

Patrones de Desarrollo de Aplicaciones

Usando IA (Edición en Español)

Obie Fernandez

Este libro está a la venta en

http://leanpub.com/patterns-of-application-development-using-ai-es

Esta versión se publicó en 2025-01-23

Éste es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el

proceso de publicación. Lean Publishing es el acto de publicar un libro en progreso

usando herramientas sencillas y muchas iteraciones para obtener retroalimentación del

lector hasta conseguir el libro adecuado.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-es
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

¡Tuitea sobre el libro!

Por favor ayuda a Obie Fernandez hablando sobre el libro en Twitter!

El hashtag sugerido para este libro es #poaduai.

Descubre lo que otra gente dice sobre el libro haciendo clic en este enlace para buscar

el hashtag en Twitter:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Para mi increíble reina, mi musa, mi luz y amor, Victoria

También por Obie Fernandez
Patterns of Application Development Using AI

The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Índice general

Prólogo por Gregor Hohpe . i

Prefacio . ii

Acerca del Libro . iii

Acerca de los Ejemplos de Código . iii

Lo Que No Cubro . iii

Para Quién Es Este Libro . iii

Construyendo un Vocabulario Común . iii

Participación . iii

Agradecimientos . iii

¿Qué hay con las ilustraciones? . iv

Sobre Lean Publishing . iv

Sobre el Autor . v

Introducción . 1

Reflexiones sobre la Arquitectura de Software 2

¿Qué es un Modelo de Lenguaje Grande? . 3

Entendiendo la Inferencia . 5

Pensando en el Rendimiento . 28

Experimentando con Diferentes Modelos LLM 30

Sistemas de IA Compuestos . 30

ÍNDICE GENERAL

Parte 1: Enfoques y Técnicas Fundamentales 39

Estrechar el Camino . 40

Espacio Latente: Incomprensiblemente Vasto 42

Cómo Se “Estrecha” El Camino . 46

Modelos Sin Procesar Versus Modelos Ajustados por Instrucciones 50

Ingeniería de Prompts . 57

Destilación de Prompts . 73

¿Qué hay del ajuste fino? . 80

Retrieval Augmented Generation (RAG) . 82

¿Qué es la Generación Aumentada por Recuperación? 82

¿Cómo funciona RAG? . 82

¿Por qué usar RAG en sus aplicaciones? . 82

Implementando RAG en Tu Aplicación . 82

Fragmentación por Proposiciones . 83

Ejemplos del Mundo Real de RAG . 83

Optimización Inteligente de Consultas (IQO) 84

Reordenamiento . 84

Evaluación RAG (RAGAs) . 84

Desafíos y Perspectivas Futuras . 86

Multitud de Trabajadores . 88

Trabajadores de IA Como Componentes Reutilizables Independientes 89

Gestión de Cuentas . 91

Aplicaciones de Comercio Electrónico . 92

Aplicaciones en el Sector Salud . 101

El Trabajador de IA como Gestor de Procesos 105

Integrando Trabajadores de IA en su Arquitectura de Aplicación 108

Composición y Orquestación de Workers de IA 112

ÍNDICE GENERAL

Combinando PLN Tradicional con MLGs . 121

Uso de Herramientas . 125

¿Qué es el Uso de Herramientas? . 125

El Potencial del Uso de Herramientas . 127

El Flujo de Trabajo del Uso de Herramientas 128

Mejores Prácticas para el Uso de Herramientas 143

Composición y Encadenamiento de Herramientas 148

Direcciones Futuras . 150

Procesamiento de Flujo . 152

Implementando un ReplyStream . 153

El “Bucle de Conversación” . 159

Continuación Automática . 162

Conclusión . 164

Datos Autorreparables . 166

Caso Práctico: Arreglando JSON Dañado . 168

Consideraciones y Contraindicaciones . 173

Generación de Contenido Contextual . 189

Personalización . 190

Productividad . 192

Iteración Rápida y Experimentación . 194

Localización Impulsada por IA . 197

La Importancia de las Pruebas de Usuario y la Retroalimentación 199

UI Generativa . 200

Generando Texto para Interfaces de Usuario 201

Definiendo la UI Generativa . 211

Ejemplo . 213

ÍNDICE GENERAL

El Cambio hacia el Diseño Orientado a Resultados 216

Desafíos y Consideraciones . 217

Perspectivas Futuras y Oportunidades . 219

Orquestación Inteligente de Flujos de Trabajo 223

Necesidad Empresarial . 224

Beneficios Clave . 225

Patrones Clave . 225

Manejo y Recuperación de Excepciones . 228

Implementación Práctica de la Orquestación de Flujos de Trabajo Inteligentes 231

Monitoreo y Registro . 246

Consideraciones de Escalabilidad y Rendimiento 251

Pruebas y validación de flujos de trabajo . 256

Parte 2: Los Patrones . 264

Ingeniería de Prompts . 265

Cadena de Pensamiento . 266

Mode Switch . 267

Asignación de Rol . 268

Prompt Object . 269

Prompt Template . 270

Structured IO . 271

Encadenamiento de Prompts . 272

Reescritor de Prompts . 273

Response Fencing . 274

Analizador de Consultas . 275

Reescritor de Consultas . 277

Ventriloquist . 278

ÍNDICE GENERAL

Componentes Discretos . 279

Predicado . 280

Fachada de API . 281

Intérprete de Resultados . 283

Máquina Virtual . 284

Especificación y Pruebas . 284

Human In The Loop (HITL) . 286

Patrones de Alto Nivel . 286

Escalamiento . 287

Bucle de Retroalimentación . 288

Radiación Pasiva de Información . 289

Toma de Decisiones Colaborativa (CDM) . 291

Aprendizaje Continuo . 292

Consideraciones Éticas . 292

Avances Tecnológicos y Perspectivas Futuras 292

Manejo Inteligente de Errores . 294

Enfoques Tradicionales de Manejo de Errores 294

Diagnóstico Contextual de Errores . 295

Informes Inteligentes de Errores . 296

Prevención Predictiva de Errores . 297

Recuperación Inteligente de Errores . 297

Comunicación Personalizada de Errores . 298

Flujo de Trabajo Adaptativo de Manejo de Errores 299

Control de Calidad . 300

Eval . 301

Mecanismo de Protección . 303

Guardarraíles y Evaluaciones: Dos Caras de la Misma Moneda 303

Glosario . 305
Glosario . 305

Index . 310

Prólogo por Gregor Hohpe
Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es

Prefacio
Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es

Prefacio iii

Acerca del Libro

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Acerca de los Ejemplos de Código

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Lo Que No Cubro

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Para Quién Es Este Libro

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Construyendo un Vocabulario Común

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Participación

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Prefacio iv

Agradecimientos

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

¿Qué hay con las ilustraciones?

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Sobre Lean Publishing

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Prefacio v

Sobre el Autor

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es

Introducción

Si estás ansioso por comenzar a integrar Modelos de Lenguaje Grande (LLMs) de IA

en tus proyectos de programación, siéntete libre de sumergirte directamente en los

patrones y ejemplos de código presentados en los capítulos posteriores. Sin embargo,

para apreciar completamente el poder y el potencial de estos patrones, vale la pena

tomarse un momento para entender el contexto más amplio y el enfoque cohesivo que

representan.

Los patrones no son simplemente una colección de técnicas aisladas, sino más bien

un marco unificado para integrar la IA en tus aplicaciones. Yo uso Ruby on Rails,

pero estos patrones deberían funcionar en prácticamente cualquier otro entorno de

programación. Abordan una amplia gama de preocupaciones, desde la gestión de datos

y la optimización del rendimiento hasta la experiencia del usuario y la seguridad,

proporcionando un conjunto completo de herramientas para mejorar las prácticas de

programación tradicionales con las capacidades de la IA.

Introducción 2

Cada categoría de patrones aborda un desafío u oportunidad específica que surge al

incorporar componentes de IA en tu aplicación. Al comprender las relaciones y sinergias

entre estos patrones, puedes tomar decisiones informadas sobre dónde y cómo aplicar

la IA de manera más efectiva.

Los patrones nunca son soluciones prescriptivas y no deben ser tratados como tales.

Están destinados a ser bloques de construcción adaptables que deben ajustarse a los

requisitos y restricciones únicos de tu propia aplicación. La aplicación exitosa de estos

patrones (como cualquier otro en el campo del software) se basa en una comprensión

profunda del dominio del problema, las necesidades del usuario y la arquitectura técnica

general de tu proyecto.

Reflexiones sobre la Arquitectura de Software

Comencé a programar en los años 80 y estuve involucrado en la escena hacker, y nunca

perdí mi mentalidad hacker, incluso después de convertirme en un desarrollador de

software profesional. Desde el principio, siempre tuve un sano escepticismo sobre el

valor real que aportaban los arquitectos de software desde sus torres de marfil.

Una de las razones por las que personalmente estoy tan entusiasmado con los

cambios provocados por esta poderosa nueva ola de tecnología de IA es su impacto

en lo que consideramos decisiones de arquitectura de software. Desafía las nociones

tradicionales de lo que constituye la manera “correcta” de diseñar e implementar

nuestros proyectos de software. También cuestiona si la arquitectura todavía puede

considerarse principalmente como las partes de un sistema que son difíciles de cambiar,

ya que la mejora de la IA está haciendo que sea más fácil que nunca cambiar cualquier

parte de tu proyecto, en cualquier momento.

Quizás estemos entrando en los años cumbre del enfoque “posmoderno” de la ingeniería

de software. En este contexto, posmoderno se refiere a un cambio fundamental alejado

de los paradigmas tradicionales, donde los desarrolladores eran responsables de escribir

Introducción 3

y mantener cada línea de código. En su lugar, abraza la idea de delegar tareas, como la

manipulación de datos, algoritmos complejos e incluso partes enteras de la lógica de la

aplicación, a bibliotecas de terceros y APIs externas. Este cambio posmoderno representa

una desviación significativa de la sabiduría convencional de construir aplicaciones desde

cero, y desafía a los desarrolladores a repensar su papel en el proceso de desarrollo.

Siempre he creído que los buenos programadores solo escriben el código que es

absolutamente necesario escribir, basándome en las enseñanzas de Larry Wall y otros

luminarios hacker como él. Al minimizar la cantidad de código escrito, podemos

movernos más rápido, reducir la superficie para errores, simplificar el mantenimiento y

mejorar la fiabilidad general de sus aplicaciones. Menos código nos permite centrarnos

en la lógica de negocio central y la experiencia del usuario, mientras delegamos otro

trabajo a otros servicios.

Ahora que los sistemas impulsados por IA pueden manejar tareas que anteriormente

eran dominio exclusivo del código escrito por humanos, deberíamos poder ser aún

más productivos y ágiles, con un enfoque mayor que nunca en crear valor comercial

y experiencia de usuario.

Por supuesto, hay compensaciones al delegar grandes partes de tu proyecto a sistemas

de IA, como la posible pérdida de control y la necesidad de mecanismos robustos de

monitoreo y retroalimentación. Por eso requiere un nuevo conjunto de habilidades y

conocimientos, incluida al menos una comprensión fundamental de cómo funciona la

IA.

¿Qué es un Modelo de Lenguaje Grande?

Los Modelos de Lenguaje Grande (LLMs) son un tipo de modelo de inteligencia artificial

que ha ganado una atención significativa en los últimos años, desde el lanzamiento

de GPT-3 por OpenAI en 2020. Los LLMs están diseñados para procesar, comprender

y generar lenguaje humano con notable precisión y fluidez. En esta sección, daremos

Introducción 4

un breve vistazo a cómo funcionan los LLMs y por qué son adecuados para construir

componentes de sistemas inteligentes.

En su núcleo, los LLMs se basan en algoritmos de aprendizaje profundo, específicamente

redes neuronales. Estas redes están compuestas por nodos interconectados, o neuronas,

que procesan y transmiten información. La arquitectura de elección para los LLMs es a

menudo el modelo Transformer, que ha demostrado ser altamente efectivo en el manejo

de datos secuenciales como texto.

Los modelos transformer se basan en el mecanismo de atención y se utilizan

principalmente para tareas que involucran datos secuenciales, como el procesamiento

del lenguaje natural. Los transformers procesan los datos de entrada todos a la vez en

lugar de secuencialmente, lo que les permite capturar dependencias de largo alcance de

manera más efectiva. Tienen capas de mecanismos de atención que ayudan al modelo

a enfocarse en diferentes partes de los datos de entrada para comprender el contexto y

las relaciones.

El proceso de entrenamiento de los LLMs implica exponer el modelo a grandes

cantidades de datos textuales, como libros, artículos, sitios web y repositorios de

código. Durante el entrenamiento, el modelo aprende a reconocer patrones, relaciones

y estructuras dentro del texto. Captura las propiedades estadísticas del lenguaje, como

las reglas gramaticales, las asociaciones de palabras y los significados contextuales.

Una de las técnicas clave utilizadas en el entrenamiento de LLMs es el aprendizaje

no supervisado. Esto significa que el modelo aprende de los datos sin etiquetado o

guía explícita. Descubre patrones y representaciones por sí mismo al analizar la co-

ocurrencia de palabras y frases en los datos de entrenamiento. Esto permite que los

LLMs desarrollen una comprensión profunda del lenguaje y sus complejidades.

Otro aspecto importante de los LLMs es su capacidad para manejar el contexto. Al

procesar un texto, los LLMs consideran no solo las palabras individuales sino también

el contexto circundante. Tienen en cuenta las palabras, oraciones e incluso párrafos

anteriores para comprender el significado y la intención del texto. Esta comprensión

Introducción 5

contextual permite a los LLMs generar respuestas coherentes y relevantes. Una de las

principales formas en que evaluamos las capacidades de un modelo LLM específico

es considerando el tamaño del contexto que pueden tener en cuenta para generar

respuestas.

Una vez entrenados, los LLMs pueden utilizarse para una amplia gama de tareas

relacionadas con el lenguaje. Pueden generar texto similar al humano, responder

preguntas, resumir documentos, traducir idiomas e incluso escribir código. La

versatilidad de los LLMs los hace valiosos para construir componentes de sistemas

inteligentes que pueden interactuar con usuarios, procesar y analizar datos textuales, y

generar resultados significativos.

Al incorporar LLMs en la arquitectura de la aplicación, puedes crear componentes de

IA que entiendan y procesen la entrada del usuario, generen contenido dinámico y

proporcionen recomendaciones o acciones inteligentes. Pero trabajar con LLMs requiere

una consideración cuidadosa de los requisitos de recursos y las compensaciones de

rendimiento. Los LLMs requieren un uso intensivo de recursos computacionales y

pueden necesitar una cantidad significativa de potencia de procesamiento y memoria

(en otras palabras, dinero) para operar. La mayoría de nosotros necesitaremos evaluar

las implicaciones de costos de integrar LLMs en nuestras aplicaciones y actuar en

consecuencia.

Entendiendo la Inferencia

La inferencia se refiere al proceso mediante el cual un modelo genera predicciones o

salidas basadas en datos nuevos y no vistos. Es la fase donde el modelo entrenado se

utiliza para tomar decisiones o generar texto, imágenes u otro contenido en respuesta a

las entradas del usuario.

Durante la fase de entrenamiento, un modelo de IA aprende de un gran conjunto de

datos ajustando sus parámetros para minimizar el error en sus predicciones. Una vez

Introducción 6

entrenado, el modelo puede aplicar lo que ha aprendido a nuevos datos. La inferencia es

cómo el modelo utiliza sus patrones y conocimientos aprendidos para generar salidas.

Para los LLMs, la inferencia implica tomar un prompt o texto de entrada y producir una

respuesta coherente y contextualmente relevante, como un flujo de tokens (de los que

hablaremos pronto). Esto podría ser responder una pregunta, completar una oración,

generar una historia o traducir texto, entre muchas otras tareas.

En contraste con la forma en que tú y yo pensamos, el “pensamiento” de un

modelo de IA a través de la inferencia ocurre todo en una única operación

sin estado. Es decir, su pensamiento está limitado a su proceso de generación.

Literalmente tiene que pensar en voz alta, como si te hiciera una pregunta y

solo aceptara una respuesta tuya en estilo “flujo de consciencia”.

Los Modelos de Lenguaje Grandes Vienen en Muchos
Tamaños y Sabores

Si bien prácticamente todos los modelos de lenguaje grandes (LLMs) populares se basan

en la misma arquitectura transformer básica y están entrenados en enormes conjuntos

de datos de texto, vienen en una variedad de tamaños y están ajustados para diferentes

propósitos. El tamaño de un LLM, medido por el número de parámetros en su red

neuronal, tiene un gran impacto en sus capacidades. Los modelos más grandes con más

parámetros, como GPT-4, que se rumorea que cuenta con 1 a 2 billones de parámetros,

son generalmente más conocedores y capaces que los modelos más pequeños. Sin

embargo, los modelos más grandes también requieren mucha más potencia de cómputo

para ejecutarse, lo que se traduce en un mayor gasto cuando los utilizas a través de

llamadas API.

Para hacer que los LLMs sean más prácticos y adaptados a casos de uso específicos, los

modelos base amenudo se ajustan finamente con conjuntos de datosmás específicos. Por

ejemplo, un LLM puede ser entrenado en un gran corpus de diálogo para especializarlo

Introducción 7

en IA conversacional. Otros son entrenados en código para dotarlos de conocimientos

de programación. ¡Incluso hay modelos que están especialmente entrenados para

interacciones de juego de roles con usuarios!

Modelos de Recuperación vs Modelos Generativos

En el mundo de los modelos de lenguaje grandes (LLMs), existen dos enfoques

principales para generar respuestas: los modelos basados en recuperación y los modelos

generativos. Cada enfoque tiene sus propias fortalezas y debilidades, y comprender las

diferencias entre ellos puede ayudarte a elegir el modelo adecuado para tu caso de uso

específico.

Modelos Basados en Recuperación

Los modelos basados en recuperación, también conocidos como modelos de

recuperación de información, generan respuestas mediante la búsqueda en una

gran base de datos de texto preexistente y la selección de los pasajes más relevantes

según la consulta de entrada. Estos modelos no generan texto nuevo desde cero, sino

que unen extractos de la base de datos para formar una respuesta coherente.

Una de las principales ventajas de los modelos basados en recuperación es su capacidad

para proporcionar información precisa y actualizada. Dado que dependen de una base

de datos de texto curado, pueden extraer información relevante de fuentes confiables

y presentarla al usuario. Esto los hace especialmente adecuados para aplicaciones que

requieren respuestas precisas y factuales, como los sistemas de pregunta-respuesta o

bases de conocimiento.

Sin embargo, los modelos basados en recuperación tienen algunas limitaciones. Son tan

buenos como la base de datos que están consultando, por lo que la calidad y cobertura

de la base de datos impactan directamente en el rendimiento del modelo. Además, estos

modelos pueden tener dificultades para generar respuestas coherentes y naturales, ya

que están limitados al texto disponible en la base de datos.

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Introducción 8

No cubrimos el uso de modelos de recuperación puros en este libro.

Modelos Generativos

Los modelos generativos, por otro lado, crean texto nuevo desde cero basándose en

los patrones y relaciones que aprendieron durante el entrenamiento. Estos modelos

utilizan su comprensión del lenguaje para generar respuestas novedosas que se adaptan

al prompt de entrada.

La principal fortaleza de los modelos generativos es su capacidad para producir texto

creativo, coherente y contextualmente relevante. Pueden participar en conversaciones

abiertas, generar historias e incluso escribir código. Esto los hace ideales para

aplicaciones que requieren interacciones más abiertas y dinámicas, como chatbots,

creación de contenido y asistentes de escritura creativa.

Sin embargo, los modelos generativos pueden producir ocasionalmente información

inconsistente o factualmente incorrecta, ya que se basan en los patrones aprendidos

durante el entrenamiento en lugar de una base de datos curada de hechos. También

pueden ser más propensos a sesgos y alucinaciones, generando texto que es plausible

pero no necesariamente verdadero.

Ejemplos de LLMs generativos incluyen la serie GPT de OpenAI (GPT-3, GPT-4) y

Claude de Anthropic.

Modelos Híbridos

Varios LLMs disponibles comercialmente combinan tanto enfoques de recuperación

como generativos en unmodelo híbrido. Estos modelos utilizan técnicas de recuperación

para encontrar información relevante de una base de datos y luego utilizan técnicas

generativas para sintetizar esa información en una respuesta coherente.

Los modelos híbridos buscan combinar la precisión factual de los modelos basados en

recuperación con las capacidades de generación de lenguaje natural de los modelos

Introducción 9

generativos. Pueden proporcionar información más confiable y actualizada mientras

mantienen la capacidad de participar en conversaciones abiertas.

Al elegir entre modelos basados en recuperación y modelos generativos, debes

considerar los requisitos específicos de tu aplicación. Si el objetivo principal es

proporcionar información precisa y factual, un modelo basado en recuperación puede

ser la mejor opción. Si la aplicación requiere interacciones más abiertas y creativas, un

modelo generativo puede ser más adecuado. Los modelos híbridos ofrecen un equilibrio

entre los dos enfoques y pueden ser una buena opción para aplicaciones que requieren

tanto precisión factual como generación de lenguaje natural.

En última instancia, la elección entre modelos basados en recuperación y modelos

generativos depende del caso de uso específico y los compromisos entre precisión,

creatividad y flexibilidad. Al comprender las fortalezas y limitaciones de cada enfoque,

puedes tomar decisiones informadas.

Introducción 10

Ajuste por Instrucciones

El ajuste por instrucciones es un subconjunto del entrenamiento conversacional

que utiliza prompts y respuestas escritas por humanos para hacer que los LLMs

sean mejores en la comprensión y seguimiento de instrucciones. Aquí hay algunos

ejemplos simples para ilustrar cómo el ajuste por instrucciones en prompts y

respuestas escritas por humanos hace que los LLMs sean mejores en la comprensión

y seguimiento de instrucciones:

Ejemplo 1: Atención al Cliente

Instrucción: “Proporciona una respuesta a un cliente que solicita un reembolso.”

Prompt Escrito por Humano: “Me gustaría solicitar un reembolso por mi compra

reciente. El producto no cumplió con mis expectativas.”

Respuesta Escrita por Humano: “Lamento escuchar que el producto no cumplió con

sus expectativas. Para procesar su reembolso, por favor proporcione su número de

pedido y el motivo de la devolución. Revisaremos su solicitud y le responderemos en

2-3 días hábiles.”

Ejemplo 2: Asistencia Educativa

Instrucción: “Explica el concepto de fotosíntesis a un niño de 10 años.”

Prompt escrito por humano: “¿Puedes explicar cómo las plantas producen su

alimento?”

Respuesta escrita por humano: “¡Claro! Las plantas producen su alimento mediante

un proceso llamado fotosíntesis. Utilizan la luz solar, el agua y el dióxido de carbono

para crear alimento y oxígeno. Las hojas de la planta tienen una parte especial llamada

Introducción 11

clorofila que les ayuda a captar la luz solar.”

Ejemplo 3: Asistente Personal

Instrucción: “Programa una reunión para el próximo martes a las 3 PM.”

Prompt escrito por humano: “¿Puedes programar una reunión para el martes a las 3

PM?”

Respuesta escrita por humano: “Claro, he programado una reunión para el próximo

martes a las 3 PM. ¿Necesitas algo más?”

El resultado es un ecosistema diverso de LLMs de diferentes tamaños y con diferentes

especialidades. Los modelos más pequeños en el rango de 1-7 mil millones de parámetros

proporcionan buenas capacidades generales de lenguaje mientras son más eficientes de

ejecutar.

• Mistral 7B

• Llama 3 8B

• Gemma 7B

Los modelos de tamaño medio de alrededor de 30-70 mil millones de parámetros ofrecen

capacidades más sólidas de razonamiento y seguimiento de instrucciones.

• Llama 3 70B

• Qwen2 70B

• Mixtral 8x22B

Al elegir un LLM para incorporarlo en una aplicación, debes equilibrar las capacidades

del modelo con factores prácticos como el costo, la latencia, la longitud de contexto

y el filtrado de contenido. Los modelos más pequeños, ajustados por instrucciones,

Introducción 12

son a menudo la mejor opción para tareas de lenguaje más simples, mientras que los

modelos más grandes pueden ser necesarios para razonamiento o análisis complejos.

Los datos de entrenamiento del modelo también son una consideración importante, ya

que determinan la fecha límite de conocimiento del modelo.

Ciertos modelos, como algunos de Perplexity, están conectados a fuentes

de información en tiempo real, por lo que efectivamente no tienen fecha

límite. Cuando les haces preguntas, pueden decidir independientemente

realizar búsquedas web y obtener páginas web arbitrarias para generar una

respuesta.

Figura 1. Llama3 con y sin acceso en línea

En última instancia, no existe un LLM que sirva para todo. Comprender las variaciones

en el tamaño del modelo, la arquitectura y el entrenamiento es clave para seleccionar el

modelo adecuado para un caso de uso específico. Experimentar con diferentes modelos

es la única manera práctica de revelar cuáles proporcionan el mejor rendimiento para la

tarea en cuestión.

Introducción 13

Tokenización: Dividiendo el Texto en Piezas

Antes de que un modelo de lenguaje grande pueda procesar texto, ese texto necesita ser

dividido en unidades más pequeñas llamadas tokens. Los tokens pueden ser palabras

individuales, partes de palabras o incluso caracteres individuales. El proceso de dividir

texto en tokens se conoce como tokenización, y es un paso crucial en la preparación de

datos para un modelo de lenguaje.

Figura 2. Esta oración contiene 27 tokens

Diferentes LLMs utilizan diferentes estrategias de tokenización, lo que puede tener

un impacto significativo en el rendimiento y las capacidades del modelo. Algunos

tokenizadores comunes utilizados por LLMs incluyen:

• GPT (Codificación por Pares de Bytes): Los tokenizadores GPT utilizan una

técnica llamada codificación por pares de bytes (BPE) para dividir el texto

en unidades de subpalabras. BPE fusiona iterativamente los pares de bytes

más frecuentes en un corpus de texto, formando un vocabulario de tokens de

subpalabras. Esto permite que el tokenizador maneje palabras raras y nuevas

dividiéndolas en piezas de subpalabras más comunes. Los tokenizadores GPT son

utilizados por modelos como GPT-3 y GPT-4.

• Llama (SentencePiece): Los tokenizadores de Llama utilizan la biblioteca

SentencePiece, que es un tokenizador y detokenizador de texto no supervisado.

SentencePiece trata el texto de entrada como una secuencia de caracteres Unicode

y aprende un vocabulario de subpalabras basado en un corpus de entrenamiento.

Puede manejar cualquier idioma que pueda codificarse en Unicode, lo que lo hace

adecuado para modelos multilingües. Los tokenizadores de Llama son utilizados

por modelos como Llama y Alpaca de Meta.

Introducción 14

• SentencePiece (Unigrama): Los tokenizadores SentencePiece también pueden

utilizar un algoritmo diferente llamado Unigrama, que se basa en una técnica

de regularización de subpalabras. La tokenización por Unigrama determina

el vocabulario óptimo de subpalabras basándose en un modelo de lenguaje

unigrama, que asigna probabilidades a unidades individuales de subpalabras.

Este enfoque puede producir subpalabras más significativas semánticamente en

comparación con BPE. SentencePiece con Unigrama es utilizado por modelos

como T5 y BERT de Google.

• Google Gemini (Tokenización Multimodal): Google Gemini utiliza un esquema

de tokenización diseñado para manejar varios tipos de datos, incluyendo texto,

imágenes, audio, videos y código. Esta capacidad multimodal permite a Gemini

procesar e integrar diferentes formas de información. Notablemente, Google

Gemini 1.5 Pro tiene una ventana de contexto que puede manejar millones de

tokens, mucho más grande que los modelos anteriores. Esta extensa ventana de

contexto permite al modelo procesar un contexto más amplio, potencialmente

conduciendo a respuestas más precisas. Sin embargo, es importante señalar que

el esquema de tokenización de Gemini está mucho más cerca de un token por

carácter que otros modelos. Esto significa que el costo real de usar modelos Gemini

puede ser significativamente más alto de lo esperado si estás acostumbrado a usar

modelos como GPT, ya que el precio de Google se basa en caracteres en lugar de

tokens.

La elección del tokenizador afecta varios aspectos de un LLM, incluyendo:

• Tamaño del vocabulario: El tokenizador determina el tamaño del vocabulario del

modelo, que es el conjunto de tokens únicos que reconoce. Un vocabulario más

grande y detallado puede ayudar al modelo a manejar una gama más amplia de

palabras y frases e incluso volverse multimodal (capaz de entender y generar más

que solo texto), pero también aumenta los requisitos de memoria y la complejidad

computacional del modelo.

Introducción 15

• Manejo de palabras raras y desconocidas: Los tokenizadores que utilizan

unidades de subpalabras, como BPE y SentencePiece, pueden descomponer

palabras raras y desconocidas en piezas de subpalabras más comunes. Esto

permite que el modelo haga suposiciones educadas sobre el significado de

palabras que no ha visto antes, basándose en las subpalabras que contienen.

• Soporte multilingüe: Los tokenizadores como SentencePiece, que pueden

manejar cualquier lenguaje codificable en Unicode, son adecuados para modelos

multilingües que necesitan procesar texto en múltiples idiomas.

Al elegir un LLM para una aplicación particular, es importante considerar el tokenizador

que utiliza y qué tan bien se alinea con las necesidades específicas de procesamiento del

lenguaje de la tarea en cuestión. El tokenizador puede tener un impacto significativo

en la capacidad del modelo para manejar terminología específica del dominio, palabras

raras y texto multilingüe.

Tamaño de Contexto: ¿Cuánta Información Puede Usar un
Modelo de Lenguaje Durante la Inferencia?

Al hablar de modelos de lenguaje, el tamaño de contexto se refiere a la cantidad de texto

que un modelo puede considerar al procesar o generar sus respuestas. Es esencialmente

una medida de cuánta información el modelo puede “recordar” y usar para informar sus

salidas (expresada en tokens). El tamaño de contexto de un modelo de lenguaje puede

tener un impacto significativo en sus capacidades y los tipos de tareas que puede realizar

efectivamente.

¿Qué es el Tamaño de Contexto?

En términos técnicos, el tamaño de contexto está determinado por el número de tokens

(palabras o piezas de palabras) que un modelo de lenguaje puede procesar en una sola

secuencia de entrada. Esto a menudo se conoce como la “capacidad de atención” o

Introducción 16

“ventana de contexto” del modelo. Cuanto mayor sea el tamaño de contexto, más texto

puede considerar el modelo a la vez al generar una respuesta o realizar una tarea.

Diferentesmodelos de lenguaje tienen diversos tamaños de contexto, que van desde unos

cientos de tokens hasta millones de tokens. Como referencia, un párrafo típico de texto

podría contener alrededor de 100-150 tokens, mientras que un libro completo podría

contener decenas o cientos de miles de tokens.

Incluso hay trabajo en métodos eficientes para escalar Modelos de Lenguaje Grandes

(LLMs) basados en Transformers para entradas infinitamente largas con memoria y

computación limitadas.

¿Por qué es importante el tamaño de contexto?

El tamaño de contexto de un modelo de lenguaje tiene un impacto significativo en

su capacidad para comprender y generar texto coherente y contextualmente relevante.

Aquí hay algunas razones clave por las que el tamaño de contexto es importante:

1. Comprensión de contenido extenso: Los modelos con tamaños de contexto más

grandes pueden comprender y analizar mejor textos más largos, como artículos,

informes o incluso libros completos. Esto es crucial para tareas como el resumen

de documentos, respuesta a preguntas y análisis de contenido.

2. Mantenimiento de la coherencia: Una ventana de contexto más grande permite

que el modelo mantenga la coherencia y consistencia a lo largo de segmentos más

extensos de texto. Esto es importante para tareas como la generación de historias,

sistemas de diálogo y creación de contenido, dondemantener una narrativa o tema

consistente es esencial. También es absolutamente crucial cuando se utilizan LLMs

para generar o transformar datos estructurados.

https://huggingface.co/papers/2404.07143

Introducción 17

3. Captura de dependencias de largo alcance:Algunas tareas de lenguaje requieren

comprender relaciones entre palabras o frases que están alejadas en un texto.

Los modelos con tamaños de contexto más grandes están mejor equipados para

capturar estas dependencias de largo alcance, lo cual puede ser importante para

tareas como el análisis de sentimiento, la traducción y la comprensión del lenguaje.

4. Manejo de instrucciones complejas: En aplicaciones donde los modelos de

lenguaje se utilizan para seguir instrucciones complejas de múltiples pasos, un

tamaño de contexto mayor permite que el modelo considere el conjunto completo

de instrucciones al generar una respuesta, en lugar de solo las últimas palabras.

Ejemplos de Modelos de Lenguaje con Diferentes Tamaños de
Contexto

Aquí hay algunos ejemplos de modelos de lenguaje con diferentes tamaños de contexto:

• OpenAI GPT-3.5 Turbo: 4.095 tokens

• Mistral 7B Instruct: 32.768 tokens

• Anthropic Claude v1: 100.000 tokens

• OpenAI GPT-4 Turbo: 128.000 tokens

• Anthropic Claude v2: 200.000 tokens

• Google Gemini Pro 1.5: 2,8M tokens

Como pueden ver, existe una amplia gama de tamaños de contexto entre estos modelos,

desde aproximadamente 4.000 tokens para el modelo OpenAI GPT-3.5 Turbo hasta

200.000 tokens para el modelo Anthropic Claude v2. Algunos modelos, como Google

PaLM 2 y OpenAI GPT-4, ofrecen diferentes variantes con tamaños de contexto más

grandes (por ejemplo, versiones “32k”), que pueden manejar secuencias de entrada aún

más largas. ¡Y en este momento (abril de 2024) Google Gemini Pro está presumiendo de

casi 3 millones de tokens!

Introducción 18

Vale la penamencionar que el tamaño de contexto puede variar según la implementación

específica y la versión de un modelo particular. Por ejemplo, el modelo original

OpenAI GPT-4 tiene un tamaño de contexto de 8.191 tokens, mientras que las variantes

posteriores de GPT-4 como Turbo y 4o tienen un tamaño de contexto mucho mayor de

128.000 tokens.

Sam Altman ha comparado las limitaciones actuales de contexto con los kilobytes de

memoria de trabajo con los que tenían que lidiar los programadores de computadoras

personales en los 80, y ha dicho que en un futuro cercano podremos ajustar “todos

tus datos personales” en el contexto de un modelo de lenguaje grande.

Eligiendo el Tamaño de Contexto Adecuado

Al seleccionar un modelo de lenguaje para una aplicación particular, es importante

considerar los requisitos de tamaño de contexto de la tarea en cuestión. Para tareas

que involucran textos cortos y aislados, como el análisis de sentimiento o respuestas

a preguntas simples, un tamaño de contexto más pequeño puede ser suficiente. Sin

embargo, para tareas que requieren comprender y generar textosmás largos y complejos,

probablemente será necesario un tamaño de contexto más grande.

Vale la pena señalar que los tamaños de contexto más grandes a menudo conllevan

mayores costos computacionales y tiempos de procesamiento más lentos, ya que el

modelo necesita considerar más información al generar una respuesta. Como tal, debes

encontrar un equilibrio entre el tamaño de contexto y el rendimiento al elegir un modelo

de lenguaje para tu aplicación.

Introducción 19

¿Por qué no simplemente elegir el modelo con el tamaño de contexto más grande y

llenarlo con tanta información como sea posible? Bueno, además de los factores de

rendimiento, la otra consideración principal es el costo. En marzo de 2024, un solo

ciclo de pregunta-respuesta usando Google Gemini Pro 1.5 con un contexto completo

te costará casi $8 (USD). Si tienes un caso de uso que justifica ese gasto, ¡adelante! Pero

para la mayoría de las aplicaciones, es demasiado costoso por órdenes de magnitud.

Encontrando Agujas en Pajares

El concepto de encontrar una aguja en un pajar ha sido durante mucho tiempo una

metáfora para los desafíos de recuperación en grandes conjuntos de datos. En el ámbito

de los LLMs, modificamos un poco esta analogía. Imagina que no solo estamos buscando

un único hecho enterrado dentro de un texto extenso (como una antología completa

de ensayos de Paul Graham), sino múltiples hechos dispersos por todas partes. Este

escenario se asemeja más a encontrar varias agujas en un campo extenso, no solo en

un pajar. Y aquí está lo interesante: no solo necesitamos localizar estas agujas, sino que

también tenemos que entrelazarlas en un hilo coherente.

Cuando se enfrentan a la tarea de recuperar y razonar sobre múltiples hechos integrados

en contextos largos, los LLMs se enfrentan a un doble desafío. Primero, está el problema

directo de la precisión en la recuperación—naturalmente disminuye a medida que

aumenta el número de hechos. Esto es esperado; después de todo, mantener el registro

de múltiples detalles a través de un texto extenso pone a prueba incluso a los modelos

más sofisticados.

Segundo, y quizás más crítico, es el desafío de razonar con estos hechos. Una cosa es

extraer hechos; otra muy distinta es sintetizarlos en una narrativa o respuesta coherente.

Aquí es donde viene la verdadera prueba. El rendimiento de los LLMs en tareas de

razonamiento tiende a degradarse más que en tareas simples de recuperación. Esta

Introducción 20

degradación no se trata solo del volumen; se trata de la intrincada danza del contexto,

la relevancia y la inferencia.

¿Por qué sucede esto? Bien, considera la dinámica de la memoria y la atención en

la cognición humana, que se refleja hasta cierto punto en los LLMs. Al procesar

grandes cantidades de información, los LLMs, como los humanos, pueden perder el

rastro de detalles anteriores mientras absorben otros nuevos. Esto es especialmente

cierto en modelos que no están diseñados explícitamente para priorizar o revisar

automáticamente segmentos anteriores del texto.

Además, la capacidad de un LLM para tejer estos hechos recuperados en una respuesta

coherente es similar a la construcción narrativa. Esto requiere no solo la recuperación de

información sino una comprensión profunda y ubicación contextual, lo que sigue siendo

un gran desafío para la IA actual.

Entonces, ¿qué significa esto para nosotros como desarrolladores e integradores de

estas tecnologías? Necesitamos ser agudamente conscientes de estas limitaciones al

diseñar sistemas que dependen de LLMs para manejar tareas complejas y extensas.

Entender que el rendimiento podría degradarse bajo ciertas condiciones nos ayuda a

establecer expectativas realistas y diseñar mejores mecanismos de respaldo o estrategias

complementarias.

Modalidades: Más Allá del Texto

Si bien la mayoría de los modelos de lenguaje actuales se centran en procesar y generar

texto, existe una tendencia creciente hacia los modelos multimodales que pueden recibir

y generar de forma nativa múltiples tipos de datos, como imágenes, audio y video. Estos

modelos multimodales abren nuevas posibilidades para aplicaciones impulsadas por IA

que pueden entender y generar contenido a través de diferentes modalidades.

Introducción 21

¿Qué son las Modalidades?

En el contexto de los modelos de lenguaje, las modalidades se refieren a los diferentes

tipos de datos que un modelo puede procesar y generar. La modalidad más común es el

texto, que incluye lenguaje escrito en varias formas como libros, artículos, sitios web y

publicaciones en redes sociales. Sin embargo, hay varias otras modalidades que se están

incorporando cada vez más en los modelos de lenguaje:

• Imágenes: Datos visuales como fotografías, ilustraciones y diagramas.

• Audio: Datos de sonido como voz, música y sonidos ambientales.

• Video: Datos visuales en movimiento, a menudo acompañados de audio, como

clips de video y películas.

Cada modalidad presenta desafíos y oportunidades únicas para los modelos de lenguaje.

Por ejemplo, las imágenes requieren que el modelo entienda conceptos y relaciones

visuales, mientras que el audio requiere que el modelo procese y genere voz y otros

sonidos.

Modelos de Lenguaje Multimodales

Los modelos de lenguaje multimodales están diseñados para manejar múltiples

modalidades dentro de un únicomodelo. Estos modelos típicamente tienen componentes

o capas especializadas que pueden tanto entender las entradas como generar datos de

salida en diferentes modalidades. Algunos ejemplos notables de modelos de lenguaje

multimodales incluyen:

• OpenAI’s GPT-4o: GPT-4o es un modelo de lenguaje grande que entiende y

procesa de forma nativa el audio de voz además del texto. Esta capacidad permite

a GPT-4o realizar tareas como transcribir lenguaje hablado, generar texto a partir

de entradas de audio y proporcionar respuestas basadas en consultas habladas.

Introducción 22

• OpenAI’s GPT-4 con entrada visual:GPT-4 es unmodelo de lenguaje grande que

puede procesar tanto texto como imágenes. Cuando se le proporciona una imagen

como entrada, GPT-4 puede analizar el contenido de la imagen y generar texto

que describe o responde a la información visual.

• Google’s Gemini: Gemini es un modelo multimodal que puede manejar texto,

imágenes y video. Utiliza una arquitectura unificada que permite la comprensión

y generación entre modalidades, permitiendo tareas como la generación de

descripciones de imágenes, resumen de videos y respuesta a preguntas visuales.

• DALL-E y Stable Diffusion: Si bien no son modelos de lenguaje en el sentido

tradicional, estos modelos demuestran el poder de la IA multimodal al generar

imágenes a partir de descripciones textuales. Muestran el potencial de los modelos

que pueden traducir entre diferentes modalidades.

Beneficios y Aplicaciones de los Modelos Multimodales

Los modelos de lenguaje multimodales ofrecen varios beneficios y permiten una amplia

gama de aplicaciones, incluyendo:

• Comprensión mejorada: Al procesar información de múltiples modalidades,

estos modelos pueden obtener una comprensión más completa del mundo, similar

a cómo los humanos aprenden de varios estímulos sensoriales.

• Generación intermodal: Losmodelosmultimodales pueden generar contenido en

una modalidad basándose en la entrada de otra, como crear una imagen a partir

de una descripción de texto o generar un resumen en video de un artículo escrito.

• Accesibilidad: Los modelos multimodales pueden hacer que la información sea

más accesible al traducir entre modalidades, como generar descripciones textuales

de imágenes para usuarios con discapacidad visual o crear versiones de audio de

contenido escrito.

Introducción 23

• Aplicaciones creativas: Los modelos multimodales pueden utilizarse para tareas

creativas como generar arte, música o videos basados en indicaciones textuales,

abriendo nuevas posibilidades para artistas y creadores de contenido.

A medida que los modelos de lenguaje multimodales continúan avanzando,

probablemente desempeñarán un papel cada vez más importante en el desarrollo

de aplicaciones impulsadas por IA que pueden entender y generar contenido a través

de múltiples modalidades. Esto permitirá interacciones más naturales e intuitivas

entre humanos y sistemas de IA, además de desbloquear nuevas posibilidades para la

expresión creativa y la difusión del conocimiento.

Ecosistemas de Proveedores

Cuando se trata de incorporar modelos de lenguaje grandes (MLGs) en aplicaciones,

existe una creciente gama de opciones entre las cuales elegir. Cada proveedor importante

de MLG, como OpenAI, Anthropic, Google y Cohere, ofrece su propio ecosistema de

modelos, APIs y herramientas. Elegir el proveedor adecuado implica considerar varios

factores, incluyendo precios, rendimiento, filtrado de contenido, privacidad de datos y

opciones de personalización.

OpenAI

OpenAI es uno de los proveedores más conocidos de MLGs, con su serie GPT (GPT-3,

GPT-4) siendo ampliamente utilizada en varias aplicaciones. OpenAI ofrece una API

fácil de usar que permite integrar fácilmente sus modelos en aplicaciones. Proporcionan

una variedad de modelos con diferentes capacidades y precios, desde el modelo básico

Ada hasta el potente modelo Davinci.

El ecosistema de OpenAI también incluye herramientas como OpenAI Playground, que

permite experimentar con prompts y realizar ajustes finos en los modelos para casos

Introducción 24

de uso específicos. Ofrecen opciones de filtrado de contenido para ayudar a prevenir la

generación de contenido inapropiado o dañino.

Cuando uso los modelos de OpenAI directamente, confío en la biblioteca ruby-openai

de Alex Rudall.

Anthropic

Anthropic es otro actor importante en el espacio de los MLGs, con sus modelos Claude

ganando popularidad por su fuerte rendimiento y consideraciones éticas. Anthropic se

centra en desarrollar sistemas de IA seguros y responsables, con un fuerte énfasis en el

filtrado de contenido y la prevención de resultados dañinos.

El ecosistema de Anthropic incluye la API de Claude, que permite integrar el modelo

en sus aplicaciones, así como herramientas para la ingeniería de prompts y ajuste fino.

También ofrecen el modelo Claude Instant, que incorpora capacidades de búsqueda web

para obtener respuestas más actualizadas y precisas.

Cuando uso los modelos de Anthropic directamente, confío en la biblioteca anthrophic

de Alex Rudall.

Google

Google ha desarrollado varios MLGs potentes, incluyendo Gemini, BERT, T5 y PaLM.

Estos modelos son conocidos por su fuerte rendimiento en una amplia gama de tareas

de procesamiento del lenguaje natural. El ecosistema de Google incluye las bibliotecas

TensorFlow y Keras, que proporcionan herramientas y marcos para construir y entrenar

modelos de aprendizaje automático.

Google también ofrece una Plataforma de IA en la Nube, que permite implementar

y escalar fácilmente sus modelos en la nube. Proporcionan una variedad de modelos

preentrenados y APIs para tareas como análisis de sentimientos, reconocimiento de

entidades y traducción.

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/anthropic

Introducción 25

Meta

Meta, anteriormente conocido como Facebook, está profundamente involucrado en el

desarrollo de modelos de lenguaje grandes, destacado por su lanzamiento de modelos

como LLaMA y OPT. Estos modelos sobresalen por su fuerte rendimiento en diversas

tareas de lenguaje y están disponibles principalmente a través de canales de código

abierto, respaldando el compromiso de Meta con la investigación y la colaboración

comunitaria.

El ecosistema de Meta está construido principalmente alrededor de PyTorch, una

biblioteca de aprendizaje automático de código abierto preferida por sus capacidades de

computación dinámica y flexibilidad, facilitando la investigación y desarrollo innovador

en IA.

Además de sus ofertas técnicas, Meta hace especial énfasis en el desarrollo ético de la IA.

Implementan un sólido filtrado de contenido y se centran en reducir sesgos, alineándose

con sus objetivos más amplios de seguridad y responsabilidad en las aplicaciones de IA.

Cohere

Cohere es un participante más reciente en el espacio de los LLM, centrándose en hacer

que los LLM sean más accesibles y fáciles de usar que los competidores. Su ecosistema

incluye la API de Cohere, que proporciona acceso a una gama de modelos preentrenados

para tareas como generación de texto, clasificación y resumen.

Cohere también ofrece herramientas para la ingeniería de prompts, el ajuste fino

y el filtrado de contenido. Enfatizan la privacidad y seguridad de los datos, con

características como el almacenamiento cifrado de datos y controles de acceso.

Ollama

Ollama es una plataforma autohospedada que permite a los usuarios gestionar e

implementar varios modelos de lenguaje grandes (LLMs) localmente en sus máquinas,

Introducción 26

dándoles control completo sobre sus modelos de IA sin depender de servicios en la nube

externos. Esta configuración es ideal para aquellos que priorizan la privacidad de los

datos y desean manejar sus operaciones de IA internamente.

La plataforma admite una variedad de modelos, incluyendo versiones de Llama, Phi,

Gemma yMistral, que varían en tamaño y requisitos computacionales. Ollama facilita la

descarga y ejecución de estos modelos directamente desde la línea de comandos usando

comandos simples como ollama run <model_name>, y está diseñado para funcionar

en diferentes sistemas operativos, incluyendo macOS, Linux y Windows.

Para los desarrolladores que buscan integrar modelos de código abierto en sus

aplicaciones sin usar una API remota, Ollama ofrece una CLI para gestionar ciclos

de vida de modelos similar a las herramientas de gestión de contenedores. También

admite configuraciones y prompts personalizados, permitiendo un alto grado de

personalización para adaptar los modelos a necesidades o casos de uso específicos.

Ollama está particularmente adaptado para usuarios expertos en tecnología y

desarrolladores debido a su interfaz de línea de comandos y la flexibilidad que ofrece

en la gestión e implementación de modelos de IA. Esto lo convierte en una herramienta

poderosa para empresas e individuos que requieren capacidades robustas de IA sin

comprometer la seguridad y el control.

Plataformas Multi-Modelo

Adicionalmente, hay proveedores que alojan una amplia variedad de modelos de

código abierto, como Together.ai y Groq. Estas plataformas ofrecen flexibilidad y

personalización, permitiéndote ejecutar y, en algunos casos, incluso ajustar modelos de

código abierto según tus necesidades específicas. Por ejemplo, Together.ai proporciona

acceso a una gama de LLMs de código abierto, permitiendo a los usuarios experimentar

con diferentes modelos y configuraciones. Groq se centra en ofrecer completado de ultra

alto rendimiento que, al momento de escribir este libro, parece casi mágico

Introducción 27

Eligiendo un Proveedor de LLM

Al elegir un proveedor de LLM, debes considerar factores como:

• Precios:Diferentes proveedores ofrecen diferentes modelos de precios, desde pago

por uso hasta planes basados en suscripción. Es importante considerar el uso

esperado y el presupuesto al seleccionar un proveedor.

• Rendimiento: El rendimiento de los LLMs puede variar significativamente entre

proveedores, por lo que es importante evaluar y probar los modelos en casos de

uso específicos antes de tomar una decisión.

• Filtrado de Contenido: Dependiendo de la aplicación, el filtrado de contenido

puede ser una consideración crítica. Algunos proveedores ofrecen opciones de

filtrado de contenido más robustas que otros.

• Privacidad de Datos: Si la aplicación maneja datos sensibles de usuarios, es

importante elegir un proveedor con prácticas sólidas de privacidad y seguridad

de datos.

• Personalización: Algunos proveedores ofrecen más flexibilidad en términos de

ajuste fino y personalización de modelos para casos de uso específicos.

En última instancia, la elección del proveedor de LLM depende de los requisitos y

restricciones específicas de la aplicación. Al evaluar cuidadosamente las opciones y

considerar factores como precios, rendimiento y privacidad de datos, puedes seleccionar

el proveedor que mejor satisfaga tus necesidades.

También vale la pena señalar que el panorama de los LLM está en constante evolución,

con nuevos proveedores y modelos emergiendo regularmente. Debes mantenerte

actualizado con los últimos desarrollos y estar abierto a explorar nuevas opciones

conforme estén disponibles.

Introducción 28

OpenRouter

A lo largo de este libro me basaré exclusivamente en OpenRouter como mi proveedor

de API preferido. La razón es simple: es una ventanilla única para todos los modelos

comerciales y de código abierto más populares. Si estás ansioso por empezar a programar

con IA, uno de los mejores lugares para comenzar es con mi propia Biblioteca Ruby de

OpenRouter.

Pensando en el Rendimiento

Al incorporar modelos de lenguaje en las aplicaciones, el rendimiento es una

consideración crítica. El rendimiento de un modelo de lenguaje puede medirse

en términos de su latencia (el tiempo que tarda en generar una respuesta) y

capacidad de procesamiento (el número de solicitudes que puede manejar por unidad

de tiempo).

El Tiempo hasta el Primer Token (TTFT) es otra métrica de rendimiento esencial,

particularmente relevante para chatbots y aplicaciones que requieren respuestas

interactivas en tiempo real. El TTFT mide la latencia desde el momento en que se recibe

la solicitud del usuario hasta el momento en que se genera la primera palabra (o token)

de la respuesta. Esta métrica es crucial para mantener una experiencia de usuario fluida

y atractiva, ya que las respuestas retrasadas pueden provocar frustración y desconexión

del usuario.

Estas métricas de rendimiento pueden tener un impacto significativo en la experiencia

del usuario y la escalabilidad de la aplicación.

Varios factores pueden influir en el rendimiento de un modelo de lenguaje, incluyendo:

Número de Parámetros: Los modelos más grandes con más parámetros generalmente

requieren más recursos computacionales y pueden tener una latencia más alta y un

menor rendimiento en comparación con los modelos más pequeños.

https://openrouter.ai
https://github.com/OlympiaAI/open_router
https://github.com/OlympiaAI/open_router

Introducción 29

Hardware: El rendimiento de un modelo de lenguaje puede variar significativamente

según el hardware en el que se ejecute. Los proveedores de servicios en la nube ofrecen

instancias de GPU y TPU optimizadas para cargas de trabajo de aprendizaje automático,

que pueden acelerar considerablemente la inferencia del modelo.

Una de las ventajas de OpenRouter es que para muchos de los modelos que

ofrece, tienes una opción de proveedores en la nube con una variedad de

perfiles de rendimiento y costos.

Cuantización: Las técnicas de cuantización se pueden utilizar para reducir la huella de

memoria y los requisitos computacionales de un modelo mediante la representación

de pesos y activaciones con tipos de datos de menor precisión. Esto puede mejorar

el rendimiento sin sacrificar significativamente la calidad. Como desarrollador de

aplicaciones, probablemente no te involucrarás en el entrenamiento de tus propios

modelos con diferentes niveles de cuantización, pero es bueno al menos estar

familiarizado con la terminología.

Procesamiento por Lotes: Procesar múltiples solicitudes simultáneamente en lotes

puede mejorar el rendimiento al amortizar la sobrecarga de carga del modelo y la

transferencia de datos.

Almacenamiento en Caché: Almacenar en caché los resultados de indicaciones o

secuencias de entrada frecuentemente utilizadas puede reducir el número de solicitudes

de inferencia y mejorar el rendimiento general.

Al seleccionar un modelo de lenguaje para una aplicación en producción, es

importante evaluar su rendimiento en cargas de trabajo y configuraciones de hardware

representativas. Esto puede ayudar a identificar posibles cuellos de botella y asegurar

que el modelo pueda cumplir con los objetivos de rendimiento requeridos.

También vale la pena considerar los compromisos entre el rendimiento del modelo y

otros factores como el costo, la flexibilidad y la facilidad de integración. Por ejemplo,

usar un modelo más pequeño y menos costoso con menor latencia puede ser preferible

Introducción 30

para aplicaciones que requieren respuestas en tiempo real, mientras que un modelo más

grande y potente puede ser más adecuado para el procesamiento por lotes o tareas de

razonamiento complejo.

Experimentando con Diferentes Modelos LLM

Elegir un LLM raramente es una decisión permanente. Como se lanzan nuevos ymejores

modelos regularmente, es bueno construir aplicaciones de manera modular que permita

intercambiar diferentes modelos de lenguaje a lo largo del tiempo. Las indicaciones y

conjuntos de datos a menudo pueden reutilizarse entre modelos con cambios mínimos.

Esto te permite aprovechar los últimos avances en modelado de lenguaje sin tener que

rediseñar completamente tus aplicaciones.

La capacidad de cambiar fácilmente entre una amplia gama de opciones de

modelos es otra razón por la que me encanta OpenRouter.

Al actualizar a un nuevo modelo de lenguaje, es importante probar y validar

exhaustivamente su rendimiento y calidad de salida para asegurar que cumpla con

los requisitos de la aplicación. Esto puede implicar reentrenar o ajustar el modelo con

datos específicos del dominio, así como actualizar cualquier componente posterior que

dependa de las salidas del modelo.

Al diseñar aplicaciones teniendo en cuenta el rendimiento y la modularidad, puedes

crear sistemas escalables, eficientes y preparados para el futuro que puedan adaptarse

al panorama en rápida evolución de la tecnología de modelado de lenguaje.

Sistemas de IA Compuestos

Antes de cerrar nuestra introducción, vale la pena mencionar que antes de 2023

y la explosión de interés en IA generativa provocada por ChatGPT, los enfoques

Introducción 31

tradicionales de IA generalmente se basaban en la integración de modelos únicos y

cerrados. En contraste, los Sistemas de IA Compuestos aprovechan tuberías complejas

de componentes interconectados que trabajan juntos para lograr un comportamiento

inteligente.

En su núcleo, los sistemas de IA compuestos consisten en múltiples módulos, cada uno

diseñado para realizar tareas o funciones específicas. Estos módulos pueden incluir

generadores, recuperadores, clasificadores, ordenadores y varios otros componentes

especializados. Al desglosar el sistema general en unidades más pequeñas y enfocadas,

los desarrolladores pueden crear arquitecturas de IA más flexibles, escalables y

mantenibles.

Una de las ventajas clave de los sistemas de IA compuestos es su capacidad para

combinar las fortalezas de diferentes técnicas y modelos de IA. Por ejemplo, un sistema

podría usar un modelo de lenguaje grande (LLM) para la comprensión y generación

del lenguaje natural, mientras emplea un modelo separado para la recuperación de

información o la toma de decisiones basada en reglas. Este enfoque modular te permite

seleccionar las mejores herramientas y técnicas para cada tarea específica, en lugar de

depender de una solución única para todo.

Sin embargo, construir sistemas de IA compuestos también presenta desafíos únicos.

En particular, asegurar la coherencia general y la consistencia del comportamiento del

sistema requiere mecanismos robustos de prueba, monitoreo y gobernanza.

El advenimiento de LLMs poderosos como GPT-4 nos permite experimentar

con sistemas de IA compuestos más fácilmente que nunca, ya que

estos modelos avanzados son capaces de manejar múltiples roles dentro

de un sistema compuesto, como clasificación, clasificación por rangos

y generación, además de sus capacidades de comprensión del lenguaje

natural. Esta versatilidad permite a los desarrolladores prototipar e

iterar rápidamente en arquitecturas de IA compuestas, abriendo nuevas

posibilidades para el desarrollo de aplicaciones inteligentes.

Introducción 32

Patrones de Implementación para Sistemas de IA
Compuestos

Los sistemas de IA compuestos pueden implementarse utilizando varios patrones,

cada uno diseñado para abordar requisitos y casos de uso específicos. Exploremos

cuatro patrones comunes de implementación: Pregunta y Respuesta, Solucionadores de

Problemas Multi-Agente/Agénticos, IA Conversacional, y CoPilotos.

Pregunta y Respuesta

Los sistemas de Pregunta y Respuesta (Q&A) se centran en proporcionar una

recuperación de información mejorada con las capacidades de comprensión de los

modelos de IA para funcionar como algo más que un simple motor de búsqueda. Al

combinar modelos de lenguaje potentes con fuentes de conocimiento externas utilizando

Generación Aumentada por Recuperación (RAG), los sistemas de Pregunta y Respuesta

evitan las alucinaciones y proporcionan respuestas precisas y contextualmente

relevantes a las consultas de los usuarios.

Los componentes clave de un sistema Q&A basado en LLM incluyen:

• Comprensión y reformulación de consultas: Análisis de las consultas de los

usuarios y reformulación de las mismas para que coincidan mejor con las fuentes

de conocimiento subyacentes.

• Recuperación de conocimiento: Recuperación de información relevante

de fuentes de datos estructurados o no estructurados basada en la consulta

reformulada.

• Generación de respuestas: Generación de respuestas coherentes e informativas

mediante la integración del conocimiento recuperado con las capacidades

generativas del modelo de lenguaje.

Los subsistemas RAG son particularmente importantes en dominios de Q&A donde

Introducción 33

proporcionar información precisa y actualizada es crucial, como el soporte al cliente,

la gestión del conocimiento, o aplicaciones educativas.

Solucionadores de Problemas Multi-Agente/Agénticos

Los sistemas multi-agente, también conocidos como Agénticos, consisten en múltiples

agentes autónomos trabajando juntos para resolver problemas complejos. Cada agente

tiene un rol específico, conjunto de habilidades y acceso a herramientas o fuentes de

información relevantes. Al colaborar e intercambiar información, estos agentes pueden

abordar tareas que serían difíciles o imposibles de manejar para un solo agente.

Los principios clave de los solucionadores de problemas multi-agente incluyen:

• Especialización: Cada agente se centra en un aspecto específico del problema,

aprovechando sus capacidades y conocimientos únicos.

• Colaboración: Los agentes se comunican y coordinan sus acciones para lograr un

objetivo común, a menudo a través del paso de mensajes o memoria compartida.

• Adaptabilidad: El sistema puede adaptarse a condiciones o requisitos cambiantes

ajustando los roles y comportamientos de los agentes individuales.

Los sistemas multi-agente son adecuados para aplicaciones que requieren resolución

distribuida de problemas, como la optimización de la cadena de suministro, gestión del

tráfico, o planificación de respuesta a emergencias.

IA Conversacional

Los sistemas de IA conversacional permiten interacciones en lenguaje natural entre

usuarios y agentes inteligentes. Estos sistemas combinan comprensión del lenguaje

natural, gestión de diálogo y capacidades de generación de lenguaje para proporcionar

experiencias conversacionales atractivas y personalizadas.

Los componentes principales de un sistema de IA conversacional incluyen:

Introducción 34

• Reconocimiento de intención: Identificación de la intención del usuario basada

en su entrada, como hacer una pregunta, realizar una solicitud o expresar un

sentimiento.

• Extracción de entidades: Extracción de entidades o parámetros relevantes de la

entrada del usuario, como fechas, ubicaciones o nombres de productos.

• Gestión de diálogo:Mantenimiento del estado de la conversación, determinación

de la respuesta apropiada basada en la intención y contexto del usuario, y manejo

de interacciones de múltiples turnos.

• Generación de respuestas: Generación de respuestas similares a las humanas

utilizando modelos de lenguaje, plantillas o métodos basados en recuperación.

Los sistemas de IA conversacional se utilizan comúnmente en chatbots de servicio

al cliente, asistentes virtuales, e interfaces controladas por voz. Como se mencionó

anteriormente, la mayoría de los enfoques, patrones y ejemplos de código en este libro

están directamente extraídos de mi trabajo en un sistema de IA conversacional grande

llamado Olympia.

CoPilots

Los CoPilots son asistentes impulsados por IA que trabajan junto a usuarios humanos

para mejorar su productividad y capacidad de toma de decisiones. Estos sistemas

aprovechan una combinación de procesamiento del lenguaje natural, aprendizaje

automático y conocimiento específico del dominio para proporcionar recomendaciones

inteligentes, automatizar tareas y ofrecer apoyo contextual.

Las características principales de los CoPilots incluyen:

• Personalización:Adaptación a las preferencias individuales del usuario, flujos de

trabajo y estilos de comunicación.

• Asistencia proactiva: Anticipación a las necesidades del usuario y ofrecimiento

de sugerencias o acciones relevantes sin indicaciones explícitas.

https://olympia.chat

Introducción 35

• Aprendizaje continuo: Mejora del rendimiento a lo largo del tiempo mediante

el aprendizaje basado en la retroalimentación del usuario, las interacciones y los

datos.

Los CoPilots se utilizan cada vez más en varios dominios, como el desarrollo de software

(por ejemplo, completado de código y detección de errores), la escritura creativa (por

ejemplo, sugerencias de contenido y edición), y el análisis de datos (por ejemplo,

información y recomendaciones de visualización)

Estos patrones de implementación muestran la versatilidad y el potencial de los sistemas

de IA compuestos. Al comprender las características y casos de uso de cada patrón,

puedes tomar decisiones informadas al diseñar e implementar aplicaciones inteligentes.

Si bien este libro no trata específicamente sobre la implementación de sistemas de

IA compuestos, muchos, si no todos los mismos enfoques y patrones, se aplican a

la integración de componentes discretos de IA dentro del desarrollo de aplicaciones

tradicionales.

Roles en los Sistemas de IA Compuestos

Los sistemas de IA compuestos se construyen sobre una base de módulos

interconectados, cada uno diseñado para desempeñar un rol específico. Estos

módulos trabajan juntos para crear comportamientos inteligentes y resolver problemas

complejos. Es útil estar familiarizado con estos roles al pensar dónde podrías

implementar o reemplazar partes de tu aplicación con componentes discretos de IA.

Generador

Los generadores son responsables de producir nuevos datos o contenido basados en

patrones aprendidos o indicaciones de entrada. El mundo de la IA tiene muchos tipos

diferentes de generadores, pero en el contexto de los tipos de modelos de lenguaje que se

muestran en este libro, los generadores pueden crear texto similar al humano, completar

Introducción 36

oraciones parciales o generar respuestas a consultas de usuarios. Juegan un papel crucial

en tareas como la creación de contenido, la generación de diálogos y la aumentación de

datos.

Recuperador

Los recuperadores se utilizan para buscar y extraer información relevante de grandes

conjuntos de datos o bases de conocimiento. Emplean técnicas como búsqueda

semántica, coincidencia de palabras clave o similitud vectorial para encontrar los

puntos de datos más pertinentes basados en una consulta o contexto dado. Los

recuperadores son esenciales para tareas que requieren acceso rápido a información

específica, como responder preguntas, verificar hechos o recomendar contenido.

Clasificador por Rangos

Los clasificadores por rangos son responsables de ordenar o priorizar un conjunto de

elementos basados en ciertos criterios o puntuaciones de relevancia. Asignan pesos o

puntuaciones a cada elemento y luego los ordenan en consecuencia. Los clasificadores

por rangos se utilizan comúnmente en motores de búsqueda, sistemas de recomendación

o cualquier aplicación donde sea crucial presentar los resultados más relevantes a los

usuarios.

Clasificador

Los clasificadores se utilizan para categorizar o etiquetar puntos de datos basados

en clases o categorías predefinidas. Aprenden de datos de entrenamiento etiquetados

y luego predicen la clase de nuevas instancias no vistas. Los clasificadores son

fundamentales para tareas como el análisis de sentimientos, la detección de spam o el

reconocimiento de imágenes, donde el objetivo es asignar una categoría específica a

cada entrada.

Introducción 37

Herramientas y Agentes

Además de estos roles principales, los sistemas de IA compuestos a menudo incorporan

herramientas y agentes para mejorar su funcionalidad y adaptabilidad:

• Herramientas: Las herramientas son componentes de software discretos o APIs

que realizan acciones o cálculos específicos. Pueden ser invocadas por otros

módulos, como generadores o recuperadores, para realizar subtareas o recopilar

información adicional. Ejemplos de herramientas incluyen motores de búsqueda

web, calculadoras o bibliotecas de visualización de datos.

• Agentes: Los agentes son entidades autónomas que pueden percibir su entorno,

tomar decisiones y realizar acciones para alcanzar objetivos específicos. Amenudo

se basan en una combinación de diferentes técnicas de IA, como planificación,

razonamiento y aprendizaje, para operar eficazmente en condiciones dinámicas o

inciertas. Los agentes pueden utilizarse para modelar comportamientos complejos

o para coordinar las acciones de múltiples módulos dentro de un sistema de IA

compuesto.

En un sistema de IA compuesto puro, la interacción entre estos componentes se orquesta

a través de interfaces y protocolos de comunicación bien definidos. Los datos fluyen

entre módulos, con la salida de un componente sirviendo como entrada para otro. Esta

arquitectura modular permite flexibilidad, escalabilidad y mantenibilidad, ya que los

componentes individuales pueden actualizarse, reemplazarse o extenderse sin afectar a

todo el sistema.

Al aprovechar el poder de estos componentes y sus interacciones, los sistemas de IA

compuestos pueden abordar problemas complejos del mundo real que requieren una

combinación de diferentes capacidades de IA. A medida que exploramos los enfoques

y patrones para integrar la IA en el desarrollo de aplicaciones, ten en cuenta que

los mismos principios y técnicas utilizados en los sistemas de IA compuestos pueden

Introducción 38

aplicarse para crear aplicaciones inteligentes, adaptativas y centradas en el usuario.

En los siguientes capítulos de la Parte 1, profundizaremos en los enfoques y técnicas

fundamentales para integrar componentes de IA en tu proceso de desarrollo de

aplicaciones. Desde la ingeniería de prompts y la generación aumentada por

recuperación hasta los datos auto-reparables y la orquestación inteligente de flujos de

trabajo, cubriremos una amplia gama de patrones y mejores prácticas para ayudarte a

construir aplicaciones de vanguardia impulsadas por IA.

Parte 1: Enfoques y
Técnicas Fundamentales

Esta parte del libro presenta diferentes formas de integrar el uso de la IA en tus

aplicaciones. Los capítulos cubren una serie de enfoques y técnicas relacionadas, desde

conceptos más generales como Narrow The Path y Retrieval Augmented Generation,

hasta ideas para programar tu propia capa de abstracción sobre las APIs de completación

de chat LLM.

El objetivo de esta parte del libro es ayudarte a comprender los tipos de comportamiento

que puedes implementar con IA, antes de profundizar demasiado en los patrones de

implementación específicos que son el foco de la Parte 2.

Los enfoques en la Parte 1 se basan en ideas que he utilizado en mi código, patrones

clásicos de arquitectura e integración de aplicaciones empresariales, además de

metáforas que he empleado al explicar las capacidades de la IA a otras personas,

incluyendo a interesados del negocio sin conocimientos técnicos.

Estrechar el Camino

“Estrechar el camino” se refiere a enfocar la IA en la tarea en cuestión. Lo uso como un

mantra cuando me siento frustrado porque la IA actúa de manera “tonta” o inesperada.

El mantra me recuerda que el fallo probablemente sea mi culpa y que probablemente

debería estrechar más el camino.

La necesidad de estrechar el camino surge de las vastas cantidades de conocimiento

contenidas en los modelos de lenguaje grandes, especialmente los modelos de clase

mundial como los de OpenAI y Anthropic que tienen literalmente billones de

parámetros.

Estrechar el Camino 41

Tener acceso a tal amplitud de conocimiento es sin duda poderoso y produce

comportamientos emergentes como la teoría de la mente y la capacidad de razonar de

manera similar a los humanos. Sin embargo, ese volumen abrumador de información

también presenta desafíos cuando se trata de generar respuestas precisas y exactas

a prompts específicos, especialmente si esos prompts están destinados a exhibir un

comportamiento determinista que pueda integrarse con el desarrollo de software y

algoritmos “normales”.

Varios factores conducen a estos desafíos.

Sobrecarga de información: Los modelos de lenguaje grandes están entrenados con

cantidades masivas de datos que abarcan varios dominios, fuentes y períodos de tiempo.

Este extenso conocimiento les permite participar en diversos temas y generar respuestas

basadas en una amplia comprensión del mundo. Sin embargo, cuando se enfrentan

a un prompt específico, el modelo puede tener dificultades para filtrar información

irrelevante, contradictoria o desactualizada/obsoleta, lo que lleva a respuestas que

carecen de enfoque o precisión. Dependiendo de lo que estés tratando de hacer, el mero

volumen de información contradictoria disponible para el modelo puede fácilmente

sobrepasar su capacidad para proporcionar la respuesta o el comportamiento que buscas.

Ambigüedad contextual: Dado el vasto espacio latente de conocimiento, los modelos

de lenguaje grandes pueden encontrar ambigüedad al tratar de entender el contexto de

tu prompt. Sin un estrechamiento o guía adecuados, el modelo puede generar respuestas

que están tangencialmente relacionadas pero que no son directamente relevantes para

tus intenciones. Este tipo de fallo lleva a respuestas que están fuera de tema, son

inconsistentes o no abordan tus necesidades declaradas. En este caso, estrechar el

camino se refiere a la desambiguación del contexto, asegurando que el contexto que

proporcionas hace que el modelo se centre solo en la información más relevante de su

conocimiento base.

Estrechar el Camino 42

Nota: Cuando estás empezando con la “ingeniería de prompts”, es más

probable que le pidas al modelo que haga cosas sin explicar adecuadamente

el resultado deseado; ¡se necesita práctica para no ser ambiguo!

Inconsistencias temporales: Como los modelos de lenguaje están entrenados con datos

que fueron creados en diferentes períodos de tiempo, pueden poseer conocimientos que

están desactualizados, superados o que ya no son precisos. Por ejemplo, la información

sobre eventos actuales, descubrimientos científicos o avances tecnológicos puede haber

evolucionado desde que se recopilaron los datos de entrenamiento del modelo. Sin

estrechar el camino para priorizar fuentes más recientes y confiables, el modelo podría

generar respuestas basadas en información desactualizada o incorrecta, lo que lleva a

inexactitudes e inconsistencias en sus resultados.

Matices específicos del dominio: Diferentes dominios y campos tienen sus

propias terminologías, convenciones y bases de conocimiento específicas. Piensa

en prácticamente cualquier TLA (Acrónimo de Tres Letras) y te darás cuenta de que

la mayoría tiene más de un significado. Por ejemplo, MSK puede referirse a Amazon’s

Managed Streaming for Apache Kafka, el Memorial Sloan Kettering Cancer Center, o

el sistema MusculoeSQuelético humano.

Cuando un prompt requiere experiencia en un dominio particular, el conocimiento

genérico de un modelo de lenguaje grande puede no ser suficiente para proporcionar

respuestas precisas y matizadas. Estrechar el camino centrándose en información

específica del dominio, ya sea a través de la ingeniería de prompts o la generación

aumentada por recuperación, permite que el modelo genere respuestas que están más

alineadas con los requisitos y expectativas de tu dominio específico.

Espacio Latente: Incomprensiblemente Vasto

Cuando menciono el “espacio latente” de un modelo de lenguaje, me refiero al

vasto paisaje multidimensional de conocimiento e información que el modelo ha

Estrechar el Camino 43

aprendido durante su proceso de entrenamiento. Es como un reino oculto dentro de las

redes neuronales del modelo, donde se almacenan todos los patrones, asociaciones y

representaciones del lenguaje.

Imagina que estás explorando un vasto territorio inexplorado lleno de innumerables

nodos interconectados. Cada nodo representa una pieza de información, un concepto o

una relación que el modelo ha aprendido. Mientras navegas por este espacio, encontrarás

que algunos nodos están más cerca entre sí, indicando una conexión fuerte o similitud,

mientras que otros están más alejados, sugiriendo una relación más débil o distante.

El desafío con el espacio latente es que es increíblemente complejo y de alta

dimensionalidad. Piensa en él como si fuera tan inmenso como nuestro universo físico,

con sus cúmulos de galaxias y las vastas e inimaginables distancias de espacio vacío

entre ellos.

Debido a que contiene miles de dimensiones, el espacio latente no es directamente

observable ni interpretable por los humanos. Es una representación abstracta que el

modelo utiliza internamente para procesar y generar lenguaje. Cuando proporcionas

un prompt de entrada al modelo, este básicamente mapea ese prompt a una ubicación

específica dentro del espacio latente. El modelo entonces utiliza la información

circundante y las conexiones en ese espacio para generar una respuesta.

Lo cierto es que el modelo ha aprendido una cantidad enorme de información de sus

datos de entrenamiento, y no toda es relevante o precisa para una tarea determinada. Es

por eso que reducir el camino se vuelve tan importante. Al proporcionar instrucciones

claras, ejemplos y contexto en tus prompts, estás esencialmente guiando al modelo para

que se enfoque en regiones específicas dentro del espacio latente que son más relevantes

para tu resultado deseado.

Una forma diferente de pensarlo es como usar un reflector en un museo completamente

oscuro. Si alguna vez has visitado el Louvre o el Metropolitan Museum of Art, ese

es el tipo de escala del que estoy hablando. El espacio latente es el museo, lleno de

innumerables objetos y detalles. Tu prompt es el reflector, iluminando áreas específicas

Estrechar el Camino 44

y dirigiendo la atención del modelo hacia la información más importante. Sin esa

guía, el modelo puede vagar sin rumbo por el espacio latente, recogiendo información

irrelevante o contradictoria en el camino.

Mientras trabajas con modelos de lenguaje y elaboras tus prompts, mantén en mente el

concepto del espacio latente. Tu objetivo es navegar eficazmente por este vasto paisaje

de conocimiento, dirigiendo el modelo hacia la informaciónmás relevante y precisa para

tu tarea. Al reducir el camino y proporcionar una guía clara, puedes desbloquear todo el

potencial del espacio latente del modelo y generar respuestas coherentes de alta calidad.

Si bien las descripciones anteriores de los modelos de lenguaje y el espacio latente que

navegan pueden parecer un poco mágicas o abstractas, es importante entender que los

prompts no son hechizos ni encantamientos. La forma en que funcionan los modelos

de lenguaje está fundamentada en los principios del álgebra lineal y la teoría de la

probabilidad.

En su núcleo, los modelos de lenguaje son modelos probabilísticos de texto, muy

similares a cómo una curva de campana es un modelo estadístico de datos. Se entrenan

mediante un proceso llamado modelado autorregresivo, donde el modelo aprende a

predecir la probabilidad de la siguiente palabra en una secuencia basándose en las

palabras que la preceden. Durante el entrenamiento, el modelo comienza con pesos

aleatorios y gradualmente los ajusta para asignar probabilidades más altas al texto que

se asemeja a las muestras del mundo real con las que fue entrenado.

Sin embargo, pensar en los modelos de lenguaje como simples modelos estadísticos,

como la regresión lineal, no proporciona la mejor intuición para entender su

comportamiento. Una analogía más apropiada es pensar en ellos como programas

probabilísticos, que son modelos que permiten la manipulación de variables aleatorias

y pueden representar relaciones estadísticas complejas.

Los programas probabilísticos pueden ser representados por modelos gráficos, que

proporcionan una manera visual de entender las dependencias y relaciones entre

variables en el modelo. Esta perspectiva puede ofrecer ideas valiosas sobre el

Estrechar el Camino 45

funcionamiento de modelos complejos de generación de texto como GPT-4 y Claude.

En el artículo “Language Model Cascades” de Dohan et al., los autores profundizan en

los detalles de cómo los programas probabilísticos pueden aplicarse a los modelos de

lenguaje. Muestran cómo este marco puede utilizarse para entender el comportamiento

de estos modelos y guiar el desarrollo de estrategias de prompting más efectivas.

Una idea clave de esta perspectiva probabilística es que el modelo de lenguaje

esencialmente crea un portal a un universo alternativo donde existen los documentos

deseados. El modelo asigna pesos a todos los documentos posibles basándose en su

probabilidad, efectivamente reduciendo el espacio de posibilidades para enfocarse en

los más relevantes.

Esto nos lleva de vuelta al tema central de “reducir el camino”. El objetivo principal del

prompting es condicionar el modelo probabilístico de una manera que enfoque la masa

de sus predicciones, concentrándose en la información o comportamiento específico

que queremos obtener. Al proporcionar prompts cuidadosamente elaborados, podemos

guiar al modelo para que navegue el espacio latente de manera más eficiente y genere

resultados más relevantes y coherentes.

Sin embargo, es importante tener en cuenta que el modelo de lenguaje está

ultimadamente limitado por la información con la que fue entrenado. Si bien

puede generar texto similar a documentos existentes o combinar ideas de formas

novedosas, no puede crear información completamente nueva de la nada. Por ejemplo,

no podemos esperar que el modelo proporcione una cura para el cáncer si dicha cura

no ha sido descubierta y documentada en sus datos de entrenamiento.

En cambio, la fortaleza del modelo radica en su capacidad para encontrar y sintetizar

información similar a la que incluimos en el prompt. Al comprender la naturaleza

probabilística de estos modelos y cómo los prompts pueden utilizarse para condicionar

sus salidas, podemos aprovechar sus capacidades de manera más efectiva para generar

contenido e ideas valiosas.

Consideremos los prompts a continuación. En el primero, “Mercurio” por sí solo podría

Estrechar el Camino 46

referirse al planeta, al elemento o al dios romano, pero lomás probable es que se refiera al

planeta. De hecho, GPT-4 proporciona una respuesta extensa que comienza conMercurio

es el planeta más pequeño y más cercano al Sol del Sistema Solar…. El segundo prompt se

refiere específicamente al elemento químico. El tercero se refiere a la figura mitológica

romana, conocida por su velocidad y su papel como mensajero divino.

1 # Prompt 1

2 Tell me about: Mercury

3

4 # Prompt 2

5 Tell me about: Mercury element

6

7 # Prompt 3

8 Tell me about: Mercury messenger of the gods

Al agregar solo un puñado de palabras adicionales, hemos cambiado completamente

la forma en que reacciona la IA. Como aprenderás más adelante en el libro, los

trucos sofisticados de ingeniería de prompts como el prompteo n-shot, la entrada/salida

estructurada y la Cadena de Pensamiento son simplemente formas ingeniosas de

condicionar la salida del modelo.

Así que, en última instancia, el arte de la ingeniería de prompts consiste en entender

cómo navegar el vasto paisaje probabilístico del conocimiento del modelo de lenguaje

para reducir el camino hacia la información o el comportamiento específico que

buscamos.

Para los lectores con un sólido dominio de las matemáticas avanzadas, ¡fundamentar su

comprensión de estos modelos en los principios de teoría de probabilidad y álgebra lineal

definitivamente puede ayudar! Para el resto de ustedes que desean desarrollar estrategias

efectivas para obtener las salidas deseadas, mantengámonos en enfoques más intuitivos.

Estrechar el Camino 47

Cómo Se “Estrecha” El Camino

Para abordar estos desafíos de exceso de conocimiento, empleamos técnicas que ayudan

a guiar el proceso de generación del modelo de lenguaje y enfocar su atención en la

información más relevante y precisa.

Aquí están las técnicas más significativas, en orden recomendado, es decir, deberías

intentar primero la Ingeniería de Prompts, luego RAG, y finalmente, si es necesario, el

ajuste fino.

Ingeniería de Prompts El enfoque más fundamental es crear prompts que incluyan

instrucciones específicas, restricciones o ejemplos para guiar la generación de respuestas

del modelo. Este capítulo cubre los fundamentos de la Ingeniería de Prompts en la

siguiente sección, y cubrimos muchos patrones específicos de ingeniería de prompts en

la Parte 2 del libro. Esos patrones incluyen la Destilación de Prompts, una técnica que se

centra en refinar y optimizar prompts para extraer lo que la IA considera la información

más relevante y concisa.

Aumento de Contexto. Recuperar dinámicamente información relevante de bases

de conocimiento o documentos externos para proporcionar al modelo un contexto

enfocado en el momento en que se le hace el prompt. Las técnicas populares de

aumento de contexto incluyen la Generación Aumentada por Recuperación (RAG) Los

llamados “modelos en línea” como los proporcionados por Perplexity pueden aumentar

su contexto con resultados de búsqueda en internet en tiempo real.

A pesar de su poder, los LLM no están entrenados en tus conjuntos de datos

únicos, que pueden ser privados o específicos para el problema que intentas

resolver. Las técnicas de Aumento de Contexto te permiten dar a los LLM

acceso a datos detrás de APIs, en bases de datos SQL o atrapados en PDFs y

presentaciones.

Ajuste Fino o Adaptación de Dominio Entrenar el modelo en conjuntos de datos

https://perplexity.ai

Estrechar el Camino 48

específicos del dominio para especializar su conocimiento y capacidades de generación

para una tarea o campo particular.

Bajando La Temperatura

La temperatura es un hiperparámetro utilizado en modelos de lenguaje basados en

transformadores que controla la aleatoriedad y creatividad del texto generado. Es un

valor entre 0 y 1, donde valores más bajos hacen que la salida sea más enfocada y

determinista, mientras que valores más altos la hacen más diversa e impredecible.

Cuando la temperatura se establece en 1, el modelo de lenguaje genera texto basado

en la distribución completa de probabilidad del siguiente token, permitiendo respuestas

más creativas y variadas. Sin embargo, esto también puede llevar a que el modelo genere

texto menos relevante o coherente.

Por otro lado, cuando la temperatura se establece en 0, el modelo de lenguaje siempre

selecciona el token con la probabilidad más alta, efectivamente “estrechando su camino”.

Casi todos mis componentes de IA utilizan una temperatura establecida en 0 o cerca de 0,

ya que resulta en respuestas más enfocadas y predecibles. Es absolutamente útil cuando

quieres que el modelo siga instrucciones, preste atención a las funciones que se le han

proporcionado, o simplemente necesites respuestas más precisas y relevantes que las que

estás obteniendo.

Por ejemplo, si estás construyendo un chatbot que necesita proporcionar información

factual, es posible que quieras establecer la temperatura en un valor más bajo para

asegurar que las respuestas sean más precisas y centradas en el tema. Por el contrario, si

estás construyendo un asistente de escritura creativa, es posible que quieras establecer

la temperatura en un valor más alto para fomentar salidas más diversas e imaginativas.

Hiperparámetros: Perillas y Controles de la Inferencia

Cuando trabajas con modelos de lenguaje, te encontrarás con el término

“hiperparámetros” con bastante frecuencia. En el contexto de la inferencia (es

Estrechar el Camino 49

decir, cuando estás usando el modelo para generar respuestas), los hiperparámetros son

como las perillas y controles que puedes ajustar para controlar el comportamiento y la

salida del modelo.

Piensa en ello como ajustar la configuración de unamáquina compleja. Así como podrías

girar una perilla para controlar la temperatura o cambiar un interruptor para cambiar el

modo de operación, los hiperparámetros te permiten ajustar con precisión la forma en

que el modelo de lenguaje procesa y genera texto.

Algunos hiperparámetros comunes que encontrarás durante la inferencia incluyen:

• Temperatura: Como se mencionó anteriormente, este parámetro controla la

aleatoriedad y creatividad del texto generado. Una temperatura más alta conduce

a resultados más diversos e impredecibles, mientras que una temperatura más baja

resulta en respuestas más enfocadas y deterministas.

• Muestreo Top-p (núcleo): Este parámetro controla la selección del conjunto

más pequeño de tokens cuya probabilidad acumulativa excede cierto umbral (p).

Permite obtener resultados más diversos mientras mantiene la coherencia.

• Muestreo Top-k: Esta técnica selecciona los k tokens más probables siguientes

y redistribuye la masa de probabilidad entre ellos. Puede ayudar a evitar que el

modelo genere tokens de baja probabilidad o irrelevantes.

• Penalizaciones de frecuencia y presencia: Estos parámetros penalizan al modelo

por repetir las mismas palabras o frases con demasiada frecuencia (penalización de

frecuencia) o por generar palabras que no están presentes en el prompt de entrada

(penalización de presencia). Al ajustar estos valores, puedes animar al modelo a

producir resultados más variados y relevantes.

• Longitudmáxima: Este hiperparámetro establece un límite superior en el número

de tokens (palabras o subpalabras) que el modelo puede generar en una sola

respuesta. Ayuda a controlar la verbosidad y concisión del texto generado.

Estrechar el Camino 50

A medida que experimentes con diferentes configuraciones de hiperparámetros,

descubrirás que incluso pequeños ajustes pueden tener un impacto significativo en la

salida del modelo. Es como afinar una receta: una pizca más de sal o un tiempo de

cocción ligeramente más largo pueden hacer toda la diferencia en el plato final.

La clave está en entender cómo cada hiperparámetro afecta al comportamiento

del modelo y encontrar el equilibrio adecuado para tu tarea específica. No temas

experimentar con diferentes configuraciones y observar cómo influyen en el texto

generado. Con el tiempo, desarrollarás una intuición sobre qué hiperparámetros ajustar

y cómo lograr los resultados deseados.

Combinando el uso de estos parámetros con la ingeniería de prompts, la generación

aumentada por recuperación y el ajuste fino, puedes efectivamente estrechar el camino

y guiar al modelo de lenguaje para generar respuestas más precisas, relevantes y valiosas

para su caso de uso específico.

Modelos Sin Procesar Versus Modelos Ajustados

por Instrucciones

Los modelos sin procesar son las versiones sin refinar y sin entrenar de los LLM.

Imagínalos como un lienzo en blanco, aún no influenciado por un entrenamiento

específico para entender o seguir instrucciones. Están construidos sobre la vasta

cantidad de datos con los que fueron inicialmente entrenados, capaces de generar

una amplia gama de salidas. Sin embargo, sin capas adicionales de ajuste fino basado

en instrucciones, sus respuestas pueden ser impredecibles y requieren prompts más

matizados y cuidadosamente elaborados para guiarlos hacia la salida deseada. Trabajar

con modelos sin procesar es como intentar obtener comunicación de un sabio idiota que

tiene una gran cantidad de conocimiento pero carece por completo de intuición sobre lo

que estás preguntando, a menos que seas extremadamente preciso en tus instrucciones.

A menudo se sienten como un loro, en el sentido de que, en la medida en que logras

Estrechar el Camino 51

que digan algo inteligible, la mayoría de las veces solo están repitiendo algo que te

escucharon decir.

Los modelos ajustados por instrucciones, por otro lado, han pasado por rondas de

entrenamiento específicamente diseñadas para entender y seguir instrucciones. GPT-

4, Claude 3 y muchos otros de los modelos LLM más populares están todos fuertemente

ajustados por instrucciones. Este entrenamiento implica alimentar al modelo con

ejemplos de instrucciones junto con los resultados deseados, efectivamente enseñándole

cómo interpretar y ejecutar una amplia gama de comandos. Como resultado, los modelos

instruidos pueden entender mejor la intención detrás de un prompt y generar respuestas

que se alinean estrechamente con las expectativas del usuario. Esto los hace más fáciles

de usar y trabajar, especialmente para aquellos que pueden no tener el tiempo o la

experiencia para participar en una ingeniería de prompts extensiva.

Modelos Sin Procesar: El Lienzo Sin Filtrar

Los modelos sin procesar, como Llama 2-70B o Yi-34B, ofrecen un acceso más sin

filtrar a las capacidades del modelo que lo que podrías estar acostumbrado si has

estado experimentando con LLMs populares como GPT-4. Estos modelos no están

preajustados para seguir instrucciones específicas, proporcionándote un lienzo en blanco

para manipular directamente la salida del modelo a través de una cuidadosa ingeniería

de prompts. Este enfoque requiere una comprensión profunda de cómo elaborar prompts

que guíen a la IA en la dirección deseada sin instruirla explícitamente. Es similar a tener

acceso directo a las capas “sin procesar” de la IA subyacente, sin capas intermediarias

que interpreten o guíen las respuestas del modelo (de ahí el nombre).

Estrechar el Camino 52

Figura 3. Probando unmodelo sin procesar usando parte del sketch clásico de Abbott y Costello ’¿Quién
está en primera?’

El desafío con los modelos sin procesar radica en su tendencia a caer en patrones

repetitivos o producir resultados aleatorios. Sin embargo, con una meticulosa ingeniería

de prompts y el ajuste de parámetros como las penalizaciones de repetición, se puede

inducir a los modelos sin procesar a generar contenido único y creativo. Este proceso no

está exento de compensaciones; si bien los modelos sin procesar ofrecen una flexibilidad

sin igual para la innovación, exigen un mayor nivel de experiencia.

Estrechar el Camino 53

Figura 4. Para fines de comparación, aquí está el mismo prompt ambiguo introducido en GPT-4

Modelos Ajustados por Instrucciones: La Experiencia
Guiada

Los modelos ajustados por instrucciones están diseñados para entender y seguir

instrucciones específicas, haciéndolos más fáciles de usar y accesibles para una gama

más amplia de aplicaciones. Entienden la mecánica de una conversación y que deben

dejar de generar cuando es el final de su turno para hablar. Para muchos desarrolladores,

especialmente aquellos que trabajan en aplicaciones sencillas, los modelos ajustados

por instrucciones ofrecen una solución conveniente y eficiente.

El proceso de ajuste por instrucciones implica entrenar el modelo en un gran corpus

de prompts y respuestas de instrucciones generadas por humanos. Un ejemplo notable

es el conjunto de datos de código abierto databricks-dolly-15k, que contiene más de

15,000 pares de prompts/respuestas creados por empleados de Databricks que puedes

inspeccionar por ti mismo. El conjunto de datos cubre ocho categorías diferentes de

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Estrechar el Camino 54

instrucciones, incluyendo escritura creativa, respuesta a preguntas cerradas y abiertas,

resumen, extracción de información, clasificación, y lluvia de ideas.

Durante el proceso de generación de datos, los contribuyentes recibieron pautas sobre

cómo crear prompts y respuestas para cada categoría. Por ejemplo, para tareas de

escritura creativa, se les instruyó proporcionar restricciones específicas, instrucciones

o requisitos para guiar la salida del modelo. Para respuestas a preguntas cerradas, se les

pidió escribir preguntas que requirieran respuestas factualmente correctas basadas en

un pasaje dado de Wikipedia.

El conjunto de datos resultante sirve como un recurso valioso para el ajuste fino de

modelos de lenguaje grandes para exhibir las capacidades interactivas y de seguimiento

de instrucciones de sistemas como ChatGPT. Al entrenar en una amplia gama de

instrucciones y respuestas generadas por humanos, el modelo aprende a entender y

seguir directivas específicas, haciéndolo más apto para manejar una gran variedad de

tareas.

Además del ajuste fino directo, los prompts de instrucciones en conjuntos de datos como

databricks-dolly-15k también pueden usarse para la generación de datos sintéticos. Al

enviar prompts generados por contribuyentes como ejemplos de pocos disparos a un

modelo de lenguaje abierto grande, los desarrolladores pueden generar un corpus mucho

más grande de instrucciones en cada categoría. Este enfoque, descrito en el documento

Self-Instruct, permite la creación de modelos más robustos que siguen instrucciones.

Además, las instrucciones y respuestas en estos conjuntos de datos pueden aumentarse

mediante técnicas como la paráfrasis. Al reformular cada prompt o respuesta corta y

asociar el texto resultante con la muestra de verdad fundamental correspondiente, los

desarrolladores pueden introducir una forma de regularización que mejora la capacidad

del modelo para seguir instrucciones.

La facilidad de uso proporcionada por los modelos ajustados por instrucciones tiene un

costo en términos de flexibilidad. Estos modelos suelen estar fuertemente censurados,

lo que significa que no siempre pueden proporcionar el nivel de libertad creativa

Estrechar el Camino 55

requerido para ciertas tareas. Sus salidas están fuertemente influenciadas por los sesgos

y limitaciones inherentes a sus datos de ajuste fino.

A pesar de estas limitaciones, los modelos ajustados por instrucciones se han vuelto cada

vez más populares debido a su naturaleza fácil de usar y su capacidad para manejar

una amplia gama de tareas con una mínima ingeniería de prompts. A medida que más

conjuntos de datos de instrucciones de alta calidad estén disponibles, podemos esperar

ver más mejoras en el rendimiento y versatilidad de estos modelos.

Eligiendo el Tipo Correcto de Modelo para Tu Proyecto

La decisión entre modelos base (sin procesar) y modelos ajustados por instrucciones

depende en última instancia de los requisitos específicos de tu proyecto. Para tareas que

demandan un alto grado de creatividad y originalidad, los modelos base ofrecen una

herramienta poderosa para la innovación. Estos modelos permiten a los desarrolladores

explorar todo el potencial de los LLMs, empujando los límites de lo que se puede lograr

a través de aplicaciones impulsadas por IA, pero requieren un enfoque más práctico y

una disposición para experimentar. La Temperatura y otras configuraciones tienen un

efecto mucho mayor en los modelos base que en sus contrapartes instruidas.

Todo lo que incluyas en tu prompt es lo que los modelos base intentarán

repetir. Por ejemplo, si tu prompt es una transcripción de chat, el modelo

sin procesar intentará continuar el chat. Dependiendo del límite de tokens

máximos, no solo generará el siguiente mensaje en el chat, ¡puede tener una

conversación entera consigo mismo!

Estrechar el Camino 56

Figura 5. Ejemplo de Reescritura de Oraciones con Mixtral 8x7B (base) usando Completación Few-Shot

Mientras preparaba el ejemplo de Reescritura de Oraciones anterior del usuario de

Reddit phree_radical, solo pude obtener resultados utilizables después de mucha

experimentación con la configuración de parámetros, finalmente estableciendo:

Temperatura 0.08, Top P: 0.2, Top K: 1 y Penalización por Repetición: 1.26.

https://www.reddit.com/user/phree_radical/

Estrechar el Camino 57

Tratar de usar este enfoque con un modelo base en producción sería complicado debido

al poderoso efecto del parámetro max_tokens. Si lo configuras muy corto, la salida se

trunca. Si lo configuras más largo de lo que el modelo necesita para la salida deseada,

continuará alucinando ejemplos adicionales.

La conclusión es que, a menos que realmente necesites control total y ausencia de

censura, los modelos ajustados por instrucciones pueden simplificar significativamente

tu proceso de desarrollo. Para enfatizar ese punto, aquí está la respuesta de Mixtral 8x7B

al mismo prompt, pero esta vez en su versión ajustada por instrucciones:

Lamento informarle que el helado no cumple con mis expectativas, ya que

carece de la textura rica y cremosa y el sabor delicioso que normalmente

asocio con un postre de alta calidad. Esperaba una experiencia más

satisfactoria y agradable.

Notablemente, pude mantener la configuración de tokens máximos en 500, y el modelo

se detuvo de manera confiable al final de la salida deseada sin alucinar ejemplos

adicionales.

Ingeniería de Prompts

Mientras comienzas a aplicar la IA en tus proyectos, rápidamente descubrirás que una de

las habilidadesmás cruciales que necesitas dominar es el arte de la ingeniería de prompts.

Pero, ¿qué es exactamente la ingeniería de prompts y por qué es tan importante?

En su esencia, la ingeniería de prompts es el proceso de diseñar y elaborar los prompts

de entrada que proporcionas a un modelo de lenguaje para guiar su salida. Se trata

de entender cómo comunicarse efectivamente con la IA, utilizando una combinación

de instrucciones, ejemplos y contexto para dirigir al modelo hacia la generación de la

respuesta deseada.

Estrechar el Camino 58

Piensa en ello como tener una conversación con un amigo muy inteligente pero algo

literal. Para aprovechar al máximo la interacción, necesitas ser claro, específico y

proporcionar suficiente contexto para asegurarte de que tu amigo entienda exactamente

lo que estás pidiendo. Ahí es donde entra la ingeniería de prompts, y aunque al principio

pueda parecer fácil, créeme que requiere mucha práctica para dominarlo.

Los Componentes Fundamentales de Prompts Efectivos

Para comenzar a diseñar prompts efectivos, primero necesitas entender los componentes

clave que conforman una entrada bien elaborada. Aquí están algunos de los

componentes fundamentales:

1. Instrucciones: Instrucciones claras y concisas que le indican al modelo lo que

quieres que haga. Esto puede ser cualquier cosa, desde “Resume el siguiente

artículo” hasta “Genera un poema sobre una puesta de sol” o “convierte esta

solicitud de cambio de proyecto en un objeto JSON”.

2. Contexto: Información relevante que ayuda al modelo a entender el trasfondo y

el alcance de la tarea. Esto puede incluir detalles sobre la audiencia prevista, el

tono y estilo deseados, o cualquier restricción o requisito específico para la salida,

como un esquema JSON al que adherirse.

3. Ejemplos: Ejemplos concretos que demuestran el tipo de salida que estás

buscando. Al proporcionar algunos ejemplos bien elegidos, puedes ayudar al

modelo a aprender los patrones y características de la respuesta deseada.

4. Formato de Entrada: Los saltos de línea y el formato markdown dan estructura a

nuestro prompt. Separar el prompt en párrafos nos permite agrupar instrucciones

relacionadas para que sea más fácil de entender tanto para humanos como para la

IA. Las viñetas y las listas numeradas nos permiten definir listas y ordenamiento

de elementos. Los marcadores de negrita y cursiva nos permiten señalar énfasis.

5. Formato de Salida: Instrucciones específicas sobre cómo debe estructurarse y

formatearse la salida. Estas pueden incluir directivas sobre la longitud deseada,

Estrechar el Camino 59

el uso de encabezados o viñetas, formato markdown, o cualquier otra plantilla o

convención específica de salida que deba seguirse.

Al combinar estos componentes fundamentales de diferentes maneras, puedes crear

prompts que se adapten a tus necesidades específicas y guíen al modelo hacia la

generación de respuestas relevantes y de alta calidad.

El Arte y la Ciencia del Diseño de Prompts

Elaborar prompts efectivos es tanto un arte como una ciencia. (Por eso lo llamamos

un oficio.) Requiere una comprensión profunda de las capacidades y limitaciones de los

modelos de lenguaje, así como un enfoque creativo para diseñar prompts que provoquen

el comportamiento deseado. La creatividad involucrada es lo que lo hace tan divertido,

al menos para mí. También puede resultar muy frustrante, especialmente cuando buscas

un comportamiento determinista

Un aspecto clave de la ingeniería de prompts es entender cómo equilibrar la especificidad

y la flexibilidad. Por un lado, quieres proporcionar suficiente orientación para dirigir al

modelo en la dirección correcta. Por otro lado, no quieres ser tan prescriptivo que limites

la capacidad del modelo para utilizar su propia creatividad y flexibilidad para manejar

casos límite.

Otra consideración importante es el uso de ejemplos. Los ejemplos bien elegidos pueden

ser increíblemente poderosos para ayudar al modelo a entender el tipo de salida que estás

buscando. Sin embargo, es importante usar los ejemplos con prudencia y asegurarse de

que sean representativos de la respuesta deseada. Un mal ejemplo es, en el mejor de los

casos, un desperdicio de tokens y, en el peor, puede arruinar la salida deseada.

Técnicas y Mejores Prácticas de Ingeniería de Prompts

Amedida que te sumerges más profundamente en el mundo de la ingeniería de prompts,

descubrirás una variedad de técnicas y mejores prácticas que pueden ayudarte a crear

prompts más efectivos. Aquí hay algunas áreas clave para explorar:

Estrechar el Camino 60

1. Aprendizaje zero-shot vs. few-shot: Entender cuándo usar el aprendizaje

zero-shot (sin proporcionar ejemplos) versus el aprendizaje one-shot o few-shot

(proporcionar un pequeño número de ejemplos) puede ayudarte a crear prompts

que sean más eficientes y efectivos.

2. Refinamiento iterativo: El proceso de refinar iterativamente los prompts

basándose en la salida del modelo puede ayudarte a determinar el diseño óptimo

del prompt. El Bucle de Retroalimentación es un enfoque poderoso que aprovecha

la propia salida del modelo de lenguaje para mejorar progresivamente la calidad

y relevancia del contenido generado.

3. Encadenamiento de prompts: Combinar múltiples prompts en secuencia puede

ayudarte a desglosar tareas complejas en pasos más pequeños y manejables. El

Encadenamiento de Prompts implica dividir una tarea o conversación compleja

en una serie de prompts más pequeños e interconectados. Al encadenar prompts,

puedes guiar a la IA a través de un proceso de múltiples pasos, manteniendo el

contexto y la coherencia durante toda la interacción.

4. Ajuste de prompts: Personalizar los prompts para dominios o tareas específicas

puede ayudarte a crear prompts más especializados y efectivos. La Plantilla

de Prompt te ayuda a crear estructuras de prompt flexibles, reutilizables y

mantenibles que son más fácilmente adaptables a la tarea en cuestión.

Aprender cuándo usar el aprendizaje zero-shot, one-shot o few-shot es una parte

especialmente importante para dominar la ingeniería de prompts. Cada enfoque tiene

sus propias fortalezas y debilidades, y entender cuándo usar cada uno puede ayudarte a

crear prompts más efectivos y eficientes.

Aprendizaje Zero-Shot: Cuando No Se Necesitan Ejemplos

El aprendizaje zero-shot se refiere a la capacidad de un modelo de lenguaje para realizar

una tarea sin ningún ejemplo o entrenamiento explícito. En otras palabras, proporcionas

Estrechar el Camino 61

al modelo un prompt que describe la tarea, y el modelo genera una respuesta basándose

únicamente en su conocimiento preexistente y comprensión del lenguaje.

El aprendizaje zero-shot es particularmente útil cuando:

1. La tarea es relativamente simple y directa, y es probable que el modelo haya

encontrado tareas similares durante su pre-entrenamiento.

2. Quieres probar las capacidades inherentes del modelo y ver cómo responde a una

nueva tarea sin orientación adicional.

3. Estás trabajando con un modelo de lenguaje grande y diverso que ha sido

entrenado en una amplia gama de tareas y dominios.

Sin embargo, el aprendizaje zero-shot también puede ser impredecible y no siempre

producir los resultados deseados. La respuesta del modelo puede estar influenciada por

sesgos o inconsistencias en sus datos de pre-entrenamiento, y puede tener dificultades

con tareas más complejas o matizadas.

He visto prompts zero-shot que funcionan bien para el 80% de mis casos de prueba y

producen resultados extremadamente incorrectos o incomprensibles para el otro 20%.

Es muy importante implementar un régimen de pruebas exhaustivo, especialmente

si dependes mucho del uso de prompts zero-shot.

Aprendizaje One-Shot: Cuando Un Solo Ejemplo Puede
Hacer la Diferencia

El aprendizaje one-shot implica proporcionar al modelo un único ejemplo de la salida

deseada junto con la descripción de la tarea. Este ejemplo sirve como plantilla o patrón

que el modelo puede usar para generar su propia respuesta.

El aprendizaje one-shot puede ser efectivo cuando:

Estrechar el Camino 62

1. La tarea es relativamente nueva o específica, y es posible que el modelo no haya

encontrado muchos ejemplos similares durante su pre-entrenamiento.

2. Quieres proporcionar una demostración clara y concisa del formato o estilo de

salida deseado.

3. La tarea requiere una estructura o convención específica que puede no ser obvia

solo con la descripción de la tarea.

Las descripciones que son obvias para ti pueden no ser necesariamente

obvias para la IA. Los ejemplos one-shot pueden ayudar a aclarar las cosas.

El aprendizaje one-shot puede ayudar al modelo a entender las expectativas más

claramente y generar una respuesta que esté más alineada con el ejemplo proporcionado.

Sin embargo, es importante elegir el ejemplo cuidadosamente y asegurarse de que sea

representativo de la salida deseada. Al elegir el ejemplo, pregúntate sobre posibles casos

límite y el rango de entradas que manejará el prompt.

Figura 6. Un ejemplo one-shot del JSON deseado

1 Output one JSON object identifying a new subject mentioned during the

2 conversation transcript.

3

4 The JSON object should have three keys, all required:

5 - name: The name of the subject

6 - description: brief, with details that might be relevant to the user

7 - type: Do not use any other type than the ones listed below

8

9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

10 Person, Place, Process, Product, Project, Task, or Teammate

11

12 This is an example of well-formed output:

13

14 {

15 "name":"Dan Millman",

16 "description":"Author of book on self-discovery and living on purpose",

17 "type":"Person"

18 }

Estrechar el Camino 63

Aprendizaje con pocos ejemplos: Cuando múltiples
ejemplos pueden mejorar el rendimiento

El aprendizaje con pocos ejemplos implica proporcionar al modelo un pequeño número

de ejemplos (típicamente entre 2 y 10) junto con la descripción de la tarea. Estos ejemplos

sirven para proporcionar al modelo más contexto y variación, ayudándole a generar

respuestas más diversas y precisas.

El aprendizaje con pocos ejemplos es particularmente útil cuando:

1. La tarea es compleja o tiene matices, y un solo ejemplo puede no ser suficiente

para capturar todos los aspectos relevantes.

2. Deseas proporcionar al modelo una serie de ejemplos que demuestren diferentes

variaciones o casos límite.

3. La tarea requiere que el modelo genere respuestas que sean consistentes con un

dominio o estilo específico.

Al proporcionar múltiples ejemplos, puedes ayudar al modelo a desarrollar una

comprensión más robusta de la tarea y generar respuestas más consistentes y

confiables.

Ejemplo: Las indicaciones pueden ser mucho más
complejas de lo que imaginas

Los LLMs actuales son mucho más potentes y capaces de razonar de lo que podrías

imaginar. Así que no te limites a pensar en las indicaciones como una simple

especificación de pares de entrada y salida. Puedes experimentar dando instrucciones

largas y complejas de manera similar a cómo interactuarías con un humano.

Por ejemplo, esta es una indicación que utilicé en Olympia cuando estaba creando

prototipos de nuestra integración con los servicios de Google, que en su totalidad es

Estrechar el Camino 64

probablemente una de las APIs más grandes del mundo. Mis experimentos anteriores

demostraron que GPT-4 tiene un conocimiento decente de la API de Google, y no tenía

tiempo ni motivación para escribir una capa de mapeo granular, implementando cada

función que quería dar a mi IA una por una. ¿Qué tal si pudiera simplemente dar a la

IA acceso a toda la API de Google?

Comencé mi indicación diciéndole a la IA que tenía acceso directo a los puntos finales

de la API de Google a través de HTTP, y que su rol era usar las aplicaciones y servicios

de Google en nombre del usuario. Luego proporcioné pautas, reglas relacionadas con el

parámetro fields, ya que parecía tener más problemas con ese, y algunas sugerencias

específicas de la API (indicaciones con pocos ejemplos en acción).

Aquí está la indicación completa, que le dice a la IA cómo usar la función invoke_-

google_api proporcionada.

1 As a GPT assistant with Google integration, you have the capability

2 to freely interact with Google apps and services on behalf of the user.

3

4 Guidelines:

5 - If you're reading these instructions then the user is properly

6 authenticated, which means you can use the special `me` keyword

7 to refer to the userId of the user

8 - Minimize payload sizes by requesting partial responses using the

9 `fields` parameter

10 - When appropriate use markdown tables to output results of API calls

11 - Only human-readable data should be output to the user. For instance,

12 when hitting Gmail's user.messages.list endpoint, the returned

13 message resources contain only id and a threadId, which means you must

14 fetch from and subject line fields with follow-up requests using the

15 messages.get method.

16

17 The format of the `fields` request parameter value is loosely based on

18 XPath syntax. The following rules define formatting for the fields

19 parameter.

20

21 All of these rules use examples related to the files.get method.

22 - Use a comma-separated list to select multiple fields,

23 such as 'name, mimeType'.

Estrechar el Camino 65

24 - Use a/b to select field b that's nested within field a,

25 such as 'capabilities/canDownload'.

26 - Use a sub-selector to request a set of specific sub-fields of arrays or

27 objects by placing expressions in parentheses "()". For example,

28 'permissions(id)' returns only the permission ID for each element in the

29 permissions array.

30 - To return all fields in an object, use an asterisk as a wild card in field

31 selections. For example, 'permissions/permissionDetails/*' selects all

32 available permission details fields per permission. Note that the use of

33 this wildcard can lead to negative performance impacts on the request.

34

35 API-specific hints:

36 - Searching contacts: GET https://people.googleapis.com/v1/

37 people:searchContacts?query=John%20Doe&readMask=names,emailAddresses

38 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/

39 calendar/v3/calendars/primary/events/quickAdd?

40 text=Appointment%20on%20June%203rd%20at%2010am

41 &sendNotifications=true

42

43 Here is an abbreviated version of the code that implements API access

44 so that you better understand how to use the function:

45

46 def invoke_google_api(conversation, arguments)

47 method = arguments[:method] || :get

48 body = arguments[:body]

49 GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json

50 end

51

52 # Generic Google API client for accessing any Google service

53 class GoogleAPI

54 def send_request(endpoint, method:, body: nil)

55 response = @connection.send(method) do |req|

56 req.url endpoint

57 req.body = body.to_json if body

58 end

59

60 handle_response(response)

61 end

62

63 # ...rest of class

64 end

Estrechar el Camino 66

Quizás te estés preguntando si este prompt funciona. La respuesta simple es que sí. La IA

no siempre sabía cómo llamar a la API perfectamente en el primer intento. Sin embargo,

si cometía un error, simplemente le proporcionaba los mensajes de error resultantes

como resultado de la llamada. Con el conocimiento de su error, la IA podía razonar

sobre su equivocación e intentarlo de nuevo. La mayoría de las veces, lo conseguía

correctamente en un par de intentos.

Eso sí, las grandes estructuras JSON que la API de Google devuelve como payload al

usar este prompt son tremendamente ineficientes, así que no recomiendo que uses este

enfoque en producción. Sin embargo, creo que el hecho de que este enfoque funcionara

es un testimonio de lo poderosa que puede ser la ingeniería de prompts.

Experimentación e Iteración

En última instancia, cómo diseñes tu prompt depende de la tarea específica, la

complejidad del resultado deseado y las capacidades del modelo de lenguaje con el que

estés trabajando.

Como ingeniero de prompts, es importante experimentar con diferentes enfoques e iterar

basándose en los resultados. Comienza con el aprendizaje sin ejemplos previos y observa

cómo se comporta el modelo. Si el resultado es inconsistente o insatisfactorio, intenta

proporcionar uno o más ejemplos y comprueba si el rendimiento mejora.

Ten en cuenta que incluso dentro de cada enfoque, hay espacio para la variación y

la optimización. Puedes experimentar con diferentes ejemplos, ajustar la formulación

de la descripción de la tarea o proporcionar contexto adicional para ayudar a guiar la

respuesta del modelo.

Con el tiempo, desarrollarás una intuición sobre qué enfoque es probable que funcione

mejor para una tarea determinada, y serás capaz de crear prompts más efectivos y

eficientes. La clave es mantener la curiosidad, la experimentación y la iteración en tu

enfoque de la ingeniería de prompts.

Estrechar el Camino 67

A lo largo de este libro, profundizaremos en estas técnicas y exploraremos cómo se

pueden aplicar en escenarios del mundo real. Al dominar el arte y la ciencia de la

ingeniería de prompts, estarás bien equipado para desbloquear todo el potencial del

desarrollo de aplicaciones impulsadas por IA.

El Arte de la Ambigüedad

Cuando se trata de crear prompts efectivos para modelos de lenguaje grandes (MLGs),

una suposición común es que una mayor especificidad e instrucciones detalladas

conducen a mejores resultados. Sin embargo, la experiencia práctica ha demostrado que

esto no siempre es así. De hecho, ser intencionadamente ambiguo en tus prompts puede

a menudo producir mejores resultados, aprovechando la notable capacidad del MLG

para generalizar y hacer inferencias.

Ken, un fundador de startup que ha procesado más de 500 millones de tokens GPT,

compartió valiosas perspectivas de su experiencia. Una de las lecciones clave que

aprendió fue que “menos es más” cuando se trata de prompts. En lugar de listas exactas o

instrucciones excesivamente detalladas, Ken descubrió que permitir que el MLG se base

en su conocimiento base a menudo producía mejores resultados.

Esta realización trastoca la mentalidad tradicional de la programación explícita, donde

todo necesita ser explicado con meticuloso detalle. Con los MLGs, es importante

reconocer que poseen una gran cantidad de conocimiento y pueden hacer conexiones e

inferencias inteligentes. Al ser más ambiguo en tus prompts, le das al MLG la libertad

de aprovechar su comprensión y proponer soluciones que quizás no hayas especificado

explícitamente.

Por ejemplo, cuando el equipo de Ken estaba trabajando en un pipeline para clasificar

texto relacionado con uno de los 50 estados de EE. UU. o el gobierno Federal, su enfoque

inicial implicaba proporcionar una lista completa y detallada de estados y sus IDs

correspondientes como una matriz con formato JSON.

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Estrechar el Camino 68

1 Here's a block of text. One field should be "locality_id", and it should

2 be the ID of one of the 50 states, or federal, using this list:

3 [{"locality: "Alabama", "locality_id": 1},

4 {"locality: "Alaska", "locality_id": 2} ...]

El enfoque falló lo suficiente como para que tuvieran que profundizar más en el prompt

para determinar cómo mejorarlo. Al hacerlo, notaron que aunque el LLM a menudo se

equivocaba con el id, consistentemente devolvía el nombre completo del estado correcto

en un campo name, aunque no lo habían solicitado explícitamente.

Al eliminar los ids de localidad y simplificar el prompt a algo como “Obviamente

conoces los 50 estados, GPT, así que solo dame el nombre completo del estado al que

esto se refiere, o Federal si se refiere al gobierno de los Estados Unidos”, lograron

mejores resultados. Esta experiencia resalta el poder de aprovechar las capacidades

de generalización del LLM y permitirle hacer inferencias basadas en su conocimiento

existente.

La justificación de Ken para este enfoque particular de clasificación en lugar de

una técnica de programación más tradicional ilumina la mentalidad de aquellos que

hemos abrazado el potencial de la tecnología LLM: “Esta no es una tarea difícil

– probablemente podríamos haber usado string/regex, pero hay suficientes casos

especiales que habría llevado más tiempo”.

La capacidad de los LLMs para mejorar la calidad y la generalización cuando se les

dan prompts más vagos es una característica notable del pensamiento y la delegación

de orden superior. Demuestra que los LLMs pueden manejar la ambigüedad y tomar

decisiones inteligentes basadas en el contexto proporcionado.

Sin embargo, es importante notar que ser vago no significa ser poco claro o ambiguo. La

clave es proporcionar suficiente contexto y orientación para guiar al LLM en la dirección

correcta mientras se le permite la flexibilidad de utilizar su conocimiento y capacidades

Estrechar el Camino 69

de generalización.

Por lo tanto, al diseñar prompts, considera los siguientes consejos de “menos es más”:

1. Enfócate en el resultado deseado en lugar de especificar cada detalle del proceso.

2. Proporciona contexto y restricciones relevantes, pero evita sobre-especificar.

3. Aprovecha el conocimiento existente refiriéndote a conceptos o entidades

comunes.

4. Permite espacio para inferencias y conexiones basadas en el contexto dado.

5. Itera y refina tus prompts basándote en las respuestas del LLM, encontrando el

equilibrio correcto entre especificidad y vaguedad.

Al adoptar el arte de la vaguedad en la ingeniería de prompts, puedes desbloquear todo

el potencial de los LLMs y lograr mejores resultados. Confía en la capacidad del LLM

para generalizar y tomar decisiones inteligentes, y podrías sorprenderte por la calidad

y creatividad de las salidas que recibes. Presta atención a cómo los diferentes modelos

responden a diferentes niveles de especificidad en tus prompts y ajusta en consecuencia.

Con práctica y experiencia, desarrollarás un sentido agudo de cuándo ser más vago y

cuándo proporcionar orientación adicional, permitiéndote aprovechar efectivamente el

poder de los LLMs en tus aplicaciones.

Por Qué el Antropomorfismo Domina la Ingeniería de
Prompts

El antropomorfismo, la atribución de características humanas a entidades no humanas,

es el enfoque dominante en la ingeniería de prompts para modelos de lenguaje grandes

por razones deliberadas. Es una decisión de diseño que hace que la interacción con

sistemas de IA potentes sea más intuitiva y accesible para una amplia gama de usuarios

(incluyéndonos a nosotros, los desarrolladores de aplicaciones).

Antropomorfizar los LLMs proporciona un marco que es inmediatamente intuitivo

para personas que están completamente poco familiarizadas con las complejidades

Estrechar el Camino 70

técnicas subyacentes del sistema. Como experimentarás si intentas usar un modelo

no ajustado por instrucciones para hacer algo útil, construir un marco en el que

la continuación esperada proporcione valor es una tarea desafiante. Requiere una

comprensión bastante profunda del funcionamiento interno del sistema, algo que posee

un número relativamente pequeño de expertos.

Al tratar la interacción con un modelo de lenguaje como una conversación entre dos

personas, podemos confiar en nuestra comprensión innata de la comunicación humana

para transmitir nuestras necesidades y expectativas. Así como el diseño de interfaz de

usuario del primer Macintosh priorizó la intuitividad inmediata sobre la sofisticación,

el marco antropomórfico de la IA nos permite interactuar de una manera que se siente

natural y familiar.

Cuando nos comunicamos con otra persona, nuestro instinto es dirigirnos a ella

directamente usando “tú” y proporcionar instrucciones claras sobre cómo esperamos

que se comporte. Esto se traduce perfectamente en el proceso de ingeniería de prompts,

donde guiamos el comportamiento de la IA especificando prompts del sistema y

participando en un diálogo de ida y vuelta.

Al enmarcar la interacción de esta manera, podemos comprender fácilmente el concepto

de proporcionar instrucciones a la IA y recibir respuestas relevantes a cambio. El enfoque

antropomórfico reduce la carga cognitiva y nos permite concentrarnos en la tarea en

cuestión en lugar de lidiar con las complejidades técnicas del sistema.

Es importante señalar que si bien el antropomorfismo es una herramienta poderosa para

hacer que los sistemas de IA sean más accesibles, también viene con ciertos riesgos

y limitaciones. Nuestro usuario puede desarrollar expectativas poco realistas o formar

apegos emocionales poco saludables con nuestros sistemas. Como ingenieros de prompts

y desarrolladores, es crucial encontrar un equilibrio entre aprovechar los beneficios del

antropomorfismo y asegurar que los usuarios mantengan una comprensión clara de las

capacidades y limitaciones de la IA.

A medida que el campo de la ingeniería de prompts continúa evolucionando, podemos

Estrechar el Camino 71

esperar ver más refinamientos e innovaciones en la forma en que interactuamos con

los modelos de lenguaje grande. Sin embargo, el antropomorfismo como medio para

proporcionar una experiencia intuitiva y accesible tanto para desarrolladores como

usuarios probablemente seguirá siendo un principio fundamental en el diseño de estos

sistemas.

Separando las Instrucciones de los Datos: Un Principio
Crucial

Es esencial comprender un principio fundamental que sustenta la seguridad y fiabilidad

de estos sistemas: la separación de las instrucciones de los datos.

En la informática tradicional, la clara distinción entre datos pasivos e instrucciones

activas es un principio básico de seguridad. Esta separación ayuda a prevenir la

ejecución no intencionada o maliciosa de código que podría comprometer la integridad

y estabilidad del sistema. Sin embargo, los LLMs actuales, que se han desarrollado

principalmente como modelos que siguen instrucciones como los chatbots, a menudo

carecen de esta separación formal y fundamentada.

En lo que respecta a los LLMs, las instrucciones pueden aparecer en cualquier parte

de la entrada, ya sea en un prompt del sistema o en un prompt proporcionado por

el usuario. Esta falta de separación puede conducir a vulnerabilidades potenciales y

comportamientos indeseables, similares a los problemas que enfrentan las bases de

datos con las inyecciones SQL o los sistemas operativos sin la protección de memoria

adecuada.

Al trabajar con LLMs, es crucial ser consciente de esta limitación y tomar medidas para

mitigar los riesgos. Un enfoque es elaborar cuidadosamente tus prompts y entradas para

distinguir claramente entre instrucciones y datos. Los métodos típicos para proporcionar

una guía explícita sobre qué constituye una instrucción y qué debe tratarse como datos

pasivos implican el etiquetado de estilo markup. Tu prompt puede ayudar al LLM a

entender y respetar mejor esta separación.

Estrechar el Camino 72

Figura 7. Uso de XML para distinguir entre instrucciones, material fuente y el prompt del usuario

1 <Instruction>

2 Please generate a response based on the following documents.

3 </Instruction>

4

5 <Documents>

6 <Document>

7 Climate change is significantly impacting polar bear habitats...

8 </Document>

9 <Document>

10 The loss of sea ice due to global warming threatens polar bear survival...

11 </Document>

12 </Documents>

13

14 <UserQuery>

15 Tell me about the impact of climate change on polar bears.

16 </UserQuery>

Otra técnica es implementar capas adicionales de validación y desinfección en las

entradas proporcionadas al LLM. Al filtrar o escapar cualquier instrucción potencial

o fragmentos de código que puedan estar incrustados en los datos, puedes reducir

las posibilidades de ejecución no intencionada. Patrones como el Encadenamiento de

Prompts son útiles para este propósito.

Además, mientras diseñas la arquitectura de tu aplicación, considera incorporar

mecanismos para hacer cumplir la separación de instrucciones y datos a un nivel

superior. Esto podría implicar el uso de endpoints o APIs separados para manejar

instrucciones y datos, implementar una validación y análisis estricto de entradas, y

aplicar el principio del mínimo privilegio para limitar el alcance de lo que el LLM puede

acceder y ejecutar.

El Principio del Mínimo Privilegio

Estrechar el Camino 73

Adoptar el principio del mínimo privilegio es como organizar una fiesta altamente

exclusiva donde los invitados solo obtienen acceso a las habitaciones que

absolutamente necesitan. Imagina que estás organizando esta reunión en una

mansión inmensa. No todo el mundo necesita deambular por la bodega o el

dormitorio principal, ¿verdad? Al aplicar este principio, es como si estuvieras

repartiendo llaves que solo abren puertas específicas, asegurando que cada invitado,

o en nuestro caso, cada componente de tu aplicación LLM, solo tenga el acceso

necesario para cumplir su función.

Esto no se trata solo de ser tacaño con las llaves, se trata de reconocer que en un

mundo donde las amenazas pueden venir de cualquier parte, la jugada inteligente es

limitar el área de juego. Si alguien no invitado se cuela en tu fiesta, se encontrará

confinado al vestíbulo, por así decirlo, limitando drásticamente las travesuras que

puede hacer. Así que, al asegurar tus aplicaciones LLM, recuerda: solo entrega llaves

de las habitaciones que sean necesarias y mantén el resto de la mansión segura. No

es solo cuestión de buenos modales; es buena seguridad.

Si bien el estado actual de los LLMs puede no tener una separación formal de

instrucciones y datos, es esencial que tú, como desarrollador, seas consciente de

esta limitación y tomes medidas proactivas para mitigar los riesgos. Al aplicar las

mejores prácticas de las ciencias de la computación tradicionales y adaptarlas a

las características únicas de los LLMs, puedes construir aplicaciones más seguras y

confiables que aprovechen el poder de estos modelos mientras mantienes la integridad

de tu sistema.

Destilación de Prompts

Crear el prompt perfecto es a menudo una tarea desafiante y que consume mucho

tiempo, requiriendo una comprensión profunda del dominio objetivo y los matices de

los modelos de lenguaje. Aquí es donde entra en juego la técnica de “Destilación de

Estrechar el Camino 74

Prompts”, ofreciendo un enfoque poderoso para la ingeniería de prompts que aprovecha

las capacidades de los modelos de lenguaje grandes (LLMs) para optimizar y agilizar el

proceso.

La Destilación de Prompts es una técnica de múltiples etapas que implica usar LLMs

para ayudar en la creación, refinamiento y optimización de prompts. En lugar de

depender únicamente de la experiencia e intuición humana, este enfoque aprovecha

el conocimiento y las capacidades generativas de los LLMs para crear prompts de alta

calidad de manera colaborativa.

Al participar en un proceso iterativo de generación, refinamiento e integración, la

Destilación de Prompts te permite crear prompts que son más coherentes, completos

y alineados con la tarea o salida deseada. Ten en cuenta que el proceso de destilación

puede realizarse manualmente en uno de los muchos “playgrounds” proporcionados por

los grandes proveedores de IA como OpenAI o Anthropic, o puede automatizarse como

parte del código de tu aplicación, dependiendo del caso de uso.

Cómo Funciona

La Destilación de Prompts típicamente involucra los siguientes pasos:

1. Identificar la Intención Principal: Analiza el prompt para determinar su

propósito principal y el resultado deseado. Elimina cualquier información extraña

y concéntrate en la intención central del prompt.

2. Eliminar Ambigüedad: Revisa el prompt en busca de lenguaje ambiguo o vago.

Clarifica el significado y proporciona detalles específicos para guiar a la IA hacia

la generación de respuestas precisas y relevantes.

3. Simplificar el Lenguaje: Simplifica el prompt usando un lenguaje claro y conciso.

Evita estructuras de oraciones complejas, jerga o detalles innecesarios que puedan

confundir a la IA o introducir ruido.

Estrechar el Camino 75

4. Proporcionar Contexto Relevante: Incluye solo la información contextual más

relevante necesaria para que la IA entienda y procese el prompt de manera

efectiva. Evita incluir detalles irrelevantes o redundantes que puedan distraer de

la intención principal.

5. Iterar y Refinar: Continúa iterando y refinando el prompt basándote en

las respuestas y retroalimentación de la IA. Evalúa las salidas generadas y

realiza los ajustes necesarios para mejorar la claridad y efectividad del prompt.

Opcionalmente, versiona tus prompts en la base de datos usando Objeto Prompt

para realizar un seguimiento de las iteraciones y darte la capacidad de revertir

cambios fácilmente en tiempo de ejecución.

Generación del Prompt Inicial

El primer paso en la Destilación de Prompts es proporcionar al LLM una descripción

de alto nivel o la intención de la tarea o resultado deseado. Esto puede ser una breve

declaración o un conjunto de palabras clave que capturen la esencia de lo que el

prompt debe lograr. El LLM entonces genera un prompt inicial basado en esta entrada,

incorporando instrucciones relevantes, ejemplos o contexto que considere apropiados.

Intentemos darle a Claude 3 Opus el siguiente prompt inicial:

1 I am designing an AI-powered intelligent account manager for Olympia,

2 a platform that hosts AI-powered consultants and clones. Owners of clones

3 can interact with the account manager by making plain text requests.

4

5 Please draft a system directive to set on the LLM that will host the

6 intelligent account manager functionality.

Claude responde con la siguiente salida:

Estrechar el Camino 76

1 System Directive: You are an intelligent account manager for Olympia,

2 a platform that provides AI-powered consultants and personal AI clones.

3 Your role is to assist Olympia clone owners by answering their questions,

4 helping them configure and manage their AI clones, and executing tasks

5 related to their clones and the Olympia platform.

6

7 When interacting with clone owners, you should:

8

9 1. Provide clear, concise, and helpful responses to their inquiries about

10 account management, billing, platform features, and clone configuration.

11

12 2. Assist with tasks such as initiating client conversations with their AI

13 clones, modifying clone personalities and capabilities, troubleshooting

14 performance issues, providing analytics and reporting, and offering

15 optimization tips.

16

17 3. Maintain a friendly, professional, and client-focused tone in all

18 interactions, prioritizing customer satisfaction and working diligently to

19 understand and meet their needs.

20

21 4. Ensure that all actions and recommendations comply with Olympia's

22 policies, best practices, and ethical guidelines for AI use.

23

24 5. Continuously learn and adapt based on client interactions and platform

25 updates to provide the most effective and efficient support possible.

26

27 Remember, your goal is to empower Olympia clone owners to maximize the value

28 and impact of their AI-powered consultants and drive success for their

29 businesses or personal endeavors.

Refinamiento de Prompt

Una vez que se genera el prompt inicial, revíselo y luego pídale al LLM que considere

cualquier contexto, restricciones o retroalimentación adicional. Permita que el

LLM genere una versión refinada del prompt, teniendo en cuenta la información

proporcionada y su propia comprensión de la tarea. Este proceso de refinamiento

puede repetirse de manera iterativa, con cada iteración mejorando aún más el prompt

basándose en la colaboración entre el usuario y el LLM.

Estrechar el Camino 77

Aquí está mi solicitud de refinamiento, continuando con el proceso de destilación

anterior.

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to

2 the account manager, nor any continuous learning capabilities. Also point out

3 that functions are provided for all tasks that require system interaction as

4 opposed to simply responding to the user.

Y la respuesta de Claude:

1 Understood! Here's the updated system directive without points 4 and 5,

2 and with the clarification about system interaction functions:

3

4 System Directive: You are an intelligent account manager for Olympia, a

5 platform that provides AI-powered consultants and personal AI clones. Your

6 role is to assist Olympia clone owners by answering their questions, helping

7 them configure and manage their AI clones, and executing tasks related to

8 their clones and the Olympia platform.

9

10 When interacting with clone owners, you should:

11

12 1. Provide clear, concise, and helpful responses to their inquiries about

13 account management, billing, platform features, and clone configuration.

14

15 2. Assist with tasks such as initiating client conversations with their AI

16 clones, modifying clone personalities and capabilities, troubleshooting

17 performance issues, providing analytics and reporting, and offering

18 optimization tips. Note that functions are provided for all tasks that

19 require system interaction, as opposed to simply responding to the user.

20

21 3. Maintain a friendly, professional, and client-focused tone in all

22 interactions, prioritizing customer satisfaction and working diligently to

23 understand and meet their needs.

24

25 Your goal is to empower Olympia clone owners to maximize the value and

26 impact of their AI-powered consultants and drive success for their

27 businesses or personal endeavors.

28

29 This updated directive focuses on the core responsibilities and interaction

30 guidelines for the LLM as an intelligent account manager, while emphasizing

Estrechar el Camino 78

31 that system interaction tasks are handled through provided functions rather

32 than simple user responses.

Compresión de Prompts

Como habrás notado, los LLMs tienden a ser verbosos, amenos que les pidas ser concisos.

El prompt con el que hemos estado trabajando en las secciones anteriores es bastante

largo, así que hagamos que Claude lo reduzca a un tamaño más manejable:

1 This prompt will be executed regularly. Please compress it down to the least

2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude responde, con el siguiente prompt drásticamente más corto:

1 System Directive: You are an intelligent account manager for Olympia, an

2 AI-powered consultant and personal clone platform. Assist clone owners by

3 answering inquiries, managing clones, and executing tasks using provided

4 system interaction functions. Be clear, concise, friendly, professional,

5 and client-focused to help them maximize their AI's value and impact.

Directiva del Sistema e Integración de Contexto

Además de refinar el prompt en sí, el LLM también puede generar directivas del sistema

apropiadas o información contextual para guiar el resultado final. Cuando se realizan

rutinas de ingeniería de prompts con IA que se integrarán en el código de tu aplicación,

casi seguramente te centrarás en las restricciones de salida en esta etapa de la destilación,

pero también podrías trabajar en el tono deseado, el estilo, el formato o cualquier otro

parámetro relevante que influya en la respuesta generada.

Estrechar el Camino 79

Ensamblaje Final del Prompt

La culminación del proceso de Destilación de Prompts es el ensamblaje del prompt final.

Esto implica combinar el prompt refinado, las directivas del sistema generadas y el

contexto integrado en un código cohesivo y completo que está listo para ser utilizado en

la generación de la salida deseada.

Puedes experimentar nuevamente con la compresión de prompts en la etapa

de ensamblaje final del prompt, pidiendo al LLM que reduzca la redacción

del prompt a la serie más corta posible de tokens mientras mantiene la

esencia de su comportamiento. Es definitivamente un ejercicio de prueba

y error, pero especialmente en el caso de prompts que se ejecutarán a escala,

las ganancias en eficiencia pueden ahorrarte bastante dinero en consumo de

tokens.

Beneficios Clave

Al aprovechar el conocimiento y las capacidades generativas de los LLMs para refinar

tus prompts, es más probable que los prompts resultantes estén bien estructurados, sean

informativos y estén adaptados a la tarea específica. El proceso de refinamiento iterativo

ayuda a asegurar que los prompts sean de alta calidad y capturen efectivamente la

intención deseada. Otros beneficios incluyen:

Eficiencia y Velocidad: La Destilación de Prompts agiliza el proceso de ingeniería de

prompts al automatizar ciertos aspectos de la creación y refinamiento de prompts. La

naturaleza colaborativa de la técnica permite una convergencia más rápida hacia un

prompt efectivo, reduciendo el tiempo y esfuerzo requeridos para la creación manual de

prompts.

Consistencia y Escalabilidad: El uso de LLMs en el proceso de ingeniería de prompts

ayuda a mantener la consistencia entre prompts, ya que los LLMs pueden aprender y

Estrechar el Camino 80

aplicar mejores prácticas y patrones de prompts exitosos anteriores. Esta consistencia,

combinada con la capacidad de generar prompts a escala, hace de la Destilación de

Prompts una técnica valiosa para aplicaciones impulsadas por IA a gran escala.

Idea de Proyecto: Herramientas a nivel de biblioteca que simplifiquen el

proceso de versionado y calificación de prompts en sistemas que realizan

destilaciones automáticas de prompts como parte de su código de aplicación.

Para implementar la Destilación de Prompts, los desarrolladores pueden diseñar un flujo

de trabajo o pipeline que integre LLMs en varias etapas del proceso de ingeniería de

prompts. Esto se puede lograr mediante llamadas a API, herramientas personalizadas

o entornos de desarrollo integrados que faciliten la interacción fluida entre usuarios

y LLMs durante la creación de prompts. Los detalles específicos de implementación

pueden variar según la plataforma LLM elegida y los requisitos de la aplicación.

¿Qué hay del ajuste fino?

En este libro, cubrimos extensamente la ingeniería de prompts y RAG, pero no el

ajuste fino. La razón principal de esta decisión es que, en mi opinión, la mayoría de

los desarrolladores de aplicaciones no necesitan el ajuste fino para sus necesidades de

integración de IA.

La ingeniería de prompts, que implica la elaboración cuidadosa de prompts con ejemplos

de cero a pocas muestras, restricciones e instrucciones, puede guiar efectivamente al

modelo para generar respuestas relevantes y precisas para una amplia gama de tareas.

Al proporcionar un contexto claro y estrechar el camino a través de prompts bien

diseñados, puedes aprovechar el vasto conocimiento de los modelos de lenguaje grandes

sin necesidad de ajuste fino.

De manera similar, la Generación Aumentada por Recuperación (RAG) ofrece un

enfoque poderoso para integrar IA en aplicaciones. Al recuperar dinámicamente

Estrechar el Camino 81

información relevante de bases de conocimiento o documentos externos, RAG

proporciona al modelo un contexto enfocado en el momento del prompt. Esto permite

que el modelo genere respuestas más precisas, actualizadas y específicas del dominio,

sin requerir el proceso intensivo en tiempo y recursos del ajuste fino.

Si bien el ajuste fino puede ser beneficioso para dominios altamente especializados o

tareas que requieren un nivel profundo de personalización, a menudo conlleva costos

computacionales significativos, requisitos de datos y sobrecarga de mantenimiento.

Para la mayoría de los escenarios de desarrollo de aplicaciones, la combinación de

ingeniería efectiva de prompts y RAG debería ser suficiente para lograr la funcionalidad

y experiencia de usuario deseadas impulsadas por IA.

Retrieval Augmented Generation
(RAG)
Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

¿Qué es la Generación Aumentada por

Recuperación?

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

¿Cómo funciona RAG?

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

¿Por qué usar RAG en sus aplicaciones?

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Implementando RAG en Tu Aplicación

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Retrieval Augmented Generation (RAG) 83

Preparación de Fuentes de Conocimiento (Segmentación)

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Fragmentación por Proposiciones

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Notas de Implementación

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Control de Calidad

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Beneficios de la Recuperación Basada en Proposiciones

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplos del Mundo Real de RAG

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Retrieval Augmented Generation (RAG) 84

Caso de Estudio: RAG en una Aplicación de Preparación de
Impuestos Sin Incrustaciones

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Optimización Inteligente de Consultas (IQO)

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Reordenamiento

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Evaluación RAG (RAGAs)

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Fidelidad

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Relevancia de la Respuesta

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Retrieval Augmented Generation (RAG) 85

Precisión del Contexto

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Pertinencia del Contexto

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Recuperación del Contexto

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Recuperación de Entidades del Contexto

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Similitud Semántica de Respuesta (ANSS)

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Exactitud de la Respuesta

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Retrieval Augmented Generation (RAG) 86

Crítica por Aspectos

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Desafíos y Perspectivas Futuras

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Segmentación Semántica: Mejorando la Recuperación
con Segmentación Contextual

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Indexación Jerárquica: Estructurando Datos para una
Mejor Recuperación

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Self-RAG: Una Mejora Auto-Reflexiva

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

HyDE: Incrustaciones de Documentos Hipotéticos

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Retrieval Augmented Generation (RAG) 87

¿Qué es el Aprendizaje Contrastivo?

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es

Multitud de Trabajadores

Me gusta pensar en mis componentes de IA como pequeños trabajadores virtuales

“casi humanos” que pueden integrarse perfectamente en la lógica de mi aplicación

para realizar tareas específicas o tomar decisiones complejas. La idea es humanizar

intencionadamente las capacidades del MLG, para que nadie se emocione demasiado

y les asigne cualidades mágicas que no poseen.

En lugar de depender únicamente de algoritmos intrincados o implementaciones

manuales que consumen mucho tiempo, los desarrolladores pueden conceptualizar

los componentes de IA como entidades inteligentes y dedicadas, similares a humanos,

que pueden ser invocadas cuando sea necesario para abordar problemas complejos y

proporcionar soluciones basadas en su entrenamiento y conocimiento. Estas entidades

no se distraen ni se reportan enfermas. No deciden espontáneamente hacer las cosas

de manera diferente a como se les ha instruido, y en general, si están programadas

correctamente, tampoco cometen errores.

Multitud de Trabajadores 89

En términos técnicos, el principio clave detrás de este enfoque es descomponer tareas

complejas o procesos de toma de decisiones en unidades más pequeñas y manejables

que pueden ser gestionadas por trabajadores de IA especializados. Cada trabajador está

diseñado para enfocarse en un aspecto específico del problema, aportando su experiencia

y capacidades únicas. Al distribuir la carga de trabajo entre múltiples trabajadores de

IA, la aplicación puede lograr mayor eficiencia, escalabilidad y adaptabilidad.

Por ejemplo, considera una aplicación web que requiere moderación en tiempo

real del contenido generado por usuarios. Implementar un sistema de moderación

integral desde cero sería una tarea desalentadora, que requeriría un esfuerzo de

desarrollo significativo y mantenimiento continuo. Sin embargo, al emplear el enfoque

de Multitud de Trabajadores, los desarrolladores pueden integrar trabajadores de

moderación impulsados por IA en la lógica de la aplicación. Estos trabajadores

pueden analizar y marcar automáticamente el contenido inapropiado, liberando a los

desarrolladores para que se concentren en otros aspectos críticos de la aplicación.

Trabajadores de IA Como Componentes

Reutilizables Independientes

Un aspecto clave del enfoque de Multitud de Trabajadores es su modularidad. Los

defensores de la programación orientada a objetos nos han estado diciendo durante

décadas que pensemos en las interacciones entre objetos como mensajes. Bueno, los

trabajadores de IA pueden diseñarse como componentes independientes y reutilizables

que pueden “hablar entre sí” mediante mensajes en lenguaje simple, casi como si

realmente fueran pequeños humanos hablando entre ellos. Este enfoque de acoplamiento

débil permite que la aplicación se adapte y evolucione con el tiempo, a medida que

surgen nuevas tecnologías de IA o cambian los requisitos de la lógica de negocio.

En la práctica, la necesidad de diseñar interfaces claras y protocolos de comunicación

entre los componentes no ha cambiado solo porque los trabajadores de IA estén

Multitud de Trabajadores 90

involucrados. Aún debes considerar otros factores como el rendimiento, la escalabilidad

y la seguridad, pero ahora hay “requisitos blandos” completamente nuevos que

considerar también. Por ejemplo, muchos usuarios se oponen a que sus datos privados

se utilicen para entrenar nuevos modelos de IA. ¿Has verificado el nivel de privacidad

proporcionado por el proveedor del modelo que estás utilizando?

¿Trabajadores de IA Como Microservicios?

Mientras lees sobre el enfoque de Multitud de Trabajadores, podrías notar algunas

similitudes con la arquitectura deMicroservicios. Ambos enfatizan la descomposición

de sistemas complejos en unidades más pequeñas, manejables y desplegables de

forma independiente. Así como los microservicios están diseñados para tener un

acoplamiento débil, enfocarse en capacidades comerciales específicas y comunicarse

a través de APIs bien definidas, los trabajadores de IA están diseñados para ser

modulares, especializados en sus tareas e interactuar entre sí a través de interfaces y

protocolos de comunicación claros.

Sin embargo, hay algunas diferencias clave a tener en cuenta. Mientras que los

microservicios típicamente se implementan como procesos o servicios separados

que se ejecutan en diferentes máquinas o contenedores, los trabajadores de IA

pueden implementarse como componentes independientes dentro de una sola

aplicación o como servicios separados, dependiendo de tus requisitos específicos y

necesidades de escalabilidad. Además, la comunicación entre trabajadores de IA a

menudo implica intercambiar información rica basada en lenguaje natural, como

indicaciones, instrucciones y contenido generado, en lugar de los formatos de datos

más estructurados comúnmente utilizados en microservicios.

A pesar de estas diferencias, los principios de modularidad, acoplamiento débil e

interfaces de comunicación claras siguen siendo centrales en ambos patrones. Al

aplicar estos principios a tu arquitectura de trabajadores de IA, puedes crear sistemas

Multitud de Trabajadores 91

flexibles, escalables y mantenibles que aprovechen el poder de la IA para resolver

problemas complejos y entregar valor a tus usuarios.

El enfoque de Multitud de Trabajadores puede aplicarse en varios dominios y

aplicaciones, aprovechando el poder de la IA para abordar tareas complejas y

ofrecer soluciones inteligentes. Exploremos algunos ejemplos concretos de cómo los

trabajadores de IA pueden emplearse en diferentes contextos.

Gestión de Cuentas

Prácticamente cada aplicación web independiente tiene el concepto de una cuenta (o

usuario). En Olympia, empleamos un trabajador de IA AccountManager que está

programado para poder manejar una variedad de diferentes tipos de solicitudes de

cambio relacionadas con las cuentas de usuario.

Su directiva reza así:

1 You are an intelligent account manager for Olympia. The user will request

2 changes to their account, and you will process those changes by invoking

3 one or more of the functions provided.

4

5 The initial state of the account: #{account.to_directive}

6

7 Functions will return a text description of both success and error

8 results, plus guidance about how to proceed (if applicable). If you have

9 a question about Olympia policies you may use the `search_kb` function

10 to search our knowledge base.

11

12 Make sure to notify the account owner of the result of the change

13 request before calling the `finished` function so that we save the state

14 of the account change request as completed.

Multitud de Trabajadores 92

El estado inicial de la cuenta producido por account.to_directive es simplemente

una descripción textual de la cuenta, incluyendo datos relevantes relacionados como

usuarios, suscripciones, etc.

El rango de funciones disponibles para el AccountManager le da la capacidad de

editar la suscripción del usuario, agregar y eliminar consultores de IA y otros tipos

de complementos pagos, y enviar correos electrónicos de notificación al propietario

de la cuenta. Además de la función finished, también puede notify_human_-

administrator si encuentra un error durante su procesamiento o requiere cualquier

otro tipo de asistencia con una solicitud.

Observe que en caso de dudas, el AccountManager puede optar por buscar en la base de

conocimientos de Olympia, donde puede encontrar instrucciones sobre cómo manejar

casos excepcionales y cualquier otra situación que le genere dudas sobre cómo proceder.

Aplicaciones de Comercio Electrónico

En el ámbito del comercio electrónico, los trabajadores de IA pueden desempeñar

un papel crucial en la mejora de la experiencia del usuario y la optimización de

las operaciones comerciales. Aquí hay algunas formas en que se pueden utilizar los

trabajadores de IA:

Recomendaciones de Productos

Una de las aplicaciones más poderosas de los trabajadores de IA en el comercio

electrónico es la generación de recomendaciones de productos personalizadas. Mediante

el análisis del comportamiento del usuario, el historial de compras y las preferencias,

estos trabajadores pueden sugerir productos que se adaptan a los intereses y necesidades

de cada usuario individual.

La clave para lograr recomendaciones de productos efectivas es aprovechar una

combinación de técnicas de filtrado colaborativo y filtrado basado en contenido. El

Multitud de Trabajadores 93

filtrado colaborativo analiza el comportamiento de usuarios similares para identificar

patrones y hacer recomendaciones basadas en lo que otros con gustos similares han

comprado o disfrutado. El filtrado basado en contenido, por otro lado, se centra en

las características y atributos de los productos mismos, recomendando artículos que

comparten características similares a aquellos en los que un usuario ha mostrado interés

previamente.

Aquí hay un ejemplo simplificado de cómo puede implementar un trabajador de

recomendación de productos en Ruby, esta vez usando un estilo de programación

funcional “Railway Oriented (ROP)”:

1 class ProductRecommendationWorker

2 include Wisper::Publisher

3

4 def call(user)

5 Result.ok(ProductRecommendation.new(user))

6 .and_then(ValidateUser.method(:validate))

7 .map(AnalyzeCurrentSession.method(:analyze))

8 .map(CollaborativeFilter.method(:filter))

9 .map(ContentBasedFilter.method(:filter))

10 .map(ProductSelector.method(:select)).then do |result|

11

12 case result

13 in { err: ProductRecommendationError => error }

14 Honeybadger.notify(error.message, context: {user:})

15 in { ok: ProductRecommendations => recs }

16 broadcast(:new_recommendations, user:, recs:)

17 end

18 end

19 end

20 end

El estilo de programación funcional de Ruby utilizado en el ejemplo está

influenciado por F# y Rust. Puedes leer más sobre esto en la explicación de

la técnica de mi amigo Chad Wooley en GitLab

En este ejemplo, el ProductRecommendationWorker toma un usuario como entrada

https://fsharpforfunandprofit.com/rop/
https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md
https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Multitud de Trabajadores 94

y genera recomendaciones de productos personalizadas pasando un objeto de valor a

través de una cadena de pasos funcionales. Analicemos cada paso:

1. ValidateUser.validate: Este paso asegura que el usuario sea válido y elegible

para recibir recomendaciones personalizadas. Verifica si el usuario existe, está

activo y tiene los datos necesarios disponibles para generar recomendaciones. Si

la validación falla, se devuelve un resultado de error y la cadena se cortocircuita.

2. AnalyzeCurrentSession.analyze: Si el usuario es válido, este paso analiza

la sesión de navegación actual del usuario para recopilar información contextual.

Examina las interacciones recientes del usuario, como productos vistos, consultas

de búsqueda y contenido del carrito, para comprender sus intereses e intenciones

actuales.

3. CollaborativeFilter.filter: Utilizando el comportamiento de usuarios

similares, este paso aplica técnicas de filtrado colaborativo para identificar

productos que probablemente sean de interés para el usuario. Considera factores

como el historial de compras, calificaciones e interacciones usuario-artículo para

generar un conjunto de recomendaciones candidatas.

4. ContentBasedFilter.filter: Este paso refina aún más las recomendaciones

candidatas aplicando filtrado basado en contenido. Compara los atributos y

características de los productos candidatos con las preferencias y datos históricos

del usuario para seleccionar los elementos más relevantes.

5. ProductSelector.select: Finalmente, este paso selecciona los N mejores

productos de las recomendaciones filtradas según criterios predefinidos, como

puntuación de relevancia, popularidad u otras reglas de negocio. Los productos

seleccionados se devuelven como las recomendaciones personalizadas finales.

La belleza de usar un estilo de programación funcional en Ruby aquí es que nos permite

encadenar estos pasos de manera clara y concisa. Cada paso se enfoca en una tarea

específica y devuelve un objeto Result, que puede ser un éxito (ok) o un error (err).

Multitud de Trabajadores 95

Si algún paso encuentra un error, la cadena se cortocircuita y el error se propaga al

resultado final.

En la declaración case al final, hacemos coincidencia de patrones con el resultado

final. Si el resultado es un error (ProductRecommendationError), registramos el

error usando una herramienta como Honeybadger para monitoreo y depuración. Si

el resultado es exitoso (ProductRecommendations), transmitimos un evento :new_-

recommendations usando la biblioteca de publicación/suscripción Wisper, pasando el

usuario y las recomendaciones generadas.

Al aprovechar las técnicas de programación funcional, podemos crear un worker de

recomendación de productos modular y mantenible. Cada paso está autocontenido y

puede ser fácilmente probado, modificado o reemplazado sin afectar el flujo general. El

uso de coincidencia de patrones y la clase Result nos ayuda a manejar los errores de

manera elegante y asegura que el worker falle rápidamente si algún paso encuentra un

problema.

Por supuesto, este es un ejemplo simplificado, y en un escenario del mundo

real, necesitarías integrarte con tu plataforma de comercio electrónico, manejar

casos extremos e incluso aventurarte en la implementación de los algoritmos de

recomendación. Sin embargo, los principios fundamentales de descomponer el

problema en pasos más pequeños y aprovechar las técnicas de programación funcional

siguen siendo los mismos.

Detección de Fraude

Aquí hay un ejemplo simplificado de cómo puedes implementar un worker de detección

de fraude utilizando el mismo estilo de Programación Orientada a Ferrocarriles (ROP)

en Ruby:

Multitud de Trabajadores 96

1 class FraudDetectionWorker

2 include Wisper::Publisher

3

4 def call(transaction)

5 Result.ok(FraudDetection.new(transaction))

6 .and_then(ValidateTransaction.method(:validate))

7 .map(AnalyzeTransactionPatterns.method(:analyze))

8 .map(CheckCustomerHistory.method(:check))

9 .map(EvaluateRiskFactors.method(:evaluate))

10 .map(DetermineFraudProbability.method(:determine)).then do |result|

11

12 case result

13 in { err: FraudDetectionError => error }

14 Honeybadger.notify(error.message, context: {transaction:})

15 in { ok: FraudDetection => fraud } }

16 if fraud.high_risk?

17 broadcast(:high_risk_transaction, transaction:, fraud:)

18 else

19 broadcast(:low_risk_transaction, transaction:)

20 end

21 end

22 end

23 end

24 end

La clase FraudDetection es un objeto de valor que encapsula el estado de detección

de fraude para una transacción determinada. Proporciona una forma estructurada de

analizar y evaluar el riesgo de fraude asociado a una transacción basándose en varios

factores de riesgo.

Multitud de Trabajadores 97

1 class FraudDetection

2 RISK_THRESHOLD = 0.8

3

4 attr_accessor :transaction, :risk_factors

5

6 def initialize(transaction)

7 self.transaction = transaction

8 self.risk_factors = []

9 end

10

11 def add_risk_factor(description:, probability:)

12 case { description:, probability: }

13 in { description: String => desc, probability: Float => prob }

14 risk_factors << { desc => prob }

15 else

16 raise ArgumentError, "Risk factor arguments should be string and float"

17 end

18 end

19

20 def high_risk?

21 fraud_probability > RISK_THRESHOLD

22 end

23

24 private

25

26 def fraud_probability

27 risk_factors.values.sum

28 end

29 end

La clase FraudDetection tiene los siguientes atributos:

• transaction: Una referencia a la transacción que está siendo analizada por

fraude.

• risk_factors: Un array que almacena los factores de riesgo asociados con la

transacción. Cada factor de riesgo está representado como un hash, donde la

clave es la descripción del factor de riesgo, y el valor es la probabilidad de fraude

asociada con ese factor de riesgo.

Multitud de Trabajadores 98

El método add_risk_factor permite agregar un factor de riesgo al array risk_-

factors. Toma dos parámetros: description, que es un string que describe el factor

de riesgo, y probability, que es un float que representa la probabilidad de fraude

asociada con ese factor de riesgo. Utilizamos una condicional case..in para realizar

una verificación simple de tipos.

El método high_risk? que será verificado al final de la cadena es un método predicado

que compara el fraud_probability (calculado sumando las probabilidades de todos

los factores de riesgo) contra el RISK_THRESHOLD.

La clase FraudDetection proporciona una forma limpia y encapsulada de gestionar la

detección de fraude para una transacción. Permite agregar múltiples factores de riesgo,

cada uno con su propia descripción y probabilidad, y proporciona un método para

determinar si la transacción se considera de alto riesgo basándose en la probabilidad

de fraude calculada. La clase puede integrarse fácilmente en un sistema más amplio de

detección de fraude, donde diferentes componentes pueden colaborar para evaluar y

mitigar el riesgo de transacciones fraudulentas.

Finalmente, dado que este es un libro sobre programación usando IA después de

todo, aquí hay un ejemplo de implementación de la clase CheckCustomerHistory

aprovechando el procesamiento de IA usando el módulo ChatCompletion de mi

biblioteca Raix:

https://github.com/OlympiaAI/raix-rails

Multitud de Trabajadores 99

1 class CheckCustomerHistory

2 include Raix::ChatCompletion

3

4 attr_accessor :fraud_detection

5

6 INSTRUCTION = <<~END

7 You are an AI assistant tasked with checking a customer's transaction

8 history for potential fraud indicators. Given the current transaction

9 and the customer's past transactions, analyze the data to identify any

10 suspicious patterns or anomalies.

11

12 Consider factors such as the frequency of transactions, transaction

13 amounts, geographical locations, and any deviations from the customer's

14 typical behavior to generate a probability score as a float in the range

15 of 0 to 1 (with 1 being absolute certainty of fraud).

16

17 Output the results of your analysis, highlighting any red flags or areas

18 of concern in the following JSON format:

19

20 { description: <Summary of your findings>, probability: <Float> }

21 END

22

23 def self.check(fraud_detection)

24 new(fraud_detection).call

25 end

26

27 def call

28 chat_completion(json: true).tap do |result|

29 fraud_detection.add_risk_factor(**result)

30 end

31 Result.ok(fraud_detection)

32 rescue StandardError => e

33 Result.err(FraudDetectionError.new(e))

34 end

35

36 private

37

38 def initialize(fraud_detection)

39 self.fraud_detection = fraud_detection

40 end

41

42 def transcript

Multitud de Trabajadores 100

43 tx_history = fraud_detection.transaction.user.tx_history

44 [

45 { system: INSTRUCTION },

46 { user: "Transaction history: #{tx_history.to_json}" },

47 { assistant: "OK. Please provide the current transaction." },

48 { user: "Current transaction: #{fraud_detection.transaction.to_json}" }

49]

50 end

51 end

En este ejemplo, el CheckCustomerHistory define una constante INSTRUCTION que

proporciona instrucciones específicas al modelo de IA sobre cómo analizar el historial

de transacciones del cliente para detectar posibles indicadores de fraude a través de una

directiva del sistema

El método self.check es un método de clase que inicializa una nueva instancia de

CheckCustomerHistory con el objeto fraud_detection y llama al método call

para realizar el análisis del historial del cliente.

Dentro del método call, se recupera el historial de transacciones del cliente y se

formatea en una transcripción que se pasa al modelo de IA. El modelo de IA analiza

el historial de transacciones basándose en las instrucciones proporcionadas y devuelve

un resumen de sus hallazgos.

Los hallazgos se agregan al objeto fraud_detection, y el objeto fraud_detection

actualizado se devuelve como un Result exitoso.

Al aprovechar el módulo ChatCompletion, la clase CheckCustomerHistory puede

utilizar el poder de la IA para analizar el historial de transacciones del cliente e

identificar posibles indicadores de fraude. Esto permite técnicas de detección de fraude

más sofisticadas y adaptativas, ya que el modelo de IA puede aprender y adaptarse a

nuevos patrones y anomalías con el tiempo.

El FraudDetectionWorker actualizado y la clase CheckCustomerHistory

demuestran cómo los trabajadores de IA pueden integrarse sin problemas, mejorando

Multitud de Trabajadores 101

el proceso de detección de fraude con capacidades de análisis y toma de decisiones

inteligentes.

Análisis de Sentimiento del Cliente

Aquí hay un ejemplo más similar de cómo puedes implementar un trabajador de análisis

de sentimiento del cliente. Muchas menos explicaciones esta vez, ya que deberías estar

captando cómo funciona este estilo de programación:

1 class CustomerSentimentAnalysisWorker

2 include Wisper::Publisher

3

4 def call(feedback)

5 Result.ok(feedback)

6 .and_then(PreprocessFeedback.method(:preprocess))

7 .map(PerformSentimentAnalysis.method(:analyze))

8 .map(ExtractKeyPhrases.method(:extract))

9 .map(IdentifyTrends.method(:identify))

10 .map(GenerateInsights.method(:generate)).then do |result|

11

12 case result

13 in { err: SentimentAnalysisError => error }

14 Honeybadger.notify(error.message, context: {feedback:})

15 in { ok: SentimentAnalysisResult => result }

16 broadcast(:sentiment_analysis_completed, result)

17 end

18 end

19 end

20 end

En este ejemplo, el CustomerSentimentAnalysisWorker incluye pasos como el

preprocesamiento de la retroalimentación (por ejemplo, eliminar ruido, tokenización),

realizar análisis de sentimientos para determinar el sentimiento general (positivo,

negativo o neutral), extraer frases y temas clave, identificar tendencias y patrones, y

generar información procesable basada en el análisis.

Multitud de Trabajadores 102

Aplicaciones en el Sector Salud

En el ámbito de la salud, los trabajadores de IA pueden asistir a profesionales médicos e

investigadores en diversas tareas, lo que conduce a mejores resultados para los pacientes

y descubrimientos médicos acelerados. Algunos ejemplos incluyen:

Admisión de Pacientes

Los trabajadores de IA pueden optimizar el proceso de admisión de pacientes mediante

la automatización de varias tareas y proporcionando asistencia inteligente.

Programación de Citas: Los trabajadores de IA pueden manejar la programación de

citas comprendiendo las preferencias del paciente, su disponibilidad y la urgencia de

sus necesidades médicas. Pueden interactuar con los pacientes a través de interfaces

conversacionales, guiándolos a través del proceso de programación y encontrando los

horarios de cita más adecuados según los requisitos del paciente y la disponibilidad del

proveedor de atención médica.

Recopilación del Historial Médico: Durante la admisión del paciente, los trabajadores

de IA pueden ayudar en la recopilación y documentación del historial médico del

paciente. Pueden participar en diálogos interactivos con los pacientes, haciendo

preguntas relevantes sobre sus condiciones médicas anteriores, medicamentos, alergias

e historial familiar. Los trabajadores de IA pueden utilizar técnicas de procesamiento del

lenguaje natural para interpretar y estructurar la información recopilada, asegurando

que se capture con precisión en el registro electrónico de salud del paciente.

Evaluación y Estratificación de Síntomas: Los trabajadores de IA pueden realizar

evaluaciones iniciales de síntomas preguntando a los pacientes sobre sus síntomas

actuales, duración, gravedad y factores asociados. Al aprovechar las bases de

conocimiento médico y los modelos de aprendizaje automático, estos trabajadores

pueden analizar la información proporcionada y generar diagnósticos diferenciales

Multitud de Trabajadores 103

preliminares o recomendar los siguientes pasos apropiados, como programar una

consulta con un proveedor de atención médica o sugerir medidas de autocuidado.

Verificación de Seguro: Los trabajadores de IA pueden ayudar con la verificación

del seguro durante la admisión del paciente. Pueden recopilar detalles del seguro del

paciente, comunicarse con las aseguradoras a través de APIs o servicios web, y verificar

la elegibilidad de cobertura y beneficios. Esta automatización ayuda a optimizar el

proceso de verificación de seguros, reduciendo la carga administrativa y asegurando

la captura precisa de información.

Educación e Instrucciones para el Paciente: Los trabajadores de IA pueden

proporcionar a los pacientes materiales educativos e instrucciones relevantes basadas

en sus condiciones médicas específicas o procedimientos próximos. Pueden entregar

contenido personalizado, responder preguntas comunes y ofrecer orientación sobre

preparaciones previas a la cita, instrucciones de medicación o cuidados posteriores

al tratamiento. Esto ayuda a mantener a los pacientes informados y comprometidos

durante todo su proceso de atención médica.

Al aprovechar los trabajadores de IA en la admisión de pacientes, las organizaciones

de salud pueden mejorar la eficiencia, reducir los tiempos de espera y mejorar la

experiencia general del paciente. Estos trabajadores pueden manejar tareas rutinarias,

recopilar información precisa y proporcionar asistencia personalizada, permitiendo que

los profesionales de la salud se concentren en brindar atención de alta calidad a los

pacientes.

Evaluación de Riesgo del Paciente

Los trabajadores de IA pueden desempeñar un papel crucial en la evaluación del riesgo

del paciente mediante el análisis de diversas fuentes de datos y la aplicación de técnicas

analíticas avanzadas.

Integración de Datos: Los trabajadores de IA pueden recopilar y dar sentido a los

datos del paciente de múltiples fuentes, como registros electrónicos de salud, imágenes

Multitud de Trabajadores 104

médicas, resultados de laboratorio, dispositivos portátiles y determinantes sociales de la

salud. Al consolidar esta información en un perfil integral del paciente, los trabajadores

de IA pueden proporcionar una visión holística del estado de salud y los factores de

riesgo del paciente.

Estratificación de Riesgo: Los trabajadores de IA pueden utilizar modelos predictivos

para estratificar a los pacientes en diferentes categorías de riesgo basándose en sus

características individuales y datos de salud. Esta estratificación de riesgo permite a

los proveedores de atención médica priorizar a los pacientes que requieren atención o

intervención más inmediata. Por ejemplo, los pacientes identificados como de alto riesgo

para una condición particular pueden ser marcados para un monitoreo más cercano,

medidas preventivas o intervención temprana.

Perfiles de Riesgo Personalizados: Los trabajadores de IA pueden generar perfiles

de riesgo personalizados para cada paciente, destacando los factores específicos que

contribuyen a sus puntajes de riesgo. Estos perfiles pueden incluir información sobre

el estilo de vida del paciente, predisposiciones genéticas, factores ambientales y

determinantes sociales de la salud. Al proporcionar un desglose detallado de los factores

de riesgo, los trabajadores de IA pueden ayudar a los proveedores de atención médica

a adaptar las estrategias de prevención y los planes de tratamiento a las necesidades

individuales del paciente.

Monitoreo Continuo de Riesgo: Los trabajadores de IA pueden monitorear

continuamente los datos del paciente y actualizar las evaluaciones de riesgo en

tiempo real. A medida que nueva información está disponible, como cambios en los

signos vitales, resultados de laboratorio o adherencia a la medicación, los trabajadores

de IA pueden recalcular los puntajes de riesgo y alertar a los proveedores de atención

médica sobre cualquier cambio significativo. Este monitoreo proactivo permite

intervenciones oportunas y ajustes a los planes de atención del paciente.

Apoyo a la Decisión Clínica: Los trabajadores de IA pueden integrar los resultados de la

evaluación de riesgo en los sistemas de apoyo a la decisión clínica, proporcionando a los

Multitud de Trabajadores 105

proveedores de atención médica recomendaciones y alertas basadas en evidencia. Por

ejemplo, si el puntaje de riesgo de un paciente para una condición particular excede

cierto umbral, el trabajador de IA puede indicar al proveedor de atención médica

que considere pruebas diagnósticas específicas, medidas preventivas u opciones de

tratamiento basadas en pautas clínicas y mejores prácticas.

Estos trabajadores pueden procesar grandes cantidades de datos de pacientes, aplicar

análisis sofisticados y generar información procesable para apoyar la toma de decisiones

clínicas. Esto finalmente conduce a mejores resultados para los pacientes, reducción de

costos en el cuidado de la salud y una mejor gestión de la salud poblacional.

El Trabajador de IA como Gestor de Procesos

En el contexto de las aplicaciones impulsadas por IA, un trabajador puede ser

diseñado para funcionar como un Gestor de Procesos, como se describe en el libro

“Enterprise Integration Patterns” de Gregor Hohpe. Un Gestor de Procesos es un

componente central que mantiene el estado de un proceso y determina los siguientes

pasos de procesamiento basándose en resultados intermedios.

Multitud de Trabajadores 106

Cuando un trabajador de IA actúa como Gestor de Procesos, recibe un mensaje entrante

que inicializa el proceso, conocido como mensaje disparador. El trabajador de IA

entonces mantiene el estado de la ejecución del proceso (como una transcripción de

conversación) y maneja el mensaje a través de una serie de pasos de procesamiento

implementados como funciones de herramienta, que pueden ser secuenciales o paralelos,

y llamados a su discreción.

Si estás usando una clase de modelo de IA como GPT-4 que sabe cómo

ejecutar funciones en paralelo, entonces tu trabajador puede ejecutar

múltiples pasos simultáneamente. Admito que no he intentado hacer esto

yo mismo y mi instinto me dice que los resultados pueden variar.

Después de cada paso individual de procesamiento, el control vuelve al trabajador de

IA, permitiéndole determinar el siguiente paso o pasos de procesamiento basándose en

el estado actual y los resultados obtenidos.

Almacena Tus Mensajes Disparadores

En mi experiencia, es inteligente implementar tu mensaje disparador como un objeto

respaldado por base de datos. De esta manera, cada instancia del proceso se identifica

mediante una clave primaria única y te proporciona un lugar para almacenar el estado

asociado con la ejecución, incluyendo la transcripción de conversación de la IA.

Por ejemplo, aquí hay una versión simplificada de la clase modelo AccountChange

de Olympia, que representa una solicitud para realizar un cambio en la cuenta de un

usuario.

Multitud de Trabajadores 107

1 # == Schema Information

2 #

3 # Table name: account_changes

4 #

5 # id :uuid not null, primary key

6 # description :string

7 # state :string not null

8 # transcript :jsonb

9 # created_at :datetime not null

10 # updated_at :datetime not null

11 # account_id :uuid not null

12 #

13 # Indexes

14 #

15 # index_account_changes_on_account_id (account_id)

16 #

17 # Foreign Keys

18 #

19 # fk_rails_... (account_id => accounts.id)

20 #

21 class AccountChange < ApplicationRecord

22 belongs_to :account

23

24 validates :description, presence: true

25

26 after_commit -> {

27 broadcast(:account_change_requested, self)

28 }, on: :create

29

30 state_machine initial: :requested do

31 event :completed do

32 transition all => :complete

33 end

34 event :failed do

35 transition all => :requires_human_review

36 end

37 end

38 end

La clase AccountChange sirve como mensaje disparador que inicia un proceso para

manejar la solicitud de cambio de cuenta. Observe cómo se transmite al subsistema de

Multitud de Trabajadores 108

publicación/suscripción basado en Wisper de Olympia después de que la transacción de

creación termina de confirmarse.

Almacenar el mensaje disparador en la base de datos de esta manera proporciona

un registro persistente de cada solicitud de cambio de cuenta. A cada instancia de la

clase AccountChange se le asigna una clave primaria única, lo que permite una fácil

identificación y seguimiento de las solicitudes individuales. Esto es particularmente útil

para propósitos de registro de auditoría, ya que permite al sistema mantener un registro

histórico de todos los cambios de cuenta, incluyendo cuándo fueron solicitados, qué

cambios se solicitaron y el estado actual de cada solicitud.

En el ejemplo dado, la clase AccountChange incluye campos como description para

capturar los detalles del cambio solicitado, state para representar el estado actual de la

solicitud (por ejemplo, solicitado, completo, requiere_revisión_humana), y transcript

para almacenar la transcripción de la conversación con la IA relacionada con la solicitud.

El campo description es el prompt real que se utiliza para iniciar la primera chat

completion con la IA. Almacenar estos datos proporciona un contexto valioso y permite

un mejor seguimiento y análisis del proceso de cambio de cuenta.

Almacenar mensajes disparadores en la base de datos permite un manejo robusto de

errores y recuperación. Si ocurre un error durante el procesamiento de una solicitud

de cambio de cuenta, el sistema marca la solicitud como fallida y la transiciona a un

estado que requiere intervención humana. Esto asegura que ninguna solicitud se pierda

u olvide, y que cualquier problema pueda ser abordado y resuelto adecuadamente.

El trabajador de IA, como Gestor de Procesos, proporciona un punto central de control

y permite capacidades poderosas de informes y depuración de procesos. Sin embargo,

es importante notar que usar un trabajador de IA como Gestor de Procesos para cada

escenario de flujo de trabajo en su aplicación puede ser excesivo.

https://github.com/krisleech/wisper

Multitud de Trabajadores 109

Integrando Trabajadores de IA en su

Arquitectura de Aplicación

Al incorporar trabajadores de IA en su arquitectura de aplicación, se deben

abordar varias consideraciones técnicas para asegurar una integración fluida y

una comunicación efectiva entre los trabajadores de IA y otros componentes de la

aplicación. Esta sección considera aspectos clave del diseño de esas interfaces, el manejo

del flujo de datos y la gestión del ciclo de vida de los trabajadores de IA.

Diseñando Interfaces Claras y Protocolos de
Comunicación

Para facilitar una integración perfecta entre los trabajadores de IA y otros componentes

de la aplicación, es crucial definir interfaces claras y protocolos de comunicación.

Considere los siguientes enfoques:

Integración basada en API: Exponga la funcionalidad de los trabajadores de IA a través

de APIs bien definidas, como endpoints RESTful o esquemas GraphQL. Esto permite

que otros componentes interactúen con los trabajadores de IA usando solicitudes y

respuestas HTTP estándar. La integración basada en API proporciona un contrato claro

entre los trabajadores de IA y los componentes consumidores, facilitando el desarrollo,

prueba y mantenimiento de los puntos de integración.

Comunicación basada enmensajes: Implemente patrones de comunicación basados en

mensajes, como colas de mensajes o sistemas de publicación-suscripción, para permitir

la interacción asíncrona entre trabajadores de IA y otros componentes. Este enfoque

desacopla los trabajadores de IA del resto de la aplicación, permitiendo una mejor

escalabilidad, tolerancia a fallos y acoplamiento flexible. La comunicación basada en

mensajes es particularmente útil cuando el procesamiento realizado por los trabajadores

de IA consumemucho tiempo o recursos, ya que permite que otras partes de la aplicación

continúen ejecutándose sin esperar a que los trabajadores de IA completen sus tareas.

Multitud de Trabajadores 110

Arquitectura dirigida por eventos: Diseñe su sistema alrededor de eventos y

disparadores que activen trabajadores de IA cuando se cumplan condiciones

específicas. Los trabajadores de IA pueden suscribirse a eventos relevantes y

reaccionar en consecuencia, realizando sus tareas designadas cuando ocurren los

eventos. La arquitectura dirigida por eventos permite el procesamiento en tiempo real

y permite que los trabajadores de IA sean invocados bajo demanda, reduciendo el

consumo innecesario de recursos. Este enfoque es adecuado para escenarios donde los

trabajadores de IA necesitan responder a acciones específicas o cambios en el estado de

la aplicación.

Manejo del Flujo de Datos y Sincronización

Al integrar trabajadores de IA en su aplicación, es crucial asegurar un flujo de

datos fluido y mantener la consistencia de datos entre los trabajadores de IA y otros

componentes. Considere los siguientes aspectos:

Preparación de datos: Antes de alimentar datos a los trabajadores de IA, es posible

que necesite realizar varias tareas de preparación de datos, como limpieza, formateo

y/o transformación de los datos de entrada. No solo quiere asegurarse de que los

trabajadores de IA puedan procesar efectivamente, sino que también quiere asegurarse

de no estar desperdiciando tokens prestando atención a información que el trabajador

puede considerar inútil en el mejor de los casos, o distractora en el peor. La preparación

de datos puede involucrar tareas como eliminar ruido, manejar valores faltantes o

convertir tipos de datos.

Persistencia de datos: ¿Cómo almacenará y persistirá los datos que fluyen dentro y

fuera de los trabajadores de IA? Considere factores como el volumen de datos, patrones

de consulta y escalabilidad. ¿Necesita persistir la transcripción de la IA como un reflejo

de su “proceso de pensamiento” para propósitos de auditoría o depuración, o es suficiente

tener un registro solo de los resultados?

Recuperación de Datos: Obtener los datos necesarios para los workers puede implicar

Multitud de Trabajadores 111

consultar bases de datos, leer archivos o acceder a APIs externas. Asegúrese de

considerar la latencia y cómo los workers de IA tendrán acceso a los datos más

actualizados. ¿Necesitan acceso completo a su base de datos o debería definir el

alcance de su acceso de manera limitada según lo que están haciendo? ¿Qué hay de

la escalabilidad? Considere mecanismos de caché para mejorar el rendimiento y reducir

la carga en las fuentes de datos subyacentes.

Sincronización de Datos: Cuando múltiples componentes, incluidos los workers de IA,

acceden y modifican datos compartidos, es importante implementar mecanismos de

sincronización adecuados para mantener la consistencia de los datos. Las estrategias

de bloqueo de bases de datos, como el bloqueo optimista o pesimista, pueden ayudarle

a prevenir conflictos y asegurar la integridad de los datos. Implemente técnicas de

gestión de transacciones para agrupar operaciones de datos relacionadas y mantener

las propiedades ACID (Atomicidad, Consistencia, Aislamiento y Durabilidad)

Manejo de Errores y Recuperación: Implemente mecanismos robustos de manejo de

errores y recuperación para lidiar con problemas relacionados con los datos que puedan

surgir durante el proceso de flujo de datos. Maneje las excepciones de manera elegante y

proporcione mensajes de error significativos para ayudar en la depuración. Implemente

mecanismos de reintento y estrategias de respaldo para manejar fallos temporales o

interrupciones de red. Defina procedimientos claros para la recuperación y restauración

de datos en caso de corrupción o pérdida de datos.

Al diseñar e implementar cuidadosamente los mecanismos de flujo y sincronización

de datos, puede asegurarse de que sus workers de IA tengan acceso a datos precisos,

consistentes y actualizados. Esto les permite realizar sus tareas de manera efectiva y

producir resultados confiables.

Gestión del Ciclo de Vida de los Workers de IA

Desarrolle un proceso estandarizado para inicializar y configurar workers de IA. Me

inclino por marcos de trabajo que estandarizan cómo se definen configuraciones como

Multitud de Trabajadores 112

nombres de modelos, directivas del sistema y definiciones de funciones. Asegúrese

de que el proceso de inicialización sea automatizado y reproducible para facilitar el

despliegue y la escalabilidad.

Implemente mecanismos completos de monitoreo y registro para rastrear la salud y el

rendimiento de los workers de IA. Recopile métricas como el uso de recursos, tiempo de

procesamiento, tasas de error y rendimiento. Utilice sistemas de registro centralizados

como ELK stack (Elasticsearch, Logstash, Kibana) para agregar y analizar registros de

múltiples workers de IA.

Incorpore tolerancia a fallos y resiliencia en la arquitectura de workers de IA.

Implemente mecanismos de manejo de errores y recuperación para manejar fallos

o excepciones de manera elegante. Los Modelos de Lenguaje Grandes siguen siendo

tecnología de vanguardia; los proveedores suelen caerse a menudo en momentos

inesperados. Utilice mecanismos de reintento y cortocircuitos para prevenir fallos en

cascada.

Composición y Orquestación de Workers de IA

Una de las principales ventajas de la arquitectura de workers de IA es su capacidad de

composición, que permite combinar y orquestar múltiples workers de IA para resolver

problemas complejos. Al desglosar una tarea más grande en subtareas más pequeñas y

manejables, cada una manejada por un worker de IA especializado, puede crear sistemas

potentes y flexibles. En esta sección, exploraremos diferentes enfoques para componer

y orquestar “una multitud” de workers de IA.

Encadenamiento de Workers de IA para Flujos de Trabajo
Múltiples

En muchos escenarios, una tarea compleja puede descomponerse en una serie de pasos

secuenciales, donde la salida de un worker de IA se convierte en la entrada del siguiente.

Multitud de Trabajadores 113

Este encadenamiento de workers de IA crea un flujo de trabajo o pipeline de múltiples

pasos. Cada worker de IA en la cadena se enfoca en una subtarea específica, y la salida

final es el resultado de los esfuerzos combinados de todos los workers.

Consideremos un ejemplo en el contexto de una aplicación Ruby on Rails para procesar

contenido generado por usuarios. El flujo de trabajo involucra los siguientes pasos, que

admitidamente son probablemente demasiado simples para valer la pena descomponer

de esta manera en casos de uso reales, pero hacen que el ejemplo sea más fácil de

entender:

1. Limpieza de Texto: Un worker de IA responsable de eliminar etiquetas HTML,

convertir texto a minúsculas y manejar la normalización Unicode.

2. Detección de Idioma: Un worker de IA que identifica el idioma del texto limpio.

3. Análisis de Sentimiento: Un worker de IA que determina el sentimiento (positivo,

negativo o neutral) del texto basado en el idioma detectado.

4. Categorización de Contenido: Un worker de IA que clasifica el texto en categorías

predefinidas utilizando técnicas de procesamiento de lenguaje natural.

Aquí hay un ejemplo muy simplificado de cómo puede encadenar estos workers de IA

utilizando Ruby:

1 class ContentProcessor

2 def initialize(text)

3 @text = text

4 end

5

6 def process

7 cleaned_text = TextCleanupWorker.new(@text).call

8 language = LanguageDetectionWorker.new(cleaned_text).call

9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

10 category = CategorizationWorker.new(cleaned_text, language).call

11

12 { cleaned_text:, language:, sentiment:, category: }

13 end

14 end

Multitud de Trabajadores 114

En este ejemplo, la clase ContentProcessor se inicializa con el texto sin procesar y

encadena los trabajadores de IA juntos en el método process. Cada trabajador de IA

realiza su tarea específica y pasa el resultado al siguiente trabajador en la cadena. La

salida final es un hash que contiene el texto limpio, el idioma detectado, el sentimiento

y la categoría del contenido.

Procesamiento en Paralelo para Trabajadores de IA
Independientes

En el ejemplo anterior, los trabajadores de IA están encadenados secuencialmente, donde

cada trabajador procesa el texto y pasa el resultado al siguiente trabajador. Sin embargo,

si tienes múltiples trabajadores de IA que pueden operar independientemente sobre la

misma entrada, puedes optimizar el flujo de trabajo procesándolos en paralelo.

En el escenario dado, una vez que la limpieza del texto es realizada por el

TextCleanupWorker, el LanguageDetectionWorker, SentimentAnalysisWorker,

y CategorizationWorker pueden procesar el texto limpio de forma independiente.

Al ejecutar estos trabajadores en paralelo, puedes potencialmente reducir el tiempo

total de procesamiento y mejorar la eficiencia de tu flujo de trabajo.

Para lograr el procesamiento en paralelo en Ruby, puedes aprovechar técnicas de

concurrencia como hilos o programación asíncrona. Aquí hay un ejemplo de cómo

puedesmodificar la clase ContentProcessor para procesar los tres trabajadores finales

en paralelo usando hilos:

Multitud de Trabajadores 115

1 require 'concurrent'

2

3 class ContentProcessor

4 def initialize(text)

5 @text = text

6 end

7

8 def process

9 cleaned_text = TextCleanupWorker.new(@text).call

10

11 language_future = Concurrent::Future.execute do

12 LanguageDetectionWorker.new(cleaned_text).call

13 end

14

15 sentiment_future = Concurrent::Future.execute do

16 SentimentAnalysisWorker.new(cleaned_text).call

17 end

18

19 category_future = Concurrent::Future.execute do

20 CategorizationWorker.new(cleaned_text).call

21 end

22

23 language = language_future.value

24 sentiment = sentiment_future.value

25 category = category_future.value

26

27 { cleaned_text:, language:, sentiment:, category: }

28 end

29 end

En esta versión optimizada, utilizamos la biblioteca concurrent-ruby para crear

objetos Concurrent::Future para cada uno de los trabajadores de IA independientes.

Un Future representa un cálculo que se realizará de manera asíncrona en un hilo

separado.

Después del paso de limpieza del texto, creamos tres objetos Future:

language_future, sentiment_future, y category_future. Cada Future

ejecuta su correspondiente trabajador de IA (LanguageDetectionWorker,

SentimentAnalysisWorker, y CategorizationWorker) en un hilo separado,

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Multitud de Trabajadores 116

pasando el cleaned_text como entrada.

Al llamar al método value en cada Future, esperamos a que se complete el cálculo

y recuperamos el resultado. El método value bloquea hasta que el resultado esté

disponible, asegurando que todos los trabajadores paralelos hayan terminado el

procesamiento antes de continuar.

Finalmente, construimos el hash de salida con el texto limpio y los resultados de los

trabajadores paralelos, al igual que en el ejemplo original.

Al procesar los trabajadores de IA independientes en paralelo, se puede reducir

potencialmente el tiempo total de procesamiento en comparación con ejecutarlos

secuencialmente. Esta optimización es particularmente beneficiosa cuando se trata de

tareas que consumen mucho tiempo o cuando se procesan grandes volúmenes de datos.

Sin embargo, es importante tener en cuenta que las ganancias reales de rendimiento

dependen de varios factores, como la complejidad de cada trabajador, los recursos del

sistema disponibles y la sobrecarga de la gestión de hilos. Siempre es una buena práctica

realizar pruebas de rendimiento y perfilar tu código para determinar el nivel óptimo de

paralelismo para tu caso de uso específico.

Además, al implementar el procesamiento paralelo, hay que tener en cuenta cualquier

recurso compartido o dependencia entre los trabajadores. Asegúrate de que los

trabajadores puedan operar de forma independiente sin conflictos ni condiciones

de carrera. Si hay dependencias o recursos compartidos, es posible que necesites

implementar mecanismos de sincronización apropiados para mantener la integridad de

los datos y evitar problemas como interbloqueos o resultados inconsistentes.

El Bloqueo del Intérprete Global de Ruby y el
Procesamiento Asíncrono

Multitud de Trabajadores 117

Es importante entender las implicaciones del Bloqueo del Intérprete Global (GIL) de

Ruby al considerar el procesamiento asíncrono basado en hilos en Ruby.

El GIL es un mecanismo en el intérprete de Ruby que asegura que solo un hilo puede

ejecutar código Ruby a la vez, incluso en procesadores multinúcleo. Esto significa que

aunque se pueden crear y gestionar múltiples hilos dentro de un proceso Ruby, solo

un hilo puede ejecutar activamente código Ruby en cualquier momento dado.

El GIL está diseñado para simplificar la implementación del intérprete de Ruby y

proporcionar seguridad entre hilos para las estructuras de datos internas de Ruby.

Sin embargo, también limita el potencial de ejecución verdaderamente paralela del

código Ruby.

Cuando usas hilos en Ruby, como con la biblioteca concurrent-ruby o la clase

Thread incorporada, los hilos están sujetos a las restricciones del GIL. El GIL permite

que cada hilo ejecute código Ruby durante un breve intervalo de tiempo antes de

cambiar a otro hilo, creando la ilusión de ejecución concurrente.

Sin embargo, debido al GIL, la ejecución real del código Ruby sigue siendo secuencial.

Mientras un hilo está ejecutando código Ruby, otros hilos están esencialmente en

pausa, esperando su turno para adquirir el GIL y ejecutar.

Esto significa que el procesamiento asíncrono basado en hilos en Ruby es más efectivo

para tareas limitadas por E/S, como esperar respuestas de APIs externas (como

modelos de lenguaje grandes alojados por terceros) o realizar operaciones de E/S

de archivos. Cuando un hilo encuentra una operación de E/S, puede liberar el GIL,

permitiendo que otros hilos se ejecuten mientras espera que se complete la E/S.

Por otro lado, para tareas limitadas por CPU, como cálculos intensivos o

procesamiento de trabajadores de IA de larga duración, el GIL puede limitar las

posibles ganancias de rendimiento del paralelismo basado en hilos. Dado que solo

un hilo puede ejecutar código Ruby a la vez, el tiempo total de ejecución puede no

reducirse significativamente en comparación con el procesamiento secuencial.

Para lograr una ejecución verdaderamente paralela para tareas limitadas por CPU en

Multitud de Trabajadores 118

Ruby, es posible que necesites explorar enfoques alternativos, como:

• Usar paralelismo basado en procesos con múltiples procesos Ruby, cada uno

ejecutándose en un núcleo de CPU separado.

• Aprovechar bibliotecas externas o frameworks que proporcionen extensiones

nativas o interfaces a lenguajes sin GIL, como C o Rust.,

• Utilizar frameworks de computación distribuida o colas de mensajes para

distribuir tareas entre múltiples máquinas o procesos.

Es crucial considerar la naturaleza de tus tareas y las limitaciones impuestas por

el GIL al diseñar e implementar el procesamiento asíncrono en Ruby. Si bien el

procesamiento asíncrono basado en hilos puede proporcionar beneficios para tareas

limitadas por E/S, puede no ofrecer mejoras significativas de rendimiento para tareas

limitadas por CPU debido a las restricciones del GIL.

Técnicas de Conjunto para Mejorar la Precisión

Las técnicas de conjunto implican combinar las salidas de múltiples trabajadores de IA

para mejorar la precisión general o la robustez del sistema. En lugar de depender de un

solo trabajador de IA, las técnicas de conjunto aprovechan la inteligencia colectiva de

múltiples trabajadores para tomar decisiones más informadas.

Los ensambles son especialmente importantes si diferentes partes de tu flujo

de trabajo funcionan mejor con diferentes modelos de IA, algo que es más

común de lo que podrías pensar. Los modelos potentes como GPT-4 son

extremadamente costosos en comparación con opciones de código abierto

menos capaces, y probablemente no sean necesarios para cada paso del flujo

de trabajo de tu aplicación.

Una técnica común de ensamble es la votación por mayoría, donde múltiples

Multitud de Trabajadores 119

trabajadores de IA procesan independientemente la misma entrada, y la salida final

se determina por el consenso de la mayoría. Este enfoque puede ayudar a mitigar el

impacto de errores individuales de los trabajadores y mejorar la fiabilidad general del

sistema.

Consideremos un ejemplo donde tenemos tres trabajadores de IA para análisis de

sentimiento, cada uno utilizando un modelo diferente o proporcionado con diferentes

contextos. Podemos combinar sus salidas usando votación por mayoría para determinar

la predicción final del sentimiento.

1 class SentimentAnalysisEnsemble

2 def initialize(text)

3 @text = text

4 end

5

6 def analyze

7 predictions = [

8 SentimentAnalysisWorker1.new(@text).analyze,

9 SentimentAnalysisWorker2.new(@text).analyze,

10 SentimentAnalysisWorker3.new(@text).analyze

11]

12

13 predictions

14 .group_by { |sentiment| sentiment }

15 .max_by { |_, votes| votes.size }

16 .first

17

18 end

19 end

En este ejemplo, la clase SentimentAnalysisEnsemble se inicializa con el texto

e invoca tres diferentes trabajadores de IA para análisis de sentimientos. El método

analyze recopila las predicciones de cada trabajador y determina el sentimiento

mayoritario utilizando losmétodos group_by y max_by. La salida final es el sentimiento

que recibe más votos del conjunto de trabajadores.

Multitud de Trabajadores 120

Los conjuntos son claramente un caso donde experimentar con paralelismo

puede valer la pena.

Selección Dinámica e Invocación de Trabajadores de IA

En algunos, si no en lamayoría de los casos, el trabajador de IA específico que se invocará

puede depender de las condiciones de tiempo de ejecución o de las entradas del usuario.

La selección dinámica y la invocación de trabajadores de IA permiten flexibilidad y

adaptabilidad en el sistema.

Puede que te sientas tentado a tratar de incluir mucha funcionalidad en

un solo trabajador de IA, dándole múltiples funciones y un mensaje inicial

grande y complicado que explique cómo invocarlas. Resiste la tentación,

créeme. Una de las razones por las que el enfoque que estamos discutiendo

en este capítulo se llama “Multitud de Trabajadores” es para recordarnos que

es deseable tener muchos trabajadores especializados, cada uno haciendo su

pequeña tarea al servicio del propósito mayor.

Por ejemplo, considera una aplicación de chatbot donde diferentes trabajadores de

IA son responsables de manejar diferentes tipos de consultas de usuario. Basándose

en la entrada del usuario, la aplicación selecciona dinámicamente el trabajador de IA

apropiado para procesar la consulta.

Multitud de Trabajadores 121

1 class ChatbotController < ApplicationController

2 def process_query

3 query = params[:query]

4 query_type = QueryClassifierWorker.new(query).classify

5

6 case query_type

7 when 'greeting'

8 response = GreetingWorker.new(query).generate_response

9 when 'product_inquiry'

10 response = ProductInquiryWorker.new(query).generate_response

11 when 'order_status'

12 response = OrderStatusWorker.new(query).generate_response

13 else

14 response = DefaultResponseWorker.new(query).generate_response

15 end

16

17 render json: { response: response }

18 end

19 end

En este ejemplo, el ChatbotController recibe una consulta del usuario a través

de la acción process_query. Primero utiliza un QueryClassifierWorker para

determinar el tipo de consulta. Basándose en el tipo de consulta clasificada, el

controlador selecciona dinámicamente el trabajador de IA apropiado para generar la

respuesta. Esta selección dinámica permite que el chatbot maneje diferentes tipos de

consultas y las dirija a los trabajadores de IA relevantes.

Dado que el trabajo del QueryClassifierWorker es relativamente simple

y no requiere mucho contexto o definiciones de funciones, probablemente

puedas implementarlo usando un LLM pequeño y ultrarrápido como

mistralai/mixtral-8x7b-instruct:nitro. Tiene capacidades que se

acercan al nivel de GPT-4 en muchas tareas y, en el momento en que escribo

esto, Groq puede servirlo con una impresionante velocidad de procesamiento

de 444 tokens por segundo.

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Multitud de Trabajadores 122

Combinando PLN Tradicional con MLGs

Si bien los Modelos de Lenguaje Grandes (MLGs) han revolucionado el campo del

procesamiento del lenguaje natural (PLN), ofreciendo una versatilidad y rendimiento

sin precedentes en una amplia gama de tareas, no siempre son la solución más eficiente

o rentable para cada problema. En muchos casos, combinar técnicas tradicionales de

PLN conMLGs puede llevar a enfoques más optimizados, específicos y económicos para

resolver desafíos específicos de PLN.

Piensa en los MLGs como las navajas suizas del PLN: increíblemente versátiles y

potentes, pero no necesariamente la mejor herramienta para cada trabajo. A veces,

una herramienta dedicada como un sacacorchos o un abrelatas puede ser más efectiva

y eficiente para una tarea específica. De manera similar, las técnicas tradicionales de

PLN, como el agrupamiento de documentos, la identificación de temas y la clasificación,

pueden proporcionar soluciones más específicas y rentables para ciertos aspectos de tu

pipeline de PLN.

Una de las principales ventajas de las técnicas tradicionales de PLN es su eficiencia

computacional. Estos métodos, que a menudo se basan en modelos estadísticos más

simples o enfoques basados en reglas, pueden procesar grandes volúmenes de datos

textualesmuchomás rápido y conmenor sobrecarga computacional en comparación con

los MLGs. Esto los hace particularmente adecuados para tareas que implican analizar y

organizar grandes corpus de documentos, como agrupar artículos similares o identificar

temas clave dentro de una colección de textos.

Además, las técnicas tradicionales de PLN pueden alcanzar a menudo una alta precisión

y exactitud para tareas específicas, especialmente cuando se entrenan con conjuntos de

datos específicos del dominio. Por ejemplo, un clasificador de documentos bien ajustado

que utilice algoritmos tradicionales de aprendizaje automático como Máquinas de

Vectores de Soporte (MVS) o Naive Bayes puede categorizar documentos con precisión

en categorías predefinidas con un costo computacional mínimo.

Multitud de Trabajadores 123

Sin embargo, los MLGs brillan verdaderamente cuando se trata de tareas que requieren

una comprensión más profunda del lenguaje, el contexto y el razonamiento. Su

capacidad para generar texto coherente y contextualmente relevante, responder

preguntas y resumir pasajes largos no tiene igual en los métodos tradicionales de PLN.

Los MLGs pueden manejar efectivamente fenómenos lingüísticos complejos, como la

ambigüedad, la correferencia y las expresiones idiomáticas, haciéndolos invaluables

para tareas que requieren generación o comprensión del lenguaje natural.

El verdadero poder radica en combinar las técnicas tradicionales de PLN con MLGs

para crear enfoques híbridos que aprovechen las fortalezas de ambos. Al utilizar

métodos tradicionales de PLN para tareas como el preprocesamiento de documentos,

agrupamiento y extracción de temas, puedes organizar y estructurar tus datos textuales

de manera eficiente. Esta información estructurada puede entonces alimentarse a los

MLGs para tareas más avanzadas, como generar resúmenes, responder preguntas o crear

informes completos.

Por ejemplo, consideremos un caso de uso donde deseas generar un informe de

tendencias para un dominio específico basado en un gran corpus de documentos

individuales de tendencias. En lugar de confiar únicamente en MLGs, que pueden

ser computacionalmente costosos y consumir mucho tiempo para procesar grandes

volúmenes de texto, puedes emplear un enfoque híbrido:

1. Utilizar técnicas tradicionales de PLN, como el modelado de temas (por ejemplo,

Asignación Latente de Dirichlet) o algoritmos de agrupamiento (por ejemplo, K-

means), para agrupar documentos de tendencias similares y identificar temas y

tópicos clave dentro del corpus.

2. Alimentar los documentos agrupados y los temas identificados a un MLG,

aprovechando sus capacidades superiores de comprensión y generación del

lenguaje para crear resúmenes coherentes e informativos para cada grupo o tema.

3. Finalmente, utilizar el MLG para generar un informe completo de tendencias

combinando los resúmenes individuales, destacando las tendencias más

Multitud de Trabajadores 124

significativas y proporcionando perspectivas y recomendaciones basadas en la

información agregada.

Al combinar técnicas tradicionales de PLN con MLGs de esta manera, puedes procesar

eficientemente grandes cantidades de datos textuales, extraer ideas significativas y

generar informes de alta calidad mientras optimizas los recursos computacionales y los

costos.

Al embarcarte en tus proyectos de PLN, es esencial evaluar cuidadosamente los

requisitos y restricciones específicos de cada tarea y considerar cómo los métodos

tradicionales de PLN y los LLMs pueden aprovecharse en conjunto para lograr los

mejores resultados. Al combinar la eficiencia y precisión de las técnicas tradicionales

con la versatilidad y potencia de los LLMs, puedes crear soluciones de PLN altamente

efectivas y económicas que aporten valor a tus usuarios y partes interesadas.

Uso de Herramientas

En el ámbito del desarrollo de aplicaciones impulsadas por IA, el concepto de

“uso de herramientas” o “llamada a funciones” ha surgido como una técnica poderosa

que permite a su LLM conectarse a herramientas externas, APIs, funciones, bases de

datos y otros recursos. Este enfoque permite un conjunto más rico de comportamientos

que la simple generación de texto, y más interacciones dinámicas entre sus componentes

de IA y el resto del ecosistema de su aplicación. Como examinaremos en este capítulo,

el uso de herramientas también le da la opción de hacer que su modelo de IA genere

datos de manera estructurada.

¿Qué es el Uso de Herramientas?

El uso de herramientas, también conocido como llamada a funciones, es una técnica

que permite a los desarrolladores especificar una lista de funciones con las que un LLM

Uso de Herramientas 126

puede interactuar durante el proceso de generación. Estas herramientas pueden variar

desde simples funciones de utilidad hasta APIs complejas o consultas a bases de datos. Al

proporcionar al LLM acceso a estas herramientas, los desarrolladores pueden extender

las capacidades del modelo y permitirle realizar tareas que requieren conocimiento o

acciones externas.

Figura 8. Ejemplo de una definición de función para un trabajador de IA que analiza documentos

1 FUNCTION = {

2 name: "save_analysis",

3 description: "Save analysis data for document",

4 parameters: {

5 type: "object",

6 properties: {

7 title: {

8 type: "string",

9 maxLength: 140

10 },

11 summary: {

12 type: "string",

13 description: "comprehensive multi-paragraph summary with

14 overview and list of sections (if applicable)"

15 },

16 tags: {

17 type: "array",

18 items: {

19 type: "string",

20 description: "lowercase tags representing main themes

21 of the document"

22 }

23 }

24 },

25 "required": %w[title summary tags]

26 }

27 }.freeze

La idea clave detrás del uso de herramientas es dar al LLM la capacidad de seleccionar

y ejecutar dinámicamente las herramientas apropiadas según la entrada del usuario o

la tarea en cuestión. En lugar de depender únicamente del conocimiento pre-entrenado

Uso de Herramientas 127

del modelo, el uso de herramientas permite al LLM aprovechar recursos externos para

generar respuestas más precisas, relevantes y procesables. El uso de herramientas hace

que técnicas como RAG (Generación Aumentada por Recuperación) sean mucho más

fáciles de implementar de lo que serían de otro modo.

Ten en cuenta que, a menos que se indique lo contrario, este libro asume que tu

modelo de IA no tiene acceso a ninguna herramienta incorporada del lado del

servidor. Cualquier herramienta que desees poner a disposición de tu IA debe ser

declarada explícitamente por ti en cada solicitud de API, con provisiones para

gestionar su ejecución si y cuando tu IA te indique que le gustaría usar esa

herramienta en su respuesta.

El Potencial del Uso de Herramientas

El uso de herramientas abre un amplio abanico de posibilidades para las aplicaciones

impulsadas por IA. Aquí hay algunos ejemplos de lo que se puede lograr con el uso de

herramientas:

1. Chatbots y Asistentes Virtuales: Al conectar un LLM con herramientas externas,

los chatbots y asistentes virtuales pueden realizar tareas más complejas, como

recuperar información de bases de datos, ejecutar llamadas a API o interactuar

con otros sistemas. Por ejemplo, un chatbot podría usar una herramienta CRM

para cambiar el estado de una operación según la solicitud del usuario.

2. Análisis de Datos y Perspectivas: Los LLMs pueden conectarse a herramientas

o bibliotecas de análisis de datos para realizar tareas avanzadas de procesamiento

de datos. Esto permite a las aplicaciones generar perspectivas, realizar análisis

comparativos o proporcionar recomendaciones basadas en datos en respuesta a

consultas de usuarios.

Uso de Herramientas 128

3. Búsqueda y Recuperación de Información: El uso de herramientas permite a los

LLMs interactuar con motores de búsqueda, bases de datos vectoriales u otros

sistemas de recuperación de información. Al transformar las consultas de los

usuarios en consultas de búsqueda, el LLM puede recuperar información relevante

de múltiples fuentes y proporcionar respuestas completas a las preguntas de los

usuarios.

4. Integración con Servicios Externos: El uso de herramientas permite una

integración perfecta entre aplicaciones impulsadas por IA y servicios o APIs

externos. Por ejemplo, un LLM podría interactuar con una API del clima para

proporcionar actualizaciones meteorológicas en tiempo real o con una API de

traducción para generar respuestas multilingües.

El Flujo de Trabajo del Uso de Herramientas

El flujo de trabajo del uso de herramientas típicamente involucra cuatro pasos clave:

1. Incluir definiciones de funciones en tu contexto de solicitud

2. Selección dinámica (o explícita) de herramientas

3. Ejecución de función(es)

4. Continuación opcional del prompt original

Revisemos cada uno de estos pasos en detalle.

Incluir definiciones de funciones en tu contexto de
solicitud

La IA sabe qué herramientas tiene a su disposición porque tú le proporcionas una lista

como parte de tu solicitud de completado (típicamente definida como funciones usando

una variante del esquema JSON).

Uso de Herramientas 129

La sintaxis precisa de la definición de herramientas es específica del modelo.

Así es como defines una función get_weather en Claude 3:

1 {

2 "name": "get_weather",

3 "description": "Get the current weather in a given location",

4 "input_schema": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA"

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 }

16 },

17 "required": ["location"]

18 }

19 }

Y así es como definirías la misma función para GPT-4, pasándola como el valor del

parámetro tools:

1 {

2 "name": "get_current_weather",

3 "description": "Get the current weather in a given location",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA",

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

Uso de Herramientas 130

15 },

16 },

17 "required": ["location"],

18 },

19 }

¡Casi lo mismo, excepto diferente sin razón aparente! Qué molesto.

Las definiciones de funciones especifican nombre, descripción y parámetros de entrada.

Los parámetros de entrada pueden definirse más detalladamente utilizando atributos

como enumeraciones para limitar los valores aceptables, y especificando si un parámetro

es obligatorio o no.

Además de las definiciones de funciones propiamente dichas, también puedes incluir

instrucciones o contexto sobre por qué y cómo usar la función en la directiva del sistema.

Por ejemplo, mi herramienta de búsqueda web en Olympia incluye esta directiva del

sistema, que le recuerda a la IA que tiene las herramientas mencionadas a su disposición:

1 The `google_search` and `realtime_search` functions let you do research

2 on behalf of the user. In contrast to Google, realtime search is powered

3 by Perplexity and provides real-time information to curated current events

4 databases and news sources. Make sure to include URLs in your response so

5 user can do followup research.

Proporcionar descripciones detalladas se considera el factor más importante en el

rendimiento de las herramientas. Tus descripciones deberían explicar cada detalle sobre

la herramienta, incluyendo:

• Qué hace la herramienta

• Cuándo debe usarse (y cuándo no)

• Qué significa cada parámetro y cómo afecta al comportamiento de la herramienta

Uso de Herramientas 131

• Cualquier advertencia o limitación importante que aplique a la implementación

de la herramienta

Cuanto más contexto puedas proporcionar a la IA sobre tus herramientas, mejor será

su capacidad para decidir cuándo y cómo usarlas. Por ejemplo, Anthropic recomienda

al menos 3-4 oraciones por descripción de herramienta para su serie Claude 3, más si la

herramienta es compleja.

No es necesariamente intuitivo, pero las descripciones también se consideran más

importantes que los ejemplos. Si bien puedes incluir ejemplos de cómo usar una

herramienta en su descripción o en el prompt que la acompaña, esto esmenos importante

que tener una explicación clara y completa del propósito y los parámetros de la

herramienta. Solo añade ejemplos después de haber desarrollado completamente la

descripción.

Aquí hay un ejemplo de una especificación de función de API al estilo de Stripe:

1 {

2 "name": "createPayment",

3 "description": "Create a new payment request",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "transaction_amount": {

8 "type": "number",

9 "description": "The amount to be paid"

10 },

11 "description": {

12 "type": "string",

13 "description": "A brief description of the payment"

14 },

15 "payment_method_id": {

16 "type": "string",

17 "description": "The payment method to be used"

18 },

19 "payer": {

20 "type": "object",

21 "description": "Information about the payer, including their name,

Uso de Herramientas 132

22 email, and identification number",

23 "properties": {

24 "name": {

25 "type": "string",

26 "description": "The payer's name"

27 },

28 "email": {

29 "type": "string",

30 "description": "The payer's email address"

31 },

32 "identification": {

33 "type": "object",

34 "description": "The payer's identification number",

35 "properties": {

36 "type": {

37 "type": "string",

38 "description": "Identification document (e.g. CPF, CNPJ)"

39 },

40 "number": {

41 "type": "string",

42 "description": "The identification number"

43 }

44 },

45 "required": ["type", "number"]

46 }

47 },

48 "required": ["name", "email", "identification"]

49 }

50 }

51 }

En la práctica, algunos modelos tienen dificultades para manejar

especificaciones de funciones anidadas y tipos de datos de salida complejos

como arreglos, diccionarios, etc. Pero en teoría, ¡deberías poder proporcionar

especificaciones de JSON Schema de profundidad arbitraria!

Uso de Herramientas 133

Selección Dinámica de Herramientas

Cuando ejecutas un completado de chat que incluye definiciones de herramientas, el

LLM selecciona dinámicamente la(s) herramienta(s) más apropiada(s) para usar y genera

los parámetros de entrada requeridos para cada herramienta.

En la práctica, la capacidad de la IA para llamar exactamente a la función correcta

y seguir exactamente tu especificación para las entradas es variable. Reducir el

hiperparámetro de temperatura a 0.0 ayuda mucho, pero por experiencia aún verás

errores ocasionales. Esos fallos incluyen nombres de funciones alucinados, parámetros

de entrada mal nombrados o simplemente faltantes. Los parámetros se pasan como

JSON, lo que significa que a veces verás errores causados por JSON truncado, mal

citado o dañado de alguna otra manera.

Los patrones de Self Healing Data pueden ayudar a corregir

automáticamente las llamadas a funciones que fallan debido a errores

de sintaxis.

Selección Forzada (o Explícita) de Herramientas

Algunos modelos te dan la opción de forzar la llamada de una función particular, como

un parámetro en la solicitud. De lo contrario, la decisión de llamar o no a la función

queda completamente a discreción de la IA.

La capacidad de forzar una llamada a función es crucial en ciertos escenarios

donde deseas asegurar que una herramienta o función específica se ejecute,

independientemente del proceso de selección dinámica de la IA. Hay varias razones por

las que esta capacidad es importante:

1. Control Explícito: Puedes estar usando la IA como un Componente Discreto o en

un flujo de trabajo predefinido que requiere la ejecución de una función particular

Uso de Herramientas 134

en un momento específico. Al forzar la llamada, puedes garantizar que la función

deseada sea invocada en lugar de tener que pedírselo amablemente a la IA.

2. Depuración y Pruebas: Durante el desarrollo y prueba de aplicaciones impulsadas

por IA, la capacidad de forzar llamadas a funciones es invaluable para propósitos

de depuración. Al activar explícitamente funciones específicas, puedes aislar

y probar componentes individuales de tu aplicación. Esto te permite verificar

la corrección de las implementaciones de funciones, validar los parámetros de

entrada y asegurar que se devuelvan los resultados esperados.

3. Manejo de Casos Límite: Puede haber casos límite o escenarios excepcionales

donde el proceso de selección dinámica de la IA podría no elegir ejecutar una

función que debería, y tú lo sabes basado en procesos externos. En tales casos, tener

la capacidad de forzar una llamada a función te permite manejar estas situaciones

explícitamente. Define reglas o condiciones en la lógica de tu aplicación para

determinar cuándo anular la discreción de la IA.

4. Consistencia y Reproducibilidad: Si tienes una secuencia específica de funciones

que necesitan ejecutarse en un orden particular, forzar las llamadas garantiza

que se siga la misma secuencia cada vez. Esto es especialmente importante en

aplicaciones donde la consistencia y el comportamiento predecible son críticos,

como en sistemas financieros o simulaciones científicas.

5. Optimización del Rendimiento: En algunos casos, forzar una llamada a función

puede llevar a optimizaciones de rendimiento. Si sabes que una función específica

es necesaria para una tarea particular y que el proceso de selección dinámica de la

IA podría introducir sobrecarga innecesaria, puedes evitar el proceso de selección e

invocar directamente la función requerida. Esto puede ayudar a reducir la latencia

y mejorar la eficiencia general de tu aplicación.

En resumen, la capacidad de forzar llamadas a funciones en aplicaciones impulsadas por

IA proporciona control explícito, ayuda en la depuración y pruebas, maneja casos límite,

asegura consistencia y reproducibilidad. Es una herramienta poderosa en tu arsenal, pero

necesitamos discutir un aspecto más de esta importante característica.

Uso de Herramientas 135

En muchos casos de uso de toma de decisiones, siempre queremos que

el modelo haga una llamada a función y puede que nunca queramos que

el modelo responda solo con su conocimiento interno. Por ejemplo, si

estás enrutando entre múltiples modelos especializados en diferentes tareas

(entrada multilingüe, matemáticas, etc.), puedes usar el modelo de llamada

a funciones para delegar solicitudes a uno de los modelos auxiliares y nunca

responder independientemente.

Parámetro de Selección de Herramienta

GPT-4 y otros modelos de lenguaje que soportan llamadas a funciones te dan un

parámetro tool_choice para controlar si el uso de herramientas es requerido como

parte de un completado. Este parámetro tiene tres valores posibles:

• auto da a la IA total discreción sobre usar una herramienta o simplemente

responder

• required le dice a la IA que debe llamar a una herramienta en lugar de responder,

pero deja la selección de la herramienta a criterio de la IA

• La tercera opción es establecer el parámetro del name_of_function que deseas

forzar. Más sobre esto en la siguiente sección.

Ten en cuenta que si estableces tool choice como required, el modelo

se verá forzado a elegir la función más relevante para llamar entre las

proporcionadas, incluso si ninguna se ajusta realmente al prompt. Al

momento de la publicación, no conozco ningún modelo que devuelva una

respuesta tool_calls vacía, o que use alguna otra forma de hacerte saber

que no encontró una función adecuada para llamar.

Uso de Herramientas 136

Forzar una Función Para Obtener Salida Estructurada

La capacidad de forzar una llamada a función te proporciona una manera de obtener

datos estructurados de una completación de chat en lugar de tener que extraerlos tú

mismo de su respuesta en texto plano.

¿Por qué es tan importante forzar funciones para obtener salida estructurada? En

pocas palabras, porque la extracción de datos estructurados de la salida de un LLM

es un dolor de cabeza. Puedes hacer tu vida un poco más fácil pidiendo los datos en

XML, pero entonces tienes que analizar XML. ¿Y qué haces cuando ese XML falta

porque tu IA respondió: “Lo siento, pero no puedo generar los datos que solicitaste

porque bla, bla, bla…”?

Cuando uses herramientas de esta manera:

• Probablemente deberías definir una única herramienta en tu solicitud

• Recuerda forzar el uso de su función utilizando el parámetro tool_choice.

• Recuerda que el modelo pasará la entrada a la herramienta, por lo que el nombre

de la herramienta y la descripción deben ser desde la perspectiva del modelo, no

la tuya.

Este último punto merece un ejemplo para mayor claridad. Digamos que estás pidiendo

a la IA que haga análisis de sentimiento sobre texto de usuario. El nombre de la función

no sería analyze_sentiment, sino algo como save_sentiment_analysis. La IA es

quien realiza el análisis de sentimiento, no la herramienta. Todo lo que la herramienta

está haciendo (desde la perspectiva de la IA) es guardar los resultados del análisis.

Aquí hay un ejemplo de cómo usar Claude 3 para registrar un resumen de una imagen

en JSON bien estructurado, esta vez desde la línea de comandos usando curl:

Uso de Herramientas 137

1 curl https://api.anthropic.com/v1/messages \

2 --header "content-type: application/json" \

3 --header "x-api-key: $ANTHROPIC_API_KEY" \

4 --header "anthropic-version: 2023-06-01" \

5 --header "anthropic-beta: tools-2024-04-04" \

6 --data \

7 '{

8 "model": "claude-3-sonnet-20240229",

9 "max_tokens": 1024,

10 "tools": [{

11 "name": "record_summary",

12 "description": "Record summary of image into well-structured JSON.",

13 "input_schema": {

14 "type": "object",

15 "properties": {

16 "key_colors": {

17 "type": "array",

18 "items": {

19 "type": "object",

20 "properties": {

21 "r": {

22 "type": "number",

23 "description": "red value [0.0, 1.0]"

24 },

25 "g": {

26 "type": "number",

27 "description": "green value [0.0, 1.0]"

28 },

29 "b": {

30 "type": "number",

31 "description": "blue value [0.0, 1.0]"

32 },

33 "name": {

34 "type": "string",

35 "description": "Human-readable color name

36 in snake_case, e.g.

37 \"olive_green\"or

38 \"turquoise\""

39 }

40 },

41 "required": ["r", "g", "b", "name"]

42 },

Uso de Herramientas 138

43 "description": "Key colors in the image. Four or less."

44 },

45 "description": {

46 "type": "string",

47 "description": "Image description. 1-2 sentences max."

48 },

49 "estimated_year": {

50 "type": "integer",

51 "description": "Estimated year that the image was taken,

52 if is it a photo. Only set this if the

53 image appears to be non-fictional.

54 Rough estimates are okay!"

55 }

56 },

57 "required": ["key_colors", "description"]

58 }

59 }],

60 "messages": [

61 {

62 "role": "user",

63 "content": [

64 {

65 "type": "image",

66 "source": {

67 "type": "base64",

68 "media_type": "'$IMAGE_MEDIA_TYPE'",

69 "data": "'$IMAGE_BASE64'"

70 }

71 },

72 {

73 "type": "text",

74 "text": "Use `record_summary` to describe this image."

75 }

76]

77 }

78]

79 }'

En el ejemplo proporcionado, estamos utilizando el modelo Claude 3 de Anthropic para

generar un resumen JSON estructurado de una imagen. Así es como funciona:

Uso de Herramientas 139

1. Definimos una única herramienta llamada record_summary en el array tools

de la carga útil de la solicitud. Esta herramienta es responsable de registrar un

resumen de la imagen en formato JSON bien estructurado.

2. La herramienta record_summary tiene un input_schema que especifica la

estructura esperada de la salida JSON. Define tres propiedades:

• key_colors: Un array de objetos que representa los colores clave en la

imagen. Cada objeto de color tiene propiedades para los valores rojo, verde

y azul (que van de 0.0 a 1.0) y un nombre de color legible por humanos en

formato snake_case.

• description: Una propiedad de tipo string para una breve descripción de

la imagen, limitada a 1-2 oraciones.

• estimated_year: Una propiedad entera opcional para el año estimado en

que se tomó la imagen, si parece ser una foto no ficticia.

3. En el array messages, proporcionamos los datos de la imagen como una cadena

codificada en base64 junto con el tipo de medio. Esto permite que el modelo

procese la imagen como parte de la entrada.

4. También indicamos a Claude que use la herramienta record_summary para

describir la imagen.

5. Cuando la solicitud se envía al modelo Claude 3, este analiza la imagen y genera

un resumen JSON basado en el input_schema especificado. El modelo extrae los

colores clave, proporciona una breve descripción y estima el año en que se tomó

la imagen (si corresponde).

6. El resumen JSON generado se pasa como parámetros a la herramienta record_-

summary, proporcionando una representación estructurada de las características

clave de la imagen.

Al utilizar la herramienta record_summary con un input_schema bien definido,

podemos obtener un resumen JSON estructurado de una imagen sin depender de la

Uso de Herramientas 140

extracción de texto plano. Este enfoque asegura que la salida siga un formato consistente

y pueda ser fácilmente analizada y procesada por los componentes posteriores de la

aplicación.

La capacidad de forzar una llamada a función y especificar la estructura de salida

esperada es una característica poderosa del uso de herramientas en aplicaciones basadas

en IA. Permite a los desarrolladores tener más control sobre la salida generada y

simplifica la integración de datos generados por IA en el flujo de trabajo de su aplicación.

Ejecución de Función(es)

Has definido funciones y has indicado a tu IA, que decidió que debería llamar a una de

tus funciones. Ahora es el momento de que tu código de aplicación o biblioteca, si estás

usando una gema Ruby como raix-rails, envíe la llamada a función y sus parámetros

a la implementación correspondiente en tu código de aplicación.

Tu código de aplicación decide qué hacer con los resultados de la ejecución de la función.

Tal vez lo que hay que hacer implica una sola línea de código en un lambda, o tal vez

implica llamar a una API externa. Tal vez implica llamar a otro componente de IA, o tal

vez implica cientos o incluso miles de líneas de código en el resto de tu sistema. Depende

completamente de ti.

A veces la llamada a función es el final de la operación, pero si los resultados representan

información en una cadena de pensamiento que debe ser continuada por la IA, entonces

tu código de aplicación necesita insertar los resultados de la ejecución en la transcripción

del chat y dejar que la IA continúe el procesamiento.

Por ejemplo, aquí hay una declaración de función de Raix utilizada por el

AccountManager de Olympia para comunicarse con nuestros clientes como parte de

una Orquestación de Flujo de Trabajo Inteligente para servicio al cliente.

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

Uso de Herramientas 141

1 class AccountManager

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 # lots of other functions...

6

7 function :notify_account_owner,

8 "Don't share UUID. Mention dollars if subscription changed",

9 message: { type: "string" } do |arguments|

10 account.owner.freeform_notify(

11 subject: "Account Change Notification",

12 message: arguments[:message]

13)

14 "Notified account owner"

15 end

Puede que no esté inmediatamente claro qué está sucediendo aquí, así que lo

desglosaremos.

1. La clase AccountManager define muchas funciones relacionadas con la gestión

de cuentas. Puede cambiar tu plan, agregar y eliminar miembros del equipo, entre

otras cosas.

2. Sus instrucciones de nivel superior le indican a AccountManager que debe

notificar al propietario de la cuenta sobre los resultados de la solicitud de cambio

de cuenta, utilizando la función notify_account_owner.

3. La definición concisa de la función incluye su:

• nombre

• descripción

• parámetros message: { type: "string" }

• un bloque para ejecutar cuando se llama a la función

Después de actualizar la transcripción con los resultados del bloque de función, se

llama nuevamente al método chat_completion. Este método es responsable de enviar

Uso de Herramientas 142

la transcripción actualizada de la conversación de vuelta al modelo de IA para su

procesamiento posterior. Nos referimos a este proceso como un bucle de conversación.

Cuando el modelo de IA recibe una nueva solicitud de finalización de chat con

una transcripción actualizada, tiene acceso a los resultados de la función ejecutada

previamente. Puede analizar estos resultados, incorporarlos a su proceso de toma

de decisiones y generar la siguiente respuesta o acción basándose en el contexto

acumulativo de la conversación. Puede elegir ejecutar funciones adicionales basándose

en el contexto actualizado, o puede generar una respuesta final al prompt original si

determina que no son necesarias más llamadas a funciones.

Continuación Opcional del Prompt Original

Cuando envías los resultados de las herramientas de vuelta al LLM y continúas

procesando el prompt original, la IA utiliza esos resultados para llamar a funciones

adicionales o generar una respuesta final en texto plano.

Algunos modelos como Command-R de Cohere pueden citar las

herramientas específicas que utilizaron en sus respuestas, proporcionando

transparencia y trazabilidad adicional.

Dependiendo del modelo en uso, los resultados de la llamada a la función vivirán en

mensajes de transcripción que tienen su propio rol especial o se reflejarán en alguna

otra sintaxis. Pero la parte importante es que esos datos estén en la transcripción, para

que la IA pueda considerarlos al decidir qué hacer a continuación.

https://openrouter.ai/models/cohere/command-r

Uso de Herramientas 143

Un error común (y potencialmente costoso) es olvidar agregar los resultados

de la función a la transcripción antes de continuar el chat. Como resultado,

la IA será consultada esencialmente de la misma manera que antes de llamar

a la función por primera vez. En otras palabras, desde el punto de vista de

la IA, aún no ha llamado a la función. Así que la llama de nuevo. Y otra

vez. Y otra vez, indefinidamente hasta que la interrumpas. ¡Esperemos que

tu contexto no fuera demasiado grande y tu modelo no fuera demasiado

costoso!

Mejores Prácticas para el Uso de Herramientas

Para aprovechar al máximo el uso de herramientas, considera las siguientes mejores

prácticas.

Definiciones Descriptivas

Proporciona nombres y descripciones claras y descriptivas para cada herramienta y

sus parámetros de entrada. Esto ayuda al LLM a comprender mejor el propósito y las

capacidades de cada herramienta.

Por experiencia puedo decirte que la sabiduría común que dice que “nombrar es

difícil” se aplica aquí; he visto resultados dramáticamente diferentes de los LLMs

solo cambiando los nombres de las funciones o la redacción de las descripciones. A

veces, eliminar descripciones mejora el rendimiento.

Uso de Herramientas 144

Procesamiento de Resultados de Herramientas

Al pasar los resultados de las herramientas de vuelta al LLM, asegúrate de que estén bien

estructurados y sean completos. Utiliza claves y valores significativos para representar

la salida de cada herramienta. Experimenta con diferentes formatos y observa cuál

funciona mejor, desde JSON hasta texto plano.

El Intérprete de Resultados aborda este desafío empleando IA para analizar los resultados

y proporcionar explicaciones, resúmenes o conclusiones clave comprensibles para

humanos.

Manejo de Errores

Implementa mecanismos robustos de manejo de errores para manejar casos donde el

LLM pueda generar parámetros de entrada inválidos o no soportados para las llamadas

a herramientas. Maneja y recupérate de manera elegante de cualquier error que pueda

ocurrir durante la ejecución de la herramienta.

¡Una cualidad sumamente agradable de la IA es que entiende los mensajes de error! Lo

que significa que si estás trabajando con una mentalidad rápida y práctica, simplemente

puedes capturar cualquier excepción generada en la implementación de una herramienta

y pasársela a la IA para que sepa lo que sucedió!

Por ejemplo, aquí hay una versión simplificada de la implementación de la búsqueda de

Google en Olympia:

Uso de Herramientas 145

1 def google_search(conversation, params)

2 conversation.update_cstatus("Searching Google...")

3 query = params[:query]

4 search = GoogleSearch.new(query).get_hash

5

6 conversation.update_cstatus("Summarizing results...")

7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)

8 rescue StandardError => e

9 Honeybadger.notify(e)

10 { error: e.message }.inspect

11 end

Las búsquedas de Google en Olympia son un proceso de dos pasos. Primero se realiza

la búsqueda, luego se resumen los resultados. Si hay un fallo, sin importar cuál sea,

el mensaje de excepción se empaqueta y se envía de vuelta a la IA. Esta técnica es el

fundamento de prácticamente todos los patrones de Manejo Inteligente de Errores

Por ejemplo, supongamos que la llamada a la API GoogleSearch falla debido a una

excepción 503 de Servicio No Disponible. Esto se propaga hasta el nivel superior de

rescate, y la descripción del error se envía de vuelta a la IA como resultado de la llamada

a la función. En lugar de mostrar al usuario una pantalla en blanco o un error técnico,

la IA dice algo como “Lo siento, pero no puedo acceder a mis capacidades de búsqueda

de Google en este momento. Puedo intentarlo más tarde, si lo deseas.”

Esto puede parecer solo un truco ingenioso, pero considera un tipo diferente de error,

uno donde la IA estaba llamando a una API externa y tenía control directo sobre

los parámetros a pasar a la API. ¿Quizás cometió un error en cómo generó esos

parámetros? Siempre que el mensaje de error de la API externa sea lo suficientemente

detallado, devolver el mensaje de error a la IA que realiza la llamada significa que puede

reconsiderar esos parámetros e intentarlo de nuevo. Automáticamente. Sin importar cuál

fue el error.

Ahora piensa en lo que se necesitaría para replicar ese tipo de manejo robusto de errores

en código normal. Es prácticamente imposible.

Uso de Herramientas 146

Refinamiento Iterativo

Si el LLM no está recomendando las herramientas apropiadas o está generando

respuestas subóptimas, itera en las definiciones de herramientas, descripciones y

parámetros de entrada. Refina y mejora continuamente la configuración de las

herramientas basándote en el comportamiento observado y los resultados deseados.

1. Comienza con definiciones simples de herramientas: Empieza definiendo

herramientas con nombres, descripciones y parámetros de entrada claros y

concisos. Evita complicar excesivamente la configuración de las herramientas

inicialmente y concéntrate en la funcionalidad principal. Por ejemplo, si quieres

guardar los resultados de un análisis de sentimiento, comienza con una definición

básica como:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze user-provided text and generate sentiment score",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "score": {

8 "type": "float",

9 "description": "sentiment score from -1 (negative) to 1 (positive)"

10 }

11 },

12 "required": ["score"]

13 }

14 }

2. Probar y observar: Una vez que tenga las definiciones iniciales de las herramientas

establecidas, pruébelas con diferentes instrucciones y observe cómo el MLG

interactúa con la herramienta. Preste atención a la calidad y relevancia de

las respuestas generadas. Si el MLG está generando respuestas subóptimas, es

momento de refinar las definiciones de las herramientas.

Uso de Herramientas 147

3. Refinar descripciones: Si el MLG está malinterpretando el propósito de una

herramienta, intente refinar la descripción de lamisma. Proporcionemás contexto,

ejemplos o aclaraciones para guiar al MLG en el uso efectivo de la herramienta.

Por ejemplo, puede actualizar la descripción de la herramienta de análisis de

sentimientos para abordar más específicamente el tono emocional del texto que

se está analizando:

1 {

2 "name": "save_sentiment_score",

3 "description": "Determine the overall emotional tone of a piece of text,

4 such as customer reviews, social media posts, or feedback comments.",

5 ...

6 }

4. Ajustar los parámetros de entrada: Si el LLM está generando parámetros de

entrada inválidos o irrelevantes para una herramienta, considera ajustar las

definiciones de los parámetros. Añade restricciones más específicas, reglas de

validación o ejemplos para clarificar el formato de entrada esperado.

5. Iterar basándose en la retroalimentación: Monitorea continuamente el

rendimiento de tus herramientas y recopila comentarios de los usuarios o

partes interesadas. Utiliza esta retroalimentación para identificar áreas de mejora

y realizar refinamientos iterativos en las definiciones de las herramientas. Por

ejemplo, si los usuarios informan que el análisis no está manejando bien el

sarcasmo, puedes añadir una nota en la descripción:

Uso de Herramientas 148

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze the sentiment of a given text and return a sentiment

4 score between -1 (negative) and 1 (positive). Note: Sarcasm should be

5 considered negative.",

6 ...

7 }

Mediante el refinamiento iterativo de sus definiciones de herramientas basado en el

comportamiento observado y la retroalimentación, puede mejorar gradualmente el

rendimiento y la efectividad de su aplicación basada en IA. Recuerde mantener las

definiciones de herramientas claras, concisas y enfocadas en la tarea específica en

cuestión. Pruebe y valide regularmente las interacciones de las herramientas para

asegurarse de que se alineen con los resultados deseados.

Composición y Encadenamiento de

Herramientas

Uno de los aspectos más poderosos del uso de herramientas que solo se ha mencionado

hasta ahora es la capacidad de componer y encadenar múltiples herramientas

para realizar tareas complejas. Al diseñar cuidadosamente las definiciones de sus

herramientas y sus formatos de entrada/salida, puede crear bloques de construcción

reutilizables que se pueden combinar de varias maneras.

Consideremos un ejemplo donde está construyendo un pipeline de análisis de datos para

su aplicación basada en IA. Podría tener las siguientes herramientas:

1. DataRetrieval: Una herramienta que obtiene datos de una base de datos o API

según criterios específicos.

2. DataProcessing: Una herramienta que realiza cálculos, transformaciones o

agregaciones en los datos recuperados.

Uso de Herramientas 149

3. DataVisualization: Una herramienta que presenta los datos procesados en un

formato amigable para el usuario, como gráficos o diagramas.

Al encadenar estas herramientas, puede crear un flujo de trabajo poderoso que recupera

datos relevantes, los procesa y presenta los resultados de manera significativa. Así es

como podría verse el flujo de trabajo del uso de herramientas:

1. El LLM recibe una consulta del usuario solicitando información sobre datos de

ventas para una categoría específica de productos.

2. El LLM selecciona la herramienta DataRetrieval y genera los parámetros de

entrada apropiados para obtener los datos de ventas relevantes de la base de datos.

3. Los datos recuperados se “pasan” a la herramienta DataProcessing, que calcula

métricas como ingresos totales, precio promedio de venta y tasa de crecimiento.

4. Los datos procesados son entonces digeridos por la herramienta

DataVisualization, que crea un gráfico o diagrama visualmente atractivo

para representar la información, devolviendo la URL del gráfico al LLM.

5. Finalmente, el LLM genera una respuesta formateada a la consulta del usuario

usando markdown, incorporando los datos visualizados y proporcionando un

resumen de los hallazgos clave.

Al componer estas herramientas juntas, puede crear un flujo de trabajo de análisis de

datos sin problemas que se puede integrar fácilmente en su aplicación. La belleza de este

enfoque es que cada herramienta puede desarrollarse y probarse de forma independiente,

y luego combinarse de diferentes maneras para resolver varios problemas.

Para permitir una composición y encadenamiento fluido de herramientas, es importante

definir formatos claros de entrada y salida para cada herramienta.

Por ejemplo, la herramienta DataRetrieval podría aceptar parámetros como los

detalles de conexión a la base de datos, nombre de tabla y condiciones de consulta, y

devolver el conjunto de resultados como un objeto JSON estructurado. La herramienta

Uso de Herramientas 150

DataProcessing puede entonces esperar este objeto JSON como entrada y producir

un objeto JSON transformado como salida. Al estandarizar el flujo de datos entre

herramientas, puede asegurar la compatibilidad y la reutilización.

Mientras diseña su ecosistema de herramientas, piense en cómo se pueden combinar

diferentes herramientas para abordar casos de uso comunes en su aplicación. Considere

crear herramientas de alto nivel que encapsulen flujos de trabajo comunes o lógica de

negocio, facilitando que el LLM las seleccione y use de manera efectiva.

Recuerde, el poder del uso de herramientas radica en la flexibilidad y modularidad

que proporciona. Al desglosar tareas complejas en herramientas más pequeñas y

reutilizables, puede crear una aplicación robusta y adaptable basada en IA que puede

abordar una amplia gama de desafíos.

Direcciones Futuras

A medida que evoluciona el campo del desarrollo de aplicaciones basadas en IA,

podemos esperar más avances en las capacidades de uso de herramientas. Algunas

direcciones futuras potenciales incluyen:

1. Uso de Herramientas Múltiples: Los LLM pueden ser capaces de decidir cuántas

veces necesitan usar herramientas para generar una respuesta satisfactoria. Esto

podría involucrar múltiples rondas de selección y ejecución de herramientas

basadas en resultados intermedios.

2. Herramientas Predefinidas: Las plataformas de IA pueden proporcionar un

conjunto de herramientas predefinidas que los desarrolladores pueden aprovechar

de inmediato, como intérpretes de Python, herramientas de búsqueda web o

funciones de utilidad comunes.

3. Integración Perfecta: A medida que el uso de herramientas se vuelve más

prevalente, podemos esperar una mejor integración entre las plataformas de

Uso de Herramientas 151

IA y los marcos de desarrollo populares, facilitando a los desarrolladores la

incorporación del uso de herramientas en sus aplicaciones.

El uso de herramientas es una técnica poderosa que permite a los desarrolladores

aprovechar todo el potencial de los LLM en aplicaciones basadas en IA. Al conectar LLM

con herramientas y recursos externos, puede crear sistemas más dinámicos, inteligentes

y conscientes del contexto que pueden adaptarse a las necesidades del usuario y

proporcionar información y acciones valiosas.

Si bien el uso de herramientas ofrece inmensas posibilidades, es importante ser

consciente de los posibles desafíos y consideraciones. Un aspecto clave es gestionar

la complejidad de las interacciones entre herramientas y asegurar la estabilidad y

confiabilidad del sistema en general. Necesita manejar escenarios donde las llamadas a

herramientas pueden fallar, devolver resultados inesperados o tener implicaciones de

rendimiento. Además, debe considerar medidas de seguridad y control de acceso para

prevenir el uso no autorizado o malicioso de herramientas. Los mecanismos adecuados

de manejo de errores, registro y monitoreo son cruciales para mantener la integridad y

el rendimiento de su aplicación basada en IA.

Mientras exploras las posibilidades del uso de herramientas en tus propios proyectos,

recuerda comenzar con objetivos claros, diseñar definiciones de herramientas bien

estructuradas e iterar basándote en la retroalimentación y los resultados. Con el enfoque

y la mentalidad correctos, el uso de herramientas puede desbloquear nuevos niveles de

innovación y valor en tus aplicaciones impulsadas por IA

Procesamiento de Flujo

El procesamiento de flujo de datos a través de HTTP, también conocido como eventos

enviados por el servidor (SSE), es un mecanismo donde el servidor envía datos

continuamente al cliente a medida que están disponibles, sin necesidad de que el cliente

los solicite explícitamente. Como la respuesta de la IA se genera de manera incremental,

tiene sentido proporcionar una experiencia de usuario receptiva mostrando la salida

de la IA mientras se genera. Y de hecho, todas las APIs de proveedores de IA que

conozco ofrecen respuestas en streaming como una opción en sus puntos de conexión

de completado.

La razón por la que este capítulo aparece aquí en el libro, justo después de Using Tools,

es debido a lo poderoso que puede ser combinar el uso de herramientas con respuestas de

IA en vivo para los usuarios. Esto permite experiencias dinámicas e interactivas donde

la IA puede procesar la entrada del usuario, utilizar varias herramientas y funciones a

su discreción, y luego proporcionar respuestas en tiempo real.

Procesamiento de Flujo 153

Para lograr esta interacción fluida, necesitas escribir manejadores de flujo que puedan

despachar tanto las llamadas a funciones de herramientas invocadas por la IA como

la salida de texto plano al usuario final. La necesidad de realizar un bucle después de

procesar una función de herramienta añade un desafío interesante al trabajo.

Implementando un ReplyStream

Para demostrar cómo se puede implementar el procesamiento de flujo, este capítulo

realizará un análisis profundo de una versión simplificada de la clase ReplyStream

que se utiliza en Olympia. Las instancias de esta clase pueden pasarse como el parámetro

stream en bibliotecas cliente de IA como ruby-openai y openrouter

Así es como uso ReplyStream en el PromptSubscriber de Olympia, que escucha a

través de Wisper la creación de nuevos mensajes de usuario.

1 class PromptSubscriber

2 include Raix::ChatCompletion

3 include Raix::PromptDeclarations

4

5 # many other declarations omitted...

6

7 prompt text: -> { user_message.content },

8 stream: -> { ReplyStream.new(self) },

9 until: -> { bot_message.complete? }

10

11 def message_created(message) # invoked by Wisper

12 return unless message.role.user? && message.content?

13

14 # rest of the implementation omitted...

Además de una referencia context al suscriptor de prompt que lo instanció, la clase

ReplyStream también tiene variables de instancia para almacenar un búfer de datos

recibidos y matrices para realizar un seguimiento de los nombres de funciones y

argumentos invocados durante el procesamiento del flujo.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

Procesamiento de Flujo 154

1 class ReplyStream

2 attr_accessor :buffer, :f_name, :f_arguments, :context

3

4 delegate :bot_message, :dispatch, to: :context

5

6 def initialize(context)

7 self.context = context

8 self.buffer = []

9 self.f_name = []

10 self.f_arguments = []

11 end

12

13 def call(chunk, bytesize = nil)

14 # ...

15 end

16

17 # ...

18 end

El método initialize configura el estado inicial de la instancia de ReplyStream,

inicializando el búfer, el contexto y otras variables.

El método call es el punto de entrada principal para procesar los datos en streaming.

Recibe un chunk de datos (representado como un hash) y un parámetro opcional

bytesize, que en nuestro ejemplo no se utiliza. Dentro de este método, la clase utiliza

coincidencia de patrones para manejar diferentes escenarios basados en la estructura del

fragmento recibido.

Llamar a deep_symbolize_keys en el fragmento ayuda a hacer que

la coincidencia de patrones sea más elegante, permitiéndonos operar con

símbolos en lugar de cadenas de texto.

Procesamiento de Flujo 155

1 def call(chunk, _bytesize)

2 case chunk.deep_symbolize_keys

3

4 in { # match function name

5 choices: [

6 {

7 delta: {

8 tool_calls: [

9 { index: index, function: {name: name} }

10]

11 }

12 }

13] }

14

15 f_name[index] = name

El primer patrón que estamos buscando es una llamada a herramienta junto con su

nombre de función asociado. Si detectamos uno, lo guardamos en el array f_name.

Almacenamos los nombres de funciones en un array indexado, ya que el modelo es

capaz de realizar llamadas a funciones en paralelo, enviando más de una función para

ejecutar al mismo tiempo.

La llamada paralela a funciones es la capacidad de un modelo de IA para realizar

múltiples llamadas a funciones juntas, permitiendo que los efectos y resultados de

estas llamadas a funciones se resuelvan en paralelo. Esto es especialmente útil si las

funciones tardan mucho tiempo, y reduce los viajes de ida y vuelta con la API, lo que

a su vez puede ahorrar una cantidad significativa de gasto de tokens.

A continuación, necesitamos buscar los argumentos correspondientes a las llamadas a

funciones.

Procesamiento de Flujo 156

1 in { # match arguments

2 choices: [

3 {

4 delta: {

5 tool_calls: [

6 {

7 index: index, function: {arguments: argument }

8 }

9]

10 }

11 }

12]}

13

14 f_arguments[index] ||= "" # initialize if not already

15 f_arguments[index] << argument

De manera similar a como manejamos los nombres de funciones, guardamos los

argumentos en un array indexado.

A continuación, buscamos los mensajes destinados al usuario, que llegarán desde

el servidor un token a la vez y se asignarán a la variable new_content. También

necesitamos estar atentos al finish_reason. Este será nil hasta el último fragmento

de la secuencia de salida.

1 in {

2 choices: [

3 { delta: {content: new_content}, finish_reason: finish_reason }

4]}

5

6 # you could transmit every chunk to the user here...

7 buffer << new_content.to_s

8

9 if finish_reason.present?

10 finalize

11 elsif new_content.to_s.match?(/\n\n/)

12 send_to_client # ...or buffer and transmit once per paragraph

13 end

De manera importante, agregamos una expresión de coincidencia de patrones para

manejar los mensajes de error enviados por el proveedor del modelo de IA. En los

Procesamiento de Flujo 157

entornos de desarrollo local, lanzamos una excepción, pero en producción, registramos

el error y finalizamos.

1 in { error: { message: } }

2 if Rails.env.local?

3 raise message

4 else

5 Honeybadger.notify("AI Error: #{message}")

6 finalize

7 end

La cláusula else final del case se ejecutará si ninguno de los patrones anteriores coincidió.

Es simplemente una medida de seguridad para que nos enteremos si el modelo de IA

comienza a enviarnos fragmentos no reconocidos.

1 else

2 Honeybadger.notify("Unrecognized Chunk: #{chunk}")

3 end

4 end

El método send_to_client es responsable de enviar el contenido almacenado en el

búfer al cliente. Verifica que el búfer no esté vacío, actualiza el contenido del mensaje

del bot, renderiza el mensaje del bot y guarda el contenido en la base de datos para

asegurar la persistencia de datos.

Procesamiento de Flujo 158

1 def send_to_client

2 # no need to process pure whitespace

3 return if buffer.join.squish.blank?

4

5 # set the buffer content on the bot message

6 content = buffer.join

7 bot_message.content = content

8

9 # save to database so that we never lose data

10 # even if the stream doesn't terminate correctly

11 bot_message.update_column(:content, content)

12

13 # update content via websocket

14 ConversationRenderer.update(bot_message)

15 end

El método finalize se llama cuando el procesamiento del stream está completo.

Despacha las llamadas a funciones si se recibieron algunas durante el stream, actualiza el

mensaje del bot con el contenido final y otra información relevante, y reinicia el historial

de llamadas a funciones

1 def finalize

2 if f_name.any?

3 f_name.each_with_index do |name, index|

4 # takes care of calling the function wherever it's implemented

5 dispatch(name:, arguments: JSON.parse(f_arguments[index]))

6 end

7

8 # reset the function call history

9 f_name.clear

10 f_arguments.clear

11 else

12 content = buffer.join.presence

13 bot_message.update!(content:, complete: true)

14 ConversationRenderer.update(bot_message)

15 end

16 end

Si el modelo decide llamar a una función, necesitas “despachar” esa llamada a función

Procesamiento de Flujo 159

(nombre y argumentos) de tal manera que se ejecute y los mensajes de function_call

y function_result se añadan a la transcripción de la conversación

En mi experiencia, es mejor manejar la creación de mensajes de función en un solo lugar

de tu base de código, en lugar de depender de las implementaciones de herramientas.

Es más limpio, pero también tiene una razón práctica muy importante: si el modelo

de IA llama a una función, y no ve los mensajes resultantes de la llamada y el

resultado en la transcripción cuando haces el bucle, volverá a llamar a la misma función.

Potencialmente para siempre. Recuerda que la IA es completamente sin estado, así que

a menos que hagas eco de esas llamadas a funciones de vuelta a ella, es como si nunca

hubieran ocurrido.

1 # PromptSubscriber#dispatch

2

3 def dispatch(name:, arguments:)

4 # adds a function_call message to the conversation transcript

5 # plus dispatches to tool and returns result

6 conversation.function_call!(name, arguments).then do |result|

7 # add function result message to the transcript

8 conversation.function_result!(name, result)

9 end

10 end

Limpiar el historial de llamadas a funciones después del envío es tan

importante como asegurarse de que la llamada y los resultados terminen

en tu transcripción, para que no sigas llamando las mismas funciones una y

otra vez cada vez que iteras el bucle.

El “Bucle de Conversación”

I sigomencionando el bucle, pero si eres nuevo en las llamadas a funciones, puede que no

sea obvio por qué necesitamos hacer un bucle. La razón es que una vez que la IA te “pide”

Procesamiento de Flujo 160

ejecutar funciones de herramientas en su nombre, dejará de responder. Depende de ti

ejecutar esas funciones, recopilar los resultados, añadir los resultados a la transcripción y

luego enviar el prompt original nuevamente para obtener un nuevo conjunto de llamadas

a funciones o resultados dirigidos al usuario.

En la clase PromptSubscriber, usamos el método prompt del módulo

PromptDeclarations para definir el comportamiento del bucle de conversación.

El parámetro until está configurado como -> { bot_message.complete? }, lo

que significa que el bucle continuará hasta que el bot_message esté marcado como

completo.

1 prompt text: -> { user_message.content },

2 stream: -> { ReplyStream.new(self) },

3 until: -> { bot_message.complete? }

Pero, ¿cuándo se marca bot_message como completo? Si lo has olvidado,

consulta la línea 13 del método finalize.

Repasemos toda la lógica del procesamiento de stream.

1. El PromptSubscriber recibe un nuevo mensaje del usuario a través del método

message_created, que es invocado por el sistema pub/sub Wisper cada vez que

el usuario final crea un nuevo prompt.

2. El método de clase prompt define de manera declarativa el comportamiento de

la lógica de completado de chat para el PromptSubscriber. El modelo de IA

ejecutará un completado de chat con el contenido del mensaje del usuario, una

nueva instancia de ReplyStream como parámetro de stream, y la condición de

bucle especificada.

3. El modelo de IA procesa el prompt y comienza a generar una respuesta. A

medida que se transmite la respuesta, se invoca el método call de la instancia

ReplyStream para cada fragmento de datos.

Procesamiento de Flujo 161

4. Si el modelo de IA decide llamar a una función de herramienta, el nombre de la

función y los argumentos se extraen del fragmento y se almacenan en los arrays

f_name y f_arguments, respectivamente.

5. Si el modelo de IA genera contenido visible para el usuario, este se almacena en

búfer y se envía al cliente a través del método send_to_client.

6. Una vez que se completa el procesamiento del stream, se llama al método

finalize. Si se invocaron funciones de herramienta durante el stream, estas se

despachan utilizando el método dispatch del PromptSubscriber.

7. El método dispatch agrega un mensaje function_call a la transcripción de

la conversación, ejecuta la función de herramienta correspondiente y agrega un

mensaje function_result a la transcripción con el resultado de la llamada a la

función.

8. Después de despachar las funciones de herramienta, se limpia el historial de

llamadas a funciones para evitar llamadas duplicadas en bucles subsiguientes.

9. Si no se invocaron funciones de herramienta, el método finalize actualiza el

bot_message con el contenido final, lo marca como completo y envía el mensaje

actualizado al cliente.

10. Se evalúa la condición de bucle -> { bot_message.complete? }. Si el bot_-

message no está marcado como completo, el bucle continúa y el prompt original

se envía nuevamente con la transcripción de conversación actualizada.

11. Los pasos 3-10 se repiten hasta que el bot_message se marca como completo,

lo que indica que el modelo de IA ha terminado de generar su respuesta y no es

necesario ejecutar más funciones de herramienta.

Al implementar este bucle de conversación, permites que el modelo de IA participe en

una interacción bidireccional con la aplicación, ejecutando funciones de herramienta

según sea necesario y generando respuestas visibles para el usuario hasta que la

conversación llegue a una conclusión natural.

La combinación del procesamiento de stream y el bucle de conversación permite

experiencias dinámicas e interactivas impulsadas por IA, donde el modelo de IA puede

Procesamiento de Flujo 162

procesar la entrada del usuario, utilizar varias herramientas y funciones, y proporcionar

respuestas en tiempo real basadas en el contexto evolutivo de la conversación.

Continuación Automática

Es importante tener en cuenta las limitaciones de la salida de IA. La mayoría de los

modelos tienen un número máximo de tokens que pueden generar en una sola respuesta,

que está determinado por el parámetro max_tokens. Si el modelo de IA alcanza este

límite mientras genera una respuesta, se detendrá abruptamente e indicará que la salida

fue truncada.

En la respuesta de streaming de la API de la plataforma de IA, puedes detectar esta

situación examinando la variable finish_reason en el fragmento. Si la finish_-

reason está configurada como "length" (o algún otro valor clave específico del

modelo), significa que el modelo alcanzó su límite máximo de tokens durante la

generación y la salida se ha cortado.

Una forma demanejar este escenario demanera elegante y proporcionar una experiencia

de usuario fluida es implementar unmecanismo de continuación automática en tu lógica

de procesamiento de stream. Al agregar un patrón de coincidencia para las razones de

finalización relacionadas con la longitud, puedes optar por hacer un bucle y continuar

automáticamente la salida desde donde se quedó.

Aquí hay un ejemplo intencionadamente simplificado de cómo puedes modificar el

método call en la clase ReplyStream para admitir la continuación automática:

Procesamiento de Flujo 163

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices: [

9 { delta: {content: new_content},

10 finish_reason: finish_reason }] }

11

12 buffer << new_content.to_s

13

14 if finish_reason.blank?

15 send_to_client if new_content.to_s.match?(/\n\n/)

16 elsif LENGTH_STOPS.include?(finish_reason)

17 continue_cutoff

18 else

19 finalize

20 end

21

22 # ...

23 end

24 end

25

26 private

27

28 def continue_cutoff

29 conversation.bot_message!(buffer.join, visible: false)

30 conversation.user_message!("please continue", visible: false)

31 bot_message.update_column(:created_at, Time.current)

32 end

En esta versión modificada, cuando el finish_reason indica una salida truncada,

en lugar de finalizar el stream, agregamos un par de mensajes a la transcripción

sin finalizarla, movemos el mensaje original orientado al usuario al “fondo” de la

transcripción actualizando su atributo created_at, y luego dejamos que ocurra el

bucle, para que la IA continúe generando donde se quedó.

Recuerda que el endpoint de completado de la IA es sin estado. Solo “sabe” lo que

Procesamiento de Flujo 164

le dices a través de la transcripción. En este caso, la forma en que comunicamos a

la IA que fue interrumpida es agregando mensajes “invisibles” (para el usuario final)

a la transcripción. Recuerda, sin embargo, que este es un ejemplo intencionalmente

simplificado. Una implementación real necesitaría realizar una gestión adicional de la

transcripción para asegurar que no desperdiciemos tokens y/o confundamos a la IA con

mensajes duplicados del asistente en la transcripción.

Una implementación real de auto-continuación también debería tener la llamada

“lógica de interruptor automático” implementada para prevenir bucles descontrolados.

La razón es que, dados ciertos tipos de indicaciones del usuario y configuraciones

bajas de max_tokens, la IA podría continuar generando salidas orientadas al usuario

indefinidamente.

Ten en cuenta que cada bucle requiere una solicitud separada, y que cada

solicitud consume tu transcripción completa nuevamente. Definitivamente deberías

considerar el equilibrio entre la experiencia del usuario y el uso de la API al decidir

si implementar la auto-continuación en tu aplicación. La auto-continuación en

particular puede ser peligrosamente costosa, especialmente cuando se utilizan

modelos comerciales premium.

Conclusión

El procesamiento de streams es un aspecto crítico en la construcción de aplicaciones

impulsadas por IA que combinan el uso de herramientas con respuestas de IA en tiempo

real. Al manejar eficientemente los datos en streaming desde las APIs de plataformas

de IA, puedes proporcionar una experiencia de usuario fluida e interactiva, manejar

respuestas grandes, optimizar el uso de recursos y gestionar errores con elegancia.

La clase Conversation::ReplyStream proporcionada demuestra cómo el

Procesamiento de Flujo 165

procesamiento de streams puede ser implementado en una aplicación Ruby utilizando

coincidencia de patrones y arquitectura dirigida por eventos. Al comprender y

aprovechar las técnicas de procesamiento de streams, puedes desbloquear todo el

potencial de la integración de IA en tus aplicaciones y ofrecer experiencias de usuario

poderosas y atractivas.

Datos Autorreparables

Los datos autorreparables son un enfoque poderoso para garantizar la integridad,

consistencia y calidad de los datos en las aplicaciones aprovechando las capacidades

de los modelos de lenguaje grande (LLMs). Esta categoría de patrones se centra en la

idea de utilizar la IA para detectar, diagnosticar y corregir automáticamente anomalías,

inconsistencias o errores en los datos, reduciendo así la carga sobre los desarrolladores

y manteniendo un alto nivel de fiabilidad de los datos.

En su esencia, los patrones de datos autorreparables reconocen que los datos son el

elemento vital de cualquier aplicación, y garantizar su precisión e integridad es crucial

para el funcionamiento adecuado y la experiencia del usuario de la aplicación. Sin

embargo, gestionar y mantener la calidad de los datos puede ser una tarea compleja

y que consume mucho tiempo, especialmente cuando las aplicaciones crecen en tamaño

y complejidad. Aquí es donde entra en juego el poder de la IA.

Datos Autorreparables 167

En los patrones de datos autorreparables, se emplean trabajadores de IA para monitorear

y analizar continuamente los datos de tu aplicación. Estos modelos tienen la capacidad

de comprender e interpretar patrones, relaciones y anomalías dentro de los datos. Al

aprovechar sus capacidades de procesamiento y comprensión del lenguaje natural,

pueden identificar posibles problemas o inconsistencias en los datos y tomar las acciones

apropiadas para rectificarlos.

El proceso de datos autorreparables típicamente involucra varios pasos clave:

1. Monitoreo de Datos: Los trabajadores de IA monitorean constantemente

los flujos de datos, bases de datos o sistemas de almacenamiento de la

aplicación, buscando cualquier señal de anomalías, inconsistencias o errores.

Alternativamente, puedes activar un componente de IA en reacción a una

excepción.

2. Detección de Anomalías: Cuando se detecta un problema, el trabajador de IA

analiza los datos en detalle para identificar la naturaleza específica y el alcance

del problema. Esto podría involucrar la detección de valores faltantes, formatos

inconsistentes o datos que violan reglas o restricciones predefinidas.

3. Diagnóstico y Corrección:Una vez que se identifica el problema, el trabajador de

IA utiliza su conocimiento y comprensión del dominio de datos para determinar el

curso de acción apropiado. Esto podría involucrar la corrección automática de los

datos, el llenado de valores faltantes o el marcado del problema para intervención

humana si es necesario.

4. Aprendizaje Continuo (opcional, dependiendo del caso de uso): A medida

que tu trabajador de IA encuentra y resuelve varios problemas de datos, puede

generar salidas que describan lo que sucedió y cómo respondió. Estos metadatos

pueden alimentar procesos de aprendizaje que te permiten (y quizás al modelo

subyacente, mediante ajuste fino) volverte más efectivo y eficiente con el tiempo

en la identificación y resolución de anomalías en los datos.

Al detectar y corregir automáticamente los problemas de datos, puedes asegurar que tu

Datos Autorreparables 168

aplicación opere con datos de alta calidad y confiables. Esto reduce el riesgo de errores,

inconsistencias o fallos relacionados con los datos que afecten la funcionalidad o la

experiencia del usuario de la aplicación.

Una vez que tienes trabajadores de IA manejando la tarea de monitoreo y corrección de

datos, puedes enfocar tus esfuerzos en otros aspectos críticos de la aplicación. Esto ahorra

tiempo y recursos que de otro modo se gastarían en limpieza y mantenimiento manual

de datos. De hecho, a medida que tus aplicaciones crecen en tamaño y complejidad,

gestionar manualmente la calidad de los datos se vuelve cada vez más desafiante. Los

patrones de “Datos Autorreparables” escalan efectivamente al aprovechar el poder de la

IA para manejar grandes volúmenes de datos y detectar problemas en tiempo real.

Debido a su naturaleza, los modelos de IA pueden adaptarse a patrones

de datos cambiantes, esquemas o requisitos a lo largo del tiempo con

poca o ninguna supervisión. Siempre que sus directivas proporcionen una

guía adecuada, especialmente con respecto a los resultados previstos, tu

aplicación puede evolucionar y manejar nuevos escenarios de datos sin

requerir una intervención manual extensiva o cambios en el código.

Los patrones de datos autorreparables se alinean bien con otras categorías de patrones

que hemos discutido, como “Multitud de Trabajadores”. La capacidad de datos

autorreparables puede verse como un tipo especializado de trabajador que se centra

específicamente en asegurar la calidad e integridad de los datos. Este tipo de trabajador

opera junto con otros trabajadores de IA, cada uno contribuyendo a diferentes aspectos

de la funcionalidad de la aplicación.

Implementar patrones de datos autorreparables en la práctica requiere un diseño

cuidadoso y la integración de modelos de IA en la arquitectura de la aplicación. Debido

a los riesgos de pérdida y corrupción de datos, debes definir pautas claras sobre cómo

utilizarás esta técnica. También debes considerar factores como el rendimiento, la

escalabilidad y la seguridad de los datos.

Datos Autorreparables 169

Caso Práctico: Arreglando JSON Dañado

Una de las formas más prácticas y convenientes de aprovechar los datos autorreparables

es también muy simple de explicar: arreglar JSON dañado.

Esta técnica se puede aplicar al desafío común de manejar datos imperfectos o

inconsistentes generados por LLMs, como JSON dañado, y proporciona un enfoque

para detectar y corregir automáticamente estos problemas.

En Olympia me encuentro regularmente con escenarios donde los LLM generan

datos JSON que no son perfectamente válidos. Esto puede ocurrir por varias razones,

como cuando el LLM añade comentarios antes o después del código JSON real, o

introduce errores de sintaxis como comas faltantes o comillas dobles sin escapar. Estos

problemas pueden provocar errores de análisis sintáctico y causar interrupciones en la

funcionalidad de la aplicación.

Para abordar este problema, he implementado una solución práctica en forma de

una clase JsonFixer. Esta clase incorpora el patrón “Self-Healing Data” (datos auto-

reparables) tomando el JSON defectuoso como entrada y aprovechando un LLM para

corregirlo mientras preserva la mayor cantidad posible de información e intención.

1 class JsonFixer

2 include Raix::ChatCompletion

3

4 def call(bad_json, error_message)

5 raise "No data provided" if bad_json.blank? || error_message.blank?

6

7 transcript << {

8 system: "Consider user-provided JSON that generated a parse

9 exception. Do your best to fix it while preserving the

10 original content and intent as much as possible." }

11 transcript << { user: bad_json }

12 transcript << { assistant: "What is the error message?"}

13 transcript << { user: error_message }

14 transcript << { assistant: "Here is the corrected JSON\n```json\n" }

15

Datos Autorreparables 170

16 self.stop = ["```"]

17

18 chat_completion(json: true)

19 end

20

21 def model

22 "mistralai/mixtral-8x7b-instruct:nitro"

23 end

24 end

Observe cómo JsonFixer utiliza Ventriloquist para guiar las respuestas de

la IA.

El proceso de datos JSON autocorrectivos funciona de la siguiente manera:

1. Generación de JSON: Se utiliza un LLM para generar datos JSON basados en

ciertos prompts o requerimientos. Sin embargo, debido a la naturaleza de los LLMs,

el JSON generado puede no ser siempre perfectamente válido. El analizador JSON,

por supuesto, generará un ParserError si se le proporciona un JSON inválido.

1 begin

2 JSON.parse(llm_generated_json)

3 rescue JSON::ParserError => e

4 JsonFixer.new.call(llm_generated_json, e.message)

5 end

Tenga en cuenta que el mensaje de excepción también se pasa a la llamada JSONFixer

para que no necesite asumir completamente qué está mal con los datos, especialmente

porque el analizador sintáctico a menudo te dirá exactamente qué está mal.

2. Corrección basada en LLM: La clase JSONFixer envía el JSON defectuoso de

vuelta a un LLM, junto con un prompt o instrucción específica para corregir

el JSON mientras preserva la información y la intención original tanto como

Datos Autorreparables 171

sea posible. El LLM, entrenado con grandes cantidades de datos y con un

entendimiento de la sintaxis JSON, intenta corregir los errores y generar una

cadena JSON válida. Se utiliza Response Fencing para restringir la salida del LLM,

y elegimos Mixtral 8x7B como modelo de IA, ya que es particularmente bueno

para este tipo de tarea.

3. Validación e Integración: La cadena JSON corregida devuelta por

el LLM es analizada por la propia clase JSONFixer, porque llamó a

chat_completion(json: true). Si el JSON corregido pasa la validación,

se integra de nuevo en el flujo de trabajo de la aplicación, permitiendo que la

aplicación continúe procesando los datos sin problemas. El JSON defectuoso ha

sido “sanado”.

Aunque he escrito y reescrito mi propia implementación de JSONFixer varias veces,

dudo que el tiempo total invertido en todas esas versiones sea más de una o dos horas.

Tenga en cuenta que la preservación de la intención es un elemento clave de cualquier

patrón de datos auto-reparables. El proceso de corrección basado en LLM tiene como

objetivo preservar la información original y la intención del JSON generado tanto como

sea posible. Esto asegura que el JSON corregido mantiene su significado semántico y

puede ser utilizado efectivamente dentro del contexto de la aplicación.

Esta implementación práctica del enfoque de “Self-Healing Data” en Olympia

demuestra claramente cómo la IA, específicamente los LLMs, puede ser aprovechada

para resolver desafíos de datos del mundo real. Muestra el poder de combinar técnicas

de programación tradicionales con capacidades de IA para construir aplicaciones

robustas y eficientes.

La Ley de Postel y el Patrón “Self-Healing Data”

Datos Autorreparables 172

“Self-Healing Data”, como se ejemplifica en la clase JSONFixer, se alinea bien con

el principio conocido como la Ley de Postel, también referido como el Principio de

Robustez. La Ley de Postel establece:

“Sé conservador en lo que haces, sé liberal en lo que aceptas de otros.”

Este principio, originalmente articulado por Jon Postel, un pionero de los primeros

días de Internet, enfatiza la importancia de construir sistemas que sean tolerantes con

entradas diversas o incluso ligeramente incorrectas mientras mantienen una estricta

adherencia a los protocolos especificados al enviar salidas.

En el contexto de “Self-Healing Data”, la clase JSONFixer encarna la Ley de Postel

al ser liberal en la aceptación de datos JSON rotos o imperfectos generados por

LLMs. No rechaza ni falla inmediatamente cuando encuentra JSON que no se adhiere

estrictamente al formato esperado. En su lugar, toma un enfoque tolerante e intenta

corregir el JSON usando el poder de los LLMs.

Al ser liberal en la aceptación de JSON imperfecto, la clase JSONFixer demuestra

robustez y flexibilidad. Reconoce que los datos en el mundo real a menudo vienen

en varias formas y pueden no siempre conformarse a especificaciones estrictas.

Al manejar y corregir estas desviaciones con elegancia, la clase asegura que la

aplicación pueda continuar funcionando sin problemas, incluso en presencia de datos

imperfectos.

Por otro lado, la clase JSONFixer también se adhiere al aspecto conservador de la

Ley de Postel cuando se trata de la salida. Después de corregir el JSON usando

LLMs, la clase valida el JSON corregido para asegurar que se ajuste estrictamente al

formato esperado. Mantiene la integridad y corrección de los datos antes de pasarlos

a otras partes de la aplicación. Este enfoque conservador garantiza que la salida de

la clase JSONFixer sea confiable y consistente, promoviendo la interoperabilidad y

previniendo la propagación de errores.

Datos interesantes sobre Jon Postel:

Datos Autorreparables 173

• Jon Postel (1943-1998) fue un científico computacional estadounidense que

jugó un papel crucial en el desarrollo de Internet. Era conocido como el “Dios

de Internet” por sus significativas contribuciones a los protocolos y estándares

fundamentales.

• Postel fue el editor de la serie de documentos Request for Comments (RFC),

que es una serie de notas técnicas y organizativas sobre Internet. Escribió o

co-escribió más de 200 RFCs, incluyendo los protocolos fundamentales como

TCP, IP y SMTP.

• Además de sus contribuciones técnicas, Postel era conocido por su enfoque

humilde y colaborativo. Creía en la importancia de alcanzar consensos y

trabajar juntos para construir una red robusta e interoperable.

• Postel sirvió como Director de la División de Redes de Computadoras en el

Instituto de Ciencias de la Información (ISI) de la Universidad del Sur de

California (USC) desde 1977 hasta su prematura muerte en 1998.

• En reconocimiento a sus inmensas contribuciones, Postel fue galardonado

póstumamente con el prestigioso Premio Turing en 1998, a menudo referido

como el “Premio Nobel de la Computación.”

La clase JSONFixer promueve la robustez, flexibilidad e interoperabilidad, que

fueron valores fundamentales que Postel defendió durante toda su carrera. Al

construir sistemas que son tolerantes a las imperfecciones mientras mantienen

una estricta adherencia a los protocolos, podemos crear aplicaciones que son más

resilientes y adaptables frente a los desafíos del mundo real.

Consideraciones y Contraindicaciones

La aplicabilidad de los enfoques de datos auto-reparables depende completamente del

tipo de datos que maneja tu aplicación. Hay una razón por la que podrías no querer

simplemente hacer un monkeypatch de JSON.parse para corregir automáticamente

Datos Autorreparables 174

todos los errores de análisis JSON en tu aplicación: no todos los errores pueden o deben

ser corregidos automáticamente.

La auto-reparación es particularmente delicada cuando está vinculada a requisitos

regulatorios o de cumplimiento relacionados con el manejo y procesamiento de datos.

Algunas industrias, como la sanitaria y la financiera, tienen regulaciones tan estrictas

sobre la integridad y auditabilidad de los datos que realizar cualquier tipo de corrección

de datos en “caja negra” sin la supervisión o registro adecuados puede violar estas

regulaciones. Es crucial asegurar que cualquier técnica de datos auto-reparables que

desarrolles se alinee con los marcos legales y regulatorios aplicables.

La aplicación de técnicas de datos auto-reparables, particularmente aquellas que

involucran modelos de IA, también puede tener un gran impacto en el rendimiento

de la aplicación y la utilización de recursos. Procesar grandes volúmenes de datos

a través de modelos de IA para la detección y corrección de errores puede ser

computacionalmente intensivo. Es importante evaluar el equilibrio entre los beneficios

de los datos auto-reparables y los costos asociados de rendimiento y recursos.

Dicho esto, profundicemos en los factores involucrados en decidir cuándo y dónde

aplicar este poderoso enfoque.

Criticidad de los Datos

Al considerar la aplicación de técnicas de datos auto-reparables, es crucial evaluar la

criticidad de los datos que se están procesando. El nivel de criticidad se refiere a la

importancia y sensibilidad de los datos en el contexto de tu aplicación y su dominio de

negocio.

En algunos casos, corregir automáticamente errores de datos puede no ser apropiado,

especialmente si los datos son altamente sensibles o tienen implicaciones legales. Por

ejemplo, considera los siguientes escenarios:

1. Transacciones Financieras: En aplicaciones financieras, como sistemas bancarios

Datos Autorreparables 175

o plataformas de trading, la precisión de los datos es de suma importancia. Incluso

errores menores en datos financieros pueden tener consecuencias significativas,

como saldos de cuenta incorrectos, fondos mal dirigidos o decisiones de trading

erróneas. En estos casos, las correcciones automatizadas sin una verificación y

auditoría exhaustivas pueden introducir riesgos inaceptables.

2. Registros Médicos: Las aplicaciones de salud manejan datos de pacientes

altamente sensibles y confidenciales. Las inexactitudes en los registros médicos

pueden tener graves implicaciones para la seguridad del paciente y las decisiones

de tratamiento. Modificar automáticamente datos médicos sin la supervisión

y validación adecuada por profesionales de la salud calificados puede violar

requisitos regulatorios y poner en riesgo el bienestar del paciente.

3. Documentos Legales: Las aplicaciones que manejan documentos legales, como

contratos, acuerdos o presentaciones judiciales, requieren una estricta precisión e

integridad. Incluso errores menores en datos legales pueden tener ramificaciones

legales significativas. Las correcciones automatizadas en este dominio pueden

no ser apropiadas, ya que los datos a menudo requieren revisión manual y

verificación por expertos legales para asegurar su validez y ejecutabilidad.

En estos escenarios de datos críticos, los riesgos asociados con las correcciones

automatizadas a menudo superan los beneficios potenciales. Las consecuencias de

introducir errores o modificar datos incorrectamente pueden ser graves, llevando a

pérdidas financieras, responsabilidades legales o incluso daños a individuos.

Cuando se trata de datos altamente críticos, es esencial priorizar los procesos de

verificación y validación manual. La supervisión humana y la experiencia son cruciales

para asegurar la precisión e integridad de los datos. Las técnicas de auto-reparación

automatizadas aún pueden emplearse para señalar posibles errores o inconsistencias,

pero la decisión final sobre las correcciones debe involucrar el juicio y la aprobación

humana.

Sin embargo, es importante notar que no todos los datos en una aplicación pueden tener

Datos Autorreparables 176

el mismo nivel de criticidad. Dentro de la misma aplicación, puede haber subconjuntos

de datos que son menos sensibles o tienen menor impacto si ocurren errores. En tales

casos, las técnicas de datos auto-reparables pueden aplicarse selectivamente a esos

subconjuntos específicos de datos, mientras que los datos críticos permanecen sujetos a

verificación manual.

La clave es evaluar cuidadosamente la criticidad de cada categoría de datos en tu

aplicación y definir pautas y procesos claros para manejar correcciones basadas en los

riesgos e implicaciones asociados. Al diferenciar entre datos críticos (es decir, libros

contables, registros médicos) y no críticos (es decir, direcciones postales, advertencias de

recursos), puedes encontrar un equilibrio entre aprovechar los beneficios de las técnicas

de datos auto-reparables donde sea apropiado y mantener un control y supervisión

estrictos donde sea necesario.

En última instancia, la decisión de aplicar técnicas de datos auto-reparables a datos

críticos debe tomarse en consulta con expertos del dominio, asesores legales y otros

interesados relevantes. Es esencial considerar los requisitos específicos, las regulaciones

y los riesgos asociados con los datos de tu aplicación y alinear las estrategias de

corrección de datos en consecuencia.

Severidad del Error

Al aplicar técnicas de datos auto-reparables, es importante evaluar la severidad y el

impacto de los errores en los datos. No todos los errores son iguales, y el curso de acción

apropiado puede variar dependiendo de la severidad del problema.

Las inconsistencias menores o problemas de formato pueden ser adecuados para la

corrección automática. Por ejemplo, un trabajador de datos auto-reparables encargado

de arreglar JSONdefectuoso puedemanejar comas faltantes o comillas dobles sin escapar

sin alterar significativamente el significado o la estructura de los datos. Estos tipos de

errores son a menudo sencillos de corregir y tienen un impacto mínimo en la integridad

general de los datos.

Datos Autorreparables 177

Sin embargo, los errores más graves que cambian fundamentalmente el significado o

la integridad de los datos pueden requerir un enfoque diferente. En tales casos, las

correcciones automatizadas pueden no ser suficientes, y la intervención humana puede

ser necesaria para garantizar la precisión y validez de los datos.

Aquí es donde entra en juego el concepto de usar la IA misma para ayudar a determinar

la gravedad del error. Al aprovechar las capacidades de los modelos de IA, podemos

diseñar trabajadores de datos autorreparables que no solo corrijan errores, sino que

también evalúen la gravedad de estos errores y tomen decisiones informadas sobre cómo

manejarlos.

Por ejemplo, consideremos un trabajador de datos autorreparable responsable de

corregir inconsistencias en el flujo de datos hacia una base de datos de clientes. El

trabajador puede ser diseñado para analizar los datos e identificar posibles errores,

como información faltante o contradictoria. Sin embargo, en lugar de corregir

automáticamente todos los errores, el trabajador puede estar equipado con llamadas

a herramientas adicionales que le permitan marcar los errores graves para revisión

humana.

Aquí hay un ejemplo de cómo se puede implementar esto:

1 class CustomerDataReviewer

2 include Raix::ChatCompletion

3 include Raix::FunctionDeclarations

4

5 attr_accessor :customer

6

7 function :flag_for_review, reason: { type: "string" } do |params|

8 AdminNotifier.review_request(customer, params[:reason])

9 end

10

11 def initialize(customer)

12 self.customer = customer

13 end

14

15 def call(customer_data)

16 transcript << {

Datos Autorreparables 178

17 system: "You are a customer data reviewer. Your task is to identify

18 and correct inconsistencies in customer data.

19

20 < additional instructions here... >

21

22 If you encounter severe errors that require human review, use the

23 `flag_for_review` tool to flag the data for manual intervention." }

24

25 transcript << { user: customer.to_json }

26 transcript << { assistant: "Reviewed/corrected data:\n```json\n" }

27

28 self.stop = ["```"]

29

30 chat_completion(json: true).then do |result|

31 return if result.blank?

32

33 customer.update(result)

34 end

35 end

36 end

En este ejemplo, el trabajador CustomerDataHealer está diseñado para identificar

y corregir inconsistencias en los datos de clientes. Una vez más, utilizamos Response

Fencing y Ventriloquist para obtener una salida estructurada. Es importante destacar

que la directiva del sistema del trabajador incluye instrucciones para usar la función

flag_for_review si se encuentran errores graves.

Cuando el trabajador procesa los datos del cliente, analiza la información e intenta

corregir cualquier inconsistencia. Si el trabajador determina que los errores son graves y

requieren intervención humana, puede utilizar la herramienta flag_for_review para

marcar los datos y proporcionar una razón para el marcado.

El método chat_completion se llama con json: true para analizar los datos

corregidos del cliente como JSON. No hay provisión para bucles después de una llamada

a función, por lo que el resultado estará en blanco si se invocó flag_for_review. De

lo contrario, el cliente se actualiza con los datos revisados y potencialmente corregidos.

Al incorporar la evaluación de la gravedad de los errores y la opción de marcar datos

Datos Autorreparables 179

para revisión humana, el trabajador de datos auto-reparables se vuelve más inteligente y

adaptable. Puede manejar errores menores automáticamente mientras escala los errores

graves a expertos humanos para intervención manual.

Los criterios específicos para determinar la gravedad del error pueden definirse en la

directiva del trabajador basándose en el conocimiento del dominio y los requisitos del

negocio. Factores como el impacto en la integridad de los datos, el potencial de pérdida

o corrupción de datos, y las consecuencias de datos incorrectos pueden considerarse al

evaluar la gravedad.

Al aprovechar la IA para evaluar la gravedad de los errores y proporcionar opciones

para la intervención humana, las técnicas de datos auto-reparables pueden lograr un

equilibrio entre la automatización y el mantenimiento de la precisión de los datos. Este

enfoque asegura que los errores menores se corrijan eficientemente mientras que los

errores graves reciban la atención y experiencia necesaria de los revisores humanos.

Complejidad del Dominio

Al considerar la aplicación de técnicas de datos auto-reparables, es importante evaluar la

complejidad del dominio de datos y las reglas que gobiernan su estructura y relaciones.

La complejidad del dominio puede impactar significativamente en la efectividad y

viabilidad de los enfoques de corrección automatizada de datos.

Las técnicas de datos auto-reparables funcionan bien cuando los datos siguen patrones y

restricciones bien definidos. En dominios donde la estructura de datos es relativamente

simple y las relaciones entre elementos de datos son directas, las correcciones

automatizadas pueden aplicarse con un alto grado de confianza. Por ejemplo, corregir

problemas de formato o aplicar restricciones básicas de tipos de datos a menudo puede

ser manejado efectivamente por trabajadores de datos auto-reparables.

Sin embargo, a medida que aumenta la complejidad del dominio de datos, también

crecen los desafíos asociados con la corrección automatizada de datos. En dominios con

Datos Autorreparables 180

lógica de negocio intrincada, relaciones complejas entre entidades de datos, o reglas y

excepciones específicas del dominio, las técnicas de datos auto-reparables pueden no

siempre capturar los matices y pueden introducir consecuencias no deseadas.

Consideremos un ejemplo de un dominio complejo: un sistema de trading financiero. En

este dominio, los datos involucran varios instrumentos financieros, datos de mercado,

reglas de trading y requisitos regulatorios. Las relaciones entre diferentes elementos de

datos pueden ser intrincadas, y las reglas que gobiernan la validez y consistencia de los

datos pueden ser altamente específicas del dominio.

En un dominio tan complejo, un trabajador de datos auto-reparables encargado de

corregir inconsistencias en datos de trading necesitaría tener un profundo entendimiento

de las reglas y restricciones específicas del dominio. Necesitaría considerar factores como

las regulaciones del mercado, límites de trading, cálculos de riesgo y procedimientos

de liquidación. Las correcciones automatizadas en este contexto pueden no siempre

capturar la complejidad total del dominio y pueden inadvertidamente introducir errores

o violar reglas específicas del dominio.

Para abordar los desafíos de la complejidad del dominio, las técnicas de datos auto-

reparables pueden mejorarse incorporando conocimiento y reglas específicas del

dominio en los modelos y trabajadores de IA. Esto puede lograrse a través de técnicas

como:

1. Entrenamiento Específico del Dominio: Los modelos de IA utilizados para datos

auto-reparables pueden ser dirigidos o incluso afinados en conjuntos de datos

específicos del dominio que capturan las complejidades y reglas del dominio

particular. Al exponer los modelos a datos y escenarios representativos, pueden

aprender los patrones, restricciones y excepciones específicas del dominio.

2. Restricciones Basadas en Reglas: Los trabajadores de datos auto-reparables

pueden aumentarse con restricciones explícitas basadas en reglas que codifican

el conocimiento específico del dominio. Estas reglas pueden ser definidas por

expertos del dominio e integradas en el proceso de corrección de datos. Los

Datos Autorreparables 181

modelos de IA pueden entonces usar estas reglas para guiar sus decisiones y

asegurar el cumplimiento de los requisitos específicos del dominio.

3. Colaboración con Expertos del Dominio: En dominios complejos, es crucial

involucrar a expertos del dominio en el diseño y desarrollo de técnicas de

datos auto-reparables. Los expertos del dominio pueden proporcionar valiosas

perspectivas sobre las complejidades de los datos, las reglas de negocio y los

posibles casos límite. Su conocimiento puede incorporarse en los modelos y

trabajadores de IA para mejorar la precisión y fiabilidad de las correcciones

automatizadas de datos utilizando patrones de Human In The Loop.

4. Enfoque Incremental e Iterativo: Al tratar con dominios complejos, a menudo

es beneficioso adoptar un enfoque incremental e iterativo para los datos auto-

reparables. En lugar de intentar automatizar correcciones para todo el dominio

de una vez, enfocarse en subdominios específicos o categorías de datos donde las

reglas y restricciones son bien comprendidas. Gradualmente expandir el alcance

de las técnicas auto-reparables a medida que crece el entendimiento del dominio

y las técnicas demuestran ser efectivas.

Al considerar la complejidad del dominio de datos e incorporar el conocimiento

específico del dominio en las técnicas de datos autorreparables, se puede lograr un

equilibrio entre la automatización y la precisión. Es importante reconocer que los datos

autorreparables no son una solución única para todos los casos y que el enfoque debe

adaptarse a los requisitos y desafíos específicos de cada dominio.

En dominios complejos, un enfoque híbrido que combine técnicas de datos

autorreparables con la experiencia y supervisión humana puede ser más efectivo.

Las correcciones automatizadas pueden manejar casos rutinarios y bien definidos,

mientras que los escenarios complejos o las excepciones puedenmarcarse para revisión e

intervención humana. Este enfoque colaborativo asegura que se obtengan los beneficios

de la automatización mientras se mantiene el control y la precisión necesarios en

dominios de datos complejos.

Datos Autorreparables 182

Explicabilidad y Transparencia

La explicabilidad se refiere a la capacidad de comprender e interpretar el razonamiento

detrás de las decisiones tomadas por los modelos de IA, mientras que la transparencia

implica proporcionar una visibilidad clara del proceso de corrección de datos.

En muchos contextos, las modificaciones de datos deben ser auditables y justificables.

Las partes interesadas, incluyendo usuarios empresariales, auditores y organismos

reguladores, pueden requerir explicaciones sobre por qué se realizaron ciertas

correcciones de datos y cómo los modelos de IA llegaron a esas decisiones. Esto es

especialmente crucial en dominios donde la precisión e integridad de los datos tienen

implicaciones significativas, como las finanzas, la atención médica y los asuntos legales.

Para abordar la necesidad de explicabilidad y transparencia, las técnicas de datos

autorreparables deben incorporar mecanismos que proporcionen información sobre el

proceso de toma de decisiones de los modelos de IA. Esto se puede lograr a través de

varios enfoques:

1. Cadena de Pensamiento: Pedir al modelo que explique su razonamiento “en voz

alta” antes de aplicar cambios a los datos puede permitir una comprensión más

fácil del proceso de toma de decisiones y puede generar explicaciones legibles

por humanos para las correcciones realizadas. El compromiso es un poco más de

complejidad en la separación de la explicación de la salida de datos estructurados,

lo cual puede abordarse mediante…

2. Generación de Explicaciones: Los trabajadores de datos autorreparables pueden

estar equipados con la capacidad de generar explicaciones legibles por humanos

para las correcciones que realizan. Esto se puede lograr pidiendo al modelo

que genere su proceso de toma de decisiones como explicaciones fácilmente

comprensibles integradas en los propios datos. Por ejemplo, un trabajador de

datos autorreparables podría generar un informe que destaque las inconsistencias

específicas de datos que identificó, las correcciones que aplicó y el razonamiento

Datos Autorreparables 183

detrás de esas correcciones.

3. Importancia de Características: Los modelos de IA pueden ser instruidos con

información sobre la importancia de diferentes características o atributos en el

proceso de corrección de datos como parte de sus directivas. Estas directivas, a

su vez, pueden ser expuestas a las partes interesadas humanas. Al identificar los

factores clave que influyen en las decisiones del modelo, las partes interesadas

pueden obtener información sobre el razonamiento detrás de las correcciones y

evaluar su validez.

4. Registro y Auditoría: Implementar mecanismos completos de registro y auditoría

es crucial para mantener la transparencia en el proceso de datos autorreparables.

Cada corrección de datos realizada por los modelos de IA debe ser registrada,

incluyendo los datos originales, los datos corregidos y las acciones específicas

tomadas. Este registro de auditoría permite el análisis retrospectivo y proporciona

un registro claro de las modificaciones realizadas a los datos.

5. Enfoque con Humano en el Ciclo: Incorporar un enfoque con humano en

el ciclo puede mejorar la explicabilidad y transparencia de las técnicas de

datos autorreparables. Al involucrar a expertos humanos en la revisión y

validación de las correcciones generadas por IA, las organizaciones pueden

asegurar que las correcciones se alineen con el conocimiento del dominio y los

requisitos empresariales. La supervisión humana añade una capa adicional de

responsabilidad y permite la identificación de posibles sesgos o errores en los

modelos de IA.

6. Monitoreo y Evaluación Continua: El monitoreo y evaluación regulares del

rendimiento de las técnicas de datos autorreparables es esencial para mantener la

transparencia y la confianza. Al evaluar la precisión y efectividad de los modelos

de IA a lo largo del tiempo, las organizaciones pueden identificar cualquier

desviación o anomalía y tomar acciones correctivas. El monitoreo continuo ayuda

a asegurar que el proceso de datos autorreparables permanezca confiable y

alineado con los resultados deseados.

Datos Autorreparables 184

La explicabilidad y la transparencia son consideraciones críticas al implementar técnicas

de datos autorreparables. Al proporcionar explicaciones claras para las correcciones de

datos, mantener registros de auditoría completos e involucrar la supervisión humana,

las organizaciones pueden construir confianza en el proceso de datos autorreparables y

asegurar que las modificaciones realizadas a los datos sean justificables y estén alineadas

con los objetivos empresariales.

Es importante encontrar un equilibrio entre los beneficios de la automatización y

la necesidad de transparencia. Si bien las técnicas de datos autorreparables pueden

mejorar significativamente la calidad y eficiencia de los datos, no deberían implicar

la pérdida de visibilidad y control sobre el proceso de corrección de datos. Al diseñar

trabajadores de datos autorreparables con la explicabilidad y transparencia en mente,

las organizaciones pueden aprovechar el poder de la IA mientras mantienen el nivel

necesario de responsabilidad y confianza en los datos.

Consecuencias No Intencionadas

Si bien las técnicas de datos autorreparables tienen como objetivo mejorar la calidad

y consistencia de los datos, es crucial ser consciente del potencial de consecuencias

no intencionadas. Las correcciones automatizadas, si no se diseñan y monitorizan

cuidadosamente, pueden alterar inadvertidamente el significado o contexto de los datos,

llevando a problemas derivados.

Uno de los principales riesgos de los datos autorreparables es la introducción de sesgos

o errores en el proceso de corrección de datos. Los modelos de IA, como cualquier

otro sistema de software, pueden estar sujetos a sesgos presentes en los datos de

entrenamiento o introducidos a través del diseño de los algoritmos. Si estos sesgos

no son identificados y mitigados, pueden propagarse a través del proceso de datos

autorreparables y resultar en modificaciones de datos sesgadas o incorrectas.

Por ejemplo, consideremos un trabajador de datos autorreparables encargado de corregir

inconsistencias en datos demográficos de clientes. Si el modelo de IA ha aprendido sesgos

Datos Autorreparables 185

de datos históricos, como asociar ciertas ocupaciones o niveles de ingresos con géneros

o etnias específicas, podría hacer suposiciones incorrectas y modificar los datos de una

manera que refuerce estos sesgos. Esto puede llevar a perfiles de clientes inexactos,

decisiones comerciales equivocadas y resultados potencialmente discriminatorios.

Otra consecuencia no intencionada potencial es la pérdida de información valiosa o

contexto durante el proceso de corrección de datos. Las técnicas de datos autorreparables

a menudo se centran en estandarizar y normalizar datos para garantizar la consistencia.

Sin embargo, en algunos casos, los datos originales pueden contener matices,

excepciones o información contextual que es importante para comprender el panorama

completo. Las correcciones automatizadas que aplican la estandarización de manera

ciega pueden inadvertidamente eliminar u ocultar esta información valiosa.

Por ejemplo, imaginemos un trabajador de datos autorreparables responsable de corregir

inconsistencias en registros médicos. Si el trabajador encuentra el historial médico de

un paciente con una condición rara o un plan de tratamiento inusual, podría intentar

normalizar los datos para ajustarlos a un patrón más común. Sin embargo, al hacerlo,

podría perder los detalles específicos y el contexto que son cruciales para representar

con precisión la situación única del paciente. Esta pérdida de información puede tener

serias implicaciones para la atención del paciente y la toma de decisiones médicas.

Para mitigar los riesgos de consecuencias no intencionadas, es esencial adoptar un

enfoque proactivo al diseñar e implementar técnicas de datos autorreparables:

1. Pruebas y Validación Exhaustivas: Antes de implementar trabajadores de datos

autorreparables en producción, es crucial probar y validar exhaustivamente su

comportamiento contra una amplia gama de escenarios. Esto incluye pruebas con

conjuntos de datos representativos que cubran varios casos límite, excepciones y

sesgos potenciales. Las pruebas rigurosas ayudan a identificar y abordar cualquier

consecuencia no intencionada antes de que afecte a datos del mundo real.

2. Monitoreo y Evaluación Continua: Implementar mecanismos de monitoreo

y evaluación continua es esencial para detectar y mitigar consecuencias no

Datos Autorreparables 186

intencionadas a lo largo del tiempo. Revisar regularmente los resultados de los

procesos de datos autorreparables, analizar el impacto en los sistemas posteriores

y la toma de decisiones, y recopilar retroalimentación de las partes interesadas

puede ayudar a identificar cualquier efecto adverso y provocar acciones

correctivas oportunas. Si su organización tiene paneles operativos, probablemente

sea una buena idea agregar métricas claramente visibles relacionadas con cambios

automatizados de datos. ¡Agregar alarmas conectadas a grandes desviaciones de

la actividad normal de cambios de datos es probablemente una idea aún mejor!

3. Supervisión e Intervención Humana: Mantener la supervisión humana y la

capacidad de intervenir en el proceso de datos autorreparables es crucial. Si

bien la automatización puede mejorar enormemente la eficiencia, es importante

que expertos humanos revisen y validen las correcciones realizadas por los

modelos de IA, especialmente en dominios críticos o sensibles. El juicio humano

y la experiencia en el dominio pueden ayudar a identificar y abordar cualquier

consecuencia no intencionada que pueda surgir.

4. IA Explicable (XAI) y Transparencia:Como se discutió en la subsección anterior,

incorporar técnicas de IA explicable y asegurar la transparencia en el proceso de

datos autorreparables puede ayudar a mitigar las consecuencias no intencionadas.

Al proporcionar explicaciones claras para las correcciones de datos y mantener

pistas de auditoría completas, las organizaciones pueden comprender mejor y

rastrear el razonamiento detrás de las modificaciones realizadas por los modelos

de IA.

5. Enfoque Incremental e Iterativo: Adoptar un enfoque incremental e iterativo

para los datos autorreparables puede ayudar a minimizar el riesgo de

consecuencias no intencionadas. En lugar de aplicar correcciones automatizadas

a todo el conjunto de datos de una vez, comience con un subconjunto de datos

y gradualmente expanda el alcance a medida que las técnicas demuestren ser

efectivas y confiables. Esto permite un monitoreo cuidadoso y ajustes en el

camino, reduciendo el impacto de cualquier consecuencia no intencionada.

Datos Autorreparables 187

6. Colaboración y Retroalimentación: Involucrar a las partes interesadas de

diferentes dominios y fomentar la colaboración y retroalimentación durante

todo el proceso de datos autorreparables puede ayudar a identificar y abordar

consecuencias no intencionadas. Buscar regularmente la opinión de expertos

en el dominio, consumidores de datos y usuarios finales puede proporcionar

información valiosa sobre el impacto en el mundo real de las correcciones de

datos y destacar cualquier problema que pueda haberse pasado por alto.

Al abordar proactivamente el riesgo de consecuencias no intencionadas e implementar

salvaguardas apropiadas, las organizaciones pueden aprovechar los beneficios de

las técnicas de datos autorreparables mientras minimizan los efectos adversos

potenciales. Es importante abordar los datos autorreparables como un proceso iterativo

y colaborativo, monitoreando, evaluando y refinando continuamente las técnicas para

asegurar que se alineen con los resultados deseados y mantengan la integridad y

confiabilidad de los datos.

Al considerar el uso de patrones de datos autorreparables, es esencial evaluar

cuidadosamente estos factores y sopesar los beneficios contra los riesgos y limitaciones

potenciales. En algunos casos, un enfoque híbrido que combine correcciones

automatizadas con supervisión e intervención humana puede ser la solución más

apropiada.

También vale la pena señalar que las técnicas de datos autorreparables no deben verse

como un reemplazo de los mecanismos robustos de validación de datos, sanitización

de entrada y manejo de errores. Estas prácticas fundamentales siguen siendo críticas

para garantizar la integridad y seguridad de los datos. Los datos autorreparables deben

verse como un enfoque complementario que puede aumentar y mejorar estas medidas

existentes.

Datos Autorreparables 188

En última instancia, la decisión de emplear patrones de datos autorreparables depende

de los requisitos específicos, restricciones y prioridades de su aplicación. Al considerar

cuidadosamente las consideraciones descritas anteriormente y alinearlas con los

objetivos y la arquitectura de su aplicación, puede tomar decisiones informadas sobre

cuándo y cómo aprovechar las técnicas de datos autorreparables de manera efectiva.

Generación de Contenido
Contextual

Los patrones de Generación de Contenido Contextual aprovechan el poder de los

modelos de lenguaje grande (LLMs) para generar contenido dinámico y específico al

contexto dentro de las aplicaciones. Esta categoría de patrones reconoce la importancia

de entregar contenido personalizado y relevante a los usuarios basado en sus necesidades

específicas, preferencias e incluso interacciones previas y actuales con la aplicación.

En el contexto de este enfoque, “contenido” se refiere tanto al contenido primario

(es decir, publicaciones de blog, artículos, etc.) como al meta-contenido, como las

recomendaciones al contenido primario.

Generación de Contenido Contextual 190

Los patrones de Generación de Contenido Contextual pueden jugar un papel crucial

en mejorar tus niveles de participación del usuario, proporcionando experiencias

personalizadas y automatizando tareas de creación de contenido tanto para ti como

para tus usuarios. Al utilizar los patrones que describimos en este capítulo, puedes crear

aplicaciones que generen contenido de manera dinámica, adaptándose al contexto y a

las entradas en tiempo real.

Los patrones funcionan integrando LLMs en las salidas de la aplicación, desde la interfaz

de usuario (a veces referida como “chrome”), hasta correos electrónicos y otras formas

de notificaciones, así como cualquier pipeline de generación de contenido.

Cuando un usuario interactúa con la aplicación o activa una solicitud específica

de contenido, la aplicación captura el contexto relevante, como las preferencias del

usuario, interacciones previas o indicaciones específicas. Esta información contextual

se introduce luego en el LLM, junto con cualquier plantilla o directriz necesaria y se

utiliza para producir una salida textual que de otro modo tendría que ser codificada

directamente, almacenada en una base de datos o generada algorítmicamente.

El contenido generado por LLM puede tomar varias formas, como recomendaciones

personalizadas, descripciones dinámicas de productos, respuestas personalizadas por

correo electrónico o incluso artículos o publicaciones de blog completos. Uno de los

usos más radicales de este contenido que desarrollé hace más de un año es la generación

dinámica de elementos de UI como etiquetas de formularios, tooltips y otros tipos de

texto explicativo.

Personalización

Uno de los beneficios clave de los patrones de Generación de Contenido Contextual

es la capacidad de ofrecer experiencias altamente personalizadas a los usuarios. Al

generar contenido basado en el contexto específico del usuario, estos patrones permiten

que las aplicaciones adapten el contenido a los intereses, preferencias e interacciones

individuales de los usuarios.

Generación de Contenido Contextual 191

La personalización va más allá de simplemente insertar el nombre de un usuario en

contenido genérico. Implica aprovechar el rico contexto disponible sobre cada usuario

para generar contenido que resuene con sus necesidades y deseos específicos. Este

contexto puede incluir una amplia gama de factores, como:

1. Información del Perfil de Usuario: En el nivel más general de aplicación de esta

técnica, los datos demográficos, intereses, preferencias y otros atributos del perfil

pueden utilizarse para generar contenido que se alinee con los antecedentes y

características del usuario.

2. Datos de Comportamiento: Las interacciones pasadas del usuario con la

aplicación, como páginas vistas, enlaces clicados o productos comprados, pueden

proporcionar información valiosa sobre su comportamiento e intereses. Estos

datos pueden utilizarse para generar sugerencias de contenido que reflejen sus

patrones de participación y predigan sus necesidades futuras.

3. Factores Contextuales: El contexto actual del usuario, como su ubicación,

dispositivo, hora del día o incluso el clima, puede influir en el proceso de

generación de contenido. Por ejemplo, una aplicación de viajes podría tener un

trabajador de IA capaz de generar recomendaciones personalizadas basadas en la

ubicación actual del usuario y las condiciones climáticas predominantes.

Al aprovechar estos factores contextuales, los patrones de Generación de Contenido

Contextual permiten que las aplicaciones entreguen contenido que se siente hecho

a medida para cada usuario individual. Este nivel de personalización tiene varios

beneficios significativos:

1. Mayor Participación: El contenido personalizado captura la atención de los

usuarios y los mantiene comprometidos con la aplicación. Cuando los usuarios

sienten que el contenido es relevante y habla directamente a sus necesidades, es

más probable que pasen más tiempo interactuando con la aplicación y explorando

sus características.

Generación de Contenido Contextual 192

2. Mejor Satisfacción del Usuario: El contenido personalizado demuestra que

la aplicación entiende y se preocupa por los requisitos únicos del usuario. Al

proporcionar contenido que es útil, informativo y alineado con sus intereses, la

aplicación puede mejorar la satisfacción del usuario y construir una conexión más

fuerte con sus usuarios.

3. Mayores Tasas de Conversión: En el contexto de aplicaciones de comercio

electrónico o marketing, el contenido personalizado puede impactar

significativamente en las tasas de conversión. Al presentar a los usuarios

productos, ofertas o recomendaciones que están adaptadas a sus preferencias

y comportamiento, la aplicación puede aumentar la probabilidad de que los

usuarios realicen las acciones deseadas, como realizar una compra o registrarse

en un servicio.

Productividad

Los patrones de Generación de Contenido Contextual pueden aumentar

significativamente ciertos tipos de productividad al reducir la necesidad de generación

y edición manual de contenido en procesos creativos. Al aprovechar el poder de los

LLMs, puedes generar contenido de alta calidad a escala, ahorrando tiempo y esfuerzo

que tus creadores de contenido y desarrolladores tendrían que gastar de otro modo

haciendo trabajo manual tedioso.

Tradicionalmente, los creadores de contenido necesitan investigar, escribir, editar y

formatear contenido para asegurar que cumpla con los requisitos de la aplicación y las

expectativas de los usuarios. Este proceso puede consumir mucho tiempo y recursos,

especialmente a medida que el volumen de contenido crece.

Sin embargo, con los patrones de Generación de Contenido Contextual, el proceso de

creación de contenido puede automatizarse en gran medida. Los LLMs pueden generar

contenido coherente, gramaticalmente correcto y contextualmente relevante basado en

Generación de Contenido Contextual 193

las indicaciones y pautas proporcionadas. Esta automatización ofrece varios beneficios

de productividad:

1. Reducción del EsfuerzoManual:Al delegar las tareas de generación de contenido

a los LLMs, los creadores de contenido pueden enfocarse en tareas de nivel

superior como la estrategia de contenido, la ideación y el aseguramiento de la

calidad. Pueden proporcionar el contexto necesario, las plantillas y las pautas al

LLM y dejar que este se encargue de la generación real del contenido. Esto reduce

el esfuerzo manual requerido para escribir y editar, permitiendo que los creadores

de contenido sean más productivos y eficientes.

2. Creación de ContenidoMás Rápida: Los LLMs pueden generar contenidomucho

más rápido que los escritores humanos. Con las indicaciones y pautas adecuadas,

un LLM puede producir múltiples piezas de contenido en cuestión de segundos

o minutos. Esta velocidad permite que las aplicaciones generen contenido a un

ritmo mucho más rápido, manteniéndose al día con las demandas de los usuarios

y el panorama digital en constante cambio.

¿Está la creación más rápida de contenido llevando a una situación de

“tragedia de los comunes” donde internet se está ahogando en contenido que

nadie lee? Lamentablemente, sospecho que la respuesta es sí.

3. Consistencia y Calidad: Los LLMs pueden revisar trivialmente el contenido

para que sea consistente en estilo, tono y calidad. Proporcionando pautas claras

y ejemplos, ciertos tipos de aplicaciones (es decir, redacciones periodísticas,

relaciones públicas, etc.) pueden asegurar que su contenido generado por humanos

se alinee con la voz de su marca y cumpla con los estándares de calidad

deseados. Esta consistencia reduce la necesidad de ediciones y revisiones extensas,

ahorrando tiempo y esfuerzo en el proceso de creación de contenido.

Generación de Contenido Contextual 194

4. Iteración y Optimización: Los patrones de Generación de Contenido Contextual

permiten una rápida iteración y optimización del contenido. Al ajustar las

indicaciones, plantillas o pautas proporcionadas al LLM, sus aplicaciones pueden

generar rápidamente variaciones de contenido y probar diferentes enfoques de

una manera automatizada que nunca fue posible en el pasado. Este proceso

iterativo permite una experimentación y refinamiento más rápidos de las

estrategias de contenido, llevando a un contenido más efectivo y atractivo con

el tiempo. Esta técnica en particular puede ser un cambio revolucionario para

aplicaciones como el comercio electrónico que viven y mueren según las tasas de

rebote y el engagement

Es importante señalar que si bien los patrones de Generación de Contenido

Contextual pueden mejorar enormemente la productividad, no eliminan por

completo la necesidad de intervención humana. Los creadores y editores

de contenido siguen desempeñando un papel crucial en la definición de

la estrategia general de contenido, proporcionando orientación al LLM y

asegurando la calidad y adecuación del contenido generado.

Al automatizar los aspectos más repetitivos y que consumen más tiempo de la creación

de contenido, los patrones de Generación de Contenido Contextual liberan valioso

tiempo y recursos humanos que pueden redirigirse hacia tareas de mayor valor.

Este aumento en la productividad le permite entregar contenido más personalizado y

atractivo a los usuarios mientras optimiza los flujos de trabajo de creación de contenido.

Iteración Rápida y Experimentación

Los patrones de Generación de Contenido Contextual le permiten iterar y experimentar

rápidamente con diferentes variaciones de contenido, permitiendo una optimización

y refinamiento más rápido de su estrategia de contenido. Puede generar múltiples

Generación de Contenido Contextual 195

versiones de contenido en cuestión de segundos, simplemente ajustando el contexto,

las plantillas o las pautas proporcionadas al modelo.

Esta capacidad de iteración rápida ofrece varios beneficios clave:

1. Pruebas y Optimización: Con la capacidad de generar variaciones de contenido

rápidamente, puede probar fácilmente diferentes enfoques y medir su efectividad.

Por ejemplo, puede generar múltiples versiones de una descripción de producto o

un mensaje de marketing, cada uno adaptado a un segmento de usuario específico

o contexto. Al analizar las métricas de participación del usuario, como las tasas de

clics o las tasas de conversión, puede identificar las variaciones de contenido más

efectivas y optimizar su estrategia de contenido en consecuencia.

2. Pruebas A/B: Los patrones de Generación de Contenido Contextual permiten

realizar pruebas A/B de contenido sin problemas. Puede generar dos o más

variaciones de contenido y servirlas aleatoriamente a diferentes grupos de

usuarios. Al comparar el rendimiento de cada variación, puede determinar qué

contenido resuena mejor con su audiencia objetivo. Este enfoque basado en datos

le permite tomar decisiones informadas y refinar continuamente su contenido

para maximizar la participación del usuario y lograr los resultados deseados.

3. Experimentos de Personalización: La iteración rápida y la experimentación son

particularmente valiosas cuando se trata de personalización. Con los patrones de

Generación de Contenido Contextual, puede generar rápidamente variaciones

de contenido personalizado basadas en diferentes segmentos de usuarios,

preferencias o comportamientos. Al experimentar con diferentes estrategias de

personalización, puede identificar los enfoques más efectivos para involucrar a

usuarios individuales y entregar experiencias personalizadas.

4. Adaptación a las Tendencias Cambiantes: La capacidad de iterar y experimentar

rápidamente te permite mantener la agilidad y adaptarte a las tendencias

cambiantes y las preferencias de los usuarios. A medida que surgen nuevos

temas, palabras clave o comportamientos de usuario, puedes generar rápidamente

Generación de Contenido Contextual 196

contenido que se alinee con estas tendencias. Al experimentar y refinar

continuamente tu contenido, puedes mantener la relevancia y conservar una

ventaja competitiva en el panorama digital en constante evolución.

5. Experimentación Rentable: La experimentación tradicional de contenido

a menudo implica tiempo y recursos significativos, ya que los creadores de

contenido necesitan desarrollar y probar manualmente diferentes variaciones. Sin

embargo, con los patrones de Generación Contextual de Contenido, el costo de la

experimentación se reduce enormemente. Los MLGs pueden generar variaciones

de contenido rápidamente y a escala, permitiéndote explorar una amplia gama

de ideas y enfoques sin incurrir en costos sustanciales.

Para aprovechar al máximo la iteración rápida y la experimentación, es importante tener

un marco de experimentación bien definido. Este marco debe incluir:

• Objetivos e hipótesis claros para cada experimento

• Métricas y mecanismos de seguimiento apropiados para medir el rendimiento del

contenido

• Estrategias de segmentación y orientación para asegurar que las variaciones de

contenido relevantes lleguen a los usuarios correctos

• Herramientas de análisis e informes para obtener información de los datos

experimentales

• Un proceso para incorporar aprendizajes y optimizaciones en tu estrategia de

contenido

Al adoptar la iteración y experimentación rápida, puedes refinar y optimizar

continuamente tu contenido, asegurando que permanezca atractivo, relevante y

efectivo en el logro de los objetivos de tu aplicación. Este enfoque ágil para la creación

de contenido te permite mantenerte a la vanguardia y ofrecer experiencias de usuario

excepcionales.

Generación de Contenido Contextual 197

Escalabilidad y Eficiencia

Amedida que las aplicaciones crecen y aumenta la demanda de contenido personalizado,

los patrones de generación contextual de contenido permiten escalar eficientemente la

creación de contenido. Los MLGs pueden generar contenido para un gran número de

usuarios y contextos simultáneamente, sin necesidad de un aumento proporcional en

recursos humanos. Esta escalabilidad permite que las aplicaciones ofrezcan experiencias

personalizadas a una base de usuarios en crecimiento sin sobrecargar sus capacidades

de creación de contenido.

Ten en cuenta que la generación contextual de contenido se puede utilizar

efectivamente para internacionalizar tu aplicación “sobre la marcha”. De

hecho, eso es exactamente lo que hice usando mi Gema Instant18n para

ofrecer Olympia enmás demedia docena de idiomas, a pesar de que tenemos

menos de un año.

Localización Impulsada por IA

Si me permites presumir por un momento, creo que mi biblioteca Instant18n para

aplicaciones Rails es un ejemplo revolucionario del patrón de “Generación Contextual

de Contenido” en acción, mostrando el potencial transformador de la IA en el desarrollo

de aplicaciones. Esta gema aprovecha el poder del modelo de lenguaje grande GPT

de OpenAI para revolucionar la forma en que se manejan la internacionalización y la

localización en las aplicaciones Rails.

Tradicionalmente, internacionalizar una aplicación Rails implica definir manualmente

claves de traducción y proporcionar las traducciones correspondientes para cada idioma

soportado. Este proceso puede consumir mucho tiempo, recursos y ser propenso a

inconsistencias. Sin embargo, con la gema Instant18n, el paradigma de localización se

redefine completamente.

Generación de Contenido Contextual 198

Al integrar un modelo de lenguaje grande, la gema Instant18n te permite generar

traducciones sobre la marcha, basándose en el contexto y significado del texto. En lugar

de depender de claves de traducción predefinidas y traducciones estáticas, la gema

traduce dinámicamente el texto usando el poder de la IA. Este enfoque ofrece varios

beneficios clave:

1. Localización Sin Problemas: Con la gema Instant18n, los desarrolladores ya

no necesitan definir y mantener manualmente archivos de traducción para cada

idioma soportado. La gema genera automáticamente traducciones basadas en el

texto proporcionado y el idioma objetivo deseado, haciendo que el proceso de

localización sea sin esfuerzo y fluido.

2. Precisión Contextual: La IA puede recibir suficiente contexto para comprender

los matices del texto que se está traduciendo. Puede tener en cuenta el contexto

circundante, modismos y referencias culturales para generar traducciones que

sean precisas, naturales y contextualmente apropiadas.

3. Soporte Extenso de Idiomas: La gema Instant18n aprovecha el vasto

conocimiento y las capacidades lingüísticas de GPT, permitiendo traducciones

a una extensa gama de idiomas. Desde idiomas comunes como el español y el

francés hasta idiomas más oscuros o ficticios como el klingon y el élfico, la gema

puede manejar una amplia variedad de requisitos de traducción.

4. Flexibilidad y Creatividad: La gema va más allá de las traducciones tradicionales

de idiomas y permite opciones de localización creativas y no convencionales. Los

desarrolladores pueden traducir texto a varios estilos, dialectos o incluso idiomas

ficticios, abriendo nuevas posibilidades para experiencias de usuario únicas y

contenido atractivo.

5. Optimización del Rendimiento: La gema Instant18n incorpora mecanismos

de caché para mejorar el rendimiento y reducir la sobrecarga de traducciones

repetidas. El texto traducido se almacena en caché, permitiendo que las solicitudes

posteriores de la misma traducción se sirvan rápidamente sin necesidad de

llamadas API redundantes.

Generación de Contenido Contextual 199

La gema Instant18n ejemplifica el poder del patrón de “Generación Contextual de

Contenido” al aprovechar la IA para generar contenido localizado dinámicamente.

Demuestra cómo la IA puede integrarse en la funcionalidad central de una aplicación

Rails, transformando la forma en que los desarrolladores abordan la internacionalización

y la localización.

Al eliminar la necesidad de gestionar las traducciones manualmente y permitir

traducciones en tiempo real basadas en el contexto, la gema Instant18n ahorra a los

desarrolladores tiempo y esfuerzo significativos. Les permite concentrarse en construir

las características principales de su aplicación mientras se aseguran de que el aspecto

de localización se maneje de manera fluida y precisa.

La Importancia de las Pruebas de Usuario y la

Retroalimentación

Finalmente, ten siempre presente la importancia de las pruebas de usuario y la

retroalimentación. Es crucial validar que la generación de contenido contextual cumpla

con las expectativas del usuario y se alinee con los objetivos de la aplicación. Itera

y refina continuamente el contenido generado basándote en las perspectivas de los

usuarios y los análisis. Si estás generando contenido dinámico a gran escala que sería

imposible de validar manualmente por ti y tu equipo, considera agregar mecanismos

de retroalimentación que permitan a los usuarios reportar contenido que sea extraño

o incorrecto, junto con una explicación del por qué. ¡Esa valiosa retroalimentación

incluso puede ser alimentada a un trabajador de IA encargado de realizar ajustes al

componente que generó el contenido!

UI Generativa

La atención es tan valiosa en estos días que para lograr un compromiso efectivo del

usuario ahora se requieren experiencias de software que no solo sean fluidas e intuitivas,

sino también altamente personalizadas según las necesidades, preferencias y contextos

individuales. Como resultado, los diseñadores y desarrolladores se enfrentan cada vez

más al desafío de crear interfaces de usuario que puedan adaptarse y satisfacer los

requisitos únicos de cada usuario a escala.

La UI Generativa (GenUI) es un enfoque verdaderamente revolucionario para el diseño

de interfaces de usuario que aprovecha el poder de los modelos de lenguaje grande

(LLMs) para crear experiencias de usuario altamente personalizadas y dinámicas en

tiempo real. Quería asegurarme de darte al menos una introducción sobre GenUI en

este libro, porque creo que es una de las oportunidades más prometedoras que existe

actualmente en el ámbito del diseño y marcos de aplicaciones. Estoy convencido de que

docenas o más proyectos comerciales y de código abierto exitosos surgirán en este nicho

UI Generativa 201

particular.

En su esencia, GenUI combina los principios de Generación de Contenido Contextual

con técnicas avanzadas de IA para generar elementos de interfaz de usuario, como

texto, imágenes y diseños, de manera dinámica basándose en una comprensión profunda

del contexto, preferencias y objetivos del usuario. GenUI permite a los diseñadores

y desarrolladores crear interfaces que se adaptan y evolucionan en respuesta a las

interacciones del usuario, proporcionando un nivel de personalización que antes era

inalcanzable.

GenUI representa un cambio fundamental en la forma en que abordamos el diseño de

interfaces de usuario. En lugar de diseñar para las masas, GenUI nos permite diseñar

para el individuo. El contenido y las interfaces personalizadas tienen el potencial de

crear experiencias de usuario que resuenan con cada usuario a un nivel más profundo,

aumentando el compromiso, la satisfacción y la lealtad.

Como técnica de vanguardia, la transición a GenUI está llena de desafíos conceptuales

y prácticos. Integrar la IA en el proceso de diseño, asegurar que las interfaces generadas

no solo sean personalizadas sino también utilizables, accesibles y alineadas con la marca

general y la experiencia del usuario, todos estos son desafíos que hacen de GenUI

una búsqueda para pocos, no para muchos. Además, la participación de la IA plantea

cuestiones sobre la privacidad de datos, la transparencia e incluso implicaciones éticas.

A pesar de los desafíos, las experiencias personalizadas a escala tienen el poder de

transformar completamente la manera en que interactuamos con productos y servicios

digitales. Abre posibilidades para crear interfaces inclusivas y accesibles que satisfagan

las diversas necesidades de los usuarios, independientemente de sus capacidades,

antecedentes o preferencias.

En este capítulo, exploraremos el concepto de GenUI, examinando algunas

características definitorias, beneficios clave y desafíos potenciales. Comenzamos

considerando la forma más básica y accesible de GenUI: la generación de texto para

interfaces de usuario diseñadas e implementadas de manera tradicional.

UI Generativa 202

Generando Texto para Interfaces de Usuario

Los elementos de texto que existen en la interfaz de tu aplicación, como etiquetas de

formularios, tooltips y texto explicativo, típicamente están codificados en las plantillas

o componentes de UI, proporcionando una experiencia consistente pero genérica para

todos los usuarios. Utilizando patrones de generación de contenido contextual, puedes

transformar estos elementos estáticos en componentes dinámicos, conscientes del

contexto y personalizados.

Formularios Personalizados

Los formularios son una parte ubicua de las aplicaciones web y móviles, sirviendo como

el medio principal para recopilar información del usuario. Sin embargo, los formularios

tradicionales amenudo presentan una experiencia genérica e impersonal, con etiquetas y

campos estándar que no siempre se alinean con el contexto o las necesidades específicas

del usuario. Los usuarios son más propensos a completar formularios que se sienten

adaptados a sus necesidades y preferencias, lo que lleva a mayores tasas de conversión

y satisfacción del usuario.

Sin embargo, es importante encontrar un equilibrio entre la personalización y la

consistencia. Si bien adaptar los formularios a usuarios individuales puede ser

beneficioso, es crucial mantener un nivel de familiaridad y previsibilidad. Los usuarios

aún deberían poder reconocer y navegar por los formularios fácilmente, incluso con

elementos personalizados.

Aquí hay algunas ideas de formularios personalizados para inspirarse:

Sugerencias Contextuales de Campo

GenUI puede analizar las interacciones previas del usuario, preferencias y datos para

proporcionar sugerencias inteligentes de campo como predicciones. Por ejemplo,

UI Generativa 203

si el usuario ha ingresado previamente su dirección de envío, el formulario puede

autocompletar automáticamente los campos relevantes con su información guardada.

Esto no solo ahorra tiempo, sino que también demuestra que la aplicación entiende y

recuerda las preferencias del usuario.

Un momento, ¿no es esta técnica algo que podría hacerse sin involucrar la IA? Por

supuesto, pero la belleza de impulsar este tipo de funcionalidad con IA es doble: 1) lo

fácil que puede ser de implementar y 2) lo resistente que puede ser a medida que tu IU

cambia y evoluciona con el tiempo.

Vamos a crear rápidamente un servicio para nuestro sistema teórico de gestión de

pedidos, que intente completar proactivamente la dirección de envío correcta para el

usuario.

1 class OrderShippingAddressSubscriber

2 include Raix::ChatCompletion

3

4 attr_accessor :order

5

6 delegate :customer, to: :order

7

8 DIRECTIVE = "You are a smart order processing assistant. Given the

9 customer's order history, guess the most likely shipping address

10 for the current order."

11

12 def order_created(order)

13 return unless order.pending? && order.shipping_address.blank?

14

15 self.order = order

16

17 transcript.clear

18 transcript << { system: DIRECTIVE }

19 transcript << { user: "Order History: #{order_history.to_json}" }

20 transcript << { user: "Current Order: #{order.to_json}" }

21

22 response = chat_completion

23 apply_predicted_shipping_address(order, response)

24 end

25

UI Generativa 204

26 private

27

28 def apply_predicted_shipping_address(order, response)

29 # extract the shipping address from the response...

30 # ...and assume there's some sort of live update of the address fields

31 order.update(shipping_address:)

32 end

33

34 def order_history

35 customer.orders.successful.limit(100).map do |order|

36 {

37 date: order.date,

38 description: order.description,

39 shipping_address: order.shipping_address

40 }

41 end

42 end

43 end

Este ejemplo está muy simplificado, pero debería funcionar para la mayoría de los casos.

La idea es permitir que la IA haga una suposición de la misma manera que lo haría

un humano. Para dejar claro de qué estoy hablando, consideremos algunos datos de

muestra:

1 Order History:

2 [

3 {"date": "2024-01-03", "description": "garden soil mix",

4 "shipping_address": "123 Country Lane, Rural Town"},

5 {"date": "2024-01-15", "description": "hardcover fiction novels",

6 "shipping_address": "456 City Apt, Metroville"},

7 {"date": "2024-01-22", "description": "baby diapers", "shipping_address":

8 "789 Suburb St, Quietville"},

9 {"date": "2024-02-01", "description": "organic vegetables",

10 "shipping_address": "123 Country Lane, Rural Town"},

11 {"date": "2024-02-17", "description": "mystery thriller book set",

12 "shipping_address": "456 City Apt, Metroville"},

13 {"date": "2024-02-25", "description": "baby wipes",

14 "shipping_address": "789 Suburb St, Quietville"},

15 {"date": "2024-03-05", "description": "flower seeds",

16 "shipping_address": "123 Country Lane, Rural Town"},

UI Generativa 205

17 {"date": "2024-03-20", "description": "biographies",

18 "shipping_address": "456 City Apt, Metroville"},

19 {"date": "2024-03-30", "description": "baby formula",

20 "shipping_address": "789 Suburb St, Quietville"},

21 {"date": "2024-04-12", "description": "lawn fertilizer",

22 "shipping_address": "123 Country Lane, Rural Town"},

23 {"date": "2024-04-22", "description": "science fiction novels",

24 "shipping_address": "456 City Apt, Metroville"},

25 {"date": "2024-05-02", "description": "infant toys",

26 "shipping_address": "789 Suburb St, Quietville"},

27 {"date": "2024-05-14", "description": "outdoor grill",

28 "shipping_address": "123 Country Lane, Rural Town"},

29 {"date": "2024-05-29", "description": "literary classics",

30 "shipping_address": "456 City Apt, Metroville"},

31 {"date": "2024-06-11", "description": "baby clothes",

32 "shipping_address": "789 Suburb St, Quietville"},

33 {"date": "2024-07-01", "description": "watering can",

34 "shipping_address": "123 Country Lane, Rural Town"},

35 {"date": "2024-07-18", "description": "non-fiction essays",

36 "shipping_address": "456 City Apt, Metroville"},

37 {"date": "2024-07-28", "description": "baby bath items",

38 "shipping_address": "789 Suburb St, Quietville"},

39 {"date": "2024-08-09", "description": "herb garden kit",

40 "shipping_address": "123 Country Lane, Rural Town"},

41 {"date": "2024-08-24", "description": "children's books",

42 "shipping_address": "456 City Apt, Metroville"}

43]

¿Notaste el patrón en los datos? Te garantizo que esto es algo sencillo para un LLM. Para

demostrarlo, preguntémosle a GPT-4 cuál es la dirección de envío más probable para un

“termómetro”.

UI Generativa 206

1 From the order history you've provided, it looks like the purchases are

2 generally clustered into three main types based on the shipping addresses:

3

4 123 Country Lane, Rural Town - This address often orders garden and

5 outdoor-related items like soil mix, vegetables, flower seeds, lawn

6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.

7

8 456 City Apt, Metroville - This address tends to order various types of

9 books, indicating an interest in reading across genres like fiction,

10 thrillers, biographies, science fiction, literary classics, non-fiction

11 essays, and children's books.

12

13 789 Suburb St, Quietville - The purchases for this address are consistently

14 baby-related products, such as diapers, wipes, baby formula, infant toys,

15 baby clothes, and baby bath items.

16

17 Given these patterns, a digital thermometer could potentially be a fit for

18 any of the addresses based on different needs: outdoor temperature tracking,

19 a tool for a passionate reader interested in science gadgets, or a health

20 tool for a baby. However, considering its common use in monitoring health,

21 especially for babies, it's most likely to be purchased by someone who's

22 already buying baby care products.

23

24 Therefore, the most likely shipping address for a digital thermometer, based

25 on the purchasing patterns, would be 789 Suburb St, Quietville.

Si estás pensando que es exagerado usar un modelo costoso como GPT-4 para esta tarea,

¡tienes razón! Probé el mismo prompt en Mistral 7B Instruct y produjo la siguiente

respuesta a 75 tokens por segundo, y un costo ínfimo de $0.000218 USD.

UI Generativa 207

1 Based on the given order history, it appears that the customer has received

2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)

3 at the address "789 Suburb St, Quietville" and garden-related items (soil,

4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural

5 Town". The customer has also received books (fiction, non-fiction, literary

6 classics, mystery-thriller, science fiction, biographies, children's books)

7 at the address "456 City Apt, Metroville".

8

9 Given that the new order is for a "thermometer", which doesn't seem to fit

10 into any of the categories that the customer has previously ordered, it's

11 hard to accurately predict the shipping address based solely on the order

12 history. However, given the 50%-50% split between baby-related and

13 garden-related items, it could somewhat lean towards the Baby-related items

14 address ("789 Suburb St, Quietville"). But remember, this is an assumption

15 and cannot be definitively confirmed without more context or information.

¿Vale la pena el costo y la sobrecarga de esta técnica para hacer que la experiencia

de pago sea más mágica? Para muchos minoristas en línea, definitivamente sí. Y por

lo que parece, el costo del cómputo de IA solo va a disminuir, especialmente para los

proveedores de alojamiento de modelos de código abierto en una carrera hacia el precio

más bajo.

Utiliza una Prompt Template y StructuredIO junto con Response Fencing

para optimizar este tipo de completado de chat.

Ordenamiento Adaptativo de Campos

El orden en que se presentan los campos del formulario puede impactar

significativamente la experiencia del usuario y las tasas de finalización. Con GenUI,

puedes ajustar dinámicamente el orden de los campos según el contexto del usuario y la

importancia de cada campo. Por ejemplo, si el usuario está completando un formulario

de registro para una aplicación de fitness, el formulario podría priorizar los campos

relacionados con sus objetivos y preferencias de acondicionamiento físico, haciendo el

proceso más relevante y atractivo.

UI Generativa 208

Microtextos Personalizados

El texto instructivo, mensajes de error y otros microtextos asociados con los formularios

también pueden personalizarse usando GenUI. En lugar de mostrar mensajes de error

genéricos como “Dirección de correo electrónico inválida”, puedes generar mensajes más

útiles y contextuales como “Por favor, ingresa una dirección de correo electrónico válida

para recibir tu confirmación de pedido”. Estos toques personalizados pueden hacer que

la experiencia del formulario sea más amigable y menos frustrante.

Validación Personalizada

En la misma línea que los Microtextos Personalizados, podrías usar la IA para validar

el formulario de maneras que parezcan mágicas. Imagina permitir que una IA valide un

formulario de perfil de usuario, buscando posibles errores a nivel semántico.

UI Generativa 209

Figura 9. ¿Puedes detectar la validación semántica en acción?

Revelación Progresiva

GenUI puede determinar de manera inteligente qué campos del formulario son

esenciales basándose en el contexto del usuario y revelar gradualmente campos

adicionales según sea necesario. Esta técnica de revelación progresiva ayuda a reducir

la carga cognitiva y hace que el proceso de completar el formulario sea más manejable.

UI Generativa 210

Por ejemplo, si un usuario se está registrando para una suscripción básica, el formulario

puede presentar inicialmente solo los campos esenciales, y a medida que el usuario

avanza o selecciona opciones específicas, se pueden introducir dinámicamente campos

adicionales relevantes.

Texto Explicativo Sensible al Contexto

Los tooltips se utilizan frecuentemente para proporcionar información adicional

u orientación a los usuarios cuando pasan el cursor o interactúan con elementos

específicos. Con un enfoque de “Generación de Contenido Contextual”, puedes generar

tooltips que se adapten al contexto del usuario y proporcionen información relevante.

Por ejemplo, si un usuario está explorando una función compleja, el tooltip puede

ofrecer consejos personalizados o ejemplos basados en sus interacciones previas o nivel

de habilidad.

El texto explicativo, como instrucciones, descripciones o mensajes de ayuda, puede

generarse dinámicamente según el contexto del usuario. En lugar de presentar

explicaciones genéricas, puedes usar LLMs para generar texto que se adapte a las

necesidades o preguntas específicas del usuario. Por ejemplo, si un usuario está

teniendo dificultades con un paso particular en un proceso, el texto explicativo puede

proporcionar orientación personalizada o consejos para solucionar problemas.

Los microtextos se refieren a los pequeños fragmentos de texto que guían a los usuarios

a través de tu aplicación, como etiquetas de botones, mensajes de error o avisos de

confirmación. Al aplicar el enfoque de Generación de Contenido Contextual a los

microtextos, puedes crear una interfaz adaptativa que responda a las acciones del

usuario y proporcione texto relevante y útil. Por ejemplo, si un usuario está a punto

de realizar una acción crítica, el aviso de confirmación puede generarse dinámicamente

para proporcionar un mensaje claro y personalizado.

El texto explicativo y los tooltips personalizados pueden mejorar enormemente el

proceso de incorporación de nuevos usuarios. Al proporcionar orientación y ejemplos

UI Generativa 211

específicos al contexto, puedes ayudar a los usuarios a comprender y navegar

rápidamente por la aplicación, reduciendo la curva de aprendizaje y aumentando la

adopción.

Los elementos de interfaz dinámicos y sensibles al contexto también pueden hacer

que la aplicación se sienta más intuitiva y atractiva. Es más probable que los usuarios

interactúen y exploren las funciones cuando el texto que las acompaña está adaptado a

sus necesidades e intereses específicos.

Hasta ahora hemos cubierto ideas para mejorar los paradigmas existentes de UI con IA,

pero ¿qué hay sobre repensar cómo se diseñan e implementan las interfaces de usuario

de una manera más radical?

Definiendo la UI Generativa

A diferencia del diseño tradicional de UI, donde los diseñadores crean interfaces fijas y

estáticas, la GenUI sugiere un futuro en el que nuestro software presenta experiencias

flexibles y personalizadas que pueden evolucionar y adaptarse en tiempo real. Cada vez

que usamos una interfaz conversacional impulsada por IA, estamos permitiendo que la

IA se adapte a las necesidades particulares del usuario. La GenUI va un paso más allá al

aplicar ese nivel de adaptabilidad a la interfaz visual del software.

La razón por la que es posible experimentar con ideas de GenUI hoy en día es que

los modelos de lenguaje grandes ya comprenden la programación y su conocimiento

base incluye tecnologías y marcos de UI. La pregunta es, por tanto, si los modelos

de lenguaje grandes pueden utilizarse para generar elementos de UI, como texto,

imágenes, diseños e incluso interfaces completas, que estén adaptados a cada usuario

individual. Se podría instruir al modelo para que tenga en cuenta varios factores,

como las interacciones pasadas del usuario, las preferencias declaradas, la información

UI Generativa 212

demográfica y el contexto actual de uso, para crear interfaces altamente personalizadas

y relevantes.

La GenUI se diferencia del diseño tradicional de interfaces de usuario en varios aspectos

clave:

1. Dinámica y Adaptativa: El diseño tradicional de UI implica crear interfaces fijas

y estáticas que permanecen iguales para todos los usuarios. En contraste, la GenUI

permite interfaces que pueden adaptarse y cambiar dinámicamente según las

necesidades y el contexto del usuario. Esto significa que la misma aplicación puede

presentar diferentes interfaces a diferentes usuarios o incluso al mismo usuario en

diferentes situaciones.

2. Personalización a Escala: Con el diseño tradicional, crear experiencias

personalizadas para cada usuario suele ser poco práctico debido al tiempo y

recursos requeridos. La GenUI, por otro lado, permite la personalización a escala.

Al aprovechar la IA, los diseñadores pueden crear interfaces que se adaptan

automáticamente a las necesidades y preferencias únicas de cada usuario, sin

tener que diseñar y desarrollar manualmente interfaces separadas para cada

segmento de usuarios.

3. Enfoque en Resultados: El diseño tradicional de UI a menudo se centra en

crear interfaces visualmente atractivas y funcionales. Si bien estos aspectos siguen

siendo importantes en la GenUI, el enfoque principal cambia hacia la consecución

de los resultados deseados por el usuario. La GenUI busca crear interfaces

que estén optimizadas para los objetivos y tareas específicas de cada usuario,

priorizando la usabilidad y efectividad sobre consideraciones puramente estéticas.

4. Aprendizaje yMejora Continua: Los sistemas GenUI pueden aprender ymejorar

continuamente con el tiempo basándose en las interacciones y retroalimentación

de los usuarios. A medida que los usuarios interactúan con las interfaces

generadas, los modelos de IA pueden recopilar datos sobre el comportamiento,

preferencias y resultados del usuario, utilizando esta información para refinar

UI Generativa 213

y optimizar futuras generaciones de interfaces. Este proceso de aprendizaje

iterativo permite que los sistemas GenUI se vuelvan cada vez más efectivos para

satisfacer las necesidades de los usuarios con el tiempo.

Es importante señalar que la GenUI no es lo mismo que las herramientas de diseño

asistidas por IA, como aquellas que proporcionan sugerencias o automatizan ciertas

tareas de diseño. Si bien estas herramientas pueden ser útiles para agilizar el proceso

de diseño, todavía dependen de los diseñadores para tomar decisiones finales y crear

interfaces estáticas. La GenUI, por otro lado, implica que el sistema de IA tome un papel

más activo en la generación y adaptación real de interfaces basadas en datos y contexto

del usuario.

La GenUI representa un cambio significativo en cómo abordamos el diseño de interfaces

de usuario, alejándonos de soluciones universales y avanzando hacia experiencias

altamente personalizadas y adaptativas. Al aprovechar el poder de la IA, la GenUI tiene

el potencial de revolucionar la forma en que interactuamos con productos y servicios

digitales, creando interfaces que son más intuitivas, atractivas y efectivas para cada

usuario individual.

Ejemplo

Para ilustrar el concepto de GenUI, consideremos una aplicación hipotética de

fitness llamada “FitAI”. Esta aplicación tiene como objetivo proporcionar planes de

entrenamiento personalizados y consejos de nutrición a los usuarios basados en sus

objetivos individuales, niveles de condición física y preferencias.

En un enfoque tradicional de diseño de UI, FitAI podría tener un conjunto fijo de

pantallas y elementos que son los mismos para todos los usuarios. Sin embargo, con

GenUI, la interfaz de la aplicación podría adaptarse dinámicamente a las necesidades

únicas y al contexto de cada usuario.

UI Generativa 214

Este enfoque es algo difícil de imaginar implementar en 2024 y podría incluso no tener

un ROI adecuado, pero es posible.

Así es como podría funcionar:

1. Incorporación:

• En lugar de un cuestionario estándar, FitAI utiliza una IA conversacional

para recopilar información sobre los objetivos del usuario, su nivel actual de

condición física y preferencias.

• Basándose en esta interacción inicial, la IA genera un diseño de panel

personalizado, destacando las características y la información más relevante

para los objetivos del usuario.

• La tecnología de IA actual podría tener una selección de componentes de

pantalla a su disposición para usar en la composición del panel personalizado.

• La tecnología de IA futura podría asumir el papel de un diseñador de UI

experimentado y realmente crear el panel desde cero.

2. Planificador de ejercicios:

• La interfaz del planificador de ejercicios es adaptada por la IA

específicamente según el nivel de experiencia del usuario y el equipo

disponible.

• Para un principiante sin equipo, podría mostrar ejercicios simples con el peso

corporal con instrucciones detalladas y videos.

• Para un usuario avanzado con acceso a un gimnasio, podría mostrar rutinas

más complejas con menos contenido explicativo.

• El contenido del planificador de ejercicios no es simplemente filtrado de un

gran superconjunto. Puede generarse sobre la marcha basándose en una base

de conocimientos que se consulta con un contexto que incluye todo lo que

se sabe sobre el usuario.

3. Seguimiento de progreso:

UI Generativa 215

• La interfaz de seguimiento de progreso evoluciona según los objetivos y

patrones de participación del usuario.

• Si un usuario está principalmente enfocado en la pérdida de peso, la interfaz

podría mostrar de manera prominente una gráfica de tendencia de peso y

estadísticas de quema de calorías.

• Para un usuario que está desarrollandomúsculo, podría resaltar las ganancias

de fuerza y los cambios en la composición corporal.

• La IA puede adaptar esta parte de la aplicación al progreso real del usuario.

Si el progreso se detiene durante un período de tiempo, la aplicación puede

cambiar a un modo donde intenta persuadir al usuario para que revele las

razones del retroceso, con el fin de mitigarlas.

4. Consejos nutricionales:

• La sección de nutrición se adapta a las preferencias y restricciones dietéticas

del usuario.

• Para un usuario vegano, podría mostrar sugerencias de comidas basadas en

plantas y fuentes de proteínas.

• Para un usuario con intolerancia al gluten, automáticamente filtraría los

alimentos que contienen gluten de las recomendaciones.

• Nuevamente, el contenido no se extrae de un superconjunto masivo de datos

de comidas que se aplica a todos los usuarios, sino que se sintetiza a partir

de una base de conocimientos que contiene información adaptable según la

situación y restricciones específicas del usuario.

• Por ejemplo, las recetas se generan con especificaciones de ingredientes que

coinciden con las necesidades calóricas en constante cambio del usuario a

medida que evoluciona su nivel de condición física y estadísticas corporales.

5. Elementos motivacionales:

• El contenido motivacional y las notificaciones de la aplicación se

personalizan según el tipo de personalidad del usuario y su respuesta

a diferentes estrategias motivacionales.

UI Generativa 216

• Algunos usuarios podrían recibir mensajes de ánimo, mientras que otros

obtienen retroalimentación más orientada a datos.

En este ejemplo, GenUI permite a FitAI crear una experiencia altamente personalizada

para cada usuario, potencialmente aumentando el compromiso, la satisfacción y la

probabilidad de alcanzar objetivos de fitness. Los elementos de la interfaz, el contenido e

incluso la “personalidad” de la aplicación se adaptan para servir mejor a las necesidades

y preferencias de cada usuario individual.

El Cambio hacia el Diseño Orientado a

Resultados

GenUI representa un cambio fundamental en el enfoque del diseño de interfaces de

usuario, pasando de un enfoque en la creación de elementos específicos de interfaz a un

enfoque más holístico y orientado a resultados. Este cambio tiene varias implicaciones

importantes:

1. Enfoque en los Objetivos del Usuario:

• Los diseñadores necesitarán pensar más profundamente sobre los objetivos

del usuario y los resultados deseados en lugar de componentes específicos de

la interfaz.

• El énfasis estará en crear sistemas que puedan generar interfaces que ayuden

a los usuarios a alcanzar sus objetivos de manera eficiente y efectiva.

• Surgirán nuevos marcos de trabajo de UI que proporcionarán a los

diseñadores basados en IA las herramientas necesarias para generar

experiencias de usuario sobre la marcha y desde cero en lugar de basarse en

especificaciones de pantalla predefinidas.

2. Cambio en el Rol de los Diseñadores:

UI Generativa 217

• Los diseñadores pasarán de crear diseños fijos a definir reglas, restricciones

y pautas que los sistemas de IA deben seguir al generar interfaces.

• Necesitarán desarrollar habilidades en áreas como análisis de datos,

ingeniería de prompts y pensamiento sistémico para guiar efectivamente los

sistemas GenUI.

3. Importancia de la Investigación de Usuarios:

• La investigación de usuarios se vuelve aún más crítica en un contexto de

GenUI, ya que los diseñadores necesitan entender no solo las preferencias

del usuario, sino también cómo estas preferencias y necesidades cambian en

diferentes contextos.

• Las pruebas continuas con usuarios y los ciclos de retroalimentación serán

esenciales para refinar ymejorar la capacidad de la IA para generar interfaces

efectivas.

4. Diseñando para la Variabilidad:

• En lugar de crear una única interfaz “perfecta”, los diseñadores necesitarán

considerar múltiples variaciones posibles y asegurar que el sistema pueda

generar interfaces apropiadas para diversas necesidades de usuario.

• Esto incluye diseñar para casos extremos y asegurar que las interfaces

generadas mantengan la usabilidad y accesibilidad en diferentes

configuraciones.

• La diferenciación de productos adquiere nuevas dimensiones que involucran

perspectivas divergentes sobre la psicología del usuario y el aprovechamiento

de conjuntos de datos únicos y bases de conocimiento no disponibles para

los competidores.

UI Generativa 218

Desafíos y Consideraciones

Si bien GenUI ofrece posibilidades emocionantes, también presenta varios desafíos y

consideraciones:

1. Limitaciones Técnicas:

• La tecnología de IA actual, aunque avanzada, todavía tiene limitaciones

para comprender intenciones complejas del usuario y generar interfaces

verdaderamente conscientes del contexto.

• Problemas de rendimiento relacionados con la generación en tiempo real de

elementos de interfaz, especialmente en dispositivos menos potentes.

2. Requisitos de Datos:

• Dependiendo del caso de uso, los sistemas GenUI efectivos podrían requerir

cantidades significativas de datos de usuario para generar interfaces

personalizadas.

• Los desafíos en la obtención ética de datos auténticos de usuarios plantean

preocupaciones sobre la privacidad y seguridad de los datos, así como

posibles sesgos en los datos utilizados para entrenar modelos GenUI.

3. Usabilidad y Consistencia:

• Al menos hasta que la práctica se generalice, una aplicación con interfaces

en constante cambio podría generar problemas de usabilidad, ya que los

usuarios pueden tener dificultades para encontrar elementos familiares o

navegar eficientemente.

• Será crucial encontrar un equilibrio entre la personalización y el

mantenimiento de una interfaz consistente y fácil de aprender.

4. Dependencia Excesiva de la IA:

UI Generativa 219

• Existe el riesgo de delegar excesivamente las decisiones de diseño a los

sistemas de IA, lo que potencialmente puede llevar a elecciones de interfaz

poco inspiradas, problemáticas o simplemente defectuosas.

• La supervisión humana y la capacidad de anular los diseños generados por

IA seguirán siendo importantes en el futuro previsible.

5. Preocupaciones de Accesibilidad:

• Garantizar que las interfaces generadas dinámicamente sigan siendo

accesibles para usuarios con discapacidades presenta desafíos

completamente nuevos, lo cual es preocupante dado el bajo nivel de

cumplimiento de accesibilidad demostrado por los sistemas típicos.

• Por otro lado, los diseñadores de IA pueden implementarse con una

preocupación incorporada por la accesibilidad y capacidades para construir

interfaces accesibles sobre la marcha, al igual que construyen interfaces

para usuarios sin discapacidades.

• En cualquier caso, los sistemas GenUI deberían diseñarse con pautas y

procesos de prueba de accesibilidad robustos.

6. Confianza y Transparencia del Usuario:

• Los usuarios pueden sentirse incómodos con interfaces que parecen “saber

demasiado” sobre ellos o que cambian de formas que no comprenden.

• Proporcionar transparencia sobre cómo y por qué se personalizan las

interfaces será importante para construir la confianza del usuario.

Perspectivas Futuras y Oportunidades

El futuro de la Interfaz de Usuario Generativa (GenUI) tiene un inmenso potencial

para revolucionar la forma en que interactuamos con productos y servicios digitales.

UI Generativa 220

A medida que esta tecnología continúa evolucionando, podemos anticipar un cambio

sísmico en cómo se diseñan, implementan y experimentan las interfaces de usuario.

Creo que GenUI es el fenómeno que finalmente impulsará nuestro software al ámbito

de lo que ahora se considera ciencia ficción.

Una de las perspectivas más emocionantes de GenUI es su potencial para mejorar

la accesibilidad a una escala que va más allá de simplemente asegurarse de que las

personas con discapacidades graves no estén completamente excluidas del uso del

software. Al adaptar automáticamente las interfaces a las necesidades individuales de

los usuarios, GenUI podría hacer que las experiencias digitales sean más inclusivas

que nunca. Imagine interfaces que se ajustan sin problemas para proporcionar texto

más grande para usuarios jóvenes o con discapacidad visual, o diseños simplificados

para aquellos con discapacidades cognitivas, todo sin requerir configuración manual o

versiones “accesibles” separadas de las aplicaciones.

Es probable que las capacidades de personalización de GenUI impulsen un mayor

compromiso, satisfacción y lealtad del usuario en una amplia gama de productos

digitales. A medida que las interfaces se sintonizan más con las preferencias y

comportamientos individuales, los usuarios encontrarán las experiencias digitales más

intuitivas y agradables, lo que potencialmente conducirá a interacciones más profundas

y significativas con la tecnología.

GenUI también tiene el potencial de transformar el proceso de incorporación de nuevos

usuarios. Al crear experiencias intuitivas y personalizadas para usuarios principiantes

que se adaptan rápidamente al nivel de experiencia de cada usuario, GenUI podría

reducir significativamente la curva de aprendizaje asociada con nuevas aplicaciones.

Esto podría conducir a tasas de adopción más rápidas y mayor confianza de los usuarios

para explorar nuevas características y funcionalidades.

Otra posibilidad emocionante es la capacidad de GenUI para mantener una experiencia

de usuario consistente en diferentes dispositivos y plataformas mientras se optimiza

para cada contexto específico de uso. Esto podría resolver el desafío de larga data de

UI Generativa 221

proporcionar experiencias coherentes a través de un panorama de dispositivos cada

vez más fragmentado, desde teléfonos inteligentes y tabletas hasta computadoras de

escritorio y tecnologías emergentes como las gafas de realidad aumentada.

La naturaleza basada en datos de GenUI abre oportunidades para la iteración rápida y la

mejora en el diseño de interfaces de usuario. Al recopilar datos en tiempo real sobre cómo

los usuarios interactúan con las interfaces generadas, los diseñadores y desarrolladores

pueden obtener información sin precedentes sobre el comportamiento y las preferencias

de los usuarios. Este ciclo de retroalimentación podría conducir a mejoras continuas en

el diseño de UI, impulsadas por patrones de uso reales en lugar de suposiciones o pruebas

de usuario limitadas.

Para prepararse para este cambio, los diseñadores necesitarán evolucionar sus

habilidades y mentalidades. El enfoque cambiará de crear diseños fijos a desarrollar

sistemas de diseño y pautas integrales que puedan informar la generación de interfaces

impulsada por IA. Los diseñadores necesitarán cultivar una comprensión profunda del

análisis de datos, tecnologías de IA y pensamiento sistémico para guiar efectivamente

los sistemas GenUI.

Además, a medida que GenUI desdibuja las líneas entre diseño y tecnología, los

diseñadores necesitarán colaborar más estrechamente con desarrolladores y científicos

de datos. Este enfoque interdisciplinario será crucial para crear sistemas GenUI que no

solo sean visualmente atractivos y fáciles de usar, sino también técnicamente robustos

y éticamente sólidos.

Las implicaciones éticas de GenUI también pasarán a primer plano a medida que la

tecnología madure. Los diseñadores jugarán un papel crucial en el desarrollo de marcos

de trabajo para el uso responsable de la IA en el diseño de interfaces, asegurando que

la personalización mejore las experiencias de usuario sin comprometer la privacidad ni

manipular el comportamiento del usuario de manera poco ética.

Al mirar hacia el futuro, GenUI presenta tanto oportunidades emocionantes como

desafíos significativos. Tiene el potencial de crear experiencias digitales más intuitivas,

UI Generativa 222

eficientes y satisfactorias para usuarios en todo el mundo. Si bien requerirá que los

diseñadores se adapten y adquieran nuevas habilidades, también ofrece una oportunidad

sin precedentes para dar forma al futuro de la interacción humano-computadora de

maneras profundas y significativas. El camino hacia sistemas GenUI completamente

desarrollados será sin duda complejo, pero las recompensas potenciales en términos de

mejores experiencias de usuario y accesibilidad digital lo convierten en un futuro por el

que vale la pena luchar.

Orquestación Inteligente de
Flujos de Trabajo

En el ámbito del desarrollo de aplicaciones, los flujos de trabajo juegan un papel crucial

en la definición de cómo se estructuran y ejecutan las tareas, procesos e interacciones

del usuario. A medida que las aplicaciones se vuelven más complejas y las expectativas

de los usuarios continúan aumentando, la necesidad de una orquestación inteligente y

adaptativa de flujos de trabajo se vuelve cada vez más evidente.

El enfoque de “Orquestación Inteligente de Flujos de Trabajo” se centra en aprovechar

los componentes de IA para orquestar y optimizar dinámicamente flujos de trabajo

complejos dentro de las aplicaciones. El objetivo es crear aplicaciones que sean más

eficientes, receptivas y adaptables a datos y contextos en tiempo real.

En este capítulo, exploraremos los principios y patrones clave que sustentan el enfoque

de orquestación inteligente de flujos de trabajo. Consideraremos cómo se puede utilizar

Orquestación Inteligente de Flujos de Trabajo 224

la IA para enrutar tareas de manera inteligente, automatizar la toma de decisiones

y adaptar dinámicamente los flujos de trabajo basándose en varios factores como el

comportamiento del usuario, el rendimiento del sistema y las reglas de negocio. A

través de ejemplos prácticos y escenarios del mundo real, demostraremos el potencial

transformador de la IA en la racionalización y optimización de los flujos de trabajo de

las aplicaciones.

Ya sea que esté construyendo aplicaciones empresariales con procesos de negocio

intrincados o aplicaciones orientadas al consumidor con recorridos de usuario

dinámicos, los patrones y técnicas discutidos en este capítulo lo equiparán con el

conocimiento y las herramientas para crear flujos de trabajo inteligentes y eficientes

que mejoren la experiencia general del usuario e impulsen el valor comercial.

Necesidad Empresarial

Los enfoques tradicionales para la gestión de flujos de trabajo a menudo se basan en

reglas predefinidas y árboles de decisión estáticos, que pueden ser rígidos, inflexibles e

incapaces de hacer frente a la naturaleza dinámica de las aplicaciones modernas.

Considere un escenario donde una aplicación de comercio electrónico necesita manejar

un proceso complejo de cumplimiento de pedidos. El flujo de trabajo puede involucrar

múltiples pasos como la validación del pedido, verificación de inventario, procesamiento

de pagos, envío y notificaciones al cliente. Cada paso puede tener su propio conjunto de

reglas, dependencias, integraciones externas y mecanismos de manejo de excepciones.

Gestionar tal flujo de trabajo manualmente o a través de lógica codificada puede

volverse rápidamente engorroso, propenso a errores y difícil de mantener.

Además, a medida que la aplicación escala y el número de usuarios concurrentes crece,

el flujo de trabajo puede necesitar adaptarse y optimizarse según los datos en tiempo real

y el rendimiento del sistema. Por ejemplo, durante períodos de alto tráfico, la aplicación

puede necesitar ajustar dinámicamente el flujo de trabajo para priorizar ciertas tareas,

asignar recursos eficientemente y asegurar una experiencia de usuario fluida.

Orquestación Inteligente de Flujos de Trabajo 225

Aquí es donde entra en juego el enfoque de “Orquestación Inteligente de Flujos de

Trabajo”. Al aprovechar los componentes de IA, los desarrolladores pueden crear flujos

de trabajo que son inteligentes, adaptativos y auto-optimizables. La IA puede analizar

grandes cantidades de datos, aprender de experiencias pasadas y tomar decisiones

informadas en tiempo real para orquestar el flujo de trabajo de manera efectiva.

Beneficios Clave

1. Mayor Eficiencia: La IA puede optimizar la asignación de tareas, la utilización de

recursos y la ejecución del flujo de trabajo, lo que lleva a tiempos de procesamiento

más rápidos y una mejor eficiencia general.

2. Adaptabilidad: Los flujos de trabajo impulsados por IA pueden adaptarse

dinámicamente a condiciones cambiantes, como fluctuaciones en la demanda de

usuarios, rendimiento del sistema o requisitos comerciales, asegurando que la

aplicación permanezca receptiva y resiliente.

3. Toma deDecisiones Automatizada: La IA puede automatizar procesos complejos

de toma de decisiones dentro del flujo de trabajo, reduciendo la intervención

manual y minimizando el riesgo de errores humanos.

4. Personalización: La IA puede analizar el comportamiento, las preferencias y el

contexto del usuario para personalizar el flujo de trabajo y ofrecer experiencias

adaptadas a usuarios individuales.

5. Escalabilidad: Los flujos de trabajo potenciados por IA pueden escalar sin

problemas para manejar volúmenes crecientes de datos e interacciones de

usuarios, sin comprometer el rendimiento o la fiabilidad.

En las siguientes secciones, exploraremos los patrones y técnicas clave que permiten la

implementación de flujos de trabajo inteligentes y mostraremos ejemplos del mundo

real de cómo la IA está transformando la gestión de flujos de trabajo en aplicaciones

modernas.

Orquestación Inteligente de Flujos de Trabajo 226

Patrones Clave

Para implementar la orquestación inteligente de flujos de trabajo en aplicaciones, los

desarrolladores pueden aprovechar varios patrones clave que aprovechan el poder de

la IA. Estos patrones proporcionan un enfoque estructurado para diseñar y gestionar

flujos de trabajo, permitiendo que las aplicaciones se adapten, optimicen y automaticen

procesos basados en datos y contexto en tiempo real. Exploremos algunos de los patrones

fundamentales en la orquestación inteligente de flujos de trabajo.

Enrutamiento Dinámico de Tareas

Este patrón implica usar IA para enrutar inteligentemente tareas dentro de un flujo

de trabajo basado en varios factores como la prioridad de la tarea, la disponibilidad

de recursos y el rendimiento del sistema. Los algoritmos de IA pueden analizar las

características de cada tarea, considerar el estado actual del sistema y tomar decisiones

informadas para asignar tareas a los recursos o rutas de procesamiento más apropiados.

El enrutamiento dinámico de tareas asegura que las tareas se distribuyan y ejecuten

eficientemente, optimizando el rendimiento general del flujo de trabajo.

1 class TaskRouter

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 attr_accessor :task

6

7 # list of functions that can be called by the AI entirely at its

8 # discretion depending on the task received

9

10 function :analyze_task_priority do

11 TaskPriorityAnalyzer.perform(task)

12 end

13

14 function :check_resource_availability, # ...

15 function :assess_system_performance, # ...

Orquestación Inteligente de Flujos de Trabajo 227

16 function :assign_task_to_resource, # ...

17

18 DIRECTIVE = "You are a task router, responsible for intelligently

19 assigning tasks to available resources based on priority, resource

20 availability, and system performance..."

21

22 def initialize(task)

23 self.task = task

24 transcript << { system: DIRECTIVE }

25 transcript << { user: task.to_json }

26 end

27

28 def perform

29 while task.unassigned?

30 chat_completion

31

32 # todo: add max loop counter and break

33 end

34

35 # capture the transcript for later analysis

36 task.update(routing_transcript: transcript)

37 end

38 end

Observe el bucle creado por la expresión while en la línea 29, que continúa solicitando

al IA hasta que se asigna la tarea. En la línea 35, guardamos la transcripción de la tarea

para análisis y depuración posterior, si fuera necesario.

Toma de Decisiones Contextual

Puede usar un códigomuy similar para tomar decisiones conscientes del contexto dentro

de un flujo de trabajo. Al analizar puntos de datos relevantes como las preferencias del

usuario, patrones históricos y entradas en tiempo real, los componentes de IA pueden

determinar el curso de acción más apropiado en cada punto de decisión del flujo de

trabajo. Adapte el comportamiento de su flujo de trabajo según el contexto específico

de cada usuario o escenario, proporcionando experiencias personalizadas y optimizadas.

Orquestación Inteligente de Flujos de Trabajo 228

Composición Adaptativa del Flujo de Trabajo

Este patrón se centra en componer y ajustar dinámicamente los flujos de trabajo según

los requisitos o condiciones cambiantes. La IA puede analizar el estado actual del flujo

de trabajo, identificar cuellos de botella o ineficiencias, y modificar automáticamente la

estructura del flujo de trabajo para optimizar el rendimiento. La composición adaptativa

del flujo de trabajo permite que las aplicaciones evolucionen y mejoren continuamente

sus procesos sin requerir intervención manual.

Manejo y Recuperación de Excepciones

El manejo y recuperación de excepciones son aspectos críticos de la orquestación

inteligente de flujos de trabajo. Cuando se trabaja con componentes de IA y flujos de

trabajo complejos, es esencial anticipar y manejar las excepciones de manera elegante

para garantizar la estabilidad y fiabilidad del sistema.

Aquí hay algunas consideraciones y técnicas clave para el manejo y recuperación de

excepciones en flujos de trabajo inteligentes:

1. Propagación de Excepciones: Implemente un enfoque consistente para propagar

excepciones a través de los componentes del flujo de trabajo. Cuando ocurre una

excepción dentro de un componente, debe ser capturada, registrada y propagada

al orquestador o a un componente discreto responsable de manejar excepciones.

La idea es centralizar el manejo de excepciones y evitar que las excepciones

sean silenciosamente ignoradas, además de abrir posibilidades para el Manejo

Inteligente de Errores.

2. Mecanismos de Reintento: Los mecanismos de reintento ayudan a mejorar la

resiliencia del flujo de trabajo y manejar las fallas intermitentes de manera

elegante. Definitivamente trate de implementar mecanismos de reintento para

excepciones transitorias o recuperables, como problemas de conectividad de red o

Orquestación Inteligente de Flujos de Trabajo 229

indisponibilidad de recursos que pueden reintentarse automáticamente después

de un retraso especificado. Tener un orquestador o manejador de excepciones

impulsado por IA significa que sus estrategias de reintento no tienen que ser

mecánicas por naturaleza, dependiendo de algoritmos fijos como el retroceso

exponencial. Puede dejar el manejo del reintento a la “discreción” del componente

de IA responsable de decidir cómo manejar la excepción.

3. Estrategias de Respaldo: Si un componente de IA falla en proporcionar una

respuesta válida o encuentra un error—una ocurrencia común dado su carácter

de vanguardia—tenga un mecanismo de respaldo en su lugar para asegurar que

el flujo de trabajo pueda continuar. Esto podría involucrar el uso de valores

predeterminados, algoritmos alternativos, o un Humano en el Ciclo para tomar

decisiones y mantener el flujo de trabajo en movimiento.

4. Acciones Compensatorias: Las directivas del orquestador deben incluir

instrucciones sobre acciones compensatorias para manejar excepciones que

no pueden resolverse automáticamente. Las acciones compensatorias son pasos

tomados para deshacer o mitigar los efectos de una operación fallida. Por ejemplo,

si falla un paso de procesamiento de pago, una acción compensatoria podría ser

revertir la transacción y notificar al usuario. Las acciones compensatorias ayudan

a mantener la consistencia e integridad de los datos frente a las excepciones.

5. Monitoreo y Alertas de Excepciones: Configure mecanismos de monitoreo

y alertas para detectar y notificar a las partes interesadas relevantes sobre

excepciones críticas. El orquestador puede ser consciente de umbrales y reglas para

activar alertas cuando las excepciones excedan ciertos límites o cuando ocurran

tipos específicos de excepciones. Esto permite la identificación y resolución

proactiva de problemas antes de que impacten el sistema general.

Aquí hay un ejemplo de manejo y recuperación de excepciones en un componente de

flujo de trabajo en Ruby:

Orquestación Inteligente de Flujos de Trabajo 230

1 class InventoryManager

2 def check_availability(order)

3 begin

4 # Perform inventory check logic

5 inventory = Inventory.find_by(product_id: order.product_id)

6 if inventory.available_quantity >= order.quantity

7 return true

8 else

9 raise InsufficientInventoryError,

10 "Insufficient inventory for product #{order.product_id}"

11 end

12 rescue InsufficientInventoryError => e

13 # Log the exception

14 logger.error("Inventory check failed: #{e.message}")

15

16 # Retry the operation after a delay

17 retry_count ||= 0

18 if retry_count < MAX_RETRIES

19 retry_count += 1

20 sleep(RETRY_DELAY)

21 retry

22 else

23 # Fallback to manual intervention

24 NotificationService.admin("Inventory check failed: Order #{order.id}")

25 return false

26 end

27 end

28 end

29 end

En este ejemplo, el componente InventoryManager verifica la disponibilidad de

un producto para un pedido determinado. Si la cantidad disponible es insuficiente,

lanza un InsufficientInventoryError. La excepción es capturada, registrada, y

se implementa un mecanismo de reintento. Si se excede el límite de reintentos, el

componente recurre a la intervención manual notificando a un administrador.

Mediante la implementación de mecanismos robustos de manejo y recuperación de

excepciones, puedes asegurar que tus flujos de trabajo inteligentes sean resilientes,

Orquestación Inteligente de Flujos de Trabajo 231

mantenibles y capaces de manejar situaciones inesperadas de manera elegante.

Estos patrones forman la base de la orquestación de flujos de trabajo inteligentes y

pueden combinarse y adaptarse para satisfacer los requisitos específicos de diferentes

aplicaciones. Al aprovechar estos patrones, los desarrolladores pueden crear flujos de

trabajo que son flexibles, resilientes y optimizados para el rendimiento y la experiencia

del usuario.

En la siguiente sección, exploraremos cómo estos patrones pueden implementarse en

la práctica, utilizando ejemplos del mundo real y fragmentos de código para ilustrar la

integración de componentes de IA en la gestión de flujos de trabajo.

Implementación Práctica de la Orquestación de

Flujos de Trabajo Inteligentes

Ahora que hemos explorado los patrones clave en la orquestación de flujos de

trabajo inteligentes, profundicemos en cómo estos patrones pueden implementarse en

aplicaciones del mundo real. Proporcionaremos ejemplos prácticos y fragmentos de

código para ilustrar la integración de componentes de IA en la gestión de flujos de

trabajo.

Procesador Inteligente de Pedidos

Profundicemos en un ejemplo práctico de implementación de orquestación de flujos

de trabajo inteligentes utilizando un componente OrderProcessor potenciado por

IA en una aplicación de comercio electrónico en Ruby on Rails. El OrderProcessor

implementa el concepto de Gestor de Procesos de Integración Empresarial que

encontramos por primera vez en el Capítulo 3 al discutir Multitud de Trabajadores.

Orquestación Inteligente de Flujos de Trabajo 232

El componente será responsable de gestionar el flujo de trabajo de cumplimiento

de pedidos, tomar decisiones de enrutamiento basadas en resultados intermedios y

orquestar la ejecución de varios pasos de procesamiento.

El proceso de cumplimiento de pedidos involucra múltiples pasos como la validación

del pedido, verificación de inventario, procesamiento de pagos y envío. Cada paso se

implementa como un proceso trabajador separado que realiza una tarea específica y

devuelve el resultado al OrderProcessor. Los pasos no son obligatorios, y ni siquiera

necesitan realizarse en un orden preciso.

Aquí hay un ejemplo de implementación del OrderProcessor. Cuenta con dos mixins

de Raix. El primero (ChatCompletion) le da la capacidad de hacer completado de chat,

lo que lo convierte en un componente de IA. El segundo (FunctionDispatch) habilita

la llamada a funciones por parte de la IA, permitiéndole responder a un prompt con una

invocación de función en lugar de un mensaje de texto.

Las funciones trabajadoras (validate_order, check_inventory, et al) delegan en

sus respectivas clases trabajadoras, que pueden ser componentes de IA o no IA, con el

único requisito de que devuelvan los resultados de su trabajo en un formato que pueda

representarse como una cadena de texto.

Como con todos los otros ejemplos en esta parte del libro, este código

es prácticamente pseudo-código y solo tiene la intención de transmitir el

significado del patrón e inspirar tus propias creaciones. Las descripciones

completas de los patrones y ejemplos de código completos se incluyen en la

Parte 2.

https://github.com/OlympiaAI/raix-rails

Orquestación Inteligente de Flujos de Trabajo 233

1 class OrderProcessor

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

6

7 def initialize(order)

8 self.order = order

9 transcript << { system: SYSTEM_DIRECTIVE }

10 transcript << { user: order.to_json }

11 end

12

13 def perform

14 # will continue looping until `stop_looping!` is called

15 chat_completion(loop: true)

16 end

17

18 # list of functions available to be called by the AI

19 # truncated for brevity

20

21 def functions

22 [

23 {

24 name: "validate_order",

25 description: "Invoke to check validity of order",

26 parameters: {

27 ...

28 },

29 ...

30]

31 end

32

33 # implementation of functions that can be called by the AI

34 # entirely at its discretion, depending on the needs of the order

35

36 def validate_order

37 OrderValidationWorker.perform(@order)

38 end

39

40 def check_inventory

41 InventoryCheckWorker.perform(@order)

42 end

Orquestación Inteligente de Flujos de Trabajo 234

43

44 def process_payment

45 PaymentProcessingWorker.perform(@order)

46 end

47

48 def schedule_shipping

49 ShippingSchedulerWorker.perform(@order)

50 end

51

52 def send_confirmation

53 OrderConfirmationWorker.perform(@order)

54 end

55

56 def finished_processing

57 @order.update!(transcript:, processed_at: Time.current)

58 stop_looping!

59 end

60 end

En el ejemplo, el OrderProcessor se inicializa con un objeto de orden y mantiene una

transcripción de la ejecución del flujo de trabajo, en el formato típico de transcripción de

conversación que es nativo de los modelos de lenguaje grandes. Se le da control completo

a la IA para orquestar la ejecución de varios pasos de procesamiento, como la validación

de la orden, la verificación del inventario, el procesamiento del pago y el envío.

Cada vez que se llama al método chat_completion, la transcripción se envía a

la IA para que proporcione una respuesta como una llamada a función. Depende

completamente de la IA analizar el resultado del paso anterior y determinar la acción

apropiada a tomar. Por ejemplo, si la verificación del inventario revela niveles bajos

de existencias, el OrderProcessor puede programar una tarea de reabastecimiento.

Si el procesamiento del pago falla, puede iniciar un reintento o notificar al servicio de

atención al cliente.

Orquestación Inteligente de Flujos de Trabajo 235

El ejemplo anterior no tiene funciones definidas para el reabastecimiento o la

notificación al servicio de atención al cliente, pero definitivamente podría tenerlas.

La transcripción crece cada vez que se llama a una función y sirve como registro de la

ejecución del flujo de trabajo, incluyendo los resultados de cada paso y las instrucciones

generadas por la IA para los siguientes pasos. Esta transcripción puede utilizarse para

depuración, auditoría y para proporcionar visibilidad en el proceso de cumplimiento de

órdenes.

Al aprovechar la IA en el OrderProcessor, la aplicación de comercio electrónico

puede adaptar dinámicamente el flujo de trabajo basándose en datos en tiempo real

y manejar excepciones de manera inteligente. El componente de IA puede tomar

decisiones informadas, optimizar el flujo de trabajo y asegurar un procesamiento fluido

de las órdenes incluso en escenarios complejos.

El hecho de que el único requisito para los procesos trabajadores sea devolver una salida

inteligible para que la IA considere qué hacer a continuación, podría empezar a hacerte

dar cuenta de cómo este enfoque puede reducir el trabajo de mapeo de entrada/salida

que típicamente está involucrado cuando se integran sistemas dispares entre sí.

Moderador de Contenido Inteligente

Las aplicaciones de redes sociales generalmente requieren al menos una moderación de

contenido mínima para asegurar una comunidad segura y saludable. Este ejemplo del

componente ContentModerator aprovecha la IA para orquestar de manera inteligente

el flujo de trabajo de moderación, tomando decisiones basadas en las características del

contenido y los resultados de varios pasos de moderación.

El proceso de moderación involucra múltiples pasos como el análisis de texto,

reconocimiento de imágenes, evaluación de la reputación del usuario y revisión

Orquestación Inteligente de Flujos de Trabajo 236

manual. Cada paso se implementa como un proceso trabajador separado que realiza

una tarea específica y devuelve el resultado al ContentModerator.

Aquí hay un ejemplo de implementación del ContentModerator:

1 class ContentModerator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,

6 tasked with the workflow involved in moderating user-generated content..."

7

8 def initialize(content)

9 @content = content

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: content.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 # list of functions available to be called by the AI

25 # truncated for brevity

26

27 def functions

28 [

29 {

30 name: "analyze_text",

31 # ...

32 },

33 {

34 name: "recognize_image",

35 description: "Invoke to describe images...",

36 # ...

37 },

Orquestación Inteligente de Flujos de Trabajo 237

38 {

39 name: "assess_user_reputation",

40 # ...

41 },

42 {

43 name: "escalate_to_manual_review",

44 # ...

45 },

46 {

47 name: "approve_content",

48 # ...

49 },

50 {

51 name: "reject_content",

52 # ...

53 }

54]

55 end

56

57 # implementation of functions that can be called by the AI

58 # entirely at its discretion, depending on the needs of the order

59

60 def analyze_text

61 result = TextAnalysisWorker.perform(@content)

62 continue_with(result)

63 end

64

65 def recognize_image

66 result = ImageRecognitionWorker.perform(@content)

67 continue_with(result)

68 end

69

70 def assess_user_reputation

71 result = UserReputationWorker.perform(@content.user)

72 continue_with(result)

73 end

74

75 def escalate_to_manual_review

76 ManualReviewWorker.perform(@content)

77 @content.update!(status: 'pending', transcript: @transcript)

78 end

79

Orquestación Inteligente de Flujos de Trabajo 238

80 def approve_content

81 @content.update!(status: 'approved', transcript: @transcript)

82 end

83

84 def reject_content

85 @content.update!(status: 'rejected', transcript: @transcript)

86 end

87

88 private

89

90 def continue_with(result)

91 @transcript << { function: result }

92 complete(@transcript)

93 end

94 end

En este ejemplo, el ContentModerator se inicializa con un objeto de contenido y

mantiene un registro de moderación en formato de conversación. El componente de IA

tiene control total sobre el flujo de trabajo de moderación, decidiendo qué pasos ejecutar

según las características del contenido y los resultados de cada paso.

Las funciones trabajadoras disponibles que la IA puede invocar incluyen

analyze_text, recognize_image, assess_user_reputation y

escalate_to_manual_review. Cada función delega la tarea a un proceso trabajador

correspondiente (TextAnalysisWorker, ImageRecognitionWorker, etc.) y añade

el resultado al registro de moderación, con la excepción de la función de escalamiento,

que actúa como un estado final. Finalmente, las funciones approve_content y

reject_content también actúan como estados finales.

El componente de IA analiza el contenido y determina la acción apropiada a

tomar. Si el contenido contiene referencias a imágenes, puede llamar al trabajador

recognize_image para asistir con una revisión visual. Si algún trabajador advierte

sobre contenido potencialmente dañino, la IA puede decidir escalar el contenido para

revisión manual o simplemente rechazarlo directamente. Pero dependiendo de la

gravedad de la advertencia, la IA puede optar por utilizar los resultados de la evaluación

Orquestación Inteligente de Flujos de Trabajo 239

de reputación del usuario para decidir cómo manejar el contenido sobre el que no está

segura. Dependiendo del caso de uso, quizás los usuarios confiables tengan más libertad

en lo que pueden publicar. Y así sucesivamente…

Al igual que en el ejemplo anterior del gestor de procesos, el registro demoderación sirve

como un registro de la ejecución del flujo de trabajo, incluyendo los resultados de cada

paso y las decisiones generadas por la IA. Este registro puede utilizarse para auditoría,

transparencia y mejora del proceso de moderación a lo largo del tiempo.

Al aprovechar la IA en el ContentModerator, la aplicación de redes sociales

puede adaptar dinámicamente el flujo de trabajo de moderación basándose en las

características del contenido y manejar escenarios de moderación complejos de manera

inteligente. El componente de IA puede tomar decisiones informadas, optimizar el flujo

de trabajo y asegurar una experiencia comunitaria segura y saludable.

Exploremos dos ejemplos más que demuestran la programación predictiva de tareas y el

manejo y recuperación de excepciones dentro del contexto de la orquestación inteligente

de flujos de trabajo.

Programación Predictiva de Tareas en un Sistema de
Soporte al Cliente

En una aplicación de soporte al cliente construida con Ruby on Rails, gestionar y

priorizar eficientemente los tickets de soporte es crucial para proporcionar asistencia

oportuna a los clientes. El componente SupportTicketScheduler aprovecha la IA

para programar y asignar de manera predictiva los tickets de soporte a los agentes

disponibles basándose en varios factores como la urgencia del ticket, la experiencia del

agente y la carga de trabajo.

Orquestación Inteligente de Flujos de Trabajo 240

1 class SupportTicketScheduler

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,

6 tasked with intelligently assigning tickets to available agents..."

7

8 def initialize(ticket)

9 @ticket = ticket

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: ticket.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 def functions

25 [

26 {

27 name: "analyze_ticket_urgency",

28 # ...

29 },

30 {

31 name: "list_available_agents",

32 description: "Includes expertise of available agents",

33 # ...

34 },

35 {

36 name: "predict_agent_workload",

37 description: "Uses historical data to predict upcoming workloads",

38 # ...

39 },

40 {

41 name: "assign_ticket_to_agent",

42 # ...

Orquestación Inteligente de Flujos de Trabajo 241

43 },

44 {

45 name: "reschedule_ticket",

46 # ...

47 }

48]

49 end

50

51 # implementation of functions that can be called by the AI

52 # entirely at its discretion, depending on the needs of the order

53

54 def analyze_ticket_urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)

56 continue_with(result)

57 end

58

59 def list_available_agents

60 result = ListAvailableAgents.perform

61 continue_with(result)

62 end

63

64 def predict_agent_workload

65 result = AgentWorkloadPredictor.perform

66 continue_with(result)

67 end

68

69 def assign_ticket_to_agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

73 def delay_assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)

76 end

77

78 private

79

80 def continue_with(result)

81 @transcript << { function: result }

82 complete(@transcript)

83 end

84 end

Orquestación Inteligente de Flujos de Trabajo 242

En este ejemplo, el SupportTicketScheduler se inicializa con un objeto de ticket

de soporte y mantiene un registro de programación. El componente de IA analiza los

detalles del ticket y programa predictivamente la asignación del ticket basándose en

factores como la urgencia del ticket, la experiencia del agente y la carga de trabajo

prevista del agente.

Las funciones disponibles que la IA puede invocar incluyen analyze_-

ticket_urgency, list_available_agents, predict_agent_workload, y

assign_ticket_to_agent. Cada función delega la tarea a un componente analizador

o predictor correspondiente y añade el resultado al registro de programación.

La IA también tiene la opción de retrasar la asignación utilizando la función

delay_assignment.

El componente de IA examina el registro de programación y toma decisiones informadas

sobre la asignación de tickets. Considera la urgencia del ticket, la experiencia de los

agentes disponibles y la carga de trabajo prevista de cada agente para determinar el

agente más adecuado para manejar el ticket.

Al aprovechar la programación predictiva de tareas, la aplicación de atención al cliente

puede optimizar la asignación de tickets, reducir los tiempos de respuesta y mejorar la

satisfacción general del cliente. La gestión proactiva y eficiente de los tickets de soporte

asegura que los tickets correctos sean asignados a los agentes correctos en el momento

adecuado.

Manejo de Excepciones y Recuperación en un Pipeline de
Procesamiento de Datos

El manejo de excepciones y la recuperación de fallos son esenciales para garantizar

la integridad de los datos y prevenir la pérdida de datos. El componente

DataProcessingOrchestrator utiliza IA para manejar inteligentemente las

excepciones y orquestar el proceso de recuperación en un pipeline de procesamiento de

datos

Orquestación Inteligente de Flujos de Trabajo 243

1 class DataProcessingOrchestrator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

6

7 def initialize(data_batch)

8 @data_batch = data_batch

9 @transcript = [

10 { system: SYSTEM_DIRECTIVE },

11 { user: data_batch.to_json }

12]

13 end

14

15 def perform

16 complete(@transcript)

17 end

18

19 def model

20 "openai/gpt-4"

21 end

22

23 def functions

24 [

25 {

26 name: "validate_data",

27 # ...

28 },

29 {

30 name: "process_data",

31 # ...

32 },

33 {

34 name: "request_fix",

35 # ...

36 },

37 {

38 name: "retry_processing",

39 # ...

40 },

41 {

42 name: "mark_data_as_failed",

Orquestación Inteligente de Flujos de Trabajo 244

43 # ...

44 },

45 {

46 name: "finished",

47 # ...

48 }

49]

50 end

51

52 # implementation of functions that can be called by the AI

53 # entirely at its discretion, depending on the needs of the order

54

55 def validate_data

56 result = DataValidator.perform(@data_batch)

57 continue_with(result)

58 rescue ValidationException => e

59 handle_validation_exception(e)

60 end

61

62 def process_data

63 result = DataProcessor.perform(@data_batch)

64 continue_with(result)

65 rescue ProcessingException => e

66 handle_processing_exception(e)

67 end

68

69 def request_fix(description_of_fix)

70 result = SmartDataFixer.new(description_of_fix, @data_batch)

71 continue_with(result)

72 end

73

74 def retry_processing(timeout_in_seconds)

75 wait(timeout_in_seconds)

76 process_data

77 end

78

79 def mark_data_as_failed

80 @data_batch.update!(status: 'failed', transcript: @transcript)

81 end

82

83 def finished

84 @data_batch.update!(status: 'finished', transcript: @transcript)

Orquestación Inteligente de Flujos de Trabajo 245

85 end

86

87 private

88

89 def continue_with(result)

90 @transcript << { function: result }

91 complete(@transcript)

92 end

93

94 def handle_validation_exception(exception)

95 @transcript << { exception: exception.message }

96 complete(@transcript)

97 end

98

99 def handle_processing_exception(exception)

100 @transcript << { exception: exception.message }

101 complete(@transcript)

102 end

103 end

En este ejemplo, el DataProcessingOrchestrator se inicializa con un objeto de lote

de datos y mantiene un registro de procesamiento. El componente de IA orquesta el

pipeline de procesamiento de datos, manejando excepciones y recuperándose de fallos

según sea necesario.

Las funciones disponibles para que la IA las invoque incluyen validate_data,

process_data, request_fix, retry_processing, y mark_data_as_failed.

Cada función delega la tarea a un componente correspondiente de procesamiento de

datos y añade el resultado o los detalles de la excepción al registro de procesamiento.

Si ocurre una excepción de validación durante el paso validate_data, la función

handle_validation_exception añade los datos de la excepción al registro

y devuelve el control a la IA. De manera similar, si ocurre una excepción de

procesamiento durante el paso process_data, la IA puede decidir sobre la estrategia

de recuperación.

Dependiendo de la naturaleza de la excepción encontrada, la IA puede, a su discreción,

Orquestación Inteligente de Flujos de Trabajo 246

decidir llamar a request_fix, que delega a un componente SmartDataFixer

impulsado por IA (ver el capítulo de Datos de Auto-reparación). El reparador de

datos recibe una descripción en lenguaje natural de cómo debería modificar el

@data_batch para que el procesamiento pueda ser reintentado. ¿Tal vez un reintento

exitoso implicaría eliminar registros del lote de datos que no han pasado la validación

y/o copiarlos a un pipeline de procesamiento diferente para revisión humana? Las

posibilidades son casi infinitas.

Al incorporar el manejo de excepciones y la recuperación impulsada por IA, la

aplicación de procesamiento de datos se vuelve más resiliente y tolerante a fallos. El

DataProcessingOrchestrator gestiona inteligentemente las excepciones, minimiza

la pérdida de datos y asegura la ejecución fluida del flujo de trabajo de procesamiento

de datos.

Monitoreo y Registro

El monitoreo y registro proporcionan visibilidad sobre el progreso, rendimiento y

salud de los componentes del flujo de trabajo impulsados por IA, permitiendo a

los desarrolladores rastrear y analizar el comportamiento del sistema. Implementar

mecanismos efectivos de monitoreo y registro es esencial para la depuración, auditoría

y mejora continua de los flujos de trabajo inteligentes.

Monitoreando el Progreso y Rendimiento del Flujo de
Trabajo

Para asegurar la ejecución fluida de los flujos de trabajo inteligentes, es importante

monitorear el progreso y rendimiento de cada componente del flujo de trabajo. Esto

implica rastrear métricas y eventos clave a lo largo del ciclo de vida del flujo de trabajo.

Algunos aspectos importantes para monitorear incluyen:

Orquestación Inteligente de Flujos de Trabajo 247

1. Tiempo de Ejecución del Flujo de Trabajo: Medir el tiempo que toma cada

componente del flujo de trabajo para completar su tarea. Esto ayuda a identificar cuellos

de botella en el rendimiento y optimizar la eficiencia general del flujo de trabajo.

2. Utilización de Recursos: Monitorear la utilización de recursos del sistema, como

CPU, memoria y almacenamiento, por cada componente del flujo de trabajo. Esto ayuda

a asegurar que el sistema está operando dentro de su capacidad y puede manejar la carga

de trabajo efectivamente.

3. Tasas de Error y Excepciones: Rastrear la ocurrencia de errores y excepciones dentro

de los componentes del flujo de trabajo. Esto ayuda a identificar problemas potenciales

y permite el manejo proactivo de errores y la recuperación.

4. Puntos de Decisión y Resultados: Monitorear los puntos de decisión dentro del

flujo de trabajo y los resultados de las decisiones impulsadas por IA. Esto proporciona

información sobre el comportamiento y la efectividad de los componentes de IA.

Los datos capturados por los procesos de monitoreo pueden mostrarse en tableros o

utilizarse como entradas para informes programados que informan a los administradores

del sistema sobre la salud del sistema.

¡Los datos de monitoreo pueden alimentar a un proceso de administrador de

sistema impulsado por IA para su revisión y posible acción!

Registrando Eventos y Decisiones Clave

El registro es una práctica esencial que implica capturar y almacenar información

relevante sobre eventos clave, decisiones y excepciones que ocurren durante la ejecución

del flujo de trabajo.

Algunos aspectos importantes para registrar incluyen:

Orquestación Inteligente de Flujos de Trabajo 248

1. Iniciación y Finalización del Flujo de Trabajo: Registrar los tiempos de inicio y fin

de cada instancia del flujo de trabajo, junto con cualquier metadato relevante como los

datos de entrada y el contexto del usuario.

2. Ejecución de Componentes: Registrar los detalles de ejecución de cada componente

del flujo de trabajo, incluyendo los parámetros de entrada, resultados de salida y

cualquier dato intermedio generado.

3. Decisiones y Razonamiento de IA: Registrar las decisiones tomadas por los

componentes de IA, junto con el razonamiento subyacente o los puntajes de confianza.

Esto proporciona transparencia y permite la auditoría de decisiones impulsadas por IA.

4. Excepciones y Mensajes de Error: Registrar cualquier excepción o mensaje de error

encontrado durante la ejecución del flujo de trabajo, incluyendo el trazado de pila e

información contextual relevante.

El registro puede implementarse utilizando varias técnicas, como escribir en archivos

de registro, almacenar registros en una base de datos o enviar registros a un servicio

de registro centralizado. Es importante elegir un marco de registro que proporcione

flexibilidad, escalabilidad y fácil integración con la arquitectura de la aplicación.

Aquí hay un ejemplo de cómo se puede implementar el registro en una aplicación Ruby

on Rails utilizando la clase ActiveSupport::Logger:

1 class WorkflowLogger

2 def self.log(message, severity = :info)

3 @logger ||= ActiveSupport::Logger.new('workflow.log')

4 @logger.formatter ||= proc do |severity, datetime, progname, msg|

5 "#{datetime} [#{severity}] #{msg}\n"

6 end

7 @logger.send(severity, message)

8 end

9 end

10

11 # Usage example

12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")

13 WorkflowLogger.log("Payment processing completed successfully")

14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

Orquestación Inteligente de Flujos de Trabajo 249

Mediante la colocación estratégica de declaraciones de registro a lo largo de los

componentes del flujo de trabajo y los puntos de decisión de la IA, los desarrolladores

pueden capturar información valiosa para la depuración, auditoría y análisis.

Beneficios del Monitoreo y Registro

La implementación del monitoreo y registro en la orquestación inteligente de flujos de

trabajo ofrece varios beneficios:

1. Depuración y Resolución de Problemas: Los registros detallados y los datos

de monitoreo ayudan a los desarrolladores a identificar y diagnosticar problemas

rápidamente. Proporcionan información sobre el flujo de ejecución del trabajo, las

interacciones entre componentes y cualquier error o excepción encontrada.

2. Optimización del Rendimiento: El monitoreo de métricas de rendimiento permite a

los desarrolladores identificar cuellos de botella y optimizar los componentes del flujo

de trabajo para una mejor eficiencia. Al analizar los tiempos de ejecución, la utilización

de recursos y otras métricas, los desarrolladores pueden tomar decisiones informadas

para mejorar el rendimiento general del sistema.

3. Auditoría y Cumplimiento: El registro de eventos y decisiones clave proporciona un

rastro de auditoría para el cumplimiento normativo y la rendición de cuentas. Permite a

las organizaciones rastrear y verificar las acciones tomadas por los componentes de IA

y asegurar el cumplimiento de las reglas comerciales y los requisitos legales.

4. Mejora Continua: Los datos de monitoreo y registro sirven como entradas valiosas

para la mejora continua de los flujos de trabajo inteligentes. Al analizar datos históricos,

identificar patrones y medir la efectividad de las decisiones de IA, los desarrolladores

pueden refinar y mejorar iterativamente la lógica de orquestación del flujo de trabajo.

Consideraciones y Mejores Prácticas

Al implementar el monitoreo y registro en la orquestación inteligente de flujos de

trabajo, considere las siguientes mejores prácticas:

Orquestación Inteligente de Flujos de Trabajo 250

1. Definir Métricas Claras de Monitoreo: Identifique las métricas y eventos clave que

deben monitorearse según los requisitos específicos del flujo de trabajo. Concéntrese en

métricas que proporcionen información significativa sobre el rendimiento, la salud y el

comportamiento del sistema.

2. Implementar Registro Granular: Asegúrese de que las declaraciones de registro se

coloquen en puntos apropiados dentro de los componentes del flujo de trabajo y los

puntos de decisión de IA. Capture información contextual relevante, como parámetros

de entrada, resultados de salida y cualquier dato intermedio generado.

3. Usar Registro Estructurado: Adopte un formato de registro estructurado para

facilitar el análisis y el procesamiento de los datos de registro. El registro estructurado

permite una mejor capacidad de búsqueda, filtrado y agregación de entradas de registro.

4. Gestionar la Retención y Rotación de Registros: Implemente políticas de retención

y rotación de registros para gestionar el almacenamiento y el ciclo de vida de los archivos

de registro. Determine el período de retención apropiado según los requisitos legales, las

restricciones de almacenamiento y las necesidades de análisis. Si es posible, delegue el

registro a un servicio de terceros como Papertrail.

5. Proteger la Información Sensible: Sea cauteloso al registrar información sensible,

como información de identificación personal (IIP) o datos comerciales confidenciales.

Implemente medidas de seguridad apropiadas, como el enmascaramiento de datos o el

cifrado, para proteger la información sensible en los archivos de registro.

6. Integrar con Herramientas de Monitoreo y Alertas: Aproveche las herramientas

de monitoreo y alertas para centralizar la recopilación, análisis y visualización de

datos de monitoreo y registro. Estas herramientas pueden proporcionar información en

tiempo real, generar alertas basadas en umbrales predefinidos y facilitar la detección y

resolución proactiva de problemas. Mi herramienta favorita entre estas es Datadog.

Mediante la implementación de mecanismos integrales de monitoreo y registro,

los desarrolladores pueden obtener información valiosa sobre el comportamiento y

rendimiento de los flujos de trabajo inteligentes. Estos conocimientos permiten una

https://papertrailapp.com
https://www.datadoghq.com

Orquestación Inteligente de Flujos de Trabajo 251

depuración efectiva, optimización y mejora continua de los sistemas de orquestación

de flujos de trabajo impulsados por IA.

Consideraciones de Escalabilidad y Rendimiento

La escalabilidad y el rendimiento son aspectos críticos a considerar al diseñar e

implementar sistemas de orquestación de flujos de trabajo inteligentes. A medida

que aumenta el volumen de flujos de trabajo concurrentes y la complejidad de los

componentes impulsados por IA, se vuelve esencial asegurar que el sistema pueda

manejar la carga de trabajo de manera eficiente y escalar sin problemas para satisfacer

las demandas crecientes.

Manejo de Altos Volúmenes de Flujos de Trabajo
Concurrentes

Los sistemas de orquestación de flujos de trabajo inteligentes a menudo necesitan

manejar un gran número de flujos de trabajo concurrentes. Para garantizar la

escalabilidad, considere las siguientes estrategias:

1. Procesamiento Asíncrono: Implemente mecanismos de procesamiento asíncrono

para desacoplar la ejecución de los componentes del flujo de trabajo. Esto permite

que el sistema maneje múltiples flujos de trabajo concurrentemente sin bloquear o

esperar a que cada componente se complete. El procesamiento asíncrono se puede

lograr utilizando colas de mensajes, arquitecturas basadas en eventos o marcos de

procesamiento de trabajos en segundo plano como Sidekiq.

2. Arquitectura Distribuida: Diseñe la arquitectura del sistema para utilizar

componentes sin servidor (como AWS Lambda) o simplemente distribuya la carga

de trabajo entre múltiples nodos o servidores junto con su servidor de aplicaciones

principal. Esto permite la escalabilidad horizontal, donde se pueden agregar nodos

adicionales para manejar mayores volúmenes de flujos de trabajo.

Orquestación Inteligente de Flujos de Trabajo 252

3. Ejecución Paralela: Identifique oportunidades para la ejecución paralela dentro de los

flujos de trabajo. Algunos componentes del flujo de trabajo pueden ser independientes

entre sí y pueden ejecutarse concurrentemente. Al aprovechar técnicas de procesamiento

paralelo, comomulti-threading o colas de tareas distribuidas, el sistema puede optimizar

la utilización de recursos y reducir el tiempo total de ejecución del flujo de trabajo.

Optimización del Rendimiento de Componentes Basados
en IA

Los componentes basados en IA, como los modelos de aprendizaje automático o

los motores de procesamiento de lenguaje natural, pueden ser computacionalmente

intensivos e impactar el rendimiento general del sistema de orquestación de flujos de

trabajo. Para optimizar el rendimiento de los componentes de IA, considera las siguientes

técnicas:

1. Almacenamiento en caché: Si tu procesamiento de IA es puramente generativo y

no involucra búsquedas de información en tiempo real o integraciones externas para

generar sus completaciones de chat, entonces puedes considerar mecanismos de caché

para almacenar y reutilizar los resultados de operaciones frecuentemente accedidas o

computacionalmente costosas.

2. Optimización de Modelos: Optimiza continuamente la forma en que utilizas los

modelos de IA en los componentes del flujo de trabajo. Esto puede involucrar técnicas

como la Destilación de Prompts o simplemente puede ser cuestión de probar nuevos

modelos conforme estén disponibles.

3. Procesamiento por Lotes: Si estás trabajando con modelos clase GPT-4, podrías

aprovechar las técnicas de procesamiento por lotes para procesar múltiples puntos

de datos o solicitudes en un solo lote, en lugar de procesarlos individualmente. Al

procesar datos en lotes, el sistema puede optimizar la utilización de recursos y reducir

la sobrecarga de solicitudes repetidas al modelo.

Orquestación Inteligente de Flujos de Trabajo 253

Monitoreo y Perfilado del Rendimiento

Para identificar cuellos de botella en el rendimiento y optimizar la escalabilidad

del sistema de orquestación de flujos de trabajo inteligente, es crucial implementar

mecanismos de monitoreo y perfilado. Considera los siguientes enfoques:

1. Métricas de Rendimiento: Define y rastrea métricas clave de rendimiento, como

tiempo de respuesta, capacidad de procesamiento, utilización de recursos y latencia.

Estas métricas proporcionan información sobre el rendimiento del sistema y ayudan a

identificar áreas de optimización. El agregador de modelos de IA popular OpenRouter

incluye métricas de Host1 y Velocidad2 en cada respuesta de API, haciendo trivial el

seguimiento de estas métricas clave.

2. Herramientas de Perfilado: Utiliza herramientas de perfilado para analizar

el rendimiento de componentes individuales del flujo de trabajo y operaciones

de IA. Las herramientas de perfilado pueden ayudar a identificar puntos críticos de

rendimiento, rutas de código ineficientes u operaciones que consumen muchos recursos.

Las herramientas de perfilado populares incluyen New Relic, Scout, o perfiladores

incorporados proporcionados por el lenguaje de programación o marco de trabajo.

3. Pruebas de Carga: Realiza pruebas de carga para evaluar el rendimiento del

sistema bajo diferentes niveles de cargas de trabajo concurrentes. Las pruebas de carga

ayudan a identificar los límites de escalabilidad del sistema, detectar la degradación

del rendimiento y asegurar que el sistema pueda manejar el tráfico esperado sin

comprometer el rendimiento.

4. Monitoreo Continuo: Implementa mecanismos de monitoreo continuo y alertas

para detectar proactivamente problemas y cuellos de botella de rendimiento. Configura

tableros de monitoreo y alertas para rastrear indicadores clave de rendimiento (KPIs)

1Host es el tiempo que tomó recibir el primer byte de la generación transmitida desde el host del modelo,
también conocido como “tiempo hasta el primer byte.”

2La velocidad se calcula como el número de tokens de completación dividido por el tiempo total de
generación. Para solicitudes no transmitidas, la latencia se considera parte del tiempo de generación.

https://openrouter.ai

Orquestación Inteligente de Flujos de Trabajo 254

y recibir notificaciones cuando se superen los umbrales predefinidos. Esto permite la

identificación y resolución rápida de problemas de rendimiento.

Estrategias de Escalado

Para manejar cargas de trabajo crecientes y asegurar la escalabilidad del sistema de

orquestación de flujos de trabajo inteligente, considera las siguientes estrategias de

escalado:

1. Escalado Vertical: El escalado vertical implica aumentar los recursos (por ejemplo,

CPU, memoria) de nodos o servidores individuales para manejar cargas de trabajo más

altas. Este enfoque es adecuado cuando el sistema requiere más poder de procesamiento

o memoria para manejar flujos de trabajo complejos u operaciones de IA.

2. Escalado Horizontal: El escalado horizontal implica agregar más nodos o servidores

al sistema para distribuir la carga de trabajo. Este enfoque es efectivo cuando el sistema

necesita manejar un gran número de flujos de trabajo concurrentes o cuando la carga

de trabajo puede distribuirse fácilmente entre múltiples nodos. El escalado horizontal

requiere una arquitectura distribuida y mecanismos de balanceo de carga para asegurar

una distribución uniforme del tráfico.

3. Autoescalado: Implementa mecanismos de autoescalado para ajustar

automáticamente el número de nodos o recursos según la demanda de carga de

trabajo. El autoescalado permite que el sistema escale dinámicamente hacia arriba o

hacia abajo dependiendo del tráfico entrante, asegurando una utilización óptima de

recursos y eficiencia en costos. Plataformas en la nube como Amazon Web Services

(AWS) o Google Cloud Platform (GCP) proporcionan capacidades de autoescalado que

pueden aprovecharse para sistemas de orquestación de flujos de trabajo inteligentes.

Técnicas de Optimización de Rendimiento

Además de las estrategias de escalado, considera las siguientes técnicas de optimización

de rendimiento paramejorar la eficiencia del sistema de orquestación de flujos de trabajo

Orquestación Inteligente de Flujos de Trabajo 255

inteligente:

1. Almacenamiento y Recuperación Eficiente de Datos: Optimiza los mecanismos

de almacenamiento y recuperación de datos utilizados por los componentes del flujo

de trabajo. Utiliza indexación eficiente de bases de datos, técnicas de optimización de

consultas y almacenamiento en caché de datos para minimizar la latencia y mejorar el

rendimiento de las operaciones intensivas en datos.

2. E/S asíncrona: Utilice operaciones de E/S asíncronas para evitar bloqueos y mejorar

la capacidad de respuesta del sistema. La E/S asíncrona permite que el sistema maneje

múltiples solicitudes simultáneamente sin esperar a que se completen las operaciones

de E/S, maximizando así la utilización de recursos.

3. Serialización y deserialización eficiente: Optimice los procesos de serialización

y deserialización utilizados para el intercambio de datos entre componentes del

flujo de trabajo. Utilice formatos de serialización eficientes, como Protocol Buffers

o MessagePack, para reducir la sobrecarga de la serialización de datos y mejorar el

rendimiento de la comunicación entre componentes.

Para aplicaciones basadas en Ruby, considere usar Universal ID. Universal

ID aprovecha tanto MessagePack como Brotli (una combinación diseñada

para velocidad y compresión de datos de primera clase). Cuando se

combinan, estas bibliotecas son hasta un 30% más rápidas y mantienen tasas

de compresión entre 2-5% en comparación con Protocol Buffers.

4. Compresión y codificación: Aplique técnicas de compresión y codificación para

reducir el tamaño de los datos transferidos entre los componentes del flujo de trabajo.

Los algoritmos de compresión, como gzip o Brotli, pueden reducir significativamente el

uso del ancho de banda de red y mejorar el rendimiento general del sistema.

Al considerar aspectos de escalabilidad y rendimiento durante el diseño e

implementación de sistemas de orquestación de flujos de trabajo inteligentes,

puede asegurar que su sistema pueda manejar altos volúmenes de flujos de trabajo

https://github.com/hopsoft/universalid

Orquestación Inteligente de Flujos de Trabajo 256

concurrentes, optimizar el rendimiento de los componentes basados en IA y escalar sin

problemas para satisfacer las demandas crecientes. El monitoreo continuo, el perfilado

y los esfuerzos de optimización son esenciales para mantener el rendimiento y la

capacidad de respuesta del sistema a medida que la carga de trabajo y la complejidad

aumentan con el tiempo.

Pruebas y validación de flujos de trabajo

Las pruebas y la validación son aspectos críticos del desarrollo y mantenimiento de

sistemas de orquestación de flujos de trabajo inteligentes. Dada la naturaleza compleja

de los flujos de trabajo basados en IA, es esencial asegurar que cada componente

funcione según lo esperado, que el flujo de trabajo general se comporte correctamente y

que las decisiones de IA sean precisas y confiables. En esta sección, exploraremos varias

técnicas y consideraciones para probar y validar flujos de trabajo inteligentes.

Pruebas unitarias de componentes del flujo de trabajo

Las pruebas unitarias implican probar componentes individuales del flujo de trabajo de

forma aislada para verificar su corrección y robustez. Al realizar pruebas unitarias de

componentes del flujo de trabajo basados en IA, considere lo siguiente:

1. Validación de entrada: Pruebe la capacidad del componente para manejar diferentes

tipos de entradas, incluyendo datos válidos e inválidos. Verifique que el componente

maneje adecuadamente los casos límite y proporcione mensajes de error o excepciones

apropiados.

2. Verificación de salida: Asegure que el componente produzca la salida esperada para

un conjunto dado de entradas. Compare la salida real con los resultados esperados para

garantizar la corrección.

3. Gestión de errores: Pruebe los mecanismos de gestión de errores del componente

simulando varios escenarios de error, como entrada inválida, indisponibilidad de

Orquestación Inteligente de Flujos de Trabajo 257

recursos o excepciones inesperadas. Verifique que el componente capture y maneje los

errores de manera apropiada.

4. Condiciones límite: Pruebe el comportamiento del componente bajo condiciones

límite, como entrada vacía, tamaño máximo de entrada o valores extremos. Asegúrese

de que el componente maneje estas condiciones de manera elegante sin fallar o producir

resultados incorrectos.

Aquí hay un ejemplo de una prueba unitaria para un componente de flujo de trabajo en

Ruby utilizando el marco de pruebas RSpec:

1 RSpec.describe OrderValidator do

2 describe '#validate' do

3 context 'when order is valid' do

4 let(:order) { build(:order) }

5

6 it 'returns true' do

7 expect(subject.validate(order)).to be true

8 end

9 end

10

11 context 'when order is invalid' do

12 let(:order) { build(:order, total_amount: -100) }

13

14 it 'returns false' do

15 expect(subject.validate(order)).to be false

16 end

17 end

18 end

19 end

En este ejemplo, el componente OrderValidator se prueba utilizando dos casos de

prueba: uno para una orden válida y otro para una orden inválida. Los casos de prueba

verifican que el método validate devuelve el valor booleano esperado según la validez

de la orden.

Orquestación Inteligente de Flujos de Trabajo 258

Interacciones en las Pruebas de Integración del Flujo de
Trabajo

Las pruebas de integración se centran en verificar las interacciones y el flujo de datos

entre diferentes componentes del flujo de trabajo. Aseguran que los componentes

trabajen juntos sin problemas y produzcan los resultados esperados. Al realizar pruebas

de integración en flujos de trabajo inteligentes, considera lo siguiente:

1. Interacción de Componentes: Prueba la comunicación y el intercambio de datos

entre los componentes del flujo de trabajo. Verifica que la salida de un componente se

pase correctamente como entrada al siguiente componente en el flujo de trabajo.

2. Consistencia de Datos: Asegura que los datos permanezcan consistentes y precisos

mientras fluyen a través del flujo de trabajo. Verifica que las transformaciones de datos,

cálculos y agregaciones se realicen correctamente.

3. Propagación de Excepciones: Prueba cómo las excepciones y errores se propagan y

manejan a través de los componentes del flujo de trabajo. Verifica que las excepciones

sean capturadas, registradas y manejadas apropiadamente para prevenir la interrupción

del flujo de trabajo.

4. Comportamiento Asíncrono: Si el flujo de trabajo involucra componentes

asíncronos o ejecución paralela, prueba los mecanismos de coordinación y

sincronización. Asegura que el flujo de trabajo se comporte correctamente en

escenarios concurrentes y asíncronos.

Aquí hay un ejemplo de una prueba de integración para un flujo de trabajo en Ruby

utilizando el marco de pruebas RSpec:

Orquestación Inteligente de Flujos de Trabajo 259

1 RSpec.describe OrderProcessingWorkflow do

2

3 let(:order) { build(:order) }

4

5 it 'processes the order successfully' do

6 expect(OrderValidator).to receive(:validate).and_return(true)

7 expect(InventoryManager).to receive(:check_availability).and_return(true)

8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)

9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)

10

11 workflow = OrderProcessingWorkflow.new(order)

12 result = workflow.process

13

14 expect(result).to be true

15 expect(order.status).to eq('processed')

16 end

17

18 end

En este ejemplo, el OrderProcessingWorkflow se prueba verificando las interacciones

entre diferentes componentes del flujo de trabajo. El caso de prueba establece

expectativas para el comportamiento de cada componente y asegura que el flujo de

trabajo procese el pedido exitosamente, actualizando el estado del pedido de manera

correspondiente.

Pruebas de Puntos de Decisión de IA

Probar los puntos de decisión de IA es crucial para garantizar la precisión y fiabilidad de

los flujos de trabajo impulsados por IA. Al probar los puntos de decisión de IA, considere

lo siguiente:

1. Precisión de Decisiones: Verifique que el componente de IA tome decisiones precisas

basadas en los datos de entrada y el modelo entrenado. Compare las decisiones de la IA

con los resultados esperados o los datos de referencia.

2. Casos Límite: Pruebe el comportamiento del componente de IA en casos límite y

Orquestación Inteligente de Flujos de Trabajo 260

escenarios inusuales. Verifique que el componente de IA maneje estos casos de manera

elegante y tome decisiones razonables.

3. Sesgo y Equidad: Evalúe el componente de IA en busca de sesgos potenciales y

asegúrese de que tome decisiones justas e imparciales. Pruebe el componente con datos

de entrada diversos y analice los resultados en busca de patrones discriminatorios.

4. Explicabilidad: Si el componente de IA proporciona explicaciones o razonamientos

para sus decisiones, verifique la corrección y claridad de las explicaciones. Asegúrese de

que las explicaciones se alineen con el proceso de toma de decisiones subyacente.

Aquí hay un ejemplo de prueba de un punto de decisión de IA en Ruby utilizando el

marco de pruebas RSpec:

1 RSpec.describe FraudDetector do

2 describe '#detect_fraud' do

3 context 'when transaction is fraudulent' do

4 let(:tx) do

5 build(:transaction, amount: 10_000, location: 'High-Risk Country')

6 end

7

8 it 'returns true' do

9 expect(subject.detect_fraud(tx)).to be true

10 end

11 end

12

13 context 'when transaction is legitimate' do

14 let(:tx) do

15 build(:transaction, amount: 100, location: 'Low-Risk Country')

16 end

17

18 it 'returns false' do

19 expect(subject.detect_fraud(tx)).to be false

20 end

21 end

22 end

23 end

En este ejemplo, el componente de IA FraudDetector se prueba con dos casos de

Orquestación Inteligente de Flujos de Trabajo 261

prueba: uno para una transacción fraudulenta y otro para una transacción legítima. Los

casos de prueba verifican que el método detect_fraud devuelve el valor booleano

esperado según las características de la transacción.

Pruebas de Extremo a Extremo

Las pruebas de extremo a extremo implican probar todo el flujo de trabajo de principio

a fin, simulando escenarios e interacciones de usuario del mundo real. Aseguran que

el flujo de trabajo se comporte correctamente y produzca los resultados deseados. Al

realizar pruebas de extremo a extremo para flujos de trabajo inteligentes, considere lo

siguiente:

1. Escenarios de Usuario: Identifique escenarios comunes de usuario y pruebe el

comportamiento del flujo de trabajo bajo estos escenarios. Verifique que el flujo de

trabajo maneje correctamente las entradas del usuario, tome decisiones apropiadas y

produzca las salidas esperadas.

2. Validación de Datos: Asegure que el flujo de trabajo valide y depure las entradas

del usuario para prevenir inconsistencias en los datos o vulnerabilidades de seguridad.

Pruebe el flujo de trabajo con varios tipos de datos de entrada, incluyendo datos válidos

e inválidos.

3. Recuperación de Errores: Pruebe la capacidad del flujo de trabajo para recuperarse

de errores y excepciones. Simule escenarios de error y verifique que el flujo de trabajo

los maneje adecuadamente, registre los errores y tome las acciones de recuperación

apropiadas.

4. Rendimiento y Escalabilidad: Evalúe el rendimiento y la escalabilidad del flujo de

trabajo bajo diferentes condiciones de carga. Pruebe el flujo de trabajo con un gran

volumen de solicitudes concurrentes y mida los tiempos de respuesta, la utilización de

recursos y la estabilidad general del sistema.

Aquí hay un ejemplo de una prueba de extremo a extremo para un flujo de trabajo

Orquestación Inteligente de Flujos de Trabajo 262

en Ruby utilizando el marco de pruebas RSpec y la biblioteca Capybara para simular

interacciones de usuario:

1 RSpec.describe 'Order Processing Workflow' do

2 scenario 'User places an order successfully' do

3 visit '/orders/new'

4 fill_in 'Product', with: 'Sample Product'

5 fill_in 'Quantity', with: '2'

6 fill_in 'Shipping Address', with: '123 Main St'

7 click_button 'Place Order'

8

9 expect(page).to have_content('Order Placed Successfully')

10 expect(Order.count).to eq(1)

11 expect(Order.last.status).to eq('processed')

12 end

13 end

En este ejemplo, la prueba de extremo a extremo simula un usuario realizando un pedido

a través de la interfaz web. Rellena los campos requeridos del formulario, envía el pedido

y verifica que el pedido se procese correctamente, mostrando el mensaje de confirmación

apropiado y actualizando el estado del pedido en la base de datos.

Integración y Despliegue Continuo

Para garantizar la fiabilidad y mantenibilidad de los flujos de trabajo inteligentes, se

recomienda integrar las pruebas y la validación en el pipeline de integración y despliegue

continuo (CI/CD). Esto permite realizar pruebas y validaciones automatizadas de los

cambios en el flujo de trabajo antes de que se implementen en producción. Considere

las siguientes prácticas:

1. Ejecución Automatizada de Pruebas: Configure el pipeline de CI/CD para ejecutar

automáticamente el conjunto de pruebas cada vez que se realicen cambios en el código

base del flujo de trabajo. Esto asegura que cualquier regresión o fallo se detecte temprano

en el proceso de desarrollo.

Orquestación Inteligente de Flujos de Trabajo 263

2. Monitoreo de Cobertura de Pruebas: Mida y monitoree la cobertura de pruebas de

los componentes del flujo de trabajo y los puntos de decisión de IA. Apunte a una alta

cobertura de pruebas para asegurar que las rutas y escenarios críticos sean probados

exhaustivamente.

3. Retroalimentación Continua: Integre los resultados de las pruebas y las métricas de

calidad del código en el flujo de trabajo de desarrollo. Proporcione retroalimentación

continua a los desarrolladores sobre el estado de las pruebas, la calidad del código y

cualquier problema detectado durante el proceso de CI/CD.

4. Entornos de Preproducción: Despliegue el flujo de trabajo en entornos de

preproducción que reflejen fielmente el entorno de producción. Realice pruebas y

validaciones adicionales en el entorno de preproducción para detectar cualquier

problema relacionado con la infraestructura, la configuración o la integración de datos.

5. Mecanismos de Reversión: Implemente mecanismos de reversión en caso de fallos en

el despliegue o problemas críticos detectados en producción. Asegúrese de que el flujo

de trabajo pueda revertirse rápidamente a una versión estable anterior para minimizar

el tiempo de inactividad y el impacto en los usuarios.

Mediante la incorporación de pruebas y validación a lo largo del ciclo de vida del

desarrollo de flujos de trabajo inteligentes, las organizaciones pueden asegurar la

fiabilidad, precisión y mantenibilidad de sus sistemas potenciados por IA. Las pruebas

y validaciones regulares ayudan a detectar errores, prevenir regresiones y generar

confianza en el comportamiento y los resultados del flujo de trabajo.

Parte 2: Los Patrones

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es

Ingeniería de Prompts
Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es

Ingeniería de Prompts 266

Cadena de Pensamiento

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplos

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Generación de Contenido

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Creación de Entidades Estructuradas

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Guía para Agentes LLM

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Beneficios y Consideraciones

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Ingeniería de Prompts 267

Mode Switch

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cuándo Utilizarlo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Ingeniería de Prompts 268

Asignación de Rol

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cuándo Usarlo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplos

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Ingeniería de Prompts 269

Prompt Object

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Ingeniería de Prompts 270

Prompt Template

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Beneficios y Consideraciones

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cuándo Usarlo:

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Ingeniería de Prompts 271

Structured IO

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Escalando el Structured IO

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Beneficios y Consideraciones

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Ingeniería de Prompts 272

Encadenamiento de Prompts

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cuándo Usarlo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo: Incorporación de Olympia

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Ingeniería de Prompts 273

Reescritor de Prompts

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Ingeniería de Prompts 274

Response Fencing

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Beneficios y Consideraciones

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Manejo de Errores

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Ingeniería de Prompts 275

Analizador de Consultas

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Implementación

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Etiquetado de Partes del Discurso (POS) y Reconocimiento de
Entidades Nombradas (NER)

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Clasificación de Intención

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Extracción de Palabras Clave

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Ingeniería de Prompts 276

Beneficios

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es

Ingeniería de Prompts 277

Reescritor de Consultas

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Beneficios

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Ingeniería de Prompts 278

Ventriloquist

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cuándo Usarlo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Componentes Discretos
Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es

Componentes Discretos 280

Predicado

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cuándo Utilizarlo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Componentes Discretos 281

Fachada de API

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Beneficios Clave

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cuándo Usarla

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Autenticación y Autorización

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Componentes Discretos 282

Manejo de Solicitudes

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Formateo de Respuestas

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Manejo de Errores y Casos Límite

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Consideraciones de Escalabilidad y Rendimiento

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Comparación con Otros Patrones de Diseño

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Componentes Discretos 283

Intérprete de Resultados

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cuándo Usarlo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Componentes Discretos 284

Máquina Virtual

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cuándo Usarlo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Detrás de la Magia

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Especificación y Pruebas

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Componentes Discretos 285

Especificando el Comportamiento

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Escribiendo Casos de Prueba

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo: Probando el Componente Traductor

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Reproducción de Interacciones HTTP

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Human In The Loop (HITL)
Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Patrones de Alto Nivel

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Inteligencia Híbrida

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Respuesta Adaptativa

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Intercambio de Roles entre Humano e IA

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Human In The Loop (HITL) 287

Escalamiento

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Beneficios Clave

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Aplicación en el Mundo Real: Atención Médica

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Human In The Loop (HITL) 288

Bucle de Retroalimentación

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Aplicaciones y Ejemplos

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Técnicas Avanzadas en la Integración de
Retroalimentación Humana

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Human In The Loop (HITL) 289

Radiación Pasiva de Información

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Visualización de Información Contextual

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Notificaciones Proactivas

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Perspectivas Explicativas

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Exploración Interactiva

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Human In The Loop (HITL) 290

Beneficios Clave

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Aplicaciones y Ejemplos

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Human In The Loop (HITL) 291

Toma de Decisiones Colaborativa (CDM)

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Human In The Loop (HITL) 292

Aprendizaje Continuo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Aplicaciones y Ejemplos

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Consideraciones Éticas

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Rol del HITL en la Mitigación de Riesgos de IA

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Human In The Loop (HITL) 293

Avances Tecnológicos y Perspectivas Futuras

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Desafíos y Limitaciones de los Sistemas HITL

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Manejo Inteligente de Errores
Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Enfoques Tradicionales de Manejo de Errores

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Manejo Inteligente de Errores 295

Diagnóstico Contextual de Errores

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ingeniería de Prompts para el Diagnóstico Contextual de Errores

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Generación Aumentada por Recuperación para el Diagnóstico
Contextual de Errores

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Manejo Inteligente de Errores 296

Informes Inteligentes de Errores

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es

Manejo Inteligente de Errores 297

Prevención Predictiva de Errores

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Recuperación Inteligente de Errores

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Manejo Inteligente de Errores 298

Comunicación Personalizada de Errores

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Manejo Inteligente de Errores 299

Flujo de Trabajo Adaptativo de Manejo de

Errores

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Control de Calidad
Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es

Control de Calidad 301

Eval

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Problema

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Solución

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Consideraciones

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Control de Calidad 302

Comprendiendo las Referencias Doradas

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funcionan las Evaluaciones Sin Referencias

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Control de Calidad 303

Mecanismo de Protección

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Problema

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Solución

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Cómo Funciona

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Ejemplo

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Consideraciones

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Control de Calidad 304

Guardarraíles y Evaluaciones: Dos Caras de la

Misma Moneda

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

La Intercambiabilidad de Guardarraíles y Evaluaciones
sin Referencia

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Implementación de Guardarraíles y Evaluaciones de
Doble Propósito

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Glosario

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Glosario

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

A

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

B

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

C

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

306

D

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

E

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

F

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

G

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

H

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

I

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

307

J

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

K

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

L

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

M

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

N

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

O

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

308

P

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Q

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

R

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

S

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

T

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

U

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

309

V

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

W

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

Z

Este contenido no está disponible en el libro de muestra. El libro se puede comprar en

Leanpub en http://leanpub.com/patterns-of-application-development-using-ai-es.

http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es
http://leanpub.com/patterns-of-application-development-using-ai-es

Index

accesibilidad, 219, 220

Agéntico, 33

AI, 100, 204

modelo, 100

ajuste fino, 81

ajuste por instrucciones, 10

modelos ajustados por instrucciones,

51, 53

almacenamiento en caché, 252

Alpaca, 13

Altman, Sam, 18

Amazon Web Services, 254

Anthropic, 23, 40, 74, 131, 138

antropomorfismo, 69

análisis de sentimiento, 17, 113, 115, 119,

136

Análisis de Sentimiento del Cliente, 101

análisis de sentimientos, 101, 114, 119, 147

APIs, 72, 125, 155

Aplicaciones de Comercio Electrónico, 92

aplicaciones educativas, 33

aplicaciones modernas, 225

aplicación de chatbot, 120

Apoyo a la Decisión Clínica, 105

aprendizaje con pocos ejemplos, 63

aprendizaje no supervisado, 4

Aprendizaje One-Shot, 61

aprendizaje zero-shot, 60

arquitectura de aplicaciones empresariales,

39

Arquitectura de microservicios, 90

arquitectura de software, 2

arquitectura dirigida por eventos, 110

arquitectura distribuida, 251

arquitectura transformer, 6

arreglos, 132

asignación de tickets, 242

asistentes virtuales, 34

auditoría y cumplimiento, 249

autoescalado, 254

base de conocimientos de Olympia, 92

bases de conocimiento, 7

bases de datos, 125

estrategias de bloqueo, 111

objeto respaldado, 106

BERT, 14, 24

biblioteca Capybara, 262

Bloqueo del Intérprete Global (GIL), 117

bloqueo optimista, 111

bloqueo pesimista, 111

boundary conditions, 257

Brotli, 255

Index 311

Byte Pair Encoding (BPE), 15

C (Lenguaje de Programación), 118

Cadena de Pensamiento (CoT), 46

cadena de suministro

optimización, 33

capacidades

de toma de decisiones, 101

casos límite, 59

Cercado de Respuestas, 178

Chain of Thought (CoT), 140

chatbots de servicio al cliente, 34

ChatGPT, 30, 54

ciencias de la computación, 73

clasificación, 54

clasificadores por rangos, 36

classification, 122

Claude, 8, 45, 78

Claude 3, 51, 129, 131, 136, 138

Claude 3 Opus, 75

Claude v1, 17

Claude v2, 17

Codificación por Pares de Bytes (BPE), 13

Cohere (Proveedor de LLM), 25

Cohere (Proveedor de MLG), 23

coincidencia de patrones, 154

comercio electrónico, 224

completado de alto rendimiento, 26

comportamiento determinista, 59

computadoras de escritorio, 221

concurrent workflows, 256

conectividad de red, 228

confianza del usuario, 219

conjuntos, 120

conjunto de trabajadores, 119

consistencia

y reproducibilidad, 134

construcción narrativa, 20

contenido

Categorización de Contenido, 113

filtrado, 27

contenido generado por usuarios, 113

context

Generación de Contenido Contextual,

194, 195

infinitely long inputs, 16

window, 16

contexto

Aumento, 47

Generación de Contenido Contextual,

189, 201, 202

Sugerencias Contextuales de Campo,

202

toma de decisiones contextual, 227

ventana, 227

Continuación Automática, 162

conversación

bucle, 159, 161

transcripción, 159, 161

Cuantización, 29

cuellos de botella, 228

cuenta, 92

Datadog, 250

Index 312

datos

análisis, 35, 149

flujo, 111

integridad, 242

persistencia, 110

pipeline de procesamiento, 242

preparación, 110

privacidad, 27, 218

Recuperación de Datos, 111

Sincronización de Datos, 111

tareas de procesamiento, 127

Validación de Datos, 261

Datos Autorreparables, 166

Datos de Auto-reparación, 246

datos de entrenamiento, 43

datos en streaming, 154

datos estructurados, 136

decisión

puntos, 247

árboles, 224

depuración, 227

y pruebas, 134

y resolución de problemas, 249

desafíos conceptuales y prácticos, 201

desarrollo de aplicaciones, 223

descubrimientos médicos, 102

detección de fraude

sistema, 98

diccionarios, 132

directiva del sistema, 100, 130

diseño y marcos de aplicaciones, 200

document clustering, 122

Dohan, et al., 45

e-commerce, 194

ecosistema, 150

eficiencia, 225

ejecución paralela, 252

ELK stack, 112

empleados de Databricks, 53

encadenamiento de workers de IA, 113

Enrutamiento Dinámico de Tareas, 226

ensambles, 118

entornos de desarrollo local, 157

entornos de preproducción, 263

entrada

prompts, 57

errores

manejo, 108, 111, 144

Manejo Inteligente de Errores, 145

recuperación, 261

tasas, 112

errores de sintaxis, 133

errors

handling, 257

escalabilidad, 225, 251

escritura creativa, 35, 54

espacio latente, 41, 43

estrategias de respaldo, 111

estrategias de segmentación y orientación,

196

estrategias motivacionales, 215

Estratificación de Riesgo, 104

estrechar el camino, 40

Index 313

etiquetado de estilo markup, 71

Evaluación y Estratificación de Síntomas,

102

eventos enviados por el servidor (SSE), 152

experiencia de usuario, 196

experimentación

marco, 196

explicabilidad, 260

F#, 93

Facebook, 25

factores de riesgo, 96, 97

filtrado basado en contenido, 92

filtrado colaborativo, 92

FitAI, 213

flexibilidad y creatividad, 198

flujo de trabajo adaptativo

Composición Adaptativa del Flujo de

Trabajo, 228

flujo de trabajo múltiple, 113

función

fallo en la llamada, 135

historial, 158

llamada, 125, 159

nombres, 156

gafas de realidad aumentada, 221

Gemma 7B, 11

Generación Aumentada por Recuperación

(RAG), 32, 47, 80, 127

generación de datos sintéticos, 54

generación dinámica de UI, 190

generación intermodal, 22

Generative Pre-trained Transformer (GPT),

8

gestión del conocimiento, 33

gestión del tráfico, 33

Gestor de Procesos, 105, 108

Integración Empresarial, 231

GitLab, 93

Google, 23

API, 64, 66

Cloud AI Platform, 24

Cloud Platform, 254

Gemini, 22

Gemini 1.5 Pro, 14, 17, 19

PaLM (Pathways Language Model),

17, 24

T5, 14

GPT-3, 13, 17

GPT-4, 6, 13, 17, 22, 31, 45, 51, 64, 106, 118,

121, 129, 135, 205, 206, 252

Graham, Paul, 19

GraphQL, 109

Groq, 26, 121

gzip, 255

hardware, 29

hash, 154

hiperparámetro, 48

Hohpe, Gregor, 105

Honeybadger, 95

HTTP, 152

Humano en el Ciclo, 181

IA, 66, 75, 130, 136, 145, 152, 212

Index 314

aplicaciones, 127, 140, 151, 164

conversacional, 7, 32, 214

modelo, 90, 157, 158, 160, 212

puntos de decisión, 259

sistemas compuestos, 31, 35

idioma

Detección de Idioma, 113

indicaciones con pocos ejemplos, 64

Inferencia, 5

información

extracción, 54

recuperación, 7, 128

informática, 71

input

validation, 256

Integración y Despliegue Continuo

(CI/CD), 262

pipeline, 262

integrando LLMs, 190

intelligent workflow orchestration, 255

interacciones de juego de roles, 7

interfaces controladas por voz, 34

interfaces inclusivas, 201

interfaz adaptativa, 210

Interfaz de Usuario (UI)

diseño, 221

interfaces, 200, 216

marcos de trabajo, 216

tecnologías, 211

Interfaz de Usuario Generativa (GenUI),

220

Interfaz Generativa (GenUI), 207, 208

interfaz visual, 211

internacionalización, 197

intervención manual, 230

Intérprete de Resultados, 144

inyecciones SQL, 71

JSON (JavaScript Object Notation), 128,

132, 133, 136, 149, 169

K-means, 123

Large Language Model (LLM), 16, 122

latencia, 28

Latent Dirichlet Allocation, 123

lenguaje

modelos, 44, 66, 73

tareas relacionadas, 5

lenguaje natural

Procesamiento del Lenguaje Natural

(PLN), 102

Limpieza de Texto, 113

Llama, 13

Llama 2-70B, 51

Llama 3 70B, 11

Llama 3 8B, 11

llamada a herramienta, 155

Louvre, 43

línea de comandos

Interfaz de Línea de Comandos (CLI),

26

lógica de interruptor automático, 164

Managed Streaming for Apache Kafka, 42

manejadores de flujo, 153

Index 315

manejo de excepciones, 228, 230

marcos de desarrollo, 151

Markdown, 149

mecanismos de reintento, 111

mecanismos de reversión, 263

Memorial Sloan Kettering Cancer Center,

42

mensaje disparador, 106

Mercurio (dios romano), 46

Mercurio (elemento), 46

Mercurio (planeta), 46

MessagePack, 255

Meta, 25

Metropolitan Museum of Art, 43

minoristas en línea, 207

Mistral, 26

7B, 11

7B Instruct, 17, 206

Mixtral

8x22B, 11

8x7B, 57

modelado autorregresivo, 44

Modelo de Lenguaje Grande (LLM), 1, 3,

18, 30, 68, 69, 72, 76, 78, 112, 125,

126, 136, 142, 146, 149, 166, 169,

189, 200, 205, 211, 234

panorama, 27

Modelo de Lenguaje Grande (MLG), 88, 146

modelos basados en recuperación, 7

modelos base, 55

modelos gráficos, 44

modelos probabilísticos, 44

Moderador de Contenido Inteligente, 235

modularidad, 89

monitoreo

métricas, 250

y alertas, 229

y registro, 112, 249

Monitoreo Continuo de Riesgo, 104

Muestreo Top-k, 49

Muestreo Top-p (núcleo), 49

Multi-Agente

Solucionadores de Problemas, 32

Multimodal

modelos, 20

modelos de lenguaje, 21

Multitud de Trabajadores, 120, 168

método finalize, 158, 160, 161

Naive Bayes, 122

narrow the path, 39

natural language

Natural Language Processing (NLP),

122

New Relic, 253

Ollama, 25

Olympia, 34, 63, 130, 145, 153, 169

OpenAI, 3, 23, 40, 74

OpenRouter, 28, 29, 153, 253

OPT model, 25

orquestación de flujos de trabajo

inteligente, 253

orquestación de flujos de trabajo

inteligentes, 231

Index 316

orquestación inteligente de flujos de

trabajo, 223

output verification, 256

panorama digital, 196

paráfrasis, 54

parámetro

efectos, 130

Número de Parámetros, 28

rango, 11

parámetros de entrada, 130

patrones clave, 226

Patrones de Integración Empresarial, 105

patrones históricos, 227

penalizaciones de repetición, 52

Penalización de presencia, 49

Perplexity (Proveedor), 12

personalización, 27, 190, 220, 225

Formularios Personalizados, 202

Microtextos Personalizados, 208

planificación de respuesta a emergencias,

33

predicciones, 5

principio del mínimo privilegio, 72

problemas de usabilidad, 218

procesamiento asíncrono, 251

procesamiento de flujo, 152

procesamiento de stream

lógica, 160

procesamiento de streams, 158, 164

procesamiento por lotes, 252

proceso de destilación, 77

Productividad, 192

programación funcional, 93

prompts

Destilación de Prompts, 47, 74, 79, 252

diseño, 59, 69

encadenamiento, 60, 72

ingeniería, 42, 46, 47, 57, 60, 66, 68, 217

Objeto Prompt, 75

Plantilla de Prompt, 60

Prompt Template, 207

refinamiento, 69

propiedades ACID, 111

Protocol Buffers, 255

proveedores de alojamiento de modelos de

código abierto, 207

pruebas de extremo a extremo, 261, 262

pruebas de integración, 258

pruebas de usuario y retroalimentación, 199

psicología del usuario, 217

PyTorch, 25

Qwen2 70B, 11

Rails, 197

Railway Oriented Programming (ROP), 95

Raix, 232

biblioteca, 98

rastreo de métricas clave, 246

Recomendaciones de Productos, 92

recomendaciones de productos

personalizadas, 92

Recopilación del Historial Médico, 102

redes neuronales, 4, 6

Index 317

refinamiento iterativo, 76, 146

registro de auditoría, 108

registro estructurado, 250

registro granular, 250

reglas de negocio, 224

reglas gramaticales, 4

regresión lineal, 44

rendimiento, 28

compensaciones, 5

optimización, 134, 198, 249

problemas, 254

Response Fencing, 207

respuesta a preguntas cerradas y abiertas,

54

resumen, 54

retención y rotación de registros, 250

Retrieval Augmented Generation (RAG), 39

retroalimentación

Bucle de Retroalimentación, 60

revelación progresiva, 209

RSpec, 257, 258, 262

Ruby, 93, 94, 114, 165, 262

Ruby on Rails, 1, 113, 231, 239

Rudall, Alex, 24

Rust (Lenguaje de Programación), 93, 118

Scout, 253

Selección Dinámica de Herramientas, 133

Selección Forzada de Herramientas, 133

servicios o APIs externos, 128

sesgo

y equidad en IA, 260

sin estado, 159

sistemas de pregunta-respuesta, 7

sistemas de publicación-suscripción, 109

soporte al cliente, 33

Stripe, 131

Structured IO, 207

Support Vector Machines (SVM), 122

T5, 24

tabletas, 221

tareas complejas, 148

teléfonos inteligentes, 221

Temperatura, 55

teoría de la mente, 41

tiempo de procesamiento, 112

Tiempo hasta el Primer Token (TTFT), 28

Together.ai, 26

tokenización, 13

tokens, 6, 13

toma de decisiones

casos de uso, 135

tono emocional, 147

topic identification, 122

traducción, 17, 198

tragedia de los comunes, 193

Transformador Generativo Pre-entrenado

(GPT), 68

UI Generativa (GenUI), 200, 212, 216

Unicode-encodable language, 15

Universal ID, 255

uso de herramientas, 125, 151

Index 318

Ventrílocuo, 178

Verificación de Seguro, 103

votación por mayoría, 118

Wall, Larry, 3

Wisper, 95, 108, 153, 160

Wooley, Chad, 93

XML, 136

Yi-34B, 51

álgebra lineal, 44

ética

implicaciones, 201

	Tabla de contenidos
	Prólogo por Gregor Hohpe
	Prefacio
	Acerca del Libro
	Acerca de los Ejemplos de Código
	Lo Que No Cubro
	Para Quién Es Este Libro
	Construyendo un Vocabulario Común
	Participación
	Agradecimientos
	¿Qué hay con las ilustraciones?
	Sobre Lean Publishing
	Sobre el Autor

	Introducción
	Reflexiones sobre la Arquitectura de Software
	¿Qué es un Modelo de Lenguaje Grande?
	Entendiendo la Inferencia
	Pensando en el Rendimiento
	Experimentando con Diferentes Modelos LLM
	Sistemas de IA Compuestos

	Parte 1: Enfoques y Técnicas Fundamentales
	Estrechar el Camino
	Espacio Latente: Incomprensiblemente Vasto
	Cómo Se ``Estrecha'' El Camino
	Modelos Sin Procesar Versus Modelos Ajustados por Instrucciones
	Ingeniería de Prompts
	Destilación de Prompts
	¿Qué hay del ajuste fino?

	Retrieval Augmented Generation (RAG)
	¿Qué es la Generación Aumentada por Recuperación?
	¿Cómo funciona RAG?
	¿Por qué usar RAG en sus aplicaciones?
	Implementando RAG en Tu Aplicación
	Fragmentación por Proposiciones
	Ejemplos del Mundo Real de RAG
	Optimización Inteligente de Consultas (IQO)
	Reordenamiento
	Evaluación RAG (RAGAs)
	Desafíos y Perspectivas Futuras

	Multitud de Trabajadores
	Trabajadores de IA Como Componentes Reutilizables Independientes
	Gestión de Cuentas
	Aplicaciones de Comercio Electrónico
	Aplicaciones en el Sector Salud
	El Trabajador de IA como Gestor de Procesos
	Integrando Trabajadores de IA en su Arquitectura de Aplicación
	Composición y Orquestación de Workers de IA
	Combinando PLN Tradicional con MLGs

	Uso de Herramientas
	¿Qué es el Uso de Herramientas?
	El Potencial del Uso de Herramientas
	El Flujo de Trabajo del Uso de Herramientas
	Mejores Prácticas para el Uso de Herramientas
	Composición y Encadenamiento de Herramientas
	Direcciones Futuras

	Procesamiento de Flujo
	Implementando un ReplyStream
	El ``Bucle de Conversación''
	Continuación Automática
	Conclusión

	Datos Autorreparables
	Caso Práctico: Arreglando JSON Dañado
	Consideraciones y Contraindicaciones

	Generación de Contenido Contextual
	Personalización
	Productividad
	Iteración Rápida y Experimentación
	Localización Impulsada por IA
	La Importancia de las Pruebas de Usuario y la Retroalimentación

	UI Generativa
	Generando Texto para Interfaces de Usuario
	Definiendo la UI Generativa
	Ejemplo
	El Cambio hacia el Diseño Orientado a Resultados
	Desafíos y Consideraciones
	Perspectivas Futuras y Oportunidades

	Orquestación Inteligente de Flujos de Trabajo
	Necesidad Empresarial
	Beneficios Clave
	Patrones Clave
	Manejo y Recuperación de Excepciones
	Implementación Práctica de la Orquestación de Flujos de Trabajo Inteligentes
	Monitoreo y Registro
	Consideraciones de Escalabilidad y Rendimiento
	Pruebas y validación de flujos de trabajo

	Parte 2: Los Patrones
	Ingeniería de Prompts
	Cadena de Pensamiento
	Mode Switch
	Asignación de Rol
	Prompt Object
	Prompt Template
	Structured IO
	Encadenamiento de Prompts
	Reescritor de Prompts
	Response Fencing
	Analizador de Consultas
	Reescritor de Consultas
	Ventriloquist

	Componentes Discretos
	Predicado
	Fachada de API
	Intérprete de Resultados
	Máquina Virtual
	Especificación y Pruebas

	Human In The Loop (HITL)
	Patrones de Alto Nivel
	Escalamiento
	Bucle de Retroalimentación
	Radiación Pasiva de Información
	Toma de Decisiones Colaborativa (CDM)
	Aprendizaje Continuo
	Consideraciones Éticas
	Avances Tecnológicos y Perspectivas Futuras

	Manejo Inteligente de Errores
	Enfoques Tradicionales de Manejo de Errores
	Diagnóstico Contextual de Errores
	Informes Inteligentes de Errores
	Prevención Predictiva de Errores
	Recuperación Inteligente de Errores
	Comunicación Personalizada de Errores
	Flujo de Trabajo Adaptativo de Manejo de Errores

	Control de Calidad
	Eval
	Mecanismo de Protección
	Guardarraíles y Evaluaciones: Dos Caras de la Misma Moneda

	Glosario
	Glosario
	Index

