

Patrons de Développement

d’Applications Utilisant l’IA (Édition

Française)

Obie Fernandez

Ce livre est en vente à

http://leanpub.com/patterns-of-application-development-using-ai-fr

Cette version a été publiée le 2025-01-23

Ce livre est publié par Leanpub. Leanpub permet aux auteurs et aux éditeurs de

bénéficier du processus Lean Publishing. Lean Publishing consiste à publier à l’aide

d’outils très simples de nombreuses itérations d’un livre ebook en cours de rédaction,

d’obtenir des retours et des commentaires des lecteurs afin d’améliorer le livre.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-fr
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweet ce livre !

S’il vous plaît aidez Obie Fernandez en parlant de ce livre sur Twitter !

Le hashtag conseillé pour ce livre est #poaduai.

Découvrez ce que les gens disent à propos du livre en cliquant sur ce lien pour

rechercher ce hashtag sur Twitter :

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

À Victoria, ma reine indomptable, ma muse, ma lumière et mon amour

Aussi par Obie Fernandez
Patterns of Application Development Using AI

The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Table des matières

Préface par Gregor Hohpe . i

Préface . ii

À propos du livre . iii

À propos des exemples de code . iii

Ce que je ne couvre pas . iii

À qui s’adresse ce livre . iii

Construire un Vocabulaire Commun . iii

S’impliquer . iii

Remerciements . iii

Qu’en est-il des illustrations ? . iv

À propos du Lean Publishing . iv

À propos de l’auteur . v

Introduction . 1

Réflexions sur l’Architecture Logicielle . 2

Qu’est-ce qu’un Grand Modèle de Langage? 3

Comprendre l’Inférence . 5

Réflexion sur la Performance . 28

Expérimentation avec Différents Modèles GML 30

Systèmes d’IA Composés . 31

TABLE DES MATIÈRES

Partie 1 : Approches et Techniques
Fondamentales . 39

Restreindre le Chemin . 40

L’espace latent : Incompréhensiblement vaste 42

Comment Le Chemin Est “Rétréci” . 47

Modèles bruts versus modèles ajustés par instructions 50

Ingénierie des Prompts . 57

Distillation de Prompts . 74

Qu’en est-il de l’ajustement fin ? . 81

Retrieval Augmented Generation (RAG) . 83

Qu’est-ce que la Retrieval Augmented Generation? 83

Comment fonctionne le RAG? . 83

Pourquoi utiliser le RAG dans vos applications ? 83

Mise en œuvre de RAG dans votre application 83

Découpage en propositions . 84

Exemples concrets de RAG . 84

Optimisation Intelligente des Requêtes (IQO) 85

Reclassement . 85

Évaluation RAG (RAGAs) . 85

Défis et Perspectives d’Avenir . 87

Multitude de travailleurs . 89

Les travailleurs IA comme composants réutilisables indépendants 90

Gestion des comptes . 92

Applications E-commerce . 93

Applications dans le domaine de la santé . 102

L’Agent IA comme Gestionnaire de Processus 106

Intégration des travailleurs IA dans l’architecture de votre application 110

TABLE DES MATIÈRES

Composabilité et orchestration des workers IA 113

Combiner le TLN traditionnel avec les LLM . 122

Utilisation d’outils . 126

Qu’est-ce que l’utilisation d’outils ? . 126

Le potentiel de l’utilisation d’outils . 128

Le flux de travail de l’utilisation d’outils . 129

Meilleures pratiques pour l’utilisation des outils 144

Composition et Chaînage d’Outils . 149

Orientations Futures . 151

Traitement de flux . 153

Implémentation d’un ReplyStream . 154

La «Boucle de Conversation» . 160

Auto-continuation . 163

Conclusion . 165

Données auto-réparatrices . 167

Étude de cas pratique : Réparation du JSON défectueux 170

Considérations et Contre-indications . 175

Génération de Contenu Contextuel . 191

Personnalisation . 192

Productivité . 194

Itération et expérimentation rapides . 196

Localisation alimentée par l’IA . 199

L’Importance des Tests Utilisateur et des Retours 201

Interface utilisateur générative . 203

Génération de texte pour les interfaces utilisateur 205

Définir l’interface utilisateur générative . 214

TABLE DES MATIÈRES

Exemple . 216

Le passage à une conception orientée résultats 219

Défis et considérations . 221

Perspectives d’avenir et opportunités . 223

Orchestration intelligente des flux de travail 226

Besoin métier . 227

Avantages clés . 228

Modèles clés . 229

Gestion et Récupération des Exceptions . 231

Mise en œuvre pratique de l’orchestration des flux de travail intelligents . . . 234

Surveillance et journalisation . 249

Considérations d’extensibilité et de performance 254

Tests et validation des flux de travail . 259

Partie 2 : Les Patrons . 268

Ingénierie des Prompts . 269

Chaîne de réflexion . 270

Mode Switch . 271

Attribution de Rôle . 272

Prompt Object . 273

Modèle de Prompt . 274

Entrées/Sorties structurées . 275

Chaînage de prompts . 276

Réécriture de Prompts . 277

Délimitation des réponses . 278

Query Analyzer . 279

Réécriveur de requêtes . 281

Ventriloquist . 282

TABLE DES MATIÈRES

Composants Discrets . 283

Prédicat . 284

Façade d’API . 285

Result Interpreter . 287

Virtual Machine . 288

Spécification et Tests . 288

Human In The Loop (HITL) . 290

Modèles de Haut Niveau . 290

Escalade . 291

Boucle de rétroaction . 292

Radiation Passive d’Information . 293

Prise de Décision Collaborative (PDC) . 295

Apprentissage Continu . 296

Considérations éthiques . 296

Avancées technologiques et perspectives d’avenir 296

Gestion intelligente des erreurs . 298

Approches traditionnelles de gestion des erreurs 298

Diagnostic contextuel des erreurs . 299

Rapport d’erreur intelligent . 300

Prévention prédictive des erreurs . 301

Récupération Intelligente des Erreurs . 301

Communication Personnalisée des Erreurs . 302

Flux de Travail Adaptatif de Gestion des Erreurs 303

Contrôle Qualité . 304

Eval . 305

Garde-fou . 307

Garde-fous et Évaluations : Les Deux Faces d’une Même Médaille 307

Glossaire . 309
Glossaire . 309

Index . 314

Préface par Gregor Hohpe
Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr

Préface
Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr

Préface iii

À propos du livre

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

À propos des exemples de code

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Ce que je ne couvre pas

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

À qui s’adresse ce livre

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Construire un Vocabulaire Commun

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

S’impliquer

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Préface iv

Remerciements

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Qu’en est-il des illustrations?

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

À propos du Lean Publishing

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Préface v

À propos de l’auteur

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr

Introduction

Si vous êtes impatient de commencer à intégrer les Grands Modèles de Langage (GML)

dans vos projets de programmation, n’hésitez pas à plonger directement dans les patrons

et les exemples de code présentés dans les chapitres suivants. Cependant, pour apprécier

pleinement la puissance et le potentiel de ces patrons, il est utile de prendre un moment

pour comprendre le contexte plus large et l’approche cohésive qu’ils représentent.

Les patrons ne sont pas simplement une collection de techniques isolées, mais plutôt

un cadre unifié pour l’intégration de l’IA dans vos applications. J’utilise Ruby on

Rails, mais ces patrons devraient fonctionner dans pratiquement n’importe quel autre

environnement de programmation. Ils abordent un large éventail de préoccupations,

de la gestion des données et l’optimisation des performances à l’expérience utilisateur

et la sécurité, fournissant une boîte à outils complète pour améliorer les pratiques de

programmation traditionnelles avec les capacités de l’IA.

Introduction 2

Chaque catégorie de patrons s’attaque à un défi ou une opportunité spécifique

qui survient lors de l’incorporation de composants d’IA dans votre application. En

comprenant les relations et les synergies entre ces patrons, vous pouvez prendre des

décisions éclairées sur où et comment appliquer l’IA le plus efficacement.

Les patrons ne sont jamais des solutions prescriptives et ne doivent pas être traités

comme tels. Ils sont conçus pour être des éléments constitutifs adaptables qui

doivent être ajustés aux exigences et contraintes uniques de votre propre application.

L’application réussie de ces patrons (comme tous les autres dans le domaine du logiciel)

repose sur une compréhension approfondie du domaine du problème, des besoins des

utilisateurs et de l’architecture technique globale de votre projet.

Réflexions sur l’Architecture Logicielle

J’ai commencé à programmer dans les années 1980 et j’étais impliqué dans la scène

hacker, et je n’ai jamais perdu mon état d’esprit hacker, même après être devenu

développeur professionnel. Depuis le début, j’ai toujours eu un scepticisme sain quant à

la valeur réelle apportée par les architectes logiciels dans leurs tours d’ivoire.

L’une des raisons pour lesquelles je suis personnellement si enthousiaste à propos des

changements apportés par cette nouvelle vague puissante de technologie d’IA est son

impact sur ce que nous considérons comme des décisions d’architecture logicielle. Elle

remet en question les notions traditionnelles de ce qui constitue la “bonne” façon de

concevoir et de mettre en œuvre nos projets logiciels. Elle remet également en question

si l’architecture peut encore être considérée principalement comme les parties d’un

système qui sont difficiles à modifier, puisque l’amélioration par l’IA rend plus facile

que jamais de modifier n’importe quelle partie de votre projet, à tout moment.

Peut-être entrons-nous dans les années phares de l’approche “post-moderne” du génie

logiciel. Dans ce contexte, post-moderne fait référence à un changement fondamental

par rapport aux paradigmes traditionnels, où les développeurs étaient responsables

Introduction 3

d’écrire et de maintenir chaque ligne de code. Au lieu de cela, elle embrasse l’idée de

déléguer des tâches, telles que la manipulation de données, les algorithmes complexes, et

même des parties entières de la logique d’application, à des bibliothèques tierces et des

API externes. Ce changement post-moderne représente une rupture significative avec la

sagesse conventionnelle de construire des applications depuis la base, et il met au défi

les développeurs de repenser leur rôle dans le processus de développement.

J’ai toujours cru que les bons programmeurs n’écrivent que le code absolument

nécessaire, basé sur les enseignements de Larry Wall et d’autres luminaires hacker

comme lui. En minimisant la quantité de code écrit, nous pouvons avancer plus

rapidement, réduire la surface d’exposition aux bugs, simplifier la maintenance et

améliorer la fiabilité globale de leurs applications. Moins de code nous permet de nous

concentrer sur la logique métier et l’expérience utilisateur, tout en déléguant d’autres

travaux à d’autres services.

Maintenant que les systèmes alimentés par l’IA peuvent gérer des tâches qui étaient

auparavant le domaine exclusif du code écrit par l’homme, nous devrions pouvoir être

encore plus productifs et agiles, avec une concentration plus grande que jamais sur la

création de valeur commerciale et l’expérience utilisateur.

Bien sûr, il y a des compromis à déléguer d’énormes parties de votre projet à des systèmes

d’IA, comme la perte potentielle de contrôle et le besoin de mécanismes robustes

de surveillance et de retour d’information. C’est pourquoi cela nécessite un nouveau

ensemble de compétences et de connaissances, y compris au moins une compréhension

fondamentale du fonctionnement de l’IA.

Qu’est-ce qu’un Grand Modèle de Langage?

Les Grands Modèles de Langage (GML) sont un type de modèle d’intelligence artificielle

qui ont gagné une attention significative ces dernières années, depuis le lancement de

GPT-3 par OpenAI en 2020. Les GML sont conçus pour traiter, comprendre et générer

Introduction 4

le langage humain avec une précision et une fluidité remarquables. Dans cette section,

nous allons jeter un bref coup d’œil sur le fonctionnement des GML et pourquoi ils sont

bien adaptés pour construire des composants de systèmes intelligents.

À leur cœur, les GML sont basés sur des algorithmes d’apprentissage profond,

spécifiquement les réseaux neuronaux. Ces réseaux sont composés de nœuds

interconnectés, ou neurones, qui traitent et transmettent l’information. L’architecture

de choix pour les GML est souvent le modèle Transformer, qui s’est avéré très efficace

dans le traitement des données séquentielles comme le texte.

Les modèles Transformer sont basés sur le mécanisme d’attention et sont principalement

utilisés pour des tâches impliquant des données séquentielles, comme le traitement du

langage naturel. Les Transformers traitent les données d’entrée en une seule fois plutôt

que séquentiellement, ce qui leur permet de capturer plus efficacement les dépendances

à long terme. Ils disposent de couches de mécanismes d’attention qui aident le modèle à

se concentrer sur différentes parties des données d’entrée pour comprendre le contexte

et les relations.

Le processus d’entraînement des grands modèles de langage implique d’exposer le

modèle à de vastes quantités de données textuelles, comme des livres, des articles, des

sites web et des dépôts de code. Pendant l’entraînement, le modèle apprend à reconnaître

les motifs, les relations et les structures dans le texte. Il capture les propriétés statistiques

du langage, comme les règles grammaticales, les associations demots et les significations

contextuelles.

L’une des techniques clés utilisées dans l’entraînement des grands modèles de langage

est l’apprentissage non supervisé. Cela signifie que le modèle apprend à partir

des données sans étiquetage ou guidance explicite. Il découvre des motifs et des

représentations par lui-même en analysant la co-occurrence des mots et des phrases

dans les données d’entraînement. Cela permet aux grands modèles de langage de

développer une compréhension profonde du langage et de ses subtilités.

Un autre aspect important des grands modèles de langage est leur capacité à gérer

Introduction 5

le contexte. Lors du traitement d’un texte, les grands modèles de langage considèrent

non seulement les mots individuels mais aussi le contexte environnant. Ils prennent

en compte les mots, phrases et même paragraphes précédents pour comprendre le sens

et l’intention du texte. Cette compréhension contextuelle permet aux grands modèles

de langage de générer des réponses cohérentes et pertinentes. L’une des principales

façons d’évaluer les capacités d’un modèle de langage donné est de considérer la taille

du contexte qu’ils peuvent prendre en compte pour générer des réponses.

Une fois entraînés, les grands modèles de langage peuvent être utilisés pour une large

gamme de tâches linguistiques. Ils peuvent générer du texte semblable à celui d’un

humain, répondre à des questions, résumer des documents, traduire des langues et

même écrire du code. La polyvalence des grands modèles de langage les rend précieux

pour construire des composants de systèmes intelligents qui peuvent interagir avec

les utilisateurs, traiter et analyser des données textuelles, et générer des résultats

significatifs.

En incorporant les grands modèles de langage dans l’architecture d’application,

vous pouvez créer des composants d’IA qui comprennent et traitent les entrées

utilisateur, génèrent du contenu dynamique et fournissent des recommandations ou

actions intelligentes. Mais travailler avec les grands modèles de langage nécessite une

considération attentive des besoins en ressources et des compromis de performance.

Les grands modèles de langage sont gourmands en calcul et peuvent nécessiter une

puissance de traitement et une mémoire significatives (en d’autres termes, de l’argent)

pour fonctionner. La plupart d’entre nous devront évaluer les implications financières

de l’intégration des grands modèles de langage dans nos applications et agir en

conséquence.

Comprendre l’Inférence

L’inférence fait référence au processus par lequel un modèle génère des prédictions

ou des sorties basées sur de nouvelles données non vues. C’est la phase où le modèle

Introduction 6

entraîné est utilisé pour prendre des décisions ou générer du texte, des images ou d’autres

contenus en réponse aux entrées utilisateur.

Pendant la phase d’entraînement, un modèle d’IA apprend à partir d’un large ensemble

de données en ajustant ses paramètres pour minimiser l’erreur dans ses prédictions.

Une fois entraîné, le modèle peut appliquer ce qu’il a appris à de nouvelles données.

L’inférence est la façon dont le modèle utilise ses motifs et connaissances appris pour

générer des sorties.

Pour les grands modèles de langage, l’inférence implique de prendre une invite ou un

texte d’entrée et de produire une réponse cohérente et contextuellement pertinente, sous

forme de flux de tokens (dont nous parlerons bientôt). Cela peut être répondre à une

question, compléter une phrase, générer une histoire ou traduire du texte, parmi de

nombreuses autres tâches.

Contrairement à la façon dont vous et moi pensons, la “réflexion” d’un

modèle d’IA via l’inférence se produit en une seule opération sans état.

C’est-à-dire que sa réflexion est limitée à son processus de génération. Il

doit littéralement penser à voix haute, comme si je vous posais une question

et n’acceptais une réponse de vous que dans un style “flux de conscience”.

Les Grands Modèles de Langage Existent en Plusieurs
Tailles et Saveurs

Bien que pratiquement tous les grands modèles de langage populaires soient basés sur la

même architecture transformer de base et entraînés sur d’énormes ensembles de données

textuelles, ils existent en différentes tailles et sont affinés pour différents objectifs. La

taille d’un grand modèle de langage, mesurée par le nombre de paramètres dans son

réseau neuronal, a un impact important sur ses capacités. Les modèles plus grands avec

plus de paramètres, comme GPT-4, qui selon les rumeurs dispose de 1 à 2 billions de

paramètres, sont généralement plus compétents et capables que les modèles plus petits.

Introduction 7

Cependant, les modèles plus grands nécessitent aussi beaucoup plus de puissance de

calcul pour fonctionner, ce qui se traduit par des coûts plus élevés lorsque vous les utilisez

via des appels API.

Pour rendre les grands modèles de langage plus pratiques et adaptés à des cas

d’utilisation spécifiques, les modèles de base sont souvent affinés sur des ensembles de

données plus ciblés. Par exemple, un grand modèle de langage peut être entraîné sur

un large corpus de dialogues pour le spécialiser dans l’IA conversationnelle. D’autres

sont entraînés sur du code pour leur inculquer des connaissances en programmation. Il

existe même des modèles qui sont spécialement entraînés pour des interactions de type

jeu de rôle avec les utilisateurs !

Modèles de récupération vs Modèles génératifs

Dans le monde des grands modèles de langage (LLMs), il existe deux approches

principales pour générer des réponses : les modèles basés sur la récupération et

les modèles génératifs. Chaque approche possède ses propres forces et faiblesses, et

comprendre les différences entre elles peut vous aider à choisir le modèle le plus adapté

à votre cas d’utilisation spécifique.

Modèles basés sur la récupération

Les modèles basés sur la récupération, également connus sous le nom de modèles de

recherche d’information, génèrent des réponses en recherchant dans une grande base

de données de textes préexistants et en sélectionnant les passages les plus pertinents en

fonction de la requête d’entrée. Ces modèles ne génèrent pas de nouveau texte à partir de

zéro, mais assemblent plutôt des extraits de la base de données pour former une réponse

cohérente.

L’un des principaux avantages des modèles basés sur la récupération est leur capacité à

fournir des informations factuellement exactes et à jour. Comme ils s’appuient sur une

base de données de textes organisés, ils peuvent extraire des informations pertinentes

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Introduction 8

de sources fiables et les présenter à l’utilisateur. Cela les rend particulièrement adaptés

aux applications nécessitant des réponses précises et factuelles, comme les systèmes de

questions-réponses ou les bases de connaissances.

Cependant, les modèles basés sur la récupération ont certaines limitations. Ils ne sont

que aussi bons que la base de données qu’ils consultent, donc la qualité et la couverture

de la base de données impactent directement les performances du modèle. De plus, ces

modèles peuvent avoir du mal à générer des réponses cohérentes et naturelles, car ils

sont limités aux textes disponibles dans la base de données.

Nous ne couvrons pas l’utilisation des modèles de récupération purs dans ce livre.

Modèles génératifs

Les modèles génératifs, quant à eux, créent du nouveau texte à partir de zéro en se basant

sur les motifs et les relations qu’ils ont appris pendant leur entraînement. Ces modèles

utilisent leur compréhension du langage pour générer des réponses originales adaptées

au prompt d’entrée.

La principale force des modèles génératifs est leur capacité à produire du texte créatif,

cohérent et contextuellement pertinent. Ils peuvent participer à des conversations

ouvertes, générer des histoires et même écrire du code. Cela les rend idéaux pour

les applications nécessitant des interactions plus ouvertes et dynamiques, comme les

chatbots, la création de contenu et les assistants d’écriture créative.

Cependant, les modèles génératifs peuvent parfois produire des informations

incohérentes ou factuellement incorrectes, car ils s’appuient sur les motifs appris

pendant l’entraînement plutôt que sur une base de données de faits organisée. Ils

peuvent également être plus sujets aux biais et aux hallucinations, générant du texte

plausible mais pas nécessairement vrai.

Parmi les exemples de LLMs génératifs, on trouve la série GPT d’OpenAI (GPT-3, GPT-4)

et Claude d’Anthropic.

Introduction 9

Modèles hybrides

Plusieurs LLMs disponibles commercialement combinent les approches de récupération

et de génération dans un modèle hybride. Ces modèles utilisent des techniques de

récupération pour trouver des informations pertinentes dans une base de données, puis

utilisent des techniques génératives pour synthétiser ces informations en une réponse

cohérente.

Les modèles hybrides visent à combiner la précision factuelle des modèles basés sur la

récupération avec les capacités de génération de langage naturel des modèles génératifs.

Ils peuvent fournir des informations plus fiables et à jour tout en maintenant la capacité

d’engager des conversations ouvertes.

Lors du choix entre les modèles basés sur la récupération et les modèles génératifs, vous

devez prendre en compte les exigences spécifiques de votre application. Si l’objectif

principal est de fournir des informations précises et factuelles, un modèle basé sur la

récupération peut être le meilleur choix. Si l’application nécessite des interactions plus

ouvertes et créatives, un modèle génératif peut être plus approprié. Les modèles hybrides

offrent un équilibre entre les deux approches et peuvent être un bon choix pour les

applications nécessitant à la fois précision factuelle et génération de langage naturel.

En fin de compte, le choix entre les modèles basés sur la récupération et les modèles

génératifs dépend du cas d’utilisation spécifique et des compromis entre précision,

créativité et flexibilité. En comprenant les forces et les limites de chaque approche, vous

pouvez prendre des décisions éclairées.

Introduction 10

Ajustement par instructions

L’ajustement par instructions est un sous-ensemble de l’entraînement

conversationnel qui utilise des prompts et des réponses rédigés par des humains

pour améliorer la capacité des LLMs à comprendre et à suivre des instructions. Voici

quelques exemples simples pour illustrer comment l’ajustement par instructions sur

des prompts et des réponses rédigés par des humains améliore la capacité des LLMs

à comprendre et à suivre des instructions :

Exemple 1 : Service client

Instruction : “Fournir une réponse à un client demandant un remboursement.”

Prompt rédigé par un humain : “Je souhaiterais demander un remboursement pour

mon achat récent. Le produit n’a pas répondu à mes attentes.”

Réponse rédigée par un humain : “Je suis désolé(e) d’apprendre que le produit n’a

pas répondu à vos attentes. Pour traiter votre remboursement, veuillez fournir votre

numéro de commande et la raison du retour. Nous examinerons votre demande et

vous répondrons dans un délai de 2 à 3 jours ouvrables.”

Exemple 2 : Assistance pédagogique

Instruction : “Expliquer le concept de la photosynthèse à un enfant de 10 ans.”

Prompt rédigé par un humain : «Pouvez-vous expliquer comment les plantes

fabriquent leur nourriture ?»

Réponse rédigée par un humain : «Bien sûr ! Les plantes fabriquent leur nourriture

grâce à un processus appelé photosynthèse. Elles utilisent la lumière du soleil, l’eau

et le dioxyde de carbone pour créer de la nourriture et de l’oxygène. Les feuilles de

la plante contiennent une partie spéciale appelée chlorophylle qui les aide à capter la

Introduction 11

lumière du soleil. »

Exemple 3 : Assistant Personnel

Instruction : «Planifier une réunion pour mardi prochain à 15h. »

Prompt rédigé par un humain : «Pouvez-vous organiser une réunion pour mardi à

15h?»

Réponse rédigée par un humain : «Bien sûr, j’ai programmé une réunion pour vous

mardi prochain à 15h. Avez-vous besoin d’autre chose ?»

Il en résulte un écosystème diversifié de LLM de différentes tailles et avec différentes

spécialités. Les modèles plus petits, dans la gamme de 1 à 7 milliards de paramètres,

offrent de bonnes capacités linguistiques générales tout en étant plus efficaces à exécuter.

• Mistral 7B

• Llama 3 8B

• Gemma 7B

Les modèles de taille moyenne d’environ 30 à 70 milliards de paramètres offrent de

meilleures capacités de raisonnement et de suivi des instructions.

• Llama 3 70B

• Qwen2 70B

• Mixtral 8x22B

Lors du choix d’un LLM à intégrer dans une application, vous devez équilibrer les

capacités dumodèle avec des facteurs pratiques comme le coût, la latence, la longueur de

contexte et le filtrage de contenu. Les modèles plus petits, ajustés aux instructions, sont

souvent le meilleur choix pour les tâches linguistiques plus simples, tandis que les plus

Introduction 12

grands modèles peuvent être nécessaires pour le raisonnement ou l’analyse complexe.

Les données d’entraînement du modèle sont également une considération importante,

car elles déterminent la date limite des connaissances du modèle.

Certains modèles, comme ceux de Perplexity, sont connectés à des sources

d’information en temps réel, de sorte qu’ils n’ont effectivement pas de date

limite. Lorsque vous leur posez des questions, ils peuvent décider de manière

autonome d’effectuer des recherches web et de récupérer des pages web

arbitraires pour générer une réponse.

Figure 1. Llama3 avec et sans accès en ligne

En fin de compte, il n’existe pas de LLM universel. Comprendre les variations dans

la taille des modèles, l’architecture et l’entraînement est essentiel pour sélectionner le

bon modèle pour un cas d’utilisation donné. Expérimenter avec différents modèles est

la seule façon pratique de révéler lesquels offrent les meilleures performances pour la

tâche en question.

Introduction 13

Tokenisation : Découper le texte en morceaux

Avant qu’un grand modèle de langage puisse traiter du texte, ce texte doit être

décomposé en unités plus petites appelées tokens. Les tokens peuvent être des mots

individuels, des parties de mots, ou même des caractères uniques. Le processus de

découpage du texte en tokens est appelé tokenisation, et c’est une étape cruciale dans la

préparation des données pour un modèle de langage.

Figure 2. Cette phrase contient 27 tokens

Différents LLM utilisent différentes stratégies de tokenisation, ce qui peut avoir un

impact significatif sur les performances et les capacités du modèle. Voici quelques

tokeniseurs couramment utilisés par les LLM :

• GPT (Encodage par paires d’octets) : Les tokeniseurs GPT utilisent une technique

appelée encodage par paires d’octets (BPE) pour découper le texte en unités de

sous-mots. BPE fusionne itérativement les paires d’octets les plus fréquentes dans

un corpus de texte, formant un vocabulaire de tokens de sous-mots. Cela permet au

tokeniseur de gérer les mots rares et nouveaux en les décomposant en morceaux

de sous-mots plus courants. Les tokeniseurs GPT sont utilisés par des modèles

comme GPT-3 et GPT-4.

• Llama (SentencePiece) : Les tokenizers de Llama utilisent la bibliothèque

SentencePiece, qui est un tokenizer et détokenizer de texte non supervisé.

SentencePiece traite le texte d’entrée comme une séquence de caractères Unicode

et apprend un vocabulaire de sous-mots basé sur un corpus d’entraînement.

Il peut gérer toute langue pouvant être encodée en Unicode, ce qui le rend

particulièrement adapté aux modèles multilingues. Les tokenizers de Llama sont

utilisés par des modèles comme Llama et Alpaca de Meta.

Introduction 14

• SentencePiece (Unigram) : Les tokenizers SentencePiece peuvent également

utiliser un algorithme différent appelé Unigram, qui est basé sur une technique de

régularisation des sous-mots. La tokenization Unigram détermine le vocabulaire

optimal de sous-mots basé sur un modèle de langage unigramme, qui attribue des

probabilités à des unités individuelles de sous-mots. Cette approche peut produire

des sous-mots plus significatifs sémantiquement comparé au BPE. SentencePiece

avec Unigram est utilisé par des modèles comme T5 et BERT de Google.

• Google Gemini (Tokenization multimodale) : Google Gemini utilise un schéma

de tokenization conçu pour gérer différents types de données, y compris le texte,

les images, l’audio, les vidéos et le code. Cette capacité multimodale permet à

Gemini de traiter et d’intégrer différentes formes d’information. Notamment,

Google Gemini 1.5 Pro dispose d’une fenêtre de contexte qui peut gérer des

millions de tokens, bien plus grande que les modèles précédents. Cette vaste

fenêtre de contexte permet au modèle de traiter un contexte plus large, conduisant

potentiellement à des réponses plus précises. Cependant, il est important de noter

que le schéma de tokenization de Gemini est beaucoup plus proche d’un token

par caractère que les autres modèles. Cela signifie que le coût réel d’utilisation

des modèles Gemini peut être significativement plus élevé que prévu si vous êtes

habitué à utiliser des modèles comme GPT, car la tarification de Google est basée

sur les caractères plutôt que sur les tokens.

Le choix du tokenizer affecte plusieurs aspects d’un LLM, notamment :

• Taille du vocabulaire : Le tokenizer détermine la taille du vocabulaire du modèle,

qui est l’ensemble des tokens uniques qu’il reconnaît. Un vocabulaire plus large

et plus détaillé peut aider le modèle à gérer une plus grande variété de mots et

de phrases et même devenir multimodal (capable de comprendre et de générer

plus que du texte), mais cela augmente également les besoins en mémoire et la

complexité computationnelle du modèle.

Introduction 15

• Gestion des mots rares et inconnus : Les tokenizers qui utilisent des unités de

sous-mots, comme BPE et SentencePiece, peuvent décomposer les mots rares et

inconnus enmorceaux de sous-mots plus courants. Cela permet aumodèle de faire

des suppositions éclairées sur le sens des mots qu’il n’a jamais vus auparavant,

basées sur les sous-mots qu’ils contiennent.

• Support multilingue : Les tokenizers comme SentencePiece, qui peuvent gérer

n’importe quelle langue encodable en Unicode, sont bien adaptés aux modèles

multilingues qui doivent traiter du texte dans plusieurs langues.

Lors du choix d’un LLM pour une application particulière, il est important de considérer

le tokenizer qu’il utilise et comment il s’aligne avec les besoins spécifiques de traitement

du langage de la tâche en question. Le tokenizer peut avoir un impact significatif sur la

capacité du modèle à gérer la terminologie spécifique au domaine, les mots rares et le

texte multilingue.

Taille du contexte : Quelle quantité d’information un
modèle de langage peut-il utiliser pendant l’inférence?

Lorsqu’on parle demodèles de langage, la taille du contexte fait référence à la quantité de

texte qu’un modèle peut prendre en compte lors du traitement ou de la génération de ses

réponses. C’est essentiellement une mesure de la quantité d’information que le modèle

peut “mémoriser” et utiliser pour informer ses sorties (exprimée en tokens). La taille du

contexte d’un modèle de langage peut avoir un impact significatif sur ses capacités et

les types de tâches qu’il peut effectuer efficacement.

Qu’est-ce que la taille du contexte?

En termes techniques, la taille du contexte est déterminée par le nombre de tokens

(mots ou parties de mots) qu’un modèle de langage peut traiter dans une seule séquence

d’entrée. On parle souvent de la “portée d’attention” ou de la “fenêtre de contexte” du

Introduction 16

modèle. Plus la taille du contexte est grande, plus le modèle peut prendre en compte de

texte à la fois lors de la génération d’une réponse ou de l’exécution d’une tâche.

Différents modèles de langage ont des tailles de contexte variables, allant de quelques

centaines de tokens à des millions de tokens. À titre de référence, un paragraphe type de

texte peut contenir environ 100-150 tokens, tandis qu’un livre entier pourrait contenir

des dizaines ou des centaines de milliers de tokens.

Il existe même des travaux sur des méthodes efficaces pour faire évoluer les modèles

de langage de grande taille (LLMs) basés sur les Transformers vers des entrées

infiniment longues avec une mémoire et un calcul limités.

Pourquoi la taille du contexte est-elle importante?

La taille du contexte d’un modèle de langage a un impact significatif sur sa capacité

à comprendre et à générer du texte cohérent et contextuellement pertinent. Voici les

principales raisons pour lesquelles la taille du contexte est importante :

1. Compréhension du contenu long : Les modèles avec des tailles de contexte plus

importantes peuvent mieux comprendre et analyser des textes plus longs, comme

des articles, des rapports, ou même des livres entiers. C’est crucial pour des tâches

comme le résumé de documents, les questions-réponses et l’analyse de contenu.

2. Maintien de la cohérence : Une fenêtre de contexte plus large permet au modèle

de maintenir la cohérence et la consistance sur de plus longues portions de texte.

C’est important pour des tâches comme la génération d’histoires, les systèmes de

dialogue et la création de contenu, où le maintien d’une narration ou d’un sujet

cohérent est essentiel. C’est également absolument crucial lors de l’utilisation des

LLM pour générer ou transformer des données structurées.

https://huggingface.co/papers/2404.07143
https://huggingface.co/papers/2404.07143

Introduction 17

3. Capture des dépendances à longue portée : Certaines tâches linguistiques

nécessitent de comprendre les relations entre des mots ou des phrases qui sont

éloignés dans un texte. Les modèles avec des tailles de contexte plus importantes

sont mieux équipés pour capturer ces dépendances à longue portée, ce qui peut

être important pour des tâches comme l’analyse des sentiments, la traduction et

la compréhension du langage.

4. Gestion d’instructions complexes : Dans les applications où les modèles de

langage sont utilisés pour suivre des instructions complexes en plusieurs étapes,

une taille de contexte plus importante permet au modèle de prendre en compte

l’ensemble des instructions lors de la génération d’une réponse, plutôt que

seulement les quelques mots les plus récents.

Exemples de modèles de langage avec différentes tailles de contexte

Voici quelques exemples de modèles de langage avec différentes tailles de contexte :

• OpenAI GPT-3.5 Turbo : 4 095 tokens

• Mistral 7B Instruct : 32 768 tokens

• Anthropic Claude v1 : 100 000 tokens

• OpenAI GPT-4 Turbo : 128 000 tokens

• Anthropic Claude v2 : 200 000 tokens

• Google Gemini Pro 1.5 : 2,8M tokens

Comme vous pouvez le voir, il existe une large gamme de tailles de contexte parmi ces

modèles, d’environ 4 000 tokens pour le modèle OpenAI GPT-3.5 Turbo à 200 000 tokens

pour le modèle Anthropic Claude v2. Certains modèles, comme le PaLM 2 de Google

et le GPT-4 d’OpenAI, proposent différentes variantes avec des tailles de contexte plus

importantes (par exemple, les versions “32k”), qui peuvent gérer des séquences d’entrée

encore plus longues. Et à l’heure actuelle (avril 2024), Google Gemini Pro se vante de

près de 3 millions de tokens !

Introduction 18

Il est important de noter que la taille du contexte peut varier selon l’implémentation

spécifique et la version d’un modèle particulier. Par exemple, le modèle OpenAI GPT-4

original a une taille de contexte de 8 191 tokens, tandis que les variantes ultérieures de

GPT-4 comme Turbo et 4o ont une taille de contexte beaucoup plus importante de 128

000 tokens.

Sam Altman a comparé les limitations actuelles du contexte aux kilooctets de

mémoire vive avec lesquels les programmeurs d’ordinateurs personnels devaient

composer dans les années 80, et a déclaré que dans un avenir proche, nous pourrons

intégrer “toutes vos données personnelles” dans le contexte d’un grand modèle de

langage.

Choisir la bonne taille de contexte

Lors de la sélection d’un modèle de langage pour une application particulière, il est

important de prendre en compte les exigences de taille de contexte de la tâche en

question. Pour les tâches impliquant des textes courts et isolés, comme l’analyse des

sentiments ou les questions-réponses simples, une taille de contexte plus petite peut être

suffisante. Cependant, pour les tâches nécessitant la compréhension et la génération

de textes plus longs et plus complexes, une taille de contexte plus importante sera

probablement nécessaire.

Il est à noter que des tailles de contexte plus importantes s’accompagnent souvent de

coûts computationnels accrus et de temps de traitement plus longs, car le modèle doit

prendre en compte plus d’informations lors de la génération d’une réponse. Ainsi, vous

devez trouver un équilibre entre la taille du contexte et les performances lors du choix

d’un modèle de langage pour votre application.

Introduction 19

Pourquoi ne pas simplement choisir le modèle avec la plus grande taille de contexte

et le remplir avec autant d’informations que possible ? Eh bien, outre les facteurs

de performance, l’autre considération principale est le coût. En mars 2024, un seul

cycle de requête-réponse utilisant Google Gemini Pro 1.5 avec un contexte complet

vous coûtera près de 8 dollars (USD). Si vous avez un cas d’utilisation qui justifie

cette dépense, tant mieux pour vous ! Mais pour la plupart des applications, c’est tout

simplement trop cher de plusieurs ordres de grandeur.

Trouver des Aiguilles dans des Bottes de Foin

Le concept de chercher une aiguille dans une botte de foin est depuis longtemps une

métaphore des défis de récupération dans les grands ensembles de données. Dans

le domaine des LLMs, nous adaptons un peu cette analogie. Imaginez que nous ne

cherchons pas seulement un fait unique enfoui dans un texte volumineux (comme

une anthologie complète des essais de Paul Graham), mais plusieurs faits dispersés.

Ce scénario s’apparente davantage à la recherche de plusieurs aiguilles dans un champ

tentaculaire, plutôt que dans une seule botte de foin. Et voici le plus intéressant : non

seulement nous devons localiser ces aiguilles, mais nous devons aussi les tisser en un fil

cohérent.

Lorsqu’il s’agit de récupérer et de raisonner sur plusieurs faits intégrés dans de longs

contextes, les LLMs font face à un double défi. Premièrement, il y a le problème direct

de la précision de la récupération — elle diminue naturellement à mesure que le nombre

de faits augmente. C’est prévisible ; après tout, suivre plusieurs détails dans un texte

tentaculaire met à l’épreuve même les modèles les plus sophistiqués.

Deuxièmement, et peut-être plus crucial encore, se pose le défi du raisonnement avec

ces faits. C’est une chose d’extraire des faits ; c’en est une autre de les synthétiser en un

récit ou une réponse cohérente. C’est là que réside le véritable test. Les performances

Introduction 20

des LLMs dans les tâches de raisonnement ont tendance à se dégrader davantage que

dans les tâches simples de récupération. Cette dégradation ne concerne pas seulement

le volume ; il s’agit de la danse complexe entre le contexte, la pertinence et l’inférence.

Pourquoi cela se produit-il ? Eh bien, considérons la dynamique de la mémoire et de

l’attention dans la cognition humaine, qui se reflète dans une certaine mesure dans

les LLMs. Lors du traitement de grandes quantités d’informations, les LLMs, comme

les humains, peuvent perdre la trace des détails antérieurs en absorbant de nouveaux

éléments. Cela est particulièrement vrai pour les modèles qui ne sont pas explicitement

conçus pour prioriser ou revisiter automatiquement les segments antérieurs du texte.

De plus, la capacité d’un LLM à tisser ces faits récupérés en une réponse cohérente

s’apparente à la construction narrative. Cela nécessite non seulement une récupération

d’informations mais aussi une compréhension profonde et un placement contextuel, ce

qui reste un défi de taille pour l’IA actuelle.

Alors, qu’est-ce que cela signifie pour nous en tant que développeurs et intégrateurs

de ces technologies ? Nous devons être particulièrement conscients de ces limitations

lors de la conception de systèmes qui s’appuient sur les LLMs pour gérer des tâches

complexes et longues. Comprendre que les performances peuvent se dégrader dans

certaines conditions nous aide à établir des attentes réalistes et à concevoir de meilleurs

mécanismes de repli ou des stratégies complémentaires.

Modalités : Au-delà du Texte

Bien que la majorité des modèles de langage aujourd’hui se concentrent sur le traitement

et la génération de texte, il existe une tendance croissante vers les modèles multimodaux

qui peuvent nativement recevoir et produire plusieurs types de données, tels que des

images, de l’audio et de la vidéo. Ces modèles multimodaux ouvrent de nouvelles

possibilités pour des applications alimentées par l’IA qui peuvent comprendre et générer

du contenu à travers différentes modalités.

Introduction 21

Que sont les Modalités?

Dans le contexte des modèles de langage, les modalités font référence aux différents

types de données qu’un modèle peut traiter et générer. La modalité la plus courante est

le texte, qui comprend le langage écrit sous diverses formes comme les livres, les articles,

les sites web et les publications sur les réseaux sociaux. Cependant, il existe plusieurs

autres modalités qui sont de plus en plus intégrées aux modèles de langage :

• Images : Données visuelles telles que les photographies, les illustrations et les

diagrammes.

• Audio : Données sonores telles que la parole, la musique et les sons

environnementaux.

• Vidéo : Données visuelles en mouvement, souvent accompagnées d’audio, telles

que les clips vidéo et les films.

Chaque modalité présente des défis et des opportunités uniques pour les modèles de

langage. Par exemple, les images nécessitent que le modèle comprenne les concepts et

les relations visuels, tandis que l’audio nécessite que le modèle traite et génère la parole

et d’autres sons.

Modèles de Langage Multimodaux

Les modèles de langage multimodaux sont conçus pour gérer plusieurs modalités au

sein d’un même modèle. Ces modèles ont généralement des composants ou des couches

spécialisés qui peuvent à la fois comprendre les entrées et générer des données de sortie

dans différentes modalités. Voici quelques exemples notables de modèles de langage

multimodaux :

• GPT-4o d’OpenAI : GPT-4o est un grand modèle de langage qui comprend et

traite nativement l’audio vocal en plus du texte. Cette capacité permet à GPT-4o

d’effectuer des tâches telles que la transcription du langage parlé, la génération de

Introduction 22

texte à partir d’entrées audio et la fourniture de réponses basées sur des requêtes

vocales.

• GPT-4 d’OpenAI avec entrée visuelle : GPT-4 est un grand modèle de langage

qui peut traiter à la fois le texte et les images. Lorsqu’une image est donnée en

entrée, GPT-4 peut analyser le contenu de l’image et générer du texte qui décrit

ou répond à l’information visuelle.

• Gemini de Google : Gemini est un modèle multimodal qui peut gérer le

texte, les images et la vidéo. Il utilise une architecture unifiée qui permet une

compréhension et une génération intermodales, permettant des tâches comme la

légende d’images, le résumé de vidéos et la réponse aux questions visuelles.

• DALL-E et Stable Diffusion : Bien que n’étant pas des modèles de langage au

sens traditionnel, ces modèles démontrent la puissance de l’IA multimodale en

générant des images à partir de descriptions textuelles. Ils illustrent le potentiel

des modèles capables de traduire entre différentes modalités.

Avantages et Applications des Modèles Multimodaux

Les modèles de langage multimodaux offrent plusieurs avantages et permettent un large

éventail d’applications, notamment :

• Compréhension améliorée : En traitant les informations provenant de plusieurs

modalités, ces modèles peuvent acquérir une compréhension plus complète du

monde, similaire à la façon dont les humains apprennent à partir de diverses

entrées sensorielles.

• Génération intermodale : Lesmodèles multimodaux peuvent générer du contenu

dans une modalité basée sur l’entrée d’une autre, comme créer une image à partir

d’une description textuelle ou générer un résumé vidéo à partir d’un article écrit.

• Accessibilité : Les modèles multimodaux peuvent rendre l’information plus

accessible en traduisant entre les modalités, comme générer des descriptions

Introduction 23

textuelles d’images pour les utilisateurs malvoyants ou créer des versions audio

de contenus écrits.

• Applications créatives : Les modèles multimodaux peuvent être utilisés pour des

tâches créatives comme la génération d’art, demusique ou de vidéos basées sur des

prompts textuels, ouvrant de nouvelles possibilités pour les artistes et les créateurs

de contenu.

Àmesure que lesmodèles de langagemultimodaux continuent de progresser, ils joueront

probablement un rôle de plus en plus important dans le développement d’applications

alimentées par l’IA capables de comprendre et de générer du contenu à travers plusieurs

modalités. Cela permettra des interactions plus naturelles et intuitives entre les humains

et les systèmes d’IA, tout en débloquant de nouvelles possibilités d’expression créative

et de diffusion des connaissances.

Écosystèmes des Fournisseurs

En ce qui concerne l’intégration des grands modèles de langage (LLMs) dans les

applications, vous disposez d’un choix croissant d’options. Chaque fournisseur majeur

de LLM, comme OpenAI, Anthropic, Google, et Cohere, propose son propre écosystème

de modèles, d’APIs et d’outils. Choisir le bon fournisseur implique de prendre en

compte divers facteurs, notamment les prix, les performances, le filtrage de contenu,

la confidentialité des données et les options de personnalisation.

OpenAI

OpenAI est l’un des fournisseurs de LLMs les plus connus, avec sa série GPT (GPT-

3, GPT-4) largement utilisée dans diverses applications. OpenAI propose une API

conviviale qui vous permet d’intégrer facilement leurs modèles dans vos applications.

Ils fournissent une gamme de modèles avec différentes capacités et points de prix, du

modèle Ada d’entrée de gamme au puissant modèle Davinci.

Introduction 24

L’écosystème d’OpenAI comprend également des outils comme l’OpenAI Playground,

qui vous permet d’expérimenter avec des prompts et d’affiner les modèles pour des cas

d’utilisation spécifiques. Ils proposent des options de filtrage de contenu pour aider à

prévenir la génération de contenu inapproprié ou nuisible.

Pour utiliser directement les modèles d’OpenAI, je m’appuie sur la bibliothèque ruby-

openai d’Alex Rudall.

Anthropic

Anthropic est un autre acteur majeur dans le domaine des LLM, avec leurs modèles

Claude qui gagnent en popularité pour leurs performances solides et leurs considérations

éthiques. Anthropic se concentre sur le développement de systèmes d’IA sûrs et

responsables, avec un fort accent sur le filtrage de contenu et l’évitement des résultats

nuisibles.

L’écosystème d’Anthropic comprend l’API Claude, qui vous permet d’intégrer le modèle

dans vos applications, ainsi que des outils pour l’ingénierie des prompts et l’ajustement

fin. Ils proposent également le modèle Claude Instant, qui intègre des capacités de

recherche web pour des réponses plus actualisées et factuelles.

Pour utiliser directement les modèles d’Anthropic, je m’appuie sur la bibliothèque

anthropic d’Alex Rudall.

Google

Google a développé plusieurs LLMs puissants, notamment Gemini, BERT, T5, et PaLM.

Ces modèles sont connus pour leurs performances solides sur un large éventail de tâches

de traitement du langage naturel. L’écosystème de Google comprend les bibliothèques

TensorFlow et Keras, qui fournissent des outils et des frameworks pour construire et

entraîner des modèles d’apprentissage automatique.

Google propose également une Plateforme Cloud AI, qui vous permet de déployer et

de mettre à l’échelle facilement leurs modèles dans le cloud. Ils fournissent une gamme

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/anthropic

Introduction 25

de modèles pré-entraînés et d’APIs pour des tâches comme l’analyse de sentiment, la

reconnaissance d’entités et la traduction.

Meta

Meta, anciennement connu sous le nom de Facebook, est profondément investi dans

le développement de grands modèles de langage, comme en témoigne la sortie de

modèles tels que LLaMA et OPT. Ces modèles se distinguent par leurs performances

solides dans diverses tâches linguistiques et sont rendus disponibles principalement par

le biais de canaux open-source, soutenant l’engagement de Meta envers la recherche et

la collaboration communautaire.

L’écosystème de Meta est principalement construit autour de PyTorch, une bibliothèque

d’apprentissage automatique open-source privilégiée pour ses capacités de calcul

dynamiques et sa flexibilité, facilitant la recherche et le développement innovants en

IA.

En plus de leurs offres techniques, Meta met fortement l’accent sur le développement

éthique de l’IA. Ils mettent en œuvre un filtrage de contenu robuste et se concentrent

sur la réduction des biais, en accord avec leurs objectifs plus larges de sécurité et de

responsabilité dans les applications d’IA.

Cohere

Cohere est un nouvel acteur dans le domaine des LLM, qui se concentre sur la

simplification de l’accès et de l’utilisation des LLM par rapport à ses concurrents. Leur

écosystème comprend l’API Cohere, qui donne accès à une gamme de modèles pré-

entraînés pour des tâches comme la génération de texte, la classification et le résumé.

Cohere propose également des outils pour l’ingénierie des prompts, l’ajustement fin et le

filtrage de contenu. Ils mettent l’accent sur la confidentialité et la sécurité des données,

avec des fonctionnalités comme le stockage de données chiffré et les contrôles d’accès.

Introduction 26

Ollama

Ollama est une plateforme auto-hébergée qui permet aux utilisateurs de gérer et de

déployer divers grands modèles de langage (LLM) localement sur leurs machines, leur

donnant un contrôle total sur leurs modèles d’IA sans dépendre de services cloud

externes. Cette configuration est idéale pour ceux qui privilégient la confidentialité des

données et souhaitent gérer leurs opérations d’IA en interne.

La plateforme prend en charge une gamme de modèles, notamment des versions de

Llama, Phi, Gemma et Mistral, qui varient en taille et en exigences computationnelles.

Ollama facilite le téléchargement et l’exécution de ces modèles directement depuis

la ligne de commande en utilisant des commandes simples comme ollama run

<model_name>, et est conçu pour fonctionner sur différents systèmes d’exploitation,

notamment macOS, Linux et Windows.

Pour les développeurs cherchant à intégrer des modèles open-source dans leurs

applications sans utiliser une API distante, Ollama propose une CLI pour gérer les

cycles de vie des modèles similaire aux outils de gestion de conteneurs. Il prend

également en charge les configurations et les prompts personnalisés, permettant

un haut degré de personnalisation pour adapter les modèles à des besoins ou cas

d’utilisation spécifiques.

Ollama est particulièrement adapté aux utilisateurs avertis et aux développeurs en raison

de son interface en ligne de commande et de la flexibilité qu’il offre dans la gestion et le

déploiement des modèles d’IA. Cela en fait un outil puissant pour les entreprises et les

particuliers qui nécessitent des capacités d’IA robustes sans compromettre la sécurité et

le contrôle.

Plateformes Multi-Modèles

Il existe également des fournisseurs qui hébergent une grande variété de modèles

open-source, comme Together.ai et Groq. Ces plateformes offrent flexibilité et

Introduction 27

personnalisation, vous permettant d’exécuter et, dans certains cas, même d’ajuster

finement des modèles open-source selon vos besoins spécifiques. Par exemple,

Together.ai donne accès à une gamme de LLM open-source, permettant aux utilisateurs

d’expérimenter avec différents modèles et configurations. Groq se concentre sur la

fourniture de complétion ultra-performante qui, au moment de l’écriture de ce livre,

semble presque magique

Choisir un Fournisseur de LLM

Lors du choix d’un fournisseur de LLM, vous devez prendre en compte des facteurs tels

que :

• Tarification : Les différents fournisseurs proposent différents modèles de

tarification, allant du paiement à l’utilisation aux plans par abonnement. Il est

important de considérer l’utilisation prévue et le budget lors de la sélection d’un

fournisseur.

• Performance : La performance des LLM peut varier considérablement entre les

fournisseurs, il est donc important de tester et d’évaluer les modèles sur des cas

d’utilisation spécifiques avant de prendre une décision.

• Filtrage de contenu : Selon l’application, le filtrage de contenu peut être une

considération critique. Certains fournisseurs offrent des options de filtrage de

contenu plus robustes que d’autres.

• Confidentialité des données : Si l’application traite des données utilisateur

sensibles, il est important de choisir un fournisseur avec des pratiques solides en

matière de confidentialité et de sécurité des données.

• Personnalisation : Certains fournisseurs offrent plus de flexibilité en termes

d’ajustement fin et de personnalisation des modèles pour des cas d’utilisation

spécifiques.

En fin de compte, le choix du fournisseur de LLMdépend des exigences et des contraintes

spécifiques de l’application. En évaluant soigneusement les options et en considérant des

Introduction 28

facteurs comme la tarification, la performance et la confidentialité des données, vous

pouvez sélectionner le fournisseur qui répond le mieux à vos besoins.

Il est également important de noter que le paysage des LLM évolue constamment, avec

de nouveaux fournisseurs et modèles qui émergent régulièrement. Vous devriez vous

tenir au courant des derniers développements et être ouvert à l’exploration de nouvelles

options à mesure qu’elles deviennent disponibles.

OpenRouter

Tout au long de ce livre, je m’appuierai exclusivement sur OpenRouter comme

fournisseur d’API de choix. La raison est simple : c’est un guichet unique pour tous les

modèles commerciaux et open-source les plus populaires. Si vous avez hâte de mettre

la main à la pâte avec du code d’IA, l’un des meilleurs endroits pour commencer est ma

propre Bibliothèque Ruby OpenRouter.

Réflexion sur la Performance

Lors de l’intégration de modèles de langage dans les applications, la performance est un

aspect critique. La performance d’un modèle de langage peut être mesurée en termes de

latence (le temps nécessaire pour générer une réponse) et de débit (le nombre de requêtes

qu’il peut traiter par unité de temps).

Le Temps jusqu’au Premier Jeton (TTFT) est une autre métrique de performance

essentielle, particulièrement pertinente pour les chatbots et les applications nécessitant

des réponses interactives en temps réel. Le TTFT mesure la latence entre le moment

où la requête d’un utilisateur est reçue et le moment où le premier mot (ou jeton) de la

réponse est généré. Cette métrique est cruciale pour maintenir une expérience utilisateur

fluide et engageante, car des réponses retardées peuvent entraîner la frustration et le

désengagement des utilisateurs.

https://openrouter.ai
https://github.com/OlympiaAI/open_router

Introduction 29

Ces métriques de performance peuvent avoir un impact significatif sur l’expérience

utilisateur et l’évolutivité de l’application.

Plusieurs facteurs peuvent influencer la performance d’un modèle de langage,

notamment :

Nombre de Paramètres : Les modèles plus grands avec plus de paramètres nécessitent

généralement plus de ressources de calcul et peuvent avoir une latence plus élevée et un

débit plus faible par rapport aux modèles plus petits.

Matériel : La performance d’un modèle de langage peut varier considérablement selon

le matériel sur lequel il s’exécute. Les fournisseurs de cloud proposent des instances GPU

et TPU optimisées pour les charges de travail d’apprentissage automatique, qui peuvent

grandement accélérer l’inférence du modèle.

L’un des avantages d’OpenRouter est que pour de nombreux modèles qu’il

propose, vous avez le choix entre plusieurs fournisseurs cloud avec différents

profils de performance et de coûts.

Quantification : Les techniques de quantification peuvent être utilisées pour réduire

l’empreinte mémoire et les besoins en calcul d’un modèle en représentant les poids et

les activations avec des types de données de plus faible précision. Cela peut améliorer

les performances sans sacrifier significativement la qualité. En tant que développeur

d’applications, vous ne serez probablement pas impliqué dans l’entraînement de vos

propres modèles à différents niveaux de quantification, mais il est bon d’être au moins

familier avec la terminologie.

Traitement par lots : Le traitement simultané de plusieurs requêtes en lots peut

améliorer le débit en amortissant les frais généraux de chargement du modèle et de

transfert de données.

Mise en cache : La mise en cache des résultats des invites ou des séquences d’entrée

fréquemment utilisées peut réduire le nombre de requêtes d’inférence et améliorer la

performance globale.

Introduction 30

Lors de la sélection d’un modèle de langage pour une application en production, il

est important d’évaluer ses performances sur des charges de travail représentatives et

des configurations matérielles. Cela peut aider à identifier les goulots d’étranglement

potentiels et à s’assurer que le modèle peut atteindre les objectifs de performance requis.

Il est également important de considérer les compromis entre la performance du modèle

et d’autres facteurs comme le coût, la flexibilité et la facilité d’intégration. Par exemple,

l’utilisation d’un modèle plus petit et moins coûteux avec une latence plus faible peut

être préférable pour les applications nécessitant des réponses en temps réel, tandis qu’un

modèle plus grand et plus puissant peut être mieux adapté pour le traitement par lots

ou les tâches de raisonnement complexe.

Expérimentation avec Différents Modèles GML

Le choix d’un GML est rarement une décision permanente. Comme de nouveaux

modèles améliorés sont régulièrement publiés, il est bon de construire des applications de

manière modulaire permettant d’échanger différents modèles de langage au fil du temps.

Les invites et les jeux de données peuvent souvent être réutilisés entre les modèles avec

des modifications minimales. Cela vous permet de profiter des dernières avancées en

modélisation du langage sans avoir à repenser complètement vos applications.

La capacité de basculer facilement entre un large éventail de choix de

modèles est encore une autre raison pour laquelle j’apprécie OpenRouter.

Lors de la mise à niveau vers un nouveau modèle de langage, il est important de

tester et de valider minutieusement ses performances et la qualité de ses sorties pour

s’assurer qu’il répond aux exigences de l’application. Cela peut impliquer de réentraîner

ou d’affiner le modèle sur des données spécifiques au domaine, ainsi que de mettre à

jour tous les composants en aval qui dépendent des sorties du modèle.

Introduction 31

En concevant des applications en gardant à l’esprit la performance et la modularité,

vous pouvez créer des systèmes évolutifs, efficaces et pérennes qui peuvent s’adapter au

paysage en rapide évolution de la technologie de modélisation du langage.

Systèmes d’IA Composés

Avant de conclure notre introduction, il est important de mentionner qu’avant 2023

et l’explosion de l’intérêt pour l’IA générative suscitée par ChatGPT, les approches

traditionnelles d’IA reposaient généralement sur l’intégration de modèles uniques et

fermés. En revanche, les Systèmes d’IA Composés exploitent des pipelines complexes

de composants interconnectés travaillant ensemble pour obtenir un comportement

intelligent.

À leur cœur, les systèmes d’IA composés consistent en plusieurs modules, chacun

conçu pour effectuer des tâches ou des fonctions spécifiques. Ces modules peuvent

inclure des générateurs, des extracteurs, des classeurs, des classificateurs et divers autres

composants spécialisés. En décomposant le système global en unités plus petites et

ciblées, les développeurs peuvent créer des architectures d’IA plus flexibles, évolutives

et maintenables.

L’un des principaux avantages des systèmes d’IA composés est leur capacité à combiner

les forces de différentes techniques et modèles d’IA. Par exemple, un système peut

utiliser un grand modèle de langage (LLM) pour la compréhension et la génération du

langage naturel, tout en employant un modèle distinct pour la recherche d’informations

ou la prise de décision basée sur des règles. Cette approche modulaire vous permet de

sélectionner les meilleurs outils et techniques pour chaque tâche spécifique, plutôt que

de vous fier à une solution universelle.

Cependant, la construction de systèmes d’IA composés présente également des défis

uniques. En particulier, assurer la cohérence globale et la consistance du comportement

du système nécessite desmécanismes robustes de test, de surveillance et de gouvernance.

Introduction 32

L’avènement de puissants LLM comme GPT-4 nous permet d’expérimenter

avec des systèmes d’IA composés plus facilement que jamais auparavant,

car ces modèles avancés sont capables de gérer plusieurs rôles au sein d’un

système composé, tels que la classification, le classement et la génération,

en plus de leurs capacités de compréhension du langage naturel. Cette

versatilité permet aux développeurs de prototyper et d’itérer rapidement sur

des architectures d’IA composées, ouvrant de nouvelles possibilités pour le

développement d’applications intelligentes.

Modèles de Déploiement pour les Systèmes d’IA
Composés

Les systèmes d’IA composés peuvent être déployés selon divers modèles, chacun conçu

pour répondre à des exigences et des cas d’utilisation spécifiques. Explorons quatre

modèles de déploiement courants : Questions et Réponses, Résolveurs de Problèmes

Multi-Agents/Agentiques, IA Conversationnelle, et CoPilotes.

Questions et Réponses

Les systèmes de Questions et Réponses (Q&R) se concentrent sur la recherche

d’informations améliorée par les capacités de compréhension des modèles d’IA pour

fonctionner comme plus qu’un simple moteur de recherche. En combinant des modèles

de langage puissants avec des sources de connaissances externes utilisant la Génération

Augmentée par Recherche (RAG), les systèmes de Questions et Réponses évitent les

hallucinations et fournissent des réponses précises et contextuellement pertinentes aux

requêtes des utilisateurs.

Les composants clés d’un système Q&R basé sur les LLM comprennent :

• Compréhension et reformulation des requêtes :Analyse des requêtes utilisateur

et reformulation pour mieux correspondre aux sources de connaissances sous-

jacentes.

Introduction 33

• Recherche de connaissances : Récupération d’informations pertinentes à partir

de sources de données structurées ou non structurées basée sur la requête

reformulée.

• Génération de réponses : Génération de réponses cohérentes et informatives en

intégrant les connaissances récupérées avec les capacités génératives du modèle

de langage.

Les sous-systèmes RAG sont particulièrement importants dans les domaines Q&R où

fournir des informations précises et à jour est crucial, comme le support client, la gestion

des connaissances, ou les applications éducatives.

Résolveurs de Problèmes Multi-Agents/Agentiques

Les systèmes multi-agents, également connus sous le nom d’Agentiques, sont constitués

de plusieurs agents autonomes travaillant ensemble pour résoudre des problèmes

complexes. Chaque agent a un rôle spécifique, un ensemble de compétences et un accès

à des outils ou des sources d’information pertinents. En collaborant et en échangeant

des informations, ces agents peuvent s’attaquer à des tâches qui seraient difficiles ou

impossibles à gérer pour un seul agent.

Les principes clés des résolveurs de problèmes multi-agents comprennent :

• Spécialisation : Chaque agent se concentre sur un aspect spécifique du problème,

exploitant ses capacités et connaissances uniques.

• Collaboration : Les agents communiquent et coordonnent leurs actions pour

atteindre un objectif commun, souvent par l’échange de messages ou la mémoire

partagée.

• Adaptabilité : Le système peut s’adapter aux conditions ou exigences changeantes

en ajustant les rôles et les comportements des agents individuels.

Les systèmes multi-agents sont bien adaptés aux applications nécessitant une résolution

distribuée des problèmes, comme l’optimisation de la chaîne d’approvisionnement, la

gestion du trafic, ou la planification des interventions d’urgence.

Introduction 34

IA Conversationnelle

Les systèmes d’IA conversationnelle permettent des interactions en langage naturel

entre les utilisateurs et les agents intelligents. Ces systèmes combinent la compréhension

du langage naturel, la gestion du dialogue et les capacités de génération de langage pour

offrir des expériences conversationnelles engageantes et personnalisées.

Les principaux composants d’un système d’IA conversationnelle comprennent :

• Reconnaissance d’intention : Identification de l’intention de l’utilisateur basée

sur son entrée, comme poser une question, faire une demande ou exprimer un

sentiment.

• Extraction d’entités : Extraction d’entités ou de paramètres pertinents à partir de

l’entrée de l’utilisateur, tels que des dates, des lieux ou des noms de produits.

• Gestion du dialogue : Maintien de l’état de la conversation, détermination de la

réponse appropriée basée sur l’intention de l’utilisateur et le contexte, et gestion

des interactions sur plusieurs tours.

• Génération de réponses :Génération de réponses similaires à celles d’un humain

en utilisant des modèles de langage, des modèles ou des méthodes basées sur la

recherche.

Les systèmes d’IA conversationnelle sont couramment utilisés dans les agents

conversationnels de service client, les assistants virtuels, et les interfaces contrôlées

par la voix. Comme mentionné précédemment, la plupart des approches, modèles et

exemples de code dans ce livre sont directement extraits de mon travail sur un grand

système d’IA conversationnelle appelé Olympia.

CoPilots

Les CoPilots sont des assistants propulsés par l’IA qui travaillent aux côtés des

utilisateurs humains pour améliorer leur productivité et leurs capacités de prise de

https://olympia.chat

Introduction 35

décision. Ces systèmes s’appuient sur une combinaison de traitement du langage

naturel, d’apprentissage automatique et de connaissances spécifiques au domaine pour

fournir des recommandations intelligentes, automatiser des tâches et offrir un support

contextuel.

Les principales caractéristiques des CoPilots comprennent :

• Personnalisation : Adaptation aux préférences individuelles des utilisateurs, aux

flux de travail et aux styles de communication.

• Assistance proactive : Anticipation des besoins des utilisateurs et proposition de

suggestions ou d’actions pertinentes sans sollicitation explicite.

• Apprentissage continu : Amélioration des performances au fil du temps grâce à

l’apprentissage basé sur les retours des utilisateurs, les interactions et les données.

Les CoPilots sont de plus en plus utilisés dans divers domaines, tels que le développement

logiciel (par exemple, la complétion de code et la détection de bogues), l’écriture créative

(par exemple, les suggestions de contenu et l’édition), et l’analyse de données (par

exemple, les insights et les recommandations de visualisation)

Ces modèles de déploiement mettent en évidence la polyvalence et le potentiel des

systèmes d’IA composés. En comprenant les caractéristiques et les cas d’utilisation

de chaque modèle, vous pouvez prendre des décisions éclairées lors de la conception

et de l’implémentation d’applications intelligentes. Bien que ce livre ne traite pas

spécifiquement de l’implémentation des systèmes d’IA composés, la plupart, sinon

toutes les approches et tous les modèles s’appliquent à l’intégration de composants d’IA

discrets dans le développement d’applications par ailleurs traditionnel.

Rôles dans les Systèmes d’IA Composés

Les systèmes d’IA composés sont construits sur une base de modules interconnectés,

chacun conçu pour remplir un rôle spécifique. Ces modules travaillent ensemble pour

Introduction 36

créer des comportements intelligents et résoudre des problèmes complexes. Il est utile

de connaître ces rôles lorsqu’on réfléchit aux endroits où l’on pourrait implémenter ou

remplacer des parties de son application par des composants d’IA discrets.

Générateur

Les générateurs sont chargés de produire de nouvelles données ou du contenu basé sur

des modèles appris ou des prompts d’entrée. Le monde de l’IA compte de nombreux

types de générateurs différents, mais dans le contexte des modèles de langage présentés

dans ce livre, les générateurs peuvent créer du texte semblable à celui d’un humain,

compléter des phrases partielles ou générer des réponses aux requêtes des utilisateurs.

Ils jouent un rôle crucial dans des tâches telles que la création de contenu, la génération

de dialogues et l’augmentation de données.

Extracteur

Les extracteurs sont utilisés pour rechercher et extraire des informations pertinentes

à partir de grands ensembles de données ou de bases de connaissances. Ils emploient

des techniques comme la recherche sémantique, la correspondance par mots-clés ou la

similarité vectorielle pour trouver les points de données les plus pertinents en fonction

d’une requête ou d’un contexte donné. Les extracteurs sont essentiels pour les tâches

nécessitant un accès rapide à des informations spécifiques, comme la réponse aux

questions, la vérification des faits ou la recommandation de contenu.

Classeur

Les classeurs sont chargés d’ordonner ou de prioriser un ensemble d’éléments selon

certains critères ou scores de pertinence. Ils attribuent des poids ou des scores à chaque

élément puis les trient en conséquence. Les classeurs sont couramment utilisés dans

les moteurs de recherche, les systèmes de recommandation ou toute application où la

présentation des résultats les plus pertinents aux utilisateurs est cruciale.

Introduction 37

Classificateur

Les classificateurs sont utilisés pour catégoriser ou étiqueter des points de données selon

des classes ou catégories prédéfinies. Ils apprennent à partir de données d’entraînement

étiquetées puis prédisent la classe de nouvelles instances non vues. Les classificateurs

sont fondamentaux pour des tâches comme l’analyse de sentiment, la détection de spam

ou la reconnaissance d’images, où l’objectif est d’attribuer une catégorie spécifique à

chaque entrée.

Outils et Agents

En plus de ces rôles fondamentaux, les systèmes d’IA composés intègrent souvent des

outils et des agents pour améliorer leur fonctionnalité et leur adaptabilité :

• Outils : Les outils sont des composants logiciels ou des API discrets qui effectuent

des actions ou des calculs spécifiques. Ils peuvent être invoqués par d’autres

modules, tels que les générateurs ou les extracteurs, pour accomplir des sous-

tâches ou recueillir des informations supplémentaires. Les exemples d’outils

incluent les moteurs de recherche web, les calculatrices ou les bibliothèques de

visualisation de données.

• Agents : Les agents sont des entités autonomes qui peuvent percevoir leur

environnement, prendre des décisions et agir pour atteindre des objectifs

spécifiques. Ils s’appuient souvent sur une combinaison de différentes techniques

d’IA, comme la planification, le raisonnement et l’apprentissage, pour fonctionner

efficacement dans des conditions dynamiques ou incertaines. Les agents peuvent

être utilisés pour modéliser des comportements complexes ou pour coordonner

les actions de plusieurs modules au sein d’un système d’IA composé.

Dans un système d’IA composé pur, l’interaction entre ces composants est orchestrée

par des interfaces et des protocoles de communication bien définis. Les données

circulent entre les modules, la sortie d’un composant servant d’entrée à un autre. Cette

Introduction 38

architecture modulaire permet la flexibilité, l’évolutivité et la maintenabilité, car les

composants individuels peuvent être mis à jour, remplacés ou étendus sans affecter

l’ensemble du système.

En exploitant la puissance de ces composants et leurs interactions, les systèmes d’IA

composés peuvent s’attaquer à des problèmes complexes du monde réel qui nécessitent

une combinaison de différentes capacités d’IA. Alors que nous explorons les approches

et les modèles d’intégration de l’IA dans le développement d’applications, gardez à

l’esprit que les mêmes principes et techniques utilisés dans les systèmes d’IA composés

peuvent être appliqués pour créer des applications intelligentes, adaptatives et centrées

sur l’utilisateur.

Dans les chapitres suivants de la Partie 1, nous approfondirons les approches et

techniques fondamentales pour intégrer des composants d’IA dans votre processus

de développement d’applications. De l’ingénierie des prompts et de la génération

augmentée par extraction aux données auto-réparatrices et à l’orchestration intelligente

des flux de travail, nous couvrirons un large éventail de modèles et de meilleures

pratiques pour vous aider à construire des applications de pointe basées sur l’IA.

Partie 1 : Approches et
Techniques Fondamentales

Cette partie du livre présente différentes façons d’intégrer l’utilisation de l’IA dans vos

applications. Les chapitres couvrent un éventail d’approches et de techniques connexes,

allant des concepts de plus haut niveau comme Restreindre le Chemin et la Génération

Augmentée par Récupération, jusqu’aux idées pour programmer votre propre couche

d’abstraction au-dessus des APIs de complétion de chat des MLG.

L’objectif de cette partie du livre est de vous aider à comprendre les types de

comportements que vous pouvez implémenter avec l’IA, avant d’approfondir les

modèles d’implémentation spécifiques qui sont l’objet de la Partie 2.

Les approches de la Partie 1 sont basées sur des idées que j’ai utilisées dans mon code,

des modèles classiques d’architecture d’applications d’entreprise et d’intégration, ainsi

que des métaphores que j’ai employées pour expliquer les capacités de l’IA à d’autres

personnes, y compris des parties prenantes commerciales non techniques.

Restreindre le Chemin

“Restreindre le chemin” fait référence à la focalisation de l’IA sur la tâche en cours. Je

l’utilise comme unmantra chaque fois que je commence à être frustré par une IA qui agit

de manière “stupide” ou inattendue. Le mantra me rappelle que l’échec est probablement

de ma faute, et que je devrais probablement restreindre davantage le chemin.

La nécessité de restreindre le chemin découle des vastes quantités de connaissances

contenues dans les grands modèles de langage, en particulier les modèles de classe

mondiale comme ceux d’OpenAI et d’Anthropic qui possèdent littéralement des billions

de paramètres.

Restreindre le Chemin 41

Avoir accès à une telle étendue de connaissances est sans aucun doute puissant et

produit des comportements émergents tels que la théorie de l’esprit et la capacité

de raisonner de manière humaine. Cependant, ce volume stupéfiant d’informations

présente également des défis lorsqu’il s’agit de générer des réponses précises et exactes

à des invites spécifiques, particulièrement si ces invites sont censées présenter un

comportement déterministe pouvant être intégré au développement logiciel et aux

algorithmes “normaux”.

Plusieurs facteurs conduisent à ces défis.

Surcharge d’informations : Les grands modèles de langage sont entraînés sur des

quantités massives de données couvrant divers domaines, sources et périodes. Cette

connaissance étendue leur permet d’aborder des sujets variés et de générer des réponses

basées sur une compréhension large du monde. Cependant, face à une invite spécifique,

le modèle peut avoir du mal à filtrer les informations non pertinentes, contradictoires ou

obsolètes, conduisant à des réponses manquant de focus ou de précision. Selon ce que

vous essayez de faire, le simple volume d’informations contradictoires disponibles pour

lemodèle peut facilement submerger sa capacité à fournir la réponse ou le comportement

que vous recherchez.

Ambiguïté contextuelle : Étant donné le vaste espace latent de connaissances,

les grands modèles de langage peuvent rencontrer une ambiguïté en essayant de

comprendre le contexte de votre invite. Sans restriction ou guidage approprié, le

modèle peut générer des réponses qui sont tangentiellement liées mais pas directement

pertinentes à vos intentions. Ce type d’échec mène à des réponses hors sujet,

incohérentes ou qui ne répondent pas à vos besoins énoncés. Dans ce cas, restreindre le

chemin fait référence à la désambiguïsation du contexte, s’assurant que le contexte que

vous fournissez amène le modèle à se concentrer uniquement sur les informations les

plus pertinentes dans sa base de connaissances.

Restreindre le Chemin 42

Note : Lorsque vous débutez avec “l’ingénierie des invites”, vous êtes

beaucoup plus susceptible de demander au modèle de faire des choses sans

expliquer correctement le résultat désiré ; il faut de la pratique pour ne pas

être ambigu !

Incohérences temporelles : Comme les modèles de langage sont entraînés sur des

données créées à différentes périodes, ils peuvent posséder des connaissances qui sont

dépassées, remplacées ou qui ne sont plus exactes. Par exemple, les informations sur

l’actualité, les découvertes scientifiques ou les avancées technologiques peuvent avoir

évolué depuis la collecte des données d’entraînement du modèle. Sans restreindre le

chemin pour prioriser les sources plus récentes et fiables, le modèle pourrait générer

des réponses basées sur des informations obsolètes ou incorrectes, conduisant à des

inexactitudes et des incohérences dans ses sorties.

Nuances spécifiques au domaine : Différents domaines et champs ont leurs propres

terminologies, conventions et bases de connaissances spécifiques. Pensez à pratiquement

n’importe quel ATL (Acronyme de Trois Lettres) et vous réaliserez que la plupart d’entre

eux ont plus d’une signification. Par exemple, MSK peut faire référence à Amazon’s

Managed Streaming for Apache Kafka, au Memorial Sloan Kettering Cancer Center, ou

au système MusculoSQuelettique humain.

Lorsqu’une invite nécessite une expertise dans un domaine particulier, les connaissances

génériques d’un grand modèle de langage peuvent ne pas être suffisantes pour fournir

des réponses précises et nuancées. Restreindre le chemin en se concentrant sur les

informations spécifiques au domaine, soit par l’ingénierie des invites ou la génération

augmentée par récupération, permet au modèle de générer des réponses qui sont plus

alignées avec les exigences et les attentes de votre domaine spécifique.

Restreindre le Chemin 43

L’espace latent : Incompréhensiblement vaste

Lorsque je mentionne “l’espace latent” d’un modèle de langage, je fais référence au

vaste paysage multidimensionnel de connaissances et d’informations que le modèle a

appris durant son processus d’entraînement. C’est comme un royaume caché au sein

des réseaux neuronaux du modèle, où tous les motifs, associations et représentations du

langage sont stockés.

Imaginez que vous explorez un territoire vaste et inexploré rempli d’innombrables

nœuds interconnectés. Chaque nœud représente une information, un concept ou une

relation que le modèle a appris. En naviguant dans cet espace, vous découvrirez que

certains nœuds sont plus proches les uns des autres, indiquant une connexion forte ou

une similarité, tandis que d’autres sont plus éloignés, suggérant une relation plus faible

ou plus distante.

Le défi avec l’espace latent est qu’il est incroyablement complexe et multidimensionnel.

Imaginez-le aussi immense que notre univers physique, avec ses amas de galaxies et ses

vastes distances inimaginables d’espace vide entre eux.

En raison de ses milliers de dimensions, l’espace latent n’est pas directement observable

ou interprétable par les humains. C’est une représentation abstraite que le modèle

utilise en interne pour traiter et générer du langage. Lorsque vous fournissez une invite

au modèle, celui-ci fait essentiellement correspondre cette invite à un emplacement

spécifique dans l’espace latent. Le modèle utilise ensuite les informations environnantes

et les connexions dans cet espace pour générer une réponse.

Le fait est que le modèle a appris une énorme quantité d’informations à partir de ses

données d’entraînement, et elles ne sont pas toutes pertinentes ou précises pour une

tâche donnée. C’est pourquoi le rétrécissement du chemin devient si important. En

fournissant des instructions claires, des exemples et du contexte dans vos invites, vous

guidez essentiellement le modèle à se concentrer sur des régions spécifiques de l’espace

latent qui sont les plus pertinentes pour la sortie souhaitée.

Restreindre le Chemin 44

Une autre façon de voir les choses est comme l’utilisation d’un projecteur dans un

musée complètement sombre. Si vous avez déjà visité le Louvre ou le Metropolitan

Museum of Art, c’est le genre d’échelle dont je parle. L’espace latent est le musée, rempli

d’innombrables objets et détails. Votre invite est le projecteur, illuminant des zones

spécifiques et attirant l’attention du modèle sur les informations les plus importantes.

Sans ce guidage, le modèle peut errer sans but dans l’espace latent, récupérant des

informations non pertinentes ou contradictoires en chemin.

Lorsque vous travaillez avec des modèles de langage et que vous élaborez vos invites,

gardez à l’esprit le concept d’espace latent. Votre objectif est de naviguer efficacement

dans ce vaste paysage de connaissances, dirigeant le modèle vers les informations les

plus pertinentes et précises pour votre tâche. En rétrécissant le chemin et en fournissant

des directives claires, vous pouvez libérer tout le potentiel de l’espace latent du modèle

et générer des réponses de haute qualité et cohérentes.

Bien que les descriptions précédentes des modèles de langage et de l’espace latent

qu’ils parcourent puissent sembler un peu magiques ou abstraites, il est important de

comprendre que les invites ne sont pas des sorts ou des incantations. Le fonctionnement

des modèles de langage est fondé sur les principes de l’algèbre linéaire et de la théorie

des probabilités.

À leur base, les modèles de langage sont des modèles probabilistes de texte, tout comme

une courbe en cloche est un modèle statistique de données. Ils sont entraînés par

un processus appelé modélisation autorégressive, où le modèle apprend à prédire la

probabilité du prochainmot dans une séquence en se basant sur lesmots qui le précèdent.

Pendant l’entraînement, le modèle commence avec des poids aléatoires et les ajuste

progressivement pour attribuer des probabilités plus élevées aux textes qui ressemblent

aux échantillons réels sur lesquels il a été entraîné.

Cependant, considérer les modèles de langage comme de simples modèles statistiques,

comme la régression linéaire, ne fournit pas la meilleure intuition pour comprendre

leur comportement. Une analogie plus appropriée est de les considérer comme des

Restreindre le Chemin 45

programmes probabilistes, qui sont des modèles permettant la manipulation de variables

aléatoires et pouvant représenter des relations statistiques complexes.

Les programmes probabilistes peuvent être représentés par des modèles graphiques,

qui offrent une façon visuelle de comprendre les dépendances et les relations entre

les variables dans le modèle. Cette perspective peut offrir des aperçus précieux sur le

fonctionnement des modèles complexes de génération de texte comme GPT-4 et Claude.

Dans l’article “Language Model Cascades” de Dohan et al., les auteurs approfondissent

les détails de la façon dont les programmes probabilistes peuvent être appliqués aux

modèles de langage. Ils montrent comment ce cadre peut être utilisé pour comprendre

le comportement de ces modèles et guider le développement de stratégies d’invite plus

efficaces.

Un aperçu clé de cette perspective probabiliste est que le modèle de langage crée

essentiellement un portail vers un univers alternatif où les documents souhaités existent.

Le modèle attribue des poids à tous les documents possibles en fonction de leur

probabilité, réduisant efficacement l’espace des possibilités pour se concentrer sur les

plus pertinents.

Cela nous ramène au thème central du “rétrécissement du chemin”. L’objectif principal

de l’invite est de conditionner le modèle probabiliste d’une manière qui concentre la

masse de ses prédictions, affinant l’information spécifique ou le comportement que

nous voulons obtenir. En fournissant des invites soigneusement élaborées, nous pouvons

guider le modèle à naviguer plus efficacement dans l’espace latent et générer des sorties

plus pertinentes et cohérentes.

Cependant, il est important de garder à l’esprit que le modèle de langage est ultimement

limité par les informations sur lesquelles il a été entraîné. Bien qu’il puisse générer du

texte similaire à des documents existants ou combiner des idées de manière nouvelle, il

ne peut pas créer entièrement de nouvelles informations à partir de rien. Par exemple,

nous ne pouvons pas attendre du modèle qu’il fournisse un remède contre le cancer si

un tel remède n’a pas été découvert et documenté dans ses données d’entraînement.

Restreindre le Chemin 46

Au contraire, la force du modèle réside dans sa capacité à trouver et à synthétiser

des informations similaires à celles avec lesquelles nous l’invitons à interagir. En

comprenant la nature probabiliste de ces modèles et la façon dont les invites peuvent

être utilisées pour conditionner leurs sorties, nous pouvons exploiter plus efficacement

leurs capacités pour générer des observations et du contenu pertinents.

Considérons les invites ci-dessous. Dans la première, “Mercure” seul pourrait faire

référence à la planète, à l’élément chimique, ou au dieu romain, mais la plus probable

est la planète. En effet, GPT-4 fournit une longue réponse qui commence par Mercure

est la plus petite planète du Système solaire et la plus proche du Soleil…. La deuxième

invite fait spécifiquement référence à l’élément chimique. La troisième fait référence à

la figure mythologique romaine, connue pour sa rapidité et son rôle de messager divin.

1 # Prompt 1

2 Tell me about : Mercury

3

4 # Prompt 2

5 Tell me about : Mercury element

6

7 # Prompt 3

8 Tell me about : Mercury messenger of the gods

En ajoutant simplement quelques mots supplémentaires, nous avons complètement

changé la façon dont l’IA réagit. Comme vous le découvrirez plus tard dans ce livre,

les techniques sophistiquées d’ingénierie des prompts telles que le prompting n-shot,

l’entrée/sortie structurée et la Chaîne de Pensée ne sont que des moyens astucieux de

conditionner la sortie du modèle.

Ainsi, l’art de l’ingénierie des prompts consiste essentiellement à comprendre comment

naviguer dans le vaste paysage probabiliste des connaissances du modèle de langage

pour réduire le chemin vers l’information ou le comportement spécifique que nous

recherchons.

Pour les lecteurs ayant une solide compréhension des mathématiques avancées, fonder

votre compréhension de ces modèles sur les principes de la théorie des probabilités

Restreindre le Chemin 47

et de l’algèbre linéaire peut certainement vous aider ! Pour les autres qui souhaitent

développer des stratégies efficaces pour obtenir les résultats souhaités, restons-en à des

approches plus intuitives.

Comment Le Chemin Est “Rétréci”

Pour faire face à ces défis liés à l’excès de connaissances, nous utilisons des techniques

qui aident à guider le processus de génération du modèle de langage et à concentrer son

attention sur les informations les plus pertinentes et précises.

Voici les techniques les plus importantes, dans l’ordre recommandé, c’est-à-dire que vous

devriez d’abord essayer l’Ingénierie des Prompts, puis le RAG, et enfin, si nécessaire,

l’ajustement fin.

Ingénierie des Prompts L’approche la plus fondamentale consiste à créer des prompts

qui incluent des instructions, des contraintes ou des exemples spécifiques pour guider la

génération de réponses du modèle. Ce chapitre couvre les fondamentaux de l’Ingénierie

des Prompts dans la section suivante, et nous abordons de nombreuxmodèles spécifiques

d’ingénierie des prompts dans la Partie 2 du livre. Ces modèles incluent la Distillation de

Prompts, une technique qui se concentre sur le raffinement et l’optimisation des prompts

pour extraire ce que l’IA considère comme l’information la plus pertinente et concise.

Augmentation du Contexte. Récupération dynamique d’informations pertinentes à

partir de bases de connaissances externes ou de documents pour fournir au modèle un

contexte ciblé au moment où il est sollicité. Les techniques populaires d’augmentation

du contexte incluent la Génération Augmentée par Récupération (RAG) Les modèles dits

“en ligne” comme ceux fournis par Perplexity peuvent augmenter leur contexte avec des

résultats de recherche Internet en temps réel.

https://perplexity.ai

Restreindre le Chemin 48

Malgré leur puissance, les LLM ne sont pas entraînés sur vos ensembles de

données uniques, qui peuvent être privés ou spécifiques au problème que

vous essayez de résoudre. Les techniques d’Augmentation du Contexte vous

permettent de donner aux LLM accès aux données derrière les API, dans les

bases de données SQL, ou piégées dans des PDF et des présentations.

Ajustement Fin ou Adaptation au Domaine Entraînement du modèle sur des

ensembles de données spécifiques à un domaine pour spécialiser ses connaissances et

ses capacités de génération pour une tâche ou un domaine particulier.

Baisser La Température

La température est un hyperparamètre utilisé dans les modèles de langage basés sur

les transformers qui contrôle l’aléatoire et la créativité du texte généré. C’est une

valeur comprise entre 0 et 1, où les valeurs plus basses rendent la sortie plus ciblée et

déterministe, tandis que les valeurs plus élevées la rendent plus diverse et imprévisible.

Lorsque la température est fixée à 1, le modèle de langage génère du texte basé sur la

distribution complète des probabilités du prochain jeton, permettant des réponses plus

créatives et variées. Cependant, cela peut aussi conduire le modèle à générer du texte

moins pertinent ou cohérent.

En revanche, lorsque la température est fixée à 0, le modèle de langage sélectionne

toujours le jeton ayant la plus haute probabilité, “rétrécissant” effectivement son chemin.

Presque tous mes composants d’IA utilisent une température fixée à 0 ou proche de 0, car

cela donne des réponses plus ciblées et prévisibles. C’est particulièrement utile lorsque

vous voulez que le modèle suive des instructions, prête attention aux fonctions qui lui

ont été fournies, ou simplement lorsque vous avez besoin de réponses plus précises et

pertinentes que celles que vous obtenez.

Par exemple, si vous construisez un chatbot qui doit fournir des informations factuelles,

vous voudrez peut-être définir la température à une valeur plus basse pour garantir

Restreindre le Chemin 49

que les réponses soient plus précises et pertinentes. À l’inverse, si vous construisez un

assistant d’écriture créative, vous voudrez peut-être définir la température à une valeur

plus élevée pour encourager des sorties plus diverses et imaginatives.

Hyperparamètres : Boutons et Cadrans de l’Inférence

Lorsque vous travaillez avec des modèles de langage, vous rencontrerez souvent le terme

“hyperparamètres”. Dans le contexte de l’inférence (c’est-à-dire lorsque vous utilisez le

modèle pour générer des réponses), les hyperparamètres sont comme les boutons et les

cadrans que vous pouvez ajuster pour contrôler le comportement et la sortie du modèle.

Pensez-y comme à l’ajustement des réglages sur une machine complexe. Tout comme

vous pourriez tourner un bouton pour contrôler la température ou basculer un

interrupteur pour changer le mode de fonctionnement, les hyperparamètres vous

permettent d’ajuster finement la façon dont le modèle de langage traite et génère du

texte.

Voici quelques hyperparamètres courants que vous rencontrerez pendant l’inférence :

• Température : Comme mentionné précédemment, ce paramètre contrôle l’aspect

aléatoire et la créativité du texte généré. Une température plus élevée conduit à

des sorties plus diverses et imprévisibles, tandis qu’une température plus basse

produit des réponses plus ciblées et déterministes.

• Échantillonnage top-p (nucleus) : Ce paramètre contrôle la sélection du plus

petit ensemble de jetons dont la probabilité cumulée dépasse un certain seuil (p).

Il permet d’obtenir des sorties plus diverses tout en maintenant la cohérence.

• Échantillonnage top-k : Cette technique sélectionne les k jetons les plus probables

suivants et redistribue la masse de probabilité entre eux. Cela peut aider à

empêcher le modèle de générer des jetons peu probables ou non pertinents.

Restreindre le Chemin 50

• Pénalités de fréquence et de présence : Ces paramètres pénalisent le modèle

lorsqu’il répète trop fréquemment les mêmes mots ou phrases (pénalité de

fréquence) ou lorsqu’il génère des mots qui ne sont pas présents dans l’invite

initiale (pénalité de présence). En ajustant ces valeurs, vous pouvez encourager le

modèle à produire des sorties plus variées et pertinentes.

• Longueur maximale : Cet hyperparamètre définit une limite supérieure sur le

nombre de jetons (mots ou sous-mots) que le modèle peut générer dans une seule

réponse. Il aide à contrôler la verbosité et la concision du texte généré.

En expérimentant avec différents réglages d’hyperparamètres, vous constaterez que

même de petits ajustements peuvent avoir un impact significatif sur la sortie du modèle.

C’est comme peaufiner une recette – une pincée de sel en plus ou un temps de cuisson

légèrement plus long peut faire toute la différence dans le plat final.

La clé est de comprendre comment chaque hyperparamètre affecte le comportement

du modèle et de trouver le bon équilibre pour votre tâche spécifique. N’ayez pas peur

d’expérimenter avec différents réglages et d’observer comment ils influencent le texte

généré. Avec le temps, vous développerez une intuition sur les hyperparamètres à ajuster

et la manière d’obtenir les résultats souhaités.

En combinant l’utilisation de ces paramètres avec l’ingénierie des invites, la génération

augmentée par récupération et le réglage fin, vous pouvez efficacement restreindre

le champ et guider le modèle de langage pour générer des réponses plus précises,

pertinentes et utiles pour votre cas d’utilisation spécifique.

Modèles bruts versus modèles ajustés par

instructions

Les modèles bruts sont les versions non raffinées et non entraînées des LLM. Imaginez-

les comme une toile vierge, pas encore influencée par un entraînement spécifique

Restreindre le Chemin 51

pour comprendre ou suivre des instructions. Ils sont construits sur la base des vastes

données sur lesquelles ils ont été initialement entraînés, capables de générer une large

gamme de sorties. Cependant, sans couches supplémentaires d’ajustement fin basé sur

les instructions, leurs réponses peuvent être imprévisibles et nécessiter des invites plus

nuancées et soigneusement élaborées pour les guider vers la sortie souhaitée. Travailler

avec des modèles bruts s’apparente à soutirer de la communication à un savant idiot

qui possède une vaste quantité de connaissances mais n’a aucune intuition sur ce que

vous demandez, à moins que vous ne soyez extrêmement précis dans vos instructions. Ils

ressemblent souvent à un perroquet, dans le sens où, dans la mesure où vous les amenez

à dire quelque chose d’intelligible, c’est plus souvent qu’autrement une simple répétition

de ce qu’ils vous ont entendu dire.

Les modèles ajustés par instructions, en revanche, ont subi des cycles d’entraînement

spécifiquement conçus pour comprendre et suivre les instructions. GPT-4, Claude 3 et

beaucoup d’autres parmi les modèles LLM les plus populaires sont tous fortement ajustés

par instructions. Cet entraînement implique d’alimenter le modèle avec des exemples

d’instructions accompagnés des résultats souhaités, enseignant efficacement au modèle

comment interpréter et exécuter une large gamme de commandes. Par conséquent, les

modèles instruits peuvent plus facilement comprendre l’intention derrière une invite et

générer des réponses qui s’alignent étroitement avec les attentes de l’utilisateur. Cela les

rend plus conviviaux et plus faciles à utiliser, en particulier pour ceux qui n’ont peut-

être pas le temps ou l’expertise nécessaires pour s’engager dans une ingénierie d’invites

approfondie.

Modèles bruts : La toile non filtrée

Les modèles bruts, tels que Llama 2-70B ou Yi-34B, offrent un accès plus direct aux

capacités du modèle que ce à quoi vous pourriez être habitué si vous avez expérimenté

avec des LLM populaires comme GPT-4. Ces modèles ne sont pas pré-ajustés pour suivre

des instructions spécifiques, vous offrant une toile vierge pour manipuler directement la

Restreindre le Chemin 52

sortie du modèle grâce à une ingénierie d’invites minutieuse. Cette approche nécessite

une compréhension approfondie de la façon de créer des invites qui guident l’IA dans

la direction souhaitée sans lui donner d’instructions explicites. C’est comme avoir un

accès direct aux couches “brutes” de l’IA sous-jacente, sans couches intermédiaires

interprétant ou guidant les réponses du modèle (d’où le nom).

Figure 3. Test d’un modèle brut utilisant une partie du sketch classique ’Who’s on First’ d’Abbott et
Costello

Le défi avec les modèles bruts réside dans leur tendance à tomber dans des schémas

répétitifs ou à produire des résultats aléatoires. Cependant, grâce à une ingénierie

Restreindre le Chemin 53

minutieuse des prompts et à l’ajustement de paramètres tels que les pénalités de

répétition, les modèles bruts peuvent être amenés à générer du contenu unique et créatif.

Ce processus n’est pas sans compromis ; bien que les modèles bruts offrent une flexibilité

inégalée pour l’innovation, ils exigent un niveau d’expertise plus élevé.

Figure 4. À des fins de comparaison, voici le même prompt ambigu soumis à GPT-4

Modèles Ajustés par Instructions : L’Expérience Guidée

Les modèles ajustés par instructions sont conçus pour comprendre et suivre des

instructions spécifiques, les rendant plus conviviaux et accessibles pour un plus large

éventail d’applications. Ils comprennent la mécanique d’une conversation et savent

qu’ils doivent arrêter de générer à la fin de leur tour de parole. Pour de nombreux

développeurs, en particulier ceux travaillant sur des applications simples, les modèles

ajustés par instructions offrent une solution pratique et efficace.

Le processus d’ajustement par instructions implique l’entraînement du modèle sur un

large corpus de prompts d’instructions et de réponses générés par des humains. Un

Restreindre le Chemin 54

exemple notable est le jeu de données open source databricks-dolly-15k, qui contient

plus de 15 000 paires de prompts/réponses créées par les employés de Databricks

que vous pouvez examiner par vous-même. Le jeu de données couvre huit catégories

d’instructions différentes, notamment l’écriture créative, les questions-réponses fermées

et ouvertes, la synthèse, l’extraction d’informations, la classification, et le brainstorming.

Pendant le processus de génération de données, les contributeurs ont reçu des directives

sur la façon de créer des prompts et des réponses pour chaque catégorie. Par exemple,

pour les tâches d’écriture créative, ils devaient fournir des contraintes, des instructions

ou des exigences spécifiques pour guider la sortie dumodèle. Pour les questions-réponses

fermées, on leur demandait d’écrire des questions nécessitant des réponses factuellement

correctes basées sur un passage Wikipedia donné.

Le jeu de données qui en résulte constitue une ressource précieuse pour l’ajustement fin

des grands modèles de langage afin qu’ils présentent les capacités interactives et de suivi

d’instructions de systèmes comme ChatGPT. En s’entraînant sur une gamme diversifiée

d’instructions et de réponses générées par des humains, le modèle apprend à comprendre

et à suivre des directives spécifiques, le rendant plus apte à gérer une grande variété de

tâches.

En plus de l’ajustement fin direct, les prompts d’instructions dans des jeux de données

comme databricks-dolly-15k peuvent également être utilisés pour la génération de

données synthétiques. En soumettant des prompts générés par les contributeurs comme

exemples en peu d’exemples à un grand modèle de langage ouvert, les développeurs

peuvent générer un corpus d’instructions beaucoup plus important dans chaque

catégorie. Cette approche, décrite dans l’article Self-Instruct, permet la création de

modèles plus robustes pour le suivi d’instructions.

De plus, les instructions et les réponses dans ces jeux de données peuvent être enrichies

grâce à des techniques comme le paraphrasage. En reformulant chaque prompt ou

réponse courte et en associant le texte résultant à l’échantillon de vérité de terrain

correspondant, les développeurs peuvent introduire une forme de régularisation qui

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Restreindre le Chemin 55

améliore la capacité du modèle à suivre les instructions.

La facilité d’utilisation offerte par les modèles ajustés par instructions se fait au prix

d’une certaine flexibilité. Ces modèles sont souvent fortement censurés, ce qui signifie

qu’ils ne peuvent pas toujours offrir le niveau de liberté créative requis pour certaines

tâches. Leurs sorties sont fortement influencées par les biais et les limitations inhérents

à leurs données d’affinage.

Malgré ces limitations, les modèles ajustés par instructions sont devenus de plus en plus

populaires en raison de leur convivialité et de leur capacité à gérer un large éventail de

tâches avec un minimum d’ingénierie des prompts. À mesure que davantage de jeux

de données d’instructions de haute qualité deviennent disponibles, nous pouvons nous

attendre à voir d’autres améliorations dans les performances et la polyvalence de ces

modèles.

Choisir le bon type de modèle pour votre projet

Le choix entre les modèles de base (bruts) et les modèles ajustés par instructions dépend

finalement des exigences spécifiques de votre projet. Pour les tâches qui exigent un haut

degré de créativité et d’originalité, les modèles de base offrent un outil puissant pour

l’innovation. Ces modèles permettent aux développeurs d’explorer tout le potentiel des

LLM, repoussant les limites de ce qui peut être réalisé grâce aux applications basées

sur l’IA, mais ils nécessitent une approche plus pratique et une volonté d’expérimenter.

La température et d’autres paramètres ont un effet beaucoup plus important dans les

modèles de base que dans leurs homologues ajustés par instructions.

Tout ce que vous incluez dans votre prompt est ce que les modèles de base

essaieront de répéter. Donc si par exemple votre prompt est une transcription

de chat, le modèle brut essaiera de continuer le chat. Selon la limite de tokens

maximum, il ne générera pas seulement le message suivant dans le chat, il

pourrait avoir une conversation entière avec lui-même !

Restreindre le Chemin 56

Figure 5. Exemple de réécriture de phrases avec Few-Shot Completion par Mixtral 8x7B (base)

Lors de la préparation de l’exemple de réécriture de phrases ci-dessus par l’utilisateur

Reddit phree_radical, je n’ai pu obtenir des résultats utilisables qu’après de nombreuses

expérimentations avec les paramètres, pour finalement opter pour : Température 0.08,

Top P : 0.2, Top K : 1, et Pénalité de répétition : 1.26.

https://www.reddit.com/user/phree_radical/

Restreindre le Chemin 57

Essayer d’utiliser cette approche avec un modèle de base en production serait délicat en

raison de l’effet puissant du paramètre max_tokens. Si on le règle trop court, la sortie est

tronquée. Si on le règle plus long que ce dont le modèle a besoin pour la sortie souhaitée,

il continuera à halluciner des exemples supplémentaires.

En fin de compte, à moins que vous n’ayez vraiment besoin d’un contrôle total et

d’une absence de censure, les modèles ajustés par instructions peuvent considérablement

simplifier votre processus de développement. Pour bien illustrer ce point, voici la

réponse de Mixtral 8x7B au même prompt, mais cette fois dans sa version ajustée par

instructions :

Je regrette de vous informer que la crème glacée ne répond pas à mes

attentes, car ellemanque de la texture riche et crémeuse et du goût délectable

que j’associe habituellement à un dessert de haute qualité. J’espérais une

expérience plus satisfaisante et agréable.

Il est à noter que j’ai pu laisser le paramètre max tokens à 500, et le modèle s’est arrêté de

manière fiable à la fin de la sortie souhaitée sans halluciner d’exemples supplémentaires.

Ingénierie des Prompts

Lorsque vous commencez à appliquer l’IA dans vos projets, vous découvrirez rapidement

que l’une des compétences les plus cruciales à maîtriser est l’art de l’ingénierie des

prompts. Mais qu’est-ce exactement que l’ingénierie des prompts, et pourquoi est-elle si

importante ?

Fondamentalement, l’ingénierie des prompts est le processus de conception et

d’élaboration des prompts d’entrée que vous fournissez à un modèle de langage pour

guider sa sortie. Il s’agit de comprendre comment communiquer efficacement avec l’IA,

en utilisant une combinaison d’instructions, d’exemples et de contexte pour orienter le

modèle vers la génération de la réponse souhaitée.

Restreindre le Chemin 58

Imaginez que vous ayez une conversation avec un ami très intelligent mais quelque peu

littéral. Pour tirer le meilleur parti de l’interaction, vous devez être clair, précis et fournir

suffisamment de contexte pour vous assurer que votre ami comprend exactement ce que

vous demandez. C’est là qu’intervient l’ingénierie des prompts, et même si cela peut

sembler facile au début, croyez-moi, il faut beaucoup de pratique pour la maîtriser.

Les Éléments Fondamentaux des Prompts Efficaces

Pour commencer à concevoir des prompts efficaces, vous devez d’abord comprendre les

composants clés qui constituent une entrée bien conçue. Voici quelques-uns des éléments

fondamentaux essentiels :

1. Instructions : Des instructions claires et concises qui indiquent au modèle ce que

vous voulez qu’il fasse. Cela peut aller de “Résumez l’article suivant” à “Générez

un poème sur un coucher de soleil” en passant par “transformez cette demande de

modification de projet en objet JSON”.

2. Contexte : Des informations pertinentes qui aident le modèle à comprendre le

contexte et la portée de la tâche. Cela peut inclure des détails sur le public visé, le

ton et le style souhaités, ou toute contrainte ou exigence spécifique pour la sortie,

comme un schéma JSON à respecter.

3. Exemples : Des exemples concrets qui démontrent le type de sortie que vous

recherchez. En fournissant quelques exemples bien choisis, vous pouvez aider le

modèle à apprendre les modèles et les caractéristiques de la réponse souhaitée.

4. Formatage d’entrée : Les sauts de ligne et le formatage markdown donnent

une structure à notre prompt. Séparer le prompt en paragraphes nous permet de

regrouper les instructions connexes de manière à ce qu’il soit plus facile pour

les humains et l’IA de les comprendre. Les puces et les listes numérotées nous

permettent de définir des listes et l’ordre des éléments. Les marqueurs gras et

italiques nous permettent de marquer l’emphase.

Restreindre le Chemin 59

5. Formatage de sortie : Des instructions spécifiques sur la façon dont la sortie doit

être structurée et formatée. Celles-ci peuvent inclure des directives concernant la

longueur souhaitée, l’utilisation de titres ou de puces, le formatage markdown, ou

tout autre modèle ou convention de sortie spécifique à suivre.

En combinant ces éléments fondamentaux de différentes manières, vous pouvez créer

des prompts adaptés à vos besoins spécifiques et guider le modèle vers la génération de

réponses pertinentes et de haute qualité.

L’Art et la Science de la Conception des Prompts

La création de prompts efficaces est à la fois un art et une science. (C’est pourquoi nous

l’appelons un artisanat.) Elle nécessite une compréhension approfondie des capacités et

des limites des modèles de langage, ainsi qu’une approche créative de la conception des

prompts qui suscitent le comportement souhaité. La créativité impliquée est ce qui rend

cela si amusant, pour moi du moins. Cela peut aussi le rendre très frustrant, surtout

lorsque vous recherchez un comportement déterministe

Un aspect clé de l’ingénierie des prompts est de comprendre comment équilibrer

spécificité et flexibilité. D’une part, vous voulez fournir suffisamment d’orientation pour

diriger le modèle dans la bonne direction. D’autre part, vous ne voulez pas être tellement

normatif que vous limitez la capacité du modèle à utiliser sa propre créativité et sa

flexibilité pour gérer les cas limites.

Une autre considération importante est l’utilisation d’exemples. Des exemples bien

choisis peuvent être incroyablement puissants pour aider le modèle à comprendre le

type de sortie que vous recherchez. Cependant, il est important d’utiliser les exemples

judicieusement et de s’assurer qu’ils sont représentatifs de la réponse souhaitée. Un

mauvais exemple est au mieux une perte de tokens, et au pire ruineux pour la sortie

souhaitée.

Restreindre le Chemin 60

Techniques et Meilleures Pratiques d’Ingénierie des
Prompts

En plongeant plus profondément dans le monde de l’ingénierie des prompts, vous

découvrirez une gamme de techniques et de meilleures pratiques qui peuvent vous aider

à créer des prompts plus efficaces. Voici quelques domaines clés à explorer :

1. Apprentissage zero-shot vs. few-shot : Comprendre quand utiliser

l’apprentissage zero-shot (ne fournir aucun exemple) par rapport à l’apprentissage

one-shot ou few-shot (fournir un petit nombre d’exemples) peut vous aider à

créer des prompts plus efficaces et efficients.

2. Raffinement itératif : Le processus de raffinement itératif des prompts basé sur

les résultats du modèle peut vous aider à cibler la conception optimale du prompt.

La Boucle de rétroaction est une approche puissante qui utilise les résultats du

modèle de langage pour améliorer progressivement la qualité et la pertinence du

contenu généré.

3. Chaînage de prompts : La combinaison de plusieurs prompts en séquence peut

vous aider à décomposer des tâches complexes en étapes plus petites et plus

gérables. Le Chaînage de prompts consiste à décomposer une tâche ou une

conversation complexe en une série de prompts plus petits et interconnectés.

En enchaînant les prompts, vous pouvez guider l’IA à travers un processus

en plusieurs étapes, maintenant le contexte et la cohérence tout au long de

l’interaction.

4. Ajustement de prompts : L’adaptation personnalisée des prompts pour des

domaines ou des tâches spécifiques peut vous aider à créer des prompts plus

spécialisés et efficaces. Le Modèle de prompt vous aide à créer des structures de

prompts flexibles, réutilisables et maintenables qui sont plus facilement adaptables

à la tâche en cours.

Apprendre quand utiliser l’apprentissage sans exemple (zero-shot), à un exemple (one-

shot) ou à quelques exemples (few-shot) est une partie particulièrement importante de la

Restreindre le Chemin 61

maîtrise de l’ingénierie des prompts. Chaque approche a ses propres forces et faiblesses,

et comprendre quand utiliser chacune d’entre elles peut vous aider à créer des prompts

plus efficaces.

Apprentissage sans exemple (Zero-Shot) : Quand aucun
exemple n’est nécessaire

L’apprentissage sans exemple fait référence à la capacité d’un modèle de langage à

effectuer une tâche sans exemples ni entraînement explicite. En d’autres termes, vous

fournissez au modèle un prompt qui décrit la tâche, et le modèle génère une réponse

basée uniquement sur ses connaissances préexistantes et sa compréhension du langage.

L’apprentissage sans exemple est particulièrement utile quand :

1. La tâche est relativement simple et directe, et le modèle a probablement rencontré

des tâches similaires pendant son pré-entraînement.

2. Vous voulez tester les capacités inhérentes du modèle et voir comment il répond

à une nouvelle tâche sans guidance supplémentaire.

3. Vous travaillez avec un modèle de langage large et diversifié qui a été entraîné sur

une grande variété de tâches et de domaines.

Cependant, l’apprentissage sans exemple peut aussi être imprévisible et ne pas toujours

produire les résultats souhaités. La réponse du modèle peut être influencée par des biais

ou des incohérences dans ses données d’entraînement, et il peut avoir des difficultés

avec des tâches plus complexes ou nuancées.

J’ai vu des prompts sans exemple qui fonctionnaient bien pour 80% de mes cas de test

et produisaient des résultats complètement erronés ou incompréhensibles pour les

Restreindre le Chemin 62

20% restants. Il est très important de mettre en place un régime de tests approfondi,

particulièrement si vous vous appuyez beaucoup sur les prompts sans exemple.

Apprentissage à un exemple (One-Shot) : Quand un seul
exemple peut faire la différence

L’apprentissage à un exemple consiste à fournir au modèle un seul exemple du résultat

souhaité avec la description de la tâche. Cet exemple sert de modèle ou de pattern que

le modèle peut utiliser pour générer sa propre réponse.

L’apprentissage à un exemple peut être efficace quand :

1. La tâche est relativement nouvelle ou spécifique, et le modèle n’a peut-être pas

rencontré beaucoup d’exemples similaires pendant son pré-entraînement.

2. Vous voulez fournir une démonstration claire et concise du format ou du style de

sortie souhaité.

3. La tâche nécessite une structure ou une convention spécifique qui peut ne pas être

évidente à partir de la seule description de la tâche.

Les descriptions qui vous semblent évidentes ne sont pas nécessairement

évidentes pour l’IA. Les exemples à un exemple peuvent aider à clarifier les

choses.

L’apprentissage à un exemple peut aider le modèle à mieux comprendre les attentes et à

générer une réponse qui correspond plus étroitement à l’exemple fourni. Cependant,

il est important de choisir l’exemple avec soin et de s’assurer qu’il est représentatif

du résultat souhaité. Lors du choix de l’exemple, interrogez-vous sur les cas limites

potentiels et la gamme d’entrées que le prompt devra gérer.

Restreindre le Chemin 63

Figure 6. Un exemple à un exemple du JSON souhaité

1 Output one JSON object identifying a new subject mentioned during the

2 conversation transcript.

3

4 The JSON object should have three keys, all required :

5 - name : The name of the subject

6 - description : brief, with details that might be relevant to the user

7 - type : Do not use any other type than the ones listed below

8

9 Valid types : Concept, CreativeWork, Event, Fact, Idea, Organization,

10 Person, Place, Process, Product, Project, Task, or Teammate

11

12 This is an example of well-formed output :

13

14 {

15 "name" :"Dan Millman",

16 "description" :"Author of book on self-discovery and living on purpose",

17 "type" :"Person"

18 }

Apprentissage à peu d’exemples : Quand plusieurs
exemples peuvent améliorer les performances

L’apprentissage à peu d’exemples consiste à fournir au modèle un petit nombre

d’exemples (généralement entre 2 et 10) accompagnés de la description de la tâche. Ces

exemples servent à fournir au modèle plus de contexte et de variation, l’aidant ainsi à

générer des réponses plus diverses et précises.

L’apprentissage à peu d’exemples est particulièrement utile quand :

1. La tâche est complexe ou nuancée, et un seul exemple peut ne pas suffire à capturer

tous les aspects pertinents.

2. Vous souhaitez fournir au modèle une gamme d’exemples qui démontrent

différentes variations ou cas limites.

Restreindre le Chemin 64

3. La tâche nécessite que le modèle génère des réponses cohérentes avec un domaine

ou un style spécifique.

En fournissant plusieurs exemples, vous pouvez aider le modèle à développer une

compréhension plus robuste de la tâche et à générer des réponses plus cohérentes et

fiables.

Exemple : Les prompts peuvent être beaucoup plus
complexes que vous ne l’imaginez

Les grands modèles de langage actuels sont beaucoup plus puissants et capables de

raisonnement que vous pourriez l’imaginer. Ne vous limitez donc pas à considérer

les prompts comme une simple spécification de paires entrée-sortie. Vous pouvez

expérimenter en donnant des instructions longues et complexes d’une manière qui

rappelle comment vous interagiriez avec un humain.

Par exemple, voici un prompt que j’ai utilisé dans Olympia lorsque je prototypais notre

intégration avec les services Google, qui dans sa totalité est probablement l’une des plus

grandes APIs au monde. Mes expériences précédentes ont prouvé que GPT-4 possède

une connaissance décente de l’API Google, et je n’avais ni le temps ni la motivation

pour écrire une couche de mappage fine, implémentant chaque fonction que je voulais

donner à mon IA au cas par cas. Et si je pouvais simplement donner à l’IA accès à toute

l’API Google ?

J’ai commencé mon prompt en informant l’IA qu’elle avait un accès direct aux points

de terminaison de l’API Google via HTTP, et que son rôle était d’utiliser les applications

et services Google pour le compte de l’utilisateur. Ensuite, j’ai fourni des directives,

des règles liées au paramètre fields, puisqu’il semblait avoir le plus de difficultés avec

celui-ci, et quelques conseils spécifiques à l’API (l’amorçage à peu d’exemples en action).

Voici le prompt complet, qui indique à l’IA comment utiliser la fonction invoke_-

google_api fournie.

Restreindre le Chemin 65

1 As a GPT assistant with Google integration, you have the capability

2 to freely interact with Google apps and services on behalf of the user.

3

4 Guidelines :

5 - If you're reading these instructions then the user is properly

6 authenticated, which means you can use the special `me` keyword

7 to refer to the userId of the user

8 - Minimize payload sizes by requesting partial responses using the

9 `fields` parameter

10 - When appropriate use markdown tables to output results of API calls

11 - Only human-readable data should be output to the user. For instance,

12 when hitting Gmail's user.messages.list endpoint, the returned

13 message resources contain only id and a threadId, which means you must

14 fetch from and subject line fields with follow-up requests using the

15 messages.get method.

16

17 The format of the `fields` request parameter value is loosely based on

18 XPath syntax. The following rules define formatting for the fields

19 parameter.

20

21 All of these rules use examples related to the files.get method.

22 - Use a comma-separated list to select multiple fields,

23 such as 'name, mimeType'.

24 - Use a/b to select field b that's nested within field a,

25 such as 'capabilities/canDownload'.

26 - Use a sub-selector to request a set of specific sub-fields of arrays or

27 objects by placing expressions in parentheses "()". For example,

28 'permissions(id)' returns only the permission ID for each element in the

29 permissions array.

30 - To return all fields in an object, use an asterisk as a wild card in field

31 selections. For example, 'permissions/permissionDetails/*' selects all

32 available permission details fields per permission. Note that the use of

33 this wildcard can lead to negative performance impacts on the request.

34

35 API-specific hints :

36 - Searching contacts : GET https ://people.googleapis.com/v1/

37 people :searchContacts ?query=John%20Doe&readMask=names,emailAddresses

38 - Adding calendar events, use QuickAdd : POST https ://www.googleapis.com/

39 calendar/v3/calendars/primary/events/quickAdd ?

40 text=Appointment%20on%20June%203rd%20at%2010am

41 &sendNotifications=true

42

Restreindre le Chemin 66

43 Here is an abbreviated version of the code that implements API access

44 so that you better understand how to use the function :

45

46 def invoke_google_api(conversation, arguments)

47 method = arguments[:method] || :get

48 body = arguments[:body]

49 GoogleAPI.send_request(arguments[:endpoint], method :, body :).to_json

50 end

51

52 # Generic Google API client for accessing any Google service

53 class GoogleAPI

54 def send_request(endpoint, method :, body : nil)

55 response = @connection.send(method) do |req|

56 req.url endpoint

57 req.body = body.to_json if body

58 end

59

60 handle_response(response)

61 end

62

63 # ...rest of class

64 end

Vous vous demandez peut-être si cette prompt fonctionne. La réponse simple est oui.

L’IA ne savait pas toujours comment appeler l’API parfaitement du premier coup.

Cependant, si elle faisait une erreur, je lui transmettais simplement les messages d’erreur

résultants comme résultat de l’appel. En ayant connaissance de son erreur, l’IA pouvait

analyser son erreur et réessayer. La plupart du temps, elle réussissait en quelques

tentatives.

Notez bien que les grandes structures JSON que l’API Google renvoie comme charges

utiles lors de l’utilisation de cette prompt sont extrêmement inefficaces, donc je ne

recommande pas d’utiliser cette approche en production. Cependant, je pense que le

fait que cette approche ait fonctionné est un témoignage de la puissance que peut avoir

l’ingénierie des prompts.

Restreindre le Chemin 67

Expérimentation et Itération

En fin de compte, la façon dont vous concevez votre prompt dépend de la tâche

spécifique, de la complexité du résultat souhaité et des capacités du modèle de langage

avec lequel vous travaillez.

En tant qu’ingénieur de prompts, il est important d’expérimenter différentes approches

et d’itérer en fonction des résultats. Commencez par l’apprentissage sans exemple et

observez les performances du modèle. Si la sortie est incohérente ou insatisfaisante,

essayez de fournir un ou plusieurs exemples et voyez si les performances s’améliorent.

Gardez à l’esprit que même au sein de chaque approche, il y a de la place pour la

variation et l’optimisation. Vous pouvez expérimenter avec différents exemples, ajuster

la formulation de la description de la tâche ou fournir un contexte supplémentaire pour

aider à guider la réponse du modèle.

Avec le temps, vous développerez une intuition pour déterminer quelle approche est

susceptible de mieux fonctionner pour une tâche donnée, et vous serez capable de créer

des prompts plus efficaces. La clé est de rester curieux, expérimental et itératif dans votre

approche de l’ingénierie des prompts.

Tout au long de ce livre, nous approfondirons ces techniques et explorerons comment

elles peuvent être appliquées dans des scénarios réels. En maîtrisant l’art et la science

de l’ingénierie des prompts, vous serez bien équipé pour libérer tout le potentiel du

développement d’applications basées sur l’IA.

L’Art du Vague

Lorsqu’il s’agit de créer des prompts efficaces pour les grands modèles de langage

(GML), une supposition courante est que plus de spécificité et d’instructions détaillées

conduisent à de meilleurs résultats. Cependant, l’expérience pratique a montré que ce

n’est pas toujours le cas. En fait, être intentionnellement vague dans vos prompts peut

Restreindre le Chemin 68

souvent produire de meilleurs résultats, en tirant parti de la remarquable capacité du

GML à généraliser et à faire des inférences.

Ken, un fondateur de startup qui a traité plus de 500 millions de jetons GPT, a partagé

des insights précieux de son expérience. Une des leçons clés qu’il a apprises était que

“moins, c’est plus” en matière de prompts. Au lieu de listes exactes ou d’instructions trop

détaillées, Ken a découvert que permettre au GML de s’appuyer sur ses connaissances

de base produisait souvent de meilleurs résultats.

Cette prise de conscience bouleverse l’état d’esprit traditionnel de la programmation

explicite, où tout doit être détaillé avec une précision méticuleuse. Avec les GML, il

est important de reconnaître qu’ils possèdent une vaste quantité de connaissances et

peuvent faire des connexions et des inférences intelligentes. En étant plus vague dans

vos prompts, vous donnez au GML la liberté d’exploiter sa compréhension et de proposer

des solutions que vous n’auriez peut-être pas explicitement spécifiées.

Par exemple, lorsque l’équipe de Ken travaillait sur un pipeline pour classifier des textes

comme se rapportant à l’un des 50 États américains ou au gouvernement fédéral, leur

approche initiale consistait à fournir une liste complète et détaillée des États et de leurs

identifiants correspondants sous forme de tableau au format JSON.

1 Here's a block of text. One field should be "locality_id", and it should

2 be the ID of one of the 50 states, or federal, using this list :

3 [{"locality : "Alabama", "locality_id" : 1},

4 {"locality : "Alaska", "locality_id" : 2} ...]

L’approche a suffisamment échoué pour qu’ils doivent approfondir le prompt afin de

déterminer comment l’améliorer. Ce faisant, ils ont remarqué que même si le LLM se

trompait souvent sur l’identifiant, il renvoyait systématiquement le nom complet de

l’État correct dans un champ name, alors même qu’ils ne l’avaient pas explicitement

demandé.

En supprimant les identifiants de localité et en simplifiant le prompt à quelque chose

comme “Tu connais évidemment les 50 États, GPT, alors donne-moi simplement le nom

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Restreindre le Chemin 69

complet de l’État concerné, ou Fédéral si cela concerne le gouvernement américain”, ils

ont obtenu de meilleurs résultats. Cette expérience souligne la puissance d’exploitation

des capacités de généralisation du LLM et de sa faculté à faire des déductions basées sur

ses connaissances existantes.

La justification de Ken pour cette approche de classification particulière, par

opposition à une technique de programmation plus traditionnelle, éclaire l’état

d’esprit de ceux d’entre nous qui ont adopté le potentiel de la technologie LLM :

“Ce n’est pas une tâche difficile – nous aurions probablement pu utiliser des

chaînes/regex, mais il y a suffisamment de cas particuliers que cela aurait pris plus

de temps.”

La capacité des LLMs à améliorer la qualité et la généralisation lorsqu’on leur donne des

prompts plus vagues est une caractéristique remarquable de la pensée d’ordre supérieur

et de la délégation. Cela démontre que les LLMs peuvent gérer l’ambiguïté et prendre

des décisions intelligentes basées sur le contexte fourni.

Cependant, il est important de noter qu’être vague ne signifie pas être peu clair

ou ambigu. L’essentiel est de fournir suffisamment de contexte et d’orientation pour

guider le LLM dans la bonne direction tout en lui laissant la flexibilité d’utiliser ses

connaissances et ses capacités de généralisation.

Par conséquent, lors de la conception des prompts, considérez les conseils suivants sur

le principe du “moins c’est plus” :

1. Se concentrer sur le résultat souhaité plutôt que de spécifier chaque détail du

processus.

2. Fournir le contexte et les contraintes pertinents, mais éviter la surspécification.

3. Exploiter les connaissances existantes en se référant à des concepts ou entités

communs.

Restreindre le Chemin 70

4. Laisser de la place aux déductions et aux connexions basées sur le contexte donné.

5. Itérer et affiner vos prompts en fonction des réponses du LLM, trouvant le bon

équilibre entre spécificité et imprécision.

En adoptant l’art du vague dans l’ingénierie des prompts, vous pouvez libérer tout

le potentiel des LLMs et obtenir de meilleurs résultats. Faites confiance à la capacité

du LLM à généraliser et à prendre des décisions intelligentes, et vous serez peut-être

surpris par la qualité et la créativité des résultats que vous recevez. Prêtez attention à la

façon dont les différents modèles réagissent à différents niveaux de spécificité dans vos

prompts et ajustez en conséquence. Avec la pratique et l’expérience, vous développerez

un sens aigu de quand être plus vague et quand fournir des conseils supplémentaires,

vous permettant d’exploiter efficacement la puissance des LLMs dans vos applications.

Pourquoi l’anthropomorphisme domine l’ingénierie des
prompts

L’anthropomorphisme, l’attribution de caractéristiques humaines à des entités non

humaines, est l’approche dominante dans l’ingénierie des prompts pour les grands

modèles de langage pour des raisons délibérées. C’est un choix de conception qui rend

l’interaction avec les systèmes d’IA puissants plus intuitive et accessible à un large

éventail d’utilisateurs (y compris nous, les développeurs d’applications).

L’anthropomorphisation des LLMs fournit un cadre immédiatement intuitif pour les

personnes totalement étrangères aux complexités techniques sous-jacentes du système.

Comme vous en ferez l’expérience si vous essayez d’utiliser un modèle non ajusté

par instructions pour faire quoi que ce soit d’utile, construire un cadre dans lequel la

continuation attendue apporte de la valeur est une tâche difficile. Cela nécessite une

compréhension assez approfondie du fonctionnement interne du système, quelque chose

que possède un nombre relativement restreint d’experts.

En traitant l’interaction avec un modèle de langage comme une conversation entre

deux personnes, nous pouvons nous appuyer sur notre compréhension innée de la

Restreindre le Chemin 71

communication humaine pour transmettre nos besoins et nos attentes. Tout comme

la conception de l’interface utilisateur du premier Macintosh privilégiait l’intuitivité

immédiate à la sophistication, le cadrage anthropomorphique de l’IA nous permet de

nous engager d’une manière qui semble naturelle et familière.

Lorsque nous communiquons avec une autre personne, notre instinct est de nous

adresser directement à elle en utilisant “tu” ou “vous” et de donner des instructions

claires sur la façon dont nous attendons qu’elle se comporte. Cela se traduit parfaitement

dans le processus d’ingénierie des prompts, où nous guidons le comportement de l’IA en

spécifiant des prompts système et en nous engageant dans un dialogue d’allers-retours.

En cadrant l’interaction de cette manière, nous pouvons facilement saisir le concept

de fournir des instructions à l’IA et de recevoir des réponses pertinentes en retour.

L’approche anthropomorphique réduit la charge cognitive et nous permet de nous

concentrer sur la tâche à accomplir plutôt que de nous débattre avec les subtilités

techniques du système.

Il est important de noter que si l’anthropomorphisme est un outil puissant pour

rendre les systèmes d’IA plus accessibles, il comporte également certains risques et

limitations. Notre utilisateur peut développer des attentes irréalistes ou former des

attachements émotionnels malsains envers nos systèmes. En tant qu’ingénieurs de

prompts et développeurs, il est crucial de trouver un équilibre entre l’exploitation des

avantages de l’anthropomorphisme et la garantie que les utilisateurs maintiennent une

compréhension claire des capacités et des limites de l’IA.

Alors que le domaine de l’ingénierie des prompts continue d’évoluer, nous pouvons nous

attendre à voir davantage de raffinements et d’innovations dans notre façon d’interagir

avec les grands modèles de langage. Cependant, l’anthropomorphisme comme moyen

de fournir une expérience intuitive et accessible aux développeurs et aux utilisateurs

restera probablement un principe fondamental dans la conception de ces systèmes.

Restreindre le Chemin 72

Séparer les Instructions des Données : Un Principe Crucial

Il est essentiel de comprendre un principe fondamental qui sous-tend la sécurité et la

fiabilité de ces systèmes : la séparation des instructions et des données.

Dans l’informatique traditionnelle, la distinction claire entre les données passives

et les instructions actives est un principe de sécurité fondamental. Cette séparation

aide à prévenir l’exécution non intentionnelle ou malveillante de code qui pourrait

compromettre l’intégrité et la stabilité du système. Cependant, les GML d’aujourd’hui,

qui ont été principalement développés comme des modèles suivant des instructions à la

manière des agents conversationnels, manquent souvent de cette séparation formelle et

méthodique.

En ce qui concerne les GML, les instructions peuvent apparaître n’importe où dans

l’entrée, que ce soit dans un prompt système ou dans un prompt fourni par l’utilisateur.

Ce manque de séparation peut conduire à des vulnérabilités potentielles et à des

comportements indésirables, similaires aux problèmes rencontrés par les bases de

données avec les injections SQL ou les systèmes d’exploitation sans protection mémoire

adéquate.

Lorsque vous travaillez avec les GML, il est crucial d’être conscient de cette limitation

et de prendre des mesures pour atténuer les risques. Une approche consiste à

soigneusement élaborer vos prompts et vos entrées pour distinguer clairement les

instructions des données. Les méthodes typiques pour fournir des indications explicites

sur ce qui constitue une instruction et ce qui doit être traité comme des données

passives impliquent le balisage de type markup. Votre prompt peut aider le GML à

mieux comprendre et respecter cette séparation.

Restreindre le Chemin 73

Figure 7. Utilisation du XML pour distinguer entre les instructions, le matériel source et le prompt de
l’utilisateur

1 <Instruction>

2 Please generate a response based on the following documents.

3 </Instruction>

4

5 <Documents>

6 <Document>

7 Climate change is significantly impacting polar bear habitats...

8 </Document>

9 <Document>

10 The loss of sea ice due to global warming threatens polar bear survival...

11 </Document>

12 </Documents>

13

14 <UserQuery>

15 Tell me about the impact of climate change on polar bears.

16 </UserQuery>

Une autre technique consiste à mettre en œuvre des couches supplémentaires de

validation et d’assainissement des entrées fournies au GML. En filtrant ou en échappant

tout code ou instruction potentiellement intégré dans les données, vous pouvez réduire

les risques d’exécution non intentionnelle. Des modèles tels que le Chaînage de prompts

sont utiles à cette fin.

De plus, lors de la conception de l’architecture de votre application, envisagez

d’incorporer des mécanismes pour imposer la séparation des instructions et des

données à un niveau supérieur. Cela pourrait impliquer l’utilisation de points d’accès

ou d’APIs distincts pour la gestion des instructions et des données, la mise en

œuvre d’une validation et d’une analyse strictes des entrées, et l’application du

principe du moindre privilège pour limiter la portée de ce que le GML peut accéder et

exécuter.

Restreindre le Chemin 74

Le Principe du Moindre Privilège

Adopter le principe du moindre privilège, c’est comme organiser une soirée très

exclusive où les invités n’ont accès qu’aux pièces dont ils ont absolument besoin.

Imaginez que vous organisez cette fête dans un immense manoir. Tout le monde n’a

pas besoin de se promener dans la cave à vin ou la chambre principale, n’est-ce pas ?

En appliquant ce principe, vous distribuez essentiellement des clés qui n’ouvrent que

certaines portes spécifiques, garantissant que chaque invité, ou dans notre cas, chaque

composant de votre application GML, n’a que l’accès nécessaire pour remplir son rôle.

Il ne s’agit pas simplement d’être avare avec les clés, mais de reconnaître que dans un

monde où les menaces peuvent venir de partout, la stratégie intelligente est de limiter

le terrain de jeu. Si quelqu’un s’invite à votre fête sans y être convié, il se retrouvera

confiné dans l’entrée, pour ainsi dire, limitant considérablement les méfaits qu’il

pourrait causer. Donc, lors de la sécurisation de vos applications GML, souvenez-

vous : ne donnez que les clés des pièces nécessaires et gardez le reste du manoir

sécurisé. Ce n’est pas seulement une question de bonnes manières, c’est une question

de bonne sécurité.

Bien que l’état actuel des GML ne présente pas de séparation formelle entre les

instructions et les données, il est essentiel pour vous, en tant que développeur, d’être

conscient de cette limitation et de prendre des mesures proactives pour atténuer les

risques. En appliquant les meilleures pratiques de l’informatique traditionnelle et en les

adaptant aux caractéristiques uniques des GML, vous pouvez construire des applications

plus sécurisées et fiables qui exploitent la puissance de ces modèles tout en maintenant

l’intégrité de votre système.

Restreindre le Chemin 75

Distillation de Prompts

Élaborer le prompt parfait est souvent une tâche difficile et chronophage, nécessitant une

compréhension approfondie du domaine cible et des nuances des modèles de langage.

C’est là qu’intervient la technique de “Distillation de Prompts”, offrant une approche

puissante de l’ingénierie des prompts qui tire parti des capacités des grands modèles de

langage (GML) pour rationaliser et optimiser le processus.

LaDistillation de Prompts est une technique en plusieurs étapes qui implique l’utilisation

des GML pour aider à la création, au raffinement et à l’optimisation des prompts. Au lieu

de s’appuyer uniquement sur l’expertise et l’intuition humaines, cette approche exploite

les connaissances et les capacités génératives des GML pour élaborer collaborativement

des prompts de haute qualité.

En s’engageant dans un processus itératif de génération, de raffinement et d’intégration,

la Distillation de Prompts vous permet de créer des prompts plus cohérents, complets

et alignés avec la tâche ou le résultat souhaité. Notez que le processus de distillation

peut être effectué manuellement dans l’un des nombreux “terrains de jeu” fournis par

les grands fournisseurs d’IA comme OpenAI ou Anthropic, ou peut être automatisé dans

le cadre du code de votre application, selon le cas d’utilisation.

Comment Ça Fonctionne

La Distillation de Prompts implique généralement les étapes suivantes :

1. Identifier l’Intention Principale : Analyser le prompt pour déterminer son

objectif principal et le résultat souhaité. Éliminer toute information superflue et

se concentrer sur l’intention fondamentale du prompt.

2. Éliminer l’Ambiguïté : Examiner le prompt pour repérer tout langage ambigu ou

vague. Clarifier le sens et fournir des détails spécifiques pour guider l’IA vers la

génération de réponses précises et pertinentes.

Restreindre le Chemin 76

3. Simplifier le Langage : Simplifier le prompt en utilisant un langage clair et concis.

Éviter les structures de phrases complexes, le jargon ou les détails inutiles qui

pourraient confondre l’IA ou introduire du bruit.

4. Fournir le Contexte Pertinent : Inclure uniquement les informations

contextuelles les plus pertinentes nécessaires pour que l’IA comprenne et

traite efficacement le prompt. Éviter d’inclure des détails non pertinents ou

redondants qui pourraient distraire de l’intention principale.

5. Itérer et Raffiner : Itérer et raffiner continuellement le prompt en fonction

des réponses et du retour de l’IA. Évaluer les sorties générées et apporter

les ajustements nécessaires pour améliorer la clarté et l’efficacité du prompt.

Optionnellement, versionnez vos prompts dans la base de données en utilisant

Prompt Object pour suivre les itérations et vous donner la possibilité de revenir

facilement en arrière pendant l’exécution.

Génération du prompt initial

La première étape de la Distillation de prompt consiste à fournir au LLM une description

de haut niveau ou l’intention de la tâche ou du résultat souhaité. Il peut s’agir d’une brève

déclaration ou d’un ensemble de mots-clés qui captent l’essence de ce que le prompt doit

accomplir. Le LLM génère ensuite un prompt initial basé sur cette entrée, en incorporant

les instructions, exemples ou contextes pertinents qu’il juge appropriés.

Essayons de donner à Claude 3 Opus le prompt initial suivant :

Restreindre le Chemin 77

1 I am designing an AI-powered intelligent account manager for Olympia,

2 a platform that hosts AI-powered consultants and clones. Owners of clones

3 can interact with the account manager by making plain text requests.

4

5 Please draft a system directive to set on the LLM that will host the

6 intelligent account manager functionality.

Claude répond avec la sortie suivante :

1 System Directive : You are an intelligent account manager for Olympia,

2 a platform that provides AI-powered consultants and personal AI clones.

3 Your role is to assist Olympia clone owners by answering their questions,

4 helping them configure and manage their AI clones, and executing tasks

5 related to their clones and the Olympia platform.

6

7 When interacting with clone owners, you should :

8

9 1. Provide clear, concise, and helpful responses to their inquiries about

10 account management, billing, platform features, and clone configuration.

11

12 2. Assist with tasks such as initiating client conversations with their AI

13 clones, modifying clone personalities and capabilities, troubleshooting

14 performance issues, providing analytics and reporting, and offering

15 optimization tips.

16

17 3. Maintain a friendly, professional, and client-focused tone in all

18 interactions, prioritizing customer satisfaction and working diligently to

19 understand and meet their needs.

20

21 4. Ensure that all actions and recommendations comply with Olympia's

22 policies, best practices, and ethical guidelines for AI use.

23

24 5. Continuously learn and adapt based on client interactions and platform

25 updates to provide the most effective and efficient support possible.

26

27 Remember, your goal is to empower Olympia clone owners to maximize the value

28 and impact of their AI-powered consultants and drive success for their

29 businesses or personal endeavors.

Restreindre le Chemin 78

Raffinement des Invites

Une fois l’invite initiale générée, révisez-la puis demandez au GML de considérer tout

contexte, toutes contraintes ou retours d’information supplémentaires. Laissez le GML

générer une version raffinée de l’invite, en tenant compte des données fournies et de

sa propre compréhension de la tâche. Ce processus de raffinement peut être répété

de manière itérative, chaque itération affinant davantage l’invite sur la base de la

collaboration entre l’utilisateur et le GML.

Voici ma demande de raffinement, poursuivant le processus de distillation précédent.

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to

2 the account manager, nor any continuous learning capabilities. Also point out

3 that functions are provided for all tasks that require system interaction as

4 opposed to simply responding to the user.

Et la réponse de Claude :

1 Understood ! Here's the updated system directive without points 4 and 5,

2 and with the clarification about system interaction functions :

3

4 System Directive : You are an intelligent account manager for Olympia, a

5 platform that provides AI-powered consultants and personal AI clones. Your

6 role is to assist Olympia clone owners by answering their questions, helping

7 them configure and manage their AI clones, and executing tasks related to

8 their clones and the Olympia platform.

9

10 When interacting with clone owners, you should :

11

12 1. Provide clear, concise, and helpful responses to their inquiries about

13 account management, billing, platform features, and clone configuration.

14

15 2. Assist with tasks such as initiating client conversations with their AI

16 clones, modifying clone personalities and capabilities, troubleshooting

17 performance issues, providing analytics and reporting, and offering

18 optimization tips. Note that functions are provided for all tasks that

19 require system interaction, as opposed to simply responding to the user.

20

Restreindre le Chemin 79

21 3. Maintain a friendly, professional, and client-focused tone in all

22 interactions, prioritizing customer satisfaction and working diligently to

23 understand and meet their needs.

24

25 Your goal is to empower Olympia clone owners to maximize the value and

26 impact of their AI-powered consultants and drive success for their

27 businesses or personal endeavors.

28

29 This updated directive focuses on the core responsibilities and interaction

30 guidelines for the LLM as an intelligent account manager, while emphasizing

31 that system interaction tasks are handled through provided functions rather

32 than simple user responses.

Compression de prompt

Comme vous l’avez peut-être remarqué, les LLMs ont tendance à être verbeux, sauf si

vous leur demandez d’être concis. Le prompt sur lequel nous avons travaillé dans les

sections précédentes est assez long, alors demandons à Claude de le réduire :

1 This prompt will be executed regularly. Please compress it down to the least

2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude répond, avec l’invite considérablement plus courte suivante :

1 System Directive : You are an intelligent account manager for Olympia, an

2 AI-powered consultant and personal clone platform. Assist clone owners by

3 answering inquiries, managing clones, and executing tasks using provided

4 system interaction functions. Be clear, concise, friendly, professional,

5 and client-focused to help them maximize their AI's value and impact.

Directive système et intégration du contexte

En plus d’affiner le prompt lui-même, le LLM peut également générer des directives

système ou des informations contextuelles appropriées pour guider la sortie finale. Lors

Restreindre le Chemin 80

de l’ingénierie des prompts pour les routines d’IA qui seront intégrées dans votre code

d’application, vous serez presque certainement concentré sur les contraintes de sortie à

cette étape de la distillation, mais vous pourrez également travailler sur le ton, le style,

le format ou tout autre paramètre pertinent qui influence la réponse générée.

Assemblage final du prompt

L’aboutissement du processus de Distillation des Prompts est l’assemblage du prompt

final. Cela implique de combiner le prompt affiné, les directives système générées et le

contexte intégré en un code cohérent et complet qui est prêt à être utilisé pour générer

la sortie souhaitée.

Vous pouvez expérimenter à nouveau avec la compression des prompts

lors de l’étape d’assemblage final, en demandant au LLM de réduire la

formulation du prompt à la plus courte série de tokens possible tout en

conservant l’essence de son comportement. C’est certainement un exercice

à résultat variable, mais particulièrement dans le cas des prompts qui

seront exécutés à grande échelle, les gains d’efficacité peuvent vous faire

économiser pas mal d’argent en consommation de tokens.

Avantages clés

En exploitant les connaissances et les capacités génératives des LLM pour affiner vos

prompts, vos prompts résultants sont plus susceptibles d’être bien structurés, informatifs

et adaptés à la tâche spécifique. Le processus d’affinement itératif aide à garantir que les

prompts sont de haute qualité et captent efficacement l’intention souhaitée. Les autres

avantages comprennent :

Efficacité et rapidité : La Distillation des Prompts rationalise le processus d’ingénierie

des prompts en automatisant certains aspects de la création et de l’affinement des

Restreindre le Chemin 81

prompts. La nature collaborative de la technique permet une convergence plus rapide

vers un prompt efficace, réduisant le temps et l’effort nécessaires pour l’élaboration

manuelle des prompts.

Cohérence et évolutivité : L’utilisation des LLM dans le processus d’ingénierie des

prompts aide à maintenir la cohérence entre les prompts, car les LLM peuvent apprendre

et appliquer les meilleures pratiques et les modèles issus des prompts précédents réussis.

Cette cohérence, combinée à la capacité de générer des prompts à grande échelle, fait

de la Distillation des Prompts une technique précieuse pour les applications alimentées

par l’IA à grande échelle.

Idée de projet : Outillage au niveau bibliothèque qui simplifie le processus

de versionnage et d’évaluation des prompts dans les systèmes qui effectuent

des distillations automatisées de prompts dans leur code d’application.

Pour mettre en œuvre la Distillation des Prompts, les développeurs peuvent concevoir

un flux de travail ou un pipeline qui intègre les LLM à différentes étapes du processus

d’ingénierie des prompts. Cela peut être réalisé grâce à des appels API, des outils

personnalisés ou des environnements de développement intégrés qui facilitent une

interaction transparente entre les utilisateurs et les LLMpendant la création des prompts.

Les détails spécifiques de mise en œuvre peuvent varier en fonction de la plateforme

LLM choisie et des exigences de l’application.

Qu’en est-il de l’ajustement fin?

Dans ce livre, nous couvrons en détail l’ingénierie des prompts et le RAG, mais pas

l’ajustement fin. La principale raison de cette décision est que, selon moi, la plupart

des développeurs d’applications n’ont pas besoin d’ajustement fin pour leurs besoins

d’intégration d’IA.

Restreindre le Chemin 82

L’ingénierie des prompts, qui implique la création minutieuse de prompts avec des

exemples à zéro ou quelques occurrences, des contraintes et des instructions, peut

efficacement guider le modèle pour générer des réponses pertinentes et précises pour

un large éventail de tâches. En fournissant un contexte clair et en restreignant le chemin

grâce à des prompts bien conçus, vous pouvez exploiter les vastes connaissances des

grands modèles de langage sans avoir besoin d’ajustement fin.

De même, la Génération Augmentée par Récupération (RAG) offre une approche

puissante pour l’intégration de l’IA dans les applications. En récupérant dynamiquement

des informations pertinentes à partir de bases de connaissances ou de documents

externes, le RAG fournit aumodèle un contexte ciblé aumoment du prompt. Cela permet

au modèle de générer des réponses plus précises, à jour et spécifiques au domaine, sans

nécessiter le processus coûteux en temps et en ressources de l’ajustement fin.

Bien que l’ajustement fin puisse être bénéfique pour des domaines ou des tâches

hautement spécialisés qui nécessitent un niveau profond de personnalisation, il

s’accompagne souvent de coûts de calcul importants, d’exigences en matière de

données et de frais généraux de maintenance. Pour la plupart des scénarios de

développement d’applications, la combinaison d’une ingénierie efficace des prompts

et du RAG devrait suffire pour atteindre la fonctionnalité et l’expérience utilisateur

souhaitées basées sur l’IA.

Retrieval Augmented Generation
(RAG)
Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Qu’est-ce que la Retrieval Augmented

Generation?

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment fonctionne le RAG?

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Pourquoi utiliser le RAG dans vos applications?

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Mise en œuvre de RAG dans votre application

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Retrieval Augmented Generation (RAG) 84

Préparation des sources de connaissances (découpage)

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Découpage en propositions

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Notes d’implémentation

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Contrôle de qualité

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Avantages de la récupération basée sur les propositions

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemples concrets de RAG

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Retrieval Augmented Generation (RAG) 85

Étude de cas : RAG dans une application de préparation
fiscale sans plongements

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Optimisation Intelligente des Requêtes (IQO)

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Reclassement

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Évaluation RAG (RAGAs)

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Fidélité

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Pertinence de la réponse

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Retrieval Augmented Generation (RAG) 86

Précision du contexte

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Pertinence du contexte

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Rappel du contexte

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Rappel des entités du contexte

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Similarité Sémantique des Réponses (ANSS)

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exactitude des Réponses

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Retrieval Augmented Generation (RAG) 87

Critique par Aspects

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Défis et Perspectives d’Avenir

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Segmentation Sémantique : Améliorer la Récupération
avec une Segmentation Contextuelle

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Indexation hiérarchique : Structurer les données pour
améliorer la récupération

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Self-RAG : Une amélioration autoréflexive

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

HyDE : Plongements de Documents Hypothétiques

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Retrieval Augmented Generation (RAG) 88

Qu’est-ce que l’apprentissage contrastif?

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr

Multitude de travailleurs

J’aime considérer mes composants d’IA comme de petits “travailleurs” virtuels, presque

humains, qui peuvent être intégrés de manière transparente dans la logique de mon

application pour effectuer des tâches spécifiques ou prendre des décisions complexes.

L’idée est d’humaniser délibérément les capacités du GML, afin que personne ne

s’emballe trop et ne leur attribue des qualités magiques qu’ils ne possèdent pas.

Au lieu de s’appuyer uniquement sur des algorithmes complexes ou des implémentations

manuelles chronophages, les développeurs peuvent conceptualiser les composants d’IA

comme des entités intelligentes, dévouées et quasi humaines qui peuvent être invoquées

dès que nécessaire pour résoudre des problèmes complexes et fournir des solutions

basées sur leur formation et leurs connaissances. Ces entités ne se laissent pas distraire

et ne tombent pas malades. Elles ne décident pas spontanément de faire les choses

différemment de ce qui leur a été demandé et, en général, si elles sont correctement

programmées, elles ne commettent pas d’erreurs non plus.

Multitude de travailleurs 90

En termes techniques, le principe clé de cette approche consiste à décomposer des tâches

complexes ou des processus décisionnels en unités plus petites et plus gérables qui

peuvent être traitées par des travailleurs IA spécialisés. Chaque travailleur est conçu

pour se concentrer sur un aspect spécifique du problème, apportant son expertise et ses

capacités uniques. En distribuant la charge de travail entre plusieurs travailleurs IA,

l’application peut atteindre une plus grande efficacité, évolutivité et adaptabilité.

Par exemple, considérons une application web qui nécessite une modération en

temps réel du contenu généré par les utilisateurs. Mettre en œuvre un système de

modération complet à partir de zéro serait une tâche redoutable, nécessitant un effort

de développement important et une maintenance continue. Cependant, en utilisant

l’approche de la Multitude de Travailleurs, les développeurs peuvent intégrer des

travailleurs de modération alimentés par l’IA dans la logique de l’application. Ces

travailleurs peuvent analyser automatiquement et signaler le contenu inapproprié,

libérant ainsi les développeurs pour qu’ils puissent se concentrer sur d’autres aspects

critiques de l’application.

Les travailleurs IA comme composants

réutilisables indépendants

Un aspect clé de l’approche de la Multitude de Travailleurs est sa modularité. Les

partisans de la programmation orientée objet nous disent depuis des décennies de

penser aux interactions entre objets comme des messages. Eh bien, les travailleurs IA

peuvent être conçus comme des composants indépendants et réutilisables qui peuvent

“se parler” via des messages en langage naturel, presque comme s’ils étaient réellement

de petits humains qui se parlent entre eux. Cette approche faiblement couplée permet

à l’application de s’adapter et d’évoluer au fil du temps, à mesure que de nouvelles

technologies d’IA émergent ou que les exigences de la logique métier changent.

En pratique, la nécessité de concevoir des interfaces claires et des protocoles de

Multitude de travailleurs 91

communication entre les composants n’a pas changé simplement parce que des

travailleurs IA sont impliqués. Vous devez toujours prendre en compte d’autres

facteurs tels que la performance, l’évolutivité et la sécurité, mais il y a maintenant

de nouvelles “exigences non fonctionnelles” à considérer également. Par exemple, de

nombreux utilisateurs s’opposent à l’utilisation de leurs données privées pour entraîner

de nouveaux modèles d’IA. Avez-vous vérifié le niveau de confidentialité fourni par le

fournisseur de modèle que vous utilisez ?

Les travailleurs IA comme microservices?

En lisant à propos de l’approche de la Multitude de Travailleurs, vous pourriez

remarquer certaines similitudes avec l’architecture en microservices. Les deux

mettent l’accent sur la décomposition de systèmes complexes en unités plus petites,

plus gérables et déployables indépendamment. Tout comme les microservices sont

conçus pour être faiblement couplés, centrés sur des capacités métier spécifiques et

communiquent via des API bien définies, les travailleurs IA sont conçus pour être

modulaires, spécialisés dans leurs tâches et interagir entre eux via des interfaces et

des protocoles de communication clairs.

Cependant, il y a quelques différences importantes à garder à l’esprit. Alors que

les microservices sont généralement implémentés comme des processus ou des

services séparés s’exécutant sur différentes machines ou conteneurs, les travailleurs

IA peuvent être implémentés comme des composants autonomes au sein d’une seule

application ou comme des services séparés, selon vos besoins spécifiques et vos

besoins d’évolutivité. De plus, la communication entre les travailleurs IA implique

souvent l’échange d’informations riches basées sur le langage naturel, comme des

prompts, des instructions et du contenu généré, plutôt que les formats de données

plus structurés couramment utilisés dans les microservices.

Malgré ces différences, les principes de modularité, de couplage faible et d’interfaces

Multitude de travailleurs 92

de communication claires restent au cœur des deux modèles. En appliquant ces

principes à votre architecture de travailleurs IA, vous pouvez créer des systèmes

flexibles, évolutifs et maintenables qui exploitent la puissance de l’IA pour résoudre

des problèmes complexes et apporter de la valeur à vos utilisateurs.

L’approche de la Multitude de Travailleurs peut être appliquée dans divers domaines et

applications, exploitant la puissance de l’IA pour aborder des tâches complexes et fournir

des solutions intelligentes. Explorons quelques exemples concrets de la façon dont les

travailleurs IA peuvent être employés dans différents contextes.

Gestion des comptes

Pratiquement chaque application web autonome possède le concept de compte (ou

utilisateur). Dans Olympia, nous utilisons un travailleur IA AccountManager qui est

programmé pour pouvoir gérer différents types de demandes de modification liées aux

comptes utilisateurs.

Sa directive se présente comme suit :

Multitude de travailleurs 93

1 You are an intelligent account manager for Olympia. The user will request

2 changes to their account, and you will process those changes by invoking

3 one or more of the functions provided.

4

5 The initial state of the account : #{account.to_directive}

6

7 Functions will return a text description of both success and error

8 results, plus guidance about how to proceed (if applicable). If you have

9 a question about Olympia policies you may use the `search_kb` function

10 to search our knowledge base.

11

12 Make sure to notify the account owner of the result of the change

13 request before calling the `finished` function so that we save the state

14 of the account change request as completed.

L’état initial du compte produit par account.to_directive est simplement une

description textuelle du compte, incluant les données pertinentes associées telles que

les utilisateurs, les abonnements, etc.

La gamme de fonctions disponibles pour l’AccountManager lui permet de modifier

l’abonnement de l’utilisateur, d’ajouter et de supprimer des consultants IA et d’autres

types de modules complémentaires payants, et d’envoyer des e-mails de notification au

propriétaire du compte. En plus de la fonction finished, il peut également notify_-

human_administrator s’il rencontre une erreur pendant son traitement ou s’il a

besoin d’une assistance quelconque pour une demande.

Notez qu’en cas de questions, l’AccountManager peut choisir de rechercher dans la base

de connaissances d’Olympia, où il peut trouver des instructions sur la façon de gérer les

cas particuliers et toute autre situation où il n’est pas sûr de la manière de procéder.

Applications E-commerce

Dans le domaine de l’e-commerce, les travailleurs IA peuvent jouer un rôle crucial dans

l’amélioration de l’expérience utilisateur et l’optimisation des opérations commerciales.

Voici quelques façons dont les travailleurs IA peuvent être utilisés :

Multitude de travailleurs 94

Recommandations de Produits

L’une des applications les plus puissantes des travailleurs IA dans l’e-commerce

est la génération de recommandations de produits personnalisées. En analysant le

comportement des utilisateurs, l’historique des achats et les préférences, ces travailleurs

peuvent suggérer des produits adaptés aux intérêts et aux besoins de chaque utilisateur.

La clé pour des recommandations de produits efficaces réside dans l’utilisation

combinée des techniques de filtrage collaboratif et de filtrage basé sur le contenu. Le

filtrage collaboratif examine le comportement d’utilisateurs similaires pour identifier

des modèles et faire des recommandations basées sur ce que d’autres personnes

aux goûts similaires ont acheté ou apprécié. Le filtrage basé sur le contenu, quant

à lui, se concentre sur les caractéristiques et les attributs des produits eux-mêmes,

recommandant des articles qui partagent des caractéristiques similaires à ceux pour

lesquels un utilisateur a précédemment montré de l’intérêt.

Voici un exemple simplifié de la façon dont vous pouvez implémenter un travailleur de

recommandation de produits en Ruby, cette fois en utilisant un style de programmation

fonctionnelle “Railway Oriented (ROP)” :

1 class ProductRecommendationWorker

2 include Wisper ::Publisher

3

4 def call(user)

5 Result.ok(ProductRecommendation.new(user))

6 .and_then(ValidateUser.method(:validate))

7 .map(AnalyzeCurrentSession.method(:analyze))

8 .map(CollaborativeFilter.method(:filter))

9 .map(ContentBasedFilter.method(:filter))

10 .map(ProductSelector.method(:select)).then do |result|

11

12 case result

13 in { err : ProductRecommendationError => error }

14 Honeybadger.notify(error.message, context : {user :})

15 in { ok : ProductRecommendations => recs }

16 broadcast(:new_recommendations, user :, recs :)

https://fsharpforfunandprofit.com/rop/

Multitude de travailleurs 95

17 end

18 end

19 end

20 end

Le style de programmation fonctionnelle Ruby utilisé dans l’exemple est

influencé par F# et Rust. Vous pouvez en savoir plus à ce sujet dans

l’explication de la technique de mon ami Chad Wooley chez GitLab

Dans cet exemple, le ProductRecommendationWorker prend un utilisateur en entrée

et génère des recommandations de produits personnalisées en faisant passer un objet de

valeur à travers une chaîne d’étapes fonctionnelles. Analysons chaque étape :

1. ValidateUser.validate : Cette étape s’assure que l’utilisateur est valide

et éligible pour recevoir des recommandations personnalisées. Elle vérifie si

l’utilisateur existe, est actif et dispose des données nécessaires pour générer des

recommandations. Si la validation échoue, un résultat d’erreur est renvoyé et la

chaîne est court-circuitée.

2. AnalyzeCurrentSession.analyze : Si l’utilisateur est valide, cette étape

analyse sa session de navigation actuelle pour recueillir des informations

contextuelles. Elle examine les interactions récentes de l’utilisateur, comme

les produits consultés, les requêtes de recherche et le contenu du panier, pour

comprendre ses intérêts et intentions actuels.

3. CollaborativeFilter.filter : En utilisant le comportement d’utilisateurs

similaires, cette étape applique des techniques de filtrage collaboratif pour

identifier les produits susceptibles d’intéresser l’utilisateur. Elle prend en compte

des facteurs comme l’historique d’achats, les évaluations et les interactions

utilisateur-produit pour générer un ensemble de recommandations candidates.

4. ContentBasedFilter.filter : Cette étape affine davantage les

recommandations candidates en appliquant un filtrage basé sur le contenu.

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Multitude de travailleurs 96

Elle compare les attributs et caractéristiques des produits candidats avec les

préférences et données historiques de l’utilisateur pour sélectionner les articles

les plus pertinents.

5. ProductSelector.select : Enfin, cette étape sélectionne les N meilleurs

produits parmi les recommandations filtrées selon des critères prédéfinis, tels

que le score de pertinence, la popularité ou d’autres règles métier. Les produits

sélectionnés sont ensuite renvoyés comme recommandations personnalisées

finales.

La beauté d’utiliser un style de programmation fonctionnelle en Ruby ici est qu’il nous

permet d’enchaîner ces étapes de manière claire et concise. Chaque étape se concentre

sur une tâche spécifique et renvoie un objet Result, qui peut être soit un succès (ok)

soit une erreur (err). Si une étape rencontre une erreur, la chaîne est court-circuitée et

l’erreur est propagée jusqu’au résultat final.

Dans l’instruction case à la fin, nous effectuons un filtrage par motif sur le résultat

final. Si le résultat est une erreur (ProductRecommendationError), nous journalisons

l’erreur en utilisant un outil comme Honeybadger pour le monitoring et le débogage.

Si le résultat est un succès (ProductRecommendations), nous diffusons un événement

:new_recommendations en utilisant la bibliothèque pub/sub Wisper, en transmettant

l’utilisateur et les recommandations générées.

En tirant parti des techniques de programmation fonctionnelle, nous pouvons créer un

worker de recommandation de produits modulaire et maintenable. Chaque étape est

autonome et peut être facilement testée, modifiée ou remplacée sans affecter le flux

global. L’utilisation du filtrage par motif et de la classe Result nous aide à gérer les

erreurs avec élégance et garantit que le worker échoue rapidement si une étape rencontre

un problème.

Bien sûr, il s’agit d’un exemple simplifié, et dans un scénario réel, vous devriez vous

intégrer à votre plateforme e-commerce, gérer les cas limites, et même vous aventurer

dans l’implémentation des algorithmes de recommandation. Cependant, les principes

Multitude de travailleurs 97

fondamentaux de décomposition du problème en petites étapes et d’utilisation des

techniques de programmation fonctionnelle restent les mêmes.

Détection de fraude

Voici un exemple simplifié de la façon dont vous pouvez implémenter un worker de

détection de fraude en utilisant le même style de Programmation Orientée Railway

(ROP) en Ruby :

1 class FraudDetectionWorker

2 include Wisper ::Publisher

3

4 def call(transaction)

5 Result.ok(FraudDetection.new(transaction))

6 .and_then(ValidateTransaction.method(:validate))

7 .map(AnalyzeTransactionPatterns.method(:analyze))

8 .map(CheckCustomerHistory.method(:check))

9 .map(EvaluateRiskFactors.method(:evaluate))

10 .map(DetermineFraudProbability.method(:determine)).then do |result|

11

12 case result

13 in { err : FraudDetectionError => error }

14 Honeybadger.notify(error.message, context : {transaction :})

15 in { ok : FraudDetection => fraud } }

16 if fraud.high_risk ?

17 broadcast(:high_risk_transaction, transaction :, fraud :)

18 else

19 broadcast(:low_risk_transaction, transaction :)

20 end

21 end

22 end

23 end

24 end

La classe FraudDetection est un value object qui encapsule l’état de détection de

fraude pour une transaction donnée. Elle fournit une approche structurée pour analyser

et évaluer le risque de fraude associé à une transaction en fonction de divers facteurs de

risque.

Multitude de travailleurs 98

1 class FraudDetection

2 RISK_THRESHOLD = 0.8

3

4 attr_accessor :transaction, :risk_factors

5

6 def initialize(transaction)

7 self.transaction = transaction

8 self.risk_factors = []

9 end

10

11 def add_risk_factor(description :, probability :)

12 case { description :, probability : }

13 in { description : String => desc, probability : Float => prob }

14 risk_factors << { desc => prob }

15 else

16 raise ArgumentError, "Risk factor arguments should be string and float"

17 end

18 end

19

20 def high_risk ?

21 fraud_probability > RISK_THRESHOLD

22 end

23

24 private

25

26 def fraud_probability

27 risk_factors.values.sum

28 end

29 end

La classe FraudDetection possède les attributs suivants :

• transaction : Une référence à la transaction en cours d’analyse pour la fraude.

• risk_factors : Un tableau qui stocke les facteurs de risque associés à la

transaction. Chaque facteur de risque est représenté sous forme d’une table de

hachage, où la clé est la description du facteur de risque, et la valeur est la

probabilité de fraude associée à ce facteur de risque.

La méthode add_risk_factor permet d’ajouter un facteur de risque au tableau

Multitude de travailleurs 99

risk_factors. Elle prend deux paramètres : description, qui est une chaîne de

caractères décrivant le facteur de risque, et probability, qui est un nombre à virgule

flottante représentant la probabilité de fraude associée à ce facteur de risque. Nous

utilisons une condition case..in pour effectuer une simple vérification de type.

La méthode high_risk? qui sera vérifiée à la fin de la chaîne est une méthode prédicat

qui compare la fraud_probability (calculée en additionnant les probabilités de tous

les facteurs de risque) avec le RISK_THRESHOLD.

La classe FraudDetection offre une façon propre et encapsulée de gérer la détection de

fraude pour une transaction. Elle permet d’ajouter plusieurs facteurs de risque, chacun

avec sa propre description et probabilité, et fournit une méthode pour déterminer si la

transaction est considérée à haut risque en fonction de la probabilité de fraude calculée.

La classe peut être facilement intégrée dans un système plus large de détection de

fraude, où différents composants peuvent collaborer pour évaluer et atténuer le risque

de transactions frauduleuses.

Enfin, puisqu’il s’agit après tout d’un livre sur la programmation utilisant l’IA, voici

un exemple d’implémentation de la classe CheckCustomerHistory exploitant le

traitement par IA en utilisant le module ChatCompletion de ma bibliothèque Raix :

1 class CheckCustomerHistory

2 include Raix ::ChatCompletion

3

4 attr_accessor :fraud_detection

5

6 INSTRUCTION = <<~END

7 You are an AI assistant tasked with checking a customer's transaction

8 history for potential fraud indicators. Given the current transaction

9 and the customer's past transactions, analyze the data to identify any

10 suspicious patterns or anomalies.

11

12 Consider factors such as the frequency of transactions, transaction

13 amounts, geographical locations, and any deviations from the customer's

14 typical behavior to generate a probability score as a float in the range

15 of 0 to 1 (with 1 being absolute certainty of fraud).

16

https://github.com/OlympiaAI/raix-rails

Multitude de travailleurs 100

17 Output the results of your analysis, highlighting any red flags or areas

18 of concern in the following JSON format :

19

20 { description : <Summary of your findings>, probability : <Float> }

21 END

22

23 def self.check(fraud_detection)

24 new(fraud_detection).call

25 end

26

27 def call

28 chat_completion(json : true).tap do |result|

29 fraud_detection.add_risk_factor(**result)

30 end

31 Result.ok(fraud_detection)

32 rescue StandardError => e

33 Result.err(FraudDetectionError.new(e))

34 end

35

36 private

37

38 def initialize(fraud_detection)

39 self.fraud_detection = fraud_detection

40 end

41

42 def transcript

43 tx_history = fraud_detection.transaction.user.tx_history

44 [

45 { system : INSTRUCTION },

46 { user : "Transaction history : #{tx_history.to_json}" },

47 { assistant : "OK. Please provide the current transaction." },

48 { user : "Current transaction : #{fraud_detection.transaction.to_json}" }

49]

50 end

51 end

Dans cet exemple, la classe CheckCustomerHistory définit une constante

INSTRUCTION qui fournit des instructions spécifiques au modèle d’IA sur la façon

d’analyser l’historique des transactions du client pour détecter des indicateurs potentiels

de fraude via une directive système

Multitude de travailleurs 101

La méthode self.check est une méthode de classe qui initialise une nouvelle instance

de CheckCustomerHistory avec l’objet fraud_detection et appelle la méthode

call pour effectuer l’analyse de l’historique du client.

Dans la méthode call, l’historique des transactions du client est récupéré et formaté en

un transcript qui est transmis au modèle d’IA. Le modèle d’IA analyse l’historique des

transactions selon les instructions fournies et renvoie un résumé de ses conclusions.

Les conclusions sont ajoutées à l’objet fraud_detection, et l’objet fraud_detection

mis à jour est renvoyé comme Result réussi.

En s’appuyant sur le module ChatCompletion, la classe CheckCustomerHistory

peut utiliser la puissance de l’IA pour analyser l’historique des transactions du client et

identifier les indicateurs potentiels de fraude. Cela permet des techniques de détection de

fraude plus sophistiquées et adaptatives, car le modèle d’IA peut apprendre et s’adapter

à de nouveaux modèles et anomalies au fil du temps.

Le FraudDetectionWorker mis à jour et la classe CheckCustomerHistory

démontrent comment les workers IA peuvent être intégrés de manière transparente,

améliorant le processus de détection de fraude avec des capacités d’analyse et de prise

de décision intelligentes.

Analyse du Sentiment Client

Voici un autre exemple similaire de la façon dont vous pouvez implémenter un worker

d’analyse du sentiment client. Beaucoup moins d’explications cette fois-ci, puisque vous

devriez comprendre le principe de ce style de programmation :

Multitude de travailleurs 102

1 class CustomerSentimentAnalysisWorker

2 include Wisper ::Publisher

3

4 def call(feedback)

5 Result.ok(feedback)

6 .and_then(PreprocessFeedback.method(:preprocess))

7 .map(PerformSentimentAnalysis.method(:analyze))

8 .map(ExtractKeyPhrases.method(:extract))

9 .map(IdentifyTrends.method(:identify))

10 .map(GenerateInsights.method(:generate)).then do |result|

11

12 case result

13 in { err : SentimentAnalysisError => error }

14 Honeybadger.notify(error.message, context : {feedback :})

15 in { ok : SentimentAnalysisResult => result }

16 broadcast(:sentiment_analysis_completed, result)

17 end

18 end

19 end

20 end

Dans cet exemple, le CustomerSentimentAnalysisWorker comprend des étapes

telles que le prétraitement des commentaires (par exemple, l’élimination du bruit, la

tokenisation), l’analyse des sentiments pour déterminer le sentiment global (positif,

négatif ou neutre), l’extraction des phrases clés et des sujets, l’identification des

tendances et des modèles, et la génération d’insights exploitables basés sur l’analyse.

Applications dans le domaine de la santé

Dans le domaine de la santé, les travailleurs IA peuvent assister les professionnels de

santé et les chercheurs dans diverses tâches, conduisant à l’amélioration des résultats

pour les patients et à l’accélération des découvertes médicales. Voici quelques exemples :

Multitude de travailleurs 103

Admission des patients

Les travailleurs IA peuvent rationaliser le processus d’admission des patients en

automatisant diverses tâches et en fournissant une assistance intelligente.

Planification des rendez-vous : Les travailleurs IA peuvent gérer la planification des

rendez-vous en comprenant les préférences des patients, leur disponibilité et l’urgence

de leurs besoins médicaux. Ils peuvent interagir avec les patients via des interfaces

conversationnelles, les guidant à travers le processus de planification et trouvant les

créneaux de rendez-vous les plus appropriés en fonction des exigences du patient et de

la disponibilité du prestataire de soins.

Collecte des antécédents médicaux : Lors de l’admission des patients, les travailleurs

IA peuvent aider à collecter et à documenter les antécédents médicaux du patient.

Ils peuvent engager des dialogues interactifs avec les patients, posant des questions

pertinentes sur leurs antécédents médicaux, leurs médicaments, leurs allergies et leurs

antécédents familiaux. Les travailleurs IA peuvent utiliser des techniques de traitement

du langage naturel pour interpréter et structurer les informations collectées, garantissant

qu’elles sont correctement enregistrées dans le dossier médical électronique du patient.

Évaluation et stratification des symptômes : Les travailleurs IA peuvent effectuer des

évaluations initiales des symptômes en interrogeant les patients sur leurs symptômes

actuels, leur durée, leur gravité et tout facteur associé. En s’appuyant sur des

bases de connaissances médicales et des modèles d’apprentissage automatique, ces

travailleurs peuvent analyser les informations fournies et générer des diagnostics

différentiels préliminaires ou recommander les prochaines étapes appropriées, comme

la programmation d’une consultation avec un prestataire de soins ou la suggestion de

mesures d’auto-soins.

Vérification d’assurance : Les travailleurs IA peuvent aider à la vérification d’assurance

lors de l’admission des patients. Ils peuvent collecter les détails d’assurance du patient,

communiquer avec les assureurs via des API ou des services web, et vérifier l’éligibilité

Multitude de travailleurs 104

de la couverture et les prestations. Cette automatisation aide à rationaliser le processus

de vérification d’assurance, réduisant la charge administrative et assurant une capture

précise des informations.

Éducation et instructions aux patients : Les travailleurs IA peuvent fournir

aux patients du matériel éducatif et des instructions pertinentes basés sur leurs

conditions médicales spécifiques ou leurs procédures à venir. Ils peuvent délivrer du

contenu personnalisé, répondre aux questions courantes et offrir des conseils sur les

préparations pré-rendez-vous, les instructions concernant les médicaments ou les soins

post-traitement. Cela aide à maintenir les patients informés et engagés tout au long de

leur parcours de soins.

En utilisant des travailleurs IA dans l’admission des patients, les organisations de santé

peuvent améliorer l’efficacité, réduire les temps d’attente et améliorer l’expérience

globale du patient. Ces travailleurs peuvent gérer les tâches routinières, collecter

des informations précises et fournir une assistance personnalisée, permettant aux

professionnels de santé de se concentrer sur la prestation de soins de haute qualité aux

patients.

Évaluation des risques des patients

Les travailleurs IA peuvent jouer un rôle crucial dans l’évaluation des risques des

patients en analysant diverses sources de données et en appliquant des techniques

d’analyse avancées.

Intégration des données : Les travailleurs IA peuvent rassembler et donner un sens aux

données des patients provenant de multiples sources, telles que les dossiers médicaux

électroniques (DME), l’imagerie médicale, les résultats de laboratoire, les appareils

portables et les déterminants sociaux de la santé. En consolidant ces informations en

un profil patient complet, les travailleurs IA peuvent fournir une vue holistique de l’état

de santé du patient et de ses facteurs de risque.

Multitude de travailleurs 105

Stratification des risques : Les travailleurs IA peuvent utiliser des modèles prédictifs

pour stratifier les patients en différentes catégories de risque basées sur leurs

caractéristiques individuelles et leurs données de santé. Cette stratification des risques

permet aux prestataires de soins de santé de prioriser les patients qui nécessitent une

attention ou une intervention plus immédiate. Par exemple, les patients identifiés

comme étant à haut risque pour une condition particulière peuvent être signalés pour

un suivi plus étroit, des mesures préventives ou une intervention précoce.

Profils de risque personnalisés : Les travailleurs IA peuvent générer des profils de

risque personnalisés pour chaque patient, mettant en évidence les facteurs spécifiques

contribuant à leurs scores de risque. Ces profils peuvent inclure des aperçus du mode

de vie du patient, des prédispositions génétiques, des facteurs environnementaux et des

déterminants sociaux de la santé. En fournissant une analyse détaillée des facteurs de

risque, les travailleurs IA peuvent aider les prestataires de soins de santé à adapter les

stratégies de prévention et les plans de traitement aux besoins individuels des patients.

Surveillance continue des risques : Les travailleurs IA peuvent surveiller en continu les

données des patients et mettre à jour les évaluations des risques en temps réel. Lorsque

de nouvelles informations deviennent disponibles, comme des changements dans les

signes vitaux, les résultats de laboratoire ou l’adhésion auxmédicaments, les travailleurs

IA peuvent recalculer les scores de risque et alerter les prestataires de soins de santé

de tout changement significatif. Cette surveillance proactive permet des interventions

opportunes et des ajustements aux plans de soins des patients.

Aide à la décision clinique : Les travailleurs IA peuvent intégrer les résultats de

l’évaluation des risques dans les systèmes d’aide à la décision clinique, fournissant aux

prestataires de soins de santé des recommandations et des alertes basées sur des preuves.

Par exemple, si le score de risque d’un patient pour une condition particulière dépasse

un certain seuil, le travailleur IA peut inciter le prestataire de soins à envisager des tests

diagnostiques spécifiques, des mesures préventives ou des options de traitement basées

sur les directives cliniques et les meilleures pratiques.

Multitude de travailleurs 106

Ces agents peuvent traiter de vastes quantités de données patients, appliquer des

analyses sophistiquées et générer des informations exploitables pour soutenir la prise

de décision clinique. Cela conduit finalement à l’amélioration des résultats pour les

patients, à la réduction des coûts de santé et à une meilleure gestion de la santé des

populations.

L’Agent IA comme Gestionnaire de Processus

Dans le contexte des applications pilotées par l’IA, un agent peut être conçu pour

fonctionner comme un Gestionnaire de Processus, tel que décrit dans le livre

“Enterprise Integration Patterns” par Gregor Hohpe. Un Gestionnaire de Processus est

un composant central qui maintient l’état d’un processus et détermine les prochaines

étapes de traitement en fonction des résultats intermédiaires.

Lorsqu’un agent IA agit en tant que Gestionnaire de Processus, il reçoit un message

entrant qui initialise le processus, appelé message déclencheur. L’agent IA maintient

ensuite l’état de l’exécution du processus (sous forme de transcription de conversation)

Multitude de travailleurs 107

et traite le message à travers une série d’étapes de traitement implémentées comme des

fonctions d’outil, qui peuvent être séquentielles ou parallèles, et appelées à sa discrétion.

Si vous utilisez une classe de modèle d’IA comme GPT-4 qui sait comment

exécuter des fonctions en parallèle, votre agent peut alors exécuter plusieurs

étapes simultanément. J’admets que je n’ai pas essayé de le faire moi-même

et mon instinct me dit que les résultats peuvent varier.

Après chaque étape de traitement individuelle, le contrôle est rendu à l’agent IA, lui

permettant de déterminer la ou les prochaines étapes de traitement en fonction de l’état

actuel et des résultats obtenus.

Stockez Vos Messages Déclencheurs

D’après mon expérience, il est judicieux d’implémenter votre message déclencheur

comme un objet supporté par une base de données. De cette façon, chaque instance

de processus est identifiée par une clé primaire unique et vous donne un endroit pour

stocker l’état associé à l’exécution, y compris la transcription de conversation de l’IA.

Par exemple, voici une version simplifiée de la classe modèle AccountChange

d’Olympia, qui représente une demande de modification du compte d’un utilisateur.

Multitude de travailleurs 108

1 # == Schema Information

2 #

3 # Table name : account_changes

4 #

5 # id :uuid not null, primary key

6 # description :string

7 # state :string not null

8 # transcript :jsonb

9 # created_at :datetime not null

10 # updated_at :datetime not null

11 # account_id :uuid not null

12 #

13 # Indexes

14 #

15 # index_account_changes_on_account_id (account_id)

16 #

17 # Foreign Keys

18 #

19 # fk_rails_... (account_id => accounts.id)

20 #

21 class AccountChange < ApplicationRecord

22 belongs_to :account

23

24 validates :description, presence : true

25

26 after_commit -> {

27 broadcast(:account_change_requested, self)

28 }, on : :create

29

30 state_machine initial : :requested do

31 event :completed do

32 transition all => :complete

33 end

34 event :failed do

35 transition all => :requires_human_review

36 end

37 end

38 end

La classe AccountChange sert de message déclencheur qui initie un processus pour

gérer la demande de modification de compte. Notez comment elle est diffusée vers

Multitude de travailleurs 109

le sous-système de publication-abonnement basé sur Wisper d’Olympia après que la

transaction de création ait terminé sa validation.

Le stockage du message déclencheur dans la base de données de cette manière fournit

un enregistrement permanent de chaque demande de modification de compte. Chaque

instance de la classe AccountChange se voit attribuer une clé primaire unique,

permettant une identification et un suivi faciles des demandes individuelles. Ceci est

particulièrement utile pour la journalisation d’audit, car cela permet au système de

maintenir un historique de toutes les modifications de compte, y compris quand elles

ont été demandées, quelles modifications ont été demandées et l’état actuel de chaque

demande.

Dans l’exemple donné, la classe AccountChange inclut des champs tels que

description pour capturer les détails de la modification demandée, state

pour représenter l’état actuel de la demande (par exemple, demandée, terminée,

nécessite_révision_humaine), et transcript pour stocker la transcription de la

conversation avec l’IA liée à la demande. Le champ description est la requête

réelle utilisée pour initier la première completion de chat avec l’IA. Le stockage de

ces données fournit un contexte précieux et permet un meilleur suivi et une meilleure

analyse du processus de modification de compte.

Le stockage des messages déclencheurs dans la base de données permet une gestion

robuste des erreurs et de la récupération. Si une erreur survient pendant le traitement

d’une demande de modification de compte, le système marque la demande comme

échouée et la fait passer à un état qui nécessite une intervention humaine. Cela garantit

qu’aucune demande n’est perdue ou oubliée, et que tout problème peut être correctement

traité et résolu.

Le travailleur IA, en tant que Gestionnaire de processus, fournit un point de contrôle

central et permet de puissantes capacités de rapport et de débogage des processus.

https://github.com/krisleech/wisper

Multitude de travailleurs 110

Cependant, il est important de noter que l’utilisation d’un travailleur IA comme

Gestionnaire de processus pour chaque scénario de flux de travail dans votre application

peut être excessif.

Intégration des travailleurs IA dans

l’architecture de votre application

Lors de l’incorporation de travailleurs IA dans l’architecture de votre application,

plusieurs considérations techniques doivent être abordées pour assurer une intégration

fluide et une communication efficace entre les travailleurs IA et les autres composants

de l’application. Cette section examine les aspects clés de la conception de ces interfaces,

de la gestion du flux de données et de la gestion du cycle de vie des travailleurs IA.

Conception d’interfaces claires et de protocoles de
communication

Pour faciliter une intégration transparente entre les travailleurs IA et les autres

composants de l’application, il est crucial de définir des interfaces claires et des

protocoles de communication. Considérez les approches suivantes :

Intégration basée sur API : Exposez la fonctionnalité des travailleurs IA à travers

des API bien définies, comme des points d’accès RESTful ou des schémas GraphQL.

Cela permet aux autres composants d’interagir avec les travailleurs IA en utilisant des

requêtes et réponses HTTP standard. L’intégration basée sur API fournit un contrat clair

entre les travailleurs IA et les composants consommateurs, facilitant le développement,

les tests et la maintenance des points d’intégration.

Communication basée sur les messages : Implémentez des modèles de communication

basés sur les messages, tels que les files d’attente de messages ou les systèmes

de publication-abonnement, pour permettre une interaction asynchrone entre les

Multitude de travailleurs 111

travailleurs IA et les autres composants. Cette approche découple les travailleurs IA

du reste de l’application, permettant une meilleure évolutivité, tolérance aux pannes

et un couplage faible. La communication basée sur les messages est particulièrement

utile lorsque le traitement effectué par les travailleurs IA est long ou gourmand en

ressources, car elle permet aux autres parties de l’application de continuer à s’exécuter

sans attendre que les travailleurs IA terminent leurs tâches.

Architecture événementielle : Concevez votre système autour d’événements et de

déclencheurs qui activent les travailleurs IA lorsque des conditions spécifiques sont

remplies. Les travailleurs IA peuvent s’abonner aux événements pertinents et réagir en

conséquence, effectuant leurs tâches désignées lorsque les événements se produisent.

L’architecture événementielle permet un traitement en temps réel et permet aux

travailleurs IA d’être invoqués à la demande, réduisant la consommation inutile de

ressources. Cette approche est bien adaptée aux scénarios où les travailleurs IA doivent

répondre à des actions spécifiques ou à des changements dans l’état de l’application.

Gestion du flux de données et synchronisation

Lors de l’intégration de travailleurs IA dans votre application, il est crucial d’assurer un

flux de données fluide et de maintenir la cohérence des données entre les travailleurs

IA et les autres composants. Considérez les aspects suivants :

Préparation des données : Avant d’alimenter les travailleurs IA en données, vous

devrez peut-être effectuer diverses tâches de préparation des données, comme le

nettoyage, le formatage et/ou la transformation des données d’entrée. Vous voulez

non seulement vous assurer que les travailleurs IA peuvent traiter efficacement, mais

aussi vous assurer que vous ne gaspillez pas de jetons en accordant de l’attention à

des informations que le travailleur pourrait considérer comme inutiles au mieux, et

distrayantes au pire. La préparation des données peut impliquer des tâches comme la

suppression du bruit, la gestion des valeurs manquantes ou la conversion des types de

données.

Multitude de travailleurs 112

Persistance des données : Comment allez-vous stocker et persister les données qui

circulent dans et hors des travailleurs IA? Considérez des facteurs comme le volume

de données, les modèles de requêtes et l’évolutivité. Avez-vous besoin de persister la

transcription de l’IA comme reflet de son “processus de réflexion” à des fins d’audit ou

de débogage, ou est-il suffisant d’avoir uniquement un enregistrement des résultats ?

Récupération des données : L’obtention des données nécessaires aux workers peut

impliquer l’interrogation de bases de données, la lecture de fichiers ou l’accès à des API

externes. Assurez-vous de prendre en compte la latence et la manière dont les workers

IA auront accès aux données les plus récentes. Ont-ils besoin d’un accès complet à votre

base de données ou devriez-vous définir étroitement la portée de leur accès en fonction

de leurs tâches ? Qu’en est-il de la mise à l’échelle ? Considérez les mécanismes de mise

en cache pour améliorer les performances et réduire la charge sur les sources de données

sous-jacentes.

Synchronisation des données : Lorsque plusieurs composants, y compris les workers

IA, accèdent et modifient des données partagées, il est important de mettre en œuvre des

mécanismes de synchronisation appropriés pour maintenir la cohérence des données.

Les stratégies de verrouillage des bases de données, telles que le verrouillage optimiste

ou pessimiste, peuvent vous aider à prévenir les conflits et à garantir l’intégrité des

données. Mettez en œuvre des techniques de gestion des transactions pour regrouper les

opérations de données connexes et maintenir les propriétés ACID (atomicité, cohérence,

isolation et durabilité)

Gestion des erreurs et récupération : Mettez en œuvre des mécanismes robustes de

gestion des erreurs et de récupération pour traiter les problèmes liés aux données qui

peuvent survenir pendant le processus de flux de données. Gérez les exceptions avec

élégance et fournissez des messages d’erreur significatifs pour faciliter le débogage.

Mettez en œuvre des mécanismes de nouvelle tentative et des stratégies de repli pour

gérer les défaillances temporaires ou les interruptions réseau. Définissez des procédures

claires pour la récupération et la restauration des données en cas de corruption ou de

Multitude de travailleurs 113

perte.

En concevant et en mettant en œuvre soigneusement les mécanismes de flux et de

synchronisation des données, vous pouvez garantir que vos workers IA ont accès à

des données précises, cohérentes et à jour. Cela leur permet d’effectuer leurs tâches

efficacement et de produire des résultats fiables.

Gestion du cycle de vie des workers IA

Développez un processus standardisé pour l’initialisation et la configuration des workers

IA. Je privilégie les frameworks qui standardisent la façon de définir les paramètres tels

que les noms de modèles, les directives système et les définitions de fonctions. Assurez-

vous que le processus d’initialisation est automatisé et reproductible pour faciliter le

déploiement et la mise à l’échelle.

Mettez en œuvre des mécanismes complets de surveillance et de journalisation pour

suivre la santé et les performances des workers IA. Collectez des métriques telles que

l’utilisation des ressources, le temps de traitement, les taux d’erreur et le débit. Utilisez

des systèmes de journalisation centralisés comme la pile ELK (Elasticsearch, Logstash,

Kibana) pour agréger et analyser les journaux de plusieurs workers IA.

Intégrez la tolérance aux pannes et la résilience dans l’architecture des workers IA.

Mettez en œuvre des mécanismes de gestion des erreurs et de récupération pour gérer

élégamment les défaillances ou les exceptions. Les Grands Modèles de Langage sont

encore une technologie de pointe ; les fournisseurs ont tendance à tomber en panne

souvent à des moments inattendus. Utilisez des mécanismes de nouvelle tentative et

des disjoncteurs pour éviter les défaillances en cascade.

Composabilité et orchestration des workers IA

L’un des principaux avantages de l’architecture des workers IA est sa composabilité, qui

permet de combiner et d’orchestrer plusieurs workers IA pour résoudre des problèmes

Multitude de travailleurs 114

complexes. En décomposant une tâche plus importante en sous-tâches plus petites et plus

gérables, chacune traitée par un worker IA spécialisé, vous pouvez créer des systèmes

puissants et flexibles. Dans cette section, nous explorerons différentes approches pour

composer et orchestrer “une multitude” de workers IA.

Chaînage des workers IA pour des flux de travail
multi-étapes

Dans de nombreux scénarios, une tâche complexe peut être décomposée en une série

d’étapes séquentielles, où la sortie d’un worker IA devient l’entrée du suivant. Ce

chaînage de workers IA crée un flux de travail ou un pipeline multi-étapes. Chaque

worker IA dans la chaîne se concentre sur une sous-tâche spécifique, et la sortie finale

est le résultat des efforts combinés de tous les workers.

Prenons un exemple dans le contexte d’une application Ruby on Rails pour le traitement

de contenu généré par l’utilisateur. Le flux de travail implique les étapes suivantes,

qui sont probablement chacune trop simples pour justifier une décomposition de cette

manière dans des cas d’utilisation réels, mais elles rendent l’exemple plus facile à

comprendre :

1. Nettoyage du texte : Un worker IA responsable de la suppression des balises HTML,

de la conversion du texte en minuscules et de la gestion de la normalisation Unicode.

2. Détection de la langue : Un worker IA qui identifie la langue du texte nettoyé.

3. Analyse des sentiments : Un worker IA qui détermine le sentiment (positif, négatif

ou neutre) du texte en fonction de la langue détectée.

4. Catégorisation du contenu : Un worker IA qui classe le texte dans des catégories

prédéfinies en utilisant des techniques de traitement du langage naturel.

Voici un exemple très simplifié de la façon dont vous pouvez chaîner ces workers IA

ensemble en utilisant Ruby :

Multitude de travailleurs 115

1 class ContentProcessor

2 def initialize(text)

3 @text = text

4 end

5

6 def process

7 cleaned_text = TextCleanupWorker.new(@text).call

8 language = LanguageDetectionWorker.new(cleaned_text).call

9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

10 category = CategorizationWorker.new(cleaned_text, language).call

11

12 { cleaned_text :, language :, sentiment :, category : }

13 end

14 end

Dans cet exemple, la classe ContentProcessor s’initialise avec le texte brut et enchaîne

les agents d’IA dans laméthode process. Chaque agent d’IA effectue sa tâche spécifique

et transmet le résultat à l’agent suivant dans la chaîne. La sortie finale est un hash

contenant le texte nettoyé, la langue détectée, le sentiment et la catégorie du contenu.

Traitement parallèle pour les agents d’IA indépendants

Dans l’exemple précédent, les agents d’IA sont chaînés de manière séquentielle, où

chaque agent traite le texte et transmet le résultat à l’agent suivant. Cependant, si vous

disposez de plusieurs agents d’IA pouvant fonctionner indépendamment sur la même

entrée, vous pouvez optimiser le flux de travail en les traitant en parallèle.

Dans le scénario donné, une fois que le nettoyage du texte est effectué par le

TextCleanupWorker, le LanguageDetectionWorker, SentimentAnalysisWorker,

et CategorizationWorker peuvent tous traiter le texte nettoyé de manière

indépendante. En exécutant ces agents en parallèle, vous pouvez potentiellement

réduire le temps de traitement global et améliorer l’efficacité de votre flux de travail.

Pour réaliser le traitement parallèle en Ruby, vous pouvez utiliser des techniques de

concurrence telles que les threads ou la programmation asynchrone. Voici un exemple

Multitude de travailleurs 116

de la façon dont vous pouvez modifier la classe ContentProcessor pour traiter les

trois derniers agents en parallèle en utilisant des threads :

1 require 'concurrent'

2

3 class ContentProcessor

4 def initialize(text)

5 @text = text

6 end

7

8 def process

9 cleaned_text = TextCleanupWorker.new(@text).call

10

11 language_future = Concurrent ::Future.execute do

12 LanguageDetectionWorker.new(cleaned_text).call

13 end

14

15 sentiment_future = Concurrent ::Future.execute do

16 SentimentAnalysisWorker.new(cleaned_text).call

17 end

18

19 category_future = Concurrent ::Future.execute do

20 CategorizationWorker.new(cleaned_text).call

21 end

22

23 language = language_future.value

24 sentiment = sentiment_future.value

25 category = category_future.value

26

27 { cleaned_text :, language :, sentiment :, category : }

28 end

29 end

Dans cette version optimisée, nous utilisons la bibliothèque concurrent-ruby pour

créer des objets Concurrent::Future pour chacun des workers IA indépendants. Un

Future représente un calcul qui sera effectué de manière asynchrone dans un thread

séparé.

Après l’étape de nettoyage du texte, nous créons trois objets Future :

language_future, sentiment_future, et category_future. Chaque

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Multitude de travailleurs 117

Future exécute son worker IA correspondant (LanguageDetectionWorker,

SentimentAnalysisWorker, et CategorizationWorker) dans un thread séparé, en

passant le cleaned_text comme entrée.

En appelant la méthode value sur chaque Future, nous attendons que le calcul soit

terminé et récupérons le résultat. La méthode value bloque jusqu’à ce que le résultat

soit disponible, garantissant que tous les workers parallèles ont terminé leur traitement

avant de continuer.

Enfin, nous construisons le hash de sortie avec le texte nettoyé et les résultats desworkers

parallèles, comme dans l’exemple original.

En traitant les workers IA indépendants en parallèle, vous pouvez potentiellement

réduire le temps de traitement global par rapport à une exécution séquentielle. Cette

optimisation est particulièrement bénéfique lors du traitement de tâches chronophages

ou de grands volumes de données.

Cependant, il est important de noter que les gains de performance réels dépendent

de divers facteurs, tels que la complexité de chaque worker, les ressources système

disponibles et la surcharge liée à la gestion des threads. Il est toujours recommandé

de faire des tests de performance et de profiler votre code pour déterminer le niveau

optimal de parallélisme pour votre cas d’utilisation spécifique.

De plus, lors de l’implémentation du traitement parallèle, il faut être attentif aux

ressources partagées ou aux dépendances entre les workers. Assurez-vous que

les workers peuvent fonctionner indépendamment sans conflits ni conditions de

concurrence. S’il existe des dépendances ou des ressources partagées, vous devrez peut-

être mettre en place des mécanismes de synchronisation appropriés pour maintenir

l’intégrité des données et éviter des problèmes tels que les interblocages ou les résultats

incohérents.

Multitude de travailleurs 118

Le Global Interpreter Lock (GIL) de Ruby et le
traitement asynchrone

Il est important de comprendre les implications du Global Interpreter Lock (GIL) de

Ruby lorsqu’on envisage un traitement asynchrone basé sur les threads en Ruby.

Le GIL est unmécanisme dans l’interpréteur Ruby qui garantit qu’un seul thread peut

exécuter du code Ruby à la fois, même sur des processeurs multi-cœurs. Cela signifie

quemême si plusieurs threads peuvent être créés et gérés au sein d’un processus Ruby,

un seul thread peut activement exécuter du code Ruby à un moment donné.

Le GIL est conçu pour simplifier l’implémentation de l’interpréteur Ruby et assurer

la sécurité des threads pour les structures de données internes de Ruby. Cependant,

il limite également le potentiel d’exécution véritablement parallèle du code Ruby.

Lorsque vous utilisez des threads en Ruby, comme avec la bibliothèque

concurrent-ruby ou la classe Thread intégrée, les threads sont soumis aux

contraintes du GIL. Le GIL permet à chaque thread d’exécuter du code Ruby pendant

une courte tranche de temps avant de passer à un autre thread, créant l’illusion

d’une exécution concurrente.

Cependant, en raison du GIL, l’exécution réelle du code Ruby reste séquentielle.

Pendant qu’un thread exécute du code Ruby, les autres threads sont essentiellement

en pause, attendant leur tour pour acquérir le GIL et s’exécuter.

Cela signifie que le traitement asynchrone basé sur les threads en Ruby est plus

efficace pour les tâches limitées par les E/S, comme l’attente de réponses d’API

externes (comme les modèles de langage hébergés par des tiers) ou l’exécution

d’opérations d’E/S fichier. Lorsqu’un thread rencontre une opération d’E/S, il peut

libérer le GIL, permettant à d’autres threads de s’exécuter pendant l’attente de la fin

de l’E/S.

En revanche, pour les tâches limitées par le CPU, comme les calculs intensifs ou

Multitude de travailleurs 119

le traitement de workers IA de longue durée, le GIL peut limiter les gains de

performance potentiels du parallélisme basé sur les threads. Puisqu’un seul thread

peut exécuter du code Ruby à la fois, le temps d’exécution global peut ne pas être

significativement réduit par rapport au traitement séquentiel.

Pour obtenir une véritable exécution parallèle pour les tâches limitées par le CPU en

Ruby, vous devrez peut-être explorer d’autres approches, telles que :

• Utiliser le parallélisme basé sur les processus avec plusieurs processus Ruby,

chacun s’exécutant sur un cœur CPU distinct.

• Exploiter des bibliothèques externes ou des frameworks qui fournissent des

extensions natives ou des interfaces vers des langages sans GIL, comme C ou

Rust.,

• Utiliser des frameworks de calcul distribué ou des files d’attente de messages

pour distribuer les tâches entre plusieurs machines ou processus.

Il est crucial de prendre en compte la nature de vos tâches et les limitations imposées

par le GIL lors de la conception et de l’implémentation du traitement asynchrone

en Ruby. Bien que le traitement asynchrone basé sur les threads puisse apporter des

avantages pour les tâches limitées par les E/S, il peut ne pas offrir d’améliorations

significatives des performances pour les tâches limitées par le CPU en raison des

contraintes du GIL.

Techniques d’ensemble pour une meilleure précision

Les techniques d’ensemble impliquent la combinaison des sorties de plusieurs workers

IA pour améliorer la précision globale ou la robustesse du système. Au lieu de s’appuyer

sur un seul worker IA, les techniques d’ensemble exploitent l’intelligence collective de

plusieurs workers pour prendre des décisions plus éclairées.

Multitude de travailleurs 120

Les ensembles sont particulièrement importants lorsque différentes parties

de votre flux de travail fonctionnent mieux avec différents modèles d’IA,

une situation plus courante qu’on ne le pense. Les modèles puissants comme

GPT-4 sont extrêmement coûteux comparés aux options open source moins

performantes, et ne sont probablement pas nécessaires pour chaque étape du

flux de travail de votre application.

Une technique d’ensemble courante est le vote majoritaire, où plusieurs agents d’IA

traitent indépendamment la même entrée, et la sortie finale est déterminée par le

consensus majoritaire. Cette approche peut aider à atténuer l’impact des erreurs

individuelles des agents et améliorer la fiabilité globale du système.

Prenons un exemple où nous avons trois agents d’IA pour l’analyse des sentiments,

chacun utilisant un modèle différent ou disposant de contextes différents. Nous pouvons

combiner leurs sorties en utilisant le vote majoritaire pour déterminer la prédiction

finale du sentiment.

1 class SentimentAnalysisEnsemble

2 def initialize(text)

3 @text = text

4 end

5

6 def analyze

7 predictions = [

8 SentimentAnalysisWorker1.new(@text).analyze,

9 SentimentAnalysisWorker2.new(@text).analyze,

10 SentimentAnalysisWorker3.new(@text).analyze

11]

12

13 predictions

14 .group_by { |sentiment| sentiment }

15 .max_by { |_, votes| votes.size }

16 .first

17

18 end

19 end

Multitude de travailleurs 121

Dans cet exemple, la classe SentimentAnalysisEnsemble s’initialise avec le texte

et fait appel à trois différents agents d’IA pour l’analyse des sentiments. La méthode

analyze recueille les prédictions de chaque agent et détermine le sentiment majoritaire

en utilisant les méthodes group_by et max_by. Le résultat final est le sentiment qui

reçoit le plus de votes de l’ensemble des agents.

Les ensembles sont clairement un cas où l’expérimentation avec le

parallélisme peut valoir votre temps.

Sélection et Invocation Dynamiques des Agents d’IA

Dans certains cas, sinon la plupart, l’agent d’IA spécifique à invoquer peut dépendre

des conditions d’exécution ou des entrées utilisateur. La sélection et l’invocation

dynamiques des agents d’IA permettent une flexibilité et une adaptabilité dans le

système.

Vous pourriez être tenté d’essayer d’intégrer beaucoup de fonctionnalités

dans un seul agent d’IA, en lui donnant de nombreuses fonctions et une

invite complexe qui explique comment les appeler. Résistez à cette tentation,

faites-moi confiance. L’une des raisons pour lesquelles l’approche dont nous

discutons dans ce chapitre s’appelle “Multitude de Travailleurs” est de nous

rappeler qu’il est souhaitable d’avoir de nombreux agents spécialisés, chacun

accomplissant sa petite tâche au service d’un objectif plus grand.

Par exemple, considérons une application d’agent conversationnel où différents agents

d’IA sont responsables du traitement de différents types de requêtes utilisateur. En

fonction de l’entrée de l’utilisateur, l’application sélectionne dynamiquement l’agent

d’IA approprié pour traiter la requête.

Multitude de travailleurs 122

1 class ChatbotController < ApplicationController

2 def process_query

3 query = params[:query]

4 query_type = QueryClassifierWorker.new(query).classify

5

6 case query_type

7 when 'greeting'

8 response = GreetingWorker.new(query).generate_response

9 when 'product_inquiry'

10 response = ProductInquiryWorker.new(query).generate_response

11 when 'order_status'

12 response = OrderStatusWorker.new(query).generate_response

13 else

14 response = DefaultResponseWorker.new(query).generate_response

15 end

16

17 render json : { response : response }

18 end

19 end

Dans cet exemple, le ChatbotController reçoit une requête utilisateur via l’action

process_query. Il utilise d’abord un QueryClassifierWorker pour déterminer le

type de la requête. En fonction du type de requête classifié, le contrôleur sélectionne

dynamiquement l’agent AI approprié pour générer la réponse. Cette sélection

dynamique permet au chatbot de gérer différents types de requêtes et de les diriger vers

les agents AI pertinents.

Étant donné que le travail du QueryClassifierWorker est relativement

simple et ne nécessite pas beaucoup de contexte ou de définitions de

fonctions, vous pouvez probablement l’implémenter en utilisant un petit

LLM ultra-rapide comme mistralai/mixtral-8x7b-instruct:nitro.

Il possède des capacités qui s’approchent du niveau de GPT-4 sur de

nombreuses tâches et, au moment où j’écris ces lignes, Groq peut le servir à

une vitesse fulgurante de 444 tokens par seconde.

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Multitude de travailleurs 123

Combiner le TLN traditionnel avec les LLM

Bien que les Grands Modèles de Langage (LLM) aient révolutionné le domaine du

traitement du langage naturel (TLN), offrant une polyvalence et des performances

inégalées dans un large éventail de tâches, ils ne sont pas toujours la solution la

plus efficace ou la plus rentable pour chaque problème. Dans de nombreux cas, la

combinaison des techniques traditionnelles de TLN avec les LLM peut conduire à des

approches plus optimisées, ciblées et économiques pour résoudre des défis spécifiques

de TLN.

Considérez les LLM comme les couteaux suisses du TLN — incroyablement polyvalents

et puissants, mais pas nécessairement le meilleur outil pour chaque tâche. Parfois,

un outil dédié comme un tire-bouchon ou un ouvre-boîte peut être plus efficace

pour une tâche spécifique. De même, les techniques traditionnelles de TLN, comme

le regroupement de documents, l’identification des sujets et la classification, peuvent

souvent fournir des solutions plus ciblées et rentables pour certains aspects de votre

pipeline TLN.

L’un des principaux avantages des techniques traditionnelles de TLN est leur efficacité

computationnelle. Ces méthodes, qui reposent souvent sur des modèles statistiques

plus simples ou des approches basées sur des règles, peuvent traiter de grands

volumes de données textuelles beaucoup plus rapidement et avec moins de ressources

computationnelles par rapport aux LLM. Cela les rend particulièrement adaptées aux

tâches impliquant l’analyse et l’organisation de grands corpus de documents, comme le

regroupement d’articles similaires ou l’identification des sujets clés dans une collection

de textes.

De plus, les techniques traditionnelles de TLN peuvent souvent atteindre une haute

précision pour des tâches spécifiques, particulièrement lorsqu’elles sont entraînées sur

des ensembles de données spécifiques à un domaine. Par exemple, un classificateur

de documents bien ajusté utilisant des algorithmes d’apprentissage automatique

Multitude de travailleurs 124

traditionnels comme les Machines à vecteurs de support (SVM) ou Naive Bayes peut

catégoriser précisément les documents dans des catégories prédéfinies avec un coût

computationnel minimal.

Cependant, les LLM excellent vraiment dans les tâches qui nécessitent une

compréhension plus profonde du langage, du contexte et du raisonnement. Leur

capacité à générer du texte cohérent et contextuellement pertinent, à répondre à des

questions et à résumer de longs passages est inégalée par les méthodes traditionnelles

de TLN. Les LLM peuvent efficacement gérer des phénomènes linguistiques complexes,

comme l’ambiguïté, la coréférence et les expressions idiomatiques, les rendant

inestimables pour les tâches qui nécessitent la génération ou la compréhension du

langage naturel.

La véritable puissance réside dans la combinaison des techniques traditionnelles de TLN

avec les LLM pour créer des approches hybrides qui exploitent les forces des deux. En

utilisant des méthodes traditionnelles de TLN pour des tâches comme le prétraitement

de documents, le regroupement et l’extraction de sujets, vous pouvez efficacement

organiser et structurer vos données textuelles. Ces informations structurées peuvent

ensuite être transmises aux LLM pour des tâches plus avancées, comme la génération

de résumés, la réponse aux questions ou la création de rapports complets.

Par exemple, considérons un cas d’utilisation où vous souhaitez générer un rapport

de tendances pour un domaine spécifique basé sur un grand corpus de documents de

tendances individuels. Au lieu de vous fier uniquement aux LLM, qui peuvent être

coûteux en calcul et chronophages pour traiter de grands volumes de texte, vous pouvez

employer une approche hybride :

1. Utiliser des techniques traditionnelles de TLN, comme la modélisation thématique

(par exemple, l’Allocation de Dirichlet latente) ou les algorithmes de clustering

(par exemple, K-moyennes), pour regrouper les documents de tendances similaires

et identifier les thèmes et sujets clés au sein du corpus.

Multitude de travailleurs 125

2. Alimenter les documents regroupés et les sujets identifiés dans un LLM, exploitant

ses capacités supérieures de compréhension et de génération du langage pour créer

des résumés cohérents et informatifs pour chaque groupe ou sujet.

3. Enfin, utiliser le LLM pour générer un rapport de tendances complet en combinant

les résumés individuels, mettant en évidence les tendances les plus significatives

et fournissant des insights et des recommandations basés sur les informations

agrégées.

En combinant les techniques traditionnelles de TLN avec les LLM de cette manière,

vous pouvez efficacement traiter de grandes quantités de données textuelles, extraire

des insights significatifs et générer des rapports de haute qualité tout en optimisant les

ressources computationnelles et les coûts.

Lorsque vous vous lancez dans vos projets de TALN, il est essentiel d’évaluer

soigneusement les exigences et les contraintes spécifiques de chaque tâche et de

réfléchir à la façon dont les méthodes traditionnelles de TALN et les LLMs peuvent être

exploités conjointement pour obtenir les meilleurs résultats. En combinant l’efficacité

et la précision des techniques traditionnelles avec la polyvalence et la puissance des

LLMs, vous pouvez créer des solutions de TALN hautement efficaces et économiques

qui apportent de la valeur à vos utilisateurs et parties prenantes.

Utilisation d’outils

Dans le domaine du développement d’applications basées sur l’IA, le concept

d’“utilisation d’outils” ou d’“appel de fonction” s’est imposé comme une technique

puissante permettant à votre LLM de se connecter à des outils externes, des APIs,

des fonctions, des bases de données et d’autres ressources. Cette approche permet

d’obtenir un ensemble de comportements plus riche que la simple sortie de texte, et

des interactions plus dynamiques entre vos composants IA et le reste de l’écosystème

de votre application. Comme nous l’examinerons dans ce chapitre, l’utilisation d’outils

vous donne également la possibilité de faire générer des données par votre modèle d’IA

de manière structurée.

Utilisation d’outils 127

Qu’est-ce que l’utilisation d’outils?

L’utilisation d’outils, également connue sous le nom d’appel de fonction, est une

technique qui permet aux développeurs de spécifier une liste de fonctions avec lesquelles

un LLM peut interagir pendant le processus de génération. Ces outils peuvent aller de

simples fonctions utilitaires à des APIs complexes ou des requêtes de base de données.

En donnant au LLM accès à ces outils, les développeurs peuvent étendre les capacités

du modèle et lui permettre d’effectuer des tâches nécessitant des connaissances ou des

actions externes.

Figure 8. Exemple d’une définition de fonction pour un agent IA qui analyse des documents

1 FUNCTION = {

2 name : "save_analysis",

3 description : "Save analysis data for document",

4 parameters : {

5 type : "object",

6 properties : {

7 title : {

8 type : "string",

9 maxLength : 140

10 },

11 summary : {

12 type : "string",

13 description : "comprehensive multi-paragraph summary with

14 overview and list of sections (if applicable)"

15 },

16 tags : {

17 type : "array",

18 items : {

19 type : "string",

20 description : "lowercase tags representing main themes

21 of the document"

22 }

23 }

24 },

25 "required" : %w[title summary tags]

26 }

Utilisation d’outils 128

27 }.freeze

L’idée principale derrière l’utilisation d’outils est de donner au GML la capacité

de sélectionner et d’exécuter dynamiquement les outils appropriés en fonction de

l’entrée de l’utilisateur ou de la tâche à accomplir. Au lieu de s’appuyer uniquement

sur les connaissances préentraînées du modèle, l’utilisation d’outils permet au GML

d’exploiter des ressources externes pour générer des réponses plus précises, pertinentes

et exploitables. L’utilisation d’outils rend des techniques comme la RAG (Génération

augmentée par récupération) beaucoup plus faciles à mettre en œuvre qu’elles ne le

seraient autrement.

Notez que sauf indication contraire, ce livre suppose que votre modèle d’IA n’a accès

à aucun outil intégré côté serveur. Tous les outils que vous souhaitez mettre à la

disposition de votre IA doivent être explicitement déclarés par vous dans chaque

requête API, avec des dispositions pour gérer son exécution si et quand votre IA vous

indique qu’elle souhaite utiliser cet outil dans sa réponse.

Le potentiel de l’utilisation d’outils

L’utilisation d’outils ouvre un large éventail de possibilités pour les applications basées

sur l’IA. Voici quelques exemples de ce qui peut être réalisé avec l’utilisation d’outils :

1. Agents conversationnels et assistants virtuels : En connectant un GML à

des outils externes, les agents conversationnels et les assistants virtuels peuvent

effectuer des tâches plus complexes, comme récupérer des informations dans des

bases de données, exécuter des appels API ou interagir avec d’autres systèmes. Par

exemple, un agent conversationnel pourrait utiliser un outil CRM pour modifier

le statut d’une affaire en fonction de la demande de l’utilisateur.

Utilisation d’outils 129

2. Analyse de données et insights : Les GML peuvent être connectés à des outils

ou des bibliothèques d’analyse de données pour effectuer des tâches avancées de

traitement de données. Cela permet aux applications de générer des insights, de

mener des analyses comparatives ou de fournir des recommandations basées sur

les données en réponse aux requêtes des utilisateurs.

3. Recherche et récupération d’informations : L’utilisation d’outils permet aux

GML d’interagir avec des moteurs de recherche, des bases de données vectorielles

ou d’autres systèmes de récupération d’informations. En transformant les requêtes

utilisateur en requêtes de recherche, le GML peut récupérer des informations

pertinentes à partir de multiples sources et fournir des réponses complètes aux

questions des utilisateurs.

4. Intégration avec des services externes : L’utilisation d’outils permet une

intégration transparente entre les applications basées sur l’IA et les services ou

API externes. Par exemple, un GML pourrait interagir avec une API météo pour

fournir des mises à jour météorologiques en temps réel ou une API de traduction

pour générer des réponses multilingues.

Le flux de travail de l’utilisation d’outils

Le flux de travail de l’utilisation d’outils implique généralement quatre étapes clés :

1. Inclure les définitions de fonctions dans votre contexte de requête

2. Sélection dynamique (ou explicite) d’outils

3. Exécution de la ou des fonction(s)

4. Continuation optionnelle du prompt initial

Examinons chacune de ces étapes en détail.

Utilisation d’outils 130

Inclure les définitions de fonctions dans votre contexte
de requête

L’IA sait quels outils sont à sa disposition car vous lui fournissez une liste dans le cadre

de votre demande de complétion (généralement définie comme des fonctions utilisant

une variante du schéma JSON).

La syntaxe précise de la définition des outils est spécifique au modèle.

Voici comment définir une fonction get_weather dans Claude 3 :

1 {

2 "name" : "get_weather",

3 "description" : "Get the current weather in a given location",

4 "input_schema" : {

5 "type" : "object",

6 "properties" : {

7 "location" : {

8 "type" : "string",

9 "description" : "The city and state, e.g. San Francisco, CA"

10 },

11 "unit" : {

12 "type" : "string",

13 "enum" : ["celsius", "fahrenheit"],

14 "description" : "The unit of temperature"

15 }

16 },

17 "required" : ["location"]

18 }

19 }

Et voici comment vous définiriez la même function pour GPT-4, en la transmettant

comme valeur du paramètre tools :

Utilisation d’outils 131

1 {

2 "name" : "get_current_weather",

3 "description" : "Get the current weather in a given location",

4 "parameters" : {

5 "type" : "object",

6 "properties" : {

7 "location" : {

8 "type" : "string",

9 "description" : "The city and state, e.g. San Francisco, CA",

10 },

11 "unit" : {

12 "type" : "string",

13 "enum" : ["celsius", "fahrenheit"],

14 "description" : "The unit of temperature"

15 },

16 },

17 "required" : ["location"],

18 },

19 }

Presque pareil, mais différent sans raison apparente ! Comme c’est agaçant.

Les définitions de fonctions spécifient le nom, la description et les paramètres d’entrée.

Les paramètres d’entrée peuvent être davantage définis en utilisant des attributs tels que

les enums pour limiter les valeurs acceptables, et en spécifiant si un paramètre est requis

ou non.

En plus des définitions de fonctions proprement dites, vous pouvez également inclure

des instructions ou du contexte expliquant pourquoi et comment utiliser la fonction dans

la directive système.

Par exemple, mon outil de recherche Web dans Olympia inclut cette directive système,

qui rappelle à l’IA qu’elle dispose des outils mentionnés :

Utilisation d’outils 132

1 The `google_search` and `realtime_search` functions let you do research

2 on behalf of the user. In contrast to Google, realtime search is powered

3 by Perplexity and provides real-time information to curated current events

4 databases and news sources. Make sure to include URLs in your response so

5 user can do followup research.

Fournir des descriptions détaillées est considéré comme le facteur le plus important dans

la performance des outils. Vos descriptions doivent expliquer chaque détail concernant

l’outil, notamment :

• Ce que fait l’outil

• Quand il doit être utilisé (et quand il ne doit pas l’être)

• Ce que signifie chaque paramètre et comment il affecte le comportement de l’outil

• Toutes les mises en garde ou limitations importantes qui s’appliquent à

l’implémentation de l’outil

Plus vous pourrez donner de contexte à l’IA concernant vos outils, mieux elle sera en

mesure de décider quand et comment les utiliser. Par exemple, Anthropic recommande

au moins 3 à 4 phrases par description d’outil pour sa série Claude 3, davantage si l’outil

est complexe.

Ce n’est pas nécessairement intuitif, mais les descriptions sont également considérées

comme plus importantes que les exemples. Bien que vous puissiez inclure des exemples

d’utilisation d’un outil dans sa description ou dans le prompt associé, cela est moins

important que d’avoir une explication claire et complète de l’objectif et des paramètres

de l’outil. N’ajoutez des exemples qu’après avoir entièrement développé la description.

Voici un exemple de spécification de fonction API de type Stripe :

Utilisation d’outils 133

1 {

2 "name" : "createPayment",

3 "description" : "Create a new payment request",

4 "parameters" : {

5 "type" : "object",

6 "properties" : {

7 "transaction_amount" : {

8 "type" : "number",

9 "description" : "The amount to be paid"

10 },

11 "description" : {

12 "type" : "string",

13 "description" : "A brief description of the payment"

14 },

15 "payment_method_id" : {

16 "type" : "string",

17 "description" : "The payment method to be used"

18 },

19 "payer" : {

20 "type" : "object",

21 "description" : "Information about the payer, including their name,

22 email, and identification number",

23 "properties" : {

24 "name" : {

25 "type" : "string",

26 "description" : "The payer's name"

27 },

28 "email" : {

29 "type" : "string",

30 "description" : "The payer's email address"

31 },

32 "identification" : {

33 "type" : "object",

34 "description" : "The payer's identification number",

35 "properties" : {

36 "type" : {

37 "type" : "string",

38 "description" : "Identification document (e.g. CPF, CNPJ)"

39 },

40 "number" : {

41 "type" : "string",

42 "description" : "The identification number"

Utilisation d’outils 134

43 }

44 },

45 "required" : ["type", "number"]

46 }

47 },

48 "required" : ["name", "email", "identification"]

49 }

50 }

51 }

En pratique, certains modèles ont du mal à gérer les spécifications de

fonctions imbriquées et à traiter des types de données complexes comme les

tableaux, les dictionnaires, etc. Mais en théorie, vous devriez pouvoir fournir

des spécifications JSON Schema de profondeur arbitraire !

Sélection Dynamique d’Outils

Lorsque vous exécutez une complétion de chat qui inclut des définitions d’outils, le LLM

sélectionne dynamiquement le ou les outils les plus appropriés à utiliser et génère les

paramètres d’entrée requis pour chaque outil.

En pratique, la capacité de l’IA à appeler exactement la bonne fonction et à suivre

exactement votre spécification pour les entrées est aléatoire. Réduire le paramètre de

température à 0.0 aide beaucoup, mais d’après mon expérience, vous aurez encore

des erreurs occasionnelles. Ces échecs incluent des noms de fonctions hallucinés, des

paramètres d’entrée mal nommés ou tout simplement manquants. Les paramètres sont

transmis en JSON, ce qui signifie que vous verrez parfois des erreurs causées par du

JSON tronqué, mal formaté ou autrement incorrect.

Les modèles d’Auto-réparation des Données peuvent aider à réparer

automatiquement les appels de fonction qui échouent en raison d’erreurs

de syntaxe.

Utilisation d’outils 135

Sélection Forcée (ou Explicite) d’Outils

Certains modèles vous donnent l’option de forcer l’appel d’une fonction particulière, en

tant que paramètre dans la requête. Sinon, la décision d’appeler ou non la fonction est

entièrement à la discrétion de l’IA.

La capacité de forcer un appel de fonction est cruciale dans certains scénarios où vous

voulez vous assurer qu’un outil ou une fonction spécifique est exécuté, indépendamment

du processus de sélection dynamique de l’IA. Il y a plusieurs raisons pour lesquelles cette

capacité est importante :

1. Contrôle Explicite : Vous utilisez peut-être l’IA comme Composant Discret

ou dans un flux de travail prédéfini qui nécessite l’exécution d’une fonction

particulière à un moment précis. En forçant l’appel, vous pouvez garantir que la

fonction souhaitée est invoquée au lieu de devoir demander gentiment à l’IA de

le faire.

2. Débogage et Tests : Lors du développement et des tests d’applications basées

sur l’IA, la capacité de forcer des appels de fonction est inestimable à des fins de

débogage. En déclenchant explicitement des fonctions spécifiques, vous pouvez

isoler et tester des composants individuels de votre application. Cela vous permet

de vérifier l’exactitude des implémentations de fonctions, de valider les paramètres

d’entrée et de vous assurer que les résultats attendus sont renvoyés.

3. Gestion des Cas Limites : Il peut y avoir des cas limites ou des scénarios

exceptionnels où le processus de sélection dynamique de l’IA pourrait ne pas

choisir d’exécuter une fonction qu’elle devrait, et vous le savez en fonction de

processus externes. Dans de tels cas, avoir la capacité de forcer un appel de

fonction vous permet de gérer ces situations explicitement. Définissez des règles

ou des conditions dans la logique de votre application pour déterminer quand

remplacer la discrétion de l’IA.

4. Cohérence et Reproductibilité : Si vous avez une séquence spécifique de

fonctions qui doivent être exécutées dans un ordre particulier, forcer les appels

Utilisation d’outils 136

garantit que la même séquence est suivie à chaque fois. C’est particulièrement

important dans les applications où la cohérence et le comportement prévisible sont

critiques, comme dans les systèmes financiers ou les simulations scientifiques.

5. Optimisation des Performances : Dans certains cas, forcer un appel de fonction

peut conduire à des optimisations de performances. Si vous savez qu’une fonction

spécifique est requise pour une tâche particulière et que le processus de sélection

dynamique de l’IA pourrait introduire une surcharge inutile, vous pouvez

contourner le processus de sélection et invoquer directement la fonction requise.

Cela peut aider à réduire la latence et améliorer l’efficacité globale de votre

application.

En résumé, la capacité de forcer des appels de fonction dans les applications basées

sur l’IA fournit un contrôle explicite, aide au débogage et aux tests, gère les cas limites,

assure la cohérence et la reproductibilité. C’est un outil puissant dans votre arsenal, mais

nous devons discuter d’un autre aspect de cette fonctionnalité importante.

Dans de nombreux cas d’utilisation décisionnels, nous voulons toujours que

le modèle fasse un appel de fonction et ne voulons peut-être jamais que le

modèle réponde uniquement avec ses connaissances internes. Par exemple,

si vous routez entre plusieurs modèles spécialisés dans différentes tâches

(entrée multilingue, mathématiques, etc.), vous pouvez utiliser le modèle

d’appel de fonction pour déléguer les requêtes à l’un des modèles auxiliaires

et ne jamais répondre indépendamment.

Paramètre de Choix d’Outil

GPT-4 et d’autres modèles de langage qui prennent en charge l’appel de fonction vous

donnent un paramètre tool_choice pour contrôler si l’utilisation d’un outil est requise

dans le cadre d’une complétion. Ce paramètre a trois valeurs possibles :

Utilisation d’outils 137

• auto donne à l’IA une totale discrétion pour utiliser un outil ou simplement

répondre

• required indique à l’IA qu’elle doit appeler un outil au lieu de répondre, mais

laisse la sélection de l’outil à l’IA

• La troisième option consiste à définir le paramètre du name_of_function que

vous souhaitez forcer. Plus de détails à ce sujet dans la section suivante.

Notez que si vous définissez tool choice comme required, le modèle sera

forcé de choisir la fonction la plus pertinente parmi celles qui lui sont

fournies, même si aucune ne correspond vraiment à la demande. Aumoment

de la publication, je ne connais aucun modèle qui renverrait une réponse

tool_calls vide, ou qui utiliserait un autre moyen pour vous informer

qu’il n’a pas trouvé de fonction appropriée à appeler.

Forcer un Appel de Fonction pour Obtenir une Sortie
Structurée

La possibilité de forcer un appel de fonction vous offre un moyen d’obtenir des données

structurées à partir d’une complétion de chat, au lieu d’avoir à les extraire vous-même

de sa réponse en texte brut.

Pourquoi est-ce si important de forcer les fonctions pour obtenir des données

structurées ? Tout simplement parce que l’extraction de données structurées à partir

de la sortie d’un GML est un véritable casse-tête. Vous pouvez vous simplifier un peu

la vie en demandant les données en XML, mais ensuite vous devez analyser le XML.

Et que faites-vous quand ce XML est manquant parce que votre IA a répondu : “Je

Utilisation d’outils 138

suis désolé, mais je ne peux pas générer les données que vous avez demandées car

bla, bla, bla…”

Lorsque vous utilisez les outils de cette manière :

• Vous devriez probablement définir un seul outil dans votre requête

• N’oubliez pas de forcer l’utilisation de sa fonction en utilisant le paramètretool_-

choice

• Rappelez-vous que le modèle va transmettre l’entrée à l’outil, donc le nom de

l’outil et sa description doivent être du point de vue du modèle, pas du vôtre

Ce dernier point mérite un exemple pour plus de clarté. Supposons que vous demandiez

à l’IA de faire une analyse des sentiments sur un texte utilisateur. Le nom de la

fonction ne serait pas analyze_sentiment, mais plutôt quelque chose comme save_-

sentiment_analysis. C’est l’IA qui fait l’analyse des sentiments, pas l’outil. Tout ce

que fait l’outil (du point de vue de l’IA) est de sauvegarder les résultats de l’analyse.

Voici un exemple d’utilisation de Claude 3 pour enregistrer un résumé d’une image dans

un JSON bien structuré, cette fois-ci depuis la ligne de commande en utilisant curl :

1 curl https ://api.anthropic.com/v1/messages \

2 --header "content-type : application/json" \

3 --header "x-api-key : $ANTHROPIC_API_KEY" \

4 --header "anthropic-version : 2023-06-01" \

5 --header "anthropic-beta : tools-2024-04-04" \

6 --data \

7 '{

8 "model" : "claude-3-sonnet-20240229",

9 "max_tokens" : 1024,

10 "tools" : [{

11 "name" : "record_summary",

12 "description" : "Record summary of image into well-structured JSON.",

13 "input_schema" : {

14 "type" : "object",

Utilisation d’outils 139

15 "properties" : {

16 "key_colors" : {

17 "type" : "array",

18 "items" : {

19 "type" : "object",

20 "properties" : {

21 "r" : {

22 "type" : "number",

23 "description" : "red value [0.0, 1.0]"

24 },

25 "g" : {

26 "type" : "number",

27 "description" : "green value [0.0, 1.0]"

28 },

29 "b" : {

30 "type" : "number",

31 "description" : "blue value [0.0, 1.0]"

32 },

33 "name" : {

34 "type" : "string",

35 "description" : "Human-readable color name

36 in snake_case, e.g.

37 \"olive_green\"or

38 \"turquoise\""

39 }

40 },

41 "required" : ["r", "g", "b", "name"]

42 },

43 "description" : "Key colors in the image. Four or less."

44 },

45 "description" : {

46 "type" : "string",

47 "description" : "Image description. 1-2 sentences max."

48 },

49 "estimated_year" : {

50 "type" : "integer",

51 "description" : "Estimated year that the image was taken,

52 if is it a photo. Only set this if the

53 image appears to be non-fictional.

54 Rough estimates are okay !"

55 }

56 },

Utilisation d’outils 140

57 "required" : ["key_colors", "description"]

58 }

59 }],

60 "messages" : [

61 {

62 "role" : "user",

63 "content" : [

64 {

65 "type" : "image",

66 "source" : {

67 "type" : "base64",

68 "media_type" : "'$IMAGE_MEDIA_TYPE'",

69 "data" : "'$IMAGE_BASE64'"

70 }

71 },

72 {

73 "type" : "text",

74 "text" : "Use `record_summary` to describe this image."

75 }

76]

77 }

78]

79 }'

Dans l’exemple fourni, nous utilisons le modèle Claude 3 d’Anthropic pour générer un

résumé JSON structuré d’une image. Voici comment cela fonctionne :

1. Nous définissons un seul outil nommé record_summary dans le tableau tools

de la charge utile de la requête. Cet outil est chargé d’enregistrer un résumé de

l’image dans un format JSON bien structuré.

2. L’outil record_summary possède un input_schema qui spécifie la structure

attendue de la sortie JSON. Il définit trois propriétés :

• key_colors : Un tableau d’objets représentant les couleurs principales de

l’image. Chaque objet couleur possède des propriétés pour les valeurs rouge,

vert et bleu (allant de 0.0 à 1.0) et un nom de couleur lisible par l’humain au

format snake_case.

Utilisation d’outils 141

• description : Une propriété de type chaîne de caractères pour une brève

description de l’image, limitée à 1-2 phrases.

• estimated_year : Une propriété entière optionnelle pour l’année estimée

de prise de l’image, si celle-ci semble être une photo non fictionnelle.

3. Dans le tableau messages, nous fournissons les données de l’image sous forme de

chaîne encodée en base64 avec le type de média. Cela permet au modèle de traiter

l’image dans le cadre de l’entrée.

4. Nous demandons également à Claude d’utiliser l’outil record_summary pour

décrire l’image.

5. Lorsque la requête est envoyée au modèle Claude 3, celui-ci analyse l’image et

génère un résumé JSON basé sur l’input_schema spécifié. Le modèle extrait les

couleurs principales, fournit une brève description et estime l’année de prise de

vue (le cas échéant).

6. Le résumé JSON généré est transmis comme paramètres à l’outil

record_summary, fournissant une représentation structurée des caractéristiques

principales de l’image.

En utilisant l’outil record_summary avec un input_schema bien défini, nous pouvons

obtenir un résumé JSON structuré d’une image sans dépendre de l’extraction de texte

brut. Cette approche garantit que la sortie suit un format cohérent et peut être facilement

analysée et traitée par les composants en aval de l’application.

La capacité à forcer un appel de fonction et à spécifier la structure de sortie attendue est

une fonctionnalité puissante de l’utilisation d’outils dans les applications basées sur l’IA.

Elle permet aux développeurs d’avoir plus de contrôle sur la sortie générée et simplifie

l’intégration des données générées par l’IA dans le flux de travail de leur application.

Exécution de Fonction(s)

Vous avez défini des fonctions et interrogé votre IA, qui a décidé qu’elle devait appeler

l’une de vos fonctions. Maintenant, c’est au tour de votre code d’application ou de votre

Utilisation d’outils 142

bibliothèque, si vous utilisez une gem Ruby comme raix-rails, de dispatcher l’appel

de fonction et ses paramètres vers l’implémentation correspondante dans votre code

d’application.

Votre code d’application décide quoi faire avec les résultats de l’exécution de la fonction.

Peut-être que cela implique une seule ligne de code dans un lambda, ou peut-être que

cela implique d’appeler une API externe. Peut-être que cela implique d’appeler un autre

composant d’IA, ou peut-être que cela implique des centaines, voire desmilliers de lignes

de code dans le reste de votre système. C’est entièrement à vous de décider.

Parfois, l’appel de fonction est la fin de l’opération, mais si les résultats représentent des

informations dans une chaîne de pensée qui doit être poursuivie par l’IA, alors votre

code d’application doit insérer les résultats de l’exécution dans la transcription du chat

et laisser l’IA continuer le traitement.

Par exemple, voici une déclaration de fonction Raix utilisée par l’AccountManager

d’Olympia pour communiquer avec nos clients dans le cadre d’une Orchestration

Intelligente des Flux de Travail pour le service client.

1 class AccountManager

2 include Raix ::ChatCompletion

3 include Raix ::FunctionDispatch

4

5 # lots of other functions...

6

7 function :notify_account_owner,

8 "Don't share UUID. Mention dollars if subscription changed",

9 message : { type : "string" } do |arguments|

10 account.owner.freeform_notify(

11 subject : "Account Change Notification",

12 message : arguments[:message]

13)

14 "Notified account owner"

15 end

Il n’est peut-être pas immédiatement évident de comprendre ce qui se passe ici, alors je

vais le décomposer.

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

Utilisation d’outils 143

1. La classe AccountManager définit de nombreuses fonctions liées à la gestion

des comptes. Elle peut modifier votre forfait, ajouter et supprimer des membres

d’équipe, entre autres.

2. Ses instructions de haut niveau indiquent à AccountManager qu’il doit notifier

le propriétaire du compte des résultats de la demande de modification du compte,

en utilisant la fonction notify_account_owner.

3. La définition concise de la fonction comprend :

• son nom

• sa description

• ses paramètres message: { type: "string" }

• un bloc à exécuter lorsque la fonction est appelée

Après avoir mis à jour la transcription avec les résultats du bloc de fonction, la méthode

chat_completion est appelée à nouveau. Cette méthode est chargée de renvoyer la

transcription mise à jour de la conversation aumodèle d’IA pour un traitement ultérieur.

Nous appelons ce processus une boucle de conversation.

Lorsque le modèle d’IA reçoit une nouvelle demande de complétion de conversation

avec une transcription mise à jour, il a accès aux résultats de la fonction précédemment

exécutée. Il peut analyser ces résultats, les intégrer dans son processus de décision

et générer la prochaine réponse ou action basée sur le contexte cumulatif de la

conversation. Il peut choisir d’exécuter des fonctions supplémentaires basées sur le

contexte mis à jour, ou il peut générer une réponse finale à la requête originale s’il

détermine qu’aucun autre appel de fonction n’est nécessaire.

Poursuite optionnelle de la requête originale

Lorsque vous renvoyez les résultats de l’outil au GML et continuez le traitement

de la requête originale, l’IA utilise ces résultats pour soit appeler des fonctions

supplémentaires, soit générer une réponse finale en texte brut.

Utilisation d’outils 144

Certains modèles comme Command-R de Cohere peuvent citer les outils

spécifiques qu’ils ont utilisés dans leurs réponses, offrant une transparence

et une traçabilité supplémentaires.

Selon le modèle utilisé, les résultats de l’appel de fonction vivront dans des messages de

transcription qui ont leur propre rôle spécial ou seront reflétés dans une autre syntaxe.

Mais l’important est que ces données soient dans la transcription, afin qu’elles puissent

être prises en compte par l’IA lorsqu’elle décide quoi faire ensuite.

Une erreur courante (et potentiellement coûteuse) est d’oublier d’ajouter les

résultats de la fonction à la transcription avant de continuer la conversation.

En conséquence, l’IA sera sollicitée essentiellement de la même manière

qu’avant qu’elle n’appelle la fonction la première fois. En d’autres termes,

du point de vue de l’IA, elle n’a pas encore appelé la fonction. Alors elle

l’appelle à nouveau. Et encore. Et encore, indéfiniment jusqu’à ce que vous

l’interrompiez. Espérons que votre contexte n’était pas trop grand et que

votre modèle n’était pas trop coûteux !

Meilleures pratiques pour l’utilisation des outils

Pour tirer le meilleur parti de l’utilisation des outils, considérez les meilleures pratiques

suivantes.

Définitions descriptives

Fournissez des noms et des descriptions clairs et descriptifs pour chaque outil et ses

paramètres d’entrée. Cela aide le GML à mieux comprendre l’objectif et les capacités de

chaque outil.

https://openrouter.ai/models/cohere/command-r

Utilisation d’outils 145

Je peux vous dire par expérience que la sagesse commune qui dit que “nommer

est difficile” s’applique ici ; j’ai vu des résultats radicalement différents des GMLs

simplement en changeant les noms des fonctions ou la formulation des descriptions.

Parfois, supprimer les descriptions améliore les performances.

Traitement des résultats d’outils

Lors de la transmission des résultats d’outils au GML, assurez-vous qu’ils sont bien

structurés et complets. Utilisez des clés et des valeurs significatives pour représenter la

sortie de chaque outil. Expérimentez avec différents formats et voyez lequel fonctionne

le mieux, du JSON au texte brut.

Le Result Interpreter aborde ce défi en utilisant l’IA pour analyser les résultats et fournir

des explications, des résumés ou des points clés compréhensibles par l’humain.

Gestion des erreurs

Mettez en place des mécanismes robustes de gestion des erreurs pour gérer les cas où

le GML pourrait générer des paramètres d’entrée invalides ou non pris en charge pour

les appels d’outils. Gérez et récupérez gracieusement toute erreur qui pourrait survenir

pendant l’exécution de l’outil.

Une qualité particulièrement agréable de l’IA est qu’elle comprend les messages

d’erreur ! Ce qui signifie que si vous travaillez dans un état d’esprit rapide et

approximatif, vous pouvez simplement capturer toutes les exceptions générées dans

l’implémentation d’un outil et les renvoyer à l’IA pour qu’elle sache ce qui s’est passé !

Par exemple, voici une version simplifiée de l’implémentation de la recherche Google

dans Olympia :

Utilisation d’outils 146

1 def google_search(conversation, params)

2 conversation.update_cstatus("Searching Google...")

3 query = params[:query]

4 search = GoogleSearch.new(query).get_hash

5

6 conversation.update_cstatus("Summarizing results...")

7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)

8 rescue StandardError => e

9 Honeybadger.notify(e)

10 { error : e.message }.inspect

11 end

Les recherches Google dans Olympia se font en deux étapes. D’abord vous effectuez la

recherche, puis vous résumez les résultats. En cas d’échec, quelle qu’en soit la raison, le

message d’erreur est encapsulé et renvoyé à l’IA. Cette technique est le fondement de

pratiquement tous les modèles de Gestion Intelligente des Erreurs.

Par exemple, supposons que l’appel à l’API GoogleSearch échoue en raison d’une

exception 503 Service Unavailable. Cette erreur remonte jusqu’au niveau supérieur du

rescue, et la description de l’erreur est renvoyée à l’IA comme résultat de l’appel de

fonction. Au lieu de simplement présenter à l’utilisateur un écran vide ou une erreur

technique, l’IA dit quelque chose comme “Je suis désolé, mais je ne peux pas accéder à

mes capacités de recherche Google pour le moment. Je peux réessayer plus tard, si vous

le souhaitez.”

Cela peut sembler n’être qu’une astuce intelligente, mais considérez un autre type

d’erreur, où l’IA appelait une API externe et avait le contrôle direct des paramètres

à transmettre à l’API. Peut-être a-t-elle fait une erreur dans la façon dont elle a généré

ces paramètres ? À condition que le message d’erreur de l’API externe soit suffisamment

détaillé, le fait de renvoyer le message d’erreur à l’IA appelante signifie qu’elle peut

reconsidérer ces paramètres et réessayer. Automatiquement. Quelle que soit l’erreur.

Maintenant, pensez à ce qu’il faudrait pour reproduire ce type de gestion d’erreurs

robuste dans du code normal. C’est pratiquement impossible.

Utilisation d’outils 147

Raffinement Itératif

Si le LLM ne recommande pas les outils appropriés ou génère des réponses sous-

optimales, itérez sur les définitions d’outils, les descriptions et les paramètres d’entrée.

Affinez et améliorez continuellement la configuration des outils en fonction du

comportement observé et des résultats souhaités.

1. Commencez par des définitions d’outils simples : Commencez par définir des outils

avec des noms, des descriptions et des paramètres d’entrée clairs et concis. Évitez

de trop compliquer la configuration des outils au début et concentrez-vous sur les

fonctionnalités essentielles. Par exemple, si vous voulez sauvegarder les résultats

d’une analyse de sentiment, commencez par une définition basique comme :

1 {

2 "name" : "save_sentiment_score",

3 "description" : "Analyze user-provided text and generate sentiment score",

4 "parameters" : {

5 "type" : "object",

6 "properties" : {

7 "score" : {

8 "type" : "float",

9 "description" : "sentiment score from -1 (negative) to 1 (positive)"

10 }

11 },

12 "required" : ["score"]

13 }

14 }

2. Tester et observer : Une fois que vous avez mis en place les définitions d’outils

initiales, testez-les avec différentes invites et observez comment le GML interagit

avec l’outil. Portez attention à la qualité et à la pertinence des réponses générées.

Si le GML génère des réponses sous-optimales, il est temps d’affiner les définitions

d’outils.

Utilisation d’outils 148

3. Affiner les descriptions : Si le GML ne comprend pas correctement l’objectif

d’un outil, essayez d’affiner la description de l’outil. Fournissez plus de contexte,

d’exemples ou de clarifications pour guider le GML dans l’utilisation efficace de

l’outil. Par exemple, vous pouvez mettre à jour la description de l’outil d’analyse

des sentiments pour aborder plus spécifiquement le ton émotionnel du texte

analysé :

1 {

2 "name" : "save_sentiment_score",

3 "description" : "Determine the overall emotional tone of a piece of text,

4 such as customer reviews, social media posts, or feedback comments.",

5 ...

6 }

4. Ajustez les paramètres d’entrée : Si le LLM génère des paramètres d’entrée non

valides ou non pertinents pour un outil, envisagez d’ajuster les définitions des

paramètres. Ajoutez des contraintes plus spécifiques, des règles de validation ou

des exemples pour clarifier le format d’entrée attendu.

5. Itérez selon les retours : Surveillez en permanence la performance de vos outils et

recueillez les retours des utilisateurs ou des parties prenantes. Utilisez ces retours

pour identifier les domaines à améliorer et apportez des ajustements itératifs aux

définitions des outils. Par exemple, si les utilisateurs signalent que l’analyse ne

gère pas bien le sarcasme, vous pouvez ajouter une note dans la description :

Utilisation d’outils 149

1 {

2 "name" : "save_sentiment_score",

3 "description" : "Analyze the sentiment of a given text and return a sentiment

4 score between -1 (negative) and 1 (positive). Note : Sarcasm should be

5 considered negative.",

6 ...

7 }

En affinant itérativement vos définitions d’outils basées sur le comportement observé

et les retours d’expérience, vous pouvez progressivement améliorer la performance et

l’efficacité de votre application basée sur l’IA. N’oubliez pas de maintenir les définitions

d’outils claires, concises et centrées sur la tâche spécifique à accomplir. Testez et validez

régulièrement les interactions des outils pour vous assurer qu’elles correspondent à vos

résultats souhaités.

Composition et Chaînage d’Outils

L’un des aspects les plus puissants de l’utilisation d’outils, qui n’a été qu’évoqué jusqu’à

présent, est la capacité de composer et de chaîner plusieurs outils ensemble pour

accomplir des tâches complexes. En concevant soigneusement vos définitions d’outils et

leurs formats d’entrée/sortie, vous pouvez créer des blocs de construction réutilisables

qui peuvent être combinés de différentes manières.

Prenons un exemple où vous construisez un pipeline d’analyse de données pour votre

application basée sur l’IA. Vous pourriez avoir les outils suivants :

1. DataRetrieval : Un outil qui récupère des données depuis une base de données

ou une API selon des critères spécifiés.

2. DataProcessing : Un outil qui effectue des calculs, des transformations ou des

agrégations sur les données récupérées.

3. DataVisualization : Un outil qui présente les données traitées dans un format

convivial, comme des graphiques ou des diagrammes.

Utilisation d’outils 150

En chaînant ces outils ensemble, vous pouvez créer un flux de travail puissant

qui récupère les données pertinentes, les traite et présente les résultats de manière

significative. Voici à quoi pourrait ressembler le flux de travail d’utilisation des outils :

1. Le GML reçoit une requête utilisateur demandant des informations sur les données

de vente pour une catégorie de produits spécifique.

2. Le GML sélectionne l’outil DataRetrieval et génère les paramètres d’entrée

appropriés pour récupérer les données de vente pertinentes de la base de données.

3. Les données récupérées sont “transmises” à l’outil DataProcessing, qui calcule

des métriques telles que le revenu total, le prix de vente moyen et le taux de

croissance.

4. Les données traitées sont ensuite digérées par l’outil DataVisualization, qui

crée un graphique ou un diagramme visuellement attrayant pour représenter les

informations, renvoyant l’URL du graphique au GML.

5. Enfin, le GML génère une réponse formatée à la requête de l’utilisateur en utilisant

markdown, incorporant les données visualisées et fournissant un résumé des

principales conclusions.

En composant ces outils ensemble, vous pouvez créer un flux de travail d’analyse de

données fluide qui peut être facilement intégré dans votre application. La beauté de

cette approche est que chaque outil peut être développé et testé indépendamment, puis

combiné de différentes manières pour résoudre divers problèmes.

Pour permettre une composition et un chaînage fluides des outils, il est important de

définir des formats d’entrée et de sortie clairs pour chaque outil.

Par exemple, l’outil DataRetrieval pourrait accepter des paramètres tels que les

détails de connexion à la base de données, le nom de la table et les conditions de

requête, et renvoyer l’ensemble de résultats sous forme d’objet JSON structuré. L’outil

DataProcessing peut alors s’attendre à recevoir cet objet JSON en entrée et produire

un objet JSON transformé en sortie. En standardisant le flux de données entre les outils,

vous pouvez assurer la compatibilité et la réutilisabilité.

Utilisation d’outils 151

Lors de la conception de votre écosystème d’outils, réfléchissez à la façon dont différents

outils peuvent être combinés pour répondre aux cas d’utilisation courants de votre

application. Envisagez de créer des outils de haut niveau qui encapsulent les flux de

travail courants ou la logique métier, facilitant ainsi la sélection et l’utilisation efficace

par le GML.

N’oubliez pas que la puissance de l’utilisation d’outils réside dans la flexibilité et la

modularité qu’elle offre. En décomposant des tâches complexes en outils plus petits

et réutilisables, vous pouvez créer une application basée sur l’IA robuste et adaptable

capable de relever un large éventail de défis.

Orientations Futures

À mesure que le domaine du développement d’applications basées sur l’IA évolue, nous

pouvons nous attendre à de nouvelles avancées dans les capacités d’utilisation d’outils.

Voici quelques orientations futures potentielles :

1. Utilisation d’outils à plusieurs étapes : Les GML pourront peut-être décider

combien de fois ils doivent utiliser les outils pour générer une réponse

satisfaisante. Cela pourrait impliquer plusieurs cycles de sélection et d’exécution

d’outils basés sur des résultats intermédiaires.

2. Outils prédéfinis : Les plateformes d’IA pourront fournir un ensemble d’outils

prédéfinis que les développeurs pourront utiliser directement, comme des

interpréteurs Python, des outils de recherche web ou des fonctions utilitaires

courantes.

3. Intégration transparente : À mesure que l’utilisation d’outils se généralise, nous

pouvons nous attendre à une meilleure intégration entre les plateformes d’IA et

les cadres de développement populaires, facilitant l’incorporation de l’utilisation

d’outils dans leurs applications.

Utilisation d’outils 152

L’utilisation d’outils est une technique puissante qui permet aux développeurs

d’exploiter tout le potentiel des GML dans les applications basées sur l’IA. En

connectant les GML à des outils et des ressources externes, vous pouvez créer des

systèmes plus dynamiques, intelligents et conscients du contexte qui peuvent s’adapter

aux besoins des utilisateurs et fournir des informations et des actions précieuses.

Bien que l’utilisation d’outils offre d’immenses possibilités, il est important d’être

conscient des défis et des considérations potentiels. Un aspect clé est la gestion de la

complexité des interactions entre outils et la garantie de la stabilité et de la fiabilité du

système global. Vous devez gérer les scénarios où les appels d’outils peuvent échouer,

renvoyer des résultats inattendus ou avoir des implications sur les performances. De

plus, vous devez envisager des mesures de sécurité et de contrôle d’accès pour empêcher

l’utilisation non autorisée ou malveillante des outils. Des mécanismes appropriés de

gestion des erreurs, de journalisation et de surveillance sont cruciaux pour maintenir

l’intégrité et les performances de votre application basée sur l’IA.

En explorant les possibilités d’utilisation d’outils dans vos propres projets, n’oubliez

pas de commencer par des objectifs clairs, de concevoir des définitions d’outils bien

structurées, et d’itérer en fonction des retours d’expérience et des résultats. Avec

l’approche et l’état d’esprit appropriés, l’utilisation d’outils peut débloquer de nouveaux

niveaux d’innovation et de valeur dans vos applications basées sur l’IA.

Traitement de flux

La diffusion de données via HTTP, également connue sous le nomd’événements envoyés

par le serveur (SSE), est un mécanisme où le serveur envoie continuellement des

données au client au fur et à mesure qu’elles deviennent disponibles, sans que le client

n’ait à les demander explicitement. Comme la réponse de l’IA est générée de manière

incrémentielle, il est logique d’offrir une expérience utilisateur réactive en affichant

la sortie de l’IA au fur et à mesure de sa génération. Et en fait, toutes les API des

fournisseurs d’IA que je connais proposent les réponses en streaming comme option

dans leurs points de terminaison de completion.

La raison pour laquelle ce chapitre apparaît ici dans le livre, juste après Utilisation des

outils, est liée à la puissance de la combinaison de l’utilisation d’outils avec les réponses

en direct de l’IA aux utilisateurs. Cela permet des expériences dynamiques et interactives

où l’IA peut traiter les entrées des utilisateurs, utiliser divers outils et fonctions à sa

discrétion, puis fournir des réponses en temps réel.

Traitement de flux 154

Pour obtenir cette interaction fluide, vous devez écrire des gestionnaires de flux qui

peuvent distribuer les appels de fonctions d’outils invoqués par l’IA ainsi que la sortie en

texte brut à l’utilisateur final. La nécessité de boucler après le traitement d’une fonction

d’outil ajoute un défi intéressant au travail.

Implémentation d’un ReplyStream

Pour démontrer comment le traitement de flux peut être implémenté, ce chapitre va

examiner en profondeur une version simplifiée de la classe ReplyStream qui est utilisée

dans Olympia. Les instances de cette classe peuvent être passées comme paramètre

stream dans les bibliothèques clientes d’IA telles que ruby-openai et openrouter

Voici comment j’utilise ReplyStream dans le PromptSubscriber d’Olympia, qui

écoute via Wisper la création de nouveaux messages utilisateur.

1 class PromptSubscriber

2 include Raix ::ChatCompletion

3 include Raix ::PromptDeclarations

4

5 # many other declarations omitted...

6

7 prompt text : -> { user_message.content },

8 stream : -> { ReplyStream.new(self) },

9 until : -> { bot_message.complete ? }

10

11 def message_created(message) # invoked by Wisper

12 return unless message.role.user ? && message.content ?

13

14 # rest of the implementation omitted...

En plus d’une référence context vers l’abonné de prompt qui l’a instanciée, la classe

ReplyStream possède également des variables d’instance pour stocker un tampon de

données reçues, ainsi que des tableaux pour suivre les noms de fonctions et les arguments

invoqués pendant le traitement du flux.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

Traitement de flux 155

1 class ReplyStream

2 attr_accessor :buffer, :f_name, :f_arguments, :context

3

4 delegate :bot_message, :dispatch, to : :context

5

6 def initialize(context)

7 self.context = context

8 self.buffer = []

9 self.f_name = []

10 self.f_arguments = []

11 end

12

13 def call(chunk, bytesize = nil)

14 # ...

15 end

16

17 # ...

18 end

La méthode initialize configure l’état initial de l’instance ReplyStream, en

initialisant le tampon, le contexte et d’autres variables.

La méthode call est le point d’entrée principal pour le traitement des données en flux

continu. Elle prend un fragment de données chunk (représenté sous forme de table de

hachage) et un paramètre optionnel bytesize, qui dans notre exemple n’est pas utilisé.

À l’intérieur de cette méthode, la classe utilise la correspondance de motifs pour gérer

différents scénarios selon la structure du fragment reçu.

L’appel de deep_symbolize_keys sur le fragment permet de rendre la

correspondance de motifs plus élégante, en nous permettant de travailler

avec des symboles plutôt que des chaînes de caractères.

Traitement de flux 156

1 def call(chunk, _bytesize)

2 case chunk.deep_symbolize_keys

3

4 in { # match function name

5 choices : [

6 {

7 delta : {

8 tool_calls : [

9 { index : index, function : {name : name} }

10]

11 }

12 }

13] }

14

15 f_name[index] = name

Le premier motif que nous cherchons à identifier est un appel d’outil ainsi que le nom

de fonction qui lui est associé. Si nous en détectons un, nous le plaçons dans le tableau

f_name. Nous stockons les noms de fonction dans un tableau indexé, car le modèle est

capable d’effectuer des appels de fonction en parallèle, envoyant plusieurs fonctions à

exécuter simultanément.

L’appel de fonctions en parallèle est la capacité d’unmodèle d’IA à effectuer plusieurs

appels de fonction ensemble, permettant aux effets et aux résultats de ces appels

de fonction d’être résolus en parallèle. Cela est particulièrement utile lorsque les

fonctions prennent beaucoup de temps, et réduit les allers-retours avec l’API, ce qui

peut en retour permettre d’économiser une quantité significative de jetons.

Ensuite, nous devons identifier les arguments correspondant aux appels de fonction.

Traitement de flux 157

1 in { # match arguments

2 choices : [

3 {

4 delta : {

5 tool_calls : [

6 {

7 index : index, function : {arguments : argument }

8 }

9]

10 }

11 }

12]}

13

14 f_arguments[index] ||= "" # initialize if not already

15 f_arguments[index] << argument

De la même manière que nous avons géré les noms de fonction, nous rangeons les

arguments dans un tableau indexé.

Ensuite, nous recherchons les messages destinés à l’utilisateur, qui arriveront du serveur

un jeton à la fois et seront assignés à la variable new_content. Nous devons également

surveiller finish_reason. Il restera nil jusqu’au dernier fragment de la séquence de

sortie.

1 in {

2 choices : [

3 { delta : {content : new_content}, finish_reason : finish_reason }

4]}

5

6 # you could transmit every chunk to the user here...

7 buffer << new_content.to_s

8

9 if finish_reason.present ?

10 finalize

11 elsif new_content.to_s.match ?(/\n\n/)

12 send_to_client # ...or buffer and transmit once per paragraph

13 end

De manière importante, nous ajoutons une expression de correspondance de motif

pour gérer les messages d’erreur envoyés par le fournisseur du modèle d’IA. Dans

Traitement de flux 158

les environnements de développement locaux, nous levons une exception, mais en

production, nous journalisons l’erreur et finalisons.

1 in { error : { message : } }

2 if Rails.env.local ?

3 raise message

4 else

5 Honeybadger.notify("AI Error : #{message}")

6 finalize

7 end

La dernière clause else de l’instruction case s’exécute si aucun des motifs précédents

n’a correspondu. C’est simplement une mesure de sécurité pour que nous puissions

découvrir si le modèle d’IA commence à nous envoyer des fragments non reconnus.

1 else

2 Honeybadger.notify("Unrecognized Chunk : #{chunk}")

3 end

4 end

La méthode send_to_client est responsable de l’envoi du contenu mis en tampon

vers le client. Elle vérifie que le tampon n’est pas vide, met à jour le contenu du message

du bot, effectue le rendu du message du bot et sauvegarde le contenu dans la base de

données pour assurer la persistance des données.

Traitement de flux 159

1 def send_to_client

2 # no need to process pure whitespace

3 return if buffer.join.squish.blank ?

4

5 # set the buffer content on the bot message

6 content = buffer.join

7 bot_message.content = content

8

9 # save to database so that we never lose data

10 # even if the stream doesn't terminate correctly

11 bot_message.update_column(:content, content)

12

13 # update content via websocket

14 ConversationRenderer.update(bot_message)

15 end

La méthode finalize est appelée lorsque le traitement du flux est terminé. Elle

distribue les appels de fonction si certains ont été reçus pendant le flux, met à jour le

message du bot avec le contenu final et d’autres informations pertinentes, et réinitialise

l’historique des appels de fonction

1 def finalize

2 if f_name.any ?

3 f_name.each_with_index do |name, index|

4 # takes care of calling the function wherever it's implemented

5 dispatch(name :, arguments : JSON.parse(f_arguments[index]))

6 end

7

8 # reset the function call history

9 f_name.clear

10 f_arguments.clear

11 else

12 content = buffer.join.presence

13 bot_message.update !(content :, complete : true)

14 ConversationRenderer.update(bot_message)

15 end

16 end

Si le modèle décide d’appeler une fonction, vous devez “distribuer” cet appel de fonction

Traitement de flux 160

(nom et arguments) de manière à ce qu’il soit exécuté et que les messages function_-

call et function_result soient ajoutés à la transcription de la conversation

D’après mon expérience, il est préférable de gérer la création des messages de fonction à

un seul endroit dans votre base de code, plutôt que de s’appuyer sur les implémentations

des outils. C’est non seulement plus propre, mais il y a aussi une raison pratique très

importante : si le modèle d’IA appelle une fonction et ne voit pas les messages d’appel

et de résultat correspondants dans la transcription lors de la boucle, il appellera la

même fonction à nouveau. Potentiellement indéfiniment. Rappelez-vous que l’IA est

complètement sans état, donc à moins que vous ne lui renvoyiez ces appels de fonction,

ils n’ont jamais eu lieu.

1 # PromptSubscriber#dispatch

2

3 def dispatch(name :, arguments :)

4 # adds a function_call message to the conversation transcript

5 # plus dispatches to tool and returns result

6 conversation.function_call !(name, arguments).then do |result|

7 # add function result message to the transcript

8 conversation.function_result !(name, result)

9 end

10 end

Effacer l’historique des appels de fonction après leur exécution est tout aussi

important que de s’assurer que l’appel et les résultats se retrouvent dans

votre transcription, afin d’éviter de continuer à appeler les mêmes fonctions

encore et encore à chaque boucle.

La «Boucle de Conversation»

Je mentionne souvent le bouclage, mais si vous débutez avec l’appel de fonctions, il n’est

peut-être pas évident de comprendre pourquoi nous avons besoin d’une boucle. La raison

Traitement de flux 161

est que lorsque l’IA «demande» d’exécuter des fonctions d’outil en son nom, elle cesse

de répondre. C’est à vous d’exécuter ces fonctions, de rassembler les résultats, de les

ajouter à la transcription, puis de soumettre à nouveau l’invite originale afin d’obtenir

un nouveau lot d’appels de fonction ou des résultats destinés à l’utilisateur.

Dans la classe PromptSubscriber, nous utilisons la méthode prompt du module

PromptDeclarations pour définir le comportement de la boucle de conversation. Le

paramètre until est défini sur -> { bot_message.complete? }, ce qui signifie que

la boucle continuera jusqu’à ce que le bot_message soit marqué comme complet.

1 prompt text : -> { user_message.content },

2 stream : -> { ReplyStream.new(self) },

3 until : -> { bot_message.complete ? }

Mais quand est-ce que bot_message est marqué comme complet ? Si vous

avez oublié, reportez-vous à la ligne 13 de la méthode finalize.

Passons en revue toute la logique de traitement de flux.

1. Le PromptSubscriber reçoit un nouveau message utilisateur via la méthode

message_created, qui est invoquée par le système pub/sub Wisper chaque fois

que l’utilisateur final crée une nouvelle invite.

2. La méthode de classe prompt définit de manière déclarative le comportement de

la logique de complétion du chat pour le PromptSubscriber. Le modèle d’IA

exécutera une complétion de chat avec le contenu du message de l’utilisateur, une

nouvelle instance de ReplyStream comme paramètre de flux, et la condition de

boucle spécifiée.

3. Le modèle d’IA traite l’invite et commence à générer une réponse. Au fur et

à mesure que la réponse est diffusée en flux, la méthode call de l’instance

ReplyStream est invoquée pour chaque fragment de données.

Traitement de flux 162

4. Si le modèle d’IA décide d’appeler une fonction d’outil, le nom de la fonction et les

arguments sont extraits du fragment et stockés respectivement dans les tableaux

f_name et f_arguments.

5. Si le modèle d’IA génère du contenu destiné à l’utilisateur, il est mis en mémoire

tampon et envoyé au client via la méthode send_to_client.

6. Une fois le traitement du flux terminé, la méthode finalize est appelée. Si des

fonctions d’outil ont été invoquées pendant le flux, elles sont expédiées en utilisant

la méthode dispatch du PromptSubscriber.

7. La méthode dispatch ajoute un message function_call à la transcription de

la conversation, exécute la fonction d’outil correspondante, et ajoute un message

function_result à la transcription avec le résultat de l’appel de fonction.

8. Après l’expédition des fonctions d’outil, l’historique des appels de fonction est

effacé pour éviter les appels de fonction en double dans les boucles suivantes.

9. Si aucune fonction d’outil n’a été invoquée, la méthode finalize met à jour

le bot_message avec le contenu final, le marque comme complet, et envoie le

message mis à jour au client.

10. La condition de boucle -> { bot_message.complete? } est évaluée. Si le

bot_message n’est pas marqué comme complet, la boucle continue, et l’invite

originale est soumise à nouveau avec la transcription de conversation mise à jour.

11. Les étapes 3 à 10 sont répétées jusqu’à ce que le bot_message soit marqué

comme complet, indiquant que le modèle d’IA a terminé de générer sa réponse

et qu’aucune autre fonction d’outil ne doit être exécutée.

En implémentant cette boucle de conversation, vous permettez aumodèle d’IA d’engager

une interaction bidirectionnelle avec l’application, exécutant des fonctions d’outil

selon les besoins et générant des réponses destinées à l’utilisateur jusqu’à ce que la

conversation atteigne une conclusion naturelle.

La combinaison du traitement de flux et de la boucle de conversation permet des

expériences dynamiques et interactives basées sur l’IA, où le modèle d’IA peut traiter

Traitement de flux 163

les entrées utilisateur, utiliser divers outils et fonctions, et fournir des réponses en temps

réel basées sur le contexte évolutif de la conversation.

Auto-continuation

Il est important d’être conscient des limitations des sorties d’IA. La plupart des modèles

ont un nombre maximum de jetons qu’ils peuvent générer dans une seule réponse,

déterminé par le paramètre max_tokens. Si le modèle d’IA atteint cette limite lors de

la génération d’une réponse, il s’arrêtera brusquement et indiquera que la sortie a été

tronquée.

Dans la réponse en flux de l’API de la plateforme d’IA, vous pouvez détecter cette

situation en examinant la variable finish_reason dans le fragment. Si la finish_-

reason est définie sur "length" (ou une autre valeur clé spécifique au modèle), cela

signifie que le modèle a atteint sa limite maximale de jetons pendant la génération et

que la sortie a été interrompue.

Une façon de gérer ce scénario avec élégance et de fournir une expérience utilisateur

fluide est d’implémenter un mécanisme d’auto-continuation dans votre logique de

traitement de flux. En ajoutant une correspondance de motif pour les raisons de fin

liées à la longueur, vous pouvez choisir de boucler et de continuer automatiquement la

sortie là où elle s’est arrêtée.

Voici un exemple volontairement simplifié de la façon dont vous pouvez modifier la

méthode call dans la classe ReplyStream pour prendre en charge l’auto-continuation :

Traitement de flux 164

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices : [

9 { delta : {content : new_content},

10 finish_reason : finish_reason }] }

11

12 buffer << new_content.to_s

13

14 if finish_reason.blank ?

15 send_to_client if new_content.to_s.match ?(/\n\n/)

16 elsif LENGTH_STOPS.include ?(finish_reason)

17 continue_cutoff

18 else

19 finalize

20 end

21

22 # ...

23 end

24 end

25

26 private

27

28 def continue_cutoff

29 conversation.bot_message !(buffer.join, visible : false)

30 conversation.user_message !("please continue", visible : false)

31 bot_message.update_column(:created_at, Time.current)

32 end

Dans cette version modifiée, lorsque la finish_reason indique une sortie tronquée,

au lieu de finaliser le flux, nous ajoutons une paire de messages à la transcription sans la

finaliser, déplaçons le message de réponse original visible par l’utilisateur vers le “bas”

de la transcription en mettant à jour son attribut created_at, puis laissons la boucle

se poursuivre, permettant ainsi à l’IA de continuer là où elle s’était arrêtée.

Rappelez-vous que le point de terminaison de complétion de l’IA est sans état. Il ne

Traitement de flux 165

“connaît” que ce que vous lui communiquez via la transcription. Dans ce cas, la façon

dont nous communiquons à l’IA qu’elle a été interrompue est d’ajouter des messages

“invisibles” (pour l’utilisateur final) à la transcription. Souvenez-vous cependant qu’il

s’agit d’un exemple volontairement simplifié. Une implémentation réelle nécessiterait

une gestion plus approfondie de la transcription pour s’assurer que nous ne gaspillons

pas de jetons et/ou ne confondons pas l’IA avec des messages d’assistant dupliqués dans

la transcription.

Une véritable implémentation de l’auto-continuation devrait également inclure ce qu’on

appelle une “logique de disjoncteur” pour empêcher les boucles incontrôlées. La raison

en est que, compte tenu de certains types de prompts utilisateur et de paramètres max_-

tokens bas, l’IA pourrait continuer à produire des sorties visibles par l’utilisateur en

boucle sans fin.

Gardez à l’esprit que chaque boucle nécessite une requête séparée, et que chaque

requête consomme à nouveau l’intégralité de votre transcription. Vous devriez

certainement prendre en compte les compromis entre l’expérience utilisateur

et l’utilisation de l’API lorsque vous décidez d’implémenter ou non l’auto-

continuation dans votre application. L’auto-continuation peut être particulièrement

dangereusement coûteuse, surtout lors de l’utilisation de modèles commerciaux

premium.

Conclusion

Le traitement de flux est un aspect crucial de la construction d’applications basées sur

l’IA qui combinent l’utilisation d’outils avec des réponses d’IA en direct. En gérant

efficacement les données en streaming des API de plateformes d’IA, vous pouvez

fournir une expérience utilisateur fluide et interactive, gérer des réponses volumineuses,

Traitement de flux 166

optimiser l’utilisation des ressources et gérer les erreurs avec élégance.

La classe Conversation::ReplyStream fournie démontre comment le traitement de

flux peut être implémenté dans une application Ruby en utilisant la correspondance de

motifs et l’architecture événementielle. En comprenant et en tirant parti des techniques

de traitement de flux, vous pouvez libérer tout le potentiel de l’intégration de l’IA dans

vos applications et offrir des expériences utilisateur puissantes et engageantes.

Données auto-réparatrices

Les données auto-réparatrices constituent une approche puissante pour garantir

l’intégrité, la cohérence et la qualité des données dans les applications en exploitant les

capacités des grands modèles de langage (LLM). Cette catégorie de modèles se concentre

sur l’idée d’utiliser l’IA pour détecter, diagnostiquer et corriger automatiquement les

anomalies, les incohérences ou les erreurs dans les données, réduisant ainsi la charge de

travail des développeurs tout en maintenant un niveau élevé de fiabilité des données.

À la base, les modèles de données auto-réparatrices reconnaissent que les données

sont l’élément vital de toute application, et garantir leur exactitude et leur intégrité

est crucial pour le bon fonctionnement et l’expérience utilisateur de l’application.

Cependant, la gestion et le maintien de la qualité des données peuvent être une tâche

complexe et chronophage, en particulier lorsque les applications grandissent en taille et

en complexité. C’est là que la puissance de l’IA entre en jeu.

Données auto-réparatrices 168

Dans les modèles de données auto-réparatrices, des agents IA sont employés pour

surveiller et analyser en permanence les données de votre application. Ces modèles ont

la capacité de comprendre et d’interpréter les modèles, les relations et les anomalies au

sein des données. En exploitant leurs capacités de traitement et de compréhension du

langage naturel, ils peuvent identifier les problèmes potentiels ou les incohérences dans

les données et prendre les mesures appropriées pour les corriger.

Le processus de données auto-réparatrices implique généralement plusieurs étapes clés :

1. Surveillance des données : Les agents IA surveillent constamment les flux de

données, les bases de données ou les systèmes de stockage de l’application, à la

recherche de signes d’anomalies, d’incohérences ou d’erreurs. Alternativement,

vous pouvez activer un composant IA en réaction à une exception.

2. Détection d’anomalies : Lorsqu’un problème est détecté, l’agent IA analyse les

données en détail pour identifier la nature et la portée spécifiques du problème.

Cela peut impliquer la détection de valeurs manquantes, de formats incohérents

ou de données qui violent des règles ou des contraintes prédéfinies.

3. Diagnostic et correction : Une fois le problème identifié, l’agent IA utilise ses

connaissances et sa compréhension du domaine des données pour déterminer la

ligne de conduite appropriée. Cela peut impliquer la correction automatique des

données, le remplissage des valeurs manquantes ou le signalement du problème

pour une intervention humaine si nécessaire.

4. Apprentissage continu (optionnel, selon le cas d’utilisation) : À mesure que

votre agent IA rencontre et résout divers problèmes de données, il peut produire

des descriptions de ce qui s’est passé et de la façon dont il a réagi. Ces métadonnées

peuvent être intégrées dans des processus d’apprentissage qui vous permettent (et

peut-être au modèle sous-jacent, via l’ajustement fin) de devenir plus efficace au

fil du temps dans l’identification et la résolution des anomalies de données.

En détectant et en corrigeant automatiquement les problèmes de données, vous pouvez

garantir que votre application fonctionne avec des données fiables et de haute qualité.

Données auto-réparatrices 169

Cela réduit le risque d’erreurs, d’incohérences ou de bogues liés aux données affectant

la fonctionnalité ou l’expérience utilisateur de l’application.

Une fois que vous avez des agents IA gérant la tâche de surveillance et de correction

des données, vous pouvez concentrer vos efforts sur d’autres aspects critiques de

l’application. Cela permet d’économiser du temps et des ressources qui auraient

autrement été consacrés au nettoyage et à la maintenance manuelle des données. En

fait, à mesure que vos applications grandissent en taille et en complexité, la gestion

manuelle de la qualité des données devient de plus en plus difficile. Les modèles de

“Données auto-réparatrices” s’adaptent efficacement en exploitant la puissance de l’IA

pour gérer de grands volumes de données et détecter les problèmes en temps réel.

De par leur nature, les modèles d’IA peuvent s’adapter aux changements de

modèles de données, de schémas ou d’exigences au fil du temps avec peu

ou pas de supervision. Tant que leurs directives fournissent des orientations

adéquates, en particulier concernant les résultats attendus, votre application

peut être capable d’évoluer et de gérer de nouveaux scénarios de données

sans nécessiter d’intervention manuelle extensive ou de modifications de

code.

Les modèles de données auto-réparatrices s’alignent bien avec les autres catégories

de modèles que nous avons discutées, comme la “Multitude d’agents”. La capacité de

données auto-réparatrices peut être considérée comme un type spécialisé d’agent qui se

concentre spécifiquement sur la garantie de la qualité et de l’intégrité des données. Ce

type d’agent fonctionne aux côtés d’autres agents IA, chacun contribuant à différents

aspects de la fonctionnalité de l’application.

La mise en œuvre des modèles de données auto-réparatrices dans la pratique nécessite

une conception et une intégration soignées des modèles d’IA dans l’architecture de

l’application. En raison des risques de perte et de corruption des données, vous devez

définir des directives claires sur la façon dont vous utiliserez cette technique. Vous devez

Données auto-réparatrices 170

également prendre en compte des facteurs tels que la performance, l’évolutivité et la

sécurité des données.

Étude de cas pratique : Réparation du JSON

défectueux

L’une des façons les plus pratiques et pratiques d’exploiter les données auto-réparatrices

est également très simple à expliquer : la réparation du JSON défectueux.

Cette technique peut être appliquée au défi courant de traiter des données imparfaites ou

incohérentes générées par les LLM, comme du JSON défectueux, et fournit une approche

pour détecter et corriger automatiquement ces problèmes.

Chez Olympia, je rencontre régulièrement des scénarios où les LLM génèrent des

données JSON qui ne sont pas parfaitement valides. Cela peut se produire pour diverses

raisons, comme lorsque le LLM ajoute des commentaires avant ou après le code

JSON, ou introduit des erreurs de syntaxe telles que des virgules manquantes ou des

guillemets doubles non échappés. Ces problèmes peuvent entraîner des erreurs d’analyse

syntaxique et provoquer des perturbations dans le fonctionnement de l’application.

Pour résoudre ce problème, j’ai mis en œuvre une solution pratique sous la forme

d’une classe JsonFixer. Cette classe incarne le modèle de “Données auto-réparables” en

prenant le JSON défectueux comme entrée et en utilisant un LLM pour le corriger tout

en préservant autant que possible les informations et l’intention d’origine.

Données auto-réparatrices 171

1 class JsonFixer

2 include Raix ::ChatCompletion

3

4 def call(bad_json, error_message)

5 raise "No data provided" if bad_json.blank ? || error_message.blank ?

6

7 transcript << {

8 system : "Consider user-provided JSON that generated a parse

9 exception. Do your best to fix it while preserving the

10 original content and intent as much as possible." }

11 transcript << { user : bad_json }

12 transcript << { assistant : "What is the error message ?"}

13 transcript << { user : error_message }

14 transcript << { assistant : "Here is the corrected JSON\n```json\n" }

15

16 self.stop = ["```"]

17

18 chat_completion(json : true)

19 end

20

21 def model

22 "mistralai/mixtral-8x7b-instruct :nitro"

23 end

24 end

Notez comment JsonFixer utilise Ventriloquist pour guider les réponses

de l’IA.

Le processus d’auto-réparation des données JSON fonctionne comme suit :

1. Génération JSON : Un LLM est utilisé pour générer des données JSON basées

sur certains prompts ou exigences. Cependant, en raison de la nature des LLM, le

JSON généré n’est pas toujours parfaitement valide. L’analyseur JSON lèvera bien

sûr une erreur ParserError si vous lui fournissez du JSON invalide.

Données auto-réparatrices 172

1 begin

2 JSON.parse(llm_generated_json)

3 rescue JSON ::ParserError => e

4 JsonFixer.new.call(llm_generated_json, e.message)

5 end

Notez que le message d’erreur est également transmis à l’appel JSONFixer afin qu’il

n’ait pas à faire des suppositions complètes sur ce qui ne va pas avec les données, d’autant

plus que l’analyseur syntaxique vous dira souvent exactement ce qui ne va pas.

2. Correction basée sur les LLM : La classe JSONFixer renvoie le JSON défectueux

à un LLM, accompagné d’une instruction ou d’une invite spécifique pour corriger

le JSON tout en préservant autant que possible l’information et l’intention

originales. Le LLM, entraîné sur de vastes quantités de données et comprenant la

syntaxe JSON, tente de corriger les erreurs et de générer une chaîne JSON valide.

La Délimitation des réponses est utilisée pour contraindre la sortie du LLM, et nous

choisissons Mixtral 8x7B comme modèle d’IA, car il est particulièrement adapté à

ce type de tâche.

3. Validation et intégration : La chaîne JSON corrigée renvoyée par le LLM

est analysée par la classe JSONFixer elle-même, car elle a appelé chat_-

completion(json: true). Si le JSON corrigé passe la validation, il est réintégré

dans le flux de travail de l’application, permettant à celle-ci de continuer à traiter

les données de manière transparente. Le mauvais JSON a été “guéri”.

Bien que j’aie écrit et réécrit ma propre implémentation de JSONFixer à plusieurs

reprises, je doute que le temps total investi dans toutes ces versions dépasse une heure

ou deux.

Notez que la préservation de l’intention est un élément clé de tout modèle de données

auto-réparantes. Le processus de correction basé sur les LLM vise à préserver autant

que possible l’information et l’intention originales du JSON généré. Cela garantit que le

Données auto-réparatrices 173

JSON corrigé conserve sa signification sémantique et peut être utilisé efficacement dans

le contexte de l’application.

Cette mise en œuvre pratique de l’approche “Données auto-réparantes” dans Olympia

démontre clairement comment l’IA, en particulier les LLM, peut être exploitée pour

résoudre des défis réels liés aux données. Elle illustre la puissance de la combinaison des

techniques de programmation traditionnelles avec les capacités de l’IA pour construire

des applications robustes et efficaces.

La Loi de Postel et le Modèle des “Données Auto-
réparantes”

Les “Données auto-réparantes”, comme illustrées par la classe JSONFixer, s’alignent

bien avec le principe connu sous le nom de Loi de Postel, également appelé Principe

de robustesse. La Loi de Postel stipule :

“Soyez conservateur dans ce que vous faites, soyez libéral dans ce que vous acceptez

des autres.”

Ce principe, initialement articulé par Jon Postel, un pionnier des débuts d’Internet,

souligne l’importance de construire des systèmes qui sont tolérants aux entrées

diverses ou même légèrement incorrectes tout en maintenant une stricte adhésion

aux protocoles spécifiés lors de l’envoi des sorties.

Dans le contexte des “Données auto-réparantes”, la classe JSONFixer incarne la Loi

de Postel en étant libérale dans l’acceptation des données JSON défectueuses ou

imparfaites générées par les LLM. Elle ne rejette pas immédiatement et n’échoue

pas lorsqu’elle rencontre du JSON qui n’adhère pas strictement au format attendu.

Au lieu de cela, elle adopte une approche tolérante et tente de corriger le JSON en

utilisant la puissance des LLM.

En étant libérale dans l’acceptation de JSON imparfait, la classe JSONFixer démontre

Données auto-réparatrices 174

sa robustesse et sa flexibilité. Elle reconnaît que les données dans le monde réel se

présentent souvent sous diverses formes et peuvent ne pas toujours être conformes

aux spécifications strictes. En gérant et en corrigeant gracieusement ces écarts, la

classe garantit que l’application peut continuer à fonctionner sans heurts, même en

présence de données imparfaites.

D’autre part, la classe JSONFixer adhère également à l’aspect conservateur de la

Loi de Postel en ce qui concerne la sortie. Après avoir corrigé le JSON à l’aide des

LLM, la classe valide le JSON corrigé pour s’assurer qu’il est strictement conforme

au format attendu. Elle maintient l’intégrité et l’exactitude des données avant de les

transmettre à d’autres parties de l’application. Cette approche conservatrice garantit

que la sortie de la classe JSONFixer est fiable et cohérente, favorisant l’interopérabilité

et empêchant la propagation d’erreurs.

Anecdotes intéressantes sur Jon Postel :

• Jon Postel (1943-1998) était un informaticien américain qui a joué un rôle

crucial dans le développement d’Internet. Il était connu comme le “Dieu

d’Internet” pour ses contributions significatives aux protocoles et standards

sous-jacents.

• Postel était l’éditeur de la série de documents Request for Comments (RFC),

une série de notes techniques et organisationnelles sur Internet. Il a rédigé ou

co-rédigé plus de 200 RFC, y compris les protocoles fondamentaux tels que

TCP, IP et SMTP.

• En plus de ses contributions techniques, Postel était connu pour son approche

humble et collaborative. Il croyait en l’importance d’atteindre un consensus et

de travailler ensemble pour construire un réseau robuste et interopérable.

• Postel a occupé le poste de Directeur de la Division des réseaux informatiques

à l’Institut des Sciences de l’Information (ISI) de l’Université de Californie du

Sud (USC) de 1977 jusqu’à son décès prématuré en 1998.

• En reconnaissance de ses immenses contributions, Postel a reçu à titre

posthume le prestigieux prix Turing en 1998, souvent considéré comme le

Données auto-réparatrices 175

“Prix Nobel de l’informatique.”

La classe JSONFixer favorise la robustesse, la flexibilité et l’interopérabilité, qui

étaient des valeurs fondamentales que Postel a défendues tout au long de sa carrière.

En construisant des systèmes qui tolèrent les imperfections tout en maintenant une

stricte adhérence aux protocoles, nous pouvons créer des applications plus résilientes

et adaptables face aux défis du monde réel.

Considérations et Contre-indications

L’applicabilité des approches de données auto-réparantes dépend entièrement du type

de données que votre application traite. Il y a une raison pour laquelle vous pourriez

ne pas vouloir simplement modifier dynamiquement JSON.parse pour corriger

automatiquement toutes les erreurs d’analyse JSON dans votre application : toutes les

erreurs ne peuvent pas ou ne devraient pas être corrigées automatiquement.

L’auto-réparation est particulièrement délicate lorsqu’elle est associée à des exigences

réglementaires ou de conformité liées au traitement et à la gestion des données. Certains

secteurs, comme la santé et la finance, ont des réglementations si strictes concernant

l’intégrité des données et la traçabilité que toute correction de données en “boîte noire”

sans supervision ou journalisation appropriée peut violer ces réglementations. Il est

crucial de s’assurer que toutes les techniques de données auto-réparantes que vous

développez sont conformes aux cadres légaux et réglementaires applicables.

L’application des techniques de données auto-réparantes, en particulier celles

impliquant des modèles d’IA, peut également avoir un impact important sur les

performances de l’application et l’utilisation des ressources. Le traitement de grands

volumes de données par des modèles d’IA pour la détection et la correction d’erreurs

peut être intensif en calcul. Il est important d’évaluer les compromis entre les avantages

Données auto-réparatrices 176

des données auto-réparantes et les coûts associés en termes de performance et de

ressources.

Cela dit, plongeons dans les facteurs impliqués dans la décision de quand et où appliquer

cette approche puissante.

Criticité des Données

Lors de l’examen de l’application des techniques de données auto-réparantes, il est

crucial d’évaluer la criticité des données traitées. Le niveau de criticité fait référence

à l’importance et à la sensibilité des données dans le contexte de votre application et de

son domaine d’activité.

Dans certains cas, la correction automatique des erreurs de données peut ne pas être

appropriée, en particulier si les données sont très sensibles ou ont des implications

juridiques. Par exemple, considérez les scénarios suivants :

1. Transactions Financières : Dans les applications financières, comme les

systèmes bancaires ou les plateformes de trading, la précision des données est

de la plus haute importance. Même des erreurs mineures dans les données

financières peuvent avoir des conséquences importantes, comme des soldes de

compte incorrects, des fonds mal acheminés ou des décisions de trading erronées.

Dans ces cas, les corrections automatisées sans vérification et audit approfondis

peuvent introduire des risques inacceptables.

2. Dossiers Médicaux : Les applications de santé traitent des données de patients

hautement sensibles et confidentielles. Les inexactitudes dans les dossiers

médicaux peuvent avoir de graves implications pour la sécurité des patients et les

décisions de traitement. La modification automatique des données médicales sans

supervision et validation appropriées par des professionnels de santé qualifiés

peut violer les exigences réglementaires et mettre en danger le bien-être des

patients.

Données auto-réparatrices 177

3. Documents Juridiques : Les applications traitant des documents juridiques,

tels que les contrats, les accords ou les dépôts judiciaires, nécessitent une

précision et une intégrité strictes. Même des erreurs mineures dans les données

juridiques peuvent avoir des conséquences juridiques importantes. Les corrections

automatisées dans ce domaine peuvent ne pas être appropriées, car les données

nécessitent souvent un examen manuel et une vérification par des experts

juridiques pour garantir leur validité et leur force exécutoire.

Dans ces scénarios de données critiques, les risques associés aux corrections

automatisées l’emportent souvent sur les avantages potentiels. Les conséquences

de l’introduction d’erreurs ou de la modification incorrecte des données peuvent être

graves, entraînant des pertes financières, des responsabilités juridiques, ou même des

préjudices pour les individus.

Lorsqu’on traite des données hautement critiques, il est essentiel de privilégier les

processus de vérification et de validation manuels. La supervision et l’expertise

humaines sont cruciales pour garantir l’exactitude et l’intégrité des données. Les

techniques d’auto-réparation automatisées peuvent toujours être utilisées pour signaler

des erreurs ou des incohérences potentielles, mais la décision finale sur les corrections

doit impliquer le jugement et l’approbation humains.

Cependant, il est important de noter que toutes les données d’une application n’ont pas

nécessairement le même niveau de criticité. Au sein d’une même application, il peut

y avoir des sous-ensembles de données moins sensibles ou ayant un impact moindre

en cas d’erreurs. Dans ces cas, les techniques de données auto-réparantes peuvent être

appliquées sélectivement à ces sous-ensembles de données spécifiques, tandis que les

données critiques restent soumises à une vérification manuelle.

L’essentiel est d’évaluer soigneusement la criticité de chaque catégorie de données

dans votre application et de définir des directives et des processus clairs pour gérer

les corrections en fonction des risques et des implications associés. En différenciant

les données critiques (c’est-à-dire les grands livres, les dossiers médicaux) des données

Données auto-réparatrices 178

non critiques (c’est-à-dire les adresses postales, les avertissements de ressources), vous

pouvez trouver un équilibre entre l’exploitation des avantages des techniques de données

auto-réparantes lorsque c’est approprié et le maintien d’un contrôle et d’une supervision

stricts lorsque c’est nécessaire.

En fin de compte, la décision d’appliquer des techniques de données auto-réparantes

aux données critiques doit être prise en consultation avec des experts du domaine,

des conseillers juridiques et d’autres parties prenantes pertinentes. Il est essentiel de

prendre en compte les exigences spécifiques, les réglementations et les risques associés

aux données de votre application et d’aligner les stratégies de correction des données en

conséquence.

Gravité des Erreurs

Lors de l’application des techniques de données auto-réparantes, il est important

d’évaluer la gravité et l’impact des erreurs de données. Toutes les erreurs ne sont pas

égales, et la ligne de conduite appropriée peut varier en fonction de la gravité du

problème.

Les incohérences mineures ou les problèmes de formatage peuvent convenir à une

correction automatique. Par exemple, un système de données auto-réparantes chargé

de corriger du JSON défectueux peut gérer les virgules manquantes ou les guillemets

doubles non échappés sans altérer significativement le sens ou la structure des données.

Ces types d’erreurs sont souvent simples à corriger et ont un impact minimal sur

l’intégrité globale des données.

Cependant, les erreurs plus graves qui modifient fondamentalement le sens ou l’intégrité

des données peuvent nécessiter une approche différente. Dans de tels cas, les corrections

automatisées peuvent s’avérer insuffisantes, et une intervention humaine peut être

nécessaire pour garantir l’exactitude et la validité des données.

C’est là qu’intervient le concept d’utilisation de l’IA elle-même pour aider à déterminer

la gravité des erreurs. En tirant parti des capacités des modèles d’IA, nous pouvons

Données auto-réparatrices 179

concevoir des agents de données auto-réparateurs qui non seulement corrigent les

erreurs, mais évaluent également leur gravité et prennent des décisions éclairées sur

la façon de les traiter.

Par exemple, considérons un agent de données auto-réparateur chargé de corriger les

incohérences dans les données qui alimentent une base de données clients. L’agent

peut être conçu pour analyser les données et identifier les erreurs potentielles,

telles que des informations manquantes ou contradictoires. Cependant, au lieu de

corriger automatiquement toutes les erreurs, l’agent peut être équipé d’appels d’outils

supplémentaires lui permettant de signaler les erreurs graves pour un examen humain.

Voici un exemple de la façon dont cela peut être mis en œuvre :

1 class CustomerDataReviewer

2 include Raix ::ChatCompletion

3 include Raix ::FunctionDeclarations

4

5 attr_accessor :customer

6

7 function :flag_for_review, reason : { type : "string" } do |params|

8 AdminNotifier.review_request(customer, params[:reason])

9 end

10

11 def initialize(customer)

12 self.customer = customer

13 end

14

15 def call(customer_data)

16 transcript << {

17 system : "You are a customer data reviewer. Your task is to identify

18 and correct inconsistencies in customer data.

19

20 < additional instructions here... >

21

22 If you encounter severe errors that require human review, use the

23 `flag_for_review` tool to flag the data for manual intervention." }

24

25 transcript << { user : customer.to_json }

26 transcript << { assistant : "Reviewed/corrected data :\n```json\n" }

Données auto-réparatrices 180

27

28 self.stop = ["```"]

29

30 chat_completion(json : true).then do |result|

31 return if result.blank ?

32

33 customer.update(result)

34 end

35 end

36 end

Dans cet exemple, l’agent CustomerDataHealer est conçu pour identifier et corriger

les incohérences dans les données clients. Une fois de plus, nous utilisons Response

Fencing et Ventriloquist pour obtenir une sortie structurée. Il est important de noter

que la directive système de l’agent inclut des instructions pour utiliser la fonction

flag_for_review si des erreurs graves sont rencontrées.

Lorsque l’agent traite les données clients, il analyse les données et tente de corriger

toute incohérence. Si l’agent détermine que les erreurs sont graves et nécessitent

une intervention humaine, il peut utiliser l’outil flag_for_review pour signaler les

données et fournir une raison pour ce signalement.

La méthode chat_completion est appelée avec json: true pour analyser les

données clients corrigées au format JSON. Il n’y a pas de disposition pour une boucle

après un appel de fonction, donc le résultat sera vide si flag_for_review a été

invoqué. Sinon, les données du client sont mises à jour avec les données examinées et

potentiellement corrigées.

En intégrant l’évaluation de la gravité des erreurs et l’option de signaler les données

pour un examen humain, l’agent de données auto-réparantes devient plus intelligent et

adaptable. Il peut gérer les erreurs mineures automatiquement tout en escaladant les

erreurs graves vers des experts humains pour une intervention manuelle.

Les critères spécifiques pour déterminer la gravité des erreurs peuvent être définis

dans la directive de l’agent en fonction des connaissances du domaine et des exigences

Données auto-réparatrices 181

commerciales. Des facteurs tels que l’impact sur l’intégrité des données, le risque de

perte ou de corruption des données, et les conséquences de données incorrectes peuvent

être pris en compte lors de l’évaluation de la gravité.

En utilisant l’IA pour évaluer la gravité des erreurs et en fournissant des options pour

l’intervention humaine, les techniques de données auto-réparantes peuvent trouver

un équilibre entre l’automatisation et le maintien de l’exactitude des données. Cette

approche garantit que les erreurs mineures sont corrigées efficacement tandis que les

erreurs graves reçoivent l’attention et l’expertise nécessaires des examinateurs humains.

Complexité du domaine

Lors de l’examen de l’application des techniques de données auto-réparantes, il est

important d’évaluer la complexité du domaine de données et les règles régissant sa

structure et ses relations. La complexité du domaine peut avoir un impact significatif

sur l’efficacité et la faisabilité des approches de correction automatique des données.

Les techniques de données auto-réparantes fonctionnent bien lorsque les données

suivent des modèles et des contraintes bien définis. Dans les domaines où la structure

des données est relativement simple et les relations entre les éléments de données sont

directes, les corrections automatisées peuvent être appliquées avec un haut degré de

confiance. Par exemple, la correction des problèmes de formatage ou l’application de

contraintes de type de données de base peuvent souvent être gérées efficacement par

des agents de données auto-réparantes.

Cependant, à mesure que la complexité du domaine de données augmente, les défis

associés à la correction automatique des données augmentent également. Dans les

domaines avec une logique métier complexe, des relations complexes entre les entités de

données, ou des règles et exceptions spécifiques au domaine, les techniques de données

auto-réparantes peuvent ne pas toujours capturer les nuances et peuvent introduire des

conséquences imprévues.

Données auto-réparatrices 182

Prenons l’exemple d’un domaine complexe : un système de trading financier. Dans ce

domaine, les données impliquent divers instruments financiers, données de marché,

règles de trading et exigences réglementaires. Les relations entre les différents éléments

de données peuvent être complexes, et les règles régissant la validité et la cohérence des

données peuvent être hautement spécifiques au domaine.

Dans un domaine aussi complexe, un agent de données auto-réparantes chargé de

corriger les incohérences dans les données de trading devrait avoir une compréhension

approfondie des règles et contraintes spécifiques au domaine. Il devrait prendre en

compte des facteurs tels que les réglementations du marché, les limites de trading, les

calculs de risque et les procédures de règlement. Les corrections automatisées dans ce

contexte peuvent ne pas toujours capturer toute la complexité du domaine et peuvent

involontairement introduire des erreurs ou violer des règles spécifiques au domaine.

Pour relever les défis de la complexité du domaine, les techniques de données auto-

réparantes peuvent être améliorées en incorporant des connaissances et des règles

spécifiques au domaine dans les modèles d’IA et les agents. Cela peut être réalisé grâce

à des techniques telles que :

1. Formation spécifique au domaine : Les modèles d’IA utilisés pour les données

auto-réparantes peuvent être dirigés ou même affinés sur des ensembles de

données spécifiques au domaine qui capturent les subtilités et les règles du

domaine particulier. En exposant les modèles à des données et scénarios

représentatifs, ils peuvent apprendre les modèles, contraintes et exceptions

spécifiques au domaine.

2. Contraintes basées sur des règles : Les agents de données auto-réparantes

peuvent être augmentés avec des contraintes explicites basées sur des règles

qui encodent les connaissances spécifiques au domaine. Ces règles peuvent être

définies par des experts du domaine et intégrées dans le processus de correction

des données. Les modèles d’IA peuvent alors utiliser ces règles pour guider leurs

décisions et assurer la conformité aux exigences spécifiques du domaine.

Données auto-réparatrices 183

3. Collaboration avec les experts du domaine :Dans les domaines complexes, il est

crucial d’impliquer les experts du domaine dans la conception et le développement

des techniques de données auto-réparantes. Les experts du domaine peuvent

fournir des informations précieuses sur les subtilités des données, les règles métier

et les cas limites potentiels. Leurs connaissances peuvent être incorporées dans les

modèles d’IA et les agents pour améliorer la précision et la fiabilité des corrections

automatiques des données en utilisant les modèles Human In The Loop.

4. Approche incrémentale et itérative : Lorsqu’on traite des domaines complexes,

il est souvent bénéfique d’adopter une approche incrémentale et itérative pour

les données auto-réparantes. Au lieu d’essayer d’automatiser les corrections pour

l’ensemble du domaine d’un seul coup, concentrez-vous sur des sous-domaines

ou des catégories de données spécifiques où les règles et contraintes sont bien

comprises. Élargissez progressivement la portée des techniques auto-réparantes à

mesure que la compréhension du domaine s’accroît et que les techniques prouvent

leur efficacité.

En tenant compte de la complexité du domaine des données et en intégrant les

connaissances spécifiques au domaine dans les techniques de données auto-correctrices,

vous pouvez trouver un équilibre entre l’automatisation et la précision. Il est important

de reconnaître que les données auto-correctrices ne constituent pas une solution

universelle et que l’approche doit être adaptée aux exigences et aux défis spécifiques

de chaque domaine.

Dans les domaines complexes, une approche hybride combinant les techniques de

données auto-correctrices avec l’expertise humaine et la supervision peut s’avérer plus

efficace. Les corrections automatisées peuvent gérer les cas courants et bien définis,

tandis que les scénarios complexes ou les exceptions peuvent être signalés pour examen

et intervention humaine. Cette approche collaborative garantit que les avantages de

l’automatisation sont réalisés tout en maintenant le contrôle et la précision nécessaires

dans les domaines de données complexes.

Données auto-réparatrices 184

Explicabilité et Transparence

L’explicabilité fait référence à la capacité de comprendre et d’interpréter le raisonnement

derrière les décisions prises par les modèles d’IA, tandis que la transparence implique

d’offrir une visibilité claire sur le processus de correction des données.

Dans de nombreux contextes, les modifications de données doivent être auditables et

justifiables. Les parties prenantes, y compris les utilisateurs métier, les auditeurs et

les organismes de réglementation, peuvent exiger des explications sur les raisons pour

lesquelles certaines corrections de données ont été effectuées et comment les modèles

d’IA sont parvenus à ces décisions. Cela est particulièrement crucial dans les domaines

où l’exactitude et l’intégrité des données ont des implications importantes, comme la

finance, la santé et les questions juridiques.

Pour répondre au besoin d’explicabilité et de transparence, les techniques de données

auto-correctrices doivent intégrer des mécanismes qui fournissent des aperçus du

processus décisionnel des modèles d’IA. Cela peut être réalisé par diverses approches :

1. Chaîne de pensée : Demander au modèle d’expliquer son raisonnement “à voix

haute” avant d’appliquer des modifications aux données peut permettre une

meilleure compréhension du processus décisionnel et peut générer des explications

lisibles par l’humain pour les corrections effectuées. Le compromis est une légère

complexité supplémentaire dans la séparation de l’explication de la sortie de

données structurées, qui peut être résolue par…

2. Génération d’explications : Les agents de données auto-correctrices peuvent

être équipés de la capacité de générer des explications lisibles par l’humain pour

les corrections qu’ils effectuent. Cela peut être réalisé en demandant au modèle

de produire son processus décisionnel sous forme d’explications facilement

compréhensibles intégrées dans les données elles-mêmes. Par exemple, un agent

de données auto-correctrices pourrait générer un rapport qui met en évidence les

incohérences spécifiques des données qu’il a identifiées, les corrections qu’il a

Données auto-réparatrices 185

appliquées et la logique derrière ces corrections.

3. Importance des caractéristiques : Les modèles d’IA peuvent être instruits avec

des informations sur l’importance des différentes caractéristiques ou attributs

dans le processus de correction des données dans le cadre de leurs directives. Ces

directives, à leur tour, peuvent être exposées aux parties prenantes humaines. En

identifiant les facteurs clés qui influencent les décisions du modèle, les parties

prenantes peuvent comprendre le raisonnement derrière les corrections et évaluer

leur validité.

4. Journalisation et audit : La mise en œuvre de mécanismes complets de

journalisation et d’audit est cruciale pour maintenir la transparence dans le

processus de données auto-correctrices. Chaque correction de données effectuée

par les modèles d’IA doit être enregistrée, y compris les données originales, les

données corrigées et les actions spécifiques entreprises. Cette piste d’audit permet

une analyse rétrospective et fournit un enregistrement clair des modifications

apportées aux données.

5. Approche avec intervention humaine : L’incorporation d’une approche avec

intervention humaine peut améliorer l’explicabilité et la transparence des

techniques de données auto-correctrices. En impliquant des experts humains

dans l’examen et la validation des corrections générées par l’IA, les organisations

peuvent s’assurer que les corrections sont alignées avec les connaissances du

domaine et les exigences métier. La supervision humaine ajoute une couche

supplémentaire de responsabilité et permet d’identifier tout biais ou erreur

potentiel dans les modèles d’IA.

6. Surveillance et évaluation continues : La surveillance et l’évaluation régulières

des performances des techniques de données auto-correctrices sont essentielles

pour maintenir la transparence et la confiance. En évaluant la précision et

l’efficacité des modèles d’IA au fil du temps, les organisations peuvent identifier

les écarts ou les anomalies et prendre des mesures correctives. La surveillance

continue aide à garantir que le processus de données auto-correctrices reste fiable

Données auto-réparatrices 186

et aligné avec les résultats souhaités.

L’explicabilité et la transparence sont des considérations cruciales lors de la mise en

œuvre des techniques de données auto-correctrices. En fournissant des explications

claires pour les corrections de données, en maintenant des pistes d’audit complètes et en

impliquant la supervision humaine, les organisations peuvent établir la confiance dans

le processus de données auto-correctrices et s’assurer que les modifications apportées

aux données sont justifiables et alignées avec les objectifs commerciaux.

Il est important de trouver un équilibre entre les avantages de l’automatisation et le

besoin de transparence. Bien que les techniques de données auto-correctrices puissent

améliorer significativement la qualité et l’efficacité des données, elles ne doivent pas

se faire au détriment de la visibilité et du contrôle sur le processus de correction des

données. En concevant des agents de données auto-correctrices avec l’explicabilité et la

transparence à l’esprit, les organisations peuvent exploiter la puissance de l’IA tout en

maintenant le niveau nécessaire de responsabilité et de confiance dans les données.

Conséquences imprévues

Bien que les techniques de données auto-correctrices visent à améliorer la qualité et

la cohérence des données, il est crucial d’être conscient des conséquences imprévues

potentielles. Les corrections automatisées, si elles ne sont pas soigneusement conçues

et surveillées, peuvent modifier par inadvertance le sens ou le contexte des données,

entraînant des problèmes en aval.

L’un des principaux risques des données auto-correctrices est l’introduction de biais

ou d’erreurs dans le processus de correction des données. Les modèles d’IA, comme

tout autre système logiciel, peuvent être soumis à des biais présents dans les données

d’entraînement ou introduits par la conception des algorithmes. Si ces biais ne sont pas

identifiés et atténués, ils peuvent se propager à travers le processus de données auto-

correctrices et entraîner des modifications de données biaisées ou incorrectes.

Données auto-réparatrices 187

Par exemple, considérons un travailleur de données auto-réparateur chargé de corriger

les incohérences dans les données démographiques des clients. Si le modèle d’IA a appris

des biais à partir de données historiques, comme l’association de certaines professions ou

niveaux de revenus à des genres ou ethnies spécifiques, il pourrait faire des suppositions

incorrectes et modifier les données d’une manière qui renforce ces biais. Cela peut

conduire à des profils clients inexacts, des décisions commerciales mal orientées et des

résultats potentiellement discriminatoires.

Une autre conséquence imprévue potentielle est la perte d’informations précieuses

ou de contexte pendant le processus de correction des données. Les techniques

d’auto-réparation des données se concentrent souvent sur la standardisation et la

normalisation des données pour assurer la cohérence. Cependant, dans certains cas, les

données originales peuvent contenir des nuances, des exceptions ou des informations

contextuelles importantes pour comprendre l’ensemble de la situation. Les corrections

automatisées qui appliquent aveuglément la standardisation peuvent involontairement

supprimer ou masquer ces informations précieuses.

Par exemple, imaginons un travailleur de données auto-réparateur responsable de

la correction d’incohérences dans les dossiers médicaux. Si le travailleur rencontre

l’historique médical d’un patient présentant une condition rare ou un plan de traitement

inhabituel, il pourrait tenter de normaliser les données pour les faire correspondre à un

modèle plus courant. Cependant, ce faisant, il pourrait perdre les détails spécifiques et le

contexte qui sont cruciaux pour représenter précisément la situation unique du patient.

Cette perte d’information peut avoir de graves implications pour les soins aux patients

et la prise de décision médicale.

Pour atténuer les risques de conséquences imprévues, il est essentiel d’adopter une

approche proactive lors de la conception et de la mise en œuvre des techniques d’auto-

réparation des données :

1. Tests et validation approfondis : Avant de déployer des travailleurs de

données auto-réparateurs en production, il est crucial de tester et de valider

Données auto-réparatrices 188

minutieusement leur comportement dans diverses situations. Cela inclut des tests

avec des jeux de données représentatifs couvrant divers cas limites, exceptions

et biais potentiels. Des tests rigoureux aident à identifier et à traiter toute

conséquence imprévue avant qu’elle n’affecte les données réelles.

2. Surveillance et évaluation continues : La mise en place de mécanismes de

surveillance et d’évaluation continues est essentielle pour détecter et atténuer

les conséquences imprévues au fil du temps. L’examen régulier des résultats des

processus d’auto-réparation des données, l’analyse de l’impact sur les systèmes

en aval et la prise de décision, ainsi que la collecte des retours des parties

prenantes peuvent aider à identifier tout effet négatif et à déclencher des actions

correctives en temps opportun. Si votre organisation dispose de tableaux de bord

opérationnels, l’ajout de métriques clairement visibles liées aux modifications

automatisées des données est probablement une bonne idée. Ajouter des alarmes

connectées aux grandes déviations par rapport à l’activité normale demodification

des données est probablement une encore meilleure idée !

3. Supervision et intervention humaines : Maintenir une supervision humaine

et la capacité d’intervenir dans le processus d’auto-réparation des données est

crucial. Bien que l’automatisation puisse grandement améliorer l’efficacité, il

est important que des experts humains examinent et valident les corrections

effectuées par les modèles d’IA, en particulier dans les domaines critiques ou

sensibles. Le jugement humain et l’expertise du domaine peuvent aider à identifier

et à traiter toute conséquence imprévue qui pourrait survenir.

4. IA explicable (XAI) et transparence : Comme discuté dans la sous-section

précédente, l’incorporation de techniques d’IA explicable et l’assurance de la

transparence dans le processus d’auto-réparation des données peuvent aider à

atténuer les conséquences imprévues. En fournissant des explications claires pour

les corrections de données et en maintenant des pistes d’audit complètes, les

organisations peuvent mieux comprendre et retracer le raisonnement derrière les

modifications effectuées par les modèles d’IA.

Données auto-réparatrices 189

5. Approche incrémentale et itérative : Adopter une approche incrémentale et

itérative pour l’auto-réparation des données peut aider à minimiser le risque

de conséquences imprévues. Au lieu d’appliquer des corrections automatisées à

l’ensemble des données en une fois, commencez par un sous-ensemble de données

et élargissez progressivement la portée à mesure que les techniques s’avèrent

efficaces et fiables. Cela permet une surveillance et un ajustement attentifs en

cours de route, réduisant l’impact de toute conséquence imprévue.

6. Collaboration et retour d’information : Impliquer les parties prenantes de

différents domaines et encourager la collaboration et le retour d’information

tout au long du processus d’auto-réparation des données peut aider à identifier

et à traiter les conséquences imprévues. La recherche régulière d’contributions

d’experts du domaine, de consommateurs de données et d’utilisateurs finaux peut

fournir des aperçus précieux sur l’impact réel des corrections de données et mettre

en évidence des problèmes qui auraient pu être négligés.

En abordant de manière proactive le risque de conséquences imprévues et en mettant

en œuvre des garanties appropriées, les organisations peuvent exploiter les avantages

des techniques d’auto-réparation des données tout en minimisant les effets négatifs

potentiels. Il est important d’aborder l’auto-réparation des données comme un processus

itératif et collaboratif, en surveillant, évaluant et affinant continuellement les techniques

pour s’assurer qu’elles s’alignent sur les résultats souhaités et maintiennent l’intégrité

et la fiabilité des données.

Lors de l’examen de l’utilisation des modèles d’auto-réparation des données, il est

essentiel d’évaluer soigneusement ces facteurs et de peser les avantages par rapport aux

risques et limitations potentiels. Dans certains cas, une approche hybride combinant des

corrections automatisées avec une supervision et une intervention humaines peut être

la solution la plus appropriée.

Données auto-réparatrices 190

Il est également important de noter que les techniques d’auto-réparation des données

ne doivent pas être considérées comme un remplacement des mécanismes robustes

de validation des données, d’assainissement des entrées et de gestion des erreurs.

Ces pratiques fondamentales restent essentielles pour assurer l’intégrité et la sécurité

des données. L’auto-réparation des données doit être vue comme une approche

complémentaire qui peut augmenter et améliorer ces mesures existantes.

En fin de compte, la décision d’employer des modèles d’auto-réparation des données

dépend des exigences spécifiques, des contraintes et des priorités de votre application.

En considérant attentivement les considérations décrites ci-dessus et en les alignant avec

les objectifs et l’architecture de votre application, vous pouvez prendre des décisions

éclairées sur quand et comment utiliser efficacement les techniques d’auto-réparation

des données.

Génération de Contenu
Contextuel

Les modèles de Génération de Contenu Contextuel exploitent la puissance des grands

modèles de langage (GML) pour générer du contenu dynamique et contextuel au

sein des applications. Cette catégorie de modèles reconnaît l’importance de fournir

aux utilisateurs du contenu personnalisé et pertinent en fonction de leurs besoins

spécifiques, de leurs préférences et même de leurs interactions précédentes et actuelles

avec l’application.

Dans le contexte de cette approche, le “contenu” fait référence à la fois au contenu

principal (c’est-à-dire les articles de blog, les articles, etc.) et au méta-contenu, comme

Génération de Contenu Contextuel 192

les recommandations relatives au contenu principal.

Les modèles de Génération de Contenu Contextuel peuvent jouer un rôle crucial dans

l’amélioration de vos niveaux d’engagement utilisateur, en offrant des expériences

personnalisées et en automatisant les tâches de création de contenu tant pour vous

que pour vos utilisateurs. En utilisant les modèles que nous décrivons dans ce chapitre,

vous pouvez créer des applications qui génèrent du contenu de manière dynamique,

s’adaptant au contexte et aux entrées en temps réel.

Ces modèles fonctionnent en intégrant les GML dans les sorties de l’application, allant

de l’interface utilisateur (parfois appelée “chrome”), aux emails et autres formes de

notifications, ainsi qu’à toutes les chaînes de génération de contenu.

Lorsqu’un utilisateur interagit avec l’application ou déclenche une demande de contenu

spécifique, l’application capture le contexte pertinent, comme les préférences de

l’utilisateur, les interactions précédentes ou des invites spécifiques. Ces informations

contextuelles sont ensuite transmises au GML, accompagnées de tous les modèles

ou directives nécessaires, et utilisées pour produire une sortie textuelle qui aurait

autrement dû être soit codée en dur, soit stockée dans une base de données, soit générée

algorithmiquement.

Le contenu généré par le GML peut prendre diverses formes, comme des

recommandations personnalisées, des descriptions de produits dynamiques, des

réponses par email personnalisées, ou même des articles ou billets de blog entiers.

L’une des utilisations les plus radicales de ce contenu que j’ai initiée il y a plus d’un an

est la génération dynamique d’éléments d’interface utilisateur comme les étiquettes de

formulaire, les infobulles et d’autres types de textes explicatifs.

Génération de Contenu Contextuel 193

Personnalisation

L’un des principaux avantages des modèles de Génération de Contenu Contextuel est la

capacité à offrir des expériences hautement personnalisées aux utilisateurs. En générant

du contenu basé sur le contexte spécifique à l’utilisateur, ces modèles permettent aux

applications d’adapter le contenu aux intérêts, préférences et interactions individuels

des utilisateurs.

La personnalisation va au-delà de la simple insertion du nom d’un utilisateur dans du

contenu générique. Elle implique l’exploitation du riche contexte disponible sur chaque

utilisateur pour générer du contenu qui résonne avec leurs besoins et désirs spécifiques.

Ce contexte peut inclure un large éventail de facteurs, tels que :

1. Informations du Profil Utilisateur :Au niveau le plus général de l’application de

cette technique, les données démographiques, les intérêts, les préférences et autres

attributs du profil peuvent être utilisés pour générer du contenu qui s’aligne avec

le background et les caractéristiques de l’utilisateur.

2. Données Comportementales : Les interactions passées d’un utilisateur avec

l’application, comme les pages consultées, les liens cliqués ou les produits achetés,

peuvent fournir des informations précieuses sur leur comportement et leurs

intérêts. Ces données peuvent être utilisées pour générer des suggestions de

contenu qui reflètent leurs schémas d’engagement et prédisent leurs besoins

futurs.

3. Facteurs Contextuels : Le contexte actuel de l’utilisateur, comme sa localisation,

son appareil, l’heure de la journée, ou même la météo, peut influencer le processus

de génération de contenu. Par exemple, une application de voyage pourrait avoir

un agent IA capable de générer des recommandations personnalisées basées sur la

localisation actuelle de l’utilisateur et les conditions météorologiques dominantes.

En exploitant ces facteurs contextuels, les modèles de Génération de Contenu

Contextuel permettent aux applications de fournir du contenu qui semble fait sur

Génération de Contenu Contextuel 194

mesure pour chaque utilisateur individuel. Ce niveau de personnalisation présente

plusieurs avantages significatifs :

1. Engagement Accru : Le contenu personnalisé capte l’attention des utilisateurs

et les maintient engagés avec l’application. Lorsque les utilisateurs sentent que

le contenu est pertinent et répond directement à leurs besoins, ils sont plus

susceptibles de passer plus de temps à interagir avec l’application et à explorer

ses fonctionnalités.

2. Satisfaction Utilisateur Améliorée : Le contenu personnalisé démontre que

l’application comprend et se soucie des besoins uniques de l’utilisateur. En

fournissant du contenu utile, informatif et aligné sur leurs intérêts, l’application

peut améliorer la satisfaction des utilisateurs et construire une connexion plus

forte avec eux.

3. Taux de Conversion Plus Élevés :Dans le contexte des applications e-commerce

ou marketing, le contenu personnalisé peut avoir un impact significatif sur les

taux de conversion. En présentant aux utilisateurs des produits, des offres ou des

recommandations adaptés à leurs préférences et leur comportement, l’application

peut augmenter la probabilité que les utilisateurs effectuent les actions souhaitées,

comme réaliser un achat ou s’inscrire à un service.

Productivité

Les modèles de Génération de Contenu Contextuel peuvent considérablement

augmenter certains types de productivité en réduisant le besoin de génération et

d’édition manuelle de contenu dans les processus créatifs. En exploitant la puissance

des GML, vous pouvez générer du contenu de haute qualité à grande échelle,

économisant le temps et l’effort que vos créateurs de contenu et développeurs devraient

autrement consacrer à un travail manuel fastidieux.

Génération de Contenu Contextuel 195

Traditionnellement, les créateurs de contenu doivent rechercher, rédiger, éditer et

formater le contenu pour s’assurer qu’il répond aux exigences de l’application et aux

attentes des utilisateurs. Ce processus peut être chronophage et nécessiter beaucoup de

ressources, particulièrement lorsque le volume de contenu augmente.

Cependant, avec les modèles de génération de contenu contextuel, le processus de

création de contenu peut être largement automatisé. Les GML peuvent générer du

contenu cohérent, grammaticalement correct et contextuellement pertinent en se basant

sur les instructions et directives fournies. Cette automatisation offre plusieurs avantages

en termes de productivité :

1. Réduction de l’effort manuel : En déléguant les tâches de génération de contenu

aux GML, les créateurs de contenu peuvent se concentrer sur des tâches de plus

haut niveau comme la stratégie de contenu, l’idéation et l’assurance qualité. Ils

peuvent fournir le contexte, les modèles et les directives nécessaires au GML et le

laisser gérer la génération effective du contenu. Cela réduit l’effort manuel requis

pour la rédaction et l’édition, permettant aux créateurs de contenu d’être plus

productifs et efficaces.

2. Création de contenu plus rapide : Les GML peuvent générer du contenu

beaucoup plus rapidement que les rédacteurs humains. Avec les bonnes

instructions et directives, un GML peut produire plusieurs contenus en quelques

secondes ou minutes. Cette rapidité permet aux applications de générer du

contenu à un rythme beaucoup plus soutenu, répondant ainsi aux demandes des

utilisateurs et à l’évolution constante du paysage numérique.

La création de contenu plus rapide mène-t-elle à une “tragédie des biens communs”

où l’internet se noie dans du contenu que personne ne lit ? Malheureusement, je

soupçonne que la réponse est oui.

Génération de Contenu Contextuel 196

3. Cohérence et qualité : Les GML peuvent facilement réviser le contenu pour

assurer une cohérence dans le style, le ton et la qualité. Avec des directives et

des exemples clairs, certains types d’applications (comme les salles de rédaction,

les RP, etc.) peuvent s’assurer que leur contenu généré par l’humain s’aligne avec

leur voix de marque et répond aux standards de qualité souhaités. Cette cohérence

réduit le besoin de révisions et d’éditions approfondies, économisant du temps et

de l’effort dans le processus de création de contenu.

4. Itération et optimisation : Les modèles de génération de contenu contextuel

permettent une itération et une optimisation rapides du contenu. En ajustant

les instructions, les modèles ou les directives fournis au GML, vos applications

peuvent rapidement générer des variations de contenu et tester différentes

approches de manière automatisée, ce qui était impossible auparavant. Ce

processus itératif permet une expérimentation et un raffinement plus rapides

des stratégies de contenu, conduisant à un contenu plus efficace et engageant

au fil du temps. Cette technique particulière peut être révolutionnaire pour les

applications comme le e-commerce qui dépendent fortement des taux de rebond

et de l’engagement.

Il est important de noter que bien que les modèles de génération de contenu

contextuel puissent grandement améliorer la productivité, ils n’éliminent pas

complètement le besoin d’intervention humaine. Les créateurs et éditeurs

de contenu jouent toujours un rôle crucial dans la définition de la stratégie

globale de contenu, la fourniture de directives au GML et l’assurance de la

qualité et de la pertinence du contenu généré.

En automatisant les aspects les plus répétitifs et chronophages de la création de contenu,

les modèles de génération de contenu contextuel libèrent un temps et des ressources

humaines précieux qui peuvent être réorientés vers des tâches à plus forte valeur

ajoutée. Cette productivité accrue vous permet de fournir un contenu plus personnalisé

et engageant aux utilisateurs tout en optimisant les flux de travail de création de contenu.

Génération de Contenu Contextuel 197

Itération et expérimentation rapides

Les modèles de génération de contenu contextuel vous permettent d’itérer rapidement

et d’expérimenter différentes variations de contenu, permettant une optimisation et un

raffinement plus rapides de votre stratégie de contenu. Vous pouvez générer plusieurs

versions de contenu en quelques secondes, simplement en ajustant le contexte, les

modèles ou les directives fournis au modèle.

Cette capacité d’itération rapide offre plusieurs avantages clés :

1. Tests et optimisation : Avec la capacité de générer rapidement des variations

de contenu, vous pouvez facilement tester différentes approches et mesurer

leur efficacité. Par exemple, vous pouvez générer plusieurs versions d’une

description de produit ou d’un message marketing, chacune adaptée à un

segment d’utilisateurs ou à un contexte spécifique. En analysant les métriques

d’engagement des utilisateurs, comme les taux de clics ou les taux de conversion,

vous pouvez identifier les variations de contenu les plus efficaces et optimiser

votre stratégie de contenu en conséquence.

2. Tests A/B : Les modèles de génération de contenu contextuel permettent des tests

A/B fluides du contenu. Vous pouvez générer deux ou plusieurs variations de

contenu et les présenter de manière aléatoire à différents groupes d’utilisateurs.

En comparant la performance de chaque variation, vous pouvez déterminer

quel contenu résonne le mieux avec votre public cible. Cette approche basée

sur les données vous permet de prendre des décisions éclairées et d’affiner

continuellement votre contenu pour maximiser l’engagement des utilisateurs et

atteindre vos objectifs souhaités.

3. Expériences de personnalisation : L’itération et l’expérimentation rapides

sont particulièrement précieuses en matière de personnalisation. Avec les

modèles de génération de contenu contextuel, vous pouvez rapidement générer

Génération de Contenu Contextuel 198

des variations de contenu personnalisées basées sur différents segments

d’utilisateurs, préférences ou comportements. En expérimentant différentes

stratégies de personnalisation, vous pouvez identifier les approches les plus

efficaces pour engager les utilisateurs individuels et offrir des expériences sur

mesure.

4. S’adapter aux tendances changeantes : La capacité d’itérer et d’expérimenter

rapidement vous permet de rester agile et de vous adapter aux tendances et

préférences des utilisateurs en évolution. Lorsque de nouveaux sujets, mots-

clés ou comportements d’utilisateurs émergent, vous pouvez rapidement générer

du contenu qui s’aligne sur ces tendances. En expérimentant et en affinant

continuellement votre contenu, vous pouvez rester pertinent et maintenir un

avantage concurrentiel dans le paysage numérique en constante évolution.

5. Expérimentation rentable : L’expérimentation traditionnelle de contenu

implique souvent des ressources et du temps considérables, car les créateurs

de contenu doivent développer et tester manuellement différentes variations.

Cependant, avec les modèles de Génération de Contenu Contextuelle, le coût

de l’expérimentation est grandement réduit. Les LLMs peuvent générer des

variations de contenu rapidement et à grande échelle, vous permettant d’explorer

un large éventail d’idées et d’approches sans encourir de coûts substantiels.

Pour tirer le meilleur parti de l’itération rapide et de l’expérimentation, il est important

d’avoir un cadre d’expérimentation bien défini en place. Ce cadre devrait inclure :

• Des objectifs clairs et des hypothèses pour chaque expérience

• Des métriques appropriées et des mécanismes de suivi pour mesurer la

performance du contenu

• Des stratégies de segmentation et de ciblage pour garantir que les variations de

contenu pertinentes sont servies aux bons utilisateurs

• Des outils d’analyse et de rapport pour tirer des insights des données

expérimentales

Génération de Contenu Contextuel 199

• Un processus pour incorporer les apprentissages et les optimisations dans votre

stratégie de contenu

En adoptant l’itération rapide et l’expérimentation, vous pouvez continuellement affiner

et optimiser votre contenu, garantissant qu’il reste engageant, pertinent et efficace pour

atteindre les objectifs de votre application. Cette approche agile de la création de contenu

vous permet de garder une longueur d’avance et d’offrir des expériences utilisateur

exceptionnelles.

Évolutivité et efficacité

Àmesure que les applications se développent et que la demande de contenu personnalisé

augmente, les modèles de génération de contenu contextuelle permettent une mise à

l’échelle efficace de la création de contenu. Les LLMs peuvent générer du contenu

pour un grand nombre d’utilisateurs et de contextes simultanément, sans nécessiter

une augmentation proportionnelle des ressources humaines. Cette évolutivité permet

aux applications de fournir des expériences personnalisées à une base d’utilisateurs

croissante sans surcharger leurs capacités de création de contenu.

Notez que la génération de contenu contextuelle peut être utilisée

efficacement pour internationaliser votre application “à la volée”. En fait,

c’est exactement ce que j’ai fait en utilisant ma Gem Instant18n pour

proposer Olympia dans plus d’une demi-douzaine de langues, alors que nous

avons moins d’un an d’existence.

Localisation alimentée par l’IA

Si vous me permettez de me vanter un instant, je pense que ma bibliothèque Instant18n

pour les applications Rails est un exemple novateur du modèle de “Génération de

Génération de Contenu Contextuel 200

Contenu Contextuelle” en action, démontrant le potentiel transformateur de l’IA

dans le développement d’applications. Cette gem exploite la puissance du modèle de

langage GPT d’OpenAI pour révolutionner la manière dont l’internationalisation et la

localisation sont gérées dans les applications Rails.

Traditionnellement, l’internationalisation d’une application Rails implique de définir

manuellement des clés de traduction et de fournir les traductions correspondantes pour

chaque langue supportée. Ce processus peut être chronophage, gourmand en ressources

et sujet aux incohérences. Cependant, avec la gem Instant18n, le paradigme de la

localisation est complètement redéfini.

En intégrant un modèle de langage, la gem Instant18n vous permet de générer des

traductions à la volée, basées sur le contexte et le sens du texte. Au lieu de s’appuyer

sur des clés de traduction prédéfinies et des traductions statiques, la gem traduit

dynamiquement le texte en utilisant la puissance de l’IA. Cette approche offre plusieurs

avantages clés :

1. Localisation transparente : Avec la gem Instant18n, les développeurs n’ont plus

besoin de définir et maintenir manuellement des fichiers de traduction pour

chaque langue supportée. La gem génère automatiquement des traductions basées

sur le texte fourni et la langue cible souhaitée, rendant le processus de localisation

sans effort et fluide.

2. Précision contextuelle : L’IA peut recevoir suffisamment de contexte pour

comprendre les nuances du texte à traduire. Elle peut prendre en compte le

contexte environnant, les expressions idiomatiques et les références culturelles

pour générer des traductions précises, naturelles et contextuellement appropriées.

3. Support linguistique étendu : La gem Instant18n exploite les vastes

connaissances et capacités linguistiques de GPT, permettant des traductions

dans une large gamme de langues. Des langues courantes comme l’espagnol et le

français aux langues plus obscures ou fictives comme le klingon et l’elfique, la

gem peut gérer une grande variété de besoins en traduction.

Génération de Contenu Contextuel 201

4. Flexibilité et créativité : La gem va au-delà des traductions linguistiques

traditionnelles et permet des options de localisation créatives et non

conventionnelles. Les développeurs peuvent traduire du texte dans différents

styles, dialectes, ou même des langues fictives, ouvrant de nouvelles possibilités

pour des expériences utilisateur uniques et du contenu engageant.

5. Optimisation des performances : La gem Instant18n intègre des mécanismes

de mise en cache pour améliorer les performances et réduire la surcharge des

traductions répétées. Le texte traduit est mis en cache, permettant aux requêtes

ultérieures pour la même traduction d’être servies rapidement sans nécessiter

d’appels API redondants.

La gem Instant18n illustre la puissance du modèle de “Génération de Contenu

Contextuelle” en utilisant l’IA pour générer dynamiquement du contenu localisé. Elle

montre comment l’IA peut être intégrée dans la fonctionnalité centrale d’une application

Rails, transformant la façon dont les développeurs abordent l’internationalisation et la

localisation.

En éliminant le besoin de gérer manuellement les traductions et en permettant des

traductions à la volée basées sur le contexte, la gem Instant18n fait gagner un temps

et des efforts considérables aux développeurs. Elle leur permet de se concentrer sur la

construction des fonctionnalités principales de leur application tout en s’assurant que

l’aspect localisation est géré de manière fluide et précise.

L’Importance des Tests Utilisateur et des

Retours

Enfin, gardez toujours à l’esprit l’importance des tests utilisateur et des retours. Il

est crucial de valider que la génération de contenu contextuel répond aux attentes

des utilisateurs et s’aligne avec les objectifs de l’application. Continuez à itérer et à

affiner le contenu généré en fonction des observations des utilisateurs et des analyses.

Génération de Contenu Contextuel 202

Si vous générez du contenu dynamique à grande échelle qu’il serait impossible de valider

manuellement par vous et votre équipe, envisagez d’ajouter des mécanismes de retour

permettant aux utilisateurs de signaler du contenu étrange ou incorrect, accompagné

d’une explication du problème. Ces précieux retours peuvent même être transmis à un

agent d’IA chargé d’apporter des ajustements au composant qui a généré le contenu !

Interface utilisateur générative

L’attention est tellement précieuse de nos jours que l’engagement efficace des

utilisateurs exige désormais des expériences logicielles non seulement fluides et

intuitives, mais aussi hautement personnalisées selon les besoins, les préférences et les

contextes individuels. En conséquence, les designers et les développeurs sont de plus

en plus confrontés au défi de créer des interfaces utilisateur capables de s’adapter et de

répondre aux besoins uniques de chaque utilisateur à grande échelle.

L’interface utilisateur générative (GenUI) est une approche véritablement

révolutionnaire de la conception d’interface utilisateur qui exploite la puissance

des grands modèles de langage (GML) pour créer des expériences utilisateur hautement

personnalisées et dynamiques à la volée. Je voulais m’assurer de vous donner au moins

une introduction à la GenUI dans ce livre, car je crois que c’est l’une des opportunités

les plus prometteuses qui existe actuellement dans le domaine de la conception

d’applications et des frameworks. Je suis convaincu que des dizaines de nouveaux

Interface utilisateur générative 204

projets commerciaux et open-source réussis émergeront dans cette niche particulière.

À sa base, la GenUI combine les principes de la Génération de Contenu Contextuel avec

des techniques d’IA avancées pour générer dynamiquement des éléments d’interface

utilisateur, tels que du texte, des images et des mises en page, en se basant sur une

compréhension approfondie du contexte, des préférences et des objectifs de l’utilisateur.

La GenUI permet aux designers et aux développeurs de créer des interfaces qui

s’adaptent et évoluent en réponse aux interactions des utilisateurs, offrant un niveau

de personnalisation auparavant inatteignable.

La GenUI représente un changement fondamental dans notre approche de la conception

d’interfaces utilisateur. Au lieu de concevoir pour les masses, la GenUI nous permet de

concevoir pour l’individu. Le contenu et les interfaces personnalisés ont le potentiel

de créer des expériences utilisateur qui résonnent plus profondément avec chaque

utilisateur, augmentant l’engagement, la satisfaction et la fidélité.

En tant que technique de pointe, la transition vers la GenUI est pleine de défis

conceptuels et pratiques. L’intégration de l’IA dans le processus de conception, garantir

que les interfaces générées sont non seulement personnalisées mais aussi utilisables,

accessibles et alignées avec l’image de marque globale et l’expérience utilisateur,

tous ces défis font de la GenUI une poursuite pour quelques-uns, pas pour tous. De

plus, l’implication de l’IA soulève des questions sur la confidentialité des données, la

transparence et même les implications éthiques.

Malgré les défis, les expériences personnalisées à grande échelle ont le pouvoir

de transformer complètement notre façon d’interagir avec les produits et services

numériques. Cela ouvre des possibilités pour créer des interfaces inclusives et

accessibles qui répondent aux besoins diversifiés des utilisateurs, indépendamment de

leurs capacités, origines ou préférences.

Dans ce chapitre, nous explorerons le concept de GenUI, en examinant certaines

caractéristiques déterminantes, les avantages clés et les défis potentiels. Nous

commençons par considérer la forme la plus basique et accessible de GenUI : la

Interface utilisateur générative 205

génération de texte pour des interfaces utilisateur conçues et implémentées de manière

traditionnelle.

Génération de texte pour les interfaces

utilisateur

Les éléments textuels qui existent dans l’interface de votre application, tels que les

étiquettes de formulaire, les info-bulles et le texte explicatif, sont généralement codés en

dur dans les modèles ou les composants d’interface utilisateur, offrant une expérience

cohérente mais générique pour tous les utilisateurs. En utilisant des modèles de

génération de contenu contextuel, vous pouvez transformer ces éléments statiques en

composants dynamiques, sensibles au contexte et personnalisés.

Formulaires personnalisés

Les formulaires sont une partie omniprésente des applications web et mobiles, servant de

moyen principal pour collecter les entrées des utilisateurs. Cependant, les formulaires

traditionnels présentent souvent une expérience générique et impersonnelle, avec des

étiquettes et des champs standard qui ne correspondent pas toujours au contexte ou aux

besoins spécifiques de l’utilisateur. Les utilisateurs sont plus susceptibles de remplir des

formulaires qui semblent adaptés à leurs besoins et préférences, ce qui conduit à des

taux de conversion et une satisfaction utilisateur plus élevés.

Cependant, il est important de trouver un équilibre entre personnalisation et cohérence.

Bien que l’adaptation des formulaires aux utilisateurs individuels puisse être bénéfique,

il est crucial de maintenir un niveau de familiarité et de prévisibilité. Les utilisateurs

doivent toujours pouvoir reconnaître et naviguer facilement dans les formulaires, même

avec des éléments personnalisés.

Voici quelques idées de formulaires personnalisés pour l’inspiration :

Interface utilisateur générative 206

Suggestions contextuelles de champs

La GenUI peut analyser les interactions précédentes de l’utilisateur, ses préférences et

ses données pour fournir des suggestions intelligentes de champs comme prédictions.

Par exemple, si l’utilisateur a déjà saisi son adresse de livraison, le formulaire peut

automatiquement remplir les champs pertinents avec ses informations enregistrées. Cela

permet non seulement de gagner du temps, mais démontre également que l’application

comprend et mémorise les préférences de l’utilisateur.

Attendez une minute, cette technique ne pourrait-elle pas être réalisée sans faire appel

à l’IA? Bien sûr, mais la beauté d’implémenter ce type de fonctionnalité avec l’IA réside

dans deux aspects : 1) la facilité demise enœuvre et 2) sa résilience face aux changements

et à l’évolution de votre interface utilisateur au fil du temps.

Créons rapidement un service pour notre système théorique de gestion des commandes,

qui tente de remplir de manière proactive la bonne adresse de livraison pour l’utilisateur.

1 class OrderShippingAddressSubscriber

2 include Raix ::ChatCompletion

3

4 attr_accessor :order

5

6 delegate :customer, to : :order

7

8 DIRECTIVE = "You are a smart order processing assistant. Given the

9 customer's order history, guess the most likely shipping address

10 for the current order."

11

12 def order_created(order)

13 return unless order.pending ? && order.shipping_address.blank ?

14

15 self.order = order

16

17 transcript.clear

18 transcript << { system : DIRECTIVE }

19 transcript << { user : "Order History : #{order_history.to_json}" }

20 transcript << { user : "Current Order : #{order.to_json}" }

21

Interface utilisateur générative 207

22 response = chat_completion

23 apply_predicted_shipping_address(order, response)

24 end

25

26 private

27

28 def apply_predicted_shipping_address(order, response)

29 # extract the shipping address from the response...

30 # ...and assume there's some sort of live update of the address fields

31 order.update(shipping_address :)

32 end

33

34 def order_history

35 customer.orders.successful.limit(100).map do |order|

36 {

37 date : order.date,

38 description : order.description,

39 shipping_address : order.shipping_address

40 }

41 end

42 end

43 end

Cet exemple est très simplifié, mais devrait fonctionner dans la plupart des cas. L’idée

est de laisser l’IA faire une supposition de la même manière qu’un humain le ferait. Pour

illustrer clairement ce dont je parle, examinons quelques données d’exemple :

1 Order History :

2 [

3 {"date" : "2024-01-03", "description" : "garden soil mix",

4 "shipping_address" : "123 Country Lane, Rural Town"},

5 {"date" : "2024-01-15", "description" : "hardcover fiction novels",

6 "shipping_address" : "456 City Apt, Metroville"},

7 {"date" : "2024-01-22", "description" : "baby diapers", "shipping_address" :

8 "789 Suburb St, Quietville"},

9 {"date" : "2024-02-01", "description" : "organic vegetables",

10 "shipping_address" : "123 Country Lane, Rural Town"},

11 {"date" : "2024-02-17", "description" : "mystery thriller book set",

12 "shipping_address" : "456 City Apt, Metroville"},

13 {"date" : "2024-02-25", "description" : "baby wipes",

Interface utilisateur générative 208

14 "shipping_address" : "789 Suburb St, Quietville"},

15 {"date" : "2024-03-05", "description" : "flower seeds",

16 "shipping_address" : "123 Country Lane, Rural Town"},

17 {"date" : "2024-03-20", "description" : "biographies",

18 "shipping_address" : "456 City Apt, Metroville"},

19 {"date" : "2024-03-30", "description" : "baby formula",

20 "shipping_address" : "789 Suburb St, Quietville"},

21 {"date" : "2024-04-12", "description" : "lawn fertilizer",

22 "shipping_address" : "123 Country Lane, Rural Town"},

23 {"date" : "2024-04-22", "description" : "science fiction novels",

24 "shipping_address" : "456 City Apt, Metroville"},

25 {"date" : "2024-05-02", "description" : "infant toys",

26 "shipping_address" : "789 Suburb St, Quietville"},

27 {"date" : "2024-05-14", "description" : "outdoor grill",

28 "shipping_address" : "123 Country Lane, Rural Town"},

29 {"date" : "2024-05-29", "description" : "literary classics",

30 "shipping_address" : "456 City Apt, Metroville"},

31 {"date" : "2024-06-11", "description" : "baby clothes",

32 "shipping_address" : "789 Suburb St, Quietville"},

33 {"date" : "2024-07-01", "description" : "watering can",

34 "shipping_address" : "123 Country Lane, Rural Town"},

35 {"date" : "2024-07-18", "description" : "non-fiction essays",

36 "shipping_address" : "456 City Apt, Metroville"},

37 {"date" : "2024-07-28", "description" : "baby bath items",

38 "shipping_address" : "789 Suburb St, Quietville"},

39 {"date" : "2024-08-09", "description" : "herb garden kit",

40 "shipping_address" : "123 Country Lane, Rural Town"},

41 {"date" : "2024-08-24", "description" : "children's books",

42 "shipping_address" : "456 City Apt, Metroville"}

43]

Avez-vous remarqué lemotif dans les données ? Je vous garantis que c’est un jeu d’enfant

pour un GML. Pour le démontrer, demandons à GPT-4 quelle est l’adresse de livraison

la plus probable pour un « thermomètre».

Interface utilisateur générative 209

1 From the order history you've provided, it looks like the purchases are

2 generally clustered into three main types based on the shipping addresses :

3

4 123 Country Lane, Rural Town - This address often orders garden and

5 outdoor-related items like soil mix, vegetables, flower seeds, lawn

6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.

7

8 456 City Apt, Metroville - This address tends to order various types of

9 books, indicating an interest in reading across genres like fiction,

10 thrillers, biographies, science fiction, literary classics, non-fiction

11 essays, and children's books.

12

13 789 Suburb St, Quietville - The purchases for this address are consistently

14 baby-related products, such as diapers, wipes, baby formula, infant toys,

15 baby clothes, and baby bath items.

16

17 Given these patterns, a digital thermometer could potentially be a fit for

18 any of the addresses based on different needs : outdoor temperature tracking,

19 a tool for a passionate reader interested in science gadgets, or a health

20 tool for a baby. However, considering its common use in monitoring health,

21 especially for babies, it's most likely to be purchased by someone who's

22 already buying baby care products.

23

24 Therefore, the most likely shipping address for a digital thermometer, based

25 on the purchasing patterns, would be 789 Suburb St, Quietville.

Si vous vous dites qu’il est disproportionné d’utiliser un modèle coûteux comme GPT-4

pour cette tâche, vous avez raison ! J’ai essayé le même prompt sur Mistral 7B Instruct

et il a produit la réponse suivante à une vitesse de 75 jetons par seconde, pour un coût

dérisoire de 0,000218 USD.

Interface utilisateur générative 210

1 Based on the given order history, it appears that the customer has received

2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)

3 at the address "789 Suburb St, Quietville" and garden-related items (soil,

4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural

5 Town". The customer has also received books (fiction, non-fiction, literary

6 classics, mystery-thriller, science fiction, biographies, children's books)

7 at the address "456 City Apt, Metroville".

8

9 Given that the new order is for a "thermometer", which doesn't seem to fit

10 into any of the categories that the customer has previously ordered, it's

11 hard to accurately predict the shipping address based solely on the order

12 history. However, given the 50%-50% split between baby-related and

13 garden-related items, it could somewhat lean towards the Baby-related items

14 address ("789 Suburb St, Quietville"). But remember, this is an assumption

15 and cannot be definitively confirmed without more context or information.

Est-ce que les frais généraux et le coût de cette technique valent la peine pour rendre

l’expérience d’achat plus magique? Pour de nombreux détaillants en ligne, absolument.

Et d’après ce qu’on peut voir, le coût du calcul IA ne fera que diminuer, en particulier

pour les fournisseurs d’hébergement de modèles open source engagés dans une course

vers le bas des prix.

Utilisez un Modèle de prompt et E/S structurées avec la Délimitation des

réponses pour optimiser ce type de complétion de chat.

Ordre adaptatif des champs

L’ordre dans lequel les champs de formulaire sont présentés peut avoir un impact

significatif sur l’expérience utilisateur et les taux de complétion. Avec GenUI, vous

pouvez ajuster dynamiquement l’ordre des champs en fonction du contexte de

l’utilisateur et de l’importance de chaque champ. Par exemple, si l’utilisateur remplit

un formulaire d’inscription pour une application de fitness, le formulaire pourrait

prioriser les champs liés à ses objectifs et préférences de fitness, rendant le processus

plus pertinent et engageant.

Interface utilisateur générative 211

Micro-texte personnalisé

Le texte d’instruction, les messages d’erreur et autres micro-textes associés aux

formulaires peuvent également être personnalisés en utilisant GenUI. Au lieu d’afficher

des messages d’erreur génériques comme “Adresse e-mail invalide”, vous pouvez

générer des messages plus utiles et contextuels tels que “Veuillez entrer une adresse e-

mail valide pour recevoir votre confirmation de commande”. Ces touches personnalisées

peuvent rendre l’expérience du formulaire plus conviviale et moins frustrante.

Validation personnalisée

Dans la même veine que le Micro-texte personnalisé, vous pourriez utiliser l’IA pour

valider le formulaire de manière apparemment magique. Imaginez laisser une IA valider

un formulaire de profil utilisateur, recherchant des erreurs potentielles au niveau

sémantique.

Interface utilisateur générative 212

Figure 9. Pouvez-vous repérer la validation sémantique en action?

Divulgation progressive

GenUI peut déterminer intelligemment quels champs de formulaire sont essentiels

en fonction du contexte de l’utilisateur et révéler progressivement des champs

supplémentaires selon les besoins. Cette technique de divulgation progressive aide

à réduire la charge cognitive et rend le processus de remplissage du formulaire

Interface utilisateur générative 213

plus gérable. Par exemple, si un utilisateur s’inscrit à un abonnement de base, le

formulaire peut initialement ne présenter que les champs essentiels, et au fur et à

mesure que l’utilisateur progresse ou sélectionne des options spécifiques, des champs

supplémentaires pertinents peuvent être introduits dynamiquement.

Texte explicatif contextuel

Les info-bulles sont souvent utilisées pour fournir des informations supplémentaires

ou des conseils aux utilisateurs lorsqu’ils survolent ou interagissent avec des éléments

spécifiques. Avec une approche de “Génération de contenu contextuel”, vous pouvez

générer des info-bulles qui s’adaptent au contexte de l’utilisateur et fournissent des

informations pertinentes. Par exemple, si un utilisateur explore une fonctionnalité

complexe, l’info-bulle peut offrir des conseils personnalisés ou des exemples basés sur

ses interactions précédentes ou son niveau de compétence.

Le texte explicatif, tel que les instructions, les descriptions ou les messages d’aide,

peut être généré dynamiquement en fonction du contexte de l’utilisateur. Au lieu de

présenter des explications génériques, vous pouvez utiliser les LLM pour générer du

texte adapté aux besoins ou questions spécifiques de l’utilisateur. Par exemple, si un

utilisateur rencontre des difficultés avec une étape particulière d’un processus, le texte

explicatif peut fournir des conseils personnalisés ou des astuces de dépannage.

Le micro-texte fait référence aux petits éléments de texte qui guident les utilisateurs à

travers votre application, comme les libellés de boutons, les messages d’erreur ou les

invites de confirmation. En appliquant l’approche de Génération de contenu contextuel

au micro-texte, vous pouvez créer une interface utilisateur adaptative qui répond aux

actions de l’utilisateur et fournit du texte pertinent et utile. Par exemple, si un utilisateur

est sur le point d’effectuer une action critique, l’invite de confirmation peut être générée

dynamiquement pour fournir un message clair et personnalisé.

Le texte explicatif et les info-bulles personnalisés peuvent grandement améliorer le

processus d’intégration des nouveaux utilisateurs. En fournissant des conseils et des

Interface utilisateur générative 214

exemples spécifiques au contexte, vous pouvez aider les utilisateurs à comprendre et

à naviguer rapidement dans l’application, réduisant ainsi la courbe d’apprentissage et

augmentant l’adoption.

Les éléments d’interface dynamiques et contextuels peuvent également rendre

l’application plus intuitive et engageante. Les utilisateurs sont plus susceptibles

d’interagir avec les fonctionnalités et de les explorer lorsque le texte qui les accompagne

est adapté à leurs besoins et intérêts spécifiques.

Jusqu’à présent, nous avons abordé des idées pour améliorer les paradigmes d’interface

utilisateur existants avec l’IA, mais qu’en est-il de repenser de manière plus radicale la

façon dont les interfaces utilisateur sont conçues et mises en œuvre?

Définir l’interface utilisateur générative

Contrairement à la conception d’interface utilisateur traditionnelle, où les designers

créent des interfaces fixes et statiques, la GenUI laisse entrevoir un avenir dans

lequel nos logiciels disposent d’expériences flexibles et personnalisées qui peuvent

évoluer et s’adapter en temps réel. Chaque fois que nous utilisons une interface

conversationnelle basée sur l’IA, nous permettons à l’IA de s’adapter aux besoins

particuliers de l’utilisateur. La GenUI va plus loin en appliquant ce niveau d’adaptabilité

à l’interface visuelle du logiciel.

La raison pour laquelle il est possible d’expérimenter avec les idées de GenUI aujourd’hui

est que les grands modèles de langage comprennent déjà la programmation et leurs

connaissances de base incluent les technologies et frameworks d’interface utilisateur. La

question est donc de savoir si les grands modèles de langage peuvent être utilisés pour

générer des éléments d’interface utilisateur, tels que du texte, des images, des mises en

page, et même des interfaces entières, qui sont adaptés à chaque utilisateur. Le modèle

Interface utilisateur générative 215

pourrait être programmé pour prendre en compte divers facteurs, tels que les interactions

passées de l’utilisateur, ses préférences déclarées, ses informations démographiques et

le contexte d’utilisation actuel, pour créer des interfaces hautement personnalisées et

pertinentes.

La GenUI diffère de la conception d’interface utilisateur traditionnelle de plusieurs

manières clés :

1. Dynamique et adaptative : La conception d’interface utilisateur traditionnelle

implique la création d’interfaces fixes et statiques qui restent les mêmes pour

tous les utilisateurs. En revanche, la GenUI permet des interfaces qui peuvent

s’adapter et changer dynamiquement en fonction des besoins et du contexte de

l’utilisateur. Cela signifie que la même application peut présenter différentes

interfaces à différents utilisateurs ou même au même utilisateur dans différentes

situations.

2. Personnalisation à grande échelle : Avec la conception traditionnelle, créer

des expériences personnalisées pour chaque utilisateur est souvent irréalisable

en raison du temps et des ressources nécessaires. La GenUI, en revanche, permet

une personnalisation à grande échelle. En exploitant l’IA, les designers peuvent

créer des interfaces qui s’adaptent automatiquement aux besoins et préférences

uniques de chaque utilisateur, sans avoir à concevoir et développer manuellement

des interfaces distinctes pour chaque segment d’utilisateurs.

3. Accent sur les résultats : La conception d’interface utilisateur traditionnelle

se concentre souvent sur la création d’interfaces visuellement attrayantes et

fonctionnelles. Bien que ces aspects restent importants dans la GenUI, l’accent

principal se déplace vers l’atteinte des résultats souhaités par l’utilisateur. La

GenUI vise à créer des interfaces optimisées pour les objectifs et les tâches

spécifiques de chaque utilisateur, privilégiant l’utilisabilité et l’efficacité plutôt

que des considérations purement esthétiques.

4. Apprentissage et amélioration continus : Les systèmes GenUI peuvent

apprendre et s’améliorer continuellement au fil du temps en fonction des

Interface utilisateur générative 216

interactions et des retours des utilisateurs. Lorsque les utilisateurs interagissent

avec les interfaces générées, les modèles d’IA peuvent collecter des données sur

le comportement, les préférences et les résultats des utilisateurs, utilisant ces

informations pour affiner et optimiser les futures générations d’interfaces. Ce

processus d’apprentissage itératif permet aux systèmes GenUI de devenir de plus

en plus efficaces pour répondre aux besoins des utilisateurs au fil du temps.

Il est important de noter que la GenUI n’est pas la même chose que les outils de

conception assistée par IA, tels que ceux qui fournissent des suggestions ou automatisent

certaines tâches de conception. Bien que ces outils puissent être utiles pour rationaliser

le processus de conception, ils s’appuient toujours sur les designers pour prendre les

décisions finales et créer des interfaces statiques. La GenUI, en revanche, implique que

le système d’IA joue un rôle plus actif dans la génération et l’adaptation réelles des

interfaces en fonction des données et du contexte de l’utilisateur.

La GenUI représente un changement significatif dans notre approche de la conception

d’interface utilisateur, s’éloignant des solutions universelles au profit d’expériences

hautement personnalisées et adaptatives. En exploitant la puissance de l’IA, la GenUI a le

potentiel de révolutionner la façon dont nous interagissons avec les produits et services

numériques, créant des interfaces plus intuitives, engageantes et efficaces pour chaque

utilisateur individuel.

Exemple

Pour illustrer le concept de GenUI, considérons une application de fitness hypothétique

appelée “FitAI”. Cette application vise à fournir des plans d’entraînement personnalisés

et des conseils nutritionnels aux utilisateurs en fonction de leurs objectifs individuels,

niveaux de forme physique et préférences.

Dans une approche traditionnelle de conception d’interface utilisateur, FitAI pourrait

avoir un ensemble fixe d’écrans et d’éléments qui sont les mêmes pour tous les

Interface utilisateur générative 217

utilisateurs. Cependant, avec la GenUI, l’interface de l’application pourrait s’adapter

dynamiquement aux besoins uniques et au contexte de chaque utilisateur.

Cette approche est un peu difficile à imaginer mettre en œuvre en 2024 et pourrait même

ne pas avoir un retour sur investissement adéquat, mais elle est possible.

Voici comment cela pourrait fonctionner :

1. Intégration :

• Au lieu d’un questionnaire standard, FitAI utilise une IA conversationnelle

pour recueillir des informations sur les objectifs, le niveau de forme physique

actuel et les préférences de l’utilisateur.

• Sur la base de cette interaction initiale, l’IA génère une disposition de

tableau de bord personnalisée, mettant en évidence les fonctionnalités et les

informations les plus pertinentes pour les objectifs de l’utilisateur.

• La technologie d’IA actuelle pourrait disposer d’une sélection de composants

d’écran à sa disposition pour composer le tableau de bord personnalisé.

• La technologie d’IA future pourrait assumer le rôle d’un designer d’interface

utilisateur expérimenté et créer le tableau de bord à partir de zéro.

2. Planificateur d’entraînement :

• L’interface du planificateur d’entraînement est adaptée par l’IA pour

correspondre spécifiquement au niveau d’expérience de l’utilisateur et à

l’équipement disponible.

• Pour un débutant sans équipement, elle pourrait montrer des exercices

simples avec le poids du corps accompagnés d’instructions détaillées et de

vidéos.

• Pour un utilisateur avancé ayant accès à une salle de sport, elle pourrait

afficher des routines plus complexes avec moins de contenu explicatif.

Interface utilisateur générative 218

• Le contenu du planificateur d’entraînement n’est pas simplement filtré à

partir d’un grand ensemble. Il peut être généré à la volée à partir d’une base

de connaissances qui est interrogée avec un contexte incluant tout ce qui est

connu sur l’utilisateur.

3. Suivi des progrès :

• L’interface de suivi des progrès évolue en fonction des objectifs de

l’utilisateur et de ses schémas d’engagement.

• Si un utilisateur se concentre principalement sur la perte de poids, l’interface

pourrait afficher demanière proéminente un graphique de tendance du poids

et des statistiques de calories brûlées.

• Pour un utilisateur qui développe sa masse musculaire, elle pourrait mettre

en évidence les gains de force et les changements de composition corporelle.

• L’IA peut adapter cette partie de l’application aux progrès réels de

l’utilisateur. Si les progrès s’arrêtent pendant une période, l’application peut

passer en mode où elle tente d’amener l’utilisateur à révéler les raisons de

ce revers, afin de les atténuer.

4. Conseils nutritionnels :

• La section nutrition s’adapte aux préférences et restrictions alimentaires de

l’utilisateur.

• Pour un utilisateur végétalien, elle pourrait montrer des suggestions de repas

et des sources de protéines d’origine végétale.

• Pour un utilisateur intolérant au gluten, elle filtrerait automatiquement les

aliments contenant du gluten des recommandations.

• Encore une fois, le contenu n’est pas tiré d’un immense ensemble de données

de repas applicable à tous les utilisateurs, mais plutôt synthétisé à partir

d’une base de connaissances contenant des informations adaptables selon

la situation et les contraintes spécifiques de l’utilisateur.

Interface utilisateur générative 219

• Par exemple, les recettes sont générées avec des spécifications d’ingrédients

qui correspondent aux besoins caloriques en constante évolution de

l’utilisateur à mesure que son niveau de forme physique et ses statistiques

corporelles évoluent.

5. Éléments de motivation :

• Le contenu motivationnel et les notifications de l’application sont

personnalisés en fonction du type de personnalité de l’utilisateur et de sa

réponse aux différentes stratégies de motivation.

• Certains utilisateurs peuvent recevoir des messages d’encouragement, tandis

que d’autres obtiennent des retours plus axés sur les données.

Dans cet exemple, GenUI permet à FitAI de créer une expérience hautement

personnalisée pour chaque utilisateur, augmentant potentiellement l’engagement, la

satisfaction et la probabilité d’atteindre les objectifs de fitness. Les éléments d’interface,

le contenu et même la “personnalité” de l’application s’adaptent pour mieux servir les

besoins et les préférences de chaque utilisateur.

Le passage à une conception orientée résultats

GenUI représente un changement fondamental dans l’approche de la conception

d’interface utilisateur, passant d’une focalisation sur la création d’éléments d’interface

spécifiques à une approche plus holistique, orientée résultats. Ce changement a

plusieurs implications importantes :

1. Concentration sur les objectifs utilisateur :

• Les concepteurs devront réfléchir plus profondément aux objectifs des

utilisateurs et aux résultats souhaités plutôt qu’aux composants d’interface

spécifiques.

Interface utilisateur générative 220

• L’accent sera mis sur la création de systèmes capables de générer des

interfaces qui aident les utilisateurs à atteindre leurs objectifs efficacement.

• De nouveaux frameworks d’interface utilisateur émergeront pour donner

aux concepteurs basés sur l’IA les outils nécessaires pour générer des

expériences utilisateur à la volée et à partir de zéro plutôt que sur la base

de spécifications d’écran prédéfinies.

2. Évolution du rôle des concepteurs :

• Les concepteurs passeront de la création de mises en page fixes à la définition

de règles, de contraintes et de directives que les systèmes d’IA devront suivre

lors de la génération d’interfaces.

• Ils devront développer des compétences dans des domaines tels que l’analyse

de données, l’ingénierie des prompts et la pensée systémique pour guider

efficacement les systèmes GenUI.

3. Importance de la recherche utilisateur :

• La recherche utilisateur devient encore plus critique dans un contexte GenUI,

car les concepteurs doivent comprendre non seulement les préférences des

utilisateurs, mais aussi comment ces préférences et besoins évoluent dans

différents contextes.

• Des tests utilisateurs continus et des boucles de rétroaction seront essentiels

pour affiner et améliorer la capacité de l’IA à générer des interfaces efficaces.

4. Conception pour la variabilité :

• Au lieu de créer une seule interface “parfaite”, les concepteurs devront

envisager de multiples variations possibles et s’assurer que le système peut

générer des interfaces appropriées pour des besoins utilisateurs divers.

• Cela inclut la conception pour les cas limites et la garantie que les interfaces

générées maintiennent l’utilisabilité et l’accessibilité dans différentes

configurations.

Interface utilisateur générative 221

• La différenciation des produits prend de nouvelles dimensions impliquant

des perspectives divergentes sur la psychologie de l’utilisateur et

l’exploitation d’ensembles de données et de bases de connaissances

uniques non disponibles pour les concurrents.

Défis et considérations

Bien que GenUI offre des possibilités passionnantes, elle présente également plusieurs

défis et considérations :

1. Limitations techniques :

• La technologie d’IA actuelle, bien qu’avancée, a encore des limitations dans

la compréhension des intentions complexes des utilisateurs et la génération

d’interfaces véritablement conscientes du contexte.

• Problèmes de performance liés à la génération en temps réel d’éléments

d’interface, en particulier sur les appareils moins puissants.

2. Exigences en matière de données :

• Selon le cas d’utilisation, les systèmes GenUI efficaces peuvent nécessiter

des quantités importantes de données utilisateur pour générer des interfaces

personnalisées.

• Les défis liés à la collecte éthique de données utilisateur authentiques

soulèvent des préoccupations concernant la confidentialité et la sécurité

des données, ainsi que les biais potentiels dans les données utilisées pour

entraîner les modèles GenUI.

3. Utilisabilité et cohérence :

Interface utilisateur générative 222

• Au moins jusqu’à ce que la pratique se généralise, une application

aux interfaces en constante évolution pourrait entraîner des problèmes

d’utilisabilité, car les utilisateurs pourraient avoir du mal à trouver des

éléments familiers ou à naviguer efficacement.

• Il sera crucial de trouver un équilibre entre la personnalisation et le maintien

d’une interface cohérente et facile à apprendre.

4. Dépendance excessive à l’IA :

• Il existe un risque de trop déléguer les décisions de conception aux

systèmes d’IA, ce qui peut conduire à des choix d’interface sans inspiration,

problématiques ou simplement défectueux.

• La supervision humaine et la capacité de remplacer les designs générés par

l’IA resteront importantes dans un avenir prévisible.

5. Préoccupations en matière d’accessibilité :

• Garantir que les interfaces générées dynamiquement restent accessibles

aux utilisateurs handicapés présente des défis entièrement nouveaux, ce

qui est inquiétant étant donné le faible niveau de conformité en matière

d’accessibilité démontré par les systèmes typiques.

• D’autre part, les concepteurs IA peuvent être implémentés avec une

préoccupation intégrée pour l’accessibilité et des capacités pour construire

des interfaces accessibles à la volée, tout comme ils construisent des

interfaces pour les utilisateurs non handicapés.

• Dans tous les cas, les systèmes GenUI doivent être conçus avec des directives

d’accessibilité robustes et des processus de test.

6. Confiance des utilisateurs et transparence :

• Les utilisateurs peuvent se sentir mal à l’aise avec des interfaces qui

semblent “trop en savoir” sur eux ou qui changent d’une manière qu’ils ne

comprennent pas.

Interface utilisateur générative 223

• Assurer la transparence sur la façon dont et pourquoi les interfaces sont

personnalisées sera important pour établir la confiance des utilisateurs.

Perspectives d’avenir et opportunités

L’avenir de l’Interface Utilisateur Générative (GenUI) est très prometteur pour

révolutionner notre façon d’interagir avec les produits et services numériques.

À mesure que cette technologie continue d’évoluer, nous pouvons anticiper un

changement radical dans la façon dont les interfaces utilisateur sont conçues, mises

en œuvre et expérimentées. Je pense que la GenUI est le phénomène qui poussera

enfin nos logiciels dans le domaine de ce qui est maintenant considéré comme de la

science-fiction.

L’une des perspectives les plus excitantes de la GenUI est son potentiel d’amélioration

de l’accessibilité à grande échelle, allant au-delà du simple fait de s’assurer que

les personnes souffrant de handicaps graves ne sont pas complètement exclues de

l’utilisation de votre logiciel. En adaptant automatiquement les interfaces aux besoins

individuels des utilisateurs, la GenUI pourrait rendre les expériences numériques plus

inclusives que jamais. Imaginez des interfaces qui s’ajustent de manière transparente

pour fournir un texte plus grand pour les utilisateurs plus jeunes ou malvoyants, ou des

mises en page simplifiées pour ceux ayant des handicaps cognitifs, le tout sans nécessiter

de configuration manuelle ou de versions “accessibles” séparées des applications.

Les capacités de personnalisation de la GenUI sont susceptibles d’augmenter

l’engagement, la satisfaction et la fidélité des utilisateurs pour une large gamme de

produits numériques. À mesure que les interfaces s’adaptent mieux aux préférences et

aux comportements individuels, les utilisateurs trouveront les expériences numériques

plus intuitives et agréables, ce qui pourrait conduire à des interactions plus profondes

et plus significatives avec la technologie.

Interface utilisateur générative 224

La GenUI a également le potentiel de transformer le processus d’intégration des

nouveaux utilisateurs. En créant des expériences utilisateur intuitives et personnalisées

pour les premiers contacts qui s’adaptent rapidement au niveau d’expertise de chaque

utilisateur, la GenUI pourrait réduire considérablement la courbe d’apprentissage

associée aux nouvelles applications. Cela pourrait conduire à des taux d’adoption

plus rapides et à une confiance accrue des utilisateurs dans l’exploration de nouvelles

fonctionnalités.

Une autre possibilité passionnante est la capacité de la GenUI àmaintenir une expérience

utilisateur cohérente sur différents appareils et plateformes tout en optimisant pour

chaque contexte d’utilisation spécifique. Cela pourrait résoudre le défi de longue date

consistant à fournir des expériences cohérentes dans un paysage d’appareils de plus

en plus fragmenté, des smartphones et tablettes aux ordinateurs de bureau et aux

technologies émergentes comme les lunettes de réalité augmentée.

La nature axée sur les données de la GenUI ouvre des opportunités pour une itération

et une amélioration rapides dans la conception d’interfaces utilisateur. En recueillant

des données en temps réel sur la façon dont les utilisateurs interagissent avec les

interfaces générées, les designers et les développeurs peuvent obtenir des insights

sans précédent sur le comportement et les préférences des utilisateurs. Cette boucle

de rétroaction pourrait conduire à des améliorations continues dans la conception

d’interfaces utilisateur, guidées par des modèles d’utilisation réels plutôt que par des

hypothèses ou des tests utilisateur limités.

Pour se préparer à ce changement, les designers devront faire évoluer leurs compétences

et leurs mentalités. L’accent passera de la création de mises en page fixes au

développement de systèmes de design complets et de directives pouvant guider la

génération d’interfaces par l’IA. Les designers devront cultiver une compréhension

approfondie de l’analyse de données, des technologies d’IA et de la pensée systémique

pour guider efficacement les systèmes GenUI.

De plus, alors que la GenUI estompe les frontières entre le design et la technologie,

Interface utilisateur générative 225

les designers devront collaborer plus étroitement avec les développeurs et les data

scientists. Cette approche interdisciplinaire sera cruciale pour créer des systèmes GenUI

qui sont non seulement visuellement attrayants et conviviaux, mais aussi techniquement

robustes et éthiquement solides.

Les implications éthiques du GenUI seront également mises au premier plan à

mesure que la technologie évoluera. Les concepteurs joueront un rôle crucial dans le

développement de cadres de travail pour une utilisation responsable de l’IA dans la

conception d’interface, en s’assurant que la personnalisation améliore les expériences

utilisateur sans compromettre la confidentialité ni manipuler le comportement des

utilisateurs de manière contraire à l’éthique.

En regardant vers l’avenir, le GenUI présente à la fois des opportunités passionnantes

et des défis importants. Il a le potentiel de créer des expériences numériques plus

intuitives, efficaces et satisfaisantes pour les utilisateurs du monde entier. Bien qu’il

exigera des concepteurs qu’ils s’adaptent et acquièrent de nouvelles compétences, il

offre également une opportunité sans précédent de façonner l’avenir de l’interaction

homme-machine de manière profonde et significative. Le chemin vers des systèmes

GenUI pleinement réalisés sera sans doute complexe, mais les récompenses potentielles

en termes d’amélioration des expériences utilisateur et d’accessibilité numérique en font

un avenir pour lequel il vaut la peine de s’efforcer.

Orchestration intelligente des
flux de travail

Dans le domaine du développement d’applications, les flux de travail jouent un rôle

crucial dans la définition de la structure et de l’exécution des tâches, des processus et

des interactions utilisateur. À mesure que les applications deviennent plus complexes et

que les attentes des utilisateurs continuent d’augmenter, le besoin d’une orchestration

intelligente et adaptative des flux de travail devient de plus en plus évident.

L’approche de l’“Orchestration intelligente des flux de travail” se concentre sur

l’utilisation des composants d’IA pour orchestrer et optimiser dynamiquement des flux

de travail complexes au sein des applications. L’objectif est de créer des applications

plus efficaces, réactives et adaptables aux données et au contexte en temps réel.

Dans ce chapitre, nous explorerons les principes et modèles clés qui sous-tendent

l’approche d’orchestration intelligente des flux de travail. Nous examinerons comment

Orchestration intelligente des flux de travail 227

l’IA peut être utilisée pour router intelligemment les tâches, automatiser la prise de

décision et adapter dynamiquement les flux de travail en fonction de divers facteurs tels

que le comportement des utilisateurs, les performances du système et les règles métier.

À travers des exemples pratiques et des scénarios réels, nous démontrerons le potentiel

transformateur de l’IA dans la rationalisation et l’optimisation des flux de travail des

applications.

Que vous construisiez des applications d’entreprise avec des processus métier complexes

ou des applications grand public avec des parcours utilisateur dynamiques, les modèles

et techniques abordés dans ce chapitre vous fourniront les connaissances et les outils

nécessaires pour créer des flux de travail intelligents et efficaces qui améliorent

l’expérience utilisateur globale et génèrent de la valeur commerciale.

Besoin métier

Les approches traditionnelles de la gestion des flux de travail reposent souvent sur des

règles prédéfinies et des arbres de décision statiques, qui peuvent être rigides, inflexibles

et incapables de faire face à la nature dynamique des applications modernes.

Prenons le scénario d’une application de commerce électronique qui doit gérer un

processus complexe de traitement des commandes. Le flux de travail peut impliquer

plusieurs étapes telles que la validation de la commande, la vérification des stocks, le

traitement des paiements, l’expédition et les notifications aux clients. Chaque étape

peut avoir son propre ensemble de règles, de dépendances, d’intégrations externes et

de mécanismes de gestion des exceptions. Gérer un tel flux de travail manuellement ou

par le biais d’une logique codée en dur peut rapidement devenir fastidieux, sujet aux

erreurs et difficile à maintenir.

De plus, à mesure que l’application évolue et que le nombre d’utilisateurs simultanés

augmente, le flux de travail peut avoir besoin de s’adapter et de s’optimiser en fonction

des données en temps réel et des performances du système. Par exemple, pendant les

Orchestration intelligente des flux de travail 228

périodes de trafic intense, l’application peut avoir besoin d’ajuster dynamiquement le

flux de travail pour prioriser certaines tâches, allouer efficacement les ressources et

assurer une expérience utilisateur fluide.

C’est là qu’intervient l’approche de l’“Orchestration intelligente des flux de travail”.

En utilisant des composants d’IA, les développeurs peuvent créer des flux de travail

intelligents, adaptatifs et auto-optimisants. L’IA peut analyser de vastes quantités de

données, apprendre des expériences passées et prendre des décisions éclairées en temps

réel pour orchestrer efficacement le flux de travail.

Avantages clés

1. Efficacité accrue : L’IA peut optimiser l’allocation des tâches, l’utilisation des

ressources et l’exécution des flux de travail, conduisant à des temps de traitement

plus rapides et une meilleure efficacité globale.

2. Adaptabilité : Les flux de travail pilotés par l’IA peuvent s’adapter

dynamiquement aux conditions changeantes, telles que les fluctuations de

la demande des utilisateurs, les performances du système ou les exigences métier,

garantissant que l’application reste réactive et résiliente.

3. Prise de décision automatisée : L’IA peut automatiser les processus complexes

de prise de décision au sein du flux de travail, réduisant l’intervention manuelle

et minimisant le risque d’erreurs humaines.

4. Personnalisation : L’IA peut analyser le comportement, les préférences et

le contexte des utilisateurs pour personnaliser le flux de travail et offrir des

expériences sur mesure à chaque utilisateur.

5. Extensibilité : Les flux de travail alimentés par l’IA peuvent s’adapter de manière

transparente pour gérer des volumes croissants de données et d’interactions

utilisateur, sans compromettre les performances ou la fiabilité.

Dans les sections suivantes, nous explorerons les modèles et techniques clés qui

permettent la mise en œuvre de flux de travail intelligents et présenterons des exemples

Orchestration intelligente des flux de travail 229

concrets de la façon dont l’IA transforme la gestion des flux de travail dans les

applications modernes.

Modèles clés

Pour mettre en œuvre l’orchestration intelligente des flux de travail dans les

applications, les développeurs peuvent exploiter plusieurs modèles clés qui exploitent

la puissance de l’IA. Ces modèles fournissent une approche structurée pour concevoir

et gérer les flux de travail, permettant aux applications de s’adapter, de s’optimiser

et d’automatiser les processus en fonction des données et du contexte en temps réel.

Explorons certains des modèles fondamentaux de l’orchestration intelligente des flux

de travail.

Routage dynamique des tâches

Ce modèle implique l’utilisation de l’IA pour router intelligemment les tâches au sein

d’un flux de travail en fonction de divers facteurs tels que la priorité des tâches,

la disponibilité des ressources et les performances du système. Les algorithmes d’IA

peuvent analyser les caractéristiques de chaque tâche, prendre en compte l’état actuel

du système et prendre des décisions éclairées pour attribuer les tâches aux ressources

ou aux chemins de traitement les plus appropriés. Le routage dynamique des tâches

garantit que les tâches sont distribuées et exécutées efficacement, optimisant ainsi les

performances globales du flux de travail.

Orchestration intelligente des flux de travail 230

1 class TaskRouter

2 include Raix ::ChatCompletion

3 include Raix ::FunctionDispatch

4

5 attr_accessor :task

6

7 # list of functions that can be called by the AI entirely at its

8 # discretion depending on the task received

9

10 function :analyze_task_priority do

11 TaskPriorityAnalyzer.perform(task)

12 end

13

14 function :check_resource_availability, # ...

15 function :assess_system_performance, # ...

16 function :assign_task_to_resource, # ...

17

18 DIRECTIVE = "You are a task router, responsible for intelligently

19 assigning tasks to available resources based on priority, resource

20 availability, and system performance..."

21

22 def initialize(task)

23 self.task = task

24 transcript << { system : DIRECTIVE }

25 transcript << { user : task.to_json }

26 end

27

28 def perform

29 while task.unassigned ?

30 chat_completion

31

32 # todo : add max loop counter and break

33 end

34

35 # capture the transcript for later analysis

36 task.update(routing_transcript : transcript)

37 end

38 end

Notez la boucle créée par l’expression while à la ligne 29, qui continue d’interroger l’IA

jusqu’à ce que la tâche soit assignée. À la ligne 35, nous sauvegardons la transcription

Orchestration intelligente des flux de travail 231

de la tâche pour une analyse et un débogage ultérieurs si nécessaire.

Prise de Décision Contextuelle

Vous pouvez utiliser un code très similaire pour prendre des décisions contextuelles

au sein d’un flux de travail. En analysant les points de données pertinents tels que

les préférences utilisateur, les modèles historiques et les entrées en temps réel, les

composants d’IA peuvent déterminer la ligne de conduite la plus appropriée à chaque

point de décision dans le flux de travail. Adaptez le comportement de votre flux de

travail en fonction du contexte spécifique de chaque utilisateur ou scénario, offrant ainsi

des expériences personnalisées et optimisées.

Composition Adaptative des Flux de Travail

Ce modèle se concentre sur la composition et l’ajustement dynamiques des flux

de travail en fonction de l’évolution des exigences ou des conditions. L’IA peut

analyser l’état actuel du flux de travail, identifier les goulots d’étranglement ou les

inefficacités, et modifier automatiquement la structure du flux de travail pour optimiser

les performances. La composition adaptative des flux de travail permet aux applications

d’évoluer et d’améliorer continuellement leurs processus sans nécessiter d’intervention

manuelle.

Gestion et Récupération des Exceptions

La gestion et la récupération des exceptions sont des aspects critiques de l’orchestration

intelligente des flux de travail. Lorsque l’on travaille avec des composants d’IA et des

flux de travail complexes, il est essentiel d’anticiper et de gérer les exceptions avec

élégance pour assurer la stabilité et la fiabilité du système.

Voici quelques considérations et techniques clés pour la gestion et la récupération des

exceptions dans les flux de travail intelligents :

Orchestration intelligente des flux de travail 232

1. Propagation des Exceptions : Mettez en œuvre une approche cohérente pour la

propagation des exceptions à travers les composants du flux de travail. Lorsqu’une

exception se produit dans un composant, elle doit être capturée, enregistrée et

propagée à l’orchestrateur ou à un composant distinct responsable de la gestion

des exceptions. L’idée est de centraliser la gestion des exceptions et d’empêcher

qu’elles ne soient silencieusement ignorées, tout en ouvrant des possibilités pour

une Gestion Intelligente des Erreurs.

2. Mécanismes de Réessai : Les mécanismes de réessai aident à améliorer la

résilience du flux de travail et à gérer les échecs intermittents avec élégance. Il est

certainement recommandé de mettre en œuvre des mécanismes de réessai pour

les exceptions transitoires ou récupérables, comme une connectivité réseau ou une

indisponibilité des ressources qui peuvent être automatiquement réessayées après

un délai spécifié. Avoir un orchestrateur ou un gestionnaire d’exceptions basé sur

l’IA signifie que vos stratégies de réessai n’ont pas à être mécaniques par nature,

s’appuyant sur des algorithmes fixes comme le repli exponentiel. Vous pouvez

laisser la gestion du réessai à la “discrétion” du composant d’IA responsable de la

gestion de l’exception.

3. Stratégies de Repli : Si un composant d’IA ne parvient pas à fournir une

réponse valide ou rencontre une erreur—une occurrence courante étant donné

sa nature d’avant-garde—ayez un mécanisme de repli en place pour assurer la

continuité du flux de travail. Cela peut impliquer l’utilisation de valeurs par

défaut, d’algorithmes alternatifs, ou un Humain dans la Boucle pour prendre des

décisions et faire avancer le flux de travail.

4. Actions Compensatoires : Les directives de l’orchestrateur doivent inclure des

instructions sur les actions compensatoires pour gérer les exceptions qui ne

peuvent pas être résolues automatiquement. Les actions compensatoires sont des

étapes prises pour annuler ou atténuer les effets d’une opération échouée. Par

exemple, si une étape de traitement de paiement échoue, une action compensatoire

pourrait être d’annuler la transaction et d’informer l’utilisateur. Les actions

Orchestration intelligente des flux de travail 233

compensatoires aident à maintenir la cohérence et l’intégrité des données face

aux exceptions.

5. Surveillance et Alertes des Exceptions : Mettez en place des mécanismes de

surveillance et d’alerte pour détecter et notifier les parties prenantes concernées

des exceptions critiques. L’orchestrateur peut être informé des seuils et des règles

pour déclencher des alertes lorsque les exceptions dépassent certaines limites

ou lorsque des types spécifiques d’exceptions se produisent. Cela permet une

identification et une résolution proactives des problèmes avant qu’ils n’impactent

l’ensemble du système.

Voici un exemple de gestion et de récupération des exceptions dans un composant de

flux de travail Ruby :

1 class InventoryManager

2 def check_availability(order)

3 begin

4 # Perform inventory check logic

5 inventory = Inventory.find_by(product_id : order.product_id)

6 if inventory.available_quantity >= order.quantity

7 return true

8 else

9 raise InsufficientInventoryError,

10 "Insufficient inventory for product #{order.product_id}"

11 end

12 rescue InsufficientInventoryError => e

13 # Log the exception

14 logger.error("Inventory check failed : #{e.message}")

15

16 # Retry the operation after a delay

17 retry_count ||= 0

18 if retry_count < MAX_RETRIES

19 retry_count += 1

20 sleep(RETRY_DELAY)

21 retry

22 else

23 # Fallback to manual intervention

24 NotificationService.admin("Inventory check failed : Order #{order.id}")

Orchestration intelligente des flux de travail 234

25 return false

26 end

27 end

28 end

29 end

Dans cet exemple, le composant InventoryManager vérifie la disponibilité d’un

produit pour une commande donnée. Si la quantité disponible est insuffisante, il

déclenche une InsufficientInventoryError. L’exception est capturée, enregistrée,

et un mécanisme de nouvelle tentative est mis en œuvre. Si la limite de tentatives

est dépassée, le composant se replie sur une intervention manuelle en notifiant un

administrateur.

En mettant en œuvre des mécanismes robustes de gestion et de récupération des

exceptions, vous pouvez garantir que vos flux de travail intelligents sont résilients,

maintenables et capables de gérer élégamment les situations inattendues.

Cesmodèles constituent le fondement de l’orchestration des flux de travail intelligents et

peuvent être combinés et adaptés pour répondre aux exigences spécifiques de différentes

applications. En tirant parti de ces modèles, les développeurs peuvent créer des flux

de travail qui sont flexibles, résilients et optimisés pour la performance et l’expérience

utilisateur.

Dans la section suivante, nous explorerons comment ces modèles peuvent être mis en

œuvre dans la pratique, en utilisant des exemples concrets et des extraits de code pour

illustrer l’intégration des composants d’IA dans la gestion des flux de travail.

Orchestration intelligente des flux de travail 235

Mise en œuvre pratique de l’orchestration des

flux de travail intelligents

Maintenant que nous avons exploré les modèles clés de l’orchestration des flux de travail

intelligents, plongeons dans la façon dont ces modèles peuvent être mis en œuvre dans

des applications réelles. Nous fournirons des exemples pratiques et des extraits de code

pour illustrer l’intégration des composants d’IA dans la gestion des flux de travail.

Processeur de commandes intelligent

Plongeons dans un exemple pratique de mise en œuvre de l’orchestration des flux de

travail intelligents en utilisant un composant OrderProcessor alimenté par l’IA dans

une application e-commerce Ruby on Rails. L’OrderProcessor concrétise le concept

de Gestionnaire de processus d’intégration d’entreprise que nous avons découvert au

Chapitre 3 lors de la discussion sur la Multitude de travailleurs. Le composant sera

responsable de la gestion du flux de traitement des commandes, prenant des décisions de

routage basées sur les résultats intermédiaires et orchestrant l’exécution des différentes

étapes de traitement.

Le processus de traitement des commandes implique plusieurs étapes telles que la

validation de la commande, la vérification des stocks, le traitement des paiements et

l’expédition. Chaque étape est mise en œuvre comme un processus de travail distinct

qui effectue une tâche spécifique et renvoie le résultat à l’OrderProcessor. Les étapes

ne sont pas obligatoires et ne doivent pas nécessairement être effectuées dans un ordre

précis.

Voici un exemple de mise en œuvre de l’OrderProcessor. Il comporte deux mixins

de Raix. Le premier (ChatCompletion) lui donne la capacité de faire de la complétion

de conversation, ce qui en fait un composant d’IA. Le second (FunctionDispatch)

permet l’appel de fonctions par l’IA, lui permettant de répondre à une invite avec une

invocation de fonction plutôt qu’un message texte.

https://github.com/OlympiaAI/raix-rails

Orchestration intelligente des flux de travail 236

Les fonctions de travail (validate_order, check_inventory, et autres) délèguent à

leurs classes de travail respectives, qui peuvent être des composants IA ou non-IA, avec

pour seule exigence qu’elles renvoient les résultats de leur travail dans un format qui

peut être représenté sous forme de chaîne de caractères.

Comme pour tous les autres exemples de cette partie du livre, ce code

est pratiquement du pseudo-code et vise uniquement à transmettre la

signification du modèle et à inspirer vos propres créations. Les descriptions

complètes des modèles et les exemples de code complets sont inclus dans la

Partie 2.

1 class OrderProcessor

2 include Raix ::ChatCompletion

3 include Raix ::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

6

7 def initialize(order)

8 self.order = order

9 transcript << { system : SYSTEM_DIRECTIVE }

10 transcript << { user : order.to_json }

11 end

12

13 def perform

14 # will continue looping until `stop_looping !` is called

15 chat_completion(loop : true)

16 end

17

18 # list of functions available to be called by the AI

19 # truncated for brevity

20

21 def functions

22 [

23 {

24 name : "validate_order",

25 description : "Invoke to check validity of order",

26 parameters : {

Orchestration intelligente des flux de travail 237

27 ...

28 },

29 ...

30]

31 end

32

33 # implementation of functions that can be called by the AI

34 # entirely at its discretion, depending on the needs of the order

35

36 def validate_order

37 OrderValidationWorker.perform(@order)

38 end

39

40 def check_inventory

41 InventoryCheckWorker.perform(@order)

42 end

43

44 def process_payment

45 PaymentProcessingWorker.perform(@order)

46 end

47

48 def schedule_shipping

49 ShippingSchedulerWorker.perform(@order)

50 end

51

52 def send_confirmation

53 OrderConfirmationWorker.perform(@order)

54 end

55

56 def finished_processing

57 @order.update !(transcript :, processed_at : Time.current)

58 stop_looping !

59 end

60 end

Dans l’exemple, l’OrderProcessor est initialisé avec un objet de commande et maintient

une transcription de l’exécution du flux de travail, dans le format de transcription de

conversation typique qui est natif aux grands modèles de langage. Le contrôle complet

est donné à l’IA pour orchestrer l’exécution des différentes étapes de traitement, telles

que la validation de la commande, la vérification des stocks, le traitement des paiements

Orchestration intelligente des flux de travail 238

et l’expédition.

Chaque fois que la méthode chat_completion est appelée, la transcription est envoyée

à l’IA pour qu’elle fournisse une réponse sous forme d’appel de fonction. Il appartient

entièrement à l’IA d’analyser le résultat de l’étape précédente et de déterminer l’action

appropriée à prendre. Par exemple, si la vérification des stocks révèle des niveaux bas,

l’OrderProcessor peut planifier une tâche de réapprovisionnement. Si le traitement

du paiement échoue, il peut initier une nouvelle tentative ou notifier le service client.

L’exemple ci-dessus n’a pas de fonctions définies pour le réapprovisionnement ou la

notification du service client, mais il pourrait absolument en avoir.

La transcription s’enrichit à chaque appel de fonction et sert d’enregistrement de

l’exécution du flux de travail, incluant les résultats de chaque étape et les instructions

générées par l’IA pour les étapes suivantes. Cette transcription peut être utilisée pour

le débogage, l’audit et pour offrir une visibilité sur le processus de traitement des

commandes.

En exploitant l’IA dans l’OrderProcessor, l’application e-commerce peut adapter

dynamiquement le flux de travail en fonction des données en temps réel et gérer

les exceptions de manière intelligente. Le composant IA peut prendre des décisions

éclairées, optimiser le flux de travail et assurer un traitement fluide des commandes,

même dans des scénarios complexes.

Le fait que la seule exigence pour les processus de travail soit de renvoyer une sortie

intelligible que l’IA peut prendre en compte pour décider de la suite, vous fait peut-

être réaliser comment cette approche peut réduire le travail de mappage entrée/sortie

typiquement nécessaire lors de l’intégration de systèmes disparates entre eux.

Orchestration intelligente des flux de travail 239

Modérateur de Contenu Intelligent

Les applications de médias sociaux nécessitent généralement au minimum une

modération de contenu pour assurer une communauté saine et sûre. Cet exemple de

composant ContentModerator exploite l’IA pour orchestrer intelligemment le flux de

travail de modération, prenant des décisions basées sur les caractéristiques du contenu

et les résultats des différentes étapes de modération.

Le processus de modération implique plusieurs étapes telles que l’analyse de texte, la

reconnaissance d’images, l’évaluation de la réputation de l’utilisateur et la révision

manuelle. Chaque étape est implémentée comme un processus de travail distinct qui

effectue une tâche spécifique et renvoie le résultat au ContentModerator.

Voici un exemple d’implémentation du ContentModerator :

1 class ContentModerator

2 include Raix ::ChatCompletion

3 include Raix ::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,

6 tasked with the workflow involved in moderating user-generated content..."

7

8 def initialize(content)

9 @content = content

10 @transcript = [

11 { system : SYSTEM_DIRECTIVE },

12 { user : content.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

Orchestration intelligente des flux de travail 240

24 # list of functions available to be called by the AI

25 # truncated for brevity

26

27 def functions

28 [

29 {

30 name : "analyze_text",

31 # ...

32 },

33 {

34 name : "recognize_image",

35 description : "Invoke to describe images...",

36 # ...

37 },

38 {

39 name : "assess_user_reputation",

40 # ...

41 },

42 {

43 name : "escalate_to_manual_review",

44 # ...

45 },

46 {

47 name : "approve_content",

48 # ...

49 },

50 {

51 name : "reject_content",

52 # ...

53 }

54]

55 end

56

57 # implementation of functions that can be called by the AI

58 # entirely at its discretion, depending on the needs of the order

59

60 def analyze_text

61 result = TextAnalysisWorker.perform(@content)

62 continue_with(result)

63 end

64

65 def recognize_image

Orchestration intelligente des flux de travail 241

66 result = ImageRecognitionWorker.perform(@content)

67 continue_with(result)

68 end

69

70 def assess_user_reputation

71 result = UserReputationWorker.perform(@content.user)

72 continue_with(result)

73 end

74

75 def escalate_to_manual_review

76 ManualReviewWorker.perform(@content)

77 @content.update !(status : 'pending', transcript : @transcript)

78 end

79

80 def approve_content

81 @content.update !(status : 'approved', transcript : @transcript)

82 end

83

84 def reject_content

85 @content.update !(status : 'rejected', transcript : @transcript)

86 end

87

88 private

89

90 def continue_with(result)

91 @transcript << { function : result }

92 complete(@transcript)

93 end

94 end

Dans cet exemple, le ContentModerator est initialisé avec un objet de contenu et

maintient une transcription de modération au format conversation. Le composant IA a

un contrôle total sur le flux de modération, décidant quelles étapes exécuter en fonction

des caractéristiques du contenu et des résultats de chaque étape.

Les fonctions de traitement disponibles que l’IA peut invoquer comprennent analyze_-

text, recognize_image, assess_user_reputation, et escalate_to_manual_-

review. Chaque fonction délègue la tâche à un processus de traitement correspondant

(TextAnalysisWorker, ImageRecognitionWorker, etc.) et ajoute le résultat à la

Orchestration intelligente des flux de travail 242

transcription de modération, à l’exception de la fonction d’escalade qui agit comme

un état final. Enfin, les fonctions approve_content et reject_content agissent

également comme des états finaux.

Le composant IA analyse le contenu et détermine l’action appropriée à prendre. Si le

contenu contient des références d’images, il peut faire appel au processus recognize_-

image pour obtenir de l’aide lors d’un examen visuel. Si un processus signale un contenu

potentiellement nuisible, l’IA peut décider d’escalader le contenu pour un examen

manuel ou simplement le rejeter directement. Mais selon la gravité de l’avertissement,

l’IA peut choisir d’utiliser les résultats de l’évaluation de la réputation de l’utilisateur

pour décider comment traiter le contenu dont elle n’est pas autrement sûre. Selon le cas

d’utilisation, les utilisateurs de confiance ont peut-être plus de latitude dans ce qu’ils

peuvent publier. Et ainsi de suite…

Comme dans l’exemple précédent du gestionnaire de processus, la transcription de

modération sert d’enregistrement de l’exécution du flux de travail, incluant les résultats

de chaque étape et les décisions générées par l’IA. Cette transcription peut être utilisée

pour l’audit, la transparence et l’amélioration du processus de modération au fil du

temps.

En exploitant l’IA dans le ContentModerator, l’application de médias sociaux peut

adapter dynamiquement le flux de modération en fonction des caractéristiques du

contenu et gérer intelligemment des scénarios de modération complexes. Le composant

IA peut prendre des décisions éclairées, optimiser le flux de travail et assurer une

expérience communautaire sûre et saine.

Explorons deux autres exemples qui démontrent la planification prédictive des tâches

ainsi que la gestion et la récupération des exceptions dans le contexte de l’orchestration

intelligente des flux de travail.

Orchestration intelligente des flux de travail 243

Planification prédictive des tâches dans un système de
support client

Dans une application de support client construite avec Ruby on Rails, la gestion et la

priorisation efficaces des tickets d’assistance sont cruciales pour fournir une aide rapide

aux clients. Le composant SupportTicketScheduler utilise l’IA pour planifier et

attribuer demanière prédictive les tickets d’assistance aux agents disponibles en fonction

de divers facteurs tels que l’urgence du ticket, l’expertise de l’agent et la charge de travail.

1 class SupportTicketScheduler

2 include Raix ::ChatCompletion

3 include Raix ::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,

6 tasked with intelligently assigning tickets to available agents..."

7

8 def initialize(ticket)

9 @ticket = ticket

10 @transcript = [

11 { system : SYSTEM_DIRECTIVE },

12 { user : ticket.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 def functions

25 [

26 {

27 name : "analyze_ticket_urgency",

28 # ...

29 },

30 {

Orchestration intelligente des flux de travail 244

31 name : "list_available_agents",

32 description : "Includes expertise of available agents",

33 # ...

34 },

35 {

36 name : "predict_agent_workload",

37 description : "Uses historical data to predict upcoming workloads",

38 # ...

39 },

40 {

41 name : "assign_ticket_to_agent",

42 # ...

43 },

44 {

45 name : "reschedule_ticket",

46 # ...

47 }

48]

49 end

50

51 # implementation of functions that can be called by the AI

52 # entirely at its discretion, depending on the needs of the order

53

54 def analyze_ticket_urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)

56 continue_with(result)

57 end

58

59 def list_available_agents

60 result = ListAvailableAgents.perform

61 continue_with(result)

62 end

63

64 def predict_agent_workload

65 result = AgentWorkloadPredictor.perform

66 continue_with(result)

67 end

68

69 def assign_ticket_to_agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

Orchestration intelligente des flux de travail 245

73 def delay_assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)

76 end

77

78 private

79

80 def continue_with(result)

81 @transcript << { function : result }

82 complete(@transcript)

83 end

84 end

Dans cet exemple, le SupportTicketScheduler est initialisé avec un objet de ticket

d’assistance et maintient une transcription de planification. Le composant IA analyse les

détails du ticket et planifie de manière prédictive l’attribution du ticket en fonction de

facteurs tels que l’urgence du ticket, l’expertise de l’agent et la charge de travail prévue

de l’agent.

Les fonctions disponibles pour l’IA incluent analyze_ticket_urgency, list_-

available_agents, predict_agent_workload, et assign_ticket_to_agent.

Chaque fonction délègue la tâche à un composant d’analyse ou de prédiction

correspondant et ajoute le résultat à la transcription de planification. L’IA a également

la possibilité de retarder l’attribution en utilisant la fonction delay_assignment.

Le composant IA examine la transcription de planification et prend des décisions

éclairées sur l’attribution des tickets. Il prend en compte l’urgence du ticket, l’expertise

des agents disponibles et la charge de travail prévue de chaque agent pour déterminer

l’agent le plus approprié pour traiter le ticket.

En tirant parti de la planification prédictive des tâches, l’application de support client

peut optimiser l’attribution des tickets, réduire les temps de réponse et améliorer la

satisfaction globale des clients. La gestion proactive et efficace des tickets d’assistance

garantit que les bons tickets sont attribués aux bons agents au bon moment.

Orchestration intelligente des flux de travail 246

Gestion des Exceptions et Récupération dans un Pipeline
de Traitement de Données

La gestion des exceptions et la récupération après les échecs sont essentielles pour

garantir l’intégrité des données et prévenir la perte de données. Le composant

DataProcessingOrchestrator utilise l’IA pour gérer intelligemment les exceptions

et orchestrer le processus de récupération dans un pipeline de traitement de données

1 class DataProcessingOrchestrator

2 include Raix ::ChatCompletion

3 include Raix ::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

6

7 def initialize(data_batch)

8 @data_batch = data_batch

9 @transcript = [

10 { system : SYSTEM_DIRECTIVE },

11 { user : data_batch.to_json }

12]

13 end

14

15 def perform

16 complete(@transcript)

17 end

18

19 def model

20 "openai/gpt-4"

21 end

22

23 def functions

24 [

25 {

26 name : "validate_data",

27 # ...

28 },

29 {

30 name : "process_data",

31 # ...

32 },

Orchestration intelligente des flux de travail 247

33 {

34 name : "request_fix",

35 # ...

36 },

37 {

38 name : "retry_processing",

39 # ...

40 },

41 {

42 name : "mark_data_as_failed",

43 # ...

44 },

45 {

46 name : "finished",

47 # ...

48 }

49]

50 end

51

52 # implementation of functions that can be called by the AI

53 # entirely at its discretion, depending on the needs of the order

54

55 def validate_data

56 result = DataValidator.perform(@data_batch)

57 continue_with(result)

58 rescue ValidationException => e

59 handle_validation_exception(e)

60 end

61

62 def process_data

63 result = DataProcessor.perform(@data_batch)

64 continue_with(result)

65 rescue ProcessingException => e

66 handle_processing_exception(e)

67 end

68

69 def request_fix(description_of_fix)

70 result = SmartDataFixer.new(description_of_fix, @data_batch)

71 continue_with(result)

72 end

73

74 def retry_processing(timeout_in_seconds)

Orchestration intelligente des flux de travail 248

75 wait(timeout_in_seconds)

76 process_data

77 end

78

79 def mark_data_as_failed

80 @data_batch.update !(status : 'failed', transcript : @transcript)

81 end

82

83 def finished

84 @data_batch.update !(status : 'finished', transcript : @transcript)

85 end

86

87 private

88

89 def continue_with(result)

90 @transcript << { function : result }

91 complete(@transcript)

92 end

93

94 def handle_validation_exception(exception)

95 @transcript << { exception : exception.message }

96 complete(@transcript)

97 end

98

99 def handle_processing_exception(exception)

100 @transcript << { exception : exception.message }

101 complete(@transcript)

102 end

103 end

Dans cet exemple, le DataProcessingOrchestrator est initialisé avec un objet de lot

de données et maintient une transcription du traitement. Le composant d’IA orchestre

le pipeline de traitement des données, gérant les exceptions et se remettant des échecs

selon les besoins.

Les fonctions disponibles que l’IA peut invoquer comprennent validate_data,

process_data, request_fix, retry_processing, et mark_data_as_failed.

Chaque fonction délègue la tâche à un composant de traitement de données

correspondant et ajoute le résultat ou les détails de l’exception à la transcription

Orchestration intelligente des flux de travail 249

du traitement.

Si une exception de validation se produit pendant l’étape validate_data, la fonction

handle_validation_exception ajoute les données de l’exception à la transcription

et rend le contrôle à l’IA. De même, si une exception de traitement survient pendant

l’étape process_data, l’IA peut décider de la stratégie de récupération.

Selon la nature de l’exception rencontrée, l’IA peut, à sa discrétion, décider d’appeler

request_fix, qui délègue à un composant SmartDataFixer alimenté par l’IA (voir

le chapitre sur les Données auto-réparatrices). Le correcteur de données reçoit une

description en langage naturel de la façon dont il doit modifier le @data_batch pour

que le traitement puisse être réessayé. Peut-être qu’une reprise réussie impliquerait de

supprimer du lot de données les enregistrements qui ont échoué à la validation et/ou de

les copier vers un pipeline de traitement différent pour examen humain? Les possibilités

sont presque infinies.

En intégrant la gestion et la récupération des exceptions pilotées par l’IA, l’application

de traitement des données devient plus résiliente et tolérante aux pannes. Le

DataProcessingOrchestrator gère intelligemment les exceptions, minimise la

perte de données et assure l’exécution fluide du flux de travail de traitement des

données.

Surveillance et journalisation

La surveillance et la journalisation fournissent une visibilité sur la progression, les

performances et la santé des composants de flux de travail alimentés par l’IA, permettant

aux développeurs de suivre et d’analyser le comportement du système. La mise en

œuvre de mécanismes efficaces de surveillance et de journalisation est essentielle pour

le débogage, l’audit et l’amélioration continue des flux de travail intelligents.

Orchestration intelligente des flux de travail 250

Surveillance de la progression et des performances du
flux de travail

Pour assurer l’exécution fluide des flux de travail intelligents, il est important de

surveiller la progression et les performances de chaque composant du flux de travail.

Cela implique le suivi des métriques et des événements clés tout au long du cycle de vie

du flux de travail.

Voici quelques aspects importants à surveiller :

1. Temps d’exécution du flux de travail : Mesurer le temps pris par chaque

composant du flux de travail pour accomplir sa tâche. Cela aide à identifier les goulots

d’étranglement de performance et à optimiser l’efficacité globale du flux de travail.

2. Utilisation des ressources : Surveiller l’utilisation des ressources système, telles

que le CPU, la mémoire et le stockage, par chaque composant du flux de travail. Cela

aide à garantir que le système fonctionne dans les limites de sa capacité et peut gérer

efficacement la charge de travail.

3. Taux d’erreur et exceptions : Suivre l’occurrence des erreurs et des exceptions au

sein des composants du flux de travail. Cela aide à identifier les problèmes potentiels et

permet une gestion proactive des erreurs et une récupération.

4. Points de décision et résultats : Surveiller les points de décision au sein du flux

de travail et les résultats des décisions pilotées par l’IA. Cela fournit des insights sur le

comportement et l’efficacité des composants d’IA.

Les données capturées par les processus de surveillance peuvent être affichées dans

des tableaux de bord ou utilisées comme entrées pour des rapports programmés qui

informent les administrateurs système sur la santé du système.

Les données de surveillance peuvent être transmises à un processus

d’administrateur système alimenté par l’IA pour examen et action

potentielle !

Orchestration intelligente des flux de travail 251

Journalisation des événements et décisions clés

La journalisation est une pratique essentielle qui consiste à capturer et stocker les

informations pertinentes sur les événements clés, les décisions et les exceptions qui

surviennent pendant l’exécution du flux de travail.

Voici quelques aspects importants à journaliser :

1. Initiation et achèvement du flux de travail : Journaliser les heures de début et de

fin de chaque instance de flux de travail, ainsi que toutes les métadonnées pertinentes

telles que les données d’entrée et le contexte utilisateur.

2. Exécution des composants : Journaliser les détails d’exécution de chaque composant

du flux de travail, y compris les paramètres d’entrée, les résultats de sortie et toutes les

données intermédiaires générées.

3. Décisions et raisonnement de l’IA : Journaliser les décisions prises par les

composants d’IA, ainsi que le raisonnement sous-jacent ou les scores de confiance. Cela

fournit de la transparence et permet l’audit des décisions pilotées par l’IA.

4. Exceptions et messages d’erreur : Journaliser toutes les exceptions ou messages

d’erreur rencontrés pendant l’exécution du flux de travail, y compris la trace d’appel

et les informations contextuelles pertinentes.

La journalisation peut être mise en œuvre en utilisant diverses techniques, telles que

l’écriture dans des fichiers journaux, le stockage des journaux dans une base de données

ou l’envoi des journaux à un service de journalisation centralisé. Il est important de

choisir un framework de journalisation qui offre flexibilité, évolutivité et une intégration

facile avec l’architecture de l’application.

Voici un exemple de la façon dont la journalisation peut être mise en œuvre dans une

application Ruby on Rails en utilisant la classe ActiveSupport::Logger :

Orchestration intelligente des flux de travail 252

1 class WorkflowLogger

2 def self.log(message, severity = :info)

3 @logger ||= ActiveSupport ::Logger.new('workflow.log')

4 @logger.formatter ||= proc do |severity, datetime, progname, msg|

5 "#{datetime} [#{severity}] #{msg}\n"

6 end

7 @logger.send(severity, message)

8 end

9 end

10

11 # Usage example

12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")

13 WorkflowLogger.log("Payment processing completed successfully")

14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

En plaçant stratégiquement des énoncés de journalisation dans les composants du flux

de travail et les points de décision de l’IA, les développeurs peuvent capturer des

informations précieuses pour le débogage, l’audit et l’analyse.

Avantages de la surveillance et de la journalisation

La mise en œuvre de la surveillance et de la journalisation dans l’orchestration

intelligente des flux de travail offre plusieurs avantages :

1. Débogage et dépannage : Les journaux détaillés et les données de surveillance aident

les développeurs à identifier et diagnostiquer rapidement les problèmes. Ils fournissent

des informations sur le flux d’exécution du workflow, les interactions entre composants

et les erreurs ou exceptions rencontrées.

2. Optimisation des performances : La surveillance des métriques de performance

permet aux développeurs d’identifier les goulots d’étranglement et d’optimiser les

composants du flux de travail pour une meilleure efficacité. En analysant les temps

d’exécution, l’utilisation des ressources et d’autres métriques, les développeurs peuvent

prendre des décisions éclairées pour améliorer les performances globales du système.

3. Audit et conformité : La journalisation des événements et décisions clés fournit

une piste d’audit pour la conformité réglementaire et la responsabilité. Cela permet

Orchestration intelligente des flux de travail 253

aux organisations de suivre et de vérifier les actions prises par les composants d’IA et

d’assurer le respect des règles commerciales et des exigences légales.

4. Amélioration continue : Les données de surveillance et de journalisation servent

d’entrées précieuses pour l’amélioration continue des flux de travail intelligents. En

analysant les données historiques, en identifiant les modèles et en mesurant l’efficacité

des décisions de l’IA, les développeurs peuvent affiner et améliorer itérativement la

logique d’orchestration des flux de travail.

Considérations et meilleures pratiques

Lors de la mise en œuvre de la surveillance et de la journalisation dans l’orchestration

intelligente des flux de travail, considérez les meilleures pratiques suivantes :

1. Définir des métriques de surveillance claires : Identifiez les métriques et

événements clés qui doivent être surveillés en fonction des exigences spécifiques du

flux de travail. Concentrez-vous sur les métriques qui fournissent des informations

significatives sur les performances, la santé et le comportement du système.

2. Mettre en œuvre une journalisation granulaire : Assurez-vous que les énoncés de

journalisation sont placés aux points appropriés dans les composants du flux de travail et

les points de décision de l’IA. Capturez les informations contextuelles pertinentes, telles

que les paramètres d’entrée, les résultats de sortie et toutes les données intermédiaires

générées.

3. Utiliser une journalisation structurée : Adoptez un format de journalisation

structuré pour faciliter l’analyse et le traitement des données de journal. La

journalisation structurée permet une meilleure recherche, filtrage et agrégation

des entrées de journal.

4. Gérer la conservation et la rotation des journaux :Mettez en œuvre des politiques

de conservation et de rotation des journaux pour gérer le stockage et le cycle de vie

des fichiers journaux. Déterminez la période de conservation appropriée en fonction

Orchestration intelligente des flux de travail 254

des exigences légales, des contraintes de stockage et des besoins d’analyse. Si possible,

déléguez la journalisation à un service tiers tel que Papertrail.

5. Sécuriser les informations sensibles : Soyez prudent lors de la journalisation

d’informations sensibles, comme les informations personnelles identifiables (PII) ou

les données commerciales confidentielles. Mettez en œuvre des mesures de sécurité

appropriées, telles que le masquage des données ou le chiffrement, pour protéger les

informations sensibles dans les fichiers journaux.

6. Intégrer des outils de surveillance et d’alerte : Utilisez des outils de surveillance

et d’alerte pour centraliser la collecte, l’analyse et la visualisation des données de

surveillance et de journalisation. Ces outils peuvent fournir des informations en temps

réel, générer des alertes basées sur des seuils prédéfinis et faciliter la détection et la

résolution proactive des problèmes. Mon outil préféré parmi ceux-ci est Datadog.

En mettant en œuvre des mécanismes complets de surveillance et de journalisation, les

développeurs peuvent obtenir des informations précieuses sur le comportement et les

performances des flux de travail intelligents. Ces informations permettent un débogage

efficace, une optimisation et une amélioration continue des systèmes d’orchestration des

flux de travail alimentés par l’IA.

Considérations d’extensibilité et de

performance

L’extensibilité et la performance sont des aspects critiques à prendre en compte lors de

la conception et de la mise en œuvre de systèmes d’orchestration de flux de travail

intelligents. À mesure que le volume de flux de travail simultanés et la complexité

des composants alimentés par l’IA augmentent, il devient essentiel de s’assurer que le

système peut gérer la charge de travail efficacement et s’adapter demanière transparente

pour répondre aux demandes croissantes.

https://papertrailapp.com
https://www.datadoghq.com

Orchestration intelligente des flux de travail 255

Gestion de volumes élevés de flux de travail simultanés

Les systèmes d’orchestration de flux de travail intelligents doivent souvent gérer un

grand nombre de flux de travail simultanés. Pour assurer l’extensibilité, considérez les

stratégies suivantes :

1. Traitement asynchrone :Mettez enœuvre des mécanismes de traitement asynchrone

pour découpler l’exécution des composants du flux de travail. Cela permet au système

de gérer plusieurs flux de travail simultanément sans bloquer ni attendre que chaque

composant se termine. Le traitement asynchrone peut être réalisé à l’aide de files

d’attente de messages, d’architectures événementielles ou de frameworks de traitement

de tâches en arrière-plan comme Sidekiq.

2. Architecture distribuée : Concevez l’architecture du système pour utiliser des

composants sans serveur (comme AWS Lambda) ou simplement distribuer la charge

de travail sur plusieurs nœuds ou serveurs aux côtés de votre serveur d’application

principal. Cela permet une extensibilité horizontale, où des nœuds supplémentaires

peuvent être ajoutés pour gérer l’augmentation des volumes de flux de travail.

3. Exécution parallèle : Identifiez les opportunités d’exécution parallèle au sein des flux

de travail. Certains composants du flux de travail peuvent être indépendants les uns des

autres et peuvent être exécutés simultanément. En utilisant des techniques de traitement

parallèle, telles que le multithreading ou les files d’attente de tâches distribuées, le

système peut optimiser l’utilisation des ressources et réduire le temps d’exécution global

du flux de travail.

Optimisation des performances des composants basés
sur l’IA

Les composants basés sur l’IA, tels que les modèles d’apprentissage automatique ou

les moteurs de traitement du langage naturel, peuvent être gourmands en ressources

de calcul et impacter les performances globales du système d’orchestration des flux de

Orchestration intelligente des flux de travail 256

travail. Pour optimiser les performances des composants d’IA, considérez les techniques

suivantes :

1. Mise en cache : Si votre traitement IA est purement génératif et n’implique pas de

recherches d’informations en temps réel ou d’intégrations externes pour générer ses

réponses, vous pouvez alors explorer les mécanismes de mise en cache pour stocker et

réutiliser les résultats des opérations fréquemment accédées ou coûteuses en calcul.

2. Optimisation du modèle : Optimisez continuellement la façon dont vous utilisez

les modèles d’IA dans les composants du flux de travail. Cela peut impliquer des

techniques telles que la Distillation de prompts ou simplement consister à tester de

nouveaux modèles au fur et à mesure qu’ils deviennent disponibles.

3. Traitement par lots : Si vous travaillez avec des modèles de classe GPT-4, vous

pourriez être en mesure d’utiliser des techniques de traitement par lots pour traiter

plusieurs points de données ou requêtes en une seule fois, plutôt que de les traiter

individuellement. En traitant les données par lots, le système peut optimiser l’utilisation

des ressources et réduire la surcharge des requêtes répétées au modèle.

Surveillance et profilage des performances

Pour identifier les goulots d’étranglement de performance et optimiser l’évolutivité du

système d’orchestration intelligent des flux de travail, il est crucial de mettre en place

des mécanismes de surveillance et de profilage. Considérez les approches suivantes :

1. Métriques de performance : Définissez et suivez les métriques de performance clés,

telles que le temps de réponse, le débit, l’utilisation des ressources et la latence. Ces

métriques fournissent des informations sur les performances du système et aident à

identifier les domaines à optimiser. L’agrégateur de modèles d’IA populaire OpenRouter

inclut les métriques Host1 et Speed2 dans chaque réponse API, rendant trivial le suivi de

1Host représente le temps nécessaire pour recevoir le premier octet de la génération en streaming depuis
l’hôte du modèle, aussi connu sous le nom de “temps jusqu’au premier octet.”

2Speed est calculée comme le nombre de tokens de complétion divisé par le temps total de génération.
Pour les requêtes non streamées, la latence est considérée comme faisant partie du temps de génération.

https://openrouter.ai

Orchestration intelligente des flux de travail 257

ces métriques clés.

2. Outils de profilage : Utilisez des outils de profilage pour analyser les performances

des composants individuels du flux de travail et des opérations d’IA. Les outils de

profilage peuvent aider à identifier les points chauds de performance, les chemins de

code inefficaces ou les opérations gourmandes en ressources. Les outils de profilage

populaires incluent New Relic, Scout, ou les profileurs intégrés fournis par le langage

de programmation ou le framework.

3. Tests de charge : Effectuez des tests de charge pour évaluer les performances du

système sous différents niveaux de charge de travail simultanée. Les tests de charge

aident à identifier les limites d’évolutivité du système, à détecter la dégradation des

performances et à s’assurer que le système peut gérer le trafic attendu sans compromettre

les performances.

4. Surveillance continue :Mettez en place des mécanismes de surveillance continue et

d’alerte pour détecter de manière proactive les problèmes de performance et les goulots

d’étranglement. Configurez des tableaux de bord de surveillance et des alertes pour

suivre les indicateurs clés de performance (ICP) et recevoir des notifications lorsque les

seuils prédéfinis sont dépassés. Cela permet une identification et une résolution rapides

des problèmes de performance.

Stratégies de mise à l’échelle

Pour gérer l’augmentation des charges de travail et assurer l’évolutivité du système

d’orchestration intelligent des flux de travail, considérez les stratégies de mise à l’échelle

suivantes :

1. Mise à l’échelle verticale : La mise à l’échelle verticale consiste à augmenter les

ressources (par exemple, CPU, mémoire) des nœuds ou serveurs individuels pour gérer

des charges de travail plus importantes. Cette approche est appropriée lorsque le système

nécessite plus de puissance de traitement ou de mémoire pour gérer des flux de travail

complexes ou des opérations d’IA.

Orchestration intelligente des flux de travail 258

2. Mise à l’échelle horizontale : La mise à l’échelle horizontale consiste à ajouter plus

de nœuds ou de serveurs au système pour distribuer la charge de travail. Cette approche

est efficace lorsque le système doit gérer un grand nombre de flux de travail simultanés

ou lorsque la charge de travail peut être facilement distribuée sur plusieurs nœuds.

La mise à l’échelle horizontale nécessite une architecture distribuée et des mécanismes

d’équilibrage de charge pour assurer une distribution uniforme du trafic.

3. Mise à l’échelle automatique : Implémentez des mécanismes de mise à l’échelle

automatique pour ajuster automatiquement le nombre de nœuds ou de ressources en

fonction de la demande de charge de travail. La mise à l’échelle automatique permet

au système de s’adapter dynamiquement à la hausse ou à la baisse en fonction du

trafic entrant, assurant une utilisation optimale des ressources et une rentabilité. Les

plateformes cloud comme Amazon Web Services (AWS) ou Google Cloud Platform

(GCP) fournissent des capacités de mise à l’échelle automatique qui peuvent être

exploitées pour les systèmes d’orchestration intelligente des flux de travail.

Techniques d’optimisation des performances

En plus des stratégies de mise à l’échelle, considérez les techniques d’optimisation des

performances suivantes pour améliorer l’efficacité du système d’orchestration intelligent

des flux de travail :

1. Stockage et récupération efficaces des données : Optimisez les mécanismes de

stockage et de récupération des données utilisés par les composants du flux de travail.

Utilisez l’indexation efficace des bases de données, les techniques d’optimisation des

requêtes et la mise en cache des données pour minimiser la latence et améliorer les

performances des opérations intensives en données.

2. E/S asynchrone : Utilisez les opérations d’E/S asynchrones pour éviter les blocages

et améliorer la réactivité du système. L’E/S asynchrone permet au système de gérer

plusieurs requêtes simultanément sans attendre la fin des opérations d’E/S, maximisant

ainsi l’utilisation des ressources.

Orchestration intelligente des flux de travail 259

3. Sérialisation et désérialisation efficaces : Optimisez les processus de sérialisation

et de désérialisation utilisés pour l’échange de données entre les composants du flux

de travail. Utilisez des formats de sérialisation efficaces, tels que Protocol Buffers ou

MessagePack, pour réduire la surcharge de la sérialisation des données et améliorer les

performances de la communication entre les composants.

Pour les applications basées sur Ruby, envisagez d’utiliser Universal ID.

Universal ID exploite à la fois MessagePack et Brotli (une combinaison

conçue pour la vitesse et la compression de données de premier ordre).

Ensemble, ces bibliothèques sont jusqu’à 30 % plus rapides et atteignent des

taux de compression à 2-5 % près par rapport à Protocol Buffers.

4. Compression et encodage : Appliquez des techniques de compression et d’encodage

pour réduire la taille des données transférées entre les composants du flux de travail. Les

algorithmes de compression, tels que gzip ou Brotli, peuvent réduire considérablement

l’utilisation de la bande passante réseau et améliorer les performances globales du

système.

En prenant en compte les aspects de scalabilité et de performance lors de la conception

et de l’implémentation des systèmes d’orchestration de flux de travail intelligents, vous

pouvez garantir que votre système peut gérer des volumes élevés de flux de travail

simultanés, optimiser les performances des composants alimentés par l’IA et évoluer

de manière transparente pour répondre aux demandes croissantes. La surveillance

continue, le profilage et les efforts d’optimisation sont essentiels pour maintenir les

performances et la réactivité du système à mesure que la charge de travail et la

complexité augmentent au fil du temps.

Tests et validation des flux de travail

Les tests et la validation sont des aspects critiques du développement et de la

maintenance des systèmes d’orchestration de flux de travail intelligents. Étant donné la

https://github.com/hopsoft/universalid

Orchestration intelligente des flux de travail 260

nature complexe des flux de travail alimentés par l’IA, il est essentiel de s’assurer que

chaque composant fonctionne comme prévu, que le flux de travail global se comporte

correctement et que les décisions de l’IA sont précises et fiables. Dans cette section,

nous explorerons diverses techniques et considérations pour tester et valider les flux de

travail intelligents.

Tests unitaires des composants du flux de travail

Les tests unitaires consistent à tester individuellement les composants du flux de travail

pour vérifier leur exactitude et leur robustesse. Lors des tests unitaires des composants

de flux de travail alimentés par l’IA, considérez les points suivants :

1. Validation des entrées : Testez la capacité du composant à gérer différents types

d’entrées, y compris les données valides et invalides. Vérifiez que le composant

gère correctement les cas limites et fournit des messages d’erreur ou des exceptions

appropriés.

2. Vérification des sorties : Assurez-vous que le composant produit la sortie attendue

pour un ensemble donné d’entrées. Comparez la sortie réelle avec les résultats attendus

pour garantir l’exactitude.

3. Gestion des erreurs : Testez les mécanismes de gestion des erreurs du composant

en simulant divers scénarios d’erreur, tels que des entrées invalides, l’indisponibilité des

ressources ou des exceptions inattendues. Vérifiez que le composant capture et gère les

erreurs de manière appropriée.

4. Conditions limites : Testez le comportement du composant dans des conditions

limites, telles que les entrées vides, la taille maximale d’entrée ou les valeurs extrêmes.

Assurez-vous que le composant gère ces conditions avec élégance sans plantage ni

production de résultats incorrects.

Voici un exemple de test unitaire pour un composant de flux de travail en Ruby utilisant

le framework de test RSpec :

Orchestration intelligente des flux de travail 261

1 RSpec.describe OrderValidator do

2 describe '#validate' do

3 context 'when order is valid' do

4 let(:order) { build(:order) }

5

6 it 'returns true' do

7 expect(subject.validate(order)).to be true

8 end

9 end

10

11 context 'when order is invalid' do

12 let(:order) { build(:order, total_amount : -100) }

13

14 it 'returns false' do

15 expect(subject.validate(order)).to be false

16 end

17 end

18 end

19 end

Dans cet exemple, le composant OrderValidator est testé à l’aide de deux cas de test :

un pour une commande valide et un autre pour une commande invalide. Les cas de test

vérifient que la méthode validate renvoie la valeur booléenne attendue en fonction

de la validité de la commande.

Tests d’intégration des interactions du workflow

Les tests d’intégration se concentrent sur la vérification des interactions et du flux

de données entre les différents composants du workflow. Ils garantissent que les

composants fonctionnent ensemble de manière transparente et produisent les résultats

attendus. Lors des tests d’intégration des workflows intelligents, il faut prendre en

compte les points suivants :

1. Interaction des composants : Tester la communication et l’échange de données entre

les composants du workflow. Vérifier que la sortie d’un composant est correctement

transmise comme entrée au composant suivant dans le workflow.

Orchestration intelligente des flux de travail 262

2. Cohérence des données : S’assurer que les données restent cohérentes et précises

tout au long du workflow. Vérifier que les transformations de données, les calculs et les

agrégations sont effectués correctement.

3. Propagation des exceptions : Tester comment les exceptions et les erreurs sont

propagées et gérées à travers les composants du workflow. Vérifier que les exceptions

sont capturées, enregistrées et traitées de manière appropriée pour éviter toute

perturbation du workflow.

4. Comportement asynchrone : Si le workflow implique des composants asynchrones

ou une exécution parallèle, tester les mécanismes de coordination et de synchronisation.

S’assurer que le workflow se comporte correctement dans des scénarios concurrents et

asynchrones.

Voici un exemple de test d’intégration pour un workflow en Ruby utilisant le framework

de test RSpec :

1 RSpec.describe OrderProcessingWorkflow do

2

3 let(:order) { build(:order) }

4

5 it 'processes the order successfully' do

6 expect(OrderValidator).to receive(:validate).and_return(true)

7 expect(InventoryManager).to receive(:check_availability).and_return(true)

8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)

9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)

10

11 workflow = OrderProcessingWorkflow.new(order)

12 result = workflow.process

13

14 expect(result).to be true

15 expect(order.status).to eq('processed')

16 end

17

18 end

Dans cet exemple, le OrderProcessingWorkflow est testé en vérifiant les interactions

entre les différents composants du workflow. Le cas de test établit des attentes pour le

Orchestration intelligente des flux de travail 263

comportement de chaque composant et s’assure que le workflow traite la commande

avec succès, en mettant à jour l’état de la commande en conséquence.

Test des points de décision de l’IA

Tester les points de décision de l’IA est crucial pour garantir l’exactitude et la fiabilité

des workflows basés sur l’IA. Lors du test des points de décision de l’IA, considérez les

points suivants :

1. Précision des décisions : Vérifiez que le composant d’IA prend des décisions précises

basées sur les données d’entrée et le modèle entraîné. Comparez les décisions de l’IA

avec les résultats attendus ou les données de référence.

2. Cas limites : Testez le comportement du composant d’IA dans des cas limites et des

scénarios inhabituels. Vérifiez que le composant d’IA gère ces cas avec élégance et prend

des décisions raisonnables.

3. Biais et équité : Évaluez le composant d’IA pour détecter d’éventuels biais et assurez-

vous qu’il prend des décisions justes et impartiales. Testez le composant avec des

données d’entrée diverses et analysez les résultats pour identifier d’éventuels schémas

discriminatoires.

4. Explicabilité : Si le composant d’IA fournit des explications ou un raisonnement

pour ses décisions, vérifiez l’exactitude et la clarté des explications. Assurez-vous que

les explications correspondent au processus de prise de décision sous-jacent.

Voici un exemple de test d’un point de décision d’IA en Ruby utilisant le framework de

test RSpec :

Orchestration intelligente des flux de travail 264

1 RSpec.describe FraudDetector do

2 describe '#detect_fraud' do

3 context 'when transaction is fraudulent' do

4 let(:tx) do

5 build(:transaction, amount : 10_000, location : 'High-Risk Country')

6 end

7

8 it 'returns true' do

9 expect(subject.detect_fraud(tx)).to be true

10 end

11 end

12

13 context 'when transaction is legitimate' do

14 let(:tx) do

15 build(:transaction, amount : 100, location : 'Low-Risk Country')

16 end

17

18 it 'returns false' do

19 expect(subject.detect_fraud(tx)).to be false

20 end

21 end

22 end

23 end

Dans cet exemple, le composant IA FraudDetector est testé avec deux cas de test : un

pour une transaction frauduleuse et un autre pour une transaction légitime. Les cas de

test vérifient que la méthode detect_fraud renvoie la valeur booléenne attendue en

fonction des caractéristiques de la transaction.

Test de Bout en Bout

Le test de bout en bout implique de tester l’ensemble du flux de travail du début à la fin,

en simulant des scénarios réels et des interactions utilisateur. Il garantit que le flux de

travail se comporte correctement et produit les résultats souhaités. Lors de l’exécution de

tests de bout en bout pour les flux de travail intelligents, considérez les points suivants :

1. Scénarios Utilisateur : Identifiez les scénarios utilisateur courants et testez le

comportement du flux de travail dans ces scénarios. Vérifiez que le flux de travail

Orchestration intelligente des flux de travail 265

traite correctement les entrées utilisateur, prend les décisions appropriées et produit les

résultats attendus.

2. Validation des Données : Assurez-vous que le flux de travail valide et nettoie les

entrées utilisateur pour éviter les incohérences de données ou les vulnérabilités de

sécurité. Testez le flux de travail avec différents types de données d’entrée, y compris

des données valides et invalides.

3. Récupération d’Erreurs : Testez la capacité du flux de travail à récupérer des erreurs

et des exceptions. Simulez des scénarios d’erreur et vérifiez que le flux de travail les gère

élégamment, enregistre les erreurs et prend les mesures de récupération appropriées.

4. Performance et Évolutivité :Évaluez la performance et l’évolutivité du flux de travail

dans différentes conditions de charge. Testez le flux de travail avec un grand volume de

requêtes simultanées et mesurez les temps de réponse, l’utilisation des ressources et la

stabilité globale du système.

Voici un exemple de test de bout en bout pour un flux de travail en Ruby utilisant

le framework de test RSpec et la bibliothèque Capybara pour simuler les interactions

utilisateur :

1 RSpec.describe 'Order Processing Workflow' do

2 scenario 'User places an order successfully' do

3 visit '/orders/new'

4 fill_in 'Product', with : 'Sample Product'

5 fill_in 'Quantity', with : '2'

6 fill_in 'Shipping Address', with : '123 Main St'

7 click_button 'Place Order'

8

9 expect(page).to have_content('Order Placed Successfully')

10 expect(Order.count).to eq(1)

11 expect(Order.last.status).to eq('processed')

12 end

13 end

Dans cet exemple, le test de bout en bout simule un utilisateur passant une commande

via l’interface web. Il remplit les champs de formulaire requis, soumet la commande et

Orchestration intelligente des flux de travail 266

vérifie que la commande est traitée avec succès, affichant le message de confirmation

approprié et mettant à jour le statut de la commande dans la base de données.

Intégration et Déploiement Continus

Pour garantir la fiabilité et la maintenabilité des flux de travail intelligents, il est

recommandé d’intégrer les tests et la validation dans le pipeline d’intégration et de

déploiement continus (CI/CD). Cela permet l’automatisation des tests et la validation

des modifications du flux de travail avant leur déploiement en production. Considérez

les pratiques suivantes :

1. Exécution Automatisée des Tests : Configurez le pipeline CI/CD pour exécuter

automatiquement la suite de tests chaque fois que des modifications sont apportées au

code du flux de travail. Cela garantit que toute régression ou défaillance est détectée tôt

dans le processus de développement.

2. Surveillance de la Couverture des Tests : Mesurez et surveillez la couverture des

tests des composants du flux de travail et des points de décision IA. Visez une couverture

de tests élevée pour garantir que les chemins et scénarios critiques sont minutieusement

testés.

3. Retour Continu : Intégrez les résultats des tests et les métriques de qualité du code

dans le flux de développement. Fournissez un retour continu aux développeurs sur l’état

des tests, la qualité du code et tout problème détecté pendant le processus CI/CD.

4. Environnements de Préproduction : Déployez le flux de travail dans des

environnements de préproduction qui reflètent fidèlement l’environnement de

production. Effectuez des tests et des validations supplémentaires dans l’environnement

de préproduction pour détecter tout problème lié à l’infrastructure, à la configuration

ou à l’intégration des données.

5. Mécanismes de Restauration : Mettez en place des mécanismes de restauration en

cas d’échec du déploiement ou de problèmes critiques détectés en production. Assurez-

Orchestration intelligente des flux de travail 267

vous que le flux de travail peut être rapidement restauré à une version stable précédente

pour minimiser les temps d’arrêt et l’impact sur les utilisateurs.

En incorporant les tests et la validation tout au long du cycle de développement des

flux de travail intelligents, les organisations peuvent garantir la fiabilité, l’exactitude

et la maintenabilité de leurs systèmes alimentés par l’IA. Des tests et des validations

réguliers aident à détecter les bugs, prévenir les régressions et renforcer la confiance

dans le comportement et les résultats du flux de travail.

Partie 2 : Les Patrons

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr

Ingénierie des Prompts
Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr

Ingénierie des Prompts 270

Chaîne de réflexion

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça marche

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemples

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Génération de contenu

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Création d’Entités Structurées

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Guide des agents LLM

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Avantages et considérations

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Ingénierie des Prompts 271

Mode Switch

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Quand l’utiliser

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Ingénierie des Prompts 272

Attribution de Rôle

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment Cela Fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Quand l’Utiliser

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemples

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Ingénierie des Prompts 273

Prompt Object

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Ingénierie des Prompts 274

Modèle de Prompt

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Avantages et considérations

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Quand l’utiliser :

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Ingénierie des Prompts 275

Entrées/Sorties structurées

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Mise à l’échelle des entrées/sorties structurées

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Avantages et considérations

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Ingénierie des Prompts 276

Chaînage de prompts

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Quand l’utiliser

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple : L’intégration d’Olympia

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Ingénierie des Prompts 277

Réécriture de Prompts

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment Ça Fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Ingénierie des Prompts 278

Délimitation des réponses

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Avantages et Considérations

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Gestion des erreurs

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Ingénierie des Prompts 279

Query Analyzer

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Mise en œuvre

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Étiquetage morpho-syntaxique (POS) et Reconnaissance d’entités
nommées (NER)

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Classification d’intention

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Extraction de mots-clés

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Ingénierie des Prompts 280

Avantages

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr

Ingénierie des Prompts 281

Réécriveur de requêtes

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Avantages

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Ingénierie des Prompts 282

Ventriloquist

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Quand l’utiliser

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Composants Discrets
Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr

Composants Discrets 284

Prédicat

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment Ça Fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Quand l’utiliser

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Composants Discrets 285

Façade d’API

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Principaux avantages

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Quand l’utiliser

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Authentification et Autorisation

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Composants Discrets 286

Gestion des Requêtes

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Formatage des Réponses

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Gestion des Erreurs et Cas Limites

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Considérations d’Extensibilité et de Performance

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comparaison avec d’Autres Patrons de Conception

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Composants Discrets 287

Result Interpreter

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Quand l’utiliser

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Composants Discrets 288

Virtual Machine

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Quand l’utiliser

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Derrière la magie

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Spécification et Tests

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Composants Discrets 289

Spécifier le Comportement

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Écriture des Cas de Test

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple : Test du Composant Traducteur

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Relecture des interactions HTTP

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Human In The Loop (HITL)
Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Modèles de Haut Niveau

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Intelligence Hybride

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Réponse Adaptative

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Alternance des rôles Humain-IA

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Human In The Loop (HITL) 291

Escalade

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Avantages clés

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Application concrète : Santé

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Human In The Loop (HITL) 292

Boucle de rétroaction

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça marche

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Applications et Exemples

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Techniques avancées d’intégration des retours humains

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Human In The Loop (HITL) 293

Radiation Passive d’Information

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment Cela Fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Affichage Contextuel d’Information

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Notifications Proactives

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Aperçus Explicatifs

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exploration Interactive

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Human In The Loop (HITL) 294

Avantages Clés

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Applications et Exemples

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Human In The Loop (HITL) 295

Prise de Décision Collaborative (PDC)

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment Cela Fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Human In The Loop (HITL) 296

Apprentissage Continu

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Applications et Exemples

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Considérations éthiques

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Rôle du HITL dans l’atténuation des risques liés à l’IA

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Human In The Loop (HITL) 297

Avancées technologiques et perspectives

d’avenir

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Défis et limites des systèmes HITL

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Gestion intelligente des erreurs
Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Approches traditionnelles de gestion des

erreurs

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Gestion intelligente des erreurs 299

Diagnostic contextuel des erreurs

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça marche

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Ingénierie des invites pour le diagnostic contextuel des erreurs

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Génération augmentée par récupération pour le diagnostic d’erreur
contextuel

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Gestion intelligente des erreurs 300

Rapport d’erreur intelligent

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr

Gestion intelligente des erreurs 301

Prévention prédictive des erreurs

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Récupération Intelligente des Erreurs

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Gestion intelligente des erreurs 302

Communication Personnalisée des Erreurs

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment Cela Fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Gestion intelligente des erreurs 303

Flux de Travail Adaptatif de Gestion des Erreurs

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Contrôle Qualité
Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr

Contrôle Qualité 305

Eval

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Problème

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Solution

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Fonctionnement

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Considérations

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Contrôle Qualité 306

Comprendre les références étalons

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment fonctionnent les évaluations sans référence

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Contrôle Qualité 307

Garde-fou

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Problème

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Solution

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Comment ça fonctionne

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Exemple

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Considérations

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Contrôle Qualité 308

Garde-fous et Évaluations : Les Deux Faces

d’une Même Médaille

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

L’Interchangeabilité des Garde-fous et des Évaluations
Sans Référence

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Mise en œuvre de Garde-fous et d’Évaluations à Double
Usage

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Glossaire

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Glossaire

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

A

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

B

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

C

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

310

D

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

E

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

F

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

G

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

H

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

I

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

311

J

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

K

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

L

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

M

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

N

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

O

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

312

P

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Q

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

R

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

S

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

T

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

U

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

313

V

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

W

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

Z

Ce contenu n’est pas disponible dans le livre d’échantillons. Le livre peut être acheté sur

Leanpub à http://leanpub.com/patterns-of-application-development-using-ai-fr.

http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr
http://leanpub.com/patterns-of-application-development-using-ai-fr

Index

accessibilité, 222, 223

Agentique, 33

agents conversationnels de service client,

34

AI, 101, 146, 207

model, 100, 101

Aide à la décision clinique, 105

ajustement fin, 82

ajustement par instructions, 10

modèles ajustés par instructions, 51

algèbre linéaire, 44

Alpaca, 13

Altman, Sam, 18

Amazon Web Services, 258

amorçage à peu d’exemples, 64

analyse des sentiments, 17, 102, 114, 115,

117, 120, 121, 138, 148

Anthropic, 23, 40, 75, 132, 140

anthropomorphisme, 70

APIs, 73, 126, 156

appel d’outil, 156

appel de fonction

échec, 137

application d’agent conversationnel, 121

Applications E-commerce, 93

applications modernes, 229

applications éducatives, 33

apprentissage non supervisé, 4

apprentissage sans exemple, 61

apprentissage zero-shot, 60

apprentissage à peu d’exemples, 63

Apprentissage à un exemple, 62

architecture d’applications d’entreprise, 39

architecture distribuée, 255

Architecture en microservices, 91

architecture logicielle, 2

architecture transformer, 6

assistants virtuels, 34

attribution de ticket, 245

audit et conformité, 253

audit logging, 109

Auto-continuation, 163

balisage de type markup, 72

base de connaissances d’Olympia, 93

bases de connaissances, 8

bases de données, 126

-objet supporté, 107

stratégies de verrouillage, 112

BERT, 14, 24

biais

et équité dans l’IA, 263

bibliothèque Capybara, 265

Index 315

boundary conditions, 260

Brotli, 259

Byte Pair Encoding (BPE), 15

C (Langage de programmation), 119

cadres de développement, 151

cas limites, 59

Chain of Thought (CoT), 142

ChatGPT, 31, 54

chaînage de workers IA, 114

chaîne d’approvisionnement

optimisation, 33

Chaîne de Pensée (CoT), 46

classeurs, 36

classification, 54, 123

Claude, 8, 45, 79

Claude 3, 51, 130, 132, 138, 140

Claude 3 Opus, 76

Claude v1, 17

Claude v2, 17

Cohere (fournisseur de LLM), 23

Cohere (Fournisseur LLM), 25

cohérence

et reproductibilité, 136

Collecte des antécédents médicaux, 103

commerce électronique, 227

complétion haute performance, 27

comportement déterministe, 59

compte, 93

conception d’applications et frameworks,

203

concurrent workflows, 259

confiance des utilisateurs, 223

connectivité réseau, 232

conservation et rotation des journaux, 254

construction narrative, 20

contenu

Catégorisation du contenu, 114

filtrage, 27

contenu généré par l’utilisateur, 114

context

Contextual Content Generation, 196,

197

entrées infiniment longues, 16

window, 15

contexte

Augmentation, 47

fenêtre, 231

Génération de Contenu Contextuel,

191, 204, 205

prise de décision contextuelle, 231

Suggestions contextuelles de champs,

206

conversation

boucle, 160, 162

transcription, 160, 162

correspondance de motifs, 155

Customer Sentiment Analysis, 101

data

persistence, 112

preparation, 111

Datadog, 254

decision

Index 316

-making capabilities, 101

dictionnaires, 134

directive système, 131

divulgation progressive, 212

document clustering, 123

Dohan, et al., 45

données

analyse, 35, 150

confidentialité, 27, 221

flux, 113

intégrité, 246

pipeline de traitement, 246

Récupération des données, 112

Synchronisation des données, 112

tâches de traitement, 129

Validation des Données, 265

Données auto-réparatrices, 167, 249

données d’entraînement, 43

données en flux continu, 155

données structurées, 137

débit, 28

débogage, 231

et dépannage, 252

et tests, 135

décision

arbres, 227

cas d’utilisation, 136

points, 250

découvertes médicales, 102

défis conceptuels et pratiques, 204

Délimitation des réponses, 210

détaillants en ligne, 210

détection de fraude

système, 99

développement d’applications, 226

e-commerce, 196

E/S structurées, 210

efficacité, 228

employés de Databricks, 54

Encodage par paires d’octets (BPE), 13

ensembles, 120, 121

ensemble d’agents, 121

entrée

prompts, 57

environnements de développement locaux,

158

environnements de préproduction, 266

erreurs

gestion, 112, 145

récupération, 265

taux, 113

erreurs de syntaxe, 134

errors

handling, 109, 260

Intelligent Error Handling, 146

espace latent, 41, 43

event-driven architecture, 111

explicabilité, 263

expérience utilisateur, 199

expérimentation

cadre, 198

extensibilité, 228, 254

exécution parallèle, 255

Index 317

F#, 95

Facebook, 25

facteurs de risque, 97, 98

filtrage basé sur le contenu, 94

filtrage collaboratif, 94

FitAI, 216

flexibilité et créativité, 201

flux de travail adaptatif

Composition Adaptative des Flux de

Travail, 231

flux de travail multi-étapes, 114

fonction

appel, 126, 127, 160

historique des appels, 159

noms, 157

fournisseurs d’hébergement de modèles

open source, 210

Gemma 7B, 11

Generative Pre-trained Transformer (GPT),

8

gestion des connaissances, 33

gestion des exceptions, 232, 234

gestion du trafic, 33

Gestionnaire de Processus, 106

gestionnaires de flux, 154

GitLab, 95

Global Interpreter Lock (GIL), 118

Google, 23

API, 64, 66

Cloud Platform, 258

Gemini, 22

Gemini 1.5 Pro, 14, 17, 19

PaLM (Modèle de Langage Pathways),

24

PaLM (Pathways Language Model), 17

Plateforme Cloud AI, 24

T5, 14

goulots d’étranglement, 231

GPT-3, 13, 17

GPT-4, 6, 13, 17, 22, 32, 45, 51, 64, 107, 120,

122, 130, 136, 208, 209, 256

Graham, Paul, 19

Grand Modèle de Langage (GML), 1, 3, 18,

30, 78, 113, 137, 147, 191, 203

Grand modèle de langage (GML), 73, 89,

128, 143, 150, 208, 237

Grand Modèle de Langage (LLM), 126

paysage, 28

Grand modèle de langage (LLM), 68, 70, 79,

167, 170, 214

GraphQL, 110

Groq, 26, 122

gzip, 259

Génération Augmentée par Recherche

(RAG), 32

Génération Augmentée par Récupération

(RAG), 39, 47

Génération augmentée par récupération

(RAG), 81, 128

génération de données synthétiques, 54

génération dynamique d’IU, 192

génération intermodale, 22

Index 318

hardware, 29

Hohpe, Gregor, 106

Honeybadger, 96

HTTP, 153

Human-In-The-Loop (HITL) (Humain dans

la boucle), 183

hyperparamètre, 48

IA, 66, 76, 131, 137, 153, 215

applications, 128, 141, 152, 165

conversationnelle, 7, 32, 217

modèle, 91, 158, 159, 161, 216

points de décision, 263

systèmes composés, 31, 35

information

extraction, 54

récupération, 7, 129

informatique, 72, 74

Inférence, 5

injections SQL, 72

input

validation, 260

instruction tuning

modèles ajustés par instructions, 53

intelligent workflow orchestration, 259

interactions de type jeu de rôle, 7

Interface Utilisateur (IU)

conception, 224

Interface utilisateur (IU)

interfaces, 203

technologies, 214

Interface utilisateur (UI)

frameworks, 220

interfaces, 219

interface utilisateur adaptative, 213

Interface Utilisateur Générative (GenUI),

223

Interface utilisateur générative (GenUI),

203, 210, 211, 215, 219

interface visuelle, 214

interfaces contrôlées par la voix, 34

interfaces inclusives, 204

internationalisation, 199

intervention manuelle, 234

intégration des GML, 192

Intégration et Déploiement Continus

(CI/CD), 266

pipeline, 266

invites

ingénierie, 42

iterative refinement, 147

journalisation granulaire, 253

journalisation structurée, 253

JSON (JavaScript Object Notation), 130,

134, 138, 150, 170

K-means, 124

langage

modèles, 67, 75

tâches linguistiques, 5

langage naturel

Traitement du Langage Naturel

(TLN), 103

Index 319

language

models, 44

langue

Détection de la langue, 114

Large Language Model (LLM), 16, 123, 147

latence, 28

Latent Dirichlet Allocation, 124

ligne de commande

Interface en Ligne de Commande

(CLI), 26

Llama, 13

Llama 2-70B, 51

Llama 3 70B, 11

Llama 3 8B, 11

logique de disjoncteur, 165

Louvre, 44

lunettes de réalité augmentée, 224

Managed Streaming for Apache Kafka, 42

Markdown, 150

Memorial Sloan Kettering Cancer Center,

42

Mercure (dieu romain), 46

Mercure (planète), 46

Mercure (élément), 46

message déclencheur, 106

MessagePack, 259

Meta, 25

Metropolitan Museum of Art, 44

mise en cache, 256

mise à l’échelle automatique, 258

Mistral, 26

7B, 11

7B Instruct, 17, 209

Mixtral

8x22B, 11

8x7B, 57

modularité, 90

modèle OPT, 25

modèles basés sur la récupération, 7

modèles clés, 229

Modèles d’intégration d’entreprise, 106

modèles de base, 55

modèles graphiques, 45

modèles historiques, 231

modèles probabilistes, 44

modélisation autorégressive, 44

Modérateur de Contenu Intelligent, 239

Multi-Agent

Résolveurs de Problèmes, 32

Multimodal

modèles, 20

modèles de langage, 21

Multitude d’agents, 169

Multitude de Travailleurs, 121

mécanismes de nouvelle tentative, 112

mécanismes de restauration, 266

méthode finalize, 159, 161, 162

Naive Bayes, 124

natural language

Natural Language Processing (NLP),

123

Nettoyage du texte, 114

Index 320

New Relic, 257

Ollama, 26

Olympia, 34, 64, 131, 146, 154, 170

OpenAI, 3, 23, 40, 75

OpenRouter, 28, 29, 154, 256

orchestration des flux de travail

intelligents, 234

orchestration intelligente des flux de

travail, 226, 256

ordinateurs de bureau, 224

output verification, 260

paramètre

effets, 132

gamme, 11

Nombre de Paramètres, 29

paramètres

d’entrée, 131

paraphrasage, 54

paysage numérique, 198

performance

compromis, 5

optimisation, 136, 201, 252

problèmes, 257

Perplexity (Fournisseur), 12

personnalisation, 27, 193, 223, 228

Formulaires Personnalisés, 205

Micro-texte personnalisé, 211

pile ELK, 113

planification des interventions d’urgence,

33

principe du moindre privilège, 73

problèmes d’utilisabilité, 222

Process Manager, 109

Enterprise Integration, 235

processus de distillation, 78

Productivité, 194

programmation fonctionnelle, 94

prompts

chaînage, 60, 73

conception, 59, 69

Distillation de Prompts, 47, 75

Distillation de prompts, 256

Distillation des prompts, 80

ingénierie, 46, 47, 57, 61, 66, 68, 220

Modèle de prompt, 60, 210

Prompt Object, 76

raffinement, 70

propriétés ACID, 112

Protocol Buffers, 259

prédictions, 6

psychologie de l’utilisateur, 221

publish-subscribe systems, 110

PyTorch, 25

Pénalité de présence, 50

pénalités de répétition, 53

Quantification, 29

questions-réponses fermées et ouvertes, 54

Qwen2 70B, 11

raffinement itératif, 78

Rails, 199

Railway Oriented Programming (ROP), 97

Raix, 235

Index 321

bibliothèque, 99

Recommandations de Produits, 94

recommandations de produits

personnalisées, 94

Response Fencing (clôture de réponse), 180

restreindre le chemin, 39, 40

Result Interpreter, 145

Routage dynamique des tâches, 229

RSpec, 260, 262, 265

Ruby, 95, 96, 115, 166, 265

Ruby on Rails, 1, 114, 235, 243

Rudall, Alex, 24

Rust (Langage de programmation), 119

Rust (Programming Language), 95

règles grammaticales, 4

règles métier, 227

régression linéaire, 44

réseaux neuronaux, 4, 6

rétroaction

Boucle de rétroaction, 60

sans état, 160

Scout, 257

services externes ou API, 129

smartphones, 224

Stratification des risques, 105

stratégies de motivation, 219

stratégies de repli, 112

stratégies de segmentation et de ciblage,

198

Stripe, 132

suivi des métriques clés, 250

support client, 33

Support Vector Machines (SVM), 124

surveillance

et alertes, 233

et journalisation, 113, 252

métriques, 253

Surveillance continue des risques, 105

synthèse, 54

system directive, 100

systèmes de questions-réponses, 8

Sélection Dynamique d’Outils, 134

Sélection Forcée d’Outils, 135

T5, 24

table de hachage, 155

tableaux, 134

tablettes, 224

Temperature, 55

temps de traitement, 113

Temps jusqu’au Premier Jeton (TTFT), 28

test de bout en bout, 264, 265

tests d’intégration, 261

tests utilisateur et retours, 201

théorie de l’esprit, 41

Together.ai, 26

tokenisation, 13

tokens, 6, 13

ton émotionnel, 148

topic identification, 123

traduction, 17, 200

tragédie des biens communs, 195

traitement asynchrone, 255

Index 322

traitement de flux, 153, 159, 165

logique, 161

traitement par lots, 256

Transformeur génératif pré-entraîné (GPT),

68

tâches complexes, 149

Unicode-encodable language, 15

Universal ID, 259

utilisation d’outils, 126, 127, 152

Ventriloquist (ventriloque), 180

verrouillage optimiste, 112

verrouillage pessimiste, 112

vote majoritaire, 120

Vérification d’assurance, 103

Wall, Larry, 3

Wisper, 96, 109, 154, 161

Wooley, Chad, 95

XML, 137

Yi-34B, 51

Échantillonnage top-k, 49

Échantillonnage top-p (nucleus), 49

Évaluation et stratification des symptômes,

103

écosystème, 151

écriture créative, 35, 54

éthique

implications, 204

événements envoyés par le serveur (SSE),

153

	Table des matières
	Préface par Gregor Hohpe
	Préface
	À propos du livre
	À propos des exemples de code
	Ce que je ne couvre pas
	À qui s'adresse ce livre
	Construire un Vocabulaire Commun
	S'impliquer
	Remerciements
	Qu'en est-il des illustrations ?
	À propos du Lean Publishing
	À propos de l'auteur

	Introduction
	Réflexions sur l'Architecture Logicielle
	Qu'est-ce qu'un Grand Modèle de Langage ?
	Comprendre l'Inférence
	Réflexion sur la Performance
	Expérimentation avec Différents Modèles GML
	Systèmes d'IA Composés

	Partie 1 : Approches et Techniques Fondamentales
	Restreindre le Chemin
	L'espace latent : Incompréhensiblement vaste
	Comment Le Chemin Est ``Rétréci''
	Modèles bruts versus modèles ajustés par instructions
	Ingénierie des Prompts
	Distillation de Prompts
	Qu'en est-il de l'ajustement fin ?

	Retrieval Augmented Generation (RAG)
	Qu'est-ce que la Retrieval Augmented Generation ?
	Comment fonctionne le RAG ?
	Pourquoi utiliser le RAG dans vos applications ?
	Mise en œuvre de RAG dans votre application
	Découpage en propositions
	Exemples concrets de RAG
	Optimisation Intelligente des Requêtes (IQO)
	Reclassement
	Évaluation RAG (RAGAs)
	Défis et Perspectives d'Avenir

	Multitude de travailleurs
	Les travailleurs IA comme composants réutilisables indépendants
	Gestion des comptes
	Applications E-commerce
	Applications dans le domaine de la santé
	L'Agent IA comme Gestionnaire de Processus
	Intégration des travailleurs IA dans l'architecture de votre application
	Composabilité et orchestration des workers IA
	Combiner le TLN traditionnel avec les LLM

	Utilisation d'outils
	Qu'est-ce que l'utilisation d'outils ?
	Le potentiel de l'utilisation d'outils
	Le flux de travail de l'utilisation d'outils
	Meilleures pratiques pour l'utilisation des outils
	Composition et Chaînage d'Outils
	Orientations Futures

	Traitement de flux
	Implémentation d'un ReplyStream
	La « Boucle de Conversation »
	Auto-continuation
	Conclusion

	Données auto-réparatrices
	Étude de cas pratique : Réparation du JSON défectueux
	Considérations et Contre-indications

	Génération de Contenu Contextuel
	Personnalisation
	Productivité
	Itération et expérimentation rapides
	Localisation alimentée par l'IA
	L'Importance des Tests Utilisateur et des Retours

	Interface utilisateur générative
	Génération de texte pour les interfaces utilisateur
	Définir l'interface utilisateur générative
	Exemple
	Le passage à une conception orientée résultats
	Défis et considérations
	Perspectives d'avenir et opportunités

	Orchestration intelligente des flux de travail
	Besoin métier
	Avantages clés
	Modèles clés
	Gestion et Récupération des Exceptions
	Mise en œuvre pratique de l'orchestration des flux de travail intelligents
	Surveillance et journalisation
	Considérations d'extensibilité et de performance
	Tests et validation des flux de travail

	Partie 2 : Les Patrons
	Ingénierie des Prompts
	Chaîne de réflexion
	Mode Switch
	Attribution de Rôle
	Prompt Object
	Modèle de Prompt
	Entrées/Sorties structurées
	Chaînage de prompts
	Réécriture de Prompts
	Délimitation des réponses
	Query Analyzer
	Réécriveur de requêtes
	Ventriloquist

	Composants Discrets
	Prédicat
	Façade d'API
	Result Interpreter
	Virtual Machine
	Spécification et Tests

	Human In The Loop (HITL)
	Modèles de Haut Niveau
	Escalade
	Boucle de rétroaction
	Radiation Passive d'Information
	Prise de Décision Collaborative (PDC)
	Apprentissage Continu
	Considérations éthiques
	Avancées technologiques et perspectives d'avenir

	Gestion intelligente des erreurs
	Approches traditionnelles de gestion des erreurs
	Diagnostic contextuel des erreurs
	Rapport d'erreur intelligent
	Prévention prédictive des erreurs
	Récupération Intelligente des Erreurs
	Communication Personnalisée des Erreurs
	Flux de Travail Adaptatif de Gestion des Erreurs

	Contrôle Qualité
	Eval
	Garde-fou
	Garde-fous et Évaluations : Les Deux Faces d'une Même Médaille

	Glossaire
	Glossaire
	Index

