til & forsta og tolke menstre,

Selvhelbredende data 156

relasjoner og anomalier i dataene. Ved & utnytte deres naturlige sprakprosessering og
forstielsesevner kan de identifisere potensielle problemer eller inkonsistenser i dataene

og iverksette passende tiltak for a rette dem.

Prosessen med selvhelbredende data innebeerer vanligvis flere viktige trinn:

1. Dataovervaking: Kl-arbeidere overvaker kontinuerlig applikasjonens
datastremmer, databaser eller lagringssystemer, og ser etter tegn pa anomalier,
inkonsistenser eller feil. Alternativt kan du aktivere en Kl-komponent som
reaksjon pa et unntak.

2. Avviksdeteksjon: Nar et problem oppdages, analyserer KI-arbeideren dataene i
detalj for & identifisere problemets spesifikke art og omfang. Dette kan innebeere
a oppdage manglende verdier, inkonsistente formater eller data som bryter med
forhandsdefinerte regler eller begrensninger.

3. Diagnose og korrigering: Nar problemet er identifisert, bruker KI-arbeideren sin
kunnskap og forstaelse av datadomenet til & bestemme passende handlingsforlep.
Dette kan innebeere automatisk korrigering av data, utfylling av manglende
verdier eller markering av problemet for menneskelig intervensjon hvis
nedvendig.

4. Kontinuerlig leering (valgfritt, avhengig av brukstilfelle): Etter hvert som
KI-arbeideren meter og lgser ulike dataproblemer, kan den produsere output
som beskriver hva som skjedde og hvordan den responderte. Denne metadataen
kan mates inn i leeringsprosesser som gjor det mulig for deg (og kanskje den
underliggende modellen, via finjustering) a bli mer effektiv over tid i a identifisere

og lose dataanomalier.

Ved automatisk a oppdage og korrigere dataproblemer kan du sikre at applikasjonen
din opererer med data av hey kvalitet og palitelighet. Dette reduserer risikoen for at
feil, inkonsistenser eller datarelaterte feil pavirker applikasjonens funksjonalitet eller

brukeropplevelse.

Selvhelbredende data 157

Nér du har KI-arbeidere som héndterer oppgaven med dataovervaking og korrigering,
kan du fokusere innsatsen din pa andre kritiske aspekter ved applikasjonen. Dette sparer
tid og ressurser som ellers ville blitt brukt pa manuell datarengjering og vedlikehold.
Faktisk blir manuell handtering av datakvalitet stadig mer utfordrende etter hvert som
applikasjonene vokser i sterrelse og kompleksitet. Mgnstrene for “Selvhelbredende data”
skalerer effektivt ved a utnytte KI-ens kraft til 8 hdndtere store datamengder og oppdage

problemer i sanntid.

Pa grunn av sin natur kan KI-modeller tilpasse seg endrede datamenstre,
P skjemaer eller krav over tid med lite eller ingen tilsyn. S& lenge deres
direktiver gir tilstrekkelig veiledning, spesielt angéende tiltenkte resultater,
kan applikasjonen din utvikle seg og handtere nye datascenarier uten & kreve

omfattende manuell intervensjon eller kodeendringer.

Mgnstrene for selvhelbredende data samsvarer godt med de andre kategoriene
av menstre vi har diskutert, som “Mangfold av arbeidere”. Selvhelbredende
datafunksjonalitet kan sees pa som en spesialisert type arbeider som fokuserer
spesifikt pa a sikre datakvalitet og integritet. Denne typen arbeider opererer sammen
med andre Kl-arbeidere, hvor hver bidrar til forskjellige aspekter av applikasjonens

funksjonalitet.

Implementering av menstre for selvhelbredende data i praksis krever ngye design og
integrasjon av KI-modeller i applikasjonsarkitekturen. Pa grunn av risikoen for datatap
og korrupsjon ber du definere klare retningslinjer for hvordan du vil bruke denne

teknikken. Du ber ogsa vurdere faktorer som ytelse, skalerbarhet og datasikkerhet.

Praktisk casestudie: Reparering av edelagt JSON

En av de mest praktiske og praktiske matene a utnytte selvhelbredende data pa er ogsa

veldig enkel a forklare: reparering av gdelagt JSON.

© 0 N O U b W N =

NN NN B R R sl s L sy
W N A0 O N0 O Bk W N~ o

Selvhelbredende data 158

Denne teknikken kan anvendes pa den vanlige utfordringen med & handtere ufullkomne
eller inkonsistente data generert av LLM-er, som gdelagt JSON, og gir en tilneerming for

automatisk oppdagelse og korrigering av disse problemene.

Hos Olympia meter jeg regelmessig scenarioer hvor LLMer genererer JSON-data som
ikke er helt gyldig. Dette kan skje av ulike arsaker, som at LLMen legger til kommentarer
for eller etter selve JSON-koden, eller introduserer syntaksfeil som manglende kommaer
eller ikke-eskapterte doble anferselstegn. Disse problemene kan fore til parseringsfeil og

forarsake forstyrrelser i applikasjonens funksjonalitet.

For a handtere dette problemet har jeg implementert en praktisk lgsning i form av en
JsonFixer-klasse. Denne klassen folger “Selvhelbredende data”-mensteret ved & ta den
gdelagte JSONen som input og bruke en LLM til & reparere den, samtidig som den

bevarer sa mye informasjon og intensjon som mulig.

class JsonFixer

include Raix::ChatCompletion

def call(bad_json, error_message)

raise "No data provided" if bad_json.blank? || error_message.blank?

transcript << {
system: "Consider user-provided JSON that generated a parse

exception. Do your best to fix it while preserving the
original content and intent as much as possible." }

transcript << { user: bad_json }

transcript << { assistant: "What is the error message?"}

transcript << { user: error_message }

transcript << { assistant: "Here is the corrected JSON\n' " json\n" }

self.stop = |

chat_completion(json: true)
end

def model
"mistralai/mixtral-8x7Tb-instruct:nitro"
end

24

a s W N -

Selvhelbredende data 159

end

’ Legg merke til hvordan JsonFixer bruker Ventriloquist for a styre Al-ens

responser.

Prosessen med selvhelbredende JSON-data fungerer som folger:

1. JSON-generering: En LLM brukes til &4 generere JSON-data basert p& bestemte
prompts eller krav. Pa grunn av LLM-enes natur vil den genererte JSON-en ikke
alltid veere perfekt gyldig. JSON-parseren vil selvfelgelig utlese en ParserError
hvis du gir den ugyldig JSON.

begin
JSON.parse(11m_generated_json)
rescue JSON: :ParserkError => e
JsonFixer.new.call(llm_generated_json, e.message)
end

Merk at feilmeldingen ogsa sendes til JSONF ixer-kallet slik at den ikke trenger & gjore
fullstendige antakelser om hva som er galt med dataene, spesielt siden parseren ofte vil

fortelle deg noyaktig hva som er feil.

2. LLM-basert Korreksjon: JSONFixer-klassen sender den edelagte JSON-en
tilbake til en LLM, sammen med en spesifikk prompt eller instruksjon for 4 fikse
JSON-en mens den bevarer den opprinnelige informasjonen og intensjonen sa
mye som mulig. LLM-en, som er trent pa store mengder data og har forstielse
av JSON-syntaks, forsgker & korrigere feilene og generere en gyldig JSON-streng.
Responsbegrensning brukes for & begrense outputen fra LLM-en, og vi velger
Mixtral 8x7B som Al-modellen, siden den er spesielt god for denne typen

oppgave.

Selvhelbredende data 160

3. Validering og Integrering: Den reparerte JSON-strengen som returneres av
LLM-en blir analysert av selve JSONFixer-klassen, fordi den kalte chat_-
completion(json: true). Hvis den reparerte JSON-en bestar valideringen,
blir den integrert tilbake i applikasjonens arbeidsflyt, slik at applikasjonen kan
fortsette & behandle dataene sgmlest. Den darlige JSON-en har blitt “helbredet”.

Selv om jeg har skrevet og omskrevet min egen JSONFixer-implementasjon flere
ganger, tviler jeg pa at den totale tiden investert i alle disse versjonene er mer enn en

time eller to.

Merk at bevaring av intensjon er et nekkelelement i ethvert selvhelbredende
datamenster. Den LLM-baserte korrigeringsprosessen tar sikte pa & bevare den
opprinnelige informasjonen og intensjonen i den genererte JSON-en sd mye som mulig.
Dette sikrer at den reparerte JSON-en beholder sin semantiske betydning og kan brukes

effektivt innenfor applikasjonens kontekst.

Denne praktiske implementeringen av “Selvhelbredende Data”’-tilneermingen i
Olympia demonstrerer tydelig hvordan Al spesielt LLM-er, kan utnyttes for a lgse
datautfordringer i den virkelige verden. Den viser styrken ved a kombinere tradisjonelle
programmeringsteknikker med Al-kapabiliteter for a bygge robuste og effektive

applikasjoner.

Postels Lov og “Selvhelbredende Data”-Mansteret

“Selvhelbredende Data”, som eksemplifisert av JSONFixer-klassen, samsvarer godt
med prinsippet kjent som Postels Lov, ogsa referert til som Robusthetsprinsippet.

Postels Lov sier:
“Veer konservativ i det du gjer, veer liberal i det du aksepterer fra andre.”

Dette prinsippet, opprinnelig formulert av Jon Postel, en pioner innen det tidlige

Selvhelbredende data 161

Internettet, understreker viktigheten av a bygge systemer som er tolerante overfor
diverse eller til og med lett ukorrekte inndata, mens de opprettholder streng

overholdelse av spesifiserte protokoller nar de sender utdata.

I konteksten av “Selvhelbredende Data” legemliggjor JSONFixer-klassen Postels Lov
ved & veere liberal i & akseptere gdelagt eller ufullkommen JSON-data generert av
LLM-er. Den avviser eller feiler ikke umiddelbart nar den mgater JSON som ikke
strengt felger det forventede formatet. I stedet tar den en tolerant tilneerming og

forsgker 4 fikse JSON-en ved hjelp av kraften i LLM-er.

Ved & veere liberal i 4 akseptere ufullkommen JSON, demonstrerer JSONFixer-klassen
robusthet og fleksibilitet. Den anerkjenner at data i den virkelige verden ofte kommer
i ulike former og ikke alltid samsvarer med strenge spesifikasjoner. Ved a handtere
og korrigere disse avvikene pa en elegant méte, sikrer klassen at applikasjonen kan

fortsette a fungere problemfritt, selv i neerveer av ufullkomne data.

Pa den annen side folger JSONFixer-klassen ogsa den konservative delen av Postels
Lov nar det gjelder output. Etter & ha fikset JSON-en ved hjelp av LLM-er, validerer
klassen den korrigerte JSON-en for & sikre at den strengt samsvarer med det
forventede formatet. Den opprettholder dataenes integritet og korrekthet for den
sender dem videre til andre deler av applikasjonen. Denne konservative tilneermingen
garanterer at outputen fra JSONFixer-klassen er pélitelig og konsistent, og fremmer

interoperabilitet og forhindrer spredning av feil.

Interessante fakta om Jon Postel:

« Jon Postel (1943-1998) var en amerikansk informatiker som spilte en
avgjerende rolle i utviklingen av Internettet. Han var kjent som “Internettets
Gud” for sine betydelige bidrag til de underliggende protokollene og
standardene.

« Postel var redakter for Request for Comments (RFC)-dokumentserien, som er
en serie tekniske og organisatoriske notater om Internettet. Han forfattet eller

medforfattet over 200 RFC-er, inkludert de grunnleggende protokollene som

Selvhelbredende data 162

TCP, IP og SMTP.

o I tillegg til hans tekniske bidrag, var Postel kjent for sin ydmyke og
samarbeidsvillige tilneerming. Han trodde pa viktigheten av & oppna
konsensus og jobbe sammen for & bygge et robust og interoperabelt nettverk.

+ Postel tjenestegjorde som direkter for Computer Networks Division ved
Information Sciences Institute (ISI) ved University of Southern California
(USC) fra 1977 frem til sin altfor tidlige ded i 1998.

+ Som anerkjennelse for hans enorme bidrag, ble Postel posthumt tildelt den
prestisjefylte Turing-prisen i 1998, ofte referert til som “Databehandlingens

Nobelpris”

JSONFixer-klassen fremmer robusthet, fleksibilitet og interoperabilitet, som var
kjerneverdier som Postel opprettholdt gjennom hele sin karriere. Ved a bygge
systemer som er tolerante for ufullkommenheter mens de opprettholder streng
overholdelse av protokoller, kan vi skape applikasjoner som er mer motstandsdyktige

og tilpasningsdyktige i mote med virkelige utfordringer.

Hensyn og kontraindikasjoner

Anvendbarheten av selvhelbredende datatilnserminger er helt avhengig av hvilken
type data applikasjonen din handterer. Det er en grunn til at du kanskje ikke vil
bare monkeypatch JSON.parse for automatisk & korrigere alle JSON-parsing-feil i

applikasjonen din: ikke alle feil kan eller ber korrigeres automatisk.

Selvhelbredende er spesielt utfordrende nar det er koblet til regulatoriske eller
etterlevelses-krav relatert til datahandtering og -behandling. Noen bransjer, som
helsevesen og finans, har si strenge forskrifter angéende dataintegritet og sporbarhet
at enhver form for “black box” datakorrigering uten skikkelig tilsyn eller logging kan

bryte disse forskriftene. Det er avgjerende a sikre at alle selvhelbredende datateknikker

Selvhelbredende data 163

du kommer opp med, er i samsvar med gjeldende juridiske og regulatoriske rammeverk.

Anvendelse av selvhelbredende datateknikker, spesielt de som involverer Al-modeller,
kan ogsa ha stor innvirkning pa applikasjonsytelse og ressursbruk. Behandling av
store datamengder gjennom Al-modeller for feildeteksjon og -korrigering kan veere
beregningsmessig intensivt. Det er viktig 4 vurdere avveiningene mellom fordelene med

selvhelbredende data og de tilhgrende ytelses- og ressurskostnadene.

La oss na se neermere pa faktorene som er involvert i & bestemme nér og hvor man skal

anvende denne kraftige tilneermingen.

Datakritikalitet

Nér man vurderer anvendelsen av selvhelbredende datateknikker, er det avgjerende
a vurdere kritikaliteten til dataene som behandles. Kritikalitetsnivéet refererer til
viktigheten og sensitiviteten til dataene i konteksten av applikasjonen din og dens

forretningsdomene.

I noen tilfeller kan automatisk korrigering av datafeil veere upassende, spesielt hvis
dataene er sveert sensitive eller har juridiske implikasjoner. Vurder for eksempel falgende

scenarioer:

1. Finansielle transaksjoner: I finansapplikasjoner, som banksystemer eller
handelsplattformer, er dataneyaktighet av sterste betydning. Selv mindre feil
i finansielle data kan ha betydelige konsekvenser, som feil i kontobalanser,
feildirigerte midler eller feilaktige handelsbeslutninger. I disse tilfellene kan
automatiserte korreksjoner uten grundig verifisering og revisjon introdusere
uakseptable risikoer.

2. Medisinske journaler: Helseapplikasjoner handterer sveert sensitive og
konfidensielle pasientdata. Uneyaktigheter i medisinske journaler kan ha
alvorlige implikasjoner for pasientsikkerhet og behandlingsbeslutninger.

Automatisk modifisering av medisinske data uten skikkelig tilsyn og validering

Selvhelbredende data 164

av kvalifisert helsepersonell kan bryte med regulatoriske krav og sette pasientens
velveere i fare.

3. Juridiske dokumenter: Applikasjoner som handterer juridiske dokumenter, som
kontrakter, avtaler eller rettsdokumenter, krever streng neyaktighet og integritet.
Selv mindre feil i juridiske data kan ha betydelige juridiske konsekvenser.
Automatiserte korreksjoner i dette domenet er kanskje ikke passende, siden
dataene ofte krever manuell gjennomgang og verifisering av juridiske eksperter

for a sikre gyldighet og hdndhevbarhet.

I disse kritiske datascenarioene overgar risikoene forbundet med automatiserte
korreksjoner ofte de potensielle fordelene. Konsekvensene av a introdusere feil eller
modifisere data feilaktig kan veere alvorlige, og fore til skonomiske tap, juridisk ansvar

eller til og med skade pa personer.

Nar man héandterer sveert kritiske data, er det essensielt & prioritere manuelle
verifiserings- og valideringsprosesser. Menneskelig tilsyn og ekspertise er avgjerende
for & sikre noyaktighet og integritet i dataene. Automatiserte selvhelbredende teknikker
kan fortsatt brukes til a4 flagge potensielle feil eller uoverensstemmelser, men den
endelige beslutningen om korreksjoner ber involvere menneskelig vurdering og

godkjenning.

Det er imidlertid viktig & merke seg at ikke alle data i en applikasjon nedvendigvis har
samme kritikalitetsniva. Innenfor samme applikasjon kan det vere delsett av data som
er mindre sensitive eller har lavere konsekvenser hvis feil oppstar. I slike tilfeller kan
selvhelbredende datateknikker anvendes selektivt pa disse spesifikke datasettene, mens

kritiske data forblir gjenstand for manuell verifisering.

Ngkkelen er a neye vurdere kritikaliteten til hver datakategori i applikasjonen din
og definere klare retningslinjer og prosesser for handtering av korreksjoner basert pa
tilherende risikoer og implikasjoner. Ved a skille mellom kritiske (dvs. hovedbgker,

medisinske journaler) og ikke-kritiske data (dvs. postadresser, ressursadvarsler), kan du

Selvhelbredende data 165

finne en balanse mellom & utnytte fordelene med selvhelbredende datateknikker der det

er hensiktsmessig og opprettholde streng kontroll og tilsyn der det er nedvendig.

Til syvende og sist ber beslutningen om & anvende selvhelbredende datateknikker pa
kritiske data tas i samrad med domeneeksperter, juridiske radgivere og andre relevante
interessenter. Det er essensielt & vurdere de spesifikke kravene, forskriftene og risikoene

forbundet med applikasjonens data og tilpasse datakorrigeringsstrategiene deretter.

Feilalvorlighet

Nar man anvender selvhelbredende datateknikker, er det viktig a wvurdere
alvorlighetsgraden og innvirkningen av datafeilene. Ikke alle feil er like alvorlige,

og passende handlingsforlgp kan variere avhengig av problemets alvorlighetsgrad.

Mindre uoverensstemmelser eller formateringsproblemer kan veere egnet for automatisk
korrigering. For eksempel kan en selvhelbredende dataarbeider som er satt til & fikse
gdelagt JSON handtere manglende kommaer eller ueskapterte doble anforselstegn uten &
betydelig endre dataenes mening eller struktur. Disse typene feil er ofte enkle & korrigere

og har minimal innvirkning pa den generelle dataintegriteten.

Imidlertid kan mer alvorlige feil som fundamentalt endrer betydningen eller integriteten
til dataene kreve en annen tilneerming. I slike tilfeller er kanskje ikke automatiserte
korreksjoner tilstrekkelige, og menneskelig inngripen kan veere nedvendig for a sikre

ngyaktigheten og gyldigheten av dataene.

Det er her konseptet med & bruke selve Al-en til & hjelpe med & bestemme feilalvorlighet
kommer inn i bildet. Ved & utnytte Al-modellenes muligheter kan vi designe
selvhelbredende dataarbeidere som ikke bare korrigerer feil, men ogsd vurderer
alvorlighetsgraden av disse feilene og tar informerte beslutninger om hvordan de skal

héandteres.

La oss for eksempel se pa en selvhelbredende dataarbeider som er ansvarlig for a

korrigere uoverensstemmelser i data som stremmer inn i en kundedatabase. Arbeideren

© 0 N O O b W N =

W W W W W N NN DN DN DN DN NN DN - » 2 s
B WN O O 00 N0 0 WN RO O N 0w N

Selvhelbredende data 166

kan designes til & analysere dataene og identifisere potensielle feil, som manglende eller
motstridende informasjon. I stedet for & automatisk korrigere alle feil, kan arbeideren
utstyres med ytterligere verktoyskall som gjor det mulig a flagge alvorlige feil for

menneskelig gjennomgang.

Her er et eksempel pa hvordan dette kan implementeres:

class CustomerDataReviewer
include Raix::ChatCompletion
include Raix::FunctionDeclarations

attr_accessor :customer

function :flag_for_review, reason: { type: "string" } do |params|
AdminNotifier.review_request(customer, params|:reason])
end

def initialize(customer)
self.customer = customer

end

def call(customer_data)
transcript << {
system: "You are a customer data reviewer. Your task is to identify
and correct inconsistencies in customer data.

< additional instructions here... >

If you encounter severe errors that require human review, use the

“flag_for_review® tool to flag the data for manual intervention." }

transcript << { user: customer.to_json }

transcript << { assistant: "Reviewed/corrected data:\n json\n" }

||\\\||1

self.stop = |

chat_completion(json: true).then do |result|
return if result.blank?

customer .update(result)
end

36

Selvhelbredende data 167

end

end

I dette eksemplet er CustomerDataHealer-arbeideren designet for & identifisere og
korrigere uoverensstemmelser i kundedata. Igjen bruker vi Responsavgrensning og
Ventriloquist for a fa strukturert output. Viktig er det at arbeiderens systemdirektiv
inkluderer instruksjoner om a bruke flag_for_review-funksjonen hvis alvorlige feil

oppdages.

Nér arbeideren behandler kundedataene, analyserer den dataene og forseker a korrigere
eventuelle uoverensstemmelser. Hvis arbeideren fastslar at feilene er alvorlige og krever
menneskelig inngrep, kan den bruke flag_for_review-verktoyet for a flagge dataene

og oppgi en grunn for flaggingen.

chat_completion-metoden kalles med json: true for a tolke de korrigerte
kundedataene som JSON. Det er ingen mulighet for lokker etter et funksjonskalll, s&
resultatet vil veere tomt hvis flag_for_review ble pakalt. Ellers blir kunden oppdatert

med de gjennomgatte og potensielt korrigerte dataene.

Ved a inkorporere vurdering av feilenes alvorlighetsgrad og muligheten til & flagge data
for menneskelig gjennomgang, blir den selvhelbredende dataarbeideren mer intelligent
og tilpasningsdyktig. Den kan handtere mindre feil automatisk mens alvorlige feil

eskaleres til menneskelige eksperter for manuell intervensjon.

De spesifikke kriteriene for & bestemme feilenes alvorlighetsgrad kan defineres
i arbeiderens direktiv basert pdA domenekunnskap og forretningskrav. Faktorer som
pavirkning pé dataintegritet, potensialet for datatap eller -korrupsjon, og konsekvensene

av feilaktige data kan vurderes nar alvorlighetsgraden skal fastsettes.

Ved a utnytte Al til & vurdere feilenes alvorlighetsgrad og gi muligheter for menneskelig
intervensjon, kan selvhelbredende datateknikker skape balanse mellom automatisering
og opprettholdelse av datangyaktighet. Denne tilnsermingen sikrer at mindre feil
korrigeres effektivt mens alvorlige feil far nedvendig oppmerksomhet og ekspertise fra

menneskelige kontrollgrer.

Selvhelbredende data 168

Domenekompleksitet

Nar man vurderer anvendelsen av selvhelbredende datateknikker, er det viktig a
evaluere kompleksiteten i datadomenene og reglene som styrer deres struktur og
relasjoner. Domenets kompleksitet kan ha betydelig innvirkning pé effektiviteten og

gjennomferbarheten av automatiserte datakorreksjonstilneerminger.

Selvhelbredende datateknikker fungerer godt nar dataene folger veldefinerte menstre og
begrensninger. I domener hvor datastrukturen er relativt enkel og relasjonene mellom
dataelementer er ukompliserte, kan automatiske korreksjoner anvendes med hey grad
av sikkerhet. For eksempel kan korrigering av formateringsproblemer eller hdndhevelse
av grunnleggende datatypebegrensninger ofte handteres effektivt av selvhelbredende

dataarbeidere.

Imidlertid eker utfordringene knyttet til automatisk datakorrigering nar domenets
kompleksitet oker. I domener med intrikat forretningslogikk, komplekse relasjoner
mellom dataentiteter, eller domenespesifikke regler og unntak, kan selvhelbredende
datateknikker ikke alltid fange opp nyansene og kan introdusere utilsiktede

konsekvenser.

La oss se pa et eksempel pa et komplekst domene: et finansielt handelssystem. I dette
domenet involverer dataene ulike finansielle instrumenter, markedsdata, handelsregler
og regulatoriske krav. Relasjonene mellom ulike dataelementer kan veere intrikate, og

reglene som styrer datavaliditet og konsistens kan veere sveert spesifikke for domenet.

I et sa komplekst domene ville en selvhelbredende dataarbeider som er satt til & korrigere
uoverensstemmelser i handelsdata, méatte ha en dyp forstaelse av de domenespesifikke
reglene og begrensningene. Den matte ta hensyn til faktorer som markedsreguleringer,
handelsgrenser, risikoberegninger og oppgjersprosedyrer. Automatiske korreksjoner i
denne konteksten vil kanskje ikke alltid fange opp domenets fulle kompleksitet og kan

utilsiktet introdusere feil eller bryte domenespesifikke regler.

For a handtere utfordringene med domenekompleksitet kan selvhelbredende

Selvhelbredende data 169

datateknikker forbedres ved & inkorporere domenespesifikk kunnskap og regler i

Al-modellene og arbeiderne. Dette kan oppnas gjennom teknikker som:

1. Domenespesifikk Trening: Al-modellene som brukes for selvhelbredende data
kan dirigeres eller til og med finjusteres pa domenespesifikke datasett som fanger
opp det spesifikke domenets kompleksitet og regler. Ved & eksponere modellene
for representative data og scenarioer, kan de leere menstrene, begrensningene og
unntakene som er spesifikke for domenet.

2. Regelbaserte Begrensninger: Selvhelbredende dataarbeidere kan utvides
med eksplisitte regelbaserte begrensninger som koder domenespesifikk
kunnskap. Disse reglene kan defineres av domeneeksperter og integreres i
datakorrigeringsprosessen. Al-modellene kan da bruke disse reglene til & guide
sine beslutninger og sikre overholdelse av domenespesifikke krav.

3. Samarbeid med Domeneeksperter: I komplekse domener er det avgjerende
a involvere domeneeksperter i design og utvikling av selvhelbredende
datateknikker. Domeneeksperter kan gi verdifull innsikt i dataenes kompleksitet,
forretningsreglene og potensielle kanttilfeller. Deres kunnskap kan inkorporeres
i Al-modellene og arbeiderne for & forbedre nayaktigheten og péliteligheten til
automatiske datakorreksjoner ved bruk av Menneske-i-lgkken-menstre.

4. Inkrementell og Iterativ Tilnserming: Nar man handterer komplekse domener,
er det ofte fordelaktig & adoptere en inkrementell og iterativ tilnserming til
selvhelbredende data. I stedet for a forsgke & automatisere korreksjoner for hele
domenet pa én gang, fokuser pa spesifikke underdomener eller datakategorier
hvor reglene og begrensningene er godt forstatt. Utvid gradvis omfanget av
selvhelbredende teknikker etter hvert som forstaelsen av domenet vokser og

teknikkene viser seg effektive.

Ved & ta hensyn til kompleksiteten i datadomenet og inkorporere domenespesifikk
kunnskap i selvhelbredende datateknikker, kan du oppna en balanse mellom

automatisering og neyaktighet. Det er viktig & erkjenne at selvhelbredende data

Selvhelbredende data 170

ikke er en universallgsning, og at tilneermingen ber tilpasses de spesifikke kravene og

utfordringene i hvert domene.

I komplekse domener kan en hybrid tilneerming som kombinerer selvhelbredende
datateknikker med menneskelig ekspertise og tilsyn veere mest effektiv. Automatiske
korreksjoner kan handtere rutinepregede og veldefinerte tilfeller, mens komplekse
scenarioer eller unntak kan flagges for menneskelig gjennomgang og intervensjon.
Denne samarbeidsbaserte tilneermingen sikrer at fordelene med automatisering
realiseres samtidig som man opprettholder nedvendig kontroll og neyaktighet i

komplekse datadomener.

Forklarbarhet og gjennomsiktighet

Forklarbarhet refererer til evnen til & forsta og tolke resonnementet bak beslutningene
som tas av Al-modeller, mens gjennomsiktighet innebserer a gi klar innsikt i

datakorreksjonsprosessen.

I mange sammenhenger ma dataendringer veere reviderbare og kunne rettferdiggjores.
Interessenter, inkludert forretningsbrukere, revisorer og regulerende organer, kan kreve
forklaringer pa hvorfor visse datakorreksioner ble gjort og hvordan Al-modellene kom
fram til disse beslutningene. Dette er spesielt viktig i domener hvor datangyaktighet og

integritet har betydelige implikasjoner, som finans, helsevesen og juridiske saker.

For & imgtekomme behovet for forklarbarhet og gjennomsiktighet bar selvhelbredende
datateknikker inkorporere mekanismer som gir innsikt i Al-modellenes

beslutningsprosess. Dette kan oppnas gjennom ulike tilnserminger:

1. Tankekjede: Ved & be modellen forklare sin tenkning “heyt” for den gjor endringer
i data, kan man lettere forstd beslutningsprosessen og generere menneskelig
lesbare forklaringer for korreksjoner som er gjort. Kompromisset er litt mer
kompleksitet i & skille forklaringen fra den strukturerte datautgangen, som kan

héandteres ved...

Selvhelbredende data 171

2. Generering av forklaringer: Selvhelbredende dataarbeidere kan utstyres med
evnen til & generere menneskelig lesbare forklaringer for korreksjoner de gjor.
Dette kan oppnas ved & be modellen produsere sin beslutningsprosess som
lett forstaelige forklaringer integrert i selve dataene. For eksempel kan en
selvhelbredende dataarbeider generere en rapport som fremhever de spesifikke
datauoverensstemmelsene den identifiserte, korreksjonene den anvendte, og
begrunnelsen bak disse korreksjonene.

3. Funksjonsrelevans: Al-modeller kan instrueres med informasjon om viktigheten
av ulike funksjoner eller attributter i datakorreksjonsprosessen som del av
deres direktiver. Disse direktivene kan i sin tur eksponeres for menneskelige
interessenter. Ved & identifisere nekkelfaktorene som pavirker modellens
beslutninger, kan interessenter fa innsikt i resonnementet bak korreksjonene og
vurdere deres gyldighet.

4. Logging og revisjon: Implementering av omfattende loggferings- og
revisjonsmekanismer er avgjorende for & opprettholde gjennomsiktighet i den
selvhelbredende dataprosessen. Hver datakorreksjon som gjeres av Al-modeller
ber logges, inkludert originaldata, korrigerte data og spesifikke handlinger som
er utfert. Dette revisjonssporet muliggjer retrospektiv analyse og gir en klar
oversikt over endringene som er gjort i dataene.

5. Menneske-i-lekken-tilneerming: Inkorporering av en menneske-i-
lgkken-tilneerming kan forbedre forklarbarheten og gjennomsiktigheten i
selvhelbredende datateknikker. Ved & involvere menneskelige eksperter i
gjennomgang og validering av Al-genererte korreksjoner, kan organisasjoner
sikre at korreksjonene er i trdd med domenekunnskap og forretningskrav.
Menneskelig tilsyn legger til et ekstra lag med ansvarlighet og muliggjer
identifisering av potensielle skjevheter eller feil i Al-modellene.

6. Kontinuerlig overvaking og evaluering: Regelmessig overviking og evaluering
av ytelsen til selvhelbredende datateknikker er essensielt for & opprettholde

gjennomsiktighet og tillit. Ved 4 vurdere neyaktigheten og effektiviteten til

Selvhelbredende data 172

Al-modellene over tid, kan organisasjoner identifisere eventuelle avvik eller
anomalier og iverksette korrigerende tiltak. Kontinuerlig overvéking bidrar til
a sikre at den selvhelbredende dataprosessen forblir palitelig og pa linje med

agnskede resultater.

Forklarbarhet og gjennomsiktighet er kritiske hensyn ved implementering av
selvhelbredende datateknikker. Ved & gi klare forklaringer for datakorreksioner,
opprettholde omfattende revisjonsspor og involvere menneskelig tilsyn, kan
organisasjoner bygge tillit til den selvhelbredende dataprosessen og sikre at endringene

som gjeres i dataene er forsvarlige og pa linje med forretningsmalene.

Det er viktig & finne en balanse mellom fordelene med automatisering og behovet
for gjennomsiktighet. Mens selvhelbredende datateknikker kan betydelig forbedre
datakvalitet og effektivitet, ber dette ikke ga pa bekostning av & miste oversikt og
kontroll over datakorreksjonsprosessen. Ved & designe selvhelbredende dataarbeidere
med forklarbarhet og gjennomsiktighet i tankene, kan organisasjoner utnytte kraften
i Al samtidig som de opprettholder det nedvendige nivaet av ansvarlighet og tillit til

dataene.

Utilsiktede konsekvenser

Mens selvhelbredende datateknikker har som mal & forbedre datakvalitet og konsistens,
er det avgjorende a veere oppmerksom pa potensialet for utilsiktede konsekvenser.
Automatiske korreksjoner kan, hvis de ikke er ngye utformet og overvaket, utilsiktet
endre betydningen eller konteksten til dataene, noe som kan fere til nedstrems

problemer.

En av de primere risikoene ved selvhelbredende data er introduksjonen av
skjevheter eller feil i datakorreksjonsprosessen. Al-modeller kan, som alle andre
programvaresystemer, veere utsatt for skjevheter som finnes i treningsdataene eller

som introduseres gjennom utformingen av algoritmene. Hvis disse skjevhetene

Selvhelbredende data 173

ikke identifiseres og reduseres, kan de forplante seg gjennom den selvhelbredende

dataprosessen og resultere i skjeve eller feilaktige datamodifikasjoner.

Ta for eksempel en selvhelbredende dataarbeider som har som oppgave & korrigere
uoverensstemmelser i kunders demografiske data. Hvis Al-modellen har leert skjevheter
fra historiske data, som a knytte bestemte yrker eller inntektsnivaer til spesifikke kjenn
eller etnisiteter, kan den gjore feilaktige antakelser og modifisere dataene pa en mate
som forsterker disse skjevhetene. Dette kan fare til uneyaktige kundeprofiler, feilrettede

forretningsbeslutninger og potensielt diskriminerende utfall.

En annen potensiell utilsiktet konsekvens er tapet av verdifull informasjon eller kontekst
under datakorreksjonsprosessen. Selvhelbredende datateknikker fokuserer ofte pa a
standardisere og normalisere data for & sikre konsistens. I noen tilfeller kan imidlertid
de originale dataene inneholde nyanser, unntak eller kontekstuell informasjon som
er viktig for & forstd hele bildet. Automatiserte korreksjoner som blindt handhever

standardisering kan utilsiktet fjerne eller tilslere denne verdifulle informasjonen.

For eksempel, tenk deg en selvhelbredende dataarbeider som er ansvarlig for 4 korrigere
uoverensstemmelser i medisinske journaler. Hvis arbeideren mgter pa en pasients
sykehistorie med en sjelden tilstand eller en uvanlig behandlingsplan, kan den forsgke
a normalisere dataene for & passe et mer vanlig menster. Men ved & gjore dette kan
den miste de spesifikke detaljene og konteksten som er avgjerende for & representere
pasientens unike situasjon neyaktig. Dette tapet av informasjon kan ha alvorlige

konsekvenser for pasientbehandling og medisinske beslutninger.

For a redusere risikoen for utilsiktede konsekvenser er det viktig a ta en proaktiv

tilneerming nar man designer og implementerer selvhelbredende datateknikker:

1. Grundig testing og validering: For man implementerer selvhelbredende
dataarbeidere i produksjon, er det avgjerende & grundig teste og validere
deres oppfersel mot et mangfold av scenarioer. Dette inkluderer testing med

representative datasett som dekker ulike kanttilfeller, unntak og potensielle

Selvhelbredende data 174

skjevheter. Grundig testing hjelper med & identifisere og handtere eventuelle
utilsiktede konsekvenser for de pavirker data i den virkelige verden.

2. Kontinuerlig overviking og evaluering: A implementere mekanismer for
kontinuerlig overvaking og evaluering er essensielt for & oppdage og redusere
utilsiktede konsekvenser over tid. Regelmessig gjennomgang av resultatene fra
selvhelbredende dataprosesser, analyse av pavirkningen pa nedstremssystemer og
beslutningstaking, og innhenting av tilbakemeldinger fra interessenter kan hjelpe
med & identifisere eventuelle negative effekter og utlese tidlige korrigerende
tiltak. Hvis organisasjonen din har operasjonelle dashbord, er det sannsynligvis
en god idé & legge til lett synlige malinger relatert til automatiserte dataendringer.
A legge til alarmer koblet til store avvik fra normal dataendringsaktivitet er
sannsynligvis en enda bedre idé!

3. Menneskelig tilsyn og intervensjon: Det er avgjorende a opprettholde
menneskelig tilsyn og muligheten til & gripe inn i den selvhelbredende
dataprosessen. Mens automatisering kan forbedre effektiviteten betydelig, er det
viktig & ha menneskelige eksperter som gjennomgér og validerer korreksjoner
gjort av Al-modeller, spesielt i kritiske eller sensitive domener. Menneskelig
demmekraft og domenekunnskap kan hjelpe med & identifisere og handtere

eventuelle utilsiktede konsekvenser som kan oppsta.

4. Forklarbar AI (XAI) og apenhet: Som diskutert i forrige underkapittel,
kan inkorporering av forklarbar Al-teknikker og sikring av &penhet i den
selvhelbredende dataprosessen hjelpe med & redusere utilsiktede konsekvenser.
Ved a gi klare forklaringer for datakorreksjonene og opprettholde omfattende
revisjonsspor, kan organisasjoner bedre forstd og spore resonnementet bak
modifikasjonene gjort av Al-modeller.

5. Inkrementell og iterativ tilneerming: A adoptere en inkrementell og iterativ
tilneerming til selvhelbredende data kan hjelpe med & minimere risikoen for
utilsiktede konsekvenser. I stedet for 4 anvende automatiserte korreksjoner pa hele

datasettet pa én gang, start med en delmengde av data og utvid gradvis omfanget

Selvhelbredende data 175

etter hvert som teknikkene viser seg & veere effektive og palitelige. Dette muliggjor
neye overvaking og justering underveis, og reduserer pavirkningen av eventuelle
utilsiktede konsekvenser.

6. Samarbeid og tilbakemelding: A engasjere interessenter fra forskjellige
domener og oppmuntre til samarbeid og tilbakemelding gjennom hele den
selvhelbredende dataprosessen kan hjelpe med & identifisere og handtere
utilsiktede konsekvenser. Regelmessig innhenting av innspill fra domeneeksperter,
databrukere og sluttbrukere kan gi verdifull innsikt i den virkelige pavirkningen

av datakorreksjonene og fremheve eventuelle problemer som kan ha blitt oversett.

Ved & proaktivt handtere risikoen for utilsiktede konsekvenser og implementere
passende sikkerhetstiltak, kan organisasjoner utnytte fordelene med selvhelbredende
datateknikker mens de minimerer potensielle negative effekter. Det er viktig a tilneerme
seg selvhelbredende data som en iterativ og samarbeidende prosess, kontinuerlig
overvéke, evaluere og forbedre teknikkene for & sikre at de er pa linje med egnskede

utfall og opprettholder dataenes integritet og palitelighet.

Nér man vurderer bruken av selvhelbredende datamenstre, er det essensielt a neye
evaluere disse faktorene og veie fordelene opp mot potensielle risikoer og begrensninger.
I noen tilfeller kan en hybrid tilneerming som kombinerer automatiserte korreksjoner

med menneskelig tilsyn og intervensjon veere den mest hensiktsmessige lgsningen.

Det er ogsa verdt & merke seg at selvhelbredende datateknikker ikke ber ses pa som
en erstatning for robust datavalidering, inputsanitering og feilhandteringsmekanismer.
Disse grunnleggende praksisene forblir kritiske for a sikre dataintegritet og sikkerhet.
Selvhelbredende data ber ses pa som en komplementeer tilnseerming som kan forsterke

og forbedre disse eksisterende tiltakene.

Til syvende og sist avhenger beslutningen om & bruke selvhelbredende datamenstre

av de spesifikke kravene, begrensningene og prioriteringene i applikasjonen din. Ved

Selvhelbredende data 176

a neye vurdere hensynene skissert ovenfor og tilpasse dem til applikasjonens mal og
arkitektur, kan du ta informerte beslutninger om nar og hvordan du effektivt kan utnytte

selvhelbredende datateknikker.

Kontekstuell innholdsgenerering

Mgnstre for kontekstuell innholdsgenerering utnytter kraften i store sprakmodeller

(LLM) for & generere dynamisk og kontekstspesifikt innhold i applikasjoner. Denne
kategorien menstre anerkjenner viktigheten av a levere personalisert og relevant innhold
til brukere basert pa deres spesifikke behov, preferanser og til og med tidligere og

naveerende interaksjoner med applikasjonen.

I denne tilnzermingen refererer “innhold” bade til primeerinnhold (dvs. blogginnlegg,

artikler, osv.) og meta-innhold, som anbefalinger til primerinnhold.

Mgnstre for kontekstuell innholdsgenerering kan spille en avgjerende rolle i & forbedre
brukerengasjementniviene dine, tilby skreddersydde opplevelser og automatisere

innholdsskapende oppgaver bade for deg og brukerne dine. Ved a bruke menstrene vi

Kontekstuell innholdsgenerering 178

beskriver i dette kapittelet, kan du lage applikasjoner som genererer innhold dynamisk

og tilpasser seg kontekst og input i sanntid.

Magnstrene fungerer ved 4 integrere LLM i applikasjonens output, fra brukergrensesnittet
(noen ganger referert til som “chrome”), til e-poster og andre former for varsler, samt

alle innholdgenereringsprosesser.

Nér en bruker samhandler med applikasjonen eller utleser en spesifikk
innholdsforespersel, fanger applikasjonen opp relevant kontekst, som brukerpreferanser,
tidligere interaksjoner eller spesifikke prompts. Denne kontekstuelle informasjonen
mates deretter inn i LLM-en, sammen med eventuelle nedvendige maler eller
retningslinjer, og brukes til a produsere tekstlig output som ellers matte ha veert enten

hardkodet, lagret i en database eller algoritmisk generert.

LLM-generert innhold kan ta ulike former, som personaliserte anbefalinger,
dynamiske produktbeskrivelser, tilpassede e-postsvar eller til og med hele artikler
eller blogginnlegg. En av de mest radikale bruksomradene for dette innholdet som
jeg var pionér for for over et ar siden, er dynamisk generering av Ul-elementer som

skjemaetiketter, verktaytips og andre typer forklarende tekst.

Personalisering

En av hovedfordelene med menstre for kontekstuell innholdsgenerering er muligheten
til & levere sveert personaliserte opplevelser til brukere. Ved 4 generere innhold basert pa
brukerspesifikk kontekst, gjor disse menstrene det mulig for applikasjoner & skreddersy

innhold til individuelle brukeres interesser, preferanser og interaksjoner.

Personalisering handler om mer enn bare a sette inn en brukers navn i generisk innhold.
Det innebeerer & utnytte den rike konteksten som er tilgjengelig om hver bruker for a
generere innhold som resonerer med deres spesifikke behov og ensker. Denne konteksten

kan omfatte en rekke faktorer, som:

Kontekstuell innholdsgenerering 179

1. Brukerprofilinformasjon: P4 det mest generelle nivaet av denne teknikken kan
demografiske data, interesser, preferanser og andre profilattributter brukes til &
generere innhold som samsvarer med brukerens bakgrunn og karakteristikker.

2. Atferdsdata: En brukers tidligere interaksjoner med applikasjonen, som viste
sider, klikket lenker eller kjopte produkter, kan gi verdifull innsikt i deres atferd og
interesser. Disse dataene kan brukes til 4 generere innholdsforslag som gjenspeiler
deres engasjementsmenstre og forutser deres fremtidige behov.

3. Kontekstuelle faktorer: Brukerens néveerende kontekst, som deres
plassering, enhet, tid pa degnet eller til og med veeret, kan pavirke
innholdgenereringsprosessen. For eksempel kan en reiseapplikasjon ha en
Al-arbeider som kan generere personaliserte anbefalinger basert p& brukerens

néaveerende plassering og gjeldende veerforhold.

Ved a utnytte disse kontekstuelle faktorene, gjor menstre for kontekstuell
innholdsgenerering det mulig for applikasjoner & levere innhold som feles skreddersydd

for hver enkelt bruker. Dette nivaet av personalisering har flere betydelige fordeler:

1. @kt engasjement: Personalisert innhold fanger brukernes oppmerksomhet og
holder dem engasjert i applikasjonen. Nér brukere foler at innholdet er relevant
og snakker direkte til deres behov, er det mer sannsynlig at de bruker mer tid pa
a samhandle med applikasjonen og utforske dens funksjoner.

2. Forbedret brukertilfredshet: Personalisert innhold viser at applikasjonen
forstar og bryr seg om brukerens unike behov. Ved a tilby innhold som er
hjelpsomt, informativt og pa linje med deres interesser, kan applikasjonen gke
brukertilfredsheten og bygge en sterkere forbindelse med brukerne sine.

3. Hoyere konverteringsrater: I sammenheng med e-handel eller
markedsferingsapplikasjoner kan personalisert innhold ha betydelig innvirkning
p& konverteringsrater. Ved & presentere brukere med produkter, tilbud

eller anbefalinger som er skreddersydd til deres preferanser og atferd, kan

Kontekstuell innholdsgenerering 180

applikasjonen gke sannsynligheten for at brukere utforer enskede handlinger,

som & gjore et kjop eller registrere seg for en tjeneste.

Produktivitet

Magnstre for kontekstuell innholdsgenerering kan betydelig gke visse typer produktivitet
ved a redusere behovet for manuell innholdsgenerering og redigering i kreative
prosesser. Ved & utnytte kraften i LLM-er, kan du generere heykvalitetsinnhold i stor
skala, og spare tid og innsats som innholdsskaperne og utviklerne dine ellers matte ha

brukt pa kjedelig manuelt arbeid.

Tradisjonelt har innholdsskapere mattet forske, skrive, redigere og formatere innhold for
a sikre at det oppfyller applikasjonens krav og brukerens forventninger. Denne prosessen

kan veere tidkrevende og ressursintensiv, seerlig nar innholdsmengden vokser.

Med menstre for kontekstuell innholdsgenerering kan imidlertid innholdsskapingsprosessen
i stor grad automatiseres. LLM-er kan generere sammenhengende, grammatisk korrekt
og kontekstuelt relevant innhold basert pa gitte prompts og retningslinjer. Denne

automatiseringen gir flere produktivitetsfordeler:

1. Redusert manuelt arbeid: Ved a delegere innholdsgenerering til LLM-er kan
innholdsskapere fokusere pa oppgaver pa hgyere nivad som innholdsstrategi,
idéutvikling og kvalitetssikring. De kan gi nedvendig kontekst, maler og
retningslinjer til LLM-en og la den handtere selve innholdsgenereringen. Dette
reduserer det manuelle arbeidet som kreves for skriving og redigering, noe som
gjor at innholdsskapere kan veere mer produktive og effektive.

2. Raskere innholdsproduksjon: LLM-er kan generere innhold mye raskere enn
menneskelige skribenter. Med de riktige promptene og retningslinjene kan en LLM
produsere flere innholdsdeler pa fa sekunder eller minutter. Denne hastigheten
gjor det mulig for applikasjoner & generere innhold i et mye raskere tempo, og

holde tritt med brukernes behov og det stadig skiftende digitale landskapet.

Kontekstuell innholdsgenerering 181

Forer raskere innholdsproduksjon til en “allmenningens tragedie” der internett

drukner i innhold som ingen leser? Dessverre mistenker jeg at svaret er ja.

3. Konsistens og kvalitet: LLM-er kan enkelt revidere innhold slik at det blir
konsistent i stil, tone og kvalitet. Gitt klare retningslinjer og eksempler, kan
visse typer applikasjoner (f.eks. nyhetsredaksjoner, PR osv.) sikre at deres
menneskegenererte innhold samsvarer med deres merkevares stemme og
meter de enskede kvalitetsstandardene. Denne konsistensen reduserer behovet
for omfattende redigering og revisjoner, noe som sparer tid og innsats i
innholdsskapingsprosessen.

4. Iterasjon og optimalisering: Menstre for kontekstuell innholdsgenerering
muliggjer rask iterasjon og optimalisering av innhold. Ved & justere promptene,
malene eller retningslinjene som gis til LLM-en, kan applikasjonene dine raskt
generere varianter av innhold og teste ulike tilneerminger pa en automatisert
mate som aldri var mulig tidligere. Denne iterative prosessen tillater raskere
eksperimentering og forbedring av innholdsstrategier, som forer til mer effektivt
og engasjerende innhold over tid. Denne spesielle teknikken kan veere en
total game-changer for applikasjoner som e-handel som lever og der basert pa

fluktfrekvens og engasjement

’ Det er viktig & merke seg at selv om menstre for kontekstuell

innholdsgenerering kan gke produktiviteten betydelig, eliminerer de ikke
fullstendig behovet for menneskelig involvering. Innholdsskapere og
redakterer spiller fortsatt en avgjerende rolle i & definere den overordnede
innholdsstrategien, gi veiledning til LLM-en og sikre kvaliteten og

egnetheten til det genererte innholdet.

Ved & automatisere de mer repetitive og tidkrevende aspektene ved innholdsproduksjon,

Kontekstuell innholdsgenerering 182

frigier menstre for kontekstuell innholdsgenerering verdifull menneskelig tid
og ressurser som kan omdirigeres til oppgaver med heyere verdi. Denne okte
produktiviteten gjor det mulig & levere mer personalisert og engasjerende innhold til

brukere mens man optimaliserer arbeidsflyter for innholdsproduksjon.

Rask iterasjon og eksperimentering

Menstre for kontekstuell innholdsgenerering gjor det mulig & raskt iterere og
eksperimentere med forskjellige innholdsvariasjoner, noe som muliggjer raskere
optimalisering og forbedring av innholdsstrategien din. Du kan generere flere
versjoner av innhold pé fi sekunder, simpelthen ved & justere konteksten, malene eller

retningslinjene som gis til modellen.

Denne raske iterasjonsevnen gir flere viktige fordeler:

1. Testing og optimalisering: Med muligheten til & generere innholdsvariasjoner
raskt, kan du enkelt teste forskjellige tilneerminger og male deres effektivitet.
For eksempel kan du generere flere versjoner av en produktbeskrivelse
eller markedsfgringsmelding, hver tilpasset et spesifikt brukersegment eller
kontekst. Ved & analysere brukerengasjementsmalinger, som klikkfrekvens eller
konverteringsrate, kan du identifisere de mest effektive innholdsvariasjonene og

optimalisere innholdsstrategien din deretter.

2. A/B-testing: Mgnstre for kontekstuell innholdsgenerering muliggjer semles A/B-
testing av innhold. Du kan generere to eller flere variasjoner av innhold og tilfeldig
servere dem til forskjellige brukergrupper. Ved a sammenligne ytelsen til hver
variasjon kan du avgjere hvilket innhold som resonerer best med malgruppen
din. Denne datadrevne tilnzermingen lar deg ta informerte beslutninger og
kontinuerlig forbedre innholdet ditt for & maksimere brukerengasjement og

oppné egnskede resultater.

Kontekstuell innholdsgenerering 183

3. Personaliseringseksperimenter: Rask iterasjon og eksperimentering er spesielt
verdifullt nar det kommer til personalisering. Med menstre for kontekstuell
innholdsgenerering kan du raskt generere personaliserte innholdsvariasjoner
basert pa forskjellige brukersegmenter, preferanser eller atferd. Ved a
eksperimentere med forskjellige personaliseringsstrategier kan du identifisere
de mest effektive tilneermingene for & engasjere individuelle brukere og levere
skreddersydde opplevelser.

4. Tilpasning til endrede trender: Evnen til & iterere og eksperimentere raskt gjor
det mulig a forbli smidig og tilpasse seg endrede trender og brukerpreferanser. Nar
nye emner, nekkelord eller brukeratferd dukker opp, kan du raskt generere innhold
som samsvarer med disse trendene. Ved & kontinuerlig eksperimentere og forbedre
innholdet ditt, kan du holde deg relevant og opprettholde et konkurransefortrinn
i det stadig utviklende digitale landskapet.

5. Kostnadseffektiv eksperimentering: Tradisjonell innholdseksperimentering
innebeerer ofte betydelig tid og ressurser, ettersom innholdsskapere ma
manuelt utvikle og teste ulike variasjoner. Med menstre for kontekstuell
innholdsgenerering er imidlertid kostnadene ved eksperimentering betydelig
redusert. LLM-er kan generere innholdsvariasjoner raskt og i stor skala, slik
at du kan utforske et bredt spekter av ideer og tilneerminger uten a padra deg

betydelige kostnader.

For & fa mest mulig ut av rask iterasjon og eksperimentering, er det viktig & ha et

veldefinert eksperimenteringsrammeverk pa plass. Dette rammeverket ber inkludere:

« Klare mal og hypoteser for hvert eksperiment

« Passende malinger og sporingsmekanismer for a male innholdets ytelse

« Segmenterings- og malrettingsstrategier for & sikre at relevante
innholdsvariasjoner blir levert til de riktige brukerne

« Analyse- og rapporteringsverktey for & utlede innsikt fra eksperimentelle data

« En prosess for a inkorporere leering og optimaliseringer i innholdsstrategien din

Kontekstuell innholdsgenerering 184

Ved & omfavne rask iterasjon og eksperimentering kan du kontinuerlig forbedre og
optimalisere innholdet ditt, og sikre at det forblir engasjerende, relevant og effektivt
i & oppna applikasjonens mal. Denne smidige tilneermingen til innholdsskapelse lar deg

ligge i forkant og levere eksepsjonelle brukeropplevelser.

Skalerbarhet og effektivitet

Ettersom applikasjoner vokser og ettersperselen etter personalisert innhold gker,
muliggjer kontekstuell innholdsgenerering effektiv skalering av innholdsproduksjon.
LLM-er kan generere innhold for et stort antall brukere og kontekster samtidig, uten
behov for en proporsjonal gkning i menneskelige ressurser. Denne skalbarheten gjor det
mulig for applikasjoner & levere personaliserte opplevelser til en voksende brukerbase

uten 4 belaste innholdsskapingskapasiteten.

Merk at kontekstuell innholdsgenerering kan brukes effektivt til &
internasjonalisere applikasjonen din “pa sparket”. Faktisk er det akkurat det
jeg gjorde ved & bruke min Instant18n Gem for & levere Olympia p& mer enn

et halvt dusin sprak, selv om vi er mindre enn ett ar gamle.

Al-drevet lokalisering

Hvis du tillater meg & skryte et ayeblikk, tror jeg at mitt Instant18n-bibliotek for Rails-
apper er et banebrytende eksempel p&d “Kontekstuell innholdsgenerering”-mensteret i
aksjon, som viser det transformative potensialet til Al i applikasjonsutvikling. Denne
gem-en utnytter kraften i OpenAls GPT store sprakmodell for a revolusjonere maten

internasjonalisering og lokalisering handteres i Rails-applikasjoner.

Tradisjonelt innebeerer internasjonalisering av en Rails-applikasjon manuell definering

av oversettelsesnekler og tilherende oversettelser for hvert stottet sprak. Denne

Kontekstuell innholdsgenerering 185

prosessen kan vere tidkrevende, ressursintensiv og utsatt for inkonsistenser. Med

Instant18n gem-en er imidlertid paradigmet for lokalisering fullstendig omdefinert.

Ved a integrere en stor sprakmodell gjor Instant18n gem-en det mulig & generere
oversettelser pa sparket, basert pa konteksten og betydningen av teksten. I stedet for
a veere avhengig av forhandsdefinerte oversettelsesngkler og statiske oversettelser,
oversetter gem-en dynamisk tekst ved hjelp av Al-kraft. Denne tilnsermingen gir flere

viktige fordeler:

1. Semles lokalisering: Med Instant18n gem-en trenger utviklere ikke lenger a
manuelt definere og vedlikeholde oversettelsesfiler for hvert stattet sprak. Gem-en
genererer automatisk oversettelser basert pa den gitte teksten og ensket malsprak,
noe som gjor lokaliseringsprosessen uanstrengt og semles.

2. Kontekstuell ngyaktighet: Al kan gis nok kontekst til & forsta nyansene i teksten
som oversettes. Den kan ta hensyn til den omkringliggende konteksten, idiomer
og kulturelle referanser for a generere oversettelser som er ngyaktige, naturlig
lydende og kontekstuelt passende.

3. Omfattende sprakstgtte: Instant18n gem-en utnytter den enorme kunnskapen og
spraklige kapasiteten til GPT, og muliggjer oversettelser til et omfattende utvalg
av sprak. Fra vanlige sprak som spansk og fransk til mer obskure eller fiktive sprak
som klingon og alvisk, kan gem-en handtere et bredt spekter av oversettelseskrav.

4. Fleksibilitet og kreativitet: Gem-en gér utover tradisjonelle spriakoversettelser
og tillater kreative og ukonvensjonelle lokaliseringsalternativer. Utviklere kan
oversette tekst til ulike stiler, dialekter eller til og med fiktive sprak, noe som apner
for nye muligheter for unike brukeropplevelser og engasjerende innhold.

5. Ytelsesoptimalisering: Instant18n gem-en inkorporerer bufringmekanismer for
a forbedre ytelsen og redusere belastningen ved gjentatte oversettelser. Oversatt
tekst blir bufret, slik at pafelgende forespeorsler om samme oversettelse kan

betjenes raskt uten behov for redundante API-kall.

Kontekstuell innholdsgenerering 186

Instant18n gem-en eksemplifiserer kraften i “Kontekstuell innholdsgenerering”-
mensteret ved & utnytte Al til & generere lokalisert innhold dynamisk. Den viser
hvordan AI kan integreres i kjernefunksjonaliteten til en Rails-applikasjon, og

transformere maten utviklere tilneermer seg internasjonalisering og lokalisering.

Ved & eliminere behovet for manuell oversettelseshandtering og muliggjere
sanntidsoversettelser basert pa kontekst, sparer Instant18n gem utviklere betydelig tid
og innsats. Det lar dem fokusere pa & bygge kjernefunksjonaliteten i applikasjonen sin,

samtidig som lokaliseringsaspektet handteres semlost og neyaktig.

Viktigheten av Brukertesting og Tilbakemelding

Til slutt, husk alltid viktigheten av brukertesting og tilbakemelding. Det er avgjerende &
validere at kontekstuell innholdsgenerering meter brukerforventningene og samsvarer
med applikasjonens mal. Fortsett a iterere og forbedre generert innhold basert pa
brukerinnsikt og analysedata. Hvis du genererer dynamisk innhold i stor skala
som ville veere umulig & validere manuelt av deg og teamet ditt, vurder & legge til
tilbakemeldingsmekanismer som lar brukere rapportere innhold som er rart eller feil,
sammen med en forklaring p& hvorfor. Denne verdifulle tilbakemeldingen kan til og
med mates til en KI-arbeider som har som oppgave & gjore justeringer i komponenten

som genererte innholdet!

Generative Ul

Oppmerksomhet er s& verdifullt i disse dager at effektivt brukerengasjement na

krever programvareopplevelser som ikke bare er semlase og intuitive, men ogsa hayt
personaliserte for individuelle behov, preferanser og kontekster. Som et resultat star
designere og utviklere stadig oftere overfor utfordringen med a skape brukergrensesnitt

som kan tilpasse seg og imgtekomme hver brukers unike behov i stor skala.

Generative UI (GenUI) er en virkelig revolusjonerende tilnserming til design av
brukergrensesnitt som utnytter kraften i store sprakmodeller (LLMs) for & skape
heyt personaliserte og dynamiske brukeropplevelser pa sparket. Jeg ensket & gi
deg i det minste en innfering i GenUI i denne boken, fordi jeg mener at det er en
av de grenneste mulighetene som for tiden eksisterer innen applikasjonsdesign og
rammeverk. Jeg er overbevist om at dusinvis eller flere nye vellykkede kommersielle og

apen kildekode-prosjekter vil dukke opp i denne spesielle nisjen.

Generative UI 188

I kjernen kombinerer GenUI prinsippene for Kontekstuell Innholdsgenerering med
avanserte Al-teknikker for & generere brukergrensesnittelementer, som tekst, bilder og
layouter, dynamisk basert pa en dyp forstaelse av brukerens kontekst, preferanser og
mal. GenUI gjer det mulig for designere og utviklere & skape grensesnitt som tilpasser
seg og utvikler seg som respons pé brukerinteraksjoner, og gir et niva av personalisering

som tidligere var uoppnaelig.

GenUI representerer en grunnleggende endring i maten vi tilneermer oss design av
brukergrensesnitt. I stedet for & designe for massene, lar GenUI oss designe for individet.
Personalisert innhold og grensesnitt har potensial til a skape brukeropplevelser som
resonerer med hver bruker pa et dypere niva, og eker engasjement, tilfredshet og

lojalitet.

Som en banebrytende teknikk er overgangen til GenUI full av konseptuelle og
praktiske utfordringer. Integrering av Al i designprosessen, sikring av at de genererte
grensesnittene ikke bare er personaliserte, men ogsa brukbare, tilgjengelige og pa linje
med den overordnede merkevaren og brukeropplevelsen - alt dette er utfordringer som
gjor GenUI til en jakt for de f4, ikke de mange. I tillegg reiser involveringen av Al

spersmal om datapersonvern, apenhet og kanskje til og med etiske implikasjoner

Til tross for utfordringene har personaliserte opplevelser i stor skala kraft til a fullstendig
transformere maten vi samhandler med digitale produkter og tjenester pa. Det &dpner
muligheter for & skape inkluderende og tilgjengelige grensesnitt som imegtekommer

brukernes mangfoldige behov, uavhengig av deres evner, bakgrunn eller preferanser.

I dette kapittelet skal vi utforske konseptet GenUI, undersgke noen definerende
karakteristikker, viktige fordeler og potensielle utfordringer. Vi begynner med a
vurdere den mest grunnleggende og tilgjengelige formen for GenUI: generering av

tekstinnhold for ellers tradisjonelt designede og implementerte brukergrensesnitt.

Generative UI 189

Generering av tekst for brukergrensesnitt

Tekstelementer som eksisterer i applikasjonens grensesnittselementer, som
skjemaetiketter, verkteytips og forklarende tekst, er vanligvis hardkodet inn i malene
eller Ul-komponentene, og gir en konsistent men generisk opplevelse for alle brukere.
Ved & bruke menstre for kontekstuell innholdsgenerering, kan du transformere disse

statiske elementene til dynamiske, kontekstbevisste og personaliserte komponenter.

Personaliserte skjemaer

Skjemaer er en allestedsneerveerende del av web- og mobilapplikasjoner, og fungerer som
det primeere middelet for & samle inn brukerinput. Tradisjonelle skjemaer presenterer
imidlertid ofte en generisk og upersonlig opplevelse, med standard etiketter og felter
som ikke alltid samsvarer med brukerens spesifikke kontekst eller behov. Brukere er mer
tilbayelige til & fullfere skjemaer som foles skreddersydd for deres behov og preferanser,

noe som forer til hgyere konverteringsrater og brukertilfredshet.

Det er imidlertid viktig & finne en balanse mellom personalisering og konsistens. Mens
tilpasning av skjemaer til individuelle brukere kan veere fordelaktig, er det avgjorende &
opprettholde et nivéa av gjenkjennelighet og forutsigbarhet. Brukere skal fortsatt kunne

gjenkjenne og navigere i skjemaer enkelt, selv med personaliserte elementer.

Her er noen personaliserte skjemaideer til inspirasjon:

Kontekstuelle feltforslag

GenUI kan analysere brukerens tidligere interaksjoner, preferanser og data for & gi
intelligente feltforslag som prediksjoner. For eksempel, hvis brukeren tidligere har lagt
inn sin leveringsadresse, kan skjemaet automatisk fylle ut de relevante feltene med deres
lagrede informasjon. Dette sparer ikke bare tid, men viser ogsa at applikasjonen forstar

og husker brukerens preferanser.

© 0 N O O b W N =

W W W N DN DN DN DN DN DNDNDNDNDDND - 2~ B2))
N O © 0 N O O b W N~ O © 0 3 O O & w N~ O

Generative UI 190

Vent litt, er ikke denne teknikken noe som kunne veert gjort uten & involvere AI?
Selvfolgelig, men det fine med & drive denne typen funksjonalitet med Al er todelt:
1) hvor enkelt det kan veere & implementere og 2) hvor robust det kan veere etter hvert

som brukergrensesnittet ditt endres og utvikles over tid.

La oss sette sammen en tjeneste for vart teoretiske ordrehandteringssystem, som forsgker

a proaktivt fylle inn riktig leveringsadresse for brukeren.

class OrderShippingAddressSubscriber
include Raix::ChatCompletion

attr_accessor :order
delegate :customer, to: :order

DIRECTIVE = "You are a smart order processing assistant. Given the
customer's order history, guess the most likely shipping address
for the current order."

def order_created(order)
return unless order.pending? && order.shipping_address.blank?

self.order = order

transcript.clear

transcript << { system: DIRECTIVE }

transcript << { user: "Order History: #{order_history.to_json}" }
transcript << { user: "Current Order: #{order.to_json}" }

response = chat_completion
apply_predicted_shipping_address(order, response)
end

private

def apply_predicted_shipping_address(order, response)
extract the shipping address from the response.. .
.. .and assume there's some sort of live update of the address fields
order .update(shipping_address:)

end

33
34
35
36
37
38
39
40
41
42
43

© 0 N O U B W N =

NN N N N Bl s sl s
B W N PO O 0N 0 O b W N =

Generative Ul

def order_history
customer .orders.successful .1imit(100) .map do |order|
{
date: order.date,
description: order.description,
shipping_address: order.shipping_address

end

end

end

Dette eksempelet er sveert forenklet, men burde fungere i de fleste tilfeller. Ideen er &

la Al-en gjette pa samme mate som et menneske ville gjort. For a tydeliggjore hva jeg

snakker om, la oss se pa noen eksempeldata:

Order History:

(

{"date": "2024-01-03", "description": "garden soil mix",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-01-15", "description": "hardcover fiction novels",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-01-22", "description": "baby diapers", "shipping_address":
"789 Suburb St, Quietville"},

{"date": "2024-02-01", "description": "organic vegetables",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-02-17", "description": "mystery thriller book set",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-02-25", "description": "baby wipes",
"shipping_address": "789 Suburb St, Quietville"},

{"date": "2024-03-05", "description": "flower seeds",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-03-20", "description": "biographies",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-03-30", "description": "baby formula",
"shipping_address": "789 Suburb St, Quietville"},

{"date": "2024-04-12", "description": "lawn fertilizer",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-04-22", "description": "science fiction novels",
"shipping_address": "456 City Apt, Metroville"},

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

O© 0 N O O b W N =

[= = N
O OB W N

Generative UI 192

{"date": "2024-05-02", "description": "infant toys",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-05-14", "description": "outdoor grill",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-05-29", "description": "literary classics",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-06-11", "description": "baby clothes",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-07-01", "description": "watering can",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-07-18", "description": "non-fiction essays",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-07-28", "description": "baby bath items",
"shipping_address": "T789 Suburb St, Quietville"},

{"date": "2024-08-09", "description": "herb garden kit",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-08-24", "description": "children's books",
"shipping_address": "456 City Apt, Metroville"}

La du merke til mensteret i dataene? Jeg garanterer at dette er enkelt stoff for en
LLM. For a demonstrere dette, la oss sperre GPT-4 hva som er den mest sannsynlige

leveringsadressen for et “termometer”.

From the order history you've provided, it looks like the purchases are
generally clustered into three main types based on the shipping addresses:

123 Country Lane, Rural Town - This address often orders garden and
outdoor-related items like soil mix, vegetables, flower seeds, lawn
fertilizer, an outdoor grill, a watering can, and an herb garden kit.

456 City Apt, Metroville - This address tends to order various types of
books, indicating an interest in reading across genres like fiction,
thrillers, biographies, science fiction, literary classics, non-fiction

essays, and children's books.

789 Suburb St, Quietville - The purchases for this address are consistently
baby-related products, such as diapers, wipes, baby formula, infant toys,
baby clothes, and baby bath items.

17
18
19
20
21
22
23
24
25

O© 0 N O O b W N

[T =Y
a s W N » e

Generative UI 193

Given these patterns, a digital thermometer could potentially be a fit for
any of the addresses based on different needs: outdoor temperature tracking,
a tool for a passionate reader interested in science gadgets, or a health
tool for a baby. However, considering its common use in monitoring health,
especially for babies, it's most likely to be purchased by someone who's
already buying baby care products.

Therefore, the most likely shipping address for a digital thermometer, based
on the purchasing patterns, would be 789 Suburb St, Quietville.

Hvis du tenker at det er overkill & bruke en dyr modell som GPT-4 for denne oppgaven,
har du rett! Jeg prevde den samme prompten pa Mistral 7B Instruct og den ga felgende
svar med en hastighet pa 75 token per sekund, til en beskjeden kostnad pa $0.000218
USD.

Based on the given order history, it appears that the customer has received
orders for baby-related items (diapers, wipes, formula, clothes, bath items)
at the address "789 Suburb St, Quietville" and garden-related items (soil,
seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural
Town". The customer has also received books (fiction, non-fiction, literary
classics, mystery-thriller, science fiction, biographies, children's books)
at the address "456 City Apt, Metroville".

Given that the new order is for a "thermometer", which doesn't seem to fit
into any of the categories that the customer has previously ordered, it's
hard to accurately predict the shipping address based solely on the order
history. However, given the 50%-50% split between baby-related and
garden-related items, it could somewhat lean towards the Baby-related items
address ("789 Suburb St, Quietville"). But remember, this is an assumption
and cannot be definitively confirmed without more context or information.

Er overheaden og kostnadene ved denne teknikken verdt det for a gjere en
betalingsopplevelse mer magisk? For mange nettbutikker, absolutt. Og ut fra hvordan
det ser ut, kommer kostnadene for Al-behandling bare til & ga ned, spesielt for

leverandgrer av apen kildekode-modellverting i et kapplep mot bunnen.

Bruk en Prompt Template og StructuredIO sammen med Response Fencing

for & optimalisere denne typen chatfullfering.

Generative UI 194

Adaptiv feltrekkefolge

Rekkefolgen skjemafeltene presenteres i kan ha betydelig innvirkning péa
brukeropplevelsen og fullferingsgraden. Med GenUI kan du dynamisk justere
feltrekkefolgen basert pa brukerens kontekst og viktigheten av hvert felt. For eksempel,
hvis brukeren fyller ut et registreringsskjema for en treningsapp, kan skjemaet prioritere
felt relatert til deres treningsmal og preferanser, noe som gjgr prosessen mer relevant

og engasjerende.

Personalisert mikrotekst

Instruksjonsteksten, feilmeldinger og annen microcopy tilknyttet skjemaer kan ogsa
personaliseres ved hjelp av GenUL I stedet for & vise generiske feilmeldinger som
“Ugyldig e-postadresse,” kan du generere mer hjelpsomme og kontekstuelle meldinger
som “Vennligst skriv inn en gyldig e-postadresse for & motta ordrebekreftelsen din”
Disse personlige tilpasningene kan gjere skjemaopplevelsen mer brukervennlig og

mindre frustrerende.

Personalisert validering

I samme gate som Personalisert mikrotekst, kunne du bruke Al til & validere skjemaet
pa mater som virker magiske. Forestill deg & la en Al validere et brukerprofilskjema, og

se etter potensielle feil pa et semantisk niva.

Generative UI 195

Create your account

Full name

Obie Fernandez

Email
obiefenandez@gmail.com m

Did you mean obiefernandez@gmail.com? Yes, update.

Country ©

<«

EE United States

Password

) Nice work. This is an excellent password.

Figur 9. Kan du se den semantiske valideringen som skjer?

Progressiv avslering

GenUI kan intelligent bestemme hvilke skjemafelt som er essensielle basert pa brukerens
kontekst og gradvis avdekke flere felt etter behov. Denne progressive avsleringen
bidrar til & redusere kognitiv belastning og gjer utfyllingsprosessen mer handterbar. For

eksempel, hvis en bruker registrerer seg for et grunnleggende abonnement, kan skjemaet

Generative UI 196

forst presentere bare de essensielle feltene, og etterhvert som brukeren gar videre eller

velger spesifikke alternativer, kan ytterligere relevante felt introduseres dynamisk.

Kontekstbevisst forklarende tekst

Tooltips brukes ofte for a gi tilleggsinformasjon eller veiledning til brukere nar de holder
musepekeren over eller samhandler med spesifikke elementer. Med en “Kontekstuell
innholdsgenerering”-tilnserming kan du generere tooltips som tilpasser seg brukerens
kontekst og gir relevant informasjon. For eksempel, hvis en bruker utforsker en kompleks
funksjon, kan tooltipet tilby personaliserte tips eller eksempler basert pa deres tidligere

interaksjoner eller ferdighetsniva.

Forklarende tekst, som instruksjoner, beskrivelser eller hjelpemeldinger, kan genereres
dynamisk basert pa brukerens kontekst. I stedet for a presentere generiske forklaringer,
kan du bruke LLM-er til & generere tekst som er skreddersydd til brukerens spesifikke
behov eller spersmal. For eksempel, hvis en bruker sliter med et bestemt trinn i en

prosess, kan den forklarende teksten gi personalisert veiledning eller feilsekingstips.

Microcopy refererer til de sma tekstbitene som veileder brukere gjennom applikasjonen
din, som knappeetiketter, feilmeldinger eller bekreftelsesmeldinger. Ved a anvende
Kontekstuell innholdsgenerering-tilnsermingen pa microcopy, kan du skape et adaptivt
Ul som reagerer pa brukerens handlinger og gir relevant og hjelpsom tekst. For eksempel,
hvis en bruker er i ferd med & utfere en kritisk handling, kan bekreftelsesmeldingen

genereres dynamisk for a gi en klar og personalisert melding.

Personalisert forklarende tekst og tooltips kan i stor grad forbedre onboarding-prosessen
for nye brukere. Ved a gi kontekstspesifikk veiledning og eksempler, kan du hjelpe
brukere med & raskt forsta og navigere i applikasjonen, redusere leeringskurven og oke

adopsjonen.

Dynamiske og kontekstbevisste chrome-elementer kan ogsa gjere applikasjonen mer

intuitiv og engasjerende. Brukere er mer tilbgyelige til 4 samhandle med og utforske

Generative UI 197

funksjoner nar den medfelgende teksten er skreddersydd til deres spesifikke behov og

interesser.

Sa langt har vi dekket ideer for a forbedre eksisterende Ul-paradigmer med KI, men hva
med & tenke helt nytt om hvordan brukergrensesnitt designes og implementeres pa en

mer radikal mate?

Definering av Generativ Ul

I motsetning til tradisjonell Ul-design, hvor designere lager faste, statiske grensesnitt,
peker GenUI mot en fremtid hvor programvaren var har fleksible, personaliserte
opplevelser som kan utvikle seg og tilpasse seg i sanntid. Hver gang vi bruker et KI-
drevet samtalegrensesnitt, lar vi KI tilpasse seg brukerens spesifikke behov. GenUI tar
dette et skritt videre ved a4 anvende dette nivaet av tilpasningsevne pa programvarens

visuelle grensesnitt.

Grunnen til at det er mulig & eksperimentere med GenUl-ideer i dag, er at store
sprakmodeller allerede forstar programmering, og deres grunnleggende kunnskap
inkluderer Ul-teknologier og rammeverk. Spersmalet er derfor om store sprakmodeller
kan brukes til & generere Ul-elementer, som tekst, bilder, layouts og til og med hele
grensesnitt, som er skreddersydd for hver enkelt bruker. Modellen kan instrueres
til 4 ta hensyn til ulike faktorer, som brukerens tidligere interaksjoner, uttrykte
preferanser, demografisk informasjon og den aktuelle brukskonteksten, for & skape

sveert personaliserte og relevante grensesnitt.

GenUI skiller seg fra tradisjonell brukergrensesnittdesign pa flere viktige mater:

1. Dynamisk og Adaptiv: Tradisjonell Ul-design innebeerer a lage faste, statiske

grensesnitt som forblir de samme for alle brukere. I motsetning til dette muliggjor

Generative UI 198

GenUI grensesnitt som kan dynamisk tilpasse og endre seg basert pa brukerbehov
og kontekst. Dette betyr at samme applikasjon kan presentere forskjellige
grensesnitt til forskjellige brukere, eller til og med til samme bruker i forskjellige
situasjoner.

2. Personalisering i Stor Skala: Med tradisjonell design er det ofte upraktisk a
skape personaliserte opplevelser for hver bruker pa grunn av tid og ressurser som
kreves. GenUI, derimot, tillater personalisering i stor skala. Ved & utnytte KI kan
designere skape grensesnitt som automatisk tilpasser seg hver brukers unike behov
og preferanser, uten & matte manuelt designe og utvikle separate grensesnitt for
hvert brukersegment.

3. Fokus pa Resultater: Tradisjonell Ul-design fokuserer ofte pa & skape visuelt
tiltalende og funksjonelle grensesnitt. Mens disse aspektene fortsatt er viktige i
GenUl, skifter hovedfokuset mot & oppna enskede brukerresultater. GenUI tar
sikte pa & skape grensesnitt som er optimalisert for hver brukers spesifikke mal
og oppgaver, og prioriterer brukervennlighet og effektivitet fremfor rent estetiske
hensyn.

4. Kontinuerlig Leering og Forbedring: GenUl-systemer kan kontinuerlig leere
og forbedre seg over tid basert pa brukerinteraksjoner og tilbakemeldinger. Nar
brukere interagerer med de genererte grensesnittene, kan KI-modellene samle
data om brukeratferd, preferanser og resultater, og bruke denne informasjonen
til & raffinere og optimalisere fremtidige grensesnittgenerasjoner. Denne iterative
leeringsprosessen gjor at GenUl-systemer blir stadig mer effektive i & meote

brukerbehov over tid.

Det er viktig & merke seg at GenUI ikke er det samme som Kl-assisterte designverktay,
som for eksempel de som gir forslag eller automatiserer visse designoppgaver. Mens disse
verktoyene kan veere nyttige for a effektivisere designprosessen, er de fortsatt avhengige
av at designere tar endelige beslutninger og lager statiske grensesnitt. GenU], derimot,
innebeerer at KI-systemet tar en mer aktiv rolle i selve genereringen og tilpasningen av

grensesnitt basert p& brukerdata og kontekst.

Generative UI 199

GenUI representerer et betydelig skifte i hvordan vi tilneermer oss
brukergrensesnittdesign, hvor vi beveger oss bort fra universallgsninger og mot
heyt personaliserte, adaptive opplevelser. Ved & utnytte kraften i KI har GenUI
potensial til & revolusjonere maten vi samhandler med digitale produkter og tjenester
pé, ved a skape grensesnitt som er mer intuitive, engasjerende og effektive for hver

enkelt bruker.

Eksempel

For & illustrere konseptet med GenUI, la oss se pa en hypotetisk treningsapplikasjon kalt
“FitAI”. Denne appen har som mal & gi personaliserte treningsplaner og kostholdsrad til

brukere basert pa deres individuelle mal, treningsniva og preferanser.

I en tradisjonell Ul-designtilneerming ville FitAI kanskje hatt et fast sett med
skjermbilder og elementer som er like for alle brukere. Med GenUI kunne appens

grensesnitt derimot dynamisk tilpasse seg hver brukers unike behov og kontekst.

Denne tilneermingen er litt vanskelig & se for seg implementert i 2024 og har kanskje

ikke engang tilstrekkelig ROIL men det er mulig.

Slik kunne det fungert:

1. Onboarding:

o I stedet for et standard sperreskjema, bruker FitAl en konversasjons-KI
for & samle informasjon om brukerens méal, naveerende treningsniva og
preferanser.

- Basert pa denne innledende interaksjonen genererer Kl-en et personalisert
dashbord-layout som fremhever funksjonene og informasjonen som er mest
relevant for brukerens mal.

« Dagens KlI-teknologi kan ha et utvalg av skjermkomponenter til disposisjon

for & komponere det personaliserte dashbordet.

Generative UI 200

« Fremtidig KI-teknologi kan ta pa seg rollen som en erfaren Ul-designer og

faktisk skape dashbordet fra bunnen av.

2. Treningsplanlegger:

+ Treningsplanleggerens grensesnitt tilpasses av Al-en basert pa brukerens
erfaringsniva og tilgjengelig utstyr.

» For en nybegynner uten utstyr kan den vise enkle kroppsevelser med
detaljerte instruksjoner og videoer.

» For en avansert bruker med tilgang til treningsstudio kan den vise mer
komplekse treningsrutiner med mindre forklarende innhold.

« Innholdet i treningsplanleggeren er ikke bare filtrert fra et stort datasett.
Det kan genereres fortlopende basert pa en kunnskapsbase som spgrres med

kontekst som inkluderer alt som er kjent om brukeren.

3. Fremgangssporing:

Fremgangssporingens grensesnitt utvikler seg basert pa brukerens mal og

engasjementsmenster.

+ Hvis en bruker primeert fokuserer pa vekttap, kan grensesnittet fremheve en
vekttrendgraf og kaloriforbrenningsstatistikk.

+ For en bruker som bygger muskler, kan det fremheve styrkegkning og
endringer i kroppssammensetning.

» Al-en kan tilpasse denne delen av applikasjonen til brukerens faktiske

fremgang. Hvis fremgangen stopper opp i en periode, kan appen skifte til en

modus hvor den prever a fa brukeren til & avslere arsakene til tilbakeslaget,

for & kunne motvirke dem.

4. Erneeringsrad:

« Erneeringsdelen tilpasser seg brukerens kostholdspreferanser og -

restriksjoner.

Generative UI 201

« For en vegansk bruker kan den vise plantebaserte maéltidsforslag og

proteinkilder.

« For en bruker med glutenintoleranse vil den automatisk filtrere ut

glutenholdige matvarer fra anbefalingene.

» Igjen er innholdet ikke hentet fra et massivt datasett av maltidsdata som
gjelder alle brukere, men er heller syntetisert fra en kunnskapsbase som
inneholder informasjon som kan tilpasses basert pa brukerens spesifikke
situasjon og begrensninger.

» For eksempel genereres oppskrifter med ingrediensspesifikasjoner som
matcher brukerens kontinuerlig endrede kaloribehov etter hvert som deres

treningsniva og kroppsstatistikk utvikler seg.

5. Motivasjonselementer:

« Appens motivasjonsinnhold og varsler er personlig tilpasset basert pa
brukerens personlighetstype og respons pa ulike motivasjonsstrategier.
+ Noen brukere kan motta oppmuntrende meldinger, mens andre far mer

datadrevet tilbakemelding.

I dette eksempelet gjor GenUI det mulig for FitAl & skape en heyt tilpasset opplevelse for
hver bruker, som potensielt sker engasjement, tilfredshet og sannsynligheten for 4 oppna
treningsmal. Grensesnittelementene, innholdet og til og med appens “personlighet”

tilpasser seg for a best tjene hver enkelt brukers behov og preferanser.

Skiftet til Resultatorientert Design

GenUI representerer et fundamentalt skifte i tilneermingen til brukergrensesnittdesign!,
fra et fokus pa & skape spesifikke grensesnittelementer til en mer helhetlig,

resultatorientert tilnserming. Dette skiftet har flere viktige implikasjoner:

1. Fokus pa Brukermal:

Generative UI 202

+ Designere mé tenke dypere pa brukermél og enskede resultater fremfor
spesifikke grensesnittkomponenter.

+ Vekten vil ligge pa & skape systemer som kan generere grensesnitt som
hjelper brukere & oppna sine mal effektivt.

+ Nye Ul-rammeverk vil dukke opp som gir Al-baserte designere verktgyene
de trenger for a kunne generere brukeropplevelser fortlapende og fra bunnen

av istedenfor basert pa forhdndsdefinerte skjermspesifikasjoner.

2. Designernes Endrede Rolle:

+ Designere vil ga over fra & lage faste layouter til & definere regler,
begrensninger og retningslinjer som Al-systemer skal folge nar de genererer

grensesnitt.

+ De vil matte utvikle ferdigheter innen omrader som dataanalyse, Al prompt-

teknikk og systemtenkning for a effektivt kunne veilede GenUI-systemer.

3. Viktigheten av Brukerundersgkelser:

o Brukerundersgkelser blir enda mer kritisk i en GenUI-kontekst, ettersom
designere ma forstd ikke bare brukerpreferanser, men ogsa hvordan disse
preferansene og behovene endrer seg i ulike kontekster.

» Kontinuerlig brukertesting og tilbakemeldingssleyfer vil veere essensielt for

a forbedre Al-ens evne til 4 generere effektive grensesnitt.

4. Design for Variabilitet:

« Istedenfor & skape ett “perfekt” grensesnitt, ma designere vurdere flere
mulige variasjoner og sikre at systemet kan generere passende grensesnitt

for ulike brukerbehov.

+ Dette inkluderer design for kanttilfeller og sikring av at de genererte
grensesnittene opprettholder brukervennlighet og tilgjengelighet pa tvers

av ulike konfigurasjoner.

Generative UI 203

« Produktdifferensiering far nye dimensjoner som involverer divergerende
perspektiver pa brukerpsykologi og utnyttelse av unike datasett og

kunnskapsbaser som ikke er tilgjengelige for konkurrenter.

Utfordringer og Hensyn

Mens GenUI tilbyr spennende muligheter, presenterer det ogsé flere utfordringer og

hensyn:
1. Tekniske Begrensninger:

» Néveerende Al-teknologi, selv om den er avansert, har fortsatt begrensninger
i & forsta komplekse brukerintensjoner og generere virkelig kontekstbevisste
grensesnitt.

+ Ytelsesproblemer relatert til sanntidsgenerering av grensesnittelementer,

spesielt pa mindre kraftige enheter.

2. Datakrav:

+ Avhengig av bruksomradet kan effektive GenUI-systemer kreve betydelige
mengder brukerdata for & generere personaliserte grensesnitt.

« Utfordringene med etisk innhenting av autentiske brukerdata reiser
bekymringer om datapersonvern og sikkerhet, samt potensielle skjevheter i

dataene som brukes til 4 trene GenUI-modeller.

3. Brukervennlighet og Konsistens:

« I hvert fall inntil praksisen blir utbredt, kan en applikasjon med konstant
endrede grensesnitt fore til brukervennlighetsproblemer, ettersom brukere

kan streve med a finne kjente elementer eller navigere effektivt.

Generative UI 204

+ Det vil veere avgjorende & finne balansen mellom personalisering og

opprettholdelse av et konsistent, leerbart grensesnitt.

4. Overavhengighet av Al:

+ Det er en risiko for overdelegering av designbeslutninger til Al-systemer,
som potensielt kan fgre til uinspirerte, problematiske eller rett og slett
odelagte grensesnittvalg.

« Menneskelig oversikt og muligheten til 4 overstyre Al-genererte design vil

forbli viktig i overskuelig fremtid.
5. Tilgjengelighetshensyn:

« A sikre at dynamisk genererte grensesnitt forblir tilgjengelige for brukere
med funksjonsnedsettelser presenterer helt nye utfordringer, noe som er
bekymringsfullt gitt det darlige nivaet av tilgjengelighetssamsvar som
typiske systemer viser.

+ Pa den annen side kan Al-designere implementeres med innebygd fokus pa
tilgjengelighet, og muligheter for & bygge tilgjengelige grensesnitt pa sparket
akkurat som de bygger Ul for brukere uten funksjonsnedsettelser.

+ Uansett bar GenUI-systemer designes med robuste tilgjengelighetsretningslinjer

og testprosesser.

6. Brukertillit og Apenhet:

« Brukere kan fole seg ukomfortable med grensesnitt som ser ut til & “vite for
mye” om dem eller endrer seg pa mater de ikke forstar.
« A gi dpenhet om hvordan og hvorfor grensesnitt personaliseres vil veere

viktig for & bygge brukertillit.

Generative UI 205

Fremtidsutsikter og Muligheter

Fremtiden for Generative Ul (GenUI) har et enormt potensial for a revolusjonere
maten vi samhandler med digitale produkter og tjenester pa. Ettersom denne
teknologien fortsetter & utvikle seg, kan vi forvente en omfattende endring i hvordan
brukergrensesnitt designes, implementeres og oppleves. Jeg tror GenUI er fenomenet

som endelig vil skyve programvaren var inn i det som na anses som science fiction.

En av de mest spennende mulighetene med GenUI er dets potensial til & forbedre
tilgjengelighet i en skala som gar utover a bare sikre at personer med alvorlige
funksjonsnedsettelser ikke blir helt ekskludert fra bruken av programvaren din. Ved &
automatisk tilpasse grensesnitt til individuelle brukerbehov, kan GenUI gjere digitale
opplevelser mer inkluderende enn noensinne. Tenk deg grensesnitt som semlast justerer
seg for & gi starre tekst for yngre eller synshemmede brukere, eller forenklede layouter
for de med kognitive funksjonsnedsettelser, alt uten a kreve manuell konfigurasjon eller

separate “tilgjengelige” versjoner av applikasjoner.

Personaliseringsmulighetene til GenUI vil sannsynligvis drive gkt brukerengasjement,
tilfredshet og lojalitet pa tvers av et bredt spekter av digitale produkter. Ettersom
grensesnitt blir mer tilpasset individuelle preferanser og atferd, vil brukere finne digitale
opplevelser mer intuitive og behagelige, noe som potensielt kan fere til dypere og mer

meningsfylte interaksjoner med teknologi.

GenUTI har ogsé potensial til & transformere onboarding-prosessen for nye brukere. Ved
a skape intuitive, personaliserte forstegangsopplevelser som raskt tilpasser seg hver
brukers ekspertiseniva, kan GenUI betydelig redusere leringskurven forbundet med
nye applikasjoner. Dette kan fore til raskere adopsjonsrater og ekt brukerselvsikkerhet

i utforskningen av nye funksjoner og funksjonalitet.

En annen spennende mulighet er GenUls evne til a opprettholde en konsistent
brukeropplevelse pa tvers av forskjellige enheter og plattformer, samtidig som

det optimaliseres for hver spesifikk brukskontekst. Dette kan lgse den langvarige

Generative UI 206

utfordringen med & gi sammenhengende opplevelser pa tvers av et stadig mer
fragmentert enhetslandskap, fra smarttelefoner og nettbrett til stasjonsere datamaskiner

og fremvoksende teknologier som briller for utvidet virkelighet.

Den datadrevne naturen til GenUI &dpner muligheter for rask iterasjon og forbedring i
Ul-design. Ved a samle sanntidsdata om hvordan brukere samhandler med genererte
grensesnitt, kan designere og utviklere fa enestdende innsikt i brukeratferd og
preferanser. Denne tilbakemeldingssloyfen kan fere til kontinuerlige forbedringer
i Ul-design, drevet av faktiske bruksmenstre heller enn antakelser eller begrenset

brukertesting.

For & forberede seg p& denne endringen mé designere utvikle sine ferdigheter
og tankesett. Fokuset vil skifte fra & lage faste layouter til & utvikle omfattende
designsystemer og retningslinjer som kan informere Al-drevet grensesnittgenerering.
Designere vil trenge & utvikle en dyp forstdelse av dataanalyse, Al-teknologier og

systemtenkning for & effektivt veilede GenUlI-systemer.

Dessuten, ettersom GenUI visker ut grensene mellom design og teknologi, vil
designere matte samarbeide tettere med utviklere og dataforskere. Denne tverrfaglige
tilneermingen vil veere avgjerende for & skape GenUl-systemer som ikke bare er visuelt

tiltalende og brukervennlige, men ogsé teknisk robuste og etisk forsvarlige.

De etiske implikasjonene av GenUI vil ogsd komme i forgrunnen etter hvert som
teknologien modnes. Designere vil spille en avgjerende rolle i utviklingen av
rammeverk for ansvarlig bruk av kunstig intelligens i grensesnittdesign, for a sikre at
personalisering forbedrer brukeropplevelsen uten & kompromittere personvern eller

manipulere brukeratferd pa uetiske méater.

Nér vi ser mot fremtiden, representerer GenUI bade spennende muligheter og betydelige
utfordringer. Det har potensial til & skape mer intuitive, effektive og tilfredsstillende
digitale opplevelser for brukere over hele verden. Selv om det vil kreve at designere
tilpasser seg og tilegner seg nye ferdigheter, gir det ogsa en enestiende mulighet til

a forme fremtiden for menneske-maskin-interaksjon pa dyptgripende og meningsfylte

Generative UI 207

mater. Reisen mot fullt utviklede GenUlI-systemer vil utvilsomt veere kompleks, men de
potensielle fordelene i form av forbedrede brukeropplevelser og digital tilgjengelighet

gjor det til en fremtid det er verdt & strebe etter.

Intelligent
arbeidsflytorkestrering

Innen applikasjonsutvikling spiller arbeidsflyter en avgjerende rolle i & definere

hvordan oppgaver, prosesser og brukerinteraksjoner struktureres og utferes. Ettersom
applikasjoner blir mer komplekse og brukerforventningene fortsetter & gke, blir behovet

for intelligent og tilpasningsdyktig arbeidsflytorkestrering stadig mer apenbart.

Tilneermingen “Intelligent arbeidsflytorkestrering” fokuserer p&4 & utnytte Al-
komponenter for dynamisk & orkestrere og optimalisere komplekse arbeidsflyter i
applikasjoner. Malet er a skape applikasjoner som er mer effektive, responsive og

tilpasningsdyktige til sanntidsdata og kontekst.

I dette kapittelet skal vi utforske nekkelprinsippene og menstrene som understatter

tilneermingen til intelligent arbeidsflytorkestrering. Vi vil vurdere hvordan Al kan

Intelligent arbeidsflytorkestrering 209

brukes til intelligent ruting av oppgaver, automatisert beslutningstaking og dynamisk
tilpasning av arbeidsflyter basert pa ulike faktorer som brukeratferd, systemytelse
og forretningsregler. Gjennom praktiske eksempler og virkelige scenarier vil vi
demonstrere det transformative potensialet Al har for & effektivisere og optimalisere

applikasjonsarbeidsflyter.

Enten du bygger bedriftsapplikasjoner med komplekse forretningsprosesser eller
forbrukerrettede applikasjoner med dynamiske brukerreiser, vil menstrene og
teknikkene som diskuteres i dette kapittelet gi deg kunnskapen og verkteyene til a skape
intelligente og effektive arbeidsflyter som forbedrer den generelle brukeropplevelsen

og skaper forretningsverdi.

Forretningsmessig behov

Tradisjonelle tilneerminger til arbeidsflythdndtering er ofte avhengige av
forhandsdefinerte regler og statiske beslutningstreer, som kan veere rigide, infleksible

og ute av stand til & hdndtere den dynamiske naturen til moderne applikasjoner.

Tenk pa et scenario hvor en e-handelsapplikasjon ma handtere en kompleks
ordreoppfyllelsesprosess. Arbeidsflyten kan involvere flere trinn som ordrevalidering,
lagerkontroll, betalingsbehandling, forsendelse og kundevarsling. Hvert trinn
kan ha sitt eget sett med regler, avhengigheter, eksterne integrasjoner og
unntakshandteringsmekanismer. A administrere en slik arbeidsflyt manuelt eller

gjennom hardkodet logikk kan raskt bli tungvint, feilutsatt og vanskelig & vedlikeholde.

Dessuten, ettersom applikasjonen skalerer og antallet samtidige brukere vokser,
kan arbeidsflyten maétte tilpasse og optimalisere seg selv basert pa sanntidsdata og
systemytelse. For eksempel kan applikasjonen under perioder med hey trafikk méatte
dynamisk justere arbeidsflyten for & prioritere visse oppgaver, allokere ressurser

effektivt og sikre en smidig brukeropplevelse.

Det er her tilnseermingen “Intelligent arbeidsflytorkestrering” kommer inn i bildet.

Intelligent arbeidsflytorkestrering 210

Ved & utnytte Al-komponenter kan utviklere skape arbeidsflyter som er intelligente,
tilpasningsdyktige og selvoptimaliserende. Al kan analysere store mengder data, leere av
tidligere erfaringer og ta informerte beslutninger i sanntid for a orkestrere arbeidsflyten

effektivt.

Sentrale fordeler

1. Okt effektivitet: Al kan optimalisere oppgaveallokering, ressursutnyttelse og
arbeidsflytutferelse, noe som farer til raskere prosesseringstider og forbedret total
effektivitet.

2. Tilpasningsevne: Al-drevne arbeidsflyter kan dynamisk tilpasse seg endrede
forhold, som svingninger i brukeretterspersel, systemytelse eller forretningskrav,
og sikre at applikasjonen forblir responsiv og robust.

3. Automatisert beslutningstaking: AI kan automatisere = komplekse
beslutningsprosesser innen arbeidsflyten, redusere manuell intervensjon og
minimere risikoen for menneskelige feil.

4. Personalisering: Al kan analysere brukeratferd, preferanser og kontekst for a
personalisere arbeidsflyten og levere skreddersydde opplevelser til individuelle
brukere.

5. Skalerbarhet: Al-drevne arbeidsflyter kan skalere semlgst for & handtere gkende
volumer av data og brukerinteraksjoner, uten a kompromittere ytelse eller

pélitelighet.

I de folgende seksjonene vil vi utforske nekkelmenstrene og teknikkene som muliggjer
implementering av intelligente arbeidsflyter og vise frem virkelige eksempler pa

hvordan Al transformerer arbeidsflythandtering i moderne applikasjoner.

© 0 N O O b W N =

I = =Y
=~ O O B W N A~ O

Intelligent arbeidsflytorkestrering 211

Nokkelmenstre

For & implementere intelligent arbeidsflytorkestrering i applikasjoner kan utviklere
utnytte flere nekkelmenstre som utnytter kraften i AL Disse menstrene gir en
strukturert tilneerming til design og handtering av arbeidsflyter, som gjor det mulig
for applikasjoner a tilpasse seg, optimalisere og automatisere prosesser basert pa
sanntidsdata og kontekst. La oss utforske noen av de grunnleggende menstrene i

intelligent arbeidsflytorkestrering.

Dynamisk oppgaveruting

Dette mensteret innebeerer bruk av Al for intelligent ruting av oppgaver innen en
arbeidsflyt basert pa ulike faktorer som oppgaveprioritet, ressurstilgjengelighet og
systemytelse. Al-algoritmer kan analysere karakteristikkene til hver oppgave, vurdere
systemets naverende tilstand og ta informerte beslutninger for & tildele oppgaver til
de mest egnede ressursene eller prosesseringsveiene. Dynamisk oppgaveruting sikrer at

oppgaver distribueres og utferes effektivt, og optimaliserer den totale arbeidsflytytelsen.

class TaskRouter
include Raix::ChatCompletion

include Raix::FunctionDispatch
attr_accessor :task

list of functions that can be called by the AI entirely at its

discretion depending on the task received

function :analyze_task_priority do
TaskPriorityAnalyzer .perform(task)
end

function :check_resource_availability, # ...
function :assess_system_performance, # ...

function :assign_task_to_resource, # ...

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Intelligent arbeidsflytorkestrering 212

DIRECTIVE = "You are a task router, responsible for intelligently
assigning tasks to available resources based on priority, resource

availability, and system performance..."

def initialize(task)
self.task = task
transcript << { system: DIRECTIVE }
transcript << { user: task.to_json }
end

def perform
while task.unassigned?
chat_completion

todo: add max loop counter and break

end

capture the transcript for later analysis
task.update(routing_transcript: transcript)
end

end

Merk lgkken som er laget av while-uttrykket pa linje 29, som fortsetter a sperre Al-
en til oppgaven er tildelt. Pa linje 35 lagrer vi transkripsjonen av oppgaven for senere

analyse og feilsgking, hvis det skulle bli ngdvendig.

Kontekstuell beslutningstaking

o

Du kan bruke sveert lignende kode for & ta kontekstbevisste beslutninger i en
arbeidsflyt. Ved & analysere relevante datapunkter som brukerpreferanser, historiske
menstre og sanntidsinndata, kan Al-komponenter bestemme den mest hensiktsmessige
handlingsplanen ved hvert beslutningspunkt i arbeidsflyten. Tilpass arbeidsflytens
oppfersel basert pa den spesifikke konteksten for hver bruker eller scenario, og gi

personaliserte og optimaliserte opplevelser.

Intelligent arbeidsflytorkestrering 213

Adaptiv arbeidsflytkomposisjon

Dette mensteret fokuserer pa dynamisk sammensetting og justering av arbeidsflyter
basert pa endrede krav eller forhold. Al kan analysere arbeidsflytens naveerende
tilstand, identifisere flaskehalser eller ineffektivitet, og automatisk modifisere
arbeidsflytstrukturen for & optimalisere ytelsen. Adaptiv arbeidsflytkomposisjon gjer
det mulig for applikasjoner & kontinuerlig utvikle og forbedre sine prosesser uten &

kreve manuell intervensjon.

Unntakshandtering og gjenoppretting

Unntakshandtering og gjenoppretting er kritiske aspekter wved intelligent
arbeidsflytorkestrering. Nér man jobber med Al-komponenter og komplekse
arbeidsflyter, er det essensielt & forutse og handtere unntak pa en elegant mate

for a sikre systemets stabilitet og palitelighet.

Her er noen viktige hensyn og teknikker for unntakshandtering og gjenoppretting i

intelligente arbeidsflyter:

1. Unntakspropagering: Implementer en konsistent tilneerming for & propagere
unntak pa tvers av arbeidsflytkomponenter. Nar et unntak oppstér innenfor en
komponent, ber det fanges opp, logges og propageres til orkestratoren eller en
separat komponent som er ansvarlig for 4 hdndtere unntak. Ideen er & sentralisere
unntakshandtering og forhindre at unntak blir stille slukt, samt apne muligheter
for Intelligent feilhandtering.

2. Gjentakelsesmekanismer: Gjentakelsesmekanismer bidrar til & forbedre
arbeidsflytens robusthet og handtere midlertidige feil pa en elegant mate.
Du ber definitivt implementere gjentakelsesmekanismer for forbigaende
eller gjenopprettbare unntak, som problemer med nettverkstilkobling eller

utilgjengelige ressurser som automatisk kan preves pa nytt etter en angitt

Intelligent arbeidsflytorkestrering 214

forsinkelse. A ha en Al-drevet orkestrator eller unntakshindterer betyr at
gjentakelsesstrategiene dine ikke trenger & veere mekaniske av natur, og veere
avhengige av faste algoritmer som eksponentiell tilbakestilling. Du kan overlate
handteringen av gjentakelsesforsok til Al-komponentens “skjenn” som er
ansvarlig for & bestemme hvordan unntaket skal héndteres.

3. Reservelesninger: Hvis en Al-komponent ikke klarer & gi et gyldig svar eller
stoter pa en feil-moe som er vanlig gitt dens banebrytende natur—ha en
reservemekanisme pa plass for & sikre at arbeidsflyten kan fortsette. Dette kan
innebeere bruk av standardverdier, alternative algoritmer, eller en Menneske i
lekken for & ta beslutninger og holde arbeidsflyten i gang.

4. Kompenserende handlinger: Orkestratordirektivene bar inkludere instruksjoner
om kompenserende handlinger for & héandtere unntak som ikke kan lases
automatisk. Kompenserende handlinger er trinn som tas for & angre
eller redusere effektene av en mislykket operasjon. For eksempel, hvis et
betalingsprosesseringstrinn mislykkes, kan en kompenserende handling veere &
tilbakefeore transaksjonen og varsle brukeren. Kompenserende handlinger bidrar
til & opprettholde datakonsistens og integritet nar unntak oppstar.

5. Unntaksovervaking og varsling: Sett opp overvakings- og varslingsmekanismer
for a oppdage og varsle relevante interessenter om kritiske unntak. Orkestratoren
kan gjeres oppmerksom pa terskler og regler for & utlgse varsler nar unntak
overskrider visse grenser eller nér spesifikke typer unntak oppstar. Dette muliggjer
proaktiv identifisering og lgsning av problemer for de pavirker det overordnede

systemet.

Her er et eksempel pa unntakshandtering og gjenoppretting i en Ruby-
arbeidsflytkomponent:

© 0 N O O b W N e

NN DN NN NN N S R R S s s
© ©® 9 O O & W N =~ 0 © W 9 O U b w N =~ O

Intelligent arbeidsflytorkestrering 215

class InventoryManager
def check_availability(order)
begin
Perform inventory check logic
inventory = Inventory.find_by(product_id: order.product_id)
if inventory.available_quantity >= order.quantity
return true
else
raise InsufficientInventoryError,
"Insufficient inventory for product #{order.product_id}"
end
rescue InsufficientInventoryError => e
Log the exception

logger .error("Inventory check failed: #{e.message}")

Retry the operation after a delay

retry_count |[|= 0

if retry_count < MAX_RETRIES
retry_count += 1
sleep(RETRY_DELAY)
retry

else
Fallback to manual intervention
NotificationService.admin("Inventory check failed: Order #{order.id}")
return false

end

end
end
end

I dette eksempelet kontrollerer InventoryManager-komponenten tilgjengeligheten
av et produkt for en gitt ordre. Hvis tilgjengelig mengde er utilstrekkelig, utlaser
den en InsufficientInventoryError. Unntaket fanges opp, logges, og en ny
forsgksmekanisme implementeres. Hvis grensen for nye forsek overskrides, faller

komponenten tilbake pa manuell intervensjon ved & varsle en administrator.

Ved & implementere robust unntakshandtering og gjenopprettingsmekanismer, kan du

sikre at dine intelligente arbeidsflyter er robuste, vedlikeholdbare og i stand til &

Intelligent arbeidsflytorkestrering 216

héndtere uventede situasjoner pé en elegant mate.

Disse menstrene danner grunnlaget for intelligent arbeidsflytorkestrering og kan
kombineres og tilpasses for & mete de spesifikke kravene til ulike applikasjoner. Ved a
utnytte disse manstrene kan utviklere skape arbeidsflyter som er fleksible, robuste og

optimalisert for ytelse og brukeropplevelse.

I neste del skal vi utforske hvordan disse menstrene kan implementeres i praksis, ved
a bruke eksempler fra virkeligheten og kodeutdrag for a illustrere integrasjonen av Al-

komponenter i arbeidsflythandtering.

Implementering av Intelligent

Arbeidsflytorkestrering i Praksis

Na som vi har utforsket nekkelmenstrene i intelligent arbeidsflytorkestrering, la oss
fordype oss i hvordan disse menstrene kan implementeres i virkelige applikasjoner. Vi vil
gi praktiske eksempler og kodeutdrag for & illustrere integrasjonen av Al-komponenter

i arbeidsflythandtering.

Intelligent Ordrebehandler

La oss se pa et praktisk eksempel pa implementering av intelligent
arbeidsflytorkestrering ved & bruke en Al-drevet OrderProcessor-komponent
i en Ruby on Rails e-handelsapplikasjon. OrderProcessor realiserer konseptet
Process Manager Enterprise Integration som vi forst mette i Kapittel 3 da vi
diskuterte Multitude of Workers. Komponenten vil veere ansvarlig for & administrere
ordrebehandlingsarbeidsflyten, ta rutingbeslutninger basert pa mellomliggende

resultater, og orkestrere utferelsen av ulike behandlingstrinn.

Intelligent arbeidsflytorkestrering 217

Ordrebehandlingsprosessen involverer flere trinn som ordrevalidering, lagerkontroll,
betalingsbehandling og forsendelse. Hvert trinn er implementert som en separat
arbeidsprosess som utferer en spesifikk oppgave og returnerer resultatet til
OrderProcessor. Trinnene er ikke obligatoriske, og trenger ikke engang nedvendigvis

a utferes i en bestemt rekkefolge.

Her er et eksempel pa implementering av OrderProcessor. Den har to mixins fra
Raix. Den forste (ChatCompletion) gir den mulighet til & gjore chatfullfering, som
er det som gjor dette til en Al-komponent. Den andre (FunctionDispatch) muliggjer
funksjonsanrop av Al-en, slik at den kan svare pa en prompt med et funksjonsanrop i

stedet for en tekstmelding.

Arbeiderfunksjonene (validate_order, check_inventory, et al) delegerer til sine
respektive arbeiderklasser, som kan veere Al- eller ikke-Al-komponenter, med det eneste
kravet at de returnerer resultatene av arbeidet sitt i et format som kan representeres som
en streng.
Som med alle andre eksempler i denne delen av boken, er denne koden
P praktisk talt pseudokode og er bare ment a formidle betydningen av

mensteret og inspirere dine egne kreasjoner. Fullstendige beskrivelser av

menstre og komplette kodeeksempler er inkludert i Del 2.

https://github.com/OlympiaAI/raix-rails

© 0 N O O & W N =~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Intelligent arbeidsflytorkestrering

class OrderProcessor

include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

def initialize(order)
self.order = order
transcript << { system: SYSTEM_DIRECTIVE }
transcript << { user: order.to_json }

end

def perform

will continue looping until “stop_looping!" is called

chat_completion(loop: true)
end

list of functions available to be called by the AI

truncated for brevity

def functions

[

name: "validate_order",

description: "Invoke to check validity of order",

parameters: {

}I

]

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def validate_order
OrderValidationWorker . per form(@order)
end

def check_inventory
InventoryCheckWorker . per form(@order)
end

218

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Intelligent arbeidsflytorkestrering 219

def process_payment
PaymentProcessingWorker . per form(@order)

end

def schedule_shipping
ShippingSchedulerWorker . per form(@order)
end

def send_confirmation
OrderConfirmationWorker . per form(@order)
end

def finished_processing
@order .update! (transcript:, processed_at: Time.current)
stop_looping!
end
end

I eksempelet initialiseres OrderProcessor med et ordreobjekt og vedlikeholder en
transkripsjon av arbeidsflyten, i det typiske samtaletranskripsjonsformatet som
er naturlig for store sprikmodeller. Al-en far full kontroll over orkestreringen
av de forskjellige behandlingstrinnene, som ordrevalidering, lagerkontroll,

betalingsbehandling og forsendelse.

Hver gang chat_completion-metoden kalles, sendes transkripsjonen til Al-en for a
gi en fullfering som et funksjonsanrop. Det er helt opp til Al-en a analysere resultatet
fra forrige trinn og bestemme passende handling. For eksempel, hvis lagerkontrollen
avslerer lave lagernivaer, kan OrderProcessor planlegge en etterfyllingsoppgave. Hvis

betalingsbehandlingen mislykkes, kan den starte en ny forsgk eller varsle kundeservice.

Eksempelet ovenfor har ikke definerte funksjoner for etterfylling eller varsling av

kundeservice, men det kunne det absolutt hatt.

Intelligent arbeidsflytorkestrering 220

Transkripsjonen vokser hver gang en funksjon kalles og fungerer som en logg over
arbeidsflyten, inkludert resultatene fra hvert trinn og Al-genererte instruksjoner for
de neste trinnene. Denne transkripsjonen kan brukes til feilseking, revisjon og for a

gi innsyn i ordreoppfyllelsesprosessen.

Ved & utnytte Al i OrderProcessor kan e-handelsapplikasjonen dynamisk tilpasse
arbeidsflyten basert pa sanntidsdata og handtere unntak pa en intelligent mate. Al-
komponenten kan ta informerte beslutninger, optimalisere arbeidsflyten og sikre smidig

ordrebehandling selv i komplekse scenarioer.

Det faktum at det eneste kravet til arbeidsprosessene er a returnere en forstaelig output
som Al-en kan vurdere nar den bestemmer neste handling, kan fa deg til 4 innse hvordan
denne tilneermingen kan redusere inndata/utdata-kartleggingsarbeidet som vanligvis er

involvert nar man integrerer ulike systemer med hverandre.

Intelligent innholdsmoderering

Sosiale medier-applikasjoner krever generelt minimum innholdsmoderering for & sikre
et trygt og sunt fellesskap. Dette eksempelet pa en ContentModerator-komponent
utnytter Al for intelligent orkestrering av modereringsprosessen, og tar beslutninger

basert pa innholdets egenskaper og resultatene fra ulike modereringstrinn.

Modereringsprosessen involverer flere trinn som tekstanalyse, bildegjenkjenning,
vurdering av brukerrenommé og manuell gjennomgang. Hvert trinn er implementert
som en separat arbeidsprosess som utferer en spesifikk oppgave og returnerer resultatet

til ContentModerator.

Her er et eksempel pa implementering av ContentModerator:

© 0 N O O & W N =~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Intelligent arbeidsflytorkestrering

class ContentModerator

include Raix::ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a content moderator process manager,

221

tasked with the workflow involved in moderating user-generated content..."

def initialize(content)

@content = content

@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: content.to_json }

]

end

def perform

complete(@transcript)

end

def model
"openai/gpt-4"

end

list of functions available to be called by the AI

truncated for brevity

def functions

[

}I

}I

}I
{

name :

name:

"analyze_text",

"recognize_image",

description: "Invoke to describe images...",

name:
#...

"assess_user_reputation”,

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
77
78
79
80
81
82
83
84

Intelligent arbeidsflytorkestrering

name: "escalate_to_manual_review",

#
}I
{
name: "approve_content",
#
}l
{
name: "reject_content",
#
}
]
end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def analyze_text

result = TextAnalysisWorker .perform(@content)

continue_with(result)
end

def recognize_image

result = ImageRecognitionWorker .perform(@content)

continue_with(result)
end

def assess_user_reputation

result = UserReputationWorker .per form(@content.user)

continue_with(result)
end

def escalate_to_manual_review

ManualReviewWorker . per form(@content)

@content.update! (status:
end

def approve_content
@content .update! (status:

end

def reject_content

'pending', transcript: @transcript)

'approved', transcript: @transcript)

222

85
86
87
88
89
90
91
92
93
94

Intelligent arbeidsflytorkestrering 223

@content.update! (status: 'rejected', transcript: @transcript)
end

private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)

end

end

I dette eksemplet initialiseres ContentModerator med et innholdsobjekt og
vedlikeholder en modereringslogg i samtaleformat. Al-komponenten har full kontroll
over modereringsprosessen og bestemmer hvilke trinn som skal utferes basert pa

innholdets egenskaper og resultatene fra hvert trinn.

De tilgjengelige arbeiderfunksjonene som Al-en kan pakalle inkluderer analyze_text,
recognize_image,assess_user_reputation,ogescalate_to_manual_review.
Hver funksjon delegerer oppgaven til en tilsvarende arbeiderprosess
(TextAnalysisWorker, ImageRecognitionWorker, osv.) og legger til resultatet
i modereringsloggen, med unntak av eskaleringsfunksjonen som fungerer som
en slutttilstand. Til slutt fungerer ogsd funksjonene approve_content og

reject_content som slutttilstander.

Al-komponenten analyserer innholdet og bestemmer hvilken handling som skal tas.
Hvis innholdet inneholder bildereferanser, kan den kalle pd recognize_image-
arbederen for & fa hjelp med en visuell gjennomgang. Hvis noen arbeider advarer
om potensielt skadelig innhold, kan Al-en bestemme seg for & eskalere innholdet til
manuell gjennomgang eller rett og slett avvise det. Men avhengig av alvorlighetsgraden
i advarselen, kan Al-en velge & bruke resultatene fra brukeromdemmevurderingen
nar den skal bestemme hvordan den skal handtere innhold den ellers er usikker pé.
Avhengig av brukstilfellet kan det hende at betrodde brukere har mer spillerom i hva

de kan publisere. Og sa videre...

Som med det forrige prosessadministratoreksemplet fungerer modereringsloggen som

© 0 N O O b W N =

N
W N~

Intelligent arbeidsflytorkestrering 224

en oversikt over arbeidsflytens utferelse, inkludert resultatene fra hvert trinn og Al-
genererte beslutninger. Denne loggen kan brukes til revisjon, d&penhet og forbedring av

modereringsprosessen over tid.

Ved & utnytte Al i ContentModerator kan sosiale medier-applikasjonen dynamisk
tilpasse modereringsarbeidsflyten basert pa innholdets egenskaper og handtere
komplekse modereringsscenarier pa en intelligent méate. Al-komponenten kan ta
informerte beslutninger, optimalisere arbeidsflyten og sikre en trygg og sunn

fellesskapsopplevelse.

La oss utforske to eksempler til som demonstrerer prediktiv oppgaveplanlegging
og unntakshandtering og gjenoppretting innenfor konteksten av intelligent

arbeidsflytorkestrering.

Prediktiv oppgaveplanlegging i et kundeservicesystem

I en kundeserviceapplikasjon bygget med Ruby on Rails er effektiv handtering
og prioritering av stettehenvendelser avgjerende for & gi rettidig hjelp til kunder.
SupportTicketScheduler-komponenten utnytter AI til prediktivt & planlegge
og tildele stottehenvendelser til tilgjengelige agenter basert pa ulike faktorer som

henvendelsens hastegrad, agentens ekspertise og arbeidsbelastning.

class SupportTicketScheduler
include Raix: :ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a support ticket scheduler,
tasked with intelligently assigning tickets to available agents..."

def initialize(ticket)
@ticket = ticket
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: ticket.to_json }

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Intelligent arbeidsflytorkestrering

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"
end

def functions

[

{
name: "analyze_ticket_urgency",
#...

}I

{
name: "list_available_agents"”,
description: "Includes expertise of available agents",
#...

}I

{
name: "predict_agent_workload",
description: "Uses historical data to predict upcoming workloads",

}I
name: "assign_ticket_to_agent",
#...

}I
name: "reschedule_ticket",
#...

}

]
end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def analyze_ticket_urgency
result = TicketUrgencyAnalyzer.perform(@ticket)

225

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84

Intelligent arbeidsflytorkestrering 226

continue_with(result)
end

def list_available_agents
result = ListAvailableAgents.perform
continue_with(result)

end

def predict_agent_workload
result = AgentWorkloadPredictor.perform
continue_with(result)

end

def assign_ticket_to_agent
TicketAssigner.perform(@ticket, @transcript)
end

def delay_assignment(until)
until = DateTimeStandardizer.process(until)
SupportTicketScheduler .delay(@ticket, @transcript, until)
end

private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)

end

end

I dette eksempelet blir SupportTicketScheduler initialisert med et
supporthenvendelsesobjekt og vedlikeholder en planleggingslogg. Al-komponenten
analyserer henvendelsesdetaljene og planlegger prediktivt tildelingen av henvendelsen
basert pa faktorer som henvendelsens hastegrad, kundebehandlerens kompetanse og

forventet arbeidsbelastning.

De tilgjengelige funksjonene som Al-en kan péakalle inkluderer analyze_-
ticket_urgency, list_available_agents, predict_agent_workload, og

assign_ticket_to_agent. Hver funksjon delegerer oppgaven til en tilsvarende

Intelligent arbeidsflytorkestrering 227

analyse- eller prediktorkomponent og legger til resultatet i planleggingsloggen. Al-en

har ogsa muligheten til & utsette tildeling ved & bruke delay_assignment-funksjonen.

Al-komponenten undersgker planleggingsloggen og tar informerte beslutninger
om henvendelsestildeling. Den vurderer henvendelsens hastegrad, tilgjengelige
kundebehandleres kompetanse og den forventede arbeidsbelastningen for hver
kundebehandler for & bestemme den best egnede kundebehandleren til & handtere

henvendelsen.

Ved & utnytte prediktiv oppgaveplanlegging kan kundesupportapplikasjonen
optimalisere henvendelsestildeling, redusere responstider og forbedre den generelle
kundetilfredsheten. Proaktiv og effektiv handtering av supporthenvendelser sikrer at

de riktige henvendelsene blir tildelt de riktige kundebehandlerne til rett tid.

Unntakshandtering og gjenoppretting i en
databehandlingspipeline

Handtering av unntak og gjenoppretting etter feil er essensielt for & sikre dataintegritet
og forhindre datatap.. DataProcessingOrchestrator-komponenten bruker
Al til & intelligent héndtere unntak og orkestrere gjenopprettingsprosessen i en

databehandlingspipeline

© 0 N O O b W N e

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Intelligent arbeidsflytorkestrering

class DataProcessingOrchestrator

include Raix::ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

def initialize(data_batch)
@data_batch = data_batch
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: data_batch.to_json }

]

end

def perform

complete(@transcript)

end

def model

"openai/gpt-4"

end

def functions

name:

"validate_data",

"process_data",

"request_fix",

"retry_processing",

"mark_data_as_failed",

228

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83

Intelligent arbeidsflytorkestrering 229

b
{

name: "finished",

]

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def validate_data
result = DataValidator.perform(@data_batch)
continue_with(result)

rescue ValidationException => e
handle_validation_exception(e)

end

def process_data
result = DataProcessor .perform(@data_batch)
continue_with(result)

rescue ProcessingException => e
handle_processing_exception(e)

end

def request_fix(description_of_fix)
result = SmartDataFixer.new(description_of_fix, @data_batch)
continue_with(result)

end

def retry_processing(timeout_in_seconds)
wait(timeout_in_seconds)
process_data

end

def mark_data_as_failed
@data_batch.update! (status: 'failed', transcript: @transcript)
end

def finished
@data_batch.update! (status: 'finished', transcript: @transcript)

85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103

Intelligent arbeidsflytorkestrering 230

end
private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)

end

def handle_validation_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)

end

def handle_processing_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)
end
end

I dette eksempelet initialiseres DataProcessingOrchestrator med et databatch-
objekt og vedlikeholder en behandlingslogg. Al-komponenten orkestrerer

databehandlingsprosessen, handterer unntak og gjenoppretter fra feil etter behov.

Funksjonene som er tilgjengelige for Al-en a pakalle inkluderer validate_data,
process_data, request_fix, retry_processing, og mark_data_as_failed.
Hver funksjon delegerer oppgaven til en tilsvarende databehandlingskomponent og

legger til resultatet eller unntaksdetaljene i behandlingsloggen.

Hvis et valideringsunntak oppstar under validate_data-steget, vil
handle_validation_exception-funksjonen legge til unntaksdataene i loggen
og gi kontrollen tilbake til Al-en. P4 samme mate, hvis et behandlingsunntak oppstar

under process_data-steget, kan Al-en bestemme gjenopprettingsstrategien.

Avhengig av typen unntak som oppstar, kan Al-en etter eget skjonn velge & kalle
request_fix, som delegerer til en Al-drevet SmartDataFixer-komponent (se

kapittelet om Selvhelbredende Data). Datafiksereren far en enkel beskrivelse pa engelsk

Intelligent arbeidsflytorkestrering 231

om hvordan den skal modifisere @data_batch slik at behandlingen kan preves pa
nytt. Kanskje en vellykket ny behandling ville innebzere & fjerne poster fra databatchen
som ikke har bestatt validering og/eller kopiere dem til en annen behandlingsprosess

for manuell gjennomgang? Mulighetene er nesten uendelige.

Ved & inkorporere Al-drevet unntakshandtering og gjenoppretting blir
databehandlingsapplikasjonen mer robust og feiltolerant. DataProcessingOrchestrator
héndterer unntak intelligent, minimerer datatap og sikrer en smidig gjennomfering av

databehandlingsarbeidsflyten.

Overvaking og Logging

Overvaking og logging gir innsikt i fremgangen, ytelsen og tilstanden til Al-drevne
arbeidsflytkomponenter, og gjer det mulig for utviklere a spore og analysere systemets
oppforsel. Implementering av effektive overvakings- og loggingsmekanismer er

essensielt for feilseking, revisjon og kontinuerlig forbedring av intelligente arbeidsflyter.

Overvaking av Arbeidsflytens Fremgang og Ytelse

For a sikre en smidig gjennomfering av intelligente arbeidsflyter er det viktig a overvake
fremgangen og ytelsen til hver arbeidsflytkomponent. Dette innebzerer & spore viktige

malinger og hendelser gjennom arbeidsflytens livssyklus.
Noen viktige aspekter & overvake inkluderer:

1. Arbeidsflytens Kjoretid: Mal tiden hver arbeidsflytkomponent bruker pa a fullfere
sin oppgave. Dette hjelper med & identifisere ytelsesproblemer og optimalisere den

generelle arbeidsflyteffektiviteten.

2. Ressursutnyttelse: Overvak bruken av systemressurser, som CPU, minne og lagring,
for hver arbeidsflytkomponent. Dette hjelper med & sikre at systemet opererer innenfor

sin kapasitet og kan handtere arbeidsmengden effektivt.

Intelligent arbeidsflytorkestrering 232

3. Feilrater og Unntak: Spor forekomsten av feil og unntak innenfor
arbeidsflytkomponenter. Dette hjelper med & identifisere potensielle problemer

og muliggjer proaktiv feilhandtering og gjenoppretting.

4. Beslutningspunkter og Utfall: Overvak beslutningspunktene i arbeidsflyten og
utfallene av Al-drevne beslutninger. Dette gir innsikt i oppferselen og effektiviteten til

Al-komponentene.

Dataene som fanges opp av overvakingsprosessene kan vises i dashbord eller brukes
som input til planlagte rapporter som informerer systemadministratorer om systemets

tilstand.

P Overvakingsdata kan mates til en Al-drevet systemadministratorprosess for

gjennomgang og potensielle tiltak!

Logging av Viktige Hendelser og Beslutninger

Logging er en essensiell praksis som innebzerer a fange og lagre relevant informasjon om

viktige hendelser, beslutninger og unntak som oppstar under arbeidsflytens utfarelse.
Noen viktige aspekter a logge inkluderer:

1. Arbeidsflytinitiering og Fullfering: Logg start- og sluttidspunkter for hver

arbeidsflytinstans, sammen med relevant metadata som inputdata og brukerkontekst.

2. Komponentutferelse: Logg utferelsesdetaljene for hver arbeidsflytkomponent,
inkludert inputparametere, outputresultater og eventuelle mellomliggende data som

genereres.

3. Al-beslutninger og Resonnement: Logg beslutningene tatt av Al-komponenter,
sammen med det underliggende resonnementet eller konfidensscorer. Dette gir

transparens og muliggjer revisjon av Al-drevne beslutninger.

© W N O O b W N =

I = =N
B W N

Intelligent arbeidsflytorkestrering 233

4. Unntak og Feilmeldinger: Logg eventuelle unntak eller feilmeldinger som oppstér

under arbeidsflytutferelsen, inkludert stabelsporing og relevant kontekstinformasjon.

Logging kan implementeres ved hjelp av ulike teknikker, som & skrive til loggfiler, lagre
logger i en database eller sende logger til en sentralisert loggtjeneste. Det er viktig &
velge et loggingsrammeverk som gir fleksibilitet, skalerbarhet og enkel integrasjon med

applikasjonens arkitektur.

Her er et eksempel pa hvordan logging kan implementeres i en Ruby on Rails-

applikasjon ved hjelp av ActiveSupport: : Logger-klassen:

class WorkflowLogger

def self.log(message, severity = :info)
@logger ||= ActiveSupport::Logger.new('workflow.log")
@logger . formatter ||= proc do |severity, datetime, progname, msg]|
"#{datetime} [#{severity}] #{msg}\n"
end

@logger .send(severity, message)
end
end

Usage example

Work flowLogger . log("Workflow initiated for order ##{@order.id}")

Work flowLogger . log("Payment processing completed successfully")

Work flowLogger . log("Inventory check failed for item ##{item.id}", :error)

Ved a strategisk plassere loggferingserkleeringer gjennom arbeidsflytkomponentene og
Al-beslutningspunktene, kan utviklere fange opp verdifull informasjon for feilsgking,

revisjon og analyse.

Fordeler med Overvaking og Logging

Implementering av overvaking og logging i intelligent arbeidsflytorkestrering gir flere

fordeler:

Intelligent arbeidsflytorkestrering 234

1. Feilsgking og Problemlgsing: Detaljerte logger og overvakingsdata hjelper utviklere
med 4 identifisere og diagnostisere problemer raskt. De gir innsikt i arbeidsflytens

utferelsesflyt, komponentinteraksjoner og eventuelle feil eller unntak som oppstar.

2. Ytelsesoptimalisering: Overvéking av ytelsesmetrikker gjor det mulig for utviklere &
identifisere flaskehalser og optimalisere arbeidsflytkomponentene for bedre effektivitet.
Ved a analysere kjaretider, ressursbruk og andre metrikker, kan utviklere ta informerte

beslutninger for & forbedre systemets generelle ytelse.

3. Revisjon og Etterlevelse: Logging av viktige hendelser og beslutninger gir et
revisjonsspor for regulatorisk etterlevelse og ansvarlighet. Det gjor det mulig for
organisasjoner & spore og verifisere handlingene utfort av Al-komponenter og sikre

overholdelse av forretningsregler og juridiske krav.

4. Kontinuerlig Forbedring: Overvakings- og loggingsdata fungerer som verdifulle
innspill for kontinuerlig forbedring av intelligente arbeidsflyter. Ved & analysere
historiske data, identifisere menstre og male effektiviteten av Al-beslutninger, kan

utviklere iterativt forbedre og styrke arbeidsflytorkestreringslogikken.

Hensyn og Beste Praksis

Ved implementering av overviking og logging i intelligent arbeidsflytorkestrering,

vurder fglgende beste praksis:

1. Definer Klare Overvakingsmetrikker: Identifiser de viktigste metrikkene og
hendelsene som ma overvakes basert pa arbeidsflytens spesifikke krav. Fokuser pa

metrikker som gir meningsfull innsikt i systemets ytelse, helse og oppfarsel.

2. Implementer Detaljert Logging: Serg for at loggferingserkleeringer er plassert
pa passende punkter innenfor arbeidsflytkomponentene og Al-beslutningspunktene.
Fang opp relevant kontekstinformasjon, som inngangsparametere, utgangsresultater og

eventuelle mellomliggende data som genereres.

Intelligent arbeidsflytorkestrering 235

3. Bruk Strukturert Logging: Ta i bruk et strukturert loggformat for & forenkle parsing
og analyse av loggdata. Strukturert logging muliggjer bedre sgkbarhet, filtrering og
aggregering av loggoppferinger.

4. Administrer Loggoppbevaring og -rotasjon: Implementer retningslinjer for
loggoppbevaring og -rotasjon for & administrere lagring og livssyklus for loggfiler.
Bestem passende oppbevaringsperiode basert pa juridiske krav, lagringsbegrensninger

og analysebehov. Hvis mulig, outsource logging til en tredjepartstjeneste som Papertrail.

5. Sikre Sensitiv Informasjon: Veer forsiktig ved logging av sensitiv informasjon, som
personidentifiserbar informasjon (PII) eller konfidensiell forretningsdata. Implementer
passende sikkerhetstiltak, som datamasking eller kryptering, for & beskytte sensitiv

informasjon i loggfiler.

6. Integrer med Overvakings- og Varslingsverktey: Utnytt overvakings- og
varslingsverktey for & sentralisere innsamling, analyse og visualisering av overvakings-
og loggdata. Disse verktgyene kan gi sanntidsinnsikt, generere varsler basert pa
forhandsdefinerte terskler og legge til rette for proaktiv problemoppdagelse og -lesning.
Mitt favorittverktey blant disse er Datadog.

Ved & implementere omfattende overvakings- og loggingsmekanismer, kan utviklere fa
verdifull innsikt i oppferselen og ytelsen til intelligente arbeidsflyter. Denne innsikten
muliggjer effektiv feilseking, optimalisering og kontinuerlig forbedring av Al-drevne

arbeidsflytorkestreringssystemer.

Skalerbarhet og Ytelseshensyn

Skalerbarhet og ytelse er kritiske aspekter & vurdere nar man designer og implementerer
intelligente arbeidsflytorkestreringssystemer. Ettersom volumet av samtidige
arbeidsflyter og kompleksiteten av Al-drevne komponenter gker, blir det essensielt &
sikre at systemet kan héndtere arbeidsmengden effektivt og skalere semlost for 4 mete

voksende behov.

https://papertrailapp.com
https://www.datadoghq.com

Intelligent arbeidsflytorkestrering 236

Handtering av Store Volumer av Samtidige Arbeidsflyter

Intelligente arbeidsflytorkestreringssystemer ma ofte handtere et stort antall samtidige

arbeidsflyter. For & sikre skalerbarhet, vurder folgende strategier:

1. Asynkron Behandling: Implementer asynkrone behandlingsmekanismer for a
lgskoble utferelsen av arbeidsflytkomponenter. Dette gjor det mulig for systemet
a handtere flere arbeidsflyter samtidig uten blokkering eller venting pa at hver
komponent skal fullfares. Asynkron behandling kan oppnas ved bruk av meldingskeer,

hendelsesdrevne arkitekturer eller bakgrunnsjobbrammeverk som Sidekiq.

2. Distribuert Arkitektur: Design systemarkitekturen for & bruke serverlgse
komponenter (som AWS Lambda) eller enkelt distribuere arbeidsmengden pa
tvers av flere noder eller servere sammen med hovedapplikasjonsserveren. Dette
muliggjer horisontal skalerbarhet, hvor flere noder kan legges til for & handtere ekte

arbeidsflytvolumer.

3. Parallell Utforelse: Identifiser muligheter for parallell utferelse innenfor
arbeidsflyter. Noen arbeidsflytkomponenter kan veere uavhengige av hverandre og kan
utferes samtidig. Ved a utnytte parallelle prosesseringsteknikker, som multitrading eller
distribuerte oppgavekeer, kan systemet optimalisere ressursutnyttelsen og redusere

total arbeidsflytutfarelsestid.

Optimalisering av ytelsen til Al-drevne komponenter

Al-drevne komponenter, som maskinleeringsmodeller eller systemer for behandling av
naturlig sprak, kan veere beregningsmessig krevende og pavirke den generelle ytelsen til
arbeidsflytorkestreringssystemet. For & optimalisere ytelsen til Al-komponenter, vurder

folgende teknikker:

1. Hurtigbufring: Hvis Al-behandlingen din er rent generativ og ikke involverer

sanntidsinformasjonsoppslag eller eksterne integrasjoner for & generere chatfullferinger,

Intelligent arbeidsflytorkestrering 237

kan du undersgke hurtigbufringsmekanismer for a lagre og gjenbruke resultatene av

hyppig brukte eller beregningsmessig kostbare operasjoner.

2. Modelloptimalisering: Optimaliser kontinuerlig méten du bruker Al-modeller i
arbeidsflytkomponenter. Dette kan innebeere teknikker som Prompt-destillering eller
det kan rett og slett veere et sparsmal om & teste nye modeller etter hvert som de blir

tilgjengelige.

3. Satsvis behandling: Hvis du jobber med GPT-4-klasse modeller, kan du kanskje
utnytte satsvise behandlingsteknikker for a behandle flere datapunkter eller foresparsler
i én enkelt sats, i stedet for & behandle dem individuelt. Ved & behandle data i
satser, kan systemet optimalisere ressursutnyttelsen og redusere overhead fra gjentatte

modellforespersler.

Overvaking og profilering av ytelse

For a identifisere ytelsesproblemer og optimalisere skalerbarheten til det intelligente
arbeidsflytorkestreringssystemet, er det avgjorende a implementere overvakings- og

profileringsmekanismer. Vurder folgende tilnserminger:

1. Ytelsesmalinger: Definer og spor viktige ytelsesmalinger, som responstid,
gjennomstremning, ressursutnyttelse og forsinkelse. Disse malingene gir innsikt
i systemets ytelse og hjelper med & identifisere omrader for optimalisering. Den
populeere Al-modell-aggregatoren OpenRouter inkluderer Host!- og Speed?-mélinger i

hvert API-svar, noe som gjor det enkelt & spore disse viktige malingene.

°

2. Profileringsverktey: Bruk profileringsverktoy for & analysere ytelsen til
individuelle arbeidsflytkomponenter og Al-operasjoner. Profileringsverktoy kan

hjelpe med & identifisere ytelsesflaskehalser, ineffektive kodestier eller ressurskrevende

'Host er tiden det tok & motta den forste byten av den stremmede genereringen fra modellverten, ogs&
kjent som “tid til forste byte.”

2Speed beregnes som antall fullferingstokens delt pa total genereringstid. For ikke-stremmede foresporsler
regnes forsinkelse som en del av genereringstiden.

https://openrouter.ai

Intelligent arbeidsflytorkestrering 238

operasjoner. Populeere profileringsverktey inkluderer New Relic, Scout, eller innebygde

profileringsverktey som folger med programmeringsspraket eller rammeverket.

3. Belastningstesting: Gjennomfer belastningstesting for 4 evaluere systemets ytelse
under forskjellige nivaer av samtidige arbeidsbelastninger. Belastningstesting hjelper
med & identifisere systemets skaleringsgrenser, oppdage ytelsesforringelse og sikre at

systemet kan handtere forventet trafikk uten & kompromittere ytelsen.

4. Kontinuerlig overvaking: Implementer kontinuerlige overvakings- og
varslingsmekanismer for proaktivt & oppdage ytelsesproblemer og flaskehalser.
Sett opp overvakingsdashbord og varsler for & spore viktige ytelsesindikator (KPI-er)
og motta varsler nar forhandsdefinerte terskler overskrides. Dette muliggjer rask

identifisering og lesning av ytelsesproblemer.

Skaleringsstrategier

For & handtere gkende arbeidsbelastninger og sikre skalerbarheten til det intelligente

arbeidsflytorkestreringssystemet, vurder folgende skaleringsstrategier:

1. Vertikal skalering: Vertikal skalering innebeerer & gke ressursene (f.eks. CPU, minne)
til individuelle noder eller servere for & handtere heyere arbeidsbelastninger. Denne
tilneermingen er egnet nar systemet krever mer prosesseringskraft eller minne for &

héandtere komplekse arbeidsflyter eller Al-operasjoner.

2. Horisontal skalering: Horisontal skalering innebeerer a legge til flere noder
eller servere i systemet for a distribuere arbeidsbelastningen. Denne tilnsermingen
er effektiv nar systemet ma handtere et stort antall samtidige arbeidsflyter eller nar
arbeidsbelastningen enkelt kan distribueres over flere noder. Horisontal skalering krever

en distribuert arkitektur og lastbalanseringsmekanismer for a sikre jevn distribusjon av

trafikk.

3. Automatisk skalering: Implementer automatiske skaleringsmekanismer for

automatisk & justere antall noder eller ressurser basert pa arbeidsbelastningsbehovet.

Intelligent arbeidsflytorkestrering 239

Automatisk skalering lar systemet dynamisk skalere opp eller ned avhengig av
innkommende trafikk, noe som sikrer optimal ressursutnyttelse og kostnadseffektivitet.
Skyplattformer som Amazon Web Services (AWS) eller Google Cloud Platform
(GCP) tilbyr automatiske skaleringsmuligheter som kan utnyttes for intelligente

arbeidsflytorkestreringssystemer.

Ytelsesoptimaliseringsteknikker

I tillegg til skaleringsstrategiene, vurder folgende ytelsesoptimaliseringsteknikker for &

forbedre effektiviteten til det intelligente arbeidsflytorkestreringssystemet:

1. Effektiv datalagring og -henting: Optimaliser mekanismene for datalagring og
-henting som brukes av arbeidsflytkomponentene. Bruk effektiv databaseindeksering,
sperringsoptimaliseringsteknikker og databufring for & minimere forsinkelsen og

forbedre ytelsen til dataintensive operasjoner.

2. Asynkron I/O: Benytt asynkrone I/O-operasjoner for & forhindre blokkering og
forbedre systemets responstid. Asynkron I/O gjer det mulig for systemet & handtere
flere foresparsler samtidig uten 4 matte vente pa at I/O-operasjoner skal fullferes, og

dermed maksimere ressursutnyttelsen.

3. Effektiv serialisering og deserialisering: Optimaliser serialiserings-
og deserialiseringsprosessene som brukes til datautveksling = mellom
arbeidsflytkomponenter. Bruk effektive serialiseringsformater som Protocol Buffers
eller MessagePack for 4 redusere overhead ved dataserialisering og forbedre ytelsen i

kommunikasjonen mellom komponenter.

For Ruby-baserte applikasjoner, vurder a bruke Universal ID. Universal ID
P utnytter bade MessagePack og Brotli (en kombinasjon bygget for hastighet
og forsteklasses datakomprimering). Nar disse bibliotekene kombineres, er
de opptil 30% raskere og oppnar komprimeringsrater som ligger innenfor 2-

5% sammenlignet med Protocol Buffers.

https://github.com/hopsoft/universalid

Intelligent arbeidsflytorkestrering 240

4. Komprimering og koding: Bruk komprimerings- og kodingsteknikker for
a redusere sterrelsen pa data som overfores mellom arbeidsflytkomponenter.
Komprimeringsalgoritmer som gzip eller Brotli kan betydelig redusere bruken av

nettverksbandbredde og forbedre systemets generelle ytelse.

Ved a ta hensyn til skalerbarhet og ytelsesaspekter under design og implementering
av intelligente arbeidsflytorkestreringssystemer, kan du sikre at systemet ditt kan
héndtere store volumer av samtidige arbeidsflyter, optimalisere ytelsen til Al-drevne
komponenter og skalere semlest for & mete gkende behov. Kontinuerlig overvaking,
profilering og optimalisering er essensielt for & opprettholde systemets ytelse og

responstid etter hvert som arbeidsmengden og kompleksiteten gker over tid.

Testing og validering av arbeidsflyter

Testing og validering er kritiske aspekter ved utvikling og vedlikehold av intelligente
arbeidsflytorkestreringssystemer. Gitt den komplekse naturen til Al-drevne
arbeidsflyter, er det essensielt & sikre at hver komponent fungerer som forventet,
at den overordnede arbeidsflyten oppferer seg korrekt, og at Al-beslutningene er
neyaktige og palitelige. I denne delen skal vi utforske ulike teknikker og hensyn for

testing og validering av intelligente arbeidsflyter.

Enhetstesting av arbeidsflytkomponenter

Enhetstesting innebeerer a teste individuelle arbeidsflytkomponenter isolert for
a verifisere deres korrekthet og robusthet. Nar man enhetstester Al-drevne

arbeidsflytkomponenter, ber man vurdere folgende:

1. Inputvalidering: Test komponentens evne til & handtere forskjellige typer input,
inkludert gyldig og ugyldig data. Verifiser at komponenten héandterer kanttilfeller pa

en god mate og gir passende feilmeldinger eller unntak.

© 0 N O O b W N =

I O = N T TG ¢
O 00 N O O & W N ~ O

Intelligent arbeidsflytorkestrering 241

2. Outputverifisering: Bekreft at komponenten produserer forventet output for et
gitt sett med input. Sammenlign faktisk output med forventede resultater for a sikre

korrekthet.

3. Feilhandtering: Test komponentens feilhandteringsmekanismer ved a simulere ulike
feilscenarier, som ugyldig input, utilgjengelige ressurser eller uventede unntak. Verifiser

at komponenten fanger opp og handterer feil pa en hensiktsmessig méte.

4. Grensebetingelser: Test komponentens oppfersel under grensebetingelser, som
tom input, maksimal inputsterrelse eller ekstreme verdier. Serg for at komponenten

héandterer disse betingelsene pa en god mate uten & krasje eller produsere feil resultater.

Her er et eksempel pa en enhetstest for en arbeidsflytkomponent i Ruby ved bruk av

RSpec-testrammeverket:

RSpec.describe OrderValidator do
describe '#validate' do
context 'when order is valid' do
let(:order) { build(:order) }

it 'returns true' do
expect(subject.validate(order)).to be true
end
end

context 'when order is invalid' do
let(:order) { build(:order, total_amount: -100) }

it 'returns false' do
expect(subject.validate(order)).to be false
end
end
end

end

I dette eksempelet blir OrderValidator-komponenten testet ved hjelp av to

testtilfeller: ett for en gyldig ordre og ett for en ugyldig ordre. Testtilfellene verifiserer

Intelligent arbeidsflytorkestrering 242

at validate-metoden returnerer den forventede boolske verdien basert pa ordrens

gyldighet.

Integrasjonstesting av Arbeidsflytinteraksjoner

Integrasjonstesting fokuserer pa a verifisere interaksjonene og dataflyten mellom
ulike arbeidsflytkomponenter. Det sikrer at komponentene fungerer sgmlgst sammen
og produserer de forventede resultatene. Ved integrasjonstesting av intelligente

arbeidsflyter ber du vurdere folgende:

1. Komponentinteraksjon: Test kommunikasjonen og datautvekslingen mellom
arbeidsflytkomponenter. Verifiser at output fra én komponent blir korrekt overfert som

input til neste komponent i arbeidsflyten.

2. Datakonsistens: Segrg for at data forblir konsistente og negyaktige mens de flyter
gjennom arbeidsflyten. Verifiser at datatransformasjoner, beregninger og aggregeringer

utferes korrekt.

3. Unntakspropagering: Test hvordan unntak og feil propageres og handteres pa tvers
av arbeidsflytkomponenter. Verifiser at unntak fanges opp, logges og handteres pa en

hensiktsmessig méate for & forhindre forstyrrelser i arbeidsflyten.

4. Asynkron oppfersel: Hvis arbeidsflyten involverer asynkrone komponenter eller
parallell eksekvering, test koordinerings- og synkroniseringsmekanismene. Serg for at

arbeidsflyten oppferer seg korrekt under samtidige og asynkrone scenarier.

Her er et eksempel pa en integrasjonstest for en arbeidsflyt i Ruby ved hjelp av RSpec-

testrammeverket:

© 0 N O O b W N e

11
12
13
14
15
16
17
18

Intelligent arbeidsflytorkestrering 243

RSpec.describe OrderProcessingWorkflow do
let(:order) { build(:order) }

it 'processes the order successfully' do
expect(OrderValidator).to receive(:validate).and_return(true)
expect(InventoryManager).to receive(:check_availability).and_return(true)
expect(PaymentProcessor).to receive(:process_payment).and_return(true)

expect(ShippingService).to receive(:schedule_shipping).and_return(true)

workflow = OrderProcessingWorkflow.new(order)
result = workflow.process

expect(result).to be true
expect(order.status).to eq('processed')
end

end

I dette eksempelet testes OrderProcessingWork flow ved & verifisere samhandlingen
mellom ulike arbeidsflytkomponenter. Testtilfellet setter opp forventninger til hver
komponents oppfersel og sikrer at arbeidsflyten behandler ordren vellykket, med

tilherende oppdatering av ordrens status.

Testing av Al-beslutningspunkter

Testing av Al-beslutningspunkter er avgjerende for a sikre neyaktighet og palitelighet i
Al-drevne arbeidsflyter. Ved testing av Al-beslutningspunkter ber du vurdere folgende:

1. Beslutningsneyaktighet: Verifiser at Al-komponenten tar neyaktige beslutninger
basert pa inndata og den trente modellen. Sammenlign Al-beslutningene med

forventede resultater eller referansedata.

2. Kanttilfeller: Test Al-komponentens oppfersel under kanttilfeller og uvanlige
scenarioer. Verifiser at Al-komponenten handterer disse tilfellene pa en god méate og

tar fornuftige beslutninger.

© 0 N O O b W N =

NN N N R R R s L s s
W N 0 O 0 N0 U W N~

Intelligent arbeidsflytorkestrering 244

3. Skjevhet og rettferdighet: Vurder Al-komponenten for potensielle skjevheter og sorg
for at den tar rettferdige og upartiske beslutninger. Test komponenten med varierte

inndata og analyser resultatene for & identifisere eventuelle diskriminerende menstre.

4. Forklarbarhet: Hvis Al-komponenten gir forklaringer eller resonnementer for sine
beslutninger, verifiser at forklaringene er korrekte og tydelige. Serg for at forklaringene

samsvarer med den underliggende beslutningsprosessen.

Her er et eksempel pa testing av et Al-beslutningspunkt i Ruby ved bruk av RSpec-

testrammeverket:

RSpec.describe FraudDetector do
describe '#detect_fraud' do
context 'when transaction is fraudulent' do
let(:tx) do
build(:transaction, amount: 10_000, location: 'High-Risk Country')
end

it 'returns true' do
expect(subject.detect_fraud(tx)).to be true
end
end

context 'when transaction is legitimate' do
let(:tx) do
build(:transaction, amount: 100, location: 'Low-Risk Country')
end

it 'returns false' do
expect(subject.detect_fraud(tx)).to be false
end
end
end
end

I dette eksemplet blir FraudDetector Al-komponenten testet med to testtilfeller: ett
for en svindelaktig transaksjon og ett annet for en legitim transaksjon. Testtilfellene
verifiserer at detect_fraud-metoden returnerer den forventede boolske verdien basert

pa transaksjonens egenskaper.

Intelligent arbeidsflytorkestrering 245

Ende-til-ende-testing

Ende-til-ende-testing innebzerer & teste hele arbeidsflyten fra start til slutt, simulere
virkelige scenarioer og brukerinteraksjoner. Det sikrer at arbeidsflyten oppferer seg
korrekt og produserer de gnskede resultatene. Nar man utferer ende-til-ende-testing for

intelligente arbeidsflyter, bar man vurdere fglgende:

1. Brukerscenarioer: Identifiser vanlige brukerscenarioer og test arbeidsflytens
oppfersel under disse scenarioene. Verifiser at arbeidsflyten héndterer brukerinndata

korrekt, tar passende beslutninger og produserer de forventede resultatene.

2. Datavalidering: Serg for at arbeidsflyten validerer og renser brukerinndata for &
forhindre datauoverensstemmelser eller sikkerhetssarbarheter. Test arbeidsflyten med

forskjellige typer inndata, inkludert bade gyldige og ugyldige data.

3. Feilhandtering: Test arbeidsflytens evne til & gjenopprette seg fra feil og unntak.
Simuler feilscenarioer og verifiser at arbeidsflyten handterer dem pa en elegant mate,

logger feilene og tar passende gjenopprettingstiltak.

4. Ytelse og Skalerbarhet: Vurder arbeidsflytens ytelse og skalerbarhet under
forskjellige lastforhold. Test arbeidsflyten med et stort volum av samtidige foresparsler

og mal responstider, ressursbruk og generell systemstabilitet.

Her er et eksempel pa en ende-til-ende-test for en arbeidsflyt i Ruby ved hjelp av RSpec

testrammeverket og Capybara-biblioteket for & simulere brukerinteraksjoner:

© 0 N O O b W N e

11
12
13

Intelligent arbeidsflytorkestrering 246

RSpec.describe 'Order Processing Workflow' do
scenario 'User places an order successfully' do
visit '/orders/new'
fill_in 'Product', with: 'Sample Product'’
fill_in 'Quantity', with: '2°'
fill_in 'Shipping Address', with: '1283 Main St'
click_button 'Place Order'

expect(page).to have_content('Order Placed Successfully')
expect(Order.count).to eq(1)
expect(Order.last.status).to eq('processed")
end
end

I dette eksempelet simulerer ende-til-ende-testen en bruker som legger inn en bestilling
gjennom nettgrensesnittet. Den fyller ut de nedvendige skjemafeltene, sender inn
bestillingen og bekrefter at bestillingen blir behandlet vellykket, viser den riktige

bekreftelsesmeldingen og oppdaterer bestillingens status i databasen.

Kontinuerlig integrasjon og distribusjon

For & sikre palitelighet og vedlikeholdbarhet i intelligente arbeidsflyter, anbefales det
a integrere testing og validering i den kontinuerlige integrasjons- og distribusjons
(CI/CD)-pipeline. Dette muliggjer automatisert testing og validering av endringer i

arbeidsflyten for de distribueres til produksjon. Vurder falgende praksis:

1. Automatisert testkjoring: Konfigurer CI/CD-pipelinen til a kjgre testsuiten
automatisk nér det gjores endringer i arbeidsflytens kodebase. Dette sikrer at eventuelle

regresjoner eller feil oppdages tidlig i utviklingsprosessen.

2. Overvaking av testdekning: Mal og overvdk testdekningen av
arbeidsflytkomponentene og Al-beslutningspunktene. Sikt mot hey testdekning

for & sikre at kritiske baner og scenarioer blir grundig testet.

3. Kontinuerlig tilbakemelding: Integrer testresultater og kodekvalitetsmetrikker i

utviklingsarbeidsflyten. Gi kontinuerlig tilbakemelding til utviklere om status pa tester,

Intelligent arbeidsflytorkestrering 247

kodekvalitet og eventuelle problemer som oppdages under CI/CD-prosessen.

4. Testmiljoer: Distribuer arbeidsflyten til testmiljoer som ligger tett opptil
produksjonsmiljeet. Utfer ytterligere testing og validering i testmiljeet for a fange opp

eventuelle problemer relatert til infrastruktur, konfigurasjon eller dataintegrasjon.

5. Tilbakerullingsmekanismer: Implementer tilbakerullingsmekanismer i tilfelle
distribueringsfeil eller kritiske problemer oppdages i produksjon. Serg for at
arbeidsflyten raskt kan rulles tilbake til en tidligere stabil versjon for & minimere

nedetid og pavirkning pa brukerne.

Ved a inkorporere testing og validering gjennom hele utviklingslivssyklusen til
intelligente arbeidsflyter, kan organisasjoner sikre palitelighet, neyaktighet og
vedlikeholdbarhet i deres Al-drevne systemer. Regelmessig testing og validering hjelper
med & fange opp feil, forhindre regresjoner og bygge tillit til arbeidsflytens oppfersel

og resultater.

Del 2: Monstrene

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 250

Tankerekke

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjopes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.
Eksempler

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.
Innholdsgenerering

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.
Strukturert entitetsopprettelse

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.
Veiledning av LLM-agenter

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.
Fordeler og hensyn

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 251

Modusveksling

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Nar den skal brukes

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 252

Rolletildeling

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Nar det skal brukes

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempler

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 253

Prompt Object

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 254

Prompt Template

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Fordeler og hensyn

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Nar det boer brukes:

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 255

Structured 10

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Skalering av Structured 10

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Fordeler og hensyn

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 256

Prompt-kjeding

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Nar du ber bruke det

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel: Olympias Onboarding

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 257

Prompt-omskriver

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 258

Responsbegrensning

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Fordeler og hensyn

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Feilhandtering

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 259

Sperringsanalysator

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjopes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.
Implementering

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.
Ordklassemerking (POS) og navngitt enhetgjenkjenning (NER)

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.
Intensjonsklassifisering

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.
Nokkelorduttrekking

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.
Fordeler

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 260

Sperringsomskriver

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Fordeler

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 261

Ventriloquist

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Nar man skal bruke det

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Diskrete komponenter

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Diskrete komponenter 263

Predikat

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Nar det skal brukes

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Diskrete komponenter 264

APIl-fasade

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hovedfordeler

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Nar man skal bruke det

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Autentisering og autorisering

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Diskrete komponenter 265

Handtering av foresporsler

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Formatering av respons

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Feilhandtering og kanttilfeller

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Skalerbarhets- og ytelseshensyn

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Sammenligning med andre designmeonstre

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Diskrete komponenter 266

Result Interpreter

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Nar det skal brukes

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Diskrete komponenter 267

Virtuell Maskin

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Nar det skal brukes

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Bak Magien

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Spesifikasjon og Testing

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Diskrete komponenter 268

Spesifisering av Oppfarsel

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Skriving av Testtilfeller

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel: Testing av Oversetterkomponenten

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Replay av HTTP-interaksjoner

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL)

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Overordnede monstre

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hybrid intelligens

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Adaptiv respons

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Menneske-Kl-rollebytte

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL) 270

Eskalering

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hovedfordeler

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Praktisk anvendelse: Helsevesen

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL) 271

Tilbakemeldingssloyfe

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Anvendelser og Eksempler

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Avanserte Teknikker i Integrering av Menneskelig
Tilbakemelding

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL) 272

Passiv informasjonsutstraling

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Kontekstuell informasjonsvisning

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Proaktive varsler

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Forklarende innsikt

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Interaktiv utforskning

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL) 273

Viktige fordeler

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Bruksomrader og eksempler

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL) 274

Samarbeidende Beslutningstaking (CDM)

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL) 275

Kontinuerlig laering

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Bruksomrader og eksempler

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Etiske hensyn

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

HITLs rolle i reduksjon av Al-risiko

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL) 276

Teknologiske fremskritt og fremtidsutsikter

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Utfordringer og begrensninger ved HITL-systemer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Intelligent feilhandtering

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Tradisjonelle feilhandteringstilnaerminger

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Intelligent feilhandtering 278

Kontekstuell feildiagnose

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Prompt-konstruksjon for kontekstuell feildiagnose

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Gjenfinningsforsterket generering for kontekstuell feildiagnose

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Intelligent feilhandtering 279

Intelligent feilrapportering

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Intelligent feilhandtering 280

Prediktiv feilforebygging

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Smart feilgjenoppretting

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Intelligent feilhandtering 281

Personalisert feilkommunikasjon

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Intelligent feilhandtering 282

Adaptiv feilhandteringsarbeidsflyt

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Kvalitetskontroll

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Kvalitetskontroll 284

Eval

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Problem

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Lasning

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hensyn

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Kvalitetskontroll 285

Forstaelse av gullstandarder

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan referansefrie evalueringer fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Kvalitetskontroll 286

Sikkerhetsmekanisme

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Problem

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Loesning

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hensyn a ta

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Kvalitetskontroll 287

Guardrails og Evalueringer: To Sider av Samme
Sak

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.
Utbyttbarheten mellom Guardrails og Referansefrie
Evalueringer

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Implementering av Tosidige Sikkerhetsmekanismer og
Evalueringer

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Ordliste

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Ordliste

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

A

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

C

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

289

D

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

G

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

H

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

290

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

K

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

M

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

N

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

(o)

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

291

P

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Q

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

R

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

S

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

T

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

U

Dette innholdet er ikke tilgjengelig i proveboken. Boken kan kjgpes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

292

\'

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

w

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

yA

Dette innholdet er ikke tilgjengelig i preveboken. Boken kan kjepes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Index

ACID properties, 103
adaptiv arbeidsflyt

Adaptiv arbeidsflytkomposisjon, 213

adaptivt UL 196

Agentiske, 29

Al 60, 69, 93, 127, 135, 191
applikasjoner, 118, 130, 141, 154
beslutningspunkter, 243
konversasjons, 29
modell, 93, 147, 148, 150
sammensatte systemer, 28, 31
samtale, 6

allmenningens tragedie, 181

Alpaca, 12

Altman, Sam, 16

Amazon Web Services, 239

Anthropic, 21, 36, 68, 122, 129

antropomorfisme, 64

API-er, 116

APler, 67

APIs, 145

application design and frameworks, 187

applikasjonsutvikling, 208

arrays, 123

asynkron behandling, 236

Automatisk fortsettelse, 151

automatisk skalering, 238

autoregressiv modellering, 40

beredskapsplanlegging, 30
BERT, 12, 22
beslutning

-taking scenarioer, 125

punkter, 232

treer, 209
beslutningsevner, 93
boundary conditions, 241
briller for utvidet virkelighet, 206
Brotli, 239, 240
Brukergrensesnitt

grensesnitt, 201

rammeverk, 202
Brukergrensesnitt (UI)

design, 206

teknologier, 197
brukeropplevelse, 184
brukerpsykologi, 203
brukertesting og tilbakemelding, 186
brukertillit, 204
brukervennlighetsproblemer, 203

Byte Pair Encoding (BPE), 12, 13

C (Programmeringssprak), 110

Index 294

Capybara-biblioteket, 245 databaser, 116
Chain of Thought (CoT), 131 -stattet objekt, 99
chaining of Al workers, 105 databases
chatbot-applikasjon, 112 locking strategies, 103
ChatGPT, 28, 49 Databricks-ansatte, 48
Claude, 7, 40, 72 Datadog, 235
Claude 3, 46, 119, 122, 127, 129 destilleringsprosess, 71
Claude 3 Opus, 69 detaljert logging, 234
Claude v1, 15 deterministisk oppfersel, 54
Claude v2, 15 digitalt landskap, 183
Cohere (LLM-leverander), 21, 23 distribuert arkitektur, 236
conceptual and practical challenges, 188 Dohan, et al., 40
concurrent workflows, 240 dokumentklynging, 113
content Dynamisk oppgaveruting, 211
Content Categorization, 105 dynamisk Ul-generering, 178
context Dynamisk Verkteyvalg, 123
Contextual Content Generation, 188,
189 e-handel, 181, 209
Contextual Field Suggestions, 189 E-handelapplikasjoner, 86
effektivitet, 210
data eksperimentering
analyse, 31, 139 rammeverk, 183
behandlingsoppgaver, 118 eksterne tjenester eller API-er, 119
behandlingspipeline, 227 ELK stack, 104
Datahenting, 103 emosjonell tone, 137
Datasynkronisering, 103 ende-til-ende-testing, 245, 246
Datavalidering, 245 ensembler, 110, 111
flow, 103 ensemble av arbeidere, 111
integritet, 227 enterpriseapplikasjonsarkitektur, 35
klargjering, 102 errors
persistens, 103 handling, 103, 241

personvern, 24, 203 Intelligent feilhandtering, 135

Index

rates, 104
ethics

implications, 188

F#, 87
Facebook, 22
fallback strategies, 103
feil
gjenoppretting, 245
héndtering, 101, 134
feilseking, 212
og problemlgsing, 234
og testing, 124
few-shot
leering, 58
prompting, 59
finaliseringsmetode, 147
finalize-metode, 150
finjustering, 75
FitAl, 199
flaskehalser, 213
fleksibilitet og kreativitet, 185
flertallsavstemning, 110
Flerarent
Problemlgsere, 29
forklarbarhet, 244
forretningsregler, 209
Forsikringsverifisering, 96
forsyningskjede
optimalisering, 30
funksjon

anrop, 149

295

anropshistorikk, 148
kalling, 116
navn, 146
funksjonell programmering, 86
funksjonsanrop

feil, 126

Gemma 7B, 10
Generativ UI (GenUTI), 194, 197, 201
Generative Pre-trained Transformer (GPT),
7, 63
Generative UI (GenUI), 187, 205
GitLab, 87
Gjenfinnings-forsterket generering (RAG),
43
gjenfinningsbaserte modeller, 6
Gjenfinningsforsterket Generering (RAG),
29
Gjenfinningsforsterket generering (RAG),
74
gjennomstrgmning, 25
Global Interpreter Lock (GIL), 108
Google, 21
API, 59, 61
Cloud AI Platform, 22
Cloud Platform, 239
Gemini, 20
Gemini 1.5 Pro, 12, 16, 17
PalLM (Pathways Language Model),
16, 22
T5, 12
GPT-3, 12, 15

Index

GPT-4, 6, 12, 15, 16, 19, 28, 40, 46, 58, 98,
110, 113, 120, 126, 192, 193, 237

grafiske modeller, 40
Graham, Paul, 17
grammatiske regler, 4
GraphQL, 101

Groq, 24, 113
grunnmodeller, 50

gzip, 240

hash, 144

hendelsesdrevet arkitektur, 102

henvendelsestildeling, 227
historiske menstre, 212
Hohpe, Gregor, 98
Honeybadger, 88

HTTP, 142

hurtigbufring, 237
hyperparameter, 43
heyhastighets-fullfering, 24

ikke-overvaket leering, 4
inclusive interfaces, 188
Inferens, 5
informasjon
gjenfinning, 6, 118
uthenting, 49
informatikk, 65, 68
inndata
prompts, 52
inngangsparametere, 121
innhold

filtrering, 24

296

innholdsbasert filtrering, 86
Innsamling av medisinsk historie, 95
innsnevre stien, 35, 36
input
validation, 240
instruksjonsfinjustering, 9
instruksjonsjustering
instruksjonsjusterte modeller, 46
instruksjonstilpasning
instruksjonstunede modeller, 48
Integrasjonsmenstre for Virksomheter, 98
integrasjonstesting, 242
integrering av LLM, 178
intelligent arbeidsflytorkestrering, 208, 216,
237
Intelligent innholdsmoderering, 220
intelligent workflow orchestration, 240
internasjonalisering, 184

iterativ forbedring, 71, 136

JSON (JavaScript Object Notation), 119,
123, 124, 127, 139, 157

K-means, 115

kanttilfeller, 54

K1, 121, 142, 198
konversasjon, 199
modell, 84, 198

klassifisering, 49, 113

Klinisk beslutningsstette, 97

kollaborativ filtrering, 86

kommandolinje

Kommandolinjegrensesnitt (CLI), 23

Index

komplekse oppgaver, 138
konsistens
og reproduserbarhet, 125
kontekst
Forsterkning, 43
kontekstuell beslutningstaking, 212
Kontekstuell innholdsgenerering, 177,
181-183
uendelig lange inputs, 14
vindu, 14, 212
Kontinuerlig integrasjon og distribusjon
(CI/CD), 246
pipeline, 246
Kontinuerlig risikoovervaking, 97
konto, 85
kreativ skriving, 31, 49
kretsbryterlogikk, 153
kryssmodal generering, 20
Kundesentimentanalyse, 94
kundeservice-chatboter, 31
kundesupport, 29
kunnskapsbaser, 7
kunnskapshandtering, 29
Kvantisering, 26

kvikkselv (grunnstoff), 41

language
Language Detection, 105
models, 61
Large Language Model (LLM), 16, 104, 136,
187

latens, 25

297

Latent Dirichlet-allokering, 115

latent rom, 37, 39

leveranderer av apen
kildekode-modellverting, 193

linezer algebra, 40

lineger regresjon, 40

Llama, 12

Llama 2-70B, 46

Llama 3 70B, 10

Llama 3 8B, 10

loggoppbevaring og -rotasjon, 235

lokale utviklingsmiljeer, 146

Louvre, 39

lukket og apen spersmalsbesvarelse, 49

Managed Streaming for Apache Kafka, 38

Mangfold av arbeidere, 112, 157

manuell intervensjon, 215

Markdown, 139

markupbasert tagging, 66

maskinvare, 26

medisinske oppdagelser, 95

Memorial Sloan Kettering Cancer Center,
38

Menneske-i-lekken (HITL), 169

Merkur (planet), 41

Merkur (romersk gud), 41

MessagePack, 239

Meta, 22

Metropolitan Museum of Art, 39

Mikrotjeneste-arkitektur, 84

Mistral, 23

Index

7B, 10
7B Instruct, 15, 193

Mixtral
8x22B, 10
8x7B, 52

moderne applikasjoner, 210
modularitet, 83
monitoring

and logging, 104
motivasjonsstrategier, 201
multi-step workflow, 105
Multimodal

modeller, 18

sprakmodeller, 19

menstergjenkjenning, 144

Naiv Bayes, 114

narrativ konstruksjon, 18

naturlig sprak

Naturlig sprakprosessering (NLP), 95,

113

nettbrett, 206

nettbutikker, 193

nettverkstilkobling, 213

nevrale nettverk, 3, 6

New Relic, 238

nullskudds-leering, 54

nekkelmenstre, 211

Ollama, 23

Olympia, 31, 58, 121, 135, 143, 158
Olympias kunnskapsbase, 86
One-Shot Learning, 56

OpenAl 3, 21, 36, 68
OpenRouter, 25, 26, 143, 237
oppsummering, 49
OPT model, 22
optimistic locking, 103
ordbeker, 123
output verification, 241
oversettelse, 15, 185
overvaking

metrikker, 234

og logging, 233

og varsling, 214

parafrasering, 49
parallell utforelse, 236
parameter

effekter, 121

omrade, 10

Parameterantall, 26
Perplexity (Leverander), 10
personalisering, 178, 205, 210

Personalisert mikrotekst, 194
personaliserte produktanbefalinger, 86
personalization

Personalized Forms, 189
pessimistic locking, 103
prediksjoner, 5
prinsippet om minste privilegium, 67
probabilistiske modeller, 40
Process Manager

Enterprise Integration, 216

processing time, 104

298

Index

Produktanbefalinger, 86
Produktivitet, 180
programvarearkitektur, 2
progressiv avslering, 195
prompts

design, 54

engineering, 55, 61

forbedring, 64

kjeding, 55, 67

konstruksjon, 37, 42, 62

Prompt Template, 193

Prompt-destillering, 43, 73, 237

Prompt-mal, 55

Promptdestillering, 68

Promptobjekt, 69

teknikk, 202

utforming, 52, 63
Prosesshéndterer, 98, 101
Protocol Buffers, 239
publiser-abonner-systemer, 102

PyTorch, 22
Qwen2 70B, 10

Rails, 184
Railway Oriented Programming (ROP), 89
Raix, 217
bibliotek, 91
rangerere, 33
repetisjonsstraffer, 48
Responsavgrensning, 167
Response Fencing, 193

Result Interpreter, 134

299

Retrieval Augmented Generation (RAG),
35, 118

retry mechanisms, 103

revisjon og etterlevelse, 234

revisjonslogging, 100

risikofaktorer, 90, 91

Risikostratifisering, 96

rollespill-lignende interaksjoner, 6

RSpec, 241, 242, 245

Ruby, 87, 88, 106, 154, 245

Ruby on Rails, 1, 105, 216, 224

Rudall, Alex, 21

Rust (Programmeringssprak), 110

Rust (Programming Language), 87

samtale

logg, 148, 151

lokke, 149, 151
satsvis behandling, 237
Scout, 238
segmenterings- og malrettingsstrategier,

183

Selvhelbredende Data, 230
Selvhelbredende data, 155
sentiment analysis, 105
sentimentanalyse, 94, 108, 127
serversendte hendelser (SSE), 142
sinnsteori, 37
skalerbarhet, 210, 235
skjevhet

og rettferdighet i Al 244

smarttelefoner, 206

Index

sporing av viktige malinger, 231
sprak
-relaterte oppgaver, 4
modeller, 39, 68
spersmal-og-svar-systemer, 7
SQL-injeksjoner, 66
stasjoneere datamaskiner, 206
stemmestyrte grensesnitt, 31

stemningsanalyse, 15, 106, 111, 137

Stor sprakmodell (LLM), 1, 3, 62, 64, 66, 67,

71, 117, 132, 192

Store sprakmodeller (LLM), 14, 27, 113, 177,

197
landskap, 25
Stort sprakmodell (LLM), 72, 82, 116, 126,
136, 138, 155, 158, 219
Stripe, 122
Structured IO, 193
strukturert logging, 235
strukturerte data, 126
strembehandling, 154
stromhéndterere, 142
stremmebehandling, 142
logikk, 150
stremmedata, 144
stremprosessering, 147
Stettevektormaskiner (SVM), 114
svindeldeteksjon
system, 91
Symptomvurdering og stratifisering, 95
syntaksfeil, 124

syntetisk datagenerering, 49

systemdirektiv, 93, 121

T5, 22

Tankerekke (CoT), 42
temaidentifisering, 113
Temperatur, 50

testmiljeer, 247

Text Cleanup, 105

Tid til forste token (TTFT), 25
tilbakemelding

Tilbakemeldingsslayfe, 55

tilbakerullingsmekanismer, 247
tilgjengelighet, 204, 205
tilpasning, 25

tilstandsles, 148
Tilstedeveerelsesstraff, 45
Together.ai, 24

tokener, 11

tokenisering, 11

tokens, 5

Top-k sampling, 45

Top-p (nucleus) sampling, 45
trafikkstyring, 30
transformerarkitektur, 6
treningsdata, 39

Tvunget Verktoyvalg, 124

Unicode-kodbare sprak, 13
Universal ID, 239
unntakshéndtering, 213, 215
User Interface (UI)
interfaces, 187

user-generated content, 105

300

Index

utdanningsapplikasjoner, 29
utlesermelding, 98

utviklingsrammeverk, 140

Ventriloquist, 167
verktgybruk, 116, 140
verktoykall, 145
virtuelle assistenter, 31

visuelt grensesnitt, 197

Wall, Larry, 3
Wisper, 88, 100, 143, 150

Wooley, Chad, 87
XML, 126

Yi-34B, 46

ytelse

kompromisser, 5
optimalisering, 125, 185, 234

problemer, 238

zero-shot learning, 55

gkosystem, 139

301

	Innhold
	Forord av Gregor Hohpe
	Forord
	Om boken
	Om kodeeksemplene
	Hva jeg ikke dekker
	Hvem denne boken er for
	Bygge et Felles Vokabular
	Bli Involvert
	Anerkjennelser
	Hva er greia med illustrasjonene?
	Om Lean Publishing
	Om forfatteren

	Introduksjon
	Tanker om programvarearkitektur
	Hva er en stor språkmodell?
	Forstå inferens
	Tenke på ytelse
	Eksperimentere med forskjellige LLM-modeller
	Sammensatte AI-systemer

	Del 1: Grunnleggende tilnærminger og teknikker
	Innsnevre stien
	Latent rom: Ubegripelig stort
	Hvordan Stien Blir ``Innsnevret''
	Råmodeller versus instruksjonsjusterte modeller
	Prompt-utforming
	Promptdestillering
	Hva med finjustering?

	Retrieval Augmented Generation (RAG)
	Hva er Retrieval Augmented Generation?
	Hvordan fungerer RAG?
	Hvorfor bruke RAG i applikasjonene dine?
	Implementering av RAG i Din Applikasjon
	Påstandsoppdeling
	Praktiske eksempler på RAG
	Intelligent spørringsoptimalisering (IQO)
	Rerangering
	RAG-vurdering (RAGAs)
	Utfordringer og Fremtidsutsikter

	Mangfold av arbeidere
	KI-arbeidere som uavhengige gjenbrukbare komponenter
	Kontoadministrasjon
	E-handelapplikasjoner
	Helsetjenesteanvendelser
	KI-arbeider som prosesshåndterer
	Integrering av AI-Arbeidere i Applikasjonsarkitekturen Din
	Sammenstillbarhet og orkestrering av AI-arbeidere
	Kombinere tradisjonell NLP med LLMer

	Verktøybruk
	Hva er verktøybruk?
	Potensialet i verktøybruk
	Arbeidsflyten for verktøybruk
	Beste praksis for verktøybruk
	Sammensetting og Kjeding av Verktøy
	Fremtidige Retninger

	Strømmebehandling
	Implementering av en ReplyStream
	``Samtaleløkken''
	Automatisk fortsettelse
	Konklusjon

	Selvhelbredende data
	Praktisk casestudie: Reparering av ødelagt JSON
	Hensyn og kontraindikasjoner

	Kontekstuell innholdsgenerering
	Personalisering
	Produktivitet
	Rask iterasjon og eksperimentering
	AI-drevet lokalisering
	Viktigheten av Brukertesting og Tilbakemelding

	Generative UI
	Generering av tekst for brukergrensesnitt
	Definering av Generativ UI
	Eksempel
	Skiftet til Resultatorientert Design
	Utfordringer og Hensyn
	Fremtidsutsikter og Muligheter

	Intelligent arbeidsflytorkestrering
	Forretningsmessig behov
	Sentrale fordeler
	Nøkkelmønstre
	Unntakshåndtering og gjenoppretting
	Implementering av Intelligent Arbeidsflytorkestrering i Praksis
	Overvåking og Logging
	Skalerbarhet og Ytelseshensyn
	Testing og validering av arbeidsflyter

	Del 2: Mønstrene
	Prompt-konstruksjon
	Tankerekke
	Modusveksling
	Rolletildeling
	Prompt Object
	Prompt Template
	Structured IO
	Prompt-kjeding
	Prompt-omskriver
	Responsbegrensning
	Spørringsanalysator
	Spørringsomskriver
	Ventriloquist

	Diskrete komponenter
	Predikat
	API-fasade
	Result Interpreter
	Virtuell Maskin
	Spesifikasjon og Testing

	Human In The Loop (HITL)
	Overordnede mønstre
	Eskalering
	Tilbakemeldingssløyfe
	Passiv informasjonsutstråling
	Samarbeidende Beslutningstaking (CDM)
	Kontinuerlig læring
	Etiske hensyn
	Teknologiske fremskritt og fremtidsutsikter

	Intelligent feilhåndtering
	Tradisjonelle feilhåndteringstilnærminger
	Kontekstuell feildiagnose
	Intelligent feilrapportering
	Prediktiv feilforebygging
	Smart feilgjenoppretting
	Personalisert feilkommunikasjon
	Adaptiv feilhåndteringsarbeidsflyt

	Kvalitetskontroll
	Eval
	Sikkerhetsmekanisme
	Guardrails og Evalueringer: To Sider av Samme Sak

	Ordliste
	Ordliste
	Index

