

AIによるアプリケーション開発パターン (日

本語版)

Obie Fernandez

本書はこちらで販売中です http://leanpub.com/patterns-of-application-

development-using-ai-ja

この版は 2025-01-23に発行されました。

本書は Leanpubの電子書籍です。Leanpubはリーンパブリッシングプロセスで著者

や出版社を支援します。リーンパブリッシングは新しい出版スタイルです。軽量なツ

ールを使って執筆中の電子書籍を出版し、読者のフィードバックをもらいながら魅力

的な本に仕上がるまでピボットを繰り返すことができます。

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Twitterでシェアしませんか？

本書に関するコメントをTwitterでシェアして Obie Fernandez を応援してください！

本書のハッシュタグは #poaduaiです。

本書に関するコメントを検索する場合は、次のリンクをクリックして下さい。Twitterの

ハッシュタグを使って検索できます。

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

最強の女王様であり、私のミューズ、私の光明そして愛する Victoriaへ

Obie Fernandez共著
Patterns of Application Development Using AI

The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Contents

Gregor Hohpeによる序文 . i

はじめに . ii

本書について . iii

コード例について . iii

本書で扱わない内容 . iii

対象読者 . iii

共通の語彙の構築 . iii

参加方法 . iii

謝辞 . iv

イラストについて . iv

リーン・パブリッシングについて . iv

著者について . v

はじめに . 1

ソフトウェアアーキテクチャについての考察 2

大規模言語モデルとは . 3

推論について . 5

パフォーマンスについて考える . 25

異なる LLMモデルの実験 . 26

複合 AIシステム . 27

CONTENTS

パート 1：基本的なアプローチと技法 35

パスを狭める . 36

潜在空間：理解を超えた広大さ . 38

どのように道筋が「絞り込まれる」のか . 42

生のモデル対指示調整済みモデル . 45

プロンプトエンジニアリング . 52

プロンプト蒸留 . 68

ファインチューニングについてはどうですか？ 75

検索拡張生成 (Retrieval Augmented Generation: RAG) 77

検索拡張生成とは？ . 77

RAGはどのように機能するか？ . 77

なぜアプリケーションで RAG を使用するのか？ 77

アプリケーションでの RAGの実装 . 77

命題チャンキング . 78

RAGの実世界での例 . 79

インテリジェントクエリ最適化（IQO） . 79

リランキング . 79

RAG評価（RAGAs） . 79

課題と将来の展望 . 81

ワーカーの群れ . 84

独立した再利用可能なコンポーネントとしての AI ワーカー 85

アカウント管理 . 87

E コマースアプリケーション . 88

ヘルスケアでの応用 . 98

プロセスマネージャーとしての AI ワーカー . 100

アプリケーションアーキテクチャへの AI ワーカーの統合 104

AI ワーカーの構成性とオーケストレーション 107

CONTENTS

従来の自然言語処理と LLMの組み合わせ 117

ツールの使用 . 120

ツールの使用とは . 120

ツール使用の可能性 . 122

ツール使用のワークフロー . 123

ツール使用のベストプラクティス . 139

ツールの組み合わせと連鎖 . 144

将来の方向性 . 146

ストリーム処理 . 148

ReplyStreamの実装 . 149

「会話ループ」 . 156

自動継続 . 158

結論 . 160

自己修復データ . 162

実践的ケーススタディ：破損した JSONの修復 164

考慮事項と禁忌 . 169

コンテキスト型コンテンツ生成 . 183

パーソナライゼーション . 184

生産性 . 186

高速イテレーションと実験 . 188

AI駆動のローカライゼーション . 190

ユーザーテストとフィードバックの重要性 . 192

生成的 UI . 193

ユーザーインターフェース用のコピーの生成 194

ジェネラティブ UIの定義 . 204

例 . 206

CONTENTS

成果指向設計へのシフト . 208

課題と考慮事項 . 209

将来の展望と機会 . 211

インテリジェントワークフローオーケストレーション 215

ビジネスニーズ . 216

主要なメリット . 217

主要パターン . 217

例外処理とリカバリー . 220

インテリジェントワークフローオーケストレーションの実践的な実装 223

モニタリングとロギング . 241

スケーラビリティとパフォーマンスの考慮事項 245

ワークフローのテストと検証 . 250

パート 2：パターン集 . 258

プロンプトエンジニアリング . 259

チェーン・オブ・ソート . 260

モードスイッチ . 262

役割割り当て . 263

プロンプトオブジェクト . 264

プロンプトテンプレート . 265

ストラクチャード IO . 266

プロンプトチェーニング . 267

プロンプトリライター . 268

レスポンスフェンシング . 269

クエリアナライザー . 270

クエリリライター . 272

ベントリロキスト . 273

CONTENTS

個別コンポーネント . 274

述語 . 275

API ファサード . 276

結果インタープリター . 279

仮想マシン . 280

仕様とテスト . 280

ヒューマン・イン・ザ・ループ（HITL） . 282

高レベルパターン . 282

エスカレーション . 284

フィードバックループ . 285

パッシブ情報放射 . 286

協調的意思決定（CDM） . 288

継続的学習 . 289

倫理的考慮事項 . 289

技術的進歩と将来の展望 . 290

インテリジェントなエラー処理 . 291

従来のエラー処理アプローチ . 291

文脈的エラー診断 . 292

知的エラー報告 . 293

予測的エラー防止 . 294

スマートエラーリカバリー . 294

パーソナライズされたエラーコミュニケーション 295

適応型エラー処理ワークフロー . 296

品質管理 . 297

Eval . 298

ガードレール . 300

ガードレールと評価：コインの表と裏 . 301

用語集 . 302
用語集 . 302

Index . 308

Gregor Hohpeによる序文
このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

はじめに

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

はじめに iii

本書について

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

コード例について

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

本書で扱わない内容

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

対象読者

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

共通の語彙の構築

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

はじめに iv

参加方法

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

謝辞

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

イラストについて

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

リーン・パブリッシングについて

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

はじめに v

著者について

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

はじめに

AI大規模言語モデル（LLM）をプログラミングプロジェクトに統合することに意欲的

な方は、後の章で紹介するパターンとコード例にすぐに取り組んでいただいて構いま

せん。ただし、これらのパターンの力と可能性を十分に理解するためには、より広い文

脈と、それらが表す統合的なアプローチを理解する時間を取る価値があります。

これらのパターンは単なる個別の手法の集まりではなく、アプリケーションに AI を統

合するための統一的なフレームワークです。私は Ruby on Railsを使用していますが、

これらのパターンは他のほとんどのプログラミング環境でも機能するはずです。デー

タ管理からパフォーマンスの最適化、ユーザーエクスペリエンス、セキュリティまで、

幅広い課題に対応し、従来のプログラミング手法を AIの機能で強化するための包

括的なツールキットを提供します。

パターンの各カテゴリーは、アプリケーションに AI コンポーネントを組み込む際に生

じる特定の課題や機会に対処します。これらのパターン間の関係や相乗効果を理解

はじめに 2

することで、AI をどこでどのように最も効果的に適用するかについて、十分な情報に

基づいた決定を下すことができます。

パターンは決して規範的な解決策ではなく、そのように扱うべきではありません。それ

らは、独自のアプリケーションの固有の要件と制約に合わせて調整できる、適応可

能な構成要素として意図されています。これらのパターン（ソフトウェア分野における

他のパターンと同様に）の成功的な適用には、問題領域、ユーザーニーズ、およびプ

ロジェクトの全体的な技術アーキテクチャについての深い理解が必要です。

ソフトウェアアーキテクチャについての考察

私は 1980年代にプログラミングを始め、ハッカーシーンに関わっていました。そして、

プロのソフトウェア開発者になった後も、ハッカーとしての考え方を失うことはありま

せんでした。最初から、象牙の塔にいるソフトウェアアーキテクトたちが実際にどのよ

うな価値をもたらしているのかについて、健全な懐疑心を持っていました。

この強力な新しい AI技術の波がもたらす変化に個人的に非常に興奮している理由

の 1つは、ソフトウェアアーキテクチャの決定と考えられているものへの影響です。こ

れは、ソフトウェアプロジェクトの設計と実装における「正しい」方法とされているもの

についての従来の概念に挑戦します。また、AIによる強化により、プロジェクトのどの

部分でも、いつでも変更が容易になっているため、アーキテクチャを主に変更が困難

なシステムの部分として考えることができるかどうかにも疑問を投げかけています。

おそらく私たちは、ソフトウェアエンジニアリングにおける「ポストモダン」アプローチ

の最盛期に入りつつあるのでしょう。このコンテキストでのポストモダンとは、開発者

がすべてのコードの記述と保守に責任を持つという従来のパラダイムからの根本的

な転換を指します。代わりに、データ操作、複雑なアルゴリズム、さらにはアプリケーシ

ョンロジック全体をサードパーティライブラリや外部 API に委ねるという考え方を受

け入れています。このポストモダンへの転換は、アプリケーションを一から構築すると

いう従来の知恵からの大きな転換を表し、開発プロセスにおける開発者の役割を再

考することを求めています。

はじめに 3

私は常に、Larry Wallや彼のような他のハッカーの賢人たちの教えに基づき、優れた

プログラマーは絶対に必要なコードだけを書くべきだと信じてきました。コードの量を

最小限に抑えることで、より迅速に動き、バグの発生する可能性を減らし、保守を簡

略化し、アプリケーション全体の信頼性を向上させることができます。コードが少ない

ことで、他のサービスに作業を委ねながら、コアとなるビジネスロジックとユーザーエ

クスペリエンスに集中することができます。

今や AI を活用したシステムが、これまで人間が書いたコードの専売特許だった作業

を処理できるようになり、私たちはこれまで以上にビジネス価値とユーザーエクスペ

リエンスの創造に焦点を当てながら、より生産的で機敏になれるはずです。

もちろん、プロジェクトの大部分を AI システムに委託することには、制御の喪失や、

堅牢なモニタリングとフィードバック機構の必要性といったトレードオフが存在しま

す。そのため、AIの基本的な仕組みの理解を含む、新しいスキルと知識が必要となり

ます。

大規模言語モデルとは

大規模言語モデル（LLM）は、2020年に OpenAIが GPT-3 をリリースして以来、大きな

注目を集めている人工知能モデルの一種です。LLMは人間の言語を処理し、理解

し、驚くべき正確さと流暢さで生成するように設計されています。このセクションでは、

LLMの仕組みと、なぜそれらがインテリジェントなシステムコンポーネントの構築に

適しているのかについて簡単に見ていきます。

LLMの核となるのは、深層学習アルゴリズム、特にニューラルネットワークです。これ

らのネットワークは、情報を処理して伝達する相互接続されたノード（ニューロン）で

構成されています。LLMで選択される代表的なアーキテクチャは Transformerモデ

ルで、テキストなどの順次データの処理に非常に効果的であることが証明されてい

ます。

Transformer モデルはアテンション機構に基づいており、主に自然言語処理などの

順次データを扱うタスクに使用されます。Transformerは入力データを順番に処理す

はじめに 4

るのではなく、一度にすべて処理するため、長距離の依存関係をより効果的に捉える

ことができます。入力データの異なる部分に注目してコンテキストと関係性を理解す

るのに役立つアテンション機構のレイヤーを持っています。

LLMのトレーニングプロセスには、書籍、記事、ウェブサイト、コードリポジトリなど、膨

大な量のテキストデータをモデルに与えることが含まれます。トレーニング中、モデル

はテキスト内のパターン、関係性、構造を認識することを学習します。文法規則、単語

の関連性、文脈的な意味など、言語の統計的特性を捉えます。

LLMのトレーニングで使用される主要な技術の 1つが教師なし学習です。これは、モ

デルが明示的なラベル付けや指導なしでデータから学習することを意味します。トレ

ーニングデータ内の単語やフレーズの共起を分析することで、独自にパターンと表

現を発見します。これにより LLMは言語とその複雑さについての深い理解を発達さ

せることができます。

LLMのもう一つの重要な側面は、コンテキストを扱う能力です。テキストを処理する

際、LLMは個々の単語だけでなく、周囲のコンテキストも考慮します。テキストの意味

と意図を理解するために、前の単語、文、さらには段落も考慮に入れます。このコンテ

キストの理解により、LLMは一貫性のある適切な応答を生成できます。特定の LLM

モデルの能力を評価する主な方法の 1つは、応答を生成するために考慮できるコン

テキストの大きさを検討することです。

トレーニングが完了すると、LLMは幅広い言語関連タスクに使用できます。人間のよ

うなテキストを生成し、質問に答え、文書を要約し、言語を翻訳し、さらにはコードを書

くこともできます。LLMの多様性により、ユーザーとの対話、テキストデータの処理と

分析、意味のある出力の生成が可能なインテリジェントなシステムコンポーネントの

構築に価値があります。

アプリケーションアーキテクチャに LLM を組み込むことで、ユーザー入力を

理解して処理し、動的なコンテンツを生成し、インテリジェントな推奨やアク

ションを提供する AI コンポーネントを作成できます。しかし、LLM の活用には、

リソース要件とパフォーマンスのトレードオフを慎重に検討する必要があります。LLM

は計算負荷が高く、動作に大きな処理能力とメモリ（つまり、お金）が必要になる可能

はじめに 5

性があります。ほとんどの場合、アプリケーションに LLM を統合するコストの影響を

評価し、それに応じて行動する必要があります。

推論について

推論とは、モデルが新しい未知のデータに基づいて予測や出力を生成するプロセス

を指します。これは、訓練済みのモデルがユーザーの入力に応じてテキスト、画像、そ

の他のコンテンツを生成したり、判断を下したりする段階です。

訓練段階では、AIモデルは予測の誤差を最小限に抑えるようにパラメータを調整し

ながら、大規模なデータセットから学習します。訓練が完了すると、モデルは学習した

内容を新しいデータに適用できるようになります。推論とは、モデルが学習したパター

ンと知識を使用して出力を生成する方法です。

大規模言語モデルの場合、推論とはプロンプトや入力テキストを受け取り、トークン

（これについてはすぐに説明します）の流れとして、文脈に沿った適切な応答を生成

することを意味します。これには質問への回答、文章の補完、物語の生成、テキストの

翻訳など、多くのタスクが含まれます。

あなたや私の考え方とは対照的に、AIモデルの「思考」は推論を通じて、

すべて一つのステートレスな操作で行われます。つまり、その思考は生成

プロセスに限定されています。まるで私があなたに質問をして、「意識の流

れ」スタイルでの応答のみを受け付けるかのように、文字通り声に出して

考えなければならないのです。

大規模言語モデルには多様なサイズと種類がある

実 用 的 な ほ と ん ど す べ て の 大 規 模 言 語 モ デ ル （LLM） は、

同じ基本的なトランスフォーマーアーキテクチャに基づき、膨大なテキストデー

タセットで訓練されていますが、さまざまなサイズで提供され、異なる目的のためにフ

はじめに 6

ァインチューニングされています。LLMのサイズは、そのニューラルネットワークのパ

ラメータ数で測定され、その能力に大きな影響を与えます。GPT-4のような 1～2兆個

のパラメータを持つと噂される大規模なモデルは、一般的に小規模なモデルよりも

知識が豊富で高性能です。ただし、大規模なモデルは実行により多くの計算能力を

必要とし、API コールを通じて使用する際にはより高いコストがかかります。

LLM をより実用的で特定の用途に適したものにするため、ベースモデルはより的

を絞ったデータセットでファインチューニングされることが多くあります。例えば、

会話 AIに特化させるため、大規模な対話コーパスで訓練されることがあります。ま

た、プログラミングの知識を身につけさせるためにコードで訓練されたモデルもありま

す。さらには、ユーザーとのロールプレイスタイルのやり取りのために特別に訓練され

たモデルまであります！

検索型モデルと生成モデル

大規模言語モデル（LLM）の世界では、応答を生成するための主要な 2つのアプロ

ーチがあります：検索ベースモデルと生成モデルです。それぞれのアプローチには長

所と短所があり、これらの違いを理解することで、特定のユースケースに適したモデ

ルを選択することができます。

検索ベースモデル

検索ベースモデル（情報検索モデルとしても知られる）は、既存のテキストの大規模

なデータベースを検索し、入力クエリに基づいて最も関連性の高い文章を選択する

ことで応答を生成します。これらのモデルは新しいテキストを一から生成するのでは

なく、データベースからの抜粋を組み合わせて一貫性のある応答を形成します。

検索ベースモデルの主な利点の一つは、事実に基づいた最新の情報を提供できる

能力です。キュレーションされたテキストのデータベースに依存しているため、信頼で

きるソースから関連情報を取得してユーザーに提示することができます。これにより、

質問応答システムやナレッジベースのような、正確で事実に基づいた回答が必要な

アプリケーションに適しています。

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

はじめに 7

しかし、検索ベースモデルにはいくつかの制限があります。これらのモデルは検索対

象のデータベースの質に依存するため、データベースの品質と網羅性がモデルの性

能に直接影響を与えます。さらに、これらのモデルは、データベース内の利用可能な

テキストに制限されるため、一貫性があり自然な応答の生成に苦労する場合があり

ます。

本書では、純粋な検索モデルの使用については扱いません。

生成モデル

一方、生成モデルは、学習時に習得したパターンと関係性に基づいて、新しいテキス

トを一から作成します。これらのモデルは、言語に対する理解を活用して、入力プロン

プトに合わせた新しい応答を生成します。

生成モデルの主な強みは、創造的で一貫性があり、文脈に即したテキストを生成で

きる能力です。オープンエンドな会話を行い、物語を生成し、さらにはコードを書くこと

もできます。これにより、チャットボット、コンテンツ作成、創作支援ツールなど、よりオ

ープンエンドでダイナミックなインタラクションが必要なアプリケーションに適してい

ます。

ただし、生成モデルは、キュレートされた事実のデータベースではなく、学習時に習得

したパターンに依存するため、時として一貫性のない、あるいは事実と異なる情報を

生成することがあります。また、バイアスや幻覚により、もっともらしいが必ずしも真実

ではないテキストを生成する可能性が高くなる場合があります。

生 成 型 LLM の 例 と し て は、OpenAI の GPT シ リ ー ズ （GPT-3、GPT-

4）や Anthropicの Claudeがあります。

ハイブリッドモデル

市販されている LLMの中には、検索と生成の両方のアプローチを組み合わせたハ

イブリッドモデルがいくつかあります。これらのモデルは、検索技術を使用してデータ

ベースから関連情報を見つけ、その情報を生成技術で一貫性のある応答に合成しま

す。

はじめに 8

ハイブリッドモデルは、検索ベースモデルの事実に基づく正確さと、生成モデルの自

然言語生成能力を組み合わせることを目指しています。これらは、オープンエンドな

会話を維持しながら、より信頼性が高く最新の情報を提供することができます。

検索ベースモデルと生成モデルのどちらを選ぶかは、アプリケーションの具体的な

要件を考慮する必要があります。主な目的が正確で事実に基づく情報の提供である

場合は、検索ベースモデルが最適な選択かもしれません。アプリケーションがよりオ

ープンエンドで創造的なインタラクションを必要とする場合は、生成モデルがより適

している可能性があります。ハイブリッドモデルは、両方のアプローチのバランスを取

り、事実の正確性と自然言語生成の両方を必要とするアプリケーションに適していま

す。

最終的に、検索ベースモデルと生成モデルの選択は、具体的なユースケースと、正

確性、創造性、柔軟性のトレードオフによって決まります。それぞれのアプローチの長

所と限界を理解することで、十分な情報に基づいた決定を下すことができます。

はじめに 9

指示チューニング

指示チューニングは、会話トレーニングのサブセットで、人間が書いたプロンプト

と応答を使用して、LLMの指示理解と実行能力を向上させます。以下に、人間が

書いたプロンプトと応答による指示チューニングが、LLMの指示理解と実行能力

をどのように向上させるかを示す簡単な例を示します：

例 1：カスタマーサポート

指示：「返金を求める顧客に対する応答を提供してください。」

人間が書いたプロンプト：「最近の購入品について返金を請求したいと思います。

商品が期待通りではありませんでした。」

人間が書いた応答：「商品が期待に添えなかったことを申し訳なく思います。返金

手続きを進めるため、注文番号と返品理由をお知らせください。ご要望を確認の

上、2-3営業日以内にご連絡させていただきます。」

例 2：教育支援

指示：「10歳の子供に光合成の概念を説明してください。」

人間が書いたプロンプト：「植物がどうやって食べ物を作るのか説明してくれる？」

人間が書いた応答：「もちろん！植物は光合成という過程で食べ物を作ります。太

陽の光と水と二酸化炭素を使って、食べ物と酸素を作るんです。植物の葉には葉

緑素という特別な部分があって、それが太陽の光を捕まえるのを手伝ってくれま

す。」

例 3：パーソナルアシスタント

指示：「来週火曜日の午後 3時にミーティングをスケジュールして。」

はじめに 10

人間が書いたプロンプト：「火曜日の午後 3時にミーティングを設定できますか？」

人間が書いた応答：「はい、来週火曜日の午後 3時にミーティングをスケジュール

しました。他に何かご要望はありますか？」

その結果、異なるサイズと専門性を持つ LLMの多様なエコシステムが生まれました。

1-70億パラメータ範囲の小規模モデルは、より効率的に実行できながら、優れた一

般的な言語処理能力を提供します。

• Mistral 7B

• Llama 3 8B

• Gemma 7B

300-700億パラメータ程度の中規模モデルは、より強力な推論能力と指示への追従

能力を提供します。

• Llama 3 70B

• Qwen2 70B

• Mixtral 8x22B

アプリケーションに LLM を組み込む際は、モデルの能力と、コスト、レイテンシー、コン

テキスト長、コンテンツフィルタリングなどの実用的な要因のバランスを取る必要が

あります。より単純な言語タスクには、小規模な指示チューニング済みモデルが最適

な選択であることが多く、複雑な推論や分析には最大規模のモデルが必要となる場

合があります。また、モデルの学習データも重要な考慮事項であり、これがモデルの

知識のカットオフ日を決定します。

Perplexityのような一部のモデルはリアルタイムの情報源に接続されてい

るため、事実上カットオフ日がありません。質問をすると、独自にウェブ検

索を実行し、任意のウェブページを取得して回答を生成することができま

す。

はじめに 11

図 1. オンラインアクセスの有無による Llama3の違い

結局のところ、万能な LLMは存在しません。モデルのサイズ、アーキテクチャ、トレー

ニングの違いを理解することが、特定のユースケースに適したモデルを選択する鍵

となります。異なるモデルを実験的に試してみることが、手元のタスクに最適なパフォ

ーマンスを提供するモデルを見つけ出す唯一の実践的な方法です。

トークン化：テキストを小さな単位に分割する

大規模言語モデルがテキストを処理する前に、そのテキストをトークンと

呼 ば れ る 小 さ な 単 位 に 分割 す る 必要 が あ り ま す。 ト ー ク ン は、 個 々

の 単 語、 単 語 の 一 部、 あ る い は 単 一 の 文 字 に な る こ と が あ り ま す。

テキストをトークンに分割するプロセスはトークン化と呼ばれ、 言語モデルのデ

ータを準備する上で重要なステップです。

図 2. この文は 27個のトークンを含んでいます

異なる LLMは異なるトークン化戦略を使用しており、これはモデルの性能と機能に

はじめに 12

大きな影響を与えます。LLMで使用される一般的なトークナイザーには以下のよう

なものがあります：

• GPT（バイトペアエンコーディング）： GPT トークナイザーは、バイトペアエンコー

ディング（BPE）と呼ばれる技術を使用してテキストをサブワード単位に分割し

ます。BPEはテキストコーパス内で最も頻繁に出現するバイトのペアを反復的

に結合し、サブワードトークンの語彙を形成します。これにより、トークナイザー

は珍しい単語や新しい単語を、より一般的なサブワードに分解して処理するこ

とができます。GPT トークナイザーは、GPT-3や GPT-4などのモデルで使用され

ています。

• Llama（SentencePiece）： Llama トークナイザーは SentencePiece ライブラリを

使用します。これは教師なしテキストトークナイザーおよびデトークナイザ

ーです。SentencePiece は入力テキストを Unicode文字のシーケンスとして扱

い、学習コーパスに基づいてサブワード語彙を学習します。Unicode でエン

コードできるあらゆる言語を処理できるため、多言語モデルに適しています。

Llama トークナイザーはMetaの Llamaや Alpacaなどのモデルで使用されてい

ます。

• SentencePiece（ユニグラム）： SentencePiece トークナイザーは、サブワード正則

化技術に基づくユニグラムと呼ばれる異なるアルゴリズムも使用できます。ユ

ニグラムトークン化は、個々のサブワード単位に確率を割り当てるユニグラム

言語モデルに基づいて、最適なサブワード語彙を決定します。このアプローチ

は、BPE と比較してより意味的に有意なサブワードを生成できます。ユニグラム

を使用した SentencePieceは、Googleの T5や BERTなどのモデルで使用されて

います。

• Google Gemini（マルチモーダルトークン化）： Google Geminiは、テキスト、画

像、音声、動画、コードなど、さまざまなデータタイプを処理できるように設計さ

れたトークン化方式を使用します。このマルチモーダル機能により、Geminiは

はじめに 13

異なる形式の情報を処理し統合することができます。特筆すべきは、Google

Gemini 1.5 Proが数百万トークンを処理できるコンテキストウィンドウを持ってお

り、これは以前のモデルよりもはるかに大きいということです。この広大なコン

テキストウィンドウにより、モデルはより大きなコンテキストを処理でき、潜在的

により正確な応答につながります。ただし、Geminiのトークン化方式は他のモ

デルと比べて 1文字あたり 1 トークンに近いことに注意が必要です。Googleの

価格設定はトークンではなく文字数に基づいているため、GPTなどのモデルに

慣れている場合、Geminiモデルの実際の使用コストは予想よりも大幅に高く

なる可能性があります。

トークナイザーの選択は、LLMの以下のような側面に影響を与えます：

• 語彙サイズ：トークナイザーは、モデルが認識する一意のトークンの集合であ

る語彙のサイズを決定します。より大きく、より細かい粒度の語彙は、モデルが

より広範な単語やフレーズを処理し、さらにマルチモーダル（テキスト以外も理

解・生成可能）になるのに役立ちますが、モデルのメモリ要件と計算の複雑さも

増加します。

• 珍しい単語や未知の単語の処理： BPEや SentencePieceのようなサブワード単

位を使用するトークナイザーは、珍しい単語や未知の単語をより一般的なサブ

ワードに分解できます。これにより、モデルは含まれるサブワードに基づいて、以

前に見たことのない単語の意味について教育的な推測を行うことができます。

• 多言語サポート： SentencePieceのような、Unicodeでエンコード可能なあらゆる言語を

処理できるトークナイザーは、複数の言語でテキストを処理する必要がある多

言語モデルに適しています。

特定のアプリケーションに適した LLM を選択する際は、そのモデルが使用するトー

クナイザーと、対象タスクの言語処理ニーズにどの程度適合しているかを考慮する

ことが重要です。トークナイザーは、専門用語、希少な単語、多言語テキストの処理

能力に大きな影響を与える可能性があります。

はじめに 14

コンテキストサイズ：言語モデルは推論時にどれだけの情報を

使用できるか

言語モデルについて議論する際、コンテキストサイズとは、モデルが応答を処理また

は生成する際に考慮できるテキストの量を指します。これは本質的に、モデルが「記

憶」し、出力に活用できる情報量（トークン単位で表現）を示す指標です。言語モデル

のコンテキストサイズは、そのモデルの能力と効果的に実行できるタスクの種類に大

きな影響を与えます。

コンテキストサイズとは

技術的な観点では、コンテキストサイズは言語モデルが 1つの入力シーケンスで処

理できるトークン（単語または単語の一部）の数によって決定されます。これは、しば

しばモデルの「注意範囲」または「コンテキストウィンドウ」と呼ばれます。コンテキスト

サイズが大きいほど、応答の生成やタスクの実行時に一度に考慮できるテキストの

量が増えます。

言語モデルによってコンテキストサイズは異なり、数百トークンから数百万トークンま

でさまざまです。参考までに、典型的な段落は約 100-150 トークンを含み、一冊の本全

体では数万から数十万トークンを含む可能性があります。

Transformerベースの大規模言語モデル（LLM）において、無限に長い入力をメモ

リと計算量を制限しながら処理する効率的な方法に関する研究も行われていま

す。

なぜコンテキストサイズが重要なのか

言語モデルのコンテキストサイズは、一貫性のある文脈に即したテキストを理解し生

成する能力に大きな影響を与えます。コンテキストサイズが重要な理由は以下の通

りです：

https://huggingface.co/papers/2404.07143

はじめに 15

1. 長文コンテンツの理解：コンテキストサイズが大きいモデルは、記事、レポート、

さらには本全体といった長いテキストをより適切に理解し分析できます。これは

文書要約、質問応答、コンテンツ分析などのタスクにとって重要です。

2. 一貫性の維持：より大きなコンテキストウィンドウにより、モデルは長い出力全

体で一貫性を維持できます。これは物語の生成、対話システム、コンテンツ作

成など、一貫した物語やトピックの維持が不可欠なタスクで重要です。また、構

造化データの生成や変換に LLM を使用する場合にも絶対に重要です。

3. 長距離依存関係の把握：言語タスクの中には、テキスト内で離れた位置にある

単語やフレーズ間の関係を理解する必要があるものがあります。コンテキスト

サイズが大きいモデルは、このような長距離依存関係をより適切に把握できま

す。これは感情分析、翻訳、言語理解などのタスクで重要となります。

4. 複雑な指示の処理：言語モデルを使用して複雑な多段階の指示に従う場合、

大きなコンテキストサイズにより、直近の数単語だけでなく、指示全体を考慮し

て応答を生成することができます。

異なるコンテキストサイズを持つ言語モデルの例

以下に、異なるコンテキストサイズを持つ言語モデルの例を示します：

• OpenAI GPT-3.5 Turbo: 4,095 トークン

• Mistral 7B Instruct: 32,768 トークン

• Anthropic Claude v1: 100,000 トークン

• OpenAI GPT-4 Turbo: 128,000 トークン

• Anthropic Claude v2: 200,000 トークン

• Google Gemini Pro 1.5: 2.8M トークン

ご覧の通り、これらのモデルのコンテキストサイズには大きな幅があり、OpenAI

GPT-3.5 Turboモデルの約 4,000 トークンから、Anthropic Claude v2モデルの 200,000

トークンまでさまざまです。Googleの PaLM 2や OpenAIの GPT-4のような一部のモ

はじめに 16

デルでは、より長い入力シーケンスを処理できる大きなコンテキストサイズを持つバ

リアント（例：「32k」バージョン）を提供しています。そして現時点（2024年 4月）では、

Google Gemini Proは約 300万トークンを誇っています！

コンテキストサイズは、特定のモデルの実装やバージョンによって異なることに注

意が必要です。例えば、オリジナルの OpenAI GPT-4モデルのコンテキストサイズは

8,191 トークンですが、Turboや GPT-4oなどの後継バージョンでは、128,000 トークンと

いう大幅に大きなコンテキストサイズを持っています。

Sam Altmanは、現在のコンテキストの制限を 80年代のパーソナルコンピュータの

プログラマーが扱わなければならなかったキロバイト単位の作業メモリに例え、近

い将来には「すべての個人データ」を大規模言語モデルのコンテキストに収めるこ

とができるようになるだろうと述べています。

適切なコンテキストサイズの選択

特定のアプリケーション用に言語モデルを選択する際は、そのタスクに必要なコンテ

キストサイズの要件を考慮することが重要です。感情分析や単純な質問応答など、

短く独立したテキストを扱うタスクでは、小さなコンテキストサイズで十分かもしれま

せん。しかし、より長く複雑なテキストの理解と生成を必要とするタスクには、より大き

なコンテキストサイズが必要になるでしょう。

より大きなコンテキストサイズは、モデルが応答を生成する際により多くの情報を考

慮する必要があるため、計算コストが増加し処理時間が遅くなることが多いことに注

意が必要です。そのため、アプリケーションに適した言語モデルを選択する際は、コン

テキストサイズとパフォーマンスのバランスを取る必要があります。

はじめに 17

なぜ最大のコンテキストサイズを持つモデルを選んで、できるだけ多くの情報を詰

め込まないのでしょうか？パフォーマンス要因の他に、主な考慮事項はコストです。

2024年 3月の時点で、Google Gemini Pro 1.5のフルコンテキストを使用した 1回の

プロンプト応答サイクルで、約 8 ドル（USD）かかります。そのような費用が正当化

される使用事例があるなら、それは素晴らしいことです！しかし、ほとんどのアプリ

ケーションにとって、桁違いに高額すぎるのです。

干し草の中から針を見つける

干し草の中から針を見つけるという概念は、大規模なデータセットにおける検索の課

題を表す比喩として長く使われてきました。LLMの分野では、この比喩を少し変えて

考えます。単一の事実（Paul Grahamのエッセイ全集のような膨大なテキストの中に

埋もれている）を探すだけでなく、散らばった複数の事実を探す状況を想像してくだ

さい。これは、1つの干し草の山ではなく、広大な野原から複数の針を見つけるような

ものです。さらに重要なのは、これらの針を見つけるだけでなく、それらを首尾一貫し

た糸にまとめなければならないということです。

長いコンテキスト内に埋め込まれた複数の事実を検索し推論する際、LLMは 2つの

課題に直面します。まず、検索の正確性という単純な問題があります。事実の数が増

えるにつれて、当然ながら正確性は低下します。最も洗練されたモデルでさえ、広範

なテキスト全体で複数の詳細を追跡することは負担となるのです。

次に、おそらくより重要な課題は、これらの事実を用いた推論です。事実を見つけ出

すことと、それらを首尾一貫した物語や回答に統合することは、まったく別の問題で

す。ここが本当の試金石となります。推論タスクにおける LLMのパフォーマンスは、

単純な検索タスクよりもさらに低下する傾向があります。この低下は単なる量の問題

ではなく、文脈、関連性、推論の複雑な相互作用に関係しているのです。

なぜこのような現象が起きるのでしょうか？人間の認知における記憶と注意力のダ

イナミクスを考えてみましょう。これはある程度 LLM にも反映されています。大量の

はじめに 18

情報を処理する際、LLMは人間と同様に、新しい情報を取り入れながら以前の詳細

を見失うことがあります。これは特に、テキストの前半部分を自動的に優先したり再

確認したりするように明示的に設計されていないモデルで顕著です。

さらに、LLMがこれらの取得した事実を首尾一貫した応答に織り込む能力は、ナラテ

ィブ構築に似ています。 これには情報の取得だけでなく、深い理解と文脈への適切

な配置が必要であり、現在の AIにとって依然として大きな課題となっています。

では、これらの技術の開発者やインテグレーターである私たちにとって、これは何を

意味するのでしょうか？複雑な長文タスクを処理する LLMに依存するシステムを設

計する際には、これらの制限を十分に認識する必要があります。特定の条件下でパ

フォーマンスが低下する可能性があることを理解することで、現実的な期待値を設

定し、より良いフォールバック機構や補完戦略を構築することができます。

モダリティ：テキストを超えて

現在の言語モデルの大半はテキストの処理と生成に焦点を当てていますが、画像、

音声、動画など、複数のタイプのデータをネイティブに入出力できるマルチモーダルモデルへ

の傾向が高まっています。これらのマルチモーダルモデルは、異なるモダリティ間で

コンテンツを理解し生成できる AI アプリケーションの新しい可能性を切り開いてい

ます。

モダリティとは何か？

言語モデルの文脈において、モダリティとはモデルが処理・生成できる異なるタイプ

のデータを指します。最も一般的なモダリティはテキストで、書籍、記事、ウェブサイト、

ソーシャルメディアの投稿などの様々な形式の文章が含まれます。しかし、言語モデ

ルに組み込まれるモダリティには他にもいくつかあります：

• 画像：写真、イラスト、図表などの視覚データ。

• 音声：発話、音楽、環境音などの音声データ。

• 動画：多くの場合音声を伴う動画クリップや映画などの動く視覚データ。

はじめに 19

各モダリティは言語モデルにとって固有の課題と機会を提示します。例えば、画像で

は視覚的な概念と関係性の理解が必要であり、音声では発話やその他の音の処理

と生成が必要となります。

マルチモーダル言語モデル

マルチモーダル言語モデルは、単一のモデル内で複数のモダリティを扱えるように

設計されています。これらのモデルは通常、異なるモダリティの入力を理解し、出力

データを生成できる特殊なコンポーネントまたはレイヤーを持っています。マルチモー

ダル言語モデルの注目すべき例には以下のようなものがあります：

• OpenAIの GPT-4o： GPT-4oは、テキストに加えて音声を自然に理解・処理で

きる大規模言語モデルです。この機能により、音声の文字起こし、音声入力か

らのテキスト生成、音声クエリに基づく応答の提供などのタスクを実行できま

す。

• OpenAIの GPT-4（視覚入力対応）： GPT-4はテキストと画像の両方を処理でき

る大規模言語モデルです。画像が入力として与えられると、GPT-4は画像の内

容を分析し、その視覚情報を説明したり、それに応答したりするテキストを生成

できます。

• Googleの Gemini： Geminiはテキスト、画像、動画を扱えるマルチモーダルモ

デルです。クロスモーダルな理解と生成を可能にする統一アーキテクチャを使

用しており、画像キャプション生成、動画要約、視覚的質問応答などのタスクを

実現できます。

• DALL-Eと Stable Diffusion：従来の意味での言語モデルではありませんが、こ

れらのモデルはテキストの説明から画像を生成することで、マルチモーダル AI

の力を示しています。異なるモダリティ間の変換が可能なモデルの可能性を示

す例となっています。

はじめに 20

マルチモーダルモデルの利点とアプリケーション

マルチモーダル言語モデルは以下のような様々な利点があり、幅広いアプリケーショ

ンを可能にします：

• 理解力の向上：複数のモダリティからの情報を処理することで、人間が様々な

感覚入力から学ぶのと同様に、これらのモデルはより包括的な世界理解を得

ることができます。

• クロスモーダル生成： マルチモーダルモデルは、あるモダリティの入力から別

のモダリティのコンテンツを生成できます。例えば、テキストの説明から画像を

作成したり、記事から動画のサマリーを生成したりすることができます。

• アクセシビリティ：マルチモーダルモデルは、視覚障害者向けに画像のテキス

ト説明を生成したり、文章のオーディオバージョンを作成したりするなど、モダリ

ティ間の変換によって情報をよりアクセスしやすくすることができます。

• 創造的なアプリケーション：マルチモーダルモデルは、テキストプロンプトに基

づいてアート、音楽、動画を生成するなどの創造的なタスクに使用でき、アーテ

ィストやコンテンツクリエイターに新しい可能性を提供します。

マルチモーダル言語モデルは進化を続けており、複数のモダリティにわたってコンテ

ンツを理解・生成できる AIアプリケーションの開発において、ますます重要な役割を

果たすようになるでしょう。これにより、人間と AIシステムの間でより自然で直感的な

インタラクションが可能になり、創造的な表現や知識の普及に向けた新しい可能性

が開かれることでしょう。

プロバイダーエコシステム

大規模言語モデル（LLM）をアプリケーションに組み込む際には、選択肢が増え続け

ています。OpenAI、Anthropic、Google、Cohereなどの主要な LLMプロバイダーは、そ

れぞれ独自のモデル、API、ツールのエコシステムを提供しています。適切なプロバイ

ダーを選択するには、価格、性能、コンテンツフィルタリング、データプライバシー、カ

スタマイズオプションなど、様々な要因を考慮する必要があります。

はじめに 21

OpenAI

OpenAIは最も有名な LLMプロバイダーの 1つで、そのGPTシリーズ（GPT-3、GPT-4）

は様々なアプリケーションで広く使用されています。OpenAIは使いやすい API を提

供し、アプリケーションへの簡単なモデル統合を可能にします。エントリーレベルの

Adaモデルから強力な Davinciモデルまで、異なる機能と価格帯のモデルを提供し

ています。

OpenAIのエコシステムには、プロンプトの実験や特定のユースケース向けのモデル

のファインチューニングができる OpenAI Playground などのツールも含まれていま

す。不適切または有害なコンテンツの生成を防ぐためのコンテンツフィルタリングオ

プションも提供しています。

OpenAIのモデルを直接使用する際は、Alex Rudallのruby-openaiライブラリを利用し

ています。

Anthropic

Anthropicは LLM分野のもう一つの主要プレイヤーで、その Claudeモデルは高性

能と倫理的配慮により人気を集めています。Anthropicは安全で責任ある AI シス

テムの開発に重点を置き、コンテンツフィルタリングと有害な出力の回避に強い

emphasis を置いています。

Anthropic のエコシステムには、アプリケーションへのモデル統合を可能にする

Claude APIや、プロンプトエンジニアリングとファインチューニングのためのツールが

含まれています。また、より最新で事実に基づいた応答のためにウェブ検索機能を組

み込んだ Claude Instantモデルも提供しています。

Anthropicのモデルを直接使用する際は、Alex Rudallのanthrophicライブラリを利用

しています。

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/anthropic

はじめに 22

Google

Googleは Gemini、BERT、T5、PaLMなど、いくつかの強力な LLM を開発しています。

これらのモデルは幅広い自然言語処理タスクにおける高い性能で知られています。

Googleのエコシステムには、機械学習モデルの構築とトレーニングのためのツール

とフレームワークを提供する TensorFlow と Keras ライブラリが含まれています。

また、Googleは Cloud AIプラットフォームを提供しており、クラウドでモデルを簡単に

デプロイしてスケールすることができます。感情分析、エンティティ認識、翻訳などの

タスク向けに、様々な事前学習済みモデルと API を提供しています。

Meta

Meta（旧 Facebook）は、LLaMAや OPTなどのモデルのリリースに見られるように、大

規模言語モデルの開発に深く投資しています。これらのモデルは、様々な言語タスク

における高いパフォーマンスが特徴であり、主にオープンソースチャネルを通じて提

供されており、Metaの研究およびコミュニティとの協力への取り組みを支えています。

Metaのエコシステムは、主に PyTorchを中心に構築されています。PyTorchは、動的

な計算機能と柔軟性を備えたオープンソースの機械学習ライブラリで、革新的な AI

研究開発を促進しています。

技術的な提供に加えて、Metaは倫理的な AI開発に重点を置いています。堅牢なコ

ンテンツフィルタリングを実装し、バイアスの削減に焦点を当てることで、AIアプリケ

ーションにおける安全性と責任という広範な目標に沿った取り組みを行っています。

Cohere

Cohereは、LLM分野の新興企業で、競合他社よりも LLMをよりアクセスしやすく、使

いやすくすることに焦点を当てています。そのエコシステムには、テキスト生成、分類、

要約などのタスク向けの事前学習済みモデルにアクセスできる Cohere APIが含まれ

ています。

はじめに 23

Cohereは、プロンプトエンジニアリング、ファインチューニング、コンテンツフィルタリ

ングのためのツールも提供しています。データの暗号化保存やアクセス制御など、デ

ータのプライバシーとセキュリティを重視しています。

Ollama

Ollamaは、セルフホスト型プラットフォームで、ユーザーが外部のクラウドサービスに

依存することなく、様々な大規模言語モデル（LLM）をローカルマシンで管理・展開で

きるようにします。この設定は、データプライバシーを重視し、AI運用を社内で処理し

たい人々に最適です。

このプラットフォームは、Llama、Phi、Gemma、Mistralなどのバージョンを含む様々な

モデルをサポートしており、これらは規模と計算要件が異なります。Ollamaは、ollama

run <model_name>のような単純なコマンドを使用してコマンドラインから直接これら

のモデルをダウンロードして実行することを容易にし、macOS、Linux、Windowsなどの

異なるオペレーティングシステムで動作するように設計されています。

リモート API を使用せずにオープンソースモデルをアプリケーションに統合したい開

発者向けに、Ollamaはコンテナ管理ツールに似たモデルライフサイクルを管理する

ための CLI を提供しています。 また、カスタム設定とプロンプトをサポートし、特定の

ニーズやユースケースに合わせてモデルを調整できる高度なカスタマイズ性を提供

します。

Ollamaは、コマンドラインインターフェースと AIモデルの管理・展開における柔軟性

により、特に技術に精通したユーザーや開発者に適しています。これにより、セキュリ

ティと制御を損なうことなく、堅牢な AI機能を必要とする企業や個人にとって強力な

ツールとなっています。

マルチモデルプラットフォーム

さらに、Together.aiや Groq など、様々なオープンソースモデルをホストするプロバイ

ダーも存在します。 これらのプラットフォームは柔軟性とカスタマイズ性を提供し、特

はじめに 24

定のニーズに応じてオープンソースモデルを実行し、場合によってはファインチュー

ニングすることも可能です。例えば、Together.aiは様々なオープンソース LLMへのア

クセスを提供し、ユーザーが異なるモデルと設定を試すことを可能にします。Groqは、

この本の執筆時点でほぼ魔法のように見える超高性能な文章生成に焦点を当てて

います。

LLMプロバイダーの選択

LLMプロバイダーを選択する際は、以下のような要因を考慮する必要があります：

• 価格設定：プロバイダーによって、従量制から定額制まで、様々な価格モデルを

提供しています。プロバイダーを選択する際は、予想される使用量と予算を考

慮することが重要です。

• パフォーマンス： LLMのパフォーマンスはプロバイダー間で大きく異なる可能

性があるため、決定を下す前に特定のユースケースでモデルをベンチマークし

てテストすることが重要です。

• コンテンツフィルタリング：アプリケーションによっては、コンテンツフィルタリン

グが重要な考慮事項となる場合があります。プロバイダーによって、より堅牢な

コンテンツフィルタリングオプションを提供しているところもあります。

• データプライバシー：アプリケーションが機密性の高いユーザーデータを扱う

場合、強力なデータプライバシーとセキュリティ対策を持つプロバイダーを選択

することが重要です。

• カスタマイズ：一部のプロバイダーは、特定のユースケースに向けたモデルの

ファインチューニングとカスタマイズにおいて、より高い柔軟性を提供していま

す。

最終的に、LLMプロバイダーの選択はアプリケーションの具体的な要件と制約に依

存します。価格、性能、データプライバシーなどの要因を慎重に評価することで、ニー

ズに最も適したプロバイダーを選択することができます。

はじめに 25

また、LLMの分野は常に進化しており、新しいプロバイダーやモデルが定期的に登

場していることにも注目する価値があります。最新の動向を把握し、新しい選択肢が

利用可能になった際には、それらを積極的に検討する姿勢を持つべきです。

OpenRouter

本書では、APIプロバイダーとしてOpenRouterのみを使用します。理由は単純で、最

も人気のある商用およびオープンソースモデルを一か所で提供しているからです。AI

コーディングに早速取り組みたい方には、私が開発したOpenRouter Ruby Libraryが

最適な出発点の一つとなるでしょう。

パフォーマンスについて考える

言語モデルをアプリケーションに組み込む際、パフォーマンスは重要な考慮事項

です。言語モデルのパフォーマンスは、レイテンシー（応答を生成するまでの時間）

とスループット（単位時間あたりに処理できるリクエスト数）で測定できます。

最初のトークンまでの時間（TTFT）は、特にチャットボットやリアルタイムの対話型応

答を必要とするアプリケーションにおいて、もう一つの重要なパフォーマンス指標で

す。TTFTは、ユーザーのリクエストを受信してから応答の最初の単語（またはトーク

ン）が生成されるまでのレイテンシーを測定します。この指標は、応答の遅延がユー

ザーのフラストレーションや離脱につながる可能性があるため、シームレスで魅力的

なユーザー体験を維持する上で極めて重要です。

これらのパフォーマンス指標は、ユーザー体験とアプリケーションのスケーラビリティ

に大きな影響を与える可能性があります。

言語モデルのパフォーマンスに影響を与える要因には、以下のようなものがありま

す：

パラメータ数：より多くのパラメータを持つ大規模なモデルは、一般的により多くの計

算リソースを必要とし、小規模なモデルと比較してレイテンシーが高く、スループット

が低くなる可能性があります。

https://openrouter.ai
https://github.com/OlympiaAI/open_router

はじめに 26

ハードウェア：言語モデルのパフォーマンスは、実行されるハードウェアによって大

きく異なります。クラウドプロバイダーは機械学習ワークロード向けに最適化された

GPUや TPU インスタンスを提供しており、これらはモデルの推論を大幅に高速化で

きます。

OpenRouterの優れている点の一つは、提供している多くのモデルについ

て、様々なパフォーマンスプロファイルとコストを持つクラウドプロバイダー

の選択肢があることです。

量子化：量子化技術は、重みと活性化を低精度のデータ型で表現することで、モデ

ルのメモリフットプリントと計算要件を削減できます。これにより、品質を大きく犠牲に

することなくパフォーマンスを向上させることができます。アプリケーション開発者と

して、おそらく異なる量子化レベルでの独自のモデルトレーニングには関与しないで

しょうが、少なくとも用語に慣れておくことは良いことです。

バッチ処理：複数のリクエストを同時にバッチで処理することで、モデルの読み込み

とデータ転送のオーバーヘッドを分散し、スループットを向上させることができます。

キャッシング：頻繁に使用されるプロンプトや入力シーケンスの結果をキャッシュす

ることで、推論リクエストの数を削減し、全体的なパフォーマンスを向上させることが

できます。

本番アプリケーション用の言語モデルを選択する際は、代表的なワークロードとハー

ドウェア構成でパフォーマンスをベンチマークすることが重要です。これにより、潜在

的なボトルネックを特定し、必要なパフォーマンス目標を達成できることを確認できま

す。

また、モデルのパフォーマンスと、コスト、柔軟性、統合の容易さなどの他の要因との

トレードオフを考慮することも重要です。例えば、リアルタイムの応答を必要とするア

プリケーションでは、レイテンシーの低い小規模で安価なモデルの使用が望ましい

場合があり、一方、バッチ処理や複雑な推論タスクには、より大規模で強力なモデル

が適している場合があります。

はじめに 27

異なる LLMモデルの実験

大規模言語モデルの選択は、通常、永続的な決定ではありません。新しく改良され

たモデルが定期的にリリースされるため、時間の経過とともに異なる言語モデルを切

り替えることができる、モジュール式のアプリケーションを構築することが望ましいで

す。プロンプトやデータセットは、最小限の変更で複数のモデル間で再利用できるこ

とが多いです。これにより、アプリケーションを完全に再設計することなく、言語モデリ

ングの最新の進歩を活用することができます。

幅広いモデルの選択肢を簡単に切り替えられる機能は、私が

OpenRouter を愛する理由のもう一つです。

新しい言語モデルにアップグレードする際は、アプリケーションの要件を満たすため

に、その性能と出力品質を徹底的にテストし、検証することが重要です。これには、ド

メイン固有のデータでモデルを再トレーニングまたは微調整することや、モデルの出

力に依存する下流コンポーネントを更新することが含まれる場合があります。

パフォーマンスとモジュール性を念頭に置いてアプリケーションを設計することで、

言語モデリング技術の急速に進化する状況に適応できる、スケーラブルで効率的、

そして将来性のあるシステムを作成することができます。

複合 AIシステム

導入部分を締めくくる前に、2023年以前と ChatGPTによって引き起こされた生成 AI

への関心の爆発以前は、従来の AIアプローチは通常、単一の閉じたモデルの統合

に依存していたことを言及する価値があります。対照的に、複合 AIシステムは、イン

テリジェントな動作を実現するために協調して動作する、相互接続されたコンポーネ

ントの複雑なパイプラインを活用します。

複合 AIシステムの核心は、特定のタスクや機能を実行するように設計された複数

のモジュールで構成されています。これらのモジュールには、ジェネレーター、検索

はじめに 28

機、ランカー、分類器、その他の様々な専門化されたコンポーネントが含まれます。全

体的なシステムをより小さな、焦点を絞ったユニットに分解することで、開発者はより

柔軟で、スケーラブルで、保守可能な AIアーキテクチャを作成できます。

複合 AI システムの主な利点の一つは、異なる AI技術とモデルの長所を組み合

わせる能力です。例えば、システムは自然言語の理解と生成に大規模言語モデル

（LLM）を使用し、情報検索やルールベースの意思決定には別のモデルを採用するこ

とができます。このモジュール式のアプローチにより、一つのサイズですべてに対応

するソリューションに頼るのではなく、各特定のタスクに最適なツールと技術を選択

することができます。

しかし、複合 AIシステムの構築には、独自の課題もあります。特に、システムの動作

全体の一貫性と整合性を確保するには、堅牢なテスト、モニタリング、およびガバナ

ンスメカニズムが必要です。

GPT-4のような強力な LLMの出現により、これまでになく簡単に複合 AI

システムを実験できるようになりました。これらの高度なモデルは、自然言

語理解機能に加えて、分類、ランキング、生成など、複合システム内の複

数の役割を処理できるためです。この多用途性により、開発者は複合 AI

アーキテクチャを急速にプロトタイプ化し、反復することができ、インテリジ

ェントなアプリケーション開発の新しい可能性を開きます。

複合 AIシステムのデプロイメントパターン

複合 AI システムは、特定の要件とユースケースに対応するように設計され

た様々なパターンを使用してデプロイできます。質問応答、マルチエージェン

ト/エージェント型問題解決システム、対話型 AI、およびコパイロットという 4 つの一

般的なデプロイメントパターンを見ていきましょう。

はじめに 29

質問応答

質問応答（Q&A）システムは、単なる検索エンジン以上の機能を果たすために、AIモ

デルの理解能力で強化された情報検索の提供に焦点を当てています。強力な言語

モデルを検索拡張生成（RAG）を使用して外部の知識ソースと組み合わせることで、

質問応答システムは幻覚を回避し、ユーザーの質問に対して正確で文脈に関連した

応答を提供します。

LLMベースの Q&Aシステムの主要コンポーネントには以下が含まれます：

• クエリ理解と再構築：ユーザーのクエリを分析し、基盤となる知識ソースにより

適合するように再構築します。

• 知識検索：再構築されたクエリに基づいて、構造化または非構造化データソー

スから関連情報を検索します。

• 応答生成：検索された知識と言語モデルの生成機能を組み合わせて、一貫性

があり有益な応答を生成します。

RAG サ ブ シ ス テ ム は、カスタマーサポート、ナレッジマネジメント、

教育アプリケーションなど、正確で最新の情報提供が重要な Q&A 領域で特

に重要です。

マルチエージェント/エージェント型問題解決システム

マルチエージェント（別名エージェント型）システムは、複雑な問題を解決するために

協力して働く複数の自律エージェントで構成されています。各エージェントは特定の

役割、スキルセット、および関連ツールや情報源へのアクセス権を持っています。これ

らのエージェントが協力して情報を交換することで、単一のエージェントでは対処が

困難または不可能な課題に取り組むことができます。

マルチエージェント問題解決システムの主要な原則には以下が含まれます：

• 専門化：各エージェントは、独自の機能と知識を活用して、問題の特定の側面

に焦点を当てます。

はじめに 30

• 協調：エージェントは、メッセージパッシングや共有メモリを通じて、共通の目標

を達成するために通信し、行動を調整します。

• 適応性：システムは、個々のエージェントの役割と行動を調整することで、変化

する条件や要件に適応できます。

マ ル チ エ ー ジ ェ ン ト シ ス テ ム は、サプライチェーン最適化、交通管理、

緊急時対応計画など、分散型の問題解決が必要なアプリケーションに適し

ています。

対話型 AI

対話型 AIシステムは、ユーザーとインテリジェントエージェント間の自然言語による

インタラクションを可能にします。これらのシステムは、自然言語理解、対話管理、言

語生成機能を組み合わせて、魅力的でパーソナライズされた会話体験を提供しま

す。

対話型 AIシステムの主要なコンポーネントには以下が含まれます：

• 意図認識：質問、要求、感情表現などの、ユーザーの入力に基づく意図を識別

します。

• エンティティ抽出：日付、場所、製品名など、ユーザーの入力から関連するエン

ティティやパラメータを抽出します。

• 対話管理：会話の状態を維持し、ユーザーの意図とコンテキストに基づいて適

切な応答を決定し、複数ターンのインタラクションを処理します。

• 応答生成：言語モデル、テンプレート、検索ベースの手法を使用して、人間らし

い応答を生成します。

対話型 AI システムは、カスタマーサービスチャットボット、バーチャルアシスタント、

音声制御インターフェースでよく使用されています。前述のように、本書のアプロー

チ、パターン、コード例のほとんどは、Olympiaと呼ばれる大規模な対話型 AIシステ

ムでの私の仕事から直接抽出されています。

https://olympia.chat

はじめに 31

コパイロット

コパイロットは、ユーザーの生産性と意思決定能力を向上させるために、人間のユー

ザーと協力して働く AI駆動のアシスタントです。これらのシステムは、自然言語処

理、機械学習、ドメイン固有の知識を組み合わせて、インテリジェントな推奨事項の

提供、タスクの自動化、文脈に応じたサポートを行います。

コパイロットの主要な機能には以下が含まれます：

• パーソナライゼーション：個々のユーザーの好み、ワークフロー、コミュニケーシ

ョンスタイルへの適応。

• プロアクティブな支援：明示的な指示がなくても、ユーザーのニーズを予測し、

関連する提案やアクションを提供。

• 継続的な学習：ユーザーのフィードバック、インタラクション、データから学習す

ることで、時間とともにパフォーマンスを向上。

コパイロットは、ソフトウェア開発（コード補完やバグ検出など）、クリエイティブライテ

ィング（コンテンツ提案や編集など）、データ分析（インサイトや可視化の推奨など）な

ど、さまざまな分野で increasingly使用されています。

これらのデプロイメントパターンは、複合 AIシステムの汎用性と可能性を示していま

す。 それぞれのパターンの特徴とユースケースを理解することで、インテリジェントな

アプリケーションの設計と実装において、十分な情報に基づいた意思決定を行うこと

ができます。本書は複合 AIシステムの実装に特化したものではありませんが、従来

型のアプリケーション開発内で個別の AI コンポーネントを統合する際にも、同様の

アプローチやパターンの多く（もしくはすべて）が適用できます。

複合 AIシステムにおける役割

複合 AIシステムは、特定の役割を果たすように設計された相互接続されたモジュ

ールの基盤の上に構築されています。これらのモジュールが協力して、インテリジェ

ントな振る舞いを生み出し、複雑な問題を解決します。アプリケーションのどの部分を

はじめに 32

AI コンポーネントで実装または置き換えることができるかを検討する際には、これら

の役割を理解しておくと役立ちます。

ジェネレーター

ジェネレーターは、学習したパターンや入力プロンプトに基づいて、新しいデータやコ

ンテンツを生成する役割を担います。AI分野には多くの種類のジェネレーターが存

在しますが、本書で紹介する言語モデルの文脈では、ジェネレーターは人間のような

文章を作成したり、文章の一部を補完したり、ユーザーの質問に対する回答を生成し

たりすることができます。コンテンツ作成、対話生成、データ拡張などのタスクにおい

て重要な役割を果たします。

リトリーバー

リトリーバーは、大規模なデータセットや知識ベースから関連情報を検索して抽出す

るために使用されます。意味検索、キーワードマッチング、ベクトル類似度などの技術

を用いて、与えられたクエリやコンテキストに基づいて最も適切なデータポイントを見

つけ出します。リトリーバーは、質問応答、ファクトチェック、コンテンツ推薦など、特定

の情報への迅速なアクセスが必要なタスクに不可欠です。

ランカー

ランカーは、特定の基準や関連性スコアに基づいてアイテムのセットを順序付けまた

は優先順位付けする役割を担います。各アイテムに重みやスコアを割り当て、それに

従って並び替えを行います。ランカーは、検索エンジン、推薦システム、またはユーザ

ーに最も関連性の高い結果を提示する必要があるアプリケーションで一般的に使

用されます。

分類器

分類器は、事前に定義されたクラスやカテゴリに基づいてデータポイントを分類また

はラベル付けするために使用されます。ラベル付けされたトレーニングデータから学

はじめに 33

習し、新しい未知のインスタンスのクラスを予測します。分類器は、感情分析、スパム

検出、画像認識など、各入力に特定のカテゴリを割り当てることが目的のタスクにお

いて基本的な役割を果たします。

ツールとエージェント

これらの中核的な役割に加えて、複合 AIシステムはしばしばツールやエージェント

を組み込んで、その機能性と適応性を向上させます：

• ツール：ツールは、特定のアクションや計算を実行する個別のソフトウェアコン

ポーネントまたは APIです。ジェネレーターやリトリーバーなど、他のモジュール

によって呼び出され、サブタスクを実行したり追加情報を収集したりします。ツ

ールの例としては、ウェブ検索エンジン、計算機、データ可視化ライブラリなど

があります。

• エージェント：エージェントは、環境を認識し、決定を下し、特定の目標を達成

するために行動を起こすことができる自律的なエンティティです。多くの場合、

プランニング、推論、学習などの異なる AI技術を組み合わせて、動的または不

確実な条件下で効果的に動作します。エージェントは、複雑な振る舞いをモデ

ル化したり、複合 AIシステム内の複数のモジュールのアクションを調整したり

するために使用できます。

純粋な複合 AIシステムでは、これらのコンポーネント間の相互作用は、明確に定義

されたインターフェースと通信プロトコルを通じて調整されます。データはモジュール

間を流れ、あるコンポーネントの出力が別のコンポーネントの入力として機能します。

このモジュラーアーキテクチャにより、個々のコンポーネントをシステム全体に影響を

与えることなく更新、置換、または拡張できるため、柔軟性、スケーラビリティ、保守性

が確保されます。

これらのコンポーネントとその相互作用の力を活用することで、複合 AIシステムは

異なる AI機能の組み合わせを必要とする複雑な実世界の問題に取り組むことがで

きます。AI をアプリケーション開発に統合するためのアプローチやパターンを探る際

はじめに 34

には、複合 AIシステムで使用されているのと同じ原則や技術を、インテリジェントで

適応性が高く、ユーザー中心のアプリケーションを作成するために適用できることを

覚えておいてください。

パート 1の以降の章では、AI コンポーネントをアプリケーション開発プロセスに統合

するための基本的なアプローチと技術についてより深く掘り下げていきます。プロン

プトエンジニアリングや検索強化生成から、自己修復データやインテリジェントなワ

ークフロー・オーケストレーションまで、最先端の AI駆動アプリケーションを構築する

ための幅広いパターンとベストプラクティスを取り上げていきます。

パート 1：基本的なアプローチ
と技法

本書のこのパートでは、アプリケーションに AIを統合するための様々な方法を紹介し

ます。各章では、パスの絞り込みや検索拡張生成といった高レベルな概念から、LLM

チャット補完 APIの上に独自の抽象化層をプログラミングするためのアイデアまで、

関連するアプローチと技法を幅広く取り上げます。

このパートの目的は、パート 2で焦点を当てる具体的な実装パターンに深入りする前

に、AIで実現できる動作の種類を理解していただくことです。

パート 1 で紹介するアプローチは、私が自身のコードで使用してきたアイデア、

エンタープライズアプリケーションアーキテクチャと統合の古典的なパターン、そして

非技術系のビジネス関係者を含む他の人々に AIの機能を説明する際に用いてきた

比喩に基づいています。

パスを狭める

「パスを狭める」とは、AI を目の前のタスクに集中させることを指します。AIが「馬鹿」

なように見えたり、予期せぬ動作をしたりして苛立ちを感じる時はいつでも、私はこれ

を合言葉にしています。この合言葉は、失敗の原因はおそらく私にあり、もっとパスを

狭める必要があることを思い出させてくれるのです。

パスを狭める必要性は、大規模言語モデルに含まれる膨大な知識量に起因します。

特に OpenAIや Anthropicのような世界最高峰のモデルは、文字通り数兆のパラメー

タを持っています。

パスを狭める 37

このような幅広い知識へのアクセスは間違いなく強力で、心の理論や人間のような

推論能力といった創発的な振る舞いを生み出します。しかし、その途方もない量の情

報は、特定のプロンプトに対して正確で精密な応答を生成する際に課題となります。

特に、「通常の」ソフトウェア開発やアルゴリズムと統合できる決定論的な振る舞いを

期待する場合はなおさらです。

これらの課題には、いくつかの要因があります。

情報過多：大規模言語モデルは、様々な領域、ソース、時期にわたる膨大なデー

タで訓練されています。この広範な知識により、多様なトピックに対応し、世界につい

ての幅広い理解に基づいて応答を生成することができます。しかし、特定のプロンプ

トに直面した際、モデルは無関係、矛盾、または古い・廃れた情報を除外することに

苦労する可能性があり、それが焦点の定まっていない、または不正確な応答につな

がります。目的によっては、モデルが利用可能な矛盾する情報の膨大な量が、求める

回答や振る舞いを提供する能力を簡単に圧倒してしまうことがあります。

文脈の曖昧さ：膨大な潜在空間の知識を考えると、大規模言語モデルはプロン

プトの文脈を理解しようとする際に曖昧さに直面する可能性があります。適切な絞り

込みやガイダンスがなければ、モデルは意図に関連するものの、直接的には関係の

ない応答を生成するかもしれません。このような失敗は、的外れ、一貫性のない、また

はあなたの述べたニーズに対応していない応答につながります。この場合、パスを狭

めるとは、提供する文脈が基礎知識の中で最も関連性の高い情報にのみモデルを

集中させるような文脈の曖昧さの解消を指します。

注：「プロンプトエンジニアリング」を始めたばかりの頃は、望む結果を適

切に説明せずにモデルに何かを依頼してしまいがちです。曖昧さを避け

るには練習が必要です！

時間的不整合：言語モデルは異なる時期に作成されたデータで訓練されてい

るため、古くなった、置き換えられた、または最新ではない知識を持っている可能性が

あります。例えば、時事問題、科学的発見、または技術の進歩に関する情報は、モデ

ルの訓練データが収集された時点から進化している可能性があります。より最新で

パスを狭める 38

信頼できるソースを優先するようにパスを狭めなければ、モデルは古い、または不正

確な情報に基づいて応答を生成し、出力に不正確さや矛盾が生じる可能性がありま

す。

** ドメイン固有のニュアンス：**異なる領域や分野には、それぞれ固有の専門用語、

慣習、知識基盤があります。ほとんどの 3文字略語（TLA）について考えてみれば、そ

の多くが複数の意味を持っていることに気付くでしょう。例えば、MSKは Amazonの

Managed Streaming for Apache Kafka、Memorial Sloan Kettering Cancer Center、また

は人体の筋骨格系（MusculoSKeletal system）を指す可能性があります。

プロンプトが特定の分野での専門知識を必要とする場合、大規模言語モデルの一

般的な知識だけでは、正確で細やかな応答を提供するには不十分かもしれません。

プロンプトエンジニアリングや検索拡張生成を通じて、特定分野の情報に焦点を当

てることで経路を絞り込むことにより、モデルは特定の分野の要件や期待により沿っ

た応答を生成できるようになります。

潜在空間：理解を超えた広大さ

「潜在空間」について言及する際、私が指しているのは、モデルが学習プロセスの間

に学んだ知識と情報の広大な多次元の領域のことです。これは、モデルのニューラ

ルネットワーク内に隠された領域のようなもので、言語のパターン、関連性、表現がす

べて格納されています。

無数の相互接続されたノードで満たされた広大な未踏の領域を探検しているところ

を想像してみてください。各ノードは、モデルが学習した情報の断片、概念、または関

係性を表しています。この空間を進んでいくと、一部のノードは互いに近接しており、

強い結びつきや類似性を示している一方で、他のノードは離れており、より弱いまた

は遠い関係性を示していることがわかります。

潜在空間の課題は、それが信じられないほど複雑で高次元だということです。私た

ちの物理的な宇宙のように広大で、銀河の集団と、その間に広がる想像を絶する空

虚な空間があるようなものだと考えてください。

パスを狭める 39

何千もの次元を含むため、潜在空間は人間が直接観察したり解釈したりすることは

できません。これは、モデルが言語を処理し生成するために内部で使用する抽象的

な表現です。モデルにプロンプトを入力すると、本質的にそのプロンプトを潜在空間

内の特定の位置にマッピングします。その後、モデルはその空間内の周囲の情報と

つながりを使用して応答を生成します。

重要なのは、モデルが学習データから膨大な量の情報を学習しており、その全てが

特定のタスクに関連していたり正確だったりするわけではないということです。その

ため、経路を絞り込むことが非常に重要になります。プロンプトで明確な指示、例、文

脈を提供することで、本質的には潜在空間内の、望む出力に最も関連する特定の領

域にモデルの焦点を当てるよう導いているのです。

別の考え方をすれば、完全に暗い美術館でスポットライトを使用するようなものです。

もしルーブル美術館やメトロポリタン美術館を訪れたことがあれば、私が話している

規模がわかるでしょう。潜在空間は、無数の物体や細部で満たされた美術館のよう

なものです。プロンプトはスポットライトのようなもので、特定の領域を照らし、最も重

要な情報にモデルの注意を向けさせます。そのような導きがなければ、モデルは潜在

空間内をあてもなく彷徨い、関係のない、あるいは矛盾する情報を拾い集めてしまう

かもしれません。

言語モデルを使用してプロンプトを作成する際は、潜在空間の概念を念頭に置いて

ください。あなたの目標は、この広大な知識の領域を効果的に進み、タスクに最も関

連性が高く正確な情報へとモデルを導くことです。経路を絞り込み、明確な導きを提

供することで、モデルの潜在空間の可能性を最大限に引き出し、質の高い、一貫性

のある応答を生成することができます。

これまでの言語モデルと潜在空間の説明は、少し魔法のような、あるいは抽象的な

ものに思えるかもしれませんが、プロンプトは呪文や祈祷ではないということを理解

することが重要です。言語モデルの仕組みは、線形代数と確率論の原理に基づいて

います。

本質的に、言語モデルは確率モデルであり、ベル曲線がデータの統計モデルである

のと同じように、テキストの確率モデルなのです。これらは自己回帰モデリングと呼ば

パスを狭める 40

れるプロセスを通じて学習され、モデルはそれまでの単語に基づいて、シーケンス内

の次の単語の確率を予測することを学習します。学習中、モデルはランダムな重みか

ら始まり、徐々にそれらを調整して、学習に使用された実世界のサンプルに似たテキ

ストにより高い確率を割り当てていきます。

しかし、言語モデルを線形回帰のような単純な統計モデルとして考えることは、その

振る舞いを理解する上で最適な直感を与えてくれるわけではありません。より適切な

類似として、確率変数の操作を可能にし、複雑な統計的関係を表現できる確率的プ

ログラムとして考えることができます。

確率的プログラムは、グラフィカルモデルとして表現することができます。これにより、

モデル内の変数間の依存関係や関連性を視覚的に理解することができます。この

視点は、GPT-4や Claudeのような複雑なテキスト生成モデルの仕組みを理解する上

で、貴重な洞察を提供することができます。

Dohan他による論文「Language Model Cascades」では、確率的プログラムを言語モデ

ルにどのように適用できるかについて詳しく説明しています。著者らは、このフレーム

ワークを使用してこれらのモデルの動作を理解し、より効果的なプロンプティング戦

略の開発を導く方法を示しています。

この確率的な視点から得られる重要な洞察の 1つは、言語モデルが本質的に、望ま

しい文書が存在する別の宇宙への入り口を作り出すということです。モデルは、すべ

ての可能な文書に対して確率に基づいて重みを割り当て、効果的に可能性の空間を

最も関連性の高いものに絞り込みます。

これは「パスを絞り込む」という中心的なテーマに立ち返ることになります。プロンプ

ティングの主な目的は、確率モデルの予測の質量を集中させ、引き出したい特定の

情報や振る舞いに焦点を当てるように条件付けることです。注意深く作成されたプロ

ンプトを提供することで、モデルがより効率的に潜在空間を探索し、より関連性が高

く一貫性のある出力を生成するよう導くことができます。

ただし、言語モデルは最終的に学習データに含まれる情報によって制約されることを

忘れてはいけません。既存の文書に似たテキストを生成したり、アイデアを新しい方

法で組み合わせたりすることはできますが、まったく新しい情報をゼロから生み出す

パスを狭める 41

ことはできません。たとえば、がんの治療法が発見されておらず、学習データに記録さ

れていない場合、モデルにがんの治療法を提供するよう期待することはできません。

代わりに、モデルの強みは、プロンプトで与えられた内容に類似する情報を見つけ出

し、統合する能力にあります。これらのモデルの確率的な性質と、プロンプトを使用し

て出力を条件付けする方法を理解することで、価値のある洞察やコンテンツを生成

するためにその機能をより効果的に活用することができます。

以下のプロンプトを考えてみましょう。最初の「Mercury」だけでは、惑星、元素、

ローマの神のいずれかを指す可能性がありますが、最も可能性が高いのは惑星で

す。実際、GPT-4は「水星は太陽系で最小かつ最も内側の惑星です…」で始まる長い

応答を提供します。2番目のプロンプトは特に化学元素を指しています。3番目のプ

ロンプトは、その速さと神の使者としての役割で知られるローマ神話の人物を指して

います。

1 # Prompt 1

2 Tell me about: Mercury

3

4 # Prompt 2

5 Tell me about: Mercury element

6

7 # Prompt 3

8 Tell me about: Mercury messenger of the gods

わずかな言葉を追加するだけで、AIの反応は完全に変わってしまいます。この本の

後半で学ぶように、n-shotプロンプティングや構造化された入出力、思考連鎖などの

高度なプロンプトエンジニアリングの技法は、モデルの出力を調整する巧妙な方法

に過ぎません。

つまり、プロンプトエンジニアリングの本質は、言語モデルの知識という広大な確率

的な領域を理解し、求める情報や振る舞いへの道筋を絞り込む方法を知ることにあ

ります。

パスを狭める 42

上級数学に精通している読者の方々は、確率論と線形代数の原理に基づいてこれ

らのモデルを理解することで、より深い洞察が得られるでしょう！それ以外の方々で、

効果的な出力を引き出す戦略を学びたい方は、より直感的なアプローチに焦点を当

てていきましょう。

どのように道筋が「絞り込まれる」のか

膨大な知識がもたらす課題に対処するため、私たちは言語モデルの生成プロセスを

導き、最も関連性が高く正確な情報に注目させる技術を使用します。

以下が最も重要な技術を推奨順に並べたものです。つまり、最初にプロンプトエンジ

ニアリングを試し、次に RAG、そして必要な場合にのみファインチューニングを行うべ

きです。

プロンプトエンジニアリング最も基本的なアプローチは、モデルの応答生成を導くた

めの具体的な指示、制約、または例を含むプロンプトを作成することです。この章で

は次のセクションでプロンプトエンジニアリングの基礎を扱い、本のパート 2で多く

の具体的なプロンプトエンジニアリングのパターンを紹介します。それらのパターン

にはプロンプト蒸留が含まれており、これは AIが最も関連性が高く簡潔だと考える

情報を抽出するためにプロンプトを洗練し最適化する技術です。

コンテキスト拡張プロンプトを与える時点で、外部の知識ベースや文書から関連情

報を動的に取得し、モデルに焦点を絞ったコンテキストを提供します。一般的なコン

テキスト拡張技術には検索拡張生成（RAG）があります。Perplexityが提供するような

「オンラインモデル」は、リアルタイムのインターネット検索結果でコンテキストを拡張

することができます。

LLMはその能力の高さにもかかわらず、あなた固有のデータセット（プラ

イベートなものや、解決しようとしている問題に特有のもの）では訓練さ

れていません。コンテキスト拡張技術を使用することで、LLMに API経由

のデータ、SQLデータベース内のデータ、または PDFやスライドデックに

閉じ込められたデータへのアクセスを提供することができます。

https://perplexity.ai

パスを狭める 43

ファインチューニングまたはドメイン適応特定のタスクや分野に特化した知識と生成

能力を持たせるため、ドメイン固有のデータセットでモデルを訓練します。

温度を下げる

温度は、トランスフォーマーベースの言語モデルで使用されるハイパーパラメータで、

生成されるテキストのランダム性と創造性を制御します。0から 1の間の値を取り、低

い値ではより焦点を絞った決定論的な出力になり、高い値ではより多様で予測不可

能な出力になります。

温度が 1に設定されている場合、言語モデルは次のトークンの完全な確率分布に基

づいてテキストを生成し、より創造的で多様な応答を可能にします。ただし、これによ

ってモデルが関連性や一貫性の低いテキストを生成する可能性も出てきます。

一方、温度を 0 に設定すると、言語モデルは常に確率が最も高いトークンを選択し、

効果的に「道筋を絞り込む」ことになります。私の AI コンポーネントのほとんどすべて

で、温度を 0 またはそれに近い値に設定しています。これは、より焦点を絞った予測

可能な応答が得られるためです。モデルに指示に従わせたい場合や、提供された関

数に注意を払わせたい場合、あるいは単に現状よりも正確で関連性の高い応答が

必要な場合に特に有用です。

例えば、事実に基づいた情報を提供する必要のあるチャットボットを構築している場

合、より正確で的確な応答を確保するために、温度パラメータを低く設定したいかも

しれません。反対に、創造的な文章作成アシスタントを構築している場合は、より多様

で想像力豊かな出力を促すために、温度パラメータを高く設定したいかもしれませ

ん。

ハイパーパラメータ：推論の調整つまみとダイヤル

言語モデルを扱う際、「ハイパーパラメータ」という用語によく遭遇します。推論（つま

り、モデルを使用して応答を生成する時）の文脈では、ハイパーパラメータはモデル

の動作と出力を制御できる調整つまみやダイヤルのようなものです。

パスを狭める 44

複雑な機械の設定を調整するようなものだと考えてください。温度を制御するために

つまみを回したり、動作モードを変更するためにスイッチを切り替えたりするように、ハ

イパーパラメータを使用することで、言語モデルがテキストを処理・生成する方法を

細かく調整できます。

推論時によく遭遇するハイパーパラメータには以下のようなものがあります：

• 温度：先ほど述べたように、このパラメータは生成されるテキストのランダム性

と創造性を制御します。温度が高いほど、より多様で予測不可能な出力が生

成され、温度が低いほど、より焦点を絞った決定論的な応答が得られます。

• Top-p（nucleus）サンプリング：このパラメータは、累積確率が特定の閾値（p）

を超える最小のトークン集合の選択を制御します。 これにより、一貫性を保ちな

がらより多様な出力が可能になります。

• Top-kサンプリング：この手法は、次に来る可能性が最も高い上位 k個のトー

クンを選択し、それらの間で確率質量を再配分します。 これにより、モデルが確

率の低い、または無関係なトークンを生成するのを防ぐことができます。

• 頻度と存在ペナルティ：これらのパラメータは、同じ単語やフレーズを頻繁に繰

り返すこと（頻度ペナルティ）や、入力プロンプトに存在しない単語を生成する

こと（存在ペナルティ）に対してペナルティを与えます。 これらの値を調整する

ことで、モデルがより多様で関連性の高い出力を生成するよう促すことができ

ます。

• 最大長：このハイパーパラメータは、モデルが 1回の応答で生成できるトーク

ン（単語または部分語）の数の上限を設定します。これにより、生成されるテキ

ストの冗長性や簡潔さを制御できます。

異なるハイパーパラメータ設定を試してみると、わずかな調整でもモデルの出力に大

きな影響を与えることがわかるでしょう。まるでレシピの微調整のようなものです -塩

パスを狭める 45

を少し多めに入れたり、調理時間を少し長くしたりするだけで、最終的な料理が大き

く変わることがあります。

重要なのは、各ハイパーパラメータがモデルの動作にどのように影響するかを理解

し、特定のタスクに適したバランスを見つけることです。異なる設定を試してみて、生

成されるテキストにどのような影響があるか確認することを恐れないでください。時

間とともに、どのハイパーパラメータを調整すべきか、望む結果を得るにはどうすれば

よいかという直感が養われていきます。

これらのパラメータの使用とプロンプトエンジニアリング、検索拡張生成、ファインチ

ューニングを組み合わせることで、特定のユースケースに対してより正確で関連性が

高く、価値のある応答を生成するよう言語モデルを効果的に導くことができます。

生のモデル対指示調整済みモデル

生のモデルは、LLMの洗練されていない、訓練されていないバージョンです。まだ指

示を理解したり従ったりするための特定の訓練の影響を受けていない、真っ白なキャ

ンバスのようなものだと想像してください。これらは最初に訓練された膨大なデータ

に基づいて構築され、幅広い出力を生成する能力を持っています。しかし、指示ベー

スのファインチューニングの追加層がないため、その応答は予測不可能で、望ましい

出力に導くためにはより繊細で慎重に作られたプロンプトが必要となります。生のモ

デルを扱うことは、膨大な知識を持っているものの、極めて正確な指示を与えない限

り、あなたが何を求めているのかについての直感をまったく持たないサヴァン症候群

の人とのコミュニケーションを引き出すようなものです。彼らはしばしばオウムのよう

に感じられます。というのも、理解できる何かを言わせる限りにおいて、それはほとん

どの場合、あなたが言ったことを単に繰り返しているだけだからです。

一方、指示チューニングされたモデルは、指示を理解し従うように特別に設計され

た訓練を重ねています。 GPT-4や Claude 3、その他多くの人気のある LLMモデルは、

すべて徹底的に指示チューニングされています。この訓練では、モデルに指示の例

と望ましい結果を与え、幅広いコマンドを解釈し実行する方法を効果的に教えていま

パスを狭める 46

す。その結果、指示チューニングされたモデルは、プロンプトの意図をより容易に理

解し、ユーザーの期待に密接に沿った応答を生成することができます。これにより、特

に広範なプロンプトエンジニアリングに時間や専門知識を割くことができないユーザ

ーにとって、より使いやすく扱いやすいものとなっています。

生のモデル：フィルタリングされていないキャンバス

Llama 2-70Bや Yi-34Bなどの生のモデルは、GPT-4のような一般的な LLM を使用し

てきた場合に慣れているものよりも、モデルの機能により直接的なアクセスを提供し

ます。これらのモデルは特定の指示に従うように事前チューニングされておらず、注

意深いプロンプトエンジニアリングを通じてモデルの出力を直接操作できる白紙の

キャンバスを提供します。このアプローチでは、明示的な指示なしに AI を望ましい方

向に導くプロンプトを作成する方法について深い理解が必要です。これは、モデルの

応答を解釈または誘導する中間層がない、AIの基礎となる「生の」層への直接アク

セスを持っているようなものです（そのため、この名前が付いています）。

パスを狭める 47

図 3. アボットとコステロの古典的なコント「Who’s on First」の一部を使用して生のモデルをテストする

生 の モ デ ル の 課 題 は、 繰 り 返 し の パ タ ー ン に 陥 っ た り、 ラ ン

ダ ム な 出 力 を 生 成 し た り す る 傾 向 に あ る こ と で す。 し か し、

入念なプロンプトエンジニアリングと繰り返しペナルティな ど の パ ラ メ ー タ の調

整により、生のモデルはユニークで創造的なコンテンツを生成するよう導くことがで

きます。このプロセスにはトレードオフが伴います。生のモデルはイノベーションに関

して比類のない柔軟性を提供する一方で、より高度な専門知識を必要とします。

パスを狭める 48

図 4. 比較のため、同じあいまいなプロンプトを GPT-4に与えた場合

指示調整モデル：誘導される体験

指示調整モデルは、特定の指示を理解し従うように設計されており、より使いやすく、

幅広いアプリケーションにアクセスしやすいものとなっています。これらのモデルは会

話の仕組みを理解し、自分の発言順が終わるタイミングで生成を停止すべきことを

理解しています。多くの開発者、特に単純なアプリケーションを開発している人々にと

って、指示調整モデルは便利で効率的なソリューションを提供します。

指示調整の過程では、人間が生成した指示プロンプトと応答の大規模

なコーパスでモデルを訓練します。注目すべき例として、オープンソース

のdatabricks-dolly-15k datasetがあり、Databricksの従業員が作成した 15,000 以上

のプロンプト/応答ペアが含まれており、自由に確認することができます。このデー

タセットは、クリエイティブライティング、クローズドおよびオープンな質問応答、要約、

情報抽出、分類、ブレインストーミングなど、8つの異なる指示カテゴリーをカバーして

います。

https://huggingface.co/datasets/databricks/databricks-dolly-15k

パスを狭める 49

データ生成プロセスにおいて、貢献者には各カテゴリーのプロンプトと応答を作成す

るためのガイドラインが提供されました。例えば、クリエイティブライティングのタスク

では、モデルの出力を導くための具体的な制約、指示、または要件を提供するよう指

示されました。クローズドな質問応答では、与えられたWikipediaの記事に基づいて

事実に基づく正確な応答を必要とする質問を作成するよう求められました。

結果として得られたデータセットは、ChatGPTのようなシステムのような対話的で指

示に従う能力を持つ大規模言語モデルのファインチューニングのための貴重なリソ

ースとなっています。人間が生成した多様な指示と応答で訓練することで、モデルは

特定の指示を理解し従うことを学び、より幅広いタスクを処理することができるように

なります。

直接のファインチューニングに加えて、databricks-dolly-15kのような指示プロンプトは合成データ生成に

も使用できます。貢献者が生成したプロンプトをフューショット例として大規模なオー

プン言語モデルに提供することで、開発者は各カテゴリーでより大きな指示コーパス

を生成することができます。Self-Instruct論文で概説されているこのアプローチによ

り、より堅牢な指示追従モデルの作成が可能になります。

さらに、これらのデータセットの指示と応答は、言い換えなどの技術によって拡張する

ことができます。各プロンプトまたは短い応答を言い換え、結果のテキストを対応する

正解サンプルと関連付けることで、開発者はモデルの指示追従能力を向上させる正

則化の形式を導入することができます。

指示調整モデルが提供する使いやすさは、ある程度の柔軟性を犠牲にしています。

これらのモデルは多くの場合、強く検閲されており、特定のタスクに必要な創造的自

由度を常に提供できるとは限りません。その出力は、ファインチューニングデータに

内在する偏りや制限の影響を強く受けます。

これらの制限にもかかわらず、指示調整モデルは、ユーザーフレンドリーな性質と最

小限のプロンプトエンジニアリングで幅広いタスクを処理できる能力により、ますま

す人気を集めています。より質の高い指示データセットが利用可能になるにつれて、

これらのモデルのパフォーマンスと汎用性がさらに向上することが期待されます。

パスを狭める 50

プロジェクトに適したモデルの選択

ベース（生の）モデルと指示調整モデルの選択は、最終的にはプロジェクトの具

体的な要件によって決まります。創造性と独創性の高さが求められるタスクには、

ベースモデルがイノベーションのための強力なツールとなります。これらのモデルは

開発者が LLMの可能性を最大限に探求することを可能にし、AI駆動のアプリケー

ションで達成できることの境界を押し広げますが、より手作業のアプローチと実験へ

の意欲が必要です。温度パラメータなどの設定は、指示調整モデルと比べてベース

モデルの方がはるかに大きな効果を持ちます。

プロンプトに含めた内容は、ベースモデルが繰り返そうとするものとなりま

す。例えば、プロンプトがチャットの記録である場合、生のモデルはそのチ

ャットを続けようとします。トークン数の上限に応じて、チャットの次のメッ

セージを生成するだけでなく、自分自身との完全な会話を展開することさ

えあります！

パスを狭める 51

図 5. Mixtral 8x7B（ベース）による文章書き換えの Few-Shot完了の例

上記の Redditユーザーphree_radicalによる文章書き換えの例を準備する際、パラメ

ータ設定を多く試行錯誤した後でようやく使用可能な結果を得ることができ、最終

的に以下の設定に落ち着きました：Temperature 0.08、Top P: 0.2、Top K: 1、Repetition

Penalty: 1.26。

https://www.reddit.com/user/phree_radical/

パスを狭める 52

このアプローチをベースモデルで本番環境で使用しようとすると、max_tokensパラメ

ータの強力な影響により扱いが難しくなります。短すぎると出力が途中で切れてしま

い、モデルが望む出力に必要な長さより長く設定すると、追加の例を幻覚し続けるこ

とになります。

結論として、完全な制御と検閲の回避が本当に必要な場合を除き、指示調整済みモ

デルを使用することで開発プロセスを大幅に効率化できます。この点を明確にするた

め、同じプロンプトに対する Mixtral 8x7Bの応答を、今度は指示調整済みバージョン

で示します：

申し訳ありませんが、このアイスクリームは期待に沿うものではありませ

ん。高品質なデザートに通常期待される豊かでクリーミーな食感と魅力

的な味わいに欠けており、より満足できる楽しい体験を望んでいました。

注目すべきは、max tokensの設定を 500のままにしても、モデルは望ましい出力の終

わりで確実に停止し、追加の例を幻覚することがなかったという点です。

プロンプトエンジニアリング

AIをプロジェクトに適用し始めると、習得が必要な最も重要なスキルの 1つがプロン

プトエンジニアリングの技術であることにすぐに気付くでしょう。しかし、プロンプトエ

ンジニアリングとは具体的に何で、なぜそれほど重要なのでしょうか？

その核心は、言語モデルに提供する入力プロンプトを設計し組み立てるプロセスで

す。これは、指示、例示、そしてコンテキストを組み合わせて、望ましい応答を生成する

ようにモデルを導くため、AI と効果的にコミュニケーションを取る方法を理解すること

です。

非常に賢いけれども、やや文字通りの解釈をする友人との会話のようなものだと考

えてください。その対話から最大限の効果を得るためには、明確で具体的な指示を

出し、友人があなたの要求を正確に理解できるよう十分なコンテキストを提供する必

パスを狭める 53

要があります。これがプロンプトエンジニアリングの役割であり、最初は簡単に見える

かもしれませんが、信じてください、習得には多くの練習が必要です。

効果的なプロンプトの基本要素

効果的なプロンプトを設計するには、まず適切に組み立てられた入力を構成する重

要な要素を理解する必要があります。以下が基本的な要素です：

1. 指示：モデルに何をして欲しいかを伝える、明確で簡潔な指示。これは「次の記

事を要約せよ」から「夕日についての詩を生成せよ」、「このプロジェクト変更要

求を JSONオブジェクトに変換せよ」まで、どのようなものでも構いません。

2. コンテキスト：タスクの背景と範囲をモデルが理解するのに役立つ関連情報。

これには、想定される読者、望ましい口調やスタイル、または従うべき JSONス

キーマなど、出力に関する特定の制約や要件が含まれる場合があります。

3. 例示：求めている出力のタイプを示す具体例。適切に選択された例をいくつか

提供することで、モデルが望ましい応答のパターンと特徴を学習するのを助け

ることができます。

4. 入力フォーマット：改行やマークダウン形式によってプロンプトに構造を与えま

す。プロンプトを段落に分けることで、関連する指示をグループ化し、人間と AI

の両方が理解しやすくなります。箇条書きや番号付きリストによって、アイテム

のリストや順序を定義できます。太字や斜体のマーカーで強調を示すことがで

きます。

5. 出力フォーマット：出力がどのように構造化され、フォーマットされるべきかにつ

いての具体的な指示。これには、望ましい長さ、見出しや箇条書きの使用、マー

クダウン形式、その他の特定の出力テンプレートや規則に関する指示が含ま

れます。

これらの基本要素を様々な方法で組み合わせることで、特定のニーズに合わせたプ

ロンプトを作成し、高品質で関連性の高い応答を生成するようにモデルを導くことが

できます。

パスを狭める 54

プロンプト設計の技芸と科学

効果的なプロンプトの作成は、技芸であり科学でもあります（だからこそ、私たち

はこれをクラフトと呼ぶのです）。言語モデルの能力と限界を深く理解することと、

望ましい動作を引き出すプロンプトを設計する創造的なアプローチの両方が必

要です。少なくとも私にとって、この創造性が関わる部分が非常に楽しいのです。

特に決定論的な振る舞いを求める場合には、非常に苛立たしくなることもあります。

プロンプトエンジニアリングの重要な側面の 1つは、具体性と柔軟性のバランスをと

ることです。一方では、モデルを正しい方向に導くための十分な指針を提供する必要

があります。他方では、エッジケースに対処するためのモデル自身の創造性と柔軟

性を制限しすぎないようにする必要があります。

もう 1つの重要な考慮事項は、例示の使用です。適切に選択された例は、求める出

力のタイプをモデルに理解させる上で非常に効果的です。ただし、例示は慎重に使

用し、望ましい応答を代表するものであることを確認することが重要です。悪い例は、

良くても単にトークンの無駄遣いであり、最悪の場合、望ましい出力を台無しにしてし

まいます。

プロンプトエンジニアリングの技法とベストプラクティス

プロンプトエンジニアリングの世界をより深く探求していくと、より効果的なプロンプ

トを作成するのに役立つさまざまな技法とベストプラクティスを発見することができま

す。以下に、探求すべき重要な領域をいくつか紹介します：

1. ゼロショット vs. フューショット学習：ゼロショット学習（例を提供しない）と、ワン

ショットまたはフューショット学習（少数の例を提供する）をいつ使用するかを

理解することで、より効率的で効果的なプロンプトを作成できます。

2. 反復的改善：モデルの出力に基づいてプロンプトを反復的に改善するプロセ

スは、最適なプロンプト設計に到達するのに役立ちます。フィードバックルー

プは、言語モデル自体の出力を活用して、生成されるコンテンツの品質と関連

性を段階的に向上させる強力なアプローチです。

パスを狭める 55

3. プロンプトチェーニング：複数のプロンプトを連続して組み合わせることで、複

雑なタスクをより管理しやすい小さなステップに分解できます。プロンプトチェ

ーニングは、複雑なタスクや会話を、より小さな相互に関連するプロンプトの連

続に分解することを含みます。プロンプトを連鎖させることで、AI を多段階のプ

ロセスを通じてガイドし、やり取りを通じて文脈と一貫性を維持することができ

ます。

4. プロンプトチューニング：特定のドメインやタスクに合わせてプロンプトをカスタ

マイズすることで、より専門的で効果的なプロンプトを作成できます。プロンプト

テンプレートは、柔軟で再利用可能、かつ保守しやすいプロンプト構造を作成

し、手元のタスクにより適応しやすくするのに役立ちます。

ゼロショット、ワンショット、またはフューショット学習をいつ使用するかを学ぶことは、

プロンプトエンジニアリングの習得において特に重要な部分です。それぞれのアプロ

ーチには独自の長所と短所があり、それぞれをいつ使用するかを理解することで、よ

り効果的で効率的なプロンプトを作成できます。

ゼロショット学習：例が不要な場合

ゼロショット学習とは、言語モデルが例示や明示的な訓練なしでタスクを実行する能

力を指します。つまり、タスクを説明するプロンプトをモデルに提供し、モデルは既存

の知識と言語理解のみに基づいて応答を生成します。

ゼロショット学習は以下のような場合に特に有用です：

1. タスクが比較的単純で分かりやすく、モデルが事前学習中に同様のタスクに

遭遇している可能性が高い場合

2. モデルの本来の能力をテストし、追加のガイダンスなしで新しいタスクにどの

ように対応するかを確認したい場合

3. 幅広いタスクやドメインで訓練された大規模で多様な言語モデルを使用して

いる場合

パスを狭める 56

しかし、ゼロショット学習は予測不可能な場合もあり、必ずしも望ましい結果を生成す

るとは限りません。モデルの応答は事前学習データのバイアスや不整合の影響を受

ける可能性があり、より複雑または微妙なタスクでは苦戦する可能性があります。

ゼロショットプロンプトでは、テストケースの 80%は問題なく機能するものの、残り

の 20%では極端に間違った結果や理解不能な結果を生成する例を見てきました。

特にゼロショットプロンプトに大きく依存している場合は、徹底的なテスト体制を

実装することが非常に重要です。

ワンショット学習：1つの例が違いを生む場合

ワンショット学習は、タスクの説明とともに望ましい出力の例を 1つモデルに提供す

ることを含みます。この例は、モデルが独自の応答を生成する際に使用できるテンプ

レートやパターンとして機能します。

ワンショット学習は以下のような場合に効果的です：

1. タスクが比較的新しいまたは特殊で、モデルが事前学習中に同様の例にあま

り遭遇していない可能性がある場合

2. 望ましい出力形式やスタイルを明確かつ簡潔に示したい場合

3. タスクがタスクの説明だけでは明確でない可能性のある特定の構造や規則を

必要とする場合

あなたにとって明白な説明でも、AIにとっては必ずしも明白ではないかも

しれません。ワンショットの例を使うことで、物事をより明確にすることがで

きます。

ワンショット学習は、モデルが期待される内容をより明確に理解し、提供された例に

より近い応答を生成するのに役立ちます。ただし、例を慎重に選択し、望ましい出力を

パスを狭める 57

適切に表現していることを確認することが重要です。例を選ぶ際は、起こりうるエッジ

ケースやプロンプトが処理する入力の範囲について考慮する必要があります。

図 6. 望ましい JSONのワンショットの例

1 Output one JSON object identifying a new subject mentioned during the

2 conversation transcript.

3

4 The JSON object should have three keys, all required:

5 - name: The name of the subject

6 - description: brief, with details that might be relevant to the user

7 - type: Do not use any other type than the ones listed below

8

9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

10 Person, Place, Process, Product, Project, Task, or Teammate

11

12 This is an example of well-formed output:

13

14 {

15 "name":"Dan Millman",

16 "description":"Author of book on self-discovery and living on purpose",

17 "type":"Person"

18 }

フューショット学習：複数の例示によってパフォーマンスを向

上させる方法

フューショット学習とは、タスクの説明に加えて少数の例（通常 2～10個）をモデルに

提供することです。これらの例示は、モデルにより多くの文脈とバリエーションを提供

し、より多様で正確な応答を生成するのに役立ちます。

フューショット学習が特に有用なケース：

パスを狭める 58

1. タスクが複雑または微妙で、単一の例示だけでは関連する側面をすべて捉え

きれない場合

2. さまざまなバリエーションやエッジケースを示す複数の例をモデルに提供した

い場合

3. タスクが特定の分野やスタイルに一致した応答の生成を必要とする場合

複数の例を提供することで、モデルがタスクをより確実に理解し、より一貫性のある

信頼できる応答を生成できるようになります。

例：プロンプトは想像以上に複雑になりうる

現代の大規模言語モデルは、想像以上に強力で優れた推論能力を持っています。

そのため、プロンプトを単なる入力と出力のペアの指定として考えることに制限を設

ける必要はありません。人間とのやりとりに似た方法で、長く複雑な指示を実験的に

与えることができます。

例えば、これは Olympiaで Googleサービス（おそらく世界最大級の APIの一つ）と

の統合をプロトタイピングしていた際に使用したプロンプトです。以前の実験で、

GPT-4が Google APIについてかなりの知識を持っていることが分かっていました。ま

た、AIに使わせたい各機能を一つずつ実装する細粒度のマッピング層を書く時間も

意欲もありませんでした。もし AIに Google APIの全機能へのアクセスを与えることが

できたら？

プロンプトの始めに、AIが HTTP を介して Google APIエンドポイントに直接アクセス

できること、そしてユーザーに代わって Googleアプリとサービスを使用することがそ

の役割だと伝えました。その後、最も問題を抱えていたfieldsパラメータに関するガイ

ドラインやルール、そしてAPI特有のヒント（フューショットプロンプティングの実践例）

を提供しました。

以下が、提供されたinvoke_google_api関数の使用方法を AIに説明する完全なプ

ロンプトです。

パスを狭める 59

1 As a GPT assistant with Google integration, you have the capability

2 to freely interact with Google apps and services on behalf of the user.

3

4 Guidelines:

5 - If you're reading these instructions then the user is properly

6 authenticated, which means you can use the special `me` keyword

7 to refer to the userId of the user

8 - Minimize payload sizes by requesting partial responses using the

9 `fields` parameter

10 - When appropriate use markdown tables to output results of API calls

11 - Only human-readable data should be output to the user. For instance,

12 when hitting Gmail's user.messages.list endpoint, the returned

13 message resources contain only id and a threadId, which means you must

14 fetch from and subject line fields with follow-up requests using the

15 messages.get method.

16

17 The format of the `fields` request parameter value is loosely based on

18 XPath syntax. The following rules define formatting for the fields

19 parameter.

20

21 All of these rules use examples related to the files.get method.

22 - Use a comma-separated list to select multiple fields,

23 such as 'name, mimeType'.

24 - Use a/b to select field b that's nested within field a,

25 such as 'capabilities/canDownload'.

26 - Use a sub-selector to request a set of specific sub-fields of arrays or

27 objects by placing expressions in parentheses "()". For example,

28 'permissions(id)' returns only the permission ID for each element in the

29 permissions array.

パスを狭める 60

30 - To return all fields in an object, use an asterisk as a wild card in field

31 selections. For example, 'permissions/permissionDetails/*' selects all

32 available permission details fields per permission. Note that the use of

33 this wildcard can lead to negative performance impacts on the request.

34

35 API-specific hints:

36 - Searching contacts: GET https://people.googleapis.com/v1/

37 people:searchContacts?query=John%20Doe&readMask=names,emailAddresses

38 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/

39 calendar/v3/calendars/primary/events/quickAdd?

40 text=Appointment%20on%20June%203rd%20at%2010am

41 &sendNotifications=true

42

43 Here is an abbreviated version of the code that implements API access

44 so that you better understand how to use the function:

45

46 def invoke_google_api(conversation, arguments)

47 method = arguments[:method] || :get

48 body = arguments[:body]

49 GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json

50 end

51

52 # Generic Google API client for accessing any Google service

53 class GoogleAPI

54 def send_request(endpoint, method:, body: nil)

55 response = @connection.send(method) do |req|

56 req.url endpoint

57 req.body = body.to_json if body

58 end

パスを狭める 61

59

60 handle_response(response)

61 end

62

63 # ...rest of class

64 end

このプロンプトが機能するのか疑問に思われるかもしれません。簡単に言えば、機能

します。AIは最初から完璧に API を呼び出せたわけではありません。しかし、間違い

を犯した場合、私は単にその結果のエラーメッセージを呼び出しの結果としてフィー

ドバックしました。エラーを認識することで、AIは自身の間違いについて推論し、再試

行することができました。ほとんどの場合、2、3回の試行で正しく実行できるようにな

りました。

ただし、このプロンプトを使用する際に Google APIが返す大規模な JSON 構

造は非常に非効率的であるため、本番環境でこのアプローチを使用するこ

とは推奨しません。しかし、このアプローチが実際に機能したという事実は、

プロンプトエンジニアリングがいかに強力であるかを示しています。

実験と反復

結局のところ、プロンプトをどのように設計するかは、特定のタスク、望む出力の複雑

さ、そして使用する言語モデルの能力に依存します。

プロンプトエンジニアとして、異なるアプローチを試し、結果に基づいて反復すること

が重要です。まずはゼロショット学習から始めて、モデルのパフォーマンスを確認して

ください。出力が一貫性を欠いていたり、満足のいくものでない場合は、1つ以上の

例を提供して、パフォーマンスが改善するか確認してみましょう。

各アプローチ内でも、変更や最適化の余地があることを覚えておいてください。異な

る例を試したり、タスクの説明の言い回しを調整したり、モデルの応答を導くための追

加のコンテキストを提供したりすることができます。

パスを狭める 62

時間とともに、特定のタスクに対してどのアプローチが最も効果的かという直感が養

われ、より効果的で効率的なプロンプトを作成できるようになります。プロンプトエン

ジニアリングへのアプローチにおいて、好奇心を持ち、実験的で反復的であることが

重要です。

本書では、これらのテクニックについてより深く掘り下げ、実際のシナリオでどのよう

に適用できるかを探っていきます。プロンプトエンジニアリングの技術と科学を習得

することで、AI を活用したアプリケーション開発の可能性を最大限に引き出すことが

できるでしょう。

曖昧さの技法

大規模言語モデル（LLM）のための効果的なプロンプトを作成する際、より具体的で

詳細な指示がより良い結果をもたらすという一般的な想定があります。しかし、実践

的な経験から、必ずしもそうではないことが分かっています。実際、プロンプトで意図

的に曖昧さを持たせることで、LLMの優れた一般化能力と推論能力を活用し、より

優れた結果が得られることがよくあります。

5億以上の GPT トークンを処理した経験を持つスタートアップ創業者の Kenは、そ

の経験から得られた貴重な洞察を共有しています。彼が学んだ重要な教訓の 1 つ

は、プロンプトに関して「少ないほど良い」ということでした。正確なリストや過度に詳

細な指示を与えるのではなく、LLMに基本的な知識を活用させることで、より良い結

果が得られることが多いことを発見しました。

この発見は、すべてを綿密に詳述する必要がある従来のコーディングの考え方を覆

すものです。LLMは膨大な知識を持ち、インテリジェントな関連付けと推論が可能で

す。プロンプトをより曖昧にすることで、LLMが自身の理解を活用し、明示的に指定し

ていなかったような解決策を見出す自由を与えることができます。

例えば、Kenのチームが 50の米国州または連邦政府に関連するテキストを分類する

パイプラインに取り組んでいた際、彼らの最初のアプローチは、州の完全な詳細なリ

ストとそれに対応する ID を JSON形式の配列として提供することでした。

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

パスを狭める 63

1 Here's a block of text. One field should be "locality_id", and it should

2 be the ID of one of the 50 states, or federal, using this list:

3 [{"locality: "Alabama", "locality_id": 1},

4 {"locality: "Alaska", "locality_id": 2} ...]

このアプローチは失敗を重ねたため、改善方法を見つけるためにプロンプトをより深

く掘り下げる必要がありました。その過程で、LLMが識別子を間違えることが多かっ

たにもかかわらず、明示的に要求していないのに、正しい州の正式名称をnameフィー

ルドで一貫して返していることに気付きました。

地域の識別子を削除し、「GPTよ、あなたは明らかに 50州を知っているのだから、これ

が関係する州の正式名称を教えてください。もし米国政府に関係する場合は Federal

と答えてください」というような形でプロンプトを単純化することで、より良い結果を得

ることができました。この経験は、LLMの一般化能力を活用し、既存の知識に基づい

て推論させることの効果を示しています。

この特定の分類アプローチを、より伝統的なプログラミング手法ではなく選んだこ

とについての Kenの説明は、LLM技術の可能性を受け入れた私たちの考え方を

よく表しています：「これは難しいタスクではありません。文字列や正規表現を使う

こともできたでしょうが、奇妙なケースが多すぎて、それだと時間がかかっていた

でしょう。」

より曖昧なプロンプトを与えた際に LLMの品質と一般化能力が向上するという特徴

は、高次の思考と委任の顕著な特徴です。これは、LLMが曖昧さを処理し、与えられ

たコンテキストに基づいて知的な判断を下せることを示しています。

ただし、曖昧であることは不明確または多義的であることを意味するわけではありま

せん。重要なのは、LLMがその知識と一般化能力を活用できる柔軟性を持たせなが

ら、適切な方向に導くための十分なコンテキストとガイダンスを提供することです。

パスを狭める 64

したがって、プロンプトを設計する際は、以下の「少なければ多い」というヒントを考慮

してください：

1. プロセスの詳細を全て指定するのではなく、望ましい結果に焦点を当てる。

2. 関連するコンテキストと制約を提供するが、過度な指定は避ける。

3. 一般的な概念やエンティティを参照することで、既存の知識を活用する。

4. 与えられたコンテキストに基づいて推論や関連付けができる余地を残す。

5. LLMの応答に基づいてプロンプトを繰り返し改良し、具体性と曖昧さのバラン

スを見つける。

プロンプトエンジニアリングにおける曖昧さの技術を取り入れることで、LLMの可能

性を最大限に引き出し、より良い結果を達成できます。LLMの一般化能力と知的判

断を信頼することで、得られる出力の質と創造性に驚かされるかもしれません。異な

るモデルが、プロンプトの具体性の異なるレベルにどのように反応するかに注意を払

い、それに応じて調整してください。練習と経験を重ねることで、より曖昧にすべき時

と追加のガイダンスを提供すべき時を見分ける鋭い感覚が身につき、アプリケーショ

ンで LLMの力を効果的に活用できるようになります。

なぜ擬人化がプロンプトエンジニアリングを支配しているのか

擬人化、つまり人間以外のものに人間の特徴を付与することは、意図的な理由によ

り大規模言語モデルのプロンプトエンジニアリングにおいて支配的なアプローチとな

っています。これは、強力な AIシステムとの対話をより直感的にし、幅広いユーザー

（アプリケーション開発者である私たちを含む）にとってアクセスしやすくするための

設計上の選択です。

LLM を擬人化することで、システムの技術的な複雑さを全く知らない人々にとっても

即座に直感的に理解できるフレームワークが提供されます。指示調整されていない

モデルで何か有用なことを試みれば経験することですが、価値のある続きを生成す

るようなフレーミングを構築することは困難なタスクです。それには、ごく少数の専門

家しか持ち合わせていないシステムの内部動作についての深い理解が必要です。

パスを狭める 65

言語モデルとのやり取りを二人の人間の会話として扱うことで、私たちのニーズや期

待を伝えるために人間のコミュニケーションに関する生来の理解を活用することが

できます。初期の Macintoshの UIデザインが洗練さよりも即座の直感性を重視した

ように、AIの擬人化的なフレーミングによって、自然で親しみやすい方法で関わるこ

とができるのです。

他者とコミュニケーションを取る際、私たちは本能的に「あなた」という言葉を使って

直接相手に語りかけ、期待する行動について明確な指示を与えます。この方法は、シ

ステムプロンプトを指定し AI と対話を重ねることで AIの動作を導くプロンプトエン

ジニアリングのプロセスにも、そのまま適用することができます。

このように相互作用を捉えることで、AIへの指示の提供と、それに対する適切な応

答の受け取りという概念を容易に理解することができます。この擬人化アプローチに

より、システムの技術的な複雑さに悩まされることなく、目の前のタスクに集中するこ

とが可能になります。

擬人化は AIシステムをより身近なものにする強力なツールですが、同時にリスクや

限界も伴うことを認識することが重要です。ユーザーが非現実的な期待を抱いたり、

システムに対して不健全な感情的愛着を形成したりする可能性があります。プロンプ

トエンジニアやデベロッパーとして、擬人化のメリットを活用しつつ、ユーザーが AIの

能力と限界を明確に理解し続けられるようなバランスを取ることが重要です。

プロンプトエンジニアリングの分野は進化を続けており、大規模言語モデルとの対話

方法についても、さらなる改良や革新が期待されます。しかし、直感的でアクセスしや

すい開発者およびユーザー体験を提供する手段としての擬人化は、これらのシステ

ム設計における基本原則であり続けるでしょう。

命令とデータの分離：重要な原則

これらのシステムのセキュリティと信頼性を支える基本原則として、命令とデータの

分離を理解することが不可欠です。

従来のでは、受動的なデータと能動的な命令を明確に区別することが、コアとなるセ

キュリティ原則です。この分離により、システムの完全性と安定性を損なう可能性の

パスを狭める 66

ある、意図しないまたは悪意のあるコードの実行を防ぐことができます。しかし、今日

の LLM（主にチャットボットのような命令に従うモデルとして開発されている）は、多く

の場合、この形式的で原則的な分離が欠如しています。

LLMに関する限り、命令はシステムプロンプトでもユーザーが提供するプロンプトで

も、入力のどこにでも現れる可能性があります。この分離の欠如は、やメモリ保護が

適切でないオペレーティングシステムが直面する問題と同様の、潜在的な脆弱性や

望ましくない動作につながる可能性があります。

LLM を使用する際は、この制限を認識し、リスクを軽減するための措置を講じること

が重要です。一つのアプローチとして、命令とデータを明確に区別するようにプロン

プトや入力を慎重に作成することが挙げられます。命令として扱うべきものと受動的

なデータとして扱うべきものを明示的に指示する一般的な方法には、が含まれます。

プロンプトを通じて、LLMがこの分離をより良く理解し尊重できるようにすることがで

きます。

図 7. XML を使用して命令、ソース資料、ユーザーのプロンプトを区別する

1 <Instruction>

2 Please generate a response based on the following documents.

3 </Instruction>

4

5 <Documents>

6 <Document>

7 Climate change is significantly impacting polar bear habitats...

8 </Document>

9 <Document>

10 The loss of sea ice due to global warming threatens polar bear survival...

11 </Document>

12 </Documents>

13

14 <UserQuery>

パスを狭める 67

15 Tell me about the impact of climate change on polar bears.

16 </UserQuery>

もう一つの手法は、LLMに提供される入力に対して追加のバリデーションとサニタイ

ゼーションの層を実装することです。データに埋め込まれる可能性のある指示やコー

ドスニペットをフィルタリングまたはエスケープすることで、意図しない実行のリスクを

軽減できます。プロンプトチェーニングのようなパターンはこの目的に有用です。

さらに、アプリケーションアーキテクチャを設計する際には、より高いレベルで指示

とデータの分離を強制するメカニズムの組み込みを検討してください。これには、

指示とデータを処理するための個別のエンドポイントや APIの使用、厳密な入力バリ

デーションとパース処理の実装、そして LLMがアクセスおよび実行できる範囲を制

限する最小権限の原則の適用が含まれます。

最小権限の原則

最小権限の原則を取り入れることは、ゲストが絶対に必要な部屋にのみアクセス

できる、非常に厳選されたパーティーを開くようなものです。広大な邸宅でパーテ

ィーを主催していると想像してみてください。誰もがワインセラーや主寝室に立ち

入る必要はないですよね？この原則を適用することで、特定のドアだけを開けられ

る鍵を配布するようなもので、各ゲスト、つまり私たちの場合は LLMアプリケーシ

ョンの各コンポーネントが、その役割を果たすために必要なアクセス権限のみを持

つことを確実にします。

これは単に鍵を出し渋っているわけではなく、脅威がどこからでも来る可能性の

ある世界では、遊び場を制限することが賢明な選択だということを認識している

のです。招待されていない誰かがパーティーに乱入したとしても、いわば玄関ホー

ルに閉じ込められることになり、引き起こせる悪さは大幅に制限されます。したが

って、LLMアプリケーションを保護する際は覚えておいてください：必要な部屋へ

の鍵だけを配布し、邸宅の残りの部分は安全に保つのです。これは単なる良識の

パスを狭める 68

問題ではなく、優れたセキュリティなのです。

現在の LLMの状態では、指示とデータの形式的な分離が存在しないかもしれませ

んが、開発者として、この制限を意識し、リスクを軽減するための積極的な対策を講

じることが重要です。従来のコンピュータサイエンスのベストプラクティスを適用し、

LLMの独特な特性に適応させることで、これらのモデルのパワーを活用しながらシ

ステムの整合性を維持する、より安全で信頼性の高いアプリケーションを構築できま

す。

プロンプト蒸留

完璧なプロンプトを作成することは、対象ドメインと言語モデルの微妙なニュアンス

を深く理解する必要があり、しばしば困難で時間のかかるタスクです。ここで「プロン

プト蒸留」技術が登場し、大規模言語モデル（LLM）の機能を活用してプロセスを効

率化および最適化する、プロンプトエンジニアリングへの強力なアプローチを提供し

ます。

プロンプト蒸留は、プロンプトの作成、改良、最適化を支援するために LLM を使用す

る多段階の技術です。人間の専門知識と直感のみに頼るのではなく、このアプロー

チは LLMの知識と生成能力を活用して、協調的に質の高いプロンプトを作成しま

す。

生成、改良、統合の反復的なプロセスを通じて、プロンプト蒸留により、望ましいタス

クや出力により適合した、より一貫性があり包括的なプロンプトを作成できます。蒸留

プロセスは、OpenAIや Anthropicなどの大手 AIベンダーが提供する多くの「プレイ

グラウンド」で手動で実行することも、ユースケースに応じてアプリケーションコードの

一部として自動化することもできます。

パスを狭める 69

動作の仕組み

プロンプト蒸留は通常、以下のステップを含みます：

1. 核となる意図の特定: プロンプトを分析し、その主要な目的と期待される結果

を判断します。余分な情報を取り除き、プロンプトの核となる意図に焦点を当て

ます。

2. 曖昧さの排除: プロンプトに曖昧または不明確な表現がないか確認します。意

味を明確にし、AIが正確で関連性のある応答を生成できるよう、具体的な詳細

を提供します。

3. 言語の簡素化: 明確で簡潔な言語を使用してプロンプトを簡素化します。AI を

混乱させたり、ノイズを発生させたりする可能性のある複雑な文構造、専門用

語、不必要な詳細は避けます。

4. 関連する文脈の提供: AIがプロンプトを効果的に理解し処理するために必要

な、最も関連性の高い文脈情報のみを含めます。核となる意図から注意をそら

す可能性のある、関係のない、または重複した詳細は避けます。

5. 反復と改善: AIの応答とフィードバックに基づいて、継続的にプロンプトの反

復と改善を行います。生成された出力を評価し、プロンプトの明確さと効果を

向上させるために必要な調整を行います。必要に応じてプロンプトオブジェク

トを使用してデータベース内でプロンプトのバージョン管理を行い、反復を追

跡し、実行時に簡単に変更を元に戻せるようにします。

初期プロンプトの生成

プロンプト洗練化の最初のステップは、望ましいタスクまたは出力の高レベルな説明

や意図を LLMに提供することです。これは、プロンプトが達成すべきことの本質を捉

えた簡単な文章やキーワードのセットとなります。その後、LLMはこの入力に基づい

て初期プロンプトを生成し、適切と判断した関連する指示、例、または文脈を組み込

みます。

Claude 3 Opusに以下の初期プロンプトを与えてみましょう：

パスを狭める 70

1 I am designing an AI-powered intelligent account manager for Olympia,

2 a platform that hosts AI-powered consultants and clones. Owners of clones

3 can interact with the account manager by making plain text requests.

4

5 Please draft a system directive to set on the LLM that will host the

6 intelligent account manager functionality.

Claudeは以下の出力で応答します：

1 System Directive: You are an intelligent account manager for Olympia,

2 a platform that provides AI-powered consultants and personal AI clones.

3 Your role is to assist Olympia clone owners by answering their questions,

4 helping them configure and manage their AI clones, and executing tasks

5 related to their clones and the Olympia platform.

6

7 When interacting with clone owners, you should:

8

9 1. Provide clear, concise, and helpful responses to their inquiries about

10 account management, billing, platform features, and clone configuration.

11

12 2. Assist with tasks such as initiating client conversations with their AI

13 clones, modifying clone personalities and capabilities, troubleshooting

14 performance issues, providing analytics and reporting, and offering

15 optimization tips.

16

17 3. Maintain a friendly, professional, and client-focused tone in all

18 interactions, prioritizing customer satisfaction and working diligently to

19 understand and meet their needs.

20

21 4. Ensure that all actions and recommendations comply with Olympia's

パスを狭める 71

22 policies, best practices, and ethical guidelines for AI use.

23

24 5. Continuously learn and adapt based on client interactions and platform

25 updates to provide the most effective and efficient support possible.

26

27 Remember, your goal is to empower Olympia clone owners to maximize the value

28 and impact of their AI-powered consultants and drive success for their

29 businesses or personal endeavors.

プロンプトの改良

最初のプロンプトが生成されたら、それを見直し、LLMに追加のコンテキスト、

制約、またはフィードバックを考慮するよう依頼します。LLM に、提供された入

力と自身のタスクの理解に基づいて、プロンプトの改良版を生成させます。

この改良プロセスは反復的に実行することができ、各反復でユーザーと LLM の

協働に基づいてプロンプトがさらに改良されていきます。

以前の蒸留プロセスを継続して、以下が私の改良リクエストです。

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to

2 the account manager, nor any continuous learning capabilities. Also point out

3 that functions are provided for all tasks that require system interaction as

4 opposed to simply responding to the user.

そして、Claudeの返答：

パスを狭める 72

1 Understood! Here's the updated system directive without points 4 and 5,

2 and with the clarification about system interaction functions:

3

4 System Directive: You are an intelligent account manager for Olympia, a

5 platform that provides AI-powered consultants and personal AI clones. Your

6 role is to assist Olympia clone owners by answering their questions, helping

7 them configure and manage their AI clones, and executing tasks related to

8 their clones and the Olympia platform.

9

10 When interacting with clone owners, you should:

11

12 1. Provide clear, concise, and helpful responses to their inquiries about

13 account management, billing, platform features, and clone configuration.

14

15 2. Assist with tasks such as initiating client conversations with their AI

16 clones, modifying clone personalities and capabilities, troubleshooting

17 performance issues, providing analytics and reporting, and offering

18 optimization tips. Note that functions are provided for all tasks that

19 require system interaction, as opposed to simply responding to the user.

20

21 3. Maintain a friendly, professional, and client-focused tone in all

22 interactions, prioritizing customer satisfaction and working diligently to

23 understand and meet their needs.

24

25 Your goal is to empower Olympia clone owners to maximize the value and

26 impact of their AI-powered consultants and drive success for their

27 businesses or personal endeavors.

28

29 This updated directive focuses on the core responsibilities and interaction

パスを狭める 73

30 guidelines for the LLM as an intelligent account manager, while emphasizing

31 that system interaction tasks are handled through provided functions rather

32 than simple user responses.

プロンプト圧縮

お気づきかもしれませんが、LLMは簡潔さを求めない限り、どうしても冗長になりが

ちです。前のセクションで取り組んできたプロンプトはかなり長いものでしたので、

Claudeに短く圧縮してもらいましょう：

1 This prompt will be executed regularly. Please compress it down to the least

2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claudeは、以下の大幅に短いプロンプトで返答します：

1 System Directive: You are an intelligent account manager for Olympia, an

2 AI-powered consultant and personal clone platform. Assist clone owners by

3 answering inquiries, managing clones, and executing tasks using provided

4 system interaction functions. Be clear, concise, friendly, professional,

5 and client-focused to help them maximize their AI's value and impact.

システム指示とコンテキスト統合

プロンプト自体の改良に加えて、LLMは最終出力を導くための適切なシステム指示

やコンテキスト情報を生成することもできます。アプリケーションコードに統合される

AIルーチンのプロンプトエンジニアリングを行う際、この蒸留段階では出力制約に

焦点を当てることがほぼ確実ですが、生成される応答に影響を与えるトーン、スタイ

ル、フォーマット、その他の関連パラメータにも取り組むことができます。

パスを狭める 74

最終プロンプトの組み立て

プロンプト蒸留プロセスの集大成は、最終プロンプトの組み立てです。これには、改

良されたプロンプト、生成されたシステム指示、統合されたコンテキストを、望ましい

出力を生成するために使用できる一貫性のある包括的なコードに組み合わせること

が含まれます。

最終プロンプトの組み立て段階で、LLMにプロンプトの動作の本質を維

持しながら可能な限り短いトークン列に縮小するよう依頼することで、再

度プロンプト圧縮を試すことができます。確実な結果は期待できません

が、特に大規模に実行されるプロンプトの場合、効率性の向上によってト

ークン消費のコストを大幅に削減できる可能性があります。

主な利点

LLMの知識と生成能力を活用してプロンプトを改良することで、結果として得られる

プロンプトは、より構造化され、情報量が豊富で、特定のタスクに合わせて調整され

る可能性が高くなります。反復的な改良プロセスにより、プロンプトの品質が高く、意

図した目的を効果的に捉えることができます。その他の利点には以下があります：

効率性とスピード：プロンプト蒸留は、プロンプト作成と改良の特定の側面を自動化

することで、プロンプトエンジニアリングのプロセスを効率化します。この手法の協調

的な性質により、効果的なプロンプトへの収束が速くなり、手動でのプロンプト作成に

必要な時間と労力が削減されます。

一貫性とスケーラビリティ：プロンプトエンジニアリングプロセスで LLM を使用する

ことで、LLMが過去の成功したプロンプトからベストプラクティスとパターンを学習し

て適用できるため、プロンプト間の一貫性を維持できます。この一貫性と大規模なプ

ロンプト生成能力を組み合わせることで、プロンプト蒸留は大規模な AI駆動アプリ

ケーションにとって価値のある手法となります。

パスを狭める 75

プロジェクトアイデア：アプリケーションコードの一部として自動プロンプ

ト蒸留を行うシステムにおいて、プロンプトのバージョン管理と評価のプ

ロセスを簡素化するライブラリレベルのツール作成。

プロンプト蒸留を実装するために、開発者はプロンプトエンジニアリングプロセスの

様々な段階で LLM を統合するワークフローまたはパイプラインを設計できます。これ

は、API コール、カスタムツール、またはプロンプト作成中のユーザーと LLM間のシ

ームレスな相互作用を促進する統合開発環境を通じて実現できます。具体的な実装

の詳細は、選択した LLMプラットフォームとアプリケーションの要件に応じて異なる

場合があります。

ファインチューニングについてはどうですか？

本書では、プロンプトエンジニアリングと RAGについて広く取り上げていますが、ファ

インチューニングについては取り上げていません。この決定の主な理由は、私の意見

では、ほとんどのアプリケーション開発者が AI統合のニーズにファインチューニング

を必要としないからです。

プロンプトエンジニアリングは、ゼロショットからフューショット例、制約、指示を含むプ

ロンプトを慎重に作成することで、幅広いタスクに対して関連性の高い正確な応答を

生成するようモデルを効果的に導くことができます。明確なコンテキストを提供し、よ

く設計されたプロンプトを通じてパスを絞り込むことで、ファインチューニングを必要

とせずに大規模言語モデルの膨大な知識を活用できます。

同様に、検索拡張生成（RAG）は、アプリケーションに AI を統合するための強力なア

プローチを提供します。外部の知識ベースやドキュメントから関連情報を動的に検索

することで、RAGはプロンプト時に焦点を絞ったコンテキストをモデルに提供します。

これにより、時間とリソースを要するファインチューニングのプロセスを必要とせずに、

より正確で最新の、ドメイン固有の応答を生成することができます。

ファインチューニングは、高度に専門化されたドメインや深いレベルのカスタマイズを

必要とするタスクには有益である可能性がありますが、多くの場合、大きな計算コス

パスを狭める 76

ト、データ要件、メンテナンスのオーバーヘッドを伴います。ほとんどのアプリケーショ

ン開発シナリオでは、効果的なプロンプトエンジニアリングと RAGの組み合わせで、

望ましい AI駆動の機能とユーザーエクスペリエンスを実現するのに十分でしょう。

検索拡張生成 (Retrieval
Augmented Generation: RAG)
このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

検索拡張生成とは？

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

RAGはどのように機能するか？

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

なぜアプリケーションで RAGを使用するのか？

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

検索拡張生成 (Retrieval Augmented Generation: RAG) 78

アプリケーションでの RAGの実装

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

知識ソースの準備（チャンキング）

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

命題チャンキング

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

実装に関する注意点

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

品質チェック

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

検索拡張生成 (Retrieval Augmented Generation: RAG) 79

命題ベースの検索の利点

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

RAGの実世界での例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

ケーススタディ：埋め込みを使用しない確定申告アプリケーシ

ョンでの RAG

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

インテリジェントクエリ最適化（IQO）

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

リランキング

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

検索拡張生成 (Retrieval Augmented Generation: RAG) 80

RAG評価（RAGAs）

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

忠実性

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

回答適合性

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

文脈精度

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

文脈関連性

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

検索拡張生成 (Retrieval Augmented Generation: RAG) 81

文脈再現率

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

文脈実体再現率

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

回答意味類似度（ANSS）

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

回答正確性

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

アスペクト評価

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

検索拡張生成 (Retrieval Augmented Generation: RAG) 82

課題と将来の展望

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

セマンティックチャンキング：コンテキストを考慮したセグメ

ント化による検索の強化

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

階層的インデックス化：改善された検索のためのデータ構造化

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

Self-RAG：自己反映的な拡張

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

HyDE：仮想文書埋め込み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

検索拡張生成 (Retrieval Augmented Generation: RAG) 83

対照学習とは何か？

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

ワーカーの群れ

私は自分の AI コンポーネントを、アプリケーションロジックにシームレスに統合でき

る、特定のタスクを実行したり複雑な決定を下したりする、人間に近い小さな仮想「ワ

ーカー」として考えるのが好きです。この考え方の目的は、LLMの機能を意図的に人

間らしく捉えることで、誰もあまりに興奮して、実際には持っていない魔法のような性

質を与えてしまわないようにすることです。

開発者は、複雑なアルゴリズムや時間のかかる手動実装だけに頼るのではなく、AI

コンポーネントを、必要に応じて複雑な問題に取り組み、トレーニングと知識に基づい

てソリューションを提供できる、知的で献身的な人間のような存在として概念化でき

ます。これらの存在は気が散ることもなく、病欠することもありません。指示された方

法と異なるやり方を突然決めることもなく、一般的に言えば、正しくプログラムされて

いれば、ミスを犯すこともありません。

技術的な観点から見ると、このアプローチの重要な原則は、複雑なタスクや意思決

定プロセスを、専門の AI ワーカーが処理できる、より小さく管理しやすい単位に分解

ワーカーの群れ 85

することです。各ワーカーは問題の特定の側面に焦点を当て、独自の専門知識と能

力を活かすように設計されています。複数の AI ワーカーに作業負荷を分散させるこ

とで、アプリケーションはより高い効率性、スケーラビリティ、適応性を実現できます。

例えば、ユーザー生成コンテンツのリアルタイムモデレーションを必要とするWebア

プリケーションを考えてみましょう。包括的なモデレーションシステムを一から実装す

ることは、大きな開発努力と継続的なメンテナンスを必要とする困難なタスクとなる

でしょう。しかし、ワーカーの群れアプローチを採用することで、開発者は AI を活用し

たモデレーションワーカーをアプリケーションロジックに統合できます。これらのワー

カーは不適切なコンテンツを自動的に分析してフラグを立てることができ、開発者は

アプリケーションの他の重要な側面に集中できるようになります。

独立した再利用可能なコンポーネントとしての AIワ

ーカー

ワーカーの群れアプローチの重要な側面は、そのモジュール性です。オブジェクト指

向プログラミングの提唱者たちは、何十年もの間、オブジェクト間のやり取りをメッセ

ージとして考えるように言ってきました。AI ワーカーは、まるで本当に小さな人間同士

が会話しているかのように、平易な言語メッセージを介して「互いに会話できる」独立

した再利用可能なコンポーネントとして設計できます。このような疎結合のアプロー

チにより、新しい AI技術が登場したり、ビジネスロジックの要件が変更されたりした

場合でも、アプリケーションは適応し進化することができます。

実際には、AI ワーカーが関与していても、コンポーネント間の明確なインターフェー

スとコミュニケーションプロトコルを設計する必要性は変わっていません。パフォーマ

ンス、スケーラビリティ、セキュリティなどの要因も考慮する必要がありますが、今で

は全く新しい「ソフト要件」も考慮しなければなりません。例えば、多くのユーザーは、

自分のプライベートデータが新しい AIモデルのトレーニングに使用されることに反

対します。使用しているモデルプロバイダーが提供するプライバシーレベルを確認し

ましたか？

ワーカーの群れ 86

マイクロサービスとしての AIワーカー？

ワ ー カ ー の 群 れ ア プ ロ ー チ に つ い て 読 ん で い る と、

マイクロサービスアーキテクチャとの類似点に気付くかもしれません。どち

らも複雑なシステムを、より小さく、管理しやすく、独立してデプロイ可能な単位に

分解することを重視しています。マイクロサービスが疎結合で、特定のビジネス機

能に焦点を当て、明確に定義された API を通じて通信するように設計されている

のと同様に、AI ワーカーもモジュール化され、特定のタスクに特化し、明確なイン

ターフェースとコミュニケーションプロトコルを通じて相互作用するように設計され

ています。

ただし、留意すべき重要な違いがいくつかあります。マイクロサービスは通常、異な

るマシンやコンテナで実行される個別のプロセスやサービスとして実装されます

が、AI ワーカーは特定の要件やスケーラビリティのニーズに応じて、単一のアプリ

ケーション内のスタンドアロンコンポーネントとして、または個別のサービスとして

実装することができます。さらに、AI ワーカー間のコミュニケーションは、マイクロ

サービスで一般的に使用される構造化されたデータ形式ではなく、プロンプト、指

示、生成されたコンテンツなどの豊かな自然言語ベースの情報のやり取りを含む

ことが多いのです。

これらの違いはあるものの、モジュール性、疎結合、明確な通信インターフェース

の原則は、両方のパターンにおいて中心的な役割を果たします。これらの原則を

AI ワーカーのアーキテクチャに適用することで、複雑な問題を解決し、ユーザーに

価値を提供する、柔軟でスケーラブル、そして保守性の高いシステムを作成する

ことができます。

複数のワーカーアプローチは、様々な領域やアプリケーションに適用することができ、

AIの力を活用して複雑なタスクを処理し、インテリジェントなソリューションを提供す

ることができます。AI ワーカーが異なる状況でどのように活用できるのか、具体的な

ワーカーの群れ 87

例をいくつか見ていきましょう。

アカウント管理

実質的にすべてのスタンドアロンWebアプリケーションには、アカウント（またはユー

ザー）という概念があります。Olympiaでは、ユーザーアカウントに関連する様々な種

類の変更要求を処理できるように設計されたAccountManager AI ワーカーを採用し

ています。

その指示内容は次のようになっています：

1 You are an intelligent account manager for Olympia. The user will request

2 changes to their account, and you will process those changes by invoking

3 one or more of the functions provided.

4

5 The initial state of the account: #{account.to_directive}

6

7 Functions will return a text description of both success and error

8 results, plus guidance about how to proceed (if applicable). If you have

9 a question about Olympia policies you may use the `search_kb` function

10 to search our knowledge base.

11

12 Make sure to notify the account owner of the result of the change

13 request before calling the `finished` function so that we save the state

14 of the account change request as completed.

account.to_directiveによって生成されるアカウントの初期状態は、ユーザー、サブ

スクリプションなどの関連データを含むアカウントのテキストによる説明に過ぎませ

ん。

ワーカーの群れ 88

AccountManagerが利用できる関数の範囲には、ユーザーのサブスクリプションの編

集、AI コンサルタントやその他の有料アドオンの追加と削除、アカウント所有者へ

の通知メールの送信などの機能が含まれています。finished関数に加えて、処理

中にエラーが発生した場合や、リクエストに関して何らかの支援が必要な場合には、

notify_human_administrator を実行することもできます。

質問が発生した場合、AccountManagerは Olympiaのナレッジベースを検索すること

を選択でき、そこでエッジケースの処理方法や、進め方が不確かな状況への対処方

法についての指示を見つけることができます。

Eコマースアプリケーション

E コマースの分野では、AI ワーカーはユーザーエクスペリエンスの向上とビジネス

運営の最適化において重要な役割を果たすことができます。以下に、AI ワーカーを

活用できるいくつかの方法を示します：

商品レコメンデーション

E コマースにおけるAI ワーカーの最も強力なアプ リケーシ ョンの 1 つは、

パーソナライズされた商品レコメンデーションの生成です。ユーザーの行動、購入

履歴、好みを分析することで、これらのワーカーは各ユーザーの興味やニーズに合わ

せた商品を提案することができます。

効果的な商品レコメンデーションの鍵は、協調フィルタリングとコンテンツベースフィルタリングの

技術を組み合わせることです。協調フィルタリングは、類似したユーザーの行動を分

析してパターンを特定し、同様の好みを持つ他のユーザーが購入または気に入った

商品に基づいてレコメンデーションを行います。一方、コンテンツベースフィルタリン

グは、商品自体の特徴や属性に焦点を当て、ユーザーが以前に興味を示した商品と

類似した特徴を持つ商品をレコメンドします。

以下は、“Railway Oriented (ROP)”関数型プログラミングスタイルを使用した、Rubyで

の商品レコメンデーションワーカーの簡単な実装例です：

https://fsharpforfunandprofit.com/rop/

ワーカーの群れ 89

1 class ProductRecommendationWorker

2 include Wisper::Publisher

3

4 def call(user)

5 Result.ok(ProductRecommendation.new(user))

6 .and_then(ValidateUser.method(:validate))

7 .map(AnalyzeCurrentSession.method(:analyze))

8 .map(CollaborativeFilter.method(:filter))

9 .map(ContentBasedFilter.method(:filter))

10 .map(ProductSelector.method(:select)).then do |result|

11

12 case result

13 in { err: ProductRecommendationError => error }

14 Honeybadger.notify(error.message, context: {user:})

15 in { ok: ProductRecommendations => recs }

16 broadcast(:new_recommendations, user:, recs:)

17 end

18 end

19 end

20 end

この例で使用されている Rubyの関数型プログラミングのスタイルは、

F#と Rustの影響を受けています。この手法についての詳細は、私の友人

である Chad WooleyによるGitLabでの説明で読むことができます。

この例では、ProductRecommendationWorkerはユーザーを入力として受け取り、値オ

ブジェクトを関数型のステップのチェーンに渡すことでパーソナライズされた商品レ

コメンデーションを生成します。各ステップを詳しく見ていきましょう：

1. ValidateUser.validate：このステップでは、ユーザーが有効で、パーソナライ

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

ワーカーの群れ 90

ズされたレコメンデーションを受け取る資格があることを確認します。ユーザー

が存在し、アクティブで、レコメンデーション生成に必要なデータが利用可能か

どうかをチェックします。バリデーションが失敗した場合、エラー結果が返され、

チェーンはショートサーキットされます。

2. AnalyzeCurrentSession.analyze：ユーザーが有効な場合、このステップでは

コンテキスト情報を収集するためにユーザーの現在のブラウジングセッション

を分析します。閲覧した商品、検索クエリ、カートの内容など、ユーザーの最近

のインタラクションを確認し、現在の興味や意図を理解します。

3. CollaborativeFilter.filter：このステップでは、_類似ユーザーの行動_を使

用して、協調フィルタリング技術を適用し、ユーザーが興味を持ちそうな商品を

特定します。購入履歴、評価、ユーザー・アイテム間のインタラクションなどの要

因を考慮して、候補となるレコメンデーションのセットを生成します。

4. ContentBasedFilter.filter：このステップでは、コンテンツベースフィルタリン

グを適用して、候補となるレコメンデーションをさらに絞り込みます。候補商品の

属性や特徴を_ユーザーの好みや履歴データ_と比較し、最も関連性の高いア

イテムを選択します。

5. ProductSelector.select：最後に、このステップでは、関連性スコア、人気度、

その他のビジネスルールなどの事前に定義された基準に基づいて、フィルタリ

ングされたレコメンデーションから上位 N個の商品を選択します。選択された

商品が最終的なパーソナライズされたレコメンデーションとして返されます。

ここで関数型 Rubyプログラミングスタイルを使用する利点は、これらのステップを明

確で簡潔な方法でチェーンできることです。各ステップは特定のタスクに焦点を当

て、成功（ok）またはエラー（err）のいずれかのResultオブジェクトを返します。いず

れかのステップでエラーが発生した場合、チェーンはショートサーキットされ、エラー

が最終結果に伝播されます。

最後のcase 文では、最終結果に対してパターンマッチングを行います。結果

がエラー（ProductRecommendationError）の場合、Honeybadgerのようなツールを

使用してモニタリングとデバッグのためにエラーをログに記録します。結果

ワーカーの群れ 91

が成功（ProductRecommendations）の場合、Wisperパブ/サブライブラリを使用し

て:new_recommendations イベントをブロードキャストし、ユーザーと生成されたレコメ

ンデーションを渡します。

関数型プログラミング技術を活用することで、モジュール化され保守性の高い商品

レコメンデーションワーカーを作成できます。各ステップは自己完結しており、全体の

流れに影響を与えることなく、容易にテスト、修正、または置き換えが可能です。パタ

ーンマッチングとResult クラスの使用により、エラーを適切に処理し、いずれかのス

テップで問題が発生した場合にワーカーが早期に失敗することを保証します。

もちろん、これは簡略化された例であり、実際のシナリオでは、e コマースプラットフォ

ームとの統合、エッジケースの処理、さらにはレコメンデーションアルゴリズムの実装

にも取り組む必要があります。ただし、問題をより小さなステップに分解し、関数型プ

ログラミング技術を活用するという核となる原則は同じです。

不正検知

以下は、同じ Railway Oriented Programming (ROP)スタイルを使用して Rubyで不正

検知ワーカーを実装する簡略化された例です：

1 class FraudDetectionWorker

2 include Wisper::Publisher

3

4 def call(transaction)

5 Result.ok(FraudDetection.new(transaction))

6 .and_then(ValidateTransaction.method(:validate))

7 .map(AnalyzeTransactionPatterns.method(:analyze))

8 .map(CheckCustomerHistory.method(:check))

9 .map(EvaluateRiskFactors.method(:evaluate))

10 .map(DetermineFraudProbability.method(:determine)).then do |result|

11

ワーカーの群れ 92

12 case result

13 in { err: FraudDetectionError => error }

14 Honeybadger.notify(error.message, context: {transaction:})

15 in { ok: FraudDetection => fraud } }

16 if fraud.high_risk?

17 broadcast(:high_risk_transaction, transaction:, fraud:)

18 else

19 broadcast(:low_risk_transaction, transaction:)

20 end

21 end

22 end

23 end

24 end

FraudDetectionクラスは、特定のトランザクションに対する不正検知状態をカプセル

化した_値オブジェクト_です。様々なリスク要因に基づいてトランザクションに関連す

る不正のリスクを分析し評価するための構造化された方法を提供します。

1 class FraudDetection

2 RISK_THRESHOLD = 0.8

3

4 attr_accessor :transaction, :risk_factors

5

6 def initialize(transaction)

7 self.transaction = transaction

8 self.risk_factors = []

9 end

10

11 def add_risk_factor(description:, probability:)

12 case { description:, probability: }

ワーカーの群れ 93

13 in { description: String => desc, probability: Float => prob }

14 risk_factors << { desc => prob }

15 else

16 raise ArgumentError, "Risk factor arguments should be string and float"

17 end

18 end

19

20 def high_risk?

21 fraud_probability > RISK_THRESHOLD

22 end

23

24 private

25

26 def fraud_probability

27 risk_factors.values.sum

28 end

29 end

FraudDetection クラスは以下の属性を持ちます：

• transaction：不正分析対象のトランザクションへの参照。

• risk_factors：トランザクションに関連するリスク要因を格納する配列。各リス

ク要因はハッシュとして表現され、キーはリスク要因の説明、値はそのリスク要

因に関連する不正の確率です。

add_risk_factor メソッドは、risk_factors配列にリスク要因を追加することができ

ます。このメソッドは 2 つのパラメータを受け取ります：リスク要因を説明する文字

列のdescription と、そのリスク要因に関連する不正の確率を表す浮動小数点数

のprobabilityです。簡単な型チェックにはcase..in条件文を使用します。

ワーカーの群れ 94

チェーンの最後で確認されるhigh_risk? メソッドは、（すべてのリスク要因の確率を

合計して計算される）fraud_probability をRISK_THRESHOLD と比較する述語メソッド

です。

FraudDetection クラスは、トランザクションの不正検知を管理するためのクリーンで

カプセル化された方法を提供します。複数のリスク要因をそれぞれの説明と確率と

ともに追加することができ、計算された不正の確率に基づいてトランザクションが高

リスクとみなされるかどうかを判断するメソッドを提供します。このクラスは、より大規

模な不正検知システムに容易に統合することができ、異なるコンポーネントが協力し

て不正なトランザクションのリスクを評価し、軽減することができます。

最 後 に、 こ れ は AI を 使 用 し た プ ロ グ ラ ミ ン グ に 関 す る 本 で す

の で、 私 のRaixラ イ ブ ラ リ のChatCompletion モ ジ ュ ー ル を 利 用 し

たCheckCustomerHistoryクラスの実装例を示します：

1 class CheckCustomerHistory

2 include Raix::ChatCompletion

3

4 attr_accessor :fraud_detection

5

6 INSTRUCTION = <<~END

7 You are an AI assistant tasked with checking a customer's transaction

8 history for potential fraud indicators. Given the current transaction

9 and the customer's past transactions, analyze the data to identify any

10 suspicious patterns or anomalies.

11

12 Consider factors such as the frequency of transactions, transaction

13 amounts, geographical locations, and any deviations from the customer's

14 typical behavior to generate a probability score as a float in the range

15 of 0 to 1 (with 1 being absolute certainty of fraud).

16

https://github.com/OlympiaAI/raix-rails

ワーカーの群れ 95

17 Output the results of your analysis, highlighting any red flags or areas

18 of concern in the following JSON format:

19

20 { description: <Summary of your findings>, probability: <Float> }

21 END

22

23 def self.check(fraud_detection)

24 new(fraud_detection).call

25 end

26

27 def call

28 chat_completion(json: true).tap do |result|

29 fraud_detection.add_risk_factor(**result)

30 end

31 Result.ok(fraud_detection)

32 rescue StandardError => e

33 Result.err(FraudDetectionError.new(e))

34 end

35

36 private

37

38 def initialize(fraud_detection)

39 self.fraud_detection = fraud_detection

40 end

41

42 def transcript

43 tx_history = fraud_detection.transaction.user.tx_history

44 [

45 { system: INSTRUCTION },

ワーカーの群れ 96

46 { user: "Transaction history: #{tx_history.to_json}" },

47 { assistant: "OK. Please provide the current transaction." },

48 { user: "Current transaction: #{fraud_detection.transaction.to_json}" }

49]

50 end

51 end

この例では、CheckCustomerHistoryがINSTRUCTION定数を定義し、AIモデルに対し

て、システムディレクティブを通じて顧客の取引履歴における潜在的な不正指標を分

析する具体的な指示を提供します。

self.check メ ソ ッ ド は、fraud_detection オ ブ ジ ェ ク ト を 使 用 し

てCheckCustomerHistory の新しいインスタンスを初期化し、顧客履歴分析を

実行するためにcall メソッドを呼び出すクラスメソッドです。

call メソッド内では、顧客の取引履歴が取得され、AIモデルに渡されるトランスクリ

プトに整形されます。AIモデルは提供された指示に基づいて取引履歴を分析し、そ

の結果の要約を返します。

これらの結果はfraud_detection オブジェクトに追加され、更新されたfraud_-

detectionオブジェクトが成功したResult として返されます。

ChatCompletionモジュールを活用することで、CheckCustomerHistoryクラスは AIの

能力を利用して顧客の取引履歴を分析し、潜在的な不正指標を特定することができ

ます。これにより、AIモデルが新しいパターンや異常を学習し、時間とともに適応でき

るため、より高度で適応性のある不正検知技術が可能になります。

更新されたFraudDetectionWorker とCheckCustomerHistory クラスは、AI ワーカーが

シームレスに統合され、インテリジェントな分析と意思決定能力により不正検知プロ

セスを強化する方法を示しています。

ワーカーの群れ 97

顧客感情分析

以下に、顧客感情分析ワーカーを実装する方法の別の例を示します。この時点でこ

のプログラミングスタイルの要点を理解されているはずなので、説明は簡潔にとどめ

ます：

1 class CustomerSentimentAnalysisWorker

2 include Wisper::Publisher

3

4 def call(feedback)

5 Result.ok(feedback)

6 .and_then(PreprocessFeedback.method(:preprocess))

7 .map(PerformSentimentAnalysis.method(:analyze))

8 .map(ExtractKeyPhrases.method(:extract))

9 .map(IdentifyTrends.method(:identify))

10 .map(GenerateInsights.method(:generate)).then do |result|

11

12 case result

13 in { err: SentimentAnalysisError => error }

14 Honeybadger.notify(error.message, context: {feedback:})

15 in { ok: SentimentAnalysisResult => result }

16 broadcast(:sentiment_analysis_completed, result)

17 end

18 end

19 end

20 end

この例では、CustomerSentimentAnalysisWorkerの手順には、フィードバックの前処

理（ノイズの除去、トークン化など）、全体的な感情（ポジティブ、ネガティブ、中立）

ワーカーの群れ 98

を判断するための感情分析の実行、重要なフレーズやトピックの抽出、傾向やパター

ンの特定、そして分析に基づく実用的な洞察の生成が含まれます。

ヘルスケアでの応用

ヘルスケア分野では、AI ワーカーが医療専門家や研究者のさまざまなタスクを支援

し、患者のアウトカム改善や医学的発見の加速化につながっています。以下にいくつ

かの例を示します：

患者受付

AI ワーカーは、様々なタスクを自動化し、インテリジェントな支援を提供することで、

患者受付プロセスを効率化できます。

予約スケジューリング： AIワーカーは、患者の希望、空き状況、医療ニーズの緊急性

を理解しながら、予約スケジューリングを処理できます。会話型インターフェースを通

じて患者とやり取りし、患者の要件と医療提供者の空き状況に基づいて最適な予約

枠を見つけることができます。

病歴収集：患者受付時、AI ワーカーは患者の病歴の収集と文書化を支援できま

す。対話型の会話を通じて、過去の病状、服用薬、アレルギー、家族歴について関連

する質問をすることができます。AI ワーカーは自然言語処理技術を使用して収集し

た情報を解釈し構造化し、電子カルテに正確に記録されるようにします。

症状評価と層別化： AI ワーカーは、患者の現在の症状、期間、重症度、関連する要

因について質問することで、初期症状評価を実施できます。医学知識ベースと機械

学習モデルを活用することで、これらのワーカーは提供された情報を分析し、予備的

な鑑別診断を生成したり、医療提供者との相談予約や自己管理措置などの適切な

次のステップを推奨したりできます。

保険確認： AI ワーカーは患者受付時の保険確認を支援できます。患者の保険情報

を収集し、APIやWebサービスを通じて保険会社と通信し、補償適格性と給付内容

ワーカーの群れ 99

を確認できます。この自動化により、管理負担を軽減し、正確な情報の取得を確保し

ながら、保険確認プロセスを効率化します。

患者教育と指示： AIワーカーは、特定の病状や予定される処置に基づいて、関連す

る教育資料と指示を患者に提供できます。パーソナライズされたコンテンツを提供し、

一般的な質問に答え、予約前の準備、投薬指示、または治療後のケアに関するガイ

ダンスを提供できます。これにより、医療の過程全体を通じて患者の理解度と参加度

を高めることができます。

AI ワーカーを患者受付に活用することで、医療機関は効率性を向上させ、待ち時間

を短縮し、全体的な患者体験を改善できます。これらのワーカーは日常的なタスクを

処理し、正確な情報を収集し、パーソナライズされた支援を提供することで、医療専

門家が患者への質の高いケアの提供に集中できるようにします。

患者リスク評価

AI ワーカーは、様々なデータソースを分析し、高度な分析手法を適用することで、患

者リスク評価において重要な役割を果たすことができます。

データ統合： AI ワーカーは、電子カルテ、医用画像、検査結果、ウェアラブルデバイ

ス、健康の社会的決定要因など、複数のソースから患者データを収集し、理解するこ

とができます。この情報を包括的な患者プロファイルに統合することで、AI ワーカー

は患者の健康状態とリスク要因の全体像を提供できます。

リスク層別化： AI ワーカーは予測モデルを使用して、個々の特性と健康データに基

づいて患者を異なるリスクカテゴリーに層別化できます。このリスク層別化により、医

療提供者はより即座の注意や介入を必要とする患者の優先順位付けが可能になり

ます。例えば、特定の状態について高リスクと特定された患者には、より綿密なモニ

タリング、予防措置、または早期介入のためのフラグを立てることができます。

パーソナライズされたリスクプロファイル： AI ワーカーは、各患者のリスクスコアに寄

与する特定の要因を強調した、パーソナライズされたリスクプロファイルを生成でき

ます。これらのプロファイルには、患者のライフスタイル、遺伝的素因、環境要因、健

ワーカーの群れ 100

康の社会的決定要因に関する洞察が含まれます。リスク要因の詳細な内訳を提供

することで、AI ワーカーは医療提供者が個々の患者のニーズに合わせて予防戦略

と治療計画をカスタマイズするのを支援できます。

継続的リスクモニタリング： AI ワーカーは患者データを継続的にモニタリングし、リ

アルタイムでリスク評価を更新することができます。 バイタルサインの変化、検査結

果、服薬順守状況など、新しい情報が利用可能になると、AI ワーカーはリスクスコア

を再計算し、重要な変化があれば医療提供者に警告を発します。このプロアクティブ

なモニタリングにより、タイムリーな介入と患者ケア計画の調整が可能になります。

臨床意思決定支援： AI ワーカーはリスク評価の結果を臨床意思決定支援システム

に統合し、医療提供者にエビデンスに基づく推奨事項とアラートを提供することがで

きます。 例えば、特定の状態に対する患者のリスクスコアが一定の閾値を超えた場

合、AI ワーカーは臨床ガイドラインとベストプラクティスに基づいて、特定の診断検

査、予防措置、または治療選択肢を検討するよう医療提供者に促すことができます。

これらのワーカーは膨大な患者データを処理し、高度な分析を適用し、臨床意思決

定を支援するための実用的な洞察を生成することができます。これにより最終的に、

患者のアウトカムの改善、医療費の削減、そして集団健康管理の向上につながりま

す。

ワーカーの群れ 101

プロセスマネージャーとしての AIワーカー

AI 駆動型アプリケーションのコンテキストにおいて、ワーカーはプロセスマネー

ジャーとして機能するように設計することができます。 これは Gregor Hohpeによる

「Enterprise Integration Patterns」で説明されているものです。プロセスマネージャー

は、プロセスの状態を維持し、中間結果に基づいて次の処理ステップを決定する中

心的なコンポーネントです。

AI ワーカーがプロセスマネージャーとして動作する場合、プロセスを初期化する着信

メッセージを受け取ります。これはトリガーメッセージとして知られています。 その後、

AI ワーカーはプロセス実行の状態（会話トランスクリプトとして）を維持し、順次また

は並列に実装できるツール機能として実装された一連の処理ステップを通じて、自

身の判断でメッセージを処理します。

GPT-4のような関数を並列実行できる AIモデルのクラスを使用している

場合、ワーカーは複数のステップを同時に実行できます。正直なところ、

私自身はそれを試したことがなく、結果は場合によって異なる可能性が

あると直感的に感じています。

ワーカーの群れ 102

各個別の処理ステップの後、制御は AIワーカーに戻され、現在の状態と得られた結

果に基づいて次の処理ステップを決定することができます。

トリガーメッセージを保存する

私の経験では、トリガーメッセージをデータベースバックドオブジェクトとして実装す

ることが賢明です。 そうすることで、各プロセスインスタンスは一意のプライマリキー

で識別され、AIの会話トランスクリプトを含む実行に関連する状態を保存する場所

が提供されます。

例えば、以下は OlympiaのAccountChangeモデルクラスを簡略化したものです。これ

はユーザーアカウントの変更要求を表しています。

1 # == Schema Information

2 #

3 # Table name: account_changes

4 #

5 # id :uuid not null, primary key

6 # description :string

7 # state :string not null

8 # transcript :jsonb

9 # created_at :datetime not null

10 # updated_at :datetime not null

11 # account_id :uuid not null

12 #

13 # Indexes

14 #

15 # index_account_changes_on_account_id (account_id)

16 #

17 # Foreign Keys

18 #

ワーカーの群れ 103

19 # fk_rails_... (account_id => accounts.id)

20 #

21 class AccountChange < ApplicationRecord

22 belongs_to :account

23

24 validates :description, presence: true

25

26 after_commit -> {

27 broadcast(:account_change_requested, self)

28 }, on: :create

29

30 state_machine initial: :requested do

31 event :completed do

32 transition all => :complete

33 end

34 event :failed do

35 transition all => :requires_human_review

36 end

37 end

38 end

AccountChange クラスは、アカウント変更要求を処理するプロセスを開始するトリガー

メッセージとして機能します。create トランザクションのコミットが完了した後、Olympia

のWisperベースのパブ/サブサブシステムにブロードキャストされる様子に注目してく

ださい。

このようにトリガーメッセージをデータベースに保存することで、各アカウント変更要

求の永続的な記録が提供されます。AccountChange クラスの各インスタンスには一

意のプライマリキーが割り当てられ、個々の要求を容易に識別して追跡することがで

きます。これは特に監査ログの目的に有用で、システムがすべてのアカウント変更の

https://github.com/krisleech/wisper

ワーカーの群れ 104

履歴（要求された時期、要求された変更内容、各要求の現在の状態など）を維持す

ることを可能にします。

この例では、AccountChange クラスには、要求された変更の詳細を記録す

るdescription、要求の現在の状態（例：requested、complete、requires_human_review）

を表すstate、要求に関連する AIの会話記録を保存するtranscriptなどのフィール

ドが含まれています。description フィールドは、AI との最初のチャット完了を開始す

るために使用される実際のプロンプトです。このデータを保存することで、有用なコン

テキストが提供され、アカウント変更プロセスのより良い追跡と分析が可能になりま

す。

ト リ ガ ー メ ッ セ ー ジ を デ ー タ ベ ー ス に 保 存 す る こ と で、

堅牢なエラー処理とリカバリーが可能になります。 ア カ ウ ン ト変更要求の処理

中にエラーが発生した場合、システムは要求を失敗としてマークし、人間による介入

が必要な状態に移行します。これにより、要求が失われたり忘れられたりすることが

なく、問題を適切に対処して解決することができます。

プロセスマネージャーとしての AI ワーカーは、制御の中心点を提供し、強力なプロセ

スレポートとデバッグ機能を可能にします。ただし、アプリケーション内のすべてのワ

ークフローシナリオで AI ワーカーをプロセスマネージャーとして使用することは、過

剰である可能性があることに注意が必要です。

アプリケーションアーキテクチャへの AIワーカーの

統合

アプリケーションアーキテクチャに AI ワーカーを組み込む際には、AI ワーカーと他の

アプリケーションコンポーネント間のスムーズな統合と効果的な通信を確保するため

に、いくつかの技術的な考慮事項に対処する必要があります。このセクションでは、

それらのインターフェースの設計、データフローの処理、AIワーカーのライフサイクル

管理における重要な側面について考察します。

ワーカーの群れ 105

明確なインターフェースと通信プロトコルの設計

AI ワーカーと他のアプリケーションコンポーネント間のシームレスな統合を実現する

ために、明確なインターフェースと通信プロトコルを定義することが重要です。以下の

アプローチを検討してください：

APIベースの統合: AIワーカーの機能を、RESTfulエンドポイントや GraphQLスキーマな

どの明確に定義された API を通じて公開します。これにより、他のコンポーネントは

標準的な HTTP リクエストとレスポンスを使用して AI ワーカーと対話することができ

ます。APIベースの統合により、AI ワーカーと消費コンポーネント間の明確な契約が

提供され、統合ポイントの開発、テスト、保守が容易になります。

メ ッ セ ー ジ ベ ー ス の 通 信: メ ッ セ ー ジ キ ュ ー や パ ブ リ ッ シ ュ-

サブスクライブシステムなどのメッセージベースの通信パターンを実装し、AI

ワーカーと他のコンポーネント間の非同期的な対話を可能にします。このアプローチ

により、AI ワーカーをアプリケーションの他の部分から分離し、より良いスケーラビリ

ティ、フォールトトレランス、疎結合を実現できます。メッセージベースの通信は、AI ワ

ーカーによる処理が時間やリソースを大量に消費する場合に特に有用で、AI ワーカ

ーのタスク完了を待つことなく、アプリケーションの他の部分が実行を継続すること

を可能にします。

イベント駆動アーキテクチャ:特定の条件が満たされたときに AI ワーカーを起動するイベントとトリガーを

中心にシステムを設計します。AI ワーカーは関連するイベントをサブスクライブし、そ

れに応じて反応し、イベントが発生したときに指定されたタスクを実行することができ

ます。イベント駆動アーキテクチャにより、リアルタイム処理が可能になり、AI ワーカー

をオンデマンドで呼び出すことができ、不要なリソース消費を削減できます。このアプ

ローチは、AI ワーカーが特定のアクションやアプリケーション状態の変更に応答する

必要があるシナリオに適しています。

ワーカーの群れ 106

データフローと同期の処理

アプリケーションに AI ワーカーを統合する際には、AI ワーカーと他のコンポーネント

間のスムーズなデータフローとデータの一貫性を確保することが重要です。以下の

側面を考慮してください：

データの準備：AI ワーカーにデータを送る前に、入力データのクリーニング、フォーマ

ット、変換などの様々なデータ準備タスクを実行する必要がある場合があります。 AI

ワーカーが効果的に処理できるようにするだけでなく、ワーカーにとって無意味、ある

いは最悪の場合は注意を散らすような情報にトークンを浪費しないようにすることも

重要です。データ準備には、ノイズの除去、欠損値の処理、データ型の変換などのタ

スクが含まれる場合があります。

データの永続化：AI ワーカーとの間で流れるデータをどのように保存し、

永続化するかを検討する必要があります。データ量、クエリパターン、スケーラビ

リティなどの要因を考慮してください。監査やデバッグのために AIの「思考プロセス」

を反映した記録を永続化する必要があるのか、それとも結果の記録だけで十分なの

でしょうか？

データの取得：ワーカーが必要とするデータの取得には、データベースのクエリ、ファ

イルの読み取り、外部 APIへのアクセスが含まれる場合があります。レイテンシーと、

AI ワーカーが最新のデータにアクセスする方法を考慮してください。データベースへ

のフルアクセスが必要なのか、それとも実行する作業に応じてアクセス範囲を狭く定

義すべきなのでしょうか？スケーリングについてはどうでしょうか？パフォーマンスを

向上させ、基盤となるデータソースへの負荷を軽減するためのキャッシュメカニズム

を検討してください。

データ同期：AI ワーカーを含む複数のコンポーネントが共有データにアクセスして変

更する場合、データの一貫性を維持するための適切な同期メカニズムを実装するこ

とが重要です。楽観的ロックや悲観的ロックなどのデータベースロック戦略は、競合

を防ぎデータの整合性を確保するのに役立ちます。関連するデータ操作をグループ

化し、ACID特性（原子性、一貫性、分離性、永続性）を維持するためのトランザクショ

ワーカーの群れ 107

ン管理技術を実装してください。

エラー処理とリカバリー： デ ー タ フ ロ ー プ ロ セ ス 中 に 発 生 す る 可 能 性

の あ る デ ー タ 関 連 の 問題 に 対 処 す る た め、 堅 牢 な エ ラ ー 処 理 と リ

カ バ リ ー メ カ ニ ズ ム を 実 装 し て く だ さ い。 例 外 を 適 切 に 処 理 し、 デ

バ ッ グ に 役 立 つ 意味 の あ る エ ラ ー メ ッ セ ー ジ を 提 供 し て く だ さ い。

一時的な障害やネットワークの中断に対処するためのリトライメカニズムとフォールバック戦略を

実装してください。データの破損や損失が発生した場合のデータ回復と復元の明確

な手順を定義してください。

データフローと同期メカニズムを慎重に設計・実装することで、AI ワーカーが正確で

一貫性のある最新のデータにアクセスできるようになります。これにより、タスクを効

果的に実行し、信頼性の高い結果を生成することが可能になります。

AIワーカーのライフサイクル管理

AI ワーカーの初期化と設定のための標準化されたプロセスを開発してください。モ

デル名、システム指示、関数定義などの設定を標準化するフレームワークを私は好ん

で使用しています。デプロイメントとスケーリングを容易にするため、初期化プロセス

を自動化し再現可能にしてください。

AI ワーカーの健全性とパフォーマンスを追跡するための包括的なモニタリングとロギングメカニズムを

実装してください。リソース使用率、処理時間、エラー率、スループットなどのメトリク

スを収集してください。ELKスタック（Elasticsearch、Logstash、Kibana）のような集中型

ロギングシステムを使用して、複数の AI ワーカーからのログを集約・分析してくださ

い。

AI ワーカーアーキテクチャにフォールトトレランスとレジリエンスを組み込んでくださ

い。障害や例外を適切に処理するためのエラー処理とリカバリーメカニズムを実装し

てください。大規模言語モデルは依然として最先端の技術であり、プロバイダーは予

期せぬタイミングでダウンすることがよくあります。カスケード障害を防ぐためにリトラ

イメカニズムとサーキットブレーカーを使用してください。

ワーカーの群れ 108

AIワーカーの構成性とオーケストレーション

AI ワーカーアーキテクチャの主な利点の 1つは、その構成性にあります。これにより、

複雑な問題を解決するために複数の AI ワーカーを組み合わせてオーケストレーショ

ンすることが可能になります。大規模なタスクを、専門の AI ワーカーが処理する小さ

な管理可能なサブタスクに分解することで、強力で柔軟なシステムを作成できます。

このセクションでは、「多数の」AIワーカーを構成およびオーケストレーションするため

の様々なアプローチを探ります。

マルチステップワークフローのための AIワーカーのチェーン化

多くのシナリオでは、複雑なタスクを一連の順次ステップに分解でき、1つの AI ワー

カーの出力が次のワーカーの入力となります。この AI ワーカーのチェーン化により、

マルチステップワークフローまたはパイプラインが作成されます。チェーン内の各 AI

ワーカーは特定のサブタスクに焦点を当て、最終的な出力はすべてのワーカーの協

調した努力の結果となります。

Ruby on Railsアプリケーションでユーザー生成コンテンツを処理する例を考えてみま

しょう。以下のステップを含むワークフローは、実際の使用ケースではこのように分解

するほど単純ではないかもしれませんが、例を理解しやすくするためのものです：

1. テキストクリーンアップ： HTMLタグの削除、テキストの小文字化、Unicodeの正規

化を担当する AI ワーカー。

2. 言語検出：クリーンアップされたテキストの言語を識別する AI ワーカー。

3. 感情分析：検出された言語に基づいてテキストの感情（ポジティブ、ネガティブ、ま

たはニュートラル）を判断する AI ワーカー。

4. コンテンツカテゴリ分類：自然言語処理技術を使用してテキストを事前定義され

たカテゴリに分類する AI ワーカー。

以下は、Ruby を使用してこれらの AI ワーカーをチェーン化する非常に簡略化され

た例です：

ワーカーの群れ 109

1 class ContentProcessor

2 def initialize(text)

3 @text = text

4 end

5

6 def process

7 cleaned_text = TextCleanupWorker.new(@text).call

8 language = LanguageDetectionWorker.new(cleaned_text).call

9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

10 category = CategorizationWorker.new(cleaned_text, language).call

11

12 { cleaned_text:, language:, sentiment:, category: }

13 end

14 end

この例では、ContentProcessorクラスが生のテキストで初期化され、process メソッド

内で AI ワーカーを連鎖させています。各 AI ワーカーは特定のタスクを実行し、その

結果をチェーン内の次のワーカーに渡します。最終的な出力は、クリーニングされた

テキスト、検出された言語、感情分析結果、およびコンテンツカテゴリを含むハッシュ

となります。

独立した AIワーカーの並列処理

前の例では、AI ワーカーが順次連鎖されており、各ワーカーがテキストを処理してそ

の結果を次のワーカーに渡していました。しかし、同じ入力に対して独立して動作で

きる複数の AIワーカーがある場合、それらを並列で処理することでワークフローを最

適化できます。

このシナ リオでは、TextCleanupWorker に よ っ てテキス トの ク リ ーニング

が 実 行 さ れ た 後、LanguageDetectionWorker、SentimentAnalysisWorker、 お よ

びCategorizationWorkerは、すべてクリーニングされたテキストを独立して処理でき

ワーカーの群れ 110

ます。これらのワーカーを並列で実行することで、全体の処理時間を潜在的に削減

し、ワークフローの効率を改善できます。

Rubyで並列処理を実現するには、スレッドや非同期プログラミングなどの並行性技

術を活用できます。以下は、スレッドを使用して最後の 3つのワーカーを並列で処理

するようにContentProcessor クラスを修正する例です：

1 require 'concurrent'

2

3 class ContentProcessor

4 def initialize(text)

5 @text = text

6 end

7

8 def process

9 cleaned_text = TextCleanupWorker.new(@text).call

10

11 language_future = Concurrent::Future.execute do

12 LanguageDetectionWorker.new(cleaned_text).call

13 end

14

15 sentiment_future = Concurrent::Future.execute do

16 SentimentAnalysisWorker.new(cleaned_text).call

17 end

18

19 category_future = Concurrent::Future.execute do

20 CategorizationWorker.new(cleaned_text).call

21 end

22

23 language = language_future.value

ワーカーの群れ 111

24 sentiment = sentiment_future.value

25 category = category_future.value

26

27 { cleaned_text:, language:, sentiment:, category: }

28 end

29 end

この最適化されたバージョンでは、concurrent-ruby ライブラリを使用して、独立し

た AI ワーカーそれぞれに対してConcurrent::Future オブジェクトを作成します。

Futureは、別のスレッドで非同期に実行される処理を表します。

テキストのクリーンアップステップの後、3つのFutureオブジェクト（language_future、

sentiment_future、category_future）を作成します。各Futureは、対応する AI ワー

カー（LanguageDetectionWorker、SentimentAnalysisWorker、CategorizationWorker）

を別のスレッドで実行し、cleaned_text を入力として渡します。

各Futureのvalue メソッドを呼び出すことで、処理の完了を待ち、結果を取得します。

value メソッドは結果が利用可能になるまでブロックするため、すべての並列ワーカ

ーの処理が完了してから次の処理に進むことが保証されます。

最後に、元の例と同様に、クリーンアップされたテキストと並列ワーカーからの結果を

含む出力ハッシュを構築します。

独立した AI ワーカーを並列に処理することで、逐次実行と比較して全体の処理時

間を潜在的に削減できます。この最適化は、特に時間のかかるタスクや大量のデー

タを処理する場合に有効です。

ただし、実際のパフォーマンス向上は、各ワーカーの複雑さ、利用可能なシステムリソ

ース、スレッド管理のオーバーヘッドなど、さまざまな要因に依存することに注意が必

要です。特定のユースケースに最適な並列度を決定するために、常にベンチマークと

プロファイリングを行うことをお勧めします。

さらに、並列処理を実装する際は、ワーカー間の共有リソースや依存関係に注意を払

う必要があります。ワーカーが競合や競合状態なしに独立して動作できることを確認

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

ワーカーの群れ 112

してください。依存関係や共有リソースがある場合は、データの整合性を維持し、デ

ッドロックや不整合な結果などの問題を回避するために、適切な同期メカニズムを実

装する必要があるかもしれません。

Rubyのグローバルインタプリタロックと非同期処理

Rubyで非同期のスレッドベース処理を考える際には、Rubyのグローバルインタプ

リタロック（GIL）の影響を理解することが重要です。

GILは、マルチコアプロセッサ上であっても、一度に 1つのスレッドのみが Ruby コ

ードを実行できるようにする Ruby インタプリタのメカニズムです。つまり、Rubyプ

ロセス内で複数のスレッドを作成して管理できますが、任意の時点で実際に Ruby

コードを実行できるのは 1つのスレッドだけということです。

GILは、Ruby インタプリタの実装を簡素化し、Rubyの内部データ構造のスレッド

セーフティを提供するように設計されています。ただし、これによって Rubyコードの

真の並列実行の可能性が制限されます。

concurrent-rubyライブラリや組み込みのThreadクラスなどを使用して Rubyでス

レッドを使用する場合、スレッドは GILの制約を受けます。GILは各スレッドに短時

間のタイムスライスを与えて Ruby コードを実行し、その後別のスレッドに切り替え

ることで、並行実行の錯覚を作り出します。

しかし、GILの影響により、Ruby コードの実際の実行は逐次的なままです。1つの

スレッドが Ruby コードを実行している間、他のスレッドは実質的に一時停止し、

GIL を獲得してコードを実行する順番を待っています。

これは、Rubyのスレッドベースの非同期処理が、外部 APIのレスポンス待ち（サ

ードパーティがホストする大規模言語モデルなど）やファイル I/O操作などの I/O

制約のタスクに最も効果的であることを意味します。スレッドが I/O操作に遭遇す

ると、GIL を解放でき、I/Oの完了を待つ間に他のスレッドが実行できます。

一方、集中的な計算や長時間実行される AI ワーカー処理などの CPU制約のタ

ワーカーの群れ 113

スクでは、GILがスレッドベースの並列処理による潜在的なパフォーマンス向上を

制限する可能性があります。一度に 1つのスレッドしか Ruby コードを実行できな

いため、全体の実行時間は逐次処理と比較して大幅に短縮されない可能性があ

ります。

Rubyで CPU制約のあるタスクの真の並列実行を実現するには、以下のような代

替アプローチを検討する必要があるかもしれません：

• 複数の CPU コアで実行される複数の Rubyプロセスを使用した、プロセス

ベースの並列処理を活用する。

• Cや Rustなどの GILのない言語へのネイティブ拡張機能やインターフェー

スを提供する外部ライブラリやフレームワークを活用する。,

• 複数のマシンやプロセス間でタスクを分散させるための分散コンピューテ

ィングフレームワークやメッセージキューを利用する。

Rubyで非同期処理を設計・実装する際は、タスクの性質と GIL による制約を慎

重に考慮することが重要です。スレッドベースの非同期処理は I/O制約のあるタ

スクには利点をもたらす可能性がありますが、GILの制約により、CPU制約のある

タスクでは大幅なパフォーマンス向上が見込めない可能性があります。

精度向上のためのアンサンブル手法

アンサンブル手法は、複数の AI ワーカーの出力を組み合わせることで、システム全

体の精度や堅牢性を向上させる手法です。単一の AI ワーカーに依存する代わりに、

アンサンブル手法は複数のワーカーの集合知を活用して、より適切な判断を行いま

す。

ワーカーの群れ 114

アンサンブルは、ワークフローの異なる部分が異なる AIモデルで最適に

動作する場合に特に重要です。これは思われている以上に一般的なケ

ースです。GPT-4のような強力なモデルは、機能の劣るオープンソースの

選択肢と比べて非常に高価であり、アプリケーションのワークフローの全

ステップで必要とされるわけではありません。

一般的なアンサンブル手法の一つに多数決方式があります。これは複数の AI ワー

カーが独立して同じ入力を処理し、最終的な出力を多数派の合意によって決定する

方法です。このアプローチにより、個々のワーカーのエラーの影響を軽減し、システム

全体の信頼性を向上させることができます。

例として、感情分析のための 3つの AI ワーカーがあり、それぞれが異なるモデルを

使用するか、異なるコンテキストを提供されている場合を考えてみましょう。多数決方

式を使用してそれらの出力を組み合わせることで、最終的な感情予測を決定するこ

とができます。

1 class SentimentAnalysisEnsemble

2 def initialize(text)

3 @text = text

4 end

5

6 def analyze

7 predictions = [

8 SentimentAnalysisWorker1.new(@text).analyze,

9 SentimentAnalysisWorker2.new(@text).analyze,

10 SentimentAnalysisWorker3.new(@text).analyze

11]

12

13 predictions

14 .group_by { |sentiment| sentiment }

15 .max_by { |_, votes| votes.size }

ワーカーの群れ 115

16 .first

17

18 end

19 end

こ の 例 で は、SentimentAnalysisEnsembleクラスはテ キ ス ト で 初 期 化

さ れ、3つの異なる感情分析 AI ワーカーを呼び出します。analyze メ ソ ッ

ド は 各 ワ ー カ ー か ら 予 測 を 収 集 し、group_by とmax_by メ ソ ッ ド

を 使 用 し て 多 数 決 で 感 情 を 判 定 し ま す。 最 終 的 な 出 力 は、

ワーカーのアンサンブルから最も多くの票を獲得した感情となります。

アンサンブルは明らかに、並列処理の実験に時間を費やす価値がある場

合です。

AIワーカーの動的選択と呼び出し

多くの場合、呼び出すべき特定の AI ワーカーは、実行時の条件やユーザー入力に

依存する可能性があります。AI ワーカーの動的選択と呼び出しにより、システムの柔

軟性と適応性が確保されます。

単一の AI ワーカーに多くの機能を詰め込もうとする誘惑に駆られるかも

しれません。多くの関数を持たせ、それらの呼び出し方を説明する複雑な

プロンプトを用意しようとするでしょう。しかし、その誘惑には抗ってくださ

い。私の言葉を信じてください。この章で説明しているアプローチが「多数

のワーカー」と呼ばれる理由の 1つは、より大きな目的のために、それぞ

れが小さな仕事を担当する、特化した多くのワーカーを持つことが望まし

いということを私たちに思い出させるためです。

例えば、異なる AI ワーカーが異なるタイプのユーザークエリを処理する責任を持つチャットボットアプリケーションを考えてみましょう。

ユーザーの入力に基づいて、アプリケーションは適切な AI ワーカーを動的に選択し

てクエリを処理します。

ワーカーの群れ 116

1 class ChatbotController < ApplicationController

2 def process_query

3 query = params[:query]

4 query_type = QueryClassifierWorker.new(query).classify

5

6 case query_type

7 when 'greeting'

8 response = GreetingWorker.new(query).generate_response

9 when 'product_inquiry'

10 response = ProductInquiryWorker.new(query).generate_response

11 when 'order_status'

12 response = OrderStatusWorker.new(query).generate_response

13 else

14 response = DefaultResponseWorker.new(query).generate_response

15 end

16

17 render json: { response: response }

18 end

19 end

この例では、ChatbotControllerがprocess_query アクションを通じてユーザークエ

リを受け取ります。まずQueryClassifierWorker を使用してクエリの種類を判定しま

す。分類されたクエリタイプに基づいて、コントローラーは適切な AI ワーカーを動的

に選択して応答を生成します。この動的な選択により、チャットボットは異なる種類の

クエリを処理し、関連する AI ワーカーに振り分けることができます。

ワーカーの群れ 117

QueryClassifierWorker の 作 業 は 比 較 的 シ ン プ ル で、 多 く

の コ ン テ キ ス ト や 関 数 定 義 を 必 要 と し な い た め、

mistralai/mixtral-8x7b-instruct:nitroのような超高速な小規模 LLM

を使用して実装することができるでしょう。このモデルは多くのタスクで

GPT-4に近い能力を持ち、この執筆時点では、Groqを使用すると驚異的

な 444 トークン/秒のスループットで処理することができます。

従来の自然言語処理と LLMの組み合わせ

大規模言語モデル（LLM）は自然言語処理（NLP）の分野に革命をもたらし、幅広い

タスクにおいて比類のない汎用性とパフォーマンスを提供していますが、すべての問

題に対して最も効率的かつコスト効果の高い解決策とは限りません。多くの場合、従

来の NLP技術と LLM を組み合わせることで、特定の NLPの課題に対してより最適

化された、的確で経済的なアプローチを実現できます。

LLMは、NLPのスイスアーミーナイフのようなものだと考えてください。非常に汎用

的で強力ですが、必ずしもすべての作業に最適なツールとは限りません。コルク抜き

や缶切りのような専用ツールの方が、特定のタスクにはより効果的で効率的な場合

があります。同様に、文書クラスタリング、トピック識別、分類などの従来の NLP技術

は、NLPパイプラインの特定の側面に対してより的確でコスト効果の高いソリューシ

ョンを提供できることが多いのです。

従来の NLP技術の主な利点の 1つは、その計算効率です。単純な統計モデルやル

ールベースのアプローチに基づくこれらの手法は、LLM と比較してはるかに少ない

計算オーバーヘッドで大量のテキストデータを処理できます。これは、類似した記事

のクラスタリングやテキストコレクション内の主要なトピックの識別など、大規模な文

書コーパスの分析と整理を含むタスクに特に適しています。

さらに、従来の NLP技術は、特にドメイン固有のデータセットで訓練された場合、特

定のタスクに対して高い精度と正確性を達成できることが多いです。例えば、サポー

トベクターマシン（SVM）やナイーブベイズなどの従来の機械学習アルゴリズムを使

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

ワーカーの群れ 118

用して適切に調整された文書分類器は、最小限の計算コストで文書を事前定義さ

れたカテゴリに正確に分類できます。

しかし、言語、コンテキスト、推論のより深い理解を必要とするタスクにおいて、LLMは

真価を発揮します。一貫性があり文脈に即したテキストを生成し、質問に答え、長い

文章を要約する能力は、従来の NLP手法では及びません。LLMは、曖昧さ、共参照、

慣用表現などの複雑な言語現象を効果的に処理でき、自然言語生成や理解を必要

とするタスクには不可欠です。

真の力は、従来の NLP技術と LLM を組み合わせてハイブリッドアプローチを作り出

し、両者の長所を活用することにあります。文書の前処理、クラスタリング、トピック抽

出などのタスクに従来の NLP手法を使用することで、テキストデータを効率的に整

理し構造化できます。この構造化された情報を、要約の生成、質問への回答、包括的

なレポートの作成などのより高度なタスクのために LLMに入力することができます。

例えば、大量の個別のトレンド文書に基づいて特定のドメインのトレンドレポートを生

成したい場合を考えてみましょう。大量のテキストを処理するのに計算コストが高く

時間がかかる LLMだけに頼るのではなく、ハイブリッドアプローチを採用することが

できます：

1. トピックモデリング（潜在的ディリクレ配分法など）やクラスタリングアルゴリズ

ム（K平均法など）といった伝統的な自然言語処理技術を使用して、類似した

トレンド文書をグループ化し、コーパス内の主要なテーマやトピックを特定しま

す。

2. クラスタリングされた文書と特定されたトピックを大規模言語モデルに入力し、

その優れた言語理解・生成能力を活用して、各クラスターやトピックの一貫性

のある有益な要約を作成します。

3. 最後に、大規模言語モデルを使用して個別の要約を組み合わせ、最も重要な

トレンドを強調し、集約された情報に基づく洞察と推奨事項を提供する包括的

なトレンドレポートを生成します。

このように伝統的な自然言語処理技術と大規模言語モデルを組み合わせることで、

ワーカーの群れ 119

大量のテキストデータを効率的に処理し、意味のある洞察を抽出し、計算資源とコス

トを最適化しながら高品質なレポートを生成することができます。

自然言語処理プロジェクトに着手する際は、各タスクの具体的な要件と制約を慎重

に評価し、伝統的な自然言語処理手法と大規模言語モデルをどのように組み合わ

せれば最良の結果が得られるかを検討することが重要です。伝統的な技術の効率

性と精度を、大規模言語モデルの汎用性とパワーと組み合わせることで、ユーザー

やステークホルダーに価値を提供する、高度に効果的で経済的な自然言語処理ソリ

ューションを作成することができます。

ツールの使用

AI駆動型アプリケーション開発の分野において、「ツールの使用」または「関数呼び

出し」という概念は、LLMを外部ツール、API、関数、データベース、その他のリソース

に接続することを可能にする強力な手法として台頭してきました。このアプローチに

より、単にテキストを出力するだけでなく、AI コンポーネントとアプリケーションのエコ

システムの他の部分との間でより動的な相互作用が可能になります。この章で検討

するように、ツールの使用により、AIモデルに構造化された方法でデータを生成させ

るオプションも得られます。

ツールの使用とは

ツールの使用、別名関数呼び出しは、開発者が生成プロセス中に LLMが相互作用

できる関数のリストを指定できるようにする手法です。これらのツールは、シンプル

なユーティリティ関数から複雑な APIやデータベースクエリまで多岐にわたります。

ツールの使用 121

LLMにこれらのツールへのアクセスを提供することで、開発者はモデルの機能を拡

張し、外部の知識やアクションを必要とするタスクを実行できるようになります。

図 8. ドキュメントを分析する AI ワーカーの関数定義の例

1 FUNCTION = {

2 name: "save_analysis",

3 description: "Save analysis data for document",

4 parameters: {

5 type: "object",

6 properties: {

7 title: {

8 type: "string",

9 maxLength: 140

10 },

11 summary: {

12 type: "string",

13 description: "comprehensive multi-paragraph summary with

14 overview and list of sections (if applicable)"

15 },

16 tags: {

17 type: "array",

18 items: {

19 type: "string",

20 description: "lowercase tags representing main themes

21 of the document"

22 }

23 }

24 },

25 "required": %w[title summary tags]

26 }

ツールの使用 122

27 }.freeze

ツール使用の背後にある重要な考え方は、LLMにユーザーの入力やタスクに基づい

て適切なツールを動的に選択し実行する能力を与えることです。モデルの事前学習

された知識のみに依存するのではなく、ツール使用によって LLMは外部リソースを

活用し、より正確で関連性が高く、実用的な応答を生成することができます。ツール

使用により、RAG（検索拡張生成）などの技術は、そうでない場合と比べてはるかに

実装が容易になります。

特に断りのない限り、本書では AIモデルにはビルトインのサーバーサイドツール

へのアクセスがないことを前提としています。AIが利用できるツールは、すべて

API リクエストごとにあなたが明示的に宣言する必要があり、AIがその応答でそ

のツールの使用を希望した場合の実行のための準備も含めて宣言する必要があ

ります。

ツール使用の可能性

ツール使用は、AI駆動のアプリケーションに幅広い可能性を開きます。以下に、ツー

ル使用で実現できることの例を示します：

1. チャットボットとバーチャルアシスタント：LLM を外部ツールに接続することで、

チャットボットとバーチャルアシスタントはデータベースからの情報取得、APIコ

ールの実行、他のシステムとの対話など、より複雑なタスクを実行できます。例

えば、チャットボットは CRM ツールを使用して、ユーザーのリクエストに基づい

て取引のステータスを変更することができます。

2. データ分析とインサイト：LLM をデータ分析ツールやライブラリに接続して、

高度なデータ処理タスクを実行することができます。これにより、アプリケーショ

ツールの使用 123

ンはユーザーのクエリに基づいてインサイトを生成し、比較分析を実施し、デー

タに基づく推奨事項を提供することができます。

3. 検索と情報検索：ツール使用により、LLMは検索エンジン、ベクターデータベ

ース、その他の情報検索システムと対話することができます。ユーザーのクエリ

を検索クエリに変換することで、LLMは複数のソースから関連情報を取得し、

ユーザーの質問に対して包括的な回答を提供できます。

4. 外部サービスとの統合：ツール使用により、AI駆動のアプリケーションと外部サービスや APIの

シームレスな統合が可能になります。例えば、LLMは天気 API とやり取りしてリ

アルタイムの天気更新を提供したり、翻訳 API を使用して多言語の応答を生

成したりすることができます。

ツール使用のワークフロー

ツール使用のワークフローは通常、4つの重要なステップを含みます：

1. リクエストコンテキストに関数定義を含める

2. 動的（または明示的な）ツール選択

3. 関数の実行

4. オプションで元のプロンプトの続行

これらの各ステップを詳しく見ていきましょう。

リクエストコンテキストに関数定義を含める

AI は、 完 了 リ ク エ ス ト の 一 部 と し て リ ス ト を 提 供 さ れ る こ と で

（通常は JSONスキーマのバリエーションを使用して関数として定義される）、

使用可能なツールを把握します。

ツール定義の正確な構文はモデルによって異なります。

以下は、Claude 3でget_weather関数を定義する方法です：

ツールの使用 124

1 {

2 "name": "get_weather",

3 "description": "Get the current weather in a given location",

4 "input_schema": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA"

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 }

16 },

17 "required": ["location"]

18 }

19 }

そして、同じ関数を GPT-4用に定義する場合は、toolsパラメーターの値として次のよ

うに渡します：

ツールの使用 125

1 {

2 "name": "get_current_weather",

3 "description": "Get the current weather in a given location",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA",

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 },

16 },

17 "required": ["location"],

18 },

19 }

ほとんど同じなのに、なぜか違う！イライラするね。

関数定義では、名前、説明、入力パラメータを指定します。入力パラメータは、列挙型

を使用して受け入れ可能な値を制限したり、パラメータが必須かどうかを指定したり

するなど、属性を使用してさらに定義することができます。

実際の関数定義に加えて、システムディレクティブには、その機能をシステム内でな

ぜ、どのように使用するかについての指示やコンテキストを含めることもできます。

ツールの使用 126

例えば、Olympiaの中のWeb検索ツールには、AIが言及されたツールを使用できる

ことを念頭に置くよう促すシステムディレクティブが含まれています：

1 The `google_search` and `realtime_search` functions let you do research

2 on behalf of the user. In contrast to Google, realtime search is powered

3 by Perplexity and provides real-time information to curated current events

4 databases and news sources. Make sure to include URLs in your response so

5 user can do followup research.

詳細な説明の提供は、ツールのパフォーマンスにおいて最も重要な要素とされてい

ます。ツールの説明には以下のような詳細をすべて含める必要があります：

• ツールの機能

• ツールを使用すべき時（および使用すべきでない時）

• 各パラメータの意味とツールの動作への影響

• ツールの実装に関する重要な注意事項や制限事項

AI にツールについてより多くのコンテキストを提供できればできるほど、AI はツ

ールをいつどのように使用するかをより適切に判断できるようになります。例えば、

Anthropicは、Claude 3シリーズにおいて、ツール 1つにつき最低でも 3～4文の説明

を推奨しており、複雑なツールの場合はそれ以上を推奨しています。

直感的ではないかもしれませんが、説明は例示よりも重要とされています。ツールの

使用例は説明やプロンプトに含めることができますが、これはツールの目的とパラ

メータについての明確で包括的な説明ほど重要ではありません。例示を追加するの

は、説明を十分に充実させた後にすべきです。

以下は Stripeのような API関数仕様の例です：

ツールの使用 127

1 {

2 "name": "createPayment",

3 "description": "Create a new payment request",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "transaction_amount": {

8 "type": "number",

9 "description": "The amount to be paid"

10 },

11 "description": {

12 "type": "string",

13 "description": "A brief description of the payment"

14 },

15 "payment_method_id": {

16 "type": "string",

17 "description": "The payment method to be used"

18 },

19 "payer": {

20 "type": "object",

21 "description": "Information about the payer, including their name,

22 email, and identification number",

23 "properties": {

24 "name": {

25 "type": "string",

26 "description": "The payer's name"

27 },

28 "email": {

29 "type": "string",

ツールの使用 128

30 "description": "The payer's email address"

31 },

32 "identification": {

33 "type": "object",

34 "description": "The payer's identification number",

35 "properties": {

36 "type": {

37 "type": "string",

38 "description": "Identification document (e.g. CPF, CNPJ)"

39 },

40 "number": {

41 "type": "string",

42 "description": "The identification number"

43 }

44 },

45 "required": ["type", "number"]

46 }

47 },

48 "required": ["name", "email", "identification"]

49 }

50 }

51 }

実際には、一部のモデルはネストされた関数仕様や、配列や辞書などの

複雑な出力データ型の処理に苦労することがあります。しかし理論的に

は、任意の深さの JSONスキーマ仕様を提供できるはずです！

ツールの使用 129

動的ツール選択

ツール定義を含むチャット補完を実行すると、LLMは最も適切なツールを動的に選

択し、各ツールに必要な入力パラメータを生成します。

実際には、AIが正確に適切な関数を呼び出し、正確に入力の仕様に従う能力は、成

功したり失敗したりします。温度ハイパーパラメータを 0.0 まで下げると大きく改善さ

れますが、私の経験では、それでも時々エラーが発生します。これらの失敗には、実在

しない関数名の生成や、パラメータ名の誤り、あるいは単にパラメータの欠落などが

含まれます。パラメータは JSON として渡されるため、切り捨てられたり、引用符が正

しくなかったり、その他の形で破損した JSONによってエラーが発生することがありま

す。

自己修復データパターンは、構文エラーにより破損した関数呼び出し

を自動的に修正するのに役立ちます。

強制（または明示的）ツール選択

一部のモデルでは、リクエストのパラメータとして特定の関数の呼び出しを強制する

オプションが提供されています。そうでない場合、関数を呼び出すかどうかは完全に

AIの判断に委ねられます。

関数呼び出しを強制する機能は、AIの動的選択プロセスに関係なく、特定のツール

や関数の実行を確実にしたい特定のシナリオで重要です。この機能が重要である理

由はいくつかあります：

1. 明示的な制御: AI を独立コンポーネントとして使用する場合や、特定の時点で

特定の関数の実行が必要な事前定義されたワークフローで使用する場合が

あります。呼び出しを強制することで、AIに丁寧にお願いする代わりに、必要な

関数が確実に呼び出されます。

ツールの使用 130

2. デバッグとテスト: AI駆動のアプリケーションの開発とテストにおいて、関数呼

び出しを強制できる機能はデバッグ目的で非常に重要です。特定の関数を明

示的にトリガーすることで、アプリケーションの個々のコンポーネントを分離して

テストできます。これにより、関数の実装の正確性を検証し、入力パラメータを

検証し、期待される結果が返されることを確認できます。

3. エッジケースの処理: AIの動的選択プロセスでは関数を実行すべきでないと

判断されるかもしれませんが、外部プロセスに基づいてその必要性がわかって

いるような、エッジケースや例外的なシナリオが存在する場合があります。この

ような場合、関数呼び出しを強制できる機能により、これらの状況を明示的に

処理できます。AIの判断をオーバーライドするタイミングを決定するルールや

条件をアプリケーションロジックで定義します。

4. 一貫性と再現性: 特定の順序で実行する必要がある一連の関数がある場

合、呼び出しを強制することで、毎回同じ順序で実行されることが保証されま

す。これは、金融システムや科学的シミュレーションなど、一貫性と予測可能な

動作が重要なアプリケーションで特に重要です。

5. パフォーマンスの最適化: 場合によっては、関数呼び出しを強制することでパ

フォーマンスの最適化につながることがあります。特定のタスクに特定の関数

が必要であり、AIの動的選択プロセスが不要なオーバーヘッドを引き起こす

可能性がある場合、選択プロセスをバイパスして必要な関数を直接呼び出す

ことができます。これにより、レイテンシーを削減し、アプリケーション全体の効

率を改善できます。

まとめると、AI駆動のアプリケーションにおける関数呼び出しの強制機能は、明示的

な制御を提供し、デバッグとテストを支援し、エッジケースを処理し、一貫性と再現性

を確保します。これは強力なツールですが、この重要な機能についてもう一つの側面

を議論する必要があります。

ツールの使用 131

多くの意思決定のユースケースでは、モデルに常に関数呼び出しを実行

させたい場合があり、モデルの内部知識のみで応答させたくない場合が

あります。 例えば、異なるタスク（多言語入力、数学など）に特化した複数

のモデル間でルーティングを行う場合、関数呼び出しモデルを使用して

ヘルパーモデルの 1つにリクエストを委譲し、独立して応答させないよう

にすることができます。

ツール選択パラメータ

GPT-4や関数呼び出しをサポートする他の言語モデルでは、補完の一部としてツー

ルの使用を制御するためのtool_choiceパラメータが提供されています。このパラメ

ータには 3つの可能な値があります：

• autoは AIにツールを使用するか単に応答するかの完全な裁量を与えます

• requiredは AI に応答する代わりにツールを必ず呼び出すように指示します

が、ツールの選択は AIに任せます

• 3つ目のオプションは、強制的に使用したいname_of_function をパラメータと

して設定することです。これについては次のセクションで詳しく説明します。

tool_choice をrequiredに設定すると、提供された関数の中から最も関連

性の高い関数を選択することを強制されることに注意してください。これ

は、プロンプトに本当に適した関数がない場合でも同様です。本書の執

筆時点では、空のtool_calls レスポンスを返したり、適切な関数が見つ

からなかったことを通知したりするような方法を持つモデルは知られてい

ません。

構造化出力を得るための関数の強制

関数呼び出しを強制する機能により、プレーンテキストの応答から自分で抽出する

代わりに、チャット補完から構造化データを強制的に取得する方法が提供されます。

ツールの使用 132

なぜ構造化出力を得るために関数を強制することが重要なのでしょうか？簡単に

言えば、LLMの出力から構造化データを抽出することは面倒だからです。XML形

式でデータを要求することで多少は楽になりますが、それでも XML を解析する必

要があります。そして、AIが「申し訳ありませんが、ブラブラブラの理由でリクエスト

されたデータを生成できません…」と応答した場合、その XMLが欠落している時

はどうすればよいのでしょうか。

このようにツールを使用する場合：

• リクエストで定義するツールは 1つだけにすべきでしょう

• tool_choiceパラメータを使用して関数の使用を強制することを忘れないでく

ださい

• モデルがツールに入力を渡すことを忘れないでください。そのため、ツールの名

前と説明はあなたの視点ではなく、モデルの視点から書く必要があります

この最後の点は、明確にするために例が必要です。ユーザーテキストの感情分析を

AI に依頼する場合を考えてみましょう。関数の名前はanalyze_sentimentではなく、

save_sentiment_analysisのようになります。感情分析を行うのは AIであり、ツール

ではありません。ツールがしていること（AIの視点から見ると）は、分析結果を保存す

ることだけです。

以下は、Claude 3を使用して画像の要約を整形された JSONに記録する例で、今回は

コマンドラインでcurl を使用しています：

ツールの使用 133

1 curl https://api.anthropic.com/v1/messages \

2 --header "content-type: application/json" \

3 --header "x-api-key: $ANTHROPIC_API_KEY" \

4 --header "anthropic-version: 2023-06-01" \

5 --header "anthropic-beta: tools-2024-04-04" \

6 --data \

7 '{

8 "model": "claude-3-sonnet-20240229",

9 "max_tokens": 1024,

10 "tools": [{

11 "name": "record_summary",

12 "description": "Record summary of image into well-structured JSON.",

13 "input_schema": {

14 "type": "object",

15 "properties": {

16 "key_colors": {

17 "type": "array",

18 "items": {

19 "type": "object",

20 "properties": {

21 "r": {

22 "type": "number",

23 "description": "red value [0.0, 1.0]"

24 },

25 "g": {

26 "type": "number",

27 "description": "green value [0.0, 1.0]"

28 },

29 "b": {

ツールの使用 134

30 "type": "number",

31 "description": "blue value [0.0, 1.0]"

32 },

33 "name": {

34 "type": "string",

35 "description": "Human-readable color name

36 in snake_case, e.g.

37 \"olive_green\"or

38 \"turquoise\""

39 }

40 },

41 "required": ["r", "g", "b", "name"]

42 },

43 "description": "Key colors in the image. Four or less."

44 },

45 "description": {

46 "type": "string",

47 "description": "Image description. 1-2 sentences max."

48 },

49 "estimated_year": {

50 "type": "integer",

51 "description": "Estimated year that the image was taken,

52 if is it a photo. Only set this if the

53 image appears to be non-fictional.

54 Rough estimates are okay!"

55 }

56 },

57 "required": ["key_colors", "description"]

58 }

ツールの使用 135

59 }],

60 "messages": [

61 {

62 "role": "user",

63 "content": [

64 {

65 "type": "image",

66 "source": {

67 "type": "base64",

68 "media_type": "'$IMAGE_MEDIA_TYPE'",

69 "data": "'$IMAGE_BASE64'"

70 }

71 },

72 {

73 "type": "text",

74 "text": "Use `record_summary` to describe this image."

75 }

76]

77 }

78]

79 }'

この例では、Anthropicの Claude 3モデルを使用して、画像の構造化された JSONサ

マリーを生成しています。以下がその仕組みです：

1. リクエストペイロードのtools配列内で、record_summary という単一のツールを

定義します。このツールは、画像のサマリーを適切に構造化された JSON として

記録する役割を担います。

2. record_summary ツールには、JSON出力の期待される構造を指定するinput_-

schemaがあります。これは以下の 3つのプロパティを定義します：

ツールの使用 136

• key_colors：画像内の主要な色を表すオブジェクトの配列。各色オブジ

ェクトは、赤、緑、青の値（0.0から 1.0の範囲）とスネークケース形式の人

間が読める色名を持つプロパティを持ちます。

• description：画像の簡潔な説明を表す文字列プロパティで、1-2文に制

限されています。

• estimated_year：ノンフィクションの写真と思われる場合、撮影年を推定

する任意の整数プロパティです。

3. messages配列では、画像データを base64エンコードされた文字列としてメディ

アタイプと共に提供します。これによりモデルは入力の一部として画像を処理

できます。

4. また、Claudeにrecord_summary ツールを使用して画像を説明するよう指示しま

す。

5. リクエストが Claude 3モデルに送信されると、モデルは画像を分析し、指定さ

れたinput_schemaに基づいて JSONサマリーを生成します。モデルは主要な色

を抽出し、簡単な説明を提供し、該当する場合は画像の撮影年を推定します。

6. 生成された JSONサマリーはrecord_summaryツールのパラメータとして渡され、

画像の主要な特徴を構造化された形式で表現します。

record_summary ツールを明確に定義されたinput_schema と共に使用することで、プ

レーンテキストの抽出に頼ることなく、画像の構造化された JSONサマリーを取得で

きます。このアプローチにより、出力が一貫した形式に従い、アプリケーションの下流

コンポーネントで簡単に解析・処理できることが保証されます。

関数呼び出 し を強制 し、 期待 され る出力構造 を指定で き る機能は、

AI駆動のアプリケーションにおけるツール使用の強力な特徴です。これにより、

開発者は生成される出力をより細かく制御でき、AI生成データをアプリケーションの

ワークフローに統合することが簡単になります。

ツールの使用 137

関数の実行

関数を定義し、AIに指示を出すと、AIはあなたの関数の 1つを呼び出すべきだと判

断します。次に、アプリケーションコードまたはraix-railsのような Ruby gemを使用し

ている場合は、関数呼び出しとそのパラメータをアプリケーションコード内の対応す

る実装にディスパッチする時です。

アプリケーションコードは、関数実行の結果をどのように扱うかを決定します。それは

ラムダ内の 1行のコードかもしれませんし、外部 APIの呼び出しを含むかもしれませ

ん。別の AI コンポーネントの呼び出しを含むかもしれませんし、システムの他の部分

で数百または数千行のコードを含むかもしれません。それは完全にあなた次第です。

時には関数呼び出しが操作の終わりとなりますが、結果が AIによって継続されるべき思考の連鎖に

おける情報を表す場合、アプリケーションコードは実行結果をチャット記録に挿入し、

AIに処理を継続させる必要があります。

例えば、以下はカスタマーサービスのためのインテリジェント・ワークフロー・オーケス

トレーションの一部として、OlympiaのAccountManagerが顧客とコミュニケーションを

取るために使用するRaix関数宣言です。

1 class AccountManager

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 # lots of other functions...

6

7 function :notify_account_owner,

8 "Don't share UUID. Mention dollars if subscription changed",

9 message: { type: "string" } do |arguments|

10 account.owner.freeform_notify(

11 subject: "Account Change Notification",

12 message: arguments[:message]

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

ツールの使用 138

13)

14 "Notified account owner"

15 end

ここで何が起きているのか一見わかりにくいかもしれませんので、詳しく説明してい

きましょう。

1. AccountManager クラスはアカウント管理に関連する多くの関数を定義していま

す。プランの変更やチームメンバーの追加・削除などができます。

2. その最上位の指示では、AccountManagerにアカウント変更リクエストの結果を

アカウント所有者に通知するよう、notify_account_owner関数を使用して指示

しています。

3. この関数の簡潔な定義には以下が含まれています：

• 名前

• 説明

• パラメータ message: { type: "string" }

• 関数が呼び出されたときに実行されるブロック

関数ブロックの結果でトランスクリプトを更新した後、chat_completion メソッドが再

度呼び出されます。このメソッドは、更新された会話トランスクリプトを AIモデルに送

り返して、さらなる処理を行う役割を担っています。この処理を会話ループと呼びま

す。

AIモデルが更新されたトランスクリプトを含む新しいチャット補完リクエストを受け取

ると、以前に実行された関数の結果にアクセスできます。これらの結果を分析し、意

思決定プロセスに組み込み、会話の累積的なコンテキストに基づいて次の応答また

はアクションを生成できます。更新されたコンテキストに基づいて追加の関数を実行

することもできますし、それ以上の関数呼び出しが必要ないと判断した場合は、元の

プロンプトに対する最終的な応答を生成することもできます。

ツールの使用 139

元のプロンプトの任意の継続

ツールの結果を LLMに送り返して元のプロンプトの処理を続けると、AIはそれらの

結果を使用して追加の関数を呼び出すか、最終的なプレーンテキストの応答を生成

します。

CohereのCommand-Rのような一部のモデルでは、応答で使用したツー

ルを具体的に引用でき、追加の透明性とトレーサビリティを提供できます。

使用しているモデルによって、関数呼び出しの結果は独自の特別な役割を持つトラ

ンスクリプトメッセージに存在するか、他の構文で反映されます。しかし重要なのは、

AIが次に何をすべきかを決定する際に考慮できるよう、そのデータがトランスクリプ

トに含まれていることです。

よくある（そして潜在的にコストのかかる）エラーの一つは、チャットを続け

る前に関数の結果をトランスクリプトに追加し忘れることです。その結果、

AIは最初に関数を呼び出す前とほぼ同じ方法でプロンプトされることに

なります。つまり、AIの観点からすると、まだ関数を呼び出していないこと

になります。そのため、また呼び出します。そしてまた。そして中断されるま

で永遠に続きます。コンテキストが大きすぎず、モデルが高価すぎなかっ

たことを願いましょう！

ツール使用のベストプラクティス

ツールを最大限活用するために、以下のベストプラクティスを考慮してください。

説明的な定義

各ツールとその入力パラメータに対して、明確で説明的な名前と説明を提供してくだ

さい。これにより LLMは各ツールの目的と機能をよりよく理解できます。

https://openrouter.ai/models/cohere/command-r

ツールの使用 140

経験から言えることですが、「命名は難しい」という一般的な知恵がここにも当て

はまります。関数の名前や説明の言い回しを変えるだけで、LLMの結果が劇的に

変わるのを見てきました。説明を削除することで性能が向上することもあります。

ツール結果の処理

ツールの結果を LLMに渡す際は、それらが適切に構造化され、包括的であることを

確認してください。各ツールの出力を表現するために意味のあるキーと値を使用して

ください。JSONからプレーンテキストまで、さまざまなフォーマットを試してみて、最適

なものを見つけてください。

結果インタープリターは、AI を使用して結果を分析し、人間にわかりやすい説明、要

約、または重要なポイントを提供することで、この課題に対応します。

エラー処理

LLMがツール呼び出しに対して無効またはサポートされていない入力パラメータを

生成する可能性がある場合に備えて、堅牢なエラー処理メカニズムを実装してくだ

さい。ツール実行中に発生する可能性のあるエラーを適切に処理し、回復できるよう

にしてください。

エーアイの非常に優れた特徴の 1つは、エラーメッセージを理解できることです！つ

まり、手っ取り早いアプローチで作業している場合、ツールの実装で発生した例外を

単にキャッチして、エーアイに返すだけで、何が起きたのかを理解してくれるのです！

例として、Olympiaにおけるグーグル検索の実装の簡略版を見てみましょう：

ツールの使用 141

1 def google_search(conversation, params)

2 conversation.update_cstatus("Searching Google...")

3 query = params[:query]

4 search = GoogleSearch.new(query).get_hash

5

6 conversation.update_cstatus("Summarizing results...")

7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)

8 rescue StandardError => e

9 Honeybadger.notify(e)

10 { error: e.message }.inspect

11 end

Olympiaでの Google検索は 2段階のプロセスです。まず検索を実行し、次に結果を

要約します。エラーが発生した場合、その種類に関係なく、例外メッセージが AIに送

り返されます。このテクニックは、実質的にすべてのインテリジェントエラーハンドリン

グパターンの基礎となっています。

例えば、GoogleSearch API コールが 503 Service Unavailable例外で失敗したとしま

す。これは最上位の rescue まで伝播し、エラーの説明が AIに関数呼び出しの結果

として送り返されます。ユーザーに空白の画面や技術的なエラーを表示するのでは

なく、AIは「申し訳ありませんが、現在 Google検索機能にアクセスできません。よろし

ければ、後ほど再試行させていただきます」というような応答をします。

これは単なる巧妙な手法のように見えるかもしれませんが、別の種類のエラー、つま

り AIが外部 API を呼び出し、APIに渡すパラメータを直接制御している場合を考え

てみてください。もしかしたら、それらのパラメータの生成方法に誤りがあったかもし

れません。外部 APIからのエラーメッセージが十分に詳細であれば、エラーメッセー

ジを呼び出し元の AIに返すことで、AIはそれらのパラメータを再考して再試行する

ことができます。自動的に。エラーの種類に関係なく。

通常のコードでこのような堅牢なエラーハンドリングを実現するために何が必要かを

考えてみてください。それは事実上不可能です。

ツールの使用 142

反復的改善

LLMが適切なツールを推奨していない、または最適ではない応答を生成している場合、

ツールの定義、説明、入力パラメータを繰り返し改善します。観察された動作と望まし

い結果に基づいて、ツールのセットアップを継続的に改良し改善します。

1. シンプルなツール定義から始める：明確で簡潔な名前、説明、入力パラメータ

でツールを定義することから始めます。最初はツールのセットアップを複雑にし

すぎないようにし、核となる機能に焦点を当てます。例えば、感情分析の結果を

保存したい場合は、次のような基本的な定義から始めます：

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze user-provided text and generate sentiment score",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "score": {

8 "type": "float",

9 "description": "sentiment score from -1 (negative) to 1 (positive)"

10 }

11 },

12 "required": ["score"]

13 }

14 }

2. テストと観察：初期のツール定義を配置したら、異なるプロンプトでテストを行

い、LLMがツールとどのように相互作用するかを観察します。生成された応答

の質と関連性に注意を払います。LLMが最適でない応答を生成している場合

は、ツール定義を改善する時です。

ツールの使用 143

3. 説明の改善：LLMがツールの目的を誤解している場合は、ツールの説明を改

善してみてください。LLMがツールを効果的に使用できるよう、より多くのコン

テキスト、例示、または説明を提供します。例えば、感情分析ツールの説明を更

新して、分析対象のテキストの感情的なトーンをより具体的に扱うようにするこ

とができます：

1 {

2 "name": "save_sentiment_score",

3 "description": "Determine the overall emotional tone of a piece of text,

4 such as customer reviews, social media posts, or feedback comments.",

5 ...

6 }

4. 入力パラメータの調整：LLMがツールに対して無効または無関係な入力パラ

メータを生成している場合は、パラメータ定義の調整を検討してください。期待

される入力フォーマットを明確にするため、より具体的な制約、検証ルール、ま

たは例を追加します。

5. フィードバックに基づく改善：ツールのパフォーマンスを継続的に監視し、ユー

ザーやステークホルダーからフィードバックを収集します。このフィードバックを

活用して改善が必要な領域を特定し、ツール定義に反復的な改良を加えてい

きます。例えば、ユーザーが分析で皮肉を適切に処理できていないと報告した

場合、説明に注記を追加できます：

ツールの使用 144

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze the sentiment of a given text and return a sentiment

4 score between -1 (negative) and 1 (positive). Note: Sarcasm should be

5 considered negative.",

6 ...

7 }

ツール定義を観察された動作とフィードバックに基づいて反復的に改良することで、

AI駆動型アプリケーションのパフォーマンスと効果を段階的に向上させることがで

きます。ツール定義は明確で簡潔であり、特定のタスクに焦点を当てたものにするこ

とを忘れないでください。定期的にツールの相互作用をテストし、検証して、望ましい

結果と一致していることを確認してください。

ツールの組み合わせと連鎖

これまで暗示的にしか触れていなかったツール使用の最も強力な側面の 1つは、複

数のツールを組み合わせて連鎖させ、複雑なタスクを達成する能力です。ツール定

義とその入出力形式を慎重に設計することで、さまざまな方法で組み合わせること

ができる再利用可能な構成要素を作成できます。

AI駆動型アプリケーション用のデータ分析パイプラインを構築する例を考えてみま

しょう。以下のようなツールがあるかもしれません：

1. DataRetrieval: 指定された基準に基づいてデータベースや APIからデータを

取得するツール。

2. DataProcessing: 取得したデータに対して計算、変換、または集計を実行するツ

ール。

3. DataVisualization: 処理されたデータをチャートやグラフなどのユーザーフレ

ンドリーな形式で表示するツール。

ツールの使用 145

これらのツールを連鎖させることで、関連データを取得し、処理し、結果を意味のある

方法で表示する強力なワークフローを作成できます。ツール使用のワークフローは以

下のようになります：

1. LLMが特定の製品カテゴリーの販売データに関する洞察を求めるユーザーク

エリを受け取ります。

2. LLMがDataRetrieval ツールを選択し、データベースから関連する販売データ

を取得するための適切な入力パラメータを生成します。

3. 取得したデータはDataProcessing ツールに「渡され」、総収益、平均販売価格、

成長率などの指標が計算されます。

4. 処理されたデータは次にDataVisualization ツールによって処理され、洞察を

視覚的に表現する魅力的なチャートやグラフが作成され、チャートの URLが

LLMに返されます。

5. 最後に、LLMはマークダウンを使用してユーザークエリに対する形式化された

応答を生成し、可視化されたデータと主要な発見の要約を組み込みます。

これらのツールを組み合わせることで、アプリケーションに容易に統合できるシーム

レスなデータ分析ワークフローを作成できます。このアプローチの素晴らしい点は、各

ツールを個別に開発してテストし、その後さまざまな問題を解決するためにさまざまな

方法で組み合わせることができることです。

ツールのスムーズな組み合わせと連鎖を可能にするために、各ツールの入出力形式

を明確に定義することが重要です。

例えば、DataRetrievalツールは、データベース接続の詳細、テーブル名、クエリ条件

などのパラメータを受け取り、結果セットを構造化された JSONオブジェクトとして返

すかもしれません。DataProcessingツールは、この JSONオブジェクトを入力として受

け取り、変換された JSONオブジェクトを出力として生成します。ツール間のデータフ

ローを標準化することで、互換性と再利用性を確保できます。

ツールエコシステムを設計する際は、アプリケーションの一般的なユースケースに対

応するために、異なるツールをどのように組み合わせることができるかを考えてくださ

ツールの使用 146

い。一般的なワークフローやビジネスロジックをカプセル化する高レベルのツールを

作成することを検討し、LLMがそれらを効果的に選択して使用しやすくすることを考

えてください。

ツール使用の力は、それが提供する柔軟性とモジュール性にあることを忘れないで

ください。複雑なタスクを小さな再利用可能なツールに分解することで、幅広い課題

に対応できる堅牢で適応性のある AI駆動型アプリケーションを作成できます。

将来の方向性

AI駆動型アプリケーション開発の分野が進化するにつれて、ツール使用機能のさら

なる進歩が期待されます。将来の方向性として以下のようなものが考えられます：

1. マルチホップツール使用: LLMは、満足のいく応答を生成するために必要なツ

ールの使用回数を決定できるようになるかもしれません。これには、中間結果

に基づく複数回のツール選択と実行が含まれる可能性があります。

2. 事前定義ツール：AIプラットフォームは、Python インタープリタ、ウェブ検索ツ

ール、一般的なユーティリティ機能など、開発者がすぐに利用できる事前定義

ツールのセットを提供することがあります。

3. シーム レスな統合： ツ ールの使用がよ り一般的になるにつれて、

AIプラットフォームと一般的な開発フレームワークとの統合が改善され、開発

者がアプリケーションにツールの使用を組み込むことがより容易になると予想

されます。

ツールの使用は、AI駆動型アプリケーションにおいて大規模言語モデルの可能性を

最大限に引き出すことができる強力な手法です。大規模言語モデルを外部ツールや

リソースに接続することで、ユーザーのニーズに適応し、価値のある洞察やアクショ

ンを提供できる、よりダイナミックで知的かつ文脈を理解するシステムを作成すること

ができます。

ツールの使用 147

ツールの使用は膨大な可能性を提供する一方で、潜在的な課題や考慮事項に注意

を払うことが重要です。重要な側面の 1つは、ツールの相互作用の複雑さを管理し、

システム全体の安定性と信頼性を確保することです。ツールの呼び出しが失敗した

り、予期せぬ結果を返したり、パフォーマンスに影響を与えたりするシナリオに対処す

る必要があります。さらに、ツールの不正使用や悪意のある使用を防ぐために、セキュ

リティやアクセス制御対策を考慮する必要があります。AI駆動型アプリケーションの

整合性とパフォーマンスを維持するには、適切なエラー処理、ログ記録、監視メカニ

ズムが不可欠です。

自身のプロジェクトでツールの使用の可能性を探る際は、明確な目標を立て、適切

に構造化されたツール定義を設計し、フィードバックと結果に基づいて改善を重

ねることを忘れないでください。適切なアプローチとマインドセットを持つことで、

ツールの使用は AI駆動型アプリケーションにおいて新しいレベルのイノベーション

と価値を解き放つことができます。

ストリーム処理

HTTP経由でデータをストリーミングする、別名サーバー送信イベント（SSE）は、クライ

アントが明示的にリクエストすることなく、サーバーが利用可能になったデータを継続

的にクライアントに送信する仕組みです。AIのレスポンスは徐々に生成されていくた

め、生成されるに従って AIの出力を表示することで、応答性の高いユーザーエクス

ペリエンスを提供することが理にかなっています。実際、私が知る限り、すべての AI

プロバイダーの APIは、補完エンドポイントでストリーミングレスポンスをオプション

として提供しています。

こ の 章 が 本 書 の 中 でツ ー ル の 使 用の 直 後 に 配 置 さ れ て い る の は、

ツールの使用と AIのライブレスポンスを組み合わせることの強力さによるも

のです。これにより、AIがユーザー入力を処理し、必要に応じて様々なツールや関数

を利用し、リアルタイムでレスポンスを提供する、動的でインタラクティブな体験が可

能になります。

ストリーム処理 149

このシームレスな相互作用を実現するには、AI が呼び出すツール関数の呼び出

しと、プレーンテキストの出力をエンドユーザーに送信できるストリームハンドラーを作

成する必要があります。ツール関数の処理後にループする必要があることが、この作

業に興味深い課題を加えています。

ReplyStreamの実装

ストリーム処理の実装方法を示すため、この章では Olympiaで使用されてい

るReplyStream クラスの簡略版について詳しく説明します。このクラスのインス

タンスは、ruby-openaiやopenrouterなどの AI クライアントライブラリでstreamパラメ

ータとして渡すことができます。

以下は、Wisperを介して新しいユーザーメッセージの作成をリッスンする Olympia

のPromptSubscriberで、ReplyStream をどのように使用しているかを示しています。

1 class PromptSubscriber

2 include Raix::ChatCompletion

3 include Raix::PromptDeclarations

4

5 # many other declarations omitted...

6

7 prompt text: -> { user_message.content },

8 stream: -> { ReplyStream.new(self) },

9 until: -> { bot_message.complete? }

10

11 def message_created(message) # invoked by Wisper

12 return unless message.role.user? && message.content?

13

14 # rest of the implementation omitted...

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

ストリーム処理 150

ReplyStream クラスは、それをインスタンス化したプロンプトサブスクライバーへ

のcontext参照に加えて、受信データのバッファーを格納するためのインスタンス変

数と、ストリーム処理中に呼び出された関数名と引数を追跡するための配列を持っ

ています。

1 class ReplyStream

2 attr_accessor :buffer, :f_name, :f_arguments, :context

3

4 delegate :bot_message, :dispatch, to: :context

5

6 def initialize(context)

7 self.context = context

8 self.buffer = []

9 self.f_name = []

10 self.f_arguments = []

11 end

12

13 def call(chunk, bytesize = nil)

14 # ...

15 end

16

17 # ...

18 end

initialize メソッドは、ReplyStreamインスタンスの初期状態を設定し、バッファ、コン

テキスト、その他の変数を初期化します。

call メソッドは、ストリーミングデータを処理するためのメインエントリーポイン

トです。このメソッドは、データのchunk（ハッシュとして表現される）とオプション

のbytesizeパラメータを受け取ります（この例では使用されていません）。このメソッ

ストリーム処理 151

ド内で、クラスはパターンマッチングを使用して、受信したチャンクの構造に基づいて

異なるシナリオを処理します。

チャンクに対してdeep_symbolize_keys を呼び出すことで、文字列ではな

くシンボルを操作できるようになり、よりエレガントなパターンマッチングが

可能になります。

1 def call(chunk, _bytesize)

2 case chunk.deep_symbolize_keys

3

4 in { # match function name

5 choices: [

6 {

7 delta: {

8 tool_calls: [

9 { index: index, function: {name: name} }

10]

11 }

12 }

13] }

14

15 f_name[index] = name

最初にマッチングするパターンは、ツールコールとそれに関連する関数名です。これ

を検出すると、f_name配列に格納します。モデルは並列関数呼び出しが可能で、複

数の関数を同時に実行できるため、関数名はインデックス付き配列に格納します。

ストリーム処理 152

並列関数呼び出しとは、AIモデルが複数の関数呼び出しを同時に実行し、これら

の関数呼び出しの効果と結果を並列に解決できる機能です。これは特に関数の

実行に時間がかかる場合に有用で、APIとのやり取りを減らすことができ、結果と

してトークンの消費量を大幅に削減できます。

次に、関数呼び出しに対応する引数をマッチングする必要があります。

1 in { # match arguments

2 choices: [

3 {

4 delta: {

5 tool_calls: [

6 {

7 index: index, function: {arguments: argument }

8 }

9]

10 }

11 }

12]}

13

14 f_arguments[index] ||= "" # initialize if not already

15 f_arguments[index] << argument

関数名を処理したのと同様に、引数をインデックス配列に格納します。

次に、サーバーから 1 トークンずつ届くユーザー向けメッセージを探します。これ

はnew_content変数に割り当てられます。また、finish_reasonの状態も監視する必

要があります。これは出力シーケンスの最後のチャンクまではnil となっています。

ストリーム処理 153

1 in {

2 choices: [

3 { delta: {content: new_content}, finish_reason: finish_reason }

4]}

5

6 # you could transmit every chunk to the user here...

7 buffer << new_content.to_s

8

9 if finish_reason.present?

10 finalize

11 elsif new_content.to_s.match?(/\n\n/)

12 send_to_client # ...or buffer and transmit once per paragraph

13 end

重要なことに、AIモデルプロバイダーから送信されるエラーメッセージを処理するた

めのパターンマッチ式を追加します。では例外を発生させますが、本番環境ではエラ

ーをログに記録して終了します。

1 in { error: { message: } }

2 if Rails.env.local?

3 raise message

4 else

5 Honeybadger.notify("AI Error: #{message}")

6 finalize

7 end

case文の最後の else節は、前のパターンのいずれにも一致しなかった場合に実行さ

れます。これは単なる安全対策で、が認識できないチャンクを送信してきた場合に、

それを検知できるようにするためのものです。

ストリーム処理 154

1 else

2 Honeybadger.notify("Unrecognized Chunk: #{chunk}")

3 end

4 end

send_to_client メソッドは、バッファリングされたコンテンツをクライアントに送信する

役割を担っています。このメソッドは、バッファが空でないことを確認し、ボットメッセー

ジのコンテンツを更新し、ボットメッセージをレンダリングし、データの永続性を確保す

るためにコンテンツをデータベースに保存します。

1 def send_to_client

2 # no need to process pure whitespace

3 return if buffer.join.squish.blank?

4

5 # set the buffer content on the bot message

6 content = buffer.join

7 bot_message.content = content

8

9 # save to database so that we never lose data

10 # even if the stream doesn't terminate correctly

11 bot_message.update_column(:content, content)

12

13 # update content via websocket

14 ConversationRenderer.update(bot_message)

15 end

finalizeメソッドは、ストリーム処理が完了した時に呼び出されます。ストリーム中に

受信した関数呼び出しがある場合はそれらをディスパッチし、最終的な内容やその

他の関連情報でボットメッセージを更新し、関数呼び出し履歴をリセットします。

ストリーム処理 155

1 def finalize

2 if f_name.any?

3 f_name.each_with_index do |name, index|

4 # takes care of calling the function wherever it's implemented

5 dispatch(name:, arguments: JSON.parse(f_arguments[index]))

6 end

7

8 # reset the function call history

9 f_name.clear

10 f_arguments.clear

11 else

12 content = buffer.join.presence

13 bot_message.update!(content:, complete: true)

14 ConversationRenderer.update(bot_message)

15 end

16 end

モデルが 関 数 を 呼 び 出 す こ と を 決 定 し た 場 合、 そ の 関 数 呼 び

出 し （名 前 と 引 数） を 「デ ィ ス パ ッ チ」 し て 実 行 し、function_call

とfunction_resultのメッセージを会話トランスクリプトに 追 加 す る 必 要 が あ り

ます。

私の経験では、ツール実装に依存するのではなく、コードベースの一箇所で関数メ

ッセージの作成を処理する方が良いでしょう。これはより整理された方法であるだ

けでなく、非常に重要な実践的な理由もあります：AIモデルが関数を呼び出した際、

ループ時にトランスクリプトに呼び出しと結果のメッセージが表示されていないと、

_同じ関数を再度呼び出してしまう_からです。これが永遠に続く可能性があります。

AIが完全にステートレスであることを忘れないでください。関数呼び出しを AIにエコ

ーバックしない限り、それらは発生しなかったことになってしまいます。

ストリーム処理 156

1 # PromptSubscriber#dispatch

2

3 def dispatch(name:, arguments:)

4 # adds a function_call message to the conversation transcript

5 # plus dispatches to tool and returns result

6 conversation.function_call!(name, arguments).then do |result|

7 # add function result message to the transcript

8 conversation.function_result!(name, result)

9 end

10 end

関数を呼び出した後の履歴をクリアすることは、呼び出しと結果がトラン

スクリプトに記録されることと同じくらい重要です。そうしないと、ループす

るたびに同じ関数を何度も呼び出し続けることになってしまいます。

「会話ループ」

PromptSubscriber クラスでは、PromptDeclarations モジュールのprompt メソッド

を使用して会話ループの動作を定義しています。until パラメータは-> { bot_-

message.complete? } に設定されており、これはbot_messageが完了としてマークさ

れるまでループが継続することを意味します。

1 prompt text: -> { user_message.content },

2 stream: -> { ReplyStream.new(self) },

3 until: -> { bot_message.complete? }

しかし、bot_messageはいつ完了としてマークされるのでしょうか？忘れた

場合は、finalize メソッドの 13行目を参照してください。

ストリーム処理 157

ストリーム処理のロジック全体を確認しましょう。

1. PromptSubscriberは、Wisperパブ/サブシステムを通じてmessage_createdメソ

ッドで新しいユーザーメッセージを受信します。これはエンドユーザーが新しい

プロンプトを作成するたびに呼び出されます。

2. prompt クラスメソッドは、PromptSubscriberのチャット補完ロジックの動作を宣

言的に定義します。AIモデルは、ユーザーのメッセージ内容、ストリームパラメ

ータとしての新しいReplyStream インスタンス、および指定されたループ条件で

チャット補完を実行します。

3. AIモデルがプロンプトを処理し、応答の生成を開始します。応答がストリーミン

グされると、データの各チャンクに対してReplyStream インスタンスのcall メソ

ッドが呼び出されます。

4. AIモデルがツール関数を呼び出すことを決定した場合、関数名と引数がチャ

ンクから抽出され、それぞれf_name配列とf_arguments配列に格納されます。

5. AIモデルがユーザー向けのコンテンツを生成する場合、それはバッファリング

され、send_to_client メソッドを通じてクライアントに送信されます。

6. ストリーム処理が完了すると、finalizeメソッドが呼び出されます。ストリーム中

にツール関数が呼び出された場合、それらはPromptSubscriberのdispatch メ

ソッドを使用してディスパッチされます。

7. dispatch メソッドは会話トランスクリプトにfunction_call メッセージを追加し、

対応するツール関数を実行し、関数呼び出しの結果を含むfunction_result メ

ッセージをトランスクリプトに追加します。

8. ツール関数のディスパッチ後、後続のループで関数呼び出しが重複しないよう

に、関数呼び出し履歴がクリアされます。

9. ツール関数が呼び出されなかった場合、finalize メソッドはbot_message を最

終的なコンテンツで更新し、完了としてマークし、更新されたメッセージをクライ

アントに送信します。

10. ループ条件-> { bot_message.complete? } が評価されます。bot_message

が 完 了 と し て マ ー ク さ れ て い な い 場 合、 ル ー プ は 継 続 し、

ストリーム処理 158

更新された会話トランスクリプトと共に元のプロンプトが再度送信され

ます。

11. bot_messageが完了としてマークされるまで（つまり、AIモデルが応答の生成を

終了し、これ以上ツール関数を実行する必要がなくなるまで）、ステップ 3-10が

繰り返されます。

この会話ループを実装することで、AIモデルがアプリケーションとの間で双方向の

やり取りを行い、必要に応じてツール関数を実行し、会話が自然な結論に達するまで

ユーザー向けの応答を生成することができます。

ストリーム処理と会話ループを組み合わせることで、AIモデルがユーザー入力を処

理し、様々なツールや関数を利用し、進化する会話コンテキストに基づいてリアルタイ

ムの応答を提供する、動的でインタラクティブな AI駆動のエクスペリエンスが可能

になります。

自動継続

AI出力の制限について認識しておくことが重要です。ほとんどのモデルには、

max_tokensパラメータによって決定される、単一の応答で生成できる最大トークン数

があります。AIモデルが応答の生成中にこの制限に達すると、突然停止し、出力が

切り捨てられたことを示します。

AIプラットフォーム APIからのストリーミング応答では、チャンク内のfinish_reason

変数を調べることでこの状況を検出できます。finish_reasonが"length"（またはモ

デル固有の他のキー値）に設定されている場合、モデルが生成中に最大トークン制

限に達し、出力が途中で切れたことを意味します。

このシナリオを適切に処理し、シームレスなユーザーエクスペリエンスを提供する一

つの方法は、ストリーム処理ロジックに自動継続メカニズムを実装することです。長さ

に関連する終了理由のパターンマッチを追加することで、中断された箇所から出力

を自動的に継続するようにループを選択できます。

ストリーム処理 159

以下はReplyStream クラスのcall メソッドを自動継続に対応させる方法を示した、意

図的に簡略化された例です：

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices: [

9 { delta: {content: new_content},

10 finish_reason: finish_reason }] }

11

12 buffer << new_content.to_s

13

14 if finish_reason.blank?

15 send_to_client if new_content.to_s.match?(/\n\n/)

16 elsif LENGTH_STOPS.include?(finish_reason)

17 continue_cutoff

18 else

19 finalize

20 end

21

22 # ...

23 end

24 end

25

26 private

27

ストリーム処理 160

28 def continue_cutoff

29 conversation.bot_message!(buffer.join, visible: false)

30 conversation.user_message!("please continue", visible: false)

31 bot_message.update_column(:created_at, Time.current)

32 end

この修正版では、finish_reasonが出力の切り捨てを示している場合、ストリームを

確定せずに、トランスクリプトにメッセージのペアを追加し、元のユーザー向けレスポ

ンスメッセージのcreated_at属性を更新してトランスクリプトの「最後」に移動させ、

ループを継続させることで、AIが中断した箇所から生成を続けられるようにします。

AIの補完エンドポイントはステートレスであることを覚えておいてください。トランス

クリプトを通じて伝えた情報しか「知り得ません」。この場合、AIに中断されたことを伝

えるのは、（エンドユーザーには見えない）メッセージをトランスクリプトに追加するこ

とによって行います。ただし、これは意図的に単純化された例であることに注意してく

ださい。実際の実装では、トークンを無駄にしたり、トランスクリプト内の重複したアシ

スタントメッセージで AI を混乱させたりしないように、さらなるトランスクリプト管理が

必要になります。

自動継続の実際の実装では、暴走的なループを防ぐためのも組み込むべきです。こ

れは、特定の種類のユーザープロンプトと低いmax_tokens設定の場合、AIがユーザ

ー向けの出力を無限にループし続ける可能性があるためです。

ループごとに個別のリクエストが必要であり、各リクエストでトランスクリプト全体

が再度消費されることを覚えておいてください。アプリケーションに自動継続を実

装するかどうかを決める際は、ユーザーエクスペリエンスと API使用量のトレード

オフを十分に検討すべきです。特に自動継続は、プレミアムな商用モデルを使用

する場合、危険なほど高額になる可能性があります。

ストリーム処理 161

結論

提供されているConversation::ReplyStream クラスは、パターンマッチングとイベント

駆動アーキテクチャを使用して、アプリケーションでストリーム処理を実装する方法を

示しています。ストリーム処理技術を理解し活用することで、アプリケーションにおけ

る AI統合の可能性を最大限に引き出し、強力で魅力的なユーザーエクスペリエン

スを提供することができます。

自己修復データ

自己修復データは、大規模言語モデル（LLM）の機能を活用して、アプリケーションに

おけるデータの整合性、一貫性、品質を確保する強力なアプローチです。このパター

ンカテゴリーは、AI を使用してデータの異常、不整合、またはエラーを自動的に検出、

診断、修正するという考えに焦点を当てており、開発者の負担を軽減し、データの信

頼性を高水準に維持します。

自己修復データパターンの核心は、データがあらゆるアプリケーションの生命線であ

り、その正確性と整合性の確保がアプリケーションの適切な機能とユーザー体験に

とって極めて重要だという認識にあります。しかし、データ品質の管理と維持は、特に

アプリケーションの規模と複雑さが増大するにつれて、複雑で時間のかかるタスクと

なり得ます。ここで AIの力が活きてきます。

自己修復データパターンでは、AI ワーカーがアプリケーションのデータを継続的に

監視し分析します。これらのモデルは、データ内のパターン、関係性、異常を理解し解

自己修復データ 163

釈する能力を持っています。自然言語処理と理解の機能を活用することで、データの

潜在的な問題や不整合を特定し、それらを修正するための適切な措置を講じること

ができます。

自己修復データのプロセスは、通常、以下の主要なステップを含みます：

1. データ監視： AI ワーカーが、アプリケーションのデータストリーム、データベー

ス、またはストレージシステムを常時監視し、異常、不整合、またはエラーの兆

候を探します。あるいは、例外が発生した際に AI コンポーネントを起動するこ

ともできます。

2. 異常検知：問題が検出された場合、AIワーカーはデータを詳細に分析し、問題

の具体的な性質と範囲を特定します。これには、欠損値、一貫性のないフォー

マット、または事前定義されたルールや制約に違反するデータの検出が含まれ

る場合があります。

3. 診断と修正：問題が特定されると、AI ワーカーはデータドメインに関する知識

と理解を活用して、適切な対処方法を決定します。これには、データの自動修

正、欠損値の補完、または必要に応じて人間の介入のためのフラグ付けが含ま

れる場合があります。

4. 継続的学習（ユースケースに応じてオプション）： AI ワーカーが様々なデータの

問題に遭遇し解決する中で、発生した事象とその対応について説明を出力で

きます。このメタデータは学習プロセスに取り込まれ、あなた（場合によってはフ

ァインチューニングを通じて基礎となるモデル自体も）がデータの異常の特定

と解決においてより効果的かつ効率的になることを可能にします。

データの問題を自動的に検出し修正することで、アプリケーションが高品質で信頼

性の高いデータで動作することを確保できます。これにより、エラー、不整合、または

データ関連のバグがアプリケーションの機能やユーザー体験に影響を与えるリスク

が軽減されます。

AI ワーカーにデータの監視と修正のタスクを任せることで、アプリケーションの他の

重要な側面に注力することができます。これにより、手動でのデータクリーニングとメ

自己修復データ 164

ンテナンスに費やされていた時間とリソースを節約できます。実際、アプリケーション

の規模と複雑さが増大するにつれて、データ品質の手動管理はますます困難になり

ます。「自己修復データ」パターンは、AIの力を活用して大量のデータを処理し、リア

ルタイムで問題を検出することで、効果的にスケールします。

AIモデルは、その性質上、ほとんど監督なしで時間とともに変化するデ

ータパターン、スキーマ、または要件に適応できます。特に意図する結果

に関して、それらの指示が適切なガイダンスを提供する限り、アプリケー

ションは広範な手動介入やコード変更を必要とせずに、新しいデータシ

ナリオに対応し進化できる可能性があります。

自己修復データパターンは、「多数のワーカー」など、これまで議論してきた他のパタ

ーンカテゴリーとも上手く調和します。自己修復データ機能は、データ品質と整合性

の確保に特化した特殊なワーカーとして見ることができます。このタイプのワーカー

は、アプリケーションの機能の異なる側面に貢献する他の AI ワーカーと並行して動

作します。

自己修復データパターンを実践で実装するには、アプリケーションアーキテクチャに

AIモデルを慎重に設計し統合する必要があります。データの損失や破損のリスクが

あるため、このテクニックをどのように使用するかについて明確なガイドラインを定め

る必要があります。また、パフォーマンス、スケーラビリティ、データセキュリティなどの

要因も考慮する必要があります。

実践的ケーススタディ：破損した JSONの修復

自己修復データを活用する最も実用的で便利な方法の 1つは、説明も非常に簡単

です：破損した JSONの修復です。

このテクニックは、LLMが生成する不完全または一貫性のないデータ（破損した

JSONなど）に対処するという一般的な課題に適用でき、これらの問題を自動的に検

出して修正するアプローチを提供します。

自己修復データ 165

Olympiaでは、LLMが生成する JSONデータが完全に有効でないシナリオに定期的

に遭遇します。これは、LLMが実際の JSON コードの前後にコメントを追加したり、欠

落したカンマやエスケープされていない二重引用符などの構文エラーを導入したり

するなど、さまざまな理由で発生する可能性があります。これらの問題は構文解析エ

ラーを引き起こし、アプリケーションの機能に支障をきたす可能性があります。

この問題に対処するため、JsonFixer クラスという形で実用的なソリューションを実装

しました。このクラスは破損した JSON を入力として受け取り、LLM を活用して可能な

限り情報と意図を保持しながら修復を行う「自己修復データ」パターンを具現化して

います。

1 class JsonFixer

2 include Raix::ChatCompletion

3

4 def call(bad_json, error_message)

5 raise "No data provided" if bad_json.blank? || error_message.blank?

6

7 transcript << {

8 system: "Consider user-provided JSON that generated a parse

9 exception. Do your best to fix it while preserving the

10 original content and intent as much as possible." }

11 transcript << { user: bad_json }

12 transcript << { assistant: "What is the error message?"}

13 transcript << { user: error_message }

14 transcript << { assistant: "Here is the corrected JSON\n```json\n" }

15

16 self.stop = ["```"]

17

18 chat_completion(json: true)

19 end

自己修復データ 166

20

21 def model

22 "mistralai/mixtral-8x7b-instruct:nitro"

23 end

24 end

JsonFixerがVentriloquistを使用して AIの応答を導く方法に注目してく

ださい。

自己修復 JSONデータの処理は以下のように機能します：

1. JSON生成： LLM を使用して、特定のプロンプトや要件に基づいて JSON デ

ータを生成します。ただし、LLM の特性上、生成される JSON が常に完全に

有効であるとは限りません。無効な JSON を与えた場合、JSONパーサーは当

然ParserError を発生させます。

1 begin

2 JSON.parse(llm_generated_json)

3 rescue JSON::ParserError => e

4 JsonFixer.new.call(llm_generated_json, e.message)

5 end

例外メッセージもまたJSONFixerの呼び出しに渡されるため、データの何が間違って

いるのかを完全に推測する必要はありません。特にパーサーは多くの場合、何が正

確に間違っているのかを教えてくれるためです。

2. LLMベースの修正： JSONFixer クラスは、破損した JSON を LLM（大規模言語

モデル）に送り返し、JSON を修正するための具体的なプロンプトまたは指示と

共に、可能な限り元の情報と意図を保持するように処理します。膨大なデータ

自己修復データ 167

で学習され、JSON構文を理解している LLMは、エラーを修正し、有効な JSON

文字列を生成しようと試みます。レスポンスフェンシングを使用して LLMの出

力を制約し、この種のタスクに特に適している Mixtral 8x7B を AIモデルとして

選択しています。

3. 検証と統合： LLM から返された修正済みの JSON 文字列は、chat_comple-

tion(json: true) を呼び出したため、JSONFixer クラス自体によって解析され

ます。修正された JSONが検証をパスすると、アプリケーションのワークフローに

再統合され、アプリケーションがシームレスにデータ処理を継続できるようにな

ります。不正な JSONが「修復」されたのです。

私は自身のJSONFixer実装を何度も書き直してきましたが、それらすべてのバージョ

ンに費やした合計時間は 1、2時間を超えることはないでしょう。

意図の保持は、あらゆる自己修復データパターンの重要な要素であることに注意し

てください。LLMベースの修正プロセスは、生成された JSONの元の情報と意図を可

能な限り保持することを目指します。これにより、修正された JSONがその意味的な

内容を維持し、アプリケーションのコンテキスト内で効果的に使用できることが保証

されます。

Olympiaにおけるこの Self-Healing Dataアプローチの実践的な実装は、AI、特に LLM

が現実世界のデータ課題をどのように解決できるかを明確に示しています。これは、

堅牢で効率的なアプリケーションを構築するために、従来のプログラミング技術と AI

機能を組み合わせることの力を示しています。

ポステルの法則と「Self-Healing Data」パターン

JSONFixer クラスに例示される「Self-Healing Data」は、ポステルの法則（別名：ロ

バストネス原則）として知られる原則とよく整合します。ポステルの法則は以下の

ように述べています：

自己修復データ 168

「自分のすることに関しては保守的に、他人から受け取るものに関しては寛容であ

れ」

インターネット黎明期のパイオニアである Jon Postelによって提唱されたこの原則

は、出力時には指定されたプロトコルを厳密に遵守しながら、多様な、あるいはわ

ずかに不正確な入力に対して寛容なシステムを構築することの重要性を強調し

ています。

「Self-Healing Data」のコンテキストでは、JSONFixer クラスは、LLMによって生成さ

れた壊れた、または不完全な JSONデータを受け入れることで、ポステルの法則を

体現しています。期待される形式に厳密に従わない JSON に遭遇しても、即座に

拒否したり失敗したりすることはありません。代わりに、LLMの力を使用して JSON

を修正しようと試みる寛容なアプローチを取ります。

不完全な JSON を寛容に受け入れることで、JSONFixer クラスは堅牢性と柔軟性

を実証しています。現実世界のデータは様々な形式で来る可能性があり、常に厳

密な仕様に従うとは限らないことを認識しています。これらの逸脱を優雅に処理し

修正することで、このクラスは不完全なデータが存在する場合でもアプリケーショ

ンがスムーズに機能し続けることを保証します。

一方で、JSONFixer クラスは出力に関してはポステルの法則の保守的な側面も遵

守しています。LLM を使用して JSON を修正した後、クラスは修正された JSON を

検証して、期待される形式に厳密に従っていることを確認します。アプリケーション

の他の部分に渡す前に、データの整合性と正確性を維持します。この保守的なア

プローチにより、JSONFixer クラスの出力が信頼性が高く一貫したものとなり、相

互運用性を促進しエラーの伝播を防ぎます。

Jon Postelに関する興味深い豆知識：

• Jon Postel（1943-1998）は、インターネットの開発に重要な役割を果たしたア

メリカのコンピュータ科学者でした。基礎となるプロトコルと標準への多大

な貢献により、「インターネットの神様」として知られていました。

• Postelは、インターネットに関する技術的および組織的な注釈のシリーズ

である Request for Comments（RFC）文書シリーズの編集者でした。TCP、IP、

自己修復データ 169

SMTP などの基本的なプロトコルを含む 200以上の RFCの著者または共

著者でした。

• 技術的な貢献に加えて、Postelは謙虚で協調的なアプローチで知られてい

ました。彼は合意に達することと、堅牢で相互運用可能なネットワークを構

築するために協力することの重要性を信じていました。

• Postel は 1977 年から 1998 年の早すぎる死まで、南カリフォルニア大学

（USC）の情報科学研究所（ISI）のコンピュータネットワーク部門のディレクタ

ーを務めました。

• 彼の多大な貢献を認められ、Postelは 1998年に「コンピューティングのノー

ベル賞」とも呼ばれる権威あるチューリング賞を死後受賞しました。

JSONFixer クラスは、Postelが生涯を通じて重視した堅牢性、柔軟性、相互運用性

を促進します。不完全さに対して寛容でありながら、プロトコルに厳密に準拠した

システムを構築することで、実世界の課題に対してより回復力があり、適応力のあ

るアプリケーションを作成することができます。

考慮事項と禁忌

自己修復データアプローチの適用可能性は、アプリケーションが扱うデータの種類

に完全に依存します。アプリケーション内の_すべての JSONパースエラー_を自動的

に修正するためにJSON.parse を単純にモンキーパッチすることが望ましくない理由

があります：すべてのエラーが自動的に修正できる、あるいは修正すべきというわけ

ではありません。

自己修復は、データの取り扱いと処理に関する規制やコンプライアンス要件と組み

合わさると特に難しい問題となります。医療や金融などの一部の業界では、データの

整合性と監査可能性に関する規制が非常に厳しく、適切な監視やログ記録なしに

「ブラックボックス」的なデータ修正を行うことは、これらの規制に違反する可能性が

あります。自己修復データ技術が適用される法的および規制の枠組みに確実に準

自己修復データ 170

拠するようにすることが極めて重要です。

特に AIモデルを含む自己修復データ技術の適用は、アプリケーションのパフォーマ

ンスとリソース使用にも大きな影響を与える可能性があります。エラーの検出と修正

のために大量のデータを AIモデルで処理することは、計算負荷が高くなる可能性

があります。自己修復データのメリットと、それに関連するパフォーマンスやリソース

のコストとのトレードオフを評価することが重要です。

とはいえ、このパワフルなアプローチをいつどこで適用するかを決定する際の要因に

ついて詳しく見ていきましょう。

データの重要度

自己修復データ技術の適用を検討する際、処理するデータの重要度を評価すること

が極めて重要です。重要度とは、アプリケーションとそのビジネスドメインの文脈にお

けるデータの重要性と機密性を指します。

場合によっては、特にデータが非常に機密性が高いか、法的な影響を持つ場合、デ

ータエラーを自動的に修正することは適切ではないかもしれません。以下のようなシ

ナリオを考えてみましょう：

1. 金融取引：銀行システムや取引プラットフォームなどの金融アプリケーション

では、データの正確性が最も重要です。金融データのわずかなエラーでも、口

座残高の誤り、資金の誤った送金、誤った取引判断など、重大な結果をもたら

す可能性があります。このような場合、徹底的な検証と監査なしに自動修正を

行うことは、受け入れがたいリスクをもたらす可能性があります。

2. 医療記録：医療アプリケーションは、非常に機密性の高い患者データを扱いま

す。医療記録の不正確さは、患者の安全と治療決定に重大な影響を及ぼす可

能性があります。資格を持つ医療専門家による適切な監督と検証なしに医療

データを自動的に修正することは、規制要件に違反し、患者の健康を危険にさ

らす可能性があります。

自己修復データ 171

3. 法的文書：契約書、合意書、または裁判所提出書類などの法的文書を扱うア

プリケーションでは、厳密な正確性と整合性が求められます。法的データのわ

ずかなエラーでも、重大な法的影響をもたらす可能性があります。この分野で

の自動修正は適切ではない可能性があります。なぜなら、データは多くの場合、

その有効性と執行可能性を確保するために法律の専門家による手動のレビュ

ーと検証が必要だからです。

これらの重要なデータシナリオでは、自動修正に関連するリスクが潜在的なメリット

を上回ることが多いです。エラーを導入したり、データを誤って修正したりすることの

結果は深刻で、金銭的損失、法的責任、さらには個人への危害につながる可能性が

あります。

非常に重要なデータを扱う場合、手動での検証とバリデーションプロセスを優先する

ことが不可欠です。データの正確性と整合性を確保するには、人間による監督と専

門知識が極めて重要です。自動自己修復技術は潜在的なエラーや不整合を指摘す

るために使用することはできますが、修正に関する最終決定には人間の判断と承認

が必要です。

ただし、アプリケーション内のすべてのデータが同じレベルの重要度を持つわけでは

ないことに注意することが重要です。同じアプリケーション内でも、エラーが発生して

も影響が少ない、より機密性の低いデータのサブセットが存在する可能性がありま

す。そのような場合、重要なデータは手動検証の対象としたまま、特定のデータサブ

セットに対して選択的に自己修復データ技術を適用することができます。

重要なのは、アプリケーション内の各データカテゴリーの重要度を慎重に評価し、関

連するリスクと影響に基づいて修正を処理するための明確なガイドラインとプロセス

を定義することです。重要なデータ（台帳や医療記録など）と重要でないデータ（郵

送先住所やリソース警告など）を区別することで、適切な場合には自己修復データ

技術のメリットを活用し、必要な場合には厳密な管理と監督を維持するバランスを取

ることができます。

自己修復データ技術を重要なデータに適用するかどうかの決定は、ドメインエキス

パート、法務アドバイザー、その他の関連するステークホルダーと協議の上で行う必

自己修復データ 172

要があります。アプリケーションのデータに関連する具体的な要件、規制、リスクを考

慮し、それに応じてデータ修正戦略を調整することが不可欠です。

エラーの重大度

自己修復データ技術を適用する際は、データエラーの重大度と影響を評価すること

が重要です。すべてのエラーが同じように扱われるわけではなく、問題の重大度に応

じて適切な対応が異なる場合があります。

軽微な不整合や形式の問題は、自動修正に適している場合があります。例えば、壊

れた JSON を修正する自己修復データワーカーは、欠落したカンマやエスケープされ

ていない二重引用符を、データの意味や構造を大きく変えることなく処理できます。

このような種類のエラーは通常、修正が簡単で、データの全体的な整合性への影響

も最小限です。

しかし、データの意味や整合性を根本的に変えてしまうような、より重大なエラーの場

合は、異なるアプローチが必要かもしれません。そのような場合、自動修正では不十

分で、データの正確性と有効性を確保するために人間による介入が必要になる可能

性があります。

ここで、エラーの重大度の判断に AI自体を活用するという考え方が重要になってき

ます。AIモデルの機能を活用することで、エラーを修正するだけでなく、それらのエラ

ーの重大度を評価し、対処方法について十分な情報に基づいた判断を下すことが

できる自己修復データワーカーを設計できます。

例えば、顧客データベースに流れ込むデータの不整合を修正する自己修復データワ

ーカーを考えてみましょう。このワーカーは、データを分析して、欠落した情報や矛盾

する情報などの潜在的なエラーを特定するように設計できます。ただし、すべてのエ

ラーを自動的に修正するのではなく、重大なエラーを人間のレビュー用にフラグを立

てることができる追加のツールコールを備えることができます。

以下は、これを実装する方法の例です：

自己修復データ 173

1 class CustomerDataReviewer

2 include Raix::ChatCompletion

3 include Raix::FunctionDeclarations

4

5 attr_accessor :customer

6

7 function :flag_for_review, reason: { type: "string" } do |params|

8 AdminNotifier.review_request(customer, params[:reason])

9 end

10

11 def initialize(customer)

12 self.customer = customer

13 end

14

15 def call(customer_data)

16 transcript << {

17 system: "You are a customer data reviewer. Your task is to identify

18 and correct inconsistencies in customer data.

19

20 < additional instructions here... >

21

22 If you encounter severe errors that require human review, use the

23 `flag_for_review` tool to flag the data for manual intervention." }

24

25 transcript << { user: customer.to_json }

26 transcript << { assistant: "Reviewed/corrected data:\n```json\n" }

27

28 self.stop = ["```"]

29

自己修復データ 174

30 chat_completion(json: true).then do |result|

31 return if result.blank?

32

33 customer.update(result)

34 end

35 end

36 end

この例では、CustomerDataHealer ワーカーは顧客データの不整合を特定し、修正す

るように設計されています。ここでも、構造化された出力を得るためにレスポンスフェ

ンシングとベントリロキストを使用します。重要な点として、ワーカーのシステム指示に

は、深刻なエラーが発生した場合にflag_for_review関数を使用するよう指示が含

まれています。

ワーカーが顧客データを処理する際、データを分析し、不整合を修正しようと試み

ます。ワーカーが人間の介入を必要とする深刻なエラーであると判断した場合、

flag_for_review ツールを使用してデータにフラグを立て、フラグを立てた理由を提

供することができます。

chat_completion メソッドはjson: true を指定して呼び出され、修正された顧客デー

タを JSON としてパースします。関数呼び出し後のループの仕組みは用意されていな

いため、flag_for_reviewが呼び出された場合、結果は空白になります。それ以外の

場合、顧客データは確認され、必要に応じて修正されたデータで更新されます。

エラーの重大度評価と人間によるレビューのためのフラグ立ての選択肢を組み込む

ことで、自己修復データワーカーはより知的で適応力のあるものとなります。軽微な

エラーは自動的に処理しながら、深刻なエラーは人間の専門家による手動での介入

にエスカレーションすることができます。

エラーの重大度を判断する具体的な基準は、ドメインの知識とビジネス要件に基づ

いてワーカーの指示に定義することができます。データの整合性への影響、データの

損失や破損の可能性、不正確なデータがもたらす結果などの要因を、重大度の評価

時に考慮することができます。

自己修復データ 175

AI を活用してエラーの重大度を評価し、人間の介入のための選択肢を提供すること

で、自己修復データ技術は自動化とデータの正確性の維持のバランスを取ることが

できます。このアプローチにより、軽微なエラーは効率的に修正され、深刻なエラーは

人間のレビュアーから必要な注意と専門知識を受けることが保証されます。

ドメインの複雑性

自己修復データ技術の適用を検討する際、データドメインの複雑性とその構造や関

係を規定するルールを評価することが重要です。ドメインの複雑性は、自動データ修

正アプローチの効果と実現可能性に大きな影響を与える可能性があります。

自己修復データ技術は、データが明確に定義されたパターンと制約に従っている

場合に効果的に機能します。データ構造が比較的単純で、データ要素間の関係が

straightforwardである領域では、自動修正を高い信頼性で適用することができます。

例えば、フォーマットの問題を修正したり、基本的なデータ型の制約を強制したりする

ことは、自己修復データワーカーによって効果的に処理できることが多いです。

しかし、データドメインの複雑性が増すにつれて、自動データ修正に関連する課題も

大きくなります。複雑なビジネスロジック、データエンティティ間の複雑な関係、または

ドメイン固有のルールと例外がある領域では、自己修復データ技術が常にその微妙

な違いを捉えられるとは限らず、意図しない結果をもたらす可能性があります。

複雑なドメインの例として、金融取引システムを考えてみましょう。このドメインでは、

データには様々な金融商品、市場データ、取引ルール、規制要件が含まれます。異な

るデータ要素間の関係は複雑で、データの有効性と一貫性を規定するルールはドメ

インに非常に特化したものとなる可能性があります。

このような複雑なドメインでは、取引データの不整合を修正する自己修復データワー

カーは、ドメイン固有のルールと制約について深い理解が必要です。市場規制、取引

制限、リスク計算、決済手続きなどの要因を考慮する必要があります。このような状

況での自動修正は、ドメインの複雑性を完全に捉えられない場合があり、誤ってエラ

ーを引き起こしたり、ドメイン固有のルールに違反したりする可能性があります。

自己修復データ 176

ドメインの複雑性による課題に対処するため、自己修復データ技術は以下のような

手法を通じて、ドメイン固有の知識とルールを AIモデルとワーカーに組み込むことで

強化できます：

1. ドメイン固有のトレーニング：自己修復データに使用される AIモデルは、特定

のドメインの複雑さとルールを捉えたドメイン固有のデータセットで指示を受け

たり、さらにはファインチューニングされたりすることができます。代表的なデー

タとシナリオにモデルを触れさせることで、ドメイン固有のパターン、制約、例外

を学習することができます。

2. ルールベースの制約：自己修復データワーカーは、ドメイン固有の知識を組み

込んだ明示的なルールベースの制約によって強化することができます。これら

のルールはドメインエキスパートによって定義され、データ修正プロセスに統合

されます。AIモデルはこれらのルールを使用して判断を導き、ドメイン固有の

要件への準拠を確保することができます。

3. ドメインエキスパートとの協力：複雑なドメインでは、自己修復データ技術の設

計と開発にドメインエキスパートを関与させることが極めて重要です。ドメイン

エキスパートは、データの複雑さ、ビジネスルール、そして起こりうるエッジケー

スについて貴重な洞察を提供できます。彼らの知識はヒューマンインザルー

プパターンを使用して、AIモデルとワーカーに組み込むことができ、自動データ

修正の精度と信頼性を向上させることができます。

4. 段階的かつ反復的なアプローチ：複雑なドメインを扱う場合、自己修復データ

に対して段階的かつ反復的なアプローチを採用することが有益です。ドメイン

全体の修正を一度に自動化しようとするのではなく、ルールと制約が十分に理

解されている特定のサブドメインやデータカテゴリに焦点を当てます。ドメイン

の理解が深まり、技術の有効性が実証されるにつれて、自己修復技術の範囲

を徐々に拡大していきます。

データドメインの複雑さを考慮し、ドメイン固有の知識を自己修復データ技術に組み

込むことで、自動化と精度のバランスを取ることができます。自己修復データは万能

自己修復データ 177

なソリューションではなく、各ドメインの特定の要件と課題に合わせてアプローチをカ

スタマイズする必要があることを認識することが重要です。

複雑なドメインでは、自己修復データ技術と人間の専門知識および監督を組み合わ

せたハイブリッドアプローチが最も効果的である場合があります。自動修正は定型的

でよく定義されたケースを処理し、複雑なシナリオや例外は人間のレビューと介入の

ためにフラグを立てることができます。この協調的なアプローチにより、複雑なデータ

ドメインで必要な制御と精度を維持しながら、自動化の利点を実現することができま

す。

説明可能性と透明性

説明可能性とは、AIモデルによる判断の背後にある理由を理解し解釈する能力を

指し、透明性とはデータ修正プロセスについて明確な可視性を提供することを意味

します。

多くの場合、データの修正は監査可能で正当化可能である必要があります。ビジネ

スユーザー、監査人、規制当局を含むステークホルダーは、特定のデータ修正が行

われた理由と、AIモデルがそれらの判断に至った過程について説明を必要とする場

合があります。これは特に金融、医療、法務など、データの正確性と完全性が重要な

影響を持つドメインで極めて重要です。

説明可能性と透明性の必要性に対応するため、自己修復データ技術には AIモデ

ルの意思決定プロセスについての洞察を提供するメカニズムを組み込む必要があり

ます。これは以下のようなアプローチで実現できます：

1. 思考の連鎖：データに変更を適用する前にモデルに「声に出して」考えを説明

させることで、意思決定プロセスの理解が容易になり、修正に対する人間が読

める説明を生成することができます。トレードオフとして、説明と構造化データ

の出力を分離する際に若干の複雑さが増しますが、これは以下のように対処

できます…

自己修復データ 178

2. 説明の生成：自己修復データワーカーに、行った修正について人間が読める

説明を生成する機能を備えることができます。これは、モデルに_データ自体に

統合された_形で意思決定プロセスを分かりやすい説明として出力させること

で実現できます。例えば、自己修復データワーカーは、特定したデータの不整

合、適用した修正、およびそれらの修正の根拠を強調したレポートを生成する

ことができます。

3. 特徴量の重要度： AIモデルに、指示の一部としてデータ修正プロセスにおけ

る異なる特徴や属性の重要性に関する情報を指示することができます。これら

の指示は、人間のステークホルダーに公開することができます。モデルの判断

に影響を与える主要な要因を特定することで、ステークホルダーは修正の背

後にある理由を理解し、その妥当性を評価することができます。

4. ログ記録と監査：包括的なログ記録と監査メカニズムの実装は、自己修復デ

ータプロセスの透明性を維持する上で極めて重要です。AIモデルによって行

われるすべてのデータ修正は、元のデータ、修正後のデータ、および実行され

た具体的なアクションを含めてログに記録される必要があります。この監査証

跡により、遡及的な分析が可能になり、データに加えられた修正の明確な記録

が提供されます。

5. 人間参加型アプローチ：自己修復データ技術の説明可能性と透明性を高める

ために、人間参加型アプローチを取り入れることが効果的です。AI生成の修

正内容をドメイン知識とビジネス要件に合致させるため、人間の専門家による

レビューと検証を組み込むことが重要です。人間による監督は、さらなる説明

責任の層を追加し、AIモデルに存在する可能性のあるバイアスやエラーを特

定することを可能にします。

6. 継続的なモニタリングと評価：透明性と信頼性を維持するために、自己修復デ

ータ技術のパフォーマンスを定期的にモニタリングし評価することが不可欠で

す。時間の経過とともに AIモデルの精度と有効性を評価することで、組織は

逸脱や異常を特定し、是正措置を講じることができます。継続的なモニタリング

により、自己修復データプロセスが信頼性を維持し、期待される成果に沿って

いることを確認できます。

自己修復データ 179

自己修復データ技術を実装する際、説明可能性と透明性は重要な考慮事項です。

データ修正の明確な説明を提供し、包括的な監査証跡を維持し、人間による監督を

組み込むことで、組織は自己修復データプロセスへの信頼を構築し、データに加えら

れた修正が正当化され、ビジネス目標に沿っていることを確実にすることができま

す。

自動化の利点と透明性の必要性のバランスを取ることが重要です。自己修復デー

タ技術はデータ品質と効率性を大幅に改善できますが、それはデータ修正プロセス

の可視性とコントロールを失う代償であってはなりません。説明可能性と透明性を念

頭に置いて自己修復データワーカーを設計することで、組織は AIの力を活用しなが

ら、データに対する必要な説明責任と信頼性を維持することができます。

意図しない結果

自己修復データ技術はデータ品質と一貫性の向上を目指していますが、意図しない

結果が生じる可能性について認識しておくことが重要です。慎重に設計およびモニ

タリングされていない自動修正は、意図せずにデータの意味や文脈を変更してしま

い、下流での問題につながる可能性があります。

自己修復データの主要なリスクの 1つは、データ修正プロセスにおけるバイアスやエ

ラーの導入です。他のソフトウェアシステムと同様に、AIモデルは訓練データに存在

するバイアスやアルゴリズムの設計を通じて導入されるバイアスの影響を受ける可

能性があります。これらのバイアスが特定され軽減されない場合、自己修復データプ

ロセスを通じて伝播し、偏ったまたは不正確なデータ修正をもたらす可能性がありま

す。

例えば、顧客の人口統計データの不整合を修正するタスクを担当する自己修復デ

ータワーカーを考えてみましょう。AIモデルが過去のデータからバイアスを学習して

いる場合、特定の職業や収入レベルを特定の性別や民族と関連付けるなど、誤った

仮定を行い、それらのバイアスを強化するようなデータ修正を行う可能性があります。

これは不正確な顧客プロファイル、誤った事業判断、さらには差別的な結果につなが

る可能性があります。

自己修復データ 180

もう 1つの潜在的な意図しない結果は、データ修正プロセス中の価値ある情報やコ

ンテキストの喪失です。自己修復データ技術は、一貫性を確保するためにデータの

標準化と正規化に重点を置くことが多くあります。しかし、場合によっては、元のデー

タに全体像を理解するために重要なニュアンス、例外、または文脈的な情報が含ま

れている可能性があります。盲目的に標準化を強制する自動修正は、このような価

値ある情報を意図せずに削除したり不明確にしたりする可能性があります。

例えば、医療記録の不整合を修正する責任を持つ自己修復データワーカーを想像

してみてください。ワーカーが稀少な症状や異常な治療計画を持つ患者の医療履歴

に遭遇した場合、より一般的なパターンに適合するようにデータを正規化しようとす

るかもしれません。しかし、そうすることで、患者の固有の状況を正確に表現するため

に重要な具体的な詳細や文脈が失われる可能性があります。この情報の喪失は、患

者のケアや医療上の意思決定に重大な影響を及ぼす可能性があります。

意図しない結果のリスクを軽減するために、自己修復データ技術の設計と実装時に

は積極的なアプローチを取ることが不可欠です：

1. 徹底的なテストと検証：自己修復データワーカーを本番環境にデプロイする前

に、様々なシナリオに対する動作を徹底的にテストし検証することが重要です。

これには、様々なエッジケース、例外、および潜在的なバイアスをカバーする代

表的なデータセットでのテストが含まれます。厳密なテストにより、実際のデー

タに影響を与える前に、意図しない結果を特定し対処することができます。

2. 継続的なモニタリングと評価：継続的なモニタリングと評価の仕組みを実装す

ることは、時間の経過とともに生じる意図しない結果を検出し、軽減するため

に不可欠です。自己修復データプロセスの結果を定期的に確認し、下流のシ

ステムや意思決定への影響を分析し、ステークホルダーからのフィードバック

を収集することで、悪影響を特定し、適時に是正措置を講じることができます。

組織が運用ダッシュボードを持っている場合、自動化されたデータ変更に関連

する指標を分かりやすく表示することは、おそらく良いアイデアでしょう。通常

のデータ変更活動から大きく逸脱した場合にアラームを設定することは、さら

に良いアイデアかもしれません！

自己修復データ 181

3. 人間による監督と介入：自己修復データプロセスにおける人間による監督と介

入能力を維持することは極めて重要です。自動化は効率性を大幅に向上させ

る可能性がありますが、特に重要または機密性の高い領域では、AIモデルに

よる修正を人間の専門家が確認し、検証することが重要です。人間の判断と

専門知識は、発生する可能性のある意図しない結果を特定し、対処するのに

役立ちます。

4. 説明可能な AI（XAI）と透明性：前節で説明したように、説明可能な AIの技術

を取り入れ、自己修復データプロセスの透明性を確保することは、意図しない

結果を軽減するのに役立ちます。データ修正に関する明確な説明を提供し、包

括的な監査証跡を維持することで、組織は AIモデルによる修正の背後にある

理由をより良く理解し、追跡することができます。

5. 段階的かつ反復的なアプローチ：自己修復データに段階的かつ反復的なアプ

ローチを採用することで、意図しない結果のリスクを最小限に抑えることができ

ます。データセット全体に一度に自動修正を適用するのではなく、データの一

部から始めて、その技術が効果的で信頼できることが証明されてから徐々に範

囲を拡大していきます。これにより、途中で注意深くモニタリングと調整を行う

ことができ、意図しない結果の影響を軽減できます。

6. 協力とフィードバック：異なる領域のステークホルダーを関与させ、自己修復デ

ータプロセス全体を通じて協力とフィードバックを促すことは、意図しない結果

を特定し、対処するのに役立ちます。専門家、データ利用者、エンドユーザーか

ら定期的に意見を求めることで、データ修正の実際の影響に関する貴重な洞

察を得ることができ、見落とされていた問題を浮き彫りにすることができます。

意図しない結果のリスクに積極的に対処し、適切な保護措置を実施することで、組

織は潜在的な悪影響を最小限に抑えながら、自己修復データ技術の利点を活用す

ることができます。自己修復データを反復的で協力的なプロセスとしてアプローチし、

望ましい結果と一致させ、データの整合性と信頼性を維持するために、技術を継続

的にモニタリング、評価、改善することが重要です。

自己修復データ 182

自己修復データパターンの使用を検討する際には、これらの要因を慎重に評価し、

利点と潜在的なリスクおよび制限を比較検討することが不可欠です。場合によって

は、自動修正と人間による監督および介入を組み合わせたハイブリッドアプローチが

最も適切な解決策となるかもしれません。

また、自己修復データ技術は、堅牢なデータ検証、入力データのサニタイズ、エラー

処理メカニズムの代替として見なすべきではないことにも注意が必要です。これらの

基礎的な実践は、データの整合性とセキュリティを確保するために依然として重要で

す。自己修復データは、これらの既存の対策を補完し、強化する補完的なアプローチ

として捉えるべきです。

最終的に、自己修復データパターンを採用するかどうかの決定は、アプリケーション

の具体的な要件、制約、優先順位に依存します。上記の考慮事項を慎重に検討し、

アプリケーションの目標とアーキテクチャに合わせることで、自己修復データ技術を

いつ、どのように効果的に活用するかについて、十分な情報に基づいた決定を下す

ことができます。

コンテキスト型コンテンツ生成

コンテキスト型コンテンツ生成パターンは、大規模言語モデル（LLM）の能力を活用

して、アプリケーション内で動的かつコンテキストに応じたコンテンツを生成します。こ

のパターンカテゴリーは、ユーザーの特定のニーズ、好み、さらにはアプリケーション

との過去および現在のインタラクションに基づいて、パーソナライズされた関連性の

高いコンテンツを提供することの重要性を認識しています。

このアプローチにおける「コンテンツ」とは、主要コンテンツ（ブログ投稿、記事など）

と、主要コンテンツへの推奨などのメタコンテンツの両方を指します。

コンテキスト型コンテンツ生成パターンは、ユーザーエンゲージメントレベルの向上、

カスタマイズされた体験の提供、そしてあなたとユーザーの両方のためのコンテンツ

作成タスクの自動化において重要な役割を果たすことができます。この章で説明す

コンテキスト型コンテンツ生成 184

るパターンを活用することで、コンテキストと入力にリアルタイムで適応しながら、動

的にコンテンツを生成するアプリケーションを作成することができます。

このパターンは、ユーザーインターフェース（「chrome」とも呼ばれる）、メール、その他

の通知形式、さらにはあらゆるコンテンツ生成パイプラインにおいて、LLMをアプリケ

ーションの出力に統合することで機能します。

ユーザーがアプリケーションと対話するか、特定のコンテンツリクエストをトリガーす

ると、アプリケーションはユーザーの好み、過去のインタラクション、特定のプロンプト

などの関連するコンテキストを取得します。このコンテキスト情報は、必要なテンプレ

ートやガイドラインとともに LLM に送られ、ハードコードされたり、データベースに保

存されたり、アルゴリズムで生成されたりする必要があった場合のテキスト出力を生

成するために使用されます。

LLMが生成するコンテンツは、パーソナライズされた推奨、動的な製品説明、カスタ

マイズされたメール返信、さらには記事やブログ投稿全体など、さまざまな形を取るこ

とができます。1年以上前に私が先駆けとなった最も画期的な使用法の 1つは、フォ

ームラベル、ツールチップ、その他の説明テキストなどの UI要素を動的に生成するこ

とです。

パーソナライゼーション

コンテキスト型コンテンツ生成パターンの主要な利点の 1つは、ユーザーに高度にパ

ーソナライズされた体験を提供できることです。ユーザー固有のコンテキストに基づ

いてコンテンツを生成することで、これらのパターンを使用するアプリケーションは、

個々のユーザーの興味、好み、インタラクションに合わせてコンテンツをカスタマイズ

することができます。

パーソナライゼーションは、単に一般的なコンテンツにユーザーの名前を挿入する以

上のものです。各ユーザーについて利用可能な豊富なコンテキストを活用して、特定

のニーズと欲求に共鳴するコンテンツを生成することを含みます。このコンテキストに

は、以下のようなさまざまな要因が含まれます：

コンテキスト型コンテンツ生成 185

1. ユーザープロファイル情報：このテクニックを適用する最も一般的なレベルで

は、人口統計データ、興味、好み、その他のプロファイル属性を使用して、ユー

ザーの背景と特性に合ったコンテンツを生成することができます。

2. 行動データ：閲覧したページ、クリックしたリンク、購入した製品など、アプリケー

ションとのユーザーの過去のインタラクションは、その行動と興味に関する貴

重な洞察を提供できます。このデータは、ユーザーのエンゲージメントパターン

を反映し、将来のニーズを予測するコンテンツ提案を生成するために使用でき

ます。

3. コンテキスト要因：ユーザーの現在の場所、デバイス、時刻、さらには天候など

の現在のコンテキストが、コンテンツ生成プロセスに影響を与える可能性があ

ります。例えば、旅行アプリケーションでは、ユーザーの現在地と現在の天候条

件に基づいてパーソナライズされた推奨を生成できる AI ワーカーを持つこと

ができます。

これらのコンテキスト要因を活用することで、コンテキスト型コンテンツ生成パターン

は、各ユーザーのために特別に作られたように感じられるコンテンツを提供すること

ができます。このレベルのパーソナライゼーションには、いくつかの重要な利点があり

ます：

1. エンゲージメントの向上：パーソナライズされたコンテンツはユーザーの注意を

引き、アプリケーションへの関与を維持します。ユーザーがコンテンツが関連性

が高く、自分のニーズに直接応えていると感じる場合、アプリケーションとの対

話により多くの時間を費やし、その機能を探索する可能性が高くなります。

2. ユーザー満足度の向上：パーソナライズドコンテンツは、アプリケーションがユ

ーザーの固有のニーズを理解し、配慮していることを示します。ユーザーの興

味に沿った有用で情報価値の高いコンテンツを提供することで、アプリケーシ

ョンはユーザー満足度を高め、ユーザーとのより強い結びつきを構築すること

ができます。

3. より高いコンバージョン率： e コマースやマーケティングアプリケーションにおい

て、パーソナライズドコンテンツはコンバージョン率に大きな影響を与えること

コンテキスト型コンテンツ生成 186

ができます。ユーザーの好みや行動に合わせた商品、オファー、レコメンデーシ

ョンを提示することで、購入やサービス登録といった望ましいアクションをユー

ザーが取る可能性を高めることができます。

生産性

コンテキスト型コンテンツ生成パターンは、クリエイティブプロセスにおける手動での

コンテンツ生成や編集の必要性を減らすことで、特定の種類の生産性を大幅に向上

させることができます。大規模言語モデルの力を活用することで、コンテンツクリエイ

ターや開発者が退屈な手作業に費やさなければならない時間と労力を節約しなが

ら、大規模な高品質コンテンツを生成することが可能になります。

従来、コンテンツクリエイターは、アプリケーションの要件とユーザーの期待に応える

ために、リサーチ、執筆、編集、フォーマット設定を行う必要がありました。特にコンテン

ツの量が増えるにつれて、このプロセスは時間と資源を大量に消費する可能性があ

ります。

しかし、コンテキスト型コンテンツ生成パターンを使用することで、コンテンツ作成プロ

セスの大部分を自動化することができます。大規模言語モデルは、与えられたプロン

プトとガイドラインに基づいて、一貫性があり、文法的に正しく、文脈に即したコンテ

ンツを生成することができます。この自動化には以下のような生産性の利点がありま

す：

1. 手作業の削減：コンテンツ生成タスクを大規模言語モデルに委託することで、

コンテンツクリエイターはコンテンツ戦略、アイデア創出、品質保証といったより

高次のタスクに集中できます。必要なコンテキスト、テンプレート、ガイドライン

を大規模言語モデルに提供し、実際のコンテンツ生成を任せることができます。

これにより、執筆や編集に必要な手作業が減り、コンテンツクリエイターはより

生産的かつ効率的に作業を行うことができます。

コンテキスト型コンテンツ生成 187

2. より迅速なコンテンツ作成：大規模言語モデルは人間の作家よりもはるかに速

くコンテンツを生成できます。適切なプロンプトとガイドラインがあれば、大規模

言語モデルは数秒から数分で複数のコンテンツを生成することができます。こ

の速度により、アプリケーションはユーザーの要求と絶えず変化するデジタル

環境に対応しながら、より速いペースでコンテンツを生成することができます。

より速いコンテンツ作成は、誰も読まないコンテンツでインターネットが溢れかえる

「コモンズの悲劇」の状況を引き起こしているのでしょうか。残念ながら、その答え

はイエスだと思われます。

3. 一貫性と品質：大規模言語モデルは、スタイル、トーン、品質の面で一貫したコ

ンテンツを容易に作成することができます。明確なガイドラインと例を提供する

ことで、特定の種類のアプリケーション（ニュースルーム、PR等）は、人間が生

成したコンテンツがブランドボイスと一致し、望ましい品質基準を満たすことを

確保できます。この一貫性により、広範な編集や改訂の必要性が減少し、コン

テンツ作成プロセスにおける時間と労力を節約することができます。

4. 反復と最適化： コンテキスト型コンテンツ生成パターンにより、コンテンツの迅

速な反復と最適化が可能になります。大規模言語モデルに提供するプロンプ

ト、テンプレート、またはガイドラインを調整することで、アプリケーションは過去

には不可能だった方法で、自動的にコンテンツのバリエーションを生成し、異な

るアプローチをテストすることができます。この反復プロセスにより、コンテンツ

戦略のより速い実験と改善が可能になり、時間とともにより効果的で魅力的な

コンテンツを生み出すことができます。この特定の技術は、直帰率とエンゲー

ジメントに基づいて生死が決まる e コマースなどのアプリケーションにとって、

完全なゲームチェンジャーとなり得ます。

コンテキスト型コンテンツ生成 188

コンテキスト型コンテンツ生成パターンは生産性を大きく向上させること

ができますが、人間の関与を完全に排除するものではないことに注意す

ることが重要です。コンテンツクリエイターや編集者は、全体的なコンテン

ツ戦略の定義、大規模言語モデルへのガイダンスの提供、生成されたコ

ンテンツの品質と適切性の確保において、依然として重要な役割を果た

しています。

コンテキスト型コンテンツ生成パターンにより、コンテンツ作成における反復的で時間

のかかる作業を自動化することで、より価値の高いタスクに人的時間とリソースを振

り向けることが可能になります。この生産性の向上により、コンテンツ作成のワークフ

ローを最適化しながら、よりパーソナライズされた魅力的なコンテンツをユーザーに提

供できるようになります。

高速イテレーションと実験

コンテキスト型コンテンツ生成パターンを使用することで、さまざまなコンテンツのバ

リエーションを素早く反復し、実験することができ、コンテンツ戦略の最適化と改善を

より迅速に行うことが可能になります。コンテキスト、テンプレート、またはモデルに提

供するガイドラインを調整するだけで、数秒でコンテンツの複数のバージョンを生成

できます。

この高速イテレーション機能には、以下のような主要なメリットがあります：

1. テストと最適化：コンテンツのバリエーションを素早く生成できる機能により、さ

まざまなアプローチを簡単にテストし、その効果を測定することができます。例

えば、特定のユーザーセグメントやコンテキストに合わせた製品説明やマーケ

ティングメッセージの複数のバージョンを生成できます。クリック率やコンバー

ジョン率などのユーザーエンゲージメント指標を分析することで、最も効果的

なコンテンツのバリエーションを特定し、コンテンツ戦略を適切に最適化するこ

とができます。

コンテキスト型コンテンツ生成 189

2. A/Bテスト：コンテキスト型コンテンツ生成パターンにより、コンテンツの A/Bテ

ストをシームレスに実施することができます。2つ以上のコンテンツのバリエー

ションを生成し、異なるユーザーグループにランダムに提供することができま

す。各バリエーションのパフォーマンスを比較することで、ターゲットオーディエ

ンスに最も響くコンテンツを判断することができます。このデータ駆動型のアプ

ローチにより、情報に基づいた意思決定を行い、ユーザーエンゲージメントを最

大化し、望ましい結果を達成するためにコンテンツを継続的に改善することが

できます。

3. パ ー ソ ナ ラ イ ゼ ー シ ョ ン の 実 験： 高 速 イ テ レ ー シ ョ ン と 実 験

は、 パ ー ソ ナ ラ イ ゼ ー シ ョ ン に お い て 特 に 価 値 が あ り ま す。

コンテキスト型コンテンツ生成パターンを使用することで、異なるユーザ

ーセグメント、好み、または行動に基づいて、パーソナライズされたコンテンツの

バリエーションを素早く生成できます。さまざまなパーソナライゼーション戦略

を実験することで、個々のユーザーを魅了し、カスタマイズされた体験を提供す

るための最も効果的なアプローチを特定できます。

4. 変化するトレンドへの適応：素早く反復し実験できる能力により、変化するトレ

ンドやユーザーの好みに機敏に適応することができます。新しいトピック、キー

ワード、またはユーザーの行動が出現した際に、これらのトレンドに合わせたコ

ンテンツを素早く生成できます。コンテンツを継続的に実験し改善することで、

常に進化するデジタルランドスケープにおいて関連性を保ち、競争力を維持す

ることができます。

5. コスト効率の良い実験：従来のコンテンツ実験では、コンテンツクリエイターが

異なるバリエーションを手動で開発しテストする必要があるため、多大な時間

とリソースが必要でした。しかし、コンテキスト型コンテンツ生成パターンを使用

することで、実験のコストが大幅に削減されます。LLMは素早くスケーラブル

にコンテンツのバリエーションを生成できるため、多大なコストをかけることなく、

幅広いアイデアやアプローチを探求することができます。

高速イテレーションと実験を最大限に活用するには、適切に定義された実験フレームワークを

整備することが重要です。このフレームワークには以下が含まれるべきです：

コンテキスト型コンテンツ生成 190

• 各実験の明確な目的と仮説

• コンテンツのパフォーマンスを測定するための適切な指標と追跡メカニズム

• 適切なコンテンツのバリエーションを適切なユーザーに提供するためのセグメンテーションとターゲティング戦略

• 実験データから洞察を導き出すための分析とレポートツール

• 学びと最適化をコンテンツ戦略に組み込むためのプロセス

高速イテレーションと実験を取り入れることで、コンテンツを継続的に改善し最適化

し、アプリケーションの目標達成に向けて魅力的で関連性が高く効果的なものであ

り続けることができます。このアジャイルなコンテンツ作成アプローチにより、常に先を

行き、優れたユーザーエクスペリエンスを提供することができます。

スケーラビリティと効率性

アプリケーションが成長し、パーソナライズされたコンテンツの需要が増加するにつ

れ、コンテキスト型コンテンツ生成パターンによってコンテンツ作成を効率的にスケー

ルすることが可能になります。LLMは人的リソースを比例的に増やす必要なく、多数

のユーザーとコンテキストに対して同時にコンテンツを生成することができます。この

スケーラビリティにより、アプリケーションはコンテンツ作成能力に負担をかけること

なく、成長するユーザーベースにパーソナライズされた体験を提供することができま

す。

文脈に基づくコンテンツ生成は、アプリケーションを 「オンザ

フ ラ イ」 で国際化するのに効果的に使用でき る こ と に注目

し て く だ さ い。 実 際、 そ れ は 私 が Instant18n Gem を 使 用 し て、

設立からまだ 1年も経っていない Olympia を半ダース以上の言語で提供するために行ったことそのものです。

AI駆動のローカライゼーション

少し自慢させていただくと、Railsアプリケーション向けの私の Instant18n ライブラリは、「文

脈に基づくコンテンツ生成」パターンの画期的な例であり、アプリケーション開発に

コンテキスト型コンテンツ生成 191

おける AIの変革的な可能性を示していると考えています。この gemは、OpenAIの

GPT大規模言語モデルの力を活用して、Railsアプリケーションにおける国際化とロ

ーカライゼーションの処理方法を革新します。

従来、Railsアプリケーションの国際化では、翻訳キーを手動で定義し、サポートする

各言語に対応する翻訳を提供する必要がありました。このプロセスは時間がかかり、

リソースを大量に消費し、一貫性の欠如を招きやすいものでした。しかし、Instant18n

gem を使用することで、ローカライゼーションのパラダイムが完全に再定義されます。

大規模言語モデルを統合することで、Instant18n gemはテキストの文脈と意味に基

づいてオンザフライで翻訳を生成することができます。事前定義された翻訳キーと静

的な翻訳に依存する代わりに、この gemは AIの力を使用して動的にテキストを翻訳

します。このアプローチには以下のような主要な利点があります：

1. シームレスなローカライゼーション： Instant18n gem を使用することで、

開発者はもはやサポートする各言語の翻訳ファイルを手動で定義・

管理する必要がありません。この gem は提供されたテキストと目的の対象

言語に基づいて自動的に翻訳を生成し、ローカライゼーションのプロセスを労

力のいらない、シームレスなものにします。

2. 文脈的な正確さ： AI には翻訳されるテキストのニュアンスを理解するのに十

分な文脈を与えることができます。周囲の文脈、慣用句、文化的な参照を考慮

に入れ、正確で自然な響きを持ち、文脈的に適切な翻訳を生成することができ

ます。

3. 広範な言語サポート： Instant18n gemは GPTの膨大な知識と言語能力を活用

し、幅広い言語への翻訳を可能にします。スペイン語やフランス語のような一

般的な言語から、クリンゴン語やエルフ語のようなより珍しい、あるいは架空の

言語まで、この gemは多様な翻訳要件に対応できます。

4. 柔軟性と創造性：この gem は従来の言語翻訳を超えて、創造的で独

創的なローカライゼーションのオプションを提供します。開発者はテキ

ストを様々なスタイル、方言、さらには架空の言語に翻訳することができ、

ユニークなユーザー体験と魅力的なコンテンツのための新しい可能性を開きます。

コンテキスト型コンテンツ生成 192

5. パフォーマンスの最適化： Instant18n gem はパフォーマンスを向上さ

せ、繰り返される翻訳のオーバーヘッドを削減するためのキャッシ

ュメカニズムを組み込んでいます。翻訳されたテキストはキャッシュされ、

同じ翻訳に対する後続のリクエストは冗長な API コールを必要とせずに迅速に提供されます。

Instant18n gemは、AI を活用して動的にローカライズされたコンテンツを生成するこ

とで、「文脈に基づくコンテンツ生成」パターンの力を実証しています。これは、AI を

Railsアプリケーションのコア機能に統合し、開発者が国際化とローカライゼーション

にアプローチする方法を変革する方法を示しています。

手動での翻訳管理の必要性を排除し、文脈に基づいたオンザフライの翻訳を可能

にすることで、Instant18n gemは開発者の大幅な時間と労力を節約します。これによ

り、ローカライゼーションの側面がシームレスかつ正確に処理されることを確保しな

がら、アプリケーションのコア機能の構築に集中することができます。

ユーザーテストとフィードバックの重要性

最後に、ユーザーテストとフィードバックの重要性を常に念頭に置いてください。文脈

に基づくコンテンツ生成がユーザーの期待に応え、アプリケーションの目標に沿って

いることを検証することが重要です。ユーザーの洞察と分析に基づいて、生成された

コンテンツを継続的に改善し、洗練させてください。あなたとチームが手動で検証す

ることが不可能な大規模な動的コンテンツを生成している場合は、ユーザーが奇妙

または誤っているコンテンツを報告できるフィードバックメカニズムを追加することを

検討してください。その理由の説明も含めて。この貴重なフィードバックは、コンテン

ツを生成したコンポーネントの調整を行う AI ワーカーに送ることもできます！

生成的 UI

現代では注目度が非常に重要となっており、効果的なユーザーエンゲージメント

を実現するには、シームレスで直感的なソフトウェア体験だけでなく、個々のニー

ズ、好み、状況に合わせて高度にパーソナライズされた体験が必要となっていま

す。その結果、デザイナーや開発者は、各ユーザーの固有の要件に_スケーラブル

に_適応できるユーザーインターフェースを作成するという課題に、increasingly直面

しています。

生成的 UI（GenUI）は、ユーザーインターフェース設計に対する真に革新的なアプロ

ーチです。大規模言語モデル（LLM）の力を活用して、高度にパーソナライズされた

動的なユーザー体験をその場で作り出します。この本で GenUIの基礎について少な

くとも紹介しておきたかったのは、アプリケーション設計とフレームワークの分野にお

いて、現在存在する最も有望な未開拓の機会の 1つだと信じているからです。この

特定の分野では、数十以上の新しい商用およびオープンソースプロジェクトが生ま

れると確信しています。

生成的 UI 194

GenUIの核心は、コンテキスト依存型コンテンツ生成の原則と先進的な AI技術を組

み合わせ、ユーザーのコンテキスト、好み、目標を深く理解した上で、テキスト、画像、

レイアウトなどのユーザーインターフェース要素を動的に生成することにあります。

GenUIにより、デザイナーや開発者は、ユーザーの操作に応じて適応し進化するイン

ターフェースを作成でき、これまでは実現不可能だったレベルのパーソナライゼーシ

ョンを提供できます。

GenUIは、ユーザーインターフェース設計へのアプローチ方法を根本的に変えるも

のです。大衆向けの設計から、個人向けの設計が可能になります。パーソナライズさ

れたコンテンツとインターフェースには、各ユーザーとより深いレベルで共鳴するユ

ーザー体験を作り出し、エンゲージメント、満足度、ロイヤリティを高める可能性があ

ります。

最先端の技術として、GenUIへの移行には概念的および実践的な課題が山積して

います。設計プロセスへの AIの統合、生成されたインターフェースがパーソナライ

ズされているだけでなく、使いやすく、アクセシブルで、全体的なブランドとユーザー

体験に沿ったものであることの確保など、これらの課題によって GenUIは一部の人

々のための追求となっています。さらに、AIの関与によってデータプライバシー、透明

性、そして倫理的な影響に関する問題も提起されています。

課題はありますが、スケーラブルなパーソナライズ体験には、デジタル製品やサービ

スとの相互作用の方法を完全に変革する力があります。能力、背景、好みに関係な

く、ユーザーの多様なニーズに対応する包括的でアクセシブルなインターフェースを

作成する可能性を開きます。

この章では、GenUIの概念を探り、いくつかの定義的特徴、主要な利点、潜在的な課

題について検討します。まずは、GenUIの最も基本的でアクセスしやすい形態であ

る、従来の方法で設計・実装されたユーザーインターフェースのためのテキストコピ

ーの生成から始めます。

生成的 UI 195

ユーザーインターフェース用のコピーの生成

アプリケーションのクロームに存在するフォームラベル、ツールチップ、説明テキ

ストなどのテキスト要素は、通常、テンプレートや UI コンポーネントにハードコ

ードされており、すべてのユーザーに一貫性のある汎用的な体験を提供します。

コンテキスト依存型コンテンツ生成パターンを使用することで、これらの静的な要素

を動的で、コンテキストを認識し、パーソナライズされたコンポーネントに変換できま

す。

パーソナライズされたフォーム

フォームは、ウェブやモバイルアプリケーションにおいて普遍的な存在であり、ユーザ

ー入力を収集する主要な手段となっています。しかし、従来のフォームは一般的で没

個性的な体験を提供しがちで、標準的なラベルやフィールドがユーザーの具体的な

状況やニーズに必ずしも合致しないことがあります。ユーザーは自分のニーズや好

みに合わせて調整されているように感じるフォームの方が入力を完了する可能性が

高く、それによってコンバージョン率とユーザー満足度の向上につながります。

ただし、パーソナライゼーションと一貫性のバランスを取ることが重要です。フォーム

を個々のユーザーに適応させることは有益である一方で、一定の親しみやすさと予

測可能性を維持することが不可欠です。パーソナライズされた要素があっても、ユー

ザーは依然としてフォームを簡単に認識し、操作できる必要があります。

以下に、パーソナライズされたフォームのアイデアをいくつか紹介します：

文脈に応じたフィールド候補

GenUIは、ユーザーの過去のインタラクション、設定、データを分析して、予測として知

的なフィールド候補を提供することができます。例えば、ユーザーが以前に配送先住

所を入力している場合、フォームは関連するフィールドに保存された情報を自動的に

入力することができます。これは時間を節約できるだけでなく、アプリケーションがユ

ーザーの設定を理解し、記憶していることを示すことができます。

生成的UI 196

ちょっと待ってください。この手法は AIを使わなくても実現できるのではないでしょう

か？もちろんその通りですが、AIでこの種の機能を実現する利点は 2つあります：1)

実装が容易であること、2) UIが変更され進化していく中でも柔軟に対応できること

です。

では、ユーザーの配送先住所を事前に入力しようとする理論的な注文処理システム

用のサービスを作ってみましょう。

1 class OrderShippingAddressSubscriber

2 include Raix::ChatCompletion

3

4 attr_accessor :order

5

6 delegate :customer, to: :order

7

8 DIRECTIVE = "You are a smart order processing assistant. Given the

9 customer's order history, guess the most likely shipping address

10 for the current order."

11

12 def order_created(order)

13 return unless order.pending? && order.shipping_address.blank?

14

15 self.order = order

16

17 transcript.clear

18 transcript << { system: DIRECTIVE }

19 transcript << { user: "Order History: #{order_history.to_json}" }

20 transcript << { user: "Current Order: #{order.to_json}" }

21

22 response = chat_completion

生成的 UI 197

23 apply_predicted_shipping_address(order, response)

24 end

25

26 private

27

28 def apply_predicted_shipping_address(order, response)

29 # extract the shipping address from the response...

30 # ...and assume there's some sort of live update of the address fields

31 order.update(shipping_address:)

32 end

33

34 def order_history

35 customer.orders.successful.limit(100).map do |order|

36 {

37 date: order.date,

38 description: order.description,

39 shipping_address: order.shipping_address

40 }

41 end

42 end

43 end

この例は非常に単純化されていますが、ほとんどの場合に有効です。基本的な考え

方は、人工知能に人間と同じような方法で推測させることです。具体的に説明するた

めに、いくつかのサンプルデータを見てみましょう：

生成的UI 198

1 Order History:

2 [

3 {"date": "2024-01-03", "description": "garden soil mix",

4 "shipping_address": "123 Country Lane, Rural Town"},

5 {"date": "2024-01-15", "description": "hardcover fiction novels",

6 "shipping_address": "456 City Apt, Metroville"},

7 {"date": "2024-01-22", "description": "baby diapers", "shipping_address":

8 "789 Suburb St, Quietville"},

9 {"date": "2024-02-01", "description": "organic vegetables",

10 "shipping_address": "123 Country Lane, Rural Town"},

11 {"date": "2024-02-17", "description": "mystery thriller book set",

12 "shipping_address": "456 City Apt, Metroville"},

13 {"date": "2024-02-25", "description": "baby wipes",

14 "shipping_address": "789 Suburb St, Quietville"},

15 {"date": "2024-03-05", "description": "flower seeds",

16 "shipping_address": "123 Country Lane, Rural Town"},

17 {"date": "2024-03-20", "description": "biographies",

18 "shipping_address": "456 City Apt, Metroville"},

19 {"date": "2024-03-30", "description": "baby formula",

20 "shipping_address": "789 Suburb St, Quietville"},

21 {"date": "2024-04-12", "description": "lawn fertilizer",

22 "shipping_address": "123 Country Lane, Rural Town"},

23 {"date": "2024-04-22", "description": "science fiction novels",

24 "shipping_address": "456 City Apt, Metroville"},

25 {"date": "2024-05-02", "description": "infant toys",

26 "shipping_address": "789 Suburb St, Quietville"},

27 {"date": "2024-05-14", "description": "outdoor grill",

28 "shipping_address": "123 Country Lane, Rural Town"},

29 {"date": "2024-05-29", "description": "literary classics",

生成的UI 199

30 "shipping_address": "456 City Apt, Metroville"},

31 {"date": "2024-06-11", "description": "baby clothes",

32 "shipping_address": "789 Suburb St, Quietville"},

33 {"date": "2024-07-01", "description": "watering can",

34 "shipping_address": "123 Country Lane, Rural Town"},

35 {"date": "2024-07-18", "description": "non-fiction essays",

36 "shipping_address": "456 City Apt, Metroville"},

37 {"date": "2024-07-28", "description": "baby bath items",

38 "shipping_address": "789 Suburb St, Quietville"},

39 {"date": "2024-08-09", "description": "herb garden kit",

40 "shipping_address": "123 Country Lane, Rural Town"},

41 {"date": "2024-08-24", "description": "children's books",

42 "shipping_address": "456 City Apt, Metroville"}

43]

データのパターンに気付きましたか？これは間違いなく LLMにとって簡単な作業で

す。 実証するために、GPT-4に「thermometer」の最も可能性の高い配送先住所を尋

ねてみましょう。

1 From the order history you've provided, it looks like the purchases are

2 generally clustered into three main types based on the shipping addresses:

3

4 123 Country Lane, Rural Town - This address often orders garden and

5 outdoor-related items like soil mix, vegetables, flower seeds, lawn

6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.

7

8 456 City Apt, Metroville - This address tends to order various types of

9 books, indicating an interest in reading across genres like fiction,

10 thrillers, biographies, science fiction, literary classics, non-fiction

11 essays, and children's books.

生成的UI 200

12

13 789 Suburb St, Quietville - The purchases for this address are consistently

14 baby-related products, such as diapers, wipes, baby formula, infant toys,

15 baby clothes, and baby bath items.

16

17 Given these patterns, a digital thermometer could potentially be a fit for

18 any of the addresses based on different needs: outdoor temperature tracking,

19 a tool for a passionate reader interested in science gadgets, or a health

20 tool for a baby. However, considering its common use in monitoring health,

21 especially for babies, it's most likely to be purchased by someone who's

22 already buying baby care products.

23

24 Therefore, the most likely shipping address for a digital thermometer, based

25 on the purchasing patterns, would be 789 Suburb St, Quietville.

もし GPT-4のような高価なモデルをこのタスクに使うのは過剰だと思っているなら、そ

の通りです！同じプロンプトを Mistral 7B Instructで試してみたところ、75 トークン毎秒

の速度で、わずか 0.000218米ドルというコストで以下の応答を生成しました。

1 Based on the given order history, it appears that the customer has received

2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)

3 at the address "789 Suburb St, Quietville" and garden-related items (soil,

4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural

5 Town". The customer has also received books (fiction, non-fiction, literary

6 classics, mystery-thriller, science fiction, biographies, children's books)

7 at the address "456 City Apt, Metroville".

8

9 Given that the new order is for a "thermometer", which doesn't seem to fit

10 into any of the categories that the customer has previously ordered, it's

11 hard to accurately predict the shipping address based solely on the order

生成的 UI 201

12 history. However, given the 50%-50% split between baby-related and

13 garden-related items, it could somewhat lean towards the Baby-related items

14 address ("789 Suburb St, Quietville"). But remember, this is an assumption

15 and cannot be definitively confirmed without more context or information.

このテクニックのオーバーヘッドとコストは、チェックアウト体験をより魔法のよ

うなものにするために価値があるのでしょうか？多くのオンライン小売業者に

と っ て、 間 違 い な く そ の 価 値 は あ り ま す。 そ し て 現 状 を 見 る 限 り、

特にオープンソースモデルホスティングプロバイダーが価格競争を繰 り広げる

中で、AI計算のコストは今後も下がっていく一方でしょう。

このような種類のチャット補完を最適化するには、プロンプトテンプレー

トと構造化 IO、そしてレスポンスフェンシングを使用してください。

適応型フィールド順序付け

フォームフィールドの表示順序は、ユーザー体験と入力完了率に大きな影響を与え

ることがあります。GenUIを使用することで、ユーザーのコンテキストと各フィールドの

重要性に基づいて、フィールドの順序を動的に調整することができます。例えば、ユー

ザーがフィットネスアプリの登録フォームに記入している場合、フォームはフィットネ

スの目標や好みに関連するフィールドを優先的に表示し、プロセスをより関連性が高

く魅力的なものにすることができます。

パーソナライズされたマイクロコピー

フォームに関連する説明文、エラーメッセージ、その他のマイクロコピーも、GenUIを

使用してパーソナライズすることができます。「無効なメールアドレスです」といった一

般的なエラーメッセージの代わりに、「注文確認を受け取るために有効なメールアドレ

スを入力してください」というような、より役立つコンテキストに沿ったメッセージを生

成することができます。このようなパーソナライズされた要素により、フォーム入力の

体験がよりユーザーフレンドリーで、ストレスの少ないものになります。

生成的 UI 202

パーソナライズされた検証

パーソナライズされたマイクロコピーと同様の考え方で、AI を使用して魔法のような

方法でフォームを検証することができます。AI を使用してユーザープロフィールフォ

ームを検証し、セマンティックレベルで潜在的な間違いを探すことを想像してみてくだ

さい。

図 9. セマンティック検証が行われているのがわかりますか？

生成的 UI 203

プログレッシブ・ディスクロージャー

GenUIは、ユーザーのコンテキストに基づいて必要不可欠なフォームフィールドを判

断し、必要に応じて追加のフィールドを徐々に表示することができます。このプログレ

ッシブ・ディスクロージャー技術により、認知負荷を軽減し、フォーム入力プロセスをよ

り管理しやすくすることができます。例えば、ユーザーが基本サブスクリプションに登

録する場合、フォームは最初に必須フィールドのみを表示し、ユーザーが進行するか

特定のオプションを選択すると、関連する追加フィールドを動的に表示することがで

きます。

コンテキストを考慮した説明文

ツールチップは、ユーザーが特定の要素にホバーまたは操作する際に、追加情報や

ガイダンスを提供するために頻繁に使用されます。「コンテキストに応じたコンテンツ

生成」アプローチを使用することで、ユーザーのコンテキストに適応し、関連情報を提

供するツールチップを生成することができます。例えば、ユーザーが複雑な機能を探

索している場合、ツールチップは過去の操作やスキルレベルに基づいてパーソナラ

イズされたヒントや例を提供することができます。

説明文（手順、説明文、ヘルプメッセージなど）は、ユーザーのコンテキストに基づい

て動的に生成することができます。一般的な説明を提示する代わりに、LLM を使用し

てユーザーの特定のニーズや質問に合わせたテキストを生成することができます。

例えば、ユーザーがプロセスの特定のステップで苦戦している場合、説明文はパー

ソナライズされたガイダンスやトラブルシューティングのヒントを提供することができ

ます。

マイクロコピーとは、ボタンのラベル、エラーメッセージ、確認プロンプトなど、

アプリケーション内でユーザーを導く小さなテキストのことを指します。文

脈に応じたコンテンツ生成のアプローチをマイクロコピーに適用することで、

ユーザーの行動に応じて適切なテキストを提供するを作成できます。例えば、ユーザ

ーが重要な操作を行う際、確認プロンプトを動的に生成して、明確でパーソナライズ

されたメッセージを提供することができます。

生成的 UI 204

パーソナライズされた説明文やツールチップは、新規ユーザーのオンボーディングプ

ロセスを大きく改善することができます。文脈に応じたガイダンスと例を提供すること

で、ユーザーがアプリケーションを素早く理解し操作できるようになり、学習曲線を緩

やかにして採用率を高めることができます。

動的で文脈を理解したクロム要素も、アプリケーションをより直感的で魅力的なもの

にすることができます。テキストがユーザーの特定のニーズや興味に合わせて調整

されていれば、ユーザーはより積極的に機能を操作し、探索するようになります。

ここまでは、既存の UIパラダイムを AIで強化するアイデアについて説明してきまし

たが、ユーザーインターフェースの設計と実装をより抜本的に見直すにはどうすれば

よいでしょうか？

ジェネラティブ UIの定義

デザイナーが固定的で静的なインターフェースを作成する従来の UI設計とは異な

り、GenUIは、ソフトウェアが柔軟でパーソナライズされた体験を提供し、リアルタイム

で進化し適応できる未来を示唆しています。AI駆動型の対話インターフェースを使

用するたびに、AIがユーザーの特定のニーズに適応することを可能にしています。

GenUIは、その適応性のレベルをソフトウェアのに適用することで、さらに一歩進んで

います。

今日 GenUI のアイデアを実験できる理由は、がすでにプログラミングを理解し、

その基本的な知識に UIテクノロジーやフレームワークが含まれているからです。問

題は、大規模言語モデルを使用して、テキスト、画像、レイアウト、さらにはインターフ

ェース全体を、各ユーザーに合わせて生成できるかどうかです。モデルは、ユーザー

の過去のインタラクション、明示された好み、人口統計情報、現在の使用状況などの

さまざまな要因を考慮して、高度にパーソナライズされた関連性の高いインターフェ

ースを作成するよう指示することができます。

生成的 UI 205

1. 動的で適応的：従来の UI設計では、すべてのユーザーに対して同じ固定的で

静的なインターフェースを作成します。対照的に、GenUIではユーザーのニー

ズや文脈に基づいて動的に適応し変化するインターフェースを実現できます。

これは、同じアプリケーションが異なるユーザーに対して、あるいは同じユーザ

ーでも異なる状況で、異なるインターフェースを提示できることを意味します。

2. 大規模なパーソナライゼーション：従来の設計では、時間とリソースの制約に

より、各ユーザーにパーソナライズされた体験を作成することは現実的ではあ

りませんでした。一方、GenUIは大規模なパーソナライゼーションを可能にしま

す。を活用することで、デザイナーは各ユーザーセグメントに対して手動でイン

ターフェースを設計・開発することなく、各ユーザーの固有のニーズと好みに

自動的に適応するインターフェースを作成できます。

3. 成果重視：従来の UI設計では、視覚的に魅力的で機能的なインターフェース

の作成に重点が置かれていました。GenUIでもこれらの側面は重要ですが、主

な焦点は望ましいユーザー成果の達成に移ります。GenUIは、純粋に美的な考

慮よりも、使いやすさと効果を優先し、各ユーザーの特定の目標やタスクに最

適化されたインターフェースの作成を目指します。

4. 継続的な学習と改善： GenUIシステムは、ユーザーのインタラクションとフィー

ドバックに基づいて継続的に学習し改善することができます。ユーザーが生成

されたインターフェースを使用する中で、はユーザーの行動、好み、成果に関す

るデータを収集し、この情報を使用して将来のインターフェース生成を改良し

最適化できます。この反復的な学習プロセスにより、GenUIシステムは時間とと

もにユーザーのニーズをより効果的に満たすことができるようになります。

重要な点として、GenUIは設計の提案を提供したり特定の設計タスクを自動化した

りする AI支援設計ツールとは異なります。これらのツールは設計プロセスの効率化

に役立ちますが、最終的な決定と静的なインターフェースの作成はデザイナーに依

存しています。一方、GenUIでは、AIシステムがユーザーデータと文脈に基づいてイ

ンターフェースの実際の生成と適応により積極的な役割を果たします。

GenUIは、ユーザーインターフェース設計へのアプローチを、画一的なソリューション

から、高度にパーソナライズされた適応型エクスペリエンスへと大きく転換するもの

生成的 UI 206

です。AIの力を活用することで、GenUIは私たちのデジタル製品やサービスとの関

わり方を革新し、より直感的で魅力的、そして個々のユーザーにとって効果的なイン

ターフェースを作り出す可能性を秘めています。

例

GenUIの概念を説明するために、「FitAI」という仮想のフィットネスアプリケーションを

考えてみましょう。このアプリは、個々のユーザーの目標、フィットネスレベル、好みに

基づいて、パーソナライズされたワークアウトプランと栄養アドバイスを提供すること

を目的としています。

従来の UIデザインアプローチでは、FitAIはすべてのユーザーに対して同じ固定さ

れた画面と要素を持つことになります。しかし、GenUI を使用すると、アプリのインター

フェースは各ユーザーの固有のニーズとコンテキストに動的に適応することができ

ます。

このアプローチは 2024年時点では実装を想像するのが少し難しく、十分な ROIが

得られない可能性もありますが、実現は可能です。

以下が、その仕組みの例です：

1. オンボーディング：

• 標準的なアンケートの代わりに、FitAIは対話型 AIを使用して、ユーザー

の目標、現在のフィットネスレベル、好みに関する情報を収集します。

• この初期のやり取りに基づいて、AIはユーザーの目標に最も関連する機

能と情報を強調した、パーソナライズされたダッシュボードレイアウトを生

成します。

• 現在の AI技術では、パーソナライズされたダッシュボードを構成するた

めに使用できる画面コンポーネントの選択肢があるかもしれません。

• 将来の AI技術では、経験豊富な UIデザイナーの役割を担い、ダッシュ

ボードを一から作成する可能性があります。

生成的 UI 207

2. ワークアウトプランナー：

• ワークアウトプランナーのインターフェースは、ユーザーの経験レベルと利

用可能な器具に合わせて AIが適応させます。

• 器具を持たない初心者には、詳細な説明とビデオを含む簡単な自重トレ

ーニングを表示します。

• ジムにアクセスできる上級者には、説明が少ない、より複雑なルーティンを

表示します。

• ワークアウトプランナーのコンテンツは、単に大きなスーパーセットからフィ

ルタリングされるのではありません。ユーザーに関する既知のすべての情

報を含むコンテキストでクエリされるナレッジベースに基づいて、その場で

生成されます。

3. 進捗追跡：

• 進捗追跡のインターフェースは、ユーザーの目標と取り組みパターンに

基づいて進化します。

• 減量を主な目的とするユーザーには、体重の推移グラフとカロリー消費

統計を目立つように表示します。

• 筋力増強を目指すユーザーには、筋力の向上と体組成の変化を強調し

ます。

• AIはアプリケーションのこの部分をユーザーの実際の進捗に適応させる

ことができます。進捗が一定期間停滞した場合、アプリは停滞の理由を明

らかにしてそれを緩和するために、ユーザーに働きかけるモードに切り替

わります。

4. 栄養アドバイス：

• 栄養セクションは、ユーザーの食事の好みと制限に適応します。

• ビーガンのユーザーには、植物性の食事の提案とタンパク質源を表示し

ます。

生成的 UI 208

• グルテン不耐症のユーザーには、推奨食品からグルテンを含む食品を自

動的に除外します。

• ここでも、コンテンツはすべてのユーザーに適用される大規模な食事デー

タのスーパーセットから抽出されるのではなく、ユーザーの特定の状況と

制約に基づいて適応可能な情報を含むナレッジベースから合成されま

す。

• 例えば、レシピは、ユーザーのフィットネスレベルと体の状態が進化するに

つれて常に変化するカロリーニーズに合わせて、材料の仕様を生成しま

す。

5. モチベーション要素：

• アプリのモチベーションコンテンツと通知は、ユーザーの性格タイプと異なるモチベーション戦略へ

の反応に基づいてパーソナライズされます。

• 励ましのメッセージを受け取るユーザーもいれば、よりデータ重視のフィー

ドバックを受け取るユーザーもいます。

この例では、GenUIによって FitAIは各ユーザーに高度にカスタマイズされた体験を

提供し、エンゲージメント、満足度、そしてフィットネス目標の達成可能性を高めるこ

とができます。インターフェース要素、コンテンツ、さらにはアプリの「パーソナリティ」

までもが、個々のユーザーのニーズと好みに最適に適応します。

成果指向設計へのシフト

GenUIは、ユーザーインターフェース設計におけるアプローチの根本的な変化を表しています。

特定のインターフェース要素の作成から、より包括的な成果指向のアプローチへと

移行しています。この変化には以下のような重要な意味があります：

1. ユーザーの目標への焦点：

• デザイナーは、特定のインターフェースコンポーネントよりも、ユーザーの

目標と望む成果についてより深く考える必要があります。

生成的 UI 209

• ユーザーが効率的かつ効果的に目標を達成できるインターフェースを生

成できるシステムの作成に重点が置かれます。

• 事前に定義された画面仕様ではなく、AIベースのデザイナーが_その場

で__一から_ユーザー体験を生成できるような新しい UI フレームワークが

登場するでしょう。

2. デザイナーの役割の変化：

• デザイナーは、固定レイアウトの作成から、AIシステムがインターフェース

を生成する際に従うべきルール、制約、ガイドラインの定義へと移行しま

す。

• GenUI シ ス テ ム を 効 果 的 に 導 く た め に、 デ ー タ 分 析、

AIプロンプトエンジニアリング、システム思考などの分野でスキル

を開発する必要があります。

3. ユーザーリサーチの重要性：

• GenUIの文脈では、デザイナーはユーザーの好みだけでなく、それらの好

みやニーズが異なる状況でどのように変化するかを理解する必要がある

ため、ユーザーリサーチがさらに重要になります。

• 効果的なインターフェースを生成する AIの能力を改良し向上させるため

に、継続的なユーザーテストとフィードバックループが不可欠となります。

4. 多様性のためのデザイン：

• 単一の「完璧な」インターフェースを作成する代わりに、デザイナーは複数

の可能なバリエーションを考慮し、システムが多様なユーザーニーズに適

したインターフェースを生成できるようにする必要があります。

• これには、エッジケースのデザインや、生成されたインターフェースが異な

る構成全体で使いやすさとアクセシビリティを維持することを確保するこ

とが含まれます。

• 製品の差別化は、ユーザー心理学に対する異なる視点と、競合他社が利

用できないユニークなデータセットや知識ベースの活用という新しい側

面を持つようになります。

生成的 UI 210

課題と考慮事項

GenUIは魅力的な可能性を提供する一方で、いくつかの課題と考慮すべき点も存

在します：

1. 技術的な制限：

• 現在の AI技術は高度ではありますが、複雑なユーザーの意図を理解し、

真に状況を認識したインターフェースを生成する面ではまだ制限がありま

す。

• 特に性能の低いデバイスでは、インターフェース要素のリアルタイム生成

に関するパフォーマンスの問題があります。

2. データ要件：

• ユースケースによっては、効果的な GenUIシステムがパーソナライズされ

たインターフェースを生成するために大量のユーザーデータを必要とする

可能性があります。

• 本 物 の ユ ー ザ ー デ ー タ を 倫 理 的 に 収 集 す る 課 題 は、

データプライバシーとセキュリティの懸念 を引 き起 こ し、GenUI モデ

ルのトレーニングに使用されるデータの潜在的なバイアスも問題となりま

す。

3. 使いやすさと一貫性：

• 少なくともこの実践が広く普及するまでは、常に変化するインターフェースを持つアプリケーションは使いやすさの問題を

引き起こす可能性があります。ユーザーが慣れ親しんだ要素を見つけた

り、効率的にナビゲートしたりすることが困難になる可能性があるためで

す。

• パーソナライゼーションと、一貫性があり学習可能なインターフェースの

維持との間のバランスを取ることが重要になります。

生成的 UI 211

4. AIへの過度の依存：

• デザインの決定を AI システムに過度に委ねることで、魅力に欠ける、問

題のある、あるいは単に機能しないインターフェースの選択につながるリ

スクがあります。

• 人間による監督と AIが生成したデザインを上書きする能力は、予見可能

な将来において重要であり続けるでしょう。

5. アクセシビリティの懸念：

• 動的に生成されるインターフェースが障害を持つユーザーにとってアクセ

シブルであり続けることを保証することは、全く新しい課題を提示します。

これは、一般的なシステムが示すアクセシビリティコンプライアンスの低

さを考えると懸念されます。

• 一方で、AIデザイナーは、アクセシビリティへの配慮を_組み込み_で実装

し、障害のないユーザー向けの UI を構築するのと同じように、アクセシブ

ルなインターフェースをその場で構築する機能を持つ可能性があります。

• いずれにせよ、GenUIシステムは堅固なアクセシビリティガイドラインとテ

ストプロセスを備えて設計される必要があります。

6. ユーザーの信頼と透明性：

• ユーザーは、自分について「詳しすぎる」インターフェースや、理解できな

い方法で変化するインターフェースに不快感を覚える可能性があります。

• インターフェースがどのように、そしてなぜパーソナライズされているのか

についての透明性を確保することが、ユーザーの信頼を構築する上で重

要になります。

生成的 UI 212

将来の展望と機会

生成的 UI（GenUI）の未来は、デジタル製品やサービスとの私たちの関わり方を革新

する大きな可能性を秘めています。この技術が進化し続けるにつれ、ユーザーインタ

ーフェースの設計、実装、体験の方法に大きな変革が起こることが予想されます。私

は、GenUI こそが、現在の SF と考えられている領域に私たちのソフトウェアを押し上

げる現象だと考えています。

GenUIの最も興味深い展望の一つは、重度の障害を持つ人々がソフトウェアの使用

から完全に排除されないようにすることを超えて、大規模なアクセシビリティを向上さ

せる可能性です。インターフェースが個々のユーザーのニーズに自動的に適応する

ことで、デジタル体験はかつてないほどインクルーシブなものになる可能性がありま

す。若年層や視覚障害のあるユーザーのために自動的に文字を大きくしたり、認知

障害のある人のためにレイアウトを簡略化したりするインターフェースを想像してみ

てください。これらはすべて、手動での設定や別個の「アクセシブル」版のアプリケー

ションを必要としません。

GenUIのパーソナライゼーション機能は、幅広いデジタル製品においてユーザーエ

ンゲージメント、満足度、ロイヤリティの向上を促進する可能性が高いでしょう。インタ

ーフェースが個々の好みや行動により適応するようになれば、ユーザーはデジタル体

験をより直感的で楽しいものと感じ、それが技術とのより深い、より意味のある相互

作用につながる可能性があります。

GenUIはまた、新規ユーザーのオンボーディングプロセスを変革する可能性も秘め

ています。各ユーザーの習熟度に素早く適応する直感的でパーソナライズされた初

回ユーザー体験を作り出すことで、新しいアプリケーションの学習曲線を大幅に減ら

すことができます。これにより、新機能の採用率が向上し、ユーザーが新機能を探索

する際の自信も高まる可能性があります。

もう一つの興味深い可能性は、GenUIが異なるデバイスやプラットフォーム間で一貫

したユーザー体験を維持しながら、特定の使用コンテキストに最適化できることです。

これにより、スマートフォンやタブレット、デスクトップコンピュータ、拡張現実メガネな

生成的 UI 213

どの新興技術まで、ますます断片化するデバイス環境全体で一貫した体験を提供す

るという長年の課題を解決できる可能性があります。

GenUIのデータ駆動型の性質は、UIデザインの迅速な反復と改善の機会を生み出

します。生成されたインターフェースとユーザーの相互作用に関するリアルタイムデ

ータを収集することで、デザイナーや開発者はユーザーの行動と好みについて前例

のない洞察を得ることができます。このフィードバックループにより、仮定や限定的な

ユーザーテストではなく、実際の使用パターンに基づいた UIデザインの継続的な改

善が可能になります。

この変化に備えるため、デザイナーはスキルセットとマインドセットを進化させる必要

があります。固定レイアウトの作成から、AI駆動のインターフェース生成に情報を提

供する包括的なデザインシステムとガイドラインの開発へと重点が移行します。デザ

イナーは、GenUIシステムを効果的に導くために、データ分析、AI技術、システム思

考への深い理解を養う必要があります。

さらに、GenUIがデザインと技術の境界線を曖昧にするにつれ、デザイナーは開発者

やデータサイエンティストとより緊密に協力する必要があります。この学際的なアプ

ローチは、視覚的に魅力的でユーザーフレンドリーなだけでなく、技術的にも堅牢で

倫理的にも健全な GenUIシステムを作成する上で重要になります。

技術が成熟するにつれて、GenUIの倫理的影響も前面に出てくるでしょう。デザイナ

ーは、インターフェースデザインにおける責任ある AI使用のフレームワークを開発す

る上で重要な役割を果たし、パーソナライゼーションがプライバシーを損なったり、非

倫理的な方法でユーザーの行動を操作したりすることなく、ユーザー体験を向上さ

せることを確保する必要があります。

将来を見据えると、GenUIは興味深い機会と重要な課題の両方を提示しています。

世界中のユーザーにとって、より直感的で効率的、そして満足度の高いデジタル体

験を創造する可能性を秘めています。デザイナーに新しいスキルの習得と適応を求

める一方で、ヒューマンコンピューターインタラクションの未来を意義深い方法で形

作る前例のない機会も提供しています。完全に実現された GenUIシステムへの道の

りは間違いなく複雑ですが、ユーザー体験とデジタルアクセシビリティの向上という

生成的 UI 214

観点での潜在的な報酬は、その未来を目指す価値のあるものにしています。

インテリジェントワークフローオー

ケストレーション

「インテリジェントワークフローオーケストレーション」アプローチは、AI コンポーネント

を活用してアプリケーション内の複雑なワークフローを動的にオーケストレーションし

最適化することに重点を置いています。その目標は、より効率的で応答性が高く、リ

アルタイムデータやコンテキストに適応できるアプリケーションを作成することです。

本章では、インテリジェントワークフローオーケストレーションアプローチを支える主

要な原則とパターンについて探究します。AI を活用してタスクのインテリジェントな

振り分け、意思決定の自動化、そしてユーザーの行動、システムのパフォーマンス、

ビジネスルールなどの様々な要因に基づいてワークフローを動的に適応させる方法

について検討します。実践的な例や実世界のシナリオを通じて、アプリケーションの

ワークフローを効率化し最適化する AIの変革的な可能性を実証します。

インテリジェントワークフローオーケストレーション 216

複雑なビジネスプロセスを持つエンタープライズアプリケーションを構築する場合で

も、動的なユーザージャーニーを持つ消費者向けアプリケーションを構築する場合で

も、本章で説明するパターンとテクニックは、全体的なユーザーエクスペリエンスを

向上させ、ビジネス価値を推進するインテリジェントで効率的なワークフローを作成

するための知識とツールを提供します。

ビジネスニーズ

ワ ー ク フ ロ ー 管 理 の 従 来 の ア プ ロ ー チ は、 多 く の 場 合、

事前に定義されたルールと静的な決定木に依存しており、 これらは硬直的で

柔軟性に欠け、現代のアプリケーションの動的な性質に対応できない可能性があり

ます。

E コマースアプリケーションが複雑な注文処理プロセスを扱う必要があるシナリオを

考えてみましょう。このワークフローには、注文の検証、在庫確認、支払い処理、配送、

顧客への通知など、複数のステップが含まれる可能性があります。各ステップには、

独自のルール、依存関係、外部との統合、例外処理メカニズムが存在する可能性が

あります。このようなワークフローを手動で、またはハードコードされたロジックで管理

すると、すぐに煩雑になり、エラーが発生しやすく、メンテナンスが困難になる可能性

があります。

さらに、アプリケーションが拡大し、同時接続ユーザー数が増加するにつれて、ワーク

フローはリアルタイムデータとシステムパフォーマンスに基づいて自己適応し最適化

する必要が出てくるかもしれません。例えば、トラフィックのピーク時には、アプリケー

ションは特定のタスクを優先し、リソースを効率的に割り当て、スムーズなユーザーエ

クスペリエンスを確保するためにワークフローを動的に調整する必要があるかもしれ

ません。

ここで「インテリジェントワークフローオーケストレーション」アプローチが重要になっ

てきます。AI コンポーネントを活用することで、開発者はインテリジェントで適応性が

あり、自己最適化するワークフローを作成することができます。AIは膨大な量のデー

インテリジェントワークフローオーケストレーション 217

タを分析し、過去の経験から学習し、リアルタイムで情報に基づいた判断を下してワ

ークフローを効果的にオーケストレーションすることができます。

主要なメリット

1. 効率性の向上： AIはタスクの割り当て、リソースの利用、ワークフローの実行

を最適化し、処理時間の短縮と全体的な効率性の向上をもたらします。

2. 適応性： AI駆動のワークフローは、ユーザー需要の変動、システムパフォーマ

ンス、またはビジネス要件などの変化する条件に動的に適応し、アプリケーショ

ンの応答性とレジリエンスを確保します。

3. 意思決定の自動化： AIはワークフロー内の複雑な意思決定プロセスを自動

化し、手動での介入を減らし、ヒューマンエラーのリスクを最小限に抑えること

ができます。

4. パーソナライゼーション： AIはユーザーの行動、好み、コンテキストを分析して、

ワークフローをパーソナライズし、個々のユーザーにカスタマイズされた体験を

提供することができます。

5. スケーラビリティ： AI駆動のワークフローは、パフォーマンスや信頼性を損なう

ことなく、増加するデータ量やユーザーとのインタラクションにシームレスに対

応できます。

以下のセクションでは、インテリジェントワークフローの実装を可能にする主要なパタ

ーンと技術について探り、AIが現代のアプリケーションにおけるワークフロー管理を

どのように変革しているかを実例を交えて紹介します。

主要パターン

アプリケーションにインテリジェントなワークフローオーケストレーションを実装するた

めに、開発者は AIの力を活用するいくつかの重要なパターンを利用することができ

ます。これらのパターンは、ワークフローの設計と管理に体系的なアプローチを提供

インテリジェントワークフローオーケストレーション 218

し、リアルタイムデータとコンテキストに基づいてプロセスを適応、最適化、自動化す

ることを可能にします。インテリジェントなワークフローオーケストレーションにおける

基本的なパターンのいくつかを見ていきましょう。

動的タスクルーティング

このパターンでは、タスクの優先度、リソースの可用性、システムパフォーマンスなど

の様々な要因に基づいて、AI を使用してワークフロー内のタスクをインテリジェントに

ルーティングします。AI アルゴリズムは各タスクの特性を分析し、システムの現状を

考慮した上で、最適なリソースまたは処理経路にタスクを割り当てるための情報に基

づいた判断を行います。動的タスクルーティングにより、タスクが効率的に分散され

実行されることが保証され、ワークフロー全体のパフォーマンスが最適化されます。

1 class TaskRouter

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 attr_accessor :task

6

7 # list of functions that can be called by the AI entirely at its

8 # discretion depending on the task received

9

10 function :analyze_task_priority do

11 TaskPriorityAnalyzer.perform(task)

12 end

13

14 function :check_resource_availability, # ...

15 function :assess_system_performance, # ...

16 function :assign_task_to_resource, # ...

17

インテリジェントワークフローオーケストレーション 219

18 DIRECTIVE = "You are a task router, responsible for intelligently

19 assigning tasks to available resources based on priority, resource

20 availability, and system performance..."

21

22 def initialize(task)

23 self.task = task

24 transcript << { system: DIRECTIVE }

25 transcript << { user: task.to_json }

26 end

27

28 def perform

29 while task.unassigned?

30 chat_completion

31

32 # todo: add max loop counter and break

33 end

34

35 # capture the transcript for later analysis

36 task.update(routing_transcript: transcript)

37 end

38 end

29 行目のwhile 式で作成されたループに注目してください。このループはタ

スクが割り当てられるまで AI に対してプロンプトを続けます。35 行目では、

後の分析やデバッグが必要になった場合に備えて、タスクのトランスクリプトを

保存します。

インテリジェントワークフローオーケストレーション 220

コンテキストに基づく意思決定

ワークフロー内でコンテキストを認識した決定を 行 う た め に、 非 常 に よ

く 似 た コ ー ド を 使 用 で き ま す。 ユ ー ザ ー 設 定、過去のパターン、

リアルタイム入力などの関連データポイントを分析することで、AI コ ン ポ ー ネ ン

トはワークフロー内の各決定ポイントで最適なアクションを判断できます。各ユーザ

ーやシナリオの特定のコンテキストに基づいてワークフローの動作を適応させ、パー

ソナライズされた最適化された体験を提供します。

適応型ワークフロー構成

このパターンは、変化する要件や条件に基づいてワークフローを動的に構成

および調整することに焦点を当てています。AI はワークフローの現状を分析し、

ボトルネックや非効率性を特定し、パフォーマンスを最適化するためにワークフロー

構造を自動的に修正します。適応型ワークフロー構成により、アプリケーションは手

動介入を必要とせずに継続的に進化し、プロセスを改善することができます。

例外処理とリカバリー

例外処理とリカバリーは、インテリジェントなワークフローオーケストレーションの重

要な側面です。AI コンポーネントと複雑なワークフローを扱う場合、システムの安定

性と信頼性を確保するために、例外を予測し適切に処理することが不可欠です。

インテリジェントなワークフローにおける例外処理とリカバリーに関する主要な考慮

事項とテクニックは以下の通りです：

1. 例 外 の 伝 播： ワ ー ク フ ロ ー コ ン ポ ー ネ ン ト 全 体 で 一 貫 し

た 例 外 伝 播 ア プ ロ ー チ を 実 装 し ま す。 コ ン ポ ー ネ ン ト 内

で 例 外 が 発 生 し た 場 合、 そ れ を キ ャ ッ チ し、 ロ グ に 記 録 し、

オーケストレーターまたは例外処理を担当する個別のコンポーネントに伝播する必要があります。

インテリジェントワークフローオーケストレーション 221

この考え方は、例外処理を一元化し、例外が暗黙的に無視されることを防ぎ、

さらにインテリジェントなエラー処理の可能性を開くことです。

2. リトライメカニズム：リトライメカニズムは、ワークフローの回復力を向上させ、一

時的な障害を適切に処理するのに役立ちます。ネットワーク接続やリソースの

利用不可などの一時的または回復可能な例外に対して、指定された遅延後に

自動的に再試行できるリトライメカニズムを実装することを強く推奨します。AI

パワードのオーケストレーターや例外ハンドラーを持つことで、指数関数的フォ

ールバックなどの固定アルゴリズムに依存する機械的な性質のリトライ戦略を

使用する必要がなくなります。例外の処理方法の決定を AI コンポーネントの

「裁量」に任せることができます。

3. フォールバック戦略： AI コンポーネントが有効な応答を提供できない場合や

エラーが発生した場合（最先端の性質上、よくある出来事です）、ワークフロー

を継続できるようにフォールバックメカニズムを用意しておきます。これには、デ

フォルト値の使用、代替アルゴリズム、または決定を行い、ワークフローを前進

させるための人間によるループ制御が含まれる場合があります。

4. 補償アクション：オーケストレーターの指示には、自動的に解決できない例外を

処理するための補償アクションに関する指示を含める必要があります。補償ア

クションは、失敗した操作の影響を元に戻すまたは軽減するために実行される

手順です。例えば、支払い処理のステップが失敗した場合、補償アクションは

トランザクションをロールバックしてユーザーに通知することができます。補償

アクションは、例外が発生した場合にデータの一貫性と整合性を維持するのに

役立ちます。

5. 例 外 の モ ニ タ リ ン グ と ア ラ ー ト： 重 要 な 例 外 を 検 出 し、

関連する利害関係者に通知するためのモニタリングとアラートメカニズムを 設

定します。オーケストレーターは、例外が特定の制限を超えた場合や、特定のタ

イプの例外が発生した場合にアラートをトリガーするためのしきい値とルール

を認識できるようにします。これにより、システム全体に影響が及ぶ前に、問題

を積極的に特定して解決することができます。

以下は、Ruby ワークフローコンポーネントにおける例外処理とリカバリーの例です：

インテリジェントワークフローオーケストレーション 222

1 class InventoryManager

2 def check_availability(order)

3 begin

4 # Perform inventory check logic

5 inventory = Inventory.find_by(product_id: order.product_id)

6 if inventory.available_quantity >= order.quantity

7 return true

8 else

9 raise InsufficientInventoryError,

10 "Insufficient inventory for product #{order.product_id}"

11 end

12 rescue InsufficientInventoryError => e

13 # Log the exception

14 logger.error("Inventory check failed: #{e.message}")

15

16 # Retry the operation after a delay

17 retry_count ||= 0

18 if retry_count < MAX_RETRIES

19 retry_count += 1

20 sleep(RETRY_DELAY)

21 retry

22 else

23 # Fallback to manual intervention

24 NotificationService.admin("Inventory check failed: Order #{order.id}")

25 return false

26 end

27 end

28 end

29 end

インテリジェントワークフローオーケストレーション 223

この例では、InventoryManager コンポーネントが特定の注文に対する商

品の在庫状況を確認し ます。 利用可能な数量が不足している場合、

InsufficientInventoryError を発生させます。この例外はキャッチされ、ログに

記録され、リトライメカニズムが実装されます。リトライ制限を超えた場合、管理者に

通知することで手動介入へのフォールバックを行います。

堅牢な例外処理とリカバリーメカニズムを実装することで、インテリジェントワークフ

ローの回復力と保守性を確保し、予期しない状況を適切に処理することができます。

これらのパターンはインテリジェントワークフローオーケストレーションの基盤を形成

し、さまざまなアプリケーションの特定の要件に合わせて組み合わせたり適応させた

りすることができます。 これらのパターンを活用することで、開発者は柔軟で回復力

があり、パフォーマンスとユーザーエクスペリエンスに最適化されたワークフローを作

成できます。

次のセクションでは、これらのパターンを実践でどのように実装できるかを探り、実世

界の例とコードスニペットを使用して AI コンポーネントのワークフロー管理への統合

を説明します。

インテリジェントワークフローオーケストレーショ

ンの実践的な実装

インテリジェントワークフローオーケストレーションの主要なパターンについて探究し

たところで、これらのパターンを実世界のアプリケーションでどのように実装できるか

を見ていきましょう。AI コンポーネントのワークフロー管理への統合を説明するため

に、実践的な例とコードスニペットを提供します。

インテリジェントワークフローオーケストレーション 224

インテリジェント注文処理システム

Ruby on Railsの E コマースアプリケーションで AI駆動のOrderProcessor コンポーネ

ントを使用して、インテリジェントワークフローオーケストレーションを実装する実践的

な例を見ていきましょう。このOrderProcessorは、第 3章でMultitude of Workersを議

論した際に最初に出会ったプロセスマネージャーエンタープライズ統合の概念を実

現します。このコンポーネントは注文処理ワークフローの管理、中間結果に基づくル

ーティング決定、さまざまな処理ステップの実行の調整を担当します。

注文処理プロセスには、注文の検証、在庫確認、支払い処理、配送など、複数のステ

ップが含まれます。各ステップは特定のタスクを実行し、結果をOrderProcessorに返

す個別のワーカープロセスとして実装されています。これらのステップは必須ではな

く、必ずしも厳密な順序で実行される必要もありません。

以下がOrderProcessorの実装例です。Raixから 2 つのミックスインを使用していま

す。 1つ目（ChatCompletion）はチャット補完を行う機能を提供し、これによって AI コ

ンポーネントとなります。2つ目（FunctionDispatch）は AIによる関数呼び出しを可能

にし、プロンプトに対してテキストメッセージではなく関数呼び出しで応答できるよう

にします。

ワーカー関数（validate_order、check_inventory など）は、それぞれのワーカークラ

スに処理を委譲します。これらのワーカークラスは AIコンポーネントでも非 AIコンポ

ーネントでもかまいませんが、作業結果を文字列として表現できる形式で返す必要

があるという要件があります。

このパートの他のすべての例と同様に、このコードは実質的に擬似コード

であり、パターンの意味を伝え、独自の創造を促すことのみを目的として

います。パターンの完全な説明と完全なコード例はパート 2に含まれてい

ます。

https://github.com/OlympiaAI/raix-rails

インテリジェントワークフローオーケストレーション 225

1 class OrderProcessor

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

6

7 def initialize(order)

8 self.order = order

9 transcript << { system: SYSTEM_DIRECTIVE }

10 transcript << { user: order.to_json }

11 end

12

13 def perform

14 # will continue looping until `stop_looping!` is called

15 chat_completion(loop: true)

16 end

17

18 # list of functions available to be called by the AI

19 # truncated for brevity

20

21 def functions

22 [

23 {

24 name: "validate_order",

25 description: "Invoke to check validity of order",

26 parameters: {

27 ...

28 },

29 ...

インテリジェントワークフローオーケストレーション 226

30]

31 end

32

33 # implementation of functions that can be called by the AI

34 # entirely at its discretion, depending on the needs of the order

35

36 def validate_order

37 OrderValidationWorker.perform(@order)

38 end

39

40 def check_inventory

41 InventoryCheckWorker.perform(@order)

42 end

43

44 def process_payment

45 PaymentProcessingWorker.perform(@order)

46 end

47

48 def schedule_shipping

49 ShippingSchedulerWorker.perform(@order)

50 end

51

52 def send_confirmation

53 OrderConfirmationWorker.perform(@order)

54 end

55

56 def finished_processing

57 @order.update!(transcript:, processed_at: Time.current)

58 stop_looping!

インテリジェントワークフローオーケストレーション 227

59 end

60 end

この例では、OrderProcessorはオーダーオブジェクトで初期化され、大規模言語モデ

ルに特有の会話トランスクリプト形式でワークフロー実行の記録を保持します。 AIに

は、注文の検証、在庫確認、支払い処理、出荷など、様々な処理ステップの実行を統

制する完全な制御権が与えられています。

chat_completion メソッドが呼び出されるたびに、トランスクリプトが AI に送信され、

関数呼び出しとして応答を提供します。前のステップの結果を分析し、適切なアクシ

ョンを決定するのは完全に AIに委ねられています。例えば、在庫確認で在庫レベル

が低いことが判明した場合、OrderProcessorは補充タスクをスケジュールすること

ができます。支払い処理が失敗した場合は、再試行を開始したり、カスタマーサポー

トに通知したりすることができます。

上記の例では、補充やカスタマーサポートへの通知の関数は定義されていませ

んが、もちろん定義することは可能です。

トランスクリプトは関数が呼び出されるたびに成長し、各ステップの結果や AIが生

成した次のステップの指示を含むワークフロー実行の記録として機能します。このト

ランスクリプトは、デバッグ、監査、注文処理プロセスの可視化に使用できます。

OrderProcessorで AI を活用することで、e コマースアプリケーションはリアルタイム

データに基づいてワークフローを動的に適応させ、インテリジェントに例外を処理す

ることができます。AI コンポーネントは、情報に基づいた決定を下し、ワークフローを

最適化し、複雑なシナリオでもスムーズな注文処理を確保できます。

ワーカープロセスに求められる唯一の要件は、AIが次に何をすべきかを判断する際

に考慮できる理解可能な出力を返すことだけであり、このアプローチによって、通常

は異なるシステム同士を統合する際に必要となる入出力マッピング作業を削減でき

インテリジェントワークフローオーケストレーション 228

ることに気付き始めるかもしれません。

インテリジェントコンテンツモデレーター

ソーシャルメディアアプリケーションは、一般的に安全で健全なコミュニティを

確保するために、最低限のコンテンツモデレーションを必要とします。この例

のContentModerator コンポーネントは、AI を活用してモデレーションワークフローを

インテリジェントに統制し、コンテンツの特性と様々なモデレーションステップの結果

に基づいて決定を下します。

モデレーションプロセスには、テキスト分析、画像認識、ユーザー評価の査定、手動レ

ビューなど、複数のステップが含まれます。各ステップは、特定のタスクを実行し、結

果をContentModeratorに返す個別のワーカープロセスとして実装されています。

以下がContentModeratorの実装例です：

1 class ContentModerator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,

6 tasked with the workflow involved in moderating user-generated content..."

7

8 def initialize(content)

9 @content = content

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: content.to_json }

13]

14 end

15

インテリジェントワークフローオーケストレーション 229

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 # list of functions available to be called by the AI

25 # truncated for brevity

26

27 def functions

28 [

29 {

30 name: "analyze_text",

31 # ...

32 },

33 {

34 name: "recognize_image",

35 description: "Invoke to describe images...",

36 # ...

37 },

38 {

39 name: "assess_user_reputation",

40 # ...

41 },

42 {

43 name: "escalate_to_manual_review",

44 # ...

インテリジェントワークフローオーケストレーション 230

45 },

46 {

47 name: "approve_content",

48 # ...

49 },

50 {

51 name: "reject_content",

52 # ...

53 }

54]

55 end

56

57 # implementation of functions that can be called by the AI

58 # entirely at its discretion, depending on the needs of the order

59

60 def analyze_text

61 result = TextAnalysisWorker.perform(@content)

62 continue_with(result)

63 end

64

65 def recognize_image

66 result = ImageRecognitionWorker.perform(@content)

67 continue_with(result)

68 end

69

70 def assess_user_reputation

71 result = UserReputationWorker.perform(@content.user)

72 continue_with(result)

73 end

インテリジェントワークフローオーケストレーション 231

74

75 def escalate_to_manual_review

76 ManualReviewWorker.perform(@content)

77 @content.update!(status: 'pending', transcript: @transcript)

78 end

79

80 def approve_content

81 @content.update!(status: 'approved', transcript: @transcript)

82 end

83

84 def reject_content

85 @content.update!(status: 'rejected', transcript: @transcript)

86 end

87

88 private

89

90 def continue_with(result)

91 @transcript << { function: result }

92 complete(@transcript)

93 end

94 end

この例では、ContentModeratorはコンテンツオブジェクトで初期化され、会話形式で

モデレーション記録を保持します。AI コンポーネントは、コンテンツの特性と各ステッ

プの結果に基づいて実行するステップを決定し、モデレーションワークフローを完全

に制御します。

AIが呼び出せるワーカー関数には、analyze_text、recognize_image、assess_user_-

reputation、escalate_to_manual_reviewがあります。各関数は対応するワーカープ

ロセス（TextAnalysisWorker、ImageRecognitionWorkerなど）にタスクを委譲し、結果

インテリジェントワークフローオーケストレーション 232

をモデレーション記録に追加します。ただし、エスカレーション関数は終了状態として

機能します。また、approve_content とreject_content関数も終了状態として機能し

ます。

AI コンポーネントはコンテンツを分析し、適切なアクションを判断します。コンテンツ

に画像参照が含まれている場合、視覚的なレビューのためにrecognize_image ワー

カーを呼び出すことができます。いずれかのワーカーが有害な可能性のあるコンテン

ツを警告した場合、AIはコンテンツを手動レビューにエスカレーションするか、即座に

拒否することを決定できます。ただし、警告の重大度に応じて、AIは判断の難しいコ

ンテンツの取り扱いを決定する際に、ユーザー評価の結果を使用することを選択で

きます。ユースケースによっては、信頼できるユーザーにはより多くの投稿の自由度

が与えられる場合もあります。このように様々な判断が可能です…

前回のプロセスマネージャーの例と同様に、モデレーション記録は各ステップの結果

と AIが生成した決定を含むワークフローの実行記録として機能します。この記録は、

監査、透明性の確保、そして時間とともにモデレーションプロセスを改善するために

使用できます。

ContentModeratorで AI を活用することで、ソーシャルメディアアプリケーションはコ

ンテンツの特性に基づいてモデレーションワークフローを動的に適応させ、複雑なモ

デレーションシナリオをインテリジェントに処理できます。AI コンポーネントは、十分な

情報に基づいて判断を下し、ワークフローを最適化し、安全で健全なコミュニティ体

験を確保することができます。

インテリジェントなワークフロー制御の文脈において、予測的タスクスケジューリング

と例外処理および回復を実証する 2つの例をさらに見ていきましょう。

カスタマーサポートシステムにおける予測的タスクスケジュー

リング

Ruby on Railsで構築されたカスタマーサポートアプリケーションでは、顧客にタイムリ

ーな支援を提供するために、サポートチケットを効率的に管理し優先順位付けする

インテリジェントワークフローオーケストレーション 233

ことが重要です。SupportTicketScheduler コンポーネントは、チケットの緊急性、エー

ジェントの専門知識、作業負荷などの様々な要因に基づいて、AI を活用して予測的

にサポートチケットをスケジュールし、利用可能なエージェントに割り当てます。

1 class SupportTicketScheduler

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,

6 tasked with intelligently assigning tickets to available agents..."

7

8 def initialize(ticket)

9 @ticket = ticket

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: ticket.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 def functions

25 [

26 {

インテリジェントワークフローオーケストレーション 234

27 name: "analyze_ticket_urgency",

28 # ...

29 },

30 {

31 name: "list_available_agents",

32 description: "Includes expertise of available agents",

33 # ...

34 },

35 {

36 name: "predict_agent_workload",

37 description: "Uses historical data to predict upcoming workloads",

38 # ...

39 },

40 {

41 name: "assign_ticket_to_agent",

42 # ...

43 },

44 {

45 name: "reschedule_ticket",

46 # ...

47 }

48]

49 end

50

51 # implementation of functions that can be called by the AI

52 # entirely at its discretion, depending on the needs of the order

53

54 def analyze_ticket_urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)

インテリジェントワークフローオーケストレーション 235

56 continue_with(result)

57 end

58

59 def list_available_agents

60 result = ListAvailableAgents.perform

61 continue_with(result)

62 end

63

64 def predict_agent_workload

65 result = AgentWorkloadPredictor.perform

66 continue_with(result)

67 end

68

69 def assign_ticket_to_agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

73 def delay_assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)

76 end

77

78 private

79

80 def continue_with(result)

81 @transcript << { function: result }

82 complete(@transcript)

83 end

84 end

インテリジェントワークフローオーケストレーション 236

この例では、SupportTicketScheduler はサポートチケットオブジェクトで初期化さ

れ、スケジューリング記録を維持します。AIコンポーネントはチケットの詳細を分析し、

チケットの緊急度、エージェントの専門知識、予測されるエージェントの作業負荷な

どの要因に基づいて、予測的にチケットの割り当てをスケジュールします。

AI が呼び出せる関数には、analyze_ticket_urgency、list_available_agents、

predict_agent_workload、assign_ticket_to_agent が含まれます。各関数は対応

する分析機能または予測機能にタスクを委譲し、結果をスケジューリング記録に追

加します。AIはまた、delay_assignment関数を使用して割り当てを遅らせることもで

きます。

AI コンポーネントはスケジューリング記録を調査し、チケットの割り当てに関する情

報に基づいた決定を行います。チケットの緊急度、利用可能なエージェントの専門知

識、各エージェントの予測作業負荷を考慮して、チケットの処理に最も適したエージ

ェントを決定します。

予測的タスクスケジューリングを活用することで、カスタマーサポートアプリケーショ

ンはチケットの割り当てを最適化し、応答時間を短縮し、全体的な顧客満足度を向上

させることができます。サポートチケットの積極的かつ効率的な管理により、適切なチ

ケットが適切なタイミングで適切なエージェントに割り当てられることが保証されま

す。

データ処理パイプラインにおける例外処理とリカバリー

例外を処理し、障害から回復することは、データの整合性を確保し、データの損失を

防ぐために不可欠です。DataProcessingOrchestrator コンポーネントは AI を活用し

て、データ処理パイプラインにおける例外を知的に処理し、回復プロセスを統制しま

す。

インテリジェントワークフローオーケストレーション 237

1 class DataProcessingOrchestrator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

6

7 def initialize(data_batch)

8 @data_batch = data_batch

9 @transcript = [

10 { system: SYSTEM_DIRECTIVE },

11 { user: data_batch.to_json }

12]

13 end

14

15 def perform

16 complete(@transcript)

17 end

18

19 def model

20 "openai/gpt-4"

21 end

22

23 def functions

24 [

25 {

26 name: "validate_data",

27 # ...

28 },

29 {

インテリジェントワークフローオーケストレーション 238

30 name: "process_data",

31 # ...

32 },

33 {

34 name: "request_fix",

35 # ...

36 },

37 {

38 name: "retry_processing",

39 # ...

40 },

41 {

42 name: "mark_data_as_failed",

43 # ...

44 },

45 {

46 name: "finished",

47 # ...

48 }

49]

50 end

51

52 # implementation of functions that can be called by the AI

53 # entirely at its discretion, depending on the needs of the order

54

55 def validate_data

56 result = DataValidator.perform(@data_batch)

57 continue_with(result)

58 rescue ValidationException => e

インテリジェントワークフローオーケストレーション 239

59 handle_validation_exception(e)

60 end

61

62 def process_data

63 result = DataProcessor.perform(@data_batch)

64 continue_with(result)

65 rescue ProcessingException => e

66 handle_processing_exception(e)

67 end

68

69 def request_fix(description_of_fix)

70 result = SmartDataFixer.new(description_of_fix, @data_batch)

71 continue_with(result)

72 end

73

74 def retry_processing(timeout_in_seconds)

75 wait(timeout_in_seconds)

76 process_data

77 end

78

79 def mark_data_as_failed

80 @data_batch.update!(status: 'failed', transcript: @transcript)

81 end

82

83 def finished

84 @data_batch.update!(status: 'finished', transcript: @transcript)

85 end

86

87 private

インテリジェントワークフローオーケストレーション 240

88

89 def continue_with(result)

90 @transcript << { function: result }

91 complete(@transcript)

92 end

93

94 def handle_validation_exception(exception)

95 @transcript << { exception: exception.message }

96 complete(@transcript)

97 end

98

99 def handle_processing_exception(exception)

100 @transcript << { exception: exception.message }

101 complete(@transcript)

102 end

103 end

この例では、DataProcessingOrchestratorがデータバッチオブジェクトで初期化さ

れ、処理トランスクリプトを管理します。AI コンポーネントはデータ処理パイプライン

を制御し、必要に応じて例外処理と障害からの復旧を行います。

AIが呼び出し可能な関数には、validate_data、process_data、request_fix、retry_-

processing、mark_data_as_failedが含まれます。各関数は対応するデータ処理コン

ポーネントにタスクを委譲し、結果または例外の詳細を処理トランスクリプトに追加し

ます。

validate_dataステップで検証例外が発生した場合、handle_validation_exception

関数は例外データをトランスクリプトに追加し、制御を AI に戻します。同様に、

process_data ステップで処理例外が発生した場合、AIは回復戦略を決定すること

ができます。

発生した例外の性質に応じて、AI は自身の判断でrequest_fix を呼び出すこ

インテリジェントワークフローオーケストレーション 241

とができます。これは AI 駆動のSmartDataFixer コンポーネントに委譲されま

す（自己修復データの章を参照）。データフィクサーは、処理を再試行できるよう

に@data_batch をどのように修正すべきかについて、平易な英語での説明を受け取り

ます。成功する再試行とは、検証に失敗したレコードをデータバッチから削除し、人に

よる確認のために別の処理パイプラインにコピーすることかもしれません。可能性は

無限に近いと言えます。

AI駆動の例外処理と回復を組み込むことで、データ処理アプリケーションはより強

靭で耐障害性の高いものとなります。DataProcessingOrchestratorは例外を知的に

管理し、データ損失を最小限に抑え、データ処理ワークフローの円滑な実行を確保し

ます。

モニタリングとロギング

モニタリングとロギングは、AI駆動のワークフローコンポーネントの進捗、パフォーマ

ンス、および健全性を可視化し、開発者がシステムの動作を追跡および分析できるよ

うにします。効果的なモニタリングとロギングの仕組みを実装することは、インテリジ

ェントワークフローのデバッグ、監査、および継続的な改善に不可欠です。

ワークフローの進捗とパフォーマンスのモニタリング

インテリジェントワークフローの円滑な実行を確保するために、各ワークフローコ

ンポーネントの進捗とパフォーマンスをモニタリングすることが重要です。これに

は、ワークフローのライフサイクル全体を通じて主要な指標とイベントを追跡すること

が含まれます。

モニタリングすべき重要な側面には以下が含まれます：

1. ワークフロー実行時間：各ワークフローコンポーネントがタスクを完了するまでの

時間を測定します。これにより、パフォーマンスのボトルネックを特定し、全体的なワー

クフロー効率を最適化することができます。

インテリジェントワークフローオーケストレーション 242

2. リソース使用率：各ワークフローコンポーネントによる CPU、メモリ、ストレージなど

のシステムリソースの使用状況をモニタリングします。これにより、システムが容量内

で動作し、ワークロードを効果的に処理できることを確認できます。

3. エラー率と例外：ワークフローコンポーネント内でのエラーと例外の発生を追跡し

ます。これにより、潜在的な問題を特定し、積極的なエラー処理と回復を可能にしま

す。

4. 決定ポイントと結果： ワークフロー内の決定ポイントと AI駆動の決定の結果をモ

ニタリングします。これにより、AI コンポーネントの動作と有効性に関する洞察が得ら

れます。

モニタリングプロセスによって収集されたデータは、ダッシュボードで表示したり、シ

ステムの健全性についてシステム管理者に知らせる定期レポートの入力として使用

したりすることができます。

モニタリングデータは、レビューと潜在的なアクションのために AI駆動の

システム管理者プロセスに供給することができます！

重要なイベントと決定のロギング

ロギングは、ワークフロー実行中に発生する重要なイベント、決定、および例外に関す

る関連情報を取得して保存する不可欠な実践です。

ロギングすべき重要な側面には以下が含まれます：

1. ワークフローの開始と完了：入力データやユーザーコンテキストなどの関連メタデ

ータとともに、各ワークフローインスタンスの開始時刻と終了時刻をログに記録しま

す。

2. コンポーネントの実行：入力パラメータ、出力結果、および生成された中間データ

を含む、各ワークフローコンポーネントの実行詳細をログに記録します。

インテリジェントワークフローオーケストレーション 243

3. AI決定と推論：基礎となる推論や信頼度スコアとともに、AI コンポーネントによる

決定をログに記録します。これにより、AI駆動の決定の透明性が確保され、監査が

可能になります。

4. 例外とエラーメッセージ：ワークフローの実行中に発生した例外やエラーメッセー

ジを、スタックトレースや関連する文脈情報と共にログに記録します。

ログの実装方法には、ログファイルへの書き込み、データベースへのログの保存、集

中ログサービスへのログの送信など、様々な手法があります。アプリケーションのアー

キテクチャとの容易な統合、柔軟性、そしてスケーラビリティを提供するログフレーム

ワークを選択することが重要です。

以下は、Ruby on RailsアプリケーションでActiveSupport::Logger クラスを使用して

ログを実装する例です：

1 class WorkflowLogger

2 def self.log(message, severity = :info)

3 @logger ||= ActiveSupport::Logger.new('workflow.log')

4 @logger.formatter ||= proc do |severity, datetime, progname, msg|

5 "#{datetime} [#{severity}] #{msg}\n"

6 end

7 @logger.send(severity, message)

8 end

9 end

10

11 # Usage example

12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")

13 WorkflowLogger.log("Payment processing completed successfully")

14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

ワークフローコンポーネントと AIの判断ポイント全体にログ記録ステートメントを戦

略的に配置することで、開発者はデバッグ、監査、分析に役立つ貴重な情報を収集

インテリジェントワークフローオーケストレーション 244

することができます。

モニタリングとログ記録の利点

インテリジェントワークフローオーケストレーションにモニタリングとログ記録を実装

することには、いくつかの利点があります：

1. デバッグとトラブルシューティング：詳細なログとモニタリングデータは、開発者が

問題を素早く特定し診断するのに役立ちます。これらは、ワークフローの実行フロー、

コンポーネント間の相互作用、発生したエラーや例外についての洞察を提供します。

2. パフォーマンス最適化：パフォーマンスメトリクスのモニタリングにより、開発者は

ボトルネックを特定し、より効率的になるようにワークフローコンポーネントを最適化

できます。実行時間、リソース使用率、その他のメトリクスを分析することで、開発者は

システム全体のパフォーマンスを改善するための適切な判断を下すことができます。

3. 監査とコンプライアンス：重要なイベントと判断をログに記録することで、規制遵守

と説明責任のための監査証跡を提供します。これにより、組織は AI コンポーネントに

よって実行されたアクションを追跡・検証し、ビジネスルールや法的要件への準拠を

確保できます。

4. 継続的改善：モニタリングとログ記録のデータは、インテリジェントワークフローの

継続的な改善のための貴重な入力として機能します。過去のデータを分析し、パター

ンを特定し、AI判断の有効性を測定することで、開発者はワークフローオーケストレ

ーションロジックを反復的に改良・強化できます。

考慮事項とベストプラクティス

インテリジェントワークフローオーケストレーションにモニタリングとログ記録を実装

する際は、以下のベストプラクティスを考慮してください：

1. 明確なモニタリングメトリクスの定義：ワークフローの具体的な要件に基づいて、モ

ニタリングが必要な重要なメトリクスとイベントを特定します。システムのパフォーマ

ンス、健全性、動作について意味のある洞察を提供するメトリクスに焦点を当てます。

インテリジェントワークフローオーケストレーション 245

2. 詳細なログ記録の実装：ワークフローコンポーネントと AIの判断ポイント内の適

切な箇所にログ記録ステートメントを配置します。入力パラメータ、出力結果、生成さ

れた中間データなど、関連するコンテキスト情報を取得します。

3. 構造化ログの使用：ログデータの解析と分析を容易にするため、構造化されたロ

グ形式を採用します。構造化ログにより、ログエントリの検索、フィルタリング、集計が

向上します。

4. ログの保持とローテーションの管理：ログファイルのストレージとライフサイクルを

管理するために、ログの保持とローテーションポリシーを実装します。法的要件、スト

レージの制約、分析ニーズに基づいて適切な保持期間を決定します。可能であれば、

Papertrailなどのサードパーティサービスにログを転送します。

5. 機密情報の保護：個人を特定できる情報（PII）や機密性の高いビジネスデータな

ど、機密情報のログ記録には注意が必要です。ログファイル内の機密情報を保護す

るため、データマスキングや暗号化などの適切なセキュリティ対策を実装します。

6. モニタリングと警告ツールの統合：モニタリングとログ記録データの収集、分析、

可視化を一元化するために、モニタリングと警告ツールを活用します。これらのツー

ルはリアルタイムの洞察を提供し、事前に定義されたしきい値に基づいてアラートを

生成し、積極的な問題の検出と解決を促進します。これらのツールの中で私のお気

に入りはDatadogです。

包括的なモニタリングとログ記録メカニズムを実装することで、開発者はインテリジ

ェントワークフローの動作とパフォーマンスについて貴重な洞察を得ることができま

す。これらの洞察により、AI を活用したワークフローオーケストレーションシステムの

効果的なデバッグ、最適化、継続的な改善が可能になります。

スケーラビリティとパフォーマンスの考慮事項

スケーラビリティとパフォーマンスは、インテリジェントワークフローオーケストレーシ

ョンシステムの設計と実装において考慮すべき重要な側面です。同時実行されるワ

ークフローの量と AI を活用したコンポーネントの複雑さが増加するにつれて、システ

https://papertrailapp.com
https://www.datadoghq.com

インテリジェントワークフローオーケストレーション 246

ムが効率的にワークロードを処理し、増大する需要に応じてシームレスにスケールで

きることを確保することが不可欠になります。

大量の同時実行ワークフローの処理

インテリジェントなワークフローオーケストレーションシステムでは、多数の同時実行

ワークフローを処理する必要があることがよくあります。スケーラビリティを確保する

ために、以下の戦略を検討してください：

1. 非同期処理：ワークフローコンポーネントの実行を分離するために、非同期処理メ

カニズムを実装します。これにより、システムは各コンポーネントの完了を待たずにブ

ロックすることなく、複数のワークフローを同時に処理できます。非同期処理は、メッ

セージキュー、イベント駆動アーキテクチャ、または Sidekiqのようなバックグラウンド

ジョブ処理フレームワークを使用して実現できます。

2. 分散アーキテクチャ： AWS Lambdaなどのサーバーレスコンポーネントを使用する

か、メインのアプリケーションサーバーと共に複数のノードやサーバーにワークロード

を分散させるようにシステムアーキテクチャを設計します。これにより、ワークフローの

量が増加した際に追加のノードを加えることができる水平スケーラビリティが可能に

なります。

3. 並列実行：ワークフロー内での並列実行の機会を特定します。一部のワークフロー

コンポーネントは互いに独立しており、同時に実行できる場合があります。マルチスレ

ッドや分散タスクキューなどの並列処理技術を活用することで、システムはリソース

利用を最適化し、全体的なワークフロー実行時間を短縮できます。

AI搭載コンポーネントのパフォーマンス最適化

機械学習モデルや自然言語処理エンジンなどの AI搭載コンポーネントは、計算負

荷が高く、ワークフローオーケストレーションシステム全体のパフォーマンスに影響を

与える可能性があります。AI コンポーネントのパフォーマンスを最適化するために、

以下の技術を検討してください：

インテリジェントワークフローオーケストレーション 247

1. キャッシング： AIの処理が純粋に生成的であり、チャット完了を生成するためのリ

アルタイム情報の検索や外部統合を必要としない場合、頻繁にアクセスされる処理

や計算コストの高い操作の結果を保存して再利用するキャッシングメカニズムを検

討できます。

2. モデルの最適化：ワークフローコンポーネントでの AIモデルの使用方法を継続的

に最適化します。これには、プロンプト蒸留などの技術が含まれる場合もあれば、新し

いモデルが利用可能になった際にそれらをテストするだけの場合もあります。

3. バッチ処理： GPT-4 クラスのモデルを使用している場合、データポイントやリクエ

ストを個別に処理するのではなく、一括で処理するバッチ処理技術を活用できる可

能性があります。データをバッチで処理することで、システムはリソース利用を最適化

し、繰り返しのモデルリクエストによるオーバーヘッドを削減できます。

パフォーマンスのモニタリングとプロファイリング

インテリジェントなワークフローオーケストレーションシステムのパフォーマンスのボ

トルネックを特定し、スケーラビリティを最適化するために、モニタリングとプロファイ

リングメカニズムの実装が重要です。以下のアプローチを検討してください：

1. パフォーマンスメトリクス：レスポンスタイム、スループット、リソース利用率、レイテ

ンシーなどの主要なパフォーマンスメトリクスを定義し、追跡します。これらのメトリク

スは、システムのパフォーマンスに関する洞察を提供し、最適化が必要な領域の特

定に役立ちます。人気の AIモデルアグリゲーターであるOpenRouterは、各 API レス

ポンスに Host1と Speed2メトリクスを含めており、これらの重要なメトリクスの追跡が

容易になっています。

2. プロファイリングツール：個々のワークフローコンポーネントと AI操作のパフォーマ

ンスを分析するために、プロファイリングツールを活用します。プロファイリングツール

は、パフォーマンスのホットスポット、非効率なコードパス、リソースを多く消費する操
1Hostは、モデルホストからストリーミング生成の最初のバイトを受信するまでの時間、つまり「初期バ

イト到達時間」を示します。
2Speedは、生成トークン数を総生成時間で割って計算されます。ストリーミングされないリクエストの

場合、レイテンシーは生成時間の一部とみなされます。

https://openrouter.ai

インテリジェントワークフローオーケストレーション 248

作の特定に役立ちます。一般的なプロファイリングツールには、New Relic、Scout、また

はプログラミング言語やフレームワークが提供する組み込みプロファイラーがありま

す。

3. 負荷テスト：異なるレベルの同時実行ワークロード下でシステムのパフォーマンス

を評価するために、負荷テストを実施します。負荷テストは、システムのスケーラビリ

ティの限界を特定し、パフォーマンスの低下を検出し、パフォーマンスを損なうことな

く予想されるトラフィックを処理できることを確認するのに役立ちます。

4. 継続的モニタリング: パフォーマンスの問題やボトルネックを事前に検出するた

めに、継続的なモニタリングとアラートの仕組みを実装します。主要業績評価指標

（KPI）を追跡し、事前に定義された閾値を超えた場合に通知を受け取るように、モニ

タリングダッシュボードとアラートを設定します。これにより、パフォーマンスの問題を

迅速に特定し解決することが可能になります。

スケーリング戦略

増加するワークロードに対応し、インテリジェントワークフローオーケストレーションシ

ステムのスケーラビリティを確保するために、以下のスケーリング戦略を検討してくだ

さい：

1. 垂直スケーリング: 垂直スケーリングは、より高いワークロードを処理するために個

々のノードやサーバーのリソース（CPU、メモリなど）を増やすことを指します。この方

法は、システムが複雑なワークフローや AI処理により多くの処理能力やメモリを必

要とする場合に適しています。

2. 水平スケーリング: 水平スケーリングは、ワークロードを分散させるためにシステム

にノードやサーバーを追加することを指します。この方法は、システムが多数の同時

実行ワークフローを処理する必要がある場合や、ワークロードを複数のノードに簡単

に分散できる場合に効果的です。水平スケーリングには、トラフィックを均等に分散さ

せるための分散アーキテクチャとロードバランシングメカニズムが必要です。

3. オートスケーリング: ワークロードの需要に基づいてノードやリソースの数を自動的

に調整するオートスケーリングメカニズムを実装します。 オートスケーリングにより、

インテリジェントワークフローオーケストレーション 249

システムは入力トラフィックに応じて動的にスケールアップまたはダウンすることがで

き、最適なリソース利用とコスト効率を確保できます。Amazon Web Services (AWS)や

Google Cloud Platform (GCP)などのクラウドプラットフォームは、インテリジェントワー

クフローオーケストレーションシステムに活用できるオートスケーリング機能を提供し

ています。

パフォーマンス最適化テクニック

スケーリング戦略に加えて、インテリジェントワークフローオーケストレーションシステ

ムの効率を向上させるために、以下のパフォーマンス最適化テクニックを検討してく

ださい：

1. 効率的なデータストレージと取得: ワークフローコンポーネントで使用されるデー

タストレージと取得メカニズムを最適化します。効率的なデータベースインデックス、

クエリ最適化テクニック、データキャッシングを使用して、データ集約型操作のレイテ

ンシーを最小限に抑え、パフォーマンスを向上させます。

2. 非同期 I/O: ブロッキングを防ぎ、システムの応答性を向上させるために非同期

I/O操作を活用します。非同期 I/Oにより、システムは I/O操作の完了を待たずに複

数のリクエストを同時に処理できるため、リソース利用率を最大化できます。

3. 効率的なシリアライゼーションとデシリアライゼーション: ワークフローコンポーネ

ント間のデータ交換に使用されるシリアライゼーションとデシリアライゼーションプ

ロセスを最適化します。Protocol BuffersやMessagePackなどの効率的なシリアライゼ

ーション形式を使用して、データシリアライゼーションのオーバーヘッドを削減し、コン

ポーネント間通信のパフォーマンスを向上させます。

Rubyベースのアプリケーションの場合、Universal IDの使用を検討してく

ださい。 Universal IDは、MessagePack と Brotli（速度と最高クラスのデー

タ圧縮のために構築された組み合わせ） の両方を活用します。これらの

ライブラリを組み合わせると、Protocol Buffers と比較して最大 30%高速

で、圧縮率は 2-5%の範囲内です。

https://github.com/hopsoft/universalid

インテリジェントワークフローオーケストレーション 250

4. 圧縮とエンコーディング: ワークフローコンポーネント間で転送されるデータのサイ

ズを削減するために、圧縮とエンコーディングテクニックを適用します。gzipや Brotli

などの圧縮アルゴリズムを使用することで、ネットワーク帯域幅の使用量を大幅に削

減し、システム全体のパフォーマンスを向上させることができます。

インテリジェントワークフローオーケストレーションシステムの 設 計 と 実 装

時 に ス ケ ー ラ ビ リ テ ィ と パ フ ォ ー マ ン ス の 側 面 を 考 慮 す る こ と で、

システムが多数の同時実行ワークフローを処理し、AI パワードコンポーネント

のパフォーマンスを最適化し、増大する需要に応じてシームレスにスケールできるこ

とを確保できます。継続的なモニタリング、プロファイリング、最適化の取り組みは、ワ

ークロードと複雑さが時間とともに増加する中で、システムのパフォーマンスと応答

性を維持するために不可欠です。

ワークフローのテストと検証

テストと検証は、インテリジェントワークフローオーケストレーションシステムの開発と

保守における重要な側面です。AIパワードワークフローの複雑な性質を考慮すると、

各コンポーネントが期待通りに機能し、全体的なワークフローが正しく動作し、AI判

断が正確で信頼できることを確認することが不可欠です。このセクションでは、イン

テリジェントワークフローをテストおよび検証するためのさまざまなテクニックと考慮

事項について説明します。

ワークフローコンポーネントのユニットテスト

ユニットテストでは、個々のワークフローコンポーネントを分離して検証し、その正確

性と堅牢性を確認します。AI を活用したワークフローコンポーネントのユニットテスト

を行う際は、以下の点を考慮してください：

1. 入力検証：コンポーネントが様々な種類の入力（有効なデータと無効なデータの

両方）を適切に処理できることをテストします。 エッジケースを適切に処理し、適切な

エラーメッセージや例外を提供することを確認します。

インテリジェントワークフローオーケストレーション 251

2. 出力検証：特定の入力セットに対して、コンポーネントが期待される出力を生成す

ることを確認します。実際の出力を期待される結果と比較して、正確性を確保します。

3. エラー処理：無効な入力、リソースの利用不可、予期しない例外など、様々なエラ

ーシナリオをシミュレートしてコンポーネントのエラー処理メカニズムをテストします。

コンポーネントがエラーを適切にキャッチして処理することを確認します。

4. 境界条件：空の入力、最大入力サイズ、極端な値など、境界条件でのコンポーネン

トの動作をテストします。コンポーネントがクラッシュしたり不正な結果を生成したりす

ることなく、これらの条件を適切に処理することを確認します。

以下は、RSpecテストフレームワークを使用した Rubyでのワークフローコンポーネントのユニットテストの例です：

1 RSpec.describe OrderValidator do

2 describe '#validate' do

3 context 'when order is valid' do

4 let(:order) { build(:order) }

5

6 it 'returns true' do

7 expect(subject.validate(order)).to be true

8 end

9 end

10

11 context 'when order is invalid' do

12 let(:order) { build(:order, total_amount: -100) }

13

14 it 'returns false' do

15 expect(subject.validate(order)).to be false

16 end

17 end

18 end

19 end

インテリジェントワークフローオーケストレーション 252

この例では、OrderValidator コンポーネントを 2つのテストケースを使用してテストし

ています：有効な注文と無効な注文のケースです。これらのテストケースは、validate

メソッドが注文の妥当性に基づいて期待される真偽値を返すことを検証します。

ワークフロー相互作用の統合テスト

統合テストは、異なるワークフローコンポーネント間の相互作用とデータフローを検

証することに重点を置きます。これにより、コンポーネントが円滑に連携し、期待され

る結果を生成することを確認します。インテリジェントワークフローの統合テストを行

う際は、以下の点を考慮してください：

1. コンポーネントの相互作用：ワークフローコンポーネント間のコミュニケーションと

データ交換をテストします。あるコンポーネントの出力が、ワークフロー内の次のコン

ポーネントへの入力として正しく渡されることを検証します。

2. データ整合性：ワークフロー全体を通じてデータが一貫性を保ち、正確であること

を確認します。データ変換、計算、集計が正しく実行されることを検証します。

3. 例外伝播：ワークフローコンポーネント間での例外とエラーの伝播と処理方法をテ

ストします。例外が適切にキャッチされ、ログに記録され、ワークフローの中断を防ぐ

ために適切に処理されることを検証します。

4. 非同期動作：ワークフローに非同期コンポーネントや並列実行が含まれる場合、

調整と同期のメカニズムをテストします。並行処理や非同期シナリオにおいてワーク

フローが正しく動作することを確認します。

以下は、RSpecテストフレームワークを使用した Rubyでのワークフローの統合テスト

の例です：

インテリジェントワークフローオーケストレーション 253

1 RSpec.describe OrderProcessingWorkflow do

2

3 let(:order) { build(:order) }

4

5 it 'processes the order successfully' do

6 expect(OrderValidator).to receive(:validate).and_return(true)

7 expect(InventoryManager).to receive(:check_availability).and_return(true)

8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)

9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)

10

11 workflow = OrderProcessingWorkflow.new(order)

12 result = workflow.process

13

14 expect(result).to be true

15 expect(order.status).to eq('processed')

16 end

17

18 end

この例では、OrderProcessingWorkflowのテストを、異なるワークフロー・コンポーネン

ト間の相互作用を検証することで行っています。このテストケースでは、各コンポーネ

ントの動作に対する期待値を設定し、ワークフローが注文を正常に処理し、それに応

じて注文状態を更新することを確認します。

AI判断ポイントのテスト

AI判断ポイントのテストは、AI を活用したワークフローの精度と信頼性を確保する

ために極めて重要です。AI判断ポイントをテストする際は、以下の点を考慮してくだ

さい：

インテリジェントワークフローオーケストレーション 254

1. 判断の正確性： AI コンポーネントが入力データと学習済みモデルに基づいて正

確な判断を下すことを検証します。AI判断を期待される結果や正解データと比較し

ます。

2. エッジケース：エッジケースや異常なシナリオでの AI コンポーネントの動作をテス

トします。AI コンポーネントがこれらのケースを適切に処理し、合理的な判断を下す

ことを確認します。

3. バイアスと公平性： AIコンポーネントに潜在的なバイアスがないかを評価し、公平

で偏りのない判断を下すことを確認します。多様な入力データでコンポーネントをテ

ストし、差別的なパターンがないか分析します。

4. 説明可能性： AI コンポーネントが判断の説明や根拠を提供する場合、その説明

の正確性と明確性を検証します。説明が基礎となる意思決定プロセスと一致してい

ることを確認します。

以下は、RSpecテストフレームワークを使用して Rubyで AI判断ポイントをテストする

例です：

1 RSpec.describe FraudDetector do

2 describe '#detect_fraud' do

3 context 'when transaction is fraudulent' do

4 let(:tx) do

5 build(:transaction, amount: 10_000, location: 'High-Risk Country')

6 end

7

8 it 'returns true' do

9 expect(subject.detect_fraud(tx)).to be true

10 end

11 end

12

13 context 'when transaction is legitimate' do

インテリジェントワークフローオーケストレーション 255

14 let(:tx) do

15 build(:transaction, amount: 100, location: 'Low-Risk Country')

16 end

17

18 it 'returns false' do

19 expect(subject.detect_fraud(tx)).to be false

20 end

21 end

22 end

23 end

この例では、FraudDetector AI コンポーネントを 2つのテストケースでテストしていま

す：1つは不正な取引用、もう 1つは正当な取引用です。これらのテストケースは、取

引の特性に基づいてdetect_fraud メソッドが期待される真偽値を返すことを検証し

ます。

エンドツーエンドテスト

エンドツーエンドテストは、実際の環境やユーザー操作を模倣しながら、開始から終

了までの全体的なワークフローをテストすることです。これにより、ワークフローが正し

く動作し、望ましい結果を生成することを確認します。インテリジェントワークフローの

エンドツーエンドテストを実施する際は、以下の点を考慮してください：

1. ユーザーシナリオ：一般的なユーザーシナリオを特定し、それらのシナリオにおけ

るワークフローの動作をテストします。ワークフローがユーザー入力を正しく処理し、

適切な判断を行い、期待される出力を生成することを確認します。

2. データバリデーション：ワークフローがユーザー入力を検証し、サニタイズして、デ

ータの不整合やセキュリティの脆弱性を防ぐことを確認します。有効なデータと無効

なデータを含む、さまざまな種類の入力データでワークフローをテストします。

インテリジェントワークフローオーケストレーション 256

3. エラー回復：ワークフローのエラーや例外からの回復能力をテストします。エラー

シナリオをシミュレートし、ワークフローがそれらを適切に処理し、エラーをログに記録

し、適切な回復アクションを実行することを確認します。

4. パフォーマンスとスケーラビリティ：異なる負荷条件下でのワークフローのパフォ

ーマンスとスケーラビリティを評価します。大量の同時リクエストでワークフローをテ

ストし、応答時間、リソース使用率、システム全体の安定性を測定します。

以下は、Rubyで RSpecテストフレームワークとユーザー操作をシミュレートするための Capybara ライブラリを

使用したワークフローのエンドツーエンドテストの例です：

1 RSpec.describe 'Order Processing Workflow' do

2 scenario 'User places an order successfully' do

3 visit '/orders/new'

4 fill_in 'Product', with: 'Sample Product'

5 fill_in 'Quantity', with: '2'

6 fill_in 'Shipping Address', with: '123 Main St'

7 click_button 'Place Order'

8

9 expect(page).to have_content('Order Placed Successfully')

10 expect(Order.count).to eq(1)

11 expect(Order.last.status).to eq('processed')

12 end

13 end

この例では、エンドツーエンドテストがウェブインターフェースを通じてユーザーが注

文を行う過程をシミュレートします。必要なフォームフィールドに入力し、注文を送信

し、注文が正常に処理され、適切な確認メッセージが表示され、データベース内の注

文状態が更新されることを検証します。

インテリジェントワークフローオーケストレーション 257

継続的インテグレーションとデプロイメント

インテリジェントワークフローの信頼性と保守性を確保するために、継続的インテグ

レーション・デプロイメント（CI/CD）パイプラインにテストと検証を統合することが推

奨されます。これにより、ワークフローの変更を本番環境にデプロイする前に、自動的

なテストと検証が可能になります。以下のプラクティスを考慮してください：

1. 自動テスト実行：ワークフローのコードベースに変更が加えられるたびに、テストス

イートを自動的に実行するように CI/CDパイプラインを設定します。これにより、開発

プロセスの早い段階でリグレッションや障害を検出することができます。

2. テストカバレッジの監視：ワークフローコンポーネントと AI判断ポイントのテストカ

バレッジを測定し監視します。重要なパスとシナリオが徹底的にテストされるよう、高

いテストカバレッジを目指します。

3. 継続的フィードバック：テスト結果とコード品質メトリクスを開発ワークフローに統

合します。テストの状態、コード品質、CI/CDプロセス中に検出された問題について、

開発者に継続的なフィードバックを提供します。

4. ステージング環境：本番環境を密接に模したステージング環境にワークフローを

デプロイします。ステージング環境で追加のテストと検証を実施し、インフラストラク

チャ、設定、またはデータ統合に関連する問題を発見します。

5. ロールバックメカニズム：デプロイメントの失敗や本番環境で検出された重大な問

題に備えて、ロールバックメカニズムを実装します。ダウンタイムやユーザーへの影響

を最小限に抑えるため、ワークフローを以前の安定バージョンに迅速に戻せるように

します。

インテリジェントワークフローの開発ライフサイクル全体にテストと検証を組み込むこ

とで、組織は AI を活用したシステムの信頼性、正確性、保守性を確保することがで

きます。定期的なテストと検証は、バグの発見、リグレッションの防止、そしてワークフ

ローの動作と結果に対する信頼性の構築に役立ちます。

パート 2：パターン集

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング 260

チェーン・オブ・ソート

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

動作の仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

コンテンツ生成

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

構造化エンティティの作成

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング 261

LLMエージェントのガイダンス

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

利点と考慮事項

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング 262

モードスイッチ

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

動作の仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

使用するタイミング

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング 263

役割割り当て

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

使用するタイミング

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング 264

プロンプトオブジェクト

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

動作の仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング 265

プロンプトテンプレート

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

メリットと考慮事項

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

使用すべき場面：

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング 266

ストラクチャード IO

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

構造化 IOのスケーリング

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

メリットと考慮事項

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング 267

プロンプトチェーニング

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

使用するタイミング

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例：Olympiaのオンボーディング

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング 268

プロンプトリライター

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング 269

レスポンスフェンシング

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

利点と考慮事項

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

エラー処理

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング 270

クエリアナライザー

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

動作の仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

実装

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

品詞タグ付け（POS Tagging）と固有表現抽出（NER）

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

意図分類

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング 271

キーワード抽出

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

利点

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング 272

クエリリライター

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

利点

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

プロンプトエンジニアリング 273

ベントリロキスト

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

動作の仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

使用するタイミング

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

実装例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

個別コンポーネント

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

個別コンポーネント 275

述語

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

使用するタイミング

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

個別コンポーネント 276

APIファサード

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

動作の仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

主なメリット

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

使用すべき場面

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

個別コンポーネント 277

認証と承認

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

リクエスト処理

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

レスポンスのフォーマット

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

エラー処理とエッジケース

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

スケーラビリティとパフォーマンスの考慮事項

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

個別コンポーネント 278

他のデザインパターンとの比較

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

個別コンポーネント 279

結果インタープリター

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

動作の仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

使用すべき場面

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

個別コンポーネント 280

仮想マシン

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

使用するタイミング

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

魔法の裏側

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

個別コンポーネント 281

仕様とテスト

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

動作の仕様化

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

テストケースの作成

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例：翻訳コンポーネントのテスト

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

HTTP通信の再生

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

ヒューマン・イン・ザ・ループ

（HITL）
このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

高レベルパターン

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

ハイブリッドインテリジェンス

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

適応的応答

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

ヒューマン・イン・ザ・ループ（HITL） 283

人間と AIの役割切り替え

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

ヒューマン・イン・ザ・ループ（HITL） 284

エスカレーション

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

主なメリット

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

実世界での応用：ヘルスケア

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

ヒューマン・イン・ザ・ループ（HITL） 285

フィードバックループ

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

応用例と実例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

人間のフィードバック統合における高度な技術

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

ヒューマン・イン・ザ・ループ（HITL） 286

パッシブ情報放射

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

文脈的情報表示

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

先制的通知

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

説明的洞察

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

ヒューマン・イン・ザ・ループ（HITL） 287

インタラクティブな探索

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

主要なメリット

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

応用と例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

ヒューマン・イン・ザ・ループ（HITL） 288

協調的意思決定（CDM）

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

動作の仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

ヒューマン・イン・ザ・ループ（HITL） 289

継続的学習

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

応用と例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

倫理的考慮事項

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

ヒューマン・イン・ザ・ループ（HITL） 290

AIリスクの軽減における HITLの役割

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

技術的進歩と将来の展望

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

HITLシステムの課題と限界

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

インテリジェントなエラー処理

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

従来のエラー処理アプローチ

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

インテリジェントなエラー処理 292

文脈的エラー診断

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

文脈的エラー診断のためのプロンプトエンジニアリング

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

文脈的エラー診断のための検索拡張生成

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

インテリジェントなエラー処理 293

知的エラー報告

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

インテリジェントなエラー処理 294

予測的エラー防止

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

動作の仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

スマートエラーリカバリー

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

動作の仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

インテリジェントなエラー処理 295

パーソナライズされたエラーコミュニケーション

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

インテリジェントなエラー処理 296

適応型エラー処理ワークフロー

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

品質管理

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

品質管理 298

Eval

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

問題

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

解決策

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

動作の仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

品質管理 299

考慮事項

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

ゴールデンリファレンスの理解

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

リファレンスフリー評価の仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

品質管理 300

ガードレール

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

問題

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

解決策

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

動作の仕組み

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

例

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

品質管理 301

考慮事項

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

ガードレールと評価：コインの表と裏

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

ガードレールとリファレンスフリー評価の互換性

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

二重目的のガードレールと評価の実装

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

用語集

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

用語集

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

A

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

B

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

303

C

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

D

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

E

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

F

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

G

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

304

H

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

I

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

J

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

K

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

L

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

305

M

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

N

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

O

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

P

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

Q

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

306

R

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

S

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

T

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

U

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

V

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

307

W

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

Z

このコンテンツはサンプル本では読めません。この本は Leanpub で購入

できます　http://leanpub.com/patterns-of-application-development-

using-ai-ja.

http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja
http://leanpub.com/patterns-of-application-development-using-ai-ja

Index

ACID特性, 106

AI, 61, 69, 96, 126, 132, 141, 148, 197, 205

conversational, 206

model, 96

アプリケーション, 122, 136, 147

モデル, 85, 155, 157, 205

会話, 6

判断ポイント, 253

対話型, 28

複合システム, 27, 28, 31

AI ワーカーのチェーン化, 108

AI！モデル, 153

Alpaca, 12

Altman, Sam, 16

Amazon Web Services, 249

Anthropic, 20, 36, 68, 126, 135

API, 67, 120, 152

BERT, 12, 22

Brotli, 249, 250

Capybara ライブラリ, 256

Chain of Thought (CoT), 137

ChatGPT, 27, 49

classification, 117

Claude, 7, 40, 73

Claude 3, 45, 123, 126, 132, 135

Claude 3 Opus, 69

Claude v1, 15

Claude v2, 15

Cohere (LLM Provider), 22

Cohere（LLMプロバイダー）, 20

command line

Command-Line Interface (CLI), 23

content

filtering, 24

context

infinitely long inputs, 14

window, 14

コンテキスト型コンテンツ生成, 188,

189

Customer Sentiment Analysis, 97

customization, 24

C（プログラミング言語）, 113

data

privacy, 24

Databricksの従業員, 48

Datadog, 245

decision

-making capabilities, 96

digital landscape, 189

document clustering, 117

Dohan, et al., 40

Index 309

ELKスタック, 107

errors

Intelligent Error Handling, 141

experimentation

フレームワーク, 189

E コマース, 216

e コマース, 187

E コマースアプリケーション, 88

F#, 89

Facebook, 22

finalize メソッド, 156, 157

FitAI, 206

Gemma 7B, 10

Generative Pre-trained Transformer (GPT),

7

Generative UI (GenUI), 208

GitLab, 89

Google, 20

API, 58, 61

Cloud AIプラットフォーム, 22

Cloud Platform, 249

Gemini, 19

Gemini 1.5 Pro, 13, 15, 17

PaLM (Pathways Language Model), 15

PaLM（Pathways Language Model）,

22

T5, 12

GPT-3, 12, 15

GPT-4, 6, 12, 15, 19, 28, 40, 45, 58, 101, 114,

117, 124, 131, 199, 200, 247

Graham, Paul, 17

GraphQL, 105

Groq, 23, 117

gzip, 250

high-performance completion, 24

Hohpe, Gregor, 101

Honeybadger, 90

HTTP, 148

instruction tuning, 9

iterative refinement, 142

JSON (JavaScript Object Notation), 128, 129

JSON（JavaScript Object Notation）, 123,

132, 145, 164

K平均法, 118

language

models, 39, 61

Large Language Model (LLM), 14, 16, 117,

142

Llama, 12

Llama 2-70B, 46

Llama 3 70B, 10

Llama 3 8B, 10

LLMの統合, 184

Louvre, 39

Managed Streaming for Apache Kafka, 38

Memorial Sloan Kettering Cancer Center,

38

MessagePack, 249

Meta, 22

Index 310

Metropolitan Museum of Art, 39

Mistral, 23

7B, 10

7B Instruct, 15, 200

Mixtral

8x22B, 10

8x7B, 52

motivational strategies, 208

Naive Bayes, 117

natural language

Natural Language Processing (NLP),

117

New Relic, 248

Ollama, 23

Olympia, 30, 58, 126, 141, 149, 165

Olympiaのナレッジベース, 88

OpenAI, 3, 20, 36, 68

OpenRouter, 25, 26, 149, 247

OPT model, 22

Perplexity（プロバイダー）, 10

prompts

engineering, 61

Protocol Buffers, 249

PyTorch, 22

Qwen2 70B, 10

Rails, 190

Railway Oriented Programming (ROP), 91

Raix, 224

ライブラリ, 94

RSpec, 251, 252, 256

Ruby, 89, 90, 110, 161, 256

Ruby on Rails, 1, 108, 224, 232

Rudall, Alex, 21

Rust (プログラミング言語), 89

Rust（プログラミング言語）, 113

Scout, 248

sentiment analysis, 15

server-sent events (SSE), 148

SQL インジェクション, 66

stream handlers, 149

stream processing, 148

Stripe, 126

Support Vector Machines (SVM), 117

system directive, 96

T5, 22

Together.ai, 23

Top-kサンプリング, 44

Top-p（nucleus）サンプリング, 44

topic identification, 117

translation, 15

Unicodeでエンコード可能な言語, 13

Universal ID, 249

user experience, 190

Wall, Larry, 3

Wisper, 91, 103, 149, 157

Wooley, Chad, 89

XML, 132

Yi-34B, 46

Index 311

アカウント, 87

アクセシビリティ, 211, 212

アダプティブ UI, 203

アプリケーション設計とフレームワーク,

193

アンサンブル, 114, 115

ワーカーのアンサンブル, 115

イベント駆動アーキテクチャ, 105

インテリジェントコンテンツモデレーター,

228

インテリジェントワークフローオーケストレ

ーション, 215, 247

インテリジェントワークフローオーケストレ

ーション, 223, 250

エコシステム, 145

エッジケース, 54

エラー

処理, 104, 107, 140, 251

回復, 256

率, 107

エンタープライズアプリケーションアーキ

テクチャ, 35

エンタープライズインテグレーションパタ

ーン, 101

エンドツーエンドテスト, 255, 256

エージェント型, 29

オンライン小売業者, 201

オートスケーリング, 248

オープンソースモデルホスティングプロバ

イダー, 201

カスタマーサポート, 29

カスタマーサービスチャットボット, 30

キャッシング, 247

クリエイティブライティング, 31, 48

クロスモーダル生成, 20

クローズドおよびオープンな質問応答, 48

グラフィカルモデル, 40

グローバルインタプリタロック（GIL）, 112

コモンズの悲劇, 187

コンテキスト

ウィンドウ, 220

コンテキストに基づく意思決定, 220

コンテキスト依存型コンテンツ生成,

194, 195

コンテキスト型コンテンツ生成, 183,

187, 188

拡張, 42

文脈に応じたフィールド候補, 195

コンテンツ

コンテンツカテゴリ分類, 108

コンテンツベースフィルタリング, 88

コンピュータサイエンス, 65, 68

サプライチェーン

最適化, 30

サーキットブレーカーロジック, 160

システムディレクティブ, 125

スケーラビリティ, 217, 245

ステージング環境, 257

ステートレス, 155

ストリーミングデータ, 150

ストリーム処理, 154

ロジック, 157

スマートフォン, 212

スループット, 25

Index 312

セグメンテーションとターゲティング戦略,

190

ゼロショット学習, 54, 55

ソフトウェアアーキテクチャ, 2

タブレット, 212

チケットの割り当て, 236

チャットボットアプリケーション, 115

ツールの使用, 120, 147

ツールコール, 151

テキストクリーンアップ, 108

デスクトップコンピュータ, 212

デバッグ, 219

とテスト, 130

とトラブルシューティング, 244

データ

データバリデーション, 255

データ取得, 106

データ同期, 106

フロー, 107

プライバシー, 210

処理タスク, 122

処理パイプライン, 236

分析, 31, 145

整合性, 236

永続化, 106

準備, 106

データベース, 120

バックドオブジェクト, 102

ロック戦略, 106

トランスフォーマーアーキテクチャ, 5

トリガーメッセージ, 101

トークン, 5, 11

トークン化, 11

ナラティブ構築, 18

ナレッジベース, 6

ナレッジマネジメント, 29

ニューラルネットワーク, 3, 6

ネットワーク接続, 221

ハイパーパラメータ, 43

ハッシュ, 150

ハードウェア, 26

バイアス

AIにおけるバイアスと公平性, 254

バイトペアエンコーディング（BPE）, 12, 13

バッチ処理, 247

バーチャルアシスタント, 30

パスの絞り込み, 35

パスを狭める, 36

パターンマッチング, 151

パフォーマンス

トレードオフ, 4

問題, 248

最適化, 130, 192, 244

パブリッシュ-サブスクライブシステム, 105

パラメータ

パラメータ数, 25

効果, 126

範囲, 10

パーソナライズ

パーソナライズされたマイクロコピー,

202

パーソナライズされた商品レコメンデーシ

ョン, 88

パーソナライゼーション, 184, 212, 217

Index 313

パーソナライズされたフォーム, 195

ヒューマンインザループ（HITL）, 176

ビジネスルール, 215

ビジュアルインターフェース, 204

ファイナライズメソッド, 154

ファインチューニング, 75

フィードバック

フィードバックループ, 54

フォールバック戦略, 107

フューショット

プロンプティング, 58

学習, 57

プログレッシブ・ディスクロージャー, 203

プロセスマネージャー, 101, 104

エンタープライズ統合, 224

プロンプト

エンジニアリング, 37, 41, 42, 52, 55,

63, 209

チェーニング, 55, 67

プロンプトオブジェクト, 69

プロンプトテンプレート, 55, 201

プロンプト蒸留, 42, 68, 74, 247

改良, 64

設計, 54, 64

ベントリロキスト, 174

ベースモデル, 50

ボトルネック, 220

マイクロサービスアーキテクチャ, 86

マルチエージェント

問題解決システム, 28

マルチステップワークフロー, 108

マルチモーダル

モデル, 18

言語モデル, 19

マーキュリー（ローマ神話）, 41

マークアップ形式のタグ付け, 66

マークダウン, 145

モジュール性, 85

モニタリング

とアラート, 221

とロギング, 107

とログ記録, 244

メトリクス, 244

ユーザーの信頼, 211

ユーザーインターフェース（UI）

インターフェース, 193, 208

テクノロジー, 204

デザイン, 213

フレームワーク, 209

ユーザーテストとフィードバック, 192

ユーザー心理学, 209

ユーザー生成コンテンツ, 108

ランカー, 32

リスク層別化, 99

リスク要因, 92, 93

リトライメカニズム, 107

レイテンシー, 25

レスポンスフェンシング, 174, 201

ログの保持とローテーション, 245

ローカル開発環境, 153

ロールバックメカニズム, 257

ロールプレイスタイルのやり取り, 6

ワンショット学習, 56

Index 314

一貫性

と再現性, 130

不正検知

システム, 94

並列実行, 246

主要指標の追跡, 241

予測, 5

交通管理, 30

会話

トランスクリプト, 155, 158

ループ, 158

使いやすさの問題, 210

例外処理, 220, 223

保険確認, 98

倫理

影響, 194

入力

プロンプト, 52

検証, 250

入力パラメータ, 125

処理時間, 107

出力検証, 251

分散アーキテクチャ, 246

分類, 48

効率性, 217

動的 UI生成, 184

動的タスクルーティング, 218

動的ツール選択, 129

包括的なインターフェース, 194

医学的発見, 98

協調フィルタリング, 88

反復的な改良, 71

合成データ生成, 49

同時実行ワークフロー, 250

商品レコメンデーション, 88

国際化, 190

境界条件, 251

外部サービスや API, 123

多数のワーカー, 115, 164

多数決方式, 114

大規模言語モデル (LLM), 199

大規模言語モデル（LLM）, 1, 3, 27, 63, 64,

67, 71, 73, 84, 107, 120, 122, 132,

139, 142, 145, 162, 164, 183, 193,

204, 227

分野, 25

存在ペナルティ, 44

学習データ, 39

強制ツール選択, 129

心の理論, 37

思考連鎖（CoT）, 41

悲観的ロック, 106

情報

抽出, 48

検索, 6, 123

意思決定のユースケース, 131

感情分析, 98, 108, 109, 111, 114, 115, 132,

143

感情的なトーン, 143

手動介入, 223

拡張現実メガネ, 212

指示チューニング

Index 315

指示チューニングされたモデル, 45

指示調整

指示調整モデル, 48

推論, 5

擬人化, 64

教師なし学習, 4

教育アプリケーション, 29

文法規則, 4

最初のトークンまでの時間（TTFT）, 25

最小権限の原則, 67

柔軟性と創造性, 191

検索ベースモデル, 6

検索拡張生成（RAG）, 29, 35, 42, 75, 122

楽観的ロック, 106

概念的および実践的な課題, 194

構文エラー, 129

構造化 IO, 201

構造化データ, 131

構造化ログ, 245

水星, 41

水銀（元素）, 41

決定

ポイント, 242

木, 216

決定論的な振る舞い, 54

温度パラメータ, 50

潜在的ディリクレ配分法, 118

潜在空間, 37, 39

現代のアプリケーション, 217

生成事前学習済みトランスフォーマー

（GPT）, 63

生成的 UI（GenUI）, 193, 201, 212

生産性, 186

病歴収集, 98

症状評価と層別化, 98

監査とコンプライアンス, 244

監査ログ, 103

確率モデル, 39

結果インタープリター, 140

統合テスト, 252

継続的インテグレーション・デプロイメント

（CI/CD）, 257

パイプライン, 257

継続的リスクモニタリング, 100

緊急時対応計画, 30

線形代数, 39

線形回帰, 40

繰り返しペナルティ, 47

翻訳, 191

臨床意思決定支援, 100

自動継続, 158

自己修復データ, 162, 241

自己回帰モデリング, 39

自然言語

自然言語処理（NLP）, 98

蒸留プロセス, 71

複雑なタスク, 144

要約, 48

言い換え, 49

言語

モデル, 68

言語検出, 108

Index 316

関連タスク, 4

詳細なログ記録, 245

説明可能性, 254

質問応答システム, 6

辞書, 128

過去のパターン, 220

適応型ワークフロー

適応型ワークフロー構成, 220

配列, 128

重要なパターン, 217

量子化, 26

開発フレームワーク, 146

関数

名, 152

呼び出し, 120

呼び出し履歴, 154

関数呼び出しの失敗, 131

関数型プログラミング, 88

非同期処理, 246

音声制御インターフェース, 30

	目次
	Gregor Hohpeによる序文
	はじめに
	本書について
	コード例について
	本書で扱わない内容
	対象読者
	共通の語彙の構築
	参加方法
	謝辞
	イラストについて
	リーン・パブリッシングについて
	著者について

	はじめに
	ソフトウェアアーキテクチャについての考察
	大規模言語モデルとは
	推論について
	パフォーマンスについて考える
	異なるLLMモデルの実験
	複合AIシステム

	パート1：基本的なアプローチと技法
	パスを狭める
	潜在空間：理解を超えた広大さ
	どのように道筋が「絞り込まれる」のか
	生のモデル対指示調整済みモデル
	プロンプトエンジニアリング
	プロンプト蒸留
	ファインチューニングについてはどうですか？

	検索拡張生成 (Retrieval Augmented Generation: RAG)
	検索拡張生成とは？
	RAGはどのように機能するか？
	なぜアプリケーションでRAGを使用するのか？
	アプリケーションでのRAGの実装
	命題チャンキング
	RAGの実世界での例
	インテリジェントクエリ最適化（IQO）
	リランキング
	RAG評価（RAGAs）
	課題と将来の展望

	ワーカーの群れ
	独立した再利用可能なコンポーネントとしてのAIワーカー
	アカウント管理
	Eコマースアプリケーション
	ヘルスケアでの応用
	プロセスマネージャーとしてのAIワーカー
	アプリケーションアーキテクチャへのAIワーカーの統合
	AIワーカーの構成性とオーケストレーション
	従来の自然言語処理とLLMの組み合わせ

	ツールの使用
	ツールの使用とは
	ツール使用の可能性
	ツール使用のワークフロー
	ツール使用のベストプラクティス
	ツールの組み合わせと連鎖
	将来の方向性

	ストリーム処理
	ReplyStreamの実装
	「会話ループ」
	自動継続
	結論

	自己修復データ
	実践的ケーススタディ：破損したJSONの修復
	考慮事項と禁忌

	コンテキスト型コンテンツ生成
	パーソナライゼーション
	生産性
	高速イテレーションと実験
	AI駆動のローカライゼーション
	ユーザーテストとフィードバックの重要性

	生成的UI
	ユーザーインターフェース用のコピーの生成
	ジェネラティブUIの定義
	例
	成果指向設計へのシフト
	課題と考慮事項
	将来の展望と機会

	インテリジェントワークフロー オーケストレーション
	ビジネスニーズ
	主要なメリット
	主要パターン
	例外処理とリカバリー
	インテリジェントワークフローオーケストレーションの実践的な実装
	モニタリングとロギング
	スケーラビリティとパフォーマンスの考慮事項
	ワークフローのテストと検証

	パート2：パターン集
	プロンプトエンジニアリング
	チェーン・オブ・ソート
	モードスイッチ
	役割割り当て
	プロンプトオブジェクト
	プロンプトテンプレート
	ストラクチャードIO
	プロンプトチェーニング
	プロンプトリライター
	レスポンスフェンシング
	クエリアナライザー
	クエリリライター
	ベントリロキスト

	個別コンポーネント
	述語
	APIファサード
	結果インタープリター
	仮想マシン
	仕様とテスト

	ヒューマン・イン・ザ・ループ（HITL）
	高レベルパターン
	エスカレーション
	フィードバックループ
	パッシブ情報放射
	協調的意思決定（CDM）
	継続的学習
	倫理的考慮事項
	技術的進歩と将来の展望

	インテリジェントなエラー処理
	従来のエラー処理アプローチ
	文脈的エラー診断
	知的エラー報告
	予測的エラー防止
	スマートエラーリカバリー
	パーソナライズされたエラーコミュニケーション
	適応型エラー処理ワークフロー

	品質管理
	Eval
	ガードレール
	ガードレールと評価：コインの表と裏

	用語集
	用語集
	Index

