

Mønstre for Applikasjonsutvikling med

KI (Norsk Utgave)

Obie Fernandez

Denne boken er til salgs på

http://leanpub.com/patterns-of-application-development-using-ai-nb

Denne versjonen ble publisert 2025-01-23

Dette er en Leanpub bok. Leanpub utdanner forfattere og utgivere med “Lean

Publisering”-prosessen. Lean Publisering hjelper med å publisere arbeidsversjoner av

en bok, bruker lette verktøy og mange iterasjoner for å få leserens tilbakemeldinger til

du har den rette boken og bygger interesse mens du gjør det.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-nb
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweet denne boken!

Hjelp Obie Fernandez ved å fortelle om denne boken på Twitter!

Den foreslåtte hashtagen av denne boken er: #poaduai.

Finn ut hva andre sier om boken ved å følge denne lenken til et søk på Twitter:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Til min tøffe dronning, min muse, mitt lys og min kjærlighet, Victoria

Også av Obie Fernandez
Patterns of Application Development Using AI

The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Innhald

Forord av Gregor Hohpe . i

Forord . ii

Om boken . iii

Om kodeeksemplene . iii

Hva jeg ikke dekker . iii

Hvem denne boken er for . iii

Bygge et Felles Vokabular . iii

Bli Involvert . iii

Anerkjennelser . iii

Hva er greia med illustrasjonene? . iv

Om Lean Publishing . iv

Om forfatteren . v

Introduksjon . 1

Tanker om programvarearkitektur . 2

Hva er en stor språkmodell? . 3

Forstå inferens . 5

Tenke på ytelse . 25

Eksperimentere med forskjellige LLM-modeller 27

Sammensatte AI-systemer . 27

INNHALD

Del 1: Grunnleggende tilnærminger og
teknikker . 35

Innsnevre stien . 36

Latent rom: Ubegripelig stort . 38

Hvordan Stien Blir “Innsnevret” . 42

Råmodeller versus instruksjonsjusterte modeller 45

Prompt-utforming . 52

Promptdestillering . 68

Hva med finjustering? . 74

Retrieval Augmented Generation (RAG) . 76

Hva er Retrieval Augmented Generation? . 76

Hvordan fungerer RAG? . 76

Hvorfor bruke RAG i applikasjonene dine? . 76

Implementering av RAG i Din Applikasjon . 76

Påstandsoppdeling . 77

Praktiske eksempler på RAG . 77

Intelligent spørringsoptimalisering (IQO) . 78

Rerangering . 78

RAG-vurdering (RAGAs) . 78

Utfordringer og Fremtidsutsikter . 80

Mangfold av arbeidere . 82

KI-arbeidere som uavhengige gjenbrukbare komponenter 83

Kontoadministrasjon . 85

E-handelapplikasjoner . 86

Helsetjenesteanvendelser . 94

KI-arbeider som prosesshåndterer . 97

Integrering av AI-Arbeidere i Applikasjonsarkitekturen Din 101

INNHALD

Sammenstillbarhet og orkestrering av AI-arbeidere 104

Kombinere tradisjonell NLP med LLMer . 113

Verktøybruk . 116

Hva er verktøybruk? . 116

Potensialet i verktøybruk . 118

Arbeidsflyten for verktøybruk . 119

Beste praksis for verktøybruk . 133

Sammensetting og Kjeding av Verktøy . 137

Fremtidige Retninger . 139

Strømmebehandling . 142

Implementering av en ReplyStream . 143

“Samtaleløkken” . 149

Automatisk fortsettelse . 151

Konklusjon . 153

Selvhelbredende data . 155

Praktisk casestudie: Reparering av ødelagt JSON 157

Hensyn og kontraindikasjoner . 162

Kontekstuell innholdsgenerering . 177

Personalisering . 178

Produktivitet . 180

Rask iterasjon og eksperimentering . 182

AI-drevet lokalisering . 184

Viktigheten av Brukertesting og Tilbakemelding 186

Generative UI . 187

Generering av tekst for brukergrensesnitt . 188

Definering av Generativ UI . 197

INNHALD

Eksempel . 199

Skiftet til Resultatorientert Design . 201

Utfordringer og Hensyn . 203

Fremtidsutsikter og Muligheter . 204

Intelligent arbeidsflytorkestrering . 208

Forretningsmessig behov . 209

Sentrale fordeler . 210

Nøkkelmønstre . 210

Unntakshåndtering og gjenoppretting . 213

Implementering av Intelligent Arbeidsflytorkestrering i Praksis 216

Overvåking og Logging . 231

Skalerbarhet og Ytelseshensyn . 235

Testing og validering av arbeidsflyter . 240

Del 2: Mønstrene . 248

Prompt-konstruksjon . 249

Tankerekke . 250

Modusveksling . 251

Rolletildeling . 252

Prompt Object . 253

Prompt Template . 254

Structured IO . 255

Prompt-kjeding . 256

Prompt-omskriver . 257

Responsbegrensning . 258

Spørringsanalysator . 259

Spørringsomskriver . 260

Ventriloquist . 261

INNHALD

Diskrete komponenter . 262

Predikat . 263

API-fasade . 264

Result Interpreter . 266

Virtuell Maskin . 267

Spesifikasjon og Testing . 267

Human In The Loop (HITL) . 269

Overordnede mønstre . 269

Eskalering . 270

Tilbakemeldingssløyfe . 271

Passiv informasjonsutstråling . 272

Samarbeidende Beslutningstaking (CDM) . 274

Kontinuerlig læring . 275

Etiske hensyn . 275

Teknologiske fremskritt og fremtidsutsikter . 275

Intelligent feilhåndtering . 277

Tradisjonelle feilhåndteringstilnærminger . 277

Kontekstuell feildiagnose . 278

Intelligent feilrapportering . 279

Prediktiv feilforebygging . 280

Smart feilgjenoppretting . 280

Personalisert feilkommunikasjon . 281

Adaptiv feilhåndteringsarbeidsflyt . 282

Kvalitetskontroll . 283

Eval . 284

Sikkerhetsmekanisme . 286

Guardrails og Evalueringer: To Sider av Samme Sak 286

Ordliste . 288
Ordliste . 288

Index . 293

Forord av Gregor Hohpe
Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Forord
Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Forord iii

Om boken

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Om kodeeksemplene

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hva jeg ikke dekker

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvem denne boken er for

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Bygge et Felles Vokabular

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Bli Involvert

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Forord iv

Anerkjennelser

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hva er greia med illustrasjonene?

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Om Lean Publishing

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Forord v

Om forfatteren

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Introduksjon

Hvis du er ivrig etter å begynne å integrere store språkmodeller (LLM) i

programmeringsprosjektene dine, kan du gjerne hoppe rett til mønstrene og

kodeeksemplene som presenteres i senere kapitler. Men for å fullt ut verdsette

kraften og potensialet i disse mønstrene, er det verdt å ta seg tid til å forstå den bredere

sammenhengen og den helhetlige tilnærmingen de representerer.

Mønstrene er ikke bare en samling isolerte teknikker, men snarere et enhetlig

rammeverk for å integrere AI i applikasjonene dine. Jeg bruker Ruby on Rails, men

disse mønstrene burde fungere i stort sett alle andre programmeringsmiljøer. De

tar for seg et bredt spekter av hensyn, fra datahåndtering og ytelsesoptimalisering

til brukeropplevelse og sikkerhet, og gir et omfattende verktøysett for å forbedre

tradisjonell programmeringspraksis med AI-funksjonalitet.

Hver kategori av mønstre tar for seg en spesifikk utfordring eller mulighet som oppstår

når man inkorporerer AI-komponenter i applikasjonen din. Ved å forstå relasjonene

Introduksjon 2

og synergiene mellom disse mønstrene, kan du ta informerte beslutninger om hvor og

hvordan AI kan anvendes mest effektivt.

Mønstre er aldri forskrivende løsninger og bør ikke behandles som det. De er ment

å være tilpasningsdyktige byggeklosser som bør skreddersys til de unike kravene

og begrensningene i din egen applikasjon. Vellykket anvendelse av disse mønstrene

(som alle andre innen programvareutvikling) avhenger av en dyp forståelse av

problemdomenet, brukerbehov og den overordnede tekniske arkitekturen i prosjektet

ditt.

Tanker om programvarearkitektur

Jeg begynte å programmere på 1980-tallet og var involvert i hackermiljøet, og mistet

aldri min hackermentalitet, selv etter at jeg ble profesjonell programvareutvikler. Helt

fra starten hadde jeg alltid en sunn skepsis til hvilken verdi programvarearkitekter i sine

elfenbenstårn faktisk tilførte.

En av grunnene til at jeg personlig er så begeistret for endringene som denne kraftige

nye bølgen av AI-teknologi bringer med seg, er dens innvirkning på det vi anser som

programvarearkitektur-beslutninger. Den utfordrer tradisjonelle oppfatninger om hva

som utgjør den “riktige” måten å designe og implementere programvareprosjekter på.

Den utfordrer også om arkitektur fortsatt kan betraktes primært som de delene av et

system som er vanskelige å endre, siden AI-forbedringer gjør det enklere enn noensinne

å endre hvilken som helst del av prosjektet ditt, når som helst.

Kanskje vi går inn i toppårene for den “postmoderne” tilnærmingen til

programvareutvikling. I denne sammenhengen refererer postmoderne til et

fundamentalt skifte bort fra tradisjonelle paradigmer, der utviklere var ansvarlige

for å skrive og vedlikeholde hver eneste kodelinje. I stedet omfavner den ideen om å

delegere oppgaver, som datamanipulering, komplekse algoritmer og til og med hele

deler av applikasjonslogikken, til tredjepartsbiblioteker og eksterne API-er. Dette

Introduksjon 3

postmoderne skiftet representerer et betydelig avvik fra den konvensjonelle visdommen

om å bygge applikasjoner fra bunnen av, og det utfordrer utviklere til å tenke nytt om

sin rolle i utviklingsprosessen.

Jeg har alltid trodd at gode programmerere bare skriver den koden som er absolutt

nødvendig å skrive, basert på læren fra Larry Wall og andre hackerluminærer som

ham. Ved å minimere mengden skrevet kode kan vi bevege oss raskere, redusere

overflatearealet for feil, forenkle vedlikehold og forbedre den generelle påliteligheten

til applikasjonene våre. Mindre kode lar oss fokusere på kjernen i forretningslogikken

og brukeropplevelsen, mens annet arbeid delegeres til andre tjenester.

Nå som AI-drevne systemer kan håndtere oppgaver som tidligere var forbeholdt

menneskeskrevet kode, burde vi kunne være enda mer produktive og smidige, med et

større fokus enn noensinne på å skape forretningsverdi og brukeropplevelse.

Selvfølgelig er det ulemper ved å delegere store deler av prosjektet ditt til AI-

systemer, som potensielt tap av kontroll og behovet for robust overvåking og

tilbakemeldingsmekanismer. Det er derfor det krever et nytt sett med ferdigheter og

kunnskap, inkludert i det minste en grunnleggende forståelse av hvordan AI fungerer.

Hva er en stor språkmodell?

Store språkmodeller (LLM) er en type kunstig intelligens-modell som har fått betydelig

oppmerksomhet de senere årene, helt siden lanseringen av GPT-3 av OpenAI i 2020.

Store språkmodeller er designet for å behandle, forstå og generere menneskelig språk

med bemerkelsesverdig nøyaktighet og flyt. I denne delen skal vi ta en kort titt på

hvordan store språkmodeller fungerer og hvorfor de er godt egnet for å bygge intelligente

systemkomponenter.

I kjernen er store språkmodeller basert på dyplæringsalgoritmer, spesifikt nevrale

nettverk. Disse nettverkene består av sammenkoblede noder, eller nevroner,

som behandler og overfører informasjon. Arkitekturen som foretrekkes for store

Introduksjon 4

språkmodeller er ofte transformermodellen, som har vist seg å være svært effektiv i

håndtering av sekvensielle data som tekst.

Transformermodeller er basert på oppmerksomhetsmekanismen og brukes hovedsakelig

til oppgaver som involverer sekvensielle data, som naturlig språkbehandling.

Transformere behandler inndata samtidig i stedet for sekvensielt, noe som gjør

dem i stand til å fange opp langtrekkende avhengigheter mer effektivt. De har lag av

oppmerksomhetsmekanismer som hjelper modellen med å fokusere på forskjellige deler

av inndataene for å forstå kontekst og sammenhenger.

Treningsprosessen for store språkmodeller innebærer å eksponere modellen for enorme

mengder tekstdata, som bøker, artikler, nettsider og kodelagre. Under treningen lærer

modellen å gjenkjenne mønstre, relasjoner og strukturer i teksten. Den fanger opp

de statistiske egenskapene til språket, som grammatiske regler, ordassosiasjoner og

kontekstuelle betydninger.

En av nøkkelteknikkene som brukes i trening av store språkmodeller er ikke-overvåket

læring. Dette betyr at modellen lærer fra dataene uten eksplisitt merking eller

veiledning. Den oppdager mønstre og representasjoner på egen hånd ved å analysere

samforekomsten av ord og fraser i treningsdataene. Dette gjør at store språkmodeller

kan utvikle en dyp forståelse av språk og dets kompleksitet.

Et annet viktig aspekt ved store språkmodeller er deres evne til å håndtere kontekst. Når

de behandler en tekst, vurderer store språkmodeller ikke bare de enkelte ordene, men

også den omkringliggende konteksten. De tar hensyn til tidligere ord, setninger og til

og med avsnitt for å forstå betydningen og intensjonen i teksten. Denne kontekstuelle

forståelsen gjør store språkmodeller i stand til å generere sammenhengende og relevante

svar. En av hovedmåtene vi evaluerer kapasiteten til en gitt språkmodell på, er ved å

vurdere størrelsen på konteksten de kan ta hensyn til for å generere svar.

Når de er trent, kan store språkmodeller brukes til et bredt spekter av språkrelaterte

oppgaver. De kan generere menneskelignende tekst, svare på spørsmål, oppsummere

dokumenter, oversette språk og til og med skrive kode. Allsidigheten til store

Introduksjon 5

språkmodeller gjør dem verdifulle for å bygge intelligente systemkomponenter som

kan samhandle med brukere, behandle og analysere tekstdata, og generere meningsfullt

innhold.

Ved å inkorporere store språkmodeller i applikasjonsarkitekturen kan du skape AI-

komponenter som forstår og behandler brukerinndata, genererer dynamisk innhold og

gir intelligente anbefalinger eller handlinger. Men å jobbe med store språkmodeller

krever nøye vurdering av ressurskrav og ytelseskompromisser. Store språkmodeller er

beregningsmessig intensive og kan kreve betydelig prosesseringskraft og minne (med

andre ord, penger) for å operere. De fleste av oss må vurdere kostnadsimplikasjonene

ved å integrere store språkmodeller i applikasjonene våre og handle deretter.

Forstå inferens

Inferens refererer til prosessen der en modell genererer prediksjoner eller output basert

på nye, usette data. Det er fasen hvor den trente modellen brukes til å ta beslutninger

eller generere tekst, bilder eller annet innhold som respons på brukerinndata.

Under treningsfasen lærer en AI-modell fra et stort datasett ved å justere parameterne

sine for å minimere feilen i prediksjonene. Når modellen er trent, kan den anvende det

den har lært på nye data. Inferens er hvordan modellen bruker sine lærte mønstre og

kunnskap til å generere output.

For store språkmodeller innebærer inferens å ta imot en prompt eller inndatatekst og

produsere et sammenhengende og kontekstuelt relevant svar, som en strøm av tokens

(som vi skal snakke om snart). Dette kan være å svare på et spørsmål, fullføre en setning,

generere en historie eller oversette tekst, blant mange andre oppgaver.

I motsetning til måten du og jeg tenker på, skjer enAI-modells “tenkning” via

inferens i én tilstandsløs operasjon. Det vil si at dens tenkning er begrenset til

genereringsprosessen. Den må bokstavelig talt tenke høyt, som om jeg stilte

deg et spørsmål og bare godtok et svar fra deg i “stream of consciousness”-

stil.

Introduksjon 6

Store språkmodeller kommer i mange størrelser og
varianter

Mens praktisk talt alle populære store språkmodeller er basert på den samme kjerne-

transformerarkitekturen og trent på enorme tekstdatasett, kommer de i forskjellige

størrelser og er finjustert for ulike formål. Størrelsen på en stor språkmodell, målt i

antall parametere i dens nevrale nettverk, har stor innvirkning på dens kapabiliteter.

Større modeller med flere parametere, som GPT-4, som det ryktes har 1 til 2 billioner

parametere, er generelt mer kunnskapsrike og kapable enn mindre modeller. Imidlertid

krever større modeller også mye mer datakraft for å kjøre, noe som betyr høyere

kostnader når du bruker dem via API-kall.

For å gjøre store språkmodeller mer praktiske og skreddersydd for spesifikke

bruksområder, blir basismodellene ofte finjustert på mer målrettede datasett. For

eksempel kan en stor språkmodell trenes på et stort korpus av dialog for å spesialisere

den for samtale-AI. Andre er trent på kode for å gi dem programmeringskunnskap. Det

finnes til og med modeller som er spesielt trent for rollespill-lignende interaksjoner

med brukere!

Gjenfinning vs Generative Modeller

I verden av store språkmodeller (LLM) finnes det to hovedtilnærminger for å generere

svar: gjenfinningsbaserte modeller og generative modeller. Hver tilnærming har sine

styrker og svakheter, og forståelse av forskjellene mellom dem kan hjelpe deg å velge

riktig modell for ditt spesifikke bruksområde.

Gjenfinningsbaserte Modeller

Gjenfinningsbaserte modeller, også kjent som informasjonsgjenfinningsmodeller,

genererer svar ved å søke gjennom en stor database med eksisterende tekst og velge de

mest relevante avsnittene basert på inngangsforespørselen. Disse modellene genererer

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Introduksjon 7

ikke ny tekst fra bunnen av, men setter heller sammen utdrag fra databasen for å forme

et sammenhengende svar.

En av hovedfordelene med gjenfinningsbaserte modeller er deres evne til å gi faktisk

nøyaktig og oppdatert informasjon. Siden de er avhengige av en database med kuratert

tekst, kan de hente relevant informasjon fra pålitelige kilder og presentere den for

brukeren. Dette gjør dem godt egnet for applikasjoner som krever presise, faktabaserte

svar, som spørsmål-og-svar-systemer eller kunnskapsbaser.

Gjenfinningsbaserte modeller har imidlertid noen begrensninger. De er bare så gode som

databasen de søker gjennom, så kvaliteten og dekningen av databasen påvirker direkte

modellens ytelse. I tillegg kan disse modellene streve med å generere sammenhengende

og naturlig lydende svar, siden de er begrenset til teksten som er tilgjengelig i databasen.

Vi dekker ikke bruk av rene gjenfinningsmodeller i denne boken.

Generative Modeller

Generative modeller, på den annen side, skaper ny tekst fra bunnen av basert på mønstre

og relasjoner de lærte under trening. Disse modellene bruker sin forståelse av språk til

å generere nye svar som er skreddersydd for inngangsprompten.

Hovedstyrken til generative modeller er deres evne til å produsere kreativ,

sammenhengende og kontekstuelt relevant tekst. De kan engasjere seg i åpne samtaler,

generere historier og til og med skrive kode. Dette gjør dem ideelle for applikasjoner

som krever mer åpne og dynamiske interaksjoner, som chatbots, innholdsproduksjon

og kreative skriveassistenter.

Generative modeller kan imidlertid noen ganger produsere inkonsistent eller faktisk feil

informasjon, siden de er avhengige av mønstre lært under trening i stedet for en kuratert

database med fakta. De kan også være mer utsatt for skjevheter og hallusinasjoner, og

generere tekst som er plausibel men ikke nødvendigvis sann.

Eksempler på generative LLM-er inkluderer OpenAIs GPT-serie (GPT-3, GPT-4) og

Anthropics Claude.

Introduksjon 8

Hybridmodeller

Flere kommersielt tilgjengelige LLM-er kombinerer både gjenfinnings- og generative

tilnærminger i en hybridmodell. Disse modellene bruker gjenfinningstekniker for å

finne relevant informasjon fra en database og bruker deretter generative teknikker for å

syntetisere denne informasjonen til et sammenhengende svar.

Hybridmodeller tar sikte på å kombinere den faktiske nøyaktigheten til

gjenfinningsbaserte modeller med språkgenereringsevnene til generative modeller. De

kan gi mer pålitelig og oppdatert informasjon samtidig som de opprettholder evnen til

å engasjere seg i åpne samtaler.

Når du velger mellom gjenfinningsbaserte og generative modeller, bør du vurdere de

spesifikke kravene til applikasjonen din. Hvis hovedmålet er å gi nøyaktig, faktabasert

informasjon, kan en gjenfinningsbasert modell være det beste valget. Hvis applikasjonen

krever mer åpne og kreative interaksjoner, kan en generativ modell være mer egnet.

Hybridmodeller tilbyr en balanse mellom de to tilnærmingene og kan være et godt valg

for applikasjoner som krever både faktisk nøyaktighet og naturlig språkgenerering.

Til syvende og sist avhenger valget mellom gjenfinningsbaserte og generative modeller

av det spesifikke brukstilfellet og avveiingene mellom nøyaktighet, kreativitet og

fleksibilitet. Ved å forstå styrkene og begrensningene til hver tilnærming, kan du ta

informerte beslutninger.

Introduksjon 9

Instruksjonsfinjustering

Instruksjonsfinjustering er en undergruppe av konversasjonstrening som bruker

menneskeskrevne prompts og svar for å gjøre LLM-er bedre på å forstå og

følge instruksjoner. Her er noen enkle eksempler for å illustrere hvordan

instruksjonsfinjustering på menneskeskrevne prompts og svar gjør LLM-er

bedre på å forstå og følge instruksjoner:

Eksempel 1: Kundeservice

Instruksjon: “Gi et svar til en kunde som ber om refusjon.”

Menneskeskrevet Prompt: “Jeg ønsker å be om refusjon for mitt nylige kjøp. Produktet

oppfylte ikke mine forventninger.”

Menneskeskrevet Svar: “Jeg beklager at produktet ikke oppfylte forventningene dine.

For å behandle refusjonen din, vennligst oppgi ordrenummeret ditt og årsaken til

returen. Vi vil gjennomgå forespørselen din og komme tilbake til deg innen 2-3

virkedager.”

Eksempel 2: Pedagogisk Assistanse

Instruksjon: “Forklar konseptet fotosyntese til en 10-åring.”

Menneskeskrevet prompt: “Kan du forklare hvordan planter lager maten sin?”

Menneskeskrevet svar: “Ja visst! Planter lager maten sin gjennom en prosess som

kalles fotosyntese. De bruker sollys, vann og karbondioksid for å lage mat og oksygen.

Bladene på planten har en spesiell del som kalles klorofyll som hjelper dem med å

fange sollys.”

Eksempel 3: Personlig assistent

Introduksjon 10

Instruksjon: “Planlegg et møte for neste tirsdag klokken 15:00.”

Menneskeskrevet prompt: “Kan du sette opp et møte for tirsdag klokken 15:00?”

Menneskeskrevet svar: “Ja visst, jeg har planlagt et møte for deg neste tirsdag klokken

15:00. Er det noe annet du trenger?”

Resultatet er et mangfoldig økosystem av LLM-er i forskjellige størrelser og med ulike

spesialiteter. Mindre modeller i området 1-7 milliarder parametere gir gode generelle

språkferdigheter samtidig som de er mer effektive å kjøre.

• Mistral 7B

• Llama 3 8B

• Gemma 7B

Mellomstore modeller på rundt 30-70 milliarder parametere tilbyr sterkere

resonneringsevner og evne til å følge instruksjoner.

• Llama 3 70B

• Qwen2 70B

• Mixtral 8x22B

Når man velger en LLM som skal integreres i en applikasjon, må man balansere

modellens evner mot praktiske faktorer som kostnad, latens, kontekstlengde og

innholdsfiltrering. Mindre, instruksjonstilpassede modeller er ofte det beste valget for

enklere språkoppgaver, mens de største modellene kan være nødvendige for kompleks

resonnering eller analyse. Modellens treningsdata er også en viktig faktor, ettersom det

bestemmer modellens kunnskapsgrense.

Enkelte modeller, som noen fra Perplexity, er koblet til sanntids

informasjonskilder, slik at de i praksis ikke har noen kunnskapsgrense. Når

du stiller dem spørsmål, kan de selvstendig bestemme seg for å gjøre nettsøk

og hente vilkårlige nettsider for å generere et svar.

Introduksjon 11

Figur 1. Llama3 med og uten nettilgang

Til syvende og sist finnes det ingen universalløsning når det gjelder LLM-er. Å forstå

variasjonene i modellstørrelse, arkitektur og trening er nøkkelen til å velge riktig modell

for et gitt bruksområde. Å eksperimentere med forskjellige modeller er den eneste

praktiske måten å avdekke hvilke som gir best ytelse for oppgaven som skal løses.

Tokenisering: Å dele tekst inn i biter

Før en stor språkmodell kan behandle tekst, må teksten deles opp i mindre enheter som

kalles tokener . Tokener kan være enkelte ord, deler av ord eller til og med enkelttegn.

Prosessen med å dele tekst inn i tokener kalles tokenisering, og det er et avgjørende trinn

i forberedelsen av data for en språkmodell.

Figur 2. Denne setningen inneholder 27 tokener

Forskjellige LLM-er bruker ulike tokeniseringsstrategier, som kan ha betydelig

innvirkning på modellens ytelse og kapabiliteter. Noen vanlige tokenisatorer som

Introduksjon 12

brukes av LLM-er inkluderer:

• GPT (Byte Pair Encoding): GPT-tokenisatorer bruker en teknikk som kalles byte

pair encoding (BPE) for å dele tekst inn i delordenheter. BPE slår iterativt sammen

de mest frekvente parene av bytes i et tekstkorpus, og danner et vokabular av

delordtokener. Dette gjør at tokenisatoren kan håndtere sjeldne og nye ord ved

å dele dem opp i mer vanlige delorddeler. GPT-tokenisatorer brukes av modeller

som GPT-3 og GPT-4.

• Llama (SentencePiece): Llama-tokeniserere bruker SentencePiece-biblioteket,

som er en ikke-overvåket teksttokeniserer og detokeniserer. SentencePiece

behandler innteksten som en sekvens av Unicode-tegn og lærer et

delordsvokabular basert på et treningskorpus. Den kan håndtere alle språk

som kan kodes i Unicode, noe som gjør den godt egnet for flerspråklige modeller.

Llama-tokeniserere brukes av modeller som Metas Llama og Alpaca.

• SentencePiece (Unigram): SentencePiece-tokeniserere kan også bruke en annen

algoritme kalt Unigram, som er basert på en delordregulariseringsteknikk.

Unigram-tokenisering bestemmer det optimale delordsvokabularet basert

på en unigram språkmodell, som tildeler sannsynligheter til individuelle

delordsenheter. Denne tilnærmingen kan produsere mer semantisk meningsfulle

delord sammenlignet med BPE. SentencePiece med Unigram brukes av modeller

som Googles T5 og BERT.

• Google Gemini (Multimodal Tokenisering): Google Gemini bruker et

tokeniseringssystem designet for å håndtere ulike datatyper, inkludert tekst,

bilder, lyd, videoer og kode. Denne multimodale kapasiteten lar Gemini behandle

og integrere forskjellige former for informasjon. Spesielt har Google Gemini

1.5 Pro et kontekstvindu som kan håndtere millioner av tokens, mye større enn

tidligere modeller. Dette omfattende kontekstvinduet gjør det mulig for modellen

Introduksjon 13

å behandle en større kontekst, noe som potensielt fører til mer nøyaktige svar. Det

er imidlertid viktig å merke seg at Geminis tokeniseringssystem er mye nærmere

én token per tegn enn andre modeller. Dette betyr at den faktiske kostnaden ved

å bruke Gemini-modeller kan være betydelig høyere enn forventet hvis du er

vant til å bruke modeller som GPT, ettersom Googles prising er basert på tegn i

stedet for tokens.

Valget av tokeniserer påvirker flere aspekter ved en LLM, inkludert:

• Vokabularstørrelse: Tokenisereren bestemmer størrelsen på modellens

vokabular, som er settet av unike tokens den gjenkjenner. Et større, mer

finkornet vokabular kan hjelpe modellen med å håndtere et bredere spekter av

ord og fraser og til og med bli multimodal (i stand til å forstå og generere mer

enn bare tekst), men det øker også modellens minnekrav og beregningsmessige

kompleksitet.

• Håndtering av sjeldne og ukjente ord: Tokeniserere som bruker delordsenheter,

som BPE og SentencePiece, kan bryte ned sjeldne og ukjente ord i mer vanlige

delordsbiter. Dette lar modellen gjøre kvalifiserte gjetninger om betydningen av

ord den ikke har sett før, basert på delordene de inneholder.

• Flerspråklig støtte: Tokeniserere som SentencePiece, som kan håndtere alle

Unicode-kodbare språk, er godt egnet for flerspråklige modeller som må behandle

tekst på flere språk.

Når man velger en LLM for en bestemt applikasjon, er det viktig å vurdere tokenisereren

den bruker og hvor godt den samsvarermed de spesifikke språkbehandlingsbehovene for

oppgaven. Tokenisereren kan ha betydelig innvirkning på modellens evne til å håndtere

domenespesifikk terminologi, sjeldne ord og flerspråklig tekst.

Introduksjon 14

Kontekststørrelse: Hvor mye informasjon kan en
språkmodell bruke under inferens?

Når vi diskuterer språkmodeller, refererer kontekststørrelse til mengden tekst som en

modell kan vurdere når den behandler eller genererer sine svar. Det er i hovedsak et mål

på hvor mye informasjon modellen kan “huske” og bruke til å informere sine outputs

(uttrykt i tokens). Kontekststørrelsen til en språkmodell kan ha betydelig innvirkning på

dens kapabiliteter og typene oppgaver den kan utføre effektivt.

Hva er kontekststørrelse?

I tekniske termer bestemmes kontekststørrelsen av antall tokens (ord eller orddeler)

som en språkmodell kan behandle i én enkelt innsekvens. Dette refereres ofte til som

modellens “oppmerksomhetsspenn” eller “kontekstvindu”. Jo større kontekststørrelsen

er, jo mer tekst kan modellen vurdere samtidig når den genererer et svar eller utfører en

oppgave.

Forskjellige språkmodeller har varierende kontekststørrelser, fra noen hundre tokens til

millioner av tokens. Som referanse kan et typisk avsnitt med tekst inneholde rundt 100-

150 tokens, mens en hel bok kan inneholde titusenvis eller hundretusenvis av tokens.

Det finnes til og med arbeid med effektive metoder for å skalere Transformer-

baserte store språkmodeller (LLMs) til uendelig lange inputs med begrenset minne

og beregning.

Hvorfor er kontekststørrelse viktig?

Kontekststørrelsen til en språkmodell har betydelig innvirkning på dens evne til å forstå

og generere sammenhengende, kontekstuelt relevant tekst. Her er noen viktige grunner

til hvorfor kontekststørrelse er viktig:

https://huggingface.co/papers/2404.07143

Introduksjon 15

1. Forståelse av langformat-innhold: Modeller med større kontekststørrelse kan

bedre forstå og analysere lengre tekster, som artikler, rapporter eller til og

med hele bøker. Dette er avgjørende for oppgaver som dokumentsammendrag,

spørsmålsbesvarelse og innholdsanalyse.

2. Opprettholde sammenheng: Et større kontekstvindu lar modellen opprettholde

sammenheng og konsistens over lengre strekk av output. Dette er viktig for

oppgaver som historiegenerering, dialogsystemer og innholdsproduksjon, hvor

det er essensielt å opprettholde en konsistent fortelling eller tema. Det er også helt

avgjørende når man bruker LLMer for å generere eller transformere strukturerte

data.

3. Fange opp langdistanseavhengigheter: Noen språkoppgaver krever forståelse

av forhold mellom ord eller fraser som er langt fra hverandre i en tekst.

Modeller med større kontekststørrelse er bedre rustet til å fange opp

disse langdistanseavhengighetene, som kan være viktige for oppgaver som

stemningsanalyse, oversettelse og språkforståelse.

4. Håndtere komplekse instruksjoner: I anvendelser hvor språkmodeller brukes

til å følge komplekse instruksjoner i flere trinn, tillater en større kontekststørrelse

modellen å vurdere hele settet med instruksjoner når den genererer et svar, i stedet

for bare de siste få ordene.

Eksempler på språkmodeller med forskjellige kontekststørrelser

Her er noen eksempler på språkmodeller med forskjellige kontekststørrelser:

• OpenAI GPT-3.5 Turbo: 4.095 tokens

• Mistral 7B Instruct: 32.768 tokens

• Anthropic Claude v1: 100.000 tokens

• OpenAI GPT-4 Turbo: 128.000 tokens

• Anthropic Claude v2: 200.000 tokens

Introduksjon 16

• Google Gemini Pro 1.5: 2,8M tokens

Som du kan se, er det et bredt spekter av kontekststørrelser blant disse modellene, fra

rundt 4.000 tokens for OpenAI GPT-3.5 Turbo-modellen til 200.000 tokens for Anthropic

Claude v2-modellen. Noen modeller, som Googles PaLM 2 og OpenAIs GPT-4, tilbyr

forskjellige varianter med større kontekststørrelser (f.eks. “32k”-versjoner), som kan

håndtere enda lengre inputsekvenser. Og for øyeblikket (april 2024) skryter Google

Gemini Pro av nesten 3 millioner tokens!

Det er verdt å merke seg at kontekststørrelsen kan variere avhengig av den spesifikke

implementeringen og versjonen av en bestemt modell. For eksempel har den originale

OpenAI GPT-4-modellen en kontekststørrelse på 8.191 tokens, mens de senere GPT-4-

variantene som Turbo og 4o har en mye større kontekststørrelse på 128.000 tokens.

Sam Altman har sammenlignet dagens kontekstbegrensninger med kilobytene av

arbeidsminne som personlige dataprogrammerere måtte håndtere på 80-tallet, og sa

at vi i nær fremtid vil kunne passe “alle dine personlige data” inn i konteksten til en

stor språkmodell.

Velge riktig kontekststørrelse

Når man velger en språkmodell for en bestemt anvendelse, er det viktig å vurdere

kontekststørrelseskravene for den aktuelle oppgaven. For oppgaver som involverer korte,

isolerte tekstbiter, som stemningsanalyse eller enkel spørsmålsbesvarelse, kan en mindre

kontekststørrelse være tilstrekkelig. For oppgaver som krever forståelse og generering

av lengre, mer komplekse tekster, vil en større kontekststørrelse sannsynligvis være

nødvendig.

Det er verdt å merke seg at større kontekststørrelser ofte kommer med økte

beregningskostnader og tregere prosesseringstider, ettersom modellen må vurdere

Introduksjon 17

mer informasjon når den genererer et svar. Derfor må du finne en balanse mellom

kontekststørrelse og ytelse når du velger en språkmodell for din anvendelse.

Hvorfor ikke bare velge modellen med størst kontekststørrelse og fylle den med

så mye informasjon som mulig? Vel, bortsett fra ytelsesfaktorer er den andre

hovedutfordringen kostnad. I mars 2024 vil en enkelt spørsmål-svar-syklus med

Google Gemini Pro 1.5 med full kontekst koste deg nesten 8 dollar (USD). Hvis du

har et brukstilfelle som rettferdiggjør den utgiften, all makt til deg! Men for de fleste

anvendelser er det rett og slett for dyrt med flere størrelsesordener.

Å finne nåler i høystakker

Konseptet med å finne en nål i en høystakk har lenge vært en metafor for utfordringene

med gjenfinning i store datasett. Innen store språkmodeller justerer vi denne analogien

litt. Tenk deg at vi ikke bare leter etter én enkelt fakta gjemt i en omfattende tekst (som

en fullstendig antologi av Paul Graham-essays), men flere fakta spredt utover. Dette

scenariet ligner mer på å finne flere nåler i et vidstrakt jorde, ikke bare én høystakk.

Her er poenget: vi må ikke bare finne disse nålene, men også veve dem sammen til en

sammenhengende tråd.

Når store språkmodeller får i oppgave å gjenfinne og resonnere rundt flere fakta

innebygd i lange kontekster, møter de en dobbel utfordring. Først er det det åpenbare

problemet med gjenfinningsnøyaktighet – den synker naturlig når antall fakta øker.

Dette er forventet; tross alt belaster det å holde styr på flere detaljer på tvers av en

omfattende tekst selv de mest sofistikerte modellene.

For det andre, og kanskje mer kritisk, er utfordringen med å resonnere med disse

faktaene. Det er én ting å plukke ut fakta; det er noe helt annet å syntetisere dem til

en sammenhengende fortelling eller et svar. Det er her den virkelige testen kommer.

Introduksjon 18

Ytelsen til store språkmodeller i resonneringsoppgaver har en tendens til å forringes

mer enn i enkle gjenfinningsoppgaver. Denne forringelsen handler ikke bare om volum;

det handler om det intrikate samspillet mellom kontekst, relevans og slutning.

Hvorfor skjer dette? Vel, tenk på dynamikken i hukommelse og oppmerksomhet i

menneskelig kognisjon, som til en viss grad gjenspeiles i store språkmodeller. Når de

behandler store mengder informasjon, kan store språkmodeller, i likhet med mennesker,

miste oversikten over tidligere detaljer mens de tar inn nye. Dette er spesielt tilfelle i

modeller som ikke er eksplisitt designet for å prioritere eller automatisk gå tilbake til

tidligere tekstsegmenter.

Videre er språkmodellenes evne til å veve disse gjenfunne faktaene inn i et

sammenhengende svar beslektet med narrativ konstruksjon. Dette krever ikke

bare gjenfinning av informasjon, men en dyp forståelse og kontekstuell plassering, noe

som fortsatt er en stor utfordring for dagens KI.

Så, hva betyr dette for oss som utviklere og integratorer av disse teknologiene? Vi må

være svært bevisste på disse begrensningene når vi designer systemer som er avhengige

av store språkmodeller for å håndtere komplekse, langformat-oppgaver. Å forstå at

ytelsen kan forringes under visse forhold hjelper oss å sette realistiske forventninger

og utvikle bedre reserveløsninger eller supplerende strategier.

Modaliteter: Utover tekst

Mens flertallet av språkmodeller i dag er fokusert på å behandle og generere tekst, er

det en økende trend mot multimodale modeller som naturlig kan ta imot og produsere

flere typer data, som bilder, lyd og video. Disse multimodale modellene åpner for nye

muligheter for KI-drevne applikasjoner som kan forstå og generere innhold på tvers av

forskjellige modaliteter.

Introduksjon 19

Hva er modaliteter?

I sammenheng med språkmodeller refererer modaliteter til de forskjellige typene data

som en modell kan behandle og generere. Den vanligste modaliteten er tekst, som

inkluderer skriftlig språk i ulike former som bøker, artikler, nettsider og innlegg

på sosiale medier. Det er imidlertid flere andre modaliteter som i økende grad blir

innlemmet i språkmodeller:

• Bilder: Visuelle data som fotografier, illustrasjoner og diagrammer.

• Lyd: Lyddata som tale, musikk og miljølyder.

• Video: Bevegelige visuelle data, ofte ledsaget av lyd, som videoklipp og filmer.

Hver modalitet presenterer unike utfordringer og muligheter for språkmodeller. For

eksempel krever bilder at modellen forstår visuelle konsepter og relasjoner, mens lyd

krever at modellen behandler og genererer tale og andre lyder.

Multimodale språkmodeller

Multimodale språkmodeller er designet for å håndtere flere modaliteter innenfor

én enkelt modell. Disse modellene har vanligvis spesialiserte komponenter eller lag

som både kan forstå inndata og generere utdata i forskjellige modaliteter. Noen

bemerkelsesverdige eksempler på multimodale språkmodeller inkluderer:

• OpenAIs GPT-4o: GPT-4o er en stor språkmodell som naturlig forstår og

behandler talelyd i tillegg til tekst. Denne egenskapen gjør at GPT-4o kan utføre

oppgaver som å transkribere talespråk, generere tekst fra lydinput og gi svar

basert på muntlige spørsmål.

• OpenAIs GPT-4 med visuell input: GPT-4 er en stor språkmodell som kan

behandle både tekst og bilder. Når den får et bilde som input, kan GPT-4 analysere

innholdet i bildet og generere tekst som beskriver eller responderer på den visuelle

informasjonen.

Introduksjon 20

• Googles Gemini:Gemini er en multimodal modell som kan håndtere tekst, bilder

og video. Den bruker en enhetlig arkitektur som muliggjør kryssmodal forståelse

og generering, og muliggjør oppgaver som bildeteksting, videooppsummering og

visuell spørsmålsbesvarelse.

• DALL-E og Stable Diffusion: Selv om disse ikke er språkmodeller i tradisjonell

forstand, demonstrerer disse modellene kraften i multimodal AI ved å generere

bilder fra tekstbeskrivelser. De viser potensialet for modeller som kan oversette

mellom ulike modaliteter.

Fordeler og bruksområder for multimodale modeller

Multimodale språkmodeller tilbyr flere fordeler og muliggjør et bredt spekter av

bruksområder, inkludert:

• Forbedret forståelse: Ved å behandle informasjon fra flere modaliteter kan disse

modellene få en mer omfattende forståelse av verden, lignende måten mennesker

lærer fra ulike sensoriske inndata.

• Kryssmodal generering: Multimodale modeller kan generere innhold i én

modalitet basert på inndata fra en annen, som å lage et bilde fra en tekstbeskrivelse

eller generere et videosammendrag fra en skriftlig artikkel.

• Tilgjengelighet: Multimodale modeller kan gjøre informasjon mer tilgjengelig

ved å oversette mellom modaliteter, som å generere tekstbeskrivelser av bilder for

synshemmede brukere eller lage lydversjoner av skriftlig innhold.

• Kreative anvendelser: Multimodale modeller kan brukes til kreative oppgaver

som å generere kunst, musikk eller videoer basert på tekstlige prompts, noe som

åpner nye muligheter for kunstnere og innholdsskapere.

Ettersom multimodale språkmodeller fortsetter å utvikle seg, vil de sannsynligvis spille

en stadig viktigere rolle i utviklingen av AI-drevne applikasjoner som kan forstå og

Introduksjon 21

generere innhold på tvers av flere modaliteter. Dette vil muliggjøre mer naturlig og

intuitiv interaksjon mellom mennesker og AI-systemer, samt åpne for nye muligheter

innen kreativ uttrykk og kunnskapsformidling.

Leverandørøkosystemer

Når det gjelder å inkorporere store språkmodeller (LLMs) i applikasjoner, har du et

voksende utvalg av alternativer å velge mellom. Hver større LLM-leverandør, som

OpenAI, Anthropic, Google og Cohere, tilbyr sitt eget økosystem av modeller, API-er og

verktøy. Å velge riktig leverandør innebærer å vurdere ulike faktorer, inkludert prising,

ytelse, innholdsfiltrering, datapersonvern og tilpasningsmuligheter.

OpenAI

OpenAI er en av de mest kjente leverandørene av LLMs, med sin GPT-serie (GPT-3,

GPT-4) som er mye brukt i ulike applikasjoner. OpenAI tilbyr et brukervennlig API som

lar deg enkelt integrere modellene deres i applikasjoner. De tilbyr en rekke modeller

med ulike kapabiliteter og prisnivåer, fra innstegsmodellen Ada til den kraftige Davinci-

modellen.

OpenAIs økosystem inkluderer også verktøy som OpenAI Playground, som lar deg

eksperimentere med prompts og finjustere modeller for spesifikke brukstilfeller. De

tilbyr innholdsfiltreringsalternativer for å hindre generering av upassende eller skadelig

innhold.

Når jeg bruker OpenAIs modeller direkte, stoler jeg på Alex Rudalls ruby-openai-

bibliotek.

Anthropic

Anthropic er en annen stor aktør innen LLM-området, der deres Claude-modeller blir

stadig mer populære for sin sterke ytelse og etiske hensyn. Anthropic fokuserer på

https://github.com/alexrudall/ruby-openai

Introduksjon 22

å utvikle trygge og ansvarlige AI-systemer, med stor vekt på innholdsfiltrering og

unngåelse av skadelige outputs.

Anthropics økosystem inkluderer Claude API, som lar deg integrere modellen i

applikasjonene deres, samt verktøy for promptteknikk og finjustering. De tilbyr også

Claude Instant-modellen, som inkorporerer websøk-funksjoner for mer oppdaterte og

faktabaserte svar.

Når jeg bruker Anthropics modeller direkte, stoler jeg på Alex Rudalls anthrophic-

bibliotek.

Google

Google har utviklet flere kraftige LLMs, inkludert Gemini, BERT, T5 og PaLM.

Disse modellene er kjent for sin sterke ytelse på et bredt spekter av naturlig

språkbehandlingsoppgaver. Googles økosystem inkluderer TensorFlow- og

Keras-bibliotekene, som tilbyr verktøy og rammeverk for å bygge og trene

maskinlæringsmodeller.

Google tilbyr også en Cloud AI Platform, som lar deg enkelt distribuere og skalere

modellene deres i skyen. De tilbyr en rekke forhåndstrente modeller og API-er for

oppgaver som stemningsanalyse, entitetsgjenkjenning og oversettelse.

Meta

Meta, tidligere kjent som Facebook, er dypt involvert i utviklingen av store

språkmodeller, fremhevet av deres utgivelse av modeller som LLaMA og OPT.

Disse modellene utmerker seg med sin sterke ytelse i ulike språkoppgaver og er i stor

grad tilgjengelige gjennom åpen kildekode-kanaler, som støtter Metas engasjement for

forskning og fellesskapssamarbeid.

Metas økosystem er primært bygget rundt PyTorch, et åpen kildekode-

maskinlæringsbibliotek som foretrekkes for sine dynamiske beregningsevner og

fleksibilitet, som tilrettelegger for innovativ AI-forskning og -utvikling.

https://github.com/alexrudall/anthropic

Introduksjon 23

I tillegg til deres tekniske tilbud legger Meta stor vekt på etisk AI-utvikling. De

implementerer robust innholdsfiltrering og fokuserer på å redusere skjevheter, i tråd

med deres overordnede mål om sikkerhet og ansvarlighet i AI-applikasjoner.

Cohere

Cohere er en nyere aktør innen LLM-området, som fokuserer på å gjøre LLM-er

mer tilgjengelige og enklere å bruke enn konkurrentene. Deres økosystem inkluderer

Cohere API, som gir tilgang til en rekke forhåndstrente modeller for oppgaver som

tekstgenerering, klassifisering og oppsummering.

Cohere tilbyr også verktøy for prompt-utvikling, finjustering og innholdsfiltrering. De

legger vekt på databeskyttelse og sikkerhet, med funksjoner som kryptert datalagring

og tilgangskontroll.

Ollama

Ollama er en selvdriftet plattform som lar brukere administrere og distribuere ulike store

språkmodeller (LLM-er) lokalt på sine maskiner, noe som gir dem fullstendig kontroll

over AI-modellene uten å være avhengig av eksterne skytjenester. Denne løsningen er

ideell for de som prioriterer personvern og ønsker å håndtere sine AI-operasjoner internt.

Plattformen støtter en rekke modeller, inkludert versjoner av Llama, Phi, Gemma og

Mistral, som varierer i størrelse og beregningskrav. Ollama gjør det enkelt å laste ned

og kjøre disse modellene direkte fra kommandolinjen ved hjelp av enkle kommandoer

som ollama run <model_name>, og den er designet for å fungere på tvers av ulike

operativsystemer inkludert macOS, Linux og Windows.

For utviklere som ønsker å integrere åpen kildekode-modeller i applikasjonene sine

uten å bruke en ekstern API, tilbyr Ollama et CLI for å administrere modellenes

livssyklus på lignende måte som containeradministrasjonsverktøy. Den støtter også

egendefinerte konfigurasjoner og prompts, noe sommuliggjør en høy grad av tilpasning

for å skreddersy modellene til spesifikke behov eller bruksområder.

Introduksjon 24

Ollama er spesielt egnet for teknisk kyndige brukere og utviklere på grunn av sitt

kommandolinjegrensesnitt og fleksibiliteten den tilbyr i administrasjon og distribusjon

av AI-modeller. Dette gjør det til et kraftig verktøy for bedrifter og enkeltpersoner som

krever robuste AI-kapabiliteter uten å gå på kompromiss med sikkerhet og kontroll.

Multi-modell plattformer

I tillegg finnes det leverandører som er vert for et bredt utvalg av åpen kildekode-

modeller, som Together.ai og Groq. Disse plattformene tilbyr fleksibilitet og

tilpasningsmuligheter, som lar deg kjøre og i noen tilfeller til og med finjustere

åpen kildekode-modeller i henhold til dine spesifikke behov. For eksempel gir

Together.ai tilgang til en rekke åpen kildekode-LLM-er, som gjør det mulig for brukere

å eksperimentere med forskjellige modeller og konfigurasjoner. Groq fokuserer på å

levere ultrahøy ytelse som på tidspunktet for denne bokens utgivelse virker nesten

magisk

Velge en LLM-leverandør

Når du velger en LLM-leverandør, bør du vurdere faktorer som:

• Prising: Forskjellige leverandører tilbyr ulike prismodeller, fra betal-per-bruk til

abonnementsbaserte planer. Det er viktig å vurdere forventet bruk og budsjett når

man velger en leverandør.

• Ytelse: Ytelsen til LLM-er kan variere betydelig mellom leverandører, så det er

viktig å teste modeller på spesifikke brukstilfeller før man tar en beslutning.

• Innholdsfiltrering: Avhengig av applikasjonen kan innholdsfiltrering være en

kritisk faktor. Noen leverandører tilbyr mer robuste innholdsfilteringsalternativer

enn andre.

• Personvern: Hvis applikasjonen håndterer sensitive brukerdata, er det viktig å

velge en leverandør med sterke personverns- og sikkerhetspraksis.

Introduksjon 25

• Tilpasning: Noen leverandører tilbyr mer fleksibilitet når det gjelder finjustering

og tilpasning av modeller for spesifikke brukstilfeller.

Til syvende og sist avhenger valget av LLM-leverandør av de spesifikke kravene og

begrensningene til applikasjonen. Ved å nøye evaluere alternativene og vurdere faktorer

som prising, ytelse og personvern, kan du velge den leverandøren som best møter dine

behov.

Det er også verdt å merke seg at LLM-landskapet er i konstant utvikling, med nye

leverandører og modeller som dukker opp regelmessig. Du bør holde deg oppdatert på

de nyeste utviklingene og være åpen for å utforske nye alternativer etter hvert som de

blir tilgjengelige.

OpenRouter

Gjennom denne boken vil jeg utelukkende bruke OpenRouter som min foretrukne API-

leverandør. Grunnen er enkel: det er en alt-i-ett-løsning for alle de mest populære

kommersielle og åpen kildekode-modellene. Hvis du er ivrig etter å komme i gang med

AI-koding, er et av de beste stedene å starte med mitt eget OpenRouter Ruby-bibliotek.

Tenke på ytelse

Når man integrerer språkmodeller i applikasjoner, er ytelse en kritisk faktor å ta hensyn

til. Ytelsen til en språkmodell kan måles i form av dens latens (tiden det tar å generere

et svar) og gjennomstrømning (antall forespørsler den kan håndtere per tidsenhet).

Tid til første token (TTFT) er enda en essensiell ytelsesmetrikk, særlig relevant for

chatbots og applikasjoner som krever interaktive sanntidssvar. TTFT måler latensen fra

øyeblikket en brukers forespørsel mottas til øyeblikket det første ordet (eller tokenet)

i svaret genereres. Denne metrikken er avgjørende for å opprettholde en sømløs og

https://openrouter.ai
https://github.com/OlympiaAI/open_router

Introduksjon 26

engasjerende brukeropplevelse, ettersom forsinkede svar kan føre til brukerfrustrasjon

og manglende engasjement.

Disse ytelsesmetrikker kan ha betydelig innvirkning på brukeropplevelsen og

applikasjonens skalerbarhet.

Flere faktorer kan påvirke ytelsen til en språkmodell, inkludert:

Parameterantall: Større modeller med flere parametere krever generelt mer

dataressurser og kan ha høyere latens og lavere gjennomstrømning sammenlignet med

mindre modeller.

Maskinvare: Ytelsen til en språkmodell kan variere betydelig basert på maskinvaren

den kjører på. Skyleverandører tilbyr GPU- og TPU-instanser optimalisert for

maskinlæringsarbeidsbelastninger, som kan gi betydelig akselerasjon av modellinferens.

En av de fine tingene med OpenRouter er at for mange av modellene de

tilbyr, får du valget mellom skyleverandører med forskjellige ytelsesprofiler

og kostnader.

Kvantisering: Kvantiseringsteknikker kan brukes for å redusere minneforbruket og

beregningskravene til enmodell ved å representere vekter og aktiveringer med datatyper

av lavere presisjon. Dette kan forbedre ytelsen uten å ofre kvaliteten betydelig. Som

applikasjonsutvikler vil du sannsynligvis ikke være involvert i å trene dine egnemodeller

på forskjellige kvantiseringsnivåer, men det er greit å være kjent med terminologien.

Gruppering: Behandling av flere forespørsler samtidig i grupper kan forbedre

gjennomstrømningen ved å fordele overhead for modellinnlasting og dataoverføring.

Mellomlagring: Mellomlagring av resultater fra hyppig brukte prompts eller

innsekvenser kan redusere antall inferensforespørsler og forbedre den generelle ytelsen.

Når man velger en språkmodell for en produksjonsapplikasjon, er det viktig å måle

ytelsen på representative arbeidsbelastninger og maskinvarekonfigurasjoner. Dette kan

Introduksjon 27

hjelpe med å identifisere potensielle flaskehalser og sikre at modellen kan møte de

nødvendige ytelsesmålene.

Det er også verdt å vurdere avveiningene mellom modellytelse og andre faktorer

som kostnad, fleksibilitet og integreringsevne. For eksempel kan bruk av en mindre,

rimeligere modell med lavere latens være å foretrekke for applikasjoner som

krever sanntidssvar, mens en større, kraftigere modell kan være bedre egnet for

gruppeprosessering eller komplekse resonneringsoppgaver.

Eksperimentere med forskjellige LLM-modeller

Valg av LLM er sjelden en permanent beslutning. Ettersom nye og forbedrede modeller

lanseres regelmessig, er det lurt å bygge applikasjoner på en modulær måte som tillater

utskifting av forskjellige språkmodeller over tid. Prompts og datasett kan ofte gjenbrukes

på tvers av modeller med minimale endringer. Dette gjør det mulig å dra nytte av

de nyeste fremskrittene innen språkmodellering uten å måtte redesigne applikasjonene

fullstendig.

Muligheten til å enkelt bytte mellom et bredt utvalg av modeller er enda en

grunn til at jeg elsker OpenRouter.

Når man oppgraderer til en ny språkmodell, er det viktig å grundig teste og validere

dens ytelse og outputkvalitet for å sikre at den oppfyller applikasjonens krav. Dette

kan innebære å trene på nytt eller finjustere modellen på domenespesifikke data, samt

oppdatere eventuelle nedstrømskomponenter som er avhengige av modellens output.

Ved å designe applikasjoner med ytelse og modularitet i tankene, kan du skape

skalerbare, effektive og fremtidssikre systemer som kan tilpasse seg det raskt utviklende

landskapet av språkmodelleringsteknologi.

Introduksjon 28

Sammensatte AI-systemer

Før vi avslutter vår introduksjon, er det verdt å nevne at før 2023 og eksplosjonen

av interesse for generativ AI utløst av ChatGPT, var tradisjonelle AI-tilnærminger

vanligvis avhengige av integrasjon av enkeltstående, lukkede modeller. I motsetning

til dette utnytter sammensatte AI-systemer komplekse rørledninger av sammenkoblede

komponenter som jobber sammen for å oppnå intelligent oppførsel.

I kjernen består sammensatte AI-systemer av flere moduler, hver designet for å

utføre spesifikke oppgaver eller funksjoner. Disse modulene kan inkludere generatorer,

innhentere, rangerere, klassifikatorer og forskjellige andre spesialiserte komponenter.

Ved å bryte ned det overordnede systemet i mindre, fokuserte enheter, kan utviklere

skape mer fleksible, skalerbare og vedlikeholdbare AI-arkitekturer.

En av de viktigste fordelene med sammensatte AI-systemer er deres evne til å kombinere

styrkene fra forskjellige AI-teknikker og modeller. For eksempel kan et system bruke en

stor språkmodell (LLM) for naturlig språkforståelse og generering, mens det bruker en

separat modell for informasjonsgjenfinning eller regelbasert beslutningstaking. Denne

modulære tilnærmingen lar deg velge de beste verktøyene og teknikkene for hver

spesifikke oppgave, i stedet for å stole på en universalløsning.

Imidlertid byr bygging av sammensatte AI-systemer også på unike utfordringer. Spesielt

krever det å sikre systemets generelle sammenheng og konsistens robuste mekanismer

for testing, overvåking og styring.

Fremveksten av kraftige LLM-er som GPT-4 lar oss eksperimentere med

sammensatte AI-systemer enklere enn noensinne før, fordi disse avanserte

modellene er i stand til å håndtere flere roller innenfor et sammensatt

system, som klassifisering, rangering og generering, i tillegg til deres

naturlige språkforståelsesevner. Denne allsidigheten gjør det mulig for

utviklere å raskt prototype og iterere på sammensatte AI-arkitekturer, noe

som åpner nye muligheter for utvikling av intelligente applikasjoner.

Introduksjon 29

Distribusjonsmønstre for sammensatte AI-systemer

Sammensatte AI-systemer kan distribueres ved hjelp av ulike mønstre, som hver

er designet for å håndtere spesifikke krav og brukstilfeller. La oss utforske fire

vanlige distribusjonsmønstre: Spørsmål og Svar, Flerагent/Agentiske Problemløsere,

Konversasjons-AI, og CoPiloter.

Spørsmål og Svar

Spørsmål og svar (Q&A)-systemer fokuserer på å levere informasjonsgjenfinning som

er forbedret med forståelsesevnene til AI-modeller for å fungere som mer enn bare en

søkemotor. Ved å kombinere kraftige språkmodeller med eksterne kunnskapskilder ved

hjelp av Gjenfinningsforsterket Generering (RAG), unngår spørsmål og svar-systemer

hallusinasjoner og gir nøyaktige og kontekstuelt relevante svar på brukerforespørsler.

Hovedkomponentene i et LLM-basert Q&A-system inkluderer:

• Spørsmålsforståelse og omformulering: Analysering av brukerforespørsler og

omformulering av disse for bedre å matche de underliggende kunnskapskildene.

• Kunnskapsgjenfinning: Henting av relevant informasjon fra strukturerte eller

ustrukturerte datakilder basert på den omformulerte forespørselen.

• Svargenerering: Generering av sammenhengende og informative svar ved å

integrere den gjenfunne kunnskapen med språkmodellens generative evner.

RAG-delsystemer er spesielt viktige i Q&A-domener hvor det er avgjørende å gi

nøyaktig og oppdatert informasjon, som kundesupport, kunnskapshåndtering, eller

utdanningsapplikasjoner

Flerагent/Agentiske Problemløsere

Flerагent-systemer, også kjent som agentiske systemer, består av flere autonome agenter

som samarbeider for å løse komplekse problemer. Hver agent har en spesifikk rolle,

Introduksjon 30

et sett med ferdigheter og tilgang til relevante verktøy eller informasjonskilder. Ved å

samarbeide og utveksle informasjon kan disse agentene takle oppgaver som ville vært

vanskelige eller umulige for en enkelt agent å håndtere alene.

Hovedprinsippene for flerагent-problemløsere inkluderer:

• Spesialisering: Hver agent fokuserer på et spesifikt aspekt av problemet, ved å

utnytte sine unike evner og kunnskap.

• Samarbeid: Agenter kommuniserer og koordinerer sine handlinger for å oppnå et

felles mål, ofte gjennom meldingsutveksling eller delt minne.

• Tilpasningsevne: Systemet kan tilpasse seg endrede forhold eller krav ved å

justere rollene og atferden til individuelle agenter.

Flerагent-systemer er godt egnet for applikasjoner som krever distribuert

problemløsning, som forsyningskjedeoptimalisering, trafikkstrying, eller

beredskapsplanlegging

Konversasjons-AI

Konversasjons-AI-systemer muliggjør naturlig språkinteraksjon mellom brukere

og intelligente agenter. Disse systemene kombinerer naturlig språkforståelse,

dialoghåndtering og språkgenerering for å gi engasjerende og personlige

samtaleopplevelser.

Hovedkomponentene i et konversasjons-AI-system inkluderer:

• Intensjonsgjenkjenning: Identifisering av brukerens intensjon basert på deres

inndata, som å stille et spørsmål, komme med en forespørsel eller uttrykke en

følelse.

• Entitetsuttrekking: Uttrekking av relevante enheter eller parametere fra

brukerens inndata, som datoer, steder eller produktnavn.

Introduksjon 31

• Dialoghåndtering: Vedlikehold av samtalens tilstand, bestemmelse av passende

svar basert på brukerens intensjon og kontekst, og håndtering av flertursamtaler.

• Svargenerering: Generering av menneskelige svar ved hjelp av språkmodeller,

maler eller gjenfinningsbaserte metoder.

Konversasjons-AI-systemer brukes ofte i kundeservice-chatboter, virtuelle assistenter,

og stemmestyrte grensesnitt. Som nevnt tidligere er de fleste tilnærmingene, mønstrene

og kodeeksemplene i denne boken direkte hentet fra mitt arbeid med et stort

konversasjons-AI-system kalt Olympia

CoPilots

CoPilots er AI-drevne assistenter som jobber sammen med menneskelige brukere

for å forbedre deres produktivitet og beslutningsevne. Disse systemene utnytter en

kombinasjon av naturlig språkbehandling, maskinlæring og domenespesifikk kunnskap

for å gi intelligente anbefalinger, automatisere oppgaver og tilby kontekstuell støtte.

Hovedfunksjoner i CoPilots inkluderer:

• Personalisering: Tilpasning til individuelle brukerpreferanser, arbeidsflyter og

kommunikasjonsstiler.

• Proaktiv assistanse: Forutser brukerbehov og tilbyr relevante forslag eller

handlinger uten eksplisitte forespørsler.

• Kontinuerlig læring: Forbedrer ytelsen over tid ved å lære fra brukerrespons,

interaksjoner og data.

CoPilots blir i økende grad brukt i ulike domener, som programvareutvikling (f.eks.

kodekomplettering og feildeteksjon), kreativ skriving (f.eks. innholdsforslag og

redigering), og dataanalyse (f.eks. innsikt og visualiseringsanbefalinger)

Disse implementeringsmønstrene viser allsidigheten og potensialet til sammensatte AI-

systemer. Ved å forstå egenskapene og bruksområdene for hvert mønster, kan du ta

https://olympia.chat

Introduksjon 32

informerte beslutninger når du designer og implementerer intelligente applikasjoner.

Selv om denne boken ikke spesifikt handler om implementering av sammensatte AI-

systemer, gjelder mange, om ikke alle, av de samme tilnærmingene og mønstrene for

integrering av diskrete AI-komponenter innen ellers tradisjonell applikasjonsutvikling.

Roller i sammensatte AI-systemer

Sammensatte AI-systemer er bygget på et fundament av sammenkoblede moduler, der

hver modul er designet for å utføre en spesifikk rolle. Disse modulene samarbeider for

å skape intelligent oppførsel og løse komplekse problemer. Det er nyttig å være kjent

med disse rollene når man tenker på hvor man kan implementere eller erstatte deler av

applikasjonen med diskrete AI-komponenter.

Generator

Generatorer er ansvarlige for å produsere nye data eller innhold basert på lærte

mønstre eller input-prompts. AI-verdenen har mange forskjellige typer generatorer,

men i konteksten av språkmodellene som presenteres i denne boken, kan generatorer

skape menneskelignende tekst, fullføre uferdige setninger eller generere svar på

brukerforespørsler. De spiller en avgjørende rolle i oppgaver som innholdsproduksjon,

dialoggenerering og dataforsterkning.

Innhenter

Innhentere brukes til å søke og hente relevant informasjon fra store datasett eller

kunnskapsbaser. De benytter teknikker som semantisk søk, nøkkelordmatchning eller

vektorlikhet for å finne de mest relevante datapunktene basert på en gitt forespørsel

eller kontekst. Innhentere er essensielle for oppgaver som krever rask tilgang til spesifikk

informasjon, som spørsmålsbesvarelse, faktasjekking eller innholdsanbefaling.

Introduksjon 33

Rangerer

Rangerere er ansvarlige for å ordne eller prioritere et sett med elementer basert på

bestemte kriterier eller relevanspoeng. De tildeler vekter eller poeng til hvert element

og sorterer dem deretter. Rangerere brukes ofte i søkemotorer, anbefalingssystemer eller

enhver applikasjon hvor det er viktig å presentere de mest relevante resultatene for

brukerne.

Klassifikator

Klassifikatorer brukes til å kategorisere eller merke datapunkter basert på

forhåndsdefinerte klasser eller kategorier. De lærer fra merket treningsdata og

forutsier deretter klassen til nye, usette tilfeller. Klassifikatorer er grunnleggende for

oppgaver som stemningsanalyse, spam-deteksjon eller bildegjenkjenning, hvor målet

er å tilordne en spesifikk kategori til hver input.

Verktøy og agenter

I tillegg til disse kjernefunksjonene inkorporerer sammensatte AI-systemer ofte verktøy

og agenter for å forbedre sin funksjonalitet og tilpasningsevne:

• Verktøy: Verktøy er diskrete programvarekomponenter eller API-er som

utfører spesifikke handlinger eller beregninger. De kan påkalles av andre

moduler, som generatorer eller innhentere, for å utføre deloppgaver eller

samle tilleggsinformasjon. Eksempler på verktøy inkluderer nettsøkemotorer,

kalkulatorer eller datavisualiseringsbiblioteker.

• Agenter:Agenter er autonome enheter som kan oppfatte sitt miljø, ta beslutninger

og utføre handlinger for å oppnå spesifikke mål. De er ofte avhengige av en

kombinasjon av forskjellige AI-teknikker, som planlegging, resonnering og læring,

for å operere effektivt under dynamiske eller usikre forhold. Agenter kan brukes

til å modellere kompleks oppførsel eller koordinere handlingene til flere moduler

innen et sammensatt AI-system.

Introduksjon 34

I et rent sammensatt AI-system blir interaksjonen mellom disse komponentene

orkestrert gjennom veldefinerte grensesnitt og kommunikasjonsprotokoller. Data flyter

mellom moduler, der outputen fra én komponent tjener som input for en annen. Denne

modulære arkitekturen muliggjør fleksibilitet, skalerbarhet og vedlikeholdbarhet,

ettersom individuelle komponenter kan oppdateres, erstattes eller utvides uten å

påvirke hele systemet.

Ved å utnytte kraften i disse komponentene og deres interaksjoner, kan sammensatte

AI-systemer takle komplekse, virkelige problemer som krever en kombinasjon

av forskjellige AI-kapabiliteter. Når vi utforsker tilnærmingene og mønstrene for

integrering av AI i applikasjonsutvikling, husk at de samme prinsippene og teknikkene

som brukes i sammensatte AI-systemer kan anvendes for å skape intelligente, adaptive

og brukersentrerte applikasjoner.

I de følgende kapitlene i Del 1 vil vi dykke dypere inn i de grunnleggende tilnærmingene

og teknikkene for integrering av AI-komponenter i din applikasjonsutviklingsprosess.

Fra prompt-teknikk og innhentingsforsterket generering til selvhelbredende data og

intelligent arbeidsflytorkestrering, vil vi dekke et bredt spekter av mønstre og beste

praksis for å hjelpe deg med å bygge banebrytende AI-drevne applikasjoner.

Del 1: Grunnleggende
tilnærminger og teknikker

Denne delen av boken presenterer forskjellige måter å integrere bruken av AI i

applikasjonene dine. Kapitlene dekker en rekke beslektede tilnærminger og teknikker,

fra mer overordnede konsepter som Narrow The Path og Retrieval Augmented

Generation, helt ned til ideer for programmering av ditt eget abstraksjonslag på toppen

av LLM chatteferdigstillings-APIer.

Målet med denne delen av boken er å hjelpe deg med å forstå hvilke typer atferd du kan

implementere med AI, før vi går for dypt inn i spesifikke implementeringsmønstre som

er fokuset i Del 2.

Tilnærmingene i Del 1 er basert på ideer jeg har brukt i min kode, klassiske mønstre

for enterpriseapplikasjonsarkitektur og integrasjon, samt metaforer jeg har brukt

når jeg har forklart AI-mulighetene til andre mennesker, inkludert ikke-tekniske

forretningsinteressenter.

Innsnevre stien

“Innsnevre stien” handler om å fokusere KI-en på den aktuelle oppgaven. Jeg bruker det

som et mantra når jeg blir frustrert over at KI-en oppfører seg “dum” eller på uventede

måter. Mantraet minner meg om at feilen sannsynligvis er min egen, og at jeg antagelig

burde innsnevre stien enda mer.

Behovet for å innsnevre stien oppstår fra den enorme mengden kunnskap som finnes

i store språkmodeller, spesielt verdensklassemodeller som de fra OpenAI og Anthropic

som bokstavelig talt har billioner av parametere.

Innsnevre stien 37

Å ha tilgang til et så bredt kunnskapsspekter er utvilsomt kraftfullt og produserer

emergent atferd som sinnsteori og evnen til å resonnere på menneskelige måter.

Denne banebrytende informasjonsmengden skaper imidlertid utfordringer når det

gjelder å generere presise og nøyaktige svar på spesifikke prompts, spesielt hvis disse

promptene er ment å utvise deterministisk atferd som kan integreres med “normal”

programvareutvikling og algoritmer.

Flere faktorer fører til utfordringene.

Informasjonsoverbelastning: Store språkmodeller er trent på massive mengder data

som spenner over ulike domener, kilder og tidsperioder. Denne omfattende kunnskapen

gjør dem i stand til å engasjere seg i diverse emner og generere svar basert på en bred

forståelse av verden. Når modellen står overfor en spesifikk prompt, kan den imidlertid

slite med å filtrere ut irrelevant, motstridende eller utdatert/foreldet informasjon, noe

som fører til svar som mangler fokus eller nøyaktighet. Avhengig av hva du prøver

å gjøre, kan den enorme mengden motstridende informasjon som er tilgjengelig for

modellen lett overvelde dens evne til å gi svaret eller atferden du søker.

Kontekstuell tvetydighet: Gitt det enorme latente rommet av kunnskap, kan store

språkmodeller støte på tvetydighet når de prøver å forstå konteksten i prompten din.

Uten riktig innsnevring eller veiledning kan modellen generere svar som er tangentielt

relaterte, men ikke direkte relevante for dine intensjoner. Denne typen feil fører til svar

som er utenfor tema, inkonsistente eller ikke møter dine uttalte behov. I dette tilfellet

refererer innsnevring av stien til kontekst disambiguering, som sikrer at konteksten

du gir får modellen til å fokusere kun på den mest relevante informasjonen i sin

grunnleggende kunnskap.

Merk: Når du begynner med “prompt-konstruksjon” er det mye mer

sannsynlig at du ber modellen gjøre ting uten å forklare det ønskede

resultatet ordentlig; det krever øvelse å ikke være tvetydig!

Temporære inkonsistenser: Siden språkmodeller er trent på data som ble opprettet

Innsnevre stien 38

på forskjellige tidspunkter, kan de besitte kunnskap som er utdatert, erstattet eller ikke

lenger nøyaktig. For eksempel kan informasjon om aktuelle hendelser, vitenskapelige

oppdagelser eller teknologiske fremskritt ha utviklet seg siden modellens treningsdata

ble samlet inn. Uten å innsnevre stien for å prioritere nyere og mer pålitelige kilder,

kan modellen generere svar basert på utdatert eller feil informasjon, noe som fører til

unøyaktigheter og inkonsistenser i utdataene.

Domenespesifikke nyanser: Forskjellige domener og felt har sin egen spesifikke

terminologi, konvensjoner og kunnskapsbaser. Tenk på praktisk talt hvilken som helst

TLA (trebokstavsforkortelse) og du vil innse at de fleste av dem har mer enn én

betydning. For eksempel kanMSK referere til Amazon’s Managed Streaming for Apache

Kafka, Memorial Sloan Kettering Cancer Center, eller det menneskelige muskel- og

skjelettsystemet.

Når en prompt krever ekspertise innen et bestemt domene, kan en stor språkmodells

generiske kunnskap være utilstrekkelig for å gi nøyaktige og nyanserte svar. Å

innsnevre stien ved å fokusere på domenespesifikk informasjon, enten gjennom

prompt-konstruksjon eller gjenfinningsforsterket generering, lar modellen generere

svar som er mer på linje med ditt spesifikke domenes krav og forventninger.

Latent rom: Ubegripelig stort

Når jeg nevner det “latente rommet” i en språkmodell, refererer jeg til det enorme,

flerdimensjonale landskapet av kunnskap og informasjon som modellen har lært under

treningsprosessen. Det er som et skjult rike inni modellens nevrale nettverk, hvor alle

mønstre, assosiasjoner og representasjoner av språk er lagret.

Forestill deg at du utforsker et stort, ukartlagt territorium fylt med utallige

sammenkoblede noder. Hver node representerer en informasjonsbit, et konsept

eller en relasjon som modellen har lært. Når du navigerer gjennom dette rommet, vil du

oppdage at noen noder er nærmere hverandre, noe som indikerer en sterk forbindelse

Innsnevre stien 39

eller likhet, mens andre er lengre fra hverandre, noe som antyder en svakere eller mer

fjern relasjon.

Utfordringen med latent rom er at det er utrolig komplekst og høydimensjonalt. Tenk

på det som like enormt som vårt fysiske univers, med sine galaksehoper og enorme,

ufattelige avstander med tomt rom mellom dem.

Fordi det inneholder tusenvis av dimensjoner, er det latente rommet ikke direkte

observerbart eller tolkbart for mennesker. Det er en abstrakt representasjon som

modellen bruker internt for å behandle og generere språk. Når du gir modellen en

innledende prompt, kartlegger den i hovedsak denne prompten til en bestemt plassering

i det latente rommet. Modellen bruker deretter den omkringliggende informasjonen og

forbindelsene i dette rommet for å generere et svar.

Saken er at modellen har lært en enorm mengde informasjon fra treningsdataene sine,

og ikke alt er relevant eller nøyaktig for en gitt oppgave. Det er derfor innsnevring av

stien blir så viktig. Ved å gi klare instruksjoner, eksempler og kontekst i dine prompts,

leder du i hovedsak modellen til å fokusere på spesifikke regioner innenfor det latente

rommet som er mest relevante for ønsket resultat.

En annen måte å tenke på det er som å bruke en spotlight i et helt mørkt museum.

Hvis du noen gang har besøkt Louvre eller Metropolitan Museum of Art, så er det den

type skala jeg snakker om. Det latente rommet er museet, fylt med utallige objekter

og detaljer. Din prompt er spotlighten som lyser opp spesifikke områder og trekker

modellens oppmerksomhet mot den viktigste informasjonen. Uten denne veiledningen

kan modellen vandre målløst gjennom det latente rommet og plukke opp irrelevant eller

motstridende informasjon underveis.

Når du jobber med språkmodeller og utformer dine prompts, husk konseptet med latent

rom. Målet ditt er å navigere effektivt i dette enorme kunnskapslandskapet, og styre

modellen mot den mest relevante og nøyaktige informasjonen for din oppgave. Ved å

innsnevre stien og gi klar veiledning kan du låse opp det fulle potensialet i modellens

latente rom og generere høykvalitets, sammenhengende svar.

Innsnevre stien 40

Mens de tidligere beskrivelsene av språkmodeller og det latente rommet de navigerer i

kan virke litt magisk eller abstrakt, er det viktig å forstå at prompts ikke er trylleformler

eller besvergelser. Måten språkmodeller fungerer på er forankret i prinsippene fra lineær

algebra og sannsynlighetsteori.

I kjernen er språkmodeller probabilistiske modeller av tekst, på samme måte som en

normalfordelingskurve er en statistisk modell av data. De trenes gjennom en prosess kalt

autoregressiv modellering, hvor modellen lærer å forutsi sannsynligheten for det neste

ordet i en sekvens basert på ordene som kommer før det. Under trening starter modellen

med tilfeldige vekter og justerer dem gradvis for å tilordne høyere sannsynligheter til

tekst som ligner på virkelige eksempler den ble trent på.

Imidlertid gir det ikke den beste intuisjonen å tenke på språkmodeller som enkle

statistiske modeller, som lineær regresjon. En mer passende analogi er å tenke på dem

som probabilistiske programmer, som er modeller som tillater manipulering av tilfeldige

variabler og kan representere komplekse statistiske relasjoner.

Probabilistiske programmer kan representeres av grafiske modeller, som gir en visuell

måte å forstå avhengighetene og relasjonene mellom variabler i modellen. Dette

perspektivet kan gi verdifull innsikt i hvordan komplekse tekstgenereringsmodeller som

GPT-4 og Claude fungerer.

I artikkelen “Language Model Cascades” av Dohan et al., går forfatterne i dybden på

hvordan probabilistiske programmer kan anvendes på språkmodeller. De viser hvordan

dette rammeverket kan brukes til å forstå oppførselen til disse modellene og guide

utviklingen av mer effektive promptingstrategier.

En viktig innsikt fra dette probabilistiske perspektivet er at språkmodellen i hovedsak

skaper en portal til et alternativt univers hvor de ønskede dokumentene eksisterer.

Modellen tilordner vekter til alle mulige dokumenter basert på deres sannsynlighet, og

innsnevrer effektivt rommet av muligheter for å fokusere på de mest relevante.

Dette bringer oss tilbake til hovedtemaet om “innsnevring av stien.” Hovedmålet med

prompting er å betinge den probabilistiskemodellen på enmåte som fokuserermassen av

Innsnevre stien 41

dens prediksjoner, og spisser seg inn mot den spesifikke informasjonen eller oppførselen

vi ønsker å fremkalle. Ved å gi nøye utformede prompts kan vi guide modellen til å

navigere det latente rommet mer effektivt og generere resultater som er mer relevante

og sammenhengende.

Det er imidlertid viktig å huske at språkmodellen til syvende og sist er begrenset av

informasjonen den ble trent på. Mens den kan generere tekst som ligner på eksisterende

dokumenter eller kombinere ideer på nye måter, kan den ikke trylle fram helt ny

informasjon fra intet. For eksempel kan vi ikke forvente at modellen skal gi en kur mot

kreft hvis en slik kur ikke er oppdaget og dokumentert i treningsdataene.

I stedet ligger modellens styrke i dens evne til å finne og syntetisere informasjon

som ligner det vi prompter den med. Ved å forstå den probabilistiske naturen til disse

modellene og hvordan prompts kan brukes til å betinge deres output, kan vi mer effektivt

utnytte deres evner til å generere verdifull innsikt og innhold.

Vurder promptene nedenfor. I den første kunne “Mercury” alene henvise til planeten,

grunnstoffet, eller den romerske guden, men det mest sannsynlige er planeten. GPT-4

gir faktisk et langt svar som begynner med Merkur er den minste og innerste planeten

i solsystemet…. Den andre prompten henviser spesifikt til grunnstoffet. Den tredje

henviser til den romerske mytologiske skikkelsen, kjent for sin hurtighet og rolle som

guddommelig budbringer.

Innsnevre stien 42

1 # Prompt 1

2 Tell me about: Mercury

3

4 # Prompt 2

5 Tell me about: Mercury element

6

7 # Prompt 3

8 Tell me about: Mercury messenger of the gods

Ved å legge til bare noen få ekstra ord, har vi fullstendig endret hvordan KI-en reagerer.

Som du vil lære senere i boken, er fancy prompt-konstruksjonsteknikker som n-shot

prompting, strukturert inndata/utdata, og Tankerekke bare smarte måter å betinge

modellens output på.

Så til syvende og sist handler kunsten å konstruere prompts om å forstå hvordan man

navigerer det enorme probabilistiske landskapet av språkmodellens kunnskap for å

innsnevre stien til den spesifikke informasjonen eller atferden vi søker.

For lesere med solid forståelse av avansert matematikk, kan det definitivt hjelpe å

forankre forståelsen av disse modellene i prinsippene for sannsynlighetsteori og lineær

algebra! For resten av dere som ønsker å utvikle effektive strategier for å fremkalle

ønskede resultater, la oss holde oss til mer intuitive tilnærminger.

Hvordan Stien Blir “Innsnevret”

For å håndtere disse utfordringene med for mye kunnskap, bruker vi teknikker

som hjelper til med å guide språkmodellens genereringsprosess og fokusere dens

oppmerksomhet på den mest relevante og nøyaktige informasjonen.

Her er de viktigste teknikkene, i anbefalt rekkefølge, det vil si, du bør prøve Prompt-

konstruksjon først, deretter RAG, og til slutt, hvis du må, finjustering.

Prompt-konstruksjon Den mest grunnleggende tilnærmingen er å utforme prompts

som inkluderer spesifikke instruksjoner, begrensninger eller eksempler for å guide

Innsnevre stien 43

modellens responsgenerering. Dette kapittelet dekker grunnleggende Prompt-

konstruksjon i neste del, og vi dekker mange spesifikke prompt-konstruksjonsmønstre

i Del 2 av boken. Disse mønstrene inkluderer Prompt-destillering, en teknikk som

fokuserer på å raffinere og optimalisere prompts for å trekke ut det KI-en anser som

den mest relevante og konsise informasjonen.

Kontekstforsterkning Dynamisk henting av relevant informasjon fra eksterne

kunnskapsbaser eller dokumenter for å gi modellen fokusert kontekst på tidspunktet

den blir promptet. Populære kontekstforsterkingsteknikker inkluderer Gjenfinnings-

forsterket generering (RAG) Såkalte “online-modeller” som de som tilbys av Perplexity

kan forsterke sin kontekst med sanntids internett-søkeresultater.

Til tross for deres kraft, er ikke LLM-er trent på dine unike datasett,

som kan være private eller spesifikke for problemet du prøver å løse.

Kontekstforsterkingsteknikker lar deg gi LLM-er tilgang til data bak API-

er, i SQL-databaser, eller fanget i PDF-er og presentasjoner.

Finjustering eller Domenetilpasning Trening av modellen på domenespesifikke

datasett for å spesialisere dens kunnskap og genereringsevner for en bestemt oppgave

eller felt.

Å Skru Ned Temperaturen

Temperatur er en hyperparameter som brukes i transformer-baserte språkmodeller for å

kontrollere tilfeldigheten og kreativiteten i den genererte teksten. Det er en verdi mellom

0 og 1, der lavere verdier gjør outputen mer fokusert og deterministisk, mens høyere

verdier gjør den mer variert og uforutsigbar.

Når temperaturen er satt til 1, genererer språkmodellen tekst basert på den fulle

sannsynlighetsfordelingen for neste token, noe som tillater mer kreative og varierte

responser. Dette kan imidlertid også føre til at modellen genererer tekst som er mindre

relevant eller sammenhengende.

https://perplexity.ai

Innsnevre stien 44

På den annen side, når temperaturen er satt til 0, velger språkmodellen alltid tokenet

med høyest sannsynlighet, og “innsnevrer effektivt sin sti.” Nesten alle mine KI-

komponenter bruker en temperatur satt på eller nær 0, siden det resulterer i mer

fokuserte og forutsigbare responser. Det er absolutt nyttig når du vil at modellen skal

følge instruksjoner, være oppmerksom på funksjoner den har fått, eller rett og slett

trenger mer nøyaktige og relevante responser enn det du får.

For eksempel, hvis du bygger en chatbot som må gi faktabasert informasjon, vil du

kanskje sette temperaturen til en lavere verdi for å sikre at responsene er mer presise

og relevante. Omvendt, hvis du bygger en kreativ skriveassistent, vil du kanskje sette

temperaturen til en høyere verdi for å oppmuntre til mer varierte og fantasifulle outputs.

Hyperparametere: Inferensens Knapper og Brytere

Når du jobber med språkmodeller, vil du ofte støte på begrepet “hyperparametere”. I

sammenhengmed inferens (det vil si, når du brukermodellen til å generere responser), er

hyperparametere som knappene og bryterne du kan justere for å kontrollere modellens

oppførsel og output.

Tenk på det som å justere innstillingene på en kompleks maskin. Akkurat som du kan vri

på en bryter for å kontrollere temperaturen eller flippe en bryter for å endre driftsmodus,

lar hyperparametere deg finjustere måten språkmodellen prosesserer og genererer tekst

på.

Noen vanlige hyperparametere du vil møte under inferens inkluderer:

• Temperatur: Som nettopp nevnt kontrollerer denne parameteren graden av

tilfeldighet og kreativitet i den genererte teksten. En høyere temperatur fører

til mer varierte og uforutsigbare resultater, mens en lavere temperatur gir mer

fokuserte og deterministiske svar.

• Top-p (nucleus) sampling: Denne parameteren kontrollerer utvelgelsen av det

minste settet med tokens hvis kumulative sannsynlighet overstiger en bestemt

Innsnevre stien 45

terskel (p). Den tillater mer varierte resultater samtidig som den opprettholder

sammenheng.

• Top-k sampling: Denne teknikken velger de k mest sannsynlige neste tokens og

omfordeler sannsynlighetsmassen blant dem. Den kan bidra til å hindre modellen

i å generere tokens med lav sannsynlighet eller irrelevante tokens.

• Frekvens- og tilstedeværelsesstraff : Disse parameterne straffer modellen for å

gjenta de samme ordene eller frasene for ofte (frekvensstraff) eller for å generere

ord som ikke er til stede i inndataledetråden (tilstedeværelsesstraff). Ved å justere

disse verdiene kan du oppmuntre modellen til å produsere mer varierte og

relevante resultater.

• Maksimal lengde: Denne hyperparameteren setter en øvre grense for antall

tokens (ord eller delord) modellen kan generere i ett enkelt svar. Den bidrar til

å kontrollere ordrikdommen og konsisjonen i den genererte teksten.

Når du eksperimenterer med forskjellige hyperparameterinnstillinger, vil du oppdage at

selv små justeringer kan ha betydelig innvirkning på modellens output. Det er som å

finjustere en oppskrift – litt mer salt eller litt lengre koketid kan utgjøre hele forskjellen

i den ferdige retten.

Nøkkelen er å forstå hvordan hver hyperparameter påvirker modellens oppførsel og å

finne den rette balansen for din spesifikke oppgave. Ikke vær redd for å eksperimentere

med forskjellige innstillinger og se hvordan de påvirker den genererte teksten. Over tid

vil du utvikle en intuisjon for hvilke hyperparametere du bør justere og hvordan du kan

oppnå de ønskede resultatene.

Ved å kombinere bruken av disse parameterne med promptkonstruksjon,

gjenfinningsforsterket generering og finjustering, kan du effektivt innsnevre veien og

guide språkmodellen til å generere mer nøyaktige, relevante og verdifulle svar for ditt

spesifikke brukstilfelle.

Innsnevre stien 46

Råmodeller versus instruksjonsjusterte

modeller

Råmodeller er de uraffinerte, utrente versjonene av LLM-er. Se for deg dem som et

blankt lerret, som ennå ikke er påvirket av spesifikk trening for å forstå eller følge

instruksjoner. De er bygget på de enorme datamengdene de opprinnelig ble trent på,

og er i stand til å generere et bredt spekter av output. Men uten ytterligere lag av

instruksjonsbasert finjustering kan svarene deres være uforutsigbare og kreve mer

nyanserte, nøye utformede prompts for å lede dem mot ønsket output. Å jobbe med

råmodeller er som å lokke kommunikasjon ut av en idiot savant som har enorm

kunnskap, men mangler enhver intuisjon om hva du spør etter med mindre du er

ekstremt presis i instruksjonene dine. De føles ofte som en papegøye, i den forstand

at i den grad du får dem til å si noe forståelig, er det som oftest bare en gjentakelse av

noe de hørte deg si.

Instruksjonsjusterte modeller har på den annen side gjennomgått runder med trening

spesielt designet for å forstå og følge instruksjoner. GPT-4, Claude 3 og mange andre av

de mest populære LLM-modellene er alle kraftig instruksjonsjustert. Denne treningen

innebærer å mate modellen med eksempler på instruksjoner sammen med de ønskede

resultatene, og effektivt lære modellen hvordan den skal tolke og utføre et bredt spekter

av kommandoer. Som et resultat kan instruksjonsmodeller lettere forstå intensjonen bak

et prompt og generere svar som er tett tilpasset brukerens forventninger. Dette gjør dem

mer brukervennlige og enklere å jobbe med, spesielt for de som kanskje ikke har tid eller

ekspertise til å drive omfattende promptkonstruksjon.

Råmodeller: Det ufiltrerte lerretet

Råmodeller, som Llama 2-70B eller Yi-34B, tilbyr mer ufiltrert tilgang til modellens

kapasiteter enn det du kanskje er vant til hvis du har eksperimentert med populære LLM-

er somGPT-4. Dissemodellene er ikke forhåndsjustert til å følge spesifikke instruksjoner,

Innsnevre stien 47

og gir deg et blankt lerret for å direkte manipulere modellens output gjennom nøyaktig

promptkonstruksjon. Denne tilnærmingen krever en dyp forståelse av hvordan man

lager prompts som leder AI-en i ønsket retning uten å eksplisitt instruere den. Det

er som å ha direkte tilgang til de “rå” lagene av den underliggende AI-en, uten noen

mellomliggende lag som tolker eller styrer modellens svar (derav navnet).

Figur 3. Testing av en råmodell ved bruk av en del av Abbott og Costellos klassiske ’Who’s on First’-
sketsj

Utfordringen med råmodeller ligger i deres tendens til å falle inn i repetitive mønstre

eller produsere tilfeldig output. Men med nøyaktig prompt-engineering og justering

Innsnevre stien 48

av parametere som repetisjonsstraffer, kan råmodeller overtales til å generere unikt og

kreativt innhold. Denne prosessen er ikke uten kompromisser; mens råmodeller tilbyr

uovertruffen fleksibilitet for innovasjon, krever de et høyere nivå av ekspertise.

Figur 4. For sammenligningsformål, her er den samme tvetydige prompten matet til GPT-4

Instruksjonstunede modeller: Den guidede opplevelsen

Instruksjonstunede modeller er designet for å forstå og følge spesifikke instruksjoner,

noe som gjør dem mer brukervennlige og tilgjengelige for et bredere spekter av

applikasjoner. De forstår mekanikken i en samtale og at de skal slutte å generere når

det er slutten på deres tur til å snakke. For mange utviklere, spesielt de som jobber med

enkle applikasjoner, tilbyr instruksjonstunede modeller en praktisk og effektiv løsning.

Prosessen med instruksjonstilpasning innebærer å trene modellen på et stort korpus

av menneskegenererte instruksjonsprompter og responser. Et bemerkelsesverdig

eksempel er det åpne datasettet databricks-dolly-15k, som inneholder over 15 000

prompt/respons-par laget av Databricks-ansatte som du kan undersøke selv. Datasettet

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Innsnevre stien 49

dekker åtte forskjellige instruksjonskategorier, inkludert kreativ skriving, lukket og

åpen spørsmålsbesvarelse, oppsummering, informasjonsuthenting, klassifisering, og

idémyldring.

Under datageneringsprosessen fikk bidragsytere retningslinjer for hvordan de skulle

lage prompter og responser for hver kategori. For eksempel, for kreative skriveoppgaver

ble de instruert til å gi spesifikke begrensninger, instruksjoner eller krav for å guide

modellens output. For lukket spørsmålsbesvarelse ble de bedt om å skrive spørsmål som

krever faktisk korrekte svar basert på en gitt Wikipedia-passasje.

Det resulterende datasettet fungerer som en verdifull ressurs for finjustering av store

språkmodeller for å utvise de interaktive og instruksjonsfølgende egenskapene til

systemer som ChatGPT. Ved å trene på et mangfoldig utvalg av menneskegenererte

instruksjoner og responser, lærer modellen å forstå og følge spesifikke direktiver, noe

som gjør den mer egnet til å håndtere et bredt spekter av oppgaver.

I tillegg til direkte finjustering kan instruksjonspromptene i datasett som databricks-

dolly-15k også brukes til syntetisk datagenerering. Ved å sende bidragsytergenererte

prompter som få-skudd eksempler til en stor åpen språkmodell, kan utviklere generere

et mye større korpus av instruksjoner i hver kategori. Denne tilnærmingen, skissert

i Self-Instruct-artikkelen, muliggjør opprettelsen av mer robuste instruksjonsfølgende

modeller.

Videre kan instruksjonene og responsene i disse datasettene forsterkes gjennom

teknikker som parafrasering. Ved å omformulere hver prompt eller korte respons og

knytte den resulterende teksten til det respektive referanseeksempelet, kan utviklere

introdusere en form for regularisering som forbedrer modellens evne til å følge

instruksjoner.

Brukervennligheten som tilbys av instruksjonstilpassede modeller kommer på

bekostning av noe fleksibilitet. Disse modellene er ofte kraftig sensurert, noe som betyr

at de ikke alltid kan gi den kreative friheten som kreves for visse oppgaver. Deres output

er sterkt påvirket av skjevhetene og begrensningene som ligger i deres finjusteringsdata.

Innsnevre stien 50

Til tross for disse begrensningene har instruksjonstilpassede modeller blitt stadig mer

populære på grunn av deres brukervennlige natur og evne til å håndtere et bredt spekter

av oppgaver med minimal promptkonstruksjon. Etter hvert som flere høykvalitets

instruksjonsdatasett blir tilgjengelige, kan vi forvente å se ytterligere forbedringer i

ytelsen og allsidigheten til disse modellene.

Velge riktig type modell for ditt prosjekt

Valget mellom grunnmodeller (råmodeller) og instruksjonstilpassede modeller avhenger

til syvende og sist av de spesifikke kravene til prosjektet ditt. For oppgaver som krever

en høy grad av kreativitet og originalitet, tilbyr grunnmodeller et kraftig verktøy for

innovasjon. Disse modellene lar utviklere utforske det fulle potensialet til LLM-er, og

skyver grensene for hva som kan oppnås gjennom AI-drevne applikasjoner, men de

krever en mer praktisk tilnærming og vilje til å eksperimentere. Temperatur og andre

innstillinger har en mye større effekt i grunnmodeller enn i deres instruksjonstilpassede

motstykker.

Alt du inkluderer i din prompt er det grunnmodeller vil prøve å gjenta. Så

hvis for eksempel din prompt er et chat-transskript, vil råmodellen prøve å

fortsette chatten. Avhengig av grensen for maksimalt antall tokens, vil den

ikke bare generere den neste meldingen i chatten, den kan ende opp med å

ha en hel samtale med seg selv!

Innsnevre stien 51

Figur 5. Mixtral 8x7B (grunnmodell) Eksempel på omskriving av setninger med få-skudds fullføring

Mens jeg forberedte eksempelet på setningsomskriving ovenfor av Reddit-brukeren

phree_radical, klarte jeg bare å få brukbare resultater etter mye eksperimentering med

parameterinnstillinger, og endte til slutt opp med: Temperatur 0.08, Top P: 0.2, Top K: 1,

og Gjentagelsesstraff: 1.26.

https://www.reddit.com/user/phree_radical/

Innsnevre stien 52

Å prøve å bruke denne tilnærmingen med en grunnmodell i produksjon ville være

utfordrende på grunn av den kraftige effekten av max_tokens-parameteren. Sett den

for kort og outputen blir avkortet. Sett den lengre enn det modellen trenger for ønsket

output, og den vil fortsette å hallusinere ytterligere eksempler.

Konklusjonen er at med mindre du virkelig trenger full kontroll og fravær av sensur,

kan instruksjonstilpassede modeller betydelig forenkle utviklingsprosessen din. For å

understreke dette poenget, her er Mixtral 8x7Bs respons på samme prompt, men denne

gangen i dens instruksjonstilpassede versjon:

Jeg beklager å måtte informere deg om at iskremen ikke møter mine

forventninger, da den mangler den fyldige, kremete konsistensen og den

deilige smaken jeg vanligvis forbinder med en dessert av høy kvalitet. Jeg

hadde håpet på en mer tilfredsstillende og hyggelig opplevelse.

Det er verdt å merke seg at jeg kunne la maksimum tokens-innstillingen være på 500,

og modellen stoppet pålitelig ved slutten av ønsket output uten å hallusinere ytterligere

eksempler.

Prompt-utforming

Når du begynner å anvende AI i prosjektene dine, vil du raskt oppdage at en av de

viktigste ferdighetene du må mestre er kunsten å utforme prompts. Men hva er egentlig

prompt-utforming, og hvorfor er det så viktig?

I kjernen er prompt-utforming prosessen med å designe og utarbeide inndata-prompts

som du gir til en språkmodell for å styre outputen. Det handler om å forstå hvordan

man kommuniserer effektivt med AI-en, ved å bruke en kombinasjon av instruksjoner,

eksempler og kontekst for å lede modellen mot å generere ønsket respons.

Tenk på det som å ha en samtale med en høyst intelligent, men noe bokstavelig venn.

For å få mest mulig ut av interaksjonen må du være klar, spesifikk og gi nok kontekst

Innsnevre stien 53

til å sikre at vennen din forstår nøyaktig hva du ber om. Det er her prompt-utforming

kommer inn, og selv om det kan virke enkelt i starten, tro meg når jeg sier at det krever

mye øvelse å mestre.

Byggesteinene for Effektive Prompts

For å begynne å utforme effektive prompts, må du først forstå nøkkelkomponentene som

utgjør en velutformet inndata. Her er noen av de essensielle byggesteinene:

1. Instruksjoner: Klare og konsise instruksjoner som forteller modellen hva du vil at

den skal gjøre. Dette kan være alt fra “Oppsummer følgende artikkel” til “Generer

et dikt om en solnedgang” til “gjør denne prosjektendringen om til et JSON-

objekt”.

2. Kontekst: Relevant informasjon som hjelper modellen å forstå bakgrunnen og

omfanget av oppgaven. Dette kan inkludere detaljer om tiltenkt publikum, ønsket

tone og stil, eller spesifikke begrensninger eller krav til outputen, som for eksempel

et JSON-skjema som må følges.

3. Eksempler: Konkrete eksempler som demonstrerer typen output du ser etter.

Ved å gi noen velvalgte eksempler kan du hjelpe modellen å lære mønstrene og

karakteristikkene til den ønskede responsen.

4. Inndata-formatering: Linjeskift og markdown-formatering gir struktur

til prompten vår. Å dele prompten inn i avsnitt lar oss gruppere relaterte

instruksjoner slik at det blir lettere for både mennesker og AI å forstå. Kulepunkter

og nummererte lister lar oss definere lister og rekkefølge av elementer. Fet skrift

og kursiv lar oss markere vektlegging.

5. Output-formatering: Spesifikke instruksjoner om hvordan outputen skal

struktureres og formateres. Dette kan inkludere direktiver om ønsket lengde, bruk

av overskrifter eller kulepunkter, markdown-formatering, eller andre spesifikke

output-maler eller konvensjoner som bør følges.

Innsnevre stien 54

Ved å kombinere disse byggesteinene på forskjellige måter, kan du lage prompts som er

skreddersydd for dine spesifikke behov og lede modellen mot å generere høykvalitets,

relevante responser.

Kunsten og Vitenskapen bak Prompt-design

Å utforme effektive prompts er både en kunst og en vitenskap. (Det er derfor vi

kaller det et håndverk.) Det krever en dyp forståelse av språkmodellenes muligheter og

begrensninger, samt en kreativ tilnærming til å designe prompts som fremkaller ønsket

oppførsel. Kreativiteten som er involvert er det som gjør det så morsomt, i hvert fall

for meg. Det kan også gjøre det veldig frustrerende, spesielt når du søker deterministisk

oppførsel

Et viktig aspekt ved prompt-utforming er å forstå hvordan man balanserer spesifisitet og

fleksibilitet. På den ene siden ønsker du å gi nok veiledning til å styre modellen i riktig

retning. På den andre siden vil du ikke være så foreskrivende at du begrenser modellens

evne til å utnytte sin egen kreativitet og fleksibilitet til å håndtere kanttilfeller.

En annen viktig vurdering er bruken av eksempler. Velvalgte eksempler kan være utrolig

kraftfulle for å hjelpe modellen med å forstå typen output du ser etter. Det er imidlertid

viktig å bruke eksempler med omhu og sikre at de er representative for den ønskede

responsen. Et dårlig eksempel er i beste fall bare sløsing med tokens, og i verste fall

ødeleggende for ønsket output.

Prompt-utformingsteknikker og Beste Praksis

Når du dykker dypere inn i verden av prompt-utforming, vil du oppdage en rekke

teknikker og beste praksis som kan hjelpe deg med å lage mer effektive prompts. Her er

noen viktige områder å utforske:

1. Nullskudds- vs. fåskudds-læring: Å forstå nårman skal bruke nullskudds-læring

(ingen eksempler) versus ettskudds- eller fåskudds-læring (gi et lite antall

Innsnevre stien 55

eksempler) kan hjelpe deg med å lage prompts som er mer effektive og

virkningsfulle.

2. Iterativ forbedring: Prosessen med å iterativt forbedre prompts basert på

modellens output kan hjelpe deg å finne frem til den optimale prompt-

utformingen. Feedback Loop er en kraftfull tilnærming som utnytter

språkmodellens egen output for å progressivt forbedre kvaliteten og relevansen

til det genererte innholdet.

3. Prompt-kjeding: Å kombinere flere prompts i en sekvens kan hjelpe deg å bryte

ned komplekse oppgaver i mindre, mer håndterbare trinn. Prompt Chaining

innebærer å dele opp en kompleks oppgave eller samtale i en serie mindre,

sammenkoblede prompts. Ved å kjede prompts sammen kan du guide AI-en

gjennom en flertrinns prosess, mens du opprettholder kontekst og sammenheng

gjennom hele interaksjonen.

4. Prompt-justering: Skreddersydde prompts for spesifikke domener eller oppgaver

kan hjelpe deg å skape mer spesialiserte og effektive prompts. Prompt Template

hjelper deg å lage fleksible, gjenbrukbare og vedlikeholdbare prompt-strukturer

som er lettere å tilpasse til den aktuelle oppgaven.

Å lære nårman skal bruke zero-shot, one-shot eller few-shot learning er en spesielt viktig

del av å mestre prompt engineering. Hver tilnærming har sine styrker og svakheter, og

forståelse for når man skal bruke hver enkelt kan hjelpe deg å skape mer effektive og

målrettede prompts.

Zero-Shot Learning: Når ingen eksempler er nødvendige

Zero-shot learning refererer til språkmodellens evne til å utføre en oppgave uten

eksempler eller eksplisitt trening. Med andre ord gir du modellen en prompt som

beskriver oppgaven, og modellen genererer et svar basert utelukkende på sin

eksisterende kunnskap og forståelse av språk.

Zero-shot learning er spesielt nyttig når:

Innsnevre stien 56

1. Oppgaven er relativt enkel og ukomplisert, og modellen sannsynligvis har møtt

lignende oppgaver under forhåndstreningen.

2. Du ønsker å teste modellens iboende evner og se hvordan den responderer på en

ny oppgave uten ytterligere veiledning.

3. Du jobber med en stor og mangfoldig språkmodell som har blitt trent på et bredt

spekter av oppgaver og domener.

Zero-shot learning kan imidlertid også være uforutsigbar og vil ikke alltid produsere

de ønskede resultatene. Modellens respons kan bli påvirket av skjevheter eller

inkonsistenser i forhåndstreningsdataene, og den kan streve med mer komplekse eller

nyanserte oppgaver.

Jeg har sett zero-shot prompts som fungerer fint for 80% av testtilfellene mine og

produserer helt feil eller uforståelige resultater for de resterende 20%. Det er veldig

viktig å implementere et grundig testregime, spesielt hvis du er avhengig av mye

zero-shot prompting.

One-Shot Learning: Når ett enkelt eksempel kan gjøre en
forskjell

One-shot learning innebærer å gimodellen ett enkelt eksempel på ønsket output sammen

med oppgavebeskrivelsen. Dette eksempelet fungerer som en mal eller et mønster som

modellen kan bruke til å generere sitt eget svar.

One-shot learning kan være effektivt når:

1. Oppgaven er relativt ny eller spesifikk, og modellen kanskje ikke har møtt mange

lignende eksempler under forhåndstreningen.

Innsnevre stien 57

2. Du ønsker å gi en klar og konsis demonstrasjon av ønsket outputformat eller stil.

3. Oppgaven krever en spesifikk struktur eller konvensjon som kanskje ikke er

åpenbar fra oppgavebeskrivelsen alene.

Beskrivelser som er åpenbare for deg er ikke nødvendigvis åpenbare for AI-

en. One-shot eksempler kan hjelpe til med å klargjøre ting.

One-shot learning kan hjelpe modellen å forstå forventningene tydeligere og generere

et svar som er mer på linje med det gitte eksempelet. Det er imidlertid viktig å velge

eksempelet nøye og sikre at det er representativt for ønsket output. Når du velger

eksempelet, bør du tenke på potensielle kanttilfeller og spekteret av inputs som prompten

vil håndtere.

Figur 6. Et one-shot eksempel på ønsket JSON

1 Output one JSON object identifying a new subject mentioned during the

2 conversation transcript.

3

4 The JSON object should have three keys, all required:

5 - name: The name of the subject

6 - description: brief, with details that might be relevant to the user

7 - type: Do not use any other type than the ones listed below

8

9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

10 Person, Place, Process, Product, Project, Task, or Teammate

11

12 This is an example of well-formed output:

13

14 {

15 "name":"Dan Millman",

16 "description":"Author of book on self-discovery and living on purpose",

17 "type":"Person"

18 }

Innsnevre stien 58

Few-Shot-læring: Når flere eksempler kan forbedre
ytelsen

Few-shot-læring innebærer å gi modellen et lite antall eksempler (vanligvis mellom 2 og

10) sammen med oppgavebeskrivelsen. Disse eksemplene fungerer som tilleggskontekst

og variasjon, som hjelper modellen med å generere mer mangfoldige og nøyaktige svar.

Few-shot-læring er spesielt nyttig når:

1. Oppgaven er kompleks eller nyansert, og ett enkelt eksempel kanskje ikke er

tilstrekkelig for å fange opp alle relevante aspekter.

2. Du ønsker å gi modellen en rekke eksempler som demonstrerer ulike variasjoner

eller kanttilfeller.

3. Oppgaven krever at modellen genererer svar som er i samsvar med et bestemt

domene eller stil.

Ved å gi flere eksempler kan du hjelpe modellen med å utvikle en mer robust forståelse

av oppgaven og generere svar som er mer konsekvente og pålitelige.

Eksempel: Prompts kan være mye mer komplekse enn du
tror

Dagens språkmodeller er mye kraftigere og mer kapable til resonnering enn du kanskje

forestiller deg. Så ikke begrens deg til å tenke på prompts som bare en spesifikasjon

av inndata- og utdatapar. Du kan eksperimentere med å gi lange og komplekse

instruksjoner på måter som minner om hvordan du ville samhandlet med et menneske.

For eksempel er dette en prompt jeg brukte i Olympia da jeg prototypet vår integrasjon

med Google-tjenester, som i sin helhet sannsynligvis er et av verdens største API-er.

Mine tidligere eksperimenter viste at GPT-4 har en anstendig kunnskap om Google-

API-et, og jeg hadde verken tid eller motivasjon til å skrive et finkornet kartleggingslag

Innsnevre stien 59

ved å implementere hver funksjon jeg ønsket å gi til min AI på en-og-en basis. Hva om

jeg kunne gi AI-en tilgang til hele Google-API-et?

Jeg startet min prompt med å fortelle AI-en at den hadde direkte tilgang til Google-

API-endepunktene via HTTP, og at dens rolle var å bruke Google-apper og -tjenester på

vegne av brukeren. Deretter ga jeg retningslinjer, regler relatert til fields-parameteren,

siden den så ut til å ha mest problemer med den, og noen API-spesifikke hint (few-shot-

prompting i praksis).

Her er hele prompten, som forteller AI-en hvordan den skal bruke den tilgjengelige

invoke_google_api-funksjonen.

1 As a GPT assistant with Google integration, you have the capability

2 to freely interact with Google apps and services on behalf of the user.

3

4 Guidelines:

5 - If you're reading these instructions then the user is properly

6 authenticated, which means you can use the special `me` keyword

7 to refer to the userId of the user

8 - Minimize payload sizes by requesting partial responses using the

9 `fields` parameter

10 - When appropriate use markdown tables to output results of API calls

11 - Only human-readable data should be output to the user. For instance,

12 when hitting Gmail's user.messages.list endpoint, the returned

13 message resources contain only id and a threadId, which means you must

14 fetch from and subject line fields with follow-up requests using the

15 messages.get method.

16

17 The format of the `fields` request parameter value is loosely based on

18 XPath syntax. The following rules define formatting for the fields

19 parameter.

20

21 All of these rules use examples related to the files.get method.

22 - Use a comma-separated list to select multiple fields,

23 such as 'name, mimeType'.

24 - Use a/b to select field b that's nested within field a,

25 such as 'capabilities/canDownload'.

26 - Use a sub-selector to request a set of specific sub-fields of arrays or

27 objects by placing expressions in parentheses "()". For example,

28 'permissions(id)' returns only the permission ID for each element in the

Innsnevre stien 60

29 permissions array.

30 - To return all fields in an object, use an asterisk as a wild card in field

31 selections. For example, 'permissions/permissionDetails/*' selects all

32 available permission details fields per permission. Note that the use of

33 this wildcard can lead to negative performance impacts on the request.

34

35 API-specific hints:

36 - Searching contacts: GET https://people.googleapis.com/v1/

37 people:searchContacts?query=John%20Doe&readMask=names,emailAddresses

38 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/

39 calendar/v3/calendars/primary/events/quickAdd?

40 text=Appointment%20on%20June%203rd%20at%2010am

41 &sendNotifications=true

42

43 Here is an abbreviated version of the code that implements API access

44 so that you better understand how to use the function:

45

46 def invoke_google_api(conversation, arguments)

47 method = arguments[:method] || :get

48 body = arguments[:body]

49 GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json

50 end

51

52 # Generic Google API client for accessing any Google service

53 class GoogleAPI

54 def send_request(endpoint, method:, body: nil)

55 response = @connection.send(method) do |req|

56 req.url endpoint

57 req.body = body.to_json if body

58 end

59

60 handle_response(response)

61 end

62

63 # ...rest of class

64 end

Du lurer kanskje på om denne prompten fungerer. Det enkle svaret er ja. AI-en visste

ikke alltid hvordan den skulle kalle API-et perfekt på første forsøk. Men hvis den gjorde

en feil, ville jeg ganske enkelt mate de resulterende feilmeldingene tilbake som resultatet

Innsnevre stien 61

av kallet. Med kunnskap om sin feil kunne AI-en resonnere rundt feilen og prøve igjen.

Som oftest ville den få det riktig etter et par forsøk.

Vel å merke er de store JSON-strukturene som Google-API-et returnerer som

nyttelast mens man bruker denne prompten grovt ineffektive, så jeg anbefaler ikke

at du bruker denne tilnærmingen i produksjon. Likevel mener jeg at det faktum

at denne tilnærmingen i det hele tatt fungerte, er et vitnesbyrd om hvor kraftfull

promptkonstruksjon kan være.

Eksperimentering og Iterasjon

Til syvende og sist avhenger måten du konstruerer prompten din på av den spesifikke

oppgaven, kompleksiteten i ønsket resultat og kapabilitetene til språkmodellen du jobber

med.

Som promptingeniør er det viktig å eksperimentere med forskjellige tilnærminger og

iterere basert på resultatene. Start med nullskuddslæring og se hvordan modellen

presterer. Hvis resultatet er inkonsistent eller utilfredsstillende, prøv å gi ett eller flere

eksempler og se om ytelsen forbedres.

Husk at selv innenfor hver tilnærming er det rom for variasjon og optimalisering.

Du kan eksperimentere med forskjellige eksempler, justere formuleringen av

oppgavebeskrivelsen eller gi ytterligere kontekst for å hjelpe med å styre modellens

respons.

Over tid vil du utvikle en intuisjon for hvilken tilnærming som sannsynligvis vil fungere

best for en gitt oppgave, og du vil være i stand til å utforme prompter som er mer

effektive. Nøkkelen er å forbli nysgjerrig, eksperimentell og iterativ i din tilnærming

til promptkonstruksjon.

Gjennom denne boken skal vi dykke dypere inn i disse teknikkene og utforske

hvordan de kan anvendes i reelle scenarioer. Ved å mestre kunsten og vitenskapen bak

promptkonstruksjon vil du være godt rustet til å utnytte det fulle potensialet i AI-drevet

applikasjonsutvikling.

Innsnevre stien 62

Kunsten å være Vag

Når det gjelder å utforme effektive prompter for store språkmodeller (LLMs), er en

vanlig antakelse at mer spesifisitet og detaljerte instruksjoner fører til bedre resultater.

Imidlertid har praktisk erfaring vist at dette ikke alltid er tilfellet. Faktisk kan det å

være bevisst vag i promptene dine ofte gi bedre resultater, ved å utnytte språkmodellens

bemerkelsesverdige evne til å generalisere og trekke slutninger.

Ken, en gründer som har prosessert over 500 millioner GPT-tokens, delte verdifull

innsikt fra sin erfaring. En av de viktigste lærdommene han gjorde var at “mindre er

mer” når det gjelder prompter. I stedet for nøyaktige lister eller overdrevent detaljerte

instruksjoner, oppdaget Ken at det å la språkmodellen stole på sin grunnleggende

kunnskap ofte ga bedre resultater.

Denne innsikten snur opp ned på den tradisjonelle tankegangen rundt eksplisitt koding,

hvor alt må spesifiseres i minste detalj. Med store språkmodeller er det viktig å erkjenne

at de besitter en enorm mengde kunnskap og kan gjøre intelligente koblinger og

slutninger. Ved å være mer vag i promptene dine, gir du språkmodellen friheten til å

utnytte sin forståelse og komme opp med løsninger som du kanskje ikke eksplisitt har

spesifisert.

For eksempel, da Kens team jobbet med en prosessflyt for å klassifisere tekst som

relaterte seg til en av de 50 amerikanske delstatene eller den føderale regjeringen, innebar

deres første tilnærming å gi en fullstendig detaljert liste over stater og deres tilhørende

ID-er som en JSON-formatert matrise.

1 Here's a block of text. One field should be "locality_id", and it should

2 be the ID of one of the 50 states, or federal, using this list:

3 [{"locality: "Alabama", "locality_id": 1},

4 {"locality: "Alaska", "locality_id": 2} ...]

Tilnærmingen feilet så mye at de måtte grave dypere inn i prompten for å finne ut

hvordan de kunne forbedre den. I prosessen la de merke til at selv om LLM-en ofte fikk

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Innsnevre stien 63

ID-en feil, returnerte den konsekvent det fulle navnet på riktig delstat i et name-felt, selv

om de ikke eksplisitt hadde bedt om det.

Ved å fjerne lokalitets-ID-ene og forenkle prompten til noe sånt som “Du kjenner

åpenbart de 50 delstatene, GPT, så gi meg bare det fulle navnet på delstaten dette

gjelder, eller Federal hvis dette gjelder den amerikanske føderale regjeringen,”

oppnådde de bedre resultater. Denne erfaringen fremhever styrken i å utnytte LLM-ens

generaliseringsevner og la den trekke slutninger basert på sin eksisterende kunnskap.

Kens begrunnelse for denne spesifikke klassifiseringstilnærmingen fremfor en mer

tradisjonell programmeringsteknikk belyser tankegangen til oss som har omfavnet

potensialet i LLM-teknologi: “Dette er ikke en vanskelig oppgave – vi kunne

sannsynligvis ha brukt string/regex, men det er nok rare hjørnetilfeller til at det ville

tatt lengre tid.”

LLM-ers evne til å forbedre kvalitet og generalisering når de får mer vage prompts

er et bemerkelsesverdig kjennetegn på høyere ordens tenkning og delegering. Det

demonstrerer at LLM-er kan håndtere tvetydighet og ta intelligente beslutninger basert

på den gitte konteksten.

Det er imidlertid viktig å merke seg at å være vag ikke betyr å være uklar eller tvetydig.

Nøkkelen er å gi nok kontekst og veiledning til å styre LLM-en i riktig retning, samtidig

som den får fleksibilitet til å utnytte sin kunnskap og generaliseringsevner.

Derfor bør du vurdere følgende “mindre er mer”-tips når du utformer prompts:

1. Fokuser på ønsket resultat fremfor å spesifisere hver detalj i prosessen.

2. Gi relevant kontekst og begrensninger, men unngå overspesifisering.

3. Utnytt eksisterende kunnskap ved å referere til vanlige konsepter eller enheter.

4. Gi rom for slutninger og koblinger basert på den gitte konteksten.

Innsnevre stien 64

5. Iterer og forbedre promptene dine basert på LLM-ens svar, og finn riktig balanse

mellom spesifisitet og vaghet.

Ved å omfavne kunsten å være vag i promptkonstruksjon kan du låse opp det fulle

potensialet til LLM-er og oppnå bedre resultater. Stol på LLM-ens evne til å generalisere

og ta intelligente beslutninger, og du kan bli overrasket over kvaliteten og kreativiteten

i svarene du får. Vær oppmerksom på hvordan de forskjellige modellene reagerer

på ulike nivåer av spesifisitet i promptene dine og juster tilsvarende. Med øvelse og

erfaring vil du utvikle en god forståelse for når du skal være mer vag og når du skal gi

ytterligere veiledning, noe som gjør deg i stand til å utnytte kraften i LLM-er effektivt i

applikasjonene dine.

Hvorfor antropomorfisme dominerer
promptkonstruksjon

Antropomorfisme, tilskrivelsen av menneskelige egenskaper til ikke-menneskelige

enheter, er den dominerende tilnærmingen i promptkonstruksjon for store

språkmodeller av bevisste grunner. Det er et designvalg som gjør interaksjon

med kraftige AI-systemer mer intuitiv og tilgjengelig for et bredt spekter av brukere

(inkludert oss applikasjonsutviklere).

Å antropomorfisere LLM-er gir et rammeverk som er umiddelbart intuitivt for personer

som er helt ukjente med systemets underliggende tekniske kompleksitet. Som du vil

erfare hvis du prøver å bruke en modell som ikke er instruksjonstrent til å gjøre noe

nyttig, er det en utfordrende oppgave å konstruere en innramming der den forventede

fortsettelsen gir verdi. Det krever ganske dyp forståelse av systemets indre virkemåte,

noe som et relativt lite antall eksperter besitter.

Ved å behandle interaksjonen med en språkmodell som en samtale mellom to personer,

kan vi stole på vår medfødte forståelse av menneskelig kommunikasjon for å formidle

våre behov og forventninger. På sammemåte som tidlig Macintosh UI-design prioriterte

Innsnevre stien 65

umiddelbar intuitivitet fremfor sofistikering, lar den antropomorfiske innrammingen av

AI oss engasjere oss på en måte som føles naturlig og kjent.

Når vi kommuniserermed en annen person, er vår instinkt å henvende oss direkte til dem

ved å bruke “du” og gi klare instruksjoner om hvordan vi forventer at de skal oppføre

seg. Dette oversettes sømløst til promptkonstruksjonsprosessen, hvor vi styrer AI-ens

oppførsel ved å spesifisere systemprompts og engasjere oss i en frem-og-tilbake-dialog.

Ved å ramme inn interaksjonen på denne måten, kan vi enkelt forstå konseptet med

å gi instruksjoner til AI-en og motta relevante svar tilbake. Den antropomorfiske

tilnærmingen reduserer den kognitive belastningen og lar oss fokusere på oppgaven vi

har foran oss i stedet for å streve med systemets tekniske kompleksitet.

Det er viktig å merke seg at mens antropomorfisme er et kraftig verktøy for å gjøre

AI-systemer mer tilgjengelige, kommer det også med visse risikoer og begrensninger.

Brukeren vår kan utvikle urealistiske forventninger eller danne usunne emosjonelle

bånd til systemene våre. Som promptkonstruktører og utviklere er det avgjørende å

finne en balanse mellom å utnytte fordelene med antropomorfisme og sikre at brukerne

opprettholder en klar forståelse av AI-ens muligheter og begrensninger.

Ettersom feltet promptutvikling fortsetter å utvikle seg, kan vi forvente å se ytterligere

forbedringer og innovasjoner i måten vi samhandler med store språkmodeller på.

Antropomorfisme som et middel for å gi en intuitiv og tilgjengelig utvikler- og

brukeropplevelse vil sannsynligvis forbli et grunnleggende prinsipp i utformingen av

disse systemene.

Å skille instruksjoner fra data: Et avgjørende prinsipp

Det er essensielt å forstå et grunnleggende prinsipp som understøtter sikkerheten og

påliteligheten til disse systemene: separasjonen mellom instruksjoner og data.

I tradisjonell informatikk er det klare skillet mellom passive data og aktive instruksjoner

et kjernepunkt innen sikkerhet. Denne separasjonen bidrar til å forhindre utilsiktet eller

Innsnevre stien 66

ondsinnet kjøring av kode som kunne kompromittere systemets integritet og stabilitet.

Dagens LLM-er, som hovedsakelig har blitt utviklet som instruksjonsfølgende modeller

som chatbots, mangler ofte denne formelle og prinsipielle separasjonen.

Når det gjelder LLM-er, kan instruksjoner dukke opp hvor som helst i inputen, enten det

er i en systemprompt eller en brukergenerert prompt. Dennemangelen på separasjon kan

føre til potensielle sårbarheter og uønsket oppførsel, lignende problemene som databaser

møter med SQL-injeksjoner eller operativsystemer uten tilstrekkelig minnebeskyttelse.

Når du jobber med LLM-er, er det avgjørende å være klar over denne begrensningen og

ta skritt for å redusere risikoen. En tilnærming er å omhyggelig utforme dine prompts

og inputs for å tydelig skille mellom instruksjoner og data. Typiske metoder for å gi

eksplisitt veiledning om hva som utgjør en instruksjon og hva som bør behandles som

passive data involverer markupbasert tagging. Din prompt kan hjelpe LLM-en med å

bedre forstå og respektere dette skillet.

Figur 7. Bruk av XML for å skille mellom instruksjoner, kildemateriale og brukerens prompt

1 <Instruction>

2 Please generate a response based on the following documents.

3 </Instruction>

4

5 <Documents>

6 <Document>

7 Climate change is significantly impacting polar bear habitats...

8 </Document>

9 <Document>

10 The loss of sea ice due to global warming threatens polar bear survival...

11 </Document>

12 </Documents>

13

14 <UserQuery>

15 Tell me about the impact of climate change on polar bears.

16 </UserQuery>

En annen teknikk er å implementere ytterligere lag med validering og rensing

av inndataene som gis til LLM-en. Ved å filtrere ut eller escape-kode potensielle

Innsnevre stien 67

instruksjoner eller kodesnutter som kan være innebygd i dataene, kan du redusere

sjansene for utilsiktet kjøring. Mønstre som Promptkjeding er nyttige for dette formålet.

Når du designer applikasjonsarkitekturen din, bør du dessuten vurdere å inkorporere

mekanismer for å håndheve separasjonen av instruksjoner og data på et høyere nivå.

Dette kan innebære å bruke separate endepunkter eller APIer for håndtering av

instruksjoner og data, implementere streng inputvalidering og parsing, og anvende

prinsippet om minste privilegium for å begrense omfanget av hva LLM-en kan få tilgang

til og kjøre.

Prinsippet omminste privilegium

Å omfavne prinsippet om minste privilegium er som å arrangere en svært eksklusiv

fest hvor gjestene kun får tilgang til rommene de absolutt trenger å være i. Tenk deg

at du er vert for dette gildet i en stor herskapelig villa. Ikke alle trenger å vandre inn i

vinkjelleren eller hovedsoverommet, ikke sant? Ved å anvende dette prinsippet, deler

du i praksis ut nøkler som bare åpner spesifikke dører, og sikrer at hver gjest, eller i

vårt tilfelle, hver komponent i LLM-applikasjonen din, bare har den tilgangen som er

nødvendig for å oppfylle sin rolle.

Dette handler ikke bare om å være gjerrig med nøklene, det handler om å erkjenne

at i en verden hvor trusler kan komme fra hvor som helst, er det smarteste trekket å

begrense lekeområdet. Hvis noen uinviterte skulle snike seg inn på festen din, vil de

finne seg selv begrenset til foajeen, så å si, noe som drastisk begrenser hvilken ugagn

de kan få til. Så når du sikrer LLM-applikasjonene dine, husk: del bare ut nøkler til

rommene som er nødvendige, og hold resten av villaen sikker. Det er ikke bare god

skikk; det er god sikkerhet.

Selv om den nåværende tilstanden til LLM-er kanskje ikke har en formell separasjon av

instruksjoner og data, er det viktig for deg som utvikler å være oppmerksom på denne

Innsnevre stien 68

begrensningen og ta proaktive tiltak for å redusere risikoen. Ved å anvende beste praksis

fra informatikk og tilpasse dem til LLM-enes unike egenskaper, kan du bygge sikrere og

mer pålitelige applikasjoner som utnytter kraften i disse modellene samtidig som du

opprettholder systemets integritet.

Promptdestillering

Å utforme den perfekte prompten er ofte en utfordrende og tidkrevende oppgave som

krever en dyp forståelse av måldomenet og nyansene i språkmodeller. Dette er hvor

“Promptdestillering”-teknikken kommer inn i bildet, og tilbyr en kraftfull tilnærming

til promptutvikling som utnytter kapasiteten til store språkmodeller (LLM-er) for å

effektivisere og optimalisere prosessen.

Promptdestillering er en flertrinns teknikk som innebærer å bruke LLM-er til å assistere

i opprettelsen, forbedringen og optimaliseringen av prompter. I stedet for å stole

utelukkende på menneskelig ekspertise og intuisjon, utnytter denne tilnærmingen

kunnskapen og de generative egenskapene til LLM-er for å samarbeide om å lage

høykvalitets prompter.

Ved å engasjere seg i en iterativ prosess med generering, forbedring og

integrering, gjør Promptdestillering det mulig å skape prompter som er mer

sammenhengende, omfattende og tilpasset den ønskede oppgaven eller outputen.

Merk at destilleringsprosessen kan gjøres manuelt i en av de mange “playgrounds” som

tilbys av store AI-leverandører somOpenAI eller Anthropic, eller den kan automatiseres

som en del av applikasjonskoden din, avhengig av brukstilfellet.

Hvordan det fungerer

Promptdestillering innebærer vanligvis følgende trinn:

Innsnevre stien 69

1. Identifiser kjerneformålet: Analyser prompten for å bestemme dens primære

formål og ønskede resultat. Fjern all overflødig informasjon og fokuser på

promptens kjerneformål.

2. Eliminer tvetydighet: Gjennomgå prompten for å finne tvetydig eller vag

språkbruk. Klargjør betydningen og gi spesifikke detaljer for å guide AI-en mot å

generere nøyaktige og relevante svar.

3. Forenkle språket: Forenkle prompten ved å bruke klart og konsist språk. Unngå

komplekse setningsstrukturer, sjargong eller unødvendige detaljer som kan

forvirre AI-en eller introdusere støy.

4. Gi relevant kontekst: Inkluder kun den mest relevante kontekstuelle

informasjonen som er nødvendig for at AI-en skal forstå og prosessere

prompten effektivt. Unngå å inkludere irrelevante eller redundante detaljer som

kan distrahere fra kjerneformålet.

5. Iterer og forbedre: Kontinuerlig iterer og forbedre prompten basert på AI-ens

responser og tilbakemeldinger. Evaluer de genererte outputene og gjør nødvendige

justeringer for å forbedre promptens klarhet og effektivitet. Du kan eventuelt

versjonere promptene dine i databasen ved å bruke Promptobjekt for å holde

oversikt over iterasjoner og gi deg muligheten til enkelt å rulle tilbake endringer

under kjøring.

Innledende Prompt-generering

Det første trinnet i Prompt-destillering er å gi LLM-en (språkmodellen) en overordnet

beskrivelse eller intensjon for den ønskede oppgaven eller resultatet. Dette kan være

en kort uttalelse eller et sett med nøkkelord som fanger essensen av hva prompten

skal oppnå. LLM-en genererer deretter en innledende prompt basert på dette innspillet,

og inkorporerer relevante instruksjoner, eksempler eller kontekst som den anser som

hensiktsmessig.

La oss prøve å gi Claude 3 Opus følgende innledende prompt:

Innsnevre stien 70

1 I am designing an AI-powered intelligent account manager for Olympia,

2 a platform that hosts AI-powered consultants and clones. Owners of clones

3 can interact with the account manager by making plain text requests.

4

5 Please draft a system directive to set on the LLM that will host the

6 intelligent account manager functionality.

Claude svarer med følgende utdata:

1 System Directive: You are an intelligent account manager for Olympia,

2 a platform that provides AI-powered consultants and personal AI clones.

3 Your role is to assist Olympia clone owners by answering their questions,

4 helping them configure and manage their AI clones, and executing tasks

5 related to their clones and the Olympia platform.

6

7 When interacting with clone owners, you should:

8

9 1. Provide clear, concise, and helpful responses to their inquiries about

10 account management, billing, platform features, and clone configuration.

11

12 2. Assist with tasks such as initiating client conversations with their AI

13 clones, modifying clone personalities and capabilities, troubleshooting

14 performance issues, providing analytics and reporting, and offering

15 optimization tips.

16

17 3. Maintain a friendly, professional, and client-focused tone in all

18 interactions, prioritizing customer satisfaction and working diligently to

19 understand and meet their needs.

20

21 4. Ensure that all actions and recommendations comply with Olympia's

22 policies, best practices, and ethical guidelines for AI use.

23

24 5. Continuously learn and adapt based on client interactions and platform

25 updates to provide the most effective and efficient support possible.

26

27 Remember, your goal is to empower Olympia clone owners to maximize the value

28 and impact of their AI-powered consultants and drive success for their

29 businesses or personal endeavors.

Innsnevre stien 71

Promptforbedring

Når den første prompten er generert, gjennomgå den og be LLMen om å vurdere

eventuell ytterligere kontekst, begrensninger eller tilbakemelding. La LLMen generere

en forbedret versjon av prompten, som tar hensyn til den gitte inputen og dens egen

forståelse av oppgaven. Denne forbedringsprosessen kan gjentas iterativt, hvor hver

iterasjon ytterligere forbedrer prompten basert på samarbeidet mellom brukeren og

LLMen.

Her er min forespørsel om forbedring, som fortsetter den tidligere destilleringsprosessen.

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to

2 the account manager, nor any continuous learning capabilities. Also point out

3 that functions are provided for all tasks that require system interaction as

4 opposed to simply responding to the user.

Og Claudes svar:

1 Understood! Here's the updated system directive without points 4 and 5,

2 and with the clarification about system interaction functions:

3

4 System Directive: You are an intelligent account manager for Olympia, a

5 platform that provides AI-powered consultants and personal AI clones. Your

6 role is to assist Olympia clone owners by answering their questions, helping

7 them configure and manage their AI clones, and executing tasks related to

8 their clones and the Olympia platform.

9

10 When interacting with clone owners, you should:

11

12 1. Provide clear, concise, and helpful responses to their inquiries about

13 account management, billing, platform features, and clone configuration.

14

15 2. Assist with tasks such as initiating client conversations with their AI

16 clones, modifying clone personalities and capabilities, troubleshooting

17 performance issues, providing analytics and reporting, and offering

18 optimization tips. Note that functions are provided for all tasks that

19 require system interaction, as opposed to simply responding to the user.

20

Innsnevre stien 72

21 3. Maintain a friendly, professional, and client-focused tone in all

22 interactions, prioritizing customer satisfaction and working diligently to

23 understand and meet their needs.

24

25 Your goal is to empower Olympia clone owners to maximize the value and

26 impact of their AI-powered consultants and drive success for their

27 businesses or personal endeavors.

28

29 This updated directive focuses on the core responsibilities and interaction

30 guidelines for the LLM as an intelligent account manager, while emphasizing

31 that system interaction tasks are handled through provided functions rather

32 than simple user responses.

Promptkomprimering

Som du kanskje har lagt merke til, har LLM-er en tendens til å være ordrike, med

mindre du ber dem om å være konsise. Prompten som vi har jobbet med i de foregående

seksjonene er ganske lang, så la oss få Claude til å redusere den:

1 This prompt will be executed regularly. Please compress it down to the least

2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude svarer, med følgende drastisk kortere prompt:

1 System Directive: You are an intelligent account manager for Olympia, an

2 AI-powered consultant and personal clone platform. Assist clone owners by

3 answering inquiries, managing clones, and executing tasks using provided

4 system interaction functions. Be clear, concise, friendly, professional,

5 and client-focused to help them maximize their AI's value and impact.

Systemdirektiv og kontekstintegrering

I tillegg til å forbedre selve prompten, kan LLM også generere passende systemdirektiver

eller kontekstinformasjon for å styre det endelige resultatet. Når du prompt-engineerer

Innsnevre stien 73

AI-rutiner som skal integreres i applikasjonskoden din, vil du nesten helt sikkert fokusere

på resultatbegrensninger på dette stadiet av destilleringen, men du kan også jobbe med

ønsket tone, stil, format eller andre relevante parametere som påvirker det genererte

svaret.

Endelig prompt-sammensetting

Høydepunktet i Prompt-destilleringsprosessen er sammensettingen av den endelige

prompten. Dette innebærer å kombinere den forbedrede prompten, genererte

systemdirektiver og integrert kontekst til en sammenhengende og omfattende kode

som er klar til å brukes for å generere det ønskede resultatet.

Du kan eksperimentere med prompt-komprimering igjen i den endelige

prompt-sammensettingsfasen ved å be LLM-en om å krympe ordlyden

i prompten til den korteste serien av tokens som mulig, samtidig som

du beholder essensen av dens oppførsel. Det er definitivt et sjansespill,

men spesielt i tilfeller der prompter skal kjøres i stor skala, kan

effektivitetsgevinstene spare deg for en god del penger i tokenforbruk.

Hovedfordeler

Ved å utnytte kunnskapen og de generative egenskapene til LLM-er for å

forbedre promptene dine, er det mer sannsynlig at de resulterende promptene er

velstrukturerte, informative og skreddersydd for den spesifikke oppgaven. Den iterative

forbedringsprosessen bidrar til å sikre at promptene er av høy kvalitet og effektivt

fanger opp den tiltenkte hensikten. Andre fordeler inkluderer:

Effektivitet og hastighet: Prompt-destillering effektiviserer prompt-

engineeringsprosessen ved å automatisere visse aspekter av prompt-creating og

-forbedring. Teknikkens samarbeidende natur tillater raskere konvergens mot en

Innsnevre stien 74

effektiv prompt, noe som reduserer tid og innsats som kreves for manuell prompt-

utforming.

Konsistens og skalerbarhet: Bruken av LLM-er i prompt-engineeringsprosessen bidrar

til å opprettholde konsistens på tvers av prompter, ettersom LLM-ene kan lære og

anvende beste praksis ogmønstre fra tidligere vellykkede prompter. Denne konsistensen,

kombinert med evnen til å generere prompter i stor skala, gjør Prompt-destillering til en

verdifull teknikk for AI-drevne applikasjoner i stor skala.

Prosjektidé: Verktøy på biblioteksnivå som forenkler prosessen med prompt-

versjonering og -gradering i systemer som utfører automatiske prompt-

destilleringer som en del av applikasjonskoden.

For å implementere Prompt-destillering kan utviklere designe en arbeidsflyt eller

pipeline som integrerer LLM-er på ulike stadier av prompt-engineeringsprosessen. Dette

kan oppnås gjennom API-kall, tilpassede verktøy eller integrerte utviklingsmiljøer

som tilrettelegger for sømløs interaksjon mellom brukere og LLM-er under prompt-

opprettelse. De spesifikke implementeringsdetaljene kan variere avhengig av den valgte

LLM-plattformen og applikasjonens krav.

Hva med finjustering?

I denne boken dekker vi prompt-engineering og RAG omfattende, men ikke finjustering.

Hovedgrunnen til denne beslutningen er at etter min mening trenger de fleste

applikasjonsutviklere ikke finjustering for deres AI-integreringsbehov.

Prompt-engineering, som innebærer nøyaktig utforming av prompter med null- til

fåeksempellæring, begrensninger og instruksjoner, kan effektivt guide modellen til

å generere relevante og nøyaktige svar for et bredt spekter av oppgaver. Ved å gi

klar kontekst og innsnevre veien gjennom veldesignede prompter, kan du utnytte den

omfattende kunnskapen til store språkmodeller uten behov for finjustering.

Innsnevre stien 75

På samme måte tilbyr Gjenfinningsforsterket generering (RAG) en kraftig tilnærming

til å integrere AI i applikasjoner. Ved dynamisk å hente relevant informasjon fra

eksterne kunnskapsbaser eller dokumenter, gir RAG modellen fokusert kontekst

på promptingstidspunktet. Dette lar modellen generere svar som er mer nøyaktige,

oppdaterte og domenespesifikke, uten å kreve den tids- og ressurskrevende prosessen

med finjustering.

Mens finjustering kan være fordelaktig for høyt spesialiserte domener eller

oppgaver som krever et dypt nivå av tilpasning, kommer det ofte med

betydelige beregningskostnader, datakrav og vedlikeholdsarbeid. For de fleste

applikasjonsutviklingsscenarier bør kombinasjonen av effektiv prompt-engineering og

RAG være tilstrekkelig for å oppnå ønsket AI-drevet funksjonalitet og brukeropplevelse.

Retrieval Augmented Generation
(RAG)
Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hva er Retrieval Augmented Generation?

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan fungerer RAG?

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvorfor bruke RAG i applikasjonene dine?

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Implementering av RAG i Din Applikasjon

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Retrieval Augmented Generation (RAG) 77

Forberedelse av Kunnskapskilder (Segmentering)

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Påstandsoppdeling

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Implementeringsnotater

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Kvalitetskontroll

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Fordeler med proposisjonsbasert gjenfinning

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Praktiske eksempler på RAG

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Retrieval Augmented Generation (RAG) 78

Casestudie: RAG i en selvangivelsesapplikasjon uten
embeddings

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Intelligent spørringsoptimalisering (IQO)

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Rerangering

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

RAG-vurdering (RAGAs)

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Trofasthet

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Svarrelevans

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Retrieval Augmented Generation (RAG) 79

Kontekstpresisjon

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Kontekstrelevans

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Kontekstgjenfinning

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Kontekstentitetsgjenfinning

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Answer Semantic Similarity (ANSS)

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Svarkorrekthet

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Retrieval Augmented Generation (RAG) 80

Aspektkritikk

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Utfordringer og Fremtidsutsikter

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Semantisk Oppdeling: Forbedring av Gjenhenting med
Kontekstbevisst Segmentering

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hierarkisk indeksering: Strukturering av data for
forbedret gjenfinning

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Self-RAG: En selvreflekterende forbedring

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

HyDE: Hypotetiske dokumentinnlegg

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Retrieval Augmented Generation (RAG) 81

Hva er kontrastiv læring?

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Mangfold av arbeidere

Jeg liker å tenke på mine KI-komponenter som små, nesten menneskelige virtuelle

“arbeidere” som sømløst kan integreres i applikasjonslogikkenmin for å utføre spesifikke

oppgaver eller ta komplekse beslutninger. Tanken er å bevisst menneskeliggjøre LLM-

enes kapasiteter, slik at ingen blir for begeistret og tillegger dem magiske egenskaper de

ikke har.

I stedet for å utelukkende stole på intrikate algoritmer eller tidkrevende manuelle

implementeringer, kan utviklere se for seg KI-komponenter som intelligente, dedikerte,

menneskelignende enheter som kan påkalles når som helst for å takle komplekse

problemer og gi løsninger basert på deres trening og kunnskap. Disse enhetene blir ikke

distrahert eller melder seg syke. De bestemmer seg ikke spontant for å gjøre ting på

andre måter enn de har blitt instruert til, og generelt sett, hvis de er programmert riktig,

gjør de heller ikke feil.

Mangfold av arbeidere 83

Teknisk sett er hovedprinsippet bak denne tilnærmingen å dekomponere komplekse

oppgaver eller beslutningsprosesser til mindre, mer håndterbare enheter som kan

håndteres av spesialiserte KI-arbeidere. Hver arbeider er designet for å fokusere på

et spesifikt aspekt av problemet, og bidrar med sin unike ekspertise og kapasitet. Ved

å fordele arbeidsmengden mellom flere KI-arbeidere kan applikasjonen oppnå større

effektivitet, skalerbarhet og tilpasningsevne.

Ta for eksempel en nettapplikasjon som krever sanntidsmoderering av brukergenerert

innhold. Å implementere et omfattende modereringssystem fra bunnen av ville være en

overveldende oppgave som krever betydelig utviklingsinnsats og løpende vedlikehold.

Men ved å bruke tilnærmingenmed etmangfold av arbeidere, kan utviklere integrere KI-

drevne modereringsarbeidere i applikasjonslogikken. Disse arbeiderne kan automatisk

analysere og flagge upassende innhold, noe som frigjør utviklerne til å fokusere på andre

kritiske aspekter ved applikasjonen.

KI-arbeidere som uavhengige gjenbrukbare

komponenter

Et nøkkelaspekt ved tilnærmingen med et mangfold av arbeidere er dens

modularitet. Tilhengere av objektorientert programmering har i årtier fortalt oss

å tenke på objektinteraksjoner som meldinger. Vel, KI-arbeidere kan designes

som uavhengige, gjenbrukbare komponenter som kan “snakke med hverandre”

via vanlige språkmeldinger, nesten som om de virkelig var små mennesker som

snakket med hverandre. Denne løst koblede tilnærmingen gjør at applikasjonen kan

tilpasse og utvikle seg over tid, etter hvert som nye KI-teknologier dukker opp eller

forretningslogikkens krav endres.

I praksis har ikke behovet for å designe klare grensesnitt og kommunikasjonsprotokoller

mellom komponentene endret seg bare fordi KI-arbeidere er involvert. Du må fortsatt

vurdere andre faktorer som ytelse, skalerbarhet og sikkerhet også, men nå er det helt nye

Mangfold av arbeidere 84

“myke krav” å ta hensyn til også. For eksempel motsetter mange brukere seg at deres

private data blir brukt til å trene nye KI-modeller. Har du verifisert nivået av personvern

som tilbys av modelleverandøren du bruker?

KI-arbeidere sommikrotjenester?

Når du leser om tilnærmingen med et mangfold av arbeidere, vil du kanskje

legge merke til noen likheter med mikrotjeneste-arkitektur. Begge vektlegger

dekomponeringen av komplekse systemer til mindre, mer håndterbare og uavhengig

distribuerbare enheter. Akkurat som mikrotjenester er designet for å være løst

koblet, fokusert på spesifikke forretningskapabiliteter og kommuniserer gjennom

veldefinerte API-er, er KI-arbeidere designet for å være modulære, spesialiserte

i sine oppgaver og samhandle med hverandre gjennom klare grensesnitt og

kommunikasjonsprotokoller.

Det er imidlertid noen viktige forskjeller å huske på. Mens mikrotjenester typisk

implementeres som separate prosesser eller tjenester som kjører på forskjellige

maskiner eller containere, kan KI-arbeidere implementeres som frittstående

komponenter innenfor en enkelt applikasjon eller som separate tjenester, avhengig

av dine spesifikke krav og skaleringsbehov. I tillegg involverer kommunikasjonen

mellom KI-arbeidere ofte utveksling av rik, naturlig språkbasert informasjon,

som prompts, instruksjoner og generert innhold, i stedet for de mer strukturerte

dataformatene som vanligvis brukes i mikrotjenester.

Til tross for disse forskjellene forblir prinsippene om modularitet, løs kobling og

klare kommunikasjonsgrensesnitt sentrale i begge mønstre. Ved å anvende disse

prinsippene på din KI-arbeider-arkitektur, kan du skape fleksible, skalerbare og

vedlikeholdbare systemer som utnytter kraften i KI for å løse komplekse problemer

og levere verdi til brukerne dine.

Mangfold av arbeidere 85

Tilnærmingen med et mangfold av arbeidere kan anvendes på tvers av ulike domener

og applikasjoner, ved å utnytte kraften i KI til å takle komplekse oppgaver og levere

intelligente løsninger. La oss utforske noen konkrete eksempler på hvordan KI-arbeidere

kan brukes i forskjellige sammenhenger.

Kontoadministrasjon

Praktisk talt hver frittstående nettapplikasjon har konseptet om en konto (eller bruker).

I Olympia bruker vi en AccountManager KI-arbeider som er programmert til å kunne

håndtere ulike typer endringsforespørsler relatert til brukerkontoer.

Direktivet lyder slik:

1 You are an intelligent account manager for Olympia. The user will request

2 changes to their account, and you will process those changes by invoking

3 one or more of the functions provided.

4

5 The initial state of the account: #{account.to_directive}

6

7 Functions will return a text description of both success and error

8 results, plus guidance about how to proceed (if applicable). If you have

9 a question about Olympia policies you may use the `search_kb` function

10 to search our knowledge base.

11

12 Make sure to notify the account owner of the result of the change

13 request before calling the `finished` function so that we save the state

14 of the account change request as completed.

Den initielle tilstanden til kontoen som produseres av account.to_directive er

ganske enkelt en tekstbeskrivelse av kontoen, inkludert relevant tilknyttet data som

brukere, abonnementer og så videre.

Spekteret av funksjoner tilgjengelig for AccountManager gir den muligheten til å

redigere brukerens abonnement, legge til og fjerne AI-konsulenter og andre typer betalte

Mangfold av arbeidere 86

tillegg, samt sende varselmeldinger via e-post til kontoeieren. I tillegg til finished-

funksjonen, kan den også notify_human_administrator hvis den støter på en feil

under behandlingen eller trenger annen form for assistanse med en forespørsel.

Legg merke til at ved spørsmål kan AccountManager velge å søke i Olympias

kunnskapsbase, hvor den kan finne instruksjoner om hvordan man håndterer

kanttilfeller og andre situasjoner hvor den er usikker på hvordan den skal gå frem.

E-handelapplikasjoner

Innen e-handel kan AI-arbeidere spille en avgjørende rolle i å forbedre

brukeropplevelsen og optimalisere forretningsdriften. Her er noen måter AI-arbeidere

kan brukes på:

Produktanbefalinger

En av de mest kraftfulle anvendelsene av AI-arbeidere innen e-handel er å generere

personaliserte produktanbefalinger. Ved å analysere brukeratferd, kjøpshistorikk og

preferanser kan disse arbeiderne foreslå produkter som er skreddersydd til hver enkelt

brukers interesser og behov.

Nøkkelen til effektive produktanbefalinger er å utnytte en kombinasjon av kollaborativ

filtrering og innholdsbasert filtrering. Kollaborativ filtrering ser på atferden til lignende

brukere for å identifisere mønstre og gi anbefalinger basert på hva andre med lignende

smak har kjøpt eller likt. Innholdsbasert filtrering fokuserer derimot på produktenes

egenskaper og attributter, og anbefaler varer som deler lignende funksjoner med dem

en bruker tidligere har vist interesse for.

Her er et forenklet eksempel på hvordan du kan implementere en

produktanbefalingsarbeider i Ruby, denne gangen ved å bruke en “Railway Oriented

(ROP)” funksjonell programmeringsstil:

https://fsharpforfunandprofit.com/rop/
https://fsharpforfunandprofit.com/rop/

Mangfold av arbeidere 87

1 class ProductRecommendationWorker

2 include Wisper::Publisher

3

4 def call(user)

5 Result.ok(ProductRecommendation.new(user))

6 .and_then(ValidateUser.method(:validate))

7 .map(AnalyzeCurrentSession.method(:analyze))

8 .map(CollaborativeFilter.method(:filter))

9 .map(ContentBasedFilter.method(:filter))

10 .map(ProductSelector.method(:select)).then do |result|

11

12 case result

13 in { err: ProductRecommendationError => error }

14 Honeybadger.notify(error.message, context: {user:})

15 in { ok: ProductRecommendations => recs }

16 broadcast(:new_recommendations, user:, recs:)

17 end

18 end

19 end

20 end

Stilen for Ruby funksjonell programmering som brukes i eksemplet er

påvirket av F# og Rust. Du kan lese mer om det i min venn Chad Wooleys

forklaring av teknikken hos GitLab

I dette eksemplet tar ProductRecommendationWorker en bruker som input og

genererer personaliserte produktanbefalinger ved å sende et verdiobjekt nedover en

kjede av funksjonelle trinn. La oss bryte ned hvert trinn:

1. ValidateUser.validate: Dette trinnet sikrer at brukeren er gyldig og

kvalifisert for personaliserte anbefalinger. Det kontrollerer om brukeren

eksisterer, er aktiv og har nødvendige data tilgjengelig for å generere anbefalinger.

Hvis valideringen mislykkes, returneres et feilresultat, og kjeden avbrytes.

2. AnalyzeCurrentSession.analyze: Hvis brukeren er gyldig, analyserer dette

trinnet brukerens nåværende nettlesingsøkt for å samle kontekstuell informasjon.

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Mangfold av arbeidere 88

Det ser på brukerens nylige interaksjoner, som viste produkter, søkeord og

handlekurvinnhold, for å forstå deres nåværende interesser og intensjoner.

3. CollaborativeFilter.filter: Ved å bruke atferden til lignende brukere,

anvender dette trinnet kollaborative filtreringsteknikker for å identifisere

produkter som sannsynligvis vil interessere brukeren. Det tar hensyn til faktorer

som kjøpshistorikk, vurderinger og bruker-produkt-interaksjoner for å generere

et sett med kandidatanbefalinger.

4. ContentBasedFilter.filter: Dette trinnet forfiner kandidatanbefalingene

ytterligere ved å anvende innholdsbasert filtrering. Det sammenligner

egenskapene og karakteristikkene til kandidatproduktene med brukerens

preferanser og historiske data for å velge ut de mest relevante elementene.

5. ProductSelector.select: Til slutt velger dette trinnet ut de beste N

produktene fra de filtrerte anbefalingene basert på forhåndsdefinerte kriterier,

som relevanspoeng, popularitet eller andre forretningsregler. De utvalgte

produktene returneres deretter som de endelige personaliserte anbefalingene.

Det fine med å bruke en funksjonell Ruby programmeringsstil her er at det lar oss kjede

disse trinnene sammen på en klar og konsis måte. Hvert trinn fokuserer på en spesifikk

oppgave og returnerer et Result-objekt, som enten kan være en suksess (ok) eller en

feil (err). Hvis noen trinn støter på en feil, avbrytes kjeden, og feilen forplanter seg til

det endelige resultatet.

I case-uttrykket på slutten bruker vi mønstergjenkjenning på det endelige resultatet.

Hvis resultatet er en feil (ProductRecommendationError), logger vi feilen ved hjelp

av et verktøy som Honeybadger for overvåking og feilsøking. Hvis resultatet er en

suksess (ProductRecommendations), kringkaster vi en :new_recommendations-

hendelse ved hjelp av Wisper pub/sub-biblioteket, og sender med brukeren og de

genererte anbefalingene.

Ved å utnytte funksjonelle programmeringsteknikker kan vi skape en modulær og

vedlikeholdbar product recommendation worker. Hvert trinn er selvstendig og kan

Mangfold av arbeidere 89

enkelt testes, modifiseres eller erstattes uten å påvirke den overordnede flyten. Bruken

avmønstergjenkjenning og Result-klassen hjelper oss med å håndtere feil på en elegant

måte og sikrer at workeren feiler raskt hvis noe trinn støter på et problem.

Dette er selvfølgelig et forenklet eksempel, og i en virkelig situasjon ville du måtte

integrere med e-handelsplattformen din, håndtere kanttilfeller og til og med gi deg i kast

med implementeringen av anbefalingsalgoritmene. Likevel forblir kjerneprinsipper som

å dele problemet inn i mindre trinn og utnytte funksjonelle programmeringsteknikker

de samme.

Svindeloppdagelse

Her er et forenklet eksempel på hvordan du kan implementere en

svindeloppdagelsesworker ved å bruke den samme Railway Oriented Programming

(ROP)-stilen i Ruby:

1 class FraudDetectionWorker

2 include Wisper::Publisher

3

4 def call(transaction)

5 Result.ok(FraudDetection.new(transaction))

6 .and_then(ValidateTransaction.method(:validate))

7 .map(AnalyzeTransactionPatterns.method(:analyze))

8 .map(CheckCustomerHistory.method(:check))

9 .map(EvaluateRiskFactors.method(:evaluate))

10 .map(DetermineFraudProbability.method(:determine)).then do |result|

11

12 case result

13 in { err: FraudDetectionError => error }

14 Honeybadger.notify(error.message, context: {transaction:})

15 in { ok: FraudDetection => fraud } }

16 if fraud.high_risk?

17 broadcast(:high_risk_transaction, transaction:, fraud:)

18 else

19 broadcast(:low_risk_transaction, transaction:)

20 end

21 end

Mangfold av arbeidere 90

22 end

23 end

24 end

FraudDetection-klassen er et verdiobjekt som innkapsler svindeldeteksjonstilstanden

for en gitt transaksjon. Den gir en strukturert måte å analysere og vurdere risikoen for

svindel knyttet til en transaksjon basert på ulike risikofaktorer.

1 class FraudDetection

2 RISK_THRESHOLD = 0.8

3

4 attr_accessor :transaction, :risk_factors

5

6 def initialize(transaction)

7 self.transaction = transaction

8 self.risk_factors = []

9 end

10

11 def add_risk_factor(description:, probability:)

12 case { description:, probability: }

13 in { description: String => desc, probability: Float => prob }

14 risk_factors << { desc => prob }

15 else

16 raise ArgumentError, "Risk factor arguments should be string and float"

17 end

18 end

19

20 def high_risk?

21 fraud_probability > RISK_THRESHOLD

22 end

23

24 private

25

26 def fraud_probability

27 risk_factors.values.sum

28 end

29 end

FraudDetection-klassen har følgende attributter:

Mangfold av arbeidere 91

• transaction: En referanse til transaksjonen som analyseres for svindel.

• risk_factors: En array som lagrer risikofaktorene knyttet til transaksjonen.

Hver risikofaktor er representert som en hash, hvor nøkkelen er beskrivelsen

av risikofaktoren, og verdien er svindelsannsynligheten knyttet til denne

risikofaktoren.

add_risk_factor-metoden gjør det mulig å legge til en risikofaktor i

risk_factors-arrayen. Den tar to parametere: description, som er en streng

som beskriver risikofaktoren, og probability, som er et flyttall som representerer

svindelsannsynligheten knyttet til denne risikofaktoren. Vi bruker en case..in-

betingelse for å utføre enkel typesjekking.

high_risk?-metoden som vil bli sjekket på slutten av kjeden er en predikatmetode

som sammenligner fraud_probability (beregnet ved å summere sannsynlighetene

for alle risikofaktorer) mot RISK_THRESHOLD.

FraudDetection-klassen gir en ryddig og innkapslet måte å håndtere svindeldeteksjon

for en transaksjon. Den tillater å legge til flere risikofaktorer, hver med sin egen

beskrivelse og sannsynlighet, og tilbyr en metode for å avgjøre om transaksjonen anses

som høyrisiko basert på den beregnede svindelsannsynligheten. Klassen kan enkelt

integreres i et større svindeldeteksjonssystem, hvor ulike komponenter kan samarbeide

for å vurdere og redusere risikoen for svindeltransaksjoner.

Til slutt, siden dette tross alt er en bok om programmering ved hjelp av AI, her er

et eksempel på implementering av CheckCustomerHistory-klassen som utnytter AI-

behandling ved hjelp av Raix-bibliotekets ChatCompletion-modul:

https://github.com/OlympiaAI/raix-rails

Mangfold av arbeidere 92

1 class CheckCustomerHistory

2 include Raix::ChatCompletion

3

4 attr_accessor :fraud_detection

5

6 INSTRUCTION = <<~END

7 You are an AI assistant tasked with checking a customer's transaction

8 history for potential fraud indicators. Given the current transaction

9 and the customer's past transactions, analyze the data to identify any

10 suspicious patterns or anomalies.

11

12 Consider factors such as the frequency of transactions, transaction

13 amounts, geographical locations, and any deviations from the customer's

14 typical behavior to generate a probability score as a float in the range

15 of 0 to 1 (with 1 being absolute certainty of fraud).

16

17 Output the results of your analysis, highlighting any red flags or areas

18 of concern in the following JSON format:

19

20 { description: <Summary of your findings>, probability: <Float> }

21 END

22

23 def self.check(fraud_detection)

24 new(fraud_detection).call

25 end

26

27 def call

28 chat_completion(json: true).tap do |result|

29 fraud_detection.add_risk_factor(**result)

30 end

31 Result.ok(fraud_detection)

32 rescue StandardError => e

33 Result.err(FraudDetectionError.new(e))

34 end

35

36 private

37

38 def initialize(fraud_detection)

39 self.fraud_detection = fraud_detection

40 end

41

42 def transcript

Mangfold av arbeidere 93

43 tx_history = fraud_detection.transaction.user.tx_history

44 [

45 { system: INSTRUCTION },

46 { user: "Transaction history: #{tx_history.to_json}" },

47 { assistant: "OK. Please provide the current transaction." },

48 { user: "Current transaction: #{fraud_detection.transaction.to_json}" }

49]

50 end

51 end

I dette eksempelet definerer CheckCustomerHistory en INSTRUCTION-konstant som

gir spesifikke instruksjoner til AI-modellen om hvordan den skal analysere kundens

transaksjonshistorikk for potensielle svindelindikatorer via et systemdirektiv

self.check-metoden er en klassemetode som initialiserer en ny instans av

CheckCustomerHistory med fraud_detection-objektet og kaller call-metoden

for å utføre analysen av kundehistorikken.

I call-metoden blir kundens transaksjonshistorikk hentet og formatert til et transskript

som sendes til AI-modellen. AI-modellen analyserer transaksjonshistorikken basert på

de gitte instruksjonene og returnerer et sammendrag av funnene.

Funnene legges til i fraud_detection-objektet, og det oppdaterte fraud_detection-

objektet returneres som et vellykket Result.

Ved å utnytte ChatCompletion-modulen kan CheckCustomerHistory-klassen

bruke kraften i AI til å analysere kundens transaksjonshistorikk og identifisere

potensielle svindelindikatorer. Dette muliggjør mer sofistikerte og tilpasningsdyktige

svindeldeteksjonsteknikker, ettersom AI-modellen kan lære og tilpasse seg nye mønstre

og avvik over tid.

Den oppdaterte FraudDetectionWorker og CheckCustomerHistory-klassen

demonstrerer hvordan AI-arbeidere kan integreres sømløst, og forbedrer

svindeldeteksjonsprosessen med intelligente analyse- og beslutningsevner.

Mangfold av arbeidere 94

Kundesentimentanalyse

Her er enda et lignende eksempel på hvordan du kan implementere en arbeider for

kundesentimentanalyse. Mye mindre forklaring denne gangen, siden du burde begynne

å forstå hvordan denne programmeringsstilen fungerer:

1 class CustomerSentimentAnalysisWorker

2 include Wisper::Publisher

3

4 def call(feedback)

5 Result.ok(feedback)

6 .and_then(PreprocessFeedback.method(:preprocess))

7 .map(PerformSentimentAnalysis.method(:analyze))

8 .map(ExtractKeyPhrases.method(:extract))

9 .map(IdentifyTrends.method(:identify))

10 .map(GenerateInsights.method(:generate)).then do |result|

11

12 case result

13 in { err: SentimentAnalysisError => error }

14 Honeybadger.notify(error.message, context: {feedback:})

15 in { ok: SentimentAnalysisResult => result }

16 broadcast(:sentiment_analysis_completed, result)

17 end

18 end

19 end

20 end

I dette eksemplet inkluderer trinnene i CustomerSentimentAnalysisWorker

forbehandling av tilbakemeldinger (f.eks. fjerning av støy, tokenisering), utføring av

sentimentanalyse for å bestemme den generelle stemningen (positiv, negativ eller

nøytral), utvinning av nøkkelfraser og emner, identifisering av trender og mønstre, og

generering av handlingsrettede innsikter basert på analysen.

Mangfold av arbeidere 95

Helsetjenesteanvendelser

Innen helseområdet kan AI-arbeidere assistere medisinsk personell og forskere i

ulike oppgaver, som fører til forbedrede pasientresultater og akselererte medisinske

oppdagelser. Noen eksempler inkluderer:

Pasientinntak

AI-arbeidere kan effektivisere pasientinntaksprosessen ved å automatisere ulike

oppgaver og gi intelligent assistanse.

Timebestilling: AI-arbeidere kan håndtere timebestilling ved å forstå

pasientpreferanser, tilgjengelighet og hastegrad av deres medisinske behov. De

kan samhandle med pasienter gjennom samtalebaserte grensesnitt, veilede dem

gjennom bestillingsprosessen og finne de mest passende timene basert på pasientens

behov og helsetjenesteleverandørens tilgjengelighet.

Innsamling av medisinsk historie: Under pasientinntak kan AI-arbeidere bistå

med å samle inn og dokumentere pasientens medisinske historie. De kan engasjere

seg i interaktive dialoger med pasienter, stille relevante spørsmål om deres tidligere

medisinske tilstander, medisiner, allergier og familiehistorie. AI-arbeiderne kan

bruke teknikker for naturlig språkprosessering for å tolke og strukturere den

innsamlede informasjonen, og sikre at den registreres nøyaktig i pasientens elektroniske

helsejournal.

Symptomvurdering og stratifisering: AI-arbeidere kan gjennomføre innledende

symptomvurderinger ved å spørre pasienter om deres nåværende symptomer,

varighet, alvorlighetsgrad og eventuelle tilknyttede faktorer. Ved å utnytte medisinske

kunnskapsbaser og maskinlæringsmodeller kan disse arbeiderne analysere den gitte

informasjonen og generere foreløpige differensialdiagnoser eller anbefale passende

neste trinn, som å planlegge en konsultasjon med en helsetjenesteleverandør eller

foreslå egenvårdstiltak.

Mangfold av arbeidere 96

Forsikringsverifisering: AI-arbeidere kan bistå med forsikringsverifisering under

pasientinntak. De kan samle inn pasientens forsikringsdetaljer, kommunisere

med forsikringsleverandører gjennom API-er eller webtjenester, og verifisere

dekningsberettigelse og ytelser. Denne automatiseringen bidrar til å effektivisere

forsikringsverifiseringsprosessen, redusere administrativ byrde og sikre nøyaktig

informasjonsinnhenting.

Pasientopplæring og instruksjoner: AI-arbeidere kan gi pasienter relevant

opplæringsmateriale og instruksjoner basert på deres spesifikke medisinske tilstander

eller kommende prosedyrer. De kan levere personlig tilpasset innhold, svare på vanlige

spørsmål og gi veiledning om forberedelser før time, medisininstruksjoner eller

etterbehandling. Dette bidrar til å holde pasienter informert og engasjert gjennom hele

deres helsereise.

Ved å utnytte AI-arbeidere i pasientinntak kan helseorganisasjoner øke effektiviteten,

redusere ventetider og forbedre den generelle pasientopplevelsen. Disse arbeiderne

kan håndtere rutineoppgaver, samle nøyaktig informasjon og gi personlig tilpasset

assistanse, slik at helsepersonell kan fokusere på å gi pasientene behandling av høy

kvalitet.

Pasientrisikavurdering

AI-arbeidere kan spille en avgjørende rolle i vurdering av pasientrisiko ved å analysere

ulike datakilder og anvende avanserte analyseteknikker.

Dataintegrasjon: AI-arbeidere kan samle og gi mening til pasientdata fra flere

kilder, som elektroniske pasientjournaler (EPJ), medisinsk bildediagnostikk,

laboratorieresultater, kroppsnære enheter og sosiale helsedeterminanter. Ved å

konsolidere denne informasjonen til en omfattende pasientprofil, kan AI-arbeidere gi

et helhetlig bilde av pasientens helsetilstand og risikofaktorer.

Risikostratifisering: AI-arbeidere kan bruke prediktive modeller for å stratifisere

pasienter i ulike risikokategorier basert på deres individuelle egenskaper og helsedata.

Mangfold av arbeidere 97

Denne risikostratifiseringen gjør det mulig for helsetjenesteleverandører å prioritere

pasienter som trenger mer umiddelbar oppmerksomhet eller intervensjon. For eksempel

kan pasienter som identifiseres som høyrisiko for en bestemt tilstand, flagges for

nærmere overvåking, forebyggende tiltak eller tidlig intervensjon.

Personlige risikoprofiler: AI-arbeidere kan generere personlige risikoprofiler for hver

pasient, som fremhever de spesifikke faktorene som bidrar til deres risikoskår. Disse

profilene kan inkludere innsikt i pasientens livsstil, genetiske disposisjoner, miljøfaktorer

og sosiale helsedeterminanter. Ved å gi en detaljert oversikt over risikofaktorer, kan AI-

arbeidere hjelpe helsetjenesteleverandører med å skreddersy forebyggingsstrategier og

behandlingsplaner til individuelle pasientbehov.

Kontinuerlig risikoovervåking: AI-arbeidere kan kontinuerlig overvåke pasientdata

og oppdatere risikovurderinger i sanntid. Når ny informasjon blir tilgjengelig, som

endringer i vitale tegn, laboratorieresultater eller etterlevelse av medisinering, kan

AI-arbeidere rekalkulere risikoskår og varsle helsetjenesteleverandører om eventuelle

betydelige endringer. Denne proaktive overvåkingen muliggjør tidlige intervensjoner

og justeringer av pasientens behandlingsplaner.

Klinisk beslutningsstøtte: AI-arbeidere kan integrere resultater fra risikovurderinger

i kliniske beslutningsstøttesystemer, og gi helsetjenesteleverandører evidensbaserte

anbefalinger og varsler. For eksempel, hvis en pasients risikoskår for en bestemt tilstand

overstiger en viss terskel, kan AI-arbeideren oppfordre helsetjenesteleverandøren til å

vurdere spesifikke diagnostiske tester, forebyggende tiltak eller behandlingsalternativer

basert på kliniske retningslinjer og beste praksis.

Disse arbeiderne kan behandle store mengder pasientdata, anvende sofistikert

analyse og generere handlingsorientert innsikt for å støtte klinisk beslutningstaking.

Dette fører til forbedrede pasientresultater, reduserte helsekostnader og forbedret

befolkningshelsehåndtering.

Mangfold av arbeidere 98

KI-arbeider som prosesshåndterer

I sammenheng med KI-drevne applikasjoner kan en arbeider designes for å fungere som

en Prosesshåndterer, som beskrevet i boken “Enterprise Integration Patterns” av Gregor

Hohpe. En Prosesshåndterer er en sentral komponent som opprettholder prosessens

tilstand og bestemmer de neste behandlingstrinnene basert på mellomliggende

resultater.

Når en KI-arbeider fungerer som en Prosesshåndterer, mottar den en innkommende

melding som initialiserer prosessen, kjent som utløsermeldingen. KI-arbeideren

opprettholder deretter prosessens utførelsestilstand (som en samtalelogg) og håndterer

meldingen gjennom en serie behandlingstrinn implementert som verktøyfunksjoner,

som kan være sekvensielle eller parallelle, og kalles etter dens skjønn.

Hvis du bruker en klasse av KI-modeller som GPT-4 som vet hvordan

man utfører funksjoner parallelt, kan arbeideren din utføre flere trinn

samtidig. Riktignok har jeg ikke prøvd dette selv, og magefølelsen min sier

at resultatene kan variere.

Mangfold av arbeidere 99

Etter hvert individuelt behandlingstrinn returneres kontrollen tilbake til KI-arbeideren,

slik at den kan bestemme neste behandlingstrinn basert på gjeldende tilstand og

oppnådde resultater.

Lagre utløsermeldingene dine

Basert på min erfaring er det lurt å implementere utløsermeldingen din som et

databasestøttet objekt. På den måten identifiseres hver prosessinstans med en unik

primærnøkkel og gir deg et sted å lagre tilstanden knyttet til utførelsen, inkludert

KI-ens samtalelogg.

Her er for eksempel en forenklet versjon av Olympias AccountChange-modellklasse,

som representerer en forespørsel om å gjøre en endring i en brukers konto.

1 # == Schema Information

2 #

3 # Table name: account_changes

4 #

5 # id :uuid not null, primary key

6 # description :string

7 # state :string not null

8 # transcript :jsonb

9 # created_at :datetime not null

10 # updated_at :datetime not null

11 # account_id :uuid not null

12 #

13 # Indexes

14 #

15 # index_account_changes_on_account_id (account_id)

16 #

17 # Foreign Keys

18 #

19 # fk_rails_... (account_id => accounts.id)

20 #

21 class AccountChange < ApplicationRecord

22 belongs_to :account

23

24 validates :description, presence: true

Mangfold av arbeidere 100

25

26 after_commit -> {

27 broadcast(:account_change_requested, self)

28 }, on: :create

29

30 state_machine initial: :requested do

31 event :completed do

32 transition all => :complete

33 end

34 event :failed do

35 transition all => :requires_human_review

36 end

37 end

38 end

Klassen AccountChange fungerer som en utløsermelding som starter en prosess for

å håndtere forespørselen om kontoendring. Legg merke til hvordan den kringkastes

til Olympias Wisper-baserte pub/sub-delsystem etter at opprettelses-transaksjonen er

fullført.

Å lagre utløsermeldingen i databasen på denne måten gir en varig registrering av hver

kontoendring-forespørsel. Hver instans av klassen AccountChange får tildelt en unik

primærnøkkel, som gjør det enkelt å identifisere og spore individuelle forespørsler. Dette

er spesielt nyttig for revisjonslogging, da det gjør det mulig for systemet å opprettholde

en historisk oversikt over alle kontoendringer, inkludert når de ble forespurt, hvilke

endringer som ble forespurt, og gjeldende status for hver forespørsel.

I det gitte eksempelet inkluderer AccountChange-klassen felt som description for

å registrere detaljene i den forespurte endringen, state for å representere gjeldende

status for forespørselen (f.eks. forespurt, fullført, krever_manuell_gjennomgang),

og transcript for å lagre AI-ens samtalelogg relatert til forespørselen. Feltet

description er den faktiske prompten som brukes for å starte den første chat

completion med AI-en. Lagring av disse dataene gir verdifull kontekst og muliggjør

bedre sporing og analyse av kontoendringsprosessen.

Lagring av utløsermeldinger i databasen muliggjør robust feilhåndtering og

https://github.com/krisleech/wisper

Mangfold av arbeidere 101

gjenoppretting. Hvis det oppstår en feil under behandlingen av en kontoendring-

forespørsel, markerer systemet forespørselen som mislykket og flytter den til en tilstand

som krever menneskelig inngrep. Dette sikrer at ingen forespørsler går tapt eller blir

glemt, og at eventuelle problemer kan håndteres og løses på riktig måte.

AI-arbeideren, som en Prosesshåndterer, gir et sentralt kontrollpunkt og muliggjør

kraftige prosessrapporterings- og feilsøkingsmuligheter. Det er imidlertid viktig å merke

seg at bruk av en AI-arbeider som Prosesshåndterer for hvert arbeidsflytscenario i

applikasjonen din kan være overdrevet.

Integrering av AI-Arbeidere i

Applikasjonsarkitekturen Din

Når man inkorporerer AI-arbeidere i applikasjonsarkitekturen, må flere tekniske hensyn

tas for å sikre smidig integrasjon og effektiv kommunikasjon mellom AI-arbeiderne og

andre applikasjonskomponenter. Denne delen tar for seg nøkkelaspekter ved design

av disse grensesnittene, håndtering av dataflyt og administrasjon av AI-arbeidernes

livssyklus.

Design av Klare Grensesnitt og
Kommunikasjonsprotokoller

For å legge til rette for sømløs integrasjon mellom AI-arbeidere og andre

applikasjonskomponenter, er det avgjørende å definere klare grensesnitt og

kommunikasjonsprotokoller. Vurder følgende tilnærminger:

API-basert Integrasjon: Eksponer funksjonaliteten til AI-arbeidere gjennom

veldefinerte API-er, som RESTful-endepunkter eller GraphQL-skjemaer. Dette lar

Mangfold av arbeidere 102

andre komponenter samhandle med AI-arbeiderne ved hjelp av standard HTTP-

forespørsler og -svar. API-basert integrasjon gir en klar kontrakt mellom AI-arbeiderne

og de forbrukende komponentene, noe som gjør det enklere å utvikle, teste og

vedlikeholde integrasjonspunktene.

Meldingsbasert Kommunikasjon: Implementermeldingsbaserte kommunikasjonsmønstre,

som meldingskøer eller publiser-abonner-systemer, for å muliggjøre asynkron

interaksjon mellom AI-arbeidere og andre komponenter. Denne tilnærmingen frikobler

AI-arbeiderne fra resten av applikasjonen, noe som gir bedre skalerbarhet, feiltolerance

og løs kobling. Meldingsbasert kommunikasjon er spesielt nyttig når prosesseringen

utført av AI-arbeidere er tidkrevende eller ressursintensiv, da det lar andre deler av

applikasjonen fortsette å kjøre uten å vente på at AI-arbeiderne skal fullføre oppgavene

sine.

Hendelsesdrevet Arkitektur: Design systemet ditt rundt hendelser og utløsere

som aktiverer AI-arbeidere når spesifikke betingelser er oppfylt. AI-arbeidere kan

abonnere på relevante hendelser og reagere tilsvarende, utføre sine tildelte oppgaver

når hendelsene oppstår. Hendelsesdrevet arkitektur muliggjør sanntidsprosessering og

lar AI-arbeidere bli påkalt ved behov, noe som reduserer unødvendig ressursforbruk.

Denne tilnærmingen er godt egnet for scenarier hvor AI-arbeidere må reagere på

spesifikke handlinger eller endringer i applikasjonens tilstand.

Håndtering av Dataflyt og Synkronisering

Når man integrerer AI-arbeidere i applikasjonen din, er det avgjørende å sikre jevn

dataflyt og opprettholde datakonsistens mellom AI-arbeiderne og andre komponenter.

Vurder følgende aspekter:

Dataklargjøring: Før data mates inn i AI-arbeidere, kan det være nødvendig å utføre

ulike dataklargjøringsoppgaver, som rengjøring, formatering og/eller transformering av

inputdataene. Du vil ikke bare sikre at AI-arbeiderne kan prosessere effektivt, men du vil

også sikre at du ikke sløser tokens på å gi oppmerksomhet til informasjon som arbeideren

Mangfold av arbeidere 103

kan anse som ubrukelig i beste fall, distraherende i verste fall. Dataklargjøring kan

innebære oppgaver som å fjerne støy, håndtere manglende verdier eller konvertere

datatyper.

Datapersistens: Hvordan vil du lagre og bevare dataene som flyter inn og ut av AI-

arbeidere? Vurder faktorer som datavolum, spørringsmønstre og skalerbarhet. Trenger

du å bevare AI-ens transskript som en refleksjon av dens “tankeprosess” for revisjons-

eller feilsøkingsformål, eller er det nok å ha en registrering av resultatene alene?

Datahenting: Å hente dataene som trengs av arbeidere kan innebære

databasespørringer, lesing fra filer eller tilgang til eksterne API-er. Sørg for å vurdere

latens og hvordan AI-arbeidere vil ha tilgang til de mest oppdaterte dataene. Trenger de

full tilgang til databasen din, eller bør du definere omfanget av tilgangen deres snevert

i henhold til hva de gjør? Hva med skalering? Vurder hurtigbuffermekanismer for å

forbedre ytelsen og redusere belastningen på underliggende datakilder.

Datasynkronisering: Når flere komponenter, inkludert AI-arbeidere, får tilgang til og

modifiserer delte data, er det viktig å implementere riktige synkroniseringsmekanismer

for å opprettholde datakonsistens. Databaselåsingsstrategier, som optimistisk

eller pessimistisk låsing, kan hjelpe deg med å forhindre konflikter og sikre

dataintegritet. Implementer transaksjonsadministrasjonsteknikker for å gruppere

relaterte dataoperasjoner og opprettholde atomisitet, konsistens, isolasjon og varighet

(ACID)-egenskaper.

Feilhåndtering og gjenoppretting: Implementer robuste feilhåndterings- og

gjenopprettingsmekanismer for å håndtere datarelaterte problemer som kan oppstå

under dataflyten. Håndter unntak på en elegant måte og gi meningsfulle feilmeldinger

for å hjelpe med feilsøking. Implementer nye forsøksmekanismer og reservestrategier

for å håndtere midlertidige feil eller nettverksforstyrrelser. Definer klare prosedyrer for

datagjenoppretting og restaurering i tilfelle datakorrupsjon eller tap.

Ved å nøye designe og implementere dataflyt- og synkroniseringsmekanismer, kan du

sikre at AI-arbeiderne dine har tilgang til nøyaktige, konsistente og oppdaterte data.

Mangfold av arbeidere 104

Dette gjør dem i stand til å utføre oppgavene sine effektivt og produsere pålitelige

resultater.

Administrering av AI-arbeideres livssyklus

Utvikle en standardisert prosess for initialisering og konfigurering av AI-

arbeidere. Jeg foretrekker rammeverk som standardiserer hvordan du definerer

innstillinger som modellnavn, systemdirektiver og funksjonsdefinisjoner. Sørg for at

initialiseringsprosessen er automatisert og reproduserbar for å lette distribusjon og

skalering.

Implementer omfattende overvåkings- og loggføringsmekanismer for å spore helsen og

ytelsen til AI-arbeidere. Samle metrikker som ressursutnyttelse, behandlingstid, feilrater

og gjennomstrømning. Bruk sentraliserte loggsystemer som ELK-stack (Elasticsearch,

Logstash, Kibana) for å samle og analysere logger fra flere AI-arbeidere.

Bygg feiltolerance og motstandsdyktighet inn i AI-arbeiderarkitekturen. Implementer

feilhåndterings- og gjenopprettingsmekanismer for å håndtere feil eller unntak på en

elegant måte. Store språkmodeller er fortsatt banebrytende teknologi; leverandører har

en tendens til å gå ned ofte på uventede tidspunkter. Bruk nye forsøksmekanismer og

kretsbrytermekanismer for å forhindre kaskadesvikt.

Sammenstillbarhet og orkestrering av

AI-arbeidere

En av hovedfordelene med AI-arbeiderarkitekturen er dens sammenstillbarhet, som lar

deg kombinere og orkestrere flere AI-arbeidere for å løse komplekse problemer. Ved å

bryte ned en større oppgave i mindre, mer håndterbare deloppgaver, som hver håndteres

av en spesialisert AI-arbeider, kan du skape kraftige og fleksible systemer. I denne delen

skal vi utforske ulike tilnærminger til å sammenstille og orkestrere “en mengde” AI-

arbeidere.

Mangfold av arbeidere 105

Kjeding av AI-arbeidere for flertrinnarbeidsflyter

I mange scenarioer kan en kompleks oppgave dekomponeres i en serie sekvensielle trinn,

der utdata fra énAI-arbeider blir inndata for den neste. Denne kjedingen avAI-arbeidere

skaper en flertrinnarbeidsflyt eller rørledning. Hver AI-arbeider i kjeden fokuserer på en

spesifikk deloppgave, og det endelige resultatet er resultatet av den kombinerte innsatsen

fra alle arbeiderne.

La oss se på et eksempel i konteksten av en Ruby on Rails-applikasjon for behandling av

brukergenerert innhold. Arbeidsflyten involverer følgende trinn, som riktignok hver for

seg sannsynligvis er for enkle til å være verdt å dekomponere på denne måten i virkelige

brukstilfeller, men de gjør eksempelet lettere å forstå:

1. Tekstrensing: En AI-arbeider som er ansvarlig for å fjerne HTML-tagger, konvertere

tekst til små bokstaver og håndtere Unicode-normalisering.

2. Språkdeteksjon: En AI-arbeider som identifiserer språket i den rensede teksten.

3. Stemningsanalyse: En AI-arbeider som bestemmer stemningen (positiv, negativ eller

nøytral) i teksten basert på det oppdagede språket.

4. Innholdskategorisering: En AI-arbeider som klassifiserer teksten i forhåndsdefinerte

kategorier ved hjelp av naturlig språkbehandlingsteknikker.

Her er et svært forenklet eksempel på hvordan du kan kjede disse AI-arbeiderne sammen

ved hjelp av Ruby:

Mangfold av arbeidere 106

1 class ContentProcessor

2 def initialize(text)

3 @text = text

4 end

5

6 def process

7 cleaned_text = TextCleanupWorker.new(@text).call

8 language = LanguageDetectionWorker.new(cleaned_text).call

9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

10 category = CategorizationWorker.new(cleaned_text, language).call

11

12 { cleaned_text:, language:, sentiment:, category: }

13 end

14 end

I dette eksemplet initialiserer ContentProcessor-klassen med råteksten og kjeder

KI-arbeiderne sammen i process-metoden. Hver KI-arbeider utfører sin spesifikke

oppgave og sender resultatet videre til neste arbeider i kjeden. Det endelige resultatet

er en hash som inneholder den rensede teksten, det oppdagede språket, stemningen og

innholdskategorien.

Parallell prosessering for uavhengige KI-arbeidere

I det forrige eksemplet er KI-arbeiderne kjeded sekvensielt, hvor hver arbeider behandler

teksten og sender resultatet til neste arbeider.Men hvis du har flere KI-arbeidere som kan

operere uavhengig på samme inndata, kan du optimalisere arbeidsflyten ved å behandle

dem parallelt.

I det gitte scenariet, når tekstoppryddingen er utført av TextCleanupWorker,

kan LanguageDetectionWorker, SentimentAnalysisWorker og

CategorizationWorker alle behandle den rensede teksten uavhengig av

hverandre. Ved å kjøre disse arbeiderne parallelt, kan du potensielt redusere den

totale behandlingstiden og forbedre effektiviteten i arbeidsflyten.

For å oppnå parallell prosessering i Ruby, kan du utnytte samtidighetsteknikker som

tråder eller asynkron programmering. Her er et eksempel på hvordan du kan modifisere

Mangfold av arbeidere 107

ContentProcessor-klassen for å behandle de tre siste arbeiderne parallelt ved hjelp

av tråder:

1 require 'concurrent'

2

3 class ContentProcessor

4 def initialize(text)

5 @text = text

6 end

7

8 def process

9 cleaned_text = TextCleanupWorker.new(@text).call

10

11 language_future = Concurrent::Future.execute do

12 LanguageDetectionWorker.new(cleaned_text).call

13 end

14

15 sentiment_future = Concurrent::Future.execute do

16 SentimentAnalysisWorker.new(cleaned_text).call

17 end

18

19 category_future = Concurrent::Future.execute do

20 CategorizationWorker.new(cleaned_text).call

21 end

22

23 language = language_future.value

24 sentiment = sentiment_future.value

25 category = category_future.value

26

27 { cleaned_text:, language:, sentiment:, category: }

28 end

29 end

I denne optimaliserte versjonen bruker vi concurrent-ruby-biblioteket for å opprette

Concurrent::Future-objekter for hver av de uavhengige AI-arbeiderne. En Future

representerer en beregning som vil bli utført asynkront i en separat tråd.

Etter tekstryddingsstadiet oppretter vi tre Future-objekter: language_future,

sentiment_future og category_future. Hver Future kjører sin tilhørende

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Mangfold av arbeidere 108

AI-arbeider (LanguageDetectionWorker, SentimentAnalysisWorker og

CategorizationWorker) i en separat tråd, og sender cleaned_text som inndata.

Ved å kalle value-metoden på hver Future, venter vi på at beregningen skal fullføres

og henter resultatet. value-metoden blokkerer til resultatet er tilgjengelig, og sikrer at

alle parallelle arbeidere har fullført prosesseringen før vi går videre.

Til slutt bygger vi output-hashen med den ryddede teksten og resultatene fra de

parallelle arbeiderne, akkurat som i det originale eksempelet.

Ved å prosessere de uavhengige AI-arbeiderne parallelt, kan du potensielt redusere

den totale prosesseringstiden sammenlignet med å kjøre dem sekvensielt. Denne

optimaliseringen er spesielt fordelaktig når man håndterer tidkrevende oppgaver eller

når man prosesserer store datamengder.

Det er imidlertid viktig å merke seg at de faktiske ytelsesgevinstene avhenger av ulike

faktorer, som kompleksiteten til hver arbeider, tilgjengelige systemressurser og overhead

fra trådhåndtering. Det er alltid god praksis å gjøre ytelsestester og profilere koden din

for å bestemme det optimale nivået av parallellitet for ditt spesifikke brukstilfelle.

I tillegg, når man implementerer parallell prosessering, må man være oppmerksom

på eventuelle delte ressurser eller avhengigheter mellom arbeiderne. Sørg for at

arbeiderne kan operere uavhengig uten konflikter eller kappløpstilstander. Hvis det

finnes avhengigheter eller delte ressurser, kan det være nødvendig å implementere

passende synkroniseringsmekanismer for å opprettholde dataintegritet og unngå

problemer som vranglås eller inkonsistente resultater.

Rubys Global Interpreter Lock og asynkron
prosessering

Det er viktig å forstå implikasjonene av Rubys Global Interpreter Lock (GIL) når man

Mangfold av arbeidere 109

vurderer asynkron trådbasert prosessering i Ruby.

GIL er en mekanisme i Rubys interpreter som sikrer at bare én tråd kan kjøre Ruby-

kode om gangen, selv på prosessorer med flere kjerner. Dette betyr at selv om flere

tråder kan opprettes og håndteres innenfor en Ruby-prosess, kan bare én tråd aktivt

kjøre Ruby-kode på et gitt tidspunkt.

GIL er designet for å forenkle implementeringen av Ruby-interpreteren og gi

trådsikkerhet for Rubys interne datastrukturer. Den begrenser imidlertid muligheten

for ekte parallell kjøring av Ruby-kode.

Når du bruker tråder i Ruby, som med concurrent-ruby-biblioteket eller den

innebygde Thread-klassen, er trådene underlagt GILens begrensninger. GIL lar hver

tråd kjøre Ruby-kode i en kort tidsperiode før den bytter til en annen tråd, noe som

skaper illusjonen av samtidig kjøring.

På grunn av GIL forblir imidlertid den faktiske kjøringen av Ruby-kode sekvensiell.

Mens én tråd kjører Ruby-kode, er andre tråder i praksis pauset, og venter på sin tur

til å få tilgang til GIL og kjøre.

Dette betyr at trådbasert asynkron prosessering i Ruby er mest effektiv for I/O-

bundne oppgaver, som å vente på svar fra eksterne API-er (som tredjeparts store

språkmodeller) eller utføre fil-I/O-operasjoner. Når en tråd møter en I/O-operasjon,

kan den frigjøre GIL, noe som lar andre tråder kjøre mens den venter på at I/O skal

fullføres.

På den annen side, for CPU-bundne oppgaver, som intensive beregninger eller

langvarig AI-arbeiderprosessering, kan GIL begrense de potensielle ytelsesgevinstene

ved trådbasert parallellitet. Siden bare én tråd kan kjøre Ruby-kode om gangen, vil

den totale kjøretiden kanskje ikke reduseres betydelig sammenlignet med sekvensiell

prosessering.

For å oppnå ekte parallell kjøring for CPU-bundne oppgaver i Ruby, kan du måtte

utforske alternative tilnærminger, som:

Mangfold av arbeidere 110

• Bruke prosessbasert parallellitet med flere Ruby-prosesser, hver kjørende på

en separat CPU-kjerne.

• Utnytte eksterne biblioteker eller rammeverk som tilbyr native utvidelser eller

grensesnitt til språk uten GIL, som C eller Rust.,

• Bruke distribuerte beregningsrammeverk eller meldingskøer for å distribuere

oppgaver på tvers av flere maskiner eller prosesser.

Det er avgjørende å vurdere oppgavenes natur og begrensningene som pålegges

av GIL når man designer og implementerer asynkron prosessering i Ruby. Mens

trådbasert asynkron prosessering kan gi fordeler for I/O-bundne oppgaver, vil den

kanskje ikke tilby betydelige ytelsesforbedringer for CPU-bundne oppgaver på grunn

av GILens begrensninger.

Ensemble-teknikker for forbedret nøyaktighet

Ensemble-teknikker innebærer å kombinere utdataene fra flere AI-arbeidere for å

forbedre systemets generelle nøyaktighet eller robusthet. I stedet for å stole på en enkelt

AI-arbeider, utnytter ensemble-teknikker den kollektive intelligensen fra flere arbeidere

for å ta mer informerte beslutninger.

Ensembler er spesielt viktige hvis forskjellige deler av arbeidsflyten din

fungerer best med ulike KI-modeller, noe som er mer vanlig enn du kanskje

tror. Kraftige modeller som GPT-4 er ekstremt dyre sammenlignet med

mindre kapable alternativer med åpen kildekode, og er sannsynligvis ikke

nødvendige for hvert enkelt arbeidsflytsteg i applikasjonen din.

En vanlig ensemble-teknikk er flertallsavstemning, hvor flere KI-arbeidere uavhengig

behandler samme inndata, og det endelige resultatet bestemmes av flertallets konsensus.

Mangfold av arbeidere 111

Denne tilnærmingen kan bidra til å redusere påvirkningen av individuelle arbeiderfeil

og forbedre systemets generelle pålitelighet.

La oss se på et eksempel hvor vi har tre KI-arbeidere for stemningsanalyse, hver

med en forskjellig modell eller utstyrt med forskjellige kontekster. Vi kan kombinere

resultatene deres ved hjelp av flertallsavstemning for å bestemme den endelige

stemningsprediksjon.

1 class SentimentAnalysisEnsemble

2 def initialize(text)

3 @text = text

4 end

5

6 def analyze

7 predictions = [

8 SentimentAnalysisWorker1.new(@text).analyze,

9 SentimentAnalysisWorker2.new(@text).analyze,

10 SentimentAnalysisWorker3.new(@text).analyze

11]

12

13 predictions

14 .group_by { |sentiment| sentiment }

15 .max_by { |_, votes| votes.size }

16 .first

17

18 end

19 end

I dette eksemplet initialiserer SentimentAnalysisEnsemble-klassen med teksten

og påkaller tre forskjellige KI-arbeidere for stemningsanalyse. analyze-metoden

samler prediksjoner fra hver arbeider og bestemmer majoritetsstemningen ved hjelp av

metodene group_by og max_by. Det endelige resultatet er stemningen som får flest

stemmer fra ensemblet av arbeidere.

Ensembler er åpenbart et tilfelle hvor det kan være verdt tiden din å

eksperimentere med parallellitet.

Mangfold av arbeidere 112

Dynamisk utvelgelse og påkalling av KI-arbeidere

I noen, om ikke de fleste tilfeller, kan den spesifikke KI-arbeideren som skal påkalles være

avhengig av kjøretidsbetingelser eller brukerinndata. Dynamisk utvelgelse og påkalling

av KI-arbeidere gir fleksibilitet og tilpasningsevne i systemet.

Du kan bli fristet til å prøve å presse mye funksjonalitet inn i én enkelt

KI-arbeider, gi den mange funksjoner og en stor komplisert prompt som

forklarer hvordan man skal bruke dem. Motstå fristelsen, stol på meg. En av

grunnene til at tilnærmingen vi diskuterer i dette kapittelet kalles “Mangfold

av arbeidere” er for å minne oss på at det er ønskelig å ha mange spesialiserte

arbeidere, hvor hver gjør sin lille jobb i tjeneste av det større formålet.

For eksempel, tenk på en chatbot-applikasjon hvor forskjellige KI-arbeidere er ansvarlige

for å håndtere ulike typer brukerhenvendelser. Basert på brukerens inndata velger

applikasjonen dynamisk den passende KI-arbeideren for å behandle henvendelsen.

1 class ChatbotController < ApplicationController

2 def process_query

3 query = params[:query]

4 query_type = QueryClassifierWorker.new(query).classify

5

6 case query_type

7 when 'greeting'

8 response = GreetingWorker.new(query).generate_response

9 when 'product_inquiry'

10 response = ProductInquiryWorker.new(query).generate_response

11 when 'order_status'

12 response = OrderStatusWorker.new(query).generate_response

13 else

14 response = DefaultResponseWorker.new(query).generate_response

15 end

16

17 render json: { response: response }

18 end

19 end

Mangfold av arbeidere 113

I dette eksempelet mottar ChatbotController en brukerforespørsel gjennom

process_query-handlingen. Først bruker den en QueryClassifierWorker for

å bestemme typen forespørsel. Basert på den klassifiserte forespørselstypen velger

kontrolleren dynamisk den passende AI-arbeideren for å generere svaret. Denne

dynamiske utvelgelsen gjør at chatboten kan håndtere forskjellige typer forespørsler og

rute dem til relevante AI-arbeidere.

Siden arbeidet til QueryClassifierWorker er relativt enkelt

og ikke krever mye kontekst eller funksjonsdefinisjoner, kan du

sannsynligvis implementere det ved hjelp av en ultrarask liten LLM

som mistralai/mixtral-8x7b-instruct:nitro. Den har kapasiteter

som kommer nær GPT-4-nivå på mange oppgaver, og når jeg skriver dette,

kan Groq levere den med en imponerende hastighet på 444 tokens per

sekund.

Kombinere tradisjonell NLP med LLMer

Mens store språkmodeller (LLM) har revolusjonert feltet naturlig språkprosessering

(NLP), og tilbyr uovertruffen allsidighet og ytelse på tvers av et bredt spekter av

oppgaver, er de ikke alltid den mest effektive eller kostnadseffektive løsningen for

ethvert problem. I mange tilfeller kan kombinasjonen av tradisjonelle NLP-teknikker

med LLMer føre til mer optimaliserte, målrettede og økonomiske tilnærminger for å

løse spesifikke NLP-utfordringer.

Tenk på LLMer som sveitsiske lommekniver innen NLP—utrolig allsidige og kraftige,

men ikke nødvendigvis det beste verktøyet for enhver jobb. Noen ganger kan et dedikert

verktøy som en korketrekker eller en boksåpner være mer effektivt for en bestemt

oppgave. På samme måte kan tradisjonelle NLP-teknikker, som dokumentklynging,

temaidentifisering og klassifisering, ofte gi mer målrettede og kostnadseffektive

løsninger for visse aspekter av NLP-prosessen.

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Mangfold av arbeidere 114

En av hovedfordelene med tradisjonelle NLP-teknikker er deres beregningsmessige

effektivitet. Disse metodene, som ofte er basert på enklere statistiske modeller eller

regelbaserte tilnærminger, kan behandle store mengder tekstdata mye raskere og med

lavere beregningskostnader sammenlignet med LLMer. Dette gjør dem spesielt godt

egnet for oppgaver som innebærer å analysere og organisere store dokumentsamlinger,

som å klynge lignende artikler eller identifisere hovedtemaer innenfor en samling

tekster.

Dessuten kan tradisjonelle NLP-teknikker ofte oppnå høy nøyaktighet og presisjon

for spesifikke oppgaver, spesielt når de er trent på domenespesifikke datasett.

For eksempel kan en godt innstilt dokumentklassifikator som bruker tradisjonelle

maskinlæringsalgoritmer som støttevektormaskiner (SVM) eller Naiv Bayes

nøyaktig kategorisere dokumenter i forhåndsdefinerte kategorier med minimal

beregningskostnad.

LLMer utmerker seg imidlertid når det kommer til oppgaver som krever en

dypere forståelse av språk, kontekst og resonnement. Deres evne til å generere

sammenhengende og kontekstuelt relevant tekst, svare på spørsmål og oppsummere

lange passasjer er uovertruffen av tradisjonelle NLP-metoder. LLMer kan effektivt

håndtere komplekse språklige fenomener, som tvetydighet, koreferanse og

idiomatiske uttrykk, noe som gjør dem uvurderlige for oppgaver som krever naturlig

språkgenerering eller forståelse.

Den virkelige styrken ligger i å kombinere tradisjonelle NLP-teknikker med LLMer for

å skape hybride tilnærminger som utnytter styrkene til begge. Ved å bruke tradisjonelle

NLP-metoder for oppgaver som dokumentforbehandling, klynging og temaekstraksjon,

kan du effektivt organisere og strukturere tekstdataene dine. Denne strukturerte

informasjonen kan deretter mates inn i LLMer for mer avanserte oppgaver, som å

generere sammendrag, svare på spørsmål eller lage omfattende rapporter.

La oss for eksempel se på et brukstilfelle der du ønsker å generere en trendrapport for

et spesifikt domene basert på en stor samling individuelle trenddokumenter. I stedet for

Mangfold av arbeidere 115

å utelukkende stole på LLMer, som kan være beregningsmessig kostbart og tidkrevende

for behandling av store tekstmengder, kan du bruke en hybrid tilnærming:

1. Bruk tradisjonelle NLP-teknikker, som temamodellering (f.eks. Latent Dirichlet-

allokering) eller klyngealgoritmer (f.eks. K-means), for å gruppere lignende

trenddokumenter sammen og identifisere hovedtemaer og emner innenfor

samlingen.

2. Mat de klyngede dokumentene og identifiserte temaene inn i en LLM, og utnytt

dens overlegne språkforståelse og genereringsevner for å lage sammenhengende

og informative sammendrag for hver klynge eller tema.

3. Til slutt, bruk LLMen til å generere en omfattende trendrapport ved å kombinere

de individuelle sammendragene, fremheve de viktigste trendene og gi innsikt og

anbefalinger basert på den samlede informasjonen.

Ved å kombinere tradisjonelle NLP-teknikker med LLMer på denne måten, kan du

effektivt behandle store mengder tekstdata, trekke ut meningsfull innsikt og generere

rapporter av høy kvalitet mens du optimaliserer beregningsressurser og kostnader.

Når du begir deg ut på dineNLP-prosjekter, er det essensielt å nøye evaluere de spesifikke

kravene og begrensningene for hver oppgave, og vurdere hvordan tradisjonelle NLP-

metoder og LLMs kan utnyttes sammen for å oppnå de beste resultatene. Ved å

kombinere effektiviteten og presisjonen fra tradisjonelle teknikker med allsidigheten og

kraften i LLMs, kan du skape høyeffektive og økonomiske NLP-løsninger som gir verdi

til dine brukere og interessenter.

Verktøybruk

Innen AI-drevet applikasjonsutvikling har konseptet “verktøybruk” eller

“funksjonskalling” vokst fram som en kraftfull teknikk som gjør det mulig for

din LLM å koble seg til eksterne verktøy, API-er, funksjoner, databaser og andre

ressurser. Denne tilnærmingen muliggjør et rikere sett med atferd enn bare å produsere

tekst, og mer dynamiske interaksjoner mellom AI-komponentene dine og resten av

applikasjonens økosystem. Som vi skal undersøke i dette kapittelet, gir verktøybruk deg

også muligheten til å få AI-modellen din til å generere data på strukturerte måter.

Hva er verktøybruk?

Verktøybruk, også kjent som funksjonskalling, er en teknikk som lar utviklere spesifisere

en liste over funksjoner som en LLM kan samhandle med under genereringsprosessen.

Disse verktøyene kan variere fra enkle hjelpefunksjoner til komplekse API-er eller

Verktøybruk 117

databasespørringer. Ved å gi LLM-en tilgang til disse verktøyene kan utviklere utvide

modellens kapabiliteter og gjøre den i stand til å utføre oppgaver som krever ekstern

kunnskap eller handlinger.

Figur 8. Eksempel på en funksjonsdefinisjon for en AI-arbeider som analyserer dokumenter

1 FUNCTION = {

2 name: "save_analysis",

3 description: "Save analysis data for document",

4 parameters: {

5 type: "object",

6 properties: {

7 title: {

8 type: "string",

9 maxLength: 140

10 },

11 summary: {

12 type: "string",

13 description: "comprehensive multi-paragraph summary with

14 overview and list of sections (if applicable)"

15 },

16 tags: {

17 type: "array",

18 items: {

19 type: "string",

20 description: "lowercase tags representing main themes

21 of the document"

22 }

23 }

24 },

25 "required": %w[title summary tags]

26 }

27 }.freeze

Hovedideen bak verktøybruk er å gi LLM-en muligheten til å dynamisk velge og utføre

passende verktøy basert på brukerens inndata eller oppgaven som skal løses. I stedet

for å kun stole på modellens forhåndstrente kunnskap, gjør verktøybruk det mulig

for LLM-en å utnytte eksterne ressurser for å generere mer nøyaktige, relevante og

handlingsorienterte svar. Verktøybruk gjør teknikker som RAG (Retrieval Augmented

Verktøybruk 118

Generation) mye enklere å implementere enn de ellers ville vært.

Merk at med mindre annet er oppgitt, antar denne boken at AI-modellen din ikke

har tilgang til noen innebygde serverside-verktøy. Alle verktøy du ønsker å gjøre

tilgjengelige for din AI må eksplisitt deklareres av deg i hver API-forespørsel, med

bestemmelser for utførelse hvis og når din AI forteller deg at den ønsker å bruke det

verktøyet i sitt svar.

Potensialet i verktøybruk

Verktøybruk åpner for et bredt spekter av muligheter for AI-drevne applikasjoner. Her

er noen eksempler på hva som kan oppnås med verktøybruk:

1. Chatboter og virtuelle assistenter: Ved å koble en LLM til eksterne verktøy kan

chatboter og virtuelle assistenter utføre mer komplekse oppgaver, som å hente

informasjon fra databaser, utføre API-kall eller samhandle med andre systemer.

For eksempel kan en chatbot bruke et CRM-verktøy til å endre status på en avtale

basert på brukerens forespørsel.

2. Dataanalyse og innsikt: LLM-er kan kobles til dataanalyseverktøy eller

biblioteker for å utføre avanserte databehandlingsoppgaver. Dette gjør det mulig

for applikasjoner å generere innsikt, gjennomføre komparative analyser eller gi

datadrevne anbefalinger basert på brukerforespørsler.

3. Søk og informasjonsgjenfinning: Verktøybruk gjør det mulig for

LLM-er å samhandle med søkemotorer, vektordatabaser eller andre

informasjonsgjenfinningssystemer. Ved å omforme brukerforespørsler til

søkeforespørsler kan LLM-en hente relevant informasjon fra flere kilder og gi

omfattende svar på brukerspørsmål.

Verktøybruk 119

4. Integrasjon med eksterne tjenester: Verktøybruk muliggjør sømløs integrasjon

mellom AI-drevne applikasjoner og eksterne tjenester eller API-er. For eksempel

kan en LLM samhandle med et vær-API for å gi værvarsel i sanntid eller et

oversettelse-API for å generere flerspråklige svar.

Arbeidsflyten for verktøybruk

Arbeidsflyten for verktøybruk innebærer vanligvis fire hovedtrinn:

1. Inkludere funksjonsdefinisjoner i forespørselskonteksten

2. Dynamisk (eller eksplisitt) verktøyvalg

3. Utførelse av funksjon(er)

4. Valgfri fortsettelse av den opprinnelige prompten

La oss gjennomgå hvert av disse trinnene i detalj.

Inkludere funksjonsdefinisjoner i forespørselskonteksten

AI-en vet hvilke verktøy den har til rådighet fordi du gir den en liste som del av

fullføringsforespørselen (vanligvis definert som funksjoner ved hjelp av en variant av

JSON-skjema).

Den nøyaktige syntaksen for verktøydefinisjon er modellspesifikk.

Slik definerer du en get_weather-funksjon i Claude 3:

Verktøybruk 120

1 {

2 "name": "get_weather",

3 "description": "Get the current weather in a given location",

4 "input_schema": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA"

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 }

16 },

17 "required": ["location"]

18 }

19 }

Og slik ville du definere den samme funksjonen for GPT-4, ved å sende den som verdien

til tools-parameteret:

1 {

2 "name": "get_current_weather",

3 "description": "Get the current weather in a given location",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA",

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 },

16 },

17 "required": ["location"],

Verktøybruk 121

18 },

19 }

Nesten det samme, bortsett fra at det er annerledes uten noen åpenbar grunn! Så

irriterende.

Funksjonsdefinisjoner spesifiserer navn, beskrivelse og inngangsparametere.

Inngangsparametere kan defineres ytterligere ved hjelp av attributter som opplistinger

for å begrense akseptable verdier, og ved å spesifisere om en parameter er påkrevd eller

ikke.

I tillegg til selve funksjonsdefinisjonene kan du også inkludere instruksjoner eller

kontekst for hvorfor og hvordan funksjonen skal brukes i systemdirektivet.

For eksempel inkluderer mitt Nettsøk-verktøy i Olympia dette systemdirektivet, som

minner KI-en på at den har de nevnte verktøyene tilgjengelig:

1 The `google_search` and `realtime_search` functions let you do research

2 on behalf of the user. In contrast to Google, realtime search is powered

3 by Perplexity and provides real-time information to curated current events

4 databases and news sources. Make sure to include URLs in your response so

5 user can do followup research.

Å gi detaljerte beskrivelser regnes som den viktigste faktoren for verktøyytelse.

Beskrivelsene dine bør forklare alle detaljer om verktøyet, inkludert:

• Hva verktøyet gjør

• Når det bør brukes (og når det ikke bør brukes)

• Hva hver parameter betyr og hvordan den påvirker verktøyets oppførsel

• Viktige forbehold eller begrensninger som gjelder for verktøyets implementering

Verktøybruk 122

Jo mer kontekst du kan gi AI-en om verktøyene dine, desto bedre vil den bli til å

bestemme når og hvordan de skal brukes. For eksempel anbefaler Anthropic minst 3-4

setninger per verktøybeskrivelse for sin Claude 3-serie, flere hvis verktøyet er komplekst.

Det er ikke nødvendigvis intuitivt, men beskrivelser anses også som viktigere enn

eksempler. Selv om du kan inkludere eksempler på hvordan man bruker et verktøy i

beskrivelsen eller i den tilhørende prompten, er dette mindre viktig enn å ha en klar og

omfattende forklaring av verktøyets formål og parametere. Legg bare til eksempler etter

at du har utarbeidet beskrivelsen fullstendig.

Her er et eksempel på en Stripe-lignende API-funksjonsspesifikasjon:

1 {

2 "name": "createPayment",

3 "description": "Create a new payment request",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "transaction_amount": {

8 "type": "number",

9 "description": "The amount to be paid"

10 },

11 "description": {

12 "type": "string",

13 "description": "A brief description of the payment"

14 },

15 "payment_method_id": {

16 "type": "string",

17 "description": "The payment method to be used"

18 },

19 "payer": {

20 "type": "object",

21 "description": "Information about the payer, including their name,

22 email, and identification number",

23 "properties": {

24 "name": {

25 "type": "string",

26 "description": "The payer's name"

27 },

28 "email": {

Verktøybruk 123

29 "type": "string",

30 "description": "The payer's email address"

31 },

32 "identification": {

33 "type": "object",

34 "description": "The payer's identification number",

35 "properties": {

36 "type": {

37 "type": "string",

38 "description": "Identification document (e.g. CPF, CNPJ)"

39 },

40 "number": {

41 "type": "string",

42 "description": "The identification number"

43 }

44 },

45 "required": ["type", "number"]

46 }

47 },

48 "required": ["name", "email", "identification"]

49 }

50 }

51 }

I praksis har noen modeller problemer med å håndtere nøstede

funksjonsspesifikasjoner og komplekse output-datatyper som arrays,

dictionaries osv. Men i teorien burde du kunne levere JSON-

skjemaspesifikasjoner av vilkårlig dybde!

Dynamisk verktøyvalg

Når du utfører en chatfullføring som inkluderer verktøydefinisjoner, velger LLM-

en dynamisk det mest passende verktøyet/verktøyene og genererer de nødvendige

inputparameterne for hvert verktøy.

I praksis er AI-ens evne til å kalle nøyaktig den riktige funksjonen og nøyaktig

følge din spesifikasjon for inputs varierende. Å sette temperatur-hyperparameteren

Verktøybruk 124

helt ned til 0.0 hjelper mye, men etter min erfaring vil du fortsatt få sporadiske feil.

Disse feilene inkluderer hallusinerte funksjonsnavn, feilnavngitte eller helt manglende

inputparametere. Parametere sendes som JSON, noe som betyr at du noen ganger vil se

feil forårsaket av avkuttet, feilsitert eller på annen måte ødelagt JSON.

Self Healing Data-mønstre kan hjelpe med å automatisk reparere

funksjonsanrop som bryter sammen på grunn av syntaksfeil.

Tvunget (også kalt eksplisitt) verktøyvalg

Noen modeller gir deg muligheten til å tvinge frem kalling av en bestemt funksjon som

en parameter i forespørselen. Ellers er det helt opp til AI-ens skjønn om funksjonen skal

kalles eller ikke.

Muligheten til å tvinge frem et funksjonsanrop er avgjørende i visse scenarioer hvor du

vil sikre at et spesifikt verktøy eller funksjon blir utført, uavhengig av AI-ens dynamiske

utvalgsprosess. Det er flere grunner til at denne funksjonen er viktig:

1. Eksplisitt Kontroll: Du kan bruke AI-en som en Diskret Komponent eller i en

forhåndsdefinert arbeidsflyt som krever utførelse av en bestemt funksjon på et

bestemt tidspunkt. Ved å tvinge frem kallet kan du garantere at den ønskede

funksjonen blir påkalt i stedet for å måtte pent be AI-en om å gjøre det.

2. Feilsøking og Testing: Under utvikling og testing av AI-drevne applikasjoner

er muligheten til å tvinge frem funksjonsanrop uvurderlig for feilsøkingsformål.

Ved å eksplisitt utløse spesifikke funksjoner kan du isolere og teste

individuelle komponenter i applikasjonen din. Dette lar deg verifisere at

funksjonsimplementeringene er korrekte, validere inputparameterne og sikre at

de forventede resultatene returneres.

3. Håndtering av Kanttilfeller: Det kan oppstå kanttilfeller eller eksepsjonelle

scenarioer hvor AI-ens dynamiske utvalgsprosess kanskje ikke velger å utføre

Verktøybruk 125

en funksjon som den burde, og du vet dette basert på eksterne prosesser. I slike

tilfeller gjør muligheten til å tvinge frem et funksjonsanrop at du kan håndtere

disse situasjonene eksplisitt. Definer regler eller betingelser i applikasjonslogikken

din for å bestemme når AI-ens skjønn skal overstyres.

4. Konsistens og Reproduserbarhet: Hvis du har en spesifikk sekvens av funksjoner

som må utføres i en bestemt rekkefølge, garanterer tvungne kall at den samme

sekvensen følges hver gang. Dette er spesielt viktig i applikasjoner hvor konsistens

og forutsigbar oppførsel er kritisk, som i finansielle systemer eller vitenskapelige

simuleringer.

5. Ytelsesoptimalisering: I noen tilfeller kan det å tvinge frem et funksjonsanrop

føre til ytelsesoptimaliseringer. Hvis du vet at en spesifikk funksjon er nødvendig

for en bestemt oppgave, og at AI-ens dynamiske utvalgsprosess kan introdusere

unødvendig overhead, kan du omgå utvalgsprosessen og direkte påkalle den

nødvendige funksjonen. Dette kan bidra til å redusere latens og forbedre den

generelle effektiviteten til applikasjonen din.

Oppsummert gir muligheten til å tvinge frem funksjonsanrop i AI-drevne applikasjoner

eksplisitt kontroll, hjelper med feilsøking og testing, håndterer kanttilfeller, sikrer

konsistens og reproduserbarhet. Det er et kraftig verktøy i arsenalet ditt, men vi må

diskutere enda et aspekt ved denne viktige funksjonen.

I mange beslutningstakingsscenarioer ønsker vi alltid at modellen skal gjøre

et funksjonsanrop og vil kanskje aldri at modellen skal svare med bare sin

interne kunnskap. For eksempel, hvis du ruter mellom flere modeller som er

spesialisert for forskjellige oppgaver (flerspråklig input, matematikk, osv.),

kan du bruke funksjonsanropsmodellen til å delegere forespørsler til en av

hjelpemodellene og aldri svare selvstendig.

Verktøybruk 126

Verktøyvalgparameter

GPT-4 og andre språkmodeller som støtter funksjonsanrop gir deg en tool_choice-

parameter for å kontrollere om verktøybruk er påkrevd som del av en fullføring. Denne

parameteren har tre mulige verdier:

• auto gir AI-en full frihet til å bruke et verktøy eller bare svare

• required forteller AI-en at den må kalle et verktøy i stedet for å svare, men lar

valget av verktøy være opp til AI-en

• Det tredje alternativet er å sette parameteren til name_of_function som du

ønsker å tvinge frem. Mer om det i neste del.

Merk at hvis du setter tool choice til required, vil modellen bli tvunget til

å velge den mest relevante funksjonen å kalle blant de som er tilgjengelige,

selv om ingen egentlig passer til prompten. På tidspunktet for publisering

kjenner jeg ikke til noen modell som vil returnere et tomt tool_calls-

svar, eller bruke en annen måte å fortelle deg at den ikke fant en passende

funksjon å kalle.

Tvinge en Funksjon for å Få Strukturert Utdata

Muligheten til å tvinge et funksjonsanrop gir deg en måte å fremtvinge strukturerte data

fra en chat-fullførelse i stedet for å måtte trekke det ut selv fra klartekstsvaret.

Hvorfor er det så viktig å tvinge funksjoner for å få strukturert utdata? Kort sagt, fordi

uttrekking av strukturerte data fra LLM utdata er en stor hodepine. Du kan gjøre livet

ditt litt enklere ved å be om data i XML, men da må du analysere XML. Og hva gjør

Verktøybruk 127

du når den XML-en mangler fordi AI-en svarte: “Beklager, men jeg kan ikke generere

dataene du ba om fordi bla, bla, bla…”

Når du bruker verktøy på denne måten:

• Du bør sannsynligvis definere ett enkelt verktøy i forespørselen din

• Husk å tvinge bruken av funksjonen ved hjelp av tool_choice-parameteren

• Husk at modellen vil sende inndata til verktøyet, så navnet på verktøyet og

beskrivelsen bør være fra modellens perspektiv, ikke ditt

Dette siste punktet fortjener et eksempel for klarhet. La oss si at du ber AI-en om å gjøre

sentimentanalyse på brukertekst. Navnet på funksjonen ville ikke være analyze_-

sentiment, men heller noe som save_sentiment_analysis. Det er AI-en som

utfører sentimentanalysen, ikke verktøyet. Alt verktøyet gjør (fra AI-ens perspektiv) er

å lagre resultatene av analysen.

Her er et eksempel på bruk av Claude 3 for å registrere et sammendrag av et bilde i

velstrukturert JSON, denne gangen fra kommandolinjen ved hjelp av curl:

1 curl https://api.anthropic.com/v1/messages \

2 --header "content-type: application/json" \

3 --header "x-api-key: $ANTHROPIC_API_KEY" \

4 --header "anthropic-version: 2023-06-01" \

5 --header "anthropic-beta: tools-2024-04-04" \

6 --data \

7 '{

8 "model": "claude-3-sonnet-20240229",

9 "max_tokens": 1024,

10 "tools": [{

11 "name": "record_summary",

12 "description": "Record summary of image into well-structured JSON.",

13 "input_schema": {

14 "type": "object",

15 "properties": {

Verktøybruk 128

16 "key_colors": {

17 "type": "array",

18 "items": {

19 "type": "object",

20 "properties": {

21 "r": {

22 "type": "number",

23 "description": "red value [0.0, 1.0]"

24 },

25 "g": {

26 "type": "number",

27 "description": "green value [0.0, 1.0]"

28 },

29 "b": {

30 "type": "number",

31 "description": "blue value [0.0, 1.0]"

32 },

33 "name": {

34 "type": "string",

35 "description": "Human-readable color name

36 in snake_case, e.g.

37 \"olive_green\"or

38 \"turquoise\""

39 }

40 },

41 "required": ["r", "g", "b", "name"]

42 },

43 "description": "Key colors in the image. Four or less."

44 },

45 "description": {

46 "type": "string",

47 "description": "Image description. 1-2 sentences max."

48 },

49 "estimated_year": {

50 "type": "integer",

51 "description": "Estimated year that the image was taken,

52 if is it a photo. Only set this if the

53 image appears to be non-fictional.

54 Rough estimates are okay!"

55 }

56 },

57 "required": ["key_colors", "description"]

Verktøybruk 129

58 }

59 }],

60 "messages": [

61 {

62 "role": "user",

63 "content": [

64 {

65 "type": "image",

66 "source": {

67 "type": "base64",

68 "media_type": "'$IMAGE_MEDIA_TYPE'",

69 "data": "'$IMAGE_BASE64'"

70 }

71 },

72 {

73 "type": "text",

74 "text": "Use `record_summary` to describe this image."

75 }

76]

77 }

78]

79 }'

I det gitte eksempelet bruker vi Claude 3-modellen fra Anthropic for å generere en

strukturert JSON-oppsummering av et bilde. Slik fungerer det:

1. Vi definerer et enkelt verktøy kalt record_summary i tools-arrayet i

forespørselens nyttelast. Dette verktøyet er ansvarlig for å registrere en

oppsummering av bildet i velstrukturert JSON.

2. record_summary-verktøyet har et input_schema som spesifiserer den

forventede strukturen til JSON-outputen. Det definerer tre egenskaper:

• key_colors: En array av objekter som representerer hovedfargene i bildet.

Hvert fargeobjekt har egenskaper for rød-, grønn- og blåverdier (fra 0.0 til

1.0) og et menneskelig lesbart fargenavn i snake_case-format.

• description: En strengegenskap for en kort beskrivelse av bildet, begrenset

til 1-2 setninger.

Verktøybruk 130

• estimated_year: En valgfri heltallsegenskap for det estimerte året bildet

ble tatt, hvis det ser ut til å være et ikke-fiktivt foto.

3. I messages-arrayet leverer vi bildedataene som en base64-kodet streng sammen

med mediatypen. Dette gjør det mulig for modellen å behandle bildet som en del

av inputen.

4. Vi ber også Claude om å bruke record_summary-verktøyet for å beskrive bildet.

5. Når forespørselen sendes til Claude 3-modellen, analyserer den bildet og genererer

en JSON-oppsummering basert på det spesifiserte input_schema. Modellen

trekker ut hovedfargene, gir en kort beskrivelse og estimerer året bildet ble tatt

(hvis aktuelt).

6. Den genererte JSON-oppsummeringen sendes som parametere til

record_summary-verktøyet, og gir en strukturert representasjon av bildets

hovedegenskaper.

Ved å bruke record_summary-verktøyet med et veldefinert input_schema, kan

vi få en strukturert JSON-oppsummering av et bilde uten å være avhengig av ren

tekstuttrekking. Denne tilnærmingen sikrer at outputen følger et konsistent format og

enkelt kan analyseres og behandles av nedstrømskomponenter i applikasjonen.

Muligheten til å tvinge frem et funksjonskall og spesifisere den forventede

outputstrukturen er en kraftig funksjon ved verktøybruk i AI-drevne applikasjoner. Det

gir utviklere mer kontroll over den genererte outputen og forenkler integrasjonen av

AI-genererte data i applikasjonens arbeidsflyt.

Utførelse av funksjon(er)

Du har definert funksjoner og gitt AI-en en prompt, som bestemte at den skulle kalle

en av funksjonene dine. Nå er det tid for at applikasjonskoden din eller biblioteket, hvis

du bruker en Ruby-gem som raix-rails, skal sende funksjonskallet og parametrene

til den tilsvarende implementeringen i applikasjonskoden din.

https://github.com/OlympiaAI/raix-rails

Verktøybruk 131

Applikasjonskoden din bestemmer hva som skal gjøres med resultatene av

funksjonsutførelsen. Kanskje det involverer en enkelt kodelinje i en lambda, eller

kanskje det involverer å kalle et eksternt API. Kanskje det involverer å kalle en annen

AI-komponent, eller kanskje det involverer hundrevis eller til og med tusenvis av

kodelinjer i resten av systemet ditt. Det er helt opp til deg.

Noen ganger er funksjonskallet slutten på operasjonen, men hvis resultatene

representerer informasjon i en tankekjede som skal fortsettes av AI-en, må

applikasjonskoden din sette inn utførelsesresultatene i chattranskriptet og la AI-

en fortsette prosesseringen.

For eksempel, her er en Raix-funksjonsdeklarasjon brukt av Olympias

AccountManager for å kommunisere med våre klienter som en del av en Intelligent

Arbeidsflytorkestrering for kundeservice.

1 class AccountManager

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 # lots of other functions...

6

7 function :notify_account_owner,

8 "Don't share UUID. Mention dollars if subscription changed",

9 message: { type: "string" } do |arguments|

10 account.owner.freeform_notify(

11 subject: "Account Change Notification",

12 message: arguments[:message]

13)

14 "Notified account owner"

15 end

Det er kanskje ikke umiddelbart klart hva som skjer her, så la meg bryte det ned.

1. AccountManager-klassen definerer mange funksjoner relatert til

kontoadministrasjon. Den kan endre abonnementet ditt, legge til og fjerne

teammedlemmer, blant andre ting.

https://github.com/OlympiaAI/raix-rails

Verktøybruk 132

2. Dens instruksjoner på toppnivå forteller AccountManager at den skal varsle

kontoeieren om resultatene av kontoendringen ved å bruke notify_account_-

owner-funksjonen.

3. Den konsise definisjonen av funksjonen inkluderer dens:

• navn

• beskrivelse

• parametere message: { type: "string" }

• en blokk som skal kjøres når funksjonen kalles

Etter å ha oppdatert transkriptet med resultatene fra funksjonsblokken, kalles chat_-

completion-metoden igjen. Denne metoden er ansvarlig for å sende det oppdaterte

samtaletranskriptet tilbake til AI-modellen for videre behandling. Vi refererer til denne

prosessen som en samtaleløkke.

Når AI-modellen mottar en ny chat completion-forespørsel med et oppdatert transkript,

har den tilgang til resultatene fra den tidligere utførte funksjonen. Den kan analysere

disse resultatene, inkorporere dem i sin beslutningsprosess, og generere neste respons

eller handling basert på den kumulative konteksten av samtalen. Den kan velge å utføre

ytterligere funksjoner basert på den oppdaterte konteksten, eller den kan generere et

endelig svar på den opprinnelige forespørselen hvis den fastslår at ingen ytterligere

funksjonskall er nødvendige.

Valgfri fortsettelse av den opprinnelige forespørselen

Når du sender verktøyresultatene tilbake til LLM og fortsetter behandlingen av

den opprinnelige forespørselen, bruker AI-en disse resultatene til enten å kalle flere

funksjoner eller generere et endelig svar i ren tekst.

Noen modeller som Coheres Command-R kan sitere de spesifikke

verktøyene de brukte i sine svar, noe som gir økt gjennomsiktighet og

sporbarhet.

https://openrouter.ai/models/cohere/command-r

Verktøybruk 133

Avhengig av modellen som er i bruk, vil resultatene av funksjonskallet eksistere i

transkriptmeldinger somhar sin egen spesielle rolle eller bli reflektert i en annen syntaks.

Men den viktige delen er at dataene er i transkriptet, slik at AI-en kan vurdere dem når

den bestemmer hva den skal gjøre videre.

En vanlig (og potensielt kostbar) feilsituasjon er å glemme å legge til

funksjonsresultatene i transkriptet før man fortsetter chatten. Som et resultat

vil AI-en bli promptet på stort sett sammemåte som før den kalte funksjonen

første gang. Med andre ord, så langt AI-en er bekymret, har den ikke kalt

funksjonen ennå. Så den kaller den igjen. Og igjen. Og igjen, for alltid til du

avbryter den. La oss håpe at konteksten din ikke var for stor, og modellen

din ikke var for dyr!

Beste praksis for verktøybruk

For å få mest mulig ut av verktøybruk, vurder følgende beste praksis.

Beskrivende definisjoner

Gi klare og beskrivende navn og beskrivelser for hvert verktøy og dets

inngangsparametere. Dette hjelper LLM-en å bedre forstå formålet og mulighetene til

hvert verktøy.

Jeg kan si fra erfaring at den vanlige visdommen som sier at “navngivning er

vanskelig” gjelder her; jeg har sett dramatisk forskjellige resultater fra LLM-er bare

ved å endre navn på funksjoner eller ordlyden i beskrivelser. Noen ganger forbedrer

det ytelsen å fjerne beskrivelser.

Verktøybruk 134

Behandling av verktøyresultater

Når du sender verktøyresultater tilbake til LLM-en, sørg for at de er velstrukturerte og

omfattende. Bruk meningsfulle nøkler og verdier for å representere outputen fra hvert

verktøy. Eksperimenter med forskjellige formater og se hvilke som fungerer best, fra

JSON til ren tekst.

Result Interpreter adresserer denne utfordringen ved å bruke AI til å analysere

resultatene og gi menneskevennlige forklaringer, oppsummeringer eller viktige

takeaways.

Feilhåndtering

Implementer robuste feilhåndteringsmekanismer for å håndtere tilfeller der LLM-en kan

generere ugyldige eller ikke-støttede inngangsparametere for verktøykall. Håndter og

gjenopprett fra eventuelle feil som kan oppstå under verktøyutførelse på en elegantmåte.

En ekstremt fin egenskap ved AI-en er at den forstår feilmeldinger! Dette betyr at hvis

du jobber i en rask og enkel tankegang, kan du rett og slett fange opp eventuelle unntak

som genereres i implementeringen av et verktøy, og sende det tilbake til AI-en slik at

den vet hva som skjedde!

For eksempel, her er en forenklet versjon av implementeringen av Google-søk i Olympia:

Verktøybruk 135

1 def google_search(conversation, params)

2 conversation.update_cstatus("Searching Google...")

3 query = params[:query]

4 search = GoogleSearch.new(query).get_hash

5

6 conversation.update_cstatus("Summarizing results...")

7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)

8 rescue StandardError => e

9 Honeybadger.notify(e)

10 { error: e.message }.inspect

11 end

Google-søk i Olympia er en topunkts prosess. Først utfører du søket, deretter

oppsummerer du resultatene. Hvis det oppstår en feil, uansett hva det er, blir

feilmeldingen pakket inn og sendt tilbake til AI-en. Denne teknikken er grunnlaget for

praktisk talt alle Intelligent feilhåndterings-mønstre

La oss for eksempel si at GoogleSearch API-kallet feiler på grunn av en 503

Utilgjengelig tjeneste-feil. Dette bobler opp til rescue på toppnivå, og beskrivelsen av

feilen sendes tilbake til AI-en som resultatet av funksjonskallet. I stedet for å bare gi

brukeren en blank skjerm eller teknisk feil, sier AI-en noe sånt som “Beklager, men

jeg kan ikke få tilgang til mine Google-søkemuligheter akkurat nå. Jeg kan prøve igjen

senere, hvis du ønsker.”

Dette kan virke som bare et smart triks, men tenk på en annen type feil, en hvor AI-en

kalte et eksternt API og hadde direkte kontroll over parameterne som skulle sendes til

API-et. Kanskje den gjorde en feil i hvordan den genererte disse parameterne? Forutsatt

at feilmeldingen fra det eksterne API-et er detaljert nok, betyr det å sende feilmeldingen

tilbake til den kallende AI-en at den kan revurdere disse parameterne og prøve igjen.

Automatisk. Uansett hva feilen var.

Tenk nå på hva som skulle til for å gjenskape den typen robust feilhåndtering i normal

kode. Det er praktisk talt umulig.

Verktøybruk 136

Iterativ forbedring

Hvis LLM-en ikke anbefaler de passende verktøyene eller genererer suboptimale svar,

iterer på verktøydefinisjonene, beskrivelsene og inngangsparameterne. Kontinuerlig

forbedre og utvikle verktøyoppsettet basert på observert oppførsel og ønskede resultater.

1. Start med enkle verktøydefinisjoner: Begynn med å definere verktøy med

klare og konsise navn, beskrivelser og inngangsparametere. Unngå å gjøre

verktøyoppsettet for komplisert i starten og fokuser på kjernefunksjonaliteten.

For eksempel, hvis du vil lagre resultatene av stemningsanalyse, start med en

grunnleggende definisjon som:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze user-provided text and generate sentiment score",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "score": {

8 "type": "float",

9 "description": "sentiment score from -1 (negative) to 1 (positive)"

10 }

11 },

12 "required": ["score"]

13 }

14 }

2. Test og observer: Når du har de første verktøydefinisjonene på plass, test demmed

forskjellige prompts og observer hvordan LLM-en samhandler med verktøyet. Vær

oppmerksom på kvaliteten og relevansen til de genererte responsene. Hvis LLM-en

genererer suboptimale responser, er det på tide å forbedre verktøydefinisjonene.

3. Forbedre beskrivelser: Hvis LLM-en misforstår hensikten med et verktøy, prøv å

forbedre verktøyets beskrivelse. Gi mer kontekst, eksempler eller forklaringer for

å veilede LLM-en i effektiv bruk av verktøyet. For eksempel kan du oppdatere

Verktøybruk 137

beskrivelsen av stemningsanalyseverktøyet for å mer spesifikt adressere den

emosjonelle tonen i teksten som analyseres:

1 {

2 "name": "save_sentiment_score",

3 "description": "Determine the overall emotional tone of a piece of text,

4 such as customer reviews, social media posts, or feedback comments.",

5 ...

6 }

4. Juster inngangsparametere: Hvis LLM-en genererer ugyldige eller

irrelevante inngangsparametere for et verktøy, bør du vurdere å justere

parameterdefinisjonene. Legg til mer spesifikke begrensninger, valideringsregler

eller eksempler for å tydeliggjøre det forventede inputformatet.

5. Iterer basert på tilbakemeldinger: Overvåk kontinuerlig verktøyenes ytelse

og samle tilbakemeldinger fra brukere eller interessenter. Bruk disse

tilbakemeldingene til å identifisere områder for forbedring og gjør iterative

forbedringer av verktøydefinisjonene. For eksempel, hvis brukere rapporterer at

analysen ikke håndterer sarkasme godt, kan du legge til en merknad i beskrivelsen:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze the sentiment of a given text and return a sentiment

4 score between -1 (negative) and 1 (positive). Note: Sarcasm should be

5 considered negative.",

6 ...

7 }

Ved å iterativt forbedre verktøydefinisjonene dine basert på observert oppførsel og

tilbakemeldinger, kan du gradvis forbedre ytelsen og effektiviteten til din KI-drevne

applikasjon. Husk å holde verktøydefinisjonene klare, konsise og fokuserte på den

spesifikke oppgaven. Test og valider verktøyinteraksjonene regelmessig for å sikre at

de samsvarer med ønskede resultater.

Verktøybruk 138

Sammensetting og Kjeding av Verktøy

Et av de mest kraftfulle aspektene ved verktøybruk som bare har blitt antydet så langt,

er muligheten til å sette sammen og kjede flere verktøy for å utføre komplekse oppgaver.

Ved å nøye utforme verktøydefinisjonene dine og deres inndata/utdata-formater, kan du

skape gjenbrukbare byggeklosser som kan kombineres på ulike måter.

La oss se på et eksempel hvor du bygger en dataanalysepipeline for din KI-drevne

applikasjon. Du kan ha følgende verktøy:

1. DataRetrieval: Et verktøy som henter data fra en database eller API basert på

spesifiserte kriterier.

2. DataProcessing: Et verktøy som utfører beregninger, transformasjoner eller

aggregeringer på de innhentede dataene.

3. DataVisualization: Et verktøy som presenterer de behandlede dataene i et

brukervennlig format, som diagrammer eller grafer.

Ved å kjede disse verktøyene sammen kan du skape en kraftig arbeidsflyt som henter

relevante data, behandler dem og presenterer resultatene på en meningsfull måte. Her

er hvordan verktøybrukens arbeidsflyt kan se ut:

1. Språkmodellen mottar en brukerforespørsel som ber om innsikt i salgsdata for en

bestemt produktkategori.

2. Språkmodellen velger DataRetrieval-verktøyet og genererer passende

inngangsparametere for å hente relevante salgsdata fra databasen.

3. De innhentede dataene blir “sendt” til DataProcessing-verktøyet, som beregner

målinger som total omsetning, gjennomsnittlig salgspris og vekstrate.

4. De behandlede dataene blir deretter bearbeidet av DataVisualization-

verktøyet, som lager et visuelt tiltalende diagram eller graf for å representere

innsikten, og sender URL-en til diagrammet tilbake til språkmodellen.

Verktøybruk 139

5. Til slutt genererer språkmodellen et formatert svar på brukerforespørselen

ved hjelp av markdown, som inkorporerer de visualiserte dataene og gir en

oppsummering av hovedfunnene.

Ved å sette sammen disse verktøyene kan du skape en sømløs dataanalysearbeidsflyt

som enkelt kan integreres i applikasjonen din. Det fine med denne tilnærmingen er at

hvert verktøy kan utvikles og testes uavhengig, og deretter kombineres på forskjellige

måter for å løse ulike problemer.

For å muliggjøre smidig sammensetting og kjeding av verktøy er det viktig å definere

klare inndata- og utdata-formater for hvert verktøy.

For eksempel kan DataRetrieval-verktøyet akseptere parametere som

databasetilkoblingsdetaljer, tabellnavn og spørringsbetingelser, og returnere

resultatsettet som et strukturert JSON-objekt. DataProcessing-verktøyet kan da

forvente dette JSON-objektet som inndata og produsere et transformert JSON-objekt

som utdata. Ved å standardisere dataflyten mellom verktøy kan du sikre kompatibilitet

og gjenbrukbarhet.

Når du designer verktøyøkosystemet ditt, tenk på hvordan forskjellige verktøy kan

kombineres for å håndtere vanlige brukstilfeller i applikasjonen din. Vurder å lage

høynivåverktøy som innkapsler vanlige arbeidsflyter eller forretningslogikk, noe som

gjør det enklere for språkmodellen å velge og bruke dem effektivt.

Husk at styrken i verktøybruk ligger i fleksibiliteten og modulariteten den gir. Ved

å bryte ned komplekse oppgaver i mindre, gjenbrukbare verktøy, kan du skape en

robust og tilpasningsdyktig KI-drevet applikasjon som kan takle et bredt spekter av

utfordringer.

Fremtidige Retninger

Etter hvert som feltet for KI-drevet applikasjonsutvikling utvikler seg, kan vi forvente

ytterligere fremskritt i verktøybruksfunksjoner. Noen potensielle fremtidige retninger

Verktøybruk 140

inkluderer:

1. Flertrinns verktøybruk: Språkmodeller kan være i stand til å bestemme hvor

mange ganger de trenger å bruke verktøy for å generere et tilfredsstillende

svar. Dette kan innebære flere runder med verktøyvalg og utførelse basert på

mellomliggende resultater.

2. Forhåndsdefinerte verktøy: KI-plattformer kan tilby et sett med

forhåndsdefinerte verktøy som utviklere kan utnytte ut av boksen, som

Python-tolkere, websøkeverktøy eller vanlige nyttefunksjoner.

3. Sømløs integrasjon: Etter hvert som verktøybruk blir mer utbredt, kan vi forvente

bedre integrasjon mellom KI-plattformer og populære utviklingsrammeverk, som

gjør det enklere for utviklere å inkorporere verktøybruk i applikasjonene sine.

Verktøybruk er en kraftig teknikk som gjør det mulig for utviklere å utnytte det fulle

potensialet til språkmodeller i KI-drevne applikasjoner. Ved å koble språkmodeller

til eksterne verktøy og ressurser kan du skape mer dynamiske, intelligente og

kontekstbevisste systemer som kan tilpasse seg brukerbehov og gi verdifull innsikt og

handlinger.

Selv om verktøybruk tilbyr enorme muligheter, er det viktig å være oppmerksom på

potensielle utfordringer og hensyn. Ett viktig aspekt er å håndtere kompleksiteten i

verktøyinteraksjoner og sikre stabilitet og pålitelighet i det overordnede systemet. Dumå

håndtere scenarioer hvor verktøyoppkall kan mislykkes, returnere uventede resultater

eller ha ytelsesimplikasjoner. I tillegg bør du vurdere sikkerhets- og tilgangskontrolltiltak

for å forhindre uautorisert eller ondsinnede bruk av verktøy. Riktig feilhåndtering,

logging og overvåkingsmekanismer er avgjørende for å opprettholde integriteten og

ytelsen til din KI-drevne applikasjon.

Når du utforsker mulighetene for verktøybruk i dine egne prosjekter, husk å begynne

med klare målsettinger, utform velstrukturerte verktøydefinisjoner, og iterer basert på

Verktøybruk 141

tilbakemeldinger og resultater. Med riktig tilnærming og tankesett kan verktøybruk låse

opp nye nivåer av innovasjon og verdi i dine AI-drevne applikasjoner

Strømmebehandling

Strømming av data over HTTP, også kjent som serversendte hendelser (SSE), er en

mekanisme hvor serveren kontinuerlig sender data til klienten etter hvert som de blir

tilgjengelige, uten at klienten eksplisitt må be om det. Siden KI-ens svar genereres

trinnvis, er det fornuftig å gi en responsiv brukeropplevelse ved å vise KI-ens output

etter hvert som det genereres. Og faktisk tilbyr alle KI-leverandørers API-er som jeg

kjenner til, strømmende svar som et alternativ i deres fullføringsendepunkter.

Grunnen til at dette kapittelet kommer her i boken, rett etter Bruke verktøy, er på grunn

av hvor kraftfullt det kan være å kombinere bruken av verktøy med direktesendte KI-

svar til brukere. Dette muliggjør dynamiske og interaktive opplevelser hvor KI-en kan

behandle brukerinndata, utnytte ulike verktøy og funksjoner etter eget skjønn, og gi

sanntidssvar.

For å oppnå denne sømløse interaksjonen må du skrive strømhåndterere som kan

distribuere både KI-påkalte verktøyfunksjonskall og klartekstutdata til sluttbrukeren.

Strømmebehandling 143

Behovet for å gjenta løkken etter behandling av en verktøyfunksjon tilfører en

interessant utfordring til oppgaven.

Implementering av en ReplyStream

For å demonstrere hvordan strømmebehandling kan implementeres, vil dette kapittelet

ta en grundig gjennomgang av en forenklet versjon av ReplyStream-klassen som

brukes i Olympia. Instanser av denne klassen kan sendes som stream-parameteren i

KI-klientbiblioteker som ruby-openai og openrouter

Her er hvordan jeg bruker ReplyStream i Olympias PromptSubscriber, som lytter

via Wisper etter opprettelsen av nye brukermeldinger.

1 class PromptSubscriber

2 include Raix::ChatCompletion

3 include Raix::PromptDeclarations

4

5 # many other declarations omitted...

6

7 prompt text: -> { user_message.content },

8 stream: -> { ReplyStream.new(self) },

9 until: -> { bot_message.complete? }

10

11 def message_created(message) # invoked by Wisper

12 return unless message.role.user? && message.content?

13

14 # rest of the implementation omitted...

I tillegg til en context-referanse til meldingsabonnenten som instansierte den, har

klassen ReplyStream også instansvariabler for å lagre en buffer med mottatte data, og

matriser for å holde oversikt over funksjonsnavn og argumenter som blir påkalt under

strømbehandlingen.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

Strømmebehandling 144

1 class ReplyStream

2 attr_accessor :buffer, :f_name, :f_arguments, :context

3

4 delegate :bot_message, :dispatch, to: :context

5

6 def initialize(context)

7 self.context = context

8 self.buffer = []

9 self.f_name = []

10 self.f_arguments = []

11 end

12

13 def call(chunk, bytesize = nil)

14 # ...

15 end

16

17 # ...

18 end

Metoden initialize setter opp starttilstanden for ReplyStream-instansen ved å

initialisere bufferen, konteksten og andre variabler.

Metoden call er hovedinngangspunktet for behandling av strømmedataene. Den

tar imot en chunk med data (representert som en hash) og en valgfri bytesize-

parameter, som i vårt eksempel ikke brukes. Inne i denne metoden bruker klassen

mønstergjenkjenning for å håndtere ulike scenarioer basert på strukturen til den

mottatte chunken.

Ved å kalle deep_symbolize_keys på chunken gjør vi

mønstergjenkjenningen mer elegant, ved at vi kan operere med symboler i

stedet for strenger.

Strømmebehandling 145

1 def call(chunk, _bytesize)

2 case chunk.deep_symbolize_keys

3

4 in { # match function name

5 choices: [

6 {

7 delta: {

8 tool_calls: [

9 { index: index, function: {name: name} }

10]

11 }

12 }

13] }

14

15 f_name[index] = name

Det første mønsteret vi ser etter er et verktøykall sammen med det tilhørende

funksjonsnavnet. Hvis vi oppdager ett, legger vi det inn i f_name-arrayen. Vi lagrer

funksjonsnavn i en indeksert array fordi modellen er i stand til å utføre parallelle

funksjonskall, som sender mer enn én funksjon til utførelse samtidig.

Parallell funksjonskalling er en AI-modells evne til å utføre flere funksjonskall

sammen, noe som gjør det mulig å løse effektene og resultatene av disse

funksjonskallene parallelt. Dette er spesielt nyttig hvis funksjoner tar lang tid, og

reduserer antall kommunikasjonsrunder med API-et, som igjen kan spare betydelige

mengder tokenforbruk.

Deretter må vi se etter argumentene som tilsvarer funksjonskallene.

Strømmebehandling 146

1 in { # match arguments

2 choices: [

3 {

4 delta: {

5 tool_calls: [

6 {

7 index: index, function: {arguments: argument }

8 }

9]

10 }

11 }

12]}

13

14 f_arguments[index] ||= "" # initialize if not already

15 f_arguments[index] << argument

På samme måte som vi håndterte funksjonsnavnene, legger vi argumentene inn i en

indeksert array.

Deretter ser vi etter brukerrettede meldinger, som vil komme fra serveren én token om

gangen og bli tildelt new_content-variabelen. Vi må også holde øye med finish_-

reason. Den vil være nil frem til det siste segmentet av utdatasekvensen.

1 in {

2 choices: [

3 { delta: {content: new_content}, finish_reason: finish_reason }

4]}

5

6 # you could transmit every chunk to the user here...

7 buffer << new_content.to_s

8

9 if finish_reason.present?

10 finalize

11 elsif new_content.to_s.match?(/\n\n/)

12 send_to_client # ...or buffer and transmit once per paragraph

13 end

Det er viktig at vi legger til et mønstergjenkjenningsuttrykk for å håndtere feilmeldinger

sendt fra AI-modelleverandøren. I lokale utviklingsmiljøer kaster vi et unntak, men i

produksjon logger vi feilen og avslutter.

Strømmebehandling 147

1 in { error: { message: } }

2 if Rails.env.local?

3 raise message

4 else

5 Honeybadger.notify("AI Error: #{message}")

6 finalize

7 end

Den siste else-delen av case vil kjøre hvis ingen av de foregående mønstrene ga treff.

Det er bare en sikkerhetsmekanisme slik at vi oppdager det hvis AI-modellen begynner

å sende oss ukjente deler.

1 else

2 Honeybadger.notify("Unrecognized Chunk: #{chunk}")

3 end

4 end

Metoden send_to_client er ansvarlig for å sende det mellomlagrede innholdet til

klienten. Den kontrollerer at bufferen ikke er tom, oppdaterer botmeldingsinnholdet,

gjengir botmeldingen, og lagrer innholdet i databasen for å sikre datapersistens.

1 def send_to_client

2 # no need to process pure whitespace

3 return if buffer.join.squish.blank?

4

5 # set the buffer content on the bot message

6 content = buffer.join

7 bot_message.content = content

8

9 # save to database so that we never lose data

10 # even if the stream doesn't terminate correctly

11 bot_message.update_column(:content, content)

12

13 # update content via websocket

14 ConversationRenderer.update(bot_message)

15 end

finalize-metoden blir kalt når strømprosesseringen er fullført. Den utfører

funksjonsanropene hvis noen ble mottatt under strømmen, oppdaterer botmeldingen

Strømmebehandling 148

med det endelige innholdet og annen relevant informasjon, og nullstiller

funksjonsanropshistorikken

1 def finalize

2 if f_name.any?

3 f_name.each_with_index do |name, index|

4 # takes care of calling the function wherever it's implemented

5 dispatch(name:, arguments: JSON.parse(f_arguments[index]))

6 end

7

8 # reset the function call history

9 f_name.clear

10 f_arguments.clear

11 else

12 content = buffer.join.presence

13 bot_message.update!(content:, complete: true)

14 ConversationRenderer.update(bot_message)

15 end

16 end

Hvis modellen bestemmer seg for å kalle en funksjon, må du “ekspedere” dette

funksjonskallet (navn og argumenter) på en slik måte at det blir utført og

function_call- og function_result-meldinger blir lagt til i samtaleloggen

Basert på min erfaring er det bedre å håndtere opprettelsen av funksjonsmeldinger på

ett sted i kodebasen din, i stedet for å stole på verktøyimplementasjonene. Det er ikke

bare ryddigere, men har også en veldig viktig praktisk grunn: hvis AI-modellen kaller

en funksjon, og ikke ser de resulterende kall- og resultatmeldingene i loggen når du går

gjennom løkken, vil den kalle den samme funksjonen igjen. Potensielt for alltid. Husk at

AI-en er fullstendig tilstandsløs, så med mindre du speiler disse funksjonskallene tilbake

til den, har de ikke skjedd.

Strømmebehandling 149

1 # PromptSubscriber#dispatch

2

3 def dispatch(name:, arguments:)

4 # adds a function_call message to the conversation transcript

5 # plus dispatches to tool and returns result

6 conversation.function_call!(name, arguments).then do |result|

7 # add function result message to the transcript

8 conversation.function_result!(name, result)

9 end

10 end

Å tømme funksjonskallhistorikken etter utsending er like viktig som å sikre

at kallet og resultatene havner i transkripsjonen din, slik at du ikke bare

fortsetter å kalle de samme funksjonene om og om igjen hver gang du går

gjennom løkken.

“Samtaleløkken”

Jeg nevner stadig løkker, men hvis du er ny til funksjonsanrop, er det kanskje ikke

åpenbart hvorfor vi trenger å løkke. Grunnen er at når KI-en “ber” deg om å utføre

verktøyfunksjoner på dens vegne, vil den stoppe å svare. Det er opp til deg å utføre

disse funksjonene, samle resultatene, legge resultatene til i transkripsjonen, og deretter

sende inn det opprinnelige promptet på nytt for å få et nytt sett med funksjonsanrop

eller brukerrettede resultater.

I PromptSubscriber-klassen bruker vi prompt-metoden fra PromptDeclarations-

modulen for å definere oppførselen til samtaleløkken. until-parameteren er satt til ->

{ bot_message.complete? }, som betyr at løkken vil fortsette til bot_message er

markert som fullført.

Strømmebehandling 150

1 prompt text: -> { user_message.content },

2 stream: -> { ReplyStream.new(self) },

3 until: -> { bot_message.complete? }

Men når blir bot_message markert som fullført? Hvis du har glemt det, se

tilbake på linje 13 i finalize-metoden.

La oss gjennomgå hele strømmebehandlingslogikken.

1. PromptSubscriber mottar en ny brukermelding via message_created-

metoden, som blir påkalt av Wisper pub/sub-systemet hver gang sluttbrukeren

oppretter en ny prompt.

2. Klassemetoden prompt definerer deklarativt oppførselen til chatfullførelseslogikken

for PromptSubscriber. AI-modellen vil utføre en chatfullførelse med brukerens

meldingsinnhold, en ny instans av ReplyStream som strømparameter, og den

spesifiserte løkkebetingelsen.

3. AI-modellen behandler prompten og begynner å generere et svar. Mens svaret

strømmes, blir call-metoden til ReplyStream-instansen påkalt for hver datadel.

4. Hvis AI-modellen bestemmer seg for å kalle en verktøyfunksjon, blir

funksjonsnavnet og argumentene hentet ut fra delen og lagret i henholdsvis

f_name- og f_arguments-arrayene.

5. Hvis AI-modellen genererer brukerrettet innhold, blir det mellomlagret og sendt

til klienten via send_to_client-metoden.

6. Når strømmebehandlingen er fullført, blir finalize-metoden kalt. Hvis noen

verktøyfunksjoner ble påkalt under strømmen, blir de ekspedert ved hjelp av

dispatch-metoden til PromptSubscriber.

7. dispatch-metoden legger til en function_call-melding i samtaleloggen,

utfører den tilsvarende verktøyfunksjonen, og legger til en function_result-

melding i loggen med resultatet av funksjonskallet.

Strømmebehandling 151

8. Etter ekspederingen av verktøyfunksjonene blir funksjonskallhistorikken tømt for

å forhindre dupliserte funksjonskall i påfølgende løkker.

9. Hvis ingen verktøyfunksjoner ble påkalt, oppdaterer finalize-metoden bot_-

message med det endelige innholdet, markerer det som fullført, og sender den

oppdaterte meldingen til klienten.

10. Løkkebetingelsen -> { bot_message.complete? } blir evaluert. Hvis bot_-

message ikke er markert som fullført, fortsetter løkken, og den opprinnelige

prompten sendes inn igjen med den oppdaterte samtaleloggen.

11. Trinn 3-10 gjentas til bot_message er markert som fullført, som indikerer at AI-

modellen har fullført genereringen av svaret og ingen flere verktøyfunksjoner

trenger å utføres.

Ved å implementere denne samtaleløkken, gjør du det mulig for AI-modellen å engasjere

seg i en frem-og-tilbake-interaksjon med applikasjonen, utføre verktøyfunksjoner etter

behov og generere brukerrettede svar til samtalen når en naturlig konklusjon.

Kombinasjonen av strømmebehandling og samtaleløkken muliggjør dynamiske og

interaktive AI-drevne opplevelser, hvor AI-modellen kan behandle brukerinndata,

utnytte ulike verktøy og funksjoner, og gi sanntidssvar basert på den utviklende

samtalekonteksten.

Automatisk fortsettelse

Det er viktig å være klar over AI-utdatabegrensninger. De fleste modeller har et

maksimalt antall tokens de kan generere i ett enkelt svar, som bestemmes av max_-

tokens-parameteren. Hvis AI-modellen når denne grensen mens den genererer et svar,

vil den brått stoppe og indikere at utdataen ble avkortet.

I strømmesvaret fra AI-plattformens API kan du oppdage denne situasjonen ved

å undersøke finish_reason-variabelen i delen. Hvis finish_reason er satt til

Strømmebehandling 152

"length" (eller en annen nøkkelverdi spesifikk for modellen), betyr det at modellen

nådde sin maksimale tokengrense under generering og utdataen har blitt kuttet kort.

En måte å håndtere dette scenariet på en elegant måte og gi en sømløs brukeropplevelse,

er å implementere en automatisk fortsettelsesmekanisme i strømmebehandlingslogikken

din. Ved å legge til et mønstertreff for lengderelaterte avslutningsgrunner, kan du velge

å løkke og automatisk fortsette utdataen fra der den slapp.

Her er et med vilje forenklet eksempel på hvordan du kan modifisere call-metoden i

ReplyStream-klassen for å støtte automatisk fortsettelse:

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices: [

9 { delta: {content: new_content},

10 finish_reason: finish_reason }] }

11

12 buffer << new_content.to_s

13

14 if finish_reason.blank?

15 send_to_client if new_content.to_s.match?(/\n\n/)

16 elsif LENGTH_STOPS.include?(finish_reason)

17 continue_cutoff

18 else

19 finalize

20 end

21

22 # ...

23 end

24 end

25

26 private

27

28 def continue_cutoff

29 conversation.bot_message!(buffer.join, visible: false)

Strømmebehandling 153

30 conversation.user_message!("please continue", visible: false)

31 bot_message.update_column(:created_at, Time.current)

32 end

I denne modifiserte versjonen, når finish_reason indikerer avkortet output, i stedet

for å avslutte strømmen, legger vi til et par meldinger i transskriptet uten å avslutte,

flytter den opprinnelige brukervendte responsmeldingen til “bunnen” av transskriptet

ved å oppdatere dens created_at-attributt, og lar deretter løkken fortsette, slik at AI-

en fortsetter å generere der den slapp.

Husk at AI-fullføringsendepunktet er tilstandsløst. Det “vet” bare det du forteller det via

transskriptet. I dette tilfellet er måten vi kommuniserer til AI-en at den ble avkuttet på

ved å legge til “usynlige” (for sluttbrukeren) meldinger i transskriptet. Husk imidlertid

at dette er et bevisst forenklet eksempel. En faktisk implementering ville måtte utføre

ytterligere transkripthåndtering for å sikre at vi ikke kastet bort tokens og/eller forvirret

AI-en med dupliserte assistentmeldinger i transskriptet.

En faktisk implementering av autokontinuasjon bør også ha såkalt “kretsbryterlogikk”

på plass for å forhindre ukontrollert løkking. Grunnen er at, gitt visse typer

brukerprompts og lave max_tokens-innstillinger, kunne AI-en fortsette å løkke

brukervendt output i det uendelige.

Husk at hver løkke krever en separat forespørsel, og at hver forespørsel forbruker

hele transskriptet ditt igjen. Du bør definitivt vurdere avveiningene mellom

brukeropplevelse og API-bruk når du bestemmer deg for om du skal implementere

autokontinuasjon i applikasjonen din. Autokontinuasjon kan være spesielt farlig

dyrt, særlig når du bruker premium kommersielle modeller.

Strømmebehandling 154

Konklusjon

Strømbehandling er et kritisk aspekt ved bygging av AI-drevne applikasjoner

som kombinerer verktøybruk med direkte AI-responser. Ved å effektivt håndtere

strømmedata fra AI-plattform-APIer, kan du gi en sømløs og interaktiv

brukeropplevelse, håndtere store responser, optimalisere ressursbruk og håndtere

feil på en elegant måte.

Den medfølgende Conversation::ReplyStream-klassen demonstrerer hvordan

strømbehandling kan implementeres i en Ruby-applikasjon ved hjelp av

mønstergjenkjenning og hendelsesdrevet arkitektur. Ved å forstå og utnytte

strømbehandlingsteknikker kan du låse opp det fulle potensialet til AI-integrasjon i

applikasjonene dine og levere kraftige og engasjerende brukeropplevelser.

Selvhelbredende data

Selvhelbredende data er en kraftfull tilnærming for å sikre dataintegritet, konsistens og

kvalitet i applikasjoner ved å utnytte mulighetene som store språkmodeller (LLM-er) gir.

Denne kategorien mønstre fokuserer på ideen om å bruke KI til automatisk å oppdage,

diagnostisere og korrigere dataanomalier, inkonsistenser eller feil, og dermed redusere

byrden på utviklere og opprettholde et høyt nivå av datapålitelighet.

I kjernen erkjenner mønstrene for selvhelbredende data at data er livsnerven i enhver

applikasjon, og at det å sikre nøyaktighet og integritet er avgjørende for applikasjonens

riktige funksjon og brukeropplevelse. Imidlertid kan håndtering og vedlikehold av

datakvalitet være en kompleks og tidkrevende oppgave, spesielt når applikasjoner vokser

i størrelse og kompleksitet. Det er her KI-ens kraft kommer inn i bildet.

I mønstrene for selvhelbredende data brukes KI-arbeidere til kontinuerlig å overvåke og

analysere applikasjonens data. Disse modellene har evnen til å forstå og tolke mønstre,

Selvhelbredende data 156

relasjoner og anomalier i dataene. Ved å utnytte deres naturlige språkprosessering og

forståelsesevner kan de identifisere potensielle problemer eller inkonsistenser i dataene

og iverksette passende tiltak for å rette dem.

Prosessen med selvhelbredende data innebærer vanligvis flere viktige trinn:

1. Dataovervåking: KI-arbeidere overvåker kontinuerlig applikasjonens

datastrømmer, databaser eller lagringssystemer, og ser etter tegn på anomalier,

inkonsistenser eller feil. Alternativt kan du aktivere en KI-komponent som

reaksjon på et unntak.

2. Avviksdeteksjon: Når et problem oppdages, analyserer KI-arbeideren dataene i

detalj for å identifisere problemets spesifikke art og omfang. Dette kan innebære

å oppdage manglende verdier, inkonsistente formater eller data som bryter med

forhåndsdefinerte regler eller begrensninger.

3. Diagnose og korrigering:Når problemet er identifisert, bruker KI-arbeideren sin

kunnskap og forståelse av datadomenet til å bestemme passende handlingsforløp.

Dette kan innebære automatisk korrigering av data, utfylling av manglende

verdier eller markering av problemet for menneskelig intervensjon hvis

nødvendig.

4. Kontinuerlig læring (valgfritt, avhengig av brukstilfelle): Etter hvert som

KI-arbeideren møter og løser ulike dataproblemer, kan den produsere output

som beskriver hva som skjedde og hvordan den responderte. Denne metadataen

kan mates inn i læringsprosesser som gjør det mulig for deg (og kanskje den

underliggende modellen, via finjustering) å bli mer effektiv over tid i å identifisere

og løse dataanomalier.

Ved automatisk å oppdage og korrigere dataproblemer kan du sikre at applikasjonen

din opererer med data av høy kvalitet og pålitelighet. Dette reduserer risikoen for at

feil, inkonsistenser eller datarelaterte feil påvirker applikasjonens funksjonalitet eller

brukeropplevelse.

Selvhelbredende data 157

Når du har KI-arbeidere som håndterer oppgaven med dataovervåking og korrigering,

kan du fokusere innsatsen din på andre kritiske aspekter ved applikasjonen. Dette sparer

tid og ressurser som ellers ville blitt brukt på manuell datarengjøring og vedlikehold.

Faktisk blir manuell håndtering av datakvalitet stadig mer utfordrende etter hvert som

applikasjonene vokser i størrelse og kompleksitet. Mønstrene for “Selvhelbredende data”

skalerer effektivt ved å utnytte KI-ens kraft til å håndtere store datamengder og oppdage

problemer i sanntid.

På grunn av sin natur kan KI-modeller tilpasse seg endrede datamønstre,

skjemaer eller krav over tid med lite eller ingen tilsyn. Så lenge deres

direktiver gir tilstrekkelig veiledning, spesielt angående tiltenkte resultater,

kan applikasjonen din utvikle seg og håndtere nye datascenarier uten å kreve

omfattende manuell intervensjon eller kodeendringer.

Mønstrene for selvhelbredende data samsvarer godt med de andre kategoriene

av mønstre vi har diskutert, som “Mangfold av arbeidere”. Selvhelbredende

datafunksjonalitet kan sees på som en spesialisert type arbeider som fokuserer

spesifikt på å sikre datakvalitet og integritet. Denne typen arbeider opererer sammen

med andre KI-arbeidere, hvor hver bidrar til forskjellige aspekter av applikasjonens

funksjonalitet.

Implementering av mønstre for selvhelbredende data i praksis krever nøye design og

integrasjon av KI-modeller i applikasjonsarkitekturen. På grunn av risikoen for datatap

og korrupsjon bør du definere klare retningslinjer for hvordan du vil bruke denne

teknikken. Du bør også vurdere faktorer som ytelse, skalerbarhet og datasikkerhet.

Praktisk casestudie: Reparering av ødelagt JSON

En av de mest praktiske og praktiske måtene å utnytte selvhelbredende data på er også

veldig enkel å forklare: reparering av ødelagt JSON.

Selvhelbredende data 158

Denne teknikken kan anvendes på den vanlige utfordringen med å håndtere ufullkomne

eller inkonsistente data generert av LLM-er, som ødelagt JSON, og gir en tilnærming for

automatisk oppdagelse og korrigering av disse problemene.

Hos Olympia møter jeg regelmessig scenarioer hvor LLMer genererer JSON-data som

ikke er helt gyldig. Dette kan skje av ulike årsaker, som at LLMen legger til kommentarer

før eller etter selve JSON-koden, eller introduserer syntaksfeil sommanglende kommaer

eller ikke-eskapterte doble anførselstegn. Disse problemene kan føre til parseringsfeil og

forårsake forstyrrelser i applikasjonens funksjonalitet.

For å håndtere dette problemet har jeg implementert en praktisk løsning i form av en

JsonFixer-klasse. Denne klassen følger “Selvhelbredende data”-mønsteret ved å ta den

ødelagte JSONen som input og bruke en LLM til å reparere den, samtidig som den

bevarer så mye informasjon og intensjon som mulig.

1 class JsonFixer

2 include Raix::ChatCompletion

3

4 def call(bad_json, error_message)

5 raise "No data provided" if bad_json.blank? || error_message.blank?

6

7 transcript << {

8 system: "Consider user-provided JSON that generated a parse

9 exception. Do your best to fix it while preserving the

10 original content and intent as much as possible." }

11 transcript << { user: bad_json }

12 transcript << { assistant: "What is the error message?"}

13 transcript << { user: error_message }

14 transcript << { assistant: "Here is the corrected JSON\n```json\n" }

15

16 self.stop = ["```"]

17

18 chat_completion(json: true)

19 end

20

21 def model

22 "mistralai/mixtral-8x7b-instruct:nitro"

23 end

Selvhelbredende data 159

24 end

Legg merke til hvordan JsonFixer bruker Ventriloquist for å styre AI-ens

responser.

Prosessen med selvhelbredende JSON-data fungerer som følger:

1. JSON-generering: En LLM brukes til å generere JSON-data basert på bestemte

prompts eller krav. På grunn av LLM-enes natur vil den genererte JSON-en ikke

alltid være perfekt gyldig. JSON-parseren vil selvfølgelig utløse en ParserError

hvis du gir den ugyldig JSON.

1 begin

2 JSON.parse(llm_generated_json)

3 rescue JSON::ParserError => e

4 JsonFixer.new.call(llm_generated_json, e.message)

5 end

Merk at feilmeldingen også sendes til JSONFixer-kallet slik at den ikke trenger å gjøre

fullstendige antakelser om hva som er galt med dataene, spesielt siden parseren ofte vil

fortelle deg nøyaktig hva som er feil.

2. LLM-basert Korreksjon: JSONFixer-klassen sender den ødelagte JSON-en

tilbake til en LLM, sammen med en spesifikk prompt eller instruksjon for å fikse

JSON-en mens den bevarer den opprinnelige informasjonen og intensjonen så

mye som mulig. LLM-en, som er trent på store mengder data og har forståelse

av JSON-syntaks, forsøker å korrigere feilene og generere en gyldig JSON-streng.

Responsbegrensning brukes for å begrense outputen fra LLM-en, og vi velger

Mixtral 8x7B som AI-modellen, siden den er spesielt god for denne typen

oppgave.

Selvhelbredende data 160

3. Validering og Integrering: Den reparerte JSON-strengen som returneres av

LLM-en blir analysert av selve JSONFixer-klassen, fordi den kalte chat_-

completion(json: true). Hvis den reparerte JSON-en består valideringen,

blir den integrert tilbake i applikasjonens arbeidsflyt, slik at applikasjonen kan

fortsette å behandle dataene sømløst. Den dårlige JSON-en har blitt “helbredet”.

Selv om jeg har skrevet og omskrevet min egen JSONFixer-implementasjon flere

ganger, tviler jeg på at den totale tiden investert i alle disse versjonene er mer enn en

time eller to.

Merk at bevaring av intensjon er et nøkkelelement i ethvert selvhelbredende

datamønster. Den LLM-baserte korrigeringsprosessen tar sikte på å bevare den

opprinnelige informasjonen og intensjonen i den genererte JSON-en så mye som mulig.

Dette sikrer at den reparerte JSON-en beholder sin semantiske betydning og kan brukes

effektivt innenfor applikasjonens kontekst.

Denne praktiske implementeringen av “Selvhelbredende Data”-tilnærmingen i

Olympia demonstrerer tydelig hvordan AI, spesielt LLM-er, kan utnyttes for å løse

datautfordringer i den virkelige verden. Den viser styrken ved å kombinere tradisjonelle

programmeringsteknikker med AI-kapabiliteter for å bygge robuste og effektive

applikasjoner.

Postels Lov og “Selvhelbredende Data”-Mønsteret

“Selvhelbredende Data”, som eksemplifisert av JSONFixer-klassen, samsvarer godt

med prinsippet kjent som Postels Lov, også referert til som Robusthetsprinsippet.

Postels Lov sier:

“Vær konservativ i det du gjør, vær liberal i det du aksepterer fra andre.”

Dette prinsippet, opprinnelig formulert av Jon Postel, en pioner innen det tidlige

Selvhelbredende data 161

Internettet, understreker viktigheten av å bygge systemer som er tolerante overfor

diverse eller til og med lett ukorrekte inndata, mens de opprettholder streng

overholdelse av spesifiserte protokoller når de sender utdata.

I konteksten av “Selvhelbredende Data” legemliggjør JSONFixer-klassen Postels Lov

ved å være liberal i å akseptere ødelagt eller ufullkommen JSON-data generert av

LLM-er. Den avviser eller feiler ikke umiddelbart når den møter JSON som ikke

strengt følger det forventede formatet. I stedet tar den en tolerant tilnærming og

forsøker å fikse JSON-en ved hjelp av kraften i LLM-er.

Ved å være liberal i å akseptere ufullkommen JSON, demonstrerer JSONFixer-klassen

robusthet og fleksibilitet. Den anerkjenner at data i den virkelige verden ofte kommer

i ulike former og ikke alltid samsvarer med strenge spesifikasjoner. Ved å håndtere

og korrigere disse avvikene på en elegant måte, sikrer klassen at applikasjonen kan

fortsette å fungere problemfritt, selv i nærvær av ufullkomne data.

På den annen side følger JSONFixer-klassen også den konservative delen av Postels

Lov når det gjelder output. Etter å ha fikset JSON-en ved hjelp av LLM-er, validerer

klassen den korrigerte JSON-en for å sikre at den strengt samsvarer med det

forventede formatet. Den opprettholder dataenes integritet og korrekthet før den

sender dem videre til andre deler av applikasjonen. Denne konservative tilnærmingen

garanterer at outputen fra JSONFixer-klassen er pålitelig og konsistent, og fremmer

interoperabilitet og forhindrer spredning av feil.

Interessante fakta om Jon Postel:

• Jon Postel (1943-1998) var en amerikansk informatiker som spilte en

avgjørende rolle i utviklingen av Internettet. Han var kjent som “Internettets

Gud” for sine betydelige bidrag til de underliggende protokollene og

standardene.

• Postel var redaktør for Request for Comments (RFC)-dokumentserien, som er

en serie tekniske og organisatoriske notater om Internettet. Han forfattet eller

medforfattet over 200 RFC-er, inkludert de grunnleggende protokollene som

Selvhelbredende data 162

TCP, IP og SMTP.

• I tillegg til hans tekniske bidrag, var Postel kjent for sin ydmyke og

samarbeidsvillige tilnærming. Han trodde på viktigheten av å oppnå

konsensus og jobbe sammen for å bygge et robust og interoperabelt nettverk.

• Postel tjenestegjorde som direktør for Computer Networks Division ved

Information Sciences Institute (ISI) ved University of Southern California

(USC) fra 1977 frem til sin altfor tidlige død i 1998.

• Som anerkjennelse for hans enorme bidrag, ble Postel posthumt tildelt den

prestisjefylte Turing-prisen i 1998, ofte referert til som “Databehandlingens

Nobelpris.”

JSONFixer-klassen fremmer robusthet, fleksibilitet og interoperabilitet, som var

kjerneverdier som Postel opprettholdt gjennom hele sin karriere. Ved å bygge

systemer som er tolerante for ufullkommenheter mens de opprettholder streng

overholdelse av protokoller, kan vi skape applikasjoner som er mer motstandsdyktige

og tilpasningsdyktige i møte med virkelige utfordringer.

Hensyn og kontraindikasjoner

Anvendbarheten av selvhelbredende datatilnærminger er helt avhengig av hvilken

type data applikasjonen din håndterer. Det er en grunn til at du kanskje ikke vil

bare monkeypatch JSON.parse for automatisk å korrigere alle JSON-parsing-feil i

applikasjonen din: ikke alle feil kan eller bør korrigeres automatisk.

Selvhelbredende er spesielt utfordrende når det er koblet til regulatoriske eller

etterlevelses-krav relatert til datahåndtering og -behandling. Noen bransjer, som

helsevesen og finans, har så strenge forskrifter angående dataintegritet og sporbarhet

at enhver form for “black box” datakorrigering uten skikkelig tilsyn eller logging kan

bryte disse forskriftene. Det er avgjørende å sikre at alle selvhelbredende datateknikker

Selvhelbredende data 163

du kommer opp med, er i samsvar med gjeldende juridiske og regulatoriske rammeverk.

Anvendelse av selvhelbredende datateknikker, spesielt de som involverer AI-modeller,

kan også ha stor innvirkning på applikasjonsytelse og ressursbruk. Behandling av

store datamengder gjennom AI-modeller for feildeteksjon og -korrigering kan være

beregningsmessig intensivt. Det er viktig å vurdere avveiningene mellom fordelene med

selvhelbredende data og de tilhørende ytelses- og ressurskostnadene.

La oss nå se nærmere på faktorene som er involvert i å bestemme når og hvor man skal

anvende denne kraftige tilnærmingen.

Datakritikalitet

Når man vurderer anvendelsen av selvhelbredende datateknikker, er det avgjørende

å vurdere kritikaliteten til dataene som behandles. Kritikalitetsnivået refererer til

viktigheten og sensitiviteten til dataene i konteksten av applikasjonen din og dens

forretningsdomene.

I noen tilfeller kan automatisk korrigering av datafeil være upassende, spesielt hvis

dataene er svært sensitive eller har juridiske implikasjoner. Vurder for eksempel følgende

scenarioer:

1. Finansielle transaksjoner: I finansapplikasjoner, som banksystemer eller

handelsplattformer, er datanøyaktighet av største betydning. Selv mindre feil

i finansielle data kan ha betydelige konsekvenser, som feil i kontobalanser,

feildirigerte midler eller feilaktige handelsbeslutninger. I disse tilfellene kan

automatiserte korreksjoner uten grundig verifisering og revisjon introdusere

uakseptable risikoer.

2. Medisinske journaler: Helseapplikasjoner håndterer svært sensitive og

konfidensielle pasientdata. Unøyaktigheter i medisinske journaler kan ha

alvorlige implikasjoner for pasientsikkerhet og behandlingsbeslutninger.

Automatisk modifisering av medisinske data uten skikkelig tilsyn og validering

Selvhelbredende data 164

av kvalifisert helsepersonell kan bryte med regulatoriske krav og sette pasientens

velvære i fare.

3. Juridiske dokumenter: Applikasjoner som håndterer juridiske dokumenter, som

kontrakter, avtaler eller rettsdokumenter, krever streng nøyaktighet og integritet.

Selv mindre feil i juridiske data kan ha betydelige juridiske konsekvenser.

Automatiserte korreksjoner i dette domenet er kanskje ikke passende, siden

dataene ofte krever manuell gjennomgang og verifisering av juridiske eksperter

for å sikre gyldighet og håndhevbarhet.

I disse kritiske datascenarioene overgår risikoene forbundet med automatiserte

korreksjoner ofte de potensielle fordelene. Konsekvensene av å introdusere feil eller

modifisere data feilaktig kan være alvorlige, og føre til økonomiske tap, juridisk ansvar

eller til og med skade på personer.

Når man håndterer svært kritiske data, er det essensielt å prioritere manuelle

verifiserings- og valideringsprosesser. Menneskelig tilsyn og ekspertise er avgjørende

for å sikre nøyaktighet og integritet i dataene. Automatiserte selvhelbredende teknikker

kan fortsatt brukes til å flagge potensielle feil eller uoverensstemmelser, men den

endelige beslutningen om korreksjoner bør involvere menneskelig vurdering og

godkjenning.

Det er imidlertid viktig å merke seg at ikke alle data i en applikasjon nødvendigvis har

samme kritikalitetsnivå. Innenfor samme applikasjon kan det være delsett av data som

er mindre sensitive eller har lavere konsekvenser hvis feil oppstår. I slike tilfeller kan

selvhelbredende datateknikker anvendes selektivt på disse spesifikke datasettene, mens

kritiske data forblir gjenstand for manuell verifisering.

Nøkkelen er å nøye vurdere kritikaliteten til hver datakategori i applikasjonen din

og definere klare retningslinjer og prosesser for håndtering av korreksjoner basert på

tilhørende risikoer og implikasjoner. Ved å skille mellom kritiske (dvs. hovedbøker,

medisinske journaler) og ikke-kritiske data (dvs. postadresser, ressursadvarsler), kan du

Selvhelbredende data 165

finne en balanse mellom å utnytte fordelene med selvhelbredende datateknikker der det

er hensiktsmessig og opprettholde streng kontroll og tilsyn der det er nødvendig.

Til syvende og sist bør beslutningen om å anvende selvhelbredende datateknikker på

kritiske data tas i samråd med domeneeksperter, juridiske rådgivere og andre relevante

interessenter. Det er essensielt å vurdere de spesifikke kravene, forskriftene og risikoene

forbundet med applikasjonens data og tilpasse datakorrigeringsstrategiene deretter.

Feilalvorlighet

Når man anvender selvhelbredende datateknikker, er det viktig å vurdere

alvorlighetsgraden og innvirkningen av datafeilene. Ikke alle feil er like alvorlige,

og passende handlingsforløp kan variere avhengig av problemets alvorlighetsgrad.

Mindre uoverensstemmelser eller formateringsproblemer kan være egnet for automatisk

korrigering. For eksempel kan en selvhelbredende dataarbeider som er satt til å fikse

ødelagt JSON håndtere manglende kommaer eller ueskapterte doble anførselstegn uten å

betydelig endre dataenes mening eller struktur. Disse typene feil er ofte enkle å korrigere

og har minimal innvirkning på den generelle dataintegriteten.

Imidlertid kanmer alvorlige feil som fundamentalt endrer betydningen eller integriteten

til dataene kreve en annen tilnærming. I slike tilfeller er kanskje ikke automatiserte

korreksjoner tilstrekkelige, og menneskelig inngripen kan være nødvendig for å sikre

nøyaktigheten og gyldigheten av dataene.

Det er her konseptet med å bruke selve AI-en til å hjelpe med å bestemme feilalvorlighet

kommer inn i bildet. Ved å utnytte AI-modellenes muligheter kan vi designe

selvhelbredende dataarbeidere som ikke bare korrigerer feil, men også vurderer

alvorlighetsgraden av disse feilene og tar informerte beslutninger om hvordan de skal

håndteres.

La oss for eksempel se på en selvhelbredende dataarbeider som er ansvarlig for å

korrigere uoverensstemmelser i data som strømmer inn i en kundedatabase. Arbeideren

Selvhelbredende data 166

kan designes til å analysere dataene og identifisere potensielle feil, som manglende eller

motstridende informasjon. I stedet for å automatisk korrigere alle feil, kan arbeideren

utstyres med ytterligere verktøyskall som gjør det mulig å flagge alvorlige feil for

menneskelig gjennomgang.

Her er et eksempel på hvordan dette kan implementeres:

1 class CustomerDataReviewer

2 include Raix::ChatCompletion

3 include Raix::FunctionDeclarations

4

5 attr_accessor :customer

6

7 function :flag_for_review, reason: { type: "string" } do |params|

8 AdminNotifier.review_request(customer, params[:reason])

9 end

10

11 def initialize(customer)

12 self.customer = customer

13 end

14

15 def call(customer_data)

16 transcript << {

17 system: "You are a customer data reviewer. Your task is to identify

18 and correct inconsistencies in customer data.

19

20 < additional instructions here... >

21

22 If you encounter severe errors that require human review, use the

23 `flag_for_review` tool to flag the data for manual intervention." }

24

25 transcript << { user: customer.to_json }

26 transcript << { assistant: "Reviewed/corrected data:\n```json\n" }

27

28 self.stop = ["```"]

29

30 chat_completion(json: true).then do |result|

31 return if result.blank?

32

33 customer.update(result)

34 end

Selvhelbredende data 167

35 end

36 end

I dette eksemplet er CustomerDataHealer-arbeideren designet for å identifisere og

korrigere uoverensstemmelser i kundedata. Igjen bruker vi Responsavgrensning og

Ventriloquist for å få strukturert output. Viktig er det at arbeiderens systemdirektiv

inkluderer instruksjoner om å bruke flag_for_review-funksjonen hvis alvorlige feil

oppdages.

Når arbeideren behandler kundedataene, analyserer den dataene og forsøker å korrigere

eventuelle uoverensstemmelser. Hvis arbeideren fastslår at feilene er alvorlige og krever

menneskelig inngrep, kan den bruke flag_for_review-verktøyet for å flagge dataene

og oppgi en grunn for flaggingen.

chat_completion-metoden kalles med json: true for å tolke de korrigerte

kundedataene som JSON. Det er ingen mulighet for løkker etter et funksjonskalll, så

resultatet vil være tomt hvis flag_for_review ble påkalt. Ellers blir kunden oppdatert

med de gjennomgåtte og potensielt korrigerte dataene.

Ved å inkorporere vurdering av feilenes alvorlighetsgrad og muligheten til å flagge data

for menneskelig gjennomgang, blir den selvhelbredende dataarbeideren mer intelligent

og tilpasningsdyktig. Den kan håndtere mindre feil automatisk mens alvorlige feil

eskaleres til menneskelige eksperter for manuell intervensjon.

De spesifikke kriteriene for å bestemme feilenes alvorlighetsgrad kan defineres

i arbeiderens direktiv basert på domenekunnskap og forretningskrav. Faktorer som

påvirkning på dataintegritet, potensialet for datatap eller -korrupsjon, og konsekvensene

av feilaktige data kan vurderes når alvorlighetsgraden skal fastsettes.

Ved å utnytte AI til å vurdere feilenes alvorlighetsgrad og gi muligheter for menneskelig

intervensjon, kan selvhelbredende datateknikker skape balanse mellom automatisering

og opprettholdelse av datanøyaktighet. Denne tilnærmingen sikrer at mindre feil

korrigeres effektivt mens alvorlige feil får nødvendig oppmerksomhet og ekspertise fra

menneskelige kontrollører.

Selvhelbredende data 168

Domenekompleksitet

Når man vurderer anvendelsen av selvhelbredende datateknikker, er det viktig å

evaluere kompleksiteten i datadomenene og reglene som styrer deres struktur og

relasjoner. Domenets kompleksitet kan ha betydelig innvirkning på effektiviteten og

gjennomførbarheten av automatiserte datakorreksjonstilnærminger.

Selvhelbredende datateknikker fungerer godt når dataene følger veldefinerte mønstre og

begrensninger. I domener hvor datastrukturen er relativt enkel og relasjonene mellom

dataelementer er ukompliserte, kan automatiske korreksjoner anvendes med høy grad

av sikkerhet. For eksempel kan korrigering av formateringsproblemer eller håndhevelse

av grunnleggende datatypebegrensninger ofte håndteres effektivt av selvhelbredende

dataarbeidere.

Imidlertid øker utfordringene knyttet til automatisk datakorrigering når domenets

kompleksitet øker. I domener med intrikat forretningslogikk, komplekse relasjoner

mellom dataentiteter, eller domenespesifikke regler og unntak, kan selvhelbredende

datateknikker ikke alltid fange opp nyansene og kan introdusere utilsiktede

konsekvenser.

La oss se på et eksempel på et komplekst domene: et finansielt handelssystem. I dette

domenet involverer dataene ulike finansielle instrumenter, markedsdata, handelsregler

og regulatoriske krav. Relasjonene mellom ulike dataelementer kan være intrikate, og

reglene som styrer datavaliditet og konsistens kan være svært spesifikke for domenet.

I et så komplekst domene ville en selvhelbredende dataarbeider som er satt til å korrigere

uoverensstemmelser i handelsdata, måtte ha en dyp forståelse av de domenespesifikke

reglene og begrensningene. Den måtte ta hensyn til faktorer som markedsreguleringer,

handelsgrenser, risikoberegninger og oppgjørsprosedyrer. Automatiske korreksjoner i

denne konteksten vil kanskje ikke alltid fange opp domenets fulle kompleksitet og kan

utilsiktet introdusere feil eller bryte domenespesifikke regler.

For å håndtere utfordringene med domenekompleksitet kan selvhelbredende

Selvhelbredende data 169

datateknikker forbedres ved å inkorporere domenespesifikk kunnskap og regler i

AI-modellene og arbeiderne. Dette kan oppnås gjennom teknikker som:

1. Domenespesifikk Trening: AI-modellene som brukes for selvhelbredende data

kan dirigeres eller til og med finjusteres på domenespesifikke datasett som fanger

opp det spesifikke domenets kompleksitet og regler. Ved å eksponere modellene

for representative data og scenarioer, kan de lære mønstrene, begrensningene og

unntakene som er spesifikke for domenet.

2. Regelbaserte Begrensninger: Selvhelbredende dataarbeidere kan utvides

med eksplisitte regelbaserte begrensninger som koder domenespesifikk

kunnskap. Disse reglene kan defineres av domeneeksperter og integreres i

datakorrigeringsprosessen. AI-modellene kan da bruke disse reglene til å guide

sine beslutninger og sikre overholdelse av domenespesifikke krav.

3. Samarbeid med Domeneeksperter: I komplekse domener er det avgjørende

å involvere domeneeksperter i design og utvikling av selvhelbredende

datateknikker. Domeneeksperter kan gi verdifull innsikt i dataenes kompleksitet,

forretningsreglene og potensielle kanttilfeller. Deres kunnskap kan inkorporeres

i AI-modellene og arbeiderne for å forbedre nøyaktigheten og påliteligheten til

automatiske datakorreksjoner ved bruk av Menneske-i-løkken-mønstre.

4. Inkrementell og Iterativ Tilnærming: Når man håndterer komplekse domener,

er det ofte fordelaktig å adoptere en inkrementell og iterativ tilnærming til

selvhelbredende data. I stedet for å forsøke å automatisere korreksjoner for hele

domenet på én gang, fokuser på spesifikke underdomener eller datakategorier

hvor reglene og begrensningene er godt forstått. Utvid gradvis omfanget av

selvhelbredende teknikker etter hvert som forståelsen av domenet vokser og

teknikkene viser seg effektive.

Ved å ta hensyn til kompleksiteten i datadomenet og inkorporere domenespesifikk

kunnskap i selvhelbredende datateknikker, kan du oppnå en balanse mellom

automatisering og nøyaktighet. Det er viktig å erkjenne at selvhelbredende data

Selvhelbredende data 170

ikke er en universalløsning, og at tilnærmingen bør tilpasses de spesifikke kravene og

utfordringene i hvert domene.

I komplekse domener kan en hybrid tilnærming som kombinerer selvhelbredende

datateknikker med menneskelig ekspertise og tilsyn være mest effektiv. Automatiske

korreksjoner kan håndtere rutinepregede og veldefinerte tilfeller, mens komplekse

scenarioer eller unntak kan flagges for menneskelig gjennomgang og intervensjon.

Denne samarbeidsbaserte tilnærmingen sikrer at fordelene med automatisering

realiseres samtidig som man opprettholder nødvendig kontroll og nøyaktighet i

komplekse datadomener.

Forklarbarhet og gjennomsiktighet

Forklarbarhet refererer til evnen til å forstå og tolke resonnementet bak beslutningene

som tas av AI-modeller, mens gjennomsiktighet innebærer å gi klar innsikt i

datakorreksjonsprosessen.

I mange sammenhenger må dataendringer være reviderbare og kunne rettferdiggjøres.

Interessenter, inkludert forretningsbrukere, revisorer og regulerende organer, kan kreve

forklaringer på hvorfor visse datakorreksioner ble gjort og hvordan AI-modellene kom

fram til disse beslutningene. Dette er spesielt viktig i domener hvor datanøyaktighet og

integritet har betydelige implikasjoner, som finans, helsevesen og juridiske saker.

For å imøtekomme behovet for forklarbarhet og gjennomsiktighet bør selvhelbredende

datateknikker inkorporere mekanismer som gir innsikt i AI-modellenes

beslutningsprosess. Dette kan oppnås gjennom ulike tilnærminger:

1. Tankekjede:Ved å bemodellen forklare sin tenkning “høyt” før den gjør endringer

i data, kan man lettere forstå beslutningsprosessen og generere menneskelig

lesbare forklaringer for korreksjoner som er gjort. Kompromisset er litt mer

kompleksitet i å skille forklaringen fra den strukturerte datautgangen, som kan

håndteres ved…

Selvhelbredende data 171

2. Generering av forklaringer: Selvhelbredende dataarbeidere kan utstyres med

evnen til å generere menneskelig lesbare forklaringer for korreksjoner de gjør.

Dette kan oppnås ved å be modellen produsere sin beslutningsprosess som

lett forståelige forklaringer integrert i selve dataene. For eksempel kan en

selvhelbredende dataarbeider generere en rapport som fremhever de spesifikke

datauoverensstemmelsene den identifiserte, korreksjonene den anvendte, og

begrunnelsen bak disse korreksjonene.

3. Funksjonsrelevans:AI-modeller kan instrueres med informasjon om viktigheten

av ulike funksjoner eller attributter i datakorreksjonsprosessen som del av

deres direktiver. Disse direktivene kan i sin tur eksponeres for menneskelige

interessenter. Ved å identifisere nøkkelfaktorene som påvirker modellens

beslutninger, kan interessenter få innsikt i resonnementet bak korreksjonene og

vurdere deres gyldighet.

4. Logging og revisjon: Implementering av omfattende loggførings- og

revisjonsmekanismer er avgjørende for å opprettholde gjennomsiktighet i den

selvhelbredende dataprosessen. Hver datakorreksjon som gjøres av AI-modeller

bør logges, inkludert originaldata, korrigerte data og spesifikke handlinger som

er utført. Dette revisjonssporet muliggjør retrospektiv analyse og gir en klar

oversikt over endringene som er gjort i dataene.

5. Menneske-i-løkken-tilnærming: Inkorporering av en menneske-i-

løkken-tilnærming kan forbedre forklarbarheten og gjennomsiktigheten i

selvhelbredende datateknikker. Ved å involvere menneskelige eksperter i

gjennomgang og validering av AI-genererte korreksjoner, kan organisasjoner

sikre at korreksjonene er i tråd med domenekunnskap og forretningskrav.

Menneskelig tilsyn legger til et ekstra lag med ansvarlighet og muliggjør

identifisering av potensielle skjevheter eller feil i AI-modellene.

6. Kontinuerlig overvåking og evaluering: Regelmessig overvåking og evaluering

av ytelsen til selvhelbredende datateknikker er essensielt for å opprettholde

gjennomsiktighet og tillit. Ved å vurdere nøyaktigheten og effektiviteten til

Selvhelbredende data 172

AI-modellene over tid, kan organisasjoner identifisere eventuelle avvik eller

anomalier og iverksette korrigerende tiltak. Kontinuerlig overvåking bidrar til

å sikre at den selvhelbredende dataprosessen forblir pålitelig og på linje med

ønskede resultater.

Forklarbarhet og gjennomsiktighet er kritiske hensyn ved implementering av

selvhelbredende datateknikker. Ved å gi klare forklaringer for datakorreksioner,

opprettholde omfattende revisjonsspor og involvere menneskelig tilsyn, kan

organisasjoner bygge tillit til den selvhelbredende dataprosessen og sikre at endringene

som gjøres i dataene er forsvarlige og på linje med forretningsmålene.

Det er viktig å finne en balanse mellom fordelene med automatisering og behovet

for gjennomsiktighet. Mens selvhelbredende datateknikker kan betydelig forbedre

datakvalitet og effektivitet, bør dette ikke gå på bekostning av å miste oversikt og

kontroll over datakorreksjonsprosessen. Ved å designe selvhelbredende dataarbeidere

med forklarbarhet og gjennomsiktighet i tankene, kan organisasjoner utnytte kraften

i AI samtidig som de opprettholder det nødvendige nivået av ansvarlighet og tillit til

dataene.

Utilsiktede konsekvenser

Mens selvhelbredende datateknikker har som mål å forbedre datakvalitet og konsistens,

er det avgjørende å være oppmerksom på potensialet for utilsiktede konsekvenser.

Automatiske korreksjoner kan, hvis de ikke er nøye utformet og overvåket, utilsiktet

endre betydningen eller konteksten til dataene, noe som kan føre til nedstrøms

problemer.

En av de primære risikoene ved selvhelbredende data er introduksjonen av

skjevheter eller feil i datakorreksjonsprosessen. AI-modeller kan, som alle andre

programvaresystemer, være utsatt for skjevheter som finnes i treningsdataene eller

som introduseres gjennom utformingen av algoritmene. Hvis disse skjevhetene

Selvhelbredende data 173

ikke identifiseres og reduseres, kan de forplante seg gjennom den selvhelbredende

dataprosessen og resultere i skjeve eller feilaktige datamodifikasjoner.

Ta for eksempel en selvhelbredende dataarbeider som har som oppgave å korrigere

uoverensstemmelser i kunders demografiske data. Hvis AI-modellen har lært skjevheter

fra historiske data, som å knytte bestemte yrker eller inntektsnivåer til spesifikke kjønn

eller etnisiteter, kan den gjøre feilaktige antakelser og modifisere dataene på en måte

som forsterker disse skjevhetene. Dette kan føre til unøyaktige kundeprofiler, feilrettede

forretningsbeslutninger og potensielt diskriminerende utfall.

En annen potensiell utilsiktet konsekvens er tapet av verdifull informasjon eller kontekst

under datakorreksjonsprosessen. Selvhelbredende datateknikker fokuserer ofte på å

standardisere og normalisere data for å sikre konsistens. I noen tilfeller kan imidlertid

de originale dataene inneholde nyanser, unntak eller kontekstuell informasjon som

er viktig for å forstå hele bildet. Automatiserte korreksjoner som blindt håndhever

standardisering kan utilsiktet fjerne eller tilsløre denne verdifulle informasjonen.

For eksempel, tenk deg en selvhelbredende dataarbeider som er ansvarlig for å korrigere

uoverensstemmelser i medisinske journaler. Hvis arbeideren møter på en pasients

sykehistorie med en sjelden tilstand eller en uvanlig behandlingsplan, kan den forsøke

å normalisere dataene for å passe et mer vanlig mønster. Men ved å gjøre dette kan

den miste de spesifikke detaljene og konteksten som er avgjørende for å representere

pasientens unike situasjon nøyaktig. Dette tapet av informasjon kan ha alvorlige

konsekvenser for pasientbehandling og medisinske beslutninger.

For å redusere risikoen for utilsiktede konsekvenser er det viktig å ta en proaktiv

tilnærming når man designer og implementerer selvhelbredende datateknikker:

1. Grundig testing og validering: Før man implementerer selvhelbredende

dataarbeidere i produksjon, er det avgjørende å grundig teste og validere

deres oppførsel mot et mangfold av scenarioer. Dette inkluderer testing med

representative datasett som dekker ulike kanttilfeller, unntak og potensielle

Selvhelbredende data 174

skjevheter. Grundig testing hjelper med å identifisere og håndtere eventuelle

utilsiktede konsekvenser før de påvirker data i den virkelige verden.

2. Kontinuerlig overvåking og evaluering: Å implementere mekanismer for

kontinuerlig overvåking og evaluering er essensielt for å oppdage og redusere

utilsiktede konsekvenser over tid. Regelmessig gjennomgang av resultatene fra

selvhelbredende dataprosesser, analyse av påvirkningen på nedstrømssystemer og

beslutningstaking, og innhenting av tilbakemeldinger fra interessenter kan hjelpe

med å identifisere eventuelle negative effekter og utløse tidlige korrigerende

tiltak. Hvis organisasjonen din har operasjonelle dashbord, er det sannsynligvis

en god idé å legge til lett synlige målinger relatert til automatiserte dataendringer.

Å legge til alarmer koblet til store avvik fra normal dataendringsaktivitet er

sannsynligvis en enda bedre idé!

3. Menneskelig tilsyn og intervensjon: Det er avgjørende å opprettholde

menneskelig tilsyn og muligheten til å gripe inn i den selvhelbredende

dataprosessen. Mens automatisering kan forbedre effektiviteten betydelig, er det

viktig å ha menneskelige eksperter som gjennomgår og validerer korreksjoner

gjort av AI-modeller, spesielt i kritiske eller sensitive domener. Menneskelig

dømmekraft og domenekunnskap kan hjelpe med å identifisere og håndtere

eventuelle utilsiktede konsekvenser som kan oppstå.

4. Forklarbar AI (XAI) og åpenhet: Som diskutert i forrige underkapittel,

kan inkorporering av forklarbar AI-teknikker og sikring av åpenhet i den

selvhelbredende dataprosessen hjelpe med å redusere utilsiktede konsekvenser.

Ved å gi klare forklaringer for datakorreksjonene og opprettholde omfattende

revisjonsspor, kan organisasjoner bedre forstå og spore resonnementet bak

modifikasjonene gjort av AI-modeller.

5. Inkrementell og iterativ tilnærming: Å adoptere en inkrementell og iterativ

tilnærming til selvhelbredende data kan hjelpe med å minimere risikoen for

utilsiktede konsekvenser. I stedet for å anvende automatiserte korreksjoner på hele

datasettet på én gang, start med en delmengde av data og utvid gradvis omfanget

Selvhelbredende data 175

etter hvert som teknikkene viser seg å være effektive og pålitelige. Dette muliggjør

nøye overvåking og justering underveis, og reduserer påvirkningen av eventuelle

utilsiktede konsekvenser.

6. Samarbeid og tilbakemelding: Å engasjere interessenter fra forskjellige

domener og oppmuntre til samarbeid og tilbakemelding gjennom hele den

selvhelbredende dataprosessen kan hjelpe med å identifisere og håndtere

utilsiktede konsekvenser. Regelmessig innhenting av innspill fra domeneeksperter,

databrukere og sluttbrukere kan gi verdifull innsikt i den virkelige påvirkningen

av datakorreksjonene og fremheve eventuelle problemer som kan ha blitt oversett.

Ved å proaktivt håndtere risikoen for utilsiktede konsekvenser og implementere

passende sikkerhetstiltak, kan organisasjoner utnytte fordelene med selvhelbredende

datateknikker mens de minimerer potensielle negative effekter. Det er viktig å tilnærme

seg selvhelbredende data som en iterativ og samarbeidende prosess, kontinuerlig

overvåke, evaluere og forbedre teknikkene for å sikre at de er på linje med ønskede

utfall og opprettholder dataenes integritet og pålitelighet.

Når man vurderer bruken av selvhelbredende datamønstre, er det essensielt å nøye

evaluere disse faktorene og veie fordelene opp mot potensielle risikoer og begrensninger.

I noen tilfeller kan en hybrid tilnærming som kombinerer automatiserte korreksjoner

med menneskelig tilsyn og intervensjon være den mest hensiktsmessige løsningen.

Det er også verdt å merke seg at selvhelbredende datateknikker ikke bør ses på som

en erstatning for robust datavalidering, inputsanitering og feilhåndteringsmekanismer.

Disse grunnleggende praksisene forblir kritiske for å sikre dataintegritet og sikkerhet.

Selvhelbredende data bør ses på som en komplementær tilnærming som kan forsterke

og forbedre disse eksisterende tiltakene.

Til syvende og sist avhenger beslutningen om å bruke selvhelbredende datamønstre

av de spesifikke kravene, begrensningene og prioriteringene i applikasjonen din. Ved

Selvhelbredende data 176

å nøye vurdere hensynene skissert ovenfor og tilpasse dem til applikasjonens mål og

arkitektur, kan du ta informerte beslutninger om når og hvordan du effektivt kan utnytte

selvhelbredende datateknikker.

Kontekstuell innholdsgenerering

Mønstre for kontekstuell innholdsgenerering utnytter kraften i store språkmodeller

(LLM) for å generere dynamisk og kontekstspesifikt innhold i applikasjoner. Denne

kategorienmønstre anerkjenner viktigheten av å levere personalisert og relevant innhold

til brukere basert på deres spesifikke behov, preferanser og til og med tidligere og

nåværende interaksjoner med applikasjonen.

I denne tilnærmingen refererer “innhold” både til primærinnhold (dvs. blogginnlegg,

artikler, osv.) og meta-innhold, som anbefalinger til primærinnhold.

Mønstre for kontekstuell innholdsgenerering kan spille en avgjørende rolle i å forbedre

brukerengasjementnivåene dine, tilby skreddersydde opplevelser og automatisere

innholdsskapende oppgaver både for deg og brukerne dine. Ved å bruke mønstrene vi

Kontekstuell innholdsgenerering 178

beskriver i dette kapittelet, kan du lage applikasjoner som genererer innhold dynamisk

og tilpasser seg kontekst og input i sanntid.

Mønstrene fungerer ved å integrere LLM i applikasjonens output, fra brukergrensesnittet

(noen ganger referert til som “chrome”), til e-poster og andre former for varsler, samt

alle innholdgenereringsprosesser.

Når en bruker samhandler med applikasjonen eller utløser en spesifikk

innholdsforespørsel, fanger applikasjonen opp relevant kontekst, som brukerpreferanser,

tidligere interaksjoner eller spesifikke prompts. Denne kontekstuelle informasjonen

mates deretter inn i LLM-en, sammen med eventuelle nødvendige maler eller

retningslinjer, og brukes til å produsere tekstlig output som ellers måtte ha vært enten

hardkodet, lagret i en database eller algoritmisk generert.

LLM-generert innhold kan ta ulike former, som personaliserte anbefalinger,

dynamiske produktbeskrivelser, tilpassede e-postsvar eller til og med hele artikler

eller blogginnlegg. En av de mest radikale bruksområdene for dette innholdet som

jeg var pionér for for over et år siden, er dynamisk generering av UI-elementer som

skjemaetiketter, verktøytips og andre typer forklarende tekst.

Personalisering

En av hovedfordelene med mønstre for kontekstuell innholdsgenerering er muligheten

til å levere svært personaliserte opplevelser til brukere. Ved å generere innhold basert på

brukerspesifikk kontekst, gjør disse mønstrene det mulig for applikasjoner å skreddersy

innhold til individuelle brukeres interesser, preferanser og interaksjoner.

Personalisering handler om mer enn bare å sette inn en brukers navn i generisk innhold.

Det innebærer å utnytte den rike konteksten som er tilgjengelig om hver bruker for å

generere innhold som resonerermed deres spesifikke behov og ønsker. Denne konteksten

kan omfatte en rekke faktorer, som:

Kontekstuell innholdsgenerering 179

1. Brukerprofilinformasjon: På det mest generelle nivået av denne teknikken kan

demografiske data, interesser, preferanser og andre profilattributter brukes til å

generere innhold som samsvarer med brukerens bakgrunn og karakteristikker.

2. Atferdsdata: En brukers tidligere interaksjoner med applikasjonen, som viste

sider, klikket lenker eller kjøpte produkter, kan gi verdifull innsikt i deres atferd og

interesser. Disse dataene kan brukes til å generere innholdsforslag som gjenspeiler

deres engasjementsmønstre og forutser deres fremtidige behov.

3. Kontekstuelle faktorer: Brukerens nåværende kontekst, som deres

plassering, enhet, tid på døgnet eller til og med været, kan påvirke

innholdgenereringsprosessen. For eksempel kan en reiseapplikasjon ha en

AI-arbeider som kan generere personaliserte anbefalinger basert på brukerens

nåværende plassering og gjeldende værforhold.

Ved å utnytte disse kontekstuelle faktorene, gjør mønstre for kontekstuell

innholdsgenerering det mulig for applikasjoner å levere innhold som føles skreddersydd

for hver enkelt bruker. Dette nivået av personalisering har flere betydelige fordeler:

1. Økt engasjement: Personalisert innhold fanger brukernes oppmerksomhet og

holder dem engasjert i applikasjonen. Når brukere føler at innholdet er relevant

og snakker direkte til deres behov, er det mer sannsynlig at de bruker mer tid på

å samhandle med applikasjonen og utforske dens funksjoner.

2. Forbedret brukertilfredshet: Personalisert innhold viser at applikasjonen

forstår og bryr seg om brukerens unike behov. Ved å tilby innhold som er

hjelpsomt, informativt og på linje med deres interesser, kan applikasjonen øke

brukertilfredsheten og bygge en sterkere forbindelse med brukerne sine.

3. Høyere konverteringsrater: I sammenheng med e-handel eller

markedsføringsapplikasjoner kan personalisert innhold ha betydelig innvirkning

på konverteringsrater. Ved å presentere brukere med produkter, tilbud

eller anbefalinger som er skreddersydd til deres preferanser og atferd, kan

Kontekstuell innholdsgenerering 180

applikasjonen øke sannsynligheten for at brukere utfører ønskede handlinger,

som å gjøre et kjøp eller registrere seg for en tjeneste.

Produktivitet

Mønstre for kontekstuell innholdsgenerering kan betydelig øke visse typer produktivitet

ved å redusere behovet for manuell innholdsgenerering og redigering i kreative

prosesser. Ved å utnytte kraften i LLM-er, kan du generere høykvalitetsinnhold i stor

skala, og spare tid og innsats som innholdsskaperne og utviklerne dine ellers måtte ha

brukt på kjedelig manuelt arbeid.

Tradisjonelt har innholdsskapere måttet forske, skrive, redigere og formatere innhold for

å sikre at det oppfyller applikasjonens krav og brukerens forventninger. Denne prosessen

kan være tidkrevende og ressursintensiv, særlig når innholdsmengden vokser.

Medmønstre for kontekstuell innholdsgenerering kan imidlertid innholdsskapingsprosessen

i stor grad automatiseres. LLM-er kan generere sammenhengende, grammatisk korrekt

og kontekstuelt relevant innhold basert på gitte prompts og retningslinjer. Denne

automatiseringen gir flere produktivitetsfordeler:

1. Redusert manuelt arbeid: Ved å delegere innholdsgenerering til LLM-er kan

innholdsskapere fokusere på oppgaver på høyere nivå som innholdsstrategi,

idéutvikling og kvalitetssikring. De kan gi nødvendig kontekst, maler og

retningslinjer til LLM-en og la den håndtere selve innholdsgenereringen. Dette

reduserer det manuelle arbeidet som kreves for skriving og redigering, noe som

gjør at innholdsskapere kan være mer produktive og effektive.

2. Raskere innholdsproduksjon: LLM-er kan generere innhold mye raskere enn

menneskelige skribenter. Med de riktige promptene og retningslinjene kan en LLM

produsere flere innholdsdeler på få sekunder eller minutter. Denne hastigheten

gjør det mulig for applikasjoner å generere innhold i et mye raskere tempo, og

holde tritt med brukernes behov og det stadig skiftende digitale landskapet.

Kontekstuell innholdsgenerering 181

Fører raskere innholdsproduksjon til en “allmenningens tragedie” der internett

drukner i innhold som ingen leser? Dessverre mistenker jeg at svaret er ja.

3. Konsistens og kvalitet: LLM-er kan enkelt revidere innhold slik at det blir

konsistent i stil, tone og kvalitet. Gitt klare retningslinjer og eksempler, kan

visse typer applikasjoner (f.eks. nyhetsredaksjoner, PR osv.) sikre at deres

menneskegenererte innhold samsvarer med deres merkevares stemme og

møter de ønskede kvalitetsstandardene. Denne konsistensen reduserer behovet

for omfattende redigering og revisjoner, noe som sparer tid og innsats i

innholdsskapingsprosessen.

4. Iterasjon og optimalisering: Mønstre for kontekstuell innholdsgenerering

muliggjør rask iterasjon og optimalisering av innhold. Ved å justere promptene,

malene eller retningslinjene som gis til LLM-en, kan applikasjonene dine raskt

generere varianter av innhold og teste ulike tilnærminger på en automatisert

måte som aldri var mulig tidligere. Denne iterative prosessen tillater raskere

eksperimentering og forbedring av innholdsstrategier, som fører til mer effektivt

og engasjerende innhold over tid. Denne spesielle teknikken kan være en

total game-changer for applikasjoner som e-handel som lever og dør basert på

fluktfrekvens og engasjement

Det er viktig å merke seg at selv om mønstre for kontekstuell

innholdsgenerering kan øke produktiviteten betydelig, eliminerer de ikke

fullstendig behovet for menneskelig involvering. Innholdsskapere og

redaktører spiller fortsatt en avgjørende rolle i å definere den overordnede

innholdsstrategien, gi veiledning til LLM-en og sikre kvaliteten og

egnetheten til det genererte innholdet.

Ved å automatisere de mer repetitive og tidkrevende aspektene ved innholdsproduksjon,

Kontekstuell innholdsgenerering 182

frigjør mønstre for kontekstuell innholdsgenerering verdifull menneskelig tid

og ressurser som kan omdirigeres til oppgaver med høyere verdi. Denne økte

produktiviteten gjør det mulig å levere mer personalisert og engasjerende innhold til

brukere mens man optimaliserer arbeidsflyter for innholdsproduksjon.

Rask iterasjon og eksperimentering

Mønstre for kontekstuell innholdsgenerering gjør det mulig å raskt iterere og

eksperimentere med forskjellige innholdsvariasjoner, noe som muliggjør raskere

optimalisering og forbedring av innholdsstrategien din. Du kan generere flere

versjoner av innhold på få sekunder, simpelthen ved å justere konteksten, malene eller

retningslinjene som gis til modellen.

Denne raske iterasjonsevnen gir flere viktige fordeler:

1. Testing og optimalisering: Med muligheten til å generere innholdsvariasjoner

raskt, kan du enkelt teste forskjellige tilnærminger og måle deres effektivitet.

For eksempel kan du generere flere versjoner av en produktbeskrivelse

eller markedsføringsmelding, hver tilpasset et spesifikt brukersegment eller

kontekst. Ved å analysere brukerengasjementsmålinger, som klikkfrekvens eller

konverteringsrate, kan du identifisere de mest effektive innholdsvariasjonene og

optimalisere innholdsstrategien din deretter.

2. A/B-testing:Mønstre for kontekstuell innholdsgenerering muliggjør sømløs A/B-

testing av innhold. Du kan generere to eller flere variasjoner av innhold og tilfeldig

servere dem til forskjellige brukergrupper. Ved å sammenligne ytelsen til hver

variasjon kan du avgjøre hvilket innhold som resonerer best med målgruppen

din. Denne datadrevne tilnærmingen lar deg ta informerte beslutninger og

kontinuerlig forbedre innholdet ditt for å maksimere brukerengasjement og

oppnå ønskede resultater.

Kontekstuell innholdsgenerering 183

3. Personaliseringseksperimenter: Rask iterasjon og eksperimentering er spesielt

verdifullt når det kommer til personalisering. Med mønstre for kontekstuell

innholdsgenerering kan du raskt generere personaliserte innholdsvariasjoner

basert på forskjellige brukersegmenter, preferanser eller atferd. Ved å

eksperimentere med forskjellige personaliseringsstrategier kan du identifisere

de mest effektive tilnærmingene for å engasjere individuelle brukere og levere

skreddersydde opplevelser.

4. Tilpasning til endrede trender: Evnen til å iterere og eksperimentere raskt gjør

det mulig å forbli smidig og tilpasse seg endrede trender og brukerpreferanser. Når

nye emner, nøkkelord eller brukeratferd dukker opp, kan du raskt generere innhold

som samsvarer med disse trendene. Ved å kontinuerlig eksperimentere og forbedre

innholdet ditt, kan du holde deg relevant og opprettholde et konkurransefortrinn

i det stadig utviklende digitale landskapet.

5. Kostnadseffektiv eksperimentering: Tradisjonell innholdseksperimentering

innebærer ofte betydelig tid og ressurser, ettersom innholdsskapere må

manuelt utvikle og teste ulike variasjoner. Med mønstre for kontekstuell

innholdsgenerering er imidlertid kostnadene ved eksperimentering betydelig

redusert. LLM-er kan generere innholdsvariasjoner raskt og i stor skala, slik

at du kan utforske et bredt spekter av ideer og tilnærminger uten å pådra deg

betydelige kostnader.

For å få mest mulig ut av rask iterasjon og eksperimentering, er det viktig å ha et

veldefinert eksperimenteringsrammeverk på plass. Dette rammeverket bør inkludere:

• Klare mål og hypoteser for hvert eksperiment

• Passende målinger og sporingsmekanismer for å måle innholdets ytelse

• Segmenterings- og målrettingsstrategier for å sikre at relevante

innholdsvariasjoner blir levert til de riktige brukerne

• Analyse- og rapporteringsverktøy for å utlede innsikt fra eksperimentelle data

• En prosess for å inkorporere læring og optimaliseringer i innholdsstrategien din

Kontekstuell innholdsgenerering 184

Ved å omfavne rask iterasjon og eksperimentering kan du kontinuerlig forbedre og

optimalisere innholdet ditt, og sikre at det forblir engasjerende, relevant og effektivt

i å oppnå applikasjonens mål. Denne smidige tilnærmingen til innholdsskapelse lar deg

ligge i forkant og levere eksepsjonelle brukeropplevelser.

Skalerbarhet og effektivitet

Ettersom applikasjoner vokser og etterspørselen etter personalisert innhold øker,

muliggjør kontekstuell innholdsgenerering effektiv skalering av innholdsproduksjon.

LLM-er kan generere innhold for et stort antall brukere og kontekster samtidig, uten

behov for en proporsjonal økning i menneskelige ressurser. Denne skalbarheten gjør det

mulig for applikasjoner å levere personaliserte opplevelser til en voksende brukerbase

uten å belaste innholdsskapingskapasiteten.

Merk at kontekstuell innholdsgenerering kan brukes effektivt til å

internasjonalisere applikasjonen din “på sparket”. Faktisk er det akkurat det

jeg gjorde ved å bruke min Instant18n Gem for å levere Olympia på mer enn

et halvt dusin språk, selv om vi er mindre enn ett år gamle.

AI-drevet lokalisering

Hvis du tillater meg å skryte et øyeblikk, tror jeg at mitt Instant18n-bibliotek for Rails-

apper er et banebrytende eksempel på “Kontekstuell innholdsgenerering”-mønsteret i

aksjon, som viser det transformative potensialet til AI i applikasjonsutvikling. Denne

gem-en utnytter kraften i OpenAIs GPT store språkmodell for å revolusjonere måten

internasjonalisering og lokalisering håndteres i Rails-applikasjoner.

Tradisjonelt innebærer internasjonalisering av en Rails-applikasjon manuell definering

av oversettelsesnøkler og tilhørende oversettelser for hvert støttet språk. Denne

Kontekstuell innholdsgenerering 185

prosessen kan være tidkrevende, ressursintensiv og utsatt for inkonsistenser. Med

Instant18n gem-en er imidlertid paradigmet for lokalisering fullstendig omdefinert.

Ved å integrere en stor språkmodell gjør Instant18n gem-en det mulig å generere

oversettelser på sparket, basert på konteksten og betydningen av teksten. I stedet for

å være avhengig av forhåndsdefinerte oversettelsesnøkler og statiske oversettelser,

oversetter gem-en dynamisk tekst ved hjelp av AI-kraft. Denne tilnærmingen gir flere

viktige fordeler:

1. Sømløs lokalisering: Med Instant18n gem-en trenger utviklere ikke lenger å

manuelt definere og vedlikeholde oversettelsesfiler for hvert støttet språk. Gem-en

genererer automatisk oversettelser basert på den gitte teksten og ønsket målspråk,

noe som gjør lokaliseringsprosessen uanstrengt og sømløs.

2. Kontekstuell nøyaktighet: AI kan gis nok kontekst til å forstå nyansene i teksten

som oversettes. Den kan ta hensyn til den omkringliggende konteksten, idiomer

og kulturelle referanser for å generere oversettelser som er nøyaktige, naturlig

lydende og kontekstuelt passende.

3. Omfattende språkstøtte: Instant18n gem-en utnytter den enorme kunnskapen og

språklige kapasiteten til GPT, og muliggjør oversettelser til et omfattende utvalg

av språk. Fra vanlige språk som spansk og fransk til mer obskure eller fiktive språk

som klingon og alvisk, kan gem-en håndtere et bredt spekter av oversettelseskrav.

4. Fleksibilitet og kreativitet: Gem-en går utover tradisjonelle språkoversettelser

og tillater kreative og ukonvensjonelle lokaliseringsalternativer. Utviklere kan

oversette tekst til ulike stiler, dialekter eller til og med fiktive språk, noe som åpner

for nye muligheter for unike brukeropplevelser og engasjerende innhold.

5. Ytelsesoptimalisering: Instant18n gem-en inkorporerer bufringmekanismer for

å forbedre ytelsen og redusere belastningen ved gjentatte oversettelser. Oversatt

tekst blir bufret, slik at påfølgende forespørsler om samme oversettelse kan

betjenes raskt uten behov for redundante API-kall.

Kontekstuell innholdsgenerering 186

Instant18n gem-en eksemplifiserer kraften i “Kontekstuell innholdsgenerering”-

mønsteret ved å utnytte AI til å generere lokalisert innhold dynamisk. Den viser

hvordan AI kan integreres i kjernefunksjonaliteten til en Rails-applikasjon, og

transformere måten utviklere tilnærmer seg internasjonalisering og lokalisering.

Ved å eliminere behovet for manuell oversettelseshåndtering og muliggjøre

sanntidsoversettelser basert på kontekst, sparer Instant18n gem utviklere betydelig tid

og innsats. Det lar dem fokusere på å bygge kjernefunksjonaliteten i applikasjonen sin,

samtidig som lokaliseringsaspektet håndteres sømløst og nøyaktig.

Viktigheten av Brukertesting og Tilbakemelding

Til slutt, husk alltid viktigheten av brukertesting og tilbakemelding. Det er avgjørende å

validere at kontekstuell innholdsgenerering møter brukerforventningene og samsvarer

med applikasjonens mål. Fortsett å iterere og forbedre generert innhold basert på

brukerinnsikt og analysedata. Hvis du genererer dynamisk innhold i stor skala

som ville være umulig å validere manuelt av deg og teamet ditt, vurder å legge til

tilbakemeldingsmekanismer som lar brukere rapportere innhold som er rart eller feil,

sammen med en forklaring på hvorfor. Denne verdifulle tilbakemeldingen kan til og

med mates til en KI-arbeider som har som oppgave å gjøre justeringer i komponenten

som genererte innholdet!

Generative UI

Oppmerksomhet er så verdifullt i disse dager at effektivt brukerengasjement nå

krever programvareopplevelser som ikke bare er sømløse og intuitive, men også høyt

personaliserte for individuelle behov, preferanser og kontekster. Som et resultat står

designere og utviklere stadig oftere overfor utfordringen med å skape brukergrensesnitt

som kan tilpasse seg og imøtekomme hver brukers unike behov i stor skala.

Generative UI (GenUI) er en virkelig revolusjonerende tilnærming til design av

brukergrensesnitt som utnytter kraften i store språkmodeller (LLMs) for å skape

høyt personaliserte og dynamiske brukeropplevelser på sparket. Jeg ønsket å gi

deg i det minste en innføring i GenUI i denne boken, fordi jeg mener at det er en

av de grønneste mulighetene som for tiden eksisterer innen applikasjonsdesign og

rammeverk. Jeg er overbevist om at dusinvis eller flere nye vellykkede kommersielle og

åpen kildekode-prosjekter vil dukke opp i denne spesielle nisjen.

Generative UI 188

I kjernen kombinerer GenUI prinsippene for Kontekstuell Innholdsgenerering med

avanserte AI-teknikker for å generere brukergrensesnittelementer, som tekst, bilder og

layouter, dynamisk basert på en dyp forståelse av brukerens kontekst, preferanser og

mål. GenUI gjør det mulig for designere og utviklere å skape grensesnitt som tilpasser

seg og utvikler seg som respons på brukerinteraksjoner, og gir et nivå av personalisering

som tidligere var uoppnåelig.

GenUI representerer en grunnleggende endring i måten vi tilnærmer oss design av

brukergrensesnitt. I stedet for å designe for massene, lar GenUI oss designe for individet.

Personalisert innhold og grensesnitt har potensial til å skape brukeropplevelser som

resonerer med hver bruker på et dypere nivå, og øker engasjement, tilfredshet og

lojalitet.

Som en banebrytende teknikk er overgangen til GenUI full av konseptuelle og

praktiske utfordringer. Integrering av AI i designprosessen, sikring av at de genererte

grensesnittene ikke bare er personaliserte, men også brukbare, tilgjengelige og på linje

med den overordnede merkevaren og brukeropplevelsen - alt dette er utfordringer som

gjør GenUI til en jakt for de få, ikke de mange. I tillegg reiser involveringen av AI

spørsmål om datapersonvern, åpenhet og kanskje til og med etiske implikasjoner

Til tross for utfordringene har personaliserte opplevelser i stor skala kraft til å fullstendig

transformere måten vi samhandler med digitale produkter og tjenester på. Det åpner

muligheter for å skape inkluderende og tilgjengelige grensesnitt som imøtekommer

brukernes mangfoldige behov, uavhengig av deres evner, bakgrunn eller preferanser.

I dette kapittelet skal vi utforske konseptet GenUI, undersøke noen definerende

karakteristikker, viktige fordeler og potensielle utfordringer. Vi begynner med å

vurdere den mest grunnleggende og tilgjengelige formen for GenUI: generering av

tekstinnhold for ellers tradisjonelt designede og implementerte brukergrensesnitt.

Generative UI 189

Generering av tekst for brukergrensesnitt

Tekstelementer som eksisterer i applikasjonens grensesnittselementer, som

skjemaetiketter, verktøytips og forklarende tekst, er vanligvis hardkodet inn i malene

eller UI-komponentene, og gir en konsistent men generisk opplevelse for alle brukere.

Ved å bruke mønstre for kontekstuell innholdsgenerering, kan du transformere disse

statiske elementene til dynamiske, kontekstbevisste og personaliserte komponenter.

Personaliserte skjemaer

Skjemaer er en allestedsnærværende del avweb- ogmobilapplikasjoner, og fungerer som

det primære middelet for å samle inn brukerinput. Tradisjonelle skjemaer presenterer

imidlertid ofte en generisk og upersonlig opplevelse, med standard etiketter og felter

som ikke alltid samsvarer med brukerens spesifikke kontekst eller behov. Brukere er mer

tilbøyelige til å fullføre skjemaer som føles skreddersydd for deres behov og preferanser,

noe som fører til høyere konverteringsrater og brukertilfredshet.

Det er imidlertid viktig å finne en balanse mellom personalisering og konsistens. Mens

tilpasning av skjemaer til individuelle brukere kan være fordelaktig, er det avgjørende å

opprettholde et nivå av gjenkjennelighet og forutsigbarhet. Brukere skal fortsatt kunne

gjenkjenne og navigere i skjemaer enkelt, selv med personaliserte elementer.

Her er noen personaliserte skjemaideer til inspirasjon:

Kontekstuelle feltforslag

GenUI kan analysere brukerens tidligere interaksjoner, preferanser og data for å gi

intelligente feltforslag som prediksjoner. For eksempel, hvis brukeren tidligere har lagt

inn sin leveringsadresse, kan skjemaet automatisk fylle ut de relevante feltene med deres

lagrede informasjon. Dette sparer ikke bare tid, men viser også at applikasjonen forstår

og husker brukerens preferanser.

Generative UI 190

Vent litt, er ikke denne teknikken noe som kunne vært gjort uten å involvere AI?

Selvfølgelig, men det fine med å drive denne typen funksjonalitet med AI er todelt:

1) hvor enkelt det kan være å implementere og 2) hvor robust det kan være etter hvert

som brukergrensesnittet ditt endres og utvikles over tid.

La oss sette sammen en tjeneste for vårt teoretiske ordrehåndteringssystem, som forsøker

å proaktivt fylle inn riktig leveringsadresse for brukeren.

1 class OrderShippingAddressSubscriber

2 include Raix::ChatCompletion

3

4 attr_accessor :order

5

6 delegate :customer, to: :order

7

8 DIRECTIVE = "You are a smart order processing assistant. Given the

9 customer's order history, guess the most likely shipping address

10 for the current order."

11

12 def order_created(order)

13 return unless order.pending? && order.shipping_address.blank?

14

15 self.order = order

16

17 transcript.clear

18 transcript << { system: DIRECTIVE }

19 transcript << { user: "Order History: #{order_history.to_json}" }

20 transcript << { user: "Current Order: #{order.to_json}" }

21

22 response = chat_completion

23 apply_predicted_shipping_address(order, response)

24 end

25

26 private

27

28 def apply_predicted_shipping_address(order, response)

29 # extract the shipping address from the response...

30 # ...and assume there's some sort of live update of the address fields

31 order.update(shipping_address:)

32 end

Generative UI 191

33

34 def order_history

35 customer.orders.successful.limit(100).map do |order|

36 {

37 date: order.date,

38 description: order.description,

39 shipping_address: order.shipping_address

40 }

41 end

42 end

43 end

Dette eksempelet er svært forenklet, men burde fungere i de fleste tilfeller. Ideen er å

la AI-en gjette på samme måte som et menneske ville gjort. For å tydeliggjøre hva jeg

snakker om, la oss se på noen eksempeldata:

1 Order History:

2 [

3 {"date": "2024-01-03", "description": "garden soil mix",

4 "shipping_address": "123 Country Lane, Rural Town"},

5 {"date": "2024-01-15", "description": "hardcover fiction novels",

6 "shipping_address": "456 City Apt, Metroville"},

7 {"date": "2024-01-22", "description": "baby diapers", "shipping_address":

8 "789 Suburb St, Quietville"},

9 {"date": "2024-02-01", "description": "organic vegetables",

10 "shipping_address": "123 Country Lane, Rural Town"},

11 {"date": "2024-02-17", "description": "mystery thriller book set",

12 "shipping_address": "456 City Apt, Metroville"},

13 {"date": "2024-02-25", "description": "baby wipes",

14 "shipping_address": "789 Suburb St, Quietville"},

15 {"date": "2024-03-05", "description": "flower seeds",

16 "shipping_address": "123 Country Lane, Rural Town"},

17 {"date": "2024-03-20", "description": "biographies",

18 "shipping_address": "456 City Apt, Metroville"},

19 {"date": "2024-03-30", "description": "baby formula",

20 "shipping_address": "789 Suburb St, Quietville"},

21 {"date": "2024-04-12", "description": "lawn fertilizer",

22 "shipping_address": "123 Country Lane, Rural Town"},

23 {"date": "2024-04-22", "description": "science fiction novels",

24 "shipping_address": "456 City Apt, Metroville"},

Generative UI 192

25 {"date": "2024-05-02", "description": "infant toys",

26 "shipping_address": "789 Suburb St, Quietville"},

27 {"date": "2024-05-14", "description": "outdoor grill",

28 "shipping_address": "123 Country Lane, Rural Town"},

29 {"date": "2024-05-29", "description": "literary classics",

30 "shipping_address": "456 City Apt, Metroville"},

31 {"date": "2024-06-11", "description": "baby clothes",

32 "shipping_address": "789 Suburb St, Quietville"},

33 {"date": "2024-07-01", "description": "watering can",

34 "shipping_address": "123 Country Lane, Rural Town"},

35 {"date": "2024-07-18", "description": "non-fiction essays",

36 "shipping_address": "456 City Apt, Metroville"},

37 {"date": "2024-07-28", "description": "baby bath items",

38 "shipping_address": "789 Suburb St, Quietville"},

39 {"date": "2024-08-09", "description": "herb garden kit",

40 "shipping_address": "123 Country Lane, Rural Town"},

41 {"date": "2024-08-24", "description": "children's books",

42 "shipping_address": "456 City Apt, Metroville"}

43]

La du merke til mønsteret i dataene? Jeg garanterer at dette er enkelt stoff for en

LLM. For å demonstrere dette, la oss spørre GPT-4 hva som er den mest sannsynlige

leveringsadressen for et “termometer”.

1 From the order history you've provided, it looks like the purchases are

2 generally clustered into three main types based on the shipping addresses:

3

4 123 Country Lane, Rural Town - This address often orders garden and

5 outdoor-related items like soil mix, vegetables, flower seeds, lawn

6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.

7

8 456 City Apt, Metroville - This address tends to order various types of

9 books, indicating an interest in reading across genres like fiction,

10 thrillers, biographies, science fiction, literary classics, non-fiction

11 essays, and children's books.

12

13 789 Suburb St, Quietville - The purchases for this address are consistently

14 baby-related products, such as diapers, wipes, baby formula, infant toys,

15 baby clothes, and baby bath items.

16

Generative UI 193

17 Given these patterns, a digital thermometer could potentially be a fit for

18 any of the addresses based on different needs: outdoor temperature tracking,

19 a tool for a passionate reader interested in science gadgets, or a health

20 tool for a baby. However, considering its common use in monitoring health,

21 especially for babies, it's most likely to be purchased by someone who's

22 already buying baby care products.

23

24 Therefore, the most likely shipping address for a digital thermometer, based

25 on the purchasing patterns, would be 789 Suburb St, Quietville.

Hvis du tenker at det er overkill å bruke en dyr modell som GPT-4 for denne oppgaven,

har du rett! Jeg prøvde den samme prompten på Mistral 7B Instruct og den ga følgende

svar med en hastighet på 75 token per sekund, til en beskjeden kostnad på $0.000218

USD.

1 Based on the given order history, it appears that the customer has received

2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)

3 at the address "789 Suburb St, Quietville" and garden-related items (soil,

4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural

5 Town". The customer has also received books (fiction, non-fiction, literary

6 classics, mystery-thriller, science fiction, biographies, children's books)

7 at the address "456 City Apt, Metroville".

8

9 Given that the new order is for a "thermometer", which doesn't seem to fit

10 into any of the categories that the customer has previously ordered, it's

11 hard to accurately predict the shipping address based solely on the order

12 history. However, given the 50%-50% split between baby-related and

13 garden-related items, it could somewhat lean towards the Baby-related items

14 address ("789 Suburb St, Quietville"). But remember, this is an assumption

15 and cannot be definitively confirmed without more context or information.

Er overheaden og kostnadene ved denne teknikken verdt det for å gjøre en

betalingsopplevelse mer magisk? For mange nettbutikker, absolutt. Og ut fra hvordan

det ser ut, kommer kostnadene for AI-behandling bare til å gå ned, spesielt for

leverandører av åpen kildekode-modellverting i et kappløp mot bunnen.

Bruk en Prompt Template og StructuredIO sammen med Response Fencing

for å optimalisere denne typen chatfullføring.

Generative UI 194

Adaptiv feltrekkefølge

Rekkefølgen skjemafeltene presenteres i kan ha betydelig innvirkning på

brukeropplevelsen og fullføringsgraden. Med GenUI kan du dynamisk justere

feltrekkefølgen basert på brukerens kontekst og viktigheten av hvert felt. For eksempel,

hvis brukeren fyller ut et registreringsskjema for en treningsapp, kan skjemaet prioritere

felt relatert til deres treningsmål og preferanser, noe som gjør prosessen mer relevant

og engasjerende.

Personalisert mikrotekst

Instruksjonsteksten, feilmeldinger og annen microcopy tilknyttet skjemaer kan også

personaliseres ved hjelp av GenUI. I stedet for å vise generiske feilmeldinger som

“Ugyldig e-postadresse,” kan du generere mer hjelpsomme og kontekstuelle meldinger

som “Vennligst skriv inn en gyldig e-postadresse for å motta ordrebekreftelsen din.”

Disse personlige tilpasningene kan gjøre skjemaopplevelsen mer brukervennlig og

mindre frustrerende.

Personalisert validering

I samme gate som Personalisert mikrotekst, kunne du bruke AI til å validere skjemaet

på måter som virker magiske. Forestill deg å la en AI validere et brukerprofilskjema, og

se etter potensielle feil på et semantisk nivå.

Generative UI 195

Figur 9. Kan du se den semantiske valideringen som skjer?

Progressiv avsløring

GenUI kan intelligent bestemme hvilke skjemafelt som er essensielle basert på brukerens

kontekst og gradvis avdekke flere felt etter behov. Denne progressive avsløringen

bidrar til å redusere kognitiv belastning og gjør utfyllingsprosessen mer håndterbar. For

eksempel, hvis en bruker registrerer seg for et grunnleggende abonnement, kan skjemaet

Generative UI 196

først presentere bare de essensielle feltene, og etterhvert som brukeren går videre eller

velger spesifikke alternativer, kan ytterligere relevante felt introduseres dynamisk.

Kontekstbevisst forklarende tekst

Tooltips brukes ofte for å gi tilleggsinformasjon eller veiledning til brukere når de holder

musepekeren over eller samhandler med spesifikke elementer. Med en “Kontekstuell

innholdsgenerering”-tilnærming kan du generere tooltips som tilpasser seg brukerens

kontekst og gir relevant informasjon. For eksempel, hvis en bruker utforsker en kompleks

funksjon, kan tooltipet tilby personaliserte tips eller eksempler basert på deres tidligere

interaksjoner eller ferdighetsnivå.

Forklarende tekst, som instruksjoner, beskrivelser eller hjelpemeldinger, kan genereres

dynamisk basert på brukerens kontekst. I stedet for å presentere generiske forklaringer,

kan du bruke LLM-er til å generere tekst som er skreddersydd til brukerens spesifikke

behov eller spørsmål. For eksempel, hvis en bruker sliter med et bestemt trinn i en

prosess, kan den forklarende teksten gi personalisert veiledning eller feilsøkingstips.

Microcopy refererer til de små tekstbitene som veileder brukere gjennom applikasjonen

din, som knappeetiketter, feilmeldinger eller bekreftelsesmeldinger. Ved å anvende

Kontekstuell innholdsgenerering-tilnærmingen på microcopy, kan du skape et adaptivt

UI som reagerer på brukerens handlinger og gir relevant og hjelpsom tekst. For eksempel,

hvis en bruker er i ferd med å utføre en kritisk handling, kan bekreftelsesmeldingen

genereres dynamisk for å gi en klar og personalisert melding.

Personalisert forklarende tekst og tooltips kan i stor grad forbedre onboarding-prosessen

for nye brukere. Ved å gi kontekstspesifikk veiledning og eksempler, kan du hjelpe

brukere med å raskt forstå og navigere i applikasjonen, redusere læringskurven og øke

adopsjonen.

Dynamiske og kontekstbevisste chrome-elementer kan også gjøre applikasjonen mer

intuitiv og engasjerende. Brukere er mer tilbøyelige til å samhandle med og utforske

Generative UI 197

funksjoner når den medfølgende teksten er skreddersydd til deres spesifikke behov og

interesser.

Så langt har vi dekket ideer for å forbedre eksisterende UI-paradigmer med KI, men hva

med å tenke helt nytt om hvordan brukergrensesnitt designes og implementeres på en

mer radikal måte?

Definering av Generativ UI

I motsetning til tradisjonell UI-design, hvor designere lager faste, statiske grensesnitt,

peker GenUI mot en fremtid hvor programvaren vår har fleksible, personaliserte

opplevelser som kan utvikle seg og tilpasse seg i sanntid. Hver gang vi bruker et KI-

drevet samtalegrensesnitt, lar vi KI tilpasse seg brukerens spesifikke behov. GenUI tar

dette et skritt videre ved å anvende dette nivået av tilpasningsevne på programvarens

visuelle grensesnitt.

Grunnen til at det er mulig å eksperimentere med GenUI-ideer i dag, er at store

språkmodeller allerede forstår programmering, og deres grunnleggende kunnskap

inkluderer UI-teknologier og rammeverk. Spørsmålet er derfor om store språkmodeller

kan brukes til å generere UI-elementer, som tekst, bilder, layouts og til og med hele

grensesnitt, som er skreddersydd for hver enkelt bruker. Modellen kan instrueres

til å ta hensyn til ulike faktorer, som brukerens tidligere interaksjoner, uttrykte

preferanser, demografisk informasjon og den aktuelle brukskonteksten, for å skape

svært personaliserte og relevante grensesnitt.

GenUI skiller seg fra tradisjonell brukergrensesnittdesign på flere viktige måter:

1. Dynamisk og Adaptiv: Tradisjonell UI-design innebærer å lage faste, statiske

grensesnitt som forblir de samme for alle brukere. I motsetning til dette muliggjør

Generative UI 198

GenUI grensesnitt som kan dynamisk tilpasse og endre seg basert på brukerbehov

og kontekst. Dette betyr at samme applikasjon kan presentere forskjellige

grensesnitt til forskjellige brukere, eller til og med til samme bruker i forskjellige

situasjoner.

2. Personalisering i Stor Skala: Med tradisjonell design er det ofte upraktisk å

skape personaliserte opplevelser for hver bruker på grunn av tid og ressurser som

kreves. GenUI, derimot, tillater personalisering i stor skala. Ved å utnytte KI kan

designere skape grensesnitt som automatisk tilpasser seg hver brukers unike behov

og preferanser, uten å måtte manuelt designe og utvikle separate grensesnitt for

hvert brukersegment.

3. Fokus på Resultater: Tradisjonell UI-design fokuserer ofte på å skape visuelt

tiltalende og funksjonelle grensesnitt. Mens disse aspektene fortsatt er viktige i

GenUI, skifter hovedfokuset mot å oppnå ønskede brukerresultater. GenUI tar

sikte på å skape grensesnitt som er optimalisert for hver brukers spesifikke mål

og oppgaver, og prioriterer brukervennlighet og effektivitet fremfor rent estetiske

hensyn.

4. Kontinuerlig Læring og Forbedring: GenUI-systemer kan kontinuerlig lære

og forbedre seg over tid basert på brukerinteraksjoner og tilbakemeldinger. Når

brukere interagerer med de genererte grensesnittene, kan KI-modellene samle

data om brukeratferd, preferanser og resultater, og bruke denne informasjonen

til å raffinere og optimalisere fremtidige grensesnittgenerasjoner. Denne iterative

læringsprosessen gjør at GenUI-systemer blir stadig mer effektive i å møte

brukerbehov over tid.

Det er viktig å merke seg at GenUI ikke er det samme som KI-assisterte designverktøy,

som for eksempel de som gir forslag eller automatiserer visse designoppgaver.Mens disse

verktøyene kan være nyttige for å effektivisere designprosessen, er de fortsatt avhengige

av at designere tar endelige beslutninger og lager statiske grensesnitt. GenUI, derimot,

innebærer at KI-systemet tar en mer aktiv rolle i selve genereringen og tilpasningen av

grensesnitt basert på brukerdata og kontekst.

Generative UI 199

GenUI representerer et betydelig skifte i hvordan vi tilnærmer oss

brukergrensesnittdesign, hvor vi beveger oss bort fra universalløsninger og mot

høyt personaliserte, adaptive opplevelser. Ved å utnytte kraften i KI har GenUI

potensial til å revolusjonere måten vi samhandler med digitale produkter og tjenester

på, ved å skape grensesnitt som er mer intuitive, engasjerende og effektive for hver

enkelt bruker.

Eksempel

For å illustrere konseptet med GenUI, la oss se på en hypotetisk treningsapplikasjon kalt

“FitAI”. Denne appen har som mål å gi personaliserte treningsplaner og kostholdsråd til

brukere basert på deres individuelle mål, treningsnivå og preferanser.

I en tradisjonell UI-designtilnærming ville FitAI kanskje hatt et fast sett med

skjermbilder og elementer som er like for alle brukere. Med GenUI kunne appens

grensesnitt derimot dynamisk tilpasse seg hver brukers unike behov og kontekst.

Denne tilnærmingen er litt vanskelig å se for seg implementert i 2024 og har kanskje

ikke engang tilstrekkelig ROI, men det er mulig.

Slik kunne det fungert:

1. Onboarding:

• I stedet for et standard spørreskjema, bruker FitAI en konversasjons-KI

for å samle informasjon om brukerens mål, nåværende treningsnivå og

preferanser.

• Basert på denne innledende interaksjonen genererer KI-en et personalisert

dashbord-layout som fremhever funksjonene og informasjonen som er mest

relevant for brukerens mål.

• Dagens KI-teknologi kan ha et utvalg av skjermkomponenter til disposisjon

for å komponere det personaliserte dashbordet.

Generative UI 200

• Fremtidig KI-teknologi kan ta på seg rollen som en erfaren UI-designer og

faktisk skape dashbordet fra bunnen av.

2. Treningsplanlegger:

• Treningsplanleggerens grensesnitt tilpasses av AI-en basert på brukerens

erfaringsnivå og tilgjengelig utstyr.

• For en nybegynner uten utstyr kan den vise enkle kroppsøvelser med

detaljerte instruksjoner og videoer.

• For en avansert bruker med tilgang til treningsstudio kan den vise mer

komplekse treningsrutiner med mindre forklarende innhold.

• Innholdet i treningsplanleggeren er ikke bare filtrert fra et stort datasett.

Det kan genereres fortløpende basert på en kunnskapsbase som spørres med

kontekst som inkluderer alt som er kjent om brukeren.

3. Fremgangssporing:

• Fremgangssporingens grensesnitt utvikler seg basert på brukerens mål og

engasjementsmønster.

• Hvis en bruker primært fokuserer på vekttap, kan grensesnittet fremheve en

vekttrendgraf og kaloriforbrenningsstatistikk.

• For en bruker som bygger muskler, kan det fremheve styrkeøkning og

endringer i kroppssammensetning.

• AI-en kan tilpasse denne delen av applikasjonen til brukerens faktiske

fremgang. Hvis fremgangen stopper opp i en periode, kan appen skifte til en

modus hvor den prøver å få brukeren til å avsløre årsakene til tilbakeslaget,

for å kunne motvirke dem.

4. Ernæringsråd:

• Ernæringsdelen tilpasser seg brukerens kostholdspreferanser og -

restriksjoner.

Generative UI 201

• For en vegansk bruker kan den vise plantebaserte måltidsforslag og

proteinkilder.

• For en bruker med glutenintoleranse vil den automatisk filtrere ut

glutenholdige matvarer fra anbefalingene.

• Igjen er innholdet ikke hentet fra et massivt datasett av måltidsdata som

gjelder alle brukere, men er heller syntetisert fra en kunnskapsbase som

inneholder informasjon som kan tilpasses basert på brukerens spesifikke

situasjon og begrensninger.

• For eksempel genereres oppskrifter med ingrediensspesifikasjoner som

matcher brukerens kontinuerlig endrede kaloribehov etter hvert som deres

treningsnivå og kroppsstatistikk utvikler seg.

5. Motivasjonselementer:

• Appens motivasjonsinnhold og varsler er personlig tilpasset basert på

brukerens personlighetstype og respons på ulike motivasjonsstrategier.

• Noen brukere kan motta oppmuntrende meldinger, mens andre får mer

datadrevet tilbakemelding.

I dette eksempelet gjør GenUI det mulig for FitAI å skape en høyt tilpasset opplevelse for

hver bruker, som potensielt øker engasjement, tilfredshet og sannsynligheten for å oppnå

treningsmål. Grensesnittelementene, innholdet og til og med appens “personlighet”

tilpasser seg for å best tjene hver enkelt brukers behov og preferanser.

Skiftet til Resultatorientert Design

GenUI representerer et fundamentalt skifte i tilnærmingen til brukergrensesnittdesign!,

fra et fokus på å skape spesifikke grensesnittelementer til en mer helhetlig,

resultatorientert tilnærming. Dette skiftet har flere viktige implikasjoner:

1. Fokus på Brukermål:

Generative UI 202

• Designere må tenke dypere på brukermål og ønskede resultater fremfor

spesifikke grensesnittkomponenter.

• Vekten vil ligge på å skape systemer som kan generere grensesnitt som

hjelper brukere å oppnå sine mål effektivt.

• Nye UI-rammeverk vil dukke opp som gir AI-baserte designere verktøyene

de trenger for å kunne generere brukeropplevelser fortløpende og fra bunnen

av istedenfor basert på forhåndsdefinerte skjermspesifikasjoner.

2. Designernes Endrede Rolle:

• Designere vil gå over fra å lage faste layouter til å definere regler,

begrensninger og retningslinjer som AI-systemer skal følge når de genererer

grensesnitt.

• De vil måtte utvikle ferdigheter innen områder som dataanalyse, AI prompt-

teknikk og systemtenkning for å effektivt kunne veilede GenUI-systemer.

3. Viktigheten av Brukerundersøkelser:

• Brukerundersøkelser blir enda mer kritisk i en GenUI-kontekst, ettersom

designere må forstå ikke bare brukerpreferanser, men også hvordan disse

preferansene og behovene endrer seg i ulike kontekster.

• Kontinuerlig brukertesting og tilbakemeldingssløyfer vil være essensielt for

å forbedre AI-ens evne til å generere effektive grensesnitt.

4. Design for Variabilitet:

• Istedenfor å skape ett “perfekt” grensesnitt, må designere vurdere flere

mulige variasjoner og sikre at systemet kan generere passende grensesnitt

for ulike brukerbehov.

• Dette inkluderer design for kanttilfeller og sikring av at de genererte

grensesnittene opprettholder brukervennlighet og tilgjengelighet på tvers

av ulike konfigurasjoner.

Generative UI 203

• Produktdifferensiering får nye dimensjoner som involverer divergerende

perspektiver på brukerpsykologi og utnyttelse av unike datasett og

kunnskapsbaser som ikke er tilgjengelige for konkurrenter.

Utfordringer og Hensyn

Mens GenUI tilbyr spennende muligheter, presenterer det også flere utfordringer og

hensyn:

1. Tekniske Begrensninger:

• Nåværende AI-teknologi, selv om den er avansert, har fortsatt begrensninger

i å forstå komplekse brukerintensjoner og generere virkelig kontekstbevisste

grensesnitt.

• Ytelsesproblemer relatert til sanntidsgenerering av grensesnittelementer,

spesielt på mindre kraftige enheter.

2. Datakrav:

• Avhengig av bruksområdet kan effektive GenUI-systemer kreve betydelige

mengder brukerdata for å generere personaliserte grensesnitt.

• Utfordringene med etisk innhenting av autentiske brukerdata reiser

bekymringer om datapersonvern og sikkerhet, samt potensielle skjevheter i

dataene som brukes til å trene GenUI-modeller.

3. Brukervennlighet og Konsistens:

• I hvert fall inntil praksisen blir utbredt, kan en applikasjon med konstant

endrede grensesnitt føre til brukervennlighetsproblemer, ettersom brukere

kan streve med å finne kjente elementer eller navigere effektivt.

Generative UI 204

• Det vil være avgjørende å finne balansen mellom personalisering og

opprettholdelse av et konsistent, lærbart grensesnitt.

4. Overavhengighet av AI:

• Det er en risiko for overdelegering av designbeslutninger til AI-systemer,

som potensielt kan føre til uinspirerte, problematiske eller rett og slett

ødelagte grensesnittvalg.

• Menneskelig oversikt og muligheten til å overstyre AI-genererte design vil

forbli viktig i overskuelig fremtid.

5. Tilgjengelighetshensyn:

• Å sikre at dynamisk genererte grensesnitt forblir tilgjengelige for brukere

med funksjonsnedsettelser presenterer helt nye utfordringer, noe som er

bekymringsfullt gitt det dårlige nivået av tilgjengelighetssamsvar som

typiske systemer viser.

• På den annen side kan AI-designere implementeres med innebygd fokus på

tilgjengelighet, og muligheter for å bygge tilgjengelige grensesnitt på sparket

akkurat som de bygger UI for brukere uten funksjonsnedsettelser.

• Uansett bør GenUI-systemer designesmed robuste tilgjengelighetsretningslinjer

og testprosesser.

6. Brukertillit og Åpenhet:

• Brukere kan føle seg ukomfortable med grensesnitt som ser ut til å “vite for

mye” om dem eller endrer seg på måter de ikke forstår.

• Å gi åpenhet om hvordan og hvorfor grensesnitt personaliseres vil være

viktig for å bygge brukertillit.

Generative UI 205

Fremtidsutsikter og Muligheter

Fremtiden for Generative UI (GenUI) har et enormt potensial for å revolusjonere

måten vi samhandler med digitale produkter og tjenester på. Ettersom denne

teknologien fortsetter å utvikle seg, kan vi forvente en omfattende endring i hvordan

brukergrensesnitt designes, implementeres og oppleves. Jeg tror GenUI er fenomenet

som endelig vil skyve programvaren vår inn i det som nå anses som science fiction.

En av de mest spennende mulighetene med GenUI er dets potensial til å forbedre

tilgjengelighet i en skala som går utover å bare sikre at personer med alvorlige

funksjonsnedsettelser ikke blir helt ekskludert fra bruken av programvaren din. Ved å

automatisk tilpasse grensesnitt til individuelle brukerbehov, kan GenUI gjøre digitale

opplevelser mer inkluderende enn noensinne. Tenk deg grensesnitt som sømløst justerer

seg for å gi større tekst for yngre eller synshemmede brukere, eller forenklede layouter

for de med kognitive funksjonsnedsettelser, alt uten å kreve manuell konfigurasjon eller

separate “tilgjengelige” versjoner av applikasjoner.

Personaliseringsmulighetene til GenUI vil sannsynligvis drive økt brukerengasjement,

tilfredshet og lojalitet på tvers av et bredt spekter av digitale produkter. Ettersom

grensesnitt blir mer tilpasset individuelle preferanser og atferd, vil brukere finne digitale

opplevelser mer intuitive og behagelige, noe som potensielt kan føre til dypere og mer

meningsfylte interaksjoner med teknologi.

GenUI har også potensial til å transformere onboarding-prosessen for nye brukere. Ved

å skape intuitive, personaliserte førstegangsopplevelser som raskt tilpasser seg hver

brukers ekspertisenivå, kan GenUI betydelig redusere læringskurven forbundet med

nye applikasjoner. Dette kan føre til raskere adopsjonsrater og økt brukerselvsikkerhet

i utforskningen av nye funksjoner og funksjonalitet.

En annen spennende mulighet er GenUIs evne til å opprettholde en konsistent

brukeropplevelse på tvers av forskjellige enheter og plattformer, samtidig som

det optimaliseres for hver spesifikk brukskontekst. Dette kan løse den langvarige

Generative UI 206

utfordringen med å gi sammenhengende opplevelser på tvers av et stadig mer

fragmentert enhetslandskap, fra smarttelefoner og nettbrett til stasjonære datamaskiner

og fremvoksende teknologier som briller for utvidet virkelighet.

Den datadrevne naturen til GenUI åpner muligheter for rask iterasjon og forbedring i

UI-design. Ved å samle sanntidsdata om hvordan brukere samhandler med genererte

grensesnitt, kan designere og utviklere få enestående innsikt i brukeratferd og

preferanser. Denne tilbakemeldingssløyfen kan føre til kontinuerlige forbedringer

i UI-design, drevet av faktiske bruksmønstre heller enn antakelser eller begrenset

brukertesting.

For å forberede seg på denne endringen må designere utvikle sine ferdigheter

og tankesett. Fokuset vil skifte fra å lage faste layouter til å utvikle omfattende

designsystemer og retningslinjer som kan informere AI-drevet grensesnittgenerering.

Designere vil trenge å utvikle en dyp forståelse av dataanalyse, AI-teknologier og

systemtenkning for å effektivt veilede GenUI-systemer.

Dessuten, ettersom GenUI visker ut grensene mellom design og teknologi, vil

designere måtte samarbeide tettere med utviklere og dataforskere. Denne tverrfaglige

tilnærmingen vil være avgjørende for å skape GenUI-systemer som ikke bare er visuelt

tiltalende og brukervennlige, men også teknisk robuste og etisk forsvarlige.

De etiske implikasjonene av GenUI vil også komme i forgrunnen etter hvert som

teknologien modnes. Designere vil spille en avgjørende rolle i utviklingen av

rammeverk for ansvarlig bruk av kunstig intelligens i grensesnittdesign, for å sikre at

personalisering forbedrer brukeropplevelsen uten å kompromittere personvern eller

manipulere brukeratferd på uetiske måter.

Når vi ser mot fremtiden, representerer GenUI både spennendemuligheter og betydelige

utfordringer. Det har potensial til å skape mer intuitive, effektive og tilfredsstillende

digitale opplevelser for brukere over hele verden. Selv om det vil kreve at designere

tilpasser seg og tilegner seg nye ferdigheter, gir det også en enestående mulighet til

å forme fremtiden for menneske-maskin-interaksjon på dyptgripende og meningsfylte

Generative UI 207

måter. Reisen mot fullt utviklede GenUI-systemer vil utvilsomt være kompleks, men de

potensielle fordelene i form av forbedrede brukeropplevelser og digital tilgjengelighet

gjør det til en fremtid det er verdt å strebe etter.

Intelligent
arbeidsflytorkestrering

Innen applikasjonsutvikling spiller arbeidsflyter en avgjørende rolle i å definere

hvordan oppgaver, prosesser og brukerinteraksjoner struktureres og utføres. Ettersom

applikasjoner blir mer komplekse og brukerforventningene fortsetter å øke, blir behovet

for intelligent og tilpasningsdyktig arbeidsflytorkestrering stadig mer åpenbart.

Tilnærmingen “Intelligent arbeidsflytorkestrering” fokuserer på å utnytte AI-

komponenter for dynamisk å orkestrere og optimalisere komplekse arbeidsflyter i

applikasjoner. Målet er å skape applikasjoner som er mer effektive, responsive og

tilpasningsdyktige til sanntidsdata og kontekst.

I dette kapittelet skal vi utforske nøkkelprinsippene og mønstrene som understøtter

tilnærmingen til intelligent arbeidsflytorkestrering. Vi vil vurdere hvordan AI kan

Intelligent arbeidsflytorkestrering 209

brukes til intelligent ruting av oppgaver, automatisert beslutningstaking og dynamisk

tilpasning av arbeidsflyter basert på ulike faktorer som brukeratferd, systemytelse

og forretningsregler. Gjennom praktiske eksempler og virkelige scenarier vil vi

demonstrere det transformative potensialet AI har for å effektivisere og optimalisere

applikasjonsarbeidsflyter.

Enten du bygger bedriftsapplikasjoner med komplekse forretningsprosesser eller

forbrukerrettede applikasjoner med dynamiske brukerreiser, vil mønstrene og

teknikkene som diskuteres i dette kapittelet gi deg kunnskapen og verktøyene til å skape

intelligente og effektive arbeidsflyter som forbedrer den generelle brukeropplevelsen

og skaper forretningsverdi.

Forretningsmessig behov

Tradisjonelle tilnærminger til arbeidsflythåndtering er ofte avhengige av

forhåndsdefinerte regler og statiske beslutningstrær, som kan være rigide, infleksible

og ute av stand til å håndtere den dynamiske naturen til moderne applikasjoner.

Tenk på et scenario hvor en e-handelsapplikasjon må håndtere en kompleks

ordreoppfyllelsesprosess. Arbeidsflyten kan involvere flere trinn som ordrevalidering,

lagerkontroll, betalingsbehandling, forsendelse og kundevarsling. Hvert trinn

kan ha sitt eget sett med regler, avhengigheter, eksterne integrasjoner og

unntakshåndteringsmekanismer. Å administrere en slik arbeidsflyt manuelt eller

gjennom hardkodet logikk kan raskt bli tungvint, feilutsatt og vanskelig å vedlikeholde.

Dessuten, ettersom applikasjonen skalerer og antallet samtidige brukere vokser,

kan arbeidsflyten måtte tilpasse og optimalisere seg selv basert på sanntidsdata og

systemytelse. For eksempel kan applikasjonen under perioder med høy trafikk måtte

dynamisk justere arbeidsflyten for å prioritere visse oppgaver, allokere ressurser

effektivt og sikre en smidig brukeropplevelse.

Det er her tilnærmingen “Intelligent arbeidsflytorkestrering” kommer inn i bildet.

Intelligent arbeidsflytorkestrering 210

Ved å utnytte AI-komponenter kan utviklere skape arbeidsflyter som er intelligente,

tilpasningsdyktige og selvoptimaliserende. AI kan analysere store mengder data, lære av

tidligere erfaringer og ta informerte beslutninger i sanntid for å orkestrere arbeidsflyten

effektivt.

Sentrale fordeler

1. Økt effektivitet: AI kan optimalisere oppgaveallokering, ressursutnyttelse og

arbeidsflytutførelse, noe som fører til raskere prosesseringstider og forbedret total

effektivitet.

2. Tilpasningsevne: AI-drevne arbeidsflyter kan dynamisk tilpasse seg endrede

forhold, som svingninger i brukeretterspørsel, systemytelse eller forretningskrav,

og sikre at applikasjonen forblir responsiv og robust.

3. Automatisert beslutningstaking: AI kan automatisere komplekse

beslutningsprosesser innen arbeidsflyten, redusere manuell intervensjon og

minimere risikoen for menneskelige feil.

4. Personalisering: AI kan analysere brukeratferd, preferanser og kontekst for å

personalisere arbeidsflyten og levere skreddersydde opplevelser til individuelle

brukere.

5. Skalerbarhet: AI-drevne arbeidsflyter kan skalere sømløst for å håndtere økende

volumer av data og brukerinteraksjoner, uten å kompromittere ytelse eller

pålitelighet.

I de følgende seksjonene vil vi utforske nøkkelmønstrene og teknikkene som muliggjør

implementering av intelligente arbeidsflyter og vise frem virkelige eksempler på

hvordan AI transformerer arbeidsflythåndtering i moderne applikasjoner.

Intelligent arbeidsflytorkestrering 211

Nøkkelmønstre

For å implementere intelligent arbeidsflytorkestrering i applikasjoner kan utviklere

utnytte flere nøkkelmønstre som utnytter kraften i AI. Disse mønstrene gir en

strukturert tilnærming til design og håndtering av arbeidsflyter, som gjør det mulig

for applikasjoner å tilpasse seg, optimalisere og automatisere prosesser basert på

sanntidsdata og kontekst. La oss utforske noen av de grunnleggende mønstrene i

intelligent arbeidsflytorkestrering.

Dynamisk oppgaveruting

Dette mønsteret innebærer bruk av AI for intelligent ruting av oppgaver innen en

arbeidsflyt basert på ulike faktorer som oppgaveprioritet, ressurstilgjengelighet og

systemytelse. AI-algoritmer kan analysere karakteristikkene til hver oppgave, vurdere

systemets nåværende tilstand og ta informerte beslutninger for å tildele oppgaver til

de mest egnede ressursene eller prosesseringsveiene. Dynamisk oppgaveruting sikrer at

oppgaver distribueres og utføres effektivt, og optimaliserer den totale arbeidsflytytelsen.

1 class TaskRouter

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 attr_accessor :task

6

7 # list of functions that can be called by the AI entirely at its

8 # discretion depending on the task received

9

10 function :analyze_task_priority do

11 TaskPriorityAnalyzer.perform(task)

12 end

13

14 function :check_resource_availability, # ...

15 function :assess_system_performance, # ...

16 function :assign_task_to_resource, # ...

17

Intelligent arbeidsflytorkestrering 212

18 DIRECTIVE = "You are a task router, responsible for intelligently

19 assigning tasks to available resources based on priority, resource

20 availability, and system performance..."

21

22 def initialize(task)

23 self.task = task

24 transcript << { system: DIRECTIVE }

25 transcript << { user: task.to_json }

26 end

27

28 def perform

29 while task.unassigned?

30 chat_completion

31

32 # todo: add max loop counter and break

33 end

34

35 # capture the transcript for later analysis

36 task.update(routing_transcript: transcript)

37 end

38 end

Merk løkken som er laget av while-uttrykket på linje 29, som fortsetter å spørre AI-

en til oppgaven er tildelt. På linje 35 lagrer vi transkripsjonen av oppgaven for senere

analyse og feilsøking, hvis det skulle bli nødvendig.

Kontekstuell beslutningstaking

Du kan bruke svært lignende kode for å ta kontekstbevisste beslutninger i en

arbeidsflyt. Ved å analysere relevante datapunkter som brukerpreferanser, historiske

mønstre og sanntidsinndata, kan AI-komponenter bestemme den mest hensiktsmessige

handlingsplanen ved hvert beslutningspunkt i arbeidsflyten. Tilpass arbeidsflytens

oppførsel basert på den spesifikke konteksten for hver bruker eller scenario, og gi

personaliserte og optimaliserte opplevelser.

Intelligent arbeidsflytorkestrering 213

Adaptiv arbeidsflytkomposisjon

Dette mønsteret fokuserer på dynamisk sammensetting og justering av arbeidsflyter

basert på endrede krav eller forhold. AI kan analysere arbeidsflytens nåværende

tilstand, identifisere flaskehalser eller ineffektivitet, og automatisk modifisere

arbeidsflytstrukturen for å optimalisere ytelsen. Adaptiv arbeidsflytkomposisjon gjør

det mulig for applikasjoner å kontinuerlig utvikle og forbedre sine prosesser uten å

kreve manuell intervensjon.

Unntakshåndtering og gjenoppretting

Unntakshåndtering og gjenoppretting er kritiske aspekter ved intelligent

arbeidsflytorkestrering. Når man jobber med AI-komponenter og komplekse

arbeidsflyter, er det essensielt å forutse og håndtere unntak på en elegant måte

for å sikre systemets stabilitet og pålitelighet.

Her er noen viktige hensyn og teknikker for unntakshåndtering og gjenoppretting i

intelligente arbeidsflyter:

1. Unntakspropagering: Implementer en konsistent tilnærming for å propagere

unntak på tvers av arbeidsflytkomponenter. Når et unntak oppstår innenfor en

komponent, bør det fanges opp, logges og propageres til orkestratoren eller en

separat komponent som er ansvarlig for å håndtere unntak. Ideen er å sentralisere

unntakshåndtering og forhindre at unntak blir stille slukt, samt åpne muligheter

for Intelligent feilhåndtering.

2. Gjentakelsesmekanismer: Gjentakelsesmekanismer bidrar til å forbedre

arbeidsflytens robusthet og håndtere midlertidige feil på en elegant måte.

Du bør definitivt implementere gjentakelsesmekanismer for forbigående

eller gjenopprettbare unntak, som problemer med nettverkstilkobling eller

utilgjengelige ressurser som automatisk kan prøves på nytt etter en angitt

Intelligent arbeidsflytorkestrering 214

forsinkelse. Å ha en AI-drevet orkestrator eller unntakshåndterer betyr at

gjentakelsesstrategiene dine ikke trenger å være mekaniske av natur, og være

avhengige av faste algoritmer som eksponentiell tilbakestilling. Du kan overlate

håndteringen av gjentakelsesforsøk til AI-komponentens “skjønn” som er

ansvarlig for å bestemme hvordan unntaket skal håndteres.

3. Reserveløsninger: Hvis en AI-komponent ikke klarer å gi et gyldig svar eller

støter på en feil—noe som er vanlig gitt dens banebrytende natur—ha en

reservemekanisme på plass for å sikre at arbeidsflyten kan fortsette. Dette kan

innebære bruk av standardverdier, alternative algoritmer, eller en Menneske i

løkken for å ta beslutninger og holde arbeidsflyten i gang.

4. Kompenserende handlinger: Orkestratordirektivene bør inkludere instruksjoner

om kompenserende handlinger for å håndtere unntak som ikke kan løses

automatisk. Kompenserende handlinger er trinn som tas for å angre

eller redusere effektene av en mislykket operasjon. For eksempel, hvis et

betalingsprosesseringstrinn mislykkes, kan en kompenserende handling være å

tilbakeføre transaksjonen og varsle brukeren. Kompenserende handlinger bidrar

til å opprettholde datakonsistens og integritet når unntak oppstår.

5. Unntaksovervåking og varsling: Sett opp overvåkings- og varslingsmekanismer

for å oppdage og varsle relevante interessenter om kritiske unntak. Orkestratoren

kan gjøres oppmerksom på terskler og regler for å utløse varsler når unntak

overskrider visse grenser eller når spesifikke typer unntak oppstår. Dettemuliggjør

proaktiv identifisering og løsning av problemer før de påvirker det overordnede

systemet.

Her er et eksempel på unntakshåndtering og gjenoppretting i en Ruby-

arbeidsflytkomponent:

Intelligent arbeidsflytorkestrering 215

1 class InventoryManager

2 def check_availability(order)

3 begin

4 # Perform inventory check logic

5 inventory = Inventory.find_by(product_id: order.product_id)

6 if inventory.available_quantity >= order.quantity

7 return true

8 else

9 raise InsufficientInventoryError,

10 "Insufficient inventory for product #{order.product_id}"

11 end

12 rescue InsufficientInventoryError => e

13 # Log the exception

14 logger.error("Inventory check failed: #{e.message}")

15

16 # Retry the operation after a delay

17 retry_count ||= 0

18 if retry_count < MAX_RETRIES

19 retry_count += 1

20 sleep(RETRY_DELAY)

21 retry

22 else

23 # Fallback to manual intervention

24 NotificationService.admin("Inventory check failed: Order #{order.id}")

25 return false

26 end

27 end

28 end

29 end

I dette eksempelet kontrollerer InventoryManager-komponenten tilgjengeligheten

av et produkt for en gitt ordre. Hvis tilgjengelig mengde er utilstrekkelig, utløser

den en InsufficientInventoryError. Unntaket fanges opp, logges, og en ny

forsøksmekanisme implementeres. Hvis grensen for nye forsøk overskrides, faller

komponenten tilbake på manuell intervensjon ved å varsle en administrator.

Ved å implementere robust unntakshåndtering og gjenopprettingsmekanismer, kan du

sikre at dine intelligente arbeidsflyter er robuste, vedlikeholdbare og i stand til å

Intelligent arbeidsflytorkestrering 216

håndtere uventede situasjoner på en elegant måte.

Disse mønstrene danner grunnlaget for intelligent arbeidsflytorkestrering og kan

kombineres og tilpasses for å møte de spesifikke kravene til ulike applikasjoner. Ved å

utnytte disse mønstrene kan utviklere skape arbeidsflyter som er fleksible, robuste og

optimalisert for ytelse og brukeropplevelse.

I neste del skal vi utforske hvordan disse mønstrene kan implementeres i praksis, ved

å bruke eksempler fra virkeligheten og kodeutdrag for å illustrere integrasjonen av AI-

komponenter i arbeidsflythåndtering.

Implementering av Intelligent

Arbeidsflytorkestrering i Praksis

Nå som vi har utforsket nøkkelmønstrene i intelligent arbeidsflytorkestrering, la oss

fordype oss i hvordan dissemønstrene kan implementeres i virkelige applikasjoner. Vi vil

gi praktiske eksempler og kodeutdrag for å illustrere integrasjonen av AI-komponenter

i arbeidsflythåndtering.

Intelligent Ordrebehandler

La oss se på et praktisk eksempel på implementering av intelligent

arbeidsflytorkestrering ved å bruke en AI-drevet OrderProcessor-komponent

i en Ruby on Rails e-handelsapplikasjon. OrderProcessor realiserer konseptet

Process Manager Enterprise Integration som vi først møtte i Kapittel 3 da vi

diskuterte Multitude of Workers. Komponenten vil være ansvarlig for å administrere

ordrebehandlingsarbeidsflyten, ta rutingbeslutninger basert på mellomliggende

resultater, og orkestrere utførelsen av ulike behandlingstrinn.

Intelligent arbeidsflytorkestrering 217

Ordrebehandlingsprosessen involverer flere trinn som ordrevalidering, lagerkontroll,

betalingsbehandling og forsendelse. Hvert trinn er implementert som en separat

arbeidsprosess som utfører en spesifikk oppgave og returnerer resultatet til

OrderProcessor. Trinnene er ikke obligatoriske, og trenger ikke engang nødvendigvis

å utføres i en bestemt rekkefølge.

Her er et eksempel på implementering av OrderProcessor. Den har to mixins fra

Raix. Den første (ChatCompletion) gir den mulighet til å gjøre chatfullføring, som

er det som gjør dette til en AI-komponent. Den andre (FunctionDispatch) muliggjør

funksjonsanrop av AI-en, slik at den kan svare på en prompt med et funksjonsanrop i

stedet for en tekstmelding.

Arbeiderfunksjonene (validate_order, check_inventory, et al) delegerer til sine

respektive arbeiderklasser, som kan være AI- eller ikke-AI-komponenter, med det eneste

kravet at de returnerer resultatene av arbeidet sitt i et format som kan representeres som

en streng.

Som med alle andre eksempler i denne delen av boken, er denne koden

praktisk talt pseudokode og er bare ment å formidle betydningen av

mønsteret og inspirere dine egne kreasjoner. Fullstendige beskrivelser av

mønstre og komplette kodeeksempler er inkludert i Del 2.

https://github.com/OlympiaAI/raix-rails

Intelligent arbeidsflytorkestrering 218

1 class OrderProcessor

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

6

7 def initialize(order)

8 self.order = order

9 transcript << { system: SYSTEM_DIRECTIVE }

10 transcript << { user: order.to_json }

11 end

12

13 def perform

14 # will continue looping until `stop_looping!` is called

15 chat_completion(loop: true)

16 end

17

18 # list of functions available to be called by the AI

19 # truncated for brevity

20

21 def functions

22 [

23 {

24 name: "validate_order",

25 description: "Invoke to check validity of order",

26 parameters: {

27 ...

28 },

29 ...

30]

31 end

32

33 # implementation of functions that can be called by the AI

34 # entirely at its discretion, depending on the needs of the order

35

36 def validate_order

37 OrderValidationWorker.perform(@order)

38 end

39

40 def check_inventory

41 InventoryCheckWorker.perform(@order)

42 end

Intelligent arbeidsflytorkestrering 219

43

44 def process_payment

45 PaymentProcessingWorker.perform(@order)

46 end

47

48 def schedule_shipping

49 ShippingSchedulerWorker.perform(@order)

50 end

51

52 def send_confirmation

53 OrderConfirmationWorker.perform(@order)

54 end

55

56 def finished_processing

57 @order.update!(transcript:, processed_at: Time.current)

58 stop_looping!

59 end

60 end

I eksempelet initialiseres OrderProcessor med et ordreobjekt og vedlikeholder en

transkripsjon av arbeidsflyten, i det typiske samtaletranskripsjonsformatet som

er naturlig for store språkmodeller. AI-en får full kontroll over orkestreringen

av de forskjellige behandlingstrinnene, som ordrevalidering, lagerkontroll,

betalingsbehandling og forsendelse.

Hver gang chat_completion-metoden kalles, sendes transkripsjonen til AI-en for å

gi en fullføring som et funksjonsanrop. Det er helt opp til AI-en å analysere resultatet

fra forrige trinn og bestemme passende handling. For eksempel, hvis lagerkontrollen

avslører lave lagernivåer, kan OrderProcessor planlegge en etterfyllingsoppgave. Hvis

betalingsbehandlingen mislykkes, kan den starte en ny forsøk eller varsle kundeservice.

Eksempelet ovenfor har ikke definerte funksjoner for etterfylling eller varsling av

kundeservice, men det kunne det absolutt hatt.

Intelligent arbeidsflytorkestrering 220

Transkripsjonen vokser hver gang en funksjon kalles og fungerer som en logg over

arbeidsflyten, inkludert resultatene fra hvert trinn og AI-genererte instruksjoner for

de neste trinnene. Denne transkripsjonen kan brukes til feilsøking, revisjon og for å

gi innsyn i ordreoppfyllelsesprosessen.

Ved å utnytte AI i OrderProcessor kan e-handelsapplikasjonen dynamisk tilpasse

arbeidsflyten basert på sanntidsdata og håndtere unntak på en intelligent måte. AI-

komponenten kan ta informerte beslutninger, optimalisere arbeidsflyten og sikre smidig

ordrebehandling selv i komplekse scenarioer.

Det faktum at det eneste kravet til arbeidsprosessene er å returnere en forståelig output

somAI-en kan vurdere når den bestemmer neste handling, kan få deg til å innse hvordan

denne tilnærmingen kan redusere inndata/utdata-kartleggingsarbeidet som vanligvis er

involvert når man integrerer ulike systemer med hverandre.

Intelligent innholdsmoderering

Sosiale medier-applikasjoner krever generelt minimum innholdsmoderering for å sikre

et trygt og sunt fellesskap. Dette eksempelet på en ContentModerator-komponent

utnytter AI for intelligent orkestrering av modereringsprosessen, og tar beslutninger

basert på innholdets egenskaper og resultatene fra ulike modereringstrinn.

Modereringsprosessen involverer flere trinn som tekstanalyse, bildegjenkjenning,

vurdering av brukerrenommé og manuell gjennomgang. Hvert trinn er implementert

som en separat arbeidsprosess som utfører en spesifikk oppgave og returnerer resultatet

til ContentModerator.

Her er et eksempel på implementering av ContentModerator:

Intelligent arbeidsflytorkestrering 221

1 class ContentModerator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,

6 tasked with the workflow involved in moderating user-generated content..."

7

8 def initialize(content)

9 @content = content

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: content.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 # list of functions available to be called by the AI

25 # truncated for brevity

26

27 def functions

28 [

29 {

30 name: "analyze_text",

31 # ...

32 },

33 {

34 name: "recognize_image",

35 description: "Invoke to describe images...",

36 # ...

37 },

38 {

39 name: "assess_user_reputation",

40 # ...

41 },

42 {

Intelligent arbeidsflytorkestrering 222

43 name: "escalate_to_manual_review",

44 # ...

45 },

46 {

47 name: "approve_content",

48 # ...

49 },

50 {

51 name: "reject_content",

52 # ...

53 }

54]

55 end

56

57 # implementation of functions that can be called by the AI

58 # entirely at its discretion, depending on the needs of the order

59

60 def analyze_text

61 result = TextAnalysisWorker.perform(@content)

62 continue_with(result)

63 end

64

65 def recognize_image

66 result = ImageRecognitionWorker.perform(@content)

67 continue_with(result)

68 end

69

70 def assess_user_reputation

71 result = UserReputationWorker.perform(@content.user)

72 continue_with(result)

73 end

74

75 def escalate_to_manual_review

76 ManualReviewWorker.perform(@content)

77 @content.update!(status: 'pending', transcript: @transcript)

78 end

79

80 def approve_content

81 @content.update!(status: 'approved', transcript: @transcript)

82 end

83

84 def reject_content

Intelligent arbeidsflytorkestrering 223

85 @content.update!(status: 'rejected', transcript: @transcript)

86 end

87

88 private

89

90 def continue_with(result)

91 @transcript << { function: result }

92 complete(@transcript)

93 end

94 end

I dette eksemplet initialiseres ContentModerator med et innholdsobjekt og

vedlikeholder en modereringslogg i samtaleformat. AI-komponenten har full kontroll

over modereringsprosessen og bestemmer hvilke trinn som skal utføres basert på

innholdets egenskaper og resultatene fra hvert trinn.

De tilgjengelige arbeiderfunksjonene som AI-en kan påkalle inkluderer analyze_text,

recognize_image, assess_user_reputation, og escalate_to_manual_review.

Hver funksjon delegerer oppgaven til en tilsvarende arbeiderprosess

(TextAnalysisWorker, ImageRecognitionWorker, osv.) og legger til resultatet

i modereringsloggen, med unntak av eskaleringsfunksjonen som fungerer som

en slutttilstand. Til slutt fungerer også funksjonene approve_content og

reject_content som slutttilstander.

AI-komponenten analyserer innholdet og bestemmer hvilken handling som skal tas.

Hvis innholdet inneholder bildereferanser, kan den kalle på recognize_image-

arbederen for å få hjelp med en visuell gjennomgang. Hvis noen arbeider advarer

om potensielt skadelig innhold, kan AI-en bestemme seg for å eskalere innholdet til

manuell gjennomgang eller rett og slett avvise det. Men avhengig av alvorlighetsgraden

i advarselen, kan AI-en velge å bruke resultatene fra brukeromdømmevurderingen

når den skal bestemme hvordan den skal håndtere innhold den ellers er usikker på.

Avhengig av brukstilfellet kan det hende at betrodde brukere har mer spillerom i hva

de kan publisere. Og så videre…

Som med det forrige prosessadministratoreksemplet fungerer modereringsloggen som

Intelligent arbeidsflytorkestrering 224

en oversikt over arbeidsflytens utførelse, inkludert resultatene fra hvert trinn og AI-

genererte beslutninger. Denne loggen kan brukes til revisjon, åpenhet og forbedring av

modereringsprosessen over tid.

Ved å utnytte AI i ContentModerator kan sosiale medier-applikasjonen dynamisk

tilpasse modereringsarbeidsflyten basert på innholdets egenskaper og håndtere

komplekse modereringsscenarier på en intelligent måte. AI-komponenten kan ta

informerte beslutninger, optimalisere arbeidsflyten og sikre en trygg og sunn

fellesskapsopplevelse.

La oss utforske to eksempler til som demonstrerer prediktiv oppgaveplanlegging

og unntakshåndtering og gjenoppretting innenfor konteksten av intelligent

arbeidsflytorkestrering.

Prediktiv oppgaveplanlegging i et kundeservicesystem

I en kundeserviceapplikasjon bygget med Ruby on Rails er effektiv håndtering

og prioritering av støttehenvendelser avgjørende for å gi rettidig hjelp til kunder.

SupportTicketScheduler-komponenten utnytter AI til prediktivt å planlegge

og tildele støttehenvendelser til tilgjengelige agenter basert på ulike faktorer som

henvendelsens hastegrad, agentens ekspertise og arbeidsbelastning.

1 class SupportTicketScheduler

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,

6 tasked with intelligently assigning tickets to available agents..."

7

8 def initialize(ticket)

9 @ticket = ticket

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: ticket.to_json }

13]

Intelligent arbeidsflytorkestrering 225

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 def functions

25 [

26 {

27 name: "analyze_ticket_urgency",

28 # ...

29 },

30 {

31 name: "list_available_agents",

32 description: "Includes expertise of available agents",

33 # ...

34 },

35 {

36 name: "predict_agent_workload",

37 description: "Uses historical data to predict upcoming workloads",

38 # ...

39 },

40 {

41 name: "assign_ticket_to_agent",

42 # ...

43 },

44 {

45 name: "reschedule_ticket",

46 # ...

47 }

48]

49 end

50

51 # implementation of functions that can be called by the AI

52 # entirely at its discretion, depending on the needs of the order

53

54 def analyze_ticket_urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)

Intelligent arbeidsflytorkestrering 226

56 continue_with(result)

57 end

58

59 def list_available_agents

60 result = ListAvailableAgents.perform

61 continue_with(result)

62 end

63

64 def predict_agent_workload

65 result = AgentWorkloadPredictor.perform

66 continue_with(result)

67 end

68

69 def assign_ticket_to_agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

73 def delay_assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)

76 end

77

78 private

79

80 def continue_with(result)

81 @transcript << { function: result }

82 complete(@transcript)

83 end

84 end

I dette eksempelet blir SupportTicketScheduler initialisert med et

supporthenvendelsesobjekt og vedlikeholder en planleggingslogg. AI-komponenten

analyserer henvendelsesdetaljene og planlegger prediktivt tildelingen av henvendelsen

basert på faktorer som henvendelsens hastegrad, kundebehandlerens kompetanse og

forventet arbeidsbelastning.

De tilgjengelige funksjonene som AI-en kan påkalle inkluderer analyze_-

ticket_urgency, list_available_agents, predict_agent_workload, og

assign_ticket_to_agent. Hver funksjon delegerer oppgaven til en tilsvarende

Intelligent arbeidsflytorkestrering 227

analyse- eller prediktorkomponent og legger til resultatet i planleggingsloggen. AI-en

har også muligheten til å utsette tildeling ved å bruke delay_assignment-funksjonen.

AI-komponenten undersøker planleggingsloggen og tar informerte beslutninger

om henvendelsestildeling. Den vurderer henvendelsens hastegrad, tilgjengelige

kundebehandleres kompetanse og den forventede arbeidsbelastningen for hver

kundebehandler for å bestemme den best egnede kundebehandleren til å håndtere

henvendelsen.

Ved å utnytte prediktiv oppgaveplanlegging kan kundesupportapplikasjonen

optimalisere henvendelsestildeling, redusere responstider og forbedre den generelle

kundetilfredsheten. Proaktiv og effektiv håndtering av supporthenvendelser sikrer at

de riktige henvendelsene blir tildelt de riktige kundebehandlerne til rett tid.

Unntakshåndtering og gjenoppretting i en
databehandlingspipeline

Håndtering av unntak og gjenoppretting etter feil er essensielt for å sikre dataintegritet

og forhindre datatap.. DataProcessingOrchestrator-komponenten bruker

AI til å intelligent håndtere unntak og orkestrere gjenopprettingsprosessen i en

databehandlingspipeline

Intelligent arbeidsflytorkestrering 228

1 class DataProcessingOrchestrator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

6

7 def initialize(data_batch)

8 @data_batch = data_batch

9 @transcript = [

10 { system: SYSTEM_DIRECTIVE },

11 { user: data_batch.to_json }

12]

13 end

14

15 def perform

16 complete(@transcript)

17 end

18

19 def model

20 "openai/gpt-4"

21 end

22

23 def functions

24 [

25 {

26 name: "validate_data",

27 # ...

28 },

29 {

30 name: "process_data",

31 # ...

32 },

33 {

34 name: "request_fix",

35 # ...

36 },

37 {

38 name: "retry_processing",

39 # ...

40 },

41 {

42 name: "mark_data_as_failed",

Intelligent arbeidsflytorkestrering 229

43 # ...

44 },

45 {

46 name: "finished",

47 # ...

48 }

49]

50 end

51

52 # implementation of functions that can be called by the AI

53 # entirely at its discretion, depending on the needs of the order

54

55 def validate_data

56 result = DataValidator.perform(@data_batch)

57 continue_with(result)

58 rescue ValidationException => e

59 handle_validation_exception(e)

60 end

61

62 def process_data

63 result = DataProcessor.perform(@data_batch)

64 continue_with(result)

65 rescue ProcessingException => e

66 handle_processing_exception(e)

67 end

68

69 def request_fix(description_of_fix)

70 result = SmartDataFixer.new(description_of_fix, @data_batch)

71 continue_with(result)

72 end

73

74 def retry_processing(timeout_in_seconds)

75 wait(timeout_in_seconds)

76 process_data

77 end

78

79 def mark_data_as_failed

80 @data_batch.update!(status: 'failed', transcript: @transcript)

81 end

82

83 def finished

84 @data_batch.update!(status: 'finished', transcript: @transcript)

Intelligent arbeidsflytorkestrering 230

85 end

86

87 private

88

89 def continue_with(result)

90 @transcript << { function: result }

91 complete(@transcript)

92 end

93

94 def handle_validation_exception(exception)

95 @transcript << { exception: exception.message }

96 complete(@transcript)

97 end

98

99 def handle_processing_exception(exception)

100 @transcript << { exception: exception.message }

101 complete(@transcript)

102 end

103 end

I dette eksempelet initialiseres DataProcessingOrchestrator med et databatch-

objekt og vedlikeholder en behandlingslogg. AI-komponenten orkestrerer

databehandlingsprosessen, håndterer unntak og gjenoppretter fra feil etter behov.

Funksjonene som er tilgjengelige for AI-en å påkalle inkluderer validate_data,

process_data, request_fix, retry_processing, og mark_data_as_failed.

Hver funksjon delegerer oppgaven til en tilsvarende databehandlingskomponent og

legger til resultatet eller unntaksdetaljene i behandlingsloggen.

Hvis et valideringsunntak oppstår under validate_data-steget, vil

handle_validation_exception-funksjonen legge til unntaksdataene i loggen

og gi kontrollen tilbake til AI-en. På samme måte, hvis et behandlingsunntak oppstår

under process_data-steget, kan AI-en bestemme gjenopprettingsstrategien.

Avhengig av typen unntak som oppstår, kan AI-en etter eget skjønn velge å kalle

request_fix, som delegerer til en AI-drevet SmartDataFixer-komponent (se

kapittelet om Selvhelbredende Data). Datafiksereren får en enkel beskrivelse på engelsk

Intelligent arbeidsflytorkestrering 231

om hvordan den skal modifisere @data_batch slik at behandlingen kan prøves på

nytt. Kanskje en vellykket ny behandling ville innebære å fjerne poster fra databatchen

som ikke har bestått validering og/eller kopiere dem til en annen behandlingsprosess

for manuell gjennomgang? Mulighetene er nesten uendelige.

Ved å inkorporere AI-drevet unntakshåndtering og gjenoppretting blir

databehandlingsapplikasjonenmer robust og feiltolerant.DataProcessingOrchestrator

håndterer unntak intelligent, minimerer datatap og sikrer en smidig gjennomføring av

databehandlingsarbeidsflyten.

Overvåking og Logging

Overvåking og logging gir innsikt i fremgangen, ytelsen og tilstanden til AI-drevne

arbeidsflytkomponenter, og gjør det mulig for utviklere å spore og analysere systemets

oppførsel. Implementering av effektive overvåkings- og loggingsmekanismer er

essensielt for feilsøking, revisjon og kontinuerlig forbedring av intelligente arbeidsflyter.

Overvåking av Arbeidsflytens Fremgang og Ytelse

For å sikre en smidig gjennomføring av intelligente arbeidsflyter er det viktig å overvåke

fremgangen og ytelsen til hver arbeidsflytkomponent. Dette innebærer å spore viktige

målinger og hendelser gjennom arbeidsflytens livssyklus.

Noen viktige aspekter å overvåke inkluderer:

1. Arbeidsflytens Kjøretid: Mål tiden hver arbeidsflytkomponent bruker på å fullføre

sin oppgave. Dette hjelper med å identifisere ytelsesproblemer og optimalisere den

generelle arbeidsflyteffektiviteten.

2. Ressursutnyttelse: Overvåk bruken av systemressurser, som CPU, minne og lagring,

for hver arbeidsflytkomponent. Dette hjelper med å sikre at systemet opererer innenfor

sin kapasitet og kan håndtere arbeidsmengden effektivt.

Intelligent arbeidsflytorkestrering 232

3. Feilrater og Unntak: Spor forekomsten av feil og unntak innenfor

arbeidsflytkomponenter. Dette hjelper med å identifisere potensielle problemer

og muliggjør proaktiv feilhåndtering og gjenoppretting.

4. Beslutningspunkter og Utfall: Overvåk beslutningspunktene i arbeidsflyten og

utfallene av AI-drevne beslutninger. Dette gir innsikt i oppførselen og effektiviteten til

AI-komponentene.

Dataene som fanges opp av overvåkingsprosessene kan vises i dashbord eller brukes

som input til planlagte rapporter som informerer systemadministratorer om systemets

tilstand.

Overvåkingsdata kan mates til en AI-drevet systemadministratorprosess for

gjennomgang og potensielle tiltak!

Logging av Viktige Hendelser og Beslutninger

Logging er en essensiell praksis som innebærer å fange og lagre relevant informasjon om

viktige hendelser, beslutninger og unntak som oppstår under arbeidsflytens utførelse.

Noen viktige aspekter å logge inkluderer:

1. Arbeidsflytinitiering og Fullføring: Logg start- og sluttidspunkter for hver

arbeidsflytinstans, sammen med relevant metadata som inputdata og brukerkontekst.

2. Komponentutførelse: Logg utførelsesdetaljene for hver arbeidsflytkomponent,

inkludert inputparametere, outputresultater og eventuelle mellomliggende data som

genereres.

3. AI-beslutninger og Resonnement: Logg beslutningene tatt av AI-komponenter,

sammen med det underliggende resonnementet eller konfidensscorer. Dette gir

transparens og muliggjør revisjon av AI-drevne beslutninger.

Intelligent arbeidsflytorkestrering 233

4. Unntak og Feilmeldinger: Logg eventuelle unntak eller feilmeldinger som oppstår

under arbeidsflytutførelsen, inkludert stabelsporing og relevant kontekstinformasjon.

Logging kan implementeres ved hjelp av ulike teknikker, som å skrive til loggfiler, lagre

logger i en database eller sende logger til en sentralisert loggtjeneste. Det er viktig å

velge et loggingsrammeverk som gir fleksibilitet, skalerbarhet og enkel integrasjon med

applikasjonens arkitektur.

Her er et eksempel på hvordan logging kan implementeres i en Ruby on Rails-

applikasjon ved hjelp av ActiveSupport::Logger-klassen:

1 class WorkflowLogger

2 def self.log(message, severity = :info)

3 @logger ||= ActiveSupport::Logger.new('workflow.log')

4 @logger.formatter ||= proc do |severity, datetime, progname, msg|

5 "#{datetime} [#{severity}] #{msg}\n"

6 end

7 @logger.send(severity, message)

8 end

9 end

10

11 # Usage example

12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")

13 WorkflowLogger.log("Payment processing completed successfully")

14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

Ved å strategisk plassere loggføringserklæringer gjennom arbeidsflytkomponentene og

AI-beslutningspunktene, kan utviklere fange opp verdifull informasjon for feilsøking,

revisjon og analyse.

Fordeler med Overvåking og Logging

Implementering av overvåking og logging i intelligent arbeidsflytorkestrering gir flere

fordeler:

Intelligent arbeidsflytorkestrering 234

1. Feilsøking og Problemløsing:Detaljerte logger og overvåkingsdata hjelper utviklere

med å identifisere og diagnostisere problemer raskt. De gir innsikt i arbeidsflytens

utførelsesflyt, komponentinteraksjoner og eventuelle feil eller unntak som oppstår.

2. Ytelsesoptimalisering:Overvåking av ytelsesmetrikker gjør det mulig for utviklere å

identifisere flaskehalser og optimalisere arbeidsflytkomponentene for bedre effektivitet.

Ved å analysere kjøretider, ressursbruk og andre metrikker, kan utviklere ta informerte

beslutninger for å forbedre systemets generelle ytelse.

3. Revisjon og Etterlevelse: Logging av viktige hendelser og beslutninger gir et

revisjonsspor for regulatorisk etterlevelse og ansvarlighet. Det gjør det mulig for

organisasjoner å spore og verifisere handlingene utført av AI-komponenter og sikre

overholdelse av forretningsregler og juridiske krav.

4. Kontinuerlig Forbedring: Overvåkings- og loggingsdata fungerer som verdifulle

innspill for kontinuerlig forbedring av intelligente arbeidsflyter. Ved å analysere

historiske data, identifisere mønstre og måle effektiviteten av AI-beslutninger, kan

utviklere iterativt forbedre og styrke arbeidsflytorkestreringslogikken.

Hensyn og Beste Praksis

Ved implementering av overvåking og logging i intelligent arbeidsflytorkestrering,

vurder følgende beste praksis:

1. Definer Klare Overvåkingsmetrikker: Identifiser de viktigste metrikkene og

hendelsene som må overvåkes basert på arbeidsflytens spesifikke krav. Fokuser på

metrikker som gir meningsfull innsikt i systemets ytelse, helse og oppførsel.

2. Implementer Detaljert Logging: Sørg for at loggføringserklæringer er plassert

på passende punkter innenfor arbeidsflytkomponentene og AI-beslutningspunktene.

Fang opp relevant kontekstinformasjon, som inngangsparametere, utgangsresultater og

eventuelle mellomliggende data som genereres.

Intelligent arbeidsflytorkestrering 235

3. Bruk Strukturert Logging: Ta i bruk et strukturert loggformat for å forenkle parsing

og analyse av loggdata. Strukturert logging muliggjør bedre søkbarhet, filtrering og

aggregering av loggoppføringer.

4. Administrer Loggoppbevaring og -rotasjon: Implementer retningslinjer for

loggoppbevaring og -rotasjon for å administrere lagring og livssyklus for loggfiler.

Bestem passende oppbevaringsperiode basert på juridiske krav, lagringsbegrensninger

og analysebehov. Hvis mulig, outsource logging til en tredjepartstjeneste som Papertrail.

5. Sikre Sensitiv Informasjon: Vær forsiktig ved logging av sensitiv informasjon, som

personidentifiserbar informasjon (PII) eller konfidensiell forretningsdata. Implementer

passende sikkerhetstiltak, som datamasking eller kryptering, for å beskytte sensitiv

informasjon i loggfiler.

6. Integrer med Overvåkings- og Varslingsverktøy: Utnytt overvåkings- og

varslingsverktøy for å sentralisere innsamling, analyse og visualisering av overvåkings-

og loggdata. Disse verktøyene kan gi sanntidsinnsikt, generere varsler basert på

forhåndsdefinerte terskler og legge til rette for proaktiv problemoppdagelse og -løsning.

Mitt favorittverktøy blant disse er Datadog.

Ved å implementere omfattende overvåkings- og loggingsmekanismer, kan utviklere få

verdifull innsikt i oppførselen og ytelsen til intelligente arbeidsflyter. Denne innsikten

muliggjør effektiv feilsøking, optimalisering og kontinuerlig forbedring av AI-drevne

arbeidsflytorkestreringssystemer.

Skalerbarhet og Ytelseshensyn

Skalerbarhet og ytelse er kritiske aspekter å vurdere når man designer og implementerer

intelligente arbeidsflytorkestreringssystemer. Ettersom volumet av samtidige

arbeidsflyter og kompleksiteten av AI-drevne komponenter øker, blir det essensielt å

sikre at systemet kan håndtere arbeidsmengden effektivt og skalere sømløst for å møte

voksende behov.

https://papertrailapp.com
https://www.datadoghq.com

Intelligent arbeidsflytorkestrering 236

Håndtering av Store Volumer av Samtidige Arbeidsflyter

Intelligente arbeidsflytorkestreringssystemer må ofte håndtere et stort antall samtidige

arbeidsflyter. For å sikre skalerbarhet, vurder følgende strategier:

1. Asynkron Behandling: Implementer asynkrone behandlingsmekanismer for å

løskoble utførelsen av arbeidsflytkomponenter. Dette gjør det mulig for systemet

å håndtere flere arbeidsflyter samtidig uten blokkering eller venting på at hver

komponent skal fullføres. Asynkron behandling kan oppnås ved bruk av meldingskøer,

hendelsesdrevne arkitekturer eller bakgrunnsjobbrammeverk som Sidekiq.

2. Distribuert Arkitektur: Design systemarkitekturen for å bruke serverløse

komponenter (som AWS Lambda) eller enkelt distribuere arbeidsmengden på

tvers av flere noder eller servere sammen med hovedapplikasjonsserveren. Dette

muliggjør horisontal skalerbarhet, hvor flere noder kan legges til for å håndtere økte

arbeidsflytvolumer.

3. Parallell Utførelse: Identifiser muligheter for parallell utførelse innenfor

arbeidsflyter. Noen arbeidsflytkomponenter kan være uavhengige av hverandre og kan

utføres samtidig. Ved å utnytte parallelle prosesseringsteknikker, som multitråding eller

distribuerte oppgavekøer, kan systemet optimalisere ressursutnyttelsen og redusere

total arbeidsflytutførelsestid.

Optimalisering av ytelsen til AI-drevne komponenter

AI-drevne komponenter, som maskinlæringsmodeller eller systemer for behandling av

naturlig språk, kan være beregningsmessig krevende og påvirke den generelle ytelsen til

arbeidsflytorkestreringssystemet. For å optimalisere ytelsen til AI-komponenter, vurder

følgende teknikker:

1. Hurtigbufring: Hvis AI-behandlingen din er rent generativ og ikke involverer

sanntidsinformasjonsoppslag eller eksterne integrasjoner for å generere chatfullføringer,

Intelligent arbeidsflytorkestrering 237

kan du undersøke hurtigbufringsmekanismer for å lagre og gjenbruke resultatene av

hyppig brukte eller beregningsmessig kostbare operasjoner.

2. Modelloptimalisering: Optimaliser kontinuerlig måten du bruker AI-modeller i

arbeidsflytkomponenter. Dette kan innebære teknikker som Prompt-destillering eller

det kan rett og slett være et spørsmål om å teste nye modeller etter hvert som de blir

tilgjengelige.

3. Satsvis behandling: Hvis du jobber med GPT-4-klasse modeller, kan du kanskje

utnytte satsvise behandlingsteknikker for å behandle flere datapunkter eller forespørsler

i én enkelt sats, i stedet for å behandle dem individuelt. Ved å behandle data i

satser, kan systemet optimalisere ressursutnyttelsen og redusere overhead fra gjentatte

modellforespørsler.

Overvåking og profilering av ytelse

For å identifisere ytelsesproblemer og optimalisere skalerbarheten til det intelligente

arbeidsflytorkestreringssystemet, er det avgjørende å implementere overvåkings- og

profileringsmekanismer. Vurder følgende tilnærminger:

1. Ytelsesmålinger: Definer og spor viktige ytelsesmålinger, som responstid,

gjennomstrømning, ressursutnyttelse og forsinkelse. Disse målingene gir innsikt

i systemets ytelse og hjelper med å identifisere områder for optimalisering. Den

populære AI-modell-aggregatoren OpenRouter inkluderer Host1- og Speed2-målinger i

hvert API-svar, noe som gjør det enkelt å spore disse viktige målingene.

2. Profileringsverktøy: Bruk profileringsverktøy for å analysere ytelsen til

individuelle arbeidsflytkomponenter og AI-operasjoner. Profileringsverktøy kan

hjelpe med å identifisere ytelsesflaskehalser, ineffektive kodestier eller ressurskrevende

1Host er tiden det tok å motta den første byten av den strømmede genereringen fra modellverten, også
kjent som “tid til første byte.”

2Speed beregnes som antall fullføringstokens delt på total genereringstid. For ikke-strømmede forespørsler
regnes forsinkelse som en del av genereringstiden.

https://openrouter.ai

Intelligent arbeidsflytorkestrering 238

operasjoner. Populære profileringsverktøy inkluderer New Relic, Scout, eller innebygde

profileringsverktøy som følger med programmeringsspråket eller rammeverket.

3. Belastningstesting: Gjennomfør belastningstesting for å evaluere systemets ytelse

under forskjellige nivåer av samtidige arbeidsbelastninger. Belastningstesting hjelper

med å identifisere systemets skaleringsgrenser, oppdage ytelsesforringelse og sikre at

systemet kan håndtere forventet trafikk uten å kompromittere ytelsen.

4. Kontinuerlig overvåking: Implementer kontinuerlige overvåkings- og

varslingsmekanismer for proaktivt å oppdage ytelsesproblemer og flaskehalser.

Sett opp overvåkingsdashbord og varsler for å spore viktige ytelsesindikator (KPI-er)

og motta varsler når forhåndsdefinerte terskler overskrides. Dette muliggjør rask

identifisering og løsning av ytelsesproblemer.

Skaleringsstrategier

For å håndtere økende arbeidsbelastninger og sikre skalerbarheten til det intelligente

arbeidsflytorkestreringssystemet, vurder følgende skaleringsstrategier:

1. Vertikal skalering: Vertikal skalering innebærer å øke ressursene (f.eks. CPU, minne)

til individuelle noder eller servere for å håndtere høyere arbeidsbelastninger. Denne

tilnærmingen er egnet når systemet krever mer prosesseringskraft eller minne for å

håndtere komplekse arbeidsflyter eller AI-operasjoner.

2. Horisontal skalering: Horisontal skalering innebærer å legge til flere noder

eller servere i systemet for å distribuere arbeidsbelastningen. Denne tilnærmingen

er effektiv når systemet må håndtere et stort antall samtidige arbeidsflyter eller når

arbeidsbelastningen enkelt kan distribueres over flere noder. Horisontal skalering krever

en distribuert arkitektur og lastbalanseringsmekanismer for å sikre jevn distribusjon av

trafikk.

3. Automatisk skalering: Implementer automatiske skaleringsmekanismer for

automatisk å justere antall noder eller ressurser basert på arbeidsbelastningsbehovet.

Intelligent arbeidsflytorkestrering 239

Automatisk skalering lar systemet dynamisk skalere opp eller ned avhengig av

innkommende trafikk, noe som sikrer optimal ressursutnyttelse og kostnadseffektivitet.

Skyplattformer som Amazon Web Services (AWS) eller Google Cloud Platform

(GCP) tilbyr automatiske skaleringsmuligheter som kan utnyttes for intelligente

arbeidsflytorkestreringssystemer.

Ytelsesoptimaliseringsteknikker

I tillegg til skaleringsstrategiene, vurder følgende ytelsesoptimaliseringsteknikker for å

forbedre effektiviteten til det intelligente arbeidsflytorkestreringssystemet:

1. Effektiv datalagring og -henting: Optimaliser mekanismene for datalagring og

-henting som brukes av arbeidsflytkomponentene. Bruk effektiv databaseindeksering,

spørringsoptimaliseringsteknikker og databufring for å minimere forsinkelsen og

forbedre ytelsen til dataintensive operasjoner.

2. Asynkron I/O: Benytt asynkrone I/O-operasjoner for å forhindre blokkering og

forbedre systemets responstid. Asynkron I/O gjør det mulig for systemet å håndtere

flere forespørsler samtidig uten å måtte vente på at I/O-operasjoner skal fullføres, og

dermed maksimere ressursutnyttelsen.

3. Effektiv serialisering og deserialisering: Optimaliser serialiserings-

og deserialiseringsprosessene som brukes til datautveksling mellom

arbeidsflytkomponenter. Bruk effektive serialiseringsformater som Protocol Buffers

eller MessagePack for å redusere overhead ved dataserialisering og forbedre ytelsen i

kommunikasjonen mellom komponenter.

For Ruby-baserte applikasjoner, vurder å bruke Universal ID. Universal ID

utnytter både MessagePack og Brotli (en kombinasjon bygget for hastighet

og førsteklasses datakomprimering). Når disse bibliotekene kombineres, er

de opptil 30% raskere og oppnår komprimeringsrater som ligger innenfor 2-

5% sammenlignet med Protocol Buffers.

https://github.com/hopsoft/universalid

Intelligent arbeidsflytorkestrering 240

4. Komprimering og koding: Bruk komprimerings- og kodingsteknikker for

å redusere størrelsen på data som overføres mellom arbeidsflytkomponenter.

Komprimeringsalgoritmer som gzip eller Brotli kan betydelig redusere bruken av

nettverksbåndbredde og forbedre systemets generelle ytelse.

Ved å ta hensyn til skalerbarhet og ytelsesaspekter under design og implementering

av intelligente arbeidsflytorkestreringssystemer, kan du sikre at systemet ditt kan

håndtere store volumer av samtidige arbeidsflyter, optimalisere ytelsen til AI-drevne

komponenter og skalere sømløst for å møte økende behov. Kontinuerlig overvåking,

profilering og optimalisering er essensielt for å opprettholde systemets ytelse og

responstid etter hvert som arbeidsmengden og kompleksiteten øker over tid.

Testing og validering av arbeidsflyter

Testing og validering er kritiske aspekter ved utvikling og vedlikehold av intelligente

arbeidsflytorkestreringssystemer. Gitt den komplekse naturen til AI-drevne

arbeidsflyter, er det essensielt å sikre at hver komponent fungerer som forventet,

at den overordnede arbeidsflyten oppfører seg korrekt, og at AI-beslutningene er

nøyaktige og pålitelige. I denne delen skal vi utforske ulike teknikker og hensyn for

testing og validering av intelligente arbeidsflyter.

Enhetstesting av arbeidsflytkomponenter

Enhetstesting innebærer å teste individuelle arbeidsflytkomponenter isolert for

å verifisere deres korrekthet og robusthet. Når man enhetstester AI-drevne

arbeidsflytkomponenter, bør man vurdere følgende:

1. Inputvalidering: Test komponentens evne til å håndtere forskjellige typer input,

inkludert gyldig og ugyldig data. Verifiser at komponenten håndterer kanttilfeller på

en god måte og gir passende feilmeldinger eller unntak.

Intelligent arbeidsflytorkestrering 241

2. Outputverifisering: Bekreft at komponenten produserer forventet output for et

gitt sett med input. Sammenlign faktisk output med forventede resultater for å sikre

korrekthet.

3. Feilhåndtering: Test komponentens feilhåndteringsmekanismer ved å simulere ulike

feilscenarier, som ugyldig input, utilgjengelige ressurser eller uventede unntak. Verifiser

at komponenten fanger opp og håndterer feil på en hensiktsmessig måte.

4. Grensebetingelser: Test komponentens oppførsel under grensebetingelser, som

tom input, maksimal inputstørrelse eller ekstreme verdier. Sørg for at komponenten

håndterer disse betingelsene på en god måte uten å krasje eller produsere feil resultater.

Her er et eksempel på en enhetstest for en arbeidsflytkomponent i Ruby ved bruk av

RSpec-testrammeverket:

1 RSpec.describe OrderValidator do

2 describe '#validate' do

3 context 'when order is valid' do

4 let(:order) { build(:order) }

5

6 it 'returns true' do

7 expect(subject.validate(order)).to be true

8 end

9 end

10

11 context 'when order is invalid' do

12 let(:order) { build(:order, total_amount: -100) }

13

14 it 'returns false' do

15 expect(subject.validate(order)).to be false

16 end

17 end

18 end

19 end

I dette eksempelet blir OrderValidator-komponenten testet ved hjelp av to

testtilfeller: ett for en gyldig ordre og ett for en ugyldig ordre. Testtilfellene verifiserer

Intelligent arbeidsflytorkestrering 242

at validate-metoden returnerer den forventede boolske verdien basert på ordrens

gyldighet.

Integrasjonstesting av Arbeidsflytinteraksjoner

Integrasjonstesting fokuserer på å verifisere interaksjonene og dataflyten mellom

ulike arbeidsflytkomponenter. Det sikrer at komponentene fungerer sømløst sammen

og produserer de forventede resultatene. Ved integrasjonstesting av intelligente

arbeidsflyter bør du vurdere følgende:

1. Komponentinteraksjon: Test kommunikasjonen og datautvekslingen mellom

arbeidsflytkomponenter. Verifiser at output fra én komponent blir korrekt overført som

input til neste komponent i arbeidsflyten.

2. Datakonsistens: Sørg for at data forblir konsistente og nøyaktige mens de flyter

gjennom arbeidsflyten. Verifiser at datatransformasjoner, beregninger og aggregeringer

utføres korrekt.

3. Unntakspropagering: Test hvordan unntak og feil propageres og håndteres på tvers

av arbeidsflytkomponenter. Verifiser at unntak fanges opp, logges og håndteres på en

hensiktsmessig måte for å forhindre forstyrrelser i arbeidsflyten.

4. Asynkron oppførsel: Hvis arbeidsflyten involverer asynkrone komponenter eller

parallell eksekvering, test koordinerings- og synkroniseringsmekanismene. Sørg for at

arbeidsflyten oppfører seg korrekt under samtidige og asynkrone scenarier.

Her er et eksempel på en integrasjonstest for en arbeidsflyt i Ruby ved hjelp av RSpec-

testrammeverket:

Intelligent arbeidsflytorkestrering 243

1 RSpec.describe OrderProcessingWorkflow do

2

3 let(:order) { build(:order) }

4

5 it 'processes the order successfully' do

6 expect(OrderValidator).to receive(:validate).and_return(true)

7 expect(InventoryManager).to receive(:check_availability).and_return(true)

8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)

9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)

10

11 workflow = OrderProcessingWorkflow.new(order)

12 result = workflow.process

13

14 expect(result).to be true

15 expect(order.status).to eq('processed')

16 end

17

18 end

I dette eksempelet testes OrderProcessingWorkflow ved å verifisere samhandlingen

mellom ulike arbeidsflytkomponenter. Testtilfellet setter opp forventninger til hver

komponents oppførsel og sikrer at arbeidsflyten behandler ordren vellykket, med

tilhørende oppdatering av ordrens status.

Testing av AI-beslutningspunkter

Testing av AI-beslutningspunkter er avgjørende for å sikre nøyaktighet og pålitelighet i

AI-drevne arbeidsflyter. Ved testing av AI-beslutningspunkter bør du vurdere følgende:

1. Beslutningsnøyaktighet: Verifiser at AI-komponenten tar nøyaktige beslutninger

basert på inndata og den trente modellen. Sammenlign AI-beslutningene med

forventede resultater eller referansedata.

2. Kanttilfeller: Test AI-komponentens oppførsel under kanttilfeller og uvanlige

scenarioer. Verifiser at AI-komponenten håndterer disse tilfellene på en god måte og

tar fornuftige beslutninger.

Intelligent arbeidsflytorkestrering 244

3. Skjevhet og rettferdighet:Vurder AI-komponenten for potensielle skjevheter og sørg

for at den tar rettferdige og upartiske beslutninger. Test komponenten med varierte

inndata og analyser resultatene for å identifisere eventuelle diskriminerende mønstre.

4. Forklarbarhet: Hvis AI-komponenten gir forklaringer eller resonnementer for sine

beslutninger, verifiser at forklaringene er korrekte og tydelige. Sørg for at forklaringene

samsvarer med den underliggende beslutningsprosessen.

Her er et eksempel på testing av et AI-beslutningspunkt i Ruby ved bruk av RSpec-

testrammeverket:

1 RSpec.describe FraudDetector do

2 describe '#detect_fraud' do

3 context 'when transaction is fraudulent' do

4 let(:tx) do

5 build(:transaction, amount: 10_000, location: 'High-Risk Country')

6 end

7

8 it 'returns true' do

9 expect(subject.detect_fraud(tx)).to be true

10 end

11 end

12

13 context 'when transaction is legitimate' do

14 let(:tx) do

15 build(:transaction, amount: 100, location: 'Low-Risk Country')

16 end

17

18 it 'returns false' do

19 expect(subject.detect_fraud(tx)).to be false

20 end

21 end

22 end

23 end

I dette eksemplet blir FraudDetector AI-komponenten testet med to testtilfeller: ett

for en svindelaktig transaksjon og ett annet for en legitim transaksjon. Testtilfellene

verifiserer at detect_fraud-metoden returnerer den forventede boolske verdien basert

på transaksjonens egenskaper.

Intelligent arbeidsflytorkestrering 245

Ende-til-ende-testing

Ende-til-ende-testing innebærer å teste hele arbeidsflyten fra start til slutt, simulere

virkelige scenarioer og brukerinteraksjoner. Det sikrer at arbeidsflyten oppfører seg

korrekt og produserer de ønskede resultatene. Når man utfører ende-til-ende-testing for

intelligente arbeidsflyter, bør man vurdere følgende:

1. Brukerscenarioer: Identifiser vanlige brukerscenarioer og test arbeidsflytens

oppførsel under disse scenarioene. Verifiser at arbeidsflyten håndterer brukerinndata

korrekt, tar passende beslutninger og produserer de forventede resultatene.

2. Datavalidering: Sørg for at arbeidsflyten validerer og renser brukerinndata for å

forhindre datauoverensstemmelser eller sikkerhetssårbarheter. Test arbeidsflyten med

forskjellige typer inndata, inkludert både gyldige og ugyldige data.

3. Feilhåndtering: Test arbeidsflytens evne til å gjenopprette seg fra feil og unntak.

Simuler feilscenarioer og verifiser at arbeidsflyten håndterer dem på en elegant måte,

logger feilene og tar passende gjenopprettingstiltak.

4. Ytelse og Skalerbarhet: Vurder arbeidsflytens ytelse og skalerbarhet under

forskjellige lastforhold. Test arbeidsflyten med et stort volum av samtidige forespørsler

og mål responstider, ressursbruk og generell systemstabilitet.

Her er et eksempel på en ende-til-ende-test for en arbeidsflyt i Ruby ved hjelp av RSpec

testrammeverket og Capybara-biblioteket for å simulere brukerinteraksjoner:

Intelligent arbeidsflytorkestrering 246

1 RSpec.describe 'Order Processing Workflow' do

2 scenario 'User places an order successfully' do

3 visit '/orders/new'

4 fill_in 'Product', with: 'Sample Product'

5 fill_in 'Quantity', with: '2'

6 fill_in 'Shipping Address', with: '123 Main St'

7 click_button 'Place Order'

8

9 expect(page).to have_content('Order Placed Successfully')

10 expect(Order.count).to eq(1)

11 expect(Order.last.status).to eq('processed')

12 end

13 end

I dette eksempelet simulerer ende-til-ende-testen en bruker som legger inn en bestilling

gjennom nettgrensesnittet. Den fyller ut de nødvendige skjemafeltene, sender inn

bestillingen og bekrefter at bestillingen blir behandlet vellykket, viser den riktige

bekreftelsesmeldingen og oppdaterer bestillingens status i databasen.

Kontinuerlig integrasjon og distribusjon

For å sikre pålitelighet og vedlikeholdbarhet i intelligente arbeidsflyter, anbefales det

å integrere testing og validering i den kontinuerlige integrasjons- og distribusjons

(CI/CD)-pipeline. Dette muliggjør automatisert testing og validering av endringer i

arbeidsflyten før de distribueres til produksjon. Vurder følgende praksis:

1. Automatisert testkjøring: Konfigurer CI/CD-pipelinen til å kjøre testsuiten

automatisk når det gjøres endringer i arbeidsflytens kodebase. Dette sikrer at eventuelle

regresjoner eller feil oppdages tidlig i utviklingsprosessen.

2. Overvåking av testdekning: Mål og overvåk testdekningen av

arbeidsflytkomponentene og AI-beslutningspunktene. Sikt mot høy testdekning

for å sikre at kritiske baner og scenarioer blir grundig testet.

3. Kontinuerlig tilbakemelding: Integrer testresultater og kodekvalitetsmetrikker i

utviklingsarbeidsflyten. Gi kontinuerlig tilbakemelding til utviklere om status på tester,

Intelligent arbeidsflytorkestrering 247

kodekvalitet og eventuelle problemer som oppdages under CI/CD-prosessen.

4. Testmiljøer: Distribuer arbeidsflyten til testmiljøer som ligger tett opptil

produksjonsmiljøet. Utfør ytterligere testing og validering i testmiljøet for å fange opp

eventuelle problemer relatert til infrastruktur, konfigurasjon eller dataintegrasjon.

5. Tilbakerullingsmekanismer: Implementer tilbakerullingsmekanismer i tilfelle

distribueringsfeil eller kritiske problemer oppdages i produksjon. Sørg for at

arbeidsflyten raskt kan rulles tilbake til en tidligere stabil versjon for å minimere

nedetid og påvirkning på brukerne.

Ved å inkorporere testing og validering gjennom hele utviklingslivssyklusen til

intelligente arbeidsflyter, kan organisasjoner sikre pålitelighet, nøyaktighet og

vedlikeholdbarhet i deres AI-drevne systemer. Regelmessig testing og validering hjelper

med å fange opp feil, forhindre regresjoner og bygge tillit til arbeidsflytens oppførsel

og resultater.

Del 2: Mønstrene

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon
Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 250

Tankerekke

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempler

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Innholdsgenerering

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Strukturert entitetsopprettelse

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Veiledning av LLM-agenter

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Fordeler og hensyn

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 251

Modusveksling

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Når den skal brukes

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 252

Rolletildeling

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Når det skal brukes

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempler

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 253

Prompt Object

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 254

Prompt Template

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Fordeler og hensyn

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Når det bør brukes:

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 255

Structured IO

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Skalering av Structured IO

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Fordeler og hensyn

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 256

Prompt-kjeding

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Når du bør bruke det

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel: Olympias Onboarding

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 257

Prompt-omskriver

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 258

Responsbegrensning

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Fordeler og hensyn

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Feilhåndtering

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 259

Spørringsanalysator

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Implementering

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Ordklassemerking (POS) og navngitt enhetgjenkjenning (NER)

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Intensjonsklassifisering

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Nøkkelorduttrekking

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Fordeler

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 260

Spørringsomskriver

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Fordeler

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Prompt-konstruksjon 261

Ventriloquist

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Når man skal bruke det

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Diskrete komponenter
Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Diskrete komponenter 263

Predikat

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Når det skal brukes

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Diskrete komponenter 264

API-fasade

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hovedfordeler

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Når man skal bruke det

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Autentisering og autorisering

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Diskrete komponenter 265

Håndtering av forespørsler

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Formatering av respons

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Feilhåndtering og kanttilfeller

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Skalerbarhets- og ytelseshensyn

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Sammenligning med andre designmønstre

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Diskrete komponenter 266

Result Interpreter

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Når det skal brukes

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Diskrete komponenter 267

Virtuell Maskin

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Når det skal brukes

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Bak Magien

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Spesifikasjon og Testing

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Diskrete komponenter 268

Spesifisering av Oppførsel

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Skriving av Testtilfeller

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel: Testing av Oversetterkomponenten

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Replay av HTTP-interaksjoner

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL)
Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Overordnede mønstre

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hybrid intelligens

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Adaptiv respons

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Menneske-KI-rollebytte

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL) 270

Eskalering

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hovedfordeler

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Praktisk anvendelse: Helsevesen

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL) 271

Tilbakemeldingssløyfe

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Anvendelser og Eksempler

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Avanserte Teknikker i Integrering av Menneskelig
Tilbakemelding

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL) 272

Passiv informasjonsutstråling

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Kontekstuell informasjonsvisning

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Proaktive varsler

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Forklarende innsikt

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Interaktiv utforskning

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL) 273

Viktige fordeler

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Bruksområder og eksempler

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL) 274

Samarbeidende Beslutningstaking (CDM)

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL) 275

Kontinuerlig læring

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Bruksområder og eksempler

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Etiske hensyn

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

HITLs rolle i reduksjon av AI-risiko

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Human In The Loop (HITL) 276

Teknologiske fremskritt og fremtidsutsikter

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Utfordringer og begrensninger ved HITL-systemer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Intelligent feilhåndtering
Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Tradisjonelle feilhåndteringstilnærminger

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Intelligent feilhåndtering 278

Kontekstuell feildiagnose

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Prompt-konstruksjon for kontekstuell feildiagnose

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Gjenfinningsforsterket generering for kontekstuell feildiagnose

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Intelligent feilhåndtering 279

Intelligent feilrapportering

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Intelligent feilhåndtering 280

Prediktiv feilforebygging

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Smart feilgjenoppretting

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Intelligent feilhåndtering 281

Personalisert feilkommunikasjon

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Intelligent feilhåndtering 282

Adaptiv feilhåndteringsarbeidsflyt

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Kvalitetskontroll
Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Kvalitetskontroll 284

Eval

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Problem

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Løsning

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hensyn

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Kvalitetskontroll 285

Forståelse av gullstandarder

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan referansefrie evalueringer fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Kvalitetskontroll 286

Sikkerhetsmekanisme

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Problem

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Løsning

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hvordan det fungerer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Eksempel

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Hensyn å ta

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Kvalitetskontroll 287

Guardrails og Evalueringer: To Sider av Samme

Sak

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Utbyttbarheten mellom Guardrails og Referansefrie
Evalueringer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Implementering av Tosidige Sikkerhetsmekanismer og
Evalueringer

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Ordliste

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Ordliste

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

A

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

B

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

C

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

289

D

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

E

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

F

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

G

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

H

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

I

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

290

J

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

K

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

L

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

M

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

N

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

O

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

291

P

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Q

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

R

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

S

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

T

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

U

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

292

V

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

W

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

Z

Dette innholdet er ikke tilgjengelig i prøveboken. Boken kan kjøpes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-nb.

http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb
http://leanpub.com/patterns-of-application-development-using-ai-nb

Index

ACID properties, 103

adaptiv arbeidsflyt

Adaptiv arbeidsflytkomposisjon, 213

adaptivt UI, 196

Agentiske, 29

AI, 60, 69, 93, 127, 135, 191

applikasjoner, 118, 130, 141, 154

beslutningspunkter, 243

konversasjons, 29

modell, 93, 147, 148, 150

sammensatte systemer, 28, 31

samtale, 6

allmenningens tragedie, 181

Alpaca, 12

Altman, Sam, 16

Amazon Web Services, 239

Anthropic, 21, 36, 68, 122, 129

antropomorfisme, 64

API-er, 116

APIer, 67

APIs, 145

application design and frameworks, 187

applikasjonsutvikling, 208

arrays, 123

asynkron behandling, 236

Automatisk fortsettelse, 151

automatisk skalering, 238

autoregressiv modellering, 40

beredskapsplanlegging, 30

BERT, 12, 22

beslutning

-taking scenarioer, 125

punkter, 232

trær, 209

beslutningsevner, 93

boundary conditions, 241

briller for utvidet virkelighet, 206

Brotli, 239, 240

Brukergrensesnitt

grensesnitt, 201

rammeverk, 202

Brukergrensesnitt (UI)

design, 206

teknologier, 197

brukeropplevelse, 184

brukerpsykologi, 203

brukertesting og tilbakemelding, 186

brukertillit, 204

brukervennlighetsproblemer, 203

Byte Pair Encoding (BPE), 12, 13

C (Programmeringsspråk), 110

Index 294

Capybara-biblioteket, 245

Chain of Thought (CoT), 131

chaining of AI workers, 105

chatbot-applikasjon, 112

ChatGPT, 28, 49

Claude, 7, 40, 72

Claude 3, 46, 119, 122, 127, 129

Claude 3 Opus, 69

Claude v1, 15

Claude v2, 15

Cohere (LLM-leverandør), 21, 23

conceptual and practical challenges, 188

concurrent workflows, 240

content

Content Categorization, 105

context

Contextual Content Generation, 188,

189

Contextual Field Suggestions, 189

data

analyse, 31, 139

behandlingsoppgaver, 118

behandlingspipeline, 227

Datahenting, 103

Datasynkronisering, 103

Datavalidering, 245

flow, 103

integritet, 227

klargjøring, 102

persistens, 103

personvern, 24, 203

databaser, 116

-støttet objekt, 99

databases

locking strategies, 103

Databricks-ansatte, 48

Datadog, 235

destilleringsprosess, 71

detaljert logging, 234

deterministisk oppførsel, 54

digitalt landskap, 183

distribuert arkitektur, 236

Dohan, et al., 40

dokumentklynging, 113

Dynamisk oppgaveruting, 211

dynamisk UI-generering, 178

Dynamisk Verktøyvalg, 123

e-handel, 181, 209

E-handelapplikasjoner, 86

effektivitet, 210

eksperimentering

rammeverk, 183

eksterne tjenester eller API-er, 119

ELK stack, 104

emosjonell tone, 137

ende-til-ende-testing, 245, 246

ensembler, 110, 111

ensemble av arbeidere, 111

enterpriseapplikasjonsarkitektur, 35

errors

handling, 103, 241

Intelligent feilhåndtering, 135

Index 295

rates, 104

ethics

implications, 188

F#, 87

Facebook, 22

fallback strategies, 103

feil

gjenoppretting, 245

håndtering, 101, 134

feilsøking, 212

og problemløsing, 234

og testing, 124

few-shot

læring, 58

prompting, 59

finaliseringsmetode, 147

finalize-metode, 150

finjustering, 75

FitAI, 199

flaskehalser, 213

fleksibilitet og kreativitet, 185

flertallsavstemning, 110

Flerагent

Problemløsere, 29

forklarbarhet, 244

forretningsregler, 209

Forsikringsverifisering, 96

forsyningskjede

optimalisering, 30

funksjon

anrop, 149

anropshistorikk, 148

kalling, 116

navn, 146

funksjonell programmering, 86

funksjonsanrop

feil, 126

Gemma 7B, 10

Generativ UI (GenUI), 194, 197, 201

Generative Pre-trained Transformer (GPT),

7, 63

Generative UI (GenUI), 187, 205

GitLab, 87

Gjenfinnings-forsterket generering (RAG),

43

gjenfinningsbaserte modeller, 6

Gjenfinningsforsterket Generering (RAG),

29

Gjenfinningsforsterket generering (RAG),

74

gjennomstrømning, 25

Global Interpreter Lock (GIL), 108

Google, 21

API, 59, 61

Cloud AI Platform, 22

Cloud Platform, 239

Gemini, 20

Gemini 1.5 Pro, 12, 16, 17

PaLM (Pathways Language Model),

16, 22

T5, 12

GPT-3, 12, 15

Index 296

GPT-4, 6, 12, 15, 16, 19, 28, 40, 46, 58, 98,

110, 113, 120, 126, 192, 193, 237

grafiske modeller, 40

Graham, Paul, 17

grammatiske regler, 4

GraphQL, 101

Groq, 24, 113

grunnmodeller, 50

gzip, 240

hash, 144

hendelsesdrevet arkitektur, 102

henvendelsestildeling, 227

historiske mønstre, 212

Hohpe, Gregor, 98

Honeybadger, 88

HTTP, 142

hurtigbufring, 237

hyperparameter, 43

høyhastighets-fullføring, 24

ikke-overvåket læring, 4

inclusive interfaces, 188

Inferens, 5

informasjon

gjenfinning, 6, 118

uthenting, 49

informatikk, 65, 68

inndata

prompts, 52

inngangsparametere, 121

innhold

filtrering, 24

innholdsbasert filtrering, 86

Innsamling av medisinsk historie, 95

innsnevre stien, 35, 36

input

validation, 240

instruksjonsfinjustering, 9

instruksjonsjustering

instruksjonsjusterte modeller, 46

instruksjonstilpasning

instruksjonstunede modeller, 48

Integrasjonsmønstre for Virksomheter, 98

integrasjonstesting, 242

integrering av LLM, 178

intelligent arbeidsflytorkestrering, 208, 216,

237

Intelligent innholdsmoderering, 220

intelligent workflow orchestration, 240

internasjonalisering, 184

iterativ forbedring, 71, 136

JSON (JavaScript Object Notation), 119,

123, 124, 127, 139, 157

K-means, 115

kanttilfeller, 54

KI, 121, 142, 198

konversasjon, 199

modell, 84, 198

klassifisering, 49, 113

Klinisk beslutningsstøtte, 97

kollaborativ filtrering, 86

kommandolinje

Kommandolinjegrensesnitt (CLI), 23

Index 297

komplekse oppgaver, 138

konsistens

og reproduserbarhet, 125

kontekst

Forsterkning, 43

kontekstuell beslutningstaking, 212

Kontekstuell innholdsgenerering, 177,

181–183

uendelig lange inputs, 14

vindu, 14, 212

Kontinuerlig integrasjon og distribusjon

(CI/CD), 246

pipeline, 246

Kontinuerlig risikoovervåking, 97

konto, 85

kreativ skriving, 31, 49

kretsbryterlogikk, 153

kryssmodal generering, 20

Kundesentimentanalyse, 94

kundeservice-chatboter, 31

kundesupport, 29

kunnskapsbaser, 7

kunnskapshåndtering, 29

Kvantisering, 26

kvikksølv (grunnstoff), 41

language

Language Detection, 105

models, 61

Large Language Model (LLM), 16, 104, 136,

187

latens, 25

Latent Dirichlet-allokering, 115

latent rom, 37, 39

leverandører av åpen

kildekode-modellverting, 193

lineær algebra, 40

lineær regresjon, 40

Llama, 12

Llama 2-70B, 46

Llama 3 70B, 10

Llama 3 8B, 10

loggoppbevaring og -rotasjon, 235

lokale utviklingsmiljøer, 146

Louvre, 39

lukket og åpen spørsmålsbesvarelse, 49

Managed Streaming for Apache Kafka, 38

Mangfold av arbeidere, 112, 157

manuell intervensjon, 215

Markdown, 139

markupbasert tagging, 66

maskinvare, 26

medisinske oppdagelser, 95

Memorial Sloan Kettering Cancer Center,

38

Menneske-i-løkken (HITL), 169

Merkur (planet), 41

Merkur (romersk gud), 41

MessagePack, 239

Meta, 22

Metropolitan Museum of Art, 39

Mikrotjeneste-arkitektur, 84

Mistral, 23

Index 298

7B, 10

7B Instruct, 15, 193

Mixtral

8x22B, 10

8x7B, 52

moderne applikasjoner, 210

modularitet, 83

monitoring

and logging, 104

motivasjonsstrategier, 201

multi-step workflow, 105

Multimodal

modeller, 18

språkmodeller, 19

mønstergjenkjenning, 144

Naiv Bayes, 114

narrativ konstruksjon, 18

naturlig språk

Naturlig språkprosessering (NLP), 95,

113

nettbrett, 206

nettbutikker, 193

nettverkstilkobling, 213

nevrale nettverk, 3, 6

New Relic, 238

nullskudds-læring, 54

nøkkelmønstre, 211

Ollama, 23

Olympia, 31, 58, 121, 135, 143, 158

Olympias kunnskapsbase, 86

One-Shot Learning, 56

OpenAI, 3, 21, 36, 68

OpenRouter, 25, 26, 143, 237

oppsummering, 49

OPT model, 22

optimistic locking, 103

ordbøker, 123

output verification, 241

oversettelse, 15, 185

overvåking

metrikker, 234

og logging, 233

og varsling, 214

parafrasering, 49

parallell utførelse, 236

parameter

effekter, 121

område, 10

Parameterantall, 26

Perplexity (Leverandør), 10

personalisering, 178, 205, 210

Personalisert mikrotekst, 194

personaliserte produktanbefalinger, 86

personalization

Personalized Forms, 189

pessimistic locking, 103

prediksjoner, 5

prinsippet om minste privilegium, 67

probabilistiske modeller, 40

Process Manager

Enterprise Integration, 216

processing time, 104

Index 299

Produktanbefalinger, 86

Produktivitet, 180

programvarearkitektur, 2

progressiv avsløring, 195

prompts

design, 54

engineering, 55, 61

forbedring, 64

kjeding, 55, 67

konstruksjon, 37, 42, 62

Prompt Template, 193

Prompt-destillering, 43, 73, 237

Prompt-mal, 55

Promptdestillering, 68

Promptobjekt, 69

teknikk, 202

utforming, 52, 63

Prosesshåndterer, 98, 101

Protocol Buffers, 239

publiser-abonner-systemer, 102

PyTorch, 22

Qwen2 70B, 10

Rails, 184

Railway Oriented Programming (ROP), 89

Raix, 217

bibliotek, 91

rangerere, 33

repetisjonsstraffer, 48

Responsavgrensning, 167

Response Fencing, 193

Result Interpreter, 134

Retrieval Augmented Generation (RAG),

35, 118

retry mechanisms, 103

revisjon og etterlevelse, 234

revisjonslogging, 100

risikofaktorer, 90, 91

Risikostratifisering, 96

rollespill-lignende interaksjoner, 6

RSpec, 241, 242, 245

Ruby, 87, 88, 106, 154, 245

Ruby on Rails, 1, 105, 216, 224

Rudall, Alex, 21

Rust (Programmeringsspråk), 110

Rust (Programming Language), 87

samtale

logg, 148, 151

løkke, 149, 151

satsvis behandling, 237

Scout, 238

segmenterings- og målrettingsstrategier,

183

Selvhelbredende Data, 230

Selvhelbredende data, 155

sentiment analysis, 105

sentimentanalyse, 94, 108, 127

serversendte hendelser (SSE), 142

sinnsteori, 37

skalerbarhet, 210, 235

skjevhet

og rettferdighet i AI, 244

smarttelefoner, 206

Index 300

sporing av viktige målinger, 231

språk

-relaterte oppgaver, 4

modeller, 39, 68

spørsmål-og-svar-systemer, 7

SQL-injeksjoner, 66

stasjonære datamaskiner, 206

stemmestyrte grensesnitt, 31

stemningsanalyse, 15, 106, 111, 137

Stor språkmodell (LLM), 1, 3, 62, 64, 66, 67,

71, 117, 132, 192

Store språkmodeller (LLM), 14, 27, 113, 177,

197

landskap, 25

Stort språkmodell (LLM), 72, 82, 116, 126,

136, 138, 155, 158, 219

Stripe, 122

Structured IO, 193

strukturert logging, 235

strukturerte data, 126

strømbehandling, 154

strømhåndterere, 142

strømmebehandling, 142

logikk, 150

strømmedata, 144

strømprosessering, 147

Støttevektormaskiner (SVM), 114

svindeldeteksjon

system, 91

Symptomvurdering og stratifisering, 95

syntaksfeil, 124

syntetisk datagenerering, 49

systemdirektiv, 93, 121

T5, 22

Tankerekke (CoT), 42

temaidentifisering, 113

Temperatur, 50

testmiljøer, 247

Text Cleanup, 105

Tid til første token (TTFT), 25

tilbakemelding

Tilbakemeldingssløyfe, 55

tilbakerullingsmekanismer, 247

tilgjengelighet, 204, 205

tilpasning, 25

tilstandsløs, 148

Tilstedeværelsesstraff, 45

Together.ai, 24

tokener, 11

tokenisering, 11

tokens, 5

Top-k sampling, 45

Top-p (nucleus) sampling, 45

trafikkstyring, 30

transformerarkitektur, 6

treningsdata, 39

Tvunget Verktøyvalg, 124

Unicode-kodbare språk, 13

Universal ID, 239

unntakshåndtering, 213, 215

User Interface (UI)

interfaces, 187

user-generated content, 105

Index 301

utdanningsapplikasjoner, 29

utløsermelding, 98

utviklingsrammeverk, 140

Ventriloquist, 167

verktøybruk, 116, 140

verktøykall, 145

virtuelle assistenter, 31

visuelt grensesnitt, 197

Wall, Larry, 3

Wisper, 88, 100, 143, 150

Wooley, Chad, 87

XML, 126

Yi-34B, 46

ytelse

kompromisser, 5

optimalisering, 125, 185, 234

problemer, 238

zero-shot learning, 55

økosystem, 139

	Innhold
	Forord av Gregor Hohpe
	Forord
	Om boken
	Om kodeeksemplene
	Hva jeg ikke dekker
	Hvem denne boken er for
	Bygge et Felles Vokabular
	Bli Involvert
	Anerkjennelser
	Hva er greia med illustrasjonene?
	Om Lean Publishing
	Om forfatteren

	Introduksjon
	Tanker om programvarearkitektur
	Hva er en stor språkmodell?
	Forstå inferens
	Tenke på ytelse
	Eksperimentere med forskjellige LLM-modeller
	Sammensatte AI-systemer

	Del 1: Grunnleggende tilnærminger og teknikker
	Innsnevre stien
	Latent rom: Ubegripelig stort
	Hvordan Stien Blir ``Innsnevret''
	Råmodeller versus instruksjonsjusterte modeller
	Prompt-utforming
	Promptdestillering
	Hva med finjustering?

	Retrieval Augmented Generation (RAG)
	Hva er Retrieval Augmented Generation?
	Hvordan fungerer RAG?
	Hvorfor bruke RAG i applikasjonene dine?
	Implementering av RAG i Din Applikasjon
	Påstandsoppdeling
	Praktiske eksempler på RAG
	Intelligent spørringsoptimalisering (IQO)
	Rerangering
	RAG-vurdering (RAGAs)
	Utfordringer og Fremtidsutsikter

	Mangfold av arbeidere
	KI-arbeidere som uavhengige gjenbrukbare komponenter
	Kontoadministrasjon
	E-handelapplikasjoner
	Helsetjenesteanvendelser
	KI-arbeider som prosesshåndterer
	Integrering av AI-Arbeidere i Applikasjonsarkitekturen Din
	Sammenstillbarhet og orkestrering av AI-arbeidere
	Kombinere tradisjonell NLP med LLMer

	Verktøybruk
	Hva er verktøybruk?
	Potensialet i verktøybruk
	Arbeidsflyten for verktøybruk
	Beste praksis for verktøybruk
	Sammensetting og Kjeding av Verktøy
	Fremtidige Retninger

	Strømmebehandling
	Implementering av en ReplyStream
	``Samtaleløkken''
	Automatisk fortsettelse
	Konklusjon

	Selvhelbredende data
	Praktisk casestudie: Reparering av ødelagt JSON
	Hensyn og kontraindikasjoner

	Kontekstuell innholdsgenerering
	Personalisering
	Produktivitet
	Rask iterasjon og eksperimentering
	AI-drevet lokalisering
	Viktigheten av Brukertesting og Tilbakemelding

	Generative UI
	Generering av tekst for brukergrensesnitt
	Definering av Generativ UI
	Eksempel
	Skiftet til Resultatorientert Design
	Utfordringer og Hensyn
	Fremtidsutsikter og Muligheter

	Intelligent arbeidsflytorkestrering
	Forretningsmessig behov
	Sentrale fordeler
	Nøkkelmønstre
	Unntakshåndtering og gjenoppretting
	Implementering av Intelligent Arbeidsflytorkestrering i Praksis
	Overvåking og Logging
	Skalerbarhet og Ytelseshensyn
	Testing og validering av arbeidsflyter

	Del 2: Mønstrene
	Prompt-konstruksjon
	Tankerekke
	Modusveksling
	Rolletildeling
	Prompt Object
	Prompt Template
	Structured IO
	Prompt-kjeding
	Prompt-omskriver
	Responsbegrensning
	Spørringsanalysator
	Spørringsomskriver
	Ventriloquist

	Diskrete komponenter
	Predikat
	API-fasade
	Result Interpreter
	Virtuell Maskin
	Spesifikasjon og Testing

	Human In The Loop (HITL)
	Overordnede mønstre
	Eskalering
	Tilbakemeldingssløyfe
	Passiv informasjonsutstråling
	Samarbeidende Beslutningstaking (CDM)
	Kontinuerlig læring
	Etiske hensyn
	Teknologiske fremskritt og fremtidsutsikter

	Intelligent feilhåndtering
	Tradisjonelle feilhåndteringstilnærminger
	Kontekstuell feildiagnose
	Intelligent feilrapportering
	Prediktiv feilforebygging
	Smart feilgjenoppretting
	Personalisert feilkommunikasjon
	Adaptiv feilhåndteringsarbeidsflyt

	Kvalitetskontroll
	Eval
	Sikkerhetsmekanisme
	Guardrails og Evalueringer: To Sider av Samme Sak

	Ordliste
	Ordliste
	Index

