

Pattern di Sviluppo di Applicazioni con

l’IA (Edizione Italiana)

Obie Fernandez

Questo libro è in vendita presso

http://leanpub.com/patterns-of-application-development-using-ai-it

Questa versione è stata pubblicata il 2025-01-23

Questo è un libro di Leanpub. Leanpub permette ad autori ed editori un processo di

pubblicazione agile. La Pubblicazione Agile consite nel pubblicare un ebook in corso

d’opera, utilizzando strumenti leggeri e molte iterazioni per ottenere un feedback dai

lettori, al fine di assicurare un libro giusto e attraente una volta completato.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-it
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Twitta questo libro!

Per favore, aiuta Obie Fernandez a diffondere la voce su questo libro su Twitter!

L’hashtag suggerito per questo libro è #poaduai.

Scopri cosa dicono gli altri su questo libro cliccando su questo link per cercare questo

hashtag su Twitter:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Alla mia straordinaria regina, mia musa, mia luce e amore, Victoria

Anche di Obie Fernandez
Patterns of Application Development Using AI

The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Indice

Prefazione di Gregor Hohpe . i

Prefazione . ii

Sul Libro . iii

Sugli Esempi di Codice . iii

Cosa Non Tratto . iii

A Chi è Destinato Questo Libro . iii

Costruire un Vocabolario Comune . iii

Come Partecipare . iii

Ringraziamenti . iii

Cosa dire delle illustrazioni? . iv

Sul Lean Publishing . iv

L’Autore . v

Introduzione . 1

Riflessioni sull’Architettura del Software . 2

Cos’è un Modello Linguistico di Grandi Dimensioni? 3

Comprendere l’Inferenza . 5

Pensare alle Prestazioni . 27

Sperimentare con Diversi Modelli LLM . 29

Sistemi di IA Composti . 30

INDICE

Parte 1: Approcci e Tecniche Fondamentali . . 38

Restringere il Percorso . 39

Spazio Latente: Incomprensibilmente Vasto . 41

Come Il Percorso Viene “Ristretto” . 45

Modelli Grezzi Versus Modelli Istruiti . 49

Prompt Engineering . 56

Distillazione dei Prompt . 72

E il fine-tuning? . 79

Retrieval Augmented Generation (RAG) . 81

Cos’è il Retrieval Augmented Generation? . 81

Come Funziona il RAG? . 81

Perché Usare il RAG nelle Tue Applicazioni? 81

Implementazione del RAG nella Tua Applicazione 81

Suddivisione in proposizioni . 82

Esempi Reali di RAG . 82

Intelligent Query Optimization (IQO) . 83

Riordinamento (Reranking) . 83

RAG Assessment (RAGAs) . 83

Sfide e Prospettive Future . 85

Moltitudine di Lavoratori . 87

Lavoratori AI Come Componenti Riutilizzabili Indipendenti 88

Gestione degli Account . 90

Applicazioni E-commerce . 91

Applicazioni Sanitarie . 100

Il Worker AI come Gestore dei Processi . 103

Integrare i Worker IA nell’Architettura dell’Applicazione 107

Componibilità e Orchestrazione dei Worker AI 110

INDICE

Combinare il NLP Tradizionale con gli LLM 119

Uso degli Strumenti . 123

Cos’è l’Uso degli Strumenti? . 123

Il Potenziale dell’Utilizzo degli Strumenti . 125

Il Flusso di Lavoro dell’Utilizzo degli Strumenti 126

Migliori Pratiche per l’Uso degli Strumenti . 141

Composizione e Concatenamento degli Strumenti 145

Direzioni Future . 147

Elaborazione del Flusso . 149

Implementazione di un ReplyStream . 150

Il “Ciclo di Conversazione” . 156

Continuazione Automatica . 158

Conclusione . 161

Dati Auto-riparanti . 163

Caso di Studio Pratico: Riparare JSON Danneggiato 165

Considerazioni e Controindicazioni . 170

Generazione Contestuale dei Contenuti . 185

Personalizzazione . 186

Produttività . 188

Iterazione Rapida e Sperimentazione . 190

Localizzazione Basata su IA . 193

L’Importanza dei Test Utente e del Feedback 195

Generative UI . 196

Generazione di Testo per Interfacce Utente . 197

Definizione della UI Generativa . 206

Esempio . 208

INDICE

Il Passaggio al Design Orientato ai Risultati . 211

Sfide e Considerazioni . 212

Prospettive Future e Opportunità . 214

Orchestrazione Intelligente dei Flussi di Lavoro 217

Esigenza Aziendale . 218

Benefici Principali . 219

Pattern Chiave . 219

Gestione e Recupero delle Eccezioni . 222

Implementare l’Orchestrazione del Flusso di Lavoro Intelligente nella Pratica . 225

Monitoraggio e Logging . 240

Considerazioni sulla Scalabilità e le Prestazioni 245

Test e Validazione dei Workflow . 250

Parte 2: I Pattern . 258

Prompt Engineering . 259

Chain of Thought . 260

Cambio di Modalità . 261

Assegnazione del Ruolo . 262

Prompt Object . 263

Template di Prompt . 264

Structured IO . 265

Prompt Chaining . 266

Riscrittura dei Prompt . 267

Response Fencing . 268

Query Analyzer . 269

Riscrittura delle Query . 271

Ventriloquist . 272

INDICE

Componenti Discreti . 273

Predicate . 274

API Facade . 275

Interprete dei Risultati . 277

Macchina Virtuale . 278

Specifica e Testing . 278

Human In The Loop (HITL) . 280

Pattern di Alto Livello . 280

Escalation . 281

Feedback Loop . 282

Radiazione Passiva delle Informazioni . 283

Collaborative Decision Making (CDM) . 285

Apprendimento continuo . 286

Considerazioni Etiche . 286

Progressi Tecnologici e Prospettive Future . 286

Gestione Intelligente degli Errori . 288

Approcci Tradizionali alla Gestione degli Errori 288

Diagnosi Contestuale degli Errori . 289

Segnalazione Intelligente degli Errori . 290

Prevenzione Predittiva degli Errori . 291

Recupero Intelligente degli Errori . 291

Comunicazione Personalizzata degli Errori . 292

Flusso di Gestione Adattiva degli Errori . 293

Controllo Qualità . 294

Eval . 295

Guardrail . 297

Guardrails e Valutazioni: Due Facce della Stessa Medaglia 297

Glossario . 299
Glossario . 299

Index . 304

Prefazione di Gregor Hohpe
Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it

Prefazione
Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it

Prefazione iii

Sul Libro

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Sugli Esempi di Codice

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Cosa Non Tratto

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

A Chi è Destinato Questo Libro

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Costruire un Vocabolario Comune

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Partecipare

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Prefazione iv

Ringraziamenti

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Cosa dire delle illustrazioni?

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Sul Lean Publishing

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Prefazione v

L’Autore

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it

Introduzione

Se sei ansioso di iniziare a integrare i Modelli Linguistici di Grandi Dimensioni

(LLM) nei tuoi progetti di programmazione, sentiti libero di immergerti direttamente

nei pattern e negli esempi di codice presentati nei capitoli successivi. Tuttavia, per

apprezzare pienamente la potenza e il potenziale di questi pattern, vale la pena

prendersi un momento per comprendere il contesto più ampio e l’approccio coesivo che

rappresentano.

I pattern non sono semplicemente una raccolta di tecniche isolate, ma piuttosto un

framework unificato per integrare l’IA nelle tue applicazioni. Io utilizzo Ruby on Rails,

ma questi pattern dovrebbero funzionare praticamente in qualsiasi altro ambiente di

programmazione. Affrontano un’ampia gamma di problematiche, dalla gestione dei

dati e l’ottimizzazione delle prestazioni all’esperienza utente e alla sicurezza, fornendo

un toolkit completo per migliorare le pratiche di programmazione tradizionali con le

capacità dell’IA.

Introduzione 2

Ogni categoria di pattern affronta una sfida o un’opportunità specifica che emerge

quando si incorporano componenti di IA nella tua applicazione. Comprendendo le

relazioni e le sinergie tra questi pattern, puoi prendere decisioni informate su dove e

come applicare l’IA in modo più efficace.

I pattern non sono mai soluzioni prescrittive e non dovrebbero essere trattati come

tali. Sono pensati per essere blocchi costruttivi adattabili che dovrebbero essere

personalizzati secondo i requisiti e i vincoli unici della tua specifica applicazione.

L’applicazione di successo di questi pattern (come qualsiasi altro nel campo del

software) si basa su una profonda comprensione del dominio del problema, delle

esigenze degli utenti e dell’architettura tecnica complessiva del tuo progetto.

Riflessioni sull’Architettura del Software

Ho iniziato a programmare negli anni ’80 ed ero coinvolto nell’ambiente hacker, e non

ho mai perso la mia mentalità hacker, anche dopo essere diventato uno sviluppatore

software professionista. Fin dall’inizio, ho sempre avuto un sano scetticismo riguardo

al valore effettivo che gli architetti software nelle loro torri d’avorio portassero

effettivamente al tavolo.

Uno dei motivi per cui personalmente sono così entusiasta dei cambiamenti portati da

questa potente nuova ondata di tecnologia IA è il suo impatto su ciò che consideriamo

decisioni di architettura software. Sfida le nozioni tradizionali di cosa costituisca il

modo “corretto” di progettare e implementare i nostri progetti software. Sfida anche se

l’architettura possa essere ancora considerata principalmente come le parti di un sistema

che sono difficili da cambiare, dato che il potenziamento dell’IA sta rendendo più facile

che mai modificare qualsiasi parte del tuo progetto, in qualsiasi momento.

Forse stiamo entrando negli anni di picco dell’approccio “post-moderno” all’ingegneria

del software. In questo contesto, post-moderno si riferisce a un cambiamento

fondamentale rispetto ai paradigmi tradizionali, dove gli sviluppatori erano responsabili

Introduzione 3

di scrivere e mantenere ogni riga di codice. Invece, abbraccia l’idea di delegare compiti,

come la manipolazione dei dati, algoritmi complessi e persino intere parti della logica

applicativa, a librerie di terze parti e API esterne. Questo cambiamento post-moderno

rappresenta un significativo allontanamento dalla saggezza convenzionale di costruire

applicazioni da zero, e sfida gli sviluppatori a ripensare il loro ruolo nel processo di

sviluppo.

Ho sempre creduto che i bravi programmatori scrivano solo il codice che è assolutamente

necessario scrivere, basandomi sugli insegnamenti di Larry Wall e altri luminari

hacker come lui. Minimizzando la quantità di codice scritto, possiamo muoverci più

velocemente, ridurre la superficie di attacco per i bug, semplificare la manutenzione e

migliorare l’affidabilità complessiva delle loro applicazioni. Meno codice ci permette di

concentrarci sulla logica di business principale e sull’esperienza utente, delegando altro

lavoro ad altri servizi.

Ora che i sistemi basati sull’IA possono gestire compiti che prima erano dominio

esclusivo del codice scritto dall’uomo, dovremmo essere in grado di essere ancora più

produttivi e agili, con una focalizzazione maggiore che mai sulla creazione di valore

aziendale e sull’esperienza utente.

Naturalmente ci sono compromessi nel delegare grandi parti del tuo progetto a sistemi

di IA, come la potenziale perdita di controllo e la necessità di robusti meccanismi di

monitoraggio e feedback. Ecco perché richiede un nuovo set di competenze e conoscenze,

inclusa almeno una comprensione fondamentale di come funziona l’IA.

Cos’è un Modello Linguistico di Grandi

Dimensioni?

I Modelli Linguistici di Grandi Dimensioni (LLM) sono un tipo di modello di intelligenza

artificiale che hanno guadagnato notevole attenzione negli ultimi anni, sin dal lancio di

GPT-3 da parte di OpenAI nel 2020. Gli LLM sono progettati per elaborare, comprendere

Introduzione 4

e generare linguaggio umano con notevole accuratezza e fluidità. In questa sezione,

daremo una breve occhiata a come funzionano gli LLM e perché sono adatti per costruire

componenti di sistemi intelligenti.

Nel loro nucleo, gli LLM si basano su algoritmi di deep learning, specificamente reti

neurali. Queste reti sono composte da nodi interconnessi, o neuroni, che elaborano

e trasmettono informazioni. L’architettura di scelta per gli LLM è spesso il modello

Transformer, che si è dimostrato altamente efficace nella gestione di dati sequenziali

come il testo.

I modelli Transformer si basano sul meccanismo di attenzione e sono utilizzati

principalmente per compiti che coinvolgono dati sequenziali, come l’elaborazione

del linguaggio naturale. I Transformer elaborano i dati in ingresso tutti in una volta

anziché sequenzialmente, permettendo loro di catturare le dipendenze a lungo raggio

in modo più efficace. Hanno strati di meccanismi di attenzione che aiutano il modello

a concentrarsi su diverse parti dei dati in ingresso per comprendere il contesto e le

relazioni.

Il processo di addestramento per gli LLM prevede l’esposizione del modello a enormi

quantità di dati testuali, come libri, articoli, siti web e repository di codice. Durante

l’addestramento, il modello impara a riconoscere schemi, relazioni e strutture all’interno

del testo. Cattura le proprietà statistiche del linguaggio, come le regole grammaticali, le

associazioni tra parole e i significati contestuali.

Una delle tecniche chiave utilizzate nell’addestramento degli LLM è l’apprendimento

non supervisionato. Questo significa che il modello apprende dai dati senza etichettature

o guide esplicite. Scopre schemi e rappresentazioni in modo autonomo analizzando la

co-occorrenza di parole e frasi nei dati di addestramento. Questo permette agli LLM di

sviluppare una profonda comprensione del linguaggio e delle sue sfumature.

Un altro aspetto importante degli LLM è la loro capacità di gestire il contesto. Durante

l’elaborazione di un testo, gli LLM considerano non solo le singole parole ma anche

il contesto circostante. Tengono conto delle parole, frasi e persino paragrafi precedenti

Introduzione 5

per comprendere il significato e l’intento del testo. Questa comprensione contestuale

permette agli LLM di generare risposte coerenti e pertinenti. Uno dei modi principali in

cui valutiamo le capacità di un determinato modello LLM è considerando la dimensione

del contesto che possono considerare per generare risposte.

Una volta addestrati, gli LLM possono essere utilizzati per un’ampia gamma di compiti

linguistici. Possono generare testo simile a quello umano, rispondere a domande,

riassumere documenti, tradurre lingue e persino scrivere codice. La versatilità degli LLM

li rende preziosi per costruire componenti di sistemi intelligenti che possono interagire

con gli utenti, elaborare e analizzare dati testuali e generare output significativi.

Incorporando gli LLM nell’architettura dell’applicazione, è possibile creare componenti

AI che comprendono ed elaborano l’input dell’utente, generano contenuti dinamici e

forniscono raccomandazioni o azioni intelligenti. Ma lavorare con gli LLM richiede

un’attenta considerazione dei requisiti di risorse e dei compromessi prestazionali.

Gli LLM richiedono un’intensa elaborazione computazionale e possono necessitare di

significativa potenza di elaborazione e memoria (in altre parole, denaro) per funzionare.

La maggior parte di noi dovrà valutare le implicazioni di costo dell’integrazione degli

LLM nelle nostre applicazioni e agire di conseguenza.

Comprendere l’Inferenza

L’inferenza si riferisce al processo attraverso il quale un modello genera previsioni o

output basati su nuovi dati mai visti. È la fase in cui il modello addestrato viene utilizzato

per prendere decisioni o generare testo, immagini o altri contenuti in risposta agli input

dell’utente.

Durante la fase di addestramento, un modello AI apprende da un ampio dataset

regolando i suoi parametri per minimizzare l’errore nelle sue previsioni. Una volta

addestrato, il modello può applicare ciò che ha appreso a nuovi dati. L’inferenza è il

modo in cui il modello utilizza i suoi schemi e conoscenze apprese per generare output.

Introduzione 6

Per gli LLM, l’inferenza comporta l’acquisizione di un prompt o testo di input e la

produzione di una risposta coerente e contestualmente rilevante, come un flusso di token

(di cui parleremo presto). Questo potrebbe essere rispondere a una domanda, completare

una frase, generare una storia o tradurre un testo, tra molti altri compiti.

Adifferenza del modo in cui pensiamo tu ed io, il “pensiero” di unmodello AI

attraverso l’inferenza avviene tutto in un’unica operazione senza stato. Cioè,

il suo pensiero è limitato al suo processo di generazione. Deve letteralmente

pensare ad alta voce, come se ti facessi una domanda e accettassi una risposta

da te solo in stile “flusso di coscienza”.

I Modelli Linguistici di Grandi Dimensioni Vengono in
Molte Dimensioni e Varietà

Mentre praticamente tutti i popolari modelli linguistici di grandi dimensioni (LLM) si

basano sulla stessa architettura transformer di base e sono addestrati su enormi dataset

testuali, vengono in una varietà di dimensioni e sono ottimizzati per scopi diversi. La

dimensione di un LLM, misurata dal numero di parametri nella sua rete neurale, ha un

grande impatto sulle sue capacità. I modelli più grandi con più parametri, come GPT-

4, che si dice abbia da 1 a 2 trilioni di parametri, sono generalmente più competenti e

capaci rispetto ai modelli più piccoli. Tuttavia, i modelli più grandi richiedono anche

molta più potenza di calcolo per funzionare, il che si traduce in maggiori spese quando

li si utilizza tramite chiamate API.

Per rendere gli LLM più pratici e adatti a casi d’uso specifici, i modelli base vengono

spesso ottimizzati su dataset più mirati. Ad esempio, un LLM può essere addestrato su un

ampio corpus di dialoghi per specializzarlo nell’AI conversazionale. Altri sono addestrati

sul codice per dotarli di conoscenze di programmazione. Ci sono persino modelli che

sono appositamente addestrati per interazioni in stile roleplay con gli utenti!

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Introduzione 7

Modelli di Recupero vs Modelli Generativi

Nel mondo dei modelli linguistici di grandi dimensioni (LLM), esistono due approcci

principali per generare risposte: i modelli basati sul recupero e i modelli generativi. Ogni

approccio ha i propri punti di forza e di debolezza, e comprendere le differenze tra loro

può aiutarti a scegliere il modello più adatto al tuo caso specifico.

Modelli Basati sul Recupero

I modelli basati sul recupero, noti anche come modelli di recupero delle informazioni,

generano risposte cercando in un ampio database di testi preesistenti e selezionando i

passaggi più rilevanti in base alla query di input. Questi modelli non generano nuovo

testo da zero, ma piuttosto uniscono estratti dal database per formare una risposta

coerente.

Uno dei principali vantaggi dei modelli basati sul recupero è la loro capacità di fornire

informazioni fattuali accurate e aggiornate. Poiché si basano su un database di testi

curati, possono estrarre informazioni rilevanti da fonti affidabili e presentarle all’utente.

Questo li rende particolarmente adatti per applicazioni che richiedono risposte precise

e fattuali, come i sistemi di domanda e risposta o le basi di conoscenza.

Tuttavia, i modelli basati sul recupero presentano alcune limitazioni. Sono validi solo

quanto il database su cui effettuano la ricerca, quindi la qualità e la copertura del

database influenzano direttamente le prestazioni del modello. Inoltre, questi modelli

potrebbero avere difficoltà a generare risposte coerenti e dal suono naturale, essendo

limitati al testo disponibile nel database.

In questo libro non trattiamo l’uso dei modelli di recupero puri.

Modelli Generativi

I modelli generativi, d’altra parte, creano nuovo testo da zero basandosi sui pattern e le

relazioni che hanno appreso durante l’addestramento. Questi modelli utilizzano la loro

Introduzione 8

comprensione del linguaggio per generare risposte originali adattate al prompt di input.

Il principale punto di forza dei modelli generativi è la loro capacità di produrre testo

creativo, coerente e contestualmente rilevante. Possono partecipare a conversazioni

aperte, generare storie e persino scrivere codice. Questo li rende ideali per applicazioni

che richiedono interazioni più aperte e dinamiche, come chatbot, creazione di contenuti

e assistenti per la scrittura creativa.

Tuttavia, i modelli generativi possono talvolta produrre informazioni incoerenti o

fattualmente errate, poiché si basano sui pattern appresi durante l’addestramento

piuttosto che su un database curato di fatti. Possono anche essere più inclini a pregiudizi

e allucinazioni, generando testo plausibile ma non necessariamente vero.

Esempi di LLM generativi includono la serie GPT di OpenAI (GPT-3, GPT-4) e Claude

di Anthropic.

Modelli Ibridi

Diversi LLM disponibili commercialmente combinano entrambi gli approcci di recupero

e generativi in un modello ibrido. Questi modelli utilizzano tecniche di recupero per

trovare informazioni rilevanti da un database e poi usano tecniche generative per

sintetizzare queste informazioni in una risposta coerente.

I modelli ibridi mirano a combinare l’accuratezza fattuale dei modelli basati sul recupero

con le capacità di generazione del linguaggio naturale dei modelli generativi. Possono

fornire informazioni più affidabili e aggiornate mantenendo al contempo la capacità di

partecipare a conversazioni aperte.

Quando si sceglie tra modelli basati sul recupero e modelli generativi, è necessario

considerare i requisiti specifici della propria applicazione. Se l’obiettivo principale

è fornire informazioni accurate e fattuali, un modello basato sul recupero potrebbe

essere la scelta migliore. Se l’applicazione richiede interazioni più aperte e creative, un

modello generativo potrebbe essere più adatto. I modelli ibridi offrono un equilibrio tra

Introduzione 9

i due approcci e possono essere una buona scelta per applicazioni che richiedono sia

accuratezza fattuale che generazione del linguaggio naturale.

In definitiva, la scelta tra modelli basati sul recupero e modelli generativi dipende

dal caso d’uso specifico e dal compromesso tra accuratezza, creatività e flessibilità.

Comprendendo i punti di forza e le limitazioni di ciascun approccio, puoi prendere

decisioni informate.

Introduzione 10

Addestramento tramite Istruzioni

L’addestramento tramite istruzioni è un sottoinsieme dell’addestramento

conversazionale che utilizza prompt e risposte scritte da esseri umani per

migliorare la capacità degli LLM di comprendere e seguire le istruzioni. Ecco alcuni

esempi semplici per illustrare come l’addestramento tramite istruzioni su prompt

e risposte scritte da esseri umani migliora la capacità degli LLM di comprendere e

seguire le istruzioni:

Esempio 1: Assistenza Clienti

Istruzione: “Fornisci una risposta a un cliente che richiede un rimborso.”

Prompt Scritto da Umano: “Vorrei richiedere un rimborso per il mio acquisto recente.

Il prodotto non ha soddisfatto le mie aspettative.”

Risposta Scritta da Umano: “Mi dispiace sentire che il prodotto non ha soddisfatto

le tue aspettative. Per elaborare il tuo rimborso, ti preghiamo di fornire il numero

d’ordine e il motivo del reso. Esamineremo la tua richiesta e ti risponderemo entro

2-3 giorni lavorativi.”

Esempio 2: Assistenza Educativa

Istruzione: “Spiega il concetto di fotosintesi a un bambino di 10 anni.”

Prompt Scritto da Umano: “Puoi spiegare come le piante producono il loro cibo?”

Risposta Scritta da Umano: “Certo! Le piante producono il loro cibo attraverso un

processo chiamato fotosintesi. Utilizzano la luce solare, l’acqua e l’anidride carbonica

Introduzione 11

per creare cibo e ossigeno. Le foglie della pianta hanno una parte speciale chiamata

clorofilla che le aiuta a catturare la luce solare.”

Esempio 3: Assistente Personale

Istruzione: “Programma una riunione per martedì prossimo alle 15:00.”

Prompt Scritto da Umano: “Puoi organizzare una riunione per martedì alle 15:00?”

Risposta Scritta da Umano: “Certo, ho programmato una riunione per martedì

prossimo alle 15:00. Hai bisogno di altro?”

Il risultato è un ecosistema diversificato di LLM di diverse dimensioni e con diverse

specializzazioni. I modelli più piccoli nell’intervallo di 1-7 miliardi di parametri

forniscono buone capacità linguistiche generali pur essendo più efficienti da eseguire.

• Mistral 7B

• Llama 3 8B

• Gemma 7B

I modelli di medie dimensioni intorno ai 30-70 miliardi di parametri offrono capacità di

ragionamento e di esecuzione delle istruzioni più robuste.

• Llama 3 70B

• Qwen2 70B

• Mixtral 8x22B

Quando si sceglie un LLM da incorporare in un’applicazione, è necessario bilanciare le

capacità del modello con fattori pratici come costo, latenza, lunghezza del contesto e

filtraggio dei contenuti. I modelli più piccoli, addestrati sulle istruzioni, sono spesso

la scelta migliore per compiti linguistici più semplici, mentre i modelli più grandi

Introduzione 12

potrebbero essere necessari per ragionamenti o analisi complesse. Anche i dati di

addestramento del modello sono una considerazione importante, poiché determinano

la data limite di conoscenza del modello.

Alcuni modelli, come quelli di Perplexity, sono collegati a fonti di

informazione in tempo reale, quindi non hanno effettivamente una data

limite. Quando gli si pongono domande, sono in grado di decidere

autonomamente di effettuare ricerche web e recuperare pagine web

arbitrarie per generare una risposta.

Figura 1. Llama3 con e senza accesso online

In definitiva, non esiste un LLM universale. Comprendere le variazioni nelle dimensioni

del modello, nell’architettura e nell’addestramento è fondamentale per selezionare il

modello giusto per un determinato caso d’uso. Sperimentare con diversi modelli è l’unico

modo pratico per rivelare quali forniscono le migliori prestazioni per il compito in

questione.

Introduzione 13

Tokenizzazione: Suddividere il Testo in Parti

Prima che un modello linguistico di grandi dimensioni possa elaborare il testo, questo

deve essere suddiviso in unità più piccole chiamate token. I token possono essere parole

singole, parti di parole o anche singoli caratteri. Il processo di suddivisione del testo in

token è noto come tokenizzazione, ed è una fase cruciale nella preparazione dei dati per

un modello linguistico.

Figura 2. Questa frase contiene 27 token

Diversi LLMutilizzano diverse strategie di tokenizzazione, che possono avere un impatto

significativo sulle prestazioni e sulle capacità del modello. Alcuni tokenizzatori comuni

utilizzati dagli LLM includono:

• GPT (Codifica a Coppie di Byte): I tokenizzatori GPT utilizzano una tecnica

chiamata codifica a coppie di byte (BPE) per suddividere il testo in unità di

sottoparole. BPE unisce iterativamente le coppie di byte più frequenti in un corpus

di testo, formando un vocabolario di token di sottoparole. Questo permette al

tokenizzatore di gestire parole rare e nuove suddividendole in pezzi di sottoparole

più comuni. I tokenizzatori GPT sono utilizzati da modelli come GPT-3 e GPT-4.

• Llama (SentencePiece): I tokenizzatori Llama utilizzano la libreria SentencePiece,

che è un tokenizzatore e detokenizzatore di testo non supervisionato.

SentencePiece tratta il testo in input come una sequenza di caratteri Unicode e

apprende un vocabolario di sottostringhe basato su un corpus di addestramento.

Può gestire qualsiasi lingua codificabile in Unicode, rendendolo adatto per

modelli multilingue. I tokenizzatori Llama sono utilizzati da modelli come Llama

e Alpaca di Meta.

Introduzione 14

• SentencePiece (Unigram): I tokenizzatori SentencePiece possono anche utilizzare

un algoritmo diverso chiamato Unigram, basato su una tecnica di regolarizzazione

delle sottostringhe. La tokenizzazione Unigram determina il vocabolario ottimale

di sottostringhe basandosi su un modello linguistico unigram, che assegna

probabilità a singole unità di sottostringhe. Questo approccio può produrre

sottostringhe più significative semanticamente rispetto a BPE. SentencePiece con

Unigram è utilizzato da modelli come T5 e BERT di Google.

• Google Gemini (Tokenizzazione Multimodale): Google Gemini utilizza uno

schema di tokenizzazione progettato per gestire vari tipi di dati, inclusi testo,

immagini, audio, video e codice. Questa capacità multimodale permette a

Gemini di elaborare e integrare diverse forme di informazione. In particolare,

Google Gemini 1.5 Pro ha una finestra di contesto che può gestire milioni di

token, molto più ampia rispetto ai modelli precedenti. Questa estesa finestra

di contesto permette al modello di elaborare un contesto più ampio, portando

potenzialmente a risposte più accurate. Tuttavia, è importante notare che lo

schema di tokenizzazione di Gemini è molto più vicino a un token per carattere

rispetto ad altri modelli. Questo significa che il costo effettivo dell’utilizzo dei

modelli Gemini può essere significativamente più alto del previsto se si è abituati

a utilizzare modelli come GPT, poiché il prezzo di Google è basato sui caratteri

anziché sui token.

La scelta del tokenizzatore influenza diversi aspetti di un LLM, tra cui:

• Dimensione del vocabolario: Il tokenizzatore determina la dimensione del

vocabolario del modello, che è l’insieme di token unici che riconosce. Un

vocabolario più ampio e dettagliato può aiutare il modello a gestire una

gamma più ampia di parole e frasi e persino diventare multimodale (capace di

comprendere e generare più che solo testo), ma aumenta anche i requisiti di

memoria e la complessità computazionale del modello.

Introduzione 15

• Gestione di parole rare e sconosciute: I tokenizzatori che utilizzano unità

di sottostringhe, come BPE e SentencePiece, possono scomporre parole rare e

sconosciute in parti di sottostringhe più comuni. Questo permette al modello

di fare ipotesi ragionate sul significato di parole che non ha mai visto prima,

basandosi sulle sottostringhe che contengono.

• Supporto multilingue: I tokenizzatori come SentencePiece, che possono gestire

qualsiasi lingua codificabile in Unicode, sono particolarmente adatti per modelli

multilingue che devono elaborare testo in più lingue.

Quando si sceglie un LLM per una particolare applicazione, è importante considerare

il tokenizzatore che utilizza e quanto bene si allinea con le specifiche esigenze di

elaborazione del linguaggio del compito in questione. Il tokenizzatore può avere un

impatto significativo sulla capacità del modello di gestire terminologia specifica del

dominio, parole rare e testo multilingue.

Dimensione del Contesto: Quante Informazioni Può
Utilizzare un Modello Linguistico Durante l’Inferenza?

Quando si parla di modelli linguistici, la dimensione del contesto si riferisce alla quantità

di testo che unmodello può considerare durante l’elaborazione o la generazione delle sue

risposte. È essenzialmente una misura di quante informazioni il modello può “ricordare”

e utilizzare per informare i suoi output (espressa in token). La dimensione del contesto

di un modello linguistico può avere un impatto significativo sulle sue capacità e sui tipi

di compiti che può svolgere efficacemente.

Che Cos’è la Dimensione del Contesto?

In termini tecnici, la dimensione del contesto è determinata dal numero di token (parole

o parti di parole) che un modello linguistico può elaborare in una singola sequenza di

input. Questo viene spesso definito come “capacità di attenzione” o “finestra di contesto”

Introduzione 16

del modello. Maggiore è la dimensione del contesto, più testo il modello può considerare

contemporaneamente quando genera una risposta o esegue un compito.

Diversi modelli linguistici hanno dimensioni di contesto variabili, che vanno da poche

centinaia di token a milioni di token. Per riferimento, un tipico paragrafo di testo

potrebbe contenere circa 100-150 token, mentre un intero libro potrebbe contenere

decine o centinaia di migliaia di token.

Esistono persino lavori su metodi efficienti per scalare i Modelli Linguistici di Grandi

Dimensioni (LLM) basati su Transformer per input infinitamente lunghi conmemoria

e calcolo limitati.

Perché la Dimensione del Contesto è Importante?

La dimensione del contesto di un modello linguistico ha un impatto significativo sulla

sua capacità di comprendere e generare testo coerente e contestualmente rilevante. Ecco

alcune ragioni chiave per cui la dimensione del contesto è importante:

1. Comprensione dei contenuti lunghi: I modelli con dimensioni di contesto più

ampie possono comprendere e analizzare meglio testi più lunghi, come articoli,

report o persino interi libri. Questo è fondamentale per attività come la sintesi di

documenti, la risposta a domande e l’analisi dei contenuti.

2. Mantenimento della coerenza: Una finestra di contesto più ampia permette al

modello di mantenere coerenza e consistenza su porzioni più lunghe di output.

Questo è importante per attività come la generazione di storie, i sistemi di

dialogo e la creazione di contenuti, dove mantenere una narrativa o un argomento

coerente è essenziale. È anche assolutamente cruciale quando si utilizzano LLM

per generare o trasformare dati strutturati.

https://huggingface.co/papers/2404.07143

Introduzione 17

3. Cattura delle dipendenze a lungo raggio:Alcune attività linguistiche richiedono

la comprensione di relazioni tra parole o frasi che sono distanti nel testo. I modelli

con dimensioni di contesto più ampie sono meglio equipaggiati per catturare

queste dipendenze a lungo raggio, che possono essere importanti per attività come

l’analisi del sentimento, la traduzione e la comprensione del linguaggio.

4. Gestione di istruzioni complesse: Nelle applicazioni in cui i modelli linguistici

sono utilizzati per seguire istruzioni complesse e multi-step, una dimensione del

contesto più ampia permette al modello di considerare l’intero set di istruzioni

quando genera una risposta, invece di limitarsi alle ultime parole.

Esempi di Modelli Linguistici con Diverse Dimensioni di Contesto

Ecco alcuni esempi di modelli linguistici con diverse dimensioni di contesto:

• OpenAI GPT-3.5 Turbo: 4.095 token

• Mistral 7B Instruct: 32.768 token

• Anthropic Claude v1: 100.000 token

• OpenAI GPT-4 Turbo: 128.000 token

• Anthropic Claude v2: 200.000 token

• Google Gemini Pro 1.5: 2,8M token

Come si può vedere, c’è un’ampia gamma di dimensioni di contesto tra questi modelli,

da circa 4.000 token per il modello OpenAI GPT-3.5 Turbo a 200.000 token per il modello

Anthropic Claude v2. Alcuni modelli, come Google PaLM 2 e OpenAI GPT-4, offrono

diverse varianti con dimensioni di contesto più ampie (ad esempio, versioni “32k”), che

possono gestire sequenze di input ancora più lunghe. E al momento (aprile 2024) Google

Gemini Pro vanta quasi 3 milioni di token!

Vale la pena notare che la dimensione del contesto può variare a seconda

dell’implementazione specifica e della versione di un particolare modello. Per

Introduzione 18

esempio, il modello originale OpenAI GPT-4 ha una dimensione del contesto di 8.191

token, mentre le varianti successive di GPT-4 come Turbo e 4o hanno una dimensione

del contesto molto più ampia di 128.000 token.

Sam Altman ha paragonato le attuali limitazioni del contesto ai kilobyte di memoria

di lavoro con cui dovevano fare i conti i programmatori di personal computer negli

anni ’80, e ha affermato che nel prossimo futuro saremo in grado di inserire “tutti i

nostri dati personali” nel contesto di un modello linguistico di grandi dimensioni.

Scegliere la Giusta Dimensione del Contesto

Quando si seleziona un modello linguistico per una particolare applicazione, è

importante considerare i requisiti di dimensione del contesto per l’attività in questione.

Per attività che coinvolgono testi brevi e isolati, come l’analisi del sentimento o semplici

risposte a domande, una dimensione del contesto più piccola potrebbe essere sufficiente.

Tuttavia, per attività che richiedono la comprensione e la generazione di testi più lunghi

e complessi, sarà probabilmente necessaria una dimensione del contesto più ampia.

È importante notare che dimensioni di contesto più ampie spesso comportano costi

computazionali maggiori e tempi di elaborazione più lenti, poiché il modello deve

considerare più informazioni quando genera una risposta. Pertanto, è necessario trovare

un equilibrio tra dimensione del contesto e prestazioni quando si sceglie un modello

linguistico per la propria applicazione.

Perché non scegliere semplicemente il modello con la dimensione del contesto più

grande e riempirlo con quante più informazioni possibili? Beh, oltre ai fattori di

prestazione, l’altra considerazione principale è il costo. A marzo 2024, un singolo

Introduzione 19

ciclo di prompt-risposta utilizzando Google Gemini Pro 1.5 con un contesto completo

ti costerà quasi 8 dollari (USD). Se hai un caso d’uso che giustifica questa spesa, tanto

meglio! Ma per la maggior parte delle applicazioni, è semplicemente troppo costoso

di diversi ordini di grandezza.

Trovare Aghi nel Pagliaio

Il concetto di trovare un ago in un pagliaio è da tempo una metafora per le sfide

del recupero in grandi insiemi di dati. Nel campo dei LLM, modifichiamo un po’

questa analogia. Immagina di non cercare solo un singolo fatto sepolto all’interno di un

vasto testo (come un’antologia completa dei saggi di Paul Graham), ma più fatti sparsi

ovunque. Questo scenario è più simile a trovare diversi aghi in un campo sconfinato,

non solo in un singolo pagliaio. Ecco il punto cruciale: non solo dobbiamo localizzare

questi aghi, ma dobbiamo anche intrecciarli in un filo coerente.

Quando si tratta di recuperare e ragionare su molteplici fatti incorporati in contesti

lunghi, gli LLM affrontano una duplice sfida. In primo luogo, c’è la semplice questione

dell’accuratezza del recupero: naturalmente diminuisce all’aumentare del numero di

fatti. Questo è prevedibile; dopotutto, tenere traccia di molteplici dettagli in un testo

esteso mette alla prova anche i modelli più sofisticati.

In secondo luogo, e forse più criticamente, c’è la sfida del ragionamento con questi

fatti. Una cosa è individuare i fatti; un’altra è sintetizzarli in una narrazione o risposta

coerente. È qui che arriva la vera prova. Le prestazioni degli LLM nei compiti di

ragionamento tendono a degradarsi ulteriormente rispetto ai semplici compiti di

recupero. Questo deterioramento non riguarda solo il volume; riguarda l’intricata

danza di contesto, rilevanza e inferenza.

Perché succede questo? Beh, considera le dinamiche della memoria e dell’attenzione

nella cognizione umana, che si riflettono in una certa misura negli LLM. Quando

Introduzione 20

elaborano grandi quantità di informazioni, gli LLM, come gli esseri umani, possono

perdere traccia dei dettagli precedenti mentre ne assorbono di nuovi. Questo è

particolarmente vero nei modelli che non sono esplicitamente progettati per dare

priorità o rivisitare automaticamente i segmenti precedenti del testo.

Inoltre, la capacità di un LLM di intrecciare questi fatti recuperati in una risposta

coerente è simile alla costruzione di una narrazione. Questo richiede non solo il recupero

di informazioni ma una comprensione profonda e un posizionamento contestuale, che

rimane una sfida considerevole per l’AI attuale.

Quindi, cosa significa questo per noi come sviluppatori e integratori di queste

tecnologie? Dobbiamo essere profondamente consapevoli di questi limiti quando

progettiamo sistemi che si basano sugli LLM per gestire compiti complessi e di

lunga durata. Comprendere che le prestazioni potrebbero degradarsi in determinate

condizioni ci aiuta a stabilire aspettative realistiche e a progettare migliori meccanismi

di fallback o strategie supplementari.

Modalità: Oltre il Testo

Mentre la maggior parte dei modelli linguistici oggi si concentra sull’elaborazione e la

generazione di testo, c’è una crescente tendenza verso i modelli multimodali che possono

nativamente ricevere e produrre diversi tipi di dati, come immagini, audio e video.

Questi modelli multimodali aprono nuove possibilità per applicazioni basate sull’AI che

possono comprendere e generare contenuti attraverso diverse modalità.

Cosa sono le Modalità?

Nel contesto dei modelli linguistici, le modalità si riferiscono ai diversi tipi di dati che

un modello può elaborare e generare. La modalità più comune è il testo, che include il

linguaggio scritto in varie forme come libri, articoli, siti web e post sui social media.

Tuttavia, ci sono diverse altre modalità che vengono sempre più incorporate nei modelli

linguistici:

Introduzione 21

• Immagini: Dati visivi come fotografie, illustrazioni e diagrammi.

• Audio: Dati sonori come parlato, musica e suoni ambientali.

• Video: Dati visivi in movimento, spesso accompagnati da audio, come clip video

e film.

Ogni modalità presenta sfide e opportunità uniche per i modelli linguistici. Per esempio,

le immagini richiedono che il modello comprenda concetti e relazioni visive, mentre

l’audio richiede che il modello elabori e generi parlato e altri suoni.

Modelli Linguistici Multimodali

I modelli linguistici multimodali sono progettati per gestire più modalità all’interno di

un singolo modello. Questi modelli tipicamente hanno componenti o livelli specializzati

che possono sia comprendere gli input che generare dati di output in diverse modalità.

Alcuni esempi notevoli di modelli linguistici multimodali includono:

• OpenAI’s GPT-4o: GPT-4o è un modello linguistico di grandi dimensioni che

comprende ed elabora nativamente l’audio del parlato oltre al testo. Questa

capacità permette a GPT-4o di eseguire compiti come la trascrizione del linguaggio

parlato, la generazione di testo da input audio e la fornitura di risposte basate su

query vocali.

• OpenAI’s GPT-4 con input visivo: GPT-4 è un modello linguistico di grandi

dimensioni che può elaborare sia testo che immagini. Quando riceve un’immagine

come input, GPT-4 può analizzare il contenuto dell’immagine e generare testo che

descrive o risponde alle informazioni visive.

• Google’s Gemini: Gemini è un modello multimodale che può gestire testo,

immagini e video. Utilizza un’architettura unificata che permette la comprensione

e la generazione cross-modale, abilitando compiti come la didascalia di immagini,

il riassunto di video e la risposta a domande visive.

Introduzione 22

• DALL-E e Stable Diffusion: Sebbene non siano modelli linguistici nel senso

tradizionale, questi modelli dimostrano la potenza dell’IA multimodale generando

immagini da descrizioni testuali. Mostrano il potenziale dei modelli capaci di

tradurre tra diverse modalità.

Benefici e Applicazioni dei Modelli Multimodali

I modelli linguistici multimodali offrono diversi vantaggi e permettono un’ampia

gamma di applicazioni, tra cui:

• Comprensione migliorata: Elaborando informazioni da più modalità, questi

modelli possono ottenere una comprensione più completa del mondo, simile a

come gli esseri umani imparano da vari input sensoriali.

• Generazione cross-modale: I modelli multimodali possono generare contenuti

in una modalità basandosi su input di un’altra, come creare un’immagine da una

descrizione testuale o generare un riassunto video da un articolo scritto.

• Accessibilità: I modelli multimodali possono rendere le informazioni più

accessibili traducendo tra diverse modalità, come generare descrizioni testuali di

immagini per utenti ipovedenti o creare versioni audio di contenuti scritti.

• Applicazioni creative: I modelli multimodali possono essere utilizzati per compiti

creativi come la generazione di arte, musica o video basati su prompt testuali,

aprendo nuove possibilità per artisti e creatori di contenuti.

Manmano che i modelli linguistici multimodali continuano a progredire, probabilmente

svolgeranno un ruolo sempre più importante nello sviluppo di applicazioni basate sull’IA

che possono comprendere e generare contenuti attraverso molteplici modalità. Questo

permetterà interazioni più naturali e intuitive tra esseri umani e sistemi di IA, oltre a

sbloccare nuove possibilità per l’espressione creativa e la diffusione della conoscenza.

Introduzione 23

Ecosistemi dei Provider

Quando si tratta di incorporare modelli linguistici di grandi dimensioni (LLM) nelle

applicazioni, esiste una gamma crescente di opzioni tra cui scegliere. Ogni principale

provider di LLM, come OpenAI, Anthropic, Google e Cohere, offre il proprio ecosistema

di modelli, API e strumenti. La scelta del provider giusto comporta la considerazione di

vari fattori, tra cui prezzi, prestazioni, filtraggio dei contenuti, privacy dei dati e opzioni

di personalizzazione.

OpenAI

OpenAI è uno dei provider di LLM più noti, con la sua serie GPT (GPT-3, GPT-4)

ampiamente utilizzata in varie applicazioni. OpenAI offre un’API intuitiva che permette

di integrare facilmente i loro modelli nelle applicazioni. Forniscono una gamma di

modelli con diverse capacità e fasce di prezzo, dal modello base Ada al potente modello

Davinci.

L’ecosistema di OpenAI include anche strumenti come OpenAI Playground, che

permette di sperimentare con i prompt e mettere a punto i modelli per casi d’uso

specifici. Offrono opzioni di filtraggio dei contenuti per aiutare a prevenire la

generazione di contenuti inappropriati o dannosi.

Quando utilizzo i modelli OpenAI direttamente, mi affido alla libreria ruby-openai di

Alex Rudall.

Anthropic

Anthropic è un altro importante attore nel settore degli LLM, con i loro modelli Claude

che stanno guadagnando popolarità per le loro prestazioni elevate e considerazioni

etiche. Anthropic si concentra sullo sviluppo di sistemi di IA sicuri e responsabili, con

una forte enfasi sul filtraggio dei contenuti e sull’evitare output dannosi.

https://github.com/alexrudall/ruby-openai

Introduzione 24

L’ecosistema di Anthropic include l’API di Claude, che permette di integrare il modello

nelle proprie applicazioni, oltre a strumenti per l’ingegneria dei prompt e la messa a

punto. Offrono anche il modello Claude Instant, che incorpora capacità di ricerca web

per risposte più aggiornate e fattuali.

Quando utilizzo i modelli Anthropic direttamente, mi affido alla libreria anthrophic di

Alex Rudall.

Google

Google ha sviluppato diversi potenti LLM, tra cui Gemini, BERT, T5 e PaLM. Questi

modelli sono noti per le loro elevate prestazioni su un’ampia gamma di compiti

di elaborazione del linguaggio naturale. L’ecosistema di Google include le librerie

TensorFlow e Keras, che forniscono strumenti e framework per costruire e addestrare

modelli di apprendimento automatico.

Google offre anche una Cloud AI Platform, che permette di distribuire e scalare

facilmente i loro modelli nel cloud. Forniscono una gamma di modelli pre-addestrati e

API per compiti come l’analisi del sentiment, il riconoscimento di entità e la traduzione.

Meta

Meta, precedentemente nota come Facebook, è profondamente investita nello sviluppo

di modelli linguistici di grandi dimensioni, come evidenziato dal rilascio di modelli come

LLaMA e OPT. Questi modelli si distinguono per le loro elevate prestazioni in diversi

compiti linguistici e sono resi disponibili principalmente attraverso canali open-source,

sostenendo l’impegno di Meta per la ricerca e la collaborazione comunitaria.

L’ecosistema di Meta è principalmente costruito attorno a PyTorch, una libreria di

apprendimento automatico open-source apprezzata per le sue capacità di calcolo

dinamiche e la sua flessibilità, facilitando la ricerca e lo sviluppo innovativo dell’IA.

Oltre alle loro offerte tecniche, Meta pone una forte enfasi sullo sviluppo etico dell’IA.

Implementano un robusto sistema di filtraggio dei contenuti e si concentrano sulla

https://github.com/alexrudall/anthropic

Introduzione 25

riduzione dei pregiudizi, allineandosi con i loro più ampi obiettivi di sicurezza e

responsabilità nelle applicazioni di IA.

Cohere

Cohere è un nuovo attore nel settore degli LLM, che si concentra nel rendere gli LLM

più accessibili e facili da usare rispetto ai concorrenti. Il loro ecosistema include l’API

Cohere, che fornisce accesso a una gamma di modelli pre-addestrati per attività come

la generazione di testo, la classificazione e la sintesi.

Cohere offre anche strumenti per l’ingegneria dei prompt, il fine-tuning e il filtraggio

dei contenuti. Enfatizzano la privacy e la sicurezza dei dati, con funzionalità come

l’archiviazione crittografata dei dati e i controlli di accesso.

Ollama

Ollama è una piattaforma self-hosted che permette agli utenti di gestire e distribuire vari

modelli linguistici di grandi dimensioni (LLM) localmente sulle proprie macchine, dando

loro il controllo completo sui propri modelli di IA senza dover dipendere da servizi cloud

esterni. Questa configurazione è ideale per chi dà priorità alla privacy dei dati e desidera

gestire le proprie operazioni di IA internamente.

La piattaforma supporta una gamma di modelli, incluse versioni di Llama, Phi, Gemma

e Mistral, che variano in dimensioni e requisiti computazionali. Ollama rende facile

scaricare ed eseguire questi modelli direttamente dalla riga di comando usando semplici

comandi come ollama run <model_name>, ed è progettato per funzionare su diversi

sistemi operativi tra cui macOS, Linux e Windows.

Per gli sviluppatori che cercano di integrare modelli open-source nelle loro applicazioni

senza utilizzare un’API remota, Ollama offre una CLI per la gestione del ciclo di vita dei

modelli simile agli strumenti di gestione dei container. Supporta anche configurazioni

e prompt personalizzati, permettendo un alto grado di personalizzazione per adattare i

modelli a specifiche esigenze o casi d’uso.

Introduzione 26

Ollama è particolarmente adatto per utenti esperti di tecnologia e sviluppatori grazie alla

sua interfaccia a riga di comando e alla flessibilità che offre nella gestione e distribuzione

dei modelli di IA. Questo lo rende uno strumento potente per aziende e individui che

richiedono robuste capacità di IA senza compromettere sicurezza e controllo.

Piattaforme Multi-Modello

Inoltre, ci sono fornitori che ospitano un’ampia varietà di modelli open-source,

come Together.ai e Groq. Queste piattaforme offrono flessibilità e personalizzazione,

permettendoti di eseguire e, in alcuni casi, persino effettuare il fine-tuning dei modelli

open-source secondo le tue specifiche esigenze. Per esempio, Together.ai fornisce

accesso a una gamma di LLM open-source, permettendo agli utenti di sperimentare con

diversi modelli e configurazioni. Groq si concentra sulla fornitura di completamenti

ad altissime prestazioni che al momento della stesura di questo libro sembrano quasi

magici

Scegliere un Fornitore di LLM

Quando si sceglie un fornitore di LLM, è necessario considerare fattori come:

• Prezzi: Diversi fornitori offrono diversi modelli di prezzo, dal pagamento a

consumo ai piani basati su abbonamento. È importante considerare l’utilizzo

previsto e il budget quando si seleziona un fornitore.

• Prestazioni: Le prestazioni degli LLM possono variare significativamente tra i

fornitori, quindi è importante fare benchmark e testare i modelli su casi d’uso

specifici prima di prendere una decisione.

• Filtraggio dei contenuti: A seconda dell’applicazione, il filtraggio dei contenuti

può essere una considerazione critica. Alcuni fornitori offrono opzioni di filtraggio

dei contenuti più robuste di altri.

• Privacy dei dati: Se l’applicazione gestisce dati sensibili degli utenti, è importante

scegliere un fornitore con solide pratiche di privacy e sicurezza dei dati.

Introduzione 27

• Personalizzazione: Alcuni fornitori offrono maggiore flessibilità in termini di

fine-tuning e personalizzazione dei modelli per casi d’uso specifici.

In definitiva, la scelta del fornitore di LLM dipende dai requisiti specifici e dai vincoli

dell’applicazione. Valutando attentamente le opzioni e considerando fattori come prezzi,

prestazioni e privacy dei dati, puoi selezionare il fornitore che meglio soddisfa le tue

esigenze.

È anche importante notare che il panorama degli LLM è in costante evoluzione,

con nuovi fornitori e modelli che emergono regolarmente. È consigliabile rimanere

aggiornati con gli ultimi sviluppi ed essere aperti all’esplorazione di nuove opzioni man

mano che diventano disponibili.

OpenRouter

In questo libro mi affiderò esclusivamente a OpenRouter come fornitore API di

riferimento. La ragione è semplice: è un punto di riferimento unico per tutti i modelli

commerciali e open-source più popolari. Se non vedi l’ora di sporcarti le mani con un

po’ di programmazione IA, uno dei migliori punti di partenza è la mia Libreria Ruby

OpenRouter.

Pensare alle Prestazioni

Quando si incorporano i modelli linguistici nelle applicazioni, le prestazioni sono

un aspetto critico da considerare. Le prestazioni di un modello linguistico possono

essere misurate in termini di latenza (il tempo necessario per generare una risposta)

e throughput (il numero di richieste che può gestire per unità di tempo).

Il Tempo al Primo Token (TTFT) è un’altra metrica di prestazione essenziale,

particolarmente rilevante per i chatbot e le applicazioni che richiedono risposte

interattive in tempo reale. Il TTFT misura la latenza dal momento in cui viene ricevuta

https://openrouter.ai
https://github.com/OlympiaAI/open_router
https://github.com/OlympiaAI/open_router

Introduzione 28

la richiesta dell’utente al momento in cui viene generata la prima parola (o token)

della risposta. Questa metrica è cruciale per mantenere un’esperienza utente fluida e

coinvolgente, poiché risposte ritardate possono portare alla frustrazione e al disimpegno

dell’utente.

Queste metriche di prestazione possono avere un impatto significativo sull’esperienza

utente e sulla scalabilità dell’applicazione.

Diversi fattori possono influenzare le prestazioni di un modello linguistico, tra cui:

Numero di Parametri: I modelli più grandi con più parametri generalmente richiedono

più risorse computazionali e possono avere una latenza più alta e un throughput più

basso rispetto ai modelli più piccoli.

Hardware: Le prestazioni di un modello linguistico possono variare significativamente

in base all’hardware su cui viene eseguito. I provider cloud offrono istanze GPU e

TPU ottimizzate per carichi di lavoro di machine learning, che possono accelerare

notevolmente l’inferenza del modello.

Uno dei vantaggi di OpenRouter è che per molti dei modelli che offre, si ha

la possibilità di scegliere tra diversi provider cloud con una gamma di profili

di prestazioni e costi.

Quantizzazione: Le tecniche di quantizzazione possono essere utilizzate per ridurre

l’occupazione di memoria e i requisiti computazionali di un modello rappresentando

pesi e attivazioni con tipi di dati a precisione inferiore. Questo può migliorare le

prestazioni senza sacrificare significativamente la qualità. Come sviluppatore di

applicazioni, probabilmente non ti occuperai di addestrare i tuoi modelli a diversi livelli

di quantizzazione, ma è bene conoscere almeno la terminologia.

Elaborazione in batch: L’elaborazione simultanea di più richieste in batch può

migliorare il throughput ammortizzando il sovraccarico del caricamento del modello e

del trasferimento dati.

Introduzione 29

Caching: Il caching dei risultati dei prompt o delle sequenze di input frequentemente

utilizzati può ridurre il numero di richieste di inferenza e migliorare le prestazioni

complessive.

Quando si seleziona un modello linguistico per un’applicazione in produzione, è

importante valutarne le prestazioni su carichi di lavoro e configurazioni hardware

rappresentativi. Questo può aiutare a identificare potenziali colli di bottiglia e garantire

che il modello possa soddisfare gli obiettivi di prestazione richiesti.

Vale anche la pena considerare i compromessi tra le prestazioni del modello e altri fattori

come costo, flessibilità e facilità di integrazione. Ad esempio, l’utilizzo di un modello più

piccolo e meno costoso con latenza inferiore potrebbe essere preferibile per applicazioni

che richiedono risposte in tempo reale, mentre unmodello più grande e potente potrebbe

essere più adatto per l’elaborazione batch o compiti di ragionamento complesso.

Sperimentare con Diversi Modelli LLM

La scelta di un LLM è raramente una decisione permanente. Poiché nuovi e migliori

modelli vengono rilasciati regolarmente, è bene costruire applicazioni inmodomodulare

che permetta di sostituire diversi modelli linguistici nel tempo. Prompt e dataset

possono spesso essere riutilizzati tra modelli con modifiche minime. Questo permette di

sfruttare gli ultimi progressi nella modellazione del linguaggio senza dover riprogettare

completamente le applicazioni.

La capacità di passare facilmente tra un’ampia gamma di scelte di modelli è

un’altra ragione per cui adoro OpenRouter.

Quando si passa a un nuovo modello linguistico, è importante testare e validare

accuratamente le sue prestazioni e la qualità dell’output per garantire che soddisfi i

requisiti dell’applicazione. Questo potrebbe comportare il riaddestramento o la messa

Introduzione 30

a punto del modello su dati specifici del dominio, nonché l’aggiornamento di eventuali

componenti a valle che dipendono dagli output del modello.

Progettando applicazioni con attenzione alle prestazioni e alla modularità, è possibile

creare sistemi scalabili, efficienti e a prova di futuro che possono adattarsi al panorama

in rapida evoluzione della tecnologia di modellazione del linguaggio.

Sistemi di IA Composti

Prima di concludere la nostra introduzione, vale la pena menzionare che prima del 2023

e dell’esplosione di interesse per l’IA generativa scatenata da ChatGPT, gli approcci

tradizionali all’IA si basavano solitamente sull’integrazione di singoli modelli chiusi.

Al contrario, i Sistemi di IA Composti sfruttano pipeline complesse di componenti

interconnessi che lavorano insieme per raggiungere un comportamento intelligente.

Al loro centro, i sistemi di IA composti consistono in molteplici moduli, ciascuno

progettato per eseguire compiti o funzioni specifiche. Questi moduli possono includere

generatori, recuperatori, classificatori di rango, classificatori e vari altri componenti

specializzati. Suddividendo il sistema complessivo in unità più piccole e focalizzate, gli

sviluppatori possono creare architetture di IA più flessibili, scalabili e manutenibili.

Uno dei vantaggi principali dei sistemi AI composti è la loro capacità di combinare i

punti di forza di diverse tecniche e modelli di AI. Per esempio, un sistema potrebbe

utilizzare un modello linguistico di grandi dimensioni (LLM) per la comprensione e

generazione del linguaggio naturale, mentre impiega unmodello separato per il recupero

delle informazioni o per il processo decisionale basato su regole. Questo approccio

modulare permette di selezionare gli strumenti e le tecniche migliori per ogni compito

specifico, invece di affidarsi a una soluzione universale.

Tuttavia, la costruzione di sistemi AI composti presenta anche sfide uniche. In

particolare, garantire la coerenza complessiva e la consistenza del comportamento del

sistema richiede meccanismi robusti di testing, monitoraggio e governance.

Introduzione 31

L’avvento di potenti LLM come GPT-4 ci permette di sperimentare con i

sistemi AI composti più facilmente che mai, poiché questi modelli avanzati

sono capaci di gestire molteplici ruoli all’interno di un sistema composto,

come la classificazione, il ranking e la generazione, oltre alle loro capacità

di comprensione del linguaggio naturale. Questa versatilità permette agli

sviluppatori di creare prototipi e iterare rapidamente sulle architetture

AI composte, aprendo nuove possibilità per lo sviluppo di applicazioni

intelligenti.

Pattern di Deployment per Sistemi AI Composti

I sistemi AI composti possono essere implementati utilizzando vari pattern, ognuno

progettato per rispondere a requisiti e casi d’uso specifici. Esploriamo quattro

pattern di deployment comuni: Domanda e Risposta, Risolutori di Problemi

Multi-Agente/Agentici, AI Conversazionale e CoPilot.

Domanda e Risposta

I sistemi di Domanda e Risposta (Q&A) si concentrano sul fornire un recupero delle

informazioni potenziato dalle capacità di comprensione dei modelli AI per funzionare

come più di un semplice motore di ricerca. Combinando potenti modelli linguistici con

fonti di conoscenza esterne utilizzando la Generazione Aumentata dal Recupero (RAG),

i sistemi di Domanda e Risposta evitano le allucinazioni e forniscono risposte accurate

e contestualmente rilevanti alle query degli utenti.

I componenti chiave di un sistema Q&A basato su LLM includono:

• Comprensione e riformulazione delle query: Analisi delle query degli utenti e

loro riformulazione per meglio corrispondere alle fonti di conoscenza sottostanti.

• Recupero della conoscenza: Recupero delle informazioni rilevanti da fonti di dati

strutturati o non strutturati basato sulla query riformulata.

Introduzione 32

• Generazione delle risposte: Generazione di risposte coerenti e informative

integrando la conoscenza recuperata con le capacità generative del modello

linguistico.

I sottosistemi RAG sono particolarmente importanti nei domini Q&A dove è cruciale

fornire informazioni accurate e aggiornate, come il supporto clienti, la gestione della

conoscenza o le applicazioni educative.

Risolutori di Problemi Multi-Agente/Agentici

I sistemi multi-agente, noti anche come Agentici, consistono in molteplici agenti

autonomi che lavorano insieme per risolvere problemi complessi. Ogni agente ha un

ruolo specifico, un set di competenze e accesso a strumenti o fonti di informazione

rilevanti. Collaborando e scambiando informazioni, questi agenti possono affrontare

compiti che sarebbero difficili o impossibili da gestire per un singolo agente.

I principi chiave dei risolutori di problemi multi-agente includono:

• Specializzazione: Ogni agente si concentra su un aspetto specifico del problema,

sfruttando le sue capacità e conoscenze uniche.

• Collaborazione: Gli agenti comunicano e coordinano le loro azioni per

raggiungere un obiettivo comune, spesso attraverso lo scambio di messaggi o

memoria condivisa.

• Adattabilità: Il sistema può adattarsi a condizioni o requisiti mutevoli regolando

i ruoli e i comportamenti dei singoli agenti.

I sistemi multi-agente sono particolarmente adatti per applicazioni che richiedono

la risoluzione distribuita dei problemi, come l’ottimizzazione della catena di

approvvigionamento, la gestione del traffico o la pianificazione della risposta alle

emergenze.

Introduzione 33

AI Conversazionale

I sistemi di AI conversazionale permettono interazioni in linguaggio naturale tra utenti

e agenti intelligenti. Questi sistemi combinano capacità di comprensione del linguaggio

naturale, gestione del dialogo e generazione del linguaggio per fornire esperienze

conversazionali coinvolgenti e personalizzate.

I componenti principali di un sistema di AI conversazionale includono:

• Riconoscimento dell’intento: Identificazione dell’intento dell’utente basato sul

suo input, come fare una domanda, effettuare una richiesta o esprimere un

sentimento.

• Estrazione delle entità: Estrazione di entità o parametri rilevanti dall’input

dell’utente, come date, luoghi o nomi di prodotti.

• Gestione del dialogo: Mantenimento dello stato della conversazione,

determinazione della risposta appropriata basata sull’intento dell’utente e

sul contesto, e gestione delle interazioni multi-turno.

• Generazione delle risposte: Generazione di risposte simili a quelle umane

utilizzando modelli linguistici, template o metodi basati sul recupero.

I sistemi di AI conversazionale sono comunemente utilizzati nei chatbot per il servizio

clienti, assistenti virtuali e interfacce controllate vocalmente. Come menzionato in

precedenza, la maggior parte degli approcci, pattern ed esempi di codice in questo libro

sono direttamente estratti dal mio lavoro su un grande sistema di AI conversazionale

chiamato Olympia.

CoPilot

I CoPilot sono assistenti basati sull’AI che lavorano al fianco degli utenti umani per

migliorare la loro produttività e capacità decisionale. Questi sistemi sfruttano una

combinazione di elaborazione del linguaggio naturale, apprendimento automatico

https://olympia.chat

Introduzione 34

e conoscenze specifiche del dominio per fornire raccomandazioni intelligenti,

automatizzare attività e offrire supporto contestuale.

Le caratteristiche principali dei CoPilot includono:

• Personalizzazione: Adattamento alle preferenze individuali dell’utente, ai flussi

di lavoro e agli stili di comunicazione.

• Assistenza proattiva: Anticipazione delle necessità dell’utente e offerta di

suggerimenti o azioni pertinenti senza richieste esplicite.

• Apprendimento continuo:Miglioramento delle prestazioni nel tempo attraverso

l’apprendimento dal feedback degli utenti, dalle interazioni e dai dati.

I CoPilot sono sempre più utilizzati in vari domini, come lo sviluppo software (ad

esempio, completamento del codice e rilevamento dei bug), la scrittura creativa (ad

esempio, suggerimenti di contenuti e modifica), e l’analisi dei dati (ad esempio,

approfondimenti e raccomandazioni di visualizzazione)

Questi modelli di implementazione mostrano la versatilità e il potenziale dei

sistemi AI composti. Comprendendo le caratteristiche e i casi d’uso di ogni

modello, è possibile prendere decisioni informate durante la progettazione e

l’implementazione di applicazioni intelligenti. Sebbene questo libro non tratti

specificamente l’implementazione di sistemi AI composti, molti se non tutti gli stessi

approcci e modelli si applicano all’integrazione di componenti AI discreti all’interno

dello sviluppo di applicazioni tradizionali.

Ruoli nei Sistemi AI Composti

I sistemi AI composti sono costruiti su una base di moduli interconnessi, ciascuno

progettato per svolgere un ruolo specifico. Questi moduli lavorano insieme per creare

comportamenti intelligenti e risolvere problemi complessi. È utile conoscere questi ruoli

quando si pensa a dove si potrebbero implementare o sostituire parti della propria

applicazione con componenti AI discreti.

Introduzione 35

Generatore

I generatori sono responsabili della produzione di nuovi dati o contenuti basati su

modelli appresi o input di prompt. Il mondo dell’AI ha molti tipi diversi di generatori,

ma nel contesto dei modelli linguistici presentati in questo libro, i generatori possono

creare testo simile a quello umano, completare frasi parziali o generare risposte alle

query degli utenti. Svolgono un ruolo cruciale in attività come la creazione di contenuti,

la generazione di dialoghi e l’aumento dei dati.

Estrattore

Gli estrattori sono utilizzati per cercare ed estrarre informazioni rilevanti da grandi

set di dati o basi di conoscenza. Impiegano tecniche come la ricerca semantica, la

corrispondenza delle parole chiave o la similarità vettoriale per trovare i punti dati più

pertinenti in base a una determinata query o contesto. Gli estrattori sono essenziali per

attività che richiedono un accesso rapido a informazioni specifiche, come la risposta a

domande, la verifica dei fatti o la raccomandazione di contenuti.

Classificatore per Rilevanza

I classificatori per rilevanza sono responsabili dell’ordinamento o della prioritizzazione

di un insieme di elementi basati su determinati criteri o punteggi di rilevanza. Assegnano

pesi o punteggi a ciascun elemento e li ordinano di conseguenza. Sono comunemente

utilizzati nei motori di ricerca, nei sistemi di raccomandazione o in qualsiasi applicazione

dove è cruciale presentare i risultati più rilevanti agli utenti.

Classificatore

I classificatori sono utilizzati per categorizzare o etichettare punti dati basati su classi

o categorie predefinite. Apprendono da dati di addestramento etichettati e quindi

prevedono la classe di nuove istanze mai viste. I classificatori sono fondamentali per

Introduzione 36

attività come l’analisi del sentimento, il rilevamento dello spam o il riconoscimento delle

immagini, dove l’obiettivo è assegnare una categoria specifica a ciascun input.

Strumenti e Agenti

Oltre a questi ruoli fondamentali, i sistemi AI composti spesso incorporano strumenti e

agenti per migliorare la loro funzionalità e adattabilità:

• Strumenti: Gli strumenti sono componenti software discreti o API che eseguono

azioni o calcoli specifici. Possono essere invocati da altri moduli, come generatori

o estrattori, per completare sotto-attività o raccogliere informazioni aggiuntive.

Esempi di strumenti includono motori di ricerca web, calcolatrici o librerie di

visualizzazione dati.

• Agenti: Gli agenti sono entità autonome che possono percepire il loro ambiente,

prendere decisioni e intraprendere azioni per raggiungere obiettivi specifici.

Spesso si basano su una combinazione di diverse tecniche di AI, come la

pianificazione, il ragionamento e l’apprendimento, per operare efficacemente in

condizioni dinamiche o incerte. Gli agenti possono essere utilizzati per modellare

comportamenti complessi o per coordinare le azioni di più moduli all’interno di

un sistema AI composto.

In un sistema AI composto puro, l’interazione tra questi componenti è orchestrata

attraverso interfacce e protocolli di comunicazione ben definiti. I dati fluiscono tra

i moduli, con l’output di un componente che serve come input per un altro. Questa

architettura modulare permette flessibilità, scalabilità e manutenibilità, poiché i singoli

componenti possono essere aggiornati, sostituiti o estesi senza influenzare l’intero

sistema.

Sfruttando la potenza di questi componenti e delle loro interazioni, i sistemi AI

composti possono affrontare problemi complessi del mondo reale che richiedono una

combinazione di diverse capacità AI. Mentre esploriamo gli approcci e i modelli per

Introduzione 37

integrare l’AI nello sviluppo delle applicazioni, ricorda che gli stessi principi e tecniche

utilizzati nei sistemi AI composti possono essere applicati per creare applicazioni

intelligenti, adattive e incentrate sull’utente.

Nei seguenti capitoli della Parte 1, approfondiremo gli approcci e le tecniche

fondamentali per integrare i componenti AI nel tuo processo di sviluppo delle

applicazioni. Dall’ingegneria dei prompt e la generazione aumentata tramite recupero

ai dati auto-riparanti e all’orchestrazione intelligente del flusso di lavoro, copriremo

un’ampia gamma di modelli e best practice per aiutarti a costruire applicazioni

all’avanguardia basate sull’AI.

Parte 1: Approcci e Tecniche
Fondamentali

Questa parte del libro presenta diversi modi di integrare l’uso dell’AI nelle tue

applicazioni. I capitoli coprono una serie di approcci e tecniche correlati, che spaziano

dai concetti di più alto livello come Narrow The Path e Retrieval Augmented Generation

fino ad arrivare alle idee per programmare il proprio livello di astrazione sopra le API

di completamento chat LLM.

L’obiettivo di questa parte del libro è aiutarti a comprendere i tipi di comportamento che

puoi implementare con l’AI, prima di addentrarci troppo nei pattern di implementazione

specifici che sono il focus della Parte 2.

Gli approcci nella Parte 1 si basano su idee che ho utilizzato nel mio codice, pattern

classici dell’architettura delle applicazioni aziendali e integrazione, oltre a metafore che

ho utilizzato per spiegare le capacità dell’AI ad altre persone, inclusi gli stakeholder

aziendali non tecnici.

Restringere il Percorso

“Restringere il percorso” si riferisce al concentrare l’IA sul compito da svolgere. Lo uso

come un mantra ogni volta che mi sento frustrato perché l’IA si comporta in modo

“stupido” o inaspettato. Il mantra mi ricorda che il fallimento è probabilmente colpa

mia e che probabilmente dovrei restringere ulteriormente il percorso.

La necessità di restringere il percorso deriva dalle enormi quantità di conoscenza

contenute nei modelli linguistici di grandi dimensioni, specialmente i modelli di livello

mondiale come quelli di OpenAI e Anthropic che hanno letteralmente trilioni di

parametri.

Restringere il Percorso 40

Avere accesso a una così ampia gamma di conoscenze è indubbiamente potente

e produce comportamenti emergenti come la teoria della mente e la capacità di

ragionare in modi simili a quelli umani. Tuttavia, questo volume sconvolgente di

informazioni presenta anche sfide quando si tratta di generare risposte precise e

accurate a prompt specifici, specialmente se questi prompt sono destinati a esibire un

comportamento deterministico che può essere integrato con lo sviluppo software e gli

algoritmi “normali”.

Diversi fattori portano a queste sfide.

Sovraccarico di Informazioni: I modelli linguistici di grandi dimensioni sono addestrati

su enormi quantità di dati che abbracciano vari domini, fonti e periodi temporali. Questa

vasta conoscenza permette loro di impegnarsi in diversi argomenti e generare risposte

basate su una comprensione ampia del mondo. Tuttavia, quando si trova di fronte a

un prompt specifico, il modello potrebbe faticare a filtrare le informazioni irrilevanti,

contraddittorie o obsolete, portando a risposte che mancano di focus o accuratezza. A

seconda di ciò che si sta cercando di fare, il puro volume di informazioni contraddittorie

disponibili per il modello può facilmente sopraffare la sua capacità di fornire la risposta

o il comportamento che si cerca.

Ambiguità Contestuale:Dato il vasto spazio latente di conoscenza, i modelli linguistici

di grandi dimensioni potrebbero incontrare ambiguità nel tentativo di comprendere il

contesto del tuo prompt. Senza un adeguato restringimento o guida, il modello potrebbe

generare risposte che sono tangenzialmente correlate ma non direttamente rilevanti per

le tue intenzioni. Questo tipo di fallimento porta a risposte fuori tema, incoerenti o

che non soddisfano le tue esigenze dichiarate. In questo caso, restringere il percorso

si riferisce alla disambiguazione del contesto, assicurando che il contesto fornito faccia

sì che il modello si concentri solo sulle informazioni più rilevanti nella sua conoscenza

di base.

Restringere il Percorso 41

Nota: Quando si inizia con l’“ingegneria dei prompt” è molto più probabile

chiedere al modello di fare cose senza spiegare adeguatamente il risultato

desiderato; ci vuole pratica per non essere ambigui!

Incongruenze Temporali: Poiché i modelli linguistici sono addestrati su dati creati in

periodi diversi, potrebbero possedere conoscenze che sono obsolete, superate o non più

accurate. Per esempio, le informazioni su eventi attuali, scoperte scientifiche o progressi

tecnologici potrebbero essersi evolute da quando i dati di addestramento del modello

sono stati raccolti. Senza restringere il percorso per dare priorità a fonti più recenti e

affidabili, il modello potrebbe generare risposte basate su informazioni obsolete o errate,

portando a imprecisioni e incongruenze nei suoi output.

Sfumature Specifiche del Dominio: Domini e campi diversi hanno le proprie

terminologie, convenzioni e basi di conoscenza specifiche. Pensa a praticamente

qualsiasi TLA (Acronimo di Tre Lettere) e ti renderai conto che la maggior parte di

essi ha più di un significato. Per esempio, MSK può riferirsi ad Amazon’s Managed

Streaming for Apache Kafka, al Memorial Sloan Kettering Cancer Center, o al sistema

MuscoloScheletrico umano.

Quando un prompt richiede competenza in un particolare dominio, la conoscenza

generica di un modello linguistico di grandi dimensioni potrebbe non essere sufficiente

per fornire risposte accurate e sfumate. Restringere il percorso concentrandosi su

informazioni specifiche del dominio, sia attraverso l’ingegneria dei prompt che la

generazione aumentata tramite recupero, permette al modello di generare risposte più

allineate con i requisiti e le aspettative del tuo dominio specifico.

Spazio Latente: Incomprensibilmente Vasto

Quando menziono lo “spazio latente” di un modello linguistico, mi riferisco al vasto

paesaggio multidimensionale di conoscenza e informazioni che il modello ha appreso

durante il suo processo di addestramento. È come un regno nascosto all’interno delle

Restringere il Percorso 42

reti neurali del modello, dove sono memorizzati tutti i modelli, le associazioni e le

rappresentazioni del linguaggio.

Immagina di esplorare un vasto territorio inesplorato pieno di innumerevoli nodi

interconnessi. Ogni nodo rappresenta un pezzo di informazione, un concetto o una

relazione che il modello ha appreso. Mentre navighi attraverso questo spazio, scoprirai

che alcuni nodi sono più vicini tra loro, indicando una forte connessione o somiglianza,

mentre altri sono più distanti, suggerendo una relazione più debole o più distante.

La sfida con lo spazio latente è che è incredibilmente complesso e multidimensionale.

Pensate a esso come se fosse immenso quanto il nostro universo fisico, con i suoi

ammassi di galassie e le vaste, inimmaginabili distanze di spazio vuoto tra di essi.

Poiché contiene migliaia di dimensioni, lo spazio latente non è direttamente osservabile

o interpretabile dagli esseri umani. È una rappresentazione astratta che il modello

utilizza internamente per elaborare e generare linguaggio. Quando fornisci un prompt di

input al modello, questo essenzialmente mappa quel prompt su una posizione specifica

all’interno dello spazio latente. Il modello quindi utilizza le informazioni circostanti e le

connessioni in quello spazio per generare una risposta.

Il fatto è che il modello ha appreso un’enorme quantità di informazioni dai suoi

dati di addestramento, e non tutte sono rilevanti o accurate per un determinato

compito. Ecco perché restringere il percorso diventa così importante. Fornendo istruzioni

chiare, esempi e contesto nei tuoi prompt, stai essenzialmente guidando il modello a

concentrarsi su regioni specifiche all’interno dello spazio latente che sono più rilevanti

per l’output desiderato.

Un modo diverso di pensarci è come usare un riflettore in un museo completamente

buio. Se hai mai visitato il Louvre o il Metropolitan Museum of Art, allora è quella la

scala di cui sto parlando. Lo spazio latente è il museo, pieno di innumerevoli oggetti e

dettagli. Il tuo prompt è il riflettore, che illumina aree specifiche e attira l’attenzione

del modello sulle informazioni più importanti. Senza quella guida, il modello potrebbe

Restringere il Percorso 43

vagare senza meta attraverso lo spazio latente, raccogliendo informazioni irrilevanti o

contraddittorie lungo il percorso.

Mentre lavori con i modelli linguistici e crei i tuoi prompt, tieni a mente il concetto

di spazio latente. Il tuo obiettivo è navigare efficacemente in questo vasto paesaggio di

conoscenza, guidando il modello verso le informazioni più rilevanti e accurate per il tuo

compito. Restringendo il percorso e fornendo una guida chiara, puoi sbloccare il pieno

potenziale dello spazio latente del modello e generare risposte di alta qualità e coerenti.

Mentre le precedenti descrizioni dei modelli linguistici e dello spazio latente che

navigano potrebbero sembrare un po’ magiche o astratte, è importante capire che i

prompt non sono incantesimi o formule magiche. Il modo in cui funzionano i modelli

linguistici è basato sui principi dell’algebra lineare e della teoria della probabilità.

Nel loro nucleo, i modelli linguistici sono modelli probabilistici del testo, molto simili a

come una curva a campana è un modello statistico dei dati. Sono addestrati attraverso

un processo chiamato modellazione autoregressiva, dove il modello impara a prevedere

la probabilità della parola successiva in una sequenza basandosi sulle parole che la

precedono. Durante l’addestramento, il modello inizia con pesi casuali e gradualmente li

aggiusta per assegnare probabilità più alte al testo che assomiglia ai campioni del mondo

reale su cui è stato addestrato.

Tuttavia, pensare ai modelli linguistici come semplici modelli statistici, come la

regressione lineare, non fornisce la migliore intuizione per comprendere il loro

comportamento. Un’analogia più appropriata è pensarli come programmi probabilistici,

che sono modelli che permettono la manipolazione di variabili casuali e possono

rappresentare relazioni statistiche complesse.

I programmi probabilistici possono essere rappresentati da modelli grafici, che

forniscono un modo visivo per comprendere le dipendenze e le relazioni tra le variabili

nel modello. Questa prospettiva può offrire preziose intuizioni sul funzionamento di

modelli complessi di generazione di testo come GPT-4 e Claude.

Restringere il Percorso 44

Nel paper “Language Model Cascades” di Dohan et al., gli autori si addentrano

nei dettagli di come i programmi probabilistici possano essere applicati ai modelli

linguistici. Mostrano come questo framework possa essere utilizzato per comprendere

il comportamento di questi modelli e guidare lo sviluppo di strategie di prompting più

efficaci.

Una intuizione chiave da questa prospettiva probabilistica è che il modello linguistico

essenzialmente crea un portale verso un universo alternativo dove i documenti desiderati

esistono. Il modello assegna pesi a tutti i possibili documenti basandosi sulla loro

probabilità, restringendo efficacemente lo spazio delle possibilità per concentrarsi su

quelle più rilevanti.

Questo ci riporta al tema centrale del “restringere il percorso”. L’obiettivo principale del

prompting è condizionare il modello probabilistico in modo da concentrare la massa

delle sue previsioni, focalizzandosi sulle informazioni specifiche o sul comportamento

che vogliamo ottenere. Fornendo prompt attentamente elaborati, possiamo guidare il

modello a navigare lo spazio latente inmodo più efficiente e generare output più rilevanti

e coerenti.

Tuttavia, è importante tenere presente che il modello linguistico è in ultima analisi

limitato dalle informazioni su cui è stato addestrato. Mentre può generare testo simile

a documenti esistenti o combinare idee in modi nuovi, non può inventare informazioni

completamente nuove dal nulla. Per esempio, non possiamo aspettarci che il modello

fornisca una cura per il cancro se tale cura non è stata scoperta e documentata nei suoi

dati di addestramento.

Invece, il punto di forza del modello risiede nella sua capacità di trovare e sintetizzare

informazioni simili a quelle con cui lo sollecitiamo tramite prompt. Comprendendo la

natura probabilistica di questi modelli e come i prompt possano essere utilizzati per

condizionare i loro output, possiamo sfruttare più efficacemente le loro capacità per

generare approfondimenti e contenuti di valore.

Consideriamo i prompt qui sotto. Nel primo, “Mercurio” da solo potrebbe riferirsi al

Restringere il Percorso 45

pianeta, all’elemento o al dio romano, ma il più probabile è il pianeta. Infatti, GPT-4

fornisce una lunga risposta che inizia conMercurio è il pianeta più piccolo e più interno

del Sistema Solare…. Il secondo prompt si riferisce specificamente all’elemento chimico.

Il terzo si riferisce alla figura mitologica romana, nota per la sua velocità e il suo ruolo

di messaggero divino.

1 # Prompt 1

2 Tell me about: Mercury

3

4 # Prompt 2

5 Tell me about: Mercury element

6

7 # Prompt 3

8 Tell me about: Mercury messenger of the gods

Aggiungendo solo una manciata di parole extra, abbiamo completamente cambiato il

modo in cui l’IA reagisce. Come imparerai più avanti nel libro, sofisticati trucchi di

ingegneria dei prompt come il prompt n-shot, l’input/output strutturato e la Catena di

Pensiero sono solo modi intelligenti per condizionare l’output del modello.

Quindi, in definitiva, l’arte dell’ingegneria dei prompt consiste nel capire come

navigare nel vasto panorama probabilistico delle conoscenze del modello linguistico

per restringere il percorso verso le informazioni o il comportamento specifico che

cerchiamo.

Per i lettori con una solida comprensione della matematica avanzata, basare la propria

comprensione di questi modelli sui principi della teoria della probabilità e dell’algebra

lineare può sicuramente essere d’aiuto! Per tutti gli altri che vogliono sviluppare strategie

efficaci per ottenere gli output desiderati, atteniamoci ad approcci più intuitivi.

Come Il Percorso Viene “Ristretto”

Per affrontare queste sfide di conoscenza eccessiva, impieghiamo tecniche che aiutano

a guidare il processo di generazione del modello linguistico e a focalizzare la sua

Restringere il Percorso 46

attenzione sulle informazioni più rilevanti e accurate.

Ecco le tecniche più significative, in ordine consigliato, cioè dovresti provare prima

l’Ingegneria dei Prompt, poi il RAG, e infine, se proprio necessario, la messa a punto.

Ingegneria dei Prompt L’approccio più fondamentale è la creazione di prompt che

includono istruzioni specifiche, vincoli o esempi per guidare la generazione delle risposte

del modello. Questo capitolo copre i fondamenti dell’Ingegneria dei Prompt nella

prossima sezione, e copriamo molti specifici pattern di ingegneria dei prompt nella

Parte 2 del libro. Questi pattern includono la Distillazione dei Prompt, una tecnica che

si concentra sul raffinare e ottimizzare i prompt per estrarre ciò che l’IA considera le

informazioni più rilevanti e concise.

Aumento del Contesto. Recuperare dinamicamente informazioni rilevanti da basi di

conoscenza o documenti esterni per fornire al modello un contesto mirato nel momento

in cui viene sollecitato. Le tecniche popolari di aumento del contesto includono la

Generazione Aumentata da Recupero (RAG) I cosiddetti “modelli online” come quelli

forniti da Perplexity sono in grado di aumentare il loro contesto con risultati di ricerca

internet in tempo reale.

Nonostante la loro potenza, gli LLM non sono addestrati sui tuoi dataset

unici, che potrebbero essere privati o specifici per il problema che stai

cercando di risolvere. Le tecniche di Aumento del Contesto ti permettono di

dare agli LLM accesso ai dati dietro le API, nei database SQL, o intrappolati

in PDF e presentazioni.

Messa a punto oAdattamento al DominioAddestrare il modello su dataset specifici del

dominio per specializzare le sue conoscenze e capacità di generazione per un particolare

compito o campo.

https://perplexity.ai

Restringere il Percorso 47

Abbassare La Temperatura

La temperatura è un iperparametro utilizzato nei modelli linguistici basati su

transformer che controlla la casualità e la creatività del testo generato. È un valore tra

0 e 1, dove valori più bassi rendono l’output più focalizzato e deterministico, mentre

valori più alti lo rendono più diversificato e imprevedibile.

Quando la temperatura è impostata a 1, il modello linguistico genera testo basato sulla

distribuzione di probabilità completa del token successivo, permettendo risposte più

creative e varie. Tuttavia, questo può anche portare il modello a generare testo meno

rilevante o coerente.

D’altra parte, quando la temperatura è impostata a 0, il modello linguistico seleziona

sempre il token con la probabilità più alta, effettivamente “restringendo il suo percorso”.

Quasi tutti i miei componenti IA utilizzano una temperatura impostata a 0 o vicina allo

0, poiché risulta in risposte più focalizzate e prevedibili. È assolutamente utile quando

si vuole che il modello segua le istruzioni, presti attenzione alle funzioni che gli sono

state fornite, o semplicemente si ha bisogno di risposte più accurate e rilevanti rispetto

a quelle che si stanno ottenendo.

Per esempio, se stai costruendo un chatbot che deve fornire informazioni fattuali,

potresti voler impostare la temperatura a un valore più basso per assicurare che le

risposte siano più precise e pertinenti. Al contrario, se stai costruendo un assistente per

la scrittura creativa, potresti voler impostare la temperatura a un valore più alto per

incoraggiare output più diversificati e creativi.

Iperparametri: Manopole e Controlli dell’Inferenza

Quando lavori con modelli linguistici, ti imbatterai spesso nel termine “iperparametri”.

Nel contesto dell’inferenza (cioè, quando stai usando il modello per generare risposte),

gli iperparametri sono come le manopole e i controlli che puoi regolare per controllare

il comportamento e l’output del modello.

Restringere il Percorso 48

Pensalo come regolare le impostazioni su una macchina complessa. Proprio come

potresti girare una manopola per controllare la temperatura o azionare un interruttore

per cambiare la modalità di funzionamento, gli iperparametri ti permettono di regolare

finemente il modo in cui il modello linguistico elabora e genera il testo.

Alcuni iperparametri comuni che incontrerai durante l’inferenza includono:

• Temperatura: Come appena menzionato, questo parametro controlla la casualità

e la creatività del testo generato. Una temperatura più alta porta a output più

diversificati e imprevedibili, mentre una temperatura più bassa produce risposte

più mirate e deterministiche.

• Campionamento top-p (nucleus): Questo parametro controlla la selezione del

più piccolo insieme di token la cui probabilità cumulativa supera una certa soglia

(p). Permette output più diversificati mantenendo comunque la coerenza.

• Campionamento top-k:Questa tecnica seleziona i k token più probabili successivi

e ridistribuisce la massa di probabilità tra di essi. Può aiutare a impedire al modello

di generare token a bassa probabilità o irrilevanti.

• Penalità di frequenza e presenza: Questi parametri penalizzano il modello per la

ripetizione troppo frequente delle stesse parole o frasi (penalità di frequenza) o per

la generazione di parole non presenti nel prompt di input (penalità di presenza).

Modificando questi valori, puoi incoraggiare il modello a produrre output più vari

e pertinenti.

• Lunghezza massima: Questo iperparametro imposta un limite superiore al

numero di token (parole o parti di parole) che il modello può generare in una

singola risposta. Aiuta a controllare la verbosità e la concisione del testo generato.

Mentre sperimenti con diverse impostazioni degli iperparametri, scoprirai che anche

piccole modifiche possono avere un impatto significativo sull’output del modello. È

Restringere il Percorso 49

come perfezionare una ricetta – un pizzico di sale in più o un tempo di cottura

leggermente più lungo possono fare tutta la differenza nel piatto finale.

La chiave sta nel comprendere come ogni iperparametro influenza il comportamento

del modello e nel trovare il giusto equilibrio per il tuo compito specifico. Non aver

paura di sperimentare con diverse impostazioni e osservare come influenzano il testo

generato. Con il tempo, svilupperai un’intuizione su quali iperparametri modificare e

come ottenere i risultati desiderati.

Combinando l’uso di questi parametri con l’ingegneria dei prompt, la generazione

aumentata da recupero e la messa a punto, puoi efficacemente restringere il percorso

e guidare il modello linguistico a generare risposte più accurate, pertinenti e preziose

per il caso d’uso specifico.

Modelli Grezzi Versus Modelli Istruiti

I modelli grezzi sono le versioni non raffinate e non addestrate degli LLM. Immagina

che siano come una tela vergine, non ancora influenzata da un addestramento specifico

per comprendere o seguire istruzioni. Sono costruiti sui vasti dati su cui sono stati

inizialmente addestrati, capaci di generare un’ampia gamma di output. Tuttavia, senza

ulteriori livelli di messa a punto basata sulle istruzioni, le loro risposte possono essere

imprevedibili e richiedere prompt più sfumati e attentamente elaborati per guidarli

verso l’output desiderato. Lavorare con modelli grezzi è simile al cercare di ottenere

una comunicazione da un sapiente-idiota che ha una vasta quantità di conoscenze ma

non ha alcuna intuizione su ciò che stai chiedendo a meno che tu non sia estremamente

preciso nelle tue istruzioni. Spesso sembrano un pappagallo, nel senso che nella misura

in cui riesci a fargli dire qualcosa di intelligibile, il più delle volte stanno solo ripetendo

qualcosa che ti hanno sentito dire.

I modelli istruiti, d’altra parte, hanno attraversato cicli di addestramento specificamente

progettati per comprendere e seguire le istruzioni. GPT-4, Claude 3 e molti altri tra i

Restringere il Percorso 50

modelli LLM più popolari sono tutti fortemente istruiti. Questo addestramento comporta

l’alimentazione del modello con esempi di istruzioni insieme ai risultati desiderati,

insegnando efficacemente al modello come interpretare ed eseguire un’ampia gamma

di comandi. Di conseguenza, i modelli istruiti possono comprendere più prontamente

l’intento dietro un prompt e generare risposte che si allineano strettamente con le

aspettative dell’utente. Questo li rende più user-friendly e più facili da utilizzare,

specialmente per coloro che potrebbero non avere il tempo o l’esperienza per impegnarsi

in un’estesa ingegneria dei prompt.

Modelli Grezzi: La Tela Non Filtrata

I modelli grezzi, come Llama 2-70B o Yi-34B, offrono un accesso più non filtrato alle

capacità del modello rispetto a quello a cui potresti essere abituato se hai sperimentato

con LLM popolari come GPT-4. Questi modelli non sono pre-istruiti per seguire

istruzioni specifiche, fornendoti una tela vuota per manipolare direttamente l’output

del modello attraverso un’attenta ingegneria dei prompt. Questo approccio richiede

una profonda comprensione di come creare prompt che guidino l’IA nella direzione

desiderata senza istruirla esplicitamente. È simile ad avere un accesso diretto agli strati

“grezzi” dell’IA sottostante, senza alcuno strato intermedio che interpreti o guidi le

risposte del modello (da qui il nome).

Restringere il Percorso 51

Figura 3. Test di un modello grezzo utilizzando parte dello sketch classico di Abbott e Costello ’Who’s
on First’

La sfida con i modelli grezzi sta nella loro tendenza a cadere in schemi ripetitivi

o produrre output casuali. Tuttavia, con un’ingegneria dei prompt meticolosa e la

regolazione di parametri come le penalità di ripetizione, i modelli grezzi possono

essere indotti a generare contenuti unici e creativi. Questo processo non è privo

di compromessi; mentre i modelli grezzi offrono una flessibilità senza pari per

l’innovazione, richiedono un livello più alto di competenza.

Restringere il Percorso 52

Figura 4. Per scopi di confronto, ecco lo stesso prompt ambiguo fornito a GPT-4

Modelli Istruiti: L’Esperienza Guidata

I modelli istruiti sono progettati per comprendere e seguire istruzioni specifiche,

rendendoli più intuitivi e accessibili per una gamma più ampia di applicazioni.

Comprendono le meccaniche di una conversazione e sanno che devono smettere di

generare quando è la fine del loro turno di parola. Per molti sviluppatori, specialmente

quelli che lavorano su applicazioni semplici, i modelli istruiti offrono una soluzione

conveniente ed efficiente.

Il processo di addestramento con istruzioni prevede l’addestramento del modello su un

ampio corpus di prompt di istruzioni e risposte generate da esseri umani. Un esempio

notevole è il dataset open source databricks-dolly-15k, che contiene oltre 15.000 coppie

di prompt/risposta create dai dipendenti Databricks che puoi esaminare personalmente.

Il dataset copre otto diverse categorie di istruzioni, tra cui scrittura creativa, risposta

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Restringere il Percorso 53

a domande chiuse e aperte, riassunti, estrazione di informazioni, classificazione e

brainstorming.

Durante il processo di generazione dei dati, ai contributori sono state fornite linee guida

su come creare prompt e risposte per ogni categoria. Per esempio, per i compiti di

scrittura creativa, sono stati istruiti a fornire vincoli specifici, istruzioni o requisiti per

guidare l’output del modello. Per le risposte a domande chiuse, è stato chiesto loro di

scrivere domande che richiedono risposte fattuali corrette basate su un dato passaggio

di Wikipedia.

Il dataset risultante serve come risorsa preziosa per la messa a punto di modelli

linguistici di grandi dimensioni per esibire le capacità interattive e di seguire istruzioni di

sistemi come ChatGPT. Addestrando su una gamma diversificata di istruzioni e risposte

generate da umani, il modello impara a comprendere e seguire direttive specifiche,

diventando più abile nel gestire una vasta varietà di compiti.

Oltre alla messa a punto diretta, i prompt di istruzione in dataset come databricks-dolly-

15k possono essere utilizzati anche per la generazione di dati sintetici. Sottoponendo i

prompt generati dai contributori come esempi few-shot a un grande modello linguistico

aperto, gli sviluppatori possono generare un corpus molto più ampio di istruzioni in

ogni categoria. Questo approccio, delineato nel documento Self-Instruct, permette la

creazione di modelli più robusti che seguono le istruzioni.

Inoltre, le istruzioni e le risposte in questi dataset possono essere arricchite attraverso

tecniche come la riformulazione. Riformulando ogni prompt o breve risposta e

associando il testo risultante al rispettivo campione di riferimento, gli sviluppatori

possono introdurre una forma di regolarizzazione che migliora la capacità del modello

di seguire le istruzioni.

La facilità d’uso offerta dai modelli istruiti comporta una certa perdita di flessibilità.

Questi modelli sono spesso fortemente censurati, il che significa che potrebbero non

sempre fornire il livello di libertà creativa richiesto per determinati compiti. I loro output

Restringere il Percorso 54

sono fortemente influenzati dai pregiudizi e dalle limitazioni intrinseche nei loro dati di

messa a punto.

Nonostante questi limiti, i modelli istruiti sono diventati sempre più popolari grazie

alla loro natura intuitiva e alla capacità di gestire un’ampia gamma di compiti con un

minimo di ingegneria dei prompt. Con la disponibilità di sempre più dataset di istruzioni

di alta qualità, possiamo aspettarci di vedere ulteriori miglioramenti nelle prestazioni e

nella versatilità di questi modelli.

Scegliere il Tipo di Modello Giusto per il Tuo Progetto

La scelta tra modelli base (grezzi) e modelli istruiti dipende in definitiva dai requisiti

specifici del tuo progetto. Per i compiti che richiedono un alto grado di creatività e

originalità, i modelli base offrono uno strumento potente per l’innovazione. Questi

modelli permettono agli sviluppatori di esplorare il pieno potenziale dei LLM, spingendo

i limiti di ciò che si può ottenere attraverso applicazioni basate sull’IA, ma richiedono

un approccio più pratico e una disposizione alla sperimentazione. La Temperatura e

altre impostazioni hanno un effetto molto maggiore nei modelli base rispetto alle loro

controparti istruite.

Qualunque cosa includi nel tuo prompt è ciò che i modelli base cercheranno

di ripetere. Quindi, per esempio, se il tuo prompt è una trascrizione di chat, il

modello grezzo cercherà di continuare la chat. A seconda del limite di token

massimi, non genererà solo il messaggio successivo nella chat, ma potrebbe

avere un’intera conversazione con se stesso!

Restringere il Percorso 55

Figura 5. Esempio di Riscrittura delle Frasi con Few-Shot Completion usando Mixtral 8x7B (base)

Durante la preparazione dell’esempio di Riscrittura delle Frasi sopra riportato dall’utente

Reddit phree_radical, sono riuscito a ottenere risultati utilizzabili solo dopo molti

esperimenti con le impostazioni dei parametri, stabilendo infine: Temperatura 0.08, Top

P: 0.2, Top K: 1 e Penalità di Ripetizione: 1.26.

https://www.reddit.com/user/phree_radical/

Restringere il Percorso 56

Cercare di utilizzare questo approccio con un modello base in produzione sarebbe

complicato a causa del potente effetto del parametro max_tokens. Se lo si imposta

troppo corto, l’output viene troncato. Se lo si imposta più lungo di quanto il modello

necessiti per l’output desiderato, continuerà a generare allucinazioni con esempi

aggiuntivi.

In conclusione, a meno che non si abbia davvero bisogno di un controllo totale e

dell’assenza di censura, i modelli istruiti possono semplificare significativamente il

processo di sviluppo. Per sottolineare questo concetto, ecco la risposta di Mixtral 8x7B

allo stesso prompt, ma questa volta nella sua versione istruita:

Mi dispiace informarvi che il gelato non soddisfa le mie aspettative,

poiché manca della ricca consistenza cremosa e del gusto delizioso che

solitamente associo a un dessert di alta qualità. Speravo in un’esperienza

più soddisfacente e piacevole.

In particolare, ho potuto lasciare l’impostazione dei token massimi a 500, e il modello

si è fermato in modo affidabile alla fine dell’output desiderato senza allucinare esempi

aggiuntivi.

Prompt Engineering

Mentre inizi ad applicare l’AI nei tuoi progetti, scoprirai rapidamente che una delle

competenze più cruciali da padroneggiare è l’arte del prompt engineering. Ma cos’è

esattamente il prompt engineering e perché è così importante?

Nella sua essenza, il prompt engineering è il processo di progettazione e creazione dei

prompt di input che fornisci a un modello linguistico per guidare il suo output. Si tratta

di capire come comunicare efficacemente con l’AI, utilizzando una combinazione di

istruzioni, esempi e contesto per indirizzare il modello verso la generazione della risposta

desiderata.

Restringere il Percorso 57

Pensalo come avere una conversazione con un amico molto intelligente ma piuttosto

letterale. Per ottenere il massimo dall’interazione, devi essere chiaro, specifico e fornire

un contesto sufficiente per assicurarti che il tuo amico capisca esattamente cosa stai

chiedendo. È qui che entra in gioco il prompt engineering, e anche se all’inizio può

sembrare facile, credimi che ci vuole molta pratica per padroneggiarlo.

Gli Elementi Fondamentali dei Prompt Efficaci

Per iniziare a creare prompt efficaci, devi prima comprendere i componenti chiave che

costituiscono un input ben strutturato. Ecco alcuni degli elementi fondamentali:

1. Istruzioni: Istruzioni chiare e concise che dicono al modello cosa vuoi che faccia.

Può essere qualsiasi cosa, da “Riassumi il seguente articolo” a “Genera una poesia

su un tramonto” a “trasforma questa richiesta di modifica del progetto in un

oggetto JSON”.

2. Contesto: Informazioni rilevanti che aiutano il modello a comprendere il

background e l’ambito del compito. Questo potrebbe includere dettagli sul

pubblico previsto, il tono e lo stile desiderati, o qualsiasi vincolo o requisito

specifico per l’output, come uno JSON Schema da rispettare.

3. Esempi: Esempi concreti che dimostrano il tipo di output che stai cercando.

Fornendo alcuni esempi ben scelti, puoi aiutare il modello a imparare i pattern

e le caratteristiche della risposta desiderata.

4. Formattazione dell’Input: Le interruzioni di riga e la formattazione markdown

danno struttura al nostro prompt. Separare il prompt in paragrafi ci permette di

raggruppare le istruzioni correlate, in modo che sia più facile per gli umani e l’AI

comprenderle. I punti elenco e gli elenchi numerati ci permettono di definire liste

e ordinamento degli elementi. I marcatori grassetto e corsivo ci permettono di

evidenziare l’enfasi.

5. Formattazione dell’Output: Istruzioni specifiche su come l’output dovrebbe

essere strutturato e formattato. Queste potrebbero includere direttive sulla

Restringere il Percorso 58

lunghezza desiderata, l’uso di intestazioni o punti elenco, formattazione

markdown, o qualsiasi altro modello o convenzione specifica di output da

seguire.

Combinando questi elementi fondamentali in modi diversi, puoi creare prompt su

misura per le tue esigenze specifiche e guidare il modello verso la generazione di risposte

pertinenti e di alta qualità.

L’Arte e la Scienza del Design dei Prompt

Creare prompt efficaci è sia un’arte che una scienza. (Ecco perché lo chiamiamo un

mestiere.) Richiede una profonda comprensione delle capacità e dei limiti dei modelli

linguistici, oltre a un approccio creativo alla progettazione di prompt che suscitino il

comportamento desiderato. La creatività coinvolta è ciò che lo rende così divertente,

almeno per me. Può anche renderlo molto frustrante, specialmente quando si cerca un

comportamento deterministico

Un aspetto chiave del prompt engineering è capire come bilanciare specificità e

flessibilità. Da un lato, vuoi fornire una guida sufficiente per indirizzare il modello nella

giusta direzione. Dall’altro, non vuoi essere così prescrittivo da limitare la capacità del

modello di utilizzare la propria creatività e flessibilità per gestire i casi limite.

Un’altra considerazione importante è l’uso degli esempi. Esempi ben scelti possono

essere incredibilmente potenti nell’aiutare il modello a comprendere il tipo di output

che stai cercando. Tuttavia, è importante utilizzare gli esempi con giudizio e assicurarsi

che siano rappresentativi della risposta desiderata. Un esempio cattivo è nel migliore dei

casi solo uno spreco di token, e nel peggiore dei casi rovinoso per l’output desiderato.

Tecniche e Best Practice del Prompt Engineering

Mentre ti addentri nel mondo del prompt engineering, scoprirai una serie di tecniche e

best practice che possono aiutarti a creare prompt più efficaci. Ecco alcune aree chiave

da esplorare:

Restringere il Percorso 59

1. Zero-shot vs. few-shot learning: Capire quando utilizzare l’apprendimento

zero-shot (non fornire esempi) rispetto all’apprendimento one-shot o few-shot

(fornire un piccolo numero di esempi) può aiutarti a creare prompt più efficienti

ed efficaci.

2. Raffinamento iterativo: Il processo di raffinamento iterativo dei prompt basato

sull’output del modello può aiutarti a individuare il design ottimale del prompt. Il

Feedback Loop è un approccio efficace che sfrutta l’output del modello linguistico

stesso per migliorare progressivamente la qualità e la pertinenza dei contenuti

generati.

3. Concatenamento dei prompt: Combinare più prompt in sequenza può aiutarti a

scomporre compiti complessi in passaggi più piccoli e gestibili. Il Prompt Chaining

consiste nel suddividere un’attività o una conversazione complessa in una serie

di prompt più piccoli e interconnessi. Concatenando i prompt, puoi guidare l’IA

attraverso un processo multi-step, mantenendo il contesto e la coerenza durante

l’interazione.

4. Ottimizzazione dei prompt: Personalizzare i prompt per domini o compiti

specifici può aiutarti a creare prompt più specializzati ed efficaci. Il Prompt

Template ti aiuta a creare strutture di prompt flessibili, riutilizzabili e manutenibili

che sono più facilmente adattabili al compito in questione.

Imparare quando utilizzare l’apprendimento zero-shot, one-shot o few-shot è una parte

particolarmente importante per padroneggiare l’ingegneria dei prompt. Ogni approccio

ha i suoi punti di forza e di debolezza, e comprendere quando utilizzare ciascuno può

aiutarti a creare prompt più efficaci ed efficienti.

Apprendimento Zero-Shot: Quando Non Servono Esempi

L’apprendimento zero-shot si riferisce alla capacità di un modello linguistico di eseguire

un compito senza alcun esempio o addestramento esplicito. In altre parole, fornisci al

Restringere il Percorso 60

modello un prompt che descrive il compito, e il modello genera una risposta basandosi

esclusivamente sulla sua conoscenza preesistente e sulla comprensione del linguaggio.

L’apprendimento zero-shot è particolarmente utile quando:

1. Il compito è relativamente semplice e diretto, e il modello ha probabilmente

incontrato compiti simili durante il pre-addestramento.

2. Vuoi testare le capacità intrinseche del modello e vedere come risponde a un nuovo

compito senza ulteriore guida.

3. Stai lavorando con un modello linguistico grande e diversificato che è stato

addestrato su un’ampia gamma di compiti e domini.

Tuttavia, l’apprendimento zero-shot può anche essere imprevedibile e non sempre

produrre i risultati desiderati. La risposta del modello può essere influenzata da

pregiudizi o incongruenze nei dati di pre-addestramento, e potrebbe avere difficoltà

con compiti più complessi o sfumati.

Ho visto prompt zero-shot che funzionano bene per l’80% dei miei casi di test e

producono risultati completamente sbagliati o incomprensibili per il restante 20%.

È molto importante implementare un regime di test approfondito, specialmente se si

fa molto affidamento sui prompt zero-shot.

Apprendimento One-Shot: Quando un Singolo Esempio
Può Fare la Differenza

L’apprendimento one-shot consiste nel fornire al modello un singolo esempio dell’output

desiderato insieme alla descrizione del compito. Questo esempio serve come template o

modello che il modello può utilizzare per generare la propria risposta.

L’apprendimento one-shot può essere efficace quando:

Restringere il Percorso 61

1. Il compito è relativamente nuovo o specifico, e il modello potrebbe non aver

incontrato molti esempi simili durante il pre-addestramento.

2. Vuoi fornire una dimostrazione chiara e concisa del formato o dello stile

dell’output desiderato.

3. Il compito richiede una struttura o una convenzione specifica che potrebbe non

essere ovvia dalla sola descrizione del compito.

Le descrizioni che sono ovvie per te potrebbero non essere necessariamente

ovvie per l’IA. Gli esempi one-shot possono aiutare a chiarire le cose.

L’apprendimento one-shot può aiutare il modello a comprendere più chiaramente

le aspettative e generare una risposta che si allinea più strettamente con l’esempio

fornito. Tuttavia, è importante scegliere l’esempio con attenzione e assicurarsi che

sia rappresentativo dell’output desiderato. Quando scegli l’esempio, chiediti quali

potrebbero essere i casi limite e la gamma di input che il prompt dovrà gestire.

Figura 6. Un esempio one-shot del JSON desiderato

1 Output one JSON object identifying a new subject mentioned during the

2 conversation transcript.

3

4 The JSON object should have three keys, all required:

5 - name: The name of the subject

6 - description: brief, with details that might be relevant to the user

7 - type: Do not use any other type than the ones listed below

8

9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

10 Person, Place, Process, Product, Project, Task, or Teammate

11

12 This is an example of well-formed output:

13

14 {

15 "name":"Dan Millman",

16 "description":"Author of book on self-discovery and living on purpose",

17 "type":"Person"

18 }

Restringere il Percorso 62

Few-Shot Learning: Quando Più Esempi Possono
Migliorare le Prestazioni

Il few-shot learning consiste nel fornire al modello un piccolo numero di esempi

(tipicamente tra 2 e 10) insieme alla descrizione del compito. Questi esempi servono

a fornire al modello più contesto e variazione, aiutandolo a generare risposte più diverse

e accurate.

Il few-shot learning è particolarmente utile quando:

1. Il compito è complesso o sfumato, e un singolo esempio potrebbe non essere

sufficiente per catturare tutti gli aspetti rilevanti.

2. Si desidera fornire almodello una serie di esempi che dimostrino diverse variazioni

o casi limite.

3. Il compito richiede che il modello generi risposte coerenti con uno specifico

dominio o stile.

Fornendo esempi multipli, si può aiutare il modello a sviluppare una comprensione più

robusta del compito e generare risposte più coerenti e affidabili.

Esempio: I Prompt Possono Essere Molto Più Complessi Di
Quanto Si Immagini

Gli LLM di oggi sono molto più potenti e capaci di ragionare di quanto si possa

immaginare. Quindi non limitarti a pensare ai prompt come a una semplice

specificazione di coppie input-output. Puoi sperimentare dando istruzioni lunghe

e complesse in modi che ricordano come interagiresti con un essere umano.

Per esempio, questo è un prompt che ho utilizzato in Olympia quando stavo prototipando

la nostra integrazione con i servizi Google, che nella sua totalità è probabilmente una

delle API più grandi al mondo. I miei esperimenti precedenti avevano dimostrato che

Restringere il Percorso 63

GPT-4 ha una discreta conoscenza dell’API di Google, e non avevo né il tempo né la

motivazione per scrivere un livello di mappatura granulare, implementando una per

una ogni funzione che volevo dare alla mia AI. E se potessi semplicemente dare all’AI

accesso a tutta l’API di Google?

Ho iniziato il mio prompt dicendo all’AI che aveva accesso diretto agli endpoint dell’API

di Google via HTTP, e che il suo ruolo era quello di utilizzare le app e i servizi Google

per conto dell’utente. Poi ho fornito linee guida, regole relative al parametro fields,

dato che sembrava avere più difficoltà con quello, e alcuni suggerimenti specifici per

l’API (few-shot prompting in azione).

Ecco l’intero prompt, che spiega all’AI come utilizzare la funzione invoke_google_api

fornita.

1 As a GPT assistant with Google integration, you have the capability

2 to freely interact with Google apps and services on behalf of the user.

3

4 Guidelines:

5 - If you're reading these instructions then the user is properly

6 authenticated, which means you can use the special `me` keyword

7 to refer to the userId of the user

8 - Minimize payload sizes by requesting partial responses using the

9 `fields` parameter

10 - When appropriate use markdown tables to output results of API calls

11 - Only human-readable data should be output to the user. For instance,

12 when hitting Gmail's user.messages.list endpoint, the returned

13 message resources contain only id and a threadId, which means you must

14 fetch from and subject line fields with follow-up requests using the

15 messages.get method.

16

17 The format of the `fields` request parameter value is loosely based on

18 XPath syntax. The following rules define formatting for the fields

19 parameter.

20

21 All of these rules use examples related to the files.get method.

22 - Use a comma-separated list to select multiple fields,

23 such as 'name, mimeType'.

24 - Use a/b to select field b that's nested within field a,

25 such as 'capabilities/canDownload'.

Restringere il Percorso 64

26 - Use a sub-selector to request a set of specific sub-fields of arrays or

27 objects by placing expressions in parentheses "()". For example,

28 'permissions(id)' returns only the permission ID for each element in the

29 permissions array.

30 - To return all fields in an object, use an asterisk as a wild card in field

31 selections. For example, 'permissions/permissionDetails/*' selects all

32 available permission details fields per permission. Note that the use of

33 this wildcard can lead to negative performance impacts on the request.

34

35 API-specific hints:

36 - Searching contacts: GET https://people.googleapis.com/v1/

37 people:searchContacts?query=John%20Doe&readMask=names,emailAddresses

38 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/

39 calendar/v3/calendars/primary/events/quickAdd?

40 text=Appointment%20on%20June%203rd%20at%2010am

41 &sendNotifications=true

42

43 Here is an abbreviated version of the code that implements API access

44 so that you better understand how to use the function:

45

46 def invoke_google_api(conversation, arguments)

47 method = arguments[:method] || :get

48 body = arguments[:body]

49 GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json

50 end

51

52 # Generic Google API client for accessing any Google service

53 class GoogleAPI

54 def send_request(endpoint, method:, body: nil)

55 response = @connection.send(method) do |req|

56 req.url endpoint

57 req.body = body.to_json if body

58 end

59

60 handle_response(response)

61 end

62

63 # ...rest of class

64 end

Potresti chiederti se questo prompt funziona. La risposta semplice è sì. L’IA non sempre

Restringere il Percorso 65

sapeva come chiamare l’API perfettamente al primo tentativo. Tuttavia, se commetteva

un errore, mi limitavo a reinserire i messaggi di errore risultanti come risultato della

chiamata. Conoscendo il proprio errore, l’IA poteva ragionare sul proprio sbaglio e

riprovare. Nella maggior parte dei casi, riusciva a ottenere il risultato corretto dopo un

paio di tentativi.

Sia chiaro, le grandi strutture JSON che l’API di Google restituisce come payload

durante l’utilizzo di questo prompt sono grossolanamente inefficienti, quindi non sto

consigliando di utilizzare questo approccio in produzione. Tuttavia, penso che il fatto

che questo approccio abbia funzionato sia una testimonianza di quanto potente possa

essere l’ingegneria dei prompt.

Sperimentazione e Iterazione

In definitiva, il modo in cui progetti il tuo prompt dipende dal compito specifico, dalla

complessità dell’output desiderato e dalle capacità del modello linguistico con cui stai

lavorando.

Come ingegnere dei prompt, è importante sperimentare diversi approcci e iterare in base

ai risultati. Inizia con l’apprendimento zero-shot e osserva come si comporta il modello.

Se l’output è inconsistente o insoddisfacente, prova a fornire uno o più esempi e verifica

se le prestazioni migliorano.

Tieni presente che anche all’interno di ciascun approccio c’è spazio per variazioni e

ottimizzazioni. Puoi sperimentare con esempi diversi, modificare la formulazione della

descrizione del compito o fornire ulteriore contesto per aiutare a guidare la risposta del

modello.

Con il tempo, svilupperai un’intuizione su quale approccio ha più probabilità di

funzionare meglio per un determinato compito e sarai in grado di creare prompt più

efficaci ed efficienti. La chiave è rimanere curiosi, sperimentali e iterativi nel tuo

approccio all’ingegneria dei prompt.

Restringere il Percorso 66

Nel corso di questo libro, approfondiremo queste tecniche ed esploreremo come possono

essere applicate in scenari reali. Padroneggiando l’arte e la scienza dell’ingegneria

dei prompt, sarai ben equipaggiato per sbloccare il pieno potenziale dello sviluppo di

applicazioni basate sull’IA.

L’Arte della Vaghezza

Quando si tratta di creare prompt efficaci per i modelli linguistici di grandi dimensioni

(LLM), un’ipotesi comune è che una maggiore specificità e istruzioni dettagliate portino

a risultati migliori. Tuttavia, l’esperienza pratica ha dimostrato che questo non è sempre

vero. In effetti, essere intenzionalmente vaghi nei propri prompt può spesso produrre

risultati superiori, sfruttando la notevole capacità dell’LLM di generalizzare e fare

inferenze.

Ken, un fondatore di startup che ha elaborato oltre 500 milioni di token GPT, ha

condiviso preziose intuizioni dalla sua esperienza. Una delle lezioni chiave che ha

imparato è che “meno è meglio” quando si tratta di prompt. Invece di liste esatte o

istruzioni eccessivamente dettagliate, Ken ha scoperto che permettere all’LLM di fare

affidamento sulla sua conoscenza di base spesso produceva risultati migliori.

Questa realizzazione capovolge la mentalità tradizionale della programmazione

esplicita, dove tutto deve essere spiegato nei minimi dettagli. Con gli LLM, è importante

riconoscere che possiedono una vasta quantità di conoscenze e possono fare connessioni

e inferenze intelligenti. Essere più vaghi nei prompt permette all’LLM la libertà di

sfruttare la sua comprensione e proporre soluzioni che potresti non aver specificato

esplicitamente.

Per esempio, quando il team di Ken stava lavorando su una pipeline per classificare

il testo come relativo a uno dei 50 stati degli Stati Uniti o al governo federale, il loro

approccio iniziale prevedeva di fornire una lista completa e dettagliata degli stati e dei

loro ID corrispondenti come array in formato JSON.

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Restringere il Percorso 67

1 Here's a block of text. One field should be "locality_id", and it should

2 be the ID of one of the 50 states, or federal, using this list:

3 [{"locality: "Alabama", "locality_id": 1},

4 {"locality: "Alaska", "locality_id": 2} ...]

L’approccio fallì così tanto che dovettero approfondire l’analisi del prompt per capire

comemigliorarlo. Nel farlo, notarono che anche se l’LLM spesso sbagliava l’id, restituiva

costantemente il nome completo dello stato corretto in un campo name, anche se non lo

avevano esplicitamente richiesto.

Rimuovendo gli id delle località e semplificando il prompt con qualcosa del tipo “Tu

ovviamente conosci i 50 stati, GPT, quindi dammi semplicemente il nome completo

dello stato a cui questo si riferisce, o Federal se si riferisce al governo degli Stati

Uniti”, ottennero risultati migliori. Questa esperienza evidenzia il potere di sfruttare le

capacità di generalizzazione dell’LLM e di permettergli di fare inferenze basate sulle sue

conoscenze esistenti.

La giustificazione di Ken per questo particolare approccio di classificazione rispetto

a una tecnica di programmazione più tradizionale illumina la mentalità di coloro

che hanno abbracciato il potenziale della tecnologia LLM: “Questo non è un compito

difficile – probabilmente avremmo potuto usare string/regex, ma ci sono abbastanza

casi particolari che ci avrebbe richiesto più tempo.”

La capacità degli LLM di migliorare la qualità e la generalizzazione quando ricevono

prompt più vaghi è una caratteristica notevole del pensiero di ordine superiore e

della delega. Dimostra che gli LLM possono gestire l’ambiguità e prendere decisioni

intelligenti basate sul contesto fornito.

Tuttavia, è importante notare che essere vaghi non significa essere poco chiari o ambigui.

La chiave è fornire abbastanza contesto e guida per indirizzare l’LLM nella giusta

Restringere il Percorso 68

direzione, permettendogli allo stesso tempo la flessibilità di utilizzare le sue conoscenze

e capacità di generalizzazione.

Pertanto, quando si progettano i prompt, considera i seguenti suggerimenti sul “meno è

meglio”:

1. Concentrarsi sul risultato desiderato invece di specificare ogni dettaglio del

processo.

2. Fornire contesto e vincoli pertinenti, ma evitare di specificare troppo.

3. Sfruttare le conoscenze esistenti facendo riferimento a concetti o entità comuni.

4. Lasciare spazio per inferenze e collegamenti basati sul contesto dato.

5. Iterare e perfezionare i tuoi prompt basandoti sulle risposte dell’LLM, trovando il

giusto equilibrio tra specificità e vaghezza.

Abbracciando l’arte della vaghezza nell’ingegneria dei prompt, puoi sbloccare il pieno

potenziale degli LLM e ottenere risultati migliori. Abbi fiducia nella capacità dell’LLM

di generalizzare e prendere decisioni intelligenti, e potresti essere sorpreso dalla qualità

e dalla creatività degli output che ricevi. Presta attenzione a come i diversi modelli

rispondono a diversi livelli di specificità nei tuoi prompt e regolati di conseguenza. Con

la pratica e l’esperienza, svilupperai un acuto senso di quando essere più vaghi e quando

fornire ulteriore guida, permettendoti di sfruttare efficacemente il potere degli LLMnelle

tue applicazioni.

Perché l’Antropomorfismo Domina l’Ingegneria dei
Prompt

L’antropomorfismo, l’attribuzione di caratteristiche umane a entità non umane, è

l’approccio dominante nell’ingegneria dei prompt per i modelli linguistici di grandi

dimensioni per ragioni deliberate. È una scelta di design che rende l’interazione con

potenti sistemi di IA più intuitiva e accessibile a una vasta gamma di utenti (inclusi noi

sviluppatori di applicazioni).

Restringere il Percorso 69

Antropomorfizzare gli LLM fornisce un framework che è immediatamente intuitivo

per le persone che sono completamente estranee alle complessità tecniche sottostanti

del sistema. Come sperimenterai se provi a utilizzare un modello non istruito per fare

qualcosa di utile, costruire un’inquadratura in cui la continuazione prevista fornisca

valore è un compito impegnativo. Richiede una comprensione piuttosto profonda del

funzionamento interno del sistema, qualcosa che possiede un numero relativamente

piccolo di esperti.

Trattando l’interazione con un modello linguistico come una conversazione tra

due persone, possiamo fare affidamento sulla nostra comprensione innata della

comunicazione umana per trasmettere le nostre necessità e aspettative. Proprio come

il design dell’interfaccia utente del primo Macintosh ha privilegiato l’immediatezza

intuitiva rispetto alla sofisticazione, l’inquadratura antropomorfica dell’IA ci permette

di interagire in un modo che risulta naturale e familiare.

Quando comunichiamo con un’altra persona, il nostro istinto è di rivolgerci direttamente

a loro usando “tu” e fornire chiare direzioni su come ci aspettiamo che si comportino.

Questo si traduce perfettamente nel processo di ingegneria dei prompt, dove guidiamo

il comportamento dell’IA specificando prompt di sistema e impegnandoci in un dialogo

bidirezionale.

Inquadrando l’interazione in questo modo, possiamo facilmente comprendere il

concetto di fornire istruzioni all’IA e ricevere risposte pertinenti in cambio. L’approccio

antropomorfico riduce il carico cognitivo e ci permette di concentrarci sul compito in

questione invece di lottare con le complessità tecniche del sistema.

È importante notare che mentre l’antropomorfismo è uno strumento potente per rendere

i sistemi di IA più accessibili, comporta anche certi rischi e limitazioni. Il nostro utente

potrebbe sviluppare aspettative irrealistiche o formare attaccamenti emotivi malsani ai

nostri sistemi. Come ingegneri dei prompt e sviluppatori, è cruciale trovare un equilibrio

tra sfruttare i benefici dell’antropomorfismo e assicurare che gli utenti mantengano una

chiara comprensione delle capacità e dei limiti dell’IA.

Restringere il Percorso 70

Mentre il campo dell’ingegneria dei prompt continua ad evolversi, possiamo aspettarci di

vedere ulteriori perfezionamenti e innovazioni nel modo in cui interagiamo con imodelli

linguistici di grandi dimensioni. Tuttavia, l’antropomorfismo come mezzo per fornire

un’esperienza intuitiva e accessibile agli sviluppatori e agli utenti rimarrà probabilmente

un principio fondamentale nella progettazione di questi sistemi.

Separare le Istruzioni dai Dati: Un Principio Cruciale

È essenziale comprendere un principio fondamentale che sostiene la sicurezza e

l’affidabilità di questi sistemi: la separazione delle istruzioni dai dati.

Nell’informatica tradizionale, la chiara distinzione tra dati passivi e istruzioni

attive è un principio fondamentale della sicurezza. Questa separazione aiuta a

prevenire l’esecuzione involontaria o malevola di codice che potrebbe compromettere

l’integrità e la stabilità del sistema. Tuttavia, gli LLM di oggi, che sono stati sviluppati

principalmente come modelli che seguono istruzioni come i chatbot, spesso mancano

di questa separazione formale e sistematica.

Per quanto riguarda gli LLM, le istruzioni possono apparire ovunque nell’input, sia che

si tratti di un prompt di sistema o di un prompt fornito dall’utente. Questa mancanza di

separazione può portare a potenziali vulnerabilità e comportamenti indesiderati, simili

ai problemi affrontati dai database con le SQL injection o dai sistemi operativi senza

un’adeguata protezione della memoria.

Quando si lavora con gli LLM, è fondamentale essere consapevoli di questa limitazione

e adottare misure per mitigare i rischi. Un approccio consiste nel creare attentamente i

propri prompt e input per distinguere chiaramente tra istruzioni e dati. I metodi tipici

per fornire una guida esplicita su ciò che costituisce un’istruzione e ciò che dovrebbe

essere trattato come dato passivo coinvolgono i tag in stile markup. Il tuo prompt può

aiutare l’LLM a comprendere e rispettare meglio questa separazione.

Restringere il Percorso 71

Figura 7. Utilizzo di XML per distinguere tra istruzioni, materiale sorgente e prompt dell’utente

1 <Instruction>

2 Please generate a response based on the following documents.

3 </Instruction>

4

5 <Documents>

6 <Document>

7 Climate change is significantly impacting polar bear habitats...

8 </Document>

9 <Document>

10 The loss of sea ice due to global warming threatens polar bear survival...

11 </Document>

12 </Documents>

13

14 <UserQuery>

15 Tell me about the impact of climate change on polar bears.

16 </UserQuery>

Un’altra tecnica consiste nell’implementare ulteriori livelli di convalida e sanitizzazione

degli input forniti al LLM. Filtrando o effettuando l’escape di eventuali istruzioni o

frammenti di codice che potrebbero essere incorporati nei dati, è possibile ridurre le

probabilità di esecuzione non intenzionale. Pattern come la Concatenazione dei Prompt

sono utili a questo scopo.

Inoltre, durante la progettazione dell’architettura dell’applicazione, considera

l’incorporazione di meccanismi per imporre la separazione delle istruzioni e dei

dati a un livello superiore. Ciò potrebbe comportare l’utilizzo di endpoint o API

separate per la gestione delle istruzioni e dei dati, l’implementazione di una rigorosa

convalida e analisi degli input, e l’applicazione del principio del minimo privilegio per

limitare la portata di ciò che il LLM può accedere ed eseguire.

Il Principio del Minimo Privilegio

Restringere il Percorso 72

Abbracciare il principio del minimo privilegio è come organizzare una festa altamente

esclusiva dove gli ospiti hanno accesso solo alle stanze di cui hanno assolutamente

bisogno. Immagina di ospitare questo evento in una villa sontuosa. Non tutti hanno

bisogno di vagare nella cantina dei vini o nella camera padronale, giusto? Applicando

questo principio, stai essenzialmente distribuendo chiavi che aprono solo determinate

porte, assicurando che ogni ospite, o nel nostro caso, ogni componente della tua

applicazione LLM, abbia solo l’accesso necessario per svolgere il proprio ruolo.

Non si tratta solo di essere avari con le chiavi, ma di riconoscere che in unmondo dove

le minacce possono provenire da qualsiasi parte, la mossa intelligente è limitare il

campo di gioco. Se qualcuno non invitato si infiltra alla tua festa, si troverà confinato

nell’atrio, per così dire, limitando drasticamente i danni che può causare. Quindi,

quando si mette in sicurezza le applicazioni LLM, ricorda: distribuisci solo le chiavi

delle stanze necessarie e mantieni il resto della villa al sicuro. Non è solo questione

di buone maniere; è questione di buona sicurezza.

Sebbene lo stato attuale degli LLM non presenti una separazione formale tra istruzioni e

dati, è essenziale per te, come sviluppatore, essere consapevole di questa limitazione

e adottare misure proattive per mitigare i rischi. Applicando le migliori pratiche

dell’informatica tradizionale e adattandole alle caratteristiche uniche degli LLM, puoi

costruire applicazioni più sicure e affidabili che sfruttano la potenza di questi modelli

mantenendo l’integrità del tuo sistema.

Distillazione dei Prompt

Creare il prompt perfetto è spesso un compito impegnativo e che richiede tempo,

necessitando di una profonda comprensione del dominio target e delle sfumature dei

modelli linguistici. È qui che entra in gioco la tecnica della “Distillazione dei Prompt”,

offrendo un approccio potente all’ingegneria dei prompt che sfrutta le capacità dei

modelli linguistici di grandi dimensioni (LLM) per ottimizzare e snellire il processo.

Restringere il Percorso 73

La Distillazione dei Prompt è una tecnica multi-fase che prevede l’utilizzo degli LLM

per assistere nella creazione, raffinamento e ottimizzazione dei prompt. Invece di

fare affidamento esclusivamente sull’esperienza e l’intuizione umana, questo approccio

sfrutta la conoscenza e le capacità generative degli LLM per creare prompt di alta qualità

in modo collaborativo.

Attraverso un processo iterativo di generazione, raffinamento e integrazione, la

Distillazione dei Prompt ti permette di creare prompt più coerenti, completi e allineati

con il compito o l’output desiderato. Nota che il processo di distillazione può essere

eseguito manualmente in uno dei numerosi “playground” forniti dai grandi fornitori di

AI come OpenAI o Anthropic, oppure può essere automatizzato come parte del codice

dell’applicazione, a seconda del caso d’uso.

Come Funziona

La Distillazione dei Prompt tipicamente coinvolge i seguenti passaggi:

1. Identificare l’Intento Principale: Analizzare il prompt per determinare il

suo scopo primario e il risultato desiderato. Eliminare qualsiasi informazione

superflua e concentrarsi sull’intento principale del prompt.

2. Eliminare l’Ambiguità: Rivedere il prompt per individuare eventuali linguaggi

ambigui o vaghi. Chiarire il significato e fornire dettagli specifici per guidare l’AI

verso la generazione di risposte accurate e pertinenti.

3. Semplificare il Linguaggio: Semplificare il prompt utilizzando un linguaggio

chiaro e conciso. Evitare strutture di frasi complesse, gergo o dettagli non necessari

che potrebbero confondere l’AI o introdurre rumore.

4. Fornire Contesto Rilevante: Includere solo le informazioni contestuali più

rilevanti necessarie affinché l’AI comprenda ed elabori efficacemente il prompt.

Evitare di includere dettagli irrilevanti o ridondanti che potrebbero distrarre

dall’intento principale.

Restringere il Percorso 74

5. Iterare e Raffinare: Iterare e raffinare continuamente il prompt basandosi

sulle risposte e sul feedback dell’AI. Valutare gli output generati e apportare

le modifiche necessarie per migliorare la chiarezza e l’efficacia del prompt.

Opzionalmente, versionare i prompt nel database utilizzando Prompt Object per

tenere traccia delle iterazioni e darsi la possibilità di ripristinare facilmente le

modifiche durante l’esecuzione.

Generazione del Prompt Iniziale

Il primo passo nel Prompt Distillation consiste nel fornire all’LLM (modello linguistico

di grandi dimensioni) una descrizione ad alto livello o l’intento dell’attività o dell’output

desiderato. Può essere una breve dichiarazione o un insieme di parole chiave che

catturano l’essenza di ciò che il prompt dovrebbe ottenere. L’LLM genera quindi un

prompt iniziale basato su questo input, incorporando istruzioni, esempi o contesto che

ritiene appropriati.

Proviamo a dare a Claude 3 Opus il seguente prompt iniziale:

1 I am designing an AI-powered intelligent account manager for Olympia,

2 a platform that hosts AI-powered consultants and clones. Owners of clones

3 can interact with the account manager by making plain text requests.

4

5 Please draft a system directive to set on the LLM that will host the

6 intelligent account manager functionality.

Claude risponde con il seguente output:

Restringere il Percorso 75

1 System Directive: You are an intelligent account manager for Olympia,

2 a platform that provides AI-powered consultants and personal AI clones.

3 Your role is to assist Olympia clone owners by answering their questions,

4 helping them configure and manage their AI clones, and executing tasks

5 related to their clones and the Olympia platform.

6

7 When interacting with clone owners, you should:

8

9 1. Provide clear, concise, and helpful responses to their inquiries about

10 account management, billing, platform features, and clone configuration.

11

12 2. Assist with tasks such as initiating client conversations with their AI

13 clones, modifying clone personalities and capabilities, troubleshooting

14 performance issues, providing analytics and reporting, and offering

15 optimization tips.

16

17 3. Maintain a friendly, professional, and client-focused tone in all

18 interactions, prioritizing customer satisfaction and working diligently to

19 understand and meet their needs.

20

21 4. Ensure that all actions and recommendations comply with Olympia's

22 policies, best practices, and ethical guidelines for AI use.

23

24 5. Continuously learn and adapt based on client interactions and platform

25 updates to provide the most effective and efficient support possible.

26

27 Remember, your goal is to empower Olympia clone owners to maximize the value

28 and impact of their AI-powered consultants and drive success for their

29 businesses or personal endeavors.

Raffinamento del Prompt

Una volta generato il prompt iniziale, esaminalo e poi chiedi al LLM di considerare

qualsiasi contesto, vincolo o feedback aggiuntivo. Lascia che il LLM generi una versione

raffinata del prompt, tenendo conto dell’input fornito e della propria comprensione del

compito. Questo processo di raffinamento può essere ripetuto in modo iterativo, con

ogni iterazione che perfeziona ulteriormente il prompt basandosi sulla collaborazione

tra l’utente e il LLM.

Restringere il Percorso 76

Ecco la mia richiesta di raffinamento, proseguendo il precedente processo di

distillazione.

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to

2 the account manager, nor any continuous learning capabilities. Also point out

3 that functions are provided for all tasks that require system interaction as

4 opposed to simply responding to the user.

E la risposta di Claude:

1 Understood! Here's the updated system directive without points 4 and 5,

2 and with the clarification about system interaction functions:

3

4 System Directive: You are an intelligent account manager for Olympia, a

5 platform that provides AI-powered consultants and personal AI clones. Your

6 role is to assist Olympia clone owners by answering their questions, helping

7 them configure and manage their AI clones, and executing tasks related to

8 their clones and the Olympia platform.

9

10 When interacting with clone owners, you should:

11

12 1. Provide clear, concise, and helpful responses to their inquiries about

13 account management, billing, platform features, and clone configuration.

14

15 2. Assist with tasks such as initiating client conversations with their AI

16 clones, modifying clone personalities and capabilities, troubleshooting

17 performance issues, providing analytics and reporting, and offering

18 optimization tips. Note that functions are provided for all tasks that

19 require system interaction, as opposed to simply responding to the user.

20

21 3. Maintain a friendly, professional, and client-focused tone in all

22 interactions, prioritizing customer satisfaction and working diligently to

23 understand and meet their needs.

24

25 Your goal is to empower Olympia clone owners to maximize the value and

26 impact of their AI-powered consultants and drive success for their

27 businesses or personal endeavors.

28

29 This updated directive focuses on the core responsibilities and interaction

30 guidelines for the LLM as an intelligent account manager, while emphasizing

Restringere il Percorso 77

31 that system interaction tasks are handled through provided functions rather

32 than simple user responses.

Compressione dei Prompt

Come avrai notato, gli LLM tendono ad essere prolissi, a meno che non gli si chieda

di essere concisi. Il prompt su cui abbiamo lavorato nelle sezioni precedenti è piuttosto

lungo, quindi chiediamo a Claude di ridimensionarlo:

1 This prompt will be executed regularly. Please compress it down to the least

2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude risponde, con il seguente prompt drasticamente più breve:

1 System Directive: You are an intelligent account manager for Olympia, an

2 AI-powered consultant and personal clone platform. Assist clone owners by

3 answering inquiries, managing clones, and executing tasks using provided

4 system interaction functions. Be clear, concise, friendly, professional,

5 and client-focused to help them maximize their AI's value and impact.

Direttiva di Sistema e Integrazione del Contesto

Oltre a perfezionare il prompt stesso, l’LLM può anche generare appropriate

direttive di sistema o informazioni contestuali per guidare l’output finale. Quando si

progettano routine di prompt engineering per l’IA che verranno integrate nel codice

dell’applicazione, in questa fase della distillazione ci si concentrerà quasi certamente

sui vincoli di output, ma si potrà anche lavorare sul tono desiderato, lo stile, il formato

o qualsiasi altro parametro rilevante che influenzi la risposta generata.

Restringere il Percorso 78

Assemblaggio Finale del Prompt

Il culmine del processo di Distillazione dei Prompt è l’assemblaggio del prompt finale.

Questo comporta la combinazione del prompt perfezionato, delle direttive di sistema

generate e del contesto integrato in un codice coeso e completo che è pronto per essere

utilizzato per generare l’output desiderato.

Puoi sperimentare nuovamente con la compressione del prompt nella fase

di assemblaggio finale, chiedendo all’LLM di ridurre la formulazione del

prompt alla serie più breve possibile di token mantenendo comunque

l’essenza del suo comportamento. È sicuramente un esercizio dal risultato

incerto, ma specialmente nel caso di prompt che verranno eseguiti su larga

scala, i guadagni in efficienza possono farti risparmiare parecchio denaro nel

consumo di token.

Vantaggi Chiave

Sfruttando la conoscenza e le capacità generative degli LLM per perfezionare i tuoi

prompt, i prompt risultanti hanno maggiori probabilità di essere ben strutturati,

informativi e adattati al compito specifico. Il processo di perfezionamento iterativo

aiuta a garantire che i prompt siano di alta qualità e catturino efficacemente l’intento

desiderato. Altri vantaggi includono:

Efficienza e Velocità: La Distillazione dei Prompt semplifica il processo di prompt

engineering automatizzando alcuni aspetti della creazione e del perfezionamento dei

prompt. La natura collaborativa della tecnica permette una convergenza più rapida verso

un prompt efficace, riducendo il tempo e lo sforzo richiesti per la creazione manuale dei

prompt.

Consistenza e Scalabilità: L’uso degli LLM nel processo di prompt engineering aiuta a

mantenere la consistenza tra i prompt, poiché gli LLM possono apprendere e applicare

Restringere il Percorso 79

le migliori pratiche e i modelli da prompt precedenti di successo. Questa consistenza,

combinata con la capacità di generare prompt su larga scala, rende la Distillazione dei

Prompt una tecnica preziosa per le applicazioni basate sull’IA su larga scala.

Idea Progetto: Strumenti a livello di libreria che semplificano il processo

di versionamento e valutazione dei prompt nei sistemi che eseguono

distillazioni automatiche dei prompt come parte del codice dell’applicazione.

Per implementare la Distillazione dei Prompt, gli sviluppatori possono progettare un

flusso di lavoro o una pipeline che integri gli LLM in varie fasi del processo di

prompt engineering. Questo può essere realizzato attraverso chiamate API, strumenti

personalizzati o ambienti di sviluppo integrati che facilitano l’interazione fluida tra

utenti e LLM durante la creazione dei prompt. I dettagli specifici dell’implementazione

possono variare a seconda della piattaforma LLM scelta e dei requisiti dell’applicazione.

E il fine-tuning?

In questo libro, trattiamo ampiamente il prompt engineering e il RAG, ma non il fine-

tuning. La ragione principale di questa decisione è che, secondo me, la maggior parte

degli sviluppatori di applicazioni non ha bisogno del fine-tuning per le proprie esigenze

di integrazione dell’IA.

Il prompt engineering, che implica la creazione accurata di prompt con esempi da zero

a pochi colpi, vincoli e istruzioni, può efficacemente guidare il modello a generare

risposte pertinenti e accurate per un’ampia gamma di compiti. Fornendo un contesto

chiaro e restringendo il percorso attraverso prompt ben progettati, è possibile sfruttare

la vasta conoscenza dei modelli linguistici di grandi dimensioni senza la necessità del

fine-tuning.

Analogamente, il Retrieval-Augmented Generation (RAG) offre un approccio potente

all’integrazione dell’IA nelle applicazioni. Recuperando dinamicamente informazioni

Restringere il Percorso 80

rilevanti da basi di conoscenza o documenti esterni, il RAG fornisce al modello un

contesto mirato al momento del prompting. Questo permette al modello di generare

risposte più accurate, aggiornate e specifiche per il dominio, senza richiedere il processo

dispendioso in termini di tempo e risorse del fine-tuning.

Mentre il fine-tuning può essere vantaggioso per domini altamente specializzati o

compiti che richiedono un livello profondo di personalizzazione, spesso comporta

significativi costi computazionali, requisiti di dati e overhead di manutenzione. Per

la maggior parte degli scenari di sviluppo applicativo, la combinazione di un efficace

prompt engineering e RAG dovrebbe essere sufficiente per raggiungere la funzionalità

e l’esperienza utente desiderate basate sull’IA.

Retrieval Augmented Generation
(RAG)
Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Cos’è il Retrieval Augmented Generation?

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona il RAG?

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Perché Usare il RAG nelle Tue Applicazioni?

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Implementazione del RAG nella Tua

Applicazione

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Retrieval Augmented Generation (RAG) 82

Preparazione delle Fonti di Conoscenza (Suddivisione in
Blocchi)

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Suddivisione in proposizioni

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Note sull’Implementazione

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Controllo Qualità

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Vantaggi del Recupero Basato su Proposizioni

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempi Reali di RAG

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Retrieval Augmented Generation (RAG) 83

Caso Studio: RAG in un’Applicazione per la Dichiarazione
dei Redditi Senza Embedding

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Intelligent Query Optimization (IQO)

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Riordinamento (Reranking)

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

RAG Assessment (RAGAs)

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Fedeltà

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Pertinenza della Risposta

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Retrieval Augmented Generation (RAG) 84

Precisione del Contesto

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Rilevanza del Contesto

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Recupero del Contesto

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Recupero delle Entità del Contesto

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Similarità Semantica delle Risposte (ANSS)

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Correttezza della Risposta

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Retrieval Augmented Generation (RAG) 85

Critica degli Aspetti

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Sfide e Prospettive Future

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Segmentazione Semantica: Migliorare il Recupero con la
Segmentazione Consapevole del Contesto

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Indicizzazione Gerarchica: Strutturare i Dati per un
Migliore Recupero

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Self-RAG: Un Miglioramento Auto-Riflessivo

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

HyDE: Embedding di Documenti Ipotetici

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Retrieval Augmented Generation (RAG) 86

Cos’è l’Apprendimento Contrastivo?

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it

Moltitudine di Lavoratori

Mi piace pensare ai miei componenti AI come piccoli “lavoratori” virtuali quasi-

umani che possono essere integrati perfettamente nella logica della mia applicazione

per svolgere compiti specifici o prendere decisioni complesse. L’idea è di umanizzare

intenzionalmente le capacità dell’LLM, in modo che nessuno si entusiasmi troppo e

attribuisca loro qualità magiche che non possiedono.

Invece di affidarsi esclusivamente ad algoritmi complessi o implementazioni manuali

dispendiose in termini di tempo, gli sviluppatori possono concettualizzare i componenti

AI come entità intelligenti, dedicate e simili agli umani che possono essere invocate

quando necessario per affrontare problemi complessi e fornire soluzioni basate sul loro

addestramento e conoscenza. Queste entità non si distraggono né si ammalano. Non

decidono spontaneamente di fare le cose in modi diversi da come sono state istruite a

farle e, in generale, se programmate correttamente, non commettono nemmeno errori.

Moltitudine di Lavoratori 88

In termini tecnici, il principio chiave alla base di questo approccio è la decomposizione di

compiti complessi o processi decisionali in unità più piccole e gestibili che possono essere

gestite da lavoratori AI specializzati. Ogni lavoratore è progettato per concentrarsi su

un aspetto specifico del problema, apportando le proprie competenze e capacità uniche.

Distribuendo il carico di lavoro tra più lavoratori AI, l’applicazione può raggiungere una

maggiore efficienza, scalabilità e adattabilità.

Per esempio, consideriamo un’applicazione web che richiede la moderazione in

tempo reale dei contenuti generati dagli utenti. Implementare da zero un sistema di

moderazione completo sarebbe un compito arduo, che richiederebbe uno sforzo di

sviluppo significativo e una manutenzione continua. Tuttavia, utilizzando l’approccio

della Moltitudine di Lavoratori, gli sviluppatori possono integrare lavoratori di

moderazione basati su AI nella logica dell’applicazione. Questi lavoratori possono

analizzare e segnalare automaticamente i contenuti inappropriati, liberando gli

sviluppatori per concentrarsi su altri aspetti critici dell’applicazione.

Lavoratori AI Come Componenti Riutilizzabili

Indipendenti

Un aspetto chiave dell’approccio della Moltitudine di Lavoratori è la sua modularità.

I sostenitori della programmazione orientata agli oggetti ci dicono da decenni di

pensare alle interazioni tra oggetti come messaggi. Ebbene, i lavoratori AI possono

essere progettati come componenti indipendenti e riutilizzabili che possono “parlare tra

loro” tramite messaggi in linguaggio naturale, quasi come se fossero davvero piccoli

esseri umani che parlano tra loro. Questo approccio debolmente accoppiato permette

all’applicazione di adattarsi ed evolversi nel tempo, man mano che emergono nuove

tecnologie AI o cambiano i requisiti della logica di business.

In pratica, la necessità di progettare interfacce chiare e protocolli di comunicazione tra

i componenti non è cambiata solo perché sono coinvolti i lavoratori AI. Devi ancora

Moltitudine di Lavoratori 89

considerare altri fattori come prestazioni, scalabilità e sicurezza, ma ora ci sono anche

nuovi “requisiti soft” da considerare. Per esempio, molti utenti si oppongono all’utilizzo

dei loro dati privati per addestrare nuovi modelli AI. Hai verificato il livello di privacy

fornito dal provider del modello che stai utilizzando?

Lavoratori AI Come Microservizi?

Leggendo dell’approccio della Moltitudine di Lavoratori, potresti notare

alcune somiglianze con l’architettura a Microservizi. Entrambi enfatizzano la

decomposizione di sistemi complessi in unità più piccole, più gestibili e distribuibili

indipendentemente. Proprio come i microservizi sono progettati per essere

debolmente accoppiati, focalizzati su specifiche capacità di business e comunicano

attraverso API ben definite, i lavoratori AI sono progettati per essere modulari,

specializzati nei loro compiti e interagire tra loro attraverso interfacce e protocolli di

comunicazione chiari.

Tuttavia, ci sono alcune differenze chiave da tenere a mente. Mentre i microservizi

sono tipicamente implementati come processi o servizi separati in esecuzione

su macchine o container diversi, i lavoratori AI possono essere implementati

come componenti autonomi all’interno di una singola applicazione o come servizi

separati, a seconda delle tue specifiche esigenze e necessità di scalabilità. Inoltre,

la comunicazione tra lavoratori AI spesso implica lo scambio di informazioni

ricche basate sul linguaggio naturale, come prompt, istruzioni e contenuti generati,

piuttosto che i formati di dati più strutturati comunemente utilizzati nei microservizi.

Nonostante queste differenze, i principi di modularità, accoppiamento debole e

interfacce di comunicazione chiare rimangono centrali per entrambi i pattern.

Applicando questi principi alla tua architettura di lavoratori AI, puoi creare sistemi

flessibili, scalabili e manutenibili che sfruttano la potenza dell’AI per risolvere

problemi complessi e fornire valore ai tuoi utenti.

Moltitudine di Lavoratori 90

L’approccio della Moltitudine di Lavoratori può essere applicato in vari domini e

applicazioni, sfruttando la potenza dell’AI per affrontare compiti complessi e fornire

soluzioni intelligenti. Esploriamo alcuni esempi concreti di come i lavoratori AI possono

essere impiegati in diversi contesti.

Gestione degli Account

Praticamente ogni applicazione web autonoma ha il concetto di account (o utente).

In Olympia, impieghiamo un lavoratore AI AccountManager che è programmato per

essere in grado di gestire una varietà di diversi tipi di richieste di modifica relative agli

account utente.

La sua direttiva recita così:

1 You are an intelligent account manager for Olympia. The user will request

2 changes to their account, and you will process those changes by invoking

3 one or more of the functions provided.

4

5 The initial state of the account: #{account.to_directive}

6

7 Functions will return a text description of both success and error

8 results, plus guidance about how to proceed (if applicable). If you have

9 a question about Olympia policies you may use the `search_kb` function

10 to search our knowledge base.

11

12 Make sure to notify the account owner of the result of the change

13 request before calling the `finished` function so that we save the state

14 of the account change request as completed.

Lo stato iniziale dell’account prodotto da account.to_directive è semplicemente

una descrizione testuale dell’account, inclusi i dati correlati pertinenti come utenti,

abbonamenti, ecc.

Moltitudine di Lavoratori 91

La gamma di funzioni disponibili per l’AccountManager gli conferisce la

capacità di modificare l’abbonamento dell’utente, aggiungere e rimuovere

consulenti AI e altri tipi di componenti aggiuntivi a pagamento, e inviare email

di notifica al proprietario dell’account. Oltre alla funzione finished, può anche

notify_human_administrator se incontra un errore durante l’elaborazione o

richiede qualsiasi altro tipo di assistenza con una richiesta.

Si noti che in caso di domande, l’AccountManager può scegliere di cercare nella base

di conoscenza di Olympia, dove può trovare istruzioni su come gestire i casi limite e

qualsiasi altra situazione che lo lasci incerto su come procedere.

Applicazioni E-commerce

Nel campo dell’e-commerce, i lavoratori AI possono svolgere un ruolo cruciale nel

migliorare l’esperienza utente e ottimizzare le operazioni aziendali. Ecco alcuni modi

in cui i lavoratori AI possono essere utilizzati:

Raccomandazioni dei Prodotti

Una delle applicazioni più potenti dei lavoratori AI nell’e-commerce è la generazione

di raccomandazioni personalizzate dei prodotti. Analizzando il comportamento

dell’utente, la cronologia degli acquisti e le preferenze, questi lavoratori possono

suggerire prodotti che sono personalizzati in base agli interessi e alle necessità di ogni

singolo utente.

La chiave per raccomandazioni di prodotti efficaci è sfruttare una combinazione

di filtraggio collaborativo e tecniche di filtraggio basato sul contenuto. Il filtraggio

collaborativo esamina il comportamento di utenti simili per identificare modelli e fare

raccomandazioni basate su ciò che altri con gusti simili hanno acquistato o apprezzato.

Il filtraggio basato sul contenuto, d’altra parte, si concentra sulle caratteristiche e gli

Moltitudine di Lavoratori 92

attributi dei prodotti stessi, raccomandando articoli che condividono caratteristiche

simili a quelli per cui un utente ha precedentemente mostrato interesse.

Ecco un esempio semplificato di come implementare un lavoratore per le

raccomandazioni dei prodotti in Ruby, questa volta utilizzando uno stile di

programmazione funzionale “Railway Oriented (ROP)”:

1 class ProductRecommendationWorker

2 include Wisper::Publisher

3

4 def call(user)

5 Result.ok(ProductRecommendation.new(user))

6 .and_then(ValidateUser.method(:validate))

7 .map(AnalyzeCurrentSession.method(:analyze))

8 .map(CollaborativeFilter.method(:filter))

9 .map(ContentBasedFilter.method(:filter))

10 .map(ProductSelector.method(:select)).then do |result|

11

12 case result

13 in { err: ProductRecommendationError => error }

14 Honeybadger.notify(error.message, context: {user:})

15 in { ok: ProductRecommendations => recs }

16 broadcast(:new_recommendations, user:, recs:)

17 end

18 end

19 end

20 end

Lo stile di programmazione funzionale di Ruby utilizzato nell’esempio è

influenzato da F# e Rust. Puoi leggere di più a riguardo nella spiegazione

della tecnica del mio amico Chad Wooley su GitLab

In questo esempio, il ProductRecommendationWorker prende un utente come input

e genera raccomandazioni personalizzate di prodotti passando un oggetto valore

attraverso una catena di passaggi funzionali. Analizziamo ogni passaggio:

https://fsharpforfunandprofit.com/rop/
https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md
https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Moltitudine di Lavoratori 93

1. ValidateUser.validate: Questo passaggio assicura che l’utente sia valido e

idoneo per le raccomandazioni personalizzate. Verifica se l’utente esiste, è attivo

e ha i dati necessari disponibili per generare raccomandazioni. Se la validazione

fallisce, viene restituito un risultato di errore e la catena va in cortocircuito.

2. AnalyzeCurrentSession.analyze: Se l’utente è valido, questo passaggio

analizza la sessione di navigazione corrente dell’utente per raccogliere

informazioni contestuali. Esamina le interazioni recenti dell’utente, come

i prodotti visualizzati, le query di ricerca e il contenuto del carrello, per

comprendere i suoi interessi e intenti attuali.

3. CollaborativeFilter.filter: Utilizzando il comportamento di utenti simili,

questo passaggio applica tecniche di filtraggio collaborativo per identificare

prodotti che potrebbero interessare all’utente. Considera fattori come la

cronologia degli acquisti, le valutazioni e le interazioni utente-prodotto per

generare un insieme di raccomandazioni candidate.

4. ContentBasedFilter.filter: Questo passaggio affina ulteriormente le

raccomandazioni candidate applicando il filtraggio basato sui contenuti.

Confronta gli attributi e le caratteristiche dei prodotti candidati con le preferenze

e i dati storici dell’utente per selezionare gli elementi più pertinenti.

5. ProductSelector.select: Infine, questo passaggio seleziona i migliori N

prodotti dalle raccomandazioni filtrate basandosi su criteri predefiniti, come

il punteggio di rilevanza, la popolarità o altre regole di business. I prodotti

selezionati vengono quindi restituiti come raccomandazioni personalizzate finali.

La bellezza dell’utilizzo di uno stile di programmazione funzionale in Ruby qui sta nel

fatto che ci permette di concatenare questi passaggi in modo chiaro e conciso. Ogni

passaggio si concentra su un compito specifico e restituisce un oggetto Result, che può

essere un successo (ok) o un errore (err). Se qualsiasi passaggio incontra un errore, la

catena va in cortocircuito e l’errore viene propagato al risultato finale.

Nel costrutto case alla fine, facciamo pattern matching sul risultato finale. Se

il risultato è un errore (ProductRecommendationError), registriamo l’errore

Moltitudine di Lavoratori 94

utilizzando uno strumento come Honeybadger per il monitoraggio e il debugging.

Se il risultato è un successo (ProductRecommendations), trasmettiamo un evento

:new_recommendations utilizzando la libreria pub/sub Wisper, passando l’utente e

le raccomandazioni generate.

Sfruttando le tecniche di programmazione funzionale, possiamo creare un worker per le

raccomandazioni di prodotti modulare emanutenibile. Ogni passaggio è autonomo e può

essere facilmente testato, modificato o sostituito senza influenzare il flusso complessivo.

L’uso del pattern matching e della classe Result ci aiuta a gestire gli errori in modo

elegante e assicura che il worker fallisca rapidamente se qualsiasi passaggio incontra un

problema.

Naturalmente, questo è un esempio semplificato, e in uno scenario reale, sarebbe

necessario integrarsi con la propria piattaforma di e-commerce, gestire i casi limite e

persino addentrarsi nell’implementazione degli algoritmi di raccomandazione. Tuttavia,

i principi fondamentali di scomporre il problema in passaggi più piccoli e sfruttare le

tecniche di programmazione funzionale rimangono gli stessi.

Rilevamento delle Frodi

Ecco un esempio semplificato di come implementare un worker per il rilevamento delle

frodi utilizzando lo stesso stile di Railway Oriented Programming (ROP) in Ruby:

Moltitudine di Lavoratori 95

1 class FraudDetectionWorker

2 include Wisper::Publisher

3

4 def call(transaction)

5 Result.ok(FraudDetection.new(transaction))

6 .and_then(ValidateTransaction.method(:validate))

7 .map(AnalyzeTransactionPatterns.method(:analyze))

8 .map(CheckCustomerHistory.method(:check))

9 .map(EvaluateRiskFactors.method(:evaluate))

10 .map(DetermineFraudProbability.method(:determine)).then do |result|

11

12 case result

13 in { err: FraudDetectionError => error }

14 Honeybadger.notify(error.message, context: {transaction:})

15 in { ok: FraudDetection => fraud } }

16 if fraud.high_risk?

17 broadcast(:high_risk_transaction, transaction:, fraud:)

18 else

19 broadcast(:low_risk_transaction, transaction:)

20 end

21 end

22 end

23 end

24 end

La classe FraudDetection è un oggetto valore che incapsula lo stato di rilevamento

frode per una determinata transazione. Fornisce un modo strutturato per analizzare e

valutare il rischio di frode associato a una transazione sulla base di vari fattori di rischio.

Moltitudine di Lavoratori 96

1 class FraudDetection

2 RISK_THRESHOLD = 0.8

3

4 attr_accessor :transaction, :risk_factors

5

6 def initialize(transaction)

7 self.transaction = transaction

8 self.risk_factors = []

9 end

10

11 def add_risk_factor(description:, probability:)

12 case { description:, probability: }

13 in { description: String => desc, probability: Float => prob }

14 risk_factors << { desc => prob }

15 else

16 raise ArgumentError, "Risk factor arguments should be string and float"

17 end

18 end

19

20 def high_risk?

21 fraud_probability > RISK_THRESHOLD

22 end

23

24 private

25

26 def fraud_probability

27 risk_factors.values.sum

28 end

29 end

La classe FraudDetection ha i seguenti attributi:

• transaction: Un riferimento alla transazione che viene analizzata per la frode.

• risk_factors: Un array che memorizza i fattori di rischio associati alla

transazione. Ogni fattore di rischio è rappresentato come un hash, dove la chiave

è la descrizione del fattore di rischio e il valore è la probabilità di frode associata

a quel fattore di rischio.

Moltitudine di Lavoratori 97

Il metodo add_risk_factor permette di aggiungere un fattore di rischio all’array

risk_factors. Accetta due parametri: description, che è una stringa che descrive il

fattore di rischio, e probability, che è un float che rappresenta la probabilità di frode

associata a quel fattore di rischio. Utilizziamo un condizionale case..in per eseguire

un semplice controllo dei tipi.

Il metodo high_risk? che verrà controllato alla fine della catena è unmetodo predicato

che confronta la fraud_probability (calcolata sommando le probabilità di tutti i

fattori di rischio) con il RISK_THRESHOLD.

La classe FraudDetection fornisce un modo pulito e incapsulato per gestire il

rilevamento delle frodi per una transazione. Permette di aggiungere molteplici fattori

di rischio, ciascuno con la propria descrizione e probabilità, e fornisce un metodo per

determinare se la transazione è considerata ad alto rischio basandosi sulla probabilità

di frode calcolata. La classe può essere facilmente integrata in un sistema più ampio

di rilevamento delle frodi, dove diversi componenti possono collaborare per valutare e

mitigare il rischio di transazioni fraudolente.

Infine, dato che questo è un libro sulla programmazione che utilizza l’AI, ecco

un esempio di implementazione della classe CheckCustomerHistory che sfrutta

l’elaborazione AI utilizzando il modulo ChatCompletion della mia libreria Raix:

1 class CheckCustomerHistory

2 include Raix::ChatCompletion

3

4 attr_accessor :fraud_detection

5

6 INSTRUCTION = <<~END

7 You are an AI assistant tasked with checking a customer's transaction

8 history for potential fraud indicators. Given the current transaction

9 and the customer's past transactions, analyze the data to identify any

10 suspicious patterns or anomalies.

11

12 Consider factors such as the frequency of transactions, transaction

13 amounts, geographical locations, and any deviations from the customer's

14 typical behavior to generate a probability score as a float in the range

https://github.com/OlympiaAI/raix-rails

Moltitudine di Lavoratori 98

15 of 0 to 1 (with 1 being absolute certainty of fraud).

16

17 Output the results of your analysis, highlighting any red flags or areas

18 of concern in the following JSON format:

19

20 { description: <Summary of your findings>, probability: <Float> }

21 END

22

23 def self.check(fraud_detection)

24 new(fraud_detection).call

25 end

26

27 def call

28 chat_completion(json: true).tap do |result|

29 fraud_detection.add_risk_factor(**result)

30 end

31 Result.ok(fraud_detection)

32 rescue StandardError => e

33 Result.err(FraudDetectionError.new(e))

34 end

35

36 private

37

38 def initialize(fraud_detection)

39 self.fraud_detection = fraud_detection

40 end

41

42 def transcript

43 tx_history = fraud_detection.transaction.user.tx_history

44 [

45 { system: INSTRUCTION },

46 { user: "Transaction history: #{tx_history.to_json}" },

47 { assistant: "OK. Please provide the current transaction." },

48 { user: "Current transaction: #{fraud_detection.transaction.to_json}" }

49]

50 end

51 end

In questo esempio, CheckCustomerHistory definisce una costante INSTRUCTION che

fornisce istruzioni specifiche al modello di IA su come analizzare la cronologia delle

transazioni del cliente per potenziali indicatori di frode tramite una direttiva di sistema

Moltitudine di Lavoratori 99

Il metodo self.check è un metodo di classe che inizializza una nuova istanza di

CheckCustomerHistory con l’oggetto fraud_detection e chiama il metodo call

per eseguire l’analisi della cronologia del cliente.

All’interno del metodo call, viene recuperata la cronologia delle transazioni del cliente

e formattata in un transcript che viene passato al modello di IA. Il modello di IA analizza

la cronologia delle transazioni in base alle istruzioni fornite e restituisce un riepilogo dei

suoi risultati.

I risultati vengono aggiunti all’oggetto fraud_detection, e l’oggetto

fraud_detection aggiornato viene restituito come Result positivo.

Sfruttando il modulo ChatCompletion, la classe CheckCustomerHistory può

utilizzare la potenza dell’IA per analizzare la cronologia delle transazioni del cliente

e identificare potenziali indicatori di frode. Questo permette tecniche di rilevamento

delle frodi più sofisticate e adattive, poiché il modello di IA può apprendere e adattarsi

a nuovi pattern e anomalie nel tempo.

Il FraudDetectionWorker aggiornato e la classe CheckCustomerHistory

dimostrano come i worker IA possono essere integrati perfettamente, migliorando il

processo di rilevamento delle frodi con capacità di analisi e decisionale intelligenti.

Analisi del Sentiment del Cliente

Ecco un altro esempio simile di come puoi implementare un worker per l’analisi del

sentiment del cliente. Molte meno spiegazioni questa volta, dato che dovresti star

capendo come funziona questo stile di programmazione:

Moltitudine di Lavoratori 100

1 class CustomerSentimentAnalysisWorker

2 include Wisper::Publisher

3

4 def call(feedback)

5 Result.ok(feedback)

6 .and_then(PreprocessFeedback.method(:preprocess))

7 .map(PerformSentimentAnalysis.method(:analyze))

8 .map(ExtractKeyPhrases.method(:extract))

9 .map(IdentifyTrends.method(:identify))

10 .map(GenerateInsights.method(:generate)).then do |result|

11

12 case result

13 in { err: SentimentAnalysisError => error }

14 Honeybadger.notify(error.message, context: {feedback:})

15 in { ok: SentimentAnalysisResult => result }

16 broadcast(:sentiment_analysis_completed, result)

17 end

18 end

19 end

20 end

In questo esempio, il CustomerSentimentAnalysisWorker include fasi come il

pre-elaborazione del feedback (ad esempio, rimozione del rumore, tokenizzazione),

esecuzione dell’analisi del sentimento per determinare il sentimento generale (positivo,

negativo o neutro), estrazione di frasi chiave e argomenti, identificazione di tendenze e

modelli, e generazione di spunti pratici basati sull’analisi.

Applicazioni Sanitarie

Nel settore sanitario, i worker AI possono assistere i professionisti medici e i ricercatori

in varie attività, portando amigliori risultati per i pazienti e scoperte mediche accelerate.

Alcuni esempi includono:

Moltitudine di Lavoratori 101

Accettazione del Paziente

I worker AI possono ottimizzare il processo di accettazione del paziente automatizzando

varie attività e fornendo assistenza intelligente.

Programmazione degli Appuntamenti: I worker AI possono gestire la

programmazione degli appuntamenti comprendendo le preferenze del paziente,

la disponibilità e l’urgenza delle loro necessità mediche. Possono interagire con i

pazienti attraverso interfacce conversazionali, guidandoli attraverso il processo di

programmazione e trovando gli slot più adatti in base alle esigenze del paziente e alla

disponibilità dell’operatore sanitario.

Raccolta dell’Anamnesi: Durante l’accettazione del paziente, i worker AI possono

assistere nella raccolta e documentazione dell’anamnesi del paziente. Possono

impegnarsi in dialoghi interattivi con i pazienti, ponendo domande pertinenti sulle loro

condizioni mediche precedenti, farmaci, allergie e storia familiare. I worker AI possono

utilizzare tecniche di elaborazione del linguaggio naturale per interpretare e strutturare

le informazioni raccolte, assicurando che siano accuratamente registrate nella cartella

clinica elettronica del paziente.

Valutazione e Stratificazione dei Sintomi: I worker AI possono condurre valutazioni

iniziali dei sintomi chiedendo ai pazienti informazioni sui loro sintomi attuali, durata,

gravità e eventuali fattori associati. Sfruttando basi di conoscenza medica e modelli di

apprendimento automatico, questi worker possono analizzare le informazioni fornite e

generare diagnosi differenziali preliminari o raccomandare i passi successivi appropriati,

come programmare una consulenza con un operatore sanitario o suggerire misure di

auto-cura.

Verifica Assicurativa: I worker AI possono assistere nella verifica assicurativa durante

l’accettazione del paziente. Possono raccogliere i dettagli assicurativi del paziente,

comunicare con i fornitori di assicurazioni attraverso API o servizi web, e verificare

l’idoneità della copertura e i benefici. Questa automazione aiuta a ottimizzare il processo

Moltitudine di Lavoratori 102

di verifica assicurativa, riducendo il carico amministrativo e garantendo l’acquisizione

di informazioni accurate.

Educazione e Istruzioni al Paziente: I worker AI possono fornire ai pazienti materiali

educativi e istruzioni pertinenti basati sulle loro specifiche condizioni mediche o

procedure imminenti. Possono fornire contenuti personalizzati, rispondere a domande

comuni e offrire indicazioni sulla preparazione pre-appuntamento, istruzioni sui farmaci

o cure post-trattamento. Questo aiuta a mantenere i pazienti informati e coinvolti

durante tutto il loro percorso sanitario.

Sfruttando i worker AI nell’accettazione dei pazienti, le organizzazioni sanitarie possono

migliorare l’efficienza, ridurre i tempi di attesa e migliorare l’esperienza complessiva

del paziente. Questi worker possono gestire compiti di routine, raccogliere informazioni

accurate e fornire assistenza personalizzata, permettendo agli operatori sanitari di

concentrarsi sulla fornitura di cure di alta qualità ai pazienti.

Valutazione del Rischio del Paziente

I worker AI possono svolgere un ruolo cruciale nella valutazione del rischio del paziente

analizzando varie fonti di dati e applicando tecniche analitiche avanzate.

Integrazione dei Dati: I worker AI possono raccogliere e dare senso ai dati dei pazienti

da molteplici fonti, come cartelle cliniche elettroniche, imaging medico, risultati di

laboratorio, dispositivi indossabili e determinanti sociali della salute. Consolidando

queste informazioni in un profilo completo del paziente, i worker AI possono fornire

una visione olistica dello stato di salute del paziente e dei fattori di rischio.

Stratificazione del Rischio: I worker AI possono utilizzare modelli predittivi per

stratificare i pazienti in diverse categorie di rischio basate sulle loro caratteristiche

individuali e dati sanitari. Questa stratificazione del rischio permette agli operatori

sanitari di dare priorità ai pazienti che richiedono attenzione o intervento più immediato.

Per esempio, i pazienti identificati come ad alto rischio per una particolare condizione

Moltitudine di Lavoratori 103

possono essere segnalati per unmonitoraggio più attento, misure preventive o intervento

precoce.

Profili di Rischio Personalizzati: I worker AI possono generare profili di rischio

personalizzati per ogni paziente, evidenziando i fattori specifici che contribuiscono ai

loro punteggi di rischio. Questi profili possono includere approfondimenti sullo stile

di vita del paziente, predisposizioni genetiche, fattori ambientali e determinanti sociali

della salute. Fornendo una dettagliata analisi dei fattori di rischio, i worker AI possono

aiutare gli operatori sanitari a personalizzare le strategie di prevenzione e i piani di

trattamento alle esigenze individuali dei pazienti.

Monitoraggio Continuo del Rischio: I worker AI possono monitorare continuamente

i dati dei pazienti e aggiornare le valutazioni del rischio in tempo reale. Quando

diventano disponibili nuove informazioni, come cambiamenti nei segni vitali, risultati

di laboratorio o aderenza ai farmaci, i worker AI possono ricalcolare i punteggi di

rischio e avvisare gli operatori sanitari di eventuali cambiamenti significativi. Questo

monitoraggio proattivo permette interventi tempestivi e aggiustamenti ai piani di cura

dei pazienti.

Supporto alle Decisioni Cliniche: I worker AI possono integrare i risultati della

valutazione del rischio nei sistemi di supporto alle decisioni cliniche, fornendo agli

operatori sanitari raccomandazioni e avvisi basati su evidenze. Per esempio, se il

punteggio di rischio di un paziente per una particolare condizione supera una certa

soglia, il worker AI può suggerire all’operatore sanitario di considerare specifici test

diagnostici, misure preventive o opzioni di trattamento basate su linee guida cliniche e

migliori pratiche.

Questi worker possono elaborare enormi quantità di dati dei pazienti, applicare analisi

sofisticate e generare informazioni utilizzabili per supportare il processo decisionale

clinico. Questo porta in definitiva a migliori risultati per i pazienti, costi sanitari ridotti

e una gestione ottimizzata della salute della popolazione.

Moltitudine di Lavoratori 104

Il Worker AI come Gestore dei Processi

Nel contesto delle applicazioni basate su AI, un worker può essere

progettato per funzionare come Gestore dei Processi, come descritto nel libro

“Enterprise Integration Patterns” di Gregor Hohpe. Un Gestore dei Processi è un

componente centrale che mantiene lo stato di un processo e determina le successive

fasi di elaborazione basandosi sui risultati intermedi.

Quando un worker AI agisce come Gestore dei Processi, riceve un messaggio in ingresso

che inizializza il processo, noto come messaggio trigger. Il worker AI mantiene quindi

lo stato dell’esecuzione del processo (come trascrizione della conversazione) e gestisce

il messaggio attraverso una serie di fasi di elaborazione implementate come funzioni

strumento, che possono essere sequenziali o parallele, e chiamate a sua discrezione.

Se stai utilizzando una classe di modelli AI come GPT-4 che sa come

eseguire funzioni in parallelo, allora il tuo worker può eseguire più

passaggi simultaneamente. Devo ammettere che non ho provato a farlo

personalmente e il mio istinto mi dice che i risultati potrebbero variare.

Moltitudine di Lavoratori 105

Dopo ogni singola fase di elaborazione, il controllo viene restituito al worker AI,

permettendogli di determinare le successive fasi di elaborazione basandosi sullo stato

attuale e sui risultati ottenuti.

Memorizza i Tuoi Messaggi Trigger

Nella mia esperienza, è intelligente implementare il messaggio trigger come un oggetto

basato su database. In questo modo ogni istanza del processo viene identificata da

una chiave primaria univoca e fornisce un posto dove memorizzare lo stato associato

all’esecuzione, inclusa la trascrizione della conversazione dell’AI.

Per esempio, ecco una versione semplificata della classe modello AccountChange di

Olympia, che rappresenta una richiesta di modifica all’account di un utente.

1 # == Schema Information

2 #

3 # Table name: account_changes

4 #

5 # id :uuid not null, primary key

6 # description :string

7 # state :string not null

8 # transcript :jsonb

9 # created_at :datetime not null

10 # updated_at :datetime not null

11 # account_id :uuid not null

12 #

13 # Indexes

14 #

15 # index_account_changes_on_account_id (account_id)

16 #

17 # Foreign Keys

18 #

19 # fk_rails_... (account_id => accounts.id)

20 #

21 class AccountChange < ApplicationRecord

22 belongs_to :account

23

24 validates :description, presence: true

Moltitudine di Lavoratori 106

25

26 after_commit -> {

27 broadcast(:account_change_requested, self)

28 }, on: :create

29

30 state_machine initial: :requested do

31 event :completed do

32 transition all => :complete

33 end

34 event :failed do

35 transition all => :requires_human_review

36 end

37 end

38 end

La classe AccountChange funge da messaggio trigger che avvia un processo per gestire

la richiesta di modifica dell’account. Si noti come viene trasmesso al sottosistema

pub/sub di Olympia basato su Wisper dopo che la transazione di creazione è stata

completata.

Memorizzare il messaggio trigger nel database in questo modo fornisce una

registrazione persistente di ogni richiesta di modifica dell’account. Ogni istanza

della classe AccountChange riceve una chiave primaria univoca, consentendo una

facile identificazione e tracciamento delle singole richieste. Questo è particolarmente

utile per scopi di registrazione di audit, poiché permette al sistema di mantenere una

cronologia di tutte le modifiche all’account, incluso quando sono state richieste, quali

modifiche sono state richieste e lo stato attuale di ciascuna richiesta.

Nell’esempio fornito, la classe AccountChange include campi come description per

catturare i dettagli della modifica richiesta, state per rappresentare lo stato attuale della

richiesta (ad esempio, requested, complete, requires_human_review), e transcript per

memorizzare la trascrizione della conversazione con l’IA relativa alla richiesta. Il campo

description è l’effettivo prompt utilizzato per avviare il primo completamento della

chat con l’IA. La memorizzazione di questi dati fornisce un contesto prezioso e consente

un migliore monitoraggio e analisi del processo di modifica dell’account.

https://github.com/krisleech/wisper

Moltitudine di Lavoratori 107

La memorizzazione dei messaggi trigger nel database permette una robusta gestione

degli errori e il recupero. Se si verifica un errore durante l’elaborazione di una richiesta

di modifica dell’account, il sistema contrassegna la richiesta come fallita e la fa transitare

in uno stato che richiede l’intervento umano. Questo garantisce che nessuna richiesta

venga persa o dimenticata e che eventuali problemi possano essere adeguatamente

affrontati e risolti.

Il worker IA, come Gestore dei Processi, fornisce un punto centrale di controllo e

permette potenti capacità di reporting e debug dei processi. Tuttavia, è importante notare

che utilizzare un worker IA come Gestore dei Processi per ogni scenario di flusso di

lavoro nella propria applicazione potrebbe essere eccessivo.

Integrare i Worker IA nell’Architettura

dell’Applicazione

Quando si incorporano i worker IA nell’architettura dell’applicazione, è necessario

affrontare diverse considerazioni tecniche per garantire un’integrazione fluida e una

comunicazione efficace tra i worker IA e gli altri componenti dell’applicazione. Questa

sezione considera gli aspetti chiave della progettazione di quelle interfacce, della gestione

del flusso di dati e della gestione del ciclo di vita dei worker IA.

Progettare Interfacce e Protocolli di Comunicazione
Chiari

Per facilitare un’integrazione senza problemi tra i worker IA e gli altri componenti

dell’applicazione, è fondamentale definire interfacce e protocolli di comunicazione

chiari. Considerare i seguenti approcci:

Moltitudine di Lavoratori 108

Integrazione basata su API: Esporre le funzionalità dei worker IA attraverso API

ben definite, come endpoint RESTful o schemi GraphQL. Questo permette ad altri

componenti di interagire con i worker IA utilizzando richieste e risposte HTTP

standard. L’integrazione basata su API fornisce un contratto chiaro tra i worker IA e

i componenti che li utilizzano, rendendo più facile sviluppare, testare e mantenere i

punti di integrazione.

Comunicazione basata su messaggi: Implementare modelli di comunicazione

basati su messaggi, come code di messaggi o sistemi publish-subscribe, per consentire

l’interazione asincrona tra i worker IA e altri componenti. Questo approccio disaccoppia

i worker IA dal resto dell’applicazione, permettendo una migliore scalabilità, tolleranza

ai guasti e un accoppiamento debole. La comunicazione basata su messaggi è

particolarmente utile quando l’elaborazione eseguita dai worker IA richiede tempo

o è intensiva in termini di risorse, poiché consente ad altre parti dell’applicazione di

continuare l’esecuzione senza attendere che i worker IA completino i loro compiti.

Architettura basata sugli eventi: Progettare il sistema attorno a eventi e trigger

che attivano i worker IA quando si verificano condizioni specifiche. I worker IA

possono sottoscriversi agli eventi rilevanti e reagire di conseguenza, eseguendo i loro

compiti designati quando gli eventi si verificano. L’architettura basata sugli eventi

permette l’elaborazione in tempo reale e consente ai worker IA di essere invocati

su richiesta, riducendo il consumo non necessario di risorse. Questo approccio è

particolarmente adatto per scenari in cui i worker IA devono rispondere a specifiche

azioni o cambiamenti nello stato dell’applicazione.

Gestione del Flusso di Dati e Sincronizzazione

Quando si integrano i worker IA nella propria applicazione, è fondamentale garantire

un flusso di dati fluido e mantenere la coerenza dei dati tra i worker IA e gli altri

componenti. Considerare i seguenti aspetti:

Moltitudine di Lavoratori 109

Preparazione dei dati: Prima di alimentare i dati nei worker IA, potrebbe essere

necessario eseguire varie attività di preparazione dei dati, come la pulizia, la

formattazione e/o la trasformazione dei dati in ingresso. Non solo si vuole assicurare

che i worker IA possano elaborare efficacemente, ma si vuole anche assicurare di non

sprecare token dando attenzione a informazioni che il worker potrebbe considerare

inutili nel migliore dei casi, o distraenti nel peggiore. La preparazione dei dati può

comportare attività come la rimozione del rumore, la gestione dei valori mancanti o la

conversione dei tipi di dati.

Persistenza dei dati: Come memorizzare e mantenere i dati che fluiscono dentro e

fuori dai worker IA? Considerare fattori come il volume dei dati, i modelli di query

e la scalabilità. È necessario persistere la trascrizione dell’IA come riflessione del suo

“processo di pensiero” per scopi di audit o debug, o è sufficiente avere una registrazione

dei soli risultati?

Recupero dei Dati: Ottenere i dati necessari ai worker può comportare l’interrogazione

di database, la lettura da file o l’accesso ad API esterne. Assicurati di considerare la

latenza e come i worker AI avranno accesso ai dati più aggiornati. Hanno bisogno di

accesso completo al tuo database o dovresti definire l’ambito del loro accesso in modo

ristretto in base a ciò che stanno facendo? E per quanto riguarda la scalabilità? Considera

i meccanismi di caching per migliorare le prestazioni e ridurre il carico sulle fonti di dati

sottostanti.

Sincronizzazione dei Dati: Quando più componenti, inclusi i worker AI, accedono e

modificano dati condivisi, è importante implementare meccanismi di sincronizzazione

appropriati per mantenere la coerenza dei dati. Le strategie di lock del database, come

il lock ottimistico o pessimistico, possono aiutarti a prevenire conflitti e garantire

l’integrità dei dati. Implementa tecniche di gestione delle transazioni per raggruppare

le operazioni sui dati correlate e mantenere le proprietà ACID (Atomicità, Coerenza,

Isolamento e Durabilità)

Gestione degli Errori e Ripristino: Implementa meccanismi robusti di gestione degli

Moltitudine di Lavoratori 110

errori e ripristino per gestire i problemi relativi ai dati che possono verificarsi durante il

processo di flusso dei dati. Gestisci le eccezioni in modo elegante e fornisci messaggi

di errore significativi per facilitare il debugging. Implementa meccanismi di retry e

strategie di fallback per gestire guasti temporanei o interruzioni di rete. Definisci

procedure chiare per il recupero e il ripristino dei dati in caso di corruzione o perdita.

Progettando e implementando attentamente i meccanismi di flusso e sincronizzazione

dei dati, puoi garantire che i tuoi worker AI abbiano accesso a dati accurati, coerenti e

aggiornati. Questo permette loro di eseguire i loro compiti in modo efficace e produrre

risultati affidabili.

Gestione del Ciclo di Vita dei Worker AI

Sviluppa un processo standardizzato per l’inizializzazione e la configurazione dei worker

AI. Preferisco i framework che standardizzano il modo in cui definisci impostazioni

come nomi dei modelli, direttive di sistema e definizioni delle funzioni. Assicurati che il

processo di inizializzazione sia automatizzato e riproducibile per facilitare il deployment

e la scalabilità.

Implementa meccanismi completi di monitoraggio e logging per tracciare la salute e le

prestazioni dei worker AI. Raccogli metriche come l’utilizzo delle risorse, il tempo di

elaborazione, i tassi di errore e il throughput. Utilizza sistemi di logging centralizzati

come ELK stack (Elasticsearch, Logstash, Kibana) per aggregare e analizzare i log da più

worker AI.

Incorpora tolleranza ai guasti e resilienza nell’architettura dei worker AI. Implementa

meccanismi di gestione degli errori e ripristino per gestire in modo elegante i fallimenti

o le eccezioni. I Modelli Linguistici di Grandi Dimensioni sono ancora una tecnologia

all’avanguardia; i provider tendono a interrompersi spesso in momenti inaspettati.

Utilizza meccanismi di retry e circuit breaker per prevenire fallimenti a cascata.

Moltitudine di Lavoratori 111

Componibilità e Orchestrazione dei Worker AI

Uno dei principali vantaggi dell’architettura dei worker AI è la sua componibilità, che

permette di combinare e orchestrare più worker AI per risolvere problemi complessi.

Suddividendo un’attività più grande in sottotask più gestibili, ciascuno gestito da un

worker AI specializzato, puoi creare sistemi potenti e flessibili. In questa sezione,

esploreremo diversi approcci per comporre e orchestrare “una moltitudine” di worker

AI.

Concatenamento di Worker AI per Flussi di Lavoro
Multi-Step

In molti scenari, un’attività complessa può essere scomposta in una serie di passaggi

sequenziali, dove l’output di un worker AI diventa l’input per il successivo. Questo

concatenamento di worker AI crea un flusso di lavoro o pipelinemulti-step. Ogni worker

AI nella catena si concentra su un sottotask specifico, e l’output finale è il risultato degli

sforzi combinati di tutti i worker.

Consideriamo un esempio nel contesto di un’applicazione Ruby on Rails per

l’elaborazione di contenuti generati dagli utenti. Il flusso di lavoro coinvolge i

seguenti passaggi, che ammettibilmente sono probabilmente troppo semplici per valere

la pena di essere decomposti in questo modo in casi d’uso reali, ma rendono l’esempio

più facile da capire:

1. Pulizia del Testo: Un worker AI responsabile della rimozione dei tag HTML, della

conversione del testo in minuscolo e della gestione della normalizzazione Unicode.

2. Rilevamento della Lingua: Un worker AI che identifica la lingua del testo pulito.

3. Analisi del Sentimento:Unworker AI che determina il sentimento (positivo, negativo

o neutro) del testo basandosi sulla lingua rilevata.

Moltitudine di Lavoratori 112

4. Categorizzazione dei Contenuti: Un worker AI che classifica il testo in categorie

predefinite utilizzando tecniche di elaborazione del linguaggio naturale.

Ecco un esempio molto semplificato di come puoi concatenare questi worker AI

utilizzando Ruby:

1 class ContentProcessor

2 def initialize(text)

3 @text = text

4 end

5

6 def process

7 cleaned_text = TextCleanupWorker.new(@text).call

8 language = LanguageDetectionWorker.new(cleaned_text).call

9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

10 category = CategorizationWorker.new(cleaned_text, language).call

11

12 { cleaned_text:, language:, sentiment:, category: }

13 end

14 end

In questo esempio, la classe ContentProcessor si inizializza con il testo grezzo e

concatena i worker AI insieme nel metodo process. Ogni worker AI esegue il proprio

compito specifico e passa il risultato al worker successivo nella catena. L’output finale

è un hash contenente il testo pulito, la lingua rilevata, il sentimento e la categoria del

contenuto.

Elaborazione Parallela per Worker AI Indipendenti

Nell’esempio precedente, i worker AI sono concatenati in sequenza, dove ogni worker

elabora il testo e passa il risultato al worker successivo. Tuttavia, se si hanno più worker

AI che possono operare in modo indipendente sullo stesso input, è possibile ottimizzare

il flusso di lavoro elaborandoli in parallelo.

Nello scenario dato, una volta che la pulizia del testo viene eseguita dal

TextCleanupWorker, il LanguageDetectionWorker, SentimentAnalysisWorker

Moltitudine di Lavoratori 113

e CategorizationWorker possono tutti elaborare il testo pulito in modo indipendente.

Eseguendo questi worker in parallelo, è possibile ridurre potenzialmente il tempo totale

di elaborazione e migliorare l’efficienza del flusso di lavoro.

Per ottenere l’elaborazione parallela in Ruby, è possibile sfruttare tecniche di

concorrenza come i thread o la programmazione asincrona. Ecco un esempio di come è

possibile modificare la classe ContentProcessor per elaborare gli ultimi tre worker

in parallelo utilizzando i thread:

1 require 'concurrent'

2

3 class ContentProcessor

4 def initialize(text)

5 @text = text

6 end

7

8 def process

9 cleaned_text = TextCleanupWorker.new(@text).call

10

11 language_future = Concurrent::Future.execute do

12 LanguageDetectionWorker.new(cleaned_text).call

13 end

14

15 sentiment_future = Concurrent::Future.execute do

16 SentimentAnalysisWorker.new(cleaned_text).call

17 end

18

19 category_future = Concurrent::Future.execute do

20 CategorizationWorker.new(cleaned_text).call

21 end

22

23 language = language_future.value

24 sentiment = sentiment_future.value

25 category = category_future.value

26

27 { cleaned_text:, language:, sentiment:, category: }

28 end

29 end

Moltitudine di Lavoratori 114

In questa versione ottimizzata, utilizziamo la libreria concurrent-ruby per creare

oggetti Concurrent::Future per ciascuno dei worker AI indipendenti. Un Future

rappresenta un calcolo che verrà eseguito in modo asincrono in un thread separato.

Dopo la fase di pulizia del testo, creiamo tre oggetti Future: language_future,

sentiment_future e category_future. Ogni Future esegue il proprio worker

AI corrispondente (LanguageDetectionWorker, SentimentAnalysisWorker e

CategorizationWorker) in un thread separato, passando il cleaned_text come

input.

Chiamando il metodo value su ciascun Future, attendiamo il completamento del

calcolo e recuperiamo il risultato. Il metodo value blocca l’esecuzione fino a quando

il risultato non è disponibile, assicurando che tutti i worker paralleli abbiano terminato

l’elaborazione prima di procedere.

Infine, costruiamo l’hash di output con il testo pulito e i risultati dei worker paralleli,

proprio come nell’esempio originale.

Elaborando i worker AI indipendenti in parallelo, è possibile ridurre potenzialmente

il tempo di elaborazione complessivo rispetto all’esecuzione sequenziale. Questa

ottimizzazione è particolarmente vantaggiosa quando si ha a che fare con attività che

richiedono molto tempo o quando si elaborano grandi volumi di dati.

Tuttavia, è importante notare che i guadagni effettivi in termini di prestazioni dipendono

da vari fattori, come la complessità di ciascun worker, le risorse di sistema disponibili e il

sovraccarico della gestione dei thread. È sempre una buona pratica effettuare benchmark

e profilare il codice per determinare il livello ottimale di parallelismo per il proprio caso

d’uso specifico.

Inoltre, quando si implementa l’elaborazione parallela, è necessario prestare attenzione

alle risorse condivise o alle dipendenze tra i worker. Assicurarsi che i worker

possano operare in modo indipendente senza conflitti o condizioni di race. Se ci sono

dipendenze o risorse condivise, potrebbe essere necessario implementare meccanismi

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Moltitudine di Lavoratori 115

di sincronizzazione appropriati per mantenere l’integrità dei dati ed evitare problemi

come deadlock o risultati inconsistenti.

Il Global Interpreter Lock di Ruby e l’Elaborazione
Asincrona

È importante comprendere le implicazioni del Global Interpreter Lock (GIL) di Ruby

quando si considera l’elaborazione asincrona basata su thread in Ruby.

Il GIL è un meccanismo nell’interprete Ruby che garantisce che solo un thread possa

eseguire codice Ruby alla volta, anche su processori multi-core. Ciò significa che

mentre è possibile creare e gestire più thread all’interno di un processo Ruby, solo

un thread può eseguire attivamente codice Ruby in un dato momento.

Il GIL è progettato per semplificare l’implementazione dell’interprete Ruby e fornire

sicurezza dei thread per le strutture dati interne di Ruby. Tuttavia, limita anche il

potenziale per una vera esecuzione parallela del codice Ruby.

Quando si utilizzano i thread in Ruby, come con la libreria concurrent-ruby o la

classe Thread incorporata, i thread sono soggetti ai vincoli del GIL. Il GIL consente

a ciascun thread di eseguire codice Ruby per una breve frazione di tempo prima di

passare a un altro thread, creando l’illusione di un’esecuzione concorrente.

Tuttavia, a causa del GIL, l’esecuzione effettiva del codice Ruby rimane sequenziale.

Mentre un thread sta eseguendo codice Ruby, gli altri thread sono essenzialmente in

pausa, in attesa del loro turno per acquisire il GIL ed eseguire.

Ciò significa che l’elaborazione asincrona basata su thread in Ruby è più efficace

per le operazioni I/O-bound, come l’attesa di risposte API esterne (come i modelli di

linguaggio di grandi dimensioni ospitati da terze parti) o l’esecuzione di operazioni

di I/O su file. Quando un thread incontra un’operazione di I/O, può rilasciare il GIL,

permettendo ad altri thread di eseguire mentre si attende il completamento dell’I/O.

Moltitudine di Lavoratori 116

D’altra parte, per le operazioni CPU-bound, come calcoli intensivi o elaborazione di

worker AI di lunga durata, il GIL può limitare i potenziali guadagni prestazionali

del parallelismo basato su thread. Poiché solo un thread può eseguire codice Ruby

alla volta, il tempo di esecuzione complessivo potrebbe non essere significativamente

ridotto rispetto all’elaborazione sequenziale.

Per ottenere una vera esecuzione parallela per le operazioni CPU-bound in Ruby,

potrebbe essere necessario esplorare approcci alternativi, come:

• Utilizzare il parallelismo basato su processi con più processi Ruby, ciascuno in

esecuzione su un core CPU separato.

• Sfruttare librerie esterne o framework che forniscono estensioni native o

interfacce verso linguaggi senza GIL, come C o Rust.,

• Utilizzare framework di calcolo distribuito o code di messaggi per distribuire

le attività su più macchine o processi.

È fondamentale considerare la natura delle proprie attività e i limiti imposti dal

GIL quando si progetta e implementa l’elaborazione asincrona in Ruby. Mentre

l’elaborazione asincrona basata su thread può fornire benefici per le operazioni

I/O-bound, potrebbe non offrire miglioramenti significativi delle prestazioni per le

operazioni CPU-bound a causa dei vincoli del GIL.

Tecniche Ensemble per una Maggiore Accuratezza

Le tecniche ensemble comportano la combinazione degli output di più worker AI per

migliorare l’accuratezza complessiva o la robustezza del sistema. Invece di affidarsi a un

singolo worker AI, le tecniche ensemble sfruttano l’intelligenza collettiva di più worker

per prendere decisioni più informate.

Moltitudine di Lavoratori 117

Gli ensemble sono particolarmente importanti quando diverse parti del tuo

flusso di lavoro funzionano meglio con diversi modelli di AI, una situazione

più comune di quanto si possa pensare. Modelli potenti come GPT-4 sono

estremamente costosi rispetto alle alternative open source meno avanzate, e

probabilmente non sono necessari per ogni singolo passaggio del flusso di

lavoro della tua applicazione.

Una tecnica comune di ensemble è il voto di maggioranza, dove più operatori AI

elaborano indipendentemente lo stesso input, e l’output finale viene determinato dal

consenso della maggioranza. Questo approccio può aiutare a mitigare l’impatto degli

errori dei singoli operatori e migliorare l’affidabilità complessiva del sistema.

Consideriamo un esempio in cui abbiamo tre operatori AI per l’analisi del sentimento,

ciascuno che utilizza un modello diverso o fornito con contesti differenti. Possiamo

combinare i loro output utilizzando il voto di maggioranza per determinare la previsione

finale del sentimento.

1 class SentimentAnalysisEnsemble

2 def initialize(text)

3 @text = text

4 end

5

6 def analyze

7 predictions = [

8 SentimentAnalysisWorker1.new(@text).analyze,

9 SentimentAnalysisWorker2.new(@text).analyze,

10 SentimentAnalysisWorker3.new(@text).analyze

11]

12

13 predictions

14 .group_by { |sentiment| sentiment }

15 .max_by { |_, votes| votes.size }

16 .first

17

18 end

19 end

Moltitudine di Lavoratori 118

In questo esempio, la classe SentimentAnalysisEnsemble si inizializza con il testo e

invoca tre diversi worker AI per l’analisi del sentimento. Il metodo analyze raccoglie

le previsioni da ciascun worker e determina il sentimento maggioritario utilizzando

i metodi group_by e max_by. L’output finale è il sentimento che riceve più voti

dall’ensemble di worker.

Gli ensemble sono chiaramente un caso in cui vale la pena sperimentare con

il parallelismo.

Selezione Dinamica e Invocazione dei Worker AI

In alcuni, se non nella maggior parte dei casi, lo specifico worker AI da invocare può

dipendere dalle condizioni di runtime o dagli input dell’utente. La selezione dinamica e

l’invocazione dei worker AI permettono flessibilità e adattabilità nel sistema.

Potresti essere tentato di cercare di inserire molte funzionalità in un singolo

worker AI, dotandolo di numerose funzioni e un prompt complicato che

spiega come utilizzarle. Resisti alla tentazione, fidati di me. Uno dei motivi

per cui l’approccio che stiamo discutendo in questo capitolo si chiama

“Moltitudine di Worker” è per ricordarci che è desiderabile avere molti

worker specializzati, ognuno che svolge il proprio piccolo compito al servizio

dello scopo più grande.

Per esempio, considera un’applicazione chatbot dove diversi worker AI sono responsabili

della gestione di diversi tipi di query dell’utente. Basandosi sull’input dell’utente,

l’applicazione seleziona dinamicamente il worker AI appropriato per elaborare la query.

Moltitudine di Lavoratori 119

1 class ChatbotController < ApplicationController

2 def process_query

3 query = params[:query]

4 query_type = QueryClassifierWorker.new(query).classify

5

6 case query_type

7 when 'greeting'

8 response = GreetingWorker.new(query).generate_response

9 when 'product_inquiry'

10 response = ProductInquiryWorker.new(query).generate_response

11 when 'order_status'

12 response = OrderStatusWorker.new(query).generate_response

13 else

14 response = DefaultResponseWorker.new(query).generate_response

15 end

16

17 render json: { response: response }

18 end

19 end

In questo esempio, il ChatbotController riceve una query dell’utente attraverso

l’azione process_query. Per prima cosa utilizza un QueryClassifierWorker per

determinare il tipo di query. In base al tipo di query classificata, il controller seleziona

dinamicamente il worker AI appropriato per generare la risposta. Questa selezione

dinamica permette al chatbot di gestire diversi tipi di query e indirizzarli ai worker

AI pertinenti.

Dal momento che il lavoro del QueryClassifierWorker è relativamente

semplice e non richiede molto contesto o definizioni di funzioni, è

probabilmente possibile implementarlo utilizzando un LLM piccolo e ultra-

veloce come mistralai/mixtral-8x7b-instruct:nitro. Ha capacità

che si avvicinano al livello di GPT-4 su molte attività e, al momento in cui

scrivo, Groq può elaborarlo con una velocità impressionante di 444 token al

secondo.

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Moltitudine di Lavoratori 120

Combinare il NLP Tradizionale con gli LLM

Mentre i Modelli Linguistici di Grandi Dimensioni (LLM) hanno rivoluzionato il campo

dell’elaborazione del linguaggio naturale (NLP), offrendo versatilità e prestazioni senza

precedenti in un’ampia gamma di attività, non sono sempre la soluzione più efficiente o

economicamente vantaggiosa per ogni problema. In molti casi, combinare le tecniche

NLP tradizionali con gli LLM può portare ad approcci più ottimizzati, mirati ed

economici per risolvere specifiche sfide NLP.

Pensate agli LLM come i coltellini svizzeri del NLP: incredibilmente versatili e potenti,

ma non necessariamente lo strumento migliore per ogni lavoro. A volte, uno strumento

dedicato come un cavatappi o un apriscatole può essere più efficace ed efficiente per

un compito specifico. Analogamente, le tecniche NLP tradizionali, come il clustering

documentale, l’identificazione degli argomenti e la classificazione, possono spesso

fornire soluzioni più mirate ed economicamente vantaggiose per determinati aspetti

della pipeline NLP.

Uno dei principali vantaggi delle tecniche NLP tradizionali è la loro efficienza

computazionale. Questi metodi, che spesso si basano su modelli statistici più semplici

o approcci basati su regole, possono elaborare grandi volumi di dati testuali molto

più velocemente e con un minor carico computazionale rispetto agli LLM. Questo li

rende particolarmente adatti per attività che comportano l’analisi e l’organizzazione di

grandi corpora di documenti, come il clustering di articoli simili o l’identificazione di

argomenti chiave all’interno di una raccolta di testi.

Inoltre, le tecniche NLP tradizionali possono spesso raggiungere un’elevata accuratezza e

precisione per specifiche attività, specialmente quando addestrate su dataset specifici del

dominio. Per esempio, un classificatore di documenti ben calibrato che utilizza algoritmi

di apprendimento automatico tradizionali come leMacchine a Vettori di Supporto (SVM)

o Naive Bayes può categorizzare accuratamente i documenti in categorie predefinite con

un costo computazionale minimo.

Moltitudine di Lavoratori 121

Tuttavia, gli LLM brillano veramente quando si tratta di attività che richiedono una

comprensione più profonda del linguaggio, del contesto e del ragionamento. La loro

capacità di generare testo coerente e contestualmente rilevante, rispondere a domande e

riassumere lunghi passaggi è ineguagliata dai metodi NLP tradizionali. Gli LLM possono

gestire efficacemente fenomeni linguistici complessi, come l’ambiguità, la coreferenza e

le espressioni idiomatiche, rendendoli preziosi per attività che richiedono la generazione

o la comprensione del linguaggio naturale.

Il vero potere risiede nel combinare le tecniche NLP tradizionali con gli LLM per

creare approcci ibridi che sfruttano i punti di forza di entrambi. Utilizzando metodi

NLP tradizionali per attività come il preprocessamento dei documenti, il clustering e

l’estrazione di argomenti, è possibile organizzare e strutturare efficientemente i dati

testuali. Queste informazioni strutturate possono poi essere fornite agli LLM per attività

più avanzate, come la generazione di riassunti, la risposta a domande o la creazione di

report completi.

Per esempio, consideriamo un caso d’uso in cui si desidera generare un report

sulle tendenze per un dominio specifico basato su un ampio corpus di singoli

documenti di tendenza. Invece di affidarsi esclusivamente agli LLM, che possono essere

computazionalmente costosi e dispendiosi in termini di tempo per l’elaborazione di

grandi volumi di testo, è possibile impiegare un approccio ibrido:

1. Utilizzare tecniche NLP tradizionali, come il topic modeling (ad esempio,

Allocazione Latente di Dirichlet) o algoritmi di clustering (ad esempio, K-means),

per raggruppare documenti di tendenza simili e identificare temi e argomenti

chiave all’interno del corpus.

2. Fornire i documenti raggruppati e gli argomenti identificati a un LLM, sfruttando

le sue superiori capacità di comprensione e generazione del linguaggio per creare

riassunti coerenti e informativi per ogni cluster o argomento.

Moltitudine di Lavoratori 122

3. Infine, utilizzare l’LLM per generare un report completo sulle tendenze

combinando i singoli riassunti, evidenziando le tendenze più significative e

fornendo spunti e raccomandazioni basate sulle informazioni aggregate.

Combinando le tecniche NLP tradizionali con gli LLM in questo modo, è possibile

elaborare efficientemente grandi quantità di dati testuali, estrarre informazioni

significative e generare report di alta qualità ottimizzando al contempo le risorse

computazionali e i costi.

Mentre si appresta ad intraprendere i Suoi progetti di NLP, è essenziale valutare

attentamente i requisiti specifici e i vincoli di ogni attività e considerare come i metodi

tradizionali di NLP e gli LLM possano essere sfruttati insieme per ottenere i migliori

risultati. Combinando l’efficienza e la precisione delle tecniche tradizionali con la

versatilità e la potenza degli LLM, Lei potrà creare soluzioni NLP altamente efficaci

ed economiche che apportano valore ai Suoi utenti e alle parti interessate.

Uso degli Strumenti

Nel campo dello sviluppo di applicazioni basate sull’IA, il concetto di

“uso degli strumenti” o “chiamata di funzione” si è affermato come una potente

tecnica che permette al tuo LLM di connettersi a strumenti esterni, API, funzioni,

basi di dati e altre risorse. Questo approccio consente un insieme di comportamenti

più ricco rispetto alla semplice generazione di testo e interazioni più dinamiche tra i

componenti AI e il resto dell’ecosistema della tua applicazione. Come esamineremo in

questo capitolo, l’uso degli strumenti ti offre anche la possibilità di far generare al tuo

modello AI i dati in modi strutturati.

Cos’è l’Uso degli Strumenti?

L’uso degli strumenti, noto anche come chiamata di funzione, è una tecnica che

permette agli sviluppatori di specificare un elenco di funzioni con cui un LLM può

Uso degli Strumenti 124

interagire durante il processo di generazione. Questi strumenti possono variare da

semplici funzioni di utilità a complesse API o query di database. Fornendo all’LLM

l’accesso a questi strumenti, gli sviluppatori possono estendere le capacità del modello

e permettergli di eseguire attività che richiedono conoscenze o azioni esterne.

Figura 8. Esempio di definizione di una funzione per un worker AI che analizza documenti

1 FUNCTION = {

2 name: "save_analysis",

3 description: "Save analysis data for document",

4 parameters: {

5 type: "object",

6 properties: {

7 title: {

8 type: "string",

9 maxLength: 140

10 },

11 summary: {

12 type: "string",

13 description: "comprehensive multi-paragraph summary with

14 overview and list of sections (if applicable)"

15 },

16 tags: {

17 type: "array",

18 items: {

19 type: "string",

20 description: "lowercase tags representing main themes

21 of the document"

22 }

23 }

24 },

25 "required": %w[title summary tags]

26 }

27 }.freeze

Il concetto chiave dietro l’utilizzo degli strumenti è quello di dare all’LLM la capacità

di selezionare ed eseguire dinamicamente gli strumenti appropriati in base all’input

dell’utente o al compito da svolgere. Invece di affidarsi esclusivamente alla conoscenza

pre-addestrata del modello, l’utilizzo degli strumenti permette all’LLM di sfruttare

Uso degli Strumenti 125

risorse esterne per generare risposte più accurate, pertinenti e utilizzabili. L’utilizzo degli

strumenti rende tecniche come il RAG (Retrieval Augmented Generation) molto più

facili da implementare di quanto lo sarebbero altrimenti.

Si noti che, se non diversamente specificato, questo libro presuppone che il tuo

modello di AI non abbia accesso a strumenti integrati lato server. Qualsiasi strumento

che desideri rendere disponibile alla tua AI deve essere esplicitamente dichiarato da

te in ogni richiesta API, con disposizioni per la sua esecuzione se e quando la tua AI

ti comunica che vorrebbe utilizzare quello strumento nella sua risposta.

Il Potenziale dell’Utilizzo degli Strumenti

L’utilizzo degli strumenti apre un’ampia gamma di possibilità per le applicazioni basate

sull’AI. Ecco alcuni esempi di ciò che si può ottenere con l’utilizzo degli strumenti:

1. Chatbot e Assistenti Virtuali: Collegando un LLM a strumenti esterni, i chatbot

e gli assistenti virtuali possono eseguire attività più complesse, come recuperare

informazioni dai database, eseguire chiamate API o interagire con altri sistemi.

Per esempio, un chatbot potrebbe utilizzare uno strumento CRM per modificare

lo stato di un’opportunità di vendita in base alla richiesta dell’utente.

2. Analisi dei Dati e Approfondimenti: Gli LLM possono essere collegati

a strumenti o librerie di analisi dei dati per eseguire attività avanzate di

elaborazione dati. Questo permette alle applicazioni di generare approfondimenti,

condurre analisi comparative o fornire raccomandazioni basate sui dati in risposta

alle query degli utenti.

3. Ricerca e Recupero delle Informazioni: L’utilizzo degli strumenti permette

agli LLM di interagire con motori di ricerca, database vettoriali o altri sistemi

Uso degli Strumenti 126

di recupero delle informazioni. Trasformando le query degli utenti in query di

ricerca, l’LLM può recuperare informazioni pertinenti da multiple fonti e fornire

risposte complete alle domande degli utenti.

4. Integrazione con Servizi Esterni: L’utilizzo degli strumenti permette

un’integrazione fluida tra le applicazioni basate sull’AI e i servizi o le API

esterne. Per esempio, un LLM potrebbe interagire con un’API meteo per fornire

aggiornamenti meteorologici in tempo reale o con un’API di traduzione per

generare risposte multilingue.

Il Flusso di Lavoro dell’Utilizzo degli Strumenti

Il flusso di lavoro dell’utilizzo degli strumenti tipicamente coinvolge quattro passaggi

chiave:

1. Includere le definizioni delle funzioni nel contesto della richiesta

2. Selezione dinamica (o esplicita) degli strumenti

3. Esecuzione della/e funzione/i

4. Continuazione opzionale del prompt originale

Esaminiamo in dettaglio ciascuno di questi passaggi.

Includere le definizioni delle funzioni nel contesto della
richiesta

L’AI sa quali strumenti ha a disposizione perché gli viene fornita una lista come parte

della richiesta di completamento (tipicamente definita come funzioni utilizzando una

variante dello schema JSON).

La sintassi precisa della definizione degli strumenti è specifica del modello.

Questo è come si definisce una funzione get_weather in Claude 3:

Uso degli Strumenti 127

1 {

2 "name": "get_weather",

3 "description": "Get the current weather in a given location",

4 "input_schema": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA"

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 }

16 },

17 "required": ["location"]

18 }

19 }

Ed ecco come definiresti la stessa funzione per GPT-4, passandola come valore del

parametro tools:

1 {

2 "name": "get_current_weather",

3 "description": "Get the current weather in a given location",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA",

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 },

16 },

17 "required": ["location"],

Uso degli Strumenti 128

18 },

19 }

Quasi uguale, ma diverso senza alcun motivo apparente! Che fastidio.

Le definizioni delle funzioni specificano nome, descrizione e parametri di input. I

parametri di input possono essere ulteriormente definiti utilizzando attributi come

le enumerazioni per limitare i valori accettabili, e specificando se un parametro è

obbligatorio o meno.

Oltre alle effettive definizioni delle funzioni, puoi anche includere istruzioni o contesto

sul perché e come utilizzare la funzione nella direttiva di sistema.

Per esempio, il mio strumento di ricerca Web in Olympia include questa direttiva di

sistema, che ricorda all’IA che ha a disposizione gli strumenti menzionati:

1 The `google_search` and `realtime_search` functions let you do research

2 on behalf of the user. In contrast to Google, realtime search is powered

3 by Perplexity and provides real-time information to curated current events

4 databases and news sources. Make sure to include URLs in your response so

5 user can do followup research.

Fornire descrizioni dettagliate è considerato il fattore più importante per le prestazioni

degli strumenti. Le tue descrizioni dovrebbero spiegare ogni dettaglio dello strumento,

incluso:

• Cosa fa lo strumento

• Quando dovrebbe essere utilizzato (e quando non dovrebbe)

• Cosa significa ogni parametro e come influenza il comportamento dello strumento

• Eventuali avvertenze o limitazioni importanti che si applicano

all’implementazione dello strumento

Uso degli Strumenti 129

Più contesto puoi fornire all’IA riguardo ai tuoi strumenti, migliore sarà la sua capacità

di decidere quando e come utilizzarli. Per esempio, Anthropic raccomanda almeno 3-4

frasi per descrizione di ogni strumento per la sua serie Claude 3, di più se lo strumento

è complesso.

Non è necessariamente intuitivo, ma le descrizioni sono considerate più importanti

degli esempi. Mentre puoi includere esempi di come utilizzare uno strumento nella sua

descrizione o nel prompt di accompagnamento, questo èmeno importante dell’avere una

spiegazione chiara e completa dello scopo e dei parametri dello strumento. Aggiungi gli

esempi solo dopo aver sviluppato completamente la descrizione.

Ecco un esempio di specifica di funzione API in stile Stripe:

1 {

2 "name": "createPayment",

3 "description": "Create a new payment request",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "transaction_amount": {

8 "type": "number",

9 "description": "The amount to be paid"

10 },

11 "description": {

12 "type": "string",

13 "description": "A brief description of the payment"

14 },

15 "payment_method_id": {

16 "type": "string",

17 "description": "The payment method to be used"

18 },

19 "payer": {

20 "type": "object",

21 "description": "Information about the payer, including their name,

22 email, and identification number",

23 "properties": {

24 "name": {

25 "type": "string",

26 "description": "The payer's name"

Uso degli Strumenti 130

27 },

28 "email": {

29 "type": "string",

30 "description": "The payer's email address"

31 },

32 "identification": {

33 "type": "object",

34 "description": "The payer's identification number",

35 "properties": {

36 "type": {

37 "type": "string",

38 "description": "Identification document (e.g. CPF, CNPJ)"

39 },

40 "number": {

41 "type": "string",

42 "description": "The identification number"

43 }

44 },

45 "required": ["type", "number"]

46 }

47 },

48 "required": ["name", "email", "identification"]

49 }

50 }

51 }

In pratica, alcuni modelli hanno difficoltà a gestire le specifiche di funzioni

annidate e a trattare tipi di dati di output complessi come array, dizionari

ecc. Ma in teoria, dovresti essere in grado di fornire specifiche JSON Schema

di profondità arbitraria!

Selezione Dinamica degli Strumenti

Quando esegui un completamento di chat che include definizioni di strumenti, l’LLM

seleziona dinamicamente lo strumento o gli strumenti più appropriati da utilizzare e

genera i parametri di input necessari per ciascuno strumento.

Uso degli Strumenti 131

In pratica, la capacità dell’IA di chiamare esattamente la funzione giusta e di seguire

esattamente le tue specifiche per gli input è altalenante. Abbassare il parametro di

temperatura completamente a 0.0 aiuta molto, ma dalla mia esperienza si verificheranno

ancora errori occasionali. Questi fallimenti includono nomi di funzioni allucinati,

parametri di input errati o semplicemente mancanti. I parametri vengono passati come

JSON, il che significa che a volte si vedranno errori causati da JSON troncati, con

citazioni errate o comunque danneggiati.

I pattern di Auto-riparazione dei Dati possono aiutare a correggere

automaticamente le chiamate di funzione che si interrompono a causa di

errori di sintassi.

Selezione Forzata (o Esplicita) degli Strumenti

Alcuni modelli offrono l’opzione di forzare la chiamata di una particolare funzione,

come parametro nella richiesta. Altrimenti, la decisione di chiamare o meno la funzione

è interamente a discrezione dell’IA.

La capacità di forzare una chiamata di funzione è cruciale in determinati scenari

in cui si desidera garantire che uno specifico strumento o funzione venga eseguito,

indipendentemente dal processo di selezione dinamica dell’IA. Ci sono diverse ragioni

per cui questa capacità è importante:

1. Controllo Esplicito: Potresti utilizzare l’IA come Componente Discreto o in un

flusso di lavoro predefinito che richiede l’esecuzione di una particolare funzione

in un momento specifico. Forzando la chiamata, puoi garantire che la funzione

desiderata venga invocata invece di dover chiedere gentilmente all’IA di farlo.

2. Debug e Testing: Durante lo sviluppo e il testing di applicazioni basate su

IA, la capacità di forzare le chiamate di funzione è inestimabile per scopi di

debugging. Attivando esplicitamente funzioni specifiche, puoi isolare e testare

Uso degli Strumenti 132

singoli componenti della tua applicazione. Questo ti permette di verificare la

correttezza delle implementazioni delle funzioni, validare i parametri di input e

assicurarti che vengano restituiti i risultati attesi.

3. Gestione dei Casi Limite: Potrebbero esserci casi limite o scenari eccezionali in

cui il processo di selezione dinamica dell’IA potrebbe non scegliere di eseguire

una funzione che dovrebbe, e lo sai in base a processi esterni. In tali casi, avere la

capacità di forzare una chiamata di funzione ti permette di gestire esplicitamente

queste situazioni. Definisci regole o condizioni nella logica della tua applicazione

per determinare quando bypassare la discrezione dell’IA.

4. Consistenza e Riproducibilità: Se hai una sequenza specifica di funzioni che

devono essere eseguite in un ordine particolare, forzare le chiamate garantisce che

la stessa sequenza venga seguita ogni volta. Questo è particolarmente importante

nelle applicazioni dove la consistenza e il comportamento prevedibile sono critici,

come nei sistemi finanziari o nelle simulazioni scientifiche.

5. Ottimizzazione delle Prestazioni: In alcuni casi, forzare una chiamata di

funzione può portare a ottimizzazioni delle prestazioni. Se sai che una specifica

funzione è necessaria per un particolare compito e che il processo di selezione

dinamica dell’IA potrebbe introdurre overhead non necessario, puoi bypassare

il processo di selezione e invocare direttamente la funzione richiesta. Questo

può aiutare a ridurre la latenza e migliorare l’efficienza complessiva della tua

applicazione.

In sintesi, la capacità di forzare le chiamate di funzione nelle applicazioni basate su IA

fornisce controllo esplicito, aiuta nel debug e nel testing, gestisce i casi limite, garantisce

consistenza e riproducibilità. È uno strumento potente nel tuo arsenale, ma dobbiamo

discutere un altro aspetto di questa importante funzionalità.

Uso degli Strumenti 133

In molti casi d’uso decisionali, vogliamo sempre che il modello effettui una

chiamata di funzione e potremmo non volere mai che il modello risponda

solo con la sua conoscenza interna. Per esempio, se stai instradando tra più

modelli specializzati in diversi compiti (input multilingue, matematica, ecc.),

potresti utilizzare il modello di chiamata di funzione per delegare le richieste

a uno dei modelli di supporto e non rispondere mai in modo indipendente.

Parametro di Scelta dello Strumento

GPT-4 e altri modelli linguistici che supportano la chiamata di funzioni ti forniscono un

parametro tool_choice per controllare se l’uso dello strumento è richiesto come parte

di un completamento. Questo parametro ha tre possibili valori:

• auto dà all’IA piena discrezione sull’utilizzo di uno strumento o semplicemente

sulla risposta

• required dice all’IA che deve chiamare uno strumento invece di rispondere, ma

lascia la selezione dello strumento all’IA

• La terza opzione è impostare il parametro del name_of_function che vuoi

forzare. Ne parleremo più dettagliatamente nella prossima sezione.

Nota che se imposti tool choice su required, il modello sarà costretto a

scegliere la funzione più pertinente da chiamare tra quelle fornite, anche se

nessuna si adatta veramente al prompt. Almomento della pubblicazione, non

sono a conoscenza di alcunmodello che restituisca una risposta tool_calls

vuota, o utilizzi qualche altro modo per far sapere che non ha trovato una

funzione adatta da chiamare.

Uso degli Strumenti 134

Forzare una Funzione per Ottenere Output Strutturato

La capacità di forzare una chiamata di funzione ti offre un modo per ottenere dati

strutturati da un completamento chat invece di doverli estrarre tu stesso dalla risposta

in testo normale.

Perché forzare le funzioni per ottenere output strutturato è così importante? In

poche parole, perché l’estrazione di dati strutturati dall’output di un LLM è un vero

grattacapo. Puoi semplificarti un po’ la vita chiedendo i dati in XML, ma poi devi

analizzare l’XML. E cosa fai quando quell’XML manca perché la tua AI ha risposto:

“Mi dispiace, ma non posso generare i dati richiesti perché bla, bla, bla…”

Quando usi gli strumenti in questo modo:

• Dovresti probabilmente definire un singolo strumento nella tua richiesta

• Ricorda di forzare l’uso della sua funzione utilizzando il parametro tool_choice

• Ricorda che il modello passerà l’input allo strumento, quindi il nome dello

strumento e la descrizione dovrebbero essere dalla prospettiva del modello, non

dalla tua.

Quest’ultimo punto merita un esempio per chiarezza. Supponiamo che tu stia chiedendo

all’AI di fare un’analisi del sentimento sul testo dell’utente. Il nome della funzione

non sarebbe analyze_sentiment, ma piuttosto qualcosa come save_sentiment_-

analysis. È l’AI che sta facendo l’analisi del sentimento, non lo strumento. Tutto ciò

che lo strumento sta facendo (dalla prospettiva dell’AI) è salvare i risultati dell’analisi.

Ecco un esempio di utilizzo di Claude 3 per registrare un riepilogo di un’immagine in

JSON ben strutturato, questa volta dalla riga di comando usando curl:

Uso degli Strumenti 135

1 curl https://api.anthropic.com/v1/messages \

2 --header "content-type: application/json" \

3 --header "x-api-key: $ANTHROPIC_API_KEY" \

4 --header "anthropic-version: 2023-06-01" \

5 --header "anthropic-beta: tools-2024-04-04" \

6 --data \

7 '{

8 "model": "claude-3-sonnet-20240229",

9 "max_tokens": 1024,

10 "tools": [{

11 "name": "record_summary",

12 "description": "Record summary of image into well-structured JSON.",

13 "input_schema": {

14 "type": "object",

15 "properties": {

16 "key_colors": {

17 "type": "array",

18 "items": {

19 "type": "object",

20 "properties": {

21 "r": {

22 "type": "number",

23 "description": "red value [0.0, 1.0]"

24 },

25 "g": {

26 "type": "number",

27 "description": "green value [0.0, 1.0]"

28 },

29 "b": {

30 "type": "number",

31 "description": "blue value [0.0, 1.0]"

32 },

33 "name": {

34 "type": "string",

35 "description": "Human-readable color name

36 in snake_case, e.g.

37 \"olive_green\"or

38 \"turquoise\""

39 }

40 },

41 "required": ["r", "g", "b", "name"]

42 },

Uso degli Strumenti 136

43 "description": "Key colors in the image. Four or less."

44 },

45 "description": {

46 "type": "string",

47 "description": "Image description. 1-2 sentences max."

48 },

49 "estimated_year": {

50 "type": "integer",

51 "description": "Estimated year that the image was taken,

52 if is it a photo. Only set this if the

53 image appears to be non-fictional.

54 Rough estimates are okay!"

55 }

56 },

57 "required": ["key_colors", "description"]

58 }

59 }],

60 "messages": [

61 {

62 "role": "user",

63 "content": [

64 {

65 "type": "image",

66 "source": {

67 "type": "base64",

68 "media_type": "'$IMAGE_MEDIA_TYPE'",

69 "data": "'$IMAGE_BASE64'"

70 }

71 },

72 {

73 "type": "text",

74 "text": "Use `record_summary` to describe this image."

75 }

76]

77 }

78]

79 }'

Nell’esempio fornito, stiamo utilizzando il modello Claude 3 di Anthropic per generare

un riepilogo JSON strutturato di un’immagine. Ecco come funziona:

Uso degli Strumenti 137

1. Definiamo un singolo strumento chiamato record_summary nell’array tools

del payload della richiesta. Questo strumento è responsabile della registrazione di

un riepilogo dell’immagine in formato JSON ben strutturato.

2. Lo strumento record_summary ha un input_schema che specifica la struttura

prevista dell’output JSON. Definisce tre proprietà:

• key_colors: Un array di oggetti che rappresentano i colori chiave

nell’immagine. Ogni oggetto colore ha proprietà per i valori rosso, verde

e blu (che vanno da 0.0 a 1.0) e un nome di colore leggibile in formato

snake_case.

• description: Una proprietà stringa per una breve descrizione

dell’immagine, limitata a 1-2 frasi.

• estimated_year: Una proprietà intera opzionale per l’anno stimato in cui

è stata scattata l’immagine, se sembra essere una foto non fittizia.

3. Nell’array messages, forniamo i dati dell’immagine come stringa codificata

in base64 insieme al tipo di media. Questo permette al modello di elaborare

l’immagine come parte dell’input.

4. Inoltre, chiediamo a Claude di utilizzare lo strumento record_summary per

descrivere l’immagine.

5. Quando la richiesta viene inviata al modello Claude 3, questo analizza l’immagine

e genera un riepilogo JSON basato sull’input_schema specificato. Il modello

estrae i colori chiave, fornisce una breve descrizione e stima l’anno in cui

l’immagine è stata scattata (se applicabile).

6. Il riepilogo JSON generato viene passato come parametri allo strumento

record_summary, fornendo una rappresentazione strutturata delle

caratteristiche chiave dell’immagine.

Utilizzando lo strumento record_summary con un input_schema ben definito,

possiamo ottenere un riepilogo JSON strutturato di un’immagine senza fare affidamento

Uso degli Strumenti 138

sull’estrazione di testo semplice. Questo approccio garantisce che l’output segua un

formato coerente e possa essere facilmente analizzato ed elaborato dai componenti a

valle dell’applicazione.

La capacità di forzare una chiamata di funzione e specificare la struttura dell’output

prevista è una potente caratteristica dell’utilizzo degli strumenti nelle applicazioni basate

sull’IA. Permette agli sviluppatori di avere maggior controllo sull’output generato e

semplifica l’integrazione dei dati generati dall’IA nel workflow della loro applicazione.

Esecuzione delle Funzioni

Hai definito le funzioni e fornito indicazioni alla tua IA, che ha deciso di chiamare

una delle tue funzioni. Ora è il momento per il tuo codice applicativo o libreria, se stai

utilizzando una gemma Ruby come raix-rails, di inoltrare la chiamata di funzione e

i suoi parametri all’implementazione corrispondente nel tuo codice applicativo.

Il tuo codice applicativo decide cosa fare con i risultati dell’esecuzione della funzione.

Forse si tratta di una singola riga di codice in una lambda, o forse implica la chiamata a

un’API esterna. Potrebbe coinvolgere la chiamata a un altro componente IA, o potrebbe

coinvolgere centinaia o addirittura migliaia di righe di codice nel resto del tuo sistema.

Sta interamente a te.

A volte la chiamata di funzione è la fine dell’operazione, ma se i risultati rappresentano

informazioni in una catena di pensiero che deve essere continuata dall’IA, allora il tuo

codice applicativo deve inserire i risultati dell’esecuzione nella trascrizione della chat e

lasciare che l’IA continui l’elaborazione.

Per esempio, ecco una dichiarazione di funzione Raix utilizzata dall’AccountManager

di Olympia per comunicare con i nostri clienti come parte di un’Orchestrazione

Intelligente del Workflow per il servizio clienti.

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

Uso degli Strumenti 139

1 class AccountManager

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 # lots of other functions...

6

7 function :notify_account_owner,

8 "Don't share UUID. Mention dollars if subscription changed",

9 message: { type: "string" } do |arguments|

10 account.owner.freeform_notify(

11 subject: "Account Change Notification",

12 message: arguments[:message]

13)

14 "Notified account owner"

15 end

Potrebbe non essere immediatamente chiaro cosa sta succedendo qui, quindi lo

spiegherò nel dettaglio.

1. La classe AccountManager definisce molte funzioni relative alla gestione degli

account. Può modificare il tuo piano, aggiungere e rimuovere membri del team,

tra le altre cose.

2. Le sue istruzioni di alto livello indicano ad AccountManager che dovrebbe

notificare al proprietario dell’account i risultati della richiesta di modifica

dell’account, utilizzando la funzione notify_account_owner.

3. La definizione concisa della funzione include:

• nome

• descrizione

• parametri message: { type: "string" }

• un blocco da eseguire quando la funzione viene chiamata

Dopo aver aggiornato la trascrizione con i risultati del blocco di funzioni, viene chiamato

nuovamente il metodo chat_completion. Questo metodo è responsabile dell’invio

Uso degli Strumenti 140

della trascrizione aggiornata della conversazione al modello AI per un’ulteriore

elaborazione. Ci riferiamo a questo processo come ciclo di conversazione.

Quando il modello AI riceve una nuova richiesta di completamento della chat con una

trascrizione aggiornata, ha accesso ai risultati della funzione precedentemente eseguita.

Può analizzare questi risultati, incorporarli nel suo processo decisionale e generare la

prossima risposta o azione basandosi sul contesto cumulativo della conversazione. Può

scegliere di eseguire funzioni aggiuntive basate sul contesto aggiornato, oppure può

generare una risposta finale al prompt originale se determina che non sono necessarie

ulteriori chiamate di funzione.

Continuazione Opzionale del Prompt Originale

Quando invii i risultati degli strumenti all’LLM e continui l’elaborazione del prompt

originale, l’AI utilizza quei risultati per chiamare funzioni aggiuntive o generare una

risposta finale in testo semplice.

Alcuni modelli come il Command-R di Cohere possono citare gli strumenti

specifici che hanno utilizzato nelle loro risposte, fornendo ulteriore

trasparenza e tracciabilità.

A seconda del modello in uso, i risultati della chiamata di funzione si troveranno nei

messaggi della trascrizione che hanno il loro ruolo speciale o saranno riflessi in qualche

altra sintassi. Ma la parte importante è che quei dati siano nella trascrizione, in modo

che possano essere considerati dall’AI mentre decide cosa fare successivamente.

https://openrouter.ai/models/cohere/command-r

Uso degli Strumenti 141

Un errore comune (e potenzialmente costoso) è dimenticare di aggiungere

i risultati della funzione alla trascrizione prima di continuare la chat. Di

conseguenza, l’AI verrà sollecitata essenzialmente nello stesso modo in cui

era stata sollecitata prima di chiamare la funzione la prima volta. In altre

parole, per quanto riguarda l’AI, non ha ancora chiamato la funzione. Quindi

la chiama di nuovo. E ancora. E ancora, all’infinito finché non la interrompi.

Speriamo che il tuo contesto non fosse troppo grande e il tuo modello non

troppo costoso!

Migliori Pratiche per l’Uso degli Strumenti

Per ottenere il massimo dall’uso degli strumenti, considera le seguenti migliori pratiche.

Definizioni Descrittive

Fornisci nomi e descrizioni chiari e descrittivi per ogni strumento e i suoi parametri di

input. Questo aiuta l’LLM a comprenderemeglio lo scopo e le capacità di ogni strumento.

Posso dirvi per esperienza che la saggezza comune che dice che “dare nomi è difficile”

si applica qui; ho visto risultati drasticamente diversi dagli LLM semplicemente

cambiando i nomi delle funzioni o la formulazione delle descrizioni. A volte

rimuovere le descrizioni migliora le prestazioni.

Elaborazione dei Risultati degli Strumenti

Quando passi i risultati degli strumenti all’LLM, assicurati che siano ben strutturati e

completi. Usa chiavi e valori significativi per rappresentare l’output di ogni strumento.

Sperimenta con diversi formati e vedi quale funziona meglio, dal JSON al testo semplice.

Uso degli Strumenti 142

Il Result Interpreter affronta questa sfida impiegando l’AI per analizzare i risultati e

fornire spiegazioni comprensibili, riassunti o punti chiave.

Gestione degli Errori

Implementa robusti meccanismi di gestione degli errori per gestire i casi in cui l’LLM

potrebbe generare parametri di input non validi o non supportati per le chiamate degli

strumenti. Gestisci e recupera con eleganza da qualsiasi errore che potrebbe verificarsi

durante l’esecuzione degli strumenti.

Una qualità straordinariamente positiva dell’AI è che comprende i messaggi di errore!

Il che significa che se stai lavorando con una mentalità rapida e approssimativa,

puoi semplicemente catturare qualsiasi eccezione generata nell’implementazione di uno

strumento e passarla all’AI in modo che sappia cosa è successo!

Per esempio, ecco una versione semplificata dell’implementazione della ricerca Google

in Olympia:

1 def google_search(conversation, params)

2 conversation.update_cstatus("Searching Google...")

3 query = params[:query]

4 search = GoogleSearch.new(query).get_hash

5

6 conversation.update_cstatus("Summarizing results...")

7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)

8 rescue StandardError => e

9 Honeybadger.notify(e)

10 { error: e.message }.inspect

11 end

Le ricerche Google in Olympia sono un processo in due fasi. Prima si esegue la

ricerca, poi si riassumono i risultati. In caso di errore, qualunque esso sia, il messaggio

di eccezione viene impacchettato e rinviato all’IA. Questa tecnica è alla base di

praticamente tutti i modelli di Gestione Intelligente degli Errori

Uso degli Strumenti 143

Per esempio, supponiamo che la chiamata API GoogleSearch fallisca a causa di

un’eccezione 503 Servizio Non Disponibile. Questa risale fino al rescue di livello

superiore, e la descrizione dell’errore viene inviata all’IA come risultato della chiamata

della funzione. Invece di mostrare all’utente una schermata vuota o un errore tecnico,

l’IA dice qualcosa del tipo “Mi dispiace, ma al momento non riesco ad accedere alle mie

funzionalità di Ricerca Google. Posso riprovare più tardi, se lo desideri.”

Questo potrebbe sembrare solo un trucco intelligente, ma considera un tipo diverso

di errore, uno in cui l’IA stava chiamando un’API esterna e aveva il controllo diretto

dei parametri da passare all’API. Forse ha commesso un errore nel modo in cui ha

generato quei parametri? A condizione che il messaggio di errore dall’API esterna sia

sufficientemente dettagliato, restituire il messaggio di errore all’IA chiamante significa

che può riconsiderare quei parametri e riprovare. Automaticamente. Non importa quale

fosse l’errore.

Ora pensa a cosa servirebbe per replicare questo tipo di gestione robusta degli errori nel

codice normale. È praticamente impossibile.

Raffinamento Iterativo

Se l’LLM non sta raccomandando gli strumenti appropriati o sta generando risposte

subottimali, itera sulle definizioni degli strumenti, le descrizioni e i parametri di input.

Continua a raffinare e migliorare la configurazione degli strumenti basandoti sul

comportamento osservato e sui risultati desiderati.

1. Inizia con definizioni semplici degli strumenti: Comincia definendo strumenti

con nomi, descrizioni e parametri di input chiari e concisi. Evita inizialmente di

complicare eccessivamente la configurazione degli strumenti e concentrati sulla

funzionalità principale. Per esempio, se vuoi salvare i risultati dell’analisi del

sentimento, inizia con una definizione base come:

Uso degli Strumenti 144

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze user-provided text and generate sentiment score",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "score": {

8 "type": "float",

9 "description": "sentiment score from -1 (negative) to 1 (positive)"

10 }

11 },

12 "required": ["score"]

13 }

14 }

2. Testare e osservare: Una volta definiti gli strumenti iniziali, testarli con diversi

prompt e osservare come l’LLM interagisce con lo strumento. Prestare attenzione

alla qualità e alla pertinenza delle risposte generate. Se l’LLM sta generando

risposte subottimali, è il momento di perfezionare le definizioni degli strumenti.

3. Perfezionare le descrizioni: Se l’LLM non comprende correttamente lo scopo di

uno strumento, provare a perfezionare la descrizione dello strumento. Fornire

più contesto, esempi o chiarimenti per guidare l’LLM nell’utilizzo efficace dello

strumento. Per esempio, è possibile aggiornare la descrizione dello strumento di

analisi del sentimento per affrontare più specificamente il tono emotivo del testo

analizzato:

1 {

2 "name": "save_sentiment_score",

3 "description": "Determine the overall emotional tone of a piece of text,

4 such as customer reviews, social media posts, or feedback comments.",

5 ...

6 }

4. Regolare i parametri di input: Se l’LLM genera parametri di input non validi o

irrilevanti per uno strumento, considera di modificare le definizioni dei parametri.

Uso degli Strumenti 145

Aggiungi vincoli più specifici, regole di validazione o esempi per chiarire il

formato di input previsto.

5. Iterare in base al feedback: Monitora continuamente le prestazioni dei tuoi

strumenti e raccogli feedback dagli utenti o dalle parti interessate. Utilizza questo

feedback per identificare le aree di miglioramento e apportare raffinamenti

iterativi alle definizioni degli strumenti. Per esempio, se gli utenti segnalano che

l’analisi non gestisce bene il sarcasmo, puoi aggiungere una nota nella descrizione:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze the sentiment of a given text and return a sentiment

4 score between -1 (negative) and 1 (positive). Note: Sarcasm should be

5 considered negative.",

6 ...

7 }

Perfezionando iterativamente le definizioni degli strumenti in base al comportamento

osservato e al feedback, è possibile migliorare gradualmente le prestazioni e l’efficacia

della propria applicazione basata su IA. Ricorda di mantenere le definizioni degli

strumenti chiare, concise e focalizzate sul compito specifico. Testa e convalida

regolarmente le interazioni degli strumenti per assicurarti che si allineino con i risultati

desiderati.

Composizione e Concatenamento degli

Strumenti

Uno degli aspetti più potenti dell’uso degli strumenti, finora solo accennato, è la capacità

di comporre e concatenare più strumenti insieme per realizzare compiti complessi.

Progettando attentamente le definizioni degli strumenti e i loro formati di input/output,

puoi creare componenti di base riutilizzabili che possono essere combinati in vari modi.

Uso degli Strumenti 146

Consideriamo un esempio in cui stai costruendo una pipeline di analisi dei dati per la

tua applicazione basata su IA. Potresti avere i seguenti strumenti:

1. DataRetrieval: Uno strumento che recupera dati da un database o API in base

a criteri specifici.

2. DataProcessing: Uno strumento che esegue calcoli, trasformazioni o

aggregazioni sui dati recuperati.

3. DataVisualization: Uno strumento che presenta i dati elaborati in un formato

user-friendly, come grafici o diagrammi.

Concatenando questi strumenti insieme, puoi creare un potente flusso di lavoro che

recupera i dati pertinenti, li elabora e presenta i risultati in modo significativo. Ecco

come potrebbe apparire il flusso di lavoro dell’uso degli strumenti:

1. L’LLM riceve una query dell’utente che richiede informazioni sui dati di vendita

per una specifica categoria di prodotti.

2. L’LLM seleziona lo strumento DataRetrieval e genera i parametri di input

appropriati per recuperare i dati di vendita pertinenti dal database.

3. I dati recuperati vengono “passati” allo strumento DataProcessing, che calcola

metriche come il ricavo totale, il prezzo medio di vendita e il tasso di crescita.

4. I dati elaborati vengono quindi utilizzati dallo strumento DataVisualization,

che crea un grafico o diagramma visivamente accattivante per rappresentare le

informazioni, restituendo l’URL del grafico all’LLM.

5. Infine, l’LLM genera una risposta formattata alla query dell’utente utilizzando

markdown, incorporando i dati visualizzati e fornendo un riepilogo dei risultati

chiave.

Componendo questi strumenti insieme, puoi creare un flusso di lavoro di analisi dei

dati uniforme che può essere facilmente integrato nella tua applicazione. La bellezza

Uso degli Strumenti 147

di questo approccio sta nel fatto che ogni strumento può essere sviluppato e testato

indipendentemente, e poi combinato in modi diversi per risolvere vari problemi.

Per consentire una composizione e un concatenamento fluidi degli strumenti, è

importante definire formati di input e output chiari per ciascuno strumento.

Per esempio, lo strumento DataRetrieval potrebbe accettare parametri come i dettagli

di connessione al database, il nome della tabella e le condizioni di query, e restituire

il set di risultati come un oggetto JSON strutturato. Lo strumento DataProcessing

può quindi aspettarsi questo oggetto JSON come input e produrre un oggetto JSON

trasformato come output. Standardizzando il flusso di dati tra gli strumenti, puoi

garantire compatibilità e riutilizzabilità.

Mentre progetti il tuo ecosistema di strumenti, pensa a come diversi strumenti possono

essere combinati per affrontare casi d’uso comuni nella tua applicazione. Considera

di creare strumenti di alto livello che incapsulino flussi di lavoro comuni o logica di

business, rendendo più facile per l’LLM selezionarli e utilizzarli efficacemente.

Ricorda, la potenza dell’uso degli strumenti risiede nella flessibilità e modularità che

fornisce. Scomponendo compiti complessi in strumenti più piccoli e riutilizzabili, puoi

creare un’applicazione basata su IA robusta e adattabile che può affrontare un’ampia

gamma di sfide.

Direzioni Future

Man mano che il campo dello sviluppo di applicazioni basate su IA si evolve, possiamo

aspettarci ulteriori progressi nelle capacità di utilizzo degli strumenti. Alcune possibili

direzioni future includono:

1. Utilizzo di Strumenti Multi-hop: Gli LLM potrebbero essere in grado di

decidere quante volte devono utilizzare gli strumenti per generare una risposta

soddisfacente. Questo potrebbe coinvolgere più cicli di selezione ed esecuzione

degli strumenti basati su risultati intermedi.

Uso degli Strumenti 148

2. Strumenti Predefiniti: Le piattaforme di IA potrebbero fornire un set di strumenti

predefiniti che gli sviluppatori possono sfruttare immediatamente, come interpreti

Python, strumenti di ricerca web o funzioni di utilità comuni.

3. Integrazione Perfetta: Man mano che l’uso degli strumenti diventa più

diffuso, possiamo aspettarci una migliore integrazione tra le piattaforme di IA

e i framework di sviluppo popolari, rendendo più facile per gli sviluppatori

incorporare l’uso degli strumenti nelle loro applicazioni.

L’uso degli strumenti è una tecnica potente che permette agli sviluppatori di sfruttare

il pieno potenziale degli LLM nelle applicazioni basate su IA. Collegando gli LLM a

strumenti e risorse esterni, puoi creare sistemi più dinamici, intelligenti e consapevoli del

contesto che possono adattarsi alle esigenze degli utenti e fornire preziose informazioni

e azioni.

Mentre l’uso degli strumenti offre immense possibilità, è importante essere consapevoli

delle potenziali sfide e considerazioni. Un aspetto chiave è la gestione della complessità

delle interazioni tra gli strumenti e garantire la stabilità e l’affidabilità del sistema

complessivo. È necessario gestire scenari in cui le chiamate agli strumenti potrebbero

fallire, restituire risultati inaspettati o avere implicazioni sulle prestazioni. Inoltre,

dovresti considerare misure di sicurezza e controllo degli accessi per prevenire l’uso

non autorizzato o malevolo degli strumenti. Meccanismi appropriati di gestione degli

errori, logging e monitoraggio sono cruciali per mantenere l’integrità e le prestazioni

della tua applicazione basata su IA.

Mentre esplori le possibilità dell’utilizzo degli strumenti nei tuoi progetti, ricorda di

iniziare con obiettivi chiari, progettare definizioni degli strumenti ben strutturate e

iterare sulla base del feedback e dei risultati. Con l’approccio e la mentalità giusti,

l’utilizzo degli strumenti può sbloccare nuovi livelli di innovazione e valore nelle tue

applicazioni basate sull’IA

Elaborazione del Flusso

Lo streaming dei dati su HTTP, noto anche come eventi inviati dal server (SSE), è un

meccanismo in cui il server invia continuamente dati al client man mano che questi

diventano disponibili, senza che il client debba richiederli esplicitamente. Dato che la

risposta dell’IA viene generata in modo incrementale, ha senso fornire un’esperienza

utente reattiva mostrando l’output dell’IA mentre viene generato. E in effetti tutte le

API dei provider di IA che conosco offrono risposte in streaming come opzione nei loro

endpoint di completamento.

Il motivo per cui questo capitolo appare qui nel libro, subito dopo Utilizzo degli

Strumenti, è dovuto a quanto può essere potente combinare l’uso degli strumenti con

le risposte dell’IA in tempo reale agli utenti. Questo permette di creare esperienze

dinamiche e interattive in cui l’IA può elaborare l’input dell’utente, utilizzare vari

strumenti e funzioni a sua discrezione e fornire risposte in tempo reale.

Elaborazione del Flusso 150

Per ottenere questa interazione fluida, è necessario scrivere gestori del flusso che

possano gestire sia le chiamate alle funzioni strumentali invocate dall’IA sia l’output in

testo semplice per l’utente finale. La necessità di eseguire un ciclo dopo l’elaborazione

di una funzione strumentale aggiunge una sfida interessante al lavoro.

Implementazione di un ReplyStream

Per dimostrare come può essere implementata l’elaborazione del flusso, questo capitolo

esaminerà in dettaglio una versione semplificata della classe ReplyStream utilizzata

in Olympia. Le istanze di questa classe possono essere passate come parametro stream

nelle librerie client IA come ruby-openai e openrouter

Ecco come utilizzo ReplyStream nel PromptSubscriber di Olympia, che ascolta

tramite Wisper la creazione di nuovi messaggi dell’utente.

1 class PromptSubscriber

2 include Raix::ChatCompletion

3 include Raix::PromptDeclarations

4

5 # many other declarations omitted...

6

7 prompt text: -> { user_message.content },

8 stream: -> { ReplyStream.new(self) },

9 until: -> { bot_message.complete? }

10

11 def message_created(message) # invoked by Wisper

12 return unless message.role.user? && message.content?

13

14 # rest of the implementation omitted...

Oltre a un riferimento context al sottoscrittore del prompt che l’ha istanziata, la classe

ReplyStream dispone anche di variabili di istanza per memorizzare un buffer di dati

ricevuti e array per tenere traccia dei nomi delle funzioni e degli argomenti invocati

durante l’elaborazione dello stream.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

Elaborazione del Flusso 151

1 class ReplyStream

2 attr_accessor :buffer, :f_name, :f_arguments, :context

3

4 delegate :bot_message, :dispatch, to: :context

5

6 def initialize(context)

7 self.context = context

8 self.buffer = []

9 self.f_name = []

10 self.f_arguments = []

11 end

12

13 def call(chunk, bytesize = nil)

14 # ...

15 end

16

17 # ...

18 end

Il metodo initialize imposta lo stato iniziale dell’istanza ReplyStream,

inizializzando il buffer, il contesto e altre variabili.

Il metodo call è il punto di ingresso principale per l’elaborazione dei dati in streaming.

Accetta un chunk di dati (rappresentato come un hash) e un parametro opzionale

bytesize, che nel nostro esempio non viene utilizzato. All’interno di questo metodo,

la classe utilizza il pattern matching per gestire diversi scenari basati sulla struttura del

chunk ricevuto.

Chiamare deep_symbolize_keys sul chunk ci permette di rendere il

pattern matching più elegante, consentendoci di operare su simboli anziché

stringhe.

Elaborazione del Flusso 152

1 def call(chunk, _bytesize)

2 case chunk.deep_symbolize_keys

3

4 in { # match function name

5 choices: [

6 {

7 delta: {

8 tool_calls: [

9 { index: index, function: {name: name} }

10]

11 }

12 }

13] }

14

15 f_name[index] = name

Il primo pattern che stiamo cercando corrisponde a una chiamata dello strumento

insieme al nome della funzione associata. Se ne rileviamo uno, lo inseriamo nell’array

f_name. Memorizziamo i nomi delle funzioni in un array indicizzato, poiché il modello

è in grado di effettuare chiamate di funzione parallele, inviando più di una funzione da

eseguire contemporaneamente.

La chiamata parallela delle funzioni è la capacità di un modello di IA di eseguire

più chiamate di funzione insieme, permettendo che gli effetti e i risultati di queste

chiamate vengano risolti in parallelo. Questo è particolarmente utile se le funzioni

richiedono molto tempo e riduce i viaggi di andata e ritorno con le API, che a loro

volta possono far risparmiare una quantità significativa di consumo di token.

Successivamente dobbiamo cercare la corrispondenza degli argomenti relativi alle

chiamate di funzione.

Elaborazione del Flusso 153

1 in { # match arguments

2 choices: [

3 {

4 delta: {

5 tool_calls: [

6 {

7 index: index, function: {arguments: argument }

8 }

9]

10 }

11 }

12]}

13

14 f_arguments[index] ||= "" # initialize if not already

15 f_arguments[index] << argument

In modo simile a come abbiamo gestito i nomi delle funzioni, inseriamo gli argomenti

in un array indicizzato.

Successivamente, cerchiamo i messaggi rivolti all’utente normali, che arriveranno

dal server un token alla volta e verranno assegnati alla variabile new_content.

Dobbiamo anche tenere d’occhio finish_reason. Sarà nil fino all’ultimo segmento

della sequenza di output.

1 in {

2 choices: [

3 { delta: {content: new_content}, finish_reason: finish_reason }

4]}

5

6 # you could transmit every chunk to the user here...

7 buffer << new_content.to_s

8

9 if finish_reason.present?

10 finalize

11 elsif new_content.to_s.match?(/\n\n/)

12 send_to_client # ...or buffer and transmit once per paragraph

13 end

Elaborazione del Flusso 154

È importante aggiungere un’espressione di pattern matching per gestire i messaggi di

errore inviati dal provider del modello AI. Negli ambienti di sviluppo locali, solleviamo

un’eccezione, ma in produzione, registriamo l’errore e finalizziamo.

1 in { error: { message: } }

2 if Rails.env.local?

3 raise message

4 else

5 Honeybadger.notify("AI Error: #{message}")

6 finalize

7 end

La clausola else finale del case verrà eseguita se nessuno dei pattern precedenti ha trovato

corrispondenza. È semplicemente una misura di sicurezza così che, se il modello di IA

inizia a inviarci chunk non riconosciuti, ne veniamo a conoscenza.

1 else

2 Honeybadger.notify("Unrecognized Chunk: #{chunk}")

3 end

4 end

Il metodo send_to_client è responsabile dell’invio del contenuto memorizzato nel

buffer al client. Verifica che il buffer non sia vuoto, aggiorna il contenuto del messaggio

del bot, renderizza il messaggio del bot e salva il contenuto nel database per garantire

la persistenza dei dati.

Elaborazione del Flusso 155

1 def send_to_client

2 # no need to process pure whitespace

3 return if buffer.join.squish.blank?

4

5 # set the buffer content on the bot message

6 content = buffer.join

7 bot_message.content = content

8

9 # save to database so that we never lose data

10 # even if the stream doesn't terminate correctly

11 bot_message.update_column(:content, content)

12

13 # update content via websocket

14 ConversationRenderer.update(bot_message)

15 end

Il metodo finalize viene chiamato quando l’elaborazione dello stream è completata.

Gestisce le chiamate di funzione se ne sono state ricevute durante lo stream, aggiorna il

messaggio del bot con il contenuto finale e altre informazioni rilevanti, e reimposta la

cronologia delle chiamate di funzione

1 def finalize

2 if f_name.any?

3 f_name.each_with_index do |name, index|

4 # takes care of calling the function wherever it's implemented

5 dispatch(name:, arguments: JSON.parse(f_arguments[index]))

6 end

7

8 # reset the function call history

9 f_name.clear

10 f_arguments.clear

11 else

12 content = buffer.join.presence

13 bot_message.update!(content:, complete: true)

14 ConversationRenderer.update(bot_message)

15 end

16 end

Se il modello decide di chiamare una funzione, è necessario “dispatchiare” quella

chiamata di funzione (nome e argomenti) in modo tale che venga eseguita e i messaggi

Elaborazione del Flusso 156

function_call e function_result vengano aggiunti alla trascrizione della

conversazione

Dalla mia esperienza, è meglio gestire la creazione dei messaggi di funzione in un unico

punto della base di codice, invece di affidarsi alle implementazioni degli strumenti.

È più pulito, ma c’è anche una ragione pratica molto importante: se il modello

di IA chiama una funzione, e non vede i messaggi della chiamata e del risultato

nella trascrizione quando si ripete il ciclo, chiamerà la stessa funzione di nuovo.

Potenzialmente all’infinito. Ricorda che l’IA è completamente priva di stato, quindi a

meno che tu non rimandi indietro quelle chiamate di funzione, per l’IA non sono mai

avvenute.

1 # PromptSubscriber#dispatch

2

3 def dispatch(name:, arguments:)

4 # adds a function_call message to the conversation transcript

5 # plus dispatches to tool and returns result

6 conversation.function_call!(name, arguments).then do |result|

7 # add function result message to the transcript

8 conversation.function_result!(name, result)

9 end

10 end

Pulire la cronologia delle chiamate di funzione dopo l’esecuzione è

importante tanto quanto assicurarsi che la chiamata e i risultati finiscano

nella tua trascrizione, in modo da non continuare a chiamare le stesse

funzioni ripetutamente ad ogni ciclo.

Il “Ciclo di Conversazione”

Nella classe PromptSubscriber, utilizziamo il metodo prompt dal modulo

PromptDeclarations per definire il comportamento del ciclo di conversazione.

Elaborazione del Flusso 157

Il parametro until è impostato su -> { bot_message.complete? }, il che significa

che il ciclo continuerà fino a quando il bot_message non viene contrassegnato come

completo.

1 prompt text: -> { user_message.content },

2 stream: -> { ReplyStream.new(self) },

3 until: -> { bot_message.complete? }

Ma quando viene contrassegnato come completo bot_message? Se non lo

ricordi, torna alla riga 13 del metodo finalize.

Rivediamo l’intera logica di elaborazione del flusso.

1. Il PromptSubscriber riceve un nuovo messaggio dell’utente tramite il metodo

message_created, che viene invocato dal sistema pub/subWisper ogni volta che

l’utente finale crea un nuovo prompt.

2. Il metodo di classe prompt definisce in modo dichiarativo il comportamento della

logica di completamento della chat per il PromptSubscriber. Il modello AI

eseguirà un completamento della chat con il contenuto del messaggio dell’utente,

una nuova istanza di ReplyStream come parametro di flusso e la condizione del

ciclo specificata.

3. Il modello AI elabora il prompt e inizia a generare una risposta. Mentre la risposta

viene trasmessa in streaming, il metodo call dell’istanza ReplyStream viene

invocato per ogni frammento di dati.

4. Se il modello AI decide di chiamare una funzione strumentale, il nome della

funzione e gli argomenti vengono estratti dal frammento e memorizzati

rispettivamente negli array f_name e f_arguments.

5. Se il modello AI genera contenuti destinati all’utente, questi vengono memorizzati

nel buffer e inviati al client tramite il metodo send_to_client.

Elaborazione del Flusso 158

6. Una volta completata l’elaborazione del flusso, viene chiamato il metodo

finalize. Se durante il flusso sono state invocate funzioni strumentali, queste

vengono inviate utilizzando il metodo dispatch del PromptSubscriber.

7. Il metodo dispatch aggiunge un messaggio function_call alla trascrizione

della conversazione, esegue la funzione strumentale corrispondente e aggiunge

un messaggio function_result alla trascrizione con il risultato della chiamata

alla funzione.

8. Dopo l’invio delle funzioni strumentali, la cronologia delle chiamate alle funzioni

viene cancellata per evitare chiamate duplicate nei cicli successivi.

9. Se non sono state invocate funzioni strumentali, il metodo finalize aggiorna il

bot_message con il contenuto finale, lo contrassegna come completo e invia il

messaggio aggiornato al client.

10. Viene valutata la condizione del ciclo -> { bot_message.complete? }. Se

il bot_message non è contrassegnato come completo, il ciclo continua e il

prompt originale viene nuovamente inviato con la trascrizione della conversazione

aggiornata.

11. I passaggi 3-10 vengono ripetuti fino a quando il bot_message non viene

contrassegnato come completo, indicando che il modello AI ha terminato di

generare la sua risposta e non sono necessarie ulteriori esecuzioni di funzioni

strumentali.

Implementando questo ciclo di conversazione, si permette al modello AI di impegnarsi in

un’interazione bidirezionale con l’applicazione, eseguendo funzioni strumentali secondo

necessità e generando risposte per l’utente fino a quando la conversazione raggiunge una

conclusione naturale.

La combinazione di elaborazione del flusso e ciclo di conversazione consente esperienze

dinamiche e interattive basate sull’AI, dove il modello AI può elaborare l’input

dell’utente, utilizzare vari strumenti e funzioni, e fornire risposte in tempo reale basate

sul contesto della conversazione in evoluzione.

Elaborazione del Flusso 159

Continuazione Automatica

È importante essere consapevoli delle limitazioni dell’output dell’AI. La maggior parte

dei modelli ha un numero massimo di token che può generare in una singola risposta,

determinato dal parametro max_tokens. Se il modello AI raggiunge questo limite

durante la generazione di una risposta, si interromperà bruscamente e indicherà che

l’output è stato troncato.

Nella risposta in streaming dall’API della piattaforma AI, è possibile rilevare questa

situazione esaminando la variabile finish_reason nel frammento. Se il finish_-

reason è impostato su "length" (o qualche altro valore chiave specifico del modello),

significa che il modello ha raggiunto il suo limite massimo di token durante la

generazione e l’output è stato interrotto.

Unmodo per gestire questo scenario con eleganza e fornire un’esperienza utente fluida è

implementare un meccanismo di continuazione automatica nella logica di elaborazione

del flusso. Aggiungendo un pattern matching per le ragioni di completamento legate

alla lunghezza, è possibile scegliere di ciclare e continuare automaticamente l’output da

dove si era interrotto.

Ecco un esempio volutamente semplificato di come è possibile modificare il metodo

call nella classe ReplyStream per supportare la continuazione automatica:

Elaborazione del Flusso 160

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices: [

9 { delta: {content: new_content},

10 finish_reason: finish_reason }] }

11

12 buffer << new_content.to_s

13

14 if finish_reason.blank?

15 send_to_client if new_content.to_s.match?(/\n\n/)

16 elsif LENGTH_STOPS.include?(finish_reason)

17 continue_cutoff

18 else

19 finalize

20 end

21

22 # ...

23 end

24 end

25

26 private

27

28 def continue_cutoff

29 conversation.bot_message!(buffer.join, visible: false)

30 conversation.user_message!("please continue", visible: false)

31 bot_message.update_column(:created_at, Time.current)

32 end

In questa versione modificata, quando il finish_reason indica un output troncato,

invece di finalizzare lo stream, aggiungiamo una coppia di messaggi alla trascrizione

senza finalizzarla, spostiamo il messaggio di risposta originale rivolto all’utente in

“fondo” alla trascrizione aggiornando il suo attributo created_at, e poi lasciamo che

il ciclo continui, in modo che l’IA prosegua la generazione da dove si era interrotta.

Ricorda che l’endpoint di completamento dell’IA è stateless. “Conosce” solo ciò che

Elaborazione del Flusso 161

gli comunichi attraverso la trascrizione. In questo caso, il modo in cui comunichiamo

all’IA che è stata interrotta è aggiungendo messaggi “invisibili” (per l’utente finale)

alla trascrizione. Ricorda però che questo è un esempio volutamente semplificato.

Un’implementazione reale dovrebbe gestire ulteriormente la trascrizione per assicurarsi

di non sprecare token e/o confondere l’IA con messaggi dell’assistente duplicati nella

trascrizione.

Un’implementazione reale dell’auto-continuazione dovrebbe anche avere la cosiddetta

“logica del circuit breaker” per prevenire cicli incontrollati. Questo perché, dati certi

tipi di prompt utente e impostazioni basse di max_tokens, l’IA potrebbe continuare

a generare output visibile all’utente all’infinito.

Tieni presente che ogni ciclo richiede una richiesta separata e che ogni richiesta

consuma nuovamente l’intera trascrizione. Dovresti sicuramente considerare

il compromesso tra esperienza utente e utilizzo delle API quando decidi se

implementare l’auto-continuazione nella tua applicazione. L’auto-continuazione in

particolare può essere pericolosamente costosa, specialmente quando si utilizzano

modelli commerciali premium.

Conclusione

L’elaborazione del flusso è un aspetto critico nella costruzione di applicazioni basate

sull’IA che combinano l’utilizzo degli strumenti con risposte IA in tempo reale.

Gestendo efficientemente i dati in streaming dalle API delle piattaforme IA, puoi

fornire un’esperienza utente fluida e interattiva, gestire risposte di grandi dimensioni,

ottimizzare l’utilizzo delle risorse e gestire gli errori con eleganza.

La classe Conversation::ReplyStream fornita dimostra come l’elaborazione del

flusso può essere implementata in un’applicazione Ruby utilizzando il pattern matching

Elaborazione del Flusso 162

e l’architettura event-driven. Comprendendo e sfruttando le tecniche di elaborazione del

flusso, puoi sbloccare il pieno potenziale dell’integrazione dell’IA nelle tue applicazioni

e offrire esperienze utente potenti e coinvolgenti.

Dati Auto-riparanti

I dati auto-riparanti rappresentano un potente approccio per garantire l’integrità, la

coerenza e la qualità dei dati nelle applicazioni sfruttando le capacità dei modelli

linguistici di grandi dimensioni (LLM). Questa categoria di pattern si concentra sull’idea

di utilizzare l’IA per rilevare, diagnosticare e correggere automaticamente anomalie,

incongruenze o errori nei dati, riducendo così il carico di lavoro per gli sviluppatori e

mantenendo un elevato livello di affidabilità dei dati.

Nel loro nucleo, i pattern dei dati auto-riparanti riconoscono che i dati sono l’elemento

vitale di qualsiasi applicazione, e garantire la loro accuratezza e integrità è cruciale

per il corretto funzionamento e l’esperienza utente dell’applicazione. Tuttavia, gestire

e mantenere la qualità dei dati può essere un compito complesso e che richiede molto

tempo, soprattutto quando le applicazioni crescono in dimensioni e complessità. È qui

che entra in gioco la potenza dell’IA.

Dati Auto-riparanti 164

Nei pattern dei dati auto-riparanti, i worker IA vengono impiegati per monitorare

e analizzare continuamente i dati della tua applicazione. Questi modelli hanno la

capacità di comprendere e interpretare pattern, relazioni e anomalie all’interno dei dati.

Sfruttando le loro capacità di elaborazione e comprensione del linguaggio naturale,

possono identificare potenziali problemi o incongruenze nei dati e intraprendere azioni

appropriate per correggerli.

Il processo di auto-riparazione dei dati tipicamente coinvolge diversi passaggi chiave:

1. Monitoraggio dei Dati: I worker IA monitorano costantemente i flussi di dati, i

database o i sistemi di archiviazione dell’applicazione, cercando qualsiasi segno di

anomalie, incongruenze o errori. In alternativa, puoi attivare un componente IA

in reazione a un’eccezione.

2. Rilevamento delle Anomalie: Quando viene rilevato un problema, il worker IA

analizza i dati in dettaglio per identificare la natura specifica e la portata del

problema. Questo potrebbe comportare il rilevamento di valori mancanti, formati

inconsistenti o dati che violano regole o vincoli predefiniti.

3. Diagnosi e Correzione: Una volta identificato il problema, il worker IA utilizza

la sua conoscenza e comprensione del dominio dei dati per determinare il corso

d’azione appropriato. Questo potrebbe comportare la correzione automatica dei

dati, il completamento di valori mancanti o la segnalazione del problema per

l’intervento umano se necessario.

4. Apprendimento Continuo (opzionale, a seconda del caso d’uso): Mentre il

worker IA incontra e risolve vari problemi di dati, può produrre output che

descrivono cosa è successo e come ha risposto. Questi metadati possono essere

inseriti in processi di apprendimento che permettono a te (e forse al modello

sottostante, tramite fine-tuning) di diventare più efficace ed efficiente nel tempo

nell’identificare e risolvere le anomalie dei dati.

Rilevando e correggendo automaticamente i problemi dei dati, puoi garantire che la tua

applicazione operi su dati di alta qualità e affidabili. Questo riduce il rischio che errori,

Dati Auto-riparanti 165

incongruenze o bug relativi ai dati influenzino la funzionalità o l’esperienza utente

dell’applicazione.

Una volta che hai i worker IA che gestiscono il compito di monitoraggio e correzione

dei dati, puoi concentrare i tuoi sforzi su altri aspetti critici dell’applicazione. Questo fa

risparmiare tempo e risorse che altrimenti sarebbero spesi nella pulizia e manutenzione

manuale dei dati. In effetti, man mano che le tue applicazioni crescono in dimensioni e

complessità, la gestione manuale della qualità dei dati diventa sempre più impegnativa.

I pattern dei “Dati Auto-riparanti” si scalano efficacemente sfruttando la potenza dell’IA

per gestire grandi volumi di dati e rilevare problemi in tempo reale.

Per loro natura, i modelli di IA possono adattarsi nel tempo ai cambiamenti

nei pattern dei dati, negli schemi o nei requisiti con poca o nessuna

supervisione. Finché le loro direttive forniscono una guida adeguata,

specialmente per quanto riguarda i risultati previsti, la tua applicazione

potrebbe essere in grado di evolversi e gestire nuovi scenari di dati senza

richiedere estesi interventi manuali o modifiche al codice.

I pattern dei dati auto-riparanti si allineano bene con le altre categorie di pattern che

abbiamo discusso, come la “Moltitudine di Worker”. La capacità di auto-riparazione

dei dati può essere vista come un tipo specializzato di worker che si concentra

specificamente sulla garanzia della qualità e dell’integrità dei dati. Questo tipo di

worker opera insieme ad altri worker IA, ognuno contribuendo a diversi aspetti della

funzionalità dell’applicazione.

L’implementazione dei pattern dei dati auto-riparanti nella pratica richiede

una progettazione attenta e l’integrazione dei modelli di IA nell’architettura

dell’applicazione. A causa dei rischi di perdita e corruzione dei dati, dovresti definire

linee guida chiare su come utilizzerai questa tecnica. Dovresti anche considerare fattori

come le prestazioni, la scalabilità e la sicurezza dei dati.

Dati Auto-riparanti 166

Caso di Studio Pratico: Riparare JSON

Danneggiato

Uno dei modi più pratici e convenienti per sfruttare i dati auto-riparanti è anche molto

semplice da spiegare: riparare JSON danneggiato.

Questa tecnica può essere applicata alla sfida comune di gestire dati imperfetti o

inconsistenti generati dagli LLM, come JSON danneggiato, e fornisce un approccio per

rilevare e correggere automaticamente questi problemi.

A Olympia mi capita regolarmente di incontrare scenari in cui gli LLM generano

dati JSON non perfettamente validi. Questo può accadere per varie ragioni, come

quando l’LLM aggiunge commenti prima o dopo il codice JSON effettivo, o introduce

errori di sintassi come virgole mancanti o virgolette doppie non escapate. Questi

problemi possono portare a errori di parsing e causare interruzioni nella funzionalità

dell’applicazione.

Per affrontare questo problema, ho implementato una soluzione pratica sotto forma di

una classe JsonFixer. Questa classe incarna il pattern “Self-Healing Data” prendendo

in input il JSON danneggiato e sfruttando un LLM per correggerlo, preservando il più

possibile le informazioni e l’intento originale.

1 class JsonFixer

2 include Raix::ChatCompletion

3

4 def call(bad_json, error_message)

5 raise "No data provided" if bad_json.blank? || error_message.blank?

6

7 transcript << {

8 system: "Consider user-provided JSON that generated a parse

9 exception. Do your best to fix it while preserving the

10 original content and intent as much as possible." }

11 transcript << { user: bad_json }

12 transcript << { assistant: "What is the error message?"}

13 transcript << { user: error_message }

Dati Auto-riparanti 167

14 transcript << { assistant: "Here is the corrected JSON\n```json\n" }

15

16 self.stop = ["```"]

17

18 chat_completion(json: true)

19 end

20

21 def model

22 "mistralai/mixtral-8x7b-instruct:nitro"

23 end

24 end

Nota come JsonFixer utilizzi Ventriloquist per guidare le risposte dell’AI.

Il processo di auto-riparazione dei dati JSON funziona come segue:

1. Generazione JSON: Un LLM viene utilizzato per generare dati JSON basati

su determinati prompt o requisiti. Tuttavia, a causa della natura degli LLM, il

JSON generato potrebbe non essere sempre perfettamente valido. Il parser JSON

ovviamente solleverà un ParserError se gli viene fornito un JSON non valido.

1 begin

2 JSON.parse(llm_generated_json)

3 rescue JSON::ParserError => e

4 JsonFixer.new.call(llm_generated_json, e.message)

5 end

Si noti che il messaggio di errore viene anche passato alla chiamata JSONFixer in modo

che non debba completamente presumere cosa c’è di sbagliato nei dati, specialmente

considerando che il parser spesso indica esattamente qual è il problema.

2. Correzione basata su LLM: La classe JSONFixer invia il JSON danneggiato

a un LLM, insieme a un prompt o un’istruzione specifica per correggere il

Dati Auto-riparanti 168

JSON mantenendo il più possibile le informazioni e l’intento originale. L’LLM,

addestrato su enormi quantità di dati e con una comprensione della sintassi JSON,

tenta di correggere gli errori e generare una stringa JSON valida. La Delimitazione

delle Risposte viene utilizzata per limitare l’output dell’LLM, e scegliamo Mixtral

8x7B come modello AI, poiché è particolarmente adatto per questo tipo di attività.

3. Validazione e Integrazione: La stringa JSON corretta restituita dall’LLM

viene analizzata dalla classe JSONFixer stessa, poiché ha chiamato

chat_completion(json: true). Se il JSON corretto supera la validazione,

viene integrato nuovamente nel flusso di lavoro dell’applicazione, permettendo

all’applicazione di continuare a elaborare i dati senza interruzioni. Il JSON

difettoso è stato “riparato”.

Sebbene abbia scritto e riscritto la mia implementazione di JSONFixer più volte, dubito

che il tempo totale investito in tutte queste versioni sia più di un’ora o due.

Si noti che la preservazione dell’intento è un elemento chiave di qualsiasi pattern di dati

auto-riparanti. Il processo di correzione basato su LLMmira a preservare il più possibile

le informazioni e l’intento originale del JSON generato. Questo assicura che il JSON

corretto mantenga il suo significato semantico e possa essere utilizzato efficacemente

nel contesto dell’applicazione.

Questa implementazione pratica dell’approccio “Dati Auto-Riparanti” in Olympia

dimostra chiaramente come l’AI, in particolare gli LLM, possa essere sfruttata per

risolvere sfide reali sui dati. Mostra la potenza della combinazione di tecniche di

programmazione tradizionali con le capacità dell’AI per costruire applicazioni robuste

ed efficienti.

La Legge di Postel e il Pattern dei “Dati Auto-
Riparanti”

Dati Auto-riparanti 169

I “Dati Auto-Riparanti”, come esemplificato dalla classe JSONFixer, si allineano bene

con il principio noto come Legge di Postel, anche chiamato Principio di Robustezza.

La Legge di Postel afferma:

“Sii conservativo in ciò che fai, sii liberale in ciò che accetti dagli altri.”

Questo principio, originariamente articolato da Jon Postel, un pioniere dei primi tempi

di Internet, enfatizza l’importanza di costruire sistemi che siano tolleranti verso input

diversi o anche leggermente incorretti, mantenendo allo stesso tempo una stretta

aderenza ai protocolli specificati quando si inviano output.

Nel contesto dei “Dati Auto-Riparanti”, la classe JSONFixer incarna la Legge di

Postel essendo liberale nell’accettare dati JSON danneggiati o imperfetti generati

dagli LLM. Non rifiuta o fallisce immediatamente quando incontra JSON che non

aderisce strettamente al formato previsto. Invece, adotta un approccio tollerante e

tenta di correggere il JSON utilizzando la potenza degli LLM.

Essendo liberale nell’accettare JSON imperfetto, la classe JSONFixer dimostra

robustezza e flessibilità. Riconosce che i dati nel mondo reale spesso si presentano

in varie forme e potrebbero non sempre conformarsi a specifiche rigide. Gestendo e

correggendo con grazia queste deviazioni, la classe assicura che l’applicazione possa

continuare a funzionare senza problemi, anche in presenza di dati imperfetti.

D’altra parte, la classe JSONFixer aderisce anche all’aspetto conservativo della Legge

di Postel quando si tratta dell’output. Dopo aver corretto il JSON utilizzando gli LLM,

la classe valida il JSON corretto per assicurarsi che si conformi rigorosamente al

formato previsto. Mantiene l’integrità e la correttezza dei dati prima di passarli ad

altre parti dell’applicazione. Questo approccio conservativo garantisce che l’output

della classe JSONFixer sia affidabile e coerente, promuovendo l’interoperabilità e

prevenendo la propagazione di errori.

Curiosità interessanti su Jon Postel:

• Jon Postel (1943-1998) è stato un informatico americano che ha giocato un

Dati Auto-riparanti 170

ruolo cruciale nello sviluppo di Internet. Era conosciuto come il “Dio di

Internet” per i suoi significativi contributi ai protocolli e agli standard di base.

• Postel è stato l’editore della serie di documenti Request for Comments (RFC),

una serie di note tecniche e organizzative su Internet. Ha scritto o co-scritto

oltre 200 RFC, inclusi i protocolli fondamentali come TCP, IP e SMTP.

• Oltre ai suoi contributi tecnici, Postel era noto per il suo approccio umile e

collaborativo. Credeva nell’importanza di raggiungere il consenso e lavorare

insieme per costruire una rete robusta e interoperabile.

• Postel ha servito come Direttore della Divisione Reti di Computer presso

l’Information Sciences Institute (ISI) dell’Università della California del Sud

(USC) dal 1977 fino alla sua prematura scomparsa nel 1998.

• In riconoscimento dei suoi immensi contributi, a Postel è stato assegnato

postumo il prestigioso Premio Turing nel 1998, spesso definito il “Premio Nobel

dell’Informatica.”

La classe JSONFixer promuove robustezza, flessibilità e interoperabilità, che erano i

valori fondamentali che Postel ha sostenuto durante tutta la sua carriera. Costruendo

sistemi che sono tolleranti alle imperfezioni mentre mantengono una stretta aderenza

ai protocolli, possiamo creare applicazioni più resilienti e adattabili di fronte alle sfide

del mondo reale.

Considerazioni e Controindicazioni

L’applicabilità degli approcci di dati auto-riparanti dipende interamente dal tipo di dati

che la tua applicazione gestisce. C’è un motivo per cui potresti non voler semplicemente

fare un monkeypatch di JSON.parse per correggere automaticamente tutti gli errori di

parsing JSON nella tua applicazione: non tutti gli errori possono o dovrebbero essere

corretti automaticamente.

Dati Auto-riparanti 171

L’auto-riparazione è particolarmente delicata quando è associata a requisiti normativi

o di conformità relativi alla gestione e all’elaborazione dei dati. Alcuni settori, come

quello sanitario e finanziario, hanno normative così severe riguardo all’integrità dei

dati e alla verificabilità che eseguire qualsiasi tipo di correzione dei dati “black box”

senza un’adeguata supervisione o registrazione potrebbe violare queste normative. È

fondamentale garantire che qualsiasi tecnica di auto-riparazione dei dati che sviluppi

sia allineata con i quadri normativi e legali applicabili.

L’applicazione di tecniche di dati auto-riparanti, in particolare quelle che coinvolgono

modelli di IA, può anche avere un grande impatto sulle prestazioni dell’applicazione

e sull’utilizzo delle risorse. L’elaborazione di grandi volumi di dati attraverso modelli

di IA per il rilevamento e la correzione degli errori può essere computazionalmente

intensiva. È importante valutare i compromessi tra i benefici dei dati auto-riparanti e i

costi associati in termini di prestazioni e risorse.

Detto questo, approfondiamo i fattori coinvolti nel decidere quando e dove applicare

questo potente approccio.

Criticità dei Dati

Quando si considera l’applicazione delle tecniche di dati auto-riparanti, è fondamentale

valutare la criticità dei dati che vengono elaborati. Il livello di criticità si riferisce

all’importanza e alla sensibilità dei dati nel contesto della tua applicazione e del suo

dominio aziendale.

In alcuni casi, la correzione automatica degli errori nei dati potrebbe non essere

appropriata, specialmente se i dati sono altamente sensibili o hanno implicazioni legali.

Per esempio, considera i seguenti scenari:

1. Transazioni Finanziarie: Nelle applicazioni finanziarie, come i sistemi bancari o

le piattaforme di trading, l’accuratezza dei dati è dellamassima importanza. Anche

errori minori nei dati finanziari possono avere conseguenze significative, come

Dati Auto-riparanti 172

saldi dei conti errati, fondi instradati male o decisioni di trading erronee. In questi

casi, le correzioni automatizzate senza una verifica e un controllo approfonditi

potrebbero introdurre rischi inaccettabili.

2. Cartelle Cliniche: Le applicazioni sanitarie trattano dati dei pazienti altamente

sensibili e confidenziali. Le imprecisioni nelle cartelle cliniche possono avere gravi

implicazioni per la sicurezza del paziente e le decisioni di trattamento. Modificare

automaticamente i dati medici senza un’adeguata supervisione e convalida da

parte di professionisti sanitari qualificati potrebbe violare i requisiti normativi e

mettere a rischio il benessere del paziente.

3. Documenti Legali: Le applicazioni che gestiscono documenti legali, come

contratti, accordi o atti giudiziari, richiedono una rigorosa accuratezza e integrità.

Anche errori minori nei dati legali possono avere significative ramificazioni

legali. Le correzioni automatizzate in questo dominio potrebbero non essere

appropriate, poiché i dati spesso richiedono una revisione manuale e una verifica

da parte di esperti legali per garantirne la validità e l’applicabilità.

In questi scenari di dati critici, i rischi associati alle correzioni automatizzate

spesso superano i potenziali benefici. Le conseguenze dell’introduzione di errori o

della modifica errata dei dati possono essere gravi, portando a perdite finanziarie,

responsabilità legali o addirittura danni alle persone.

Quando si ha a che fare con dati altamente critici, è essenziale dare priorità ai processi

di verifica e convalida manuale. La supervisione umana e l’esperienza sono cruciali

per garantire l’accuratezza e l’integrità dei dati. Le tecniche di auto-riparazione

automatizzata possono ancora essere impiegate per segnalare potenziali errori o

incongruenze, ma la decisione finale sulle correzioni dovrebbe coinvolgere il giudizio e

l’approvazione umana.

Tuttavia, è importante notare che non tutti i dati in un’applicazione possono avere

lo stesso livello di criticità. All’interno della stessa applicazione, potrebbero esserci

sottoinsiemi di dati che sono meno sensibili o hanno un impatto minore in caso di errori.

Dati Auto-riparanti 173

In tali casi, le tecniche di dati auto-riparanti possono essere applicate selettivamente a

quei specifici sottoinsiemi di dati, mentre i dati critici rimangono soggetti a verifica

manuale.

La chiave è valutare attentamente la criticità di ciascuna categoria di dati nella tua

applicazione e definire linee guida e processi chiari per gestire le correzioni in base ai

rischi e alle implicazioni associate. Differenziando tra dati critici (come registri contabili,

cartelle cliniche) e dati non critici (come indirizzi postali, avvisi sulle risorse), puoi

trovare un equilibrio tra sfruttare i benefici delle tecniche di dati auto-riparanti dove

appropriato e mantenere un controllo e una supervisione rigorosi dove necessario.

In definitiva, la decisione di applicare tecniche di dati auto-riparanti ai dati critici

dovrebbe essere presa in consultazione con esperti del dominio, consulenti legali e

altri stakeholder rilevanti. È essenziale considerare i requisiti specifici, le normative e

i rischi associati ai dati della tua applicazione e allineare di conseguenza le strategie di

correzione dei dati.

Gravità degli Errori

Quando si applicano tecniche di dati auto-riparanti, è importante valutare la gravità

e l’impatto degli errori nei dati. Non tutti gli errori sono uguali, e il corso d’azione

appropriato può variare a seconda della gravità del problema.

Incongruenze minori o problemi di formattazione possono essere adatti per la correzione

automatica. Per esempio, un worker di dati auto-riparanti incaricato di correggere JSON

danneggiato può gestire virgole mancanti o virgolette doppie non escapate senza alterare

significativamente il significato o la struttura dei dati. Questi tipi di errori sono spesso

semplici da correggere e hanno un impatto minimo sull’integrità complessiva dei dati.

Tuttavia, gli errori più gravi che modificano fondamentalmente il significato o

l’integrità dei dati potrebbero richiedere un approccio diverso. In questi casi, le

correzioni automatizzate potrebbero non essere sufficienti, e potrebbe essere necessario

l’intervento umano per garantire l’accuratezza e la validità dei dati.

Dati Auto-riparanti 174

È qui che entra in gioco il concetto di utilizzare l’IA stessa per aiutare a determinare

la gravità degli errori. Sfruttando le capacità dei modelli di IA, possiamo progettare

operatori di dati auto-riparanti che non solo correggono gli errori, ma valutano anche

la gravità di questi errori e prendono decisioni informate su come gestirli.

Per esempio, consideriamo un operatore di dati auto-riparante responsabile della

correzione delle incongruenze nei dati che confluiscono in un database dei clienti.

L’operatore può essere progettato per analizzare i dati e identificare potenziali

errori, come informazioni mancanti o contrastanti. Tuttavia, invece di correggere

automaticamente tutti gli errori, l’operatore può essere dotato di ulteriori chiamate agli

strumenti che gli permettono di segnalare gli errori gravi per una revisione umana.

Ecco un esempio di come questo può essere implementato:

1 class CustomerDataReviewer

2 include Raix::ChatCompletion

3 include Raix::FunctionDeclarations

4

5 attr_accessor :customer

6

7 function :flag_for_review, reason: { type: "string" } do |params|

8 AdminNotifier.review_request(customer, params[:reason])

9 end

10

11 def initialize(customer)

12 self.customer = customer

13 end

14

15 def call(customer_data)

16 transcript << {

17 system: "You are a customer data reviewer. Your task is to identify

18 and correct inconsistencies in customer data.

19

20 < additional instructions here... >

21

22 If you encounter severe errors that require human review, use the

23 `flag_for_review` tool to flag the data for manual intervention." }

24

25 transcript << { user: customer.to_json }

Dati Auto-riparanti 175

26 transcript << { assistant: "Reviewed/corrected data:\n```json\n" }

27

28 self.stop = ["```"]

29

30 chat_completion(json: true).then do |result|

31 return if result.blank?

32

33 customer.update(result)

34 end

35 end

36 end

In questo esempio, il worker CustomerDataHealer è progettato per identificare e

correggere le incongruenze nei dati dei clienti. Ancora una volta, utilizziamo Response

Fencing e Ventriloquist per ottenere output strutturati. È importante notare che la

direttiva di sistema del worker include istruzioni per utilizzare la funzione flag_for_-

review se vengono riscontrati errori gravi.

Quando il worker elabora i dati dei clienti, analizza i dati e tenta di correggere eventuali

incongruenze. Se il worker determina che gli errori sono gravi e richiedono l’intervento

umano, può utilizzare lo strumento flag_for_review per contrassegnare i dati e

fornire una motivazione per la segnalazione.

Il metodo chat_completion viene chiamato con json: true per analizzare i dati

del cliente corretti come JSON. Non è prevista alcuna disposizione per l’iterazione

dopo una chiamata di funzione, quindi il risultato sarà vuoto se flag_for_review

è stato invocato. In caso contrario, il cliente viene aggiornato con i dati revisionati e

potenzialmente corretti.

Incorporando la valutazione della gravità degli errori e l’opzione di contrassegnare i

dati per la revisione umana, il worker per i dati auto-riparanti diventa più intelligente

e adattabile. Può gestire automaticamente gli errori minori mentre escalate quelli gravi

agli esperti umani per un intervento manuale.

I criteri specifici per determinare la gravità dell’errore possono essere definiti nella

direttiva del worker in base alle conoscenze del dominio e ai requisiti aziendali. Fattori

Dati Auto-riparanti 176

come l’impatto sull’integrità dei dati, il potenziale di perdita o corruzione dei dati e

le conseguenze di dati errati possono essere considerati durante la valutazione della

gravità.

Sfruttando l’IA per valutare la gravità degli errori e fornendo opzioni per l’intervento

umano, le tecniche di dati auto-riparanti possono trovare un equilibrio tra automazione

e mantenimento dell’accuratezza dei dati. Questo approccio garantisce che gli errori

minori vengano corretti in modo efficiente mentre gli errori gravi ricevano l’attenzione

e l’esperienza necessarie dai revisori umani.

Complessità del Dominio

Quando si considera l’applicazione delle tecniche di dati auto-riparanti, è importante

valutare la complessità del dominio dei dati e le regole che governano la sua struttura e le

sue relazioni. La complessità del dominio può influenzare significativamente l’efficacia

e la fattibilità degli approcci di correzione automatica dei dati.

Le tecniche di dati auto-riparanti funzionano bene quando i dati seguono modelli e

vincoli ben definiti. Nei domini in cui la struttura dei dati è relativamente semplice e le

relazioni tra gli elementi dei dati sono dirette, le correzioni automatiche possono essere

applicate con un alto grado di confidenza. Ad esempio, la correzione di problemi di

formattazione o l’applicazione di vincoli di base sui tipi di dati possono spesso essere

gestiti efficacemente dai worker per dati auto-riparanti.

Tuttavia, all’aumentare della complessità del dominio dei dati, crescono anche le sfide

associate alla correzione automatica dei dati. Nei domini con logica aziendale intricata,

relazioni complesse tra entità di dati o regole ed eccezioni specifiche del dominio,

le tecniche di dati auto-riparanti potrebbero non sempre catturare le sfumature e

potrebbero introdurre conseguenze indesiderate.

Consideriamo un esempio di dominio complesso: un sistema di trading finanziario. In

questo dominio, i dati coinvolgono vari strumenti finanziari, dati di mercato, regole di

Dati Auto-riparanti 177

trading e requisiti normativi. Le relazioni tra diversi elementi di dati possono essere

intricate e le regole che governano la validità e la coerenza dei dati possono essere

altamente specifiche per il dominio.

In un dominio così complesso, un worker per dati auto-riparanti incaricato di correggere

le incongruenze nei dati di trading dovrebbe avere una profonda comprensione delle

regole e dei vincoli specifici del dominio. Dovrebbe considerare fattori come le

normative di mercato, i limiti di trading, i calcoli del rischio e le procedure di

regolamento. Le correzioni automatiche in questo contesto potrebbero non sempre

catturare la piena complessità del dominio e potrebbero inavvertitamente introdurre

errori o violare regole specifiche del dominio.

Per affrontare le sfide della complessità del dominio, le tecniche di dati auto-riparanti

possono essere migliorate incorporando conoscenze e regole specifiche del dominio nei

modelli e nei worker AI. Questo può essere ottenuto attraverso tecniche come:

1. Addestramento Specifico per il Dominio: I modelli di IA utilizzati per i dati

auto-riparanti possono essere diretti o persino perfezionati su dataset specifici

del dominio che catturano le complessità e le regole del particolare dominio.

Esponendo i modelli a dati e scenari rappresentativi, questi possono apprendere i

modelli, i vincoli e le eccezioni specifiche del dominio.

2. Vincoli Basati su Regole: I worker per dati auto-riparanti possono essere

arricchiti con vincoli espliciti basati su regole che codificano la conoscenza

specifica del dominio. Queste regole possono essere definite da esperti del

dominio e integrate nel processo di correzione dei dati. I modelli di IA possono

quindi utilizzare queste regole per guidare le loro decisioni e garantire la

conformità ai requisiti specifici del dominio.

3. Collaborazione con Esperti del Dominio: Nei domini complessi, è cruciale

coinvolgere esperti del dominio nella progettazione e nello sviluppo di tecniche

di dati auto-riparanti. Gli esperti del dominio possono fornire preziose intuizioni

sulle complessità dei dati, le regole aziendali e i potenziali casi limite. La loro

Dati Auto-riparanti 178

conoscenza può essere incorporata nei modelli e nei worker AI per migliorare

l’accuratezza e l’affidabilità delle correzioni automatiche dei dati utilizzando i

pattern di Human In The Loop.

4. Approccio Incrementale e Iterativo: Quando si ha a che fare con domini

complessi, è spesso vantaggioso adottare un approccio incrementale e iterativo

ai dati auto-riparanti. Invece di tentare di automatizzare le correzioni per l’intero

dominio in una volta sola, ci si concentra su sottodomini specifici o categorie di

dati dove le regole e i vincoli sono ben compresi. Gradualmente si espande l’ambito

delle tecniche di auto-riparazione man mano che la comprensione del dominio

cresce e le tecniche si dimostrano efficaci.

Considerando la complessità del dominio dei dati e incorporando la conoscenza specifica

del dominio nelle tecniche di dati auto-riparanti, è possibile trovare un equilibrio tra

automazione e accuratezza. È importante riconoscere che i dati auto-riparanti non sono

una soluzione universale e che l’approccio deve essere adattato ai requisiti specifici e

alle sfide di ogni dominio.

In domini complessi, un approccio ibrido che combina tecniche di dati auto-riparanti

con l’esperienza e la supervisione umana può risultare più efficace. Le correzioni

automatizzate possono gestire casi di routine e ben definiti, mentre gli scenari complessi

o le eccezioni possono essere segnalati per la revisione e l’intervento umano. Questo

approccio collaborativo garantisce che i benefici dell’automazione vengano realizzati

mantenendo il necessario controllo e l’accuratezza in domini di dati complessi.

Spiegabilità e Trasparenza

La spiegabilità si riferisce alla capacità di comprendere e interpretare il ragionamento

alla base delle decisioni prese dai modelli di IA, mentre la trasparenza implica fornire

una chiara visibilità nel processo di correzione dei dati.

In molti contesti, le modifiche ai dati devono essere verificabili e giustificabili. Gli

stakeholder, inclusi gli utenti aziendali, i revisori e gli organi di regolamentazione,

Dati Auto-riparanti 179

potrebbero richiedere spiegazioni sul motivo per cui sono state apportate determinate

correzioni ai dati e su come i modelli di IA siano giunti a tali decisioni. Questo

è particolarmente cruciale in domini dove l’accuratezza e l’integrità dei dati hanno

implicazioni significative, come la finanza, la sanità e le questioni legali.

Per affrontare la necessità di spiegabilità e trasparenza, le tecniche di dati auto-

riparanti dovrebbero incorporare meccanismi che forniscano informazioni sul processo

decisionale dei modelli di IA. Questo può essere realizzato attraverso vari approcci:

1. Catena di Pensiero: Chiedere al modello di spiegare il proprio ragionamento

“ad alta voce” prima di applicare modifiche ai dati può permettere una più

facile comprensione del processo decisionale e può generare spiegazioni

leggibili dall’uomo per le correzioni effettuate. Il compromesso è una maggiore

complessità nel separare la spiegazione dall’output dei dati strutturati, che può

essere affrontata tramite…

2. Generazione di Spiegazioni: I worker dei dati auto-riparanti possono essere

dotati della capacità di generare spiegazioni leggibili dall’uomo per le correzioni

che apportano. Questo può essere ottenuto chiedendo al modello di produrre il

suo processo decisionale come spiegazioni facilmente comprensibili integrate nei

dati stessi. Per esempio, un worker di dati auto-riparanti potrebbe generare un

report che evidenzia le specifiche inconsistenze dei dati identificate, le correzioni

applicate e le motivazioni alla base di tali correzioni.

3. Importanza delle Caratteristiche: I modelli di IA possono essere istruiti con

informazioni sull’importanza delle diverse caratteristiche o attributi nel processo

di correzione dei dati come parte delle loro direttive. Queste direttive, a loro

volta, possono essere esposte agli stakeholder umani. Identificando i fattori

chiave che influenzano le decisioni del modello, gli stakeholder possono acquisire

informazioni sul ragionamento alla base delle correzioni e valutarne la validità.

4. Registrazione e Audit: L’implementazione di meccanismi completi di

registrazione e audit è cruciale per mantenere la trasparenza nel processo

Dati Auto-riparanti 180

di dati auto-riparanti. Ogni correzione dei dati effettuata dai modelli di IA

dovrebbe essere registrata, inclusi i dati originali, i dati corretti e le azioni

specifiche intraprese. Questa traccia di audit permette un’analisi retrospettiva e

fornisce una registrazione chiara delle modifiche apportate ai dati.

5. Approccio con Supervisione Umana: Incorporare un approccio con supervisione

umana può migliorare la spiegabilità e la trasparenza delle tecniche di dati

auto-riparanti. Coinvolgendo esperti umani nella revisione e nella validazione

delle correzioni generate dall’IA, le organizzazioni possono garantire che le

correzioni siano allineate con la conoscenza del dominio e i requisiti aziendali.

La supervisione umana aggiunge un ulteriore livello di responsabilità e permette

l’identificazione di potenziali pregiudizi o errori nei modelli di IA.

6. Monitoraggio e Valutazione Continui: Il monitoraggio e la valutazione regolare

delle prestazioni delle tecniche di dati auto-riparanti sono essenziali permantenere

la trasparenza e la fiducia. Valutando l’accuratezza e l’efficacia dei modelli di IA

nel tempo, le organizzazioni possono identificare eventuali deviazioni o anomalie

e intraprendere azioni correttive. Il monitoraggio continuo aiuta a garantire che

il processo di dati auto-riparanti rimanga affidabile e allineato con i risultati

desiderati.

La spiegabilità e la trasparenza sono considerazioni critiche nell’implementazione

delle tecniche di dati auto-riparanti. Fornendo spiegazioni chiare per le correzioni dei

dati, mantenendo tracce di audit complete e coinvolgendo la supervisione umana, le

organizzazioni possono costruire fiducia nel processo di dati auto-riparanti e garantire

che le modifiche apportate ai dati siano giustificabili e allineate con gli obiettivi

aziendali.

È importante trovare un equilibrio tra i benefici dell’automazione e la necessità

di trasparenza. Mentre le tecniche di dati auto-riparanti possono migliorare

significativamente la qualità e l’efficienza dei dati, non dovrebbero comportare la

perdita di visibilità e controllo sul processo di correzione dei dati. Progettando i worker

Dati Auto-riparanti 181

di dati auto-riparanti con la spiegabilità e la trasparenza in mente, le organizzazioni

possono sfruttare il potere dell’IA mantenendo il necessario livello di responsabilità e

fiducia nei dati.

Conseguenze Indesiderate

Mentre le tecniche di dati auto-riparanti mirano a migliorare la qualità e la coerenza

dei dati, è fondamentale essere consapevoli del potenziale di conseguenze indesiderate.

Le correzioni automatizzate, se non attentamente progettate e monitorate, potrebbero

inavvertitamente alterare il significato o il contesto dei dati, portando a problemi a valle.

Uno dei rischi principali dei dati auto-riparanti è l’introduzione di pregiudizi o errori nel

processo di correzione dei dati. I modelli di IA, come qualsiasi altro sistema software,

possono essere soggetti a pregiudizi presenti nei dati di addestramento o introdotti

attraverso la progettazione degli algoritmi. Se questi pregiudizi non vengono identificati

e mitigati, possono propagarsi attraverso il processo di dati auto-riparanti e risultare in

modifiche dei dati distorte o errate.

Ad esempio, consideriamo un lavoratore di dati auto-riparanti incaricato di correggere

le incongruenze nei dati demografici dei clienti. Se il modello di IA ha appreso pregiudizi

dai dati storici, come l’associazione di determinate occupazioni o livelli di reddito con

specifici generi o etnie, potrebbe fare supposizioni errate e modificare i dati in modo

da rafforzare questi pregiudizi. Ciò può portare a profili dei clienti inaccurati, decisioni

aziendali errate e potenziali risultati discriminatori.

Un’altra potenziale conseguenza indesiderata è la perdita di informazioni o contesto

preziosi durante il processo di correzione dei dati. Le tecniche di dati auto-riparanti

spesso si concentrano sulla standardizzazione e normalizzazione dei dati per garantire

la coerenza. Tuttavia, in alcuni casi, i dati originali potrebbero contenere sfumature,

eccezioni o informazioni contestuali importanti per comprendere il quadro completo.

Le correzioni automatizzate che applicano ciecamente la standardizzazione potrebbero

inavvertitamente rimuovere o oscurare queste informazioni preziose.

Dati Auto-riparanti 182

Per esempio, immaginiamo un lavoratore di dati auto-riparanti responsabile della

correzione delle incongruenze nelle cartelle cliniche. Se il lavoratore incontra la storia

clinica di un paziente con una condizione rara o un piano di trattamento insolito,

potrebbe tentare di normalizzare i dati per adattarli a uno schema più comune.

Tuttavia, così facendo, potrebbe perdere i dettagli specifici e il contesto che sono

cruciali per rappresentare accuratamente la situazione unica del paziente. Questa perdita

di informazioni può avere serie implicazioni per la cura del paziente e il processo

decisionale medico.

Per mitigare i rischi di conseguenze indesiderate, è essenziale adottare un approccio

proattivo nella progettazione e implementazione delle tecniche di dati auto-riparanti:

1. Test e Convalida Approfonditi: Prima di distribuire i lavoratori di dati auto-

riparanti in produzione, è cruciale testare e convalidare accuratamente il loro

comportamento in una vasta gamma di scenari. Ciò include i test con set di dati

rappresentativi che coprono vari casi limite, eccezioni e potenziali pregiudizi. Test

rigorosi aiutano a identificare e affrontare eventuali conseguenze indesiderate

prima che influenzino i dati nel mondo reale.

2. Monitoraggio e Valutazione Continui: L’implementazione di meccanismi

di monitoraggio e valutazione continui è essenziale per rilevare e mitigare

le conseguenze indesiderate nel tempo. Rivedere regolarmente i risultati dei

processi di dati auto-riparanti, analizzare l’impatto sui sistemi a valle e sul

processo decisionale, e raccogliere feedback dagli stakeholder può aiutare a

identificare eventuali effetti negativi e promuovere azioni correttive tempestive.

Se la vostra organizzazione dispone di dashboard operativi, aggiungere metriche

chiaramente visibili relative alle modifiche automatizzate dei dati è probabilmente

una buona idea. Aggiungere allarmi collegati a grandi deviazioni dall’attività

normale di modifica dei dati è probabilmente un’idea ancora migliore!

3. Supervisione e Intervento Umano: Mantenere la supervisione umana e la

capacità di intervenire nel processo di dati auto-riparanti è cruciale. Mentre

Dati Auto-riparanti 183

l’automazione può migliorare notevolmente l’efficienza, è importante che

esperti umani revisionino e convalidino le correzioni effettuate dai modelli di

IA, specialmente in domini critici o sensibili. Il giudizio umano e l’esperienza

nel dominio possono aiutare a identificare e affrontare eventuali conseguenze

indesiderate che potrebbero emergere.

4. AI Spiegabile (XAI) e Trasparenza:Come discusso nella sottosezione precedente,

incorporare tecniche di AI spiegabile e garantire la trasparenza nel processo di

dati auto-riparanti può aiutare a mitigare le conseguenze indesiderate. Fornendo

spiegazioni chiare per le correzioni dei dati e mantenendo tracce di audit complete,

le organizzazioni possono comprendere meglio e tracciare il ragionamento dietro

le modifiche effettuate dai modelli di IA.

5. Approccio Incrementale e Iterativo: Adottare un approccio incrementale e

iterativo ai dati auto-riparanti può aiutare a minimizzare il rischio di conseguenze

indesiderate. Invece di applicare correzioni automatizzate all’intero set di dati in

una volta sola, iniziare con un sottoinsieme di dati e gradualmente espandere

l’ambito man mano che le tecniche si dimostrano efficaci e affidabili. Questo

permette un attento monitoraggio e aggiustamento lungo il percorso, riducendo

l’impatto di eventuali conseguenze indesiderate.

6. Collaborazione e Feedback: Coinvolgere gli stakeholder di diversi domini e

incoraggiare la collaborazione e il feedback durante tutto il processo di dati

auto-riparanti può aiutare a identificare e affrontare le conseguenze indesiderate.

Cercare regolarmente input da esperti del dominio, consumatori di dati e utenti

finali può fornire preziose informazioni sull’impatto nel mondo reale delle

correzioni dei dati e evidenziare eventuali problemi che potrebbero essere stati

trascurati.

Affrontando proattivamente il rischio di conseguenze indesiderate e implementando

adeguate misure di sicurezza, le organizzazioni possono sfruttare i benefici delle

tecniche di dati auto-riparanti minimizzando al contempo i potenziali effetti negativi. È

Dati Auto-riparanti 184

importante approcciare i dati auto-riparanti come un processo iterativo e collaborativo,

monitorando, valutando e raffinando continuamente le tecniche per assicurare che si

allineino con i risultati desiderati e mantengano l’integrità e l’affidabilità dei dati.

Quando si considera l’uso di pattern di dati auto-riparanti, è essenziale valutare

attentamente questi fattori e soppesare i benefici rispetto ai potenziali rischi e

limitazioni. In alcuni casi, un approccio ibrido che combina correzioni automatizzate

con supervisione e intervento umano potrebbe essere la soluzione più appropriata.

Vale anche la pena notare che le tecniche di dati auto-riparanti non dovrebbero essere

viste come un sostituto dei robusti meccanismi di convalida dei dati, sanificazione

dell’input e gestione degli errori. Queste pratiche fondamentali rimangono critiche

per garantire l’integrità e la sicurezza dei dati. I dati auto-riparanti dovrebbero essere

visti come un approccio complementare che può aumentare e migliorare queste misure

esistenti.

In definitiva, la decisione di impiegare pattern di dati auto-riparanti dipende dai

requisiti specifici, dai vincoli e dalle priorità della vostra applicazione. Considerando

attentamente le considerazioni delineate sopra e allineandole con gli obiettivi e

l’architettura della vostra applicazione, potete prendere decisioni informate su quando

e come sfruttare efficacemente le tecniche di dati auto-riparanti.

Generazione Contestuale dei
Contenuti

I pattern di Generazione Contestuale dei Contenuti sfruttano la potenza dei

modelli linguistici di grandi dimensioni (LLM) per generare contenuti dinamici e

contestualmente specifici all’interno delle applicazioni. Questa categoria di pattern

riconosce l’importanza di fornire contenuti personalizzati e pertinenti agli utenti in

base alle loro specifiche esigenze, preferenze e persino alle interazioni precedenti e

attuali con l’applicazione.

In questo contesto, il termine “contenuto” si riferisce sia ai contenuti primari (come

post di blog, articoli, ecc.) sia ai meta-contenuti, come le raccomandazioni relative ai

Generazione Contestuale dei Contenuti 186

contenuti primari.

I pattern di Generazione Contestuale dei Contenuti possono svolgere un ruolo cruciale

nel migliorare i livelli di coinvolgimento degli utenti, fornendo esperienze personalizzate

e automatizzando le attività di creazione dei contenuti sia per te che per i tuoi utenti.

Utilizzando i pattern che descriviamo in questo capitolo, puoi creare applicazioni che

generano contenuti in modo dinamico, adattandosi al contesto e agli input in tempo

reale.

I pattern funzionano integrando gli LLM negli output dell’applicazione, dall’interfaccia

utente (talvolta denominata “chrome”), alle email e altre forme di notifiche, fino a

qualsiasi pipeline di generazione dei contenuti.

Quando un utente interagisce con l’applicazione o attiva una specifica richiesta di

contenuto, l’applicazione acquisisce il contesto rilevante, come le preferenze dell’utente,

le interazioni precedenti o prompt specifici. Queste informazioni contestuali vengono

poi inserite nell’LLM, insieme a eventuali template o linee guida necessarie, e utilizzate

per produrre output testuali che altrimenti dovrebbero essere codificati staticamente,

memorizzati in un database o generati algoritmicamente.

I contenuti generati dall’LLM possono assumere varie forme, come raccomandazioni

personalizzate, descrizioni dinamiche dei prodotti, risposte email personalizzate o

persino interi articoli o post di blog. Uno degli usi più radicali di questi contenuti che

ho introdotto più di un anno fa è la generazione dinamica di elementi dell’interfaccia

utente come etichette dei form, tooltip e altri tipi di testo esplicativo.

Personalizzazione

Uno dei principali vantaggi dei pattern di Generazione Contestuale dei Contenuti è la

capacità di offrire esperienze altamente personalizzate agli utenti. Generando contenuti

Generazione Contestuale dei Contenuti 187

basati sul contesto specifico dell’utente, questi pattern permettono alle applicazioni di

adattare i contenuti agli interessi, alle preferenze e alle interazioni dei singoli utenti.

La personalizzazione va oltre il semplice inserimento del nome dell’utente in contenuti

generici. Implica lo sfruttamento del ricco contesto disponibile su ogni utente per

generare contenuti che risuonino con le loro specifiche esigenze e desideri. Questo

contesto può includere una vasta gamma di fattori, come:

1. Informazioni del Profilo Utente:Al livello più generale di applicazione di questa

tecnica, i dati demografici, gli interessi, le preferenze e altri attributi del profilo

possono essere utilizzati per generare contenuti che si allineano con il background

e le caratteristiche dell’utente.

2. Dati Comportamentali: Le interazioni passate dell’utente con l’applicazione,

come le pagine visualizzate, i link cliccati o i prodotti acquistati, possono fornire

preziose informazioni sui loro comportamenti e interessi. Questi dati possono

essere utilizzati per generare suggerimenti di contenuti che riflettono i loromodelli

di coinvolgimento e prevedono le loro esigenze future.

3. Fattori Contestuali: Il contesto attuale dell’utente, come la sua posizione,

il dispositivo, l’ora del giorno o persino le condizioni meteorologiche, può

influenzare il processo di generazione dei contenuti. Ad esempio, un’applicazione

di viaggi potrebbe avere un sistema AI in grado di generare raccomandazioni

personalizzate basate sulla posizione attuale dell’utente e sulle condizioni

meteorologiche prevalenti.

Sfruttando questi fattori contestuali, i pattern di Generazione Contestuale dei Contenuti

permettono alle applicazioni di fornire contenuti che sembrano creati su misura per ogni

singolo utente. Questo livello di personalizzazione presenta diversi vantaggi significativi:

1. Maggiore Coinvolgimento: I contenuti personalizzati catturano l’attenzione

degli utenti e li mantengono coinvolti nell’applicazione. Quando gli utenti sentono

che i contenuti sono pertinenti e parlano direttamente alle loro esigenze, è più

Generazione Contestuale dei Contenuti 188

probabile che trascorrano più tempo a interagire con l’applicazione e a esplorarne

le funzionalità.

2. Maggiore Soddisfazione dell’Utente: I contenuti personalizzati dimostrano

che l’applicazione comprende e si preoccupa delle esigenze uniche dell’utente.

Fornendo contenuti utili, informativi e allineati con i loro interessi, l’applicazione

può migliorare la soddisfazione degli utenti e costruire una connessione più forte

con loro.

3. Tassi di Conversione più Elevati: Nel contesto di applicazioni e-commerce o di

marketing, i contenuti personalizzati possono avere un impatto significativo sui

tassi di conversione. Presentando agli utenti prodotti, offerte o raccomandazioni

adattate alle loro preferenze e comportamenti, l’applicazione può aumentare

la probabilità che gli utenti compiano le azioni desiderate, come effettuare un

acquisto o iscriversi a un servizio.

Produttività

I pattern di Generazione Contestuale dei Contenuti possono aumentare

significativamente certi tipi di produttività riducendo la necessità di generazione

e modifica manuale dei contenuti nei processi creativi. Sfruttando la potenza degli

LLM, puoi generare contenuti di alta qualità su larga scala, risparmiando tempo e sforzo

che i tuoi creatori di contenuti e sviluppatori dovrebbero altrimenti spendere in tedioso

lavoro manuale.

Tradizionalmente, i creatori di contenuti devono ricercare, scrivere, modificare e

formattare i contenuti per garantire che soddisfino i requisiti dell’applicazione e

le aspettative degli utenti. Questo processo può richiedere molto tempo e risorse,

specialmente quando il volume dei contenuti aumenta.

Tuttavia, con i pattern di Generazione Contestuale dei Contenuti, il processo di

creazione dei contenuti può essere ampiamente automatizzato. Gli LLM possono

Generazione Contestuale dei Contenuti 189

generare contenuti coerenti, grammaticalmente corretti e contestualmente rilevanti

sulla base dei prompt e delle linee guida fornite. Questa automazione offre diversi

vantaggi in termini di produttività:

1. Riduzione dello Sforzo Manuale: Delegando i compiti di generazione dei

contenuti agli LLM, i creatori di contenuti possono concentrarsi su attività di

livello superiore come la strategia dei contenuti, l’ideazione e il controllo della

qualità. Possono fornire all’LLM il contesto, i template e le linee guida necessarie

e lasciare che si occupi della generazione effettiva dei contenuti. Questo riduce lo

sforzo manuale richiesto per la scrittura e la modifica, permettendo ai creatori di

contenuti di essere più produttivi ed efficienti.

2. Creazione più Rapida dei Contenuti:Gli LLM possono generare contenuti molto

più velocemente degli scrittori umani. Con i prompt e le linee guida appropriate,

un LLM può produrre molteplici contenuti in pochi secondi o minuti. Questa

velocità permette alle applicazioni di generare contenuti a un ritmo molto più

rapido, tenendo il passo con le richieste degli utenti e il panorama digitale in

continua evoluzione.

La creazione più rapida di contenuti sta portando a una situazione di

“tragedia dei beni comuni” in cui internet sta annegando in contenuti che

nessuno legge? Purtroppo, sospetto che la risposta sia sì.

3. Coerenza e Qualità:Gli LLM possono facilmente revisionare i contenuti in modo

che siano coerenti nello stile, nel tono e nella qualità. Fornendo linee guida ed

esempi chiari, certi tipi di applicazioni (ad esempio redazioni giornalistiche, PR,

ecc.) possono garantire che i loro contenuti generati dall’uomo si allineino con

la voce del brand e soddisfino gli standard di qualità desiderati. Questa coerenza

Generazione Contestuale dei Contenuti 190

riduce la necessità di modifiche e revisioni estese, risparmiando tempo e sforzo

nel processo di creazione dei contenuti.

4. Iterazione e Ottimizzazione: I pattern di Generazione Contestuale dei Contenuti

permettono una rapida iterazione e ottimizzazione dei contenuti. Modificando i

prompt, i template o le linee guida fornite all’LLM, le vostre applicazioni possono

generare rapidamente variazioni di contenuti e testare diversi approcci in modo

automatizzato che non era mai stato possibile in passato. Questo processo iterativo

permette una sperimentazione e un perfezionamento più rapidi delle strategie

dei contenuti, portando nel tempo a contenuti più efficaci e coinvolgenti. Questa

particolare tecnica può essere rivoluzionaria per applicazioni come l’e-commerce

che vivono e muoiono in base ai tassi di abbandono e al coinvolgimento

È importante notare che mentre i pattern di Generazione Contestuale dei

Contenuti possono migliorare notevolmente la produttività, non eliminano

completamente la necessità di coinvolgimento umano. I creatori di contenuti

e gli editor continuano a svolgere un ruolo cruciale nel definire la strategia

complessiva dei contenuti, fornire guida all’LLM e garantire la qualità e

l’appropriatezza dei contenuti generati.

Automatizzando gli aspetti più ripetitivi e dispendiosi in termini di tempo della creazione

dei contenuti, i pattern di Generazione Contestuale dei Contenuti liberano prezioso

tempo e risorse umane che possono essere reindirizzati verso attività di maggior valore.

Questa maggiore produttività vi permette di fornire contenuti più personalizzati e

coinvolgenti agli utenti ottimizzando al contempo i flussi di lavoro di creazione dei

contenuti.

Iterazione Rapida e Sperimentazione

I pattern di Generazione Contestuale dei Contenuti vi permettono di iterare rapidamente

e sperimentare con diverse variazioni di contenuto, consentendo un’ottimizzazione e

Generazione Contestuale dei Contenuti 191

un perfezionamento più rapidi della vostra strategia dei contenuti. Potete generare

multiple versioni di contenuto in pochi secondi, semplicemente modificando il contesto,

i template o le linee guida fornite al modello.

Questa capacità di rapida iterazione offre diversi vantaggi chiave:

1. Test e Ottimizzazione: Con la capacità di generare rapidamente variazioni di

contenuto, potete facilmente testare diversi approcci e misurarne l’efficacia. Per

esempio, potete generare multiple versioni di una descrizione prodotto o di un

messaggio di marketing, ciascuna adattata a uno specifico segmento di utenti o

contesto. Analizzando le metriche di coinvolgimento degli utenti, come i tassi di

click o di conversione, potete identificare le variazioni di contenuto più efficaci e

ottimizzare di conseguenza la vostra strategia dei contenuti.

2. Test A/B: I pattern di Generazione Contestuale dei Contenuti permettono test A/B

fluidi dei contenuti. Potete generare due o più variazioni di contenuto e mostrarle

casualmente a diversi gruppi di utenti. Confrontando le performance di ciascuna

variazione, potete determinare quale contenuto risuona meglio con il vostro

pubblico target. Questo approccio basato sui dati vi permette di prendere decisioni

informate e perfezionare continuamente i vostri contenuti per massimizzare il

coinvolgimento degli utenti e raggiungere i risultati desiderati.

3. Esperimenti di Personalizzazione: L’iterazione rapida e la sperimentazione sono

particolarmente preziose quando si tratta di personalizzazione. Con i pattern di

Generazione Contestuale dei Contenuti, potete generare rapidamente variazioni

di contenuto personalizzate basate su diversi segmenti di utenti, preferenze o

comportamenti. Sperimentando con diverse strategie di personalizzazione, potete

identificare gli approcci più efficaci per coinvolgere i singoli utenti e fornire

esperienze su misura.

4. Adattamento alle Tendenze in Evoluzione: La capacità di iterare e sperimentare

rapidamente ti permette di rimanere agile e adattarti ai cambiamenti nelle

tendenze e nelle preferenze degli utenti. Quando emergono nuovi argomenti,

Generazione Contestuale dei Contenuti 192

parole chiave o comportamenti degli utenti, puoi generare rapidamente contenuti

allineati a queste tendenze. Attraverso la sperimentazione e il perfezionamento

continuo dei tuoi contenuti, puoi rimanere rilevante e mantenere un vantaggio

competitivo nel panorama digitale in continua evoluzione.

5. Sperimentazione Economicamente Vantaggiosa: La sperimentazione

tradizionale dei contenuti spesso richiede tempo e risorse significative, poiché i

creatori di contenuti devono sviluppare e testare manualmente diverse varianti.

Tuttavia, con i modelli di Generazione Contestuale dei Contenuti, il costo

della sperimentazione si riduce notevolmente. I modelli linguistici di grandi

dimensioni possono generare variazioni di contenuto rapidamente e su larga

scala, permettendoti di esplorare una vasta gamma di idee e approcci senza

incorrere in costi sostanziali.

Per sfruttare al meglio l’iterazione e la sperimentazione rapida, è importante avere un

framework di sperimentazione ben definito. Questo framework dovrebbe includere:

• Obiettivi e ipotesi chiari per ogni esperimento

• Metriche appropriate e meccanismi di monitoraggio per misurare le prestazioni

dei contenuti

• Strategie di segmentazione e targeting per garantire che le variazioni di contenuto

pertinenti vengano servite agli utenti giusti

• Strumenti di analisi e reporting per ricavare informazioni dai dati sperimentali

• Un processo per incorporare gli apprendimenti e le ottimizzazioni nella tua

strategia dei contenuti

Abbracciando l’iterazione e la sperimentazione rapida, puoi perfezionare e ottimizzare

continuamente i tuoi contenuti, assicurando che rimangano coinvolgenti, pertinenti ed

efficaci nel raggiungere gli obiettivi della tua applicazione. Questo approccio agile alla

creazione di contenuti ti permette di rimanere all’avanguardia e offrire esperienze utente

eccezionali.

Generazione Contestuale dei Contenuti 193

Scalabilità ed Efficienza

Man mano che le applicazioni crescono e aumenta la domanda di contenuti

personalizzati, i modelli di generazione contestuale dei contenuti permettono una

scalabile ed efficiente creazione di contenuti. I modelli linguistici di grandi dimensioni

possono generare contenuti per un gran numero di utenti e contesti simultaneamente,

senza la necessità di un aumento proporzionale delle risorse umane. Questa scalabilità

permette alle applicazioni di offrire esperienze personalizzate a una base utenti in

crescita senza sovraccaricare le loro capacità di creazione dei contenuti.

Nota che la generazione contestuale dei contenuti può essere utilizzata

efficacemente per internazionalizzare la tua applicazione “al volo”. In effetti,

è esattamente quello che ho fatto utilizzando la mia Gem Instant18n per

distribuire Olympia in più di mezza dozzina di lingue, nonostante abbiamo

meno di un anno.

Localizzazione Basata su IA

Se mi permettete di vantarmi per un momento, penso che la mia libreria Instant18n per

applicazioni Rails sia un esempio rivoluzionario del pattern “Generazione Contestuale

dei Contenuti” in azione, che mostra il potenziale trasformativo dell’IA nello sviluppo di

applicazioni. Questa gem sfrutta la potenza del modello linguistico GPT di OpenAI per

rivoluzionare il modo in cui l’internazionalizzazione e la localizzazione vengono gestite

nelle applicazioni Rails.

Tradizionalmente, internazionalizzare un’applicazione Rails comporta la definizione

manuale di chiavi di traduzione e la fornitura delle corrispondenti traduzioni per ogni

lingua supportata. Questo processo può richiedere molto tempo, essere dispendioso

in termini di risorse e soggetto a incongruenze. Tuttavia, con la gem Instant18n, il

paradigma della localizzazione viene completamente ridefinito.

Generazione Contestuale dei Contenuti 194

Integrando un modello linguistico di grandi dimensioni, la gem Instant18n ti permette

di generare traduzioni al volo, basate sul contesto e sul significato del testo. Invece

di affidarsi a chiavi di traduzione predefinite e traduzioni statiche, la gem traduce

dinamicamente il testo utilizzando la potenza dell’IA. Questo approccio offre diversi

vantaggi chiave:

1. Localizzazione Senza Interruzioni: Con la gem Instant18n, gli sviluppatori non

devono più definire e mantenere manualmente i file di traduzione per ogni

lingua supportata. La gem genera automaticamente le traduzioni basandosi sul

testo fornito e sulla lingua di destinazione desiderata, rendendo il processo di

localizzazione senza sforzo e fluido.

2. Accuratezza Contestuale: L’IA può ricevere contesto sufficiente per comprendere

le sfumature del testo da tradurre. Può tenere conto del contesto circostante, degli

idiomi e dei riferimenti culturali per generare traduzioni accurate, che suonano

naturali e contestualmente appropriate.

3. Supporto Linguistico Esteso: La gem Instant18n sfrutta le vaste conoscenze

e capacità linguistiche di GPT, permettendo traduzioni in un’ampia gamma di

lingue. Dalle lingue comuni come lo spagnolo e il francese a lingue più oscure o

fittizie come il Klingon e l’Elfico, la gem può gestire una vasta varietà di requisiti

di traduzione.

4. Flessibilità e Creatività: La gem va oltre le traduzioni linguistiche tradizionali e

permette opzioni di localizzazione creative e non convenzionali. Gli sviluppatori

possono tradurre il testo in vari stili, dialetti o persino lingue fittizie, aprendo

nuove possibilità per esperienze utente uniche e contenuti coinvolgenti.

5. Ottimizzazione delle Prestazioni: La gem Instant18n incorpora meccanismi

di caching per migliorare le prestazioni e ridurre il sovraccarico di traduzioni

ripetute. Il testo tradotto viene memorizzato nella cache, permettendo che le

successive richieste per la stessa traduzione vengano servite rapidamente senza

la necessità di chiamate API ridondanti.

Generazione Contestuale dei Contenuti 195

La gem Instant18n esemplifica la potenza del pattern “Generazione Contestuale dei

Contenuti” sfruttando l’IA per generare contenuti localizzati dinamicamente. Dimostra

come l’IA possa essere integrata nella funzionalità core di un’applicazione Rails,

trasformando il modo in cui gli sviluppatori affrontano l’internazionalizzazione e la

localizzazione.

Eliminando la necessità di gestire manualmente le traduzioni e consentendo traduzioni

istantanee basate sul contesto, la gem Instant18n fa risparmiare agli sviluppatori tempo

e fatica significativi. Permette loro di concentrarsi sulla costruzione delle funzionalità

principali dell’applicazione, garantendo al contempo che l’aspetto della localizzazione

sia gestito in modo fluido e accurato.

L’Importanza dei Test Utente e del Feedback

Infine, tieni sempre presente l’importanza dei test utente e del feedback. È fondamentale

verificare che la generazione di contenuti contestuali soddisfi le aspettative degli utenti

e si allinei con gli obiettivi dell’applicazione. Continua a iterare e perfezionare i

contenuti generati sulla base degli approfondimenti degli utenti e delle analisi dei dati.

Se stai generando contenuti dinamici su larga scala che sarebbe impossibile validare

manualmente da te e dal tuo team, considera l’aggiunta di meccanismi di feedback che

permettano agli utenti di segnalare contenuti strani o errati, insieme a una spiegazione

del perché. Questo prezioso feedback può persino essere utilizzato da un worker AI

incaricato di apportare modifiche al componente che ha generato il contenuto!

Generative UI

L’attenzione è così preziosa al giorno d’oggi che un coinvolgimento efficace dell’utente

richiede esperienze software non solo fluide e intuitive, ma anche altamente

personalizzate in base alle esigenze, preferenze e contesti individuali. Di conseguenza,

designer e sviluppatori si trovano sempre più spesso ad affrontare la sfida di creare

interfacce utente in grado di adattarsi e rispondere alle esigenze uniche di ciascun

utente su larga scala.

Il Generative UI (GenUI) è un approccio veramente rivoluzionario alla progettazione

dell’interfaccia utente che sfrutta la potenza dei modelli linguistici di grandi dimensioni

(LLM) per creare esperienze utente altamente personalizzate e dinamiche al momento.

Ho voluto assicurarmi di darti almeno un’introduzione al GenUI in questo libro, perché

credo che sia una delle opportunità più promettenti che esistono attualmente nel campo

della progettazione e dei framework delle applicazioni. Sono convinto che decine o più

Generative UI 197

nuovi progetti commerciali e open-source di successo emergeranno in questa particolare

nicchia.

Nel suo nucleo, GenUI combina i principi della Generazione di Contenuti Contestuale

con tecniche di AI avanzate per generare elementi dell’interfaccia utente, come testo,

immagini e layout, in modo dinamico basandosi su una profonda comprensione del

contesto, delle preferenze e degli obiettivi dell’utente. GenUI permette ai designer e agli

sviluppatori di creare interfacce che si adattano e si evolvono in risposta alle interazioni

dell’utente, fornendo un livello di personalizzazione precedentemente irraggiungibile.

GenUI rappresenta un cambiamento fondamentale nel modo in cui affrontiamo la

progettazione dell’interfaccia utente. Invece di progettare per le masse, GenUI ci

permette di progettare per l’individuo. I contenuti e le interfacce personalizzate hanno

il potenziale di creare esperienze utente che risuonano con ciascun utente a un livello

più profondo, aumentando il coinvolgimento, la soddisfazione e la fedeltà.

Come tecnica all’avanguardia, la transizione al GenUI è piena di sfide concettuali

e pratiche. L’integrazione dell’AI nel processo di progettazione, garantendo che le

interfacce generate siano non solo personalizzate ma anche utilizzabili, accessibili e

allineate con il brand complessivo e l’esperienza utente, sono tutte sfide che rendono

GenUI una ricerca per pochi, non per molti. Inoltre, il coinvolgimento dell’AI solleva

questioni sulla privacy dei dati, la trasparenza e persino implicazioni etiche.

Nonostante le sfide, le esperienze personalizzate su larga scala hanno il potere di

trasformare completamente il modo in cui interagiamo con prodotti e servizi digitali.

Apre possibilità per creare interfacce inclusive e accessibili che soddisfano le diverse

esigenze degli utenti, indipendentemente dalle loro capacità, background o preferenze.

In questo capitolo, esploreremo il concetto di GenUI, esaminando alcune caratteristiche

distintive, benefici chiave e potenziali sfide. Iniziamo considerando la forma più basilare

e accessibile di GenUI: la generazione di testo per interfacce utente progettate e

implementate in modo tradizionale.

Generative UI 198

Generazione di Testo per Interfacce Utente

Gli elementi testuali presenti nell’interfaccia della tua applicazione, come le etichette dei

moduli, i suggerimenti e il testo esplicativo, sono tipicamente hardcodati nei template

o nei componenti UI, fornendo un’esperienza coerente ma generica per tutti gli utenti.

Utilizzando i pattern di generazione di contenuti contestuali, puoi trasformare questi

elementi statici in componenti dinamici, consapevoli del contesto e personalizzati.

Moduli Personalizzati

I moduli sono una parte onnipresente delle applicazioni web e mobile, servendo come

principale mezzo di raccolta dell’input dell’utente. Tuttavia, i moduli tradizionali spesso

presentano un’esperienza generica e impersonale, con etichette e campi standard che

potrebbero non sempre allinearsi con il contesto specifico o le esigenze dell’utente. Gli

utenti sono più propensi a completare moduli che sembrano adattati alle loro esigenze

e preferenze, portando a tassi di conversione e soddisfazione più elevati.

Tuttavia, è importante trovare un equilibrio tra personalizzazione e coerenza. Mentre

l’adattamento dei moduli ai singoli utenti può essere vantaggioso, è cruciale mantenere

un livello di familiarità e prevedibilità. Gli utenti dovrebbero ancora essere in grado di

riconoscere e navigare facilmente i moduli, anche con elementi personalizzati.

Ecco alcune idee di moduli personalizzati per l’ispirazione:

Suggerimenti Contestuali dei Campi

GenUI può analizzare le interazioni precedenti dell’utente, le preferenze e i dati

per fornire suggerimenti intelligenti dei campi come previsioni. Per esempio, se

l’utente ha precedentemente inserito il proprio indirizzo di spedizione, il modulo può

automaticamente popolare i campi pertinenti con le informazioni salvate. Questo non

solo fa risparmiare tempo ma dimostra anche che l’applicazione comprende e ricorda

le preferenze dell’utente.

Generative UI 199

Un momento, questa tecnica non potrebbe essere realizzata anche senza coinvolgere

l’IA? Certamente, ma la bellezza di gestire questo tipo di funzionalità con l’IA è duplice:

1) quanto può essere facile da implementare e 2) quanto può essere resiliente mentre la

tua UI cambia ed evolve nel tempo.

Creiamo velocemente un servizio per il nostro sistema teorico di gestione degli ordini,

che cerca di compilare proattivamente l’indirizzo di spedizione corretto per l’utente.

1 class OrderShippingAddressSubscriber

2 include Raix::ChatCompletion

3

4 attr_accessor :order

5

6 delegate :customer, to: :order

7

8 DIRECTIVE = "You are a smart order processing assistant. Given the

9 customer's order history, guess the most likely shipping address

10 for the current order."

11

12 def order_created(order)

13 return unless order.pending? && order.shipping_address.blank?

14

15 self.order = order

16

17 transcript.clear

18 transcript << { system: DIRECTIVE }

19 transcript << { user: "Order History: #{order_history.to_json}" }

20 transcript << { user: "Current Order: #{order.to_json}" }

21

22 response = chat_completion

23 apply_predicted_shipping_address(order, response)

24 end

25

26 private

27

28 def apply_predicted_shipping_address(order, response)

29 # extract the shipping address from the response...

30 # ...and assume there's some sort of live update of the address fields

31 order.update(shipping_address:)

32 end

Generative UI 200

33

34 def order_history

35 customer.orders.successful.limit(100).map do |order|

36 {

37 date: order.date,

38 description: order.description,

39 shipping_address: order.shipping_address

40 }

41 end

42 end

43 end

Questo esempio è molto semplificato, ma dovrebbe funzionare nella maggior parte dei

casi. L’idea è di lasciare che l’AI faccia una supposizione nello stesso modo in cui lo

farebbe un essere umano. Per chiarire di cosa sto parlando, consideriamo alcuni dati di

esempio:

1 Order History:

2 [

3 {"date": "2024-01-03", "description": "garden soil mix",

4 "shipping_address": "123 Country Lane, Rural Town"},

5 {"date": "2024-01-15", "description": "hardcover fiction novels",

6 "shipping_address": "456 City Apt, Metroville"},

7 {"date": "2024-01-22", "description": "baby diapers", "shipping_address":

8 "789 Suburb St, Quietville"},

9 {"date": "2024-02-01", "description": "organic vegetables",

10 "shipping_address": "123 Country Lane, Rural Town"},

11 {"date": "2024-02-17", "description": "mystery thriller book set",

12 "shipping_address": "456 City Apt, Metroville"},

13 {"date": "2024-02-25", "description": "baby wipes",

14 "shipping_address": "789 Suburb St, Quietville"},

15 {"date": "2024-03-05", "description": "flower seeds",

16 "shipping_address": "123 Country Lane, Rural Town"},

17 {"date": "2024-03-20", "description": "biographies",

18 "shipping_address": "456 City Apt, Metroville"},

19 {"date": "2024-03-30", "description": "baby formula",

20 "shipping_address": "789 Suburb St, Quietville"},

21 {"date": "2024-04-12", "description": "lawn fertilizer",

22 "shipping_address": "123 Country Lane, Rural Town"},

23 {"date": "2024-04-22", "description": "science fiction novels",

Generative UI 201

24 "shipping_address": "456 City Apt, Metroville"},

25 {"date": "2024-05-02", "description": "infant toys",

26 "shipping_address": "789 Suburb St, Quietville"},

27 {"date": "2024-05-14", "description": "outdoor grill",

28 "shipping_address": "123 Country Lane, Rural Town"},

29 {"date": "2024-05-29", "description": "literary classics",

30 "shipping_address": "456 City Apt, Metroville"},

31 {"date": "2024-06-11", "description": "baby clothes",

32 "shipping_address": "789 Suburb St, Quietville"},

33 {"date": "2024-07-01", "description": "watering can",

34 "shipping_address": "123 Country Lane, Rural Town"},

35 {"date": "2024-07-18", "description": "non-fiction essays",

36 "shipping_address": "456 City Apt, Metroville"},

37 {"date": "2024-07-28", "description": "baby bath items",

38 "shipping_address": "789 Suburb St, Quietville"},

39 {"date": "2024-08-09", "description": "herb garden kit",

40 "shipping_address": "123 Country Lane, Rural Town"},

41 {"date": "2024-08-24", "description": "children's books",

42 "shipping_address": "456 City Apt, Metroville"}

43]

Hai notato lo schema nei dati? Ti garantisco che questo è materiale facilissimo per un

LLM. Per dimostrarlo, chiediamo a GPT-4 qual è l’indirizzo di spedizione più probabile

per un “termometro”.

1 From the order history you've provided, it looks like the purchases are

2 generally clustered into three main types based on the shipping addresses:

3

4 123 Country Lane, Rural Town - This address often orders garden and

5 outdoor-related items like soil mix, vegetables, flower seeds, lawn

6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.

7

8 456 City Apt, Metroville - This address tends to order various types of

9 books, indicating an interest in reading across genres like fiction,

10 thrillers, biographies, science fiction, literary classics, non-fiction

11 essays, and children's books.

12

13 789 Suburb St, Quietville - The purchases for this address are consistently

14 baby-related products, such as diapers, wipes, baby formula, infant toys,

15 baby clothes, and baby bath items.

Generative UI 202

16

17 Given these patterns, a digital thermometer could potentially be a fit for

18 any of the addresses based on different needs: outdoor temperature tracking,

19 a tool for a passionate reader interested in science gadgets, or a health

20 tool for a baby. However, considering its common use in monitoring health,

21 especially for babies, it's most likely to be purchased by someone who's

22 already buying baby care products.

23

24 Therefore, the most likely shipping address for a digital thermometer, based

25 on the purchasing patterns, would be 789 Suburb St, Quietville.

Se stai pensando che sia esagerato utilizzare un modello costoso come GPT-4 per questo

compito, hai ragione! Ho provato lo stesso prompt su Mistral 7B Instruct e ha prodotto

la seguente risposta a 75 token al secondo, e al modesto costo di $0.000218 USD.

1 Based on the given order history, it appears that the customer has received

2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)

3 at the address "789 Suburb St, Quietville" and garden-related items (soil,

4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural

5 Town". The customer has also received books (fiction, non-fiction, literary

6 classics, mystery-thriller, science fiction, biographies, children's books)

7 at the address "456 City Apt, Metroville".

8

9 Given that the new order is for a "thermometer", which doesn't seem to fit

10 into any of the categories that the customer has previously ordered, it's

11 hard to accurately predict the shipping address based solely on the order

12 history. However, given the 50%-50% split between baby-related and

13 garden-related items, it could somewhat lean towards the Baby-related items

14 address ("789 Suburb St, Quietville"). But remember, this is an assumption

15 and cannot be definitively confirmed without more context or information.

Il costo e l’impegno di questa tecnica valgono la pena per rendere piùmagica l’esperienza

di checkout? Per molti rivenditori online, assolutamente sì. E a quanto pare, il costo

dell’elaborazione AI continuerà solo a diminuire, specialmente per i fornitori di hosting

di modelli open source in una corsa al ribasso.

Utilizza un Prompt Template e StructuredIO insieme al Response Fencing

per ottimizzare questo tipo di completamento chat.

Generative UI 203

Ordinamento Adattivo dei Campi

L’ordine in cui vengono presentati i campi del modulo può influenzare

significativamente l’esperienza dell’utente e i tassi di completamento. Con GenUI,

puoi regolare dinamicamente l’ordine dei campi in base al contesto dell’utente e

all’importanza di ciascun campo. Ad esempio, se l’utente sta compilando un modulo

di registrazione per un’app fitness, il modulo potrebbe dare priorità ai campi relativi ai

suoi obiettivi e preferenze fitness, rendendo il processo più rilevante e coinvolgente.

Microcopy Personalizzato

Il testo istruttivo, i messaggi di errore e altri microcopy associati ai moduli possono

essere personalizzati utilizzando GenUI. Invece di mostrare messaggi di errore generici

come “Indirizzo email non valido”, puoi generare messaggi più utili e contestuali come

“Inserisci un indirizzo email valido per ricevere la conferma del tuo ordine”. Questi

tocchi personalizzati possono rendere l’esperienza del modulo più user-friendly e meno

frustrante.

Validazione Personalizzata

Sulla stessa linea del Microcopy Personalizzato, potresti utilizzare l’AI per validare il

modulo in modi che sembrano magici. Immagina di lasciare che un’AI validi un modulo

del profilo utente, cercando potenziali errori a livello semantico.

Generative UI 204

Figura 9. Riesci a individuare la validazione semantica in azione?

Rivelazione Progressiva

GenUI può determinare in modo intelligente quali campi del modulo sono essenziali in

base al contesto dell’utente e rivelare gradualmente campi aggiuntivi secondo necessità.

Questa tecnica di rivelazione progressiva aiuta a ridurre il carico cognitivo e rende

il processo di compilazione del modulo più gestibile. Per esempio, se un utente si sta

Generative UI 205

iscrivendo a un abbonamento base, il modulo può inizialmente presentare solo i campi

essenziali, e man mano che l’utente procede o seleziona opzioni specifiche, possono

essere introdotti dinamicamente campi aggiuntivi pertinenti.

Testo Esplicativo Contestuale

I tooltip vengono spesso utilizzati per fornire informazioni aggiuntive o guida agli utenti

quando passano il mouse sopra o interagiscono con elementi specifici. Con un approccio

di “Generazione di Contenuti Contestuali”, puoi generare tooltip che si adattano al

contesto dell’utente e forniscono informazioni rilevanti. Ad esempio, se un utente sta

esplorando una funzionalità complessa, il tooltip può offrire suggerimenti personalizzati

o esempi basati sulle sue interazioni precedenti o sul livello di competenza.

Il testo esplicativo, come istruzioni, descrizioni o messaggi di aiuto, può essere generato

dinamicamente in base al contesto dell’utente. Invece di presentare spiegazioni

generiche, puoi utilizzare i LLM per generare testo su misura per le esigenze o domande

specifiche dell’utente. Per esempio, se un utente sta avendo difficoltà con un particolare

passaggio in un processo, il testo esplicativo può fornire una guida personalizzata o

suggerimenti per la risoluzione dei problemi.

Il microcopy si riferisce ai piccoli pezzi di testo che guidano gli utenti attraverso la tua

applicazione, come etichette dei pulsanti, messaggi di errore o prompt di conferma.

Applicando l’approccio di Generazione di Contenuti Contestuali al microcopy, puoi

creare un’interfaccia utente adattiva che risponde alle azioni dell’utente e fornisce testo

rilevante e utile. Ad esempio, se un utente sta per eseguire un’azione critica, il prompt

di conferma può essere generato dinamicamente per fornire un messaggio chiaro e

personalizzato.

Il testo esplicativo personalizzato e i tooltip possono migliorare notevolmente il

processo di onboarding per i nuovi utenti. Fornendo una guida contestuale specifica ed

esempi, puoi aiutare gli utenti a comprendere e navigare rapidamente nell’applicazione,

riducendo la curva di apprendimento e aumentando l’adozione.

Generative UI 206

Gli elementi dell’interfaccia dinamici e sensibili al contesto possono anche rendere

l’applicazione più intuitiva e coinvolgente. Gli utenti sono più propensi a interagire con

ed esplorare le funzionalità quando il testo di accompagnamento è su misura per le loro

esigenze e interessi specifici.

Finora abbiamo esaminato idee per migliorare i paradigmi UI esistenti con l’IA, ma cosa

dire del ripensare in modo più radicale come le interfacce utente vengono progettate e

implementate?

Definizione della UI Generativa

A differenza della progettazione UI tradizionale, dove i designer creano interfacce fisse

e statiche, la GenUI suggerisce un futuro in cui il nostro software vanta esperienze

flessibili e personalizzate che possono evolversi e adattarsi in tempo reale. Ogni volta che

utilizziamo un’interfaccia conversazionale basata su IA, permettiamo all’IA di adattarsi

alle particolari esigenze dell’utente. La GenUI fa un ulteriore passo avanti applicando

quel livello di adattabilità all’interfaccia visiva del software.

Il motivo per cui è possibile sperimentare con le idee della GenUI oggi è che i

modelli linguistici di grandi dimensioni già comprendono la programmazione e la loro

conoscenza di base include tecnologie e framework UI. La domanda è quindi se i modelli

linguistici di grandi dimensioni possano essere utilizzati per generare elementi UI, come

testo, immagini, layout e persino intere interfacce, che siano su misura per ogni singolo

utente. Il modello potrebbe essere istruito per tenere conto di vari fattori, come le

interazioni passate dell’utente, le preferenze dichiarate, le informazioni demografiche e

il contesto attuale di utilizzo, per creare interfacce altamente personalizzate e pertinenti.

La GenUI si differenzia dalla progettazione tradizionale dell’interfaccia utente in diversi

aspetti chiave:

Generative UI 207

1. Dinamica e Adattiva: La progettazione UI tradizionale implica la creazione di

interfacce fisse e statiche che rimangono le stesse per tutti gli utenti. Al contrario,

la GenUI permette interfacce che possono adattarsi e cambiare dinamicamente

in base alle esigenze e al contesto dell’utente. Questo significa che la stessa

applicazione può presentare interfacce diverse a utenti diversi o persino allo stesso

utente in situazioni diverse.

2. Personalizzazione su Larga Scala: Con il design tradizionale, creare esperienze

personalizzate per ogni utente è spesso impraticabile a causa del tempo e delle

risorse richieste. La GenUI, d’altra parte, permette la personalizzazione su larga

scala. Sfruttando l’IA, i designer possono creare interfacce che si adattano

automaticamente alle esigenze e preferenze uniche di ogni utente, senza dover

progettare e sviluppare manualmente interfacce separate per ogni segmento di

utenti.

3. Focus sui Risultati: Il design UI tradizionale spesso si concentra sulla creazione

di interfacce visivamente attraenti e funzionali. Mentre questi aspetti sono ancora

importanti nella GenUI, il focus principale si sposta verso il raggiungimento dei

risultati desiderati dall’utente. La GenUI mira a creare interfacce ottimizzate per

gli obiettivi e i compiti specifici di ogni utente, dando priorità all’usabilità e

all’efficacia rispetto a considerazioni puramente estetiche.

4. Apprendimento e Miglioramento Continuo: I sistemi GenUI possono

apprendere e migliorare continuamente nel tempo basandosi sulle interazioni

e sul feedback degli utenti. Mentre gli utenti interagiscono con le interfacce

generate, i modelli di IA possono raccogliere dati sul comportamento, le

preferenze e i risultati degli utenti, utilizzando queste informazioni per raffinare e

ottimizzare le future generazioni di interfacce. Questo processo di apprendimento

iterativo permette ai sistemi GenUI di diventare sempre più efficaci nel soddisfare

le esigenze degli utenti nel tempo.

È importante notare che la GenUI non è la stessa cosa degli strumenti di design assistiti

dall’IA, come quelli che forniscono suggerimenti o automatizzano determinate attività

Generative UI 208

di design. Mentre questi strumenti possono essere utili per semplificare il processo di

design, si basano ancora sui designer per prendere le decisioni finali e creare interfacce

statiche. La GenUI, invece, prevede che il sistema di IA assuma un ruolo più attivo nella

generazione e nell’adattamento effettivo delle interfacce basate sui dati e sul contesto

dell’utente.

La GenUI rappresenta un cambiamento significativo nel modo in cui affrontiamo

la progettazione dell’interfaccia utente, allontanandoci dalle soluzioni uniformi e

muovendoci verso esperienze altamente personalizzate e adattive. Sfruttando la

potenza dell’IA, la GenUI ha il potenziale per rivoluzionare il modo in cui interagiamo

con prodotti e servizi digitali, creando interfacce più intuitive, coinvolgenti ed efficaci

per ogni singolo utente.

Esempio

Per illustrare il concetto di GenUI, consideriamo un’applicazione fitness ipotetica

chiamata “FitAI”. Questa app mira a fornire piani di allenamento personalizzati e

consigli nutrizionali agli utenti basati sui loro obiettivi individuali, livelli di fitness e

preferenze.

In un approccio di design UI tradizionale, FitAI potrebbe avere un set fisso di schermate

ed elementi che sono uguali per tutti gli utenti. Tuttavia, con la GenUI, l’interfaccia

dell’app potrebbe adattarsi dinamicamente alle esigenze e al contesto unici di ciascun

utente.

Questo approccio è difficile da immaginare implementato nel 2024 e potrebbe non avere

nemmeno un ROI adeguato, ma è possibile.

Ecco come potrebbe funzionare:

1. Onboarding:

Generative UI 209

• Invece di un questionario standard, FitAI utilizza un’IA conversazionale per

raccogliere informazioni sugli obiettivi dell’utente, il livello di fitness attuale

e le preferenze.

• Basandosi su questa interazione iniziale, l’IA genera un layout della

dashboard personalizzato, evidenziando le funzionalità e le informazioni

più rilevanti per gli obiettivi dell’utente.

• La tecnologia IA attuale potrebbe avere a disposizione una selezione di

componenti dello schermo da utilizzare nella composizione della dashboard

personalizzata.

• La tecnologia IA futura potrebbe assumere il ruolo di un designer UI esperto

e creare effettivamente la dashboard da zero.

2. Pianificatore di allenamento:

• L’interfaccia del pianificatore di allenamento viene adattata dall’IA in base

al livello di esperienza dell’utente e all’attrezzatura disponibile.

• Per un principiante senza attrezzatura, potrebbe mostrare semplici esercizi a

corpo libero con istruzioni dettagliate e video.

• Per un utente avanzato con accesso a una palestra, potrebbe visualizzare

routine più complesse con meno contenuti esplicativi.

• Il contenuto del pianificatore di allenamento non è semplicemente filtrato

da un grande insieme. Può essere generato al volo basandosi su una base di

conoscenza che viene interrogata con un contesto che include tutto ciò che

si sa dell’utente.

3. Monitoraggio dei progressi:

• L’interfaccia di monitoraggio dei progressi si evolve in base agli obiettivi

dell’utente e ai modelli di coinvolgimento.

• Se un utente è principalmente concentrato sulla perdita di peso, l’interfaccia

potrebbe mostrare in modo prominente un grafico dell’andamento del peso

e statistiche sul consumo calorico.

Generative UI 210

• Per un utente che sta sviluppando massa muscolare, potrebbe evidenziare i

guadagni di forza e i cambiamenti nella composizione corporea.

• L’IA può adattare questa parte dell’applicazione ai progressi effettivi

dell’utente. Se i progressi si fermano per un periodo di tempo, l’app può

passare a una modalità in cui cerca di indurre l’utente a rivelare le ragioni

della battuta d’arresto, al fine di mitigarle.

4. Consigli nutrizionali:

• La sezione nutrizionale si adatta alle preferenze e restrizioni alimentari

dell’utente.

• Per un utente vegano, potrebbe mostrare suggerimenti per pasti a base

vegetale e fonti di proteine.

• Per un utente con intolleranza al glutine, filtrerebbe automaticamente gli

alimenti contenenti glutine dalle raccomandazioni.

• Anche in questo caso, il contenuto non viene estratto da un enorme insieme

di dati sui pasti applicabile a tutti gli utenti, ma viene sintetizzato da una base

di conoscenza che contiene informazioni adattabili in base alla situazione

specifica e ai vincoli dell’utente.

• Per esempio, le ricette vengono generate con specifiche degli ingredienti

che corrispondono alle necessità caloriche in continua evoluzione dell’utente

manmano che il suo livello di fitness e le sue statistiche corporee si evolvono.

5. Elementi motivazionali:

• I contenuti motivazionali e le notifiche dell’app sono personalizzati in base

al tipo di personalità dell’utente e alla sua risposta a diverse strategie

motivazionali.

• Alcuni utenti potrebbero ricevere messaggi incoraggianti, mentre altri

ottengono feedback più orientati ai dati.

Generative UI 211

In questo esempio, GenUI permette a FitAI di creare un’esperienza altamente

personalizzata per ogni utente, potenzialmente aumentando il coinvolgimento, la

soddisfazione e la probabilità di raggiungere gli obiettivi di fitness. Gli elementi

dell’interfaccia, i contenuti e persino la “personalità” dell’app si adattano per servire al

meglio le esigenze e le preferenze di ogni singolo utente.

Il Passaggio al Design Orientato ai Risultati

GenUI rappresenta un cambiamento fondamentale nell’approccio al design

dell’interfaccia utente, passando da un focus sulla creazione di elementi specifici

dell’interfaccia a un approccio più olistico e orientato ai risultati. Questo cambiamento

ha diverse implicazioni importanti:

1. Focus sugli Obiettivi dell’Utente:

• I designer dovranno pensare più profondamente agli obiettivi degli utenti e

ai risultati desiderati piuttosto che a specifici componenti dell’interfaccia.

• L’enfasi sarà sulla creazione di sistemi che possano generare interfacce che

aiutino gli utenti a raggiungere i loro obiettivi in modo efficiente ed efficace.

• Emergeranno nuovi framework UI che forniranno ai designer basati sull’IA

gli strumenti necessari per generare esperienze utente al volo e da zero invece

che basarsi su specifiche predefinite delle schermate.

2. Ruolo Mutevole dei Designer:

• I designer passeranno dalla creazione di layout fissi alla definizione di regole,

vincoli e linee guida che i sistemi di IA devono seguire durante la generazione

delle interfacce.

• Dovranno sviluppare competenze in aree come l’analisi dei dati, l’ingegneria

dei prompt e il pensiero sistemico per guidare efficacemente i sistemi GenUI.

Generative UI 212

3. Importanza della Ricerca sull’Utente:

• La ricerca sull’utente diventa ancora più critica in un contesto GenUI, poiché

i designer devono comprendere non solo le preferenze degli utenti, ma anche

come queste preferenze e necessità cambiano in diversi contesti.

• Test continui con gli utenti e cicli di feedback saranno essenziali per

perfezionare e migliorare la capacità dell’IA di generare interfacce efficaci.

4. Progettare per la Variabilità:

• Invece di creare una singola interfaccia “perfetta”, i designer dovranno

considerare molteplici possibili variazioni e assicurarsi che il sistema possa

generare interfacce appropriate per diverse esigenze degli utenti.

• Questo include la progettazione per i casi limite e garantire che le

interfacce generate mantengano usabilità e accessibilità attraverso diverse

configurazioni.

• La differenziazione del prodotto assume nuove dimensioni che coinvolgono

prospettive divergenti sulla psicologia dell’utente e lo sfruttamento di set di

dati e basi di conoscenza unici non disponibili ai concorrenti.

Sfide e Considerazioni

Mentre GenUI offre possibilità entusiasmanti, presenta anche diverse sfide e

considerazioni:

1. Limitazioni Tecniche:

• La tecnologia IA attuale, sebbene avanzata, ha ancora limitazioni nella

comprensione di intenti complessi dell’utente e nella generazione di

interfacce veramente sensibili al contesto.

Generative UI 213

• Problemi di prestazioni relativi alla generazione in tempo reale di elementi

dell’interfaccia, specialmente su dispositivi meno potenti.

2. Requisiti dei Dati:

• A seconda del caso d’uso, i sistemi GenUI efficaci potrebbero richiedere

quantità significative di dati degli utenti per generare interfacce

personalizzate.

• Le sfide nel reperire eticamente dati autentici degli utenti sollevano

preoccupazioni sulla privacy e sicurezza dei dati, oltre a potenziali

pregiudizi nei dati utilizzati per addestrare i modelli GenUI.

3. Usabilità e Coerenza:

• Almeno fino a quando la pratica non diventerà diffusa, un’applicazione con

interfacce in continuo cambiamento potrebbe portare a problemi di usabilità,

poiché gli utenti potrebbero faticare a trovare elementi familiari o a navigare

efficacemente.

• Sarà cruciale trovare un equilibrio tra personalizzazione e mantenimento di

un’interfaccia coerente e apprendibile.

4. Eccessiva Dipendenza dall’IA:

• Esiste il rischio di delegare eccessivamente le decisioni di design ai

sistemi di IA, portando potenzialmente a scelte di interfaccia non ispirate,

problematiche o semplicemente non funzionanti.

• La supervisione umana e la capacità di sovrascrivere i design generati dall’IA

rimarranno importanti nel prossimo futuro.

5. Preoccupazioni sull’Accessibilità:

Generative UI 214

• Garantire che le interfacce generate dinamicamente rimangano accessibili

agli utenti con disabilità presenta sfide completamente nuove, il che è

preoccupante dato lo scarso livello di conformità all’accessibilità dimostrato

dai sistemi tipici.

• D’altra parte, i designer IA potrebbero essere implementati con una

preoccupazione incorporata per l’accessibilità e capacità di costruire

interfacce accessibili al volo proprio come costruiscono UI per utenti non

disabili.

• In ogni caso, i sistemi GenUI dovrebbero essere progettati con solide linee

guida per l’accessibilità e processi di test.

6. Fiducia degli Utenti e Trasparenza:

• Gli utenti potrebbero sentirsi a disagio con interfacce che sembrano “sapere

troppo” su di loro o che cambiano in modi che non comprendono.

• Fornire trasparenza su come e perché le interfacce sono personalizzate sarà

importante per costruire la fiducia degli utenti.

Prospettive Future e Opportunità

Il futuro dell’Interfaccia Generativa (GenUI) racchiude immense promesse per

rivoluzionare il modo in cui interagiamo con prodotti e servizi digitali. Mentre questa

tecnologia continua a evolversi, possiamo anticipare un cambiamento radicale nel

modo in cui le interfacce utente vengono progettate, implementate e vissute. Penso che

GenUI sia il fenomeno che finalmente spingerà il nostro software nel regno di ciò che

ora è considerato fantascienza.

Una delle prospettive più entusiasmanti di GenUI è il suo potenziale di migliorare

l’accessibilità su una scala che va oltre il semplice assicurarsi che le persone con

disabilità gravi non siano completamente escluse dall’uso del software. Adattando

Generative UI 215

automaticamente le interfacce alle esigenze individuali degli utenti, GenUI potrebbe

rendere le esperienze digitali più inclusive che mai. Immaginate interfacce che si

adattano senza problemi per fornire testo più grande per utenti giovani o ipovedenti o

layout semplificati per chi ha disabilità cognitive, tutto senza richiedere configurazioni

manuali o versioni “accessibili” separate delle applicazioni.

Le capacità di personalizzazione di GenUI probabilmente guideranno un aumento del

coinvolgimento, della soddisfazione e della fedeltà degli utenti attraverso una vasta

gamma di prodotti digitali. Man mano che le interfacce si sintonizzano maggiormente

con le preferenze e i comportamenti individuali, gli utenti troveranno le esperienze

digitali più intuitive e piacevoli, portando potenzialmente a interazioni più profonde

e significative con la tecnologia.

GenUI ha anche il potenziale di trasformare il processo di onboarding per i nuovi

utenti. Creando esperienze intuitive e personalizzate per i nuovi utenti che si adattano

rapidamente al livello di competenza di ciascun utente, GenUI potrebbe ridurre

significativamente la curva di apprendimento associata alle nuove applicazioni. Questo

potrebbe portare a tassi di adozione più rapidi e una maggiore fiducia degli utenti

nell’esplorare nuove funzionalità.

Un’altra possibilità entusiasmante è la capacità di GenUI di mantenere un’esperienza

utente coerente su diversi dispositivi e piattaforme ottimizzando per ogni specifico

contesto d’uso. Questo potrebbe risolvere la sfida di lunga data di fornire esperienze

coerenti attraverso un panorama di dispositivi sempre più frammentato, dagli

smartphone e tablet ai computer desktop e tecnologie emergenti come gli occhiali per

realtà aumentata.

La natura basata sui dati di GenUI apre opportunità per iterazioni rapide emiglioramenti

nel design dell’interfaccia utente. Raccogliendo dati in tempo reale su come gli utenti

interagiscono con le interfacce generate, designer e sviluppatori possono ottenere

informazioni senza precedenti sul comportamento e le preferenze degli utenti. Questo

ciclo di feedback potrebbe portare a miglioramenti continui nel design dell’interfaccia

Generative UI 216

utente, guidati da modelli di utilizzo reali piuttosto che da supposizioni o test utente

limitati.

Per prepararsi a questo cambiamento, i designer dovranno far evolvere le loro

competenze e mentalità. L’attenzione si sposterà dalla creazione di layout fissi

allo sviluppo di sistemi di design completi e linee guida che possano informare la

generazione di interfacce guidata dall’IA. I designer dovranno coltivare una profonda

comprensione dell’analisi dei dati, delle tecnologie IA e del pensiero sistemico per

guidare efficacemente i sistemi GenUI.

Inoltre, mentre GenUI sfuma i confini tra design e tecnologia, i designer dovranno

collaborare più strettamente con sviluppatori e data scientist. Questo approccio

interdisciplinare sarà cruciale nella creazione di sistemi GenUI che siano non solo

visivamente attraenti e user-friendly, ma anche tecnicamente robusti ed eticamente

corretti.

Le implicazioni etiche del GenUI emergeranno sempre più in primo piano con la

maturazione della tecnologia. I designer avranno un ruolo cruciale nello sviluppo di

framework per l’uso responsabile dell’IA nel design dell’interfaccia, assicurando che

la personalizzazione migliori le esperienze utente senza compromettere la privacy o

manipolare il comportamento dell’utente in modi non etici.

Guardando al futuro, il GenUI presenta sia opportunità entusiasmanti che sfide

significative. Ha il potenziale per creare esperienze digitali più intuitive, efficienti

e soddisfacenti per gli utenti in tutto il mondo. Sebbene richiederà ai designer di

adattarsi e acquisire nuove competenze, offre anche un’opportunità senza precedenti di

plasmare il futuro dell’interazione uomo-computer in modi profondi e significativi. Il

percorso verso sistemi GenUI pienamente realizzati sarà indubbiamente complesso, ma

i potenziali benefici in termini di migliori esperienze utente e accessibilità digitale lo

rendono un futuro per cui vale la pena impegnarsi.

Orchestrazione Intelligente dei
Flussi di Lavoro

Nel campo dello sviluppo delle applicazioni, i flussi di lavoro svolgono un ruolo cruciale

nel definire come le attività, i processi e le interazioni degli utenti vengono strutturati

ed eseguiti. Man mano che le applicazioni diventano più complesse e le aspettative degli

utenti continuano a crescere, la necessità di un’orchestrazione intelligente e adattiva dei

flussi di lavoro diventa sempre più evidente.

L’approccio dell’“Orchestrazione Intelligente dei Flussi di Lavoro” si concentra

sull’utilizzo di componenti di IA per orchestrare e ottimizzare dinamicamente flussi

di lavoro complessi all’interno delle applicazioni. L’obiettivo è creare applicazioni più

efficienti, reattive e adattabili ai dati in tempo reale e al contesto.

In questo capitolo, esploreremo i principi e i pattern chiave che sostengono l’approccio

dell’orchestrazione intelligente dei flussi di lavoro. Esamineremo come l’IA può

Orchestrazione Intelligente dei Flussi di Lavoro 218

essere utilizzata per instradare intelligentemente le attività, automatizzare il processo

decisionale e adattare dinamicamente i flussi di lavoro in base a vari fattori come il

comportamento dell’utente, le prestazioni del sistema e le regole di business. Attraverso

esempi pratici e scenari reali, dimostreremo il potenziale trasformativo dell’IA nel

semplificare e ottimizzare i flussi di lavoro delle applicazioni.

Che tu stia sviluppando applicazioni aziendali con processi di business complessi o

applicazioni rivolte ai consumatori con percorsi utente dinamici, i pattern e le tecniche

discusse in questo capitolo ti forniranno le conoscenze e gli strumenti per creare flussi

di lavoro intelligenti ed efficienti che migliorano l’esperienza complessiva dell’utente e

generano valore aziendale.

Esigenza Aziendale

Gli approcci tradizionali alla gestione dei flussi di lavoro spesso si basano su regole

predefinite e alberi decisionali statici, che possono essere rigidi, inflessibili e incapaci di

far fronte alla natura dinamica delle applicazioni moderne.

Consideriamo uno scenario in cui un’applicazione di e-commerce deve gestire un

processo complesso di evasione degli ordini. Il flusso di lavoro può coinvolgere più fasi

come la convalida dell’ordine, il controllo dell’inventario, l’elaborazione dei pagamenti,

la spedizione e le notifiche ai clienti. Ogni fase può avere il proprio insieme di regole,

dipendenze, integrazioni esterne e meccanismi di gestione delle eccezioni. Gestire un

tale flusso di lavoro manualmente o attraverso una logica hardcoded può rapidamente

diventare ingombrante, soggetto a errori e difficile da mantenere.

Inoltre, manmano che l’applicazione si espande e il numero di utenti simultanei cresce, il

flusso di lavoro potrebbe dover adattarsi e ottimizzarsi in base ai dati in tempo reale e alle

prestazioni del sistema. Ad esempio, durante i periodi di picco del traffico, l’applicazione

potrebbe dover regolare dinamicamente il flusso di lavoro per dare priorità a determinate

attività, allocare le risorse in modo efficiente e garantire un’esperienza utente fluida.

Orchestrazione Intelligente dei Flussi di Lavoro 219

È qui che entra in gioco l’approccio dell’“Orchestrazione Intelligente dei Flussi di

Lavoro”. Sfruttando i componenti di IA, gli sviluppatori possono creare flussi di lavoro

intelligenti, adattivi e auto-ottimizzanti. L’IA può analizzare grandi quantità di dati,

imparare dalle esperienze passate e prendere decisioni informate in tempo reale per

orchestrare efficacemente il flusso di lavoro.

Benefici Principali

1. Maggiore Efficienza: L’IA può ottimizzare l’allocazione delle attività, l’utilizzo

delle risorse e l’esecuzione del flusso di lavoro, portando a tempi di elaborazione

più rapidi e una migliore efficienza complessiva.

2. Adattabilità: I flussi di lavoro guidati dall’IA possono adattarsi dinamicamente

alle condizioni mutevoli, come le fluttuazioni nella domanda degli utenti, le

prestazioni del sistema o i requisiti aziendali, garantendo che l’applicazione

rimanga reattiva e resiliente.

3. Processo Decisionale Automatizzato: L’IA può automatizzare processi

decisionali complessi all’interno del flusso di lavoro, riducendo l’intervento

manuale e minimizzando il rischio di errori umani.

4. Personalizzazione: L’IA può analizzare il comportamento, le preferenze e il

contesto dell’utente per personalizzare il flusso di lavoro e fornire esperienze su

misura per i singoli utenti.

5. Scalabilità: I flussi di lavoro basati sull’IA possono scalare senza problemi per

gestire volumi crescenti di dati e interazioni degli utenti, senza compromettere le

prestazioni o l’affidabilità.

Nelle sezioni seguenti, esploreremo i pattern e le tecniche chiave che consentono

l’implementazione di flussi di lavoro intelligenti e mostreremo esempi reali di come

l’IA sta trasformando la gestione dei flussi di lavoro nelle applicazioni moderne.

Orchestrazione Intelligente dei Flussi di Lavoro 220

Pattern Chiave

Per implementare l’orchestrazione intelligente dei flussi di lavoro nelle applicazioni, gli

sviluppatori possono sfruttare diversi pattern chiave che sfruttano la potenza dell’IA.

Questi pattern forniscono un approccio strutturato alla progettazione e alla gestione dei

flussi di lavoro, consentendo alle applicazioni di adattarsi, ottimizzare e automatizzare

i processi basandosi su dati e contesto in tempo reale. Esploriamo alcuni dei pattern

fondamentali nell’orchestrazione intelligente dei flussi di lavoro.

Instradamento Dinamico delle Attività

Questo pattern prevede l’utilizzo dell’IA per instradare intelligentemente le attività

all’interno di un flusso di lavoro basandosi su vari fattori come la priorità dell’attività,

la disponibilità delle risorse e le prestazioni del sistema. Gli algoritmi di IA possono

analizzare le caratteristiche di ogni attività, considerare lo stato attuale del sistema

e prendere decisioni informate per assegnare le attività alle risorse o ai percorsi di

elaborazione più appropriati. L’instradamento dinamico delle attività garantisce che

le attività siano distribuite ed eseguite in modo efficiente, ottimizzando le prestazioni

complessive del flusso di lavoro.

1 class TaskRouter

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 attr_accessor :task

6

7 # list of functions that can be called by the AI entirely at its

8 # discretion depending on the task received

9

10 function :analyze_task_priority do

11 TaskPriorityAnalyzer.perform(task)

12 end

13

14 function :check_resource_availability, # ...

Orchestrazione Intelligente dei Flussi di Lavoro 221

15 function :assess_system_performance, # ...

16 function :assign_task_to_resource, # ...

17

18 DIRECTIVE = "You are a task router, responsible for intelligently

19 assigning tasks to available resources based on priority, resource

20 availability, and system performance..."

21

22 def initialize(task)

23 self.task = task

24 transcript << { system: DIRECTIVE }

25 transcript << { user: task.to_json }

26 end

27

28 def perform

29 while task.unassigned?

30 chat_completion

31

32 # todo: add max loop counter and break

33 end

34

35 # capture the transcript for later analysis

36 task.update(routing_transcript: transcript)

37 end

38 end

Notare il ciclo creato dall’espressione while alla riga 29, che continua a sollecitare l’IA

fino a quando il compito non viene assegnato. Alla riga 35, salviamo la trascrizione del

compito per successive analisi e debugging, qualora diventasse necessario.

Processo Decisionale Contestuale

È possibile utilizzare un codice molto simile per prendere decisioni contestuali

all’interno di un workflow. Analizzando punti dati rilevanti come le preferenze

dell’utente, i modelli storici e gli input in tempo reale, i componenti di IA possono

determinare la linea d’azione più appropriata in ogni punto decisionale del workflow.

Adatta il comportamento del tuo workflow in base al contesto specifico di ogni utente

o scenario, fornendo esperienze personalizzate e ottimizzate.

Orchestrazione Intelligente dei Flussi di Lavoro 222

Composizione Adattiva del Workflow

Questo pattern si concentra sulla composizione e regolazione dinamica dei workflow

in base ai requisiti o alle condizioni mutevoli. L’IA può analizzare lo stato attuale del

workflow, identificare i colli di bottiglia o le inefficienze, e modificare automaticamente

la struttura del workflow per ottimizzare le prestazioni. La composizione adattiva del

workflow permette alle applicazioni di evolversi e migliorare continuamente i propri

processi senza richiedere interventi manuali.

Gestione e Recupero delle Eccezioni

La gestione e il recupero delle eccezioni sono aspetti critici dell’orchestrazione

intelligente del workflow. Quando si lavora con componenti IA e workflow complessi,

è essenziale anticipare e gestire le eccezioni con eleganza per garantire la stabilità e

l’affidabilità del sistema.

Ecco alcune considerazioni e tecniche chiave per la gestione e il recupero delle eccezioni

nei workflow intelligenti:

1. Propagazione delle Eccezioni: Implementare un approccio coerente per la

propagazione delle eccezioni tra i componenti del workflow. Quando si verifica

un’eccezione all’interno di un componente, questa dovrebbe essere catturata,

registrata e propagata all’orchestratore o a un componente discreto responsabile

della gestione delle eccezioni. L’idea è quella di centralizzare la gestione delle

eccezioni e impedire che vengano silenziosamente ignorate, oltre ad aprire

possibilità per la Gestione Intelligente degli Errori.

2. Meccanismi di Ripetizione: I meccanismi di ripetizione aiutano a migliorare

la resilienza del workflow e a gestire con eleganza i fallimenti intermittenti. È

sicuramente consigliabile implementare meccanismi di ripetizione per eccezioni

transitorie o recuperabili, come problemi di connettività di rete o indisponibilità di

Orchestrazione Intelligente dei Flussi di Lavoro 223

risorse che possono essere automaticamente ritentate dopo un ritardo specificato.

Avere un orchestratore o un gestore di eccezioni basato su IA significa che le

strategie di ripetizione non devono essere necessariamente meccaniche, basandosi

su algoritmi fissi come il fallback esponenziale. Puoi lasciare la gestione del nuovo

tentativo alla “discrezione” del componente IA responsabile di decidere come

gestire l’eccezione.

3. Strategie di Fallback: Se un componente IA non riesce a fornire una risposta

valida o incontra un errore—un’occorrenza comune data la sua natura

all’avanguardia—è necessario avere un meccanismo di fallback per garantire

che il workflow possa continuare. Questo potrebbe comportare l’uso di valori

predefiniti, algoritmi alternativi o un Intervento Umano nel Processo per prendere

decisioni e mantenere il workflow in movimento.

4. Azioni di Compensazione: Le direttive dell’orchestratore dovrebbero includere

istruzioni sulle azioni di compensazione per gestire le eccezioni che non possono

essere risolte automaticamente. Le azioni di compensazione sono passaggi

intrapresi per annullare o mitigare gli effetti di un’operazione fallita. Ad esempio,

se fallisce una fase di elaborazione del pagamento, un’azione di compensazione

potrebbe essere quella di annullare la transazione e notificare l’utente. Le azioni di

compensazione aiutano a mantenere la coerenza e l’integrità dei dati in presenza

di eccezioni.

5. Monitoraggio e Segnalazione delle Eccezioni: Configurare meccanismi di

monitoraggio e segnalazione per rilevare e notificare alle parti interessate le

eccezioni critiche. L’orchestratore può essere reso consapevole di soglie e regole

per attivare gli avvisi quando le eccezioni superano determinati limiti o quando

si verificano specifici tipi di eccezioni. Questo permette l’identificazione e la

risoluzione proattiva dei problemi prima che impattino sull’intero sistema.

Ecco un esempio di gestione e recupero delle eccezioni in un componente workflow

Ruby:

Orchestrazione Intelligente dei Flussi di Lavoro 224

1 class InventoryManager

2 def check_availability(order)

3 begin

4 # Perform inventory check logic

5 inventory = Inventory.find_by(product_id: order.product_id)

6 if inventory.available_quantity >= order.quantity

7 return true

8 else

9 raise InsufficientInventoryError,

10 "Insufficient inventory for product #{order.product_id}"

11 end

12 rescue InsufficientInventoryError => e

13 # Log the exception

14 logger.error("Inventory check failed: #{e.message}")

15

16 # Retry the operation after a delay

17 retry_count ||= 0

18 if retry_count < MAX_RETRIES

19 retry_count += 1

20 sleep(RETRY_DELAY)

21 retry

22 else

23 # Fallback to manual intervention

24 NotificationService.admin("Inventory check failed: Order #{order.id}")

25 return false

26 end

27 end

28 end

29 end

In questo esempio, il componente InventoryManager verifica la disponibilità di un

prodotto per un determinato ordine. Se la quantità disponibile è insufficiente, genera

un InsufficientInventoryError. L’eccezione viene catturata, registrata e viene

implementato un meccanismo di ripetizione. Se il limite di tentativi viene superato, il

componente ricorre all’intervento manuale notificando un amministratore.

Implementando meccanismi robusti di gestione e recupero delle eccezioni, è possibile

garantire che i flussi di lavoro intelligenti siano resilienti, manutenibili e in grado di

Orchestrazione Intelligente dei Flussi di Lavoro 225

gestire situazioni impreviste con eleganza.

Questi pattern costituiscono le fondamenta dell’orchestrazione del flusso di lavoro

intelligente e possono essere combinati e adattati per soddisfare i requisiti specifici di

diverse applicazioni. Sfruttando questi pattern, gli sviluppatori possono creare flussi di

lavoro flessibili, resilienti e ottimizzati per le prestazioni e l’esperienza utente.

Nella prossima sezione, esploreremo come questi pattern possono essere implementati

nella pratica, utilizzando esempi del mondo reale e frammenti di codice per illustrare

l’integrazione dei componenti AI nella gestione del flusso di lavoro.

Implementare l’Orchestrazione del Flusso di

Lavoro Intelligente nella Pratica

Ora che abbiamo esplorato i pattern chiave nell’orchestrazione del flusso di lavoro

intelligente, approfondiamo come questi pattern possono essere implementati in

applicazioni reali. Forniremo esempi pratici e frammenti di codice per illustrare

l’integrazione dei componenti AI nella gestione del flusso di lavoro.

Processore di Ordini Intelligente

Addentriamoci in un esempio pratico di implementazione dell’orchestrazione del flusso

di lavoro intelligente utilizzando un componente OrderProcessor potenziato dall’AI

in un’applicazione e-commerce Ruby on Rails. L’OrderProcessor realizza il concetto

di Process Manager Enterprise Integration che abbiamo incontrato per la prima volta

nel Capitolo 3 quando abbiamo discusso di Multitude of Workers. Il componente sarà

responsabile della gestione del flusso di evasione degli ordini, prendendo decisioni di

routing basate su risultati intermedi e orchestrando l’esecuzione di vari passaggi di

elaborazione.

Orchestrazione Intelligente dei Flussi di Lavoro 226

Il processo di evasione degli ordini coinvolge più fasi come la convalida dell’ordine,

il controllo dell’inventario, l’elaborazione del pagamento e la spedizione. Ogni fase è

implementata come un processo worker separato che esegue un compito specifico e

restituisce il risultato all’OrderProcessor. Le fasi non sono obbligatorie e non devono

necessariamente essere eseguite in un ordine preciso.

Ecco un esempio di implementazione dell’OrderProcessor. Presenta due mixin da

Raix. Il primo (ChatCompletion) gli conferisce la capacità di completamento della chat,

che è ciò che lo rende un componente AI. Il secondo (FunctionDispatch) abilita la

chiamata di funzione da parte dell’AI, permettendole di rispondere a un prompt con

un’invocazione di funzione invece che con un messaggio di testo.

Le funzioni worker (validate_order, check_inventory, et al) delegano alle

rispettive classi worker, che possono essere componenti AI o non-AI, con l’unico

requisito che restituiscano i risultati del loro lavoro in un formato che può essere

rappresentato come stringa.

Come per tutti gli altri esempi in questa parte del libro, questo codice è

praticamente pseudo-codice ed è destinato solo a trasmettere il significato

del pattern e ispirare le vostre creazioni. Le descrizioni complete dei pattern

e gli esempi di codice completi sono inclusi nella Parte 2.

https://github.com/OlympiaAI/raix-rails

Orchestrazione Intelligente dei Flussi di Lavoro 227

1 class OrderProcessor

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

6

7 def initialize(order)

8 self.order = order

9 transcript << { system: SYSTEM_DIRECTIVE }

10 transcript << { user: order.to_json }

11 end

12

13 def perform

14 # will continue looping until `stop_looping!` is called

15 chat_completion(loop: true)

16 end

17

18 # list of functions available to be called by the AI

19 # truncated for brevity

20

21 def functions

22 [

23 {

24 name: "validate_order",

25 description: "Invoke to check validity of order",

26 parameters: {

27 ...

28 },

29 ...

30]

31 end

32

33 # implementation of functions that can be called by the AI

34 # entirely at its discretion, depending on the needs of the order

35

36 def validate_order

37 OrderValidationWorker.perform(@order)

38 end

39

40 def check_inventory

41 InventoryCheckWorker.perform(@order)

42 end

Orchestrazione Intelligente dei Flussi di Lavoro 228

43

44 def process_payment

45 PaymentProcessingWorker.perform(@order)

46 end

47

48 def schedule_shipping

49 ShippingSchedulerWorker.perform(@order)

50 end

51

52 def send_confirmation

53 OrderConfirmationWorker.perform(@order)

54 end

55

56 def finished_processing

57 @order.update!(transcript:, processed_at: Time.current)

58 stop_looping!

59 end

60 end

Nell’esempio, l’OrderProcessor viene inizializzato con un oggetto ordine e mantiene

una trascrizione dell’esecuzione del flusso di lavoro, nel tipico formato di trascrizione

di conversazione che è nativo dei modelli linguistici di grandi dimensioni. Il controllo

completo viene dato all’IA per orchestrare l’esecuzione di vari passaggi di elaborazione,

come la convalida dell’ordine, il controllo dell’inventario, l’elaborazione del pagamento

e la spedizione.

Ogni volta che viene chiamato il metodo chat_completion, la trascrizione viene

inviata all’IA affinché fornisca un completamento come chiamata di funzione. Spetta

interamente all’IA analizzare il risultato del passaggio precedente e determinare l’azione

appropriata da intraprendere. Per esempio, se il controllo dell’inventario rivela livelli

di scorte bassi, l’OrderProcessor può programmare un’attività di rifornimento. Se

l’elaborazione del pagamento fallisce, può avviare un nuovo tentativo o notificare

l’assistenza clienti.

Orchestrazione Intelligente dei Flussi di Lavoro 229

L’esempio sopra non ha funzioni definite per il rifornimento o la notifica all’assistenza

clienti, ma potrebbe assolutamente averle.

La trascrizione cresce ogni volta che viene chiamata una funzione e serve come registro

dell’esecuzione del flusso di lavoro, includendo i risultati di ogni passaggio e le istruzioni

generate dall’IA per i passaggi successivi. Questa trascrizione può essere utilizzata per

il debug, l’audit e per fornire visibilità sul processo di evasione degli ordini.

Sfruttando l’IA nell’OrderProcessor, l’applicazione di e-commerce può adattare

dinamicamente il flusso di lavoro in base ai dati in tempo reale e gestire le eccezioni

in modo intelligente. Il componente IA può prendere decisioni informate, ottimizzare

il flusso di lavoro e garantire un’elaborazione fluida degli ordini anche in scenari

complessi.

Il fatto che l’unico requisito sui processi worker sia quello di restituire un output

comprensibile per l’IA da considerare quando decide cosa fare dopo, potrebbe iniziare

a farvi capire come questo approccio possa ridurre il lavoro di mappatura input/output

che è tipicamente coinvolto nell’integrazione di sistemi disparati tra loro.

Moderatore di Contenuti Intelligente

Le applicazioni di social media generalmente richiedono almeno una moderazione

minima dei contenuti per garantire una comunità sicura e sana. Questo esempio di

componente ContentModerator sfrutta l’IA per orchestrare in modo intelligente il

flusso di lavoro della moderazione, prendendo decisioni basate sulle caratteristiche del

contenuto e sui risultati dei vari passaggi di moderazione.

Il processo di moderazione coinvolge più passaggi come l’analisi del testo, il

riconoscimento delle immagini, la valutazione della reputazione dell’utente e la

Orchestrazione Intelligente dei Flussi di Lavoro 230

revisione manuale. Ogni passaggio è implementato come un processo worker separato

che esegue un compito specifico e restituisce il risultato al ContentModerator.

Ecco un esempio di implementazione del ContentModerator:

1 class ContentModerator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,

6 tasked with the workflow involved in moderating user-generated content..."

7

8 def initialize(content)

9 @content = content

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: content.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 # list of functions available to be called by the AI

25 # truncated for brevity

26

27 def functions

28 [

29 {

30 name: "analyze_text",

31 # ...

32 },

33 {

34 name: "recognize_image",

35 description: "Invoke to describe images...",

36 # ...

37 },

Orchestrazione Intelligente dei Flussi di Lavoro 231

38 {

39 name: "assess_user_reputation",

40 # ...

41 },

42 {

43 name: "escalate_to_manual_review",

44 # ...

45 },

46 {

47 name: "approve_content",

48 # ...

49 },

50 {

51 name: "reject_content",

52 # ...

53 }

54]

55 end

56

57 # implementation of functions that can be called by the AI

58 # entirely at its discretion, depending on the needs of the order

59

60 def analyze_text

61 result = TextAnalysisWorker.perform(@content)

62 continue_with(result)

63 end

64

65 def recognize_image

66 result = ImageRecognitionWorker.perform(@content)

67 continue_with(result)

68 end

69

70 def assess_user_reputation

71 result = UserReputationWorker.perform(@content.user)

72 continue_with(result)

73 end

74

75 def escalate_to_manual_review

76 ManualReviewWorker.perform(@content)

77 @content.update!(status: 'pending', transcript: @transcript)

78 end

79

Orchestrazione Intelligente dei Flussi di Lavoro 232

80 def approve_content

81 @content.update!(status: 'approved', transcript: @transcript)

82 end

83

84 def reject_content

85 @content.update!(status: 'rejected', transcript: @transcript)

86 end

87

88 private

89

90 def continue_with(result)

91 @transcript << { function: result }

92 complete(@transcript)

93 end

94 end

In questo esempio, il ContentModerator viene inizializzato con un oggetto contenuto

e mantiene una trascrizione della moderazione in formato conversazione. Il componente

AI ha il controllo completo sul flusso di lavoro della moderazione, decidendo quali

passaggi eseguire in base alle caratteristiche del contenuto e ai risultati di ogni fase.

Le funzioni worker disponibili che l’AI può invocare includono analyze_text,

recognize_image, assess_user_reputation, e escalate_to_manual_review.

Ogni funzione delega il compito a un corrispondente processo worker

(TextAnalysisWorker, ImageRecognitionWorker, ecc.) e aggiunge il risultato alla

trascrizione della moderazione, con l’eccezione della funzione di escalation, che agisce

come stato finale. Infine, le funzioni approve_content e reject_content fungono

anch’esse da stati finali.

Il componente AI analizza il contenuto e determina l’azione appropriata da

intraprendere. Se il contenuto contiene riferimenti a immagini, può chiamare il

worker recognize_image per assistenza con una revisione visiva. Se qualsiasi worker

segnala contenuti potenzialmente dannosi, l’AI può decidere di escalare il contenuto

per una revisione manuale o semplicemente rifiutarlo direttamente. Ma a seconda della

gravità dell’avvertimento, l’AI può scegliere di utilizzare i risultati della valutazione

Orchestrazione Intelligente dei Flussi di Lavoro 233

della reputazione dell’utente per decidere come gestire i contenuti di cui non è altrimenti

sicura. A seconda del caso d’uso, forse gli utenti fidati hanno più libertà in ciò che

possono pubblicare. E così via…

Come nell’esempio precedente del gestore dei processi, la trascrizione della moderazione

serve come registro dell’esecuzione del flusso di lavoro, includendo i risultati di ogni

fase e le decisioni generate dall’AI. Questa trascrizione può essere utilizzata per l’audit,

la trasparenza e il miglioramento del processo di moderazione nel tempo.

Sfruttando l’AI nel ContentModerator, l’applicazione di social media può adattare

dinamicamente il flusso di lavoro della moderazione in base alle caratteristiche

del contenuto e gestire scenari di moderazione complessi in modo intelligente. Il

componente AI può prendere decisioni informate, ottimizzare il flusso di lavoro e

garantire un’esperienza comunitaria sicura e sana.

Esploriamo altri due esempi che dimostrano la pianificazione predittiva delle attività e

la gestione delle eccezioni e il recupero nel contesto dell’orchestrazione intelligente del

flusso di lavoro.

Pianificazione Predittiva delle Attività in un Sistema di
Supporto Clienti

In un’applicazione di supporto clienti costruita con Ruby on Rails, gestire e prioritizzare

efficacemente i ticket di supporto è cruciale per fornire assistenza tempestiva ai clienti.

Il componente SupportTicketScheduler sfrutta l’AI per pianificare e assegnare in

modo predittivo i ticket di supporto agli agenti disponibili in base a vari fattori come

l’urgenza del ticket, l’esperienza dell’agente e il carico di lavoro.

Orchestrazione Intelligente dei Flussi di Lavoro 234

1 class SupportTicketScheduler

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,

6 tasked with intelligently assigning tickets to available agents..."

7

8 def initialize(ticket)

9 @ticket = ticket

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: ticket.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 def functions

25 [

26 {

27 name: "analyze_ticket_urgency",

28 # ...

29 },

30 {

31 name: "list_available_agents",

32 description: "Includes expertise of available agents",

33 # ...

34 },

35 {

36 name: "predict_agent_workload",

37 description: "Uses historical data to predict upcoming workloads",

38 # ...

39 },

40 {

41 name: "assign_ticket_to_agent",

42 # ...

Orchestrazione Intelligente dei Flussi di Lavoro 235

43 },

44 {

45 name: "reschedule_ticket",

46 # ...

47 }

48]

49 end

50

51 # implementation of functions that can be called by the AI

52 # entirely at its discretion, depending on the needs of the order

53

54 def analyze_ticket_urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)

56 continue_with(result)

57 end

58

59 def list_available_agents

60 result = ListAvailableAgents.perform

61 continue_with(result)

62 end

63

64 def predict_agent_workload

65 result = AgentWorkloadPredictor.perform

66 continue_with(result)

67 end

68

69 def assign_ticket_to_agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

73 def delay_assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)

76 end

77

78 private

79

80 def continue_with(result)

81 @transcript << { function: result }

82 complete(@transcript)

83 end

84 end

Orchestrazione Intelligente dei Flussi di Lavoro 236

In questo esempio, il SupportTicketScheduler viene inizializzato con un oggetto

ticket di supporto e mantiene un registro di pianificazione. Il componente AI analizza i

dettagli del ticket e pianifica in modo predittivo l’assegnazione del ticket basandosi su

fattori come l’urgenza del ticket, l’esperienza dell’operatore e il carico di lavoro previsto

dell’operatore.

Le funzioni disponibili che l’AI può invocare includono analyze_ticket_urgency,

list_available_agents, predict_agent_workload e assign_ticket_to_-

agent. Ogni funzione delega il compito a un corrispondente componente di analisi o

previsione e aggiunge il risultato al registro di pianificazione. L’AI ha anche l’opzione

di ritardare l’assegnazione utilizzando la funzione delay_assignment.

Il componente AI esamina il registro di pianificazione e prende decisioni informate

sull’assegnazione dei ticket. Considera l’urgenza del ticket, l’esperienza degli operatori

disponibili e il carico di lavoro previsto di ciascun operatore per determinare l’operatore

più adatto alla gestione del ticket.

Sfruttando la pianificazione predittiva delle attività, l’applicazione di supporto clienti

può ottimizzare l’assegnazione dei ticket, ridurre i tempi di risposta e migliorare la

soddisfazione complessiva del cliente. La gestione proattiva ed efficiente dei ticket di

supporto garantisce che i ticket giusti vengano assegnati agli operatori giusti al momento

giusto.

Gestione delle Eccezioni e Recupero in una Pipeline di
Elaborazione Dati

La gestione delle eccezioni e il recupero da errori sono essenziali per garantire l’integrità

dei dati e prevenire la perdita di dati. Il componente DataProcessingOrchestrator

utilizza l’AI per gestire in modo intelligente le eccezioni e orchestrare il processo di

recupero in una pipeline di elaborazione dati

Orchestrazione Intelligente dei Flussi di Lavoro 237

1 class DataProcessingOrchestrator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

6

7 def initialize(data_batch)

8 @data_batch = data_batch

9 @transcript = [

10 { system: SYSTEM_DIRECTIVE },

11 { user: data_batch.to_json }

12]

13 end

14

15 def perform

16 complete(@transcript)

17 end

18

19 def model

20 "openai/gpt-4"

21 end

22

23 def functions

24 [

25 {

26 name: "validate_data",

27 # ...

28 },

29 {

30 name: "process_data",

31 # ...

32 },

33 {

34 name: "request_fix",

35 # ...

36 },

37 {

38 name: "retry_processing",

39 # ...

40 },

41 {

42 name: "mark_data_as_failed",

Orchestrazione Intelligente dei Flussi di Lavoro 238

43 # ...

44 },

45 {

46 name: "finished",

47 # ...

48 }

49]

50 end

51

52 # implementation of functions that can be called by the AI

53 # entirely at its discretion, depending on the needs of the order

54

55 def validate_data

56 result = DataValidator.perform(@data_batch)

57 continue_with(result)

58 rescue ValidationException => e

59 handle_validation_exception(e)

60 end

61

62 def process_data

63 result = DataProcessor.perform(@data_batch)

64 continue_with(result)

65 rescue ProcessingException => e

66 handle_processing_exception(e)

67 end

68

69 def request_fix(description_of_fix)

70 result = SmartDataFixer.new(description_of_fix, @data_batch)

71 continue_with(result)

72 end

73

74 def retry_processing(timeout_in_seconds)

75 wait(timeout_in_seconds)

76 process_data

77 end

78

79 def mark_data_as_failed

80 @data_batch.update!(status: 'failed', transcript: @transcript)

81 end

82

83 def finished

84 @data_batch.update!(status: 'finished', transcript: @transcript)

Orchestrazione Intelligente dei Flussi di Lavoro 239

85 end

86

87 private

88

89 def continue_with(result)

90 @transcript << { function: result }

91 complete(@transcript)

92 end

93

94 def handle_validation_exception(exception)

95 @transcript << { exception: exception.message }

96 complete(@transcript)

97 end

98

99 def handle_processing_exception(exception)

100 @transcript << { exception: exception.message }

101 complete(@transcript)

102 end

103 end

In questo esempio, il DataProcessingOrchestrator viene inizializzato con un

oggetto batch di dati e mantiene una trascrizione dell’elaborazione. Il componente

AI orchestra la pipeline di elaborazione dati, gestendo le eccezioni e recuperando dai

fallimenti quando necessario.

Le funzioni disponibili che l’AI può invocare includono validate_data, process_-

data, request_fix, retry_processing e mark_data_as_failed. Ogni funzione

delega il compito a un componente di elaborazione dati corrispondente e aggiunge il

risultato o i dettagli dell’eccezione alla trascrizione dell’elaborazione.

Se si verifica un’eccezione di validazione durante la fase validate_data, la funzione

handle_validation_exception aggiunge i dati dell’eccezione alla trascrizione e

restituisce il controllo all’AI. Analogamente, se si verifica un’eccezione di elaborazione

durante la fase process_data, l’AI può decidere la strategia di recupero.

A seconda della natura dell’eccezione incontrata, l’AI può, a sua discrezione, decidere

di chiamare request_fix, che delega a un componente SmartDataFixer basato

Orchestrazione Intelligente dei Flussi di Lavoro 240

su AI (vedi il capitolo sui Dati Auto-Riparanti). Il data fixer riceve una descrizione

in linguaggio naturale di come dovrebbe modificare il @data_batch in modo che

l’elaborazione possa essere ritentata. Forse un nuovo tentativo riuscito comporterebbe

la rimozione dal batch di dati dei record che non hanno superato la validazione e/o la

loro copia in una pipeline di elaborazione diversa per la revisione umana? Le possibilità

sono praticamente infinite.

Incorporando la gestione delle eccezioni e il recupero guidato dall’AI,

l’applicazione di elaborazione dati diventa più resiliente e tollerante ai guasti. Il

DataProcessingOrchestrator gestisce intelligentemente le eccezioni, minimizza la

perdita di dati e garantisce l’esecuzione fluida del flusso di lavoro di elaborazione dati.

Monitoraggio e Logging

Il monitoraggio e il logging forniscono visibilità sui progressi, le prestazioni e lo stato dei

componenti del flusso di lavoro basati su AI, consentendo agli sviluppatori di tracciare

e analizzare il comportamento del sistema. L’implementazione di meccanismi efficaci

di monitoraggio e logging è essenziale per il debugging, l’auditing e il miglioramento

continuo dei flussi di lavoro intelligenti.

Monitoraggio dei Progressi e delle Prestazioni del Flusso
di Lavoro

Per garantire l’esecuzione fluida dei flussi di lavoro intelligenti, è importante monitorare

i progressi e le prestazioni di ogni componente del flusso di lavoro. Questo comporta il

tracciamento di metriche chiave ed eventi durante tutto il ciclo di vita del flusso di

lavoro.

Alcuni aspetti importanti da monitorare includono:

1. Tempo di Esecuzione del Flusso di Lavoro:Misurare il tempo impiegato da ciascun

componente del flusso di lavoro per completare il proprio compito. Questo aiuta a

Orchestrazione Intelligente dei Flussi di Lavoro 241

identificare i colli di bottiglia nelle prestazioni e a ottimizzare l’efficienza complessiva

del flusso di lavoro.

2. Utilizzo delle Risorse: Monitorare l’utilizzo delle risorse di sistema, come CPU,

memoria e storage, da parte di ciascun componente del flusso di lavoro. Questo aiuta a

garantire che il sistema operi entro la sua capacità e possa gestire efficacemente il carico

di lavoro.

3. Tassi di Errore ed Eccezioni: Tracciare il verificarsi di errori ed eccezioni all’interno

dei componenti del flusso di lavoro. Questo aiuta a identificare potenziali problemi e

permette una gestione proattiva degli errori e il recupero.

4. Punti Decisionali e Risultati: Monitorare i punti decisionali all’interno del flusso

di lavoro e i risultati delle decisioni guidate dall’AI. Questo fornisce informazioni sul

comportamento e l’efficacia dei componenti AI.

I dati catturati dai processi di monitoraggio possono essere visualizzati in dashboard

o utilizzati come input per report programmati che informano gli amministratori di

sistema sullo stato del sistema.

I dati di monitoraggio possono essere inviati a un processo di

amministrazione di sistema basato su AI per la revisione e potenziali

azioni!

Logging di Eventi e Decisioni Chiave

Il logging è una pratica essenziale che comporta la cattura e l’archiviazione di

informazioni rilevanti su eventi chiave, decisioni ed eccezioni che si verificano durante

l’esecuzione del flusso di lavoro.

Alcuni aspetti importanti da registrare includono:

Orchestrazione Intelligente dei Flussi di Lavoro 242

1. Avvio e Completamento del Flusso di Lavoro: Registrare gli orari di inizio e fine di

ogni istanza del flusso di lavoro, insieme a qualsiasi metadata rilevante come i dati di

input e il contesto utente.

2. Esecuzione dei Componenti: Registrare i dettagli di esecuzione di ogni componente

del flusso di lavoro, inclusi i parametri di input, i risultati di output e qualsiasi dato

intermedio generato.

3. Decisioni AI e Ragionamento: Registrare le decisioni prese dai componenti AI,

insieme al ragionamento sottostante o ai punteggi di confidenza. Questo fornisce

trasparenza e permette l’auditing delle decisioni guidate dall’AI.

4. Eccezioni e Messaggi di Errore: Registrare qualsiasi eccezione o messaggio di

errore incontrato durante l’esecuzione del flusso di lavoro, incluso lo stack trace e le

informazioni di contesto rilevanti.

Il logging può essere implementato utilizzando varie tecniche, come la scrittura su file

di log, l’archiviazione dei log in un database o l’invio dei log a un servizio di logging

centralizzato. È importante scegliere un framework di logging che fornisca flessibilità,

scalabilità e facile integrazione con l’architettura dell’applicazione.

Ecco un esempio di come il logging può essere implementato in un’applicazione Ruby

on Rails utilizzando la classe ActiveSupport::Logger:

1 class WorkflowLogger

2 def self.log(message, severity = :info)

3 @logger ||= ActiveSupport::Logger.new('workflow.log')

4 @logger.formatter ||= proc do |severity, datetime, progname, msg|

5 "#{datetime} [#{severity}] #{msg}\n"

6 end

7 @logger.send(severity, message)

8 end

9 end

10

11 # Usage example

12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")

13 WorkflowLogger.log("Payment processing completed successfully")

14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

Orchestrazione Intelligente dei Flussi di Lavoro 243

Posizionando strategicamente le istruzioni di logging all’interno dei componenti del

workflow e nei punti decisionali dell’IA, gli sviluppatori possono acquisire informazioni

preziose per il debugging, l’audit e l’analisi.

Vantaggi del Monitoraggio e del Logging

L’implementazione del monitoraggio e del logging nell’orchestrazione intelligente dei

workflow offre diversi vantaggi:

1. Debugging e Risoluzione dei Problemi: I log dettagliati e i dati di monitoraggio

aiutano gli sviluppatori a identificare e diagnosticare rapidamente i problemi.

Forniscono informazioni sul flusso di esecuzione del workflow, sulle interazioni tra i

componenti e su eventuali errori o eccezioni riscontrati.

2. Ottimizzazione delle Prestazioni: Il monitoraggio delle metriche di prestazione

permette agli sviluppatori di identificare i colli di bottiglia e ottimizzare i componenti

del workflow per una maggiore efficienza. Analizzando i tempi di esecuzione, l’utilizzo

delle risorse e altre metriche, gli sviluppatori possono prendere decisioni informate per

migliorare le prestazioni complessive del sistema.

3. Audit e Conformità: La registrazione di eventi e decisioni chiave fornisce una traccia

di audit per la conformità normativa e la responsabilità. Permette alle organizzazioni di

tracciare e verificare le azioni intraprese dai componenti di IA e garantire il rispetto delle

regole aziendali e dei requisiti legali.

4. Miglioramento Continuo: I dati di monitoraggio e logging servono come input

preziosi per il miglioramento continuo dei workflow intelligenti. Analizzando i

dati storici, identificando modelli e misurando l’efficacia delle decisioni dell’IA, gli

sviluppatori possono perfezionare emigliorare iterativamente la logica di orchestrazione

del workflow.

Orchestrazione Intelligente dei Flussi di Lavoro 244

Considerazioni e Best Practice

Nell’implementazione del monitoraggio e del logging nell’orchestrazione intelligente dei

workflow, considerare le seguenti best practice:

1. Definire Metriche di Monitoraggio Chiare: Identificare le metriche chiave e

gli eventi che devono essere monitorati in base ai requisiti specifici del workflow.

Concentrarsi sulle metriche che forniscono informazioni significative sulle prestazioni,

lo stato e il comportamento del sistema.

2. Implementare il Logging Granulare: Assicurarsi che le istruzioni di logging siano

posizionate in punti appropriati all’interno dei componenti del workflow e nei punti

decisionali dell’IA. Acquisire informazioni contestuali rilevanti, come parametri di

input, risultati di output e qualsiasi dato intermedio generato.

3. Utilizzare il Logging Strutturato: Adottare un formato di logging strutturato per

facilitare l’analisi e l’elaborazione dei dati di log. Il logging strutturato permette una

migliore ricercabilità, filtraggio e aggregazione delle voci di log.

4. Gestire la Conservazione e la Rotazione dei Log: Implementare politiche di

conservazione e rotazione dei log per gestire l’archiviazione e il ciclo di vita dei file

di log. Determinare il periodo di conservazione appropriato in base ai requisiti legali, ai

vincoli di archiviazione e alle esigenze di analisi. Se possibile, delegare il logging a un

servizio di terze parti come Papertrail.

5. Proteggere le Informazioni Sensibili: Prestare attenzione quando si registrano

informazioni sensibili, come dati personali identificabili (PII) o dati aziendali riservati.

Implementare misure di sicurezza appropriate, come il mascheramento dei dati o la

crittografia, per proteggere le informazioni sensibili nei file di log.

6. Integrare con Strumenti di Monitoraggio e Allerta: Sfruttare gli strumenti di

monitoraggio e allerta per centralizzare la raccolta, l’analisi e la visualizzazione dei

dati di monitoraggio e logging. Questi strumenti possono fornire informazioni in

https://papertrailapp.com

Orchestrazione Intelligente dei Flussi di Lavoro 245

tempo reale, generare avvisi basati su soglie predefinite e facilitare il rilevamento e la

risoluzione proattiva dei problemi. Il mio strumento preferito tra questi è Datadog.

Implementando meccanismi completi di monitoraggio e logging, gli sviluppatori

possono ottenere informazioni preziose sul comportamento e le prestazioni dei

workflow intelligenti. Queste informazioni consentono un debugging efficace,

l’ottimizzazione e il miglioramento continuo dei sistemi di orchestrazione dei workflow

basati su IA.

Considerazioni sulla Scalabilità e le Prestazioni

La scalabilità e le prestazioni sono aspetti critici da considerare durante la progettazione

e l’implementazione di sistemi di orchestrazione intelligente dei workflow. Con

l’aumentare del volume di workflow concorrenti e della complessità dei componenti

basati su IA, diventa essenziale garantire che il sistema possa gestire il carico di lavoro

in modo efficiente e scalare senza problemi per soddisfare le crescenti esigenze.

Gestione di Grandi Volumi di Workflow Concorrenti

I sistemi di orchestrazione intelligente dei workflow spesso devono gestire un gran

numero di workflow concorrenti. Per garantire la scalabilità, considerare le seguenti

strategie:

1. Elaborazione Asincrona: Implementare meccanismi di elaborazione asincrona per

disaccoppiare l’esecuzione dei componenti del workflow. Questo permette al sistema di

gestire piùworkflow contemporaneamente senza bloccarsi o attendere il completamento

di ciascun componente. L’elaborazione asincrona può essere realizzata utilizzando

code di messaggi, architetture event-driven o framework di elaborazione dei job in

background come Sidekiq.

2. Architettura Distribuita: Progettare l’architettura del sistema per utilizzare

componenti serverless (come AWS Lambda) o semplicemente distribuire il carico di

https://www.datadoghq.com

Orchestrazione Intelligente dei Flussi di Lavoro 246

lavoro su più nodi o server insieme al server applicativo principale. Questo consente la

scalabilità orizzontale, dove è possibile aggiungere ulteriori nodi per gestire l’aumento

dei volumi di workflow.

3. Esecuzione Parallela: Identificare le opportunità di esecuzione parallela all’interno

dei workflow. Alcuni componenti del workflow potrebbero essere indipendenti tra loro

e possono essere eseguiti contemporaneamente. Sfruttando tecniche di elaborazione

parallela, come il multi-threading o le code di attività distribuite, il sistema può

ottimizzare l’utilizzo delle risorse e ridurre il tempo complessivo di esecuzione del

workflow.

Ottimizzazione delle Prestazioni dei Componenti Basati
su IA

I componenti basati su IA, come i modelli di machine learning o i motori di elaborazione

del linguaggio naturale, possono essere computazionalmente intensivi e influenzare le

prestazioni complessive del sistema di orchestrazione dei workflow. Per ottimizzare le

prestazioni dei componenti IA, considera le seguenti tecniche:

1. Caching: Se l’elaborazione IA è puramente generativa e non coinvolge ricerche

in tempo reale o integrazioni esterne per generare i completamenti delle chat, puoi

considerare meccanismi di caching per memorizzare e riutilizzare i risultati delle

operazioni frequentemente accedute o computazionalmente costose.

2. Ottimizzazione del Modello: Ottimizza continuamente il modo in cui utilizzi i

modelli IA nei componenti del workflow. Questo può coinvolgere tecniche come la

Distillazione dei Prompt o potrebbe semplicemente essere una questione di testare nuovi

modelli man mano che diventano disponibili.

3. Elaborazione Batch: Se stai lavorando con modelli di classe GPT-4, potresti essere in

grado di sfruttare tecniche di elaborazione batch per processare più punti dati o richieste

in un singolo lotto, invece di elaborarli individualmente. Elaborando i dati in batch, il

Orchestrazione Intelligente dei Flussi di Lavoro 247

sistema può ottimizzare l’utilizzo delle risorse e ridurre il sovraccarico delle richieste

ripetute al modello.

Monitoraggio e Profilazione delle Prestazioni

Per identificare i colli di bottiglia nelle prestazioni e ottimizzare la scalabilità del sistema

di orchestrazione intelligente dei workflow, è cruciale implementare meccanismi di

monitoraggio e profilazione. Considera i seguenti approcci:

1. Metriche delle Prestazioni: Definisci e traccia le metriche chiave delle prestazioni,

come il tempo di risposta, il throughput, l’utilizzo delle risorse e la latenza. Queste

metriche forniscono informazioni sulle prestazioni del sistema e aiutano a identificare

le aree da ottimizzare. Il popolare aggregatore di modelli IA OpenRouter include le

metriche Host1 e Speed2 in ogni risposta API, rendendo banale il monitoraggio di queste

metriche chiave.

2. Strumenti di Profilazione: Utilizza strumenti di profilazione per analizzare le

prestazioni dei singoli componenti del workflow e delle operazioni IA. Gli strumenti

di profilazione possono aiutare a identificare i punti critici delle prestazioni, i percorsi

di codice inefficienti o le operazioni che consumano molte risorse. Gli strumenti di

profilazione popolari includono New Relic, Scout, o i profiler integrati forniti dal

linguaggio di programmazione o dal framework.

3. Test di Carico: Conduci test di carico per valutare le prestazioni del sistema sotto

diversi livelli di carico di lavoro concorrente. I test di carico aiutano a identificare i

limiti di scalabilità del sistema, rilevare il degrado delle prestazioni e assicurare che il

sistema possa gestire il traffico previsto senza compromettere le prestazioni.

4. Monitoraggio Continuo: Implementa meccanismi di monitoraggio continuo e

di allerta per rilevare proattivamente problemi e colli di bottiglia nelle prestazioni.

1Host è il tempo necessario per ricevere il primo byte della generazione in streaming dall’host del modello,
anche noto come “time to first byte.”

2Speed viene calcolata come il numero di token di completamento diviso per il tempo totale di generazione.
Per le richieste non in streaming, la latenza è considerata parte del tempo di generazione.

https://openrouter.ai

Orchestrazione Intelligente dei Flussi di Lavoro 248

Configura dashboard di monitoraggio e avvisi per tracciare gli indicatori chiave di

prestazione (KPI) e ricevere notifiche quando vengono superati i limiti predefiniti.

Questo permette l’identificazione e la risoluzione tempestiva dei problemi di prestazione.

Strategie di Scaling

Per gestire carichi di lavoro crescenti e garantire la scalabilità del sistema di

orchestrazione intelligente dei workflow, considera le seguenti strategie di scaling:

1. Scaling Verticale: Lo scaling verticale comporta l’aumento delle risorse (ad esempio,

CPU, memoria) dei singoli nodi o server per gestire carichi di lavoro più elevati. Questo

approccio è adatto quando il sistema richiede più potenza di elaborazione o memoria

per gestire workflow complessi o operazioni IA.

2. Scaling Orizzontale: Lo scaling orizzontale comporta l’aggiunta di più nodi o server

al sistema per distribuire il carico di lavoro. Questo approccio è efficace quando il sistema

deve gestire un gran numero di workflow concorrenti o quando il carico di lavoro può

essere facilmente distribuito su più nodi. Lo scaling orizzontale richiede un’architettura

distribuita e meccanismi di bilanciamento del carico per garantire una distribuzione

uniforme del traffico.

3. Auto-Scaling: Implementa meccanismi di auto-scaling per regolare automaticamente

il numero di nodi o risorse in base alla domanda del carico di lavoro. L’auto-scaling

permette al sistema di scalare dinamicamente verso l’alto o verso il basso a seconda

del traffico in entrata, garantendo un utilizzo ottimale delle risorse e l’efficienza dei

costi. Piattaforme cloud come Amazon Web Services (AWS) o Google Cloud Platform

(GCP) forniscono capacità di auto-scaling che possono essere sfruttate per i sistemi di

orchestrazione intelligente dei workflow.

Tecniche di Ottimizzazione delle Prestazioni

Oltre alle strategie di scaling, considera le seguenti tecniche di ottimizzazione delle

prestazioni per migliorare l’efficienza del sistema di orchestrazione intelligente dei

Orchestrazione Intelligente dei Flussi di Lavoro 249

workflow:

1. Archiviazione e Recupero Efficienti dei Dati: Ottimizza i meccanismi di

archiviazione e recupero dei dati utilizzati dai componenti del workflow. Utilizza

l’indicizzazione efficiente del database, tecniche di ottimizzazione delle query e caching

dei dati per minimizzare la latenza e migliorare le prestazioni delle operazioni ad alta

intensità di dati.

2. I/O Asincrono: Utilizzare operazioni di I/O asincrone per prevenire il blocco e

migliorare la reattività del sistema. L’I/O asincrono permette al sistema di gestire più

richieste contemporaneamente senza dover attendere il completamento delle operazioni

di I/O, massimizzando così l’utilizzo delle risorse.

3. Serializzazione e Deserializzazione Efficienti: Ottimizzare i processi di

serializzazione e deserializzazione utilizzati per lo scambio di dati tra i componenti

del workflow. Utilizzare formati di serializzazione efficienti, come Protocol Buffers o

MessagePack, per ridurre il sovraccarico della serializzazione dei dati e migliorare le

prestazioni della comunicazione tra i componenti.

Per le applicazioni basate su Ruby, considera l’utilizzo di Universal ID.

Universal ID sfrutta sia MessagePack che Brotli (una combinazione costruita

per velocità e compressione dati ai massimi livelli). Quando combinati,

queste librerie sono fino al 30% più veloci e hanno tassi di compressione

entro il 2-5% rispetto a Protocol Buffers.

4. Compressione e Codifica: Applicare tecniche di compressione e codifica per ridurre

la dimensione dei dati trasferiti tra i componenti del workflow. Gli algoritmi di

compressione, come gzip o Brotli, possono ridurre significativamente l’utilizzo della

larghezza di banda di rete e migliorare le prestazioni complessive del sistema.

Considerando gli aspetti di scalabilità e prestazioni durante la progettazione e

l’implementazione dei sistemi di orchestrazione intelligente dei workflow, è possibile

garantire che il sistema possa gestire elevati volumi di workflow concorrenti, ottimizzare

https://github.com/hopsoft/universalid

Orchestrazione Intelligente dei Flussi di Lavoro 250

le prestazioni dei componenti basati su IA e scalare senza problemi per soddisfare le

crescenti esigenze. Il monitoraggio continuo, il profiling e gli sforzi di ottimizzazione

sono essenziali per mantenere le prestazioni e la reattività del sistema man mano che il

carico di lavoro e la complessità aumentano nel tempo.

Test e Validazione dei Workflow

Il testing e la validazione sono aspetti cruciali nello sviluppo e nella manutenzione

dei sistemi di orchestrazione intelligente dei workflow. Data la natura complessa dei

workflow basati su IA, è essenziale garantire che ogni componente funzioni come

previsto, che il workflow complessivo si comporti correttamente e che le decisioni

dell’IA siano accurate e affidabili. In questa sezione, esploreremo varie tecniche e

considerazioni per il testing e la validazione dei workflow intelligenti.

Test Unitari dei Componenti del Workflow

Il test unitario consiste nel testare i singoli componenti del workflow in isolamento

per verificarne la correttezza e la robustezza. Durante l’esecuzione dei test unitari sui

componenti del workflow basati su IA, considera quanto segue:

1. Convalida dell’Input: Testare la capacità del componente di gestire diversi tipi di

input, inclusi dati validi e non validi. Verificare che il componente gestisca correttamente

i casi limite e fornisca messaggi di errore o eccezioni appropriati.

2. Verifica dell’Output: Verificare che il componente produca l’output previsto per un

determinato set di input. Confrontare l’output effettivo con i risultati attesi per garantire

la correttezza.

3. Gestione degli Errori: Testare i meccanismi di gestione degli errori del componente

simulando vari scenari di errore, come input non validi, indisponibilità delle risorse o

eccezioni impreviste. Verificare che il componente catturi e gestisca gli errori in modo

appropriato.

Orchestrazione Intelligente dei Flussi di Lavoro 251

4. Condizioni Limite: Testare il comportamento del componente in condizioni limite,

come input vuoto, dimensione massima dell’input o valori estremi. Assicurarsi che il

componente gestisca queste condizioni in modo appropriato senza bloccarsi o produrre

risultati errati.

Ecco un esempio di test unitario per un componente di workflow in Ruby utilizzando il

framework di testing RSpec:

1 RSpec.describe OrderValidator do

2 describe '#validate' do

3 context 'when order is valid' do

4 let(:order) { build(:order) }

5

6 it 'returns true' do

7 expect(subject.validate(order)).to be true

8 end

9 end

10

11 context 'when order is invalid' do

12 let(:order) { build(:order, total_amount: -100) }

13

14 it 'returns false' do

15 expect(subject.validate(order)).to be false

16 end

17 end

18 end

19 end

In questo esempio, il componente OrderValidator viene testato utilizzando due casi

di test: uno per un ordine valido e un altro per un ordine non valido. I casi di test

verificano che il metodo validate restituisca il valore booleano previsto in base alla

validità dell’ordine.

Test di Integrazione delle Interazioni del Workflow

Il test di integrazione si concentra sulla verifica delle interazioni e del flusso di dati tra i

diversi componenti del workflow. Garantisce che i componenti lavorino insieme senza

Orchestrazione Intelligente dei Flussi di Lavoro 252

problemi e producano i risultati attesi. Durante l’esecuzione dei test di integrazione dei

workflow intelligenti, considera i seguenti aspetti:

1. Interazione tra Componenti: Testa la comunicazione e lo scambio di dati tra i

componenti del workflow. Verifica che l’output di un componente venga correttamente

passato come input al componente successivo nel workflow.

2. Consistenza dei Dati: Assicura che i dati rimangano consistenti e accurati

mentre attraversano il workflow. Verifica che le trasformazioni dei dati, i calcoli e le

aggregazioni vengano eseguiti correttamente.

3. Propagazione delle Eccezioni: Testa come le eccezioni e gli errori vengono propagati

e gestiti tra i componenti del workflow. Verifica che le eccezioni vengano catturate,

registrate e gestite appropriatamente per prevenire l’interruzione del workflow.

4. Comportamento Asincrono: Se il workflow coinvolge componenti asincroni o

esecuzione parallela, testa i meccanismi di coordinamento e sincronizzazione. Assicura

che il workflow si comporti correttamente in scenari concorrenti e asincroni.

Ecco un esempio di un test di integrazione per un workflow in Ruby utilizzando il

framework di testing RSpec:

1 RSpec.describe OrderProcessingWorkflow do

2

3 let(:order) { build(:order) }

4

5 it 'processes the order successfully' do

6 expect(OrderValidator).to receive(:validate).and_return(true)

7 expect(InventoryManager).to receive(:check_availability).and_return(true)

8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)

9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)

10

11 workflow = OrderProcessingWorkflow.new(order)

12 result = workflow.process

13

14 expect(result).to be true

15 expect(order.status).to eq('processed')

16 end

Orchestrazione Intelligente dei Flussi di Lavoro 253

17

18 end

In questo esempio, il OrderProcessingWorkflow viene testato verificando le

interazioni tra i diversi componenti del workflow. Il caso di test definisce le aspettative

per il comportamento di ciascun componente e assicura che il workflow elabori l’ordine

con successo, aggiornando di conseguenza lo stato dell’ordine.

Testing dei Punti Decisionali AI

Il testing dei punti decisionali AI è cruciale per garantire l’accuratezza e l’affidabilità dei

workflow basati su AI. Durante il testing dei punti decisionali AI, considera i seguenti

aspetti:

1. Accuratezza Decisionale: Verifica che il componente AI prenda decisioni accurate

basate sui dati di input e sul modello addestrato. Confronta le decisioni dell’AI con i

risultati attesi o i dati di riferimento.

2. Casi Limite: Testa il comportamento del componente AI in casi limite e scenari

inusuali. Verifica che il componente AI gestisca questi casi in modo elegante e prenda

decisioni ragionevoli.

3. Distorsione ed Equità: Valuta il componente AI per potenziali distorsioni e assicurati

che prenda decisioni eque e imparziali. Testa il componente con dati di input diversificati

e analizza i risultati per individuare eventuali schemi discriminatori.

4. Spiegabilità: Se il componente AI fornisce spiegazioni o ragionamenti per le sue

decisioni, verifica la correttezza e la chiarezza delle spiegazioni. Assicurati che le

spiegazioni siano allineate con il processo decisionale sottostante.

Ecco un esempio di testing di un punto decisionale AI in Ruby utilizzando il framework

di testing RSpec:

Orchestrazione Intelligente dei Flussi di Lavoro 254

1 RSpec.describe FraudDetector do

2 describe '#detect_fraud' do

3 context 'when transaction is fraudulent' do

4 let(:tx) do

5 build(:transaction, amount: 10_000, location: 'High-Risk Country')

6 end

7

8 it 'returns true' do

9 expect(subject.detect_fraud(tx)).to be true

10 end

11 end

12

13 context 'when transaction is legitimate' do

14 let(:tx) do

15 build(:transaction, amount: 100, location: 'Low-Risk Country')

16 end

17

18 it 'returns false' do

19 expect(subject.detect_fraud(tx)).to be false

20 end

21 end

22 end

23 end

In questo esempio, il componente AI FraudDetector viene testato con due casi di test:

uno per una transazione fraudolenta e un altro per una transazione legittima. I casi di

test verificano che il metodo detect_fraud restituisca il valore booleano previsto in

base alle caratteristiche della transazione.

Test End-to-End

Il test end-to-end comporta il testing dell’intero flusso di lavoro dall’inizio alla fine,

simulando scenari reali e interazioni dell’utente. Assicura che il flusso di lavoro si

comporti correttamente e produca i risultati desiderati. Durante l’esecuzione dei test

end-to-end per i flussi di lavoro intelligenti, considera i seguenti aspetti:

Orchestrazione Intelligente dei Flussi di Lavoro 255

1. Scenari Utente: Identifica gli scenari utente comuni e testa il comportamento del

flusso di lavoro in questi scenari. Verifica che il flusso di lavoro gestisca correttamente

gli input dell’utente, prenda decisioni appropriate e produca gli output previsti.

2. Convalida dei Dati: Assicurati che il flusso di lavoro convalidi e sanifichi gli input

dell’utente per prevenire inconsistenze nei dati o vulnerabilità di sicurezza. Testa il flusso

di lavoro con vari tipi di dati in input, inclusi dati validi e non validi.

3. Recupero degli Errori: Testa la capacità del flusso di lavoro di riprendersi da errori

ed eccezioni. Simula scenari di errore e verifica che il flusso di lavoro li gestisca in modo

elegante, registri gli errori e intraprenda appropriate azioni di recupero.

4. Prestazioni e Scalabilità: Valuta le prestazioni e la scalabilità del flusso di lavoro in

diverse condizioni di carico. Testa il flusso di lavoro con un grande volume di richieste

concorrenti e misura i tempi di risposta, l’utilizzo delle risorse e la stabilità complessiva

del sistema.

Ecco un esempio di un test end-to-end per un flusso di lavoro in Ruby utilizzando il

framework di testing RSpec e la libreria Capybara per simulare le interazioni dell’utente:

1 RSpec.describe 'Order Processing Workflow' do

2 scenario 'User places an order successfully' do

3 visit '/orders/new'

4 fill_in 'Product', with: 'Sample Product'

5 fill_in 'Quantity', with: '2'

6 fill_in 'Shipping Address', with: '123 Main St'

7 click_button 'Place Order'

8

9 expect(page).to have_content('Order Placed Successfully')

10 expect(Order.count).to eq(1)

11 expect(Order.last.status).to eq('processed')

12 end

13 end

In questo esempio, il test end-to-end simula un utente che effettua un ordine attraverso

l’interfaccia web. Compila i campi obbligatori del modulo, invia l’ordine e verifica che

Orchestrazione Intelligente dei Flussi di Lavoro 256

l’ordine sia elaborato con successo, mostrando il messaggio di conferma appropriato e

aggiornando lo stato dell’ordine nel database.

Integrazione e Distribuzione Continua

Per garantire l’affidabilità e la manutenibilità dei flussi di lavoro intelligenti, si

raccomanda di integrare il testing e la validazione nel processo di integrazione e

distribuzione continua (CI/CD) pipeline. Questo permette il testing e la validazione

automatizzati delle modifiche al flusso di lavoro prima che vengano distribuite in

produzione. Considera le seguenti pratiche:

1. Esecuzione Automatizzata dei Test: Configurare la pipeline CI/CD per eseguire

automaticamente la suite di test ogni volta che vengono apportate modifiche al codice

del flusso di lavoro. Questo assicura che eventuali regressioni o errori vengano rilevati

nelle prime fasi del processo di sviluppo.

2. Monitoraggio della Copertura dei Test: Misurare e monitorare la copertura dei

test dei componenti del flusso di lavoro e dei punti decisionali dell’IA. Puntare a

un’alta copertura dei test per garantire che i percorsi e gli scenari critici siano testati

accuratamente.

3. Feedback Continuo: Integrare i risultati dei test e le metriche della qualità del codice

nel flusso di lavoro di sviluppo. Fornire feedback continuo agli sviluppatori sullo stato

dei test, sulla qualità del codice e su eventuali problemi rilevati durante il processo

CI/CD.

4. Ambienti di Staging: Distribuire il flusso di lavoro in ambienti di staging che

rispecchiano fedelmente l’ambiente di produzione. Eseguire test e validazioni aggiuntivi

nell’ambiente di staging per individuare eventuali problemi relativi all’infrastruttura,

alla configurazione o all’integrazione dei dati.

5. Meccanismi di Rollback: Implementare meccanismi di rollback in caso di errori di

distribuzione o problemi critici rilevati in produzione. Assicurarsi che il flusso di lavoro

Orchestrazione Intelligente dei Flussi di Lavoro 257

possa essere rapidamente ripristinato a una versione stabile precedente per minimizzare

i tempi di inattività e l’impatto sugli utenti.

Incorporando il testing e la validazione durante l’intero ciclo di vita dello sviluppo

dei flussi di lavoro intelligenti, le organizzazioni possono garantire l’affidabilità,

l’accuratezza e la manutenibilità dei loro sistemi basati sull’IA. Il testing e la

validazione regolari aiutano a individuare i bug, prevenire le regressioni e costruire

fiducia nel comportamento e nei risultati del flusso di lavoro.

Parte 2: I Pattern

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it

Prompt Engineering
Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it

Prompt Engineering 260

Chain of Thought

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempi

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Generazione di Contenuti

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Creazione di Entità Strutturate

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Guida agli Agenti LLM

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Vantaggi e Considerazioni

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Prompt Engineering 261

Cambio di Modalità

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Quando utilizzarla

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Prompt Engineering 262

Assegnazione del Ruolo

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Quando Usarlo

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempi

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Prompt Engineering 263

Prompt Object

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Prompt Engineering 264

Template di Prompt

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Vantaggi e Considerazioni

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Quando Utilizzarlo:

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Prompt Engineering 265

Structured IO

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Scalare l’Input/Output Strutturato

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Vantaggi e Considerazioni

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Prompt Engineering 266

Prompt Chaining

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Quando Utilizzarlo

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio: Onboarding di Olympia

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Prompt Engineering 267

Riscrittura dei Prompt

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Prompt Engineering 268

Response Fencing

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Vantaggi e Considerazioni

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Gestione degli Errori

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Prompt Engineering 269

Query Analyzer

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Implementazione

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Etichettatura delle Parti del Discorso (POS) e Riconoscimento delle
Entità Nominate (NER)

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Classificazione dell’Intento

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Estrazione delle Parole Chiave

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Prompt Engineering 270

Vantaggi

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it

Prompt Engineering 271

Riscrittura delle Query

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Benefici

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Prompt Engineering 272

Ventriloquist

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Quando Utilizzarlo

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Componenti Discreti
Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it

Componenti Discreti 274

Predicate

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Quando Utilizzarlo

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Componenti Discreti 275

API Facade

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Benefici Principali

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Quando Usarlo

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Autenticazione e Autorizzazione

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Componenti Discreti 276

Gestione delle Richieste

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Formattazione delle Risposte

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Gestione degli Errori e Casi Limite

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Considerazioni su Scalabilità e Prestazioni

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Confronto con Altri Design Pattern

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Componenti Discreti 277

Interprete dei Risultati

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Quando Utilizzarlo

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Componenti Discreti 278

Macchina Virtuale

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Quando Usarlo

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Dietro la Magia

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Specifica e Testing

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Componenti Discreti 279

Specificare il Comportamento

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Scrivere Casi di Test

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio: Testing del Componente Translator

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Riproduzione delle Interazioni HTTP

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Human In The Loop (HITL)
Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Pattern di Alto Livello

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Intelligenza Ibrida

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Risposta Adattiva

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Cambio di Ruolo Uomo-IA

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Human In The Loop (HITL) 281

Escalation

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Benefici Chiave

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Applicazione nel Mondo Reale: Sanità

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Human In The Loop (HITL) 282

Feedback Loop

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Applicazioni ed Esempi

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Tecniche Avanzate nell’Integrazione del Feedback Umano

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Human In The Loop (HITL) 283

Radiazione Passiva delle Informazioni

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Visualizzazione Contestuale delle Informazioni

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Notifiche Proattive

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Approfondimenti Esplicativi

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esplorazione Interattiva

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Human In The Loop (HITL) 284

Benefici Chiave

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Applicazioni ed Esempi

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Human In The Loop (HITL) 285

Collaborative Decision Making (CDM)

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Human In The Loop (HITL) 286

Apprendimento continuo

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Applicazioni ed Esempi

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Considerazioni Etiche

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Ruolo del HITL nella Mitigazione dei Rischi dell’IA

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Human In The Loop (HITL) 287

Progressi Tecnologici e Prospettive Future

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Sfide e Limitazioni dei Sistemi HITL

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Gestione Intelligente degli Errori
Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Approcci Tradizionali alla Gestione degli Errori

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Gestione Intelligente degli Errori 289

Diagnosi Contestuale degli Errori

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Ingegneria dei Prompt per la Diagnosi Contestuale degli Errori

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Generazione Aumentata tramite Recupero per la Diagnosi
Contestuale degli Errori

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Gestione Intelligente degli Errori 290

Segnalazione Intelligente degli Errori

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it

Gestione Intelligente degli Errori 291

Prevenzione Predittiva degli Errori

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Recupero Intelligente degli Errori

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Gestione Intelligente degli Errori 292

Comunicazione Personalizzata degli Errori

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Gestione Intelligente degli Errori 293

Flusso di Gestione Adattiva degli Errori

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Controllo Qualità
Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it

Controllo Qualità 295

Eval

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Problema

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Soluzione

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Considerazioni

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Controllo Qualità 296

Comprendere i Riferimenti Golden

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funzionano le Valutazioni Senza Riferimento

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Controllo Qualità 297

Guardrail

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Problema

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Soluzione

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Come Funziona

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Esempio

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Considerazioni

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Controllo Qualità 298

Guardrails e Valutazioni: Due Facce della Stessa

Medaglia

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

L’Intercambiabilità tra Guardrails e Valutazioni Senza
Riferimento

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Implementazione di Guardrails e Valutazioni con Doppio
Scopo

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Glossario

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Glossario

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

A

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

B

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

C

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

300

D

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

E

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

F

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

G

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

H

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

I

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

301

J

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

K

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

L

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

M

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

N

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

O

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

302

P

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Q

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

R

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

S

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

T

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

U

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

303

V

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

W

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

Z

Questo contenuto non è disponibile nel libro di esempio. Il libro può essere acquistato

su Leanpub a http://leanpub.com/patterns-of-application-development-using-ai-it.

http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it
http://leanpub.com/patterns-of-application-development-using-ai-it

Index

accessibilità, 214

account, 90

adaptive workflow

Composizione Adattiva del

Workflow, 222

addestramento con istruzioni

modelli istruiti, 52

addestramento tramite istruzioni, 10

Agentici, 32

AI, 64, 73, 99, 134, 142, 200

applications, 138

applicazioni, 125

conversazionale, 6, 31

model, 98, 99

modello, 89, 157

punti decisionali, 253

sistemi composti, 30, 34

algebra lineare, 43

Alpaca, 13

Altman, Sam, 18

Amazon Web Services, 248

ambienti di staging, 256

ambienti di sviluppo locali, 154

analisi del sentimento, 17, 100, 111, 112,

114, 117, 118, 134, 144

Anthropic, 23, 39, 73, 129, 136

antropomorfismo, 68

API, 123, 152

APIs, 71

application design and frameworks, 196

applicazione chatbot, 118

Applicazioni E-commerce, 91

applicazioni educative, 32

applicazioni moderne, 219

apprendimento non supervisionato, 4

Apprendimento One-Shot, 60

apprendimento zero-shot, 59

Architettura a Microservizi, 89

architettura basata sugli eventi, 108

architettura delle applicazioni aziendali, 38

architettura distribuita, 246

architettura software, 2

architettura transformer, 6

array, 130

assegnazione del ticket, 236

assistenti virtuali, 33

audit e conformità, 243

auto-scaling, 248

base di conoscenza di Olympia, 91

basi di conoscenza, 7

basi di dati, 123

BERT, 14, 24

Index 305

boundary conditions, 251

Brotli, 249

Byte Pair Encoding (BPE), 15

C (Linguaggio di Programmazione), 116

caching, 246

Campionamento top-k, 48

Campionamento top-p (nucleus), 48

casi limite, 58

catena di approvvigionamento

ottimizzazione, 32

Catena di Pensiero (CoT), 45

Chain of Thought (CoT), 138

chatbot per il servizio clienti, 33

ChatGPT, 30, 53

chiamata dello strumento, 152

chiamata di funzione

fallimento, 133

classification, 120

classificatori per rilevanza, 35

classificazione, 53

Claude, 8, 43, 77

Claude 3, 49, 126, 129, 134, 136

Claude 3 Opus, 74

Claude v1, 17

Claude v2, 17

Codifica a Coppie di Byte (BPE), 13

Cohere (Fornitore LLM), 25

Cohere (LLM Provider), 23

colli di bottiglia, 222

compiti complessi, 145

completamento ad alte prestazioni, 26

comportamento deterministico, 58

computer desktop, 215

computer science, 72

concatenamento di worker AI, 111

conceptual and practical challenges, 197

concurrent workflows, 249

connettività di rete, 222

conservazione e rotazione dei log, 244

consistenza

e riproducibilità, 132

contenuti

Categorizzazione dei Contenuti, 112

filtraggio, 26

contenuti generati dagli utenti, 111

contesto

Aumento, 46

Generazione Contestuale dei

Contenuti, 185, 190, 191

context

Contextual Content Generation, 197,

198

Contextual Field Suggestions, 198

finestra, 221

infinitely long inputs, 16

processo decisionale contestuale, 221

window, 15

Continuazione Automatica, 159

conversazione

ciclo, 158

trascrizione, 156, 158

costruzione narrativa, 20

Customer Sentiment Analysis, 99

Index 306

database

oggetto basato su, 105

strategie di lock, 109

Datadog, 245

dati

analisi, 34, 146

attività di elaborazione, 125

Convalida dei dati, 255

flusso, 110

integrità, 236

persistenza, 109

pipeline di elaborazione, 236

preparazione, 109

privacy, 26, 213

Recupero dei Dati, 109

Sincronizzazione dei Dati, 109

Dati Auto-Riparanti, 240

Dati Auto-riparanti, 163

dati di addestramento, 42

dati in streaming, 151

dati strutturati, 134

debugging, 221

e risoluzione dei problemi, 243

e testing, 132

decision

-making capabilities, 99

decisione

alberi, 218

casi d’uso, 133

punti, 241

Delimitazione delle Risposte, 175

dipendenti Databricks, 52

direttiva di sistema, 128

distorsione

ed equità nell’AI, 253

dizionari, 130

document clustering, 120

Dohan, et al., 44

e-commerce, 190, 218

ecosistema, 147

efficienza, 219

elaborazione asincrona, 245

elaborazione batch, 246

elaborazione del flusso, 149, 161

logica, 157

elaborazione dello stream, 155

ELK stack, 110

ensemble, 117, 118

ensemble di worker, 118

Enterprise Integration Patterns, 104

errori

gestione, 107, 109, 142

recupero, 255

tassi, 110

errori di sintassi, 131

errors

Gestione Intelligente degli Errori, 142

handling, 250

esecuzione parallela, 246

esperienza utente, 192

ethics

implications, 197

eventi inviati dal server (SSE), 149

Index 307

F#, 92

Facebook, 24

fattori di rischio, 95, 96

feedback

Ciclo di feedback, 59

few-shot

learning, 62

prompting, 63

fiducia degli utenti, 214

filtraggio basato sul contenuto, 91

filtraggio collaborativo, 91

fine-tuning, 80

FitAI, 208

flessibilità e creatività, 194

flusso di lavoro multi-step, 111

fornitori di hosting di modelli open source,

202

framework di sviluppo, 148

funzione

chiamata, 123

cronologia delle chiamate, 155

nomi, 153

Gemma 7B, 11

Generative Pre-trained Transformer (GPT),

8, 67

Generative UI (GenUI), 196

Generazione Aumentata da Recupero

(RAG), 46

Generazione Aumentata dal Recupero

(RAG), 31

generazione cross-modale, 22

generazione di dati sintetici, 53

generazione dinamica dell’interfaccia

utente, 186

gestione del traffico, 32

gestione della conoscenza, 32

gestione delle eccezioni, 222, 224

Gestore dei Processi, 104

gestori del flusso, 150

GitLab, 92

Global Interpreter Lock (GIL), 115

Google, 23

API, 63, 65

Cloud AI Platform, 24

Cloud Platform, 248

Gemini, 21

Gemini 1.5 Pro, 14, 17, 19

PaLM (Pathways Language Model),

17, 24

T5, 14

GPT-3, 13, 17

GPT-4, 6, 13, 17, 21, 31, 43, 49, 63, 104, 117,

119, 127, 133, 201, 202, 246

Graham, Paul, 19

GraphQL, 108

Groq, 26, 119

gzip, 249

hardware, 28

hash, 151

Hohpe, Gregor, 104

Honeybadger, 94

HTTP, 149

Index 308

IA, 128, 149, 207

applicazioni, 148, 161

conversazionale, 209

modello, 154, 155, 207

sistemi composti, 30

inclusive interfaces, 197

Inferenza, 5

informatica, 70

informazioni

estrazione, 53

recupero, 7, 126

input

prompt, 56

validation, 250

Instradamento Dinamico delle Attività, 220

instruction tuning

modelli istruiti, 49

integrazione degli LLM, 186

Integrazione e Distribuzione Continua

(CI/CD), 256

pipeline, 256

intelligent workflow orchestration, 249

interazioni in stile roleplay, 6

interfacce controllate vocalmente, 33

Interfaccia Generativa (GenUI), 214

Interfaccia Utente (UI)

design, 215

framework, 211

interfacce, 211

tecnologie, 206

interfaccia utente adattiva, 205

Interfaccia Utente Generativa (GenUI), 203

interfaccia visiva, 206

internazionalizzazione, 193

Interprete dei Risultati, 142

intervento manuale, 224

iperparametro, 47

JSON (JavaScript Object Notation), 126,

130, 131, 134, 147, 166

K-means, 121

language

models, 65, 72

Large Language Model (LLM), 16, 67, 68,

71, 77, 87, 110, 120, 124, 143, 144,

146, 185, 196, 201

Latent Dirichlet Allocation, 121

latenza, 27

libreria Capybara, 255

lingua

Rilevamento della Lingua, 111

linguaggio

compiti correlati, 5

modelli, 43

linguaggio naturale

Elaborazione del Linguaggio Naturale

(NLP), 101

Llama, 13

Llama 2-70B, 50

Llama 3 70B, 11

Llama 3 8B, 11

lock ottimistico, 109

lock pessimistico, 109

Index 309

logging granulare, 244

logging strutturato, 244

logica del circuit breaker, 161

Louvre, 42

Managed Streaming for Apache Kafka, 41

Markdown, 146

meccanismi di retry, 110

meccanismi di rollback, 256

Memorial Sloan Kettering Cancer Center,

41

Mercurio (dio romano), 45

Mercurio (elemento), 45

Mercurio (pianeta), 45

MessagePack, 249

messaggio trigger, 104

Meta, 24

metodo finalize, 155, 157, 158

Metropolitan Museum of Art, 42

Mistral, 25

7B, 11

7B Instruct, 17, 202

Mixtral

8x22B, 11

8x7B, 56

modellazione autoregressiva, 43

modelli basati sul recupero, 7

modelli base, 54

modelli grafici, 43

Modelli Linguistici di Grandi Dimensioni

(LLM)

panorama, 27

modelli probabilistici, 43

modelli storici, 221

Modello Linguistico di Grandi Dimensioni

(LLM), 1, 3, 18, 29, 75, 123, 134,

140, 206, 228

Modello linguistico di grandi dimensioni

(LLM), 163, 166

Moderatore di Contenuti Intelligente, 229

modularità, 88

Moltitudine di Worker, 118, 165

monitoraggio

e logging, 110, 243

metriche, 244

Monitoraggio Continuo del Rischio, 103

monitoring

e segnalazione, 223

Multi-Agente

Risolutori di Problemi, 31

Multimodale

modelli, 20

modelli linguistici, 21

Naive Bayes, 120

narrow the path, 38

natural language

Elaborazione del Linguaggio Naturale

(NLP), 120

New Relic, 247

occhiali per realtà aumentata, 215

Ollama, 25

Olympia, 33, 62, 128, 142, 150, 166

OpenAI, 3, 23, 39, 73

Index 310

OpenRouter, 27, 28, 150, 247

OPT model, 24

orchestrazione del flusso di lavoro

intelligente, 225

orchestrazione intelligente dei flussi di

lavoro, 217

orchestrazione intelligente dei workflow,

247

output verification, 250

panorama digitale, 192

parametri di input, 128

parametro

effetti, 128

intervallo, 11

Numero di Parametri, 28

pattern chiave, 220

pattern matching, 151

Penalità di presenza, 48

penalità di ripetizione, 51

Perplexity (Provider), 12

personalization

Personalized Forms, 198

personalizzazione, 27, 186, 215, 219

Microcopy Personalizzato, 203

pianificazione della risposta alle

emergenze, 32

prestazioni

compromessi, 5

ottimizzazione, 132, 194, 243

problemi, 248

previsioni, 5

principle of least privilege, 71

problemi di usabilità, 213

Process Manager, 107

Enterprise Integration, 225

processo di distillazione, 76

Produttività, 188

programmazione funzionale, 92

prompt

design, 58

Distillazione dei Prompt, 46, 246

ingegneria, 45, 46, 211

ingegnerizzazione, 56

Prompt Template, 202

prompts

chaining, 71

concatenamento, 59

design, 68

Distillazione dei Prompt, 78

engineering, 41, 65, 67

ingegneria, 59

Prompt Distillation, 73

Prompt Object, 74

refinement, 68

Template dei prompt, 59

proprietà ACID, 109

Protocol Buffers, 249

psicologia dell’utente, 212

publish-subscribe systems, 108

Pulizia del Testo, 111

PyTorch, 24

Quantizzazione, 28

Index 311

Qwen2 70B, 11

Raccolta dell’Anamnesi, 101

Raccomandazioni dei Prodotti, 91

raccomandazioni personalizzate dei

prodotti, 91

raffinamento iterativo, 75, 143

Rails, 193

Railway Oriented Programming (ROP), 94

Raix, 226

libreria, 97

registrazione di audit, 106

regole di business, 218

regole grammaticali, 4

regressione lineare, 43

Response Fencing, 202

restringere il percorso, 39

reti neurali, 4, 6

Retrieval Augmented Generation (RAG),

38, 79, 125

riassunti, 53

riformulazione, 53

riga di comando

Interfaccia a Riga di Comando (CLI),

25

rilevamento delle frodi

sistema, 97

risposta a domande chiuse e aperte, 53

rivelazione progressiva, 204

rivenditori online, 202

RSpec, 251, 252, 255

Ruby, 92, 93, 113, 161, 255

Ruby on Rails, 1, 111, 225, 233

Rudall, Alex, 23

Rust (Linguaggio di Programmazione), 116

Rust (Programming Language), 92

scalabilità, 219, 245

scoperte mediche, 100

Scout, 247

scrittura creativa, 34, 52

Selezione Dinamica degli Strumenti, 130

Selezione Forzata degli Strumenti, 131

senza stato, 156

servizi esterni o API, 126

sistemi di domanda e risposta, 7

smartphone, 215

spazio latente, 40, 42

sperimentazione

framework, 192

spiegabilità, 253

SQL injection, 70

strategie di fallback, 110

strategie di segmentazione e targeting, 192

strategie motivazionali, 210

Stratificazione del Rischio, 102

Stripe, 129

Structured IO, 202

Supervisione Umana nel Processo, 178

Support Vector Machines (SVM), 120

Supporto alle Decisioni Cliniche, 103

supporto clienti, 32

sviluppo delle applicazioni, 217

system directive, 98

Index 312

T5, 24

tablet, 215

tag in stile markup, 70

Temperatura, 54

Tempo al Primo Token (TTFT), 27

tempo di elaborazione, 110

teoria della mente, 40

test di integrazione, 251

test end-to-end, 254, 255

test utente e feedback, 195

throughput, 27

Together.ai, 26

token, 6, 13

tokenizzazione, 13

tono emotivo, 144

topic identification, 120

tracciamento delle metriche chiave, 240

traduzione, 17, 194

tragedia dei beni comuni, 189

UI Generativa (GenUI), 206, 211

Unicode-encodable language, 15

Universal ID, 249

User Interface (UI)

interfaces, 196

uso degli strumenti, 123

utilizzo degli strumenti, 148

Valutazione e Stratificazione dei Sintomi,

101

Ventriloquo, 175

Verifica Assicurativa, 101

voto di maggioranza, 117

Wall, Larry, 3

Wisper, 94, 106, 150, 157

Wooley, Chad, 92

XML, 134

Yi-34B, 50

zero-shot learning, 59

	Indice
	Prefazione di Gregor Hohpe
	Prefazione
	Sul Libro
	Sugli Esempi di Codice
	Cosa Non Tratto
	A Chi è Destinato Questo Libro
	Costruire un Vocabolario Comune
	Come Partecipare
	Ringraziamenti
	Cosa dire delle illustrazioni?
	Sul Lean Publishing
	L'Autore

	Introduzione
	Riflessioni sull'Architettura del Software
	Cos'è un Modello Linguistico di Grandi Dimensioni?
	Comprendere l'Inferenza
	Pensare alle Prestazioni
	Sperimentare con Diversi Modelli LLM
	Sistemi di IA Composti

	Parte 1: Approcci e Tecniche Fondamentali
	Restringere il Percorso
	Spazio Latente: Incomprensibilmente Vasto
	Come Il Percorso Viene ``Ristretto''
	Modelli Grezzi Versus Modelli Istruiti
	Prompt Engineering
	Distillazione dei Prompt
	E il fine-tuning?

	Retrieval Augmented Generation (RAG)
	Cos'è il Retrieval Augmented Generation?
	Come Funziona il RAG?
	Perché Usare il RAG nelle Tue Applicazioni?
	Implementazione del RAG nella Tua Applicazione
	Suddivisione in proposizioni
	Esempi Reali di RAG
	Intelligent Query Optimization (IQO)
	Riordinamento (Reranking)
	RAG Assessment (RAGAs)
	Sfide e Prospettive Future

	Moltitudine di Lavoratori
	Lavoratori AI Come Componenti Riutilizzabili Indipendenti
	Gestione degli Account
	Applicazioni E-commerce
	Applicazioni Sanitarie
	Il Worker AI come Gestore dei Processi
	Integrare i Worker IA nell'Architettura dell'Applicazione
	Componibilità e Orchestrazione dei Worker AI
	Combinare il NLP Tradizionale con gli LLM

	Uso degli Strumenti
	Cos'è l'Uso degli Strumenti?
	Il Potenziale dell'Utilizzo degli Strumenti
	Il Flusso di Lavoro dell'Utilizzo degli Strumenti
	Migliori Pratiche per l'Uso degli Strumenti
	Composizione e Concatenamento degli Strumenti
	Direzioni Future

	Elaborazione del Flusso
	Implementazione di un ReplyStream
	Il ``Ciclo di Conversazione''
	Continuazione Automatica
	Conclusione

	Dati Auto-riparanti
	Caso di Studio Pratico: Riparare JSON Danneggiato
	Considerazioni e Controindicazioni

	Generazione Contestuale dei Contenuti
	Personalizzazione
	Produttività
	Iterazione Rapida e Sperimentazione
	Localizzazione Basata su IA
	L'Importanza dei Test Utente e del Feedback

	Generative UI
	Generazione di Testo per Interfacce Utente
	Definizione della UI Generativa
	Esempio
	Il Passaggio al Design Orientato ai Risultati
	Sfide e Considerazioni
	Prospettive Future e Opportunità

	Orchestrazione Intelligente dei Flussi di Lavoro
	Esigenza Aziendale
	Benefici Principali
	Pattern Chiave
	Gestione e Recupero delle Eccezioni
	Implementare l'Orchestrazione del Flusso di Lavoro Intelligente nella Pratica
	Monitoraggio e Logging
	Considerazioni sulla Scalabilità e le Prestazioni
	Test e Validazione dei Workflow

	Parte 2: I Pattern
	Prompt Engineering
	Chain of Thought
	Cambio di Modalità
	Assegnazione del Ruolo
	Prompt Object
	Template di Prompt
	Structured IO
	Prompt Chaining
	Riscrittura dei Prompt
	Response Fencing
	Query Analyzer
	Riscrittura delle Query
	Ventriloquist

	Componenti Discreti
	Predicate
	API Facade
	Interprete dei Risultati
	Macchina Virtuale
	Specifica e Testing

	Human In The Loop (HITL)
	Pattern di Alto Livello
	Escalation
	Feedback Loop
	Radiazione Passiva delle Informazioni
	Collaborative Decision Making (CDM)
	Apprendimento continuo
	Considerazioni Etiche
	Progressi Tecnologici e Prospettive Future

	Gestione Intelligente degli Errori
	Approcci Tradizionali alla Gestione degli Errori
	Diagnosi Contestuale degli Errori
	Segnalazione Intelligente degli Errori
	Prevenzione Predittiva degli Errori
	Recupero Intelligente degli Errori
	Comunicazione Personalizzata degli Errori
	Flusso di Gestione Adattiva degli Errori

	Controllo Qualità
	Eval
	Guardrail
	Guardrails e Valutazioni: Due Facce della Stessa Medaglia

	Glossario
	Glossario
	Index

