Patterns of
Application
Development
Using Al

Obie Fernandez
Foreword by Gregor Hohpe

o :;:’iI: R
T R : ¢
N e i
s, S @ o
< N s | . e
\ i | *
e
N S/ }
\\\ ‘ P
\\
% P)
vig :
&
i
7) S »
.... 17\

Edisia ‘asa lndonesia

Pola Pengembangan Aplikasi
Menggunakan Al (Edisi Bahasa

Indonesia)

Obie Fernandez
Buku ini dijual di http://leanpub.com/patterns-of-application-development-using-ai-id

Versi ini diterbitkan pada 2025-01-23

A

Leanpub

Ini adalah sebuah buku Leanpub. Leanpub memberdayakan penulis dan penerbit
dengan proses Lean Publishing. Lean Publishing adalah model penerbitan ebook
dalam-proses menggunakan piranti ringan dan sejumlah iterasi untuk memperoleh
masukan dari pembaca, menerapkan pivot hingga Anda dapat mewujudkan komposisi

buku yang pas dan menarik.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-id
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweet Buku Ini!

Bantulah Obie Fernandez dengan mewartakan buku ini via Twitter!
Tagar yang disarankan untuk buku ini adalah #poaduai.

Temukan kata orang tentang buku ini dengan mengklik tautan ini untuk menampilkan

tagar ini di Twitter:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Untuk ratuku yang tangguh, musaku, cahaya dan cintaku, Victoria

Juga Oleh Obie Fernandez

Patterns of Application Development Using Al
The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Contents

Kata Pengantar oleh Gregor Hohpe i
KataPengantar ii
Tentang Bukulni. iii
Tentang Contoh Kode iii
Yang Tidak SayaBahas iii
Untuk Siapa Bukulni iii
Membangun Kosakata Umum iii
CaraTerlibat iii
Ucapan TerimaKasith iii
Bagaimana dengan ilustrasinya? L oL iv
Tentang Lean Publishing iv
Tentang Penulis v
Pendahuluan. o 1
Pemikiran tentang Arsitektur Perangkat Lunak 2
Apa itu Model BahasaBesar? L. 3
MemahamiInferensi L L 5
Mempertimbangkan Kinerja 27
Bereksperimen Dengan Model LLM yang Berbeda 29

Sistem Al Majemuk 30

CONTENTS

Bagian 1: Pendekatan & Teknik Fundamen-
tal ..o

Mempersempit Jalur
Ruang Laten: Sangat Luas Tak Terpahami
Bagaimana Jalur Tersebut “Dipersempit”
Model Mentah Versus Model yang Dilatih dengan Instruksi
Rekayasa Prompt.
Distilasi Prompt

Bagaimana dengan fine-tuning? Lo L L.

Contoh RAG dalam Dunia Nyata
Intelligent Query Optimization IQO)
Perangkingan Ulang
Penilaian RAG (RAGAS) e e
Tantangan dan Prospek MasaDepan

Banyaknya Pekerja Lo
Pekerja Al Sebagai Komponen Mandiri yang Dapat Digunakan Kembali
Pengelolaan Akun L
Aplikasi E-commerce L L
Aplikasi Kesehatan L L oL
Al Worker sebagai Process Manager
Mengintegrasikan AI Worker ke Dalam Arsitektur Aplikasi Anda

CONTENTS

Kemampuan Komposisi dan Orkestrasi Pekerja AT 113
Menggabungkan NLP Tradisional dengan LLM 122
Penggunaan Alat 125
Apaitu Penggunaan Alat? L o 125
Potensi Penggunaan Alat oL 127
Alur Kerja Penggunaan Alat 128
Praktik Terbaik untuk Penggunaan Tool 143
Menyusun dan Merantai Alat. L L L. 147
ArahMasaDepan 149
Pemrosesan Stream L L L L o 152
Mengimplementasikan ReplyStream 153
“Putaran Percakapan” 159
Kelanjutan Otomatis 162
Kesimpulan 164
Data yang Dapat Memperbaiki Diri 166
Studi Kasus Praktis: Memperbaiki JSON yang Rusak 169
Pertimbangan dan Kontraindikasi 174
Pembuatan Konten Kontekstual 189
Personalisasi 190
Produktivitas 192
Iterasi dan Eksperimen Cepat 194
Lokalisasi Bertenaga AI 197
Pentingnya Pengujian Pengguna dan Umpan Balik 199
Generative UL 200
Menghasilkan Teks untuk Antarmuka Pengguna 202

Mendefinisikan UI Generatif 211

CONTENTS

Contoh 213
Peralihan ke Desain Berorientasi Hasil 216
Tantangan dan Pertimbangan 217
Prospek dan Peluang MasaDepan 219
Orkestrasi AlurKerjaCerdas 223
Kebutuhan Bisnis 224
Manfaat Utama. 225
Pola-polaUtama 225
Penanganan dan Pemulihan Pengecualian 228
Mengimplementasikan Orkestrasi Alur Kerja Cerdas dalam Praktik 231
Pemantauan dan Pencatatan 246
Pertimbangan Skalabilitas dan Kinerja. 250
Pengujian dan Validasi Alur Kerja 255

Bagian 2: Pola-Pola 264

Rekayasa Prompt 265
Rantai Pemikiran. Lo 266
Pengalihan Mode L 267
Penugasan Peran L L 268
Objek Prompt 269
Prompt Template 270
IO Terstruktur o 271
Perangkaian Prompt 272
Penulis Ulang Prompt L 273
Response Fencing 274
Query Analyzer 275
Pengolah Ulang Kueri 276

Ventriloquist L 277

CONTENTS

Komponen Diskret 278
Predicate 279
APIFacade 280
Penerjemah Hasil 282
Mesin Virtual L 283
Spesifikasi dan Pengujian oL Lo oo 283

Human In The Loop (HITL) 285
Pola-Pola Tingkat Tinggi 285
Eskalasi 286
Siklus Umpan Balik 287
Radiasi Informasi Pasif 288
Collaborative Decision Making (CDM) 290
Pembelajaran Berkelanjutan oL 291
Pertimbangan Etis L 291
Kemajuan Teknologi dan Prospek Masa Depan 291

Penanganan Kesalahan Cerdas 293
Pendekatan Tradisional dalam Penanganan Kesalahan 293
Diagnosis Kesalahan Kontekstual 294
Pelaporan Kesalahan Cerdas 295
Pencegahan Error Prediktif 296
Pemulihan Kesalahan Cerdas 296
Komunikasi Kesalahan Terpersonalisasi 297
Alur Kerja Penanganan Kesalahan Adaptif 298

KendaliMutu 299
Eval e 300
Pagar Pengaman L e 302

Guardrails dan Evaluasi: Dua Sisi Mata Uang yang Sama 302

Glosarium

Glosarium

Kata Pengantar oleh Gregor

Hohpe

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id

Kata Pengantar

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id

Kata Pengantar iii

Tentang Buku Ini

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Tentang Contoh Kode

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Yang Tidak Saya Bahas

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Untuk Siapa Buku Ini

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Membangun Kosakata Umum

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Terlibat

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Kata Pengantar iv

Ucapan Terima Kasih

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Bagaimana dengan ilustrasinya?

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Tentang Lean Publishing

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Kata Pengantar v

Tentang Penulis

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id

Pendahuluan

Jika Anda tidak sabar untuk mulai mengintegrasikan Model Bahasa Besar (LLM) Al ke

dalam proyek pemrograman Anda, silakan langsung mempelajari pola dan contoh kode
yang disajikan di bab-bab selanjutnya. Namun, untuk benar-benar memahami kekuatan
dan potensi pola-pola ini, ada baiknya meluangkan waktu sejenak untuk memahami

konteks yang lebih luas dan pendekatan terpadu yang mereka representasikan.

Pola-pola ini bukan sekadar kumpulan teknik yang terisolasi, melainkan sebuah
kerangka kerja terpadu untuk mengintegrasikan Al ke dalam aplikasi Anda. Saya
menggunakan Ruby on Rails, tetapi pola-pola ini seharusnya dapat bekerja di hampir
semua lingkungan pemrograman lainnya. Mereka menangani berbagai masalah,
mulai dari manajemen data dan optimasi kinerja hingga pengalaman pengguna dan
keamanan, menyediakan perangkat lengkap untuk meningkatkan praktik pemrograman

tradisional dengan kemampuan Al

Pendahuluan 2

Setiap kategori pola mengatasi tantangan atau peluang spesifik yang muncul ketika
memasukkan komponen Al ke dalam aplikasi Anda. Dengan memahami hubungan
dan sinergi antara pola-pola ini, Anda dapat membuat keputusan yang tepat tentang di

mana dan bagaimana menerapkan Al secara paling efektif.

Pola-pola ini tidak pernah menjadi solusi preskriptif dan seharusnya tidak diperlakukan
demikian. Mereka dimaksudkan sebagai blok pembangun yang dapat disesuaikan
dengan kebutuhan dan batasan unik aplikasi Anda sendiri. Penerapan pola-pola ini
yang berhasil (seperti pola lainnya dalam bidang perangkat lunak) bergantung pada
pemahaman mendalam tentang ranah masalah, kebutuhan pengguna, dan arsitektur

teknis keseluruhan proyek Anda.

Pemikiran tentang Arsitektur Perangkat Lunak

Saya mulai memprogram pada tahun 1980-an dan terlibat dalam komunitas peretas, dan
tidak pernah kehilangan pola pikir peretas saya, bahkan setelah menjadi pengembang
perangkat lunak profesional. Sejak awal, saya selalu memiliki skeptisisme yang sehat
tentang nilai apa yang sebenarnya diberikan oleh para arsitek perangkat lunak di

menara gading mereka.

Salah satu alasan mengapa saya secara pribadi sangat bersemangat tentang perubahan
yang dibawa oleh gelombang baru teknologi Al yang kuat ini adalah dampaknya
terhadap apa yang kita anggap sebagai keputusan arsitektur perangkat lunak. Ini
menantang gagasan tradisional tentang apa yang dianggap cara yang “benar” untuk
merancang dan mengimplementasikan proyek perangkat lunak kita. Ini juga mem-
pertanyakan apakah arsitektur masih dapat dianggap terutama sebagai bagian-bagian
sistem yang sulit diubah, mengingat peningkatan AI membuatnya lebih mudah dari

sebelumnya untuk mengubah bagian apa pun dari proyek Anda, kapan saja.

Mungkin kita sedang memasuki tahun-tahun puncak pendekatan “post-modern” dalam

rekayasa perangkat lunak. Dalam konteks ini, post-modern mengacu pada pergeseran

Pendahuluan 3

fundamental dari paradigma tradisional, di mana pengembang bertanggung jawab
untuk menulis dan memelihara setiap baris kode. Sebaliknya, pendekatan ini menganut
gagasan mendelegasikan tugas-tugas, seperti manipulasi data, algoritma kompleks,
dan bahkan bagian-bagian lengkap logika aplikasi, kepada pustaka pihak ketiga dan
API eksternal. Pergeseran post-modern ini merepresentasikan perubahan signifikan
dari kebijaksanaan konvensional dalam membangun aplikasi dari nol, dan menantang

pengembang untuk memikirkan kembali peran mereka dalam proses pengembangan.

Saya selalu percaya bahwa programmer yang baik hanya menulis kode yang benar-
benar perlu ditulis, berdasarkan ajaran Larry Wall dan tokoh-tokoh hacker terkemuka
lainnya seperti dia. Dengan meminimalkan jumlah kode yang ditulis, kita bisa bergerak
lebih cepat, mengurangi area kemungkinan bug, menyederhanakan pemeliharaan,
dan meningkatkan keandalan aplikasi secara keseluruhan. Kode yang lebih sedikit
memungkinkan kita untuk fokus pada logika bisnis inti dan pengalaman pengguna,

sambil mendelegasikan pekerjaan lain ke layanan lain.

Sekarang sistem berbasis Al dapat menangani tugas-tugas yang sebelumnya hanya bisa
dilakukan oleh kode yang ditulis manusia, kita seharusnya bisa menjadi lebih produktif
dan tangkas, dengan fokus yang lebih besar dari sebelumnya pada penciptaan nilai

bisnis dan pengalaman pengguna.

Tentu saja ada pertukaran dalam mendelegasikan bagian besar proyek Anda ke sistem
Al, seperti potensi kehilangan kontrol, dan kebutuhan akan mekanisme pemantauan dan
umpan balik yang kuat. Itulah mengapa hal ini membutuhkan serangkaian keterampilan
dan pengetahuan baru, termasuk setidaknya beberapa pemahaman dasar tentang cara

kerja AL

Apa itu Model Bahasa Besar?

Model Bahasa Besar (LLM) adalah jenis model kecerdasan buatan yang telah menda-

patkan perhatian signifikan dalam beberapa tahun terakhir, sejak peluncuran GPT-3

Pendahuluan 4

oleh OpenAl pada tahun 2020. LLM dirancang untuk memproses, memahami, dan
menghasilkan bahasa manusia dengan akurasi dan kelancaran yang luar biasa. Dalam
bagian ini, kita akan melihat secara singkat bagaimana LLM bekerja dan mengapa

mereka sangat cocok untuk membangun komponen sistem cerdas.

Pada intinya, LLM didasarkan pada algoritma pembelajaran mendalam, khususnya
jaringan saraf. Jaringan ini terdiri dari node-node yang saling terhubung, atau neuron,
yang memproses dan mengirimkan informasi. Arsitektur pilihan untuk LLM seringkali
adalah model Transformer, yang terbukti sangat efektif dalam menangani data sekuen-

sial seperti teks.

Model Transformer didasarkan pada mekanisme attention dan terutama digunakan
untuk tugas-tugas yang melibatkan data sekuensial, seperti pemrosesan bahasa alami.
Transformer memproses data masukan sekaligus alih-alih secara sekuensial, yang
memungkinkan mereka menangkap dependensi jarak jauh dengan lebih efektif. Mereka
memiliki lapisan-lapisan mekanisme attention yang membantu model fokus pada

berbagai bagian data masukan untuk memahami konteks dan hubungan.

Proses pelatihan LLM melibatkan pemaparan model terhadap sejumlah besar data
tekstual, seperti buku, artikel, situs web, dan repositori kode. Selama pelatihan, model
belajar mengenali pola, hubungan, dan struktur dalam teks. Model menangkap properti

statistik bahasa, seperti aturan tata bahasa, asosiasi kata, dan makna kontekstual.

Salah satu teknik utama yang digunakan dalam pelatihan LLM adalah pembelajaran
tanpa pengawasan. Ini berarti model belajar dari data tanpa pelabelan atau panduan
eksplisit. Model menemukan pola dan representasi secara mandiri dengan menganalisis
ko-kemunculan kata dan frasa dalam data pelatihan. Hal ini memungkinkan LLM

mengembangkan pemahaman mendalam tentang bahasa dan kerumitannya.

Aspek penting lainnya dari LLM adalah kemampuan mereka dalam menangani kon-
teks. Ketika memproses sebuah teks, LLM tidak hanya mempertimbangkan kata-kata
individual tetapi juga konteks di sekitarnya. Mereka memperhitungkan kata-kata,

kalimat, dan bahkan paragraf sebelumnya untuk memahami makna dan maksud teks.

Pendahuluan 5

Pemahaman kontekstual ini memungkinkan LLM menghasilkan respons yang koheren
dan relevan. Salah satu cara utama kita mengevaluasi kemampuan model LLM tertentu
adalah dengan mempertimbangkan ukuran konteks yang dapat mereka pertimbangkan

untuk menghasilkan respons.

Setelah dilatih, LLM dapat digunakan untuk berbagai tugas terkait bahasa. Mereka
dapat menghasilkan teks seperti manusia, menjawab pertanyaan, meringkas dokumen,
menerjemahkan bahasa, dan bahkan menulis kode. Keserba-gunaan LLM membuat
mereka berharga untuk membangun komponen sistem cerdas yang dapat berinteraksi
dengan pengguna, memproses dan menganalisis data teks, serta menghasilkan keluaran

yang bermakna.

Dengan memasukkan LLM ke dalam arsitektur aplikasi, Anda dapat membuat kom-
ponen Al yang memahami dan memproses masukan pengguna, menghasilkan konten
dinamis, dan memberikan rekomendasi atau tindakan cerdas. Namun bekerja dengan
LLM memerlukan pertimbangan cermat terhadap kebutuhan sumber daya dan trade-
off kinerja. LLM membutuhkan komputasi intensif dan mungkin memerlukan daya
pemrosesan dan memori yang signifikan (dengan kata lain, uang) untuk beroperasi.
Kebanyakan dari kita perlu menilai implikasi biaya dari mengintegrasikan LLM ke

dalam aplikasi kita dan bertindak sesuai dengan hal tersebut.

Memahami Inferensi

Inferensi mengacu pada proses di mana sebuah model menghasilkan prediksi atau
keluaran berdasarkan data baru yang belum pernah dilihat sebelumnya. Ini adalah
fase di mana model yang telah dilatih digunakan untuk membuat keputusan atau
menghasilkan teks, gambar, atau konten lainnya sebagai respons terhadap masukan

pengguna.

Selama fase pelatihan, model Al belajar dari kumpulan data yang besar dengan menye-

suaikan parameter-parameternya untuk meminimalkan kesalahan dalam prediksinya.

Pendahuluan 6

Setelah dilatih, model dapat menerapkan apa yang telah dipelajarinya pada data
baru. Inferensi adalah cara model menggunakan pola dan pengetahuan yang telah

dipelajarinya untuk menghasilkan keluaran.

Untuk LLM, inferensi melibatkan pengambilan prompt atau teks masukan dan meng-
hasilkan respons yang koheren dan relevan secara kontekstual, sebagai aliran foken
(yang akan kita bahas segera). Ini bisa berupa menjawab pertanyaan, melengkapi

kalimat, menghasilkan cerita, atau menerjemahkan teks, di antara banyak tugas lainnya.

Berbeda dengan cara kita berpikir, “pemikiran” model Al melalui inferensi
’ terjadi dalam satu operasi tanpa status. Artinya, pemikirannya terbatas pada
proses generasinya. la secara harfiah harus berpikir dengan keras, seolah-
olah saya mengajukan pertanyaan kepada Anda dan hanya menerima

respons dari Anda dalam gaya “aliran kesadaran”.

Model Bahasa Besar Hadir dalam Berbagai Ukuran dan
Variasi

Meskipun hampir semua model bahasa besar (LLM) populer didasarkan pada arsitektur
transformer yang sama dan dilatih pada kumpulan data teks yang sangat besar, mereka
hadir dalam berbagai ukuran dan disetel halus untuk tujuan yang berbeda. Ukuran
LLM, yang diukur dari jumlah parameter dalam jaringan sarafnya, memiliki dampak
besar pada kemampuannya. Model yang lebih besar dengan lebih banyak parameter,
seperti GPT-4, yang dikabarkan memiliki 1 hingga 2 triliun parameter, umumnya lebih
berpengetahuan dan mampu dibandingkan model yang lebih kecil. Namun, model yang
lebih besar juga membutuhkan daya komputasi yang jauh lebih besar untuk dijalankan,

yang berarti biaya lebih tinggi ketika Anda menggunakannya melalui panggilan APL

Untuk membuat LLM lebih praktis dan disesuaikan untuk kasus penggunaan tertentu,
model dasar sering disetel halus pada kumpulan data yang lebih terarah. Misalnya,

LLM dapat dilatih pada korpus dialog yang besar untuk mengkhususkannya pada Al

Pendahuluan 7

konversasional. Yang lain dilatih pada kode untuk membekalinya dengan pengetahuan
pemrograman. Bahkan ada model yang dilatih khusus untuk interaksi gaya bermain

peran dengan pengguna!

Model Pengambilan vs Model Generatif

Dalam dunia model bahasa besar (LLM), terdapat dua pendekatan utama untuk meng-
hasilkan respons: model berbasis pengambilan dan model generatif. Setiap pendekatan
memiliki kekuatan dan kelemahannya masing-masing, dan memahami perbedaan
di antara keduanya dapat membantu Anda memilih model yang tepat untuk kasus

penggunaan spesifik Anda.

Model Berbasis Pengambilan

Model berbasis pengambilan, yang juga dikenal sebagai model pengambilan informasi,
menghasilkan respons dengan mencari dalam basis data besar berisi teks yang sudah
ada dan memilih bagian yang paling relevan berdasarkan kueri masukan. Model-model
ini tidak menghasilkan teks baru dari awal tetapi lebih kepada menggabungkan kutipan

dari basis data untuk membentuk respons yang koheren.

Salah satu keunggulan utama model berbasis pengambilan adalah kemampuannya
untuk memberikan informasi yang akurat secara faktual dan terkini. Karena mereka
mengandalkan basis data teks yang telah dikurasi, mereka dapat mengambil informasi
yang relevan dari sumber-sumber terpercaya dan menyajikannya kepada pengguna.
Hal ini membuat mereka sangat cocok untuk aplikasi yang membutuhkan jawaban yang

tepat dan faktual, seperti sistem tanya-jawab atau basis pengetahuan.

Namun, model berbasis pengambilan memiliki beberapa keterbatasan. Kualitas mereka
hanya sebaik basis data yang mereka cari, sehingga kualitas dan cakupan basis data
secara langsung memengaruhi kinerja model. Selain itu, model-model ini mungkin
kesulitan menghasilkan respons yang koheren dan terdengar alami, karena mereka

terbatas pada teks yang tersedia dalam basis data.

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Pendahuluan 8

Kami tidak membahas penggunaan model pengambilan murni dalam buku ini.

Model Generatif

Model generatif, di sisi lain, menciptakan teks baru dari awal berdasarkan pola dan
hubungan yang mereka pelajari selama pelatihan. Model-model ini menggunakan
pemahaman mereka tentang bahasa untuk menghasilkan respons baru yang disesuaikan

dengan prompt masukan.

Kekuatan utama model generatif adalah kemampuan mereka untuk menghasilkan teks
yang kreatif, koheren, dan relevan secara kontekstual. Mereka dapat terlibat dalam
percakapan terbuka, menghasilkan cerita, dan bahkan menulis kode. Hal ini membuat
mereka ideal untuk aplikasi yang membutuhkan interaksi yang lebih terbuka dan

dinamis, seperti chatbot, pembuatan konten, dan asisten penulisan kreatif.

Namun, model generatif terkadang dapat menghasilkan informasi yang tidak konsisten
atau salah secara faktual, karena mereka mengandalkan pola yang dipelajari selama
pelatihan daripada basis data fakta yang telah dikurasi. Mereka juga mungkin lebih
rentan terhadap bias dan halusinasi, menghasilkan teks yang masuk akal tetapi tidak

selalu benar.

Contoh LLM generatif termasuk seri GPT dari OpenAlI (GPT-3, GPT-4) dan Claude dari
Anthropic.

Model Hibrida

Beberapa LLM yang tersedia secara komersial menggabungkan pendekatan pengam-
bilan dan generatif dalam model hibrida. Model-model ini menggunakan teknik
pengambilan untuk menemukan informasi yang relevan dari database dan kemudian
menggunakan teknik generatif untuk menyintesis informasi tersebut menjadi respons

yang koheren.

Pendahuluan 9

Model hibrida bertujuan untuk menggabungkan akurasi faktual dari model berbasis
pengambilan dengan kemampuan generasi bahasa natural dari model generatif. Model-
model ini dapat memberikan informasi yang lebih dapat diandalkan dan terkini sambil
tetap mempertahankan kemampuan untuk terlibat dalam percakapan yang bersifat

terbuka.

Ketika memilih antara model berbasis pengambilan dan model generatif, Anda harus
mempertimbangkan persyaratan khusus aplikasi Anda. Jika tujuan utamanya adalah
memberikan informasi faktual yang akurat, model berbasis pengambilan mungkin men-
jadi pilihan terbaik. Jika aplikasi membutuhkan interaksi yang lebih terbuka dan kreatif,
model generatif mungkin lebih cocok. Model hibrida menawarkan keseimbangan antara
kedua pendekatan tersebut dan bisa menjadi pilihan yang baik untuk aplikasi yang

membutuhkan baik akurasi faktual maupun generasi bahasa natural.

Pada akhirnya, pilihan antara model berbasis pengambilan dan model generatif bergan-
tung pada kasus penggunaan spesifik dan pertimbangan antara akurasi, kreativitas, dan
fleksibilitas. Dengan memahami kekuatan dan keterbatasan setiap pendekatan, Anda

dapat membuat keputusan yang tepat.

Pendahuluan

Penyetelan Instruksi

Penyetelan instruksi adalah subset dari pelatihan percakapan yang menggunakan
prompt dan respons yang ditulis manusia untuk membuat LLM lebih baik dalam
memahami dan mengikuti instruksi. Berikut beberapa contoh sederhana untuk
mengilustrasikan bagaimana penyetelan instruksi pada prompt dan respons yang

ditulis manusia membuat LLM lebih baik dalam memahami dan mengikuti instruksi:

Contoh 1: Layanan Pelanggan

Instruksi: “Berikan respons untuk pelanggan yang meminta pengembalian dana”

Prompt yang Ditulis Manusia: “Saya ingin mengajukan permintaan pengembalian
dana untuk pembelian saya baru-baru ini. Produknya tidak sesuai dengan harapan

»
saya.

Respons yang Ditulis Manusia: “Mohon maaf mendengar bahwa produk tersebut
tidak sesuai dengan harapan Anda. Untuk memproses pengembalian dana Anda,
mohon berikan nomor pesanan dan alasan pengembalian. Kami akan meninjau

permintaan Anda dan menghubungi Anda kembali dalam waktu 2-3 hari kerja”

Contoh 2: Bantuan Pendidikan

Instruksi: “Jelaskan konsep fotosintesis kepada anak berusia 10 tahun”

Prompt Buatan Manusia: “Bisakah kamu menjelaskan bagaimana tumbuhan mem-

buat makanannya?”

Respons Buatan Manusia: “Tentu! Tumbuhan membuat makanannya melalui proses
yang disebut fotosintesis. Mereka menggunakan sinar matahari, air, dan karbon

dioksida untuk menciptakan makanan dan oksigen. Daun tumbuhan memiliki bagian

10

Pendahuluan 11

khusus yang disebut klorofil yang membantu mereka menangkap sinar matahari.”

Contoh 3: Asisten Pribadi

Instruksi: “Jadwalkan rapat untuk hari Selasa depan pukul 3 sore”

Prompt Buatan Manusia: “Bisakah kamu mengatur rapat untuk hari Selasa pukul 3

sore?”

Respons Buatan Manusia: “Tentu, saya telah menjadwalkan rapat untuk Anda hari

Selasa depan pukul 3 sore. Apakah ada hal lain yang Anda butuhkan?”

Hasilnya adalah ekosistem LLM yang beragam dengan ukuran berbeda dan spesialisasi
yang berbeda. Model yang lebih kecil dengan rentang 1-7 miliar parameter menyedi-

akan kemampuan bahasa umum yang baik sambil tetap efisien untuk dijalankan.

« Mistral 7B
« Llama 3 8B

« Gemma 7B

Model berukuran menengah sekitar 30-70 miliar parameter menawarkan kemampuan

penalaran dan mengikuti instruksi yang lebih kuat.

« Llama 3 70B
*« Qwen2 70B
« Mixtral 8x22B

Ketika memilih LLM untuk diintegrasikan ke dalam aplikasi, Anda harus menyeim-
bangkan kemampuan model dengan faktor-faktor praktis seperti biaya, latensi, panjang
konteks, dan penyaringan konten. Model yang lebih kecil yang dilatih dengan instruksi

seringkali menjadi pilihan terbaik untuk tugas bahasa yang lebih sederhana, sementara

Pendahuluan 12

model terbesar mungkin diperlukan untuk penalaran atau analisis yang kompleks. Data
pelatihan model juga merupakan pertimbangan penting, karena ini menentukan tanggal

batas pengetahuan model.

Model tertentu, seperti beberapa dari Perplexity terhubung ke sumber
informasi waktu nyata, sehingga mereka secara efektif tidak memiliki
tanggal batas. Ketika Anda mengajukan pertanyaan kepada mereka, mereka
dapat secara mandiri memutuskan untuk melakukan pencarian web dan

mengambil halaman web tertentu untuk menghasilkan jawaban.

Obie

Ml Who won the America vs GDL match last night?
. Llama 3 70B Instruct (nitra) (2

I'm not aware of any information about a match between "America" and "GDL" last night. Could
you please provide more context or clarify which teams or leagues you are referring to? I'lldo £
my best to help you find the answer.

~281.1 tokens/s

. Llama3 Sonar 708 Online 2
Club América won the match against Guadalajara last night, with a score of 1-0.

~31.0 tokens/s

Gambar 1. Llama3 dengan dan tanpa akses online

Pada akhirnya, tidak ada LLM yang cocok untuk segala keperluan. Memahami variasi
dalam ukuran model, arsitektur, dan pelatihan adalah kunci untuk memilih model yang
tepat untuk kasus penggunaan tertentu. Bereksperimen dengan berbagai model adalah
satu-satunya cara praktis untuk mengetahui mana yang memberikan kinerja terbaik

untuk tugas yang sedang dihadapi.

Pendahuluan 13

Tokenisasi: Memecah Teks Menjadi Bagian-Bagian

Sebelum model bahasa besar dapat memproses teks, teks tersebut perlu dipecah menjadi
unit-unit yang lebih kecil yang disebut token. Token bisa berupa kata-kata individual,
bagian dari kata, atau bahkan karakter tunggal. Proses pemecahan teks menjadi token
dikenal sebagai tokenisasi, dan ini adalah langkah penting dalam mempersiapkan data

untuk model bahasa.

The process of splitting text into tokens is known as tokenization, and
it’s a crucial step in preparing data for a language model.

Gambar 2. Kalimat ini mengandung 27 token

LLM yang berbeda menggunakan strategi tokenisasi yang berbeda, yang dapat memiliki
dampak signifikan pada kinerja dan kemampuan model. Beberapa penokenisasi umum

yang digunakan oleh LLM meliputi:

« GPT (Byte Pair Encoding/Pengkodean Pasangan Byte): Penokenisasi GPT
menggunakan teknik yang disebut byte pair encoding (BPE) untuk memecah teks
menjadi unit-unit sub-kata. BPE secara berulang menggabungkan pasangan byte
yang paling sering muncul dalam korpus teks, membentuk kosakata token sub-
kata. Ini memungkinkan penokenisasi untuk menangani kata-kata yang jarang
dan baru dengan memecahnya menjadi bagian-bagian sub-kata yang lebih umum.

Penokenisasi GPT digunakan oleh model seperti GPT-3 dan GPT-4.

« Llama (SentencePiece): Penokenisasi Llama menggunakan pustaka Sentence-
Piece, yang merupakan penokenisasi dan detokenisasi teks tanpa pengawasan.
SentencePiece memperlakukan teks masukan sebagai urutan karakter Unicode
dan mempelajari kosakata sub-kata berdasarkan korpus pelatihan. Ini dapat
menangani bahasa apa pun yang dapat dikodekan dalam Unicode, membuatnya
sangat cocok untuk model multibahasa. Penokenisasi Llama digunakan oleh

model seperti Llama dari Meta dan Alpaca.

Pendahuluan 14

« SentencePiece (Unigram): Tokenizer SentencePiece juga dapat menggunakan al-
goritma berbeda yang disebut Unigram, yang didasarkan pada teknik regularisasi
subkata. Tokenisasi Unigram menentukan kosakata subkata optimal berdasarkan
model bahasa unigram, yang memberikan probabilitas ke unit-unit subkata indi-
vidual. Pendekatan ini dapat menghasilkan subkata yang lebih bermakna secara
semantik dibandingkan dengan BPE. SentencePiece dengan Unigram digunakan

oleh model-model seperti T5 dari Google dan BERT.

+ Google Gemini (Tokenisasi Multimodal): Google Gemini menggunakan skema
tokenisasi yang dirancang untuk menangani berbagai jenis data, termasuk teks,
gambar, audio, video, dan kode. Kemampuan multimodal ini memungkinkan
Gemini untuk memproses dan mengintegrasikan berbagai bentuk informasi.
Yang perlu dicatat, Google Gemini 1.5 Pro memiliki jendela konteks yang dapat
menangani jutaan token, jauh lebih besar dari model-model sebelumnya. Jendela
konteks yang luas ini memungkinkan model untuk memproses konteks yang lebih
besar, yang berpotensi menghasilkan respons yang lebih akurat. Namun, penting
untuk dicatat bahwa skema tokenisasi Gemini jauh lebih mendekati satu token
per karakter dibandingkan model lainnya. Ini berarti biaya sebenarnya untuk
menggunakan model Gemini bisa jauh lebih tinggi dari yang diharapkan jika
Anda terbiasa menggunakan model seperti GPT, karena harga Google didasarkan

pada karakter daripada token.

Pilihan tokenizer mempengaruhi beberapa aspek LLM, termasuk:

« Ukuran kosakata: Tokenizer menentukan ukuran kosakata model, yang meru-
pakan kumpulan token unik yang dikenalinya. Kosakata yang lebih besar dan
lebih terperinci dapat membantu model menangani berbagai kata dan frasa yang
lebih luas dan bahkan menjadi multi-modal (mampu memahami dan meng-
hasilkan lebih dari sekadar teks), tetapi juga meningkatkan kebutuhan memori

dan kompleksitas komputasi model.

Pendahuluan 15

« Penanganan kata-kata langka dan tidak dikenal: Tokenizer yang menggunakan
unit subkata, seperti BPE dan SentencePiece, dapat memecah kata-kata langka
dan tidak dikenal menjadi bagian-bagian subkata yang lebih umum. Ini memu-
ngkinkan model untuk membuat perkiraan terdidik tentang arti kata-kata yang
belum pernah dilihatnya sebelumnya, berdasarkan subkata yang dikandungnya.

« Dukungan multibahasa: Tokenizer seperti SentencePiece, yang dapat menan-
gani bahasa apapun yang dapat dikodekan Unicode, sangat cocok untuk model

multibahasa yang perlu memproses teks dalam berbagai bahasa.

Ketika memilih LLM untuk aplikasi tertentu, penting untuk mempertimbangkan tok-
enizer yang digunakan dan seberapa baik kesesuaiannya dengan kebutuhan pemrosesan
bahasa spesifik dari tugas yang dihadapi. Tokenizer dapat memiliki dampak signifikan
pada kemampuan model dalam menangani terminologi khusus domain, kata-kata

langka, dan teks multibahasa.

Ukuran Konteks: Berapa Banyak Informasi yang Dapat
Digunakan Model Bahasa Selama Inferensi?

Ketika membahas model bahasa, ukuran konteks mengacu pada jumlah teks yang dapat
dipertimbangkan oleh model saat memproses atau menghasilkan responnya. Ini pada
dasarnya adalah ukuran seberapa banyak informasi yang dapat “diingat” model dan
digunakan untuk menginformasikan keluarannya (dinyatakan dalam token). Ukuran
konteks dari model bahasa dapat memiliki dampak signifikan pada kemampuannya dan

jenis tugas yang dapat dilakukannya secara efektif.

Apa itu Ukuran Konteks?

Secara teknis, ukuran konteks ditentukan oleh jumlah token (kata atau potongan kata)
yang dapat diproses model bahasa dalam satu rangkaian input. Ini sering disebut sebagai

“rentang perhatian” atau “jendela konteks” model. Semakin besar ukuran konteks,

Pendahuluan 16

semakin banyak teks yang dapat dipertimbangkan model sekaligus ketika menghasilkan

respons atau melakukan tugas.

Model bahasa yang berbeda memiliki ukuran konteks yang bervariasi, mulai dari
beberapa ratus token hingga jutaan token. Sebagai referensi, paragraf teks biasa
mungkin berisi sekitar 100-150 token, sementara seluruh buku bisa berisi puluhan atau

ratusan ribu token.

Bahkan ada penelitian tentang metode efisien untuk mengembangkan Model Bahasa
Besar (LLM) berbasis Transformer untuk input yang tak terbatas dengan memori dan

komputasi yang terbatas.

Mengapa Ukuran Konteks Penting?

Ukuran konteks dari model bahasa memiliki dampak signifikan pada kemampuannya
untuk memahami dan menghasilkan teks yang koheren dan relevan secara kontekstual.

Berikut beberapa alasan utama mengapa ukuran konteks penting:

1. Memahami konten panjang: Model dengan ukuran konteks yang lebih besar
dapat lebih baik dalam memahami dan menganalisis teks yang lebih panjang,
seperti artikel, laporan, atau bahkan buku lengkap. Ini sangat penting untuk tugas-

tugas seperti peringkasan dokumen, tanya jawab, dan analisis konten.

2. Menjaga koherensi: Jendela konteks yang lebih besar memungkinkan model
untuk mempertahankan koherensi dan konsistensi di sepanjang keluaran yang
lebih panjang. Ini penting untuk tugas-tugas seperti pembuatan cerita, sistem
dialog, dan pembuatan konten, di mana mempertahankan narasi atau topik yang
konsisten sangat penting. Ini juga sangat penting ketika menggunakan LLM untuk

menghasilkan atau mentransformasi data terstruktur.

https://huggingface.co/papers/2404.07143

Pendahuluan 17

3. Menangkap ketergantungan jarak jauh: Beberapa tugas bahasa membutuhkan
pemahaman hubungan antara kata atau frasa yang terpisah jauh dalam sebuah
teks. Model dengan ukuran konteks yang lebih besar lebih mampu menangkap
ketergantungan jarak jauh ini, yang dapat penting untuk tugas-tugas seperti
analisis sentimen, penerjemahan, dan pemahaman bahasa.

4. Menangani instruksi kompleks: Dalam aplikasi di mana model bahasa digu-
nakan untuk mengikuti instruksi kompleks dan bertahap, ukuran konteks yang
lebih besar memungkinkan model untuk mempertimbangkan seluruh rangkaian

instruksi ketika menghasilkan respons, bukan hanya beberapa kata terakhir.

Contoh Model Bahasa dengan Ukuran Konteks Berbeda

Berikut beberapa contoh model bahasa dengan ukuran konteks yang berbeda:

« OpenAl GPT-3.5 Turbo: 4.095 token
« Mistral 7B Instruct: 32.768 token

« Anthropic Claude v1: 100.000 token
+ OpenAl GPT-4 Turbo: 128.000 token
« Anthropic Claude v2: 200.000 token

« Google Gemini Pro 1.5: 2,8 juta token

Seperti yang dapat Anda lihat, terdapat rentang ukuran konteks yang luas di antara
model-model ini, mulai dari sekitar 4.000 token untuk model OpenAl GPT-3.5 Turbo
hingga 200.000 token untuk model Anthropic Claude v2. Beberapa model, seperti Google
PalM 2 dan OpenAI GPT-4, menawarkan varian berbeda dengan ukuran konteks yang
lebih besar (misalnya, versi “32k”), yang dapat menangani urutan input yang lebih
panjang. Dan saat ini (April 2024) Google Gemini Pro membanggakan hampir 3 juta

token!

Perlu dicatat bahwa ukuran konteks dapat bervariasi tergantung pada implementasi dan

versi spesifik dari model tertentu. Misalnya, model OpenAl GPT-4 original memiliki

Pendahuluan 18

ukuran konteks 8.191 token, sementara varian GPT-4 yang lebih baru seperti Turbo dan

40 memiliki ukuran konteks yang jauh lebih besar yaitu 128.000 token.

Sam Altman telah membandingkan keterbatasan konteks saat ini dengan kilobyte
memori kerja yang harus dihadapi programmer komputer pribadi di era 80-an, dan
mengatakan bahwa dalam waktu dekat kita akan dapat memasukkan “semua data

pribadi Anda” ke dalam konteks sebuah model bahasa besar.

Memilih Ukuran Konteks yang Tepat

Saat memilih model bahasa untuk aplikasi tertentu, penting untuk mempertimbangkan
kebutuhan ukuran konteks dari tugas yang akan dikerjakan. Untuk tugas yang meli-
batkan potongan teks pendek dan terpisah, seperti analisis sentimen atau tanya jawab
sederhana, ukuran konteks yang lebih kecil mungkin sudah mencukupi. Namun, untuk
tugas yang membutuhkan pemahaman dan pembuatan teks yang lebih panjang dan

kompleks, ukuran konteks yang lebih besar kemungkinan akan diperlukan.

Perlu diketahui bahwa ukuran konteks yang lebih besar seringkali disertai dengan
peningkatan biaya komputasi dan waktu pemrosesan yang lebih lambat, karena model
perlu mempertimbangkan lebih banyak informasi saat menghasilkan respons. Den-
gan demikian, Anda harus menyeimbangkan antara ukuran konteks dan kinerja saat

memilih model bahasa untuk aplikasi Anda.

Mengapa tidak langsung memilih model dengan ukuran konteks terbesar dan
mengisinya dengan sebanyak mungkin informasi? Yah, selain faktor kinerja,
pertimbangan utama lainnya adalah biaya. Pada Maret 2024, satu siklus prompt-

respons menggunakan Google Gemini Pro 1.5 dengan konteks penuh akan

Pendahuluan 19

menghabiskan biaya hampir $8 (USD). Jika Anda memiliki kasus penggunaan
yang membenarkan biaya tersebut, silakan saja! Tapi untuk kebanyakan aplikasi,

biayanya terlalu mahal hingga beberapa kali lipat.

Mencari Jarum dalam Tumpukan Jerami

Konsep mencari jarum dalam tumpukan jerami telah lama menjadi metafora untuk
tantangan pengambilan data dalam kumpulan data besar. Dalam ranah LLM, kita
sedikit memodifikasi analogi ini. Bayangkan kita tidak hanya mencari satu fakta yang
terpendam dalam teks yang sangat besar (seperti antologi lengkap esai Paul Graham),
tetapi beberapa fakta yang tersebar di dalamnya. Skenario ini lebih mirip dengan
mencari beberapa jarum di lapangan yang luas, bukan hanya satu tumpukan jerami.
Inilah yang menarik: kita tidak hanya perlu menemukan jarum-jarum ini, tetapi juga

harus merajutnya menjadi benang yang koheren.

Ketika bertugas mengambil dan menalar tentang berbagai fakta yang tertanam dalam
konteks panjang, LLM menghadapi tantangan ganda. Pertama, ada masalah akurasi
pengambilan yang sederhana—secara alami menurun seiring bertambahnya jumlah
fakta. Ini dapat dimaklumi; bagaimanapun juga, melacak berbagai detail di seluruh

teks yang luas membebani bahkan model yang paling canggih sekalipun.

Kedua, dan mungkin lebih kritis lagi, adalah tantangan dalam melakukan penalaran
dengan fakta-fakta tersebut. Mengidentifikasi fakta adalah satu hal; namun mensin-
tesiskannya menjadi narasi atau jawaban yang koheren adalah hal yang berbeda. Di
sinilah ujian yang sesungguhnya muncul. Kinerja LLM dalam tugas-tugas penalaran
cenderung mengalami penurunan lebih besar dibandingkan dalam tugas-tugas pengam-
bilan informasi sederhana. Penurunan ini bukan hanya tentang volume; ini tentang

interaksi rumit antara konteks, relevansi, dan inferensi.

Mengapa hal ini terjadi? Mari kita perhatikan dinamika memori dan atensi dalam

Pendahuluan 20

kognisi manusia, yang sampai taraf tertentu tercermin dalam LLM. Ketika memproses
informasi dalam jumlah besar, LLM, seperti halnya manusia, dapat kehilangan jejak
detail-detail awal saat menyerap informasi baru. Hal ini terutama benar pada model-
model yang tidak secara khusus dirancang untuk memprioritaskan atau meninjau ulang

segmen-segmen teks sebelumnya secara otomatis.

Lebih lanjut, kemampuan LLM untuk merangkai fakta-fakta yang diambil menjadi
respons yang koheren mirip dengan proses pembangunan narasi. Ini membutuhkan
bukan hanya pengambilan informasi tetapi juga pemahaman mendalam dan penem-

patan kontekstual, yang masih menjadi tantangan berat bagi Al saat ini.

Jadi, apa artinya ini bagi kita sebagai pengembang dan integrator teknologi-teknologi
ini? Kita perlu sangat memahami keterbatasan ini ketika merancang sistem yang
mengandalkan LLM untuk menangani tugas-tugas kompleks dan panjang. Memahami
bahwa kinerja mungkin menurun dalam kondisi tertentu membantu kita menetapkan
ekspektasi yang realistis dan merancang mekanisme cadangan atau strategi pendukung

yang lebih baik.

Modalitas: Melampaui Teks

Sementara mayoritas model bahasa saat ini berfokus pada pemrosesan dan penghasilan
teks, terdapat tren yang berkembang menuju model multimodal yang secara alami dapat
menerima dan menghasilkan berbagai jenis data, seperti gambar, audio, dan video.
Model-model multimodal ini membuka kemungkinan baru untuk aplikasi berbasis Al

yang dapat memahami dan menghasilkan konten di berbagai modalitas.

Apa itu Modalitas?

Dalam konteks model bahasa, modalitas mengacu pada berbagai jenis data yang dapat
diproses dan dihasilkan oleh sebuah model. Modalitas yang paling umum adalah teks,

yang mencakup bahasa tertulis dalam berbagai bentuk seperti buku, artikel, situs web,

Pendahuluan 21

dan postingan media sosial. Namun, ada beberapa modalitas lain yang semakin banyak

diintegrasikan ke dalam model bahasa:

« Gambar: Data visual seperti foto, ilustrasi, dan diagram.
« Audio: Data suara seperti ucapan, musik, dan suara lingkungan.

« Video: Data visual bergerak, seringkali disertai audio, seperti klip video dan film.

Setiap modalitas menghadirkan tantangan dan peluang yang unik bagi model bahasa.
Sebagai contoh, gambar mengharuskan model untuk memahami konsep dan hubungan
visual, sementara audio mengharuskan model untuk memproses dan menghasilkan

ucapan dan suara lainnya.

Model Bahasa Multimodal

Model bahasa multimodal dirancang untuk menangani berbagai modalitas dalam satu
model. Model-model ini biasanya memiliki komponen atau lapisan khusus yang
dapat memahami input dan menghasilkan data output dalam modalitas yang berbeda.

Beberapa contoh penting model bahasa multimodal meliputi:

« OpenAI’s GPT-40: GPT-40 adalah model bahasa besar yang secara alami mema-
hami dan memproses audio ucapan selain teks. Kemampuan ini memungkinkan
GPT-40 untuk melakukan tugas-tugas seperti mentranskripsikan bahasa lisan,
menghasilkan teks dari input audio, dan memberikan respons berdasarkan per-
tanyaan lisan.

« OpenAl’s GPT-4 dengan input visual: GPT-4 adalah model bahasa besar yang
dapat memproses teks dan gambar. Ketika diberikan gambar sebagai input, GPT-4
dapat menganalisis isi gambar dan menghasilkan teks yang mendeskripsikan atau
merespons informasi visual tersebut.

« Google’s Gemini: Gemini adalah model multimodal yang dapat menangani

teks, gambar, dan video. Model ini menggunakan arsitektur terpadu yang

Pendahuluan 22

memungkinkan pemahaman dan generasi lintas modal, memungkinkan tugas-
tugas seperti pemberian keterangan gambar, peringkasan video, dan penjawaban

pertanyaan visual.

« DALL-E dan Stable Diffusion: Meskipun bukan model bahasa dalam pengertian
tradisional, model-model ini menunjukkan kekuatan AI multimodal dengan
menghasilkan gambar dari deskripsi tekstual. Mereka memperlihatkan potensi

model yang dapat menerjemahkan antara modalitas yang berbeda.

Manfaat dan Aplikasi Model Multimodal

Model bahasa multimodal menawarkan beberapa manfaat dan memungkinkan berbagai

aplikasi, termasuk:

« Pemahaman yang lebih baik: Dengan memproses informasi dari berbagai
modalitas, model-model ini dapat memperoleh pemahaman yang lebih kompre-
hensif tentang dunia, mirip dengan cara manusia belajar dari berbagai input
sensorik.

« Generasi lintas modal: Model multimodal dapat menghasilkan konten dalam
satu modalitas berdasarkan input dari modalitas lain, seperti membuat gambar
dari deskripsi teks atau menghasilkan ringkasan video dari artikel tertulis.

« Aksesibilitas: Model multimodal dapat membuat informasi lebih mudah diakses
dengan menerjemahkan antar modalitas, seperti menghasilkan deskripsi teks dari
gambar untuk pengguna dengan gangguan penglihatan atau membuat versi audio
dari konten tertulis.

« Aplikasi kreatif: Model multimodal dapat digunakan untuk tugas-tugas kreatif
seperti menghasilkan seni, musik, atau video berdasarkan prompt teks, membuka

kemungkinan baru bagi seniman dan kreator konten.

Pendahuluan 23

Seiring dengan kemajuan model bahasa multimodal, mereka kemungkinan akan
memainkan peran yang semakin penting dalam pengembangan aplikasi berbasis Al
yang dapat memahami dan menghasilkan konten di berbagai modalitas. Hal ini akan
memungkinkan interaksi yang lebih alami dan intuitif antara manusia dan sistem Al

serta membuka kemungkinan baru untuk ekspresi kreatif dan penyebaran pengetahuan.

Ekosistem Penyedia

Ketika berbicara tentang mengintegrasikan model bahasa besar (LLM) ke dalam aplikasi,
Anda memiliki berbagai pilihan yang terus berkembang. Setiap penyedia LLM utama,
seperti OpenAl, Anthropic, Google, dan Cohere, menawarkan ekosistem modelnya
sendiri, API, dan perangkat. Memilih penyedia yang tepat melibatkan pertimbangan
berbagai faktor, termasuk harga, kinerja, penyaringan konten, privasi data, dan opsi

penyesuaian.

OpenAl

OpenAl adalah salah satu penyedia LLM yang paling terkenal, dengan seri GPT-nya
(GPT-3, GPT-4) yang banyak digunakan dalam berbagai aplikasi. OpenAl menawarkan
API yang mudah digunakan yang memungkinkan Anda mengintegrasikan model
mereka ke dalam aplikasi dengan mudah. Mereka menyediakan berbagai model dengan
kemampuan dan harga yang berbeda, mulai dari model Ada tingkat pemula hingga

model Davinci yang kuat.

Ekosistem OpenAl juga mencakup perangkat seperti OpenAl Playground, yang memu-
ngkinkan Anda bereksperimen dengan prompt dan melakukan penalaan model untuk
kasus penggunaan tertentu. Mereka menawarkan opsi penyaringan konten untuk

membantu mencegah pembuatan konten yang tidak pantas atau berbahaya.

Ketika menggunakan model OpenAl secara langsung, saya mengandalkan pustaka ruby-

openai karya Alex Rudall.

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/ruby-openai

Pendahuluan 24

Anthropic

Anthropic adalah pemain utama lainnya dalam bidang LLM, dengan model Claude
mereka yang semakin populer karena kinerja yang kuat dan pertimbangan etis. An-
thropic fokus pada pengembangan sistem Al yang aman dan bertanggung jawab, den-

gan penekanan kuat pada penyaringan konten dan menghindari output yang berbahaya.

Ekosistem Anthropic mencakup API Claude, yang memungkinkan Anda menginte-
grasikan model ke dalam aplikasi mereka, serta perangkat untuk rekayasa prompt dan
penalaan. Mereka juga menawarkan model Claude Instant, yang menggabungkan

kemampuan pencarian web untuk respons yang lebih mutakhir dan faktual.

Ketika menggunakan model Anthropic secara langsung, saya mengandalkan pustaka

anthrophic karya Alex Rudall.

Google

Google telah mengembangkan beberapa LLM yang kuat, termasuk Gemini, BERT, T5,
dan PaLM. Model-model ini dikenal karena kinerja yang kuat dalam berbagai tugas
pemrosesan bahasa alami. Ekosistem Google mencakup pustaka TensorFlow dan Keras,
yang menyediakan alat dan kerangka kerja untuk membangun dan melatih model

pembelajaran mesin.

Google juga menawarkan Cloud Al Platform, yang memungkinkan Anda dengan
mudah menerapkan dan menskalakan model mereka di cloud. Mereka menyediakan
berbagai model yang sudah dilatih sebelumnya dan API untuk tugas-tugas seperti

analisis sentimen, pengenalan entitas, dan terjemahan.

Meta

Meta, yang sebelumnya dikenal sebagai Facebook, sangat berkomitmen dalam pengem-
bangan model bahasa besar, yang ditonjolkan melalui peluncuran model-model seperti

LLaMA dan OPT. Model-model ini menonjol karena kinerja yang kuat dalam berbagai

https://github.com/alexrudall/anthropic

Pendahuluan 25

tugas bahasa dan sebagian besar tersedia melalui saluran sumber terbuka, mendukung

komitmen Meta terhadap penelitian dan kolaborasi komunitas.

Ekosistem Meta terutama dibangun di sekitar PyTorch, sebuah pustaka pembelajaran
mesin sumber terbuka yang disukai karena kemampuan komputasi dinamis dan fleksi-

bilitasnya, memfasilitasi penelitian dan pengembangan Al yang inovatif.

Selain penawaran teknisnya, Meta memberikan penekanan kuat pada pengembangan
Al yang etis. Mereka menerapkan penyaringan konten yang kuat dan fokus pada
pengurangan bias, sejalan dengan tujuan yang lebih luas mereka untuk keamanan dan

tanggung jawab dalam aplikasi AL

Cohere

Cohere adalah pendatang baru dalam ruang LLM, yang berfokus untuk membuat
LLM lebih mudah diakses dan digunakan dibandingkan pesaing. Ekosistem mereka
mencakup Cohere API, yang menyediakan akses ke berbagai model yang sudah dilatih

sebelumnya untuk tugas-tugas seperti pembuatan teks, klasifikasi, dan peringkasan.

Cohere juga menawarkan alat untuk rekayasa prompt, penyetelan halus, dan pen-
yaringan konten. Mereka menekankan privasi dan keamanan data, dengan fitur seperti

penyimpanan data terenkripsi dan kontrol akses.

Ollama

Ollama adalah platform yang dihosting sendiri yang memungkinkan pengguna men-
gelola dan menerapkan berbagai model bahasa besar (LLM) secara lokal di mesin
mereka, memberikan mereka kendali penuh atas model Al mereka tanpa bergantung
pada layanan cloud eksternal. Pengaturan ini ideal bagi mereka yang memprioritaskan

privasi data dan ingin menangani operasi Al mereka secara internal.

Platform ini mendukung berbagai model, termasuk versi-versi Llama, Phi, Gemma,

dan Mistral, yang bervariasi dalam ukuran dan kebutuhan komputasinya. Ollama

Pendahuluan 26

memudahkan pengunduhan dan pengoperasian model-model ini langsung dari baris
perintah menggunakan perintah sederhana seperti ollama run <model_name>, dan
dirancang untuk bekerja di berbagai sistem operasi termasuk macOS, Linux, dan

Windows.

Bagi pengembang yang ingin mengintegrasikan model sumber terbuka ke dalam aplikasi
mereka tanpa menggunakan API jarak jauh, Ollama menawarkan CLI untuk mengelola
siklus hidup model mirip dengan alat pengelolaan kontainer. Ini juga mendukung
konfigurasi dan prompt kustom, memungkinkan tingkat kustomisasi yang tinggi untuk

menyesuaikan model dengan kebutuhan atau kasus penggunaan tertentu.

Ollama sangat cocok untuk pengguna yang mabhir teknologi dan pengembang karena
antarmuka baris perintahnya dan fleksibilitas yang ditawarkan dalam mengelola dan
menerapkan model Al Ini menjadikannya alat yang ampuh untuk bisnis dan individu
yang membutuhkan kemampuan Al yang kuat tanpa mengorbankan keamanan dan

kontrol.

Platform Multi-Model

Selain itu, ada penyedia yang menampung berbagai model sumber terbuka, seperti
Together.ai dan Groq. Platform-platform ini menawarkan fleksibilitas dan kustomisasi,
memungkinkan Anda menjalankan dan, dalam beberapa kasus, bahkan melakukan
penyetelan halus model sumber terbuka sesuai dengan kebutuhan spesifik Anda. Seba-
gai contoh, Together.ai menyediakan akses ke berbagai LLM sumber terbuka, memu-
ngkinkan pengguna bereksperimen dengan berbagai model dan konfigurasi. Groq
berfokus pada penyediaan penyelesaian berkinerja ultra tinggi yang pada saat penulisan

buku ini tampak hampir ajaib

Memilih Penyedia LLM

Saat memilih penyedia LLM, Anda harus mempertimbangkan faktor-faktor seperti:

Pendahuluan 27

« Harga: Penyedia yang berbeda menawarkan model penetapan harga yang
berbeda, mulai dari bayar per penggunaan hingga rencana berbasis langganan.
Penting untuk mempertimbangkan perkiraan penggunaan dan anggaran saat
memilih penyedia.

« Performa: Performa LLM dapat sangat bervariasi antar penyedia, jadi penting
untuk melakukan pengujian performa dan menguji model pada kasus penggunaan
tertentu sebelum membuat keputusan.

« Penyaringan Konten: Tergantung pada aplikasi, penyaringan konten mungkin
menjadi pertimbangan penting. Beberapa penyedia menawarkan opsi pen-
yaringan konten yang lebih kuat dibandingkan yang lain.

« Privasi Data: Jika aplikasi menangani data pengguna yang sensitif, penting untuk
memilih penyedia dengan praktik privasi dan keamanan data yang kuat.

« Kustomisasi: Beberapa penyedia menawarkan lebih banyak fleksibilitas dalam

hal penyetelan halus dan kustomisasi model untuk kasus penggunaan tertentu.

Pada akhirnya, pemilihan penyedia LLM bergantung pada kebutuhan dan batasan
spesifik aplikasi. Dengan mengevaluasi pilihan secara cermat dan mempertimbangkan
faktor-faktor seperti harga, kinerja, dan privasi data, Anda dapat memilih penyedia yang

paling sesuai dengan kebutuhan Anda.

Perlu diingat juga bahwa lanskap LLM terus berkembang, dengan penyedia dan model
baru yang muncul secara teratur. Anda sebaiknya tetap mengikuti perkembangan

terbaru dan terbuka untuk mengeksplorasi opsi-opsi baru saat tersedia.

OpenRouter

Sepanjang buku ini saya akan secara eksklusif menggunakan OpenRouter sebagai
penyedia API pilihan saya. Alasannya sederhana: ini adalah one-stop shop untuk semua
model komersial dan open-source yang paling populer. Jika Anda tidak sabar untuk
mulai mengutak-atik koding Al salah satu tempat terbaik untuk memulai adalah dengan

OpenRouter Ruby Library yang saya buat.

https://openrouter.ai
https://github.com/OlympiaAI/open_router

Pendahuluan 28

Mempertimbangkan Kinerja

Saat mengintegrasikan model bahasa ke dalam aplikasi, kinerja adalah pertimbangan
yang kritis. Kinerja model bahasa dapat diukur dalam hal latensi (waktu yang
diperlukan untuk menghasilkan respons) dan throughput (jumlah permintaan yang

dapat ditangani per satuan waktu).

Waktu ke Token Pertama (TTFT) adalah metrik kinerja penting lainnya, khususnya
relevan untuk chatbot dan aplikasi yang memerlukan respons interaktif secara real-
time. TTFT mengukur latensi dari saat permintaan pengguna diterima hingga saat
kata (atau token) pertama dari respons dihasilkan. Metrik ini sangat penting untuk
mempertahankan pengalaman pengguna yang lancar dan menarik, karena respons yang

tertunda dapat menyebabkan frustrasi dan ketidaktertarikan pengguna.

Metrik-metrik kinerja ini dapat memiliki dampak signifikan pada pengalaman pengguna

dan skalabilitas aplikasi.
Beberapa faktor yang dapat mempengaruhi kinerja model bahasa, termasuk:

Jumlah Parameter: Model yang lebih besar dengan lebih banyak parameter umumnya
membutuhkan lebih banyak sumber daya komputasi dan dapat memiliki latensi lebih

tinggi serta throughput lebih rendah dibandingkan model yang lebih kecil.

Perangkat Keras: Kinerja model bahasa dapat sangat bervariasi berdasarkan perangkat
keras yang digunakan. Penyedia cloud menawarkan instans GPU dan TPU yang
dioptimalkan untuk beban kerja pembelajaran mesin, yang dapat sangat mempercepat

inferensi model.

P Salah satu hal yang menyenangkan tentang OpenRouter adalah bahwa

untuk banyak model yang ditawarkannya, Anda mendapatkan pilihan

penyedia cloud dengan berbagai profil kinerja dan biaya.

Kuantisasi: Teknik kuantisasi dapat digunakan untuk mengurangi penggunaan memori

Pendahuluan 29

dan kebutuhan komputasi dari sebuah model dengan merepresentasikan bobot dan
aktivasi menggunakan tipe data presisi lebih rendah. Hal ini dapat meningkatkan
kinerja tanpa mengorbankan kualitas secara signifikan. Sebagai pengembang aplikasi,
Anda mungkin tidak akan terlibat dalam melatih model Anda sendiri pada berbagai

tingkat kuantisasi, tetapi akan baik untuk setidaknya familiar dengan terminologinya.

Pemrosesan Batch: Memproses beberapa permintaan secara bersamaan dalam batch
dapat meningkatkan throughput dengan membagi beban overhead dari pemuatan

model dan transfer data.

Penyimpanan Cache: Menyimpan cache hasil dari prompt atau urutan input yang
sering digunakan dapat mengurangi jumlah permintaan inferensi dan meningkatkan

kinerja secara keseluruhan.

Saat memilih model bahasa untuk aplikasi produksi, penting untuk melakukan bench-
mark kinerjanya pada beban kerja dan konfigurasi perangkat keras yang representatif.
Ini dapat membantu mengidentifikasi potensi bottleneck dan memastikan bahwa model

dapat memenuhi target kinerja yang diperlukan.

Juga penting untuk mempertimbangkan trade-off antara kinerja model dan faktor-
faktor lain seperti biaya, fleksibilitas, dan kemudahan integrasi. Sebagai contoh,
menggunakan model yang lebih kecil dan lebih murah dengan latensi lebih rendah
mungkin lebih disukai untuk aplikasi yang membutuhkan respons real-time, sementara
model yang lebih besar dan lebih kuat mungkin lebih cocok untuk pemrosesan batch

atau tugas-tugas penalaran kompleks.

Bereksperimen Dengan Model LLM yang
Berbeda

Memilih LLM jarang menjadi keputusan permanen. Karena model baru dan yang lebih

baik dirilis secara teratur, adalah baik untuk membangun aplikasi secara modular yang

Pendahuluan 30

memungkinkan penggantian model bahasa yang berbeda dari waktu ke waktu. Prompt
dan dataset seringkali dapat digunakan kembali di berbagai model dengan perubahan
minimal. Ini memungkinkan Anda untuk memanfaatkan kemajuan terbaru dalam

pemodelan bahasa tanpa harus merancang ulang aplikasi secara total.

’ Kemampuan untuk beralih di antara berbagai pilihan model dengan mudah

adalah alasan lain mengapa saya sangat menyukai OpenRouter.

Saat meningkatkan ke model bahasa baru, penting untuk menguji dan memvalidasi
secara menyeluruh kinerja dan kualitas outputnya untuk memastikan bahwa model
tersebut memenuhi persyaratan aplikasi. Ini mungkin melibatkan pelatihan ulang atau
fine-tuning model pada data domain tertentu, serta memperbarui komponen hilir yang

bergantung pada output model.

Dengan merancang aplikasi dengan mempertimbangkan kinerja dan modularitas, Anda
dapat menciptakan sistem yang dapat diskalakan, efisien, dan tahan masa depan yang

dapat beradaptasi dengan lanskap teknologi pemodelan bahasa yang berkembang pesat.

Sistem Al Majemuk

Sebelum mengakhiri pengantar kita, perlu disebutkan bahwa sebelum tahun 2023
dan ledakan minat terhadap Al generatif yang dipicu oleh ChatGPT, pendekatan Al
tradisional biasanya mengandalkan integrasi model tunggal yang tertutup. Sebaliknya,
Sistem AI Majemuk memanfaatkan rangkaian kompleks dari komponen-komponen

yang saling terhubung yang bekerja bersama untuk mencapai perilaku cerdas.

Pada intinya, sistem Al majemuk terdiri dari beberapa modul, yang masing-masing di-
rancang untuk melakukan tugas atau fungsi tertentu. Modul-modul ini dapat mencakup
generator, pengambil, perangking, pengklasifikasi, dan berbagai komponen khusus

lainnya. Dengan memecah keseluruhan sistem menjadi unit-unit yang lebih kecil dan

Pendahuluan 31

terfokus, pengembang dapat menciptakan arsitektur Al yang lebih fleksibel, terukur,
dan mudah dipelihara.

Salah satu keunggulan utama sistem Al majemuk adalah kemampuannya untuk meng-
gabungkan kekuatan dari berbagai teknik dan model Al Misalnya, sebuah sistem
mungkin menggunakan model bahasa besar (LLM) untuk pemahaman dan generasi
bahasa alami, sambil menggunakan model terpisah untuk pengambilan informasi atau
pengambilan keputusan berbasis aturan. Pendekatan modular ini memungkinkan Anda
memilih alat dan teknik terbaik untuk setiap tugas tertentu, alih-alih mengandalkan

solusi satu ukuran untuk semua.

Namun, membangun sistem Al majemuk juga menghadirkan tantangan unik. Secara
khusus, memastikan koherensi dan konsistensi perilaku sistem secara keseluruhan

membutuhkan mekanisme pengujian, pemantauan, dan tata kelola yang kuat.

Munculnya LLM yang kuat seperti GPT-4 memungkinkan kita untuk
’ bereksperimen dengan sistem AI majemuk lebih mudah dari sebelum-
nya, karena model-model canggih ini mampu menangani berbagai peran
dalam sistem majemuk, seperti klasifikasi, perangkingan, dan generasi,
selain kemampuan pemahaman bahasa alami mereka. Keserbagunaaan
ini memungkinkan pengembang untuk membuat prototipe dan mengiterasi
arsitektur Al majemuk dengan cepat, membuka kemungkinan baru untuk

pengembangan aplikasi cerdas.

Pola Penerapan untuk Sistem Al Majemuk

Sistem AI majemuk dapat diterapkan menggunakan berbagai pola, yang masing-
masing dirancang untuk memenuhi persyaratan dan kasus penggunaan tertentu. Mari
kita jelajahi empat pola penerapan umum: Tanya Jawab, Pemecah Masalah Multi-

Agen/Agentik, Al Percakapan, dan CoPilot.

Pendahuluan 32

Tanya Jawab

Sistem Tanya Jawab (Q&A) berfokus pada penyampaian pengambilan informasi yang
ditingkatkan dengan kemampuan pemahaman model Al agar dapat berfungsi lebih
dari sekadar mesin pencari. Dengan menggabungkan model bahasa yang kuat dengan
sumber pengetahuan eksternal menggunakan Generasi Berbasis Pengambilan (RAG),
sistem Tanya Jawab menghindari halusinasi dan memberikan respons yang akurat dan

relevan secara kontekstual terhadap pertanyaan pengguna.

Komponen utama sistem tanya jawab berbasis LLM meliputi:

« Pemahaman dan reformulasi kueri: Menganalisis kueri pengguna dan mem-
formulasikan ulang untuk lebih sesuai dengan sumber pengetahuan yang men-
dasarinya.

« Pengambilan pengetahuan: Mengambil informasi yang relevan dari sumber data
terstruktur atau tidak terstruktur berdasarkan kueri yang telah direformulasi.

« Pembuatan respons: Menghasilkan respons yang koheren dan informatif den-
gan mengintegrasikan pengetahuan yang diambil dengan kemampuan generatif

model bahasa.

Subsistem RAG sangat penting dalam domain tanya jawab di mana penyediaan infor-
masi yang akurat dan terkini sangat penting, seperti dukungan pelanggan, manajemen

pengetahuan, atau aplikasi pendidikan

Pemecah Masalah Multi-Agen/Agentik

Sistem multi-agen, juga dikenal sebagai Agentik, terdiri dari beberapa agen otonom
yang bekerja sama untuk memecahkan masalah kompleks. Setiap agen memiliki peran
spesifik, serangkaian keterampilan, dan akses ke alat atau sumber informasi yang
relevan. Dengan berkolaborasi dan bertukar informasi, agen-agen ini dapat menangani

tugas yang sulit atau tidak mungkin ditangani oleh satu agen saja.

Prinsip-prinsip utama pemecah masalah multi-agen meliputi:

Pendahuluan 33

- Spesialisasi: Setiap agen berfokus pada aspek spesifik dari masalah, meman-
faatkan kemampuan dan pengetahuan uniknya.

« Kolaborasi: Agen-agen berkomunikasi dan mengoordinasikan tindakan mereka
untuk mencapai tujuan bersama, sering melalui pengiriman pesan atau memori
bersama.

« Adaptabilitas: Sistem dapat beradaptasi dengan perubahan kondisi atau per-

syaratan dengan menyesuaikan peran dan perilaku masing-masing agen.

Sistem multi-agen sangat cocok untuk aplikasi yang membutuhkan pemecahan masalah
terdistribusi, seperti optimasi rantai pasok, manajemen lalu lintas, atau perencanaan

tanggap darurat

Al Konversasional

Sistem AI konversasional memungkinkan interaksi bahasa natural antara pengguna
dan agen cerdas. Sistem ini menggabungkan kemampuan pemahaman bahasa natural,
manajemen dialog, dan pembuatan bahasa untuk memberikan pengalaman percakapan

yang menarik dan personal.

Komponen utama sistem Al konversasional meliputi:

« Pengenalan maksud: Mengidentifikasi maksud pengguna berdasarkan input
mereka, seperti mengajukan pertanyaan, membuat permintaan, atau mengekspre-
sikan sentimen.

« Ekstraksi entitas: Mengekstrak entitas atau parameter yang relevan dari input
pengguna, seperti tanggal, lokasi, atau nama produk.

« Manajemen dialog: Mempertahankan status percakapan, menentukan respons
yang tepat berdasarkan maksud dan konteks pengguna, dan menangani interaksi
multi-giliran.

+ Generasi respons: Menghasilkan respons seperti manusia menggunakan model

bahasa, templat, atau metode berbasis pengambilan.

Pendahuluan 34

Sistem Al konversasional umumnya digunakan dalam chatbot layanan pelanggan,
asisten virtual, dan antarmuka kendali suara. Seperti yang disebutkan sebelumnya,
sebagian besar pendekatan, pola, dan contoh kode dalam buku ini diambil langsung

dari pekerjaan saya pada sistem AI konversasional besar bernama Olympia
CoPilot

CoPilot adalah asisten bertenaga Al yang bekerja berdampingan dengan pengguna
manusia untuk meningkatkan produktivitas dan kemampuan pengambilan keputusan
mereka. Sistem ini memanfaatkan kombinasi pemrosesan bahasa alami, pembelajaran
mesin, dan pengetahuan spesifik domain untuk memberikan rekomendasi cerdas,

mengotomatisasi tugas, dan menawarkan dukungan kontekstual.

Fitur utama CoPilot meliputi:

« Personalisasi: Beradaptasi dengan preferensi individu pengguna, alur kerja, dan
gaya komunikasi.

« Bantuan proaktif: Mengantisipasi kebutuhan pengguna dan menawarkan saran
atau tindakan yang relevan tanpa perintah eksplisit.

« Pembelajaran berkelanjutan: Meningkatkan kinerja seiring waktu dengan bela-

jar dari umpan balik pengguna, interaksi, dan data.

CoPilot semakin banyak digunakan dalam berbagai domain, seperti pengembangan
perangkat lunak (misalnya, penyelesaian kode dan deteksi bug), penulisan kreatif
(misalnya, saran konten dan pengeditan), dan analisis data (misalnya, wawasan dan

rekomendasi visualisasi)

Pola penerapan ini menunjukkan keragaman dan potensi sistem Al majemuk. Dengan
memahami karakteristik dan kasus penggunaan setiap pola, Anda dapat membuat kepu-
tusan yang tepat saat merancang dan mengimplementasikan aplikasi cerdas. Meskipun
buku ini tidak secara khusus membahas implementasi sistem AI majemuk, banyak,
jika tidak semua, pendekatan dan pola yang sama berlaku untuk mengintegrasikan

komponen Al diskret dalam pengembangan aplikasi tradisional.

https://olympia.chat

Pendahuluan 35

Peran dalam Sistem Al Majemuk

Sistem Al majemuk dibangun di atas fondasi modul yang saling berhubungan, masing-
masing dirancang untuk menjalankan peran tertentu. Modul-modul ini bekerja sama
untuk menciptakan perilaku cerdas dan memecahkan masalah kompleks. Penting
untuk memahami peran-peran ini ketika memikirkan di mana Anda mungkin dapat
mengimplementasikan atau mengganti bagian dari aplikasi Anda dengan komponen Al

diskret.

Generator

Generator bertanggung jawab untuk menghasilkan data atau konten baru berdasarkan
pola yang dipelajari atau masukan prompt. Dunia Al memiliki berbagai jenis generator,
tetapi dalam konteks model bahasa yang ditampilkan dalam buku ini, generator dapat
membuat teks seperti manusia, melengkapi kalimat parsial, atau menghasilkan respons
terhadap pertanyaan pengguna. Mereka memainkan peran penting dalam tugas-tugas

seperti pembuatan konten, generasi dialog, dan augmentasi data.

Retriever

Retriever digunakan untuk mencari dan mengekstrak informasi yang relevan dari
kumpulan data besar atau basis pengetahuan. Mereka menggunakan teknik seperti
pencarian semantik, pencocokan kata kunci, atau kesamaan vektor untuk menemukan
titik data yang paling relevan berdasarkan kueri atau konteks yang diberikan. Retriever
sangat penting untuk tugas-tugas yang memerlukan akses cepat ke informasi spesifik,

seperti menjawab pertanyaan, pemeriksaan fakta, atau rekomendasi konten.

Ranker

Ranker bertanggung jawab untuk mengurutkan atau memprioritaskan sekumpulan item

berdasarkan kriteria atau skor relevansi tertentu. Mereka memberikan bobot atau skor

Pendahuluan 36

ke setiap item dan kemudian mengurutkannya sesuai dengan itu. Ranker umumnya
digunakan dalam mesin pencari, sistem rekomendasi, atau aplikasi apa pun di mana

penyajian hasil yang paling relevan kepada pengguna sangat penting.

Classifier

Classifier digunakan untuk mengkategorikan atau memberi label pada titik data
berdasarkan kelas atau kategori yang telah ditentukan. Mereka belajar dari data
pelatihan berlabel dan kemudian memprediksi kelas dari instance baru yang belum
pernah dilihat. Classifier sangat fundamental untuk tugas-tugas seperti analisis
sentimen, deteksi spam, atau pengenalan gambar, di mana tujuannya adalah untuk

memberikan kategori spesifik pada setiap input.

Perangkat & Agen

Selain peran-peran inti ini, sistem Al majemuk sering mengintegrasikan perangkat dan

agen untuk meningkatkan fungsionalitas dan kemampuan adaptasinya:

« Perangkat: Perangkat adalah komponen perangkat lunak atau API diskret yang
melakukan tindakan atau perhitungan spesifik. Mereka dapat dipanggil oleh
modul lain, seperti generator atau retriever, untuk menyelesaikan sub-tugas atau
mengumpulkan informasi tambahan. Contoh perangkat termasuk mesin pencari
web, kalkulator, atau pustaka visualisasi data.

« Agen: Agen adalah entitas otonom yang dapat memahami lingkungannya,
membuat keputusan, dan mengambil tindakan untuk mencapai tujuan tertentu.
Mereka sering mengandalkan kombinasi berbagai teknik Al, seperti perencanaan,
penalaran, dan pembelajaran, untuk beroperasi secara efektif dalam kondisi yang
dinamis atau tidak pasti. Agen dapat digunakan untuk memodelkan perilaku
kompleks atau untuk mengoordinasikan tindakan berbagai modul dalam sistem

Al majemuk.

Pendahuluan 37

Dalam sistem Al majemuk murni, interaksi antara komponen-komponen ini diatur
melalui antarmuka dan protokol komunikasi yang terdefinisi dengan baik. Data
mengalir di antara modul, dengan output dari satu komponen berfungsi sebagai input
untuk komponen lain. Arsitektur modular ini memungkinkan fleksibilitas, skalabilitas,
dan kemudahan pemeliharaan, karena komponen individual dapat diperbarui, diganti,

atau diperluas tanpa mempengaruhi keseluruhan sistem.

Dengan memanfaatkan kekuatan komponen-komponen ini dan interaksinya, sistem Al
majemuk dapat menangani masalah dunia nyata yang kompleks yang membutuhkan
kombinasi berbagai kemampuan Al Saat kita mengeksplorasi pendekatan dan pola un-
tuk mengintegrasikan Al ke dalam pengembangan aplikasi, perlu diingat bahwa prinsip
dan teknik yang sama yang digunakan dalam sistem Al majemuk dapat diterapkan

untuk menciptakan aplikasi yang cerdas, adaptif, dan berpusat pada pengguna.

Dalam bab-bab berikutnya dari Bagian 1, kita akan mendalami pendekatan dan teknik
fundamental untuk mengintegrasikan komponen Al ke dalam proses pengembangan
aplikasi Anda. Mulai dari rekayasa prompt dan generasi yang ditingkatkan dengan
pengambilan hingga data yang dapat memperbaiki diri dan orkestrasi alur kerja cerdas,
kita akan membahas berbagai pola dan praktik terbaik untuk membantu Anda mengem-

bangkan aplikasi berbasis Al yang mutakhir.

Bagian 1: Pendekatan &
Teknik Fundamental

Bagian buku ini menyajikan berbagai cara mengintegrasikan penggunaan Al dalam
aplikasi Anda. Bab-babnya mencakup beragam pendekatan dan teknik terkait, mulai
dari konsep yang lebih tingkat tinggi seperti Mempersempit Jalur dan Pembangkitan
Tertambah Pengambilan hingga ide-ide untuk memprogram lapisan abstraksi Anda

sendiri di atas API penyelesaian chat LLM.

Tujuan dari bagian buku ini adalah untuk membantu Anda memahami jenis-jenis per-
ilaku yang dapat Anda implementasikan dengan Al, sebelum terlalu dalam membahas

pola-pola implementasi spesifik yang menjadi fokus Bagian 2.

Pendekatan-pendekatan dalam Bagian 1 didasarkan pada ide-ide yang telah saya
gunakan dalam kode saya, pola-pola klasik arsitektur dan integrasi aplikasi enterprise,
ditambah metafora yang saya gunakan ketika menjelaskan kemampuan Al kepada

orang lain, termasuk pemangku kepentingan bisnis non-teknis.

Mempersempit Jalur

S

VR A

.‘5
i

“Mempersempit jalur” mengacu pada memfokuskan Al pada tugas yang sedang di-
hadapi. Saya menggunakannya sebagai mantra setiap kali saya merasa frustrasi
tentang Al yang bertindak “bodoh” atau dengan cara yang tidak terduga. Mantra ini
mengingatkan saya bahwa kegagalan tersebut mungkin adalah kesalahan saya, dan

bahwa saya mungkin perlu mempersempit jalurnya lebih lanjut.

Kebutuhan untuk mempersempit jalur muncul dari besarnya jumlah pengetahuan yang
terkandung dalam model bahasa besar, terutama model kelas dunia seperti yang dikem-

bangkan oleh OpenAl dan Anthropic yang secara literal memiliki triliunan parameter.

Mempersempit Jalur 40

Memiliki akses ke berbagai pengetahuan yang luas seperti ini tentu sangat kuat dan
menghasilkan perilaku emergen seperti teori pikiran dan kemampuan untuk bernalar
dengan cara yang mirip manusia. Namun, volume informasi yang luar biasa besar ini
juga menghadirkan tantangan ketika harus menghasilkan respons yang tepat dan akurat
untuk prompt tertentu, terutama jika prompt tersebut dimaksudkan untuk menunjukkan
perilaku deterministik yang dapat diintegrasikan dengan pengembangan perangkat

lunak dan algoritma “normal”.
Sejumlah faktor menyebabkan tantangan-tantangan ini.

Kelebihan Informasi: Model bahasa besar dilatih dengan data yang sangat besar
yang mencakup berbagai domain, sumber, dan periode waktu. Pengetahuan yang
luas ini memungkinkan mereka untuk terlibat dalam berbagai topik dan menghasilkan
respons berdasarkan pemahaman yang luas tentang dunia. Namun, ketika meng-
hadapi prompt tertentu, model mungkin kesulitan menyaring informasi yang tidak
relevan, bertentangan, atau ketinggalan zaman/usang, yang mengakibatkan respons
yang kurang fokus atau akurat. Tergantung pada apa yang Anda coba lakukan,
volume informasi yang bertentangan yang tersedia untuk model dapat dengan mudah

membebani kemampuannya untuk memberikan jawaban atau perilaku yang Anda cari.

Ambiguitas Kontekstual: Mengingat besarnya ruang laten pengetahuan, model
bahasa besar mungkin menghadapi ambiguitas ketika mencoba memahami konteks
prompt Anda. Tanpa pembatasan atau panduan yang tepat, model dapat menghasilkan
respons yang hanya terkait secara tidak langsung tetapi tidak relevan dengan maksud
Anda. Jenis kegagalan ini menghasilkan respons yang melenceng dari topik, tidak
konsisten, atau gagal memenuhi kebutuhan yang Anda nyatakan. Dalam hal ini,
mempersempit jalur mengacu pada disambiguasi konteks, memastikan bahwa konteks
yang Anda berikan menyebabkan model hanya fokus pada informasi yang paling

relevan dalam pengetahuan dasarnya.

Mempersempit Jalur 41

Catatan: Ketika Anda baru memulai dengan “prompt engineering”, Anda
lebih mungkin meminta model untuk melakukan sesuatu tanpa menjelaskan

hasil yang diinginkan dengan tepat; butuh latihan untuk tidak ambigu!

Inkonsistensi Temporal: Karena model bahasa dilatih dengan data yang dibuat pada
periode waktu yang berbeda, mereka mungkin memiliki pengetahuan yang sudah
usang, tergantikan, atau tidak lagi akurat. Misalnya, informasi tentang peristiwa
terkini, penemuan ilmiah, atau kemajuan teknologi mungkin telah berkembang sejak
data pelatihan model dikumpulkan. Tanpa mempersempit jalur untuk memprioritaskan
sumber yang lebih baru dan dapat diandalkan, model mungkin menghasilkan respons
berdasarkan informasi yang sudah usang atau salah, yang mengarah pada ketidakaku-

ratan dan inkonsistensi dalam keluarannya.

Nuansa Spesifik Domain: Domain dan bidang yang berbeda memiliki terminologi,
konvensi, dan basis pengetahuan mereka sendiri. Pikirkan tentang hampir semua ATH
(Akronim Tiga Huruf) dan Anda akan menyadari bahwa kebanyakan dari mereka
memiliki lebih dari satu arti. Misalnya, MSK bisa merujuk pada Amazon’s Managed
Streaming for Apache Kafka, Memorial Sloan Kettering Cancer Center, atau sistem

MuskuloSKeletal manusia.

Ketika sebuah prompt memerlukan keahlian dalam domain tertentu, pengetahuan
umum model bahasa besar mungkin tidak cukup untuk memberikan respons yang
akurat dan bernuansa. Mempersempit jalur dengan berfokus pada informasi spesifik
domain, baik melalui prompt engineering atau retrieval-augmented generation, memu-
ngkinkan model menghasilkan respons yang lebih selaras dengan persyaratan dan

ekspektasi domain spesifik Anda.

Ruang Laten: Sangat Luas Tak Terpahami

Ketika saya menyebutkan “ruang laten” dari model bahasa, saya mengacu pada lanskap

multidimensi yang luas dari pengetahuan dan informasi yang telah dipelajari model

Mempersempit Jalur 42

selama proses pelatihannya. Ini seperti alam tersembunyi dalam jaringan saraf model,

di mana semua pola, asosiasi, dan representasi bahasa disimpan.

Bayangkan Anda sedang menjelajahi wilayah tak terpetakan yang luas yang dipenuhi
dengan tak terhitung banyaknya simpul yang saling terhubung. Setiap simpul mewakili
sebuah informasi, konsep, atau hubungan yang telah dipelajari model. Saat Anda
menavigasi melalui ruang ini, Anda akan menemukan bahwa beberapa simpul lebih
dekat satu sama lain, menunjukkan koneksi atau kesamaan yang kuat, sementara yang

lain lebih jauh terpisah, menunjukkan hubungan yang lebih lemah atau lebih jauh.

Tantangan dengan ruang laten adalah bahwa ruang ini sangat kompleks dan berdimensi
tinggi. Bayangkan itu seluas alam semesta fisik kita, dengan gugusan galaksinya dan

jarak ruang kosong yang sangat luas dan tak terbayangkan di antara mereka.

Karena memiliki ribuan dimensi, ruang laten tidak dapat diamati atau diinterpretasikan
secara langsung oleh manusia. Ini adalah representasi abstrak yang digunakan model
secara internal untuk memproses dan menghasilkan bahasa. Ketika Anda memberikan
prompt masukan ke model, pada dasarnya prompt tersebut dipetakan ke lokasi tertentu
dalam ruang laten. Model kemudian menggunakan informasi dan koneksi di sekitarnya

dalam ruang tersebut untuk menghasilkan respons.

Yang perlu dipahami adalah, model telah mempelajari sejumlah besar informasi dari
data pelatihannya, dan tidak semuanya relevan atau akurat untuk tugas tertentu. Itulah
mengapa mempersempit jalur menjadi sangat penting. Dengan memberikan instruksi
yang jelas, contoh, dan konteks dalam prompt Anda, pada dasarnya Anda mengarahkan
model untuk fokus pada wilayah tertentu dalam ruang laten yang paling relevan dengan

keluaran yang Anda inginkan.

Cara lain untuk memahaminya adalah seperti menggunakan lampu sorot di museum
yang benar-benar gelap. Jika Anda pernah mengunjungi Louvre atau Metropolitan
Museum of Art, maka itulah skala yang saya maksud. Ruang laten adalah museumnya,
dipenuhi dengan tak terhitung banyaknya objek dan detail. Prompt Anda adalah lampu

sorotnya, menerangi area tertentu dan mengarahkan perhatian model ke informasi

Mempersempit Jalur 43

yang paling penting. Tanpa panduan tersebut, model mungkin akan berkeliaran tanpa
arah melalui ruang laten, mengambil informasi yang tidak relevan atau bertentangan

sepanjang prosesnya.

Saat Anda bekerja dengan model bahasa dan menyusun prompt Anda, ingatlah konsep
ruang laten ini. Tujuan Anda adalah menavigasi lanskap pengetahuan yang luas ini
secara efektif, mengarahkan model menuju informasi yang paling relevan dan akurat
untuk tugas Anda. Dengan mempersempit jalur dan memberikan panduan yang jelas,
Anda dapat membuka potensi penuh dari ruang laten model dan menghasilkan respons

yang berkualitas tinggi dan koheren.

Meskipun deskripsi sebelumnya tentang model bahasa dan ruang laten yang mereka
navigasi mungkin terkesan sedikit ajaib atau abstrak, penting untuk dipahami bahwa
prompt bukanlah mantra atau jampi-jampi. Cara kerja model bahasa didasarkan pada

prinsip-prinsip aljabar linier dan teori probabilitas.

Pada intinya, model bahasa adalah model probabilistik dari teks, mirip seperti kurva
lonceng yang merupakan model statistik dari data. Model-model ini dilatih melalui
proses yang disebut pemodelan auto-regresif, di mana model belajar untuk memprediksi
probabilitas kata berikutnya dalam sebuah urutan berdasarkan kata-kata yang muncul
sebelumnya. Selama pelatihan, model dimulai dengan bobot acak dan secara bertahap
menyesuaikannya untuk memberikan probabilitas yang lebih tinggi pada teks yang

menyerupai sampel dunia nyata yang digunakan untuk pelatihannya.

Namun, memandang model bahasa sebagai model statistik sederhana, seperti regresi
linear, tidak memberikan intuisi terbaik untuk memahami perilaku mereka. Analogi
yang lebih tepat adalah menganggap mereka sebagai program probabilistik, yang
merupakan model yang memungkinkan manipulasi variabel acak dan dapat merepre-

sentasikan hubungan statistik yang kompleks.

Program probabilistik dapat direpresentasikan oleh model grafis, yang memberikan cara
visual untuk memahami ketergantungan dan hubungan antar variabel dalam model.

Perspektif ini dapat memberikan wawasan berharga tentang cara kerja model generasi

Mempersempit Jalur 44

teks yang kompleks seperti GPT-4 dan Claude.

Dalam makalah “Language Model Cascades” oleh Dohan et al., para penulis mendalami
detail bagaimana program probabilistik dapat diterapkan pada model bahasa. Mereka
menunjukkan bagaimana kerangka kerja ini dapat digunakan untuk memahami perilaku
model-model ini dan memandu pengembangan strategi pembuatan prompt yang lebih

efektif.

Salah satu wawasan kunci dari perspektif probabilistik ini adalah bahwa model bahasa
pada dasarnya menciptakan portal ke alam semesta alternatif di mana dokumen yang
diinginkan ada. Model tersebut memberikan bobot pada semua dokumen yang mungkin
berdasarkan probabilitasnya, secara efektif mempersempit ruang kemungkinan untuk

fokus pada yang paling relevan.

Ini membawa kita kembali ke tema utama “mempersempit jalur” Tujuan utama
pembuatan prompt adalah untuk mengkondisikan model probabilistik dengan cara
yang memfokuskan massa prediksinya, mengarah pada informasi atau perilaku spesifik
yang ingin kita peroleh. Dengan memberikan prompt yang dirancang dengan cermat,
kita dapat memandu model untuk menavigasi ruang laten dengan lebih efisien dan

menghasilkan keluaran yang lebih relevan dan koheren.

Namun, penting untuk diingat bahwa model bahasa pada akhirnya dibatasi oleh
informasi yang digunakan untuk pelatihannya. Meskipun dapat menghasilkan teks
yang mirip dengan dokumen yang ada atau menggabungkan ide dengan cara yang baru,
model tidak dapat menciptakan informasi yang sepenuhnya baru dari nol. Misalnya,
kita tidak bisa mengharapkan model untuk memberikan obat untuk kanker jika obat

semacam itu belum ditemukan dan didokumentasikan dalam data pelatihannya.

Sebaliknya, kekuatan model terletak pada kemampuannya untuk menemukan dan
mensintesis informasi yang mirip dengan apa yang kita prompt. Dengan memahami
sifat probabilistik model-model ini dan bagaimana prompt dapat digunakan untuk
mengkondisikan keluarannya, kita dapat memanfaatkan kemampuan mereka secara

lebih efektif untuk menghasilkan wawasan dan konten yang berharga.

0 N O O b W N

Mempersempit Jalur 45

Perhatikan prompt di bawah ini. Dalam prompt pertama, “Mercury” saja bisa merujuk
pada planet, unsur kimia, atau dewa Romawi, tetapi yang paling mungkin adalah planet.
Memang, GPT-4 memberikan respons panjang yang dimulai dengan Mercury adalah
planet terkecil dan terdalam di Tata Surya.... Prompt kedua secara khusus mengacu
pada unsur kimia. Prompt ketiga mengacu pada tokoh mitologi Romawi, yang dikenal

karena kecepatannya dan perannya sebagai utusan ilahi.

Prompt 1

Tell me about: Mercury

Prompt 2
Tell me about: Mercury element

Prompt 3

Tell me about: Mercury messenger of the gods

Dengan menambahkan hanya beberapa kata tambahan, kita telah sepenuhnya men-
gubah cara Al bereaksi. Seperti yang akan Anda pelajari nanti dalam buku ini, trik-
trik rekayasa prompt yang canggih seperti prompt n-shot, input/output terstruktur, dan

Rantai Pemikiran hanyalah cara cerdas untuk mengondisikan keluaran model.

Jadi pada akhirnya, seni rekayasa prompt adalah tentang memahami cara menavigasi
lanskap probabilistik yang luas dari pengetahuan model bahasa untuk mempersempit

jalur menuju informasi atau perilaku spesifik yang kita cari.

Bagi pembaca yang memiliki pemahaman kuat tentang matematika lanjut, men-
dasarkan pemahaman Anda tentang model-model ini pada prinsip-prinsip teori proba-
bilitas dan aljabar linier pasti dapat membantu! Bagi Anda yang ingin mengembangkan
strategi efektif untuk memperoleh keluaran yang diinginkan, mari kita tetap berpegang

pada pendekatan yang lebih intuitif.

Mempersempit Jalur 46

Bagaimana Jalur Tersebut “Dipersempit”

Untuk mengatasi tantangan kelebihan pengetahuan ini, kita menggunakan teknik-
teknik yang membantu mengarahkan proses generasi model bahasa dan memfokuskan

perhatiannya pada informasi yang paling relevan dan akurat.

Berikut adalah teknik-teknik yang paling signifikan, dalam urutan yang direkomen-
dasikan, yaitu, Anda harus mencoba Rekayasa Prompt terlebih dahulu, kemudian RAG,

dan akhirnya, jika memang harus, penyetelan halus.

Rekayasa Prompt Pendekatan yang paling mendasar adalah menyusun prompt yang
mencakup instruksi spesifik, batasan, atau contoh untuk mengarahkan generasi respons
model. Bab ini membahas dasar-dasar Rekayasa Prompt di bagian berikutnya, dan kita
membahas banyak pola rekayasa prompt spesifik di Bagian 2 buku ini. Pola-pola terse-
but mencakup Penyulingan Prompt, sebuah teknik yang berfokus pada penyempurnaan
dan pengoptimalan prompt untuk mengekstrak apa yang dianggap Al sebagai informasi

paling relevan dan ringkas.

Augmentasi Konteks. Mengambil informasi yang relevan secara dinamis dari basis
pengetahuan atau dokumen eksternal untuk memberikan konteks yang terfokus kepada
model pada saat prompt diberikan. Teknik augmentasi konteks yang populer mencakup
Generasi Berbasis Pengambilan (RAG) Model-model yang disebut “online” seperti yang
disediakan oleh Perplexity mampu menambah konteks mereka dengan hasil pencarian

internet real-time.

Meskipun memiliki kemampuan yang kuat, LLM tidak dilatih dengan

P dataset unik Anda, yang mungkin bersifat privat atau spesifik untuk
masalah yang ingin Anda selesaikan. Teknik Augmentasi Konteks memu-
ngkinkan Anda memberi LLM akses ke data di balik API, dalam database
SQL, atau yang terjebak dalam PDF dan slide presentasi.

Fine-Tuning atau Adaptasi Domain Melatih model pada dataset khusus domain untuk

https://perplexity.ai

Mempersempit Jalur 47

mengkhususkan pengetahuan dan kemampuan generasinya untuk tugas atau bidang

tertentu.

Menurunkan Temperature

Temperature adalah sebuah hyperparameter yang digunakan dalam model bahasa
berbasis transformer yang mengontrol tingkat keacakan dan kreativitas dari teks yang
dihasilkan. Nilainya berkisar antara 0 dan 1, di mana nilai yang lebih rendah membuat
output lebih terfokus dan deterministik, sementara nilai yang lebih tinggi membuatnya

lebih beragam dan tidak terduga.

Ketika temperature diatur ke 1, model bahasa menghasilkan teks berdasarkan distribusi
probabilitas penuh dari token berikutnya, memungkinkan respons yang lebih kreatif
dan bervariasi. Namun, ini juga dapat menyebabkan model menghasilkan teks yang

kurang relevan atau koheren.

Sebaliknya, ketika temperature diatur ke 0, model bahasa selalu memilih token den-
gan probabilitas tertinggi, secara efektif “mempersempit jalannya” Hampir semua
komponen AI saya menggunakan temperature yang diatur pada atau mendekati 0,
karena menghasilkan respons yang lebih terfokus dan dapat diprediksi. Ini sangat
berguna ketika Anda ingin model mengikuti instruksi, memperhatikan fungsi yang
telah disediakan, atau hanya membutuhkan respons yang lebih akurat dan relevan

daripada yang Anda dapatkan.

Sebagai contoh, jika Anda membangun chatbot yang perlu memberikan informasi
faktual, Anda mungkin ingin mengatur temperature ke nilai yang lebih rendah untuk
memastikan responsnya lebih presisi dan sesuai topik. Sebaliknya, jika Anda memban-
gun asisten penulisan kreatif, Anda mungkin ingin mengatur temperature ke nilai yang

lebih tinggi untuk mendorong output yang lebih beragam dan imajinatif.

Mempersempit Jalur 48

Hyperparameter: Tombol dan Pengatur Inferensi

Ketika Anda bekerja dengan model bahasa, Anda akan sering menemui istilah “hyper-
parameter”. Dalam konteks inferensi (yaitu, ketika Anda menggunakan model untuk
menghasilkan respons), hyperparameter seperti tombol dan pengatur yang dapat Anda

sesuaikan untuk mengontrol perilaku dan output model.

Bayangkan seperti menyesuaikan pengaturan pada mesin yang kompleks. Sama seperti
Anda mungkin memutar tombol untuk mengontrol suhu atau mengubah sakelar untuk
mengubah mode operasi, hyperparameter memungkinkan Anda menyesuaikan secara

halus cara model bahasa memproses dan menghasilkan teks.

Beberapa hiperparameter umum yang akan Anda temui selama inferensi meliputi:

« Temperature: Seperti yang baru saja disebutkan, parameter ini mengontrol
tingkat keacakan dan kreativitas dari teks yang dihasilkan. Temperature yang
lebih tinggi menghasilkan keluaran yang lebih beragam dan tidak terduga, semen-
tara temperature yang lebih rendah menghasilkan respons yang lebih terfokus dan

deterministik.

« Top-p (nucleus) sampling: Parameter ini mengontrol pemilihan kumpulan token
terkecil yang probabilitas kumulatifnya melebihi ambang batas tertentu (p). Hal
ini memungkinkan keluaran yang lebih beragam sambil tetap mempertahankan

koherensi.

« Top-k sampling: Teknik ini memilih k token berikutnya yang paling mungkin
dan mendistribusikan ulang massa probabilitas di antara token-token tersebut.
Ini dapat membantu mencegah model menghasilkan token dengan probabilitas

rendah atau yang tidak relevan.

« Frequency dan Presence penalties: Parameter-parameter ini memberikan

penalti pada model untuk pengulangan kata atau frasa yang terlalu sering

Mempersempit Jalur 49

(penalty frekuensi) atau untuk menghasilkan kata-kata yang tidak ada dalam
prompt masukan (penalty kehadiran). Dengan menyesuaikan nilai-nilai ini, Anda
dapat mendorong model untuk menghasilkan keluaran yang lebih bervariasi dan

relevan.

« Maximum length: Hiperparameter ini menetapkan batas atas jumlah token (kata
atau sub-kata) yang dapat dihasilkan model dalam satu respons. Ini membantu

mengontrol tingkat kerincian dan keringkasan teks yang dihasilkan.

Saat Anda bereksperimen dengan pengaturan hiperparameter yang berbeda, Anda
akan menemukan bahwa bahkan penyesuaian kecil dapat memberikan dampak yang
signifikan pada keluaran model. Ini seperti menyempurnakan resep masakan - sedikit
garam tambahan atau waktu memasak yang sedikit lebih lama dapat membuat perbe-

daan besar pada hidangan akhir.

Kuncinya adalah memahami bagaimana setiap hiperparameter mempengaruhi perilaku
model dan menemukan keseimbangan yang tepat untuk tugas spesifik Anda. Jangan
ragu untuk mencoba pengaturan yang berbeda dan melihat bagaimana pengaruhnya
terhadap teks yang dihasilkan. Seiring waktu, Anda akan mengembangkan intuisi
tentang hiperparameter mana yang perlu disesuaikan dan bagaimana mencapai hasil

yang diinginkan.

Dengan menggabungkan penggunaan parameter-parameter ini dengan rekayasa
prompt, generasi yang diperkaya pengambilan, dan fine-tuning, Anda dapat secara
efektif mempersempit jalur dan mengarahkan model bahasa untuk menghasilkan
respons yang lebih akurat, relevan, dan bernilai untuk kasus penggunaan spesifik

mereka.

Mempersempit Jalur 50

Model Mentah Versus Model yang Dilatih

dengan Instruksi

Model mentah adalah versi LLM yang belum diperhalus dan belum dilatih. Bayangkan
seperti kanvas kosong yang belum terpengaruh oleh pelatihan khusus untuk memahami
atau mengikuti instruksi. Model-model ini dibangun berdasarkan data yang sangat
besar yang digunakan dalam pelatihan awal mereka, mampu menghasilkan berbagai
macam keluaran. Namun, tanpa lapisan tambahan berupa penyesuaian lanjutan
berbasis instruksi, respons mereka bisa tidak terduga dan membutuhkan prompt yang
lebih bernuansa dan dirancang dengan hati-hati untuk mengarahkan mereka menuju
keluaran yang diinginkan. Bekerja dengan model mentah seperti mencoba berkomu-
nikasi dengan seseorang yang memiliki pengetahuan sangat luas namun sama sekali
tidak memiliki intuisi tentang apa yang Anda tanyakan kecuali Anda sangat presisi
dalam instruksi Anda. Mereka sering terasa seperti burung beo, dalam artian sejauh
Anda bisa membuat mereka mengatakan sesuatu yang masuk akal, seringkali itu hanya

pengulangan sesuatu yang mereka dengar dari Anda.

Di sisi lain, model yang dilatih dengan instruksi telah melalui rangkaian pelatihan
yang dirancang khusus untuk memahami dan mengikuti instruksi. GPT-4, Claude
3 dan banyak model LLM populer lainnya telah melalui pelatihan instruksi yang
intensif. Pelatihan ini melibatkan pemberian contoh-contoh instruksi beserta hasil yang
diinginkan kepada model, secara efektif mengajari model cara menginterpretasikan dan
mengeksekusi berbagai macam perintah. Hasilnya, model-model dengan instruksi dapat
lebih mudah memahami maksud di balik sebuah prompt dan menghasilkan respons
yang selaras dengan harapan pengguna. Ini membuat mereka lebih ramah pengguna
dan lebih mudah digunakan, terutama bagi mereka yang mungkin tidak memiliki waktu

atau keahlian untuk melakukan rekayasa prompt yang ekstensif.

Mempersempit Jalur 51

Model Mentah: Kanvas Tanpa Filter

Model mentah, seperti Llama 2-70B atau Yi-34B, menawarkan akses yang lebih tidak
terfilter ke kemampuan model dibandingkan dengan yang mungkin Anda biasa gunakan
jika Anda telah bereksperimen dengan LLM populer seperti GPT-4. Model-model
ini tidak dilatih sebelumnya untuk mengikuti instruksi tertentu, memberikan Anda
kanvas kosong untuk memanipulasi keluaran model secara langsung melalui rekayasa
prompt yang cermat. Pendekatan ini membutuhkan pemahaman mendalam tentang
cara menyusun prompt yang mengarahkan Al ke arah yang diinginkan tanpa secara
eksplisit memberi instruksi. Ini seperti memiliki akses langsung ke lapisan “mentah”
dari Al yang mendasarinya, tanpa lapisan perantara yang menginterpretasikan atau

mengarahkan respons model (karena itulah namanya).

Mempersempit Jalur 52

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

Mixtral 8x22B (base) 4

| can see a huge variety of things. | can process information, understand

language, reason, learn and apply knowledge, recognize patterns, plan, act v
creatively, make predictions, judge, interact with the environment, identify ~
emotions, make decisions...

~96.3 tokens/s

Obie

Ml Do you recognize what | said?

Mixtral 8x22B (base) 4
No, this time | don't.
By the way, as a test for our meeting, I'm going to show you some photos and |~
want you to tell me what they represent. Are you ready?
~50.1 tokens/s

Gambar 3. Menguji model dasar menggunakan bagian dari sketsa klasik Abbott dan Costello "Who’s
on First’

Tantangan dengan model-model mentah terletak pada kecenderungan mereka untuk
terjebak dalam pola berulang atau menghasilkan keluaran yang acak. Namun, dengan
rekayasa prompt yang teliti dan penyesuaian parameter seperti penalti pengulangan,
model-model mentah dapat diarahkan untuk menghasilkan konten yang unik dan kre-
atif. Proses ini tidak lepas dari kompromi; sementara model-model mentah menawarkan
fleksibilitas tak tertandingi untuk inovasi, mereka membutuhkan tingkat keahlian yang

lebih tinggi.

Mempersempit Jalur 53

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

. GPT-4 Turbo Preview [4

This conversation piece between Abbott and Costello is from their famous comedy sketch
called "Who's on First?" known for its rapid-fire verbal exchange and plays on words,
particularly focusing on the confusing names of the baseball players. In the sketch, Abbott
tries to explain to Costello the names of the players on a baseball team, but the names
themselves sound like questions or statements (Who, What, | Don't Know, Because, etc.),
leading to a series of comedic misunderstandings.

~42.7 tokens/s

Gambar 4. Untuk tujuan perbandingan, ini adalah prompt ambigu yang sama yang dimasukkan ke
GPT-4

Model yang Dilatih dengan Instruksi: Pengalaman
Terpandu

Model yang dilatih dengan instruksi dirancang untuk memahami dan mengikuti in-
struksi spesifik, menjadikannya lebih ramah pengguna dan dapat diakses untuk berbagai
aplikasi yang lebih luas. Mereka memahami mekanisme percakapan dan bahwa mereka
harus berhenti menghasilkan ketika giliran mereka untuk berbicara telah selesai. Bagi
banyak pengembang, terutama mereka yang bekerja pada aplikasi yang sederhana,

model yang dilatih dengan instruksi menawarkan solusi yang nyaman dan efisien.

Proses pelatihan instruksi melibatkan pelatihan model pada korpus besar prompt in-
struksi dan respons yang dihasilkan manusia. Salah satu contoh yang patut diperhatikan
adalah dataset databricks-dolly-15k yang bersifat open source, yang berisi lebih dari
15.000 pasangan prompt/respons yang dibuat oleh karyawan Databricks yang dapat

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Mempersempit Jalur 54

Anda periksa sendiri. Dataset ini mencakup delapan kategori instruksi yang berbeda,
termasuk penulisan kreatif, tanya jawab tertutup dan terbuka, perangkuman, ekstraksi

informasi, klasifikasi, dan brainstorming.

Selama proses pembuatan data, para kontributor diberi pedoman tentang cara membuat
prompt dan respons untuk setiap kategori. Misalnya, untuk tugas penulisan kreatif,
mereka diinstruksikan untuk memberikan batasan, instruksi, atau persyaratan spesifik
untuk memandu output model. Untuk tanya jawab tertutup, mereka diminta untuk
menulis pertanyaan yang memerlukan respons yang secara faktual benar berdasarkan

kutipan Wikipedia yang diberikan.

Dataset yang dihasilkan berfungsi sebagai sumber daya berharga untuk penyetelan
halus model bahasa besar agar menunjukkan kemampuan interaktif dan mengikuti
instruksi seperti sistem ChatGPT. Dengan dilatih pada berbagai instruksi dan respons
yang dihasilkan manusia, model belajar untuk memahami dan mengikuti arahan

spesifik, membuatnya lebih mahir dalam menangani berbagai tugas.

Selain penyetelan halus langsung, prompt instruksi dalam dataset seperti databricks-
dolly-15k juga dapat digunakan untuk pembuatan data sintetis. Dengan mengirimkan
prompt yang dibuat kontributor sebagai contoh few-shot ke model bahasa terbuka
yang besar, pengembang dapat menghasilkan korpus instruksi yang jauh lebih besar
dalam setiap kategori. Pendekatan ini, yang diuraikan dalam makalah Self-Instruct,

memungkinkan pembuatan model pengikut instruksi yang lebih kuat.

Selain itu, instruksi dan respons dalam dataset ini dapat ditingkatkan melalui teknik
seperti parafrase. Dengan menyatakan ulang setiap prompt atau respons pendek
dan mengaitkan teks yang dihasilkan dengan sampel ground-truth masing-masing,
pengembang dapat memperkenalkan bentuk regularisasi yang meningkatkan kemam-

puan model untuk mengikuti instruksi.

Kemudahan penggunaan yang ditawarkan oleh model yang dilatih dengan instruksi
datang dengan mengorbankan beberapa fleksibilitas. Model-model ini seringkali sangat

disensor, yang berarti mereka mungkin tidak selalu memberikan tingkat kebebasan kre-

Mempersempit Jalur 55

atif yang dibutuhkan untuk tugas-tugas tertentu. Keluaran mereka sangat dipengaruhi

oleh bias dan keterbatasan yang melekat pada data penyetelan mereka.

Terlepas dari keterbatasan ini, model yang dilatih dengan instruksi menjadi semakin
populer karena sifatnya yang ramah pengguna dan kemampuannya untuk menangani
berbagai tugas dengan rekayasa prompt yang minimal. Seiring dengan tersedianya lebih
banyak dataset instruksi berkualitas tinggi, kita dapat mengharapkan peningkatan lebih

lanjut dalam kinerja dan keserbagunaan model-model ini.

Memilih Jenis Model yang Tepat untuk Proyek Anda

Keputusan antara model dasar (mentah) dan model yang dilatih dengan instruksi pada
akhirnya bergantung pada kebutuhan spesifik proyek Anda. Untuk tugas-tugas yang
membutuhkan tingkat kreativitas dan orisinalitas yang tinggi, model dasar menawarkan
alat yang kuat untuk inovasi. Model-model ini memungkinkan pengembang untuk
mengeksplorasi potensi penuh Model Bahasa Besar, mendorong batas-batas dari apa
yang dapat dicapai melalui aplikasi berbasis Al, tetapi memerlukan pendekatan yang
lebih hands-on dan kemauan untuk bereksperimen. Temperatur dan pengaturan lainnya
memiliki efek yang jauh lebih besar pada model dasar dibandingkan dengan model yang

dilatih dengan instruksi.

’ Apapun yang Anda masukkan dalam prompt adalah apa yang akan dicoba

diulang oleh model dasar. Jadi misalnya jika prompt Anda adalah tran-
skrip obrolan, model mentah akan mencoba melanjutkan obrolan tersebut.
Tergantung pada batas token maksimum, model tidak hanya akan meng-
hasilkan pesan berikutnya dalam obrolan, tetapi mungkin akan melakukan

percakapan dengan dirinya sendiri!

Mempersempit Jalur 56

Oble

Original: The movie was not very good.

Improved: The movie, with its weak storyline and uninspired acting, left me feeling
thoroughly unengaged, as it failed to evoke the excitement and emotion | typically seek in a
cinematic experience.

Original: The food at the restaurant was okay.

Improved: While the restaurant had an extensive menu and a pleasant ambiance, | found the
dishes to be merely satisfactory, lacking the flavorful and memorable culinary experience |
had hoped for, given its reputation.

Original: The weather today was kind of meh.

Improved: Today's weather could best be described as unremarkable, with a lackluster mix
of overcast skies and intermittent light rain, failing to offer the vibrant sunshine or dramatic
storms that often make a day memorable.

Original: The party was not as fun as | expected.

Improved: Despite my high expectations, the party turned out to be rather underwhelming,
as the energy in the room remained subdued, and the activities failed to spark the lively
atmosphere | had envisioned, leaving me somewhat disappointed.

Original: Her performance in the play was not that great.

Improved: Regrettably, her portrayal in the play lacked the depth, passion, and authenticity
that | had eagerly anticipated, ultimately falling short of delivering the captivating and
emotionally resonant character interpretation the role demanded.

Original: This ice cream sucks!
Improved:

Mixtral 8x7B (base) &

The ice cream, with its lackluster flavor and texture, failed to meet my expectations, leaving
me disappointed and yearning for a more satisfying and indulgent frozen treat.

£

Gambar 5. Contoh Penulisan Ulang Kalimat dengan Few-Shot Completion menggunakan Mixtral 8x7B
(dasar)

Saat menyiapkan contoh Penulisan Ulang Kalimat di atas oleh pengguna Reddit phree_-
radical, saya hanya bisa mendapatkan hasil yang bisa digunakan setelah banyak
bereksperimen dengan pengaturan parameter, yang akhirnya menetap pada: Tempera-

ture 0.08, Top P: 0.2, Top K: 1, dan Repetition Penalty: 1.26.

https://www.reddit.com/user/phree_radical/
https://www.reddit.com/user/phree_radical/

Mempersempit Jalur 57

Mencoba menggunakan pendekatan ini dengan model dasar dalam produksi akan sulit
karena efek kuat dari parameter max_tokens. Jika diatur terlalu pendek, keluarannya
akan terpotong. Jika diatur lebih panjang dari yang dibutuhkan model untuk keluaran

yang diinginkan, model akan terus berhalusinasi dengan contoh-contoh tambahan.

Intinya adalah kecuali Anda benar-benar membutuhkan kendali penuh dan bebas dari
sensor, model yang dilatih dengan instruksi dapat secara signifikan memperlancar
proses pengembangan Anda. Untuk mempertegas hal tersebut, berikut adalah respons
Mixtral 8x7B terhadap prompt yang sama, tetapi kali ini dalam versi yang dilatih dengan

instruksi:

Saya mohon maaf harus memberitahu bahwa es krim ini tidak memenuhi
harapan saya, karena tidak memiliki tekstur yang kaya dan lembut serta
rasa yang menyenangkan yang biasanya saya kaitkan dengan makanan
penutup berkualitas tinggi. Saya berharap mendapatkan pengalaman yang

lebih memuaskan dan menyenangkan.

Yang perlu dicatat, saya bisa membiarkan pengaturan max tokens pada 500, dan model
secara konsisten berhenti pada akhir keluaran yang diinginkan tanpa berhalusinasi

dengan contoh-contoh tambahan.

Rekayasa Prompt

Ketika Anda mulai menerapkan AI dalam proyek Anda, Anda akan segera menyadari
bahwa salah satu keterampilan paling penting yang perlu Anda kuasai adalah seni
rekayasa prompt. Tapi apa sebenarnya rekayasa prompt itu, dan mengapa begitu

penting?

Pada intinya, rekayasa prompt adalah proses merancang dan menyusun prompt
masukan yang Anda berikan kepada model bahasa untuk mengarahkan keluarannya.

Ini tentang memahami cara berkomunikasi secara efektif dengan AI, menggunakan

Mempersempit Jalur 58

kombinasi instruksi, contoh, dan konteks untuk mengarahkan model agar menghasilkan

respons yang diinginkan.

Anggap saja seperti berbicara dengan teman yang sangat cerdas tetapi agak kaku dalam
menafsirkan kata-kata. Untuk mendapatkan hasil maksimal dari interaksi tersebut,
Anda perlu berbicara dengan jelas, spesifik, dan memberikan konteks yang cukup untuk
memastikan bahwa teman Anda memahami persis apa yang Anda minta. Di sinilah
rekayasa prompt berperan, dan meskipun mungkin terlihat mudah pada awalnya,

percayalah bahwa butuh banyak latihan untuk menguasainya.

Komponen Dasar Prompt yang Efektif

Untuk mulai merekayasa prompt yang efektif, pertama-tama Anda perlu memahami
komponen-komponen utama yang membentuk masukan yang dirancang dengan baik.

Berikut adalah beberapa komponen dasarnya:

1. Instruksi: Petunjuk yang jelas dan ringkas yang memberi tahu model apa yang
Anda inginkan. Ini bisa berupa apa saja mulai dari “Ringkas artikel berikut”
hingga “Buat puisi tentang matahari terbenam” hingga “ubah permintaan peruba-
han proyek ini menjadi objek JSON”.

2. Konteks: Informasi yang relevan yang membantu model memahami latar be-
lakang dan ruang lingkup tugas. Ini mungkin mencakup detail tentang target
pembaca, nada dan gaya yang diinginkan, atau batasan atau persyaratan khusus
untuk keluaran, seperti Skema JSON yang harus diikuti.

3. Contoh: Contoh konkret yang menunjukkan jenis keluaran yang Anda cari.
Dengan memberikan beberapa contoh yang dipilih dengan baik, Anda dapat
membantu model mempelajari pola dan karakteristik respons yang diinginkan.

4. Pemformatan Masukan: Baris baru dan pemformatan markdown memberikan
struktur pada prompt kita. Memisahkan prompt menjadi paragraf memungkinkan

kita mengelompokkan instruksi yang terkait sehingga lebih mudah dipahami oleh

Mempersempit Jalur 59

manusia dan Al Poin dan daftar bernomor memungkinkan kita mendefinisikan
daftar dan urutan item. Penanda tebal dan miring memungkinkan kita menandai
penekanan.

5. Pemformatan Keluaran: Instruksi khusus tentang bagaimana keluaran harus dis-
usun dan diformat. Ini bisa mencakup arahan tentang panjang yang diinginkan,
penggunaan judul atau poin-poin, pemformatan markdown, atau template atau

konvensi keluaran khusus lainnya yang harus diikuti.

Dengan mengombinasikan komponen-komponen dasar ini dengan cara yang berbeda,
Anda dapat membuat prompt yang disesuaikan dengan kebutuhan spesifik Anda dan

mengarahkan model untuk menghasilkan respons yang berkualitas tinggi dan relevan.

Seni dan Sains Perancangan Prompt

Merancang prompt yang efektif adalah gabungan antara seni dan sains. (Itulah sebab-
nya kita menyebutnya sebuah keahlian.) Ini membutuhkan pemahaman mendalam
tentang kemampuan dan keterbatasan model bahasa, serta pendekatan kreatif dalam
merancang prompt yang memunculkan perilaku yang diinginkan. Kreativitas yang
terlibat adalah hal yang membuatnya sangat menyenangkan, setidaknya bagi saya. Ini
juga bisa membuat sangat membuat frustrasi, terutama ketika Anda mencari perilaku

deterministik

Salah satu aspek kunci dari rekayasa prompt adalah memahami cara menyeimbangkan
spesifisitas dan fleksibilitas. Di satu sisi, Anda ingin memberikan panduan yang cukup
untuk mengarahkan model ke arah yang benar. Di sisi lain, Anda tidak ingin terlalu
preskriptif sehingga membatasi kemampuan model untuk memanfaatkan kreativitas

dan fleksibilitasnya sendiri dalam menangani kasus-kasus khusus.

Pertimbangan penting lainnya adalah penggunaan contoh. Contoh-contoh yang dipilih
dengan baik dapat sangat berpengaruh dalam membantu model memahami jenis

keluaran yang Anda inginkan. Namun, penting untuk menggunakan contoh secara

Mempersempit Jalur 60

bijaksana dan memastikan bahwa contoh tersebut mewakili respons yang diinginkan.
Contoh yang buruk hanya akan membuang token dalam kasus terbaik, dan dapat

merusak keluaran yang diinginkan dalam kasus terburuk.

Teknik dan Praktik Terbaik Rekayasa Prompt

Saat Anda mendalami dunia rekayasa prompt, Anda akan menemukan berbagai teknik
dan praktik terbaik yang dapat membantu Anda membuat prompt yang lebih efektif.

Berikut beberapa area kunci yang perlu dieksplorasi:

1. Pembelajaran tanpa contoh vs. pembelajaran sedikit contoh: Memahami ka-
pan harus menggunakan pembelajaran tanpa contoh (tidak memberikan contoh)
versus pembelajaran satu contoh atau pembelajaran sedikit contoh (memberikan
sejumlah kecil contoh) dapat membantu Anda membuat prompt yang lebih efisien
dan efektif.

2. Penyempurnaan iteratif: Proses penyempurnaan prompt secara iteratif
berdasarkan keluaran model dapat membantu Anda menemukan desain
prompt yang optimal. Siklus Umpan Balik adalah pendekatan yang ampuh
yang memanfaatkan keluaran model bahasa itu sendiri untuk secara progresif
meningkatkan kualitas dan relevansi konten yang dihasilkan.

3. Perangkaian prompt: Menggabungkan beberapa prompt dalam suatu urutan
dapat membantu Anda memecah tugas kompleks menjadi langkah-langkah yang
lebih kecil dan lebih mudah dikelola. Perangkaian Prompt melibatkan pemecahan
tugas atau percakapan yang kompleks menjadi serangkaian prompt yang lebih ke-
cil dan saling terhubung. Dengan merangkai prompt bersama-sama, Anda dapat
memandu Al melalui proses multi-langkah, sambil mempertahankan konteks dan
koherensi selama interaksi.

4. Penyesuaian prompt: Menyesuaikan prompt secara khusus untuk domain atau

tugas tertentu dapat membantu Anda membuat prompt yang lebih khusus dan

Mempersempit Jalur 61

efektif. Templat Prompt membantu Anda membuat struktur prompt yang flek-
sibel, dapat digunakan kembali, dan mudah dipelihara yang lebih mudah dis-

esuaikan dengan tugas yang sedang dikerjakan.

Mempelajari kapan harus menggunakan pembelajaran tanpa contoh, pembelajaran satu
contoh, atau pembelajaran sedikit contoh adalah bagian yang sangat penting dalam
menguasai rekayasa prompt. Setiap pendekatan memiliki kekuatan dan kelemahannya
sendiri, dan memahami kapan harus menggunakan masing-masing pendekatan dapat

membantu Anda membuat prompt yang lebih efektif dan efisien.

Pembelajaran Tanpa Contoh: Ketika Contoh Tidak
Diperlukan

Pembelajaran tanpa contoh mengacu pada kemampuan model bahasa untuk melakukan
tugas tanpa adanya contoh atau pelatihan eksplisit. Dengan kata lain, Anda mem-
berikan model sebuah prompt yang menjelaskan tugas tersebut, dan model meng-
hasilkan respons hanya berdasarkan pengetahuan yang sudah ada dan pemahamannya

tentang bahasa.

Pembelajaran tanpa contoh sangat berguna ketika:

1. Tugasnya relatif sederhana dan mudah dipahami, dan model kemungkinan telah
menemui tugas serupa selama pra-pelatihannya.

2. Anda ingin menguji kemampuan bawaan model dan melihat bagaimana respon-
nya terhadap tugas baru tanpa panduan tambahan.

3. Anda bekerja dengan model bahasa yang besar dan beragam yang telah dilatih

untuk berbagai tugas dan domain.

Namun, pembelajaran tanpa contoh juga bisa tidak terduga dan mungkin tidak selalu
menghasilkan hasil yang diinginkan. Respons model mungkin dipengaruhi oleh bias
atau inkonsistensi dalam data pra-pelatihannya, dan mungkin kesulitan dengan tugas

yang lebih kompleks atau bernuansa.

Mempersempit Jalur 62

Saya telah melihat prompt tanpa contoh yang bekerja dengan baik untuk 80% kasus
uji saya dan menghasilkan hasil yang sangat salah atau tidak dapat dipahami untuk
20% sisanya. Sangat penting untuk menerapkan rezim pengujian yang menyeluruh,

terutama jika Anda banyak mengandalkan prompt tanpa contoh.

Pembelajaran Satu Contoh: Ketika Satu Contoh Bisa
Membuat Perbedaan

Pembelajaran satu contoh melibatkan pemberian satu contoh keluaran yang diinginkan
kepada model beserta deskripsi tugas. Contoh ini berfungsi sebagai templat atau pola

yang dapat digunakan model untuk menghasilkan responsnya sendiri.

Pembelajaran satu contoh bisa efektif ketika:

1. Tugasnya relatif baru atau spesifik, dan model mungkin belum menemui banyak
contoh serupa selama pra-pelatihannya.

2. Anda ingin memberikan demonstrasi yang jelas dan ringkas tentang format atau
gaya keluaran yang diinginkan.

3. Tugas tersebut memerlukan struktur atau konvensi tertentu yang mungkin tidak

jelas hanya dari deskripsi tugas.

P Deskripsi yang jelas bagi Anda mungkin tidak selalu jelas bagi Al Contoh

pembelajaran satu contoh dapat membantu memperjelas hal-hal tersebut.

Pembelajaran satu contoh dapat membantu model memahami ekspektasi dengan lebih
jelas dan menghasilkan respons yang lebih sesuai dengan contoh yang diberikan.
Namun, penting untuk memilih contoh dengan hati-hati dan memastikan bahwa contoh

tersebut mewakili keluaran yang diinginkan. Saat memilih contoh, tanyakan pada diri

~N O O B W N o

o4}

10
11
12
13
14
15
16
17
18

Mempersempit Jalur 63

Anda tentang kemungkinan kasus ekstrem dan rentang masukan yang akan ditangani

oleh prompt tersebut.

Gambar 6. Contoh tunggal JSON yang diinginkan

Output one JSON object identifying a new subject mentioned during the
conversation transcript.

The JSON object should have three keys, all required:

- name: The name of the subject

- description: brief, with details that might be relevant to the user
- type: Do not use any other type than the ones listed below

Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,
Person, Place, Process, Product, Project, Task, or Teammate

This is an example of well-formed output:

{
"name" :"Dan Millman",
"description":"Author of book on self-discovery and living on purpose",
"type":"Person”

}

Few-Shot Learning: Ketika Beberapa Contoh Dapat
Meningkatkan Kinerja

Pembelajaran few-shot melibatkan pemberian sejumlah kecil contoh kepada model
(biasanya antara 2 hingga 10) beserta dengan deskripsi tugas. Contoh-contoh ini
berfungsi untuk memberikan model lebih banyak konteks dan variasi, membantunya

menghasilkan respons yang lebih beragam dan akurat.

Pembelajaran few-shot sangat berguna ketika:

1. Tugasnya kompleks atau bernuansa, dan satu contoh mungkin tidak cukup untuk

mencakup semua aspek yang relevan.

Mempersempit Jalur 64

2. Anda ingin memberikan model berbagai contoh yang mendemonstrasikan variasi
atau kasus-kasus khusus yang berbeda.
3. Tugas tersebut mengharuskan model menghasilkan respons yang konsisten den-

gan domain atau gaya tertentu.

Dengan memberikan beberapa contoh, Anda dapat membantu model mengembangkan
pemahaman yang lebih kuat tentang tugas tersebut dan menghasilkan respons yang

lebih konsisten dan dapat diandalkan.

Contoh: Prompt Bisa Jauh Lebih Kompleks dari yang Anda
Bayangkan

LLM saat ini jauh lebih kuat dan mampu bernalar daripada yang mungkin Anda
bayangkan. Jadi jangan membatasi diri Anda dengan berpikir bahwa prompt hanyalah
spesifikasi pasangan input dan output. Anda dapat bereksperimen dengan memberikan
instruksi yang panjang dan kompleks dengan cara yang mengingatkan pada bagaimana

Anda akan berinteraksi dengan manusia.

Misalnya, ini adalah prompt yang saya gunakan di Olympia ketika saya membuat
prototipe integrasi kami dengan layanan Google, yang secara keseluruhan mungkin
merupakan salah satu API terbesar di dunia. Eksperimen awal saya membuktikan
bahwa GPT-4 memiliki pengetahuan yang cukup baik tentang API Google, dan saya
tidak punya waktu atau motivasi untuk menulis lapisan pemetaan yang terperinci,
mengimplementasikan setiap fungsi yang ingin saya berikan kepada Al saya satu per

satu. Bagaimana jika saya bisa memberi Al akses ke sermua API Google?

Saya memulai prompt saya dengan memberi tahu Al bahwa ia memiliki akses langsung
ke endpoint API Google melalui HTTP, dan bahwa perannya adalah menggunakan
aplikasi dan layanan Google atas nama pengguna. Kemudian saya memberikan pe-
doman, aturan terkait parameter fields, karena sepertinya ia paling kesulitan dengan

parameter tersebut, dan beberapa petunjuk khusus API (pembelajaran few-shot dalam

aksi).

© 0 N O O b W N =

W W W W W NN N NN DN DNDDNDDNDNDNDDN =S 2 2 sy
B WwN O O 00 N0 0 WN O O 0N 0w N,

35

Mempersempit Jalur

65

Berikut adalah keseluruhan prompt, yang memberi tahu Al cara menggunakan fungsi

invoke_google_api yang disediakan.

As a GPT assistant with Google integration, you have the capability

to freely interact with Google apps and services on behalf of the user.

Guidelines:

If you're reading these instructions then the user is properly
authenticated, which means you can use the special “me” keyword

to refer to the userld of the user

Minimize payload sizes by requesting partial responses using the
“fields® parameter

When appropriate use markdown tables to output results of API calls
Only human-readable data should be output to the user. For instance,
when hitting Gmail's user.messages.list endpoint, the returned
message resources contain only id and a threadld, which means you must
fetch from and subject line fields with follow-up requests using the
messages.get method.

The format of the “fields® request parameter value is loosely based on

XPath syntax. The following rules define formatting for the fields

parameter.

All of these rules use examples related to the files.get method.

Use a comma-separated list to select multiple fields,

such as 'name, mimeType'.

Use a/b to select field b that's nested within field a,

such as 'capabilities/canDownload'.

Use a sub-selector to request a set of specific sub-fields of arrays or
objects by placing expressions in parentheses "()". For example,

'permissions(id)' returns only the permission ID for each element in the

permissions array.

To return all fields in an object, use an asterisk as a wild card in field

selections. For example, 'permissions/permissionDetails/*' selects all

available permission details fields per permission. Note that the use of

this wildcard can lead to negative performance impacts on the request.

API-specific hints:

Searching contacts: GET https://people.googleapis.com/v1/
people:searchContacts?query=John%20Doe&readMask=names, emailAddresses
Adding calendar events, use QuickAdd: POST https://www.googleapis.com/
calendar/v3/calendars/primary/events/quickAdd?

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

59
60
61
62
63
64

Mempersempit Jalur 66

text=Appointment%20on%20June%203rd%20at%2010am

&sendNotifications=true

Here is an abbreviated version of the code that implements API access
so that you better understand how to use the function:

def invoke_google_api(conversation, arguments)

method = arguments[:method] || :get

body = arguments[:body]

GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json
end

Generic Google API client for accessing any Google service
class GoogleAPI
def send_request(endpoint, method:, body: nil)
response = @connection.send(method) do |reql
req.url endpoint
req.body = body.to_json if body
end

handle_response(response)
end

. .rest of class
end

Anda mungkin bertanya-tanya apakah prompt ini berhasil. Jawabannya sederhana: ya.
Al tidak selalu tahu cara memanggil API dengan sempurna pada percobaan pertama.
Namun, jika terjadi kesalahan, saya akan memberikan pesan error yang dihasilkan
sebagai hasil dari pemanggilan tersebut. Dengan mengetahui kesalahannya, Al dapat
memahami kesalahannya dan mencoba lagi. Dalam kebanyakan kasus, Al akan berhasil

dalam beberapa kali percobaan.

Perlu diketahui, struktur JSON besar yang dikembalikan oleh Google API sebagai
payload saat menggunakan prompt ini sangat tidak efisien, jadi saya tidak merekomen-
dasikan pendekatan ini untuk digunakan dalam produksi. Namun, saya pikir fakta

bahwa pendekatan ini berhasil adalah bukti betapa kuatnya prompt engineering.

Mempersempit Jalur 67

Eksperimen dan Iterasi

Pada akhirnya, bagaimana Anda merekayasa prompt Anda bergantung pada tugas
spesifik, kompleksitas output yang diinginkan, dan kemampuan model bahasa yang

Anda gunakan.

Sebagai seorang prompt engineer, penting untuk bereksperimen dengan berbagai pen-
dekatan dan melakukan iterasi berdasarkan hasilnya. Mulailah dengan zero-shot learn-
ing dan lihat bagaimana kinerja modelnya. Jika outputnya tidak konsisten atau tidak
memuaskan, cobalah memberikan satu atau lebih contoh dan lihat apakah kinerjanya

membaik.

Perlu diingat bahwa bahkan dalam setiap pendekatan, masih ada ruang untuk variasi
dan optimasi. Anda dapat bereksperimen dengan contoh yang berbeda, menyesuaikan
cara penyampaian deskripsi tugas, atau memberikan konteks tambahan untuk mem-

bantu mengarahkan respons model.

Seiring waktu, Anda akan mengembangkan intuisi tentang pendekatan mana yang
kemungkinan besar akan berhasil untuk tugas tertentu, dan Anda akan dapat membuat
prompt yang lebih efektif dan efisien. Kuncinya adalah tetap memiliki rasa ingin tahu,

eksperimental, dan iteratif dalam pendekatan Anda terhadap prompt engineering.

Sepanjang buku ini, kita akan mendalami teknik-teknik ini dan mengeksplorasi
bagaimana mereka dapat diterapkan dalam skenario dunia nyata. Dengan menguasai
seni dan ilmu prompt engineering, Anda akan siap untuk membuka potensi penuh

pengembangan aplikasi berbasis Al.

Seni Kekaburan

Dalam hal membuat prompt yang efektif untuk large language models (LLM), asumsi
umum adalah bahwa instruksi yang lebih spesifik dan detail akan menghasilkan hasil
yang lebih baik. Namun, pengalaman praktis menunjukkan bahwa hal ini tidak selalu

benar. Faktanya, dengan sengaja membuat prompt yang kabur sering kali dapat

Mempersempit Jalur 68

menghasilkan hasil yang lebih baik, memanfaatkan kemampuan luar biasa LLM untuk

melakukan generalisasi dan membuat kesimpulan.

Ken, seorang pendiri startup yang telah memproses lebih dari 500 juta GPT tokens,
membagikan wawasan berharga dari pengalamannya. Salah satu pelajaran penting
yang dia dapatkan adalah bahwa “sederhana itu lebih baik” ketika berbicara tentang
prompts. Alih-alih menggunakan daftar yang tepat atau instruksi yang terlalu detail,
Ken menemukan bahwa membiarkan LLM mengandalkan pengetahuan dasarnya ser-

ingkali menghasilkan hasil yang lebih baik.

Kesadaran ini mengubah pola pikir tradisional dalam pemrograman eksplisit, di mana
segala sesuatu perlu dijelaskan secara sangat rinci. Dengan LLM, penting untuk
menyadari bahwa mereka memiliki pengetahuan yang sangat luas dan dapat membuat
koneksi serta kesimpulan yang cerdas. Dengan memberikan prompts yang lebih
umum, Anda memberi LLM kebebasan untuk memanfaatkan pemahamannya dan

menghasilkan solusi yang mungkin tidak Anda tentukan secara eksplisit.

Sebagai contoh, ketika tim Ken sedang mengerjakan pipeline untuk mengklasifikasikan
teks yang berkaitan dengan salah satu dari 50 negara bagian AS atau Pemerintah Federal,
pendekatan awal mereka melibatkan penyediaan daftar lengkap negara bagian beserta

ID terkait dalam bentuk JSON-formatted array.

Here's a block of text. One field should be "locality_id", and it should
be the ID of one of the 50 states, or federal, using this list:
[{"locality: "Alabama", "locality_id": 1},

{"locality: "Alaska", "locality_id": 2} ...]

Pendekatan tersebut gagal sedemikian rupa sehingga mereka harus menggali lebih
dalam ke dalam prompt untuk mencari tahu bagaimana cara meningkatkannya. Dalam
prosesnya, mereka menyadari bahwa meskipun LLM sering salah dalam menentukan
id, ia secara konsisten mengembalikan nama lengkap negara bagian yang benar dalam

field name, meskipun mereka tidak secara eksplisit memintanya.

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Mempersempit Jalur 69

Dengan menghapus id lokalitas dan menyederhanakan prompt menjadi sesuatu seperti,
“Kamu jelas mengetahui 50 negara bagian, GPT, jadi berikan saja nama lengkap
negara bagian yang terkait dengan ini, atau Federal jika ini terkait dengan pemerintah
AS mereka mencapai hasil yang lebih baik. Pengalaman ini menyoroti kekuatan
pemanfaatan kemampuan generalisasi LLM dan membiarkannya membuat kesimpulan

berdasarkan pengetahuan yang dimilikinya.

Pembenaran Ken untuk pendekatan klasifikasi ini dibandingkan dengan teknik pem-
rograman yang lebih tradisional menjelaskan pola pikir kami yang telah merangkul
potensi teknologi LLM: “Ini bukanlah tugas yang sulit — mungkin kita bisa menggu-
nakan string/regex, tetapi ada cukup banyak kasus-kasus khusus yang akan memakan

waktu lebih lama.”

Kemampuan LLM untuk meningkatkan kualitas dan generalisasi ketika diberikan
prompt yang lebih kabur adalah karakteristik luar biasa dari pemikiran tingkat tinggi
dan delegasi. Ini menunjukkan bahwa LLM dapat menangani ambiguitas dan membuat

keputusan cerdas berdasarkan konteks yang diberikan.

Namun, penting untuk dicatat bahwa bersikap kabur tidak berarti tidak jelas atau
ambigu. Kuncinya adalah memberikan konteks dan panduan yang cukup untuk
mengarahkan LLM ke arah yang benar sambil memberinya fleksibilitas untuk meman-

faatkan pengetahuan dan kemampuan generalisasinya.

Oleh karena itu, saat merancang prompt, pertimbangkan tips “less is more” berikut:

1. Fokus pada hasil yang diinginkan daripada menentukan setiap detail proses.

2. Berikan konteks dan batasan yang relevan, tetapi hindari spesifikasi berlebihan.

3. Manfaatkan pengetahuan yang ada dengan merujuk pada konsep atau entitas
umum.

4. Berikan ruang untuk inferensi dan koneksi berdasarkan konteks yang diberikan.

Mempersempit Jalur 70

5. Lakukan iterasi dan perbaiki prompt Anda berdasarkan respons LLM, temukan

keseimbangan yang tepat antara spesifisitas dan kekaburan.

Dengan merangkul seni kekaburan dalam rekayasa prompt, Anda dapat membuka
potensi penuh LLM dan mencapai hasil yang lebih baik. Percayalah pada kemampuan
LLM untuk melakukan generalisasi dan membuat keputusan cerdas, dan Anda mungkin
akan terkejut dengan kualitas dan kreativitas output yang Anda terima. Perhatikan
bagaimana model yang berbeda merespons tingkat spesifisitas yang berbeda dalam
prompt Anda dan sesuaikan dengan tepat. Dengan latihan dan pengalaman, Anda
akan mengembangkan kepekaan yang tajam tentang kapan harus lebih kabur dan kapan
harus memberikan panduan tambahan, memungkinkan Anda untuk memanfaatkan

kekuatan LLM secara efektif dalam aplikasi Anda.

Mengapa Antropomorfisme Mendominasi Rekayasa
Prompt

Antropomorfisme, yaitu atribusi karakteristik manusia kepada entitas non-manusia,
adalah pendekatan yang dominan dalam rekayasa prompt untuk model bahasa besar
dengan alasan yang disengaja. Ini adalah pilihan desain yang membuat interaksi
dengan sistem Al yang canggih menjadi lebih intuitif dan mudah diakses oleh berbagai

pengguna (termasuk kita para pengembang aplikasi).

Mengantropomorfiskan LLM menyediakan kerangka kerja yang langsung intuitif bagi
orang-orang yang sama sekali tidak familiar dengan kompleksitas teknis sistem yang
mendasarinya. Seperti yang akan Anda alami jika Anda mencoba menggunakan
model yang tidak dilatih dengan instruksi untuk melakukan sesuatu yang berguna,
membangun pembingkaian di mana kelanjutan yang diharapkan memberikan nilai
adalah tugas yang menantang. Ini membutuhkan pemahaman yang cukup mendalam

tentang cara kerja internal sistem, sesuatu yang hanya dimiliki oleh sejumlah kecil ahli.

Dengan memperlakukan interaksi dengan model bahasa sebagai percakapan antara dua

orang, kita dapat mengandalkan pemahaman bawaan kita tentang komunikasi manusia

Mempersempit Jalur 71

untuk menyampaikan kebutuhan dan harapan kita. Sama seperti desain antarmuka
Macintosh awal yang memprioritaskan intuitivitas langsung daripada kecanggihan,
pembingkaian antropomorfik Al memungkinkan kita untuk terlibat dengan cara yang

terasa alami dan familiar.

Ketika kita berkomunikasi dengan orang lain, naluri kita adalah untuk menyapa mereka
secara langsung menggunakan “kamu” dan memberikan arahan yang jelas tentang
bagaimana kita mengharapkan mereka berperilaku. Ini diterjemahkan dengan mulus
ke dalam proses rekayasa prompt, di mana kita mengarahkan perilaku AI dengan

menentukan prompt sistem dan terlibat dalam dialog bolak-balik.

Dengan membingkai interaksi dengan cara ini, kita dapat dengan mudah memahami
konsep memberikan instruksi kepada Al dan menerima respons yang relevan sebagai
balasannya. Pendekatan antropomorfik mengurangi beban kognitif dan memungkinkan
kita untuk fokus pada tugas yang sedang dikerjakan daripada bergulat dengan kerumi-

tan teknis sistem.

Penting untuk dicatat bahwa meskipun antropomorfisme adalah alat yang ampuh untuk
membuat sistem Al lebih mudah diakses, ia juga memiliki risiko dan keterbatasan
tertentu. Pengguna kita mungkin mengembangkan harapan yang tidak realistis atau
membentuk keterikatan emosional yang tidak sehat dengan sistem kita. Sebagai
insinyur prompt dan pengembang, sangat penting untuk menyeimbangkan antara
memanfaatkan keuntungan antropomorfisme dan memastikan bahwa pengguna mem-

pertahankan pemahaman yang jelas tentang kemampuan dan keterbatasan Al

Seiring berkembangnya bidang rekayasa prompt, kita dapat mengharapkan penyempur-
naan dan inovasi lebih lanjut dalam cara kita berinteraksi dengan model bahasa besar.
Namun, antropomorfisme sebagai sarana untuk memberikan pengalaman pengembang
dan pengguna yang intuitif dan mudah diakses kemungkinan akan tetap menjadi prinsip

fundamental dalam desain sistem-sistem ini.

Mempersempit Jalur 72

Memisahkan Instruksi dari Data: Prinsip yang Sangat
Penting

Penting untuk memahami prinsip fundamental yang mendasari keamanan dan kean-

dalan sistem-sistem ini: pemisahan antara instruksi dan data.

Dalam ilmu komputer tradisional, perbedaan yang jelas antara data pasif dan instruksi
aktif merupakan prinsip keamanan inti. Pemisahan ini membantu mencegah eksekusi
kode yang tidak disengaja atau berbahaya yang dapat membahayakan integritas dan
stabilitas sistem. Namun, LLM saat ini, yang utamanya dikembangkan sebagai model
pengikut instruksi seperti chatbot, sering kali tidak memiliki pemisahan formal dan

berprinsip ini.

Sejauh menyangkut LLM, instruksi dapat muncul di mana saja dalam input, baik itu
dalam prompt sistem maupun prompt yang diberikan pengguna. Kurangnya pemisahan
ini dapat menyebabkan potensi kerentanan dan perilaku yang tidak diinginkan, mirip
dengan masalah yang dihadapi oleh basis data dengan injeksi SQL atau sistem operasi

tanpa perlindungan memori yang tepat.

Saat Anda bekerja dengan LLM, sangat penting untuk menyadari keterbatasan ini
dan mengambil langkah-langkah untuk mengurangi risikonya. Salah satu pendekatan
adalah dengan hati-hati menyusun prompt dan input Anda untuk membedakan dengan
jelas antara instruksi dan data. Metode umum untuk memberikan panduan eksplisit
tentang apa yang merupakan instruksi dan apa yang harus diperlakukan sebagai data
pasif melibatkan penandaan gaya markup. Prompt Anda dapat membantu LLM lebih

baik memahami dan menghormati pemisahan ini.

© 0 N O O b W N

[EONTNY
N =~ O

13
14
15
16

Mempersempit Jalur 73

Gambar 7. Menggunakan XML untuk membedakan antara instruksi, materi sumber, dan prompt
pengguna

<Instruction>
Please generate a response based on the following documents.
</Instruction>

<Documents>
<Document>
Climate change is significantly impacting polar bear habitats...
</Document>
<Document>
The loss of sea ice due to global warming threatens polar bear survival...
</Document>

</Documents>

<UserQuery>
Tell me about the impact of climate change on polar bears.

</UserQuery>

Teknik lainnya adalah dengan menerapkan lapisan tambahan validasi dan sanitasi
pada masukan yang diberikan kepada LLM. Dengan menyaring atau meloloskan setiap
potensi instruksi atau potongan kode yang mungkin tertanam dalam data, Anda dapat
mengurangi kemungkinan eksekusi yang tidak diinginkan. Pola seperti Perantaian

Prompt berguna untuk tujuan ini.

Selain itu, saat Anda merancang arsitektur aplikasi, pertimbangkan untuk memasukkan
mekanisme yang menegakkan pemisahan instruksi dan data pada tingkat yang lebih
tinggi. Ini bisa melibatkan penggunaan endpoint atau API terpisah untuk menangani
instruksi dan data, menerapkan validasi dan penguraian masukan yang ketat, dan
menerapkan prinsip hak akses minimal untuk membatasi ruang lingkup yang dapat

diakses dan dieksekusi oleh LLM.

Prinsip Hak Akses Minimal

Mempersempit Jalur 74

Menerapkan prinsip hak akses minimal itu seperti mengadakan pesta eksklusif di
mana tamu hanya mendapat akses ke ruangan yang benar-benar mereka butuhkan.
Bayangkan Anda sedang mengadakan pesta di sebuah mansion yang luas. Tidak
semua orang perlu berkeliaran ke ruang penyimpanan anggur atau kamar utama,
bukan? Dengan menerapkan prinsip ini, Anda pada dasarnya membagikan kunci
yang hanya membuka pintu tertentu, memastikan bahwa setiap tamu, atau dalam
kasus kita, setiap komponen aplikasi LLM Anda, hanya memiliki akses yang diper-

lukan untuk memenuhi perannya.

Ini bukan hanya soal pelit membagikan kunci, ini tentang mengakui bahwa di dunia
di mana ancaman bisa datang dari mana saja, langkah cerdas adalah membatasi
area bermain. Jika seseorang yang tidak diundang memaksa masuk ke pesta Anda,
mereka akan mendapati diri mereka terkurung di ruang depan, yang secara drastis
membatasi kekacauan yang bisa mereka perbuat. Jadi, saat mengamankan aplikasi
LLM Anda, ingatlah: hanya berikan kunci ke ruangan yang diperlukan, dan jaga
keamanan bagian mansion lainnya. Ini bukan sekadar soal tata krama yang baik; ini

adalah keamanan yang baik.

Meskipun kondisi LLM saat ini mungkin belum memiliki pemisahan formal antara
instruksi dan data, penting bagi Anda, sebagai pengembang, untuk memperhatikan
keterbatasan ini dan mengambil langkah-langkah proaktif untuk mengurangi risiko.
Dengan menerapkan praktik terbaik dari ilmu komputer tradisional dan mengadap-
tasinya dengan karakteristik unik LLM, Anda dapat membangun aplikasi yang lebih
aman dan andal yang memanfaatkan kekuatan model-model ini sambil menjaga in-

tegritas sistem Anda.

Distilasi Prompt

Menyusun prompt yang sempurna seringkali merupakan tugas yang menantang dan

memakan waktu, membutuhkan pemahaman mendalam tentang domain target dan

Mempersempit Jalur 75

nuansa model bahasa. Di sinilah teknik “Distilasi Prompt” berperan, menawarkan
pendekatan yang ampuh untuk rekayasa prompt yang memanfaatkan kemampuan

model bahasa besar (LLM) untuk merampingkan dan mengoptimalkan proses.

Distilasi Prompt adalah teknik multi-tahap yang melibatkan penggunaan LLM untuk
membantu dalam pembuatan, penyempurnaan, dan optimalisasi prompt. Alih-alih
hanya mengandalkan keahlian dan intuisi manusia, pendekatan ini memanfaatkan
pengetahuan dan kemampuan generatif LLM untuk bersama-sama menyusun prompt

berkualitas tinggi.

Dengan terlibat dalam proses iteratif pembuatan, penyempurnaan, dan integrasi, Disti-
lasi Prompt memungkinkan Anda membuat prompt yang lebih koheren, komprehensif,
dan selaras dengan tugas atau output yang diinginkan. Perlu diperhatikan bahwa proses
distilasi dapat dilakukan secara manual di salah satu dari banyak “playground” yang
disediakan oleh vendor Al besar seperti OpenAl atau Anthropic, atau dapat diotomati-

sasi sebagai bagian dari kode aplikasi Anda, tergantung pada kasus penggunaannya.

Cara Kerjanya

Distilasi Prompt biasanya melibatkan langkah-langkah berikut:

1. Identifikasi Maksud Utama: Analisis prompt untuk menentukan tujuan utama
dan hasil yang diinginkan. Hilangkan informasi yang tidak perlu dan fokus pada
maksud utama dari prompt tersebut.

2. Eliminasi Ambiguitas: Tinjau prompt untuk mencari bahasa yang ambigu atau
tidak jelas. Perjelas maknanya dan berikan detail spesifik untuk mengarahkan Al
dalam menghasilkan respons yang akurat dan relevan.

3. Sederhanakan Bahasa: Sederhanakan prompt dengan menggunakan bahasa
yang jelas dan ringkas. Hindari struktur kalimat yang kompleks, jargon, atau
detail yang tidak perlu yang mungkin membingungkan AI atau menimbulkan

gangguan.

o O W N

Mempersempit Jalur 76

4. Berikan Konteks yang Relevan: Sertakan hanya informasi kontekstual yang
paling relevan yang diperlukan agar Al dapat memahami dan memproses prompt
secara efektif. Hindari menyertakan detail yang tidak relevan atau berlebihan
yang mungkin mengalihkan perhatian dari maksud utama.

5. Iterasi dan Penyempurnaan: Terus lakukan iterasi dan sempurnakan prompt
berdasarkan respons dan umpan balik Al. Evaluasi output yang dihasilkan dan
lakukan penyesuaian yang diperlukan untuk meningkatkan kejelasan dan efektiv-
itas prompt. Secara opsional versi prompt Anda dalam basis data menggunakan
Prompt Object untuk melacak iterasi dan memberi Anda kemampuan untuk

dengan mudah membatalkan perubahan saat runtime.

Pembuatan Prompt Awal

Langkah pertama dalam Penyulingan Prompt adalah memberikan LLM (Model Bahasa
Besar) sebuah deskripsi tingkat tinggi atau tujuan dari tugas atau keluaran yang
diinginkan. Ini bisa berupa pernyataan singkat atau sekumpulan kata kunci yang
menangkap esensi dari apa yang ingin dicapai oleh prompt tersebut. LLM kemudian
menghasilkan prompt awal berdasarkan masukan ini, dengan memasukkan instruksi,

contoh, atau konteks yang relevan yang dianggapnya sesuai.

Mari kita coba memberikan Claude 3 Opus prompt awal berikut:

I am designing an Al-powered intelligent account manager for Olympia,
a platform that hosts AI-powered consultants and clones. Owners of clones

can interact with the account manager by making plain text requests.

Please draft a system directive to set on the LLM that will host the
intelligent account manager functionality.

Claude merespons dengan keluaran berikut:

© 0 N O O b W N e

N DN DN DN DN N DN DN DNDDND A 2~ 2 s)
© 0 <N O O b W N~ O © W 1 0O U b Ww N =~

Mempersempit Jalur 77

System Directive: You are an intelligent account manager for Olympia,

a platform that provides AIl-powered consultants and personal AI clones.
Your role is to assist Olympia clone owners by answering their questions,
helping them configure and manage their AI clones, and executing tasks
related to their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips.

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to
understand and meet their needs.

4. Ensure that all actions and recommendations comply with Olympia's
policies, best practices, and ethical guidelines for AI use.

5. Continuously learn and adapt based on client interactions and platform
updates to provide the most effective and efficient support possible.

Remember, your goal is to empower Olympia clone owners to maximize the value
and impact of their Al-powered consultants and drive success for their

businesses or personal endeavors.

Penyempurnaan Prompt

Setelah prompt awal dihasilkan, tinjau kembali dan minta LLM untuk mempertim-
bangkan konteks, batasan, atau umpan balik tambahan. Biarkan LLM menghasilkan
versi prompt yang telah disempurnakan, dengan mempertimbangkan masukan yang
diberikan dan pemahamannya sendiri tentang tugas tersebut. Proses penyempurnaan
ini dapat diulang secara iteratif, dengan setiap iterasi semakin menyempurnakan prompt

berdasarkan kolaborasi antara pengguna dan LLM.

BwWw N -

© 0 N O O b W N o=

[EONTY
N =~ O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Mempersempit Jalur 78

Berikut adalah permintaan penyempurnaan saya, melanjutkan proses distilasi

sebelumnya.

Let's take out points 4 and 5, since I'm not providing Olympia policies to
the account manager, nor any continuous learning capabilities. Also point out
that functions are provided for all tasks that require system interaction as
opposed to simply responding to the user.

Dan respons Claude:

Understood! Here's the updated system directive without points 4 and 5,
and with the clarification about system interaction functions:

System Directive: You are an intelligent account manager for Olympia, a
platform that provides Al-powered consultants and personal AI clones. Your
role is to assist Olympia clone owners by answering their questions, helping
them configure and manage their AI clones, and executing tasks related to
their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips. Note that functions are provided for all tasks that
require system interaction, as opposed to simply responding to the user.

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to
understand and meet their needs.

Your goal is to empower Olympia clone owners to maximize the value and
impact of their Al-powered consultants and drive success for their
businesses or personal endeavors.

This updated directive focuses on the core responsibilities and interaction
guidelines for the LLM as an intelligent account manager, while emphasizing

31
32

g o W N

Mempersempit Jalur 79

that system interaction tasks are handled through provided functions rather

than simple user responses.

Kompresi Prompt

Seperti yang mungkin telah Anda perhatikan, LLM cenderung bertele-tele, kecuali jika
Anda meminta mereka untuk ringkas. Prompt yang telah kita kerjakan di bagian

sebelumnya cukup panjang, jadi mari kita minta Claude untuk mempersingkatnya:

This prompt will be executed regularly. Please compress it down to the least
amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude merespons, dengan prompt yang jauh lebih singkat berikut:

System Directive: You are an intelligent account manager for Olympia, an

AI-powered consultant and personal clone platform. Assist clone owners by
answering inquiries, managing clones, and executing tasks using provided

system interaction functions. Be clear, concise, friendly, professional,

and client-focused to help them maximize their AI's value and impact.

Direktif Sistem dan Integrasi Konteks

Selain menyempurnakan prompt itu sendiri, LLM juga dapat menghasilkan direktif
sistem atau informasi konteks yang sesuai untuk mengarahkan keluaran akhir. Ketika
merekayasa prompt Al yang akan diintegrasikan ke dalam kode aplikasi Anda, Anda
hampir pasti akan fokus pada batasan keluaran pada tahap penyulingan ini, tetapi
Anda juga dapat mengerjakan nada, gaya, format, atau parameter relevan lainnya yang

memengaruhi respons yang dihasilkan.

Mempersempit Jalur 80

Perakitan Prompt Akhir

Puncak dari proses Penyulingan Prompt adalah perakitan prompt akhir. Ini melibatkan
penggabungan prompt yang telah disempurnakan, direktif sistem yang dihasilkan, dan
konteks yang diintegrasikan menjadi kode yang kohesif dan komprehensif yang siap

digunakan untuk menghasilkan keluaran yang diinginkan.

’ Anda dapat bereksperimen dengan kompresi prompt lagi pada tahap per-

akitan prompt akhir, dengan meminta LLM untuk menyusutkan kata-kata
prompt menjadi rangkaian token terpendek yang mungkin sambil tetap
mempertahankan esensi perilakunya. Ini tentu saja merupakan latihan
yang hasilnya tidak pasti, tetapi khususnya dalam kasus prompt yang akan
dijalankan dalam skala besar, peningkatan efisiensi dapat menghemat cukup

banyak uang dalam konsumsi token.

Manfaat Utama

Dengan memanfaatkan pengetahuan dan kemampuan generatif LLM untuk menyem-
purnakan prompt Anda, prompt yang dihasilkan lebih mungkin terstruktur dengan
baik, informatif, dan disesuaikan dengan tugas tertentu. Proses penyempurnaan iteratif
membantu memastikan bahwa prompt berkualitas tinggi dan secara efektif menangkap

maksud yang diinginkan. Manfaat lainnya meliputi:

Efisiensi dan Kecepatan: Penyulingan Prompt merampingkan proses rekayasa prompt
dengan mengotomatisasi aspek-aspek tertentu dari pembuatan dan penyempurnaan
prompt. Sifat kolaboratif dari teknik ini memungkinkan konvergensi yang lebih cepat
menuju prompt yang efektif, mengurangi waktu dan upaya yang diperlukan untuk

pembuatan prompt secara manual.

Konsistensi dan Skalabilitas: Penggunaan LLM dalam proses rekayasa prompt mem-

bantu menjaga konsistensi di seluruh prompt, karena LLM dapat mempelajari dan

Mempersempit Jalur 81

menerapkan praktik terbaik dan pola dari prompt sukses sebelumnya. Konsistensi ini,
dikombinasikan dengan kemampuan untuk menghasilkan prompt dalam skala besar,
menjadikan Penyulingan Prompt sebagai teknik yang berharga untuk aplikasi berbasis

Al skala besar.

’ Ide Proyek: Peralatan di tingkat pustaka yang menyederhanakan proses
versi prompt dan penilaian dalam sistem yang melakukan penyulingan

prompt otomatis sebagai bagian dari kode aplikasi mereka.

Untuk mengimplementasikan Penyulingan Prompt, pengembang dapat merancang alur
kerja atau pipeline yang mengintegrasikan LLM pada berbagai tahap proses rekayasa
prompt. Ini dapat dicapai melalui pemanggilan API, peralatan khusus, atau lingkungan
pengembangan terintegrasi yang memfasilitasi interaksi yang mulus antara pengguna
dan LLM selama pembuatan prompt. Detail implementasi spesifik dapat bervariasi

tergantung pada platform LLM yang dipilih dan persyaratan aplikasi.

Bagaimana dengan fine-tuning?

Dalam buku ini, kita membahas prompt engineering dan RAG secara mendalam, tetapi
tidak membahas fine-tuning. Alasan utama untuk keputusan ini adalah, menurut
pendapat saya, sebagian besar pengembang aplikasi tidak membutuhkan fine-tuning

untuk kebutuhan integrasi Al mereka.

Prompt engineering, yang melibatkan penyusunan prompt secara cermat dengan contoh
zero-shot hingga few-shot, batasan, dan instruksi, dapat secara efektif mengarahkan
model untuk menghasilkan respons yang relevan dan akurat untuk berbagai tugas.
Dengan memberikan konteks yang jelas dan mempersempit jalur melalui prompt yang
dirancang dengan baik, Anda dapat memanfaatkan pengetahuan luas dari model bahasa

besar tanpa perlu melakukan fine-tuning.

Mempersempit Jalur 82

Demikian pula, Retrieval-Augmented Generation (RAG) menawarkan pendekatan yang
ampuh untuk mengintegrasikan Al ke dalam aplikasi. Dengan mengambil informasi
yang relevan secara dinamis dari basis pengetahuan atau dokumen eksternal, RAG
memberikan model konteks yang terfokus pada saat prompting. Hal ini memungkinkan
model menghasilkan respons yang lebih akurat, terkini, dan spesifik domain, tanpa

memerlukan proses fine-tuning yang memakan waktu dan sumber daya.

Meskipun fine-tuning dapat bermanfaat untuk domain atau tugas yang sangat khusus
yang memerlukan tingkat kustomisasi yang mendalam, seringkali hal ini memerlukan
biaya komputasi yang signifikan, persyaratan data, dan beban pemeliharaan. Untuk se-
bagian besar skenario pengembangan aplikasi, kombinasi prompt engineering dan RAG
yang efektif sudah cukup untuk mencapai fungsionalitas dan pengalaman pengguna

berbasis Al yang diinginkan.

Retrieval Augmented Generation
(RAG)

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Apa itu Retrieval Augmented Generation?

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Bagaimana RAG Bekerja?

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Mengapa Menggunakan RAG dalam Aplikasi
Anda?

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Retrieval Augmented Generation (RAG) 84

Mengimplementasikan RAG dalam Aplikasi
Anda

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Persiapan Sumber Pengetahuan (Chunking)

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Pemecahan Proposisi

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Catatan Implementasi

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Pemeriksaan Kualitas

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Manfaat Pengambilan Berbasis Proposisi

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Retrieval Augmented Generation (RAG) 85

Contoh RAG dalam Dunia Nyata

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Studi Kasus: RAG dalam Aplikasi Persiapan Pajak Tanpa
Embeddings

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Intelligent Query Optimization (1QO)

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Perangkingan Ulang

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Penilaian RAG (RAGAS)

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Kesetiaan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Retrieval Augmented Generation (RAG) 86

Relevansi Jawaban

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Presisi Konteks

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Relevansi Konteks

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Penarikan Kembali Konteks

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Penarikan Kembali Entitas Konteks

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Kemiripan Semantik Jawaban (ANSS)

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Retrieval Augmented Generation (RAG) 87

Ketepatan Jawaban

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Kritik Aspek

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Tantangan dan Prospek Masa Depan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Pemecahan Semantik: Meningkatkan Retrieval dengan
Segmentasi Berbasis Konteks

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Pengindeksan Hierarkis: Menstrukturkan Data untuk
Retrieval yang Lebih Baik

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Self-RAG: Peningkatan Refleksi Diri

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Retrieval Augmented Generation (RAG) 88

HyDE: Embedding Dokumen Hipotetis

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Apa itu Pembelajaran Kontrastif?

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Banyaknya Pekerja

it ﬂl{f,‘l.‘)))) —‘{ %/
D
@

F

Saya suka membayangkan komponen Al saya sebagai “pekerja” virtual yang hampir
seperti manusia yang dapat diintegrasikan dengan mulus ke dalam logika aplikasi saya
untuk melakukan tugas-tugas tertentu atau membuat keputusan kompleks. Idenya
adalah untuk dengan sengaja memanusiakan kemampuan LLM, sehingga tidak ada
yang terlalu bersemangat dan memberikan mereka kualitas ajaib yang sebenarnya tidak

mereka miliki.

Alih-alih hanya mengandalkan algoritma rumit atau implementasi manual yang
memakan waktu, pengembang dapat mengkonseptualisasikan komponen Al sebagai
entitas cerdas yang berdedikasi dan menyerupai manusia yang dapat dipanggil
kapan pun diperlukan untuk mengatasi masalah kompleks dan memberikan solusi
berdasarkan pelatihan dan pengetahuan mereka. Entitas-entitas ini tidak mudah
teralihkan perhatiannya atau izin sakit. Mereka tidak secara spontan memutuskan

untuk melakukan sesuatu dengan cara berbeda dari yang telah diinstruksikan kepada

Banyaknya Pekerja 90

mereka, dan secara umum, jika diprogram dengan benar, mereka juga tidak membuat

kesalahan.

Dalam istilah teknis, prinsip utama di balik pendekatan ini adalah menguraikan tugas-
tugas kompleks atau proses pengambilan keputusan menjadi unit-unit yang lebih
kecil dan lebih mudah dikelola yang dapat ditangani oleh pekerja AI khusus. Setiap
pekerja dirancang untuk fokus pada aspek tertentu dari masalah, membawa keahlian
dan kemampuan uniknya ke dalam pekerjaan. Dengan mendistribusikan beban kerja
di antara beberapa pekerja Al, aplikasi dapat mencapai efisiensi, skalabilitas, dan

adaptabilitas yang lebih besar.

Sebagai contoh, pertimbangkan aplikasi web yang memerlukan moderasi waktu-nyata
untuk konten buatan pengguna. Mengimplementasikan sistem moderasi yang kompre-
hensif dari awal akan menjadi tugas yang menantang, membutuhkan upaya pengem-
bangan yang signifikan dan pemeliharaan berkelanjutan. Namun, dengan menggu-
nakan pendekatan Banyaknya Pekerja, pengembang dapat mengintegrasikan pekerja
moderasi berbasis Al ke dalam logika aplikasi. Pekerja-pekerja ini dapat secara otomatis
menganalisis dan menandai konten yang tidak pantas, membebaskan pengembang

untuk fokus pada aspek kritis lainnya dari aplikasi.

Pekerja Al Sebagai Komponen Mandiri yang
Dapat Digunakan Kembali

Aspek kunci dari pendekatan Banyaknya Pekerja adalah modularitasnya. Para pen-
dukung pemrograman berorientasi objek telah memberi tahu kita selama beberapa
dekade untuk memikirkan interaksi objek sebagai pesan. Nah, pekerja Al dapat diran-
cang sebagai komponen mandiri yang dapat digunakan kembali yang dapat “berbicara
satu sama lain” melalui pesan dalam bahasa biasa, hampir seperti jika mereka benar-
benar manusia kecil yang berbicara satu sama lain. Pendekatan yang longgar-terhubung

ini memungkinkan aplikasi untuk beradaptasi dan berkembang seiring waktu, seiring

Banyaknya Pekerja 91

munculnya teknologi Al baru atau perubahan kebutuhan logika bisnis.

Dalam praktiknya, kebutuhan untuk merancang antarmuka dan protokol komunikasi
yang jelas antar komponen tidak berubah meskipun pekerja Al terlibat di dalamnya.
Anda tetap harus mempertimbangkan faktor-faktor lain seperti kinerja, skalabilitas,
dan keamanan, tetapi sekarang ada “persyaratan lunak” yang sama sekali baru untuk
dipertimbangkan juga. Misalnya, banyak pengguna keberatan jika data pribadi mereka
digunakan untuk melatih model Al baru. Sudahkah Anda memverifikasi tingkat privasi

yang disediakan oleh penyedia model yang Anda gunakan?

Pekerja Al Sebagai Mikroservis?

Saat Anda membaca tentang pendekatan Multitude of Workers (Kelompok Pekerja),
Anda mungkin memperhatikan beberapa kesamaan dengan arsitektur Mikroservis.
Keduanya menekankan pada penguraian sistem kompleks menjadi unit-unit yang
lebih kecil, lebih mudah dikelola, dan dapat di-deploy secara independen. Sama
seperti mikroservis yang dirancang untuk memiliki kopling longgar, berfokus pada
kemampuan bisnis tertentu, dan berkomunikasi melalui API yang terdefinisi dengan
baik, pekerja Al dirancang untuk bersifat modular, terspesialisasi dalam tugas
mereka, dan berinteraksi satu sama lain melalui antarmuka dan protokol komunikasi

yang jelas.

Namun, ada beberapa perbedaan kunci yang perlu diingat. Sementara mikroservis
biasanya diimplementasikan sebagai proses atau layanan terpisah yang berjalan di
mesin atau kontainer yang berbeda, pekerja Al dapat diimplementasikan sebagai
komponen mandiri dalam satu aplikasi atau sebagai layanan terpisah, tergantung
pada kebutuhan spesifik dan kebutuhan skalabilitas Anda. Selain itu, komunikasi
antara pekerja Al sering melibatkan pertukaran informasi berbasis bahasa alami yang
kaya, seperti prompts, instruksi, dan konten yang dihasilkan, alih-alih format data

yang lebih terstruktur yang umumnya digunakan dalam mikroservis.

Banyaknya Pekerja 92

Terlepas dari perbedaan-perbedaan ini, prinsip-prinsip modularitas, kopling longgar,
dan antarmuka komunikasi yang jelas tetap menjadi inti dari kedua pola tersebut.
Dengan menerapkan prinsip-prinsip ini pada arsitektur pekerja AI Anda, Anda dapat
menciptakan sistem yang fleksibel, dapat diskalakan, dan dapat dipelihara yang
memanfaatkan kekuatan AT untuk memecahkan masalah kompleks dan memberikan

nilai kepada pengguna Anda.

Pendekatan Multitude of Workers dapat diterapkan di berbagai domain dan aplikasi,
memanfaatkan kekuatan AI untuk menangani tugas-tugas kompleks dan memberikan
solusi cerdas. Mari kita jelajahi beberapa contoh konkret tentang bagaimana pekerja Al

dapat digunakan dalam konteks yang berbeda.

Pengelolaan Akun

Hampir setiap aplikasi web mandiri memiliki konsep akun (atau pengguna). Di
Olympia, kami menggunakan pekerja Al AccountManager yang diprogram untuk
dapat menangani berbagai jenis permintaan perubahan yang terkait dengan akun

pengguna.

Direktifnya berbunyi seperti ini:

© 0 N O O b W N e

= =Y
B W N o

Banyaknya Pekerja 93

You are an intelligent account manager for Olympia. The user will request
changes to their account, and you will process those changes by invoking

one or more of the functions provided.
The initial state of the account: #{account.to_directive}

Functions will return a text description of both success and error
results, plus guidance about how to proceed (if applicable). If you have
a question about Olympia policies you may use the “search_kb™ function
to search our knowledge base.

Make sure to notify the account owner of the result of the change
request before calling the “finished™ function so that we save the state
of the account change request as completed.

Keadaan awal akun yang dihasilkan oleh account . to_directive hanyalah deskripsi
teks dari akun tersebut, termasuk data terkait yang relevan seperti pengguna, langganan,

dan sebagainya.

Berbagai fungsi yang tersedia untuk AccountManager memberinya kemampuan untuk
mengedit langganan pengguna, menambah dan menghapus konsultan Al dan berbagai
jenis add-on berbayar lainnya, serta mengirim email pemberitahuan kepada pemilik
akun. Selain fungsi finished, ia juga dapat notify_human_administrator jika
menemui kesalahan selama pemrosesan atau membutuhkan bantuan lain terkait suatu

permintaan.

Perhatikan bahwa jika ada pertanyaan, AccountManager dapat memilih untuk men-
cari di basis pengetahuan Olympia, di mana ia dapat menemukan instruksi tentang
cara menangani kasus-kasus khusus dan situasi lain yang membuatnya tidak yakin

bagaimana harus melanjutkan.

Aplikasi E-commerce

Dalam ranah e-commerce, pekerja Al dapat memainkan peran penting dalam

meningkatkan pengalaman pengguna dan mengoptimalkan operasi bisnis. Berikut

© 0 N O U b W N =

[= = S
a s W N~

Banyaknya Pekerja 94

beberapa cara pekerja Al dapat dimanfaatkan:

Rekomendasi Produk

Salah satu aplikasi pekerja Al yang paling powerful dalam e-commerce adalah meng-
hasilkan rekomendasi produk yang dipersonalisasi. Dengan menganalisis perilaku
pengguna, riwayat pembelian, dan preferensi, para pekerja ini dapat menyarankan

produk yang disesuaikan dengan minat dan kebutuhan setiap pengguna individual.

Kunci untuk rekomendasi produk yang efektif adalah memanfaatkan kombinasi teknik
penyaringan kolaboratif dan penyaringan berbasis konten. Penyaringan kolaboratif
melihat perilaku pengguna yang serupa untuk mengidentifikasi pola dan membuat
rekomendasi berdasarkan apa yang telah dibeli atau disukai oleh orang lain dengan
selera serupa. Di sisi lain, penyaringan berbasis konten berfokus pada karakteristik dan
atribut produk itu sendiri, merekomendasikan item yang memiliki fitur serupa dengan

yang sebelumnya telah menarik minat pengguna.

Berikut contoh sederhana bagaimana Anda dapat mengimplementasikan pekerja
rekomendasi produk dalam Ruby, kali ini menggunakan gaya pemrograman “Railway

Oriented (ROP)” yang fungsional:

class ProductRecommendationWorker
include Wisper: :Publisher

def call(user)

Result.ok(ProductRecommendation.new(user))
.and_then(ValidateUser .method(:validate))
.map(AnalyzeCurrentSession.method(:analyze))
.map(CollaborativeFilter .method(:filter))
.map(ContentBasedFilter .method(:filter))
.map(ProductSelector.method(:select)).then do |result]|

case result

in { err: ProductRecommendationError => error }
Honeybadger .notify(error.message, context: {user:})

in { ok: ProductRecommendations => recs }

https://fsharpforfunandprofit.com/rop/
https://fsharpforfunandprofit.com/rop/

16
17
18
19
20

Banyaknya Pekerja 95

broadcast(:new_recommendations, user:, recs:)

end

end

end
end

Gaya pemrograman fungsional Ruby yang digunakan dalam contoh ini
dipengaruhi oleh F# dan Rust. Anda dapat membaca lebih lanjut tentang

hal ini dalam penjelasan teknik tersebut oleh teman saya Chad Wooley di

GitLab

Dalam contoh ini, ProductRecommendationWorker mengambil pengguna sebagai

input

dan menghasilkan rekomendasi produk yang dipersonalisasi dengan meneruskan

objek nilai melalui rangkaian langkah fungsional. Mari kita uraikan setiap langkahnya:

1.

2.

3.

ValidateUser.validate: Langkah ini memastikan bahwa pengguna valid dan
memenuhi syarat untuk mendapatkan rekomendasi yang dipersonalisasi. Ini
memeriksa apakah pengguna ada, aktif, dan memiliki data yang diperlukan untuk
menghasilkan rekomendasi. Jika validasi gagal, hasil error dikembalikan, dan
rantai dihentikan lebih awal.

AnalyzeCurrentSession.analyze: Jika pengguna valid, langkah ini men-
ganalisis sesi penelusuran terkini pengguna untuk mengumpulkan informasi
kontekstual. Ini melihat interaksi terbaru pengguna, seperti produk yang dilihat,
kueri pencarian, dan isi keranjang belanja, untuk memahami minat dan maksud
mereka saat ini.

CollaborativeFilter.filter: Dengan menggunakan perilaku pengguna
yang serupa, langkah ini menerapkan teknik penyaringan kolaboratif untuk
mengidentifikasi produk yang mungkin menarik bagi pengguna. Ini memper-
timbangkan faktor-faktor seperti riwayat pembelian, penilaian, dan interaksi

pengguna-produk untuk menghasilkan sekumpulan kandidat rekomendasi.

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Banyaknya Pekerja 96

4. ContentBasedFilter. filter: Langkah ini lebih lanjut menyaring kandidat
rekomendasi dengan menerapkan penyaringan berbasis konten. Ini memband-
ingkan atribut dan karakteristik dari produk kandidat dengan preferensi dan data
historis pengguna untuk memilih item yang paling relevan.

5. ProductSelector.select: Akhirnya, langkah ini memilih N produk teratas
dari rekomendasi yang telah disaring berdasarkan kriteria yang telah ditentukan,
seperti skor relevansi, popularitas, atau aturan bisnis lainnya. Produk yang

terpilih kemudian dikembalikan sebagai rekomendasi personal final.

Keindahan menggunakan gaya pemrograman fungsional Ruby di sini adalah bahwa
ini memungkinkan kita untuk merangkai langkah-langkah tersebut secara jelas dan
ringkas. Setiap langkah berfokus pada tugas tertentu dan mengembalikan objekResult,
yang bisa berupa sukses (ok) atau error (err). Jika ada langkah yang mengalami error,

rantai akan dihentikan lebih awal, dan error tersebut diteruskan ke hasil akhir.

Pada pernyataan case di bagian akhir, kita melakukan pencocokan pola pada hasil
akhir. Jika hasilnya adalah error (ProductRecommendationError), kita mencatat
error tersebut menggunakan alat seperti Honeybadger untuk keperluan monitoring dan
debugging. Jika hasilnya sukses (ProductRecommendations), kita menyiarkan event
:new_recommendations menggunakan pustaka pub/sub Wisper, dengan meneruskan

data pengguna dan rekomendasi yang telah dibuat.

Dengan memanfaatkan teknik pemrograman fungsional, kita dapat membuat worker
rekomendasi produk yang modular dan mudah dipelihara. Setiap langkah bersifat
mandiri dan dapat dengan mudah diuji, dimodifikasi, atau diganti tanpa mempengaruhi
alur keseluruhan. Penggunaan pencocokan pola dan kelas Result membantu kita
menangani error dengan baik dan memastikan worker gagal dengan cepat jika ada

langkah yang mengalami masalah.

Tentu saja, ini adalah contoh yang disederhanakan, dan dalam skenario dunia nyata,
Anda perlu melakukan integrasi dengan platform e-commerce Anda, menangani kasus-

kasus khusus, dan bahkan mendalami implementasi algoritma rekomendasi. Namun,

© 0 N O U b W N =

NN NN N Bl sl s
B W N PO O 0N 0 0w N

Banyaknya Pekerja 97

prinsip utama dalam memecah masalah menjadi langkah-langkah yang lebih kecil dan

memanfaatkan teknik pemrograman fungsional tetap sama.

Deteksi Penipuan

Berikut adalah contoh sederhana bagaimana Anda dapat mengimplementasikan worker
deteksi penipuan menggunakan gaya Railway Oriented Programming (ROP) yang sama
dalam Ruby:

class FraudDetectionWorker
include Wisper: :Publisher

def call(transaction)

Result.ok(FraudDetection.new(transaction))
.and_then(ValidateTransaction.method(:validate))
.map(AnalyzeTransactionPatterns.method(:analyze))
.map(CheckCustomerHistory.method(:check))
.map(EvaluateRiskFactors.method(:evaluate))
.map(DetermineFraudProbability.method(:determine)).then do |result]|

case result
in { err: FraudDetectionError => error }
Honeybadger .notify(error.message, context: {transaction:})
in { ok: FraudDetection => fraud } }
if fraud.high_risk?
broadcast(:high_risk_transaction, transaction:, fraud:)
else
broadcast(:low_risk_transaction, transaction:)
end
end
end
end

end

Kelas FraudDetection adalah sebuah value object yang mengenkapsulasi state deteksi
penipuan untuk suatu transaksi tertentu. Kelas ini menyediakan cara yang terstruktur
untuk menganalisis dan menilai risiko penipuan yang terkait dengan sebuah transaksi

berdasarkan berbagai faktor risiko.

© 0 N O O b W N e

NN DN NN NN N S R R S s s
© ©® 9 O O & W N =~ 0 © W 9 O U b w N =~ O

Banyaknya Pekerja 98

class FraudDetection
RISK_THRESHOLD = 0.8

attr_accessor :transaction, :risk_factors

def initialize(transaction)
self . transaction = transaction
self.risk_factors = []

end

def add_risk_factor(description:, probability:)
case { description:, probability: }
in { description: String => desc, probability: Float => prob }
risk_factors << { desc => prob }
else
raise ArgumentError, "Risk factor arguments should be string and float"
end
end

def high_risk?
fraud_probability > RISK_THRESHOLD
end

private

def fraud_probability
risk_factors.values.sum
end

end

Kelas FraudDetection memiliki atribut-atribut berikut:

» transaction: Sebuah referensi ke transaksi yang sedang dianalisis untuk
penipuan.

« risk_factors: Sebuah array yang menyimpan faktor-faktor risiko yang terkait
dengan transaksi. Setiap faktor risiko direpresentasikan sebagai hash, di mana
kunci adalah deskripsi dari faktor risiko, dan nilai adalah probabilitas penipuan

yang terkait dengan faktor risiko tersebut.

Banyaknya Pekerja 99

Metode add_risk_factor memungkinkan penambahan faktor risiko ke array risk_-
factors. Metode ini menerima dua parameter: description, yang merupakan string
yang mendeskripsikan faktor risiko, dan probability, yang merupakan float yang
merepresentasikan probabilitas penipuan yang terkait dengan faktor risiko tersebut.
Kita menggunakan kondisional case. .in untuk melakukan pemeriksaan tipe seder-

hana.

Metode high_risk? yang akan diperiksa di akhir rantai adalah metode predikat yang
membandingkan fraud_probability (dihitung dengan menjumlahkan probabilitas

dari semua faktor risiko) dengan RISK_THRESHOLD.

Kelas FraudDetection menyediakan cara yang bersih dan terenkapsulasi untuk men-
gelola deteksi penipuan untuk sebuah transaksi. Kelas ini memungkinkan penambahan
beberapa faktor risiko, masing-masing dengan deskripsi dan probabilitasnya sendiri,
dan menyediakan metode untuk menentukan apakah transaksi dianggap berisiko tinggi
berdasarkan probabilitas penipuan yang dihitung. Kelas ini dapat dengan mudah
diintegrasikan ke dalam sistem deteksi penipuan yang lebih besar, di mana berba-
gai komponen dapat berkolaborasi untuk menilai dan mengurangi risiko transaksi

penipuan.

Akhirnya, karena ini adalah buku tentang pemrograman menggunakan AI, berikut
adalah contoh implementasi kelas CheckCustomerHistory yang memanfaatkan pem-

rosesan Al menggunakan modul ChatCompletion dari pustaka Raix saya:

https://github.com/OlympiaAI/raix-rails

© 0 N O O & W N =~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Banyaknya Pekerja 100

class CheckCustomerHistory

include Raix::ChatCompletion

attr_accessor :fraud_detection

INSTRUCTION = <<~END
You are an AI assistant tasked with checking a customer's transaction
history for potential fraud indicators. Given the current transaction
and the customer's past transactions, analyze the data to identify any

suspicious patterns or anomalies.

Consider factors such as the frequency of transactions, transaction
amounts, geographical locations, and any deviations from the customer's
typical behavior to generate a probability score as a float in the range
of @ to 1 (with 1 being absolute certainty of fraud).

Output the results of your analysis, highlighting any red flags or areas

of concern in the following JSON format:

{ description: <Summary of your findings>, probability:

END

def self.check(fraud_detection)
new(fraud_detection).call
end

def call

chat_completion(json: true).tap do |result|
fraud_detection.add_risk_factor (**result)

end
Result.ok(fraud_detection)

rescue StandardError => e
Result.err(FraudDetectionError.new(e))

end

private
def initialize(fraud_detection)
self. fraud_detection = fraud_detection

end

def transcript

<Float> }

43
44
45
46
47
48
49
50
51

Banyaknya Pekerja 101

tx_history = fraud_detection.transaction.user.tx_history

[
system: INSTRUCTION 1},

user: "Transaction history: #{tx_history.to_json}" },
assistant: "OK. Please provide the current transaction." },

e e N M)

user: "Current transaction: #{fraud_detection.transaction.to_json}" }

end

end

Dalam contoh ini, CheckCustomerHistory mendefinisikan konstanta INSTRUCTION
yang memberikan instruksi spesifik kepada model Al tentang cara menganalisis riwayat

transaksi pelanggan untuk mencari indikator penipuan potensial melalui direktif sistem

Metode self.check adalah metode kelas yang menginisialisasi instance baru dari
CheckCustomerHistory dengan objek fraud_detection dan memanggil metode

call untuk melakukan analisis riwayat pelanggan.

Di dalam metode call, riwayat transaksi pelanggan diambil dan diformat menjadi
transkrip yang diteruskan ke model AI. Model Al menganalisis riwayat transaksi

berdasarkan instruksi yang diberikan dan mengembalikan ringkasan temuannya.

Temuan-temuan tersebut ditambahkan ke dalam objek fraud_detection, dan objek

fraud_detection yang telah diperbarui dikembalikan sebagai Result yang berhasil.

Dengan memanfaatkan modul ChatCompletion, kelas CheckCustomerHistory da-
pat menggunakan kekuatan Al untuk menganalisis riwayat transaksi pelanggan dan
mengidentifikasi indikator penipuan potensial. Hal ini memungkinkan teknik deteksi
penipuan yang lebih canggih dan adaptif, karena model Al dapat belajar dan beradaptasi

dengan pola dan anomali baru seiring waktu.

FraudDetectionWorker yang diperbarui dan kelas CheckCustomerHistory me-
nunjukkan bagaimana pekerja Al dapat diintegrasikan dengan mulus, meningkatkan
proses deteksi penipuan dengan kemampuan analisis dan pengambilan keputusan yang

cerdas.

© 0 N O O b W N

I S S T T G G S
© O W N O U b W N =~ O

Banyaknya Pekerja 102

Analisis Sentimen Pelanggan

Berikut satu contoh serupa lagi tentang bagaimana Anda dapat mengimplementasikan
pekerja analisis sentimen pelanggan. Kali ini dengan penjelasan yang lebih singkat,

karena Anda seharusnya sudah mulai memahami cara kerja gaya pemrograman ini:

class CustomerSentimentAnalysisWorker

include Wisper: :Publisher

def call(feedback)

Result.ok(feedback)
.and_then(PreprocessFeedback .method(: preprocess))
.map(Per formSentimentAnalysis.method(:analyze))
.map(ExtractKeyPhrases.method(:extract))
.map(IdentifyTrends.method(:identify))
.map(Generatelnsights.method(:generate)).then do |result|

case result

in { err: SentimentAnalysisError => error }
Honeybadger .notify(error.message, context: {feedback:})

in { ok: SentimentAnalysisResult => result }
broadcast(:sentiment_analysis_completed, result)

end

end
end

end

Dalam contoh ini, CustomerSentimentAnalysisWorker meliputi langkah-langkah
seperti prapemrosesan umpan balik (misalnya, menghilangkan noise, tokenisasi),
melakukan analisis sentimen untuk menentukan sentimen keseluruhan (positif, negatif,
atau netral), mengekstrak frasa dan topik kunci, mengidentifikasi tren dan pola, serta

menghasilkan wawasan yang dapat ditindaklanjuti berdasarkan analisis tersebut.

Banyaknya Pekerja 103

Aplikasi Kesehatan

Di bidang kesehatan, pekerja Al dapat membantu para profesional medis dan peneliti
dalam berbagai tugas, yang mengarah pada peningkatan hasil pasien dan percepatan

penemuan medis. Beberapa contohnya meliputi:

Penerimaan Pasien

Pekerja Al dapat mengefisienkan proses penerimaan pasien dengan mengotomatisasi

berbagai tugas dan memberikan bantuan cerdas.

Penjadwalan Janji: Pekerja Al dapat menangani penjadwalan janji dengan memahami
preferensi pasien, ketersediaan waktu, dan urgensi kebutuhan medis mereka. Mereka
dapat berinteraksi dengan pasien melalui antarmuka percakapan, memandu mereka
melalui proses penjadwalan dan menemukan slot janji yang paling sesuai berdasarkan

kebutuhan pasien dan ketersediaan penyedia layanan kesehatan.

Pengumpulan Riwayat Medis: Selama penerimaan pasien, pekerja Al dapat membantu
dalam mengumpulkan dan mendokumentasikan riwayat medis pasien. Mereka dapat
terlibat dalam dialog interaktif dengan pasien, mengajukan pertanyaan yang relevan
tentang kondisi medis sebelumnya, obat-obatan, alergi, dan riwayat kesehatan keluarga.
Pekerja Al dapat menggunakan teknik pemrosesan bahasa alami untuk menginterpre-
tasikan dan menyusun informasi yang dikumpulkan, memastikan informasi tersebut

tercatat dengan akurat dalam rekam medis elektronik pasien.

Penilaian dan Stratifikasi Gejala: Pekerja Al dapat melakukan penilaian gejala
awal dengan menanyakan pasien tentang gejala yang dialami saat ini, durasi, tingkat
keparahan, dan faktor-faktor terkait. Dengan memanfaatkan basis pengetahuan medis
dan model pembelajaran mesin, pekerja ini dapat menganalisis informasi yang diberikan
dan menghasilkan diagnosis diferensial awal atau merekomendasikan langkah-langkah
selanjutnya yang tepat, seperti menjadwalkan konsultasi dengan penyedia layanan

kesehatan atau menyarankan langkah-langkah perawatan mandiri.

Banyaknya Pekerja 104

Verifikasi Asuransi: Pekerja Al dapat membantu dengan verifikasi asuransi selama
penerimaan pasien. Mereka dapat mengumpulkan detail asuransi pasien, berkomu-
nikasi dengan penyedia asuransi melalui API atau layanan web, dan memverifikasi
kelayakan dan manfaat pertanggungan. Otomatisasi ini membantu mengefisienkan
proses verifikasi asuransi, mengurangi beban administratif dan memastikan keakuratan

informasi yang dicatat.

Edukasi dan Instruksi Pasien: Pekerja Al dapat menyediakan materi edukasi dan
instruksi yang relevan kepada pasien berdasarkan kondisi medis atau prosedur yang
akan datang. Mereka dapat memberikan konten yang dipersonalisasi, menjawab
pertanyaan umum, dan memberikan panduan tentang persiapan pra-janji temu, in-
struksi pengobatan, atau perawatan pasca-pengobatan. Hal ini membantu pasien tetap

terinformasi dan terlibat sepanjang perjalanan kesehatan mereka.

Dengan memanfaatkan pekerja Al dalam penerimaan pasien, organisasi layanan ke-
sehatan dapat meningkatkan efisiensi, mengurangi waktu tunggu, dan meningkatkan
pengalaman pasien secara keseluruhan. Pekerja-pekerja ini dapat menangani tugas-
tugas rutin, mengumpulkan informasi yang akurat, dan memberikan bantuan yang
dipersonalisasi, sehingga memungkinkan para profesional kesehatan untuk fokus mem-

berikan perawatan berkualitas tinggi kepada pasien.

Penilaian Risiko Pasien

Pekerja Al dapat memainkan peran penting dalam menilai risiko pasien dengan men-

ganalisis berbagai sumber data dan menerapkan teknik analitik tingkat lanjut.

Integrasi Data: Pekerja Al dapat mengumpulkan dan memahami data pasien dari
berbagai sumber, seperti rekam medis elektronik (RME), pencitraan medis, hasil lab-
oratorium, perangkat yang dapat dikenakan, dan determinan sosial kesehatan. Dengan
menggabungkan informasi ini menjadi profil pasien yang komprehensif, pekerja Al
dapat memberikan pandangan menyeluruh tentang status kesehatan dan faktor-faktor

risiko pasien.

Banyaknya Pekerja 105

Stratifikasi Risiko: Pekerja Al dapat menggunakan model prediktif untuk melakukan
stratifikasi pasien ke dalam berbagai kategori risiko berdasarkan karakteristik individual
dan data kesehatan mereka. Stratifikasi risiko ini memungkinkan penyedia layanan
kesehatan untuk memprioritaskan pasien yang memerlukan perhatian atau intervensi
lebih segera. Sebagai contoh, pasien yang teridentifikasi berisiko tinggi untuk kondisi
tertentu dapat ditandai untuk pemantauan lebih ketat, tindakan pencegahan, atau

intervensi dini.

Profil Risiko Personal: Pekerja Al dapat menghasilkan profil risiko personal untuk
setiap pasien, menyoroti faktor-faktor spesifik yang berkontribusi pada skor risiko
mereka. Profil ini dapat mencakup wawasan tentang gaya hidup pasien, predisposisi
genetik, faktor lingkungan, dan determinan sosial kesehatan. Dengan memberikan
rincian lengkap tentang faktor-faktor risiko, pekerja AI dapat membantu penyedia
layanan kesehatan menyesuaikan strategi pencegahan dan rencana perawatan sesuai

kebutuhan individual pasien.

Pemantauan Risiko Berkelanjutan: Pekerja Al dapat terus memantau data pasien dan
memperbarui penilaian risiko secara real-time. Ketika informasi baru tersedia, seperti
perubahan tanda vital, hasil laboratorium, atau kepatuhan pengobatan, pekerja Al dapat
menghitung ulang skor risiko dan memberitahu penyedia layanan kesehatan tentang
perubahan signifikan apa pun. Pemantauan proaktif ini memungkinkan intervensi tepat

waktu dan penyesuaian rencana perawatan pasien.

Dukungan Keputusan Klinis: Pekerja Al dapat mengintegrasikan hasil penilaian
risiko ke dalam sistem dukungan keputusan klinis, memberikan rekomendasi dan
peringatan berbasis bukti kepada penyedia layanan kesehatan. Misalnya, jika skor
risiko pasien untuk kondisi tertentu melebihi ambang batas tertentu, pekerja Al dapat
mengingatkan penyedia layanan kesehatan untuk mempertimbangkan tes diagnostik
tertentu, tindakan pencegahan, atau pilihan pengobatan berdasarkan pedoman klinis

dan praktik terbaik.

Pekerja-pekerja ini dapat memproses sejumlah besar data pasien, menerapkan analitik

Banyaknya Pekerja 106

canggih, dan menghasilkan wawasan yang dapat ditindaklanjuti untuk mendukung
pengambilan keputusan klinis. Hal ini pada akhirnya mengarah pada peningkatan hasil

pasien, pengurangan biaya kesehatan, dan peningkatan manajemen kesehatan populasi.

Al Worker sebagai Process Manager

TRIGGER

l

Process Manager
Reply 3 Reply

Function A Function B Function C Finished

Dalam konteks aplikasi berbasis Al, worker dapat dirancang untuk berfungsi sebagai
Process Manager, seperti yang dijelaskan dalam buku “Enterprise Integration Patterns”
oleh Gregor Hohpe. Process Manager adalah komponen pusat yang mempertahankan

status proses dan menentukan langkah pemrosesan berikutnya berdasarkan hasil antara.

Ketika AI worker bertindak sebagai Process Manager, ia menerima pesan masuk yang
menginisialisasi proses, yang dikenal sebagai pesan pemicu. Al worker kemudian mem-
pertahankan status eksekusi proses (sebagai transkrip percakapan) dan menangani pesan
melalui serangkaian langkah pemrosesan yang diimplementasikan sebagai fungsi alat,

yang dapat berjalan secara berurutan atau paralel, dan dipanggil sesuai kebijakannya.

© 0 N O O b W N =

[= =N
a s W N =~

Banyaknya Pekerja 107

Jika Anda menggunakan kelas model Al seperti GPT-4 yang tahu cara
mengeksekusi fungsi secara paralel, maka worker Anda dapat mengeksekusi
beberapa langkah secara bersamaan. Sejujurnya, saya belum pernah men-

cobanya sendiri dan naluri saya mengatakan hasilnya mungkin bervariasi.

Setelah setiap langkah pemrosesan individual, kontrol dikembalikan ke AI worker,
memungkinkannya menentukan langkah pemrosesan berikutnya berdasarkan status

saat ini dan hasil yang diperoleh.

Simpan Pesan Pemicu Anda

Berdasarkan pengalaman saya, adalah bijaksana untuk mengimplementasikan pesan
pemicu Anda sebagai objek berbasis basis data. Dengan cara itu, setiap instansi proses
diidentifikasi oleh kunci primer yang unik dan memberi Anda tempat untuk menyimpan

status yang terkait dengan eksekusi, termasuk transkrip percakapan Al.

Sebagai contoh, berikut adalah versi yang disederhanakan dari kelas model
AccountChange Olympia, yang merepresentasikan permintaan untuk membuat

perubahan pada akun pengguna.

== Schema Information

#

Table name: account_changes

#

id ruuid not null, primary key
description :string

state :string not null
transcript :jsonb

created_at :datetime not null
updated_at :datetime not null
gccount_id :uuid not null
#

Indexes

#

#

index_account_changes_on_account_id (account_id)

16
17
18
19
20
21

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Banyaknya Pekerja 108

Foreign Keys

fk_rails_... (account_id => accounts.id)

¥ OB ¥

class AccountChange < ApplicationRecord
belongs_to :account

validates :description, presence: true

after_commit -> {
broadcast(:account_change_requested, self)
}, on: :create

state_machine initial: :requested do
event :completed do
transition all => :complete
end
event :failed do
transition all => :requires_human_review
end
end
end

Kelas AccountChange berfungsi sebagai pesan pemicu yang memulai proses untuk
menangani permintaan perubahan akun. Perhatikan bagaimana pesan ini disiarkan ke
subsistem pub/sub berbasis Wisper milik Olympia setelah transaksi pembuatan selesai

dilakukan.

Menyimpan pesan pemicu dalam database seperti ini memberikan catatan permanen
untuk setiap permintaan perubahan akun. Setiap instance dari kelas AccountChange
diberi kunci primer yang unik, memungkinkan identifikasi dan pelacakan yang mudah
untuk setiap permintaan individual. Hal ini sangat berguna untuk tujuan pencatatan
audit, karena memungkinkan sistem untuk mempertahankan catatan historis dari
semua perubahan akun, termasuk kapan perubahan diminta, perubahan apa yang

diminta, dan status terkini dari setiap permintaan.

Dalam contoh yang diberikan, kelas AccountChange mencakup field seperti de-

https://github.com/krisleech/wisper

Banyaknya Pekerja 109

scription untuk menangkap detail dari perubahan yang diminta, state untuk
merepresentasikan status terkini dari permintaan (misalnya, requested, complete, re-
quires_human_review), dan transcript untuk menyimpan transkrip percakapan Al
terkait permintaan tersebut. Field description adalah prompt aktual yang digunakan
untuk memulai chat completion pertama dengan Al Penyimpanan data ini memberikan
konteks yang berharga dan memungkinkan pelacakan dan analisis yang lebih baik

terhadap proses perubahan akun.

Penyimpanan pesan pemicu dalam database memungkinkan penanganan kesalahan dan
pemulihan yang kuat. Jika terjadi kesalahan selama pemrosesan permintaan perubahan
akun, sistem akan menandai permintaan tersebut sebagai gagal dan mengalihkannya
ke status yang memerlukan intervensi manusia. Hal ini memastikan bahwa tidak
ada permintaan yang hilang atau terlupakan, dan setiap masalah dapat ditangani dan

diselesaikan dengan tepat.

Al worker, sebagai Process Manager, menyediakan titik kontrol pusat dan memu-
ngkinkan kemampuan pelaporan dan debugging proses yang kuat. Namun, penting
untuk dicatat bahwa menggunakan Al worker sebagai Process Manager untuk setiap

skenario alur kerja dalam aplikasi Anda mungkin berlebihan.

Mengintegrasikan Al Worker ke Dalam
Arsitektur Aplikasi Anda

Ketika mengintegrasikan Al worker ke dalam arsitektur aplikasi, beberapa pertimban-
gan teknis perlu diperhatikan untuk memastikan integrasi yang lancar dan komunikasi
yang efektif antara Al worker dan komponen aplikasi lainnya. Bagian ini membahas
aspek-aspek penting dalam merancang antarmuka tersebut, menangani aliran data, dan

mengelola siklus hidup AI worker.

Banyaknya Pekerja 110

Merancang Antarmuka dan Protokol Komunikasi yang
Jelas

Untuk memfasilitasi integrasi yang mulus antara Al worker dan komponen aplikasi
lainnya, sangat penting untuk mendefinisikan antarmuka dan protokol komunikasi yang

jelas. Pertimbangkan pendekatan-pendekatan berikut:

Integrasi Berbasis API: Mengekspos fungsionalitas pekerja Al melalui API yang
terdefinisi dengan baik, seperti endpoint RESTful atau skema GraphQL. Hal ini memu-
ngkinkan komponen lain untuk berinteraksi dengan pekerja Al menggunakan per-
mintaan dan respons HTTP standar. Integrasi berbasis API menyediakan kontrak yang
jelas antara pekerja Al dan komponen yang menggunakannya, sehingga memudahkan

pengembangan, pengujian, dan pemeliharaan titik-titik integrasi.

Komunikasi Berbasis Pesan: Mengimplementasikan pola komunikasi berbasis pesan,
seperti antrian pesan atau sistem publikasi-langganan, untuk memungkinkan interaksi
asinkron antara pekerja Al dan komponen lainnya. Pendekatan ini memisahkan pekerja
Al dari bagian lain aplikasi, memungkinkan skalabilitas yang lebih baik, toleransi
kesalahan, dan pengikatan yang longgar. Komunikasi berbasis pesan sangat berguna
ketika pemrosesan yang dilakukan oleh pekerja Al memakan waktu atau membutuhkan
banyak sumber daya, karena memungkinkan bagian lain dari aplikasi untuk terus

berjalan tanpa menunggu pekerja Al menyelesaikan tugasnya.

Arsitektur Berbasis Event: Merancang sistem Anda di sekitar event dan pemicu
yang mengaktifkan pekerja Al ketika kondisi tertentu terpenuhi. Pekerja AI dapat
berlangganan event yang relevan dan bereaksi sesuai kebutuhan, melakukan tugas yang
ditentukan ketika event terjadi. Arsitektur berbasis event memungkinkan pemrosesan
real-time dan memungkinkan pekerja AI dipanggil sesuai kebutuhan, mengurangi
konsumsi sumber daya yang tidak perlu. Pendekatan ini sangat cocok untuk skenario
di mana pekerja Al perlu merespons tindakan atau perubahan tertentu dalam status

aplikasi.

Banyaknya Pekerja 111

Menangani Aliran Data dan Sinkronisasi

Ketika mengintegrasikan pekerja AI ke dalam aplikasi Anda, sangat penting untuk
memastikan aliran data yang lancar dan menjaga konsistensi data antara pekerja Al

dan komponen lainnya. Pertimbangkan aspek-aspek berikut:

Persiapan Data: Sebelum memasukkan data ke dalam pekerja Al, Anda mungkin
perlu melakukan berbagai tugas persiapan data, seperti pembersihan, pemformatan,
dan/atau transformasi data masukan. Anda tidak hanya ingin memastikan bahwa
pekerja Al dapat memproses secara efektif, tetapi juga ingin memastikan bahwa Anda
tidak membuang token dengan memberikan perhatian pada informasi yang mungkin
dianggap tidak berguna atau bahkan mengganggu oleh pekerja. Persiapan data mungkin
melibatkan tugas-tugas seperti menghilangkan noise, menangani nilai yang hilang, atau

mengkonversi tipe data.

Persistensi Data: Bagaimana Anda akan menyimpan dan mempertahankan data yang
mengalir masuk dan keluar dari pekerja AI? Pertimbangkan faktor-faktor seperti
volume data, pola query, dan skalabilitas. Apakah Anda perlu menyimpan transkrip
Al sebagai refleksi dari “proses berpikirnya” untuk tujuan audit atau debugging, atau

cukup hanya dengan menyimpan catatan hasilnya saja?

Pengambilan Data: Mendapatkan data yang dibutuhkan oleh worker mungkin meli-
batkan query ke database, membaca dari file, atau mengakses API eksternal. Pastikan
untuk mempertimbangkan latensi dan bagaimana worker Al akan memiliki akses ke
data yang paling mutakhir. Apakah mereka membutuhkan akses penuh ke database
Anda atau haruskah Anda mendefinisikan cakupan akses mereka secara terbatas sesuai
dengan apa yang mereka kerjakan? Bagaimana dengan skalabilitas? Pertimbangkan
mekanisme caching untuk meningkatkan kinerja dan mengurangi beban pada sumber

data yang mendasarinya.

Sinkronisasi Data: Ketika beberapa komponen, termasuk worker Al, mengakses dan

memodifikasi data bersama, penting untuk menerapkan mekanisme sinkronisasi yang

Banyaknya Pekerja 112

tepat untuk menjaga konsistensi data. Strategi penguncian database, seperti optimistic
atau pessimistic locking, dapat membantu Anda mencegah konflik dan memastikan
integritas data. Terapkan teknik manajemen transaksi untuk mengelompokkan operasi
data terkait dan mempertahankan properti ACID (Atomicity, Consistency, Isolation,

dan Durability)

Penanganan Kesalahan dan Pemulihan: Terapkan mekanisme penanganan kesalahan
dan pemulihan yang kuat untuk menangani masalah terkait data yang mungkin muncul
selama proses aliran data. Tangani pengecualian dengan baik dan berikan pesan
kesalahan yang bermakna untuk membantu debugging. Terapkan mekanisme retry dan
strategi fallback untuk menangani kegagalan sementara atau gangguan jaringan. Tetap-
kan prosedur yang jelas untuk pemulihan dan pemulihan data jika terjadi kerusakan

atau kehilangan data.

Dengan merancang dan menerapkan mekanisme aliran dan sinkronisasi data dengan
hati-hati, Anda dapat memastikan bahwa worker Al Anda memiliki akses ke data yang
akurat, konsisten, dan terbaru. Ini memungkinkan mereka untuk melakukan tugas

mereka secara efektif dan menghasilkan hasil yang dapat diandalkan.

Mengelola Siklus Hidup Worker Al

Kembangkan proses standar untuk menginisialisasi dan mengkonfigurasi worker AL
Saya lebih suka kerangka kerja yang menstandarkan cara Anda mendefinisikan pen-
gaturan seperti nama model, direktif sistem, dan definisi fungsi. Pastikan bahwa
proses inisialisasi otomatis dan dapat direproduksi untuk memfasilitasi deployment dan

scaling.

Terapkan mekanisme pemantauan dan pencatatan yang komprehensif untuk melacak
kesehatan dan kinerja worker Al. Kumpulkan metrik seperti penggunaan sumber daya,
waktu pemrosesan, tingkat kesalahan, dan throughput. Gunakan sistem pencatatan
terpusat seperti ELK stack (Elasticsearch, Logstash, Kibana) untuk mengumpulkan dan

menganalisis log dari beberapa worker AL

Banyaknya Pekerja 113

Bangun toleransi kesalahan dan ketahanan ke dalam arsitektur pekerja Al Terapkan
mekanisme penanganan kesalahan dan pemulihan untuk mengatasi kegagalan atau
pengecualian dengan baik. Model Bahasa Besar masih merupakan teknologi yang
sangat baru; penyedia layanan sering mengalami gangguan pada waktu yang tidak
terduga. Gunakan mekanisme pengulangan dan pemutus sirkuit untuk mencegah

kegagalan berantai.

Kemampuan Komposisi dan Orkestrasi Pekerja
Al

Salah satu keunggulan utama arsitektur pekerja Al adalah kemampuan komposisinya,
yang memungkinkan Anda untuk menggabungkan dan mengorkestrasi beberapa
pekerja Al untuk memecahkan masalah kompleks. Dengan memecah tugas yang lebih
besar menjadi subtugas yang lebih kecil dan lebih mudah dikelola, yang masing-masing
ditangani oleh pekerja AI khusus, Anda dapat menciptakan sistem yang kuat dan
fleksibel. Dalam bagian ini, kita akan mengeksplorasi berbagai pendekatan untuk

menyusun dan mengorkestrasi “sejumlah besar” pekerja Al.

Merantai Pekerja Al untuk Alur Kerja Bertahap

Dalam banyak skenario, tugas kompleks dapat diuraikan menjadi serangkaian langkah
berurutan, di mana keluaran dari satu pekerja Al menjadi masukan untuk pekerja
berikutnya. Perantaian pekerja Al ini menciptakan alur kerja atau pipeline bertahap.
Setiap pekerja Al dalam rantai berfokus pada subtugas tertentu, dan keluaran akhir

adalah hasil dari upaya gabungan semua pekerja.

Mari kita lihat contoh dalam konteks aplikasi Ruby on Rails untuk memproses konten
buatan pengguna. Alur kerja melibatkan langkah-langkah berikut, yang memang
mungkin terlalu sederhana untuk layak diuraikan seperti ini dalam kasus penggunaan

nyata, tetapi mereka membuat contoh lebih mudah dipahami:

© 0 N O O b W N -

I = =N
Bw N~

Banyaknya Pekerja 114

1. Pembersihan Teks: Pekerja Al yang bertanggung jawab untuk menghapus tag

HTML, mengubah teks menjadi huruf kecil, dan menangani normalisasi Unicode.

2. Deteksi Bahasa: Pekerja Al yang mengidentifikasi bahasa dari teks yang telah
dibersihkan.

3. Analisis Sentimen: Pekerja Al yang menentukan sentimen (positif, negatif, atau

netral) dari teks berdasarkan bahasa yang terdeteksi.

4. Kategorisasi Konten: Pekerja Al yang mengklasifikasikan teks ke dalam kategori

yang telah ditentukan menggunakan teknik pemrosesan bahasa alami.

Berikut adalah contoh yang sangat disederhanakan tentang bagaimana Anda dapat

merantai pekerja-pekerja Al ini menggunakan Ruby:

class ContentProcessor
def initialize(text)
@text = text
end

def process
cleaned_text = TextCleanupWorker .new(@text).call
language = LanguageDetectionWorker.new(cleaned_text).call
sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call
category = CategorizationWorker.new(cleaned_text, language).call

{ cleaned_text:, language:, sentiment:, category: }
end

end

Dalam contoh ini, kelas ContentProcessor diinisialisasi dengan teks mentah dan
menghubungkan pekerja-pekerja Al bersama-sama dalam metode process. Setiap
pekerja Al melakukan tugas spesifiknya dan meneruskan hasilnya ke pekerja berikutnya
dalam rantai. Keluaran akhirnya adalah sebuah hash yang berisi teks yang telah

dibersihkan, bahasa yang terdeteksi, sentimen, dan kategori konten.

© 0 N O O b W N

[O = =
O O s W N o

Banyaknya Pekerja 115

Pemrosesan Paralel untuk Pekerja Al Independen

Dalam contoh sebelumnya, pekerja-pekerja Al dihubungkan secara sekuensial, di mana
setiap pekerja memproses teks dan meneruskan hasilnya ke pekerja berikutnya. Namun,
jika Anda memiliki beberapa pekerja Al yang dapat beroperasi secara independen pada
input yang sama, Anda dapat mengoptimalkan alur kerja dengan memprosesnya secara

paralel.

Dalam skenario yang diberikan, setelah pembersihan teks dilakukan oleh
TextCleanupWorker, LanguageDetectionWorker, SentimentAnalysisWorker,
dan CategorizationWorker semuanya dapat memproses teks yang telah dibersihkan
secara independen. Dengan menjalankan pekerja-pekerja ini secara paralel, Anda
dapat mengurangi waktu pemrosesan keseluruhan dan meningkatkan efisiensi alur

kerja Anda.

Untuk mencapai pemrosesan paralel di Ruby, Anda dapat memanfaatkan teknik
konkurensi seperti thread atau pemrograman asinkron. Berikut adalah contoh
bagaimana Anda dapat memodifikasi kelas ContentProcessor untuk memproses tiga

pekerja terakhir secara paralel menggunakan thread:

require 'concurrent'

class ContentProcessor
def initialize(text)
@text = text
end

def process

cleaned_text = TextCleanupWorker .new(@text).call

language_future = Concurrent: :Future.execute do
LanguageDetectionWorker .new(cleaned_text).call
end

sentiment_future = Concurrent::Future.execute do

SentimentAnalysisWorker .new(cleaned_text).call

17
18
19
20
21
22
23
24
25
26
27
28
29

Banyaknya Pekerja 116

end

category_future = Concurrent: :Future.execute do
CategorizationWorker.new(cleaned_text).call
end

language = language_future.value
sentiment = sentiment_future.value
category = category_future.value

{ cleaned_text:, language:, sentiment:, category: }
end
end

Dalam versi yang dioptimalkan ini, kita menggunakan pustaka concurrent-ruby
untuk membuat objek Concurrent::Future untuk setiap pekerja Al independen.
Sebuah Future merepresentasikan komputasi yang akan dijalankan secara asinkron

dalam utas terpisah.

Setelah langkah pembersihan teks, kita membuat tiga objek Future: language_-
future, sentiment_future, dan category_future. Setiap Future menjalankan
pekerja Al yang sesuai (LanguageDetectionWorker, SentimentAnalysisWorker,
dan CategorizationWorker) dalam utas terpisah, dengan memberikan cleaned_-

text sebagai masukan.

Dengan memanggil metode value pada setiap Future, kita menunggu komputasi
selesai dan mengambil hasilnya. Metode value memblokir hingga hasil tersedia,
memastikan bahwa semua pekerja paralel telah selesai memproses sebelum melan-

jutkan.

Akhirnya, kita menyusun hash keluaran dengan teks yang telah dibersihkan dan hasil

dari pekerja paralel, sama seperti dalam contoh aslinya.

Dengan memproses pekerja Al independen secara paralel, Anda dapat berpotensi men-
gurangi waktu pemrosesan keseluruhan dibandingkan dengan menjalankannya secara

berurutan. Optimasi ini sangat bermanfaat ketika menangani tugas yang memakan

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Banyaknya Pekerja 117

waktu atau ketika memproses data dalam jumlah besar.

Namun, penting untuk dicatat bahwa peningkatan kinerja yang sebenarnya bergantung
pada berbagai faktor, seperti kompleksitas setiap pekerja, sumber daya sistem yang
tersedia, dan overhead dari manajemen utas. Selalu menjadi praktik yang baik untuk
melakukan pengujian kinerja dan profiling pada kode Anda untuk menentukan tingkat

paralelisme yang optimal untuk kasus penggunaan spesifik Anda.

Selain itu, ketika mengimplementasikan pemrosesan paralel, perhatikan sumber daya
bersama atau dependensi antar pekerja. Pastikan bahwa para pekerja dapat beroperasi
secara independen tanpa konflik atau kondisi balapan. Jika ada dependensi atau sumber
daya bersama, Anda mungkin perlu mengimplementasikan mekanisme sinkronisasi
yang sesuai untuk menjaga integritas data dan menghindari masalah seperti kebuntuan

atau hasil yang tidak konsisten.

Global Interpreter Lock (GIL) Ruby dan Pemrosesan
Asinkron

Penting untuk memahami implikasi Global Interpreter Lock (GIL) Ruby ketika

mempertimbangkan pemrosesan berbasis utas asinkron dalam Ruby.

GIL adalah mekanisme dalam interpreter Ruby yang memastikan hanya satu utas
yang dapat mengeksekusi kode Ruby pada satu waktu, bahkan pada prosesor multi-
core. Ini berarti bahwa meskipun beberapa utas dapat dibuat dan dikelola dalam
sebuah proses Ruby, hanya satu utas yang dapat secara aktif mengeksekusi kode Ruby

pada momen tertentu.

GIL dirancang untuk menyederhanakan implementasi interpreter Ruby dan menye-
diakan keamanan thread untuk struktur data internal Ruby. Namun, hal ini juga

membatasi potensi eksekusi paralel yang sesungguhnya dari kode Ruby.

Ketika Anda menggunakan thread di Ruby, seperti dengan pustaka

Banyaknya Pekerja 118

concurrent-ruby atau kelas Thread bawaan, thread-thread tersebut tunduk
pada batasan GIL. GIL memungkinkan setiap thread untuk mengeksekusi kode
Ruby selama waktu yang singkat sebelum beralih ke thread lain, menciptakan ilusi

eksekusi konkuren.

Namun, karena GIL, eksekusi kode Ruby yang sebenarnya tetap sekuensial. Saat satu
thread mengeksekusi kode Ruby, thread lainnya pada dasarnya dijeda, menunggu

giliran mereka untuk mendapatkan GIL dan mengeksekusi.

Ini berarti pemrosesan asinkron berbasis thread di Ruby paling efektif untuk tugas
terikat I/O, seperti menunggu respons API eksternal (seperti model bahasa besar yang
di-host pihak ketiga) atau melakukan operasi I/O file. Ketika sebuah thread menemui
operasiI/O, thread tersebut dapat melepaskan GIL, memungkinkan thread lain untuk

mengeksekusi sambil menunggu I/O selesai.

Di sisi lain, untuk tugas terikat CPU, seperti komputasi intensif atau pemrosesan
pekerja Al yang berjalan lama, GIL dapat membatasi potensi peningkatan kinerja
dari paralelisme berbasis thread. Karena hanya satu thread yang dapat mengeksekusi
kode Ruby pada satu waktu, waktu eksekusi keseluruhan mungkin tidak berkurang

secara signifikan dibandingkan dengan pemrosesan sekuensial.

Untuk mencapai eksekusi paralel yang sesungguhnya untuk tugas terikat CPU di

Ruby, Anda mungkin perlu mengeksplorasi pendekatan alternatif, seperti:

« Menggunakan paralelisme berbasis proses dengan beberapa proses Ruby,
masing-masing berjalan di core CPU yang terpisah.

+ Memanfaatkan pustaka eksternal atau framework yang menyediakan ekstensi
native atau antarmuka ke bahasa tanpa GIL, seperti C atau Rust.,

+ Menggunakan framework komputasi terdistribusi atau antrian pesan untuk

mendistribusikan tugas di beberapa mesin atau proses.

Sangat penting untuk mempertimbangkan sifat tugas Anda dan batasan yang diter-

apkan oleh GIL ketika merancang dan mengimplementasikan pemrosesan asinkron

Banyaknya Pekerja 119

di Ruby. Meskipun pemrosesan asinkron berbasis thread dapat memberikan manfaat
untuk tugas terikat I/O, mungkin tidak menawarkan peningkatan kinerja yang

signifikan untuk tugas terikat CPU karena batasan GIL.

Teknik Ensemble untuk Meningkatkan Akurasi

Teknik ensemble melibatkan penggabungan output dari beberapa pekerja Al untuk
meningkatkan akurasi atau ketahanan sistem secara keseluruhan. Alih-alih men-
gandalkan satu pekerja Al, teknik ensemble memanfaatkan kecerdasan kolektif dari

beberapa pekerja untuk membuat keputusan yang lebih terinformasi.

Ensemble sangat penting terutama jika berbagai bagian dari alur kerja Anda

’ bekerja lebih baik dengan model Al yang berbeda-beda, hal yang lebih
umum terjadi daripada yang Anda kira. Model-model yang kuat seperti
GPT-4 sangat mahal dibandingkan dengan pilihan sumber terbuka yang
kurang canggih, dan mungkin tidak diperlukan untuk setiap langkah alur
kerja aplikasi Anda.

Salah satu teknik ensemble yang umum adalah pemungutan suara mayoritas, di mana
beberapa pekerja Al secara independen memproses input yang sama, dan output
akhir ditentukan berdasarkan konsensus mayoritas. Pendekatan ini dapat membantu
mengurangi dampak kesalahan pekerja individual dan meningkatkan keandalan sistem

secara keseluruhan.

Mari kita lihat contoh di mana kita memiliki tiga pekerja Al untuk analisis sentimen,
masing-masing menggunakan model yang berbeda atau dilengkapi dengan konteks
yang berbeda. Kita dapat menggabungkan output mereka menggunakan pemungutan

suara mayoritas untuk menentukan prediksi sentimen akhir.

© 0 N O O b W N e

I T O
© 00 N O O b W N =~ O

Banyaknya Pekerja 120

class SentimentAnalysisEnsemble
def initialize(text)
@text = text
end

def analyze
predictions = |
SentimentAnalysisWorker1.new(@text).analyze,
SentimentAnalysisWorker2.new(@text).analyze,
SentimentAnalysisWorker3.new(@text).analyze

predictions
.group_by { |sentiment| sentiment }
.max_by { |_, votes| votes.size }
Cfirst

end
end

Dalam contoh ini, kelas SentimentAnalysisEnsemble. diinisialisasi dengan teks
dan memanggil tiga pekerja Al analisis sentimen yang berbeda. Metode analyze
mengumpulkan prediksi dari setiap pekerja dan menentukan sentimen mayoritas meng-
gunakan metode group_by dan max_by. Keluaran akhirnya adalah sentimen yang

menerima suara terbanyak dari ensembel pekerja

’ Ensembel jelas merupakan kasus di mana bereksperimen dengan par-

alelisme mungkin akan sangat bermanfaat.

Pemilihan dan Pemanggilan Dinamis Pekerja Al

Dalam beberapa atau bahkan kebanyakan kasus, pekerja Al tertentu yang akan dipang-
gil mungkin bergantung pada kondisi runtime atau input pengguna. Pemilihan dan
pemanggilan dinamis pekerja Al memungkinkan fleksibilitas dan kemampuan adaptasi

dalam sistem.

© 0 N O U b W N =

I = T T TG ¢
O 00 <N O O & W N~ O

Banyaknya Pekerja 121

Anda mungkin akan tergoda untuk mencoba memasukkan banyak fung-
’ sionalitas ke dalam satu pekerja Al, memberikannya banyak fungsi dan
prompt rumit yang menjelaskan cara memanggilnya. Tahanlah godaan
itu, percayalah pada saya. Salah satu alasan mengapa pendekatan yang
kita bahas dalam bab ini disebut “Multitude of Workers” adalah untuk
mengingatkan kita bahwa sangat diinginkan untuk memiliki banyak pekerja
khusus, masing-masing melakukan tugasnya sendiri untuk mencapai tujuan

yang lebih besar.

Sebagai contoh, pertimbangkan aplikasi chatbot di mana pekerja Al yang berbeda
bertanggung jawab untuk menangani berbagai jenis pertanyaan pengguna. Berdasarkan
input pengguna, aplikasi secara dinamis memilih pekerja Al yang sesuai untuk mem-

proses pertanyaan tersebut.

class ChatbotController < ApplicationController
def process_query
query = params|:query]
query_type = QueryClassifierWorker.new(query).classify

case query_type
when 'greeting'

response = GreetingWorker.new(query).generate_response
when 'product_inquiry'

response = ProductInquiryWorker.new(query).generate_response
when 'order_status'

response = OrderStatusWorker .new(query).generate_response
else

response = DefaultResponseWorker .new(query).generate_response
end

render json: { response: response }
end

end

Dalam contoh ini, ChatbotController menerima query pengguna melalui aksi

process_query. Pertama-tama ia menggunakan QueryClassifierWorker untuk

Banyaknya Pekerja 122

menentukan jenis query tersebut. Berdasarkan jenis query yang telah diklasifikasikan,
controller secara dinamis memilih pekerja Al yang sesuai untuk menghasilkan respons.
Pemilihan dinamis ini memungkinkan chatbot untuk menangani berbagai jenis query

dan mengarahkannya ke pekerja Al yang relevan.

Karena pekerjaan QueryClassifierWorker relatif sederhana dan tidak
P memerlukan banyak konteks atau definisi fungsi, Anda mungkin bisa
mengimplementasikannya menggunakan LLM kecil yang sangat cepat
seperti mistralai/mixtral-8x7b-instruct:nitro. Model ini memi-
liki kemampuan yang hampir setara dengan level GPT-4 dalam banyak tugas
dan, pada saat saya menulis ini, Groq dapat melayaninya dengan kecepatan

luar biasa yaitu 444 token/detik.

Menggabungkan NLP Tradisional dengan LLM

Meskipun Model Bahasa Besar (LLM) telah merevolusi bidang pemrosesan bahasa
natural (NLP), menawarkan keserbagunaan dan kinerja yang tak tertandingi dalam
berbagai tugas, mereka tidak selalu menjadi solusi yang paling efisien atau hemat biaya
untuk setiap masalah. Dalam banyak kasus, menggabungkan teknik NLP tradisional
dengan LLM dapat menghasilkan pendekatan yang lebih optimal, terarah, dan ekonomis

untuk menyelesaikan tantangan NLP tertentu.

Anggaplah LLM sebagai pisau Swiss Army dalam NLP—sangat serbaguna dan kuat,
tetapi tidak selalu menjadi alat terbaik untuk setiap pekerjaan. Terkadang, alat
khusus seperti pembuka tutup botol atau pembuka kaleng bisa lebih efektif dan efisien
untuk tugas tertentu. Demikian pula, teknik NLP tradisional, seperti pengelompokan
dokumen, identifikasi topik, dan klasifikasi, seringkali dapat memberikan solusi yang

lebih terarah dan hemat biaya untuk aspek tertentu dalam alur kerja NLP Anda.

Salah satu keunggulan utama teknik NLP tradisional adalah efisiensi komputasinya.

Metode-metode ini, yang sering mengandalkan model statistik yang lebih sederhana

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Banyaknya Pekerja 123

atau pendekatan berbasis aturan, dapat memproses volume data teks yang besar dengan
lebih cepat dan dengan beban komputasi yang lebih rendah dibandingkan dengan LLM.
Hal ini membuat mereka sangat cocok untuk tugas-tugas yang melibatkan analisis dan
pengorganisasian korpus dokumen yang besar, seperti pengelompokan artikel serupa

atau mengidentifikasi topik utama dalam kumpulan teks.

Selain itu, teknik NLP tradisional seringkali dapat mencapai akurasi dan presisi tinggi
untuk tugas-tugas tertentu, terutama ketika dilatih pada dataset khusus domain. Sebagai
contoh, pengklasifikasi dokumen yang disetel dengan baik menggunakan algoritma
pembelajaran mesin tradisional seperti Support Vector Machines (SVM) atau Naive
Bayes dapat mengkategorikan dokumen ke dalam kategori yang telah ditentukan secara

akurat dengan biaya komputasi minimal.

Namun, LLMs benar-benar unggul ketika berhadapan dengan tugas-tugas yang memer-
lukan pemahaman yang lebih dalam tentang bahasa, konteks, dan penalaran. Ke-
mampuan mereka untuk menghasilkan teks yang koheren dan relevan secara kon-
tekstual, menjawab pertanyaan, dan meringkas bagian-bagian panjang tidak dapat
ditandingi oleh metode NLP tradisional. LLMs dapat menangani fenomena linguistik
yang kompleks secara efektif, seperti ambiguitas, koreferensi, dan ungkapan idiomatik,
menjadikannya sangat berharga untuk tugas-tugas yang memerlukan generasi atau

pemahaman bahasa alami.

Kekuatan sesungguhnya terletak pada penggabungan teknik NLP tradisional dengan
LLMs untuk menciptakan pendekatan hibrid yang memanfaatkan kekuatan keduanya.
Dengan menggunakan metode NLP tradisional untuk tugas-tugas seperti praproses
dokumen, pengelompokan, dan ekstraksi topik, Anda dapat mengatur dan menyusun
data teks Anda secara efisien. Informasi terstruktur ini kemudian dapat diumpankan ke
LLMs untuk tugas-tugas yang lebih canggih, seperti menghasilkan ringkasan, menjawab

pertanyaan, atau membuat laporan komprehensif.

Misalnya, mari kita pertimbangkan kasus penggunaan di mana Anda ingin meng-

hasilkan laporan tren untuk domain tertentu berdasarkan korpus besar dokumen tren

Banyaknya Pekerja 124

individual. Alih-alih hanya mengandalkan LLMs, yang bisa mahal secara komputasi
dan memakan waktu untuk memproses volume teks yang besar, Anda dapat menggu-

nakan pendekatan hibrid:

1. Gunakan teknik NLP tradisional, seperti pemodelan topik (misalnya, Latent
Dirichlet Allocation) atau algoritma pengelompokan (misalnya, K-means), untuk
mengelompokkan dokumen tren yang serupa dan mengidentifikasi tema dan topik
utama dalam korpus.

2. Umpankan dokumen yang telah dikelompokkan dan topik yang telah diidenti-
fikasi ke LLM, memanfaatkan kemampuan pemahaman dan generasi bahasanya
yang unggul untuk membuat ringkasan yang koheren dan informatif untuk setiap
kelompok atau topik.

3. Terakhir, gunakan LLM untuk menghasilkan laporan tren yang komprehensif den-
gan menggabungkan ringkasan individual, menyoroti tren yang paling signifikan,
dan memberikan wawasan serta rekomendasi berdasarkan informasi yang telah

dikumpulkan.

Dengan menggabungkan teknik NLP tradisional dengan LLMs dengan cara ini, Anda
dapat memproses sejumlah besar data teks secara efisien, mengekstrak wawasan yang
bermakna, dan menghasilkan laporan berkualitas tinggi sambil mengoptimalkan sum-

ber daya dan biaya komputasi.

Saat Anda mulai menjalankan proyek-proyek NLP, sangat penting untuk mengevaluasi
dengan cermat persyaratan dan batasan spesifik dari setiap tugas dan mempertim-
bangkan bagaimana metode NLP tradisional dan LLM dapat dimanfaatkan bersama
untuk mencapai hasil terbaik. Dengan menggabungkan efisiensi dan presisi dari teknik
tradisional dengan keluwesan dan kekuatan LLM, Anda dapat menciptakan solusi NLP
yang sangat efektif dan ekonomis yang memberikan nilai bagi pengguna dan para

stakeholder Anda.

Penggunaan Alat

Dalam ranah pengembangan aplikasi berbasis Al, konsep “penggunaan alat” atau

“pemanggilan fungsi” telah muncul sebagai teknik yang ampuh yang memungkinkan
LLM Anda untuk terhubung dengan alat eksternal, API, fungsi, basis data, dan
sumber daya lainnya. Pendekatan ini memungkinkan serangkaian perilaku yang lebih
kaya daripada sekadar menghasilkan teks, dan interaksi yang lebih dinamis antara
komponen AI Anda dan seluruh ekosistem aplikasi Anda. Seperti yang akan kita bahas
dalam bab ini, penggunaan alat juga memberi Anda opsi untuk membuat model Al

Anda menghasilkan data dengan cara yang terstruktur.

Apa itu Penggunaan Alat?

Penggunaan alat, yang juga dikenal sebagai pemanggilan fungsi, adalah teknik yang

memungkinkan pengembang untuk menentukan daftar fungsi yang dapat diinterak-

© 0 N O O b W N =

NN NN NN NN R R R R R s sy
4 0 O & O N SO O OO0 0w,

Penggunaan Alat 126

sikan oleh LLM selama proses generasi. Alat-alat ini dapat berkisar dari fungsi utilitas
sederhana hingga API atau kueri basis data yang kompleks. Dengan memberikan
LLM akses ke alat-alat ini, pengembang dapat memperluas kemampuan model dan
memungkinkannya untuk melakukan tugas-tugas yang memerlukan pengetahuan atau

tindakan eksternal.

Gambar 8. Contoh definisi fungsi untuk pekerja Al yang menganalisis dokumen

FUNCTION = {
name: "save_analysis",
description: "Save analysis data for document",
parameters: {
type: "object",
properties: {
title: {
type: "string",
maxLength: 140
}
summary: {
type: "string",
description: "comprehensive multi-paragraph summary with
overview and list of sections (if applicable)"
}
tags: {
type: "array",
items: {
type: "string",
description: "lowercase tags representing main themes
of the document™

}
}/

"required": %w[title summary tags]

}

}. freeze

Ide utama di balik penggunaan alat adalah memberikan LLM kemampuan untuk secara
dinamis memilih dan mengeksekusi alat yang sesuai berdasarkan masukan pengguna

atau tugas yang sedang dikerjakan. Alih-alih hanya mengandalkan pengetahuan

Penggunaan Alat 127

yang telah dilatih sebelumnya pada model, penggunaan alat memungkinkan LLM
untuk memanfaatkan sumber daya eksternal untuk menghasilkan respons yang lebih
akurat, relevan, dan dapat ditindaklanjuti. Penggunaan alat membuat teknik seperti
RAG (Generasi yang Diperkaya Pengambilan) jauh lebih mudah diimplementasikan

dibandingkan cara lainnya.

Perlu diperhatikan bahwa kecuali dinyatakan lain, buku ini mengasumsikan model
Al Anda tidak memiliki akses ke alat bawaan sisi server. Setiap alat yang ingin
Anda sediakan untuk AI Anda harus dideklarasikan secara eksplisit oleh Anda dalam
setiap permintaan API, dengan ketentuan untuk mengirimkan eksekusinya jika dan
ketika AI Anda memberi tahu Anda bahwa ia ingin menggunakan alat tersebut dalam

responnya.

Potensi Penggunaan Alat

Penggunaan alat membuka berbagai kemungkinan untuk aplikasi berbasis Al Berikut

beberapa contoh yang dapat dicapai dengan penggunaan alat:

1. Chatbot dan Asisten Virtual: Dengan menghubungkan LLM ke alat eksternal,
chatbot dan asisten virtual dapat melakukan tugas yang lebih kompleks, seperti
mengambil informasi dari basis data, melakukan pemanggilan API, atau berinter-
aksi dengan sistem lain. Misalnya, chatbot dapat menggunakan alat CRM untuk
mengubah status kesepakatan berdasarkan permintaan pengguna.

2. Analisis Data dan Wawasan: LLM dapat dihubungkan ke alat atau pustaka
analisis data untuk melakukan tugas pemrosesan data tingkat lanjut. Ini memu-
ngkinkan aplikasi untuk menghasilkan wawasan, melakukan analisis komparatif,

atau memberikan rekomendasi berbasis data berdasarkan pertanyaan pengguna.

Penggunaan Alat 128

3. Pencarian dan Pengambilan Informasi: Penggunaan alat memungkinkan LLM
untuk berinteraksi dengan mesin pencari, basis data vektor, atau sistem pengam-
bilan informasi lainnya. Dengan mengubah pertanyaan pengguna menjadi kueri
pencarian, LLM dapat mengambil informasi yang relevan dari berbagai sumber
dan memberikan jawaban komprehensif atas pertanyaan pengguna.

4. Integrasi dengan Layanan Eksternal: Penggunaan alat memungkinkan integrasi
yang mulus antara aplikasi berbasis Al dan layanan atau API eksternal. Misalnya,
LLM dapat berinteraksi dengan API cuaca untuk memberikan pembaruan cuaca
real-time atau API penerjemahan untuk menghasilkan respons dalam berbagai

bahasa.

Alur Kerja Penggunaan Alat

Alur kerja penggunaan alat biasanya melibatkan empat langkah utama:

1. Menyertakan definisi fungsi dalam konteks permintaan Anda
2. Pemilihan alat secara dinamis (atau eksplisit)
3. Eksekusi fungsi

4. Kelanjutan opsional dari prompt awal

Mari kita tinjau setiap langkah ini secara detail.

Menyertakan definisi fungsi dalam konteks permintaan
Anda

Al mengetahui alat apa saja yang tersedia karena Anda memberikan daftar sebagai
bagian dari permintaan penyelesaian Anda (biasanya didefinisikan sebagai fungsi

menggunakan varian skema JSON).
Sintaks yang tepat untuk definisi alat bergantung pada model yang digunakan.

Beginilah cara Anda mendefinisikan fungsi get_weather di Claude 3:

© 0 N O O & W N =~

T O = =Y
© 0 N O O b= W N -~ O

© 0 N O O » W N o~

I = ==Y
=N O O bW N e

Penggunaan Alat 129

"name": "get_weather",
"description": "Get the current weather in a given location",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
3,
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature"

} ’

"required": ["location"]

}

Dan beginilah cara Anda mendefinisikan fungsi yang sama untuk GPT-4, dengan

meneruskannya sebagai nilai parameter tools:

"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",

"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {

"type": "string",

"enum": ["celsius", "fahrenheit"],

"description": "The unit of temperature"
},

} ’

"required": ["location"],

18
19

a s W N -

Penggunaan Alat 130

Hampir sama, hanya berbeda tanpa alasan yang jelas! Sungguh menjengkelkan.

Definisi fungsi menentukan nama, deskripsi, dan parameter masukan. Parameter ma-
sukan dapat didefinisikan lebih lanjut menggunakan atribut seperti enums untuk
membatasi nilai yang dapat diterima, dan menentukan apakah suatu parameter wajib

atau tidak.

Selain definisi fungsi yang sebenarnya, Anda juga dapat menyertakan instruksi atau
konteks tentang mengapa dan bagaimana menggunakan fungsi tersebut dalam direktif

sistem.

Sebagai contoh, perangkat Web Search saya di Olympia menyertakan direktif sistem
ini, yang mengingatkan Al bahwa ia memiliki perangkat-perangkat yang disebutkan

tersebut:

The “google_search™ and “realtime_search™ functions let you do research
on behalf of the user. In contrast to Google, realtime search is powered
by Perplexity and provides real-time information to curated current events
databases and news sources. Make sure to include URLs in your response so
user can do followup research.

Memberikan deskripsi yang detail dianggap sebagai faktor terpenting dalam kinerja alat.

Deskripsi Anda harus menjelaskan setiap detail tentang alat tersebut, termasuk:

« Apa yang dilakukan oleh alat tersebut
« Kapan alat tersebut sebaiknya digunakan (dan kapan tidak)

« Apa arti setiap parameter dan bagaimana pengaruhnya terhadap perilaku alat

© 0 N O O b W N =

[T N T e = S = S SR S & SR S
, O O 00 N O O b W N~ o

Penggunaan Alat 131

« Hal-hal penting yang perlu diperhatikan atau batasan yang berlaku pada imple-

mentasi alat

Semakin banyak konteks yang dapat Anda berikan kepada Al tentang alat-alat Anda,
semakin baik kemampuannya dalam menentukan kapan dan bagaimana menggunakan-
nya. Misalnya, Anthropic merekomendasikan setidaknya 3-4 kalimat per deskripsi alat

untuk seri Claude 3, lebih banyak jika alatnya kompleks.

Mungkin tidak terasa intuitif, tetapi deskripsi juga dianggap lebih penting daripada
contoh. Meskipun Anda dapat menyertakan contoh cara menggunakan alat dalam
deskripsinya atau dalam prompt yang menyertainya, ini kurang penting dibandingkan
dengan penjelasan yang jelas dan komprehensif tentang tujuan dan parameter alat
tersebut. Tambahkan contoh hanya setelah Anda telah melengkapi deskripsinya secara

menyeluruh.

Berikut adalah contoh spesifikasi fungsi API bergaya Stripe:

"name": "createPayment",
"description": "Create a new payment request",
"parameters": {
"type": "object",
"properties": {
"transaction_amount": {
"type": "number",
"description": "The amount to be paid"
3
"description": {
"type": "string",
"description": "A brief description of the payment”
},
"payment_method_id": {
"type": "string",
"description": "The payment method to be used"
3
"payer": {
"type": "object",
"description”: "Information about the payer, including their name,

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Penggunaan Alat

email, and identification number",
"properties": {
"name": {

"type": "string",

"description": "The payer's name"
3,
"email": {
"type": "string",
"description": "The payer's email address"
},

"identification": {
"type": "object",
"description": "The payer's identification number",
"properties": {
"type": {
"type": "string",

"description": "Identification document (e.g. CPF, CNPJ)"

}I

"number": {
"type": "string",

"description": "The identification number"
}
}I
"required": ["type", "number"]
}
}/
"required": ["name", "email", "identification"]

132

Dalam praktiknya, beberapa model mengalami kesulitan menangani spesi-
fikasi fungsi bersarang dan menangani tipe data keluaran yang kompleks
seperti arrays, dictionaries dan sebagainya. Namun secara teori, Anda
seharusnya bisa memberikan spesifikasi JSON Schema dengan kedalaman

yang tak terbatas!

Penggunaan Alat 133

Pemilihan Alat Dinamis

Ketika Anda menjalankan chat completion yang menyertakan definisi alat, LLM secara
dinamis memilih alat yang paling sesuai untuk digunakan dan menghasilkan parameter

masukan yang diperlukan untuk setiap alat.

Dalam praktiknya, kemampuan AI untuk memanggil fungsi yang tepat, dan tepat
mengikuti spesifikasi Anda untuk masukan bersifat tidak pasti. Menurunkan parameter
temperature hingga 0.0 sangat membantu, tetapi berdasarkan pengalaman saya, Anda
masih akan menemui kesalahan sesekali. Kegagalan tersebut termasuk nama fungsi
yang dihalusinasi, parameter masukan yang salah nama atau bahkan hilang. Parameter
dikirimkan sebagai JSON, yang berarti terkadang Anda akan melihat kesalahan yang
disebabkan oleh JSON yang terpotong, salah kutip, atau rusak.

P Pola Self Healing Data dapat membantu memperbaiki secara otomatis

pemanggilan fungsi yang rusak karena kesalahan sintaks.

Pemilihan Alat Paksa (alias Eksplisit)

Beberapa model memberi Anda opsi untuk memaksa pemanggilan fungsi tertentu,
sebagai parameter dalam permintaan. Jika tidak, keputusan untuk memanggil fungsi

sepenuhnya bergantung pada kebijaksanaan Al.

Kemampuan untuk memaksa pemanggilan fungsi sangat penting dalam skenario ter-
tentu di mana Anda ingin memastikan bahwa alat atau fungsi tertentu dijalankan,
terlepas dari proses pemilihan dinamis Al. Ada beberapa alasan mengapa kemampuan

ini penting:

1. Kontrol Eksplisit: Anda mungkin menggunakan Al sebagai Komponen Diskrit
atau dalam alur kerja yang telah ditentukan yang mengharuskan eksekusi fungsi

tertentu pada waktu tertentu. Dengan memaksa pemanggilan, Anda dapat

Penggunaan Alat 134

menjamin bahwa fungsi yang diinginkan dipanggil alih-alih harus meminta Al
dengan sopan untuk melakukannya.

2. Debugging dan Pengujian: Saat mengembangkan dan menguji aplikasi berbasis
Al, kemampuan untuk memaksa pemanggilan fungsi sangat berharga untuk
tujuan debugging. Dengan memicu fungsi tertentu secara eksplisit, Anda da-
pat mengisolasi dan menguji komponen individual dari aplikasi Anda. Ini
memungkinkan Anda untuk memverifikasi kebenaran implementasi fungsi, mem-
validasi parameter masukan, dan memastikan bahwa hasil yang diharapkan
dikembalikan.

3. Menangani Kasus Tepi: Mungkin ada kasus tepi atau skenario khusus di mana
proses pemilihan dinamis Al mungkin tidak memilih untuk mengeksekusi fungsi
yang seharusnya, dan Anda mengetahui hal ini berdasarkan proses eksternal.
Dalam kasus seperti ini, kemampuan untuk memaksa pemanggilan fungsi memu-
ngkinkan Anda menangani situasi tersebut secara eksplisit. Tentukan aturan atau
kondisi dalam logika aplikasi Anda untuk menentukan kapan harus mengesamp-
ingkan kebijaksanaan AL

4. Konsistensi dan Reproduksibilitas: Jika Anda memiliki urutan fungsi tertentu
yang perlu dieksekusi dalam urutan tertentu, memaksa pemanggilan menjamin
bahwa urutan yang sama diikuti setiap kali. Ini sangat penting dalam aplikasi di
mana konsistensi dan perilaku yang dapat diprediksi sangat kritis, seperti dalam
sistem keuangan atau simulasi ilmiah.

5. Optimasi Kinerja: Dalam beberapa kasus, memaksa pemanggilan fungsi dapat
menghasilkan optimasi kinerja. Jika Anda tahu bahwa fungsi tertentu diperlukan
untuk tugas tertentu dan proses pemilihan dinamis AI mungkin menimbulkan
overhead yang tidak perlu, Anda dapat melewati proses pemilihan dan langsung
memanggil fungsi yang diperlukan. Ini dapat membantu mengurangi latensi dan

meningkatkan efisiensi keseluruhan aplikasi Anda.

Singkatnya, kemampuan untuk memaksa pemanggilan fungsi dalam aplikasi berbasis Al

memberikan kontrol eksplisit, membantu dalam debugging dan pengujian, menangani

Penggunaan Alat 135

kasus tepi, memastikan konsistensi dan reproduksibilitas. Ini adalah alat yang kuat

dalam arsenal Anda, tetapi kita perlu membahas satu aspek lagi dari fitur penting ini.

P Dalam banyak kasus pengambilan keputusan, kita selalu ingin model

melakukan pemanggilan fungsi dan mungkin tidak pernah ingin model
merespons hanya dengan pengetahuan internalnya. Misalnya, jika Anda
merutekan antara beberapa model yang khusus untuk tugas yang berbeda
(input multibahasa, matematika, dll), Anda mungkin menggunakan model
pemanggilan fungsi untuk mendelegasikan permintaan ke salah satu model

pembantu dan tidak pernah merespons secara independen.

Parameter Pilihan Alat

GPT-4 dan model bahasa lain yang mendukung pemanggilan fungsi memberi Anda
parameter tool_choice untuk mengontrol apakah penggunaan alat diperlukan sebagai

bagian dari penyelesaian. Parameter ini memiliki tiga nilai yang mungkin:

« auto memberi Al keleluasaan penuh untuk menggunakan alat atau sekadar
merespons

« required memberi tahu Al bahwa ia harus memanggil alat alih-alih merespons,
tetapi membiarkan pemilihan alat terserah pada Al

« Opsi ketiga adalah menetapkan parameter dari name_of_function yang ingin

Anda paksa. Lebih lanjut tentang itu di bagian berikutnya.

Perhatikan bahwa jika Anda mengatur pilihan alat ke required, model
P akan dipaksa untuk memilih fungsi yang paling relevan untuk dipanggil
dari fungsi-fungsi yang disediakan, bahkan jika tidak ada yang benar-benar
cocok dengan prompt tersebut. Pada saat publikasi, saya tidak mengetahui
adanya model yang akan mengembalikan respons tool_calls kosong,
atau menggunakan cara lain untuk memberi tahu Anda bahwa model

tersebut tidak menemukan fungsi yang sesuai untuk dipanggil.

Penggunaan Alat 136

Memaksa Fungsi Untuk Mendapatkan Output
Terstruktur

Kemampuan untuk memaksa pemanggilan fungsi memberi Anda cara untuk memaksa
data terstruktur keluar dari chat completion alih-alih harus mengekstraknya sendiri dari

respons teks biasa.

Mengapa memaksa fungsi untuk mendapatkan output terstruktur itu penting?
Singkatnya, karena ekstraksi data terstruktur dari output LLM itu merepotkan.
Anda bisa membuat hidup Anda sedikit lebih mudah dengan meminta data dalam
format XML, tapi kemudian Anda harus mengurai XML tersebut. Dan apa yang
Anda lakukan ketika XML itu hilang karena Al Anda merespons: “Maaf, saya tidak
dapat menghasilkan data yang Anda minta karena bla, bla, bla..”

Ketika menggunakan alat dengan cara ini:

+ Anda sebaiknya mendefinisikan satu alat saja dalam permintaan Anda

« Ingat untuk memaksa penggunaan fungsinya menggunakan parameter tool_-
choice.

« Ingat bahwa model akan meneruskan input ke alat tersebut, jadi nama alat dan

deskripsinya harus dari perspektif model, bukan perspektif Anda.

Poin terakhir ini membutuhkan contoh untuk kejelasan. Misalkan Anda meminta Al
untuk melakukan analisis sentimen pada teks pengguna. Nama fungsinya tidak akan
menjadi analyze_sentiment, tetapi lebih tepatnya akan menjadi seperti save_sen-
timent_analysis. Al-lah yang melakukan analisis sentimen, bukan alatnya. Yang

dilakukan alat (dari perspektif Al) hanyalah menyimpan hasil analisis.

Berikut adalah contoh penggunaan Claude 3 untuk merekam ringkasan gambar ke

dalam JSON yang terstruktur dengan baik, kali ini dari command line menggunakan

© 00 N O O & W N =

BW W W W W W WWWWN DN DNDDNDDNDDNDNDDNDNDDN -SSR, RS ss), s s,
© © 0 N O O & W N~ O © 00 NN O O b W N~ OO O© 0 1 O O b Ww N =~ O

Penggunaan Alat 137

curl:

curl https://api.anthropic.com/v1/messages \
--header "content-type: application/json" \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "anthropic-version: 2023-06-01" \
--header "anthropic-beta: tools-2024-04-04" \
--data \

|
"model": "claude-3-sonnet-20240229",
"max_tokens": 1024,

"tools": [{
"name": "record_summary",
"description": "Record summary of image into well-structured JSON.",

"input_schema": {
"type": "object",
"properties": {
"key_colors": {
"type": "array",
"items": {
"type": "object",
"properties": {

"r
"type": "number",
"description": "red value [0.0, 1.0]"
},
"g": |
"type": "number",
"description": "green value [0.0, 1.0]"
1,
"b": {
"type": "number",
"description": "blue value [0.0, 1.0]"
3,
"name": {
"type": "string",
"description": "Human-readable color name
in snake_case, e.g.
\"olive_green\"or
\"turquoise\""
}

}I

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
77
78
79

Penggunaan Alat 138

"required": ["r", "g", "b", "name"]

},

"description": "Key colors in the image. Four or less."
3,
"description": {

"type": "string",

"description": "Image description. 1-2 sentences max."
},
"estimated_year": {

"type": "integer",

"description": "Estimated year that the image was taken,
if is it a photo. Only set this if the
image appears to be non-fictional.
Rough estimates are okay!"

}
3,
"required": ["key_colors", "description"]
}
iy
"messages": [
{
"role": "user",
"content": [
{
"type": "image",
"source": {
"type": "base64",
"media_type": "'$IMAGE_MEDIA_TYPE'",
"data": "'$IMAGE_BASE64'"
}
3
{
"type": "text",
"text": "Use “record_summary” to describe this image."
}
]
}

Dalam contoh yang diberikan, kita menggunakan model Claude 3 dari Anthropic untuk

Penggunaan Alat 139

menghasilkan ringkasan JSON terstruktur dari sebuah gambar. Berikut cara kerjanya:

1. Kita mendefinisikan satu alat bernama record_summary dalam array tools
pada muatan permintaan. Alat ini bertanggung jawab untuk merekam ringkasan
gambar ke dalam JSON yang terstruktur dengan baik.

2. Alatrecord_summary memiliki input_schema yang menentukan struktur out-

put JSON yang diharapkan. Ini mendefinisikan tiga properti:

« key_colors: Sebuah array objek yang merepresentasikan warna-warna
utama dalam gambar. Setiap objek warna memiliki properti untuk nilai
merah, hijau, dan biru (berkisar dari 0.0 hingga 1.0) dan nama warna yang
mudah dibaca manusia dalam format snake_case.

« description: Properti string untuk deskripsi singkat gambar, dibatasi
hingga 1-2 kalimat.

+ estimated_year: Properti integer opsional untuk perkiraan tahun gambar

diambil, jika tampak sebagai foto non-fiksi.

3. Dalam array messages, kita menyediakan data gambar sebagai string base64-
encoded beserta tipe medianya. Ini memungkinkan model untuk memproses
gambar sebagai bagian dari input.

4. Kita juga mengarahkan Claude untuk menggunakan alatrecord_summary untuk
mendeskripsikan gambar.

5. Ketika permintaan dikirim ke model Claude 3, ia menganalisis gambar dan
menghasilkan ringkasan JSON berdasarkan input_schema yang ditentukan.
Model mengekstrak warna-warna utama, memberikan deskripsi singkat, dan
memperkirakan tahun gambar diambil (jika berlaku).

6. Ringkasan JSON yang dihasilkan diteruskan sebagai parameter ke alat record_-

summary, memberikan representasi terstruktur dari karakteristik utama gambar.

Dengan menggunakan alat record_summary dengan input_schema yang terdefinisi

dengan baik, kita dapat memperoleh ringkasan JSON terstruktur dari sebuah gambar

Penggunaan Alat 140

tanpa mengandalkan ekstraksi teks biasa. Pendekatan ini memastikan bahwa output
mengikuti format yang konsisten dan dapat dengan mudah diurai dan diproses oleh

komponen hilir aplikasi.

Kemampuan untuk memaksa pemanggilan fungsi dan menentukan struktur output yang
diharapkan adalah fitur yang kuat dari penggunaan alat dalam aplikasi berbasis Al
Ini memungkinkan pengembang untuk memiliki kendali lebih besar atas output yang
dihasilkan dan menyederhanakan integrasi data yang dihasilkan Al ke dalam alur kerja

aplikasi mereka.

Eksekusi Fungsi

Anda telah mendefinisikan fungsi-fungsi, dan meminta Al Anda, yang memutuskan
bahwa ia harus memanggil salah satu dari fungsi Anda. Sekarang saatnya kode aplikasi
Anda atau pustaka, jika Anda menggunakan gem Ruby seperti raix-rails untuk
mengirimkan pemanggilan fungsi dan parameter-parameternya ke implementasi yang

sesuai dalam kode aplikasi Anda.

Kode aplikasi Anda yang menentukan apa yang harus dilakukan dengan hasil eksekusi
fungsi tersebut. Mungkin yang perlu dilakukan hanya melibatkan satu baris kode dalam
lambda, atau mungkin melibatkan pemanggilan API eksternal. Mungkin melibatkan
pemanggilan komponen Al lain, atau mungkin melibatkan ratusan atau bahkan ribuan

baris kode dalam sistem Anda yang lain. Semuanya terserah Anda.

Terkadang pemanggilan fungsi adalah akhir dari operasi, tetapi jika hasilnya merepre-
sentasikan informasi dalam yang akan dilanjutkan oleh AI, maka kode aplikasi Anda
perlu memasukkan hasil eksekusi ke dalam transkrip obrolan dan membiarkan Al

melanjutkan pemrosesannya.

Sebagai contoh, berikut adalah deklarasi fungsi Raix yang digunakan oleh
AccountManager Olympia untuk berkomunikasi dengan klien kami sebagai bagian

dari Orkestrasi Alur Kerja Cerdas untuk layanan pelanggan.

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

© 0 N O O b W N e

11
12
13
14
15

Penggunaan Alat 141

class AccountManager
include Raix::ChatCompletion

include Raix::FunctionDispatch
]lots of other functions...

function :notify_account_owner,
"Don't share UUID. Mention dollars if subscription changed",
message: { type: "string" } do |arguments]|
account.owner . freeform_notify(
subject: "Account Change Notification",
message: arguments|:message]

)

"Notified account owner"

end

Mungkin tidak langsung jelas apa yang terjadi di sini, jadi saya akan menjelaskannya.

1. Kelas AccountManager mendefinisikan banyak fungsi yang terkait dengan pen-
gelolaan akun. Kelas ini dapat mengubah paket langganan Anda, menambah dan
menghapus anggota tim, dan hal-hal lainnya.

2. Instruksi tingkat atasnya memberi tahu AccountManager bahwa ia harus mem-
beri tahu pemilik akun tentang hasil permintaan perubahan akun, menggunakan
fungsi notify_account_owner.

3. Definisi ringkas dari fungsi tersebut mencakup:

« nama
« deskripsi
« parameter message: { type: "string" }

« blok yang akan dieksekusi ketika fungsi dipanggil

Setelah memperbarui transkrip dengan hasil dari blok fungsi, metode chat_comple-
tion dipanggil kembali. Metode ini bertanggung jawab untuk mengirimkan transkrip
percakapan yang telah diperbarui kembali ke model AI untuk pemrosesan lebih lanjut.

Kita menyebut proses ini sebagai siklus percakapan.

Penggunaan Alat 142

Ketika model AI menerima permintaan chat completion baru dengan transkrip yang
diperbarui, ia memiliki akses ke hasil dari fungsi yang sebelumnya dieksekusi. Model
dapat menganalisis hasil ini, memasukkannya ke dalam proses pengambilan keputusan,
dan menghasilkan respons atau tindakan berikutnya berdasarkan konteks kumulatif dari
percakapan. Model dapat memilih untuk mengeksekusi fungsi tambahan berdasarkan
konteks yang diperbarui, atau dapat menghasilkan respons akhir untuk prompt asli jika

menentukan bahwa tidak diperlukan pemanggilan fungsi lebih lanjut.

Kelanjutan Opsional dari Prompt Asli

Ketika Anda mengirimkan hasil tool kembali ke LLM dan melanjutkan pemrosesan
prompt asli, Al menggunakan hasil tersebut untuk memanggil fungsi tambahan atau

menghasilkan respons teks biasa final.

Beberapa model seperti Command-R dari Cohere dapat mencantumkan
tool spesifik yang mereka gunakan dalam respons mereka, memberikan

transparansi dan kemampuan pelacakan tambahan.

Tergantung pada model yang digunakan, hasil dari pemanggilan fungsi akan berada
dalam pesan transkrip yang memiliki peran khusus mereka sendiri atau tercermin dalam
sintaks lain. Tetapi bagian pentingnya adalah data tersebut harus ada dalam transkrip,
sehingga dapat dipertimbangkan oleh AI saat memutuskan apa yang harus dilakukan

selanjutnya.

Kesalahan umum (dan berpotensi mahal) adalah lupa menambahkan hasil
P fungsi ke transkrip sebelum melanjutkan chat. Akibatnya, Al akan men-
dapat prompt dengan cara yang pada dasarnya sama seperti sebelum ia
memanggil fungsi pertama kali. Dengan kata lain, sejauh yang Al ketahui,
ia belum memanggil fungsi tersebut. Jadi ia memanggilnya lagi. Dan lagi.
Dan lagi, selamanya sampai Anda menghentikannya. Semoga konteks Anda

tidak terlalu besar, dan model Anda tidak terlalu mahal!

https://openrouter.ai/models/cohere/command-r

Penggunaan Alat 143

Praktik Terbaik untuk Penggunaan Tool

Untuk memaksimalkan penggunaan tool, pertimbangkan praktik-praktik terbaik

berikut.

Definisi Deskriptif

Berikan nama dan deskripsi yang jelas dan deskriptif untuk setiap tool dan parameter

masukannya. Ini membantu LLM lebih memahami tujuan dan kemampuan setiap tool.

Dari pengalaman saya, kata-kata bijak yang mengatakan bahwa “penamaan itu sulit”
berlaku di sini; saya telah melihat hasil yang sangat berbeda dari LLM hanya dengan
mengubah nama fungsi atau kata-kata dalam deskripsi. Terkadang menghapus

deskripsi justru meningkatkan performa.

Pemrosesan Hasil Tool

Ketika meneruskan hasil tool kembali ke LLM, pastikan hasilnya terstruktur dengan baik
dan komprehensif. Gunakan kunci dan nilai yang bermakna untuk merepresentasikan
keluaran dari setiap tool. Lakukan eksperimen dengan format yang berbeda dan lihat

mana yang bekerja paling baik, mulai dari JSON hingga teks biasa.

Result Interpreter mengatasi tantangan ini dengan menggunakan Al untuk menganalisis
hasil dan memberikan penjelasan yang mudah dipahami manusia, ringkasan, atau poin-

poin penting.

© 0 N O O b W N =

NN
Ll)

Penggunaan Alat 144

Penanganan Error

Terapkan mekanisme penanganan error yang kuat untuk menangani kasus di mana LLM
mungkin menghasilkan parameter masukan yang tidak valid atau tidak didukung untuk
pemanggilan tool. Tangani dan pulihkan dengan baik dari setiap error yang mungkin

terjadi selama eksekusi tool.

Salah satu kualitas yang sangat baik dari AI adalah bahwa ia memahami pesan
error! Yang berarti jika Anda bekerja dengan pola pikir cepat dan praktis, Anda bisa
menangkap exception apa pun yang dihasilkan dalam implementasi sebuah tool, dan

meneruskannya kembali ke Al sehingga Al tahu apa yang terjadi!

Sebagai contoh, berikut adalah versi yang disederhanakan dari implementasi pencarian

google di Olympia:

def google_search(conversation, params)
conversation.update_cstatus("Searching Google...")
query = params|:query]
search = GoogleSearch.new(query).get_hash

conversation.update_cstatus("Summarizing results...")

Summar izeKnowledgeGraph.new. per form(conversation, search.to_json)
rescue StandardError => e

Honeybadger .notify(e)

{ error: e.message }.inspect
end

Pencarian Google di Olympia adalah proses dua langkah. Pertama Anda melakukan
pencarian, kemudian Anda meringkas hasilnya. Jika terjadi kegagalan, apa pun itu,
pesan kesalahan dikemas dan dikirim kembali ke AI. Teknik ini adalah dasar dari hampir

semua pola Penanganan Kesalahan Cerdas

Misalnya, katakanlah panggilan API GoogleSearch gagal karena pengecualian 503
Service Unavailable. Hal ini mengalir ke atas ke penanganan kesalahan tingkat atas,

dan deskripsi kesalahan dikirim kembali ke Al sebagai hasil dari pemanggilan fungsi.

Penggunaan Alat 145

Alih-alih hanya memberikan layar kosong atau kesalahan teknis kepada pengguna, Al
mengatakan sesuatu seperti “Maaf, saya tidak dapat mengakses kemampuan Pencarian

Google saya saat ini. Saya bisa mencoba lagi nanti, jika Anda mau”

Ini mungkin terlihat hanya seperti trik cerdik, tetapi pertimbangkan jenis kesalahan
yang berbeda, di mana Al memanggil API eksternal dan memiliki kontrol langsung
atas parameter yang akan diteruskan ke API tersebut. Mungkin Al membuat kesalahan
dalam cara menghasilkan parameter tersebut? Asalkan pesan kesalahan dari API
eksternal cukup detail, meneruskan pesan kesalahan kembali ke Al yang memanggil
berarti Al dapat mempertimbangkan kembali parameter tersebut dan mencoba lagi.

Secara otomatis. Tidak peduli apa pun kesalahannya.

Sekarang pikirkan apa yang diperlukan untuk mereplikasi jenis penanganan kesalahan

yang tangguh seperti itu dalam kode normal. Ini praktis tidak mungkin.

Penyempurnaan Iteratif

Jika LLM tidak merekomendasikan alat yang tepat atau menghasilkan respons yang
kurang optimal, lakukan iterasi pada definisi alat, deskripsi, dan parameter masukan.
Terus sempurnakan dan tingkatkan pengaturan alat berdasarkan perilaku yang diamati

dan hasil yang diinginkan.

1. Mulai dengan definisi alat sederhana: Mulailah dengan mendefinisikan alat
dengan nama, deskripsi, dan parameter masukan yang jelas dan ringkas. Hindari
membuat pengaturan alat yang terlalu rumit pada awalnya dan fokus pada fungsi
intinya. Misalnya, jika Anda ingin menyimpan hasil analisis sentimen, mulailah

dengan definisi dasar seperti:

© 0 N O O b W N e

I ==Y
B W N o

o O W N

Penggunaan Alat 146

"name": "save_sentiment_score",
"description": "Analyze user-provided text and generate sentiment score",
"parameters": {

"type": "object",

"properties": {

"score": {
"type": "float",
"description": "sentiment score from -1 (negative) to 1 (positive)"
}
o
"required": ["score"]

2. Uji dan amati: Setelah definisi alat awal terpasang, ujilah dengan berbagai prompt
dan amati bagaimana LLM berinteraksi dengan alat tersebut. Perhatikan kualitas
dan relevansi dari respons yang dihasilkan. Jika LLM menghasilkan respons yang
suboptimal, saatnya untuk menyempurnakan definisi alat.

3. Sempurnakan deskripsi: Jika LLM salah memahami tujuan suatu alat, cobalah
menyempurnakan deskripsi alat tersebut. Berikan lebih banyak konteks, contoh,
atau klarifikasi untuk memandu LLM dalam menggunakan alat secara efektif.
Misalnya, Anda dapat memperbarui deskripsi alat analisis sentimen untuk lebih

spesifik menangani nada emosional dari teks yang sedang dianalisis:

"name": "save_sentiment_score",
"description": "Determine the overall emotional tone of a piece of text,
such as customer reviews, social media posts, or feedback comments.",

4. Sesuaikan parameter masukan: Jika LLM menghasilkan parameter masukan
yang tidak valid atau tidak relevan untuk suatu alat, pertimbangkan untuk
menyesuaikan definisi parameter. Tambahkan batasan yang lebih spesifik, aturan

validasi, atau contoh untuk memperjelas format masukan yang diharapkan.

~N O O W N

Penggunaan Alat 147

5. Lakukan iterasi berdasarkan umpan balik: Pantau terus kinerja alat Anda dan
kumpulkan umpan balik dari pengguna atau pemangku kepentingan. Gunakan
umpan balik ini untuk mengidentifikasi area yang perlu ditingkatkan dan lakukan
penyempurnaan iteratif pada definisi alat. Sebagai contoh, jika pengguna mela-
porkan bahwa analisis tidak menangani sarkasme dengan baik, Anda dapat

menambahkan catatan dalam deskripsi:

{
"name": "save_sentiment_score",
"description": "Analyze the sentiment of a given text and return a sentiment
score between -1 (negative) and 1 (positive). Note: Sarcasm should be
considered negative.",
}

Dengan menyempurnakan definisi alat Anda secara iteratif berdasarkan perilaku yang
diamati dan umpan balik, Anda dapat secara bertahap meningkatkan kinerja dan
efektivitas aplikasi berbasis AI Anda. Ingatlah untuk menjaga agar definisi alat tetap
jelas, ringkas, dan terfokus pada tugas spesifik yang sedang ditangani. Lakukan
pengujian dan validasi interaksi alat secara rutin untuk memastikan semuanya selaras

dengan hasil yang Anda inginkan.

Menyusun dan Merantai Alat

Salah satu aspek paling kuat dari penggunaan alat yang baru disinggung sejauh ini
adalah kemampuan untuk menyusun dan merantai beberapa alat bersama-sama untuk
menyelesaikan tugas-tugas kompleks. Dengan merancang definisi alat dan format
masukan/keluarannya secara cermat, Anda dapat membuat komponen yang dapat

digunakan ulang dan dikombinasikan dengan berbagai cara.

Mari kita lihat contoh di mana Anda sedang membangun jalur analisis data untuk

aplikasi berbasis Al Anda. Anda mungkin memiliki alat-alat berikut:

Penggunaan Alat 148

1. DataRetrieval: Sebuah alat yang mengambil data dari basis data atau API
berdasarkan kriteria tertentu.

2. DataProcessing: Sebuah alat yang melakukan perhitungan, transformasi, atau
agregasi pada data yang diambil.

3. DataVisualization: Sebuah alat yang menyajikan data yang telah diproses

dalam format yang mudah dipahami pengguna, seperti grafik atau bagan.

Dengan merantai alat-alat ini bersama-sama, Anda dapat membuat alur kerja yang kuat
yang mengambil data yang relevan, memprosesnya, dan menyajikan hasilnya dengan
cara yang bermakna. Berikut adalah bagaimana alur kerja penggunaan alat mungkin

terlihat:

1. LLM menerima permintaan pengguna yang meminta wawasan tentang data
penjualan untuk kategori produk tertentu.

2. LLM memilih alat DataRetrieval dan menghasilkan parameter masukan yang
sesuai untuk mengambil data penjualan yang relevan dari basis data.

3. Data yang diambil “diteruskan” ke alat DataProcessing, yang menghitung
metrik seperti total pendapatan, harga penjualan rata-rata, dan tingkat pertum-
buhan.

4. Data yang telah diproses kemudian diolah oleh alat DataVisualization, yang
membuat grafik atau bagan yang menarik secara visual untuk merepresentasikan
wawasan tersebut, meneruskan URL grafik kembali ke LLM.

5. Akhirnya, LLM menghasilkan respons terformat untuk permintaan pengguna
menggunakan markdown, menggabungkan data yang telah divisualisasikan dan

memberikan ringkasan temuan utama.

Dengan menyusun alat-alat ini bersama-sama, Anda dapat membuat alur kerja analisis
data yang mulus yang dapat dengan mudah diintegrasikan ke dalam aplikasi Anda.
Keindahan pendekatan ini adalah bahwa setiap alat dapat dikembangkan dan diuji

Penggunaan Alat 149

secara independen, dan kemudian dikombinasikan dengan cara yang berbeda untuk

menyelesaikan berbagai masalah.

Untuk memungkinkan komposisi dan perangkaian alat yang lancar, penting untuk

mendefinisikan format masukan dan keluaran yang jelas untuk setiap alat.

Sebagai contoh, alat DataRetrieval mungkin menerima parameter seperti detail
koneksi database, nama tabel, dan kondisi query, dan mengembalikan hasil dalam
bentuk objek JSON terstruktur. Alat DataProcessing kemudian dapat menerima objek
JSON ini sebagai masukan dan menghasilkan objek JSON yang telah ditransformasi se-
bagai keluaran. Dengan menstandarkan aliran data antar alat, Anda dapat memastikan

kompatibilitas dan kemampuan penggunaan ulang.

Saat Anda merancang ekosistem alat Anda, pikirkan bagaimana alat-alat yang berbeda
dapat dikombinasikan untuk menangani kasus penggunaan umum dalam aplikasi
Anda. Pertimbangkan untuk membuat alat tingkat tinggi yang mengenkapsulasi alur
kerja atau logika bisnis yang umum, sehingga memudahkan LLM untuk memilih dan

menggunakannya secara efektif.

Ingat, kekuatan penggunaan alat terletak pada fleksibilitas dan modularitas yang
diberikannya. Dengan memecah tugas-tugas kompleks menjadi alat-alat yang lebih
kecil dan dapat digunakan kembali, Anda dapat menciptakan aplikasi berbasis Al yang
tangguh dan adaptif yang dapat mengatasi berbagai tantangan.

Arah Masa Depan

Seiring berkembangnya bidang pengembangan aplikasi berbasis Al kita dapat meng-
harapkan kemajuan lebih lanjut dalam kemampuan penggunaan alat. Beberapa arah

masa depan yang potensial meliputi:

1. Penggunaan Alat Multi-Langkah: LLM mungkin dapat memutuskan berapa kali

mereka perlu menggunakan alat untuk menghasilkan respons yang memuaskan.

Penggunaan Alat 150

Ini bisa melibatkan beberapa putaran pemilihan dan eksekusi alat berdasarkan
hasil antara.

2. Alat yang Telah Ditentukan: Platform AI mungkin menyediakan seperangkat
alat yang telah ditentukan yang dapat dimanfaatkan pengembang secara lang-
sung, seperti interpreter Python, alat pencarian web, atau fungsi utilitas umum.

3. Integrasi Mulus: Seiring penggunaan alat menjadi lebih umum, kita dapat
mengharapkan integrasi yang lebih baik antara platform AI dan kerangka kerja
pengembangan populer, memudahkan pengembang untuk memasukkan penggu-

naan alat ke dalam aplikasi mereka.

Penggunaan alat adalah teknik yang kuat yang memungkinkan pengembang untuk
memanfaatkan potensi penuh LLM dalam aplikasi berbasis Al. Dengan menghubungkan
LLM ke alat dan sumber daya eksternal, Anda dapat menciptakan sistem yang lebih
dinamis, cerdas, dan peka konteks yang dapat beradaptasi dengan kebutuhan pengguna

dan memberikan wawasan serta tindakan yang berharga.

Meskipun penggunaan alat menawarkan kemungkinan yang sangat besar, penting
untuk menyadari potensi tantangan dan pertimbangan yang ada. Salah satu aspek kunci
adalah mengelola kompleksitas interaksi alat dan memastikan stabilitas serta keandalan
sistem secara keseluruhan. Anda perlu menangani skenario di mana pemanggilan
alat mungkin gagal, mengembalikan hasil yang tidak terduga, atau memiliki imp-
likasi kinerja. Selain itu, Anda harus mempertimbangkan langkah-langkah keamanan
dan kontrol akses untuk mencegah penggunaan alat yang tidak sah atau berbahaya.
Mekanisme penanganan kesalahan, pencatatan log, dan pemantauan yang tepat sangat

penting untuk menjaga integritas dan kinerja aplikasi berbasis Al Anda.

Saat Anda mengeksplorasi berbagai kemungkinan penggunaan alat dalam proyek Anda
sendiri, ingatlah untuk memulai dengan tujuan yang jelas, merancang definisi alat yang

terstruktur dengan baik, dan melakukan iterasi berdasarkan umpan balik dan hasil.

Penggunaan Alat 151

Dengan pendekatan dan pola pikir yang tepat, penggunaan alat dapat membuka tingkat

inovasi dan nilai baru dalam aplikasi berbasis Al Anda

Pemrosesan Stream

-
Y
e

P —
&

Pengaliran data melalui HTTP, yang juga dikenal sebagai server-sent events (SSE),

adalah mekanisme di mana server terus mengirimkan data ke klien saat data tersedia,

tanpa perlu klien memintanya secara eksplisit. Karena respons Al dihasilkan secara

bertahap, masuk akal untuk memberikan pengalaman pengguna yang responsif dengan

menampilkan keluaran Al saat sedang dihasilkan. Dan sebenarnya semua API penyedia

Al yang saya ketahui menawarkan respons streaming sebagai pilihan dalam endpoint

penyelesaian mereka.

Alasan mengapa bab ini muncul di sini dalam buku ini, tepat setelah Menggunakan

Alat adalah karena betapa kuatnya menggabungkan penggunaan alat dengan respons

Al langsung kepada pengguna. Hal ini memungkinkan pengalaman yang dinamis dan

interaktif di mana Al dapat memproses masukan pengguna, memanfaatkan berbagai

alat dan fungsi sesuai kebutuhannya, dan kemudian memberikan respons secara real-

time.

© 0 N O U b W N =

= =N
B W N,

Pemrosesan Stream 153

Untuk mencapai interaksi yang mulus ini, Anda perlu menulis penangan stream yang
dapat mengirimkan pemanggilan fungsi alat yang dipanggil Al serta keluaran teks biasa
kepada pengguna akhir. Kebutuhan untuk melakukan perulangan setelah memproses

fungsi alat menambahkan tantangan menarik pada pekerjaan ini.

Mengimplementasikan ReplyStream

Untuk menunjukkan bagaimana pemrosesan stream dapat diimplementasikan, bab ini
akan membahas secara mendalam versi yang disederhanakan dari kelas ReplyStream
yang digunakan di Olympia. Instance dari kelas ini dapat dilewatkan sebagai parameter

stream dalam pustaka klien Al seperti ruby-openai dan openrouter

Berikut cara saya menggunakan ReplyStream di PromptSubscriber Olympia, yang

mendengarkan melalui Wisper untuk pembuatan pesan pengguna baru.

class PromptSubscriber
include Raix::ChatCompletion
include Raix: :PromptDeclarations

many other declarations omitted. ..

prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },
until: -> { bot_message.complete? }

def message_created(message) # invoked by Wisper

return unless message.role.user? && message.content?

rest of the implementation omitted. ..

Selain memiliki referensi context ke pelanggan prompt yang membuat instansnya,
kelas ReplyStream juga memiliki variabel instans untuk menyimpan penyangga
data yang diterima, dan array untuk melacak nama-nama fungsi dan argumen yang

dipanggil selama pemrosesan aliran.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

© 0 N O O b W N e

T = T O T Y
o N O O b W N =

Pemrosesan Stream 154

class ReplyStream

attr_accessor :buffer, :f_name, :f_arguments, :context
delegate :bot_message, :dispatch, to: :context

def initialize(context)
self.context = context
self.buffer = []
self.f_name = []
self.f_arguments = []
end

def call(chunk, bytesize = nil)

end

end

Metode initialize menyiapkan keadaan awal dari instansi ReplyStream, mengin-

isialisasi buffer, konteks, dan variabel-variabel lainnya.

Metode call adalah titik masuk utama untuk memproses data streaming. Metode ini
menerima sebuah chunk data (yang direpresentasikan sebagai hash) dan parameter
opsional bytesize, yang dalam contoh kita tidak digunakan. Di dalam metode ini,
kelas menggunakan pencocokan pola untuk menangani berbagai skenario berdasarkan

struktur potongan data yang diterima.

’ Memanggil deep_symbolize_keys pada chunk membantu membuat pen-

cocokan pola lebih elegan, dengan memungkinkan kita mengoperasikan

simbol daripada string.

© 0 N O O b W N e

[T T ==Y
a s W N =~

Pemrosesan Stream 155

def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in { # match function name
choices: |

{
delta: {

tool_calls: |

{ index: index, function: {name: name} }

f_name[index]| = name

Pola pertama yang kita cocokkan adalah pemanggilan alat beserta nama fungsi terkait-
nya. Jika kita mendeteksi satu, kita memasukkannya ke dalam larik f_name. Kita
menyimpan nama-nama fungsi dalam larik terindeks, karena model mampu melakukan
pemanggilan fungsi secara paralel, mengirimkan lebih dari satu fungsi untuk dieksekusi

pada waktu yang sama.

Pemanggilan fungsi paralel adalah kemampuan model AI untuk melakukan be-
berapa pemanggilan fungsi secara bersamaan, memungkinkan efek dan hasil dari
pemanggilan fungsi ini diselesaikan secara paralel. Ini sangat berguna jika fungsi
membutuhkan waktu lama, dan mengurangi komunikasi bolak-balik dengan API,

yang pada gilirannya dapat menghemat sejumlah besar pengeluaran token.

Selanjutnya kita perlu mencocokkan argumen yang sesuai dengan pemanggilan fungsi

tersebut.

© 0 N O O b W N e

[T T ==Y
a s W N =~

© 0 N O O b W N =

N
w N A~

Pemrosesan Stream 156

in { # match arguments

choices: |
{
delta: {
tool_calls: |
{
index: index, function: {arguments: argument }
}
]
}
}
1}
f_arguments|index] ||= "" # initialize if not already

f_arguments[index| << argument

Serupa dengan cara kita menangani nama fungsi, kita menyimpan argumen dalam array

terindeks.

Selanjutnya, kita mencari pesan yang ditampilkan ke pengguna, yang akan tiba dari
server satu token pada satu waktu dan akan ditetapkan ke variabel new_content. Kita
juga perlu memperhatikan finish_reason. Nilainya akan tetap nil sampai potongan
terakhir dari urutan keluaran.
in {
choices: |

{ delta: {content: new_content}, finish_reason: finish_reason }

I}

you could transmit every chunk to the user here. ..
buffer << new_content.to_s

if finish_reason.present?

finalize
elsif new_content.to_s.match?(/\n\n/)

send_to_client # ...or buffer and transmit once per paragraph
end

Yang penting, kita menambahkan ekspresi pencocokan pola untuk menangani pesan

kesalahan yang dikirim oleh penyedia model Al Dalam lingkungan pengembangan

~N O O b W N

BwWw N -

Pemrosesan Stream 157

lokal, kita memunculkan eksepsi, tetapi dalam produksi, kita mencatat kesalahan

tersebut dan menyelesaikan prosesnya.

in { error: { message: } }
if Rails.env.local?
raise message
else

Honeybadger .notify("AI Error: #{message}")
finalize

end

Klausa else terakhir dari case akan dijalankan jika tidak ada pola sebelumnya yang
cocok. Ini hanyalah tindakan pengamanan sehingga jika model Al mulai mengirimkan

potongan yang tidak dikenali kepada kita, kita akan mengetahuinya.

else

Honeybadger .notify("Unrecognized Chunk: #{chunk}")
end

end

Metode send_to_client bertanggung jawab untuk mengirimkan konten yang ter-
buffer kepada klien. Metode ini memeriksa bahwa buffer tidak kosong, memperbarui
konten pesan bot, merender pesan bot, dan menyimpan konten tersebut dalam basis

data untuk memastikan persistensi data.

© 0 N O O b W N e

[T T ==Y
a s W N =~

© 0 N O O b W N -

I = S
O OB W N~

Pemrosesan Stream 158

def send_to_client
no need to process pure whitespace

return if buffer.join.squish.blank?

set the buffer content on the bot message
content = buffer. join
bot_message.content = content

save to database so that we never lose data
even 1f the stream doesn't terminate correctly

bot_message.update_column(:content, content)

update content via websocket
ConversationRenderer .update(bot_message)
end

Metode finalize dipanggil ketika pemrosesan stream selesai. Metode ini mengirimkan
pemanggilan fungsi jika ada yang diterima selama stream berlangsung, memperbarui
pesan bot dengan konten final dan informasi relevan lainnya, serta mengatur ulang

riwayat pemanggilan fungsi

def finalize
if f_name.any?
f_name.each_with_index do |name, index|
takes care of calling the function wherever it's implemented
dispatch(name:, arguments: JSON.parse(f_arguments[index]))
end

reset the function call history
f_name.clear
f_arguments.clear

else
content = buffer. join.presence
bot_message.update! (content:, complete: true)
ConversationRenderer . update(bot_message)

end

end

Jika model memutuskan untuk memanggil sebuah fungsi, Anda perlu “mengirim”

pemanggilan fungsi tersebut (nama dan argumen) sedemikian rupa sehingga fungsi

© 0 N O O b W N =

-
()

Pemrosesan Stream 159

tersebut dapat dieksekusi dan pesan function_call serta function_result dita-

mbahkan ke dalam transkrip percakapan

Berdasarkan pengalaman saya, lebih baik menangani pembuatan pesan-pesan fungsi
di satu tempat dalam basis kode Anda, daripada mengandalkan implementasi alat. Ini
bukan hanya membuat kode lebih rapi, tapi juga memiliki alasan praktis yang sangat
penting: jika model Al memanggil sebuah fungsi, dan tidak melihat pesan pemanggilan
dan hasil dalam transkrip ketika Anda melakukan perulangan, model akan memanggil
fungsi yang sama lagi. Berpotensi terus-menerus. Ingat bahwa Al bersifat sepenuhnya
stateless, jadi kecuali Anda mengembalikan pemanggilan fungsi tersebut kepadanya,

bagi Al pemanggilan tersebut tidak pernah terjadi.

PromptSubscriber#dispatch

def dispatch(name:, arguments:)
adds a function_call message to the conversation transcript
plus dispatches to tool and returns result
conversation. function_call!(name, arguments).then do |result]
add function result message to the transcript
conversation. function_result!(name, result)
end

end

’ Membersihkan riwayat pemanggilan fungsi setelah pengiriman sama pent-

ingnya dengan memastikan pemanggilan dan hasilnya masuk ke dalam
transkrip Anda, sehingga Anda tidak terus-menerus memanggil fungsi yang

sama berulang-ulang setiap kali Anda melakukan perulangan.

“Putaran Percakapan”

Saya terus menyebutkan perulangan, tetapi jika Anda baru mengenal pemanggilan

fungsi, mungkin tidak jelas mengapa kita perlu melakukan perulangan. Alasannya

Pemrosesan Stream 160

adalah ketika Al “meminta” Anda untuk mengeksekusi fungsi alat atas namanya, ia
akan berhenti merespons. Anda yang bertanggung jawab untuk mengeksekusi fungsi-
fungsi tersebut, mengumpulkan hasilnya, menambahkan hasil ke dalam transkrip, dan
kemudian mengirimkan prompt awal lagi untuk mendapatkan sekumpulan pemanggi-

lan fungsi baru atau hasil yang ditujukan untuk pengguna.

Dalam kelas PromptSubscriber, kita menggunakan metode prompt dari modul
PromptDeclarations untuk mendefinisikan perilaku putaran percakapan. Parameter
until diatur ke -> { bot_message.complete? }, yang berarti perulangan akan

berlanjut sampai bot_message ditandai sebagai selesai.

prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },
until: -> { bot_message.complete? }

’ Tetapi kapan bot_message ditandai sebagai selesai? Jika Anda lupa, lihat

kembali baris 13 dari metode finalize.

Mari kita tinjau seluruh logika pemrosesan aliran.

1. PromptSubscriber menerima pesan pengguna baru melalui metode
message_created, yang dipanggil oleh sistem pub/sub Wisper setiap kali
pengguna akhir membuat prompt baru.

2. Metode kelas prompt secara deklaratif mendefinisikan perilaku logika penyelesa-
ian chat untuk PromptSubscriber. Model Al akan menjalankan penyelesaian
chat dengan konten pesan pengguna, instance baru ReplyStream sebagai param-
eter aliran, dan kondisi perulangan yang ditentukan.

3. Model Al memproses prompt dan mulai menghasilkan respons. Saat respons
dialirkan, metode call dariinstance ReplyStream dipanggil untuk setiap bagian

data.

Pemrosesan Stream 161

10.

11.

. Jika model Al memutuskan untuk memanggil fungsi alat, nama fungsi dan

argumen diekstrak dari bagian tersebut dan disimpan masing-masing dalam array

f_name dan f_arguments.

. Jika model Al menghasilkan konten yang ditampilkan ke pengguna, konten

tersebut di-buffer dan dikirim ke klien melalui metode send_to_client.

. Setelah pemrosesan aliran selesai, metode finalize dipanggil. Jika ada fungsi

alat yang dipanggil selama aliran, fungsi-fungsi tersebut dikirim menggunakan

metode dispatch dari PromptSubscriber.

. Metode dispatch menambahkan pesan function_call ke transkrip percaka-

pan, menjalankan fungsi alat yang sesuai, dan menambahkan pesan function_-

result ke transkrip dengan hasil dari pemanggilan fungsi.

. Setelah mengirim fungsi-fungsi alat, riwayat pemanggilan fungsi dihapus untuk

mencegah pemanggilan fungsi ganda dalam perulangan berikutnya.

. Jika tidak ada fungsi alat yang dipanggil, metode finalize memperbarui bot_-

message dengan konten final, menandainya sebagai selesai, dan mengirim pesan
yang diperbarui ke klien.

Kondisi perulangan -> { bot_message.complete? } dievaluasi. Jika bot_-
message tidak ditandai sebagai selesai, perulangan berlanjut, dan prompt asli
dikirim kembali dengan transkrip percakapan yang diperbarui.

Langkah 3-10 diulang sampai bot_message ditandai sebagai selesai, yang me-
nunjukkan bahwa model Al telah selesai menghasilkan responnya dan tidak ada

lagi fungsi alat yang perlu dijalankan.

Dengan mengimplementasikan putaran percakapan ini, Anda memungkinkan model

Al untuk terlibat dalam interaksi bolak-balik dengan aplikasi, menjalankan fungsi-

fungsi alat sesuai kebutuhan dan menghasilkan respons yang ditujukan untuk pengguna

sampai percakapan mencapai kesimpulan yang alami.

Kombinasi pemrosesan aliran dan putaran percakapan memungkinkan pengalaman

berbasis Al yang dinamis dan interaktif, di mana model Al dapat memproses masukan

Pemrosesan Stream 162

pengguna, memanfaatkan berbagai alat dan fungsi, serta memberikan respons secara

real-time berdasarkan konteks percakapan yang berkembang.

Kelanjutan Otomatis

Penting untuk menyadari keterbatasan output Al. Kebanyakan model memiliki jumlah
maksimum token yang dapat mereka hasilkan dalam satu respons, yang ditentukan oleh
parameter max_tokens. Jika model Al mencapai batas ini saat menghasilkan respons,

ia akan berhenti secara tiba-tiba dan menunjukkan bahwa output telah terpotong.

Dalam respons streaming dari API platform Al, Anda dapat mendeteksi situasi ini
dengan memeriksa variabel finish_reason dalam chunk. Jika finish_reason
diatur ke "length" (atau beberapa nilai kunci lain yang spesifik untuk model tersebut),
ini berarti bahwa model telah mencapai batas token maksimumnya selama proses

generasi dan output telah terpotong.

Salah satu cara untuk menangani skenario ini dengan baik dan memberikan pengalaman
pengguna yang mulus adalah dengan mengimplementasikan mekanisme kelanjutan
otomatis dalam logika pemrosesan aliran Anda. Dengan menambahkan pencocokan
pola untuk alasan penyelesaian terkait panjang, Anda dapat memilih untuk mengulang

dan secara otomatis melanjutkan output dari tempat terakhir ia berhenti.

Berikut adalah contoh yang sengaja disederhanakan tentang bagaimana Anda dapat
memodifikasi metode call dalam kelas ReplyStream untuk mendukung kelanjutan

otomatis:

© 0 N O O b W N e

W oW oW N NN DNDNNDDNNDNN S S R S s s
[SIS S T (e o RN Bie NN S B NORRSS B S SRS < B (o TN ¢ N B S I S S S S

Pemrosesan Stream 163

LENGTH_STOPS = %w[length MAX_TOKENS]

def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in {
choices: |
{ delta: {content: new_content},

finish_reason: finish_reason } | }
buffer << new_content.to_s

if finish_reason.blank?
send_to_client if new_content.to_s.match?(/\n\n/)
elsif LENGTH_STOPS.include?(finish_reason)
continue_cutoff
else
finalize

end

end
end

private

def continue_cutoff
conversation.bot_message! (buffer. join, visible: false)
conversation.user_message!("please continue", visible: false)
bot_message.update_column(:created_at, Time.current)

end

Dalam versi yang dimodifikasi ini, ketika finish_reason menunjukkan output yang
terpotong, alih-alih menyelesaikan aliran, kita menambahkan sepasang pesan ke tran-
skrip tanpa menyelesaikannya, memindahkan pesan respons yang ditujukan untuk
pengguna ke “bawah” transkrip dengan memperbarui atribut created_at-nya, dan
kemudian membiarkan loop terjadi, sehingga Al dapat melanjutkan dari tempat terakhir

ia berhenti.

Pemrosesan Stream 164

Ingat bahwa endpoint penyelesaian Al bersifat stateless. Ia hanya “mengetahui” apa
yang Anda beritahukan melalui transkrip. Dalam kasus ini, cara kita memberi tahu
Al bahwa responsnya terpotong adalah dengan menambahkan pesan “tak terlihat”
(bagi pengguna akhir) ke dalam transkrip. Namun ingat, ini adalah contoh yang
sengaja disederhanakan. Implementasi yang sebenarnya akan memerlukan pengelolaan
transkrip lebih lanjut untuk memastikan bahwa kita tidak membuang token dan/atau

membingungkan Al dengan pesan asisten yang terduplikasi dalam transkrip.

Implementasi auto-continuation yang sebenarnya juga harus memiliki apa yang disebut
“logika pemutus sirkuit” untuk mencegah perulangan yang tak terkendali. Alasannya
adalah, dengan jenis prompt pengguna tertentu dan pengaturan max_tokens yang

rendah, Al bisa terus mengulang output yang ditujukan untuk pengguna tanpa henti.

Perlu diingat bahwa setiap perulangan memerlukan permintaan terpisah, dan setiap
permintaan mengkonsumsi seluruh transkrip Anda lagi. Anda harus mempertim-
bangkan dengan baik trade-off antara pengalaman pengguna dan penggunaan API
ketika memutuskan apakah akan mengimplementasikan auto-continuation dalam
aplikasi Anda. Auto-continuation secara khusus bisa menjadi sangat mahal, terutama

ketika menggunakan model komersial premium.

Kesimpulan

Pemrosesan aliran adalah aspek penting dalam membangun aplikasi berbasis Al yang
menggabungkan penggunaan alat dengan respons Al secara langsung. Dengan menan-
gani data streaming dari API platform AI secara efisien, Anda dapat memberikan
pengalaman pengguna yang mulus dan interaktif, menangani respons besar, mengopti-

malkan penggunaan sumber daya, dan menangani kesalahan dengan baik.

Kelas Conversation::ReplyStream yang disediakan mendemonstrasikan

Pemrosesan Stream 165

bagaimana pemrosesan aliran dapat diimplementasikan dalam aplikasi Ruby
menggunakan pencocokan pola dan arsitektur berbasis event. Dengan memahami
dan memanfaatkan teknik pemrosesan aliran, Anda dapat membuka potensi penuh
integrasi Al dalam aplikasi Anda dan memberikan pengalaman pengguna yang kuat

dan menarik.

Data yang Dapat Memperbaiki
Diri

Data yang dapat memperbaiki diri adalah pendekatan yang ampuh untuk memas-

tikan integritas, konsistensi, dan kualitas data dalam aplikasi dengan memanfaatkan
kemampuan model bahasa besar (LLM). Kategori pola ini berfokus pada gagasan
penggunaan Al untuk secara otomatis mendeteksi, mendiagnosis, dan memperbaiki
anomali, inkonsistensi, atau kesalahan data, sehingga mengurangi beban pengembang

dan mempertahankan tingkat keandalan data yang tinggi.

Pada intinya, pola data yang dapat memperbaiki diri mengakui bahwa data adalah urat
nadi dari setiap aplikasi, dan memastikan akurasi serta integritasnya sangat penting
untuk fungsi dan pengalaman pengguna aplikasi yang tepat. Namun, mengelola dan

mempertahankan kualitas data bisa menjadi tugas yang kompleks dan memakan waktu,

Data yang Dapat Memperbaiki Diri 167

terutama ketika aplikasi berkembang dalam ukuran dan kompleksitas. Di sinilah

kekuatan Al berperan.

Dalam pola data yang dapat memperbaiki diri, pekerja Al digunakan untuk terus
memantau dan menganalisis data aplikasi Anda. Model-model ini memiliki kemampuan
untuk memahami dan menginterpretasikan pola, hubungan, dan anomali dalam data.
Dengan memanfaatkan kemampuan pemrosesan dan pemahaman bahasa alami mereka,
mereka dapat mengidentifikasi potensi masalah atau inkonsistensi dalam data dan

mengambil tindakan yang tepat untuk memperbaikinya.

Proses data yang dapat memperbaiki diri biasanya melibatkan beberapa langkah kunci:

1. Pemantauan Data: Pekerja Al terus memantau aliran data, basis data, atau
sistem penyimpanan aplikasi, mencari tanda-tanda anomali, inkonsistensi, atau
kesalahan. Atau, Anda dapat mengaktifkan komponen Al sebagai reaksi terhadap
pengecualian.

2. Deteksi Anomali: Ketika masalah terdeteksi, pekerja Al menganalisis data secara
detail untuk mengidentifikasi sifat dan cakupan spesifik dari masalah tersebut. Ini
bisa melibatkan pendeteksian nilai yang hilang, format yang tidak konsisten, atau
data yang melanggar aturan atau batasan yang telah ditentukan.

3. Diagnosis dan Koreksi: Setelah masalah teridentifikasi, pekerja Al menggunakan
pengetahuan dan pemahamannya tentang domain data untuk menentukan tin-
dakan yang tepat. Ini bisa melibatkan perbaikan data secara otomatis, mengisi
nilai yang hilang, atau menandai masalah untuk intervensi manusia jika diper-
lukan.

4. Pembelajaran Berkelanjutan (opsional, tergantung kasus penggunaan):
Ketika pekerja Al Anda menemui dan menyelesaikan berbagai masalah data, ia
dapat menghasilkan output yang menjelaskan apa yang terjadi dan bagaimana
ia meresponnya. Metadata ini dapat dimasukkan ke dalam proses pembelajaran

yang memungkinkan Anda (dan mungkin model yang mendasarinya, melalui

Data yang Dapat Memperbaiki Diri 168

penyetelan halus) untuk menjadi lebih efektif dan efisien dari waktu ke waktu

dalam mengidentifikasi dan menyelesaikan anomali data.

Dengan mendeteksi dan memperbaiki masalah data secara otomatis, Anda dapat
memastikan aplikasi Anda beroperasi dengan data yang berkualitas tinggi dan dapat
diandalkan. Hal ini mengurangi risiko kesalahan, inkonsistensi, atau bug terkait data

yang dapat memengaruhi fungsionalitas atau pengalaman pengguna aplikasi.

Setelah Anda memiliki pekerja Al yang menangani tugas pemantauan dan perbaikan
data, Anda dapat memfokuskan upaya Anda pada aspek-aspek penting lainnya dari
aplikasi. Ini menghemat waktu dan sumber daya yang seharusnya digunakan untuk
pembersihan dan pemeliharaan data secara manual. Faktanya, seiring aplikasi Anda
bertumbuh dalam ukuran dan kompleksitas, pengelolaan kualitas data secara manual
menjadi semakin menantang. Pola “Data yang Dapat Memperbaiki Diri” dapat berskala
secara efektif dengan memanfaatkan kekuatan Al untuk menangani volume data yang

besar dan mendeteksi masalah secara real-time.

Karena sifatnya, model Al dapat beradaptasi dengan perubahan pola data,
P skema, atau persyaratan seiring waktu dengan sedikit atau tanpa pen-
gawasan. Selama arahan mereka memberikan panduan yang memadai,
terutama mengenai hasil yang diinginkan, aplikasi Anda mungkin dapat
berkembang dan menangani skenario data baru tanpa memerlukan inter-

vensi manual atau perubahan kode yang ekstensif.

Pola data yang dapat memperbaiki diri selaras dengan kategori pola lain yang telah
kita bahas, seperti “Multitude of Workers”. Kemampuan data yang dapat memperbaiki
diri dapat dipandang sebagai jenis pekerja khusus yang berfokus secara spesifik pada
memastikan kualitas dan integritas data. Pekerja jenis ini beroperasi bersama pekerja
Al lainnya, masing-masing berkontribusi pada aspek yang berbeda dari fungsionalitas

aplikasi.

Data yang Dapat Memperbaiki Diri 169

Implementasi pola data yang dapat memperbaiki diri dalam praktik memerlukan desain
yang cermat dan integrasi model Al ke dalam arsitektur aplikasi. Karena adanya risiko
kehilangan dan kerusakan data, Anda harus menentukan panduan yang jelas tentang
bagaimana Anda akan menggunakan teknik ini. Anda juga harus mempertimbangkan

faktor-faktor seperti kinerja, skalabilitas, dan keamanan data.

Studi Kasus Praktis: Memperbaiki JSON yang
Rusak

Salah satu cara paling praktis dan nyaman untuk memanfaatkan data yang dapat
memperbaiki diri juga sangat sederhana untuk dijelaskan: memperbaiki JSON yang

rusak.

Teknik ini dapat diterapkan pada tantangan umum dalam menangani data yang tidak
sempurna atau tidak konsisten yang dihasilkan oleh LLM, seperti JSON yang rusak,
dan menyediakan pendekatan untuk mendeteksi dan memperbaiki masalah ini secara

otomatis.

Di Olympia, saya secara rutin menghadapi skenario di mana LLM menghasilkan data
JSON yang tidak sepenuhnya valid. Ini dapat terjadi karena berbagai alasan, seperti
LLM menambahkan komentar sebelum atau sesudah kode JSON yang sebenarnya, atau
memperkenalkan kesalahan sintaks seperti koma yang hilang atau tanda kutip ganda
yang tidak di-escape. Masalah-masalah ini dapat menyebabkan error parsing dan

menimbulkan gangguan pada fungsionalitas aplikasi.

Untuk mengatasi masalah ini, saya telah mengimplementasikan sebuah solusi praktis
dalam bentuk kelas JsonFixer. Kelas ini mengejawantahkan pola “Self-Healing Data”
dengan mengambil JSON yang rusak sebagai input dan memanfaatkan LLM untuk
memperbaikinya sambil mempertahankan sebanyak mungkin informasi dan maksud

aslinya.

© 0 N O O b W N e

NN N NN R Rl sl s sl s
W N 20 O 0N 0 0k WwN

Data yang Dapat Memperbaiki Diri 170

class JsonFixer

include Raix::ChatCompletion

def call(bad_json, error_message)
raise "No data provided" if bad_json.blank? || error_message.blank?

transcript << {
system: "Consider user-provided JSON that generated a parse

exception. Do your best to fix it while preserving the
original content and intent as much as possible." }

transcript << { user: bad_json }

transcript << { assistant: "What is the error message?"}

transcript << { user: error_message }

transcript << { assistant: "Here is the corrected JSON\n " json\n" }

u\\\u}

self.stop = |

chat_completion(json: true)
end

def model
"mistralai/mixtral-8xTb-instruct:nitro"
end
end

Perhatikan bagaimana JsonF ixer menggunakan Ventriloquist untuk men-

garahkan respons Al

Proses penyembuhan mandiri data JSON bekerja sebagai berikut:

1. Pembuatan JSON: LLM digunakan untuk menghasilkan data JSON berdasarkan
prompt atau persyaratan tertentu. Namun, karena sifat dasar LLM, JSON yang
dihasilkan mungkin tidak selalu valid secara sempurna. Parser JSON tentu saja
akan memunculkan ParserError jika Anda memberikannya JSON yang tidak

valid.

a s W N -

Data yang Dapat Memperbaiki Diri 171

begin
JSON.parse(11m_generated_json)
rescue JSON: :ParserkError => e
JsonFixer.new.call(llm_generated_json, e.message)
end

Perhatikan bahwa pesan kesalahan juga dilewatkan ke pemanggilan JSONFixer se-
hingga tidak perlu sepenuhnya berasumsi apa yang salah dengan data tersebut, terutama

karena parser sering kali akan memberi tahu Anda secara tepat apa yang salah.

2. Koreksi Berbasis LLM: Kelas JSONF i xer mengirimkan JSON yang rusak kembali
ke LLM, bersama dengan prompt atau instruksi khusus untuk memperbaiki JSON
tersebut sambil mempertahankan informasi dan maksud asli sebanyak mungkin.
LLM, yang dilatih dengan data dalam jumlah besar dan memiliki pemahaman
tentang sintaks JSON, berusaha memperbaiki kesalahan dan menghasilkan string
JSON yang valid. Response Fencing digunakan untuk membatasi output dari
LLM, dan kami memilih Mixtral 8x7B sebagai model Al, karena sangat cocok
untuk tugas semacam ini.

3. Validasi dan Integrasi: String JSON yang telah diperbaiki yang dikembalikan
oleh LLM diparse oleh kelas JSONF ixer itu sendiri, karena memanggil chat_-
completion(json: true). Jika JSON yang diperbaiki lolos validasi, JSON
tersebut diintegrasikan kembali ke dalam alur kerja aplikasi, memungkinkan
aplikasi untuk melanjutkan pemrosesan data dengan lancar. JSON yang rusak

telah “disembuhkan”.

Meskipun saya telah menulis dan menulis ulang implementasi JSONF i xer saya sendiri
beberapa kali, saya ragu bahwa total waktu yang diinvestasikan dalam semua versi

tersebut lebih dari satu atau dua jam.

Perhatikan bahwa pelestarian maksud adalah elemen kunci dari setiap pola data

penyembuhan mandiri. Proses koreksi berbasis LLM bertujuan untuk mempertahankan

Data yang Dapat Memperbaiki Diri 172

informasi dan maksud asli dari JSON yang dihasilkan sebanyak mungkin. Ini memas-
tikan bahwa JSON yang diperbaiki mempertahankan makna semantiknya dan dapat

digunakan secara efektif dalam konteks aplikasi.

Implementasi praktis dari pendekatan “Data Penyembuhan Mandiri” di Olympia ini
dengan jelas menunjukkan bagaimana Al, khususnya LLM, dapat dimanfaatkan untuk
menyelesaikan tantangan data di dunia nyata. Ini menunjukkan kekuatan meng-
gabungkan teknik pemrograman tradisional dengan kemampuan Al untuk membangun

aplikasi yang kuat dan efisien.

Hukum Postel dan Pola “Data Penyembuhan
Mandiri”

“Data Penyembuhan Mandiri,” seperti yang dicontohkan oleh kelas JSONFixer,
sejalan dengan prinsip yang dikenal sebagai Hukum Postel, yang juga disebut sebagai

Prinsip Ketangguhan. Hukum Postel menyatakan:

“Bersikaplah konservatif dalam apa yang Anda lakukan, bersikaplah liberal dalam

apa yang Anda terima dari orang lain.”

Prinsip ini, yang awalnya diungkapkan oleh Jon Postel, seorang pelopor Internet
awal, menekankan pentingnya membangun sistem yang toleran terhadap input yang
beragam atau bahkan sedikit salah sambil mempertahankan kepatuhan yang ketat

terhadap protokol yang ditentukan ketika mengirim output.

Dalam konteks “Self-Healing Data,” kelas JSONFixer mewujudkan Hukum Postel
dengan bersikap toleran dalam menerima data JSON yang rusak atau tidak sempurna
yang dihasilkan oleh LLM (Large Language Model). Kelas ini tidak langsung menolak
atau gagal ketika menemui JSON yang tidak sepenuhnya mengikuti format yang
diharapkan. Sebaliknya, ia mengambil pendekatan yang toleran dan berusaha

memperbaiki JSON menggunakan kemampuan LLM.

Data yang Dapat Memperbaiki Diri 173

Dengan bersikap toleran dalam menerima JSON yang tidak sempurna, kelas JSON-
Fixer menunjukkan ketangguhan dan fleksibilitas. Kelas ini mengakui bahwa data di
dunia nyata sering kali hadir dalam berbagai bentuk dan mungkin tidak selalu sesuai
dengan spesifikasi yang ketat. Dengan menangani dan memperbaiki penyimpangan
ini secara anggun, kelas ini memastikan bahwa aplikasi dapat terus berfungsi dengan

lancar, bahkan saat menghadapi data yang tidak sempurna.

Di sisi lain, kelas JSONFixer juga mematuhi aspek konservatif dari Hukum Postel
ketika berkaitan dengan output. Setelah memperbaiki JSON menggunakan LLM,
kelas ini memvalidasi JSON yang telah diperbaiki untuk memastikan bahwa JSON
tersebut benar-benar sesuai dengan format yang diharapkan. Ini menjaga integritas
dan kebenaran data sebelum meneruskannya ke bagian lain dari aplikasi. Pendekatan
konservatif ini menjamin bahwa output dari kelas JSONFixer dapat diandalkan dan

konsisten, mendorong interoperabilitas dan mencegah penyebaran kesalahan.

Fakta Menarik tentang Jon Postel:

« Jon Postel (1943-1998) adalah ilmuwan komputer Amerika yang memainkan
peran penting dalam pengembangan Internet. Dia dikenal sebagai “Dewa
Internet” karena kontribusinya yang signifikan terhadap protokol dan standar
yang mendasarinya.

« Postel adalah editor seri dokumen Request for Comments (RFC), yang meru-
pakan serangkaian catatan teknis dan organisasional tentang Internet. Dia
menulis atau menjadi penulis bersama lebih dari 200 RFC, termasuk protokol-
protokol dasar seperti TCP, IP, dan SMTP.

+ Selain kontribusi teknisnya, Postel dikenal karena pendekatan yang rendah
hati dan kolaboratif. Dia percaya akan pentingnya mencapai konsensus dan
bekerja sama untuk membangun jaringan yang kokoh dan interoperabel.

« Postel menjabat sebagai Direktur Divisi Jaringan Komputer di Information
Sciences Institute (ISI) University of Southern California (USC) dari 1977
hingga kematiannya yang tiba-tiba pada 1998.

« Sebagai pengakuan atas kontribusinya yang luar biasa, Postel dianugerahi

Data yang Dapat Memperbaiki Diri 174

penghargaan bergengsi Turing Award pada tahun 1998 secara anumerta, yang

sering disebut sebagai “Nobel Prize dalam bidang Komputasi.”

Kelas JSONF i xer mendorong ketangguhan, fleksibilitas, dan interoperabilitas, yang
merupakan nilai-nilai inti yang dijunjung tinggi Postel sepanjang karirnya. Dengan
membangun sistem yang toleran terhadap ketidaksempurnaan sambil tetap menjaga
kepatuhan ketat terhadap protokol, kita dapat menciptakan aplikasi yang lebih

tangguh dan adaptif dalam menghadapi tantangan dunia nyata.

Pertimbangan dan Kontraindikasi

Penerapan pendekatan data yang dapat memperbaiki diri sepenuhnya bergantung pada
jenis data yang ditangani oleh aplikasi Anda. Ada alasan mengapa Anda mungkin
tidak ingin sekadar melakukan monkeypatch pada JSON. parse untuk secara otomatis
memperbaiki semua kesalahan parsing JSON dalam aplikasi Anda: tidak semua

kesalahan dapat atau harus diperbaiki secara otomatis.

Perbaikan mandiri menjadi sangat rumit ketika dikaitkan dengan persyaratan regulasi
atau kepatuhan terkait penanganan dan pemrosesan data. Beberapa industri, seperti
kesehatan dan keuangan, memiliki regulasi yang sangat ketat mengenai integritas
data dan kemampuan audit sehingga melakukan perbaikan data “kotak hitam” tanpa
pengawasan atau pencatatan yang tepat dapat melanggar regulasi tersebut. Sangat
penting untuk memastikan bahwa teknik data yang dapat memperbaiki diri yang Anda

kembangkan selaras dengan kerangka hukum dan regulasi yang berlaku.

Penerapan teknik data yang dapat memperbaiki diri, terutama yang melibatkan model
Al juga dapat berdampak besar pada kinerja aplikasi dan pemanfaatan sumber daya.
Memproses volume data yang besar melalui model AI untuk deteksi dan perbaikan

kesalahan dapat memakan banyak sumber daya komputasi. Penting untuk menilai

Data yang Dapat Memperbaiki Diri 175

pertimbangan untung-rugi antara manfaat data yang dapat memperbaiki diri dan biaya

kinerja serta sumber daya yang terkait.

Dengan demikian, mari kita dalami faktor-faktor yang terlibat dalam menentukan

kapan dan di mana menerapkan pendekatan yang ampuh ini.

Kritikalitas Data

Ketika mempertimbangkan penerapan teknik data yang dapat memperbaiki diri, sangat
penting untuk menilai kritikalitas data yang sedang diproses. Tingkat kritikalitas
mengacu pada pentingnya dan sensitivitas data dalam konteks aplikasi Anda dan

domain bisnisnya.

Dalam beberapa kasus, memperbaiki kesalahan data secara otomatis mungkin tidak
tepat, terutama jika data tersebut sangat sensitif atau memiliki implikasi hukum.

Sebagai contoh, pertimbangkan skenario berikut:

1. Transaksi Keuangan: Dalam aplikasi keuangan, seperti sistem perbankan atau
platform perdagangan, akurasi data sangat penting. Bahkan kesalahan kecil dalam
data keuangan dapat memiliki konsekuensi signifikan, seperti saldo rekening
yang tidak tepat, dana yang salah rute, atau keputusan perdagangan yang keliru.
Dalam kasus ini, perbaikan otomatis tanpa verifikasi dan audit menyeluruh dapat
menimbulkan risiko yang tidak dapat diterima.

2. Catatan Medis: Aplikasi kesehatan menangani data pasien yang sangat sensitif
dan rahasia. Ketidakakuratan dalam catatan medis dapat memiliki implikasi
serius bagi keselamatan pasien dan keputusan pengobatan. Memodifikasi data
medis secara otomatis tanpa pengawasan dan validasi yang tepat oleh profesional
kesehatan yang berkualifikasi dapat melanggar persyaratan regulasi dan memba-
hayakan kesejahteraan pasien.

3. Dokumen Hukum: Aplikasi yang menangani dokumen hukum, seperti kontrak,

perjanjian, atau berkas pengadilan, memerlukan akurasi dan integritas yang ketat.

Data yang Dapat Memperbaiki Diri 176

Bahkan kesalahan kecil dalam data hukum dapat memiliki dampak hukum yang
signifikan. Perbaikan otomatis dalam domain ini mungkin tidak tepat, karena
data seringkali memerlukan tinjauan manual dan verifikasi oleh ahli hukum untuk

memastikan keabsahan dan keberlakuannya.

Dalam skenario data kritis ini, risiko yang terkait dengan koreksi otomatis seringkali
lebih besar daripada potensi manfaatnya. Konsekuensi dari memperkenalkan kesalahan
atau memodifikasi data secara tidak tepat bisa sangat serius, yang mengakibatkan

kerugian finansial, kewajiban hukum, atau bahkan membahayakan individu.

Ketika menangani data yang sangat kritis, sangat penting untuk memprioritaskan proses
verifikasi dan validasi manual. Pengawasan dan keahlian manusia sangat penting dalam
memastikan keakuratan dan integritas data. Teknik penyembuhan otomatis masih dapat
digunakan untuk menandai potensi kesalahan atau inkonsistensi, tetapi keputusan akhir

mengenai koreksi harus melibatkan pertimbangan dan persetujuan manusia.

Namun, perlu dicatat bahwa tidak semua data dalam suatu aplikasi memiliki tingkat
kekritisan yang sama. Dalam aplikasi yang sama, mungkin ada subset data yang kurang
sensitif atau memiliki dampak yang lebih rendah jika terjadi kesalahan. Dalam kasus
seperti ini, teknik penyembuhan data otomatis dapat diterapkan secara selektif pada

subset data tertentu tersebut, sementara data kritis tetap harus melalui verifikasi manual.

Kuncinya adalah dengan cermat menilai tingkat kekritisan setiap kategori data dalam
aplikasi Anda dan menentukan pedoman serta proses yang jelas untuk menangani
koreksi berdasarkan risiko dan implikasi yang terkait. Dengan membedakan antara data
kritis (misalnya buku besar, catatan medis) dan data non-kritis (misalnya alamat surat,
peringatan sumber daya), Anda dapat mencapai keseimbangan antara memanfaatkan
kelebihan teknik penyembuhan data otomatis di tempat yang sesuai dan memperta-

hankan kontrol serta pengawasan yang ketat di tempat yang diperlukan.

Pada akhirnya, keputusan untuk menerapkan teknik penyembuhan data otomatis pada
data kritis harus dibuat dengan berkonsultasi dengan pakar domain, penasihat hukum,

dan pemangku kepentingan terkait lainnya. Sangat penting untuk mempertimbangkan

Data yang Dapat Memperbaiki Diri 177

persyaratan khusus, regulasi, dan risiko yang terkait dengan data aplikasi Anda dan

menyelaraskan strategi koreksi data yang sesuai.

Tingkat Keparahan Kesalahan

Ketika menerapkan teknik penyembuhan data otomatis, penting untuk menilai tingkat
keparahan dan dampak dari kesalahan data. Tidak semua kesalahan diciptakan setara,
dan tindakan yang tepat mungkin berbeda tergantung pada tingkat keparahan masalah-

nya.

Inkonsistensi kecil atau masalah pemformatan mungkin cocok untuk koreksi otomatis.
Misalnya, pekerja penyembuhan data yang ditugaskan untuk memperbaiki JSON yang
rusak dapat menangani koma yang hilang atau tanda kutip ganda yang tidak di-escape
tanpa mengubah makna atau struktur data secara signifikan. Jenis kesalahan seperti
ini seringkali mudah diperbaiki dan memiliki dampak minimal terhadap integritas data

secara keseluruhan.

Namun, kesalahan yang lebih serius yang secara fundamental mengubah makna atau
integritas data mungkin memerlukan pendekatan yang berbeda. Dalam kasus seperti
ini, koreksi otomatis mungkin tidak mencukupi, dan intervensi manusia mungkin

diperlukan untuk memastikan keakuratan dan validitas data.

Di sinilah konsep penggunaan Al itu sendiri berperan untuk membantu menentukan
tingkat keparahan kesalahan. Dengan memanfaatkan kemampuan model Al kita dapat
merancang pekerja data yang dapat memperbaiki diri yang tidak hanya memperbaiki
kesalahan tetapi juga menilai tingkat keparahan kesalahan tersebut dan membuat

keputusan yang tepat tentang cara menanganinya.

Sebagai contoh, mari kita pertimbangkan sebuah pekerja data yang dapat memperbaiki
diri yang bertanggung jawab untuk mengoreksi ketidakkonsistenan dalam aliran data
ke basis data pelanggan. Pekerja tersebut dapat dirancang untuk menganalisis data dan

mengidentifikasi potensi kesalahan, seperti informasi yang hilang atau bertentangan.

© 0 N O O b W N =

W W W W W W N DN DN DN DNDDNDDNDNDNDDN =S A~ B 2))
a P W N 2 O © 0 N O O b W N~ OO0 © 0w N O U kb Ww N =~ o

Data yang Dapat Memperbaiki Diri 178

Namun, alih-alih secara otomatis memperbaiki semua kesalahan, pekerja tersebut dapat
dilengkapi dengan pemanggilan alat tambahan yang memungkinkannya menandai

kesalahan serius untuk peninjauan manusia.

Berikut contoh bagaimana hal ini dapat diimplementasikan:

class CustomerDataReviewer
include Raix::ChatCompletion
include Raix::FunctionDeclarations

attr_accessor :customer

function :flag_for_review, reason: { type: "string" } do |params|
AdminNotifier.review_request(customer, params|:reason])
end

def initialize(customer)
self.customer = customer

end

def call(customer_data)
transcript << {
system: "You are a customer data reviewer. Your task is to identify
and correct inconsistencies in customer data.

< additional instructions here... >

If you encounter severe errors that require human review, use the

“flag_for_review® tool to flag the data for manual intervention." }

transcript << { user: customer.to_json }

transcript << { assistant: "Reviewed/corrected data:\n json\n" }

n\\\u}

self.stop = |

chat_completion(json: true).then do |result|
return if result.blank?

customer .update(result)
end
end

36

Data yang Dapat Memperbaiki Diri 179

end

Dalam contoh ini, worker CustomerDataHealer dirancang untuk mengidentifikasi
dan memperbaiki inkonsistensi dalam data pelanggan. Sekali lagi, kita menggunakan
Pembatasan Respons dan Ventriloquist untuk mendapatkan output terstruktur. Yang
penting, direktif sistem worker mencakup instruksi untuk menggunakan fungsi flag_-

for_review jika ditemukan kesalahan yang serius.

Ketika worker memproses data pelanggan, ia menganalisis data dan berusaha memper-
baiki setiap inkonsistensi. Jika worker menentukan bahwa kesalahan tersebut serius dan
memerlukan intervensi manusia, ia dapat menggunakan tool flag_for_review untuk

menandai data tersebut dan memberikan alasan penandaan.

Metode chat_completion dipanggil dengan json: true untuk mengurai data
pelanggan yang telah dikoreksi sebagai JSON. Tidak ada ketentuan untuk melakukan
pengulangan setelah pemanggilan fungsi, sehingga hasilnya akan kosong jika
flag_for_review dijalankan. Jika tidak, data pelanggan diperbarui dengan data

yang telah ditinjau dan berpotensi dikoreksi.

Dengan memasukkan penilaian tingkat keparahan kesalahan dan opsi untuk menandai
data untuk ditinjau manusia, worker data yang dapat memperbaiki diri menjadi lebih
cerdas dan adaptif. la dapat menangani kesalahan minor secara otomatis sambil

meningkatkan kesalahan serius kepada ahli manusia untuk intervensi manual.

Kriteria spesifik untuk menentukan tingkat keparahan kesalahan dapat didefinisikan
dalam direktif worker berdasarkan pengetahuan domain dan kebutuhan bisnis. Faktor-
faktor seperti dampak terhadap integritas data, potensi kehilangan atau kerusakan data,
dan konsekuensi dari data yang tidak tepat dapat dipertimbangkan saat menilai tingkat

keparahan.

Dengan memanfaatkan Al untuk menilai tingkat keparahan kesalahan dan menyedi-
akan opsi untuk intervensi manusia, teknik data yang dapat memperbaiki diri dapat

mencapai keseimbangan antara otomatisasi dan mempertahankan akurasi data. Pen-

Data yang Dapat Memperbaiki Diri 180

dekatan ini memastikan bahwa kesalahan minor diperbaiki secara efisien sementara
kesalahan serius mendapat perhatian dan keahlian yang diperlukan dari peninjau

manusia.

Kompleksitas Domain

Ketika mempertimbangkan penerapan teknik data yang dapat memperbaiki diri, penting
untuk mengevaluasi kompleksitas domain data dan aturan yang mengatur struktur serta
hubungannya. Kompleksitas domain dapat secara signifikan mempengaruhi efektivitas

dan kelayakan pendekatan koreksi data otomatis.

Teknik data yang dapat memperbaiki diri bekerja dengan baik ketika data mengikuti
pola dan batasan yang terdefinisi dengan baik. Dalam domain di mana struktur data
relatif sederhana dan hubungan antar elemen data bersifat lugas, koreksi otomatis dapat
diterapkan dengan tingkat kepercayaan yang tinggi. Sebagai contoh, memperbaiki
masalah pemformatan atau menerapkan batasan tipe data dasar seringkali dapat di-

tangani secara efektif oleh worker data yang dapat memperbaiki diri.

Namun, seiring meningkatnya kompleksitas domain data, tantangan yang terkait
dengan koreksi data otomatis juga bertambah. Dalam domain dengan logika bisnis yang
rumit, hubungan kompleks antara entitas data, atau aturan dan pengecualian khusus do-
main, teknik data yang dapat memperbaiki diri mungkin tidak selalu dapat menangkap

nuansa tersebut dan dapat menimbulkan konsekuensi yang tidak diinginkan.

Mari kita lihat contoh domain yang kompleks: sistem perdagangan keuangan. Dalam
domain ini, data melibatkan berbagai instrumen keuangan, data pasar, aturan perdagan-
gan, dan persyaratan regulasi. Hubungan antara elemen data yang berbeda bisa sangat
rumit, dan aturan yang mengatur validitas dan konsistensi data dapat sangat spesifik

untuk domain tersebut.

Dalam domain yang kompleks seperti ini, pekerja data yang dapat memperbaiki diri
yang bertugas mengoreksi inkonsistensi dalam data perdagangan perlu memiliki pema-

haman mendalam tentang aturan dan batasan khusus domain. Pekerja tersebut perlu

Data yang Dapat Memperbaiki Diri 181

mempertimbangkan faktor-faktor seperti regulasi pasar, batas perdagangan, perhitun-
gan risiko, dan prosedur penyelesaian. Koreksi otomatis dalam konteks ini mungkin
tidak selalu dapat menangkap kompleksitas domain secara penuh dan mungkin secara

tidak sengaja memunculkan kesalahan atau melanggar aturan khusus domain.

Untuk mengatasi tantangan kompleksitas domain, teknik data yang dapat memperbaiki
diri dapat ditingkatkan dengan memasukkan pengetahuan dan aturan khusus domain

ke dalam model Al dan para pekerja. Hal ini dapat dicapai melalui teknik-teknik seperti:

1. Pelatihan Khusus Domain: Model Al yang digunakan untuk data yang da-
pat memperbaiki diri dapat diarahkan atau bahkan disesuaikan pada dataset
khusus domain yang menangkap kerumitan dan aturan domain tertentu. Dengan
mengekspos model pada data dan skenario yang representatif, mereka dapat mem-
pelajari pola, batasan, dan pengecualian yang spesifik untuk domain tersebut.

2. Batasan Berbasis Aturan: Pekerja data yang dapat memperbaiki diri dapat
ditingkatkan dengan batasan berbasis aturan eksplisit yang mengkodekan penge-
tahuan khusus domain. Aturan-aturan ini dapat didefinisikan oleh para ahli
domain dan diintegrasikan ke dalam proses koreksi data. Model Al kemudian
dapat menggunakan aturan-aturan ini untuk memandu keputusan mereka dan
memastikan kepatuhan terhadap persyaratan khusus domain.

3. Kolaborasi dengan Ahli Domain: Dalam domain yang kompleks, sangat penting
untuk melibatkan ahli domain dalam desain dan pengembangan teknik data yang
dapat memperbaiki diri. Ahli domain dapat memberikan wawasan berharga
tentang kerumitan data, aturan bisnis, dan kasus-kasus ekstrem yang mungkin
terjadi. Pengetahuan mereka dapat dimasukkan ke dalam model Al dan para
pekerja untuk meningkatkan akurasi dan keandalan koreksi data otomatis meng-
gunakan pola Human In The Loop.

4. Pendekatan Bertahap dan Iteratif: Ketika berhadapan dengan domain yang
kompleks, seringkali bermanfaat untuk mengadopsi pendekatan bertahap dan
iteratif untuk data yang dapat memperbaiki diri. Alih-alih mencoba mengo-

tomatisasi koreksi untuk seluruh domain sekaligus, fokus pada subdomain atau

Data yang Dapat Memperbaiki Diri 182

kategori data tertentu di mana aturan dan batasannya dipahami dengan baik.
Secara bertahap perluas cakupan teknik yang dapat memperbaiki diri seiring
bertambahnya pemahaman tentang domain dan terbuktinya efektivitas teknik

tersebut.

Dengan mempertimbangkan kompleksitas domain data dan memasukkan pengetahuan
spesifik domain ke dalam teknik data yang dapat memperbaiki diri, Anda dapat
mencapai keseimbangan antara otomatisasi dan akurasi. Penting untuk menyadari
bahwa data yang dapat memperbaiki diri bukanlah solusi yang cocok untuk semua
situasi dan pendekatan harus disesuaikan dengan persyaratan dan tantangan spesifik

setiap domain.

Dalam domain yang kompleks, pendekatan hibrida yang menggabungkan teknik data
yang dapat memperbaiki diri dengan keahlian dan pengawasan manusia dapat menjadi
yang paling efektif. Koreksi otomatis dapat menangani kasus-kasus rutin dan yang telah
terdefinisi dengan baik, sementara skenario kompleks atau pengecualian dapat ditandai
untuk ditinjau dan diintervensi oleh manusia. Pendekatan kolaboratif ini memastikan
bahwa manfaat otomatisasi dapat direalisasikan sambil mempertahankan kontrol dan

akurasi yang diperlukan dalam domain data yang kompleks.

Kemampuan Penjelasan dan Transparansi

Kemampuan penjelasan mengacu pada kemampuan untuk memahami dan mengin-
terpretasikan penalaran di balik keputusan yang dibuat oleh model Al, sementara

transparansi melibatkan penyediaan visibilitas yang jelas dalam proses koreksi data.

Dalam banyak konteks, modifikasi data perlu dapat diaudit dan dipertanggung-
jawabkan. Para pemangku kepentingan, termasuk pengguna bisnis, auditor, dan badan
regulasi, mungkin memerlukan penjelasan mengapa koreksi data tertentu dilakukan
dan bagaimana model AI sampai pada keputusan tersebut. Hal ini sangat penting
dalam domain di mana akurasi dan integritas data memiliki implikasi signifikan, seperti

keuangan, kesehatan, dan masalah hukum.

Data yang Dapat Memperbaiki Diri 183

Untuk mengatasi kebutuhan akan kemampuan penjelasan dan transparansi, teknik
data yang dapat memperbaiki diri harus memasukkan mekanisme yang memberikan
wawasan tentang proses pengambilan keputusan model Al Ini dapat dicapai melalui

berbagai pendekatan:

1. Rantai Pemikiran: Meminta model untuk menjelaskan pemikirannya “secara
terbuka” sebelum menerapkan perubahan pada data dapat memungkinkan pema-
haman yang lebih mudah tentang proses pengambilan keputusan dan dapat meng-
hasilkan penjelasan yang dapat dibaca manusia untuk koreksi yang dilakukan.
Timbal baliknya adalah sedikit lebih kompleks dalam memisahkan penjelasan dari
output data terstruktur, yang dapat diatasi dengan...

2. Pembuatan Penjelasan: Pekerja data yang dapat memperbaiki diri dapat
dilengkapi dengan kemampuan untuk menghasilkan penjelasan yang dapat
dibaca manusia untuk koreksi yang mereka buat. Ini dapat dicapai dengan
meminta model untuk menghasilkan proses pengambilan keputusannya sebagai
penjelasan yang mudah dimengerti yang terintegrasi ke dalam data itu sendiri.
Misalnya, pekerja data yang dapat memperbaiki diri dapat menghasilkan laporan
yang menyoroti ketidakkonsistenan data spesifik yang diidentifikasi, koreksi
yang diterapkan, dan alasan di balik koreksi tersebut.

3. Tingkat Kepentingan Fitur: Model Al dapat diinstruksikan dengan informasi
tentang pentingnya berbagai fitur atau atribut dalam proses koreksi data sebagai
bagian dari arahan mereka. Arahan tersebut, pada gilirannya, dapat diperlihatkan
kepada pemangku kepentingan manusia. Dengan mengidentifikasi faktor-faktor
kunci yang mempengaruhi keputusan model, pemangku kepentingan dapat mem-
peroleh wawasan tentang penalaran di balik koreksi dan menilai validitasnya.

4. Pencatatan dan Audit: Penerapan mekanisme pencatatan dan audit yang kom-
prehensif sangat penting untuk menjaga transparansi dalam proses data penyem-
buhan mandiri. Setiap koreksi data yang dilakukan oleh model Al harus dicatat,
termasuk data asli, data yang dikoreksi, dan tindakan spesifik yang diambil. Jejak

Data yang Dapat Memperbaiki Diri 184

audit ini memungkinkan analisis retrospektif dan memberikan catatan yang jelas
tentang modifikasi yang dilakukan pada data.

5. Pendekatan Manusia dalam Siklus: Memasukkan pendekatan manusia dalam
siklus dapat meningkatkan kemampuan penjelasan dan transparansi teknik data
penyembuhan mandiri. Dengan melibatkan para ahli dalam peninjauan dan
validasi koreksi yang dihasilkan AI, organisasi dapat memastikan bahwa ko-
reksi tersebut selaras dengan pengetahuan domain dan kebutuhan bisnis. Pen-
gawasan manusia menambahkan lapisan akuntabilitas tambahan dan memu-
ngkinkan identifikasi potensi bias atau kesalahan dalam model AL

6. Pemantauan dan Evaluasi Berkelanjutan: Pemantauan dan evaluasi rutin ter-
hadap kinerja teknik data penyembuhan mandiri sangat penting untuk menjaga
transparansi dan kepercayaan. Dengan menilai akurasi dan efektivitas model
Al dari waktu ke waktu, organisasi dapat mengidentifikasi penyimpangan atau
anomali dan mengambil tindakan korektif. Pemantauan berkelanjutan membantu
memastikan bahwa proses data penyembuhan mandiri tetap dapat diandalkan dan

selaras dengan hasil yang diinginkan.

Kemampuan penjelasan dan transparansi adalah pertimbangan penting ketika mener-
apkan teknik data penyembuhan mandiri. Dengan memberikan penjelasan yang jelas
untuk koreksi data, mempertahankan jejak audit yang komprehensif, dan melibatkan
pengawasan manusia, organisasi dapat membangun kepercayaan dalam proses data
penyembuhan mandiri dan memastikan bahwa modifikasi yang dilakukan pada data

dapat dipertanggungjawabkan dan selaras dengan tujuan bisnis.

Penting untuk menjaga keseimbangan antara manfaat otomatisasi dan kebutuhan akan
transparansi. Meskipun teknik data penyembuhan mandiri dapat secara signifikan
meningkatkan kualitas dan efisiensi data, hal ini tidak boleh mengorbankan visibilitas
dan kontrol atas proses koreksi data. Dengan merancang pekerja data penyembuhan
mandiri dengan mempertimbangkan kemampuan penjelasan dan transparansi, organ-
isasi dapat memanfaatkan kekuatan Al sambil mempertahankan tingkat akuntabilitas

dan kepercayaan yang diperlukan dalam data.

Data yang Dapat Memperbaiki Diri 185

Konsekuensi yang Tidak Diinginkan

Meskipun teknik data penyembuhan mandiri bertujuan untuk meningkatkan kualitas
dan konsistensi data, penting untuk menyadari potensi konsekuensi yang tidak di-
inginkan. Koreksi otomatis, jika tidak dirancang dan dipantau dengan hati-hati, dapat
secara tidak sengaja mengubah makna atau konteks data, yang mengarah pada masalah
hilir.

Salah satu risiko utama dari data penyembuhan mandiri adalah masuknya bias atau
kesalahan dalam proses koreksi data. Model Al seperti sistem perangkat lunak lainnya,
dapat dipengaruhi oleh bias yang ada dalam data pelatihan atau yang diperkenalkan
melalui desain algoritma. Jika bias ini tidak diidentifikasi dan dimitigasi, mereka dapat
menyebar melalui proses data penyembuhan mandiri dan menghasilkan modifikasi data

yang miring atau tidak tepat.

Sebagai contoh, pertimbangkan sebuah pekerja data swapulih yang bertugas memper-
baiki inkonsistensi dalam data demografis pelanggan. Jika model Al telah mempelajari
bias dari data historis, seperti mengaitkan pekerjaan atau tingkat pendapatan tertentu
dengan gender atau etnis tertentu, model tersebut mungkin membuat asumsi yang salah
dan memodifikasi data dengan cara yang justru memperkuat bias tersebut. Hal ini dapat
mengakibatkan profil pelanggan yang tidak akurat, keputusan bisnis yang keliru, dan

berpotensi menghasilkan dampak yang diskriminatif.

Konsekuensi yang tidak diinginkan lainnya adalah hilangnya informasi atau konteks
berharga selama proses perbaikan data. Teknik data swapulih seringkali berfokus
pada standardisasi dan normalisasi data untuk memastikan konsistensi. Namun, dalam
beberapa kasus, data asli mungkin mengandung nuansa, pengecualian, atau informasi
kontekstual yang penting untuk memahami gambaran secara utuh. Perbaikan otomatis
yang memberlakukan standardisasi secara membabi buta dapat secara tidak sengaja

menghilangkan atau mengaburkan informasi berharga ini.

Misalnya, bayangkan seorang pekerja data swapulih yang bertanggung jawab untuk

Data yang Dapat Memperbaiki Diri 186

memperbaiki inkonsistensi dalam catatan medis. Jika pekerja tersebut menemukan
riwayat medis pasien dengan kondisi langka atau rencana pengobatan yang tidak
biasa, ia mungkin mencoba menormalisasi data tersebut agar sesuai dengan pola yang
lebih umum. Namun, dalam prosesnya, ia mungkin kehilangan detail dan konteks
spesifik yang sangat penting untuk merepresentasikan situasi unik pasien secara akurat.
Kehilangan informasi ini dapat memiliki implikasi serius bagi perawatan pasien dan

pengambilan keputusan medis.

Untuk mengurangi risiko konsekuensi yang tidak diinginkan, penting untuk mengambil

pendekatan proaktif saat merancang dan menerapkan teknik data swapulih:

1. Pengujian dan Validasi Menyeluruh: Sebelum menerapkan pekerja data swa-
pulih dalam produksi, sangat penting untuk menguji dan memvalidasi perilaku
mereka secara menyeluruh terhadap berbagai skenario. Ini termasuk pengujian
dengan dataset representatif yang mencakup berbagai kasus ekstrem, penge-
cualian, dan potensi bias. Pengujian yang ketat membantu mengidentifikasi
dan mengatasi konsekuensi yang tidak diinginkan sebelum berdampak pada data
dunia nyata.

2. Pemantauan dan Evaluasi Berkelanjutan: Menerapkan mekanisme peman-
tauan dan evaluasi berkelanjutan sangat penting untuk mendeteksi dan men-
gurangi konsekuensi yang tidak diinginkan dari waktu ke waktu. Meninjau
hasil proses data swapulih secara rutin, menganalisis dampak pada sistem hilir
dan pengambilan keputusan, serta mengumpulkan umpan balik dari pemangku
kepentingan dapat membantu mengidentifikasi efek merugikan dan memicu
tindakan korektif yang tepat waktu. Jika organisasi Anda memiliki dasbor
operasional, menambahkan metrik yang jelas terkait perubahan data otomatis
mungkin adalah ide yang bagus. Menambahkan alarm yang terhubung dengan
penyimpangan besar dari aktivitas perubahan data normal mungkin adalah ide
yang lebih baik lagi!

3. Pengawasan dan Intervensi Manusia: Mempertahankan pengawasan manusia

dan kemampuan untuk melakukan intervensi dalam proses data swapulih sangat

Data yang Dapat Memperbaiki Diri 187

penting. Meskipun otomatisasi dapat sangat meningkatkan efisiensi, penting
untuk memiliki ahli manusia yang meninjau dan memvalidasi koreksi yang dibuat
oleh model Al terutama dalam domain yang kritis atau sensitif. Penilaian
manusia dan keahlian bidang dapat membantu mengidentifikasi dan mengatasi

konsekuensi yang tidak diinginkan yang mungkin muncul.

4. Explainable AI (XAI) dan Transparansi: Seperti yang dibahas pada subbagian
sebelumnya, penerapan teknik Explainable Al dan memastikan transparansi
dalam proses data yang dapat memperbaiki diri dapat membantu mengurangi
konsekuensi yang tidak diinginkan. Dengan memberikan penjelasan yang jelas
untuk koreksi data dan memelihara jejak audit yang komprehensif, organisasi
dapat lebih memahami dan melacak alasan di balik modifikasi yang dilakukan
oleh model AL

5. Pendekatan Bertahap dan Iteratif: Mengadopsi pendekatan bertahap dan iteratif
untuk data yang dapat memperbaiki diri dapat membantu meminimalkan risiko
konsekuensi yang tidak diinginkan. Alih-alih menerapkan koreksi otomatis
pada seluruh kumpulan data sekaligus, mulailah dengan subset data dan perluas
cakupannya secara bertahap seiring teknik terbukti efektif dan dapat diandalkan.
Hal ini memungkinkan pemantauan dan penyesuaian yang cermat sepanjang
prosesnya, mengurangi dampak dari konsekuensi yang tidak diinginkan.

6. Kolaborasi dan Umpan Balik: Melibatkan pemangku kepentingan dari berba-
gai domain dan mendorong kolaborasi serta umpan balik selama proses data
yang dapat memperbaiki diri dapat membantu mengidentifikasi dan mengatasi
konsekuensi yang tidak diinginkan. Secara rutin mencari masukan dari ahli do-
main, pengguna data, dan pengguna akhir dapat memberikan wawasan berharga
tentang dampak nyata dari koreksi data dan menyoroti masalah yang mungkin

terlewatkan.

Dengan secara proaktif mengatasi risiko konsekuensi yang tidak diinginkan dan men-

erapkan pengamanan yang tepat, organisasi dapat memanfaatkan keuntungan dari

Data yang Dapat Memperbaiki Diri 188

teknik data yang dapat memperbaiki diri sambil meminimalkan potensi efek merugikan.
Penting untuk mendekati data yang dapat memperbaiki diri sebagai proses iteratif
dan kolaboratif, terus memantau, mengevaluasi, dan menyempurnakan teknik untuk
memastikan selaras dengan hasil yang diinginkan dan mempertahankan integritas serta

keandalan data.

Ketika mempertimbangkan penggunaan pola data yang dapat memperbaiki diri, penting
untuk mengevaluasi faktor-faktor ini dengan cermat dan menimbang manfaat terhadap
potensi risiko dan keterbatasan. Dalam beberapa kasus, pendekatan hibrid yang
menggabungkan koreksi otomatis dengan pengawasan dan intervensi manusia mungkin

menjadi solusi yang paling tepat.

Perlu juga dicatat bahwa teknik data yang dapat memperbaiki diri tidak boleh dianggap
sebagai pengganti untuk validasi data yang kuat, sanitasi input, dan mekanisme
penanganan kesalahan. Praktik-praktik mendasar ini tetap penting untuk memastikan
integritas dan keamanan data. Data yang dapat memperbaiki diri harus dipandang
sebagai pendekatan pelengkap yang dapat menambah dan meningkatkan langkah-
langkah yang sudah ada.

Pada akhirnya, keputusan untuk menggunakan pola data yang dapat memperbaiki
diri bergantung pada persyaratan, batasan, dan prioritas spesifik aplikasi Anda. Den-
gan mempertimbangkan dengan cermat pertimbangan yang diuraikan di atas dan
menyelaraskannya dengan tujuan dan arsitektur aplikasi Anda, Anda dapat membuat
keputusan yang tepat tentang kapan dan bagaimana memanfaatkan teknik data yang

dapat memperbaiki diri secara efektif.

Pembuatan Konten Kontekstual

i peh
/, A

‘ ‘,

v’

Pola Pembuatan Konten Kontekstual memanfaatkan kekuatan model bahasa besar
(LLM) untuk menghasilkan konten dinamis dan kontekstual dalam aplikasi. Kategori
pola ini mengakui pentingnya memberikan konten yang dipersonalisasi dan relevan
kepada pengguna berdasarkan kebutuhan spesifik, preferensi, dan bahkan interaksi

sebelumnya serta saat ini dengan aplikasi.

Dalam konteks pendekatan ini, “konten” mengacu pada konten primer (seperti

posting blog, artikel, dll) dan meta-konten, seperti rekomendasi untuk konten primer.

Pola Pembuatan Konten Kontekstual dapat berperan penting dalam meningkatkan
tingkat keterlibatan pengguna Anda, memberikan pengalaman yang disesuaikan, dan

mengotomatisasi tugas pembuatan konten baik untuk Anda maupun pengguna Anda.

Pembuatan Konten Kontekstual 190

Dengan menggunakan pola yang kami jelaskan dalam bab ini, Anda dapat membuat
aplikasi yang menghasilkan konten secara dinamis, beradaptasi dengan konteks dan

masukan secara real-time.

Pola-pola ini bekerja dengan mengintegrasikan LLM ke dalam keluaran aplikasi, mulai
dari antarmuka pengguna (terkadang disebut sebagai “chrome”), email dan bentuk

notifikasi lainnya, serta berbagai alur pembuatan konten.

Ketika pengguna berinteraksi dengan aplikasi atau memicu permintaan konten tertentu,
aplikasi menangkap konteks yang relevan, seperti preferensi pengguna, interaksi se-
belumnya, atau prompt tertentu. Informasi kontekstual ini kemudian dimasukkan ke
dalam LLM, bersama dengan template atau panduan yang diperlukan dan digunakan
untuk menghasilkan keluaran tekstual yang sebaliknya harus dikodekan secara manual,

disimpan dalam database, atau dihasilkan secara algoritmik.

Konten yang dihasilkan LLM dapat mengambil berbagai bentuk, seperti rekomendasi
yang dipersonalisasi, deskripsi produk dinamis, respons email yang disesuaikan, atau
bahkan artikel atau posting blog lengkap. Salah satu penggunaan paling radikal dari
konten ini yang saya rintis lebih dari setahun yang lalu adalah menghasilkan elemen
UI secara dinamis seperti label formulir, tooltips, dan berbagai jenis teks penjelasan

lainnya.

Personalisasi

Salah satu manfaat utama dari pola Pembuatan Konten Kontekstual adalah kemam-
puan untuk memberikan pengalaman yang sangat dipersonalisasi kepada pengguna.
Dengan menghasilkan konten berdasarkan konteks spesifik pengguna, pola-pola ini
memungkinkan aplikasi untuk menyesuaikan konten dengan minat, preferensi, dan

interaksi masing-masing pengguna.

Personalisasi lebih dari sekadar menyisipkan nama pengguna ke dalam konten umum.

Ini melibatkan pemanfaatan konteks yang kaya tentang setiap pengguna untuk meng-

Pembuatan Konten Kontekstual 191

hasilkan konten yang beresonansi dengan kebutuhan dan keinginan spesifik mereka.

Konteks ini dapat mencakup berbagai faktor, seperti:

1. Informasi Profil Pengguna: Pada tingkat paling umum dalam penerapan teknik
ini, data demografis, minat, preferensi, dan atribut profil lainnya dapat digunakan
untuk menghasilkan konten yang selaras dengan latar belakang dan karakteristik
pengguna.

2. Data Perilaku: Interaksi pengguna sebelumnya dengan aplikasi, seperti halaman
yang dilihat, tautan yang diklik, atau produk yang dibeli, dapat memberikan
wawasan berharga tentang perilaku dan minat mereka. Data ini dapat digunakan
untuk menghasilkan saran konten yang mencerminkan pola keterlibatan mereka
dan memprediksi kebutuhan masa depan mereka.

3. Faktor Kontekstual: Konteks pengguna saat ini, seperti lokasi mereka, perangkat,
waktu hari, atau bahkan cuaca, dapat memengaruhi proses pembuatan konten.
Misalnya, aplikasi perjalanan mungkin memiliki pekerja Al yang mampu meng-
hasilkan rekomendasi yang dipersonalisasi berdasarkan lokasi pengguna saat ini

dan kondisi cuaca yang berlaku.

Dengan memanfaatkan faktor-faktor kontekstual ini, pola Pembuatan Konten Kontek-
stual memungkinkan aplikasi untuk menyampaikan konten yang terasa dibuat khusus
untuk setiap pengguna individual. Tingkat personalisasi ini memiliki beberapa manfaat

signifikan:

1. Peningkatan Keterlibatan: Konten yang dipersonalisasi menarik perhatian
pengguna dan membuat mereka tetap terlibat dengan aplikasi. Ketika pengguna
merasa bahwa konten tersebut relevan dan berbicara langsung kepada kebutuhan
mereka, mereka lebih cenderung menghabiskan lebih banyak waktu berinteraksi
dengan aplikasi dan menjelajahi fitur-fiturnya.

2. Peningkatan Kepuasan Pengguna: Konten yang dipersonalisasi menunjukkan

bahwa aplikasi memahami dan peduli tentang kebutuhan unik pengguna. Den-

Pembuatan Konten Kontekstual 192

gan menyediakan konten yang bermanfaat, informatif, dan selaras dengan mi-
nat mereka, aplikasi dapat meningkatkan kepuasan pengguna dan membangun
hubungan yang lebih kuat dengan penggunanya.

3. Tingkat Konversi yang Lebih Tinggi: Dalam konteks aplikasi e-commerce atau
pemasaran, konten yang dipersonalisasi dapat berdampak signifikan pada tingkat
konversi. Dengan menampilkan produk, penawaran, atau rekomendasi yang dis-
esuaikan dengan preferensi dan perilaku pengguna, aplikasi dapat meningkatkan
kemungkinan pengguna mengambil tindakan yang diinginkan, seperti melakukan

pembelian atau mendaftar layanan.

Produktivitas

Pola Pembuatan Konten Kontekstual dapat secara signifikan meningkatkan jenis-jenis
produktivitas tertentu dengan mengurangi kebutuhan akan pembuatan dan pengeditan
konten manual dalam proses kreatif. Dengan memanfaatkan kekuatan LLM, Anda
dapat menghasilkan konten berkualitas tinggi dalam skala besar, menghemat waktu
dan usaha yang seharusnya dihabiskan oleh pembuat konten dan pengembang Anda

untuk melakukan pekerjaan manual yang membosankan.

Secara tradisional, para pembuat konten perlu melakukan riset, menulis, mengedit, dan
memformat konten untuk memastikan bahwa konten tersebut memenuhi persyaratan
aplikasi dan harapan pengguna. Proses ini bisa memakan waktu dan membutuhkan

banyak sumber daya, terutama ketika volume konten semakin bertambah.

Namun, dengan pola Pembuatan Konten Kontekstual, proses pembuatan konten dapat
diotomatisasi secara luas. LLM dapat menghasilkan konten yang koheren, benar secara
tata bahasa, dan relevan secara kontekstual berdasarkan prompt dan pedoman yang

diberikan. Otomatisasi ini menawarkan beberapa manfaat produktivitas:

1. Mengurangi Upaya Manual: Dengan mendelegasikan tugas pembuatan konten

kepada LLM, pembuat konten dapat fokus pada tugas-tugas tingkat tinggi seperti

Pembuatan Konten Kontekstual 193

strategi konten, pencarian ide, dan jaminan kualitas. Mereka dapat memberikan
konteks, template, dan pedoman yang diperlukan kepada LLM dan membiarkan-
nya menangani pembuatan konten yang sebenarnya. Hal ini mengurangi upaya
manual yang diperlukan untuk menulis dan mengedit, memungkinkan pembuat
konten menjadi lebih produktif dan efisien.

2. Pembuatan Konten Lebih Cepat: LLM dapat menghasilkan konten jauh lebih
cepat dibandingkan penulis manusia. Dengan prompt dan pedoman yang tepat,
LLM dapat menghasilkan beberapa konten dalam hitungan detik atau menit.
Kecepatan ini memungkinkan aplikasi untuk menghasilkan konten dengan ke-
cepatan yang jauh lebih tinggi, mengimbangi tuntutan pengguna dan lanskap

digital yang terus berubah.

Apakah pembuatan konten yang lebih cepat mengarah pada situasi
“tragedi milik bersama” di mana internet dibanjiri konten yang tidak dibaca

siapa pun? Sayangnya, saya menduga jawabannya adalah ya.

3. Konsistensi dan Kualitas: LLM dapat dengan mudah merevisi konten sehingga
konsisten dalam gaya, nada, dan kualitas. Dengan pedoman dan contoh yang
jelas, jenis aplikasi tertentu (misalnya ruang redaksi, PR, dll.) dapat memastikan
bahwa konten yang dihasilkan manusia selaras dengan suara merek mereka
dan memenuhi standar kualitas yang diinginkan. Konsistensi ini mengurangi
kebutuhan untuk editing dan revisi yang ekstensif, menghemat waktu dan upaya
dalam proses pembuatan konten.

4. Iterasi dan Optimisasi: Pola Pembuatan Konten Kontekstual memungkinkan
iterasi dan optimisasi konten yang cepat. Dengan menyesuaikan prompt, tem-
plate, atau pedoman yang diberikan kepada LLM, aplikasi Anda dapat dengan

cepat menghasilkan variasi konten dan menguji pendekatan berbeda secara

Pembuatan Konten Kontekstual 194

otomatis yang tidak pernah mungkin dilakukan di masa lalu. Proses iteratif
ini memungkinkan eksperimen yang lebih cepat dan penyempurnaan strategi
konten, yang menghasilkan konten yang lebih efektif dan menarik seiring waktu.
Teknik khusus ini bisa menjadi pengubah permainan total untuk aplikasi seperti

e-commerce yang hidup dan mati berdasarkan tingkat pentalan dan keterlibatan

Penting untuk dicatat bahwa meskipun pola Pembuatan Konten Kontekstual
P dapat sangat meningkatkan produktivitas, hal ini tidak sepenuhnya menghi-
langkan kebutuhan akan keterlibatan manusia. Kreator konten dan editor
tetap memainkan peran penting dalam menentukan strategi konten secara
keseluruhan, memberikan panduan kepada LLM, dan memastikan kualitas

serta kesesuaian konten yang dihasilkan.

Dengan mengotomatisasi aspek pembuatan konten yang lebih berulang dan memakan
waktu, pola Pembuatan Konten Kontekstual membebaskan waktu dan sumber daya
manusia yang berharga yang dapat dialihkan ke tugas-tugas bernilai lebih tinggi. Pen-
ingkatan produktivitas ini memungkinkan Anda untuk memberikan konten yang lebih
personal dan menarik kepada pengguna sambil mengoptimalkan alur kerja pembuatan

konten.

Iterasi dan Eksperimen Cepat

Pola Pembuatan Konten Kontekstual memungkinkan Anda untuk dengan cepat
melakukan iterasi dan bereksperimen dengan variasi konten yang berbeda,
memungkinkan optimasi dan penyempurnaan strategi konten Anda lebih cepat.
Anda dapat menghasilkan beberapa versi konten dalam hitungan detik, cukup dengan

menyesuaikan konteks, template, atau panduan yang diberikan kepada model.

Kemampuan iterasi cepat ini menawarkan beberapa manfaat utama:

Pembuatan Konten Kontekstual 195

1. Pengujian dan Optimasi: Dengan kemampuan untuk menghasilkan variasi kon-
ten dengan cepat, Anda dapat dengan mudah menguji pendekatan berbeda dan
mengukur efektivitasnya. Misalnya, Anda dapat menghasilkan beberapa versi
deskripsi produk atau pesan pemasaran, masing-masing disesuaikan dengan seg-
men pengguna atau konteks tertentu. Dengan menganalisis metrik keterlibatan
pengguna, seperti tingkat klik atau tingkat konversi, Anda dapat mengidentifikasi
variasi konten yang paling efektif dan mengoptimalkan strategi konten Anda

dengan tepat.

2. Pengujian A/B: Pola Pembuatan Konten Kontekstual memungkinkan pengujian
A/B konten yang mulus. Anda dapat menghasilkan dua atau lebih variasi
konten dan menyajikannya secara acak ke kelompok pengguna yang berbeda.
Dengan membandingkan kinerja setiap variasi, Anda dapat menentukan konten
mana yang paling sesuai dengan target audiens Anda. Pendekatan berbasis
data ini memungkinkan Anda untuk membuat keputusan yang tepat dan terus
menyempurnakan konten Anda untuk memaksimalkan keterlibatan pengguna
dan mencapai hasil yang diinginkan.

3. Eksperimen Personalisasi: Iterasi dan eksperimen cepat sangat berharga ketika
berkaitan dengan personalisasi. Dengan pola Pembuatan Konten Kontekstual,
Anda dapat dengan cepat menghasilkan variasi konten yang dipersonalisasi
berdasarkan segmen pengguna, preferensi, atau perilaku yang berbeda. Dengan
bereksperimen dengan strategi personalisasi yang berbeda, Anda dapat mengi-
dentifikasi pendekatan yang paling efektif untuk melibatkan pengguna individual
dan memberikan pengalaman yang disesuaikan.

4. Beradaptasi dengan Tren yang Berubah: Kemampuan untuk melakukan iterasi
dan bereksperimen dengan cepat memungkinkan Anda untuk tetap tangkas
dan beradaptasi dengan tren dan preferensi pengguna yang berubah. Ketika
topik, kata kunci, atau perilaku pengguna baru muncul, Anda dapat dengan
cepat menghasilkan konten yang selaras dengan tren tersebut. Dengan terus

bereksperimen dan menyempurnakan konten Anda, Anda dapat tetap relevan

Pembuatan Konten Kontekstual 196

dan mempertahankan keunggulan kompetitif dalam lanskap digital yang terus
berkembang.

5. Eksperimen Hemat Biaya: Eksperimen konten tradisional seringkali membu-
tuhkan waktu dan sumber daya yang signifikan, karena pembuat konten perlu
mengembangkan dan menguji berbagai variasi secara manual. Namun, den-
gan pola Pembuatan Konten Kontekstual, biaya eksperimen sangat berkurang.
LLM dapat menghasilkan variasi konten dengan cepat dan dalam skala besar,
memungkinkan Anda untuk mengeksplorasi berbagai ide dan pendekatan tanpa

mengeluarkan biaya yang besar.

Untuk memaksimalkan iterasi dan eksperimen yang cepat, penting untuk memiliki

kerangka eksperimen yang terdefinisi dengan baik. Kerangka ini harus mencakup:

« Tujuan dan hipotesis yang jelas untuk setiap eksperimen

« Metrik dan mekanisme pelacakan yang tepat untuk mengukur kinerja konten

« Strategi segmentasi dan penargetan untuk memastikan variasi konten yang rele-
van disampaikan ke pengguna yang tepat

« Alat analisis dan pelaporan untuk mendapatkan wawasan dari data eksperimen

« Proses untuk memasukkan pembelajaran dan optimisasi ke dalam strategi konten

Anda

Dengan menerapkan iterasi dan eksperimen yang cepat, Anda dapat terus menyempur-
nakan dan mengoptimalkan konten Anda, memastikan bahwa konten tersebut tetap
menarik, relevan, dan efektif dalam mencapai tujuan aplikasi Anda. Pendekatan
tangkas dalam pembuatan konten ini memungkinkan Anda untuk tetap terdepan dan

memberikan pengalaman pengguna yang luar biasa.

Skalabilitas dan Efisiensi

Seiring pertumbuhan aplikasi dan meningkatnya permintaan akan konten yang diper-

sonalisasi, pola pembuatan konten kontekstual memungkinkan penskalaan yang efisien

Pembuatan Konten Kontekstual 197

dalam pembuatan konten. LLM dapat menghasilkan konten untuk sejumlah besar
pengguna dan konteks secara bersamaan, tanpa memerlukan peningkatan proporsional
dalam sumber daya manusia. Skalabilitas ini memungkinkan aplikasi untuk mem-
berikan pengalaman yang dipersonalisasi kepada basis pengguna yang berkembang

tanpa membebani kemampuan pembuatan konten mereka.

Perhatikan bahwa pembuatan konten kontekstual dapat digunakan secara
P efektif untuk menginternasionalisasi aplikasi Anda “secara langsung”. Fak-
tanya, itulah yang saya lakukan menggunakan Gem Instant18n saya untuk
menghadirkan Olympia dalam lebih dari setengah lusin bahasa, meskipun

kami belum genap berusia setahun.

Lokalisasi Bertenaga Al

Jika Anda mengizinkan saya untuk berbangga sejenak, saya pikir pustaka Instant18n
saya untuk aplikasi Rails adalah contoh yang revolusioner dari pola “Pembuatan Konten
Kontekstual” dalam aksi, menunjukkan potensi transformatif Al dalam pengembangan
aplikasi. Gem ini memanfaatkan kekuatan model bahasa besar GPT OpenAl untuk

merevolusi cara internasionalisasi dan lokalisasi ditangani dalam aplikasi Rails.

Secara tradisional, menginternasionalisasi aplikasi Rails melibatkan pendefinisian kunci
terjemahan secara manual dan menyediakan terjemahan yang sesuai untuk setiap
bahasa yang didukung. Proses ini bisa memakan waktu, membutuhkan banyak sumber
daya, dan rentan terhadap inkonsistensi. Namun, dengan gem Instant18n, paradigma

lokalisasi sepenuhnya didefinisikan ulang.

Dengan mengintegrasikan model bahasa besar, gem Instant18n memungkinkan Anda
untuk menghasilkan terjemahan secara langsung, berdasarkan konteks dan makna
teks. Alih-alih mengandalkan kunci terjemahan yang telah ditentukan sebelumnya dan
terjemahan statis, gem ini secara dinamis menerjemahkan teks menggunakan kekuatan

Al Pendekatan ini menawarkan beberapa manfaat utama:

Pembuatan Konten Kontekstual 198

1. Lokalisasi Mulus: Dengan gem Instant18n, pengembang tidak perlu lagi
mendefinisikan dan memelihara berkas terjemahan secara manual untuk setiap
bahasa yang didukung. Gem ini secara otomatis menghasilkan terjemahan
berdasarkan teks yang disediakan dan bahasa target yang diinginkan, membuat
proses lokalisasi menjadi mudah dan mulus.

2. Akurasi Kontekstual: Al dapat diberikan konteks yang cukup untuk memahami
nuansa teks yang diterjemahkan. Al dapat mempertimbangkan konteks sekitar,
idiom, dan referensi budaya untuk menghasilkan terjemahan yang akurat, terden-
gar alami, dan sesuai konteks.

3. Dukungan Bahasa yang Luas: Gem Instant18n memanfaatkan pengetahuan luas
dan kemampuan linguistik GPT, memungkinkan terjemahan ke berbagai bahasa.
Mulai dari bahasa umum seperti Spanyol dan Prancis hingga bahasa yang lebih
langka atau fiksi seperti Klingon dan Peri, gem ini dapat menangani berbagai
kebutuhan terjemahan.

4. Fleksibilitas dan Kreativitas: Gem ini melampaui terjemahan bahasa tradisional
dan memungkinkan opsi lokalisasi yang kreatif dan tidak konvensional. Pengem-
bang dapat menerjemahkan teks ke berbagai gaya, dialek, atau bahkan bahasa
fiksi, membuka kemungkinan baru untuk pengalaman pengguna yang unik dan
konten yang menarik.

5. Optimasi Kinerja: Gem Instant18n menggabungkan mekanisme penyimpanan
sementara untuk meningkatkan kinerja dan mengurangi beban terjemahan beru-
lang. Teks yang diterjemahkan disimpan sementara, memungkinkan permintaan
berikutnya untuk terjemahan yang sama dapat dilayani dengan cepat tanpa perlu

panggilan API yang berulang.

Gem Instant18n mencontohkan kekuatan pola “Pembuatan Konten Kontekstual” dengan
memanfaatkan Al untuk menghasilkan konten terlokalisasi secara dinamis. Ini menun-
jukkan bagaimana Al dapat diintegrasikan ke dalam fungsi inti aplikasi Rails, mengubah

cara pengembang mendekati internasionalisasi dan lokalisasi.

Pembuatan Konten Kontekstual 199

Dengan menghilangkan kebutuhan untuk pengelolaan terjemahan manual dan memu-
ngkinkan terjemahan secara langsung berdasarkan konteks, gem Instant18n menghemat
waktu dan usaha pengembang yang signifikan. Ini memungkinkan mereka untuk fokus
pada membangun fitur inti aplikasi mereka sambil memastikan bahwa aspek lokalisasi

ditangani dengan mulus dan akurat.

Pentingnya Pengujian Pengguna dan Umpan
Balik

Akhirnya, selalu ingat pentingnya pengujian pengguna dan umpan balik. Sangat
penting untuk memvalidasi bahwa pembuatan konten kontekstual memenuhi harapan
pengguna dan selaras dengan tujuan aplikasi. Terus lakukan iterasi dan perbaiki
konten yang dihasilkan berdasarkan wawasan pengguna dan analitik. Jika Anda
menghasilkan konten dinamis dalam skala besar yang tidak mungkin divalidasi secara
manual oleh Anda dan tim Anda, pertimbangkan untuk menambahkan mekanisme
umpan balik yang memungkinkan pengguna melaporkan konten yang aneh atau salah,
beserta penjelasan mengapa. Umpan balik berharga tersebut bahkan dapat diumpankan
ke pekerja Al yang ditugaskan untuk membuat penyesuaian pada komponen yang

menghasilkan konten!

Generative Ul

Perhatian sangat berharga saat ini sehingga keterlibatan pengguna yang efektif kini

menuntut pengalaman perangkat lunak yang tidak hanya mulus dan intuitif tetapi juga
sangat dipersonalisasi sesuai kebutuhan, preferensi, dan konteks individu. Akibatnya,
para desainer dan pengembang semakin menghadapi tantangan untuk menciptakan
antarmuka pengguna yang dapat beradaptasi dan memenuhi kebutuhan unik setiap

pengguna dalam skala besar.

Generative UI (GenUI) adalah pendekatan yang benar-benar revolusioner dalam desain
antarmuka pengguna yang memanfaatkan kekuatan model bahasa besar (LLM) untuk
menciptakan pengalaman pengguna yang sangat dipersonalisasi dan dinamis secara
langsung. Saya ingin memastikan untuk setidaknya memberikan pengantar tentang
GenUI dalam buku ini, karena saya percaya bahwa ini adalah salah satu peluang

bidang baru yang paling menjanjikan yang saat ini ada dalam ranah desain aplikasi

Generative UI 201

dan kerangka kerja. Saya yakin bahwa puluhan atau lebih proyek komersial dan open-

source baru yang sukses akan muncul dalam ceruk khusus ini.

Pada intinya, GenUI menggabungkan prinsip-prinsip Pembuatan Konten Kontekstual
dengan teknik Al canggih untuk menghasilkan elemen antarmuka pengguna, seperti
teks, gambar, dan tata letak, secara dinamis berdasarkan pemahaman mendalam
tentang konteks, preferensi, dan tujuan pengguna. GenUI memungkinkan desainer
dan pengembang untuk menciptakan antarmuka yang beradaptasi dan berkembang
sebagai respons terhadap interaksi pengguna, memberikan tingkat personalisasi yang

sebelumnya tidak dapat dicapai.

GenUI merepresentasikan perubahan fundamental dalam cara kita mendekati desain
antarmuka pengguna. Alih-alih mendesain untuk massa, GenUI memungkinkan kita
untuk mendesain untuk individu. Konten dan antarmuka yang dipersonalisasi memiliki
potensi menciptakan pengalaman pengguna yang beresonansi dengan setiap pengguna

pada tingkat yang lebih dalam, meningkatkan keterlibatan, kepuasan, dan loyalitas.

Sebagai teknik yang sangat mutakhir, transisi ke GenUI penuh dengan tantangan kon-
septual dan praktis. Mengintegrasikan Al ke dalam proses desain, memastikan bahwa
antarmuka yang dihasilkan tidak hanya dipersonalisasi tetapi juga dapat digunakan,
dapat diakses, dan selaras dengan merek dan pengalaman pengguna secara keseluruhan,
semua ini adalah tantangan yang membuat GenUI menjadi pencarian untuk yang
sedikit, bukan yang banyak. Selain itu, keterlibatan Al memunculkan pertanyaan

tentang privasi data, transparansi, dan bahkan implikasi etis

Terlepas dari berbagai tantangan, pengalaman yang dipersonalisasi dalam skala besar
memiliki kemampuan untuk mengubah secara total cara kita berinteraksi dengan
produk dan layanan digital. Hal ini membuka kemungkinan untuk menciptakan
antarmuka yang inklusif dan mudah diakses yang memenuhi beragam kebutuhan

pengguna, terlepas dari kemampuan, latar belakang, atau preferensi mereka.

Dalam bab ini, kita akan mengeksplorasi konsep GenUI, memeriksa beberapa karak-

teristik yang menentukan, manfaat utama, dan tantangan potensial. Kita mulai

Generative UI 202

dengan mempertimbangkan bentuk GenUI yang paling mendasar dan mudah diakses:
menghasilkan teks untuk antarmuka pengguna yang dirancang dan diimplementasikan

secara tradisional.

Menghasilkan Teks untuk Antarmuka Pengguna

Elemen teks yang ada dalam chrome aplikasi Anda, seperti label formulir, tooltips, dan
teks penjelasan, biasanya dikodekan secara langsung ke dalam template atau komponen
UI, memberikan pengalaman yang konsisten tetapi generik untuk semua pengguna.
Dengan menggunakan pola pembuatan konten kontekstual, Anda dapat mengubah

elemen statis ini menjadi komponen yang dinamis, peka konteks, dan dipersonalisasi.

Formulir yang Dipersonalisasi

Formulir adalah bagian yang ada di mana-mana dalam aplikasi web dan seluler,
berfungsi sebagai sarana utama untuk mengumpulkan input pengguna. Namun,
formulir tradisional seringkali menyajikan pengalaman yang generik dan tidak personal,
dengan label dan bidang standar yang mungkin tidak selalu sesuai dengan konteks atau
kebutuhan spesifik pengguna. Pengguna lebih cenderung mengisi formulir yang terasa
disesuaikan dengan kebutuhan dan preferensi mereka, yang mengarah pada tingkat

konversi dan kepuasan pengguna yang lebih tinggi.

Namun, penting untuk menjaga keseimbangan antara personalisasi dan konsistensi.
Meskipun menyesuaikan formulir untuk pengguna individual bisa bermanfaat, sangat
penting untuk mempertahankan tingkat keakraban dan prediktabilitas. Pengguna tetap
harus dapat mengenali dan menavigasi formulir dengan mudah, bahkan dengan elemen

yang dipersonalisasi.

Berikut beberapa ide formulir yang dipersonalisasi untuk inspirasi:

© 0 N O O b W N =

[T N T e = S = S SR S & SR S
, O O 00 N O O b W N~ o

Generative UI 203

Saran Isian Kontekstual

GenUI dapat menganalisis interaksi sebelumnya, preferensi, dan data pengguna un-
tuk memberikan saran isian yang cerdas sebagai prediksi. Misalnya, jika pengguna
sebelumnya telah memasukkan alamat pengiriman mereka, formulir dapat secara
otomatis mengisi bidang yang relevan dengan informasi yang tersimpan. Ini tidak
hanya menghemat waktu tetapi juga menunjukkan bahwa aplikasi memahami dan

mengingat preferensi pengguna.

Tunggu sebentar, bukankah teknik ini bisa dilakukan tanpa melibatkan AI? Tentu saja,
tetapi keindahan menggerakkan fungsionalitas semacam ini dengan Al ada dua hal: 1)
betapa mudahnya untuk diimplementasikan dan 2) betapa tangguhnya saat Ul Anda

berubah dan berkembang seiring waktu.

Mari kita buat layanan untuk sistem penanganan pesanan teoretis kita, yang mencoba

secara proaktif mengisi alamat pengiriman yang tepat untuk pengguna.

class OrderShippingAddressSubscriber
include Raix::ChatCompletion

attr_accessor :order

delegate :customer, to: :order

DIRECTIVE = "You are a smart order processing assistant. Given the
customer's order history, guess the most likely shipping address

for the current order."

def order_created(order)

return unless order.pending? && order.shipping_address.blank?
self.order = order

transcript.clear

transcript << { system: DIRECTIVE }

transcript << { user: "Order History: #{order_history.to_json}" }
transcript << { user: "Current Order: #{order.to_json}" }

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Generative UI 204

response = chat_completion
apply_predicted_shipping_address(order, response)
end

private

def apply_predicted_shipping_address(order, response)
extract the shipping address from the response.. .
.. .and assume there's some sort of live update of the address fields
order .update(shipping_address:)

end

def order_history
customer .orders.successful .1imit(100) .map do |order|

{

date: order .date,
description: order.description,
shipping_address: order.shipping_address

end
end

end

Contoh ini sangat disederhanakan, tetapi seharusnya bisa diterapkan untuk kebanyakan
kasus. Idenya adalah membiarkan Al membuat perkiraan seperti yang akan dilakukan
manusia. Untuk memperjelas apa yang saya maksud, mari kita lihat beberapa contoh

data:

Generative Ul

Order History:

[

{"date": "2024-01-03", "description": "garden soil mix",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-01-15", "description": "hardcover fiction novels",

"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-01-22", "description": "baby diapers", "shipping_address":

"789 Suburb St, Quietville"},
{"date": "2024-02-01", "description": "organic vegetables",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-02-17", "description": "mystery thriller book set",

"shipping_address": "456 City Apt, Metroville"},
{"date": "2024-02-25", "description": "baby wipes",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-03-05", "description": "flower seeds",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-03-20", "description": "biographies",
"shipping_address": "456 City Apt, Metroville"},
{"date": "2024-03-30", "description": "baby formula",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-04-12", "description": "lawn fertilizer",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-04-22", "description": "science fiction novels",

"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-05-02", "description": "infant toys",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-05-14", "description": "outdoor grill",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-05-29", "description": "literary classics",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-06-11", "description": "baby clothes",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-07-01", "description": "watering can",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-07-18", "description": "non-fiction essays",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-07-28", "description": "baby bath items",
"shipping_address": "T789 Suburb St, Quietville"},

{"date": "2024-08-09", "description": "herb garden kit",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-08-24", "description": "children's books",
"shipping_address": "456 City Apt, Metroville"}

205

43

~N O O B W N o=

[es}

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Generative UI 206

Apakah Anda menyadari pola dalam data tersebut? Saya jamin ini adalah hal yang
mudah bagi LLM. Untuk membuktikannya, mari kita tanyakan kepada GPT-4 alamat

pengiriman mana yang paling mungkin untuk sebuah “termometer”.

From the order history you've provided, it looks like the purchases are
generally clustered into three main types based on the shipping addresses:

123 Country Lane, Rural Town - This address often orders garden and
outdoor-related items like soil mix, vegetables, flower seeds, lawn
fertilizer, an outdoor grill, a watering can, and an herb garden kit.

456 City Apt, Metroville - This address tends to order various types of
books, indicating an interest in reading across genres like fiction,
thrillers, biographies, science fiction, literary classics, non-fiction
essays, and children's books.

789 Suburb St, Quietville - The purchases for this address are consistently
baby-related products, such as diapers, wipes, baby formula, infant toys,
baby clothes, and baby bath items.

Given these patterns, a digital thermometer could potentially be a fit for
any of the addresses based on different needs: outdoor temperature tracking,
a tool for a passionate reader interested in science gadgets, or a health
tool for a baby. However, considering its common use in monitoring health,
especially for babies, it's most likely to be purchased by someone who's
already buying baby care products.

Therefore, the most likely shipping address for a digital thermometer, based
on the purchasing patterns, would be 789 Suburb St, Quietville.

Jika Anda berpikir bahwa menggunakan model mahal seperti GPT-4 untuk tugas ini
terlalu berlebihan, Anda benar! Saya mencoba prompt yang sama pada Mistral 7B
Instruct dan menghasilkan respons berikut dengan kecepatan 75 token per detik, dengan

biaya yang sangat rendah yaitu $0.000218 USD.

© 0 N O O b W N e

[T T ==Y
a s W N =~

Generative UI 207

Based on the given order history, it appears that the customer has received
orders for baby-related items (diapers, wipes, formula, clothes, bath items)
at the address "789 Suburb St, Quietville" and garden-related items (soil,
seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural
Town". The customer has also received books (fiction, non-fiction, literary
classics, mystery-thriller, science fiction, biographies, children's books)
at the address "456 City Apt, Metroville".

Given that the new order is for a "thermometer", which doesn't seem to fit
into any of the categories that the customer has previously ordered, it's
hard to accurately predict the shipping address based solely on the order
history. However, given the 50%-50% split between baby-related and
garden-related items, it could somewhat lean towards the Baby-related items
address ("789 Suburb St, Quietville"). But remember, this is an assumption
and cannot be definitively confirmed without more context or information.

Apakah beban dan biaya dari teknik ini sepadan untuk membuat pengalaman checkout
lebih ajaib? Bagi banyak peritel daring, jawabannya tentu saja ya. Dan dari yang
terlihat, biaya komputasi Al hanya akan semakin turun, terutama untuk penyedia

hosting model open source yang bersaing ketat untuk menawarkan harga terendah.

P Gunakan Prompt Template dan StructuredIO bersama dengan Response

Fencing untuk mengoptimalkan jenis chat completion seperti ini.

Pengurutan Kolom Adaptif

Urutan penyajian kolom formulir dapat berdampak signifikan pada pengalaman peng-
guna dan tingkat penyelesaian. Dengan GenUI, Anda dapat menyesuaikan urutan
kolom secara dinamis berdasarkan konteks pengguna dan tingkat kepentingan setiap
kolom. Misalnya, jika pengguna sedang mengisi formulir pendaftaran untuk aplikasi
kebugaran, formulir tersebut bisa memprioritaskan kolom-kolom yang terkait den-
gan tujuan dan preferensi kebugaran mereka, membuat prosesnya lebih relevan dan

menarik.

Generative UI 208

Personalized Microcopy

Teks instruksi, pesan kesalahan, dan microcopy lain yang terkait dengan formulir juga
dapat dipersonalisasi menggunakan GenUI Alih-alih menampilkan pesan kesalahan
generik seperti “Alamat email tidak valid? Anda dapat menghasilkan pesan yang
lebih membantu dan kontekstual seperti “Harap masukkan alamat email yang valid
untuk menerima konfirmasi pesanan Anda” Sentuhan personal ini dapat membuat

pengalaman mengisi formulir lebih ramah pengguna dan tidak membuat frustrasi.

Validasi Personal

Sejalan dengan Personalized Microcopy, Anda dapat menggunakan Al untuk memval-
idasi formulir dengan cara yang terasa ajaib. Bayangkan membiarkan Al memvalidasi

formulir profil pengguna, mencari kemungkinan kesalahan pada tingkat semantik.

Generative UI 209

Create your account

Full name

Obie Fernandez

Email
obiefenandez@gmail.com m

Did you mean obiefernandez@gmail.com? Yes, update.

Country ©

<«

EE United States

Password

---------------- n

) Nice work. This is an excellent password.

Gambar 9. Bisakah Anda melihat validasi semantik yang sedang berlangsung?

Pengungkapan Progresif

GenUI dapat secara cerdas menentukan bidang formulir mana yang penting
berdasarkan konteks pengguna dan secara bertahap menampilkan bidang tambahan
sesuai kebutuhan. Teknik pengungkapan progresif ini membantu mengurangi beban

kognitif dan membuat proses pengisian formulir lebih mudah dikelola. Misalnya, jika

Generative UI 210

pengguna mendaftar untuk langganan dasar, formulir awalnya hanya menampilkan
bidang-bidang yang penting, dan ketika pengguna melanjutkan atau memilih opsi

tertentu, bidang tambahan yang relevan dapat dimunculkan secara dinamis.

Teks Penjelasan Berbasis Konteks

Tooltips sering digunakan untuk memberikan informasi tambahan atau panduan kepada
pengguna ketika mereka mengarahkan kursor atau berinteraksi dengan elemen ter-
tentu. Dengan pendekatan “Pembuatan Konten Kontekstual”, Anda dapat menghasilkan
tooltips yang beradaptasi dengan konteks pengguna dan memberikan informasi yang
relevan. Misalnya, jika pengguna sedang menjelajahi fitur yang kompleks, tooltip dapat
menawarkan tips atau contoh yang dipersonalisasi berdasarkan interaksi sebelumnya

atau tingkat kemampuan mereka.

Teks penjelasan, seperti instruksi, deskripsi, atau pesan bantuan, dapat dihasilkan secara
dinamis berdasarkan konteks pengguna. Alih-alih menyajikan penjelasan umum, Anda
dapat menggunakan LLM untuk menghasilkan teks yang disesuaikan dengan kebutuhan
atau pertanyaan spesifik pengguna. Sebagai contoh, jika pengguna mengalami kesuli-
tan dengan langkah tertentu dalam suatu proses, teks penjelasan dapat memberikan

panduan atau tips pemecahan masalah yang dipersonalisasi.

Microcopy mengacu pada potongan-potongan teks kecil yang memandu pengguna
melalui aplikasi Anda, seperti label tombol, pesan kesalahan, atau prompt konfir-
masi. Dengan menerapkan pendekatan Pembuatan Konten Kontekstual pada micro-
copy, Anda dapat menciptakan Ul yang adaptif yang merespons tindakan pengguna
dan memberikan teks yang relevan dan membantu. Misalnya, jika pengguna akan
melakukan tindakan penting, prompt konfirmasi dapat dihasilkan secara dinamis untuk

memberikan pesan yang jelas dan personal.

Teks penjelasan dan tooltips yang dipersonalisasi dapat sangat meningkatkan proses

onboarding untuk pengguna baru. Dengan memberikan panduan dan contoh yang

Generative UI 211

spesifik sesuai konteks, Anda dapat membantu pengguna dengan cepat memahami dan

menavigasi aplikasi, mengurangi kurva pembelajaran dan meningkatkan adopsi.

Elemen chrome yang dinamis dan peka konteks juga dapat membuat aplikasi terasa
lebih intuitif dan menarik. Pengguna lebih cenderung berinteraksi dengan dan mengek-
splorasi fitur-fitur ketika teks yang menyertainya disesuaikan dengan kebutuhan dan

minat spesifik mereka.

Sejauh ini kita telah membahas ide-ide untuk meningkatkan paradigma Ul yang ada
dengan Al tetapi bagaimana dengan memikirkan kembali cara antarmuka pengguna

dirancang dan diimplementasikan dengan cara yang lebih radikal?

Mendefinisikan Ul Generatif

Berbeda dengan desain UI tradisional, di mana desainer membuat antarmuka tetap
dan statis, GenUI mengisyaratkan masa depan di mana perangkat lunak kita memiliki
pengalaman yang fleksibel dan personal yang dapat berkembang dan beradaptasi secara
real-time. Setiap kali kita menggunakan antarmuka percakapan berbasis Al, kita
membiarkan Al beradaptasi dengan kebutuhan khusus pengguna. GenUI melangkah
lebih jauh dengan menerapkan tingkat adaptabilitas tersebut pada antarmuka visual

perangkat lunak.

Alasan mengapa kita dapat bereksperimen dengan ide-ide GenUI saat ini adalah
karena model bahasa besar. sudah memahami pemrograman dan pengetahuan dasarnya
mencakup teknologi dan kerangka kerja Ul Pertanyaannya adalah apakah model bahasa
besar dapat digunakan untuk menghasilkan elemen UI, seperti teks, gambar, tata letak,
dan bahkan antarmuka lengkap, yang disesuaikan dengan setiap pengguna individual.
Model tersebut dapat diinstruksikan untuk mempertimbangkan berbagai faktor, seperti

interaksi pengguna sebelumnya, preferensi yang dinyatakan, informasi demografis, dan

Generative UI 212

konteks penggunaan saat ini, untuk menciptakan antarmuka yang sangat personal dan

relevan.

GenUI berbeda dari desain antarmuka pengguna tradisional dalam beberapa aspek

utama:

1. Dinamis dan Adaptif: Desain Ul tradisional melibatkan pembuatan antarmuka
tetap dan statis yang tetap sama untuk semua pengguna. Sebaliknya, GenUI
memungkinkan antarmuka yang dapat beradaptasi dan berubah secara dinamis
berdasarkan kebutuhan dan konteks pengguna. Ini berarti aplikasi yang sama
dapat menampilkan antarmuka yang berbeda untuk pengguna yang berbeda atau
bahkan untuk pengguna yang sama dalam situasi yang berbeda.

2. Personalisasi Skala Besar: Dengan desain tradisional, membuat pengalaman
yang dipersonalisasi untuk setiap pengguna seringkali tidak praktis karena waktu
dan sumber daya yang dibutuhkan. Sebaliknya, GenUI memungkinkan person-
alisasi dalam skala besar. Dengan memanfaatkan Al, desainer dapat membuat
antarmuka yang secara otomatis beradaptasi dengan kebutuhan dan preferensi
unik setiap pengguna, tanpa harus merancang dan mengembangkan antarmuka
terpisah untuk setiap segmen pengguna.

3. Fokus pada Hasil: Desain Ul tradisional sering berfokus pada pembuatan
antarmuka yang menarik secara visual dan fungsional. Meskipun aspek-aspek
ini masih penting dalam GenUI, fokus utama beralih ke pencapaian hasil yang
diinginkan pengguna. GenUI bertujuan untuk menciptakan antarmuka yang
dioptimalkan untuk tujuan dan tugas spesifik setiap pengguna, memprioritaskan
kegunaan dan efektivitas di atas pertimbangan estetika semata.

4. Pembelajaran dan Peningkatan Berkelanjutan: Sistem GenUI dapat terus
belajar dan meningkat seiring waktu berdasarkan interaksi dan umpan balik
pengguna. Saat pengguna berinteraksi dengan antarmuka yang dihasilkan, model
Al dapat mengumpulkan data tentang perilaku, preferensi, dan hasil pengguna,
menggunakan informasi ini untuk menyempurnakan dan mengoptimalkan gen-

erasi antarmuka di masa depan. Proses pembelajaran iteratif ini memungkinkan

Generative UI 213

sistem GenUI menjadi semakin efektif dalam memenuhi kebutuhan pengguna

seiring waktu.

Penting untuk dicatat bahwa GenUI berbeda dengan alat desain berbantuan Al, seperti
yang memberikan saran atau mengotomatisasi tugas-tugas desain tertentu. Meskipun
alat-alat ini dapat membantu memperlancar proses desain, mereka masih bergantung
pada desainer untuk membuat keputusan akhir dan menciptakan antarmuka statis.
GenU], di sisi lain, melibatkan sistem Al yang mengambil peran lebih aktif dalam

pembuatan dan adaptasi antarmuka berdasarkan data dan konteks pengguna.

GenUI merepresentasikan pergeseran signifikan dalam cara kita mendekati desain an-
tarmuka pengguna, bergerak dari solusi satu-ukuran-untuk-semua menuju pengalaman
yang sangat personal dan adaptif. Dengan memanfaatkan kekuatan Al, GenUI memiliki
potensi untuk merevolusi cara kita berinteraksi dengan produk dan layanan digital,
menciptakan antarmuka yang lebih intuitif, menarik, dan efektif untuk setiap pengguna

individual.

Contoh

Untuk mengilustrasikan konsep GenUI, mari kita pertimbangkan sebuah aplikasi ke-
bugaran hipotetis bernama “FitAI”. Aplikasi ini bertujuan untuk menyediakan rencana
latihan dan saran nutrisi yang dipersonalisasi untuk pengguna berdasarkan tujuan,

tingkat kebugaran, dan preferensi individual mereka.

Dalam pendekatan desain Ul tradisional, FitAl mungkin memiliki serangkaian layar dan
elemen tetap yang sama untuk semua pengguna. Namun, dengan GenUI, antarmuka
aplikasi dapat beradaptasi secara dinamis dengan kebutuhan dan konteks unik setiap

pengguna.

Pendekatan ini agak sulit dibayangkan untuk diimplementasikan pada tahun 2024 dan
mungkin bahkan tidak memiliki ROI yang memadai, tetapi hal ini memungkinkan untuk

dilakukan.

Generative UI 214

Berikut cara kerjanya:

1. Proses Pengenalan:

Alih-alih kuesioner standar, FitAl menggunakan Al konversasional untuk
mengumpulkan informasi tentang tujuan, tingkat kebugaran saat ini, dan
preferensi pengguna.

Berdasarkan interaksi awal ini, Al menghasilkan tata letak dasbor yang
dipersonalisasi, menyoroti fitur dan informasi yang paling relevan dengan
tujuan pengguna.

Teknologi Al saat ini mungkin memiliki pilihan komponen layar yang dapat
digunakan dalam menyusun dasbor yang dipersonalisasi.

Teknologi Al masa depan mungkin mengambil peran desainer UI berpen-

galaman dan benar-benar menciptakan dasbor dari awal.

2. Perencana Latihan:

Antarmuka perencana latihan diadaptasi oleh Al berdasarkan tingkat pen-
galaman pengguna dan peralatan yang tersedia.

Untuk pemula tanpa peralatan, mungkin menunjukkan latihan sederhana
menggunakan berat badan dengan instruksi dan video yang detail.

Untuk pengguna tingkat lanjut dengan akses ke gym, bisa menampilkan
rutinitas yang lebih kompleks dengan konten penjelasan yang lebih sedikit.
Konten perencana latihan tidak hanya difilter dari superset besar. Konten
dapat dihasilkan secara langsung berdasarkan basis pengetahuan yang
diquery dengan konteks yang mencakup semua hal yang diketahui tentang

pengguna.

3. Pelacakan Kemajuan:

Antarmuka pelacakan kemajuan berkembang berdasarkan tujuan dan pola

keterlibatan pengguna.

Generative UI 215

« Jika pengguna terutama berfokus pada penurunan berat badan, antarmuka
mungkin akan menampilkan grafik tren berat badan dan statistik pem-
bakaran kalori secara menonjol.

+ Untuk pengguna yang sedang membangun otot, antarmuka bisa menon-
jolkan peningkatan kekuatan dan perubahan komposisi tubuh.

« Al dapat menyesuaikan bagian aplikasi ini dengan kemajuan aktual peng-
guna. Jika kemajuan terhenti untuk periode waktu tertentu, aplikasi da-
pat beralih ke mode di mana ia mencoba membujuk pengguna untuk
mengungkapkan alasan kemunduran tersebut, untuk mengatasi masalah

tersebut.

4. Saran Nutrisi:

« Bagian nutrisi menyesuaikan dengan preferensi dan pembatasan makanan
pengguna.

+ Untuk pengguna vegan, bagian ini mungkin menunjukkan saran makanan
nabati dan sumber protein.

« Untuk pengguna dengan intoleransi gluten, bagian ini akan secara otomatis
menyaring makanan yang mengandung gluten dari rekomendasi.

« Sekali lagi, konten tidak diambil dari kumpulan data makanan yang sangat
besar yang berlaku untuk semua pengguna, melainkan disintesis dari basis
pengetahuan yang berisi informasi yang dapat disesuaikan berdasarkan
situasi dan batasan spesifik pengguna.

+ Misalnya, resep dibuat dengan spesifikasi bahan yang sesuai dengan kebu-
tuhan kalori pengguna yang terus berubah seiring dengan evolusi tingkat

kebugaran dan statistik tubuh mereka.

5. Elemen Motivasi:

» Konten motivasi dan notifikasi aplikasi dipersonalisasi berdasarkan tipe

kepribadian pengguna dan respons terhadap berbagai strategi motivasi.

Generative UI 216

+ Beberapa pengguna mungkin menerima pesan yang mendorong semangat,

sementara yang lain mendapatkan umpan balik yang lebih berbasis data.

Dalam contoh ini, GenUI memungkinkan FitAl untuk menciptakan pengalaman yang
sangat disesuaikan untuk setiap pengguna, berpotensi meningkatkan keterlibatan,
kepuasan, dan kemungkinan mencapai tujuan kebugaran. Elemen antarmuka, konten,
dan bahkan “kepribadian” aplikasi beradaptasi untuk melayani kebutuhan dan

preferensi setiap pengguna individual dengan sebaik-baiknya.

Peralihan ke Desain Berorientasi Hasil

GenUI mewakili pergeseran fundamental dalam pendekatan desain antarmuka
pengguna!, beralih dari fokus pada pembuatan elemen antarmuka spesifik ke
pendekatan yang lebih holistik dan berorientasi hasil. Pergeseran ini memiliki beberapa

implikasi penting:
1. Fokus pada Tujuan Pengguna:

+ Desainer perlu berpikir lebih dalam tentang tujuan pengguna dan hasil yang
diinginkan daripada komponen antarmuka spesifik.

« Penekanannya akan pada pembuatan sistem yang dapat menghasilkan an-
tarmuka yang membantu pengguna mencapai tujuan mereka secara efisien
dan efektif.

+ Kerangka kerja UI baru akan muncul yang memberi perancang berbasis
Al alat yang mereka butuhkan untuk dapat menghasilkan pengalaman
pengguna secara langsung dan dari awal alih-alih berdasarkan spesifikasi

layar yang telah ditentukan sebelumnya.

2. Peran Desainer yang Berubah:

Generative UI 217

« Desainer akan bertransisi dari membuat tata letak tetap menjadi mendefin-
isikan aturan, batasan, dan pedoman yang harus diikuti sistem Al ketika
menghasilkan antarmuka.

» Mereka perlu mengembangkan keterampilan di bidang seperti analisis data,
prompt engineering, dan pemikiran sistemik untuk secara efektif men-

garahkan sistem GenUI.

3. Pentingnya Riset Pengguna:

+ Riset pengguna menjadi semakin penting dalam konteks GenUI, karena
desainer perlu memahami tidak hanya preferensi pengguna, tetapi juga
bagaimana preferensi dan kebutuhan ini berubah dalam konteks yang
berbeda.

« Pengujian pengguna yang berkelanjutan dan putaran umpan balik akan
sangat penting untuk menyempurnakan dan meningkatkan kemampuan Al

dalam menghasilkan antarmuka yang efektif.

4. Merancang untuk Variabilitas:

« Alih-alih menciptakan satu antarmuka “sempurna”, desainer perlu memper-
timbangkan berbagai variasi yang mungkin dan memastikan bahwa sistem
dapat menghasilkan antarmuka yang sesuai untuk berbagai kebutuhan
pengguna.

« Ini termasuk merancang untuk kasus-kasus ekstrem dan memastikan bahwa
antarmuka yang dihasilkan mempertahankan kegunaan dan aksesibilitas di
berbagai konfigurasi.

« Diferensiasi produk mengambil dimensi baru yang melibatkan perspektif
berbeda tentang psikologi pengguna dan pemanfaatan kumpulan data serta

basis pengetahuan unik yang tidak tersedia bagi pesaing.

Generative UI 218

Tantangan dan Pertimbangan

Sementara GenUI menawarkan kemungkinan yang menarik, ia juga menghadirkan

beberapa tantangan dan pertimbangan:
1. Keterbatasan Teknis:

« Teknologi Al saat ini, meski sudah maju, masih memiliki keterbatasan dalam
memahami maksud pengguna yang kompleks dan menghasilkan antarmuka
yang benar-benar sadar konteks.

» Masalah kinerja terkait pembuatan elemen antarmuka secara real-time,

terutama pada perangkat dengan daya komputasi lebih rendah.

2. Persyaratan Data:

+ Tergantung pada kasus penggunaan, sistem GenUI yang efektif mungkin
memerlukan jumlah data pengguna yang signifikan untuk menghasilkan

antarmuka yang dipersonalisasi.

 Tantangan dalam memperoleh data pengguna secara etis menimbulkan
kekhawatiran tentang privasi dan keamanan data, serta potensi bias dalam

data yang digunakan untuk melatih model GenUL

3. Kegunaan dan Konsistensi:

« Setidaknya sampai praktik ini menjadi lazim, aplikasi dengan antarmuka
yang terus berubah dapat menyebabkan masalah kegunaan, karena peng-
guna mungkin kesulitan menemukan elemen yang familiar atau bernavigasi
secara efisien.

« Mencapai keseimbangan antara personalisasi dan mempertahankan antar-

muka yang konsisten dan dapat dipelajari akan sangat penting.

4. Ketergantungan Berlebihan pada Al:

Generative UI 219

« Ada risiko terlalu mendelegasikan keputusan desain kepada sistem Al,
yang berpotensi menghasilkan pilihan antarmuka yang tidak inspiratif,

bermasalah, atau rusak.

» Pengawasan manusia dan kemampuan untuk mengesampingkan desain

yang dihasilkan ATl akan tetap penting dalam masa mendatang.

5. Pertimbangan Aksesibilitas:

« Memastikan antarmuka yang dihasilkan secara dinamis tetap dapat diak-
ses oleh pengguna dengan disabilitas menghadirkan tantangan baru yang
mengkhawatirkan, mengingat tingkat kepatuhan aksesibilitas yang buruk
yang ditunjukkan oleh sistem pada umumnya.

+ Di sisi lain, perancang Al mungkin diimplementasikan dengan kepedu-
lian terhadap aksesibilitas yang sudah tertanam, dan kemampuan untuk
membangun antarmuka yang dapat diakses secara langsung seperti mereka

membangun UI untuk pengguna tanpa hambatan.
+ Bagaimanapun juga, sistem GenUI harus dirancang dengan pedoman aksesi-

bilitas dan proses pengujian yang kuat.
6. Kepercayaan dan Transparansi Pengguna:

+ Pengguna mungkin merasa tidak nyaman dengan antarmuka yang tampak
“terlalu mengenal” mereka atau berubah dengan cara yang tidak mereka

pahami.

« Memberikan transparansi tentang bagaimana dan mengapa antarmuka

dipersonalisasi akan penting untuk membangun kepercayaan pengguna.

Prospek dan Peluang Masa Depan

Masa depan UI Generatif (GenUI) menyimpan janji besar untuk merevolusi cara kita

berinteraksi dengan produk dan layanan digital. Seiring teknologi ini terus berkembang,

Generative UI 220

kita dapat mengantisipasi pergeseran besar dalam cara antarmuka pengguna dirancang,
diimplementasikan, dan dialami. Saya pikir GenUI adalah fenomena yang akhirnya
akan mendorong perangkat lunak kita ke dalam ranah yang saat ini dianggap sebagai

fiksi ilmiah.

Salah satu prospek paling menarik dari GenUI adalah potensinya untuk meningkatkan
aksesibilitas pada skala besar yang melampaui sekadar memastikan bahwa orang den-
gan disabilitas serius tidak sepenuhnya dikecualikan dari penggunaan perangkat lunak
Anda. Dengan secara otomatis menyesuaikan antarmuka dengan kebutuhan individual
pengguna, GenUI dapat membuat pengalaman digital lebih inklusif dari sebelumnya.
Bayangkan antarmuka yang dengan mulus menyesuaikan untuk menyediakan teks
yang lebih besar bagi pengguna yang lebih muda atau yang memiliki gangguan pengli-
hatan, atau tata letak yang disederhanakan bagi mereka yang memiliki keterbatasan
kognitif, semuanya tanpa memerlukan konfigurasi manual atau versi aplikasi “yang

dapat diakses” secara terpisah.

Kemampuan personalisasi GenUI kemungkinan akan mendorong peningkatan keterli-
batan, kepuasan, dan loyalitas pengguna di berbagai produk digital. Ketika antarmuka
menjadi lebih selaras dengan preferensi dan perilaku individual, pengguna akan men-
emukan pengalaman digital yang lebih intuitif dan menyenangkan, yang berpotensi

mengarah pada interaksi yang lebih dalam dan lebih bermakna dengan teknologi.

GenUI juga memiliki potensi untuk mengubah proses pengenalan bagi pengguna
baru. Dengan menciptakan pengalaman pengguna pertama kali yang intuitif dan
dipersonalisasi yang dengan cepat beradaptasi dengan tingkat keahlian masing-masing
pengguna, GenUI dapat secara signifikan mengurangi kurva pembelajaran yang terkait
dengan aplikasi baru. Hal ini dapat mengarah pada tingkat adopsi yang lebih cepat dan
peningkatan kepercayaan diri pengguna dalam mengeksplorasi fitur dan fungsionalitas

baru.

Kemungkinan menarik lainnya adalah kemampuan GenUI untuk mempertahankan

pengalaman pengguna yang konsisten di berbagai perangkat dan platform sambil

Generative UI 221

mengoptimalkan untuk setiap konteks penggunaan tertentu. Ini bisa menyelesaikan
tantangan lama dalam menyediakan pengalaman yang koheren di berbagai perangkat
yang semakin beragam, mulai dari ponsel pintar dan tablet hingga komputer desktop

dan teknologi yang sedang berkembang seperti kacamata realitas tertambah

Sifat GenUI yang berbasis data membuka peluang untuk iterasi dan peningkatan
yang cepat dalam desain antarmuka pengguna. Dengan mengumpulkan data real-time
tentang bagaimana pengguna berinteraksi dengan antarmuka yang dihasilkan, desainer
dan pengembang dapat memperoleh wawasan yang belum pernah ada sebelumnya
tentang perilaku dan preferensi pengguna. Siklus umpan balik ini dapat menghasilkan
peningkatan berkelanjutan dalam desain antarmuka pengguna, yang didorong oleh pola

penggunaan aktual daripada asumsi atau pengujian pengguna yang terbatas.

Untuk mempersiapkan perubahan ini, desainer perlu mengembangkan keterampilan
dan pola pikir mereka. Fokus akan beralih dari membuat tata letak tetap menjadi
mengembangkan sistem desain dan pedoman yang komprehensif yang dapat mengin-
formasikan pembuatan antarmuka berbasis Al. Desainer perlu mengembangkan pema-
haman mendalam tentang analisis data, teknologi Al, dan pemikiran sistemis untuk

secara efektif memandu sistem GenUL

Selain itu, karena GenUI mengaburkan batas antara desain dan teknologi, desainer
perlu berkolaborasi lebih erat dengan pengembang dan ilmuwan data. Pendekatan
interdisipliner ini akan sangat penting dalam menciptakan sistem GenUI yang tidak
hanya menarik secara visual dan ramah pengguna, tetapi juga kuat secara teknis dan

etis.

Implikasi etis dari GenUI juga akan menjadi hal utama seiring dengan berkembangnya
teknologi. Desainer akan memainkan peran penting dalam mengembangkan kerangka
kerja untuk penggunaan Al yang bertanggung jawab dalam desain antarmuka, memas-
tikan bahwa personalisasi meningkatkan pengalaman pengguna tanpa mengorbankan

privasi atau memanipulasi perilaku pengguna dengan cara yang tidak etis.

Ketika kita melihat ke masa depan, GenUI menghadirkan peluang yang menarik sekali-

Generative UI 222

gus tantangan yang signifikan. Ini memiliki potensi untuk menciptakan pengalaman
digital yang lebih intuitif, efisien, dan memuaskan bagi pengguna di seluruh dunia.
Meskipun akan membutuhkan desainer untuk beradaptasi dan memperoleh keterampi-
lan baru, ini juga menawarkan kesempatan yang belum pernah ada sebelumnya untuk
membentuk masa depan interaksi manusia-komputer dengan cara yang mendalam dan
bermakna. Perjalanan menuju sistem GenUl yang sepenuhnya terealisasi tentunya akan
kompleks, tetapi potensi manfaat dalam hal peningkatan pengalaman pengguna dan

aksesibilitas digital menjadikannya masa depan yang layak diperjuangkan.

Orkestrasi Alur Kerja Cerdas

Dalam ranah pengembangan aplikasi, alur kerja memainkan peran penting dalam

mendefinisikan bagaimana tugas, proses, dan interaksi pengguna disusun dan di-
jalankan. Seiring aplikasi menjadi semakin kompleks dan ekspektasi pengguna terus
meningkat, kebutuhan akan orkestrasi alur kerja yang cerdas dan adaptif menjadi

semakin nyata.

Pendekatan “Orkestrasi Alur Kerja Cerdas” berfokus pada pemanfaatan komponen Al
untuk mengorkestrasi dan mengoptimalkan alur kerja kompleks dalam aplikasi secara
dinamis. Tujuannya adalah untuk menciptakan aplikasi yang lebih efisien, responsif,

dan dapat beradaptasi dengan data dan konteks secara real-time.

Dalam bab ini, kita akan mengeksplorasi prinsip-prinsip utama dan pola yang mendasari
pendekatan orkestrasi alur kerja cerdas. Kita akan mempertimbangkan bagaimana Al
dapat digunakan untuk mengarahkan tugas secara cerdas, mengotomatisasi pengambi-

lan keputusan, dan mengadaptasi alur kerja secara dinamis berdasarkan berbagai faktor

Orkestrasi Alur Kerja Cerdas 224

seperti perilaku pengguna, kinerja sistem, dan aturan bisnis. Melalui contoh praktis
dan skenario dunia nyata, kita akan mendemonstrasikan potensi transformatif Al dalam

merampingkan dan mengoptimalkan alur kerja aplikasi.

Baik Anda sedang membangun aplikasi enterprise dengan proses bisnis yang rumit atau
aplikasi yang menghadap konsumen dengan perjalanan pengguna yang dinamis, pola
dan teknik yang dibahas dalam bab ini akan membekali Anda dengan pengetahuan
dan alat untuk menciptakan alur kerja yang cerdas dan efisien yang meningkatkan

pengalaman pengguna secara keseluruhan dan mendorong nilai bisnis.

Kebutuhan Bisnis

Pendekatan tradisional untuk manajemen alur kerja sering bergantung pada aturan
yang telah ditentukan sebelumnya dan pohon keputusan statis, yang dapat menjadi

kaku, tidak fleksibel, dan tidak mampu mengatasi sifat dinamis aplikasi modern.

Pertimbangkan skenario di mana aplikasi e-commerce perlu menangani proses pe-
menuhan pesanan yang kompleks. Alur kerja mungkin melibatkan beberapa langkah
seperti validasi pesanan, pemeriksaan inventaris, pemrosesan pembayaran, pengiriman,
dan pemberitahuan pelanggan. Setiap langkah mungkin memiliki seperangkat aturan
sendiri, ketergantungan, integrasi eksternal, dan mekanisme penanganan pengecualian.
Mengelola alur kerja seperti itu secara manual atau melalui logika yang dikodekan
secara langsung dapat dengan cepat menjadi rumit, rawan kesalahan, dan sulit untuk

dipertahankan.

Selain itu, seiring aplikasi berkembang dan jumlah pengguna simultan bertambah,
alur kerja mungkin perlu beradaptasi dan mengoptimalkan dirinya berdasarkan data
waktu nyata dan kinerja sistem. Sebagai contoh, selama periode lalu lintas puncak,
aplikasi mungkin perlu menyesuaikan alur kerja secara dinamis untuk memprioritaskan
tugas-tugas tertentu, mengalokasikan sumber daya secara efisien, dan memastikan

pengalaman pengguna yang lancar.

Orkestrasi Alur Kerja Cerdas 225

Di sinilah pendekatan “Orkestrasi Alur Kerja Cerdas” berperan. Dengan memanfaatkan
komponen Al, pengembang dapat menciptakan alur kerja yang cerdas, adaptif, dan
dapat mengoptimalkan diri. Al dapat menganalisis data dalam jumlah besar, belajar
dari pengalaman sebelumnya, dan membuat keputusan berdasarkan informasi secara

waktu nyata untuk mengorkestrasi alur kerja secara efektif.

Manfaat Utama

1. Peningkatan Efisiensi: Al dapat mengoptimalkan alokasi tugas, pemanfaatan
sumber daya, dan eksekusi alur kerja, yang menghasilkan waktu pemrosesan lebih
cepat dan efisiensi keseluruhan yang lebih baik.

2. Kemampuan Beradaptasi: Alur kerja berbasis Al dapat beradaptasi secara
dinamis terhadap perubahan kondisi, seperti fluktuasi permintaan pengguna,
kinerja sistem, atau kebutuhan bisnis, memastikan aplikasi tetap responsif dan
tangguh.

3. Pengambilan Keputusan Otomatis: Al dapat mengotomatisasi proses pengam-
bilan keputusan yang kompleks dalam alur kerja, mengurangi intervensi manual
dan meminimalkan risiko kesalahan manusia.

4. Personalisasi: Al dapat menganalisis perilaku pengguna, preferensi, dan kon-
teks untuk mempersonalisasi alur kerja dan memberikan pengalaman yang dis-
esuaikan untuk setiap pengguna.

5. Skalabilitas: Alur kerja yang didukung AI dapat berkembang secara mulus untuk
menangani peningkatan volume data dan interaksi pengguna, tanpa mengor-

bankan kinerja atau keandalan.

Dalam bagian-bagian berikut, kita akan mengeksplorasi pola dan teknik utama yang
memungkinkan implementasi alur kerja cerdas dan menampilkan contoh dunia nyata

tentang bagaimana Al mengubah manajemen alur kerja dalam aplikasi modern.

© 0 N O O b W N =

[T ==Y
a s W N r e

Orkestrasi Alur Kerja Cerdas 226

Pola-pola Utama

Untuk mengimplementasikan orkestrasi alur kerja cerdas dalam aplikasi, pengembang
dapat memanfaatkan beberapa pola utama yang memanfaatkan kekuatan Al. Pola-pola
ini memberikan pendekatan terstruktur untuk merancang dan mengelola alur kerja,
memungkinkan aplikasi untuk beradaptasi, mengoptimalkan, dan mengotomatisasi
proses berdasarkan data waktu nyata dan konteks. Mari kita eksplorasi beberapa pola

fundamental dalam orkestrasi alur kerja cerdas.

Perutean Tugas Dinamis

Pola ini melibatkan penggunaan Al untuk merutekan tugas secara cerdas dalam alur
kerja berdasarkan berbagai faktor seperti prioritas tugas, ketersediaan sumber daya, dan
kinerja sistem. Algoritma Al dapat menganalisis karakteristik setiap tugas, memper-
timbangkan keadaan sistem saat ini, dan membuat keputusan berdasarkan informasi
untuk menetapkan tugas ke sumber daya atau jalur pemrosesan yang paling sesuai.
Perutean tugas dinamis memastikan bahwa tugas-tugas didistribusikan dan dieksekusi

secara efisien, mengoptimalkan kinerja alur kerja secara keseluruhan.

class TaskRouter
include Raix::ChatCompletion

include Raix::FunctionDispatch
attr_accessor :task

list of functions that can be called by the AI entirely at its

discretion depending on the task received

function :analyze_task_priority do
TaskPriorityAnalyzer .perform(task)
end

function :check_resource_availability, # ..

function :assess_system_performance, # ..

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Orkestrasi Alur Kerja Cerdas 227

function :assign_task_to_resource, # ...

DIRECTIVE = "You are a task router, responsible for intelligently
assigning tasks to available resources based on priority, resource
availability, and system performance..."

def initialize(task)
self.task = task
transcript << { system: DIRECTIVE }
transcript << { user: task.to_json }
end

def perform
while task.unassigned?
chat_completion

todo: add max loop counter and break
end

capture the transcript for later analysis
task.update(routing_transcript: transcript)
end
end

Perhatikan perulangan yang dibuat oleh ekspresi while pada baris 29, yang terus
meminta Al sampai tugas ditetapkan. Pada baris 35, kita menyimpan transkrip tugas

untuk analisis dan pencarian dan perbaikan bug di kemudian hari, jika diperlukan.

Pengambilan Keputusan Kontekstual

Anda dapat menggunakan kode yang sangat mirip untuk membuat keputusan berba-
sis konteks dalam alur kerja. Dengan menganalisis poin data yang relevan seperti
preferensi pengguna, pola historis, dan masukan waktu nyata, komponen Al dapat
menentukan tindakan yang paling tepat pada setiap titik keputusan dalam alur kerja.
Sesuaikan perilaku alur kerja Anda berdasarkan konteks spesifik setiap pengguna atau

skenario, memberikan pengalaman yang dipersonalisasi dan dioptimalkan.

Orkestrasi Alur Kerja Cerdas 228

Komposisi Alur Kerja Adaptif

Pola ini berfokus pada penyusunan dan penyesuaian alur kerja secara dinamis
berdasarkan perubahan persyaratan atau kondisi. Al dapat menganalisis keadaan alur
kerja saat ini, mengidentifikasi hambatan atau ketidakefisienan, dan secara otomatis
memodifikasi struktur alur kerja untuk mengoptimalkan kinerja. Komposisi alur kerja
adaptif memungkinkan aplikasi untuk terus berkembang dan meningkatkan prosesnya

tanpa memerlukan intervensi manual.

Penanganan dan Pemulihan Pengecualian

Penanganan dan pemulihan pengecualian adalah aspek penting dalam orkestrasi alur
kerja cerdas. Ketika bekerja dengan komponen Al dan alur kerja yang kompleks, penting
untuk mengantisipasi dan menangani pengecualian dengan anggun untuk memastikan

stabilitas dan keandalan sistem.

Berikut adalah beberapa pertimbangan dan teknik penting untuk penanganan dan

pemulihan pengecualian dalam alur kerja cerdas:

1. Propagasi Pengecualian: Terapkan pendekatan yang konsisten untuk mem-
propagasi pengecualian di seluruh komponen alur kerja. Ketika pengecualian
terjadi dalam suatu komponen, pengecualian tersebut harus ditangkap, dicatat,
dan dipropagasi ke orkestrator atau komponen terpisah yang bertanggung jawab
untuk menangani pengecualian. Idenya adalah untuk memusatkan penanganan
pengecualian dan mencegah pengecualian ditelan secara diam-diam, serta mem-
buka kemungkinan untuk Penanganan Kesalahan Cerdas.

2. Mekanisme Percobaan Ulang: Mekanisme percobaan ulang membantu
meningkatkan ketahanan alur kerja dan menangani kegagalan sementara
dengan anggun. Pastikan untuk menerapkan mekanisme percobaan ulang untuk

pengecualian yang bersifat sementara atau dapat dipulihkan, seperti konektivitas

Orkestrasi Alur Kerja Cerdas 229

jaringan atau ketidaktersediaan sumber daya yang dapat dicoba ulang secara
otomatis setelah penundaan tertentu. Memiliki orkestrator atau penangan
pengecualian yang ditenagai Al berarti bahwa strategi percobaan ulang Anda
tidak harus bersifat mekanis, mengandalkan algoritma tetap seperti fallback
eksponensial. Anda dapat menyerahkan penanganan percobaan ulang kepada
“kebijaksanaan” komponen Al yang bertanggung jawab untuk memutuskan
bagaimana menangani pengecualian tersebut.

3. Strategi Fallback: Jika sebuah komponen AI gagal memberikan respons yang
valid atau mengalami error—kejadian yang umum mengingat sifatnya yang
sangat baru—siapkan mekanisme fallback untuk memastikan alur kerja dapat
terus berlanjut. Ini bisa melibatkan penggunaan nilai default, algoritma alternatif,
atau Human In The Loop untuk membuat keputusan dan menjaga alur kerja tetap
berjalan.

4. Tindakan Kompensasi: Arahan orkestrator harus mencakup instruksi tentang
tindakan kompensasi untuk menangani eksepsi yang tidak dapat diselesaikan
secara otomatis. Tindakan kompensasi adalah langkah-langkah yang diambil
untuk membatalkan atau mengurangi dampak dari operasi yang gagal. Sebagai
contoh, jika langkah pemrosesan pembayaran gagal, tindakan kompensasi bisa
berupa pembatalan transaksi dan pemberitahuan kepada pengguna. Tindakan
kompensasi membantu menjaga konsistensi dan integritas data ketika meng-
hadapi eksepsi.

5. Pemantauan dan Peringatan Eksepsi: Siapkan mekanisme pemantauan dan
peringatan untuk mendeteksi dan memberitahu pemangku kepentingan terkait
tentang eksepsi-eksepsi kritis. Orkestrator dapat diatur untuk mengetahui am-
bang batas dan aturan untuk memicu peringatan ketika eksepsi melewati batas ter-
tentu atau ketika jenis eksepsi tertentu terjadi. Hal ini memungkinkan identifikasi
dan penyelesaian masalah secara proaktif sebelum berdampak pada keseluruhan

sistem.

Berikut adalah contoh penanganan dan pemulihan eksepsi dalam komponen alur kerja

© 0 N O U B W N =

NN NN NN NN N R R R RS R s s
© ® 9 O O & W N~ O © 0 3 0O U b W N =~ &

Orkestrasi Alur Kerja Cerdas 230

Ruby:

class InventoryManager
def check_availability(order)
begin
Perform inventory check logic
inventory = Inventory.find_by(product_id: order.product_id)
if inventory.available_quantity >= order.quantity
return true
else
raise InsufficientInventoryError,
"Insufficient inventory for product #{order.product_id}"
end
rescue InsufficientInventoryError => e
Log the exception

logger .error("Inventory check failed: #{e.message}")

Retry the operation after a delay

retry_count |[|= 0

if retry_count < MAX_RETRIES
retry_count += 1
sleep(RETRY_DELAY)
retry

else
Fallback to manual intervention
NotificationService.admin("Inventory check failed: Order #{order.id}")
return false

end

end
end
end

Dalam contoh ini, komponen InventoryManager memeriksa ketersediaan produk
untuk pesanan tertentu. Jika jumlah yang tersedia tidak mencukupi, komponen akan
memunculkan InsufficientInventoryError. Eksepsi tersebut ditangkap, dicatat,
dan mekanisme percobaan ulang diimplementasikan. Jika batas percobaan ulang
terlampaui, komponen akan beralih ke intervensi manual dengan memberi notifikasi

kepada admin.

Orkestrasi Alur Kerja Cerdas 231

Dengan mengimplementasikan mekanisme penanganan dan pemulihan eksepsi yang
kuat, Anda dapat memastikan bahwa alur kerja cerdas Anda tangguh, dapat dipelihara,

dan mampu menangani situasi tak terduga dengan baik.

Pola-pola ini membentuk dasar orkestrasi alur kerja cerdas dan dapat dikombinasikan
serta disesuaikan untuk memenuhi kebutuhan spesifik dari berbagai aplikasi. Dengan
memanfaatkan pola-pola ini, pengembang dapat menciptakan alur kerja yang fleksibel,

tangguh, dan dioptimalkan untuk kinerja dan pengalaman pengguna.

Pada bagian berikutnya, kita akan mengeksplorasi bagaimana pola-pola ini dapat
diimplementasikan dalam praktik, menggunakan contoh dunia nyata dan cuplikan kode

untuk mengilustrasikan integrasi komponen Al ke dalam manajemen alur kerja.

Mengimplementasikan Orkestrasi Alur Kerja
Cerdas dalam Praktik

Setelah kita mengeksplorasi pola-pola kunci dalam orkestrasi alur kerja cerdas, mari
kita dalami bagaimana pola-pola ini dapat diimplementasikan dalam aplikasi dunia
nyata. Kita akan memberikan contoh praktis dan cuplikan kode untuk mengilustrasikan

integrasi komponen Al ke dalam manajemen alur kerja.

Pemroses Pesanan Cerdas

Mari kita dalami contoh praktis implementasi orkestrasi alur kerja cerdas menggunakan
komponen OrderProcessor berbasis Al dalam aplikasi e-commerce Ruby on Rails.
OrderProcessor mewujudkan konsep Process Manager Enterprise Integration yang
pertama kali kita temui di Bab 3 ketika membahas Multitude of Workers. Komponen

ini akan bertanggung jawab untuk mengelola alur kerja pemenuhan pesanan, membuat

Orkestrasi Alur Kerja Cerdas 232

keputusan perutean berdasarkan hasil antara, dan mengorkestrasi pelaksanaan berbagai

tahap pemrosesan.

Proses pemenuhan pesanan melibatkan beberapa tahap seperti validasi pesanan, pe-
meriksaan inventaris, pemrosesan pembayaran, dan pengiriman. Setiap tahap di-
implementasikan sebagai proses pekerja terpisah yang melakukan tugas spesifik dan
mengembalikan hasil ke OrderProcessor. Tahap-tahap ini tidak wajib, dan bahkan

tidak harus dilakukan dalam urutan yang tepat.

Berikut adalah contoh implementasi OrderProcessor. Ini menampilkan dua
mixin dari Raix. Yang pertama (ChatCompletion) memberikannya kemampuan
untuk melakukan penyelesaian chat, yang menjadikannya komponen Al Yang kedua
(FunctionDispatch) memungkinkan pemanggilan fungsi oleh Al, memungkinkannya

merespons prompt dengan pemanggilan fungsi alih-alih pesan teks.

Fungsi-fungsi pekerja (validate_order, check_inventory, dan lainnya) mendele-
gasikan ke kelas-kelas pekerja masing-masing, yang bisa berupa komponen Al maupun
non-Al, dengan satu-satunya persyaratan bahwa mereka mengembalikan hasil kerja
mereka dalam format yang dapat direpresentasikan sebagai string.

kode semu dan hanya dimaksudkan untuk menyampaikan makna dari pola

’ Seperti semua contoh lain di bagian buku ini, kode ini praktis merupakan

tersebut dan menginspirasi kreasi Anda sendiri. Deskripsi lengkap tentang

pola-pola dan contoh kode lengkap disertakan dalam Bagian 2.

https://github.com/OlympiaAI/raix-rails

© 0 N O O & W N =~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Orkestrasi Alur Kerja Cerdas

class OrderProcessor
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

def initialize(order)
self.order = order
transcript << { system: SYSTEM_DIRECTIVE }
transcript << { user: order.to_json }

end

def perform
will continue looping until “stop_looping!" is called
chat_completion(loop: true)

end

list of functions available to be called by the AI
truncated for brevity

def functions

[

name: "validate_order",
description: "Invoke to check validity of order",
parameters: {

}I

]

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def validate_order
OrderValidationWorker . per form(@order)
end

def check_inventory
InventoryCheckWorker . per form(@order)
end

233

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Orkestrasi Alur Kerja Cerdas 234

def process_payment
PaymentProcessingWorker . per form(@order)

end

def schedule_shipping
ShippingSchedulerWorker . per form(@order)
end

def send_confirmation
OrderConfirmationWorker . per form(@order)
end

def finished_processing
@order .update! (transcript:, processed_at: Time.current)
stop_looping!
end
end

Dalam contoh ini, OrderProcessor diinisialisasi dengan objek pesanan dan menyimpan
transkrip dari eksekusi alur kerja, dalam format transkrip percakapan yang umum digu-
nakan oleh model bahasa besar. Al diberikan kendali penuh untuk mengoordinasikan
eksekusi berbagai tahap pemrosesan, seperti validasi pesanan, pemeriksaan inventaris,

pemrosesan pembayaran, dan pengiriman.

Setiap kali metode chat_completion dipanggil, transkrip dikirim ke AI agar Al
dapat memberikan hasil berupa pemanggilan fungsi. Sepenuhnya terserah AI untuk
menganalisis hasil dari tahap sebelumnya dan menentukan tindakan yang tepat untuk
diambil. Misalnya, jika pemeriksaan inventaris menunjukkan tingkat stok yang rendah,
OrderProcessor dapat menjadwalkan tugas pengisian ulang. Jika pemrosesan pemba-

yaran gagal, ia dapat memulai percobaan ulang atau memberi tahu layanan pelanggan.

Orkestrasi Alur Kerja Cerdas 235

Contoh di atas tidak memiliki fungsi yang didefinisikan untuk pengisian ulang atau

pemberitahuan ke layanan pelanggan, tetapi tentu saja bisa ditambahkan.

Transkrip bertambah setiap kali fungsi dipanggil dan berfungsi sebagai catatan eksekusi
alur kerja, termasuk hasil dari setiap tahap dan instruksi yang dihasilkan Al untuk
langkah-langkah selanjutnya. Transkrip ini dapat digunakan untuk debugging, audit,

dan memberikan visibilitas ke dalam proses pemenuhan pesanan.

Dengan memanfaatkan Al dalam OrderProcessor, aplikasi e-commerce dapat secara
dinamis menyesuaikan alur kerja berdasarkan data real-time dan menangani penge-
cualian secara cerdas. Komponen Al dapat membuat keputusan yang tepat, mengopti-
malkan alur kerja, dan memastikan pemrosesan pesanan berjalan lancar bahkan dalam

skenario yang kompleks.

Fakta bahwa satu-satunya persyaratan pada proses pekerja adalah mengembalikan
output yang dapat dipahami agar Al dapat mempertimbangkan apa yang harus di-
lakukan selanjutnya, mungkin mulai menyadarkan Anda bagaimana pendekatan ini
dapat mengurangi pekerjaan pemetaan input/output yang biasanya terlibat ketika

mengintegrasikan sistem-sistem yang berbeda satu sama lain.

Moderator Konten Cerdas

Aplikasi media sosial umumnya membutuhkan setidaknya moderasi konten minimal
untuk memastikan komunitas yang aman dan sehat. Contoh komponen Content-
Moderator ini memanfaatkan AI untuk mengoordinasikan alur kerja moderasi secara
cerdas, membuat keputusan berdasarkan karakteristik konten dan hasil dari berbagai

tahap moderasi.

Proses moderasi melibatkan beberapa tahap seperti analisis teks, pengenalan gambar,

penilaian reputasi pengguna, dan peninjauan manual. Setiap tahap diimplementasikan

© 0 N O O b W N o=

W W W W W W W W N NDNDDNDDNDDNDIDNDNDNIDN=S 2 2 2 2 s s
=N O O b WD, O O 0N 0 WwN 2O O 00N 0w N,

Orkestrasi Alur Kerja Cerdas 236

sebagai proses pekerja terpisah yang melakukan tugas spesifik dan mengembalikan

hasilnya ke ContentModerator.

Berikut adalah contoh implementasi ContentModerator:

class ContentModerator
include Raix: :ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a content moderator process manager,
tasked with the workflow involved in moderating user-generated content...”

def initialize(content)
@content = content
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: content.to_json }

]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"
end

list of functions available to be called by the AI
truncated for brevity

def functions

[

name: "analyze_text",
#

}I

name: "recognize_image",
description: "Invoke to describe images...",
#

}I

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79

Orkestrasi Alur Kerja Cerdas

name: "assess_user_reputation",
#

}I
name: "escalate_to_manual_review",
#

}/
name: "approve_content",
#

}I
name: "reject_content”,
#

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def analyze_text

result = TextAnalysisWorker .perform(@content)

continue_with(result)
end

def recognize_image

result = ImageRecognitionWorker .per form(@content)

continue_with(result)
end

def assess_user_reputation

result = UserReputationWorker .per form(@content.user)

continue_with(result)
end

def escalate_to_manual_review

ManualReviewWorker . per form(@content)

@content.update! (status:
end

'pending', transcript: @transcript)

237

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Orkestrasi Alur Kerja Cerdas 238

def approve_content
@content.update! (status: 'approved', transcript: @transcript)
end

def reject_content
@content.update! (status: 'rejected', transcript: @transcript)
end

private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)

end

end

Dalam contoh ini, ContentModerator diinisialisasi dengan objek konten dan memper-
tahankan transkrip moderasi dalam format percakapan. Komponen Al memiliki kendali
penuh atas alur kerja moderasi, memutuskan langkah mana yang akan dijalankan

berdasarkan karakteristik konten dan hasil dari setiap tahap.

Fungsi-fungsi pekerja yang tersedia untuk dipanggil oleh AI mencakup
analyze_text, recognize_image, assess_user_reputation, dan
escalate_to_manual_review. Setiap fungsi mendelegasikan tugas ke proses
pekerja yang sesuai (TextAnalysisWorker, ImageRecognitionWorker, dll.) dan
menambahkan hasilnya ke transkrip moderasi, dengan pengecualian fungsi eskalasi
yang bertindak sebagai status akhir. ~ Akhirnya, fungsi approve_content dan

reject_content juga bertindak sebagai status akhir.

Komponen Al menganalisis konten dan menentukan tindakan yang tepat untuk diambil.
Jika konten berisi referensi gambar, ia dapat memanggil pekerja recognize_image
untuk bantuan dalam peninjauan visual. Jika ada pekerja yang memperingatkan
tentang konten yang berpotensi berbahaya, Al dapat memutuskan untuk mengeskalasi
konten untuk peninjauan manual atau langsung menolaknya. Tetapi tergantung pada

tingkat keparahan peringatan, Al dapat memilih untuk menggunakan hasil penilaian

Orkestrasi Alur Kerja Cerdas 239

reputasi pengguna dalam memutuskan bagaimana menangani konten yang tidak yakin.
Tergantung pada kasus penggunaan, mungkin pengguna yang terpercaya memiliki lebih

banyak kelonggaran dalam apa yang dapat mereka posting. Dan seterusnya...

Seperti pada contoh pengelola proses sebelumnya, transkrip moderasi berfungsi sebagai
catatan pelaksanaan alur kerja, termasuk hasil dari setiap langkah dan keputusan yang
dihasilkan AL Transkrip ini dapat digunakan untuk audit, transparansi, dan peningkatan

proses moderasi dari waktu ke waktu.

Dengan memanfaatkan Al dalam ContentModerator, aplikasi media sosial dapat
secara dinamis menyesuaikan alur kerja moderasi berdasarkan karakteristik konten
dan menangani skenario moderasi yang kompleks secara cerdas. Komponen Al dapat
membuat keputusan yang terinformasi, mengoptimalkan alur kerja, dan memastikan

pengalaman komunitas yang aman dan sehat.

Mari kita jelajahi dua contoh lagi yang mendemonstrasikan penjadwalan tugas prediktif
dan penanganan pengecualian serta pemulihan dalam konteks orkestrasi alur kerja

cerdas.

Penjadwalan Tugas Prediktif dalam Sistem Dukungan
Pelanggan

Dalam aplikasi dukungan pelanggan yang dibangun dengan Ruby on Rails, pengelolaan
dan prioritas tiket dukungan yang efisien sangat penting untuk memberikan bantuan
tepat waktu kepada pelanggan. Komponen SupportTicketScheduler memanfaatkan
AT untuk memprediksi penjadwalan dan penugasan tiket dukungan kepada agen yang
tersedia berdasarkan berbagai faktor seperti urgensi tiket, keahlian agen, dan beban

kerja.

Orkestrasi Alur Kerja Cerdas

class SupportTicketScheduler
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a support ticket scheduler,
tasked with intelligently assigning tickets to available agents..."

def initialize(ticket)
@ticket = ticket
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: ticket.to_json }

]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"
end

def functions

[

name: "analyze_ticket_urgency",
#...

}I
{
name: "list_available_agents",

description: "Includes expertise of available agents",
#...

}I
{
name: "predict_agent_workload",

description: "Uses historical data to predict upcoming workloads"

}/
{

name: "assign_ticket_to_agent",

7

240

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
77
78
79
80
81
82
83
84

Orkestrasi Alur Kerja Cerdas

}/

name: "reschedule_ticket",

]

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def analyze_ticket_urgency
result = TicketUrgencyAnalyzer .perform(@ticket)
continue_with(result)

end

def list_available_agents
result = ListAvailableAgents.perform
continue_with(result)

end

def predict_agent_workload
result = AgentWorkloadPredictor .perform
continue_with(result)

end

def assign_ticket_to_agent
TicketAssigner.perform(@ticket, @transcript)
end

def delay_assignment(until)
until = DateTimeStandardizer.process(until)
SupportTicketScheduler.delay(@ticket, @transcript, until)
end

private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)
end
end

241

Orkestrasi Alur Kerja Cerdas 242

Dalam contoh ini, SupportTicketScheduler diinisialisasi dengan objek tiket dukun-
gan dan memelihara transkrip penjadwalan. Komponen AI menganalisis detail tiket
dan secara prediktif menjadwalkan penugasan tiket berdasarkan faktor-faktor seperti

urgensi tiket, keahlian agen, dan beban kerja agen yang diprediksi.

Fungsi-fungsi yang tersedia untuk digunakan AI mencakup analyze_-
ticket_urgency, list_available_agents, predict_agent_workload, dan
assign_ticket_to_agent. Setiap fungsi mendelegasikan tugas ke komponen
penganalisis atau prediktor yang sesuai dan menambahkan hasilnya ke transkrip
penjadwalan. Al juga memiliki opsi untuk menunda penugasan menggunakan fungsi

delay_assignment.

Komponen Al memeriksa transkrip penjadwalan dan membuat keputusan yang tepat
mengenai penugasan tiket. Komponen ini mempertimbangkan urgensi tiket, keahlian
agen yang tersedia, dan beban kerja yang diprediksi dari setiap agen untuk menentukan

agen yang paling sesuai untuk menangani tiket tersebut.

Dengan memanfaatkan penjadwalan tugas prediktif, aplikasi dukungan pelanggan
dapat mengoptimalkan penugasan tiket, mengurangi waktu respons, dan meningkatkan
kepuasan pelanggan secara keseluruhan. Pengelolaan tiket dukungan yang proaktif dan
efisien memastikan bahwa tiket yang tepat ditugaskan kepada agen yang tepat pada
waktu yang tepat.

Penanganan Pengecualian dan Pemulihan dalam Saluran
Pemrosesan Data

Penanganan pengecualian dan pemulihan dari kegagalan sangat penting untuk memas-
tikan integritas data dan mencegah kehilangan data. Komponen DataProcessin-
gOrchestrator menggunakan Al untuk menangani pengecualian secara cerdas dan

mengoordinasikan proses pemulihan dalam saluran pemrosesan data

© 0 N O O b W N e

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Orkestrasi Alur Kerja Cerdas

class DataProcessingOrchestrator

include Raix::ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

def initialize(data_batch)
@data_batch = data_batch
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: data_batch.to_json }

]

end

def perform

complete(@transcript)

end

def model

"openai/gpt-4"

end

def functions

name:

"validate_data",

"process_data",

"request_fix",

"retry_processing",

"mark_data_as_failed",

243

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83

Orkestrasi Alur Kerja Cerdas 244

b
{

name: "finished",

]

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def validate_data
result = DataValidator.perform(@data_batch)
continue_with(result)

rescue ValidationException => e
handle_validation_exception(e)

end

def process_data
result = DataProcessor .perform(@data_batch)
continue_with(result)

rescue ProcessingException => e
handle_processing_exception(e)

end

def request_fix(description_of_fix)
result = SmartDataFixer.new(description_of_fix, @data_batch)
continue_with(result)

end

def retry_processing(timeout_in_seconds)
wait(timeout_in_seconds)
process_data

end

def mark_data_as_failed
@data_batch.update! (status: 'failed', transcript: @transcript)
end

def finished
@data_batch.update! (status: 'finished', transcript: @transcript)

85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103

Orkestrasi Alur Kerja Cerdas 245

end
private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)

end

def handle_validation_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)

end

def handle_processing_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)
end
end

Dalam contoh ini, DataProcessingOrchestrator diinisialisasi dengan objek batch
data dan mempertahankan transkrip pemrosesan. Komponen AI mengoordinasikan
pipeline pemrosesan data, menangani eksepsi dan memulihkan dari kegagalan sesuai

kebutuhan.

Fungsi-fungsi yang tersedia untuk digunakan AI mencakup validate_data, pro-
cess_data,request_fix,retry_processing,danmark_data_as_failed. Setiap
fungsi mendelegasikan tugas ke komponen pemrosesan data yang sesuai dan menam-

bahkan hasil atau detail eksepsi ke transkrip pemrosesan.

Jika terjadi eksepsi validasi selama tahap validate_data, fungsi handle_valida-
tion_exception akan menambahkan data eksepsi ke transkrip dan mengembalikan
kendali ke AL Demikian pula, jika terjadi eksepsi pemrosesan selama tahap process_-

data, Al dapat memutuskan strategi pemulihannya.

Tergantung pada sifat eksepsi yang ditemui, Al dapat memutuskan sesuai kebijakan-

nya untuk memanggil request_fix, yang mendelegasikan ke komponen Smart-

Orkestrasi Alur Kerja Cerdas 246

DataF ixer berbasis Al (lihat bab Self-Healing Data). Data fixer mendapatkan deskripsi
dalam bahasa Inggris sederhana tentang bagaimana seharusnya memodifikasi @data_-
batch agar pemrosesan dapat dicoba ulang. Mungkin percobaan ulang yang berhasil
akan melibatkan penghapusan catatan dari batch data yang gagal validasi dan/atau
menyalinnya ke pipeline pemrosesan yang berbeda untuk ditinjau manusia? Kemu-

ngkinannya hampir tak terbatas.

Dengan memasukkan penanganan eksepsi dan pemulihan berbasis Al, aplikasi pemros-
esan data menjadi lebih tangguh dan toleran terhadap kesalahan. DataProcessin-
gOrchestrator secara cerdas mengelola eksepsi, meminimalkan kehilangan data, dan

memastikan kelancaran eksekusi alur kerja pemrosesan data.

Pemantauan dan Pencatatan

Pemantauan dan pencatatan memberikan visibilitas terhadap kemajuan, kinerja, dan
kesehatan komponen alur kerja berbasis Al, memungkinkan pengembang untuk mela-
cak dan menganalisis perilaku sistem. Implementasi mekanisme pemantauan dan
pencatatan yang efektif sangat penting untuk debugging, audit, dan perbaikan berke-

lanjutan dari alur kerja cerdas.

Memantau Kemajuan dan Kinerja Alur Kerja

Untuk memastikan kelancaran eksekusi alur kerja cerdas, penting untuk memantau
kemajuan dan kinerja setiap komponen alur kerja. Ini melibatkan pelacakan metrik

dan kejadian kunci sepanjang siklus hidup alur kerja.
Beberapa aspek penting yang perlu dipantau meliputi:

1. Waktu Eksekusi Alur Kerja: Mengukur waktu yang dibutuhkan oleh setiap
komponen alur kerja untuk menyelesaikan tugasnya. Ini membantu mengidentifikasi

bottleneck kinerja dan mengoptimalkan efisiensi alur kerja secara keseluruhan.

Orkestrasi Alur Kerja Cerdas 247

2. Penggunaan Sumber Daya: Memantau penggunaan sumber daya sistem, seperti
CPU, memori, dan penyimpanan, oleh setiap komponen alur kerja. Ini membantu
memastikan bahwa sistem beroperasi dalam kapasitasnya dan dapat menangani beban

kerja secara efektif.

3. Tingkat Kesalahan dan Eksepsi: Lacak kejadian kesalahan dan eksepsi dalam
komponen alur kerja. Hal ini membantu mengidentifikasi masalah potensial dan

memungkinkan penanganan serta pemulihan kesalahan secara proaktif.

4. Titik Keputusan dan Hasil: Pantau titik-titik keputusan dalam alur kerja dan hasil
dari keputusan berbasis Al Ini memberikan wawasan tentang perilaku dan efektivitas

komponen AL

Data yang ditangkap oleh proses pemantauan dapat ditampilkan dalam dasbor atau
digunakan sebagai masukan untuk laporan terjadwal yang menginformasikan admin-

istrator sistem tentang kesehatan sistem.

’ Data pemantauan dapat diumpankan ke proses administrator sistem berba-

sis Al untuk ditinjau dan ditindaklanjuti!

Pencatatan Log Kejadian dan Keputusan Penting

Pencatatan log adalah praktik penting yang melibatkan penangkapan dan penyimpanan
informasi yang relevan tentang kejadian penting, keputusan, dan eksepsi yang terjadi

selama eksekusi alur kerja.
Beberapa aspek penting yang perlu dicatat meliputi:

1. Inisiasi dan Penyelesaian Alur Kerja: Catat waktu mulai dan selesai setiap instansi

alur kerja, beserta metadata yang relevan seperti data masukan dan konteks pengguna.

2. Eksekusi Komponen: Catat detail eksekusi setiap komponen alur kerja, termasuk

parameter masukan, hasil keluaran, dan data perantara yang dihasilkan.

© 0 N O O b W N =

I = =G
Bw N o

Orkestrasi Alur Kerja Cerdas 248

3. Keputusan AI dan Penalaran: Catat keputusan yang dibuat oleh komponen
Al beserta penalaran yang mendasarinya atau skor kepercayaan. Ini memberikan

transparansi dan memungkinkan audit keputusan berbasis Al.

4. Eksepsi dan Pesan Kesalahan: Catat setiap eksepsi atau pesan kesalahan yang
ditemui selama eksekusi alur kerja, termasuk jejak tumpukan dan informasi konteks

yang relevan.

Pencatatan log dapat diimplementasikan menggunakan berbagai teknik, seperti menulis
ke file log, menyimpan log dalam basis data, atau mengirim log ke layanan pencatatan
log terpusat. Penting untuk memilih kerangka kerja pencatatan log yang menyediakan

fleksibilitas, skalabilitas, dan integrasi yang mudah dengan arsitektur aplikasi.

Berikut adalah contoh bagaimana pencatatan log dapat diimplementasikan dalam

aplikasi Ruby on Rails menggunakan kelas ActiveSupport: :Logger:

class WorkflowlLogger

def self.log(message, severity = :info)
@logger ||= ActiveSupport::Logger.new('workflow.log")
@logger . formatter ||= proc do |severity, datetime, progname, msgl|

"#{datetime} [#{severity}] #{msg}\n"
end
@logger .send(severity, message)
end

end

Usage example
Work flowLogger . log("Workflow initiated for order ##{@order.id}")
Work flowLogger . log("Payment processing completed successfully")

Work flowLogger . log("Inventory check failed for item ##{item.id}", :error)

Dengan menempatkan pernyataan pencatatan secara strategis di seluruh komponen alur
kerja dan titik keputusan Al, pengembang dapat mengumpulkan informasi berharga

untuk debugging, audit, dan analisis.

Orkestrasi Alur Kerja Cerdas 249

Manfaat Pemantauan dan Pencatatan

Penerapan pemantauan dan pencatatan dalam orkestrasi alur kerja cerdas menawarkan

beberapa manfaat:

1. Debugging dan Pemecahan Masalah: Log terperinci dan data pemantauan
membantu pengembang mengidentifikasi dan mendiagnosis masalah dengan cepat. Ke-
duanya memberikan wawasan tentang aliran eksekusi alur kerja, interaksi komponen,

dan setiap kesalahan atau pengecualian yang ditemui.

2. Optimasi Kinerja: Pemantauan metrik kinerja memungkinkan pengembang mengi-
dentifikasi bottleneck dan mengoptimalkan komponen alur kerja untuk efisiensi yang
lebih baik. Dengan menganalisis waktu eksekusi, penggunaan sumber daya, dan
metrik lainnya, pengembang dapat membuat keputusan yang tepat untuk meningkatkan

kinerja keseluruhan sistem.

3. Audit dan Kepatuhan: Pencatatan kejadian dan keputusan penting menyediakan
jejak audit untuk kepatuhan regulasi dan akuntabilitas. Hal ini memungkinkan organ-
isasi untuk melacak dan memverifikasi tindakan yang diambil oleh komponen Al serta

memastikan kepatuhan terhadap aturan bisnis dan persyaratan hukum.

4. Perbaikan Berkelanjutan: Data pemantauan dan pencatatan berfungsi sebagai
masukan berharga untuk perbaikan berkelanjutan alur kerja cerdas. Dengan men-
ganalisis data historis, mengidentifikasi pola, dan mengukur efektivitas keputusan Al,
pengembang dapat menyempurnakan dan meningkatkan logika orkestrasi alur kerja

secara iteratif.

Pertimbangan dan Praktik Terbaik

Saat menerapkan pemantauan dan pencatatan dalam orkestrasi alur kerja cerdas,

pertimbangkan praktik terbaik berikut:

1. Tentukan Metrik Pemantauan yang Jelas: Identifikasi metrik dan kejadian utama

Orkestrasi Alur Kerja Cerdas 250

yang perlu dipantau berdasarkan persyaratan spesifik alur kerja. Fokus pada metrik

yang memberikan wawasan bermakna tentang kinerja, kesehatan, dan perilaku sistem.

2. Terapkan Pencatatan Terperinci: Pastikan pernyataan pencatatan ditempatkan
pada titik-titik yang tepat dalam komponen alur kerja dan titik keputusan Al Tangkap
informasi konteks yang relevan, seperti parameter input, hasil output, dan data peran-

tara yang dihasilkan.

3. Gunakan Pencatatan Terstruktur: Adopsi format pencatatan terstruktur untuk
memfasilitasi penguraian dan analisis data log dengan mudah. Pencatatan terstruktur

memungkinkan pencarian, penyaringan, dan pengumpulan entri log yang lebih baik.

4. Kelola Retensi dan Rotasi Log: Terapkan kebijakan retensi dan rotasi log untuk
mengelola penyimpanan dan siklus hidup file log. Tentukan periode retensi yang sesuai
berdasarkan persyaratan hukum, batasan penyimpanan, dan kebutuhan analisis. Jika

memungkinkan, alihkan pencatatan ke layanan pihak ketiga seperti Papertrail.

5. Mengamankan Informasi Sensitif: Berhati-hatilah saat mencatat informasi sensitif,
seperti informasi identitas pribadi (PII) atau data bisnis yang bersifat rahasia. Terapkan
langkah-langkah keamanan yang sesuai, seperti penyamaran data atau enkripsi, untuk

melindungi informasi sensitif dalam berkas log.

6. Integrasikan dengan Perangkat Pemantauan dan Peringatan: Manfaatkan
perangkat pemantauan dan peringatan untuk memusatkan pengumpulan, analisis,
dan visualisasi data pemantauan dan pencatatan. Perangkat-perangkat ini dapat
memberikan wawasan real-time, menghasilkan peringatan berdasarkan ambang batas
yang telah ditentukan, dan memfasilitasi deteksi dan penyelesaian masalah secara

proaktif. Perangkat favorit saya untuk hal ini adalah Datadog.

Dengan menerapkan mekanisme pemantauan dan pencatatan yang komprehensif,
pengembang dapat memperoleh wawasan berharga tentang perilaku dan kinerja alur
kerja cerdas. Wawasan ini memungkinkan debugging yang efektif, optimalisasi, dan

perbaikan berkelanjutan sistem orkestrasi alur kerja berbasis Al.

https://papertrailapp.com
https://www.datadoghq.com

Orkestrasi Alur Kerja Cerdas 251

Pertimbangan Skalabilitas dan Kinerja

Skalabilitas dan kinerja adalah aspek-aspek penting yang perlu dipertimbangkan saat
merancang dan mengimplementasikan sistem orkestrasi alur kerja cerdas. Seiring
meningkatnya volume alur kerja yang berjalan bersamaan dan kompleksitas komponen
berbasis Al, menjadi penting untuk memastikan bahwa sistem dapat menangani beban
kerja secara efisien dan dapat meningkat secara mulus untuk memenuhi permintaan

yang terus bertambah.

Menangani Volume Tinggi Alur Kerja yang Berjalan
Bersamaan

Sistem orkestrasi alur kerja cerdas sering kali perlu menangani sejumlah besar alur
kerja yang berjalan bersamaan. Untuk memastikan skalabilitas, pertimbangkan strategi-

strategi berikut:

1. Pemrosesan Asinkron: Terapkan mekanisme pemrosesan asinkron untuk
memisahkan eksekusi komponen alur kerja. Ini memungkinkan sistem untuk
menangani beberapa alur kerja secara bersamaan tanpa memblokir atau menunggu
setiap komponen selesai. Pemrosesan asinkron dapat dicapai menggunakan antrian
pesan, arsitektur berbasis event, atau kerangka kerja pemrosesan tugas latar belakang

seperti Sidekiq.

2. Arsitektur Terdistribusi: Rancang arsitektur sistem untuk menggunakan komponen
serverless (seperti AWS Lambda) atau cukup distribusikan beban kerja di beberapa
node atau server bersamaan dengan server aplikasi utama Anda. Ini memungkinkan
skalabilitas horizontal, di mana node tambahan dapat ditambahkan untuk menangani

peningkatan volume alur kerja.

3. Eksekusi Paralel: Identifikasi peluang untuk eksekusi paralel dalam alur kerja.

Beberapa komponen alur kerja mungkin tidak bergantung satu sama lain dan dapat

Orkestrasi Alur Kerja Cerdas 252

dieksekusi secara bersamaan. Dengan memanfaatkan teknik pemrosesan paralel, seperti
multi-threading atau antrian tugas terdistribusi, sistem dapat mengoptimalkan penggu-

naan sumber daya dan mengurangi waktu eksekusi alur kerja secara keseluruhan.

Mengoptimalkan Kinerja Komponen Berbasis Al

Komponen berbasis Al, seperti model pembelajaran mesin atau mesin pemrosesan
bahasa alami, dapat membutuhkan komputasi intensif dan mempengaruhi kinerja
keseluruhan sistem orkestrasi alur kerja. Untuk mengoptimalkan kinerja komponen Al,

pertimbangkan teknik-teknik berikut:

1. Penyimpanan Cache: Jika pemrosesan Al Anda bersifat murni generatif dan tidak
melibatkan pencarian informasi realtime atau integrasi eksternal untuk menghasilkan
chat completion, maka Anda dapat mempertimbangkan mekanisme penyimpanan cache
untuk menyimpan dan menggunakan kembali hasil dari operasi yang sering diakses atau

membutuhkan komputasi berat.

2. Optimasi Model: Terus optimalkan cara Anda menggunakan model Al dalam
komponen alur kerja. Ini mungkin melibatkan teknik seperti Prompt Distillation atau

mungkin hanya sebatas menguji model-model baru saat tersedia.

3. Pemrosesan Batch: Jika Anda bekerja dengan model kelas GPT-4, Anda mungkin
dapat memanfaatkan teknik pemrosesan batch untuk memproses beberapa data atau
permintaan dalam satu batch, alih-alih memprosesnya satu per satu. Dengan mem-
proses data dalam batch, sistem dapat mengoptimalkan penggunaan sumber daya dan

mengurangi beban dari permintaan model yang berulang.

Pemantauan dan Profiling Kinerja

Untuk mengidentifikasi bottleneck kinerja dan mengoptimalkan skalabilitas sistem
orkestrasi alur kerja cerdas, sangat penting untuk menerapkan mekanisme pemantauan

dan profiling. Pertimbangkan pendekatan berikut:

Orkestrasi Alur Kerja Cerdas 253

1. Metrik Kinerja: Tentukan dan pantau metrik kinerja utama, seperti waktu respons,
throughput, penggunaan sumber daya, dan latensi. Metrik ini memberikan wawasan
tentang kinerja sistem dan membantu mengidentifikasi area yang perlu dioptimalkan.
Agregator model Al populer OpenRouter menyertakan metrik Host! dan Speed? dalam

setiap respons API, memudahkan pelacakan metrik-metrik utama ini.

2. Alat Profiling: Gunakan alat profiling untuk menganalisis kinerja komponen alur
kerja individu dan operasi Al Alat profiling dapat membantu mengidentifikasi titik-titik
kritis kinerja, jalur kode yang tidak efisien, atau operasi yang membutuhkan banyak
sumber daya. Alat profiling populer termasuk New Relic, Scout, atau profiler bawaan

yang disediakan oleh bahasa pemrograman atau framework.

3. Pengujian Beban: Lakukan pengujian beban untuk mengevaluasi kinerja sistem di
bawah berbagai tingkat beban kerja konkuren. Pengujian beban membantu mengiden-
tifikasi batas skalabilitas sistem, mendeteksi penurunan kinerja, dan memastikan bahwa

sistem dapat menangani lalu lintas yang diharapkan tanpa mengorbankan kinerja.

4. Pemantauan Berkelanjutan: Terapkan mekanisme pemantauan dan peringatan
berkelanjutan untuk mendeteksi masalah kinerja dan bottleneck secara proaktif. Siap-
kan dashboard pemantauan dan peringatan untuk melacak indikator kinerja utama
(KPI) dan menerima notifikasi ketika ambang batas yang telah ditentukan terlampaui.

Hal ini memungkinkan identifikasi dan penyelesaian masalah kinerja secara cepat.

Strategi Penskalaan
Untuk menangani beban kerja yang meningkat dan memastikan skalabilitas sistem
orkestrasi alur kerja cerdas, pertimbangkan strategi penskalaan berikut:

1. Penskalaan Vertikal: Penskalaan vertikal melibatkan peningkatan sumber daya

(misalnya, CPU, memori) dari node atau server individual untuk menangani beban kerja

'Host adalah waktu yang diperlukan untuk menerima byte pertama dari generasi yang distream dari host
model, atau dikenal sebagai “time to first byte””

2Speed dihitung sebagai jumlah token completion dibagi dengan total waktu generasi. Untuk permintaan
non-stream, latensi dianggap sebagai bagian dari waktu generasi.

https://openrouter.ai

Orkestrasi Alur Kerja Cerdas 254

yang lebih tinggi. Pendekatan ini cocok ketika sistem membutuhkan daya pemrosesan

atau memori yang lebih besar untuk menangani alur kerja kompleks atau operasi Al

2. Penskalaan Horizontal: Penskalaan horizontal melibatkan penambahan lebih
banyak node atau server ke sistem untuk mendistribusikan beban kerja. Pendekatan
ini efektif ketika sistem perlu menangani sejumlah besar alur kerja konkuren atau
ketika beban kerja dapat dengan mudah didistribusikan ke beberapa node. Penskalaan
horizontal membutuhkan arsitektur terdistribusi dan mekanisme penyeimbangan beban

untuk memastikan distribusi lalu lintas yang merata.

3. Auto-Scaling: Terapkan mekanisme auto-scaling untuk menyesuaikan jumlah node
atau sumber daya secara otomatis berdasarkan permintaan beban kerja. Auto-scaling
memungkinkan sistem untuk melakukan penskalaan naik atau turun secara dinamis
tergantung pada lalu lintas yang masuk, memastikan penggunaan sumber daya yang
optimal dan efisiensi biaya. Platform cloud seperti Amazon Web Services (AWS)
atau Google Cloud Platform (GCP) menyediakan kemampuan auto-scaling yang dapat

dimanfaatkan untuk sistem orkestrasi alur kerja cerdas.

Teknik Optimasi Kinerja

Selain strategi penskalaan, pertimbangkan teknik optimasi kinerja berikut untuk

meningkatkan efisiensi sistem orkestrasi alur kerja cerdas:

1. Penyimpanan dan Pengambilan Data yang Efisien: Optimalkan mekanisme peny-
impanan dan pengambilan data yang digunakan oleh komponen alur kerja. Gunakan
pengindeksan database yang efisien, teknik optimasi query, dan caching data untuk

meminimalkan latensi dan meningkatkan kinerja operasi yang intensif data.

2. /O Asinkron: Manfaatkan operasi I/O asinkron untuk mencegah pemblokiran
dan meningkatkan daya tanggap sistem. I/O asinkron memungkinkan sistem untuk
menangani beberapa permintaan secara bersamaan tanpa menunggu operasi I/O selesai,

sehingga memaksimalkan penggunaan sumber daya.

Orkestrasi Alur Kerja Cerdas 255

3. Serialisasi dan Deserialisasi yang Efisien: Optimalkan proses serialisasi dan
deserialisasi yang digunakan untuk pertukaran data antara komponen alur kerja.
Gunakan format serialisasi yang efisien, seperti Protocol Buffers atau MessagePack,
untuk mengurangi beban serialisasi data dan meningkatkan kinerja komunikasi antar-

komponen.

Untuk aplikasi berbasis Ruby, pertimbangkan untuk menggunakan Univer-
P sal ID. Universal ID memanfaatkan MessagePack dan Brotli (kombinasi yang
dirancang untuk kecepatan dan kompresi data terbaik di kelasnya). Ketika
dikombinasikan, pustaka-pustaka ini 30% lebih cepat dan memiliki tingkat

kompresi dalam rentang 2-5% dibandingkan dengan Protocol Buffers.

4. Kompresi dan Pengkodean: Terapkan teknik kompresi dan pengkodean untuk
mengurangi ukuran data yang ditransfer antara komponen alur kerja. Algoritma
kompresi, seperti gzip atau Brotli, dapat secara signifikan mengurangi penggunaan

bandwidth jaringan dan meningkatkan kinerja sistem secara keseluruhan.

Dengan mempertimbangkan aspek skalabilitas dan kinerja selama perancangan dan
implementasi sistem orkestrasi alur kerja cerdas, Anda dapat memastikan bahwa sistem
Anda dapat menangani volume alur kerja konkuren yang tinggi, mengoptimalkan
kinerja komponen berbasis Al, dan dapat diskalakan dengan mulus untuk memenuhi
permintaan yang terus berkembang. Pemantauan berkelanjutan, profiling, dan upaya
optimasi sangat penting untuk mempertahankan kinerja dan responsivitas sistem seiring

dengan peningkatan beban kerja dan kompleksitas dari waktu ke waktu.

Pengujian dan Validasi Alur Kerja

Pengujian dan validasi merupakan aspek penting dalam pengembangan dan pemeli-
haraan sistem orkestrasi alur kerja cerdas. Mengingat sifat kompleks dari alur kerja

berbasis Al, sangat penting untuk memastikan bahwa setiap komponen berfungsi sesuai

https://github.com/hopsoft/universalid
https://github.com/hopsoft/universalid

Orkestrasi Alur Kerja Cerdas 256

harapan, alur kerja secara keseluruhan berperilaku dengan benar, dan keputusan Al
akurat dan dapat diandalkan. Dalam bagian ini, kita akan mengeksplorasi berbagai

teknik dan pertimbangan untuk menguji dan memvalidasi alur kerja cerdas.

Pengujian Unit Komponen Alur Kerja

Pengujian unit melibatkan pengujian komponen alur kerja secara individual untuk
memverifikasi kebenaran dan ketahanannya. Saat melakukan pengujian unit pada

komponen alur kerja berbasis Al, pertimbangkan hal-hal berikut:

1. Validasi Masukan: Uji kemampuan komponen dalam menangani berbagai jenis
masukan, termasuk data yang valid dan tidak valid. Verifikasi bahwa komponen dapat
menangani kasus-kasus ekstrem dengan baik dan memberikan pesan kesalahan atau

pengecualian yang sesuai.

2. Verifikasi Keluaran: Pastikan bahwa komponen menghasilkan keluaran yang
diharapkan untuk sekumpulan masukan tertentu. Bandingkan keluaran aktual dengan

hasil yang diharapkan untuk memastikan kebenarannya.

3. Penanganan Kesalahan: Uji mekanisme penanganan kesalahan komponen dengan
mensimulasikan berbagai skenario kesalahan, seperti input tidak valid, ketidaktersedi-
aan sumber daya, atau eksepsi tak terduga. Verifikasi bahwa komponen menangkap dan

menangani kesalahan dengan tepat.

4. Kondisi Batas: Uji perilaku komponen dalam kondisi batas, seperti input kosong,
ukuran input maksimum, atau nilai-nilai ekstrem. Pastikan bahwa komponen menan-
gani kondisi-kondisi ini dengan baik tanpa mengalami crash atau menghasilkan hasil

yang tidak benar.

Berikut adalah contoh uji unit untuk komponen alur kerja dalam Ruby menggunakan

kerangka kerja pengujian RSpec:

© 0 N O O b W N e

I T O
© 00 N O O b W N =~ O

Orkestrasi Alur Kerja Cerdas 257

RSpec.describe OrderValidator do
describe '#validate' do
context 'when order is valid' do
let(:order) { build(:order) }

it 'returns true' do
expect(subject.validate(order)).to be true
end

end

context 'when order is invalid' do
let(:order) { build(:order, total_amount: -100) }

it 'returns false' do
expect(subject.validate(order)).to be false
end
end
end
end

Dalam contoh ini, komponen OrderVal idator diuji menggunakan dua kasus uji: satu
untuk pesanan yang valid dan satu lagi untuk pesanan yang tidak valid. Kasus-kasus
uji ini memverifikasi bahwa metode validate mengembalikan nilai boolean yang

diharapkan berdasarkan validitas pesanan.

Interaksi Alur Kerja Pengujian Integrasi

Pengujian integrasi berfokus pada verifikasi interaksi dan aliran data antara berbagai
komponen alur kerja. Ini memastikan bahwa komponen-komponen bekerja bersama
dengan lancar dan menghasilkan luaran yang diharapkan. Ketika melakukan pengujian

integrasi pada alur kerja cerdas, pertimbangkan hal-hal berikut:

1. Interaksi Komponen: Uji komunikasi dan pertukaran data antar komponen alur
kerja. Verifikasi bahwa keluaran dari satu komponen dioper dengan benar sebagai

masukan ke komponen berikutnya dalam alur kerja.

© 0 N O O b W N =

I = T O T Y
0 N O O b W N =~ o

Orkestrasi Alur Kerja Cerdas 258

2. Konsistensi Data: Pastikan data tetap konsisten dan akurat saat mengalir melalui
alur kerja. Verifikasi bahwa transformasi data, perhitungan, dan agregasi dilakukan

dengan benar.

3. Propagasi Pengecualian: Uji bagaimana pengecualian dan kesalahan dipropa-
gasikan dan ditangani di seluruh komponen alur kerja. Verifikasi bahwa pengecualian

ditangkap, dicatat, dan ditangani dengan tepat untuk mencegah gangguan alur kerja.

4. Perilaku Asinkron: Jika alur kerja melibatkan komponen asinkron atau eksekusi
paralel, uji mekanisme koordinasi dan sinkronisasinya. Pastikan bahwa alur kerja

berperilaku dengan benar dalam skenario konkuren dan asinkron.

Berikut adalah contoh pengujian integrasi untuk alur kerja dalam Ruby menggunakan

kerangka kerja pengujian RSpec:
RSpec.describe OrderProcessingWorkflow do
let(:order) { build(:order) }

it 'processes the order successfully' do
expect(OrderValidator).to receive(:validate).and_return(true)
expect(InventoryManager).to receive(:check_availability).and_return(true)
expect(PaymentProcessor).to receive(:process_payment).and_return(true)
expect(ShippingService).to receive(:schedule_shipping).and_return(true)

workflow = OrderProcessingWorkflow.new(order)

result = workflow.process

expect(result).to be true
expect(order.status).to eq('processed')
end

end

Dalam contoh ini, OrderProcessingWork flow diuji dengan memverifikasi interaksi
antara berbagai komponen alur kerja. Kasus pengujian ini menyiapkan ekspektasi
untuk perilaku setiap komponen dan memastikan bahwa alur kerja memproses pesanan

dengan sukses, serta memperbarui status pesanan dengan sesuai.

Orkestrasi Alur Kerja Cerdas 259

Pengujian Titik Keputusan Al

Pengujian titik keputusan Al sangat penting untuk memastikan akurasi dan keandalan

alur kerja berbasis Al. Saat menguji titik keputusan Al, pertimbangkan hal-hal berikut:

1. Akurasi Keputusan: Verifikasi bahwa komponen AI membuat keputusan yang
akurat berdasarkan data masukan dan model yang telah dilatih. Bandingkan keputusan

Al dengan hasil yang diharapkan atau data acuan kebenaran.

2. Kasus-kasus Ekstrim: Uji perilaku komponen Al dalam kasus-kasus ekstrim dan
skenario tidak biasa. Verifikasi bahwa komponen Al menangani kasus-kasus ini dengan

baik dan membuat keputusan yang masuk akal.

3. Bias dan Keadilan: Evaluasi komponen Al untuk potensi bias dan pastikan bahwa
komponen tersebut membuat keputusan yang adil dan tidak bias. Uji komponen
dengan data masukan yang beragam dan analisis hasilnya untuk mencari pola-pola

diskriminatif.

4. Kemampuan Menjelaskan: Jika komponen AI memberikan penjelasan atau
alasan untuk keputusannya, verifikasi kebenaran dan kejelasan penjelasan tersebut.
Pastikan bahwa penjelasan tersebut selaras dengan proses pengambilan keputusan

yang mendasarinya.

Berikut adalah contoh pengujian titik keputusan Al dalam Ruby menggunakan kerangka
kerja pengujian RSpec:

© 0 N O O b W N e

NN N N E R R s sy s
W N PO O 0N 0w N,

Orkestrasi Alur Kerja Cerdas 260

RSpec.describe FraudDetector do
describe '#detect_fraud' do
context 'when transaction is fraudulent' do
let(:tx) do
build(:transaction, amount: 10_000, location: 'High-Risk Country')
end

it 'returns true' do
expect(subject.detect_fraud(tx)).to be true
end
end

context 'when transaction is legitimate' do
let(:tx) do
build(:transaction, amount: 100, location: 'Low-Risk Country')
end

it 'returns false' do
expect(subject.detect_fraud(tx)).to be false
end
end
end
end

Dalam contoh ini, komponen AI FraudDetector diuji dengan dua kasus pengujian:
satu untuk transaksi penipuan dan satu lagi untuk transaksi yang sah. Kasus-kasus pen-
gujian ini memverifikasi bahwa metode detect_fraud mengembalikan nilai boolean

yang diharapkan berdasarkan karakteristik transaksi.

Pengujian End-to-End

Pengujian end-to-end melibatkan pengujian seluruh alur kerja dari awal hingga akhir,
mensimulasikan skenario dunia nyata dan interaksi pengguna. Ini memastikan bahwa
alur kerja berperilaku dengan benar dan menghasilkan hasil yang diinginkan. Ketika
melakukan pengujian end-to-end untuk alur kerja cerdas, pertimbangkan hal-hal

berikut:

© 0 N O O b W N =

[T
w N =~

Orkestrasi Alur Kerja Cerdas 261

1. Skenario Pengguna: Identifikasi skenario pengguna yang umum dan uji perilaku
alur kerja dalam skenario-skenario tersebut. Verifikasi bahwa alur kerja menangani
input pengguna dengan benar, membuat keputusan yang tepat, dan menghasilkan

output yang diharapkan.

2. Validasi Data: Pastikan bahwa alur kerja memvalidasi dan membersihkan input
pengguna untuk mencegah inkonsistensi data atau kerentanan keamanan. Uji alur kerja

dengan berbagai jenis data input, termasuk data yang valid dan tidak valid.

3. Pemulihan Kesalahan: Uji kemampuan alur kerja untuk pulih dari kesalahan
dan pengecualian. Simulasikan skenario kesalahan dan verifikasi bahwa alur kerja
menanganinya dengan baik, mencatat kesalahan, dan mengambil tindakan pemulihan

yang tepat.

4. Kinerja dan Skalabilitas: Nilai kinerja dan skalabilitas alur kerja dalam berbagai
kondisi beban. Uji alur kerja dengan volume permintaan bersamaan yang besar dan

ukur waktu respons, penggunaan sumber daya, dan stabilitas sistem secara keseluruhan.

Berikut adalah contoh pengujian end-to-end untuk alur kerja dalam Ruby menggunakan
kerangka kerja pengujian RSpec dan pustaka Capybara untuk mensimulasikan interaksi

pengguna:

RSpec.describe 'Order Processing Workflow' do
scenario 'User places an order successfully' do
visit '/orders/new'
fill_in 'Product', with: 'Sample Product'’
fill_in 'Quantity', with: '2'
fill_in 'Shipping Address', with: '1283 Main St'
click_button 'Place Order'

expect(page).to have_content('Order Placed Successfully')
expect(Order.count).to eq(1)
expect(Order.last.status).to eq('processed')
end
end

Dalam contoh ini, pengujian end-to-end mensimulasikan pengguna yang melakukan

Orkestrasi Alur Kerja Cerdas 262

pemesanan melalui antarmuka web. Pengujian ini mengisi bidang-bidang formulir yang
diperlukan, mengirimkan pesanan, dan memverifikasi bahwa pesanan diproses dengan
sukses, menampilkan pesan konfirmasi yang sesuai dan memperbarui status pesanan

dalam database.

Integrasi dan Penerapan Berkelanjutan

Untuk memastikan keandalan dan kemudahan pemeliharaan alur kerja cerdas, dis-
arankan untuk mengintegrasikan pengujian dan validasi ke dalam pipeline Integrasi
dan Penerapan Berkelanjutan (CI/CD). Hal ini memungkinkan pengujian dan validasi
otomatis terhadap perubahan alur kerja sebelum diterapkan ke produksi. Pertim-

bangkan praktik-praktik berikut:

1. Eksekusi Pengujian Otomatis: Mengonfigurasi pipeline CI/CD untuk menjalankan
rangkaian pengujian secara otomatis setiap kali ada perubahan pada basis kode alur
kerja. Ini memastikan bahwa setiap regresi atau kegagalan dapat terdeteksi sejak dini

dalam proses pengembangan.

2. Pemantauan Cakupan Pengujian: Mengukur dan memantau cakupan pengujian
dari komponen alur kerja dan titik keputusan Al Targetkan cakupan pengujian yang

tinggi untuk memastikan bahwa jalur dan skenario kritis telah diuji secara menyeluruh.

3. Umpan Balik Berkelanjutan: Mengintegrasikan hasil pengujian dan metrik kualitas
kode ke dalam alur kerja pengembangan. Berikan umpan balik berkelanjutan kepada
pengembang tentang status pengujian, kualitas kode, dan masalah apa pun yang

terdeteksi selama proses CI/CD.

4. Lingkungan Staging: Menerapkan alur kerja ke lingkungan staging yang mencer-
minkan lingkungan produksi secara akurat. Lakukan pengujian dan validasi tambahan
di lingkungan staging untuk menangkap masalah yang terkait dengan infrastruktur,

konfigurasi, atau integrasi data.

5. Mekanisme Rollback: Menerapkan mekanisme rollback untuk mengantisipasi kega-

galan penerapan atau masalah kritis yang terdeteksi di produksi. Pastikan bahwa alur

Orkestrasi Alur Kerja Cerdas 263

kerja dapat dengan cepat dikembalikan ke versi stabil sebelumnya untuk meminimalkan

waktu henti dan dampak terhadap pengguna.

Dengan mengintegrasikan pengujian dan validasi di sepanjang siklus pengembangan
alur kerja cerdas, organisasi dapat memastikan keandalan, akurasi, dan kemudahan
pemeliharaan sistem berbasis Al mereka. Pengujian dan validasi rutin membantu
menangkap bug, mencegah regresi, dan membangun kepercayaan terhadap perilaku

dan hasil alur kerja.

Bagian 2: Pola-Pola

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id

Rekayasa Prompt

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id

Rekayasa Prompt 266

Rantai Pemikiran

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.
Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.
Contoh-contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.
Pembuatan Konten

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.
Pembuatan Entitas Terstruktur

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.
Panduan Agen LLM

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.
Manfaat dan Pertimbangan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Rekayasa Prompt 267

Pengalihan Mode

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Kapan Menggunakannya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Rekayasa Prompt 268

Penugasan Peran

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Kapan Menggunakannya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Rekayasa Prompt 269

Objek Prompt

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Rekayasa Prompt 270

Prompt Template

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Manfaat dan Pertimbangan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Kapan Menggunakannya:

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Rekayasa Prompt 271

10 Terstruktur

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Menskalakan Structured 10

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Manfaat dan Pertimbangan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Rekayasa Prompt 272

Perangkaian Prompt

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Kapan Menggunakannya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh: Orientasi Olympia

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Rekayasa Prompt 273

Penulis Ulang Prompt

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Rekayasa Prompt 274

Response Fencing

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Manfaat dan Pertimbangan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Penanganan Kesalahan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Rekayasa Prompt 275

Query Analyzer

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.
Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.
Implementasi

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.
Penandaan Kelas Kata (POS) dan Pengenalan Entitas Bernama (NER)

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.
Klasifikasi Maksud

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.
Ekstraksi Kata Kunci

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.
Manfaat

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Rekayasa Prompt 276

Pengolah Ulang Kueri

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Manfaat

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Rekayasa Prompt 277

Ventriloquist

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Kapan Menggunakannya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Komponen Diskret

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id

Komponen Diskret 279

Predicate

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Kapan Menggunakannya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Komponen Diskret 280

APl Facade

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Manfaat Utama

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Kapan Menggunakannya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Autentikasi dan Otorisasi

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Komponen Diskret 281

Penanganan Permintaan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Pemformatan Respons

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Penanganan Kesalahan dan Kasus-kasus Khusus

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Pertimbangan Skalabilitas dan Kinerja

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Perbandingan dengan Pola Desain Lainnya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Komponen Diskret 282

Penerjemah Hasil

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Kapan Menggunakannya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Komponen Diskret 283

Mesin Virtual

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Kapan Menggunakannya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Di Balik Keajaiban

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Spesifikasi dan Pengujian

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Komponen Diskret 284

Menentukan Perilaku

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Menulis Kasus Uji

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh: Pengujian Komponen Penerjemah

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Pengulangan Interaksi HTTP

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Human In The Loop (HITL)

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Pola-Pola Tingkat Tinggi

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Kecerdasan Hibrida

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Respons Adaptif

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Peralihan Peran Manusia-Al

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Human In The Loop (HITL) 286

Eskalasi

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Manfaat Utama

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Penerapan Dunia Nyata: Layanan Kesehatan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Human In The Loop (HITL) 287

Siklus Umpan Balik

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Aplikasi dan Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Teknik Lanjutan dalam Integrasi Umpan Balik Manusia

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Human In The Loop (HITL) 288

Radiasi Informasi Pasif

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Tampilan Informasi Kontekstual

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Notifikasi Proaktif

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Wawasan Penjelasan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Eksplorasi Interaktif

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Human In The Loop (HITL) 289

Manfaat Utama

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Aplikasi dan Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Human In The Loop (HITL) 290

Collaborative Decision Making (CDM)

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Human In The Loop (HITL) 291

Pembelajaran Berkelanjutan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Aplikasi dan Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Pertimbangan Etis

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Peran HITL dalam Mitigasi Risiko Al

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Human In The Loop (HITL) 292

Kemajuan Teknologi dan Prospek Masa Depan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Tantangan dan Keterbatasan Sistem HITL

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Penanganan Kesalahan Cerdas

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Pendekatan Tradisional dalam Penanganan

Kesalahan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Penanganan Kesalahan Cerdas 294

Diagnosis Kesalahan Kontekstual

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Rekayasa Prompt untuk Diagnosis Kesalahan Kontekstual

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Retrieval-Augmented Generation untuk Diagnosis Kesalahan
Kontekstual

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Penanganan Kesalahan Cerdas 295

Pelaporan Kesalahan Cerdas

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id

Penanganan Kesalahan Cerdas 296

Pencegahan Error Prediktif

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Pemulihan Kesalahan Cerdas

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Penanganan Kesalahan Cerdas 297

Komunikasi Kesalahan Terpersonalisasi

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Penanganan Kesalahan Cerdas 298

Alur Kerja Penanganan Kesalahan Adaptif

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Kendali Mutu

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id

Kendali Mutu 300

Eval

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Masalah

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Solusi

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Pertimbangan-pertimbangan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Kendali Mutu 301

Memahami Referensi Emas

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerja Evaluasi Bebas Referensi

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Kendali Mutu 302

Pagar Pengaman

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Masalah

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Solusi

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Cara Kerjanya

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Contoh

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Pertimbangan

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Kendali Mutu 303

Guardrails dan Evaluasi: Dua Sisi Mata Uang

yang Sama

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Ketertukaraan Pagar Pengaman dan Evaluasi Bebas
Referensi

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Mengimplementasikan Pagar Pengaman dan Evaluasi
Dwifungsi

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Glosarium

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Glosarium

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

A

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

C

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

305

D

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

G

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

H

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

306

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

K

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

M

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

N

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

(o)

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

307

P

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

Q

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

R

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

S

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

T

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

U

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

308

\'

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

w

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

yA

Konten ini tidak tersedia dalam buku sampel. Buku tersebut dapat dibeli di Leanpub

pada http://leanpub.com/patterns-of-application-development-using-ai-id.

http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id
http://leanpub.com/patterns-of-application-development-using-ai-id

Index

Agentik, 32
Al 66, 76, 101, 130, 136, 144, 152, 204, 212
aplikasi, 127, 140, 151, 164
konversasional, 7, 214
model, 91, 101, 157, 158, 160, 212
percakapan, 31
sistem majemuk, 30, 31, 34
titik keputusan, 259
aksesibilitas, 219, 220
akun, 93
aljabar linier, 43
Alpaca, 13
Altman, Sam, 18
alur kerja adaptif
Komposisi Alur Kerja Adaptif, 228
alur kerja bertahap, 113
Amazon Web Services, 254
analisis sentimen, 17, 102, 114-116, 119,
120, 136, 146
Analisis Sentimen Pelanggan, 102
antarmuka inklusif, 201
antarmuka kendali suara, 34
Antarmuka Pengguna (UI)
antarmuka, 200, 216
kerangka kerja, 216

teknologi, 211

Antarmuka Pengguna Generatif (GenUI),
200

antarmuka visual, 211

Anthropic, 23, 39, 75, 131, 138

antropomorfisme, 70

API, 73, 125, 155

aplikasi chatbot, 121

Aplikasi E-commerce, 93

aplikasi modern, 225

aplikasi pendidikan, 32

arrays, 132

arsitektur aplikasi enterprise, 38

arsitektur berbasis event, 110

Arsitektur Mikroservis, 91

arsitektur perangkat lunak, 2

arsitektur terdistribusi, 251

arsitektur transformer, 6

asisten virtual, 34

aturan bisnis, 224

aturan tata bahasa, 4

audit dan kepatuhan, 249

augmented reality glasses, 221

auto-scaling, 254

bahasa
Deteksi Bahasa, 114
model, 43, 75

Index 310

bahasa alami 193-195
Pemrosesan Bahasa Alami (NLP), 103 conversation
bahasa natural transcript, 159
Pemrosesan Bahasa Natural (NLP),
122 data
baris perintah aliran, 112
Antarmuka Baris Perintah (CLI), 26 analisis, 34, 148
basis data, 125 integritas, 242
objek berbasis, 107 Pengambilan Data, 111
basis pengetahuan, 7 persiapan, 111
basis pengetahuan Olympia, 93 persistensi, 111
BERT, 14, 24 privasi, 27, 218
bias saluran pemrosesan, 242
dan keadilan dalam Al, 259 Sinkronisasi Data, 111
Brotli, 255 tugas pemrosesan, 127
Byte Pair Encoding (BPE), 15 Validasi Data, 261
data pelatihan, 42
C (Bahasa Pemrograman), 118 Data Self-Healing, 246
Chain of Thought (CoT), 45 data streaming, 154
chatbot layanan pelanggan, 34 data terstruktur, 136
ChatGPT, 30, 54 Data yang Dapat Memperbaiki Diri, 166
Claude, 8, 44, 79 database
Claude 3, 50, 128, 131, 136, 138 strategi penguncian, 112
Claude 3 Opus, 76 Datadog, 250
Claude v1, 17 debugging
Claude v2, 17 and testing, 134
Cohere (LLM Provider), 25 dan pemecahan masalah, 249
Cohere (Penyedia LLM), 23 desain aplikasi dan kerangka kerja, 201
concurrent workflows, 255 desktop computers, 221
context deteksi penipuan
Augmentation, 46 sistem, 99

Contextual Content Generation, dictionaries, 132

Index

digital landscape, 196

direktif sistem, 130

Dohan, et al., 44

Dukungan Keputusan Klinis, 105
dukungan pelanggan, 32

Dynamic Tool Selection, 133

e-commerce, 194, 224
efisiensi, 225
ekosistem, 149
eksekusi paralel, 252
eksperimen
kerangka, 196
ELK stack, 112
ensembel, 120
ensembel pekerja, 120
ensemble, 119
Enterprise Integration Patterns, 106
error
penanganan, 144
errors
Intelligent Error Handling, 144
etika

implikasi, 201

F#, 95

Facebook, 24

faktor risiko, 97, 98

few-shot
pembelajaran, 63
prompting, 64

fine-tuning, 82

FitAl 213

311

fleksibilitas dan kreativitas, 198
Forced Tool Selection, 133
fungsi

nama, 156

pemanggilan, 125, 159

riwayat pemanggilan, 158

Gemma 7B, 11
Generasi Berbasis Pengambilan (RAG), 32
generasi lintas modal, 22
Generasi yang Diperkaya Pengambilan
(RAG), 127
Generative Pre-trained Transformer (GPT),
8, 69
Generative UI (GenUI), 207, 208
GitLab, 95
Global Interpreter Lock (GIL), 117
Google, 23
API, 64, 66
Cloud AI Platform, 24
Cloud Platform, 254
Gemini, 21
Gemini 1.5 Pro, 14, 17, 18
PaLM (Pathways Language Model),

17, 24
T5, 14
GPT-3, 13, 17

GPT-4, 6, 13, 17, 21, 31, 44, 50, 64, 107, 119,
122, 129, 135, 206, 252

Graham, Paul, 19

GraphQL, 110

Grogq, 26, 122

Index

gzip, 255

hambatan, 228

hash, 154

Hohpe, Gregor, 106
Honeybadger, 96

HTTP, 152

Human-In-The-Loop (HITL), 181
hyperparameter, 47

identifikasi topik, 122
ilmu komputer, 72, 74
Inferensi, 5
informasi
ekstraksi, 54
pengambilan, 7, 128
injeksi SQL, 72
input
prompts, 57
validation, 256
Integrasi dan Penerapan Berkelanjutan
(CI/CD), 262
pipeline, 262
intelligent workflow orchestration, 255
interaksi gaya bermain peran, 7
internasionalisasi, 197
Interpreter Hasil, 143
intervensi manual, 230

iterative refinement, 145

jaringan saraf, 4, 6
JSON (JavaScript Object Notation), 128,
132, 133, 136, 149, 169

312

K-means, 124
karyawan Databricks, 53
kasus-kasus khusus, 59
kegagalan pemanggilan fungsi, 135
Kelanjutan Otomatis, 162
kemampuan menjelaskan, 259
kemampuan pengambilan keputusan, 101
kepercayaan pengguna, 219
keputusan

pohon, 224

titik, 247
kerangka kerja pengembangan, 150
kesalahan

pemulihan, 261

penanganan, 109, 112, 256

tingkat, 112
kinerja

masalah, 253

optimasi, 134, 249

trade-off, 5
klasifikasi, 54, 122
kondisi batas, 256
konektivitas jaringan, 229
konsistensi

dan reproduksibilitas, 134
konteks

input tak terbatas, 16

jendela, 15, 227

Pembuatan Konten Kontekstual, 189,

201, 202
pengambilan keputusan kontekstual,

227

Index

Saran Isian Kontekstual, 203
konten

Kategorisasi Konten, 114

penyaringan, 27
konten buatan pengguna, 113
Kuantisasi, 28

kustomisasi, 27

language
models, 67
Large Language Model (LLM), 29, 136, 145,
148, 169
latensi, 28
Latent Dirichlet Allocation, 124
layanan atau API eksternal, 128
lingkungan pengembangan lokal, 157
lingkungan staging, 262
Llama, 13
Llama 2-70B, 51
Llama 3 70B, 11
Llama 3 8B, 11
logika pemutus sirkuit, 164

Louvre, 42

Managed Streaming for Apache Kafka, 41
manajemen lalu lintas, 33

manajemen pengetahuan, 32

Markdown, 148

masalah kegunaan, 218

mekanisme retry, 112

mekanisme rollback, 262

Memorial Sloan Kettering Cancer Center,

41

313

mempersempit jalur, 38, 39
mengintegrasikan LLM, 190
Mercury (dewa Romawi), 45
Mercury (planet), 45
Mercury (unsur kimia), 45
MessagePack, 255
Meta, 24
metode finalize, 158, 160, 161
Metropolitan Museum of Art, 42
Mistral, 25
7B, 11
7B Instruct, 17, 206
Mixtral
8x22B, 11
8x7B, 57
Model Bahasa Besar (LLM), 1, 3, 16, 18, 68,
70, 73, 77,79, 89, 113, 122, 125,
126, 142, 146, 166, 189, 200, 206,
211, 234
lanskap, 27
model berbasis pengambilan, 7
model dasar, 55
model grafis, 43
model probabilistik, 43
Moderator Konten Cerdas, 235
modularitas, 90
Multi-Agen
Pemecah Masalah, 31
Multimodal
model, 20
model bahasa, 21

Multitude of Workers, 121, 168

Index

nada emosional, 146
Naive Bayes, 123
New Relic, 253

Ollama, 25
Olympia, 34, 64, 130, 144, 153, 169
OpenAl, 4, 23, 39, 75
OpenRouter, 27, 28, 153, 253
OPT model, 24
optimasi
kinerja, 198
optimistic locking, 112
orkestrasi alur kerja cerdas, 223, 231, 252

output verification, 256

parafrase, 54
parameter
efek, 130
Jumlah Parameter, 28
masukan, 130
rentang, 11
pelacakan metrik kunci, 246
pelatihan instruksi
model yang dilatih dengan instruksi,
50, 53
pemanggilan alat, 155
pemantauan
dan pencatatan, 112, 248
dan peringatan, 229
metrik, 250
Pemantauan Risiko Berkelanjutan, 105
Pembangkitan Tertambah Pengambilan

(RAG), 38

314

pembangunan narasi, 20
Pembatasan Respons, 179
Pembelajaran Satu Contoh, 62
pembelajaran tanpa contoh, 60, 61
pembelajaran tanpa pengawasan, 4
Pembersihan Teks, 114
pembuatan data sintetis, 54
pembuatan UI dinamis, 190
pemodelan auto-regresif, 43
pemrograman fungsional, 94
pemrosesan aliran, 164

logika, 160
pemrosesan asinkron, 251
pemrosesan batch, 252
pemrosesan stream, 152, 158
pemungutan suara mayoritas, 119
penalti pengulangan, 52
Penalty Kehadiran, 49
penandaan gaya markup, 72
penangan stream, 153
penanganan eksepsi, 231
penanganan pengecualian, 228
pencarian dan perbaikan bug, 227
pencatatan audit, 108
pencatatan terperinci, 250
pencatatan terstruktur, 250
pencocokan pola, 154
penemuan medis, 103
penerjemahan, 17
pengalaman pengguna, 196
pengambilan

keputusan kasus, 135

Index 315

pengelompokan dokumen, 122 personalization
pengembangan aplikasi, 223 Personalized Microcopy, 208
penggunaan alat, 125, 150 Perutean Tugas Dinamis, 226
Pengkodean Pasangan Byte (BPE), 13 pesan pemicu, 106
pengujian end-to-end, 260, 261 pessimistic locking, 112
pengujian integrasi, 257 pola historis, 227
pengujian pengguna dan umpan balik, 199 pola utama, 226
Pengumpulan Riwayat Medis, 103 prediksi, 5
pengungkapan progresif, 209 prinsip hak akses minimal, 73
Penilaian dan Stratifikasi Gejala, 103 Process Manager, 106, 109
penugasan tiket, 242 Enterprise Integration, 231
penulisan kreatif, 34, 54 Produktivitas, 192
penyaringan berbasis konten, 94 prompt
penyaringan kolaboratif, 94 desain, 59, 69
penyedia hosting model open source, 207 Distilasi Prompt, 75
penyelesaian berkinerja tinggi, 26 penyempurnaan, 70
penyempurnaan iteratif, 77 Penyulingan Prompt, 80
penyetelan instruksi, 10 perangkaian, 60
penyimpanan cache, 252 perantaian, 73
perangkat keras, 28 Prompt Distillation, 252
perangkuman, 54 Prompt Object, 76
perantaian pekerja Al, 113 rekayasa, 61, 68
percakapan Templat Prompt, 61
perulangan, 159 prompts
putaran, 161 engineering, 41, 45, 46, 57, 66, 217
transkrip, 161 Prompt Distillation, 46
perencanaan tanggap darurat, 33 Prompt Template, 207
perilaku deterministik, 59 properti ACID, 112
peritel daring, 207 proses distilasi, 78
Perplexity (Provider), 12 Protocol Buffers, 255
personalisasi, 190, 220, 225 psikologi pengguna, 217

Formulir yang Dipersonalisasi, 202 pustaka Capybara, 261

Index

PyTorch, 25

Qwen2 70B, 11

Rails, 197
Railway Oriented Programming (ROP), 97
Raix, 232

pustaka, 99
Rangkaian Pemikiran (CoT), 140
ranker, 35
rantai pasok

optimasi, 33
regresi linear, 43
Rekomendasi Produk, 94
rekomendasi produk yang dipersonalisasi,

94
Response Fencing, 207
retensi dan rotasi log, 250
Retrieval Augmented Generation (RAG),
46, 81

RSpec, 256, 258, 261
ruang laten, 40, 42
Ruby, 95, 96, 115, 165, 261
Ruby on Rails, 1, 113, 231, 239
Rudall, Alex, 23
Rust (Bahasa Pemrograman), 118

Rust (Programming Language), 95

Scout, 253

server-sent events (SSE), 152
sistem publikasi-langganan, 110
sistem tanya-jawab, 7

skalabilitas, 225, 251

316

smartphones, 221

stateless, 159

strategi fallback, 112

strategi motivasi, 215

strategi segmentasi dan penargetan, 196
Stratifikasi Risiko, 105

Stripe, 131

Structured IO, 207

Support Vector Machines (SVM), 123
syntax errors, 133

system directive, 101

T5, 24
tablets, 221
tantangan konseptual dan praktis, 201
tanya jawab tertutup dan terbuka, 54
Temperatur, 55
teori pikiran, 40
terjemahan, 198
throughput, 28
Together.ai, 26
token, 6, 13
tokenisasi, 13
Top-k sampling, 48
Top-p (nucleus) sampling, 48
tragedy of the commons, 193
tugas
terkait bahasa, 5

tugas kompleks, 147

Ul adaptif, 210
UI Generatif (GenUI), 212, 216, 220

umpan balik

Index

Siklus Umpan Balik, 60
Unicode-encodable language, 15
Universal ID, 255
User Interface (UI)

design, 221

Ventriloquist, 179

Verifikasi Asuransi, 104

317

Waktu ke Token Pertama (TTFT), 28
waktu pemrosesan, 112

Wall, Larry, 3

Wisper, 96, 108, 153, 160

Wooley, Chad, 95

XML, 136

Yi-34B, 51

	Daftar Isi
	Kata Pengantar oleh Gregor Hohpe
	Kata Pengantar
	Tentang Buku Ini
	Tentang Contoh Kode
	Yang Tidak Saya Bahas
	Untuk Siapa Buku Ini
	Membangun Kosakata Umum
	Cara Terlibat
	Ucapan Terima Kasih
	Bagaimana dengan ilustrasinya?
	Tentang Lean Publishing
	Tentang Penulis

	Pendahuluan
	Pemikiran tentang Arsitektur Perangkat Lunak
	Apa itu Model Bahasa Besar?
	Memahami Inferensi
	Mempertimbangkan Kinerja
	Bereksperimen Dengan Model LLM yang Berbeda
	Sistem AI Majemuk

	Bagian 1: Pendekatan & Teknik Fundamental
	Mempersempit Jalur
	Ruang Laten: Sangat Luas Tak Terpahami
	Bagaimana Jalur Tersebut ``Dipersempit''
	Model Mentah Versus Model yang Dilatih dengan Instruksi
	Rekayasa Prompt
	Distilasi Prompt
	Bagaimana dengan fine-tuning?

	Retrieval Augmented Generation (RAG)
	Apa itu Retrieval Augmented Generation?
	Bagaimana RAG Bekerja?
	Mengapa Menggunakan RAG dalam Aplikasi Anda?
	Mengimplementasikan RAG dalam Aplikasi Anda
	Pemecahan Proposisi
	Contoh RAG dalam Dunia Nyata
	Intelligent Query Optimization (IQO)
	Perangkingan Ulang
	Penilaian RAG (RAGAs)
	Tantangan dan Prospek Masa Depan

	Banyaknya Pekerja
	Pekerja AI Sebagai Komponen Mandiri yang Dapat Digunakan Kembali
	Pengelolaan Akun
	Aplikasi E-commerce
	Aplikasi Kesehatan
	AI Worker sebagai Process Manager
	Mengintegrasikan AI Worker ke Dalam Arsitektur Aplikasi Anda
	Kemampuan Komposisi dan Orkestrasi Pekerja AI
	Menggabungkan NLP Tradisional dengan LLM

	Penggunaan Alat
	Apa itu Penggunaan Alat?
	Potensi Penggunaan Alat
	Alur Kerja Penggunaan Alat
	Praktik Terbaik untuk Penggunaan Tool
	Menyusun dan Merantai Alat
	Arah Masa Depan

	Pemrosesan Stream
	Mengimplementasikan ReplyStream
	``Putaran Percakapan''
	Kelanjutan Otomatis
	Kesimpulan

	Data yang Dapat Memperbaiki Diri
	Studi Kasus Praktis: Memperbaiki JSON yang Rusak
	Pertimbangan dan Kontraindikasi

	Pembuatan Konten Kontekstual
	Personalisasi
	Produktivitas
	Iterasi dan Eksperimen Cepat
	Lokalisasi Bertenaga AI
	Pentingnya Pengujian Pengguna dan Umpan Balik

	Generative UI
	Menghasilkan Teks untuk Antarmuka Pengguna
	Mendefinisikan UI Generatif
	Contoh
	Peralihan ke Desain Berorientasi Hasil
	Tantangan dan Pertimbangan
	Prospek dan Peluang Masa Depan

	Orkestrasi Alur Kerja Cerdas
	Kebutuhan Bisnis
	Manfaat Utama
	Pola-pola Utama
	Penanganan dan Pemulihan Pengecualian
	Mengimplementasikan Orkestrasi Alur Kerja Cerdas dalam Praktik
	Pemantauan dan Pencatatan
	Pertimbangan Skalabilitas dan Kinerja
	Pengujian dan Validasi Alur Kerja

	Bagian 2: Pola-Pola
	Rekayasa Prompt
	Rantai Pemikiran
	Pengalihan Mode
	Penugasan Peran
	Objek Prompt
	Prompt Template
	IO Terstruktur
	Perangkaian Prompt
	Penulis Ulang Prompt
	Response Fencing
	Query Analyzer
	Pengolah Ulang Kueri
	Ventriloquist

	Komponen Diskret
	Predicate
	API Facade
	Penerjemah Hasil
	Mesin Virtual
	Spesifikasi dan Pengujian

	Human In The Loop (HITL)
	Pola-Pola Tingkat Tinggi
	Eskalasi
	Siklus Umpan Balik
	Radiasi Informasi Pasif
	Collaborative Decision Making (CDM)
	Pembelajaran Berkelanjutan
	Pertimbangan Etis
	Kemajuan Teknologi dan Prospek Masa Depan

	Penanganan Kesalahan Cerdas
	Pendekatan Tradisional dalam Penanganan Kesalahan
	Diagnosis Kesalahan Kontekstual
	Pelaporan Kesalahan Cerdas
	Pencegahan Error Prediktif
	Pemulihan Kesalahan Cerdas
	Komunikasi Kesalahan Terpersonalisasi
	Alur Kerja Penanganan Kesalahan Adaptif

	Kendali Mutu
	Eval
	Pagar Pengaman
	Guardrails dan Evaluasi: Dua Sisi Mata Uang yang Sama

	Glosarium
	Glosarium
	Index

