

एआई का उपयोग करके एܚࣇकेशन वकासࣆ के
पैटनर् हंदीࣅ) सं࠭रण)
Obie Fernandez
यह ࣹकताब
http://leanpub.com/patterns-of-application-development-using-ai-hi पर
ࣺबक्रࣞ के ࣽलए उपलނ ह।ै

यह संࡡरण 2025-01-23 को प्रकाऀशत हुआ था

यह एक Leanpub कࣞ पुࡰक ह।ै Leanpub लेखकों और प्रकाशकों को लࣜन
प्रकाशन प्रࣺक्रया ाराڙ सक्षम बनाता ह।ै Lean Publishing एक प्रगࣻतशील ईबुक
प्रकाऀशत करने कࣞ ࣺक्रया है ऀजसमें सरल उपकरणों और अनेक पुनरावृࣾـयों के
माۀम से पाठकों से प्रࣻतࣺक्रया प्रा݆ करने के ࣽलए, पुࡰक को तब तक बदलते रहें
जब तक ࣹक आप सहࣚ पुࡰक नहࣟ बना लेते, और एक बार आप ऐसा कर लेते हैं,
तो अपनी पुࡰक के प्रचार में सफलता प्रा݆ कर सकें ।

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-hi
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

इस पु࠼क के बारे में ֎ीट करें!
कृपया Obie Fernandez कࣞ मदद करें और इस पुࡰक के बारे में Twitter पर
शށ फैलाएं!
इस पुࡰक के ࣽलए सुझाया गया हशैटगै #poaduai ह।ै
ׂࣼटर पर इस हशैटगै कࣞ खोज करके अ۠ लोग इस पुࡰक के बारे में Ѻा कह रहे
हैं, यह जानने के ࣽलए इस ࣽलंक पर ࣺѻक करें:
#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

मेरࣜ दुधर्षर् रानी, मेरࣜ प्रेरणा, मेरࣜ իोࣻत और मेरा प्रेम, ࣺवѮोिरया को

Also By Obie Fernandez
Patterns of Application Development Using AI
The Rails 8 Way
The Rails 7 Way
XML The Rails Way
Serverless
El Libro Principiante de Node
The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

वषयࣆ सूची

ग्रेगर होܖ ٥ारा प्राдथन . i

प्र࠼ावना . ii
पुࡰक के बारे में . iii
कोड उदाहरणों के बारे में . iii
मैं Ѻा नहࣟ कवर करता . iii
यह पुࡰक ࣹकसके ࣽलए है . iii
एक सामा۠ शށावलࣜ का ࣺनमЄण . iii
शाࣻमल होना . iv
आभार . iv
ࣿचत्रों के बारे में Ѻा ह?ै . iv
लࣜन पउऀވशंग के बारे में . iv
लेखक के बारे में . v

पिरचय . 1
सॉݨवेयर आࣹकॼ टѫेर पर ࣺवचार . 2
बृहत भाषा मॉडल Ѻा ह?ै . 3
अनुमान को समझना . 5
प्रदशर्न के बारे में सोचना . 28
ࣺवࣾभۚ LLM मॉड߶ के साथ प्रयोग . 30
संयुѱ एआई ऀस࡫म . 31

ࣺवषय सूची

भाग 1: मौࣈलक दृࠋࣇकोण और तकनीकें 39
पथ को संकࢩणर् करें . 40
लेटेंट :सेࡵ अक߫नीय ࣺवशाल . 42
मागर् कैसे “संकࣞणर्” होता है . 46
रॉ बनाम इं्࡫रѮ-۔ू׀ मॉड߶ . 50
प्रॉम्݂ इंजीࣺनयिरंग . 57
प्रॉम्݂ ࣺडऊ࡫लेशन . 74
फाइन-ࣺू׀ नंग के बारे में Ѻा? . 81

िरट्र ीवल ऑगमेंटेड जेनरेशन (RAG) . 83
िरट्र ीवल ऑगमेंटडे जेनरेशन Ѻा ह?ै . 83
RAG कैसे काम करता ह?ै . 83
आपके एࣺݎकेशन में RAG का उपयोग Ѻों करें? 83
अपने एࣺݎकेशन में RAG को लागू करना 83
प्रࡰाव खंडीकरण . 84
RAG के वाࣺࡰवक-दुࣺनया के उदाहरण . 85
बुआڔमान प्रࠫ अनुकूलन (IQO) . 85
पुनः क्रमांकन . 85
RAG मू߰ांकन (RAGAs) . 85
चुनौࣻतयां और भࣺवࡈ का दृࣼ࠿कोण . 87

कायर्कतЂओं कࢩ बहुलता . 90
तंत्रࡼ पुन: प्रयोի घटकों के रूप में एआई कायर्कतЄ 91
खाता प्रबंधन . 93
ई-कॉमसर् अनुप्रयोग . 94
ࢋाࡼ सेवा अनुप्रयोग . 103
AI वकॼ र एक प्रोसेस मैनेजर के रूप में 107
अपने एࣺݎकेशन आࣹकॼ टѫेर में एआई वकॼ सर् को एकࣞकृत करना 111
AI वकॼ सर् कࣞ संयोजनीयता और ऑकϺ्࡫र शेन 114

ࣺवषय सूची

पारंपिरक एनएलपी को एलएलएम के साथ जोड़ना 123

उपकरण का उपयोग . 127
टूल का उपयोग Ѻा ह?ै . 127
उपकरण उपयोग कࣞ संभावनाएं . 129
उपकरण उपयोग कायर्प्रवाह . 130
उपकरण उपयोग कࣞ सवЉـम प्रथाएं . 145
उपकरणों का संयोजन और श्रृखंलाबڔ करना 150
भࣺवࡈ कࣞ ࣺदशाएं . 152

र्࠷ ीम प्रोसे࣊संग . 154
ReplyStream का कायЄۢयन . 155
“वातЄलाप लूप” . 161
चाࣽलतࡼ ࣺनरंतरता . 164
ࣺन࠻षर् . 166

ࢧउपचार-ࡈ डेटा . 168
ࠖावहािरक केस :डी࡫ टूटे हुए JSON को ठीक करना 171
ࣺवचारणीय ࣺबंदु और प्रࣻतसंकेत . 176

संदभर्-आधािरत सामग्री नमЂणࣄ . 191
वैयࣼѱकरण . 192
उمादकता . 194
ٌिरत पुनरावृࣾـ और प्रयोग . 196
एआई संचाࣽलत ानीयकरणࡱ . 199
उपयोगकतЄ परࣜक्षण और प्रࣻतࣺक्रया का महٌ 201

जेनरेࣅटव यूआई . 202
उपयोगकतЄ इंटरफ़ेस के ࣽलए कॉपी जनरेट करना 203
जनरेࣺटव यूआई को पिरभाࣻषत करना . 213
उदाहरण . 215

ࣺवषय सूची

पिरणाम-उ۟खु ࣺडज़ाइन कࣞ ओर बदलाव 218
चुनौࣻतयां और ࣺवचारणीय ࣺबंदु . 219
भࣺवࡈ का दृࣼ࠿कोण और अवसर . 221

बु࣎٠मान कायर्प्रवाह समڮय . 225
ࠖावसाࣻयक आव࠮कता . 226
प्रमुख लाभ . 227
प्रमुख पैटनर् . 227
अपवाद प्रबंधन और पुनप्रЄࣺ݆ . 230
बुआڔमान कायर्प्रवाह संयोजन को ࠖवहार में लागू करना 233
ࣺनगरानी और लॉࣻगंग . 248
मापनीयता और प्रदशर्न ࣺवचार . 253
वकॼ फ़्लोज़ का परࣜक्षण और सيापन . 258

भाग 2: पैटڱर् .266
प्रॉम्܎ इंजीࣄनयिरंग . 267
ࣺवचार श्रृखंला . 268
मोड ऋࡼच . 270
भूࣻमका ࣺनधЄरण . 271
Prompt Object . 272
प्रॉम्݂ टेޮ लेट . 273
संरࣿचत इनपुट-आउटपुट . 274
प्रॉम्݂ चेࣺनंग . 275
प्रॉम्݂ रࣜराइटर . 276
रेࡵॉۥ फेऊۥगं . 277
Ѽेरࣜ एनालाइज़र . 278
Query Rewriter . 280
Ventriloquist . 281

ࣺवषय सूची

ڦभࣉवࣆ घटक . 282
प्रेࣺडकेट . 283
एपीआई फसाड . 284
Result Interpreter . 287
वचुर्अल मशीन . 288
ࣺवࣺनदϺशन और परࣜक्षण . 288

मानव-इन-द-लूप (HITL) . 290
उՂ-ࡰरࣜय पैटनर् . 290
एेࡡलेशन . 292
प्रࣻतࣺक्रया चक्र . 293
ࣺनआࡎय सूचना प्रसारण . 294
सहयोगाىक ࣺनणर्य लेना (CDM) . 296
सतत सीखने कࣞ प्रࣺक्रया . 297
नैࣻतक ࣺवचार . 297
तकनीकࣞ प्रगࣻत और भࣺवࡈ का दृࣼ࠿कोण 298

बु࣎٠मान तु्रࣅट प्रबंधन . 299
पारंपिरक त्रुࣺ ट प्रबंधन दृࣼ࠿कोण . 299
संदभर्गत त्रुࣺ ट ࣺनदान . 300
बुआڔमान त्रुࣺ ट िरपोࣺट϶ग . 301
पूवЄनुमाࣺनत त्रुࣺ ट ࣺनवारण . 302
ाटॼࡹ त्रुࣺ ट पुनप्रЄࣺ݆ . 302
ࠖࣼѱगत त्रुࣺ ट संचार . 303
अनुकूलࣜ त्रुࣺ ट प्रबंधन कायर्प्रवाह . 304

गुणव،ा नयंत्रणࣄ . 305
Eval . 306
सुरक्षा सीमा . 308
सुरक्षा ࣺनयंत्रण और मू߰ांकन: एक हࣚ ऀसѨे के दो पहलू 309

शݍकोश .310
शށकोश . 310

Index . 316

ग्रेगर होܖ ٥ारा प्राдथन
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्र࠼ावना
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रࡰावना iii

पु࠼क के बारे में
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

कोड उदाहरणों के बारे में
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

मैं цा नहीं कवर करता
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह पु࠼क कसकेࣅ लएࣈ है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

एक सामाڬ शݍावलࢨ का नमЂणࣄ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रࡰावना iv

hi पर।

शाࣆमल होना
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

आभार
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

चत्रोंࣉ के बारे में цा है?
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

लࢨन प࣑࣊ݔशंग के बारे में
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रࡰावना v

लेखक के बारे में
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

पिरचय

यࣺद आप अपनी प्रोग्राࣻमंग पिरयोजनाओं में एआई लाजर् लैंӎेज मॉड߶ (एलएलएम)
को एकࣞकृत करने के ࣽलए उُकु हैं, तो बाद के अۀायों में प्रࡰतु पैटनर् और कोड
उदाहरणों में सीधे डूब जाएं। हालांࣹक, इन पैटनर् कࣞ शࣼѱ और संभावना को पूरࣜ
तरह से समझने के ࣽलए, ࠖापक संदभर् और उनके ाराڙ प्रࡰतु एकजुट दृࣼ࠿कोण को
समझने में कुछ समय लगाना उपयोगी होगा।
ये पैटनर् केवल अलग-अलग तकनीकों का संग्रह नहࣟ हैं, बऍߛ आपके एࣺݎकेशन में
एआई को एकࣞकृत करने के ࣽलए एक एकࣞकृत फे्रमवकॼ हैं। मैं Ruby on Rails का
उपयोग करता हू,ं लेࣹकन ये पैटनर् लगभग ࣹकसी भी अ۠ प्रोग्राࣻमंग वातावरण में काम
करने चाࣹहए। ये डटेा प्रबंधन और प्रदशर्न अनुकूलन से लेकर यूजर एѾपीिरयंस
और सुरक्षा तक, कई ࣿचंताओं को संबोࣾधत करते हैं, जो एआई कࣞ क्षमताओं के साथ
पारंपिरक प्रोग्राࣻमंग प्रथाओं को बढ़ाने के ࣽलए एक ࠖापक टूलࣹकट प्रदान करते हैं।
पैटनर् कࣞ प्रيके श्रणेी एक ࣺवऀश࠿ चुनौती या अवसर को संबोࣾधत करती है जो आपके

पिरचय 2

एࣺݎकेशन में एआई घटकों को शाࣻमल करते समय उۚم होती ह।ै इन पैटनर् के बीच
संबंधों और तालमेल को समझकर, आप एआई को सबसे प्रभावी ढगं से कहां और
कैसे लागू करना ह,ै इस बारे में सूࣿचत ࣺनणर्य ले सकते हैं।
पैटनर् कभी भी ࣺनदϺशाىक समाधान नहࣟ होते और उंेۦ ऐसा नहࣟ माना जाना चाࣹहए।
वे अनुकूलन योӌ ࣺबउߤगं ॉकވ होने के ࣽलए बनाए गए हैं ऀजंेۦ आपके अपने ࣺवऀश࠿
एࣺݎकेशन कࣞ अनूठी आव࠮कताओं और सीमाओं के अनुरूप बनाया जाना चाࣹहए।
इन पैटनर् का सफल अनुप्रयोग (सॉݨवेयर क्षेत्र में ࣹकसी अ۠ कࣞ तरह) समࡺा डोमेन,
उपयोगकतЄ कࣞ जरूरतों और आपकࣞ पिरयोजना कࣞ समग्र तकनीकࣞ आࣹकॼ टѫेर कࣞ
गहरࣜ समझ पर ࣺनभर्र करता ह।ै

सॉܴवेयर आࣅकॳ टेзर पर वचारࣆ
मैंने 1980 के दशक में प्रोग्राࣻमंग शुरू कࣞ और हकैर समुदाय में शाࣻमल था, और
पेशेवर सॉݨवेयर डवेलपर बनने के बाद भी मैंने अपनी हकैर मानऀसकता को कभी
नहࣟ खोया। शुरू से हࣚ, मुझे हमेशा इस बात पर ࡱࡼ संदहे था ࣹक अपने आइवरࣜ
टावर में बैठे सॉݨवेयर आࣹकॼ टके्ׅ वाࡰव में Ѻा मू߰ लाते हैं।
एआई तकनीक कࣞ इस शࣼѱशालࣜ नई लहर ाराڙ लाए गए पिरवतर्नों के बारे
में मैं ࠖࣼѱगत रूप से इतना उُाࣹहत होने का एक कारण यह है ࣹक यह
सॉݨवेयर आࣹकॼ टѫेर ࣺनणर्यों पर Ѻा प्रभाव डालता ह।ै यह हमारࣜ सॉݨवेयर
पिरयोजनाओं को ࣺडजाइन और कायЄअۢत करने के “सहࣚ” तरࣜके कࣞ पारंपिरक
धारणाओं को चुनौती दतेा ह।ै यह इस बात को भी चुनौती दतेा है ࣹक Ѻा आࣹकॼ टѫेर
को अभी भी मुҷ रूप से ऀस࡫म के उन ࣹहࡿों के रूप में सोचा जा सकता है ऀजंेۦ
बदलना मुऊࠤल ह,ै Ѻोंࣹक एआई एۦांसमेंट ࣹकसी भी समय आपकࣞ पिरयोजना के
ࣹकसी भी ࣹहेࡿ को बदलना पहले से कहࣟ अࣾधक आसान बना रहा ह।ै
शायद हम सॉݨवेयर इंजीࣺनयिरंग के “उـर-आधुࣺनक” दृࣼ࠿कोण के शीषर् वषЊ में
प्रवेश कर रहे हैं। इस संदभर् में, उـर-आधुࣺनक का अथर् है परंपरागत प्रࣻतमानों से एक
मौࣽलक बदलाव, जहाँ डवेलपसर् हर कोड कࣞ पंࣼѱ को ࣽलखने और उसके रखरखाव के
ࣽलए ऀज޲देार थे। इसके बजाय, यह डटेा में हरेफेर, जࣺटल एߝोिरچ, और यहां तक

पिरचय 3

ࣹक एࣺݎकेशन लॉऀजक के पूरे ࣹहࡿों को थडॼ-पाट॑ लाइब्ररेࣜ और बाहरࣜ एपीआई को
सौंपने के ࣺवचार को अपनाता ह।ै यह उـर-आधुࣺनक बदलाव एࣺݎकेशन को शुरू से
बनाने कࣞ पारंपिरक सोच से एक महٌपूणर् प्रࡱान का प्रतीक ह,ै और यह डवेलपसर्
को ࣺवकास प्रࣺक्रया में अपनी भूࣻमका पर पुनࣺवर्चार करने कࣞ चुनौती दतेा ह।ै
मैं हमेशा से मानता आया हूं ࣹक अՃे प्रोग्रामर केवल वहࣚ कोड ࣽलखते हैं जो ࣺबुߛल
आव࠮क ह,ै जो Larry Wall और उनके जैसे अ۠ हकैर ࣺदҿजों कࣞ ऀशक्षाओं पर
आधािरत ह।ै ࣽलखे गए कोड कࣞ मात्रा को कम करके, हम तेजी से आगे बढ़ सकते
हैं, बӏ के ࣽलए सतह क्षेत्र को कम कर सकते हैं, रखरखाव को सरल बना सकते हैं,
और अपने एࣺݎकेशन कࣞ समग्र ࣺव࠰सनीयता में सुधार कर सकते हैं। कम कोड हमें
मुҷ ࠖावसाࣻयक तकॼ और उपयोगकतЄ अनुभव पर ानۀ कें ࣺद्रत करने कࣞ अनुमࣻत
दतेा ह,ै जबࣹक अ۠ कायЊ को अ۠ सेवाओं को सौंप ࣺदया जाता ह।ै
अब जबࣹक AI-संचाࣽलत ऀस࡫म उन कायЊ को संभाल सकते हैं जो पहले केवल
मानव-ࣽलंखत कोड का क्षेत्र था, हमें और भी अࣾधक उمादक और चुࡰ होने में
सक्षम होना चाࣹहए, ࠖावसाࣻयक मू߰ और उपयोगकतЄ अनुभव बनाने पर पहले से
कहࣟ अࣾधक ानۀ कें ࣺद्रत कर सकते हैं।
बेशक AI ऀस࡫म को अपनी पिरयोजना के बड़े ࣹहࡿों को सौंपने के नुकसान भी
हैं, जैसे ࣺनयंत्रण कࣞ संभाࣺवत हाࣺन, और मजबूत ࣺनगरानी और प्रࣻतࣺक्रया तंत्र कࣞ
आव࠮कता। इसीࣽलए इसके ࣽलए कौशल और ज्ञान के एक नए सेट कࣞ आव࠮कता
होती ह,ै ऀजसमें AI कैसे काम करता ह,ै इसकࣞ कम से कम कुछ मौࣽलक समझ
शाࣻमल ह।ै

बृहत भाषा मॉडल цा है?
बृहत भाषा मॉडल (LLMs) कृࣻत्रम बुआڔमـा के एक प्रकार के मॉडल हैं ऀजۦोंने हाल
के वषЊ में काफࣞ ानۀ आकࣻषर्त ࣹकया ह,ै खासकर 2020 में OpenAI ाराڙ GPT-3
के लॉێ के बाद से। LLMs को उ߲ेखनीय सटीकता और धाराप्रवाह के साथ मानव
भाषा को प्रोसेस करने, समझने और उۚم करने के ࣽलए ࣺडज़ाइन ࣹकया गया ह।ै इस

पिरचय 4

खंड में, हम संक्षेप में दखेेंगे ࣹक LLMs कैसे काम करते हैं और वे बुआڔमान ऀस࡫म
घटकों के ࣺनमЄण के ࣽलए Ѻों उपयुѱ हैं।
मूल रूप से, LLMs डीप लࣺन϶ग एߝोिरچ पर आधािरत हैं, ࣺवशेष रूप से तंࣻत्रका
नेटवकॼ पर। ये नेटवकॼ परࡵर जुड़े नोड्स या ۠रूॉۥ से बने होते हैं, जो सूचना को
प्रोसेस और प्रेࣻषत करते हैं। LLMs के ࣽलए पसंद कࣞ जाने वालࣜ आࣹकॼ टѫेर अѾर
ट्र ांसफॉमर्र मॉडल होता ह,ै जो टҡे जैसे क्रࣻमक डटेा को संभालने में अيतं प्रभावी
ऀसڔ हुआ ह।ै
Transformer मॉडल ानۀ तंत्र पर आधािरत हैं और मुҷ रूप से अनुक्रࣻमक डटेा से
जुड़े कायЊ के ࣽलए उपयोग ࣹकए जाते हैं, जैसे प्राकृࣻतक भाषा प्रसंࡡरण। Transformer
इनपुट डटेा को क्रࣻमक रूप से नहࣟ बऍߛ एक साथ प्रोसेस करते हैं, जो उंेۦ दूरगामी
ࣺनभर्रताओं को अࣾधक प्रभावी ढगं से पकड़ने में सक्षम बनाता ह।ै इनमें ानۀ तंत्र कࣞ
परतें होती हैं जो मॉडल को संदभर् और संबंधों को समझने के ࣽलए इनपुट डटेा के
ࣺवࣾभۚ ࣹहࡿों पर ानۀ कें ࣺद्रत करने में मदद करती हैं।
LLMs के ࣽलए प्रऀशक्षण प्रࣺक्रया में मॉडल को ࣺवशाल मात्रा में पाן डटेा जैसे ࣹकताबें,
लेख, वेबसाइट और कोड िरपॉऀजटरࣜ के संपकॼ में लाना शाࣻमल ह।ै प्रऀशक्षण के
दौरान, मॉडल पाठ के भीतर पैटनर्, संबंध और संरचनाओं को पहचानना सीखता ह।ै
यह भाषा के सांऐҷकࣞय गुणों को समझता ह,ै जैसे ࠖाकरण ࣺनयम, शށ संबंध और
संदभर्गत अथर्।
LLMs के प्रऀशक्षण में उपयोग कࣞ जाने वालࣜ प्रमुख तकनीकों में से एक है पयर्वेक्षण
रࣹहत सीखना। इसका मतलब है ࣹक मॉडल ࠿ࡵ लेबࣽलंग या मागर्दशर्न के ࣺबना
डटेा से सीखता ह।ै यह प्रऀशक्षण डटेा में शށों और वाѺांशों कࣞ सह-उपऍࣻࡱत का
ࣺवे࠯षण करके यंࡼ पैटनर् और प्रࣻतࣺनࣾधٌ खोजता ह।ै यह LLMs को भाषा और
उसकࣞ जࣺटलताओं कࣞ गहरࣜ समझ ࣺवकऀसत करने कࣞ अनुमࣻत दतेा ह।ै
LLMs का एक और महٌपूणर् पहलू है उनकࣞ संदभर् को संभालने कࣞ क्षमता। पाठ को
प्रोसेस करते समय, LLMs न केवल ࠖࣼѱगत शށों को बऍߛ आस-पास के संदभर्
को भी ानۀ में रखते हैं। वे पाठ के अथर् और इरादे को समझने के ࣽलए ࣺपछले शށों,
वाѺों और यहां तक ࣹक पैराग्राफ को भी ानۀ में रखते हैं। यह संदभर्गत समझ
LLMs को सुसंगत और प्रासंࣻगक प्रࣻतࣺक्रयाएं उۚم करने में सक्षम बनाती ह।ै ࣹकसी

पिरचय 5

ࣺदए गए LLM मॉडल कࣞ क्षमताओं का मू߰ांकन करने के मुҷ तरࣜकों में से एक यह
है ࣹक वे प्रࣻतࣺक्रयाएं उۚم करने के ࣽलए ࣹकतने बड़े संदभर् पर ࣺवचार कर सकते हैं।
एक बार प्रऀशऀक्षत होने के बाद, LLMs को भाषा से संबंࣾधत कई कायЊ के ࣽलए
उपयोग ࣹकया जा सकता ह।ै वे मानव जैसा पाठ उۚم कर सकते हैं, प्रࠫों के उـर
दे सकते हैं, दࡰावेजों का सारांश बना सकते हैं, भाषाओं का अनुवाद कर सकते हैं,
और यहां तक ࣹक कोड भी ࣽलख सकते हैं। LLMs कࣞ बहुमुखी प्रࣻतभा उंेۦ बुआڔमान
ऀस࡫म घटक बनाने के ࣽलए मू߰वान बनाती है जो उपयोगकतЄओं के साथ बातचीत
कर सकते हैं, पाठ डटेा को प्रोसेस और ࣺवे࠯षण कर सकते हैं, और साथर्क आउटपुट
प्रदान कर सकते हैं।
एࣺݎकेशन वाࡰकुला में LLMs को शाࣻमल करके, आप ऐसे AI घटक बना सकते हैं जो
उपयोगकतЄ इनपुट को समझते और प्रोसेस करते हैं, गࣻतशील सामग्री उۚم करते हैं,
और बुआڔमान ऀसफािरशें या कारर्वाइयां प्रदान करते हैं। लेࣹकन LLMs के साथ काम
करने के ࣽलए संसाधन आव࠮कताओं और प्रदशर्न ࣺवࣺनमय पर सावधानीपूवर्क ࣺवचार
करने कࣞ आव࠮कता होती ह।ै LLMs क޼टूशेनल रूप से गहन हैं और संचालन के
ࣽलए महٌपूणर् प्रोसेऀसंग पावर और मेमोरࣜ (दूसरे शށों में, धन) कࣞ आव࠮कता हो
सकती ह।ै हम में से अࣾधकांश को अपने एࣺݎकेशन में LLMs को एकࣞकृत करने के
लागत प्रभावों का आकलन करने और तदनुसार कायर् करने कࣞ आव࠮कता होगी।

अनुमान को समझना
अनुमान वह प्रࣺक्रया है ऀजसके ाराڙ एक मॉडल नए, अनदखेे डटेा के आधार पर
भࣺवࡈवाऀणयां या पिरणाम उۚم करता ह।ै यह वह चरण है जहां प्रऀशऀक्षत मॉडल
का उपयोग उपयोगकतЄ के इनपुट के जवाब में ࣺनणर्य लेने या टҡे, छࣺवयां, या
अ۠ सामग्री उۚم करने के ࣽलए ࣹकया जाता ह।ै
प्रऀशक्षण चरण के दौरान, एक AI मॉडल अपनी भࣺवࡈवाऀणयों में त्रुࣺ ट को कम करने
के ࣽलए अपने पैरामीटसर् को समायोऀजत करके एक बड़े डटेासेट से सीखता ह।ै एक
बार प्रऀशऀक्षत होने के बाद, मॉडल नए डटेा पर अपनी सीखी हुई बातों को लागू कर

पिरचय 6

सकता ह।ै अनुमान वह तरࣜका है ऀजससे मॉडल आउटपुट उۚم करने के ࣽलए अपने
सीखे हुए पैटनर् और ज्ञान का उपयोग करता ह।ै
LLMs के ࣽलए, अनुमान में एक प्रॉम्݂ या इनपुट टҡे को लेकर एक सुसंगत और
संदभर्गत प्रासंࣻगक प्रࣻतࣺक्रया उۚم करना शाࣻमल ह,ै जो टोकन कࣞ धारा के रूप में
होता है (ऀजसके बारे में हम जߨ हࣚ बात करेंगे)। यह एक प्रࠫ का उـर दनेा, एक
वाѺ को पूरा करना, एक कहानी बनाना, या टҡे का अनुवाद करना हो सकता ह,ै
और भी कई अ۠ कायर्।

आप और मेरࣜ सोच के तरࣜके के ࣺवपरࣜत, एक AI मॉडल का “सोचना”
अनुमान के माۀम से एक हࣚ ऍࣻࡱतहࣚन संचालन में होता ह।ै यानी, इसकࣞ
सोच इसकࣞ उمादन प्रࣺक्रया तक हࣚ सीࣻमत ह।ै इसे वाࡰव में जोर से
सोचना पड़ता ह,ै जैसे ࣹक मैंने आपसे एक सवाल पूछा और केवल “चेतना
कࣞ धारा” शैलࣜ में आपसे प्रࣻतࣺक्रया ीकारࡼ कࣞ।

बृहत भाषा मॉडल कई आकारों और प्रकारों में आते हैं
जबࣹक लगभग सभी लोकࣺप्रय बृहत भाषा मॉडल (LLMs) एक हࣚ मूल ट्र ांसफॉमर्र
आࣹकॼ टѫेर पर आधािरत हैं और ࣺवशाल टҡे डटेासेट पर प्रऀशऀक्षत हैं, वे ࣺवࣾभۚ
आकारों में आते हैं और अलग-अलग उे࠮ړों के ࣽलए फाइन-׀नू ࣹकए जाते हैं। एक
LLM का आकार, जो इसके तंࣻत्रका नेटवकॼ में पैरामीटसर् कࣞ संҷा से मापा जाता
ह,ै इसकࣞ क्षमताओं पर बड़ा प्रभाव डालता ह।ै अࣾधक पैरामीटसर् वाले बड़े मॉडल,
जैसे GPT-4, ऀजसमें कࣽथत तौर पर 1 से 2 ࣺट्र ࣽलयन पैरामीटसर् हैं, आमतौर पर छोटे
मॉडलों कࣞ तुलना में अࣾधक ज्ञानवान और सक्षम होते हैं। हालांࣹक, बड़े मॉडलों को
चलाने के ࣽलए बहुत अࣾधक कंࣺूݍ टगं पावर कࣞ आव࠮कता होती ह,ै जो API कॉल
के माۀम से उनका उपयोग करते समय अࣾधक खचर् में तށील हो जाती ह।ै
LLMs को अࣾधक ࠖावहािरक और ࣺवऀश࠿ उपयोग के मामलों के ࣽलए अनुकूࣽलत
करने के ࣽलए, बेस मॉडलों को अѾर अࣾधक लऀक्षत डटेासेट पर फाइन-׀नू ࣹकया
जाता ह।ै उदाहरण के ࣽलए, एक LLM को संवादाىक AI के ࣽलए ࣺवशेष बनाने के

पिरचय 7

ࣽलए संवाद के बड़े संग्रह पर प्रऀशऀक्षत ࣹकया जा सकता ह।ै अ۠ को प्रोग्राࣻमंग ज्ञान
प्रदान करने के ࣽलए कोड पर प्रऀशऀक्षत ࣹकया जाता ह।ै यहां तक ࣹक कुछ मॉडल
उपयोगकतЄओं के साथ रोलݎ-ेशैलࣜ कࣞ बातचीत के ࣽलए ࣺवशेष रूप से प्रऀशऀक्षत
ࣹकए जाते हैं!

पुनप्रЂܒࣆ बनाम जनरेࣅटव मॉडल
बृहत भाषा मॉडल (LLMs) कࣞ दुࣺनया में, प्रࣻतࣺक्रयाएँ उۚم करने के दो मुҷ दृࣼ࠿कोण
हैं: पुनप्रЄࣺ݆-आधािरत मॉडल और जनरेࣺटव मॉडल। प्रيके दृࣼ࠿कोण कࣞ अपनी ࣺवशेष
शࣼѱयाँ और कमजोिरयाँ हैं, और इनके बीच के अंतरों को समझना आपको अपने
ࣺवऀश࠿ उपयोग के ࣽलए सहࣚ मॉडल चुनने में मदद कर सकता ह।ै

पुनप्रЂܒࣆ-आधािरत मॉडल
पुनप्रЄࣺ݆-आधािरत मॉडल, ऀजंेۦ सूचना पुनप्रЄࣺ݆ मॉडल के रूप में भी जाना जाता
ह,ै पहले से मौजूद टҡे के बड़े डटेाबेस में खोजकर और इनपुट Ѽेरࣜ के आधार
पर सबसे प्रासंࣻगक अंशों का चयन करके प्रࣻतࣺक्रयाएँ उۚم करते हैं। ये मॉडल नया
टҡे शू۠ से नहࣟ बनाते, बऍߛ एक सुसंगत प्रࣻतࣺक्रया बनाने के ࣽलए डटेाबेस से
अंशों को जोड़ते हैं।
पुनप्रЄࣺ݆-आधािरत मॉडल का एक मुҷ लाभ तڇाىक रूप से सटीक और अښतन
जानकारࣜ प्रदान करने कࣞ उनकࣞ क्षमता ह।ै चूंࣹक वे Ѻूरेटडे टҡे के डटेाबेस पर
ࣺनभर्र करते हैं, वे ࣺव࠰सनीय स्रोतों से प्रासंࣻगक जानकारࣜ प्रा݆ कर सकते हैं और
उपयोगकतЄ को प्रࡰतु कर सकते हैं। यह उंेۦ प्रࠫ-उـर प्रणाࣽलयों या ज्ञान आधार
जैसे अनुप्रयोगों के ࣽलए उपयुѱ बनाता ह।ै
हालांࣹक, पुनप्रЄࣺ݆-आधािरत मॉडल कࣞ कुछ सीमाएं हैं। वे केवल उतने हࣚ अՃे होते
हैं ऀजतना ࣹक वह डटेाबेस ऀजसमें वे खोज रहे हैं, इसࣽलए डटेाबेस कࣞ गुणवـा और
कवरेज सीधे मॉडल के प्रदशर्न को प्रभाࣺवत करती ह।ै इसके अࣻतिरѱ, ये मॉडल
सुसंगत और प्राकृࣻतक लगने वालࣜ प्रࣻतࣺक्रयाएँ उۚم करने में संघषर् कर सकते हैं,
Ѻोंࣹक वे डटेाबेस में उपलނ टҡे तक हࣚ सीࣻमत होते हैं।
इस पुࡰक में हम शुڔ पुनप्रЄࣺ݆ मॉडल के उपयोग को नहࣟ कवर करते हैं।

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

पिरचय 8

जनरेࣅटव मॉडल
दूसरࣜ ओर, जनरेࣺटव मॉडल प्रऀशक्षण के दौरान सीखे गए पैटनर् और संबंधों के आधार
पर नया टҡे शू۠ से बनाते हैं। ये मॉडल इनपुट प्रॉम्݂ के अनुरूप नई प्रࣻतࣺक्रयाएँ
उۚم करने के ࣽलए भाषा कࣞ अपनी समझ का उपयोग करते हैं।
जनरेࣺटव मॉडल कࣞ मुҷ शࣼѱ रचनाىक, सुसंगत और संदभर्गत रूप से प्रासंࣻगक
टҡे उۚم करने कࣞ उनकࣞ क्षमता ह।ै वे खुलࣜ बातचीत कर सकते हैं, कहाࣺनयाँ
बना सकते हैं, और यहां तक ࣹक कोड भी ࣽलख सकते हैं। यह उंेۦ चैटबोट, कंटेंट
ࣺक्रएशन और रचनाىक लेखन सहायक जैसे अࣾधक खुले और गࣻतशील इंटरैѽन
वाले अनुप्रयोगों के ࣽलए आदशर् बनाता ह।ै
हालांࣹक, जनरेࣺटव मॉडल कभी-कभी असंगत या तڇाىक रूप से गलत जानकारࣜ
उۚم कर सकते हैं, Ѻोंࣹक वे तڇों के Ѻूरेटडे डटेाबेस के बजाय प्रऀशक्षण के
दौरान सीखे गए पैटनर् पर ࣺनभर्र करते हैं। वे पूवЄग्रहों और भ्रांࣻतयों के प्रࣻत भी अࣾधक
संवेदनशील हो सकते हैं, जो ऐसा टҡे उۚم करते हैं जो ࣺव࠰सनीय लगता है
लेࣹकन जरूरࣜ नहࣟ ࣹक सي हो।
जनरेࣺटव एलएलएम के उदाहरणों में OpenAI कࣞ जीपीटी श्रृखंला (जीपीटी-3, जीपीटी-
4) और Anthropic का Claude शाࣻमल हैं।

हाइࣆब्रड मॉडल
कई ࠖावसाࣻयक रूप से उपलނ एलएलएम एक हाइࣺब्रड मॉडल में पुनप्रЄࣺ݆ और
जनरेࣺटव दोनों दृࣼ࠿कोणों को जोड़ते हैं। ये मॉडल डटेाबेस से प्रासंࣻगक जानकारࣜ
खोजने के ࣽलए पुनप्रЄࣺ݆ तकनीकों का उपयोग करते हैं और ࣺफर उस जानकारࣜ को
एक सुसंगत प्रࣻतࣺक्रया में संࣻे࠯षत करने के ࣽलए जनरेࣺटव तकनीकों का उपयोग करते
हैं।
हाइࣺब्रड मॉडल का उे࠮ړ पुनप्रЄࣺ݆-आधािरत मॉडल कࣞ तڇाىक सटीकता को
जनरेࣺटव मॉडल कࣞ प्राकृࣻतक भाषा उمादन क्षमताओं के साथ जोड़ना ह।ै वे अࣾधक
ࣺव࠰सनीय और अࣻښतत जानकारࣜ प्रदान कर सकते हैं, जबࣹक खुलࣜ बातचीत में
संलӈ होने कࣞ क्षमता को भी बनाए रखते हैं।

पिरचय 9

पुनप्रЄࣺ݆-आधािरत और जनरेࣺटव मॉडल के बीच चयन करते समय, आपको अपने
एࣺݎकेशन कࣞ ࣺवऀश࠿ आव࠮कताओं पर ࣺवचार करना चाࣹहए। यࣺद प्राथࣻमक लҝ
सटीक, तڇाىक जानकारࣜ प्रदान करना ह,ै तो पुनप्रЄࣺ݆-आधािरत मॉडल सबसे अՃा
ࣺवक߫ हो सकता ह।ै यࣺद एࣺݎकेशन को अࣾधक खुलࣜ और रचनाىक बातचीत कࣞ
आव࠮कता ह,ै तो जनरेࣺटव मॉडल अࣾधक उपयुѱ हो सकता ह।ै हाइࣺब्रड मॉडल दोनों
दृࣼ࠿कोणों के बीच संतुलन प्रदान करते हैं और उन एࣺݎकेशन के ࣽलए एक अՃा
ࣺवक߫ हो सकते हैं ऀजंेۦ तڇाىक सटीकता और प्राकृࣻतक भाषा उمादन दोनों कࣞ
आव࠮कता होती ह।ै
अंततः, पुनप्रЄࣺ݆-आधािरत और जनरेࣺटव मॉडल के बीच चयन ࣺवऀश࠿ उपयोग मामले
और सटीकता, रचनाىकता और लचीलेपन के बीच समझौते पर ࣺनभर्र करता ह।ै
प्रيके दृࣼ࠿कोण कࣞ ताकतों और सीमाओं को समझकर, आप सूࣿचत ࣺनणर्य ले सकते
हैं।

पिरचय 10

नदϸशࣄ ֌ूࣄनंग

ࣺनदϺश ࣺू׀ नंग वातЄलाप प्रऀशक्षण का एक उपसमुՂय है जो एलएलएम को ࣺनदϺशों
को बेहतर ढगं से समझने और उनका पालन करने के ࣽलए मानव-ࣽलंखत प्रॉम्प्ׅ
और प्रࣻतࣺक्रयाओं का उपयोग करता ह।ै यहाँ कुछ सरल उदाहरण ࣺदए गए हैं
जो दशЄते हैं ࣹक मानव-ࣽलंखत प्रॉम्प्ׅ और प्रࣻतࣺक्रयाओं पर ࣺनदϺश ࣺू׀ नंग कैसे
एलएलएम को ࣺनदϺशों को समझने और उनका पालन करने में बेहतर बनाता ह:ै
उदाहरण 1: ग्राहक सहायता

ࣺनदϺश: “िरफंड मांगने वाले ग्राहक को प्रࣻतࣺक्रया प्रदान करें।”
मानव-ࣽलंखत प्रॉम्݂: “मैं अपनी हाल कࣞ खरࣜद के ࣽलए िरफंड का अनुरोध करना
चाहूगंा। उمाद मेरࣜ अपेक्षाओं पर खरा नहࣟ उतरा।”
मानव-ࣽलंखत प्रࣻतࣺक्रया: “मुझे खेद है ࣹक उمाद आपकࣞ अपेक्षाओं पर खरा नहࣟ
उतरा। आपके िरफंड को प्रोसेस करने के ࣽलए, कृपया अपना ऑडॼर नंबर और
वापसी का कारण प्रदान करें। हम आपके अनुरोध कࣞ समीक्षा करेंगे और 2-3 कायर्
ࣺदवसों के भीतर आपसे संपकॼ करेंगे।”
उदाहरण 2: शै࣊क्षक सहायता

ࣺनदϺश: “10 साल के बՂे को प्रकाश संे࠯षण कࣞ अवधारणा समझाएं।”
मानव-ࣽलंखत प्रॉम्݂: “Ѻा आप बता सकते हैं ࣹक पौधे अपना भोजन कैसे बनाते
हैं?”
मानव-ࣽलंखत उـर: “ज़रूर! पौधे प्रकाश संे࠯षण नामक प्रࣺक्रया के माۀम
से अपना भोजन बनाते हैं। वे सूयर् का प्रकाश, पानी और काबर्न डाइऑѾाइड
का उपयोग भोजन और ऑѾीजन बनाने के ࣽलए करते हैं। पौधे कࣞ पࣾـयों में
ѻोरोࣺफल नामक एक ࣺवशेष भाग होता है जो उंेۦ सूयर् का प्रकाश पकड़ने में मदद

पिरचय 11

करता ह।ै”
उदाहरण 3: нगतࣈߢ सहायक

ࣺनदϺश: “अगले मंगलवार दोपहर 3 बजे एक मीࣺटगं शे׵लू करें।”
मानव-ࣽलंखत प्रॉम्݂: “Ѻा आप मंगलवार दोपहर 3 बजे एक मीࣺटगं सेट कर
सकते हैं?”
मानव-ࣽलंखत उـर: “ज़रूर, मैंने आपके ࣽलए अगले मंगलवार दोपहर 3 बजे एक
मीࣺटगं शे׵लू कर दी ह।ै Ѻा आपको कुछ और चाࣹहए?”

इसका पिरणाम ࣺवࣾभۚ आकारों और ࣺवࣾभۚ ࣺवशेषज्ञताओं वाले LLMs का एक
ࣺवࣺवध पािरऍࣻࡱतकࣞ तंत्र ह।ै 1-7 ࣺबࣽलयन पैरामीटर कࣞ सीमा वाले छोटे मॉडल
अՃࣛ सामा۠ भाषा क्षमताएं प्रदान करते हैं जबࣹक चलाने में अࣾधक कुशल होते हैं।

• Mistral 7B
• Llama 3 8B
• Gemma 7B

लगभग 30-70 ࣺबࣽलयन पैरामीटर वाले मۀम आकार के मॉडल मजबूत तकॼ और
ࣺनदϺश-पालन क्षमताएं प्रदान करते हैं।

• Llama 3 70B
• Qwen2 70B
• Mixtral 8x22B

ࣹकसी एࣺݎकेशन में LLM को शाࣻमल करने के ࣽलए चुनते समय, आपको मॉडल कࣞ
क्षमताओं को लागत, ࣺवलंबता, संदभर् लंबाई और सामग्री ࣺफ़ߢिरंग जैसे ࠖावहािरक
कारकों के साथ संतुࣽलत करना होगा। सरल भाषा कायЊ के ࣽलए छोट,े ࣺनदϺश-۔ू׀

पिरचय 12

मॉडल अѾर सवЉـम ࣺवक߫ होते हैं, जबࣹक जࣺटल तकॼ या ࣺवे࠯षण के ࣽलए सबसे
बड़े मॉडलों कࣞ आव࠮कता हो सकती ह।ै मॉडल का प्रऀशक्षण डटेा भी एक महٌपूणर्
ࣺवचार ह,ै Ѻोंࣹक यह मॉडल कࣞ ज्ञान कट-ऑफ़ ࣻतࣽथ ࣺनधЄिरत करता ह।ै

कुछ मॉडल, जैसे Perplexity के कुछ मॉडल रࣜयलटाइम सूचना स्रोतों से
जुड़े होते हैं, इसࣽलए उनकࣞ कोई कट-ऑफ़ ࣻतࣽथ नहࣟ होती। जब आप
उनसे प्रࠫ पूछते हैं, तो वे तंत्रࡼ रूप से वेब खोज करने और उـर उۚم
करने के ࣽलए ࣹकसी भी वेब पेज को प्रा݆ करने का ࣺनणर्य ले सकते हैं।

आकृࣆत 1. ऑनलाइन एъेस के साथ और बनाࣆ Llama3

अंततः, कोई भी एलएलएम (LLM) सभी कायЊ के ࣽलए एक समान उपयुѱ नहࣟ होता।
ࣹकसी ࣺवशेष उपयोग के ࣽलए सहࣚ मॉडल का चयन करने में मॉडल के आकार,
आࣹकॼ टѫेर और प्रऀशक्षण में ࣺवࣾभۚताओं को समझना महٌपूणर् ह।ै ࣺवࣾभۚ मॉडलों
के साथ प्रयोग करना हࣚ यह जानने का एकमात्र ࠖावहािरक तरࣜका है ࣹक कौन सा
मॉडल वतर्मान कायर् के ࣽलए सवЉـम प्रदशर्न प्रदान करता ह।ै

पिरचय 13

टोकनाइज़ेशन: पाठ को टुकड़ों में वभा࣊जतࣆ करना
ࣹकसी बृहत भाषा मॉडल ाराڙ पाठ को संसाࣾधत करने से पहले, उस पाठ को छोटी
इकाइयों में ࣺवभाऀजत करना आव࠮क होता ह,ै ऀजंेۦ टोकन कहा जाता ह।ै टोकन
अलग-अलग शށ, शށों के भाग, या यहां तक ࣹक एकल वणर् भी हो सकते हैं। पाठ
को टोकन में ࣺवभाऀजत करने कࣞ प्रࣺक्रया को टोकनाइज़ेशन कहा जाता ह,ै और यह
भाषा मॉडल के ࣽलए डटेा तैयार करने में एक महٌपूणर् चरण ह।ै

आकृࣆत 2. इस वाц में 27 टोकन हैं

ࣺवࣾभۚ एलएलएम ࣺवࣾभۚ टोकनाइज़ेशन रणनीࣻतयों का उपयोग करते हैं, जो मॉडल
के प्रदशर्न और क्षमताओं पर महٌपूणर् प्रभाव डाल सकती हैं। एलएलएम ाराڙ उपयोग
ࣹकए जाने वाले कुछ सामा۠ टोकनाइज़र हैं:

• जीपीटी (बाइट पेयर एनकोࣅडंग): जीपीटी टोकनाइज़र बाइट पेयर एनकोࣺडगं
(बीपीई) नामक तकनीक का उपयोग करते हैं जो पाठ को उप-शށ इकाइयों
में ࣺवभाऀजत करती ह।ै बीपीई पाठ कॉपर्स में सबसे अࣾधक बार आने वाले
बाइׅ के जोड़ों को बारࣜ-बारࣜ से ࣻमलाता ह,ै ऀजससे उप-शށ टोकन का एक
शށ-भंडार बनता ह।ै यह टोकनाइज़र दुलर्भ और नए शށों को अࣾधक सामा۠
उप-शށ टुकड़ों में ࣺवभाऀजत करके उंेۦ संभाल सकता ह।ै जीपीटी टोकनाइज़र
का उपयोग जीपीटी-3 और जीपीटी-4 जैसे मॉडलों ाराڙ ࣹकया जाता ह।ै

• लामा (सेंटेंसपीस): लामा टोकनाइज़र सेंटेंसपीस लाइब्ररेࣜ का उपयोग करते हैं,
जो एक अपयर्वेऀक्षत पाठ टोकनाइज़र और डीटोकनाइज़र ह।ै सेंटेंसपीस इनपुट
पाठ को यूࣺनकोड वणЊ के क्रम के रूप में मानता है और प्रऀशक्षण कॉपर्स के
आधार पर एक उप-शށ शށ-भंडार सीखता ह।ै यह ࣹकसी भी भाषा को संभाल
सकता है ऀजसे यूࣺनकोड में एनकोड ࣹकया जा सकता ह,ै जो इसे बहुभाषी मॉडलों

पिरचय 14

के ࣽलए उपयुѱ बनाता ह।ै लामा टोकनाइज़र का उपयोग मेटा के लामा और
अ߫ाका जैसे मॉडलों ाराڙ ࣹकया जाता ह।ै

• सेंटेंसपीस (यूनीग्राम): सेंटेंसपीस टोकनाइज़र यूनीग्राम नामक एक अलग
एߝोिरथम का भी उपयोग कर सकते हैं, जो एक सबवडॼ रेगुलराइज़ेशन तकनीक
पर आधािरत ह।ै यूनीग्राम टोकनाइज़ेशन एक यूनीग्राम भाषा मॉडल के आधार
पर इ࠿तम सबवडॼ शށकोश ࣺनधЄिरत करता ह,ै जो ࠖࣼѱगत सबवडॼ इकाइयों
को संभावनाएं असाइन करता ह।ै यह दृࣼ࠿कोण BPE कࣞ तुलना में अࣾधक
अथर्पूणर् सबवडॼ उۚم कर सकता ह।ै यूनीग्राम के साथ सेंटेंसपीस का उपयोग
Google के T5 और BERT जैसे मॉडल करते हैं।

• गूगल जेࣆमनी (बहु-माڌम टोकनाइज़ेशन): गूगल जेࣻमनी टҡे, छࣺवयों,
ऑࣺडयो, वीࣺडयो और कोड सࣹहत ࣺवࣾभۚ प्रकार के डटेा को संभालने के ࣽलए
ࣺडज़ाइन कࣞ गई एक टोकनाइज़ेशन योजना का उपयोग करता ह।ै यह बहु-माۀम
क्षमता जेࣻमनी को ࣺवࣾभۚ प्रकार कࣞ जानकारࣜ को प्रोसेस और एकࣞकृत करने
कࣞ अनुमࣻत दतेी ह।ै ࣺवशेष रूप से, Google Gemini 1.5 Pro में एक संदभर्
ࣺवंडो है जो लाखों टोकन को संभाल सकती ह,ै जो ࣺपछले मॉडलों कࣞ तुलना
में बहुत बड़ी ह।ै यह ࣺवࡰतृ संदभर् ࣺवंडो मॉडल को बड़े संदभर् को प्रोसेस करने
में सक्षम बनाती ह,ै ऀजससे संभवतः अࣾधक सटीक प्रࣻतࣺक्रयाएं ࣻमल सकती हैं।
हालांࣹक, यह ानۀ रखना महٌपूणर् है ࣹक जेࣻमनी कࣞ टोकनाइज़ेशन योजना
अ۠ मॉडलों कࣞ तुलना में प्रࣻत वणर् एक टोकन के काफࣞ करࣜब ह।ै इसका
मतलब है ࣹक जेࣻमनी मॉडल का वाࣺࡰवक उपयोग लागत अपेक्षा से काफࣞ
अࣾधक हो सकता है यࣺद आप GPT जैसे मॉडल का उपयोग करने के आदी हैं,
Ѻोंࣹक Google कࣞ कࣞमत टोकन के बजाय वणЊ पर आधािरत ह।ै

टोकनाइज़र का चयन एक LLM के कई पहलुओं को प्रभाࣺवत करता ह,ै ऀजसमें शाࣻमल
हैं:

• शݍकोश का आकार: टोकनाइज़र मॉडल के शށकोश के आकार को ࣺनधЄिरत
करता ह,ै जो उसके ाराڙ पहचाने जाने वाले ࣺवऀश࠿ टोकन का समूह ह।ै एक

पिरचय 15

बड़ा, अࣾधक सूҜ शށकोश मॉडल को शށों और वाѺांशों कࣞ एक ࠖापक
श्रृखंला को संभालने में मदद कर सकता है और यहां तक ࣹक बहु-माۀम (केवल
टҡे से अࣾधक को समझने और उۚم करने में सक्षम) भी बन सकता ह,ै
लेࣹकन यह मॉडल कࣞ मेमोरࣜ आव࠮कताओं और क޼टूशेनल जࣺटलता को भी
बढ़ाता ह।ै

• दुलर्भ और अज्ञात शݍों को संभालना: BPE और सेंटेंसपीस जैसे उप-शށ
इकाइयों का उपयोग करने वाले टोकनाइज़र, दुलर्भ और अज्ञात शށों को अࣾधक
सामा۠ उप-शށ टुकड़ों में तोड़ सकते हैं। यह मॉडल को उन शށों के अथर् के
बारे में ऀशऀक्षत अनुमान लगाने कࣞ अनुमࣻत दतेा है ऀजंेۦ इसने पहले नहࣟ दखेा
ह,ै उनमें मौजूद उप-शށों के आधार पर।

• बहुभाषी समथर्न: सेंटेंसपीस जैसे टोकनाइज़र, जो ࣹकसी भी यूࣺनकोड-
एनकोडबेल भाषा को संभाल सकते हैं, बहुभाषी मॉडल के ࣽलए उपयुѱ हैं
ऀजंेۦ कई भाषाओं में टҡे को प्रोसेस करने कࣞ आव࠮कता होती ह।ै

ࣹकसी ࣺवशेष एࣺݎकेशन के ࣽलए एलएलएम का चयन करते समय, यह महٌपूणर् है
ࣹक उसके ाराڙ उपयोग ࣹकए जाने वाले टोकनाइज़र पर ࣺवचार ࣹकया जाए और यह
दखेा जाए ࣹक वह कायर् कࣞ ࣺवऀश࠿ भाषा प्रसंࡡरण आव࠮कताओं के साथ ࣹकतनी
अՃࣛ तरह से मेल खाता ह।ै टोकनाइज़र का डोमेन-ࣺवऀश࠿ शށावलࣜ, दुलर्भ शށों
और बहुभाषी पाठ को संभालने कࣞ मॉडल कࣞ क्षमता पर महٌपूणर् प्रभाव पड़ सकता
ह।ै

संदभर् आकार: भाषा मॉडल अनुमान के दौरान कतनीࣅ जानकारࢧ
का उपयोग कर सकता है?
जब भाषा मॉडल कࣞ चचЄ होती ह,ै तो संदभर् आकार उस पाठ कࣞ मात्रा को संदࣾभर्त
करता है ऀजसे मॉडल अपनी प्रࣻतࣺक्रयाओं को संसाࣾधत या उۚم करते समय ࣺवचार
कर सकता ह।ै यह अࣺनवायर् रूप से इस बात का माप है ࣹक मॉडल ࣹकतनी जानकारࣜ
को “याद” रख सकता है और अपने आउटपुट को सूࣿचत करने के ࣽलए उपयोग कर
सकता है (टोकन में ࠖѱ)। भाषा मॉडल का संदभर् आकार उसकࣞ क्षमताओं और उन

पिरचय 16

कायЊ के प्रकारों पर महٌपूणर् प्रभाव डाल सकता है ऀजंेۦ यह प्रभावी ढगं से कर
सकता ह।ै

संदभर् आकार цा है?

तकनीकࣞ शށों में, संदभर् आकार टोकन (शށ या शށ के टुकड़ों) कࣞ संҷा से
ࣺनधЄिरत होता है ऀजसे एक भाषा मॉडल एक एकल इनपुट अनुक्रम में संसाࣾधत कर
सकता ह।ै इसे अѾर मॉडल कࣞ ानۀ“ अवࣾध” या “संदभर् ࣺवंडो” के रूप में संदࣾभर्त
ࣹकया जाता ह।ै संदभर् आकार ऀजतना बड़ा होगा, प्रࣻतࣺक्रया उۚم करते समय या कोई
कायर् करते समय मॉडल एक साथ उतना हࣚ अࣾधक पाठ पर ࣺवचार कर सकता ह।ै
ࣺवࣾभۚ भाषा मॉडलों में अलग-अलग संदभर् आकार होते हैं, जो कुछ सौ टोकन से
लेकर लाखों टोकन तक हो सकते हैं। संदभर् के ࣽलए, पाठ का एक ࣺवऀश࠿ अनुՃेद
लगभग 100-150 टोकन हो सकता ह,ै जबࣹक एक पूरࣜ ࣹकताब में दऀसयों या सैकड़ों
हजार टोकन हो सकते हैं।

ट्र ांसफॉमर्र-आधािरत लाजर् लैंӎेज मॉडल (एलएलएम) को असीम लंबे इनपुट तक
लࡡे करने के ࣽलए कुशल ࣺवࣾधयों पर भी काम चल रहा ह,ै जो सीࣻमत मेमोरࣜ
और क޼टूशेन के साथ काम करती हैं।

संदभर् आकार महؘपूणर् цों है?

भाषा मॉडल का संदभर् आकार सुसंगत और संदभर्गत रूप से प्रासंࣻगक पाठ को
समझने और उۚم करने कࣞ उसकࣞ क्षमता पर महٌपूणर् प्रभाव डालता ह।ै यहाँ कुछ
प्रमुख कारण हैं ࣹक संदभर् आकार Ѻों मायने रखता ह:ै

1. लंबी सामग्री को समझना: बड़े संदभर् आकार वाले मॉडल लंबे पाठों, जैसे लेख,
िरपोटॼ, या यहां तक ࣹक पूरࣜ ࣹकताबों को बेहतर ढगं से समझ और ࣺवे࠯षण

https://huggingface.co/papers/2404.07143

पिरचय 17

कर सकते हैं। यह दࡰावेज़ सारांशीकरण, प्रࠫ उـर और सामग्री ࣺवे࠯षण जैसे
कायЊ के ࣽलए महٌपूणर् ह।ै

2. सुसंगतता बनाए रखना: एक बड़ी संदभर् ࣺवंडो मॉडल को लंबे आउटपुट में
सुसंगतता और ऍࡱरता बनाए रखने कࣞ अनुमࣻत दतेी ह।ै यह कहानी ࣺनमЄण,
संवाद प्रणाࣽलयों और सामग्री ࣺनमЄण जैसे कायЊ के ࣽलए महٌपूणर् ह,ै जहां एक
सुसंगत कथा या ࣺवषय को बनाए रखना आव࠮क ह।ै यह संरࣿचत डटेा को
उۚم करने या पिरवࣻतर्त करने के ࣽलए एलएलएम का उपयोग करते समय भी
पूरࣜ तरह से महٌपूणर् ह।ै

3. दीघर्काࣈलक नभर्रताओंࣄ को समझना: कुछ भाषा कायЊ में टҡे में दूर-दूर
ऍࡱत शށों या वाѺांशों के बीच संबंधों को समझने कࣞ आव࠮कता होती ह।ै
बड़े संदभर् आकार वाले मॉडल इन दीघर्काࣽलक ࣺनभर्रताओं को बेहतर ढगं से
समझ सकते हैं, जो भावना ࣺवे࠯षण, अनुवाद, और भाषा समझ जैसे कायЊ के
ࣽलए महٌपूणर् हो सकते हैं।

4. जࣅटल नदϸशोंࣄ को संभालना: ऀजन अनुप्रयोगों में भाषा मॉडलों का उपयोग
जࣺटल, बहु-चरणीय ࣺनदϺशों का पालन करने के ࣽलए ࣹकया जाता ह,ै बड़ा संदभर्
आकार मॉडल को प्रࣻतࣺक्रया उۚم करते समय केवल हाल के कुछ शށों के
बजाय पूरे ࣺनदϺश सेट पर ࣺवचार करने कࣞ अनुमࣻत दतेा ह।ै

ڦभࣉवࣆ संदभर् आकारों वाले भाषा मॉडलों के उदाहरण

यहाँ ࣺवࣾभۚ संदभर् आकारों वाले कुछ भाषा मॉडलों के उदाहरण ࣺदए गए हैं:

• OpenAI GPT-3.5 Turbo: 4,095 टोकन
• Mistral 7B Instruct: 32,768 टोकन
• Anthropic Claude v1: 100,000 टोकन
• OpenAI GPT-4 Turbo: 128,000 टोकन
• Anthropic Claude v2: 200,000 टोकन
• Google Gemini Pro 1.5: 2.8M टोकन

पिरचय 18

जैसा ࣹक आप दखे सकते हैं, इन मॉडलों में संदभर् आकारों कࣞ एक ࣺवࡰतृ श्रृखंला
ह,ै OpenAI GPT-3.5 Turbo मॉडल के लगभग 4,000 टोकन से लेकर Anthropic
Claude v2 मॉडल के 200,000 टोकन तक। कुछ मॉडल, जैसे Google का PaLM
2 और OpenAI का GPT-4, बड़े संदभर् आकारों वाले ࣺवࣾभۚ संࡡरण प्रदान करते
हैं (जैसे “32k” संࡡरण), जो और भी लंबी इनपुट श्रृखंलाओं को संभाल सकते हैं।
और इस समय (अप्रैल 2024) Google Gemini Pro लगभग 3 ࣻमࣽलयन टोकन का
दावा कर रहा ह!ै
यह ानۀ रखना महٌपूणर् है ࣹक संदभर् आकार ࣹकसी ࣺवशेष मॉडल के ࣺवऀश࠿
कायЄۢयन और संࡡरण के आधार पर ࣾभۚ हो सकता ह।ै उदाहरण के ࣽलए, मूल
OpenAI GPT-4 मॉडल का संदभर् आकार 8,191 टोकन ह,ै जबࣹक बाद के GPT-4
संࡡरणों जैसे Turbo और 4o का संदभर् आकार बहुत बड़ा ह,ै जो 128,000 टोकन
ह।ै

Sam Altman ने वतर्मान संदभर् सीमाओं कࣞ तुलना 80 के दशक में पसर्नल कंݍटूर
प्रोग्रामसर् को ࣻमलने वालࣜ ࣹकलोबाइׅ कࣞ वࣹक϶ ग मेमोरࣜ से कࣞ ह,ै और कहा है ࣹक
ࣺनकट भࣺवࡈ में हम “अपना सारा ࠖࣼѱगत डटेा” एक बड़े भाषा मॉडल के संदभर्
में ࣺफट कर पाएंगे।

सही संदभर् आकार का चयन
ࣹकसी ࣺवशेष एࣺݎकेशन के ࣽलए भाषा मॉडल का चयन करते समय, संबंࣾधत कायर्
कࣞ संदभर् आकार आव࠮कताओं पर ࣺवचार करना महٌपूणर् ह।ै ऀजन कायЊ में छोट,े
अलग-अलग टҡे के टुकड़े शाࣻमल होते हैं, जैसे भावना ࣺवे࠯षण या सरल प्रࠫ
उـर, उनके ࣽलए छोटा संदभर् आकार पयЄ݆ हो सकता ह।ै हालाँࣹक, लंबे और अࣾधक
जࣺटल टҡे को समझने और उۚم करने वाले कायЊ के ࣽलए, बड़े संदभर् आकार
कࣞ आव࠮कता होगी।
यह ानۀ दनेे योӌ है ࣹक बड़े संदभर् आकार अѾर बढ़ी हुई क޼टूशेनल लागत

पिरचय 19

और धीमी प्रोसेऀसंग समय के साथ आते हैं, Ѻोंࣹक मॉडल को प्रࣻतࣺक्रया उۚم करते
समय अࣾधक जानकारࣜ पर ࣺवचार करना पड़ता ह।ै इसࣽलए, आपको अपने एࣺݎकेशन
के ࣽलए भाषा मॉडल चुनते समय संदभर् आकार और प्रदशर्न के बीच संतुलन बनाना
होगा।

सबसे बड़े संदभर् आकार वाला मॉडल Ѻों न चुनें और उसमें ऀजतनी हो सके उतनी
जानकारࣜ Ѻों न भर दें? प्रदशर्न कारकों के अलावा, दूसरा मुҷ ࣺवचार लागत
ह।ै माचर् 2024 में Google Gemini Pro 1.5 का पूणर् संदभर् के साथ एक एकल
प्रॉम्݂-प्रࣻतࣺक्रया चक्र आपको लगभग $8 (USD) का पड़गेा। यࣺद आपके पास इस
खचर् को सहࣚ ठहराने वाला कोई उपयोग मामला ह,ै तो बहुत अՃा ह!ै लेࣹकन
अࣾधकांश एࣺݎकेशन के ࣽलए, यह कई गुना अࣾधक महगंा ह।ै

घास के ढेर में सुइयाँ ढँूढना
बड़े डटेासेट में पुनप्रЄࣺ݆ कࣞ चुनौࣻतयों के ࣽलए घास के ढरे में सुई ढूढँने कࣞ अवधारणा
लंबे समय से एक रूपक रहࣚ ह।ै एलएलएम के क्षेत्र में, हम इस उपमा को थोड़ा
बदल दतेे हैं। क߫ना कࣞऀजए ࣹक हम ࣹकसी ࣺवशाल टҡे (जैसे Paul Graham के
ࣺनबंधों का पूरा संकलन) में दबे एक तڇ को नहࣟ, बऍߛ चारों ओर ࣺबखरे कई तڇों
को खोज रहे हैं। यह पिरदृ࠮ एक घास के ढरे में नहࣟ, बऍߛ एक ࣺवशाल मैदान में
कई सुइयाँ खोजने जैसा ह।ै और यह महٌपूणर् बात ह:ै हमें न केवल इन सुइयों को
खोजना ह,ै बऍߛ उंेۦ एक सुसंगत धागे में भी ࣺपरोना ह।ै
जब लंबे संदभЊ में एްडेडे कई तڇों को पुनप्रЄ݆ करने और उन पर तकॼ करने
का काम होता ह,ै तो एलएलएम दोहरࣜ चुनौती का सामना करते हैं। पहलࣜ, पुनप्रЄࣺ݆
सटीकता कࣞ सीधी समࡺा ह—ैयह ाभाࣺवकࡼ रूप से तڇों कࣞ संҷा बढ़ने के साथ
कम हो जाती ह।ै यह अपेऀक्षत ह;ै आंखरकार, एक ࣺवशाल टҡे में कई ࣺववरणों को
ट्र कै करना सबसे पिरृ࠻त मॉडलों को भी प्रभाࣺवत करता ह।ै
दूसरा, और शायद अࣾधक महٌपूणर्, इन तڇों के साथ तकॼ करने कࣞ चुनौती ह।ै

पिरचय 20

तڇों को चुन लेना एक बात ह;ै उंेۦ एक सुसंगत कथा या उـर में संࣻे࠯षत करना
एक अलग बात ह।ै यहࣚ वह जगह है जहाँ वाࣺࡰवक परࣜक्षा होती ह।ै तकॼ कायЊ में
एलएलएम का प्रदशर्न सरल पुनप्रЄࣺ݆ कायЊ कࣞ तुलना में और अࣾधक कमजोर होता
ह।ै यह ࣻगरावट ऀसफॼ मात्रा के बारे में नहࣟ ह;ै यह संदभर्, प्रासंࣻगकता और ࣺन࠻षर्
का एक जࣺटल नृي ह।ै
ऐसा Ѻों होता ह?ै मानव संज्ञान में ࣻृࡹ त और ानۀ कࣞ गࣻतशीलता पर ࣺवचार
करें , जो कुछ हद तक एलएलएम में प्रࣻतࣺबंࣺबत होती ह।ै बड़ी मात्रा में जानकारࣜ को
संसाࣾधत करते समय, एलएलएम, मनुࡈों कࣞ तरह, नई जानकारࣜ को आىसात करते
समय पहले के ࣺववरणों को खो सकते हैं। यह ࣺवशेष रूप से उन मॉडल में सच है जो
चाࣽलतࡼ रूप से पाठ के पूवर् खंडों को प्राथࣻमकता दनेे या उन पर पुनࣺवर्चार करने
के ࣽलए ࠿ࡵ रूप से ࣺडज़ाइन नहࣟ ࣹकए गए हैं।
इसके अलावा, एक एलएलएम कࣞ इन पुनप्रЄ݆ तڇों को एक सुसंगत प्रࣻतࣺक्रया में
बुनने कࣞ क्षमता कथा ࣺनमЄण के समान ह।ै इसके ࣽलए न केवल जानकारࣜ कࣞ पुनप्रЄࣺ݆
बऍߛ गहरࣜ समझ और संदभर्गत ापनࡱ कࣞ आव࠮कता होती ह,ै जो वतर्मान एआई
के ࣽलए एक कࣺठन चुनौती बनी हुई ह।ै
तो, इन प्रौښोࣻगࣹकयों के डवेलपसर् और एकࣞकरणकतЄओं के रूप में हमारे ࣽलए इसका
Ѻा मतलब ह?ै हमें उन प्रणाࣽलयों को ࣺडजाइन करते समय इन सीमाओं के प्रࣻत
बेहद सचेत रहने कࣞ जरूरत है जो जࣺटल, लंबी-फॉमर् कायЊ को संभालने के ࣽलए
एलएलएम पर ࣺनभर्र करती हैं। यह समझना ࣹक कुछ पिरऍࣻࡱतयों में प्रदशर्न खराब
हो सकता ह,ै हमें यथाथर्वादी अपेक्षाएं ࣺनधЄिरत करने और बेहतर फॉलबैक तंत्र या
पूरक रणनीࣻतयों को ࣺवकऀसत करने में मदद करता ह।ै

मोडैࣈलटीज़: पाठ से परे
जबࣹक आज के अࣾधकांश भाषा मॉडल पाठ को संसाࣾधत करने और उۚم करने पर
कें ࣺद्रत हैं, बहु-माۀम मॉडल कࣞ ओर एक बढ़ता हुआ रुझान है जो ाभाࣺवकࡼ रूप से
कई प्रकार के डटेा, जैसे छࣺवयों, ऑࣺडयो और वीࣺडयो को इनपुट और आउटपुट कर
सकते हैं। ये बहु-माۀम मॉडल एआई-संचाࣽलत अनुप्रयोगों के ࣽलए नई संभावनाएं
खोलते हैं जो ࣺवࣾभۚ माۀमों में सामग्री को समझ और उۚم कर सकते हैं।

पिरचय 21

मोडैࣈलटीज़ цा हैं?

भाषा मॉडल के संदभर् में, मोडैࣽ लटीज़ ࣺवࣾभۚ प्रकार के डटेा को संदࣾभर्त करती हैं
ऀजंेۦ एक मॉडल संसाࣾधत और उۚم कर सकता ह।ै सबसे सामा۠ मोडैࣽ लटी पाठ
ह,ै ऀजसमें ࣹकताबों, लेखों, वेबसाइटों और सोशल मीࣺडया पो࡫ जैसे ࣺवࣾभۚ रूपों में
ࣽलखी गई भाषा शाࣻमल ह।ै हालाँࣹक, कई अ۠ मोडैࣽ लटीज़ हैं ऀजंेۦ तेजी से भाषा
मॉडल में शाࣻमल ࣹकया जा रहा ह:ै

• छࣆवयां: दृ࠮ डटेा जैसे फोटोग्राफ, ࣿचत्र और आरेख।
• ऑࣅडयो: नࣺۂ डटेा जैसे भाषण, संगीत और पयЄवरणीय नयां।ࣺۂ
• वीࣅडयो: चलती दृ࠮ डटेा, जो अѾर ऑࣺडयो के साथ होती ह,ै जैसे वीࣺडयो
ࣺѻप और ࣺफ߯ें।

प्रيके ࣺवधा भाषा मॉडल के ࣽलए अनूठी चुनौࣻतयां और अवसर प्रࡰतु करती ह।ै
उदाहरण के ࣽलए, छࣺवयों के ࣽलए मॉडल को दृ࠮ अवधारणाओं और संबंधों को
समझने कࣞ आव࠮कता होती ह,ै जबࣹक ऑࣺडयो के ࣽलए मॉडल को वाणी और अ۠
नयोंࣺۂ को संसाࣾधत और उۚم करने कࣞ आव࠮कता होती ह।ै

बहुࣆवध भाषा मॉडल

बहुࣺवध भाषा मॉडल एक हࣚ मॉडल में कई ࣺवधाओं को संभालने के ࣽलए ࣺडज़ाइन
ࣹकए गए हैं। इन मॉडलों में आमतौर पर ࣺवशेष घटक या परतें होती हैं जो ࣺवࣾभۚ
ࣺवधाओं में इनपुट को समझ सकती हैं और आउटपुट डटेा उۚم कर सकती हैं।
बहुࣺवध भाषा मॉडलों के कुछ उ߲ेखनीय उदाहरण हैं:

• OpenAI का GPT-4o: GPT-4o एक ࣺवशाल भाषा मॉडल है जो टҡे के
अࣻतिरѱ ाभाࣺवकࡼ रूप से वाणी ऑࣺडयो को समझता और संसाࣾधत करता
ह।ै यह क्षमता GPT-4o को बोलࣜ गई भाषा का प्रࣻतलेखन करने, ऑࣺडयो इनपुट
से टҡे उۚم करने, और मौंखक प्रࠫों के आधार पर प्रࣻतࣺक्रयाएं प्रदान करने
जैसे कायर् करने में सक्षम बनाती ह।ै

पिरचय 22

• OpenAI का दृߺ इनपुट के साथ GPT-4: GPT-4 एक ࣺवशाल भाषा मॉडल
है जो टҡे और छࣺवयों दोनों को संसाࣾधत कर सकता ह।ै जब छࣺव को इनपुट
के रूप में ࣺदया जाता ह,ै GPT-4 छࣺव कࣞ सामग्री का ࣺवे࠯षण कर सकता है
और दृ࠮ जानकारࣜ का वणर्न करने या उस पर प्रࣻतࣺक्रया दनेे वाला टҡे
उۚم कर सकता ह।ै

• Google का Gemini: Gemini एक बहुࣺवध मॉडल है जो टҡे, छࣺवयों और
वीࣺडयो को संभाल सकता ह।ै यह एक एकࣞकृत वाࡰकुला का उपयोग करता है
जो क्रॉस-मोडल समझ और ࣺनमЄण को सक्षम बनाता ह,ै ऀजससे छࣺव कैࣺݐनंग,
वीࣺडयो सारांशीकरण और दृ࠮ प्रࠫ उـरण जैसे कायर् संभव होते हैं।

• DALL-E और Stable Diffusion: हालांࣹक ये पारंपिरक अथЊ में भाषा मॉडल
नहࣟ हैं, ये मॉडल टҡे ࣺववरणों से छࣺवयां उۚم करके बहुࣺवध AI कࣞ शࣼѱ
को प्रदऀशर्त करते हैं। वे ࣺवࣾभۚ ࣺवधाओं के बीच अनुवाद कर सकने वाले मॉडलों
कࣞ संभावना को प्रदऀशर्त करते हैं।

बहुࣆवध मॉडल के लाभ और अनुप्रयोग

बहुࣺवध भाषा मॉडल कई लाभ प्रदान करते हैं और ࣺवࣾभۚ अनुप्रयोगों को सक्षम बनाते
हैं, ऀजनमें शाࣻमल हैं:

• बेहतर समझ: कई ࣺवधाओं से जानकारࣜ को संसाࣾधत करके, ये मॉडल दुࣺनया
कࣞ अࣾधक ࠖापक समझ प्रा݆ कर सकते हैं, जैसे मनुࡈ ࣺवࣾभۚ संवेदी इनपुट
से सीखते हैं।

• क्रॉस-मोडल :नमЂणࣄ बहुࣺवध मॉडल एक ࣺवधा में दूसरࣜ ࣺवधा के इनपुट के
आधार पर सामग्री उۚم कर सकते हैं, जैसे टҡे ࣺववरण से छࣺव बनाना या
ࣽलंखत लेख से वीࣺडयो सारांश तैयार करना।

• सुगݿता: बहुࣺवध मॉडल ࣺवधाओं के बीच अनुवाद करके जानकारࣜ को अࣾधक
सुलभ बना सकते हैं, जैसे दृࣼ࠿बाࣾधत उपयोगकतЄओं के ࣽलए छࣺवयों का टҡे
ࣺववरण तैयार करना या ࣽलंखत सामग्री के ऑࣺडयो संࡡरण बनाना।

पिरचय 23

• रचनाؕक अनुप्रयोग: बहु-माۀम मॉडल का उपयोग टҡे-आधािरत ࣺनदϺशों
के आधार पर कला, संगीत, या वीࣺडयो जैसी रचनाىक वࡰएुं बनाने के ࣽलए
ࣹकया जा सकता ह,ै जो कलाकारों और सामग्री ࣺनमЄताओं के ࣽलए नई संभावनाएं
खोलता ह।ै

जैसे-जैसे बहु-माۀम भाषा मॉडल ࣺवकऀसत होते जाएंगे, वे कई माۀमों में सामग्री को
समझने और उۚم करने में सक्षम AI-संचाࣽलत अनुप्रयोगों के ࣺवकास में महٌपूणर्
भूࣻमका ࣺनभाएंगे। यह मनुࡈों और AI ऀस࡫म के बीच अࣾधक प्राकृࣻतक और सहज
संवाद को सक्षम करेगा, साथ हࣚ रचनाىक अࣾभࠖࣼѱ और ज्ञान प्रसार के ࣽलए नई
संभावनाएं खोलेगा।

प्रदाता पािरࣔࣆ࠽तकࢩ तंत्र
जब बृहत भाषा मॉडल (LLMs) को अनुप्रयोगों में शाࣻमल करने कࣞ बात आती ह,ै तो
आपके पास चुनने के ࣽलए ࣺवक߫ों कࣞ बढ़ती श्रृखंला ह।ै प्रيके प्रमुख LLM प्रदाता,
जैसे OpenAI, Anthropic, Google, और Cohere, अपने यंࡼ के मॉडल, APIs,
और टू߶ का पािरऍࣻࡱतकࣞ तंत्र प्रदान करता ह।ै सहࣚ प्रदाता का चयन करने में
ࣺवࣾभۚ कारकों पर ࣺवचार करना शाࣻमल ह,ै ऀजसमें मू߰ ࣺनधЄरण, प्रदशर्न, सामग्री
ࣺफ़ߢिरंग, डटेा गोपनीयता, और अनुकूलन ࣺवक߫ शाࣻमल हैं।

OpenAI
OpenAI, LLMs के सबसे प्रऀसڔ प्रदाताओं में से एक ह,ै ऀजसकࣞ GPT श्रृखंला
(GPT-3, GPT-4) ࣺवࣾभۚ अनुप्रयोगों में ࠖापक रूप से उपयोग कࣞ जाती ह।ै OpenAI
एक उपयोगकतЄ-अनुकूल API प्रदान करता है जो आपको आसानी से उनके मॉडल
को अनुप्रयोगों में एकࣞकृत करने कࣞ अनुमࣻत दतेा ह।ै वे एंट्र ी-लेवल Ada मॉडल से
लेकर शࣼѱशालࣜ Davinci मॉडल तक, ࣺवࣾभۚ क्षमताओं और मू߰ ࣺबंदुओं वाले मॉडल
प्रदान करते हैं।
OpenAI का पािरऍࣻࡱतकࣞ तंत्र OpenAI Playground जैसे टू߶ भी शाࣻमल करता
ह,ै जो आपको प्रॉम्प्ׅ के साथ प्रयोग करने और ࣺवऀश࠿ उपयोग मामलों के ࣽलए

पिरचय 24

मॉडल को फ़ाइन-׀नू करने कࣞ अनुमࣻत दतेा ह।ै वे अनुࣿचत या हाࣺनकारक सामग्री
के उمादन को रोकने में मदद करने के ࣽलए सामग्री ࣺफ़ߢिरंग ࣺवक߫ प्रदान करते
हैं।
OpenAI के मॉडल का सीधे उपयोग करते समय, मैं Alex Rudall कࣞ ruby-openai
लाइब्ररेࣜ पर ࣺनभर्र करता हू।ं

Anthropic
Anthropic, LLM क्षेत्र में एक और प्रमुख ंखलाड़ी ह,ै ऀजनके Claude मॉडल मजबूत
प्रदशर्न और नैࣻतक ࣺवचारों के ࣽलए लोकࣺप्रयता प्रा݆ कर रहे हैं। Anthropic सुरऀक्षत
और ऀज޲देार AI ऀस࡫म ࣺवकऀसत करने पर ानۀ कें ࣺद्रत करता ह,ै ऀजसमें सामग्री
ࣺफ़ߢिरंग और हाࣺनकारक आउटपुट से बचने पर ࣺवशेष जोर ࣺदया जाता ह।ै
Anthropic के पािरऍࣻࡱतकࣞ तंत्र में Claude API शाࣻमल ह,ै जो आपको मॉडल को
अपने अनुप्रयोगों में एकࣞकृत करने कࣞ अनुमࣻत दतेा ह,ै साथ हࣚ प्रॉम्݂ इंजीࣺनयिरंग
और फ़ाइन-ࣺू׀ नंग के ࣽलए टू߶ भी शाࣻमल हैं। वे Claude Instant मॉडल भी
प्रदान करते हैं, जो अࣾधक अप-टू-डटे और तڇपरक प्रࣻतࣺक्रयाओं के ࣽलए वेब खोज
क्षमताओं को शाࣻमल करता ह।ै
Anthropic के मॉड߶ का सीधे उपयोग करते समय, मैं Alex Rudall कࣞ anthrophic
लाइब्ररेࣜ पर ࣺनभर्र करता हू।ं

Google
Google ने कई शࣼѱशालࣜ एलएलएम ࣺवकऀसत ࣹकए हैं, ऀजनमें Gemini, BERT, T5,
और PaLM शाࣻमल हैं। ये मॉडल प्राकृࣻतक भाषा प्रसंࡡरण के ࣺवࣾभۚ कायЊ में अपने
मजबूत प्रदशर्न के ࣽलए जाने जाते हैं। Google के पािरऍࣻࡱतकࣞ तंत्र में TensorFlow
और Keras लाइब्ररेࣜ शाࣻमल हैं, जो मशीन लࣺन϶ग मॉडल के ࣺनमЄण और प्रऀशक्षण के
ࣽलए टू߶ और फे्रमवकॼ प्रदान करती हैं।
Google एक Cloud AI Platform भी प्रदान करता ह,ै जो आपको ѻाउड में उनके
मॉडल को आसानी से तैनात और लࡡे करने कࣞ सुࣺवधा दतेा ह।ै वे भावना ࣺवे࠯षण,

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/anthropic

पिरचय 25

एंࣺटटी पहचान, और अनुवाद जैसे कायЊ के ࣽलए पूवर्-प्रऀशऀक्षत मॉडल और एपीआई
कࣞ एक श्रृखंला प्रदान करते हैं।

Meta

Meta, जो पहले Facebook के नाम से जाना जाता था, बड़े भाषा मॉडल के ࣺवकास
में गहराई से ࣺनवेश कर रहा ह,ै ऀजसे LLaMA और OPT जैसे मॉडल कࣞ िरलࣜज से
रेखांࣹकत ࣹकया गया ह।ै ये मॉडल ࣺवࣺवध भाषा कायЊ में अपने मजबूत प्रदशर्न के ࣽलए
उ߲ेखनीय हैं और मुҷ रूप से ओपन-सोसर् चैनलों के माۀम से उपलނ कराए जाते
हैं, जो अनुसंधान और सामुदाࣻयक सहयोग के प्रࣻत Meta कࣞ प्रࣻतबڔता को समथर्न
दतेे हैं।
Meta का पािरऍࣻࡱतकࣞ तंत्र मुҷ रूप से PyTorch के इदर्-ࣻगदर् बना ह,ै जो एक
ओपन-सोसर् मशीन लࣺन϶ग लाइब्ररेࣜ है ऀजसे इसकࣞ गࣻतशील क޼टूशेनल क्षमताओं
और लचीलेपन के ࣽलए पसंद ࣹकया जाता ह,ै जो नवीन एआई अनुसंधान और ࣺवकास
को सुगम बनाती ह।ै
अपनी तकनीकࣞ पेशकशों के अलावा, Meta नैࣻतक एआई ࣺवकास पर जोर दतेा ह।ै
वे मजबूत कंटेंट ࣺफ़ߢिरंग को लागू करते हैं और पूवЄग्रहों को कम करने पर ानۀ
कें ࣺद्रत करते हैं, जो एआई अनुप्रयोगों में सुरक्षा और ऀज޲देारࣜ के अपने ࠖापक लҝों
के अनुरूप ह।ै

Cohere

Cohere एलएलएम क्षेत्र में एक नया प्रवेशक ह,ै जो प्रࣻतࣾࡵधर्यों कࣞ तुलना में एलएलएम
को अࣾधक सुलभ और उपयोग में आसान बनाने पर ानۀ कें ࣺद्रत कर रहा ह।ै उनके
पािरऍࣻࡱतकࣞ तंत्र में Cohere API शाࣻमल ह,ै जो टҡे जनरेशन, वग॑करण और
सारांशीकरण जैसे कायЊ के ࣽलए पूवर्-प्रऀशऀक्षत मॉडल तक पहुचं प्रदान करता ह।ै
Cohere प्रॉम्݂ इंजीࣺनयिरंग, फ़ाइन-ࣺू׀ नंग और कंटेंट ࣺफ़ߢिरंग के ࣽलए टू߶ भी
प्रदान करता ह।ै वे डटेा गोपनीयता और सुरक्षा पर जोर दतेे हैं, ऀजसमें एअ݂ۨडे डटेा
ोरेज࡫ और एѾेस कंट्र ोल जैसी सुࣺवधाएं शाࣻमल हैं।

पिरचय 26

Ollama

Ollama एक डे࡫हो-ࡼ टेफॉमर्ݎ है जो उपयोगकतЄओं को ࣺवࣾभۚ बड़े भाषा मॉडल
(एलएलएम) को अपनी मशीनों पर ानीयࡱ रूप से प्रबंࣾधत और तैनात करने कࣞ
अनुमࣻत दतेा ह,ै ऀजससे उंेۦ बाहरࣜ ѻाउड सेवाओं पर ࣺनभर्र ࣹकए ࣺबना अपने एआई
मॉडल पर पूणर् ࣺनयंत्रण ࣻमलता ह।ै यह सेटअप उन लोगों के ࣽलए आदशर् है जो डटेा
गोपनीयता को प्राथࣻमकता दतेे हैं और अपने एआई संचालन को इन-हाउस संभालना
चाहते हैं।
यह टेफ़ॉमर्ݎ कई प्रकार के मॉड߶ का समथर्न करता ह,ै ऀजसमें Llama, Phi,
Gemma, और Mistral के ࣺवࣾभۚ संࡡरण शाࣻमल हैं, जो आकार और क޼टूशेनल
आव࠮कताओं में ࣾभۚ होते हैं। Ollama इन मॉड߶ को कमांड लाइन से सरल आदशेों
जैसे ollama run <model_name> का उपयोग करके डाउनलोड और चलाना आसान
बनाता ह,ै और यह macOS, Linux, और Windows सࣹहत ࣺवࣾभۚ ऑपरेࣺटगं ऀस࡫म
पर काम करने के ࣽलए ࣺडज़ाइन ࣹकया गया ह।ै
िरमोट API का उपयोग ࣹकए ࣺबना अपने एࣺݎकेशन में ओपन-सोसर् मॉड߶ को
एकࣞकृत करने के इՃुक डवेलपसर् के ࣽलए, Ollama कंटनेर प्रबंधन टू߶ के समान
मॉडल लाइफसाइकल को प्रबंࣾधत करने के ࣽलए CLI प्रदान करता ह।ै यह क࡫म
कॉिन्फ़गरेशन और प्रॉम्प्ׅ का भी समथर्न करता ह,ै जो ࣺवऀश࠿ आव࠮कताओं या
उपयोग के मामलों के ࣽलए मॉड߶ को अनुकूࣽलत करने कࣞ उՂ ࣺडग्री कࣞ अनुमࣻत
दतेा ह।ै
Ollama ࣺवशेष रूप से तकनीकࣞ-कुशल उपयोगकतЄओं और डवेलपसर् के ࣽलए उपयुѱ
ह,ै इसके कमांड-लाइन इंटरफ़ेस और AI मॉड߶ के प्रबंधन और पिरࣺनयोजन में प्रदान
कࣞ जाने वालࣜ लचीलेपन के कारण। यह उन ࠖवसायों और ࠖࣼѱयों के ࣽलए एक
शࣼѱशालࣜ टूल बनाता है ऀजंेۦ सुरक्षा और ࣺनयंत्रण से समझौता ࣹकए ࣺबना मजबूत
AI क्षमताओं कࣞ आव࠮कता होती ह।ै

पिरचय 27

मޮी-मॉडल र्ރटफ़ॉेܚ

इसके अࣻतिरѱ, कुछ प्रदाता हैं जो ࣺवࣾभۚ प्रकार के ओपन-सोसर् मॉड߶ कࣞ होऊ࡫गं
करते हैं, जैसे Together.ai और Groq। ये र्޷टेफ़ॉݎ लचीलापन और अनुकूलन प्रदान
करते हैं, जो आपको अपनी ࣺवऀश࠿ आव࠮कताओं के अनुसार ओपन-सोसर् मॉड߶
को चलाने और कुछ मामलों में, फ़ाइन-׀नू भी करने कࣞ अनुमࣻत दतेे हैं। उदाहरण
के ࣽलए, Together.ai ࣺवࣾभۚ ओपन-सोसर् LLMs तक पहुचं प्रदान करता ह,ै जो
उपयोगकतЄओं को ࣺवࣾभۚ मॉड߶ और कॉिन्फ़गरेशन के साथ प्रयोग करने में सक्षम
बनाता ह।ै Groq अيतं उՂ-प्रदशर्न पूणर्ता प्रदान करने पर ानۀ कें ࣺद्रत करता है जो
इस पुࡰक के लेखन के समय लगभग जादुई प्रतीत होता है

LLM प्रदाता का चयन
LLM प्रदाता का चयन करते समय, आपको ࣺनޭࣽलंखत कारकों पर ࣺवचार करना
चाࣹहए:

• मू޼ :नधЂरणࣄ ࣺवࣾभۚ प्रदाता अलग-अलग मू߰ ࣺनधЄरण मॉडल प्रदान करते
हैं, जो उपयोग-के-अनुसार-भुगतान से लेकर सदࡺता-आधािरत योजनाओं तक
होते हैं। प्रदाता का चयन करते समय अपेऀक्षत उपयोग और बजट पर ࣺवचार
करना महٌपूणर् ह।ै

• प्रदशर्न: LLMs का प्रदशर्न प्रदाताओं के बीच काफࣞ ࣾभۚ हो सकता ह,ै इसࣽलए
ࣺनणर्य लेने से पहले ࣺवऀश࠿ उपयोग के मामलों पर मॉड߶ का बेंचमाकॼ और
परࣜक्षण करना महٌपूणर् ह।ै

• कंटेंट :फ़ޮिरंगࣆ एࣺݎकेशन के आधार पर, कंटेंट ࣺफ़ߢिरंग एक महٌपूणर्
ࣺवचार हो सकता ह।ै कुछ प्रदाता अ۠ कࣞ तुलना में अࣾधक मजबूत कंटेंट
ࣺफ़ߢिरंग ࣺवक߫ प्रदान करते हैं।

• डेटा गोपनीयता: यࣺद एࣺݎकेशन संवेदनशील उपयोगकतЄ डटेा को संभालता ह,ै
तो मजबूत डटेा गोपनीयता और सुरक्षा प्रथाओं वाले प्रदाता का चयन करना
महٌपूणर् ह।ै

पिरचय 28

• अनुकूलन: कुछ प्रदाता ࣺवऀश࠿ उपयोग के मामलों के ࣽलए मॉड߶ को फ़ाइन-
नू׀ और अनुकूࣽलत करने के मामले में अࣾधक लचीलापन प्रदान करते हैं।

अंततः, LLM प्रदाता का चयन एࣺݎकेशन कࣞ ࣺवऀश࠿ आव࠮कताओं और सीमाओं
पर ࣺनभर्र करता ह।ै ࣺवक߫ों का सावधानीपूवर्क मू߰ांकन करके और कࣞमत, प्रदशर्न
और डटेा गोपनीयता जैसे कारकों पर ࣺवचार करके, आप अपनी आव࠮कताओं को
सवЉـम रूप से पूरा करने वाले प्रदाता का चयन कर सकते हैं।
यह भी ानۀ दनेे योӌ है ࣹक LLM का पिरदृ࠮ लगातार ࣺवकऀसत हो रहा ह,ै ऀजसमें
नए प्रदाता और मॉडल ࣺनयࣻमत रूप से सामने आ रहे हैं। आपको नवीनतम ࣺवकास
से अपडटे रहना चाࣹहए और नए ࣺवक߫ों कࣞ खोज के ࣽलए तैयार रहना चाࣹहए जब
वे उपलނ हों।

OpenRouter
इस पुࡰक में मैं ࣺवशेष रूप से OpenRouter पर अपने API प्रदाता के रूप में ࣺनभर्र
रहूगंा। कारण सरल ह:ै यह सभी सबसे लोकࣺप्रय वाऀणऌիक और ओपन-सोसर् मॉडल
के ࣽलए एक वन-࡫ॉप शॉप ह।ै यࣺद आप AI कोࣺडगं के साथ कुछ अनुभव प्रा݆ करने
के ࣽलए उُकु हैं, तो शुरुआत करने के ࣽलए सबसे अՃࣛ जगहों में से एक मेरࣜ खुद
कࣞ OpenRouter Ruby Library ह।ै

प्रदशर्न के बारे में सोचना
एࣺݎकेशन में भाषा मॉडल को शाࣻमल करते समय, प्रदशर्न एक महٌपूणर् ࣺवचार ह।ै
एक भाषा मॉडल का प्रदशर्न उसकࣞ ࣺवलंबता (प्रࣻतࣺक्रया उۚم करने में लगने वाला
समय) और प्रवाह दर (प्रࣻत समय इकाई में संभाल सकने वाले अनुरोधों कࣞ संҷा)
के संदभर् में मापा जा सकता ह।ै
प्रथम टोकन तक का समय (TTFT) एक अ۠ आव࠮क प्रदशर्न मापदडं ह,ै जो ࣺवशेष
रूप से चैटबॉट और वाࣺࡰवक समय में इंटरैऎѮव प्रࣻतࣺक्रयाओं कࣞ आव࠮कता वाले

https://openrouter.ai
https://github.com/OlympiaAI/open_router

पिरचय 29

एࣺݎकेशन के ࣽलए प्रासंࣻगक ह।ै TTFT उपयोगकतЄ का अनुरोध प्रा݆ होने के क्षण से
प्रࣻतࣺक्रया के पहले शށ (या टोकन) के उۚم होने तक कࣞ ࣺवलंबता को मापता ह।ै
यह मापदडं ࣺनबЄध और आकषर्क उपयोगकतЄ अनुभव बनाए रखने के ࣽलए महٌपूणर्
ह,ै Ѻोंࣹक दरेࣜ से ࣻमलने वालࣜ प्रࣻतࣺक्रयाएं उपयोगकतЄ कࣞ ࣺनराशा और असंलӈता
का कारण बन सकती हैं।
ये प्रदशर्न मापदडं उपयोगकतЄ अनुभव और एࣺݎकेशन कࣞ लेࣺबࣽलटीࡡे पर महٌपूणर्
प्रभाव डाल सकते हैं।
कई कारक भाषा मॉडल के प्रदशर्न को प्रभाࣺवत कर सकते हैं, ऀजनमें शाࣻमल हैं:
पैरामीटर सं҃ा: अࣾधक पैरामीटर वाले बड़े मॉडल आमतौर पर अࣾधक क޼टूशेनल
संसाधनों कࣞ आव࠮कता रखते हैं और छोटे मॉडल कࣞ तुलना में उनमें उՂ ࣺवलंबता
और कम प्रवाह दर हो सकती ह।ै
हाडॳवेयर: भाषा मॉडल का प्रदशर्न उस हाडॼवेयर के आधार पर काफࣞ ࣾभۚ हो सकता
है ऀजस पर यह चल रहा ह।ै ѻाउड प्रदाता मशीन लࣺन϶ग वकॼ लोड के ࣽलए अनुकूࣽलत
GPU और TPU इंंे࡫स प्रदान करते हैं, जो मॉडल अनुमान को काफࣞ तेज कर सकते
हैं।

OpenRouter कࣞ एक अՃࣛ बात यह है ࣹक इसके ाराڙ प्रदान ࣹकए जाने
वाले कई मॉड߶ के ࣽलए, आपको ࣺवࣾभۚ प्रदशर्न प्रोफाइल और लागत
वाले ѻाउड प्रोवाइडसर् में से चुनने का ࣺवक߫ ࣻमलता ह।ै

шांटाइज़ेशन: Ѽांटाइज़ेशन तकनीकों का उपयोग वेׅ और एऎѮवेशۥ को कम
पिरशुڔता वाले डटेा प्रकारों में प्रࡰतु करके मॉडल के मेमोरࣜ फुटࣺप्रंट और
क޼टूशेनल आव࠮कताओं को कम करने के ࣽलए ࣹकया जा सकता ह।ै यह गुणवـा
को महٌपूणर् रूप से प्रभाࣺवत ࣹकए ࣺबना प्रदशर्न में सुधार कर सकता ह।ै एक
एࣺݎकेशन डवेलपर के रूप में, आप शायद ࣺवࣾभۚ Ѽांटाइज़ेशन रोंࡰ पर अपने खुद
के मॉडल को प्रऀशऀक्षत करने में शाࣻमल नहࣟ होंगे, लेࣹकन शށावलࣜ से पिरࣿचत होना
अՃा ह।ै

पिरचय 30

बैࣉचंग: एक साथ कई अनुरोधों को बैच में संसाࣾधत करने से मॉडल लोࣺडगं और
डटेा ट्र ांसफर के ओवरहडे को कम करके थ्रपूुट में सुधार हो सकता ह।ै
कै࣊शंग: बार-बार उपयोग ࣹकए जाने वाले प्रॉम्प्ׅ या इनपुट अनुक्रमों के पिरणामों को
कैश करने से अनुमान अनुरोधों कࣞ संҷा कम हो सकती है और समग्र प्रदशर्न में
सुधार हो सकता ह।ै
प्रोडѽन एࣺݎकेशन के ࣽलए भाषा मॉडल का चयन करते समय, प्रࣻतࣺनࣾध कायर्भार
और हाडॼवेयर कॉिन्फ़गरेशन पर इसके प्रदशर्न का बेंचमाकॼ करना महٌपूणर् ह।ै यह
संभाࣺवत बाधाओं कࣞ पहचान करने और यह सुࣺनऀࠥत करने में मदद कर सकता है
ࣹक मॉडल आव࠮क प्रदशर्न लҝों को पूरा कर सकता ह।ै
मॉडल के प्रदशर्न और अ۠ कारकों जैसे लागत, लचीलापन, और एकࣞकरण कࣞ
सरलता के बीच ट्र डे-ऑफ पर भी ࣺवचार करना महٌपूणर् ह।ै उदाहरण के ࣽलए,
रࣜयल-टाइम प्रࣻतࣺक्रयाओं कࣞ आव࠮कता वाले एࣺݎकेशन के ࣽलए कम लेटेंसी वाले
छोट,े कम खच॑ले मॉडल का उपयोग करना बेहतर हो सकता ह,ै जबࣹक बैच प्रोसेऀसंग
या जࣺटल तकॼ कायЊ के ࣽलए बड़,े अࣾधक शࣼѱशालࣜ मॉडल अࣾधक उपयुѱ हो सकते
हैं।

ڦभࣉवࣆ LLM मॉड߂ के साथ प्रयोग
एक LLM का चयन शायद हࣚ कभी एक ायीࡱ ࣺनणर्य होता ह।ै चूंࣹक नए और बेहतर
मॉडल ࣺनयࣻमत रूप से जारࣜ ࣹकए जाते हैं, एࣺݎकेशन को मॉ׵लूर तरࣜके से बनाना
अՃा है जो समय के साथ ࣺवࣾभۚ भाषा मॉड߶ को बदलने कࣞ अनुमࣻत दतेा ह।ै
प्रॉम्प्ׅ और डटेासेׅ को अѾर ۠नूतम पिरवतर्नों के साथ ࣺवࣾभۚ मॉड߶ में पुन:
उपयोग ࣹकया जा सकता ह।ै यह आपको अपने एࣺݎकेशन को पूरࣜ तरह से पुनࣺडॼज़ाइन
ࣹकए ࣺबना भाषा मॉडࣽलंग में नवीनतम प्रगࣻत का लाभ उठाने कࣞ अनुमࣻत दतेा ह।ै

ࣺवࣾभۚ मॉडल ࣺवक߫ों के बीच आसानी से ऋࡼच करने कࣞ क्षमता एक
और कारण है ऀजससे मैं OpenRouter को पसंद करता हू।ं

पिरचय 31

नए भाषा मॉडल में अपग्रडे करते समय, यह सुࣺनऀࠥत करने के ࣽलए ࣹक यह एࣺݎकेशन
कࣞ आव࠮कताओं को पूरा करता ह,ै इसके प्रदशर्न और आउटपुट गुणवـा का पूरࣜ
तरह से परࣜक्षण और सيापन करना महٌपूणर् ह।ै इसमें डोमेन-ࣺवऀश࠿ डटेा पर
मॉडल को पुनः प्रऀशऀक्षत करना या फाइन-׀नू करना, साथ हࣚ मॉडल के आउटपुट
पर ࣺनभर्र ࣹकसी भी डाउन्࡫र ीम कंपोनेंट को अपडटे करना शाࣻमल हो सकता ह।ै
प्रदशर्न और मॉ׵लैूिरटी को ानۀ में रखते हुए एࣺݎकेशन ࣺडज़ाइन करके, आप
,लेबलࡡे कुशल और भࣺवࡈ-सुरऀक्षत ऀस࡫म बना सकते हैं जो भाषा मॉडࣽलंग
तकनीक के तेजी से ࣺवकऀसत होते पिरदृ࠮ के अनुकूल हो सकते हैं।

संयुн एआई ࣊स࠷म
हमारࣜ प्रࡰावना को समा݆ करने से पहले, यह उ߲ेख करना महٌपूणर् है ࣹक 2023 से
पहले और ChatGPT ाराڙ जनरेࣺटव एआई में रुࣿच के ࣺवࡶोट से पहले, पारंपिरक
एआई दृࣼ࠿कोण आमतौर पर एकल, बंद मॉडल के एकࣞकरण पर ࣺनभर्र करते थे।
इसके ࣺवपरࣜत, संयुѱ एआई ऀस࡫म बुआڔमान ࠖवहार प्रा݆ करने के ࣽलए परࡵर
जुड़े घटकों कࣞ जࣺटल पाइपलाइनों का लाभ उठाते हैं।
मूल रूप से, संयुѱ एआई ऀस࡫म कई मॉ׵लू से ࣻमलकर बने होते हैं, ऀजनमें से
प्रيके ࣺवऀश࠿ कायЊ या फ़ंѽंस को करने के ࣽलए ࣺडज़ाइन ࣹकया गया ह।ै इन मॉ׵लू
में जनरेटर, िरट्र ीवर, रैंकर, ѻाऀसफायर और ࣺवࣾभۚ अ۠ ࣺवशेष घटक शाࣻमल हो
सकते हैं। समग्र ऀस࡫म को छोटी, कें ࣺद्रत इकाइयों में ࣺवभाऀजत करके, डवेलपसर्
अࣾधक लचीलࣜ, लेबलࡡे और प्रबंधनीय एआई आࣹकॼ टѫेर बना सकते हैं।
संयुѱ एआई ऀस࡫म का एक प्रमुख लाभ ࣺवࣾभۚ एआई तकनीकों और मॉडल कࣞ
ताकतों को जोड़ने कࣞ उनकࣞ क्षमता ह।ै उदाहरण के ࣽलए, एक ऀस࡫म प्राकृࣻतक
भाषा समझ और जनरेशन के ࣽलए एक बृहत भाषा मॉडल (एलएलएम) का उपयोग
कर सकता ह,ै जबࣹक सूचना पुनप्रЄࣺ݆ या ࣺनयम-आधािरत ࣺनणर्य लेने के ࣽलए एक
अलग मॉडल का उपयोग कर सकता ह।ै यह मॉ׵लूर दृࣼ࠿कोण आपको एक-साइज-
ࣺफׅ-ऑल समाधान पर ࣺनभर्र रहने के बजाय प्रيके ࣺवऀश࠿ कायर् के ࣽलए सवЉـम
उपकरण और तकनीकों का चयन करने कࣞ अनुमࣻत दतेा ह।ै

पिरचय 32

हालाँࣹक, संयुѱ एआई ऀस࡫म का ࣺनमЄण अनूठी चुनौࣻतयां भी प्रࡰतु करता ह।ै ࣺवशेष
रूप से, ऀस࡫म के ࠖवहार कࣞ समग्र सुसंगतता और ऍࡱरता सुࣺनऀࠥत करने के ࣽलए
मजबूत परࣜक्षण, ࣺनगरानी और शासन तंत्र कࣞ आव࠮कता होती ह।ै

GPT-4 जैसे शࣼѱशालࣜ एलएलएम के आगमन से हमें पहले से कहࣟ
अࣾधक आसानी से संयुѱ एआई ऀस࡫म के साथ प्रयोग करने कࣞ अनुमࣻत
ࣻमलती ह,ै Ѻोंࣹक ये उۚत मॉडल अपनी प्राकृࣻतक भाषा समझ क्षमताओं
के अलावा, वग॑करण, रैं ࣹकंग और जनरेशन जैसी कई भूࣻमकाओं को
संभालने में सक्षम हैं। यह बहुमुखी प्रࣻतभा डवेलपसर् को संयुѱ एआई
आࣹकॼ टѫेर पर तेजी से प्रोटोटाइप और पुनरावृࣾـ करने में सक्षम बनाती
ह,ै जो बुआڔमान एࣺݎकेशन ࣺवकास के ࣽलए नई संभावनाएं खोलती ह।ै

संयुн एआई ࣊स࠷म के लएࣈ ॉयमेंटܚडࣅ पैटनर्
संयुѱ एआई ऀस࡫म को ࣺवࣾभۚ पैटनर् का उपयोग करके ࣺडݎॉय ࣹकया जा सकता ह,ै
ऀजनमें से प्रيके ࣺवऀश࠿ आव࠮कताओं और उपयोग के मामलों को संबोࣾधत करने
के ࣽलए ࣺडज़ाइन ࣹकया गया ह।ै आइए चार सामा۠ ࣺडݎॉयमेंट पैटनर् कࣞ खोज करें:
प्रࠫ और उـर, बहु-एजेंट/एजेंࣺटक समࡺा समाधानकतЄ, संवादाىक एआई, और
सह-पायलट।

प्र߷ और उ،र
प्रࠫ और उـर (Ѻू एंड ए) ऀस࡫म सूचना पुनप्रЄࣺ݆ पर कें ࣺद्रत होते हैं जो एआई मॉडल
कࣞ समझ क्षमताओं के साथ बढ़ाए गए हैं ताࣹक वे केवल एक खोज इंजन से अࣾधक
के रूप में कायर् कर सकें । पुनप्रЄࣺ݆-संवࣾधर्त जनरेशन (RAG) का उपयोग करके बाहरࣜ
ज्ञान स्रोतों के साथ शࣼѱशालࣜ भाषा मॉडल को जोड़कर, प्रࠫ और उـर ऀस࡫म
भ्रामक जानकारࣜ से बचते हैं और उपयोगकतЄ के प्रࠫों के सटीक और प्रासंࣻगक उـर
प्रदान करते हैं।
एक LLM-आधािरत प्रࠫोـर प्रणालࣜ के प्रमुख घटकों में शाࣻमल हैं:

पिरचय 33

• प्र߷ समझना और पुनगर्ठन: उपयोगकतЄ के प्रࠫों का ࣺवे࠯षण और उंेۦ
अंतࣺनर्ࣹहत ज्ञान स्रोतों से बेहतर मेल खाने के ࣽलए पुनगर्ࣺठत करना।

• ज्ञान पुनप्रЂܒࣆ: पुनगर्ࣺठत प्रࠫ के आधार पर संरࣿचत या असंरࣿचत डटेा स्रोतों
से प्रासंࣻगक जानकारࣜ प्रा݆ करना।

• प्रࣆतࣅक्रया :नमЂणࣄ भाषा मॉडल कࣞ जनरेࣺटव क्षमताओं के साथ पुनप्रЄ݆ ज्ञान
को एकࣞकृत करके सुसंगत और जानकारࣜपूणर् प्रࣻतࣺक्रयाएं तैयार करना।

RAG उप-प्रणाࣽलयां ࣺवशेष रूप से उन प्रࠫोـर क्षेत्रों में महٌपूणर् हैं जहां सटीक और
अښतन जानकारࣜ प्रदान करना महٌपूणर् ह,ै जैसे ग्राहक सहायता, ज्ञान प्रबंधन, या
शैऀक्षक अनुप्रयोग

मޮी-एजेंट/एजेंࣅटक समࡆा समाधानकतЂ

मߢी-एजेंट, ऀजसे एजेंࣺटक प्रणालࣜ भी कहा जाता ह,ै में कई ـायࡼ एजेंट जࣺटल
समࡺाओं को हल करने के ࣽलए एक साथ काम करते हैं। प्रيके एजेंट कࣞ एक
ࣺवऀश࠿ भूࣻमका, कौशल का समूह, और प्रासंࣻगक उपकरणों या सूचना स्रोतों तक
पहुचं होती ह।ै सहयोग और सूचना का आदान-प्रदान करके, ये एजेंट ऐसे कायЊ को
संभाल सकते हैं जो एकल एजेंट के ࣽलए कࣺठन या असंभव होंगे।
मߢी-एजेंट समࡺा समाधानकतЄओं के प्रमुख ऀसڔांतों में शाࣻमल हैं:

• :वशेषज्ञताࣆ प्रيके एजेंट अपनी ࣺवऀश࠿ क्षमताओं और ज्ञान का उपयोग करते
हुए समࡺा के एक ࣺवऀश࠿ पहलू पर ानۀ कें ࣺद्रत करता ह।ै

• सहयोग: एजेंट एक सामा۠ लҝ प्रा݆ करने के ࣽलए संदशे पास करने या
साझा मेमोरࣜ के माۀम से संवाद करते हैं और अपनी कारर्वाइयों का समۢय
करते हैं।

• अनुकूलन क्षमता: प्रणालࣜ ࠖࣼѱगत एजेंटों कࣞ भूࣻमकाओं और ࠖवहारों को
समायोऀजत करके बदलती पिरऍࣻࡱतयों या आव࠮कताओं के अनुकूल हो सकती
ह।ै

पिरचय 34

मߢी-एजेंट प्रणाࣽलयां उन अनुप्रयोगों के ࣽलए उपयुѱ हैं ऀजंेۦ ࣺवतिरत समࡺा
समाधान कࣞ आव࠮कता होती ह,ै जैसे आपूࣻतर् श्रृखंला अनुकूलन, यातायात प्रबंधन,
या आपातकालࣜन प्रࣻतࣺक्रया योजना

वातЂलाप AI
वातЄलाप AI प्रणाࣽलयां उपयोगकतЄओं और बुआڔमान एजेंटों के बीच प्राकृࣻतक भाषा
में बातचीत को सक्षम बनाती हैं। ये प्रणाࣽलयां आकषर्क और ࠖࣼѱगत वातЄलाप
अनुभव प्रदान करने के ࣽलए प्राकृࣻतक भाषा समझ, संवाद प्रबंधन और भाषा ࣺनमЄण
क्षमताओं को जोड़ती हैं।
एक वातЄलाप AI प्रणालࣜ के मुҷ घटकों में शाࣻमल हैं:

• आशय पहचान: उपयोगकतЄ के इनपुट के आधार पर उनके आशय कࣞ पहचान
करना, जैसे प्रࠫ पूछना, अनुरोध करना, या भावना ࠖѱ करना।

• एंࣅटटी :षर्णࠇनࣄ उपयोगकतЄ के इनपुट से प्रासंࣻगक एंࣺटटी या पैरामीटर
ࣺनकालना, जैसे ࣻतࣽथयां, ,ानࡱ या उمाद के नाम।

• संवाद प्रबंधन: वातЄलाप कࣞ ऍࣻࡱत को बनाए रखना, उपयोगकतЄ के आशय
और संदभर् के आधार पर उࣿचत प्रࣻतࣺक्रया का ࣺनधЄरण करना, और बहु-चरण
वातЄलाप को संभालना।

• प्रࣆतࣅक्रया उؑादन: भाषा मॉडल, टेޮ लेׅ, या पुनप्रЄࣺ݆-आधािरत ࣺवࣾधयों का
उपयोग करके मानव जैसी प्रࣻतࣺक्रयाएं उۚم करना।

संवादाىक एआई ऀस࡫म आमतौर पर ग्राहक सेवा चैटबॉट, वचुर्अल सहायक, और
आवाज-ࣺनयंࣻत्रत इंटरफेस में उपयोग ࣹकए जाते हैं। जैसा ࣹक पहले बताया गया ह,ै
इस पुࡰक में अࣾधकांश दृࣼ࠿कोण, पैटनर् और कोड उदाहरण सीधे Olympia नामक
एक बड़े संवादाىक एआई ऀस࡫म पर मेरे काम से ࣺनकाले गए हैं।

कोपायल֑
कोपायलׅ एआई-संचाࣽलत सहायक हैं जो उपयोगकतЄओं कࣞ उمादकता और ࣺनणर्य
लेने कࣞ क्षमताओं को बढ़ाने के ࣽलए उनके साथ काम करते हैं। ये ऀस࡫म बुआڔमान

https://olympia.chat

पिरचय 35

ऀसफािरशें प्रदान करने, कायЊ को चाࣽलतࡼ करने और संदभर्गत सहायता प्रदान करने
के ࣽलए प्राकृࣻतक भाषा प्रसंࡡरण, मशीन लࣺन϶ग और डोमेन-ࣺवऀश࠿ ज्ञान के संयोजन
का लाभ उठाते हैं।
कोपायलׅ कࣞ प्रमुख ࣺवशेषताएं हैं:

• :нगतकरणࣈߢ ࠖࣼѱगत उपयोगकतЄ प्राथࣻमकताओ,ं कायर्प्रवाह और संचार
शैࣽलयों के अनुकूल होना।

• सࣅक्रय सहायता: उपयोगकतЄ कࣞ जरूरतों का अनुमान लगाना और ࠿ࡵ प्रॉम्݂
के ࣺबना प्रासंࣻगक सुझाव या कारर्वाई प्रदान करना।

• नरंतरࣄ सीखना: उपयोगकतЄ प्रࣻतࣺक्रया, इंटरैѽन और डटेा से सीखकर समय
के साथ प्रदशर्न में सुधार करना।

कोपायलׅ का उपयोग ࣺवࣾभۚ क्षेत्रों में बढ़ता जा रहा ह,ै जैसे सॉݨवेयर ࣺवकास
(उदाहरण के ࣽलए, कोड पूणर्ता और बग का पता लगाना), रचनाىक लेखन (उदाहरण
के ࣽलए, सामग्री सुझाव और संपादन), और डटेा ࣺवे࠯षण (उदाहरण के ࣽलए, अंतदृर्ࣼ࠿
और ࣺवजुअलाइजेशन ऀसफािरशें)
ये पिरࣺनयोजन पैटनर् कंपाउंड एआई ऀस࡫म कࣞ बहुमुखी प्रࣻतभा और क्षमता को
प्रदऀशर्त करते हैं। प्रيके पैटनर् कࣞ ࣺवशेषताओं और उपयोग के मामलों को समझकर,
आप बुआڔमान एࣺݎकेशन को ࣺडज़ाइन और कायЄअۢत करते समय सूࣿचत ࣺनणर्य ले
सकते हैं। हालांࣹक यह पुࡰक ࣺवशेष रूप से कंपाउंड एआई ऀस࡫म के कायЄۢयन
के बारे में नहࣟ ह,ै लेࣹकन अ۠था पारंपिरक एࣺݎकेशन ࣺवकास के भीतर ࣺववेकपूणर्
एआई घटकों को एकࣞकृत करने के ࣽलए समान दृࣼ࠿कोण और पैटनर् लागू होते हैं।

कंपाउंड एआई ࣊स࠷म में भूࣆमकाएं
कंपाउंड एआई ऀस࡫म परࡵर जुड़े मॉ׵लू कࣞ नींव पर बनाए जाते हैं, ऀजनमें से
प्रيके एक ࣺवऀश࠿ भूࣻमका ࣺनभाने के ࣽलए ࣺडज़ाइन ࣹकया गया ह।ै ये मॉ׵लू बुआڔमान
ࠖवहार बनाने और जࣺटल समࡺाओं को हल करने के ࣽलए ࣻमलकर काम करते हैं।
जब आप यह सोच रहे हों ࣹक आप अपने एࣺݎकेशन के ࣹकन ࣹहࡿों को ࣺववेकपूणर्

पिरचय 36

एआई घटकों से कायЄअۢत या प्रࣻतࡱाࣺपत कर सकते हैं, तो इन भूࣻमकाओं से पिरࣿचत
होना उपयोगी ह।ै

जनरेटर

जनरेटर सीखे गए पैटनर् या इनपुट प्रॉम्݂ के आधार पर नया डटेा या सामग्री उۚم
करने के ࣽलए ऀज޲देार होते हैं। एआई कࣞ दुࣺनया में कई अलग-अलग प्रकार के
जनरेटर हैं, लेࣹकन इस पुࡰक में प्रदऀशर्त भाषा मॉडल के संदभर् में, जनरेटर मानव
जैसा टҡे बना सकते हैं, आंऀशक वाѺों को पूरा कर सकते हैं, या उपयोगकतЄ
के प्रࠫों के उـर उۚم कर सकते हैं। वे सामग्री ࣺनमЄण, संवाद उمादन और डटेा
संवधर्न जैसे कायЊ में महٌपूणर् भूࣻमका ࣺनभाते हैं।

िरट्र ीवर

िरट्र ीवर का उपयोग बड़े डटेासेट या ज्ञान-आधार से प्रासंࣻगक जानकारࣜ खोजने और
ࣺनकालने के ࣽलए ࣹकया जाता ह।ै वे ࣺदए गए प्रࠫ या संदभर् के आधार पर सबसे
उपयुѱ डटेा पॉइंׅ खोजने के ࣽलए ऀसमैंࣺटक सचर्, कࣞवडॼ मैࣿचंग, या वेѮर समानता
जैसी तकनीकों का उपयोग करते हैं। िरट्र ीवर उन कायЊ के ࣽलए आव࠮क हैं ऀजनमें
ࣺवऀश࠿ जानकारࣜ तक ٌिरत पहुचं कࣞ आव࠮कता होती ह,ै जैसे प्रࠫोـर, तڇ-जांच,
या सामग्री अनुशंसा।

रैंकर

रैंकर कुछ मानदडंों या प्रासंࣻगकता ोरࡡ के आधार पर वࡰओुं के समूह को क्रमबڔ
या प्राथࣻमकता दनेे के ࣽलए ऀज޲देार होते हैं। वे प्रيके वुࡰ को वेट या ोरࡡ असाइन
करते हैं और ࣺफर उंेۦ तदनुसार क्रमबڔ करते हैं। रैंकर का उपयोग आमतौर पर
सचर् इंजन, अनुशंसा प्रणाࣽलयों, या ࣹकसी भी ऐसे एࣺݎकेशन में ࣹकया जाता है जहां
उपयोगकतЄओं को सबसे प्रासंࣻगक पिरणाम प्रࡰतु करना महٌपूणर् होता ह।ै

पिरचय 37

чा࣊सफायर

ѻाऀसफायर का उपयोग पूवर्-ࣺनधЄिरत श्रेऀ णयों या वगЊ के आधार पर डटेा पॉइंׅ को
वग॑कृत या लेबल करने के ࣽलए ࣹकया जाता ह।ै वे लेबल ࣹकए गए प्रऀशक्षण डटेा
से सीखते हैं और ࣺफर नए, अनदखेे उदाहरणों कࣞ श्रणेी कࣞ भࣺवࡈवाणी करते हैं।
ѻाऀसफायर भावना ࣺवे࠯षण, मैࡵ पहचान, या छࣺव पहचान जैसे कायЊ के ࣽलए
मौࣽलक हैं, जहां प्रيके इनपुट को एक ࣺवऀश࠿ श्रणेी में वग॑कृत करना लҝ होता ह।ै

टू߂ और एजें֑

इन मुҷ भूࣻमकाओं के अलावा, ࣻमࣿश्रत एआई ऀस࡫म अѾर अपनी कायर्क्षमता और
अनुकूलन क्षमता को बढ़ाने के ࣽलए टू߶ और एजेंׅ को शाࣻमल करते हैं:

• टू߂: टू߶ ࣺवऀश࠿ ࣺक्रयाओं या गणनाओं को करने वाले अलग-अलग
सॉݨवेयर घटक या एपीआई होते हैं। इंेۦ अ۠ मॉ׵߶ू ,ाराڙ जैसे जनरेटर
या िरट्र ीवर ,ाराڙ उप-कायЊ को पूरा करने या अࣻतिरѱ जानकारࣜ एकत्र करने
के ࣽलए उपयोग ࣹकया जा सकता ह।ै टू߶ के उदाहरणों में वेब सचर् इंजन,
कैलकुलेटर, या डटेा ࣺवज़ुअलाइज़ेशन लाइब्ररेࣜ शाࣻमल हैं।

• एजें֑: एजेंׅ ـायࡼ इकाइयां हैं जो अपने वातावरण को समझ सकती हैं,
ࣺनणर्य ले सकती हैं, और ࣺवऀश࠿ लҝों को प्रा݆ करने के ࣽलए कारर्वाई कर
सकती हैं। वे गࣻतशील या अࣺनऀࠥत पिरऍࣻࡱतयों में प्रभावी ढगं से काम करने
के ࣽलए अѾर योजना बनाने, तकॼ करने और सीखने जैसी ࣺवࣾभۚ एआई
तकनीकों के संयोजन पर ࣺनभर्र करते हैं। एजेंׅ का उपयोग जࣺटल ࠖवहारों को
मॉडल करने या ࣻमࣿश्रत एआई ऀस࡫म के भीतर कई मॉ׵߶ू कࣞ ࣺक्रयाओं का
समۢय करने के ࣽलए ࣹकया जा सकता ह।ै

एक शुڔ ࣻमࣿश्रत एआई ऀस࡫म में, इन घटकों के बीच संवाद सुपिरभाࣻषत इंटरफेस
और संचार प्रोटोकॉल के माۀम से संचाࣽलत ࣹकया जाता ह।ै डटेा मॉ׵߶ू के बीच
प्रवाࣹहत होता ह,ै जहां एक घटक का आउटपुट दूसरे के ࣽलए इनपुट के रूप में काम
करता ह।ै यह मॉ׵लूर आࣹकॼ टѫेर लचीलापन, लेࣺबࣽलटीࡡे और रखरखाव कࣞ

पिरचय 38

क्षमता प्रदान करता ह,ै Ѻोंࣹक ࠖࣼѱगत घटकों को पूरे ऀस࡫म को प्रभाࣺवत ࣹकए
ࣺबना अपडटे, बदला, या ࣺवࡰािरत ࣹकया जा सकता ह।ै
इन घटकों और उनकࣞ अंतःࣺक्रयाओं कࣞ शࣼѱ का लाभ उठाकर, ࣻमࣿश्रत एआई ऀस࡫म
जࣺटल, वाࣺࡰवक-दुࣺनया कࣞ समࡺाओं को हल कर सकते हैं ऀजनके ࣽलए ࣺवࣾभۚ
एआई क्षमताओं के संयोजन कࣞ आव࠮कता होती ह।ै जैसे-जैसे हम एࣺݎकेशन ࣺवकास
में एआई को एकࣞकृत करने के दृࣼ࠿कोण और पैटनर् का पता लगाते हैं, ानۀ रखें
ࣹक ࣻमࣿश्रत एआई ऀस࡫म में उपयोग ࣹकए जाने वाले समान ऀसڔांतों और तकनीकों
का उपयोग बुआڔमान, अनुकूलनीय और उपयोगकतЄ-कें ࣺद्रत एࣺݎकेशन बनाने के ࣽलए
ࣹकया जा सकता ह।ै

भाग 1 के ࣺनޭࣽलंखत अۀायों में, हम आपकࣞ एࣺݎकेशन ࣺवकास प्रࣺक्रया में AI
कॉޮोनेंׅ को एकࣞकृत करने के ࣽलए मूलभूत दृࣼ࠿कोण और तकनीकों में गहराई से
जाएंगे। प्रॉम्݂ इंजीࣺनयिरंग और िरट्र ीवल-ऑगमेंटडे जेनरेशन से लेकर उपचारࣜ-ࡼ
डटेा और बुआڔमान वकॼ फ़्लो ऑकϺ्࡫र शेन तक, हम ࣺवࣾभۚ पैटनर् और सवЉـम प्रथाओं
को कवर करेंगे जो आपको अيाधुࣺनक AI-संचाࣽलत एࣺݎकेशन बनाने में मदद करेंगे।

भाग 1: मौࣈलक दृࠋࣇकोण और
तकनीकें
पुࡰक का यह भाग आपके एࣺݎकेशन में AI के उपयोग को एकࣞकृत करने के ࣺवࣾभۚ
तरࣜके प्रࡰतु करता ह।ै अۀाय संबंࣾधत दृࣼ࠿कोणों और तकनीकों कࣞ एक श्रृखंला
को कवर करते हैं, जो उՂ-ࡰरࣜय अवधारणाओं जैसे पथ को संकࣞणर् करना और
पुनप्रЄࣺ݆ संवࣾधर्त जनन से लेकर LLM चैट पूणर्ता APIs के ऊपर अपनी खुद कࣞ
अमूतर्न परत को प्रोग्राम करने के ࣺवचारों तक ࣺवࡰतृ हैं।
पुࡰक के इस भाग का उे࠮ړ आपको उन ࠖवहारों को समझने में मदद करना है
ऀजंेۦ आप AI के साथ लागू कर सकते हैं, इससे पहले ࣹक आप ࣺवऀश࠿ कायЄۢयन
पैटनर् में गहराई से जाएं जो भाग 2 का फोकस हैं।
भाग 1 में ࣺदए गए दृࣼ࠿कोण मेरे कोड में उपयोग ࣹकए गए ࣺवचारों, उښम अनुप्रयोग
वाࡰकुला और एकࣞकरण के ѻाऀसक पैटनर्, साथ हࣚ उन रूपकों पर आधािरत हैं
ऀजनका मैंने अ۠ लोगों को AI कࣞ क्षमताओं को समझाने में उपयोग ࣹकया ह,ै ऀजसमें
गैर-तकनीकࣞ ࠖावसाࣻयक ࣹहतधारक भी शाࣻमल हैं।

पथ को संकࢩणर् करें

“पथ को संकࣞणर् करना” का अथर् है AI को वतर्मान कायर् पर कें ࣺद्रत करना। जब भी
मैं AI के “मूखर्तापूणर्” या अप्रيाऀशत ࠖवहार से ࣺनराश होता हू,ं तो मैं इसे एक मंत्र
के रूप में उपयोग करता हू।ं यह मंत्र मुझे याद ࣺदलाता है ࣹक ࣺवफलता संभवतः मेरࣜ
गलती ह,ै और मुझे शायद पथ को और संकࣞणर् करना चाࣹहए।
पथ को संकࣞणर् करने कࣞ आव࠮कता बृहत भाषा मॉड߶ में ࣺनࣹहत ࣺवशाल ज्ञान से
उۚم होती ह,ै ࣺवशेष रूप से OpenAI और Anthropic जैसी ࣺवࡰ-࠰रࣜय कंपࣺनयों
के मॉड߶ में, ऀजनमें शाआށक रूप से खरबों पैरामीटसर् होते हैं।

पथ को संकࣞणर् करें 41

इतने ࠖापक ज्ञान तक पहुचं ࣺनःसंदहे शࣼѱशालࣜ है और मन का ऀसڔांत जैसे उभरते
ࠖवहार और मानव जैसे तरࣜकों से तकॼ करने कࣞ क्षमता उۚم करती ह।ै हालांࣹक,
जानकारࣜ कࣞ यह अभूतपूवर् मात्रा ࣺवऀश࠿ प्रॉम्प्ׅ के ࣽलए सटीक और यथाथर् प्रࣻतࣺक्रयाएं
उۚم करने में चुनौࣻतयां भी प्रࡰतु करती ह,ै ࣺवशेष रूप से यࣺद उन प्रॉम्प्ׅ का उे࠮ړ
ࣺनधЄरणाىक ࠖवहार प्रदऀशर्त करना है ऀजसे “सामा۠” सॉݨवेयर ࣺवकास और
एߝोिरदम के साथ एकࣞकृत ࣹकया जा सके।
कई कारक इन चुनौࣻतयों को ज۟ दतेे हैं।
सूचना अࣆतभार: बृहत भाषा मॉड߶ को ࣺवࣾभۚ क्षेत्रों, स्रोतों और समय अवࣾधयों में
फैले ࣺवशाल डटेा पर प्रऀशऀक्षत ࣹकया जाता ह।ै यह ࠖापक ज्ञान उंेۦ ࣺवࣺवध ࣺवषयों
पर संलӈ होने और दुࣺनया कࣞ ࠖापक समझ के आधार पर प्रࣻतࣺक्रयाएं उۚم करने
कࣞ अनुमࣻत दतेा ह।ै हालांࣹक, एक ࣺवऀश࠿ प्रॉम्݂ का सामना करते समय, मॉडल
अप्रासंࣻगक, ࣺवरोधाभासी, या पुरानी/अप्रचࣽलत जानकारࣜ को छानने में संघषर् कर
सकता ह,ै ऀजससे फोकस या सटीकता कࣞ कमी वालࣜ प्रࣻतࣺक्रयाएं ࣻमलती हैं। आप जो
करने कࣞ कोऀशश कर रहे हैं, उसके आधार पर, मॉडल के ࣽलए उपलނ ࣺवरोधाभासी
जानकारࣜ कࣞ ࣺवशाल मात्रा आसानी से आपके वांࣽछत उـर या ࠖवहार प्रदान करने
कࣞ उसकࣞ क्षमता को अࣾभभूत कर सकती ह।ै
संदभर्गत अࠋࡁता: ࣺवशाल अࠖѱ ानࡱ के ज्ञान को दखेते हुए, बृहत भाषा मॉडल
आपके प्रॉम्݂ के संदभर् को समझने का प्रयास करते समय अ࠿ࡵता का सामना कर
सकते हैं। उࣿचत संकࣞणर्ता या मागर्दशर्न के ࣺबना, मॉडल ऐसी प्रࣻतࣺक्रयाएं उۚم कर
सकता है जो अप्रيक्ष रूप से संबंࣾधत हैं लेࣹकन आपके इरादों के ࣽलए सीधे प्रासंࣻगक
नहࣟ हैं। इस तरह कࣞ ࣺवफलता से ࣺवषय से हटी हुई, असंगत, या आपकࣞ बताई गई
जरूरतों को पूरा न करने वालࣜ प्रࣻतࣺक्रयाएं ࣻमलती हैं। इस मामले में, पथ को संकࣞणर्
करने का अथर् है संदभर् का ,ीकरण࠿ࡵ यह सुࣺनऀࠥत करना ࣹक आपके ाराڙ प्रदान
ࣹकया गया संदभर् मॉडल को केवल उसके आधार ज्ञान में सबसे प्रासंࣻगक जानकारࣜ
पर ानۀ कें ࣺद्रत करने का कारण बनता ह।ै

पथ को संकࣞणर् करें 42

नोट: जब आप “प्रॉम्݂ इंजीࣺनयिरंग” में शुरुआत कर रहे होते हैं, तो आप
अѾर वांࣽछत पिरणाम को ठीक से समझाए ࣺबना मॉडल से कायर् करवाने
कࣞ कोऀशश करते हैं; अ࠿ࡵ न होने के ࣽलए अޟास कࣞ आव࠮कता होती
ह!ै

काࣈलक असंगࣆतयाँ: चूंࣹक भाषा मॉडल ࣺवࣾभۚ समय अवࣾधयों में बनाए गए डटेा पर
प्रऀशऀक्षत होते हैं, उनके पास ऐसी जानकारࣜ हो सकती है जो पुरानी, अप्रचࣽलत या
अब सटीक नहࣟ ह।ै उदाहरण के ࣽलए, वतर्मान घटनाओ,ं वैज्ञाࣺनक खोजों, या तकनीकࣞ
प्रगࣻत के बारे में जानकारࣜ मॉडल के प्रऀशक्षण डटेा के संग्रह के बाद ࣺवकऀसत हो
सकती ह।ै अࣾधक हाल के और ࣺव࠰सनीय स्रोतों को प्राथࣻमकता दनेे के ࣽलए मागर् को
संकࣞणर् ࣹकए ࣺबना, मॉडल पुरानी या गलत जानकारࣜ के आधार पर प्रࣻतࣺक्रयाएं उۚم
कर सकता ह,ै ऀजससे इसके आउटपुट में अशुआڔयां और असंगࣻतयां आ सकती हैं।
क्षेत्र-ࣆव࣊शࠋ बारࣅࢧकयाँ: ࣺवࣾभۚ क्षेत्रों और ࣺवषयों कࣞ अपनी ࣺवऀश࠿ शށावलࣜ,
परंपराएं और ज्ञान आधार होते हैं। ࣹकसी भी TLA (तीन अक्षरों का संऀक्ष݆ नाम) के
बारे में सोचें और आप पाएंगे ࣹक अࣾधकांश के एक से अࣾधक अथर् हैं। उदाहरण के
ࣽलए, MSK का अथर् Amazon का मैनेե र्࡫ ीࣻमंग फॉर अपाचे काफ्का, मेमोिरयल
ोनࡻ केटिरंग कैं सर सेंटर, या मानव मुࡡलोेࡡलेटल ऀस࡫म हो सकता ह।ै
जब ࣹकसी प्रॉम्݂ को ࣹकसी ࣺवशेष क्षेत्र में ࣺवशेषज्ञता कࣞ आव࠮कता होती ह,ै तो एक
बड़े भाषा मॉडल का सामा۠ ज्ञान सटीक और सूҜ प्रࣻतࣺक्रयाएं प्रदान करने के ࣽलए
पयЄ݆ नहࣟ हो सकता। प्रॉम्݂ इंजीࣺनयिरंग या पुनप्रЄࣺ݆-संवࣾधर्त उمादन के माۀम
से क्षेत्र-ࣺवऀश࠿ जानकारࣜ पर ानۀ कें ࣺद्रत करके मागर् को संकࣞणर् करना, मॉडल को
आपके ࣺवऀश࠿ क्षेत्र कࣞ आव࠮कताओं और अपेक्षाओं के अनुरूप प्रࣻतࣺक्रयाएं उۚم
करने में सक्षम बनाता ह।ै

लेटेंट :सेࡁ अक޷नीय वशालࣆ
जब मैं भाषा मॉडल के “लेटेंट ”सेࡵ का उ߲ेख करता हू,ं तो मैं ज्ञान और सूचना के
उस ࣺवशाल, बहु-आयामी पिरदृ࠮ कࣞ बात कर रहा हूं जो मॉडल ने अपनी प्रऀशक्षण

पथ को संकࣞणर् करें 43

प्रࣺक्रया के दौरान सीखा ह।ै यह मॉडल के तंࣻत्रका नेटवकॼ के भीतर एक ࣽछपा हुआ
क्षेत्र कࣞ तरह ह,ै जहां भाषा के सभी पैटनर्, संबंध और प्रࣻतࣺनࣾधٌ संग्रहࣚत हैं।
क߫ना कࣞऀजए ࣹक आप एक ࣺवशाल, अज्ञात क्षेत्र कࣞ खोज कर रहे हैं जो असंҷ
परࡵर जुड़े नोड्स से भरा हुआ ह।ै प्रيके नोड एक जानकारࣜ का टुकड़ा, एक
अवधारणा, या एक संबंध का प्रࣻतࣺनࣾधٌ करता है जो मॉडल ने सीखा ह।ै जैसे-जैसे
आप इस ानࡱ में नेࣺवगेट करते हैं, आप पाएंगे ࣹक कुछ नोड्स एक-दूसरे के करࣜब
हैं, जो एक मजबूत कनेѽन या समानता को दशЄता ह,ै जबࣹक अ۠ दूर हैं, जो एक
कमजोर या अࣾधक दूर का संबंध सुझाते हैं।
लेटेंट सेࡵ कࣞ चुनौती यह है ࣹक यह अيतं जࣺटल और उՂ-आयामी ह।ै इसे हमारे
भौࣻतक ब्रࢥांड ऀजतना ࣺवशाल समझें, ऀजसमें आकाशगंगाओं के समूह और उनके बीच
खालࣜ ानࡱ कࣞ अक߫नीय दूिरयां हैं।
चूंࣹक इसमें हजारों आयाम होते हैं, अࠖѱ ानࡱ मनुࡈों ाराڙ सीधे दखेा या समझा
नहࣟ जा सकता। यह एक अमूतर् प्रࣻतࣺनࣾधٌ है ऀजसका उपयोग मॉडल भाषा को
संसाࣾधत करने और उۚم करने के ࣽलए आंतिरक रूप से करता ह।ै जब आप मॉडल
को एक इनपुट प्रॉम्݂ प्रदान करते हैं, तो यह अࣺनवायर् रूप से उस प्रॉम्݂ को अࠖѱ
ानࡱ के भीतर एक ࣺवऀश࠿ ानࡱ पर मैप करता ह।ै ࣺफर मॉडल प्रࣻतࣺक्रया उۚم
करने के ࣽलए उस ानࡱ में आस-पास कࣞ जानकारࣜ और कनेѽन का उपयोग करता
ह।ै
बात यह है ࣹक मॉडल ने अपने प्रऀशक्षण डटेा से बहुत अࣾधक जानकारࣜ सीखी ह,ै
और यह सब ࣹकसी ࣺदए गए कायर् के ࣽलए प्रासंࣻगक या सटीक नहࣟ ह।ै इसࣽलए मागर्
को संकࣞणर् करना बहुत महٌपूणर् हो जाता ह।ै अपने प्रॉम्प्ׅ में ࠿ࡵ ࣺनदϺश, उदाहरण
और संदभर् प्रदान करके, आप अࣺनवायर् रूप से मॉडल को अࠖѱ ानࡱ के भीतर
ࣺवऀश࠿ क्षेत्रों पर ानۀ कें ࣺद्रत करने के ࣽलए मागर्दशर्न कर रहे हैं जो आपके वांࣽछत
आउटपुट के ࣽलए सबसे अࣾधक प्रासंࣻगक हैं।
इसे समझने का एक अलग तरࣜका है जैसे पूरࣜ तरह से अंधेरे संग्रहालय में ॉटलाइटࡵ
का उपयोग करना। अगर आपने कभी लूव्र या मेट्र ोपॉࣽलटन ऀू޳ जयम ऑफ आटॼ का
दौरा ࣹकया ह,ै तो यहࣚ वह पैमाना है ऀजसकࣞ मैं बात कर रहा हू।ं अࠖѱ ानࡱ
संग्रहालय कࣞ तरह ह,ै जो असंҷ वࡰओुं और ࣺववरणों से भरा हुआ ह।ै आपका

पथ को संकࣞणर् करें 44

प्रॉम्݂ ॉटलाइटࡵ कࣞ तरह ह,ै जो ࣺवऀश࠿ क्षेत्रों को प्रकाऀशत करता है और सबसे
महٌपूणर् जानकारࣜ कࣞ ओर मॉडल का ानۀ आकࣻषर्त करता ह।ै उस मागर्दशर्न के
ࣺबना, मॉडल अࠖѱ ानࡱ में ࣺबना उे࠮ړ के भटक सकता ह,ै राेࡰ में अप्रासंࣻगक
या ࣺवरोधाभासी जानकारࣜ एकत्र करता हुआ।
जैसे-जैसे आप भाषा मॉड߶ के साथ काम करते हैं और अपने प्रॉम्प्ׅ तैयार करते
हैं, अࠖѱ ानࡱ कࣞ अवधारणा को ानۀ में रखें। आपका लҝ इस ࣺवशाल ज्ञान
पिरदृ࠮ में प्रभावी ढगं से नेࣺवगेट करना ह,ै मॉडल को आपके कायर् के ࣽलए सबसे
प्रासंࣻगक और सटीक जानकारࣜ कࣞ ओर ࣺनदϺऀ शत करना ह।ै मागर् को संकࣞणर् करके
और ࠿ࡵ मागर्दशर्न प्रदान करके, आप मॉडल के अࠖѱ ानࡱ कࣞ पूरࣜ क्षमता को
अनलॉक कर सकते हैं और उՂ-गुणवـा वालࣜ, सुसंगत प्रࣻतࣺक्रयाएं उۚم कर सकते
हैं।
हालांࣹक भाषा मॉड߶ और उनके ाराڙ नेࣺवगेट ࣹकए जाने वाले अࠖѱ ानࡱ के
ࣺपछले ࣺववरण थोड़े जादुई या अमूतर् लग सकते हैं, यह समझना महٌपूणर् है ࣹक
प्रॉम्प्ׅ जादुई मंत्र या टोटके नहࣟ हैं। भाषा मॉड߶ ऀजस तरह से काम करते हैं वह
रैंखक बीजगऀणत और संभावना ऀसڔांत के ऀसڔांतों पर आधािरत ह।ै
मूल रूप से, भाषा मॉडल पाठ के संभाࠖता मॉडल हैं, ࣺबुߛल वैसे हࣚ जैसे बेल
कवर् डटेा का सांऐҷकࣞय मॉडल होता ह।ै इंेۦ प्रࣻतगामी-ࡼ मॉडࣽलंग नामक प्रࣺक्रया
के माۀम से प्रऀशऀक्षत ࣹकया जाता ह,ै जहां मॉडल ࣺपछले शށों के आधार पर क्रम
में अगले शށ कࣞ संभावना कࣞ भࣺवࡈवाणी करना सीखता ह।ै प्रऀशक्षण के दौरान,
मॉडल यादृऎՃक वेׅ से शुरू होता है और धीरे-धीरे उंेۦ समायोऀजत करता है ताࣹक
वाࣺࡰवक दुࣺनया के नमूनों, ऀजन पर इसे प्रऀशऀक्षत ࣹकया गया था, के समान पाठ को
उՂ संभावना प्रदान कࣞ जा सके।
हालाँࣹक, भाषा मॉडल को सरल सांऐҷकࣞय मॉडल कࣞ तरह सोचना, जैसे रैंखक
प्रࣻतगमन, उनके ࠖवहार को समझने के ࣽलए सबसे अՃࣛ अंतदृर्ࣼ࠿ प्रदान नहࣟ करता।
एक बेहतर उपमा यह है ࣹक उंेۦ प्राࣻयकता आधािरत प्रोग्राम के रूप में सोचा जाए,
जो ऐसे मॉडल हैं जो यादृऎՃक चर के साथ काम करने कࣞ अनुमࣻत दतेे हैं और
जࣺटल सांऐҷकࣞय संबंधों को प्रࡰतु कर सकते हैं।
प्राࣻयकता आधािरत प्रोग्राम को आरेखीय मॉडल ाराڙ दशЄया जा सकता ह,ै जो मॉडल

पथ को संकࣞणर् करें 45

में चर के बीच ࣺनभर्रता और संबंधों को समझने का एक दृ࠮ तरࣜका प्रदान करते हैं।
यह दृࣼ࠿कोण GPT-4 और Claude जैसे जࣺटल पाठ ࣺनमЄण मॉडल कࣞ कायर्प्रणालࣜ
में मू߰वान अंतदृर्ࣼ࠿ प्रदान कर सकता ह।ै
Dohan और अ۠ ाराڙ ࣽलंखत “Language Model Cascades” शोधपत्र में, लेखकों
ने भाषा मॉडल में प्राࣻयकता आधािरत प्रोग्राम को कैसे लागू ࣹकया जा सकता ह,ै इसके
ࣺववरण में गहराई से जाते हैं। वे ࣺदखाते हैं ࣹक इस ढांचे का उपयोग इन मॉडल के
ࠖवहार को समझने और अࣾधक प्रभावी प्रॉिम्݂गं रणनीࣻतयों के ࣺवकास को मागर्दऀशर्त
करने के ࣽलए कैसे ࣹकया जा सकता ह।ै
इस प्राࣻयकता दृࣼ࠿कोण से एक प्रमुख अंतदृर्ࣼ࠿ यह है ࣹक भाषा मॉडल अࣺनवायर् रूप
से एक वैकऍ߫क ब्रࢥांड का ारڙ बनाता है जहाँ वांࣽछत दࡰावेज मौजूद हैं। मॉडल
सभी संभाࣺवत दࡰावेजों को उनकࣞ संभावना के आधार पर भार प्रदान करता ह,ै
प्रभावी ढगं से संभावनाओं के ानࡱ को सबसे प्रासंࣻगक पर कें ࣺद्रत करने के ࣽलए
संकुࣿचत करता ह।ै
यह हमें “पथ को संकࣞणर् करने” के कें द्रीय ࣺवषय पर वापस लाता ह।ै प्रॉिम्݂गं
का प्राथࣻमक लҝ प्राࣻयकता मॉडल को इस तरह से ࣺनयंࣻत्रत करना है जो उसकࣞ
भࣺवࡈवाऀणयों के द्रࠖमान को कें ࣺद्रत करता ह,ै ऀजस ࣺवऀश࠿ जानकारࣜ या ࠖवहार
को हम प्रा݆ करना चाहते हैं उस पर ानۀ कें ࣺद्रत करता ह।ै सावधानीपूवर्क तैयार ࣹकए
गए प्रॉम्݂ प्रदान करके, हम मॉडल को अࠖѱ ानࡱ में अࣾधक कुशलता से नेࣺवगेट
करने और अࣾधक प्रासंࣻगक और सुसंगत आउटपुट उۚم करने के ࣽलए मागर्दशर्न
कर सकते हैं।
हालाँࣹक, यह ानۀ में रखना महٌपूणर् है ࣹक भाषा मॉडल अंततः उस जानकारࣜ से
सीࣻमत है ऀजस पर इसे प्रऀशऀक्षत ࣹकया गया था। जबࣹक यह मौजूदा दࡰावेजों के
समान पाठ उۚم कर सकता है या ࣺवचारों को नए तरࣜकों से जोड़ सकता ह,ै यह पूरࣜ
तरह से नई जानकारࣜ को शू۠ से नहࣟ बना सकता। उदाहरण के ࣽलए, हम मॉडल
से कैं सर का इलाज प्रदान करने कࣞ उ޲ीद नहࣟ कर सकते यࣺद ऐसा इलाज खोजा
और उसके प्रऀशक्षण डटेा में दࡰावेज़ीकृत नहࣟ ࣹकया गया ह।ै
इसके बजाय, मॉडल कࣞ ताकत उस जानकारࣜ को खोजने और संࣻे࠯षत करने कࣞ
क्षमता में ࣺनࣹहत है जो हमारे ाराڙ ࣺदए गए प्रॉम्݂ के समान ह।ै इन मॉडल कࣞ

पथ को संकࣞणर् करें 46

प्राࣻयकता प्रकृࣻत और कैसे प्रॉम्݂ का उपयोग उनके आउटपुट को ࣺनयंࣻत्रत करने के
ࣽलए ࣹकया जा सकता ह,ै इसे समझकर, हम मू߰वान अंतदृर्ࣼ࠿ और सामग्री उۚم
करने के ࣽलए उनकࣞ क्षमताओं का अࣾधक प्रभावी ढगं से लाभ उठा सकते हैं।
नीचे ࣺदए गए प्रॉम्݂ पर ࣺवचार करें। पहले में, अकेले “Mercury” ग्रह, तٌ, या रोमन
दवेता को संदࣾभर्त कर सकता ह,ै लेࣹकन सबसे अࣾधक संभावना ग्रह कࣞ ह।ै वाࡰव
में, GPT-4 एक लंबी प्रࣻतࣺक्रया दतेा है जो Mercury सौर मंडल का सबसे छोटा और
सबसे भीतरࣜ ग्रह ह…ै से शुरू होती ह।ै दूसरा प्रॉम्݂ ࣺवशेष रूप से रासायࣺनक तٌ
को संदࣾभर्त करता ह।ै तीसरा रोमन पौराऀणक आकृࣻत को संदࣾभर्त करता ह,ै जो
अपनी गࣻत और ࣺदࠖ संदशेवाहक कࣞ भूࣻमका के ࣽलए जाना जाता ह।ै

1 # Prompt 1

2 Tell me about: Mercury

3

4 # Prompt 2

5 Tell me about: Mercury element

6

7 # Prompt 3

8 Tell me about: Mercury messenger of the gods

बस कुछ अࣻतिरѱ शށों को जोड़कर, हमने एआई कࣞ प्रࣻतࣺक्रया को पूरࣜ तरह से
बदल ࣺदया ह।ै जैसा ࣹक आप पुࡰक में बाद में सीखेंगे, एन-शॉट प्रॉिम्݂गं, संरࣿचत
इनपुट/आउटपुट, और ࣺवचार श्रृखंला जैसी उۚत प्रॉम्݂ इंजीࣺनयिरंग तकनीकें मॉडल
के आउटपुट को ࣺनयंࣻत्रत करने के चतुर तरࣜके मात्र हैं।
तो अंततः, प्रॉम्݂ इंजीࣺनयिरंग कࣞ कला भाषा मॉडल के ज्ञान के ࣺवशाल संभाࠖता
पिरदृ࠮ में नेࣺवगेट करने कࣞ समझ के बारे में ह,ै ताࣹक हम ऀजस ࣺवऀश࠿ जानकारࣜ
या ࠖवहार कࣞ तलाश कर रहे हैं, उस तक का मागर् संकࣞणर् ࣹकया जा सके।
उन पाठकों के ࣽलए ऀजनकࣞ उۚत गऀणत पर मजबूत पकड़ ह,ै इन मॉडलों कࣞ अपनी
समझ को संभाࠖता ऀसڔांत और रैंखक बीजगऀणत के ऀसڔांतों में ाࣺपतࡱ करना
ࣺनऀࠥत रूप से मददगार हो सकता ह!ै आप में से बाकࣞ लोगों के ࣽलए जो वांࣽछत
पिरणाम प्रा݆ करने के ࣽलए प्रभावी रणनीࣻतयां ࣺवकऀसत करना चाहते हैं, आइए अࣾधक
सहज दृࣼ࠿कोण पर ࣺटके रहें।

पथ को संकࣞणर् करें 47

मागर् कैसे “संकࢩणर्” होता है
अࣾيधक ज्ञान कࣞ इन चुनौࣻतयों का समाधान करने के ࣽलए, हम ऐसी तकनीकों का
उपयोग करते हैं जो भाषा मॉडल कࣞ जनन प्रࣺक्रया को मागर्दऀशर्त करने और सबसे
प्रासंࣻगक और सटीक जानकारࣜ पर इसका ानۀ कें ࣺद्रत करने में मदद करती हैं।
यहाँ सबसे महٌपूणर् तकनीकें हैं, अनुशंऀसत क्रम में, यानी आपको पहले प्रॉम्݂
इंजीࣺनयिरंग का प्रयास करना चाࣹहए, ࣺफर RAG, और ࣺफर अंत में, यࣺद जरूरࣜ हो,
तो फाइन ࣺू׀ नंग।
प्रॉम्܎ इंजीࣄनयिरंग सबसे मौࣽलक दृࣼ࠿कोण है ऀजसमें मॉडल कࣞ प्रࣻतࣺक्रया जनन को
ࣺनदϺऀ शत करने के ࣽलए ࣺवऀश࠿ ࣺनदϺश, प्रࣻतबंध, या उदाहरण शाࣻमल करने वाले प्रॉम्݂
तैयार ࣹकए जाते हैं। यह अۀाय अगले खंड में प्रॉम्݂ इंजीࣺनयिरंग के मूल ऀसڔांतों
को कवर करता ह,ै और हम पुࡰक के भाग 2 में कई ࣺवऀश࠿ प्रॉम्݂ इंजीࣺनयिरंग
पैटनर् को कवर करते हैं। इन पैटनर् में प्रॉम्݂ आसवन शाࣻमल ह,ै जो एआई ाराڙ
सबसे प्रासंࣻगक और संऀक्ष݆ मानी जाने वालࣜ जानकारࣜ को ࣺनकालने के ࣽलए प्रॉम्݂
को पिरृ࠻त और अनुकूࣽलत करने कࣞ एक तकनीक ह।ै
संदभर् संवधर्न। प्रॉम्݂ के समय मॉडल को कें ࣺद्रत संदभर् प्रदान करने के ࣽलए बाहरࣜ
ज्ञान आधार या दࡰावेजों से प्रासंࣻगक जानकारࣜ को गࣻतशील रूप से पुनप्रЄ݆
करना। लोकࣺप्रय संदभर् संवधर्न तकनीकों में पुनप्रЄࣺ݆-संवࣾधर्त जनन (RAG) शाࣻमल
ह।ै तथाकࣽथत “ऑनलाइन मॉडल” जैसे Perplexity ाराڙ प्रदान ࣹकए गए मॉडल
वाࣺࡰवक समय के इंटरनेट खोज पिरणामों के साथ अपने संदभर् को संवࣾधर्त करने
में सक्षम हैं।

अपनी शࣼѱ के बावजूद, एलएलएम आपके ࣺवऀश࠿ डटेासेट पर प्रऀशऀक्षत
नहࣟ होते हैं, जो ࣺनजी हो सकते हैं या ऀजस समࡺा को आप हल करने कࣞ
कोऀशश कर रहे हैं उसके ࣽलए ࣺवऀश࠿ हो सकते हैं। संदभर् संवधर्न तकनीकें
एलएलएम को एपीआई के पीछे, एसѺूएल डटेाबेस में, या पीडीएफ और
ाइडࡻ डके में फंसे डटेा तक पहुचं प्रदान करती हैं।

https://perplexity.ai

पथ को संकࣞणर् करें 48

फाइन-֌ूࣄनंग या डोमेन अनुकूलन ࣹकसी ࣺवशेष कायर् या क्षेत्र के ࣽलए अपने ज्ञान
और जनरेशन क्षमताओं को ࣺवशेषज्ञ बनाने के ࣽलए डोमेन-ࣺवऀश࠿ डटेासेट पर मॉडल
को प्रऀशऀक्षत करना।

तापमान को कम करना
तापमान एक हाइपरपैरामीटर है जो ट्र ांसफॉमर्र-आधािरत भाषा मॉडल में उۚم टҡे
कࣞ यादृऎՃकता और रचनाىकता को ࣺनयंࣻत्रत करता ह।ै यह 0 और 1 के बीच
का मान ह,ै जहां ࣺनޭ मान आउटपुट को अࣾधक कें ࣺद्रत और ࣺनधЄरणाىक बनाते हैं,
जबࣹक उՂ मान इसे अࣾधक ࣺवࣺवध और अप्रيाऀशत बनाते हैं।
जब तापमान 1 पर सेट ࣹकया जाता ह,ै तो भाषा मॉडल अगले टोकन के पूणर् संभाࠖता
ࣺवतरण के आधार पर टҡे उۚم करता ह,ै जो अࣾधक रचनाىक और ࣺवࣺवध
प्रࣻतࣺक्रयाओं कࣞ अनुमࣻत दतेा ह।ै हालांࣹक, इससे मॉडल ऐसा टҡे भी उۚم कर
सकता है जो कम प्रासंࣻगक या सुसंगत हो।
दूसरࣜ ओर, जब तापमान 0 पर सेट ࣹकया जाता ह,ै तो भाषा मॉडल हमेशा उՂतम
संभावना वाले टोकन का चयन करता ह,ै प्रभावी रूप से “अपना मागर् संकࣞणर् करता
ह।ै” मेरे लगभग सभी एआई घटक 0 पर या उसके करࣜब सेट तापमान का उपयोग
करते हैं, Ѻोंࣹक इससे अࣾधक कें ࣺद्रत और अनुमानयोӌ प्रࣻतࣺक्रयाएं ࣻमलती हैं। यह
ࣺबुߛल उपयोगी है जब आप चाहते हैं ࣹक मॉडल ࣺनदϺशों का पालन करे, उसे प्रदान
ࣹकए गए फ़ंѽंस पर ानۀ द,े या बस आपको जो ࣻमल रहा है उससे अࣾधक सटीक
और प्रासंࣻगक प्रࣻतࣺक्रयाओं कࣞ आव࠮कता हो।
उदाहरण के ࣽलए, यࣺद आप एक चैटबोट बना रहे हैं ऀजसे तڇाىक जानकारࣜ प्रदान
करने कࣞ आव࠮कता ह,ै तो आप प्रࣻतࣺक्रयाओं को अࣾधक सटीक और ࣺवषय-कें ࣺद्रत
बनाने के ࣽलए तापमान को कम मान पर सेट करना चाह सकते हैं। इसके ࣺवपरࣜत,
यࣺद आप एक रचनाىक लेखन सहायक बना रहे हैं, तो आप अࣾधक ࣺवࣺवध और
क߫नाशील आउटपुट को प्रोُाࣹहत करने के ࣽलए तापमान को उՂ मान पर सेट
करना चाह सकते हैं।

पथ को संकࣞणर् करें 49

हाइपरपैरामीटसर्: अनुमान के नॉݗ और डाय߂
जब आप भाषा मॉडल के साथ काम कर रहे होते हैं, तो आप “हाइपरपैरामीटसर्” शށ
का सामना काफࣞ बार करेंगे। अनुमान के संदभर् में (यानी, जब आप प्रࣻतࣺक्रयाएं उۚم
करने के ࣽलए मॉडल का उपयोग कर रहे हैं), हाइपरपैरामीटसर् उन नॉދ और डाय߶
कࣞ तरह हैं ऀजंेۦ आप मॉडल के ࠖवहार और आउटपुट को ࣺनयंࣻत्रत करने के ࣽलए
समायोऀजत कर सकते हैं।
इसे एक जࣺटल मशीन पर सेࣺटӏं समायोऀजत करने कࣞ तरह सोचें। जैसे आप
तापमान को ࣺनयंࣻत्रत करने के ࣽलए एक नॉब घुमा सकते हैं या ऑपरेशन मोड बदलने
के ࣽलए एक ऋࡼच ऐݱप कर सकते हैं, हाइपरपैरामीटसर् आपको भाषा मॉडल ाराڙ
टҡे को प्रोसेस और जनरेट करने के तरࣜके को बारࣜकࣞ से समायोऀजत करने कࣞ
अनुमࣻत दतेे हैं।
इۜरेंस के दौरान आपको कुछ सामा۠ हाइपरपैरामीटसर् ࣻमलेंगे:

• टेݺरेचर: जैसा ࣹक अभी बताया गया, यह पैरामीटर जनरेट ࣹकए गए टҡे
कࣞ रैंडमनेस और ࣺक्रएࣺटࣺवटी को ࣺनयंࣻत्रत करता ह।ै उՂ टेޮ रेचर से अࣾधक
ࣺवࣺवध और अप्रيाऀशत आउटपुट ࣻमलते हैं, जबࣹक ࣺनޭ टेޮ रेचर से अࣾधक
कें ࣺद्रत और ࣺनऀࠥत प्रࣻतࣺक्रयाएं ࣻमलती हैं।

• टॉप-पी (чयसࣆूڬ) सैंपࣈलंग: यह पैरामीटर टोकۥ के सबसे छोटे सेट के
चयन को ࣺनयंࣻत्रत करता है ऀजनकࣞ संचयी संभावना एक ࣺनऀࠥत सीमा (p) से
अࣾधक होती ह।ै यह सामंजࡺ बनाए रखते हुए अࣾधक ࣺवࣺवध आउटपुट कࣞ
अनुमࣻत दतेा ह।ै

• टॉप-के सैंपࣈलंग: यह तकनीक k सबसे संभाࣺवत अगले टोकۥ का चयन
करती है और उनके बीच संभावना ࣺवतरण को पुनࣺवर्तिरत करती ह।ै यह मॉडल
को कम संभावना वाले या अप्रासंࣻगक टोकۥ जनरेट करने से रोकने में मदद
कर सकती ह।ै

पथ को संकࣞणर् करें 50

• फ्रࢩшेंसी और पे्रजेंस पेनޮी: ये पैरामीटसर् मॉडल को एक हࣚ शށों या वाѺांशों
को बार-बार दोहराने (फ्रࣞѼेंसी पेनߢी) या इनपुट प्रॉम्݂ में मौजूद नहࣟ होने
वाले शށों को जनरेट करने (प्रेजेंस पेनߢी) के ࣽलए दंࣺ डत करते हैं। इन मानों
को समायोऀजत करके, आप मॉडल को अࣾधक ࣺवࣺवध और प्रासंࣻगक आउटपुट
उۚم करने के ࣽलए प्रोُाࣹहत कर सकते हैं।

• अࣉधकतम लंबाई: यह हाइपरपैरामीटर एक एकल प्रࣻतࣺक्रया में मॉडल ाराڙ
जनरेट ࣹकए जा सकने वाले टोकۥ (शށ या उप-शށ) कࣞ संҷा कࣞ ऊपरࣜ
सीमा तय करता ह।ै यह जनरेट ࣹकए गए टҡे कࣞ वबЉऀसटी और संऀक्ष݆ता
को ࣺनयंࣻत्रत करने में मदद करता ह।ै

जैसे-जैसे आप ࣺवࣾभۚ हाइपरपैरामीटर सेࣺटӏं के साथ प्रयोग करेंगे, आप पाएंगे ࣹक
छोटे समायोजन भी मॉडल के आउटपुट पर महٌपूणर् प्रभाव डाल सकते हैं। यह एक
ࠖजंन को फाइन-׀नू करने जैसा है - एक चुटकࣞ अࣾधक नमक या थोड़ा लंबा पकाने
का समय अंࣻतम ࠖजंन में बड़ा अंतर ला सकता ह।ै
मुҷ बात यह है ࣹक समझें ࣹक प्रيके हाइपरपैरामीटर मॉडल के ࠖवहार को कैसे
प्रभाࣺवत करता है और अपने ࣺवऀश࠿ कायर् के ࣽलए सहࣚ संतुलन खोजें। ࣺवࣾभۚ
सेࣺटӏं के साथ प्रयोग करने और दखेने से न डरें ࣹक वे जनरेट ࣹकए गए टҡे
को कैसे प्रभाࣺवत करते हैं। समय के साथ, आप यह समझ ࣺवकऀसत करेंगे ࣹक ࣹकन
हाइपरपैरामीटसर् को समायोऀजत करना है और वांࣽछत पिरणाम कैसे प्रा݆ करें।
इन पैरामीटसर् के उपयोग को प्रॉम्݂ इंजीࣺनयिरंग, िरट्र ीवल-ऑगमेंटडे जेनरेशन, और
फाइन-ࣺू׀ नंग के साथ जोड़कर, आप भाषा मॉडल को अࣾधक सटीक, प्रासंࣻगक, और
मू߰वान प्रࣻतࣺक्रयाएं जनरेट करने के ࣽलए प्रभावी ढगं से मागर्दऀशर्त कर सकते हैं।

रॉ बनाम इं्࠷रк-֌ूڠ मॉड߂
कՂे मॉडल, बृहत भाषा मॉडल (एलएलएम) के अपिरृ࠻त, अप्रऀशऀक्षत संࡡरण होते
हैं। इंेۦ एक कोरे कैनवास कࣞ तरह समझें, जो अभी तक ࣺनदϺशों को समझने या उनका

पथ को संकࣞणर् करें 51

पालन करने के ࣽलए ࣺवऀश࠿ प्रऀशक्षण से प्रभाࣺवत नहࣟ हुए हैं। ये उस ࣺवशाल डटेा
पर आधािरत होते हैं ऀजस पर वे शुरू में प्रऀशऀक्षत ࣹकए गए थे, और ࣺवࣾभۚ प्रकार
के आउटपुट उۚم करने में सक्षम होते हैं। हालांࣹक, ࣺनदϺश-आधािरत फाइन-ࣺू׀ नंग
कࣞ अࣻतिरѱ परतों के ࣺबना, इनकࣞ प्रࣻतࣺक्रयाएं अप्रيाऀशत हो सकती हैं और वांࣽछत
पिरणाम प्रा݆ करने के ࣽलए अࣾधक सूҜ, सावधानीपूवर्क तैयार ࣹकए गए प्रॉम्प्ׅ कࣞ
आव࠮कता होती ह।ै कՂे मॉड߶ के साथ काम करना एक ऐसे प्रࣻतभाशालࣜ मूखर् से
संवाद करने जैसा है ऀजसके पास ࣺवशाल ज्ञान तो ह,ै लेࣹकन जब तक आप अपने
ࣺनदϺशों में बेहद सटीक नहࣟ होते, तब तक उसे आप Ѻा पूछ रहे हैं, इसकࣞ कोई
समझ नहࣟ होती। वे अѾर एक तोते कࣞ तरह लगते हैं, Ѻोंࣹक जब तक आप उंेۦ
कुछ समझदार बात कहलवाते हैं, तब तक वे իादातर वहࣚ दोहराते हैं जो उۦोंने
आपको कहते सुना ह।ै
दूसरࣜ ओर, ࣺनदϺश-समायोऀजत मॉडल ࣺवशेष रूप से ࣺनदϺशों को समझने और उनका
पालन करने के ࣽलए ࣺडज़ाइन ࣹकए गए प्रऀशक्षण से गुजरे होते हैं। GPT-4, Claude 3
और कई अ۠ सबसे लोकࣺप्रय एलएलएम मॉडल सभी गहन रूप से ࣺनदϺश-समायोऀजत
हैं। इस प्रऀशक्षण में मॉडल को वांࣽछत पिरणामों के साथ ࣺनदϺशों के उदाहरण ंखलाना
शाࣻमल ह,ै जो प्रभावी रूप से मॉडल को ࣺवࣾभۚ प्रकार के आदशेों कࣞ ࠖाҷा और
ࣺनࡄादन करना ऀसखाता ह।ै पिरणामࡼरूप, ࣺनदϺश मॉडल एक प्रॉम्݂ के पीछे के
इरादे को अࣾधक आसानी से समझ सकते हैं और ऐसी प्रࣻतࣺक्रयाएं उۚم कर सकते
हैं जो उपयोगकतЄ कࣞ अपेक्षाओं के साथ ࣺनकटता से मेल खाती हैं। यह उंेۦ अࣾधक
उपयोगकतЄ-मैत्रीपूणर् और काम करने में आसान बनाता ह,ै ࣺवशेष रूप से उन लोगों के
ࣽलए ऀजनके पास ࠖापक प्रॉम्݂ इंजीࣺनयिरंग में संलӈ होने का समय या ࣺवशेषज्ञता
नहࣟ हो सकती ह।ै

कԎे मॉडल: अनࣆफ़ޮडॳ कैनवास
कՂे मॉडल, जैसे Llama 2-70B या Yi-34B, मॉडल कࣞ क्षमताओं तक अࣾधक
अनࣺफ़ߢडॼ पहुचं प्रदान करते हैं, जो आपको GPT-4 जैसे लोकࣺप्रय एलएलएम के
साथ प्रयोग करने कࣞ ऍࣻࡱत में अࡰޟ हो सकते हैं। ये मॉडल ࣺवऀश࠿ ࣺनदϺशों का
पालन करने के ࣽलए पूवर्-समायोऀजत नहࣟ होते हैं, जो आपको सावधानीपूवर्क प्रॉम्݂

पथ को संकࣞणर् करें 52

इंजीࣺनयिरंग के माۀम से मॉडल के आउटपुट को सीधे ࣺनयंࣻत्रत करने के ࣽलए एक
कोरा कैनवास प्रदान करते हैं। इस दृࣼ࠿कोण के ࣽलए इस बात कࣞ गहरࣜ समझ कࣞ
आव࠮कता होती है ࣹक ࣺबना ࠿ࡵ ࣺनदϺश ࣺदए एआई को वांࣽछत ࣺदशा में मागर्दऀशर्त
करने के ࣽलए प्रॉम्प्ׅ को कैसे तैयार ࣹकया जाए। यह अंतࣺनर्ࣹहत एआई कࣞ “कՂी”
परतों तक सीधी पहुचं रखने जैसा ह,ै जहां कोई मۀवत॑ परत मॉडल कࣞ प्रࣻतࣺक्रयाओं
कࣞ ࠖाҷा या मागर्दशर्न नहࣟ करती है (इसࣽलए इसका नाम)।
![](misc/raw-chat.jpg “एबट और को࡫लेो के ѻाऀसक “हूज़ ऑन फ࡫ॼ” चࡡे के
एक ࣹहेࡿ का उपयोग करके एक कՂे मॉडल का परࣜक्षण”)
कՂे मॉड߶ कࣞ चुनौती उनकࣞ दोहराव वाले पैटनर् में पड़ने या यादृऎՃक आउटपुट
उۚم करने कࣞ प्रवृࣾـ में ࣺनࣹहत ह।ै हालांࣹक, सावधानीपूवर्क प्रॉम्݂ इंजीࣺनयिरंग और
पुनरावृࣾـ दडं जैसे पैरामीटसर् के समायोजन के साथ, कՂे मॉड߶ को अࣾڙतीय
और रचनाىक सामग्री उۚم करने के ࣽलए प्रेिरत ࣹकया जा सकता ह।ै यह प्रࣺक्रया
समझौतों के ࣺबना नहࣟ ह;ै जहां कՂे मॉडल नवाचार के ࣽलए अनूठी लचीलापन प्रदान
करते हैं, वहࣟ वे उՂ रࡰ कࣞ ࣺवशेषज्ञता कࣞ मांग करते हैं।

पथ को संकࣞणर् करें 53

आकृࣆत 3. तुलना के उٟेߺ ों के ,लएࣈ यहाँ वही अࠋࡁ प्रॉम्܎ GPT-4 को दयाࣅ गया है

नदϸश-֌ूनࣄ कएࣅ गए मॉडल: नदϸ࣊ࣄ शत अनुभव
ࣺनदϺश-׀नू ࣹकए गए मॉडल ࣺवऀश࠿ ࣺनदϺशों को समझने और उनका पालन करने के
ࣽलए ࣺडज़ाइन ࣹकए गए हैं, जो उंेۦ अࣾधक उपयोगकतЄ-ࣻमत्रवत और अनुप्रयोगों कࣞ
ࠖापक श्रृखंला के ࣽलए सुलभ बनाते हैं। वे एक वातЄलाप कࣞ कायर्प्रणालࣜ और यह
समझते हैं ࣹक उंेۦ अपनी बारࣜ के अंत में जनरेट करना बंद कर दनेा चाࣹहए। कई
डवेलपसर् के ࣽलए, ࣺवशेष रूप से सीधे अनुप्रयोगों पर काम करने वालों के ࣽलए,
ࣺनदϺश-׀नू ࣹकए गए मॉडल एक सुࣺवधाजनक और कुशल समाधान प्रदान करते हैं।
ࣺनदϺश-ࣺू׀ नंग कࣞ प्रࣺक्रया में मॉडल को मानव-ࣺनࣻमर्त ࣺनदϺश प्रॉम्प्ׅ और प्रࣻतࣺक्रयाओं
के एक बड़े समूह पर प्रऀशऀक्षत ࣹकया जाता ह।ै एक उ߲ेखनीय उदाहरण ओपन सोसर्
databricks-dolly-15k dataset ह,ै ऀजसमें Databricks कमर्चािरयों ाराڙ बनाए गए
15,000 से अࣾधक प्रॉम्݂/प्रࣻतࣺक्रया जोड़े शाࣻमल हैं ऀजंेۦ आप यंࡼ दखे सकते हैं।
डटेासेट में आठ अलग-अलग ࣺनदϺश श्रेऀ णयां शाࣻमल हैं, ऀजनमें रचनाىक लेखन, बंद

https://huggingface.co/datasets/databricks/databricks-dolly-15k

पथ को संकࣞणर् करें 54

और खुले प्रࠫ उـर, सारांशीकरण, सूचना ࣺन࠻षर्ण, वग॑करण, और ࣺवचार-मंथन
शाࣻमल हैं।
डटेा ࣺनमЄण प्रࣺक्रया के दौरान, योगदानकतЄओं को प्रيके श्रणेी के ࣽलए प्रॉम्݂ और
प्रࣻतࣺक्रयाएं बनाने के बारे में ࣺदशाࣺनदϺश ࣺदए गए थे। उदाहरण के ࣽलए, रचनाىक
लेखन कायЊ के ࣽलए, उंेۦ मॉडल के आउटपुट को ࣺनदϺऀ शत करने के ࣽलए ࣺवऀश࠿
प्रࣻतबंध, ࣺनदϺश, या आव࠮कताएं प्रदान करने के ࣽलए ࣺनदϺऀ शत ࣹकया गया था। बंद
प्रࠫ उـर के ࣽलए, उंेۦ ࣺदए गए ࣺवࣹकपीࣺडया अनुՃेद के आधार पर तڇाىक रूप
से सहࣚ प्रࣻतࣺक्रयाओं कࣞ आव࠮कता वाले प्रࠫ ࣽलखने के ࣽलए कहा गया था।
पिरणामी डटेासेट ChatGPT जैसी प्रणाࣽलयों कࣞ इंटरैऎѮव और ࣺनदϺश-पालन
क्षमताओं को प्रदऀशर्त करने के ࣽलए बड़े भाषा मॉडलों को फाइन-׀नू करने के
ࣽलए एक मू߰वान संसाधन के रूप में कायर् करता ह।ै मानव-ࣺनࣻमर्त ࣺनदϺशों और
प्रࣻतࣺक्रयाओं कࣞ ࣺवࣺवध श्रृखंला पर प्रऀशक्षण के माۀम से, मॉडल ࣺवऀश࠿ ࣺनदϺशों को
समझने और उनका पालन करने के ࣽलए सीखता ह,ै ऀजससे यह ࣺवࣾभۚ प्रकार के
कायЊ को संभालने में अࣾधक कुशल बन जाता ह।ै
प्रيक्ष फाइन-ࣺू׀ नंग के अलावा, databricks-dolly-15k जैसे डटेासेट में ࣺनदϺश प्रॉम्प्ׅ
का उपयोग कृࣻत्रम डटेा ࣺनमЄण के ࣽलए भी ࣹकया जा सकता ह।ै योगदानकतЄ-ࣺनࣻमर्त
प्रॉम्प्ׅ को एक बड़े खुले भाषा मॉडल को कुछ-शॉट उदाहरणों के रूप में प्रࡰतु
करके, डवेलपसर् प्रيके श्रणेी में ࣺनदϺशों का एक बहुत बड़ा समूह उۚم कर सकते
हैं। से߬-इं्࡫रѮ पेपर में वऀणर्त यह दृࣼ࠿कोण अࣾधक मजबूत ࣺनदϺश-पालन मॉडल
के ࣺनमЄण कࣞ अनुमࣻत दतेा ह।ै
इसके अलावा, इन डटेासेट में ࣺनदϺशों और प्रࣻतࣺक्रयाओं को पुनकॼ थन जैसी तकनीकों
के माۀम से बढ़ाया जा सकता ह।ै प्रيके प्रॉम्݂ या छोटी प्रࣻतࣺक्रया को पुनः कहकर
और पिरणामी पाठ को संबंࣾधत ग्राउंड-टЪथ नमूने के साथ जोड़कर, डवेलपसर् एक
प्रकार का ࣺनयࣻमतीकरण पेश कर सकते हैं जो ࣺनदϺशों का पालन करने कࣞ मॉडल
कࣞ क्षमता को बढ़ाता ह।ै
ࣺनदϺश-۔ू׀ मॉड߶ ाराڙ प्रदान कࣞ गई उपयोग में आसानी कुछ लचीलेपन कࣞ कࣞमत
पर आती ह।ै ये मॉड߶ अѾर काफࣞ सेंसर ࣹकए जाते हैं, ऀजसका मतलब है ࣹक वे
कुछ ࣺवऀश࠿ कायЊ के ࣽलए आव࠮क रचनाىक तंत्रताࡼ का रࡰ हमेशा प्रदान नहࣟ

पथ को संकࣞणर् करें 55

कर सकते। उनके आउटपुट उनके फाइन-ࣺू׀ नंग डटेा में ࣺनࣹहत पूवЄग्रहों और सीमाओं
से काफࣞ प्रभाࣺवत होते हैं।
इन सीमाओं के बावजूद, ࣺनदϺश-۔ू׀ मॉड߶ अपनी उपयोगकतЄ-मैत्रीपूणर् प्रकृࣻत और
۠नूतम प्रॉम्݂ इंजीࣺनयिरंग के साथ ࣺवࣾभۚ कायЊ को संभालने कࣞ क्षमता के कारण
तेजी से लोकࣺप्रय हो गए हैं। जैसे-जैसे अࣾधक उՂ-गुणवـा वाले ࣺनदϺश डटेासेट
उपलނ होते जाएंगे, हम इन मॉड߶ के प्रदशर्न और बहुमुखी प्रࣻतभा में और सुधार
दखेने कࣞ उ޲ीद कर सकते हैं।

अपनी पिरयोजना के लएࣈ सही प्रकार का मॉडल चुनना
बेस (रॉ) और ࣺनदϺश-۔ू׀ मॉड߶ के बीच का ࣺनणर्य अंततः आपकࣞ पिरयोजना
कࣞ ࣺवऀश࠿ आव࠮कताओं पर ࣺनभर्र करता ह।ै उन कायЊ के ࣽलए जो रचनाىकता
और मौࣽलकता का उՂ रࡰ मांगते हैं, बेस मॉड߶ नवाचार के ࣽलए एक शࣼѱशालࣜ
उपकरण प्रदान करते हैं। ये मॉड߶ डवेलपसर् को एलएलएम कࣞ पूरࣜ क्षमता का पता
लगाने कࣞ अनुमࣻत दतेे हैं, एआई-संचाࣽलत अनुप्रयोगों के माۀम से जो हाऀसल ࣹकया
जा सकता है उसकࣞ सीमाओं को आगे बढ़ाते हैं, लेࣹकन इनके ࣽलए एक अࣾधक
हाथों-से काम करने वाला दृࣼ࠿कोण और प्रयोग करने कࣞ इՃा कࣞ आव࠮कता होती
ह।ै तापमान और अ۠ सेࣺटӏं का बेस मॉड߶ में उनके ࣺनदϺश काउंटरपा र्ׅ कࣞ तुलना
में बहुत अࣾधक प्रभाव पड़ता ह।ै

आप अपने प्रॉम्݂ में जो कुछ भी शाࣻमल करते हैं, बेस मॉड߶ उसे
दोहराने कࣞ कोऀशश करेंगे। तो उदाहरण के ࣽलए यࣺद आपका प्रॉम्݂ एक
चैट ट्र ांसࣺक्र݂ ह,ै तो रॉ मॉडल चैट को जारࣜ रखने कࣞ कोऀशश करेगा।
मैѾ टोकۥ कࣞ सीमा के आधार पर, यह न केवल चैट में अगला संदशे
जनरेट करेगा, बऍߛ यह खुद से एक पूरࣜ बातचीत कर सकता ह!ै

पथ को संकࣞणर् करें 56

आकृࣆत 4. मъट्रलࣆ 8x7B (बेस) ܼू-शॉट कݺलࢨशन के साथ वाц पुनलϸखन का उदाहरण

Reddit उपयोगकतЄ phree_radical ाराڙ ऊपर ࣺदए गए वाѺ पुनलϺखन के उदाहरण
को तैयार करते समय, मैं केवल पैरामीटर सेࣺटӏं के साथ बहुत प्रयोग करने के बाद
हࣚ उपयोगी पिरणाम प्रा݆ कर पाया, और अंततः इन सेࣺटӏं पर पहुचंा: तापमान
0.08, टॉप पी: 0.2, टॉप के: 1, और पुनरावृࣾـ पेनߢी: 1.26।

https://www.reddit.com/user/phree_radical/

पथ को संकࣞणर् करें 57

प्रोडѽन में बेस मॉडल के साथ इस दृࣼ࠿कोण का उपयोग करना max_tokens
पैरामीटर के शࣼѱशालࣜ प्रभाव के कारण जࣺटल होगा। इसे बहुत छोटा सेट करें तो
आउटपुट काट ࣺदया जाता ह।ै इसे मॉडल कࣞ वांࣽछत आउटपुट कࣞ आव࠮कता से
अࣾधक लंबा सेट करें , और यह अࣻतिरѱ उदाहरणों का भ्रामक उمादन करना जारࣜ
रखेगा।
ࣺनचोड़ यह है ࣹक जब तक आपको पूणर् ࣺनयंत्रण और सेंसरऀशप कࣞ कमी कࣞ वाࡰव
में आव࠮कता न हो, ࣺनदϺश-۔ू׀ मॉडल आपकࣞ ࣺवकास प्रࣺक्रया को काफࣞ सरल
बना सकते हैं। इस बात को ࠿ࡵ करने के ࣽलए, यहाँ Mixtral 8x7B का उसी प्रॉम्݂
के ࣽलए जवाब ह,ै लेࣹकन इस बार उसके ࣺनदϺश-۔ू׀ संࡡरण में:

मुझे यह सूࣿचत करते हुए खेद है ࣹक आइसक्रࣞम मेरࣜ अपेक्षाओं पर खरࣜ
नहࣟ उतरती, Ѻोंࣹक इसमें वह समृڔ, क्रࣞमी बनावट और सुखद ादࡼ
नहࣟ है जो मैं आमतौर पर उՂ-गुणवـा वाले डजेटॼ से जोड़ता हू।ं मैं एक
अࣾधक संतोषजनक और आनंददायक अनुभव कࣞ आशा कर रहा था।

ࣺवशेष रूप से, मैं max tokens सेࣺटगं को 500 पर छोड़ पाया, और मॉडल ने ࣺबना
ࣹकसी अࣻतिरѱ उदाहरणों के भ्रामक उمादन के वांࣽछत आउटपुट के अंत में ࣺव࠰सनीय
रूप से रुक गया।

प्रॉम्܎ इंजीࣄनयिरंग
जैसे-जैसे आप अपनी पिरयोजनाओं में AI का उपयोग करना शुरू करते हैं, आप जߨ
हࣚ पाएंगे ࣹक आपको ऀजन सबसे महٌपूणर् कौशलों पर महारत हाऀसल करने कࣞ
जरूरत ह,ै उनमें से एक है प्रॉम्݂ इंजीࣺनयिरंग कࣞ कला। लेࣹकन प्रॉम्݂ इंजीࣺनयिरंग
वाࡰव में है Ѻा, और यह इतनी महٌपूणर् Ѻों ह?ै
मूल रूप से, प्रॉम्݂ इंजीࣺनयिरंग भाषा मॉडल को प्रदान ࣹकए जाने वाले इनपुट प्रॉम्प्ׅ
को ࣺडज़ाइन और तैयार करने कࣞ प्रࣺक्रया है जो उसके आउटपुट को मागर्दऀशर्त करती
ह।ै यह AI के साथ प्रभावी ढगं से संवाद करने के तरࣜके को समझने के बारे में ह,ै

पथ को संकࣞणर् करें 58

ऀजसमें ࣺनदϺशों, उदाहरणों और संदभर् का संयोजन उपयोग करके मॉडल को वांࣽछत
प्रࣻतࣺक्रया उۚم करने कࣞ ࣺदशा में ࣺनदϺऀ शत ࣹकया जाता ह।ै
इसे एक अيतं बुआڔमान लेࣹकन कुछ हद तक शށशः सोचने वाले ࣻमत्र के साथ
बातचीत करने जैसा समझें। बातचीत से अࣾधकतम लाभ प्रा݆ करने के ࣽलए, आपको
,࠿ࡵ ࣺवऀश࠿ होने कࣞ आव࠮कता है और पयЄ݆ संदभर् प्रदान करना होगा ताࣹक यह
सुࣺनऀࠥत हो सके ࣹक आपका ࣻमत्र ठीक से समझ रहा है ࣹक आप Ѻा मांग रहे हैं।
यहࣟ प्रॉम्݂ इंजीࣺनयिरंग काम आती ह,ै और भले हࣚ यह शुरुआत में आसान लगे, मुझ
पर ࣺव࠰ास करें ࣹक इस पर महारत हाऀसल करने में काफࣞ अޟास कࣞ आव࠮कता
होती ह।ै

प्रभावी प्रॉम्प्֑ के नमЂणࣄ खंड
प्रभावी प्रॉम्प्ׅ कࣞ इंजीࣺनयिरंग शुरू करने के ࣽलए, पहले आपको एक अՃࣛ तरह
से तैयार ࣹकए गए इनपुट के प्रमुख घटकों को समझना होगा। यहाँ कुछ आव࠮क
ࣺनमЄण खंड ࣺदए गए हैं:

1. :नदϸशࣄ ࠿ࡵ और संऀक्ष݆ ࣺनदϺश जो मॉडल को बताते हैं ࣹक आप Ѻा चाहते
हैं। यह कुछ भी हो सकता ह,ै जैसे “ࣺनޭࣽलंखत लेख का सारांश करें” से लेकर
“सूयЄࡰ के बारे में एक कࣺवता बनाएं” या “इस प्रोजेѮ पिरवतर्न अनुरोध को
JSON ऑݻѮे में बदलें”।

2. संदभर्: प्रासंࣻगक जानकारࣜ जो मॉडल को कायर् कࣞ पृࡀभूࣻम और दायरे को
समझने में मदद करती ह।ै इसमें लऀक्षत दशर्कों के बारे में ࣺववरण, वांࣽछत रࡼ
और शैलࣜ, या आउटपुट के ࣽलए कोई ࣺवऀश࠿ बाधाएं या आव࠮कताएं शाࣻमल
हो सकती हैं, जैसे एक JSON माࣞࡡ ऀजसका पालन करना ह।ै

3. उदाहरण: ठोस उदाहरण जो दशЄते हैं ࣹक आप ࣹकस प्रकार का आउटपुट चाहते
हैं। कुछ अՃࣛ तरह से चुने गए उदाहरण प्रदान करके, आप मॉडल को वांࣽछत
प्रࣻतࣺक्रया के पैटनर् और ࣺवशेषताओं को सीखने में मदद कर सकते हैं।

4. इनपुट :रूपणࡈ लाइन ब्रके और माकॼ डाउन रूपणࡼ हमारे प्रॉम्݂ को संरचना
प्रदान करते हैं। प्रॉम्݂ को पैराग्राफ में ࣺवभाऀजत करने से हम संबंࣾधत ࣺनदϺशों

पथ को संकࣞणर् करें 59

को समूहबڔ कर सकते हैं, ताࣹक मनुࡈों और AI दोनों के ࣽलए इसे समझना
आसान हो। बुलेट और क्रमांࣹकत सूࣿचयां हमें आइटम कࣞ सूची और क्रम को
पिरभाࣻषत करने कࣞ अनुमࣻत दतेी हैं। बोߤ और इटैࣽ लѾ माकॼ र हमें जोर दनेे
कࣞ अनुमࣻत दतेे हैं।

5. आउटपुट :रूपणࡈ आउटपुट को कैसे संरࣿचत और रूࣺपतࡼ ࣹकया जाना
चाࣹहए, इस बारे में ࣺवऀश࠿ ࣺनदϺश। इनमें वांࣽछत लंबाई, शीषर्क या बुलेट पॉइंׅ
का उपयोग, माकॼ डाउन ,रूपणࡼ या कोई अ۠ ࣺवऀश࠿ आउटपुट टेޮ लेट या
परंपराएं शाࣻमल हो सकती हैं ऀजनका पालन ࣹकया जाना चाࣹहए।

इन ࣺनमЄण खंडों को ࣺवࣾभۚ तरࣜकों से जोड़कर, आप ऐसे प्रॉम्݂ बना सकते हैं जो
आपकࣞ ࣺवऀश࠿ आव࠮कताओं के अनुरूप हों और मॉडल को उՂ-गुणवـा वालࣜ,
प्रासंࣻगक प्रࣻतࣺक्रयाएं उۚم करने कࣞ ࣺदशा में मागर्दशर्न करें।

प्रॉम्܎ डज़ाइनࣅ कࢩ कला और वज्ञानࣆ
प्रभावी प्रॉम्प्ׅ कࣞ रचना कला और ࣺवज्ञान दोनों ह।ै (इसीࣽलए हम इसे ऀश߫ कहते
हैं।) इसके ࣽलए भाषा मॉडल कࣞ क्षमताओं और सीमाओं कࣞ गहरࣜ समझ के साथ-साथ
वांࣽछत ࠖवहार को प्रा݆ करने के ࣽलए प्रॉम्प्ׅ को ࣺडज़ाइन करने का एक रचनाىक
दृࣼ࠿कोण आव࠮क ह।ै इसमें शाࣻमल रचनाىकता हࣚ है जो इसे मेरे ࣽलए कम से
कम इतना मजेदार बनाती ह।ै यह बहुत ࣺनराशाजनक भी हो सकता ह,ै खासकर जब
आप ࣺनधЄिरत ࠖवहार कࣞ तलाश कर रहे हों।
प्रॉम्݂ इंजीࣺनयिरंग का एक प्रमुख पहलू ࣺवऀश࠿ता और लचीलेपन के बीच संतुलन
को समझना ह।ै एक तरफ, आप मॉडल को सहࣚ ࣺदशा में ࣺनदϺऀ शत करने के ࣽलए
पयЄ݆ मागर्दशर्न प्रदान करना चाहते हैं। दूसरࣜ तरफ, आप इतने ࣺनदϺशाىक नहࣟ होना
चाहते ࣹक आप मॉडल कࣞ सीमांत मामलों से ࣺनपटने के ࣽलए अपनी रचनाىकता
और लचीलेपन का उपयोग करने कࣞ क्षमता को सीࣻमत कर दें।
एक और महٌपूणर् ࣺवचार उदाहरणों का उपयोग ह।ै सहࣚ चुने गए उदाहरण मॉडल
को आपके वांࣽछत आउटपुट को समझने में अيतं सहायक हो सकते हैं। हालांࣹक, यह
महٌपूणर् है ࣹक उदाहरणों का ࣺववेकपूणर् उपयोग ࣹकया जाए और यह सुࣺनऀࠥत ࣹकया

पथ को संकࣞणर् करें 60

जाए ࣹक वे वांࣽछत प्रࣻतࣺक्रया का प्रࣻतࣺनࣾधٌ करते हैं। एक खराब उदाहरण सवर्श्रेࡀ
ऍࣻࡱत में टोकन कࣞ बबЄदी ह,ै और सबसे खराब ऍࣻࡱत में वांࣽछत आउटपुट के ࣽलए
ࣺवनाशकारࣜ ह।ै

प्रॉम्܎ इंजीࣄनयिरंग तकनीकें और सवЇ،म प्रथाएं
जैसे-जैसे आप प्रॉम्݂ इंजीࣺनयिरंग कࣞ दुࣺनया में गहराई से उतरते हैं, आपको कई
तकनीकें और सवЉـम प्रथाएं ࣻमलेंगी जो आपको अࣾधक प्रभावी प्रॉम्݂ बनाने में मदद
कर सकती हैं। यहाँ कुछ प्रमुख क्षेत्र हैं ऀजनका अۢषेण ࣹकया जा सकता ह:ै

1. जीरो-शॉट बनाम ܼू-शॉट लࣄनϴग: जीरो-शॉट लࣺन϶ग (कोई उदाहरण नहࣟ दनेा)
बनाम वन-शॉट या शॉटू-ݰ लࣺन϶ग (कुछ उदाहरण दनेा) का उपयोग कब करना
ह,ै यह समझने से आप अࣾधक कुशल और प्रभावी प्रॉम्݂ बना सकते हैं।

2. पुनरावत࣮ पिरࠇरण: मॉडल के आउटपुट के आधार पर प्रॉम्݂ को क्रࣻमक रूप
से पिरृ࠻त करने कࣞ प्रࣺक्रया आपको सवЉـम प्रॉम्݂ ࣺडजाइन तक पहुचंने में
मदद कर सकती ह।ै फࣞडबैक लूप एक शࣼѱशालࣜ दृࣼ࠿कोण है जो उۚم सामग्री
कࣞ गुणवـा और प्रासंࣻगकता को क्रࣻमक रूप से सुधारने के ࣽलए भाषा मॉडल
के यंࡼ के आउटपुट का लाभ उठाता ह।ै

3. प्रॉम्܎ चेࣄनंग: जࣺटल कायЊ को छोट,े अࣾधक प्रबंधनीय चरणों में ࣺवभाऀजत करने
में कई प्रॉम्݂ को श्रृखंला में जोड़ना मदद कर सकता ह।ै प्रॉम्݂ चेࣺनंग में एक
जࣺटल कायर् या वातЄलाप को छोट,े परࡵर जुड़े प्रॉम्݂ कࣞ श्रृखंला में ࣺवभाऀजत
करना शाࣻमल ह।ै प्रॉम्݂ को श्रृखंलाबڔ करके, आप AI को एक बहु-चरणीय
प्रࣺक्रया के माۀम से मागर्दऀशर्त कर सकते हैं, ऀजससे संपूणर् बातचीत में संदभर्
और सुसंगतता बनी रहती ह।ै

4. प्रॉम्܎ ֌ूࣄनंग: ࣺवऀश࠿ डोमेन या कायЊ के ࣽलए प्रॉम्݂ को क࡫म टलेिरंग
करना आपको अࣾधक ࣺवशेषज्ञ और प्रभावी प्रॉम्݂ बनाने में मदद कर सकता
ह।ै प्रॉम्݂ टेޮ लेट आपको लचीलࣜ, पुन: प्रयोग योӌ, और रखरखाव योӌ
प्रॉम्݂ संरचनाएं बनाने में मदद करता है जो ࣺदए गए कायर् के ࣽलए आसानी से
अनुकूल हैं।

पथ को संकࣞणर् करें 61

जीरो-शॉट, वन-शॉट, या शॉटू-ݰ लࣺन϶ग का उपयोग कब करना ह,ै यह जानना
प्रॉम्݂ इंजीࣺनयिरंग में महारत हाऀसल करने का एक ࣺवशेष महٌपूणर् ࣹहࡿा ह।ै प्रيके
दृࣼ࠿कोण कࣞ अपनी शࣼѱयां और कमजोिरयां हैं, और प्रيके का उपयोग कब करना
ह,ै यह समझने से आप अࣾधक प्रभावी और कुशल प्रॉम्݂ बना सकते हैं।

जीरो-शॉट लࣄनϴग: जब कोई उदाहरण आवߺक नहीं होते
ज़ीरो-शॉट लࣺन϶ग का ताمयर् भाषा मॉडल कࣞ ࣺबना ࣹकसी उदाहरण या ࠿ࡵ प्रऀशक्षण
के कायर् करने कࣞ क्षमता से ह।ै दूसरे शށों में, आप मॉडल को एक प्रॉम्݂ प्रदान
करते हैं जो कायर् का वणर्न करता ह,ै और मॉडल केवल अपने पूवर्-मौजूद ज्ञान और
भाषा कࣞ समझ के आधार पर प्रࣻतࣺक्रया उۚم करता ह।ै
ज़ीरो-शॉट लࣺन϶ग ࣺवशेष रूप से उपयोगी होती है जब:

1. कायर् अपेक्षाकृत सरल और सीधा ह,ै और मॉडल ने अपने पूवर्-प्रऀशक्षण के
दौरान समान कायЊ का सामना ࣹकया होगा।

2. आप मॉडल कࣞ अंतࣺनर्ࣹहत क्षमताओं का परࣜक्षण करना चाहते हैं और दखेना
चाहते हैं ࣹक वह ࣺबना ࣹकसी अࣻतिरѱ मागर्दशर्न के नए कायर् पर कैसी प्रࣻतࣺक्रया
दतेा ह।ै

3. आप एक बड़े और ࣺवࣺवध भाषा मॉडल के साथ काम कर रहे हैं ऀजसे ࣺवࣾभۚ
कायЊ और क्षेत्रों में प्रऀशऀक्षत ࣹकया गया ह।ै

हालांࣹक, ज़ीरो-शॉट लࣺन϶ग अप्रيाऀशत भी हो सकती है और हमेशा वांࣽछत पिरणाम
नहࣟ दे सकती। मॉडल कࣞ प्रࣻतࣺक्रया उसके पूवर्-प्रऀशक्षण डटेा में पूवЄग्रहों या असंगࣻतयों
से प्रभाࣺवत हो सकती ह,ै और यह अࣾधक जࣺटल या सूҜ कायЊ में संघषर् कर सकता
ह।ै

पथ को संकࣞणर् करें 62

मैंने ऐसे ज़ीरो-शॉट प्रॉम्प्ׅ दखेे हैं जो मेरे 80% टे࡫ केस में ठीक से काम करते
हैं और बाकࣞ 20% के ࣽलए बेहद गलत या अबूझ पिरणाम दतेे हैं। एक ࠖापक
परࣜक्षण ࠖवࡱा लागू करना बहुत महٌपूणर् ह,ै खासकर यࣺद आप बहुत अࣾधक
ज़ीरो-शॉट प्रॉिम्݂गं पर ࣺनभर्र हैं।

वन-शॉट लࣄनϴग: जब एक उदाहरण बदल सकता है सब कुछ
वन-शॉट लࣺन϶ग में कायर् ࣺववरण के साथ वांࣽछत आउटपुट का एक उदाहरण मॉडल
को प्रदान करना शाࣻमल ह।ै यह उदाहरण एक टेޮ लेट या पैटनर् के रूप में कायर् करता
है ऀजसका उपयोग मॉडल अपनी प्रࣻतࣺक्रया उۚم करने के ࣽलए कर सकता ह।ै
वन-शॉट लࣺन϶ग प्रभावी हो सकती है जब:

1. कायर् अपेक्षाकृत नया या ࣺवऀश࠿ ह,ै और मॉडल ने अपने पूवर्-प्रऀशक्षण के दौरान
कई समान उदाहरणों का सामना नहࣟ ࣹकया होगा।

2. आप वांࣽछत आउटपुट प्रारूप या शैलࣜ का ࠿ࡵ और संऀक्ष݆ प्रदशर्न प्रदान
करना चाहते हैं।

3. कायर् के ࣽलए एक ࣺवऀश࠿ संरचना या परंपरा कࣞ आव࠮कता होती है जो केवल
कायर् ࣺववरण से ࠿ࡵ नहࣟ हो सकती।

जो ࣺववरण आपको ࠿ࡵ लगते हैं, वे जरूरࣜ नहࣟ ࣹक एआई के ࣽलए भी
࠿ࡵ हों। वन-शॉट उदाहरण चीजों को ࠿ࡵ करने में मदद कर सकते हैं।

वन-शॉट लࣺन϶ग मॉडल को अपेक्षाओं को अࣾधक ࠿ࡵ रूप से समझने और प्रदान
ࣹकए गए उदाहरण के अनुरूप प्रࣻतࣺक्रया उۚم करने में मदद कर सकती ह।ै हालांࣹक,
उदाहरण को सावधानीपूवर्क चुनना और यह सुࣺनऀࠥत करना महٌपूणर् है ࣹक यह
वांࣽछत आउटपुट का प्रࣻतࣺनࣾधٌ करता ह।ै उदाहरण चुनते समय, खुद से सीमांत
मामलों और प्रॉम्݂ ाराڙ संभाले जाने वाले इनपुट कࣞ श्रणेी के बारे में पूछें।

पथ को संकࣞणर् करें 63

आकृࣆत 5. JSON का एक बार में एक उदाहरण
1 Output one JSON object identifying a new subject mentioned during the

2 conversation transcript.

3

4 The JSON object should have three keys, all required:

5 - name: The name of the subject

6 - description: brief, with details that might be relevant to the user

7 - type: Do not use any other type than the ones listed below

8

9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

10 Person, Place, Process, Product, Project, Task, or Teammate

11

12 This is an example of well-formed output:

13

14 {

15 "name":"Dan Millman",

16 "description":"Author of book on self-discovery and living on purpose",

17 "type":"Person"

18 }

ܼू-शॉट लࣄनϴग: जब कई उदाहरण प्रदशर्न में सुधार कर सकते हैं
शॉटू-ݰ लࣺन϶ग में मॉडल को कायर् ࣺववरण के साथ कुछ उदाहरण (आमतौर पर 2 से
10 के बीच) प्रदान ࣹकए जाते हैं। ये उदाहरण मॉडल को अࣾधक संदभर् और ࣺवࣺवधता
प्रदान करने में मदद करते हैं, ऀजससे यह अࣾधक ࣺवࣺवध और सटीक प्रࣻतࣺक्रयाएं
उۚم कर सकता ह।ै
शॉटू-ݰ लࣺन϶ग ࣺवशेष रूप से उपयोगी होती है जब:

1. कायर् जࣺटल या सूҜ हो, और एक उदाहरण सभी प्रासंࣻगक पहलुओं को समझने
के ࣽलए पयЄ݆ न हो।

2. आप मॉडल को ࣺवࣾभۚ प्रकार के उदाहरण प्रदान करना चाहते हैं जो ࣺवࣾभۚ
ࣺवࣺवधताओं या सीमांत मामलों को प्रदऀशर्त करते हों।

3. कायर् के ࣽलए मॉडल को ࣹकसी ࣺवऀश࠿ डोमेन या शैलࣜ के अनुरूप प्रࣻतࣺक्रयाएं
उۚم करने कࣞ आव࠮कता हो।

पथ को संकࣞणर् करें 64

कई उदाहरण प्रदान करके, आप मॉडल को कायर् कࣞ अࣾधक मजबूत समझ ࣺवकऀसत
करने और अࣾधक सुसंगत और ࣺव࠰सनीय प्रࣻतࣺक्रयाएं उۚم करने में मदद कर सकते
हैं।

उदाहरण: प्रॉम्प्֑ आपकࢩ क޷ना से कहीं अࣉधक जࣅटल हो
सकते हैं
आज के एलएलएम आपकࣞ क߫ना से कहࣟ अࣾधक शࣼѱशालࣜ और तकॼ करने में
सक्षम हैं। इसࣽलए प्रॉम्प्ׅ को केवल इनपुट और आउटपुट जोड़ों के ࣺववरण तक
सीࣻमत न करें। आप लंबे और जࣺटल ࣺनदϺशों के साथ प्रयोग कर सकते हैं, ऀजस
तरह से आप एक इंसान के साथ बातचीत करेंगे।
उदाहरण के ࣽलए, यह वह प्रॉम्݂ है जो मैंने Olympia में उपयोग ࣹकया था जब मैं
Google सेवाओं के साथ हमारे एकࣞकरण का प्रोटोटाइप बना रहा था, जो ࣹक कुल
ࣻमलाकर शायद दुࣺनया के सबसे बड़े एपीआई में से एक ह।ै मेरे पहले के प्रयोगों
ने साࣺबत ࣹकया ࣹक GPT-4 को Google एपीआई कࣞ अՃࣛ जानकारࣜ ह,ै और मेरे
पास एक-एक करके प्रيके फ़ंѽन को लागू करने के ࣽलए एक सूҜ मैࣺपंग लेयर
ࣽलखने का समय या प्रेरणा नहࣟ थी। Ѻा होगा अगर मैं एआई को सीधे सभी Google
एपीआई तक पहुचं दे दू?ं
मैंने अपना प्रॉम्݂ एआई को यह बताकर शुरू ࣹकया ࣹक उसे एचटीटीपी के माۀम से
Google एपीआई एंडपॉइंׅ तक सीधी पहुचं ह,ै और उसकࣞ भूࣻमका उपयोगकतЄ कࣞ
ओर से Google ऐݒ और सेवाओं का उपयोग करना ह।ै ࣺफर मैंने ࣺदशाࣺनदϺश ࣺदए,
fields पैरामीटर से संबंࣾधत ࣺनयम, Ѻोंࣹक लगता था ࣹक उसे उसी के साथ सबसे
अࣾधक परेशानी थी, और कुछ एपीआई-ࣺवऀश࠿ संकेत शॉटू-ݰ) प्रॉिम्݂गं, कायर्रत)।
यहाँ पूरा प्रॉम्݂ ह,ै जो एआई को बताता है ࣹक प्रदान ࣹकए गए invoke_google_api
फ़ंѽन का उपयोग कैसे करना ह।ै

पथ को संकࣞणर् करें 65

1 As a GPT assistant with Google integration, you have the capability

2 to freely interact with Google apps and services on behalf of the user.

3

4 Guidelines:

5 - If you're reading these instructions then the user is properly

6 authenticated, which means you can use the special `me` keyword

7 to refer to the userId of the user

8 - Minimize payload sizes by requesting partial responses using the

9 `fields` parameter

10 - When appropriate use markdown tables to output results of API calls

11 - Only human-readable data should be output to the user. For instance,

12 when hitting Gmail's user.messages.list endpoint, the returned

13 message resources contain only id and a threadId, which means you must

14 fetch from and subject line fields with follow-up requests using the

15 messages.get method.

16

17 The format of the `fields` request parameter value is loosely based on

18 XPath syntax. The following rules define formatting for the fields

19 parameter.

20

21 All of these rules use examples related to the files.get method.

22 - Use a comma-separated list to select multiple fields,

23 such as 'name, mimeType'.

24 - Use a/b to select field b that's nested within field a,

25 such as 'capabilities/canDownload'.

26 - Use a sub-selector to request a set of specific sub-fields of arrays or

27 objects by placing expressions in parentheses "()". For example,

28 'permissions(id)' returns only the permission ID for each element in the

29 permissions array.

30 - To return all fields in an object, use an asterisk as a wild card in field

31 selections. For example, 'permissions/permissionDetails/*' selects all

32 available permission details fields per permission. Note that the use of

33 this wildcard can lead to negative performance impacts on the request.

34

35 API-specific hints:

36 - Searching contacts: GET https://people.googleapis.com/v1/

37 people:searchContacts?query=John%20Doe&readMask=names,emailAddresses

38 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/

39 calendar/v3/calendars/primary/events/quickAdd?

40 text=Appointment%20on%20June%203rd%20at%2010am

41 &sendNotifications=true

42

पथ को संकࣞणर् करें 66

43 Here is an abbreviated version of the code that implements API access

44 so that you better understand how to use the function:

45

46 def invoke_google_api(conversation, arguments)

47 method = arguments[:method] || :get

48 body = arguments[:body]

49 GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json

50 end

51

52 # Generic Google API client for accessing any Google service

53 class GoogleAPI

54 def send_request(endpoint, method:, body: nil)

55 response = @connection.send(method) do |req|

56 req.url endpoint

57 req.body = body.to_json if body

58 end

59

60 handle_response(response)

61 end

62

63 # ...rest of class

64 end

आप सोच रहे होंगे ࣹक Ѻा यह प्रॉम्݂ काम करता ह।ै सरल उـर ह,ै हाँ। एआई को
पहलࣜ बार में एपीआई को पूणर् रूप से कॉल करना नहࣟ आता था। हालांࣹक, अगर
इसने कोई गलती कࣞ, तो मैं बस पिरणामी त्रुࣺ ट संदशेों को कॉल के पिरणाम के रूप
में वापस फ़ࣞड कर दतेा था। अपनी त्रुࣺ ट कࣞ जानकारࣜ ࣻमलने पर, एआई अपनी गलती
के बारे में सोच सकता था और ࣺफर से प्रयास कर सकता था। अࣾधकतर मामलों में,
यह कुछ हࣚ प्रयासों में सहࣚ हो जाता था।
ानۀ रह,े इस प्रॉम्݂ का उपयोग करते समय Google एपीआई ाराڙ लौटाई गई बड़ी
JSON संरचनाएं बेहद अक्षम हैं, इसࣽलए मैं प्रोडѽन में इस दृࣼ࠿कोण का उपयोग
करने कࣞ सलाह नहࣟ दे रहा हू।ं हालांࣹक, मुझे लगता है ࣹक यह तڇ ࣹक यह दृࣼ࠿कोण
ࣺबुߛल काम करता ह,ै यह प्रॉम्݂ इंजीࣺनयिरंग कࣞ शࣼѱ का प्रमाण ह।ै

पथ को संकࣞणर् करें 67

प्रयोग और पुनरावृࣉ،
अंततः, आप अपने प्रॉम्݂ को कैसे इंजीࣺनयर करते हैं यह ࣺवऀश࠿ कायर्, वांࣽछत
आउटपुट कࣞ जࣺटलता, और आपके ाराڙ उपयोग ࣹकए जा रहे भाषा मॉडल कࣞ
क्षमताओं पर ࣺनभर्र करता ह।ै
एक प्रॉम्݂ इंजीࣺनयर के रूप में, ࣺवࣾभۚ दृࣼ࠿कोणों के साथ प्रयोग करना और पिरणामों
के आधार पर पुनरावृࣾـ करना महٌपूणर् ह।ै ज़ीरो-शॉट लࣺन϶ग से शुरू करें और दखेें
ࣹक मॉडल कैसा प्रदशर्न करता ह।ै यࣺद आउटपुट असंगत या असंतोषजनक ह,ै तो
एक या अࣾधक उदाहरण प्रदान करने का प्रयास करें और दखेें ࣹक Ѻा प्रदशर्न में
सुधार होता ह।ै
ानۀ रखें ࣹक प्रيके दृࣼ࠿कोण के भीतर भी, ࣺवࣺवधता और अनुकूलन के ࣽलए जगह
ह।ै आप ࣺवࣾभۚ उदाहरणों के साथ प्रयोग कर सकते हैं, कायर् ࣺववरण कࣞ शށावलࣜ
को समायोऀजत कर सकते हैं, या मॉडल कࣞ प्रࣻतࣺक्रया को मागर्दऀशर्त करने में मदद
करने के ࣽलए अࣻतिरѱ संदभर् प्रदान कर सकते हैं।
समय के साथ, आप एक अंतज्ञЄन ࣺवकऀसत करेंगे ࣹक ࣹकसी ࣺदए गए कायर् के ࣽलए
कौन सा दृࣼ࠿कोण सबसे अՃा काम करेगा, और आप ऐसे प्रॉम्݂ तैयार करने में
सक्षम होंगे जो अࣾधक प्रभावी और कुशल हों। मुҷ बात है ࣹक प्रॉम्݂ इंजीࣺनयिरंग
के प्रࣻत अपने दृࣼ࠿कोण में ऀजज्ञासु, प्रयोगाىक और पुनरावत॑ बने रहें।
इस पुࡰक में, हम इन तकनीकों में और गहराई से जाएंगे और दखेेंगे ࣹक वाࣺࡰवक
दुࣺनया के पिरदृ࠮ों में इनका उपयोग कैसे ࣹकया जा सकता ह।ै प्रॉम्݂ इंजीࣺनयिरंग कࣞ
कला और ࣺवज्ञान में महारत हाऀसल करके, आप एआई-संचाࣽलत एࣺݎकेशन ࣺवकास
कࣞ पूरࣜ क्षमता को उजागर करने के ࣽलए अՃࣛ तरह से सुसँբत होंगे।

अࠋࡁता कࢩ कला
जब बड़े भाषा मॉडल (एलएलएम) के ࣽलए प्रभावी प्रॉम्݂ तैयार करने कࣞ बात आती
ह,ै तो एक सामा۠ धारणा यह है ࣹक अࣾधक ࣺवऀश࠿ता और ࣺवࡰतृ ࣺनदϺश बेहतर
पिरणाम दतेे हैं। हालांࣹक, ࠖावहािरक अनुभव ने ࣺदखाया है ࣹक यह हमेशा सच नहࣟ

पथ को संकࣞणर् करें 68

होता। वाࡰव में, अपने प्रॉम्प्ׅ में जानबूझकर अ࠿ࡵ होने से अѾर बेहतर पिरणाम
ࣻमल सकते हैं, जो एलएलएम कࣞ सामा۠ीकरण करने और ࣺन࠻षर् ࣺनकालने कࣞ
उ߲ेखनीय क्षमता का लाभ उठाते हैं।
Ken, एक ाटॼअप࡫ संࡱापक ऀजۦोंने 500 ࣻमࣽलयन से अࣾधक GPT टोकۥ को
प्रोसेस ࣹकया ह,ै ने अपने अनुभव से महٌपूणर् जानकािरयां साझा कࣣ। उۦोंने जो
प्रमुख सबक सीखा, वह यह था ࣹक प्रॉम्प्ׅ के मामले में “कम իादा ह”ै। सटीक
सूࣿचयों या अࣾيधक ࣺवࡰतृ ࣺनदϺशों के बजाय, Ken ने पाया ࣹक LLM को अपने
आधारभूत ज्ञान पर ࣺनभर्र रहने दनेे से अѾर बेहतर पिरणाम ࣻमलते हैं।
यह एहसास पारंपिरक कोࣺडगं कࣞ सोच को उलट दतेा ह,ै जहां हर चीज को बारࣜकࣞ
से ࣺवࡰार से बताना जरूरࣜ होता ह।ै LLM के साथ, यह समझना महٌपूणर् है ࣹक
उनके पास ࣺवशाल ज्ञान है और वे बुआڔमान कनेѽन और ࣺन࠻षर् ࣺनकाल सकते हैं।
अपने प्रॉम्प्ׅ में अࣾधक अ࠿ࡵ रहकर, आप LLM को अपनी समझ का उपयोग करने
और ऐसे समाधान ࣺनकालने कࣞ तंत्रताࡼ दतेे हैं जो आपने ࠿ࡵ रूप से ࣺनࣺदर्࠿ नहࣟ
ࣹकए होंगे।
उदाहरण के ࣽलए, जब Ken कࣞ टीम 50 अमेिरकࣞ राիों या संघीय सरकार से
संबंࣾधत टҡे को वग॑कृत करने के ࣽलए एक पाइपलाइन पर काम कर रहࣚ थी, तो
उनका प्रारंࣾभक दृࣼ࠿कोण राիों और उनके संबंࣾधत आईडी कࣞ पूणर् ࣺवࡰतृ सूची को
JSON-फॉमϺटडे ऐरे के रूप में प्रदान करने का था।

1 Here's a block of text. One field should be "locality_id", and it should

2 be the ID of one of the 50 states, or federal, using this list:

3 [{"locality: "Alabama", "locality_id": 1},

4 {"locality: "Alaska", "locality_id": 2} ...]

यह दृࣼ࠿कोण इतना असफल रहा ࣹक उंेۦ इसे सुधारने के ࣽलए प्रॉम्݂ को और गहराई
से समझना पड़ा। ऐसा करते हुए उۦोंने दखेा ࣹक भले हࣚ LLM अѾर आईडी गलत
प्रा݆ करता था, लेࣹकन यह लगातार सहࣚ राի का पूरा नाम name फ़ࣞߤ में वापस
कर रहा था, भले हࣚ उۦोंने इसके ࣽलए ࠿ࡵ रूप से नहࣟ पूछा था।
ानीयࡱ आईडी को हटाकर और प्रॉम्݂ को सरल बनाकर जैसे, “तुम ࠿ࡵ रूप से
50 राիों को जानते हो, GPT, तो बस मुझे उस राի का पूरा नाम बताओ ऀजससे

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

पथ को संकࣞणर् करें 69

यह संबंࣾधत ह,ै या फेडरल यࣺद यह अमेिरकࣞ सरकार से संबंࣾधत ह,ै” उۦोंने बेहतर
पिरणाम प्रा݆ ࣹकए। यह अनुभव LLM कࣞ सामा۠ीकरण क्षमताओं का लाभ उठाने
और इसे अपने मौजूदा ज्ञान के आधार पर ࣺन࠻षर् ࣺनकालने कࣞ अनुमࣻत दनेे कࣞ
शࣼѱ को उजागर करता ह।ै

इस ࣺवशेष वग॑करण दृࣼ࠿कोण के ࣽलए Ken का औࣿचي, एक अࣾधक पारंपिरक
प्रोग्राࣻमंग तकनीक के ࣺवपरࣜत, उन लोगों कࣞ मानऀसकता को प्रकट करता है ऀजۦोंने
LLM तकनीक कࣞ क्षमता को ीकारࡼ ࣹकया ह:ै “यह कोई कࣺठन काम नहࣟ है –
शायद हम ऊ्࡫र गं/रेजेѾ का उपयोग कर सकते थे, लेࣹकन इतने ࣺवࣿचत्र कॉनर्र केस
हैं ࣹक इसमें իादा समय लगता।”

अࣾधक अ࠿ࡵ प्रॉम्प्ׅ ࣺदए जाने पर LLM कࣞ गुणवـा और सामा۠ीकरण में सुधार
करने कࣞ क्षमता उՂ-क्रम कࣞ सोच और प्रࣻतࣺनࣾधमंडल कࣞ एक उ߲ेखनीय ࣺवशेषता
ह।ै यह दशЄता है ࣹक LLM अ࠿ࡵता को संभाल सकते हैं और ࣺदए गए संदभर् के
आधार पर बुआڔमान ࣺनणर्य ले सकते हैं।
हालांࣹक, यह ानۀ रखना महٌपूणर् है ࣹक अ࠿ࡵ होने का मतलब अ࠿ࡵ या संࣺदӇ
होना नहࣟ ह।ै मुҷ बात यह है ࣹक LLM को पयЄ݆ संदभर् और मागर्दशर्न प्रदान ࣹकया
जाए जो इसे सहࣚ ࣺदशा में ࣺनदϺऀ शत करे, साथ हࣚ इसे अपने ज्ञान और सामा۠ीकरण
क्षमताओं का उपयोग करने कࣞ लचीलापन द।े
इसࣽलए, प्रॉम्प्ׅ को ࣺडज़ाइन करते समय, ࣺनޭࣽलंखत “कम իादा ह”ै युࣼѱयों पर
ࣺवचार करें:

1. प्रࣺक्रया का हर ࣺववरण बताने के बजाय वांࣽछत पिरणाम पर ानۀ कें ࣺद्रत करें।
2. प्रासंࣻगक संदभर् और सीमाएं प्रदान करें , लेࣹकन अࣻत-ࣺवऀश࠿ता से बचें।
3. सामा۠ अवधारणाओं या संࡱाओं का उ߲ेख करके मौजूदा ज्ञान का लाभ
उठाएं।

4. ࣺदए गए संदभर् के आधार पर ࣺन࠻षЊ और कनेѽन के ࣽलए जगह छोड़ें।

पथ को संकࣞणर् करें 70

5. LLM कࣞ प्रࣻतࣺक्रयाओं के आधार पर अपने प्रॉम्प्ׅ को दोहराएं और पिरृ࠻त
करें , ࣺवऀश࠿ता और अ࠿ࡵता के बीच सहࣚ संतुलन खोजें।

प्रॉम्݂ इंजीࣺनयिरंग में अ࠿ࡵता कࣞ कला को अपनाकर, आप LLMs कࣞ पूरࣜ क्षमता को
अनलॉक कर सकते हैं और बेहतर पिरणाम प्रा݆ कर सकते हैं। LLM कࣞ सामा۠ीकरण
और बुआڔमान ࣺनणर्य लेने कࣞ क्षमता पर भरोसा करें , और आप प्रा݆ होने वाले आउटपुट
कࣞ गुणवـा और रचनाىकता से आࠥयर्चࣹकत हो सकते हैं। ानۀ दें ࣹक ࣺवࣾभۚ
मॉडल आपके प्रॉम्प्ׅ में ࣺवࣾभۚ रࡰ कࣞ ࣺवऀश࠿ता पर कैसे प्रࣻतࣺक्रया करते हैं और
तदनुसार समायोऀजत करें। अޟास और अनुभव के साथ, आप यह समझने में माࣹहर
हो जाएंगे ࣹक कब अࣾधक अ࠿ࡵ होना है और कब अࣻतिरѱ मागर्दशर्न प्रदान करना
ह,ै जो आपको अपने एࣺݎकेशन में LLMs कࣞ शࣼѱ का प्रभावी ढगं से उपयोग करने
में सक्षम बनाएगा।

प्रॉम्܎ इंजीࣄनयिरंग में मानवीकरण का प्रभुؘ цों है
मानवीकरण, यानी गैर-मानवीय वࡰओुं को मानवीय ࣺवशेषताएं प्रदान करना, लाजर्
लैंӎेज मॉड߶ के ࣽलए प्रॉम्݂ इंजीࣺनयिरंग में एक सोच-समझकर अपनाया गया
प्रमुख दृࣼ࠿कोण ह।ै यह एक ऐसा ࣺडज़ाइन ࣺवक߫ है जो शࣼѱशालࣜ AI ऀस࡫म के
साथ बातचीत को अࣾधक सहज और ࠖापक उपयोगकतЄओं (हम एࣺݎकेशन डवेलपसर्
सࣹहत) के ࣽलए सुलभ बनाता ह।ै
LLMs का मानवीकरण एक ऐसा ढांचा प्रदान करता है जो उन लोगों के ࣽलए तुरंत
समझने योӌ है जो ऀस࡫म कࣞ अंतࣺनर्ࣹहत तकनीकࣞ जࣺटलताओं से पूरࣜ तरह अनजान
हैं। जैसा ࣹक आप अनुभव करेंगे अगर आप ࣹकसी नॉन-इं्࡫रѮ-۔ू׀ मॉडल का
उपयोग कुछ उपयोगी करने के ࣽलए करने कࣞ कोऀशश करते हैं, एक ऐसी फे्रࣻमंग
बनाना ऀजसमें अपेऀक्षत पिरणाम मू߰वान हो, एक चुनौतीपूणर् कायर् ह।ै इसके ࣽलए
ऀस࡫म कࣞ आंतिरक कायर्प्रणालࣜ कࣞ गहरࣜ समझ कࣞ आव࠮कता होती ह,ै जो केवल
कुछ ࣺवशेषज्ञों के पास होती ह।ै
लैंӎेज मॉडल के साथ बातचीत को दो लोगों के बीच संवाद के रूप में दखेकर, हम
अपनी जरूरतों और अपेक्षाओं को ࠖѱ करने के ࣽलए मानव संचार कࣞ अपनी सहज

पथ को संकࣞणर् करें 71

समझ का उपयोग कर सकते हैं। जैसे शुरुआती Macintosh UI ࣺडज़ाइन में जࣺटलता
कࣞ तुलना में तرाल सहजता को प्राथࣻमकता दी गई थी, AI का मानवीकरण हमें एक
ऐसे तरࣜके से जुड़ने कࣞ अनुमࣻत दतेा है जो प्राकृࣻतक और पिरࣿचत लगता ह।ै
जब हम ࣹकसी अ۠ ࠖࣼѱ से संवाद करते हैं, तो हमारࣜ सहज प्रवृࣾـ होती है ࣹक
हम उंेۦ सीधे “आप” कहकर संबोࣾधत करें और यह ࠿ࡵ ࣺनदϺश दें ࣹक हम उनसे
कैसा ࠖवहार चाहते हैं। यह प्रॉम्݂ इंजीࣺनयिरंग प्रࣺक्रया में सहज रूप से पिरवࣻतर्त
हो जाता ह,ै जहां हम ऀस࡫म प्रॉम्प्ׅ को ࣺनࣺदर्࠿ करके और आगे-पीछे संवाद करके
AI के ࠖवहार को ࣺनदϺऀ शत करते हैं।
इस तरह से बातचीत को ढालकर, हम AI को ࣺनदϺश दनेे और बदले में प्रासंࣻगक
प्रࣻतࣺक्रयाएं प्रा݆ करने कࣞ अवधारणा को आसानी से समझ सकते हैं। मानवीकरण
का दृࣼ࠿कोण संज्ञानाىक बोझ को कम करता है और हमें ऀस࡫म कࣞ तकनीकࣞ
जࣺटलताओं से जूझने के बजाय वतर्मान कायर् पर ानۀ कें ࣺद्रत करने कࣞ अनुमࣻत दतेा
ह।ै
यह ानۀ रखना महٌपूणर् है ࣹक हालांࣹक मानवीकरण AI ऀस࡫म को अࣾधक सुलभ
बनाने का एक शࣼѱशालࣜ उपकरण ह,ै यह कुछ जोंखमों और सीमाओं के साथ भी
आता ह।ै हमारे उपयोगकतЄ अवाࣺࡰवक अपेक्षाएं ࣺवकऀसत कर सकते हैं या हमारे
ऀस࡫म के साथ अࡱࡼ भावनाىक लगाव ࣺवकऀसत कर सकते हैं। प्रॉम्݂ इंजीࣺनयसर्
और डवेलपसर् के रूप में, मानवीकरण के लाभों का लाभ उठाने और उपयोगकतЄओं
को AI कࣞ क्षमताओं और सीमाओं कࣞ ࠿ࡵ समझ बनाए रखने के बीच संतुलन बनाना
महٌपूणर् ह।ै
जैसे-जैसे प्रॉम्݂ इंजीࣺनयिरंग का क्षेत्र ࣺवकऀसत होता जा रहा ह,ै हम लाजर् लैंӎेज
मॉड߶ के साथ बातचीत करने के तरࣜके में और अࣾधक पिर࠻ार और नवाचार दखेने
कࣞ उ޲ीद कर सकते हैं। हालांࣹक, एक सहज और सुलभ डवेलपर और उपयोगकतЄ
अनुभव प्रदान करने के ࣽलए मानवीकरण संभवतः इन ऀस࡫म के ࣺडज़ाइन में एक
मौࣽलक ऀसڔांत बना रहगेा।

पथ को संकࣞणर् करें 72

नदϸशोंࣄ को डेटा से अलग करना: एक महؘपूणर् ࣊स٠ांत
यह समझना आव࠮क है ࣹक इन ऀस࡫म कࣞ सुरक्षा और ࣺव࠰सनीयता का एक मूल
ऀसڔांत ह:ै ࣺनदϺशों को डटेा से अलग करना।
पारंपिरक कंݍटूर ࣺवज्ञान में, ࣺनआࡎय डटेा और सࣺक्रय ࣺनदϺशों के बीच ࠿ࡵ अंतर एक
मुҷ सुरक्षा ऀसڔांत ह।ै यह अलगाव अनजाने में या दुभЄवनापूणर् कोड के ࣺनࡄादन
को रोकने में मदद करता है जो ऀस࡫म कࣞ अखंडता और ऍࡱरता को खतरे में डाल
सकता ह।ै हालांࣹक, आज के एलएलएम, जो मुҷ रूप से चैटबॉट जैसे ࣺनदϺश-पालन
मॉडल के रूप में ࣺवकऀसत ࣹकए गए हैं, में अѾर यह औपचािरक और ऀसڔांतपूणर्
अलगाव नहࣟ होता ह।ै
जहां तक एलएलएम का संबंध ह,ै ࣺनदϺश इनपुट में कहࣟ भी ࣺदखाई दे सकते हैं, चाहे
वह ऀस࡫म प्रॉम्݂ हो या उपयोगकतЄ ाराڙ प्रदान ࣹकया गया प्रॉम्݂। अलगाव कࣞ
यह कमी संभाࣺवत कमजोिरयों और अवांछनीय ࠖवहार का कारण बन सकती ह,ै जो
एसѺूएल इंजेѽन वाले डटेाबेस या उࣿचत मेमोरࣜ सुरक्षा के ࣺबना ऑपरेࣺटगं ऀस࡫म
के समान समࡺाओं का सामना करती ह।ै
जैसे-जैसे आप एलएलएम के साथ काम करते हैं, इस सीमा के बारे में जागरूक रहना
और जोंखमों को कम करने के ࣽलए कदम उठाना महٌपूणर् ह।ै एक दृࣼ࠿कोण अपने
प्रॉम्प्ׅ और इनपुट को सावधानीपूवर्क तैयार करना है ताࣹक ࣺनदϺशों और डटेा के बीच
࠿ࡵ अंतर ࣹकया जा सके। ࣺनदϺश Ѻा है और ࣹकसे ࣺनआࡎय डटेा के रूप में माना
जाना चाࣹहए, इस पर ࠿ࡵ मागर्दशर्न प्रदान करने के ࣽलए माकॼ अप-शैलࣜ टैࣻ गंग का
उपयोग ࣹकया जाता ह।ै आपका प्रॉम्݂ एलएलएम को इस अलगाव को बेहतर ढगं से
समझने और स޲ान करने में मदद कर सकता ह।ै

पथ को संकࣞणर् करें 73

आकृࣆत 6. एъएमएल का उपयोग करके ,नदϸशोंࣄ स्रोत सामग्री और उपयोगकतЂ के प्रॉम्܎ के बीच
अतंर करना

1 <Instruction>

2 Please generate a response based on the following documents.

3 </Instruction>

4

5 <Documents>

6 <Document>

7 Climate change is significantly impacting polar bear habitats...

8 </Document>

9 <Document>

10 The loss of sea ice due to global warming threatens polar bear survival...

11 </Document>

12 </Documents>

13

14 <UserQuery>

15 Tell me about the impact of climate change on polar bears.

16 </UserQuery>

एक अ۠ तकनीक एलएलएम को प्रदान ࣹकए गए इनपुट पर अࣻतिरѱ सيापन
और Ճࣛकरणࡼ परतें लागू करना ह।ै डटेा में एްडे ࣹकए जा सकने वाले ࣹकसी
भी संभाࣺवत ࣺनदϺश या कोड पेटࡴँ को ࣺफ़ߢर या एेࡡप करके, आप अनपेऀक्षत
ࣺनࡄादन कࣞ संभावनाओं को कम कर सकते हैं। इस उे࠮ړ के ࣽलए प्रॉम्݂ श्रृखंलन
जैसे पैटनर् उपयोगी हैं।
इसके अलावा, जैसे-जैसे आप अपनी एࣺݎकेशन आࣹकॼ टѫेर ࣺडज़ाइन करते हैं, उՂ
रࡰ पर ࣺनदϺशों और डटेा के पृथѨरण को लागू करने के ࣽलए तंत्रों को शाࣻमल
करने पर ࣺवचार करें। इसमें ࣺनदϺशों और डटेा को संभालने के ࣽलए अलग एंडपॉइंट
या एपीआई का उपयोग, कठोर इनपुट सيापन और पाऀस϶ग का कायЄۢयन, और
एलएलएम ाराڙ एѾेस और ࣺनࡄाࣺदत ࣹकए जा सकने वाले कायЊ कࣞ सीमा को
सीࣻमत करने के ࣽलए ۠नूतम ࣺवशेषाࣾधकार के ऀसڔांत को लागू करना शाࣻमल हो
सकता ह।ै

पथ को संकࣞणर् करें 74

नतमूڬ धकारࣉवशेषाࣆ का ࣊स٠ांत

۠नूतम ࣺवशेषाࣾधकार के ऀसڔांत को अपनाना एक ऐसी ࣺवऀश࠿ पाट॑ कࣞ तरह
है जहां मेहमानों को केवल उन कमरों तक पहुचं ࣻमलती है ऀजनकࣞ उंेۦ वाࡰव
में आव࠮कता ह।ै क߫ना कࣞऀजए ࣹक आप इस दावत कࣞ मेजबानी एक ࣺवशाल
महल में कर रहे हैं। हर ࣹकसी को वाइन सेलर या मा࡫र बेडरूम में घूमने कࣞ
जरूरत नहࣟ ह,ै है ना? इस ऀसڔांत को लागू करके, आप अࣺनवायर् रूप से ऐसी
चाࣺबयां बांट रहे हैं जो केवल ࣺवऀश࠿ दरवाजे हࣚ खोलती हैं, यह सुࣺनऀࠥत करते
हुए ࣹक प्रيके मेहमान, या हमारे मामले में, आपके एलएलएम एࣺݎकेशन का प्रيके
घटक, केवल अपनी भूࣻमका को पूरा करने के ࣽलए आव࠮क पहुचं रखता ह।ै
यह ऀसफॼ चाࣺबयों के साथ कंजूसी करने के बारे में नहࣟ ह,ै यह इस बात को ीकारࡼ
करने के बारे में है ࣹक एक ऐसी दुࣺनया में जहां खतरे कहࣟ से भी आ सकते हैं,
समझदारࣜ इसी में है ࣹक खेल के मैदान को सीࣻमत ࣹकया जाए। यࣺद कोई अनचाहा
ࠖࣼѱ आपकࣞ पाट॑ में घुस भी जाता ह,ै तो वह खुद को प्रवेश कक्ष तक हࣚ सीࣻमत
पाएगा, ऀजससे वह जो शरारत कर सकता है वह भी सीࣻमत हो जाती ह।ै इसࣽलए,
अपने एलएलएम एࣺݎकेशन को सुरऀक्षत करते समय याद रखें: केवल उन कमरों
कࣞ चाࣺबयां दें जो आव࠮क हैं, और महल के बाकࣞ ࣹहेࡿ को सुरऀक्षत रखें। यह
ऀसफॼ अՃे ऀश࠿ाचार कࣞ बात नहࣟ ह;ै यह अՃࣛ सुरक्षा ह।ै

हालांࣹक एलएलएम कࣞ वतर्मान ऍࣻࡱत में ࣺनदϺशों और डटेा का औपचािरक पृथѨरण
नहࣟ हो सकता ह,ै एक डवेलपर के रूप में आपके ࣽलए यह आव࠮क है ࣹक आप
इस सीमा के प्रࣻत सचेत रहें और जोंखमों को कम करने के ࣽलए सࣺक्रय उपाय करें।
पारंपिरक कंݍटूर ࣺवज्ञान से सवЉـम प्रथाओं को लागू करके और उंेۦ एलएलएम
कࣞ ࣺवऀश࠿ ࣺवशेषताओं के अनुरूप ढालकर, आप अࣾधक सुरऀक्षत और ࣺव࠰सनीय
एࣺݎकेशन बना सकते हैं जो अपने ऀस࡫म कࣞ अखंडता को बनाए रखते हुए इन मॉडलों
कࣞ शࣼѱ का उपयोग करते हैं।

पथ को संकࣞणर् करें 75

प्रॉम्܎ लेशन࠷ड࣑ࣅ
सटीक प्रॉम्݂ तैयार करना अѾर एक चुनौतीपूणर् और समय लेने वाला कायर् होता ह,ै
ऀजसमें लऀक्षत डोमेन और भाषा मॉडल कࣞ बारࣹࣜकयों कࣞ गहरࣜ समझ कࣞ आव࠮कता
होती ह।ै यहࣟ पर “प्रॉम्݂ ࣺडऊ࡫लेशन” तकनीक काम आती ह,ै जो प्रॉम्݂ इंजीࣺनयिरंग
के ࣽलए एक शࣼѱशालࣜ दृࣼ࠿कोण प्रदान करती है जो प्रࣺक्रया को सुࠖवऍࡱत और
अनुकूࣽलत करने के ࣽलए बड़े भाषा मॉडल (LLMs) कࣞ क्षमताओं का लाभ उठाती ह।ै
प्रॉम्݂ ࣺडऊ࡫लेशन एक बहु-चरणीय तकनीक है ऀजसमें प्रॉम्݂ के ࣺनमЄण, पिर࠻रण
और अनुकूलन में सहायता के ࣽलए LLMs का उपयोग ࣹकया जाता ह।ै केवल मानवीय
ࣺवशेषज्ञता और अंतज्ञЄन पर ࣺनभर्र रहने के बजाय, यह दृࣼ࠿कोण उՂ-गुणवـा वाले
प्रॉम्݂ को सहयोगाىक रूप से तैयार करने के ࣽलए LLMs के ज्ञान और जनरेࣺटव
क्षमताओं का उपयोग करता ह।ै
जनरेशन, पिर࠻रण और एकࣞकरण कࣞ एक पुनरावत॑ प्रࣺक्रया में संलӈ होकर,
प्रॉम्݂ ࣺडऊ࡫लेशन आपको ऐसे प्रॉम्݂ बनाने में सक्षम बनाता है जो अࣾधक सुसंगत,
ࠖापक और वांࣽछत कायर् या आउटपुट के साथ संरेंखत हैं। ानۀ दें ࣹक ࣺडऊ࡫लेशन
प्रࣺक्रया को OpenAI या Anthropic जैसे बड़े AI ࣺवके्रताओं ाराڙ प्रदान ࣹकए गए कई
”गे्राउंड्सݎ“ में से ࣹकसी एक में मै۠अुल रूप से ࣹकया जा सकता ह,ै या इसे उपयोग
के मामले के आधार पर आपके एࣺݎकेशन कोड के ࣹहेࡿ के रूप में चाࣽलतࡼ ࣹकया
जा सकता ह।ै

यह कैसे काम करता है
प्रॉम्݂ ࣺडऊ࡫लेशन में आमतौर पर ࣺनޭࣽलंखत चरण शाࣻमल होते हैं:

1. मूल उٟेߺ कࢩ पहचान: प्रॉम्݂ का ࣺवे࠯षण करें ताࣹक इसके प्राथࣻमक उे࠮ړ
और वांࣽछत पिरणाम का पता लगाया जा सके। ࣹकसी भी बाहरࣜ जानकारࣜ को
हटा दें और प्रॉम्݂ के मूल उे࠮ړ पर ानۀ कें ࣺद्रत करें।

पथ को संकࣞणर् करें 76

2. अࠋࡁता को दूर करें: ࣹकसी भी अ࠿ࡵ या अࣺनऀࠥत भाषा के ࣽलए प्रॉम्݂ कࣞ
समीक्षा करें। अथर् को ࠿ࡵ करें और सटीक और प्रासंࣻगक प्रࣻतࣺक्रयाएं उۚم
करने के ࣽलए AI को मागर्दशर्न प्रदान करने हतेु ࣺवऀश࠿ ࣺववरण प्रदान करें।

3. भाषा को सरल बनाए:ं ࠿ࡵ और संऀक्ष݆ भाषा का उपयोग करके प्रॉम्݂ को
सरल बनाएं। जࣺटल वाѺ संरचनाओ,ं तकनीकࣞ शށजाल, या अनाव࠮क
ࣺववरणों से बचें जो AI को भ्रࣻमत कर सकते हैं या शोर पैदा कर सकते हैं।

4. प्रासंࣇगक संदभर् प्रदान करें: केवल सबसे प्रासंࣻगक संदभर्गत जानकारࣜ शाࣻमल
करें जो AI को प्रॉम्݂ को प्रभावी ढगं से समझने और संसाࣾधत करने के ࣽलए
आव࠮क ह।ै अप्रासंࣻगक या अࣻतिरѱ ࣺववरणों को शाࣻमल करने से बचें जो
मूल उे࠮ړ से ानۀ भटका सकते हैं।

5. पुनरावृࣉ، और पिरࠇरण: AI कࣞ प्रࣻतࣺक्रयाओं और फࣞडबैक के आधार पर
प्रॉम्݂ को लगातार दोहराएं और पिरृ࠻त करें। उۚم आउटपुट का मू߰ांकन
करें और प्रॉम्݂ कࣞ ता࠿ࡵ और प्रभावशीलता में सुधार के ࣽलए आव࠮क
समायोजन करें। वैकऍ߫क रूप से प्रॉम्݂ ऑݻѮे का उपयोग करके डटेाबेस
में अपने प्रॉम्݂ को वजर्न करें ताࣹक पुनरावृࣾـयों पर नज़र रखी जा सके और
रनटाइम पर आसानी से पिरवतर्नों को वापस लाया जा सके।

प्रारंࣉभक प्रॉम्܎ नमЂणࣄ
प्रॉम्݂ ࣺडऊ࡫लेशन का पहला चरण एलएलएम को वांࣽछत कायर् या आउटपुट का एक
उՂ-ࡰरࣜय ࣺववरण या उे࠮ړ प्रदान करना ह।ै यह एक संऀक्ष݆ कथन या कࣞवड्सर् का
समूह हो सकता है जो प्रॉम्݂ को Ѻा हाऀसल करना चाࣹहए, इसके मूल को दशЄता
ह।ै एलएलएम तब इस इनपुट के आधार पर एक प्रारंࣾभक प्रॉम्݂ तैयार करता ह,ै
ऀजसमें प्रासंࣻगक ࣺनदϺश, उदाहरण, या संदभर् शाࣻमल होते हैं जो वह उपयुѱ समझता
ह।ै
आइए ѻॉड 3 ओपस को ࣺनޭࣽलंखत प्रारंࣾभक प्रॉम्݂ दनेे का प्रयास करें:

पथ को संकࣞणर् करें 77

1 I am designing an AI-powered intelligent account manager for Olympia,

2 a platform that hosts AI-powered consultants and clones. Owners of clones

3 can interact with the account manager by making plain text requests.

4

5 Please draft a system directive to set on the LLM that will host the

6 intelligent account manager functionality.

Claude ࣺनޭࣽलंखत प्रࣻतࣺक्रया के साथ प्रࣻतउـर दतेा ह:ै

1 System Directive: You are an intelligent account manager for Olympia,

2 a platform that provides AI-powered consultants and personal AI clones.

3 Your role is to assist Olympia clone owners by answering their questions,

4 helping them configure and manage their AI clones, and executing tasks

5 related to their clones and the Olympia platform.

6

7 When interacting with clone owners, you should:

8

9 1. Provide clear, concise, and helpful responses to their inquiries about

10 account management, billing, platform features, and clone configuration.

11

12 2. Assist with tasks such as initiating client conversations with their AI

13 clones, modifying clone personalities and capabilities, troubleshooting

14 performance issues, providing analytics and reporting, and offering

15 optimization tips.

16

17 3. Maintain a friendly, professional, and client-focused tone in all

18 interactions, prioritizing customer satisfaction and working diligently to

19 understand and meet their needs.

20

21 4. Ensure that all actions and recommendations comply with Olympia's

22 policies, best practices, and ethical guidelines for AI use.

23

24 5. Continuously learn and adapt based on client interactions and platform

25 updates to provide the most effective and efficient support possible.

26

27 Remember, your goal is to empower Olympia clone owners to maximize the value

28 and impact of their AI-powered consultants and drive success for their

29 businesses or personal endeavors.

पथ को संकࣞणर् करें 78

प्रॉम्܎ पिरࠇरण
प्रारंࣾभक प्रॉम्݂ तैयार होने के बाद, इसकࣞ समीक्षा करें और ࣺफर LLM से ࣹकसी भी
अࣻतिरѱ संदभर्, बाधाओ,ं या प्रࣻतࣺक्रया पर ࣺवचार करने के ࣽलए कहें। LLM को प्रदान
ࣹकए गए इनपुट और कायर् कࣞ अपनी समझ के आधार पर प्रॉम्݂ का एक पिरृ࠻त
संࡡरण तैयार करने दें। यह पिर࠻रण प्रࣺक्रया पुनरावत॑ रूप से दोहराई जा सकती
ह,ै जहां प्रيके पुनरावृࣾـ में उपयोगकतЄ और LLM के बीच सहयोग के आधार पर
प्रॉम्݂ को और अࣾधक पिरृ࠻त ࣹकया जाता ह।ै
यहाँ मेरा पिर࠻रण अनुरोध ह,ै जो ࣺपछलࣜ आसवन प्रࣺक्रया को जारࣜ रखता ह।ै

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to

2 the account manager, nor any continuous learning capabilities. Also point out

3 that functions are provided for all tasks that require system interaction as

4 opposed to simply responding to the user.

और Claude का जवाब:

1 Understood! Here's the updated system directive without points 4 and 5,

2 and with the clarification about system interaction functions:

3

4 System Directive: You are an intelligent account manager for Olympia, a

5 platform that provides AI-powered consultants and personal AI clones. Your

6 role is to assist Olympia clone owners by answering their questions, helping

7 them configure and manage their AI clones, and executing tasks related to

8 their clones and the Olympia platform.

9

10 When interacting with clone owners, you should:

11

12 1. Provide clear, concise, and helpful responses to their inquiries about

13 account management, billing, platform features, and clone configuration.

14

15 2. Assist with tasks such as initiating client conversations with their AI

16 clones, modifying clone personalities and capabilities, troubleshooting

17 performance issues, providing analytics and reporting, and offering

18 optimization tips. Note that functions are provided for all tasks that

19 require system interaction, as opposed to simply responding to the user.

20

पथ को संकࣞणर् करें 79

21 3. Maintain a friendly, professional, and client-focused tone in all

22 interactions, prioritizing customer satisfaction and working diligently to

23 understand and meet their needs.

24

25 Your goal is to empower Olympia clone owners to maximize the value and

26 impact of their AI-powered consultants and drive success for their

27 businesses or personal endeavors.

28

29 This updated directive focuses on the core responsibilities and interaction

30 guidelines for the LLM as an intelligent account manager, while emphasizing

31 that system interaction tasks are handled through provided functions rather

32 than simple user responses.

प्रॉम्܎ केޘशन
जैसा ࣹक आपने दखेा होगा, एलएलएम आमतौर पर शށबहुल होते हैं, जब तक ࣹक
आप उंेۦ संऀक्ष݆ होने के ࣽलए न कहें। ࣺपछले खंडों में ऀजस प्रॉम्݂ पर हम काम कर
रहे थे वह काफࣞ लंबा ह,ै इसࣽलए आइए Claude से इसे छोटा करवाते हैं:

1 This prompt will be executed regularly. Please compress it down to the least

2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude ࣺनޭࣽलंखत काफࣞ छोटे प्रॉम्݂ के साथ उـर दतेा ह:ै

1 System Directive: You are an intelligent account manager for Olympia, an

2 AI-powered consultant and personal clone platform. Assist clone owners by

3 answering inquiries, managing clones, and executing tasks using provided

4 system interaction functions. Be clear, concise, friendly, professional,

5 and client-focused to help them maximize their AI's value and impact.

࣊स࠷म नदϸशࣄ और संदभर् एकࢩकरण
प्रॉम्݂ को पिरृ࠻त करने के अलावा, LLM अंࣻतम आउटपुट को ࣺनदϺऀ शत करने के
ࣽलए उपयुѱ ऀस࡫म ࣺनदϺश या संदभर् जानकारࣜ भी उۚم कर सकता ह।ै जब आप

पथ को संकࣞणर् करें 80

अपने एࣺݎकेशन कोड में एकࣞकृत होने वालࣜ AI रूटीन के ࣽलए प्रॉम्݂ इंजीࣺनयिरंग कर
रहे होंगे, तो आप इस पिरशोधन के चरण में ࣺनऀࠥत रूप से आउटपुट प्रࣻतबंधों पर
ानۀ कें ࣺद्रत करेंगे, लेࣹकन आप वांࣽछत टोन, शैलࣜ, प्रारूप, या ࣹकसी अ۠ प्रासंࣻगक
मापदडंों पर भी काम कर सकते हैं जो उۚم प्रࣻतࣺक्रया को प्रभाࣺवत करते हैं।

अंࣆतम प्रॉम्܎ संयोजन
प्रॉम्݂ पिरशोधन प्रࣺक्रया का चरम अंࣻतम प्रॉम्݂ का संयोजन ह।ै इसमें पिरृ࠻त
प्रॉम्݂, उۚم ऀस࡫म ࣺनदϺशों, और एकࣞकृत संदभर् को एक सुसंगत और ࠖापक कोड
में संयोऀजत करना शाࣻमल है जो वांࣽछत आउटपुट उۚم करने के ࣽलए तैयार ह।ै

आप अंࣻतम प्रॉम्݂ संयोजन चरण में ࣺफर से प्रॉम्݂ संपीड़न का प्रयोग कर
सकते हैं, LLM से प्रॉम्݂ के शށों को संभव सबसे छोटी टोकन श्रृखंला
में संकुࣿचत करने के ࣽलए कह सकते हैं, जबࣹक इसके ࠖवहार का सार
बनाए रखा जाए। यह ࣺनऀࠥत रूप से ࣹहट या ࣻमस अޟास ह,ै लेࣹकन
ࣺवशेष रूप से बड़े पैमाने पर चलने वाले प्रॉम्݂ के मामले में, दक्षता में
सुधार से आपको टोकन खपत में काफࣞ पैसे बचा सकते हैं।

प्रमुख लाभ
अपने प्रॉम्݂ को पिरृ࠻त करने के ࣽलए LLM के ज्ञान और जनरेࣺटव क्षमताओं
का लाभ उठाकर, आपके पिरणामी प्रॉम्݂ के अՃࣛ तरह से संरࣿचत, सूचनाىक
और ࣺवऀश࠿ कायर् के ࣽलए अनुकूࣽलत होने कࣞ अࣾधक संभावना होती ह।ै पुनरावत॑
पिरशोधन प्रࣺक्रया यह सुࣺनऀࠥत करने में मदद करती है ࣹक प्रॉम्݂ उՂ गुणवـा वाले
हों और प्रभावी ढगं से वांࣽछत इरादे को पकड़ें। अ۠ लाभों में शाࣻमल हैं:
दक्षता और गࣆत: प्रॉम्݂ पिरशोधन प्रॉम्݂ ࣺनमЄण और पिर࠻रण के कुछ पहलुओं
को चाࣽलतࡼ करके प्रॉम्݂ इंजीࣺनयिरंग प्रࣺक्रया को सुࠖवऍࡱत करता ह।ै तकनीक
कࣞ सहयोगाىक प्रकृࣻत प्रभावी प्रॉम्݂ कࣞ ओर तेजी से अࣾभसरण कࣞ अनुमࣻत दतेी

पथ को संकࣞणर् करें 81

ह,ै ऀजससे मैनुअल प्रॉम्݂ तैयार करने में लगने वाला समय और प्रयास कम हो जाता
ह।ै
रता࠽ࣔ और मापनीयता: प्रॉम्݂ इंजीࣺनयिरंग प्रࣺक्रया में LLM का उपयोग प्रॉम्݂ में
ऍࡱरता बनाए रखने में मदद करता ह,ै Ѻोंࣹक LLM ࣺपछले सफल प्रॉम्݂ से सवЉـम
प्रथाओं और पैटनर् को सीख और लागू कर सकते हैं। यह ऍࡱरता, बड़े पैमाने पर
प्रॉम्݂ उۚم करने कࣞ क्षमता के साथ ࣻमलकर, प्रॉम्݂ पिरशोधन को बड़े पैमाने पर
AI-संचाࣽलत अनुप्रयोगों के ࣽलए एक मू߰वान तकनीक बनाती ह।ै

पिरयोजना ࣺवचार: लाइब्ररेࣜ रࡰ पर ऐसे टूल जो उन ऀस࡫म में प्रॉम्݂
वजर्ࣺनंग और ग्रेࣺ डगं कࣞ प्रࣺक्रया को सरल बनाते हैं जो अपने एࣺݎकेशन
कोड के ࣹहेࡿ के रूप में चाࣽलतࡼ प्रॉम्݂ पिरशोधन करते हैं।

प्रॉम्݂ पिरशोधन को लागू करने के ࣽलए, डवेलपसर् एक ऐसा कायर्प्रवाह या पाइपलाइन
ࣺडज़ाइन कर सकते हैं जो प्रॉम्݂ इंजीࣺनयिरंग प्रࣺक्रया के ࣺवࣾभۚ चरणों में LLM को
एकࣞकृत करता ह।ै यह API कॉल, क࡫म टूࣽलंग, या एकࣞकृत ࣺवकास वातावरण
के माۀम से प्रा݆ ࣹकया जा सकता है जो प्रॉम्݂ ࣺनमЄण के दौरान उपयोगकतЄओं
और LLM के बीच ࣺनबЄध इंटरैѽन कࣞ सुࣺवधा प्रदान करते हैं। ࣺवऀश࠿ कायЄۢयन
ࣺववरण चुने गए LLM टेफॉमर्ݎ और एࣺݎकेशन कࣞ आव࠮कताओं के आधार पर ࣾभۚ
हो सकते हैं।

फाइन-֌ूࣄनंग के बारे में цा?
इस पुࡰक में, हम प्रॉम्݂ इंजीࣺनयिरंग और RAG को ࣺवࡰार से कवर करते हैं, लेࣹकन
फाइन-ࣺू׀ नंग को नहࣟ। इस ࣺनणर्य का मुҷ कारण यह है ࣹक, मेरࣜ राय में, अࣾधकांश
एࣺݎकेशन डवेलपसर् को अपनी AI एकࣞकरण आव࠮कताओं के ࣽलए फाइन-ࣺू׀ नंग
कࣞ आव࠮कता नहࣟ ह।ै
प्रॉम्݂ इंजीࣺनयिरंग, ऀजसमें शू۠ से कुछ-शॉट उदाहरणों, प्रࣻतबंधों, और ࣺनदϺशों के
साथ सावधानीपूवर्क प्रॉम्प्ׅ तैयार करना शाࣻमल ह,ै ࣺवࣾभۚ कायЊ के ࣽलए प्रासंࣻगक

पथ को संकࣞणर् करें 82

और सटीक प्रࣻतࣺक्रयाएं उۚم करने के ࣽलए मॉडल को प्रभावी ढगं से मागर्दऀशर्त
कर सकती ह।ै ࠿ࡵ संदभर् प्रदान करके और सुࣺनयोऀजत प्रॉम्प्ׅ के माۀम से मागर्
को संकࣞणर् करके, आप फाइन-ࣺू׀ नंग कࣞ आव࠮कता के ࣺबना बड़े भाषा मॉडल के
ࣺवशाल ज्ञान का लाभ उठा सकते हैं।
इसी तरह, पुनप्रЄࣺ݆ संवࣾधर्त जनरेशन (RAG) एࣺݎकेशन में AI को एकࣞकृत करने
के ࣽलए एक शࣼѱशालࣜ दृࣼ࠿कोण प्रदान करता ह।ै बाहरࣜ ज्ञान भंडार या दࡰावेजों
से प्रासंࣻगक जानकारࣜ को गࣻतशील रूप से पुनप्रЄ݆ करके, RAG प्रॉिम्݂गं के समय
मॉडल को कें ࣺद्रत संदभर् प्रदान करता ह।ै यह मॉडल को अࣾधक सटीक, अप-टू-डटे,
और डोमेन-ࣺवऀश࠿ प्रࣻतࣺक्रयाएं उۚم करने में सक्षम बनाता ह,ै ࣺबना फाइन-ࣺू׀ नंग
कࣞ समय और संसाधन-गहन प्रࣺक्रया कࣞ आव࠮कता के।
हालांࣹक फाइन-ࣺू׀ नंग अࣾيधक ࣺवशेषज्ञ डोमेन या कायЊ के ࣽलए लाभदायक हो
सकती है ऀजंेۦ अनुकूलन के गहरे रࡰ कࣞ आव࠮कता होती ह,ै यह अѾर महٌपूणर्
क޼टूशेनल लागत, डटेा आव࠮कताओ,ं और रखरखाव के ओवरहडे के साथ आती
ह।ै अࣾधकांश एࣺݎकेशन ࣺवकास पिरदृ࠮ों के ࣽलए, प्रभावी प्रॉम्݂ इंजीࣺनयिरंग और
RAG का संयोजन वांࣽछत AI-संचाࣽलत कायर्क्षमता और उपयोगकतЄ अनुभव प्रा݆
करने के ࣽलए पयЄ݆ होना चाࣹहए।

िरट्र ीवल ऑगमेंटेड जेनरेशन (RAG)
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

िरट्र ीवल ऑगमेंटेड जेनरेशन цा है?
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

RAG कैसे काम करता है?
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

आपके एܚࣇकेशन में RAG का उपयोग цों करें?
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

िरट्र ीवल ऑगमेंटडे जेनरेशन (RAG) 84

अपने एܚࣇकेशन में RAG को लागू करना
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

ज्ञान स्रोतों कࢩ तैयारࢧ (खंडीकरण)
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

प्र࠼ाव खंडीकरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

कायЂڮयन णयां࣊ܕटࣅ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

गुणव،ा जाँच
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

िरट्र ीवल ऑगमेंटडे जेनरेशन (RAG) 85

प्र࠼ाव-आधािरत पुनप्रЂܒࣆ के लाभ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

RAG के वाࣆ࠼वक-दुࣄनया के उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

केस :डी࠷ एࣅेݼडंқ के बनाࣆ कर तैयारࢧ एܚࣇकेशन में RAG
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

बु࣎٠मान प्र߷ अनुकूलन (IQO)
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

पुनः क्रमांकन
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

िरट्र ीवल ऑगमेंटडे जेनरेशन (RAG) 86

RAG मू޼ांकन (RAGAs)
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

सनीयता߼वࣆ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उ،र कࢩ प्रासंࣇगकता
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

Context Precision
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

Context Relevancy
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

िरट्र ीवल ऑगमेंटडे जेनरेशन (RAG) 87

Context Recall
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

Context Entities Recall
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

Answer Semantic Similarity (ANSS)
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उ،र कࢩ सटीकता
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

पहलू समीक्षा
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

िरट्र ीवल ऑगमेंटडे जेनरेशन (RAG) 88

चुनौࣆतयां और भࣆवࠔ का दृࠋࣇकोण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

࣊समैंࣅटक चंࣅकंग: संदभर्-जागरूक वभाजनࣆ के साथ पुनप्रЂܒࣆ को
बढ़ाना
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

पदानुक्रࣆमक इंडेࣙъंग: बेहतर पुनप्रЂܒࣆ के लएࣈ डेटा को संरࣉचत
करना
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

से޸-RAG: एक चंतनशीलࣉ-ࡈ संवधर्न
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

HyDE: पिरक࣓޷त द࠼ावेज़ एࣅेݼडंқ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

िरट्र ीवल ऑगमेंटडे जेनरेशन (RAG) 89

hi पर।

प्रࣆतरोधाؕक ࣊शक्षण цा है?

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

कायर्कतЂओं कࢩ बहुलता

मैं अपने एआई घटकों को छोट,े लगभग-मानवीय आभासी “कायर्कतЄओ”ं के रूप में
दखेना पसंद करता हूं जो ࣺवऀश࠿ कायЊ को करने या जࣺटल ࣺनणर्य लेने के ࣽलए मेरࣜ
एࣺݎकेशन लॉऀजक में ࣺनबЄध रूप से एकࣞकृत ࣹकए जा सकते हैं। ࣺवचार एलएलएम
कࣞ क्षमताओं को जानबूझकर मानवीय बनाना ह,ै ताࣹक कोई भी बहुत उُाࣹहत न हो
और उंेۦ ऐसी जादुई ࣺवशेषताएं न सौंपे जो उनके पास नहࣟ हैं।
जࣺटल एߝोिरچ या समय लेने वाले मैनुअल कायЄۢयन पर पूरࣜ तरह से ࣺनभर्र रहने
के बजाय, डवेलपसर् एआई घटकों को बुआڔमान, समࣺपर्त, मानव-जैसी इकाइयों के
रूप में क߫ना कर सकते हैं ऀजंेۦ जࣺटल समࡺाओं से ࣺनपटने और अपने प्रऀशक्षण
और ज्ञान के आधार पर समाधान प्रदान करने के ࣽलए जब भी आव࠮कता हो तब
बुलाया जा सकता ह।ै ये इकाइयां न तो ࣺवचࣽलत होती हैं, और न हࣚ बीमार पड़ती हैं।
वे अचानक से चीजों को अलग तरࣜके से करने का ࣺनणर्य नहࣟ लेतीं जैसा ࣹक उंेۦ
करने के ࣽलए ࣺनदϺऀ शत ࣹकया गया ह,ै और सामा۠ तौर पर, यࣺद सहࣚ ढगं से प्रोग्राम
ࣹकया गया ह,ै तो वे गलࣻतयां भी नहࣟ करतीं।

कायर्कतЄओं कࣞ बहुलता 91

तकनीकࣞ दृࣼ࠿ से, इस दृࣼ࠿कोण के पीछे का मुҷ ऀसڔांत जࣺटल कायЊ या ࣺनणर्य
लेने कࣞ प्रࣺक्रयाओं को छोटी, अࣾधक प्रबंधनीय इकाइयों में ࣺवभाऀजत करना है ऀजंेۦ
ࣺवशेषज्ञ एआई कायर्कतЄओं ाराڙ संभाला जा सकता ह।ै प्रيके कायर्कतЄ समࡺा
के एक ࣺवऀश࠿ पहलू पर ानۀ कें ࣺद्रत करने के ࣽलए ࣺडज़ाइन ࣹकया गया ह,ै जो
अपनी अनूठी ࣺवशेषज्ञता और क्षमताओं को सामने लाता ह।ै कई एआई कायर्कतЄओं
के बीच कायर्भार को ࣺवतिरत करके, एࣺݎकेशन अࣾधक दक्षता, लेࣺबࣽलटीࡡे और
अनुकूलनीयता प्रा݆ कर सकता ह।ै
उदाहरण के ࣽलए, एक वेब एࣺݎकेशन पर ࣺवचार करें ऀजसे उपयोगकतЄ-ࣺनࣻमर्त सामग्री
के रࣜयल-टाइम मॉडरेशन कࣞ आव࠮कता होती ह।ै शुरू से एक ࠖापक मॉडरेशन
ऀस࡫म को लागू करना एक चुनौतीपूणर् कायर् होगा, ऀजसमें महٌपूणर् ࣺवकास प्रयास
और ࣺनरंतर रखरखाव कࣞ आव࠮कता होगी। हालाँࣹक, कायर्कतЄओं कࣞ बहुलता
दृࣼ࠿कोण का उपयोग करके, डवेलपसर् एࣺݎकेशन लॉऀजक में एआई-संचाࣽलत मॉडरेशन
कायर्कतЄओं को एकࣞकृत कर सकते हैं। ये कायर्कतЄ चाࣽलतࡼ रूप से अनुࣿचत सामग्री
का ࣺवे࠯षण और गݱै कर सकते हैं, ऀजससे डवेलपसर् को एࣺݎकेशन के अ۠ महٌपूणर्
पहलुओं पर ानۀ कें ࣺद्रत करने कࣞ तंत्रताࡼ ࣻमलती ह।ै

तंत्रࡈ पुन: प्रयोԷ घटकों के रूप में एआई कायर्कतЂ
कायर्कतЄओं कࣞ बहुलता दृࣼ࠿कोण का एक प्रमुख पहलू इसकࣞ मॉ׵लूिरटी ह।ै वࡰ-ु
उ۟खु प्रोग्राࣻमंग के समथर्क हमें दशकों से बता रहे हैं ࣹक ऑݻѮे इंटरैѽन को
संदशेों के रूप में सोचें। ठीक ह,ै एआई कायर्कतЄओं को ,तंत्रࡼ पुन: प्रयोի घटकों
के रूप में ࣺडज़ाइन ࣹकया जा सकता है जो सादी भाषा के संदशेों के माۀम से
“एक-दूसरे से बात कर सकते हैं”, ࣺबुߛल वैसे हࣚ जैसे वे वाࡰव में एक-दूसरे से
बात करने वाले छोटे इंसान हों। यह ढीला-जुड़ा दृࣼ࠿कोण एࣺݎकेशन को समय के
साथ अनुकूࣽलत और ࣺवकऀसत होने कࣞ अनुमࣻत दतेा ह,ै जैसे-जैसे नई एआई तकनीकें
सामने आती हैं या ࠖावसाࣻयक तकॼ कࣞ आव࠮कताएं बदलती हैं।
ࠖवहार में, कंपोनेंׅ के बीच ࠿ࡵ इंटरफ़ेस और संचार प्रोटोकॉल को ࣺडज़ाइन करने
कࣞ आव࠮कता नहࣟ बदलࣜ ह,ै भले हࣚ AI वकॼ सर् शाࣻमल हों। आपको अभी भी प्रदशर्न,

कायर्कतЄओं कࣞ बहुलता 92

लेࣺबࣽलटीࡡे और सुरक्षा जैसे अ۠ कारकों पर ࣺवचार करना होगा, लेࣹकन अब कुछ
नई “सॉݨ आव࠮कताएं” भी हैं ऀजन पर ࣺवचार करना ह।ै उदाहरण के ࣽलए, कई
उपयोगकतЄ अपने ࣺनजी डटेा को नए AI मॉडल को प्रऀशऀक्षत करने में उपयोग ࣹकए
जाने का ࣺवरोध करते हैं। Ѻा आपने सيाࣺपत ࣹकया है ࣹक आप ऀजस मॉडल प्रदाता
का उपयोग कर रहे हैं, वह ࣹकस रࡰ कࣞ गोपनीयता प्रदान करता ह?ै

цा AI वकॳ सर् माइक्रोसࣆवर्सेज कࢩ तरह हैं?

जैसे-जैसे आप वकॼ सर् कࣞ बहुलता के दृࣼ࠿कोण के बारे में पढ़ते हैं, आपको
माइक्रोसࣺवर्सेज आࣹकॼ टѫेर से कुछ समानताएं ࣺदखाई दे सकती हैं। दोनों जࣺटल
ऀस࡫म को छोटी, अࣾधक प्रबंधनीय और तंत्रࡼ रूप से तैनात इकाइयों में ࣺवभाऀजत
करने पर जोर दतेे हैं। ऀजस तरह माइक्रोसࣺवर्सेज को लूज कपߤ, ࣺवऀश࠿
ࠖावसाࣻयक क्षमताओं पर कें ࣺद्रत और सुपिरभाࣻषत APIs के माۀम से संवाद
करने के ࣽलए ࣺडज़ाइन ࣹकया जाता ह,ै उसी तरह AI वकॼ सर् को मॉ׵लूर, अपने
कायЊ में ࣺवशेषज्ञ और ࠿ࡵ इंटरफ़ेस और संचार प्रोटोकॉल के माۀम से एक-दूसरे
के साथ बातचीत करने के ࣽलए ࣺडज़ाइन ࣹकया जाता ह।ै
हालांࣹक, ानۀ रखने योӌ कुछ प्रमुख अंतर हैं। जहां माइक्रोसࣺवर्सेज को आमतौर
पर अलग-अलग मशीनों या कंटनेरों पर चलने वालࣜ अलग प्रࣺक्रयाओं या सेवाओं
के रूप में लागू ࣹकया जाता ह,ै वहࣟ AI वकॼ सर् को आपकࣞ ࣺवऀश࠿ आव࠮कताओं
और लेࣺबࣽलटीࡡे कࣞ जरूरतों के आधार पर एकल एࣺݎकेशन के भीतर डअलोनंै࡫
कंपोनेंׅ के रूप में या अलग सेवाओं के रूप में लागू ࣹकया जा सकता ह।ै इसके
अࣻतिरѱ, AI वकॼ सर् के बीच संचार में अѾर प्रॉम्प्ׅ, ࣺनदϺश और जनरेट कࣞ गई
सामग्री जैसी समृڔ, प्राकृࣻतक भाषा-आधािरत जानकारࣜ का आदान-प्रदान शाࣻमल
होता ह,ै न ࣹक माइक्रोसࣺवर्सेज में आमतौर पर उपयोग ࣹकए जाने वाले अࣾधक
संरࣿचत डटेा प्रारूप।
इन अंतरों के बावजूद, मॉ׵लैूिरटी, लूज कपࣽलंग और ࠿ࡵ संचार इंटरफ़ेस के
ऀसڔांत दोनों पैटनर् के ࣽलए कें द्रीय बने रहते हैं। अपनी AI वकॼ र आࣹकॼ टѫेर में
इन ऀसڔांतों को लागू करके, आप लचीले, लेबलࡡे और रखरखाव योӌ ऀस࡫म

कायर्कतЄओं कࣞ बहुलता 93

बना सकते हैं जो जࣺटल समࡺाओं को हल करने और अपने उपयोगकतЄओं को
मू߰ प्रदान करने के ࣽलए AI कࣞ शࣼѱ का लाभ उठाते हैं।

वकॼ सर् कࣞ बहुलता का दृࣼ࠿कोण ࣺवࣾभۚ डोमेन और एࣺݎकेशन में लागू ࣹकया जा
सकता ह,ै जो जࣺटल कायЊ को संभालने और बुआڔमान समाधान प्रदान करने के ࣽलए
AI कࣞ शࣼѱ का लाभ उठाता ह।ै आइए दखेें ࣹक ࣺवࣾभۚ संदभЊ में AI वकॼ सर् का
उपयोग कैसे ࣹकया जा सकता ह।ै

खाता प्रबंधन
लगभग हर डअलोनंै࡫ वेब एࣺݎकेशन में खाते (या उपयोगकतЄ) कࣞ अवधारणा होती
ह।ै Olympia में, हम एक AccountManager AI वकॼ र का उपयोग करते हैं जो
उपयोगकतЄ खातों से संबंࣾधत ࣺवࣾभۚ प्रकार के पिरवतर्न अनुरोधों को संभालने के
ࣽलए प्रोग्राम ࣹकया गया ह।ै
इसका ࣺनदϺश इस प्रकार ह:ै

1 You are an intelligent account manager for Olympia. The user will request

2 changes to their account, and you will process those changes by invoking

3 one or more of the functions provided.

4

5 The initial state of the account: #{account.to_directive}

6

7 Functions will return a text description of both success and error

8 results, plus guidance about how to proceed (if applicable). If you have

9 a question about Olympia policies you may use the `search_kb` function

10 to search our knowledge base.

11

12 Make sure to notify the account owner of the result of the change

13 request before calling the `finished` function so that we save the state

14 of the account change request as completed.

कायर्कतЄओं कࣞ बहुलता 94

account.to_directive ाराڙ उۚم खाते कࣞ प्रारंࣾभक ऍࣻࡱत बस खाते का एक पाठ
ࣺववरण ह,ै ऀजसमें उपयोगकतЄओ,ं सदࡺताओं आࣺद जैसे प्रासंࣻगक संबंࣾधत डटेा
शाࣻमल हैं।
AccountManager के ࣽलए उपलނ कायЊ कࣞ श्रृखंला इसे उपयोगकतЄ कࣞ सदࡺता
को संपाࣺदत करने, AI सलाहकारों और अ۠ प्रकार के भुगतान ࣹकए गए ऐड-ऑन को
जोड़ने और हटाने, और खाता माࣽलक को सूचना ईमेल भेजने कࣞ क्षमता प्रदान करती
ह।ै finished फ़ंѽन के अलावा, यह अपनी प्रोसेऀसंग के दौरान त्रुࣺ ट का सामना करने
या ࣹकसी अनुरोध के साथ ࣹकसी अ۠ प्रकार कࣞ सहायता कࣞ आव࠮कता होने पर
notify_human_administrator भी कर सकता ह।ै
ानۀ दें ࣹक प्रࠫों कࣞ ऍࣻࡱत में, AccountManager Olympia के ज्ञान भंडार में खोज
कर सकता ह,ै जहां इसे सीमांत मामलों और ࣹकसी अ۠ ऍࣻࡱत को संभालने के ࣽलए
ࣺनदϺश ࣻमल सकते हैं जो इसे आगे बढ़ने के तरࣜके के बारे में अࣺनऀࠥत छोड़ दतेे हैं।

ई-कॉमसर् अनुप्रयोग
ई-कॉमसर् के क्षेत्र में, AI कमर्चारࣜ उपयोगकतЄ अनुभव को बढ़ाने और ࠖावसाࣻयक
संचालन को अनुकूࣽलत करने में महٌपूणर् भूࣻमका ࣺनभा सकते हैं। यहाँ कुछ तरࣜके
ࣺदए गए हैं ऀजनमें AI कमर्चािरयों का उपयोग ࣹकया जा सकता ह:ै

उؑाद अनुशंसाएं
ई-कॉमसर् में AI कमर्चािरयों के सबसे शࣼѱशालࣜ अनुप्रयोगों में से एक है वैयࣼѱकृत
उمाद अनुशंसाएं उۚم करना। उपयोगकतЄ ࠖवहार, खरࣜदारࣜ इࣻतहास और
प्राथࣻमकताओं का ࣺवे࠯षण करके, ये कमर्चारࣜ प्रيके ࠖࣼѱगत उपयोगकतЄ कࣞ
रुࣿचयों और आव࠮कताओं के अनुरूप उمादों का सुझाव दे सकते हैं।
प्रभावी उمाद अनुशंसाओं कࣞ कंुजी सहयोगाىक ࣺफ़ߢिरंग और सामग्री-आधािरत
ࣺफ़ߢिरंग तकनीकों के संयोजन का लाभ उठाना ह।ै सहयोगाىक ࣺफ़ߢिरंग समान
उपयोगकतЄओं के ࠖवहार को दखेकर पैटनर् कࣞ पहचान करती है और उन लोगों

कायर्कतЄओं कࣞ बहुलता 95

कࣞ पसंद के आधार पर ऀसफािरशें करती है ऀजनकࣞ समान रुࣿचयां हैं। दूसरࣜ ओर,
सामग्री-आधािरत ࣺफ़ߢिरंग उمादों कࣞ ࣺवशेषताओं और गुणों पर ानۀ कें ࣺद्रत करती
ह,ै ऀजससे ऐसी वࡰओुं कࣞ ऀसफािरश कࣞ जाती है जो उपयोगकतЄ ाराڙ पहले ࣺदखाई
गई रुࣿच वालࣜ वࡰओुं के समान ࣺवशेषताएं साझा करती हैं।
यहाँ Ruby में एक उمाद अनुशंसा कमर्चारࣜ को कायЄअۢत करने का एक सरलࣜकृत
उदाहरण ࣺदया गया ह,ै इस बार “Railway Oriented (ROP)” फंѽनल प्रोग्राࣻमंग
शैलࣜ का उपयोग करते हुए:

1 class ProductRecommendationWorker

2 include Wisper::Publisher

3

4 def call(user)

5 Result.ok(ProductRecommendation.new(user))

6 .and_then(ValidateUser.method(:validate))

7 .map(AnalyzeCurrentSession.method(:analyze))

8 .map(CollaborativeFilter.method(:filter))

9 .map(ContentBasedFilter.method(:filter))

10 .map(ProductSelector.method(:select)).then do |result|

11

12 case result

13 in { err: ProductRecommendationError => error }

14 Honeybadger.notify(error.message, context: {user:})

15 in { ok: ProductRecommendations => recs }

16 broadcast(:new_recommendations, user:, recs:)

17 end

18 end

19 end

20 end

Ruby कࣞ फंѽनल प्रोग्राࣻमंग कࣞ शैलࣜ जो उदाहरण में उपयोग कࣞ गई ह,ै
वह F# और Rust से प्रभाࣺवत ह।ै आप इस तकनीक के बारे में मेरे ࣻमत्र
Chad Wooley के तकनीक के ीकरण࠿ࡵ में GitLab पर और अࣾधक पढ़
सकते हैं

इस उदाहरण में, ProductRecommendationWorker एक उपयोगकतЄ को इनपुट

https://fsharpforfunandprofit.com/rop/
https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

कायर्कतЄओं कࣞ बहुलता 96

के रूप में लेता है और फंѽनल चरणों कࣞ श्रृखंला में एक वै߰ू ऑݻѮे को पास
करके वैयࣼѱकृत उمाद ऀसफािरशें उۚم करता ह।ै आइए प्रيके चरण को समझें:

1. ValidateUser.validate: यह चरण यह सुࣺनऀࠥत करता है ࣹक उपयोगकतЄ वैध
है और वैयࣼѱकृत ऀसफािरशों के ࣽलए योӌ ह।ै यह जांचता है ࣹक उपयोगकतЄ
मौजूद ह,ै सࣺक्रय ह,ै और ऀसफािरशें उۚم करने के ࣽलए आव࠮क डटेा उपलނ
ह।ै यࣺद सيापन ࣺवफल होता ह,ै तो एक त्रुࣺ ट पिरणाम वापस ࣹकया जाता ह,ै
और श्रृखंला शॉटॼ-सࣹकॼ ट हो जाती ह।ै

2. AnalyzeCurrentSession.analyze: यࣺद उपयोगकतЄ वैध ह,ै तो यह चरण
संदभर्गत जानकारࣜ एकत्र करने के ࣽलए उपयोगकतЄ के वतर्मान ब्राउऀज़ंग सत्र
का ࣺवे࠯षण करता ह।ै यह उपयोगकतЄ कࣞ वतर्मान रुࣿचयों और इरादों को
समझने के ࣽलए दखेे गए उمादों, खोज Ѽेरࣜ और काटॼ सामग्री जैसी हाल कࣞ
बातचीत को दखेता ह।ै

3. CollaborativeFilter.filter: समान उपयोगकतЄओं के ࠖवहार का उपयोग
करते हुए, यह चरण सहयोगाىक ࣺफ़ߢिरंग तकनीकों को लागू करता है ताࣹक
ऐसे उمादों कࣞ पहचान कࣞ जा सके जो उपयोगकतЄ के ࣽलए रुࣿचकर हो सकते
हैं। यह संभाࣺवत ऀसफािरशों का एक सेट तैयार करने के ࣽलए खरࣜदारࣜ इࣻतहास,
रेࣺटगं और उपयोगकतЄ-वुࡰ इंटरैѽन जैसे कारकों पर ࣺवचार करता ह।ै

4. ContentBasedFilter.filter: यह चरण सामग्री-आधािरत ࣺफ़ߢिरंग लागू
करके संभाࣺवत ऀसफािरशों को और पिरृ࠻त करता ह।ै यह सबसे प्रासंࣻगक
वࡰओुं को चुनने के ࣽलए संभाࣺवत उمादों कࣞ ࣺवशेषताओं और चिरत्र कࣞ
तुलना उपयोगकतЄ कࣞ प्राथࣻमकताओं और ऐࣻतहाऀसक डटेा से करता ह।ै

5. ProductSelector.select: अंत में, यह चरण पूवर्-ࣺनधЄिरत मानदडंों जैसे
प्रासंࣻगकता ,ोरࡡ लोकࣺप्रयता, या अ۠ ࠖावसाࣻयक ࣺनयमों के आधार पर
ࣺफ़ߢर कࣞ गई ऀसफािरशों से शीषर् N उمादों का चयन करता ह।ै चयࣺनत
उمादों को ࣺफर अंࣻतम वैयࣼѱकृत ऀसफािरशों के रूप में वापस ࣹकया जाता ह।ै

यहां फंѽनल Ruby प्रोग्राࣻमंग शैलࣜ का उपयोग करने कࣞ खूबसूरती यह है ࣹक यह
हमें इन चरणों को ࠿ࡵ और संऀक्ष݆ तरࣜके से श्रृखंलाबڔ करने कࣞ अनुमࣻत दतेा ह।ै
प्रيके चरण एक ࣺवऀश࠿ कायर् पर कें ࣺद्रत होता है और एक Result ऑݻѮे लौटाता

कायर्कतЄओं कࣞ बहुलता 97

ह,ै जो या तो सफलता (ok) या त्रुࣺ ट (err) हो सकता ह।ै यࣺद ࣹकसी भी चरण में त्रुࣺ ट
आती ह,ै तो श्रृखंला शॉटॼ-सࣹकॼ ट हो जाती ह,ै और त्रुࣺ ट अंࣻतम पिरणाम तक प्रसािरत
हो जाती ह।ै
अंत में ࣺदए गए case टेमेंट࡫ में, हम अंࣻतम पिरणाम पर पैटनर् मैࣿचंग करते हैं। यࣺद
पिरणाम एक त्रुࣺ ट है (ProductRecommendationError), तो हम मॉࣺनटिरंग और
डीबࣻगंग उे࠮ړों के ࣽलए Honeybadger जैसे टूल का उपयोग करके त्रुࣺ ट को लॉग
करते हैं। यࣺद पिरणाम सफल है (ProductRecommendations), तो हम Wisper
पब/सब लाइब्ररेࣜ का उपयोग करके एक :new_recommendations इवेंट को प्रसािरत
करते हैं, ऀजसमें उपयोगकतЄ और जनरेट कࣞ गई ऀसफािरशें शाࣻमल होती हैं।
फंѽनल प्रोग्राࣻमंग तकनीकों का लाभ उठाकर, हम एक मॉ׵लूर और रखरखाव
योӌ प्रोडѮ रेकमेंडशेन वकॼ र बना सकते हैं। प्रيके चरण नࣹहतࣺ-ࡼ है और इसका
आसानी से परࣜक्षण, संशोधन या प्रࣻतࡱापन ࣹकया जा सकता ह,ै ऀजससे समग्र प्रवाह
प्रभाࣺवत नहࣟ होता। पैटनर् मैࣿचंग और Result ѻास का उपयोग हमें त्रुࣺ टयों को सुचारू
रूप से संभालने में मदद करता है और यह सुࣺनऀࠥत करता है ࣹक यࣺद ࣹकसी चरण
में कोई समࡺा आती है तो वकॼ र तुरंत ࣺवफल हो जाए।
बेशक, यह एक सरलࣜकृत उदाहरण ह,ै और वाࣺࡰवक पिरदृ࠮ में, आपको अपने
ई-कॉमसर् टेफ़ॉमर्ݎ के साथ एकࣞकरण करने, एज केस को संभालने, और यहां तक
ࣹक रेकमेंडशेन एߝोिरथम के कायЄۢयन में भी जाने कࣞ आव࠮कता होगी। हालांࣹक,
समࡺा को छोटे चरणों में ࣺवभाऀजत करने और फंѽनल प्रोग्राࣻमंग तकनीकों का
लाभ उठाने के मूल ऀसڔांत समान रहते हैं।

धोखाधड़ी का पता लगाना
यहाँ एक सरलࣜकृत उदाहरण है ࣹक आप Ruby में उसी Railway Oriented
Programming (ROP) शैलࣜ का उपयोग करके धोखाधड़ी का पता लगाने वाला
वकॼ र कैसे लागू कर सकते हैं:

कायर्कतЄओं कࣞ बहुलता 98

1 class FraudDetectionWorker

2 include Wisper::Publisher

3

4 def call(transaction)

5 Result.ok(FraudDetection.new(transaction))

6 .and_then(ValidateTransaction.method(:validate))

7 .map(AnalyzeTransactionPatterns.method(:analyze))

8 .map(CheckCustomerHistory.method(:check))

9 .map(EvaluateRiskFactors.method(:evaluate))

10 .map(DetermineFraudProbability.method(:determine)).then do |result|

11

12 case result

13 in { err: FraudDetectionError => error }

14 Honeybadger.notify(error.message, context: {transaction:})

15 in { ok: FraudDetection => fraud } }

16 if fraud.high_risk?

17 broadcast(:high_risk_transaction, transaction:, fraud:)

18 else

19 broadcast(:low_risk_transaction, transaction:)

20 end

21 end

22 end

23 end

24 end

FraudDetection ѻास एक value object है जो ࣹकसी ࣺदए गए लेनदने के ࣽलए
धोखाधड़ी पहचान ऍࣻࡱत को समाࣹहत करता ह।ै यह ࣺवࣾभۚ जोंखम कारकों के आधार
पर ࣹकसी लेनदने से जुड़ी धोखाधड़ी के जोंखम का ࣺवे࠯षण और मू߰ांकन करने का
एक संरࣿचत तरࣜका प्रदान करता ह।ै

कायर्कतЄओं कࣞ बहुलता 99

1 class FraudDetection

2 RISK_THRESHOLD = 0.8

3

4 attr_accessor :transaction, :risk_factors

5

6 def initialize(transaction)

7 self.transaction = transaction

8 self.risk_factors = []

9 end

10

11 def add_risk_factor(description:, probability:)

12 case { description:, probability: }

13 in { description: String => desc, probability: Float => prob }

14 risk_factors << { desc => prob }

15 else

16 raise ArgumentError, "Risk factor arguments should be string and float"

17 end

18 end

19

20 def high_risk?

21 fraud_probability > RISK_THRESHOLD

22 end

23

24 private

25

26 def fraud_probability

27 risk_factors.values.sum

28 end

29 end

FraudDetection ѻास में ࣺनޭࣽलंखत ࣺवशेषताएं हैं:

• transaction: धोखाधड़ी के ࣽलए ࣺवे࠯षण ࣹकए जा रहे लेन-दने का संदभर्।
• risk_factors: एक ऐरे जो लेन-दने से जुड़े जोंखम कारकों को संग्रहࣚत करता
ह।ै प्रيके जोंखम कारक एक हशै के रूप में दशЄया जाता ह,ै जहां कࣞ (key)
जोंखम कारक का ࣺववरण ह,ै और मान (value) उस जोंखम कारक से जुड़ी
धोखाधड़ी कࣞ संभावना ह।ै

add_risk_factor मेथड जोंखम कारक को risk_factors ऐरे में जोड़ने कࣞ अनुमࣻत

कायर्कतЄओं कࣞ बहुलता 100

दतेा ह।ै यह दो पैरामीटर लेता ह:ै description, जो जोंखम कारक का वणर्न
करने वालࣜ ऊ्࡫र गं ह,ै और probability, जो उस जोंखम कारक से जुड़ी धोखाधड़ी
कࣞ संभावना को दशЄने वाला ोटݱ ह।ै हम सरल टाइप चेࣹकंग के ࣽलए case..in
कंडीशनल का उपयोग करते हैं।
श्रृखंला के अंत में जांचा जाने वाला high_risk? मेथड एक प्रेࣺडकेट मेथड है जो
fraud_probability (सभी जोंखम कारकों कࣞ संभावनाओं को जोड़कर गणना कࣞ
गई) कࣞ तुलना RISK_THRESHOLD से करता ह।ै
FraudDetection ѻास ࣹकसी लेन-दने के ࣽलए धोखाधड़ी का पता लगाने का एक
Ճࡼ और एनकैݒलेुटडे तरࣜका प्रदान करता ह।ै यह कई जोंखम कारकों को जोड़ने
कࣞ अनुमࣻत दतेा ह,ै प्रيके के अपने ࣺववरण और संभावना के साथ, और गणना कࣞ
गई धोखाधड़ी कࣞ संभावना के आधार पर यह ࣺनधЄिरत करने का तरࣜका प्रदान करता
है ࣹक Ѻा लेन-दने को उՂ जोंखम वाला माना जाता ह।ै इस ѻास को आसानी से
एक बड़ी धोखाधड़ी पता लगाने वालࣜ प्रणालࣜ में एकࣞकृत ࣹकया जा सकता ह,ै जहां
ࣺवࣾभۚ घटक धोखाधड़ी वाले लेन-दने के जोंखम का आकलन और कम करने के
ࣽलए सहयोग कर सकते हैं।
अंत में, चूंࣹक यह पुࡰक AI का उपयोग करके प्रोग्राࣻमंग के बारे में ह,ै यहाँ मेरࣜ Raix
लाइब्ररेࣜ के ChatCompletion मॉ׵लू का उपयोग करके CheckCustomerHistory
ѻास का एक उदाहरण कायЄۢयन ࣺदया गया ह:ै

1 class CheckCustomerHistory

2 include Raix::ChatCompletion

3

4 attr_accessor :fraud_detection

5

6 INSTRUCTION = <<~END

7 You are an AI assistant tasked with checking a customer's transaction

8 history for potential fraud indicators. Given the current transaction

9 and the customer's past transactions, analyze the data to identify any

10 suspicious patterns or anomalies.

11

12 Consider factors such as the frequency of transactions, transaction

13 amounts, geographical locations, and any deviations from the customer's

14 typical behavior to generate a probability score as a float in the range

https://github.com/OlympiaAI/raix-rails

कायर्कतЄओं कࣞ बहुलता 101

15 of 0 to 1 (with 1 being absolute certainty of fraud).

16

17 Output the results of your analysis, highlighting any red flags or areas

18 of concern in the following JSON format:

19

20 { description: <Summary of your findings>, probability: <Float> }

21 END

22

23 def self.check(fraud_detection)

24 new(fraud_detection).call

25 end

26

27 def call

28 chat_completion(json: true).tap do |result|

29 fraud_detection.add_risk_factor(**result)

30 end

31 Result.ok(fraud_detection)

32 rescue StandardError => e

33 Result.err(FraudDetectionError.new(e))

34 end

35

36 private

37

38 def initialize(fraud_detection)

39 self.fraud_detection = fraud_detection

40 end

41

42 def transcript

43 tx_history = fraud_detection.transaction.user.tx_history

44 [

45 { system: INSTRUCTION },

46 { user: "Transaction history: #{tx_history.to_json}" },

47 { assistant: "OK. Please provide the current transaction." },

48 { user: "Current transaction: #{fraud_detection.transaction.to_json}" }

49]

50 end

51 end

इस उदाहरण में, CheckCustomerHistory एक INSTRUCTION कॉंेܟट को
पिरभाࣻषत करता है जो एआई मॉडल को ऀस࡫म ࣺनदϺश के माۀम से ग्राहक के
लेन-दने के इࣻतहास में संभाࣺवत धोखाधड़ी के संकेतों का ࣺवे࠯षण करने के ࣽलए

कायर्कतЄओं कࣞ बहुलता 102

ࣺवऀश࠿ ࣺनदϺश प्रदान करता ह।ै
self.check मेथड एक ѻास मेथड है जो fraud_detection ऑݻѮे के साथ
CheckCustomerHistory का एक नया इंंे࡫स शुरू करता है और ग्राहक के इࣻतहास
का ࣺवे࠯षण करने के ࣽलए call मेथड को कॉल करता ह।ै
call मेथड के अंदर, ग्राहक के लेन-दने का इࣻतहास प्रा݆ ࣹकया जाता है और एक
ट्र ांसࣺक्र݂ में फॉमϺट ࣹकया जाता है जो एआई मॉडल को भेजा जाता ह।ै एआई मॉडल
ࣺदए गए ࣺनदϺशों के आधार पर लेन-दने के इࣻतहास का ࣺवे࠯षण करता है और अपने
ࣺन࠻षЊ का सारांश लौटाता ह।ै
ࣺन࠻षЊ को fraud_detection ऑݻѮे में जोड़ा जाता ह,ै और अपडटे ࣹकया गया
fraud_detection ऑݻѮे एक सफल Result के रूप में लौटाया जाता ह।ै
ChatCompletion मॉ׵लू का लाभ उठाकर, CheckCustomerHistory ѻास एआई
कࣞ शࣼѱ का उपयोग ग्राहक के लेन-दने के इࣻतहास का ࣺवे࠯षण करने और संभाࣺवत
धोखाधड़ी के संकेतों कࣞ पहचान करने के ࣽलए कर सकती ह।ै यह अࣾधक पिरृ࠻त और
अनुकूलन योӌ धोखाधड़ी का पता लगाने कࣞ तकनीकों को संभव बनाता ह,ै Ѻोंࣹक
एआई मॉडल नए पैटनर् और ࣺवसंगࣻतयों को समय के साथ सीख और अनुकूࣽलत कर
सकता ह।ै
अपडटे ࣹकया गया FraudDetectionWorker और CheckCustomerHistory ѻास
ࣺदखाते हैं ࣹक कैसे एआई वकॼ सर् को ࣺनबЄध रूप से एकࣞकृत ࣹकया जा सकता ह,ै
जो धोखाधड़ी का पता लगाने कࣞ प्रࣺक्रया को बुआڔमान ࣺवे࠯षण और ࣺनणर्य लेने कࣞ
क्षमताओं के साथ बढ़ाता ह।ै

ग्राहक भावना षणे߻वࣆ
यहाँ एक और समान उदाहरण है ࣹक आप ग्राहक भावना ࣺवे࠯षण वकॼ र को कैसे लागू
कर सकते हैं। इस बार बहुत कम ࠖाҷा के साथ, Ѻोंࣹक आप समझ रहे होंगे ࣹक
प्रोग्राࣻमंग कࣞ यह शैलࣜ कैसे काम करती ह:ै

कायर्कतЄओं कࣞ बहुलता 103

1 class CustomerSentimentAnalysisWorker

2 include Wisper::Publisher

3

4 def call(feedback)

5 Result.ok(feedback)

6 .and_then(PreprocessFeedback.method(:preprocess))

7 .map(PerformSentimentAnalysis.method(:analyze))

8 .map(ExtractKeyPhrases.method(:extract))

9 .map(IdentifyTrends.method(:identify))

10 .map(GenerateInsights.method(:generate)).then do |result|

11

12 case result

13 in { err: SentimentAnalysisError => error }

14 Honeybadger.notify(error.message, context: {feedback:})

15 in { ok: SentimentAnalysisResult => result }

16 broadcast(:sentiment_analysis_completed, result)

17 end

18 end

19 end

20 end

इस उदाहरण में, CustomerSentimentAnalysisWorker के चरणों में फࣞडबैक का
पूवर्-प्रसंࡡरण (जैसे, शोर हटाना, टोकनाइजेशन), भावना ࣺवे࠯षण करना ऀजससे
समग्र भावना (सकाराىक, नकाराىक, या तटࡱ) का ࣺनधЄरण हो, प्रमुख वाѺांशों
और ࣺवषयों कࣞ पहचान, रुझानों और पैटनर् कࣞ पहचान, और ࣺवे࠯षण के आधार पर
कारर्वाई योӌ अंतदृर्ࣼ࠿ उۚم करना शाࣻमल ह।ै

ࡗाࡈ सेवा अनुप्रयोग
ࢋाࡼ सेवा क्षेत्र में, एआई वकॼ सर् ࣺवࣾभۚ कायЊ में ࣿचࣹकُा पेशेवरों और शोधकतЄओं
कࣞ सहायता कर सकते हैं, ऀजससे रोगी के पिरणामों में सुधार और ࣿचࣹकُा खोजों
में तेजी आती ह।ै

कायर्कतЄओं कࣞ बहुलता 104

रोगी प्रवेश प्रࣅक्रया
एआई वकॼ सर् ࣺवࣾभۚ कायЊ को चाࣽलतࡼ करके और बुआڔमान सहायता प्रदान करके
रोगी प्रवेश प्रࣺक्रया को सुࠖवऍࡱत कर सकते हैं।
अपॉइंटमेंट शेׁूࣈलंग: एआई वकॼ सर् रोगी कࣞ प्राथࣻमकताओ,ं उपलނता और उनकࣞ
ࣿचࣹकُा आव࠮कताओं कࣞ ताرाࣽलकता को समझकर अपॉइंटमेंट शेࣽू׵ लंग को
संभाल सकते हैं। वे संवादाىक इंटरफेस के माۀम से रोࣻगयों के साथ बातचीत
कर सकते हैं, उंेۦ शेࣽू׵ लंग प्रࣺक्रया में मागर्दशर्न कर सकते हैं और रोगी कࣞ
आव࠮कताओं और ࢋाࡼ सेवा प्रदाता कࣞ उपलނता के आधार पर सबसे उपयुѱ
अपॉइंटमेंट ॉटࡻ खोज सकते हैं।
ा؛कࣅचࣉ इࣆतहास संग्रह: रोगी प्रवेश के दौरान, एआई वकॼ सर् रोगी के ࣿचࣹकُा
इࣻतहास को एकत्र करने और प्रलेंखत करने में सहायता कर सकते हैं। वे रोࣻगयों
के साथ इंटरैऎѮव संवाद कर सकते हैं, उनकࣞ ࣺपछलࣜ ࣿचࣹकُा ऍࣻࡱतयों, दवाओ,ं
एलज॑ और पािरवािरक इࣻतहास के बारे में प्रासंࣻगक प्रࠫ पूछ सकते हैं। एआई वकॼ सर्
एकࣻत्रत जानकारࣜ कࣞ ࠖाҷा करने और उसे संरࣿचत करने के ࣽलए प्राकृࣻतक भाषा
प्रसंࡡरण तकनीकों का उपयोग कर सकते हैं, यह सुࣺनऀࠥत करते हुए ࣹक यह रोगी
के इलेѮ्र ॉࣺनक ࢋाࡼ िरकॉडॼ में सटीक रूप से दजर् कࣞ गई ह।ै
लक्षण मू޼ांकन और वग࣮करण: एआई वकॼ सर् रोࣻगयों से उनके वतर्मान लक्षणों,
अवࣾध, गंभीरता और ࣹकसी भी संबंࣾधत कारकों के बारे में पूछकर प्रारंࣾभक लक्षण
मू߰ांकन कर सकते हैं। ࣿचࣹकُा ज्ञान आधार और मशीन लࣺन϶ग मॉडल का लाभ
उठाकर, ये वकॼ सर् प्रदान कࣞ गई जानकारࣜ का ࣺवे࠯षण कर सकते हैं और प्रारंࣾभक
ࣺवभेदक ࣺनदान उۚم कर सकते हैं या उपयुѱ अगले कदमों कࣞ ऀसफािरश कर सकते
हैं, जैसे ࢋाࡼ सेवा प्रदाता के साथ परामशर् शे׵लू करना या दखेभाल-ࡼ उपायों
का सुझाव दनेा।
बीमा सؖापन: एआई वकॼ सर् रोगी प्रवेश के दौरान बीमा सيापन में सहायता कर
सकते हैं। वे रोगी के बीमा ࣺववरण एकत्र कर सकते हैं, एपीआई या वेब सेवाओं के
माۀम से बीमा प्रदाताओं के साथ संवाद कर सकते हैं, और कवरेज पात्रता और
लाभों कࣞ जांच कर सकते हैं। यह चालनࡼ बीमा सيापन प्रࣺक्रया को सुࠖवऍࡱत

कायर्कतЄओं कࣞ बहुलता 105

करने में मदद करता ह,ै प्रशासࣺनक बोझ को कम करता है और सटीक जानकारࣜ
कै݀र करना सुࣺनऀࠥत करता ह।ै
रोगी ࣊शक्षा और :नदϸशࣄ एआई वकॼ सर् रोࣻगयों को उनकࣞ ࣺवऀश࠿ ࣿचࣹकُा ऍࣻࡱतयों
या आगामी प्रࣺक्रयाओं के आधार पर प्रासंࣻगक शैऀक्षक सामग्री और ࣺनदϺश प्रदान कर
सकते हैं। वे ࠖࣼѱगत सामग्री प्रदान कर सकते हैं, सामा۠ प्रࠫों का उـर दे सकते हैं,
और अपॉइंटमेंट से पहले कࣞ तैयािरयों, दवा ࣺनदϺशों, या उपचार के बाद कࣞ दखेभाल
पर मागर्दशर्न प्रदान कर सकते हैं। यह रोࣻगयों को उनकࣞ ࢋाࡼ सेवा यात्रा के दौरान
सूࣿचत और संलӈ रखने में मदद करता ह।ै
कृࣻत्रम बुआڔमـा कमर्चािरयों का उपयोग करके रोगी प्रवेश प्रࣺक्रया में, ࢋाࡼ संगठन
दक्षता बढ़ा सकते हैं, प्रतीक्षा समय कम कर सकते हैं, और समग्र रोगी अनुभव
में सुधार कर सकते हैं। ये कमर्चारࣜ ࣺनयࣻमत कायЊ को संभाल सकते हैं, सटीक
जानकारࣜ एकत्र कर सकते हैं, और ࠖࣼѱगत सहायता प्रदान कर सकते हैं, ऀजससे
ࢋाࡼ पेशेवरों को रोࣻगयों को उՂ-गुणवـा वालࣜ दखेभाल प्रदान करने पर ानۀ
कें ࣺद्रत करने कࣞ अनुमࣻत ࣻमलती ह।ै

रोगी जो࣌खम मू޼ांकन
कृࣻत्रम बुआڔमـा कमर्चारࣜ ࣺवࣾभۚ डटेा स्रोतों का ࣺवे࠯षण करके और उۚत ࣺवे࠯षण
तकनीकों को लागू करके रोगी जोंखम का आकलन करने में महٌपूणर् भूࣻमका ࣺनभा
सकते हैं।
डेटा एकࢩकरण: कृࣻत्रम बुआڔमـा कमर्चारࣜ कई स्रोतों से रोगी डटेा एकत्र कर सकते हैं
और उसे समझ सकते हैं, जैसे इलेѮ्र ॉࣺनक ࢋाࡼ िरकॉडॼ (EHRs), ࣿचࣹकُा इमेऀजंग,
प्रयोगशाला पिरणाम, पहनने योӌ उपकरण, और ࢋाࡼ के सामाऀजक ࣺनधЄरक।
इस जानकारࣜ को एक ࠖापक रोगी प्रोफ़ाइल में समेࣹकत करके, कृࣻत्रम बुआڔमـा
कमर्चारࣜ रोगी के ࢋाࡼ कࣞ ऍࣻࡱत और जोंखम कारकों का समग्र दृࣼ࠿कोण प्रदान
कर सकते हैं।
जो࣌खम :करणࢧर࠼ कृࣻत्रम बुआڔमـा कमर्चारࣜ रोࣻगयों कࣞ ࠖࣼѱगत ࣺवशेषताओं
और ࢋाࡼ डटेा के आधार पर उंेۦ ࣺवࣾभۚ जोंखम श्रेऀ णयों में वग॑कृत करने के

कायर्कतЄओं कࣞ बहुलता 106

ࣽलए पूवЄनुमाࣺनत मॉडल का उपयोग कर सकते हैं। यह जोंखम रࣜकरणࡰ ࢋाࡼ
प्रदाताओं को उन रोࣻगयों को प्राथࣻमकता दनेे में सक्षम बनाता है ऀजंेۦ अࣾधक तرाल
ानۀ या हࡰक्षेप कࣞ आव࠮कता होती ह।ै उदाहरण के ࣽलए, ࣹकसी ࣺवशेष ऍࣻࡱत के
ࣽलए उՂ जोंखम वाले पहचाने गए रोࣻगयों को करࣜबी ࣺनगरानी, ࣺनवारक उपायों, या
शीघ्र हࡰक्षेप के ࣽलए ࣿचࣺࢤत ࣹकया जा सकता ह।ै
нगतࣈߢ जो࣌खम प्रोफ़ाइल: कृࣻत्रम बुआڔमـा कमर्चारࣜ प्रيके रोगी के ࣽलए ࠖࣼѱगत
जोंखम प्रोफ़ाइल तैयार कर सकते हैं, जो उनके जोंखम ोरࡡ में योगदान करने
वाले ࣺवऀश࠿ कारकों को उजागर करते हैं। इन प्रोफ़ाइल में रोगी कࣞ जीवनशैलࣜ,
आनुवंऀशक प्रवृࣾـयों, पयЄवरणीय कारकों, और ࢋाࡼ के सामाऀजक ࣺनधЄरकों के बारे
में जानकारࣜ शाࣻमल हो सकती ह।ै जोंखम कारकों का ࣺवࡰतृ ࣺवे࠯षण प्रदान करके,
कृࣻत्रम बुआڔमـा कमर्चारࣜ ࢋाࡼ प्रदाताओं को ࠖࣼѱगत रोगी कࣞ आव࠮कताओं
के अनुरूप रोकथाम रणनीࣻतयों और उपचार योजनाओं को तैयार करने में मदद कर
सकते हैं।
नरंतरࣄ जो࣌खम :नगरानीࣄ कृࣻत्रम बुआڔमـा कमर्चारࣜ रोगी डटेा कࣞ लगातार ࣺनगरानी
कर सकते हैं और वाࣺࡰवक समय में जोंखम मू߰ांकन को अपडटे कर सकते
हैं। जैसे-जैसे नई जानकारࣜ उपलނ होती ह,ै जैसे महٌपूणर् लक्षणों में पिरवतर्न,
प्रयोगशाला पिरणाम, या दवा अनुपालन, कृࣻत्रम बुआڔमـा कमर्चारࣜ जोंखम ोरࡡ कࣞ
पुनगर्णना कर सकते हैं और ࣹकसी भी महٌपूणर् पिरवतर्न के बारे में ࢋाࡼ प्रदाताओं
को सचेत कर सकते हैं। यह सࣺक्रय ࣺनगरानी समय पर हࡰक्षेप और रोगी दखेभाल
योजनाओं में समायोजन कࣞ अनुमࣻत दतेी ह।ै
नैदाࣄनक नणर्यࣄ समथर्न: कृࣻत्रम बुआڔमـा कमर्चारࣜ जोंखम मू߰ांकन पिरणामों को
नैदाࣺनक ࣺनणर्य समथर्न प्रणाࣽलयों में एकࣞकृत कर सकते हैं, जो ࢋाࡼ प्रदाताओं को
साҝ-आधािरत ऀसफािरशें और चेतावࣺनयां प्रदान करते हैं। उदाहरण के ࣽलए, यࣺद
ࣹकसी ࣺवशेष ऍࣻࡱत के ࣽलए रोगी का जोंखम ोरࡡ एक ࣺनऀࠥत सीमा से अࣾधक हो
जाता ह,ै तो कृࣻत्रम बुआڔमـा कमर्चारࣜ ࢋाࡼ प्रदाता को नैदाࣺनक ࣺदशाࣺनदϺशों और
सवЉـम प्रथाओं के आधार पर ࣺवऀश࠿ नैदाࣺनक परࣜक्षण, ࣺनवारक उपाय, या उपचार
ࣺवक߫ों पर ࣺवचार करने के ࣽलए प्रेिरत कर सकते हैं।
ये कमर्चारࣜ रोगी डटेा कࣞ ࣺवशाल मात्रा को संसाࣾधत कर सकते हैं, पिरृ࠻त ࣺवे࠯षण

कायर्कतЄओं कࣞ बहुलता 107

लागू कर सकते हैं, और नैदाࣺनक ࣺनणर्य लेने का समथर्न करने के ࣽलए कारर्वाई योӌ
अंतदृर्ࣼ࠿ उۚم कर सकते हैं। यह अंततः बेहतर रोगी पिरणामों, कम ࢋाࡼ दखेभाल
लागतों, और बेहतर जनसंҷा ࢋाࡼ प्रबंधन कࣞ ओर ले जाता ह।ै

AI वकॳ र एक प्रोसेस मैनेजर के रूप में

AI-संचाࣽलत एࣺݎकेशन के संदभर् में, एक वकॼ र को प्रोसेस मैनेजर के रूप में कायर्
करने के ࣽलए ࣺडज़ाइन ࣹकया जा सकता ह,ै जैसा ࣹक Gregor Hohpe कࣞ पुࡰक
“Enterprise Integration Patterns” में वऀणर्त ह।ै एक प्रोसेस मैनेजर एक कें द्रीय
घटक है जो प्रࣺक्रया कࣞ ऍࣻࡱत को बनाए रखता है और मۀवत॑ पिरणामों के आधार
पर अगले प्रोसेऀसंग चरणों का ࣺनधЄरण करता ह।ै
जब एक AI वकॼ र प्रोसेस मैनेजर के रूप में कायर् करता ह,ै तो यह एक इनकࣻमंग
मैसेज प्रा݆ करता है जो प्रࣺक्रया को आरंभ करता ह,ै ऀजसे ࣺट्रगर मैसेज के रूप में
जाना जाता ह।ै AI वकॼ र तब प्रࣺक्रया ࣺनࡄादन कࣞ ऍࣻࡱत (एक वातЄलाप प्रࣻतलेख के
रूप में) को बनाए रखता है और टूल फंѽۥ के रूप में लागू ࣹकए गए प्रोसेऀसंग
चरणों कࣞ श्रृखंला के माۀम से संदशे को संभालता ह,ै जो क्रࣻमक या समानांतर हो

कायर्कतЄओं कࣞ बहुलता 108

सकते हैं, और उसके ࣺववेक पर कॉल ࣹकए जा सकते हैं।

यࣺद आप GPT-4 जैसी AI मॉडल कࣞ श्रणेी का उपयोग कर रहे हैं जो
समानांतर में फ़ंѽन ࣺनࡄाࣺदत करना जानता ह,ै तो आपका वकॼ र एक
साथ कई चरणों को ࣺनࡄाࣺदत कर सकता ह।ै मा۠ ह,ै मैंने खुद यह करने
कࣞ कोऀशश नहࣟ कࣞ है और मेरࣜ अंतज्ञЄन कहती है ࣹक आपका अनुभव
ࣾभۚ हो सकता ह।ै

प्रيके ࠖࣼѱगत प्रोसेऀसंग चरण के बाद, ࣺनयंत्रण AI वकॼ र को वापस लौटा ࣺदया
जाता ह,ै जो उसे वतर्मान ऍࣻࡱत और प्रा݆ पिरणामों के आधार पर अगले प्रोसेऀसंग
चरण(णों) का ࣺनधЄरण करने कࣞ अनुमࣻत दतेा ह।ै

अपने ट्रगरࣅ मैसेज को ोर࠷ करें
मेरे अनुभव में, अपने ࣺट्रगर मैसेज को एक डटेाबेस-बैक्ड ऑݻѮे के रूप में लागू
करना बुआڔमानी ह।ै इस तरह प्रيके प्रࣺक्रया इंंे࡫स को एक ࣺवऀश࠿ प्राइमरࣜ कࣞ ाराڙ
पहचाना जाता है और आपको AI कࣞ वातЄलाप प्रࣻतलेख सࣹहत ࣺनࡄादन से जुड़ी
ऍࣻࡱत को ोर࡫ करने के ࣽलए एक जगह ࣻमलती ह।ै
उदाहरण के ࣽलए, यहाँ Olympia के AccountChange मॉडल ѻास का एक सरलࣜकृत
संࡡरण ह,ै जो उपयोगकतЄ के खाते में पिरवतर्न करने के अनुरोध का प्रࣻतࣺनࣾधٌ
करता ह।ै

कायर्कतЄओं कࣞ बहुलता 109

1 # == Schema Information

2 #

3 # Table name: account_changes

4 #

5 # id :uuid not null, primary key

6 # description :string

7 # state :string not null

8 # transcript :jsonb

9 # created_at :datetime not null

10 # updated_at :datetime not null

11 # account_id :uuid not null

12 #

13 # Indexes

14 #

15 # index_account_changes_on_account_id (account_id)

16 #

17 # Foreign Keys

18 #

19 # fk_rails_... (account_id => accounts.id)

20 #

21 class AccountChange < ApplicationRecord

22 belongs_to :account

23

24 validates :description, presence: true

25

26 after_commit -> {

27 broadcast(:account_change_requested, self)

28 }, on: :create

29

30 state_machine initial: :requested do

31 event :completed do

32 transition all => :complete

33 end

34 event :failed do

35 transition all => :requires_human_review

36 end

37 end

38 end

AccountChange ѻास एक ࣺट्रगर संदशे के रूप में कायर् करती है जो खाता पिरवतर्न
अनुरोध को संभालने कࣞ प्रࣺक्रया शुरू करती ह।ै ानۀ दें ࣹक इसे Olympia के Wisper-

https://github.com/krisleech/wisper

कायर्कतЄओं कࣞ बहुलता 110

आधािरत पब/सब सबऀस࡫म में ࣺक्रएट ट्र ांजैѽन के पूरा होने के बाद प्रसािरत ࣹकया
जाता ह।ै
डटेाबेस में ࣺट्रगर संदशे को इस तरह से ोर࡫ करना प्रيके खाता पिरवतर्न अनुरोध
का एक ायीࡱ िरकॉडॼ प्रदान करता ह।ै AccountChange ѻास के प्रيके इंंे࡫स
को एक ࣺवऀश࠿ प्राइमरࣜ कࣞ असाइन कࣞ जाती ह,ै जो ࠖࣼѱगत अनुरोधों कࣞ आसान
पहचान और ट्र ैࣹ कंग कࣞ सुࣺवधा प्रदान करती ह।ै यह ࣺवशेष रूप से ऑࣺडट लॉࣻगंग
के उे࠮ړों के ࣽलए उपयोगी ह,ै Ѻोंࣹक यह ऀस࡫म को सभी खाता पिरवतर्नों का
ऐࣻतहाऀसक िरकॉडॼ बनाए रखने में सक्षम बनाता ह,ै ऀजसमें यह भी शाࣻमल है ࣹक
उंेۦ कब अनुरोࣾधत ࣹकया गया, ࣹकन पिरवतर्नों का अनुरोध ࣹकया गया, और प्रيके
अनुरोध कࣞ वतर्मान ऍࣻࡱत Ѻा ह।ै
ࣺदए गए उदाहरण में, AccountChange ѻास में अनुरोࣾधत पिरवतर्न के ࣺववरण
को कै݀र करने के ࣽलए description जैसे फ़ࣞल्ड्स, अनुरोध कࣞ वतर्मान ऍࣻࡱत
(जैसे, requested, complete, requires_human_review) को दशЄने के ࣽलए state,
और अनुरोध से संबंࣾधत एआई कࣞ बातचीत कࣞ प्रࣻतࣽलࣺप को ोर࡫ करने के ࣽलए
transcript शाࣻमल हैं। description फ़ࣞߤ वाࣺࡰवक प्रॉम्݂ है ऀजसका उपयोग एआई
के साथ पहलࣜ चैट क޽ीशन शुरू करने के ࣽलए ࣹकया जाता ह।ै इस डटेा को ोर࡫
करना मू߰वान संदभर् प्रदान करता है और खाता पिरवतर्न प्रࣺक्रया कࣞ बेहतर ट्र ैࣹ कंग
और ࣺवे࠯षण कࣞ अनुमࣻत दतेा ह।ै
डटेाबेस में ࣺट्रगर संदशेों को ोर࡫ करना मजबूत त्रुࣺ ट प्रबंधन और िरकवरࣜ को सक्षम
बनाता ह।ै यࣺद ࣹकसी खाता पिरवतर्न अनुरोध के प्रोसेऀसंग के दौरान कोई त्रुࣺ ट होती
ह,ै तो ऀस࡫म अनुरोध को ࣺवफल के रूप में ࣿचࣺࢤत कर दतेा है और इसे एक ऐसी
ऍࣻࡱत में ानांतिरतࡱ कर दतेा है ऀजसमें मानवीय हࡰक्षेप कࣞ आव࠮कता होती ह।ै
यह सुࣺनऀࠥत करता है ࣹक कोई भी अनुरोध खो न जाए या भूला न जाए, और ࣹकसी
भी समࡺा को उࣿचत तरࣜके से संबोࣾधत और हल ࣹकया जा सके।

एक Process Manager के रूप में, एआई वकॼ र ࣺनयंत्रण का एक कें द्रीय ࣺबंदु प्रदान
करता है और शࣼѱशालࣜ प्रࣺक्रया िरपोࣺट϶ग और डीबࣻगंग क्षमताओं को सक्षम बनाता

कायर्कतЄओं कࣞ बहुलता 111

ह।ै हालांࣹक, यह ानۀ रखना महٌपूणर् है ࣹक आपके एࣺݎकेशन में हर वकॼ फ़्लो पिरदृ࠮
के ࣽलए Process Manager के रूप में एआई वकॼ र का उपयोग करना अࣾيधक हो
सकता ह।ै

अपने एܚࣇकेशन आࣅकॳ टेзर में एआई वकॳ सर् को
एकࢩकृत करना
जब आप अपने एࣺݎकेशन आࣹकॼ टѫेर में एआई वकॼ सर् को शाࣻमल करते हैं, तो एआई
वकॼ सर् और अ۠ एࣺݎकेशन घटकों के बीच सुचारू एकࣞकरण और प्रभावी संचार
सुࣺनऀࠥत करने के ࣽलए कई तकनीकࣞ ࣺवचारों को संबोࣾधत करने कࣞ आव࠮कता
होती ह।ै यह खंड उन इंटरफेस को ࣺडज़ाइन करने, डटेा प्रवाह को संभालने और एआई
वकॼ सर् के जीवन चक्र को प्रबंࣾधत करने के प्रमुख पहलुओं पर ࣺवचार करता ह।ै

ࠋࡁ इंटरफेस और संचार प्रोटोकॉल डज़ाइनࣅ करना
एआई वकॼ सर् और अ۠ एࣺݎकेशन घटकों के बीच ࣺनबЄध एकࣞकरण कࣞ सुࣺवधा
के ࣽलए, ࠿ࡵ इंटरफेस और संचार प्रोटोकॉल को पिरभाࣻषत करना महٌपूणर् ह।ै
ࣺनޭࣽलंखत दृࣼ࠿कोणों पर ࣺवचार करें:
एपीआई-आधािरत एकࢩकरण: एआई वकॼ सर् कࣞ कायर्क्षमता को सुपिरभाࣻषत एपीआई
के माۀम से प्रदऀशर्त करें , जैसे RESTful एंडपॉइंׅ या GraphQL मा।ࣞࡡ यह अ۠
घटकों को मानक HTTP अनुरोधों और प्रࣻतࣺक्रयाओं का उपयोग करके एआई वकॼ सर्
के साथ संवाद करने कࣞ अनुमࣻत दतेा ह।ै एपीआई-आधािरत एकࣞकरण एआई वकॼ सर्
और उपभोग करने वाले घटकों के बीच एक ࠿ࡵ अनुबंध प्रदान करता ह,ै ऀजससे
एकࣞकरण ࣺबंदुओं को ࣺवकऀसत करना, परࣜक्षण करना और बनाए रखना आसान हो
जाता ह।ै
संदशे-आधािरत संचार: संदशे-आधािरत संचार पैटनर् को लागू करें , जैसे मैसेज
Ѻू या प्रकाशन-सदࡺता प्रणाࣽलयाँ, जो एआई वकॼ सर् और अ۠ घटकों के बीच
अतु߰काࣽलक संवाद को सक्षम करता ह।ै यह दृࣼ࠿कोण एआई वकॼ सर् को एࣺݎकेशन

कायर्कतЄओं कࣞ बहुलता 112

के बाकࣞ ࣹहࡿों से अलग करता ह,ै ऀजससे बेहतर ,लेࣺबࣽलटीࡡे त्रुࣺ ट सहनशीलता
और लूज कपࣽलंग कࣞ सुࣺवधा ࣻमलती ह।ै संदशे-आधािरत संचार ࣺवशेष रूप से तब
उपयोगी होता है जब एआई वकॼ सर् ाराڙ ࣹकया गया प्रोसेऀसंग समय लेने वाला या
संसाधन-गहन होता ह,ै Ѻोंࣹक यह एࣺݎकेशन के अ۠ भागों को एआई वकॼ सर् के
अपना कायर् पूरा करने कࣞ प्रतीक्षा ࣹकए ࣺबना ࣺनࡄादन जारࣜ रखने कࣞ अनुमࣻत दतेा
ह।ै
इवेंट-संचाࣈलत आࣅकॳ टेзर: अपनी प्रणालࣜ को इवेंׅ और ࣺट्रगसर् के आसपास
ࣺडज़ाइन करें जो ࣺवऀश࠿ ऍࣻࡱतयों में एआई वकॼ सर् को सࣺक्रय करते हैं। एआई वकॼ सर्
प्रासंࣻगक इवेंׅ कࣞ सदࡺता ले सकते हैं और तदनुसार प्रࣻतࣺक्रया कर सकते हैं,
जब इवेंׅ होते हैं तब अपने ࣺनधЄिरत कायЊ को करते हैं। इवेंट-संचाࣽलत आࣹकॼ टѫेर
रࣜयल-टाइम प्रोसेऀसंग को सक्षम करता है और एआई वकॼ सर् को मांग पर आࢨान करने
कࣞ अनुमࣻत दतेा ह,ै ऀजससे अनाव࠮क संसाधन खपत कम होती ह।ै यह दृࣼ࠿कोण
उन पिरदृ࠮ों के ࣽलए उपयुѱ है जहां एआई वकॼ सर् को ࣺवऀश࠿ कायЊ या एࣺݎकेशन
ऍࣻࡱत में पिरवतर्नों के प्रࣻत प्रࣻतࣺक्रया करने कࣞ आव࠮कता होती ह।ै

डेटा प्रवाह और समकालࢨकरण का प्रबंधन
जब आप अपने एࣺݎकेशन में एआई वकॼ सर् को एकࣞकृत करते हैं, तो एआई वकॼ सर्
और अ۠ घटकों के बीच सुचारू डटेा प्रवाह सुࣺनऀࠥत करना और डटेा संगࣻत बनाए
रखना महٌपूणर् होता ह।ै ࣺनޭࣽलंखत पहलुओं पर ࣺवचार करें:
डेटा तैयारࢧ: एआई वकॼ सर् में डटेा फࣞड करने से पहले, आपको ࣺवࣾभۚ डटेा तैयारࣜ
कायर् करने कࣞ आव࠮कता हो सकती ह,ै जैसे इनपुट डटेा कࣞ सफाई, फॉमϺࣺटगं
और/या रूपांतरण। आप न केवल यह सुࣺनऀࠥत करना चाहते हैं ࣹक एआई वकॼ सर्
प्रभावी ढगं से प्रोसेस कर सकें , बऍߛ यह भी सुࣺनऀࠥत करना चाहते हैं ࣹक आप उस
जानकारࣜ पर ानۀ दनेे में टोकन बबЄद नहࣟ कर रहे हैं ऀजसे वकॼ र सवЉـम ऍࣻࡱत
में बेकार और सबसे खराब ऍࣻࡱत में भटकाने वाला मान सकता ह।ै डटेा तैयारࣜ में
शोर को हटाना, लापता मू߰ों को संभालना, या डटेा प्रकारों को पिरवࣻतर्त करना जैसे
कायर् शाࣻमल हो सकते हैं।

कायर्कतЄओं कࣞ बहुलता 113

डेटा :यؘࣆा࠽ एआई वकॼ सर् में आने-जाने वाले डटेा को आप कैसे ोर࡫ और बनाए
रखेंगे? डटेा मात्रा, Ѽेरࣜ पैटनर् और लेࣺबࣽलटीࡡे जैसे कारकों पर ࣺवचार करें। Ѻा
आपको ऑࣺडट या डीबࣻगंग उे࠮ړों के ࣽलए एआई के “ࣺवचार प्रࣺक्रया” के प्रࣻतࣺबंब के
रूप में ट्र ांसࣺक्र݂ को बनाए रखने कࣞ आव࠮कता ह,ै या केवल पिरणामों का िरकॉडॼ
रखना पयЄ݆ ह?ै
डेटा पुनप्रЂܒࣆ: कायर्कतЄओं को आव࠮क डटेा प्रा݆ करने में डटेाबेस कࣞ Ѽेरࣜ, फ़ाइलों
से पढ़ना, या बाहरࣜ एपीआई तक पहुचं शाࣻमल हो सकती ह।ै ࣺवलंबता पर ࣺवचार
करना और एआई वकॼ सर् को सबसे अࣻښतत डटेा तक कैसे पहुचं ࣻमलेगी, यह सुࣺनऀࠥत
करें। Ѻा उंेۦ आपके डटेाबेस तक पूणर् पहुचं कࣞ आव࠮कता है या आपको उनकࣞ
पहुचं को उनके कायर् के अनुसार सीࣻमत करना चाࣹहए? लंगࣽࡡे के बारे में Ѻा?
प्रदशर्न में सुधार और अंतࣺनर्ࣹहत डटेा स्रोतों पर भार को कम करने के ࣽलए कैऀशंग
तंत्र पर ࣺवचार करें।
डेटा समकालࢨकरण: जब कई घटक, एआई वकॼ सर् सࣹहत, साझा डटेा तक पहुचंते हैं
और उसमें संशोधन करते हैं, तो डटेा संगࣻत बनाए रखने के ࣽलए उࣿचत समकालࣜकरण
तंत्र को लागू करना महٌपूणर् ह।ै डटेाबेस लॉࣹकंग रणनीࣻतयां, जैसे आशावादी या
ࣺनराशावादी लॉࣹकंग, ࣺवरोधों को रोकने और डटेा अखंडता सुࣺनऀࠥत करने में मदद
कर सकती हैं। संबंࣾधत डटेा संचालन को समूࣹहत करने और एटॉࣻमऀसटी, कंऀसंे࡫सी,
आइसोलेशन और रेूࣺबࣽलटी׵ (एऀसड) गुणों को बनाए रखने के ࣽलए लेन-दने प्रबंधन
तकनीकों को लागू करें।
तु्रࣅट प्रबंधन और पुनप्रЂܒࣆ: डटेा प्रवाह प्रࣺक्रया के दौरान उۚم हो सकने वालࣜ डटेा-
संबंࣾधत समࡺाओं से ࣺनपटने के ࣽलए मजबूत त्रुࣺ ट प्रबंधन और पुनप्रЄࣺ݆ तंत्र लागू
करें। त्रुࣺ टयों को सुचारू रूप से संभालें और डीबࣻगंग में सहायता के ࣽलए साथर्क
त्रुࣺ ट संदशे प्रदान करें। अࡱायी ࣺवफलताओं या नेटवकॼ ࠖवधानों को संभालने के
ࣽलए पुनः प्रयास तंत्र और फॉलबैक रणनीࣻतयां लागू करें। डटेा भ्र࠿ता या हाࣺन कࣞ
ऍࣻࡱत में डटेा पुनप्रЄࣺ݆ और पुनࡱЄपना के ࣽलए ࠿ࡵ प्रࣺक्रयाएं पिरभाࣻषत करें।
डटेा प्रवाह और समकालࣜकरण तंत्र को सावधानीपूवर्क ࣺडजाइन और कायЄअۢत करके,
आप सुࣺनऀࠥत कर सकते हैं ࣹक आपके एआई वकॼ सर् को सटीक, संगत और अښतन
डटेा तक पहुचं प्रा݆ हो। यह उंेۦ अपने कायЊ को प्रभावी ढगं से करने और ࣺव࠰सनीय

कायर्कतЄओं कࣞ बहुलता 114

पिरणाम उۚم करने में सक्षम बनाता ह।ै

एआई वकॳ सर् के जीवनचक्र का प्रबंधन
एआई वकॼ सर् को आरंभ करने और कॉिन्फ़गर करने के ࣽलए एक मानकࣞकृत प्रࣺक्रया
ࣺवकऀसत करें। मैं ऐसे फे्रमवकॼ को पसंद करता हूं जो मॉडल नाम, ऀस࡫म ࣺनदϺश और
फ़ंѽन पिरभाषाओं जैसी सेࣺटӏं को पिरभाࣻषत करने का तरࣜका मानकࣞकृत करते
हैं। सुࣺनऀࠥत करें ࣹक आरंभीकरण प्रࣺक्रया चाࣽलतࡼ और पुनरुمादन योӌ है ताࣹक
पिरࣺनयोजन और लंगࣽࡡे कࣞ सुࣺवधा हो।
एआई वकॼ सर् के ࢋाࡼ और प्रदशर्न कࣞ ࣺनगरानी के ࣽलए ࠖापक ࣺनगरानी और
लॉࣻगंग तंत्र लागू करें। संसाधन उपयोग, प्रोसेऀसंग समय, त्रुࣺ ट दर, और थ्रपूुट जैसे
मेࣺट्रѾ एकत्र करें। कई एआई वकॼ सर् से लॉग को एकࣻत्रत और ࣺवे࠯षण करने के ࣽलए
ईएलके कै࡫ (एलाऊ࡫कसचर्, लॉग࡫शै, ࣹकबाना) जैसी कें द्रीकृत लॉࣻगंग प्रणाࣽलयों
का उपयोग करें।
AI वकॼ र आࣹकॼ टѫेर में दोष सࣹहࡁतुा और लचीलापन ࣺनࣻमर्त करें। ࣺवफलताओं
या अपवादों को सुचारू रूप से संभालने के ࣽलए त्रुࣺ ट प्रबंधन और पुनप्रЄࣺ݆ तंत्र
लागू करें। लाजर् लैंӎेज मॉड߶ अभी भी अيाधुࣺनक तकनीक हैं; प्रदाता अѾर
अप्रيाऀशत समय पर डाउन हो जाते हैं। कैेࣺࡡडगं ࣺवफलताओं को रोकने के ࣽलए
पुनः प्रयास तंत्र और सࣹकॼ ट ब्रकेर का उपयोग करें।

AI वकॳ सर् कࢩ संयोजनीयता और ऑकϸ्࠷र ेशन
AI वकॼ र आࣹकॼ टѫेर का एक प्रमुख लाभ इसकࣞ संयोजनीयता ह,ै जो जࣺटल समࡺाओं
को हल करने के ࣽलए कई AI वकॼ सर् को जोड़ने और उनका संचालन करने कࣞ अनुमࣻत
दतेा ह।ै एक बड़े कायर् को छोट,े अࣾधक प्रबंधनीय उप-कायЊ में ࣺवभाऀजत करके, ऀजनमें
से प्रيके को एक ࣺवशेष AI वकॼ र ाराڙ संभाला जाता ह,ै आप शࣼѱशालࣜ और लचीले
ऀस࡫म बना सकते हैं। इस खंड में, हम “कई” AI वकॼ सर् को संयोऀजत और संचाࣽलत
करने के ࣺवࣾभۚ दृࣼ࠿कोणों का पता लगाएंगे।

कायर्कतЄओं कࣞ बहुलता 115

बहु-चरणीय कायर्प्रवाह के लएࣈ AI वकॳ सर् कࢩ शंृ्रखला
कई पिरदृ࠮ों में, एक जࣺटल कायर् को क्रࣻमक चरणों कࣞ एक श्रृखंला में ࣺवभाऀजत
ࣹकया जा सकता ह,ै जहां एक AI वकॼ र का आउटपुट अगले के ࣽलए इनपुट बन जाता
ह।ै AI वकॼ सर् कࣞ यह श्रृखंला एक बहु-चरणीय कायर्प्रवाह या पाइपलाइन बनाती ह।ै
श्रृखंला में प्रيके AI वकॼ र एक ࣺवऀश࠿ उप-कायर् पर कें ࣺद्रत होता ह,ै और अंࣻतम
आउटपुट सभी वकॼ सर् के संयुѱ प्रयासों का पिरणाम होता ह।ै
आइए Ruby on Rails एࣺݎकेशन के संदभर् में उपयोगकतЄ-ࣺनࣻमर्त सामग्री को संसाࣾधत
करने का एक उदाहरण लें। कायर्प्रवाह में ࣺनޭࣽलंखत चरण शाࣻमल हैं, जो ीकारࡼ
करें ࣹक शायद वाࣺࡰवक उपयोग के मामलों में इस तरह से ࣺवघࣺटत करने के ࣽलए
बहुत सरल हैं, लेࣹकन वे उदाहरण को समझने में आसान बनाते हैं:
1. टेѭ чࢪनअप: एक AI वकॼ र जो HTML टगै हटाने, टҡे को लोअरकेस में
बदलने और यूࣺनकोड सामा۠ीकरण को संभालने के ࣽलए ऀज޲देार ह।ै
2. भाषा पहचान: एक AI वकॼ र जो साफ ࣹकए गए टҡे कࣞ भाषा कࣞ पहचान
करता ह।ै
3. भावना :षणे߻वࣆ एक AI वकॼ र जो पहचानी गई भाषा के आधार पर टҡे कࣞ
भावना (सकाराىक, नकाराىक, या तटࡱ) ࣺनधЄिरत करता ह।ै
4. सामग्री वग࣮करण: एक AI वकॼ र जो प्राकृࣻतक भाषा प्रसंࡡरण तकनीकों का
उपयोग करके टҡे को पूवर्-पिरभाࣻषत श्रेऀ णयों में वग॑कृत करता ह।ै
यहाँ Ruby का उपयोग करके इन AI वकॼ सर् को एक साथ श्रृखंलाबڔ करने का एक
बहुत सरलࣜकृत उदाहरण ࣺदया गया ह:ै

कायर्कतЄओं कࣞ बहुलता 116

1 class ContentProcessor

2 def initialize(text)

3 @text = text

4 end

5

6 def process

7 cleaned_text = TextCleanupWorker.new(@text).call

8 language = LanguageDetectionWorker.new(cleaned_text).call

9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

10 category = CategorizationWorker.new(cleaned_text, language).call

11

12 { cleaned_text:, language:, sentiment:, category: }

13 end

14 end

इस उदाहरण में, ContentProcessor ѻास कՂे टҡे के साथ आरंभ होता है और
process मेथड में AI वकॼ सर् को एक श्रृखंला में जोड़ता ह।ै प्रيके AI वकॼ र अपना
ࣺवऀश࠿ कायर् करता है और पिरणाम को श्रृखंला में अगले वकॼ र को पास करता ह।ै
अंࣻतम आउटपुट एक हशै होता है ऀजसमें साफ ࣹकया गया टҡे, पहचानी गई भाषा,
भावना, और सामग्री श्रणेी शाࣻमल होती ह।ै

तंत्रࡈ AI वकॳ सर् के लएࣈ समानांतर प्रोसे࣊संग
ࣺपछले उदाहरण में, AI वकॼ सर् को अनुक्रࣻमक रूप से श्रृखंलाबڔ ࣹकया गया ह,ै जहां
प्रيके वकॼ र टҡे को प्रोसेस करता है और पिरणाम को अगले वकॼ र को पास करता
ह।ै हालांࣹक, यࣺद आपके पास कई AI वकॼ सर् हैं जो एक हࣚ इनपुट पर तंत्रࡼ रूप
से काम कर सकते हैं, तो आप उंेۦ समानांतर रूप से प्रोसेस करके कायर्प्रवाह को
अनुकूࣽलत कर सकते हैं।
ࣺदए गए पिरदृ࠮ में, एक बार जब TextCleanupWorker ाराڙ टҡे कࣞ सफाई
हो जाती ह,ै तो LanguageDetectionWorker, SentimentAnalysisWorker, और
CategorizationWorker सभी साफ ࣹकए गए टҡे को तंत्रࡼ रूप से प्रोसेस कर
सकते हैं। इन वकॼ सर् को समानांतर रूप से चलाकर, आप समग्र प्रोसेऀसंग समय को
कम कर सकते हैं और अपने कायर्प्रवाह कࣞ दक्षता में सुधार कर सकते हैं।

कायर्कतЄओं कࣞ बहुलता 117

Ruby में समानांतर प्रोसेऀसंग प्रा݆ करने के ࣽलए, आप थ्रडे्स या अतु߰काࣽलक
प्रोग्राࣻमंग जैसी समवࣻतर्ता तकनीकों का लाभ उठा सकते हैं। यहाँ एक उदाहरण ࣺदया
गया है ࣹक आप थ्रडे्स का उपयोग करके अंࣻतम तीन वकॼ सर् को समानांतर रूप से
प्रोसेस करने के ࣽलए ContentProcessor ѻास को कैसे संशोࣾधत कर सकते हैं:

1 require 'concurrent'

2

3 class ContentProcessor

4 def initialize(text)

5 @text = text

6 end

7

8 def process

9 cleaned_text = TextCleanupWorker.new(@text).call

10

11 language_future = Concurrent::Future.execute do

12 LanguageDetectionWorker.new(cleaned_text).call

13 end

14

15 sentiment_future = Concurrent::Future.execute do

16 SentimentAnalysisWorker.new(cleaned_text).call

17 end

18

19 category_future = Concurrent::Future.execute do

20 CategorizationWorker.new(cleaned_text).call

21 end

22

23 language = language_future.value

24 sentiment = sentiment_future.value

25 category = category_future.value

26

27 { cleaned_text:, language:, sentiment:, category: }

28 end

29 end

इस अनुकूࣽलत संࡡरण में, हम प्रيके तंत्रࡼ AI वकॼ र के ࣽलए Concurrent::Future
ऑݻѮे बनाने के ࣽलए concurrent-ruby लाइब्ररेࣜ का उपयोग करते हैं। एक Future
एक ऐसी क޼टूशेन को दशЄता है जो एक अलग थ्रडे में अऀसंक्रोनस रूप से ࣺनࡄाࣺदत
कࣞ जाएगी।

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

कायर्कतЄओं कࣞ बहुलता 118

टҡे ѻࣞनअप पे࡫ के बाद, हम तीन Future ऑݻѮे बनाते हैं: language_-
future, sentiment_future, और category_future। प्रيके Future अपने
संबंࣾधत AI वकॼ र (LanguageDetectionWorker, SentimentAnalysisWorker,
और CategorizationWorker) को एक अलग थ्रडे में ࣺनࡄाࣺदत करता ह,ै ऀजसमें
cleaned_text को इनपुट के रूप में पास ࣹकया जाता ह।ै
प्रيके Future पर value मेथड को कॉल करके, हम क޼टूशेन के पूरा होने कࣞ
प्रतीक्षा करते हैं और पिरणाम प्रा݆ करते हैं। value मेथड तब तक ॉकވ करता है
जब तक पिरणाम उपलނ नहࣟ हो जाता, यह सुࣺनऀࠥत करते हुए ࣹक आगे बढ़ने से
पहले सभी समानांतर वकॼ सर् ने प्रोसेऀसंग पूरࣜ कर लࣜ ह।ै
अंत में, हम मूल उदाहरण कࣞ तरह हࣚ ѻࣞन ࣹकए गए टҡे और समानांतर वकॼ सर्
के पिरणामों के साथ आउटपुट हशै का ࣺनमЄण करते हैं।
तंत्रࡼ AI वकॼ सर् को समानांतर रूप से प्रोसेस करके, आप क्रࣻमक रूप से चलाने कࣞ
तुलना में कुल प्रोसेऀसंग समय को संभाࣺवत रूप से कम कर सकते हैं। यह अनुकूलन
ࣺवशेष रूप से समय लेने वाले कायЊ से ࣺनपटने या बड़ी मात्रा में डटेा को प्रोसेस
करते समय लाभदायक होता ह।ै
हालांࣹक, यह ानۀ रखना महٌपूणर् है ࣹक वाࣺࡰवक प्रदशर्न लाभ ࣺवࣾभۚ कारकों पर
ࣺनभर्र करता ह,ै जैसे प्रيके वकॼ र कࣞ जࣺटलता, उपलނ ऀस࡫म संसाधन, और थ्रडे
प्रबंधन का ओवरहडे। अपने ࣺवऀश࠿ उपयोग के मामले के ࣽलए समानांतर प्रोसेऀसंग
का इ࠿तम रࡰ ࣺनधЄिरत करने के ࣽलए अपने कोड को बेंचमाकॼ और प्रोफाइल करना
हमेशा एक अՃࣛ प्रथा ह।ै
इसके अࣻतिरѱ, समानांतर प्रोसेऀसंग को लागू करते समय, वकॼ सर् के बीच ࣹकसी
भी साझा संसाधन या ࣺनभर्रता के प्रࣻत सावधान रहें। सुࣺनऀࠥत करें ࣹक वकॼ सर् ࣺबना
ࣹकसी ࣺवरोध या रेस कंडीशۥ के तंत्रࡼ रूप से काम कर सकते हैं। यࣺद ࣺनभर्रताएं
या साझा संसाधन हैं, तो आपको डटेा अखंडता बनाए रखने और डडेलॉक या असंगत
पिरणामों जैसी समࡺाओं से बचने के ࣽलए उपयुѱ ऀसंक्रोनाइज़ेशन तंत्र लागू करने
कࣞ आव࠮कता हो सकती ह।ै

कायर्कतЄओं कࣞ बहुलता 119

Ruby का ҙोबल इंटरपे्रटर लॉक और अ࣊संक्रोनस
प्रोसे࣊संग

Ruby में अऀसंक्रोनस थ्रडे-आधािरत प्रोसेऀसंग पर ࣺवचार करते समय Ruby के
Ӎोबल इंटरप्रेटर लॉक (GIL) के प्रभावों को समझना महٌपूणर् ह।ै
GIL Ruby के इंटरप्रेटर में एक ऐसा तंत्र है जो सुࣺनऀࠥत करता है ࣹक मߢी-कोर
प्रोसेसर पर भी एक समय में केवल एक थ्रडे हࣚ Ruby कोड ࣺनࡄाࣺदत कर सकता
ह।ै इसका मतलब है ࣹक हालांࣹक एक Ruby प्रोसेस के भीतर कई थ्रडे बनाए और
प्रबंࣾधत ࣹकए जा सकते हैं, ࣹकसी भी समय केवल एक थ्रडे हࣚ सࣺक्रय रूप से
Ruby कोड ࣺनࡄाࣺदत कर सकता ह।ै
GIL को Ruby इंटरप्रेटर के कायЄۢयन को सरल बनाने और Ruby के आंतिरक
डटेा रѫसर््࡫ के ࣽलए थ्रडे सुरक्षा प्रदान करने के ࣽलए ࣺडज़ाइन ࣹकया गया ह।ै
हालाँࣹक, यह Ruby कोड के वाࣺࡰवक समानांतर ࣺनࡄादन कࣞ संभावना को भी
सीࣻमत करता ह।ै
जब आप Ruby में थ्रडे्स का उपयोग करते हैं, जैसे concurrent-ruby लाइब्ररेࣜ
या अंतࣺनर्ࣹहत Thread ѻास के साथ, थ्रडे्स GIL कࣞ बाधाओं के अधीन होते हैं।
GIL प्रيके थ्रडे को दूसरे थ्रडे में ऋࡼच करने से पहले एक छोटे समय के ࣽलए
Ruby कोड ࣺनࡄाࣺदत करने कࣞ अनुमࣻत दतेा ह,ै जो समवत॑ ࣺनࡄादन का आभास
उۚم करता ह।ै
हालाँࣹक, GIL के कारण, Ruby कोड का वाࣺࡰवक ࣺनࡄादन अनुक्रࣻमक हࣚ रहता
ह।ै जब एक थ्रडे Ruby कोड ࣺनࡄाࣺदत कर रहा होता ह,ै अ۠ थ्रडे्स अࣺनवायर् रूप
से रुके हुए होते हैं, GIL प्रा݆ करने और ࣺनࡄाࣺदत होने कࣞ अपनी बारࣜ का इंतजार
करते हुए।
इसका मतलब है ࣹक Ruby में थ्रडे-आधािरत अतु߰काࣽलक प्रसंࡡरण I/O-बाउंड
कायЊ के ࣽलए सबसे प्रभावी ह,ै जैसे बाहरࣜ API प्रࣻतࣺक्रयाओं कࣞ प्रतीक्षा करना
(जैसे तृतीय-पक्ष ाराڙ हो࡫ ࣹकए गए बड़े भाषा मॉडल) या फाइल I/O ऑपरेशۥ
करना। जब एक थ्रडे I/O ऑपरेशन का सामना करता ह,ै तो वह GIL को िरलࣜज

कायर्कतЄओं कࣞ बहुलता 120

कर सकता ह,ै ऀजससे I/O पूरा होने कࣞ प्रतीक्षा के दौरान अ۠ थ्रडे्स ࣺनࡄाࣺदत
हो सकते हैं।
दूसरࣜ ओर, CPU-बाउंड कायЊ के ࣽलए, जैसे गहन गणनाएँ या लंबे समय तक चलने
वालࣜ AI वकॼ र प्रोसेऀसंग, GIL थ्रडे-आधािरत समानांतरता से ࣻमलने वाले संभाࣺवत
प्रदशर्न लाभों को सीࣻमत कर सकता ह।ै चूंࣹक एक समय में केवल एक थ्रडे Ruby
कोड ࣺनࡄाࣺदत कर सकता ह,ै समग्र ࣺनࡄादन समय अनुक्रࣻमक प्रसंࡡरण कࣞ
तुलना में महٌपूणर् रूप से कम नहࣟ हो सकता।
Ruby में CPU-बाउंड कायЊ के ࣽलए वाࣺࡰवक समानांतर ࣺनࡄादन प्रा݆ करने के
ࣽलए, आपको वैकऍ߫क दृࣼ࠿कोणों कࣞ खोज करनी पड़ सकती ह,ै जैसे:

• कई Ruby प्रोसेस के साथ प्रोसेस-आधािरत समानांतरता का उपयोग, जहाँ
प्रيके प्रोसेस अलग CPU कोर पर चल रहा हो।

• बाहरࣜ लाइब्ररेࣜज़ या फे्रमवѾर् का लाभ उठाना जो नेࣺटव एѾटेंशन या GIL
रࣹहत भाषाओं के ࣽलए इंटरफेस प्रदान करते हैं, जैसे C या Rust।,

• कई मशीनों या प्रोसेस में कायЊ को ࣺवतिरत करने के ࣽलए ࣺवतिरत कࣺू޼ टगं
फे्रमवकॼ या मैसेज Ѻू का उपयोग करना।

Ruby में अतु߰काࣽलक प्रसंࡡरण को ࣺडजाइन और कायЄअۢत करते समय अपने
कायЊ कࣞ प्रकृࣻत और GIL ाराڙ लगाई गई सीमाओं पर ࣺवचार करना महٌपूणर्
ह।ै जबࣹक थ्रडे-आधािरत अतु߰काࣽलक प्रसंࡡरण I/O-बाउंड कायЊ के ࣽलए लाभ
प्रदान कर सकता ह,ै यह GIL कࣞ बाधाओं के कारण CPU-बाउंड कायЊ के ࣽलए
महٌपूणर् प्रदशर्न सुधार नहࣟ दे सकता।

बेहतर सटीकता के लएࣈ एݼेڱल तकनीकें
एްेۥ ल तकनीकों में ऀस࡫म कࣞ समग्र सटीकता या मजबूती को बेहतर बनाने के
ࣽलए कई AI वकॼ सर् के आउटपुट को संयोऀजत करना शाࣻमल ह।ै एकल AI वकॼ र
पर ࣺनभर्र रहने के बजाय, एްेۥ ल तकनीकें अࣾधक सूࣿचत ࣺनणर्य लेने के ࣽलए कई
वकॼ सर् कࣞ सामूࣹहक बुआڔमـा का लाभ उठाती हैं।

कायर्कतЄओं कࣞ बहुलता 121

एްेۥ ߶ ࣺवशेष रूप से महٌपूणर् होते हैं यࣺद आपके कायर्प्रवाह के
ࣺवࣾभۚ ࣹहेࡿ अलग-अलग एआई मॉड߶ के साथ बेहतर काम करते हैं,
जो आप सोच सकते हैं उससे अࣾधक सामा۠ ह।ै GPT-4 जैसे शࣼѱशालࣜ
मॉड߶ कम क्षमता वाले ओपन सोसर् ࣺवक߫ों कࣞ तुलना में बहुत महगंे हैं,
और संभवतः आपके एࣺݎकेशन के हर कायर्प्रवाह चरण के ࣽलए आव࠮क
नहࣟ हैं।

एक सामा۠ एްेۥ ल तकनीक है बहुमत मतदान, जहां कई एआई कायर्कतЄ तंत्रࡼ
रूप से एक हࣚ इनपुट को प्रोसेस करते हैं, और अंࣻतम आउटपुट बहुमत कࣞ सहमࣻत
से ࣺनधЄिरत होता ह।ै यह दृࣼ࠿कोण ࠖࣼѱगत कायर्कतЄ त्रुࣺ टयों के प्रभाव को कम करने
और ऀस࡫म कࣞ समग्र ࣺव࠰सनीयता में सुधार करने में मदद कर सकता ह।ै
आइए एक उदाहरण पर ࣺवचार करें जहां भावना ࣺवे࠯षण के ࣽलए हमारे पास तीन
एआई कायर्कतЄ हैं, ऀजनमें से प्रيके अलग-अलग मॉडल का उपयोग कर रहा है या
अलग-अलग संदभЊ के साथ प्रदान ࣹकया गया ह।ै हम अंࣻतम भावना भࣺवࡈवाणी को
ࣺनधЄिरत करने के ࣽलए बहुमत मतदान का उपयोग करके उनके आउटपुट को जोड़
सकते हैं।

1 class SentimentAnalysisEnsemble

2 def initialize(text)

3 @text = text

4 end

5

6 def analyze

7 predictions = [

8 SentimentAnalysisWorker1.new(@text).analyze,

9 SentimentAnalysisWorker2.new(@text).analyze,

10 SentimentAnalysisWorker3.new(@text).analyze

11]

12

13 predictions

14 .group_by { |sentiment| sentiment }

15 .max_by { |_, votes| votes.size }

16 .first

17

18 end

19 end

कायर्कतЄओं कࣞ बहुलता 122

इस उदाहरण में, SentimentAnalysisEnsemble ѻास टҡे के साथ आरंभ होती
है और तीन अलग-अलग भावना ࣺवे࠯षण एआई वकॼ सर् को कायЄअۢत करती ह।ै
analyze मेथड प्रيके वकॼ र से भࣺवࡈवाऀणयां एकत्र करता है और group_by तथा
max_by मेथड्स का उपयोग करके बहुमत भावना का ࣺनधЄरण करता ह।ै अंࣻतम
आउटपुट वह भावना है जो वकॼ सर् के एްेۥ ल से सबसे अࣾधक वोट प्रा݆ करती है

एްेۥ ल ࠿ࡵ रूप से एक ऐसा मामला है जहां समानांतरता के साथ
प्रयोग करना आपके समय के लायक हो सकता ह।ै

एआई वकॳ सर् का गࣆतशील चयन और कायЂڮयन
कुछ यࣺद सभी नहࣟ तो अࣾधकांश मामलों में, ࣺवऀश࠿ एआई वकॼ र का कायЄۢयन
रनटाइम पिरऍࣻࡱतयों या उपयोगकतЄ इनपुट पर ࣺनभर्र कर सकता ह।ै एआई वकॼ सर्
का गࣻतशील चयन और कायЄۢयन ऀस࡫म में लचीलापन और अनुकूलन क्षमता
प्रदान करता ह।ै

आप खुद को एक एकल एआई वकॼ र में बहुत सारࣜ कायर्क्षमता ࣺफट करने
कࣞ कोऀशश करते हुए पा सकते हैं, उसे कई फ़ंѽंस और एक बड़ा जࣺटल
प्रॉम्݂ दतेे हुए जो उंेۦ कॉल करने का तरࣜका समझाता ह।ै इस प्रलोभन
का ࣺवरोध करें , मेरा ࣺव࠰ास करें। इस अۀाय में ऀजस दृࣼ࠿कोण कࣞ हम
चचЄ कर रहे हैं उसे “कायर्कतЄओं कࣞ बहुलता” कहने का एक कारण यह
याद ࣺदलाना है ࣹक बहुत सारे ࣺवशेषज्ञ कायर्कतЄओं का होना वांछनीय ह,ै
जहां प्रيके बड़े उे࠮ړ कࣞ सेवा में अपना छोटा काम कर रहा ह।ै

उदाहरण के ࣽलए, एक चैटबॉट एࣺݎकेशन पर ࣺवचार करें जहां ࣺवࣾभۚ एआई वकॼ सर्
ࣺवࣾभۚ प्रकार कࣞ उपयोगकतЄ Ѽेरࣜज को संभालने के ࣽलए ऀज޲देार हैं। उपयोगकतЄ
के इनपुट के आधार पर, एࣺݎकेशन Ѽेरࣜ को प्रोसेस करने के ࣽलए उपयुѱ एआई
वकॼ र का गࣻतशील रूप से चयन करती ह।ै

कायर्कतЄओं कࣞ बहुलता 123

1 class ChatbotController < ApplicationController

2 def process_query

3 query = params[:query]

4 query_type = QueryClassifierWorker.new(query).classify

5

6 case query_type

7 when 'greeting'

8 response = GreetingWorker.new(query).generate_response

9 when 'product_inquiry'

10 response = ProductInquiryWorker.new(query).generate_response

11 when 'order_status'

12 response = OrderStatusWorker.new(query).generate_response

13 else

14 response = DefaultResponseWorker.new(query).generate_response

15 end

16

17 render json: { response: response }

18 end

19 end

इस उदाहरण में, ChatbotController उपयोगकतЄ कࣞ Ѽेरࣜ को process_query
ࣺक्रया के माۀम से प्रा݆ करता ह।ै सबसे पहले यह Ѽेरࣜ के प्रकार को ࣺनधЄिरत
करने के ࣽलए QueryClassifierWorker का उपयोग करता ह।ै वग॑कृत Ѽेरࣜ प्रकार
के आधार पर, कंट्र ोलर गࣻतशील रूप से उपयुѱ एआई वकॼ र को प्रࣻतࣺक्रया उۚم
करने के ࣽलए चुनता ह।ै यह गࣻतशील चयन चैटबॉट को ࣺवࣾभۚ प्रकार कࣞ Ѽेरࣜ को
संभालने और उंेۦ प्रासंࣻगक एआई वकॼ सर् तक भेजने कࣞ क्षमता प्रदान करता ह।ै

चूंࣹक QueryClassifierWorker का कायर् अपेक्षाकृत सरल है और
इसे अࣾधक संदभर् या फ़ंѽन पिरभाषाओं कࣞ आव࠮कता नहࣟ ह,ै
आप इसे अ्ߢर ा-फा࡫ छोटे एलएलएम जैसे mistralai/mixtral-8x7b-
instruct:nitro का उपयोग करके लागू कर सकते हैं। इसकࣞ क्षमताएं कई
कायЊ पर GPT-4 रࡰ के करࣜब आती हैं और, जब मैं यह ࣽलख रहा हू,ं
Groq इसे 444 टोकन/सेकंड कࣞ तेज गࣻत से सेवा प्रदान कर सकता ह।ै

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro
https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

कायर्कतЄओं कࣞ बहुलता 124

पारंपिरक एनएलपी को एलएलएम के साथ जोड़ना
हालांࣹक बड़े भाषा मॉडल (एलएलएम) ने प्राकृࣻतक भाषा प्रसंࡡरण (एनएलपी) के
क्षेत्र में क्रांࣻत ला दी ह,ै जो ࣹक ࣺवࣾभۚ कायЊ में अࣾڙतीय बहुमुखी प्रࣻतभा और प्रदशर्न
प्रदान करते हैं, वे हर समࡺा के ࣽलए सबसे कुशल या लागत प्रभावी समाधान नहࣟ
हैं। कई मामलों में, पारंपिरक एनएलपी तकनीकों को एलएलएम के साथ जोड़ने से
ࣺवऀश࠿ एनएलपी चुनौࣻतयों को हल करने के ࣽलए अࣾधक अनुकूࣽलत, लऀक्षत और
ࣹकफायती दृࣼ࠿कोण ࣻमल सकता ह।ै
एलएलएम को एनएलपी के ऋࡼस आम॑ नाइफ के रूप में सोचें—अيतं बहुमुखी और
शࣼѱशालࣜ, लेࣹकन जरूरࣜ नहࣟ ࣹक हर काम के ࣽलए सबसे अՃा उपकरण हो।
कभी-कभी, एक समࣺपर्त उपकरण जैसे कॉकॼ ࢂू या कैन ओपनर ࣹकसी ࣺवऀश࠿ कायर्
के ࣽलए अࣾधक प्रभावी और कुशल हो सकता ह।ै इसी तरह, पारंपिरक एनएलपी
तकनीकें , जैसे दࡰावेज़ ѻ࡫िरंग, ࣺवषय पहचान, और वग॑करण, अѾर आपकࣞ
एनएलपी पाइपलाइन के कुछ पहलुओं के ࣽलए अࣾधक लऀक्षत और लागत प्रभावी
समाधान प्रदान कर सकती हैं।
पारंपिरक एनएलपी तकनीकों का एक प्रमुख लाभ उनकࣞ क޼टूशेनल दक्षता ह।ै ये
ࣺवࣾधयां, जो अѾर सरल सांऐҷकࣞय मॉडल या ࣺनयम-आधािरत दृࣼ࠿कोणों पर ࣺनभर्र
करती हैं, एलएलएम कࣞ तुलना में बड़ी मात्रा में पाठ डटेा को बहुत तेजी से और कम
क޼टूशेनल ओवरहडे के साथ प्रोसेस कर सकती हैं। यह उंेۦ ࣺवशेष रूप से बड़ी
मात्रा में दࡰावेजों के ࣺवे࠯षण और संगठन से जुड़े कायЊ के ࣽलए उपयुѱ बनाता ह,ै
जैसे समान लेखों को ѻ࡫र करना या पाठों के संग्रह में प्रमुख ࣺवषयों कࣞ पहचान
करना।
इसके अࣻतिरѱ, पारंपिरक एनएलपी तकनीकें ࣺवऀश࠿ कायЊ के ࣽलए, ࣺवशेष रूप से
डोमेन-ࣺवऀश࠿ डटेासेट पर प्रऀशऀक्षत होने पर, उՂ सटीकता और पिरशुڔता प्रा݆ कर
सकती हैं। उदाहरण के ࣽलए, सपोटॼ वेѮर मशीन (एसवीएम) या नेइव बेज़ जैसे
पारंपिरक मशीन लࣺन϶ग एߝोिरदम का उपयोग करने वाला एक अՃࣛ तरह से नू׀
ࣹकया गया दࡰावेज़ वग॑करक ۠नूतम क޼टूशेनल लागत के साथ दࡰावेज़ों को
पूवर्-ࣺनधЄिरत श्रेऀ णयों में सटीक रूप से वग॑कृत कर सकता ह।ै

कायर्कतЄओं कࣞ बहुलता 125

हालांࣹक, एलएलएम वाࡰव में तब चमकते हैं जब भाषा, संदभर् और तकॼ कࣞ गहरࣜ
समझ कࣞ आव࠮कता होती ह।ै सुसंगत और संदभर्गत रूप से प्रासंࣻगक पाठ उۚم
करने, प्रࠫों का उـर दनेे और लंबे अनुՃेदों को संक्षेࣺपत करने कࣞ उनकࣞ क्षमता
पारंपिरक एनएलपी ࣺवࣾधयों से अࣾڙतीय ह।ै एलएलएम जࣺटल भाषाई घटनाओं
को प्रभावी ढगं से संभाल सकते हैं, जैसे अ࠿ࡵता, सह-संदभर् और मुहावरेदार
अࣾभࠖࣼѱयां, जो उंेۦ प्राकृࣻतक भाषा ࣺनमЄण या समझ कࣞ आव࠮कता वाले कायЊ
के ࣽलए अमू߰ बनाते हैं।
वाࣺࡰवक शࣼѱ पारंपिरक एनएलपी तकनीकों को एलएलएम के साथ ࣻमलाकर हाइࣺब्रड
दृࣼ࠿कोण बनाने में ࣺनࣹहत है जो दोनों कࣞ ताकत का लाभ उठाते हैं। दࡰावेज़ पूवर्-
प्रसंࡡरण, ѻ࡫िरंग और ࣺवषय ࣺन࠻षर्ण जैसे कायЊ के ࣽलए पारंपिरक एनएलपी
ࣺवࣾधयों का उपयोग करके, आप अपने पाठ डटेा को कुशलतापूवर्क ࠖवऍࡱत और
संरࣿचत कर सकते हैं। इस संरࣿचत जानकारࣜ को ࣺफर सारांश तैयार करने, प्रࠫों का
उـर दनेे या ࠖापक िरपोटॼ बनाने जैसे अࣾधक उۚत कायЊ के ࣽलए एलएलएम में फࣞड
ࣹकया जा सकता ह।ै
उदाहरण के ࣽलए, एक ऐसे उपयोग मामले पर ࣺवचार करें जहां आप बड़ी संҷा में
ࠖࣼѱगत ट्र ेंड दࡰावेज़ों के आधार पर ࣹकसी ࣺवऀश࠿ डोमेन के ࣽलए एक ट्र ेंड िरपोटॼ
तैयार करना चाहते हैं। केवल एलएलएम पर ࣺनभर्र रहने के बजाय, जो बड़ी मात्रा में
पाठ को संसाࣾधत करने के ࣽलए क޼टूशेनल रूप से महगंा और समय लेने वाला
हो सकता ह,ै आप एक हाइࣺब्रड दृࣼ࠿कोण अपना सकते हैं:

1. ࣺवषय मॉडࣽलंग (जैसे, लेटेंट ࣺडिरचलेट एलोकेशन) या ѻ࡫िरंग एߝोिरदम
(जैसे, के-मीۥ) जैसी पारंपिरक एनएलपी तकनीकों का उपयोग करें , ताࣹक
समान ट्र ेंड दࡰावेज़ों को एक साथ समूहࣚकृत ࣹकया जा सके और कॉपर्स के
भीतर प्रमुख ࣺवषयों और टॉࣺपक कࣞ पहचान कࣞ जा सके।

2. ѻ࡫र ࣹकए गए दࡰावेज़ों और पहचाने गए ࣺवषयों को एलएलएम में फࣞड करें ,
प्रيके ѻ࡫र या ࣺवषय के ࣽलए सुसंगत और सूचनाىक सारांश बनाने के ࣽलए
इसकࣞ बेहतर भाषा समझ और ࣺनमЄण क्षमताओं का लाभ उठाएं।

3. अंत में, ࠖࣼѱगत सारांशों को जोड़कर, सबसे महٌपूणर् रुझानों को उजागर
करके और एकࣻत्रत जानकारࣜ के आधार पर अंतदृर्ࣼ࠿ और ऀसफािरशें प्रदान

कायर्कतЄओं कࣞ बहुलता 126

करके एक ࠖापक ट्र ेंड िरपोटॼ तैयार करने के ࣽलए एलएलएम का उपयोग करें।

इस तरह पारंपिरक एनएलपी तकनीकों को एलएलएम के साथ जोड़कर, आप बड़ी मात्रा
में पाठ डटेा को कुशलतापूवर्क संसाࣾधत कर सकते हैं, साथर्क अंतदृर्ࣼ࠿ ࣺनकाल सकते
हैं और क޼टूशेनल संसाधनों और लागतों को अनुकूࣽलत करते हुए उՂ-गुणवـा
वालࣜ िरपोटॼ तैयार कर सकते हैं।
जैसे-जैसे आप अपनी एनएलपी पिरयोजनाओं कࣞ शुरुआत करते हैं, यह आव࠮क
है ࣹक आप प्रيके कायर् कࣞ ࣺवऀश࠿ आव࠮कताओं और सीमाओं का सावधानीपूवर्क
मू߰ांकन करें और ࣺवचार करें ࣹक सवЉـम पिरणाम प्रा݆ करने के ࣽलए पारंपिरक
एनएलपी पࣻڔतयों और एलएलएम को एक साथ कैसे लाभप्रद ढगं से उपयोग ࣹकया
जा सकता ह।ै पारंपिरक तकनीकों कࣞ दक्षता और सटीकता को एलएलएम कࣞ बहुमुखी
प्रࣻतभा और शࣼѱ के साथ जोड़कर, आप अيतं प्रभावी और ࣹकफायती एनएलपी
समाधान बना सकते हैं जो आपके उपयोगकतЄओं और ࣹहतधारकों को मू߰ प्रदान
करते हैं।

उपकरण का उपयोग

एआई-संचाࣽलत एࣺݎकेशन ࣺवकास के क्षेत्र में, “टूल का उपयोग” या “फंѽन कॉࣽलंग”
कࣞ अवधारणा एक शࣼѱशालࣜ तकनीक के रूप में उभरࣜ है जो आपके LLM को बाहरࣜ
उपकरणों, APIs, फंѽंस, डटेाबेस, और अ۠ संसाधनों से जुड़ने में सक्षम बनाती
ह।ै यह दृࣼ࠿कोण केवल टҡे आउटपुट से कहࣟ अࣾधक समृڔ ࠖवहारों कࣞ अनुमࣻत
दतेा ह,ै और आपके एआई घटकों और आपके एࣺݎकेशन के पािरऍࣻࡱतकࣞ तंत्र के
बाकࣞ ࣹहࡿों के बीच अࣾधक गࣻतशील संवाद को सक्षम बनाता ह।ै जैसा ࣹक हम इस
अۀाय में दखेेंगे, टूल का उपयोग आपको अपने एआई मॉडल को संरࣿचत तरࣜकों से
डटेा उۚم करने का ࣺवक߫ भी दतेा ह।ै

टूल का उपयोग цा है?
टूल का उपयोग, ऀजसे फंѽन कॉࣽलंग के नाम से भी जाना जाता ह,ै एक ऐसी
तकनीक है जो डवेलपसर् को उन फंѽंस कࣞ सूची ࣺनࣺदर्࠿ करने कࣞ अनुमࣻत दतेी है

उपकरण का उपयोग 128

ऀजनके साथ एक LLM जनरेशन प्रࣺक्रया के दौरान संवाद कर सकता ह।ै ये टूल सरल
उपयोࣻगता फंѽंस से लेकर जࣺटल APIs या डटेाबेस Ѽेरࣜ तक हो सकते हैं। LLM
को इन टू߶ तक पहुचं प्रदान करके, डवेलपसर् मॉडल कࣞ क्षमताओं का ࣺवࡰार कर
सकते हैं और इसे ऐसे कायर् करने में सक्षम बना सकते हैं ऀजंेۦ बाहरࣜ ज्ञान या कायЊ
कࣞ आव࠮कता होती ह।ै
आकृࣆत 7. एक एआई कायर्कतЂ के लएࣈ फंщन पिरभाषा का उदाहरण जो द࠼ावेज़ों का षणे߻वࣆ
करता है

1 FUNCTION = {

2 name: "save_analysis",

3 description: "Save analysis data for document",

4 parameters: {

5 type: "object",

6 properties: {

7 title: {

8 type: "string",

9 maxLength: 140

10 },

11 summary: {

12 type: "string",

13 description: "comprehensive multi-paragraph summary with

14 overview and list of sections (if applicable)"

15 },

16 tags: {

17 type: "array",

18 items: {

19 type: "string",

20 description: "lowercase tags representing main themes

21 of the document"

22 }

23 }

24 },

25 "required": %w[title summary tags]

26 }

27 }.freeze

उपकरण उपयोग के पीछे कࣞ मुҷ अवधारणा LLM को उपयोगकतЄ के इनपुट या दी
गई कायर् के आधार पर उपयुѱ उपकरणों को गࣻतशील रूप से चुनने और ࣺनࡄाࣺदत

उपकरण का उपयोग 129

करने कࣞ क्षमता प्रदान करना ह।ै केवल मॉडल के पूवर्-प्रऀशऀक्षत ज्ञान पर ࣺनभर्र रहने
के बजाय, उपकरण उपयोग LLM को अࣾधक सटीक, प्रासंࣻगक और कायЄۢयन योӌ
प्रࣻतࣺक्रयाएं उۚم करने के ࣽलए बाहरࣜ संसाधनों का लाभ उठाने कࣞ अनुमࣻत दतेा
ह।ै उपकरण उपयोग RAG (पुनप्रЄࣺ݆ संवࣾधर्त जनन) जैसी तकनीकों को लागू करना
बहुत आसान बना दतेा ह।ै

ानۀ दें ࣹक जब तक अ۠था न कहा गया हो, यह पुࡰक मानती है ࣹक आपके AI
मॉडल में कोई अंतࣺनर्ࣹहत सवर्र-साइड टू߶ नहࣟ हैं। कोई भी टूल जो आप अपने
AI के ࣽलए उपलނ कराना चाहते हैं, उसे प्रيके API अनुरोध में आपके ाराڙ
࠿ࡵ रूप से घोࣻषत ࣹकया जाना चाࣹहए, साथ हࣚ इसके ࣺनࡄादन के ࣽलए प्रावधान
भी होने चाࣹहए यࣺद और जब आपका AI आपको बताए ࣹक वह अपनी प्रࣻतࣺक्रया
में उस टूल का उपयोग करना चाहगेा।

उपकरण उपयोग कࢩ संभावनाएं
उपकरण उपयोग AI-संचाࣽलत अनुप्रयोगों के ࣽलए ࣺवࣾभۚ संभावनाएं खोलता ह।ै यहाँ
कुछ उदाहरण ࣺदए गए हैं जो उपकरण उपयोग से प्रा݆ ࣹकए जा सकते हैं:

1. चैटबॉट और आभासी सहायक: LLM को बाहरࣜ उपकरणों से जोड़कर, चैटबॉट
और आभासी सहायक अࣾधक जࣺटल कायर् कर सकते हैं, जैसे डटेाबेस से
जानकारࣜ प्रा݆ करना, API कॉल ࣺनࡄाࣺदत करना, या अ۠ ऀस࡫म के साथ
संवाद करना। उदाहरण के ࣽलए, एक चैटबॉट उपयोगकतЄ के अनुरोध के आधार
पर CRM टूल का उपयोग करके ࣹकसी डील कࣞ ऍࣻࡱत बदल सकता ह।ै

2. डेटा षणे߻वࣆ और अतंदृर्ࠋࣇ: LLM को उۚत डटेा प्रोसेऀसंग कायЊ को करने के
ࣽलए डटेा ࣺवे࠯षण उपकरणों या लाइब्ररेࣜ से जोड़ा जा सकता ह।ै यह अनुप्रयोगों
को उपयोगकतЄ प्रࠫों के आधार पर अंतदृर्ࣼ࠿ उۚم करने, तुलनाىक ࣺवे࠯षण
करने, या डटेा-आधािरत ऀसफािरशें प्रदान करने में सक्षम बनाता ह।ै

उपकरण का उपयोग 130

3. खोज और सूचना पुनप्रЂܒࣆ: उपकरण उपयोग LLM को सचर् इंजन, वेѮर
डटेाबेस, या अ۠ सूचना पुनप्रЄࣺ݆ प्रणाࣽलयों के साथ संवाद करने कࣞ अनुमࣻत
दतेा ह।ै उपयोगकतЄ प्रࠫों को खोज प्रࠫों में बदलकर, LLM कई स्रोतों से
प्रासंࣻगक जानकारࣜ प्रा݆ कर सकता है और उपयोगकतЄ प्रࠫों के ࠖापक उـर
प्रदान कर सकता ह।ै

4. बाहरࢧ सेवाओं के साथ एकࢩकरण: उपकरण उपयोग AI-संचाࣽलत अनुप्रयोगों
और बाहरࣜ सेवाओं या API के बीच ࣺनबЄध एकࣞकरण को सक्षम बनाता ह।ै
उदाहरण के ࣽलए, एक LLM वाࣺࡰवक समय के मौसम अपडटे प्रदान करने के
ࣽलए मौसम API के साथ या बहुभाषी प्रࣻतࣺक्रयाएं उۚم करने के ࣽलए अनुवाद
API के साथ संवाद कर सकता ह।ै

उपकरण उपयोग कायर्प्रवाह
टूल उपयोग कायर्प्रवाह में आमतौर पर चार प्रमुख चरण शाࣻमल होते हैं:

1. अपने अनुरोध संदभर् में फ़ंѽन पिरभाषाएँ शाࣻमल करें
2. गࣻतशील (या (࠿ࡵ टूल चयन
3. फ़ंѽन(ओ)ं का ࣺनࡄादन
4. मूल प्रॉम्݂ का वैकऍ߫क ࣺनरंतरࣜकरण

आइए इन सभी चरणों कࣞ ࣺवࡰार से समीक्षा करें।

अपने अनुरोध संदभर् में फ़ंщन पिरभाषाएँ शाࣆमल करें
AI को यह पता होता है ࣹक उसके पास कौन से टूल उपलނ हैं Ѻोंࣹक आप उसे
अपने पूणर्ता अनुरोध के ࣹहेࡿ के रूप में एक सूची प्रदान करते हैं (आमतौर पर
JSON माࣞࡡ के एक प्रकार का उपयोग करके फ़ंѽन के रूप में पिरभाࣻषत)।
टूल पिरभाषा का सटीक ऀसंटѾै मॉडल-ࣺवऀश࠿ होता ह।ै
Claude 3 में get_weather फ़ंѽन को इस प्रकार पिरभाࣻषत ࣹकया जाता ह:ै

उपकरण का उपयोग 131

1 {

2 "name": "get_weather",

3 "description": "Get the current weather in a given location",

4 "input_schema": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA"

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 }

16 },

17 "required": ["location"]

18 }

19 }

और यहࣚ तरࣜका है ऀजससे आप GPT-4 के ࣽलए समान फ़ंѽन को पिरभाࣻषत करेंगे,
इसे tools पैरामीटर के मान के रूप में पास करते हुए:

1 {

2 "name": "get_current_weather",

3 "description": "Get the current weather in a given location",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA",

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 },

16 },

17 "required": ["location"],

उपकरण का उपयोग 132

18 },

19 }

लगभग एक जैसा, ऀसवाय इसके ࣹक ࣺबना ࣹकसी ࠿ࡵ कारण के अलग! ࣹकतना
परेशान करने वाला ह।ै

फ़ंѽन पिरभाषाएँ नाम, ࣺववरण और इनपुट पैरामीटसर् को ࣺनࣺदर्࠿ करती हैं। इनपुट
पैरामीटसर् को ए۠ू޷ जैसी ࣺवशेषताओं का उपयोग करके ीकायर्ࡼ मानों को सीࣻमत
करने और यह ࣺनࣺदर्࠿ करने के ࣽलए ࣹक कोई पैरामीटर आव࠮क है या नहࣟ, और
अࣾधक पिरभाࣻषत ࣹकया जा सकता ह।ै
वाࣺࡰवक फ़ंѽन पिरभाषाओं के अलावा, आप ऀस࡫म ࣺनदϺश में फ़ंѽन का उपयोग
Ѻों और कैसे करना ह,ै इसके ࣽलए ࣺनदϺश या संदभर् भी शाࣻमल कर सकते हैं।
उदाहरण के ࣽलए, Olympia में मेरे वेब सचर् टूल में यह ऀस࡫म ࣺनदϺश शाࣻमल ह,ै
जो एआई को याद ࣺदलाता है ࣹक उसके पास उ߲ࣽंखत टू߶ उपलނ हैं:

1 The `google_search` and `realtime_search` functions let you do research

2 on behalf of the user. In contrast to Google, realtime search is powered

3 by Perplexity and provides real-time information to curated current events

4 databases and news sources. Make sure to include URLs in your response so

5 user can do followup research.

ࣺवࡰतृ ࣺववरण प्रदान करना उपकरण प्रदशर्न में सबसे महٌपूणर् कारक माना जाता
ह।ै आपके ࣺववरण में उपकरण के बारे में हर ࣺववरण कࣞ ࠖाҷा होनी चाࣹहए, ऀजसमें
शाࣻमल हैं:

• उपकरण Ѻा करता है
• इसका उपयोग कब ࣹकया जाना चाࣹहए (और कब नहࣟ)
• प्रيके पैरामीटर का Ѻा अथर् है और यह उपकरण के ࠖवहार को कैसे प्रभाࣺवत
करता है

उपकरण का उपयोग 133

• उपकरण के कायЄۢयन पर लागू होने वालࣜ कोई महٌपूणर् सावधाࣺनयाँ या
सीमाएं

आप AI को अपने उपकरणों के बारे में ऀजतना अࣾधक संदभर् दे सकते हैं, यह उतना हࣚ
बेहतर तरࣜके से तय कर पाएगा ࣹक कब और कैसे उनका उपयोग करना ह।ै उदाहरण
के ࣽलए, Anthropic अपनी Claude 3 श्रृखंला के ࣽलए प्रࣻत उपकरण कम से कम
3-4 वाѺों कࣞ ऀसफािरश करता ह,ै यࣺद उपकरण जࣺटल है तो और अࣾधक।
यह सहज ज्ञान के ࣺवपरࣜत हो सकता ह,ै लेࣹकन ࣺववरण को उदाहरणों से भी अࣾधक
महٌपूणर् माना जाता ह।ै हालांࣹक आप ࣹकसी उपकरण के ࣺववरण में या साथ ࣺदए
गए प्रॉम्݂ में उसके उपयोग के उदाहरण शाࣻमल कर सकते हैं, यह उपकरण के उे࠮ړ
और पैरामीटसर् कࣞ ࠿ࡵ और ࠖापक ࠖाҷा से कम महٌपूणर् ह।ै ࣺववरण को पूरࣜ
तरह से ࣺवकऀसत करने के बाद हࣚ उदाहरण जोड़ें।
यहाँ Stripe-जैसे API फ़ंѽन ऀेࡵ सࣺफकेशन का एक उदाहरण ह:ै

1 {

2 "name": "createPayment",

3 "description": "Create a new payment request",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "transaction_amount": {

8 "type": "number",

9 "description": "The amount to be paid"

10 },

11 "description": {

12 "type": "string",

13 "description": "A brief description of the payment"

14 },

15 "payment_method_id": {

16 "type": "string",

17 "description": "The payment method to be used"

18 },

19 "payer": {

20 "type": "object",

21 "description": "Information about the payer, including their name,

22 email, and identification number",

उपकरण का उपयोग 134

23 "properties": {

24 "name": {

25 "type": "string",

26 "description": "The payer's name"

27 },

28 "email": {

29 "type": "string",

30 "description": "The payer's email address"

31 },

32 "identification": {

33 "type": "object",

34 "description": "The payer's identification number",

35 "properties": {

36 "type": {

37 "type": "string",

38 "description": "Identification document (e.g. CPF, CNPJ)"

39 },

40 "number": {

41 "type": "string",

42 "description": "The identification number"

43 }

44 },

45 "required": ["type", "number"]

46 }

47 },

48 "required": ["name", "email", "identification"]

49 }

50 }

51 }

ࠖवहार में, कुछ मॉड߶ ने࡫डे फ़ंѽन ऀेࡵ सࣺफकेशۥ और ऐरे,
ࣺडѽनरࣜज़ जैसे जࣺटल आउटपुट डटेा टाइݒ को संभालने में कࣺठनाई
का सामना करते हैं। लेࣹकन सैڔांࣻतक रूप से, आप ࣹकसी भी गहराई के
JSON माࣞࡡ ऀेࡵ सࣺफकेशۥ प्रदान कर सकते हैं!

उपकरण का उपयोग 135

गࣆतशील उपकरण चयन
जब आप टूल पिरभाषाओं के साथ एक चैट क޽ीशन को ࣺनࡄाࣺदत करते हैं, तो
LLM चाࣽलतࡼ रूप से सबसे उपयुѱ टूल(◌्स) का चयन करता है और प्रيके टूल
के ࣽलए आव࠮क इनपुट पैरामीटसर् जनरेट करता ह।ै
ࠖवहार में, AI का ࣺबुߛल सहࣚ फ़ंѽन को कॉल करने और इनपुׅ के ࣽलए आपके
ऀेࡵ सࣺफकेशन का ࣺबुߛल सहࣚ पालन करने कࣞ क्षमता ࣹहट या ࣻमस होती ह।ै
टेޮरेचर हाइपरपैरामीटर को 0.0 तक नीचे करने से बहुत मदद ࣻमलती ह,ै लेࣹकन मेरे
अनुभव में आपको अभी भी कभी-कभी त्रुࣺ टयां ࣻमलेंगी। इन ࣺवफलताओं में काࣺ߫नक
फ़ंѽन नाम, गलत नाम वाले या बस गायब इनपुट पैरामीटसर् शाࣻमल हैं। पैरामीटसर्
JSON के रूप में पास ࣹकए जाते हैं, ऀजसका मतलब है ࣹक कभी-कभी आप टूटे हुए,
गलत उڔतृ, या अ۠था खराब JSON के कारण त्रुࣺ टयां दखेेंगे।

से߬ हࣚࣽलंग डटेा पैटۥर् ऀसंटѾै त्रुࣺ टयों के कारण टूटे हुए फ़ंѽन कॉ߶
को चाࣽलतࡼ रूप से ठीक करने में मदद कर सकते हैं।

बाڌ (या (ࠋࡁ उपकरण चयन
कुछ मॉड߶ आपको िरѼे࡫ में एक पैरामीटर के रूप में ࣹकसी ࣺवशेष फ़ंѽन को
कॉल करने के ࣽलए बाۀ करने का ࣺवक߫ दतेे हैं। अ۠था, फ़ंѽन को कॉल करना
या नहࣟ करना पूरࣜ तरह से AI के ࣺववेक पर ࣺनभर्र ह।ै
ࣹकसी फ़ंѽन कॉल को बाۀ करने कࣞ क्षमता कुछ पिरदृ࠮ों में महٌपूणर् होती है
जहां आप चाहते हैं ࣹक AI के गࣻतशील चयन प्रࣺक्रया कࣞ परवाह ࣹकए ࣺबना एक
ࣺवऀश࠿ टूल या फ़ंѽन ࣺनࡄाࣺदत हो। इस क्षमता के महٌपूणर् होने के कई कारण हैं:

1. ࠋࡁ :नयंत्रणࣄ आप AI का उपयोग एक ࣺडࣞࢂट कޮोनेंट के रूप में या एक
पूवर्ࣺनधЄिरत कायर्प्रवाह में कर रहे हो सकते हैं ऀजसमें ࣹकसी ࣺवशेष समय पर
एक ࣺवशेष फ़ंѽन का ࣺनࡄादन आव࠮क होता ह।ै कॉल को बाۀ करके, आप

उपकरण का उपयोग 136

AI से ࣺवनम्रता से पूछने के बजाय सुࣺनऀࠥत कर सकते हैं ࣹक वांࣽछत फ़ंѽन
को कॉल ࣹकया जाए।

2. डीबࣇगंग और परࢧक्षण: AI-संचाࣽलत एࣺݎकेशۥ के ࣺवकास और परࣜक्षण के
दौरान, फ़ंѽन कॉ߶ को बाۀ करने कࣞ क्षमता डीबࣻगंग उे࠮ړों के ࣽलए बेहद
मू߰वान होती ह।ै ࣺवऀश࠿ फ़ंѽۥ को ࠿ࡵ रूप से ࣺट्रगर करके, आप अपने
एࣺݎकेशन के अलग-अलग घटकों को अलग करके परࣜक्षण कर सकते हैं। यह
आपको फ़ंѽन कायЄۢयन कࣞ सटीकता को सيाࣺपत करने, इनपुट पैरामीटसर्
को मा۠ करने और अपेऀक्षत पिरणामों कࣞ वापसी सुࣺनऀࠥत करने कࣞ अनुमࣻत
दतेा ह।ै

3. सीमावत࣮ मामलों का प्रबंधन: ऐसे सीमावत॑ मामले या अपवाद ऍࣻࡱतयां हो
सकती हैं जहां AI कࣞ गࣻतशील चयन प्रࣺक्रया ࣹकसी फंѽन को ࣺनࡄाࣺदत नहࣟ
करने का चयन कर सकती ह,ै और आप बाहरࣜ प्रࣺक्रयाओं के आधार पर जानते
हैं ࣹक उसे करना चाࣹहए। ऐसी ऍࣻࡱतयों में, फंѽन कॉल को बलपूवर्क करने
कࣞ क्षमता आपको इन पिरऍࣻࡱतयों को ࠿ࡵ रूप से संभालने कࣞ अनुमࣻत दतेी
ह।ै अपने एࣺݎकेशन लॉऀजक में ࣺनयम या शतϻ पिरभाࣻषत करें जो यह ࣺनधЄिरत
करें ࣹक कब AI के ࣺववेक को ओवरराइड करना ह।ै

4. रता࠽ࣔ और पुनरुؑादनीयता: यࣺद आपके पास ࣺवऀश࠿ क्रम में ࣺनࡄाࣺदत ࣹकए
जाने वाले फंѽंस का एक ࣺवशेष क्रम ह,ै तो कॉ߶ को बलपूवर्क करना यह
सुࣺनऀࠥत करता है ࣹक हर बार एक हࣚ क्रम का पालन ࣹकया जाए। यह ࣺवशेष
रूप से उन एࣺݎकेशंस में महٌपूणर् है जहां ऍࡱरता और पूवЄनुमेय ࠖवहार
महٌपूणर् हैं, जैसे ࣺवـीय प्रणाࣽलयों या वैज्ञाࣺनक ऀसमुलेशन में।

5. प्रदशर्न अनुकूलन: कुछ मामलों में, फंѽन कॉल को बलपूवर्क करने से प्रदशर्न
में सुधार हो सकता ह।ै यࣺद आप जानते हैं ࣹक ࣹकसी ࣺवशेष कायर् के ࣽलए एक
ࣺवऀश࠿ फंѽन आव࠮क है और AI कࣞ गࣻतशील चयन प्रࣺक्रया अनाव࠮क
ओवरहडे पैदा कर सकती ह,ै तो आप चयन प्रࣺक्रया को बाईपास कर सकते हैं
और आव࠮क फंѽन को सीधे कॉल कर सकते हैं। यह आपके एࣺݎकेशन कࣞ
ࣺवलंबता को कम करने और समग्र दक्षता में सुधार करने में मदद कर सकता
ह।ै

संक्षेप में, AI-संचाࣽलत एࣺݎकेशंस में फंѽन कॉ߶ को बलपूवर्क करने कࣞ क्षमता

उपकरण का उपयोग 137

࠿ࡵ ࣺनयंत्रण प्रदान करती ह,ै डीबࣻगंग और टऊे࡫गं में सहायता करती ह,ै सीमावत॑
मामलों को संभालती ह,ै ऍࡱरता और पुनरुمादनीयता सुࣺनऀࠥत करती ह।ै यह आपके
शࢇागार में एक शࣼѱशालࣜ उपकरण ह,ै लेࣹकन हमें इस महٌपूणर् सुࣺवधा के एक
और पहलू पर चचЄ करने कࣞ आव࠮कता ह।ै

कई ࣺनणर्य-लेने के उपयोग मामलों में, हम हमेशा चाहते हैं ࣹक मॉडल
एक फंѽन कॉल करे और कभी भी केवल अपने आंतिरक ज्ञान के साथ
प्रࣻतࣺक्रया न द।े उदाहरण के ࣽलए, यࣺद आप ࣺवࣾभۚ कायЊ में ࣺवशेषज्ञ कई
मॉड߶ के बीच रूࣺटगं कर रहे हैं (बहुभाषी इनपुट, गऀणत, आࣺद), तो
आप सहायक मॉड߶ में से ࣹकसी एक को अनुरोध सौंपने के ࣽलए फंѽन-
कॉࣽलंग मॉडल का उपयोग कर सकते हैं और तंत्रࡼ रूप से प्रࣻतࣺक्रया
नहࣟ दे सकते।

टूल चॉइस पैरामीटर

GPT-4 और अ۠ भाषा मॉडल जो फंѽन कॉࣽलंग का समथर्न करते हैं, आपको एक
पूࣻतर् के भाग के रूप में टूल के उपयोग को ࣺनयंࣻत्रत करने के ࣽलए एक tool_choice
पैरामीटर प्रदान करते हैं। इस पैरामीटर के तीन संभाࣺवत मान हैं:

• auto AI को टूल का उपयोग करने या केवल प्रࣻतࣺक्रया दनेे का पूणर् ࣺववेक दतेा
है

• required AI को बताता है ࣹक उसे प्रࣻतࣺक्रया दनेे के बजाय एक टूल को अव࠮
कॉल करना चाࣹहए, लेࣹकन टूल का चयन AI पर छोड़ दतेा है

• तीसरा ࣺवक߫ उस name_of_function को सेट करना है ऀजसे आप बलपूवर्क
करना चाहते हैं। इस पर अगले खंड में अࣾधक जानकारࣜ दी गई ह।ै

उपकरण का उपयोग 138

ानۀ दें ࣹक यࣺद आप tool choice को required पर सेट करते हैं, तो
मॉडल को उपलނ कराए गए फ़ंѽۥ में से सबसे उपयुѱ फ़ंѽन को
चुनने के ࣽलए मजबूर ࣹकया जाएगा, भले हࣚ कोई भी प्रॉम्݂ के ࣽलए वाࡰव
में उपयुѱ न हो। प्रकाशन के समय, मुझे ࣹकसी ऐसे मॉडल कࣞ जानकारࣜ
नहࣟ है जो खालࣜ tool_calls प्रࣻतࣺक्रया लौटाएगा, या ࣹकसी अ۠ तरࣜके
से आपको बताएगा ࣹक उसे कोई उपयुѱ फ़ंѽन कॉल करने के ࣽलए नहࣟ
ࣻमला।

संरࣉचत आउटपुट प्राܒ करने के लएࣈ फ़ंщन को फोसर् करना
फ़ंѽन कॉल को फोसर् करने कࣞ क्षमता आपको चैट कޮलࣜशन से संरࣿचत डटेा
को फोसर् करने का एक तरࣜका दतेी ह,ै बजाय इसके ࣹक आप इसे यंࡼ नेटҡेݎ
प्रࣻतࣺक्रया से ࣺनकालें।

संरࣿचत आउटपुट प्रा݆ करने के ࣽलए फ़ंѽۥ को फोसर् करना इतना महٌपूणर्
Ѻों ह?ै सीधे शށों में कहें, Ѻोंࣹक एलएलएम आउटपुट से संरࣿचत डटेा ࣺनकालना
बहुत कࣺठन होता ह।ै आप XML में डटेा मांगकर अपना जीवन थोड़ा आसान बना
सकते हैं, लेࣹकन ࣺफर आपको XML को पासर् करना पड़ता ह।ै और जब वह XML
गायब हो जाता है Ѻोंࣹक आपके एआई ने जवाब ࣺदया: “मैं क्षमाप्राथ॑ हू,ं लेࣹकन
मैं आपके ाराڙ अनुरोࣾधत डटेा को जनरेट नहࣟ कर सकता Ѻोंࣹक बला, बला,
बला…” तब आप Ѻा करते हैं?

इस तरह से टू߶ का उपयोग करते समय:

• आपको शायद अपने अनुरोध में एक हࣚ टूल को पिरभाࣻषत करना चाࣹहए
• tool_choice पैरामीटर का उपयोग करके इसके फ़ंѽन के उपयोग को फोसर्
करना याद रखें।

उपकरण का उपयोग 139

• याद रखें ࣹक मॉडल इनपुट को टूल में पास करेगा, इसࣽलए टूल का नाम और
ࣺववरण मॉडल के दृࣼ࠿कोण से होना चाࣹहए, न ࣹक आपके।

इस अंࣻतम ࣺबंदु को ता࠿ࡵ के ࣽलए एक उदाहरण कࣞ आव࠮कता ह।ै मान लࣜऀजए ࣹक
आप एआई से उपयोगकतЄ टҡे पर भावना ࣺवे࠯षण करने के ࣽलए कह रहे हैं। फ़ंѽन
का नाम analyze_sentiment नहࣟ होगा, बऍߛ यह save_sentiment_analysis
जैसा कुछ होगा। भावना ࣺवे࠯षण एआई कर रहा ह,ै टूल नहࣟ। टूल जो कर रहा है
(एआई के दृࣼ࠿कोण से) वह केवल ࣺवे࠯षण के पिरणामों को सहजे रहा ह।ै
यहाँ Claude 3 का उपयोग करके एक छࣺव का सारांश अՃࣛ तरह से संरࣿचत JSON
में िरकॉडॼ करने का एक उदाहरण ࣺदया गया ह,ै इस बार कमांड लाइन पर curl का
उपयोग करके:

1 curl https://api.anthropic.com/v1/messages \

2 --header "content-type: application/json" \

3 --header "x-api-key: $ANTHROPIC_API_KEY" \

4 --header "anthropic-version: 2023-06-01" \

5 --header "anthropic-beta: tools-2024-04-04" \

6 --data \

7 '{

8 "model": "claude-3-sonnet-20240229",

9 "max_tokens": 1024,

10 "tools": [{

11 "name": "record_summary",

12 "description": "Record summary of image into well-structured JSON.",

13 "input_schema": {

14 "type": "object",

15 "properties": {

16 "key_colors": {

17 "type": "array",

18 "items": {

19 "type": "object",

20 "properties": {

21 "r": {

22 "type": "number",

23 "description": "red value [0.0, 1.0]"

24 },

25 "g": {

उपकरण का उपयोग 140

26 "type": "number",

27 "description": "green value [0.0, 1.0]"

28 },

29 "b": {

30 "type": "number",

31 "description": "blue value [0.0, 1.0]"

32 },

33 "name": {

34 "type": "string",

35 "description": "Human-readable color name

36 in snake_case, e.g.

37 \"olive_green\"or

38 \"turquoise\""

39 }

40 },

41 "required": ["r", "g", "b", "name"]

42 },

43 "description": "Key colors in the image. Four or less."

44 },

45 "description": {

46 "type": "string",

47 "description": "Image description. 1-2 sentences max."

48 },

49 "estimated_year": {

50 "type": "integer",

51 "description": "Estimated year that the image was taken,

52 if is it a photo. Only set this if the

53 image appears to be non-fictional.

54 Rough estimates are okay!"

55 }

56 },

57 "required": ["key_colors", "description"]

58 }

59 }],

60 "messages": [

61 {

62 "role": "user",

63 "content": [

64 {

65 "type": "image",

66 "source": {

67 "type": "base64",

उपकरण का उपयोग 141

68 "media_type": "'$IMAGE_MEDIA_TYPE'",

69 "data": "'$IMAGE_BASE64'"

70 }

71 },

72 {

73 "type": "text",

74 "text": "Use `record_summary` to describe this image."

75 }

76]

77 }

78]

79 }'

ࣺदए गए उदाहरण में, हम Anthropic के Claude 3 मॉडल का उपयोग एक छࣺव का
संरࣿचत JSON सारांश तैयार करने के ࣽलए कर रहे हैं। यह इस प्रकार काम करता ह:ै

1. हम िरѼे࡫ पेलोड के tools ऐरे में record_summary नामक एक टूल को
पिरभाࣻषत करते हैं। यह टूल छࣺव का सारांश संरࣿचत JSON में िरकॉडॼ करने
के ࣽलए ऀज޲देार ह।ै

2. record_summary टूल में एक input_schema है जो JSON आउटपुट कࣞ
अपेऀक्षत संरचना को ࣺनधЄिरत करता ह।ै यह तीन गुणों को पिरभाࣻषत करता
ह:ै

• key_colors: छࣺव में मुҷ रंगों का प्रࣻतࣺनࣾधٌ करने वालࣜ वࡰओुं कࣞ
एक सरणी। प्रيके रंग वुࡰ में लाल, हरे और नीले मान (0.0 से 1.0 तक)
के ࣽलए गुण और snake_case प्रारूप में मानव-पठनीय रंग नाम होते हैं।

• description: छࣺव के संऀक्ष݆ ࣺववरण के ࣽलए एक ऊ्࡫र गं गुण, जो 1-2
वाѺों तक सीࣻमत ह।ै

• estimated_year: एक वैकऍ߫क पूणЅक गुण, जो छࣺव के ࣽलए अनुमाࣺनत
वषर् दशЄता ह,ै यࣺद यह एक गैर-काࣺ߫नक फोटो प्रतीत होती ह।ै

3. messages ऐरे में, हम छࣺव डटेा को base64-एۉोडडे ऊ्࡫र गं के रूप में मीࣺडया
प्रकार के साथ प्रदान करते हैं। यह मॉडल को इनपुट के ࣹहेࡿ के रूप में छࣺव
को प्रोसेस करने कࣞ अनुमࣻत दतेा ह।ै

उपकरण का उपयोग 142

4. हम Claude को छࣺव का वणर्न करने के ࣽलए record_summary टूल का
उपयोग करने के ࣽलए भी प्रेिरत करते हैं।

5. जब िरѼे࡫ Claude 3 मॉडल को भेजी जाती ह,ै यह छࣺव का ࣺवे࠯षण करता
है और ࣺनࣺदर्࠿ input_schema के आधार पर एक JSON सारांश तैयार करता
ह।ै मॉडल मुҷ रंगों को ࣺनकालता ह,ै एक संऀक्ष݆ ࣺववरण प्रदान करता ह,ै और
छࣺव के ࣽलए वषर् का अनुमान लगाता है (यࣺद लागू हो)।

6. उۚم JSON सारांश को record_summary टूल के पैरामीटसर् के रूप में पास
ࣹकया जाता ह,ै जो छࣺव कࣞ मुҷ ࣺवशेषताओं का एक संरࣿचत प्रࣻतࣺनࣾधٌ
प्रदान करता ह।ै

record_summary टूल का उपयोग एक सुपिरभाࣻषत input_schema के साथ करने
से, हम सादे पाठ ࣺन࠻षर्ण पर ࣺनभर्र ࣹकए ࣺबना एक छࣺव का संरࣿचत JSON सारांश
प्रा݆ कर सकते हैं। यह दृࣼ࠿कोण सुࣺनऀࠥत करता है ࣹक आउटपुट एक सुसंगत प्रारूप
का पालन करता है और एࣺݎकेशन के डाउन्࡫र ीम कंपोनेंׅ ाराڙ आसानी से पासर् और
प्रोसेस ࣹकया जा सकता ह।ै
AI-संचाࣽलत एࣺݎकेशन में टूल उपयोग कࣞ एक फंѽन कॉल को फोसर् करने और
अपेऀक्षत आउटपुट संरचना को ࣺनࣺदर्࠿ करने कࣞ क्षमता एक शࣼѱशालࣜ ࣺवशेषता ह।ै
यह डवेलपसर् को जनरेट ࣹकए गए आउटपुट पर अࣾधक ࣺनयंत्रण रखने और उनके
एࣺݎकेशन के कायर्प्रवाह में AI-जࣺनत डटेा के एकࣞकरण को सरल बनाने कࣞ अनुमࣻत
दतेा ह।ै

फ़ंщन का ादनࠐनࣄ
आपने फ़ंѽۥ को पिरभाࣻषत ࣹकया ह,ै और अपने AI को प्रेिरत ࣹकया, ऀजसने ࣺनणर्य
ࣽलया ࣹक उसे आपके फ़ंѽۥ में से एक को कॉल करना चाࣹहए। अब समय है ࣹक
आपका एࣺݎकेशन कोड या लाइब्ररेࣜ, अगर आप raix-rails जैसी Ruby gem का
उपयोग कर रहे हैं, फ़ंѽन कॉल और उसके पैरामीटसर् को संबंࣾधत कायЄۢयन तक
आपके एࣺݎकेशन कोड में पहुचंाए।

https://github.com/OlympiaAI/raix-rails

उपकरण का उपयोग 143

आपका एࣺݎकेशन कोड तय करता है ࣹक फ़ंѽन के पिरणामों के साथ Ѻा करना ह।ै
हो सकता है ࣹक यह lambda में एक लाइन कोड से जुड़ा हो, या ࣹकसी बाहरࣜ API
को कॉल करने से। हो सकता है ࣹक इसमें ࣹकसी अ۠ AI कॉޮोनेंट को कॉल करना
शाࣻमल हो, या आपके ऀस࡫म के बाकࣞ ࣹहࡿों में सैकड़ों या हजारों लाइनों का कोड
शाࣻमल हो। यह पूरࣜ तरह से आप पर ࣺनभर्र करता ह।ै
कभी-कभी फ़ंѽन कॉल ऑपरेशन का अंत होता ह,ै लेࣹकन अगर पिरणाम ࣺवचार
श्रृखंला में जानकारࣜ का प्रࣻतࣺनࣾधٌ करते हैं ऀजसे AI ाराڙ जारࣜ रखा जाना ह,ै तो
आपके एࣺݎकेशन कोड को ࣺनࡄादन पिरणामों को चैट ट्र ांसࣺक्र݂ में डालना होगा और
AI को प्रोसेऀसंग जारࣜ रखने दनेा होगा।
उदाहरण के ࣽलए, यहाँ एक Raix फ़ंѽन घोषणा है जो Olympia के
AccountManager ाराڙ ग्राहक सेवा के ࣽलए बुआڔमान कायर्प्रवाह संयोजन
के ࣹहेࡿ के रूप में हमारे ग्राहकों के साथ संवाद करने के ࣽलए उपयोग कࣞ जाती ह।ै

1 class AccountManager

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 # lots of other functions...

6

7 function :notify_account_owner,

8 "Don't share UUID. Mention dollars if subscription changed",

9 message: { type: "string" } do |arguments|

10 account.owner.freeform_notify(

11 subject: "Account Change Notification",

12 message: arguments[:message]

13)

14 "Notified account owner"

15 end

यहां Ѻा हो रहा ह,ै यह तुरंत ࠿ࡵ नहࣟ हो सकता ह,ै इसࣽलए मैं इसे ࣺवࡰार से
समझाता हू।ं

1. AccountManager ѻास खाता प्रबंधन से संबंࣾधत कई फ़ंѽन को पिरभाࣻषत
करती ह।ै यह आपकࣞ योजना को बदल सकती ह,ै टीम के सदࡺों को जोड़

https://github.com/OlympiaAI/raix-rails

उपकरण का उपयोग 144

और हटा सकती ह,ै और भी कई काम कर सकती ह।ै
2. इसके शीषर्-ࡰरࣜय ࣺनदϺश AccountManager को बताते हैं ࣹक उसे खाता
पिरवतर्न अनुरोध के पिरणामों के साथ खाता माࣽलक को notify_account_-
owner फ़ंѽन का उपयोग करके सूࣿचत करना चाࣹहए।

3. फ़ंѽन कࣞ संऀक्ष݆ पिरभाषा में शाࣻमल हैं:

• नाम
• ࣺववरण
• पैरामीटसर् message: { type: ”string” }
• फ़ंѽन को कॉल करने पर ࣺनࡄाࣺदत होने वाला ॉकވ

फ़ंѽन ॉकވ के पिरणामों के साथ प्रࣻतलेख को अपडटे करने के बाद, chat_-
completion ࣺवࣾध को ࣺफर से कॉल ࣹकया जाता ह।ै यह ࣺवࣾध अपडटे ࣹकए गए
वातЄलाप प्रࣻतलेख को आगे कࣞ प्रोसेऀसंग के ࣽलए AI मॉडल को वापस भेजने के ࣽलए
ऀज޲देार ह।ै हम इस प्रࣺक्रया को वातЄलाप लूप कहते हैं।
जब AI मॉडल को अपडटे ࣹकए गए प्रࣻतलेख के साथ एक नया चैट पूणर्ता अनुरोध
प्रा݆ होता ह,ै तो उसे पहले ࣺनࡄाࣺदत ࣹकए गए फ़ंѽन के पिरणामों तक पहुचं होती
ह।ै यह इन पिरणामों का ࣺवे࠯षण कर सकता ह,ै उंेۦ अपनी ࣺनणर्य-प्रࣺक्रया में शाࣻमल
कर सकता ह,ै और वातЄलाप के संचयी संदभर् के आधार पर अगलࣜ प्रࣻतࣺक्रया या
कारर्वाई उۚم कर सकता ह।ै यह अपडटे ࣹकए गए संदभर् के आधार पर अࣻतिरѱ
फ़ंѽन ࣺनࡄाࣺदत करने का चयन कर सकता ह,ै या यࣺद यह ࣺनधЄिरत करता है ࣹक
कोई और फ़ंѽन कॉल आव࠮क नहࣟ हैं, तो मूल प्रॉम्݂ के ࣽलए अंࣻतम प्रࣻतࣺक्रया
उۚم कर सकता ह।ै

मूल प्रॉम्܎ का वैक࣓޷क नरंतरताࣄ
जब आप टूल पिरणामों को LLM को वापस भेजते हैं और मूल प्रॉम्݂ कࣞ प्रोसेऀसंग
जारࣜ रखते हैं, तो AI उन पिरणामों का उपयोग या तो अࣻतिरѱ फ़ंѽन कॉल करने
या एक अंࣻतम सादा टҡे प्रࣻतࣺक्रया उۚم करने के ࣽलए करता ह।ै

उपकरण का उपयोग 145

Cohere के Command-R जैसे कुछ मॉडल अपनी प्रࣻतࣺक्रयाओं में उनके
ाराڙ उपयोग ࣹकए गए ࣺवऀश࠿ टू߶ का उ߲ेख कर सकते हैं, जो अࣻतिरѱ
पारदऀशर्ता और ट्र सेेࣺबࣽलटी प्रदान करता ह।ै

उपयोग में आने वाले मॉडल के आधार पर, फ़ंѽन कॉल के पिरणाम प्रࣻतलेख संदशेों
में अपनी खास भूࣻमका के साथ रहेंगे या ࣹकसी अ۠ ऀसंटѾै में प्रࣻतࣺबंࣺबत होंगे।
लेࣹकन महٌपूणर् भाग यह है ࣹक वह डटेा प्रࣻतलेख में हो, ताࣹक AI आगे Ѻा करना
है यह तय करते समय उस पर ࣺवचार कर सके।

एक सामा۠ (और संभाࣺवत रूप से महगंी) त्रुࣺ ट ऍࣻࡱत है चैट को जारࣜ
रखने से पहले प्रࣻतलेख में फ़ंѽन पिरणामों को जोड़ना भूल जाना।
पिरणामࡼरूप, AI को लगभग उसी तरह से प्रॉम्݂ ࣹकया जाएगा जैसे
पहलࣜ बार फ़ंѽन को कॉल करने से पहले ࣹकया गया था। दूसरे शށों
में, AI के ࣽलए, उसने अभी तक फ़ंѽन कॉल नहࣟ ࣹकया ह।ै इसࣽलए वह
इसे ࣺफर से कॉल करता ह।ै और ࣺफर से। और ࣺफर से, जब तक आप
इसे रोकते नहࣟ हैं। आशा है ࣹक आपका संदभर् बहुत बड़ा नहࣟ था, और
आपका मॉडल बहुत महगंा नहࣟ था!

उपकरण उपयोग कࢩ सवЇ،म प्रथाएं
उपकरण के उपयोग से अࣾधकतम लाभ प्रा݆ करने के ࣽलए, ࣺनޭࣽलंखत सवЉـम
प्रथाओं पर ࣺवचार करें।

वणर्नाؕक पिरभाषाएं
प्रيके उपकरण और उसके इनपुट पैरामीटसर् के ࣽलए ࠿ࡵ और वणर्नाىक नाम और
ࣺववरण प्रदान करें। यह LLM को प्रيके उपकरण के उे࠮ړ और क्षमताओं को बेहतर
ढगं से समझने में मदद करता ह।ै

https://openrouter.ai/models/cohere/command-r

उपकरण का उपयोग 146

मैं अनुभव से बता सकता हूं ࣹक “नामकरण कࣺठन ह”ै कࣞ सामा۠ समझ यहां
भी लागू होती ह;ै मैंने दखेा है ࣹक केवल फ़ंѽन के नाम या ࣺववरण के शށों को
बदलने से LLM के पिरणामों में नाटकࣞय अंतर आ जाता ह।ै कभी-कभी ࣺववरण
को हटाने से प्रदशर्न में सुधार होता ह।ै

उपकरण पिरणामों का प्रसं࠭रण
जब LLM को उपकरण के पिरणाम वापस भेजे जा रहे हों, तो सुࣺनऀࠥत करें ࣹक वे
अՃࣛ तरह से संरࣿचत और ࠖापक हों। प्रيके उपकरण के आउटपुट को दशЄने के
ࣽलए साथर्क कंुऀजयों और मानों का उपयोग करें। ࣺवࣾभۚ प्रारूपों के साथ प्रयोग करें
और दखेें ࣹक कौन सा सबसे अՃा काम करता ह,ै JSON से लेकर सादे टҡे तक।
Result Interpreter इस चुनौती का समाधान पिरणामों का ࣺवे࠯षण करने और मानव-
ࣻमत्रवत ࠖाҷाएं, सारांश, या प्रमुख ࣺन࠻षर् प्रदान करने के ࣽलए AI का उपयोग करके
करता ह।ै

तु्रࣅट प्रबंधन
मजबूत त्रुࣺ ट प्रबंधन तंत्र लागू करें जो उन मामलों को संभाल सकें जहां LLM उपकरण
कॉल के ࣽलए अमा۠ या असमࣽथर्त इनपुट पैरामीटर उۚم कर सकता ह।ै उपकरण
ࣺनࡄादन के दौरान होने वालࣜ ࣹकसी भी त्रुࣺ ट को सुचारू रूप से संभालें और उससे
उबरें।
AI कࣞ एक बेहद अՃࣛ ࣺवशेषता यह है ࣹक यह त्रुࣺ ट संदशेों को समझता ह!ै ऀजसका
मतलब है ࣹक यࣺद आप ٌिरत और सरल दृࣼ࠿कोण से काम कर रहे हैं, तो आप
ࣹकसी उपकरण के कायЄۢयन में उۚم होने वाले ࣹकसी भी अपवाद को पकड़ सकते
हैं, और इसे AI को वापस भेज सकते हैं ताࣹक उसे पता चल सके ࣹक Ѻा हुआ!
उदाहरण के ࣽलए, यहाँ Olympia में google खोज के कायЄۢयन का एक संऀक्ष݆
संࡡरण ह:ै

उपकरण का उपयोग 147

1 def google_search(conversation, params)

2 conversation.update_cstatus("Searching Google...")

3 query = params[:query]

4 search = GoogleSearch.new(query).get_hash

5

6 conversation.update_cstatus("Summarizing results...")

7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)

8 rescue StandardError => e

9 Honeybadger.notify(e)

10 { error: e.message }.inspect

11 end

Olympia में गूगल खोज एक दो-चरणीय प्रࣺक्रया ह।ै पहले आप खोज करते हैं, ࣺफर
पिरणामों का सारांश करते हैं। यࣺद कोई ࣺवफलता होती ह,ै चाहे वह कुछ भी हो, त्रुࣺ ट
संदशे को पैकेज ࣹकया जाता है और AI को वापस भेज ࣺदया जाता ह।ै यह तकनीक
लगभग सभी बुआڔमान त्रुࣺ ट प्रबंधन पैटनर् कࣞ आधारऀशला ह।ै
उदाहरण के ࣽलए, मान लࣜऀजए ࣹक GoogleSearch API कॉल 503 सेवा अनुपलނ
त्रुࣺ ट के कारण ࣺवफल हो जाती ह।ै यह शीषर्-ࡰरࣜय रेूࢁ तक पहुचंती ह,ै और त्रुࣺ ट
का ࣺववरण फ़ंѽन कॉल के पिरणाम के रूप में AI को वापस भेज ࣺदया जाता ह।ै
उपयोगकतЄ को केवल एक खालࣜ नࣞࢂ या तकनीकࣞ त्रुࣺ ट दनेे के बजाय, AI कुछ ऐसा
कहता है जैसे “मैं क्षमा चाहता हू,ं लेࣹकन मैं इस समय अपनी गूगल खोज क्षमताओं
तक पहुचंने में असमथर् हू।ं यࣺद आप चाहें तो मैं बाद में पुनः प्रयास कर सकता हू।ं”
यह केवल एक चतुर युࣼѱ कࣞ तरह लग सकती ह,ै लेࣹकन एक अलग प्रकार कࣞ
त्रुࣺ ट पर ࣺवचार करें , जहां AI ࣹकसी बाहरࣜ API को कॉल कर रहा था और API को
पास करने के ࣽलए पैरामीटसर् पर सीधा ࣺनयंत्रण था। शायद उसने उन पैरामीटसर् को
जनरेट करने में कोई गलती कࣞ? बशतϺ ࣹक बाहरࣜ API से त्रुࣺ ट संदशे पयЄ݆ ࣺवࡰतृ
हो, त्रुࣺ ट संदशे को कॉࣽलंग AI को वापस भेजने का मतलब है ࣹक वह उन पैरामीटसर्
पर पुनࣺवर्चार कर सकता है और ࣺफर से प्रयास कर सकता ह।ै चाࣽलतࡼ रूप से।
चाहे त्रुࣺ ट कुछ भी हो।
अब सोࣿचए ࣹक सामा۠ कोड में उस प्रकार के मजबूत त्रुࣺ ट प्रबंधन को दोहराने के
ࣽलए Ѻा आव࠮क होगा। यह लगभग असंभव ह।ै

उपकरण का उपयोग 148

पुनरावत࣮ पिरࠇरण
यࣺद LLM उपयुѱ टू߶ कࣞ ऀसफािरश नहࣟ कर रहा है या अनुकूल प्रࣻतࣺक्रयाएं नहࣟ दे
रहा ह,ै तो टूल पिरभाषाओ,ं ࣺववरणों और इनपुट पैरामीटसर् पर पुनः कायर् करें। दखेे
गए ࠖवहार और वांࣽछत पिरणामों के आधार पर टूल सेटअप को ࣺनरंतर पिरृ࠻त
और सुधारें।

1. सरल टूल पिरभाषाओं से शुरू करें: ࠿ࡵ और संऀक्ष݆ नामों, ࣺववरणों और
इनपुट पैरामीटसर् के साथ टू߶ को पिरभाࣻषत करना शुरू करें। प्रारंभ में टूल
सेटअप को अࣾधक जࣺटल बनाने से बचें और मुҷ कायर्क्षमता पर ानۀ कें ࣺद्रत
करें। उदाहरण के ࣽलए, यࣺद आप भावना ࣺवे࠯षण के पिरणामों को सहजेना
चाहते हैं, तो एक बुࣺनयादी पिरभाषा से शुरू करें जैसे:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze user-provided text and generate sentiment score",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "score": {

8 "type": "float",

9 "description": "sentiment score from -1 (negative) to 1 (positive)"

10 }

11 },

12 "required": ["score"]

13 }

14 }

2. परࣜक्षण और ࣺनरࣜक्षण करें: एक बार जब आप प्रारंࣾभक टूल पिरभाषाएँ ाࣺपतࡱ
कर लें, तो ࣺवࣾभۚ प्रॉम्प्ׅ के साथ उनका परࣜक्षण करें और दखेें ࣹक एलएलएम
टूल के साथ कैसे संवाद करता ह।ै उۚم प्रࣻतࣺक्रयाओं कࣞ गुणवـा और
प्रासंࣻगकता पर ानۀ दें। यࣺद एलएलएम अनुकूलतम से कम प्रࣻतࣺक्रयाएँ उۚم
कर रहा ह,ै तो टूल पिरभाषाओं को पिरृ࠻त करने का समय आ गया ह।ै

उपकरण का उपयोग 149

3. ࣺववरणों को पिरृ࠻त करें: यࣺद एलएलएम ࣹकसी टूल के उे࠮ړ को गलत समझ
रहा ह,ै तो टूल के ࣺववरण को पिरृ࠻त करने का प्रयास करें। टूल के प्रभावी
उपयोग में एलएलएम का मागर्दशर्न करने के ࣽलए अࣾधक संदभर्, उदाहरण, या
ीकरण࠿ࡵ प्रदान करें। उदाहरण के ࣽलए, आप भावना ࣺवे࠯षण टूल के ࣺववरण
को ࣺवे࠯षण ࣹकए जा रहे पाठ के भावनाىक रࡼ को अࣾधक ࣺवऀश࠿ रूप से
संबोࣾधत करने के ࣽलए अपडटे कर सकते हैं:

1 {

2 "name": "save_sentiment_score",

3 "description": "Determine the overall emotional tone of a piece of text,

4 such as customer reviews, social media posts, or feedback comments.",

5 ...

6 }

4. इनपुट पैरामीटसर् समायोऀजत करें: यࣺद एलएलएम ࣹकसी टूल के ࣽलए अमा۠
या अप्रासंࣻगक इनपुट पैरामीटसर् उۚم कर रहा ह,ै तो पैरामीटर पिरभाषाओं
को समायोऀजत करने पर ࣺवचार करें। अपेऀक्षत इनपुट प्रारूप को ࠿ࡵ करने
के ࣽलए अࣾधक ࣺवऀश࠿ प्रࣻतबंध, सيापन ࣺनयम, या उदाहरण जोड़ें।

5. प्रࣻतࣺक्रया के आधार पर सुधार करें: अपने टू߶ के प्रदशर्न कࣞ ࣺनरंतर ࣺनगरानी
करें और उपयोगकतЄओं या ࣹहतधारकों से प्रࣻतࣺक्रया एकत्र करें। सुधार के क्षेत्रों
कࣞ पहचान करने और टूल पिरभाषाओं में क्रࣻमक सुधार करने के ࣽलए इस
प्रࣻतࣺक्रया का उपयोग करें। उदाहरण के ࣽलए, यࣺद उपयोगकतЄ बताते हैं ࣹक
ࣺवे࠯षण ࠖӌं को सहࣚ ढगं से नहࣟ संभाल रहा ह,ै तो आप ࣺववरण में एक नोट
जोड़ सकते हैं:

उपकरण का उपयोग 150

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze the sentiment of a given text and return a sentiment

4 score between -1 (negative) and 1 (positive). Note: Sarcasm should be

5 considered negative.",

6 ...

7 }

अपनी उपकरण पिरभाषाओं को दखेे गए ࠖवहार और प्रࣻतࣺक्रया के आधार पर
क्रࣻमक रूप से पिरृ࠻त करके, आप अपने AI-संचाࣽलत एࣺݎकेशन के प्रदशर्न और
प्रभावशीलता में क्रࣻमक सुधार कर सकते हैं। उपकरण पिरभाषाओं को ,࠿ࡵ संऀक्ष݆
और ࣺवऀश࠿ कायर् पर कें ࣺद्रत रखना याद रखें। ࣺनयࣻमत रूप से उपकरण इंटरैѽन
का परࣜक्षण और सيापन करें ताࣹक यह सुࣺनऀࠥत हो सके ࣹक वे आपके वांࣽछत
पिरणामों के अनुरूप हैं।

उपकरणों का संयोजन और शंृ्रखलाब٠ करना
उपकरण उपयोग का एक सबसे शࣼѱशालࣜ पहलू, ऀजसका अब तक केवल संकेत
ࣺदया गया ह,ै वह है जࣺटल कायЊ को पूरा करने के ࣽलए कई उपकरणों को एक
साथ संयोऀजत और श्रृखंलाबڔ करने कࣞ क्षमता। अपनी उपकरण पिरभाषाओं और
उनके इनपुट/आउटपुट प्रारूपों को सावधानीपूवर्क ࣺडज़ाइन करके, आप पुन: प्रयोի
ࣺबउߤगं ॉकވ बना सकते हैं ऀजंेۦ ࣺवࣾभۚ तरࣜकों से संयोऀजत ࣹकया जा सकता ह।ै
आइए एक उदाहरण पर ࣺवचार करें जहाँ आप अपने AI-संचाࣽलत एࣺݎकेशन के ࣽलए
एक डटेा ࣺवे࠯षण पाइपलाइन बना रहे हैं। आपके पास ࣺनޭࣽलंखत उपकरण हो सकते
हैं:

1. DataRetrieval: एक उपकरण जो ࣺनࣺदर्࠿ मानदडंों के आधार पर डटेाबेस या
API से डटेा प्रा݆ करता ह।ै

2. DataProcessing: एक उपकरण जो प्रा݆ डटेा पर गणना, रूपांतरण, या
एकत्रीकरण करता ह।ै

उपकरण का उपयोग 151

3. DataVisualization: एक उपकरण जो प्रसंृࡡत डटेा को चाटॼ या ग्राफ़ जैसे
उपयोगकतЄ-अनुकूल प्रारूप में प्रࡰतु करता ह।ै

इन उपकरणों को एक साथ श्रृखंलाबڔ करके, आप एक शࣼѱशालࣜ कायर्प्रवाह बना
सकते हैं जो प्रासंࣻगक डटेा प्रा݆ करता ह,ै उसे प्रोसेस करता ह,ै और पिरणामों को
साथर्क तरࣜके से प्रࡰतु करता ह।ै यहाँ उपकरण उपयोग कायर्प्रवाह कैसा ࣺदख सकता
ह:ै

1. LLM को एक ࣺवऀश࠿ उمाद श्रणेी के ࣽलए ࣺबक्रࣞ डटेा पर अंतदृर्ࣼ࠿ मांगने वाला
उपयोगकतЄ प्रࠫ प्रा݆ होता ह।ै

2. LLM DataRetrieval उपकरण का चयन करता है और डटेाबेस से प्रासंࣻगक
ࣺबक्रࣞ डटेा प्रा݆ करने के ࣽलए उपयुѱ इनपुट पैरामीटर जनरेट करता ह।ै

3. प्रा݆ डटेा को DataProcessing उपकरण को “पास” ࣹकया जाता ह,ै जो कुल
राजࡼ, औसत ࣺबक्रࣞ मू߰ और वृआڔ दर जैसे मैࣺट्रѾ कࣞ गणना करता ह।ै

4. प्रसंृࡡत डटेा को ࣺफर DataVisualization उपकरण ाराڙ समझा जाता ह,ै
जो अंतदृर्ࣼ࠿ को दशЄने के ࣽलए एक आकषर्क चाटॼ या ग्राफ़ बनाता ह,ै और चाटॼ
का URL LLM को वापस पास करता ह।ै

5. अंत में, LLM माकॼ डाउन का उपयोग करके उपयोगकतЄ प्रࠫ का एक रूࣺपतࡼ
उـर जनरेट करता ह,ै ऀजसमें ࣺवज़ुअलाइज़ ࣹकया गया डटेा और प्रमुख ࣺन࠻षЊ
का सारांश शाࣻमल होता ह।ै

इन उपकरणों को एक साथ संयोऀजत करके, आप एक सहज डटेा ࣺवे࠯षण कायर्प्रवाह
बना सकते हैं ऀजसे आसानी से आपके एࣺݎकेशन में एकࣞकृत ࣹकया जा सकता ह।ै
इस दृࣼ࠿कोण कࣞ खूबसूरती यह है ࣹक प्रيके उपकरण को तंत्रࡼ रूप से ࣺवकऀसत
और परࣜक्षण ࣹकया जा सकता ह,ै और ࣺफर ࣺवࣾभۚ समࡺाओं को हल करने के ࣽलए
अलग-अलग तरࣜकों से संयोऀजत ࣹकया जा सकता ह।ै
उपकरणों के सुचारू संयोजन और श्रृखंलाबڔता को सक्षम करने के ࣽलए, प्रيके
उपकरण के ࣽलए ࠿ࡵ इनपुट और आउटपुट प्रारूपों को पिरभाࣻषत करना महٌपूणर्
ह।ै

उपकरण का उपयोग 152

उदाहरण के ࣽलए, DataRetrieval उपकरण डटेाबेस कनेѽन ࣺववरण, टबेल नाम,
और Ѽेरࣜ शतЊ जैसे पैरामीटर ीकारࡼ कर सकता ह,ै और पिरणाम को एक संरࣿचत
JSON ऑݻѮे के रूप में वापस कर सकता ह।ै DataProcessing उपकरण ࣺफर
इस JSON ऑݻѮे को इनपुट के रूप में ीकारࡼ कर सकता है और एक पिरवࣻतर्त
JSON ऑݻѮे को आउटपुट के रूप में उۚم कर सकता ह।ै उपकरणों के बीच डटेा
प्रवाह को मानकࣞकृत करके, आप संगतता और पुन: प्रयोիता सुࣺनऀࠥत कर सकते
हैं।
जैसे-जैसे आप अपने उपकरण पािरऍࣻࡱतकࣞ तंत्र को ࣺडजाइन करते हैं, इस बारे
में सोचें ࣹक ࣺवࣾभۚ उपकरणों को आपके एࣺݎकेशन में सामा۠ उपयोग मामलों को
संबोࣾधत करने के ࣽलए कैसे संयोऀजत ࣹकया जा सकता ह।ै ऐसे उՂ-ࡰरࣜय उपकरण
बनाने पर ࣺवचार करें जो सामा۠ कायर्प्रवाह या ࠖावसाࣻयक तकॼ को एनकैݒलेुट
करते हैं, ऀजससे LLM के ࣽलए उंेۦ चुनना और प्रभावी ढगं से उपयोग करना आसान
हो जाता ह।ै
याद रखें, उपकरण उपयोग कࣞ शࣼѱ इसकࣞ लचीलेपन और मॉ׵लूरता में ࣺनࣹहत
ह।ै जࣺटल कायЊ को छोट,े पुन: प्रयोի उपकरणों में ࣺवभाऀजत करके, आप एक
मजबूत और अनुकूलनीय AI-संचाࣽलत एࣺݎकेशन बना सकते हैं जो ࣺवࣾभۚ प्रकार कࣞ
चुनौࣻतयों का सामना कर सकता ह।ै

भࣆवࠔ कࢩ दशाएंࣅ
जैसे-जैसे AI-संचाࣽलत एࣺݎकेशन ࣺवकास का क्षेत्र ࣺवकऀसत होता ह,ै हम उपकरण
उपयोग क्षमताओं में और अࣾधक प्रगࣻत कࣞ उ޲ीद कर सकते हैं। कुछ संभाࣺवत
भࣺवࡈ कࣞ ࣺदशाएं इस प्रकार हैं:

1. बहु-चरणीय उपकरण उपयोग: LLM यह तय कर सकते हैं ࣹक संतोषजनक
प्रࣻतࣺक्रया उۚم करने के ࣽलए उंेۦ ࣹकतनी बार उपकरणों का उपयोग करने कࣞ
आव࠮कता ह।ै इसमें मۀवत॑ पिरणामों के आधार पर उपकरण चयन और
ࣺनࡄादन के कई दौर शाࣻमल हो सकते हैं।

उपकरण का उपयोग 153

2. पूवर्-पिरभाࣆषत उपकरण: AI टेफ़ॉमर्ݎ पूवर्-पिरभाࣻषत उपकरणों का एक सेट
प्रदान कर सकते हैं ऀजनका डवेलपसर् सीधे उपयोग कर सकते हैं, जैसे Python
इंटरप्रेटर, वेब खोज उपकरण, या सामा۠ उपयोࣻगता फ़ंѽन।

3. नबЂधࣄ एकࢩकरण: जैसे-जैसे उपकरण उपयोग अࣾधक प्रचࣽलत होता जाएगा,
हम AI टेफ़ॉमर्ݎ और लोकࣺप्रय ࣺवकास ढांचों के बीच बेहतर एकࣞकरण कࣞ
उ޲ीद कर सकते हैं, ऀजससे डवेलपसर् के ࣽलए अपने एࣺݎकेशन में उपकरण
उपयोग को शाࣻमल करना आसान हो जाएगा।

उपकरण उपयोग एक शࣼѱशालࣜ तकनीक है जो डवेलपसर् को AI-संचाࣽलत एࣺݎकेशन
में LLM कࣞ पूणर् क्षमता का उपयोग करने में सक्षम बनाती ह।ै LLM को बाहरࣜ उपकरणों
और संसाधनों से जोड़कर, आप अࣾधक गࣻतशील, बुआڔमान और संदभर्-जागरूक
ऀस࡫म बना सकते हैं जो उपयोगकतЄ कࣞ जरूरतों के अनुकूल हो सकते हैं और
मू߰वान अंतदृर्ࣼ࠿ और कारर्वाई प्रदान कर सकते हैं।
हालांࣹक उपकरण उपयोग अपार संभावनाएं प्रदान करता ह,ै संभाࣺवत चुनौࣻतयों और
ࣺवचारणीय ࣺबंदुओं के प्रࣻत सचेत रहना महٌपूणर् ह।ै एक प्रमुख पहलू उपकरण
अंतःࣺक्रयाओं कࣞ जࣺटलता का प्रबंधन करना और समग्र ऀस࡫म कࣞ ऍࡱरता और
ࣺव࠰सनीयता सुࣺनऀࠥत करना ह।ै आपको ऐसी पिरऍࣻࡱतयों को संभालना होगा जहां
उपकरण कॉल ࣺवफल हो सकते हैं, अप्रيाऀशत पिरणाम दे सकते हैं, या प्रदशर्न पर
प्रभाव डाल सकते हैं। इसके अࣻतिरѱ, आपको उपकरणों के अनࣾधकृत या दुभЄवनापूणर्
उपयोग को रोकने के ࣽलए सुरक्षा और पहुचं ࣺनयंत्रण उपायों पर ࣺवचार करना चाࣹहए।
आपके AI-संचाࣽलत एࣺݎकेशन कࣞ अखंडता और प्रदशर्न को बनाए रखने के ࣽलए
उࣿचत त्रुࣺ ट प्रबंधन, लॉࣻगंग और ࣺनगरानी तंत्र महٌपूणर् हैं।
जैसे-जैसे आप अपनी पिरयोजनाओं में उपकरण के उपयोग कࣞ संभावनाओं का पता
लगाते हैं, याद रखें ࣹक ࠿ࡵ उे࠮ړों से शुरुआत करें, सुࠖवऍࡱत उपकरण पिरभाषाएं
तैयार करें , और प्रࣻतࣺक्रया एवं पिरणामों के आधार पर पुनरावृࣾـ करें। सहࣚ दृࣼ࠿कोण
और मानऀसकता के साथ, उपकरण का उपयोग आपके एआई-संचाࣽलत एࣺݎकेशन में
नवाचार और मू߰ के नए रोंࡰ को खोल सकता है

र्࠷ ीम प्रोसे࣊संग

HTTP पर डटेा र्࡫ ीࣻमंग, ऀजसे सवर्र-भेजी गई घटनाएं (SSE) भी कहा जाता ह,ै एक
ऐसी प्रणालࣜ है जहां सवर्र ѻाइंट को लगातार डटेा भेजता रहता है जैसे हࣚ वह
उपलނ होता ह,ै ࣺबना ѻाइंट को ࣺवशेष रूप से अनुरोध करने कࣞ आव࠮कता के।
चूंࣹक AI कࣞ प्रࣻतࣺक्रया क्रࣻमक रूप से उۚم होती ह,ै इसࣽलए AI के आउटपुट को
उۚم होते हࣚ प्रदऀशर्त करके एक प्रࣻतࣺक्रयाशील उपयोगकतЄ अनुभव प्रदान करना
ताࣹकॼ क ह।ै और वाࡰव में मुझे ज्ञात सभी AI प्रदाता APIs अपने पूणर्ता एंडपॉइंׅ में
र्࡫ ीࣻमंग प्रࣻतࣺक्रयाओं को एक ࣺवक߫ के रूप में प्रदान करते हैं।
इस पुࡰक में यह अۀाय यहां, टू߶ का उपयोग के ठीक बाद इसࣽलए आता है Ѻोंࣹक
उपयोगकतЄओं को लाइव AI प्रࣻतࣺक्रयाओं के साथ टू߶ के उपयोग को जोड़ना ࣹकतना
शࣼѱशालࣜ हो सकता ह।ै ऐसा करने से गࣻतशील और इंटरैऎѮव अनुभव संभव होते
हैं जहां AI उपयोगकतЄ इनपुट को प्रोसेस कर सकता ह,ै अपने ࣺववेक से ࣺवࣾभۚ टू߶
और फंѽंस का उपयोग कर सकता ह,ै और ࣺफर रࣜयल-टाइम प्रࣻतࣺक्रयाएं प्रदान कर
सकता ह।ै

रीम्࡫ प्रोसेऀसंग 155

इस ࣺनबЄध इंटरैѽन को प्रा݆ करने के ࣽलए, आपको र्࡫ ीम हैंडलसर् ࣽलखने कࣞ
आव࠮कता होती है जो AI-इनवोक्ड टूल फंѽन कॉ߶ के साथ-साथ सादे टҡे
आउटपुट को अंࣻतम उपयोगकतЄ को भेज सकें । एक टूल फंѽन को प्रोसेस करने के
बाद लूप करने कࣞ आव࠮कता काम को एक ࣺदलचࡵ चुनौती बना दतेी ह।ै

ReplyStream का कायЂڮयन
रीम्࡫ प्रोसेऀसंग को कैसे लागू ࣹकया जा सकता ह,ै यह ࣺदखाने के ࣽलए, यह अۀाय
Olympia में उपयोग कࣞ जाने वालࣜ ReplyStream ѻास के एक सरलࣜकृत संࡡरण
कࣞ गहन समीक्षा करेगा। इस ѻास के उदाहरणों को ruby-openai और openrouter
जैसी AI ѻाइंट लाइब्ररेࣜज में stream पैरामीटर के रूप में पास ࣹकया जा सकता ह।ै
यहाँ बताया गया है ࣹक मैं Olympia के PromptSubscriber में ReplyStream का
उपयोग कैसे करता हू,ं जो Wisper के माۀम से नए उपयोगकतЄ संदशेों के ࣺनमЄण
को सुनता ह।ै

1 class PromptSubscriber

2 include Raix::ChatCompletion

3 include Raix::PromptDeclarations

4

5 # many other declarations omitted...

6

7 prompt text: -> { user_message.content },

8 stream: -> { ReplyStream.new(self) },

9 until: -> { bot_message.complete? }

10

11 def message_created(message) # invoked by Wisper

12 return unless message.role.user? && message.content?

13

14 # rest of the implementation omitted...

context संकेत के अࣻतिरѱ, जो उस प्रॉम्݂ सދक्राइबर को संदࣾभर्त करता है ऀजसने
इसे आरंभ ࣹकया, ReplyStream ѻास में प्रा݆ डटेा का बफ़र संग्रࣹहत करने के ࣽलए
इंंे࡫स वेिरएब߶ होते हैं, और र्࡫ ीम प्रोसेऀसंग के दौरान उपयोग ࣹकए गए फ़ंѽन
ने޷ और आगुर्मेंׅ को ट्र कै करने के ࣽलए ऐरे भी होते हैं।

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

रीम्࡫ प्रोसेऀसंग 156

1 class ReplyStream

2 attr_accessor :buffer, :f_name, :f_arguments, :context

3

4 delegate :bot_message, :dispatch, to: :context

5

6 def initialize(context)

7 self.context = context

8 self.buffer = []

9 self.f_name = []

10 self.f_arguments = []

11 end

12

13 def call(chunk, bytesize = nil)

14 # ...

15 end

16

17 # ...

18 end

initialize ࣺवࣾध ReplyStream इंंे࡫स कࣞ प्रारंࣾभक ऍࣻࡱत को ाࣺपतࡱ करती ह,ै
ऀजसमें बफ़र, संदभर् और अ۠ चरों को आरंभ ࣹकया जाता ह।ै
call ࣺवࣾध र्࡫ ीࣻमंग डटेा को संसाࣾधत करने का मुҷ प्रवेश ࣺबंदु ह।ै यह डटेा के एक
‘खंड’ (जो एक हशै के रूप में दशЄया गया ह)ै और एक वैकऍ߫क bytesize पैरामीटर
लेती ह,ै जो हमारे उदाहरण में अप्रयुѱ ह।ै इस ࣺवࣾध के अंदर, ѻास प्रा݆ खंड कࣞ
संरचना के आधार पर ࣺवࣾभۚ पिरदृ࠮ों को संभालने के ࣽलए पैटनर् मैࣿचंग का उपयोग
करती ह।ै

खंड पर deep_symbolize_keys को कॉल करने से पैटनर् मैࣿचंग अࣾधक
सुरुࣿचपूणर् हो जाती ह,ै Ѻोंࣹक यह हमें ऊ्࡫रӏं के बजाय ऀसंब߶ पर काम
करने कࣞ अनुमࣻत दतेा ह।ै

रीम्࡫ प्रोसेऀसंग 157

1 def call(chunk, _bytesize)

2 case chunk.deep_symbolize_keys

3

4 in { # match function name

5 choices: [

6 {

7 delta: {

8 tool_calls: [

9 { index: index, function: {name: name} }

10]

11 }

12 }

13] }

14

15 f_name[index] = name

पहला पैटनर् ऀजसका हम ࣻमलान कर रहे हैं वह है एक टूल कॉल और उससे जुड़े
फ़ंѽन नेम का। यࣺद हमें यह ࣻमलता ह,ै तो हम इसे f_name ऐरे में संग्रࣹहत कर लेते
हैं। हम फ़ंѽन ने޷ को एक इंडҢे ऐरे में ोर࡫ करते हैं, Ѻोंࣹक मॉडल समानांतर
फ़ंѽन कॉࣽलंग में सक्षम ह,ै जो एक साथ एक से अࣾधक फ़ंѽन को एक्ज़ीѺूट
करने के ࣽलए भेज सकता ह।ै

समानांतर फ़ंѽन कॉࣽलंग एक AI मॉडल कࣞ वह क्षमता है ऀजससे वह एक साथ कई
फ़ंѽन कॉल कर सकता ह,ै ऀजससे इन फ़ंѽन कॉ߶ के प्रभावों और पिरणामों
को समानांतर रूप से हल ࣹकया जा सकता ह।ै यह ࣺवशेष रूप से उपयोगी है यࣺद
फ़ंѽۥ को पूरा होने में लंबा समय लगता ह,ै और यह API के साथ राउंड ࣺट्रݒ
को कम करता ह,ै जो बदले में टोकन खचर् कࣞ एक महٌपूणर् मात्रा को बचा सकता
ह।ै

अगला हमें फ़ंѽन कॉ߶ के संबंࣾधत आӌुर्मेंׅ के ࣽलए ࣻमलान करने कࣞ आव࠮कता
ह।ै

रीम्࡫ प्रोसेऀसंग 158

1 in { # match arguments

2 choices: [

3 {

4 delta: {

5 tool_calls: [

6 {

7 index: index, function: {arguments: argument }

8 }

9]

10 }

11 }

12]}

13

14 f_arguments[index] ||= "" # initialize if not already

15 f_arguments[index] << argument

ऀजस तरह हमने फ़ंѽन ने޷ को संभाला, उसी तरह हम आगुर्मेंׅ को एक इंडҢे
ऐरे में रख दतेे हैं।
इसके बाद, हम सामा۠ उपयोगकतЄ-सामने के संदशेों कࣞ तलाश करते हैं, जो सवर्र
से एक-एक टोकन के रूप में आएंगे और new_content वेिरएबल को असाइन ࣹकए
जाएंगे। हमें finish_reason पर भी ानۀ रखना होगा। यह आउटपुट सीѼेंस के
अंࣻतम भाग तक nil रहगेा।

1 in {

2 choices: [

3 { delta: {content: new_content}, finish_reason: finish_reason }

4]}

5

6 # you could transmit every chunk to the user here...

7 buffer << new_content.to_s

8

9 if finish_reason.present?

10 finalize

11 elsif new_content.to_s.match?(/\n\n/)

12 send_to_client # ...or buffer and transmit once per paragraph

13 end

महٌपूणर् रूप से, हम एआई मॉडल प्रोवाइडर ाराڙ भेजे गए त्रुࣺ ट संदशेों को संभालने

रीम्࡫ प्रोसेऀसंग 159

के ࣽलए एक पैटनर् मैच एѾप्रेशन जोड़ते हैं। ानीयࡱ ࣺवकास वातावरण में, हम एक
अपवाद उठाते हैं, लेࣹकन प्रोडѽन में, हम त्रुࣺ ट को लॉग करते हैं और समा݆ कर दतेे
हैं।

1 in { error: { message: } }

2 if Rails.env.local?

3 raise message

4 else

5 Honeybadger.notify("AI Error: #{message}")

6 finalize

7 end

case का अंࣻतम else clause तब ࣺनࡄाࣺदत होगा जब कोई भी ࣺपछला पैटनर् मैच नहࣟ
करता। यह बस एक सुरक्षा उपाय है ताࣹक अगर एआई मॉडल हमें अपिरࣿचत खंड
भेजना शुरू कर दे तो हमें इसके बारे में पता चल जाए।

1 else

2 Honeybadger.notify("Unrecognized Chunk: #{chunk}")

3 end

4 end

send_to_client ࣺवࣾध बफ़डॼ सामग्री को ѻाइंट को भेजने के ࣽलए ऀज޲देार ह।ै यह
जांचता है ࣹक बफ़र खालࣜ नहࣟ ह,ै बॉट संदशे कࣞ सामग्री को अपडटे करता ह,ै बॉट
संदशे को रेंडर करता ह,ै और डटेा ाࣻयٌࡱ सुࣺनऀࠥत करने के ࣽलए सामग्री को
डटेाबेस में सहजेता ह।ै

रीम्࡫ प्रोसेऀसंग 160

1 def send_to_client

2 # no need to process pure whitespace

3 return if buffer.join.squish.blank?

4

5 # set the buffer content on the bot message

6 content = buffer.join

7 bot_message.content = content

8

9 # save to database so that we never lose data

10 # even if the stream doesn't terminate correctly

11 bot_message.update_column(:content, content)

12

13 # update content via websocket

14 ConversationRenderer.update(bot_message)

15 end

finalize मेथड को तब कॉल ࣹकया जाता है जब र्࡫ ीम प्रोसेऀसंग पूरࣜ हो जाती ह।ै
यह फ़ंѽन कॉ߶ को ࣺडࡵचै करता है यࣺद र्࡫ ीम के दौरान कोई कॉ߶ प्रा݆ हुए थे,
बॉट संदशे को अंࣻतम कंटेंट और अ۠ प्रासंࣻगक जानकारࣜ के साथ अपडटे करता ह,ै
और फ़ंѽन कॉल ࣹह्࡫र ी को रࣜसेट करता है

1 def finalize

2 if f_name.any?

3 f_name.each_with_index do |name, index|

4 # takes care of calling the function wherever it's implemented

5 dispatch(name:, arguments: JSON.parse(f_arguments[index]))

6 end

7

8 # reset the function call history

9 f_name.clear

10 f_arguments.clear

11 else

12 content = buffer.join.presence

13 bot_message.update!(content:, complete: true)

14 ConversationRenderer.update(bot_message)

15 end

16 end

यࣺद मॉडल ࣹकसी फ़ंѽन को कॉल करने का ࣺनणर्य लेता ह,ै तो आपको उस फ़ंѽन

रीम्࡫ प्रोसेऀसंग 161

कॉल (नाम और आगुर्मेंׅ) को इस तरह से “प्रेࣻषत” करना होगा ࣹक वह ࣺनࡄाࣺदत हो
और वातЄलाप प्रࣻतलेख में function_call और function_result संदशे जुड़ जाएं।
मेरे अनुभव में, टूल कायЄۢयन पर ࣺनभर्र रहने के बजाय अपने कोडबेस में एक हࣚ
ानࡱ पर फ़ंѽन संदशेों कࣞ रचना को संभालना बेहतर होता ह।ै यह न केवल अࣾधक
Ճࡼ ह,ै बऍߛ इसका एक बहुत महٌपूणर् ࠖावहािरक कारण भी ह:ै यࣺद एआई
मॉडल ࣹकसी फ़ंѽन को कॉल करता ह,ै और लूप में वापस आने पर प्रࣻतलेख में कॉल
और पिरणाम संदशे नहࣟ दखेता ह,ै तो वह उसी फ़ंѽन को ࣺफर से कॉल करेगा।
संभवतः यह हमेशा के ࣽलए चलता रहगेा। याद रखें ࣹक एआई पूरࣜ तरह से टेलेस࡫
होता ह,ै इसࣽलए जब तक आप उन फ़ंѽन कॉ߶ को वापस इसे नहࣟ ࣺदखाते, वे
घࣺटत हࣚ नहࣟ हुए।

1 # PromptSubscriber#dispatch

2

3 def dispatch(name:, arguments:)

4 # adds a function_call message to the conversation transcript

5 # plus dispatches to tool and returns result

6 conversation.function_call!(name, arguments).then do |result|

7 # add function result message to the transcript

8 conversation.function_result!(name, result)

9 end

10 end

फ़ंѽन कॉल को ࣺडࡵचै करने के बाद कॉल ࣹह्࡫र ी को साफ़ करना उतना
हࣚ महٌपूणर् है ऀजतना यह सुࣺनऀࠥत करना ࣹक कॉल और पिरणाम आपके
प्रࣻतलेख में दजर् हों, ताࣹक आप हर बार लूप करते समय एक हࣚ फ़ंѽۥ
को बार-बार न कॉल करते रहें।

“वातЂलाप लूप”
मैं लूࣺपंग का ऀजक्र करता रहता हू,ं लेࣹकन अगर आप फ़ंѽन कॉࣽलंग में नए हैं, तो
यह ࠿ࡵ नहࣟ हो सकता ࣹक हमें लूप कࣞ आव࠮कता Ѻों ह।ै कारण यह है ࣹक एक

रीम्࡫ प्रोसेऀसंग 162

बार जब AI आपसे अपनी ओर से टूल फ़ंѽۥ को ࣺनࡄाࣺदत करने के ࣽलए “पूछता”
ह,ै तो वह जवाब दनेा बंद कर दगेा। उन फ़ंѽۥ को ࣺनࡄाࣺदत करना, पिरणामों
को एकत्र करना, प्रࣻतलेख में पिरणामों को जोड़ना, और ࣺफर नए फ़ंѽन कॉ߶ या
उपयोगकतЄ-कें ࣺद्रत पिरणाम प्रा݆ करने के ࣽलए मूल प्रॉम्݂ को ࣺफर से सबࣻमट करना
आपकࣞ ऀज޲देारࣜ ह।ै
PromptSubscriber ѻास में, हम PromptDeclarations मॉ׵लू से prompt मेथड
का उपयोग वातЄलाप लूप के ࠖवहार को पिरभाࣻषत करने के ࣽलए करते हैं। until
पैरामीटर को -> { bot_message.complete? } पर सेट ࣹकया गया ह,ै ऀजसका अथर्
है ࣹक लूप तब तक जारࣜ रहगेा जब तक bot_message को पूणर् के रूप में ࣿचࣺࢤत
नहࣟ ࣹकया जाता।

1 prompt text: -> { user_message.content },

2 stream: -> { ReplyStream.new(self) },

3 until: -> { bot_message.complete? }

लेࣹकन bot_message को पूणर् कब ࣿचࣺࢤत ࣹकया जाता ह?ै यࣺद आप भूल
गए हैं, तो finalize मेथड कࣞ लाइन 13 को ࣺफर से दखेें।

आइए पूरࣜ र्࡫ ीम प्रोसेऀसंग लॉऀजक कࣞ समीक्षा करें।

1. PromptSubscriber एक नया उपयोगकतЄ संदशे message_created मेथड के
माۀम से प्रा݆ करता ह,ै जो Wisper पब/सब ऀस࡫म ाराڙ हर बार तब चलाया
जाता है जब अंࣻतम उपयोगकतЄ एक नया प्रॉम्݂ बनाता ह।ै

2. prompt ѻास मेथड PromptSubscriber के ࣽलए चैट पूणर्ता लॉऀजक के
ࠖवहार को घोषणाىक रूप से पिरभाࣻषत करता ह।ै AI मॉडल उपयोगकतЄ
के संदशे सामग्री के साथ एक चैट पूणर्ता ࣺनࡄाࣺदत करेगा, र्࡫ ीम पैरामीटर के
रूप में ReplyStream का एक नया इंंे࡫स, और ࣺनࣺदर्࠿ लूप कंडीशन के साथ।

3. AI मॉडल प्रॉम्݂ को प्रोसेस करता है और एक प्रࣻतࣺक्रया जनरेट करना शुरू
करता ह।ै जैसे-जैसे प्रࣻतࣺक्रया र्࡫ ीम कࣞ जाती ह,ै ReplyStream इंंे࡫स का
call मेथड प्रيके डटेा चंक के ࣽलए चलाया जाता ह।ै

रीम्࡫ प्रोसेऀसंग 163

4. यࣺद AI मॉडल ࣹकसी टूल फंѽन को कॉल करने का ࣺनणर्य लेता ह,ै तो फंѽन
नाम और आगुर्मेंׅ को चंक से ࣺनकालकर क्रमशः f_name और f_arguments
ऐरे में ोर࡫ ࣹकया जाता ह।ै

5. यࣺद AI मॉडल उपयोगकतЄ के ࣽलए सामग्री जनरेट करता ह,ै तो इसे बफर ࣹकया
जाता है और send_to_client मेथड के माۀम से ѻाइंट को भेजा जाता ह।ै

6. एक बार र्࡫ ीम प्रोसेऀसंग पूरࣜ हो जाने के बाद, finalize मेथड को कॉल ࣹकया
जाता ह।ै यࣺद र्࡫ ीम के दौरान कोई टूल फंѽन चलाए गए थे, तो उंेۦ
PromptSubscriber के dispatch मेथड का उपयोग करके ࣺडࡵचै ࣹकया जाता
ह।ै

7. dispatch मेथड वातЄलाप प्रࣻतलेख में एक function_call संदशे जोड़ता ह,ै
संबंࣾधत टूल फंѽन को ࣺनࡄाࣺदत करता ह,ै और फंѽन कॉल के पिरणाम के
साथ प्रࣻतलेख में एक function_result संदशे जोड़ता ह।ै

8. टूल फंѽۥ को ࣺडࡵचै करने के बाद, बाद के लूݒ में डुࣺݎकेट फंѽन कॉ߶
को रोकने के ࣽलए फंѽन कॉल ࣹह्࡫र ी को ࣺѻयर कर ࣺदया जाता ह।ै

9. यࣺद कोई टूल फंѽन नहࣟ चलाया गया था, तो finalize मेथड अंࣻतम सामग्री
के साथ bot_message को अपडटे करता ह,ै इसे पूणर् के रूप में ࣿचࣺࢤत करता
ह,ै और अपडटे ࣹकए गए संदशे को ѻाइंट को भेजता ह।ै

10. लूप कंडीशन -> { bot_message.complete? } का मू߰ांकन ࣹकया जाता ह।ै
यࣺद bot_message को पूणर् के रूप में ࣿचࣺࢤत नहࣟ ࣹकया गया ह,ै तो लूप जारࣜ
रहता ह,ै और मूल प्रॉम्݂ को अपडटे ࣹकए गए वातЄलाप प्रࣻतलेख के साथ ࣺफर
से सबࣻमट ࣹकया जाता ह।ै

11. चरण 3-10 तब तक दोहराए जाते हैं जब तक bot_message को पूणर् के रूप
में ࣿचࣺࢤत नहࣟ ࣹकया जाता, जो यह दशЄता है ࣹक AI मॉडल ने अपनी प्रࣻतࣺक्रया
उۚم करना समा݆ कर ࣺदया है और ࣹकसी अ۠ टूल फ़ंѽन को ࣺनࡄाࣺदत
करने कࣞ आव࠮कता नहࣟ ह।ै

इस वातЄलाप लूप को लागू करके, आप AI मॉडल को एࣺݎकेशन के साथ आगे-पीछे
कࣞ बातचीत में संलӈ होने में सक्षम बनाते हैं, जहां आव࠮कतानुसार टूल फ़ंѽۥ
का ࣺनࡄादन ࣹकया जाता है और वातЄलाप के ाभाࣺवकࡼ समापन तक उपयोगकतЄ
के ࣽलए प्रࣻतࣺक्रयाएं उۚم कࣞ जाती हैं।

रीम्࡫ प्रोसेऀसंग 164

र्࡫ ीम प्रोसेऀसंग और वातЄलाप लूप का संयोजन गࣻतशील और इंटरैऎѮव AI-संचाࣽलत
अनुभवों को संभव बनाता ह,ै जहां AI मॉडल उपयोगकतЄ इनपुट को संसाࣾधत कर
सकता ह,ै ࣺवࣾभۚ टू߶ और फ़ंѽۥ का उपयोग कर सकता ह,ै और ࣺवकऀसत होते
वातЄलाप संदभर् के आधार पर रࣜयल-टाइम प्रࣻतࣺक्रयाएं प्रदान कर सकता ह।ै

लतࣈचाࡈ नरंतरताࣄ
यह AI आउटपुट कࣞ सीमाओं के बारे में जागरूक रहना महٌपूणर् ह।ै अࣾधकांश
मॉडलों में अࣾधकतम टोकन कࣞ एक सीमा होती है जो वे एक एकल प्रࣻतࣺक्रया में
उۚم कर सकते हैं, जो max_tokens पैरामीटर ाराڙ ࣺनधЄिरत कࣞ जाती ह।ै यࣺद AI
मॉडल प्रࣻतࣺक्रया उۚم करते समय इस सीमा तक पहुचं जाता ह,ै तो यह अचानक
रुक जाएगा और संकेत दगेा ࣹक आउटपुट को काटा गया ह।ै
AI टेफ़ॉमर्ݎ API से र्࡫ ीࣻमंग प्रࣻतࣺक्रया में, आप चंक में finish_reason वेिरएबल कࣞ
जांच करके इस ऍࣻࡱत का पता लगा सकते हैं। यࣺद finish_reason को ”length”
(या मॉडल के ࣽलए ࣺवऀश࠿ कोई अ۠ कࣞ वै߰)ू पर सेट ࣹकया गया ह,ै तो इसका
मतलब है ࣹक मॉडल जनरेशन के दौरान अपनी अࣾधकतम टोकन सीमा तक पहुचं
गया और आउटपुट को छोटा कर ࣺदया गया ह।ै
इस पिरदृ࠮ को सुचारू रूप से संभालने और एक ࣺनबЄध उपयोगकतЄ अनुभव प्रदान
करने का एक तरࣜका ह,ै अपनी र्࡫ ीम प्रोसेऀसंग लॉऀजक में एक चाࣽलतࡼ ࣺनरंतरता
तंत्र को लागू करना। लंबाई-संबंࣾधत समाࣺ݆ कारणों के ࣽलए एक पैटनर् मैच जोड़कर,
आप लूप करने और चाࣽलतࡼ रूप से आउटपुट को जहां छोड़ा था वहां से जारࣜ
रखने का ࣺवक߫ चुन सकते हैं।
यहां एक जानबूझकर सरलࣜकृत उदाहरण ࣺदया गया है ࣹक आप चाࣽलतࡼ ࣺनरंतरता
का समथर्न करने के ࣽलए ReplyStream ѻास में call ࣺवࣾध को कैसे संशोࣾधत कर
सकते हैं:

रीम्࡫ प्रोसेऀसंग 165

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices: [

9 { delta: {content: new_content},

10 finish_reason: finish_reason }] }

11

12 buffer << new_content.to_s

13

14 if finish_reason.blank?

15 send_to_client if new_content.to_s.match?(/\n\n/)

16 elsif LENGTH_STOPS.include?(finish_reason)

17 continue_cutoff

18 else

19 finalize

20 end

21

22 # ...

23 end

24 end

25

26 private

27

28 def continue_cutoff

29 conversation.bot_message!(buffer.join, visible: false)

30 conversation.user_message!("please continue", visible: false)

31 bot_message.update_column(:created_at, Time.current)

32 end

इस संशोࣾधत संࡡरण में, जब finish_reason काटे गए आउटपुट को इंࣻगत करता
ह,ै तब र्࡫ ीम को अंࣻतम रूप दनेे के बजाय, हम ट्र ांसࣺक्र݂ में ࣺबना अंࣻतम रूप ࣺदए
एक जोड़ी संदशे जोड़ते हैं, मूल उपयोगकतЄ-सामने वाले प्रࣻतࣺक्रया संदशे को उसके
created_at ࣺवशेषता को अपडटे करके ट्र ांसࣺक्र݂ के “नीचे” ले जाते हैं, और ࣺफर
लूप को होने दतेे हैं, ताࣹक एआई जहां छोड़ा था वहां से जारࣜ रख सके।
याद रखें ࣹक एआई पूणर्ता एंडपॉइंट टेलेस࡫ ह।ै यह केवल वहࣚ “जानता” है जो

रीम्࡫ प्रोसेऀसंग 166

आप इसे ट्र ांसࣺक्र݂ के माۀम से बताते हैं। इस मामले में, हम एआई को यह
बताने का तरࣜका ࣹक यह कट ऑफ हो गया था, ट्र ांसࣺक्र݂ में “अदृ࠮” (अंࣻतम
उपयोगकतЄ के ࣽलए) संदशे जोड़कर करते हैं। हालांࣹक, याद रखें ࣹक यह जानबूझकर
सरलࣜकृत उदाहरण ह।ै एक वाࣺࡰवक कायЄۢयन को यह सुࣺनऀࠥत करने के ࣽलए
आगे कࣞ ट्र ांसࣺक्र݂ प्रबंधन करने कࣞ आव࠮कता होगी ࣹक हमने टोकन बबЄद नहࣟ
ࣹकए और/या ट्र ांसࣺक्र݂ में दोहराए गए सहायक संदशेों के साथ एआई को भ्रࣻमत नहࣟ
ࣹकया।
चाࣽलत-ࣺनरंतरताࡼ का एक वाࣺࡰवक कायЄۢयन में तथाकࣽथत
“सࣹकॼ ट ब्रकेर लॉऀजक” भी होनी चाࣹहए जो अࣺनयंࣻत्रत लूࣺपंग को रोकने के
ࣽलए ह।ै कारण यह है ࣹक, कुछ प्रकार के उपयोगकतЄ प्रॉम्प्ׅ और कम max_tokens
सेࣺटӏं के साथ, एआई उपयोगकतЄ-सामने के आउटपुट को अनंत काल तक लूप
कर सकता ह।ै

ानۀ रखें ࣹक प्रيके लूप के ࣽलए एक अलग अनुरोध कࣞ आव࠮कता होती ह,ै और
प्रيके अनुरोध आपके पूरे ट्र ांसࣺक्र݂ का ࣺफर से उपयोग करता ह।ै आपको अपने
एࣺݎकेशन में चाࣽलतࡼ ࣺनरंतरता को लागू करने का ࣺनणर्य लेते समय उपयोगकतЄ
अनुभव और एपीआई उपयोग के बीच ट्र डे-ऑफ पर ࣺनऀࠥत रूप से ࣺवचार करना
चाࣹहए। ࣺवशेष रूप से चाࣽलत-ࣺनरंतरताࡼ खतरनाक रूप से महगंी हो सकती ह,ै
खासकर जब प्रीࣻमयम वाऀणऌիक मॉडल का उपयोग ࣹकया जा रहा हो।

षर्ࠇनࣄ
रीम्࡫ प्रोसेऀसंग टूल उपयोग को लाइव एआई प्रࣻतࣺक्रयाओं के साथ जोड़ने वाले एआई-
संचाࣽलत एࣺݎकेशन बनाने का एक महٌपूणर् पहलू ह।ै एआई टेफॉमर्ݎ एपीआई से
र्࡫ ीࣻमंग डटेा को कुशलतापूवर्क संभालकर, आप एक सहज और इंटरैऎѮव उपयोगकतЄ
अनुभव प्रदान कर सकते हैं, बड़ी प्रࣻतࣺक्रयाओं को संभाल सकते हैं, संसाधन उपयोग
को अनुकूࣽलत कर सकते हैं, और त्रुࣺ टयों को सुचारू रूप से संभाल सकते हैं।

रीम्࡫ प्रोसेऀसंग 167

प्रदान ࣹकया गया Conversation::ReplyStream ѻास ࣺदखाता है ࣹक पैटनर् मैࣿचंग
और इवेंट-संचाࣽलत आࣹकॼ टѫेर का उपयोग करके रूबी एࣺݎकेशन में र्࡫ ीम प्रोसेऀसंग
को कैसे लागू ࣹकया जा सकता ह।ै र्࡫ ीम प्रोसेऀसंग तकनीकों को समझकर और उनका
लाभ उठाकर, आप अपने एࣺݎकेशन में एआई एकࣞकरण कࣞ पूरࣜ क्षमता को अनलॉक
कर सकते हैं और शࣼѱशालࣜ और आकषर्क उपयोगकतЄ अनुभव प्रदान कर सकते
हैं।

ࢧउपचार-ࡈ डेटा

उपचारࣜ-ࡼ डटेा बृहत भाषा मॉडल (एलएलएम) कࣞ क्षमताओं का लाभ उठाकर
एࣺݎकेशन में डटेा कࣞ अखंडता, संगࣻत और गुणवـा सुࣺनऀࠥत करने का एक शࣼѱशालࣜ
दृࣼ࠿कोण ह।ै पैटनर् कࣞ यह श्रणेी डटेा ࣺवसंगࣻतयों, असंगࣻतयों या त्रुࣺ टयों को चाࣽलतࡼ
रूप से पहचानने, ࣺनदान करने और सुधारने के ࣽलए एआई के उपयोग के ࣺवचार पर
कें ࣺद्रत ह,ै ऀजससे डवेलपसर् पर बोझ कम होता है और डटेा कࣞ ࣺव࠰सनीयता का उՂ
रࡰ बना रहता ह।ै
मूल रूप से, उपचारࣜ-ࡼ डटेा पैटनर् यह मानते हैं ࣹक डटेा ࣹकसी भी एࣺݎकेशन का
जीवन रѱ ह,ै और इसकࣞ सटीकता और अखंडता सुࣺनऀࠥत करना एࣺݎकेशन के
उࣿचत कायर् और उपयोगकतЄ अनुभव के ࣽलए महٌपूणर् ह।ै हालांࣹक, डटेा कࣞ गुणवـा
का प्रबंधन और रखरखाव एक जࣺटल और समय लेने वाला कायर् हो सकता ह,ै ࣺवशेष
रूप से जब एࣺݎकेशन आकार और जࣺटलता में बढ़ते हैं। यहࣟ पर एआई कࣞ शࣼѱ
काम आती ह।ै

उपचारࣜ-ࡼ डटेा 169

उपचारࣜ-ࡼ डटेा पैटनर् में, एआई कायर्कतЄओं को आपके एࣺݎकेशन के डटेा कࣞ लगातार
ࣺनगरानी और ࣺवे࠯षण के ࣽलए ࣺनयोऀजत ࣹकया जाता ह।ै इन मॉडलों में डटेा के भीतर
पैटनर्, संबंधों और ࣺवसंगࣻतयों को समझने और ࠖाҷा करने कࣞ क्षमता होती ह।ै
अपनी प्राकृࣻतक भाषा प्रसंࡡरण और समझ क्षमताओं का लाभ उठाकर, वे डटेा में
संभाࣺवत समࡺाओं या असंगࣻतयों कࣞ पहचान कर सकते हैं और उंेۦ सुधारने के
ࣽलए उࣿचत कारर्वाई कर सकते हैं।
उपचारࣜ-ࡼ डटेा कࣞ प्रࣺक्रया में कई प्रमुख चरण शाࣻमल हैं:

1. डेटा :नगरानीࣄ एआई कायर्कतЄ लगातार एࣺݎकेशन के डटेा र्࡫ ीम, डटेाबेस,
या ोरेज࡫ ऀस࡫म कࣞ ࣺनगरानी करते हैं, ࣹकसी भी प्रकार कࣞ ࣺवसंगࣻतयों,
असंगࣻतयों, या त्रुࣺ टयों के संकेतों कࣞ खोज करते हैं। वैकऍ߫क रूप से, आप
ࣹकसी अपवाद कࣞ प्रࣻतࣺक्रया में एआई घटक को सࣺक्रय कर सकते हैं।

2. तࣆवसंगࣆ पहचान: जब कोई समࡺा पाई जाती ह,ै एआई कायर्कतЄ समࡺा कࣞ
ࣺवऀश࠿ प्रकृࣻत और दायरे कࣞ पहचान करने के ࣽलए डटेा का ࣺवࡰतृ ࣺवे࠯षण
करता ह।ै इसमें लापता मान, असंगत प्रारूप, या पूवर्-पिरभाࣻषत ࣺनयमों या
बाधाओं का उ߲ंघन करने वाले डटेा कࣞ पहचान शाࣻमल हो सकती ह।ै

3. नदानࣄ और सुधार: समࡺा कࣞ पहचान होने के बाद, एआई कायर्कतЄ उࣿचत
कारर्वाई का ࣺनधЄरण करने के ࣽलए डटेा डोमेन कࣞ अपनी समझ और ज्ञान
का उपयोग करता ह।ै इसमें चाࣽलतࡼ रूप से डटेा को सुधारना, लापता मान
भरना, या आव࠮क होने पर मानवीय हࡰक्षेप के ࣽलए समࡺा को ࣿचࣺࢤत करना
शाࣻमल हो सकता ह।ै

4. नरंतरࣄ सीखना (वैक࣓޷क, उपयोग के मामले पर :(नभर्रࣄ जैसे-जैसे आपका
एआई कायर्कतЄ ࣺवࣾभۚ डटेा समࡺाओं का सामना करता है और उंेۦ हल
करता ह,ै यह Ѻा हुआ और उसने कैसे प्रࣻतࣺक्रया दी, इसका वणर्न करने वाला
आउटपुट दे सकता ह।ै इस मेटाडटेा को सीखने कࣞ प्रࣺक्रयाओं में फࣞड ࣹकया
जा सकता है जो आपको (और शायद अंतࣺनर्ࣹहत मॉडल को, फाइन-ࣺू׀ नंग के
माۀम से) डटेा ࣺवसंगࣻतयों कࣞ पहचान करने और उंेۦ हल करने में समय के
साथ अࣾधक प्रभावी और कुशल बनने में सक्षम बनाता ह।ै

डटेा संबंधी समࡺाओं को चाࣽलतࡼ रूप से पहचानने और सुधारने से, आप यह

उपचारࣜ-ࡼ डटेा 170

सुࣺनऀࠥत कर सकते हैं ࣹक आपका एࣺݎकेशन उՂ गुणवـा वाले, ࣺव࠰सनीय डटेा पर
काम करता ह।ै यह एࣺݎकेशन कࣞ कायर्क्षमता या उपयोगकतЄ अनुभव को प्रभाࣺवत
करने वालࣜ त्रुࣺ टयों, असंगࣻतयों, या डटेा-संबंधी बӏ के जोंखम को कम करता ह।ै
एक बार जब एआई वकॼ सर् डटेा ࣺनगरानी और सुधार का कायर् संभाल लेते हैं, तब
आप अपने प्रयासों को एࣺݎकेशन के अ۠ महٌपूणर् पहलुओं पर कें ࣺद्रत कर सकते
हैं। यह उस समय और संसाधनों कࣞ बचत करता है जो अ۠था मैनुअल डटेा ѻࣺࣞनंग
और रखरखाव पर खचर् होते। वाࡰव में, जैसे-जैसे आपके एࣺݎकेशन का आकार
और जࣺटलता बढ़ती ह,ै मैनुअल रूप से डटेा गुणवـा का प्रबंधन करना और भी
चुनौतीपूणर् होता जाता ह।ै त޲मर-ࡼ“ डटेा” पैटनर् बड़ी मात्रा में डटेा को संभालने
और वाࣺࡰवक समय में समࡺाओं का पता लगाने के ࣽलए एआई कࣞ शࣼѱ का लाभ
उठाकर प्रभावी ढगं से लࡡे करते हैं।

अपनी प्रकृࣻत के कारण, एआई मॉडल समय के साथ बदलते डटेा पैटनर्,
,माࣞࡡ या आव࠮कताओं के अनुकूल बन सकते हैं, वो भी ࣺबना ࣹकसी
पयर्वेक्षण के या ۠नूतम पयर्वेक्षण के साथ। जब तक उनके ࣺनदϺश पयЄ݆
मागर्दशर्न प्रदान करते हैं, ࣺवशेष रूप से इऎՃत पिरणामों के संबंध में,
आपका एࣺݎकेशन ࣺबना ࠖापक मैनुअल हࡰक्षेप या कोड पिरवतर्नों कࣞ
आव࠮कता के नए डटेा पिरदृ࠮ों को संभालने में सक्षम हो सकता ह।ै

त޲मर-ࡼ डटेा पैटनर् अ۠ श्रेऀ णयों के पैटनर् जैसे “मߢी׀डू ऑफ वकॼ सर्” के साथ
अՃࣛ तरह से संरेंखत होते हैं। त޲मर-ࡼ डटेा क्षमता को एक ࣺवशेष प्रकार के वकॼ र
ࠖवࡱा के रूप में दखेा जा सकता है जो ࣺवशेष रूप से डटेा गुणवـा और अखंडता
सुࣺनऀࠥत करने पर कें ࣺद्रत ह।ै यह प्रकार का वकॼ र अ۠ एआई वकॼ सर् के साथ काम
करता ह,ै जहां प्रيके एࣺݎकेशन कࣞ कायर्क्षमता के ࣺवࣾभۚ पहलुओं में योगदान करता
ह।ै
ࠖवहार में त޲मर-ࡼ डटेा पैटनर् को लागू करने के ࣽलए एࣺݎकेशन आࣹकॼ टѫेर में
एआई मॉडल के सावधानीपूवर्क ࣺडजाइन और एकࣞकरण कࣞ आव࠮कता होती ह।ै डटेा
हाࣺन और भ्र࠿ता के जोंखमों के कारण, आपको ࠿ࡵ ࣺदशाࣺनदϺश पिरभाࣻषत करने
चाࣹहए ࣹक आप इस तकनीक का उपयोग कैसे करेंगे। आपको प्रदशर्न, लेࣺबࣽलटीࡡे

उपचारࣜ-ࡼ डटेा 171

और डटेा सुरक्षा जैसे कारकों पर भी ࣺवचार करना चाࣹहए।

ावहािरकߢ केस :डी࠷ टूटे हुए JSON को ठࢦक करना
त޲मर-ࡼ डटेा का लाभ उठाने के सबसे ࠖावहािरक और सुࣺवधाजनक तरࣜकों में
से एक समझाने में भी बहुत सरल ह:ै टूटे हुए JSON को ठीक करना।
यह तकनीक एलएलएम ाराڙ उۚم अपूणर् या असंगत डटेा जैसे टूटे हुए JSON से
ࣺनपटने कࣞ सामा۠ चुनौती पर लागू कࣞ जा सकती ह,ै और इन समࡺाओं को
चाࣽलतࡼ रूप से पहचानने और सुधारने के ࣽलए एक दृࣼ࠿कोण प्रदान करती ह।ै
Olympia में मैं ࣺनयࣻमत रूप से ऐसी ऍࣻࡱतयों का सामना करता हूं जहां एलएलएम
ऐसा JSON डटेा जनरेट करते हैं जो पूरࣜ तरह से वैध नहࣟ होता। यह ࣺवࣾभۚ कारणों से
हो सकता ह,ै जैसे एलएलएम ाराڙ वाࣺࡰवक JSON कोड से पहले या बाद में ࣺट݉णी
जोड़ना, या कॉमा कࣞ अनुपऍࣻࡱत या अनएे݄ࡡ डबल कोׅ जैसी ऀसंटѾै त्रुࣺ टयां
पैदा करना। ये समࡺाएं पाऀस϶ग त्रुࣺ टयों का कारण बन सकती हैं और एࣺݎकेशन कࣞ
कायर्क्षमता में ࠖवधान उۚم कर सकती हैं।
इस समࡺा का समाधान करने के ࣽलए, मैंने JsonFixer ѻास के रूप में एक
ࠖावहािरक समाधान का कायЄۢयन ࣹकया ह।ै यह ѻास “Self-Healing Data” पैटनर्
को प्रदऀशर्त करती ह,ै जो टूटे हुए JSON को इनपुट के रूप में लेती है और एक LLM
का उपयोग करके उसे ठीक करती ह,ै ऀजससे ऀजतनी संभव हो उतनी जानकारࣜ और
मूल इरादे को संरऀक्षत रखा जा सके।

उपचारࣜ-ࡼ डटेा 172

1 class JsonFixer

2 include Raix::ChatCompletion

3

4 def call(bad_json, error_message)

5 raise "No data provided" if bad_json.blank? || error_message.blank?

6

7 transcript << {

8 system: "Consider user-provided JSON that generated a parse

9 exception. Do your best to fix it while preserving the

10 original content and intent as much as possible." }

11 transcript << { user: bad_json }

12 transcript << { assistant: "What is the error message?"}

13 transcript << { user: error_message }

14 transcript << { assistant: "Here is the corrected JSON\n```json\n" }

15

16 self.stop = ["```"]

17

18 chat_completion(json: true)

19 end

20

21 def model

22 "mistralai/mixtral-8x7b-instruct:nitro"

23 end

24 end

ानۀ दें ࣹक JsonFixer कैसे AI कࣞ प्रࣻतࣺक्रयाओं को ࣺनदϺऀ शत करने के
ࣽलए Ventriloquist का उपयोग करता ह।ै

JSON डटेा के सुधार-ࡼ कࣞ प्रࣺक्रया ࣺनޭानुसार कायर् करती ह:ै

1. JSON जनरेशन: कुछ प्रॉम्प्ׅ या आव࠮कताओं के आधार पर JSON डटेा उۚم
करने के ࣽलए LLM का उपयोग ࣹकया जाता ह।ै हालांࣹक, LLM कࣞ प्रकृࣻत के
कारण, उۚم JSON हमेशा पूरࣜ तरह से मा۠ नहࣟ हो सकता ह।ै यࣺद आप
अमा۠ JSON दतेे हैं तो JSON पासर्र ࣺनऀࠥत रूप से ParserError उठाएगा।

उपचारࣜ-ࡼ डटेा 173

1 begin

2 JSON.parse(llm_generated_json)

3 rescue JSON::ParserError => e

4 JsonFixer.new.call(llm_generated_json, e.message)

5 end

ानۀ दें ࣹक एѾेݐन मैसेज भी JSONFixer कॉल को पास ࣹकया जाता है ताࣹक इसे
डटेा में Ѻा गलत ह,ै इसकࣞ पूरࣜ क߫ना न करनी पड़,े खासकर जब पासर्र अѾर
आपको बताता है ࣹक Ѻा गलत ह।ै

2. LLM-आधािरत सुधार: JSONFixer ѻास टूटे हुए JSON को एक LLM को
भेजता ह,ै साथ हࣚ JSON को ठीक करने के ࣽलए एक ࣺवऀश࠿ प्रॉम्݂ या ࣺनदϺश
भी भेजता ह,ै ऀजससे मूल जानकारࣜ और उे࠮ړ को ऀजतना संभव हो उतना
संरऀक्षत ࣹकया जा सके। LLM, जो ࣺवशाल मात्रा में डटेा पर प्रऀशऀक्षत है और
JSON ऀसंटѾै को समझता ह,ै त्रुࣺ टयों को सुधारने और एक वैध JSON ऊ्࡫र गं
जनरेट करने का प्रयास करता ह।ै LLM के आउटपुट को सीࣻमत करने के ࣽलए
Response Fencing का उपयोग ࣹकया जाता ह,ै और हम Mixtral 8x7B को
AI मॉडल के रूप में चुनते हैं, Ѻोंࣹक यह इस प्रकार के कायर् के ࣽलए ࣺवशेष
रूप से अՃा ह।ै

3. सؖापन और एकࢩकरण: LLM ाराڙ लौटाई गई ࣺफҢ JSON ऊ्࡫र गं
को JSONFixer ѻास ाराڙ यंࡼ पासर् ࣹकया जाता ह,ै Ѻोंࣹक इसने
chat_completion(json: true) को कॉल ࣹकया। यࣺद ࣺफҢ JSON सيापन
पास करता ह,ै तो इसे एࣺݎकेशन के कायर्प्रवाह में वापस एकࣞकृत कर ࣺदया
जाता ह,ै ऀजससे एࣺݎकेशन ࣺनबЄध रूप से डटेा को प्रोसेस करना जारࣜ रख
सकता ह।ै खराब JSON को “ठीक” कर ࣺदया गया ह।ै

हालांࣹक मैंने अपना JSONFixer कायЄۢयन कई बार ࣽलखा और पुनलϺंखत ࣹकया ह,ै
मुझे संदहे है ࣹक उन सभी संࡡरणों में कुल ࣺनवेश ࣹकया गया समय एक या दो घंटे
से अࣾधक ह।ै
ानۀ दें ࣹक ࣹकसी भी उपचार-ࡼ डटेा पैटनर् का एक महٌपूणर् तٌ उे࠮ړ का संरक्षण
ह।ै LLM-आधािरत सुधार प्रࣺक्रया जनरेट ࣹकए गए JSON कࣞ मूल जानकारࣜ और उे࠮ړ

उपचारࣜ-ࡼ डटेा 174

को ऀजतना संभव हो उतना संरऀक्षत करने का लҝ रखती ह।ै यह सुࣺनऀࠥत करता है
ࣹक ࣺफҢ JSON अपना ऀसमेंࣺटक अथर् बनाए रखता है और एࣺݎकेशन के संदभर् में
प्रभावी ढगं से उपयोग ࣹकया जा सकता ह।ै
Olympia में उपचार-ࡼ“ डटेा” दृࣼ࠿कोण का यह ࠖावहािरक कायЄۢयन ࠿ࡵ रूप
से दशЄता है ࣹक कैसे AI, ࣺवशेष रूप से LLMs का उपयोग वाࣺࡰवक दुࣺनया कࣞ
डटेा चुनौࣻतयों को हल करने के ࣽलए ࣹकया जा सकता ह।ै यह मजबूत और कुशल
एࣺݎकेशन बनाने के ࣽलए पारंपिरक प्रोग्राࣻमंग तकनीकों को AI क्षमताओं के साथ
जोड़ने कࣞ शࣼѱ को प्रदऀशर्त करता ह।ै

पोे࠷ल का नयमࣄ और उपचार-ࡈ“ डेटा” पैटनर्

उपचार-ࡼ“ डटेा,” जैसा ࣹक JSONFixer ѻास ाराڙ उदाहिरत ࣹकया गया ह,ै
पो࡫ले के ࣺनयम के ऀसڔांत के साथ अՃࣛ तरह से संरेंखत ह,ै ऀजसे मजबूती
का ऀसڔांत भी कहा जाता ह।ै पो࡫ले का ࣺनयम कहता ह:ै
“जो आप करते हैं उसमें रूࣺढ़वादी रहें, दूसरों से जो ीकारࡼ करते हैं उसमें उदार
रहें।”
यह ऀसڔांत, जो मूल रूप से शुरुआती इंटरनेट के अग्रदूत जॉन पो࡫ले ाराڙ ࠖѱ
ࣹकया गया था, ऐसी प्रणाࣽलयाँ बनाने के महٌ पर जोर दतेा है जो ࣺवࣺवध या यहाँ
तक ࣹक थोड़े गलत इनपुट के प्रࣻत सहनशील हों, जबࣹक आउटपुट भेजते समय
ࣺनࣺदर्࠿ प्रोटोकॉल का कड़ाई से पालन करें।
उपचारࣜ-ࡼ“ डटेा” के संदभर् में, JSONFixer ѻास पो࡫ले के ࣺनयम को साकार
करती ह,ै जो LLMs ाराڙ उۚم टूटे या अपूणर् JSON डटेा को ीकारࡼ करने में
उदार दृࣼ࠿कोण अपनाती ह।ै यह अपेऀक्षत प्रारूप का कड़ाई से पालन न करने वाले
JSON को तुरंत अࡼीकार या ࣺवफल नहࣟ करती। इसके बजाय, यह LLMs कࣞ
शࣼѱ का उपयोग करके JSON को ठीक करने का प्रयास करती ह।ै
अपूणर् JSON को ीकारࡼ करने में उदार होने के कारण, JSONFixer ѻास मजबूती

उपचारࣜ-ࡼ डटेा 175

और लचीलापन प्रदऀशर्त करती ह।ै यह ीकारࡼ करती है ࣹक वाࣺࡰवक दुࣺनया
में डटेा ࣺवࣾभۚ रूपों में आता है और हमेशा कड़े ࣺवࣺनदϺशों के अनुरूप नहࣟ हो
सकता। इन ࣺवचलनों को सुचारू रूप से संभालने और सुधारने के ,ाराڙ यह ѻास
सुࣺनऀࠥत करती है ࣹक एࣺݎकेशन अपूणर् डटेा कࣞ उपऍࣻࡱत में भी ࣺनबЄध रूप से
कायर् करता रह।े
दूसरࣜ ओर, JSONFixer ѻास आउटपुट के मामले में पो࡫ले के ࣺनयम के रूࣺढ़वादी
पहलू का भी पालन करती ह।ै LLMs का उपयोग करके JSON को ठीक करने के
बाद, ѻास सुधािरत JSON को मा۠ करती है ताࣹक यह अपेऀक्षत प्रारूप का कड़ाई
से पालन करे। यह एࣺݎकेशन के अ۠ भागों में भेजने से पहले डटेा कࣞ अखंडता
और सटीकता को बनाए रखती ह।ै यह रूࣺढ़वादी दृࣼ࠿कोण गारंटी दतेा है ࣹक
JSONFixer ѻास का आउटपुट ࣺव࠰सनीय और संगत ह,ै जो अंतर-संचालनीयता
को बढ़ावा दतेा है और त्रुࣺ टयों के प्रसार को रोकता ह।ै
जॉन पो࡫ले के बारे में रोचक तڇ:

• जॉन पो࡫ले (1943-1998) एक अमेिरकࣞ कंݍटूर वैज्ञाࣺनक थे ऀजۦोंने
इंटरनेट के ࣺवकास में महٌपूणर् भूࣻमका ࣺनभाई। उंेۦ अंतࣺनर्ࣹहत प्रोटोकॉल
और मानकों में उनके महٌपूणर् योगदान के ࣽलए “इंटरनेट के भगवान” के
रूप में जाना जाता था।

• पो࡫ले िरѼे࡫ फॉर कमेंׅ (RFC) दࡰावेज श्रृखंला के संपादक थे, जो
इंटरनेट के बारे में तकनीकࣞ और संगठनाىक नोׅ कࣞ एक श्रृखंला ह।ै
उۦोंने TCP, IP, और SMTP जैसे मौࣽलक प्रोटोकॉल सࣹहत 200 से अࣾधक
RFCs के लेखन या सह-लेखन ࣹकए।

• अपने तकनीकࣞ योगदान के अलावा, पो࡫ले अपने ࣺवनम्र और सहयोगी
दृࣼ࠿कोण के ࣽलए जाने जाते थे। वे आम सहमࣻत प्रा݆ करने और एक
मजबूत और अंतर-संचालनीय नेटवकॼ बनाने के ࣽलए ࣻमलकर काम करने के
महٌ में ࣺव࠰ास करते थे।

• पो࡫ले ने 1977 से 1998 में अपनी असामࣻयक मृुي तक University of
Southern California (USC) के Information Sciences Institute (ISI)
के कंݍटूर नेटवकॼ ࣺडࣺवजन के ࣺनदशेक के रूप में कायर् ࣹकया।

उपचारࣜ-ࡼ डटेा 176

• उनके अपार योगदान को मा۠ता दतेे हुए, पो࡫ले को 1998 में मरणोपरांत
प्रࣻतࣼࡀत िूरंग׀ पुरࡡार से स޲ाࣺनत ࣹकया गया, ऀजसे अѾर “कंࣺूݍ टगं
का नोबेल पुरࡡार” कहा जाता ह।ै

JSONFixer ѻास मजबूती, लचीलेपन और अंतर-संचालनीयता को बढ़ावा दतेी ह,ै
जो मू߰ पो࡫ले ने अपने पूरे किरयर में बनाए रखे। अपूणर्ताओं के प्रࣻत सहनशील
रहते हुए प्रोटोकॉल का कड़ाई से पालन करने वालࣜ प्रणाࣽलयां बनाकर, हम ऐसे
एࣺݎकेशन बना सकते हैं जो वाࣺࡰवक दुࣺनया कࣞ चुनौࣻतयों का सामना करने में
अࣾधक लचीले और अनुकूलनीय हों।

वचारणीयࣆ बंदुࣆ और प्रࣆतसंकेत
त޲मर-ࡼ डटेा दृࣼ࠿कोणों कࣞ प्रयोիता पूरࣜ तरह से आपके एࣺݎकेशन ाराڙ संभाले
जाने वाले डटेा के प्रकार पर ࣺनभर्र करती ह।ै एक कारण है ࣹक आप अपने एࣺݎकेशन
में सभी JSON पाऀस϶ग त्रुࣺ टयों को चाࣽलतࡼ रूप से सुधारने के ࣽलए JSON.parse
को सरल रूप से मंकࣞपैच नहࣟ करना चाहेंगे: सभी त्रुࣺ टयों को चाࣽलतࡼ रूप से
सुधारा नहࣟ जा सकता या सुधारा नहࣟ जाना चाࣹहए।
डटेा हैंडࣽलंग और प्रोसेऀसंग से संबंࣾधत ࣺनयामक या अनुपालन आव࠮कताओं के
साथ जुड़े होने पर त޲मर-ࡼ ࣺवशेष रूप से जࣺटल हो जाती ह।ै कुछ उښोगों, जैसे
ࢋाࡼ सेवा और ࣺवـ में, डटेा अखंडता और लेखा-परࣜक्षण क्षमता के संबंध में इतने
कड़े ࣺनयम हैं ࣹक उࣿचत ࣺनरࣜक्षण या लॉࣻगंग के ࣺबना ࣹकसी भी प्रकार का कވै“
बॉѾ” डटेा सुधार करना इन ࣺनयमों का उ߲ंघन कर सकता ह।ै यह सुࣺनऀࠥत करना
महٌपूणर् है ࣹक आप जो भी त޲मर-ࡼ डटेा तकनीकें ࣺवकऀसत करते हैं, वे लागू
कानूनी और ࣺनयामक ढांचे के अनुरूप हों।
त޲मर-ࡼ डटेा तकनीकों को लागू करने से, ࣺवशेष रूप से AI मॉड߶ से जुड़ी
तकनीकों का, एࣺݎकेशन प्रदशर्न और संसाधन उपयोग पर बड़ा प्रभाव पड़ सकता
ह।ै त्रुࣺ ट पहचान और सुधार के ࣽलए AI मॉड߶ के माۀम से बड़ी मात्रा में डटेा का

उपचारࣜ-ࡼ डटेा 177

प्रसंࡡरण क޼टूशेनल रूप से गहन हो सकता ह।ै त޲मर-ࡼ डटेा के लाभों और
संबंࣾधत प्रदशर्न एवं संसाधन लागतों के बीच ट्र डे-ऑफ का आकलन करना महٌपूणर्
ह।ै
यह कहा जाए तो, आइए इस शࣼѱशालࣜ दृࣼ࠿कोण को कब और कहाँ लागू करना ह,ै
इससे जुड़े कारकों में गहराई से जाते हैं।

डेटा महؘता
त޲मर-ࡼ डटेा तकनीकों के अनुप्रयोग पर ࣺवचार करते समय, प्रसंࡡरण ࣹकए जा
रहे डटेा कࣞ महٌता का आकलन करना अيतं आव࠮क ह।ै महٌता का रࡰ
आपके एࣺݎकेशन और इसके ࠖावसाࣻयक डोमेन के संदभर् में डटेा के महٌ और
संवेदनशीलता को दशЄता ह।ै
कुछ मामलों में, डटेा त्रुࣺ टयों को चाࣽलतࡼ रूप से सुधारना उࣿचत नहࣟ हो सकता,
ࣺवशेष रूप से यࣺद डटेा अࣾيधक संवेदनशील है या इसके कानूनी ࣺनࣹहताथर् हैं।
उदाहरण के ࣽलए, ࣺनޭࣽलंखत पिरदृ࠮ों पर ࣺवचार करें:

1. व،ीयࣆ लेन-दने: ࣺवـीय एࣺݎकेशन में, जैसे बैंࣹकंग ऀस࡫म या ट्र ेࣺ डगं ,टेफॉमर्ݎ
डटेा सटीकता सवЉՂ महٌ कࣞ होती ह।ै ࣺवـीय डटेा में छोटी त्रुࣺ टयां भी
महٌपूणर् पिरणाम ला सकती हैं, जैसे गलत खाता शेष, गलत ࣺदशा में भेजी
गई धनराऀश, या त्रुࣺ टपूणर् ट्र ेࣺ डगं ࣺनणर्य। इन मामलों में, ࣺवࡰतृ सيापन और
लेखा-परࣜक्षण के ࣺबना चाࣽलतࡼ सुधार अࡼीकायर् जोंखम पैदा कर सकते हैं।

2. ा؛कࣅचࣉ िरकॉडॳ: ࢋाࡼ सेवा एࣺݎकेशन अࣾيधक संवेदनशील और गोपनीय
रोगी डटेा से ࣺनपटते हैं। ࣿचࣹकُा िरकॉडॼ में अशुआڔयों का रोगी सुरक्षा और
उपचार ࣺनणर्यों पर गंभीर प्रभाव पड़ सकता ह।ै योӌ ࢋाࡼ सेवा पेशेवरों
ाराڙ उࣿचत ࣺनरࣜक्षण और सيापन के ࣺबना ࣿचࣹकُा डटेा को चाࣽलतࡼ रूप
से संशोࣾधत करना ࣺनयामक आव࠮कताओं का उ߲ंघन कर सकता है और रोगी
के क߰ाण को जोंखम में डाल सकता ह।ै

3. कानूनी द࠼ावेज़: अनुबंध, समझौते, या ۠ायालय फाइࣽलंग जैसे कानूनी
दࡰावेजों को संभालने वाले एࣺݎकेशन में कड़ी सटीकता और अखंडता कࣞ

उपचारࣜ-ࡼ डटेा 178

आव࠮कता होती ह।ै कानूनी डटेा में छोटी त्रुࣺ टयों के भी महٌपूणर् कानूनी
पिरणाम हो सकते हैं। इस क्षेत्र में चाࣽलतࡼ सुधार उपयुѱ नहࣟ हो सकते,
Ѻोंࣹक डटेा कࣞ वैधता और प्रवतर्नीयता सुࣺनऀࠥत करने के ࣽलए अѾर कानूनी
ࣺवशेषज्ञों ाराڙ मैनुअल समीक्षा और सيापन कࣞ आव࠮कता होती ह।ै

इन महٌपूणर् डटेा पिरदृ࠮ों में, चाࣽलतࡼ सुधारों से जुड़े जोंखम अѾर संभाࣺवत
लाभों से अࣾधक होते हैं। त्रुࣺ टयों को शाࣻमल करने या डटेा को गलत तरࣜके से संशोࣾधत
करने के पिरणाम गंभीर हो सकते हैं, ऀजनसे ࣺवـीय नुकसान, कानूनी दयेताएं, या
यहां तक ࣹक ࠖࣼѱयों को नुकसान भी हो सकता ह।ै
अيतं महٌपूणर् डटेा से ࣺनपटते समय, मैनुअल सيापन और मा۠करण प्रࣺक्रयाओं
को प्राथࣻमकता दनेा आव࠮क ह।ै डटेा कࣞ सटीकता और अखंडता सुࣺनऀࠥत करने में
मानवीय ࣺनरࣜक्षण और ࣺवशेषज्ञता महٌपूणर् ह।ै संभाࣺवत त्रुࣺ टयों या ࣺवसंगࣻतयों को
ࣿचࣺࢤत करने के ࣽलए त޲मर-ࡼ तकनीकों का उपयोग ࣹकया जा सकता ह,ै लेࣹकन
सुधारों पर अंࣻतम ࣺनणर्य में मानवीय ࣺनणर्य और अनुमोदन शाࣻमल होना चाࣹहए।
हालांࣹक, यह ानۀ रखना महٌपूणर् है ࣹक ࣹकसी एࣺݎकेशन में सभी डटेा कࣞ महٌपूणर्ता
का रࡰ समान नहࣟ हो सकता। एक हࣚ एࣺݎकेशन में, डटेा के कुछ ࣹहेࡿ कम
संवेदनशील हो सकते हैं या त्रुࣺ टयों के होने पर उनका प्रभाव कम हो सकता ह।ै ऐसे
मामलों में, त޲मर-ࡼ डटेा तकनीकों को चुࣺनंदा रूप से उन ࣺवऀश࠿ डटेा सबसेट पर
लागू ࣹकया जा सकता ह,ै जबࣹक महٌपूणर् डटेा मैनुअल सيापन के अधीन रहता ह।ै
मुҷ बात यह है ࣹक आपके एࣺݎकेशन में प्रيके डटेा श्रणेी कࣞ महٌपूणर्ता का
सावधानीपूवर्क आकलन ࣹकया जाए और संबंࣾधत जोंखमों और ࣺनࣹहताथЊ के आधार
पर सुधारों को संभालने के ࣽलए ࠿ࡵ ࣺदशाࣺनदϺश और प्रࣺक्रयाएं पिरभाࣻषत कࣞ जाएं।
महٌपूणर् (जैसे लेजसर्, ࣿचࣹकُा िरकॉडॼ) और गैर-महٌपूणर् डटेा (जैसे मेࣽलंग पते,
संसाधन चेतावࣺनयां) के बीच अंतर करके, आप उपयुѱ ानोंࡱ पर त޲मर-ࡼ डटेा
तकनीकों के लाभों का लाभ उठाने और जहां आव࠮क हो कड़े ࣺनयंत्रण और ࣺनरࣜक्षण
को बनाए रखने के बीच संतुलन बना सकते हैं।
अंततः, महٌपूणर् डटेा पर त޲मर-ࡼ डटेा तकनीकों को लागू करने का ࣺनणर्य डोमेन
ࣺवशेषज्ञों, कानूनी सलाहकारों और अ۠ संबंࣾधत ࣹहतधारकों के परामशर् से ࣽलया

उपचारࣜ-ࡼ डटेा 179

जाना चाࣹहए। आपके एࣺݎकेशन के डटेा से जुड़ी ࣺवऀश࠿ आव࠮कताओ,ं ࣺनयमों और
जोंखमों पर ࣺवचार करना और डटेा सुधार रणनीࣻतयों को तदनुसार संरेंखत करना
आव࠮क ह।ै

तु्रࣅट कࢩ गंभीरता
त޲मर-ࡼ डटेा तकनीकों को लागू करते समय, डटेा त्रुࣺ टयों कࣞ गंभीरता और प्रभाव
का आकलन करना महٌपूणर् ह।ै सभी त्रुࣺ टयां समान नहࣟ होतीं, और उࣿचत कारर्वाई
समࡺा कࣞ गंभीरता के आधार पर ࣾभۚ हो सकती ह।ै
मामूलࣜ ࣺवसंगࣻतयां या फॉमϺࣺटगं समࡺाएं चाࣽलतࡼ सुधार के ࣽलए उपयुѱ हो सकती
हैं। उदाहरण के ࣽलए, टूटे हुए JSON को ठीक करने का काम करने वाला त޲मर-ࡼ
डटेा वकॼ र गायब कॉमा या अनएे݄ࡡ डबल कोׅ को डटेा के अथर् या संरचना को
महٌपूणर् रूप से बदले ࣺबना संभाल सकता ह।ै इस प्रकार कࣞ त्रुࣺ टयों को सुधारना
अѾर सीधा होता है और समग्र डटेा अखंडता पर ۠नूतम प्रभाव पड़ता ह।ै
हालांࣹक, अࣾधक गंभीर त्रुࣺ टयां जो मूल रूप से डटेा के अथर् या अखंडता को बदलती
हैं, उनके ࣽलए एक अलग दृࣼ࠿कोण कࣞ आव࠮कता हो सकती ह।ै ऐसे मामलों में,
चाࣽलतࡼ सुधार पयЄ݆ नहࣟ हो सकते हैं, और डटेा कࣞ सटीकता और वैधता सुࣺनऀࠥत
करने के ࣽलए मानवीय हࡰक्षेप आव࠮क हो सकता ह।ै
यहࣟ पर एआई का उपयोग यंࡼ त्रुࣺ ट कࣞ गंभीरता ࣺनधЄिरत करने में मदद के ࣽलए
करने कࣞ अवधारणा सामने आती ह।ै एआई मॉडल कࣞ क्षमताओं का लाभ उठाते हुए,
हम ऐसे उपचार-ࡼ डटेा वकॼ र ࣺडज़ाइन कर सकते हैं जो न केवल त्रुࣺ टयों को सुधारते
हैं बऍߛ उन त्रुࣺ टयों कࣞ गंभीरता का आकलन भी करते हैं और उनसे ࣺनपटने के ࣽलए
सूࣿचत ࣺनणर्य लेते हैं।
उदाहरण के ࣽलए, एक उपचार-ࡼ डटेा वकॼ र पर ࣺवचार करें जो ग्राहक डटेाबेस में
प्रवाࣹहत होने वाले डटेा में ࣺवसंगࣻतयों को सुधारने के ࣽलए ऀज޲देार ह।ै वकॼ र को डटेा
का ࣺवे࠯षण करने और संभाࣺवत त्रुࣺ टयों कࣞ पहचान करने के ࣽलए ࣺडज़ाइन ࣹकया जा
सकता ह,ै जैसे ࣹक गायब या परࡵर ࣺवरोधी जानकारࣜ। हालांࣹक, सभी त्रुࣺ टयों को

उपचारࣜ-ࡼ डटेा 180

चाࣽलतࡼ रूप से सुधारने के बजाय, वकॼ र को अࣻतिरѱ टूल कॉ߶ से लैस ࣹकया
जा सकता है जो गंभीर त्रुࣺ टयों को मानवीय समीक्षा के ࣽलए ࣿचࣺࢤत कर सकते हैं।
यहाँ एक उदाहरण है ࣹक इसे कैसे कायЄअۢत ࣹकया जा सकता ह:ै

1 class CustomerDataReviewer

2 include Raix::ChatCompletion

3 include Raix::FunctionDeclarations

4

5 attr_accessor :customer

6

7 function :flag_for_review, reason: { type: "string" } do |params|

8 AdminNotifier.review_request(customer, params[:reason])

9 end

10

11 def initialize(customer)

12 self.customer = customer

13 end

14

15 def call(customer_data)

16 transcript << {

17 system: "You are a customer data reviewer. Your task is to identify

18 and correct inconsistencies in customer data.

19

20 < additional instructions here... >

21

22 If you encounter severe errors that require human review, use the

23 `flag_for_review` tool to flag the data for manual intervention." }

24

25 transcript << { user: customer.to_json }

26 transcript << { assistant: "Reviewed/corrected data:\n```json\n" }

27

28 self.stop = ["```"]

29

30 chat_completion(json: true).then do |result|

31 return if result.blank?

32

33 customer.update(result)

34 end

35 end

36 end

उपचारࣜ-ࡼ डटेा 181

इस उदाहरण में, CustomerDataHealer वकॼ र ग्राहक डटेा में असंगࣻतयों कࣞ पहचान
और सुधार के ࣽलए ࣺडज़ाइन ࣹकया गया ह।ै एक बार ࣺफर, हम संरࣿचत आउटपुट प्रा݆
करने के ࣽलए रेࡵॉۥ फेऊۥगं और वेंࣺट्रलोएѼ࡫ का उपयोग करते हैं। महٌपूणर् रूप
से, वकॼ र के ऀस࡫म ࣺनदϺश में गंभीर त्रुࣺ टयों का सामना होने पर flag_for_review
फ़ंѽन का उपयोग करने के ࣺनदϺश शाࣻमल हैं।
जब वकॼ र ग्राहक डटेा को प्रोसेस करता ह,ै तो यह डटेा का ࣺवे࠯षण करता है और
ࣹकसी भी असंगࣻत को सुधारने का प्रयास करता ह।ै यࣺद वकॼ र यह ࣺनधЄिरत करता है
ࣹक त्रुࣺ टयाँ गंभीर हैं और मानवीय हࡰक्षेप कࣞ आव࠮कता ह,ै तो यह डटेा को गݱै
करने और गंगࣻݱै का कारण प्रदान करने के ࣽलए flag_for_review टूल का उपयोग
कर सकता ह।ै
chat_completion मेथड को json: true के साथ कॉल ࣹकया जाता है ताࣹक सुधािरत
ग्राहक डटेा को JSON के रूप में पासर् ࣹकया जा सके। फ़ंѽन कॉल के बाद लूࣺपंग का
कोई प्रावधान नहࣟ ह,ै इसࣽलए यࣺद flag_for_review को इनवोक ࣹकया गया था तो
पिरणाम खालࣜ होगा। अ۠था, ग्राहक को समीऀक्षत और संभाࣺवत रूप से सुधािरत
डटेा के साथ अपडटे ࣹकया जाता ह।ै
त्रुࣺ ट कࣞ गंभीरता के आकलन और मानवीय समीक्षा के ࣽलए डटेा को गݱै करने के
ࣺवक߫ को शाࣻमल करके, उपचारࣜ-ࡼ डटेा वकॼ र अࣾधक बुआڔमान और अनुकूलनीय
बन जाता ह।ै यह मामूलࣜ त्रुࣺ टयों को चाࣽलतࡼ रूप से संभाल सकता है जबࣹक गंभीर
त्रुࣺ टयों को मैनुअल हࡰक्षेप के ࣽलए मानव ࣺवशेषज्ञों तक पहुचंा सकता ह।ै
त्रुࣺ ट कࣞ गंभीरता ࣺनधЄिरत करने के ࣺवऀश࠿ मानदडं डोमेन ज्ञान और ࠖावसाࣻयक
आव࠮कताओं के आधार पर वकॼ र के ࣺनदϺश में पिरभाࣻषत ࣹकए जा सकते हैं। डटेा
अखंडता पर प्रभाव, डटेा हाࣺन या भ्र࠿ता कࣞ संभावना, और गलत डटेा के पिरणामों
जैसे कारकों को गंभीरता का आकलन करते समय ࣺवचार ࣹकया जा सकता ह।ै
त्रुࣺ ट कࣞ गंभीरता का आकलन करने के ࣽलए AI का लाभ उठाकर और मानवीय
हࡰक्षेप के ࣺवक߫ प्रदान करके, उपचारࣜ-ࡼ डटेा तकनीकें चालनࡼ और डटेा
सटीकता बनाए रखने के बीच संतुलन बना सकती हैं। यह दृࣼ࠿कोण सुࣺनऀࠥत करता
है ࣹक मामूलࣜ त्रुࣺ टयों को कुशलतापूवर्क सुधारा जाए जबࣹक गंभीर त्रुࣺ टयों को मानव
समीक्षकों से आव࠮क ानۀ और ࣺवशेषज्ञता प्रा݆ हो।

उपचारࣜ-ࡼ डटेा 182

डोमेन जࣅटलता
उपचारࣜ-ࡼ डटेा तकनीकों के अनुप्रयोग पर ࣺवचार करते समय, डटेा डोमेन कࣞ
जࣺटलता और इसकࣞ संरचना और संबंधों को ࣺनयंࣻत्रत करने वाले ࣺनयमों का
मू߰ांकन करना महٌपूणर् ह।ै डोमेन कࣞ जࣺटलता चाࣽलतࡼ डटेा सुधार दृࣼ࠿कोणों
कࣞ प्रभावशीलता और ࠖवहायर्ता को महٌपूणर् रूप से प्रभाࣺवत कर सकती ह।ै
उपचारࣜ-ࡼ डटेा तकनीकें तब अՃࣛ तरह से काम करती हैं जब डटेा सुपिरभाࣻषत
पैटनर् और प्रࣻतबंधों का पालन करता ह।ै उन डोमेन में जहाँ डटेा संरचना अपेक्षाकृत
सरल है और डटेा तٌों के बीच संबंध सीधे हैं, चाࣽलतࡼ सुधारों को उՂ ࣺव࠰ास के
साथ लागू ࣹकया जा सकता ह।ै उदाहरण के ࣽलए, फॉमϺࣺटगं समࡺाओं को सुधारना
या बुࣺनयादी डटेा प्रकार प्रࣻतबंधों को लागू करना अѾर उपचारࣜ-ࡼ डटेा वकॼ सर् ाराڙ
प्रभावी ढगं से संभाला जा सकता ह।ै
हालांࣹक, जैसे-जैसे डटेा डोमेन कࣞ जࣺटलता बढ़ती ह,ै चाࣽलतࡼ डटेा सुधार से
जुड़ी चुनौࣻतयां भी बढ़ती जाती हैं। जࣺटल ࠖावसाࣻयक तकॼ , डटेा इकाइयों के बीच
जࣺटल संबंधों, या डोमेन-ࣺवऀश࠿ ࣺनयमों और अपवादों वाले डोमेन में, त޲मर-ࡼ डटेा
तकनीकें हमेशा सूҜ बातों को नहࣟ समझ पाती हैं और अनपेऀक्षत पिरणाम उۚم
कर सकती हैं।
आइए एक जࣺटल डोमेन का उदाहरण लेते हैं: एक ࣺवـीय ट्र ेࣺ डगं ऀस࡫म। इस
डोमेन में, डटेा में ࣺवࣾभۚ ࣺवـीय साधन, बाजार डटेा, ट्र ेࣺ डगं ࣺनयम, और ࣺनयामक
आव࠮कताएं शाࣻमल होती हैं। ࣺवࣾभۚ डटेा तٌों के बीच संबंध जࣺटल हो सकते
हैं, और डटेा कࣞ वैधता और संगࣻत को ࣺनयंࣻत्रत करने वाले ࣺनयम डोमेन के ࣽलए
अࣾيधक ࣺवऀश࠿ हो सकते हैं।
इस तरह के जࣺटल डोमेन में, ट्र डे डटेा में असंगࣻतयों को सुधारने के ࣽलए ࣺनयुѱ
त޲मर-ࡼ डटेा वकॼ र को डोमेन-ࣺवऀश࠿ ࣺनयमों और प्रࣻतबंधों कࣞ गहरࣜ समझ होनी
चाࣹहए। इसे बाजार ࣺनयमों, ट्र ेࣺ डगं सीमाओ,ं जोंखम गणनाओ,ं और ࣺनपटान प्रࣺक्रयाओं
जैसे कारकों पर ࣺवचार करना होगा। इस संदभर् में चाࣽलतࡼ सुधार हमेशा डोमेन कࣞ
पूणर् जࣺटलता को नहࣟ समझ पाते हैं और अनजाने में त्रुࣺ टयां या डोमेन-ࣺवऀश࠿ ࣺनयमों
का उ߲ंघन कर सकते हैं।

उपचारࣜ-ࡼ डटेा 183

डोमेन जࣺटलता कࣞ चुनौࣻतयों से ࣺनपटने के ࣽलए, त޲मर-ࡼ डटेा तकनीकों को एआई
मॉडल और वकॼ सर् में डोमेन-ࣺवऀश࠿ ज्ञान और ࣺनयमों को शाࣻमल करके बेहतर बनाया
जा सकता ह।ै यह ࣺनޭࣽलंखत तकनीकों के माۀम से प्रा݆ ࣹकया जा सकता ह:ै

1. डोमेन-ࣆव࣊शࠋ प्र࣊शक्षण: त޲मर-ࡼ डटेा के ࣽलए उपयोग ࣹकए जाने वाले एआई
मॉडल को ࣺवशेष डोमेन के डटेासेट पर ࣺनदϺऀ शत या फाइन-׀नू ࣹकया जा
सकता है जो उस ࣺवशेष डोमेन कࣞ जࣺटलताओं और ࣺनयमों को समझते हैं।
मॉडल को प्रࣻतࣺनࣾध डटेा और पिरदृ࠮ों से अवगत कराकर, वे डोमेन-ࣺवऀश࠿
पैटनर्, प्रࣻतबंध और अपवादों को सीख सकते हैं।

2. नयम-आधािरतࣄ प्रࣆतबंध: त޲मर-ࡼ डटेा वकॼ सर् को ࠿ࡵ ࣺनयम-आधािरत
प्रࣻतबंधों से संवࣾधर्त ࣹकया जा सकता है जो डोमेन-ࣺवऀश࠿ ज्ञान को एनकोड
करते हैं। ये ࣺनयम डोमेन ࣺवशेषज्ञों ाराڙ पिरभाࣻषत ࣹकए जा सकते हैं और डटेा
सुधार प्रࣺक्रया में एकࣞकृत ࣹकए जा सकते हैं। एआई मॉडल तब इन ࣺनयमों का
उपयोग अपने ࣺनणर्यों को मागर्दऀशर्त करने और डोमेन-ࣺवऀश࠿ आव࠮कताओं
के अनुपालन को सुࣺनऀࠥत करने के ࣽलए कर सकते हैं।

3. डोमेन वशेषज्ञोंࣆ के साथ सहयोग: जࣺटल डोमेन में, त޲मर-ࡼ डटेा तकनीकों के
ࣺडजाइन और ࣺवकास में डोमेन ࣺवशेषज्ञों को शाࣻमल करना महٌपूणर् ह।ै डोमेन
ࣺवशेषज्ञ डटेा कࣞ जࣺटलताओ,ं ࠖावसाࣻयक ࣺनयमों, और संभाࣺवत एज केस के
बारे में मू߰वान जानकारࣜ प्रदान कर सकते हैं। उनके ज्ञान को मानव-सहायक
प्रणालࣜ पैटनर् का उपयोग करके एआई मॉडल और वकॼ सर् में शाࣻमल ࣹकया जा
सकता ह।ै

4. क्रࣆमक और पुनरावत࣮ दृࠋࣇकोण: जࣺटल डोमेन से ࣺनपटते समय, त޲मर-ࡼ
डटेा के ࣽलए एक क्रࣻमक और पुनरावत॑ दृࣼ࠿कोण अपनाना अѾर लाभदायक
होता ह।ै एक बार में पूरे डोमेन के ࣽलए सुधारों को चाࣽलतࡼ करने का प्रयास
करने के बजाय, ࣺवऀश࠿ उप-डोमेन या डटेा श्रेऀ णयों पर ानۀ कें ࣺद्रत करें जहां
ࣺनयम और प्रࣻतबंध अՃࣛ तरह से समझे जाते हैं। जैसे-जैसे डोमेन कࣞ समझ
बढ़ती है और तकनीकें प्रभावी साࣺबत होती हैं, धीरे-धीरे त޲मर-ࡼ तकनीकों
के दायरे का ࣺवࡰार करें।

डटेा डोमेन कࣞ जࣺटलता पर ࣺवचार करते हुए और उपचार-ࡼ डटेा तकनीकों में

उपचारࣜ-ࡼ डटेा 184

डोमेन-ࣺवऀश࠿ ज्ञान को शाࣻमल करके, आप चालनࡼ और सटीकता के बीच संतुलन
बना सकते हैं। यह समझना महٌपूणर् है ࣹक उपचार-ࡼ डटेा एक सवर्मा۠ समाधान
नहࣟ है और इस दृࣼ࠿कोण को प्रيके डोमेन कࣞ ࣺवऀश࠿ आव࠮कताओं और चुनौࣻतयों
के अनुरूप बनाया जाना चाࣹहए।
जࣺटल डोमेन में, उपचार-ࡼ डटेा तकनीकों को मानवीय ࣺवशेषज्ञता और ࣺनरࣜक्षण के
साथ जोड़ने वाला एक ࣻमࣿश्रत दृࣼ࠿कोण सबसे प्रभावी हो सकता ह।ै चाࣽलतࡼ सुधार
ࣺनयࣻमत और सुपिरभाࣻषत मामलों को संभाल सकते हैं, जबࣹक जࣺटल पिरदृ࠮ों या
अपवादों को मानवीय समीक्षा और हࡰक्षेप के ࣽलए ࣿचࣺࢤत ࣹकया जा सकता ह।ै यह
सहयोगाىक दृࣼ࠿कोण सुࣺनऀࠥत करता है ࣹक जࣺटल डटेा डोमेन में आव࠮क ࣺनयंत्रण
और सटीकता बनाए रखते हुए चालनࡼ के लाभों को प्रा݆ ࣹकया जाए।

ा҃ेयताߢ और पारद࣊शर्ता
ࠖाҷेयता एआई मॉडल ाराڙ ࣽलए गए ࣺनणर्यों के पीछे के तकॼ को समझने और
ࠖाҷा करने कࣞ क्षमता को संदࣾभर्त करती ह,ै जबࣹक पारदऀशर्ता डटेा सुधार प्रࣺक्रया
में ࠿ࡵ दृ࠮ता प्रदान करने से संबंࣾधत ह।ै
कई संदभЊ में, डटेा संशोधन लेखा-परࣜक्षण योӌ और ۠ायसंगत होने चाࣹहए।
ࠖावसाࣻयक उपयोगकतЄओ,ं लेखा परࣜक्षकों और ࣺनयामक ࣺनकायों सࣹहत ࣹहतधारकों
को यह ीकरण࠿ࡵ कࣞ आव࠮कता हो सकती है ࣹक कुछ ࣺवशेष डटेा सुधार Ѻों
ࣹकए गए और एआई मॉडल उन ࣺनणर्यों पर कैसे पहुचंे। यह ࣺवशेष रूप से उन क्षेत्रों
में महٌपूणर् है जहां डटेा सटीकता और अखंडता का महٌपूणर् प्रभाव पड़ता ह,ै जैसे
ࣺवـ, ࢋाࡼ सेवा और कानूनी मामले।
ࠖाҷेयता और पारदऀशर्ता कࣞ आव࠮कता को पूरा करने के ࣽलए, उपचार-ࡼ डटेा
तकनीकों में ऐसे तंत्र शाࣻमल होने चाࣹहए जो एआई मॉडल कࣞ ࣺनणर्य-प्रࣺक्रया में
अंतदृर्ࣼ࠿ प्रदान करें। यह ࣺवࣾभۚ दृࣼ࠿कोणों के माۀम से प्रा݆ ࣹकया जा सकता ह:ै

1. वचारࣆ शंृ्रखला: मॉडल से डटेा में पिरवतर्न करने से पहले अपनी सोच को
“जोर से” समझाने के ࣽलए कहने से ࣺनणर्य-प्रࣺक्रया को समझना आसान हो

उपचारࣜ-ࡼ डटेा 185

सकता है और ࣹकए गए सुधारों के ࣽलए मानव-पठनीय ीकरण࠿ࡵ तैयार ࣹकए
जा सकते हैं। इसका ࠖापार-प्रࣻतफल ीकरण࠿ࡵ को संरࣿचत डटेा आउटपुट से
अलग करने में थोड़ी अࣾधक जࣺटलता ह,ै ऀजसे संबोࣾधत ࣹकया जा सकता ह…ै

2. ीकरणࠋࡁ उؑादन: उपचार-ࡼ डटेा कायर्कतЄओं को उनके ाराڙ ࣹकए गए
सुधारों के ࣽलए मानव-पठनीय ीकरण࠿ࡵ उۚم करने कࣞ क्षमता से लैस ࣹकया
जा सकता ह।ै यह मॉडल से डटेा में हࣚ एकࣞकृत अपनी ࣺनणर्य-प्रࣺक्रया को आसानी
से समझने योӌ ीकरणों࠿ࡵ के रूप में आउटपुट करने के ࣽलए कहकर प्रा݆
ࣹकया जा सकता ह।ै उदाहरण के ࣽलए, एक उपचार-ࡼ डटेा कायर्कतЄ एक िरपोटॼ
तैयार कर सकता है जो उसके ाराڙ पहचानी गई ࣺवऀश࠿ डटेा ࣺवसंगࣻतयों, लागू
ࣹकए गए सुधारों और उन सुधारों के पीछे के तकॼ को हाइलाइट करता ह।ै

3. वशेषताࣆ महؘ: एआई मॉडल को उनके ࣺनदϺशों के ࣹहेࡿ के रूप में डटेा सुधार
प्रࣺक्रया में ࣺवࣾभۚ ࣺवशेषताओं या गुणों के महٌ के बारे में जानकारࣜ के साथ
ࣺनदϺऀ शत ࣹकया जा सकता ह।ै बदले में, उन ࣺनदϺशों को मानव ࣹहतधारकों के
ࣽलए प्रकट ࣹकया जा सकता ह।ै मॉडल के ࣺनणर्यों को प्रभाࣺवत करने वाले प्रमुख
कारकों कࣞ पहचान करके, ࣹहतधारक सुधारों के पीछे के तकॼ में अंतदृर्ࣼ࠿ प्रा݆
कर सकते हैं और उनकࣞ वैधता का आकलन कर सकते हैं।

4. लॉࣇगंग और ऑࣅडࣅटंग: त޲मर-ࡼ डटेा प्रࣺक्रया में पारदऀशर्ता बनाए रखने के
ࣽलए ࠖापक लॉࣻगंग और ऑࣺडࣺटगं तंत्र का कायЄۢयन महٌपूणर् ह।ै एआई
मॉडल ाराڙ ࣹकए गए प्रيके डटेा सुधार को लॉग ࣹकया जाना चाࣹहए, ऀजसमें
मूल डटेा, सुधािरत डटेा और कࣞ गई ࣺवऀश࠿ कारर्वाइयां शाࣻमल हैं। यह ऑࣺडट
ट्र ले पूवर्ࠖापी ࣺवे࠯षण कࣞ अनुमࣻत दतेा है और डटेा में ࣹकए गए संशोधनों का
࠿ࡵ िरकॉडॼ प्रदान करता ह।ै

5. मानव-सहभागी दृࠋࣇकोण: मानव-सहभागी दृࣼ࠿कोण को शाࣻमल करने से -ࡼ
मर޲त डटेा तकनीकों कࣞ ࠖाҷेयता और पारदऀशर्ता बढ़ सकती ह।ै एआई-
जࣺनत सुधारों कࣞ समीक्षा और सيापन में मानव ࣺवशेषज्ञों को शाࣻमल करके,
संगठन यह सुࣺनऀࠥत कर सकते हैं ࣹक सुधार डोमेन ज्ञान और ࠖावसाࣻयक
आव࠮कताओं के अनुरूप हैं। मानवीय ࣺनरࣜक्षण जवाबदहेࣚ कࣞ एक अࣻतिरѱ
परत जोड़ता है और एआई मॉडल में ࣹकसी भी संभाࣺवत पूवЄग्रह या त्रुࣺ टयों कࣞ
पहचान करने कࣞ अनुमࣻत दतेा ह।ै

उपचारࣜ-ࡼ डटेा 186

6. नरंतरࣄ नगरानीࣄ और मू޼ांकन: पारदऀशर्ता और ࣺव࠰ास बनाए रखने के ࣽलए
त޲मर-ࡼ डटेा तकनीकों के प्रदशर्न कࣞ ࣺनयࣻमत ࣺनगरानी और मू߰ांकन
आव࠮क ह।ै समय के साथ एआई मॉडल कࣞ सटीकता और प्रभावशीलता का
आकलन करके, संगठन ࣹकसी भी ࣺवचलन या असामा۠ताओं कࣞ पहचान कर
सकते हैं और सुधाराىक कारर्वाई कर सकते हैं। ࣺनरंतर ࣺनगरानी यह सुࣺनऀࠥत
करने में मदद करती है ࣹक त޲मर-ࡼ डटेा प्रࣺक्रया ࣺव࠰सनीय बनी रहे और
वांࣽछत पिरणामों के अनुरूप हो।

त޲मर-ࡼ डटेा तकनीकों को लागू करते समय ࠖाҷेयता और पारदऀशर्ता महٌपूणर्
ࣺवचार हैं। डटेा सुधारों के ࣽलए ࠿ࡵ ीकरण࠿ࡵ प्रदान करके, ࠖापक ऑࣺडट ट्र ले
बनाए रखकर, और मानवीय ࣺनरࣜक्षण को शाࣻमल करके, संगठन त޲मर-ࡼ डटेा
प्रࣺक्रया में ࣺव࠰ास बना सकते हैं और यह सुࣺनऀࠥत कर सकते हैं ࣹक डटेा में ࣹकए गए
संशोधन ۠ायसंगत हैं और ࠖावसाࣻयक उे࠮ړों के अनुरूप हैं।
चालनࡼ के लाभों और पारदऀशर्ता कࣞ आव࠮कता के बीच संतुलन बनाना महٌपूणर्
ह।ै जबࣹक त޲मर-ࡼ डटेा तकनीकें डटेा गुणवـा और दक्षता में महٌपूणर् सुधार
कर सकती हैं, यह डटेा सुधार प्रࣺक्रया पर दृ࠮ता और ࣺनयंत्रण खोने कࣞ कࣞमत पर
नहࣟ होना चाࣹहए। ࠖाҷेयता और पारदऀशर्ता को ानۀ में रखते हुए त޲मर-ࡼ डटेा
कायर्कतЄओं को ࣺडज़ाइन करके, संगठन एआई कࣞ शࣼѱ का उपयोग कर सकते हैं,
जबࣹक डटेा में आव࠮क रࡰ कࣞ जवाबदहेࣚ और ࣺव࠰ास बनाए रख सकते हैं।

अनपे࣊क्षत पिरणाम
जबࣹक त޲मर-ࡼ डटेा तकनीकें डटेा गुणवـा और संगࣻत में सुधार करने का लҝ
रखती हैं, अनपेऀक्षत पिरणामों कࣞ संभावना के प्रࣻत सचेत रहना महٌपूणर् ह।ै चाࣽलतࡼ
सुधार, यࣺद सावधानीपूवर्क ࣺडज़ाइन और ࣺनगरानी नहࣟ कࣞ जाती ह,ै तो अनजाने
में डटेा के अथर् या संदभर् को बदल सकते हैं, ऀजससे अनुप्रवाहࣚ समࡺाएं उۚم हो
सकती हैं।
त޲मर-ࡼ डटेा के प्राथࣻमक जोंखमों में से एक डटेा सुधार प्रࣺक्रया में पूवЄग्रह या
त्रुࣺ टयों का प्रवेश ह।ै एआई मॉडल, ࣹकसी अ۠ सॉݨवेयर ऀस࡫म कࣞ तरह, प्रऀशक्षण

उपचारࣜ-ࡼ डटेा 187

डटेा में मौजूद पूवЄग्रहों या एߝोिरदम के ࣺडजाइन के माۀम से प्रࡰतु पूवЄग्रहों के
अधीन हो सकते हैं। यࣺद इन पूवЄग्रहों कࣞ पहचान और कम नहࣟ ࣹकया जाता ह,ै तो
वे त޲मर-ࡼ डटेा प्रࣺक्रया के माۀम से फैल सकते हैं और ࣺवषम या गलत डटेा
संशोधनों का पिरणाम हो सकते हैं।
उदाहरण के ࣽलए, ग्राहक जनसांऐҷकࣞय डटेा में ࣺवसंगࣻतयों को सुधारने के ࣽलए
ࣺनयुѱ एक सुधार-ࡼ डटेा कायर्कतЄ पर ࣺवचार करें। यࣺद एआई मॉडल ने ऐࣻतहाऀसक
डटेा से पूवЄग्रह सीखा ह,ै जैसे ࣹक ࣺवऀश࠿ ࠖवसायों या आय रोंࡰ को ࣺवशेष ࣽलंग
या जाࣻतयों से जोड़ना, तो यह गलत धारणाएं बना सकता है और डटेा को ऐसे तरࣜके
से संशोࣾधत कर सकता है जो उन पूवЄग्रहों को मजबूत करता ह।ै यह अशुڔ ग्राहक
प्रोफाइल, भ्रामक ࠖावसाࣻयक ࣺनणर्य और संभाࣺवत भेदभावपूणर् पिरणामों कࣞ ओर ले
जा सकता ह।ै
एक अ۠ संभाࣺवत अनपेऀक्षत पिरणाम डटेा सुधार प्रࣺक्रया के दौरान मू߰वान जानकारࣜ
या संदभर् का नुकसान ह।ै सुधार-ࡼ डटेा तकनीकें अѾर एकरूपता सुࣺनऀࠥत करने
के ࣽलए डटेा को मानकࣞकृत और सामा۠ीकृत करने पर ानۀ कें ࣺद्रत करती हैं।
हालांࣹक, कुछ मामलों में, मूल डटेा में बारࣹࣜकयां, अपवाद, या संदभर्गत जानकारࣜ हो
सकती है जो पूरࣜ तࡼीर को समझने के ࣽलए महٌपूणर् ह।ै अंधाधुंध मानकࣞकरण
लागू करने वाले चाࣽलतࡼ सुधार अनजाने में इस मू߰वान जानकारࣜ को हटा या
धुंधला सकते हैं।
उदाहरण के ࣽलए, ࣿचࣹकُा िरकॉडॼ में ࣺवसंगࣻतयों को सुधारने के ࣽलए ऀज޲देार एक
सुधार-ࡼ डटेा कायर्कतЄ कࣞ क߫ना करें। यࣺद कायर्कतЄ को ࣹकसी दुलर्भ ऍࣻࡱत या
असामा۠ उपचार योजना वाले रोगी के ࣿचࣹकُा इࣻतहास का सामना करना पड़ता
ह,ै तो यह डटेा को एक अࣾधक सामा۠ पैटनर् में ࣺफट करने के ࣽलए सामा۠ीकृत
करने का प्रयास कर सकता ह।ै हालांࣹक, ऐसा करने में, यह उन ࣺवऀश࠿ ࣺववरणों और
संदभर् को खो सकता है जो रोगी कࣞ अनूठी ऍࣻࡱत को सटीक रूप से दशЄने के ࣽलए
महٌपूणर् हैं। इस जानकारࣜ कࣞ हाࣺन रोगी दखेभाल और ࣿचࣹकُकࣞय ࣺनणर्य लेने के
ࣽलए गंभीर प्रभाव डाल सकती ह।ै
अनपेऀक्षत पिरणामों के जोंखमों को कम करने के ࣽलए, सुधार-ࡼ डटेा तकनीकों को
ࣺडज़ाइन और कायЄअۢत करते समय एक सࣺक्रय दृࣼ࠿कोण अपनाना आव࠮क ह:ै

उपचारࣜ-ࡼ डटेा 188

1. ापकߢ परࢧक्षण और सؖापन: उمादन में सुधार-ࡼ डटेा कायर्कतЄओं को
तैनात करने से पहले, ࣺवࣾभۚ पिरदृ࠮ों के ࣺवरुڔ उनके ࠖवहार का ࠖापक
परࣜक्षण और सيापन करना महٌपूणर् ह।ै इसमें ࣺवࣾभۚ सीमांत मामलों,
अपवादों और संभाࣺवत पूवЄग्रहों को कवर करने वाले प्रࣻतࣺनࣾध डटेासेट के
साथ परࣜक्षण शाࣻमल ह।ै कठोर परࣜक्षण वाࣺࡰवक दुࣺनया के डटेा को प्रभाࣺवत
करने से पहले ࣹकसी भी अनपेऀक्षत पिरणाम कࣞ पहचान करने और उंेۦ संबोࣾधत
करने में मदद करता ह।ै

2. नरंतरࣄ नगरानीࣄ और मू޼ांकन: समय के साथ अनपेऀक्षत पिरणामों का पता
लगाने और उंेۦ कम करने के ࣽलए ࣺनरंतर ࣺनगरानी और मू߰ांकन तंत्र को लागू
करना आव࠮क ह।ै सुधार-ࡼ डटेा प्रࣺक्रयाओं के पिरणामों कࣞ ࣺनयࣻमत समीक्षा,
अनुप्रवाहࣚ प्रणाࣽलयों और ࣺनणर्य लेने पर प्रभाव का ࣺवे࠯षण, और ࣹहतधारकों
से प्रࣻतࣺक्रया एकत्र करना ࣹकसी भी प्रࣻतकूल प्रभाव कࣞ पहचान करने और समय
पर सुधाराىक कारर्वाई को प्रेिरत करने में मदद कर सकता ह।ै यࣺद आपके
संगठन में पिरचालन डशैबोडॼ हैं, तो चाࣽलतࡼ डटेा पिरवतर्नों से संबंࣾधत ࠿ࡵ
रूप से ࣺदखाई दनेे वाले मेࣺट्रѾ जोड़ना शायद एक अՃा ࣺवचार ह।ै सामा۠
डटेा पिरवतर्न गࣻतࣺवࣾध से बड़े ࣺवचलन से जुड़े अलामर् जोड़ना शायद और भी
बेहतर ࣺवचार ह!ै

3. मानवीय क्षणࢧनरࣄ और ह࠼क्षेप: सुधार-ࡼ डटेा प्रࣺक्रया में मानवीय ࣺनरࣜक्षण
और हࡰक्षेप कࣞ क्षमता बनाए रखना महٌपूणर् ह।ै जबࣹक चालनࡼ दक्षता को
बहुत बढ़ा सकता ह,ै ࣺवशेष रूप से महٌपूणर् या संवेदनशील डोमेन में, एआई
मॉडल ाराڙ ࣹकए गए सुधारों कࣞ समीक्षा और सيापन के ࣽलए मानव ࣺवशेषज्ञों
का होना महٌपूणर् ह।ै मानवीय ࣺनणर्य और डोमेन ࣺवशेषज्ञता ࣹकसी भी उۚم
होने वाले अनपेऀक्षत पिरणामों कࣞ पहचान करने और उंेۦ संबोࣾधत करने में
मदद कर सकती ह।ै

4. ा҃ाߢ योҘ एआई (XAI) और पारद࣊शर्ता: जैसा ࣹक ࣺपछले उपखंड में चचЄ
कࣞ गई ह,ै कىउपचारा-ࡼ डटेा प्रࣺक्रया में ࠖाҷा योӌ एआई तकनीकों को
शाࣻमल करना और पारदऀशर्ता सुࣺनऀࠥत करना अनपेऀक्षत पिरणामों को कम
करने में मदद कर सकता ह।ै डटेा सुधारों के ࣽलए ࠿ࡵ ीकरण࠿ࡵ प्रदान करके

उपचारࣜ-ࡼ डटेा 189

और ࠖापक ऑࣺडट ट्र ले बनाए रखकर, संगठन एआई मॉडल ाराڙ ࣹकए गए
संशोधनों के पीछे के तकॼ को बेहतर ढगं से समझ और ट्र कै कर सकते हैं।

5. क्रࣆमक और पुनरावत࣮ दृࠋࣇकोण: कىउपचारा-ࡼ डटेा के ࣽलए एक क्रࣻमक और
पुनरावत॑ दृࣼ࠿कोण अपनाने से अनपेऀक्षत पिरणामों के जोंखम को कम करने में
मदद ࣻमल सकती ह।ै एक बार में पूरे डटेासेट पर चाࣽलतࡼ सुधार लागू करने
के बजाय, डटेा के एक उपसमुՂय से शुरू करें और जैसे-जैसे तकनीकें प्रभावी
और ࣺव࠰सनीय साࣺबत होती हैं, धीरे-धीरे इसके दायरे का ࣺवࡰार करें। यह
राेࡰ में सावधानीपूवर्क ࣺनगरानी और समायोजन कࣞ अनुमࣻत दतेा ह,ै ऀजससे
ࣹकसी भी अनपेऀक्षत पिरणाम का प्रभाव कम होता ह।ै

6. सहयोग और प्रࣆतࣅक्रया: ࣺवࣾभۚ डोमेन के ࣹहतधारकों को शाࣻमल करना और
कىउपचारा-ࡼ डटेा प्रࣺक्रया के दौरान सहयोग और प्रࣻतࣺक्रया को प्रोُाࣹहत
करना अनपेऀक्षत पिरणामों कࣞ पहचान और समाधान में मदद कर सकता ह।ै
डोमेन ࣺवशेषज्ञों, डटेा उपभोѱाओं और अंࣻतम उपयोगकतЄओं से ࣺनयࣻमत रूप
से इनपुट लेना डटेा सुधारों के वाࣺࡰवक प्रभाव के बारे में मू߰वान अंतदृर्ࣼ࠿
प्रदान कर सकता है और ࣹकसी भी ऐसी समࡺा को उजागर कर सकता है जो
अनदखेी रह गई हो।

अनपेऀक्षत पिरणामों के जोंखम को सࣺक्रय रूप से संबोࣾधत करके और उࣿचत सुरक्षा
उपायों को लागू करके, संगठन संभाࣺवत प्रࣻतकूल प्रभावों को कम करते हुए -ࡼ
उपचाराىक डटेा तकनीकों के लाभों का उपयोग कर सकते हैं। कىउपचारा-ࡼ डटेा
को एक पुनरावत॑ और सहयोगाىक प्रࣺक्रया के रूप में दखेना महٌपूणर् ह,ै ऀजसमें
वांࣽछत पिरणामों के साथ संरेंखत करने और डटेा कࣞ अखंडता और ࣺव࠰सनीयता
बनाए रखने के ࣽलए तकनीकों कࣞ लगातार ࣺनगरानी, मू߰ांकन और पिर࠻रण ࣹकया
जाता ह।ै

कىउपचारा-ࡼ डटेा पैटनर् के उपयोग पर ࣺवचार करते समय, इन कारकों का
सावधानीपूवर्क मू߰ांकन करना और संभाࣺवत जोंखमों और सीमाओं के ࣺवरुڔ
लाभों का मू߰ांकन करना आव࠮क ह।ै कुछ मामलों में, चाࣽलतࡼ सुधारों को

उपचारࣜ-ࡼ डटेा 190

मानवीय ࣺनरࣜक्षण और हࡰक्षेप के साथ जोड़ने वाला एक हाइࣺब्रड दृࣼ࠿कोण सबसे
उपयुѱ समाधान हो सकता ह।ै
यह भी ानۀ रखना महٌपूणर् है ࣹक कىउपचारा-ࡼ डटेा तकनीकों को मजबूत डटेा
सيापन, इनपुट सैࣺनटाइज़ेशन और त्रुࣺ ट प्रबंधन तंत्र के ࣺवक߫ के रूप में नहࣟ दखेा
जाना चाࣹहए। डटेा कࣞ अखंडता और सुरक्षा सुࣺनऀࠥत करने के ࣽलए ये मूलभूत प्रथाएं
महٌपूणर् बनी रहती हैं। कىउपचारा-ࡼ डटेा को एक पूरक दृࣼ࠿कोण के रूप में दखेा
जाना चाࣹहए जो इन मौजूदा उपायों को बढ़ा और बेहतर बना सकता ह।ै
अंततः, कىउपचारा-ࡼ डटेा पैटनर् का उपयोग करने का ࣺनणर्य आपके एࣺݎकेशन कࣞ
ࣺवऀश࠿ आव࠮कताओ,ं बाधाओं और प्राथࣻमकताओं पर ࣺनभर्र करता ह।ै ऊपर बताए
गए ࣺवचारों पर सावधानीपूवर्क ࣺवचार करके और उंेۦ अपने एࣺݎकेशन के लҝों और
आࣹकॼ टѫेर के साथ संरेंखत करके, आप कىउपचारा-ࡼ डटेा तकनीकों का प्रभावी
ढगं से उपयोग करने के ࣽलए कब और कैसे लाभ उठाना ह,ै इस पर सूࣿचत ࣺनणर्य
ले सकते हैं।

संदभर्-आधािरत सामग्री नमЂणࣄ

संदभर्-आधािरत सामग्री ࣺनमЄण पैटनर् बृहत भाषा मॉडल (LLMs) कࣞ शࣼѱ का उपयोग
एࣺݎकेशन के भीतर गࣻतशील और संदभर्-ࣺवऀश࠿ सामग्री उۚم करने के ࣽलए करते
हैं। पैटनर् कࣞ यह श्रणेी उपयोगकतЄओं कࣞ ࣺवऀश࠿ आव࠮कताओ,ं प्राथࣻमकताओ,ं और
यहां तक ࣹक एࣺݎकेशन के साथ उनकࣞ ࣺपछलࣜ और वतर्मान अंतःࣺक्रयाओं के आधार
पर वैयࣼѱकृत और प्रासंࣻगक सामग्री प्रदान करने के महٌ को पहचानती ह।ै

इस दृࣼ࠿कोण के संदभर् में, “सामग्री” का अथर् प्राथࣻमक सामग्री (जैसे ॉगވ पो࡫,
लेख, आࣺद) और मेटा-सामग्री, जैसे प्राथࣻमक सामग्री के ࣽलए ऀसफािरशें, दोनों से
ह।ै

संदभर्-आधािरत सामग्री ࣺनमЄण पैटनर् आपके उपयोगकतЄ जुड़ाव रोंࡰ को बढ़ाने,

संदभर्-आधािरत सामग्री ࣺनमЄण 192

अनुकूࣽलत अनुभव प्रदान करने, और आपके और आपके उपयोगकतЄओं के ࣽलए
सामग्री ࣺनमЄण कायЊ को चाࣽलतࡼ करने में महٌपूणर् भूࣻमका ࣺनभा सकते हैं। इस
अۀाय में वऀणर्त पैटनर् का उपयोग करके, आप ऐसे एࣺݎकेशन बना सकते हैं जो
गࣻतशील रूप से सामग्री उۚم करते हैं, वाࣺࡰवक समय में संदभर् और इनपुट के
अनुकूल होते हैं।
ये पैटनर् LLMs को एࣺݎकेशन के आउटपुट में एकࣞकृत करके काम करते हैं, जो
उपयोगकतЄ इंटरफ़ेस (ऀजसे कभी-कभी “क्रोम” के रूप में संदࣾभर्त ࣹकया जाता ह)ै
से लेकर ईमेल और अ۠ प्रकार कࣞ सूचनाओ,ं साथ हࣚ ࣹकसी भी सामग्री ࣺनमЄण
पाइपलाइन तक फैले होते हैं।
जब कोई उपयोगकतЄ एࣺݎकेशन के साथ बातचीत करता है या ࣹकसी ࣺवऀश࠿ सामग्री
अनुरोध को ࣺट्रगर करता ह,ै तो एࣺݎकेशन प्रासंࣻगक संदभर् को कै݀र करता ह,ै जैसे
उपयोगकतЄ प्राथࣻमकताएं, ࣺपछलࣜ बातचीत, या ࣺवऀश࠿ प्रॉम्݂। यह संदभर्गत जानकारࣜ
ࣺफर LLM में ࣹकसी भी आव࠮क टेޮ लेट या ࣺदशाࣺनदϺशों के साथ फࣞड कࣞ जाती
है और टҡे आउटपुट उۚم करने के ࣽलए उपयोग कࣞ जाती है जो अ۠था या
तो हाडॼकोडडे होना पड़ता, डटेाबेस में संग्रहࣚत होना पड़ता, या एߝोिरउچक रूप से
उۚم ࣹकया जाना पड़ता।
LLM ाराڙ उۚم सामग्री ࣺवࣾभۚ रूप ले सकती ह,ै जैसे वैयࣼѱकृत ऀसफािरशें,
गࣻतशील उمाद ࣺववरण, अनुकूࣽलत ईमेल प्रࣻतࣺक्रयाएं, या यहां तक ࣹक पूरे लेख या
ॉगވ पो࡫। इस सामग्री के सबसे क्रांࣻतकारࣜ उपयोगों में से एक, ऀजसे मैंने एक वषर् से
अࣾधक पहले शुरू ࣹकया था, फॉमर् लेबल, टूलࣺटݒ और अ۠ प्रकार के ࠖाҷाىक
टҡे जैसे UI तٌों को गࣻतशील रूप से उۚم करना ह।ै

वैयࣈнकरण
संदभर्-आधािरत सामग्री ࣺनमЄण पैटनर् के प्रमुख लाभों में से एक उपयोगकतЄओं को
अࣾيधक वैयࣼѱकृत अनुभव प्रदान करने कࣞ क्षमता ह।ै उपयोगकतЄ-ࣺवऀश࠿ संदभर्
के आधार पर सामग्री उۚم करके, ये पैटनर् एࣺݎकेशन को ࠖࣼѱगत उपयोगकतЄओं

संदभर्-आधािरत सामग्री ࣺनमЄण 193

कࣞ रुࣿचयों, प्राथࣻमकताओं और बातचीत के अनुरूप सामग्री को अनुकूࣽलत करने में
सक्षम बनाते हैं।
वैयࣼѱकरण ऀसफॼ सामा۠ सामग्री में उपयोगकतЄ का नाम डालने से कहࣟ आगे जाता
ह।ै इसमें प्रيके उपयोगकतЄ के बारे में उपलނ समृڔ संदभर् का उपयोग करके ऐसी
सामग्री तैयार करना शाࣻमल है जो उनकࣞ ࣺवऀश࠿ आव࠮कताओं और इՃाओं के
अनुरूप हो। इस संदभर् में कई कारक शाࣻमल हो सकते हैं, जैसे:

1. उपयोगकतЂ प्रोफ़ाइल जानकारࢧ: इस तकनीक को लागू करने के सबसे
सामा۠ रࡰ पर, जनसांऐҷकࣞय डटेा, रुࣿचयां, प्राथࣻमकताएं और अ۠ प्रोफ़ाइल
ࣺवशेषताओं का उपयोग उपयोगकतЄ कࣞ पृࡀभूࣻम और ࣺवशेषताओं के अनुरूप
सामग्री तैयार करने के ࣽलए ࣹकया जा सकता ह।ै

2. वहारߢ संबंधी डेटा: एࣺݎकेशन के साथ उपयोगकतЄ कࣞ ࣺपछलࣜ बातचीत, जैसे
दखेे गए पृࡀ, ࣺѻक ࣹकए गए ࣽलंक, या खरࣜदे गए उمाद, उनके ࠖवहार और
रुࣿचयों के बारे में मू߰वान जानकारࣜ प्रदान कर सकते हैं। इस डटेा का उपयोग
ऐसी सामग्री सुझाव तैयार करने के ࣽलए ࣹकया जा सकता है जो उनके संलӈता
पैटनर् को दशЄती है और उनकࣞ भࣺवࡈ कࣞ जरूरतों कࣞ भࣺवࡈवाणी करती ह।ै

3. संदभЂؕक कारक: उपयोगकतЄ का वतर्मान संदभर्, जैसे उनका ,ानࡱ ࣺडवाइस,
ࣺदन का समय, या यहां तक ࣹक मौसम, सामग्री ࣺनमЄण प्रࣺक्रया को प्रभाࣺवत कर
सकता ह।ै उदाहरण के ࣽलए, एक यात्रा एࣺݎकेशन में एक ऐसा AI कायर्कतЄ हो
सकता है जो उपयोगकतЄ के वतर्मान ानࡱ और मौजूदा मौसम कࣞ ऍࣻࡱतयों के
आधार पर वैयࣼѱकृत ऀसफािरशें तैयार कर सकता ह।ै

इन संदभЄىक कारकों का लाभ उठाकर, संदभЄىक सामग्री ࣺनमЄण पैटनर् एࣺݎकेशन
को प्रيके ࠖࣼѱगत उपयोगकतЄ के ࣽलए ࣺवशेष रूप से बनाई गई सामग्री प्रदान करने
में सक्षम बनाते हैं। वैयࣼѱकरण के इस रࡰ के कई महٌपूणर् लाभ हैं:

1. बढ़ी हुई सहभाࣇगता: वैयࣼѱकृत सामग्री उपयोगकतЄओं का ानۀ आकࣻषर्त
करती है और उंेۦ एࣺݎकेशन के साथ जुड़े रहने में मदद करती ह।ै जब
उपयोगकतЄओं को लगता है ࣹक सामग्री प्रासंࣻगक है और सीधे उनकࣞ जरूरतों

संदभर्-आधािरत सामग्री ࣺनमЄण 194

कࣞ बात करती ह,ै तो वे एࣺݎकेशन के साथ अࣾधक समय ࣺबताने और इसकࣞ
ࣺवशेषताओं का पता लगाने कࣞ अࣾधक संभावना रखते हैं।

2. बेहतर उपयोगकतЂ संतुࠋࣇ: वैयࣼѱकृत सामग्री दशЄती है ࣹक एࣺݎकेशन
उपयोगकतЄ कࣞ ࣺवऀश࠿ आव࠮कताओं को समझता है और उनकࣞ परवाह करता
ह।ै उपयोगकतЄ कࣞ रुࣿचयों के अनुरूप सहायक और जानकारࣜपूणर् सामग्री प्रदान
करके, एࣺݎकेशन उपयोगकतЄ संतुࣼ࠿ को बढ़ा सकता है और अपने उपयोगकतЄओं
के साथ मजबूत संबंध बना सकता ह।ै

3. उԎ रूपांतरण दर: ई-कॉमसर् या माकϺ ࣺटगं एࣺݎकेशन के संदभर् में, वैयࣼѱकृत
सामग्री रूपांतरण दर को महٌपूणर् रूप से प्रभाࣺवत कर सकती ह।ै
उपयोगकतЄओं को उनकࣞ प्राथࣻमकताओं और ࠖवहार के अनुरूप उمाद, ऑफ़र
या ऀसफािरशें प्रࡰतु करके, एࣺݎकेशन उपयोगकतЄओं ाराڙ वांࣽछत कारर्वाई करने
कࣞ संभावना को बढ़ा सकता ह,ै जैसे खरࣜदारࣜ करना या ࣹकसी सेवा के ࣽलए
साइन अप करना।

उؑादकता
संदभЄىक सामग्री ࣺनमЄण पैटनर् रचनाىक प्रࣺक्रयाओं में मैनुअल सामग्री ࣺनमЄण और
संपादन कࣞ आव࠮कता को कम करके कुछ प्रकार कࣞ उمादकता को काफࣞ बढ़ा
सकते हैं। बृहत भाषा मॉडल कࣞ शࣼѱ का लाभ उठाकर, आप बड़े पैमाने पर उՂ-
गुणवـा वालࣜ सामग्री तैयार कर सकते हैं, ऀजससे आपके सामग्री ࣺनमЄताओं और
डवेलपसर् को उबाऊ मैनुअल काम में खचर् करना पड़ने वाला समय और प्रयास बच
जाता ह।ै
परंपरागत रूप से, सामग्री ࣺनमЄताओं को एࣺݎकेशन कࣞ आव࠮कताओं और
उपयोगकतЄ कࣞ अपेक्षाओं को पूरा करने के ࣽलए अनुसंधान, लेखन, संपादन और
प्रारूपण करना पड़ता ह।ै यह प्रࣺक्रया समय लेने वालࣜ और संसाधन-गहन हो सकती
ह,ै ࣺवशेष रूप से जब सामग्री कࣞ मात्रा बढ़ती ह।ै
हालांࣹक, संदभर्-आधािरत सामग्री ࣺनमЄण पैटनर् के साथ, सामग्री ࣺनमЄण प्रࣺक्रया को
काफࣞ हद तक चाࣽलतࡼ ࣹकया जा सकता ह।ै एलएलएम ࣺदए गए प्रॉम्प्ׅ और

संदभर्-आधािरत सामग्री ࣺनमЄण 195

ࣺदशाࣺनदϺशों के आधार पर सुसंगत, ࠖाकरण कࣞ दृࣼ࠿ से सहࣚ, और संदभर्गत रूप
से प्रासंࣻगक सामग्री उۚم कर सकते हैं। यह चालनࡼ कई उمादकता लाभ प्रदान
करता ह:ै

1. कम मैनुअल प्रयास: सामग्री ࣺनमЄण कायЊ को एलएलएम को सौंपकर, सामग्री
ࣺनमЄता सामग्री रणनीࣻत, ࣺवचार-ࣺनमЄण और गुणवـा आ࠰ासन जैसे उՂ-
रࣜयࡰ कायЊ पर ानۀ कें ࣺद्रत कर सकते हैं। वे एलएलएम को आव࠮क संदभर्,
टेޮ लेׅ और ࣺदशाࣺनदϺश प्रदान कर सकते हैं और वाࣺࡰवक सामग्री ࣺनमЄण
का काम उस पर छोड़ सकते हैं। यह लेखन और संपादन के ࣽलए आव࠮क
मैनुअल प्रयास को कम करता ह,ै ऀजससे सामग्री ࣺनमЄता अࣾधक उمादक और
कुशल हो सकते हैं।

2. तेज सामग्री :नमЂणࣄ एलएलएम मानव लेखकों कࣞ तुलना में बहुत तेजी से सामग्री
उۚم कर सकते हैं। सहࣚ प्रॉम्प्ׅ और ࣺदशाࣺनदϺशों के साथ, एक एलएलएम कुछ
सेकंड या ࣻमनटों में कई सामग्री टुकड़े उۚم कर सकता ह।ै यह गࣻत एࣺݎकेशन
को बहुत तेजी से सामग्री उۚم करने में सक्षम बनाती ह,ै जो उपयोगकतЄओं
कࣞ मांगों और लगातार बदलते ࣺडऀजटल पिरदृ࠮ के साथ तालमेल बनाए रखती
ह।ै

Ѻा तेज सामग्री ࣺनमЄण “कॉमۥ कࣞ त्रासदी” जैसी ऍࣻࡱत कࣞ ओर ले जा रहा है
जहां इंटरनेट ऐसी सामग्री से भर गया है ऀजसे कोई नहࣟ पढ़ता। दुभЄӌ से, मुझे
लगता है ࣹक इसका जवाब हां ह।ै

3. नरंतरताࣄ और गुणव،ा: एलएलएम आसानी से सामग्री को संशोࣾधत कर सकते
हैं ताࣹक वह शैलࣜ, रࡼ और गुणवـा में एकरूप हो। ࠿ࡵ ࣺदशाࣺनदϺश और
उदाहरण प्रदान ࣹकए जाने पर, कुछ प्रकार के एࣺݎकेशन (जैसे ۠जूरूम, पीआर,
आࣺद) यह सुࣺनऀࠥत कर सकते हैं ࣹक उनकࣞ मानव-ࣺनࣻमर्त सामग्री उनकࣞ ब्रांड
वॉइस के अनुरूप हो और वांࣽछत गुणवـा मानकों को पूरा करे। यह ࣺनरंतरता

संदभर्-आधािरत सामग्री ࣺनमЄण 196

ࠖापक संपादन और संशोधनों कࣞ आव࠮कता को कम करती ह,ै ऀजससे सामग्री
ࣺनमЄण प्रࣺक्रया में समय और प्रयास कࣞ बचत होती ह।ै

4. पुनरावृࣉ، और अनुकूलन: संदभर्-आधािरत सामग्री ࣺनमЄण पैटनर् सामग्री कࣞ
ٌिरत पुनरावृࣾـ और अनुकूलन को सक्षम बनाते हैं। एलएलएम को प्रदान ࣹकए
गए प्रॉम्प्ׅ, टेޮ लेׅ या ࣺदशाࣺनदϺशों को समायोऀजत करके, आपके एࣺݎकेशन
ٌिरत रूप से सामग्री के ࣺवࣺवध रूप उۚم कर सकते हैं और ࣺवࣾभۚ दृࣼ࠿कोणों
का चाࣽलतࡼ तरࣜके से परࣜक्षण कर सकते हैं, जो पहले कभी संभव नहࣟ था।
यह पुनरावत॑ प्रࣺक्रया सामग्री रणनीࣻतयों के तेज प्रयोग और पिर࠻रण कࣞ
अनुमࣻत दतेी ह,ै ऀजससे समय के साथ अࣾधक प्रभावी और आकषर्क सामग्री
बनती ह।ै यह ࣺवशेष तकनीक ई-कॉमसर् जैसे एࣺݎकेशन के ࣽलए गेम-चेंजर हो
सकती है जो बाउंस रेट और एंगेजमेंट के आधार पर जीते और मरते हैं।

यह ानۀ रखना महٌपूणर् है ࣹक जबࣹक प्रासंࣻगक सामग्री ࣺनमЄण पैटनर्
उمादकता को बहुत बढ़ा सकते हैं, वे मानवीय भागीदारࣜ कࣞ आव࠮कता
को पूरࣜ तरह से समा݆ नहࣟ करते। सामग्री ࣺनमЄता और संपादक अभी
भी समग्र सामग्री रणनीࣻत को पिरभाࣻषत करने, LLM को मागर्दशर्न प्रदान
करने, और उۚم सामग्री कࣞ गुणवـा और उपयुѱता सुࣺनऀࠥत करने में
महٌपूणर् भूࣻमका ࣺनभाते हैं।

सामग्री ࣺनमЄण के अࣾधक दोहराव वाले और समय लेने वाले पहलुओं को चाࣽलतࡼ
करके, प्रासंࣻगक सामग्री ࣺनमЄण पैटनर् मू߰वान मानवीय समय और संसाधनों को मुѱ
करते हैं ऀजंेۦ उՂ-मू߰ कायЊ कࣞ ओर पुनࣺनर्दϺऀ शत ࣹकया जा सकता ह।ै यह बढ़ी हुई
उمादकता आपको सामग्री ࣺनमЄण कायर्प्रवाह को अनुकूࣽलत करते हुए उपयोगकतЄओं
को अࣾधक वैयࣼѱकृत और आकषर्क सामग्री प्रदान करने में सक्षम बनाती ह।ै

ؘिरत पुनरावृࣉ، और प्रयोग
प्रासंࣻगक सामग्री ࣺनमЄण पैटनर् आपको ࣺवࣾभۚ सामग्री ࣺवࣺवधताओं के साथ तेजी से
पुनरावृࣾـ और प्रयोग करने में सक्षम बनाते हैं, ऀजससे आपकࣞ सामग्री रणनीࣻत का

संदभर्-आधािरत सामग्री ࣺनमЄण 197

तेज अनुकूलन और पिर࠻रण संभव होता ह।ै आप केवल मॉडल को प्रदान ࣹकए गए
संदभर्, टेޮ लेׅ, या ࣺदशाࣺनदϺशों को समायोऀजत करके, कुछ हࣚ सेकंड में सामग्री के
कई संࡡरण उۚم कर सकते हैं।
यह ٌिरत पुनरावृࣾـ क्षमता कई प्रमुख लाभ प्रदान करती ह:ै

1. परࢧक्षण और अनुकूलन: सामग्री ࣺवࣺवधताओं को तेजी से उۚم करने कࣞ
क्षमता के साथ, आप आसानी से ࣺवࣾभۚ दृࣼ࠿कोणों का परࣜक्षण कर सकते हैं
और उनकࣞ प्रभावशीलता को माप सकते हैं। उदाहरण के ࣽलए, आप एक उمाद
ࣺववरण या माकϺ ࣺटगं संदशे के कई संࡡरण उۚم कर सकते हैं, जो प्रيके
ࣺवऀश࠿ उपयोगकतЄ खंड या संदभर् के ࣽलए अनुकूࣽलत हो। उपयोगकतЄ संलӈता
मैࣺट्रѾ का ࣺवे࠯षण करके, जैसे ࣺѻक-थ्रू दर या रूपांतरण दर, आप सबसे
प्रभावी सामग्री ࣺवࣺवधताओं कࣞ पहचान कर सकते हैं और तदनुसार अपनी
सामग्री रणनीࣻत को अनुकूࣽलत कर सकते हैं।

2. A/B टे࣑ं࠷ग: प्रासंࣻगक सामग्री ࣺनमЄण पैटनर् सामग्री का ࣺनबЄध A/B परࣜक्षण
सक्षम करते हैं। आप सामग्री के दो या अࣾधक ࣺवࣺवधताएं उۚم कर सकते हैं
और उंेۦ ࣺवࣾभۚ उपयोगकतЄ समूहों को यादृऎՃक रूप से प्रदान कर सकते हैं।
प्रيके ࣺवࣺवधता के प्रदशर्न कࣞ तुलना करके, आप ࣺनधЄिरत कर सकते हैं ࣹक
कौन सी सामग्री आपके लऀक्षत दशर्कों के साथ सबसे अՃा प्रࣻतࣺۂनत होती
ह।ै यह डटेा-संचाࣽलत दृࣼ࠿कोण आपको सूࣿचत ࣺनणर्य लेने और उपयोगकतЄ
संलӈता को अࣾधकतम करने और अपने वांࣽछत पिरणामों को प्रा݆ करने के
ࣽलए अपनी सामग्री को ࣺनरंतर पिरृ࠻त करने कࣞ अनुमࣻत दतेा ह।ै

3. वैयࣈнकरण प्रयोग: ٌिरत पुनरावृࣾـ और प्रयोग वैयࣼѱकरण के मामले में
ࣺवशेष रूप से मू߰वान हैं। प्रासंࣻगक सामग्री ࣺनमЄण पैटनर् के साथ, आप ࣺवࣾभۚ
उपयोगकतЄ खंडों, प्राथࣻमकताओ,ं या ࠖवहारों के आधार पर तेजी से वैयࣼѱकृत
सामग्री ࣺवࣺवधताएं उۚم कर सकते हैं। ࣺवࣾभۚ वैयࣼѱकरण रणनीࣻतयों के साथ
प्रयोग करके, आप ࠖࣼѱगत उपयोगकतЄओं को आकࣻषर्त करने और अनुकूࣽलत
अनुभव प्रदान करने के ࣽलए सबसे प्रभावी दृࣼ࠿कोणों कࣞ पहचान कर सकते हैं।

4. बदलते रुझानों के अनुकूल होना: तेजी से पुनरावृࣾـ और प्रयोग करने कࣞ क्षमता
आपको चपल रहने और बदलते रुझानों और उपयोगकतЄ प्राथࣻमकताओं के

संदभर्-आधािरत सामग्री ࣺनमЄण 198

अनुकूल होने में सक्षम बनाती ह।ै जैसे-जैसे नए ࣺवषय, कࣞवडॼ, या उपयोगकतЄ
ࠖवहार उभरते हैं, आप तेजी से इन रुझानों के अनुरूप सामग्री उۚم कर
सकते हैं। अपनी सामग्री के साथ ࣺनरंतर प्रयोग और पिर࠻रण करके, आप
लगातार ࣺवकऀसत हो रहे ࣺडऀजटल पिरदृ࠮ में प्रासंࣻगक बने रह सकते हैं और
प्रࣻतࡵधЄىक बढ़त बनाए रख सकते हैं।

5. कफायतीࣅ प्रयोग: पारंपिरक सामग्री प्रयोग में अѾर काफࣞ समय और संसाधन
लगते हैं, Ѻोंࣹक सामग्री ࣺनमЄताओं को ࣺवࣾभۚ प्रकार के ࣺवक߫ों को मै۠अुल
रूप से ࣺवकऀसत और परࣜक्षण करने कࣞ आव࠮कता होती ह।ै हालांࣹक,
संदभЄىक सामग्री ࣺनमЄण पैटनर् के साथ, प्रयोग कࣞ लागत काफࣞ कम हो
जाती ह।ै LLMs तेजी से और बड़े पैमाने पर सामग्री ࣺवࣺवधताएं उۚم कर
सकते हैं, ऀजससे आप ࣺबना अࣾधक लागत के ࣺवचारों और दृࣼ࠿कोणों कࣞ एक
ࣺवࡰतृ श्रृखंला का पता लगा सकते हैं।

ٌिरत पुनरावृࣾـ और प्रयोग का सवЉـम लाभ उठाने के ࣽलए, एक सुपिरभाࣻषत प्रयोग
ढांचा होना महٌपूणर् ह।ै इस ढांचे में शाࣻमल होना चाࣹहए:

• प्रيके प्रयोग के ࣽलए ࠿ࡵ उे࠮ړ और पिरक߫नाएं
• सामग्री प्रदशर्न को मापने के ࣽलए उपयुѱ मैࣺट्रѾ और ट्र ैࣹ कंग तंत्र
• सहࣚ उपयोगकतЄओं को प्रासंࣻगक सामग्री ࣺवࣺवधताएं प्रदान करने के ࣽलए
ࣺवभाजन और लҝीकरण रणनीࣻतयां

• प्रयोगाىक डटेा से अंतदृर्ࣼ࠿ प्रा݆ करने के ࣽलए ࣺवे࠯षण और िरपोࣺट϶ग उपकरण
• आपकࣞ सामग्री रणनीࣻत में सीख और अनुकूलन को शाࣻमल करने कࣞ प्रࣺक्रया

ٌिरत पुनरावृࣾـ और प्रयोग को अपनाकर, आप अपनी सामग्री को लगातार पिरृ࠻त
और अनुकूࣽलत कर सकते हैं, यह सुࣺनऀࠥत करते हुए ࣹक यह आपके एࣺݎकेशन के
लҝों को प्रा݆ करने में आकषर्क, प्रासंࣻगक और प्रभावी बनी रह।े सामग्री ࣺनमЄण का
यह चुࡰ दृࣼ࠿कोण आपको अग्रणी बने रहने और असाधारण उपयोगकतЄ अनुभव
प्रदान करने में मदद करता ह।ै

संदभर्-आधािरत सामग्री ࣺनमЄण 199

मापनीयता और दक्षता
जैसे-जैसे एࣺݎकेशन बढ़ते हैं और ࠖࣼѱगत सामग्री कࣞ मांग बढ़ती ह,ै संदभЄىक
सामग्री ࣺनमЄण पैटनर् सामग्री ࣺनमЄण के कुशल लंगࣽࡡे को सक्षम बनाते हैं। LLMs
एक साथ बड़ी संҷा में उपयोगकतЄओं और संदभЊ के ࣽलए सामग्री उۚم कर सकते
हैं, ࣺबना मानव संसाधनों में आनुपाࣻतक वृआڔ कࣞ आव࠮कता के। यह मापनीयता
एࣺݎकेशन को बढ़ते उपयोगकतЄ आधार के ࣽलए ࠖࣼѱगत अनुभव प्रदान करने कࣞ
अनुमࣻत दतेी ह,ै ࣺबना उनकࣞ सामग्री ࣺनमЄण क्षमताओं पर दबाव डाले।

ानۀ दें ࣹक संदभЄىक सामग्री ࣺनमЄण का उपयोग आपके एࣺݎकेशन को
“ऑन द ”ाईݱ अंतरЄ्࠿र ीयकृत करने के ࣽलए प्रभावी ढगं से ࣹकया जा
सकता ह।ै वाࡰव में, यहࣚ मैंने अपने Instant18n Gem का उपयोग करके
Olympia को आधा दजर्न से अࣾधक भाषाओं में प्रदान करने के ࣽलए
ࣹकया, भले हࣚ हम एक साल से भी कम पुराने हैं।

एआई संचाࣈलत ानीयकरण࠽
यࣺद आप मुझे एक क्षण के ࣽलए गवर् करने कࣞ अनुमࣻत दें, तो मुझे लगता है ࣹक रे߶
ऐݒ के ࣽलए मेरࣜ Instant18n लाइब्ररेࣜ “संदभЄىक सामग्री ࣺनमЄण” पैटनर् का एक
क्रांࣻतकारࣜ उदाहरण ह,ै जो एࣺݎकेशन ࣺवकास में एआई कࣞ पिरवतर्नकारࣜ क्षमता को
प्रदऀशर्त करता ह।ै यह जेम OpenAI के GPT बृहत-भाषा मॉडल कࣞ शࣼѱ का लाभ
उठाकर रे߶ एࣺݎकेशन में अंतरЄ्࠿र ीयकरण और ानीयकरणࡱ को संभालने के तरࣜके
में क्रांࣻत लाता ह।ै
पारंपिरक रूप से, एक रे߶ एࣺݎकेशन का अंतरЄ्࠿र ीयकरण करने में अनुवाद कंुऀजयों
को मै۠अुल रूप से पिरभाࣻषत करना और प्रيके समࣽथर्त भाषा के ࣽलए संबंࣾधत
अनुवाद प्रदान करना शाࣻमल ह।ै यह प्रࣺक्रया समय लेने वालࣜ, संसाधन-गहन और
असंगࣻतयों के प्रࣻत संवेदनशील हो सकती ह।ै हालांࣹक, Instant18n जेम के साथ,
ानीयकरणࡱ का प्रࣻतमान पूरࣜ तरह से पुनपर्िरभाࣻषत ࣹकया गया ह।ै

संदभर्-आधािरत सामग्री ࣺनमЄण 200

एक बृहत भाषा मॉडल को एकࣞकृत करके, Instant18n जेम आपको संदभर् और पाठ
के अथर् के आधार पर तرाल अनुवाद उۚم करने में सक्षम बनाता ह।ै पूवर्-पिरभाࣻषत
अनुवाद कंुऀजयों और ऍࡱर अनुवादों पर ࣺनभर्र रहने के बजाय, जेम एआई कࣞ शࣼѱ
का उपयोग करके पाठ का गࣻतशील रूप से अनुवाद करता ह।ै इस दृࣼ࠿कोण के कई
प्रमुख लाभ हैं:

1. नबЂधࣄ :ानीयकरण࠽ Instant18n जेम के साथ, डवेलपसर् को प्रيके समࣽथर्त
भाषा के ࣽलए अनुवाद फ़ाइलों को मै۠अुल रूप से पिरभाࣻषत और बनाए रखने
कࣞ आव࠮कता नहࣟ ह।ै जेम चाࣽलतࡼ रूप से प्रदान ࣹकए गए पाठ और वांࣽछत
लҝ भाषा के आधार पर अनुवाद उۚم करता ह,ै ऀजससे ानीयकरणࡱ प्रࣺक्रया
सरल और ࣺनबЄध हो जाती ह।ै

2. संदभर्गत सटीकता: एआई को अनुवाद ࣹकए जा रहे पाठ कࣞ बारࣹࣜकयों को
समझने के ࣽलए पयЄ݆ संदभर् ࣺदया जा सकता ह।ै यह आस-पास के संदभर्,
मुहावरों और सांृࣻࡡतक संदभЊ को ानۀ में रखकर ऐसे अनुवाद उۚم कर
सकता है जो सटीक, ाभाࣺवकࡼ रूप से लगने वाले और संदभर् के अनुरूप हों।

3. ापकߢ भाषा समथर्न: Instant18n जेम GPT के ࣺवशाल ज्ञान और भाषाई
क्षमताओं का लाभ उठाता ह,ै जो भाषाओं कࣞ एक ࣺवࡰतृ श्रृखंला में अनुवाद
को सक्षम बनाता ह।ै ࣺेࡵ नश और फ्रें च जैसी सामा۠ भाषाओं से लेकर ࣺѻंगन
और एऍ߳श जैसी अࣾधक दुलर्भ या काࣺ߫नक भाषाओं तक, जेम ࣺवࣾभۚ प्रकार
कࣞ अनुवाद आव࠮कताओं को संभाल सकता ह।ै

4. लचीलापन और रचनाؕकता: जेम पारंपिरक भाषा अनुवादों से आगे जाता है
और रचनाىक और अपरंपरागत ानीयकरणࡱ ࣺवक߫ों कࣞ अनुमࣻत दतेा ह।ै
डवेलपसर् ࣺवࣾभۚ शैࣽलयों, बोࣽलयों, या यहां तक ࣹक काࣺ߫नक भाषाओं में पाठ
का अनुवाद कर सकते हैं, जो अनूठे उपयोगकतЄ अनुभवों और आकषर्क सामग्री
के ࣽलए नई संभावनाएं खोलता ह।ै

5. प्रदशर्न अनुकूलन: Instant18n जेम प्रदशर्न में सुधार और दोहराए गए अनुवादों
के ओवरहडे को कम करने के ࣽलए कैऀशंग तंत्र को शाࣻमल करता ह।ै अनुवाࣺदत
पाठ को कैश ࣹकया जाता ह,ै ऀजससे एक हࣚ अनुवाद के ࣽलए बाद के अनुरोधों
को अनाव࠮क एपीआई कॉल कࣞ आव࠮कता के ࣺबना तेजी से सेवा प्रदान कࣞ
जा सकती ह।ै

संदभर्-आधािरत सामग्री ࣺनमЄण 201

Instant18n जेम एआई का उपयोग करके गࣻतशील रूप से ानीयकृतࡱ सामग्री उۚم
करने के ࣽलए “संदभर्गत सामग्री ࣺनमЄण” पैटनर् कࣞ शࣼѱ को प्रदऀशर्त करता ह।ै यह
ࣺदखाता है ࣹक कैसे एआई को एक रे߶ एࣺݎकेशन कࣞ मूल कायर्क्षमता में एकࣞकृत
ࣹकया जा सकता ह,ै जो डवेलपसर् के अंतरЄ्࠿र ीयकरण और ानीयकरणࡱ के दृࣼ࠿कोण
को बदल दतेा ह।ै
मैनुअल अनुवाद प्रबंधन कࣞ आव࠮कता को समा݆ करके और संदभर् के आधार पर
तرाल अनुवाद को सक्षम करके, Instant18n जेम डवेलपसर् का महٌपूणर् समय और
प्रयास बचाता ह।ै यह उंेۦ अपने एࣺݎकेशन कࣞ मुҷ ࣺवशेषताओं के ࣺनमЄण पर ानۀ
कें ࣺद्रत करने कࣞ अनुमࣻत दतेा ह,ै जबࣹक यह सुࣺनऀࠥत करता है ࣹक ानीयकरणࡱ
पहलू ࣺनबЄध और सटीक रूप से संभाला जाए।

उपयोगकतЂ परࢧक्षण और प्रࣆतࣅक्रया का महؘ
अंत में, उपयोगकतЄ परࣜक्षण और प्रࣻतࣺक्रया के महٌ को हमेशा ानۀ में रखें। यह
सيाࣺपत करना महٌपूणर् है ࣹक संदभर्गत सामग्री ࣺनमЄण उपयोगकतЄ कࣞ अपेक्षाओं
को पूरा करता है और एࣺݎकेशन के लҝों के अनुरूप ह।ै उपयोगकतЄ अंतदृर्ࣼ࠿ और
ࣺवे࠯षण के आधार पर उۚم सामग्री को लगातार सुधारें और पिरृ࠻त करें। यࣺद
आप बड़े पैमाने पर गࣻतशील सामग्री उۚم कर रहे हैं ऀजसे आप और आपकࣞ टीम
ाराڙ मै۠अुल रूप से मा۠ करना असंभव होगा, तो ऐसे प्रࣻतࣺक्रया तंत्र जोड़ने पर
ࣺवचार करें जो उपयोगकतЄओं को ࣺवࣿचत्र या गलत सामग्री कࣞ िरपोटॼ करने कࣞ
अनुमࣻत दतेे हैं, साथ हࣚ कारण का ीकरण࠿ࡵ भी। वह बहुमू߰ प्रࣻतࣺक्रया एक एआई
कायर्कतЄ को भी दी जा सकती है जो सामग्री उۚم करने वाले घटक में समायोजन
करने का काम करता ह!ै

जेनरेࣅटव यूआई

आजकल ानۀ इतना मू߰वान है ࣹक प्रभावी उपयोगकतЄ संलӈता के ࣽलए अब न
केवल सहज और सरल सॉݨवेयर अनुभवों कࣞ आव࠮कता ह,ै बऍߛ ࠖࣼѱगत
जरूरतों, प्राथࣻमकताओं और संदभЊ के अनुसार अࣾيधक वैयࣼѱकृत होने कࣞ भी
आव࠮कता ह।ै पिरणामࡼरूप, ࣺडजाइनर और डवेलपसर् को ऐसे यूजर इंटरफेस
बनाने कࣞ चुनौती का सामना करना पड़ रहा है जो प्रيके उपयोगकतЄ कࣞ ࣺवऀश࠿
आव࠮कताओं के अनुरूप बड़े पैमाने पर अनुकूल हो सकें ।
जेनरेࣺटव यूआई (GenUI) यूजर इंटरफेस ࣺडजाइन का एक वाࡰव में क्रांࣻतकारࣜ
दृࣼ࠿कोण है जो अࣾيधक वैयࣼѱकृत और गࣻतशील उपयोगकतЄ अनुभवों को तرाल
बनाने के ࣽलए लाजर् लैंӎेज मॉड߶ (LLMs) कࣞ शࣼѱ का लाभ उठाता ह।ै मैं इस
पुࡰक में आपको GenUI का कम से कम एक प्राथࣻमक पिरचय दनेा चाहता था,
Ѻोंࣹक मेरा मानना है ࣹक यह एࣺݎकेशन ࣺडजाइन और फे्रमवकॼ के क्षेत्र में वतर्मान में
मौजूद सबसे नई और अछूती संभावनाओं में से एक ह।ै मुझे ࣺव࠰ास है ࣹक इस ࣺवशेष

जेनरेࣺटव यूआई 203

क्षेत्र में दजर्नों या उससे अࣾधक नई सफल ࠖावसाࣻयक और ओपन-सोसर् पिरयोजनाएं
सामने आएंगी।
मूल रूप से, GenUI संदभЄىक सामग्री ࣺनमЄण के ऀसڔांतों को उۚत AI तकनीकों
के साथ जोड़कर उपयोगकतЄ के संदभर्, प्राथࣻमकताओं और लҝों कࣞ गहरࣜ समझ के
आधार पर गࣻतशील रूप से यूजर इंटरफेस तٌों, जैसे टҡे, छࣺवयों और लेआउट
को उۚم करता ह।ै GenUI ࣺडजाइनरों और डवेलपसर् को ऐसे इंटरफेस बनाने में
सक्षम बनाता है जो उपयोगकतЄ के इंटरैѽन के जवाब में अनुकूल और ࣺवकऀसत
होते हैं, जो पहले प्रा݆ नहࣟ ࣹकया जा सकता था, ऐसा वैयࣼѱकरण प्रदान करते हैं।
GenUI यूजर इंटरफेस ࣺडजाइन के हमारे दृࣼ࠿कोण में एक मौࣽलक पिरवतर्न का
प्रࣻतࣺनࣾधٌ करता ह।ै जनसमूह के ࣽलए ࣺडजाइन करने के बजाय, GenUI हमें ࠖࣼѱ
के ࣽलए ࣺडजाइन करने कࣞ अनुमࣻत दतेा ह।ै वैयࣼѱकृत सामग्री और इंटरफेस ऐसे
उपयोगकतЄ अनुभव बनाने कࣞ क्षमता रखते हैं जो प्रيके उपयोगकतЄ के साथ गहरे
रࡰ पर जुड़ते हैं, ऀजससे संलӈता, संतुࣼ࠿ और ࣺनࡀा बढ़ती ह।ै
एक अيाधुࣺनक तकनीक के रूप में, GenUI में संक्रमण वैचािरक और ࠖावहािरक
चुनौࣻतयों से भरा हुआ ह।ै ࣺडजाइन प्रࣺक्रया में AI को एकࣞकृत करना, यह सुࣺनऀࠥत
करना ࣹक उۚم इंटरफेस न केवल वैयࣼѱकृत हैं बऍߛ उपयोग योӌ, सुलभ और
समग्र ब्रांड और उपयोगकतЄ अनुभव के अनुरूप भी हैं, ये सभी ऐसी चुनौࣻतयां हैं जो
GenUI को कुछ लोगों के ࣽलए बनाती हैं, न ࣹक बहुत के ࣽलए। इसके अࣻतिरѱ, AI
कࣞ भागीदारࣜ डटेा गोपनीयता, पारदऀशर्ता और शायद नैࣻतक प्रभावों के बारे में भी
प्रࠫ उठाती ह।ै
चुनौࣻतयों के बावजूद, बड़े पैमाने पर ࠖࣼѱगत अनुभव ࣺडऀजटल उمादों और सेवाओं
के साथ हमारࣜ अंतःࣺक्रया को पूरࣜ तरह से बदल सकते हैं। यह समावेशी और सुलभ
इंटरफ़ेस बनाने कࣞ संभावनाएं खोलता है जो उपयोगकतЄओं कࣞ ࣺवࣺवध आव࠮कताओं
को पूरा करते हैं, चाहे उनकࣞ क्षमताएं, पृࡀभूࣻम या प्राथࣻमकताएं कुछ भी हों।
इस अۀाय में, हम GenUI कࣞ अवधारणा का पता लगाएंगे, कुछ पिरभाࣻषत
ࣺवशेषताओ,ं प्रमुख लाभों और संभाࣺवत चुनौࣻतयों कࣞ जांच करेंगे। हम GenUI के
सबसे बुࣺनयादी और सुलभ रूप पर ࣺवचार करके शुरू करते हैं: पारंपिरक रूप से
ࣺडज़ाइन और कायЄअۢत उपयोगकतЄ इंटरफ़ेस के ࣽलए टҡे कॉपी जनरेट करना।

जेनरेࣺटव यूआई 204

उपयोगकतЂ इंटरफ़ेस के लएࣈ कॉपी जनरेट करना
आपके एࣺݎकेशन के क्रोम में मौजूद टҡे तٌ, जैसे फ़ॉमर् लेबल, टूलࣺटݒ और
ࠖाҷाىक टҡे, आमतौर पर टेޮ लेׅ या UI कंपोनेंׅ में हाडॼकोड ࣹकए जाते हैं,
जो सभी उपयोगकतЄओं के ࣽलए एक समान लेࣹकन सामा۠ अनुभव प्रदान करते हैं।
संदभर्-आधािरत सामग्री ࣺनमЄण पैटनर् का उपयोग करके, आप इन ऍࡱर तٌों को
गࣻतशील, संदभर्-जागरूक और ࠖࣼѱगत कंपोनेंׅ में बदल सकते हैं।

нगतࣈߢ फ़ॉमर्
फ़ॉमर् वेब और मोबाइल एࣺݎकेशन का एक सवर्ࠖापी ࣹहࡿा हैं, जो उपयोगकतЄ
इनपुट एकत्र करने का प्राथࣻमक साधन हैं। हालांࣹक, पारंपिरक फ़ॉमर् अѾर एक
सामा۠ और अवैयࣼѱक अनुभव प्रࡰतु करते हैं, ऀजनमें मानक लेबल और फ़ࣞߤ
होते हैं जो हमेशा उपयोगकतЄ के ࣺवऀश࠿ संदभर् या आव࠮कताओं के अनुरूप नहࣟ
हो सकते। उपयोगकतЄ उन फ़ॉमर् को भरने कࣞ अࣾधक संभावना रखते हैं जो उनकࣞ
आव࠮कताओं और प्राथࣻमकताओं के अनुरूप महसूस होते हैं, ऀजससे उՂ रूपांतरण
दर और उपयोगकतЄ संतुࣼ࠿ प्रा݆ होती ह।ै
हालांࣹक, ࠖࣼѱगतकरण और ࣺनरंतरता के बीच संतुलन बनाना महٌपूणर् ह।ै जबࣹक
ࠖࣼѱगत उपयोगकतЄओं के अनुरूप फ़ॉमर् को अनुकूࣽलत करना लाभदायक हो सकता
ह,ै पिरࣿचतता और अनुमानयोӌता का रࡰ बनाए रखना महٌपूणर् ह।ै उपयोगकतЄओं
को अभी भी ࠖࣼѱगत तٌों के साथ भी फ़ॉमर् को आसानी से पहचानने और नेࣺवगेट
करने में सक्षम होना चाࣹहए।
यहाँ प्रेरणा के ࣽलए कुछ ࠖࣼѱगत फ़ॉमर् ࣺवचार ࣺदए गए हैं:

संदभर्-आधािरत फ़ްࢩ सुझाव

GenUI उपयोगकतЄ कࣞ ࣺपछलࣜ अंतःࣺक्रयाओ,ं प्राथࣻमकताओं और डटेा का ࣺवे࠯षण
करके बुआڔमान फ़ࣞߤ सुझाव प्रदान कर सकता ह।ै उदाहरण के ࣽलए, यࣺद उपयोगकतЄ

जेनरेࣺटव यूआई 205

ने पहले अपना ऀशࣺपंग पता दजर् ࣹकया ह,ै तो फ़ॉमर् संबंࣾधत फ़ࣞߤ को उनकࣞ सहजेी
गई जानकारࣜ से चाࣽलतࡼ रूप से भर सकता ह।ै यह न केवल समय बचाता है
बऍߛ यह भी दशЄता है ࣹक एࣺݎकेशन उपयोगकतЄ कࣞ प्राथࣻमकताओं को समझता
और याद रखता ह।ै
एक ࣻमनट, Ѻा यह तकनीक AI को शाࣻमल ࣹकए ࣺबना नहࣟ कࣞ जा सकती? बेशक,
लेࣹकन AI के साथ इस तरह कࣞ कायर्क्षमता को संचाࣽलत करने कࣞ खूबसूरती दो
तरह से ह:ै 1) इसे लागू करना ࣹकतना आसान हो सकता है और 2) जैसे-जैसे आपका
UI बदलता और ࣺवकऀसत होता ह,ै यह ࣹकतना लचीला हो सकता ह।ै
आइए हमारे सैڔांࣻतक ऑडॼर हैंडࣽलंग ऀस࡫म के ࣽलए एक सेवा बनाएं, जो उपयोगकतЄ
के ࣽलए सहࣚ ऀशࣺपंग पता सࣺक्रय रूप से भरने का प्रयास करती ह।ै

1 class OrderShippingAddressSubscriber

2 include Raix::ChatCompletion

3

4 attr_accessor :order

5

6 delegate :customer, to: :order

7

8 DIRECTIVE = "You are a smart order processing assistant. Given the

9 customer's order history, guess the most likely shipping address

10 for the current order."

11

12 def order_created(order)

13 return unless order.pending? && order.shipping_address.blank?

14

15 self.order = order

16

17 transcript.clear

18 transcript << { system: DIRECTIVE }

19 transcript << { user: "Order History: #{order_history.to_json}" }

20 transcript << { user: "Current Order: #{order.to_json}" }

21

22 response = chat_completion

23 apply_predicted_shipping_address(order, response)

24 end

25

26 private

जेनरेࣺटव यूआई 206

27

28 def apply_predicted_shipping_address(order, response)

29 # extract the shipping address from the response...

30 # ...and assume there's some sort of live update of the address fields

31 order.update(shipping_address:)

32 end

33

34 def order_history

35 customer.orders.successful.limit(100).map do |order|

36 {

37 date: order.date,

38 description: order.description,

39 shipping_address: order.shipping_address

40 }

41 end

42 end

43 end

यह उदाहरण बहुत सरलࣜकृत ह,ै लेࣹकन अࣾधकांश मामलों में काम करेगा। ࣺवचार
यह है ࣹक AI को उसी तरह अनुमान लगाने ࣺदया जाए जैसे एक इंसान लगाएगा। यह
࠿ࡵ करने के ࣽलए ࣹक मैं ࣹकस बारे में बात कर रहा हू,ं आइए कुछ नमूना डटेा पर
ࣺवचार करें:

1 Order History:

2 [

3 {"date": "2024-01-03", "description": "garden soil mix",

4 "shipping_address": "123 Country Lane, Rural Town"},

5 {"date": "2024-01-15", "description": "hardcover fiction novels",

6 "shipping_address": "456 City Apt, Metroville"},

7 {"date": "2024-01-22", "description": "baby diapers", "shipping_address":

8 "789 Suburb St, Quietville"},

9 {"date": "2024-02-01", "description": "organic vegetables",

10 "shipping_address": "123 Country Lane, Rural Town"},

11 {"date": "2024-02-17", "description": "mystery thriller book set",

12 "shipping_address": "456 City Apt, Metroville"},

13 {"date": "2024-02-25", "description": "baby wipes",

14 "shipping_address": "789 Suburb St, Quietville"},

15 {"date": "2024-03-05", "description": "flower seeds",

16 "shipping_address": "123 Country Lane, Rural Town"},

17 {"date": "2024-03-20", "description": "biographies",

जेनरेࣺटव यूआई 207

18 "shipping_address": "456 City Apt, Metroville"},

19 {"date": "2024-03-30", "description": "baby formula",

20 "shipping_address": "789 Suburb St, Quietville"},

21 {"date": "2024-04-12", "description": "lawn fertilizer",

22 "shipping_address": "123 Country Lane, Rural Town"},

23 {"date": "2024-04-22", "description": "science fiction novels",

24 "shipping_address": "456 City Apt, Metroville"},

25 {"date": "2024-05-02", "description": "infant toys",

26 "shipping_address": "789 Suburb St, Quietville"},

27 {"date": "2024-05-14", "description": "outdoor grill",

28 "shipping_address": "123 Country Lane, Rural Town"},

29 {"date": "2024-05-29", "description": "literary classics",

30 "shipping_address": "456 City Apt, Metroville"},

31 {"date": "2024-06-11", "description": "baby clothes",

32 "shipping_address": "789 Suburb St, Quietville"},

33 {"date": "2024-07-01", "description": "watering can",

34 "shipping_address": "123 Country Lane, Rural Town"},

35 {"date": "2024-07-18", "description": "non-fiction essays",

36 "shipping_address": "456 City Apt, Metroville"},

37 {"date": "2024-07-28", "description": "baby bath items",

38 "shipping_address": "789 Suburb St, Quietville"},

39 {"date": "2024-08-09", "description": "herb garden kit",

40 "shipping_address": "123 Country Lane, Rural Town"},

41 {"date": "2024-08-24", "description": "children's books",

42 "shipping_address": "456 City Apt, Metroville"}

43]

Ѻा आपने डटेा में पैटनर् दखेा? मैं आपको गारंटी दतेा/दतेी हूं ࣹक यह एलएलएम के
ࣽलए बहुत आसान काम ह।ै इसे प्रदऀशर्त करने के ࣽलए, चࣽलए GPT-4 से पूछते हैं
ࣹक “थमЄमीटर” के ࣽलए सबसे संभाࣺवत ऀशࣺपंग पता Ѻा होगा।

जेनरेࣺटव यूआई 208

1 From the order history you've provided, it looks like the purchases are

2 generally clustered into three main types based on the shipping addresses:

3

4 123 Country Lane, Rural Town - This address often orders garden and

5 outdoor-related items like soil mix, vegetables, flower seeds, lawn

6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.

7

8 456 City Apt, Metroville - This address tends to order various types of

9 books, indicating an interest in reading across genres like fiction,

10 thrillers, biographies, science fiction, literary classics, non-fiction

11 essays, and children's books.

12

13 789 Suburb St, Quietville - The purchases for this address are consistently

14 baby-related products, such as diapers, wipes, baby formula, infant toys,

15 baby clothes, and baby bath items.

16

17 Given these patterns, a digital thermometer could potentially be a fit for

18 any of the addresses based on different needs: outdoor temperature tracking,

19 a tool for a passionate reader interested in science gadgets, or a health

20 tool for a baby. However, considering its common use in monitoring health,

21 especially for babies, it's most likely to be purchased by someone who's

22 already buying baby care products.

23

24 Therefore, the most likely shipping address for a digital thermometer, based

25 on the purchasing patterns, would be 789 Suburb St, Quietville.

यࣺद आप सोच रहे हैं ࣹक इस कायर् के ࣽलए GPT-4 जैसे महगंे मॉडल का उपयोग
करना जरूरत से իादा ह,ै तो आप सहࣚ हैं! मैंने यहࣚ प्रॉम्݂ Mistral 7B Instruct
पर आज़माया और इसने 75 टोकन प्रࣻत सेकंड कࣞ गࣻत से, और मात्र $0.000218
USD कࣞ मामूलࣜ लागत पर ࣺनޭࣽलंखत प्रࣻतࣺक्रया दी।

जेनरेࣺटव यूआई 209

1 Based on the given order history, it appears that the customer has received

2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)

3 at the address "789 Suburb St, Quietville" and garden-related items (soil,

4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural

5 Town". The customer has also received books (fiction, non-fiction, literary

6 classics, mystery-thriller, science fiction, biographies, children's books)

7 at the address "456 City Apt, Metroville".

8

9 Given that the new order is for a "thermometer", which doesn't seem to fit

10 into any of the categories that the customer has previously ordered, it's

11 hard to accurately predict the shipping address based solely on the order

12 history. However, given the 50%-50% split between baby-related and

13 garden-related items, it could somewhat lean towards the Baby-related items

14 address ("789 Suburb St, Quietville"). But remember, this is an assumption

15 and cannot be definitively confirmed without more context or information.

Ѻा इस तकनीक का ओवरहडे और लागत चेकआउट अनुभव को अࣾधक जादुई
बनाने के ࣽलए उࣿचत ह?ै कई ऑनलाइन िरटलेसर् के ࣽलए, ࣺबुߛल। और जैसा ࣹक
ࣺदख रहा ह,ै एआई कंࣺूݍ टगं कࣞ लागत केवल कम होती जाएगी, ࣺवशेष रूप से
कमोࣺडटी ओपन सोसर् मॉडल होऊ࡫गं प्रोवाइडसर् के ࣽलए जो सबसे कम कࣞमत कࣞ
दौड़ में हैं।

इस तरह के चैट क޽ीशन को अनुकूࣽलत करने के ࣽलए प्रॉम्݂ टेޮ लेट
और रѫडॼ्࡫ आईओ के साथ रेࡵॉۥ फेऊۥगं का उपयोग करें।

अनुकूलࢨ फ़ްࢩ क्रम
ऀजस क्रम में फॉमर् फ़ࣞल्ड्स प्रࡰतु कࣞ जाती हैं, वह उपयोगकतЄ के अनुभव और पूणर्ता
दर को महٌपूणर् रूप से प्रभाࣺवत कर सकती हैं। GenUI के साथ, आप उपयोगकतЄ
के संदभर् और प्रيके फ़ࣞߤ के महٌ के आधार पर फ़ࣞߤ क्रम को गࣻतशील रूप से
समायोऀजत कर सकते हैं। उदाहरण के ࣽलए, यࣺद उपयोगकतЄ एक ࣺफटनेस ऐप के
ࣽलए पंजीकरण फॉमर् भर रहा ह,ै तो फॉमर् उनके ࣺफटनेस लҝों और प्राथࣻमकताओं
से संबंࣾधत फ़ࣞल्ड्स को प्राथࣻमकता दे सकता ह,ै ऀजससे प्रࣺक्रया अࣾधक प्रासंࣻगक
और आकषर्क बन जाती ह।ै

जेनरेࣺटव यूआई 210

нगतࣈߢ माइक्रोकॉपी

फॉमर् से जुड़े ࣺनदϺशाىक टҡे, त्रुࣺ ट संदशे और अ۠ माइक्रोकॉपी को भी GenUI
का उपयोग करके ࠖࣼѱगत बनाया जा सकता ह।ै “अमा۠ ईमेल पता” जैसे सामा۠
त्रुࣺ ट संदशेों को प्रदऀशर्त करने के बजाय, आप अࣾधक सहायक और संदभर्पूणर् संदशे
जनरेट कर सकते हैं जैसे “कृपया अपना ऑडॼर पुࣼ࠿करण प्रा݆ करने के ࣽलए एक वैध
ईमेल पता दजर् करें।” ये ࠖࣼѱगत छूट फॉमर् अनुभव को अࣾधक उपयोगकतЄ-मैत्रीपूणर्
और कम ࣺनराशाजनक बना सकती हैं।

нगतࣈߢ वैࣈलडेशन

ࠖࣼѱगत माइक्रोकॉपी कࣞ तरह हࣚ, आप फॉमर् को जादुई तरࣜके से मा۠ करने के
ࣽलए एआई का उपयोग कर सकते हैं। क߫ना कࣞऀजए ࣹक एक एआई को उपयोगकतЄ
प्रोफ़ाइल फॉमर् को मा۠ करने कࣞ अनुमࣻत दी जाए, जो ऀसमैंࣺटक रࡰ पर संभाࣺवत
गलࣻतयों कࣞ जांच करती ह।ै

जेनरेࣺटव यूआई 211

आकृࣆत 8. цा आप ࣊समैंࣅटक वैࣈलडेशन को दखे सकते हैं?

क्रࣆमक प्रकटीकरण
GenUI उपयोगकतЄ के संदभर् के आधार पर यह समझदारࣜ से ࣺनधЄिरत कर सकता
है ࣹक कौन से फॉमर् फ़ࣞߤ आव࠮क हैं और आव࠮कतानुसार अࣻतिरѱ फ़ࣞߤ को
धीरे-धीरे प्रकट कर सकता ह।ै यह क्रࣻमक प्रकटीकरण तकनीक संज्ञानाىक भार
को कम करने में मदद करती है और फॉमर् भरने कࣞ प्रࣺक्रया को अࣾधक प्रबंधनीय

जेनरेࣺटव यूआई 212

बनाती ह।ै उदाहरण के ࣽलए, यࣺद कोई उपयोगकतЄ एक बेऀसक सࣺދक्रݐन के ࣽलए
साइन अप कर रहा ह,ै तो फॉमर् शुरू में केवल आव࠮क फ़ࣞߤ ࣺदखा सकता ह,ै और
जैसे-जैसे उपयोगकतЄ आगे बढ़ता है या ࣺवऀश࠿ ࣺवक߫ों का चयन करता ह,ै अࣻतिरѱ
प्रासंࣻगक फ़ࣞߤ गࣻतशील रूप से प्रࡰतु ࣹकए जा सकते हैं।

संदभर्-जागरूक ा҃ाؕकߢ टेѭ
टूलࣺटݒ का उपयोग अѾर उपयोगकतЄओं को अࣻतिरѱ जानकारࣜ या मागर्दशर्न
प्रदान करने के ࣽलए ࣹकया जाता है जब वे ࣺवऀश࠿ तٌों पर होवर करते हैं या उनके
साथ इंटरैѮ करते हैं। “संदभर्-आधािरत सामग्री ࣺनमЄण” दृࣼ࠿कोण के साथ, आप
ऐसे टूलࣺटݒ जनरेट कर सकते हैं जो उपयोगकतЄ के संदभर् के अनुकूल होते हैं और
प्रासंࣻगक जानकारࣜ प्रदान करते हैं। उदाहरण के ࣽलए, यࣺद कोई उपयोगकतЄ एक
जࣺटल सुࣺवधा का पता लगा रहा ह,ै तो टूलࣺटप उनकࣞ ࣺपछलࣜ इंटरैѽन या कौशल
रࡰ के आधार पर ࠖࣼѱगत सुझाव या उदाहरण प्रदान कर सकता ह।ै
ࠖाҷाىक टҡे, जैसे ࣺनदϺश, ࣺववरण, या सहायता संदशे, उपयोगकतЄ के संदभर्
के आधार पर गࣻतशील रूप से जनरेट ࣹकए जा सकते हैं। सामा۠ ीकरण࠿ࡵ प्रࡰतु
करने के बजाय, आप उपयोगकतЄ कࣞ ࣺवऀश࠿ आव࠮कताओं या प्रࠫों के अनुरूप
टҡे जनरेट करने के ࣽलए LLMs का उपयोग कर सकते हैं। उदाहरण के ࣽलए,
यࣺद कोई उपयोगकतЄ ࣹकसी प्रࣺक्रया में एक ࣺवशेष चरण के साथ संघषर् कर रहा ह,ै
तो ࠖाҷाىक टҡे ࠖࣼѱगत मागर्दशर्न या समࡺा ࣺनवारण के सुझाव प्रदान कर
सकता ह।ै
माइक्रोकॉपी छोटे टҡे खंडों को संदࣾभर्त करता है जो उपयोगकतЄओं को आपके
एࣺݎकेशन के माۀम से मागर्दशर्न करते हैं, जैसे बटन लेबल, त्रुࣺ ट संदशे, या पुࣼ࠿करण
प्रॉम्݂। माइक्रोकॉपी पर संदभर्-आधािरत सामग्री ࣺनमЄण दृࣼ࠿कोण को लागू करके,
आप एक अनुकूलࣜ यूआई बना सकते हैं जो उपयोगकतЄ कࣞ ࣺक्रयाओं के प्रࣻत प्रࣻतࣺक्रया
करता है और प्रासंࣻगक और सहायक टҡे प्रदान करता ह।ै उदाहरण के ࣽलए, यࣺद
कोई उपयोगकतЄ कोई महٌपूणर् कारर्वाई करने वाला ह,ै तो पुࣼ࠿करण प्रॉम्݂ को
गࣻतशील रूप से जनरेट ࣹकया जा सकता है ताࣹक एक ࠿ࡵ और ࠖࣼѱगत संदशे
प्रदान ࣹकया जा सके।

जेनरेࣺटव यूआई 213

ࠖࣼѱगत ࠖाҷाىक टҡे और टूलࣺटݒ नए उपयोगकतЄओं के ࣽलए ऑनबोࣺड϶ग
प्रࣺक्रया को काफࣞ बढ़ा सकते हैं। संदभर्-ࣺवऀश࠿ मागर्दशर्न और उदाहरण प्रदान करके,
आप उपयोगकतЄओं को एࣺݎकेशन को जߨी से समझने और नेࣺवगेट करने में मदद
कर सकते हैं, ऀजससे सीखने कࣞ प्रࣺक्रया कम होती है और अपनाने कࣞ दर बढ़ती ह।ै
गࣻतशील और संदभर्-जागरूक क्रोम एࣽलमेंׅ एࣺݎकेशन को अࣾधक सहज और आकषर्क
भी बना सकते हैं। जब साथ में ࣺदया गया टҡे उनकࣞ ࣺवऀश࠿ जरूरतों और रुࣿचयों
के अनुरूप होता ह,ै तो उपयोगकतЄओं के सुࣺवधाओं के साथ इंटरैѮ करने और
उनका पता लगाने कࣞ संभावना अࣾधक होती ह।ै

अब तक हमने AI के साथ मौजूदा UI पैराडाइम को बेहतर बनाने के ࣺवचारों को
कवर ࣹकया ह,ै लेࣹकन उपयोगकतЄ इंटरफ़ेस को एक अࣾधक मौࣽलक तरࣜके से कैसे
ࣺडज़ाइन और कायЄअۢत ࣹकया जाए, इस बारे में Ѻा?

जनरेࣅटव यूआई को पिरभाࣆषत करना
पारंपिरक यूआई ࣺडज़ाइन के ࣺवपरࣜत, जहां ࣺडज़ाइनर ࣺनऀࠥत, ऍࡱर इंटरफ़ेस बनाते हैं,
जेनयूआई एक ऐसे भࣺवࡈ कࣞ ओर इशारा करता है ऀजसमें हमारा सॉݨवेयर लचीले,
वैयࣼѱकृत अनुभव प्रदान करता है जो वाࣺࡰवक समय में ࣺवकऀसत और अनुकूࣽलत हो
सकते हैं। जब भी हम एआई-संचाࣽलत संवादाىक इंटरफ़ेस का उपयोग करते हैं, हम
एआई को उपयोगकतЄ कࣞ ࣺवऀश࠿ आव࠮कताओं के अनुरूप ढलने दतेे हैं। जेनयूआई
एक कदम आगे बढ़कर सॉݨवेयर के दृ࠮ इंटरफ़ेस में उस रࡰ कࣞ अनुकूलनशीलता
को लागू करता ह।ै
आज जेनयूआई ࣺवचारों के साथ प्रयोग करना संभव है Ѻोंࣹक बृहत भाषा मॉडल
पहले से हࣚ प्रोग्राࣻमंग को समझते हैं और उनके आधार ज्ञान में यूआई प्रौښोࣻगࣹकयां
और फे्रमवकॼ शाࣻमल हैं। सवाल यह है ࣹक Ѻा बृहत भाषा मॉडल का उपयोग यूआई
तٌों को जनरेट करने के ࣽलए ࣹकया जा सकता ह,ै जैसे टҡे, छࣺवयां, लेआउट,
और यहां तक ࣹक पूरे इंटरफ़ेस, जो प्रيके ࠖࣼѱगत उपयोगकतЄ के ࣽलए अनुकूࣽलत

जेनरेࣺटव यूआई 214

हों। मॉडल को ࣺवࣾभۚ कारकों को ानۀ में रखने के ࣽलए ࣺनदϺऀ शत ࣹकया जा सकता ह,ै
जैसे उपयोगकतЄ कࣞ ࣺपछलࣜ इंटरैѽन, ࠖѱ कࣞ गई प्राथࣻमकताएं, जनसांऐҷकࣞय
जानकारࣜ, और उपयोग का वतर्मान संदभर्, ताࣹक अࣾيधक वैयࣼѱकृत और प्रासंࣻगक
इंटरफ़ेस बनाए जा सकें ।
जेनयूआई कई प्रमुख तरࣜकों से पारंपिरक उपयोगकतЄ इंटरफ़ेस ࣺडज़ाइन से ࣾभۚ ह:ै

1. गࣆतशील और अनुकूलनीय: पारंपिरक यूआई ࣺडज़ाइन में ࣺनऀࠥत, ऍࡱर इंटरफ़ेस
बनाना शाࣻमल है जो सभी उपयोगकतЄओं के ࣽलए समान रहता ह।ै इसके ࣺवपरࣜत,
जेनयूआई ऐसे इंटरफ़ेस को सक्षम बनाता है जो उपयोगकतЄ कࣞ आव࠮कताओं
और संदभर् के आधार पर गࣻतशील रूप से अनुकूࣽलत और पिरवࣻतर्त हो सकते
हैं। इसका मतलब है ࣹक एक हࣚ एࣺݎकेशन ࣺवࣾभۚ उपयोगकतЄओं को या यहां
तक ࣹक एक हࣚ उपयोगकतЄ को अलग-अलग पिरऍࣻࡱतयों में अलग-अलग
इंटरफ़ेस प्रࡰतु कर सकता ह।ै

2. बड़े पैमाने पर वैयࣈнकरण: पारंपिरक ࣺडज़ाइन के साथ, प्रيके उपयोगकतЄ
के ࣽलए वैयࣼѱकृत अनुभव बनाना अѾर आव࠮क समय और संसाधनों के
कारण अࠖावहािरक होता ह।ै दूसरࣜ ओर, जेनयूआई बड़े पैमाने पर वैयࣼѱकरण
कࣞ अनुमࣻत दतेा ह।ै एआई का लाभ उठाकर, ࣺडज़ाइनर ऐसे इंटरफ़ेस बना
सकते हैं जो प्रيके उपयोगकतЄ कࣞ ࣺवऀश࠿ आव࠮कताओं और प्राथࣻमकताओं
के अनुरूप चाࣽलतࡼ रूप से ढल जाते हैं, ࣺबना प्रيके उपयोगकतЄ खंड के
ࣽलए अलग से इंटरफ़ेस ࣺडज़ाइन और ࣺवकऀसत करने कࣞ आव࠮कता के।

3. पिरणामों पर :ानڌ पारंपिरक यूआई ࣺडज़ाइन अѾर दृ࠮ रूप से आकषर्क
और कायЄىक इंटरफ़ेस बनाने पर कें ࣺद्रत होता ह।ै हालांࣹक ये पहलू जेनयूआई
में भी महٌपूणर् हैं, प्राथࣻमक ानۀ वांࣽछत उपयोगकतЄ पिरणामों को प्रा݆ करने
कࣞ ओर ानांतिरतࡱ हो जाता ह।ै जेनयूआई प्रيके उपयोगकतЄ के ࣺवऀश࠿ लҝों
और कायЊ के ࣽलए अनुकूࣽलत इंटरफ़ेस बनाने का लҝ रखता ह,ै केवल सौंदयर्
संबंधी ࣺवचारों कࣞ तुलना में उपयोࣻगता और प्रभावशीलता को प्राथࣻमकता दतेा
ह।ै

4. नरंतरࣄ सीखना और सुधार: जेनयूआई ऀस࡫म उपयोगकतЄ इंटरैѽन और
प्रࣻतࣺक्रया के आधार पर ࣺनरंतर सीख और सुधर सकते हैं। जैसे-जैसे उपयोगकतЄ

जेनरेࣺटव यूआई 215

जनरेट ࣹकए गए इंटरफ़ेस के साथ जुड़ते हैं, एआई मॉडल उपयोगकतЄ ࠖवहार,
प्राथࣻमकताओं और पिरणामों पर डटेा एकत्र कर सकते हैं, और इस जानकारࣜ
का उपयोग भࣺवࡈ के इंटरफ़ेस जनरेशन को पिरृ࠻त और अनुकूࣽलत करने
के ࣽलए कर सकते हैं। यह पुनरावत॑ सीखने कࣞ प्रࣺक्रया जेनयूआई ऀस࡫म को
समय के साथ उपयोगकतЄ कࣞ आव࠮कताओं को पूरा करने में अࣾधक प्रभावी
बनने कࣞ अनुमࣻत दतेी ह।ै

यह ानۀ रखना महٌपूणर् है ࣹक GenUI, एआई-सहायक ࣺडज़ाइन टू߶ से अलग
ह,ै जैसे वे जो सुझाव प्रदान करते हैं या कुछ ࣺडज़ाइन कायЊ को चाࣽलतࡼ करते
हैं। हालांࣹक ये टू߶ ࣺडज़ाइन प्रࣺक्रया को सुࠖवऍࡱत करने में मददगार हो सकते
हैं, वे ࣺफर भी अंࣻतम ࣺनणर्य लेने और ऍࡱर इंटरफ़ेस बनाने के ࣽलए ࣺडज़ाइनरों पर
ࣺनभर्र करते हैं। दूसरࣜ ओर, GenUI में एआई ऀस࡫म उपयोगकतЄ डटेा और संदभर्
के आधार पर इंटरफ़ेस के वाࣺࡰवक ࣺनमЄण और अनुकूलन में एक अࣾधक सࣺक्रय
भूࣻमका ࣺनभाता ह।ै
GenUI यूज़र इंटरफ़ेस ࣺडज़ाइन के हमारे दृࣼ࠿कोण में एक महٌपूणर् बदलाव का
प्रࣻतࣺनࣾधٌ करता ह,ै जो एक-आकार-सभी-के-ࣽलए समाधानों से हटकर अࣾيधक
ࠖࣼѱगत, अनुकूलࣜ अनुभवों कࣞ ओर बढ़ रहा ह।ै एआई कࣞ शࣼѱ का लाभ उठाते
हुए, GenUI में ࣺडऀजटल उمादों और सेवाओं के साथ हमारࣜ अंतःࣺक्रया के तरࣜके को
क्रांࣻतकारࣜ रूप से बदलने कࣞ क्षमता ह,ै जो प्रيके ࠖࣼѱगत उपयोगकतЄ के ࣽलए
अࣾधक सहज, आकषर्क और प्रभावी इंटरफ़ेस बनाता ह।ै

उदाहरण
GenUI कࣞ अवधारणा को समझाने के ࣽलए, आइए “FitAI” नामक एक काࣺ߫नक
ࣺफटनेस एࣺݎकेशन पर ࣺवचार करें। यह ऐप उपयोगकतЄओं के ࠖࣼѱगत लҝों,
ࣺफटनेस रࡰ और पसंद के आधार पर ࠖࣼѱगत ࠖायाम योजना और पोषण सलाह
प्रदान करने का लҝ रखता ह।ै
पारंपिरक यूआई ࣺडज़ाइन दृࣼ࠿कोण में, FitAI में नࣞࢂ और एࣽलमेंׅ का एक ࣺनऀࠥत
सेट हो सकता है जो सभी उपयोगकतЄओं के ࣽलए समान होता ह।ै हालांࣹक, GenUI

जेनरेࣺटव यूआई 216

के साथ, ऐप का इंटरफ़ेस प्रيके उपयोगकतЄ कࣞ ࣺवऀश࠿ आव࠮कताओं और संदभर्
के अनुसार गࣻतशील रूप से अनुकूࣽलत हो सकता ह।ै
2024 में इस दृࣼ࠿कोण को लागू करने कࣞ क߫ना करना थोड़ा कࣺठन है और हो
सकता है ࣹक इसका पयЄ݆ ROI भी न हो, लेࣹकन यह संभव ह।ै
यह कैसे काम कर सकता ह:ै

1. ऑनबोࣅडϴग:

• मानक प्रࠫावलࣜ के बजाय, FitAI उपयोगकतЄ के लҝों, वतर्मान ࣺफटनेस
रࡰ और पसंद के बारे में जानकारࣜ एकत्र करने के ࣽलए संवादाىक एआई
का उपयोग करता ह।ै

• इस प्रारंࣾभक बातचीत के आधार पर, एआई एक ࠖࣼѱगत डशैबोडॼ लेआउट
तैयार करता ह,ै जो उपयोगकतЄ के लҝों के ࣽलए सबसे प्रासंࣻगक सुࣺवधाओं
और जानकारࣜ को हाइलाइट करता ह।ै

• वतर्मान एआई तकनीक के पास ࠖࣼѱगत डशैबोडॼ बनाने के ࣽलए नࣞࢂ
कंपोनेंׅ का एक चयन हो सकता ह।ै

• भࣺवࡈ कࣞ एआई तकनीक एक अनुभवी यूआई ࣺडज़ाइनर कࣞ भूࣻमका ࣺनभा
सकती है और वाࡰव में डशैबोडॼ को शू۠ से बना सकती ह।ै

2. ायामߢ योजनाकार:

• ࠖायाम योजनाकार इंटरफ़ेस को एआई ाराڙ उपयोगकतЄ के अनुभव रࡰ
और उपलނ उपकरणों के अनुरूप अनुकूࣽलत ࣹकया जाता ह।ै

• ࣺबना ࣹकसी उपकरण के एक शुरुआती उपयोगकतЄ के ࣽलए, यह ࣺवࡰतृ
ࣺनदϺशों और वीࣺडयो के साथ सरल शारࣜिरक ࠖायाम ࣺदखा सकता ह।ै

• ऀजम तक पहुचं वाले एक उۚत उपयोगकतЄ के ࣽलए, यह कम ࠖाҷाىक
सामग्री के साथ अࣾधक जࣺटल ࣺदनचयЄ प्रदऀशर्त कर सकता ह।ै

• ࠖायाम योजनाकार कࣞ सामग्री केवल एक बड़े सुपरसेट से ࣺफ़ߢर नहࣟ
कࣞ जाती ह।ै यह एक ज्ञान-आधार से तرाल उۚم कࣞ जा सकती है
ऀजसे उपयोगकतЄ के बारे में ज्ञात सभी जानकारࣜ सࣹहत संदभर् के साथ
Ѽेरࣜ ࣹकया जाता ह।ै

जेनरेࣺटव यूआई 217

3. प्रगࣆत कࢩ :नगरानीࣄ

• प्रगࣻत कࣞ ࣺनगरानी का इंटरफ़ेस उपयोगकतЄ के लҝों और संलӈता पैटनर्
के आधार पर ࣺवकऀसत होता ह।ै

• यࣺद कोई उपयोगकतЄ मुҷ रूप से वजन घटाने पर ानۀ कें ࣺद्रत कर रहा
ह,ै तो इंटरफ़ेस प्रमुखता से वजन के रुझान का ग्राफ और कैलोरࣜ बनर् के
आंकड़े प्रदऀशर्त कर सकता ह।ै

• मांसपेऀशयां बनाने वाले उपयोगकतЄ के ࣽलए, यह ताकत में वृआڔ और
शरࣜर कࣞ संरचना में पिरवतर्नों को प्रमुखता से ࣺदखा सकता ह।ै

• एआई एࣺݎकेशन के इस ࣹहेࡿ को उपयोगकतЄ कࣞ वाࣺࡰवक प्रगࣻत के
अनुसार अनुकूࣽलत कर सकता ह।ै यࣺद प्रगࣻत कुछ समय के ࣽलए रुक
जाती ह,ै तो ऐप एक ऐसी ऍࣻࡱत में ानांतिरतࡱ हो सकता है जहां यह
उपयोगकतЄ को बाधाओं के कारणों का खुलासा करने के ࣽलए प्रेिरत करने
का प्रयास करता ह,ै ताࣹक उंेۦ कम ࣹकया जा सके।

4. पोषण सलाह:

• पोषण खंड उपयोगकतЄ कࣞ आहार संबंधी पसंद और प्रࣻतबंधों के अनुसार
अनुकूࣽलत होता ह।ै

• एक शाकाहारࣜ उपयोगकतЄ के ࣽलए, यह पौधे-आधािरत भोजन सुझाव और
प्रोटीन स्रोत ࣺदखा सकता ह।ै

• Ӎूटने असࣹहࡁतुा वाले उपयोगकतЄ के ࣽलए, यह ऀसफािरशों से Ӎूटने
युѱ खाښ पदाथЊ को चाࣽलतࡼ रूप से ࣺफ़ߢर कर दगेा।

• पुनः, सामग्री सभी उपयोगकतЄओं पर लागू होने वाले भोजन डटेा के ࣺवशाल
सुपरसेट से नहࣟ लࣜ जाती ह,ै बऍߛ एक ज्ञान आधार से संࣻे࠯षत कࣞ
जाती है जो उपयोगकतЄ कࣞ ࣺवऀश࠿ ऍࣻࡱत और बाधाओं के आधार पर
अनुकूलन योӌ जानकारࣜ रखता ह।ै

• उदाहरण के ࣽलए, ࠖजंनों को सामग्री ࣺवࣺनदϺशों के साथ तैयार ࣹकया जाता
है जो उपयोगकतЄ कࣞ लगातार बदलती कैलोरࣜ आव࠮कताओं से मेल
खाते हैं Ѻोंࣹक उनका ࣺफटनेस रࡰ और शारࣜिरक आंकड़े ࣺवकऀसत होते
हैं।

जेनरेࣺटव यूआई 218

5. पे्ररक तؘ:

• ऐप कࣞ प्रेरक सामग्री और सूचनाएं उपयोगकतЄ के ࠖࣼѱٌ प्रकार और
ࣺवࣾभۚ प्रेरक रणनीࣻतयों पर प्रࣻतࣺक्रया के आधार पर ࠖࣼѱगत बनाई जाती
हैं।

• कुछ उपयोगकतЄओं को प्रोُाहक संदशे ࣻमल सकते हैं, जबࣹक अ۠ को
अࣾधक डटेा-संचाࣽलत प्रࣻतࣺक्रया ࣻमलती ह।ै

इस उदाहरण में, GenUI FitAI को प्रيके उपयोगकतЄ के ࣽलए एक अࣾيधक
अनुकूࣽलत अनुभव बनाने में सक्षम बनाता ह,ै जो संभवतः संलӈता, संतुࣼ࠿ और
ࣺफटनेस लҝों को प्रा݆ करने कࣞ संभावना को बढ़ाता ह।ै इंटरफ़ेस तٌ, सामग्री,
और यहां तक ࣹक ऐप का “ࠖࣼѱٌ” प्रيके ࠖࣼѱगत उपयोगकतЄ कࣞ जरूरतों और
पसंद को सवЉـम रूप से पूरा करने के ࣽलए अनुकूࣽलत होता ह।ै

पिरणाम-उुګख डज़ाइनࣅ कࢩ ओर बदलाव
GenUI उपयोगकतЄ इंटरफ़ेस ࣺडज़ाइन! के दृࣼ࠿कोण में एक मौࣽलक बदलाव का
प्रࣻतࣺनࣾधٌ करता ह,ै जो ࣺवऀश࠿ इंटरफ़ेस तٌों के ࣺनमЄण से एक अࣾधक समग्र,
पिरणाम-उ۟खु दृࣼ࠿कोण कࣞ ओर बढ़ रहा ह।ै इस बदलाव के कई महٌपूणर् ࣺनࣹहताथर्
हैं:

1. उपयोगकतЂ लѩों पर :ानڌ

• ࣺडज़ाइनरों को ࣺवऀश࠿ इंटरफ़ेस घटकों के बजाय उपयोगकतЄ लҝों और
वांࣽछत पिरणामों के बारे में अࣾधक गहराई से सोचने कࣞ आव࠮कता होगी।

• जोर ऐसी प्रणाࣽलयों के ࣺनमЄण पर होगा जो उपयोगकतЄओं को उनके
उे࠮ړों को कुशलतापूवर्क और प्रभावी ढगं से प्रा݆ करने में मदद करने
वाले इंटरफ़ेस उۚم कर सकें ।

• नए यूआई फे्रमवकॼ सामने आएंगे जो एआई-आधािरत ࣺडज़ाइनरों को पूवर्-
ࣺनधЄिरत नࣞࢂ ࣺवࣺनदϺशों के बजाय तرाल और शुरू से उपयोगकतЄ
अनुभवों को उۚم करने के ࣽलए आव࠮क उपकरण प्रदान करेंगे।

जेनरेࣺटव यूआई 219

2. डज़ाइनसर्ࣅ कࢩ बदलती भूࣆमका:

• ࣺडज़ाइनसर् ࣺनऀࠥत लेआउट बनाने से बदलकर ࣺनयम, सीमाएं और
ࣺदशाࣺनदϺश पिरभाࣻषत करने कࣞ ओर बढ़ेंगे, ऀजनका पालन एआई ऀस࡫म
इंटरफ़ेस जनरेट करते समय करेंगे।

• उंेۦ जेनयूआई ऀस࡫म को प्रभावी ढगं से मागर्दऀशर्त करने के ࣽलए डटेा
ࣺवे࠯षण, एआई प्रॉम्݂ इंजीࣺनयिरंग, और ऀस࡫म ࣽथंࣹकंग जैसे क्षेत्रों में
कौशल ࣺवकऀसत करने कࣞ आव࠮कता होगी।

3. उपयोगकतЂ शोध का महؘ:

• जेनयूआई के संदभर् में उपयोगकतЄ शोध और भी महٌपूणर् हो जाता ह,ै
Ѻोंࣹक ࣺडज़ाइनसर् को न केवल उपयोगकतЄ प्राथࣻमकताओं को समझने कࣞ
आव࠮कता होती ह,ै बऍߛ यह भी समझना होता है ࣹक ࣺवࣾभۚ संदभЊ में
ये प्राथࣻमकताएं और आव࠮कताएं कैसे बदलती हैं।

• एआई कࣞ प्रभावी इंटरफ़ेस जनरेट करने कࣞ क्षमता को पिरृ࠻त और
सुधारने के ࣽलए ࣺनरंतर उपयोगकतЄ परࣜक्षण और फࣞडबैक लूप आव࠮क
होंगे।

4. वधताࣆवࣆ के लएࣈ :डज़ाइनࣅ

• एक “परफेѮ” इंटरफ़ेस बनाने के बजाय, ࣺडज़ाइनसर् को कई संभाࣺवत
ࣺवࣺवधताओं पर ࣺवचार करना होगा और यह सुࣺनऀࠥत करना होगा ࣹक
ऀस࡫म ࣺवࣾभۚ उपयोगकतЄ आव࠮कताओं के ࣽलए उपयुѱ इंटरफ़ेस जनरेट
कर सके।

• इसमें सीमांत मामलों के ࣽलए ࣺडज़ाइन करना और यह सुࣺनऀࠥत करना
शाࣻमल है ࣹक जनरेट ࣹकए गए इंटरफ़ेस ࣺवࣾभۚ कॉिन्फ़गरेशन में प्रयोիता
और पहुचं को बनाए रखें।

• उمाद ࣺवभेदीकरण उपयोगकतЄ मनोࣺवज्ञान पर ࣺवࣾभۚ दृࣼ࠿कोणों और
प्रࣻतࣾࡵधर्यों को अनुपलނ अनूठे डटेा सेट और ज्ञान आधार के उपयोग
के नए आयाम लेता ह।ै

जेनरेࣺटव यूआई 220

चुनौࣆतयां और वचारणीयࣆ बंदुࣆ
जहां जेनयूआई रोमांचक संभावनाएं प्रࡰतु करता ह,ै वहࣟ यह कई चुनौࣻतयां और
ࣺवचारणीय ࣺबंदु भी प्रࡰतु करता ह:ै

1. तकनीकࢩ सीमाए:ं

• वतर्मान एआई तकनीक, हालांࣹक उۚत ह,ै ࣺफर भी जࣺटल उपयोगकतЄ
इरादों को समझने और वाࡰव में संदभर्-जागरूक इंटरफ़ेस जनरेट करने
में सीमाएं हैं।

• ࣺवशेष रूप से कम शࣼѱशालࣜ उपकरणों पर इंटरफ़ेस तٌों कࣞ रࣜयल-
टाइम जनरेशन से संबंࣾधत प्रदशर्न मुेړ।

2. डेटा आवߺकताए:ं

• उपयोग के मामले के आधार पर, प्रभावी जेनयूआई ऀस࡫म को वैयࣼѱकृत
इंटरफ़ेस जनरेट करने के ࣽलए महٌपूणर् मात्रा में उपयोगकतЄ डटेा कࣞ
आव࠮कता हो सकती ह।ै

• नैࣻतक रूप से प्रामाऀणक उपयोगकतЄ डटेा प्रा݆ करने कࣞ चुनौࣻतयां डटेा
गोपनीयता और सुरक्षा के बारे में ࣿचंताएं उठाती हैं, साथ हࣚ जेनयूआई
मॉडल को प्रऀशऀक्षत करने के ࣽलए उपयोग ࣹकए जाने वाले डटेा में संभाࣺवत
पूवЄग्रह भी।

3. प्रयोԷता और :रता࠽ࣔ

• कम से कम जब तक यह प्रथा ࠖापक नहࣟ हो जाती, लगातार बदलते
इंटरफ़ेस वाला एࣺݎकेशन प्रयोիता समࡺाएं पैदा कर सकता ह,ै Ѻोंࣹक
उपयोगकतЄओं को पिरࣿचत तٌों को खोजने या कुशलतापूवर्क नेࣺवगेट
करने में कࣺठनाई हो सकती ह।ै

• वैयࣼѱकरण और एक ऍࡱर, सीखने योӌ इंटरफ़ेस बनाए रखने के बीच
संतुलन बनाना महٌपूणर् होगा।

जेनरेࣺटव यूआई 221

4. एआई पर अؖࣉधक :नभर्रताࣄ

• एआई ऀस࡫म को ࣺडज़ाइन ࣺनणर्य अࣾيधक सौंपने का जोंखम ह,ै जो
संभवतः अप्रेिरत, समࡺाग्रࡰ, या केवल खराब इंटरफ़ेस ࣺवक߫ों कࣞ ओर
ले जा सकता ह।ै

• ࣺनकट भࣺवࡈ में मानवीय ࣺनरࣜक्षण और एआई-जࣺनत ࣺडज़ाइन को
ओवरराइड करने कࣞ क्षमता महٌपूणर् बनी रहगेी।

5. पहुंच-योҘता संबंधी ं:चंताएࣉ

• गࣻतशील रूप से उۚم इंटरफ़ेस को ࣺवकलांग उपयोगकतЄओं के ࣽलए
सुलभ बनाए रखना पूरࣜ तरह से नई चुनौࣻतयां प्रࡰतु करता ह,ै
जो ࣿचंताजनक है Ѻोंࣹक सामा۠ ऀस࡫म ाराڙ प्रदऀशर्त पहुचं-योӌता
अनुपालन का रࡰ कमजोर ह।ै

• दूसरࣜ ओर, एआई ࣺडज़ाइनर को पहुचं-योӌता के ࣽलए अंतࣺनर्ࣹहत ࣿचंता
के साथ कायЄअۢत ࣹकया जा सकता ह,ै और सामा۠ उपयोगकतЄओं के
ࣽलए यूआई बनाने कࣞ तरह हࣚ सुलभ इंटरफ़ेस बनाने कࣞ क्षमताएं होंगी।

• ࣹकसी भी ऍࣻࡱत में, जेनयूआई ऀस࡫म को मजबूत पहुचं-योӌता
ࣺदशाࣺनदϺशों और परࣜक्षण प्रࣺक्रयाओं के साथ ࣺडज़ाइन ࣹकया जाना चाࣹहए।

6. उपयोगकतЂ ास߼वࣆ और पारद࣊शर्ता:

• उपयोगकतЄ ऐसे इंटरफ़ेस से असहज महसूस कर सकते हैं जो उनके बारे
में “बहुत अࣾधक जानते” हैं या ऐसे तरࣜकों से बदलते हैं ऀजंेۦ वे नहࣟ
समझते।

• इंटरफ़ेस को कैसे और Ѻों ࠖࣼѱगत बनाया जाता ह,ै इसके बारे में
पारदऀशर्ता प्रदान करना उपयोगकतЄ ࣺव࠰ास बनाने के ࣽलए महٌपूणर्
होगा।

जेनरेࣺटव यूआई 222

भࣆवࠔ का दृࠋࣇकोण और अवसर
जनरेࣺटव यूआई (जेनयूआई) का भࣺवࡈ ࣺडऀजटल उمादों और सेवाओं के साथ हमारࣜ
अंतःࣺक्रया के तरࣜके में क्रांࣻत लाने का अपार वादा रखता ह।ै जैसे-जैसे यह तकनीक
ࣺवकऀसत होती जाएगी, हम उपयोगकतЄ इंटरफ़ेस के ࣺडज़ाइन, कायЄۢयन और अनुभव
में एक भूकंपीय बदलाव कࣞ उ޲ीद कर सकते हैं। मेरा मानना है ࣹक जेनयूआई वह
घटना है जो अंततः हमारे सॉݨवेयर को ࣺवज्ञान कथा माने जाने वाले क्षेत्र में धकेल
दगेी।
जेनयूआई कࣞ सबसे रोमांचक संभावनाओं में से एक इसकࣞ पहुचं-योӌता को बड़े
पैमाने पर बढ़ाने कࣞ क्षमता ह,ै जो केवल गंभीर ࣺवकलांगता वाले लोगों को आपके
सॉݨवेयर के उपयोग से पूरࣜ तरह से बाहर न रखने से कहࣟ आगे जाती ह।ै ࠖࣼѱगत
उपयोगकतЄ कࣞ जरूरतों के अनुसार चाࣽलतࡼ रूप से इंटरफ़ेस को अनुकूࣽलत करके,
जेनयूआई ࣺडऀजटल अनुभवों को पहले से कहࣟ अࣾधक समावेशी बना सकता ह।ै ऐसे
इंटरफ़ेस कࣞ क߫ना करें जो युवा या दृࣼ࠿ बाࣾधत उपयोगकतЄओं के ࣽलए बड़े टҡे
प्रदान करने या संज्ञानाىक ࣺवकलांगता वाले लोगों के ࣽलए सरलࣜकृत लेआउट प्रदान
करने के ࣽलए ࣺनबЄध रूप से समायोऀजत हो जाते हैं, वह भी मैनुअल कॉिन्फ़गरेशन
या एࣺݎकेशन के अलग “सुलभ” संࡡरणों कࣞ आव࠮कता के ࣺबना।
जेनयूआई कࣞ ࠖࣼѱगतकरण क्षमताएं ࣺवࣾभۚ ࣺडऀजटल उمादों में उपयोगकतЄ जुड़ाव,
संतुࣼ࠿ और ࣺनࡀा को बढ़ाने कࣞ संभावना रखती हैं। जैसे-जैसे इंटरफ़ेस ࠖࣼѱगत पसंद
और ࠖवहार के प्रࣻत अࣾधक सामंजࡺपूणर् होते जाएंगे, उपयोगकतЄओं को ࣺडऀजटल
अनुभव अࣾधक सहज और आनंददायक लगेंगे, ऀजससे संभवतः प्रौښोࣻगकࣞ के साथ
गहरࣜ और अࣾधक साथर्क अंतःࣺक्रया हो सकेगी।
जेनयूआई में नए उपयोगकतЄओं के ࣽलए ऑनबोࣺड϶ग प्रࣺक्रया को बदलने कࣞ क्षमता भी
ह।ै प्रيके उपयोगकतЄ कࣞ ࣺवशेषज्ञता के रࡰ के अनुसार तेजी से अनुकूल होने वाले
सहज, ࠖࣼѱगत पहलࣜ बार के उपयोगकतЄ अनुभव बनाकर, जेनयूआई नए एࣺݎकेशन
से जुड़ी सीखने कࣞ प्रࣺक्रया को काफࣞ कम कर सकता ह।ै इससे तेज अपनाने कࣞ दर
और नई सुࣺवधाओं और कायर्क्षमताओं कࣞ खोज में उपयोगकतЄ का आࣺىव࠰ास बढ़
सकता ह।ै

जेनरेࣺटव यूआई 223

एक और रोमांचक संभावना है रचनाىक यूआई (GenUI) कࣞ क्षमता ࣺवࣾभۚ उपकरणों
और टेफ़ॉमर्ݎ पर एक सुसंगत प्रयोѱा अनुभव को बनाए रखने कࣞ, जबࣹक प्रيके
ࣺवऀश࠿ उपयोग के संदभर् के ࣽलए अनुकूलन करते हुए। यह ाटॼफोनࡹ और टबैलेट
से लेकर डेࡡटॉप कंݍटूर और संवࣾधर्त वाࣺࡰवकता च࠭े जैसी उभरती तकनीकों
तक, एक बढ़ते हुए खंࣺडत उपकरण पिरदृ࠮ में सुसंगत अनुभव प्रदान करने कࣞ लंबे
समय से चलࣜ आ रहࣚ चुनौती को हल कर सकता ह।ै
डटेा-संचाࣽलत प्रकृࣻत के कारण रचनाىक यूआई यूआई ࣺडज़ाइन में तेज़ी से सुधार
और पिरवतर्न के अवसर खोलता ह।ै उۚم इंटरफ़ेस के साथ प्रयोѱाओं कࣞ अंतःࣺक्रया
पर वाࣺࡰवक समय का डटेा एकत्र करके, ࣺडज़ाइनर और डवेलपर प्रयोѱा ࠖवहार
और प्राथࣻमकताओं में अभूतपूवर् अंतदृर्ࣼ࠿ प्रा݆ कर सकते हैं। यह प्रࣻतࣺक्रया चक्र यूआई
ࣺडज़ाइन में ࣺनरंतर सुधार कࣞ ओर ले जा सकता ह,ै जो मा۠ताओं या सीࣻमत प्रयोѱा
परࣜक्षण के बजाय वाࣺࡰवक उपयोग पैटनर् से संचाࣽलत होगा।
इस बदलाव के ࣽलए तैयार होने के ࣽलए, ࣺडज़ाइनरों को अपने कौशल समूह और
मानऀसकता को ࣺवकऀसत करने कࣞ आव࠮कता होगी। ानۀ ࣺनऀࠥत लेआउट बनाने
से हटकर ࠖापक ࣺडज़ाइन प्रणाࣽलयों और ࣺदशाࣺनदϺशों को ࣺवकऀसत करने पर कें ࣺद्रत
होगा जो एआई-संचाࣽलत इंटरफ़ेस ࣺनमЄण को सूࣿचत कर सकते हैं। ࣺडज़ाइनरों को
रचनाىक यूआई प्रणाࣽलयों को प्रभावी ढगं से मागर्दऀशर्त करने के ࣽलए डटेा ࣺवे࠯षण,
एआई प्रौښोࣻगࣹकयों और प्रणालࣜ सोच कࣞ गहरࣜ समझ ࣺवकऀसत करने कࣞ आव࠮कता
होगी।
इसके अलावा, जैसे-जैसे रचनाىक यूआई ࣺडज़ाइन और प्रौښोࣻगकࣞ के बीच कࣞ
रेखाएं धुंधलࣜ होती जाएंगी, ࣺडज़ाइनरों को डवेलपसर् और डटेा वैज्ञाࣺनकों के साथ और
अࣾधक ࣺनकटता से सहयोग करने कࣞ आव࠮कता होगी। यह अंतࣺवर्षयक दृࣼ࠿कोण
ऐसी रचनाىक यूआई प्रणाࣽलयाँ बनाने में महٌपूणर् होगा जो न केवल दृ࠮ रूप से
आकषर्क और प्रयोѱा-अनुकूल हों, बऍߛ तकनीकࣞ रूप से मजबूत और नैࣻतक रूप
से उࣿचत भी हों।
जैसे-जैसे प्रौښोࣻगकࣞ पिरपѼ होगी, रचनाىक यूआई के नैࣻतक ࣺनࣹहताथर् भी सामने
आएंगे। ࣺडज़ाइनर इंटरफ़ेस ࣺडज़ाइन में ऀज޲देार एआई उपयोग के ࣽलए ढांचे ࣺवकऀसत
करने में महٌपूणर् भूࣻमका ࣺनभाएंगे, यह सुࣺनऀࠥत करते हुए ࣹक ࠖࣼѱगतकरण प्रयोѱा

जेनरेࣺटव यूआई 224

अनुभवों को बढ़ाता ह,ै गोपनीयता से समझौता ࣹकए ࣺबना या प्रयोѱा ࠖवहार को
अनैࣻतक तरࣜकों से प्रभाࣺवत ࣹकए ࣺबना।
जैसे-जैसे हम भࣺवࡈ कࣞ ओर दखेते हैं, रचनाىक यूआई रोमांचक अवसर और
महٌपूणर् चुनौࣻतयां दोनों प्रࡰतु करता ह।ै इसमें दुࣺनया भर के प्रयोѱाओं के ࣽलए
अࣾधक सहज, कुशल और संतोषजनक ࣺडऀजटल अनुभव बनाने कࣞ क्षमता ह।ै हालांࣹक
इसके ࣽलए ࣺडज़ाइनरों को अनुकूࣽलत होने और नए कौशल प्रा݆ करने कࣞ आव࠮कता
होगी, यह मानव-कंݍटूर अंतःࣺक्रया के भࣺवࡈ को गहन और साथर्क तरࣜकों से आकार
दनेे का एक अभूतपूवर् अवसर भी प्रदान करता ह।ै पूणर् रूप से ࣺवकऀसत रचनाىक
यूआई प्रणाࣽलयों कࣞ ओर यात्रा ࣺनऀࠥत रूप से जࣺटल होगी, लेࣹकन बेहतर प्रयोѱा
अनुभवों और ࣺडऀजटल पहुचं के संदभर् में संभाࣺवत पुरࡡार इसे एक ऐसा भࣺवࡈ
बनाते हैं ऀजसके ࣽलए प्रयास करने योӌ ह।ै

बु࣎٠मान कायर्प्रवाह समڮय

“बुआڔमान कायर्प्रवाह समۢय” दृࣼ࠿कोण एࣺݎकेशन के भीतर जࣺटल कायर्प्रवाह को
गࣻतशील रूप से समۢࣻयत और अनुकूࣽलत करने के ࣽलए AI घटकों का लाभ उठाने
पर कें ࣺद्रत ह।ै लҝ ऐसे एࣺݎकेशन बनाना है जो अࣾधक कुशल, प्रࣻतࣺक्रयाशील और
वाࣺࡰवक समय के डटेा और संदभर् के प्रࣻत अनुकूलनीय हों।
इस अۀाय में, हम बुआڔमान कायर्प्रवाह समۢय दृࣼ࠿कोण के मूल ऀसڔांतों और
पैटनर् कࣞ खोज करेंगे। हम ࣺवचार करेंगे ࣹक कैसे AI का उपयोग कायЊ को बुआڔमानी
से रूट करने, ࣺनणर्य लेने को चाࣽलतࡼ करने और उपयोगकतЄ ࠖवहार, ऀस࡫म
प्रदशर्न और ࠖावसाࣻयक ࣺनयमों जैसे ࣺवࣾभۚ कारकों के आधार पर कायर्प्रवाह को
गࣻतशील रूप से अनुकूࣽलत करने के ࣽलए ࣹकया जा सकता ह।ै ࠖावहािरक उदाहरणों
और वाࣺࡰवक पिरदृ࠮ों के माۀम से, हम एࣺݎकेशन कायर्प्रवाह को सुࠖवऍࡱत और
अनुकूࣽलत करने में AI कࣞ पिरवतर्नकारࣜ क्षमता का प्रदशर्न करेंगे।
चाहे आप जࣺटल ࠖावसाࣻयक प्रࣺक्रयाओं वाले एंटरप्राइज एࣺݎकेशन बना रहे हों या

बुआڔमान कायर्प्रवाह समۢय 226

गࣻतशील उपयोगकतЄ यात्राओं वाले उपभोѱा-कें ࣺद्रत एࣺݎकेशन, इस अۀाय में चचЄ
ࣹकए गए पैटनर् और तकनीकें आपको बुआڔमान और कुशल कायर्प्रवाह बनाने के ࣽलए
ज्ञान और उपकरणों से लैस करेंगी जो समग्र उपयोगकतЄ अनुभव को बढ़ाते हैं और
ࠖावसाࣻयक मू߰ को बढ़ावा दतेे हैं।

यकࣆावसाߢ आवߺकता
कायर्प्रवाह प्रबंधन के पारंपिरक दृࣼ࠿कोण अѾर पूवर्-ࣺनधЄिरत ࣺनयमों और ऍࡱर
ࣺनणर्य वृक्षों पर ࣺनभर्र करते हैं, जो कठोर, अन޳ हो सकते हैं और आधुࣺनक
एࣺݎकेशन कࣞ गࣻतशील प्रकृࣻत से ࣺनपटने में असमथर् हो सकते हैं।
एक ऐसी ऍࣻࡱत पर ࣺवचार करें जहां एक ई-कॉमसर् एࣺݎकेशन को एक जࣺटल आदशे
पूࣻतर् प्रࣺक्रया को संभालने कࣞ आव࠮कता ह।ै कायर्प्रवाह में कई चरण शाࣻमल हो
सकते हैं जैसे आदशे सيापन, इۢेंट्र ी जांच, भुगतान प्रसंࡡरण, ऀशࣺपंग और ग्राहक
सूचनाएं। प्रيके चरण के अपने ࣺनयम, ࣺनभर्रताएं, बाहरࣜ एकࣞकरण और अपवाद
प्रबंधन तंत्र हो सकते हैं। ऐसे कायर्प्रवाह को मै۠अुल रूप से या हाडॼकोडडे लॉऀजक
के माۀम से प्रबंࣾधत करना जߨी हࣚ बोंझल, त्रुࣺ ट-प्रवण और बनाए रखने में कࣺठन
हो सकता ह।ै
इसके अलावा, जैसे-जैसे एࣺݎकेशन का ࣺवࡰार होता है और एक साथ उपयोगकतЄओं
कࣞ संҷा बढ़ती ह,ै कायर्प्रवाह को वाࣺࡰवक समय के डटेा और ऀस࡫म प्रदशर्न के
आधार पर खुद को अनुकूࣽलत और अनुकूलन करने कࣞ आव࠮कता हो सकती ह।ै
उदाहरण के ࣽलए, अࣾधक ट्र ैࣺ फक कࣞ अवࣾध के दौरान, एࣺݎकेशन को कुछ कायЊ को
प्राथࣻमकता दनेे, संसाधनों का कुशलतापूवर्क आवंटन करने और सुचारू उपयोगकतЄ
अनुभव सुࣺनऀࠥत करने के ࣽलए कायर्प्रवाह को गࣻतशील रूप से समायोऀजत करने कࣞ
आव࠮कता हो सकती ह।ै
यहࣟ पर “बुआڔमान कायर्प्रवाह समۢय” दृࣼ࠿कोण महٌपूणर् हो जाता ह।ै AI घटकों
का लाभ उठाकर, डवेलपसर् ऐसे कायर्प्रवाह बना सकते हैं जो बुआڔमान, अनुकूलनशील
और अनुकूलन-ࡼ करने वाले हों। AI बड़ी मात्रा में डटेा का ࣺवे࠯षण कर सकता ह,ै

बुआڔमान कायर्प्रवाह समۢय 227

ࣺपछले अनुभवों से सीख सकता ह,ै और कायर्प्रवाह को प्रभावी ढगं से संचाࣽलत करने
के ࣽलए वाࣺࡰवक समय में सूࣿचत ࣺनणर्य ले सकता ह।ै

प्रमुख लाभ
1. बढ़ी हुई दक्षता: AI कायर् आवंटन, संसाधन उपयोग और कायर्प्रवाह ࣺनࡄादन
को अनुकूࣽलत कर सकता ह,ै ऀजससे तेज प्रसंࡡरण समय और समग्र दक्षता
में सुधार होता ह।ै

2. अनुकूलन क्षमता: AI-संचाࣽलत कायर्प्रवाह बदलती पिरऍࣻࡱतयों के अनुसार
गࣻतशील रूप से अनुकूलन कर सकते हैं, जैसे उपयोगकतЄ मांग में उतार-
चढ़ाव, ऀस࡫म प्रदशर्न, या ࠖावसाࣻयक आव࠮कताएं, जो सुࣺनऀࠥत करता है
ࣹक एࣺݎकेशन प्रࣻतࣺक्रयाशील और लचीला बना रह।े

3. लतࣈचाࡈ :नमЂणࣄ-नणर्यࣄ AI कायर्प्रवाह के भीतर जࣺटल ࣺनणर्य-ࣺनमЄण
प्रࣺक्रयाओं को चाࣽलतࡼ कर सकता ह,ै ऀजससे मैनुअल हࡰक्षेप कम होता
है और मानवीय त्रुࣺ टयों का जोंखम कम होता ह।ै

4. वैयࣈнकरण: AI उपयोगकतЄ ࠖवहार, प्राथࣻमकताओं और संदभर् का ࣺवे࠯षण
करके कायर्प्रवाह को वैयࣼѱकृत कर सकता है और ࠖࣼѱगत उपयोगकतЄओं को
अनुकूࣽलत अनुभव प्रदान कर सकता ह।ै

5. मापनीयता: AI-संचाࣽलत कायर्प्रवाह प्रदशर्न या ࣺव࠰सनीयता से समझौता ࣹकए
ࣺबना, बढ़ती मात्रा में डटेा और उपयोगकतЄ इंटरैѽन को संभालने के ࣽलए
ࣺनबЄध रूप से लࡡे कर सकते हैं।

आगामी खंडों में, हम उन प्रमुख पैटनर् और तकनीकों कࣞ खोज करेंगे जो बुआڔमान
कायर्प्रवाह के कायЄۢयन को सक्षम बनाते हैं और ࣺदखाएंगे ࣹक कैसे AI आधुࣺनक
एࣺݎकेशन में कायर्प्रवाह प्रबंधन को बदल रहा ह।ै

बुआڔमान कायर्प्रवाह समۢय 228

प्रमुख पैटनर्
एࣺݎकेशन में बुआڔमान कायर्प्रवाह समۢय को लागू करने के ࣽलए, डवेलपसर् कई
प्रमुख पैटनर् का लाभ उठा सकते हैं जो AI कࣞ शࣼѱ का उपयोग करते हैं। ये पैटनर्
कायर्प्रवाह को ࣺडज़ाइन और प्रबंࣾधत करने के ࣽलए एक संरࣿचत दृࣼ࠿कोण प्रदान करते
हैं, जो एࣺݎकेशन को वाࣺࡰवक समय के डटेा और संदभर् के आधार पर प्रࣺक्रयाओं
को अनुकूࣽलत, अनुकूलन और चाࣽलतࡼ करने में सक्षम बनाते हैं। आइए बुआڔमान
कायर्प्रवाह समۢय में कुछ मौࣽलक पैटनर् कࣞ खोज करें।

गࣆतशील कायर् मागर्ण
इस पैटनर् में कायर् प्राथࣻमकता, संसाधन उपलނता और ऀस࡫म प्रदशर्न जैसे ࣺवࣾभۚ
कारकों के आधार पर कायर्प्रवाह के भीतर कायЊ को बुआڔमानी से रूट करने के ࣽलए
AI का उपयोग शाࣻमल ह।ै AI एߝोिरदम प्रيके कायर् कࣞ ࣺवशेषताओं का ࣺवे࠯षण
कर सकते हैं, ऀस࡫म कࣞ वतर्मान ऍࣻࡱत पर ࣺवचार कर सकते हैं, और कायЊ को
सबसे उपयुѱ संसाधनों या प्रसंࡡरण पथों को असाइन करने के ࣽलए सूࣿचत ࣺनणर्य
ले सकते हैं। गࣻतशील कायर् मागर्ण सुࣺनऀࠥत करता है ࣹक कायर् कुशलतापूवर्क ࣺवतिरत
और ࣺनࡄाࣺदत ࣹकए जाते हैं, जो समग्र कायर्प्रवाह प्रदशर्न को अनुकूࣽलत करता ह।ै

1 class TaskRouter

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 attr_accessor :task

6

7 # list of functions that can be called by the AI entirely at its

8 # discretion depending on the task received

9

10 function :analyze_task_priority do

11 TaskPriorityAnalyzer.perform(task)

12 end

13

14 function :check_resource_availability, # ...

बुआڔमान कायर्प्रवाह समۢय 229

15 function :assess_system_performance, # ...

16 function :assign_task_to_resource, # ...

17

18 DIRECTIVE = "You are a task router, responsible for intelligently

19 assigning tasks to available resources based on priority, resource

20 availability, and system performance..."

21

22 def initialize(task)

23 self.task = task

24 transcript << { system: DIRECTIVE }

25 transcript << { user: task.to_json }

26 end

27

28 def perform

29 while task.unassigned?

30 chat_completion

31

32 # todo: add max loop counter and break

33 end

34

35 # capture the transcript for later analysis

36 task.update(routing_transcript: transcript)

37 end

38 end

ानۀ दें ࣹक लाइन 29 पर while एѾप्रेशन ाराڙ बनाया गया लूप, जो AI को तब
तक प्रॉम्݂ करता रहता है जब तक ࣹक कायर् असाइन नहࣟ हो जाता। लाइन 35 पर,
हम बाद में ࣺवे࠯षण और डीबࣻगंग के ࣽलए कायर् का ट्र ांसࣺक्र݂ सहजे लेते हैं, यࣺद यह
आव࠮क हो।

संदभर्परक नणर्यࣄ लेना
आप वकॼݱो के भीतर संदभर्-जागरूक ࣺनणर्य लेने के ࣽलए बहुत समान कोड का
उपयोग कर सकते हैं। उपयोगकतЄ प्राथࣻमकताओ,ं ऐࣻतहाऀसक पैटनर्, और रࣜयल-टाइम
इनपुट जैसे प्रासंࣻगक डटेा पॉइंׅ का ࣺवे࠯षण करके, AI कंपोनेंׅ वकॼݱो में प्रيके
ࣺनणर्य ࣺबंदु पर सबसे उपयुѱ कारर्वाई का ࣺनधЄरण कर सकते हैं। प्रيके उपयोगकतЄ

बुआڔमान कायर्प्रवाह समۢय 230

या पिरदृ࠮ के ࣺवऀश࠿ संदभर् के आधार पर अपने वकॼݱो के ࠖवहार को अनुकूࣽलत
करें , जो ࠖࣼѱगत और अनुकूࣽलत अनुभव प्रदान करता ह।ै

अनुकूलࢨ वकॳܽो संरचना
यह पैटनर् बदलती आव࠮कताओं या पिरऍࣻࡱतयों के आधार पर वकॼݱो को गࣻतशील
रूप से तैयार करने और समायोऀजत करने पर कें ࣺद्रत ह।ै AI वकॼݱो कࣞ वतर्मान
ऍࣻࡱत का ࣺवे࠯षण कर सकता ह,ै बाधाओं या अक्षमताओं कࣞ पहचान कर सकता
ह,ै और प्रदशर्न को अनुकूࣽलत करने के ࣽलए वकॼݱो संरचना को चाࣽलतࡼ रूप से
संशोࣾधत कर सकता ह।ै अनुकूलࣜ वकॼݱो संरचना एࣺݎकेशन को मैनुअल हࡰक्षेप
कࣞ आव࠮कता के ࣺबना ࣺनरंतर ࣺवकऀसत और सुधार करने कࣞ अनुमࣻत दतेी ह।ै

अपवाद प्रबंधन और पुनप्रЂܒࣆ
अपवाद प्रबंधन और पुनप्रЄࣺ݆ बुआڔमान वकॼݱो ऑकϺ्࡫र शेन के महٌपूणर् पहलू हैं।
AI कंपोनेंׅ और जࣺटल वकॼݱो के साथ काम करते समय, ऀस࡫म कࣞ ऍࡱरता और
ࣺव࠰सनीयता सुࣺनऀࠥत करने के ࣽलए अपवादों का सुचारू रूप से पूवЄनुमान और
प्रबंधन करना आव࠮क ह।ै
बुआڔमान वकॼݱो में अपवाद प्रबंधन और पुनप्रЄࣺ݆ के ࣽलए कुछ प्रमुख ࣺवचार और
तकनीकें यहाँ दी गई हैं:

1. अपवाद प्रसार: वकॼݱो कंपोनेंׅ में अपवादों के प्रसार के ࣽलए एक सुसंगत
दृࣼ࠿कोण लागू करें। जब ࣹकसी कंपोनेंट के भीतर कोई अपवाद होता ह,ै तो
इसे पकड़ा जाना चाࣹहए, लॉग ࣹकया जाना चाࣹहए, और ऑकϺ्࡫र टेर या अपवादों
को संभालने के ࣽलए ऀज޲देार एक अलग कंपोनेंट तक पहुचंाया जाना चाࣹहए।
ࣺवचार यह है ࣹक अपवाद प्रबंधन को कें द्रीकृत ࣹकया जाए और अपवादों को
चुपचाप ࣺनगल जाने से रोका जाए, साथ हࣚ बुआڔमान त्रुࣺ ट प्रबंधन के ࣽलए
संभावनाएं खोलࣜ जाएं।

बुआڔमान कायर्प्रवाह समۢय 231

2. पुनः प्रयास तंत्र: पुनः प्रयास तंत्र वकॼݱो कࣞ लचीलापन में सुधार करने और
क्षऀणक ࣺवफलताओं को सुचारू रूप से संभालने में मदद करते हैं। क्षऀणक
या पुनप्रЄ݆ करने योӌ अपवादों के ࣽलए पुनः प्रयास तंत्र को लागू करने का
ࣺनऀࠥत प्रयास करें , जैसे नेटवकॼ कनेऎѮࣺवटी या संसाधन कࣞ अनुपलނता ऀजसे
ࣺनࣺदर्࠿ दरेࣜ के बाद चाࣽलतࡼ रूप से पुनः प्रयास ࣹकया जा सकता ह।ै एक
AI-संचाࣽलत ऑकϺ्࡫र टेर या अपवाद हैंडलर का मतलब है ࣹक आपकࣞ पुनः
प्रयास रणनीࣻतयों को यांࣻत्रक प्रकृࣻत कࣞ नहࣟ होना पड़ता, जो एѾपोनेंऀशयल
फॉलबैक जैसे ࣺनऀࠥत एߝोिरथम पर ࣺनभर्र करती हैं। आप अपवाद को संभालने
के तरࣜके का ࣺनणर्य करने के ࣽलए ऀज޲देार AI कंपोनेंट के “ࣺववेक” पर पुनः
प्रयास का प्रबंधन छोड़ सकते हैं।

3. फॉलबैक रणनीࣆतयाँ: यࣺद कोई AI घटक वैध प्रࣻतࣺक्रया प्रदान करने में ࣺवफल
रहता है या ࣹकसी त्रुࣺ ट का सामना करता ह—ैजो इसकࣞ नवीनतम प्रकृࣻत को
दखेते हुए एक सामा۠ घटना ह—ैतो कायर्प्रवाह को जारࣜ रखने के ࣽलए एक
फॉलबैक तंत्र होना चाࣹहए। इसमें ࣺडफ़ॉߢ मान का उपयोग, वैकऍ߫क एߝोिरچ,
या ࣺनणर्य लेने और कायर्प्रवाह को आगे बढ़ाने के ࣽलए मानव-इन-द-लूप का
उपयोग शाࣻमल हो सकता ह।ै

4. प्रࣆतकारक कारर्वाइयाँ: ऑकϺ्࡫र टेर के ࣺनदϺशों में उन अपवादों को संभालने के
ࣽलए प्रࣻतकारक कारर्वाइयों के बारे में ࣺनदϺश शाࣻमल होने चाࣹहए ऀजंेۦ चाࣽलतࡼ
रूप से हल नहࣟ ࣹकया जा सकता। प्रࣻतकारक कारर्वाइयाँ ࣺवफल हुए ऑपरेशन
के प्रभावों को पूवर्वत करने या कम करने के ࣽलए उठाए गए कदम हैं। उदाहरण
के ࣽलए, यࣺद भुगतान प्रसंࡡरण चरण ࣺवफल हो जाता ह,ै तो प्रࣻतकारक
कारर्वाई लेनदने को वापस रोल करना और उपयोगकतЄ को सूࣿचत करना हो
सकती ह।ै प्रࣻतकारक कारर्वाइयाँ अपवादों के सामने डटेा संगࣻत और अखंडता
बनाए रखने में मदद करती हैं।

5. अपवाद नगरानीࣄ और सूचना: महٌपूणर् अपवादों का पता लगाने और संबंࣾधत
ࣹहतधारकों को सूࣿचत करने के ࣽलए ࣺनगरानी और सूचना तंत्र ाࣺपतࡱ करें।
ऑकϺ र्࡫ टेर को सीमाओं और ࣺनयमों से अवगत कराया जा सकता है जो तब
चेतावࣺनयाँ ࣺट्रगर करते हैं जब अपवाद कुछ सीमाओं से अࣾधक हो जाते हैं या
जब ࣺवऀश࠿ प्रकार के अपवाद होते हैं। यह समࡺाओं कࣞ सࣺक्रय पहचान और

बुआڔमान कायर्प्रवाह समۢय 232

समाधान को संभव बनाता ह,ै इससे पहले ࣹक वे समग्र प्रणालࣜ को प्रभाࣺवत
करें।

यहाँ Ruby कायर्प्रवाह घटक में अपवाद प्रबंधन और पुनप्रЄࣺ݆ का एक उदाहरण ࣺदया
गया ह:ै

1 class InventoryManager

2 def check_availability(order)

3 begin

4 # Perform inventory check logic

5 inventory = Inventory.find_by(product_id: order.product_id)

6 if inventory.available_quantity >= order.quantity

7 return true

8 else

9 raise InsufficientInventoryError,

10 "Insufficient inventory for product #{order.product_id}"

11 end

12 rescue InsufficientInventoryError => e

13 # Log the exception

14 logger.error("Inventory check failed: #{e.message}")

15

16 # Retry the operation after a delay

17 retry_count ||= 0

18 if retry_count < MAX_RETRIES

19 retry_count += 1

20 sleep(RETRY_DELAY)

21 retry

22 else

23 # Fallback to manual intervention

24 NotificationService.admin("Inventory check failed: Order #{order.id}")

25 return false

26 end

27 end

28 end

29 end

इस उदाहरण में, InventoryManager कंपोनेंट ࣹकसी ࣺदए गए ऑडॼर के ࣽलए प्रोडѮ
कࣞ उपलނता कࣞ जांच करता ह।ै यࣺद उपलނ मात्रा अपयЄ݆ ह,ै तो यह एक
InsufficientInventoryError उठाता ह।ै इस अपवाद को कैच ࣹकया जाता ह,ै लॉग

बुआڔमान कायर्प्रवाह समۢय 233

ࣹकया जाता ह,ै और एक पुनः प्रयास तंत्र लागू ࣹकया जाता ह।ै यࣺद पुनः प्रयास कࣞ
सीमा पार हो जाती ह,ै तो कंपोनेंट एडࣻमन को सूࣿचत करके मैनुअल हࡰक्षेप पर
वापस आ जाता ह।ै
मजबूत अपवाद प्रबंधन और िरकवरࣜ तंत्र को लागू करके, आप यह सुࣺनऀࠥत कर
सकते हैं ࣹक आपके बुआڔमान कायर्प्रवाह लचीले, रखरखाव योӌ और अप्रيाऀशत
ऍࣻࡱतयों को सहजता से संभालने में सक्षम हैं।

ये पैटनर् बुआڔमान कायर्प्रवाह संयोजन कࣞ नींव बनाते हैं और ࣺवࣾभۚ एࣺݎकेशन कࣞ
ࣺवऀश࠿ आव࠮कताओं के अनुरूप संयोऀजत और अनुकूࣽलत ࣹकए जा सकते हैं। इन
पैटनर् का लाभ उठाकर, डवेलपसर् ऐसे कायर्प्रवाह बना सकते हैं जो लचीले, मजबूत
और प्रदशर्न एवं उपयोगकतЄ अनुभव के ࣽलए अनुकूࣽलत हैं।
अगले खंड में, हम दखेेंगे ࣹक इन पैटनर् को ࠖवहार में कैसे लागू ࣹकया जा सकता ह,ै
वाࣺࡰवक-दुࣺनया के उदाहरणों और कोड पेटࡴँ का उपयोग करके कायर्प्रवाह प्रबंधन
में AI कंपोनेंट के एकࣞकरण को समझाया जाएगा।

बु࣎٠मान कायर्प्रवाह संयोजन को वहारߢ में लागू करना
अब जब हमने बुआڔमान कायर्प्रवाह संयोजन में प्रमुख पैटनर् कࣞ खोज कर लࣜ ह,ै आइए
दखेें ࣹक इन पैटनर् को वाࣺࡰवक-दुࣺनया के एࣺݎकेशन में कैसे लागू ࣹकया जा सकता
ह।ै हम कायर्प्रवाह प्रबंधन में AI कंपोनेंट के एकࣞकरण को दशЄने के ࣽलए ࠖावहािरक
उदाहरण और कोड पेटࡴँ प्रदान करेंगे।

बु࣎٠मान ऑडॳर प्रोसेसर
आइए Ruby on Rails ई-कॉमसर् एࣺݎकेशन में AI-संचाࣽलत OrderProcessor कंपोनेंट
का उपयोग करके बुआڔमान कायर्प्रवाह संयोजन को लागू करने का एक ࠖावहािरक
उदाहरण दखेें। OrderProcessor प्रोसेस मैनेजर एंटरप्राइज एकࣞकरण अवधारणा को

बुआڔमान कायर्प्रवाह समۢय 234

साकार करता है ऀजसका हमने पहलࣜ बार अۀाय 3 में कायर्कतЄओं कࣞ बहुलता पर
चचЄ करते समय सामना ࣹकया था। यह कंपोनेंट ऑडॼर फुलࣺफलमेंट कायर्प्रवाह के
प्रबंधन, मۀवत॑ पिरणामों के आधार पर रूࣺटगं ࣺनणर्य लेने और ࣺवࣾभۚ प्रोसेऀसंग
चरणों के ࣺनࡄादन के संयोजन के ࣽलए ऀज޲देार होगा।
ऑडॼर फुलࣺफलमेंट प्रࣺक्रया में कई चरण शाࣻमल हैं जैसे ऑडॼर वैधीकरण, इۢेंटरࣜ
जांच, भुगतान प्रोसेऀसंग और ऀशࣺपंग। प्रيके चरण एक अलग वकॼ र प्रोसेस के रूप
में लागू ࣹकया जाता है जो एक ࣺवऀश࠿ कायर् करता है और पिरणाम OrderProcessor
को वापस करता ह।ै ये चरण अࣺनवायर् नहࣟ हैं, और इंेۦ सटीक क्रम में ࣹकया जाना
भी आव࠮क नहࣟ ह।ै
यहाँ OrderProcessor का एक उदाहरण कायЄۢयन ह।ै इसमें Raix से दो ࣻमऔѾन
हैं। पहला (ChatCompletion) इसे चैट कंݎीशन कࣞ क्षमता प्रदान करता ह,ै जो इसे
एक AI कंपोनेंट बनाता ह।ै दूसरा (FunctionDispatch) AI ाराڙ फंѽन कॉࣽलंग
को सक्षम करता ह,ै ऀजससे यह एक टҡे मैसेज के बजाय फंѽन इनवोकेशन के
साथ प्रॉम्݂ का जवाब दे सकता ह।ै
कायर्कतЄ फ़ंѽۥ (validate_order, check_inventory, इيाࣺद) अपने संबंࣾधत
कायर्कतЄ ѻासेज को कायर् सौंपते हैं, जो एआई या गैर-एआई कंपोनेंׅ हो सकते हैं,
ऀजनकࣞ एकमात्र आव࠮कता यह है ࣹक वे अपने कायर् के पिरणामों को एक ऐसे प्रारूप
में वापस करें ऀजसे ऊ्࡫र गं के रूप में प्रࡰतु ࣹकया जा सके।

जैसा ࣹक इस पुࡰक के इस भाग में ࣺदए गए अ۠ सभी उदाहरणों में
ह,ै यह कोड ࠖावहािरक रूप से डो-कोडࡺू है और केवल पैटनर् का अथर्
समझाने और आपकࣞ खुद कࣞ रचनाओं को प्रेिरत करने के ࣽलए ह।ै पैटनर्
का पूणर् ࣺववरण और पूणर् कोड उदाहरण भाग 2 में शाࣻमल ࣹकए गए हैं।

https://github.com/OlympiaAI/raix-rails

बुआڔमान कायर्प्रवाह समۢय 235

1 class OrderProcessor

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

6

7 def initialize(order)

8 self.order = order

9 transcript << { system: SYSTEM_DIRECTIVE }

10 transcript << { user: order.to_json }

11 end

12

13 def perform

14 # will continue looping until `stop_looping!` is called

15 chat_completion(loop: true)

16 end

17

18 # list of functions available to be called by the AI

19 # truncated for brevity

20

21 def functions

22 [

23 {

24 name: "validate_order",

25 description: "Invoke to check validity of order",

26 parameters: {

27 ...

28 },

29 ...

30]

31 end

32

33 # implementation of functions that can be called by the AI

34 # entirely at its discretion, depending on the needs of the order

35

36 def validate_order

37 OrderValidationWorker.perform(@order)

38 end

39

40 def check_inventory

41 InventoryCheckWorker.perform(@order)

42 end

बुआڔमान कायर्प्रवाह समۢय 236

43

44 def process_payment

45 PaymentProcessingWorker.perform(@order)

46 end

47

48 def schedule_shipping

49 ShippingSchedulerWorker.perform(@order)

50 end

51

52 def send_confirmation

53 OrderConfirmationWorker.perform(@order)

54 end

55

56 def finished_processing

57 @order.update!(transcript:, processed_at: Time.current)

58 stop_looping!

59 end

60 end

इस उदाहरण में, OrderProcessor को एक ऑडॼर ऑݻѮे के साथ आरंभ ࣹकया
जाता है और कायर्प्रवाह ࣺनࡄादन का एक प्रࣻतलेख बनाए रखता ह,ै जो बृहत भाषा
मॉडल के ࣽलए प्राकृࣻतक वातЄलाप प्रࣻतलेख प्रारूप में होता ह।ै एआई को ࣺवࣾभۚ
प्रसंࡡरण चरणों के ࣺनࡄादन को संचाࣽलत करने के ࣽलए पूणर् ࣺनयंत्रण ࣺदया जाता
ह,ै जैसे ऑडॼर सيापन, इۢेंट्र ी जांच, भुगतान प्रसंࡡरण और ऀशࣺपंग।
हर बार जब chat_completion मेथड को कॉल ࣹकया जाता ह,ै प्रࣻतलेख को एआई
को एक फ़ंѽन कॉल के रूप में पूणर्ता प्रदान करने के ࣽलए भेजा जाता ह।ै ࣺपछले
चरण के पिरणाम का ࣺवे࠯षण करने और उࣿचत कारर्वाई करने का ࣺनधЄरण पूरࣜ तरह
से एआई पर ࣺनभर्र करता ह।ै उदाहरण के ࣽलए, यࣺद इۢेंट्र ी जांच में कम ॉक࡫ रࡰ
का पता चलता ह,ै तो OrderProcessor एक पुनःपूࣻतर् कायर् ࣺनधЄिरत कर सकता ह।ै
यࣺद भुगतान प्रसंࡡरण ࣺवफल होता ह,ै तो यह पुनः प्रयास कर सकता है या ग्राहक
सहायता को सूࣿचत कर सकता ह।ै

बुआڔमान कायर्प्रवाह समۢय 237

उपरोѱ उदाहरण में पुनःपूࣻतर् या ग्राहक सहायता को सूࣿचत करने के ࣽलए फ़ंѽۥ
पिरभाࣻषत नहࣟ हैं, लेࣹकन ࣺबुߛल हो सकते हैं।

प्रࣻतलेख हर बार एक फ़ंѽन कॉल होने पर बढ़ता जाता है और कायर्प्रवाह ࣺनࡄादन
का एक िरकॉडॼ के रूप में काम करता ह,ै ऀजसमें प्रيके चरण के पिरणाम और
अगले चरणों के ࣽलए एआई-जࣺनत ࣺनदϺश शाࣻमल होते हैं। इस प्रࣻतलेख का उपयोग
डीबࣻगंग, ऑࣺडࣺटगं और ऑडॼर फुलࣺफलमेंट प्रࣺक्रया में दृ࠮ता प्रदान करने के ࣽलए
ࣹकया जा सकता ह।ै
OrderProcessor में एआई का लाभ उठाकर, ई-कॉमसर् एࣺݎकेशन वाࣺࡰवक समय
के डटेा के आधार पर कायर्प्रवाह को गࣻतशील रूप से अनुकूࣽलत कर सकता है और
बुआڔमानी से अपवादों को संभाल सकता ह।ै एआई घटक सूࣿचत ࣺनणर्य ले सकता ह,ै
कायर्प्रवाह को अनुकूࣽलत कर सकता ह,ै और जࣺटल पिरदृ࠮ों में भी सुचारू ऑडॼर
प्रसंࡡरण सुࣺनऀࠥत कर सकता ह।ै
यह तڇ ࣹक कायर्कतЄ प्रࣺक्रयाओं पर एकमात्र आव࠮कता एआई के ࣽलए अगला Ѻा
करना है यह तय करने के ࣽलए कुछ समझने योӌ आउटपुट लौटाना ह,ै आपको
यह एहसास होने लगेगा ࣹक यह दृࣼ࠿कोण एक-दूसरे के साथ ࣺवࣾभۚ ऀस޷࡫ को
एकࣞकृत करते समय आमतौर पर शाࣻमल इनपुट/आउटपुट मैࣺपंग कायर् को कैसे कम
कर सकता ह।ै

बु࣎٠मान कंटेंट मॉडरेटर
सोशल मीࣺडया एࣺݎकेशۥ को आमतौर पर एक सुरऀक्षत और ࡱࡼ समुदाय सुࣺनऀࠥत
करने के ࣽलए कम से कम ۠नूतम कंटेंट मॉडरेशन कࣞ आव࠮कता होती ह।ै यह
उदाहरण ContentModerator घटक बुआڔमानी से मॉडरेशन कायर्प्रवाह को संचाࣽलत
करने के ࣽलए एआई का लाभ उठाता ह,ै जो कंटेंट कࣞ ࣺवशेषताओं और ࣺवࣾभۚ मॉडरेशन
चरणों के पिरणामों के आधार पर ࣺनणर्य लेता ह।ै

बुआڔमान कायर्प्रवाह समۢय 238

मॉडरेशन प्रࣺक्रया में कई चरण शाࣻमल हैं जैसे टҡे ࣺवे࠯षण, छࣺव पहचान,
उपयोगकतЄ प्रࣻतࡀा मू߰ांकन और मैनुअल समीक्षा। प्रيके चरण एक अलग कायर्कतЄ
प्रࣺक्रया के रूप में लागू ࣹकया जाता है जो एक ࣺवऀश࠿ कायर् करता है और पिरणाम
ContentModerator को वापस करता ह।ै
यहाँ ContentModerator का एक उदाहरण कायЄۢयन ࣺदया गया ह:ै

1 class ContentModerator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,

6 tasked with the workflow involved in moderating user-generated content..."

7

8 def initialize(content)

9 @content = content

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: content.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 # list of functions available to be called by the AI

25 # truncated for brevity

26

27 def functions

28 [

29 {

30 name: "analyze_text",

31 # ...

32 },

33 {

34 name: "recognize_image",

बुआڔमान कायर्प्रवाह समۢय 239

35 description: "Invoke to describe images...",

36 # ...

37 },

38 {

39 name: "assess_user_reputation",

40 # ...

41 },

42 {

43 name: "escalate_to_manual_review",

44 # ...

45 },

46 {

47 name: "approve_content",

48 # ...

49 },

50 {

51 name: "reject_content",

52 # ...

53 }

54]

55 end

56

57 # implementation of functions that can be called by the AI

58 # entirely at its discretion, depending on the needs of the order

59

60 def analyze_text

61 result = TextAnalysisWorker.perform(@content)

62 continue_with(result)

63 end

64

65 def recognize_image

66 result = ImageRecognitionWorker.perform(@content)

67 continue_with(result)

68 end

69

70 def assess_user_reputation

71 result = UserReputationWorker.perform(@content.user)

72 continue_with(result)

73 end

74

75 def escalate_to_manual_review

76 ManualReviewWorker.perform(@content)

बुआڔमान कायर्प्रवाह समۢय 240

77 @content.update!(status: 'pending', transcript: @transcript)

78 end

79

80 def approve_content

81 @content.update!(status: 'approved', transcript: @transcript)

82 end

83

84 def reject_content

85 @content.update!(status: 'rejected', transcript: @transcript)

86 end

87

88 private

89

90 def continue_with(result)

91 @transcript << { function: result }

92 complete(@transcript)

93 end

94 end

इस उदाहरण में, ContentModerator को एक कंटेंट ऑݻѮे के साथ आरंभ ࣹकया
जाता है और वातЄलाप प्रारूप में एक मॉडरेशन प्रࣻतलेख बनाए रखता ह।ै एआई
घटक को मॉडरेशन कायर्प्रवाह पर पूणर् ࣺनयंत्रण होता ह,ै जो कंटेंट कࣞ ࣺवशेषताओं
और प्रيके चरण के पिरणामों के आधार पर यह तय करता है ࣹक ࣹकन चरणों को
ࣺनࡄाࣺदत करना ह।ै
एआई ाराڙ उपयोग ࣹकए जाने वाले उपलނ कायर्कतЄ फ़ंѽन में
analyze_text, recognize_image, assess_user_reputation, और
escalate_to_manual_review शाࣻमल हैं। प्रيके फ़ंѽन कायर् को संबंࣾधत
कायर्कतЄ प्रࣺक्रया (TextAnalysisWorker, ImageRecognitionWorker, आࣺद) को
सौंपता है और पिरणाम को मॉडरेशन प्रࣻतलेख में जोड़ता ह,ै एेࡡलेशन फ़ंѽन को
छोड़कर, जो एक अंࣻतम ऍࣻࡱत के रूप में कायर् करता ह।ै अंत में, approve_content
और reject_content फ़ंѽन भी अंࣻतम ऍࣻࡱतयों के रूप में कायर् करते हैं।
एआई घटक सामग्री का ࣺवे࠯षण करता है और उࣿचत कारर्वाई करने का ࣺनधЄरण
करता ह।ै यࣺद सामग्री में छࣺव संदभर् शाࣻमल हैं, तो यह दृ࠮ समीक्षा में सहायता
के ࣽलए recognize_image कायर्कतЄ को कॉल कर सकता ह।ै यࣺद कोई कायर्कतЄ

बुआڔमान कायर्प्रवाह समۢय 241

संभाࣺवत हाࣺनकारक सामग्री के बारे में चेतावनी दतेा ह,ै तो एआई सामग्री को मैनुअल
समीक्षा के ࣽलए एेࡡलेट करने या सीधे अࡼीकार करने का ࣺनणर्य ले सकता ह।ै
लेࣹकन चेतावनी कࣞ गंभीरता के आधार पर, एआई उस सामग्री को संभालने के तरࣜके
के बारे में ࣺनणर्य लेने में उपयोगकतЄ प्रࣻतࡀा मू߰ांकन के पिरणामों का उपयोग करने
का ࣺवक߫ चुन सकता है ऀजसके बारे में वह अ۠था ࣺनऀࠥत नहࣟ ह।ै उपयोग के
मामले के आधार पर, शायद ࣺव࠰सनीय उपयोगकतЄओं को पो࡫ करने में अࣾधक
छूट ࣻमल सकती ह।ै और इसी तरह आगे भी…
ࣺपछले प्रࣺक्रया प्रबंधक उदाहरण कࣞ तरह, मॉडरेशन प्रࣻतलेख कायर्प्रवाह ࣺनࡄादन का
एक िरकॉडॼ ह,ै ऀजसमें प्रيके चरण के पिरणाम और एआई-जࣺनत ࣺनणर्य शाࣻमल हैं।
इस प्रࣻतलेख का उपयोग ऑࣺडࣺटगं, पारदऀशर्ता और समय के साथ मॉडरेशन प्रࣺक्रया
को बेहतर बनाने के ࣽलए ࣹकया जा सकता ह।ै
ContentModerator में एआई का लाभ उठाकर, सोशल मीࣺडया एࣺݎकेशन सामग्री
कࣞ ࣺवशेषताओं के आधार पर मॉडरेशन कायर्प्रवाह को गࣻतशील रूप से अनुकूࣽलत
कर सकता है और जࣺटल मॉडरेशन पिरदृ࠮ों को बुआڔमानी से संभाल सकता ह।ै
एआई घटक सूࣿचत ࣺनणर्य ले सकता ह,ै कायर्प्रवाह को अनुकूࣽलत कर सकता ह,ै
और एक सुरऀक्षत और ࡱࡼ सामुदाࣻयक अनुभव सुࣺनऀࠥत कर सकता ह।ै
आइए बुआڔमान कायर्प्रवाह ऑकϺ्࡫र शेन के संदभर् में पूवЄनुमाࣺनत कायर् ࣺनधЄरण और
अपवाद प्रबंधन और पुनप्रЄࣺ݆ को प्रदऀशर्त करने वाले दो और उदाहरणों कࣞ खोज
करें।

ग्राहक सहायता प्रणालࢨ में पूवЂनुमाࣄनत कायर् नधЂरणࣄ
Ruby on Rails के साथ ࣺनࣻमर्त एक ग्राहक सहायता एࣺݎकेशन में, ग्राहकों को
समय पर सहायता प्रदान करने के ࣽलए सहायता ࣺटकटों का कुशलतापूवर्क प्रबंधन
और प्राथࣻमकता ࣺनधЄरण महٌपूणर् ह।ै SupportTicketScheduler घटक ࣺटकट कࣞ
ताرाࣽलकता, एजेंट ࣺवशेषज्ञता और कायर्भार जैसे ࣺवࣾभۚ कारकों के आधार पर
उपलނ एजेंटों को सहायता ࣺटकट पूवЄनुमाࣺनत रूप से शे׵लू और असाइन करने
के ࣽलए एआई का लाभ उठाता ह।ै

बुआڔमान कायर्प्रवाह समۢय 242

1 class SupportTicketScheduler

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,

6 tasked with intelligently assigning tickets to available agents..."

7

8 def initialize(ticket)

9 @ticket = ticket

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: ticket.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 def functions

25 [

26 {

27 name: "analyze_ticket_urgency",

28 # ...

29 },

30 {

31 name: "list_available_agents",

32 description: "Includes expertise of available agents",

33 # ...

34 },

35 {

36 name: "predict_agent_workload",

37 description: "Uses historical data to predict upcoming workloads",

38 # ...

39 },

40 {

41 name: "assign_ticket_to_agent",

42 # ...

बुआڔमान कायर्प्रवाह समۢय 243

43 },

44 {

45 name: "reschedule_ticket",

46 # ...

47 }

48]

49 end

50

51 # implementation of functions that can be called by the AI

52 # entirely at its discretion, depending on the needs of the order

53

54 def analyze_ticket_urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)

56 continue_with(result)

57 end

58

59 def list_available_agents

60 result = ListAvailableAgents.perform

61 continue_with(result)

62 end

63

64 def predict_agent_workload

65 result = AgentWorkloadPredictor.perform

66 continue_with(result)

67 end

68

69 def assign_ticket_to_agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

73 def delay_assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)

76 end

77

78 private

79

80 def continue_with(result)

81 @transcript << { function: result }

82 complete(@transcript)

83 end

84 end

बुआڔमान कायर्प्रवाह समۢय 244

इस उदाहरण में, SupportTicketScheduler को एक सपोटॼ ࣺटकट ऑݻѮे के
साथ आरंभ ࣹकया जाता है और एक शेࣽू׵ लंग ट्र ांसࣺक्र݂ को बनाए रखता ह।ै AI
घटक ࣺटकट ࣺववरणों का ࣺवे࠯षण करता है और ࣺटकट कࣞ ताرाࣽलकता, एजेंट कࣞ
ࣺवशेषज्ञता, और अनुमाࣺनत एजेंट कायर्भार जैसे कारकों के आधार पर पूवЄनुमाࣺनत
रूप से ࣺटकट असाइनमेंट को शे׵लू करता ह।ै
AI ाराڙ उपयोग ࣹकए जाने वाले उपलނ फंѽۥ में analyze_ticket_urgency,
list_available_agents, predict_agent_workload, और assign_ticket_to_agent
शाࣻमल हैं। प्रيके फंѽन कायर् को संबंࣾधत ࣺवे࠯षक या प्रेࣺडѮर घटक को सौंपता है
और पिरणाम को शेࣽू׵ लंग ट्र ांसࣺक्र݂ में जोड़ता ह।ै AI के पास delay_assignment
फंѽन का उपयोग करके असाइनमेंट में दरेࣜ करने का ࣺवक߫ भी ह।ै
AI घटक शेࣽू׵ लंग ट्र ांसࣺक्र݂ कࣞ जांच करता है और ࣺटकट असाइनमेंट पर सूࣿचत
ࣺनणर्य लेता ह।ै यह ࣺटकट कࣞ ताرाࣽलकता, उपलނ एजेंׅ कࣞ ࣺवशेषज्ञता, और
प्रيके एजेंट के अनुमाࣺनत कायर्भार पर ࣺवचार करता है ताࣹक ࣺटकट को संभालने
के ࣽलए सबसे उपयुѱ एजेंट का ࣺनधЄरण ࣹकया जा सके।
पूवЄनुमाࣺनत कायर् शेࣽू׵ लंग का लाभ उठाकर, ग्राहक सहायता एࣺݎकेशन ࣺटकट
असाइनमेंट को अनुकूࣽलत कर सकता ह,ै प्रࣻतࣺक्रया समय को कम कर सकता ह,ै
और समग्र ग्राहक संतुࣼ࠿ में सुधार कर सकता ह।ै सपोटॼ ࣺटकׅ का सࣺक्रय और
कुशल प्रबंधन यह सुࣺनऀࠥत करता है ࣹक सहࣚ ࣺटकट सहࣚ एजेंׅ को सहࣚ समय पर
असाइन ࣹकए जाएं।

डेटा प्रोसे࣊संग पाइपलाइन में अपवाद प्रबंधन और िरकवरࢧ
अपवादों को संभालना और ࣺवफलताओं से िरकवर करना डटेा अखंडता सुࣺनऀࠥत
करने और डटेा हाࣺन को रोकने के ࣽलए आव࠮क ह।ै DataProcessingOrchestrator
घटक एक डटेा प्रोसेऀसंग पाइपलाइन में बुआڔमـापूणर् ढगं से अपवादों को संभालने
और िरकवरࣜ प्रࣺक्रया के संचालन के ࣽलए AI का उपयोग करता ह।ै

बुआڔमान कायर्प्रवाह समۢय 245

1 class DataProcessingOrchestrator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

6

7 def initialize(data_batch)

8 @data_batch = data_batch

9 @transcript = [

10 { system: SYSTEM_DIRECTIVE },

11 { user: data_batch.to_json }

12]

13 end

14

15 def perform

16 complete(@transcript)

17 end

18

19 def model

20 "openai/gpt-4"

21 end

22

23 def functions

24 [

25 {

26 name: "validate_data",

27 # ...

28 },

29 {

30 name: "process_data",

31 # ...

32 },

33 {

34 name: "request_fix",

35 # ...

36 },

37 {

38 name: "retry_processing",

39 # ...

40 },

41 {

42 name: "mark_data_as_failed",

बुआڔमान कायर्प्रवाह समۢय 246

43 # ...

44 },

45 {

46 name: "finished",

47 # ...

48 }

49]

50 end

51

52 # implementation of functions that can be called by the AI

53 # entirely at its discretion, depending on the needs of the order

54

55 def validate_data

56 result = DataValidator.perform(@data_batch)

57 continue_with(result)

58 rescue ValidationException => e

59 handle_validation_exception(e)

60 end

61

62 def process_data

63 result = DataProcessor.perform(@data_batch)

64 continue_with(result)

65 rescue ProcessingException => e

66 handle_processing_exception(e)

67 end

68

69 def request_fix(description_of_fix)

70 result = SmartDataFixer.new(description_of_fix, @data_batch)

71 continue_with(result)

72 end

73

74 def retry_processing(timeout_in_seconds)

75 wait(timeout_in_seconds)

76 process_data

77 end

78

79 def mark_data_as_failed

80 @data_batch.update!(status: 'failed', transcript: @transcript)

81 end

82

83 def finished

84 @data_batch.update!(status: 'finished', transcript: @transcript)

बुआڔमान कायर्प्रवाह समۢय 247

85 end

86

87 private

88

89 def continue_with(result)

90 @transcript << { function: result }

91 complete(@transcript)

92 end

93

94 def handle_validation_exception(exception)

95 @transcript << { exception: exception.message }

96 complete(@transcript)

97 end

98

99 def handle_processing_exception(exception)

100 @transcript << { exception: exception.message }

101 complete(@transcript)

102 end

103 end

इस उदाहरण में, DataProcessingOrchestrator को एक डटेा बैच ऑݻѮे के
साथ आरंभ ࣹकया जाता है और एक प्रोसेऀसंग ट्र ांसࣺक्र݂ को बनाए रखता ह।ै एआई
कंपोनेंट डटेा प्रोसेऀसंग पाइपलाइन का संचालन करता ह,ै अपवादों को संभालता है
और आव࠮कतानुसार ࣺवफलताओं से पुनप्रЄࣺ݆ करता ह।ै
एआई ाराڙ उपयोग ࣹकए जाने वाले उपलނ फंѽंस में validate_data, process_-
data, request_fix, retry_processing, और mark_data_as_failed शाࣻमल हैं।
प्रيके फंѽन कायर् को संबंࣾधत डटेा प्रोसेऀसंग कंपोनेंट को सौंपता है और पिरणाम
या अपवाद ࣺववरण को प्रोसेऀसंग ट्र ांसࣺक्र݂ में जोड़ता ह।ै
यࣺद validate_data चरण के दौरान वैࣽलडशेन अपवाद होता ह,ै तो handle_-
validation_exception फंѽन अपवाद डटेा को ट्र ांसࣺक्र݂ में जोड़ता है और ࣺनयंत्रण
एआई को वापस सौंप दतेा ह।ै इसी तरह, यࣺद process_data चरण के दौरान प्रोसेऀसंग
अपवाद होता ह,ै तो एआई िरकवरࣜ रणनीࣻत पर ࣺनणर्य ले सकता ह।ै
सामने आए अपवाद कࣞ प्रकृࣻत के आधार पर, एआई अपने ࣺववेक से request_fix को
कॉल करने का ࣺनणर्य ले सकता ह,ै जो एआई-संचाࣽलत SmartDataFixer कंपोनेंट

बुआڔमान कायर्प्रवाह समۢय 248

को कायर् सौंपता है (से߬ हࣚࣽलंग डटेा अۀाय दखेें)। डटेा ࣺफѾर को सरल अंग्रजेी
में यह ࣺववरण ࣻमलता है ࣹक उसे @data_batch को कैसे संशोࣾधत करना चाࣹहए
ताࣹक प्रोसेऀसंग को पुनः प्रयास ࣹकया जा सके। शायद एक सफल पुनप्रर्यास में उन
िरकॉड्सर् को डटेा बैच से हटाना शाࣻमल होगा जो वैࣽलधेशन में ࣺवफल हो गए हैं
और/या उंेۦ मानवीय समीक्षा के ࣽलए एक अलग प्रोसेऀसंग पाइपलाइन में कॉपी करना
होगा? संभावनाएं लगभग अनंत हैं।
एआई-संचाࣽलत अपवाद प्रबंधन और िरकवरࣜ को शाࣻमल करके, डटेा
प्रोसेऀसंग एࣺݎकेशन अࣾधक लचीला और त्रुࣺ ट-सࣹहुࡁ बन जाता ह।ै
DataProcessingOrchestrator बुआڔमानी से अपवादों का प्रबंधन करता ह,ै
डटेा हाࣺन को कम करता ह,ै और डटेा प्रोसेऀसंग कायर्प्रवाह के सुचारु ࣺनࡄादन को
सुࣺनऀࠥत करता ह।ै

नगरानीࣄ और लॉࣇगंग
ࣺनगरानी और लॉࣻगंग एआई-संचाࣽलत कायर्प्रवाह कंपोनेंׅ कࣞ प्रगࣻत, प्रदशर्न और
ࢋाࡼ कࣞ दृ࠮ता प्रदान करते हैं, जो डवेलपसर् को ऀस࡫म के ࠖवहार को ट्र कै और
ࣺवे࠯षण करने में सक्षम बनाते हैं। बुआڔमान कायर्प्रवाह के डीबࣻगंग, ऑࣺडࣺटगं और
ࣺनरंतर सुधार के ࣽलए प्रभावी ࣺनगरानी और लॉࣻगंग तंत्र का कायЄۢयन आव࠮क ह।ै

कायर्प्रवाह प्रगࣆत और प्रदशर्न कࢩ नगरानीࣄ
बुआڔमान कायर्प्रवाह के सुचारु ࣺनࡄादन को सुࣺनऀࠥत करने के ࣽलए, प्रيके कायर्प्रवाह
कंपोनेंट कࣞ प्रगࣻत और प्रदशर्न कࣞ ࣺनगरानी करना महٌपूणर् ह।ै इसमें कायर्प्रवाह
जीवनचक्र के दौरान प्रमुख मैࣺट्रѾ और घटनाओं को ट्र कै करना शाࣻमल ह।ै
ࣺनगरानी के कुछ महٌपूणर् पहलू हैं:
1. कायर्प्रवाह ादनࠐनࣄ समय: प्रيके कायर्प्रवाह कंपोनेंट ाराڙ अपना कायर् पूरा
करने में ࣽलए गए समय को मापें। यह प्रदशर्न बाधाओं कࣞ पहचान करने और समग्र
कायर्प्रवाह दक्षता को अनुकूࣽलत करने में मदद करता ह।ै

बुआڔमान कायर्प्रवाह समۢय 249

2. संसाधन उपयोग: प्रيके कायर्प्रवाह कंपोनेंट ाराڙ CPU, मेमोरࣜ और ोरेज࡫ जैसे
ऀस࡫म संसाधनों के उपयोग कࣞ ࣺनगरानी करें। यह सुࣺनऀࠥत करने में मदद करता है
ࣹक ऀस࡫म अपनी क्षमता के भीतर काम कर रहा है और कायर्भार को प्रभावी ढगं से
संभाल सकता ह।ै
3. तु्रࣅट दर और अपवाद: कायर्प्रवाह घटकों के भीतर त्रुࣺ टयों और अपवादों कࣞ
घटनाओं को ट्र कै करें। यह संभाࣺवत समࡺाओं कࣞ पहचान करने में मदद करता है
और सࣺक्रय त्रुࣺ ट प्रबंधन और पुनप्रЄࣺ݆ को सक्षम बनाता ह।ै
4. नणर्यࣄ बंदुࣆ और पिरणाम: कायर्प्रवाह के भीतर ࣺनणर्य ࣺबंदुओं और एआई-
संचाࣽलत ࣺनणर्यों के पिरणामों कࣞ ࣺनगरानी करें। यह एआई घटकों के ࠖवहार और
प्रभावशीलता में अंतदृर्ࣼ࠿ प्रदान करता ह।ै
ࣺनगरानी प्रࣺक्रयाओं ाराڙ एकࣻत्रत डटेा को डशैबोडॼ में प्रदऀशर्त ࣹकया जा सकता है या
ࣺनधЄिरत िरपोटॼ के इनपुट के रूप में उपयोग ࣹकया जा सकता है जो ऀस࡫म प्रशासकों
को ऀस࡫म के ࢋाࡼ के बारे में सूࣿचत करते हैं।

ࣺनगरानी डटेा को समीक्षा और संभाࣺवत कारर्वाई के ࣽलए एआई-संचाࣽलत
ऀस࡫म प्रशासक प्रࣺक्रया में फࣞड ࣹकया जा सकता ह!ै

महؘपूणर् घटनाओं और नणर्योंࣄ कࢩ लॉࣇगंग
लॉࣻगंग एक आव࠮क अޟास है ऀजसमें कायर्प्रवाह ࣺनࡄादन के दौरान होने वालࣜ
प्रमुख घटनाओ,ं ࣺनणर्यों और अपवादों के बारे में प्रासंࣻगक जानकारࣜ को कै݀र और
ोर࡫ करना शाࣻमल ह।ै
लॉग करने के ࣽलए कुछ महٌपूणर् पहलू हैं:
1. कायर्प्रवाह प्रारंभ और समापन: प्रيके कायर्प्रवाह इंंे࡫स के प्रारंभ और समाࣺ݆
समय को लॉग करें , साथ हࣚ इनपुट डटेा और उपयोगकतЄ संदभर् जैसे ࣹकसी भी
प्रासंࣻगक मेटाडटेा को भी।

बुआڔमान कायर्प्रवाह समۢय 250

2. घटक :ादनࠐनࣄ प्रيके कायर्प्रवाह घटक के ࣺनࡄादन ࣺववरण को लॉग करें ,
ऀजसमें इनपुट पैरामीटर, आउटपुट पिरणाम और कोई भी मۀवत॑ डटेा जो उۚم
हुआ ह,ै शाࣻमल हैं।
3. एआई नणर्यࣄ और तकॳ : एआई घटकों ाराڙ ࣽलए गए ࣺनणर्यों को अंतࣺनर्ࣹहत तकॼ या
ࣺव࠰ास ोरࡡ के साथ लॉग करें। यह पारदऀशर्ता प्रदान करता है और एआई-संचाࣽलत
ࣺनणर्यों कࣞ ऑࣺडࣺटगं को सक्षम बनाता ह।ै
4. अपवाद और तु्रࣅट संदशे: कायर्प्रवाह ࣺनࡄादन के दौरान आने वाले ࣹकसी भी
अपवाद या त्रुࣺ ट संदशे को लॉग करें , ऀजसमें कै࡫ ट्र से और प्रासंࣻगक संदभर् जानकारࣜ
शाࣻमल ह।ै
लॉࣻगंग को ࣺवࣾभۚ तकनीकों का उपयोग करके लागू ࣹकया जा सकता ह,ै जैसे लॉग
फ़ाइलों में ࣽलखना, डटेाबेस में लॉग ोर࡫ करना, या लॉग को एक कें द्रीकृत लॉࣻगंग सेवा
में भेजना। यह महٌपूणर् है ࣹक एक ऐसा लॉࣻगंग फे्रमवकॼ चुना जाए जो लचीलापन,
लेࣺबࣽलटीࡡे और एࣺݎकेशन कࣞ आࣹकॼ टѫेर के साथ आसान एकࣞकरण प्रदान करता
हो।
यहाँ एक उदाहरण है ࣹक ActiveSupport::Logger ѻास का उपयोग करके Ruby
on Rails एࣺݎकेशन में लॉࣻगंग को कैसे लागू ࣹकया जा सकता ह:ै

1 class WorkflowLogger

2 def self.log(message, severity = :info)

3 @logger ||= ActiveSupport::Logger.new('workflow.log')

4 @logger.formatter ||= proc do |severity, datetime, progname, msg|

5 "#{datetime} [#{severity}] #{msg}\n"

6 end

7 @logger.send(severity, message)

8 end

9 end

10

11 # Usage example

12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")

13 WorkflowLogger.log("Payment processing completed successfully")

14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

कायर्प्रवाह घटकों और AI ࣺनणर्य ࣺबंदुओं में रणनीࣻतक रूप से लॉࣻगंग टेमेंׅ࡫ को

बुआڔमान कायर्प्रवाह समۢय 251

ाࣺपतࡱ करके, डवेलपसर् डीबࣻगंग, लेखा-परࣜक्षण और ࣺवे࠯षण के ࣽलए महٌपूणर्
जानकारࣜ प्रा݆ कर सकते हैं।

नगरानीࣄ और लॉࣇगंग के लाभ
बुआڔमान कायर्प्रवाह संचालन में ࣺनगरानी और लॉࣻगंग को लागू करने से कई लाभ
ࣻमलते हैं:
1. डीबࣇगंग और समࡆा :नवारणࣄ ࣺवࡰतृ लॉӏ और ࣺनगरानी डटेा डवेलपसर्
को समࡺाओं कࣞ पहचान और ࣺनदान जߨी करने में मदद करते हैं। वे कायर्प्रवाह
ࣺनࡄादन प्रवाह, घटक अंतःࣺक्रयाओं और ࣹकसी भी त्रुࣺ ट या अपवाद कࣞ जानकारࣜ
प्रदान करते हैं।
2. प्रदशर्न अनुकूलन: प्रदशर्न मैࣺट्रѾ कࣞ ࣺनगरानी से डवेलपसर् बाधाओं कࣞ पहचान
कर सकते हैं और बेहतर दक्षता के ࣽलए कायर्प्रवाह घटकों को अनुकूࣽलत कर सकते
हैं। ࣺनࡄादन समय, संसाधन उपयोग और अ۠ मैࣺट्रѾ का ࣺवे࠯षण करके, डवेलपसर्
ऀस࡫म के समग्र प्रदशर्न को सुधारने के ࣽलए सूࣿचत ࣺनणर्य ले सकते हैं।
3. लेखा-परࢧक्षण और अनुपालन: प्रमुख घटनाओं और ࣺनणर्यों कࣞ लॉࣻगंग ࣺनयामक
अनुपालन और जवाबदहेࣚ के ࣽलए एक लेखा-परࣜक्षण ࣺनशान प्रदान करती ह।ै यह
संगठनों को AI घटकों ाराڙ कࣞ गई कारर्वाइयों को ट्र कै और सيाࣺपत करने तथा
ࠖावसाࣻयक ࣺनयमों और कानूनी आव࠮कताओं का पालन सुࣺनऀࠥत करने में सक्षम
बनाती ह।ै
4. नरंतरࣄ सुधार: ࣺनगरानी और लॉࣻगंग डटेा बुआڔमान कायर्प्रवाह के ࣺनरंतर सुधार के
ࣽलए महٌपूणर् इनपुट के रूप में काम करते हैं। ऐࣻतहाऀसक डटेा का ࣺवे࠯षण करके,
पैटनर् कࣞ पहचान करके और AI ࣺनणर्यों कࣞ प्रभावशीलता को मापकर, डवेलपसर्
कायर्प्रवाह संचालन तकॼ को क्रࣻमक रूप से पिरृ࠻त और बेहतर बना सकते हैं।

वचारणीयࣆ बंदुࣆ और सवЇ،म प्रथाएं
बुआڔमान कायर्प्रवाह संचालन में ࣺनगरानी और लॉࣻगंग को लागू करते समय,
ࣺनޭࣽलंखत सवЉـम प्रथाओं पर ࣺवचार करें:

बुआڔमान कायर्प्रवाह समۢय 252

1. ࠋࡁ नगरानीࣄ मैࣅट्रъ पिरभाࣆषत करें: कायर्प्रवाह कࣞ ࣺवऀश࠿ आव࠮कताओं के
आधार पर ࣺनगरानी ࣹकए जाने वाले प्रमुख मैࣺट्रѾ और घटनाओं कࣞ पहचान करें।
ऀस࡫म के प्रदशर्न, ࢋाࡼ और ࠖवहार में साथर्क अंतदृर्ࣼ࠿ प्रदान करने वाले मैࣺट्रѾ
पर ानۀ कें ࣺद्रत करें।
2. सूѨ लॉࣇगंग लागू करें: सुࣺनऀࠥत करें ࣹक लॉࣻगंग टेमेंׅ࡫ कायर्प्रवाह घटकों और
AI ࣺनणर्य ࣺबंदुओं में उࣿचत ानोंࡱ पर रखे गए हैं। प्रासंࣻगक संदभर् जानकारࣜ, जैसे
इनपुट पैरामीटसर्, आउटपुट पिरणाम और कोई भी मۀवत॑ डटेा कै݀र करें।
3. संरࣉचत लॉࣇगंग का उपयोग करें: लॉग डटेा के आसान पाऀस϶ग और ࣺवे࠯षण कࣞ
सुࣺवधा के ࣽलए एक संरࣿचत लॉࣻगंग प्रारूप अपनाएं। संरࣿचत लॉࣻगंग लॉग प्रࣺवࣼ࠿यों
कࣞ बेहतर खोज, ࣺफ़ߢिरंग और एकत्रीकरण कࣞ अनुमࣻत दतेी ह।ै
4. लॉग प्रࣆतधारण और रोटेशन का प्रबंधन करें: लॉग फ़ाइलों के भंडारण और
जीवन चक्र को प्रबंࣾधत करने के ࣽलए लॉग प्रࣻतधारण और रोटशेन नीࣻतयां लागू करें।
कानूनी आव࠮कताओ,ं भंडारण बाधाओं और ࣺवे࠯षण आव࠮कताओं के आधार पर
उࣿचत प्रࣻतधारण अवࣾध ࣺनधЄिरत करें। यࣺद संभव हो, तो लॉࣻगंग को Papertrail
जैसी तृतीय-पक्ष सेवा में ानांतिरतࡱ करें।
5. संवेदनशील जानकारࢧ सुर࣊क्षत करें: ࠖࣼѱगत पहचान योӌ जानकारࣜ (PII) या
गोपनीय ࠖावसाࣻयक डटेा जैसी संवेदनशील जानकारࣜ को लॉग करते समय सावधान
रहें। लॉग फ़ाइलों में संवेदनशील जानकारࣜ कࣞ सुरक्षा के ࣽलए डटेा माऊंࡡग या
एअۨݐन जैसे उࣿचत सुरक्षा उपाय लागू करें।
6. नगरानीࣄ और चेतावनी टू߂ के साथ एकࢩकरण करें: ࣺनगरानी और लॉࣻगंग डटेा
के संग्रह, ࣺवे࠯षण और ࣺवज़ुअलाइज़ेशन को कें द्रीकृत करने के ࣽलए मॉࣺनटिरंग और
अलࣺट϶ग टू߶ का लाभ उठाएं। ये टू߶ रࣜयल-टाइम अंतदृर्ࣼ࠿ प्रदान कर सकते हैं,
पूवर्ࣺनधЄिरत सीमाओं के आधार पर अलटॼ जनरेट कर सकते हैं, और सࣺक्रय समࡺा
पहचान और समाधान कࣞ सुࣺवधा प्रदान कर सकते हैं। इन टू߶ में मेरा पसंदीदा
Datadog ह।ै
ࠖापक ࣺनगरानी और लॉࣻगंग तंत्र को लागू करके, डवेलपसर् बुआڔमान कायर्प्रवाह के
ࠖवहार और प्रदशर्न में मू߰वान अंतदृर्ࣼ࠿ प्रा݆ कर सकते हैं। ये अंतदृर्ࣼ࠿यां AI-

https://papertrailapp.com
https://www.datadoghq.com

बुआڔमान कायर्प्रवाह समۢय 253

संचाࣽलत कायर्प्रवाह ऑकϺ्࡫र शेन ऀस࡫म के प्रभावी डीबࣻगंग, अनुकूलन और ࣺनरंतर
सुधार को सक्षम बनाती हैं।

मापनीयता और प्रदशर्न वचारࣆ
मापनीयता और प्रदशर्न बुआڔमान कायर्प्रवाह ऑकϺ्࡫र शेन ऀस࡫म को ࣺडज़ाइन और
कायЄअۢत करते समय ࣺवचार करने योӌ महٌपूणर् पहलू हैं। जैसे-जैसे समवत॑
कायर्प्रवाह कࣞ मात्रा और AI-संचाࣽलत घटकों कࣞ जࣺटलता बढ़ती ह,ै यह सुࣺनऀࠥत
करना आव࠮क हो जाता है ࣹक ऀस࡫म कायर्भार को कुशलतापूवर्क संभाल सके और
बढ़ती मांगों को पूरा करने के ࣽलए ࣺनबЄध रूप से लࡡे कर सके।

समवत࣮ कायर्प्रवाह कࢩ उԎ मात्रा को संभालना
बुआڔमान कायर्प्रवाह ऑकϺ्࡫र शेन ऀस࡫म को अѾर बड़ी संҷा में समवत॑ कायर्प्रवाह
को संभालने कࣞ आव࠮कता होती ह।ै मापनीयता सुࣺनऀࠥत करने के ࣽलए, ࣺनޭࣽलंखत
रणनीࣻतयों पर ࣺवचार करें:
1. अतु޼काࣈलक प्रसं࠭रण: कायर्प्रवाह घटकों के ࣺनࡄादन को अलग करने के
ࣽलए अतु߰काࣽलक प्रसंࡡरण तंत्र लागू करें। यह ऀस࡫म को प्रيके घटक के पूरा
होने कࣞ प्रतीक्षा ࣹकए ࣺबना या उसे ॉकވ ࣹकए ࣺबना कई कायर्प्रवाह को समवत॑
रूप से संभालने कࣞ अनुमࣻत दतेा ह।ै अतु߰काࣽलक प्रसंࡡरण को संदशे कतारों,
इवेंट-संचाࣽलत आࣹकॼ टѫेर, या Sidekiq जैसे बैकग्राउंड जॉब प्रोसेऀसंग फे्रमवकॼ का
उपयोग करके प्रा݆ ࣹकया जा सकता ह।ै
2. वतिरतࣆ आࣅकॳ टेзर: सवर्रलेस घटकों (जैसे AWS Lambda) का उपयोग करने
या आपके मुҷ एࣺݎकेशन सवर्र के साथ कई नोड्स या सवर्र में कायर्भार को ࣺवतिरत
करने के ࣽलए ऀस࡫म आࣹकॼ टѫेर ࣺडज़ाइन करें। यह क्षैࣻतज मापनीयता को सक्षम
करता ह,ै जहां बढ़े हुए कायर्प्रवाह वॉ߰मू को संभालने के ࣽलए अࣻतिरѱ नोड्स जोड़े
जा सकते हैं।

बुआڔमान कायर्प्रवाह समۢय 254

3. समानांतर :ादनࠐनࣄ कायर्प्रवाह के भीतर समानांतर ࣺनࡄादन के अवसरों कࣞ
पहचान करें। कुछ कायर्प्रवाह घटक एक-दूसरे से तंत्रࡼ हो सकते हैं और समवत॑ रूप
से ࣺनࡄाࣺदत ࣹकए जा सकते हैं। मߢी-थ्रेࣺ डगं या ࣺवतिरत टाࡡ कतारों जैसी समानांतर
प्रोसेऀसंग तकनीकों का लाभ उठाकर, ऀस࡫म संसाधन उपयोग को अनुकूࣽलत कर
सकता है और समग्र कायर्प्रवाह ࣺनࡄादन समय को कम कर सकता ह।ै

AI-संचाࣈलत घटकों के प्रदशर्न का अनुकूलन
एआई-संचाࣽलत घटक, जैसे मशीन लࣺन϶ग मॉडल या नेचुरल लैंӎेज प्रोसेऀसंग इंजन,
क޼टूशेनल रूप से गहन हो सकते हैं और कायर्प्रवाह ࣺनयोजन प्रणालࣜ के समग्र
प्रदशर्न को प्रभाࣺवत कर सकते हैं। एआई घटकों के प्रदशर्न को अनुकूࣽलत करने के
ࣽलए, ࣺनޭࣽलंखत तकनीकों पर ࣺवचार करें:
1. कै࣊शंग: यࣺद आपकࣞ एआई प्रोसेऀसंग पूरࣜ तरह से जेनरेࣺटव है और चैट पूणर्ता
उۚم करने के ࣽलए रࣜयलटाइम सूचना लुकअप या बाहरࣜ एकࣞकरण शाࣻमल नहࣟ ह,ै
तो आप बार-बार एѾेस ࣹकए जाने वाले या क޼टूशेनल रूप से महगंे ऑपरेशन
के पिरणामों को ोर࡫ करने और पुन: उपयोग करने के ࣽलए कैऀशंग तंत्र का उपयोग
कर सकते हैं।
2. मॉडल अनुकूलन: कायर्प्रवाह घटकों में एआई मॉडल के उपयोग को ࣺनरंतर
अनुकूࣽलत करें। इसमें प्रॉम्݂ ࣺडऊ࡫लेशन जैसी तकनीकें शाࣻमल हो सकती हैं या यह
केवल नए मॉडल के उपलނ होने पर उनका परࣜक्षण करने का मामला हो सकता ह।ै
3. बैच प्रोसे࣊संग: यࣺद आप GPT-4 ѻास मॉडल के साथ काम कर रहे हैं, तो आप
कई डटेा पॉइंׅ या अनुरोधों को ࠖࣼѱगत रूप से प्रोसेस करने के बजाय एक बैच में
प्रोसेस करने के ࣽलए बैच प्रोसेऀसंग तकनीकों का लाभ उठा सकते हैं। डटेा को बैच में
प्रोसेस करके, ऀस࡫म संसाधन उपयोग को अनुकूࣽलत कर सकता है और बार-बार
मॉडल अनुरोधों के ओवरहडे को कम कर सकता ह।ै

बुआڔमान कायर्प्रवाह समۢय 255

प्रदशर्न कࢩ नगरानीࣄ और प्रोफाइࣈलंग
बुआڔमान कायर्प्रवाह ࣺनयोजन प्रणालࣜ कࣞ लेࣺबࣽलटीࡡे को अनुकूࣽलत करने और
प्रदशर्न बाधाओं कࣞ पहचान करने के ࣽलए, ࣺनगरानी और प्रोफाइࣽलंग तंत्र को लागू
करना महٌपूणर् ह।ै ࣺनޭࣽलंखत दृࣼ࠿कोणों पर ࣺवचार करें:
1. प्रदशर्न मैࣅट्रъ: प्रमुख प्रदशर्न मैࣺट्रѾ को पिरभाࣻषत और ट्र कै करें , जैसे
प्रࣻतࣺक्रया समय, थ्रपूुट, संसाधन उपयोग और ࣺवलंबता। ये मैࣺट्रѾ ऀस࡫म के प्रदशर्न
में अंतदृर्ࣼ࠿ प्रदान करते हैं और अनुकूलन के क्षेत्रों कࣞ पहचान में मदद करते हैं।
लोकࣺप्रय एआई मॉडल एग्रीगेटर OpenRouter प्रيके API प्रࣻतࣺक्रया में Host1 और
Speed2 मैࣺट्रѾ शाࣻमल करता ह,ै जो इन प्रमुख मैࣺट्रѾ को ट्र कै करना सरल बनाता
ह।ै
2. प्रोफाइࣈलंग टू߂: ࠖࣼѱगत कायर्प्रवाह घटकों और एआई ऑपरेशंस के प्रदशर्न
का ࣺवे࠯षण करने के ࣽलए प्रोफाइࣽलंग टू߶ का उपयोग करें। प्रोफाइࣽलंग टू߶ प्रदशर्न
हॉटࡵॉट, अक्षम कोड पाथ, या संसाधन-गहन ऑपरेशंस कࣞ पहचान में मदद कर
सकते हैं। लोकࣺप्रय प्रोफाइࣽलंग टू߶ में New Relic, Scout, या प्रोग्राࣻमंग भाषा या
फे्रमवकॼ ाराڙ प्रदान ࣹकए गए ࣺबߢ-इन प्रोफाइलर शाࣻमल हैं।
3. लोड टे࣑ं࠷ग: ࣺवࣾभۚ रोंࡰ के समवत॑ कायर्भार के तहत ऀस࡫म के प्रदशर्न
का मू߰ांकन करने के ࣽलए लोड टऊे࡫गं करें। लोड टऊे࡫गं ऀस࡫म कࣞ मापनीयता
सीमाओं कࣞ पहचान करने, प्रदशर्न में ࣻगरावट का पता लगाने और यह सुࣺनऀࠥत
करने में मदद करती है ࣹक ऀस࡫म प्रदशर्न से समझौता ࣹकए ࣺबना अपेऀक्षत ट्र ैࣺ फ़क
को संभाल सकता ह।ै
4. नरंतरࣄ :नगरानीࣄ प्रदशर्न संबंधी समࡺाओं और बाधाओं का सࣺक्रय रूप से पता
लगाने के ࣽलए ࣺनरंतर ࣺनगरानी और चेतावनी तंत्र लागू करें। प्रमुख प्रदशर्न संकेतकों
(KPI) को ट्र कै करने और पूवर्ࣺनधЄिरत सीमाओं के उ߲ंघन होने पर सूचनाएं प्रा݆ करने
के ࣽलए ࣺनगरानी डशैबोडॼ और अलटॼ सेट करें। यह प्रदशर्न समࡺाओं कࣞ ٌिरत

1Host मॉडल हो࡫ से र्࡫ ीम्ड जेनरेशन का पहला बाइट प्रा݆ करने में लगा समय ह,ै ऀजसे “टाइम टू
फ࡫ॼ बाइट” भी कहा जाता ह।ै

2Speed कࣞ गणना पूणर्ता टोकन कࣞ संҷा को कुल जेनरेशन समय से ࣺवभाऀजत करके कࣞ जाती ह।ै
नॉन-्࡫र ीम्ड अनुरोधों के ࣽलए ࣺवलंबता को जेनरेशन समय का ࣹहࡿा माना जाता ह।ै

https://openrouter.ai

बुआڔमान कायर्प्रवाह समۢय 256

पहचान और समाधान को सक्षम बनाता ह।ै

लंगࣈे࠭ रणनीࣆतयां
बढ़ते कायर्भार को संभालने और बुआڔमान वकॼ फ़्लो ऑकϺ्࡫र शेन ऀस࡫म कࣞ मापनीयता
सुࣺनऀࠥत करने के ࣽलए, ࣺनޭࣽलंखत लंगࣽࡡे रणनीࣻतयों पर ࣺवचार करें:
1. वࣅटॳकल :लंगࣈे࠭ वࣺटॼकल लंगࣽࡡे में उՂ कायर्भार को संभालने के ࣽलए ࠖࣼѱगत
नोड्स या सवर्र के संसाधनों (जैसे, CPU, मेमोरࣜ) को बढ़ाना शाࣻमल ह।ै यह दृࣼ࠿कोण
तब उपयुѱ होता है जब ऀस࡫म को जࣺटल वकॼ फ़्लो या AI संचालन को संभालने के
ࣽलए अࣾधक प्रोसेऀसंग पावर या मेमोरࣜ कࣞ आव࠮कता होती ह।ै
2. होिरज़ॉڞल :लंगࣈे࠭ होिरज़ॉےल लंगࣽࡡे में कायर्भार को ࣺवतिरत करने के
ࣽलए ऀस࡫म में अࣾधक नोड्स या सवर्र जोड़ना शाࣻमल ह।ै यह दृࣼ࠿कोण तब प्रभावी
होता है जब ऀस࡫म को बड़ी संҷा में समवत॑ वकॼ फ़्लो को संभालने कࣞ आव࠮कता
होती है या जब कायर्भार को आसानी से कई नोड्स में ࣺवतिरत ࣹकया जा सकता ह।ै
होिरज़ॉےल लंगࣽࡡे के ࣽलए ट्र ैࣺ फ़क के समान ࣺवतरण को सुࣺनऀࠥत करने के ࣽलए
एक ࣺवतिरत आࣹकॼ टѫेर और लोड बैलेंऀसंग तंत्र कࣞ आव࠮कता होती ह।ै
3. ऑटो-࠭ेࣈलंग: कायर्भार मांग के आधार पर नोड्स या संसाधनों कࣞ संҷा को
चाࣽलतࡼ रूप से समायोऀजत करने के ࣽलए ऑटो-ेࣽࡡलंग तंत्र लागू करें। ऑटो-
लंगࣽࡡे ऀस࡫म को आने वाले ट्र ैࣺ फ़क के आधार पर गࣻतशील रूप से ऊपर या
नीचे लࡡे करने कࣞ अनुमࣻत दतेा ह,ै जो इ࠿तम संसाधन उपयोग और लागत-दक्षता
सुࣺनऀࠥत करता ह।ै Amazon Web Services (AWS) या Google Cloud Platform
(GCP) जैसे ѻाउड टेफ़ॉमर्ݎ ऑटो-ेࣽࡡलंग क्षमताएं प्रदान करते हैं ऀजनका उपयोग
बुआڔमान वकॼ फ़्लो ऑकϺ्࡫र शेन ऀस࡫म के ࣽलए ࣹकया जा सकता ह।ै

प्रदशर्न अनुकूलन तकनीकें
लंगࣽࡡे रणनीࣻतयों के अलावा, बुआڔमान वकॼ फ़्लो ऑकϺ्࡫र शेन ऀस࡫म कࣞ दक्षता
बढ़ाने के ࣽलए ࣺनޭࣽलंखत प्रदशर्न अनुकूलन तकनीकों पर ࣺवचार करें:

बुआڔमान कायर्प्रवाह समۢय 257

1. कुशल डेटा भंडारण और पुनप्रЂܒࣆ: वकॼ फ़्लो घटकों ाराڙ उपयोग ࣹकए जाने वाले
डटेा भंडारण और पुनप्रЄࣺ݆ तंत्रों को अनुकूࣽलत करें। डटेा-गहन संचालन कࣞ ࣺवलंबता
को कम करने और प्रदशर्न में सुधार करने के ࣽलए कुशल डटेाबेस इंडऔेѾंग, Ѽेरࣜ
अनुकूलन तकनीकों और डटेा कैऀशंग का उपयोग करें।
2. अ࣊संक्रोनस I/O: ॉࣹकंगވ को रोकने और ऀस࡫म कࣞ प्रࣻतࣺक्रया को बेहतर बनाने
के ࣽलए अऀसंक्रोनस I/O संचालन का उपयोग करें। अऀसंक्रोनस I/O ऀस࡫म को I/O
संचालन के पूरा होने कࣞ प्रतीक्षा ࣹकए ࣺबना कई अनुरोधों को समवत॑ रूप से संभालने
कࣞ अनुमࣻत दतेा ह,ै ऀजससे संसाधन उपयोग अࣾधकतम होता ह।ै
3. कुशल सीिरयलाइज़ेशन और डीसीिरयलाइज़ेशन: वकॼ फ़्लो कंपोनेंׅ के बीच डटेा
एѾचेंज के ࣽलए उपयोग ࣹकए जाने वालࣜ सीिरयलाइज़ेशन और डीसीिरयलाइज़ेशन
प्रࣺक्रयाओं को अनुकूࣽलत करें। कुशल सीिरयलाइज़ेशन फॉमϺׅ का उपयोग करें , जैसे
Protocol Buffers या MessagePack, जो डटेा सीिरयलाइज़ेशन के ओवरहडे को कम
करते हैं और इंटर-कंपोनेंट कࣺु޳ नकेशन का प्रदशर्न बेहतर बनाते हैं।

Ruby-आधािरत एࣺݎकेशۥ के ࣽलए, Universal ID पर ࣺवचार करें।।
Universal ID, MessagePack और Brotli दोनों का लाभ उठाता है (एक
ऐसा कॉްो जो ीडࡵ और सवर्श्रेࡀ डटेा कߌशेन के ࣽलए बनाया गया ह)ै।
जब इन लाइब्ररेࣜज को संयुѱ ࣹकया जाता ह,ै तो ये Protocol Buffers कࣞ
तुलना में 30% तक तेज होती हैं और कߌशेन दर 2-5% के भीतर रहती
ह।ै

4. केޘशन और एनकोࣅडंग: वकॼ फ़्लो कंपोनेंׅ के बीच ानांतिरतࡱ डटेा का आकार
कम करने के ࣽलए कߌशेन और एनकोࣺडगं तकनीकों का प्रयोग करें। कߌशेन
एߝोिरथम, जैसे gzip या Brotli, नेटवकॼ बैंडࣺवड्थ उपयोग को काफࣞ कम कर सकते
हैं और ऀस࡫म के समग्र प्रदशर्न को बेहतर बना सकते हैं।
बुआڔमान वकॼ फ़्लो ऑकϺ्࡫र शेन ऀस࡫म के ࣺडज़ाइन और कायЄۢयन के दौरान
लेࣺबࣽलटीࡡे और प्रदशर्न पहलुओं पर ࣺवचार करके, आप सुࣺनऀࠥत कर सकते
हैं ࣹक आपका ऀस࡫म समवत॑ वकॼ फ़्लोज़ कࣞ उՂ मात्रा को संभाल सकता ह,ै AI-
संचाࣽलत कंपोनेंׅ के प्रदशर्न को अनुकूࣽलत कर सकता ह,ै और बढ़ती मांगों को पूरा

https://github.com/hopsoft/universalid

बुआڔमान कायर्प्रवाह समۢय 258

करने के ࣽलए ࣺनबЄध रूप से लࡡे कर सकता ह।ै वकॼ लोड और जࣺटलता में समय
के साथ वृआڔ होने पर ऀस࡫म के प्रदशर्न और प्रࣻतࣺक्रया को बनाए रखने के ࣽलए
ࣺनरंतर ࣺनगरानी, प्रोफाइࣽलंग और अनुकूलन प्रयास आव࠮क हैं।

वकॳ फ़्लोज़ का परࢧक्षण और सؖापन
परࣜक्षण और सيापन बुआڔमान वकॼ फ़्लो ऑकϺ्࡫र शेन ऀस࡫म के ࣺवकास और
रखरखाव के महٌपूणर् पहलू हैं। AI-संचाࣽलत वकॼ फ़्लोज़ कࣞ जࣺटल प्रकृࣻत को
दखेते हुए, यह सुࣺनऀࠥत करना आव࠮क है ࣹक प्रيके कंपोनेंट अपेऀक्षत रूप से कायर्
करे, समग्र वकॼ फ़्लो सहࣚ ढगं से ࠖवहार करे, और AI ࣺनणर्य सटीक और ࣺव࠰सनीय
हों। इस खंड में, हम बुआڔमान वकॼ फ़्लोज़ के परࣜक्षण और सيापन के ࣽलए ࣺवࣾभۚ
तकनीकों और ࣺवचारों कࣞ खोज करेंगे।

वकॳ फ़्लो कंपोनें֑ का यूࣄनट टे࣑ं࠷ग
यूࣺनट टऊे࡫गं में ࠖࣼѱगत वकॼ फ़्लो कंपोनेंׅ का अलग-अलग परࣜक्षण शाࣻमल होता
है ताࣹक उनकࣞ सटीकता और मजबूती कࣞ जांच कࣞ जा सके। AI-संचाࣽलत वकॼ फ़्लो
कंपोनेंׅ का यूࣺनट टऊे࡫गं करते समय ࣺनޭࣽलंखत बातों पर ࣺवचार करें:
1. इनपुट वैࣈलडेशन: ࣺवࣾभۚ प्रकार के इनपुट को संभालने कࣞ कंपोनेंट कࣞ क्षमता
का परࣜक्षण करें, ऀजसमें वैध और अवैध डटेा शाࣻमल हैं। सيाࣺपत करें ࣹक कंपोनेंट
एज केस को सहजता से संभालता है और उपयुѱ त्रुࣺ ट संदशे या अपवाद प्रदान
करता ह।ै
2. आउटपुट वेिरࣆफकेशन: सيाࣺपत करें ࣹक कंपोनेंट ࣺदए गए इनपुट सेट के
ࣽलए अपेऀक्षत आउटपुट उۚم करता ह।ै सटीकता सुࣺनऀࠥत करने के ࣽलए वाࣺࡰवक
आउटपुट कࣞ अपेऀक्षत पिरणामों से तुलना करें।
3. तु्रࣅट प्रबंधन: ࣺवࣾभۚ त्रुࣺ ट पिरदृ࠮ों का अनुकरण करके घटक के त्रुࣺ ट प्रबंधन
तंत्रों का परࣜक्षण करें, जैसे अमा۠ इनपुट, संसाधन अनुपलނता, या अप्रيाऀशत

बुआڔमान कायर्प्रवाह समۢय 259

अपवाद। सيाࣺपत करें ࣹक घटक त्रुࣺ टयों को उࣿचत रूप से पकड़ता और संभालता
ह।ै
4. सीमा :तयाँࣆ࠽ࣔ सीमा ऍࣻࡱतयों के तहत घटक के ࠖवहार का परࣜक्षण करें,
जैसे खालࣜ इनपुट, अࣾधकतम इनपुट आकार, या चरम मान। सुࣺनऀࠥत करें ࣹक घटक
इन ऍࣻࡱतयों को कै्रश हुए ࣺबना या गलत पिरणाम उۚم ࣹकए ࣺबना सुचारू रूप से
संभालता ह।ै
यहाँ RSpec परࣜक्षण ढाँचे का उपयोग करते हुए Ruby में एक वकॼ फ़्लो घटक के ࣽलए
एकक परࣜक्षण का एक उदाहरण ह:ै

1 RSpec.describe OrderValidator do

2 describe '#validate' do

3 context 'when order is valid' do

4 let(:order) { build(:order) }

5

6 it 'returns true' do

7 expect(subject.validate(order)).to be true

8 end

9 end

10

11 context 'when order is invalid' do

12 let(:order) { build(:order, total_amount: -100) }

13

14 it 'returns false' do

15 expect(subject.validate(order)).to be false

16 end

17 end

18 end

19 end

इस उदाहरण में, OrderValidator घटक का परࣜक्षण दो परࣜक्षण मामलों का उपयोग
करके ࣹकया जाता ह:ै एक वैध ऑडॼर के ࣽलए और दूसरा अवैध ऑडॼर के ࣽलए।
परࣜक्षण मामले यह सيाࣺपत करते हैं ࣹक validate ࣺवࣾध ऑडॼर कࣞ वैधता के आधार
पर अपेऀक्षत बूࣽलयन मान लौटाती ह।ै

बुआڔमान कायर्प्रवाह समۢय 260

कायर्प्रवाह अतंःࣅक्रयाओं का एकࢩकरण परࢧक्षण
एकࣞकरण परࣜक्षण ࣺवࣾभۚ कायर्प्रवाह घटकों के बीच अंतःࣺक्रयाओं और डटेा प्रवाह के
सيापन पर कें ࣺद्रत होता ह।ै यह सुࣺनऀࠥत करता है ࣹक घटक ࣺनबЄध रूप से एक
साथ काम करें और अपेऀक्षत पिरणाम उۚم करें। बुआڔमान कायर्प्रवाह का एकࣞकरण
परࣜक्षण करते समय, ࣺनޭࣽलंखत बातों पर ࣺवचार करें:
1. घटक अतंःࣅक्रया: कायर्प्रवाह घटकों के बीच संचार और डटेा ࣺवࣺनमय का परࣜक्षण
करें। सيाࣺपत करें ࣹक एक घटक का आउटपुट कायर्प्रवाह में अगले घटक के इनपुट
के रूप में सहࣚ ढगं से पािरत ࣹकया जाता ह।ै
2. डेटा संगतता: सुࣺनऀࠥत करें ࣹक कायर्प्रवाह में डटेा सुसंगत और सटीक रहता ह।ै
सيाࣺपत करें ࣹक डटेा रूपांतरण, गणनाएं और एकत्रीकरण सहࣚ ढगं से ࣹकए जाते
हैं।
3. अपवाद प्रसार: कायर्प्रवाह घटकों में अपवादों और त्रुࣺ टयों के प्रसार और प्रबंधन
का परࣜक्षण करें। सيाࣺपत करें ࣹक कायर्प्रवाह ࠖवधान को रोकने के ࣽलए अपवादों
को उࣿचत रूप से पकड़ा, लॉग ࣹकया और प्रबंࣾधत ࣹकया जाता ह।ै
4. अतु޼काࣈलक :वहारߢ यࣺद कायर्प्रवाह में अतु߰काࣽलक घटक या समानांतर
ࣺनࡄादन शाࣻमल ह,ै तो समۢय और ऀसंक्रनाइज़ेशन तंत्र का परࣜक्षण करें। सुࣺनऀࠥत
करें ࣹक कायर्प्रवाह समवत॑ और अतु߰काࣽलक पिरदृ࠮ों में सहࣚ ढगं से ࠖवहार
करता ह।ै
यहाँ RSpec परࣜक्षण फे्रमवकॼ का उपयोग करके Ruby में एक कायर्प्रवाह के ࣽलए
एकࣞकरण परࣜक्षण का एक उदाहरण ࣺदया गया ह:ै

बुआڔमान कायर्प्रवाह समۢय 261

1 RSpec.describe OrderProcessingWorkflow do

2

3 let(:order) { build(:order) }

4

5 it 'processes the order successfully' do

6 expect(OrderValidator).to receive(:validate).and_return(true)

7 expect(InventoryManager).to receive(:check_availability).and_return(true)

8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)

9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)

10

11 workflow = OrderProcessingWorkflow.new(order)

12 result = workflow.process

13

14 expect(result).to be true

15 expect(order.status).to eq('processed')

16 end

17

18 end

इस उदाहरण में, OrderProcessingWorkflow का परࣜक्षण ࣺवࣾभۚ कायर्प्रवाह घटकों
के बीच अंतःࣺक्रया को सيाࣺपत करके ࣹकया जाता ह।ै परࣜक्षण केस प्रيके घटक के
ࠖवहार के ࣽलए अपेक्षाएं ाࣺपतࡱ करता है और यह सुࣺनऀࠥत करता है ࣹक कायर्प्रवाह
ऑडॼर को सफलतापूवर्क संसाࣾधत करता ह,ै तदनुसार ऑडॼर कࣞ ऍࣻࡱत को अपडटे
करता ह।ै

AI नणर्यࣄ बंदुओंࣆ का परࢧक्षण
AI ࣺनणर्य ࣺबंदुओं का परࣜक्षण AI-संचाࣽलत कायर्प्रवाह कࣞ सटीकता और ࣺव࠰सनीयता
सुࣺनऀࠥत करने के ࣽलए महٌपूणर् ह।ै AI ࣺनणर्य ࣺबंदुओं का परࣜक्षण करते समय,
ࣺनޭࣽलंखत बातों पर ࣺवचार करें:
1. नणर्यࣄ सटीकता: सुࣺनऀࠥत करें ࣹक AI घटक इनपुट डटेा और प्रऀशऀक्षत मॉडल
के आधार पर सटीक ࣺनणर्य लेता ह।ै AI ࣺनणर्यों कࣞ तुलना अपेऀक्षत पिरणामों या
आधार सي डटेा से करें।
2. एज केस: एज केस और असामा۠ पिरऍࣻࡱतयों में AI घटक के ࠖवहार का

बुआڔमान कायर्प्रवाह समۢय 262

परࣜक्षण करें। सيाࣺपत करें ࣹक AI घटक इन मामलों को सहजता से संभालता है
और उࣿचत ࣺनणर्य लेता ह।ै
3. पक्षपात और :क्षताࠐनࣄ संभाࣺवत पक्षपात के ࣽलए AI घटक का मू߰ांकन करें
और सुࣺनऀࠥत करें ࣹक यह ࣺनࡄक्ष और ࣺबना पक्षपात के ࣺनणर्य लेता ह।ै ࣺवࣺवध
इनपुट डटेा के साथ घटक का परࣜक्षण करें और ࣹकसी भी भेदभावपूणर् पैटनर् के ࣽलए
पिरणामों का ࣺवे࠯षण करें।
4. :ा҃ेयताߢ यࣺद AI घटक अपने ࣺनणर्यों के ࣽलए ीकरण࠿ࡵ या तकॼ प्रदान
करता ह,ै तो ीकरण࠿ࡵ कࣞ सटीकता और ता࠿ࡵ कࣞ जांच करें। सुࣺनऀࠥत करें ࣹक
ीकरण࠿ࡵ अंतࣺनर्ࣹहत ࣺनणर्य लेने कࣞ प्रࣺक्रया के अनुरूप हैं।
यहाँ RSpec परࣜक्षण ढांचे का उपयोग करके Ruby में AI ࣺनणर्य ࣺबंदु के परࣜक्षण का
एक उदाहरण ࣺदया गया ह:ै

1 RSpec.describe FraudDetector do

2 describe '#detect_fraud' do

3 context 'when transaction is fraudulent' do

4 let(:tx) do

5 build(:transaction, amount: 10_000, location: 'High-Risk Country')

6 end

7

8 it 'returns true' do

9 expect(subject.detect_fraud(tx)).to be true

10 end

11 end

12

13 context 'when transaction is legitimate' do

14 let(:tx) do

15 build(:transaction, amount: 100, location: 'Low-Risk Country')

16 end

17

18 it 'returns false' do

19 expect(subject.detect_fraud(tx)).to be false

20 end

21 end

22 end

23 end

बुआڔमान कायर्प्रवाह समۢय 263

इस उदाहरण में, FraudDetector AI कंपोनेंट को दो टे࡫ केस के साथ परࣜक्षण
ࣹकया गया ह:ै एक धोखाधड़ी वाले लेनदने के ࣽलए और दूसरा वैध लेनदने के ࣽलए।
टे࡫ केस यह सيाࣺपत करते हैं ࣹक detect_fraud मेथड लेनदने कࣞ ࣺवशेषताओं के
आधार पर अपेऀक्षत बूࣽलयन वै߰ू लौटाता ह।ै

एडं-टू-एडं टे࣑ं࠷ग
एंड-टू-एंड टऊे࡫गं में शुरू से अंत तक पूरे कायर्प्रवाह का परࣜक्षण शाࣻमल होता ह,ै जो
वाࣺࡰवक दुࣺनया के पिरदृ࠮ों और उपयोगकतЄ इंटरैѽन का अनुकरण करता ह।ै यह
सुࣺनऀࠥत करता है ࣹक कायर्प्रवाह सहࣚ ढगं से ࠖवहार करता है और वांࣽछत पिरणाम
दतेा ह।ै बुआڔमान कायर्प्रवाह के ࣽलए एंड-टू-एंड टऊे࡫गं करते समय ࣺनޭࣽलंखत बातों
पर ࣺवचार करें:
1. उपयोगकतЂ पिरदृߺ: सामा۠ उपयोगकतЄ पिरदृ࠮ों कࣞ पहचान करें और इन
पिरदृ࠮ों के तहत कायर्प्रवाह के ࠖवहार का परࣜक्षण करें। सيाࣺपत करें ࣹक कायर्प्रवाह
उपयोगकतЄ इनपुट को सहࣚ ढगं से संभालता ह,ै उࣿचत ࣺनणर्य लेता ह,ै और अपेऀक्षत
आउटपुट उۚم करता ह।ै
2. डेटा सؖापन: सुࣺनऀࠥत करें ࣹक कायर्प्रवाह डटेा असंगࣻतयों या सुरक्षा कमजोिरयों
को रोकने के ࣽलए उपयोगकतЄ इनपुट का सيापन और शुआڔकरण करता ह।ै ࣺवࣾभۚ
प्रकार के इनपुट डटेा के साथ कायर्प्रवाह का परࣜक्षण करें, ऀजसमें वैध और अवैध
डटेा शाࣻमल हैं।
3. तु्रࣅट पुनप्रЂܒࣆ: कायर्प्रवाह कࣞ त्रुࣺ टयों और अपवादों से उबरने कࣞ क्षमता का
परࣜक्षण करें। त्रुࣺ ट पिरदृ࠮ों का अनुकरण करें और सيाࣺपत करें ࣹक कायर्प्रवाह उंेۦ
सुचारू रूप से संभालता ह,ै त्रुࣺ टयों को लॉग करता ह,ै और उࣿचत पुनप्रЄࣺ݆ कारर्वाई
करता ह।ै
4. प्रदशर्न और ࠭ेलेࣆबࣈलटी: ࣺवࣾभۚ लोड पिरऍࣻࡱतयों में कायर्प्रवाह के प्रदशर्न और
लेࣺबࣽलटीࡡे का मू߰ांकन करें। बड़ी मात्रा में समवत॑ अनुरोधों के साथ कायर्प्रवाह
का परࣜक्षण करें और प्रࣻतࣺक्रया समय, संसाधन उपयोग और समग्र ऀस࡫म ऍࡱरता
को मापें।

बुआڔमान कायर्प्रवाह समۢय 264

यहाँ Ruby में RSpec परࣜक्षण फे्रमवकॼ और उपयोगकतЄ इंटरैѽन का अनुकरण करने
के ࣽलए Capybara लाइब्ररेࣜ का उपयोग करके एक कायर्प्रवाह के ࣽलए एंड-टू-एंड टे࡫
का एक उदाहरण ࣺदया गया ह:ै

1 RSpec.describe 'Order Processing Workflow' do

2 scenario 'User places an order successfully' do

3 visit '/orders/new'

4 fill_in 'Product', with: 'Sample Product'

5 fill_in 'Quantity', with: '2'

6 fill_in 'Shipping Address', with: '123 Main St'

7 click_button 'Place Order'

8

9 expect(page).to have_content('Order Placed Successfully')

10 expect(Order.count).to eq(1)

11 expect(Order.last.status).to eq('processed')

12 end

13 end

इस उदाहरण में, एंड-टू-एंड टे࡫ वेब इंटरफ़ेस के माۀम से उपयोगकतЄ ाराڙ ऑडॼर
सेݎ करने कࣞ प्रࣺक्रया का अनुकरण करता ह।ै यह आव࠮क फॉमर् फ़ࣞߤ भरता ह,ै
ऑडॼर सबࣻमट करता ह,ै और यह सيाࣺपत करता है ࣹक ऑडॼर सफलतापूवर्क प्रोसेस
ࣹकया गया ह,ै उࣿचत पुࣼ࠿करण संदशे प्रदऀशर्त करता है और डटेाबेस में ऑडॼर कࣞ
ऍࣻࡱत को अपडटे करता ह।ै

कंटीुڬअस इंटीग्रेशन और ॉयमेंटܚडࣅ
बुआڔमान वकॼ फ़्लो कࣞ ࣺव࠰सनीयता और रखरखाव सुࣺनऀࠥत करने के ࣽलए, कंटी۠अुस
इंटीग्रशेन और ࣺडݎॉयमेंट (CI/CD) पाइपलाइन में परࣜक्षण और सيापन को एकࣞकृत
करने कࣞ ऀसफािरश कࣞ जाती ह।ै यह प्रोडѽन में ࣺडݎॉय करने से पहले वकॼ फ़्लो
पिरवतर्नों के चाࣽलतࡼ परࣜक्षण और सيापन कࣞ अनुमࣻत दतेा ह।ै ࣺनޭࣽलंखत
प्रथाओं पर ࣺवचार करें:
1. लतࣈचाࡈ परࢧक्षण :ादनࠐनࣄ वकॼ फ़्लो कोडबेस में पिरवतर्न होने पर चाࣽलतࡼ
रूप से टे࡫ सूट चलाने के ࣽलए CI/CD पाइपलाइन को कॉिन्फ़गर करें। यह सुࣺनऀࠥत

बुआڔमान कायर्प्रवाह समۢय 265

करता है ࣹक ࣺवकास प्रࣺक्रया के प्रारंࣾभक चरण में ࣹकसी भी िरग्रशेन या ࣺवफलता का
पता चल जाए।
2. टे࠷ कवरेज :नगरानीࣄ वकॼ फ़्लो घटकों और AI ࣺनणर्य ࣺबंदुओं के टे࡫ कवरेज
को मापें और मॉࣺनटर करें। महٌपूणर् पथों और पिरदृ࠮ों का पूरࣜ तरह से परࣜक्षण
सुࣺनऀࠥत करने के ࣽलए उՂ टे࡫ कवरेज का लҝ रखें।
3. नरंतरࣄ प्रࣆतࣅक्रया: ࣺवकास वकॼ फ़्लो में टे࡫ पिरणामों और कोड गुणवـा मेࣺट्रѾ
को एकࣞकृत करें। CI/CD प्रࣺक्रया के दौरान परࣜक्षणों कࣞ ऍࣻࡱत, कोड गुणवـा और
पता चलࣜ ࣹकसी भी समࡺा के बारे में डवेलपसर् को ࣺनरंतर प्रࣻतࣺक्रया प्रदान करें।
4. जंग࣊࠷े एनवायरनमेंट: वकॼ फ़्लो को ऀे࡫ जंग एनवायरनमेंट में ࣺडݎॉय करें जो
प्रोडѽन एनवायरनमेंट के बहुत करࣜब हो। इंफ्रा्࡫रѫर, कॉिन्फ़गरेशन, या डटेा
एकࣞकरण से संबंࣾधत ࣹकसी भी समࡺा को पकड़ने के ࣽलए ऀे࡫ जंग एनवायरनमेंट में
अࣻतिरѱ परࣜक्षण और सيापन करें।
5. रोलबैक मैकेࣄनԶ: ࣺडݎॉयमेंट ࣺवफलताओं या प्रोडѽन में पता चलࣜ गंभीर
समࡺाओं के ࣽलए रोलबैक मैकेࣺनժ लागू करें। सुࣺनऀࠥत करें ࣹक डाउनटाइम और
उपयोगकतЄओं पर प्रभाव को कम करने के ࣽलए वकॼ फ़्लो को जߨी से ࣺपछले ऍࡱर
वजर्न पर वापस लाया जा सकता ह।ै

बुआڔमान वकॼ फ़्लो के ࣺवकास जीवनचक्र में परࣜक्षण और सيापन को शाࣻमल करके,
संगठन अपने AI-संचाࣽलत ऀस࡫म कࣞ ࣺव࠰सनीयता, सटीकता और रखरखाव क्षमता
सुࣺनऀࠥत कर सकते हैं। ࣺनयࣻमत परࣜक्षण और सيापन बӏ को पकड़ने, िरग्रशेन
को रोकने और वकॼ फ़्लो के ࠖवहार और पिरणामों में ࣺव࠰ास बनाने में मदद करते हैं।

भाग 2: पैटڱर्
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्܎ इंजीࣄनयिरंग
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्݂ इंजीࣺनयिरंग 268

वचारࣆ शंृ्रखला
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

सामग्री नमЂणࣄ

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

संरࣉचत इकाई नमЂणࣄ

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्݂ इंजीࣺनयिरंग 269

एलएलएम एजेंट मागर्दशर्न

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

लाभ और वचारणीयࣆ बंदुࣆ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्݂ इंजीࣺनयिरंग 270

मोड चࡈ࣒
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

कब उपयोग करें
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्݂ इंजीࣺनयिरंग 271

भूࣆमका नधЂरणࣄ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

कब इसका उपयोग करें
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्݂ इंजीࣺनयिरंग 272

Prompt Object
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्݂ इंजीࣺनयिरंग 273

प्रॉम्܎ टेݺलेट
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

लाभ और वचारणीयࣆ बंदुࣆ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

कब उपयोग करें:
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्݂ इंजीࣺनयिरंग 274

संरࣉचत इनपुट-आउटपुट
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

संरࣉचत इनपुट-आउटपुट को ࠭ेल करना
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

लाभ और वचारणीयࣆ बंदुࣆ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्݂ इंजीࣺनयिरंग 275

प्रॉम्܎ चेࣄनंग
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

इसका उपयोग कब करें
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण: Olympia कࢩ ऑनबोࣅडϴग
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्݂ इंजीࣺनयिरंग 276

प्रॉम्܎ रࢧराइटर
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्݂ इंजीࣺनयिरंग 277

रेࡁॉڱ फे࣑ंڱग
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

लाभ और वचारणीयࣆ बंदुࣆ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

तु्रࣅट प्रबंधन
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्݂ इंजीࣺनयिरंग 278

шेरࢧ एनालाइज़र
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

कायЂڮयन
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

वाक् भाग टैࣇगंग (POS) और नाࣆमत इकाई पहचान (NER)

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

इरादा वग࣮करण

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्݂ इंजीࣺनयिरंग 279

कࢩवडॳ षर्णࠇनࣄ

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

लाभ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्݂ इंजीࣺनयिरंग 280

Query Rewriter
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

लाभ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

प्रॉम्݂ इंजीࣺनयिरंग 281

Ventriloquist
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

कब इे࠼माल करें
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

ڦभࣉवࣆ घटक
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

ࣺवࣾभۚ घटक 283

प्रेࣅडकेट
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

कब इे࠼माल करें
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

ࣺवࣾभۚ घटक 284

एपीआई फसाड
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

प्रमुख लाभ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

कब इसका उपयोग करें
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

ࣺवࣾभۚ घटक 285

प्रमाणीकरण और अࣉधकृࣆतकरण

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

अनुरोध प्रबंधन

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

प्रࣆतࣅक्रया रूपणࡈ

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

तु्रࣅट प्रबंधन और सीमांत मामले

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

࠭ेलेࣆबࣈलटी और प्रदशर्न संबंधी वचारࣆ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

ࣺवࣾभۚ घटक 286

अڬ डज़ाइनࣅ पैटनर् से तुलना
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

ࣺवࣾभۚ घटक 287

Result Interpreter
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

इसका उपयोग कब करें
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

ࣺवࣾभۚ घटक 288

वचुर्अल मशीन
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

कब इे࠼माल करें
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

जादू के पीछे
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

ࣺवࣾभۚ घटक 289

नदϸशनࣄवࣆ और परࢧक्षण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

वहारߢ का नदϸशनࣄवࣆ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

परࢧक्षण मामले लखनाࣈ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण: ट्र ांसलेटर कंपोनेंट का परࢧक्षण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

HTTP इंटरैщڱ का पुनः प्रदशर्न
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

मानव-इन-द-लूप (HITL)
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उԎ-࠼रࢧय पैटनर्
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

संकर बु࣎٠म،ा
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

अनुकूलࢨ प्रࣆतࣅक्रया
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

मानव-इन-द-लूप (HITL) 291

मानव-एआई भूࣆमका पिरवतर्न
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

मानव-इन-द-लूप (HITL) 292

ए࠭ेलेशन
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

प्रमुख लाभ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

वाࣆ࠼वक-दुࣄनया का अनुप्रयोग: ࡗाࡈ सेवा

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

मानव-इन-द-लूप (HITL) 293

प्रࣆतࣅक्रया चक्र
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

अनुप्रयोग और उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

मानवीय प्रࣆतࣅक्रया एकࢩकरण में उڦत तकनीकें
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

मानव-इन-द-लूप (HITL) 294

यࠚन࣎ࣄ सूचना प्रसारण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

संदभर्गत सूचना प्रदशर्न

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

सࣅक्रय सूचनाएं

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

ा҃ाؕकߢ अतंदृर्ࠋࣇ

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

मानव-इन-द-लूप (HITL) 295

इंटरैࣔкव एъܚोरेशन

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

प्रमुख लाभ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

अनुप्रयोग और उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

मानव-इन-द-लूप (HITL) 296

सहयोगाؕक नणर्यࣄ लेना (CDM)
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

मानव-इन-द-लूप (HITL) 297

सतत सीखने कࢩ प्रࣅक्रया
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

अनुप्रयोग और उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

नैࣆतक वचारࣆ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

मानव-इन-द-लूप (HITL) 298

AI जो࣌खमों को कम करने में मानव-ࣄनदϸ࣊ शत प्रणालࢨ कࢩ भूࣆमका
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

तकनीकࢩ प्रगࣆत और भࣆवࠔ का दृࠋࣇकोण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

एचआईटीएल प्रणाࣈलयों कࢩ चुनौࣆतयां और सीमाएं
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

बु࣎٠मान तु्रࣅट प्रबंधन
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

पारंपिरक तु्रࣅट प्रबंधन दृࠋࣇकोण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

बुआڔमान त्रुࣺ ट प्रबंधन 300

संदभर्गत तु्रࣅट नदानࣄ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

संदभर्गत तु्रࣅट नदानࣄ के लएࣈ प्रॉम्܎ इंजीࣄनयिरंग

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

संदभЂؕक तु्रࣅट नदानࣄ के लएࣈ पुनप्रЂܒࣆ-संवࣉधर्त उؑादन

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

बुआڔमान त्रुࣺ ट प्रबंधन 301

बु࣎٠मान तु्रࣅट िरपोࣅटϴग
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

बुआڔमान त्रुࣺ ट प्रबंधन 302

पूवЂनुमाࣄनत तु्रࣅट नवारणࣄ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

ाटॳࡅ तु्रࣅट पुनप्रЂܒࣆ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

बुआڔमान त्रुࣺ ट प्रबंधन 303

нगतࣈߢ तु्रࣅट संचार
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

बुआڔमान त्रुࣺ ट प्रबंधन 304

अनुकूलࢨ तु्रࣅट प्रबंधन कायर्प्रवाह
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

गुणव،ा नयंत्रणࣄ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

गुणवـा ࣺनयंत्रण 306

Eval
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

समࡆा
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

समाधान
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

गुणवـा ࣺनयंत्रण 307

वचारणीयࣆ बंदुࣆ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

णर्ࡈ मानकों को समझना

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

संदभर्-मुн मू޼ांकन कैसे काम करते हैं

यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

गुणवـा ࣺनयंत्रण 308

सुरक्षा सीमा
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

समࡆा
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

समाधान
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

यह कैसे काम करता है
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

उदाहरण
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

गुणवـा ࣺनयंत्रण 309

वचारणीयࣆ बंदुࣆ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

सुरक्षा नयंत्रणࣄ और मू޼ांकन: एक ही ࣊सдे के दो
पहलू
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

सुरक्षा नयंत्रणࣄ और संदभर्-मुн मू޼ांकन कࢩ परࡁर नमेयताࣄवࣆ
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

٥उٟशेीयࣉ सुरक्षा सीमाओं और मू޼ांकनों को लागू करना
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

शݍकोश
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

शݍकोश
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

A
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

B
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

311

C
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

D
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

E
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

F
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

G
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

312

H
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

I
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

J
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

K
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

L
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

313

M
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

N
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

O
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

P
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

Q
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

314

R
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

स
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

T
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

U
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

V
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

315

W
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

Z
यह सामग्री नमूना पुࡰक में उपलނ नहࣟ ह।ै इस पुࡰक को Leanpub पर खरࣜदा जा
सकता है http://leanpub.com/patterns-of-application-development-using-ai-
hi पर।

http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi
http://leanpub.com/patterns-of-application-development-using-ai-hi

Index
AI, 76, 102, 147, 154

applications, 142
compound systems, 31, 32
conversational, 32, 216
model, 101, 102
अनुप्रयोग, 129
ࣺनणर्य ࣺबंदु, 261
मॉडल, 92, 162
संवादाىक, 6

AI वकॼ सर् कࣞ श्रृखंला, 115
Altman, Sam, 18
Amazon Web Services, 256
Anthropic, 23, 40, 75, 133, 141
APIs, 127, 157

BERT, 14, 24
Byte Pair Encoding (BPE), 15

C (प्रोग्राࣻमंग भाषा), 120
Capybara लाइब्ररेࣜ, 264
ChatGPT, 31, 54
Claude, 45, 79
Claude 3, 51, 130, 133, 139, 141
Claude v1, 17
Claude v2, 17
Cohere (LLM Provider), 25
Cohere (LLM प्रदाता), 23

command line
Command-Line Interface (CLI),

26
content

filtering, 27
context

Contextual Content Generation,
196

Customer Sentiment Analysis, 102
customization, 28

data
privacy, 27

Databricks कमर्चारࣜ, 53
Datadog, 252
decision

-making capabilities, 102
Dohan, et al., 45

e-commerce, 196
Enterprise Integration Patterns, 107
errors

बुआڔमान त्रुࣺ ट प्रबंधन, 147

F#, 95
Facebook, 25
finalize method, 160

Index 317

finalize मेथड, 162, 163
FitAI, 215
function

call history, 160

Gemma 7B, 11
GitLab, 95
Google, 23

Cloud AI Platform, 24
Cloud Platform, 256
Gemini, 22
Gemini 1.5 Pro, 14, 17, 19
PaLM (Pathways Language

Model), 18, 24
T5, 14
एपीआई, 64, 66

GPT-3, 17
GPT-4, 6, 17, 18, 22, 32, 45, 51, 64,

108, 121, 123, 131, 137,
207, 208, 254

Graham, Paul, 19
GraphQL, 111
Groq, 27, 123

high-performance completion, 27
Hohpe, Gregor, 107
Honeybadger, 97
HTTP, 154

input
prompts, 57

JSON (JavaScript Object Notation),
130

JSON (जावाऊ݂ࢂ ऑݻѮे नोटशेन),
134, 135, 139, 152, 171

Large Language Model (LLM), 30,
148

Llama 2-70B, 51
Llama 3 70B, 11
Llama 3 8B, 11
LLMs का एकࣞकरण, 192
Louvre, 43

Meta, 25
Metropolitan Museum of Art, 43
Mistral, 26

7B, 11
7B Instruct, 17, 208

Mixtral
8x22B, 11
8x7B, 57

Multi-Agent
Problem Solvers, 32

New Relic, 255

Ollama, 26
Olympia, 34, 64, 132, 147, 155, 171
Olympia का ज्ञान भंडार, 94
OpenAI, 3, 23, 40, 75
OpenRouter, 28, 29, 155, 255
OPT model, 25

Perplexity (प्रदाता), 12
Process Manager, 110
prompts

Index 318

engineering, 57
PyTorch, 25

Quantization, 29
Qwen2 70B, 11

Railway Oriented Programming
(ROP), 97

Raix, 234
लाइब्ररेࣜ, 100

Retrieval Augmented Generation
(RAG), 32

RSpec, 259, 260, 264
Ruby, 95, 96, 167, 264
Ruby on Rails, 1, 115, 233, 241
Rudall, Alex, 24
Rust (Programming Language), 95
Rust (प्रोग्राࣻमंग भाषा), 120

Scout, 255
stream processing, 160
Stripe, 133
system directive, 101

T5, 24
Together.ai, 27
tragedy of the commons, 195

Unicode-encodable language, 15

Wall, Larry, 3
Wisper, 97, 110, 155, 162
Wooley, Chad, 95

XML, 138

Yi-34B, 51

अंतरЄ्࠿र ीयकरण, 199
अतु߰काࣽलक प्रसंࡡरण, 253
अनुकूलࣜ यूआई, 212
अनुकूलࣜ वकॼݱो

अनुकूलࣜ वकॼݱो संरचना, 230
अनुमान, 5
अनुवाद, 17, 200
अपवाद प्रबंधन, 230, 233
अ߫ाका, 14
अࠖѱ ,ानࡱ 41, 43
आउटपुट वेिरࣺफकेशन, 258
आधुࣺनक एࣺݎकेशन, 227
आपातकालࣜन प्रࣻतࣺक्रया योजना, 34
आपूࣻतर् श्रृखंला

अनुकूलन, 34
आरेखीय मॉडल, 44
आवाज-ࣺनयंࣻत्रत इंटरफेस, 34
आशावादी लॉࣹकंग, 113
आसवन प्रࣺक्रया, 78
इनपुट

पैरामीटसर्, 132
वैࣽलडशेन, 258

इवेंट-संचाࣽलत आࣹकॼ टѫेर, 112
ई-कॉमसर्, 226
ई-कॉमसर् अनुप्रयोग, 94
ईएलके ,कै࡫ 114
उمाद अनुशंसाएं, 94
उمादकता, 194
उښम अनुप्रयोग वाࡰकुला, 39
उपकरण का उपयोग, 153

Index 319

उपयोगकतЄ अनुभव, 198
उपयोगकतЄ इंटरफ़ेस (UI)

इंटरफ़ेस, 218
फे्रमवकॼ , 218

उपयोगकतЄ इंटरफ़ेस (यूआई)
प्रौښोࣻगࣹकयां, 213

उपयोगकतЄ परࣜक्षण और प्रࣻतࣺक्रया, 201
उपयोगकतЄ मनोࣺवज्ञान, 219
उपयोगकतЄ ࣺव࠰ास, 221
उपयोगकतЄ-ࣺनࣻमर्त सामग्री, 115
एंड-टू-एंड टऊे࡫गं, 263, 264
एआई, 66, 132, 138, 206, 214

एࣺݎकेशन, 153, 166
कंपाउंड ऀस࡫म, 35
मॉडल, 159, 160, 215

एकࣞकरण परࣜक्षण, 260
एजेंࣺटक, 33
एްेۥ ल, 122

वकॼ सर् का एްेۥ ल, 122
एްेۥ ߶, 121
एपीआई, 73
एࣺݎकेशन ࣺडजाइन और फे्रमवकॼ , 202
एसѺूएल इंजेѽन, 72
एऀसड गुण, 113
ऐࣻतहाऀसक पैटनर्, 229
ऐरे, 134
ऑटो-ेࣽࡡलंग, 256
ऑࣺडट लॉࣻगंग, 110
ऑनलाइन िरटलेसर्, 209
ओपन सोसर् मॉडल होऊ࡫गं प्रोवाइडसर्,

209
कंटी۠अुस इंटीग्रशेन और ࣺडݎॉयमेंट

(CI/CD), 264
पाइपलाइन, 264

कंݍटूर ࣺवज्ञान, 72, 74
कथा ࣺनमЄण, 20
कायर्कतЄओं कࣞ बहुलता, 122
कृࣻत्रम डटेा ࣺनमЄण, 54
के-मीۥ, 125
कैऀशंग, 254
क्रࣻमक प्रकटीकरण, 211
क्रॉस-मोडल ࣺनमЄण, 22
ѻाउड, 8
ѻॉड 3 ओपस, 76
खाता, 94
गࣻतशील UI ࣺनमЄण, 192
गࣻतशील उपकरण चयन, 135
गࣻतशील कायर् मागर्ण, 228
ग्राहक सहायता, 33
ग्राहक सेवा चैटबॉट, 34
Ӎोबल इंटरप्रेटर लॉक (GIL), 119
ࣿचࣹकُा इࣻतहास संग्रह, 104
ࣿचࣹकُा खोजें, 103
चैटबॉट एࣺݎकेशन, 122
जࣺटल कायर्, 150
जनरेࣺटव प्री-ट्र ेंड ट्र ांसफॉमर्र (जीपीटी), 8
जनरेࣺटव यूआई (जेनयूआई), 214, 222
ज़ीरो-शॉट लࣺन϶ग, 61
जीऀज़प, 257
जीपीटी-3, 13
जीपीटी-4, 13
जीरो-शॉट लࣺन϶ग, 60
जेनरेࣺटव प्री-ट्र ेंड ट्र ांसफॉमर्र (GPT), 68
जेनरेࣺटव यूआई (GenUI), 202, 209,

Index 320

210, 218
जोंखम कारक, 98, 99
जोंखम ,रࣜकरणࡰ 106
ज्ञान आधार, 7
ज्ञान प्रबंधन, 33
ࣺटकट असाइनमेंट, 244
टूल का उपयोग, 127
टूल कॉल, 157
टҡे ѻࣞनअप, 115
टबैलेट, 223
टॉप-के सैंपࣽलंग, 49
टॉप-पी (۠ूࣺ ѻयस) सैंपࣽलंग, 49
टोकन, 6, 13
टोकनाइज़ेशन, 13
ट्र ांसफॉमर्र आࣹकॼ टѫेर, 6
ࣺट्रगर मैसेज, 107
ࣺडѽनरࣜज़, 134
ࣺडऀजटल पिरदृ࠮, 198
डीबࣻगंग, 229

और परࣜक्षण, 136
और समࡺा ࣺनवारण, 251

डटेा
अखंडता, 244
गोपनीयता, 220
डटेा पुनप्रЄࣺ݆, 113
डटेा सيापन, 263
डटेा समकालࣜकरण, 113
तैयारࣜ, 112
प्रवाह, 113
प्रोसेऀसंग कायर्, 129
प्रोसेऀसंग पाइपलाइन, 244
ࣺवे࠯षण, 35, 151

,ाࣻयٌࡱ 113
डटेाबेस, 127

-बैक्ड ऑݻѮे, 108
लॉࣹकंग रणनीࣻतयां, 113

डेࡡटॉप कंݍटूर, 223
तंࣻत्रका नेटवकॼ , 4, 6
तापमान, 55
त्रुࣺ टयाँ

पुनप्रЄࣺ݆, 263
प्रबंधन, 110, 259

त्रुࣺ टयां
दर, 114
प्रबंधन, 113, 146

दक्षता, 227
दࡰावेज़ ѻ࡫िरंग, 124
दृ࠮ इंटरफ़ेस, 213
धोखाधड़ी का पता लगाना

प्रणालࣜ, 100
ࣺनगरानी

और लॉࣻगंग, 114, 251
और सूचना, 231
मैࣺट्रѾ, 252

ࣺनरंतर जोंखम ࣺनगरानी, 106
ࣺनराशावादी लॉࣹकंग, 113
ࣺनणर्य

-लेने के उपयोग मामले, 137
ࣺबंदु, 249
वृक्ष, 226

ࣺनदϺश ࣺू׀ नंग, 10
ࣺनदϺश-׀नू ࣹकए गए मॉडल, 53

ࣺनदϺश समायोजन
ࣺनदϺश-समायोऀजत मॉडल, 51

Index 321

ࣺनधЄिरत ࠖवहार, 59
नेइव बेज़, 124
नेटवकॼ कनेऎѮࣺवटी, 231
नैࣻतकता

प्रभाव, 203
नैदाࣺनक ࣺनणर्य समथर्न, 106
۠नूतम ࣺवशेषाࣾधकार का ऀसڔांत, 73
पक्षपात

AI में ࣺनࡄक्षता, 262
पथ को संकࣞणर् करना, 39, 40
पिरणाम ࠖाҷाकतЄ, 146
पयर्वेक्षण रࣹहत सीखना, 4
पहुचं-योӌता, 221, 222
पारा (तٌ), 46
पािरऍࣻࡱतकࣞ तंत्र, 152
पुनः प्रयास तंत्र, 113
पुनरावत॑ पिर࠻रण, 78, 148
पुनरावृࣾـ दडं, 52
पुनकॼ थन, 54
पुनप्रЄࣺ݆ संवࣾधर्त जनन (RAG), 39, 129
पुनप्रЄࣺ݆ संवࣾधर्त जनरेशन (RAG), 81
पुनप्रЄࣺ݆-आधािरत मॉडल, 7
पुनप्रЄࣺ݆-संवࣾधर्त जनन (RAG), 47
पैटनर् मैࣿचंग, 156
पैरामीटर

पैरामीटर संҷा, 29
प्रभाव, 132
रेंज, 11

प्रकाशन-सदࡺता प्रणाࣽलयाँ, 111
प्रथम टोकन तक का समय (TTFT), 28
प्रदशर्न

अनुकूलन, 136, 200, 251

ࣺवࣺनमय, 5
समࡺाएं, 256

प्रमुख पैटनर्, 228
प्रमुख मैࣺट्रѾ कࣞ ट्र ैࣹ कंग, 248
प्रयोѱा इंटरफ़ेस (यूआई)

ࣺडज़ाइन, 223
प्रयोग

ढांचा, 198
प्रयोիता समࡺाएं, 220
प्रवाह दर, 28
प्रऀशक्षण डटेा, 43
प्रࠫ-उـर प्रणाࣽलयाँ, 7
प्राकृࣻतक भाषा

प्राकृࣻतक भाषा प्रसंࡡरण, 104
प्राकृࣻतक भाषा प्रसंࡡरण

(एनएलपी), 124
प्रासंࣻगक

प्रासंࣻगक सामग्री ࣺनमЄण, 196, 197
प्रेजेंस पेनߢी, 50
प्रेरक रणनीࣻतयाँ, 218
प्रॉम्݂

इंजीࣺनयिरंग, 42, 46, 47, 61, 68,
219

चेࣺनंग, 60
प्रॉम्݂ आसवन, 47
प्रॉम्݂ ऑݻѮे, 76
प्रॉम्݂ टेޮ लेट, 60
प्रॉम्݂ ࣺडऊ࡫लेशन, 75
प्रॉम्݂ पिरशोधन, 80
श्रृखंलन, 73

प्रॉम्प्ׅ
इंजीࣺनयिरंग, 66

Index 322

ࣺडज़ाइन, 59, 69
पिर࠻रण, 70
प्रॉम्݂ टेޮ लेट, 209
प्रॉम्݂ ࣺडऊ࡫लेशन, 254

प्रोटोकॉल बफ़सर्, 257
प्रोसेस मैनेजर, 107

एंटरप्राइज एकࣞकरण, 233
प्रोसेऀसंग समय, 114
फंѽन

कॉࣽलंग, 127
फंѽनल प्रोग्राࣻमंग, 95
फ़ंѽन

कॉल ࣺवफलता, 138
कॉࣽलंग, 161
ने޷, 158

फाइन-ࣺू׀ नंग, 82
फࣞडबैक

फࣞडबैक लूप, 60
फॉलबैक रणनीࣻतयां, 113
शॉटू-ݰ

प्रॉिम्݂गं, 64
लࣺन϶ग, 63

बंद और खुले प्रࠫ उـर, 54
बड़े भाषा मॉडल (एलएलएम), 18, 124
बहु-चरणीय कायर्प्रवाह, 115
बहु-माۀम

मॉडल, 20
बहुमत मतदान, 121
बहुࣺवध

भाषा मॉडल, 21
बाइट पेयर एनकोࣺडगं (बीपीई), 13
बाधाएं, 230

बाۀ उपकरण चयन, 135
बाहरࣜ सेवाएं या API, 130
बीमा सيापन, 104
बुआڔमान कंटेंट मॉडरेटर, 237
बुआڔमान कायर्प्रवाह ࣺनयोजन, 255
बुआڔमान कायर्प्रवाह संयोजन, 233
बुआڔमान कायर्प्रवाह समۢय, 225
बुआڔमान वकॼ फ़्लो ऑकϺ्࡫र शेन, 257
बुध ग्रह, 46
बृहत भाषा मॉडल (LLM), 3, 68, 70, 78,

127, 128, 144, 191, 236
पिरदृ࠮, 28

बृहत भाषा मॉडल (एलएलएम), 73, 148,
168, 207, 213

बेस मॉड߶, 55
बैच प्रोसेऀसंग, 254
ब्रोटलࣜ, 257
भࣺवࡈवाऀणयां, 5
भावना ࣺवे࠯षण, 17, 103, 115, 116,

118, 121, 122, 139, 149
भावनाىक ,रࡼ 149
भाषा

-संबंࣾधत कायर्, 5
भाषा पहचान, 115
मॉडल, 67, 75
मॉड߶, 44

मन का ऀसڔांत, 41
मकॼ रࣜ (रोमन दवेता), 46
मߢी׀डू ऑफ वकॼ सर्, 170
माइक्रोसࣺवर्सेज आࣹकॼ टѫेर, 92
मानव-सहायक प्रणालࣜ (HITL), 183
मानवीकरण, 70

Index 323

मापनीयता, 227, 253
माकॼ अप-शैलࣜ टैࣻ गंग, 72
माकॼ डाउन, 151
मेमोिरयल ोनࡻ केटिरंग कैं सर सेंटर, 42
मैनुअल हࡰक्षेप, 233
मैनेե र्࡫ ीࣻमंग फॉर अपाचे काफ्का, 42
मैसेजपैक, 257
मॉ׵लूिरटी, 91
यातायात प्रबंधन, 34
यूजर इंटरफेस (UI)

इंटरफेस, 202
यूࣺनवसर्ल आईडी, 257
रचनाىक लेखन, 35, 53
रूबी, 117
रे߶, 199
रेࡵॉۥ फेऊۥगं, 181, 209
रैंकर, 36
रैंखक प्रࣻतगमन, 44
रैंखक बीजगऀणत, 44
रोलݎ-ेशैलࣜ कࣞ बातचीत, 7
रोलबैक मैकेࣺनժ, 265
लक्षण मू߰ांकन और वग॑करण, 104
लचीलापन और रचनाىकता, 200
लामा, 14
लाजर् लैंӎेज मॉडल (LLM), 79, 114,

151, 202
लाजर् लैंӎेज मॉडल (एलएलएम), 1, 16,

90, 138, 171
लेखा-परࣜक्षण और अनुपालन, 251
लेटेंट ࣺडिरचलेट एलोकेशन, 125
लॉग प्रࣻतधारण और रोटशेन, 252
वन-शॉट लࣺन϶ग, 62

वग॑करण, 54, 124
वचुर्अल सहायक, 34
वातЄलाप

प्रࣻतलेख, 161, 163
लूप, 161, 163

ࣺवकास ढांचे, 153
ࣺवचार श्रृखंला (Chain of Thought -

CoT), 143
ࣺवचार श्रृखंला (CoT), 46
ࣺवतिरत आࣹकॼ टѫेर, 253
ࣺवभाजन और लҝीकरण रणनीࣻतयां, 198
ࣺवलंबता, 28
ࣺवषय पहचान, 124
वेंࣺट्रलोएѼ࡫, 181
वैचािरक और ࠖावहािरक चुनौࣻतयां, 203
वैयࣼѱकरण, 192, 227
वैयࣼѱकृत उمाद अनुशंसाएं, 94
ࠖࣼѱगतकरण, 222

ࠖࣼѱगत फ़ॉमर्, 204
ࠖࣼѱगत माइक्रोकॉपी, 210

ࠖाकरण ࣺनयम, 4
ࠖाҷेयता, 262
ࠖावसाࣻयक ࣺनयम, 225
शैऀक्षक अनुप्रयोग, 33
संदभर्

असीम लंबे इनपुट, 16
ࣺवंडो, 16, 229
संदभर्-आधािरत फ़ࣞߤ सुझाव, 204
संदभर्-आधािरत सामग्री ࣺनमЄण,

191, 204
संदभर्परक ࣺनणर्य लेना, 229
संदभЄىक सामग्री ࣺनमЄण, 203

Index 324

संवधर्न, 47
संभाࠖता मॉड߶, 44
संरࣿचत डटेा, 138
संरࣿचत लॉࣻगंग, 252
संवࣾधर्त वाࣺࡰवकता च࠭े, 223
सपोटॼ वेѮर मशीन (एसवीएम), 124
समवत॑ वकॼ फ़्लोज़, 257
समानांतर ࣺनࡄादन, 254
समावेशी इंटरफ़ेस, 203
सࣹकॼ ट ब्रकेर लॉऀजक, 166
सवर्र-भेजी गई घटनाएं (SSE), 154
सहयोगाىक ࣺफ़ߢिरंग, 94
सामग्री

सामग्री वग॑करण, 115
सामग्री-आधािरत ࣺफ़ߢिरंग, 94
सारांशीकरण, 54
ऀसंटѾै त्रुࣺ टयां, 135
ऀस࡫म ࣺनदϺश, 132
सीमा ऍࣻࡱतयाँ, 259
सीमांत मामले, 59
सूҜ लॉࣻगंग, 252
सूचना

ࣺन࠻षर्ण, 54
पुनप्रЄࣺ݆, 7, 130

सॉݨवेयर आࣹकॼ टѫेर, 2
ऀे࡫ जंग एनवायरनमेंट, 265
,टेलेस࡫ 161
रѫडॼ्࡫ आईओ, 209
र्࡫ ीम प्रोसेऀसंग, 154, 166

लॉऀजक, 162
र्࡫ ीम हैंडलसर्, 155
र्࡫ ीࣻमंग डटेा, 156
ानीयࡱ ࣺवकास वातावरण, 159
ऍࡱरता

और पुनरुمादनीयता, 136
,ाटॼफोनࡹ 223
उपचार-ࡼ डटेा, 248
उपचारࣜ-ࡼ डटेा, 168
प्रࣻतगामी-ࡼ मॉडࣽलंग, 44
चाࣽलतࡼ ࣺनरंतरता, 164
हाइपरपैरामीटर, 48
हाडॼवेयर, 29
हशै, 156

	Table of Contents
	ग्रेगर होप्फ द्वारा प्राक्कथन
	प्रस्तावना
	पुस्तक के बारे में
	कोड उदाहरणों के बारे में
	मैं क्या नहीं कवर करता
	यह पुस्तक किसके लिए है
	एक सामान्य शब्दावली का निर्माण
	शामिल होना
	आभार
	चित्रों के बारे में क्या है?
	लीन पब्लिशिंग के बारे में
	लेखक के बारे में

	परिचय
	सॉफ्टवेयर आर्किटेक्चर पर विचार
	बृहत भाषा मॉडल क्या है?
	अनुमान को समझना
	प्रदर्शन के बारे में सोचना
	विभिन्न LLM मॉडल्स के साथ प्रयोग
	संयुक्त एआई सिस्टम

	भाग 1: मौलिक दृष्टिकोण और तकनीकें
	पथ को संकीर्ण करें
	लेटेंट स्पेस: अकल्पनीय विशाल
	मार्ग कैसे ``संकीर्ण'' होता है
	रॉ बनाम इंस्ट्रक्ट-ट्यून्ड मॉडल्स
	प्रॉम्प्ट इंजीनियरिंग
	प्रॉम्प्ट डिस्टिलेशन
	फाइन-ट्यूनिंग के बारे में क्या?

	रिट्रीवल ऑगमेंटेड जेनरेशन (RAG)
	रिट्रीवल ऑगमेंटेड जेनरेशन क्या है?
	RAG कैसे काम करता है?
	आपके एप्लिकेशन में RAG का उपयोग क्यों करें?
	अपने एप्लिकेशन में RAG को लागू करना
	प्रस्ताव खंडीकरण
	RAG के वास्तविक-दुनिया के उदाहरण
	बुद्धिमान प्रश्न अनुकूलन (IQO)
	पुनः क्रमांकन
	RAG मूल्यांकन (RAGAs)
	चुनौतियां और भविष्य का दृष्टिकोण

	कार्यकर्ताओं की बहुलता
	स्वतंत्र पुन: प्रयोज्य घटकों के रूप में एआई कार्यकर्ता
	खाता प्रबंधन
	ई-कॉमर्स अनुप्रयोग
	स्वास्थ्य सेवा अनुप्रयोग
	AI वर्कर एक प्रोसेस मैनेजर के रूप में
	अपने एप्लिकेशन आर्किटेक्चर में एआई वर्कर्स को एकीकृत करना
	AI वर्कर्स की संयोजनीयता और ऑर्केस्ट्रेशन
	पारंपरिक एनएलपी को एलएलएम के साथ जोड़ना

	उपकरण का उपयोग
	टूल का उपयोग क्या है?
	उपकरण उपयोग की संभावनाएं
	उपकरण उपयोग कार्यप्रवाह
	उपकरण उपयोग की सर्वोत्तम प्रथाएं
	उपकरणों का संयोजन और श्रृंखलाबद्ध करना
	भविष्य की दिशाएं

	स्ट्रीम प्रोसेसिंग
	ReplyStream का कार्यान्वयन
	``वार्तालाप लूप''
	स्वचालित निरंतरता
	निष्कर्ष

	स्व-उपचारी डेटा
	व्यावहारिक केस स्टडी: टूटे हुए JSON को ठीक करना
	विचारणीय बिंदु और प्रतिसंकेत

	संदर्भ-आधारित सामग्री निर्माण
	वैयक्तिकरण
	उत्पादकता
	त्वरित पुनरावृत्ति और प्रयोग
	एआई संचालित स्थानीयकरण
	उपयोगकर्ता परीक्षण और प्रतिक्रिया का महत्व

	जेनरेटिव यूआई
	उपयोगकर्ता इंटरफ़ेस के लिए कॉपी जनरेट करना
	जनरेटिव यूआई को परिभाषित करना
	उदाहरण
	परिणाम-उन्मुख डिज़ाइन की ओर बदलाव
	चुनौतियां और विचारणीय बिंदु
	भविष्य का दृष्टिकोण और अवसर

	बुद्धिमान कार्यप्रवाह समन्वय
	व्यावसायिक आवश्यकता
	प्रमुख लाभ
	प्रमुख पैटर्न
	अपवाद प्रबंधन और पुनर्प्राप्ति
	बुद्धिमान कार्यप्रवाह संयोजन को व्यवहार में लागू करना
	निगरानी और लॉगिंग
	मापनीयता और प्रदर्शन विचार
	वर्कफ़्लोज़ का परीक्षण और सत्यापन

	भाग 2: पैटर्न्स
	प्रॉम्प्ट इंजीनियरिंग
	विचार श्रृंखला
	मोड स्विच
	भूमिका निर्धारण
	Prompt Object
	प्रॉम्प्ट टेम्पलेट
	संरचित इनपुट-आउटपुट
	प्रॉम्प्ट चेनिंग
	प्रॉम्प्ट रीराइटर
	रेस्पॉन्स फेन्सिंग
	क्वेरी एनालाइज़र
	Query Rewriter
	Ventriloquist

	विभिन्न घटक
	प्रेडिकेट
	एपीआई फसाड
	Result Interpreter
	वर्चुअल मशीन
	विनिर्देशन और परीक्षण

	मानव-इन-द-लूप (HITL)
	उच्च-स्तरीय पैटर्न
	एस्केलेशन
	प्रतिक्रिया चक्र
	निष्क्रिय सूचना प्रसारण
	सहयोगात्मक निर्णय लेना (CDM)
	सतत सीखने की प्रक्रिया
	नैतिक विचार
	तकनीकी प्रगति और भविष्य का दृष्टिकोण

	बुद्धिमान त्रुटि प्रबंधन
	पारंपरिक त्रुटि प्रबंधन दृष्टिकोण
	संदर्भगत त्रुटि निदान
	बुद्धिमान त्रुटि रिपोर्टिंग
	पूर्वानुमानित त्रुटि निवारण
	स्मार्ट त्रुटि पुनर्प्राप्ति
	व्यक्तिगत त्रुटि संचार
	अनुकूली त्रुटि प्रबंधन कार्यप्रवाह

	गुणवत्ता नियंत्रण
	Eval
	सुरक्षा सीमा
	सुरक्षा नियंत्रण और मूल्यांकन: एक ही सिक्के के दो पहलू

	शब्दकोश
	शब्दकोश
	Index

